UlRICH Rebstock

Weights and measures in Islam

[^0]

Weights and Measures in the Indus Valley. Fig. 1 Balance pans (photograph by the Maninichi Newspapers, 1961; used with permission).

Weights and Measures in the Indus Valley. Fig. 2 Weights (photograph by the Mainichi Newspapers, 1961; used with permission).

The measuring system used in the Indus valley was different from the Mesopotamian and Egyptian measuring systems, but the sensitivity of precision balances used in these regions is assumed to have been comparable. The weights excavated from Taxila (sixth century BCE to seventh century AD) descend from the system of weights used in the Indus civilization (Fig. 2).

References

Bhardwaj, H. C. Aspects of Ancient Indian Technology. Delhi: Motilal Banarsidass, 1979.
Hori, Akira. A Consideration of the Ancient Near Eastern Systems of Weight. Orient 22 (1986): 16-36.
Iwata, Shigeo. On the Standard Deviation of the Weights of Indus Civilization. Bulletin of the Society for Near Eastern Studies in Japan 27.2 (1974): 13-26.
---. Development of Sensitivity of the Precision Balances. Travaux du ler Congrès International de la Métrologie Historique. Zagreb: Jugoslavenska academija znanosti i umjet-nosti, Historijski Zavod, 1975. 1-25 + Fig. 1.
---. History of Weighing Scales. Journal of Japan Society for Design Engineering 38.9 (2003): 438-51.
Mainkar, V. B. Metrology in the Indus Civilization. Frontiers of the Indus Civilization. Ed. B. B. Lal and S. P. Gupta. New Delhi: Books \& Books, 1984. 141-51.
Rao, S. R. Lothal and the Indus Civilization. London: Asia Publishing House, 1973.

Weights and Measures in Islam

Ulrich Rebstock

In the sphere of Islamic influence the Quranic injunction "to give full measure and to weigh with the right scales" (Qur'än 17:35), led - in the long run to systems of measuring that were subjected to the authority and control of politics and law. But only a few measuring standards were substituted by new Islamic prescriptions. The most lasting novelty set off through the Quranic revelation affected the measure of time. It assumed a dual character. The natural solar year gave way to the ritual lunar year (29-30 days of the month), except in some fields of public administration and astronomical science. Within the sphere of the metrological systems of measures and weights, however, the Qur'än remains vague. Among the terms most often mentioned, kayl or mikyāl (Sura 12:12 and passim, 'measure of capacity'), mīzān and mithqāl (Sura 6:152, 21:47 and passim, 'weight'), range first. Others, like qințār (3:75, 'hundredweight'), darāhim (3:75, pl. of dirham), dīnār (3:75) and habba min hardal (21:47, 'grain of mustard'), are used in a metaphorical sense. A more systematic elaboration of metrical definitions and ratios, mainly for juridical purposes, was effectuated in the 'traditions of the Prophet' (hadī̀th, pl. ahādī̀th). The characteristic aspects of the genesis of Islamic law - a cumulative development until the fourth and tenth century, geographically restricted proliferation of the various law schools (madhāhib), lack of normative authority - did, however, not allow for the introduction of uniform and ubiquitously accepted Islamic metric systems. Thus, the weights and measures which were used in Arabia and outside it, in the lands conquered by the Muslims, co-existed side by side, replaced each other, sometimes only by function, or by name, or intermingled. The striking feature of the metric systems that were in use in the early, medieval and pre-modern Islamic countries was their diversity. Neither in time, nor in space, could standard values develop that were accepted beyond their regional borders and their rulers' period. Although some names of units of measure, e.g. dhirā̆, dirham or ratl, were widely diffused throughout the Islamic world, their absolute values and use in practice differed considerably. Notwithstanding this bewildering array of measures, a few basic terms that have survived until modern times stand for the cultural continuity between the Ancient Orient and the Islamic world: ratl (Greek litron, 'litre'), irdabb (Greek artabe, Persian 'measure of capacity'), matar (Greek metretes, 'measure of 40 L'), kist (Greek xestes, Latin sextarius, 'jug'), kinttār (Latin centenarius, 'hundredweight'), kafīz (Persian 'measuring cup'), kīrāt (Greek
keratios, 'carat'), istār (Greek stater, 'weight of gold coin'), dirham (Greek drachme), dīnār (Latin denarius), kayl (Aramaic measure of capacity), mann/mannā (Babylonian unit of weight), kurr (Babylonian measure of capacity).

The development of systems of measure was influenced by the interplay between cultural tradition and the order of authorities. Until the tenth century, the spread of Islam brought about an intercontinental economic and cultural sphere which amalgamated measuring standards of Egyptian, Arabic, Greek, RomanByzantine, Mesopotamian and Persian origin. This resulted in a multiplicity of regional and functional systems of measurement, which were constantly
modified by power politics, institutional reforms or, simply, by the rulers' autocratic order. Quite often, the advent of new dynasties brought about the introduction of new metrological standards, mainly in the field of the basic weight units of currency of gold (mithq $\bar{a} l$) and silver (dirham), and the exchange rate of gold dīnār and silver dirham, which were fixed at a very early state by the canonical texts of the Qur'an and the prophetic tradition (hadìth). Contrary to the more or less stable weight rate (10 weight dirhams equal 7 weight mithq $\bar{a} l)$, which everyday use polished into the handier ratio of $3: 2$, the prescribed rate of value (10 silver dirhams equal 1 gold dīnār) incessantly deteriorated over the course of time. Ratios of 12:1, 16 4/5:1, 20:1,

Alphabetic list of abbreviations used

$a r$	aruzza, pl. aruzzāt	grain of rice
ash	ashl, pl. ashwāl, ushūl	part of a 'rope'
$a z$	azla/azāla, pl. azāla, azālāt	unit of capacity measure
cas	‘ashīr, pl. ‘ashīrāt, ‘ushrān, a‘shur	tenth
$b a$	batta	leather bottle
$b \bar{a}$	$b \bar{a} b, \mathrm{pl} . a b w a ̄ b$	portion
$b \bar{a}$	$b \bar{a} \cdot$, pl. $a b w a \bar{\bullet}$	arms' span
$d a$	dānik, pl. dawānik, dawānīk	1/6 of a dirham/dīnār
$d h$	dhirā¢, pl. dhirā $\cdot \bar{a}$ t, adhru*	ell
$d \bar{l}$	dīnār, pl. danānīr	Gold dīnār
dir	dirham, pl. darāhim	silver-dirham
dj	djarīb, pl. djirbān, adjriba	unit of square measure
djo	djou	barleycorn (Persian)
fa	fals, pl. fulūs, aflus	small coin
fad	faddān, pl. fadādīn	yoke of oxen
far	farq	unit of capacity measure
$f \bar{a}$	fātil	small unit of weight
ghi	ghirāra, pl. gharā ir	sack
ha	habba, pl. huubūb, habbāt	seed
hab	habl, pl. hiibāl, ḥubūl	rope, thread
$h i$	himl, pl. ahmāl	camel-load
ir	irdabb, pl. arādibb	unit of capacity measure
is	istār, pl. asātir	unit of weight measure (Greek)
$i s$	iṣbar, pl. aṣābi،	width of middle finger
ka	kaff, pl. kaffāt	hand
$k \bar{a}$	kāra	load carried on the back
kay	kayl/kayla, pl. akyāl, akāyil	unit of weight measure
kayl	kayladja, pl. kayladjāt, kayālidj	unit of capacity measure
ku	kurr, pl. akrār	unit of capacity measure
ka	kafiz, pl. akfiza, kifzān	unit of capacity weight
kab	kab(a)da, pl. kabadàt	width of fist
kad	kadah, pl. akdāh	unit of capacity measure
kal	kalam, pl. aklām	'strip'
kām	kāma	build, fathom
kas	kaşaba, pl. kaṣabāt	pole, rod
kin	kințār, pl. kanāṭ ${ }^{\text {a }}$	'hundredweight'
kis	kist, pl. aksāt	'portion'
$k \bar{l}$	kirāà, pl. karārīt	carat
ku	kulla, pl. kulal, kilāl	jug
ma	mann/mannā, pl. amnān, атипnă	unit of weight measure
mak	makkūk, pl. makākīk	unit of capacity measure
mar	marzbān	unit of capacity measure (Persian)

Alphabetic	list of	abbreviations	used	(Continued)
mat	mațar, pl. amțăr		unit of	
mi	mithkāl, pl. mathākīl		unit of	
mish	mishkā		drinki	
$m u$	$m u d d, \mathrm{pl} . a m d a ̄ d$		unit of	sure
mud	$m u d y$, pl. amd \vec{a}^{\prime}		unit of	sure
na	nakīr		'small	
nu	nügi, pl. nügiler		unit of	re (Turkish)
ok	okka, pl. okkalar		unit of	re (Turkish)
pe	peymāne		bowl	
r	rațl, pl. arṭa l		'litre'	
ru	$r u b$, pl. arbā‘		fourth	
sha	sha'īr, pl. sha'īrāt		grain	
shi	shibr, pl. ashbār		span of	
si	silsila, pl. salāsil		chain	
su	sunbul, pl. sanābil		ear of	
sa			unit of	eight
th	thumn, pl. athmān		eighth	
$t i$	tillīs		unit of	sure
$t a$	țassūdj, pl. ṭasāsīdj		unit of	
'ush	'ushr, pl. a‘shār		tenth	
$\bar{u} k$	ūkīya, pl . awkiyā, ūkīyāt		unit of	
wa	waiba		unit of	measure
was	wask, pl. awsāk		(came	
$z a$	zabīl		basket	-leaves

30:1 and even 50:1 are recorded. Nevertheless, modern Islamic jurists insist on referring to the canonical rates $(10: 7 ; 10: 1)$ when, for example, fixing the minimum income (niṣāb) for the obligatory alms payment (zakāt) by Muslims of a determinate portion of their lawful property. The canonical ratio of the value of gold and silver ($10: 1$) reflected the historical situation in the Mediterranean region and the Middle East after the Roman period (12:1). During the Il-Khānid period (thirteenth to fourteenth century), silver from Central Asia was massively imported to the West, the price of silver sank again, for a short period, to the Roman value. Gold, in contrast, remained remarkably stable over the millennium. Under the Persian king Darius the Great (522-486), mutton cost the same as in Anatolia in 1340: the equivalent of 1.9355 g pure gold.

The overall cultural diversity of the Islamic world corresponds to the diversity of the metric systems, which came into use between the Atlantic and the Indian sub-continent. Three geographical units can be differentiated: The Islamic Arab West, from Andalusia to Iraq, Persia and the adjacent areas under Persian influence, and India. The following comments omit the metric systems of India (see $E I^{2} \mathrm{VI}$, pp. 121a-122a, s.v. makāyyl, and VII, pp. 138a-140b, s.v. misāhaa) and concentrate on the development in the Arab West, in consideration of the situation in Persia. Emphasis is laid on the early Islamic and medieval period. The absolute equivalents in modern metric values stem back to archaeological evidence or observations of European travellers.

Measures of Length

Along with the basic unit of length, the dhira \bar{a}^{c}, several other units were used, some of them only for particular purposes (construction, geometry, etc.). In theory, i.e. without considering their actual common occurrence or precise values, these units could be arranged to the following equation:

$$
\begin{aligned}
& 1 \text { ash }=1 \text { si }=10 \mathrm{~b} \bar{a}=10 \mathrm{kas}=15 \mathrm{ba} \cdot \\
& (\text { or } k \bar{a} m)=60 \mathrm{dh}(=\text { Persian gaz) }=360 \\
& \mathrm{k} a b=1,440 \text { is }=3,600 \mathrm{fa}=8,640 \mathrm{sha} .
\end{aligned}
$$

The 'black ell' (al-dhirār al-sawdā'), being ca. 54.04 cm , is said to refer to the length of the ell (from the elbow to the tip of the middle finger) of a slave of the Caliph al-Manșūr (r. 754-775) or the Caliph al-Ma'mūn (r. 813-833). Another etymology links the measure to the unit by which the 'Nilometer' of the island of al-Rawḍa was operated. There are almost thirty variants of the ell, some varying 30 -fold from the original. By the eleventh century, at least 11 different types of dhirä' can be differentiated:

- 1 dhirā$\bullet \operatorname{sawd} \bar{a} \vec{\prime}=1+1 / 7+2 / 3 \cdot 1 / 7$ dh al-yad (of the hand)
$=1+1 / 8+1 / 9 \mathrm{dh}$ al-hadīd (iron ell)
- 1 dh fiddīya (silver) $=1-1 / 7 \mathrm{dh}$ al-sawd $\vec{\prime}$
- 1 dh yūsufīya (of Abū Yūsuf, d. 798) $=1-2 / 3 \cdot 1 / 7$ dh al-sawdä'
- 1 dh hāshimīya (of the Banū Hāshim) $=1+1 / 8+$ 1/10 dh al-sawd \vec{a} '
- 1 dh bilālı̄ya (of Bilāl b. Abī Burda, d. 739) $=1$ dh al-sawdä $+2+2 / 3 \cdot 1 / 7$ is
- 1 dh fidḍ̂̀ya (al-misāḥa) $=7$ or 8 dh al-yad
- 1 dh ‘umarīya (of ‘Umar b. ‘Abdal‘azīz, d. 720) = $1+1 / 2$ dh al-yad
- 1 dh mīzānīya (surveyor's ell) $=3$ dh al-yad
- 1 dh mābahrāmı$=1+1 / 2$ dh al-ḥadīd

In addition to these different norms of the dhira \bar{a}^{-}, a multitude of ells was used depending on the profession involved: carpenters, cloth-makers, constructors etc. Moreover, the ells used in different cities under the same name differed: the medieval cloth-ell of Damascus (ca. 63.035 cm), for example, was $1 / 12$ longer than the cloth-ell of Cairo (58.187 cm).

Measures of Area

The calculation of the surface of (straight) areas operated with the conventional measures of length. The basic units, however, were the $k a f \bar{l} z$ and the djarib, two specific measures of surface area. Originally and throughout the Islamic period, both units also served as measures of capacity. One $d j a r i ̄ b$ was conceived of as representing the surface area of agricultural land which could be sown with the amount of seed one $d j a r i ̄ b$ contained.

Based on the ratio of the length units (1 ash $=10$ $b \bar{a}=60 \mathrm{dh}=360 \mathrm{kab}=1440 \mathrm{is})$, the following ratio of units of surface area measurement can be generated:

$$
1 \mathrm{ash}=60 \mathrm{dh} \cdot 60 \mathrm{dh}=3,600 \mathrm{~d} h^{2}=1 \mathrm{dj}
$$

and:

$$
\begin{aligned}
1 d j & =10 \mathrm{ka}=10 \cdot 360 \mathrm{~d} h^{2} \\
& =[\text { in Persia }] 60 \mathrm{ka}=600 \text { ،as }=600 \cdot 6 \mathrm{~d} h^{2} \\
& =100 \cdot a s=100 \cdot 36 d h^{2}
\end{aligned}
$$

This djarīb was called the 'small' djarīb, being 100 square kabada (or kaṣaba; the units being often exchangeable) which renders: $100 \cdot(399 \mathrm{~cm} \cdot 399 \mathrm{~cm})$ ${ }^{2}=1,592 \mathrm{~m}^{2}$. The 'big' djarīb had $5,8371 / 3 \mathrm{~m}^{2}$, i.e. $32 / 3$ 'small' djarīb, and corresponded roughly to the predominantly Egyptian faddān which was calculated
as 400 square kaṣaba, i.e. $6,368 \mathrm{~m}^{2}$. During the nineteenth century, the faddān was reduced to $4,200.833 \mathrm{~m}^{2}$.

If multiplied with one another these units render the matrix (see above).

There is substantial evidence that the professional surveyors during the Abbasid period used a specific system of calculation. They divided the biggest unit, the azla, into 100 dh mīzānīya which corresponded to 48 iṣ ‘umarīya (see above), hence:

$$
1 a z=100 d h^{2}=100 \cdot 12^{2} k a b^{2}=100 \cdot 12^{2} \cdot 4^{2} i s^{2}
$$

In the Turkish lands of the Ottoman Empire (Minor Asia, Iraq, Syria and Palestine) the dönüm (turn), Arabic dūnam, was - until recent times - the standard measure of area. Originally measuring $939 \mathrm{~m}^{2}$, it has been adjusted in colonial times to $1,000 \mathrm{~m}^{2}$ (in Iraq to $2,500 \mathrm{~m}^{2}$).

Measures of Capacity

Most of the confusion about the system of the Islamic measures of capacity, both in primary medieval and in modern secondary texts, dates back to the Oriental practice to measure grain, pulse, and some liquids in capacity, but not in weight. The Arabic term mizzān does not clearly differentiate between the two. The transition from volume to weight needs the related quantity of the litre of water: the volume of approx. $75-77 \mathrm{~kg}$ of wheat and $60-72 \mathrm{~kg}$ of barley correspond to the volume of 100 kg / L of water.

From this economic and agricultural use of measures of capacity the proper mathematical and technical calculation of volumes must be set apart. This calculation is built on the calculation of the surface area multiplied by the third dimension. The names used for the cubic units of measure do not change. Related to the dhirā mīzānīya and based on the ratio $1 a z=100 d h^{3}=100 k u$, the following values are produced: (see matrix below)

Most of the units of measures of capacity are regarded as units of weights too. It is therefore impossible to separate the two systems properly. Depending on

	ashl	$\boldsymbol{b} \bar{a} \boldsymbol{b}$	dhirā	kabada	işba ${ }^{\text {a }}$
ashl	$1 d j$	1 kab	5/3 ash	1/6+1/9 ash	$1 / 24+1 / 36$ ash $=21 / 2 d h^{2}$
$b a \bar{b}$		1 ash	$1 \mathrm{ash}=6 \mathrm{dh}{ }^{2}$	$1 / 36$ ash $=1 \mathrm{dh}{ }^{2}$	$1 / 144$ is $=1 / 4 \mathrm{dh}{ }^{2}$
dhirā،			$1 / 36$ ash $=1 d h^{2}$	$1 / 216$ ash $=1 / 6 d h^{2}$	1/864 ash $=1 / 24 d h^{2}$
kabada				1/1,296 ash $=1 / 144 d h^{2}$	1/5,841 ash $=1 / 576 \mathrm{dh}{ }^{2}$

	$a z / a^{3}$	dhira \mathbf{c}^{3}	$\underline{k a f i z}{ }^{3}$	kabada ${ }^{3}$	işba ${ }^{\text {a }}$ 3
azla ${ }^{3}$ dhirā ${ }^{3}$	1	100	6,000	$\begin{aligned} & 172,800=10^{2} \cdot(12 \mathrm{kab})^{3} \\ & 1,728 \end{aligned}$	$\begin{aligned} & 11,059,200=10^{2} \cdot(48 i s)^{2} \\ & 110,592 \end{aligned}$

the material measured, additionally different types of the same unit, e.g., a 'honey-fark' or a 'barley-irdabb', were used. The absolute values of these types differed considerably in different regions and periods. In order to allow a comparative overview, units that are related to each other by practical use are grouped together. Minor local variations and temporal changes are ignored.

Few of these units have a canonical background: 1 was $=60 s \bar{a} \cdot=240 m u=c a .252 \mathrm{~L}$. Far bigger than this mudd (ca. 1.05 L) of Medina were the mudd of Egypt and Iraq (2.5 L), of Syria (3.67 L), of the Maghreb (4.32 L), and that of Jerusalem (100 L). The prophetic $s \bar{a} \cdot$ was exactly 4.2125 L . Being the quantitative lower limit (nisäb) for the liability for the zakāt (alms) taxes, the measure of 5 wask of dates, for example, was equated in value with 5 ūkìya (= 200 dir $=529.9 \mathrm{~g}$), 20 d $\bar{\imath}$ (or mithk $\bar{a} l$, $=84.7 \mathrm{~g}$, see later), 5 dhawd (camels), the nisāb of cotton (5 was $=1,600$ dir sirāki à 130 g), or 50 kay. Therefore, the values given for one wask greatly differ. In the time of Härūn al-Rashīd (around 800), a short-lived wask (1 was $=21 / 2$ prophetic was) was introduced.

Towards the end of the seventh century, the kafiz (usually corresponding to $1 / 10 d j=1 / 60 \mathrm{kurr}$) was used instead of this prophetic $s \bar{a} \cdot$ in Iraq. Another specific kafiz of capacity is recorded from Iraq around 990: $1 \mathrm{ka}=1 \mathrm{kaffa}($ basket $)=1 / 2 \mathrm{zab} \vec{l}($ basket made of palm leaves).

In Egypt grain, but in particular wheat, was measured by irdabb: $1 \mathrm{ir}=6 \mathrm{wa}=24 \mathrm{ru}=48 \mathrm{kad}=90 \mathrm{ma}=96 \mathrm{kad}$ $($ small $)=\mathrm{ca} .90 \mathrm{~L}$. Different values extant for the irdabb (between 72.3 kg , modern 182 L) may be explained also by the difference of volume between, for example, wheat, barley and lentils (100:80:104).

Egyptian flour was measured in tilliss: $1 t i=3 / 2 w a=$ $3 b a=15 \mathrm{ma}=24 \mathrm{kad}=22.5 \mathrm{~L}$. There, the waiba of rice ($1 \mathrm{wa}=8 \mathrm{kad}=24 \mathrm{rkab} \bar{r}$), as observed around 1665 , contained only 12.5 . Three centuries before in Tunis, it was equal to 12 prophetic mudd (ca. 12.61).

In Medina and Iraq, honey but also wheat was measured in fark: $1 \mathrm{fa}=3 s \underset{a}{ }=36 \mathrm{rbagda} \bar{a} \bar{\imath}=19 \mathrm{~L}$. In Egypt and Syria, the mudy - not to be confused with the mudd - replaced the kist when not oil but food was measured. It is sometimes called 'the Syrian djarīb', sometimes equated with the $k a f i z$. The practice in Syria, however: $1 k a=8$ mak= $12 s \mathrm{sa}$, the indication: $1 \mathrm{mud}=$ 15 mak $=221 / 2$ sa does not confirm this. In Palestine, a square mudy was known $\left(1 \mathrm{mud}^{2}=1 \mathrm{hab} \cdot 1 \mathrm{hab}\right)$.

Olive oil was merchandised in maṭar (1 mat $=$ $2 k u=\mathrm{ca} .17 \mathrm{~kg})$ in the Maghreb, in $k u l l a(1 \mathrm{ku}=12$ $t h=27 r=13.6 \mathrm{~kg}$) in Andalusia. In Egypt, the thumn corresponded to $1 / 8 \mathrm{kad}$ (today 0.29 L), in Qayrawān to 6 prophetic $m u=6.32 \mathrm{~L}$. Oil and other liquids were also measured in kist!: In Iraq, the 'small' kist $(1 k i=3$ $r=1.22 \mathrm{~L}$) was half of the 'great' kist, in Egypt it was half of a $s \bar{a}$ s: 211 L ; elsewhere the kist is given as: 1 mat $=4 \underline{k} i=211 / 3 r \operatorname{djarw} \bar{\imath}($ see below $)=192 \bar{u} k$
(capacity) $=256 \bar{u} k$ (weight). In Andalusia, wine and vinegar were sold in rubr ($1 \mathrm{ru}=1 / 4 \mathrm{kad}=18 r=216$ $\bar{u} k=1,728 m i=8.16 \mathrm{~L}$, in Persia the peymāne (bowl, 8.3 L) was in use for this purpose. In Iraq, wine, but also oil and honey, were measured by makkūk or mishkā \cdot (drinking-vessel): 1 mak $=48$ th à $50 \mathrm{dir}=64$ mish à $371 / 2$ dir $=7.5 \mathrm{~L}$.

Another widespread unit of capacity was the ghirāra, mainly used for grain: $1 \mathrm{ghi}=3 \mathrm{ir}$ misrı$\overline{=}=$ 12 kay $=14$ mak $=72 m u$ dimashk $\bar{\imath}=731 / 2 m u$ misrı $=265 \mathrm{~L}$. In Egypt, the kayla $=8 \mathrm{kad}$ was 7.5 L (modern 16.5 L).

This kayla is not identical with the kayladja, presumably an originally Persian unit of capacity measure: $1 \mathrm{kayl}=1 / 2 \mathrm{~s} a=1 / 3 \mathrm{mak}=3 / 14 \mathrm{ghi}=1 / 6 \mathrm{ka}$ wheat $=1 / 5 \mathrm{ka}$ barley $=\mathrm{ca} .17 / 8 m a=2.5 \mathrm{~L}($ or 2 L in East Iran).

The most basic of all grain measures, especially in the Islamic East, was the old Babylonian kurr.

$$
\begin{aligned}
& 1 \mathrm{ku}=30 \mathrm{k} \bar{a}=60 \mathrm{ka}=480 \mathrm{mak}=600 \\
& \text { 'ush/'as }=1,440 \mathrm{kayl}=5,769 \mathrm{ru}=7,200 \\
& r=11,520 \text { th }=2,925 \mathrm{~kg} \text { (wheat). }
\end{aligned}
$$

Smaller than this 'big' kurr of Baghdad was the kurr of Wāsiṭ and Bașra ($1 \mathrm{ku}=60 \mathrm{ka}=480 \mathrm{mak}=1,440 \mathrm{kayl}$ à 600 dir of wheat $=2,700 \mathrm{~kg}$); a 'reformed' kurr even amounted only to: $1 \mathrm{ku}=60 \mathrm{ka}$ à 25 r baghdād $\bar{\imath}=$ 609.375 kg (wheat). Moreover, depending on the kind of grain measured, different akrār were used: In fourteenth century Baghdad, the kurr of wheat weighed $2,925 \mathrm{~kg}$, that of barley $2,437.5 \mathrm{~kg}$, and that of rice $3.656,25 \mathrm{~kg}$. The common sub-units of the kurr, the kafīz, makkūk, kayladja, and thumn differed respectively, sometimes not only proportionally. Thus, in twelfth century Aleppo, a quite different makkūk existed: $1 \mathrm{mak}=19$ sun $=28.5 r$ à 684 dir à 3.125 $\mathrm{g}=60.92 \mathrm{~kg}$. About the same time, the kafiz of Hamāh was $7 / 8 \mathrm{ka}$ of that of Shayzar. In Aleppo, 4 mak made one marzbān $(1$ mar $=1 / 4$ mak $=19 / 4$ sun $=57 / 8 r=$ $4,8731 / 2 d i r=15.23 \mathrm{~kg})$.

Towards the end of the tenth century, the mathematician al-Būzdjānī compared the new 'reformed' (Arabic mu•addal) djarīb - this djarīb was not measured with 10 but with $21 / 2 k a$ only - which was introduced after 978 by his Lord, the Būyid ،Aḍud al-Dawla, with four different common types of the kurr. His systematic treatment of the issue will throw some light on the complex variety of the units used and their specific relation when being transformed from one into another (see matrix below).

Besides simsim (sesame), hintta (wheat), djahkandam (mixture of $1 / 2$ hinta $a+1 / 2$ sha• $\bar{\imath} r$), and sha•ı̄r (barley), a fifth category is formed to include all kinds of grain and dry goods that do not belong to one of the aforementioned categories: nuts, like almonds, pistachios and hazelnuts, dried pears, plums etc. From the

1. Ratio of kurr-Variants

Types of kurr	mu'addal	kāmil	fālidj	hāshimī	sulaymān̄̄
mu'addal	1	2	$21 / 2$	3	$31 / 2+1 / 4$
kāmil	1/4	1	$11 / 4$	$11 / 2$	$11 / 2+1 / 4+11 / 8$
fâlidj	2/5	4/5	1	$11 / 5$	$11 / 2$
hāshimī	1/3	2/3	5/6	1	$11 / 4$
sulaymānı̄	$1 / 6+1 / 10$	$1 / 3+1 / 5$	2/3	4/5	1
[ratio]	60	30	24	20	16

2. Djarīb per kurr

Types of $\boldsymbol{k u r r}$	mu‘addal	kāmil	fälidj	hāshim̄	sulaymān̄̄
djarīb/kurr	24	12	$93 / 5$	8	$62 / 5$
fraction	$1 / 3 \cdot 1 / 8$	$1 / 2 \cdot 1 / 6$	$1 / 2 \cdot 1 / 6+1 / 6 \cdot 1 / 8$	$1 / 8$	$1 / 8+1 / 4 \cdot 1 / 8$

3. Ratios Between sub-units (as indicated by Al-Būzdjānī)

	makkü \boldsymbol{k}	'ushr	kayladja	rub‘	ratl	thumn
kurr	480	600	1,440	5,760	7,200	11,520
makkūk		$11 / 4$	$1 / 4+1 / 6$	12	15	24
'ushr				5	8	
kayladja		5		60	$11 / 4$	
hubūb	4	$1 / 12+1 / 48$			$1 / 2+1 / 8$	
rubr thumn						

4. Ratio of Capacity Between Different Kinds of Grain

	simsim	hinta	djahkandam	sha $\cdot \overline{\text { ir }}$
simsim	1	2	$22 / 3$	4
hința	$1 / 2$	1	$11 / 3$	2
djahkandam	$1 / 4+1 / 8$	$1 / 2+1 / 4$	1	$11 / 2$
sha‘īr	$1 / 4$	$1 / 2$	$2 / 3$	1
[ratio]	8	4	3	2

matrixes $1-4$, exactly 280 possible combinations result by which the transfer of one given quantity (and value) of one commodity into another can be calculated.

Example: If $24 k u$ of oats (hurțumān = category of sha. $\bar{\imath} r$) should be transferred into kurr sulaymān̄ of pepper grass (habb al-rishād = category of hinṭa), then the rule of seven is required, in short:

24 ku kāmil sha•ı̄r $-1 / 6 \cdot 24=22$
ku sulaymānı̄ ḥinṭa +30 ka

Measures of Weight

The entire Islamic system of weights is based on the dirham and the raṭl. The raṭl is the most common smallest unit, or reference, of weight. The weight of the dirham is used for two different purposes. The two values differ correspondingly:

a) dirham al-fidda (silver dirham)

Calibration of the silver (dirham) and gold (dīnarr) coins was done with the help of glass weights. The earliest preserved exemplars date back to the second half of the eighth century. The dirham weight defined the weight of the dirham coin, the mithkāl weight the weight of the dīnār. The most precise glass weights of the mithkāl have an average weight of 4.233 g (max. tolerance $1 / 3$ mg). Archaeological finds affirm both the weight of the dirham in accordance to the canonical ratio of dirham: mithkāl (=10:7): 2.97 g , as to the 'rounded' ratio ($=3: 2$): 2.82 g . An exceptional mithk $k \bar{a} l$ weight was in use in Egypt under the Ayyubid dynasty and in the Maghreb under the Almohad dynasty (4.722 g).

The mithk $\bar{a} l$ gold and the dirham silver were divided into kīrāt and habba.

1 mi gold $=20 \mathrm{k} \bar{l}=60 \mathrm{ha}$;
1 dir silver $=12 k \bar{\imath}=48$ ha $($ Iraq)
1 mi gold $=24 k \bar{l}=60 \mathrm{ha}$;
1 dir silver $=16 k \bar{\imath}=60 h($ Arabia, Egypt, Syria)
Hence, the values (see matrix below).
In addition to these general systematic differences a variety of deviating systems from different regions, authors and periods are recorded (tenth to thirteenth century; indicated as I-V), that integrate sub-units like the dānik, țassūdj, 'ashīr, fals, and aruzza (which

	gold kīrāt	gold habba	silver kīrāt	silver habbba
Iraq	0.212 g	0.0706 g	0.247 g	0.062 g
Egypt etc.	0.176 g	0.0706 g	0.186 g	0.0495 g

	dānik	kīrāt	tassūdj	habba	'ashīr	fals	aruzza
I. Dīnār	$121 / 2$	20	24	60			
Dirham		12	24	48	60		
II. Dīnār	6	20 baghdādī		60 baghdādī	60		
		24 baṣrī		72 ḩurās./shāmī			
Dirham	6			48 baghdādī/baṣrī	60	96	
				36 ḩurās./shāmī			
III. Dīnār	[12]	[20]	24	60			240
IV. Dīnār		24/20	576	[72] 600/7		600	

elsewhere corresponds to 25 ha hardal, grains of mustard, i.e. ca. 0.0186 g); one author defines the ha hardal as $1 / 70$ of a habba (which is sometimes replaced by ' $k a m h a$ ', grain of wheat), 60 of which make one silver dirham, i.e. 1 ha hardal $=0.0007 \mathrm{~g}$. From the vague comments of sources, it must be assumed that most of these different systems were in use as weight measures too (see matrix below).

According to the actual ratio of value between gold and silver currency, the moneychangers had to take several factors into consideration when transferring amounts of money from one currency into the other. This could result in thirteenth century Egypt, for example, when $164 / 5 \mathrm{dir}$ were equivalent to $1 d \bar{l}$, in the following calculations:

1 d $\bar{\imath}=1,440$ ha fiddda [10 $\cdot 60 / 7 \cdot 164 / 5=1,440]$; and
1 ha gold = $1 / 5+2 / 25$ kī = $164 / 5$ ha silver; or
$1 \mathrm{fa}=22 / 5$ ha silver $=1 / 7$ ha gold [2 2/5: $1 / 7=164 / 5$].

b) dirham al-kayl (weight dirham)

In contrast to the homogeneous evidence of the weight of the 'silver dirham' the extant values of the weight of the 'weight dirham' deviate considerably from one another. They range from 3.086 g to 3.148 g . When not indicated otherwise, the following comments will be based on the established average standard value of 1 dir $=3,125 \mathrm{~g}$ with which the 'canonical' (ratio 10: 7) mithkāl of 4.464 g is corresponding. From textual evidence some of which are included in the matrix above, different regional values of the dirham/mithkāl weight can be deduced:

Egypt $3.125 / 4.68 \mathrm{~g}$; Syria (Aleppo twelfth century) $3.14 / 4.427 \mathrm{~g}$, (Aleppo nineteenth century) 1 dir $=3.167 \mathrm{~g}$, Damascus 3.086/4.62 g; Anatolia (Ottoman period) $3.086 / 4.81 \mathrm{~g}$; Iraq $3.125 / 4.46 \mathrm{~g}$; Iran (fourteenth century) $1 m \bar{l}=4.3 \mathrm{~g}$, (sixteenth century) [3.26]/4.639 g; Maghreb 3.3/4.722 g; East Africa (sixteenth century) $1 m \bar{l}=4.41 \mathrm{~g}$.

With the exception of Persia, where the mann dominated the system of weight measures, the raṭl became the most common and widespread unit of weight measure in the Islamic world, comparable in size and function to the European 'pound' (Pfund, livre, libra, Italian loan word 'rotolo'). The raṭl was measured in dirham. Depending on what was measured, and where and when, the ratl could take different numbers of dirham (values between 96 and 1.040 are recorded) of different dirham weights (standard value: 1 dir $=3.125 \mathrm{~g}$).
If integrated into the early Meccan system:
$1 r=2 m a[$ à 130 dir$]=12 \bar{u} k=480 \mathrm{dir}=1 / 100 \mathrm{kin}$, the mithkal weights produce the following (fictitious) relation:

$$
\begin{aligned}
& 1 m i=20 k \bar{l}=60 \text { [or } 100] h a=10 / 7 \text { dir }=1 / 336 r \\
& \text { (for Iraq; } 1 k \bar{l}=0.223 \mathrm{~g} \text {) } \\
& 1 m i=24 k \bar{l}=96 h a=3 / 2 \text { dir }=1 / 320 r \text { (for Mecca, } \\
& \text { Egypt etc.; } 1 k \bar{l}=0.195 \mathrm{~g} \text {). }
\end{aligned}
$$

From archaeological (glass weights) and textual evidence, several hundred rattl weights are known. The following list enumerates (in order of size, with ' $[. .$.$] '$ values developed) some of the standard raṭl weights repeatedly recorded (see matrix below).

Besides the ratl, the mann was an important unit of weight everywhere in the Islamic world, in particular in the Persian East, where it weighed between 260 dir $(=816.5 \mathrm{~g})$ and $2,080 \operatorname{dir}(=6,656 \mathrm{~g})$. A similar variety of mann weights was used In Asia Minor (twelfth century onwards). Until the fifteenth century it was used instead of one half of a raṭlà 130 dirham. Then a 'big' mann (ca. 3 to 3.25 kg), and a 'middle' mann of 1.920 g came into use. During the Safawid period (sixteenth century), a 'super' mann, later called the 'royal' mann (between 5.7 and 6 kg), was introduced. The Ottomans used the okka ($1 \mathrm{ok}=2 \mathrm{nu}=400 \mathrm{dir}$ à $3.207 \mathrm{~g}=1.2828 \mathrm{~kg}$) instead of the ratll. Its stability was proverbial: Okka her yerde dört yüz dirhem gelir (... to be no different from anybody else).

Egypt (Abbasid period)	96 dir	300 g
Rūmī (Asia Minor) I	102 6/7 dir	321.43 g
Umayyad period	[110 dir]	340 g
Rūmī (Asia Minor) II	120 dir	375 g
Iraq (medieval)	128 4/7 dir	401.79 g
Abbasid period (Egypt,	130 dir	406.25 g
Baghdad)		
Maghreb	130 dir	406.25 g
Maghreb	137 1/7 dir	428.57 g
Umayyad period (Egypt)	[140 dir]	437.5 g
Maghreb (Fāṭimid period)	140 dir	437.5 g
Egypt (later Abbasid period)	144 dir	450 g
Fulfulī	150 dir	468.75 g
Maghreb (Ibn Battūtụa)	150 dir	468.75 g
'big' Egypt (Abbasid period)	160 dir	500 g
Maghreb (Ibn Battūṭa)	180 dir	562.5 g
Laithı̄	200 dir	625 g
Djarwı̄	312 dir	975 g
Turkestan (fourteenth century)	330 dir	$1,031.25 \mathrm{~g}$
Fes/Marrakesh (fourteenth century; = 16 ūk)	336 dir	$1,050 \mathrm{~g}$
Aleppo (twelfth and thirteenth century)	480 dir	1,500 g
Syria/Palestine (fourteenth century)	592 1/2 dir	1,851.56 g
Hִims (twelfth century)	684 dir [sic]	$2,137.5 \mathrm{~g}$
Aleppo (after thirteenth century)	[724 dir]	2,273 g
Jerusalem (medieval)	800 dir	2,500 g
Heims (Syria, medieval)	864 dir	2,700 g
Constantinople (eighteenth century)	876 dir	2,800 kg
Jerusalem (nineteenth century)	900 dir	2,812.5 g
Iran (Shīrāz, Fārs; in mann)	1,040 dir	$3,250 \mathrm{~g}$

The biggest unit - besides the rather colloquial $h i m l$, camel-load ($1 h i=\mathrm{ca} .250 \mathrm{~kg}$) -, was the kint $\bar{a} r$, the hundredweight ($=100 r$). Depending on the type of raṭl it was based on, the kinṭār weights differed. In medieval Egypt, different kinṭār weights were common: fulfulī (pepper) $=100 r$ à 144 dir $=45 \mathrm{~kg}$; laith $\bar{l}=100 r$ à 200 dir $=62 \mathrm{~kg} ;$ djarw $\bar{l}=100 r$ à 312 dir $=96.7 \mathrm{~kg} ; \operatorname{тann} \bar{\imath}=100 r$ à $260 \mathrm{dir}=81.25 \mathrm{~kg}$; $'$ big' $=24 r u=240 r$ à $160 \mathrm{dir}=38,600 \mathrm{dir}=120 \mathrm{~kg}$. In a treatise composed by a customs officer in the thirteenth century, additional kinṭār names, but no values, for specific goods are mentioned. While the kinṭār of Syria (Aleppo, Ḥimṣ, Ḥamāh) was always equivalent to 100 local ratll, it was taken for 100 mann in late medieval Iraq. In Iran (fifteenth century) and Asia Minor (Ottoman period) 1 kinṭār weighed ca. 57 kg .

The smaller weight unit of istār $(1$ is $=41 / 2 m i=$ $63 / 7 \mathrm{dir}=20.07 \mathrm{~g}$), only known from Egypt, was used there to weigh silk: $1 \mathrm{~s}-\mathrm{k}-\mathrm{t}[?]=3 \mathrm{ru}=90 \mathrm{man}=180 \mathrm{is}$.

The Quranic 'habba min hardal '(the 'grain of mustard', see above), being $1 / 70$ ha of $1 / 60 \operatorname{dir}$ each ($=$ ca. 0.0007 g), seems to have remained the smallest unit of weight in use in the Islamic world. If calculated properly, the fictitious nakīr $(1$ djo $=6[$ ha] hardal $=72 \mathrm{fa}=432 \mathrm{fa} l=2,592$ $n a=1 / 96 m i=0.045 \mathrm{~g}$) would correspond to ca. 5 ng .

al-Kurashī

The research of the history of weights and measures and their use in the Islamic world is based on a variety of sources. Unfortunately, no particular literary type of text developed that could claim to be called 'professional'. The information available is scattered over texts on law, social and economic history, administration and geography. They generally lack a systematic character, i.e. ignore comparative and proportionate references. The most recent endeavor to collect all information available in the historical sources was undertaken by Maḥmūá Fākhūrī and Salāh al-Dīn knawwām in: Madjmū̄ at waḥāt al-qiyās al-'arabīya

Aleppo: Weights

```
1 dir \(=60\) ha \(\quad 1 d \bar{\imath}=(22+1 / 2) k \bar{\imath}=90 h a\)
\(1 k \bar{\imath}=4 h a=2 / 45 d \bar{l}\)
1 ha/d \(\bar{\imath}=(6 / 7+2 / 21) h a / d \bar{l}(\) Egypt \()\)
\(1 k \bar{\imath}=(1+1 / 4) k \bar{\imath}(\) Iraq \()\)
\(1 \dot{r}=7,560 k \bar{\imath}\)
\(1 d \bar{\imath}=3 / 2 d \bar{l}(\) Iraq \()\)
\(1 h a=[(1+3 / 25) h a\) (Syria) \(]\)
\(1 k \bar{\imath}=(1+1 / 8) k \bar{\imath}(\) Iraq \()\)
```

Anṭāḳiya: Weights
$1 r=[16 / 17 r$ sulaymānī $]$
$1 r=[4 / 5 r$ zāhirī $]$
$1 r=384 \mathrm{dir}=[12 \bar{u} \mathrm{k}]=[17 \mathrm{1} / 7 \mathrm{mi}]=(2684 / 5) \mathrm{mi}$
$1 \bar{u} k=32 \operatorname{dir}(222 / 5) m i$
$1 r=(3 / 5+1 / 25) r($ Syria $)=(2+1 / 2+1 / 20+1 / 100) r$ fulful $\bar{\imath}=4 / 5 r z \bar{a} h i r \bar{\imath}=(2 / 3+1 / 4+1 / 100) r$ haytham $\bar{\imath}$

Ardabīl: Weights
$\begin{array}{ll}1 r=[9 / 5 r \text { sulaymānī}] & 1 r=1.080 r=[12 \bar{u} k]=756 \mathrm{mi} \\ 1 \bar{u} k=90 \text { dir } & 1 \mathrm{mi}=63 \mathrm{dir}\end{array}$
$1 r=14 / 5 r$ sulaymān $\bar{\imath}=82 / 5 r$ (Iraq)

Asyūṭ (Egypt): Weights
$1 r=[5 / 3 r$ sulaymānī $]=r(T$ Tahāā̄1, ‘Akkā $)$
$1 r=720$ dir $=1 / 5 \mathrm{kis}$
$1 r=1,000 \mathrm{dir}=700 \mathrm{mi}=[12 \bar{u} \mathrm{k}]$
$1 \bar{u} k=831 / 3 \mathrm{dir}=581 / 3 \mathrm{mi}$
$1 r=12 / 3 r$ (Syria) $=31 / 3 r$ djarw $\bar{\imath}=62 / 3 r$ fulful $\bar{\imath}=(7+2 / 3+$
1/9) r (Iraq)

Baghdad: Measures of capacity
$1 r=[3 / 16 s p($ Hidjāz $)=[2 m a]=[1 / 4 m u$ (Damascus) $]=3 / 14 r$ (Syria)
Bardha•a (Azarbaydjan): Weights
$\begin{array}{lll}1 r & =[7 / 5 \mathrm{r} \text { sulaymān } \bar{\imath}] & 1 r=840 \mathrm{dir}=[14 \mathrm{u} k] \\ 1 \bar{u} k=588 \mathrm{mi} & & 1 \bar{u} k / m i=49 \mathrm{dir} \\ 1 r & =12 / 3 r \text { sulaymān} \bar{\imath} & \end{array}$

Damascus: Measures of capacity
$1 m u=14 / 7 m u($ Ḥidjāz $)=4 r$ (Baghdad)

Weights

$1 r=12 \bar{u} k=600 \mathrm{dir}=1 r$ sulaymān $\bar{\imath}$	$1 \bar{u} k=50 \mathrm{dir}$
$1 \mathrm{r}=420 \mathrm{mi}=3,600 d a=14,400 k \bar{l}=36,000 h a$	$1 k \bar{l}=13 / 8 d a$ (Iraq)
$1 \bar{u} k=35 \mathrm{mi}=300 d a 1,200 k \bar{\imath}=3,000 h a$	$1 \dot{k} \bar{l}=[15 / 16 \mathrm{k} \bar{l}$ (Aleppo) $]$

$1 h a=(6 / 7+1 / 28) h ̣ a$ (Aleppo)
$1 \bar{u} k$ (small, silk) $=10 \operatorname{dir}=1 / 50 r=1 / 20$ is

Diyār Bakr (N-Syria)
1 dir $=60 h a$
1 k $\bar{l}=4 \quad h a=2 / 45 d \bar{l}$
$1 d \bar{\imath}=221 / 2 k \bar{\imath}=90 h a$
$1 h a=1 / 4 k \bar{l}=1 / 90 d \bar{l}$

Diyār Muḍar (N-Syria)
1 dir $=60 h a$
$1 d \bar{\imath}=221 / 2 k \bar{\imath}=90 h a$
$1 k \bar{\imath}=4 h a=2 / 45 d \bar{\imath}$
$1 h a=1 / 4 k \bar{l}=1 / 90 d \bar{l}$

Djarwī: Weights
$1 r=[6 / 7 m a$ (Syria, general) $]$
$1 r=[1 / 2 r$ sulaymān̄̄ $]$
$1 r=300$ dir $=1 / 2 r($ Syria $)=(1 / 5+1 / 10) r($ T.aḥāwī $)]=11 / 6$
$m a=210 m i$

$$
=21 / 3 r(\text { Iraq })=[3 / 10 r(\text { Asyūțī) })]
$$

Djazīra: Weights
1 dir $=60$ ha
$1 d \bar{\imath}=221 / 2 k \bar{\imath}=2 / 45 d \bar{\imath}$
$1 k \bar{\imath}=4 h a=2 / 45 d \bar{\imath}$
$1 h a=1 / 4 k \bar{\imath}=1 / 90 d \bar{l}$

Egypt: Measures of area
$1 \mathrm{fad}=100 \mathrm{dh} \cdot 100 \mathrm{dh}=20 \mathrm{kab}$
Measures of capacity
1 ku = 1 kin fulful̄̄ = $1 / 4$ kin (Syria)
Weights
1 dir $=60 h a$
1 dir $=(1 / 2+1 / 5) d \bar{\imath}=164 / 5 k \bar{\imath}$
$1 d a=6 h a$
$1 d \bar{\imath}=10 / 7$ dir $=24 k \bar{\imath}=855 / 7$ ha/dir
$1 k \bar{\imath}=34 / 7 h a$
$1 k \bar{l}=(1 / 7+1 / 14) d \dot{a}[\mathrm{sic}]$
$1 \mathrm{da} / \mathrm{d} \bar{\imath}=84 / 7 \mathrm{~h} a / \mathrm{dir}$
$1 d \bar{\imath}=600 / 7 h a$
$1 d a=22 / 5 k \bar{\imath}$
$1 h a=(1 / 5+2 / 25) k i \bar{\imath}$
$1 k \bar{\imath}=25 / 7 h a=(1 / 24+1 / 42) d i r$
$1 h a / d \bar{\imath}=[(1+1 / 21) h a / d \bar{\imath}$ (Aleppo) $]$
$1 h a / d \bar{\imath}=(1 / 100+1 / 600) d \bar{\imath}$
$1 k \bar{\imath}=[21 / 25 k \bar{\imath}($ Iraq) $]$
$1 k \bar{\imath}=[15 / 16 k \bar{\imath}$ (Aleppo) $]$
$1 r=1$ kin fulfulı̄ = 1/4 kin $($ Syria)
$1 \mathrm{k} / / d i r=[3 / 8 d a($ Iraq) $]$

Filasṭīn (Palestine, incl. Tiberias): Measures of length and area
$1 h a b=40 d h$
1 mudy $=1$ hab $\cdot 1$ hab
Weights
$1 r a=420 m i=3,600 d a=14,400 k \bar{\imath}=36,000 h a$
$1 \bar{u} k=35 m i=300 d a=1,200 k \bar{\imath}=3,000 h a$
Fulfulī: Measures of capacity
$1 r a=[7 / 32 s ̣ a(H \mathrm{Hidjā})]=[7 / 8$ prophetic $m u]$
Weights
$1 r=[7 / 12 r$ (Syria, general) $]$
$1 r=2 \mathrm{r}$ djarw \bar{l}
$1 r=[1 / 4 \mathrm{r}$ sulaymānī $]$
1 kin $=1 r$ (Egypt) $=1 / 4$ kin (Syria)
$1 r / \bar{u} k=121 / 2 \operatorname{dir}=(81 / 2+1 / 4) m i=1 / 4 r($ Syria $)=(1 / 3+1 / 4)$
ma
$1 r=[6 / 7 r($ Iraq $)]=[3 / 8 r$ haytham $\bar{\imath}=[5 / 16 r$ zāhirī $]=[3 / 2 r$
(Asyūṭ̄̄)]

$$
=[3 / 2 r(\text { Țaḥāwī) })]=[25 / 64 r \text { (Anṭākiya }]
$$

$1 r=150 \mathrm{dir}=105 \mathrm{mi}$
Ghaylānī, see Yemen
Haithamī: Weights

```
1r=400 dir = [12 ük] 1 u}k=33 1/3 dir
1r=2/3r (Syria) = 2r layth\overline{\imath}=2 2/3r fulful\overline{\imath}=31/9r
(Iraq)}=15/9ma(\operatorname{Iraq})=15/6r zāhiri
    = 1 11/150 ra (Anṭākiya)
```

Ḥidjāz: Measures of capacity
1 was $=60 s a=240 m u \quad 1 m u=13 / 4 m u$ (Damascus)
$1 s ̣ a=51 / 3 r($ Baghdad $)=11 / 7 r($ Syria $)=44 / 7 r$ fulfulı̄ $=22 /$
$3 m a=8 r$ (Abū Ḥanīfa: Baghdad)
Weights
$1 d \bar{\imath}=24 k \bar{\imath} \quad 1 r=3 / 601 \mathrm{r}$ sulaymān $\bar{\imath}$
Iraq: Measures of length and area
$1 \mathrm{dj}=60 \mathrm{dh} \cdot 60 \mathrm{dh}=\left[3,600 \mathrm{dh}^{2}\right]=10 \mathrm{ka}=100 \mathrm{as}$
1 kas $=6 d h=1 b \bar{a}=1 / 10$ ash $\quad 1 \mathrm{dj}=1 \mathrm{ash} \cdot 1 \mathrm{ash}$
$1 ، a s=1 b \bar{a} \cdot 1 b \bar{a} \quad 1 \mathrm{mud}=30 \mathrm{kal}{ }^{2}=1687 \mathrm{l} / 2 \mathrm{dh}^{2}$
$1 k a=71 / 2 d h=1 / 4($ or $1 / 3) s i$
Measures of capacity
$1 \mathrm{ku}=60 \mathrm{ka}$
$1 m u=3 / 4$ prophetic $m u$
Weights
$1 d \bar{\imath}=6 d a=60 h a=20 k \bar{\imath}$
$1 k \bar{l}=3 h a$
1 dir $=48 t \cdot a=48 h a=6 d a$
1 da/dir $=8$ ha/dir
$1 \operatorname{dir}=(1 / 2+1 / 5) d \bar{\imath}$
1 ha/dir $=1 / 48$ dir
$1 t a=4 / 5 h a$ (Syria)
$1 d \bar{l}=2 / 3 d \bar{l}$ (Aleppo)
$1 k \bar{\imath}=[4 / 5 k \bar{l}$ (Aleppo) $]$
$1 k \bar{\imath}=11 / 7+1 / 21 k \bar{\imath}$ (Damascus, Egypt)
$1 d a=22 / 3$ kī/dir (Dam., Egypt)
$1 d a=21 / 3 k \bar{\imath}$
$1 k \bar{\imath}=8 / 9 k \bar{\imath}$ (Aleppo, weight)
$1 r=[3 / 14 \mathrm{r}$ sulaymānī $]$
$1 \bar{u} k=[1 / 1,200 \operatorname{kin}(S y r i a)]$
$1 r=1 / 2 r$ (Syria, general)
$1 r=1284 / 7 \mathrm{dir}=90 \mathrm{mi}$
$1 r=[12 \bar{u} k]$
$1 \bar{u} k=105 / 7 \mathrm{dir}=71 / 2 \mathrm{mi}$
$1 r=1,800 k \bar{l}=6,1713 / 7 \mathrm{ha} / \mathrm{d} \bar{\imath}=5,400 \mathrm{ha} /$ dir $=3 / 14 r$ (Syria)
$=6 / 7 \mathrm{r}$ fulful̄$=1 / 2 \mathrm{ma}=[9 / 14 \mathrm{r}$ layth $\bar{\imath}]$
$1 r=[9 / 28 r$ haythamī $]=[9 / 35 r($ Asyūṭī $)]=[5 / 42 r($ Ardabīl $)]$
Laythī: Weights
$1 r=[1 / 3 r$ sulaymānī $]$
$1 r=[7 / 9 m a$ (Syria, general) $]$
$1 r=100 \mathrm{dir}=\left[\begin{array}{lll}6 & 3 / 33 & \bar{u} k\end{array}\right]$
$1 r=[1 / 2 r$ haythami $]$
$1 \bar{u} k=161 / 2$ dir $=140 m i=112 / 3 \mathrm{mi}$ sulaymān $\bar{\imath}$
$1 r=11 / 4 r$ fulful $\bar{\imath}=6 / 7 m a=15 / 9 r$ (Iraq)

Makāyīl al-nabīy (prophetic measures)
$1 m u=11 / 3 r($ Iraq $)=1713 / 7$ dir $=33 / 7 \bar{u} k($ Syria $)=11 / 7 r$ fulfulı $=120 \mathrm{mi}$
Sulaymānī: Weights

```
1r=1r(Damascus)=200 1/3r(Hidjāz)=4rfulful\overline{\imath}=41/3r(Iraq)=3rlayth\overline{\imath}=2rdjarw\overline{\imath}=2 4/19r (Ghaylānī)
```



```
1r=[2 2/15ma (Syria, general)]=[7/3ma (Syria, general)]=[5/7r (Bardha`\overline{1})]=[5/9r (Ardab\overline{1})]
```

Syria: Measures of capacity
$1 \mathrm{ghi}=3 \mathrm{ka}(\mathrm{Iraq})=12 \mathrm{ru}=72 \mathrm{mu}$
$1 \bar{u} k=[7 / 24$ prophetic $m u]$
$1 r=[7 / 8 s a($ Hidjāz $)]=[42 / 3 r$ (Baghdad) $]$

Weights

$$
\begin{aligned}
& 1 d i r=60 h a \\
& 1 d a=10 h a \\
& 1 k \bar{\imath}=34 / 7 h a \\
& 1 d a / d \bar{l}=84 / 7 h a / d \bar{\imath} \\
& 1 d a=14 / 5 k \bar{l} \\
& 1 h a=(1 / 5+2 / 25) k \bar{\imath}
\end{aligned}
$$

$$
1 h a=6 d a
$$

$$
1 \mathrm{dir}=(1 / 2+1 / 5) d \bar{l}=164 / 5 \mathrm{k} / \mathrm{l} / \mathrm{d} \bar{\imath}
$$

$$
1 d \bar{l}=13 / 7 d i r=24 k \bar{\imath}=855 / 7 h a
$$

$$
1 k \bar{l}=(1 / 7+1 / 14) h a
$$

$$
1 d \bar{l}=600 / 7 h a
$$

$$
1 h a=4 / 5 t a(\text { Iraq })
$$

1 ḥa/d $\bar{\imath}=(1 / 100+1 / 600) d \bar{\imath} \quad 1 \quad h a=(6 / 7+1 / 28) h ̣ a$ (Aleppo)
$1 k \bar{\imath}=25 / 7 h ̣ a=(1 / 28+1 / 42) d i r=1 / 24 d \bar{\imath}$

Weights (Syria, specific)

```
\(1 r=420 m i=3,600 d a=14,400 k \bar{l}=36,000 h a\)
\(1 \bar{u} k=35 m i=300 d a=1,200 k \bar{\imath}=3,000 h a\)
1 kin \(=[4\) kin fulfulī \(]=[4 r\) (Egypt \()]=42,000 \mathrm{mi}=60,000 \mathrm{dir}\)
\(1 r=[4 r / \bar{u} k\) fulfulī\(]=[2 r\) djarwī \(]=[14 / 3 r\) (Iraq) \(]\)
\(1 r=[3 / 2 r\) haythamī \(]=[3 / 5 r\) (Asyūṭī) \(]=[16 / 25 r\) (Anțākiya) \(]\)
```

Weights (Syria, unspecified)

```
1 kin \(=100 r=2331 / 3 m a=4662 / 3 r\) [sic] = 1,200 \(\bar{u} k\) (Iraq)
\(1 m a=260\) dir \(\approx 2571 / 7\) dir \(=180 m i=2 r(\) Iraq \()=15 / 7 r\) fulful̄̄\(=13 / 30 r\) sulaymān \(\bar{\imath}\)
\(1 m a=12 / 7 r\) layth \(\bar{\imath}=6 / 7 r\) djarw \(\bar{\imath}=3 / 7 r\) sulaymann \(\bar{\imath}\)
\(1 r / \bar{u} k=51 / 7 \bar{u} \mathrm{k}=1 / 4 m a=33 / 4 m i\)
```

Ṭaḥāwī: Weights
$1 r=[3 / 10 r$ djarw $\bar{\imath}] \quad 1 r=1 r$ (Asyūṭī)
Yemen (Ghaylānī): Weights

```
\(1 r=[19 / 42 r\) sulaymān \(\bar{c}] \quad 1 \bar{u} k=(151 / 2+1 / 3)\) mi sulaymān \(\bar{\imath}\)
\(1 r=[2712 / 3+2 / 7]\) dir sulaymān \(\bar{\imath}=190\) mi sulaymān \(\bar{\imath}\)
```

Zāhirī (Fāṭimid): Weights

```
\(1 r=480 \mathrm{dir}=[12 \bar{u} k]=336 \mathrm{mi} \quad 1 \bar{u} k=40 \mathrm{dir}=28 \mathrm{mi}\)
\(1 r=4 / 5 r\) (Syria) \(=11 / 5 r\) haythamī \(=31 / 5 r\) fulful̄\(=11 / 4 r\)
(Anṭākiya)
    \(=(32 / 3+2 / 30) r\) (Iraq)
```

Ells (adhrus, unspecified):
dhirā \cdot al-yad
$1 d h=2 \operatorname{shi}($ cloth $)=18 i s ̣($ medium $)=24 i s ̣($ without thumb $)=[3 / 4 d h(k a \overline{a i m i})]$
dhirā‘ kāāsimī (= hāshimī)
$1 d h=11 / 3 d h(y a d)=24 i s+6 \mathrm{kab} \quad 1 \mathrm{kab}=1 / 6 \mathrm{dh}$
$1 I s=1 / 4 k a b=1 / 24 d h$
dhirā‘ hāshimī (mālikī)
$1 \mathrm{dh}=8 \mathrm{kab}=[3 / 5 \mathrm{dh}($ mābahrāmī$)]$
dhirā‘ mābahrāmī (sūd)
$1 d h=12 / 3 d h(h \bar{a} s h i m \bar{\imath})=60 f a=1 / 3$ (or 1/6) kab
$1 d j=36 d h \cdot 36 d h$
al-islāmīya, Beirut: Maktabat Lubnān Nāshirūn, 2002. Only occasionally, external sources, records of both European and Oriental travellers, allow the fixation of absolute values. With regard to their geographical and chronological diversity, the reconstruction of entire systems of measurement and of their relation to each other has just begun.

During the tenth century, mathematicians became aware of the complexity of the metric systems in use. Their particular perspective on the issue differed from what their legal and other colleagues had been noting down hitherto. They not only tried to present a systemized
enumeration of all units related, but also endeavoured, for pedagogical reasons, to systematize the usage of measuring units in popular treatises. They sometimes even expressed efforts to standardise and facilitate the conversions customs, market and tax officers had to enact. Thus, stimulated by theoretical manuals, mathematically standardised methods of measuring and of converting quantities from one system into another became popularised. To some extent, these devices even had retroactive effects on the practice of Islamic laws.

Among these manuals, the "Book on the Basis of Arithmetic and the Division of Inheritances" (Kitāb
al-Tadhkira bi-uṣūl al-ḥisab wa l-farā'iḍ), written by the Damascene mathematician 'Alī b. al-Khiḍr al-‘Uthmānī al-urashī (1030-1067 AD) contains the most coherent information on the metric systems that were in use in the Islamic Middle East up to the lifetime of the author. The following list of units of weight, currency, capacity and length, together with the localities they refer to arranged in alphabetical order, is extracted and, if indicated by '[...]', concluded from different chapters of this Kitāb al-Tadhkira.

See also: Nilometer

References

Cahen, C. Quelques Problèmes Économiques et Fiscaux de l'Iraq Buyide D'après un Traité Mathématique. Annales de L'Institut d'Études Orientales 10 (1952): 326-363.
Ehrenkreutz, A. S. The Kurr System in Medieval Iraq. Journal of the Economic and Social History of the Orient 5 (1962): 305-314.
Encyclopaedia of Islam, New edn. $\left(=E I^{2}\right)$, Vol. I-XI, Leiden: E.J. Brill 1986ff. Entries: misāha, mīzān, ṣā‘, zakāt.

Hinz, W. Islamische Masse und Gewichte. Umgerechnet ins Metrische System. Leiden: E.J. Brill, 1955.
Hinz, W. Islamische Währungen des 11. bis 19. Jahrhunderts. Umgerechnet in Gold. Ein Beitrag zur islamischen Wirtschaftsgeschichte. Wiesbaden: Otto Harrassowitz, 1991.
Ibn Manthū Lisān al-‘arab, I-VI [15 books in 6 vols.]. Beirut: Dār Șādir, n.d.
Miles, G. C. Early Arabic Glass Weights and Stamps. New York: American Numismatic Society, 1948.
al-Qurašī, 'Alī Ibn al-Hiiḍr at-Tadkira bi-uṣūl al-ḥisāb wa l-farä'id. (Buch über die Grundlagen der Arithmetik und der Erbteilung). übersetzt, kommentiert und in Faksimile herausgegeben von Ulrich Rebstock. Frankfurt am Main: Institute for the History of Arabic-Islamic Science, 2001. [Islamic Mathematics and Astronomy, Vol. 107].
Rebstock, U. Rechnen im Islamischen Orient. Darmstadt: Wissenschaftliche Buchgesellschaft, 1992.

Weights and Measures in Japan

Shigeo Iwata

Japan used the 17.3 cm -long linear measure unit that was common to all the regions in East Asia for a period of 25,000 years. Under the influence of China, the Japanese measuring unit gradually lengthened during the period from the end of the eleventh century BCE to the middle of the third century BCE. Then, the length of the Japanese measure shaku was stabilized at 23 cm and remained unchanged until the end of the second century AD. Various civil disturbances in China had the effect of lengthening the linear measure substantially to 29 cm until the middle of the seventh century, and no more significant variation has since been observed (Fig. 1).

Weights and Measures in Japan. Fig. 1 Linear Measure. Drawing by The Ministry of Finance. Doryoko Shurui Hyo (The Classification Table of Weights and Measures) Genbei Kinokuniya, 1875. Chos 1, 4-6, 9-11.

Length

Under the Chinese Tang dynasty, a law was enacted mandating the use of two methods based on large and small linear measures. The large scale was 1.2 times as long as the small scale, which we refer to as the ancient linear measure. The small scale was used for music, astronomy, and ceremonial items.
Japan introduced this Chinese measuring system in 701. The large scale later became known as kanejaku, which refers to an L-shaped ruler used by architects. The small scale gradually dropped out of use. Linear measurement tools were mainly made of wood, though

[^0]: Originalbeitrag erschienen in:
 Helaine Selin (Hrsg.): Encyclopaedia of the history of science, technology, and medicine in nonWestern cultures.

