
ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG IM BREISGAU

Characterization of optimal quantum
states with maximal memory effects

Physikalisches Institut
Fakultät für Mathematik und Physik

Diplomarbeit

vorgelegt von

Steffen Wißmann
aus Tübingen

betreut von

Prof. Dr. Heinz-Peter Breuer

Dezember 2012





Zusammenfassung

In dieser Arbeit beschäftige ich mich mit einem kürzlich eingeführten Maß zur
Quantifizierung von nicht-Markov’schem Verhalten in der Zeitentwicklung of-
fener Quantensysteme, das auf dem Austausch von Information zwischen dem
offenen System und seiner Umgebung beruht [5]. In diesem von Breuer, Laine
und Piilo entwickelten Ansatz, wird die Stärke der Gedächtniseffekte in der Sys-
temdynamik mit gewissen optimalen Paaren von Anfangszuständen verknüpft.
Das Ziel dieser Arbeit ist eine mathematische Charakterisierung dieser speziellen
Anfangszustände zu erarbeiten.

In dieser Arbeit charakterisiere ich einen Rand des Zustandsraums, der ein-
zig auf der konvexen Struktur der Menge der Quantenzustände basiert. Dieses
Konzept eines Randes, das wohlbekannt in der konvexen Analysis ist, stellt die
Grundlage für die Beweise der mathematischen Eigenschaften optimaler Zu-
standspaare dar. Ich beweise, dass optimale Zustandspaare auf diesem Rand
des Zustandsraums und überdies orthogonal sein müssen. Dies bedeutet, dass
für Zustände, die zu Beginn durch eine Messung eindeutig unterscheidbar sind
und damit einen maximalen Informationsgehalt haben, mögliche Quantenge-
dächtniseffekte am stärksten sind. Ich zeige zwei Varianten für den Beweis die-
ser Aussage. Der zweite Beweis basiert dabei auf der anschaulichen Idee der
gemeinsamen Verschiebbarkeit von Zustandspaaren, die tiefe Einblicke in die
Struktur des Zustandsraums erlaubt.

Auf der Orthogonalität optimaler Zustände aufbauend, zeige ich, dass es
möglich ist, einen Eingangszustand in der Definition des Maßes fest zu wählen
und schließlich nur über Zustände auf dem Rand einer speziellen Menge die
Größe zu maximieren. Hieraus ergibt sich eine neue Darstellung des Maßes für
nicht-Markov’sches Verhalten quantenmechanischer Systeme, die die Nutzung
von Gradientenmethoden bei der numerischen Maximierung erleichtert.

Die Beweise all dieser Aussagen basieren einzig auf der Konvexität des Zu-
standsraums und der Linearität der dynamischen Abbildungen. Dies bedeutet,
dass keine zusätzlichen Annahmen über die Eigenschaften der Dynamik des
offenen Quantensystems vonnöten sind, um diese Aussagen abzuleiten. Meine
Ergebnisse können daher für beliebige Hilberträume und jeden dynamischen
Prozess, der durch eine einparametrige Familie von linearen dynamischen Ab-
bildungen beschrieben wird, angewandt werden.

Neben diesen Ergebnissen konstruiere ich ein explizites Beispiel für eine
Systemdynamik, das offenlegt, dass optimale Quantenzustände nicht notwen-
digerweise reine Zustände sind. Dies zeigt, dass die Orthogonalität optimaler
Zustände tatsächlich die allgemeinstmögliche Aussage ist, die getroffen werden
kann.
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Abstract

The purpose of this thesis is to study a recently proposed measure for the
quantification of quantum non-Markovianity in the dynamics of open systems [5]
which is based on the exchange of information between the open system and
its environment. This measure, introduced by Breuer, Laine and Piilo, relates
the degree of memory effects to certain optimal initial state pairs featuring
a maximal flow of information from the environment back to the open system.
The main goal of the present work is to provide a mathematical characterization
of these special initial state pairs.

Within this thesis, I characterize a boundary of the state space based solely
on the convex structure of the state space. This concept, which is well-known
in convex analysis, is important for the proofs of the mathematical properties of
optimal state pairs: I rigorously prove that the states of these pairs must lie on
this boundary of the space of physical states and that they must be orthogonal.
This implies that quantum memory effects are maximal for states which are
initially distinguishable with certainty, having a maximal information content.
I present two proofs for this statement. The second one is based on the new
concept of joint translatability of a pair of states. This geometric idea elucidates
the special structure of the state space.

Employing the orthogonality of states of optimal pairs, I show that it is
possible to fix one input state and to maximize the quantity merely over the
states of the boundary of a particular set. This yields a new and more convenient
representation of the measure for quantum non-Markovianity, which enables
to apply gradient methods more easily when the maximization is performed
numerically.

The proof of all these statements relies solely on the convexity of the state
space and on the linearity of the dynamical maps. That is, no additional require-
ments on the properties of the dynamics are needed to derive these statements.
My results can thus be applied to any quantum process describable by a family
of linear dynamical maps in any Hilbert space.

In addition, I construct an explicit example which demonstrates that optimal
quantum states need not be pure states implying that orthogonality of optimal
states is indeed the most general statement which can be made.
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Chapter 1

Introduction

Perfect isolation of any quantum system is almost impossible to realize since it is
usually influenced by the coupling to an environment. Typically, the interaction
of the system with its environment cannot be neglected so that a modelling of a
quantum physical systems as a closed system fails to give a correct description of
the system’s dynamics. The theory of open quantum systems [6] takes the effects
of exchanging energy and information between system and its environment into
account. As a complete microscopic description of the environmental degrees
of freedom is too complicated in general, the main concern of this theory is to
develop effective models for the reduced, open system. The information about
the environmental state is neglected by averaging over its degrees of freedom.

In the past, the most prominent approach resorts to an approximation of the
open system dynamics in terms of a so-called Markovian master equation which
includes several rather drastic assumptions on the properties of the system and
environment. In this case, the time evolution of an open system is described
by a quantum dynamical semigroup, which is most generally represented in the
Lindblad form1 [13, 30]. It is not surprising that there exist complex systems
for which this relatively simple description fails to give a faithful picture of the
dynamics (see e.g. [6]).

There has been a significant progress in developing a general theory allow-
ing a realistic description of a large class of physical problems [4, 14, 39, 41, 58].
At the same time the differentiation of quantum processes in Markovian and
non-Markovian dynamics came up. These terms have been widely used in
physics literature referring, loosely speaking, to the absence or presence of mem-
ory effects in the dynamics which follows the interpretation of Markovian and
non-Markovian stochastic processes in classical probability theory [6,22]. How-
ever, there has been no proper definition of (non-)Markovianity in the quantum
regime as the classical definition can not be implemented [51]. Recently, several
proposals to detect and quantify memory effects in open system dynamics were
made, e.g. [5, 29, 34, 42, 56] to name just a few. The proposed measures are
based on different mathematical and physical concepts so that the very defini-
tion of non-Markovianity and quantification of quantum memory effects in the
dynamics of open systems is still under discussion.

In the thesis at hand I investigate the non-Markovianity measure proposed

1Sometimes this form is also referred to as Lindblad-Gorini-Kossakowski-Sudarshan form.
I will use Lindblad form short hand for this lengthy expression.
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2 Chapter 1. Introduction

in [5] which determines the degree of memory effects in terms of the amount
of information exchanged between the open system and its environment. The
central part of this quantity is the trace distance which represents a measure
for the distinguishability of two quantum states [18–20]. This feature allows the
interpretation that the measure determines the backflow of information from
the environment to the open system. Within this approach the degree of non-
Markovianity is connected to certain optimal initial pairs of quantum states,
which lead to a maximal flow of information to the open system.

Up to now, the measure has only been studied regarding the requirements
to detect non-Markovianity [29], compared to other measures [11, 15, 51] and
applied to physical models (see, e.g. [12, 35]). Moreover, several experiments
have been performed including the maximization over all initial state pairs
[28, 32, 33, 50]. Here, I will now focus on the definition of this quantity. I study
the mathematical and physical properties of optimal state pairs which finally
yield a simplification of the maximization procedure involved in the definition
of the investigated measure.

The thesis is organized as follows:
In Chapter 2 I recapitulate the description of a physical state of a quantum
system. After having clarified the notation, I will focus on the specific structure
of the set of states. Within this discussion I present some first results on bound-
aries of the state space which yield the basic concept for further statements on
the mathematical properties of optimal pairs. I will show that a boundary based
solely on the convex structure of the state space is completely characterized in
terms of eigenvalues. To conclude the discussion of this boundary, its relation
to boundaries derived from norms on the state space is elucidated.

In the subsequent part, Chapter 3, I briefly review the basic concepts of the
theory of open quantum systems. The notion of a quantum dynamical map is
introduced and different representations of such maps are discussed. From this,
the general mathematical properties of a one-parameter family of dynamical
maps describing the evolution of an open system are developed. On the basis of
these properties, several signatures for non-Markovian effects are discussed and,
finally, the concept of quantum non-Markovianity, based on the information
flow, is presented.

Chapter 4 contains the main results of my work concerning the mathematical
and physical properties of optimal state pairs. First, I show in Section 4.1 that
optimal pairs of states must lie on the previously defined boundary of the state
space. In Section 4.2 I then proceed to demonstrate that the states of any
optimal pair must even be orthogonal which is physically very plausible since it
implies that the maximal flow of information from the environment back to the
open system emerges if the initial state pair is distinguishable with certainty,
i.e. has a maximal information content. The comparison between finite and
infinite systems, which has already been initiated for the boundary, is continued.
Moreover, an alternative proof for the orthogonality of optimal state pairs of
finite systems which employs the joint translatability of non-orthogonal states is
given in Section 4.4. A more convenient maximization procedure, applying the
orthogonality of optimal states, is developed in Section 4.3. It yields technical
improvements for numerical and experimental realizations of the maximization
procedure. Moreover, this result allows further insight into the nature of the
measure and strengthens its fundamental character.
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In Chapter 5 the purity of optimal states is investigated. In the simple
case of a qubit, the orthogonality of the optimal pair implies that the states
of the pair must be pure and antipodal. In this chapter it is shown that this
statement does not hold true in general for higher dimensional systems. To this
end, an example of a dynamics of a three-level system (Λ-system) – for which
the optimal pair is not a pure state pair – is given.

Finally, in Chapter 6, I review my studies, summarize the results and draw
some conclusions. In addition, I provide an outlook on the further perspective
of the studies of quantum non-Markovianity and its applications.





Chapter 2

The state space

In this section I briefly review the concept of physical states of a quantum
mechanical system in order to clarify and fix the notation, and to discuss the
structure of this set of states, usually called the state space. For the present
work, it is of great relevance to define and characterize a boundary of the state
space. Apart from boundaries based on norms, the very fundamental property
of convexity of the set of physical states gives rise to a definition of a bound-
ary. It is shown that the boundary arising solely from the convex structure –
and referred to as the intrinsic boundary – is directly linked to zero eigenvalues
of the states of arbitrary systems and, therefore, features the ideal framework
for the studies of the optimal state pairs considered in chapter 4. Moreover,
I prove that a boundary obtained from a norm on the state space is identical
to the intrinsic one. This emphasizes the significance of the intrinsic boundary
regarding its definition.

The basic elements for the description of a quantum system are quantum
states. Physical states of a quantum system are characterized by density op-
erators ρ. They represent positive trace class operators with unit trace on a
Hilbert space H over the field of complex numbers C. Thus, density operators
are bounded linear operators on H satisfying the additional constraints

ρ = ρ†, ρ ≥ 0, Tr(ρ) = 1 . (2.1)

The second requirement is the acronym for a state ρ being positive. This implies
that all eigenvalues are non-negative while the last condition in (2.1) enforces
the sum of eigenvalues to converge to unity. More precisely, the eigenvalues must
constitute an `1-convergent series for infinite-dimensional systems. In the case
of a finite-dimensional Hilbert space, the notion of physical states reduces to
positive matrices whose diagonal elements sum to one. Due to this feature, the
eigenvalues can be interpreted as probabilities. A state has also to be Hermitian
(the first requirement in (2.1)) which already follows from the positivity of a
state as the underlying Hilbert space H is over the field of complex numbers [1].
Throughout the present work, the set of physical states of a quantum system is
denoted by S(H), i.e.

S(H) = {ρ ∈ B(H) | ρ ≥ 0, Tr(ρ) = 1} , (2.2)

where B(H) refers to the set of bounded linear operators on H.
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6 Chapter 2. The state space

A fundamental property of the state space is convexity, which means that
for any ρ, σ ∈ S(H) and λ ∈ [0, 1] one has

ρλ = (1− λ)σ + λρ ∈ S(H) . (2.3)

This signifies that the straight line connecting ρ and σ is entirely contained in
S(H). Later on, I define a boundary of the state space on the basis of the convex
structure.

Because Hermitian operators are in particular normal operators, that is,
the operator commutes with its Hermitian conjugate, the spectral theorem [44]
applies yielding the spectral decomposition of a state

ρ =
dimH∑
i=1

pi|ψi〉〈ψi| , (2.4)

in terms of its eigenvalues pi and eigenvectors |ψi〉. These vectors constitute an
orthonormal basis of the Hilbert space.

2.1 The intrinsic boundary
The convex structure of the state space gives rise to the definition of a boundary
∂S(H) of the state space as follows:

Definition 2.1. A point ρ ∈ S(H) is called an interior point of S(H) if and
only if for all σ ∈ S(H) there is a real number λ > 1 such that

ρλ = (1− λ)σ + λρ ∈ S(H) . (2.5)

Denoting the set of interior points by S̊(H), this set is thus given by

S̊(H) = {ρ ∈ S(H) | for any σ ∈ S(H), ∃λ > 1, s.t. ρλ ∈ S(H)} . (2.6)

Having in mind the figurative description of convexity in terms of lines con-
necting points, a point in the interior has the property that any line, which
terminates in this point, can be extended. In other words, an inner point is
surrounded by states. Note that ρµ = (1 − µ)σ + µρ belongs to S(H) for all
0 ≤ µ ≤ λ by the convexity of the state space.

The corresponding boundary ∂S(H) is the set difference, i.e. ∂S(H) =
S(H)\S̊(H), which yields

∂S(H) = {ρ ∈ S(H) | ∃ σ ∈ S(H), s.t.∀λ > 1, ρλ 6∈ S(H)} . (2.7)

Thus, ρ ∈ ∂S(H) if and only if there exists σ ∈ S(H) such that for all λ > 1 the
operator ρλ = (1−λ)ρ+λσ does not belong to the state space S(H). Because of
its natural definition based solely on the convex structure, and not on a certain
topology, I call this boundary the intrinsic boundary. It is indeed an intrinsic
feature of the set. Note that the intrinsic boundary is a subset of the state
space, i.e. ∂S(H) ⊂ S(H), by definition.

This concept for a boundary is well-known in convex analysis [43], where the
interior (boundary) of a convex set C in Rn defined as above is referred to as the
relative interior (boundary). This term is motivated by the fact that these sets
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are defined relatively to the affine hull of the convex set which is the smallest
affine set that contains C. The relative interior (boundary) is thus the interior
(boundary) of C with respect to the Euclidean structure of Rn constrained to
C’s affine hull. If the affine hull of the convex set C is contained in a hyperplane,
this definition leads to significantly different interiors (boundaries) compared to
the ordinary, Euclidean ones. If one considers, for example, a (two-dimensional)
square embedded in R3, the relative boundary is only given by the edges while
the boundary with respect to any metric on R3 is the entire square.

I proceed to study the intrinsic boundary in order to develop a characteri-
zation of this set. It reveals a direct connection to the distribution of the eigen-
values of the states. As a first result, I show that a density operator belongs to
the boundary if it has a zero eigenvalue.

Lemma 2.1. Let ρ ∈ S(H). Then, ρ ∈ ∂S(H) if 0 ∈ spec(ρ).

Proof. Let ρ ∈ S(H) be an arbitrary state such that 0 ∈ spec(ρ), i.e. it has
a zero eigenvalue. Denote by |ϕ〉 the normalized eigenvector of ρ with zero
eigenvalue and let P = |ϕ〉〈ϕ| refer to the corresponding projection. Then, for
all λ > 1 the operator (1−λ)P +λρ has the negative eigenvalue 1−λ < 0 with
associated eigenvector |ϕ〉 showing that it does not belong to the set of physical
states. Hence, ρ ∈ ∂S(H) due to the definition of the boundary (2.7).

This characterization emphasizes the intrinsic nature of the boundary, as
zero is the intermediate value between positive and negative real numbers. Thus,
it separates positive eigenvalues, which determine elements of S(H), from neg-
ative ones corresponding to nonphysical operators.

For finite-dimensional systems the converse holds as well. One way to show
this is to determine the states in the interior. The restriction to finite systems
is not due to technicalities as one might think. This will become clear later on.

Theorem 2.1. Let dimH <∞ and ρ ∈ S(H). Then, ρ ∈ ∂S(H) if and only if
0 ∈ spec(ρ).

Proof. For the converse of lemma 2.1, suppose that ρ ∈ S(H) is a state whose
spectrum does not contain zero. I want to show that ρ ∈ S̊(H). Consider the
operator (1− λ)σ + λρ for λ > 1 and an arbitrary state σ. It can be rewritten
by setting λ = 1 + ε with ε > 0 which yields ρ′ = (1 + ε)(ρ − ε(1 + ε)−1σ).
This shows that the contribution of σ can be seen as a small perturbation for
an appropriate choice of ε. It follows from the positivity of ρ’s eigenvalues and
the continuity of the roots of the characteristic polynomial (with respect to its
coefficients) that all eigenvalues of ρ′ are also positive for sufficiently small ε.
This shows that ρ′ is positive and, thus, ρ is in the interior S̊(H).

Hence, for finite-dimensional systems the intrinsic boundary is completely
described by states with zero eigenvalues,

∂S(H) = {ρ ∈ S(H) | 0 ∈ spec(ρ)} . (2.8)

It is clear that the reasoning using the characteristic polynomial only works in
finite dimensions. However, the following, surprising theorem shows that this is
indeed all one can get.
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Theorem 2.2. For dimH = ∞ all points ρ ∈ S(H) are on the boundary, i.e.
∂S(H) = S(H).

Proof. Let ρ be an arbitrary state. Since I have already shown that ρ ∈ ∂S(H)
if 0 ∈ spec(ρ) for arbitrary dimensions, I assume 0 6∈ spec(ρ). I then construct
a state σ ∈ S(H) such that for all λ = 1 + ε > 1 one has (1 − λ)σ + λρ =
−εσ + (1 + ε)ρ /∈ S(H). From this, it follows that ρ ∈ ∂S(H).
Let ρ be written in terms of its spectral decomposition by

ρ =
∞∑
i=1

pi|ψi〉〈ψi| , (2.9)

where pi > 0 ∀i ∈ {1, 2, . . . } due to the assumption 0 /∈ spec(ρ). According to
the constraint on the trace of the state, which implies

∑∞
i=1 pi = 1, the sequence

rn ≡
∞∑

i=n+1
pi , n = 0, 1, 2, . . . (2.10)

is strictly monotonically decreasing and converges to zero, i.e. rn ↘ 0 (n→∞).
Note that r0 =

∑∞
i=1 pi = 1. The coefficients

qm ≡
√
rm−1 −

√
rm , ∀ m = 1, 2, . . . (2.11)

are thus strictly positive and add up to one as the sum is a telescoping series:

qm > 0 ∀ m ∈ {1, 2, . . . } ,
∞∑
m=1

qm =
√
r0 = 1 . (2.12)

Moreover, the m’th coefficient is bounded from below according to

qm = rm−1 − rm√
rm−1 +√rm

≥ pm
2 · √rm−1

⇔ qm
pm
≥ 1

2 · √rm−1
, (2.13)

which shows that qm/pm → ∞ (m → ∞) as the sequence rm converges mono-
tonically to zero. Due to (2.12), the operator

σ =
∞∑
i=1

qi|ψi〉〈ψi| (2.14)

defines a state that has the same spectral decomposition as ρ so that one obtains

− εσ + (1 + ε)ρ =
∞∑
i=1

((1 + ε)pi − εqi)|ψi〉〈ψi| . (2.15)

However, for any ε > 0 there exists i0 ∈ N, so that for all j ≥ i0
qj
pj

>
1 + ε

ε
, (2.16)

since the ratio qm/pm diverges. This inequality shows that −εσ + (1 + ε)ρ has
the negative eigenvalue (1 + ε)pj − εqj < 0 for some j and any possible choice
of ε. Thus, it does not belong to the state space. This proves the claim, i.e.
ρ ∈ ∂S(H).
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Hence, there exists indeed no extension of the preceding theorem, as it has
been mentioned before, since all states are already on the boundary. This pe-
culiar result might lead to the conjecture that either the feature defining the
boundary (cf. (2.7)) is to coarse or the state space of infinite systems is special.
In the next section I show that there is strong evidence that it is the latter
which holds true.

2.2 A boundary based on a norm
This section is devoted to an alternative boundary of the state space based on
a norm on the state space. By a fundamental result in functional analysis, one
knows that all norms on a finite-dimensional vector space are equivalent [44].
As the state space is a subset of the real vector space of Hermitian matrices, it
therefore does not make any difference which norm I choose for the definition of
the boundary for finite systems. For convenience, I consider the p -norm which
is given by

‖·‖p =
(

Tr(| · |p)
)1/p

, (2.17)

for1 1 ≤ p < ∞. The modulus of an operator A is defined as |A| ≡
√
A†A

specifying a positive element associated to a given operator. For a self-adjoint
operator A, which is determined by its eigenvectors |ψi〉 and eigenvalues ai, the
spectral decomposition (2.4) of |A| obeys

|A| =
∑
i

|ai| |ψi〉〈ψi| . (2.18)

Hence, for a self-adjoint operator the p -norm (2.17) reads

‖A‖ =
(∑

i

|ai|p
)1/p

. (2.19)

Up to a factor of 1/2, the 1 -norm is equivalent to the trace norm whose induced
metric will be introduced in section 3.3, and the 2 -norm is typically referred to
as the Hilbert-Schmidt norm and denoted by ‖·‖HS .

The purpose of this section is to elucidate the previously studied intrinsic
boundary regarding its relation to boundaries based on a norm. I establish
the same characterization for the boundary induced by a p -norm as the one
obtained for the intrinsic boundary. By this, ∂S(H) defines the same set as any
norm based boundary for finite-dimensional systems. The intrinsic boundary
thus provides merely a more practical definition of the same set in terms of the
extensibility of lines. This feature will be needed in the next chapter.

Definition 2.2. The boundary based on the p -norm for some 1 ≤ p < ∞ is
defined by

∂pS(H) = {ρ ∈ S(H) | ∀ε > 0 : B̂(p)
ε (ρ) ∩ S(H)c 6= ∅} , (2.20)

where S(H)c refers to the complement of S(H) with respect to the set of Her-
mitian operators of unit trace E1(H) = {A ∈ B(H) | A = A†, TrA = 1}, i.e.

1It is also possible to choose p =∞ in the definition (2.17). In this case, the norm is given
by the supremum of the modulus of the eigenvalues.
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S(H)c ≡ E1(H) \ S(H), and B̂(p)
ε (ρ) = {σ ∈ S(H) | ‖ρ − σ‖p ≤ ε} denotes the

closed ball surrounding ρ in terms of the considered p -norm.

I call ∂pS(H) the p -boundary. Hence, a state ρ is on the p -boundary if and
only if there exists a non-positive operator in any ball with respect to the p -norm
centered at ρ. It is worth noting that the p -boundary is always contained in
S(H) by definition in contrast to the general definition of a topological boundary
where this only holds if and only if the set is closed.

One readily obtains that for arbitrary systems, states with a zero eigenvalue
are also on the p -boundary. This result is established using a similar construc-
tion as in lemma 2.1.

Lemma 2.2. Let ρ ∈ S(H). Then, ρ ∈ ∂pS(H) if 0 ∈ spec(ρ).

Proof. Let ρ ∈ S(H) be a state with a zero eigenvalue and |ϕ〉 ∈ H is the
corresponding normalized eigenvector. Denote by |ψ〉 ∈ H another normalized
eigenvector orthogonal to |ϕ〉. Then, for all ε > 0 the operator

ρ̃ = ρ+ ε

2 |ψ〉〈ψ| −
ε

2 |ϕ〉〈ϕ| ∈ E1(H) \ S(H) (2.21)

defines a Hermitian operator with unit trace that has a negative eigenvalue.
However, it is contained in the ε-ball centered at ρ since

‖ρ̃− ρ‖p =
(

Tr
(
| 12ε|ψ〉〈ψ| −

1
2ε|ϕ〉〈ϕ||

p
))1/p

= 21/p

2 ε ≤ ε . (2.22)

Hence, ρ ∈ ∂pS(H) as there exists a Hermitian, non-positive operator with unit
trace contained in the ε-ball of ρ for any ε > 0.

By a similar reasoning as in theorem 2.1 one obtains even equivalence for
finite-dimensional systems: A state is on the p -boundary if and only if it
has a zero eigenvalue. Thus, one arrives at the same characterization for the
two boundaries in terms of the eigenvalues. Again, the restriction to finite-
dimensional systems is not based on the chosen proof as it will be shown.

Theorem 2.3. Let dimH = N < ∞ and ρ ∈ S(H). Then, ρ ∈ ∂pS(H) if and
only if 0 ∈ spec(ρ).

Proof. For the converse of the preceding lemma, suppose ρ0 ∈ S(H) such that
0 /∈ spec(ρ). For any ε > 0, every operator ρ ∈ B̂(p)

ε (ρ0) can be written as the
sum of ρ0 and a traceless Hermitian operator A, i.e. ρ = ρ0+A. The eigenvalues
p

(i)
A of A have to obey

(
‖A‖p

)p =
N∑
i=1

(p(i)
A )p ≤ εp , (2.23)

showing that A is only a small perturbation of ρ0 for ε � 1. Thus, if ε is
chosen sufficiently small, it follows again from the continuity of the roots of the
characteristic polynomial that all eigenvalues of ρ are positive, too. One obtains
B̂ε(ρ0) ⊂ S(H) for sufficiently small ε so that ρ0 ∈ S̊(H) and, therefore, S̊(H) =
{ρ ∈ S(H) | 0 /∈ spec(ρ)} which finally proves the theorem.
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Theorem 2.4. For dimH = ∞ and any 1 ≤ p < ∞, all points ρ ∈ S(H) are
on the p -boundary, i.e. ∂pS(H) = S(H).

Proof. Suppose ρ ∈ S(H) such that ρ > 0. Its spectral decomposition is given
by ρ =

∑∞
i=1 pi|ψi〉〈ψi|. As the eigenvalues are an `1-series, there exists for any

ε > 0 an index m ∈ N such that the m-th eigenvalue of ρ satisfies pm < ε/2.
For any k 6= m, the operator

A =
∞∑
i=1

qi|ψi〉〈ψi| , (2.24)

where

qi =

 pk + ε
2 , if i = k

pi , if i 6= m, k
pm − ε

2 , if i = m
, (2.25)

defines a non-positive, Hermitian operator with trace one. Since one has

ρ−A = ε

2 |ψm〉〈ψm| −
ε

2 |ψk〉〈ψk| , (2.26)

this operator is in the ε-ball centered at ρ for any p -norm. Thus, ρ ∈ ∂pS(H)
which proves the claim.

One concludes that the boundaries based on the p -norm and the intrinsic
one coincide for all kind of systems. The intrinsic boundary is indeed only a
more convenient representation which reveals the underlying structure of the
state space. Therefore, I will henceforth simply talk about the boundary and
denote it by ∂S(H). Summing up the previous results, the boundary of state
space is completely determined by the set of states with zero eigenvalues,

∂S(H) = {ρ ∈ S(H) | 0 ∈ spec(ρ)} (2.27)

for finite systems, while the intrinsic boundary and the one based on any p -
norm is equal to the entire state space for dimH = ∞. These results endorse
the statement that the state space for infinite systems is special as it is different
for at least two major classes of boundaries.

2.3 Generalized Bloch representation
I now return to finite-dimensional systems in order to introduce the famous rep-
resentation of states in terms of vectors in a real vector space which is typically
referred to as the generalized Bloch representation [1]. Moreover, some proper-
ties of the corresponding convex set of states are discussed.

For a quantum system described by a Hilbert space H with dimension N ,
there is a unique representation of states in terms of vectors in RN

2−1. Using
traceless, Hermitian and orthogonal representatives of the generators of the
(N2 − 1)-dimensional special unitary group SU(N), one obtains

ρ = 1
N

{
1N +

N2−1∑
i=1

√
N(N − 1)
Tr(σ†iσi)

v
(ρ)
i σi

}
, (2.28)
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where the vector ~v(ρ) = (v(ρ)
1 , . . . , v

(ρ)
N2−1) ∈ RN

2−1 is called the generalized
Bloch vector associated to the state ρ. The SU(N)-generators are usually chosen
to obey

σiσj = 2
N
δij + ifijkσk + dijkσk , (2.29)

where fijk are the so-called structure constants (completely antisymmetric) and
dijk refers to the symmetric d-tensor [7]. This yields

ρ = 1
N

{
1N + c(N)~v(ρ)~σ

}
, c(N) =

√
N(N − 1)

2 , (2.30)

where the coefficients are determined by v(ρ)
i = Tr(ρσi). It is well known that

there exist a smallest and a largest ball with respect to the Euclidean norm in
RN

2−1 centered at zero which define the smallest isotropic superset and largest
isotropic subset of S(H), respectively [16, 24]. Due to the choice of c(N), the
radius Rout of the smallest ball enclosing the convex set of generalized Bloch
vectors is one, i.e. Rout = 1. It can be readily shown that the Bloch vector of a
state is on the sphere determined by Rout if and only if the state is pure [16,24].
The radius of the largest ball entirely contained in the set of generalized Bloch
vectors is denoted by rin and one has rin = 2

N . The former ball is typically
called the outsphere while the latter one is referred to as the insphere. Thus, to
any vector in RN2−1 with norm less than or equal to rin , there corresponds a
quantum state according to equation (2.28), i.e. for any r ≤ rin

Br(0) = {~v ∈ RN
2−1 | ‖~v‖ ≤ r} , (2.31)

determines an isotropic subset of the state space. Since ‖ρ− 1
N 1N‖

2
HS = Tr((ρ−

1
N 1N )2) = ‖~v(ρ)‖2, one can define this set also directly in terms of positive
operators with trace one,

B̂r( 1
N 1N ) ≡ {ρ ∈ E1(H) | ‖ρ− 1

N
1N‖HS ≤ r} ⊂ S(H) . (2.32)

Although this representation looks simple, the precise shape of the set of per-
missible vectors is extremely complicated. The constraint of positivity induces
a lattice of N nested inequalities which are given by the coefficients of the char-
acteristic polynomial. More precisely, the roots of a polynomial are positive
if and only if all coefficients are positive semi-definite [23]. In terms of the
vector ~v ∈ RN

2−1, the first three coefficients of the characteristic polynomial
det(ρ− λ1N ) are given by

a1 = 1 , (2.33)

a2 = N − 1
2N (1− ~v · ~v) , (2.34)

a3 = (N − 1)(N − 2)
6N2

(
1− 3~v · ~v + 2(~v ? ~v) · ~v

)
, (2.35)

where the ?-product is defined as

(~v ? ~w)k =
√
N(N − 1)

2
1

N − 2dijkviwj . (2.36)



2.3. Generalized Bloch representation 13

At this point, the algebra structure of SU(N) enters. As the first coefficient
a1 is trivially positive, there is only one constraint given by a2 ≥ 0 for two-
level systems. One immediately recognizes that this yields the famous Bloch
ball: all vectors in R3 with norm smaller than or equal to one correspond to
quantum states. In this case, the state space is represented by an isotropic
subset in R3 which is convenient, for example, for simulations applying Monte
Carlo methods. Moreover, the in- and outsphere coincide for two-dimensional
systems. However, already for a three-level system, the positivity of a3 causes
that rin < Rout and, therefore, that the set of permissible vectors is a proper
subset of the outsphere. Even though there is only one further constraint for a
three-level system, it is very tedious to check whether a vector in R8 belongs to a
state or not. Of course, all this gets even worse for higher-dimensional systems.
Although some progress has been made [7,23,24], a complete understanding of
the set of generalized Bloch vectors is still missing. The set apparently lacks
a simple symmetry. Due to these difficulties, the representation is mostly used
only for two-level systems.

2.3.1 Antipodal and antiparallel states
On the basis of the convex combination of two states (2.3), one can define
particular pairs of states for finite-dimensional systems. Two states ρ1 and ρ2
on the boundary ∂S(H) are said to be antipodal if and only if there exists a real
number 0 < λ < 1 such that

λρ1 + (1− λ)ρ2 = 1
N 1N . (2.37)

That is, a pair of states is antipodal if the line connecting them passes through
the maximally mixed state. Using the Bloch representation (2.30), it follows that
the convex combination of ρ1 and ρ2 also defines a line in the set of generalized
Bloch vectors and that for antipodal states this line crosses the origin ~v = 0.
Hence, applying a point reflection with respect to the origin and a scaling, the
Bloch vectors of antipodal states are mapped onto each other. That is, the Bloch
vectors corresponding to antipodal states have opposite directions but different
lengths with respect to the Euclidean norm. If two Bloch vectors mapped onto
each other by a point reflection but without any scaling, the associated states are
referred to as antiparallel. I emphasize that the sets of antipodal and antiparallel
states do not coincide unless the Hilbert space is two-dimensional [16].





Chapter 3

Open quantum systems

After having studied different features of the state space in the preceding chap-
ter, I proceed to study open systems and their dynamics. The fundamental
concepts of the theory of open quantum systems, such as completely positive
dynamical maps, master equations and divisibility of dynamical maps are briefly
summarized. Finally, I turn my attention to the definition of non-Markovianity
in the quantum regime and quote a recently developed measure [5] for non-
Markovian behaviour of open quantum systems which I study throughout the
thesis.

3.1 Microscopic approach to open systems
The term open system refers to a quantum physical system S that interacts
with another system E which one calls the environment. Almost every quan-
tum physical system of practical relevance constitutes an open system as the
interaction with an environment is ubiquitous. The open system S can be seen
as a subsystem of the total system S + E consisting of the open system and
its environment. The Hilbert space H of the total system is thus given by the
tensor product of the open system’s Hilbert space HS and of the environmental
Hilbert space HE , i.e. H = HS ⊗HE . The total system is typically assumed to
be closed so that the time evolution of any of its states ρ ∈ S(H) is governed
by the Liouville-von Neumann equation

d
dtρ(t) = −i[H, ρ(t)] , (3.1)

where Planck’s constant is set to ~ = 1, and H refers to the Hamiltonian of
the total system. The Hamiltonian is time independent as the total system is
assumed to be closed. Denoting the self-Hamiltonians of the open system and
environment by HS and HE , respectively, and defining HI to be any interaction
Hamiltonian mediating between system and environment, H can be split into
three parts so that it reads1

H = HS ⊗ 1E + 1S ⊗HE +HI . (3.2)

1Here, 1S,E refers to the identity operator on the open system and the environment,
respectively.

15
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The Liouville-von Neumann equation (3.1) defines a one-parameter family of
unitary operators given by U(t) = exp(−iHt) which determines the time evo-
lution of states of the total system according to

ρ(t) = U(t)ρ(0)U†(t) . (3.3)

The actual state of the system S at time t is then obtained by taking the partial
trace over the environmental Hilbert space HE of ρ(t), which is denoted by TrE ,
i.e.

ρS(t) = TrE(U(t)ρ(0)U†(t)) . (3.4)

That is, one takes the average over all environmental degrees of freedom so that
solely the quantities of the open system remain in which one is interested in.
The major difficulty of this formalism is to determine the full solution of the
equations of motion. Hence, one of the objectives of the theory of open quantum
systems [6] is to provide an analytically or numerically feasible formulation of
the dynamical evolution of the open system. Employing this theory, an effective
description of actual systems present in various experiments is possible. In the
following, several concepts are introduced and discussed.

3.2 Quantum dynamical maps
The key concept of the theory of open quantum systems is the notion of dy-
namical maps. It summarizes the fundamental mathematical properties of the
dynamical evolution defined by equation (3.4) for initially uncorrelated total
system states given by the tensor product ρ(0) = ρS(0) ⊗ ρE(0). Here, the
density operators ρS(0) and ρE(0) refer to the open system’s initial degrees of
freedom and those of the environment, respectively. The assumption of factor-
izing initial conditions means that the open system and the environment are
statistically independent at the initial time. Applying this, equation (3.4) reads

ρS(t) = TrE
(
U(t)ρS(0)⊗ ρE(0)U†(t)

)
. (3.5)

For a fixed initial environmental state ρE(0) this equation defines a linear map
on the state space S(HS) at any time t ≥ 0,

Φt,0 : S(HS)→ S(HS) , (3.6)

where Φ0,0 is the identity operator. It is readily shown that this map preserves
the trace and Hermiticity, and is positive, i.e. one has

TrS(Φt,0(A)) = TrS(A) (3.7)
Φt,0(A)† = Φt,0(A†) ∀ A ∈ B(HS) (3.8)

and

Φt,0(A) ≥ 0 ∀ 0 ≤ A ∈ B(HS) , (3.9)

respectively. Positivity of a map thus means that it maps positive operators
to positive operators. The map Φt,0 therefore defines an endomorphism on the
state space S(HS) and determines for any initial state ρS(0) of the open system
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the corresponding open system state ρS(t) at time t according to the action of
the dynamics:

ρS(0) ∈ S(HS) 7→ ρS(t) ≡ Φt,0(ρS(0)) . (3.10)

This map is called the quantum dynamical map corresponding to time t with
initial time t = 0. The attentive reader might ask why one requires to have
a linear map since the state space is merely a convex set. However, any affine
map has a unique linear extension to the underlying linear vector space so that I
always refer to the linear extension of the dynamical map on the set of bounded
operators B(HS) if necessary [18].

Apart from the above listed properties, a dynamical map has another im-
portant feature: it is not only positive but also completely positive. That is, it
is n-positive for all n ∈ N which is defined as:

Definition 3.1. A map Φt,0 is said to be n-positive if and only if the linear
tensor extension of the map defined by (Φt,0 ⊗ 1n)(A ⊗ B) = Φt,0(A) ⊗ B for
B ∈ B(Cn) and A ∈ B(HS) is positive.

The combined map Φt,0 ⊗ 1n can be interpreted as an operation which acts
only non-trivially on the open systems Hilbert space HS . The second factor of
the tensor product Hilbert space H = HS ⊗ Cn, describing an ancillary n-level
system, is left unchanged. Due to the fundamental property of entanglement
in quantum theory, the requirement of complete positivity is essential for a
dynamical map in order to represent a physical operation.

1-positivity is obviously equivalent to positivity of a dynamical map and the
notion of n-positivity is hierarchical which means that Φt,0 n-positive implies
Φt,0 k-positive for all 1 ≤ k ≤ n [2]. The converse, however, does not hold in
general [10,48]. For an open system of finite dimension NS , one has a relatively
simple criterion for complete positivity [9]: a linear map is completely positive
if and only if it is NS-positive.

An alternative characterization of completely positive maps is obtained by
the Kraus representation [26]: a linear map Λ : B(HS) → B(HS) is completely
positive if and only if there exist operators Ωi, acting on the underlying Hilbert
space HS , such that Λ can be written as

Λ(A) =
∑
i

ΩiAΩ†i , (3.11)

for any A ∈ B(HS). By cyclicity of the trace, one easily determines that such
a map is trace preserving if and only if the Kraus operators satisfy the nor-
malization2 ∑

i Ω†iΩi = 1S . One easily determines the Kraus operators for any
dynamical map of the kind of equation (3.5) using the spectral decomposition of
the environmental state. Therefore, any dynamical map based on a microscopic
approach is indeed completely positive.

This representation of a completely positive (CP) and trace preserving (T)
map can be derived from Stinespring’s dilation theorem [48]. The theorem states
that any such map between states of finite-dimensional Hilbert spaces are of the

2Operations which at least do not increase the trace are considered frequently in quantum
information theory. These maps obey the following modified normalization:

∑
i
Ω†iΩi ≤ 1S .
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kind of equation (3.5): for a CPT-map Λ on S(HS) there exists an auxiliary
system Hκ and a unitary U on HS ⊗Hκ such that

Λ(ρ) = Trκ(Uρ⊗ ρκU†) , (3.12)

for all ρ ∈ S(HS) whereas ρκ refers to some state on Hκ. The auxiliary system’s
Hilbert space can be chosen such that dimHκ ≤ (dimHS)2.

It is important to notice that the representation (3.12) is only unique up
to unitary equivalence. One thus infers from this theorem that any completely
positive and trace preserving linear mapping can be related to a certain mi-
croscopic approach. The sets of CPT-maps and dynamical maps arising from
microscopic approaches with factorizing initial conditions are actually identical.

The set
Φ = {Φt,0 | t ≥ 0, Φ0,0 = 1S} (3.13)

defines a one-parameter family of dynamical (CPT-)maps and characterizes to-
tally the quantum dynamical process as it contains all information about the
time evolution of any state. Any quantum dynamical process of an open quan-
tum system is formally given by a one-parameter family of CPT-maps.

Recall that an initial environmental state ρE(0) was chosen for the definition
of the dynamical map Φt,0. Any other state ρ̃E(0) defines another dynamical
process Φ̃ whereas the total system evolves due to the same unitary dynamics.
Thus, by changing the environmental contribution to the factorizing initial state
one obtains a whole bunch of quantum dynamical processes.

If one considers the derivation of the dynamics based on a microscopic
treatment (3.6), one recognizes that the map can be split up into three parts:
the map consists of the so-called assignment map φ : S(HS) → S(H) which
assigns a state of the total system ρSE(0) ≡ φ(ρS(0)) to an open system
state ρS , a subsequently applied unitary evolution and the partial trace over
the environment, i.e. Φt,0 : ρS(0) 7→ TrE(Utφ(ρs(0))U†t ). Factorizing ini-
tial conditions are one possibility for an assignment map corresponding to
φ : ρS(0) 7→ ρS(0) ⊗ ρE(0) for a certain environmental state which even re-
veals the input state, i.e. ρS(0) = TrE(ρSE(0)). If the assignment φ has exactly
this property, the dynamics based on a microscopic approach is clearly equal to
the identity for t = 0. Hence the question occurs whether there is another type
of assignment map revealing this feature which yields a dynamics governed by
linear CPT-maps? The answer is “no”: it has been shown [31, 49] that there is
only the map associated to factorizing initial conditions which satisfies all the re-
quirements. Thus, the rather drastic assumption of factorizing initial conditions
is indeed the only possibility to obtain a microscopically motivated dynamical
map unless either the trivial action for t = 0 or linearity is abandoned. However,
these two properties are two intrinsic features of a mapping which describes the
evolution of a quantum state.

3.2.1 General master equation
As the determination of the dynamical maps is typically as difficult as solving the
Liouville-von Neumann equation (3.1), several other methods for the treatment
of the dynamics of open systems were developed. There are several theoretical
and numerical approaches, like projection operator techniques [39,58], influence
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functional and path integral techniques [14], quantum Monte Carlo methods and
stochastic wave function techniques [4, 41]. Here, I concentrate on a commonly
used description for the dynamical evolution of an open quantum state in terms
of a so-called quantum master equation. More precisely, time-local quantum
master equations, which refer to a first-order linear differential equation, are
considered in the following part of the thesis.

According to this approach, the infinitesimal evolution of an open quantum
system’s state ρS ∈ S(HS) at time t obeys

d
dtρS(t) = K(t)ρS(t) . (3.14)

The generator K(t) must then preserve Hermiticity and the trace of the states
which implies that

[K(t)A]† = K(t)A , TrS(K(t)A) = 0 , (3.15)

holds for all t and Hermitian operators A on HS . Based on these requirements,
one deduces that the most general form of the generator is given by [3, 13]

K(t)ρS(t) =− i[HS(t), ρS(t)]

+
∑
i

γi(t)
[
Ai(t)ρS(t)A†i (t)− 1

2{A
†
i (t)Ai(t), ρS(t)}

]
. (3.16)

Here, HS(t) is a system Hamiltonian, which may not coincide with the Hamil-
tonian of the microscopic approach (3.2), and Ai(t) are arbitrary operators in
B(HS). These are the so-called (generalized) Lindblad operators describing the
various decay channels of the system. Moreover, γi(t) refers to the correspond-
ing decay rate. The term −i[HS(t), ρS(t)] represents the reversible, Hamiltonian
evolution of the open system whereas the second term on the right-hand side of
equation (3.16) takes irreversible effects like dissipation into account for which
reason it is called the dissipator.

Complete positivity is not guaranteed by the very structure of the generator
and the most general conditions on the components of (3.16) leading to a CPT-
map are unfortunately still not known yet. A sufficient condition is given by
positive decay rates: if γi(t) ≥ 0 for all t ≥ 0 the arising dynamical map is indeed
completely positive. In this special case the generator K(t) can be brought into
Lindblad form (see (3.19)) for any time t. Such a process is usually referred to
as a time-dependent Markovian process. Moreover, for a time-independent gen-
erator K with positive rates the induced dynamics is governed by a semigroup.
I will return to this in the subsequent section.

It is widely believed that a non-memoryless dynamics necessarily requires
a master equation which is non-local in time. This is based on the idea that
memory effects can only be described by a non-trivial memory kernel as the
term already suggests. However, the existence of a time-local master equation
for the description of the system evolution even in the presence of memory effects
can be easily motivated: Let the subdynamics of the open system be given by
a one-parameter family of CPT-maps, i.e one has ρS(t) = Φt,0ρS(0) for any
state ρS(0). Assuming a smooth time dependence, one might differentiate this
relation with respect to time t which yields

d
dtρS(t) = Φ̇t,0ρS(0) . (3.17)
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Obviously, one obtains a time-local equation from (3.17) if the dynamical evo-
lution is invertible so that the initial state ρS(0) can be written in terms of
ρS(t),

d
dtρS(t) = Φ̇t,0Φ−1

t,0ρS(t) . (3.18)

Here, Φ−1
t,0 denotes the inverse of Φt,0 in the algebra of superoperators acting on

B(HS). However, the reversibility of the dynamics is not guaranteed generally:
for very strong couplings of system and environment the inverse Φ−1

t,0 might not
exist [3, 4]. Nevertheless, one can show [52, 53] that the inverse and, therefore,
the generator K(t) = Φ̇t,0Φ−1

t,0 is mostly well defined if the time dependence is
analytic. More precisely, the generator exists apart from isolated singularities.
The state evolution can thus be described by a time-local master equation for the
intermediate time intervals (see e.g. [29]). I want to stress that the inverse Φ−1

t,0
must not be completely positive. In general, it is neither completely positive
nor even positive.

Due to this derivation, time-local master equations can indeed provide a
valid description for dynamical systems even if they are facing strong memory
effects. Time-local master equations of the form (3.14) are efficiently derived
from an microscopic approach employing the technique of time-convolutionless
projection operators [8, 17,47] (see also [6]).

3.2.2 Completely positive semigroups
A time-local master equation with a time-independent generator and positive
rates deserves special attention as the arising dynamics has particular features.
In this case, the generator is in the famous Lindblad form [13, 30]

LρS(t) = −i[HS , ρS ] +
∑
i

γi

[
AiρS(t)A†i − 1

2{A
†
iAi, ρS(t)}

]
, (3.19)

where the rates obey γi ≥ 0. The solution of the associated time-local master
equation

d
dtρS(t) = LρS(t) , (3.20)

is simply given by Φt,0 = exp{Lt} which yields a one-parameter family of CPT-
maps as already mentioned in the previous section. Moreover, a dynamical
process obtained from a Lindblad master equation has the additional feature
that it constitutes a semigroup:

Definition 3.2. A one-parameter family of dynamical maps {Φt,0 | t ≥ 0, Φ0,0 =
1} defines a semigroup3 if and only if for all t, s ≥ 0 the map Φt+s,0 can be rep-
resented by

Φt+s,0 = Φt,0Φs,0 . (3.21)

The semigroup property implies that a dynamical map has a universal action
on the state evolution which means that its effect on a state is independent
of the point in time when it is applied. This property directly reflects the
negligence of any memory effects. Dynamical evolutions which are governed by

3More precisely, it is called a one-parameter semigroup in this case (see [44]).
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a completely positive semigroup are therefore called Markovian. It is clear that
not all dynamical processes define a semigroup.

One might ask whether it is possible to derive a time-local master equa-
tion for a dynamical process which defines a semigroup. Under very general
mathematical conditions4, any semigroup has an infinitesimal generator so that
any element of the group can be written as exponential of the generator as
above. Moreover, the popular Gorini-Kossakowski-Sudarshan-Lindblad theo-
rem [13, 30] establishes a one-to-one connection between the Lindblad form for
a generator and the existence of semigroups of completely positive and trace
preserving maps: L is the generator of a semigroup of dynamical maps if and
only if it is in Lindblad form (3.19). Hence, any evolution, which is based on
a time-local master equation whose generator is in Lindblad form, describes a
dynamical process. This theorem thus allows phenomenological approaches for
the description of open system dynamics, that is why Lindblad generators have
been studied and used intensively in the theory of open quantum systems.

However, it is also possible to derive a master equation with a generator
in Lindblad form directly from the underlying microscopic theory for the to-
tal system. As the semigroup property (3.21) is a strong requirement on the
dynamical evolution, several drastic approximations must be made in order to
arrive at such a master equation. Besides the Born and rotating wave approxi-
mation, the so-called Markov approximation, which presupposes a separation of
the intrinsic time scales of the system and environment, is the most important.
More precisely, the system’s relaxation time τS and the correlation time of the
environment τE is assumed to obey τE � τS which means that the degrees of
freedom of the open system are slow compared to those of the environment.
There are many examples of physical interest for which the Markov approxima-
tion is justified, but its validity is not generally ensured as the title of this thesis
might already suggest. For example the presence of a large system-environment
coupling or an environment at low temperatures violates the assumption on the
time scales yielding a failure of the Markov approximation. For a more detailed
description of this and the subsequent approximations and their mathematical
implementations, I refer to [6].

The Born approximation is based on the assumption of a weak coupling
between system and environment which is also a fundamental requirement for
the Markov approximation. Due to the weak interaction of system and envi-
ronment, the states of the composite system are supposed to be solely weakly
correlated for all times and, in addition, a perturbation expansion up to second
order in the interaction Hamiltonian of the Liouville-von Neumann equation
is done. This yields a closed second order integro-differential equation for the
system density matrix to which the Markov approximation can then be applied.
Finally, the so-called rotating wave approximation presumes that the time scale
of the intrinsic evolution of the open system τI is much smaller than the sys-
tem’s relaxation, i.e. τI � τS . By virtue of this, some terms in the second order
differential equation oscillate rapidly and can therefore be neglected.

By the very names of these approximations and the stated features con-
cerning memory effects of a semigroup evolution, it becomes clear that such a
dynamics provides the prototype of a memoryless, that is Markovian dynamics.

4The semigroup must be continuous with respect to some topology. For example one can
require limt→0‖Φt,0A− A‖ = 0 for every A ∈ B(HS), where ‖·‖ refers to the operator norm
(see e.g. [44]).
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3.2.3 Divisibility of dynamical processes
The assumption of a dynamical semigroup is very strong so that an arbitrary
family of CPT-maps {Φt,0 | t ≥ 0, Φ0,0 = 1S}, defining the dynamical process,
does usually not possess this property. The notion of divisibility of dynamical
maps represents a generalization of the composition law (3.21) of a semigroup.
It has received some attention in the classification of dynamical evolutions in
terms of Markovian or non-Markovian dynamics.

Definition 3.3. A dynamical process Φ is called divisible if and only if for all
t ≥ s ≥ 0 there exists a CPT-map Φt,s such that the relation

Φt,0 = Φt,sΦs,0 , (3.22)

holds.

For a dynamics arising from a time-local master equation with generator
K(t) (cf. (3.14)) the connecting map Φt,s is given by

Φt,s = T exp
{∫ t

s

dt′ K(t′)
}
, (3.23)

where T denotes the chronological time-ordering operator. This map is CPT if
and only if the decay rates are always non-negative, i.e. γi(t) ≥ 0 (see e.g. [29]).
Thus, the occurrence of a negative rate γi(t) for some channel at t ≥ 0 is
necessary and sufficient for the breakdown of divisibility of the dynamical map.

A semigroup with generator L in Lindblad form is always divisible. In this
special case, equation (3.23) reduces to

Φt,s = exp{L(t− s)} . (3.24)

It is clear that the definition of divisibility is trivially satisfied if t = s or s = 0 as
the identity and the dynamical map Φt,0 are CPT by assumption. I emphasize
that the above given definition of divisibility is a strengthening of the usual
notion of divisibility. Typically, a CPT-map Λ is called divisible if and only if
there exist CPT-maps Λ1 and Λ2 such that Λ = Λ1Λ2 where neither Λ1 nor
Λ2 is a unitary – otherwise the required decomposition is trivial [55]. On the
contrary, definition 3.3 demands the existence of a linear CPT-map Φt,s for a
given second CPT-map Φs,0, which is determined by the dynamical process,
for all t, s ≥ 0. The mapping Φt,s thus maps the time-evolved states at time
s to those states at t ≥ s and it defines even a dynamical map on its own as
it is CPT. Hence, it can actually be applied to any state5. Of course, there
are many quantum dynamical processes which are not divisible (see e.g. [29]):
either there exists no linear map Φt,s at all, or it is not CP, or even not positive.
If the maps mediating between the dynamical maps are not completely positive
but still positive one calls such a dynamical process P-divisible.

5This is special because there are certainly dynamical maps whose range is not the entire
state space (this is actually the generic case). Thus, one might think that it is sufficient for
Φt,s to be defined on the time-evolved state space in order to link the different stages of the
dynamical evolution.
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3.3 The trace distance

In this section, I define the trace distance, which is a particular measure on
the state space, and summarize some of its important properties including the
physical interpretation. Other features of the trace distance and most of the
proofs of the stated mathematical properties can be found in [18,40].

As already remarked in section (2.2), the trace distance of two quantum
states ρ1 and ρ2 is defined as

D(ρ1, ρ2) = 1
2 Tr(|ρ1 − ρ2|) . (3.25)

The range of this functional on S(H) × S(H) is the interval [0, 1], where the
upper and lower bound are saturated,

D(ρ1, ρ2) = 0 ⇔ ρ1 = ρ2 , (3.26)
D(ρ1, ρ2) = 1 ⇔ ρ1 ⊥ ρ2 . (3.27)

Here, ρ1 ⊥ ρ2 means that the two states have orthogonal supports. This implies
that they have a common spectral decomposition with complementary eigenval-
ues. That is, the respective sets of eigenvalues regarded as vectors are orthogonal
with respect to the usual scalar product. As a state has solely positive eigen-
values, one concludes that orthogonal states must have some zero eigenvalues
and, therefore, are located on the boundary (2.7) for any system.

Furthermore, the trace distance is even a metric on the state space, i.e.
D(·, ·) is not only positive semi-definite and symmetric, but satisfies also the
triangle inequality:

D(ρ1, ρ2) ≤ D(ρ1, ρ3) +D(ρ3, ρ2) . (3.28)

A third, important property of the trace distance, making it a very useful mea-
sure for the distance between quantum states, is its invariance under unitary
transformations. More generally, all CPT-maps Λ are contractions for the trace
distance, i.e.

D(Λρ1,Λρ2) ≤ D(ρ1, ρ2) . (3.29)

It is important here that the maps are trace preserving. Moreover, even the
larger class of positive trace-preserving maps satisfies this inequality [45]. Hence,
a non-positive trace preserving map might yield an increase of the trace distance
whereas any dynamical map is contractive.

The trace distance can also be represented in terms of the maximum of a
certain functional over all positive operators that are smaller than the identity:

D(ρ1, ρ2) = max
0≤A≤1

Tr{A(ρ1 − ρ2)} . (3.30)

It actually suffices to perform the maximization over the set of all projections.
As the trace distance is symmetric, the right hand side must be invariant under
interchanging ρ1 and ρ2. However, the maximum will then be attained by a
different operator A.
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3.3.1 Physical interpretation of the trace distance
On the basis of the representation (3.30), the trace distance of two states ρ1
and ρ2 features a nice operational meaning in quantum information.

Suppose there is a sender (Alice) and a receiver (Bob). Alice has two prepa-
ration procedures at hand, which yield two unequal states ρ1 and ρ2. She
randomly applies (with probability 1

2 ) one of these procedures and sends the
prepared state, ρ1 or ρ2, to Bob whose task is to determine by a single measure-
ment the state Alice has given to him. Bob knows the two states which can be
prepared and that the probability distribution is unbiased. This setup is often
called a one-shot, two-state discrimination problem. Because Bob has only a
single measurement to gain information about the state, there are cases in which
it is impossible to distinguish the quantum states with certainty. Hence, how
well can Bob identify the state sent to him in general? In fact, there is an opti-
mal measurement strategy for each pair of states that allows him to discriminate
the two states most successful. The corresponding maximal success probability
for correct state discrimination of ρ1 and ρ2 by a single measurement is given
by

Pdiscr = 1
2{1 +D(ρ1, ρ2)} . (3.31)

Thus, the trace distance is the bias in favor of a correct state identification which
can be achieved using the optimal strategy. Due to this, D can be interpreted
as a measure for the distinguishability of two quantum states [18–20]. See [18]
for a derivation of the relation (3.31).

A perfect state discrimination, Pdiscr = 1, can thus be obtained if and only if
D(ρ1, ρ2) = 1 which means that the states are orthogonal (cf. Eq. (3.26)). Here,
the optimal strategy consists in measuring the projection onto the support of ρ1
(or ρ2). More generally, applying the projection P which maximizes equation
(3.30), and associating the measurement outcome "1" with ρ1 and the outcome
"0" with ρ2 defines the optimal strategy. Given this measurement setup and the
assignment6, the probability of correct state discrimination is given by

Pdiscr = 1
2Tr{Pρ1}+ 1

2Tr{(1− P )ρ2} , (3.32)

as Tr(Pρ1) and Tr((1−P )ρ2) describe the probability for the outcome "1" given
the state is ρ1 and "0" if the state is ρ2, respectively. Moreover, the coefficient
1
2 refers to the fact that ρ1 and ρ2 are equal likely. Rearranging terms on the
right-hand side of equation (3.32) directly yields the maximal success probability
(3.31) for a one-shot discrimination of ρ1 and ρ2.

3.4 Concepts of non-Markovianity
The term (non-)Markovianity has been widely used in the theory of open quan-
tum systems although its meaning in the quantum realm is not clear. All the
difficulties arise because it is impossible to transfer the classical notion of a
Markovian stochastic process to quantum theory. The classical definition of a
stochastic process is based on the n-point probability distribution functions and
a process is called Markovian if and only if for all n ∈ N the conditional prob-
abilities depend solely on the preceding value, and not on the remaining past.

6On the basis of such an assignment for the measurement outcomes of a POVM (positive
operator valued measure) describing a general measurement, one can derive relation (3.31).
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Given the present state of a stochastic process, the past and the future are thus
independent which motivates the interchangeably used notion of a Markovian
and a memoryless stochastic process.

However, such a hierarchy of n-point probability distribution functions does
not exist for quantum systems as there is no possibility to gain information about
a quantum system without disturbing it, affecting fundamentally its subsequent
evolution. Moreover, the determination of all n-point functions is impossible for
practical issues even in the classical setting wherefore the definition of a Markov
process must be considered as an abstract, mathematical tool. Due to these
difficulties, the fundamental question emerges: How do quantum memory effects
manifest themselves in the dynamics of an open quantum systems, and how to
quantify them? Moreover, the basic model of a memoryless dynamics given by
a master equation in Lindblad form (cf. Sec. 3.2.2) should be still the prototype
of a Markovian dynamics. Clearly, the property of a quantum process being
Markov cannot depend on the mathematical representation of the dynamics,
i.e. for example in terms of a master equation. It must be a fundamental
feature of the dynamics and, therefore, the family of dynamical maps Φt,0 should
provide all information to determine the character of a quantum process. Quite
recently, several proposals for a definition of quantum (non-)Markovianity have
been published [5, 34,42,56].

In [42], the notion of quantum Markovianity is connected to the property of
divisibility of a dynamical process. According to this definition, a quantum pro-
cess is called non-Markovian if and only if it is non-divisible. The corresponding
measure for quantum non-Markovianity quantifies the amount to which the dy-
namical process is not divisible. This definition is based on the idea that a
quantum process arising from a Lindblad master equation describes a Marko-
vian dynamics. Since the notion of divisibility can be seen as the generalization
of the semigroup property (3.21), the term Markovian is related to this feature.
In addition, the similarity of divisibility and the Chapman-Kolmogorov equa-
tion for a classical Markovian stochastic process [25] motivates the assignment
of Markovianity and divisibility, too. Several other approaches based on this
property were suggested.

A second proposal [5, 29] defines and quantifies non-Markovianity solely in
terms of the information exchange between the open system and its environment.
The basic idea underlying this approach is that memory effects in the dynamics
manifest themselves in a backflow of information into the open system. Since the
total information is preserved by construction, the past states of an evolution
are seen to effect the future states in this way. A backflow thus describes a
non-memoryless dynamics which is therefore termed non-Markovian. This idea
is made more precise in the following section.

3.4.1 A measure for non-Markovianity
As shown in section 3.3.1, the trace distance defines a measure for the distin-
guishability of two quantum states. This interpretation and the contractivity
under CPT-maps (3.29) directly yield that a dynamical change of D(ρ1, ρ2) for
any two states ρ1, ρ2 ∈ S(HS) of the open system – indicating a change of dis-
tinguishability of these states – points to a flow of information between the open
system and its environment. In this connection, the contractivity implies that
there is no dynamical process described by a one-parameter family of dynami-
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cal maps which increases the distinguishability of a state pair above its initial
value. The open system can thus only recover at most as much information
from the environment as previously flowed out of the system. This manifests
a preservation of the total amount of information. Moreover, the invariance of
the trace distance under unitary transformations indicates that information is
preserved in closed quantum systems, supporting the suggested interpretation
in terms of an information flow.

An increase of the trace distance then signifies a backflow of information into
the system while a decreasing value of the trace distance is identified with a loss
of information into the environment. More precisely, when speaking about loss
or gain of information, one means the change of the relative information on the
pair of states which allows a distinction of these states and is solely obtained by
measurements on the open system’s degrees of freedom. This implies that the
information is not only swapped between the open system and the environment,
but can also be carried by and taken from system-environment correlations.

In view of these considerations, the quantity of interest is the rate of change
of the trace distance for two states evolving according to the studied dynamical
process. One thus defines a dynamical process described in terms of a one-
parameter family of dynamical maps Φt,0 to be non-Markovian if and only if
there exists a pair of initial states ρ1, ρ2 ∈ S(HS) and a time t > 0 such that

σ(t, ρ1, ρ2) ≡ d
dtD(ρ1(t), ρ2(t)) > 0 , (3.33)

where ρ1,2(t) = Φt,0ρ1,2 such that ρ1,2(0) = ρ1,2. The total increase of distin-
guishability of two states, i.e. the total amount of information flowing from
the environment back to the system, is then obtained by integrating over all
times for which the trace distance increases, that is, for which one has σ > 0.
Moreover, one maximizes over all pairs of input states as the measure should be
independent of the choice of initial states.

Definition 3.4. A measure N (Φ) for the non-Markovianity of a quantum pro-
cess Φ given in [5,29] is defined by

N (Φ) ≡ max
ρ1,2∈S(HS)

∫
σ>0

dt σ(t, ρ1, ρ2) ∈ [0,∞] . (3.34)

With respect to this measure, a quantum process Φ is called non-Markovian if
and only if N (Φ) > 0.

I would like to emphasize that the existence of the maximum is not guar-
anteed in general. For infinite-dimensional systems, for example, the maximum
might not be attained by some state pair. In addition, the integration which
formally ranges to t =∞ might yield that there is no maximizing pair of states.
The value of N is, however, approached by a sequence of state pairs. To be
mathematically more precise, the maximum in (3.34) should thus be replaced
by the supremum in order to take these cases into account.

This definition of a measure for non-Markovianity is in prefect accordance
with the dynamics arising from a Lindblad master equation which is regarded to
be the prototypical Markovian quantum process. Although any CPT-mapping
is a contraction for the trace distance, this does not imply that the trace dis-
tance between two open system states is monotonically decreasing for all times.
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However, a divisible process and, thus, in particular any semigroup evolution
yields a continuous loss of distinguishability. This feature is due to the fact that
for divisible quantum processes or semigroups the maps mediating between two
points on the trajectory of a state are CPT and, therefore, contractions for the
trace distance. One has

Φ divisible ⇒ N (Φ) = 0 , (3.35)

i.e. any divisible family of quantum maps is Markovian with respect to N . The
converse is not true [11, 35]: there are non-divisible quantum processes which
are Markovian. Thus, non-divisibility is just necessary for non-Markovianity.
The reason for this fact is two-folded. Even a merely P-divisible family of dy-
namical maps (cf. Sec. 3.2.3) may lead to a continuous loss of distinguishability
of two states signifying Markovianity. Hence, there might be families of dynam-
ical maps that are not divisible but still P-divisible (see [51] for an example).
However, the trace distance might even not increase for a process which is not
P-divisible. One concludes that there is a fundamental difference between the
two presented concepts [5, 42] for quantum non-Markovianity. This aspect was
discussed in [11] and a suggestion how to reconcile this approach with divisibility
was made.

The maximization procedure included in the definition of N makes this
quantity difficult to evaluate and for this it has attracted criticism. However,
I want to stress that this definition of non-Markovianity is much more feasible
in experiments than those based on the divisibility of the dynamics. It solely
requires state tomography while the other measures need a process tomography
in order to be able to determine and study the connecting maps Φt,s for all
t, s > 0. In principle, performing three state tomographies can be sufficient to
draw a conclusion whether the dynamics is non-Markovian or not with respect
to N , i.e. it is a witness. The measure based on the information flux can thus
be determined by observing the dynamical evolution of state pairs while the
other approaches require the knowledge of the complete dynamics Φt,0.





Chapter 4

Characterizing optimal pairs of
quantum states

The maximization involved in definition 3.4 makes the measure N difficult to
evaluate. One has to maximize over the set S(HS) × S(HS) whose dimension
is given by 2(dimHS)2 − 2 and, thus, increases rapidly with the size of the
underlying Hilbert space. Due to this, the approach based on the information
flux is difficult to evaluate and for this it has attracted criticism. The main
objective of this thesis is to characterize mathematically the maximizing set of
states, i.e. the set of optimal pairs:

Definition 4.1. For a non-Markovian process Φ, a pair of states ρ1, ρ2 is said
to be optimal if and only if the maximum in equation (3.34) is attained for it,
i.e. if and only if

N (Φ) =
∫
σ>0

dt σ(t, ρ1, ρ2) (4.1)

holds for this pair of initial states.

The definition of an optimal pair is only reasonable for non-Markovian dy-
namics, i.e. N (Φ) 6= 0, because otherwise any pair of states would be trivially
optimal. Moreover, an optimal pair might not be unique and it is clear that the
optimality property implies ρ1 6= ρ2. From now on, I assume that the maximum
in (3.34) exists which means that the set of optimal pairs is not empty. I will
show in section 4.2.1 how the following results can also be used if there exist no
optimal pair which occurs, for example, for infinite-dimensional systems.

In this section I present the major results of my work: I rigorously prove
general statements about the mathematical properties of optimal state pairs.
All my results are solely based on the linearity of dynamical maps and can
therefore be applied to any dynamical process. As my first result (Sec. 4.1),
I show that both states of an optimal pair must lie on the boundary (2.7) of
the state space S(HS). In section 4.2 I then proceed to demonstrate that the
states of any optimal pair must actually be orthogonal in order to give rise to
the maximal possible degree of memory effects in their dynamics. At the end
of this chapter (Sec. 4.4) I will present an alternative proof1 of this result. The
second proof employs the notion of joint translatability of two non-orthogonal

1The second approach for a proof of the orthogonality of optimal states only holds for
finite-dimensional systems whereas the first one holds for arbitrary systems.
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states which gives some insight into the structure of state space. On the basis
of the orthogonality of optimal states it is possible to resolve a second point
of criticism of the measure N : the maximization can be restricted to a single
input state. I will show in section 4.3 how this can be done.

From now on, I will use H instead of HS in order to simplify notation
since I will exclusively talk about the Hilbert space of the open system and the
corresponding state space.

4.1 Restriction to the boundary of state space
Theorem 4.1. Let ρ1, ρ2 ∈ S(H) be an optimal state pair. Then both states lie
on the boundary of the states space, i.e. ρ1, ρ2 ∈ ∂S(H).

Proof. Suppose that at least one state of the pair, say ρ2, does not belong to
the boundary. Hence, ρ2 is an interior point and by the definition of the interior
S̊(H) (cf. (2.6)) there exists λ > 1 such that

ρ3 = (1− λ)ρ1 + λρ2 ∈ S(H) , (4.2)

is a quantum state (see Fig. 4.1 (a)). The time evolution of the three states
according to the dynamical process Φ is given by ρi(t) = Φt,0(ρi), i = 1, 2, 3.
By the linearity of the dynamical map one has

ρ3(t) = (1− λ)ρ1(t) + λρ2(t) , (4.3)

and, hence,
ρ1(t)− ρ3(t) = λ(ρ1(t)− ρ2(t)) . (4.4)

It follows that
D(ρ1(t), ρ3(t)) = λD(ρ1(t), ρ2(t)) , (4.5)

by the homogeneity of the trace and the continuous functional calculus which
yields

|ρ1(t)− ρ3(t)| = |λ| |ρ1(t)− ρ2(t)| . (4.6)

Note that λ is a fixed number strictly larger than 1. Thus, equation (4.5) states
that the trace distance between ρ1(t) and ρ3(t) is always larger by the constant
factor λ than the trace distance between ρ1(t) and ρ2(t). This implies that the
quantity

∫
σ>0 dt σ(t, ρ1, ρ3) is larger than

∫
σ>0 dt σ(t, ρ1, ρ2) by the same factor

λ as σ is homogeneous. It follows that ρ1, ρ2 cannot be an optimal pair which
is a contradiction. Consequently, any optimal pair of states must belong to the
boundary of the state space ∂S(H).

For any dynamical process Φ described by a one-parameter family of linear
dynamical maps, the maximization over all initial state pairs in the definition 3.4
of the non-Markovianity measure N (Φ) can thus be restricted to the boundary
∂S(H) of the state space,

N (Φ) = max
ρ1,2∈∂S(H)

∫
σ>0

dt σ(t, ρ1, ρ2) . (4.7)
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Figure 4.1: Illustration of the decomposition (4.2) (a) and of the correspond-
ing time evolution (b) given by Eq. (4.3).

As the proof shows, this result is valid for any Hilbert spaceH and for any family
of linear dynamical maps Φt,0. From the characterization of the boundary de-
rived in section 2.1 it follows that the statement is trivial for infinite-dimensional
systems. The only requirement on the structure of the dynamical maps is lin-
earity which guarantees the invariance of the decomposition defined in (4.2) for
all times t: lines remain lines within the dynamical evolution, see figure 4.1
(b). In addition, the theorem exploits the convex structure of the state space
present in the characterization of the interior S̊(H) implying that an inner point
is extendible in any direction.

As a consequence of this first characterization, optimal state pairs must be
pure states for two-level systems since the set of pure states is identical to the
boundary ∂S(H) in this case. However, this does not hold in general as it will
be shown in chapter 5.

4.2 Orthogonality of optimal pairs
The physical content of the previous result is that having a zero eigenvalue is
a necessary criterion for a state to be part of an optimal pair. However, this
does not tell us anything about the relation of two optimal states. I will now
demonstrate that optimal state pairs must be orthogonal, which strengthens the
result of theorem 4.1 as it establishes a relation between the two partners of an
optimal pair. The two states of an optimal pair are thus not chosen arbitrarily,
as orthogonality implies that the states have a common spectral decomposition
and their eigenvalues considered as a vector must be orthogonal with respect
to the standard scalar product. By this, they must have a zero eigenvalue and,
therefore, both states belong to the boundary ∂S(H). This result is particularly
nice and physically very plausible as orthogonality is equivalent to unit trace
distance [18, 40]: the largest flow of information from the environment back to
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the open system emerges if the initial state pair is distinguishable with certainty,
i.e. has the maximal information content.

The following theorem uses the well-known Jordan-Hahn decomposition [1,
40] which holds for arbitrary systems as it can be proven for C∗-algebras [2].
Lemma 4.1. Let A be an Hermitian operator. Then there exist positive oper-
ators A+ ≥ 0 and A− ≥ 0 which satisfy A+A− = A−A+ = 0 and

A = A+ −A− . (4.8)

That is, A+ and A− are positive orthogonal operators whose difference is
the given Hermitian operator A.

The idea of employing the Jordan-Hahn decomposition for the proof of the
orthogonality of optimal pairs is due to Antti Karlsson [54]. Short time after I
had given the first proof for this fact using the concept of joint-translatability,
which will be presented in section 4.4, he got the idea to employ this well-known
decomposition to give a simpler proof for this property of optimal pairs. The
proof of the following theorem has been then developed in close collaboration
with the group of Jyrki Piilo.
Theorem 4.2. Optimal state pairs are orthogonal.
Proof. Let ρ1, ρ2 ∈ S(H) be an optimal pair of states, and suppose that the
states are not orthogonal, ρ1 6⊥ ρ2. According to the Jordan-Hahn decompo-
sition there exist positive and orthogonal operators P1 and P2 such that the
traceless Hermitian operator ρ1 − ρ2 can be represented by

ρ1 − ρ2 = P1 − P2 . (4.9)

Taking the trace of this equation, one obtains λ ≡ TrP1 = TrP2 ≥ 0 by positivity
of the Pi. From ρ1 6= ρ2 it follows that P1, P2 6= 0 and, therefore, λ > 0. Using
equation (4.9), the orthogonality of P1 and P2, and the fact that the trace
distance between non-orthogonal states is always strictly smaller than 1, one
finds

1 > D(ρ1, ρ2) = D(P1, P2) = 1
2 (TrP1 + TrP2) = λ . (4.10)

Thus, one has 0 < λ < 1. Now one defines the operators σ1 ≡ P1/λ and
σ2 ≡ P2/λ. Being positive and of unit trace, these operators represent quantum
states. Moreover, they obey

σ1 − σ2 = 1
λ

(ρ1 − ρ2) . (4.11)

By use of the linearity of the dynamical maps, this relation is preserved under
time evolution, i.e.

σ1(t)− σ2(t) = 1
λ

(ρ1(t)− ρ2(t)) , (4.12)

from which it follows that

D(σ1(t), σ2(t)) = 1
λ
D(ρ1(t), ρ2(t)) , (4.13)

by the same arguments as in the proof of theorem 4.1. Since λ−1 > 1 one
concludes from the last equation that the pair σ1, σ2 yields a non-Markovianity
which is strictly larger than that of the pair ρ1, ρ2, which contradicts the assump-
tion that ρ1, ρ2 is an optimal pair. Hence, ρ1 and ρ2 must be orthogonal.
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The maximization in the definition (3.34) of the measure N (Φ) for quantum
non-Markovianity can thus be restricted to orthogonal initial state pairs,

N (Φ) = max
ρ1⊥ρ2

∫
σ>0

dt σ(t, ρ1, ρ2) . (4.14)

Again, this result holds for any Hilbert spaceH (finite or infinite) and any family
of linear dynamical maps Φt,0 representing the dynamical process Φ. Returning
to a two-dimensional Hilbert space, this result implies that the states of an
optimal pair must be pure, antipodal states (cf. Sec. 2.3.1).

4.2.1 Existence of an optimal pair
I have assumed in theorem 4.1 and 4.2 that an optimal pair of states does
exist. As mentioned previously the existence of these pairs is not ensured in
general. If there is no such pair and the maximum is thus a supremum, there
is a sequence of state pairs ρn1 , ρn2 such that

∫
σ>0 dt σ(t, ρn1 , ρn2 ) converges to

N (Φ) for n→∞. Employing the construction used in the proof of theorem 4.2,
one can show that the pairs ρn1 , ρn2 can always be taken to be orthogonal. This
means that the non-Markovianity measure can be approximated with arbitrary
precision by orthogonal state pairs and that one can write

N (Φ) = sup
ρ1⊥ρ2

∫
σ>0

dt σ(t, ρ1, ρ2) . (4.15)

4.3 A new representation of the measure
I will now use the mathematical characterization of optimal states for non-
Markovian dynamics obtained in theorem 4.2 in order to determine a new and
more convenient representation of the measure N . I will show in theorem 4.3
that the set of orthogonal state pairs of any finite-dimensional system can be
represented by states of an appropriate set and a second, fixed state in the
interior S̊(H). This yields a new representation of the measure N where the
maximization is reduced to a single input state while the other state is kept
fixed. The result strongly uses the Jordan-Hahn decomposition (cf. lemma
4.1). To make the statement more precise I first define

E0(H) = {A ∈ B(H) | A 6= 0, A = A†, TrA = 0} , (4.16)

to be the set of non-zero, Hermitian and traceless operators on H. Using this
set I introduce a particular kind of sets for a state of the interior. Let ρ0 ∈ S̊(H)
be an interior point of a finite-dimensional state space S(H).

Definition 4.2. A set ∂U(ρ0) ⊂ S(H) is called an enclosing surface of ρ0 if
and only if for any operator A ∈ E0(H) there exists a real number λ > 0 such
that

ρ0 + λA ∈ ∂U(ρ0) . (4.17)

It follows that ρ0 /∈ ∂U(ρ0) by definition as A cannot be trivial and λ > 0 for
any A. Moreover, one observes that ∂U(ρ0) ⊂ S(H) holds by definition. An en-
closing surface corresponds to the boundary of a neighbourhood of ρ0 (or ~v(ρ0),
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respectively) with respect to the Euclidean distance if the state space is identi-
fied with a subset of Euclidean space using the generalized Bloch representation.
This is easily determined from the fact that the set E0(H) of non-trivial, Her-
mitian and traceless operators corresponds to all non-trivial vectors in RN

2−1

for an N -level system. In this case, an N2 − 2-dimensional sphere having ~v(ρ0)

in its center is an example for an enclosing surface of ρ0. One observes that the
convex hull of an enclosing surface contains its inner point ρ0. Therefore, an
enclosing surface can also be seen as the boundary of the convex hull of a set
which contains the reference state.

It can be easily seen from the definition of the interior S̊(H) (cf. (2.6)) that
any interior point has an enclosing surface. On the other hand it is clear that
no point on the (intrinsic) boundary has an enclosing surface. For such points
there exist operators A ∈ E0(H) such that ρ0 + λA /∈ S(H) for all λ > 0 by
definition. For the same reason this new representation is only valid for finite
systems. In theorem 2.2 it has been shown that for any state ρ0 there exists an
operator A ∈ E0(H) such that ρ0 + λA /∈ S(H) for any λ > 0.

I emphasize that an enclosing surface ∂U(ρ0) can be of any shape such that
its convex hull contains ρ0. Using this definitions, it is possible to prove the
following theorem:

Theorem 4.3. Let ρ0 ∈ S̊(H) be any fixed state of the interior of a finite-
dimensional state space and ∂U(ρ0) an arbitrary enclosing surface of ρ0. For
a dynamical process Φ, the measure for quantum non-Markovianity N (3.4) is
then given by

N (Φ) = max
ρ∈∂U(ρ0)

∫
σ̄>0

dt σ̄(t, ρ, ρ0), (4.18)

where

σ̄(t, ρ, ρ0) ≡
d
dtD(Φt,0(ρ),Φt,0(ρ0))

D(ρ, ρ0) . (4.19)

Proof. Let ρ ∈ ∂U(ρ0). Applying the Jordan-Hahn decomposition, there exists
an orthogonal pair of states ρ1, ρ2 such that (cf. the proof of theorem 4.2)

ρ1 − ρ2 = ρ− ρ0

D(ρ, ρ0) , (4.20)

and, hence,

ρ1(t)− ρ2(t) = ρ(t)− ρ0(t)
D(ρ, ρ0) , (4.21)

by linearity of the dynamical maps. Employing homogeneity of the trace dis-
tance and the derivative, this shows that the right-hand side of (4.18) is not
larger than N when it is maximized over pairs of orthogonal states, see (4.15).
However, the right-hand side of (4.18) is actually equal to the originally defined
measure N . In order to prove this, suppose ρ1, ρ2 are two orthogonal states. As
ρ1 − ρ2 ∈ E0(H), there exists a λ > 0 such that

ρ ≡ ρ0 + λ(ρ1 − ρ2) ∈ ∂U(ρ0) , (4.22)
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by definition of an enclosing surface of ρ0. Thus, one obtains

ρ1 − ρ2 = ρ− ρ0

λ
, (4.23)

and λ = D(ρ, ρ0), since ρ1 ⊥ ρ2, so that one has again

ρ1 − ρ2 = ρ− ρ0

D(ρ, ρ0) . (4.24)

This equation shows that the right-hand side of equation (4.18) is larger than or
equal to N which finally establishes equality between these two terms showing
that (4.18) holds.

This surprising result reveals the fact that an inner point and an enclosing
surface contain all directions, that is, all traceless, Hermitian operators. If
the difference of the reference state ρ0 ∈ S̊(H) and its surrounding states of
an enclosing surface is considered, one obtains all operators in E0(H) by the
very definition of the surface. These operators are the relevant input for non-
Markovianity regarding the backflow of information defined by N . Thus, all
information needed for the calculation of the measure enter the pair (ρ0, ∂U(ρ0))
of a reference state and an enclosing surface. Moreover, even this pair contains
too much information: for a traceless, Hermitian operator A, its reflection B =
−A is also in E0(H), but the trace norm is not sensitive to different signs, i.e.
Tr|A| = Tr|B|. In addition, an enclosing surface might be curved which means
that there exist several λ > 0 for an operator A ∈ E0(H) that yield a point
on the surface. This is again dispensable information regarding the evaluation
of non-Markovianity. Due to these effects, it suffices to maximize (4.18) over a
hemispherical enclosing surface defined by:

Definition 4.3. A set ∂Ũ(ρ0) ⊂ S(H) is said to be an hemispherical enclosing
surface of ρ0 if and only if for any A ∈ E0(H) there exists exactly one real
number λ > 0 such that either

ρ0 + λA ∈ ∂Ũ(ρ0) , or ρ0 − λA /∈ ∂Ũ(ρ0) (4.25)

holds.

Figure 4.2 provides an example for an enclosing and a hemispherical en-
closing surface of an inner point ρ0. A hemispherical enclosing surface thus
contains any direction, given by operators A ∈ E0(H), only once. Moreover, an
(hemispherical) enclosing surface must neither be smooth and a hemispherical
enclosing surface must even not be connected (see Fig. 4.3). This characteriza-
tion is thus very useful for noisy experiments.

The proof of theorem 4.3 relies on an alternative characterization of orthog-
onal state pairs which is fundamental in three ways. First, it allows to fix one
input state to be some inner point and to sample the second initial state over
any (hemispherical) enclosing surface of the fixed state. A convenient choice for
an enclosing surface for an N -level system is certainly any (N2−2)-dimensional
sphere (hemisphere) in RN2−1 containing the interior point. In particular, when
doing a Monte Carlo simulation, this allows to use gradient methods more easily
which increases the efficiency of sampling. Theorem 4.3 is particularly advanta-
geous when dealing with a dynamical process that has an invariant state which
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Figure 4.2: Illustration of an enclosing surface with curved boundary (a) and
of a hemispherical enclosing surface (b) of an inner point ρ0.

Figure 4.3: Illustration of a hemispherical enclosing surface of an inner point
ρ0 which is not connected.
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lies in the interior. Thermalization processes where the system reaches a ther-
mal equilibrium state provide an example for a dynamics with an invariant state
in the interior. For the sake of convenience, one can then choose the invariant
state of the dynamics to be the reference state so that only the sampled states
evolve non-trivially.

Second, apart from the technical improvements, theorem 4.3 shows that
(non-)Markovianity of a dynamical process is indeed a universal property. The
information about the dynamics regarding memory effects is contained in any
part of the state space as the result shows that N can be evaluated everywhere
in the state space. This behaviour is very plausible and supports the intuitive
idea that memory effects are an intrinsic property of the dynamical process.

Last but not least, the result shows that the total backflow of information
from the environment to the open system depends significantly one the initial
distinguishability of two states which is given by their trace distance. Theorem
4.3 proves that the maximal backflow of information is linked to the informa-
tion flow for states relative to their initial distinguishability. This shows that
the backflow of information relative to the initial information content is the uni-
versal quantity which determines the dynamics. Rescaling the measure for the
information flow, it is thus possible to sample also over non-orthogonal states
in order to determine the maximal backflow during the dynamics.

4.4 The notion of joint translatability
In this section I present an alternative proof for the orthogonality of optimal
state pairs for finite-dimensional Hilbert spaces. Linearity of the dynamical map
is once more the only requirement which is needed. For the proof I establish
the notion of joint translatability which characterizes the behaviour of pairs of
states under parallel translations, elucidating the structure of the state space
for finite systems. Due to this, the results could be of interest also in other
contexts.

The idea of the proof is based on the observation gained from two-level
systems that non-orthogonal states on the boundary of state space can be si-
multaneously translated by a traceless Hermitian operator to yield a pair of
mixed states, while the trace distance of the pair is invariant under such trans-
lations. Recall that E0(H) denotes the set of non-trivial, Hermitian and traceless
operators on H.

Definition 4.4. Two states ρ1, ρ2 ∈ S(H) are called jointly translatable if and
only if there exists an operator A ∈ E0(H) such that ρk−A ∈ S(H) for k = 1, 2.

Hence, two states are said to be jointly translatable if and only if there
is a non-trivial, Hermitian and traceless operator A which can be subtracted
from the states without leaving the state space. It is clear that Hermiticity and
the trace of the translated states is preserved by the choice of the operator A
so that the crucial point is positivity. For finite-dimensional systems, I prove
that any pair of non-orthogonal states is jointly translatable in such a way that
both translated states do not belong to the boundary of the state space. In the
following considerations, H refers to a Hilbert space with dimension dimH = N .
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Theorem 4.4. If ρ1, ρ2 ∈ S(H) and ρ1 6⊥ ρ2, then ρ1, ρ2 are jointly translatable.
Moreover, there exists an operator A ∈ E0(H) such that ρk − A /∈ ∂S(H) for
k = 1, 2.
Proof. Let ρ1, ρ2 be given with respect to their spectral decomposition,

ρk =
N∑
i=1

p
(k)
i |ψ

(k)
i 〉〈ψ

(k)
i | , (4.26)

where p(k)
i , i = 1, . . . , N , denote the eigenvalues and |ψ(k)

i 〉 the corresponding
eigenvectors of ρk. The projection onto the eigenvectors |ψ(k)

i 〉 will be denoted
by P

(k)
i . The assumption ρ1 6⊥ ρ2 implies that both ρ1 and ρ2 have at least

one eigenvector with non-zero eigenvalue and that these vectors are not or-
thogonal. After possible relabeling one can assume that α ≡ 〈ψ(1)

1 |ψ
(2)
1 〉 6= 0

and p
(1)
1 , p

(2)
1 6= 0 holds. Moreover, by an appropriate choice of the phases of

the eigenstates one can assume without restriction that α is real and positive,
i.e. 0 < α ≤ 1.
Consider the following superpositions of the two overlapping eigenvectors,

|ψ±〉 = c±

(
|ψ(1)

1 〉 ± |ψ
(2)
1 〉
)
, (4.27)

where the normalization constants obey c−1
± =

√
2(1± α). The projections onto

these states are denoted by P±. Note that c+ < c− by positivity of the overlap
α. Now, I define

Aε ≡ ε ·B ,

B = P+ −
(c+
c−

)2
P− −

[
1−

(c+
c−

)2]
· 1
N
1N , (4.28)

where ε > 0 is a real number to be chosen later. Clearly, B† = B, B 6= 0
and TrB = 0 so that Aε is a candidate for the traceless Hermitian operator
which simultaneously shifts both states. Furthermore, as c+ < c−, one recog-
nizes that the two last terms are negative semi-definite while the first one is
positive semi-definite. Note that for α = 1, that is ρ1 and ρ2 have a common
eigenvector, definition (4.28) reduces to Aε = ε(P (1)

1 − 1
N 1N ). It can be readily

seen that this operator jointly translates ρ1, ρ2 into the interior of S(H) for all
0 < ε ≤ mink=1,2 p

(k)
1 . In order to show positivity of ρ̂k ≡ ρk −Aε for an appro-

priate choice of ε in general, I consider the quantity 〈χ|ρ̂k|χ〉 for an arbitrary
normalized vector |χ〉 ∈ H. One gets

〈χ|ρ̂k|χ〉 =〈χ|ρk|χ〉 − ε〈χ|P+|χ〉+ ε
(c+
c−

)2
〈χ|P−|χ〉+ ε

N

[
1−

(c+
c−

)2]
= Bk(|χ〉) + p

(k)
1
∣∣〈χ|ψ(k)

1 〉
∣∣2 +

4αc2+ε
N

− . . .

c2+ε
{∣∣〈χ|ψ(1)

1 〉+ 〈χ|ψ(2)
1 〉
∣∣2 − ∣∣〈χ|ψ(1)

1 〉 − 〈χ|ψ
(2)
1 〉
∣∣2}

= Bk(|χ〉) + p
(k)
1
∣∣〈χ|ψ(k)

1 〉
∣∣2 + . . .

4c2+ε
{ α
N
− Re

(
〈ψ(1)

1 |χ〉 〈χ|ψ
(2)
1 〉
)}

≥ Bk(|χ〉) + p
(k)
1
∣∣〈χ|ψ(k)

1 〉
∣∣2 + 4c2+ε

{ α
N
− |〈χ|ψ(k)

1 〉|
}
, (4.29)
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where Bk(|χ〉) ≡
∑N
i=2 p

(k)
i

∣∣〈χ|ψ(k)
i 〉
∣∣2 ≥ 0 and since c−2

+ −c−2
− = 4α by definition

of c±. In the last step one uses the fact that Re(z) ≤ |z| for all complex numbers
z, and that |〈ψ(m)

1 |χ〉| ≤ 1 for all normalized vectors by the Cauchy-Schwarz
inequality. Consider now the quadratic function

g(k)
ε (x) = p

(k)
1 x2 + 4c2+ε

{ α
N
− x
}
. (4.30)

One can show that this function is strictly positive for k = 1, 2 if ε satisfies

0 < ε <
α

Nc2+
min
k=1,2

p
(k)
1 . (4.31)

The derivatives of g(k)
ε (with respect to x) are given by

g(k)
ε
′(x) = 2p(k)

1 x− 4c2+ε , g(k)
ε
′′(x) = 2p(k)

1 > 0 , (4.32)

so that the function attains its minimal value2 at xmin = 2c2+ε p
(k)
1
−1 and

g(k)
ε (xmin) = 4c2+ε

{ α
N
−
c2+ε

p
(k)
1

}
, (4.33)

which is strictly positive if and only if 0 < ε < α p
(k)
1 (Nc2+)−1 for a given k.

Hence, g(k)
ε is a strictly positive function for all k ∈ {1, 2} if ε satisfies (4.31).

Choosing ε according to this, I then obtain g(k)
ε (|〈χ|ψ(k)

1 〉|) > 0 for all normalized
vectors |χ〉 ∈ H and k = 1, 2 which yields 〈χ|ρ̂1,2|χ〉 > 0 as Bk(|χ〉) ≥ 0 is
positive semi-definite. This demonstrates that ρ̂1,2 is positive and has no zero
eigenvalue, i.e. ρ̂1,2 ∈ S̊(H) due to the characterization of the boundary in
terms of the eigenvalues given in section 2.1. In particular, ρ1 and ρ2 are jointly
translatable.

The proof of theorem 4.4 obviously holds solely for finite-dimensional Hilbert
spaces since the identity is not a trace class operator for infinite systems. If the
system is finite-dimensional, theorem 4.2 can then also be proven as follows:

Proof. Let ρ1, ρ2 be an optimal pair, and suppose that ρ1 6⊥ ρ2. Then by
theorem 4.4 there exists an operator A ∈ E0(H) such that ρ̂k ≡ ρk−A /∈ ∂S(H).
Applying theorem 4.1, I conclude that the states ρ̂k are not optimal. Since
ρ1 − ρ2 = ρ̂1 − ρ̂2 it follows that the states ρk are not optimal either, which
represents a contradiction. The optimal pair must therefore be orthogonal.

Since this statement holds for arbitrary dynamical processes described by a
one-parameter family of linear maps as mentioned in the beginning, it mainly
reveals the structure of the state space. The notion of joint translatability gives
indeed some insight into the structural properties of state space as the converse
of the statement of theorem 4.4 holds, too.

2The equation g
(k)
ε
′(xmin) = 2p(k)

1 xmin − 4c2
+ε

!= 0 defines the position of the global
minimum of g(k)

ε as the second derivative is strictly positive.
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Proposition 4.1. ρ1, ρ2 ∈ S(H) are jointly translatable if and only if ρ1 6⊥ ρ2.

Proof. It remains to show that all pairs of jointly translatable states are non-
orthogonal. To this end, I suppose ρ1 ⊥ ρ2 and prove that they are not jointly
translatable.
Due to this assumption, ρ1 ⊥ ρ2, these states have a common spectral decom-
position

ρk =
N∑
i=1

p
(k)
i |ψi〉〈ψi| , (4.34)

where |ψi〉 are their common eigenvectors, forming an orthonormal basis of H,
and p(k)

i , i = 1, . . . , N , denote the eigenvalues which satisfy
∑
i p

(1)
i · p

(2)
i = 0.

As p(k)
i ≥ 0 for all i and k due to the positivity of states, it then follows that

@ k ∈ {1, ..., N} such that p(1)
k , p

(2)
k 6= 0 . (4.35)

Let A ∈ E0(H) be an arbitrary non-trivial, Hermitian and traceless operator
which is given in terms of the spectral decomposition by

A =
N∑
i=1

ai|χi〉〈χi| . (4.36)

The eigenvalues ai are thus real-valued and obey
∑N
i=1 ai = 0. Representing A

with respect to the eigenbasis of ρ1,2, one obtains

A =
N∑

m,n=1
ãmn|ψm〉〈ψn| , (4.37)

where ãmn =
∑N
i=1 ai〈ψm|χi〉〈χi|ψn〉. The vanishing trace, TrA = 0, then

implies
∑N
m=1 ãmm = 0. If not all terms of this sum vanish separately, there

exists k ∈ {1, ..., N} such that ãkk > 0. One thus has

〈ψk|ρ1,2 −A|ψk〉 = p
(1,2)
k − ãkk < p

(1,2)
k , (4.38)

from which it follows that at least one of the shifted operators ρ1,2 − A is not
positive due to (4.35).
Thus, I can restrict my considerations to operators A with zero diagonal ele-
ments with respect to the eigenbasis of ρ1,2 , i.e. ãkk = 0 for all k ∈ {1, ..., N}.
However, since A 6= 0, there exist k, l ∈ {1, ...N} such that ãkl 6= 0. The
expectation value of the operator ρ1,2 −A in the state

|ψ̃kl〉 = d ãkl|ψk〉+ |ψl〉 , (4.39)

where

d =

√
(p(1,2)
k )2 + 4|ãkl|2 − p(1,2)

k

2|ãkl|2
> 0 , (4.40)
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is given by

〈ψ̃kl|ρ1,2 −A|ψ̃kl〉

= d2|ãkl|2 p(1,2)
k + p

(1,2)
l − 2d|ãkl|2

= p
(1,2)
l + d

2

{
p

(1,2)
k

√
(p(1,2)
k )2 + 4|ãkl|2 −

(
(p(1,2)
k )2 + 4|ãkl|2

)}
︸ ︷︷ ︸

<0

, (4.41)

where the expression within the curly brackets is negative for all possible val-
ues of p(1,2)

k : if p(1,2)
k = 0, this follows from −|ãkl|2 < 0 and for non-zero k’th

eigenvalue of ρ1,2 one observes that 0 < y2 + y4/x2 for x, y > 0 which yields
the inequality x

√
x2 + y2 < x2 + y2. Thus again, there is at least one operator

ρ1,2 −A which is not positive due to (4.35). Hence, there exists no non-trivial,
Hermitian and traceless operator A ∈ E0(H) such that ρ1,2 −A ≥ 0 for orthog-
onal states ρ1 ⊥ ρ2. That is, orthogonal states are not jointly translatable.

Given two orthogonal states, the proof demonstrates that at least one state
is shifted outside the state space if any operator in E0(H) is applied. This hap-
pens because orthogonal states cannot have non-zero eigenvalues to the same
eigenvector. Moreover, this result partly reveals the basic properties of an
(N − 1)-simplex which describes the eigenvalue distribution of a state of an
N -dimensional system. Orthogonality implies that the two states can be repre-
sented by two points in the same simplex and that they must lie on opposing
sides of the simplex. By this, one easily observes that for any shift operator
A with the same eigenbasis as the states, at least one of the states will leave
the simplex. In other words and more figuratively (cf. Fig. 4.4), there is no
possibility to translate the line defined by the two orthogonal states without
leaving the simplex. Proposition 4.1 shows that this also holds for operators
A ∈ E0(H) which have a different eigenbasis. In this way, this result provides
new insight in the structure of the state space of quantum systems.

Figure 4.4: Illustration of orthogonal 3-level states ρ1 ⊥ ρ2 and of the action
of an operator A ∈ E0(H) with the same eigenbasis as ρ1,2. The vertices of this
2-simplex (equilateral triangle) correspond to pure states.
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4.4.1 Illustration in the Bloch ball
In this section I illustrate theorem 4.4 by showing explicitly the action of the
translation operator Aε (4.28) on states of a two-level system. The mode of
operation will be demonstrated using the Bloch representation (cf. Sec. 2.3).
To this end, I firstly determine the eigenvalues and eigenvectors of two-level
states with respect to the entries of their associated Bloch vectors.

Let ρ1,2 ∈ S(C2) be two unequal states whose corresponding Bloch vectors
are denoted by ~v(1,2). The eigenvalues are given by

λ
(1,2)
± = 1

2(1± ‖~v(1,2)‖) , (4.42)

and the corresponding eigenvectors have to obey

ρ1,2|χ(1,2)
± 〉 = λ

(1,2)
± |χ(1,2)

± 〉 , (4.43)

which yields two coupled linear equations

a
(1,2)
± (±‖~v(1,2)‖ − v(1,2)

z ) = b
(1,2)
± (v(1,2)

x − iv(1,2)
y ) , (4.44)

b
(1,2)
± (±‖~v(1,2)‖+ v(1,2)

z ) = a
(1,2)
± (v(1,2)

x + iv(1,2)
y ) . (4.45)

Henceforth, I assume that ρ1 and ρ2 are pure which means that their Bloch
vectors have length one. As one can see, there exist different solutions depending
on the range of v(1,2)

z . This is related to the fact that two charts are needed to
cover a sphere completely. The normalized eigenvectors are determined by

|χ(1,2)
± 〉|

v
(1,2)
z 6=−1 =

√
β

(1,2)
+
2
(
±
α

(1,2)
±

β
(1,2)
+

e2∓1mod3 + e2±1mod3
)
, (4.46)

|χ(1,2)
± 〉|

v
(1,2)
z 6=1 =

√
β

(1,2)
−
2
(
±
α

(1,2)
∓

β
(1,2)
−

e2±1mod3 + e2∓1mod3
)
, (4.47)

where e0 = (1, 0)T , e1 = (0, 1)T defines the canonical basis of R2. In addition, I
used α(1,2)

± = v
(1,2)
x ± iv(1,2)

y and β(1,2)
± = ‖~v(1,2)‖ ± v(1,2)

z = 1± v(1,2)
z .

Now, suppose ρ1 6⊥ ρ2. For the sake of convenience, I consider ρ1 to have
the associated Bloch vector ~v(1) = (0, 0, 1)T . Because the states are neither
equal nor orthogonal the z-component of the assigned Bloch vector of ρ2 obeys
v

(2)
z 6= −1, 1. Using equation (4.46), it thus follows for the eigenvectors of ρ1
and ρ2

|χ(1)
+ 〉 = e0 , |χ(2)

+ 〉 =
√

β+
2 (1, α+

β+
)T , (4.48)

|χ(1)
− 〉 = e1 , |χ(2)

− 〉 =
√

β+
2 (−α−β+

, 1)T , (4.49)

where I used the replacements β+ = β
(2)
+ and α± = α

(2)
± in order to simplify

notation. Clearly, any pair of eigenvectors of (4.48) and (4.49) is non-orthogonal.
I choose the eigenvectors |χ(1)

+ 〉, |χ
(2)
+ 〉 for the construction of Aε. Their overlap

is given by
α ≡ 〈χ(2)

+ |χ
(1)
+ 〉 =

√
β+
2 ∈ (0, 1) . (4.50)
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Thus, there is no need to add a phase to the eigenvectors so that I can directly
start with the calculation of the shift operator Aε (4.28). I obtain

|ψ±〉 = c±
(
|χ(1)

+ 〉 ± |χ
(2)
+ 〉
)

= c±(1± α,±α+
2α )T , (4.51)

where c± =
√

2(1± α)−1. This yields

P± = c2±

( (1±α)2 ±(1±α) αβ+
α−

±(1±α) αβ+
α+ 1−α2

)
, (4.52)

for the corresponding projections when the relations |α±|2 = β+β− and β− =
2 − β+ = 2(1 − α2) are used. Applying this, one obtains for the shift operator
Aε

Aε = 2c2+ε
( 2α α

β+
α−

α
β+

α+ 0

)
− 2αc2+ε 12

= αε

1 + α

( 1
α−
β+

α+
β+

−1

)
. (4.53)

The Bloch vector corresponding to this traceless Hermitian operator is given as
usual by the expectation values of the Pauli spin operators, i.e. one has

wAε,x = Tr(Aεσx) = αε
1+α

1
β+

(α+ + α−) , (4.54)

wAε,y = Tr(Aεσy) = αε
1+α

1
β+

i(α− − α+) , (4.55)

wAε,z = Tr(Aεσz) = 2 αε
1+α . (4.56)

As both states are pure (which means that the relevant eigenvalues are one),
ε must satisfy 0 < ε < α(2c2+)−1 = α(1 + α) (cf. Eq. (4.31)) in order to
guarantee positivity of the shifted states ρ̂1 and ρ̂2. Rewriting this parameter
by ε = cα(1 +α) with c ∈ (0, 1), the Bloch vector of Aε parametrized by c reads

~wAc = c

(
v(2)
x

v(2)
y

1+v(2)
z

)
= c

(
~v(1) + ~v(2)

)
. (4.57)

Thus, the Bloch vectors of the shifted states ρ̂k ≡ ρk −Aε are given by

~̂v(k) = ~v(k) − ~wAc = (1− c)~v(k) − c~v(l 6=k) , (4.58)

that is,

~̂v(1) =
(

−cv(2)
x

−cv(2)
y

(1−c)−cv(2)
z

)
, ~̂v(2) =

(
(1−c)v(2)

x

(1−c)v(2)
y

(1−c)v(2)
z −c

)
. (4.59)

It can be readily shown that the norm of these vectors is

‖~̂v(k)‖2 = (1− c)2 + c2 − 2c(1− c)v(2)
z , (4.60)

which is strictly smaller than one for all c ∈ (0, 1). Thus, both states lie on
the same shell in the interior of the Bloch ball for all possible values of c. For
c = 0, 1 one has ‖~̂v(k)‖ = 1, i.e. the shifted states are on the Bloch sphere again
and, therefore, pure.
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Figure 4.5: Scheme of the action of the shift operator Aε on non-orthogonal
two-level states ρ1, ρ2. The Bloch vector of ρ1 is ~v(1) = (0, 0, 1)T . ρ∗ denotes
the maximally mixed state and ρ̂1,2 refer to the parameter c = 1

2 (c.f. (4.62)).

If one considers the states

ρλ = (1− λ)ρ1 + λρ2 , (4.61)

with λ ∈ [0, 1], the Bloch vector of ρ 1
2
is given by

~v 1
2
≡ 1

2 (~v(1) + ~v(2)) = 1
2c ~wAc , (4.62)

which is proportional to ~wAc . Moreover, this Bloch vector is perpendicular
to the one-dimensional subspace spanned by ~v(1) − ~v(2) which describes the
orientation of the line connecting ρ1 and ρ2. Any point of the line can thus
be written as the direct sum of ~v 1

2
and µ{~v(1) − ~v(2)} for − 1

2 ≤ µ ≤ 1
2 . Due

to this, the shift induced by Aε corresponds to a translation perpendicular to
the straight line connecting ρ1 and ρ2 (c.f. Fig. 4.5). For c = 1

2 , implying
~wAc = ~v 1

2
, the translated line runs through the maximally mixed state so that

an extension of the line towards the boundary according to theorem 4.1 yields
a pair of orthogonal, antipodal states. In this case, the Bloch vectors of ρ1,2 are
replaced by their contributions parallel to the line ~v(1) − ~v(2) connecting these
points. Furthermore, for c = 1, the line defined by the translated states is just
the initial line reflected along the plane defined by ~wAc (or ~v 1

2
, respectively).

This shows that the proof of theorem 4.4 is a generalization of the figurative
idea of translating lines in the Bloch ball for two-level systems.



Chapter 5

Purity of the optimal pair

5.1 The Λ-model

As a simple application of theorem 4.2, one obtains the result that for all non-
Markovian quantum processes of a two-dimensional system (qubit) the maximal
backflow of information occurs for a pair of pure, orthogonal initial states, cor-
responding to antipodal points on the surface of the Bloch sphere. This follows
immediately from the fact that for qubits the set of pure states is identical to
the boundary ∂S(H) of the state space and orthogonal states have antipodal
corresponding Bloch vectors. For higher-dimensional systems, however, the set
of pure states represents a proper subset of the boundary. In this section I
will construct an explicit example for an open system dynamics of a three-level
system for which the optimal pair is not a pair of pure states.

Figure 5.1: Scheme of the Λ-model.

I consider a Λ-system which interacts with an off-resonant cavity field. The
weak-coupling master equation of this model is given by

d

dt
ρ(t) = −iλ1(t)[|a〉〈a|, ρ(t)]− iλ2(t)[|a〉〈a|, ρ(t)]

+ γ1(t)
[
|b〉〈a|ρ(t)|a〉〈b| − 1

2{ρ(t), |a〉〈a|}
]

+ γ2(t)
[
|c〉〈a|ρ(t)|a〉〈c| − 1

2{ρ(t), |a〉〈a|}
]
, (5.1)

where |a〉 refers to the excited and |b〉, |c〉 to the two ground states [29]. The
coefficients λ1,2(t) and γ1,2(t) are determined by the spectral density of the
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cavity field J(ω):

λi(t) =
∫ t

0
ds

∫ ∞
0

dωJ(ω) sin
(
(ω − ωi)s

)
, (5.2)

γi(t) =
∫ t

0
ds

∫ ∞
0

dωJ(ω) cos
(
(ω − ωi)s

)
. (5.3)

The generator of the master equation is thus of the type of (3.16) with two
time-independent Lindblad operators |b〉〈a| and |c〉〈a|, and two time-dependent
decay rates γ1(t) and γ2(t). Introducing the functions

f(t) = e−(D1(t)+D2(t))/2e−i(L1(t)+L2(t)) , (5.4)

gi(t) =
∫ t

0
dsγi(s)e−(D1(s)+D2(s)) , (5.5)

where
Di(t) =

∫ t

0
dsγi(s) , Li(t) =

∫ t

0
dsλi(s) , (5.6)

one finds that the solution of the master equation yields the dynamical map

ΦΛ
t,0(ρ) =

|f(t)|2ρaa f(t)ρab f(t)ρac
f(t)∗ρ∗ab g1(t)ρaa + ρbb ρbc
f(t)∗ρ∗ac ρ∗bc g2(t)ρaa + ρcc

 , (5.7)

and the described dynamical process is non-divisible if and only if a decay rate
γi(t) is negative for some time t. The functions f , g1 and g2 have to obey
the following relations which guarantee that ΦΛ

t,0 is trace preserving (5.8) and
completely positive (5.9),

g1(t) + g2(t) + |f(t)|2 = 1 , (5.8)
g1,2(t) ≥ 0 . (5.9)

Furthermore, one has to require f(0) = 1 and g1,2(0) = 0 in order to satisfy
ΦΛ

0,0 = 13. One easily infers from equation (5.8) and (5.9) that |f(t)| ≤ 1 and,
in addition, from (5.7), that all states whose support is in the two-dimensional
linear subspace Ubc = spanC{|b〉, |c〉}, spanned by the system’s ground states,
are invariant under the action of the dynamical map ΦΛ

t,0.
As there is no possibility to transform the ground states directly into each

other, such a quantum mechanical three-level system is called a Λ-model in the
literature. This type of system occurs in various applications in quantum optics,
see [46].

5.1.1 Particular pairs of states
I will derive an analytic expression for the trace distance of particular pairs of
three-level states evolving according to the dynamics of the Λ-system. Firstly
however, I present a general expression for arbitrary initial pairs of states.

Let ρ, σ ∈ S(C3). The eigenvalues of ∆(t) ≡ ρ(t) − σ(t) are determined by
the roots of the polynomial

p(λ, t) ≡ a0(t) + a1(t)λ− a3(t)λ3 , (5.10)
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where

a0(t) =|f(t)|2
[
2Re(∆ab∆ac∆∗bc)− |∆ab|2(g2(t)∆aa + ∆cc)− |∆ac|2(g1(t)∆aa

+ ∆bb) + ∆aa{(g1(t)∆aa + ∆bb) · (g2(t)∆aa + ∆cc)− |∆bc|2}
]
, (5.11)

a1(t) =|f(t)|2(|∆ab|2 + |∆ac|2)− (g1(t)∆aa + ∆bb) · (g2(t)∆aa + ∆cc)
+ |∆bc|2 − |f(t)|2∆aa((g1(t) + g2(t))∆aa + ∆bb + ∆cc , (5.12)

a3(t) =1 . (5.13)

One directly observes that the polynomial (5.10) does not depend on the phase
of the function f so that the eigenvalues of ∆(t) do not depend either on the
phase. For simplicity, one can thus restrict oneself to solely real-valued functions.
There is no quadratic contribution to the characteristic polynomial p(λ, t) due
to the fact that ∆(t) is a traceless operator. This property holds in general: the
sum of the roots of a polynomial is zero if and only if the quadratic term of the
polynomial vanishes.

Using Cardano’s formula [21] for the roots of a third degree polynomial
(without quadratic term), the eigenvalues of (5.10) are given by

λ1(t) = S(t) + T (t) , (5.14)

λ2(t) = e−i
2
3πS(t) + ei

2
3πT (t) , (5.15)

λ3(t) = ei
2
3πS(t) + e−i

2
3πT (t) , (5.16)

where the functions S(t) and T (t) can be written as

S(t) = 3

√
a0(t)

2 ± i|Dt|1/2 , T (t) = 3

√
a0(t)

2 ∓ i|Dt|1/2 , (5.17)

since the discriminant Dt ≡ −(1/27)a1(t)3 + (1/4)a0(t)2 ≤ 0 is non-positive.
This holds due to the fact that the eigenvalues are real-valued. If Dt < 0, then
it follows that

S(t) = T (t)∗ =
√
a1(t)

3 e±iα(t) , (5.18)

where α(t) ≡ 1
3arg{a0(t)

2 ± i|Dt|1/2}. If Dt = 0 for some t, one clearly has
S(t) = T (t) =

√
a1(t)/3. Applying this description for the eigenvalues, the

trace distance of two states ρ, σ ∈ S(C3) of the treated Λ-model can be written
as follows

D(ρ(t), σ(t)) = 1
2

{
|2Re(S(t))|+ |2Re(ei 2

3πS(t))|+ |2Re(e−i 2
3πS(t))|

}
=
√
a1(t)

3

{
| cosα(t)|+ | cos(α(t) + 2π

3 )|+ | cos(α(t)− 2π
3 )|

}
.

(5.19)
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However, it is possible to derive even simpler expressions for the trace dis-
tance of some particular initial state pairs:

(A) Consider the orthogonal states ρ± = |ψ±ab〉〈ψ
±
ab| where

|ψ±ab〉 =
√

1
2e
iφ|a〉 ±

√
1
2e
iϑ|b〉 , (5.20)

with φ, ϑ ∈ [0, 2π). Their support is contained in the two-dimensional
subspace Uab = spanC{|a〉, |b〉} which is spanned by the excited state |a〉
and the ground state |b〉. The operator ∆(t) ≡ ρ+(t)− ρ−(t) is given by

∆(t) =

 0 f(t)eiω 0
f(t)e−iω 0 0

0 0 0

 , (5.21)

where ω = φ − θ denotes the difference of the phases. It follows that the
trace distance for this initial state pair has the simple dynamics1

DI(t) ≡ D
(
ρ+(t), ρ−(t)

)
= |f(t)|. (5.22)

(B) As a second type of initial states, I consider classical mixtures of the three
levels |a〉, |b〉 and |c〉. More precisely, the trace distance for pairs consisting
of the excited state ρa = |a〉〈a| and classical mixtures of the three levels
of the system ρ{q} = q0|a〉〈a|+ q1|b〉〈b|+ q2|c〉〈c| is determined2. For such
states the operator ∆(t) is diagonal for all times t and obeys

∆(t) = diag{f(t)2(q1 +q2), g1(t)(q1 +q2)−q1, g2(t)(q1 +q2)−q2} , (5.23)

which yields

D(ρa(t), ρ{q}(t)) =
2∑
i=1

(qi − (q1 + q2)gi(t))Θ(qi − (q1 + q2)gi(t)) , (5.24)

for the trace distance. Here, Θ refers to the Heaviside step function.
For the derivation I used the trace condition (5.8). For the probability
distributions {q},

{q}II = {0, 1, 0} , {q}III = {0, 0, 1} , {q}IV = {0, 1
2 ,

1
2} , (5.25)

one thus gets the following analytic expressions for the trace distance

DII(t) = 1− g1(t) , DIII(t) = 1− g2(t) , (5.26)

and

DIV (t) = (1
2 − g1(t))Θ( 1

2 − g1(t)) + ( 1
2 − g2(t))Θ( 1

2 − g2(t)) . (5.27)

If q0 = 0, the states are orthogonal, ρa ⊥ ρ{q}. Moreover, the states
corresponding to DIV define an antipodal pair which is thus not a pure
state pair3.

1A similar pair of states in the other subspace Uac yield the same expression for the trace
distance.

2The qi’s define a probability distribution which means that q0 + q1 + q2 ≡ 1.
3ρ{q}IV is the equal mixture of the ground states |b〉 and |c〉.
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5.2 A non-pure optimal pair
On the basis of the trace distance of the considered special initial state pairs, I
implement a particular dynamics for the Λ-model by choosing the functions g1
and g2 to obey

g1(t) =gint(t)Θ(t0 − t) + Θ(t− t0)
{

8(t− (t0 + 1
2 t1))2Θ(

1∑
i=0

ti − t)

+ (t−
1∑
i=0

ti)Θ(
2∑
i=0

ti − t)Θ(t−
1∑
i=0

ti) + Θ(t−
2∑
i=0

ti)
}
, (5.28)

g2(t) =gint(t)Θ(t0 − t) + Θ(t− t0)
{1

2Θ(
1∑
i=0

ti − t)

+ (1 +
1∑
i=0

ti − t)Θ(
2∑
i=0

ti − t)Θ(t−
1∑
i=0

ti)
}
, (5.29)

where 0 < t0 < t1 < t2 and gint(t) = 1
2 sin((2t0)−1πt). As stated in section 5.1.1,

the function f can be chosen real-valued so that f is determined by the condition
(5.8) which yields f(t) =

√
1− (g1(t) + g2(t)). The shape of these functions is

depicted in figure 5.2. By construction, all three functions are continuous and
satisfy the conditions (5.8), (5.9) and f(0) = 1. Moreover, the functions are
taken so that the antipodal state pair defining DIV increases most compared to
the other special states defined above (cf. Fig. 5.3).
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0.4

0.6

0.8
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t
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g2
f

Figure 5.2: Plot of the functions f , g1 and g2 for t0 = 1, t1 = 1.5 and t2 = 2.

I emphasize that the functions g1 and g2 (and then f) are determined di-
rectly. It is not clear whether there exists a spectral density J(ω) of the cavity
field which yields this dynamics. However, the chosen functions satisfy the re-
quirements and, therefore, the implemented dynamics in the Λ-model defines a
dynamical process. Going back to the definition of the measure for the quan-
tum non-Markovianity (3.34), one recognizes that N solely measures the total
increase. Thus, there are yet many possibilities to manipulate g1 and g2 in order
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Figure 5.3: The shape of the trace distance for the four special initial state
pairs Di for t0 = 1, t1 = 1.5 and t2 = 2. The respective total increase is given
by: DI → 1√

2 , DII → 1
2 , DIII → 1

2 , DIV → 1.

to find a dynamics which is indeed associated to a spectral density and preserves
the basic features of the counterexample.

The implemented dynamics can be divided into four parts and has the fol-
lowing fundamental properties:
During the first time interval, i.e. t ≤ t0, the dynamics is governed by identical
dissipation via the two channels which is described by the increasing function
gint. Within the interval [t1, t2], however, the populations are entirely swapped
to the ground state |b〉 and in the subsequent part the dynamics stops com-
pletely. In between, there is a revival of the excitation from ground state |b〉
while the other ground state remains unchanged. I emphasize that the popu-
lation is swapped to the same ground state from which the excitation is also
taken in the second interval. By symmetry, the ground state |c〉 could also be
the preferred one.

Despite of the simplicity of the dynamics for the Λ-model it seems to be
impossible to determine analytically the optimal pair. Due to this, I have carried
out a Monte Carlo simulation, drawing random pairs of pure, orthogonal, and
antipodal initial states and determining the corresponding increase of the trace
distance for each initial pair. The simulation was performed inMathematica [57].
I applied a generator for random unitary matrices included in [37,38] to sample
pairs of pure, orthogonal, and antipodal states. The algorithm generates random
unitaries with respect to the Haar measure [36] using QR decomposition. That
is, a decomposition of a matrix A into a product A = QR of an orthogonal
matrix Q and an upper triangular matrix R. To each basis corresponding to a
randomly drawn unitary, I evaluated all possible combinations of the eigenvalue
distributions of pure, orthogonal, and antipodal states.

The results are shown in figure 5.4. One can see from the figure that there is
a finite gap between the maximal possible increase of the trace distance for pure,
orthogonal initial pairs, and the increase of the trace distance corresponding to
the antipodal initial pair defining DIV . The largest total increase for pairs of
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Figure 5.4: Probability of the total increase of the trace distance for randomly
drawn pure, orthogonal states evolving according to the dynamics (5.7). The
red line indicates the total increase of DI ( 1√

2 ) while the arrow refers to the
maximal increase for this dynamics given by DIV (1). The sample size of pairs
of pure, orthogonal states is equal to 107.

pure, orthogonal states was obtained for states whose support is contained in
the subspace Uab = spanC{|a〉, |b〉} or Uac = spanC{|a〉, |c〉}, respectively. That
is, the increase of DI , which is 1√

2 , yields the maximum for pure, orthogonal
states. Performing an additional variation around these state pairs, one gets
only smaller values for the increase which shows that these pairs constitute at
least a local maximum of the trace distance for pure initial states. However,
sampling instead merely antipodal states yields a probability distribution which
continuously approaches the maximal increase given by DIV (cf. Fig. 5.5).
Thus, there is strong numerical evidence that the optimal pair is indeed given
by the antipodal initial states

ρ1 = |a〉〈a| , ρ2 = 1
2
(
|b〉〈b|+ |c〉〈c|

)
. (5.30)

Hence, this example demonstrates that for Hilbert spaces with dimension larger
than two, the optimal initial state pair can indeed contain a mixed state for
certain non-Markovian dynamical processes. By this, the considered dynamics
constitutes a counterexample for the hypothesis that the optimal pair must be
pure in general and, therefore, the maximization procedure (cf. Sec. 4) can
not be tightened further to the extreme points of the state space, i.e. the pure
states.

I want to stress that the same pair (5.30) is also the optimal pair for a simpler
dynamics for the Λ-model [54]: If the rates of the Lamb-shifts (5.2) are zero and
the decay rates (5.3) in the dissipator of the master equation, from which the
dynamics of the Λ-model is derived, are chosen to obey small oscillations, one
obtains also a finite gap between the maximal increase of the trace distance for
pure, orthogonal states and the increase of DIV . That is, for

λ1,2(t) = 0 , γ1,2(t) = 0.3 · sin(πt) (5.31)
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Figure 5.5: Probability distribution of the total increase of the trace distance
for randomly drawn antipodal states evolving according to the dynamics (5.7)
(sample size: 107). The red line indicates the total increase of DI while the
arrow refers to the increase of DIV .

one obtains the distribution depicted in figure 5.6 for the total increase within
one period for pure, orthogonal, and antipodal states. It is readily shown that
also for this choice the conditions (5.8) and (5.9) are satisfied.
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Figure 5.6: Probability distribution of the total increase of the trace distance
for randomly drawn pure, orthogonal pairs (blue) and antipodal pairs of states
(teal) evolving according to the dynamics given by (5.31). The arrow indicates
the total increase of the trace distance for the antipodal states ρ1, ρ2 (5.30)
which yields the maximum (≈ 0.317). The total increase of DI for this dynam-
ics is 0.174 described by the red line. It is an upper bound for the increase of
pure, orthogonal state pairs for this dynamics, too. The sample size used to
determine the two distributions is again about 107 each.
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The shape of the probability distributions is very special, see figure 5.4, 5.5
and 5.6. In particular, the probability distribution for antipodal states evolving
according to the dynamics specified by (5.7) is interesting: it seems to consist
of different parts (cf. the slope of the distribution) and it has an offset so that
there exists no pair of antipodal initial states whose distinguishability has no
revival during the dynamics. For these kinds of pairs one also obtains an offset
for the dynamics (5.31). It might be interesting to study the Λ-system and the
implemented dynamics again and in more detail in order to find an explanation
for this behaviour.





Chapter 6

Summary and conclusion

In this thesis I have developed a mathematical characterization of optimal ini-
tial state pairs for the measure for quantum non-Markovianity [5, 29]. Due to
my studies, the maximization involved in N (cf. (3.34)) can be reduced to an
(N2 − 2)-dimensional set for a Hilbert space with dimension N whereas the
maximization involved in the original definition was performed over a set with
dimension 2N2 − 2. The obtained results rely solely on the convexity of the
state space and on the linearity of the dynamical maps. The characterization of
optimal pairs thus applies to any open system dynamics which is determined by
a one-parameter family of linear, completely positive and trace preserving maps.
In addition, all the developed constructions can be applied to any homogeneous
measure which evaluates the difference of two states (operators), for example to
a metric arising from a norm.

After having shown that the states of optimal pairs must be on the boundary
of the state space, I have proven that they in addition must be orthogonal. This
is very plausible since it implies that these states can be distinguished with
certainty by a single measurement. Optimal state pairs thus have the maximal
possible amount of initial information and are therefore capable of emitting
and reabsorbing the maximal amount of information during the non-Markovian
dynamics. Introducing the notion of joint translatability, an alternative proof
of this result for finite-dimensional systems has been obtained. Moreover, this
concept gives insight into the structure of the state space and might serve also
for other applications.

Based on the orthogonality of states of an optimal pair, it has been possible
to derive a new representation of the measure N for finite systems. I have
shown that it is possible to fix one of the input states to be any point in the
interior of the state space and to maximize the quantity solely over the states
of an enclosing surface of the inner point. Hence, the information about the
dynamics regarding memory effects is contained in any part of the state space
which supports the intuitive idea that memory effects are an intrinsic property of
the dynamical process. In order to obtain this representation, the information
flow must be rescaled by the initial distinguishability of the considered state
pair showing that the backflow of information relative to the initial information
content is the universal quantity which determines the dynamics. This result
allows to apply gradient methods more easily in the sampling process so that
the numerical efficiency increases. In particular, this characterization makes the
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evaluation of the measure N in an experiment more feasible. On the basis of
an already existing optical experiment regarding non-Markovianity [28,32] and
the present results, experimental realizations of this scheme are currently under
construction.

I have further demonstrated that for Hilbert spaces with dimensions of at
least three, optimal state pairs need not consist of pure states, in contrast to
two-level systems where optimal pairs are always antipodal points on the Bloch
sphere, and as such pure. The example constructed here leads to an optimal
pair consisting of antipodal states, that is, a pure and a mixed quantum state.
Although based on a master equation and in agreement with the general require-
ments on dynamical maps, the implemented dynamics is artificial and might
therefore not be realizable experimentally. An experimental realization of such
a counterexample regarding the purity of optimal states might be an objective
of further studies. The special shape of the probability distributions regarding
the total increase of the trace distance (in particular, see Fig. 5.5) might also be
an interesting subject of further studies of the Λ-system and the implemented
dynamics. Moreover, I conjecture that for even larger Hilbert spaces one can
also construct quantum processes for which both states of the optimal pair are
mixed. Finally, I mention that on the basis of the present results more specific
statements could be proven if one assumes additional properties of the quantum
process: invariance under certain symmetry groups, or the existence of invari-
ant states might yield even further statements on the optimal states implying a
further reduction of the set of optimal states.

There has been a significant progress in developing a general theory of non-
Markovian quantum processes over the past years [4,14,39,41,58]. Moreover, a
better understanding of the fundamental properties of these kind of open system
quantum dynamics was gained and yet several experiments [32,33,50] have been
carried out demonstrating the experimental accessibility of the studied measure
N for quantum non-Markovianity. A major point of the entire non-Markovianity
business is that the influence of these memory effects on physical systems and,
therefore, its exploit for applications is not yet known in detail. Several steps
towards this direction were made quite recently: In [27] the authors show that
non-local memory effects allow to perform perfect quantum teleportation with
mixed photon polarization states. Moreover, in [28,32], it was demonstrated how
an open quantum system can be used as a probe of the environment determining
its correlations. These first experimental results yield a promising outlook for
future applications of non-Markovian dynamics. However, further progress in
understanding the physical cause of non-Markovianity and its impact on actual
systems must be made so that the relevance of this mathematical classification
of dynamical processes will be clarified completely. This might also resolve the
conflict concerning the different definitions.

Parts of the results of this thesis were published in [54].
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