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A B S T R A C T

Within the present thesis we develop a diagrammatic scattering theory for in-
teracting bosons in a three-dimensional, weakly disordered potential. Based
on a microscopic N-body scattering theory, we identify the relevant dia-
grams including elastic and inelastic collision processes that are sufficient
to describe quantum transport in the regime of weak disorder. By taking
advantage of the statistical properties of the weak disorder potential, we
demonstrate how the N-body dynamics can be reduced to a nonlinear in-
tegral equation of Boltzmann type for the single-particle diffusive flux. A
presently available alternative description – based on the Gross-Pitaevskii
equation – only includes elastic collisions. In contrast, we show that far
from equilibrium the presence of inelastic collisions – even for weak inter-
action strength – must be accounted for and can induce the full thermal-
ization of the single-particle current. In addition, we also determine the
coherent corrections to the incoherent transport, leading to the effect of co-
herent backscattering. For the first time, we are able to analyze the influ-
ence of inelastic collisions on the coherent backscattering signal, which lead
to an enhancement of the backscattered cone in a narrow spectral window,
even for increasing non-linearity. With a short recollection of the presently
available experimental techniques we furthermore show how an immediate
implementation of our suggested setup with confined Bose-Einstein con-
densates can be accomplished. Thereby, the emergence of collective and/or
thermodynamic behavior from fundamental, microscopic constituents can
also be assessed experimentally.

In a second part of this thesis, we present first results for light scattering off
strongly interacting Rydberg atoms trapped in a one-dimensional, chain-like
configuration. In order to monitor the time-dependence of this interacting
many-body system, we devise a weak measurement scenario for which we
derive a master equation for the N-body density matrix of the atomic sub-
space. This allows us to study the influence of the weak laser fields onto the
dynamics of the strongly interacting Rydberg chain, as a function of time.
Whereas in the long time limit the N-body density matrix – due to the de-
phasing by the weak fields – relaxes to a fully mixed state, the dynamics for
intermediate times reveals a strong influence of the Rydberg blockade mech-
anism, a signature of which can also be identified in the intensity scattered
off the chain of Rydberg atoms.
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Z U S A M M E N FA S S U N G

Die vorliegende Arbeit befasst sich mit der Entwicklung einer diagrammati-
schen Streutheorie für wechselwirkende Bosonen in dreidimensionalen, un-
geordneten Potentialen. Ausgehend von einer mikroskopischen Vielteilchen-
streutheorie berücksichtigen wir alle diagrammatischen Beiträge, die für die
Beschreibung von quantenmechanischen Transportprozessen in schwachen
Unordnungspotentialen relevant sind – insbesondere auch jene, die von elas-
tischen oder inelastischen Stößen herrühren. Unter Ausnutzung der statis-
tischen Eigenschaften des schwachen Unordnungspotentials reduziert sich
die Vielteilchendynamik auf eine nicht-lineare Integralgleichung, die den
diffusiven Einteilchenfluss beschreibt und einer nicht-linearen Boltzmann-
Gleichung entspricht. Im Gegensatz zu bisher existierenden Modellen, die
auf der Gross-Pitaevskij Gleichung basieren und nur elastische Stoßpro-
zesse berücksichtigen, können wir im Rahmen dieser Arbeit zeigen, dass
inelastische Kollisionen in Nichtgleichgewichtssituationen auch für schwa-
che Wechselwirkungsstärken eine wichtige Rolle spielen und zu einer Ther-
malisierung des Einteilchenflusses führen. Darüberhinaus berücksichtigen
wir den Einfluss von Kohärenzen auf den Transport, die sich als kohären-
te Rückstreuung außerhalb des Mediums manifestieren. Erstmals sind wir
damit in der Lage, den Einfluss inelastischer Streuprozesse auf die kohären-
te Rückstreuung zu beschreiben, die mit anwachsender Nichtlinearität zu
einer Verstärkung des Rückstreukegels innerhalb eines schmalen Frequenz-
fensters führt. Gleichzeitig deuten wir die experimentelle Realisierbarkeit
dieser Vorhersage an, indem wir auf moderne Technologien zur Erzeugung
von eingeschlossenen Bose-Einstein Kondensaten, insbesondere den Atom-
laser, eingehen. Somit eröffnet sich die Möglichkeit, sowohl kollektive als
auch thermodynamische Effekte, die als Konsequenz von fundamentaler,
mikroskopischer Dynamik entstehen, experimentell zu untersuchen.

Im zweiten Teil dieser Arbeit präsentieren wir erste Ergebnisse zur Licht-
streuung an stark wechselwirkenden Rydberg-Atomen, die in einer eindi-
mensionalen Gitterkonfiguration vorliegen. Mit dem Ziel, die Zeitabhängig-
keit dieses wechselwirkenden Vielteilchensystems durch Streuung schwa-
cher, externer Laserfelder zu beobachten, leiten wir eine Mastergleichung
für die Vielkörperdichtematrix des atomaren Unterraums her, die gleichzei-
tig auch die Untersuchung des Einflusses der streuenden Felder auf die ato-
mare Dynamik ermöglicht. Wir beobachten, dass die atomare Dichtematrix
auf Grund der Dephasierung durch das gestreute, schwache Feld im Limes
langer Zeiten in einen vollständig gemischten Zustand übergeht. Dagegen
ist die Dynamik für intermediäre Zeiten stark von der Rydbergblockade be-
nachbarter Atome und deren Korrelationen bestimmt. Dieser Unterschied in
der Dynamik lässt sich ebenso an der Intensität der gestreuten, schwachen
Felder festmachen und eröffnet somit die Möglichkeit einer experimentellen
Klassifizierung der atomaren Dynamik.
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Part I

I N E L A S T I C M U LT I P L E S C AT T E R I N G O F
I N T E R A C T I N G B O S O N S I N W E A K R A N D O M

P O T E N T I A L S





1I N T R O D U C T I O N

Transport is of universal relevance. Its implications reach from astronomical
questions, e. g. how photons propagate through interstellar clouds [1], over
condensed matter systems, where e. g. the movement of charges is of every-
day relevance [2, 3], to biology, where e. g. quantum properties of excitonic
transport in light harvesting complexes in photosynthesis are currently de-
bated, see e. g. [4].

Besides the interdisciplinary character of transport, transport also poses
a problem of scales [5]. Whereas, on the microscopic level, transport is gov-
erned by quantum mechanics, and its reversible dynamics is predicted by
the Schrödinger equation, the dynamics on mesoscopic scales is properly
described by the irreversible kinetic theory of Boltzmann type. On macro-
scopic scales, the Boltzmann equation turns into a classical diffusion equa-
tion. Hence, naturally the question arises what is the trigger of these transi-
tions and how does the limit of quantum and classical (statistical) mechanics
come about?

Over the last two centuries, even without knowledge of the microscopic
fundament, many generations of scientists have uncovered the foundations
of transport processes from microscopic to macroscopic scales. The work
of Ohm around 1827 [6] led to the insight of how a current in a metal is
proportional to the applied voltage via the conductance – a scenario, which,
on large scales, is today properly described by diffusion of electrons within
an array of atoms. Actually, this simple model is also known as the Drude
model, that Drude introduced in 1900 shortly after the discovery of the elec-
tron [7, 8].

Another relevant discovery in this context is the observation of errant
motion of a flower pollen suspended in water by Brown in 1828 [9]. Due
to the collisions with the water molecules, the pollen undergoes a random
walk today known as Brownian motion. Einstein [10] and Smoluchowski [11]
derived a diffusion equation, which predicted the mean squared displace-
ment of the pollen to be proportional to the elapsed time, i. e. 〈x2〉 ∝ Dt.
The predicted proportionality factor, i. e. the diffusion constant D, was exper-
imentally verified shortly after [12] and gave strong evidence for the atomic
nature of matter. This same experiment, albeit shortly after Boltzmann’s
death in 1906, also gave an uprise to the phenomenologically derived Boltz-
mann equation, which – despite its continuous formulation for phase-space
densities – strongly relied on a microscopic collision kernel for two particles,
as discussed in [13] and Section 2.2.

Nowadays, many urgent and (partially) unsolved questions are reconsid-
ered in the context of ultracold atom experiments. With the help of the
available experimental apparatus, one aims at simulating in great detail the
transition from microscopic to macroscopic scales while accurately adjust-
ing the interaction between the particles, the effect of external (disorder)
potentials and/or sources of noise, cf. [14, 15] and Section 2.1. Additionally,
as the transition towards macroscopic scales involves irreversibility, i. e. an
increase of entropy, the question arises under which condition and how a
certain system reaches (thermal) equilibrium [16].

3



4 introduction

1.1 anderson localization – disorder vs . interaction

An upheaval was created after Anderson [17] published his famous paper on
"Absence of diffusion in certain random lattices". He predicted a threshold
of disorder strength beyond which the diffusion comes to a halt and eigen-
states remain exponentially localized, a situation now called strong or An-
derson localization. To understand this phenomenon one strongly has to rely
on the wave nature of the propagating particle. Then, transport of a particle
in a certain direction exceeding the localization length is inhibited by totally
destructive interference of all amplitudes that determine the propagation.
Anderson localization will always occur for one- and two-dimensional infi-
nite disordered systems, but will exhibit a mobility edge in three dimensions
[18]. For waves with wave number k, the onset of Anderson localization –
as determined by the Ioffe-Regel criterion [19] – will occur if k`dis 6 1, where
`dis is the disorder mean free path, i. e. the average distance between two
consecutive scattering events off the disorder potential. Since localization
only depends on the wave nature of the particle, it will occur for all types
of waves and has experimentally been demonstrated, on the one side, for
electromagnetic [20], acoustic [21], and matter waves, in 1D [22, 23] and 3D,
for bosons [24] and fermions [25], in real space, and, on the other side, as
dynamical localization in energy space, for light-matter interaction [26, 27].
All the real space experiments were explicitly done for non-interacting parti-
cles and, for 3D, in the regime of a very strong disorder potential and/or for
very low single-particle energies (in agreement with k`dis 6 1). The inclu-
sion of inter-particle interaction rather leads to a suppression of Anderson
localization [28–30] and, as demonstrated recently, to sub-diffusive behav-
ior in 1D [31]. In 2D and 3D, however, the understanding is still far from
complete, see [32–34] and references therein.

1.2 diffusion and the weak localization correction

As the Anderson localization regime constitutes a relevant but only small
part of the total parameter range, the opposite regime in 3D,1 i. e. k`dis � 1,

1 Note that the localization length in
2D can become infinitely long

such that diffusion can be studied
on finite spatial and short time

scales [35].

where diffusion essentially dominates over localization, will be in our focus
within this thesis. Whereas all previous experimental proofs of diffusion
relied on indirect measurements, e. g. conduction measurements in metals,
a recent experiment with cold fermions allowed for a direct measurement
of the characteristic linear decay of the fermionic density with distance in a
disordered channel [36] (as well as the ballistic transport once the disorder
potential is switched off).

One has to distinguish two different experimental techniques for measur-
ing diffusive transport. Whereas the fermionic experiment [36] was con-
ducted in a stationary scenario (cf. our setup in Section 3.1), which is math-
ematically equivalent to a scattering setup (for a sufficiently large reservoir)
and leads to a stationary flow of particles through the scattering region,
most of the remaining experiments are conducted with initially trapped par-
ticles which, upon release from the trap, expand into the pre-set potential
landscape as a function of time. Hence, initially high densities (correspond-
ing to stronger interaction) become depleted as the initially confined parti-
cle cloud expands from the source, and (presumably) only single-particle
dynamics remains [24, 37].

For the latter (time-dependent) scenario not too far from thermal equi-
librium, different theoretical studies have extended the early results on
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the "dirty boson problem" [38, 39] using either classical equations of mo-
tion [35] or taking the Hartree-Fock and/or Bogoliubov corrections to the
Gross-Pitaevskii equation into account [40, 41], see also the discussion in
Section 2.2.

Conversely, the stationary scattering scenario has been extensively stud-
ied also on the basis of the Gross-Pitaevskii equation [42–45] by neglecting
the non-condensate fraction. Recently, matter wave scattering based on the
Hartree-Fock Bogoliubov theory has been suggested [46, 47]. The analysis
in [47] revealed that for increasing interaction strength a strong depletion
of the condensate sets in, which, in turn, outreaches the regime of validity
of this model. Hence, the development of a proper theoretical description
far from equilibrium and capable of describing the full transition from a
condensate to a non-condensate is in order.

For weak disorder potentials, i. e. k`dis � 1, where the eigenstates are
fully extended over the entire potential and Anderson localization is thus
prohibited, weak localization – a precursor effect of Anderson localization
– can occur in time-reversal symmetric media [48]. Despite being only a
small correction within this diffusion dominated regime, weak localization
induces an important correction due to the wave and/or quantum nature of
the propagating quantity. It emerges due to counter-propagating wave am-
plitudes, whose constructive interference upon ensemble averaging leads •
to an enhanced return probability to the origin within the medium, e. g. ob-
served as unexpected magneto-resistance in quasi 2D metal films [49, 50],
and • to the prominent effect of coherent backscattering, i. e. an enhance-
ment of the backscattered intensity, outside the medium. This enhancement,
first observed for sunlight scattered back from the rings of Saturn [51], has
since then been measured for acoustic waves [52], laser light scattered off
polystyrene spheres [53] and cold atomic gases [54], and recently also for
bosonic matter waves [55, 56].

The maximal backscattering enhancement is only obtained for perfect
phase coherence. Multiple dephasing mechanisms due to, e. g. , the random
motion of scatterers [57], the internal structure of the scatterers [58], or the
nonlinear response of strongly laser driven atoms [59–61] have been consid-
ered, theoretically and experimentally, and shown to lead to a suppression
of the coherent backscattering interference. Furthermore, the presence of a
nonlinearity may also produce an inversion of the backscattering cone [62],
e. g. for matter waves in disordered potentials using the Gross-Pitaevskii
equation [44]. As the experimental realization with matter waves [55, 56]
was just able to confirm the effect for non-interacting (or very weakly inter-
acting) particles [63], an experimental confirmation of the – debatable (as we
will see) – Gross-Pitaevskii result for stronger interaction [44] is still missing.

1.3 equilibration and thermalization

From the early Bose-Einstein condensation experiments one knows that a
condensate trapped in the ground state of a harmonic potential is very ro-
bust against perturbations and hence well described by the Gross-Pitaevskii
equation [64]. This situation dramatically changes for non-equilibrium sit-
uations of propagating matter waves, as discussed in Section 2.2 in more
detail, and quenched trapping potentials, where the change of the confining
potential is very rapid in comparison to all other relevant system time scales.
Whereas the latter scenario gave rise to a recent and renewed substantial in-
terest in the underlying physics of how a quenched system adjusts to the
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modified environment [16], a comparable transition occurs when a coherent
matter wave state, i. e. a condensate, develops a non-condensate (thermal)
fraction in a strictly unitary manner fostered by collisions. Whether a cer-
tain state equilibrates towards a thermal state remains a question of univer-
sal relevance within (quantum) statistical mechanics [65, 66]. One attempt
to explain thermalization for a quantum system relies on the concept of
eigenstate thermalization introduced by Deutsch [67] and Srednicki [68]. For a
certain class of systems, i. e. those that allow for a semi-classical description,
Srednicki was able to show that a quantum system will thermalize if the
classical counterpart is non-integrable and thus shows chaotic dynamics. In
other words, the whole classical phase space has to be accessible such that a
state of maximal entropy can be reached. Conversely, a quantum version of
Newton’s cradle constructed out of one-dimensional colliding Bose-Einstein
condensates [69] showed no significant signs of thermalization, in partial
contrast to a previous conjecture [70] and despite experimental noise, that
is expected to foster the thermalization process. The amount of discussion
[71–74] recently triggered by the observation of [69] leads to the conclu-
sion that the understanding of the emergence of thermodynamic behavior
in quantum systems is not yet fully understood – a point we will come back
to within this thesis.

1.4 aim of this thesis

As we have demonstrated, transport in disordered environments has been a
very relevant topic in many fields of physics for more than two centuries.
Many important contributions have been developed in the field of con-
densed matter theory [2], which now – upon the emergence of ultracold
atomic experiments – can be precisely analyzed and verified. However,
along with the new experimental possibilities, novel theoretical concepts
need to be devised which capture the whole realm of present-day tech-
nologies [75] and, more importantly, foster a fundamental understanding
of multi-scale transport phenomena.

Within this thesis we aim to contribute to this honorable goal and to de-
velop a diagrammatic theory for the weak localization regime, which, on the
one hand, will tackle the relevant questions of thermalization and conden-
sate depletion as introduced above, and, on the other hand, combines the
microscopic and macroscopic insights into a unified description. We will try
to be as general as possible but, of course, need to make certain assumptions
and approximations. For clarity, a full list of all assumptions is included in
Appendix A.

In the following second chapter we will comment on the presently avail-
able technologies in ultracold atomic physics, from which we infer the ex-
perimental scattering setup with atomic matter waves that we have in mind.
Consequently, we focus on the creation of atomic matter waves and their
adjustable parameters first. In a second step, we introduce the full N-body
Hamiltonian and summarize existing theoretical models – based on this
Hamiltonian – which make contact at different stages with our theory to be
developed. We furthermore develop a generalN-body diagrammatic scatter-
ing theory at the end of the second chapter, as a foundation for our further
description of the dynamics within disordered potentials.
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The third chapter is concerned with the application of the previously devel-
oped (and properly ensemble averaged) N-body scattering theory to a weak
disorder potential with Gaussian statistics. We here identify all scattering
diagrams relevant for diffusive transport of an interacting matter wave in
the scattering setup. The diagrams then give rise to an analytically derived,
closed integral equation that we solve numerically by iteration. As a final
result, we predict how the diffusive flux of particles within the slab – in
contrast to existing theories – leads to elastic and inelastic scattering con-
tributions. The inelastic particle flux, which corresponds to a depletion of
the population of the single-particle atomic matter wave state, is then mon-
itored while it thermalizes as a function of the collision strength, a process
in agreement with the thermalization dynamics touched upon in the intro-
duction.

Within the weak disorder potential, the subtle but important contribution
of coherent backscattering will be the focus of the fourth chapter. We here
identify all leading crossed diagrams that give rise to the coherent correction
of the diffusive ladder diagrams discussed in Chapter 3. In a similar man-
ner as before, we can state a closed integral equation that, upon iteration,
predicts how the coherent backscattering cone changes under elastic and
inelastic collisions, as a function of the interaction strength. It is precisely
the inelastic scattering that, in contrast to the result of the Gross-Pitaevskii
approach, prevents an inversion of the coherent backscattering cone in the
parameter regime under investigation.

A summary of the obtained results is given within the fifth chapter. Here,
we also discuss how the assumptions and approximations introduced in the
previous chapters were, on the one hand, crucial for the present formula-
tion of the theory, but, on the other hand, can be overcome using presently
available methods in a future extension of this work.





2P H Y S I C S FA R F R O M E Q U I L I B R I U M

In this chapter, we wish to pave the way to our diagrammatic scattering
theory to be introduced in the subsequent chapters. Whereas in the pre-
vious chapter we tried to motivate why it is insightful to study transport
phenomena, we here want to focus on the tools and present-day technolo-
gies required to theoretically describe and experimentally verify this out-of-
equilibrium problem par excellence.

We start by describing how an atomic matter wave – the entity to be
transported – can nowadays be extracted from a Bose-Einstein condensate
(BEC) at equilibrium. In consecutive steps we collect all relevant ingredients
for our theory, starting from the interaction between the particles and with
the random disorder potential, until we spell out the general N-particle
Hamiltonian and introduce the N-particle diagrammatic scattering theory.

2.1 from a bose-einstein condensate to a matter wave

Upon the theoretical prediction of Bose-Einstein condensation by the ground-
breaking work of Bose [76] and Einstein [77] almost 90 years ago, the proof-
of-principal of the experimental realizability of Bose-Einstein condensation in
dilute gases (closest to the ideal scenario anticipated by Bose and Einstein)
was successfully conducted in 1995 [78, 79] and awarded the Nobel Prize
in 2001. Prior to this observation, a large tool-box of novel experimental
techniques had to devised that nowadays allows for precise and highly con-
trollable setups with ultracold atomic gases up to the point where quantum
simulators [80] may be employed to investigate fundamental questions of
condensed matter physics [14].

2.1.1 The Gross-Pitaevskii Equation

From a mathematical point of view, a Bose-Einstein condensate, i. e. the
macroscopic occupation of one single state,1 corresponds to one macro-

1 For the concept of generalized
Bose-Einstein condensation we
refer the reader to [81].

scopic eigenvalue of order one (compared to all the others of order 1/N;
with N being the total number of particles) of the single-particle density
matrix, obtained by integrating over the degrees of freedom of all but one
particle, and known as the Penrose-Onsager criterion for condensation [82].
For the case of a single occupied mode at zero temperature, and in the
thermodynamic limit (N→∞ with Nas fixed and as being the s-wave scat-
tering length), the condensate can be exactly described by a single-particle
state ψ(r, t), where ψ(r, t) fulfills the Gross-Pitaevskii equation [83]:

i h
∂

∂t
ψ(r, t) =

[
−∇2 + V(r, t) + g|ψ(r, t)|2

]
ψ(r, t) . (1)

g = 8πas is the two-particle interaction strength in the low energy limit,
and V(r, t) the external (trapping) potential which we treat as a weak dis-
order potential, later-on in this thesis. Here (for the definition of g) and
throughout this thesis, we will use units in which  h2/2m ≡ 1. We will
further assume the scattering length as to be positive hereafter (a positive
or a negative value corresponds to repulsive or attractive interaction, re-

9



10 physics far from equilibrium

Figure 1: Three dimensional rendering of an Atom Laser beam emitted from a
Bose-Einstein condensate. Text and image taken from [91].

spectively [84]). Eq. (1) is essentially a nonlinear Schrödinger equation [85]
and ψ(r, t) is the quantum-mechanical probability amplitude. While this
equation has been successfully applied to describe ultracold atom experi-
ments close to equilibrium, see e. g. [64, 86, 87], it is not (or only partially)
adequate for systems of finite temperature, stronger interaction and/or far
from equilibrium, where many different modes can be occupied with rather
large probability.

2.1.2 The Atom Laser

Once a coherent state of matter is produced by Bose-Einstein condensation,
the availability of a coherent matter wave source opens exciting possibilities,
e. g. the generation of coherent beams of matter similar to optical lasers.
To this end, let us introduce how an atomic matter wave is extracted from
a confined condensate, see Fig. 1. Once a condensate in the ground state
of the trapping potential has been produced, one needs to uncouple the
atoms from the binding force, e.g., as was done initially [88–90], release
them directly to free space, where, however, a rapid change of the particle’s
de-Broglie wavelength occurs due to acceleration by gravity.

The general aim, however, is to produce a mono-mode atom laser via an
isentropic process in a very elongated wave guide, e. g. by using focused, far-
detuned, horizontally aligned laser beams as a guide, where possibly only
the lowest transverse mode is populated. Furthermore, one wishes to adjust
the density and the velocity of the outcoupled atoms as well as to realize
a continuous steady state emission by constantly refilling the condensate.
This goal, i. e. the transition from the proof-of-principle experiments to the
creation of a high-quality, guided and continuos atom laser, has partially
been accomplished recently [92–97].

Different possibilities exist to continuously extract condensate atoms. One
can either use a weak resonant radio frequency field that transforms the
magnetic state of a fraction of the atoms from a trapped to an untrapped
state [89, 90] and then confine the untrapped atoms to an additional wave-
guide [92]. Another possibility consists in using a so-called crossed beam
optical dipole trap, essentially two intersecting, focused laser beams, where
at the intersection point of the two beams a trapped condensate can be
generated. In a next step, the trapping potential of one of the two beams
is reduced, either magnetically or optically, in order to allow the atoms to
enter the wave-guide defined by the second beam. This method has been
reported to allow for a population of 85% of the atoms within the transverse
ground state of the second laser beam [94].
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Figure 2: (a) Schematic plot to illustrate how the discrete energy levels Eres of the
molecular binding potential (red dashed line) can be shifted, via change of the ex-
ternal magnetic field strength ∆, to match a resonance condition with the unbound
fragment of atoms (E > 0) scattered into the open channel (blue solid line). Adopted
from [110]. (b) Schematic plot of the s-wave scattering length (normalized to the
asymptotic scattering length ares far off resonance) in the vicinity of a resonance as
depicted in a). The value of as can be changed by an order of magnitude when
scaling the magnetic field strength properly [103].

Although experimental difficulties remain, cf. [97], recent applications of
matter waves as quantum probes [98] open the horizon for matter wave
applications in metrology and also for transport studies, as proposed in the
present thesis. Microtrap geometries, also known as atom chips offer another
intriguing possibility of creating and controlling matter waves in a precise
manner [99].

2.1.3 Tuning the Interaction Strength Between the Atoms

As mentioned before, by adjusting the density of atoms within a matter
wave, one certainly has some control over the interaction strength between
the particles. As atomic condensates, and consequently matter waves, are
very dilute objects, usually characterized by the smallness of the ratio of
the s-wave scattering length to the mean particle spacing (defined by the
negative third root of the initial particle density), i. e. ρ1/30 as � 1 [87], it is
sufficient to take only pairwise interaction between the atoms into account.
Under the assumption of a point-like or contact interaction, the real inter-
action potential is usually approximated by a properly scaled δ-function,
where the scaling parameter g is given in the low-energy limit kas � 1

(tantamount to the s-wave scattering approximation) by g = 8πas, and in-
dependent of the particle energy, see eq. (1) above, or the discussion in
Appendix B.1, and [100]. This result corresponds to the Born approximation
and it is obvious that a truncation of the Born series after the first term might
not be sufficient to describe the relevant physics, cf. Appendix B.1.2

2 For example, the second term of
the Born series is required to
ensure energy conservation via the
optical theorem [101].

Besides an adjustment of the particle density, the powerful tool of Feshbach
resonances can be used to tune the interaction strength almost at will – from
attractive to repulsive [102–105]. Here, the initial objective to produce ideal
condensates with vanishing interaction in order to e. g. observe localization
effects, see the discussion later in this section and [106], or create conden-
sates out of elements whose interaction is usually attractive [107], gave way
to studies involving explicitly (strong) interactions, e. g. to understand the
so-called BEC-BCS-crossover [108].3

3 The BCS (Bardeen, Cooper,
Schrieffer) side [109] of this theory
is given by almost non-interacting
fermions forming a superfluid.
With increasing interaction the
crossover is reached upon which
the fermions form bosonic
molecules, leading to the
formation of a molecular
Bose-Einstein condensate.

The underlying physics of a Feshbach resonance is based on Zeeman hy-
perfine level splitting, where the energy difference of levels with different
magnetic moments can be adjusted via an external magnetic field. The res-
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onance occurs at that point where the total energies (E > 0) of a scattering
state (open channel) and a quasi-bound molecular state (closed channel) of
the two participating atoms become degenerate, i. e. the two channels be-
come energetically indistinguishable. Although the coupling between these
two channels, i. e. the possibility of the two scattering atoms to form a quasi-
bound molecular state, is forbidden in a first order expansion in the cou-
pling strength, a second order expansion yields a non-vanishing probability
for a metastable bound state of the two atoms to form. This corresponds to
an enhancement of the interaction strength between the atoms and the scat-
tering length then exhibits the following resonance-like energy dependence
[110]:

as ∼
C

E− Eres
, (2)

where E and Eres are the respective total energies of the scattering parti-
cles and of the quasi-bound state, see Fig. 2a). And indeed, as depicted in
Fig. 2b), over a small range of magnetic field strength the atomic interac-
tion strength can be tuned from barely repulsive to barely attractive, with a
strong interaction of closed and open channel in between.

Within this thesis, we make use of this precise adjustability, to propose
a scattering scenario where, by precise Feshbach tuning, the matter waves
become asymptotically non-interacting and thus the inter-particle interac-
tion is restricted to a finite region in space, which we will model by a slab
geometry.

2.1.4 Atoms in Disordered Potentials

Disorder is ubiquitous and the hidden origin for diffusive transport on
macroscopic scales. It naturally occurs as a random distribution of defects
in all sorts of conductors or due to the random positions of atoms in a
gas. Whereas ultracold atom experiments were initially motivated by the
advertised ability to screen out all sorts of disorder and noise, it nowadays
becomes more and more important to introduce well-controlled disorder po-
tentials into experiments [111]. In order to reproduce statistically relevant
scenarios for many realizations of a single disorder potential, the potential
strength as well as its correlations must be well controllable [112].

Currently, random disorder is created optically by two different means:4
4 A third possibility with strong

correspondence to condensed
matter physics has been

introduced [113] and studied
experimentally [114]. Here, atoms

of another species trapped at the
nodes of an optical lattice with less

than unit filling are used as
impurities.

either by superposition of lattice potentials with incommensurate frequen-
cies, or by random speckle potentials.5

5 The former [23] and the latter case
[22, 24] have been successfully

used to study e. g. Anderson
localization.

The former case is easily implemented by two superimposed standing
waves with different intensities and incommensurate frequencies and yields
a quasi-random disorder potential with a correlation length approximately
given by the wavelength of the strong laser field. The effect of the weak
laser field is thus to introduce an inhomogeneous and non-periodic shift of
the potential energy at the bottom of the wells [111]. As long as the system
size is smaller than the periodicity related to the, of course, experimentally
imperfect incommensurability, the assumption of true disorder is fulfilled.

The case of a speckle potential [115, 116] is achieved either by reflection
(from a rough surface) or by transmission of a laser beam through a diffus-
ing plate (typically ground glass) which imprints a random phase pattern
onto the scattered light, that in turn leads to a random intensity distribu-
tion, due to the interference of different scattering paths. The thus obtained
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random pattern of bright (constructive interference) and dark spots (destruc-
tive interference) constitutes a single static realization of a disorder poten-
tial, and can be characterized by an average grain size with transverse and
longitudinal extension (in the far-field) proportional to ∆⊥ ∼ λLz/D and
∆‖ ∼ λL(z/D)2, respectively [75]. Here, λL, D, and z are the corresponding
wavelength of the laser field, the diameter of, and the distance perpendicular
to the diffusing plate. Upon rotation of e. g. the diffusing plate, a different
realization of the disorder potential can be obtained.

Whereas the field amplitudes obey Gaussian statistics, i. e. are fully char-
acterized by their respective mean value and second-order correlation func-
tion, the potential (proportional to the light intensity, i. e. to the modulus
squared of the field) does not [117]. Using, however, the Gaussian statistics
of the field amplitudes, i. e. 〈ψ(r)〉 = 0 and the dimensionless second-order
correlation

γ(r) =
〈ψ∗(r + r′)ψ(r′)〉
〈|ψ(r)|2〉 , (3)

where 〈· · ·〉 denotes the ensemble average, one can express all correlations
of the disorder potential by products of the field correlation function, eq. (3)
[117]. E. g. , the potential pair correlation function is given by:

〈V(r′)V(r′ + r)〉 = V20
(
1+ |γ(r)|2

)
. (4)

One can rewrite the potential V(r) = V0(1+ δV(r)), now characterized by its
mean value V0 and its fluctuations δV(r), such that the fluctuations, with a
vanishing mean 〈δV(r)〉 = 0, obey the following reduced two-point correla-
tion function [117]:

〈δV(r′)δV(r′ + r)〉 = |γ(r)|2 . (5)

γ(r), eq. (3), differs for different dimensions and geometries and decays
over a characteristic length scale ξ – the correlation length of the speckle
potential – to zero. As we have mentioned above, ξ is usually larger than the
laser wavelength, but can be reduced to ∼ λL with the help of sophisticated
focusing techniques [118].

In the regime, where the de-Broglie wavelength of the atoms is larger
than ξ, the correlations of the speckle potential cannot be resolved and it is
justified to replace the speckle statistics by Gaussian white noise statistics, i. e.

〈V(r)〉 = 0 , 〈V(r)V(r′)〉 = bδ(r − r′) , (6)

where b = 4π/`dis, as we will demonstrate later. To be more precise, the
assumption of Gaussian statistics for the (disorder) potential itself explicitly
requires the presence of a weak disorder potential [75], where all higher
order correlation functions than stated in (6) can be neglected. Note that
for the white noise disorder potential scattering is isotropic, i. e. rotationally
invariant, and, furthermore, the mean free path `dis is independent of E [48],
see eq. (92).

2.2 beyond the gross-pitaevskii equation

Depending on the field of study, there exist different techniques to accu-
rately describe the physics beyond the validity of the Gross-Pitaevskii equa-
tion.
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2.2.1 The Hamiltonian Under Consideration

Starting point for all these different techniques – and also for the Gross-
Pitaevskii equation – is the same N-particle Hamiltonian:

Ĥ =

N∑
n=1

[
Ĥ

(1)
0 (rn) + V̂(1)(rn)

]
+
1

2

N∑
n,m=1

Û(2)(rn, rm) . (7)

Ĥ
(1)
0 (r) = −∆, the kinetic term, and V̂(1)(r), the initially unspecified po-

tential, are single-particle operators. Later in Chapter 3, V̂(1)(r) will be
replaced by the random disorder potential, specified in Section 2.1.4, but
for now it may as well be an external trapping potential for an atomic gas.
As described previously, we consider pairwise interaction between the par-
ticles such that Û(2)(rn, rm) is a two-particle operator. The factor 1/2 takes
the indistinguishability of bosonic particles into account and thus avoids
double-counting. Calculations are most conveniently done in the formula-
tion of second quantization:6

6 We here follow the discussion in
[119].

Ĥ =

∫
dr Ψ̂†(r)

[
Ĥ0(r) + V(r)

]
Ψ̂(r)

+
1

2

∫∫
dr dr′ Ψ̂†(r)Ψ̂†(r′)U(r − r′)Ψ̂(r′)Ψ̂(r)

= Ĥ0 + V̂ + Û , (8)

where we abbreviated the three contributions in the first and second line
by the corresponding expressions in the last line, and used the following
replacements from (7) to (8):

N∑
n=1

Ĥ
(1)
0 (rn)→

∫
dr Ψ̂†(r)Ĥ0(r)Ψ̂(r) ,

N∑
n=1

V̂(1)(rn)→
∫

dr Ψ̂†(r)V(r)Ψ̂(r) , (9)

1

2

N∑
n,m=1

Û(2)(rn, rm)→ 1

2

∫∫
dr dr′ Ψ̂†(r)Ψ̂†(r′)U(r − r′)Ψ̂(r′)Ψ̂(r) .

The corresponding single-particle field operators can be expressed in terms
of plane waves as

Ψ̂†(r) =
1

(2π)3

∫
dk e−ikrâ

†
k , Ψ̂(r) =

1

(2π)3

∫
dk eikrâk . (10)

â
†
k and âk create and annihilate a single particle with wave vector k and,

according to our units, energy E = |k|2 = k2, respectively. In Section 2.3,
where the N-particle scattering theory is introduced, the individual contri-
butions of the Hamiltonian (8) will be discussed in more detail.

2.2.2 The Bogoliubov Approximation to the Underlying Hamiltonian

The Hamiltonian (8) is the starting point of our analysis of different ap-
proaches that can overcome the limitations of the Gross-Pitaevskii equa-
tion as discussed in Section 2.1. For further considerations, we conduct
the contact interaction approximation, as mentioned in the beginning of this
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chapter, and replace U(r − r′) → gδ(r − r′), which thus defines g = 8πas.7
7 For a thorough discussion of the

validity of this replacement we
refer to Appendix B.1 and the
literature cited there.

Eq. (8) thus simplifies to

Ĥ =

∫
dr Ψ̂†(r)

[
Ĥ0(r) + V(r)

]
Ψ̂(r) +

g

2

∫
dr Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r) . (11)

One of the possibilities to account for contributions of other modes beside
the condensate mode leads to a separation of the field mode operator (10)
into two parts [87],

Ψ̂(r) = φ̂(r) + δ̂(r) , (12)

where φ̂(r) and δ̂(r) describe the condensate and non-condensate mode, re-
spectively.8 So far, the step (12) merely changes the way we interpret the

8 Consequently, the expansion of the
field mode operator (10) in terms
of plane waves separates into two
parts, a single condensate mode,
usually k = 0, and the remaining
other modes with the condensate
mode excluded.

field operator because the chosen notation hints at the fact that we would
like to treat the fraction of non-condensate atoms as a small correction. If
this is the case and the number of atoms in the condensate N0 is much
larger than the number of atoms in the non-condensate, i. e. N0 � N−N0,
the coherent quantum state of the condensate can be described by a coherent
(quasi-classical) state |α〉, with α =

√
N0e

iϕ, and a (fixed) classical phase ϕ.
Then, φ̂(r) → φ(r) can be approximated by a complex function, since the
contribution of the commutator [â0, â†0] |α〉 = N0 + 1−N0 |α〉 = |α〉 can be
neglected for N0 � 1. The nowadays called Bogoliubov approximation [87]
thus amounts to replacing â0 '

√
N0 ' â†0 by complex numbers, with the

consequence, however, that the total particle number is not conserved (under
the time evolution generated by the Hamiltonian (11)), see [119] for further
details. Hence, eq. (12) can be written as

Ψ̂(r) = φ(r) + δ̂(r) . (13)

The corresponding condensate density then simply reads ρc(r) = |φ(r)|2

and all the operator dependence is now contained within δ̂(r), giving rise
to the density of the quantum fluctuations of the non-condensate atoms
ρnc(r) = 〈δ̂†(r)δ̂(r)〉. The substitution of (13) and its complex conjugate in
the Hamiltonian (11) leads to a hierarchy of different Hamiltonians, which
– depending on the occurrence of φ(r) and δ̂(r) – solely describe the dy-
namics of the condensate and non-condensate alone as well as all levels
of interaction between these two components. The Hamiltonian containing
only contributions of the classical field φ(r)

HGP =

∫
dr
[
φ∗(r)

(
Ĥ0(r) + V(r)

)
φ(r) +

g

2
|φ(r)|4

]
, (14)

gives rise to the Gross-Pitaevskii equation via Heisenberg’s equation of mo-
tion [87], cf. (1).9

9 Note that we here assume
stationary solutions of the form
φ(r, t) = φ(r)e−iµt/ h, with the
chemical potential µ.

The remaining Hamiltonians, where one by one the classical field φ(r) is
replaced by the operators δ̂(r), give rise to well-known corrections of the
Gross-Pitaevskii mean-field behavior. For instance does the inclusion of up
to two operators δ̂(r) allow to describe density-density interactions between
the condensate and non-condensate, which leads to the so-called Bogoliubov
theory and the introduction of Bogoliubov quasi-particles [119, 120]. Including
all Hamiltonian contributions but replacing – in a mean-field approximation
– four-point, i. e. density-density, (and higher order) correlations by products
of two-point correlations gives rise to the so-called Hartree-Fock Bogoliubov
theory [119], which is capable of describing condensate physics close to
equilibrium and/or for small finite temperatures T > 0, i. e. the separation
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and interaction of a condensate and a thermal cloud, as observed in experi-
ments [121, 122], see also references in [64]. The simplest case corresponds
to the generalized finite-temperature Gross-Pitaevskii equation, where, in
addition to the condensate density, the density of the thermal cloud is taken
into account:10

10 Note the factor of 2 in front of ρnc,
which arises from the contribution

of the Hartree and the Fock-term,
respectively [119]. We will

encounter this factor of 2 in a
different context in eq. (110).

i h
∂

∂t
φ(r, t) =

[
−∇2 + V(r) + g

(
|φ(r, t)|2 + 2ρnc(r, t)

)]
φ(r, t) . (15)

In addition to (15), an evolution equation for the non-condensate density
ρnc(r, t) has to be stated in order to solve the coupled equations simultane-
ously. We will consider such an equation further down.

However, due to the very structure of (15), the number of particlesN0(t) =∫
dr |φ(r, t)|2 inside the condensate remains fixed. (Dynamical) scenarios,

where the condensate can grow or shrink as a consequence of collisions, re-
quire a treatment beyond the Hartree-Fock approximation and the explicit
inclusion of contributions that mimic particle exchange – a situation that is
also covered within the next section.

2.2.3 Quantum Kinetic Gas Theory and the Quantum Boltzmann Equation

The proper formulation of the dynamics within the thermal cloud is a prob-
lem of kinetic gas theory. Many decades ago, Uehling and Uhlenbeck [123]
derived a nonlinear quantum Boltzmann equation (today also known as the
Uehling-Uhlenbeck equation) that describes the evolution of a single particle
in time and space due to the presence of potentials, on the one hand, and
due to binary collisions with further particles, on the other hand.

Let us mention that the mathematically rigorous derivation of such an
equation is of notorious difficulty and has only partially been successful
in recent years [124–127], although the general existence of the following
equation of Uehling-Uhlenbeck type is generally expected and accepted [5,
13]:

(
∂

∂t
+

 hk
m
· ∇r −∇rV(r) ·

∇k
 h

)
f (r, k, t) =

(
∂f (r, k, t)

∂t

)

coll
, (16)

where f (r, k, t) is the single-particle phase space density, i. e. the probability
to find a particle with mass m and velocity  hk/m11 at point r at the time t,

11 Remember that in our units
 h2/2m ≡ 1. The units of

[ h] =
√
kg, time

[t] =
√
kg×meter2, and energy

[E] = meter−2 change accordingly.

and can be determined as the expectation value f (r, k, t) = 〈 f̂ (r, k, t)〉qm
12 of

12 As the notation 〈· · ·〉 is reserved
for ensemble averages, we denote
quantum mechanical expectation

values by 〈· · ·〉qm.

the Wigner operator [128]

f̂ (r, k, t) =
∫

ds Ψ̂†(r + s/2, t)Ψ̂(r − s/2, t)eiks . (17)

Upon integration of f (r, k, t) over k the particle density (or the density of
non-condensate particles ρnc(r, t) by using δ̂(r, t) in eq. (17) instead of Ψ̂(r, t),
see (12)) is obtained:∫

dk
(2π)3

f (r, k, t) = ρ(r, t) . (18)

Under the assumption of a slowly varying external force F = −∇rV(r) for
which a gradient expansion is applicable [119], the full derivative of f (r, k, t),
i. e.

d f (r, k, t)
dt

=
∂f (r, k, t)

∂t
+

 hk
m
· ∇r f (r, k, t)−∇rV(r) ·

(∇k
 h

f (r, k, t)
)

, (19)
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transforms to the left-hand side of (16). The right-hand side of (16) con-
tains the two-particle interaction, in the here assumed limit of a dilute gas,
where the colliding particles are assumed to be uncorrelated, a restriction
also known as molecular chaos [13],

(
∂f (r, k, t)

∂t

)

coll
=
1
 h

∫∫∫
dk′ dk1 dk2

(2π)9
δ(Kf − Ki) δ(Ef − Ei)|Tfi|

2

×
[

f (r, k2, t)f (r, k1, t) − f (r, k′, t)f (r, k, t)
]

. (20)

The collision integral ensures momentum (with Kf = k + k′ and Ki =

k1 + k2) and energy (with Ef = k2 + k′2 and Ei = k21 + k22) conservation,
and contains the scattering kernel of the microscopic quantum setup within
the T-matrix Tfi. Since this is the only part where the quantum nature en-
ters, a pragmatic way to introduce (16) is to derive the classical Boltzmann
equation and subsequently replace the scattering kernel by the quantum
one [123]. Another procedure of derivation, e. g. followed in [129], relies on
an evolution equation for the Wigner transform (17) of the corresponding
quantum state, which under certain assumptions (e. g. neglect of correla-
tions) transforms to an equation of type (16).

Adopted to the case of ultracold atoms and building on the fundamental
work of Kirkpatrick et al. [130, 131], Zaremba, Nikuni, and Griffin derived a
set of coupled equations which, on the one hand, is a quantum Boltzmann
equation for the evolution of the non-condensate and, on the other hand, a
generalized Gross-Pitaevskii equation beyond the Hartree-Fock-Bogoliubov
theory (applicable far from equilibrium) for the evolution of the condensate
[128]. The evolution of the non-condensate is identical to (16), however, the
collision integral now consists of two terms

(
∂f (r, k, t)

∂t

)

coll
= C12[ f ] +C22[ f ] , (21)

where C22[ f ] describes the collision between thermal atoms and C12[ f ] the
exchange of particles between the condensate and thermal cloud due to
collisions. For an explicit formula of these two collision terms we refer
to [128]. Consequently, the coupling term also appears in the evolution
equation of the condensate [119]:

i h
∂

∂t
φ(r, t) =

[
−∇2 + V(r) + g

(
|φ(r, t)|2 + 2ρnc(r, t)

)
− iR(r, t)

]
φ(r, t) ,

(22)

where the additional factor R(r, t), with respect to (15), is defined as:

R(r, t) =
 h

|φ(r, t)|2

∫
dk

(2π)3
C12[ f (r, k, t)] , (23)

which ensures the conservation of the total particle number.

In contrast to the rather "bottom-up" approach of [128] in the sense that
the starting point is a simple mean-field Hamiltonian, cf. (15), and correc-
tions to the Hamiltonian are added sequentially, a general quantum kinetic
theory has been developed which upon necessary approximations repro-
duces the results of [128] in a "top-down" approach. We will briefly intro-
duce the main ideas of the quantum kinetic theory and also comment on the
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method of non-equilibrium Green’s functions (which is also able to reproduce
[128]) before we state what path we decide to follow within this thesis.

In a series of papers by Gardiner and Zoller and co-workers, the con-
cept of a quantum kinetic theory has been introduced [132–138], see also
[139]. Whereas [132] generally introduces the main concept (without an
external potential), the following papers focus on applications of the theory
and simulations of relevant experimental scenarios. Starting point of the the-
ory [132] is again the general Hamiltonian (11). Motivated by concepts from
quantum optics, the authors separate the coherent dynamics (consisting of a
certain momentum band and to be identified with the condensate dynamics,
comparable to the laser mode in quantum optics) from the non-condensate
dynamics (comparable to the weakly populated modes within a heat bath in
quantum optics), which they model incoherently by a quantum stochastic
process. The authors proceed by writing down a quantum kinetic master
equation for a certain momentum band, e. g. the condensate component, of
the N-particle density matrix by tracing out the remaining bands under the
Born-Markov approximation. This very general equation can then – under
further assumptions – be applied to different scenarios [132]:

If the initial, full N-body density matrix separates into a band of zero and
nonzero momentum, the resulting kinetic master equation transforms into
the condensate master equation, which – under the replacement (13) – repro-
duces the Hartree-Fock equation (15) plus additional terms that mimic the
collisions and exchange of particles between condensate and non-condensate,
equivalent to (22).

In another limit, i. e. for non-condensate dynamics where "molecular chaos"
can be assumed and correlations between different particles factorize, the ki-
netic master equation reduces to the quantum Boltzmann equation (16).

A related quantum kinetic description [140, 141] involving a number-
conserving master equation [142] has been developed and the equivalence
of the former to the theory of [128], i. e. eqs. (21) and (22), has been estab-
lished in [143].

The identical result [144] as obtained via the quantum kinetic theory can
be more elegantly derived using the method of non-equilibrium Green’s func-
tions [145, 146], initially developed by Kadanoff and Baym [147] and first
applied to Bose gases by Kane [148]. (Compare also [149] for the applica-
tion of the related Keldysh-formalism.)

We hereby finish the brief overview of presently available theories with-
out going into further details. This is due to the fact that all approaches
discussed so far – of course motivated by experiments of their time – focus
on the situation of a trapped Bose gas and thus allow to study in great detail
how a condensate is created in the first place, and how it behaves for finite
temperatures and non-equilibrium situations in a trap.

2.2.4 Relation to Our Setup: Matter Wave Scattering off a Disordered Potential

As mentioned before, we rather wish to study the case of matter wave trans-
port in a random disorder potential. We hereby want to focus on a stationary
scattering setup, far from equilibrium, where all transients have faded out.
However, as we will see, the formalism introduced in the previous section
lends itself very handy, especially eq. (16), after taking the stationary limit,
and accounting for scattering off the random disorder potential on the right-
hand side.
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Let us motivate our modus operandi with the help of the recent paper by
Ernst et al. [47]. Within this work, the authors treat an asymptotically non-
interacting matter wave, see Section 2.1, which is guided by means of an
optical potential towards, and then scattered off a one-dimensional disorder
potential. For the theoretical description, they rely on the Hartree-Fock-
Bogoliubov theory, which – as discussed above – is valid for a moderate
non-condensate population. And in fact, for a small incoming particle cur-
rent (corresponding to a weak interaction and thus to a rather stable con-
densate) the authors report a stationary scattering solution. However, for
an increased incoming particle current the scattering solution turns perma-
nently time-dependent, and the condensate and non-condensate densities
rapidly fluctuate. As conjectured in [47], the lack of a stationary scattering
solution is associated with a large fraction of non-condensed atoms, which,
in turn, implies the breakdown of the Hartree-Fock-Bogoliubov theory. In
other words, in order to describe this scattering behavior more thoroughly,
a theoretical description is needed which overcomes the limitations of the
Hartree-Fock-Bogoliubov theory, and in particular allows for a realistic de-
scription of large non-condensate fractions.

As we have seen, a proper description for the non-condensate part is
given by the quantum Boltzmann equation (16) which has to be consistently
coupled to an equation for the condensate of Hartree-Fock-Bogoliubov type,
see eqs. (21) and (22). Adopted to the setup we have in mind, eqs. (16), (21),
and (22) need to be stated in the stationary limit, and under the additional
presence of a random disorder potential.

Within this thesis, we will therefore develop an averaged (diagrammatic)
scattering theory13 for particles within a disorder potential that goes beyond

13 Based on an already available
diagrammatic scattering theory for
the Gross-Pitaevskii equation [62].

the description by the Gross-Pitaevskii equation. This theory, in particular,
includes collisions that transfer particles out of the condensate.14 As we

14 As we will see below, collisions
that transfer particles back into the
condensate can be excluded for the
case of a weak (disorder) potential
where all modes are continuously
distributed and no bound states
exist, see the discussion in
Section 3.4.2.

will see in Chapter 3, the propagation of a condensate within the disorder
potential finally is described by an integral equation, see eq. (123), which is
the integral version of the quantum Boltzmann equation (16) for the station-
ary case, under consideration of an appropriate description of the average
propagation within the disorder potential.

However, considerable care needs to be taken when deriving an effective,
nonlinear single-particle equation for a microscopic N-particle problem. In
order to ensure that our scattering theory will produce a stationary result,
we thus start out with the introduction of the – by definition – linear di-
agrammatic N-particle scattering theory, which, as we will show, can be
reduced to a nonlinear single-particle theory for the case of a weak disorder
potential.

2.3 scattering theory for n particles

In the present chapter, we have so far discussed how an atomic matter wave
can be used as a quasi-monochromatic particle source to feed a scattering
setup. The underlying Hamiltonian was introduced in the previous section.
In this section, we introduce the scattering formalism and a diagrammatic
representation that allows, in principle, to calculate the N-particle scattering
amplitudes.
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The fundamental Hamiltonian has the following contributions, cf. (8):

Ĥ = Ĥ0 + V̂ + Û . (24)

The free Hamiltonian is diagonal in momentum space, and takes the follow-
ing simple form

Ĥ0 =
1

(2π)3

∫
dkEâ†kâk , (25)

where E = k2. For the external potential V(r) we obtain

V̂ =
1

(2π)6

∫∫
dk1 dk2 â

†
k2
âk1 〈k2| V̂ |k1〉 , (26)

with the corresponding matrix elements defined via the Fourier-transform
of the disorder potential V(r):

〈k2| V̂ |k1〉 =
∫

drV(r)ei(k1−k2)r . (27)

As apparent from (25) and (26), those contributions to the Hamiltonian affect
only a single particle at a time and allow for a single-particle formulation of
the scattering theory.

This picture changes when collisions between particles are included. As
discussed above, the large interatomic separation in the dilute medium al-
lows to restrict the interaction to binary collisions. The representation of the
interaction contribution in second quantized notation, cf. eqs. (9) and (10),
reads:

Û =
1

22(2π)12

∫∫∫∫
dk1 dk2 dk3 dk4 â

†
k3
â
†
k4
âk1 âk2 〈k3, k4| Û |k1, k2〉 , (28)

where the factor 1/22 again suppresses double-counting by taking into ac-
count the indistinguishability of bosonic particles within the two-particle
states, |k1, k2〉 = |k2, k1〉, and |k3, k4〉 = |k4, k3〉, respectively. As demon-
strated in Appendix B.1, the matrix element of eq. (28) can be expressed in
center-of-mass and relative coordinates:

〈k3, k4| Û |k1, k2〉 = (2π)3δ(k1 + k2 − k3 − k4) 〈k34| Û(1) |k12〉 , (29)

where the collision matrix Û(1) now depends only on the relative momenta,
see eq. (280), and the symmetrized single-particle states are defined as:

|k12〉 =
1√
2

[∣∣∣∣
k1 − k2
2

〉
+

∣∣∣∣
k2 − k1
2

〉]
,

|k34〉 =
1√
2

[∣∣∣∣
k3 − k4
2

〉
+

∣∣∣∣
k4 − k3
2

〉]
. (30)

The separation (29) can be also obtained for the two-body T -matrix T̂ (2)U
with total energy E1 + E2 and the symmetrized single-particle states (30),
upon the introduction of the total and reduced mass, M = 2m and µ = m/2,
respectively, see Appendix B.1:

〈k3, k4| T̂
(2)
U (E1 + E2) |k1, k2〉 = (2π)3δ(k1 + k2 − k3 − k4)

× 〈k34| T̂ (1)U (E12) |k12〉 . (31)
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In contrast to eq. (29), the T -matrix describes the scattering by the atom-atom
potential U(r), see eq. (9), as a series of collisions Û and free propagations
Ĝ0(E), and thereby includes the repeated effect of virtual collisions between
the same pair of particles:

〈k3, k4|T̂
(2)
U (E) |k1, k2〉 = (32)

= 〈k3, k4|
[
Û+ ÛĜ0(E)Û+ ÛĜ0(E)ÛĜ0(E)Û+ . . .

]
|k1, k2〉 .

Here, the free Green’s operator is defined as

Ĝ0(E) =
1

E− Ĥ0 + iε
, (33)

with infinitesimally small ε > 0, compare to the discussion in Section 3.2. In
eq. (31), T̂ (1)U (E12) (for which an explicit expression, that will be used later in
this thesis, is derived in eq. (287)) denotes the T -matrix for a single particle
with mass µ at the energy E12 = E1 + E2 − Ek1+k2/2. The single-particle
T -matrix, as a consequence of the unitarity of the scattering process, fulfills
the optical theorem [84]:15

15 Note that, in order for the optical
theorem to be fulfilled, not only
T̂
(1)
U , but, accordingly, the free

Green’s operator Ĝ0,m/2(E)
(unlike the one in definition (33))
have to be stated for particles with
mass µ =m/2 and the
corresponding dispersion relation
E = 2k2.

[
T̂
(1)
U (E)

]† (
Ĝ
†
0,m/2(E) − Ĝ0,m/2(E)

)
T̂
(1)
U (E) =

[
T̂
(1)
U (E)

]†
− T̂

(1)
U (E) , (34)

and thus ensures conservation of the particle and the energy flux.
The two-body T-matrix as stated in (32) describes the interaction of two

particles in the vacuum. A complete formulation needs to include also the
effect of the disorder potential in between collisions and a replacement of
Ĝ0(E) by the Green’s operator ĜV(E), eq. (55), or, for many realizations of
the disorder potential as discussed in Chapter 3, the corresponding average
Green’s function 〈G(k′)〉, see eq. (84). For our setup in mind though, the use
of the vacuum T-matrix is very well justified when the disorder potential is
very weak and the range of the interaction potential U(r) is small compared
to the disorder mean free path `dis.

For a properly defined scattering scenario one needs to distinguish an
asymptotically free initial and final state, and a finite scattering region V –
which will be given by the slab later on – within which the disorder poten-
tial and the particle-particle interaction do not vanish.16 The initial state is

16 Note that the introduction of a
finite interaction region in
principle breaks translational
invariance, and therefore
momentum conservation as
expressed by the δ-function in
eq. (31) is only approximately true.
Since, however, we assume the
extension of the scattering region
V in any spatial direction to be
much larger than the disorder
mean free path `dis, we can safely
ignore the associated small width
and work with the T -matrix as
stated in eq. (31).

formed by N bosons that are all described by the same single-particle wave
packet w(k)

|iN〉 =
1√
N!

∫
dk1 . . .dkN

(2π)3N
w(k1) . . . w(kN)|k1, . . . , kN〉 , (35)

where the factor 1/
√
N! arises from the indistinguishability of the particles.

Each wave packet is normalized such that∫
dk |w(k)|2 = (2π)3 . (36)

Furthermore, we assume an atom laser scenario where each wave packet is
quasi-monochromatic and sharply peaked around the wave vector kL with
single particle energy EL = k2L. Therefore, the wave packet acquires a very
broad spatial extension (around its center located at position r inside the
scattering region), and the particle density

ρ0 = 〈iN| Ψ̂†(r)Ψ̂(r) |iN〉 ' N
∣∣∣∣
∫

dk
(2π)3

w(k)
∣∣∣∣
2

(37)
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t → −∞

t → ∞
t = 0

Ω̂+

Ω̂−

|f−,N�
|f+,N�

|fN�
|iN�

Figure 3: Illustration of the scattering formalism discussed in the main text. At
t → −∞ (t → ∞) the time evolution induced by the full Hamiltonian (solid line)
coincides with the free evolution (dashed lines). This allows to define the asymptoti-
cally free initial and final states, |iN〉 and |fN〉, respectively, and the Møller operators
Ω̂+, eq. (39), and Ω̂−, eq. (40). The state |f+,N〉 = Ω̂+ |iN〉 then defines the interact-
ing scattering state reached under the full Hamiltonian evolution at time t = 0. As
shown in eq. (43), the states |f+,N〉 and |f−,N〉 = Ω̂− |fN〉 are equal for the case that
the scattering potential contains no bound states.

turns approximately uniform within V. Since, in this quasi-monochromatic
limit, the single-particle density, i. e. ρ0/N, approaches zero (as the wave
packet is spread over an increasingly large region of space), the number of
particles N must tend to infinity in order to obtain a finite single-particle
density.

If the state exp(−iĤ0t) |iN〉 is prepared at the asymptotic time t → −∞,
where the action of Ĥ and Ĥ0 is indistinguishable (since we assume V̂ = 0

and Û = 0 outside of V), the center of the wave packet arrives after a sub-
sequent forward-propagation under the full Hamiltonian at the scattering
region at time t = 0, and a quasi-stationary scattering state

|f+,N〉 = Ω̂+ |iN〉 (38)

at that time is defined via the Møller operator [84, 150]

Ω̂+ = lim
t→−∞

[
Û(t)

]†
Û0(t) = lim

t→−∞ eiĤte−iĤ0t . (39)

We observe that Ω̂+ is time-independent for a time-independent Hamilto-
nian. Analogously,

Ω̂− = lim
t→∞

[
Û(t)

]†
Û0(t) (40)

is defined for times t→∞ such that

|f−,N〉 = Ω̂− |fN〉 (41)

is the corresponding backward propagation of the asymptotic finalN-particle
scattering state |fN〉 – the state which can be detected in a scattering experi-
ment, see also Fig. 3 for an illustration. The combined action of both Møller
operators restores the unitarity of the scattering process fully described by
the S-operator17

17 Here, we defined the S-operator
with respect to the eigenstates of

the free Hamiltonian. In the
literature [150] also the definition
Ŝ = Ω̂+[Ω̂−]† is found which is

evaluated with respect to the
eigenstates of the full Hamiltonian,

that are identical asymptotically.

|fN〉 = Ω̂†−Ω̂+ |iN〉 = Ŝ |iN〉 . (42)

For the case that the scattering setup contains no bound states, i. e. that all
asymptotically free initial states are transferred to asymptotically free final
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states, the Møller operators are unitary [84]. As a consequence, eq. (42) can
be written as

|fN〉 = Ω̂†− |f+,N〉 = Ω̂†− |f−,N〉 , (43)

such that |f+,N〉 = |f−,N〉. As we will be interested in scattering potentials
without bound states in the following, see Chapter 3, we can use the two
states |f+,N〉 and |f−,N〉 interchangeably. In order to find eq. (43), we used
eq. (38) in the first, and eq. (41) together with the unitarity condition Ω̂†− =

Ω̂
(−1)
− in the second equality, respectively.
Eq. (42) furthermore demonstrates that the formulation of the scattering

theory in terms of the Møller operators or the S-operator is fully equiva-
lent. However, the S-matrix directly maps incoming onto outgoing asymp-
totically free states. On the contrary, all intermediate information about
the scattering process inside the scattering region V is contained within the
Møller operators. In the following, we are explicitly interested in the dy-
namics inside V, e. g. in the stationary density or flux of particles inside the
slab. Therefore, we choose to describe our scattering theory rather via the
Møller operators than by the S-operator.

The time evolution operator (see eq. (39)) is related to its corresponding
Green’s operator via

Û(t) = lim
ε→0+

∫
dE exp(−iEt)Ĝ(E)/(−2πi) , (44)

where in analogy to the free Green’s operator (33) the Green’s operator in
the presence of V and U is defined as [84]

Ĝ(E) =
1

E− Ĥ+ iε
= Ĝ0(E) + Ĝ(E)(V̂ + Û)Ĝ0(E)

= Ω̂+(E)Ĝ0(E) . (45)

The second identity is the Lippmann-Schwinger equation for the Green’s
operator derived from the operator identity [84]

A−1 = B−1 +B−1(B−A)A−1 , (46)

with A = E − Ĥ0 + iε and B = E − Ĥ + iε. Using (46) with the inverse
replacements, i. e. A = E− Ĥ+ iε and B = E− Ĥ0 + iε, we obtain

Ĝ(E) = Ĝ0(E) + Ĝ0(E)(V̂ + Û)Ĝ(E) , (47)

which is therefore equivalent to the first line of (45). In the second line of
(45), we introduced, what we here call, the modified Møller operator

Ω̂+(E) = 1+ Ĝ(E)(V̂ + Û) . (48)

Note that the modified Møller operator reduces to the Møller operator in-
troduced above once applied to an eigen-state of the free Hamiltonian |E0〉
with eigen-energy E0, i. e.

Ω̂+(E0) |E0〉 = Ω̂+ |E0〉 . (49)

Since in the following Ω̂+(E0) will only be applied to eigen-states (or the
quasi-monochromatic eigen-states alike |iN〉 defined in (35)) of Ĥ0, we will
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use the compact terminology of Møller operator for both sides of eq. (49).

The introduction of the Møller operator (48) allows us to write down a
Lippmann-Schwinger equation for Ω̂+(E)

18 by inserting the relation (47)
18 The same reasoning is true for

Ω̂−(E).
into (48)

Ω̂+(E) = 1+ Ĝ0(E)
(
V̂ + Û

)
Ω̂+(E) , (50)

which can be iterated in powers of V̂ and Û to yield the following expansion:

Ω̂+(E) = Ω̂
(V)
+ (E) + ĜV(E)ÛΩ̂

(V)
+ (E) + ĜV(E)ÛĜV(E)ÛΩ̂

(V)
+ (E) + . . . . (51)

Here, we summarized all scattering events off the disorder potential within
Ω̂

(V)
+ (E) and ĜV(E) that again fulfill a Lippmann-Schwinger equation in

analogy to (50) and (47), respectively:

Ω̂
(V)
+ (E) = 1+ Ĝ0(E)V̂Ω̂

(V)
+ (E) , (52)

ĜV(E) = Ĝ0(E) + Ĝ0(E)V̂ĜV(E) , (53)

if we define

Ω̂
(V)
+ (E) = 1+ ĜV(E)V̂ , (54)

and

ĜV(E) =
1

E− Ĥ0 − V̂ + iε
, (55)

again with infinitesimally small ε > 0. In analogy to eqs. (45) and (47), the
expression

ĜV(E) = Ĝ0(E) + ĜV(E)V̂Ĝ0(E) (56)

is equivalent to eq. (53). Remember that, according to eq. (28), each operator
Û annihilates and creates two particles. In contrast, the Green’s operator ĜV

and the Møller operator Ω̂(V)
+ (E) act now on all N particles. However, since

these operators describe non-interacting particles, they can be factorized
into single-particle operators. As an example, we give here the factorization
formulas for the case N = 2:

〈k3, k4|Ω̂
(V)
+ (E1 + E2)|k1, k2〉 = (57)

〈k3|Ω̂(V)
+ (E1)|k1〉〈k4|Ω̂(V)

+ (E2)|k2〉+ 〈k4|Ω̂(V)
+ (E1)|k1〉〈k3|Ω̂(V)

+ (E2)|k2〉,

and19

19 As in (58), all subsequent integrals
over energies E will range from

−∞ to +∞. For the sake of
compactness, we suppress the

limits of integration if not stated
otherwise.

〈k3, k4|ĜV (E)|k1, k2〉 =
1

(−2πi)

∫∞
−∞ dE ′

[
〈k3|ĜV (E ′)|k1〉

×〈k4|ĜV (E− E ′)|k2〉+ 〈k4|ĜV (E ′)|k1〉〈k3|ĜV (E− E ′)|k2〉
]

. (58)

By an iterative application of the same argument, eqs. (52) and (53) are
equally valid from N to single particles. As mentioned above, the energy
argument of the Møller operator (49) is always fixed to the energy of the
state it acts on. In contrast, Green’s operators also act on states with dif-
ferent energies. Hence, the energy E of a two-particle Green’s operator has
to be distributed among two one-particle Green’s operators according to
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Figure 4: Example of a 3-particle scattering process for the scattering (a) and the
complex conjugated scattering amplitude (b). In (a) the initial state |k1, k2, k3〉 is
transferred to the final state |k4, k5, k6〉 via the intermediate states p1 · · ·p8. The
three solid arrows associated with the initial state represent the Møller operator
Ω̂

(V)
+ (EL) of the disorder potential, see eq. (52), whereas the remaining solid arrows

refer to the disorder Green’s operator ĜV, eq. (53). Squares correspond to the two-
body T -matrix of the particle-particle interaction, eq. (31). The transition amplitude
corresponding to this scattering process is given in eq. (59). The complex conjugated
scattering amplitude in (b) is diagrammatically obtained by replacing solid arrows
by dashed arrows and solid squares with open squares, i. e. ĜV → [ĜV]

†, Ω̂(V)
+ →

[Ω̂
(V)
+ ]†, and T̂(2)U = [T̂

(2)
U ]†. The primed wave-vectors are introduced to distinguish

between both amplitudes. The detector symbol indicates the finally detected particle
whereas the dots symbolize the undetected particles that will be traced out, see main
text for details.

(58). Note that, due to the indistinguishability of particles, there exist two
possibilities to associate the initial (k1, k2) and final (k3, k4) particles with
each other, which have to be accounted for in eqs. (57) and (58). As it turns
out for the case of two particles, however, these permutations are exactly
counterbalanced by the factors 1/2 accounting for the indistinguishability
in (28).

This factorization procedure can be generalized to N > 2 particles, as
demonstrated in Appendix B.2, such that one obtains well-defined scatter-
ing paths for individual particles between the two-particle collisions Û. As
pointed out in eq. (32), we replace two-particle matrix elements of Û by ma-
trix elements of T̂ (2)U (E) (with appropriately defined two-particle energy E,
see below) in (51), and thereby obtain a sequence of collision events between
different pairs of particles, since the repeated interaction between the same
pair of particles is already included in the T -matrix. As an example, we now
treat a three-particle scattering process (N = 3), shown in Fig. 4a). In terms
of eq. (51), see also Appendix B.2, it can be spelled out as:

〈k4, k5, k6| Ω̂+(3EL) |k1, k2, k3〉(Fig. 4a) =

∫
dE4dE5
(−2πi)2

∫
dp1 . . .dp8

(2π)24

× 〈k6|ĜV(3EL − E4 − E5)|p6〉〈k5|ĜV(E5)|p5〉〈k4|ĜV(E4)|p4〉
× 〈p5, p6|T̂

(2)
U (3EL − E4)|p1, p8〉〈p8|ĜV(2EL − E4)|p7〉〈p4, p7|T̂

(2)
U (2EL)|p2, p3〉

× 〈p1|Ω̂(V)
+ (EL)|k1〉〈p2|Ω̂(V)

+ (EL)|k2〉〈p3|Ω̂(V)
+ (EL)|k3〉 , (59)

with E1 ' E2 ' E3 ' EL, according to our above assumption of a quasi-
monochromatic wave packet.

Eq. (59) must be read in the following way:
• The last line corresponds to all three initially injected particles, which

have already been separated, by (57), into single-particle propagators.
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• The third line of (59) contains both, collision events, and the single-
particle propagation in between both collisions. The right and left colli-
sion event in Fig. 4a) correspond to the T -matrix elements T̂ (2)U (2EL) and

T̂
(2)
U (3EL −E4), respectively. The respective energy arguments of the former

and the latter arise because both incoming colliding particles originate di-
rectly from the source and because the energy of the incoming particle from
the previous collision event is – by energy conservation – fixed to 2EL − E4.
Together with the other particle originating from the source, this sums up
to 3EL − E4.
• The second line of (59) correspondingly describes the single-particle

propagation of the three particles after the collisions, equally factorized al-
ready with the help eq. (58).

As mentioned before, the multiplicity of terms arising through the ap-
plication of eqs. (57) and (58) is compensated for by the prefactors for the
collision events, i. e. eq. (28) upon substitution of eq. (31), due to the indis-
tinguishability of the incoming particles. For an additional discussion see
Appendix B.2.

From this exemplary calculation of the scattering amplitude we can deter-
mine general rules sufficient to construct an arbitrary N-particle scattering
amplitude for a given diagram:

1. Apply the Møller operator Ω̂(V)
+ (EL) eq. (52) for the propagation within

the disorder potential to each single-particle state |k1〉 , · · · , |kN〉. The
energy associated with each injected particle is given by EL.

2. Integrate over all intermediate particles – this corresponds to integrals
over all p wave-vectors in Fig. 4.

3. Write down the corresponding two-body T -matrix element, see (31),
for any collision between two particles (denoted by a solid and an
empty square in Figs. 4a) and b), respectively). The energy argument
of T̂ (2)U (E) is given by the sum of the two incoming single-particle
energies.

4. For each T̂
(2)
U (E), write down an integral

∫
dE/(−2πi) which deter-

mines the energy arguments of the Green’s operators ĜV(E
′) and

ĜV(E− E
′), see eq. (58), for the two particles after the collision.

5. These two particles can now again collide with other particles...

The total transition amplitude is then obtained, in principle, by summing
the contributions from all possible, different diagrams. How the above rules
and the subsequent summation can be applied in practice is our subject in
the following chapters.

In eq. (59) we stated the bare full three-particle transition amplitude. Once
the complex conjugated diagram, Fig. 4b), which can be calculated identi-
cally to (59),

〈k1, k2, k3|
[
Ω̂+(3EL)

]†
|k4, k5, k6〉(Fig. 4b) =[

〈k4, k5, k6| Ω̂+(3EL) |k1, k2, k3〉(Fig. 4a)

]∗
, (60)

and a proper single-particle observable is defined, the two transition ampli-
tudes, Fig. 4a) and b), can be joined together and all but one particle can be
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traced out. This procedure, already indicated in Fig. 4, will be introduced
in the following, where we start out with the detection process of a single
particle and deal with the trace over the remaining particles in Section 2.3.1.

With the help of the Møller and the S-operator (eqs. (38), (41), and (42))
we can define a quasi-stationary (at t = 0) and an asymptotic (t =∞) scatter-
ing state, |f+,N〉 (or, equivalently, |f−,N〉, see eq. (43)) and |fN〉, respectively.
The detector graphically depicted in Fig. 4a) for particle k6 annihilates one
particle with given wave vector. Mathematically, this corresponds to the flux
density operator:

Ĵ(r) = 2 Im
(
Ψ̂†(r)∇Ψ̂(r)

)
=

∫
dkdk′

(2π)6

(
k + k′

2

)
e−i(k−k′)·râ†kâk′ . (61)

Since Ĵ(r) is a single-particle operator, this implies a partial trace of the den-
sity matrix |fN〉〈fN| (or equivalently |f+,N〉〈f+,N|) over the N− 1 undetected
particles (denoted as dots for particles k4 and k5 in Fig. 4a)). The expecta-
tion value of the flux density operator thus reads:

J(r) = 〈fN|Ĵ(r)|fN〉

=
N

N!

∫
dkdk ′

(2π)6

(
k + k ′

2

)
e−i(k−k ′)·r (62)

×
∫

dk1 . . .dkN−1

(2π)3(N−1)
〈k1, . . . , kN−1, k ′|fN〉〈fN|k1, . . . , kN−1, k〉 .

Again, the factor 1/N! arises from the indistinguishability of the bosonic
particles. It turns out, however, that this factor – together with the factors
1/
√
N! in eq. (35) – is exactly counterbalanced once we sum the amplitudes

of all processes where the initial and/or final particles are exchanged. In
total, we get the same result as if the particles were distinguishable. This
equivalence is generally valid if all particles are prepared in the same initial
state, and if the Hamiltonian is symmetric under exchange of particles [151].

2.3.1 Trace Over Undetected Particles

As already stated in eq. (62), a trace over all but one particle is required to
obtain the single-particle flux density. We will now deal with the general
tracing procedure, mathematically and diagrammatically.

In order to conduct the trace, cf. (62), one has to join a diagram |f+,N〉
and a complex conjugate diagram 〈f+,N| in such a way that the detected
amplitudes and the traced-out amplitudes are grouped together, taking into
account all different possibilities. For Fig. 4 this corresponds to joining either
the arrows with final state k4 to k ′4 and k5 to k ′5 or k4 to k ′5 and k5 to k ′4
if we decide to detect particles k6 and k ′6, as depicted in Fig. 4. However,
we could as well choose to detect another combination leading to further
combinatorics.

For the case of two particles, the tracing procedure becomes more evi-
dent and is thus depicted in Fig. 5. Two situations have to be distinguished
for this purpose. For the first, depicted in Fig. 5a), both amplitudes have
undergone a collision event resulting in a reshuffling of the single-particle
energies according to eq. (58), a process that we call inelastic. In contrast, an
elastic scattering contribution occurs if only one of the diagrams contains a
collision event and thus – due to energy conservation – the single-particle
energies must remain conserved, Fig. 5b).
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Figure 5: Illustration of the tracing formalism for the case of two particles intro-
duced in the main text. (Blue) solid and (red) dashed arrows stand for |f+,2〉 and
〈f+,2|, respectively. The traced and detected particles are denoted by dots and a
detector symbol as in Fig. 4, respectively. (a) For the case of inelastic scattering, the
trace formula (63) can be used to transform the left diagram to the right diagram.
The trace thus corresponds to a direct connection of the two collision events by the

spectral function
[
Ĝ
†
V(E) − ĜV(E)

]
/i (dashed-solid arrow pointing in different direc-

tions). The energy of the detected particle is, correspondingly, 2EL − E. (b) For the
case of elastic scattering, the left and right diagram are connected via the trace for-
mula (65). Since the (red) dashed arrows have not undergone a collision, the energy
of the detected and traced-out particle must equal EL, due to energy conservation.
As we will see later in Chapter 3, this diagram equally occurs within a diagrammatic
representation of the Gross-Pitaevskii equation.

The trace formula involving inelastic collisions, see Fig. 5a), can be summa-
rized by the following expression:∫∫

dEdE ′

|2πi|2

∫
dk

(2π)3
(
. . .
)
(−E ′)Ĝ

†
V(E
′)|k〉〈k|ĜV(E)

(
. . .
)
(−E)

=

∫
dE
2πi

(
. . .
)
(−E)

(
Ĝ
†
V(E) − ĜV(E)

) (
. . .
)
(−E)

, (63)

where we respectively summarized the remainder of the diagram and the
conjugated diagram by

(
. . .
)
(−E)

and
(
. . .
)
(−E ′), which themselves depend

on the corresponding energies E and E′, however, with a negative prefactor.
The integrals over

∫
dE /(−2πi) and

∫
dE′ /(2πi) come along with each col-

lision event for each amplitude, according to the rules defined above, and
respectively determine the energy of the undetected particle, E and E ′, as
well as that of the detected particle, 2EL − E and 2EL − E ′, by energy con-
servation. Once the full expression for the left diagram in Fig. 5a) – given
in Appendix B.3 – is factorized into single particle propagations and two-
body collision events, see eqs. (57) and (58), the trace over the final single-
particle state k with the corresponding single-particle propagators Ĝ†V(E

′)
and ĜV(E) can be conducted independently. This is due to the fact that(
. . .
)
(−E)

and
(
. . .
)
(−E ′) are complex analytic functions with respective en-

ergy 2EL − E and 2EL − E ′, where the minus sign in front of E and E ′ shifts
the corresponding poles of the respective constituents ĜV(E) and T̂

(2)
U (E)

as well as Ĝ†V(E
′) and [T̂

(2)
U (E ′)]† to the opposite half space of the complex

plane. One can thus choose the contour such that only the poles of ĜV(E)

and Ĝ†V(E
′) in the respective upper half and lower half of the complex plane

contribute.
By removing the identity∫

dk
(2π)3

|k〉 〈k| = 1 , (64)

and after application of the identity Ĝ†V (E
′)ĜV (E) = (Ĝ†V (E

′)− ĜV (E))/(E−
E ′ + iε), see eq. (304), one can integrate the term proportional to Ĝ†V (E

′)
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Figure 6: Extension of the diagram shown in Fig. 5b). Here, elastic scattering oc-
curs with an undetected particle, which, however, originates from a previous elastic
collision event. Addition of the diagrams on the left reproduces again a Gross-
Pitaevskii equation diagram, i. e. described by an elastic non-linear equation for a
single particle, cf. the discussion in Chapter 3.

and to ĜV (E) over E and E ′, respectively. In both cases the two energies E
and E ′ become equal (since only a single pole at E = E ′ − iε and E ′ = E+ iε
remains in the respective lower and upper half of the complex plane, see Ap-
pendix B.4) and we obtain the contribution [Ĝ†V(E) − ĜV(E)]/i (also known
as the spectral function since the imaginary part of the Green’s function deter-
mines the density of states [48]). Diagrammatically, as depicted in Fig. 5a),
this corresponds to a solid-dashed arrow directly connecting the collision
events of each diagram.

The formula (63) does not only apply to the situation discussed but also
to all inelastic scattering diagrams that we will encounter in the following.
Its general validity is proven in Appendix B.4.

For an elastic collision, where one of the amplitudes has not undergone
a previous collision, see Fig. 5b), we find, in a similar manner as in the
previous discussion, the following trace formula:∫

dE
2πi

∫
dk

(2π)3
〈kL|

[
Ω̂

(V)
+ (EL)

]†
|k〉〈k|ĜV(E)

(
. . .
)
(−E)

= 〈kL|
[
Ω̂

(V)
+ (EL)

]† (
. . .
)
(−EL)

. (65)

The conjugate of relation (65) takes effect if the energy of the amplitude rep-
resented by solid arrows is fixed. The consequence of relation (65), which is
also proven in Appendix B.4, is a direct connection of the dashed amplitude
to the collision event, i. e. a contribution ∝ |ψ(r)|2ψ(r) corresponding to the
two solid and the single dashed arrow incident on the solid square in the
rightmost diagram in Fig. 5. Hence, this two-particle amplitude is reduced
to a scenario which can be described by a non-linear single-particle equa-
tion, which we will identity as the Gross-Pitaevskii equation, see eq. (1) and
Chapter 3.

In expression (65) the dashed amplitude originates directly from the source
state 〈kL| and is propagated through the disorder potential by [Ω̂

(V)
+ (EL)]

†.
This expression, however, can be generalized to the case where the dashed
amplitude originates from another collision event, an example of which
is depicted in Fig. 6. Thereby, we again obtain an elastic non-linear dia-
grammatic contribution which can be equivalently obtained via the Gross-
Pitaevskii equation, see Chapter 3 or [62].

In a similar manner, the inelastic diagrams can be generalized to the case
where the undetected particle undergoes further collisions with other par-
ticles before the trace is performed. Here, it is however crucial that these
collisions occur with particles that have not interacted with the detected
particle before. Since this restriction, i. e. neglect of recurrent scattering, is
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naturally realized in a weak disorder potential, we delay this discussion to
Chapter 3. We note, however, that the neglect of recurrent scattering will
allow us to trace out the undetected particle immediately after the collision
with the detected particle, a tremendous simplification, as we will discuss
further down.

2.4 summary

With this chapter we have laid the methodological foundation of this thesis,
a scattering theory for a matter wave of interacting particles within a dis-
order potential. As we discussed, this requires asymptotically unperturbed
states, which can be achieved by precise adjustment of the inter-particle
interaction (via Feshbach resonances) and by spatially delimited disorder
potentials (e. g. via focused speckle potentials). From the theoretical side,
however, an insufficiency remained: an easily applicable technical tool that
is able to treat far from equilibrium physics under inclusion of random
disorder potentials. We therefore introduced a general, diagrammatic N-
body scattering theory above, that we will adopt in the following chapter
to describe the average interacting many-body transport in weak disorder
potentials.



3D I F F U S I V E T R A N S P O RT

Within the following chapter we will apply the N-particle scattering theory
presented in Chapter 2 to the case of bosonic matter wave transport within
a weakly disordered potential. To do so, we consider a three-dimensional
slab geometry with the disorder potential confined to the region inside the
slab. At first, we restrict our analysis to a linear transport theory that de-
scribes the propagation of non-interacting particles in a weakly disordered
environment. Upon averaging the linear transport over many realizations
of the disorder potential, we will be able to introduce the so-called ladder
diagrams or diffusons, which, as their names state, describe classical diffusion
within the slab geometry considered.

Equipped with this background, we introduce particle-particle collisions
into our description that lead to more sophisticated diagrams. Nonetheless,
we are able to efficiently reduce the many-body character of the underlying
equations and to derive a nonlinear transport equation for the propagation
of single particles in the slab. This equation accounts for inelastic scattering
processes which lead to what is colloquially called condensate depletion. Our
theory thus provides a microscopic description which goes beyond the cel-
ebrated Gross-Pitaevskii equation, in terms of the interaction-induced non-
linearity.

Finally, we link our theory to recent progress in the derivation of a non-
linear (quantum) Boltzmann equation. We show that the justification for
certain assumptions of rigorous derivations of such an equation can be ele-
gantly stated, due to the presence of the weak disorder potential.

3.1 the slab geometry

The setup for which we develop our diagrammatic theory is given by a three-
dimensional medium bounded by parallel planes, and graphically depicted
in Fig. 7. Hence, the extension in the direction parallel to the planes, here
called x and y, is infinite. The distance L between the two planes, usually
expressed as the optical thickness b = L/`dis, i.e. L in units of the disorder
mean free path `dis, see eq. (92) below, is measured along the normal com-
ponent z. This geometry is rotationally-symmetric with respect to the z-axis,
and allows us to separate the problem into solutions in the two-dimensional
x− y-plane, and along the z-axis [48], respectively. We formulate our prob-
lem as that of a plane wave incident on and/or scattered back from the
slab, which can be described using only two parameters, the position on the
z-axis, i. e. the penetration depth into the slab, and the angle of incidence/e-
mergence θ with respect to the z-axis.

We focus on the case of perpendicular incidence, and hence choose our
coordinate system such that

kin =



0

0

kL


 , kout =



kD sin θ′

0

kD cos θ′


 , q = kin + kout =




kD sin θ

0

kL − kD cos θ


 ,

with the backscattering angle θ = π − θ′. We further assume that the re-
fractive index of the medium within the slab is comparable to the one in

31
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Figure 7: Schematic representation of the slab geometry considered within this
thesis. We consider a plane wave with wave vector kL and energy EL = k2L incident
on a three-dimensional slab with thickness L. The emitted intensity with wave vector
kD and energy ED = k2D is detected under an angle θ in the far field of the slab, by a
detector at position R. As an ultimate goal of this thesis, we wish to quantitatively
describe scattering phenomena which can occur for a bosonic matter beam incident
on a weakly disordered potential within the slab, under inclusion of particle-particle
interaction. The dynamics inside the slab and the detection in the far field of the
slab is in the focus of Chapter 3 and Chapter 4, respectively.

the vacuum surrounding the slab, such that boundary effects of the in- and
outgoing waves can be neglected.1

1 This again is in agreement with
our all-underlying assumption of a
weak disorder potential, where the

total single-particle energy
approximately equals its kinetic

energy and the energy
contribution of the disorder

potential can be neglected.

3.2 linear transport theory

Within this section we wish to elucidate under which circumstances the
Schrödinger equation for a single quantum particle is transformed to a
classical equation which describes diffusive transport within a disordered
sample, on macroscopic scales.2 All coherent effects due to the wave na-

2 For the derivation of the linear
transport theory we follow the

presentation in [48, 152, 153].

ture of the quantum particle become small in a suitable limit which we
define in the following. The foundation of our subsequent analysis is the
time-independent general Hamiltonian eq. (7) reduced to contain only the
single-particle contribution3

3 This entire section is concerned
with linear transport theory,

i. e. represented by single-particle
operators.

Ĥ = −∆+ V̂(r) , (66)

which generates the stationary Schrödinger equation,

−∆ψ(r) + V(r)ψ(r) = k2ψ(r) , (67)

with k2 = E. For V(r) → k2V(r) and k = ω/c instead of k =
√
E, this

equation is known as the stationary Helmholtz equation, where ψ(r) is now
e. g. the amplitude of a scalar electromagnetic or acoustic field, instead of
the quantum mechanical probability amplitude.
More generally, in the presence of an arbitrary distribution of sources jE(r)
with energy E (cf. j(r, t) = jE(r)eiEt/

 h), eq. (67) transforms to
(
∆+ k2 − V(r)

)
ψ(r) = jE(r) , (68)

for which a solution can be found via the Green’s function4 of the differen-
4 Here, we spell out the full notation

GE(k), the function with wave
vector k at the energy E (or,

accordingly, in real space GE(r)).
We will avoid the subscript
indicating the energy in the

following if not needed explicitly,
e. g. for the case of linear transport

where the energy remains fixed
throughout the scattering process.

tial operator
(
∆+ k2 − V(r)

)
GE(r, r′) = δ(r − r′) . (69)
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Remember that by virtue of eq. (58) all N-particle Green’s functions can be
decomposed into single-particle operators such that a single-particle expres-
sion can always be found.

A general solution for ψ(r) in (68) for outgoing boundary conditions,
i. e. G(r, r′) being the retarded Green’s function, is obtained via

ψ(r) =
∫

dr′G(r, r′)j(r′) . (70)

3.2.1 The Wave Equation and the Free Green’s Function

We first focus on the solution of (69) for the case of a particle in the vacuum
without an additional potential, i. e. V = 0,

(
∆+ k2

)
G0(r − r′) = δ(r − r′) , (71)

which amounts to a wave created by a point source at point r′ and propa-
gated to point r by the free Green’s function G0(r − r′).

The solution of the free Green’s function can be obtained by Fourier trans-
formation to momentum space, such that eq. (71) reads:

G0(k′) =
1

k2 − k′2 + iε
, (72)

where the infinitesimal ε > 0 is needed for convergence of the integrals. A
subsequent back transformation to real space and integration using residual
calculus leads to

G0(r − r′) = −
eik|r−r′|

4π|r − r′|
, (73)

an outgoing spherical wave from the source at r′.

3.2.2 The Average Green’s Function

Reintroducing now the potential V(r) into our calculations, we rewrite (69)
in the integral form of a Lippmann-Schwinger equation:

G(r, r′) = G0(r − r′) −
∫

dr′′G0(r − r′′)V(r′′)G(r′′, r′) . (74)

Application of the differential operator ∆ + k2 to both sides of the above
equation reproduces the original equation (69).
Equivalently, eq. (74) can be rewritten iteratively as a perturbative expansion
in the disorder potential V , leading to the Born series

G(r, r′) = G0(r − r′) −
∫

dr′′G0(r − r′′)V(r′′)G0(r′′ − r′)

+

∫∫
dr′′ dr′′′G0(r − r′′)V(r′′)G0(r′′ − r′′′)V(r′′′)G0(r′′′ − r′)

+ · · · . (75)

The physical interpretation thereof is a superposition of waves which either
do not scatter at all, scatter once, twice, · · · , or n-times off the potential V
on their way from r′ to r. In a next step, we replace the arbitrary potential
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V by a disorder potential with Gaussian statistics as introduced earlier, cf.
Section 2.1.4:

〈V(r)〉 = 0 , 〈V(r)V(r′)〉 = B(r − r′) . (76)

We can now integrate over all possible realizations of the disorder, to gain
an understanding of how a wave propagates on average within this potential
landscape. In other words, we obtain an equation for the average Green’s
function, the so-called Dyson equation [48]:

〈G(r, r′)〉 = G0(r − r′) −
∫∫

dr′′ dr′′′G0(r − r′′)Σ(r′′, r′′′)〈G(r′′′, r′)〉 . (77)

The 〈· · ·〉 denotes the average over different realizations of the disorder po-
tential, and Σ(r, r′), whose importance is discussed in the following, is the
self-energy which contains all the information about the scattering contri-
butions after the disorder average. Under the assumption of an infinite
medium (i. e. boundaries sufficiently far away),5 the latter restores transla-

5 For points within the slab for
which zk� 1 and |L− z|k� 1,
respectively, the assumption of an
infinite medium is approximately

fulfilled [153, 154]. See also the
discussion before eq. (35)

regarding the assumption of
translational invariance in our

setup.

tional invariance and we obtain

〈G(r, r′)〉 = 〈G(r − r′)〉 , Σ(r, r′) = Σ(r − r′) . (78)

As translational invariance implies conservation of momentum, the Fourier
transforms of the average Green’s function and of the self-energy read

〈G(k′, k′′)〉 = (2π)3δ(k′−k′′)〈G(k′)〉 , Σ(k′, k′′) = (2π)3δ(k′−k′′)Σ(k′) ,

(79)

and Dyson’s equation (77) in momentum space simply reads

〈G(k′)〉 = G0(k′) +G0(k′)Σ(k′)〈G(k′)〉 . (80)

A solution for the average Green’s function can now be expressed in terms
of the vacuum Green’s function (72) and of the self-energy,

〈G(k′)〉 = 1

k2 − k′2 − Σ(k′)
, (81)

which simplifies, due to the rotational invariance6 of our setup, to
6 Remember that the rotational

invariance results as a
consequence of the Gaussian white

noise statistics of the disorder
potential, see Section 2.1.4.

〈G(k′)〉 = 1

k2 − k′2 − Σ(k′)
. (82)

The difference between (72) and (82) is the contribution of the self-energy
that vanishes for a vanishing potential V . Hence, if we assume a sufficiently
weak disorder potential, what, by virtue of (82), is characterized by |Σ(k′)|�
k2, and only a weak dependence on momentum, we may replace Σ(k′) →
Σ(k) and define

k̃ =
√
k2 − Σ(k) ≈ k− Σ(k)

2k
. (83)

Hence, (82) simplifies to

〈G(k′)〉 = 1

k̃2 − k′2
. (84)

In the scattering language the self-energy is the sum of all scattering paths
(undergoing a certain sequence of disorder scattering events) which are ir-
reducible. A path is called irreducible if all disorder scattering events for
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Figure 8: The disorder scattering events (+×) along a certain scattering path ((blue)
solid arrows) are pairwise correlated with each other upon averaging over the ran-
dom disorder potential (cf. (76)), leading, e. g. , in (a) to an irreducible (top), and to a
reducible diagram (bottom). (b) The self-energy consists of all irreducible diagrams,
where here all contributions of eq. (86) are indicated. Note that the free Green’s
functions ((blue) solid arrows) prior to the first and after the last disorder scattering
event in (a) are not part of the self-energy. Parts of the graphics are taken from [155].

this scattering path are correlated with each other in such a way that the
path cannot be cut into two pieces without cutting a correlation between
two disorder scattering events, see Fig. 8a). By an iterative argument it
can be shown that inserting the sum of all irreducible diagrams, i. e. the
self-energy, into the Dyson equation (77) reproduces all possible scattering
paths and thus the full averaged Born series [48].

In our case, due to the Gaussian statistics7 of the disorder potential, only
7 A distribution obeying Gaussian

statistics is fully characterized by
its first two moments, see eq. (76)
and [156]. As a consequence, all
higher moments can be expressed
in terms of the first two.

those scattering paths with pairwise correlations between the disorder scat-
tering events contribute to the self-energy (odd orders vanish due to 〈V(r)〉 =
0 and even n-point correlations reduce to pairwise correlations). E.g., a four-
point correlation function thus simplifies to a sum of products of two-point
correlations:

〈V(r1)V(r2)V(r3)V(r4)〉 = 〈V(r1)V(r2)〉〈V(r3)V(r4)〉
+ 〈V(r1)V(r4)〉〈V(r2)V(r3)〉
+ 〈V(r1)V(r3)〉〈V(r2)V(r4)〉 . (85)

The exemplary four-point correlation (85) can thus be represented by the
first three terms of the series of irreducible diagrams for the self-energy,
cf. Fig. 8b),

Σ(r1 − r2) = B(r1 − r2)G0(r1 − r2)

+

∫∫
dr3 dr4 B(r1 − r4)B(r2 − r3)G0(r1 − r2)G0(r2 − r3)G0(r3 − r4)

+

∫∫
dr3 dr4 B(r1 − r3)B(r2 − r4)G0(r1 − r2)G0(r2 − r3)G0(r3 − r4)

+ · · · , (86)

where the definition of the second moment from eq. (76) was used. Of
course, as the dots in the last line of (86) indicate, the self-energy consists,
in principle, of an infinite number of terms. We will, however, only focus
on the first contribution Σ1(r1 − r2) of the self-energy, see first line of (86),
since all higher orders are at least suppressed by a factor (k`dis)

−1 � 1,8 in
8 The proportionality to

(k`dis)
−1� 1 of the second and

third line in eq. (86) can be seen
upon evaluation of the spatial
integrals (using the white noise
statistics eq. (6)) and subsequent
transformation of the self-energy
to momentum space, see e. g. [157].
Physically, the rapidly varying
phase of G0(r) ∝ eikr, see
eq. (73), leads to a small
contribution (∝ 1/k) when
integrating over r in an interval
� 1/k. See also [5], for a rigorous
proof of vanishing higher orders in
the limit k`dis →∞.

the weak disorder potential limit (for a three-dimensional setup) [48]. The
evaluation of Σ1(r1 − r2) is most conveniently done in momentum space,
i. e.

Σ1(k′) =
∫

dr eik
′rB(r)G0(r) , (87)
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with r = r1 − r2. Since G0(r), see eq. (73), and B(r) = B(r) (for the case of
Gaussian white noise statistics of the disorder potential, see the discussion
after eq. (6)) depend only on the modulus of r, we can transform (87) to
spherical coordinates and conduct the integration over the angular compo-
nents:

Σ1(k′) = −
1

k′

∫
dr B(r)eikrsin(k′r) . (88)

Eq. (88) can be determined explicitly if we substitute for B(r) the white
noise correlation function eq. (6), which, however, leads to an ill-defined
integral expression in (88) due to the δ-function. In order to overcome this
inconsistency, we replace the δ-function by a properly normalized Gaussian
function with a finite width σ, such that the correlation function reads:

B(r) =
b

(πσ2)3/2
e−(r/σ)2 , (89)

and expression (6) is retained in the limit for σ → 0.9 Using (89) in (88),
9 Note that the Gaussian

representation of the δ-function in
eq. (89), instead of eq. (6), is only
used when mathematical rigor is

required.

we obtain, upon integration and in the subsequent limit of σ → 0, for the
imaginary and real part of Σ1, respectively:

lim
σ→0

[
Im[Σ1(k

′)]
]
= −

bk
4π

, (90)

lim
σ→0

[
σRe[Σ1(k′)]

]
= −

b
2π3/2

. (91)

Note that the imaginary part of Σ1, see eq. (90), – which defines the mean
free path `dis, see eq. (92) below – remains finite for σ → 0. On the other
hand, according to eq. (91), the real part diverges like 1/σ for σ → 0.
Physically, this divergence is just an artifact of the idealized scenario of a
δ-correlated potential and – since Re[Σ1(k′)] is independent of k′ – it just
constitutes a constant shift of the zero-point energy. Therefore, it may, with-
out loss of generality, be absorbed into the single-particle energy E = k2

upon insertion of (91) into eq. (83).10 The substitution of eq. (90) into eq. (83)
10 This divergence can be controlled

rigorously by setting
〈V(r)〉 = −Re[Σ1(k′)] in eqs. (76)
and (6), in order to compensate for

the shift.

results in a positive imaginary part of k̃, i. e.

Im[k̃] = −
Im[Σ1(k

′)]
2 k

=
1

2 `dis
, with `dis =

4π

b
, (92)

and in the definition of the disorder mean free path `dis, already commented
on in Chapter 1 and after eq. (6). The physical significance of the imaginary
part of k̃ = k+ i/(2`dis) becomes obvious after back transformation of (84)
to real space,

〈G(r − r′)〉 = −
eik̃|r−r′|

4π|r − r′|
. (93)

In addition to eq. (73), we here deal with a spherically emitted wave that is
exponentially damped due to the presence of the disorder potential, i. e. the
imaginary part of the self-energy. Thus, momentum eigenstates acquire
a finite lifetime and a finite coherence length `dis, on which a particle is
scattered, on average, off the disorder potential into a different momentum
eigenstate.

In particular does now the former assumption |Σ(k′)| � k2 (see discus-
sion before eq. (83)) imply k`dis � 1, which again coincides with the weak
disorder potential limit. Eq. (92) furthermore confirms our statement from
Section 2.1.4 that `dis is independent of k for the case of Gaussian white
noise statistics.
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3.2.3 Transport Equation for the Average Intensity

As demonstrated in the previous section, knowledge of the average Green’s
function allows to determine the average amplitude 〈ψ(r)〉, via (70), which
upon averaging turns into

〈ψ(r)〉 =
∫

dr′ 〈G(r, r′)〉j(r′) , (94)

since the source term is assumed to be uncorrelated with the random po-
tential V(r), and thus unaffected by the disorder average. However, in most
cases one is interested in the two-point correlation function 〈ψ(r1)ψ∗(r2)〉,
and in particular in the average intensity I(r) = 〈|ψ(r)|2〉, which, in general,
requires to calculate the average intensity propagator

Φ(r1, r2, r3, r4) = 〈G(r1, r3)G∗(r2, r4)〉 (95)

in order to obtain

〈ψ(r1)ψ∗(r2)〉 =
∫∫

dr3 dr4 〈G(r1, r3)G∗(r2, r4)j(r3)j(r4)〉

=

∫∫
dr3 dr4Φ(r1, r2, r3, r4)j(r3)j(r4) , (96)

again using the fact that the source terms are independent of the disorder
potential and thus unaffected by the averages.

The role of Dyson’s equation (77) for the average Green’s function is taken
by the Bethe-Salpeter equation for the two-point correlator:

〈ψ(r1)ψ∗(r2)〉 = 〈ψ(r1)〉〈ψ∗(r2)〉 (97)

+

∫
dr3 . . .dr6 〈G(r1, r3)〉〈G∗(r2, r4)〉U(r3, r4; r5, r6)〈ψ(r5)ψ∗(r6)〉 .

Here, we introduced the so-called intensity operator U(r1, r2; r3, r4) which
takes the role of the self-energy.11 The intensity operator contains all irre-

11 The connection between the
self-energy and the intensity
operator can be made rigorous
involving a Ward identity which
guarantees flux conservation for
the solution of the Bethe-Salpeter
equation [158, 159].

ducible scattering contributions of the average intensity between point r1
and r3 and between point r2 and r4 composed of the scattering amplitude
and the complex-conjugated scattering amplitude, respectively. As for the
self-energy, all intermediate points of the different scattering amplitudes are
in such a way correlated with each other that the intensity operator cannot
simply be reproduced by products of averaged scattering amplitudes. Con-
sequently, the two-point correlation function at r1 and r2 in eq. (97) consists
of two contributions: the uncorrelated contribution, given as the product of
two averaged scattering amplitudes in the first line on the right-hand side
of (97), and all the remaining correlated contributions in the second line
of (97), which determine how an initial two-point correlation between two
points r5 and r6 evolves under the intensity operator to r3 and r4, from
where they propagate independently to r1 and r2. Thereby, integration over
all intermediate points ensures that all possible scattering paths are taken
into account.

Since, in general, it is quite involved to obtain a solution of the Bethe-
Salpeter equation as the intensity operator involves an infinite number of
possible scattering contributions, we will dwell only on the case for which a
significant simplification can be realized – the weak disorder potential limit.

In (86) we argued that only the first order of the self-energy needs to be
taken into account once k`dis � 1. By virtue of a Ward identity [158, 159] this
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corresponds to the first order contribution to the intensity operator which –
for the case of the Gaussian correlated disorder – reads [48, 152]:

U(r1, r2; r3, r4) = δ(r1 − r3)δ(r2 − r4)B(r1 − r2) . (98)

This is the simplest form of the intensity operator as it just contains the cor-
relation between the points r1 and r2 and no additional propagation. As we
will see later in Section 3.2.4, an iteration of eq. (97) under the approximation
(98) corresponds to a ladder-like diagrammatic structure where correlated
disorder events (the ladder rungs) are connected by independent propaga-
tion of the two conjugated scattering amplitudes (the ladder stringers), lead-
ing to an identical sequence of scattering events for both amplitudes in the
same order.

For the case of the δ-correlated disorder potential, i. e. B(r − r′) = 4πδ(r −
r′)/`dis and the approximation eq. (98), eq. (97) simplifies to:

〈ψ(r1)ψ∗(r2)〉 = 〈ψ(r1)〉〈ψ∗(r2)〉 (99)

+
4π

`dis

∫
dr3 〈G(r1, r3)〉〈G∗(r2, r3)〉〈ψ(r3)ψ∗(r3)〉 .

The expression for the intensity I(r) = 〈|ψ(r)|2〉 simplifies under use of (93):

I(r) = I0(r) +
∫
V

dr′ P(r, r′)I(r′) , (100)

where we explicitly indicated that the integration only extends over the vol-
ume V of the slab, and we introduced the linear average intensity propagator12

12 This quantity is also known as a
Diffuson in the literature [48].

P(r, r′) =
e−|r−r′|/`dis

4π`dis|r − r′|2
, (101)

and the coherent intensity I0(r) = |〈ψ(r)〉|2, i. e. the intensity stemming di-
rectly from the source, which – for a plane wave source, ψ0(r) =

√
ρ0e

ikz,
perpendicularly incident onto the slab at z = 0 and under neglect of bound-
ary effects – can be approximated by

I0(r) = I0(z) = I0e−z/`dis , (102)

and I0 = ρ0. This corresponds to an exponential damping of the coherent
intensity on the length scale of the disorder mean free path, in accordance
with the Lambert-Beer law. The second term in eq. (100) is termed the scattered
intensity, since the absolute value in the definition of I(r) is independent
of the phases of its amplitudes, and, consequently, describes an incoherent
propagation of the average intensity across the disorder potential.

Eq. (100) is equivalent [48] to the radiative transfer equation, initially derived
for the propagation of electromagnetic waves in random media [160]:

k̂ · ∇I(k̂, r) = −
1

`dis
I(k̂, r) +

1

`dis
〈I(k̂ ′, r)p(k̂ − k̂ ′)〉k̂ ′ + ρ0δ(z) . (103)

It describes how the specific intensity I(k̂, r), whose angular average I(r) =

〈I(k̂, r)〉k̂ reproduces the intensity defined in eq. (100), with source ρ0δ(z),
varies under the influence of attenuation due to scattering from k̂ into a dif-
ferent direction k̂ ′ (first term on the right-hand side), and gain due to scat-
tering from k̂ ′ into k̂ (weighted by p(k̂− k̂ ′), which is constant for isotropic
scattering.) Eq. (103) corresponds to a stationary and disorder-averaged ver-
sion of the Boltzmann equation (16) in the collision-free regime (i. e. the
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Figure 9: Incoherent intensity I(z) as a function of the position z− L in units of `dis
at the border of a very long slab, i. e. L→∞, with the vacuum. The (blue) solid and
the (red) dashed curve are given by the solution of the Milne problem, eq. (106), and
I(z) = const.(L− z+ z0)/`dis, respectively. The linear decay predicted by diffusion
theory coincides with the solution of the Milne problem for z0 = 0.7104`dis. Only
close to the border of the medium does eq. (106) deviate from the diffusive solution.
See main text for details.

right-hand side of eq. (16) equals zero), where the term due to the force
∇rV(r) induced by the random potential on the left-hand side of eq. (16) is
replaced – after averaging over many realizations of V(r) – by the scattering
terms on the right-hand side of eq. (103).

In Appendix D.1 we demonstrate how eq. (100) can be adopted to the slab
geometry such that it only depends on the z-component, i. e. the propaga-
tion depth inside the slab,

I(z) = I0(z) +
1

2`dis

∫L
0

dz′ P(z, z′)I(z′) , (104)

where

P(z, z′) = E1

(
z− z′

`dis

)
(105)

equals the exponential integral function En(x) for n = 1 defined further down
in eq. (318).
Towards the end of a very long slab (i. e. L → ∞), where the influence of
the exponentially decaying source term is negligible, the solution of (104) is
known as Milne’s problem, that Milne solved initially for the propagation of
photons through surfaces of stars [161], and whose general relevance is in
great detail discussed in [154]. We here only want to point out two aspects
of the solution, the behavior of the solution towards the end of the slab and
the very good approximation of Milne’s exact solution by diffusion theory.

The intensity at the end of such a slab is, up to a constant, given by [154]

I(z) = const.
[
L− z

`dis
+ 0.7104

[
1− 0.3429E2

(
L− z

`dis

)
+ 0.3159E3

(
L− z

`dis

)]]
.

(106)

The contributions of the En-functions, see eq. (318) for n = 2 and n =

3, vanish already for a few mean free path from the slab boundary and
the intensity distribution inside the slab becomes linear (blue solid line in
Fig. 9), an observation that suggests diffusive behavior and the applicability
of diffusion theory. However, in order to capture the main features of the
solution to the Milne problem by a linear extrapolation, one has to choose
the boundary condition for the diffusive intensity, i. e. I(z) = const.(L− z+
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Figure 10: (a) Exemplary scattering paths for ψ and ψ∗, thin solid and dashed
arrows, respectively, for a single realization of the disorder potential. (b) Exemplary
scattering paths for the averaged intensity 〈|ψ|2〉, thick solid and dashed arrows,
respectively. In the case of a weak disorder potential only co-propagating ladder
contributions survive the disorder average.

z0)/`dis, such that it does not vanish at the end of the slab at z = L but
instead at z = z0 + L, where z0 = 0.7104`dis is obtained from comparison
with (106), see the red dashed line in Fig. 9. In other words, in order to gain
a proper description of the transport in the slab by diffusion theory, one has
to assume that the diffusion process extends, beyond the boundary of the
slab, into the vacuum. Physically, although no diffusion takes place in the
vacuum, this accounts for the non-vanishing transmission of the diffusive
intensity across the slab.

For our purposes in the following, we will not apply the diffusion approxi-
mation, but rather solve the Bethe-Salpeter equation (100) exactly. Neverthe-
less, we want to emphasize the correspondence between both approaches
and hence will speak about diffusive transport as the general transport
mechanism within the slab, see Chapter 2.4 in [154] for further details con-
cerning the derivation of a diffusion equation from eq. (100).

3.2.4 Diagrammatic Representation of Transport in a Medium

Within this chapter we have derived a transport equation for the average
intensity, starting from the Schrödinger equation, and under the assumption
of a Gaussian correlated, weak disorder potential with vanishing correlation
length, i. e. white noise statistics. In other words, single scattering events
are sufficiently far apart from each other, and the scatterers are assumed
to be point-like. Hence, the wave function of the Schrödinger equation can
be imagined as being composed of many different scattering amplitudes
ψ =

∑
nψn which reproduce the Born series, eq. (75). Exemplary paths for

ψ and ψ∗, which are independent of each other, are displayed in Fig. 10a) as
thin solid and dashed lines, respectively. Each disorder potential scattering
event is marked with a +×.

A subsequent average over the disorder potential for each amplitude
yields Dyson’s equation, eq. (77). This accounts for the scattering path be-
tween a fixed starting and end point being in principle arbitrary, i. e. possi-
bly consisting of all contributions to the self-energy in eq. (86). Averaged
scattering amplitudes are now represented by thick solid and dashed ar-
rows, respectively.

The step corresponding to eq. (97), which produces an average intensity,
is depicted in Fig. 10b). As a matter of fact, we here show the diagram-
matic representation of eq. (100) – better known as the diagrammatic ladder
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Figure 11: Solution of eq. (104) normalized to the incoming intensity I0 injected
from the left into a slab of optical thickness b = 5 ((blue) solid line), b = 10

((red)dotted line), and b = 15 ((green) dashed line), respectively. The linear de-
cay, characteristic of diffusion, can be observed within the slab, as well as the small
deviation from linearity towards the end of the slab (compare Fig. 9).

contribution. In the weak disorder potential – the fundamental assumption
employed to derive eq. (100) – only those scattering paths contribute to the
average intensity where both amplitudes visit the same sequence of scat-
tering events in the same order, i. e. 〈|ψ|2〉 =

∑
n=m〈ψnψ∗m〉. All other

contributions (n 6= m) acquire a large phase difference due to k`dis � 1 and
yield a zero contribution after averaging the exponential eikr over a full pe-
riod. We denote the corresponding correlation function for averages over
the disorder potential by ⊕×, cf. (76).

The stationary intensity distribution13 (or single-particle density) can be
13 In Chapter 2 as well as in the

proceeding chapters, the relevant
observable was and will be the
flux density, see eq. (62). That we
here call upon the intensity as our
observable is, however, based on
the fact that we so far developed
the linear and elastic transport
theory where simply
J(r) =

√
ELI(r) with fixed

single-particle energy EL.

obtained by numerical iteration of eq. (104), i. e. by repeatedly re-inserting
the obtained expression for the intensity into eq. (104) until convergence is
reached. The thus obtained solution for a disordered slab of optical thick-
ness b = 5, b = 10, and b = 10, respectively, is depicted in Fig. 11. Obviously
– for this setup far from equilibrium – the distribution is not symmetric and
the maximum density is reached at a certain position within the slab (and
not at the surface) since particles constantly enter the slab from the left
and are simultaneously scattered out of the former, also in direction of the
source. The linear decay characteristic for diffusion can be observed within
the slab, as well as the small deviation from linearity towards the end of the
slab (compare Fig. 9).

3.3 nonlinear diagrammatic transport

In the preceding sections of this chapter we came to the conclusion that,
upon averaging over the random disorder potential, only ladder diagrams
have to be taken into account, see Fig. 10b), that can be interpreted as sin-
gle particles undergoing a random walk across a potential resulting from
an average over multiple realizations of disordered potential landscapes.
How will this intuitive picture change once particles begin to meet? In other
words, how will particle-particle interaction change the diagrammatic and
physical picture?

In Chapter 2 we introduced and developed the mathematical and dia-
grammatic tools to describe two-particle interaction for a single realization
of the disorder potential and in terms of scattering amplitudes.

In this chapter, we will show how to derive density contributions from
amplitudes, and introduce all relevant interaction diagrams. Furthermore,
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Figure 12: Diagrammatic building blocks for the description of average particle
transport in the disorder potential. The single-particle transport PE(r1, r2), i. e. lad-
der transport, in (a) is now accompanied by two-particle interaction building blocks
(b) and (c), where, respectively, only one amplitude or both amplitudes are affected
by a collision event. The respective mathematical contributions are contained within
gL

E1,E2

(r1, r2, r3) and fLE1,E2,E3

(r1, r2, r3), see (110) and (111). The dots in (b) and (c)
again indicate a trace over this (undetected) particle, see main text for details.

we deduce under what conditions our representation either reproduces, or
delivers a description beyond the celebrated Gross-Pitaevskii equation.

3.3.1 The Building Blocks for the Ladder Contribution with Particle-Particle In-
teraction

At first we adapt our previous notation to allow for the change of single-
particle energies due to particle-particle interaction. The average Green’s
function for single-particle transport as expressed in eq. (84) (or in the real
space representation eq. (93)) now reads

GE(k) =
1

k̃2 − k2
, (107)

where again k̃ =
√
E+ i/(2`dis), cf. eqs. (83) and (92), with corresponding

single-particle energy E (which, up to now, was fixed to EL). We dropped
the 〈. . .〉-notation which indicated average propagation within the disorder
potential since – from now on – we will deal with averaged quantities only,
and the term average Green’s function should be self-sufficient.

Accordingly, the linear average density propagator (eq. (101)) now takes
following form

PE(r1, r2) =
4π

`dis

∫
dk

(2π)3
e−ik(r1−r2)GE(k)

∫
dk′

(2π)3
eik
′(r1−r2)GE(k

′)

=
4π

`dis

∣∣∣∣∣
eik̃(r1−r2)

4π|r1 − r2|

∣∣∣∣∣

2

=
e−|r1−r2|/`dis

4π`dis|r1 − r2|2
, (108)

the diagrammatic form of which can be found in Fig. 12a). Since the prod-
uct of both amplitudes corresponds to a propagating particle with energy
E, the integrals reduce to the modulus squared of the average Green’s func-
tion, see eq. (93), such that PE(r1, r2) = P(r1, r2) becomes independent of E,
for our choice of a white noise disorder potential with energy-independent
mean free path `dis.

Before we focus on the detailed derivation of the mathematical form of
the two-particle interaction building blocks diagrammatically depicted in
Figs. 12b) and c), we first – with the help of a showcase – try to develop
some intuition of how to construct a many-particle ladder diagram, such as
shown in Fig. 13.
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Figure 13: Exemplary 3-particle scattering diagram for the average ladder trans-
port that involves interaction between the particles. The right collision event involves
only the solid amplitude and the corresponding single-particle energies stay fixed as
indicated by EL for the undetected particle. The left collision event is inelastic, and
leads to a redistribution of single-particle energies, i. e. of the undetected particle
with energy E = 2EL − ED, and of the particle with energy ED which is recorded by
the detector.

The figure shows how a 3-particle ladder diagram – the same procedure
is valid also for N particles – is obtained by combination of scattering am-
plitude |f3〉 with its conjugate 〈f3|, see Section 2.3 and Fig. 4, such as to con-
struct a scattering diagram of co-propagating amplitudes. From Section 3.2
we know that the thus obtained scattering diagram corresponds to a ladder
diagram for the average density if the free Green’s functions are replaced
by average Green’s functions, i. e. replacing thin by thick arrows, and single
disorder scattering by correlated disorder scattering events, i. e. replacing +×
by ⊕×. All other contributions were shown to vanish in the weak disorder
potential limit.

As becomes obvious from Fig. 13, on average only co-propagating am-
plitudes propagate between two disorder scattering events here denoted by
the ri’s. In order to keep the disregard of all but ladder diagrams valid we
therefore further demand at least one disorder scattering event to take place
between two collision events. This can be achieved if we assume `int � `dis,
where

`int =
1

8πa2s ρ0

(109)

is the average distance between two (inelastic) collision events,14 as is the
14 As we will see below, the relevant

interaction mean free path for the
ladder contribution is `αint ≡ `int as
in (109). For the crossed diagrams
to be dealt with in Chapter 4, we
also have to introduce `βint 6= `int,
cf. eq. (181).

s-wave scattering length introduced in eq. (1), see also Appendix B.1, and ρ0
again denotes the initial density of the atomic cloud, see eq. (37). Physically,
this corresponds to the limit where the effect of the disorder potential is
stronger than the interaction strength between the particles.

In Fig. 13 we marked the energies of the incoming and detected particle,
and of the particles which are traced over. Building on the insights of Sec-
tion 2.3, we want to decompose such a many-particle ladder diagram, as
e. g. Fig. 13, into the previously introduced linear single-particle propaga-
tion, cf. Fig. 12a), and the two-body collisions, cf. Figs. 12b) and c). Ob-
viously, the collision process denoted in Fig. 12b) affects only one of the
scattering amplitudes and we call this scattering process elastic because the
single-particle energies remain unchanged. Process Fig. 12c), on the other
hand, affects both scattering amplitudes in the same manner, and thus each
particle involved in this collision can change its single-particle energy, as
long as the energy of the two-particle process is conserved. Hence, this
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Figure 14: Illustration of the application of the trace formulas (63) and (65) de-
rived in Section 2.3, to the present scenario of the propagation of the average inten-
sity across the disorder potential. The trace formula for inelastic (63) and elastic (65)
scattering yields the diagrammatic equivalence (a) and (b), respectively. The right di-
agram of (b) corresponds to the nonlinear term of the diagrammatic Gross-Pitaevskii
equation, see the discussion further down in this section.

process is called inelastic, and will be responsible for a redistribution of the
single-particle energies.

As already mentioned in Section 2.3, we can trace out the remaining par-
ticles as soon as they have interacted with the detected particle. This is
justified if we can neglect all diagrams where two particles which have in-
teracted once will interact again – an approximation which is equivalent to
the neglect of recurrent scattering for a single particle [48, 162] and again,
alike the neglect of non-ladder diagrams, valid for k`dis � 1.

To this end, we apply the trace formulas (63) and (65) derived in Sec-
tion 2.3 for inelastic and elastic scattering processes. The trace over the
inelastically scattered particle with energy E in Fig. 13 is given by the trace
formula eq. (63), after replacing the Green’s operators by their averages,
i. e. ĜV → Ĝ. Interpreting this formula diagrammatically, it is equivalent
to draw a last common disorder scattering event before the trace (as in
Fig. 13), or to directly connect the two collision events by a solid-dashed
arrow, cf. Fig. 14a). According to (63) and the above mentioned replacement
of the Green’s operators by their averages, this double-arrow is tantamount
to (G∗E(k) −GE(k))/2πi.

For elastic collisions (as is the case for the undetected particle with en-
ergy EL in Fig. 13) the trace formula (65) has to be applied. As depicted in
Fig. 14b), the last common disorder scattering event of the undetected am-
plitudes can again be replaced by a direct connection of the corresponding
(red dashed) amplitude to the collision event.15

15 The second possibility, i. e. the
direct connection of the second

blue solid amplitude to the
collision event, can be shown to

vanish since it is compensated for
by other diagrams, see the

discussion of the elastic trace
formula (65) in Section 2.3 – and

its equivalence to the
Gross-Pitaevskii equation later in

this section.

Under application of the trace formulas, we can write down the mathe-
matical expressions for the elastic and inelastic diagrams in Figs. 12b) and c),
respectively, following the set of rules formulated in Section 2.3. However,
also these rules must be modified to account for average transport, i. e. we
need to substitute ĜV → Ĝ, and 〈V(r)V(r′)〉 = 4π δ(r − r′)/`dis.

The elastic building block, Fig. 12b), is then given as

gL
E1,E2

(r1, r2, r3) = 2
(
4π

`dis

)2
2Re

{
1

2

∫
dk1 . . .dk5

(2π)15

× e−i[(k1−k4)·r1+(k2−k5)·r2+(k5−k3)·r3]〈k3, k4|T̂
(2)
U (E1 + E2)|k1, k2〉

×GE1
(k1)GE2

(k2)GE2
(k3)G

∗
E1

(k4)G
∗
E2

(k5)

}
. (110)

As mentioned before, the trace over the undetected particle was performed
according to Fig. 14b), and results in a contribution of the average Green’s
functionG∗E1

(k4). The first factor 2 in eq. (110) (and eq. (111)) originates from
the fact that the solid and dashed incoming amplitudes can be grouped to-
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gether in two different ways. In principle, one thus has to calculate the
disorder average for the two incoming densities together, i. e. 〈I2〉. However,
it can be shown – again relying on the weak disorder assumption – that this
accounts for fluctuations of the atomic density inside the disordered slab
such that 〈I2〉 = 2〈I〉2 [163].16 The factor 1/2 in front of the integrals in

16 The same factor 2 also appears in
front of the non-condensate
density in the Hartree-Fock
equation (15).

eqs. (110) and eq. (111) regards the indistinguishability of the two particles
and limits the integration to the symmetrized two-particle subspace. As we
discussed previously in Section 2.3, the trace as conducted in Fig. 14b) ex-
actly reproduces the nonlinear term in the diagrammatic representation of
the Gross-Pitaevskii equation, see Fig. 16b).

The inelastic building block in Fig. 12c), where the energies of the two par-
ticles E1 and E2 change to E3 and E4 = E1 + E2 − E3, reads in mathematical
terms:

fLE1,E2,E3

(r1, r2, r3) = 2
(
4π

`dis

)2 ∫ dk4
(2π)3

G∗E1+E2−E3

(k4) −GE1+E2−E3
(k4)

2πi

×
∣∣∣∣∣
1

2

∫
dk1dk2dk3

(2π)9
e−i(k1·r1+k2·r2−k3·r3)〈k3, k4|T̂

(2)
U (E1 + E2)|k1, k2〉

×GE1
(k1)GE2

(k2)GE3
(k3)

∣∣∣∣∣

2

. (111)

The trace over the undetected particle has been conducted in accordance
with Fig. 14a) and corresponds to the difference of the advanced and re-
tarded Green’s function, in the argument of the integral in the first line of
(111). Note that the notation which has been used previously [164], i. e.

4π

`dis

∫
dk

(2π)3
δ(k2 −E)

∫∫
dk1 dk′1
(2π)6

G∗E(k
′
1)GE(k1)

∫
dr e−i(k1−k′1)r , (112)

yields∫
dk1
(2π)3

G∗E(k1) −GE(k1)

2πi
(113)

as in (111), upon integration over r, i. e. (2π)3δ(k1 − k′1), and evaluation of
the δ-functions. In order to see this, one uses

√
E |GE(k1)|

2 =
`dis
2i

(G∗E(k1) −GE(k1)) , (114)

which follows from the operator identity

Ĝ†(E′)Ĝ(E) =
Ĝ†(E′) − Ĝ(E)
E− E′ + 2iε

, (115)

as a consequence of the definition of the Green’s operator (45), and the
transformed operator identity (46), i. e.

1

AB
=

(
1

A
−
1

B

)
1

B−A
. (116)

3.3.2 The Nonlinear Transport Equation for the Ladder Contribution

As shown in Fig. 13, the three building blocks of Fig. 12 (or equivalently
eqs. (108), (110), and (111)) are sufficient to determine the transport mecha-
nism of the ladder contribution (if one restricts the treatment to two-particle
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collisions, and assumes that at least one scattering off the disorder potential
takes place between two collision events).

If one attaches now the outgoing arrows of each building block to the in-
coming arrows of the next building block, and so on, one can construct an
arbitrary N-particle ladder diagram. In accordance with eq. (100), a corre-
sponding transport equation for the spectral density IE(r), i. e. a particle with
energy E at position r within the slab, can be expressed as follows:

IE(r) = I0(r)δ(E− EL) +

∫
V

dr′PE(r, r′)IE(r′)

+

∫∞
0

dE ′
∫∫

V

dr′ dr′′gL
E ′,E(r

′, r′′, r)IE(r′′)IE ′(r
′)

+

∫∫∞
0

dE ′ dE ′′
∫∫

V

dr′ dr′′fLE ′,E ′′,E(r
′, r′′, r)IE ′′(r

′′)IE ′(r
′) , (117)

with I0(r) as in eq. (102), and PE, gL, and fL as defined in eqs. (108), (110),
and (111), respectively.

Note that, as mentioned before, all integrals over E formally need to be
integrated from −∞ to +∞. However, integration over the poles of the
Green’s functions in (108) returns a fully real contribution proportional to
exp[−2

√
|E|r − r/`dis], such that negative contributions to the energy are

rapidly damped out and – in the weak disorder potential limit,
√
E`dis � 1

– their contribution to the total transport vanishes:∫
V

drP(−|E|)(r) =
1

1+ 2
√
|E|`dis

−−−−−−−→√
E`dis→∞ 0 . (118)

Therefore, we restrict the interval of integration, e. g. in eq. (117), to non-
negative energies.

A numerical solution to (117), where the spectral intensities appear on
both sides of the above equation, can be obtained by iteration. By plugging
the result at position r with energy E again into the right-hand side of the
equation, the solution is propagated to another point in space, with a pos-
sibly different energy, such that all possible diagrammatic contributions –
constructed from the three building blocks in Fig. 12 – are included. A sta-
tionary scattering result is obtained once the iteration procedure converges,
i. e. another iteration step does not differ from the previous iteration step.

The final figure of merit, however, as detected by a detector at position R
in the far field of the slab, is the already mentioned flux density, integrated
over all occurring single-particle energies, see (62):

J(R) =
4π

`dis

∫
dr
∫

dE
∫∫

dk dk′

(2π)6
k + k′

2
G∗E(k

′)GE(k)e
i(k−k′)(R−r)IE(r)

=
R

4π`disR
3

∫
dr e−ξ(R,r)/`dis

∫
dE
√
E IE(r) , (119)

where (107) and the formal definition of the flux density [165], i. e.

(k+k′)ei(k−k′)(R−r) = i
[
eik(R−r)∇Re

−ik′(R−r) − e−ik
′(R−r)∇Re

ik(R−r)
]

,

(120)

was used in order to evaluate the momentum integrals. The derivatives in
(120) were truncated for all terms of order O(R−2) and higher, in accordance
with the Fraunhofer approximation [156] for |R| � |r|. The function ξ(R, r)
denotes the distance the particle has to travel before leaving the slab. For
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our slab geometry, ξ(R, r) = z/cosθ, with backscattering angle cos θ = −R ·
ez/R.

The diagrammatic analogue to the expression (119) is a final disorder scat-
tering event at r – the point where the spectral density scatters in the direc-
tion of the detector – and a respective average or vacuum propagation while
being inside the slab or in the surrounding vacuum, where the detector is
placed.

Eq. (119), i. e. the diffusive or ladder flux density that is detected outside
the slab, will be of importance in Chapter 4, when we will compare the
ladder to the crossed contribution that manifests itself only outside the slab.
For now, we follow the line of thought for the linear ladder component and
analyze eq. (117) – the contribution within the slab – in more detail.

Eq. (117) may be simplified in the weak interaction limit, i. e. if `int � `dis,
cf. (109). Hence, mostly scattering off the disorder potential occurs, and the
spatial transport of particles between r and r′ is dominated by the single
particle propagator PE(r, r′).17 In a contact approximation for the collision

17 As we will show in detail later in
this chapter, the number of
collision events in the weak
interaction limit in a very large
slab, e. g. for the collision strength
α = 1/250, see eq. (127), and
optical thickness b = 50, will be
of the order of 10, compared to
the number of disorder scattering
events on the order of 103.

contributions we may thus assume

gL
E ′,E(r

′, r′′, r) ' δ(r′ − r)δ(r′′ − r)gL
E ′,E ,

fLE ′,E ′′,E(r
′, r′′, r) ' δ(r′ − r)δ(r′′ − r)fLE ′,E ′′,E , (121)

with

gL
E ′,E =

∫∫
V

dr′ dr′′ gL
E ′,E(r

′, r′′, r) ,

fLE ′,E ′′,E =

∫∫
V

dr′ dr′′ fLE ′,E ′′,E(r
′, r′′, r) . (122)

Eq. (117) can thus be stated as

IE(r) = I0(r)δ(E− EL) +

∫
V

dr′ PE(r, r′)IE(r′)

+

∫∞
0

dE ′
[
gL

E ′,EIE(r) +
∫∞
0

dE ′′fLE ′,E ′′,EIE ′′(r)
]
IE ′(r) . (123)

As mentioned above, contributions of the collisional processes to the trans-
port arising, e.g., from repulsion between the particles are neglected for
`int � `dis. Instead, the collisions lead to a re-distribution of single-particle
energies in eq. (123).

Since only the linear propagation in eq. (123) is position-dependent, we
can rewrite (123) with the help of Appendix D.1, as an equation that effec-
tively becomes one-dimensional, and solely depends on the depth z in the
slab, cf. (104). Our final result for the nonlinear integral equation describing
ladder transport thus turns out to be:

IE(z) = I0(z)δ(E− EL) +

∫
V

dz ′PE(z, z ′)IE(z ′)

+

∫∞
0

dE ′
[
gL

E ′,EIE(z) +

∫∞
0

dE ′′fLE ′,E ′′,EIE ′′(z)
]
IE ′(z) , (124)

where I0(z) and PE(z, z ′) = P(z, z ′) (since, as mentioned above, the mean
free path is independent of E) are defined as in eq. (104).
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Using (31), with the explicit form of the T -matrix derived in Appendix B.1,

〈k34| T̂ (1)U (E12) |k12〉 = 16πas

(
1− ias

√
E12
2

+ . . .

)
, (125)

the definition of the average Green’s function (107), and the contact approx-
imation, (110) simplifies, with some residual calculus, to

gL
E1,E2

=
2Re
ρ0

 2β
√
EL

2i
√
E2 − 1/`dis

−
α
[(√

E1 +
√
E2
)3

−
∣∣√E1 −

√
E2
∣∣3
]

6
√
E1E2(2

√
E2 + i/`dis)


' −

α

ρ0
×

 1+ E1

3E2

,E1 6 E2 .√
E1

E2

+ 1
3

√
E2

E1

,E1 > E2 .
(126)

The terms proportional to β and α in the first line of (126) correspond to
different orders in the s-wave scattering length as, cf. (125), with

α = 8πa2s `disρ0 =
`dis
`int

, and β =
8πas`

2
disρ0

kL`dis
, (127)

where we used the definition of `int, see eq. (109), for the definition of α.
From the s-wave scattering approximation we find that the dimensionless
parameters α and β, which determine the collision strength, are related to
each other as follows:

α� β , since
α

β
= kLas � 1 . (128)

Note that the term ρ0 in the denominator of (126) drops out once we
normalize the spectral density IE with respect to the initial density I0 in
eq. (124). The second line of expression (126) is obtained in the weak disor-
der potential limit k`dis � 1, where we neglected the small but finite real
contribution proportional to β, i. e. −βEL/ρ0E2kL`dis. As this result becomes
rigorous only in the limit k`dis →∞, let us comment on it in more detail:18

18 The same line of argument also
holds for the nonlinear parameter

g of the Gross-Pitaevskii
equation in eq. (142).

In Section 3.3.3 we will demonstrate, see eq. (131), that the integral equation
(123) conserves the particle and energy flux for finite k`dis and for collision
contributions proportional to α only, see eqs. (126) and (129). This in turn
implies, however, that the small but finite contribution proportional to β
in (126), i. e. of the order of (k`dis)

−1, must already be compensated for by
another diagram, and thus does not affect the conservation laws (131). In-
deed, as depicted in Fig. 15, a diagrammatic contribution can be identified
which is equal in magnitude and opposite in sign, such that the contribution
proportional to β in eq. (126) vanishes.

The compensating diagram in Fig. 15 is in fact of non-ladder type and
should not appear in our consideration here. However, in (125) we derived
the vacuum T -matrix, in the weak disorder limit, which – in a more rigorous
treatment – should be replaced by the T -matrix in the medium. Therefore,
the compensating diagram in Fig. 15 must be seen rather as a first correction
to the vacuum T -matrix. In order to be consistent, the disappearance of the
term proportional to β in (126) must either occur in the limit k`dis → ∞
(vacuum), or by redoing our calculations with the full T -matrix for the dis-
ordered medium (a complicated procedure beyond the scope of this thesis).
In the following, we will thus simply classify the different diagrams by their
very small parameter (k`dis)

−n, with n being a positive integer, in order to
identify the leading contributions.
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Figure 15: Illustration of how certain diagrammatic contributions can be compen-
sated for by other diagrams. By virtue of Fig. 14b), the left diagram is identical to
the left diagram of Fig. 12b); its mathematical form contains two terms proportional
to α and β, see eqs. (126). By restricting the analysis to terms proportional to β, sim-
ple calculations with the help of Appendix E reveal that the left diagram contains a
real contribution which is compensated for by the right diagram, thus leading to a
fullly imaginary contribution up to order ∝ (k`dis)

−2. Higher orders are compen-
sated for by higher orders of the right diagram. Applying the same reasoning to the
conjugated diagrams, and thus accounting for the right diagram in Fig. 12b), one
concludes that the contribution proportional to β in eq. (126) vanishes identically,
even for finite k`dis � 1. See main text for further details.

Note that the contribution proportional to β in (126) is identical to the
nonlinear contribution that appears within the stationary Gross-Pitaevskii
equation [62]. Consequently, the nonlinearity of the ladder contribution for
the Gross-Pitaevskii equation vanishes for the stationary scattering scenario
– a result which we devote further attention to in Section 3.3.4, where we
compare our model to the predictions of the Gross-Pitaevskii equation.

Along the same lines as the derivation of (126), eq. (111) can be equally
determined in the weak disorder limit:

fLE1,E2,E3

=
−α

8ρ0
√
E1E2E3

∑
si∈{0,1}

(−)s1+···+s4

×
∣∣∣(−)s1

√
E1 + (−)s2

√
E2 + (−)s3

√
E3 + (−)s4

√
E1 + E2 − E3

∣∣∣

=
α

ρ0
√
E1E2E3

×min
[√
E1,
√
E2,
√
E3,
√
E1 + E2 − E3

]
. (129)

The sum in the formula comprises arguments given in compact form, to
display the different absolute value contributions with alternating signs, as
long as the values of the single particle energies remain unspecified. Since
the diagram Fig. 12c) involves one collision event for each amplitude, each
at least proportional to as, see eq. (125), the corresponding density in (129)
is already proportional to a2s , i. e. to α. All higher contributions in as are
suppressed in the s-wave scattering limit, due to kas � 1, and will not be
considered here.

3.3.3 Particle and Energy Flux Conservation

In order to verify that the three scattering building blocks in Fig. 12 are the
only contributions one has to consider in the weak disorder limit k`dis � 1,
up to second order in as, one has to check eq. (123) for particle and energy
flux conservation. Since the linear (collision-free) contribution (108) is itself
probability-conserving, i. e.∫

V

drPE(r) = 1 , (130)

the collision contributions have to compensate each other. And indeed, for
our choice of building blocks one can show that eqs. (126) and (129) conserve
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the particle and the energy flux as a consequence of the optical theorem,
eq. (34):

√
E2 g

L
E1,E2

= −

∫∞
0

dE3
√
E3 f

L
E1,E2,E3

, (particle flux)

(E1 + E2)
√
E2 g

L
E1,E2

= −

∫∞
0

dE3 2E3

√
E3 f

L
E1,E2,E3

. (energy flux)

(131)

The proof of (131) is given in Appendix C. Consequently, it becomes obvi-
ous that (125) had to be expanded to second order in as, since otherwise
the contribution (129), which is already proportional to a2s , could not be
compensated for by (126).

Furthermore, the microscopic reversibility of the collision kernels (126)
and (129) is worth noting:

gL
E1,E2√
E1

=
gL

E2,E1√
E2

,
fLE1,E2,E3√
E1 + E2 − E3

=
fLE3,E1+E2−E3,E1√

E2

. (132)

Up to the trace of the undetected particle (that leads to the square root in
the denominators), our microscopic ansatz equally describes the collision
process with reversed directionality of the arrows in Fig. 12b) and c). As
a consequence of the terms in the denominator, we will see that the flux
density rather than the density is invariant under reversal of the particle
propagation direction, see the discussion in Section 3.4.

As a next step, we can now try to determine a stationary solution of
eq. (123). For this purpose, let us define the respective total particle flux
J(r) =

∫
dE JE(r) and the total energy flux K(r) =

∫
dEKE(r), where

JE(r) =
√
EIE(r) and KE(r) = E

√
EIE(r) , (133)

respectively. Due to the fact that PE(r, r′) = P(r, r′) is independent of E,
together with (131), the total particle and energy flux fulfill the same linear
transport equation (100):

J(r) = J0(r) +
∫
V

dr′ P(r, r′)J(r′) ,

K(r) = K0(r) +
∫
V

dr′ P(r, r′)K(r′) , (134)

where the source terms J0(r) =
√
ELI0(r) and K0(r) = EL

√
ELI0(r) are de-

fined accordingly. Eq. (134) results from eq. (123) by multiplication with
√
E

(or E
√
E), and subsequent integration over E. The collision contributions

drop out upon integration over the energy, because of relation (131). Hence,
since the linear transport equation is flux conserving, cf. (130) and [48], also
particle and energy flux are conserved. Furthermore, eqs. (134) are of iden-
tical linear form and related to each other via K0(r) = ELJ0(r), such that the
total energy flux is fixed to

K(r) = ELJ(r) . (135)

We can now use the insights from above to determine a stationary solution
far inside the medium, i. e. for z → ∞, where the source term vanishes
due to the exponential damping, and the constant solution of (123), here
expressed for the particle flux JE =

√
EIE must fulfill∫∞

0
dE ′

gL
E ′,E√
E ′
JEJE ′ +

∫∫∞
0

dE ′ dE ′′
√
E
fLE ′,E ′′,E√
E ′
√
E ′′
JE ′JE ′′ = 0 . (136)
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Figure 16: Diagrammatic representation of the fully elastic ladder contribution cal-
culated via the Gross-Pitaevskii equation, eq. (142). (a) is the same building block
as obtained in Fig. 12a), and (b) is equivalent to Fig. 12b), once the trace over the
undetected particle is conducted according to (65), cf. Fig. 14b).

Eq. (131), together with the microscopic reversibility (132) ensures that the
ansatz JE ∝ Ee−γE with γ > 0 satisfies eq. (136). Furthermore, γ can be
determined via (135) as γ = 2/EL. Therefore, a stationary solution of the
integral equation (123) for the particle flux is found to be

JE(r)
J(r)

=
4E

E2L
e−2E/EL . (137)

This is a Maxwell-Boltzmann distribution with a temperature T determined
by the initial energy EL = kBT/2. As a consequence, we expect the parti-
cle flux incident on the slab to equilibrate towards the distribution (137),
provided the slab is sufficiently long. However, before scrutinizing this pre-
diction numerically, we come back to the diagrammatic Gross-Pitaevskii
equation: In which limit does our result (123) reproduce the stable coherent
state described by the Gross-Pitaevskii equation, rather than thermalization?

3.3.4 Elastic Nonlinear Transport – the Gross-Pitaevskii Limit

We come back to the Gross-Pitaevskii equation (1) introduced at the begin-
ning of this thesis to demonstrate the relation of the former to our diagram-
matic theory. For the case of stationary solutions of the form

ψ(r, t) = ψ(r)e−iµt/ h , (138)

the Gross-Pitaevskii equation, as e. g. derived in [87], reads
(
−∇2 + V(r) + g|ψ(r)|2

)
ψ(r) = µψ(r) . (139)

It describes, e.g., the ground state wave function of a dilute Bose gas of
repulsively interacting particles at zero temperature [83]. As before, V(r)
denotes the external disorder potential, ψ(r) is the single-particle wave func-
tion (associated with the wave function of the condensate), and g = 8πas de-
termines the interaction strength and accounts for one half the first term in
(125). The factor 1/2 arises due to the indistinguishability of the two-particle
scenario considered in detail in Appendix B.1. The value of the chemical po-
tential µ is determined by the source term – an incident matter wave in a
scattering setup – where ψ(r) takes the role of the scattering amplitude, see
e. g. [43, 44].

Consequently, a diagrammatic representation of the scattering process de-
scribed by (139) can be developed [62], where now single particles propagate
in a nonlinear medium. This scenario becomes more obvious if we rewrite
(139) as an integral equation

ψ(r) = ψ0e
ikLr + µ

∫
V

dr′G0(r − r′)
(
Ṽ(r′) + g̃|ψ(r′)|2

)
ψ(r′) , (140)
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where we assumed as initial condition an incoming plane wave, in accor-
dance with our slab scenario Fig. 7, and, again, the integration extends over
the volume V of the slab. The free Green’s function G0(r − r′) is defined as
in (73), Ṽ = V/µ, and

g̃ = g/µ . (141)

Despite the fact that we are dealing with a nonlinear equation which, for
the stationary solution, however, only accounts for elastic collision events,
one can repeat the average over the random disorder potential as explained
in Section 3.2, to derive an expression for the average ladder density, in the
weakly disordered medium, similar to (100) (for further details we refer the
reader to [62]):

I(GP)(r) = I(GP)
0 (r) +

∫
V

dr′P(r, r′)I(GP)(r′)
[
1− ikL`dis(g̃− g̃

∗)I(GP)(r′)
]

.

(142)

The linear propagator P(r, r′) is given by (101). In accordance with the dia-
grams developed so far in this chapter, see Fig. 12, we depict the linear and
nonlinear ladder building blocks of eq. (142) in Figs. 16a) and b), respec-
tively. It turns out that the diagrammatic building blocks in Figs. 16a) and
b) are identical to the building blocks in Figs. 12a) and b), respectively, if
one conducts the trace over the undetected particle in Fig. 12b) according to
(65) (diagrammatically depicted in Fig. 14b) and – for the case of a single
realization of the disorder potential – already mentioned in Fig. 6).

This also follows from comparison of eqs. (123) and (142), where the case
of elastic transport – as predicted by (142) – can be achieved by neglect of
the contribution fLE ′,E ′′,E in (123), i. e. by setting α = 0. For the case of a
scattering setup, where the initial and final states are asymptotically free,
the chemical potential corresponds to the single-particle energy, i. e. µ = k2L.
Therefore, the remaining collision contribution proportional to β in (123) is
related to (141) via β = ρ0kL`disg̃, which, expressed in terms of g, equals

g =
βkL

`disρ0
= gL

EL,EL
(α = 0) . (143)

The last equality is due to eq. (126). Hence, eq. (143) exactly corresponds
to the contribution proportional to β which we demonstrated to be negli-
gible in eq. (126) and in Fig. 15. The same reasoning thus also applies for
eq. (142): Since g̃ ∈ R, we have g̃− g̃∗ = 0, and the nonlinear contribution
of the Gross-Pitaevskii equation vanishes identically for the case of ladder
transport.

In conclusion, we have shown that our diagrammatic theory for the ladder
component reproduces the corresponding stationary Gross-Pitaevskii equa-
tion for the collision strength α = 0. In this limit, both approaches result
in a linear elastic scattering process, where an initial particle (plane wave)
with energy EL will keep its energy throughout this transport process, and
the influence of particle-particle collisions vanishes. Hence, eq. (142) and
eq. (100) coincide.

However, switching on the collision parameter α will lead to a dramatic
effect of the inter-particle collisions – a situation which we examine next
when presenting the solution to eq. (124).
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3.4 results

In Fig. 11 we show the particle density as obtained for linear ladder trans-
port processes within the slab. Within this section we go beyond the linear
scenario and solve the nonlinear eq. (124). In general, a solution to (124) can
be found via (numerical) iteration until a stationary density profile within
the slab is achieved. Two density profiles are of interest. First, the one cor-
responding to the integrated flux density of particles (also named particle
flux before), and, second, the spectral flux density. Both will be analyzed in
the following two subsections.

3.4.1 Total Flux Density Inside the Slab

In accordance with eqs. (119) and (133), we define the total flux inside the
slab J(r) as the flux of particles entering (and leaving) a small volume ele-
ment around r:

J(r) =
∫

dE JE(r) , with JE(r) =
√
E IE(r) . (144)

In the following, we will determine J(z) by numerical iteration of (124), as a
function of the position z in the slab, and parametrized by α which controls
the collision strength.19 Furthermore, JE(z) can be divided into an elastic

19 A certain choice of parameters
(b = 40 and α = 1/250) has
already been investigated in [164].

and an inelastic component that do and do not conserve the respective single-
particle energy20

20 Due to the particle and energy flux
conservation (131), the total energy
is conserved.

JE(z) = J
(el)
E (z) δ(E− EL) + J

(inel)
E (z) . (145)

This in turn allows to define the elastic and the inelastic components J(el)(z) =√
ELI

(el)(z) and J(inel)(z) =
∫

dE
√
EI

(inel)
E (z) of the total flux density J(z) =∫

dE JE(z) = J(el)(z) + J(inel)(z), which we will compare to the solution of
the flux density J(lin)(z) =

√
ELI(z) of the linear integral equation (100). As

shown in (134), the latter is identical to the total flux density, i. e. J(lin)(z) =

J(z).

Due to our prior assumptions,

• weak disorder potential (k`dis � 1),

• collisions less frequent than scattering events off the disorder potential
(`int � `dis),

• s-wave scattering approximation (kas � 1),

• dilute gas limit (asρ
1/3
0 � 1),

we infer α = `dis/`int � 1 (see (127)), and the following chain of inequalities:

as �
[
k−1 , ρ−1/30

]
� `dis � `int . (146)

Typical experimental parameters for ultracold bosonic gases are within the
range ρ0 ' (1018 − 1021)m−3 and as ' (10−8 − 10−9)m [110], respectively,
what allows `int ' (4x10−2 − 4x10−7)m to vary over five orders of magni-
tude, see (109). Monte-Carlo simulations reveal [166] that the number of
scattering events off the disorder potential scales with the squared optical
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thickness b2, whereas the corresponding number of collision events is sup-
pressed by α, i. e. scales approximately as b2`dis/`int.

In accordance with the range of validity of our theory, we now plot in the
left columns of Figs. 17 and 18 the elastic, inelastic, the combined total, and
– for comparison – the linear flux density J(el)(z), J(inel)(z), J(z), and J(lin)(z),
respectively, for different slab sizes b and nonlinear parameter α.
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Figure 17: Left column: Different components of the total flux density normalized
to the incoming flux density J0(z) for a slab of thickness b = 10 and increasing non-
linear collision strength α = 0.001 (a), α = 0.005 (c), α = 0.01 (e). The (salmon) solid
line and the (red) long-dashed line, i. e. J(lin)(z) and J(z), are identical, a consequence
of (134). Observe, how the inelastic flux density J(inel)(z) ((blue) dotted line) starts
to dominate over the elastic flux density J(el)(z) ((green) dashed line) with increas-
ing α. Right column: Normalized inelastic spectral flux density as a function of the
single particle energy E/EL (same parameters as on the left side). Here, the (blue)
dotted line, the (green) dashed line, and the (red) long-dashed line correspond to
different positions z = 0, z = b/4, and z = b of J(inel)(z) within the slab (marked by
vertical (gray) lines in the plots to the left), respectively. Here, the emergence of an in-
elastic flux density goes along with a collision-induced thermalization of the atomic
cloud. With increasing slab depth, the inelastic particle current slightly moves from
the thin (black) solid line, i. e. the normalized inelastic flux density of a single in-
elastic collision

√
EfLEL,EL,E/(−

√
ELg

L
EL,EL

), cf. (129) and (131) for the normalization,
towards the (salmon) solid line representing the Maxwell-Boltzmann distribution
J
(MB)
E = 4E exp[−2E/EL]/E

2
L, cf. (137).
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Figure 18: Same as in Fig. 17 but for increasing optical thickness and fixed α =

0.005. Left column: Here, the dominance of the inelastic flux density J(inel)(z) ((blue)
dotted line) over the elastic flux density J(el)(z) ((green) dashed line) is is emphasized
in dependence of increasing slab length, b = 20 (a), b = 30 (c), and b = 40 (e). Right
column: Consequently, also the equilibration of the normalized inelastic spectral
flux density is more pronounced. The distribution at the end of the slab in (f),
i. e. the (red) long-dashed line, cannot be distinguished from the thermal distribution,
i. e. the (salmon) solid line, cf. also Fig. 19.

The equivalence of the linear flux density and of the total flux density, as
mentioned at the beginning of this section, is reflected in our data, and can
be checked by comparison of the (salmon) solid and of the (red) long-dashed
lines in the left columns of Figs. 17 and 18. Both contributions show an ini-
tial rapid increase of the density in the slab which then decreases linearly
towards the end of the slab – a behavior that has already been observed in
Fig. 11. Remember that those curves are the same as predicted by the solu-
tion of the Gross-Pitaevskii equation, see (142), where the nonlinear terms
cancel each other due to g̃ ∈ R.

Beyond the realm of the Gross-Pitaevskii equation lies the separation of
the total flux density into elastic and inelastic contributions. We observe
that for very small nonlinear parameter α and/or small optical thickness
b, cf. Fig. 17a), the elastic component dominates the transport within the
slab, and the impact of the collisions on the ladder component, i. e. the
contribution described by the inelastic contribution, is very small. However,
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if we increase α and/or the optical thickness b, but ensure α � 1, the
elastic component still dominates at the beginning of the slab, where only
few collisions have occurred so far, but is rapidly overtaken by the inelastic
component after only a few disorder events (i. e. for z of the order of few
`dis) within the slab, see Figs. 17e) and 18).

3.4.2 Spectral Flux Density Inside the Slab and the Creation of a Thermal Cloud

We focus now on the inelastic component of the flux density and, in particu-
lar, on its normalized spectral decomposition, i. e. J(inel)

E (z) in (145), depicted
for different depths z in the slab in the right columns of Figs. 17 and 18.

This continuous emergence of the inelastic component of the flux, and
the simultaneous disappearance of the elastic component, are tantamount
to the formation of what is colloquially called a non-condensed fraction or
thermal cloud, see also the discussion in Section 2.2.2 and 2.2.3. The corre-
sponding depletion of the condensate can be understood as follows: In the
initial (non-interacting) state, see (35), all N particles are described by the
same single-particle state, that – via the formal definition of a condensate via
the one-particle density matrix, i. e. the Penrose-Onsager criterion [83] and ref-
erences therein, – corresponds to a pure state, i. e. a pure condensate. Hence,
the initialN-particle state factorizes and can be expressed as anN-fold prod-
uct of a single-particle state where fixed total energy implies fixed energies
also for the individual particles. The evolution of this single-particle state
is described by the Gross-Pitaevskii equation, which – as we saw – is iden-
tical to the elastic contribution of the integral equation (124). This in turn
means that scattering off the disorder potential – despite the population of
modes with different momenta – amounts to a coherent process which can
still be described by a single superposition state of these momenta. Thereby
the condensate adapts to the presence of the disorder potential. The inelas-
tic scattering process, however, involves two distinct particles that interact
with each other and change their single-particle energies to eventually form
a "thermal" cloud. The interplay of the nonlinear collision strength α and
the optical thickness b hereby strongly determines this process. The oppo-
site process where two particles of the "thermal" cloud collide and re-enter
the condensate mode has a negligible probability for the case of a weak
(disorder) potential. This is due to the infinite number of continuously dis-
tributed and infinitely extended modes into which the particles can scatter,
i. e. the absence of a bound state (as found e. g. for setups including a trap)
in which a condensate could form.

In Fig. 17b) we observe that, for small α and b, the spectral inelastic flux
density only slightly differs from the spectral distribution to the flux den-
sity of a single inelastic two-particle collision event

√
EfLEL,EL,E/(−

√
ELg

L
EL,EL

)

(thin (black) solid line), cf. eqs. (129) and (131) for the normalization. Hence,
the probability for a given particle to take part in more than a single inelastic
collision is very low for the chosen set of parameters. However, by increas-
ing α and/or b, the spectral distribution evolves, while the particles prop-
agate deeper into the slab, towards a thermal distribution, cf. the (salmon)
solid lines in the right columns of Figs. 17 and 18 and eq. (137).

Since the integrated flux density (after reaching its maximum at the be-
ginning of the slab) decreases linearly as a function of the depth in the slab,
collisions become very unlikely towards the end of the slab, and the spectral
distributions of the inelastic flux density are only slightly altered between
z = L/4 and z = L. This also manifests in Fig. 19, where we see that the
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Figure 19: Absolute difference between the Maxwell-Boltzmann distribution and
the inelastic spectral flux density as a function of the depth in the slab z, see (137)
and (147). In all plots, the (blue) dashed and the (red) solid line correspond to
α = 0.005 and α = 0.01, respectively. For the purpose of comparing the influence
of the slab length on the thermalization dynamics, we choose the same logarithmic
scale for all vertical axes. The discussion before (137) showed that exact agreement
with the Maxwell-Boltzmann distribution is only achieved for z → ∞, whereas the
contribution to thermalization is most pronounced where the particle density is high-
est, i. e. in the first half of the slab.

difference between the (normalized) inelastic and the Maxwell-Boltzmann
flux density,

∣∣∣
∣∣∣J(inel)

E (z) − J
(MB)
E (z)

∣∣∣
∣∣∣ =

√
EL

∫
dE
[
J
(inel)
E (z) − J

(MB)
E (z)

]2
, (147)

saturates as a function of the position in the slab. Whereas full thermaliza-
tion, of course, requires an infinite slab, it is nonetheless possible to roughly
determine the number of collision processes which are sufficient to reach
the degree of thermalization we observe in our simulation. From the width
of a single inelastic two-particle collision (∼ 0.5EL) we can estimate that
O(10) collision events lead to a sufficient energy spread for the distribution
to become quasi-thermal. This is in accord with our observation of roughly
αb2 ∼ 10 collision events leading to a quasi-thermal distribution in Fig. 18f).

3.4.3 Comments Regarding Our Results

It is instructive to go back to Section 1.3, in order to gain some understand-
ing for the mechanisms at work which lead to "thermalization" in a closed
and unitary setup like ours. Within the proposed mechanism of eigenstate
thermalization [67, 68, 167] it can be proven that a quantum system will equi-
librate towards a Maxwell-Boltzmann distribution if the classical analogue
of the quantum system shows chaotic behavior. Srednicki [68] considers a
gas of N particles with mass m, radius a, and hard-core interaction in the
semiclassical limit, k−1 6 a � ρ

−1/3
0 , as the classical counterpart of a cold

quantum gas, where the eigenstates can be expressed as random superposi-
tion of plane waves. Precisely this condition – also known as Berry’s conjec-
ture [168] – breaks the integrability of the underlying system and allows the
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eigenstates to mediate diffusive transport in phase space. As a consequence,
the quantum system mimics "thermalization" by purely unitary dynamics.

Although we apply a different restriction as �
[
k−1 , ρ−1/30

]
� `dis, see

(146), we find ourselves in the semiclassical, i. e. the weak disorder potential,
limit, where it can be shown that the amplitudes, from which the ladder
density is formed, coincide with a stationary Gaussian stochastic process
[163, 169]. Hence, from the eigenstate thermalization hypothesis, "thermal-
ization" is also expected for our setup, where the role of the disorder po-
tential is precisely to randomize the individual particle’s momenta, as a
necessary prerequisite for seeding inelastic collision events [164].

Let us also mention again that our theory is limited to a certain parame-
ter regime, in particular k`dis � 1 and the inequalities (146). Strictly speak-
ing, our theory fails to properly predict the behavior of particles with en-
ergy E → 0 when we switch from the regime of weak to strong disorder√
E`dis 6 1.21 The formerly – over the whole disorder potential – extended

21 Note, however, that for `dis →∞,
i. e. very weak disorder potentials,

the fraction of particles with
energy

√
E < `−1dis becomes

smaller and smaller.

eigenstates become now exponentially localized and particles below a cer-
tain energy become trapped. If our initial single-particle energy lies below
the corresponding critical temperature for condensation – which is not ex-
cluded by (146) – we expect that fragmented condensates can form in the
minima of the strong disorder potential [170] provided that the finite life-
time of the localized state is larger than the time needed to form a conden-
sate [142, 171]. For a critical disorder strength one even expects to observe a
quantum phase transition to the Bose-glass phase [40, 75, 172, 173]. These ef-
fects, however, require a different theoretical treatment and thus lie beyond
the scope of this thesis.

In Section 2.2 we discussed the relevance of the quantum Boltzmann equa-
tion for our description, a discussion we like to prolong here. For the sta-
tionary case, we found that the Maxwell-Boltzmann distribution (137) solves
the integral equation (123) as a consequence of the conserved particle and
energy flux for the collision contributions, see (131) and (136). The same
reasoning holds for the quantum Boltzmann equation (16) where – in the
stationary limit and for vanishing external potential22 – the linear propa-

22 In our case, the disorder potential
is already included within the

average Green’s functions,
i. e. within the single-particle

density (100).

gation vanishes and the H-theorem [13] applied to the collision integral (20)
leads to a Maxwell-Boltzmann distribution.

Similarly, we already discussed in Section 3.2 that the linear transport
of the quantum Boltzmann equation, in our case, involves averages over
the random disorder potential and is thus given by the radiative transfer
equation (103), the differential version of the integral equation (100). Our
treatment thus combines the two general cases treated in the literature [5],
where either a scenario of one particle within a random bath (Lorentz gas)
or a dilute gas of N interacting particles without random disorder is dis-
cussed, and the validity of the derived equations strongly relies on scaling
arguments. As it turns out in our stationary case, averaged over many re-
alizations of the disorder potential, it is precisely the combination of both
effects which allowed us to exactly quantify the regime of validity of our
final integral equation (123) in terms of the parameters k, `dis, and `int.

Further support for our treatment and the immense simplification comes
from a recent work by Benedetto et al. [129]. In their work, they treat
the N interacting particle case in terms of a resummation of collision di-
agrams. They subdivide the full collision process of all particles into sub-
collision events which are connected by free flights of single particles. In our
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language, the sub-collision events and the free single-particle flights corre-
spond to single collision events gL and fL (and the subsequent trace over the
undetected particle), and a required intermediate scattering off the disorder
potential due to the condition `int � `dis, respectively. However, due to the
presence of the weak disorder potential we can neglect recurrent collisions
of two particles, what drastically simplifies the complicated resummation of
the scattering series for the sub-collision events as encountered in [129].

3.5 summary

In this chapter, we started from the textbook derivation of linear diffusive
transport of the average flux density in weak random disorder potentials,
and expanded the former by taking into account binary collisions in a dilute
gas of cold bosons.

The main result is the derivation of an integral equation which, upon
iteration, predicts the stationary flux density of particles, injected with a cer-
tain energy, inside the slab. We demonstrated how this equation improves
on the description by the Gross-Pitaevskii equation, and predicts – as a func-
tion of experimentally tunable parameters – the dynamical transition of an
initial equilibrium condensate state to a thermalized single particle spectral
density of the atoms as they travel across the slab. This elucidates the collo-
quial "formation of a thermal cloud" through fully unitary, non-equilibrium
many-particle dynamics.

Finally, we extended our point of view and showed how our theoretical
description is reflected in recent efforts of deriving a nonlinear quantum
Boltzmann equation. Due to the presence of the weak disorder potential,
we are able to explicitly quantify the regime of validity of our theory, which
we demonstrated to take the form of a Boltzmann equation.





4C O H E R E N T T R A N S P O RT I N A S L A B G E O M E T RY

In Section 3.2 we introduced the diagrammatic representation of incoherent
transport in a weakly disordered slab, i. e. the so-called ladder diagrams.
They were shown to be the only relevant diagrammatic component after av-
eraging over the weak disorder potential. All other contributions are at least
suppressed by the very small factor 1/(k`dis) � 1 (since k`dis � 1). How-
ever, in addition to this contribution, which we identified as (classically)
diffusive, hence phase-independent transport, there exists a small correc-
tion for the case of time-reversal symmetric media: The effect of coherent
backscattering (CBS) – a phase-sensitive effect which, as the name states,
only yields a relevant contribution in the direction opposite to the incoming
source field.1

1 Note that CBS only occurs for the
average (flux) density. For a single
realization of the disorder
potential, the major scattering
contribution results from random
and different scattering paths for
ψ and ψ∗ that give rise to a
rapidly fluctuating signal
commonly known as speckle pattern
[174], cf. Section 2.1.

In this chapter we want to unravel to what extent the coherent transport
dynamics, i. e. the height and width of the coherent backscattering cone, is
affected by elastic and inelastic collisions. First of all, we review the effect
of linear coherent backscattering, i. e. a single particle effect in the presence
of the weak disorder potential only.

As a next step, we introduce particle collisions and, as in the previous
chapter, identify elastic contributions that correspond to the solution of the
Gross-Pitaevskii equation, as well as inelastic contributions that exceed the
former. It will be instructive to see how the inelastic contribution, to some
extent, counteracts the dephasing which arises due to the nonlinear term of
the Gross-Pitaevskii equation. For larger nonlinearities, however, the over-
all dephasing outweighs this effect, and the coherent backscattering effect
vanishes as the width of the inelastic cone goes to zero for k`dis →∞.

4.1 linear coherent backscattering

Fig. 20 illustrates how to obtain the diagrammatic correction to the ladder
density, namely by inverting one of the scattering amplitudes and hence
producing a counter-propagating pair of amplitudes that visits the same se-
quence of scatterers in opposite order. For time-reversal symmetric media,
this phase-sensitive crossed component (also called Cooperon in the literature
[48]) contributes to the averaged scattering signal if the requirement for con-
structive interference is fulfilled, i. e. if the two scattering paths are exactly
equal in length. On average, this is the case only in backscattering direction,
θ = 0, as depicted in Fig. 20c). For the ideal case of a stationary disorder
potential and neglecting single scattering contributions, the backscattered
density can be enhanced by a factor of two. The width of the cone is pro-
portional to 1/(k`dis), whereas its height, characterized via the interference
contrast or enhancement factor, i. e.

enhancement factor = 1+
crossed density(θ = 0)

ladder density(θ = 0)
, (148)

will depend on various dephasing mechanisms, which will be in the focus
of the following sections.

61
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Figure 20: Exemplary scattering paths at the slab interface (thin vertical line) for
the averaged ladder (a) and crossed (b) density as a function of their angle of
emission θ from the slab, respectively. For the case of linear scattering we have
|kin| = |kout|. The density of the phase-independent ladder contribution (solid line
in (c), normalized to unity for θ = 0) is only weakly θ-dependent, in contrast to the
phase-sensitive crossed contribution (dashed line in (c)) that has maximal contrast
for identical path-length of 〈ψ〉 and 〈ψ∗〉, i. e. θ = 0. The functional dependence of
(c) for a semi-infinite medium, which includes the diffusion approximation and the
neglect of single scattering, can be found in eqs. (8.16) (ladder) and (8.28) (crossed)
in [48], and is here evaluated for kL`dis = 10.

4.1.1 Integral Equation for the Average Density

In contrast to the average ladder density (100) within the slab, where all
phase factors cancel, the average crossed density depends on the sum of the
incoming and outgoing wave vectors q = kin + kout, however with |kin| =

kin = kout = |kout| for the linear case. Inspection of Fig. 20 tells us that the
only difference between (a) and (b) occurs prior to the first and after the
last scattering event within the slab, where due to the different path lengths
the exponential attenuation factors for each path have to be adjusted and a
difference of phase eiqr is acquired. In accordance with these observations,
the average crossed density C(r, q) inside the medium can be obtained by
modification of eq. (100) [48] as

C(r, q) = C0(r, q) +
∫

dr′
e−|r−r′|/`dis

4π`dis|r − r′|2
C(r′, q) , (149)

with

C0(r, q) = C0e−z/(2`dis)e−z/(2`dis cosθ)eiqr , (150)

and C0 = ρ0. In addition to the average ladder density eq. (100), the source
term (150) now contains the additional phase factor eiqr, as motivated above,
and two different attenuation factors e−z/(2`dis) and e−z/(2`dis cosθ) which
account for the absorption of the perpendicularly incident source amplitude
inside the slab and the – under the angle θ – emitted amplitude in the
direction of the detector, respectively. For the exact backscattering direction,
i. e. θ = 0 and q = 0, (149) reproduces the average ladder density, eq. (100),
where again

q = kin + kout =




kD sin θ

0

kL − kD cos θ


 ,

with kL = kin and kD = kout. Adaptation of eq. (149) to the slab geometry
yields an equation for the transverse Fourier transform C̃(z, q) of C(r, q), see
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Figure 21: Normalized density for the ladder and the crossed component ex-
pressed here as γL(lin)(θ)/γ

L
(lin)(0) and [γL(lin)(θ)+γ

C
(lin)(θ)]/γ

L
(lin)(0), respectively, see

(151), as a function of the backscattering angle θ. Negative and positive θ correspond
to an optical thickness of b = 25 and b = 5, respectively. The thin (black) solid line
corresponds to the weakly angle-dependent ladder contribution (equally for differ-
ent values of b and kL`dis), whereas the (red) solid line, the (blue) dotted line, and
the (green) dashed line correspond to kL`dis = 10, 20, and 40, respectively. The
right plot is a magnification of the left one and demonstrates how the cone slowly
develops a cusp with increasing optical thickness. Note the enhancement factor
(1+ crossed/ladder) < 2, due to the presence of the single-scattering contribution in
γL(lin)(θ).

eq. (329), which only depends on z and q. This equation – the pendant of
eq. (104) – can be found in eq. (341) in Appendix D.2 where we also give its
detailed derivation.

However, as the effects of the crossed component become apparent only
in the far-field of the slab, we introduce the bistatic coefficient (also known as
albedo in different fields of physics) [160]. The bistatic coefficient describes
the normalized density with respect to the incoming density at a detector
located at point R in the far field of the slab. The respective coefficients for
the ladder and crossed component are simply obtained by integrating over
all points within the slab from which a scattering signal (weighted with the
depth z) can reach the detector (the corresponding derivation can also be
found in Appendix D.1 and D.2):

γL(lin)(θ) =
1

`dis I0

∫L
0

dz I(z)e−z/(`dis cosθ) , (151)

γC(lin)(θ) =
1

`dis C0

∫L
0

dz
[
C̃(z, q)e−z(1+1/ cosθ)/(2`dis)e−iqzz

− C̃0(z, q)e−z(1+1/ cosθ)/(2`dis)e−iqzz
]

,

with C̃0(z, q) and C̃(z, q) being the transverse Fourier transforms of C0(r, q)
and C(r, q), respectively, see eq. (329). We subtracted the single scattering
contribution (in the second line) from γC(lin)(θ) as this term appears iden-

tically2 in γL(lin)(θ) and would otherwise be double-counted. This is due
2 The equivalence can be seen upon

inserting the source ladder density
I0(z) = ρ0e

−z/`dis , eq. (102), for
I(z) in γL(lin)(θ), and after the
corresponding replacement of
C̃0(z, q) =
ρ0e

−z(1+1/ cosθ)/(2`dis)eiqzz,
cf. eq. (150) and the discussion in
Appendix D.2, in the second line
of γC(lin)(θ).

to the fact that a singly scattered amplitude exhibits no distinct reversed
counterpart; at least two disorder scattering events are required to obtain a
distinct reversed path.

Exemplary normalized ladder and crossed intensities as detected in the
far-field of the slab are plotted for kL`dis = 10 in Fig. 20c), where we neglect
the contribution of single scattering such as to obtain the maximal enhance-
ment by a factor of two in backscattering direction. It becomes obvious that
the crossed component is strongly dependent on the backscattering angle
whereas the ladder component is not. The backscattering cone develops a
cusp for a semi-infinite medium, cf. Fig. 20c), where the scattering paths can
become arbitrarily long [48]. Since the longest scattering paths, by definition,
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are those which are most phase-sensitive, they will mostly contribute to the
backscattering signal for very small angles θ � 1 (whereas the contrary is
true for short scattering paths). As observable in Fig. 21, for a finite medium
the longest paths are limited by the size of the slab, and as a result the cone
appears rather rounded. Fig. 21 furthermore illustrates that the cone width
is inversely proportional to kL`dis, whereas the ladder contribution is inde-
pendent of the parameter kL`dis.3

3 By construction, the ladder
component only depends on the

slab thickness b whose effect
remains hidden, here due to the

normalization γL
(lin)(0) = 1 in

Figs. 20c) and Fig. 21.

Although the crossed contribution constitutes an important effect around
backscattering direction θ = 0, it decays quickly as a function of θ, and
therefore yields only a very small correction with respect to the total lad-
der contribution integrated over all angles. This allows us to introduce the
crossed effect in addition to the ladder contribution under neglect of mu-
tual coupling effects due to flux conservation. Obviously, the total ladder
contribution has to be reduced in order to allow for an enhanced backscat-
tering signal without violating flux conservation. Since we neglect this effect
here, we note that this reduction of the ladder contribution has been care-
fully measured [175], and recently the diagrams have been identified which
allow one to predict these small corrections within a diagrammatic theory
[176].

4.2 nonlinear coherent backscattering

As discussed in the last section, linear coherent backscattering in the ab-
sence of single scattering, although a phase-sensitive effect, always leads
to an enhancement of the backscattered density by a factor of two in ex-
act backscattering direction, since the phase factors completely cancel each
other for θ = 0.

However, this pictures changes dramatically if one allows for dephasing
mechanisms to be present along the path of a crossed diagram. Then, a de-
crease of the enhancement factor is observed. Physically, dephasing could
originate from thermal effects or effects of polarization within the scattering
medium, as e. g. observed when scattering laser light from a cold atomic gas
[177, 178]. An equivalent scenario is given by the nonlinear Gross-Pitaevskii
equation for Bose-Einstein condensates, eq. (142), where the atom-atom in-
teraction serves as a source of dephasing, see Section 4.3. Although pre-
dicted theoretically e. g. by [44, 62, 63], an experimental observation – as a
proof of principle – has only been conducted for the case of non-interacting
atoms [55, 56].4 In addition to the dephasing induced by elastic collisions as

4 The resolution of the experiments
[55, 56] only allows to identify the

presence of a coherent
backscattering cone. Dephasing

effects that are experimentally
present in addition to the very

small residual atom-atom
interaction have not been

quantified yet.

described by the Gross-Pitaevskii equation, we will focus in this thesis on
the influence of inelastic collisions, which lead to another dephasing mecha-
nism for matter waves. Again, a similar situation5 has been investigated for

5 Here, the disorder potential is
realized by the randomly located

atoms in the gas, the photons
correspond to the atoms of the

matter wave in our setup, and the
elastic and inelastic

particle-particle interaction is
taken into account by the

absorption and emission of the
photons by the atoms.

strong laser light fields scattering off cold atomic gases, where the saturation
of the atomic dipole transition leads to inelastic scattering [61, 169, 179–182].
A corresponding reduction of the coherent backscattering enhancement was
measured [59], but a clarifying answer whether the reduction is based on
elastic or inelastic scattering is still missing. For atoms, we give the answer
below.

4.2.1 Diagrammatic Crossed Building Blocks

In this section, we determine the elementary building blocks in order to
describe nonlinear crossed transport processes. In Fig. 13 in Chapter 3, we
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Figure 22: Exemplary nonlinear crossed diagram obtained by inversion of one of
the (red) dashed amplitudes from the corresponding ladder diagram in Fig. 13.

depicted an exemplary ladder diagram for three particles. A correspond-
ing three-particle crossed diagram is shown in Fig. 22. It consists of fun-
damental crossed building blocks, which are summarized in Fig. 23. As
explained in Section 4.1, crossed diagrams are obtained by reversing the di-
rection of one of the scattering amplitudes of the building blocks defined
in Fig. 12. Additionally, the energies of counter-propagating scattering am-
plitudes can be, in principle, different from each other, according to the
possibility |kin| 6= |kout| in Fig. 20. However, energy has to be conserved for
each scattering amplitude, which in turn enforces the following relation for
the conjugate single-particle energies E and E:

E = EL + ED − E , (152)

with EL = k2in and ED = k2out. The limit of linear crossed transport is, of
course, reestablished for E = ED = EL, and thus E = EL.

The linear crossed building block, Fig. 23a), is related to the linear ladder
component (108) as follows:

PC
E (r1, r2) =

4π

`dis

∫∫
dk1 dk2
(2π)6

e−i(k1−k2)(r1−r2)GE(k1)G
∗
E(k2)

= PE(r1, r2)ei|r1−r2|(k−k) , (153)

where k =
√
E as usual, and it is implicitly understood that PC

E (r) = P
C
E,E

(r)
via relation (152). The only difference to (108) lies in the crossed-specific
phase factors which arise due to the two different average Green’s functions
at energies E and E, respectively, in (153).

In contrast to Fig. 23a), we have two possibilities to reverse one of the
arrows for gL, depicted in Fig. 12b). The first contribution amounts to the
elastic contribution, Fig. 23b),

gC
E1,E2

(r1, r2, r3) =
(
4π

`dis

)2 ∫ dk1 . . .dk5
(2π)15

〈k3, k4|T̂
(2)
U (E1 + E2)|k1, k2〉

× e−i[(k1−k4)·r1+(k2+k5)·r2−(k5+k3)·r3]

×GE1
(k1)GE2

(k2)GE2
(k3)G

∗
E1

(k4)G
∗
E2

(k5) , (154)

where we kept – in order not to overload Fig. 23b) – the notation for the
wave vectors used in Fig. 12b). The trace over the undetected particle for
the crossed contribution (154) is conducted as for the corresponding ladder
component and yields again G∗E1

(k4), see Section 2.3 for further details.
In Fig. 12b) we included the complex conjugate diagram into the defini-

tion of gL. For the crossed case, we treat the complex conjugate diagram
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Figure 23: Collection of all diagrammatic crossed building blocks which are ob-
tained by inversion of one of the corresponding arrows from Fig. 12, and under
consideration of energy conservation, see eq. (152). The propagation direction of
the crossed density is defined by the (blue) solid arrow. The linear propagation
PC

E (r1, r2) (a), see (153), and the inelastic collision process fCE1,E2,E3

(r1, r2, r3) (e), see
(158), are uniquely defined with respect to their ladder counterparts. An ambiguity
exists for the crossed counterpart of the elastic ladder collision process. Depend-
ing on which arrow is inverted, we obtain an elastic contribution gC

E1,E2

(r1, r2, r3) (b)
and its complex conjugate (not shown), see (154) and (155), respectively, and the two

inelastic contributions hC
E1,E2

(r1, r2, r3) (c) and
[
hC

E2,E1

(r1, r2, r3)
]∗

(d), see (156) and
(157), respectively. Note that for reasons of clarity the amplitudes are not labelled by
wave vectors. We, however, use the same notation as in Fig. 12 for our calculations.

of Fig. 23b) (not shown in Fig. 23) separately as it requires an additional
replacement E2 → E2:

g̃C
E1,E2

(r1, r2, r3) =
[
gC

E1,E2

(r1, r2, r3)
]∗

. (155)

This relation can be easily checked by looking at the diagrams in Fig. 23b)
(keeping in mind that the solid arrow defines the direction of propagation,
and that complex conjugation amounts to turning solid into dashed arrows,
and vice versa).

The second contribution, where the other arrow of Fig. 12b) is reversed,
is depicted in Fig. 23c) and d), respectively. As we will see, once an inelastic
diagram of type Fig. 23e) or Fig. 12c) has taken place, the diagrams of type
Fig. 23c) and d) can reshuffle the single-particle energies and therefore also
contribute to the inelastic flux. Fig. 23c) is calculated as follows:

hC
E1,E2

(r1, r2, r3) =
(
4π

`dis

)2 ∫ dk1 . . .dk5
(2π)15

〈k1, k4|T̂
(2)
U (E1 + E1)|k2, k3〉

× e−i[(k2−k5)·r1+(k5+k3)·r2−(k1+k4)·r3]

×GE2
(k1)GE1

(k2)GE1
(k3)G

∗
E2

(k4)G
∗
E1

(k5) , (156)

where we again kept the notation for the wave vectors used in Fig. 12b), and
the trace over the undetected particle is summarized within the contribution
G∗

E2

(k4). The diagram depicted in Fig. 23d) is related to Fig. 23c) by the
transformation

h̃C
E1,E2

(r1, r2, r3) =
[
hC

E2,E1

(r1, r2, r3)
]∗

. (157)

This relation can also be verified by looking at the diagrams in Fig. 23c) and
d).
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Finally, we present the calculation for the inelastic crossed diagram in-
volving a collision for each amplitude, as depicted in Fig. 23e):

fCE1,E2,E3

(r1, r2, r3) = 4
(
4π

`dis

)2 ∫ dk4
(2π)3

G∗E1+E2−E3

(k4) −GE1+E2−E3
(k4)

2πi

×
{
1

2

∫
dk1dk2dk3

(2π)9
e−i(k1·r1+k2·r2−k3·r3)〈k3, k4|T̂

(2)
U (E1 + E2)|k1, k2〉

×GE1
(k1)GE2

(k2)GE3
(k3)

}
×
{
(k2 ↔ k3), (E2 ↔ E3), (E3 ↔ E2)

}∗ (158)

Also here we retained the notation from Fig. 12c). Note, however, an addi-
tional factor of two for the crossed in comparison to the ladder component,
which arises due to two possibilities to obtain a crossed diagram by revers-
ing the arrows of the corresponding ladder diagram. The term in curly
brackets in the second and third line appears twice, however with the re-
placements indicated in the last line. Note that the term which results from
the trace over the undetected particle (the argument of the integral still in
the first line of (158)) remains unchanged in comparison to eq. (111), since
E1 + E3 − E2 = E1 + E2 − E3. The second and third, as well as the last line
correspond to the contribution of the solid and dashed amplitudes (that
connect the points r1, r2, and r3 with the collision events) in Fig. 23e), re-
spectively.

4.2.2 The Nonlinear Transport Equation for the Crossed Contribution

Following the line of thought of Section 3.3, knowledge of the microscopic
building blocks is sufficient to construct arbitrary scattering contributions
forN interacting particles simply by connecting the outgoing arrows of each
building block with the incoming arrows of another building block. For the
ladder case, we thereby produced the integral equation (117).

For the crossed case, however, one discovers a relevant issue that was
already brought up in a diagrammatic approach for the Gross-Pitaevskii
equation [62], when the combination of certain diagrams leads to closed
loops, i. e. dead ends within the diagrammatic theory. It turns out, however,
that these forbidden diagrams cannot be reproduced by an iterative solution
of the underlying nonlinear single-particle equation and, hence, must be ex-
cluded from the diagrammatic expansion of the theory [62, 163]. For our,
a priori, many particle description, the forbidden diagram consists of a cer-
tain combination of the building blocks in Figs. 23c) and d) and is depicted
in Fig. 24a). By inspecting this diagram in more detail, one discovers that
the detected amplitudes are unaffected by the collisions of their respective
conjugated amplitudes. In other words, the diagram in Fig. 24a) is redundant
as is does not affect the propagation of the detected amplitudes.6 This is in

6 In general, we can disregard the
evolution of all undetected atoms
which are not connected to the
detected atom by a sequence of
collision events. Therefore,
Fig. 24a) must either give a
vanishing contribution, or be
compensated by other diagrams.

contrast to Fig. 24b), where the collisions really affect the detected ampli-
tudes.

Thus, in order to formulate an applicable theory, we have to split the
desired integral equation into two parts such that Fig. 24b) is allowed, but
Fig. 24a) is suppressed. Consequently, we write down an integral equation
for the nonlinear crossed component involving the contribution in Figs. 23a),
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Figure 24: Exemplary forbidden (a) and allowed (b) diagrams. (a) results as a
combination of diagram Fig. 23c) and then Fig. 23d), whereas (b) corresponds to
the inverse ordering. The respective, finally detected amplitudes are marked with a
detector symbol, such as to stress that the detected amplitudes in (a) (in contrast to
(b)) are unaffected by the collisions of their respective conjugated amplitudes.

b), d), and e) (thus prohibiting that a contribution of the diagram in Fig. 23c)
can occur prior to that):

C
(1)
E (r, q) = C0(r, q)δ(E− EL) +

∫
V

dr′PC
E (r, r′)C(1)

E (r′, q)

+

∫∞
0

dE ′
∫∫

V

dr′ dr′′
(
gC

E ′,E(r
′, r′′, r) +

[
gC

E ′,E(r
′, r′′, r)

]∗)
C
(1)
E (r′′, q)IE ′(r

′)

+

∫Eq

0
dE ′
∫∫

V

dr′ dr′′
[
hC

E,E ′(r
′, r′′, r)

]∗
C
(1)
E ′ (r

′′, q)IE(r′)

+

∫∞
0

dE ′
∫Eq

0
dE ′′

∫∫
V

dr′ dr′′fCE ′,E ′′,E(r
′, r′′, r)C(1)

E ′′ (r
′′, q)IE ′(r

′) , (159)

where we introduced the integral limit Eq = EL + ED. As for the ladder

case, the crossed density C(1)
E (r, q) within the slab decomposes into linear

transport (first line) and nonlinear contributions due to particle-particle in-
teraction (second to fourth line). The source density C0(r, q) is defined as in
(150).

So far, we have neglected the diagram Fig. 23c) in our considerations, for
which we now state a second nonlinear integral equation:

C
(2)
E (r, q) =

∫
V

dr′PC
E (r, r′)C(2)

E (r′, q)

+

∫∞
0

dE ′
∫∫

V

dr′ dr′′
(
gC

E ′,E(r
′, r′′, r) +

[
gC

E ′,E(r
′, r′′, r)

]∗)
C
(2)
E (r′′, q)IE ′(r

′)

+

∫Eq

0
dE ′
∫∫

V

dr′ dr′′hC
E ′,E(r

′, r′′, r)
(
C
(1)
E ′ (r

′′, q) +C(2)
E ′ (r

′′, q)
)
IE ′(r

′)

+

∫∞
0

dE ′
∫Eq

0
dE ′′

∫∫
V

dr′ dr′′fCE ′,E ′′,E(r
′, r′′, r)C(2)

E ′′ (r
′′, q)IE ′(r

′) . (160)

In order to ensure that the diagram depicted in Fig. 24b) is taken into ac-
count, C(1)

E (r, q) enters into C(2)
E (r, q) – however not the other way around, in

order to prohibit the forbidden diagram Fig. 24a). Likewise, also those dia-
grams are excluded where an arbitrary sequence of processes as in Figs. 23a),
b), and e) occurs between Figs. 23c) and d), which are forbidden for the same
reason as Fig. 24a). Note that the source term enters only once in C(1)

E (r, q),

but is included in C(2)
E (r, q), via the coupling of both integral equations. Fur-

ther note that the two crossed components C(1)
E (r, q) and C(2)

E (r, q) are not
only dependent on the position but – as mentioned for the linear crossed
case – depend on the sum q = kin + kout of the initial and final wave vector.
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Once we now conduct the contact interaction approximation as we did
for the ladder component, cf. (121), the equations (159) and (160) simplify
appreciably. Remember that within the contact interaction approximation
the contribution of the collision processes to the transport (due to predom-
inant disorder scattering for k`dis � 1) can be neglected, and one can thus
approximate the occurrence of a collision by a single point in space:

gC
E ′,E =

∫∫
dr′ dr′′ gC

E ′,E(r
′, r′′, r) ,

hC
E ′,E =

∫∫
dr′ dr′′ gC

E ′,E(r
′, r′′, r) ,

fCE ′,E ′′,E =

∫∫
dr′ dr′′ fCE ′,E ′′,E(r

′, r′′, r) . (161)

Using (161), eqs. (159) and (160) simplify, respectively:

C
(1)
E (r, q) = C0(r, q)δ(E− EL) +

∫
V

dr′PC
E (r, r′)C(1)

E (r′, q)

+

∫∞
0

dE ′
[(
gC

E ′,E +
[
gC

E ′,E

]∗)
C
(1)
E (r, q) +

∫Eq

0
dE ′′ fCE ′,E ′′,EC

(1)
E ′′ (r, q)

]
IE ′(r)

+

∫Eq

0
dE ′

[
hC

E,E ′

]∗
C
(1)
E ′ (r, q)IE(r) , (162)

C
(2)
E (r, q) =

∫
V

dr′PC
E (r, r′)C(2)

E (r′, q)

+

∫∞
0

dE ′
[(
gC

E ′,E +
[
gC

E ′,E

]∗)
C
(2)
E (r, q) +

∫Eq

0
dE ′′fCE ′,E ′′,EC

(2)
E ′′ (r, q)

]
IE ′(r)

+

∫Eq

0
dE ′hC

E ′,E

(
C
(1)
E ′ (r, q) +C(2)

E ′ (r, q)
)
IE ′(r) . (163)

Let us stress that these equations can again be adopted to the slab geometry,
where all quantities only depend on the spatial variable z and the compo-
nents of q. The expressions obtained in this case are quite lengthy and rather
obscure the view for the fundamental physics. We thus refer the reader to
Appendix D.2, and especially to eq. (339).

With the approximation (161), the momentum integrals for the collision
diagrams can be evaluated. Taking into account the explicit collision matrix
element (125) for s-wave scattering (see also Appendix B.1), we evaluate
(154) in the limit of large k`dis � 1,7

7 We follow the same procedure as
for the ladder contribution. See
the discussion before eq. (126) for
further details.

gC
E1,E2

=
iβ
√
EL

ρ0
√
E2

[
i+ `dis

(√
E2 −

√
E2

)]2

+
α
[(√

E1 +
√
E2

)3
−
∣∣√E1 −

√
E2

∣∣3
]

12ρ0E2

√
E1

[
i+ `dis

(√
E2 −

√
E2

)]2 . (164)

Accordingly, the contribution
[
gC

E1,E2

]∗
can be read off (164) under consider-

ation of (155). As it should be, we recover the ladder contribution, eq. (126),
in the limit E2 → E2.
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Figure 25: Nonlinear crossed diagrams contributing to the diagrammatic expan-
sion of the Gross-Pitaevskii equation. The diagrams (a), (b), and (c) are equivalent
to the respective collision diagrams in Fig. 23b), c), and d), in the limit α → 0 and
under the replacement of all single-particle energies by EL.

The same assumptions we implied to calculate eq. (164) also apply for
(156), and we obtain, accordingly

hC
E1,E2

=
2
[
iβ
√
EL +α

√
(EL + ED)/2

]

ρ0

[
i+ `dis

(√
E1 −

√
E1

)] [
i+ `dis

(√
E2 −

√
E2

)](√
E1 +

√
E1

) .

(165)

The expression corresponding to the diagram Fig. 23d) is obtained from
(165) with the help of expression (157). After interchanging E1 ↔ E2 –
as becomes obvious by comparison of Figs. 23c) and d) with Fig. 12b) –
the term proportional to β in (165) coincides with the ladder component,
eq. (126), in the limit E2 → E2 and E1 → E1.8

8 It is expected that the α-term does
not coincide with the

corresponding ladder component,
since k12 6= k23 after reversing the

arrows to obtain the crossed
component.

At last, we explicitly state the final form of (158), as needed to determine
solutions to the integral equations (162) and (163),

fCE1,E2,E3

=
α

ρ0

∑
si∈{0,1}

(−)s1+···+s4

[
|E|+

2iE

π
log |E|

]
(166)

×
(
√
E1

[
i

(√
E2 +

√
E2

)
− `dis

(
E2 − E2

)]

×
[
i

(√
E3 +

√
E3

)
− `dis

(
E3 − E3

)]
)−1

,

where

E = (−)s1

√
E1 + (−)s2

[
s2

√
E2 + (1− s2)

√
E2

]

+ (−)s3

[
s3

√
E3 + (1− s3)

√
E3

]
+ (−)s4

√
E1 + E2 − E3 . (167)

The sum formula (166) as a function of (167) is similar to the one defined for
the ladder contribution, eq. (129), with the additional complication that also
the energies E2 and E3 occur. In the ladder limit E2 → E2 and E3 → E3, the
term proportional to |E| equals the corresponding ladder contribution (up to
the previously discussed factor of two), eq. (129), and the term proportional
to 2iE log |E|/π vanishes.

4.2.3 The Nonlinear Crossed Contribution – the Gross-Pitaevskii Limit

For the ladder contribution we observed that the nonlinear contributions
of the Gross-Pitaevskii equation vanish, and that eq. (142) reproduces the
linear transport equation (100). This was due to the fact that the nonlinear
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Figure 26: Gross-Pitaevskii analogue of Fig. 24. (a) All diagrams which exhibit a
closed loop, after attaching the diagram in Fig. 25c) to the tail of Fig. 25b), must be
excluded, whereas the inverse construction of the diagrams is allowed (b). See main
text and [62] for details.

coupling constant is purely real such that the nonlinear contribution in (142)
exactly cancels.

Let us recall – as we showed in the previous chapter – that the Gross-
Pitaevskii limit of our theory is given for α → 0 and β = ρ0kL`disg̃ =

ρ0`disg/kL in the weak interaction limit, and g is again the nonlinear cou-
pling constant known from Gross-Pitaevskii theory [87]. Since the collision
contributions proportional to β do not vanish for our theory, cf. (164) and
(165), we expect that also a nonlinear contribution of the Gross-Pitaevskii
equation contributes to the crossed component. This expectation is due to
the trace formula (65) with the help of which we were able to show that
the elastic two-particle diagrams coincide with the ones obtained from the
diagrammatic representation of the Gross-Pitaevskii equation, see Figs. 14

and 16.
Consequently, we can immediately draw the corresponding collision dia-

grams for the crossed contribution, see Fig. 25. As mentioned previously, the
same reasoning as concerns their combination, i. e. the existence of forbid-
den and allowed diagrams, is recovered within the Gross-Pitaevskii picture,
see Fig. 26. The corresponding integral equation will thus also split into two
contributions. Neglecting the collision contributions proportional to α, we
find for eqs. (164) and (165)

gC
EL,EL

= hC
EL,EL

= −i
β

ρ0
= −ikL`disg̃ . (168)

The integral equations (162) and (163) hence simplify considerably, and we
obtain the integral version of the Gross-Pitaevskii equation for the crossed
contribution,

C(1)(r, q) = C0(r, q) +
∫
V

dr′ PC(r, r′)C(1)(r′, q)
[
1+ ikL`disg̃ I(r

′)
]

, (169)

C(2)(r, q) =
∫
V

dr′ PC(r, r′) (170)

×
[
C(2)(r′, q)

(
1− ikL`disg̃ I(r

′)
)
− ikL`disg̃ C

(1)(r′, q)
]

,

which were also derived in [62]. Note that, for reasons of comparison with
[62], we substituted r→ r′ in the collision contributions, such that now each
collision event takes place at r′ and is subsequently, linearly propagated to
r (in contrast to eqs. (162) and (163) where the linear propagation from r′ to
r occurs prior to the collisions at r).

Note that all quantities in eqs. (169) and (170) are purely elastic, i. e. they
are associated with a δ-function δ(E− EL) in eqs. (162) and (163). At first
sight, it might seem that the terms [hC

E,E ′
]∗ in (162) and hC

E ′,E in (163) could
induce inelastic scattering also for α = 0. A closer inspection reveals that
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this is not the case: inserting elastic quantities (C(1,2)
E ′ ∝ δ(E ′ − EL), IE ∝

δ(E− EL)) on the right-hand side of eqs. (162) and (163) yields δ-functions
δ(E − EL) or δ(ED − EL) on the corresponding left-hand side. Therefore,
hC and [hC]∗ induce inelastic scattering only after seeding with a previous
inelastic event (fL or fC) at α > 0.

Having established the connection of our theory with the Gross-Pitaevskii
equation, we now turn our attention to the detection of the crossed density,
which manifests itself only outside the slab, around backscattering direction.

4.3 results

This section is devoted to the analysis of the coherent backscattering cone
detected in the far field of the slab around backscattering direction. Its prop-
erties as a consequence of linear transport processes have been discussed at
the beginning of this chapter, but also exhaustively in the literature, see
[48] and references therein. The consequences of weak nonlinearities, as de-
scribed, e.g., by the Gross-Pitaevskii equation, which lead to a dephasing
of counter-propagating paths, have been analyzed previously for clouds of
cold atoms, but have attracted further attention, in the context of ultracold
atom experiments. Here, a decrease of the enhancement factor with increas-
ing nonlinearity is expected, and numerical experiments even predict an
inversion of the cone, i. e. an enhancement factor smaller than one [44].

However, these theories apply to the weakly interacting regime and pre-
dict elastic scattering contributions. The question remains how coherent
backscattering will change if inelastic scattering processes are included. Will
the enhancement factor decrease more rapidly due to an additional source
of dephasing? Can the predicted inversion of the cone be confirmed? What
can the spectral decomposition of the cone tell us about the underlying pro-
cesses?

But before addressing these questions, we define the figure of merit, the
flux density and the bistatic coefficient outside of the slab.

4.3.1 Coherent Backscattering – the Figure of Merit

Equivalently to the ladder scenario, where particles acquire different single-
particle energies and, hence, propagate with different momenta, the final
figure of merit is not anymore given by the density, but rather by the flux
density. In contrast to the detected ladder flux density, additional phase fac-
tors have to be considered for the crossed flux density, as already discussed
for the case of linear coherent backscattering.

According to (119), the crossed flux density for the energy ED detected in
the far-field of the slab reads:

JC(R) =
R

4π`disR
3

∫
dr
∫

dED e
−z(1+1/ cosθ)/(2`dis)e−iqr JCED

(r, q) , (171)

with the spectral flux density within the slab given as

JCED
(r, q) =

√
ED

[
C
(1)
ED

(r, q) +C(2)
ED

(r, q)
]
−
√
ELC0(r, q) . (172)

In order to avoid double-counting, we again subtracted the single scattering
contribution C0(r, q), eq. (150). As before, the spectral flux density separates
into an elastic and an inelastic component,

JCED
(r, q) = J(el)

ED
(r, q) δ(ED − EL) + J

(inel)
ED

(r, q) , (173)
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from which the total flux density within the slab is once again obtained by
integration over all energies

JC(r, q) =
∫

dED J
C
ED

(r, q) . (174)

However, as noted before, we rather want to quantify the detected flux den-
sity by the bistatic coefficient – the flux density detected in direction R, and
normalized with respect to the incoming flux density and the distance to
the detector:

γCED
(θ) =

1

JC0 `disA

∫
dr JCED

(r, q)e−z(1+1/ cosθ)/(2`dis)e−iqr , (175)

with JC0 =
√
ELC0, and A the illuminated surface area transverse to the

incoming field (required to normalize the integration over the x- and y-
components). Note that, with the help of (173), we can also define

γCED
(θ) = γ

C,(el)
ED

(θ) + γ
C,(inel)
ED

(θ) , (176)

and, in accordance with (174),

γC(θ) =

∫
dED γ

C
ED

(θ) . (177)

Note that γCED
(θ) must be a real number (since it represents a flux). As we

have checked, our numerically determined solutions of eqs. (162) and (163)
(see below) indeed fulfill this condition. Since other general conditions like
the conservation of the particle and energy flux, as proven for the ladder
contribution, see eq. (131), do not hold for the crossed component, the van-
ishing imaginary part of the crossed flux density resembles a valuable check
of consistency of our theory (and its correct numerical implementation).

In addition, the bistatic coefficient for nonlinear crossed transport adapted
to the slab geometry is derived in Appendix D.2, as well as the correspond-
ing ladder result, see Appendix D.1, which we state here for comparison:

γLED
(θ) =

1

J0`disA

∫
dr JED(r)e

−z/(`discosθ) , (178)

with, as above,

γLED
(θ) = γ

L,(el)
ED

(θ) + γ
L,(inel)
ED

(θ) , (179)

and

γL(θ) =

∫
dED γ

L
ED

(θ) . (180)

While calculating the ladder contribution in Chapter 3 we found that the
contribution proportional to the collision parameter β vanishes, and only α
determines the collision strength. We defined α = 8πa2s `disρ0 � 1, what
is tantamount to the requirement `int � `dis, cf. eqs. (109) and (127), and
limits the validity of our theory to the regime where collisions are less fre-
quent than scattering events off the disorder potential. However, as we
demonstrated within this chapter, the crossed contribution proportional to
the collision parameter β does not vanish, and we henceforth also have to
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Figure 27: Sum of elastic ladder and elastic crossed bistatic coefficients,
cf. eqs. (180) and (177), as a function of the backscattering angle θ, for the opti-
cal thickness b = 10, kL`dis = 10, and different values of the collision strength β
(β = 0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.15, 0.2 from top to bottom), and for the col-
lision strength α = 0. For comparison, the (black) dashed curve shows the ladder
bistatic coefficient only, whose maximal value is marked with a horizontal (gray) thin
line. Observe how constructive changes to destructive interference, as a consequence
of elastic collisions which induce dephasing for increasing values of β.

assume β� 1. Furthermore, since β� α (see (128)), we, nonetheless, have
to ensure that `αint � `

β
int � `dis, where `αint ≡ `int and

`
β
int =

kL

8πasρ0

, (181)

i. e. collisions proportional to β must as well be less frequent than scattering
events off the disorder potential.

4.3.2 Coherent Backscattering – the Gross-Pitaevskii Limit

We now consider the elastic component, see (173), of the crossed bistatic
coefficient (177), specifically in the Gross-Pitaevskii limit, i. e. with eqs. (169)
and (170) instead of eqs. (162) and (163). As we showed earlier in this
chapter, this corresponds to α = 0.9

9 Similar results have been obtained
before [62]. We therefore restrict
ourselves to a brief discussion of

the results in the Gross-Pitaevskii
limit.

Numerically, we proceed by iteratively solving the two coupled integral
equations (169) and (170). Upon convergence, the crossed intensities are
then propagated out of the slab, and detected in the far field, as a function
of the angle θ.

In Fig. 27 the total backscattered bistatic coefficient (ladder plus crossed)
is plotted as a function of the backscattering angle θ for different values of
β ∈ [0, 0.2], and α = 0. For comparison, the total ladder bistatic coefficient
is plotted as a dashed line. Obviously, the effect of increasing β leads to a
decreasing enhancement factor, and for β > 0.15 to an inversion of the cone
below the value predicted by ladder transport only. This effect can be un-
derstood in terms of dephasing processes for counter-propagating scattering
amplitudes, which change the constructive into destructive interference in
exact backscattering direction. It is worth noting that long scattering paths
are most affected by dephasing, leading to a rapid fall-off of the peak around
θ = 0, and the development of a central dip, which – with increasing β –
also affects larger values of θ. As a consequence, the inverted peak acquires
a larger width, with contributions mostly from short scattering paths.

The lowest curve in Fig. 27 corresponds to the value β = 0.2, in accordance
with the requirement β � 1. We note that simulations for larger values of
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Figure 28: Inelastic crossed (solid lines) and ladder (dashed lines) bistatic coeffi-
cients for θ = 0, optical thickness b = 4, kL`dis = 10, and fixed kLas = 0.2, corre-
sponding to values β = 0.02 (red curves), 0.08 (green curves), and 0.2 (blue curves),
as a function of the single-particle energy. Note that in the very weakly interacting
regime, i. e. small β and α, the crossed component around ED = EL is enhanced
by a factor > 2 (i. e. larger than the corresponding ladder contribution) [183], which
only becomes < 2 for stronger nonlinearities. Also note that the position of the max-
ima of the crossed component is shifted towards higher single-particle energies with
increasing β, see main text for details.

β show a further decrease of the backscattered flux density. However, as
these predictions extend beyond the regime of validity of our theory, we
restrict our further analysis to β 6 0.2 and refer the reader to Chapter 5 for
a discussion of a possible extension of our present theory.

4.3.3 Coherent Backscattering – Beyond the Gross-Pitaevskii Limit

We now go beyond the elastic results of the Gross-Pitaevskii equation and
focus on inelastic scattering processes. Since a variety of parameters will
become crucial for the analysis, we will restrict most of the discussion to
the exact backscattering direction θ = 0. Furthermore, as discussed for the
linear case of coherent backscattering, the width of the coherent backscat-
tering cone is inversely proportional to k`dis. Besides this effect, as we have
checked, no qualitative change of our results is observed as long as we guar-
antee that k`dis � 1, i. e. that we remain in the regime of weak disorder
(see the discussion in Chapter 3). Hence, our results presented here are all
obtained for the case kL`dis = 10.

A similar reasoning applies for the thickness of the slab. Since coher-
ent backscattering including particle-particle collisions is even more phase-
dependent than the linear case, very long paths are damped out. Checking
carefully for a minimal slab thickness (corresponding to shorter computing
time in our numerical simulations) without altering the underlying physics,
we chose a slab of thickness L = 4`dis throughout our simulations.

The remaining parameters α, β, and their ratio α/β = kLas � 1 will be in
the focus of our subsequent analysis. With kLas ∈ {0.05 , 0.1 , 0.2}, we acquire
possible values for α ∈ {0.0005− 0.04} and β ∈ {0.01− 0.2}, where we set the
minimal value to β = 0.01, and note that the limit β→ 0 implies also α→ 0.

In Fig. 28 we show an exemplary spectrum of the inelastic ladder (dashed
lines) and crossed (solid lines) bistatic coefficients, for kLas = 0.2 and β =

0.02, 0.08, and 0.2.
First of all, we focus on the ladder contribution (dashed lines) in Fig. 28.

One observes, as expected from our findings in Chapter 3, that the con-
tribution of the inelastic flux density (i. e. of the dashed lines in Fig. 28
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Figure 29: Comparison of the inelastic ladder bistatic coefficient (normalized to
γL,(inel)(θ = 0) = 1) taken from Fig. 28 for β = 0.02 ((red) solid line) and β = 0.2
((blue) dashed line) with the spectrum of a single inelastic collision event fL (thin
(black) dashed line) and the Maxwell-Boltzmann distribution (thin (black) line), see
eqs. (129) and (137). Note that since the contribution of short scattering paths to
the backscattered signal dominates, thermalization of the ladder flux density, that
requires long scattering paths for a sufficient number of collisions to occur, as dis-
cussed in Chapter 3, is not observed here.

integrated over the single-particle energy) grows with increasing collision
strength. From the discussion in the preceding chapter we furthermore
know that for increasing slab length and/or collision strength, the single
particle flux density thermalizes towards a Maxwell-Boltzmann distribution.
Here, only scattering paths with a limited length will contribute to the sig-
nal in backscattering direction and, hence, the thermalization will rather
depend on the collision strength. As for the case inside the slab, we plot
in Fig. 29 the spectral bistatic coefficient γL,(inel)

ED
(θ = 0) (normalized to

γL,(inel)(θ = 0) = 1) for β = 0.02 (lowest dashed curve in Fig. 28) and
β = 0.2 (upmost dashed curve in Fig. 28), versus the contribution of a sin-
gle inelastic collision event fL and the Maxwell-Boltzmann distribution, see
(129) and (137), respectively. We observe that the ladder spectrum spreads
under an increasing influence of collisions within the single-particle energy
landscape, but remains far from thermalized, a strong indicator of the con-
tribution of rather short scattering paths, as expected.

Focusing now on the crossed component, we see in Fig. 28 how the
amount as well as the position of the maxima of the inelastic bistatic co-
efficient (solid lines) changes with increasing β. For small nonlinearities,
i. e. small β and α, we observe that the enhancement around ED = EL of the
inelastic crossed flux density can exceed the predicted value of 2, i. e. the
crossed exceeds the corresponding ladder contribution. This is indeed ex-
pected also diagrammatically [183]. Remember that an enhancement of 2
arises solely due the appearance of the linear crossed component which
becomes indistinguishable from the linear ladder component for θ = 0,
see Section 4.1 and Appendix D.2. If, additionally, nonlinear contributions
are included into the theory, further combinations of diagrams exist which
equally contribute to the backscattered flux density. In Fig. 22, e.g., this
additional diagram immediately arises if one replaces the detected dashed
amplitude emitted from point r1 by a corresponding source amplitude and
the source amplitude at point r6 by a detected dashed amplitude. This
thereby obtained diagram interferes constructively with the one depicted in
Fig. 22 and, thus, an enhancement factor of up to 3 can occur. For larger
nonlinearities, even more different combinations exist, which are, however,
largely overcompensated for by dephasing that reduces the amount of in-
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Figure 30: Spectral crossed flux densities for θ = 0, optical thickness b = 4,
kL`dis = 10, fixed β and variable α. In (a), the (red) solid line, the (green) dashed
line, and the (blue) dotted line respectively correspond to α = 0.002, 0.004, 0.008.
In (b), the (red) circles, the (green) squares, and the (blue) diamonds, respectively,
correspond to α = 0.01, 0.02, 0.04. The colored lines in (b) are to guide the eye. The
(gray) thin lines roughly mark the maxima of all curves. Whereas for small α and β,
a doubling of α leads to an equal increase of the corresponding bistatic coefficient
in (a), this effect is overwhelmed by inelastic scattering processes proportional to
β, which lead to a decrease of the inelastic crossed density for increasing α, see (b).
Further note that fixed β leads to a fixed (but different) position of the maxima (in
(a) and (b)), what in turn identifies β as responsible for the shift observed in Fig. 28.

terference as compared to the ladder component, see the solid and dashed
lines for larger values of β in Fig. 28. Nonetheless, in comparison to the
Gross-Pitaevskii equation, they give rise to a significant contribution, as we
will see below.

Despite the general observation of a decreasing total crossed flux density
with increasing collision strength, as e. g. depicted in Fig. 27 for the purely
elastic case, does the inelastic crossed flux density in Fig. 28 increase along-
side with the collision strength, such that the importance of the inelastic
component grows. Let us try to resolve to what extent the different collision
parameters, α and β, are responsible for an increase of the inelastic contribu-
tion. In Figs. 30a) and b) we therefore fix β to β = 0.04 and 0.2, respectively,
and vary the ratio α/β = kLas ∈ {0.05 , 0.1 , 0.2} in order to determine the
role of α.

In accordance with our expectation from the previous chapter (where β
was absent and α gave rise to inelastic collisions), the amount of inelasticity
is determined by α if β is small, see Fig. 30a): As indicated by the hori-
zontal gray lines, a doubling of α yields an approximately equal increase in
the inelastic enhancement factor. In this regime, the elastic contribution is
dominant, and only collisions proportional to α lead to inelastic processes.
(Remember that the collisions proportional to β can only contribute to the
inelastic flux density if inelastic collisions proportional to α have occurred
previously, see also the following discussion.) This picture dramatically
changes once β is increased to the fixed value β = 0.2, see Fig. 30b). Not
only does the overall inelastic flux density increase, but also the order of
α-contributions is reversed. The largest value of inelastic enhancement is
now given by α = 0.01, whereas the largest value of α = 0.04 corresponds to
the lowest curve. This observation – as mentioned above – can be explained
by the fact that the collision building block hC proportional to β, see (165),
can lead to inelastic scattering processes provided inelastic events of the
type fL and fC (proportional to α) have occurred before. However, once
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the inelasticity is sufficiently seeded (what is the case for Fig. 30b)) α and
β start to work in different directions: α rather promotes a spectral broad-
ening whereas β (once a critical value of α is exceeded) leads to a rapid
growth of the inelastic contribution in a narrow spectral window. In terms
of the underlying microscopic particle picture, β and α respectively promote
scattering processes where the two particles either retain their approximate
single-particle energies, or experience a reshuffling of their single-particle
energies due to isotropic collisions.

As was already visible in Fig. 28 and more pronounced in Fig. 30, an in-
crease of β goes in hand with a shift of the maximum of the inelastic flux
density towards higher single-particle energies. The position of the maxima
for identical values of β and variable values of α, as indicated by the re-
spective thin (gray) vertical lines in Fig. 30a) and b), remains fixed and only
shifts if β is changed. Thus β is responsible for the underlying dynamics
for which a plausible explanation is still missing. This effect might, however,
be related to the asymmetric ladder spectrum, see Fig. 28, which constantly
feeds the crossed building blocks.

So far, we considered the spectral density of the inelastic bistatic coeffi-
cients, not accounted for by the Gross-Pitaevskii equation, and discussed
the role of the different collision parameters α and β. However, we did not
compare the inelastic contributions to the total (i. e. inelastic plus elastic)
backscattered flux densities. This is of crucial importance in order to judge
whether the inelastic contributions play a relevant role as compared to the
elastic component.

We will do so by looking at the bistatic coefficient integrated over all ener-
gies, i. e. γC(θ), and its elastic and inelastic constituents, see eqs. (177) and
(176). In Fig. 31 we compare the total crossed bistatic coefficient (the sum
of the elastic and integrated inelastic bistatic coefficient), in backscattering
direction θ = 0, with the crossed bistatic coefficient predicted by the Gross-
Pitaevskii equation, as a function of β and for two different fixed values of
kLas = 0.05 and kLas = 0.2 in (a) and (b), respectively. As expected, both to-
tal crossed contributions decrease for increasing β. Initially, for small values
of β, the crossed contribution predicted by our theory decreases faster than
the crossed result obtained by the solution of the Gross-Pitaevskii equation.
However, this fact changes for larger β, when the Gross-Pitaevskii equa-
tion predicts an inversion of the cone, whereas our theory (in the chosen
regime) does not. The additional source of dephasing in our theory due to
the presence of the collision parameter α results in a larger loss of coher-
ence initially but, in turn, also dephases the destructive interference contri-
butions which lead to an inversion of the coherent backscattering cone in
the Gross-Pitaevskii picture. Consequently, the crossed curves for the Gross-
Pitaevskii equation and our theory must cross in Fig. 31. However, the fact
that this crossing occurs for β ' 0.4 for γC(θ) > 0 shows that the inelastic
enhancement factor decreases slower than the elastic one – a consequence
of many-particle interferences discussed in Fig. 28 and in [183]. In fact, in
Fig. 31a), around β ' 0.2, where the total crossed contribution (blue solid
line) almost vanishes, it is precisely the role of the positive contribution of
the inelastic flux density (dotted blue line) that balances the negative elastic
component (not shown here, but deducible from Fig. 31, as the difference of
the total and the inelastic component). Thus, although the inelastic crossed
density flux remains small over the full range of β, it plays an important
role when it becomes comparable in size with the total crossed flux density.
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Figure 31: Integrated crossed and ladder bistatic coefficients for θ = 0, optical
thickness b = 4, kL`dis = 10, as a function of β and fixed kLas = 0.05 and kLas = 0.2
in (a) and (b), respectively. The (green) squares and (green) diamonds (connected by
a solid and a dashed line, respectively) denote the total γL(θ = 0) and the inelastic
ladder bistatic coefficient γL,(inel)(θ = 0), respectively, whereas the (blue) pyramids
and (blue) triangles (connected by a solid and dotted line, respectively) denote the
respective total γC(θ = 0) and inelastic crossed bistatic coefficient γC,(inel)(θ = 0).
For comparison, the crossed bistatic coefficient as predicted by the Gross-Pitaevskii
equation is marked with red circles (and connected by a red solid line). The dots
(data points) are connected by lines in order to guide the eye. It becomes obvi-
ous that the inelasticity is more dominant for the ladder (approximately one half
of the total component, for β = 0.2 in (b)) than for the crossed contribution. How-
ever, for large β (and almost vanishing crossed component) it is precisely the latter
that inhibits an inversion of the coherent backscattering cone as observed for the
Gross-Pitaevskii equation (see also Fig. 27). This absence of an inversion is due to
additional dephasing (that reduces constructive as well as destructive interference),
as a consequence of inelastic collisions, and due to the occurrence of many-particle
contributions that can enlarge the enhancement factor beyond 2 (when interfering
constructively), cf. Fig. 28 and [183]. In total, a net surplus remains, that leads to a
slower decrease of the inelastic enhancement factor compared to the elastic one.

In addition to the crossed contribution, we also depict the total ladder
bistatic coefficient in Fig. 31, i. e. γL(θ), and its inelastic component, see
(180) and (179), respectively. Conversely to the crossed case, the total ladder
contribution remains constant with increasing nonlinear parameters (green
solid line). Here, the role of the inelastic ladder bistatic coefficient (green
dashed line) is also more pronounced and can make up more than one half
of the total ladder contribution, cf. Fig. 31b). This is precisely the situation
discussed in Fig. 29, where one would expect a fully thermalized ladder
density flux for the backscattered signal once the inelastic ladder compo-
nent converges to the total ladder contribution.

The results presented above were all obtained in the exact backscattering
direction θ = 0, where the major contribution of the crossed flux density
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(c) kLas = 0.2

Figure 32: Integrated total crossed bistatic coefficient, as a function of the de-
tection angle θ in backscattering direction. The lines correspond to the solu-
tion of the Gross-Pitaevskii equation for different collision strengths β (β =

0, 0.02, 0.04, 0.08, 0.12, 0.16, 0.2, from top to bottom), identical in all figures. The
symbols with the same color code represent data points obtained with our theory
(open squares: β = 0, open circles: β = 0.02, triangles: β = 0.04, pyramids: β = 0.08,
diamonds: β = 0.12, solid squares: β = 0.16, solid circles: β = 0.2). The different
figures now correspond to different but fixed values of kLas = 0.05, kLas = 0.1, and
kLas = 0.2, in (a), (b), and (c), respectively. Observe that our findings from Fig. 31

remain valid also for angles θ 6= 0. Whereas the largest correction to the Gross-
Pitaevskii equation due to our theory is visible for small angles (since the dip within
the central peak of the cone predicted by the Gross-Pitaevskii equation shows up
in our theory only for small kLas), our theory does not result in an inversion (and
not even in a vanishing contribution) of the cone for the full range of parameters
depicted here.

is observed. However, our observations remain valid also for a backscat-
tering angle θ 6= 0. This is emphasized by Fig. 32 where we show the
integrated total crossed bistatic coefficient as a function of the backscatter-
ing angle θ – again in comparison to the crossed contribution obtained from
the Gross-Pitaevskii equation. We here only show one half of the symmetric
backscattering cone, for positive θ. Note that the lines corresponding to the
solution of the Gross-Pitaevskii equation are identical in all three plots. The
topmost (brown) line is the linear crossed contribution (151) for β = 0. For
increasing β from top to bottom, we recover the scenario discussed in Fig. 27,
leading to an inversion of the coherent backscattering cone. Most interest-
ing is the comparison with the crossed solution of our theory, i. e. eq. (177),
here marked by different symbols for increasing β. Whereas the results are
identical for β = 0, the discrepancy between both solutions becomes again
evident for large β, where an inversion of the cone is contrasted with an
enhancement factor > 1, for all plots in Fig. 32.

Both solutions show an increasing width of the cone, indicating major
contributions of short scattering paths, with increasing β. However, the
suppression of very long scattering paths leading to a dip within the cen-
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tral peak around θ ' 0 for the crossed contribution obtained by the Gross-
Pitaevskii theory, is barely visible for kLas = 0.05, and even disappears for
kLas > 0.1, within our theory.

4.4 summary

In summary, we gave a detailed derivation of the diagrammatic theory lead-
ing to linear and nonlinear coherent backscattering, and applied this theory
to a slab geometry. We extended the recently developed diagrammatic the-
ory for nonlinear elastic transport [62] to the case of nonlinear and inelastic
coherent backscattering, and could verify that our theory reproduces the
predictions of the Gross-Pitaevskii equation in a certain limit. For the first
time, we were thus able to predict interference corrections for a bosonic,
interacting many-particle system within the weak disorder limit.

Explicitly, we could show that the properties of the coherent backscat-
tering cone differ from the results predicted by the Gross-Pitaevskii equa-
tion not only for large nonlinearity, where our simulations do not predict
an inversion of the cone, but also for small nonlinearity, where we predict
a more rapid decrease of the cone height. Our analysis of the coherent
backscattering cone’s properties in more detail allowed for an understand-
ing of the underlying physical processes, in terms of constructive interfer-
ence of many-particle diagrams, as well as of the identification of an addi-
tional dephasing mechanism due to inelastic collisions.

We also addressed the relevant limitations of our present theory, i. e. the
assumption that collisions are less frequent than scattering off the disorder
potential, which in turn limits the validity of our simulations to small non-
linearities.

However, the present state of our theory allows for an experimental val-
idation in contemporary ultracold atom experiments, where the required
matter waves can be nowadays created [94–96], and the strength of the dis-
order potential [35, 112] together with the interatomic interaction strength –
by means of Feshbach resonances [184, 185] – can be chosen at will.
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Within this first part of the present thesis we derived a microscopic N-body
scattering theory for interacting particles in a weak disorder potential in
three dimensions. We applied this diagrammatic theory to a stationary scat-
tering scenario for an asymptotically non-interacting, quasi-plane matter
wave incident on a three-dimensional slab, with the disorder potential and
inter-particle collisions confined to the slab region, and hereby certified the
viability of our theory to address, on the one hand, very fundamental but,
on the other hand, very timely questions of quantum transport for interact-
ing particles in random environments. In a clear and precise manner we
demonstrated how one – in a strictly unitary treatment – can bridge the
gap between a general many-body microscopic theory and its implications
on the mesoscopic level governed, e.g., by a nonlinear quantum Boltzmann
equation. As precisely the stationary version of the latter equation repre-
sents our final result, we are able to fully capture the emergence of thermo-
dynamic behavior from microscopic laws.

Furthermore, and in addition to the results on diffusive transport, we have
determined the coherent corrections due to the wave-nature of the particles,
i. e. the effect of coherent backscattering. For the first time, we were able to
analyze the contributions of inelastic scattering to the backscattering cone,
and to demonstrate their importance with increasing non-linearity.

Let us briefly summarize under what circumstances we were able to re-
duce the rather intractable interacting N-body problem to a nonlinear equa-
tion of Boltzmann type. Of fundamental importance as well as of great rele-
vance in realistic transport scenarios is the presence of a random and weak
disorder potential. We here restricted ourselves to the case of averages over
a Gaussian and δ-correlated disorder potential, which – as we discussed –
is a special case of a speckle potential for low single-particle energies and
weak potential strength. The weakness of the disorder potential is repre-
sented by the very small ratio of the particle’s wavelength with the disorder
mean free path, i. e. k`dis � 1, where `dis can be, in principle, chosen arbi-
trarily large (also experimentally, by adjusting the potential strength). All
other relevant length scales can be expressed as a function of `dis, and thus
scale accordingly. The presence of the weak disorder potential implies a
series of immediate consequences: (Note that these consequences are rather
simplifications than restrictions of our theory, see below.)

• For the case of Gaussian white noise in three dimensions, `dis is inde-
pendent of the single-particle energy and the scattering off the disor-
der potential is isotropic, thus `dis also constitutes the only relevant
linear transport length scale in our system.

• The only transport contributions that survive an average over many re-
alizations of the disorder potential (up to higher orders in O[(k`dis)

−1 �
1]) are the so-called diffusive ladder and coherent crossed diagrams of
co- and counter-propagating scattering amplitudes, respectively.

• It is well known that the amplitudes, from which the ladder inten-
sity is formed, coincide with a stationary Gaussian stochastic process.
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Thereby, scattering off the disorder potential randomizes the individ-
ual particle’s momenta, a prerequisite, also known as molecular chaos,
for the derivation of the Boltzmann transport theory.

• The presence of the disorder potential inhibits recurrent scattering for
colliding particles. As a consequence, we can trace out the undetected
particle immediately after its collision with the detected particle and
thus obtain a non-linear equation for the propagation of a single parti-
cle.

• Conversely, the effects of the interaction between the particles approx-
imately decouple from the presence of the disorder potential. In other
words, the particles interact as if they were in the vacuum. (As dis-
cussed in Section 3.3, a "dressing" of the vacuum T -matrix to first or-
der in the disorder potential strength occurs, which, however, is again
well controlled by the small parameter (k`dis)

−1.)

In addition to these consequences solely following from the presence of
the weak (white noise) disorder potential, we need to quantify the require-
ments for the collisions between the particles. We assumed a dilute and
low energy Bose gas, i. e. a mean particle spacing much larger than the s-
wave scattering length, asρ

1/3
0 � 1 and kas � 1, such that the inclusion

of binary collisions and s-wave scattering is sufficient, where the latter as-
sumption was chosen for computational convenience only. In order for the
restriction to ladder and crossed diagrams to be valid, we further assumed
that the average mean path `int between successive collisions must be so
large that at least one scattering off the disorder potential occurs in between,
i. e. `int � `dis.

As indicated above, these assumptions were sufficient to derive a non-
linear integral equation that is equivalent to the stationary quantum Boltz-
mann equation. Guided by the experimental realizability with present-day
technologies, we conducted a numerical experiment for a stationary scatter-
ing scenario that involves a three-dimensional slab.

At first, we focused on numerical simulations of our theory within the
slab. In addition to the expected diffusive transport of the total particle
current we observed a separation of the initial mono-energetic current into
elastic and inelastic contributions, where the latter emerges due to inelas-
tic collisions and increases with increasing interaction strength and/or slab
length. Whereas the initial matter wave corresponds to a condensate state
(which is retained under the influence of disorder scattering and elastic colli-
sions), the inelastic collisions deplete the former and create a thermal cloud
that follows a Maxwell-Boltzmann distribution. We were able to monitor
this process by snapshots of the particle current inside the slab, and to quan-
tify its occurrence by the parameters k, `dis, and `int.

In a second step, we also included the coherent corrections due to the
wave nature of the particles, i. e. the crossed component. As this contribu-
tion emerges only outside the slab, due to constructive interference of time-
reversal symmetric scattering paths, i. e. coherent backscattering, we numer-
ically determined the normalized backscattered currents for the ladder and
crossed component. Recent treatments based e. g. on the Gross-Pitaevskii
equation have revealed the dephasing character of the nonlinearity (due to
elastic scattering) that can turn constructive into destructive interference,
and thus predicted an inversion of the cone. For the first time, we were
able to determine the role of additional inelastic collisions on the height
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of the coherent backscattering cone. Interestingly, this additional source of
dephasing speeds up the gradual reduction of the cone height with increas-
ing collision strength initially, but also inhibits the emergence of destructive
interference. This in turn corresponds to a slowing down of the decrease
of the coherent backscattering interference signal with increasing interac-
tion strength, and the absence of an inversion of the cone for the parameter
regime considered within this thesis. In the inelastic coherent backscatter-
ing contribution, the importance of constructive many-particle interference,
that is known to give rise to an enhancement factor larger than two for weak
nonlinearities, was shown to persist in a narrow spectral window close to
the initial energy.

As we await an experimental verification of our results, it is worthwhile
to widen the applicability of our theory. The application to a stationary
scattering setup with matter waves constitutes, on the one hand, a very
timely scenario, as e. g. the developments of atom lasers and matter wave
interferometers on atom chips, see Section 2.1, rapidly progress. On the
other hand, many years of expertise have been gathered within the field
of wave-packet spreading upon releasing the condensate from a trap into a
new environment, where e. g. the first experiments on coherent backscatter-
ing of (non-interacting) matter waves have been reported recently [55, 56].
Consequently, an extension of our theory to time-dependent scenarios based
on recent progress in this field [186, 187] presents a significant and feasible
task.

Another regime, which so far has been excluded, would involve the pos-
sibility of stronger interactions between the particles, i. e. the relaxation of
the requirement `int � `dis. There, the repulsion or attraction between the
particles is expected to affect the spatial density profile inside the slab. A
first step towards this scenario corresponds to an inclusion of collision pro-
cesses to the overall transport, i. e. removing the contact approximation for
the collisions, see eq. (121). In subsequent steps, one has to analyze how
the disregard of all but ladder and crossed diagrams is affected by stronger
interactions.

Let us also comment on our present choice of the disorder potential and
the dimensionality of the setup. Although a very weak speckle potential has
an approximately Gaussian white noise statistics for low single-particle ener-
gies, see Section 2.1, it would be more realistic to include finite (non δ-like)
correlations which are then, of course, also energy dependent. A worth-
while intermediate step towards this goal could correspond to a reduction
of this present theory to the two-dimensional case. There, the Gaussian
white noise disorder mean free path is energy-dependent [48] and allows
for an investigation of energy-dependent transport processes. Note that, al-
beit the simplified choice of the statistics of the disorder potential presented
here, we expect the main findings of the work to remain valid also in more
realistic disorder potentials, which, however, elude a simple calculation.

In conclusion, we are confident that our present theory and the rather
straightforward extensions discussed above will substantially foster a more
complete understanding of quantum transport under the interplay of disor-
der and inter-particle interaction, and can contribute to a unifying picture
from microscopic to macroscopic scales.





Part II

I N T E R A C T I N G RY D B E R G AT O M S I N A
D E P H A S I N G E N V I R O N M E N T





6L I G H T S C AT T E R I N G O F F S T R O N G LY I N T E R A C T I N G
RY D B E R G AT O M S I N A 1 D C H A I N

6.1 introduction and motivation

Atoms with valence electrons excited to high principal quantum numbers
as large as n ' 100 are called Rydberg atoms. Due to this large quantum
number they exhibit exaggerated properties (see below) and have therefore
constituted an intense field of research over the last decades, as e. g. summa-
rized in [188, 189]. The proposed possible application of Rydberg physics to
realize quantum information processing [190, 191], together with the exper-
imental ability to control center of mass and electronic degrees of freedom
simultaneously, has revived the field. This allows, on the one side, to inves-
tigate novel collective dynamics of interacting Rydberg gases [188, 192, 193],
and to explore the potential of Rydberg physics for robust and fault-tolerant
quantum control [194, 195] and engineering [196].

An atom can be excited to a Rydberg state using e. g. a dipole-allowed
two-photon transition via an intermediate p-orbital. As the radii of such Ry-
dberg atoms scale as n2, they are huge on atomic scales and can be as large
as several thousand Bohr radii a0 corresponding to 0.1 − 1µm [188]. The
large distance between the highly excited valence electron and a, possibly,
multi-electron core causes a hydrogen-like behavior and large polarizabili-
ties which can scale as n7 [188]. The radiative lifetime of the Rydberg state
which scales as nα, with α = 3, 4, 5 (depending on the angular momentum)
[194] is much longer than any other time scale in the system such that spon-
taneous decay – especially for s-orbitals – can be neglected most of the times
[197, 198].

Another intriguing feature, which arises as a consequence of the large
polarizability, is the strong interaction between different Rydberg atoms over
distances of several µm [188]. Rydberg atoms excited to s-orbitals, which
we will focus on in the following, interact repulsively via van der Waals
interaction with the interaction potential given as

V(r) = −
C6

r6
, (182)

where the dispersion coefficient C6 scales as n11 [188, 199] giving rise to an
interaction strength for e. g. n ' 100 which is twelve orders of magnitude
stronger than the corresponding ground-state interaction [196]. A conse-
quence of the large polarizability is the effective energy level shift of atoms
in the neighborhood of a Rydberg atom leading to a vanishing probability
to be excited (if the laser is tuned with respect to the energy levels of a
single Rydberg atom). Within this so-called exclusion or blockade volume
with radius `b only a single excitation is present [200] and can thus be shared
among allN atoms leading e. g. to collective Rabi oscillations with enhanced
frequency

√
NΩ [201]. An explicit expression for the blockade radius is ob-

tained by determining the interaction energy of two Rydberg atoms at a
distance `b and setting this equal to the collective laser coupling

√
NΩ for

the N atoms inside the blockade radius, leading to `b = [C6/(Ω
√
1/`)]2/13

[202], with ` being the average spacing between the atoms. Although the
physical radius is not a sharp limit, it has been shown theoretically and
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Figure 33: Chain of atoms trapped in the wells of a 1D-lattice potential (as e. g. sug-
gested in [209]) with lattice spacing (between the lattice sites m and m+ 1 given by)
`. The ground state atoms (green spin-down symbols) are driven with a strong laser
field (frequency ωL, Rabi-frequency Ω, detuning ∆r) to a highly-excited Rydberg
state (red spin-up symbols) and interact via next-neighbor interaction V with each
other, i. e. as given by eq. (183) expressed as a function of the lattice sites, and for
n = m+ 1. An additional, far-detuned, weak laser field (frequency ωk, detuning ∆k)
is scattered off another atomic dipole transition. The scattered intensity is detected
by a detector in the far-field.

experimentally that this quantity captures nonetheless the relevant physics
[203].

The atomic dynamics (including the blockade mechanism due to the in-
teratomic interaction and the driving of the laser field) is generated by a
simple spin Hamiltonian [204], with the interaction contribution between
two atoms respectively located at positions rm and rn given as follows:

Hm,n =  hC6

σr
mσ

r
n

|rm − rn|6
, (183)

where σr
m = |r〉 〈r|m denotes the projector onto the Rydberg state (with

fixed quantum numbers nlm) of the mth atom. The rather simple block-
ade picture has nonetheless been shown to grasp important features of the
collective excitation mechanism quite well [205, 206, 200]. Since interacting
Rydberg gases do undeniably constitute slightly more complicated physi-
cal objects than what can reliably be mimicked by two interacting two level
systems, non-resonantly coupled Rydberg states, autoionization [207] and
other effects [193, 208] induce deviations from the simple blockade model’s
predictions.

6.1.1 Our Setup

Our setup is depicted in Fig. 33. We imagine a chain of ground state atoms
where each atom is trapped at the bottom of a well of a one-dimensional
optical lattice potential. The atoms are quasi-resonantly, strongly laser-
driven to a Rydberg s-state, under inclusion of next-neighbor interactions,
i. e. as given by eq. (183) expressed as a function of the lattice sites, and for
n = m+ 1. Additionally, another weak laser is tuned far off-resonant with
another atomic dipole transition. The off-resonance condition ensures that
the occupation probability of the excited state is negligible and this state can
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thus be adiabatically eliminated. As a result, the photons of the weak laser
field can be described as effectively being scattered off the atomic ground
state (without intermediate population of the excited state) into the modes
of the free radiation field initially in the vacuum state (into which the atomic
system is embedded). In fact, we will model the incident weak laser field
by a macroscopically occupied mode of this radiation field, see below, that
is the same for all atoms, and that is coupled to the atomic subsystem. In
order to describe the atomic subsystem by itself, we derive a master equa-
tion – based on previous results in different fields [210, 211] – by tracing
out the degrees of freedom of the surrounding radiation field (also called
environment in the following).

As we will see, the coupling to the radiation field via photon scattering
of the additional weak laser field within the master equation corresponds
to a dephasing noise that equally occurs experimentally, e. g. by unwanted
photon scattering from the light fields needed to produce optical lattices
[212]. We, however, show that by detection of these photons scattered off the
chain of interacting Rydberg atoms, one can monitor the atomic dynamics,
and characterize the influence of the scattered light on the Rydberg atoms.

Furthermore, we introduce a simple dimer-model [213] that, on the one
hand, reproduces the main features of the atomic dynamics and, on the
other hand, can straight-forwardly be used to calculate the intensity scat-
tered off the atomic chain. We demonstrate that the interatomic correlations
present in the atomic chain alter the angular distribution of the detected
light intensity.

6.2 a single rydberg atom in an external field

Starting point of our considerations is a single atom at position r, with three
different electronic energy levels in a V-shaped arrangement, see Fig. 34.
The ground state |g〉 is coupled by a classical laser field

EL(t, r) = ε̂LEL cos(ωLt− kLr) (184)

to the excited Rydberg-state |r〉, which is detuned from the laser frequency
ωL by ∆r = ωr −ωL. EL is a real amplitude and ε̂L denotes the unit polar-
ization vector. The second transition is driven from |g〉 to the excited state
|e〉, via coupling to the free radiation field with modes k and frequency
ωk = |k|c, which are detuned from the atomic transition by ∆k = ωe −ωk.

Within the rotating-wave and dipole approximation [214], the Hamilto-
nian in the Schrödinger picture is the following:1

1 To keep the notation as simple as
possible, we suppress the
"hat"-operator notation in this
chapter.

H(t) =  h
∑

k

ωka
†
kak +  hωeσ

e +  hωrσ
r +  h

∑
k

(
g∗kakσ

+,dip + gka
†
kσ

−,dip
)

−  h
Ω

2

(
σ+ei(kLr−ωLt) + σ−e−i(kLr−ωLt)

)
, (185)

where we set the ground-state energies of atomic and field degrees of free-
dom equal to zero, and introduced the operators

σe = |e〉 〈e| , σ+,dip = |e〉 〈g| ,

σr = |r〉 〈r| , σ−,dip = |g〉 〈e| , (186)

σg = |g〉 〈g| , σ+ = |r〉 〈g| ,

σ− = |g〉 〈r| .
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ωr − ωL = ∆r {

{
ωL ,Ω

ωe − ωk = ∆k

ωk

|r�

|g�

|e�

Figure 34: V-shaped three-level structure of a single atom under consideration.
The transition |g〉 ↔ |r〉 between the electronic ground and Rydberg states |g〉 and |r〉,
respectively, is laser driven with frequency ωL, Rabi-frequency Ω, and an adjustable
detuning ∆r. In addition, another dipole transition |g〉 ↔ |e〉 is coupled to a macro-
scopically occupied mode of the surrounding radiation field with frequency ωk and
detuning ∆k, e. g. realized by an additional laser field.

In addition, Ω = (ε̂L · ε̂dr)drEL/ h is the Rabi-frequency of the laser driven
Rydberg transition with real dipole matrix element dr, and the orientation of
the dipole given by the unit-vector ε̂dr .

2 gk = −ε̂d · ε̂kEkd e
−ikr/ h is the cou-

2 We will not further specify the
(relative) orientations of the atomic
dipole moments. In an experiment,

one has to specify the
polarizations of the incoming

fields, such as to distinguish the
photons scattered off the two

atomic transitions.

pling strength between the radiation field and the atom, with d the dipole
moment corresponding to the transition driven by the field component with
polarization ε̂d, ε̂k the polarization of mode k, and Ek =

√
 hωkε0V/2, with

the electric constant ε0 and the quantization volume V.
Note that H(t) becomes time-independent in the frame that co-rotates

with the laser frequencyωL. For further convenience, we transform eq. (185)
to the interaction picture (identified by the superscript I):

HI = U†FU
†
AHUAUF , UF = e−i

∑
kωka

†
kakt , UA = e−i(ωeσ

e+ωLσ
r)t ,

to finally obtain:

HI(t) =  h∆rσ
r +  h

∑
k

(
g∗kakσ

+,dipei∆kt + gka
†
kσ

−,dipe−i∆kt
)

−  h
Ω

2

(
σ+eikLr + σ−e−ikLr

)
. (187)

Subsequently, we will assume that the transition |g〉 ↔ |e〉 is only weakly
driven by the free radiation field, due to a very large detuning ∆k. There-
fore, we can neglect the population of state |e〉, and thereby derive an ef-
fective two-level Hamiltonian for the transition |g〉 ↔ |r〉 (upon adiabatic
elimination of |g〉 ↔ |e〉 [214, 215]).

6.2.1 Derivation of an Effective Two-Level Hamiltonian for a Single Atom

Effective Hamiltonians have been derived in different fields of physics, e. g. in
condensed matter theory [216], in semiclassical treatments [217], and in the
field of quantum optics [218, 219]. We will use here a formula derived by
James and Jerke [220, 221] which allows to extract an effective Hamiltonian
from an existing interaction picture Hamiltonian if the interaction is suffi-
ciently weak and if the perturbation has a harmonic time dependence.

The general formula given in [220] reads:

Heff(t) =
∑
m,n

1
 hωmn

[h†m,hn]ei(ωm−ωn)t , (188)
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where ωmn is the harmonic average

1

ωmn
=
1

2

[
1

ωm
+

1

ωn

]
(189)

of the frequencies ωm and ωn, that will be associated with the respective
frequencies ∆k and ∆q, see below, that determine the time-dependence of
the interaction Hamiltonian (187). Furthermore, the hm are the m interac-
tion parts of the full Hamiltonian which one wants to describe effectively,
i. e. for blue-detuned free field modes with ∆k = ωe −ωk < 0, we identify

HIint(t) =  h
∑

k

(
g∗kakσ

+,dipei∆kt + gka
†
kσ

−,dipe−i∆kt
)

=  h
∑

k

(
h
†
ke
i∆kt + hke

−i∆kt
)

, (190)

with hk = gka
†
kσ

−,dip and the hermitian conjugate h†k. Note that (for the
moment) we neglect all terms in the second line of eq. (187) that depend on
the transition |g〉 ↔ |r〉.

After evaluation of the commutator in eq. (188) with hk (hq) and ∆k (∆q)
instead of hm (hn) and ωm (ωn), respectively, eq. (190) is replaced by the
effective Hamiltonian:

HIint,eff(t) =  h
∑
k,q

1

ωkq

(
RkR

†
qσ

e − R†qRkσ
g
)
ei(ωq−ωk)t . (191)

As we initially start out with all population in the atomic ground state,
i. e. σg = 1, and the detuning ∆k is very large, the population of the excited
state (σe ≈ 0) can be neglected and we obtain from (191)

Hint,eff(t) = − h
∑
k,q

1

ωkq
R
†
qRkσ

gei(ωq−ωk)t , (192)

where

Rk := g∗kak , R
†
k := gka

†
k . (193)

Note the self-adjointness


∑

k,q

RkR
†
q



†

=


∑

k,q

g∗kgqaka
†
q



†

=
∑
k,q

gkg
∗
qaqa

†
k =
∑
q,k

g∗kgqaka
†
q

=
∑
k,q

RkR
†
q , (194)

and the commutation relation∑
k,q

[Rk,R†q] =
∑
k,q

g∗kgq[ak,a†q] =
∑
k,q

g∗kgqδk,q =
∑

k

|gk|
2 . (195)

As a consequence of eq. (189), ωkq in eq. (192) is given by

ωkq =
(ωe −ωk)(ωe −ωq)

ωe − (ωk +ωq)/2

(
and ωkq = ∆k if ωk = ωq

)
, (196)

where we again note that ∆k = ωe −ωk and ∆q = ωe −ωq were replaced
for ωm and ωn in eq. (190), respectively.
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For the case of red-detuned free field modes, i. e. ∆k > 0, eq. (192) differs
by a prefactor

HIint,eff(t) =  h
∑
k,q

1

ωkq
R
†
qRkσ

gei(ωq−ωk)t . (197)

Thus, we observe that ωkq < 0 if ∆k < 0 and ∆q < 0, i. e. for blue-detuning,
and ωkq > 0 for red-detuning. Therefore, Hint,eff does not depend on the
sign of the detuning, and can be written as

HIint,eff(t) =  h
∑
k,q

1

|ωkq|
R
†
qRkσ

gei(ωq−ωk)t . (198)

The total Hamiltonian (187) in the interaction picture thus transforms to the
effective Hamiltonian

HIeff(t) =  h∆rσ
r −  h

Ω

2

(
σ+eikLr + σ−e−ikLr

)

+  h
∑
k,q

1

|ωkq|
R
†
qRkσ

gei(ωq−ωk)t . (199)

In (199), the time-dependence stems from the explicit time-dependence of
the creation and annihilation operators of the free field, which was intro-
duced into the initial Hamiltonian (185) after transformation to the interac-
tion picture, see eq. (187).

In the next section, we introduce the chain of Rydberg atoms, and – in
addition to the dynamics of eq. (199) – explicitly account for the interaction
between the atoms.

6.3 interacting rydberg atoms in an external field – a mas-
ter equation approach

As mentioned before, atoms excited to a Rydberg s-state strongly interact via
van-der-Waals forces. As we showed in the beginning of this chapter, the in-
teraction term can be mapped to a spin coupling and added to the effective
Hamiltonian (199), which extends our treatment to the case of many inter-
acting atoms. Each atom will be trapped at one well of a one-dimensional
lattice, and we assume that only nearest neighbors interact, i. e. n = m+ 1 in
eq. (183). Such a situation is also experimentally feasible, due to the precise
control of the lattice spacing and the rapid decay (∝ r−6, see eq. (183)) of
the interaction strength between the atoms with increasing distance.

6.3.1 Derivation of a Master Equation for a 1D Chain of Interacting Rydberg
Atoms

The Hamiltonian in the interaction picture for a 1D chain of Rydberg atoms
we start out with reads

HI(t) =

L∑
m=1

(
HIm +HIm,m+1 +H

I
int,m(t)

)
, (200)
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where m now denotes the mth of L atoms in the chain. The Hamiltonian
acting only on the site m is obtained from the effective Hamiltonian (199) as

HIm =  h∆rσ
r
m −  h

(
Ωmσ

+
m +Ω∗mσ

−
m

)
, (201)

HIint,m(t) =  h
∑
k,q

1

|ωkq|
R
†
q,mRk,mσ

g
me
i(ωq−ωk)t , (202)

where

σr
m = |r〉 〈r|m , σ

g
m = |g〉 〈g|m ,

σ+m = |r〉 〈g|m , σ−m = |g〉 〈r|m ,

are now the respective projectors on the Rydberg and ground state of the
mth atom, and the respective mth atom creation and annihilation operators.
The Rabi-frequencies Ω also turn position-dependent and read

Ωm = ΩeikLrm/2 and Ω∗m = Ωe−ikLrm/2 . (203)

The interaction between neighboring atoms in (200) is described by adap-
tion of eq. (183) to the 1D case, i. e.

HIm,m+1 =  hVσr
mσ

r
m+1 , (204)

with V = −C6/`
6 the interaction potential, cf. eq. (182), and ` the lattice

spacing. As discussed in the beginning of this chapter, if V is sufficiently
large, the excitation of two neighboring atoms into Rydberg states becomes
energetically very costly and is effectively blocked.

We will now focus on the effective interaction Hamiltonian (202) and as-
sume that one of the field modes (with the subscript 0) is initially in a
macroscopically occupied coherent state, such that the corresponding field
operators can be replaced by c-numbers (a0 → α0) [214], i. e.

HIint,m(t) =  h
∑
k,q

1

|ωkq|
gk,mg

∗
q,ma

†
kaqσ

g
me
i(ωq−ωk)t

≈  h
∑

k

1

|ωk0
|
g0,mg

∗
k,mα

∗
0
akσ

g
me

−i(ω0−ωk)t

+  h
∑

k

1

|ωk0
|
gk,mg

∗
0,ma

†
kα0σ

g
me
i(ω0−ωk)t . (205)

Following Lehmberg [222], we write down an equation of motion for an
arbitrary atomic operator Q(t) using eqs. (201), (204), and (205):

Q̇(t) = i
∑
m

(
∆r[σ

r
m,Q]t −Ωm[σ+m,Q]t +Ω

∗
m[σ−m,Q]t + V[σ

r
mσ

r
m+1,Q]t

)

+ i
∑
k,m

1

|ωk0
|
g0,mg

∗
k,mα

∗
0
ak(t)e

−i(ω0−ωk)t[σ
g
m,Q]t

+ i
∑
k,m

1

|ωk0
|
gk,mg

∗
0,mα0e

i(ω0−ωk)t[Q,σg
m]t a

†
k(t) , (206)

where [A,B]t = [A(t),B(t)].
We also spell out the equation of motion for the field mode ak, which we

then formally integrate:

ȧk(t) = −i
∑
m

1

|ωk0
|
gk,mg

∗
0,mα0e

i(ω0−ωk)tσ
g
m(t) ,

ak(t) = ak(0) − i
∑
m

1

|ωk0
|
gk,mg

∗
0,mα0

∫t
0

dt′ ei(ω0−ωk)t
′
σ

g
m(t′) . (207)
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Taking the hermitian adjoint of (207) and plugging it into the last term of
eq. (206), we obtain:

i
∑
k,m

α0

|ωk0
|
gk,mg

∗
0,me

i(ω0−ωk)t[Q,σg
m]t a

†
k(0) (208)

−
∑

k,m,m′

|α0|
2

ω2k0

gk,mg
∗
0,mg

∗
k,m′g0,m′ [Q,σg

m]t

∫t
0

dt′ ei(ω0−ωk)(t−t
′) σ

g
m′(t

′) .

As a next step, we explicitly consider the coupling term gk,m, in order to
account for polarization effects in our calculations:

gk,m = −
ε̂d · ε̂(λ)k

 h
Ekd e

−ikrm , Ek =

√
 hωk
2ε0V

, (209)

where λ now denotes the possible polarizations of the free field modes. It
is convenient to take the continuum limit and transform the sum over the
field modes k into an integral, and separate the summation over the field
polarization indices, i. e.∑

k

→ V

(2π)3

2∑
λ=1

∫
d3k . (210)

The sum over polarization unit-vectors appearing in the second term of
expression (208) can be evaluated to give:

(ε̂d · ε̂0)
2
2∑
λ=1

(
ε̂d · ε̂(λ)k

)2
= (ε̂d · ε̂0)

2
(
1− (ε̂d · k̂)2

)

= (ε̂d · ε̂0)
2 ε̂d ·

(
1− k̂k̂

)
· ε̂d , (211)

where we used that
(
ε̂d · ε̂(1)k

)2
+
(
ε̂d · ε̂(2)k

)2
+
(
ε̂d · k̂

)2
= 1 , (212)

and k̂k̂ denotes the dyadic product of the unit-vector k̂. Let us continue
by evaluation of the integral in (208) (which appears due to the substitution
(210)). To do so, we switch to spherical coordinates. The wave vectors k
and k0 of the field and the orientation of the atomic dipole moment ε̂d, see
Fig. 35, are given by

k = k




sinθ cosφ

sinθ sinφ

cosθ


 , k0 = k0




sinθ0 cosφ0

sinθ0 sinφ0

cosθ0


 , ε̂d =




sinη cosξ

sinη sinξ

cosη


 .

(213)

We choose the 1D lattice to be oriented along the z-axis, such that rm =

m`ẑ defines the position of the mth atom (and ` is again the lattice spacing
between neighboring atoms). Consequently, rm′ − rm = `(m′ −m)ẑ.3

3 In the meantime we abbreviate
`(m′−m)ẑ = rẑ, and note that
r = r(m,m ′) is a function of two
different lattice points m and m ′.

In the following we will only focus on the second term of eq. (208) (as
the first term will vanish since we assume later that the free radiation field,
apart from the macroscopically occupied state, is initially in the vacuum
state). Using ωk = |k|c = kc together with (209) and (211) we obtain:

− |α0|
2ω0cd

4(ε̂d · ε̂0)
2

4(2π)3 h2ε2
0
V

∑
m,m′

e−ik0rcosθ0

∫∞
0

dkk3

ω2k0

∫2π
0

dφ
∫+1
−1

dcosθ eikrcosθ

× ε̂d ·
(
1− k̂k̂

)
· ε̂d [Q,σg

m]t

∫t
0

dt′ ei(ω0−ωk)(t−t
′) σ

g
m′(t

′) . (214)
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k0 ε̂d
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η

−ξ
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φ

`

Figure 35: 1D chain of Rydberg atoms with lattice spacing `, aligned in z-direction.
The coherent mode k0, incident on the atoms under an angle of θ0 with the z-axis,
and φ0 about the z-axis, is scattered into the free radiation field mode k, defined by
the angles θ and φ. Here only the orientation of the dipole ε̂d with respect to the
weak radiation field is depicted, which is characterized by the angles η and ξ.

First, we focus on the integrals over φ, cosθ, and k in (214). Integration
over φ and cosθ yields the following expression:

4π

r3

∫∞
0

dk
ω2k0

ε̂d ·



K11 0 0

0 K22 0

0 0 K33


 · ε̂d , (215)

with

K11 = K22 = krcos(kr) + (k2r2 − 1)sin(kr) , (216)

K33 = 2 [sin(kr) − krcos(kr)] . (217)

The different contributions in powers of 1/r in expression (215) (note the
prefactor 1/r3) correspond, respectively, to far-field (1/r) and near-field
(1/r2 , 1/r3) contributions. The integration over k is conducted under the
Wigner-Weisskopf approximation [223], i. e. contributions of k that do not ap-
pear as arguments of the trigonometric functions in eqs. (216) and (217) are
replaced by k→ k0, and the interval of integration is expanded to −∞. The
k-integral therefore yields for the different components in 1/rn:

n = 1 :
4π

c3∆2
0

ω20
r

∫∞
−∞ dωk sin(ωkr/c) e

−iωk(t−t
′) (218)

= −i
(2π)2

c3
ω20
r

{
δ
( r
c
− t+ t′

)
− δ

( r
c
+ t− t′

)}
,

n = 2 :
4π

c2∆2
0

ω0

r2

∫∞
−∞ dωk cos(ωkr/c) e

−iωk(t−t
′) (219)

=
(2π)2

c2
ω0

r2

{
δ
( r
c
− t+ t′

)
+ δ

( r
c
+ t− t′

)}
,

n = 3 :
4π

c∆2
0

1

r3

∫∞
−∞ dωk sin(ωkr/c) e

−iωk(t−t
′) (220)

= −i
(2π)2

c

1

r3

{
δ
( r
c
− t+ t′

)
− δ

( r
c
+ t− t′

)}
.
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Now the integral over t′ in expression (214) can be conducted for the three
contributions (218)–(220):∫t

0
dt′ eiω0(t−t

′) σ
g
m′(t

′)
{
δ
( r
c
− t+ t′

)
± δ

( r
c
+ t− t′

)}
= eiω0r/c σ

g
m′(t− r/c)± e

−iω0r/c σ
g
m′(t+ r/c) . (221)

In order to ensure that the arguments of the δ-functions contained in the
integral (221) fall within the limits of integration, i. e. the weight of the δ-
functions outside the limits of integration is zero and the limits thus become
insignificant, we had to assume for the evaluation of (221) that t > |r/c| =

|`(m ′ −m)/c|. In other words, we thereby include only physical times t, that
respect a finite propagation time between different lattice sites m and m ′.

Before we can rewrite (214), we still need to take scalar products with
ε̂d, see eq. (215). The corresponding contributions from (218)–(220) must be
multiplied, respectively, with

(218)× sin2η , (219)× (3 sin2η− 2) , (220)× (2− 3 sin2η) . (222)

Combination of eqs. (218)–(222) gives for (214):

g2
0

∆2
0

3|α0|
2

4
Γ0(ε̂d · ε̂0)

2
∑
m,m′

[Q,σg
m]t

×
[{
σ

g
m′(t− r/c)e

ik0r(1−cosθ0) − σ
g
m′(t+ r/c)e

−ik0r(1+cosθ0)
}

×
{
i

rk0

sin2η+
i

r3k3
0

(2− 3 sin2η)
}

−
{
σ

g
m′(t− r/c)e

ik0r(1−cosθ0) + σ
g
m′(t+ r/c)e

−ik0r(1+cosθ0)
}

× 1

r2k2
0

(3 sin2η− 2)

]
, (223)

where, under the Wigner-Weisskopf approximation, ωk0
→ ω00 = ∆0 =

ωe −ω0, and the decay rate and coupling constant (see eq. (209)) are given
by

Γ0 =
1

4πε0

4ω3
0
d2

3 hc3
, g2

0
=
ω0d

2

2ε0
 hV

. (224)

The expression (223) contains advanced and retarded contributions, i. e. with
respective time dependence (t + r/c) and (t − r/c). We will first focus
on the retarded contribution. Under usual experimental circumstances the
propagation time between different sites m and m′ is very small, such that
this propagation time can be neglected within the operator σg

m′(t− r/c) =

σ
g
m′(t− `(m

′ −m)/c) ≈ σg
m′(t) and the retarded contribution of expression

(223) becomes local in time:

γ
∑
m,m′

[
i

rk0

sin2η+
1

r2k2
0

(2− 3 sin2η) +
i

r3k3
0

(2− 3 sin2η)
]

× [Q,σg
m]t σ

g
m′(t)e

ik0r(1−cosθ0) , (225)

with

γ =
g2

0

∆2
0

3|α0|
2

4
Γ0(ε̂d · ε̂0)

2 . (226)
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The advanced contribution of (223), with σ
g
m′(t + r/c) = σ

g
m′(t + `(m

′ −
m)/c) ≈ σg

m′(t), is given by the complex conjugate of (225),

γ
∑
m,m′

[
−
i

rk0

sin2η+
1

r2k2
0

(2− 3 sin2η) −
i

r3k3
0

(2− 3 sin2η)
]

× [Q,σg
m]t σ

g
m′(t)e

−ik0r(1+cosθ0) . (227)

Note that the expressions (225) and (227) only correspond to the last term of
eq. (206). The term in the second line of eq. (206) is given by the respective
hermitian adjoint of the expressions (225) and (227):

γ
∑
m,m′

[
−
i

rk0

sin2η+
1

r2k2
0

(2− 3 sin2η) −
i

r3k3
0

(2− 3 sin2η)
]

× σg
m′(t) [σ

g
m,Q]t e

−ik0r(1−cosθ0) , (228)

γ
∑
m,m′

[
i

rk0

sin2η+
1

r2k2
0

(2− 3 sin2η) +
i

r3k3
0

(2− 3 sin2η)
]

× σg
m′(t) [σ

g
m,Q]t e

ik0r(1+cosθ0) . (229)

We will now combine the expressions (225), (227), (228), and (229). In order
to obtain a more compact form, we will switch the indices m ↔ m′ in
eqs. (228) and (229), taking into account that this results in the replacement
r↔ −r. Our line of conduct can be summarized as follows:

[
(228) + (229)

]
+
[
(225) + (227)

]
(230)

=
[
(225) + (228)(m↔ m′)

]
+
[
(227) + (229)(m↔ m′)

]
,

The first term on the right-hand side of (230) thus reads:

− γ
∑
m,m′

[
i

rk0

sin2η+
1

r2k2
0

(2− 3 sin2η) +
i

r3k3
0

(2− 3 sin2η)
]
eik0r(1−cosθ0)

×
{
2σ

g
m(t)Q(t)σ

g
m′(t) −

(
Q(t)σ

g
m(t)σ

g
m′(t) + σ

g
m(t)σ

g
m′(t)Q(t)

)}
, (231)

and the corresponding second term follows immediately:

γ
∑
m,m′

[
i

rk0

sin2η−
1

r2k2
0

(2− 3 sin2η) +
i

r3k3
0

(2− 3 sin2η)
]
e−ik0r(1+cosθ0)

×
{
2σ

g
m(t)Q(t)σ

g
m′(t) −

(
Q(t)σ

g
m(t)σ

g
m′(t) + σ

g
m(t)σ

g
m′(t)Q(t)

)}
, (232)

Finally, addition of (231) and (232) leads to the following contribution

2γ
∑
m,m′

Mmm′ (233)

×
{
2σ

g
m(t)Q(t)σ

g
m′(t) −

(
Q(t)σ

g
m(t)σ

g
m′(t) + σ

g
m(t)σ

g
m′(t)Q(t)

)}
,

where we introduced the matrix Mmm′ under explicit consideration of r =
r(m,m ′) = `(m′ −m) as

Mmm′ =

[
sin
[
`(m′ −m)k0

]
(

sin2η
`(m′ −m)k0

+
2− 3 sin2η

`3(m′ −m)3k3
0

)
(234)

− cos
[
`(m′ −m)k0

] 2− 3 sin2η
`2(m′ −m)2k2

0

]
e−ik0`(m

′−m)cosθ0 .
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Note that the part of (234) in the brackets is real symmetric under exchange
of m↔ m′, and that M is thus hermitian. For r→ 0, i. e. m = m′, we obtain
Mmm = 2/3.

The expression (233) only contains the contribution of the second and
third line in eq. (206). We will now state the full contribution of (206) under
the assumption that the free radiation field (k 6= k0) is initially, i. e. at t = 0,
in the vacuum state. We can therefore take vacuum expectation values such
that 〈0|Q(0)|0〉 = 〈Q(0)〉

0
. As a consequence, the contribution in the first

line of expression (208) (and its hermitian adjoint) vanish (since they involve
single field creation and annihilation operators which vanish upon taking
vacuum expectation values), and we obtain, for eq. (208):

〈Q̇(t)〉
0
= i∆r

∑
m

〈[σrm,Q]t〉0 − i
∑
m

(
Ωm 〈[σ+m,Q]t〉0 +Ω∗m 〈[σ−m,Q]t〉0

)

+ iV
∑
m

〈[σr
mσ

r
m+1,Q]t〉0 + 2γ

∑
m,m′

Mmm′ (235)

× 〈2σg
m(t)Q(t)σ

g
m′(t) −

(
Q(t)σ

g
m(t)σ

g
m′(t) + σ

g
m(t)σ

g
m′(t)Q(t)

)
〉0 .

This is a master equation of Lehmberg-type, for an arbitrary atomic operator
Q(t). Since we so far are only interested in the atomic subspace, eq. (235)
can also be expressed in terms of the atomic density matrix ρA if we assume
that, initially, i. e. at t = 0, the density matrix of the entire system can be
written as a product of the density matrices of both subsystems, i. e. for the
free radiation field and the atomic part, ρ = ρA ⊗ ρF (together with the
assumption that all modes, apart from the macroscopically occupied mode,
are initially in the vacuum state). This is due the fact that all operators
acting on the field degrees of freedom, see eq. (208), are evaluated at time
t = 0. Since, again, at this time the free radiation field is in its vacuum
state, the contribution of the corresponding field operators vanishes, and
the decoupled equation for the density matrix ρA can be stated:

ρ̇A(t) = −i∆r
∑
m

[σrm, ρA]t + i
∑
m

(
Ωm[σ+m, ρA]t +Ω∗m[σ−m, ρA]t

)

− iV
∑
m

[σr
mσ

r
m+1, ρA]t + 2γ

∑
m,m′

Mmm′ (236)

×
[
2σ

g
m′(t)ρA(t)σ

g
m(t) −

(
ρA(t)σ

g
m(t)σ

g
m′(t) + σ

g
m(t)σ

g
m′(t)ρA(t)

)]
.

Note that eq. (235) is regained by exploiting 〈Q(t)〉 = Tr[ρA(t)Q(t)], 〈Q̇(t)〉 =
Tr[ρ̇A(t)Q(t)], and the fact that the trace is invariant under cyclic permuta-
tions.

Let us state the final version of our master equation such that it contains
the population of the excited state only, i. e. after substitution σg

m = 1m −

σr
m into eq. (236):

ρ̇A(t) = −i∆r
∑
m

[σrm, ρA]t + i
∑
m

(
Ωm[σ+m, ρA]t +Ω∗m[σ−m, ρA]t

)

− iV
∑
m

[σr
mσ

r
m+1, ρA]t + 4iγ

∑
m,m′

Im [Mmm′ ] [σ
r
m, ρA]t

+ 2γ
∑
m,m′

Mmm′ (237)

×
[
2σr
m′(t)ρA(t)σ

r
m(t) −

(
ρA(t)σ

r
m(t)σr

m′(t) + σ
r
m(t)σr

m′(t)ρA(t)
)]

.

By doing so, an additional detuning (∝ Im[Mmm′ ] = Mmm′ −M∗mm′) is en-
countered within the Hamiltonian dynamics of the master equation which –
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since M is hermitian – will only appear for off-diagonal, i. e. m 6= m ′, contri-
butions and can be chosen to vanish for a specific atomic setup, e. g. cos θ0 ≡
0, such that eq. (234) becomes real.

We also note that the damping term, i. e. the third and fourth line of
eq. (237) can be (anti-)symmetrized, in order to clearly separate the damp-
ing from the Hamiltonian dynamics. With the real part of M defined as
Re[Mmm′ ] = Mmm′ +M∗mm′ , we obtain for the third and fourth line of
eq. (237):

4γ
∑
m6m′

{
Re[Mmm′ ]

[
[σr
m, ρA]t ,σr

m′

]
t

−i Im[Mmm′ ]
(
σr
m(t)ρA(t)σ

r
m′(t) − σ

r
m′(t)ρA(t)σ

r
m(t)

)}
. (238)

Note that the real part of M vanishes if cos [k0`(m
′ −m) cos θ0] = 0, see

eq. (234), such that the atomic dynamics becomes purely Hamiltonian. Fur-
ther note that the Lindblad form of eq. (237) can be obtained by diagonaliz-
ing the matrix Mmm′ [224].

We will not focus on the derivation of the master equation of Lindblad
type here but rather – within the following sections – study the atomic dy-
namics of eq. (237) for an increasing number of atoms.

6.3.2 Atomic Dynamics for a Single Atom

Here the situation is the following: We look at a single atom which is driven
by two laser fields. The first one is the weak laser field with frequency ω0

that is far-detuned from any atomic transition and thus results in effective
photon scattering off the atomic ground state.4 The second one is the Ryd-

4 Whether the photon is effectively
scattered off the atomic ground
state, as described by eq. (236), or
off the excited Rydberg state, see
eq. (237), is a matter of choice. As
we will see in Fig. 38, the
description based on effective
scattering off the excited Rydberg
state has an intuitive physical
explanation and is thus preferably
used later on.

berg laser with frequency ωL and Rabi-frequency Ω = Ωm. Although the
interaction with neighboring atoms is obviously absent, we can mimic the
effect of strong interaction (corresponding to a neighboring atom being in
the |r〉-state) by assuming that the corresponding laser field is weak and far-
detuned from the Rydberg transition, i. e. ∆r � Ω � γ. This corresponds
to a large contribution V , which – for two or more atoms – effectively shifts
the excited state of neighboring atoms out of resonance, see eq. (204).

For the case of a single atom only four equations of motion have to be
considered in (237), corresponding to the following density matrix of the
atomic subspace:

ρ̇A(t) =

(
ρ̇rr(t) ρ̇rg(t)

ρ̇gr(t) ρ̇gg(t)

)
. (239)

In Fig. 36 the numerically obtained solutions to the equations of motion (239)
are depicted in the limit ∆r � Ω � γ, with the atom initially in its ground
state. Due to the dephasing rate γ with which photons are scattered off the
atomic ground state, the coherences are damped out, and a steady state is
reached where both, the ground and the excited state, are populated with
equal probability 1/2. This corresponds to a totally mixed state. The rate
with which this mixed state is reached can be determined by a rate equation
that is derived by adiabatic elimination of the coherences from the equations
of motion in (239). For this, it is useful to assume that the Rydberg state
spontaneously decays with a very small but finite rate γr which we have –
owing to its long lifetime – neglected so far in our considerations. If one
assumes that γr also affects the coherences of the corresponding transition,
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Figure 36: Single atom with laser driven Rydberg transition with Rabi-frequency
Ω = 5γ and detuning ∆r = 10γ, where γ determines the scattering rate with which
an additional weak laser is scattered off the ground state, see (237). The (red) solid
and (blue) dashed line describe the time evolution of the population of the ground
state and of the excited state, respectively. The (brown) dotted and (green) long-
dashed lines correspond to the respective imaginary and real part of the coherence
ρgr(t). The thin (black) line is the decay rate of the population of the ground state,
determined by the rate equation (240). For increasing times, the coherences are
damped, due to the effective dephasing γ, and the fully mixed state is reached, see
eq. (241).

one can derive – assuming that ∆r � Ω � γ � γr – the following relation
for the respective populations of the excited and ground state [214]:

ρrr(gg)(t) =
1

2

(
1− (+)e−2Γt

)
, Γ =

4
3γΩ

2

2
[
(43γ)

2 +∆2r
] . (240)

This relation is plotted as a thin black line for the decay of the ground state
population in Fig. 36, and is in very good agreement with the observed
dynamics. Correspondingly, it is easy to see that the atomic density matrix
for a single atom converges towards a fully mixed state in the steady state
limit (indicated by the subscript ss),

ρA(t) =

(
ρrr(t) ρrg(t)

ρgr(t) ρgg(t)

)
−→ ρA,ss =

(
1
2 0

0 1
2

)
. (241)

6.3.3 Two-Atom Dynamics

Let us now turn to the case of two interacting atoms by including eq. (204)
and assuming strong interaction, i. e. V � 0. Henceforth (and in contrast
to the single atom case), we can focus on the quasi-resonant case where the
detuning ∆r is weak in comparison to the Rabi frequency and overwhelmed
by the large interaction contribution that governs the dynamics. Due to
the large interaction strength, the Rydberg blockade sets in and one expects
only one of the atoms to be in the Rydberg state at a time. In total, this
corresponds to three possible states, i. e. ρgg⊗gg(t), ρgg⊗rr(t), and ρrr⊗gg(t),
where both atoms are in the ground state or where either one is in the
excited and ground state, respectively. The subscript indicates the state
of the first and of the second atom to the left and to the right of the ⊗-
symbol, respectively. As for the single atom case, identical letters (gg and
rr) and different letters (gr and gr) in the subscript specify a population and
a coherence with respect to the atom under consideration.
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As a consequence – following the line of thought we had followed above
in the single-atom case – the steady state, after damping out of all coher-
ences, should contain equal populations of 1/3 for all three states mentioned
above. Indeed, in Fig. 37, where the time evolution for certain elements of
the atomic density matrix, i. e.

ρ̇A(t) =




ρ̇rr⊗rr(t) ρ̇rr⊗rg(t) ρ̇rg⊗rr(t) ρ̇rg⊗rg(t)

ρ̇rr⊗gr(t) ρ̇rr⊗gg(t) ρ̇rg⊗gr(t) ρ̇rg⊗gg(t)

ρ̇gr⊗rr(t) ρ̇gr⊗rg(t) ρ̇gg⊗rr(t) ρ̇gg⊗rg(t)

ρ̇gr⊗gr(t) ρ̇gr⊗gg(t) ρ̇gg⊗gr(t) ρ̇gg⊗gg(t)




, (242)

is depicted, we find that on the time-scale 1/γ all coherences are damped
out, and the three mentioned states are approximately equally populated.
However, in Fig. 37, a slight but increasing contribution of the doubly-
excited Rydberg state is already visible for short times that becomes more
pronounced for longer times. The states with equal population 1/3 thus
represent only an intermediate and transient regime of the system, before it
reaches a steady state, in the long time limit.

Let us try to determine rate equations for the population of the four
atomic states via adiabatic elimination, which is, however, more involved
than for the case of a single atom. Nonetheless, there exist two limits in
which one can describe the dynamics in a simplified way.

In the short time limit, when the population of the doubly-excited state
is suppressed, see Fig. 37, an adiabatic elimination of the coherences and
a simultaneous expansion up to factors of order 1/V predicts a decay gov-
erned by the rate γ. For large Ω and vanishing detuning ∆r, this rate is
independent of V and, e. g. for the population of the joined ground state,
given by:

ρgg⊗gg(t) =
1

3
+
2

3
e−8γt . (243)

In Fig. 37, eq. (243) is plotted as a thin black line.
In the long time limit, when the population of the doubly-excited state

becomes important, the dynamics is well captured by rate equations where
we first set the double coherences, i. e. the anti-diagonal terms of expres-
sion (242), to zero and then adiabatically eliminate all the other coherences.
This procedure is suggested by the evolution equations of the populations
which do not directly couple to the anti-diagonal entries of (242). The rate
equations thereby obtained read:

ρ̇rr⊗rr(t) =
6γΩ2

16γ2 + 9(V −∆r)2
[
ρrr⊗gg(t) + ρgg⊗rr(t) − 2ρrr⊗rr(t)

]
,

(244)

ρ̇gg⊗gg(t) =
6γΩ2

16γ2 + 9∆2r

[
ρrr⊗gg(t) + ρgg⊗rr(t) − 2ρgg⊗gg(t)

]
, (245)

ρ̇rr⊗gg(t) =
6γΩ2

16γ2 + 9(V −∆r)2
ρrr⊗rr(t) +

6γΩ2

16γ2 + 9∆2r
ρgg⊗gg(t)−

−
6γΩ2(32γ2 + 9∆2r + 9(V −∆r)

2)

(16γ2 + 9(V −∆r)2)(16γ2 + 9∆2r )
ρrr⊗gg(t) . (246)

From these equations we can read off the relevant time scales of our system.
In our case, when V � Ω � γ, the rapid decay of the initial coherences
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Figure 37: Time-evolution of the two-atom populations in the blockade regime
V � Ω � γ, with Ω = 10γ, ∆r = 0, V = 100γ. We only include the diagonal
contributions of Mmm′ , see eq. (234), and neglect the off-diagonal interferential con-
tributions between the two atoms, as they are small (for sufficiently large lattice spac-
ing `) in comparison to the interaction strength V . The (red) solid, the (blue) dashed,
and the (green) long-dashed line correspond to the abundances of two atoms being
in the ground state, one being in the ground and the other in the excited state, and
two atoms being excited, respectively. The thin (black) solid and dashed lines are the
predictions of eqs. (243) and (247), respectively. Initially, the populations oscillate in
time, until the coherences (not shown) are damped out, and a transient state with
equal population of 1/3 is reached after 5γ−1. At this point, the population of the
doubly-excited Rydberg state is negligible. In the limit of long times, i. e. ∝ V2/Ω2γ,
a fully mixed steady state is reached, with equal population of 1/4 for all four states.

and populations of the ground and singly-excited states is given by the
fastest time scale 1/γ in our system, see also (243). The slow decay of the
transient regime towards the steady state is determined by the slowest time
scale V2/Ω2γ in our system. Interpreted physically, Ω2/V2 determines
the (small) probability to find two neighboring atoms in a Rydberg state
which is yet multiplied with the (small) rate γ to scatter a photon off such a
Rydberg state, see also Fig. 38. Consequently, the decay from the transient
to the steady state regime is, e. g. for the population of the joined ground
state, determined by

ρgg⊗gg(t) =
1

4
+
1

12
e
−γΩ2

V2
t , (247)

indicated by the thin black dashed line in Fig. 37. The corresponding steady
state – despite the Rydberg blockade mechanism – again corresponds to a
totally mixed state with equal population

ρA(t) −→ ρA,ss =




1
4 0 0 0

0 1
4 0 0

0 0 1
4 0

0 0 0 1
4




. (248)

And indeed, for the master equation (237) the dephasing noise acts only on
the populations (and not on the coherences) such that a totally mixed state
is expected in the steady state limit [224].

In summary, already the two-atom scenario analyzed in the blockade
regime, i. e. V � Ω � γ, reveals interesting dynamics. First, the system
relaxes to a quasi-steady state with no doubly-excited Rydberg states, as
expected from the strong Rydberg-Rydberg interaction. Asymptotically in
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Figure 38: Excitation scheme for two atoms. Due to the Rydberg-blockade the
probability to excite the doubly excited Rydberg state is suppressed by a factor
Ω2/V2 multiplied by the small rate γ to scatter photons off the Rydberg state.

time, the dephasing caused by the additional scattering of photons off the
Rydberg state finally leads to a fully mixed state.

6.3.4 Three-Atom Dynamics

Here, we analyze the dynamics for three atoms in a chain. In contrast to the
two-atom case, now doubly-occupied Rydberg states of non-neighboring
atoms are not blocked. In accordance with our observation for the two-
atom case, the transient regime is reached with five non-blocked popula-
tions (|ggg〉, |rgg〉, |grg〉, |ggr〉, and |rgr〉) and equal occupations 1/5. Then,
these populations decrease, as the populations first of the doubly- and then
of the triply-excited Rydberg states increase until the totally mixed steady
state is reached with equal populations of 1/8. Fig. 39 summarizes the re-
sults. Note that the derivation of a rate equation describing the underlying
time scales is already very cumbersome for the case of three atoms. In
Fig. 39 we therefore plot the decay rates of the joined ground state popula-
tion (i. e. the probability for all three atoms to be in the ground state) found
in eqs. (243) and (247), adopted to the case of three atoms, i. e.

ρgg⊗gg⊗gg(t) =
1

5
+
4

5
e−8γt , (249)

for the short time limit, and

ρgg⊗gg⊗gg(t) =
1

8
+
3

40
e
−γΩ2

V2
t , (250)

for the decay to the steady state regime (i.e., t > V2/γΩ2).

6.3.5 Summary

Within this section, we extended the previously derived single-particle Hamil-
tonian to the case of N interacting atoms trapped in the wells of a 1D optical
lattice. We derived a master equation for the atomic sub-system by tracing
out the free radiation field’s degrees of freedom. The coupling between the
radiation field and the atoms is governed by the recycling term of the master
equation (237), that mimics photon scattering off the atomic Rydberg state.

In the remainder of this section we analyzed the influence of this scatter-
ing process on the dynamics within the atomic subspace, in the blockade
regime where V � Ω� γ. Already for the case of two atoms, the evolution
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Figure 39: Time-evolution of the three-atom populations in the blockade regime
V � Ω � γ, with Ω = 10γ, ∆r = 0, V = 100γ. As for the two-atom case, we
only include the diagonal contributions of Mmm′ , see eq. (234). The (red) solid,
(brown) dash-dotted, and (blue) dashed line correspond to selected populations with
zero, one, and two non-neighboring atoms excited to the Rydberg state, respectively.
These in total five states acquire an equal population of 1/5 in the transient regime,
after a relaxation time approximately equal to 5γ−1, once the coherences (not shown)
are damped out. The (light-blue) dotted and the (green) long-dashed line are a se-
lected doubly-excited Rydberg state of neighboring atoms, and the triply-excited Ry-
dberg state, respectively. Their contribution increases successively for longer times,
until the steady state with equal population of 1/8 is reached. The thin (black) solid
and dashed lines are the respective predictions of eqs. (249) and (250), and approxi-
mately determine the time-dependence of the observed dynamics.

of the atomic populations in time revealed the existence of three different
regimes.

In the first regime, the populations oscillate in time as they would do in
a closed quantum system. However, the dephasing due to the scattering of
photons from the surrounding radiation field leads to a damping of these
oscillations.

As soon as the coherences are damped out, a transient regime is reached
where the interaction-based blockade mechanism between the atoms pro-
hibits the excitation of neighboring Rydberg states, thus leading to correla-
tions between the Rydberg-excited and ground state atoms, that encode the
ordering of the atoms in the lattice.

In the long time limit, these correlations vanish and the density matrix of
the atomic sub-system becomes diagonal. The steady state of the system is
thus given by a fully mixed state.

Although this observation has been made only for a small number of
atoms, we expect the same result to hold for an increasing number of atoms.
As e. g. observed in Fig. 39, the three-body states with a different number of
Rydberg excitations approach the fully mixed state at different times. Sim-
ilarly, for a larger number of atoms, we expect the transition to the fully
mixed state for many-body states with a different number of Rydberg exci-
tations to occur at different times as well. Consequently, the N-body fully
mixed state is expected to occur smoothly and not via a collective quantum
jump for all many-body states at the same instance of time.

In the following, it will be interesting to see whether the transition be-
tween the transient and the steady state regime can be captured by detection
of the photons scattered off the atoms.
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6.4 light scattered off a 1d chain of interacting rydberg

atoms

In the previous section the focus was on the dynamics of the atomic sub-
space. The question we would like to answer now concerns the (experimen-
tal) detectability of the dynamics observed in Section 6.3.

We will focus here on the transition from the transient regime to the
steady state regime discussed above. Whereas in the transient regime the
Rydberg blockade mechanism is still present, interaction with the free radi-
ation field leads to a dephasing and ultimate breakdown of the blockade,
and to an equal occupation of ground and excited Rydberg states. Exper-
imentally, dephasing (noise) is always present and thus an increase of the
number of excited Rydberg atoms beyond the limit predicted by the block-
ade mechanism was e. g. observed in [193, 208].

We will here use a simple model of atomic dimers [213] to characterize
the correlations between the atoms in the transient regime, that will allow
us to distinguish this regime from the (correlation-free) steady state regime
by looking at the scattered intensity of the atomic chain.

6.4.1 Intensity Detected in the Far-Field of the Atomic Chain

The intensity scattered off the chain of Rydberg atoms is detected at time t
at the position R in the far-field of the lattice, and is given as the expectation
value of the product of negative and positive frequency components of the
electric field [223]

I(R, t) = 〈E(−)(R, t)E(+)(R, t)〉 , (251)

where E(+)(R, t) =
[
E(−)(R, t)

]†
and

E(+)(R, t) =
∑
k,λ

Ekε̂
(λ)
k ak(t)e

iωkteikR . (252)

Here, the phase factor exp[iωkt] accounts for the back-transformation of
the field mode annihilation operator from the interaction picture to the
Schrödinger picture, cf. eqs. (187) and (199), once we insert eq. (207) into
(252). Assuming again that the radiation field is initially in the vacuum
mode, we only need to plug the second term of eq. (207) into (252), to ob-
tain

E(+)(R, t) = −
iα0d

2

 h2
(ε̂d · ε̂0)

∑
k,λ,m

E2kE0

|ωk0
|
ε̂
(λ)
k ε̂d · ε̂(λ)k eiω0teik(R−rm)eik0rm

×
∫t
0

dt′ ei(ω0−ωk)(t
′−t)σ

g
m(t′) . (253)

Using the relations (209), we apply the continuum limit and transform the
sum into an integral over k, conduct the sum over polarizations, and inte-
grate over the angular components of k:

∫ dΩk̂
2π

(1− k̂k̂)eik(R−rm) =
eik|R−rm| − e−ik|R−rm|

ik|R − rm|

[
1−

(R − rm)(R − rm)

|R − rm|2

]
.

(254)
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In (254) we just included the far-field contributions (∝ 1/r) of the general
integral expression

Fm,m′(ωk) =

∫ dΩk̂
4π

(1− k̂k̂)e±
iωk
c k̂rm,m′ (255)

=


j0

(ωkrm,m′

c

)
−
j1

(
ωkrm,m′

c

)

ωkrm,m′
c


1+ j2

(ωkrm,m′

c

) rm,m′rm,m′

r2
m,m′

,

where the product of the spatial vectors, i. e. the last term in (254) and (255),
is again a dyadic product, and jn(x) represents the n-th order spherical
Bessel function of the first kind [225]. Note that Fm,m′(ωk) = Fm′,m(ωk),
and Fm,m(ωk) =

2
3 · 1.

The integral over the modulus of k is again evaluated in the Wigner-
Weisskopf approximation, see (218):

V

(2π)2
ω2

0

c2|∆0|

[
eiω0

|R−rm|
c

∫∞
−∞ dωke

i(ω0−ωk)(t
′−t− |R−rm|

c )

− e−iω0

|R−rm|
c

∫∞
−∞ dωke

i(ω0−ωk)(t
′−t+ |R−rm|

c )

]

=
V

2π

ω2
0

c2|∆0|

[
eiω0

|R−rm|
c δ

(
t′ − t−

|R − rm|

c

)

− e−iω0

|R−rm|
c δ

(
t′ − t+

|R − rm|

c

)]
. (256)

The integral over t′ is conducted by evaluation of the respective δ-functions,
and eq. (253) transforms into

E(+)(R, t) = −E0Γ0

3α0

4|∆0|k0

(ε̂d · ε̂0) e
iω0t

×
∑
m

(
1−

(R − rm)(R − rm)

|R − rm|2

)
· ε̂d e

ik0rm (257)

×
[
eiω0

|R−rm|
c

|R − rm|
σ

g
m

(
t+

|R − rm|

c

)
−
e−iω0

|R−rm|
c

|R − rm|
σ

g
m

(
t−

|R − rm|

c

)]
,

with Γ0 as in (224). In the far-field limit, i.e. R � rm, the exponentials in
(257) simplify to

eiω0

|R−rm|
c

|R − rm|
≈ e

ik0R

R
e−ik0R̂rm . (258)

If we focus only on the retarded contribution, i.e. including only outgoing
fields, eq. (257) can be transformed further using (258):

E(+)(R, t) = E0Γ0

3α0

4|∆0|k0

(ε̂d · ε̂0)
(
1− R̂R̂

)
· ε̂d e

iω0t
e−ik0R

R

×
∑
m

eik0m`(cosθ0+cosθR)σ
g
m

(
t−

R

c

)
, (259)

where we used that rm = m`ẑ points along the z-axis, and R in spherical
coordinates reads

R = R




sinθR cosφR

sinθR sinφR

cosθR


 . (260)
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Accordingly, E(−)(R, t) is given by the hermitian adjoint of eq. (259),

E(−)(R, t) = E0Γ0

3α∗
0

4|∆0|k0

(ε̂d · ε̂0) ε̂d ·
(
1− R̂R̂

)
e−iω0t

eik0R

R

×
∑
m

e−ik0m`(cosθ0+cosθR)σ
g
m

(
t−

R

c

)
. (261)

The intensity is defined as the expectation value of the product of eqs. (259)
and (261), see (251),

I(R, t) =
|α0|

2

R2

(
3E0Γ0

4|∆0|k0

(ε̂d · ε̂0)

)2
ε̂d ·

(
1− R̂R̂

)2 · ε̂d (262)

×
∑
m,m′

e−ik0`(cosθ0+cosθR)(m
′−m)

〈
σ

g
m′

(
t−

R

c

)
σ

g
m

(
t−

R

c

)〉
.

Subtracting the uncorrelated contribution, i. e. the product of expectation
values, we obtain for eq. (262):

I(R, t) =
|α0|

2

R2

(
3E0Γ0

4|∆0|k0

(ε̂d · ε̂0)

)2
ε̂d ·

(
1− R̂R̂

)2 · ε̂d

×
∑
m,m′

e−ik0`(cosθ0+cosθR)(m
′−m) (263)

×
[〈
σ

g
m′

(
t−

R

c

)
σ

g
m

(
t−

R

c

)〉
−

〈
σ

g
m′

(
t−

R

c

)〉〈
σ

g
m

(
t−

R

c

)〉]
.

The same relation holds if one expresses eq. (263) in terms of the the popu-
lation of the excited Rydberg state, i. e.

I(R, t) =
|α0|

2

R2

(
3E0Γ0

4|∆0|k0

(ε̂d · ε̂0)

)2
ε̂d ·

(
1− R̂R̂

)2 · ε̂d×

×
∑
m,m′

e−ik0`(cosθ0+cosθR)(m
′−m) (264)

×
[〈
σr
m′

(
t−

R

c

)
σr
m

(
t−

R

c

)〉
−

〈
σr
m′

(
t−

R

c

)〉〈
σr
m

(
t−

R

c

)〉]
.

In the steady state limit, where a single atom is uncorrelated with the sur-
rounding atoms (i. e. only diagonal elements of the atomic density matrix
are non-zero), the atomic ground and excited state are equally populated,
i. e. 〈σg

m(t)〉 = 〈σr
m(t)〉 = 1/2. Thus, the correlation function in eq. (262) can

be written as a product of single-atom expectation values, and we simply
obtain

I(R, t) =
|α0|

2

R2

(
3E0Γ0

4|∆0|k0

(ε̂d · ε̂0)

)2
ε̂d ·

(
1− R̂R̂

)2 · ε̂d (265)

× 1
4

∑
m,m′

e−ik0`(cosθ0+cosθR)(m
′−m) .

The second line of (265) is nothing else but the relation known from Bragg
scattering which leads in zeroth order to constructive interference of the
outgoing wave if θR = θ0, see Fig. 40.

Eqs. (263) or (264), however, are the final expressions for the intensity de-
tected in the far-field of the chain of Rydberg atoms, including non-vanishing
correlations. In order to obtain the corresponding atomic expectation values
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one has to solve the master equation (237). The density-density correlations
are equally obtained from (237), by use of the quantum regression theorem
[226, 227]. However, as this is a very involved procedure, especially for an
increasing number of atoms, we rather make use of our above analysis from
which we know how the atoms evolve under the dynamics of the master
equation. Remember that the dynamics in the transient and in the steady
state regime is particularly simple and that, as argued above, we expect our
observations to qualitatively hold for an increasing number of atoms in the
chain. In the next section, we therefore introduce a simple model which
reproduces the correlations observed within the transient regime, and thus
allows for a straightforward calculation of the scattered intensity.

6.4.2 Approximate Description of the Atomic Many-Body State

In the discussion of the atomic dynamics above we encountered a many-
body transient state for the case of two and three atoms that only depends
on the ground and Rydberg-excited state populations of neighboring atoms.
For a first analysis of the scattered intensity (and for computational conve-
nience), it is therefore desirable to construct a (simple) many-body state of
the atomic subspace that reproduces the features of the actual many-body
transient state. We call this state |ξ〉 and construct it as the coherent superpo-
sition of all the states for which a strict next-neighbor blockade exists [213],
i. e. it will only promote the mth-atom initially in the ground state to the
Rydberg state if both neighboring atoms are in the ground state:5

5 As all the terms in |ξ〉 have the
same phase and the same

correlated weights, this is by no
means the most general state.

However, as the actual many-body
transient state depends only on

the atomic populations and not on
phase-related quantities, |ξ〉 at

least gives a "correct sampling" of
state space, cf. [202].

|ξ〉 = 1√
Z

L∏
m=1

(1− σ
g
m−1σ

+
mσ

g
m+1) |↓↓ . . . ↓〉 . (266)

Here, Z is a normalization constant which counts the number of all possible
states of the superposition in |ξ〉. Due to the strict nearest neighbor exclusion
the normalization constant Z is equivalent to the partition function of a
lattice gas of hard-core dimers, i.e. hard objects that occupy two neighboring
lattice sites [213]. In order to calculate the partition sum for a chain of atoms
of length L, we use the following model Hamiltonian:

H =  hV
∑
m

σr
mσ

r
m+1 − µ

∑
m

σr
m , (267)

which includes the next-neighbor exclusion (for V very large) and the chem-
ical potential µ, instead of the term proportional to the detuning  h∆r, see
eq. (200). The partition sum can then be determined as follows:

Z =
∑

σrm=0,1

e−βH (268)

=
∑

σr
m=0,1

eβ
µ
2σ

r
1e−β

 hVσr
1
σr

2
+βµ2 (σ

r
1
+σr

2
)

× e−β hVσr
2
σr

3
+βµ2 (σ

r
2
+σr

3
) . . . eβ

µ
2σ

r
L

= Tr

[(
eβµ/2

1

)(
e−β

 hV eβµ/2

eβµ/2 1

)(
e−β

 hV eβµ/2

eβµ/2 1

)
. . .

(
eβµ/2

1

)]
,

where the sum extends over the possible states (σrm = 1 (σrm = 0): Rydberg
state of the mth atom (not) populated) of each of the m atoms in the atomic
chain. Furthermore, we explicitly spelled out the sum of eq. (267) in the
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second line of (268), and, as usual, β is proportional to the inverse temper-
ature. The precise definition of the temperature is irrelevant for the model
case considered here, except for the fact that it should be non-zero, finite,
and fixed, see below.

In order for the partition sum to represent the blockade limit considered
above (as well as the lattice gas of hard-core dimers), we need to assume a
vanishing chemical potential µ, a very large V , and a fixed β, such that we
may approximate exp[βµ/2] → 1 and exp[−β hV] → 0. Eq. (268) therefore
turns into

Z ' Tr

[(
1

1

)(
0 1

1 1

)(
0 1

1 1

)
. . .

(
1

1

)]
= Tr

[
Tσr

1
TLTσr

L

]
, (269)

where we, respectively, defined the transfer matrices at the beginning and
at the end, as well as inside the atomic chain as:

Tσr
1
= Tσr

L
=

(
1

1

)
, T =

(
0 1

1 1

)
. (270)

With the help of eqs. (266) and (269), we can now determine expectation
values. The expectation value with respect to the state |ξ〉 for the mth-atom
to be in the Rydberg state thus reads:

〈σr
m〉
L

=
1

ZL
Tr

[
∂

∂µ
e−βH

∣∣∣∣
m,µ=0

]
=

1

ZL
Tr
[
Tσr

1
Tmσr

mT
L−mTσr

L

]
. (271)

The correlation between two excited atoms at position m and n is obtained
accordingly:

〈σr
nσ

r
m〉

L
=

1

ZL
Tr

[
∂

∂µ
e−βH

∣∣∣∣
n,µ=0

∂

∂µ
e−βH

∣∣∣∣
m,µ=0

]

=
1

ZL
Tr
[
Tσr

1
Tnσr

nT
m−nσr

mT
L−mTσr

L

]
. (272)

Eqs. (271) and (272) can be identically obtained for the ground state opera-
tors σg

m = 1m − σr
m, i. e.

〈σg
m〉
L

=
1

ZL
Tr
[
Tσr

1
Tmσ

g
mT

L−mTσr
L

]
, (273)

〈σg
nσ

g
m〉

L
=

1

ZL
Tr
[
Tσr

1
Tnσ

g
nT
m−nσ

g
mT

L−mTσr
L

]
. (274)

As mentioned above, we can now exploit the analogy with the case of
Rydberg atoms in a 1D chain, making use of the fact that the state |ξ〉, see
(266), approximately corresponds to the physical many-body transient state
encountered for the case of two and three atoms above. However, the atomic
expectation values which we need in order to obtain the scattered light in-
tensity in eqs. (262) – (264) can now be obtained for a larger number of
atoms, using eqs. (271) and (272). The scattered intensity can then be con-
trasted with Bragg scattering which one obtains for the case of uncorrelated
atoms in the steady state regime, see (265).

In Fig. 40 we plot the intensity scattered off the ground state of 30 atoms,
as a function of the observation angle θR in the y− z-plane, and for differ-
ent realizations of the incoming field, of the inter-atomic distance, and of the
orientations of the atomic dipoles, see Fig. 35 for details regarding the ge-
ometry. Although the Bragg peaks dominate the scattered intensity in both
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Figure 40: Intensity scattered off the ground state of 30 atoms, each at the well of
a 1D optical lattice with lattice spacing `, as a function of the angle θR in the y− z-
plane, i. e. φ = π/2, see Fig. 35 for details regarding the geometry. The thick (red) and
the thin (blue) line in (a) and (c) are proportional, respectively, to eqs. (262) and (265).
For the evaluation of the atomic ground state correlation function we have used
eq. (274). In addition to the Bragg peaks, which correspond to the intensity scattered
off a chain of uncorrelated atoms (that are in their ground state with probability 1/2),
the residual correlations of the transient regime (where the probability for each atom
to be in the ground state is > 1/2, due to the blockade mechanism) show up in the
detected signal as the difference of the two curves in (a) (see (b)) and (c) (see (d)),
respectively.

regimes, corrections due to the correlations between the atoms within the
transient regime can be identified even within our simplified model. This is
due to the blockade mechanism in the transient regime, where the probabil-
ity for each atom to be in its respective ground state is > 1/2, in contrast to
the uncorrelated steady state regime where each atom is in its ground state
with probability 1/2. Consequently, the distribution of ground state popu-
lations in the transient regime depends on the position of the atom in the
chain, and, thus, the angular distribution of the scattered intensity reveals a
more complicated structure in addition to the Bragg peaks.

6.5 summary

Within this chapter, we gave a short introduction to Rydberg atoms, and es-
pecially focused on the strong interaction between neighboring atoms, pre-
dicted to induce the blockade mechanism. Our major goal was to exploit
this mechanism and to investigate a detection scheme to monitor the under-
lying atomic dynamics. We envisaged a 1D optical lattice with single atoms
excited to a Rydberg state sitting at the wells of each site. In addition to the
strongly driven Rydberg transition, we laser-addressed another weakly and
far-detuned dipole transition in the atom off which photons were scattered
and detected to read out the atomic state. The thus achieved monitoring pro-
cess leads to a dephasing of the atomic subsystem (which we accounted for
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by derivation of a master equation) and a relaxation to a fully mixed state
in the steady state limit. For intermediate times, however, a transient state
is reached where the blockade mechanism persists and limits the maximal
excitation present in the system. The duration of this intermediate regime,
which is reached on timescales on the order of the inverse dephasing rate
1/γ, strongly depends on the ratio of the interaction potential to the driv-
ing strength of the Rydberg transition, and, as we could show for the case
of few atoms, scales as V2/Ω2γ. We could furthermore show how the in-
termediate regime differs from the steady state regime with respect to the
angular resolved intensity signal of scattered photons, thus allowing for an
experimental verification and quantification of the stability of the Rydberg
blockade mechanism vital for application, e.g., in quantum information pro-
cessing.

So far we were only able to monitor the transition from the transient to
the steady state regime by mimicking the correlations in the quantum sys-
tem with a classical analogue, i. e. by replacing the Rydberg gas with a gas
of hard-core dimers which occupy two lattice sites. Therefore, account of
the detected intensity by solving the full master equation (237) is still miss-
ing. Of equal interest for future work is the further analysis of additional
phenomena and time scales in the atomic system, which e. g. lead to au-
toionization processes that may modify the relaxation to the steady state.
Additionally, the analysis of different geometries, e. g. ring lattices [228], or
inclusion of disorder effects into our treatment as suggested in [229] offer
possible challenges for future work.
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AS U M M A RY O F A S S U M P T I O N S A N D A P P R O X I M AT I O N S

Here we summarize all assumptions and approximations as well as addi-
tional information relevant to obtain the main results of this thesis.

• All our calculations are conducted in units where  h/2m ≡ 1, implying
particularly E = k2.

• Our theory is valid in the weak disorder potential limit,
√
E`dis ≡

k`dis � 1, which implies:

– neglect of all non-ladder and non-crossed diagrams (see Chap-
ter 3 and Chapter 4, respectively)

– neglect of a second interaction of particles that interacted with
each other before (Section 3.3) (known as recurrent scattering for
single-particle transport)

• Due to collisional energy transfer, a very small number of particles can
acquire energies E = k2, such that k`dis � 1 is violated. Consequently,
we must exclude the energy range E ≈ 0 from the predictions of our
theory.

• We assume Gaussian white noise statistics for averages over the dis-
order potential, i. e. a vanishing mean value and δ-like two-point cor-
relations. This results in isotropic scattering off the disorder potential
and energy-independence of the disorder mean free path `dis. As a
consequence, our setup becomes rotationally invariant.

• Restricting our calculations to the dilute and low-energy Bose gas
involves, to a very good approximation, only two-particle collisions
(asρ

1/3
0 � 1) and s-wave scattering (kas � 1). We assume the interac-

tion between the particles to be point-like.

• We consider our theory to be in the limit where the effect of the dis-
order potential is stronger than the interaction strength between the
particles, i. e. `int � `dis. This implies a vanishing contribution of col-
lisions to transport, that we neglect explicitly in a contact interaction
approximation, cf. eq. (121).

• We treat the inter-particle interaction to occur in vacuum. This is ap-
proximately true for very weak disorder potentials, see discussion of
Fig. 15. For the same reason, boundary effects at the beginning and
end of the slab are also neglected.

• We assume the slab length to be very large in comparison to the wave-
length of the particles, i. e. L � λ. As a consequence, the small width
of the δ-function expressing momentum conservation of the two-body
T -matrix, see eq. (31) and Appendix B.1, can be neglected (and trans-
lational invariance is restored).

• All energy integrals throughout this thesis must be evaluated from
−∞ → +∞, if not stated otherwise. However, we most of the times
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evaluate only positive energy integrals, since the contributions of neg-
ative energies provide a vanishingly small contribution in the weak
disorder limit, see the discussion around eq. (118).



BN - B O D Y S C AT T E R I N G T H E O RY

This appendix is devoted to rigorous statements about theN-body scattering
theory introduced in Section 2.3.

b.1 the two-body t-matrix

Here, we derive eq. (29), show its relation to eq. (31) indicated in Chapter 2,
and finally apply the contact interaction approximation to eq. (31), that leads
to an explicit expression for T̂ (1)U (E12). We again employ units in which
 h/2m ≡ 1.

Starting from the interaction Hamiltonian in second quantized notation

1

2

∫∫
dr dr′ Ψ̂†(r)Ψ̂†(r′)U(r − r′)Ψ̂(r′)Ψ̂(r) , (275)

and plugging in the corresponding field operators

Ψ̂†(r) =
1

(2π)3

∫
dk e−ikrâ

†
k , Ψ̂(r) =

1

(2π)3

∫
dk eikrâk , (276)

we can read off an expression for 〈k3, k4| Û |k1, k2〉 by comparison with
eq. (28):

〈k3, k4| Û |k1, k2〉 =
1

2

∫∫
dr dr′U(r − r′) (277)

×
[
ei(k1−k3)rei(k2−k4)r′ + ei(k1−k4)rei(k2−k3)r′ + {r↔ r′}

]
,

where {r↔ r′} stands for the two missing but equivalent exponential contri-
butions with interchanged vectors r and r′.

Transforming (277) to center-of-mass and relative coordinates with

Q = k1 + k2 , S = (r + r′)/2 , q = (k1 − k2)/2 ,

Q′ = k3 + k4 , s = r − r′ , q′ = (k3 − k4)/2 , (278)

we obtain

〈k3, k4| Û |k1, k2〉 =
∫

dS ei(Q−Q′)S
∫

ds 〈k34| Û(1) |k12〉 . (279)

In eq. (279) we introduced

〈k34| Û(1) |k12〉 =
1

2

∫
dsU(s) (280)

×
[
ei(q−q′)s + e−i(q−q′)s + e−i(q+q′)s + ei(q+q′)s

]
,

and the symmetrized single particle states

|k12〉 =
1√
2

[
|q〉+ |−q〉

]
, |k34〉 =

1√
2

[
|q′〉+ |−q′〉

]
. (281)

The result (29) is obtained upon integration of (279) over S, leading to con-
servation of the overall momentum. The properties of the collision process
thus depend only on the relative momenta.
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As mentioned in Section 2.2, the same separation into center-of-mass and
relative coordinates also applies to the T -matrix, see (32):

〈k3, k4| T̂
(2)
U (E) |k1, k2〉 = (2π)3δ(k1 + k2 − k3 − k4)

× 〈k34| T̂ (1)U (E12) |k12〉 . (282)

The energy dependence of the T -matrix arises due to eqs. (32) and (58) (for
the vacuum Green’s function (33)), and is given by

E12 = E− EQ/2 . (283)

Here, EQ/2 is the energy of the center-of-mass (mass 2m), and T̂ (1)U (E12) is
the T -matrix for a single particle scattered by the potential U(r) with energy
E12 (and mass m/2), such that q =

√
E12/2, with q = |q| if E = E1 + E2, see

(278).
In dependence on the system under consideration, eq. (282) can now be

evaluated further. For the case of two-particle interaction in a low-energy
dilute system the contact interaction approximation amounts to the replace-
ment U(s) = gδ(s). The respective diluteness and low-temperature assump-
tion are usually fulfilled in ultracold atom experiments, e. g. involving Bose-
Einstein condensates, and can be summarized as ρ1/30 as � 1 and as � λ

[110], where λ = 2π/k or λdB =
√
2π h2/mkBT , depending on whether a

suitable system temperature T is defined for the de-Broglie wavelength. ρ0
and as determine the initial density of the bosonic cloud and the s-wave
scattering length, respectively. The restriction to include only s-wave scat-
tering contributions is identical to the weakly interacting low-temperature
limit.

It turns out that for s-wave scattering of identical particles the Born -
approximation in the zero-momentum limit yields a momentum-independent
coupling strength g = 8πas proportional to the s-wave scattering length
[100] (and commonly known from the Gross-Pitaevskii equation.)

However, in order to rigorously justify the contact interaction approxima-
tion one has to replace the actual interaction potential by a pseudo-potential
for the reduced single-particle problem (we here follow the derivation in
[100]),

U(s)ψ(s) = gδ(s)
∂

∂s
(sψ(s)) , (284)

where ψ(s) is now the quantum mechanical wave function for a single par-
ticle at position s. We see now that the operator replacement U(s) = gδ(s)
mentioned above within the contact interaction approximation is only ful-
filled if ψ(s) is regular at s = 0, i. e. if lims→0 s(∂/∂s)ψ(s) = 0. In contrast,
for a general wave function of the form ψ(s) = φ(s)/s (with regular φ(s)),
the scattering solution of the Schrödinger equation with potential U as de-
fined in eq. (284) in terms of s-waves turns out as:

ψq(s) = eiqs − f(q)
eiqs

s
, (285)

with the scattering amplitude f(q) defined as:

f(q) =
as

1+ iqas
≈ as(1− iqas) . (286)

Note that the proportionality to as, i. e. g = 8πas, is only obtained in the
zero-momentum limit, where q vanishes. For our case of two-particle col-
lisions, where the relative momenta can be different from zero, we must
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include the next higher order contribution in (286). The single-particle T -
matrix (282) can now be obtained for a particle with the reduced mass
µ = m/2 and q =

√
E12/2, from the scattering amplitude (286), via

〈k| T̂ (1)U (E12) |k′〉 =
4π h2

2µ
f(q) = 8πas

(
1− ias

√
E12
2

+ . . .

)
. (287)

In order to understand the origin of the prefactor, we included  h2/2m in
the first and reset it to 1 in the second equality of (287), respectively. If the
total energy E = E1 + E2 = k21 + k

2
2, cf. (283), then q = |k1 − k2|/2, see (278),

and (287) reads:

〈k34| T̂ (1)U (E12) |k12〉 = 16πas

(
1−

i|k1 − k2|as

2
+ . . .

)
. (288)

Note that the additional factor 2 in comparison with (287) arises from eq. (280),
due to the symmetry properties of the two-particle subspace.

In another case, relevant in Chapter 4, we find k2 = −k1, such that E12 =

E and the final result is rather:

〈k34| T̂ (1)U (E) |k12〉 = 16πas

(
1− ias

√
E

2
+ . . .

)
. (289)

It can be readily verified that the T -matrix (287) (or equivalently (288) or
(289)) with the scattering amplitude (286) fulfills the unitarity of the scatter-
ing process, i. e. the optical theorem, see (34) and [101].

b.2 factorization of the n-body scattering amplitudes

In this appendix, we show how an arbitrary N-particle scattering diagram
can be factorized into single-particle propagators and two-body collisions.
We first return to the example diagram shown in Fig. 4a). As shown in
Fig. 41, this diagram can be split into four independent subdiagrams. The
two subdiagrams connected to the initial state – (i) and (ii) in Fig. 41 – cor-
respond to Møller operators, and the remaining ones – (iii) and (iv) – to
Green’s operators. This gives rise to the following matrix elements:

Ω
(i)
+ (E) = 〈p9|Ω̂(V)

+ (E)|k1〉 , (290)

Ω
(ii)
+ (E) =

1

2

∫∫
dp2dp3
(2π)6

〈p4, p7|T̂
(2)
U (E)|p2, p3〉〈p2, p3|Ω̂(V)(E)|k2, k3〉 ,

(291)

G(iii)(E) =
1

4

∫∫∫∫
dp1dp5dp6dp8

(2π)12
〈k5, k6|ĜV (E)|p5, p6〉 (292)

× 〈p5, p6|T̂
(2)
U (E)|p1, p8〉〈p1, p8|ĜV (E)|p7, p9〉 ,

G(iv)(E) = 〈k4|ĜV (E)|p4〉 . (293)

Note that the diagrams (i) and (ii) are not connected to each other in
Fig. 41. The corresponding Møller operators can therefore be factorized as
in eq. (57). Likewise, the Green’s functions corresponding to (iii) and (iv)
are factorized according to eq. (58). The respective prefactors 1/2 and 1/4
in eqs. (291) and (292) originate from symmetrization in the two-particle
subspace (e. g. the states |p2, p3〉 and |p3, p2〉 are identical and therefore
must not be summed over twice). It turns out, however, that these factors
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p9

(iii)
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(iv)

E4

3EL − E4

Figure 41: The scratchy red lines split the diagram of Fig. 4a) into 4 subdiagrams
(i), (ii), (iii), and (iv). Note that (i) and (ii) – and likewise (iii) and (iv) – are not
connected to each other by solid arrows. This allows us to factorize the 3-particle
diagram into 1- and 2-particle diagrams. In the following we use the notation based
on Fig. 4a).

are compensated by the two possibilities to associate the initial and final
singe-particle states with each other in eqs. (57) and (58).

The total transition amplitude results as:

〈k4, k5, k6|Ω̂+(3EL)|k1, k2, k3〉(Fig. 4a) =
1

2

∫∫∫
dp4dp7dp9

(2π)9
Ω

(i)
+ (EL)Ω

(ii)
+ (2EL)

×
∫

dE4
(−2πi)

G(iii)(3EL − E4)G
(iv)(E4) . (294)

Now, we again apply eqs. (57) and (58) to factorize the two-particle Møller
and Green’s operators on the right-hand side of eqs. (291) and (292), into
single-particle operators. In this way, we recover most of the terms in
eq. (59). The only ones which appear to differ from eq. (59) are those as-
sociated to k1, p1, p7 and p8, which we reformulate as follows:

1

2

∫
dp9
(2π)3

〈p1, p8|ĜV (3EL − E4)|p7, p9〉〈p9|Ω̂(V)
+ (EL)|k1〉

=

∫
dE1

(−2πi)
〈p1|ĜV (E1)Ω̂(V)

+ (EL)|k1〉G(−E1) . (295)

Again we applied eq. (58), used the completeness relation
∫

dp9|p9〉〈p9| =
(2π)3, and defined:

G(−E1) = 〈p8|ĜV (3EL − E4 − E1)|p7〉 . (296)

Note that G(−E1) is a complex analytic function of E1 with poles only in the
upper half of the complex plane. This, again, is due to the fact that ĜV(E)

as a function of E exhibits poles only in the lower half, whereas E1 enters
with negative sign on the right-hand side of eq. (296). We now reformulate
some terms in (295) as follows:

ĜV (E1)Ω̂
(V)
+ (EL)|k1〉 =

[
1+ ĜV (E1)V̂

]
Ĝ0(E1)|k1〉+ ĜV (E1)ĜV (EL)V̂ |k1〉

=
1

E1 − EL + iε

[
1+

(
ĜV (E1) + ĜV (EL) − ĜV (E1)

)
V̂
]
|k1〉

=
1

E1 − EL + iε
Ω̂

(V)
+ (EL)|k1〉 , (297)

where we used eqs. (53) and (54) and the identity:

ĜV (E1)ĜV (EL) =
1

E1 − EL + iε

(
ĜV (EL) − ĜV (E1)

)
(298)
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resulting from 1
ab = 1

b−a

(
1
a − 1

b

)
(where we set the imaginary part in the

denominator of ĜV (E1), see eq. (55), equal to 2ε instead of ε, and used the
fact that ĜV (E1) and ĜV (EL) have the same set of eigenvectors, i. e. are func-
tions of the same operator Ĥ0 + V̂). After inserting eq. (297) into eq. (295),
we perform the integral over E1 by closing the integration contour in the
lower half of the complex plane. (Remember that G(−E1) has no poles in
the lower half!) Thereby, the energy E1 is set to EL, and we finally recover
the missing terms in eq. (59):∫

dE1
(−2πi)

〈p1|ĜV (E1)Ω̂(V)
+ (EL)|k1〉G(−E1) = 〈p1|Ω̂(V)

+ (EL)|k1〉G(−EL) ,

(299)

The above procedure can be generalized to an arbitrary many-particle scat-
tering diagram: We first divide the whole diagram into independent sub-
diagrams. Then, some of these subdiagrams turn out to be connected to
each other by single-particle propagators. In the above example, Fig. 41,
this is the case for the subdiagram (i) and (iii), which are connected by two
single-atom propagators from k1 to p9 with energy EL, on the one hand,
and from p9 to p1 with energy E1, on the other hand. After connecting
these diagrams and integrating over E1, we obtain a single propagator from
k1 to p1 with energy EL. Hence, for the case that one of the propagators
is connected to the initial state (and thus corresponds to a Møller operator),
the corresponding general identity is given by (299). If both propagators
correspond to Green’s operators, the required identity is proven as follows:∫

dE1dE2
(−2πi)2

ĜV (E1)ĜV (E2)G1(−E1)G2(−E2)

=

∫
dE1dE2
(−2πi)2

1

E1 − E2 + iε

(
ĜV (E2) − ĜV (E1)

)
G1(−E1)G2(−E2)

=

∫
dE2

(−2πi)
ĜV (E2)G1(−E2)G2(−E2) , (300)

where we again used eq. (298) and the fact that G1(−E1) and G2(−E2)

(which correspond to arbitrary other subdiagrams where the energy E1 or
E2 enters with negative sign) exhibit no pole in the lower half of the com-
plex plane. The two propagators ĜV (E1) and ĜV (E2) merge into a single
propagator ĜV (E2), according to (298), and due to the fact that the term
with ĜV (E1) in the second line of eq. (300) vanishes after integrating over
E2, since no pole remains in the lower half.

b.3 complete description of the exemplary inelastic and elas-
tic diagrams for two particles

The inelastic diagram shown in Fig. 5a) gives the following contribution to
the flux density:

J(Fig. 5a)(r) =
22

23

∫
dkdk1dk2dk3dk ′1dk ′2dk ′3dp1dp2dp3dp4dp ′1dp ′2dp ′3dp ′4

(2π)45

×
∫∫

dEdE ′

|2πi|2
w∗(k ′1)w

∗(k ′2)w(k1)w(k2)〈k ′1|
[
Ω̂(V)(EL)

]†
|p ′1〉〈k ′2|

[
Ω̂(V)(EL)

]†
|p ′2〉

× 〈p ′1, p ′2|
[
T̂
(2)
U (2EL)

]†
|p ′3, p ′4〉〈p ′3|

[
ĜV (2EL − E ′)

]†
|k ′3〉〈k ′3|Ĵ(r)|k3〉

× 〈p ′4|
[
ĜV (E

′)
]†

|k〉〈k|ĜV (E)|p4〉〈k3|ĜV (2EL − E)|p3〉
× 〈p3, p4|T̂

(2)
U (2EL)|p1, p2〉〈p1|Ω̂(V)(EL)|k1〉〈p2|Ω̂(V)(EL)|k2〉 . (301)
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The trace formula (63) can now be applied as follows:

1. replace

〈p ′4|
[
ĜV (E

′)
]†

|k〉〈k|ĜV (E)|p4〉 → 〈p ′4|
([
ĜV (E)

]†
− ĜV (E)

)
|p4〉

2. delete the integrals
∫

dk/(2π)3 and
∫

dE ′/(−2πi),

3. replace E ′ by E in 〈p ′3|
[
ĜV (2EL − E ′)

]†
|k ′3〉.

For the elastic diagram, Fig. 5b), we obtain:

J(Fig. 5b)(r) =
23

23

∫
dkdk1dk2dk3dk ′1dk ′2dk ′3dp1dp2dp3dp4

(2π)33

×
∫

dE
2πi

w∗(k ′1)w
∗(k ′2)w(k1)w(k2)〈k ′1|

[
Ω̂(V)(EL)

]†
|k ′3〉〈k ′3|Ĵ(r)|k3〉

× 〈k ′2|
[
Ω̂(V)(EL)

]†
|k〉〈k|ĜV (E)|p4〉〈k3|ĜV (2EL − E)|p3〉

× 〈p3, p4|T̂
(2)
U (2EL)|p1, p2〉〈p1|Ω̂(V)(EL)|k1〉〈p2|Ω̂(V)(EL)|k2〉 . (302)

Here, the trace formula (65) is applied as follows:

1. replace

〈k ′2|
[
Ω̂(V)(EL)

]†
|k〉〈k|ĜV (E)|p4〉 → 〈k ′2|

[
Ω̂(V)(EL)

]†
|p4〉,

2. delete the integrals
∫

dk/(2π)3 and
∫

dE/(2πi),

3. replace E by EL in 〈k3|ĜV (2EL − E)|p3〉.

It is also insightful to look at the prefactors: the first factor 1/2 in (301)
results from (1/

√
2)2 in the initial states |i2〉 and 〈i2|, see (35). The integra-

tion over the final states |k3, k4〉 and 〈k ′3, k ′4| (with k4 = k ′4 = k due to the
trace) goes along with two more factors 1/2 (since both integrations must
be performed in the symmetrized subspace). This, however, is counterbal-
anced by the fact that we may select either one of the two final particles as
the detected particle. In (301), we have selected |k3〉 and 〈k ′3|. Therefore,
we have to include a factor 22 to take into account the other possibilities.
In (302), we obtain an additional factor 2 due to the two possibilities in the
factorization formula (57) for the dashed amplitudes: k ′1 can be associated
with k ′3 and k ′2 with k ′4 = k – or vice versa.

Finally, the diagrams shown in Fig. 5 can be generalized toN > 2 particles.
In this case, the remaining N− 2 particles are assumed not to interact with
the detected particle. Hence, their evolution factorizes from the one of the
detected particle and need not be taken into account. The prefactors are then
generalized as follows: 1/2 → N(N− 1)/4 in (301), and 1 → N(N− 1)/2 in
(302).

Let us now compare these prefactors with the ones obtained from the
iterative procedure based on the connection of building blocks in Chapter 3

and 4: The factors N(N− 1) ' N2 (for N � 1, since N → ∞ in order to
obtain a finite density, see eq. (37)) are accounted for by the source term ρ0
in eqs. (102), (123), and (162), which is proportional to N, see eq. (37), and
occurs twice for a two-particle process proportional to the density squared.
What remains is a factor 1/2 for each collision event [twice in Fig. 5a) and
once in Fig. 5b)] which is included in the definition of the building blocks in
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eqs. (126), (129), (164), (165), and (166). The origin of this factor can be traced
back to the indistinguishability of bosonic particles. Indeed, as argued in
Section 2.3, all factors related to the indistinguishability finally drop out in
the case where all particles are initially in the same state. Since the T -matrix
for indistinguishable particles, see eqs. (31) and (287), differs by a factor 2

from the one for distinguishable particles, this must be counterbalanced by
the above factor 1/2.

b.4 proof of the trace formulas

We here prove the trace formulas (63) and (65) introduced in Section 2.3
valid for inelastic and elastic collision processes, respectively. In both cases,
we apply first the completeness relation∫

dk |k〉〈k| = (2π)3 , (303)

and then the following identity for the product of two Green’s operators:

Ĝ
†
V (E

′)ĜV (E) =
1

E− E ′ + iε

(
Ĝ
†
V (E

′) − ĜV (E)
)

, (304)

which is similar to eq. (298). Thereby, (63) is proven as follows:∫∫
dEdE ′

|2πi|2

∫
dk

(2π)3
(
. . .
)
(−E ′)Ĝ

†
V (E

′)|k〉〈k|ĜV (E)
(
. . .
)
(−E)

=

∫∫
dEdE ′

|2πi|2

(
. . .
)
(−E ′)Ĝ

†
V (E

′)ĜV (E)
(
. . .
)
(−E)

=

∫∫
dEdE ′

|2πi|2
1

E− E ′ + iε

(
. . .
)
(−E ′)

(
Ĝ
†
V (E

′) − ĜV (E)
) (
. . .
)
(−E)

=

∫
dE
2πi

(
. . .
)
(−E)

(
Ĝ
†
V (E) − ĜV (E)

) (
. . .
)
(−E)

. (305)

In the last step, we have used the fact that
(
. . .
)
(−E)

, as the energy argument
appears with a minus sign, is a complex analytic function without poles in
the lower half of the complex plane. Similarly,

(
. . .
)
(−E ′) exhibits no poles

in the upper half. Thereby, considering the two terms Ĝ†V (E
′) or ĜV (E),

which only have poles in the upper and lower half of the complex plane, re-
spectively, we can perform the integral either over E or over E ′, closing the
integration contour in the lower or upper half, respectively. In both cases,
the term 1/(E− E ′ + iε) constitutes the only pole. This fixes E ′ = E, and we
arrive at the final result, eq. (305).

Concerning the trace formula for elastic collisions, eq. (65), we proceed in
a similar way as in eq. (299). We use the definition (54) of Ω̂(V)

+ (EL) and the
Lippmann-Schwinger equation (53) for ĜV (E) as follows:∫

dE
2πi

∫
dk

(2π)3
〈kL|

[
Ω̂

(V)
+ (EL)

]†
|k〉〈k|ĜV (E)

(
. . .
)
(−E)

(306)

=

∫
dE
2πi
〈kL|

[
ĜV (E) + V̂Ĝ

†
V (EL)ĜV (E)

] (
. . .
)
(−E)

=

∫
dE
2πi

1

E− EL + iε
〈kL|

[
1+ V̂

(
ĜV (E) + Ĝ

†
V (EL) − ĜV (E)

)] (
. . .
)
(−E)

= 〈kL|
[
1+ V̂Ĝ†V (EL)

] (
. . .
)
(−EL)

= 〈kL|
[
Ω̂

(V)
+ (EL)

]† (
. . .
)
(−EL)

.

This proves eq. (65).





CG E N E R A L PA RT I C L E A N D E N E R G Y F L U X
C O N S E RVAT I O N

In this appendix, we prove the relations (131) for particle and energy flux
conservation irrespective of the particular choice of the two-body collision
process.

In order to prove the formula for the conservation of the particle flux, we
apply the contact approximation, cf. eq. (121), and conduct the integration
over r1 and r2 in eq. (111). Since r only appears as an exponent in (111), the
formula

∫
dr exp(ik · r) = (2π)3δ(k) yields δ-functions in k-space. From the

T -matrix (31), we get another δ-function for momentum conservation of the
collision. In total, we obtain:

fLE1,E2,E3

= 2

(
4π

`dis

)2
1

4

∫
dk1dk2dk3

(2π)9

G∗E1+E2−E3

(k4) −GE1+E2−E3
(k4)

2πi

×
∣∣∣〈k34|T̂ (1)U (E12)|k12〉

∣∣∣
2 ∣∣GE1

(k1)
∣∣2∣∣GE2

(k2)
∣∣2∣∣GE3

(k3)
∣∣2 , (307)

where |k12〉, |k34〉 and E12 = E1 + E2 − Ek1+k2/2 are defined as in eq. (30),
with k4 = k1 +k2 −k3. Now, we can calculate

∫∞
0 dE3

√
E3f

L
E1,E2,E3

. For this
purpose, we first note that∫∞

0
dE3

√
E3

(
G∗E1+E2−E3

(k4) −GE1+E2−E3
(k4)

2πi

)
∣∣GE3

(k3)
∣∣2

' `dis
2i

(
1

E1 + E2 − k
2
3 − k

2
4 − 2iε

−
1

E1 + E2 − k
2
3 − k

2
4 + 2iε

)

' `dis
2i

([
G

(0,m/2)
E12

(
k3 − k4
2

)]∗
−G

(0,m/2)
E12

(
k3 − k4
2

))
.

(308)

As a first step to obtain (308), we used the identity

√
E3
∣∣GE3(k3)

∣∣2 = `dis

[
G∗E3(k3) −GE3(k3)

]
/(2i) (309)

for the average Green’s function, then replaced the average Green’s func-
tions by vacuum Green’s functions (which is appropriate in the weak disor-
der limit), and evaluated the integral over E3 using residual calculus. Sec-
ond, we replaced (k23 + k

2
4)/2 → (k1 + k2)2/2− k3k4 = Ek1+k2/2− k3k4,

following from momentum conservation, and set the imaginary part 2ε in
the denominator to ε to arrive at eq. (308). We here explicitly indicated
with a superscript that the vacuum Green’s functions correspond to a par-
ticle with mass m/2 (and corresponding dispersion relation E = 2k2) , see
Appendix B.1 for details.
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We can now insert (308) into (307), substitute the variable k3 → k34 =

(k3 − k4)/2, and integrate over k34:

2

∫
dk34
(2π)3

([
G

(0,m/2)
E12

(k34)
]∗

−G
(0,m/2)
E12

(k34)
) ∣∣∣〈k34|T̂ (1)U (E12)|k12〉

∣∣∣
2

= 2

∫
dk34
(2π)3

〈k12|
[
T̂
(1)
U (E12)

]† (
Ĝ
†
0,m/2(E12) − Ĝ0,m/2(E12)

)
|k34〉

× 〈k34|T̂ (1)U (E12)|k12〉

= 2 〈k12|
[
T̂
(1)
U (E12)

]† (
Ĝ
†
0,m/2(E12) − Ĝ0,m/2(E12)

)
T̂
(1)
U (E12)|k12〉 .

(310)

Application of the optical theorem (34) yields in total:∫∞
0

dE3
√
E3 f

L
E1,E2,E3

= −
(4π)2

`dis

∫∫
dk1dk2
(2π)6

Im
{
〈k12|T̂ (1)U (E12)|k12〉

}
×
∣∣GE1

(k1)
∣∣2∣∣GE2

(k2)
∣∣2 . (311)

On the other hand, taking eq. (110) with the T -matrix (31), under the con-
tact approximation (121), and together with the formula

√
E2
∣∣GE2

(k2)
∣∣2 =

`dis[G
∗
E2

(k2) −GE2
(k2)]/(2i), the integrals over r1 and r2 can be conducted:

−
√
E2 g

L
E1,E2

=−
(4π)2

`dis

∫∫
dk1dk2
(2π)6

∣∣GE1
(k1)

∣∣2Im
{
〈k12|T̂ (1)U (E12)|k12〉

×
[
G∗E2

(k2) −GE2
(k2)

]
GE2

(k2)
}

. (312)

Taking only the term |GE2
(k2)|

2 in the second line of (312) exactly repro-
duces (311). The remaining term [GE2

(k2)]
2 gives a negligible contribution

in the limit
√
E2`dis � 1. Moreover, one can show that this contribution

is cancelled by another diagram where an additional disorder correlation
function is inserted just before and after the collision, see the discussion in
Section 3.3 and also Figs. 1e) and f) in [186]. This proves the conservation of
the particle flux in eq. (131).

The second relation for the conservation of the energy flux, see eq. (131),
can be shown in almost the same way. Now, when calculating the expression∫∞
0 dE3 2

√
E3 E3 f

L
E1,E2,E3

, eq. (308) is replaced by:

∫∞
0

dE3 2
√
E3E3

(
G∗E1+E2−E3(k4) −GE1+E2−E3(k4)

2πi

)
∣∣GE3(k3)

∣∣2

' `dis
2i

([
G

(0,m/2)
E12

(k34)
]∗

−G
(0,m/2)
E12

(k34)
)(
E1 + E2 + k

2
3 − k

2
4

)
.

(313)

When integrating over k34 as in eq. (310), the term (k23 − k
2
4) vanishes due

to symmetry, but the factor (E1 +E2) remains. This proves the conservation
of the energy flux in eq. (131).



DD E R I VAT I O N O F T R A N S P O RT E Q U AT I O N S F O R T H E
S L A B G E O M E T RY

We show in detail how one adapts the general transport equations to the
slab geometry considered.

d.1 incoherent transport – the ladder component

d.1.1 The Linear Ladder Component

We start out with the general linear transport equation derived up to eq. (100):

I(r) = I0(z) +
∫

dr′
e−|r−r′|/`dis

4π`dis|r − r′|2
I(r′) , (314)

and I0(z) = I0e−z/`dis as in eq. (102). Because the slab is infinitely stretched
in x and y-direction, the intensity is translationally invariant in these direc-
tions and (314) can be separated [230]; the relevant contribution I(z) will
dependent on the z-coordinate only. Next, we transform r′ to cylindrical
coordinates,

r′ =



ρ cosφ

ρ sinφ

z′


 (315)

and choose the x and y-coordinates of r (i. e. x,y = 0) such that the integral
(314) becomes independent of φ (i. e. equal to 2π), and the integral over ρ
thus reads∫∞

0
dρ ρ

e−
√

(z−z′)2+ρ2/`dis

(z− z′)2 + ρ2
=

∫∞
|z−z′|

dρ′
e−ρ

′/`dis

ρ′
= Γ

[
0,

|z− z′|
`dis

]
, (316)

where we chose ρ′ =
√
(z− z′)2 + ρ2 and defined the upper incomplete Gamma

function [225] as

Γ(a, x) =
∫∞
x

dt ta−1e−t . (317)

For the sake of completeness, we note that other derivations introduce at
this point the exponential integral function [225]

En(x) =

∫∞
1

dt t−ne−xt , (318)

for which Γ(0, x) = E1(x) holds.
Equation (314) now takes following form

I(z) = I0e
−z/`dis +

1

2`dis

∫L
0

dz′ Γ
[
0,

|z− z′|
`dis

]
I(z′) . (319)
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The function (317) exhibits a logarithmic divergence for |z− z ′| = 0 which
can be avoided (practical for numerical purposes) if we integrate (319) by
parts to finally obtain

I(z) = I0e
−z/`dis +

1

2`dis

[
−
[
I(z′)g(z− z′)

]z
z′=0 +

[
I(z′)g(z′ − z)

]L
z′=z

−

∫z
0

dz′ I′(z′)g(z− z′) +
∫L
z

dz′ I′(z′)g(z′ − z)

]
, (320)

where I′(z) denotes the derivative of I with respect to z, and

g(x) =

∫x
0

dz Γ(0, z/`dis) = `dis

(
xΓ(0, x/`dis)/`dis − e

−x/`dis + 1
)

(321)

remains finite for x→ 0.
Once one has calculated the intensity as a function of the position in the
slab, one obtains the bistatic coefficient γL(lin) [160] under the emission angle
θ, i. e. the normalized incoherent intensity at the point of the detector R in
the far field, as a sum of all scattering paths that leave the slab at position r
and directly propagate to R:

γL(lin)(θ) =
4πR2

I0A

∫
dr I(r)

e−|R−r|/`dis

4π `dis |R − r|2
. (322)

The bistatic coefficient is normalized with respect to the source intensity
I0, the illuminated slab surface area A transverse to the incident wave, and
the distance to the detector. Since the average intensity can solely be ex-
pressed as a function of the slab depth z and the angle of emission θ, see
eq. (320) and Fig. 7, and noting that the exponential attenuation of the in-
tensity (Lambert-Beer law) occurs only within the slab (and not within the
vacuum), we can use the Fraunhofer approximation [156] to derive eq. (322) in
the far-field of the slab, i. e. for |R|� |r|, as a function of z only:

γL(lin)(θ) =
1

I0`dis

∫L
0

dz I(z)e−z/(`dis cosθ) . (323)

The integration over the remaining coordinates equals the illuminated sur-
face area

∫∫
dxdy = A, and thus drops out even in the limit A → ∞. For

the derivation we also assumed that the source intensity enters the slab per-
pendicularly.

d.1.2 The Nonlinear Ladder Component

As the final figure of merit for the nonlinear case we rather consider the
flux density J(R), see eq. (119), than the density – a distinction which was
not crucial for the elastic case, where single-particle energies remained fixed.
Hence, eq. (323) for the nonlinear case must be adjusted and thus reads

γL(θ) =

∫
dEγLE(θ) , (324)

with the spectral density of γLE(θ) defined as

γLE(θ) =
1

J0`dis

∫L
0

dz JE(z)e−z/(`dis cosθ) . (325)
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Here, J0 =
√
ELI0, and the flux density JE(z) within the slab is defined

according to (144). The calculation of JE(z) was in the focus of Chapter 3

and can be computed with the help of eq. (124). Since the disorder mean free
path `dis is independent of the energy for a white noise correlated disorder
potential, we can equivalently write (324) according to (144), as

γL(θ) =
1

J0`dis

∫L
0

dz J(z)e−z/(`dis cosθ) . (326)

d.2 coherent transport – the crossed component

d.2.1 The Linear Crossed Component

The linear crossed component is governed by the transport equation (149),
i. e.

C(r, q) = C0e
−z/(2`dis)e−z/(2`dis cosθ)eiqr

+

∫
dr′

e−|r−r′|/`dis

4π`dis|r − r′|2
C(r′, q) , (327)

which we now also adapt to the slab geometry. In (327), we used

kin =



0

0

kL


 , kout =



kD sin θ′

0

kD cos θ′


 , q = kin +kout =




kD sin θ

0

kL − kD cos θ


 ,

(328)

with the backscattering angle θ = π− θ′ in the spherical representation of
kout.

As in the derivation of the corresponding ladder component, we want to
obtain an expression for the crossed intensity which only depends on the z-
component. Since (327) depends on x and y due to the term eiqr, we define
the transverse Fourier transform

C̃(z, q) = e−i(qxx+qyy) C(r, q) , (329)

which turns out to be independent of x and y. Eq. (327) thus transforms to
the following expression:

C̃(z, q) = C0e
−z/(2`dis)e−z/(2`dis cosθ)eiqzz (330)

+

∫L
0

dz′
∫∫

dx̄dȳ
e−
√

(z−z′)2+x̄2+ȳ2/`dis

4π`dis((z− z′)2 + x̄2 + ȳ2)
e−i(qxx̄+qyȳ)C̃(z ′, q) ,

where x̄ = x− x′ and ȳ = y− y′.
We again perform the transformation to cylindrical coordinates, see (315), to
evaluate the integrals over x̄ and ȳ, and note that∫2π

0
dφeiq⊥ρ cosφ = 2π J0(ρ|q⊥|) , (331)

where q⊥ =
√
q2x + q

2
y, and J0 is the Bessel function of the first kind [225]. We

now have to integrate the following expression:

1

2`dis

∫L
0

dz′
∫∞
0

dρ ρ
e−
√

(z−z′)2+ρ2/`dis

(z− z′)2 + ρ2
J0(ρ|q⊥|)C̃(z

′, q) . (332)
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Even more, we would like to generalize the expression (332), for later con-
venience, to include also inelastic contributions, i. e. contributions where
the single particle wave numbers of counter-propagating scattering ampli-
tudes k and k′ are different from each other and different from kL, and
replace 1/`dis → q̃ = 1/`dis − i(k − k

′) in the exponent. This gives rise
to the crossed component where the solid amplitude propagates with the
single-particle energy E (and it is implicitly assumed that the conjugated
amplitude has the single-particle energy E = EL + ED − E, see eq. (152)),
i. e. C̃(z ′, q)→ C̃E(z

′, q). We will show later how to separate the elastic and
inelastic component again.
Using eq. (28c) in [231], we replace (332) with

1

2`dis

∫L
0

dz′ fE(|z− z′|,q⊥)C̃E(z
′, q) , (333)

where

fE(|z− z
′|,q⊥) =

∫∞
0

dρ ρ
e−q̃
√

(z−z′)2+ρ2

(z− z′)2 + ρ2
J0(ρ|q⊥|)

=

∫∞
1

dt
e−q̃|z−z

′|
√
t2+(q⊥/q̃)2

√
t2 + (q⊥/q̃)2

. (334)

For numerical convenience it is again in order to perform the integral over
z′ in (333) by parts, for which we introduce the general integral of (334)

FE(z− z
′,q⊥) =

∫z′
z

dz′′ fE(|z− z′′|,q⊥)

= −

∫∞
1

dt
1− e−q̃(z−z

′)
√
t2+(q⊥/q̃)2

q̃(t2 + (q⊥/q̃)2)
, (335)

for z′ 6 z, and

FE(z− z
′,q⊥) = −FE(−(z− z′),q⊥) , (336)

for z′ > z. (333) can thus be written as
[
FE(z− z

′)C̃E(z
′, q)

]z ′=z
z′=0

−
[
FE(z

′ − z)C̃E(z
′, q)

]z ′=L
z′=z

−

∫z
0

dz′ FE(z− z
′)C̃ ′E(z

′, q) +
∫L
z

dz′ FE(z
′ − z)C̃ ′E(z

′, q) , (337)

where C̃ ′E(z
′, q) defines the derivative of C̃E(z

′, q) with respect to z′. Using
(336) and FE(0) = 0, we can simplify (337) to

− FE(z)C̃E(0, q) − FE(L− z)C̃E(L, q)

−

∫z
0

dz′ FE(z− z
′)C̃ ′E(z

′, q) +
∫L
z

dz′ FE(z
′ − z)C̃ ′E(z

′, q) . (338)

Replacing the integral (333) by expression (338) and substituting this result
in (330), we obtain a general equation for the crossed component within the
medium:

C̃E(z, q) = C0e
−z/(2`dis)e−z/(2`dis cosθ)eiqzz (339)

+
1

2`dis

[
− FE(z,q⊥)C̃E(0, q) − FE(L− z,q⊥)C̃E(L, q)

−

∫z
0

dz′ FE(z− z
′,q⊥)C̃E(z

′, q) +
∫L
z

dz′ FE(z
′ − z,q⊥)C̃E(z

′, q)

]
.
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Note that the elastic contribution C̃(z, q) is obtained from (339) for E = (EL +

ED)/2 ⇔ E = E, i. e. q̃ = 1/`dis, see e. g. (334). If additionally θ = 0, i. e. in
exact backscattering direction, also q⊥ = 0 and (334) and (335) become,
respectively (see (317) and (321)):

fEL+ED
2

(|z− z′|,q⊥ = 0) =

∫∞
1

dt
e−q̃|z−z

′|t

t
= Γ

[
0,

|z− z′|
`dis

]
,

FEL+ED
2

(z− z′,q⊥ = 0) = −g(z− z′) for z > z ′ . (340)

This limit also corresponds to qz = 0, and the linear elastic crossed contri-
bution in backscattering direction becomes indistinguishable from the cor-
responding ladder contribution (cf. eq. (320)):

C̃(z, 0) = C(z, 0) = C0e
−z/`dis (341)

+
1

2`dis

[
g(z)C(0, 0) + g(L− z)C(L, 0)

+

∫z
0

dz′ g(z− z′)C′(z′, 0) −
∫L
z

dz′ g(z′ − z)C′(z′, 0)

]
.

Therefore, as expected for the case of linear transport theory, the backscat-
tered intensity will be enhanced by a factor of two (after subtracting the
single-scattering contribution) [232].

The linear crossed bistatic coefficient as a function of the backscattering
angle is derived just as eq. (323), with the only difference that now one
scattering amplitude exits the slab under an angle of θ, and the other per-
pendicularly:

γC(lin)(θ) =
1

C0`dis

∫L
0

dz
[
C̃(z, q)e−z(1+1/ cosθ)/(2`dis)e−iqzz

− C̃0(z, q)e−z(1+1/ cosθ)/(2`dis)e−iqzz
]

. (342)

with C̃0(z, q) = e−z(1+1/ cosθ)/(2`dis)eiqzz. We again stress that, in ex-
act backscattering direction, and except for the subtracted single scatter-
ing contribution (second line in the integral above), one cannot differen-
tiate whether the elastic scattering contribution results from an incoher-
ent or a coherent process, respectively (323) and (342), since the source
intensities I0 = C0 = ρ0, as well as the intensities within the medium,
C̃(z, 0) = C(z, 0) = I(z), see eq. (341), are equal.

d.2.2 The Nonlinear Crossed Component

In eq. (339) of the previous section we already stated the linear equation
responsible for the transport of counter-propagating amplitudes with differ-
ent energies, as a result of inelastic scattering. Hence, in order to trans-
form eqs. (162) and (163) in Chapter 4 to a form such they depend on
z and θ only, we first have to replace the linear crossed propagation in
the first lines of eqs. (162) and (163) by eq. (339), under consideration of
C̃
(1,2)
E (z, q) = C

(1,2)
E (r, q)e−i(qxx+qyy), respectively. The collision terms,

i. e. the second and third lines of eqs. (162) and (163), are unaffected by
this transformation as the phase factors cancel each other due to the con-
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tact interaction approximation, cf. eq. (161). Thus, eqs. (162) and (163) read,
respectively:

C̃
(1)
E (z, q) = C0e−z/(2`dis)e−z/(2`dis cosθ)eiqzz δ(E− EL)

+
1

2`dis

[
− FE(z,q⊥)C̃

(1)
E (0, q) − FE(L− z,q⊥)C̃

(1)
E (L, q)

−

∫z
0

dz′ FE(z− z
′,q⊥)C̃

(1)
E (z ′, q) +

∫L
z

dz′ FE(z
′ − z,q⊥)C̃

(1)
E (z ′, q)

]

+

∫∞
0

dE ′
[(
gC

E ′,E +
[
gC

E ′,E

]∗)
C̃
(1)
E (z, q) +

∫Eq

0
dE ′′ fCE ′,E ′′,EC̃

(1)
E ′′ (z, q)

]
IE ′(z)

+

∫Eq

0
dE ′

[
hC

E,E ′

]∗
C̃
(1)
E ′ (z, q)IE(z) , (343)

C̃
(2)
E (z, q) =

1

2`dis

[
− FE(z,q⊥)C̃

(2)
E (0, q) − FE(L− z,q⊥)C̃

(2)
E (L, q)

−

∫z
0

dz′ FE(z− z
′,q⊥)C̃

(2)
E (z ′, q) +

∫L
z

dz′ FE(z
′ − z,q⊥)C̃

(2)
E (z ′, q)

]

+

∫∞
0

dE ′
[(
gC

E ′,E +
[
gC

E ′,E

]∗)
C̃
(2)
E (z, q) +

∫Eq

0
dE ′′fCE ′,E ′′,EC̃

(2)
E ′′ (z, q)

]
IE ′(z)

+

∫Eq

0
dE ′hC

E ′,E

(
C̃
(1)
E ′ (z, q) + C̃(2)

E ′ (z, q)
)
IE ′(z) . (344)

As for the nonlinear bistatic coefficient of the crossed component, the
final figure of merit is determined by the flux density, see eq. (171). Upon
normalization of this quantity with respect to the incoming flux and the
distance to the detector, we obtain

γC(θ) =

∫
dED γ

C
ED

(θ) , (345)

where the spectrum of γCED
(θ) with detected energy ED is defined as

γCED
(θ) =

1

JC0 `dis

∫L
0

dz e−z(1+1/ cosθ)/(2`dis)e−iqzz (346)

×
[√
ED C̃

(1)
ED

(z, q) +
√
ED C̃

(2)
ED

(z, q) −
√
ELC̃0(z, q)

]
,

with JC0 =
√
ELC0.
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We summarize the rigorous calculation of the integrals referred to in Fig. 15

in Chapter 3. For the case of Fig. 15, all Green’s functions are evaluated at
the same single-particle energy E = k2. We therefore suppress the explicit
energy dependence of the Green’s functions in this appendix.

• First we treat the integral over an intermediate point where two aver-
age Green’s functions (93) are connected:∫

dr3G(r1 − r3)G(r3 − r2) =
∫

dr3G(r13)G(r32)

=

∫
dr13G(r13)G(r32)

=
1

(4π)2

∫
dr13

eik̃(r13+|r12−r13|)

r13|r12 − r13|

=
1

8π

∫
dr13 r13

∫
dcos(θ)

eik̃(r13+|r12−r13|)

|r12 − r13|

=
−1

8πr12

∫
dr13 eik̃r13

∫ |r12−r13|
r12+r13

dy eik̃y ,

with k̃ = k+ i/(2`dis) as in eq. (83). Furthermore, we introduced spher-
ical coordinates, defined y = |r12− r13|, and dcos(θ) = −ydy/(r12r13),
such that the integration over y can be performed immediately:

=
i

8πk̃r12

∫∞
0

dr13 eik̃r13
[
eik̃(r12+r13) − eik̃|r12−r13|

]

=
−i

8πk̃
eik̃r12 =

ir12

2k̃
G(r12) =

ir12

2k̃
G(r1 − r2) , (347)

For the integration over r13 we used that Im[k̃] > 0, to ensure conver-
gence of the integral at infinity.

• The same result holds for the vacuum Green’s functions (73) under the
replacement k→ k+ iε and subsequent limit ε→ 0:∫

dr3G0(r1 − r3)G0(r3 − r2)

=
1

(4π)2
lim
ε→0

∫
dr13

ei(k+iε)(r13+|r12−r13|)

r13|r12 − r13|

=
ir12
2k

G0(r1 − r2) . (348)
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• The integration procedure remains the same if one replaces one of the
Green’s functions by its complex conjugate:∫

dr3G∗(r1 − r3)G(r3 − r2)

=
1

(4π)2

∫
dr13

eik̃r13−ik̃
∗|r12−r13|

r13|r12 − r13|

=
i`dis
2k

(G∗(r12) −G(r12)) =
`dis
4πk

sin(kr12)
r12

, (349)

where k̃∗ = k− i/(2`dis).

• Integration over common points of origin always appears when the
two Green’s functions originate from the same correlated disorder
event. We hence multiply by the correlation factor 4π/`dis and obtain

4π

`dis

∫
drG(r)G(r) =

4π

1− 2ik`dis
, (350)

and

4π

`dis

∫
drG∗(r)G(r) =

∫
drP(r) = 1 . (351)
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