Die Rolle von extrazellulärem ATP bei der Entstehung
der akuten Graft-versus-Host Erkrankung
Dekan: Herr Prof. Dr. Dr. h.c. mult. Hubert E. Blum
1. Gutachter: Herr PD Dr. Robert Zeiser
2. Gutachter: Frau PD Dr. Silke Laßmann
Jahr der Promotion: 2011
Dem wissenschaftlichen Fortschritt
Inhaltsverzeichnis

1. Einleitung .. 7
 1.1. Knochenmark- und Stammzelltransplantationen ... 7
 1.2. Graft-versus-Host-Disease (GvHD) ... 8
 1.2.1. Phase 1 (Konditionierung) ... 8
 1.2.2. Phase 2 (Induktion und Expansion) ... 9
 1.2.3. Phase 3 (Effektor-Phase) .. 9
 1.3. Graft-versus-Tumor-Effekt .. 9
 1.4. Anforderungen an Knochenmarktransplantationen: .. 9
 1.5. Danger Signals und purinerge Rezeptoren .. 10
 1.6. Purinerge Rezeptoren ... 10
 1.7. Fragestellungen dieser Dissertation: .. 11

2. Materialien .. 12
 2.1. Geräte ... 12
 2.2. Reagenzieien ... 13
 2.3. Menschliche Proben .. 13
 2.4. Tierstämme .. 14
 2.4.1. Mäuse ... 14
 2.5. Zelllinien .. 14
 2.5.1. Tierische Zelllinien .. 14
 2.5.2. Humane Zelllinien .. 15
 2.6. Zellkulturmedien und -seren .. 15
 2.7. Chemikalien ... 16
 2.8. Reaktionssystemsätze (Kits) ... 17
 2.9. Antikörper .. 17
 2.9.1. Primärantikörper Anti-Maus ... 17
 2.9.2. Primärantikörper Anti-Human .. 18
 2.9.3. Sekundäre Antikörper / Streptavidin ... 18
 2.10. Labormaterial ... 18
 2.11. Herstellung gebrauchsfertiger Lösungen ... 20
 2.11.1. Medium .. 20
 2.11.2. DZ-Medium: ... 20
 2.11.3. FACS-Puffer .. 20
 2.12. EDV Programme ... 20

3. Methoden ... 21
 3.1. GvHD-Modell .. 21
 3.1.1. Bestrahlung der Mäuse ... 21
 3.1.2. Gewinnung der T-Zellen .. 22
 3.1.3. Gewinnung des Knochenmarks ... 22
 3.1.4. Transplantation ... 23
 3.1.5. Zellzahlen bei verschiedenen Transplantationsmodellen 23
 3.1.6. Behandlung der transplantierten Tiere ... 23
 3.2. Messung der T-Zell-Expansion mit der Biolumineszenz-Kamera 24
 3.2.1. Grundlagen ... 24
 3.2.2. Prozedur ... 24
 3.3. ATP-Messungen .. 24
 3.3.1. Gewinnung von muriner peritonealer Spülfüssigkeit 24
 3.3.2. In vitro ATP-Freisetzung in HaCaT-/Epithelzellen und PBMZ-Kulturen: 25
 3.3.3. In vivo Detektion von freiem ATP mittels Biolumineszenz 25
 3.3.4. Ex vivo Biolumineszenz-Imaging zur Detektion von freiem ATP 25
 3.4. GvT-Effekt (Graft versus Tumor): B-Zell-Lymphommodell mit A20-Zellen 25
 3.4.1. Transplantation ... 26
3.5. **Histopathologische Auswertung durch konventionelle und Immunfluoreszenzmikroskopie** .. 26
 3.5.1. Sektion der Mäuse und Fixierung der Organe 26
 3.5.2. Herstellung von Gefrierschnitten ... 26
 3.5.3. Färbungen ... 26
 3.5.4. Auswertung der histomorphologischen Präparate 27
3.6. **In vitro Proliferaionsversuche – Lymphozytenstimulationsmodell = Mixed Lymphocyte Reactions (MLR)** ... 27
 3.6.1. Gewinnung und Vorbehandlung der Responderzellen 27
 3.6.2. Vorbehandlung der Stimulatorzellen ... 28
 3.6.3. Gewinnung von dendritischen Zellen aus Knochenmark (Bone marrow derived dendritic cells, BMDZ) .. 28
 3.6.4. Vorinkubation Responder-/Stimulatorzellen und Kultur 28
3.7. **Untersuchung des Einflusses von PPADS auf die T-Zell-Vitalität** 28
 3.7.1. Durchführung Annexin V/PI-Färbung .. 28
3.8. **Zytokin-Messungen** ... 29
3.9. **Durchflusszytometrische (FACS-) Analyse der P2X₇-R-Expression auf humanen Zellen** ... 29
 3.9.1. Gewinnung von mononukleären Zellen (MNZ) durch Ficoll-Paque-Isolierung 29
3.10. **Statistische Analyse** ... 30

4. **Ergebnisse** ... 31
 4.1. **Freies ATP** ... 31
 4.1.1. Einführung ... 31
 4.1.3. Tiermodell: Einfluss von Bestrahlung auf ATP-Freisetzung 32
 4.1.4. Tiermodell: Freies ATP nach allogener Stammzelltransplantation 32
 4.2. **Einfluss von unspezifischer P2X₇-Rezeptor-Blockade auf GvHD im Tiermodell** 35
 4.2.1. Einführung ... 35
 4.2.2. Überleben ... 35
 4.2.3. T-Zellproliferation ... 36
 4.2.4. Histopathologische Graduierung der GvHD ... 37
 4.3. **Einfluss medikamentöser P2XR-Blockade auf alloantigen stimuliertes T-Zell-
 Proliferation, Apoptoserate sowie MCP-1 und IFN-γ-Sekretion in vitro** 39
 4.3.1. Einführung ... 39
 4.3.2. T-Zellproliferation und Apoptose ... 39
 4.3.3. Zytokinspiegel .. 40
 4.4. **Einfluss der P2X₇-Blockade auf den Graft-versus-Tumor Effekt im Mausmodell** 41
 4.4.1. Einführung ... 41
 4.4.2. Proliferation bzw. Abstoßung von Tumorzellen ... 41
 4.4.3. Überleben ... 42
 4.5. **Einfluss von aGvHD auf die Expression von P2X₇-R auf RNA- und Proteinebene** .. 43
 4.5.1. Einführung ... 43
 4.5.2. Expression des P2X₇-Receptors (murin) .. 43
 4.5.3. Expression des P2X₇-Receptors (human) .. 45
 4.6. **Einfluss von P2X₇-Defizienz bzw. – Blockade auf GvHD** 45
 4.6.1. Einführung ... 45
 4.6.2. Überleben ... 45
 4.6.3. Histopathologische Graduierung der GvHD ... 46

5. **Diskussion** ... 47
 5.1. **ATP als danger signal** ... 47
 5.2. **Blockade von P2-Rezeptoren** ... 48
 5.2.1. Rolle von purinergen Rezeptoren ... 48
 5.2.2. In vivo: .. 48
Inhaltsverzeichnis

5.2.3. In vitro ... 48
5.3. Graft-versus-Tumor-Effekt ... 49
5.4. Rolle des P2X7-Rezeptors ... 50
5.5. Zusammenfassung und Ausblick 51

6. Anhang .. 53
 6.1. Abkürzungsverzeichnis .. 53
 6.2. Patientencharakteristika Abbildung 1a 55
 6.2.1. Gruppe A Patienten ohne alloHZT 55
 6.2.2. Gruppe B Patienten mit Aszites nach alloHZT ohne akute GvHD ... 56
 6.2.3. Gruppe C Patienten mit Aszites nach alloHZT und Entwicklung einer akuten GvHD 56
 6.3. Patientencharakteristika Abbildung 6c 57
 6.3.1. Patienten mit alloHZT ohne GvHD 57
 6.3.2. Patienten mit alloHZT und GvHD 57
 6.4. Abbildungsverzeichnis .. 59

7. Literaturverzeichnis ... 60

Danksagung ... 65

Curriculum vitae .. 66
Einleitung

1. Einleitung

1.1. Knochenmark- und Stammzelltransplantationen

Insbesondere bei der allogenen Stammzelltransplantation bestehen erhebliche therapieassozierte Risiken:
Einleitung

Zunächst gehören hierzu die Risiken der myeloablatischen Chemotherapie/Bestrahlung wie Durchfall, Erbrechen, Übelkeit, Entzündungen der Schleimhäute/Stomatitis, Haarausfall und organspezifische Nebenwirkungen der Zytostatika.

Vor allem in der ersten Zeit nach Transplantation bzw. bei zusätzlicher Anwendung von Immunsuppressiva sind Infektionen eine große Gefahr. Die Patienten haben durch die Myeloablation ihr eigenes Immunsystem verloren und sind durch die starke Abwehrschwäche aufgrund der Leukopenie anfällig für Infektionserkrankungen durch Bakterien, Pilze und opportunistische Erreger wie CMV.

Eine weitere Gefahr bei der allogenen Stammzelltransplantation ergibt sich durch das mögliche Auftreten der Graft-versus-Host-disease.

1.2. Graft-versus-Host-Disease (GvHD)

Je nach Quellenangaben erleiden zwischen 30% (bei HLA-identischen Spender-/Empfängerkombinationen) und 65% (bei HLA-nicht-identischen Kombinationen) der transplantierten Patienten eine GvHD. Präventiv wird eine Prophylaxe beispielsweise mit Cyclosporin A und Mycophenolat mofetil (MMF) oder MTX durchgeführt, wodurch allerdings das Infektionsrisiko steigt. Zur Behandlung der GvHD stehen zur Zeit Glukokortikoide sowie Antikörper gegen Lymphozyten oder deren Zytokine zur Verfügung.

Erklärungen zur Pathogenese der GvHD gehen von drei Phasen aus:

1.2.1. Phase 1 (Konditionierung)

Die erste Phase ist vorgegeben durch die Schäden an Empfängerorganen wie z.B. der Darmschleimhaut, Leber und anderen Organen. Aktivierte Zellen der geschädigten Organe geben verschiedene proinflammatorische Zytokine ab, wie z.B. Interleukin-1, TNF-α, GM-CSF und Interferon-γ.

Einleitung

wurde sowohl in menschlichen Knochenmarktransplantationen als auch im Tiermodell gezeigt (Hakan et al. 2001).

1.2.2. Phase 2 (Induktion und Expansion)

1.2.3. Phase 3 (Effektor-Phase)

In dieser Phase binden die aktivierte Spender T-Zellen an Empfängergewebe und setzen verschiedene zytotoxische Ereignisse in Gang. Sowohl CD4 als auch CD8 Zellen setzen Zytokine wie IL-2, GM-CSF, TNF-α und IFN-γ frei. Diese Zytokine können dann andere T-Zellen oder Monozyten, natürliche Killerzellen oder vergleichbare Zelldaten aktivieren, welche direkte Entzündungsreaktionen an den betroffenen Empfängerstrukturen hervorrufen.

1.3. Graft-versus-Tumor-Effekt

1.4. Anforderungen an Knochenmarktransplantationen:

Aus dem Beschriebenen ergeben sich folgende Anforderungen an das optimale Gelingen einer Therapie durch Knochenmarktransplantationen: Zunächst muss das Anwachsen (engraftment) des Transplantats

1.5. Danger Signals und purinerge Rezeptoren

Diese Voraussetzungen treffen auf Adenosin-Triphosphat (ATP) zu, dessen Rolle als Botenstoff neben seiner Wichtigkeit als Energieträger in den letzten Jahren zunehmend ersichtlich wurde.

ATP könnte als danger signal wirken, wenn es von untergehenden Zellen freigesetzt wird, da es unter physiologischen Bedingungen im Extrazellulärraum nur in geringen Konzentrationen vorkommt (Zimmermann 2000) und verschiedene Rezeptorenfamilien für ATP auf Immunzellen exprimiert werden. Im Normalfall wird extrazelluläres ATP rasch von CD39 und CD73 verstoffwechselt, so dass auch die Anforderung der schnellen Eliminierung gegeben ist.

1.6. Purinerge Rezeptoren
Es sind zwei Familien von purinergen Rezeptoren bekannt. Bei den Rezeptoren der Familie P2X (P2X₁–P2X₇) handelt es sich um ligandengesteuerte Ionenkanäle, die durch ATP aktiviert werden. Bei kurz andauernder Bindung von ATP wird die Bildung von IL-1b, IL-6 und TNF induziert, eine länger dauernde Bindung verursacht Apoptose (Ferrari et al. 1997).

Die Rezeptoren der Familie P2Y (P2Y₁, P2Y₂, P2Y₆, P2Y₁₁, P2Y₁₂, P2Y₁₃ & P2Y₁₄) hingegen werden durch ATP, ADP, UTP, UDP oder UDP-Glukose aktiviert und vermitteln G-Protein gekoppelt die Produktion von TNF, IL-8 oder PGE₂ (Warny et al. 2001). Ein bekannter Vertreter ist der P2Y₁₂-Rezeptor, dessen Blockade durch Clopidogrel die Thrombozytenaggregation vermindert.
Einleitung

2007 zeigten Idzko und Kollegen, dass extrazellulärem ATP als Aktivator von dendritischen Zellen eine wesentliche Rolle bei der Entstehung der allergischen Entzündungsreaktion im Rahmen des allergischen Asthma zukommt (Idzko et al. 2007).

Insbesondere der P2X7-Rezeptor scheint hierbei eine tragende Rolle zu spielen, da seine Aktivierung durch ATP zur Freisetzung von proinflammatorischen Zytokinen wie z.B. IL-1 sowie TNF führt (Ferrari et al. 2006).

1.7. Fragestellungen dieser Dissertation:

Die im GvHD-Setting zu beobachtenden systemischen Entzündungsreaktionen zeigen klinisch und physiologisch auffällige Ähnlichkeiten zu den bei Sepsis oder schwerem Trauma vorkommenden Abläufen, welche zum SIRS (Schneider et al. 2006) beitragen. Dies führte zu der Hypothese, dass diesen Vorgängen der Gewebeschaden und die anschließende Freisetzung von Gefahrensignalen (danger signals) als molekulare Mediatoren gemeinsam sind. Deshalb könnte ein besseres Verständnis der Rolle dieser endogenen Gefahrensignale helfen, überschließenden Entzündungsprozessen bei verschiedenen Krankheitsentitäten vorzubeugen.

2. Materialien

2.1. Geräte

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Gerätetype</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>-20 °C Gefrierschrank</td>
<td></td>
<td>Bosch</td>
</tr>
<tr>
<td>-80 °C Gefrierschrank</td>
<td></td>
<td>Heraeus</td>
</tr>
<tr>
<td>Autoklav</td>
<td></td>
<td>Vaculab-S3000</td>
</tr>
<tr>
<td>Bestrahlungsanlage</td>
<td></td>
<td>CIS Bio International IBL 637</td>
</tr>
<tr>
<td>Bestrahlungsbox</td>
<td></td>
<td>Werkhof Universitätsklinik Freiburg</td>
</tr>
<tr>
<td>Bioluminiszenzkamera</td>
<td>IVIS100 charge-coupled device (CCD) imaging system</td>
<td>Xenogen, Alameda, CA</td>
</tr>
<tr>
<td>Brutschrank</td>
<td></td>
<td>Heraeus</td>
</tr>
<tr>
<td>Durchflusszytometer</td>
<td>CyAn ADP</td>
<td>Dako Cytomation</td>
</tr>
<tr>
<td>Durchflusszytometer</td>
<td>FACSanto II</td>
<td>BD</td>
</tr>
<tr>
<td>Einfrierboxen</td>
<td></td>
<td>Nalgene Freezy Boy</td>
</tr>
<tr>
<td>Eismaschine</td>
<td></td>
<td>Ziegra</td>
</tr>
<tr>
<td>Feinwaage</td>
<td></td>
<td>Sartorius CL420</td>
</tr>
<tr>
<td>Kühlshränke</td>
<td></td>
<td>Liebherr</td>
</tr>
<tr>
<td>Lichtmikroskop</td>
<td></td>
<td>Olympus CX2</td>
</tr>
<tr>
<td>Mehrkanalpipette</td>
<td></td>
<td>Eppendorf</td>
</tr>
<tr>
<td>Pipetten</td>
<td></td>
<td>Gilson</td>
</tr>
<tr>
<td>Pipettierhilfe</td>
<td></td>
<td>Integra Bioscience Pipetboy acu</td>
</tr>
<tr>
<td>Präparierbesteck</td>
<td></td>
<td>Aesculap</td>
</tr>
<tr>
<td>Sterilbank</td>
<td></td>
<td>Heraeus LaminAir 2448</td>
</tr>
</tbody>
</table>
Materialien

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Gerätetyp</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stickstofftank</td>
<td>Air Liquide</td>
<td></td>
</tr>
<tr>
<td>Vortexer</td>
<td>Heidolph Reax 2000</td>
<td></td>
</tr>
<tr>
<td>Zellsorter</td>
<td>MoFlo High speed cell sorter</td>
<td>Dako Cytomation</td>
</tr>
<tr>
<td>Zellzählkammer</td>
<td>Brand Neubauer Improved Bright-line</td>
<td></td>
</tr>
<tr>
<td>Zentrifugen</td>
<td>Heraeus Varifuge 3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heraeus Multifuge 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heraeus Biofuge 13</td>
<td></td>
</tr>
<tr>
<td>Kryotom</td>
<td>Leica</td>
<td></td>
</tr>
<tr>
<td>Fluoreszenzmikroskop</td>
<td>Axioplan 2</td>
<td>Zeiss, Jena, Deutschland</td>
</tr>
</tbody>
</table>

2.2. Reagenzien

<table>
<thead>
<tr>
<th>Name</th>
<th>Verwendung</th>
<th>Hersteller/Bezug</th>
</tr>
</thead>
<tbody>
<tr>
<td>KN-62</td>
<td>Spezifische Blockade P2X₇R</td>
<td>AG Scientific Inc., USA</td>
</tr>
<tr>
<td>PPADS</td>
<td>Unspezifische Blockade P2R</td>
<td>Sigma-Aldrich, Deutschland</td>
</tr>
</tbody>
</table>

PPADS blockiert unspezifisch P2-Rezeptoren und wurde in diesem Zusammenhang schon häufig eingesetzt (Lambrecht et al. 1992). KN-62 blockiert spezifisch den P2X₇-Rezeptor (Friedle et al.).

2.3. Menschliche Proben

Alle Proben wurden nach Zulassung des Studienprotokolls durch das Ethik-Komitee der Albert-Ludwigs-Universität Freiburg und nach schriftlicher Zustimmung gesammelt. Aszites (siehe Tabellen 1-1 bis 1-3 im Anhang) bzw. Blutproben (siehe Tabellen 2-1 und 2-2 im Anhang) wurden von Patienten nach allogener
hämatopoetischer Stammzelltransplantation (alloHZT) bzw. mit anderen Ursachen für Aszites, oder von gesunden Spendern gesammelt. Das GvHD-Grading erfolgte histopathologisch.

2.4. Tierstämme

2.4.1. Mäuse

<table>
<thead>
<tr>
<th>Stamm</th>
<th>Beschreibung</th>
<th>Bezug</th>
</tr>
</thead>
<tbody>
<tr>
<td>BALB/c</td>
<td>H-2K(^d), Thy-1.2</td>
<td>Charles River Laboratory (Sulzburg, Germany) oder lokale Züchtung in der Tierhaltung der Universität Freiburg</td>
</tr>
<tr>
<td>C57Bl/6</td>
<td>H-2K(^b), Thy-1.2</td>
<td></td>
</tr>
<tr>
<td>C57Bl/6 Luc(^+)</td>
<td>H-2K(^b), Thy-1.2</td>
<td></td>
</tr>
<tr>
<td>FVB/N</td>
<td>H-2K(^d), Thy-1.2</td>
<td></td>
</tr>
<tr>
<td>C57Bl/6 P2X(_7)-/-</td>
<td>Knockout für P2X(_7)</td>
<td>Jackson Laboratory (Sulzburg, Germany)</td>
</tr>
</tbody>
</table>

Die verwendeten Tierstämme werden in der Tierhaltung des ZKF (Zentrum für klinische Forschung) der Universität Freiburg unter spezifisch pathogenfreien Bedingungen (SPF) gezüchtet bzw. gehalten. Die Mäuse waren bei Nutzung zwischen 6 und 12 Wochen alt. Die Luziferase-exprimierenden (Luc\(^+\))-transgenen Mäuse der Linie FVB/N L2G85 sind zuvor beschrieben worden (Cao et al. 2004) und wurden über mehr als 14 Generationen auf die C57Bl/6 Linie zurück gekreuzt. Alle Tierexperimente wurden erst nach Genehmigung eines Tierschutzantrags durch die Universität Freiburg durchgeführt.

2.5. Zelllinien

2.5.1. Tierische Zelllinien

<table>
<thead>
<tr>
<th>Zelllinie</th>
<th>Beschreibung</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>A20 Wild Type</td>
<td>B-Zell-Lymphom-Zelllinie</td>
<td>Center for Clinical Science Research, Stanford University School of Medicine</td>
</tr>
<tr>
<td>A20-luc(^+)</td>
<td>B-Zell-Lymphom-Zelllinie</td>
<td>Center for Clinical Science Research, Stanford University School of Medicine</td>
</tr>
<tr>
<td></td>
<td>transgen für Luziferase</td>
<td></td>
</tr>
</tbody>
</table>
2.5.2. Humane Zelllinien

<table>
<thead>
<tr>
<th>Zelllinie</th>
<th>Beschreibung</th>
<th>Verwendung</th>
<th>Referenz/Bezug</th>
</tr>
</thead>
<tbody>
<tr>
<td>HaCaT</td>
<td>Spontan immortalisierte Keratinozyten-Zelllinie</td>
<td>ATP-Freisetzung nach Stimulation mit PBMZ</td>
<td>ATCC, Manassas, VA, USA</td>
</tr>
<tr>
<td>Jurkat</td>
<td>E6-1 Klon, immortalisierte T-Lymphozyten Zelllinie</td>
<td>ATP-Freisetzung nach Stimulation mit PBMZ</td>
<td>ATCC, Manassas, VA, USA</td>
</tr>
<tr>
<td>PBMZ</td>
<td>Gewinnung durch Ficoll-Paque Isolation (s.u.)</td>
<td>Stimulatorzellen</td>
<td>Gesunde freiwillige Spender</td>
</tr>
<tr>
<td>PME</td>
<td>Zellen mit Plasmembrangekoppelter Luziferase</td>
<td>ATP-Messungen in vivo</td>
<td>Pellegati, P Dep. of Experimental and Diagnostic Medicine, Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Ferrara, Italy.</td>
</tr>
</tbody>
</table>

HaCaT Zellen und Jurkat Zellen wurden in RPMI aufbewahrt. PBMZ (periphere mononukleäre Blutzellen) von gesunden freiwilligen Spendern wurden durch Ficoll-Paque Isolation gewonnen (ausführlich im Methodenteil beschrieben).

2.6. Zellkulturmedien und -seren

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Produktangaben</th>
<th>Hersteller/Bezugsangabe</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPMI 1640 + L-Glutamin 1X</td>
<td></td>
<td>Gibco</td>
</tr>
<tr>
<td>Fetal Bovine Serum (FBS)</td>
<td></td>
<td>Gibco, Life Sciences, Grand Island, NY</td>
</tr>
<tr>
<td>Fetal Calf Serum (FCS)</td>
<td></td>
<td>Gibco</td>
</tr>
<tr>
<td>Optimem Medium 1X</td>
<td></td>
<td>Gibco</td>
</tr>
<tr>
<td>GM-CSF</td>
<td></td>
<td>R&D Systems</td>
</tr>
</tbody>
</table>
2.7. Chemikalien

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Verwendung</th>
<th>Hersteller/Bezug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annexin V</td>
<td></td>
<td>BD</td>
</tr>
<tr>
<td>Albumin, bovine</td>
<td></td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Ampicillin</td>
<td></td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Aqua ad iniectabilia</td>
<td></td>
<td>B. Braun</td>
</tr>
<tr>
<td>BSA 30%</td>
<td></td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>CellWASH</td>
<td></td>
<td>BD</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td></td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Dimethylsulfoxid (DMSO)</td>
<td></td>
<td>Sigma</td>
</tr>
<tr>
<td>HybriMax</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td></td>
<td>J. T. Baker</td>
</tr>
<tr>
<td>FACS Lysing solution</td>
<td></td>
<td>BD</td>
</tr>
<tr>
<td>Forene (Isofluran)</td>
<td></td>
<td>Abbott</td>
</tr>
<tr>
<td>Humanalbumin Kabi 20%</td>
<td></td>
<td>Octapharma</td>
</tr>
<tr>
<td>Luziferin</td>
<td></td>
<td>BioSYNTH</td>
</tr>
<tr>
<td>OCT</td>
<td>Einbettmedium</td>
<td>Tissue Tek Sakura</td>
</tr>
<tr>
<td>Penicillin/Streptomycin</td>
<td></td>
<td>Gibco</td>
</tr>
<tr>
<td>Phosphate-Buffered Saline (PBS)</td>
<td></td>
<td>Gibco</td>
</tr>
<tr>
<td>PI</td>
<td></td>
<td>Sigma-Aldrich, BD</td>
</tr>
<tr>
<td>Trypan Blue 0,4%</td>
<td></td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Eosin</td>
<td></td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>Mayer's Hämatoxylin</td>
<td></td>
<td>Dako</td>
</tr>
<tr>
<td>Roti Histokitt</td>
<td></td>
<td>Roth</td>
</tr>
</tbody>
</table>
Materialien

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Verwendung</th>
<th>Hersteller/Bezug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ficoll (Pancoll)</td>
<td></td>
<td>PAN</td>
</tr>
</tbody>
</table>

2.8. Reaktionssystemsätze (Kits)

<table>
<thead>
<tr>
<th>Name</th>
<th>Zweck/Verwendung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vybrant CFDA SE Tracer kit</td>
<td>CFSE Proliferationsmessung</td>
<td>Molekular Probes, Eugene OR</td>
</tr>
<tr>
<td>Mouse Inflammation kit</td>
<td>Zytokinmessungen per Cytometric beat array</td>
<td>BD Deutschland</td>
</tr>
<tr>
<td>ATP-lite assay</td>
<td>ATP-Messungen</td>
<td>Perkin Elmer, Rodgau-Juegesheim, Deutschland</td>
</tr>
</tbody>
</table>

2.9. Antikörper

2.9.1. Primärantikörper Anti-Maus

<table>
<thead>
<tr>
<th>Name</th>
<th>Klon</th>
<th>Isotyp</th>
<th>Fluorochrom</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4</td>
<td>RM4-5</td>
<td>Rat IgG2a k</td>
<td>Pacific blue</td>
<td>BioLegend</td>
</tr>
<tr>
<td>CD4</td>
<td>GK1.5</td>
<td>Rat IgG2b k</td>
<td>Alexa Fluor 647</td>
<td>BioLegend</td>
</tr>
<tr>
<td>CD4</td>
<td>GK1.5</td>
<td>Rat IgG2b k</td>
<td>FITC</td>
<td>BioLegend</td>
</tr>
<tr>
<td>CD8α</td>
<td>53-6.7</td>
<td>Rat IgG2a k</td>
<td>APC</td>
<td>Bioscience</td>
</tr>
<tr>
<td>CD25</td>
<td>PC61</td>
<td>Rat IgG1λ</td>
<td>PE</td>
<td>BioLegend</td>
</tr>
<tr>
<td>NK1.1</td>
<td>PK136</td>
<td>Mouse IgG2a k</td>
<td>APC</td>
<td>BioLegend</td>
</tr>
<tr>
<td>NK1.1</td>
<td>PK136</td>
<td>Mouse IgG2a k</td>
<td>PE</td>
<td>BioLegend</td>
</tr>
<tr>
<td>Anti firefly-luziferase</td>
<td></td>
<td>Goat Polyclonal</td>
<td>FITC</td>
<td>LS-C71810-Life Span Bioscience</td>
</tr>
<tr>
<td>Anti P2X₉,R</td>
<td></td>
<td>Rabbit polyclonal (anti human, anti mouse)</td>
<td>FITC</td>
<td>Sigma</td>
</tr>
</tbody>
</table>
2.9.2. Primärantikörper Anti-Human

<table>
<thead>
<tr>
<th>Name</th>
<th>Klon</th>
<th>Isotyp</th>
<th>Fluorochrom</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-P2X7-R (extrazellulär)</td>
<td></td>
<td>Rabbit polyclonal (anti human, anti mouse)</td>
<td>FITC</td>
<td>Alomone labs</td>
</tr>
<tr>
<td>CD14</td>
<td>MfP9</td>
<td>Mouse IgG2b k</td>
<td>APC</td>
<td>BD</td>
</tr>
<tr>
<td>CD45</td>
<td>2D1</td>
<td>Mouse IgG1 k</td>
<td>APC-H7</td>
<td>BD</td>
</tr>
<tr>
<td>IgG1 k isotype Kontrolle</td>
<td>MOPC-21</td>
<td>Mouse IgG1 k</td>
<td>FITC</td>
<td>BD</td>
</tr>
</tbody>
</table>

2.9.3. Sekundäre Antikörper / Streptavidin

<table>
<thead>
<tr>
<th>Name</th>
<th>Klon</th>
<th>Isotyp</th>
<th>Fluorochrom</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donkey Anti goat</td>
<td></td>
<td></td>
<td>FITC</td>
<td>Santa Cruz</td>
</tr>
<tr>
<td>Goat Anti Rabbit IgG (H+L)</td>
<td></td>
<td>Biotin</td>
<td></td>
<td>Jackson-Immunoresearch Lab</td>
</tr>
<tr>
<td>Streptavidin</td>
<td></td>
<td>Per CP-Cy5</td>
<td></td>
<td>BD</td>
</tr>
<tr>
<td>Streptavidin</td>
<td></td>
<td>APC</td>
<td></td>
<td>BD</td>
</tr>
</tbody>
</table>

2.10. Labormaterial

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 ml Conical Tubes</td>
<td>BD Falcon</td>
</tr>
<tr>
<td>50 ml Conical Tubes</td>
<td>BD Falcon</td>
</tr>
<tr>
<td>6-well Zellkultur-Platten, steril, mit Rundboden oder Flachboden</td>
<td>Becton Dickinson Discovery Labware</td>
</tr>
<tr>
<td>96-well Zellkultur-Platten, steril, mit Rundboden oder Flachboden</td>
<td>Becton Dickinson Discovery Labware</td>
</tr>
<tr>
<td>Aufziehkanüle, stumpf</td>
<td>B. Braun</td>
</tr>
<tr>
<td>Produkt</td>
<td>Hersteller</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Bakterienkulturschalen, 100 mm</td>
<td>Greiner</td>
</tr>
<tr>
<td>Cryomold Standard</td>
<td>Sakura</td>
</tr>
<tr>
<td>Deckgläser</td>
<td>rL</td>
</tr>
<tr>
<td>Einfrierröhrchen (Cryogenic Vials) 1,0 ml</td>
<td>Corning</td>
</tr>
<tr>
<td>Einmal-Skalpelle</td>
<td>Feather</td>
</tr>
<tr>
<td>Filterpapier</td>
<td>Whatman</td>
</tr>
<tr>
<td>Kanülen, steril, verschiedene Größen</td>
<td>B. Braun</td>
</tr>
<tr>
<td>Kunststoffpipettenspitzen, steril, verschiedene Größen</td>
<td>Corning</td>
</tr>
<tr>
<td>MACS LS Säule</td>
<td>Milteny Biotec</td>
</tr>
<tr>
<td>MACS Multistand</td>
<td>Milteny Biotec</td>
</tr>
<tr>
<td>Objekträger Superfrost/Plus</td>
<td>Fisher Scientific, Hampton, NH</td>
</tr>
<tr>
<td>Parafilm M</td>
<td>American National Can</td>
</tr>
<tr>
<td>Pipettenspitzen mit Filter, steril, verschiedene Größen</td>
<td>Biozym</td>
</tr>
<tr>
<td>Polystyrol-Rundbodenröhrchen „FACS“</td>
<td>BD Falcon</td>
</tr>
<tr>
<td>Reagiergefäße 1,5 ml + 2 ml</td>
<td>Eppendorf</td>
</tr>
<tr>
<td>Spritzen, steril, verschiedene Größen</td>
<td>B. Braun</td>
</tr>
<tr>
<td>Zellkulturflaschen, steril, verschiedene Größen</td>
<td>Greiner</td>
</tr>
<tr>
<td>Zellkulturschalen, steril, verschiedene Größen</td>
<td>Greiner</td>
</tr>
</tbody>
</table>
2.11. Herstellung gebrauchsfertiger Lösungen

2.11.1. Medium:

- RPMI 1640 1x + L-Glutamin
- Penicillin/Streptomycin 1%
- FCS 10%

2.11.2. DZ-Medium:

- RPMI 160
- 2 mM L-Glutamin
- 100 µg/ml Penicillin-Streptomycin

2.11.3. FACS-Puffer

- 500 ml PBS
- 12,5 ml Humanalbumin Kabi (20%)

2.12. EDV Programme

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Nutzung</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>EndNote X3</td>
<td>Literaturverwaltung</td>
<td>Thomson</td>
</tr>
<tr>
<td>FlowJo v6.4.3</td>
<td>Auswertung FACS-Daten</td>
<td>Treestar</td>
</tr>
<tr>
<td>IgorProCarbon</td>
<td>Bioluminiszenzdaten</td>
<td>WaveMetrics, Lake Oswego, OR</td>
</tr>
<tr>
<td>Living ImageSoftware</td>
<td>Bioluminiszenzdaten</td>
<td>Caliper</td>
</tr>
<tr>
<td>Photoshop CS7</td>
<td>Erstellung von Grafiken</td>
<td>Adobe</td>
</tr>
<tr>
<td>Prim</td>
<td>Erstellung von Graphen</td>
<td>GraphPAD</td>
</tr>
<tr>
<td>Summit v4.3</td>
<td></td>
<td>Dako Cytomation</td>
</tr>
</tbody>
</table>
3. Methoden

3.1. GvHD-Modell

Für die Auslösung einer GvHD ist ein Transplantationsmodell nötig. Hierfür wurden die Empfängertiere zunächst myeloablativ bestrahlt (Konditionierungstherapie), anschließend wurde ihnen Knochenmark und die für die Auslösung der GvHD essentiellen T-Zellen (CD4⁺ oder CD8⁺) einer MHC (major histocompatibility complex) Klasse 1 und 2 differenten Maus durch Injektion in die Schwanzvene oder in den retroorbitalen Venenplexus verabreicht. Bei diesem vorbeschriebenen Modell (Zeiser et al. 2006) wurden die unten stehenden Kombinationen von unterschiedlichen Maustypen verwendet. Alle Kombinationen haben nicht-kompatible MHCs im HLA-System, d.h. es handelt sich um ein major mismatch und damit um ein besonders aggressives Transplantationsmodell.

3.1.1. Bestrahlung der Mäuse

3.1.2. Gewinnung der T-Zellen

Die Extraktion von CD4⁺ und CD8⁺-Zellen erfolgte mittels MACS (Magnetic cell separation). Bei diesem Zellseparationssystem bedient man sich magnetischer Beads und einer magnetischen Säule. Im Einzelnen wurde dabei wie folgt vorgegangen:

- Die gezählten Splenozyten waschen und in etwa 500 µl Puffer aufnehmen
- Jeweils 10 µl CD4⁻ und CD8⁻-Beads/10⁷ Zellen zu den Zellen geben, vortexen
- 25 min bei 4 °C inkubieren
- Zur Abtrennung nicht gebundener Beads die Zellen mit 20 ml Puffer waschen, zentrifugieren und den Überstand abnehmen
- Die Zellen in 1 ml Puffer (PBS) aufnehmen und auf die vorher mit 3 ml PBS befeuchtete Säule geben
- Nachdem die Zellsuspension durch die Säule gelaufen ist, diese nacheinander mit 3 x 3 ml PBS spülen, um Zellen ohne magnetische Beads aus der Säule zu waschen.
- Erneut 3 ml PBS auf die Säule geben, die Säule vom Magnet trennen, sofort den Spritzenstempel aufsetzen und die positiv selektionierten Zellen in ein neues Tube spritzen.

Die so gewonnenen CD4⁺ / CD8⁺ Zellen wurden gezählt und in der jeweils gewünschten Zahl in 50 µl PBS aufgenommen.

3.1.3. Gewinnung des Knochenmarks

Nach Entnahme der Milz wurden bei den gleichen Mäusen die unteren Extremitäten mit sterilen Skalpellen von Fell, Haut und Muskeln befreit, bis der Knochen vollständig freilag. Daraufhin wurde das Femur aus dem Hüftgelenk gelöst und das Kniegelenk durchtrennt.

Femur und Tibia wurden in eine Petrischale mit sterilem PBS gelegt und am proximalen und distalen Ende mit einem sterilen Skalpell eröffnet.
Methoden

Die Herauslösung des Knochenmarks erfolgte nun mit einer sterilen Spritze, wobei die Knochen mehrmals von proximal nach distal mit dem sich in der Petrischale befindlichen sterilen PBS durchgespült wurden. Anschließend wurden die gewonnenen Zellen gezählt, gewaschen und in einer Konzentration von 5×10^6 pro 50 µl in steriles Medium aufgenommen.

3.1.4. Transplantation

Die vorher aufgereinigten und genau auf die gewünschten Zellzahlen eingestellten Zellen wurden nun in die Empfängertiere injiziert. Dabei wurden in sterile Insulinspritzen für die Knochenmarkkontrollen jeweils 50 µl Knochenmarksuspension und 50 µl steriles Medium, für die GvHD-Mäuse je 50 µl T-Zellen und 50 µl Knochenmarkzellen aufgezogen, so dass jede Maus am Ende ein Volumen von 100 µl erhielt. Die Injektion erfolgte in die Schwanzvene.

3.1.5. Zellzahlen bei verschiedenen Transplantationsmodellen

<table>
<thead>
<tr>
<th>Spender</th>
<th>Empfänger</th>
<th>Knochenmark-Zellen</th>
<th>T-Zellen</th>
</tr>
</thead>
<tbody>
<tr>
<td>C57BL/6</td>
<td>BALB/c</td>
<td>5×10^6</td>
<td>3×10^5</td>
</tr>
<tr>
<td>FVB/N</td>
<td>BALB/c</td>
<td>5×10^6</td>
<td>1×10^6</td>
</tr>
<tr>
<td>BALB/c</td>
<td>C57BL/6</td>
<td>5×10^6</td>
<td>3×10^5</td>
</tr>
</tbody>
</table>

Da die HLA-Kombinationen bei den verschiedenen Spender-Empfänger-Konstellationen unterschiedlich aggressiv sind und deshalb die für das Auslösen einer GvHD nötige T-Zellmenge variiert, muss deren Dosis angepasst werden.

3.1.6. Behandlung der transplantierten Tiere

Alle Injektionen erfolgten mit sterilen Insulinspritzen.
Methoden

3.2. Messung der T-Zell-Expansion mit der Biolumineszenz-Kamera

3.2.1. Grundlagen

Die Erfassung der Expansion der T-Zellen mit Hilfe der Biolumineszenz-Kamera stellt einen indirekten Marker für die Entwicklung beziehungsweise das Fortschreiten der GvHD dar, da die GvHD unter anderem durch die Proliferation und Differenzierung von T-Zellen ausgelöst wird. Sie ist deswegen eine sinnvolle Methode, um die Erkrankung der Tiere nicht-invasiv und in-vivo beobachten zu können.

Das Luziferase-Gen steht in den Zellen luc-transgener Mäuse unter der Kontrolle des β-Aktin-Promoters und wird deswegen wie der Zytoskelettbestandteil β-Aktin ständig exprimiert.

3.2.2. Prozedur:

Analog zu der von Zeiser et al. 2008 beschriebenen Vorgehensweise wurde den transplantierten Tieren jeweils 10 µg/g KG Luziferin intraperitoneal injiziert. Anschließend wurden sie mit Isofluran narkotisiert und 10 min nach Injektion in narkotisiertem Zustand in der Biolumineszenz-Kamera (IVIS200 charge-coupled device (CCD) imaging system von Xenogen, Alameda, CA) positioniert. Hier wurde über 5 Minuten die Photonenmenge in Photonen/Sekunde/ cm² gemessen. Die Imaging Daten wurden analysiert und quantifiziert mit Living Image Software (Xenogen) und IgorProCarbon (WaveMetrics, Lake Oswego, OR).

3.3. ATP-Messungen

Eisgekühlte Proben von muriner peritonealer Spüllüssigkeit, humanem Aszites oder Überständen aus Zellkulturen wurden bei 4 °C zentrifugiert und die Überstände für die ATP-Messungen benutzt. Die ATP-Spiegel wurden mit der ATPlite Untersuchung (Perkin Elmer, Rodgau-Juegesheim, Deutschland) durch Tobias Müller (AG Idzko) bestimmt. Dabei wurde der im angewendeten Herstellerprotokoll vorgesehene Lyseschritt der Zellen ausgelassen, um keine Verunreinigung durch intrazelluläres ATP zu verursachen.

3.3.1. Gewinnung von muriner peritonealer Spüllüssigkeit

3.3.2. In vitro ATP-Freisetzung in HaCaT-/Epithelzellen und PBMZ-Kulturen:
Zur Messung der ATP-Freisetzung bei allogener Stimulation von humanen Zellen wurden insgesamt 2 x 10⁵ Zellen/Well in flach vertieften 96-Well-Platten kultiviert. Dabei wurden HaCaT- oder Epithelzellen mit allogenen PBMZ stimuliert und folgende Zellmengen benutzt: 1:1 Verhältnis (jeweils 1 x 10⁵ Zellen), 1:0,5 Verhältnis (HaCaT- oder Epithelzellen : PBMZs – 133 000 : 67 000), 1:0,1 Verhältnis (HaCaT- oder Epithelzellen : PBMZ – 180 000 : 18 000). Nach 48 Stunden wurden die Überstände abgenommen und die darin enthaltene ATP-Menge gemessen.

3.3.3. In vivo Detektion von freiem ATP mittels Biolumineszenz

\[
\text{LH}_2 + \text{O}_2 + \text{ATP} \xrightarrow{\text{Luciferase}_{\text{Mg}^{2+}}} \text{oxy-L} + \text{CO}_2 + \text{AMP} + \text{PP}_1 + \text{hv}
\]

Bei den zumeist genutzten luc-transgenen Zellen befindet sich die Luziferase intrazellulär, wo genug ATP für die Reaktion zur Verfügung steht. Da sich die Luziferase der PME-Zellen an der Außenseite der Membran befindet, steht das intrazelluläre ATP nicht zur Verfügung, so dass die Reaktion nur in Anwesenheit von freiem ATP möglich ist und dieses somit nachweisbar wird. Für diese Messungen wurden 2 x 10⁵ Zellen mit einer Plasmamembran gekoppelten Luziferase (PME-Zellen) in die Schwanzvene injiziert und die Empfängermäuse nach alloHZT untersucht. Das Imaging erfolgte wie oben für die T-Zell-Expansion beschrieben.

3.3.4. Ex vivo Biolumineszenz-Imaging zur Detektion von freiem ATP

3.4. GvT-Effekt (Graft versus Tumor): B-Zell-Lymphommodell mit A20-Zellen
Um die GvT Aktivität der transplantierten Donor T-Zellen zu untersuchen, wurde eine Luziferase-tragende A20 B-Zell-Lymphom-Zelllinie verwendet, bei der im Vorfeld gezeigt wurde, dass sie primär das Knochenmark und sekundär die Milz und andere lymphatische Organe infiltriert (Zeiser et al. 2006).

Die Gewinnung des Knochenmarks und der Splenozysten erfolgte wie oben. Die A20-Zellen wurden am Tag der Transplantation aus der Zellkultur entnommen und auf 5 x 10⁵ Zellen pro 50 µl PBS eingestellt.
3.4.1. Transplantation
Die Empfängertiere wurden nach der Bestrahlung mit Isofluran betäubt und die A20-Zellen mit sterilen Insulinspritzen in den retroorbitalen venösen Plexus der Empfängertiere injiziert. Am selben Tag wurden 5 x 10^6 Knochenmarkzellen in die Schwanzvene und zwei Tage später zusätzlich 3 x 10^5 CD4+ / CD8+ Zellen injiziert.

Das Anwachsen der Luziferase-exprimierenden Lymphomzellen in den Empfängertieren konnte mit Hilfe der Biolumineszenz beobachtet werden.

3.5. Histopathologische Auswertung durch konventionelle und Immunfluoreszenzmikroskopie

3.5.1. Sektion der Mäuse und Fixierung der Organe

3.5.2. Herstellung von Gefrierschnitten
Die Herstellung von Gefrierschnitten von 5 µm Dicke erfolgte mit einem Kryotom im Institut für Pathologie der Universität Freiburg. Sie wurden auf positiv geladene vorgereinigte Objekträger verbracht und bei -80 °C gelagert.

3.5.3. Färbungen
Für morphologische Analysen wurden die Schnitte mit Hämatoxylin/Eosin gefärbt. Dafür wurde wie folgt vorgegangen:

- 40 sek in Hämatoxylin-Lösung färben
- 1 min in H2O bläuen
- 50 sek in Eosin färben
- 1 min in 70% Ethanol reinigen und dehydrieren
- 1 min in 100% Ethanol reinigen und dehydrieren
- 1 min in Xylen stellen

Die gefärbten Schnitte wurden bei Raumtemperatur aufbewahrt.

Für die immunhistochemischen Auswertungen wurden die Gewebe mit polyklonalen Kaninchen anti-P2X7-R-Antikörpern von Abcam gefärbt, gefolgt von biotingekoppeltem sekundären Anti-Kaninchen-Antikörper (Jackson Immuno Research Europe) und einem sekundären Streptavidin-AP Detektionssystem (Daco).
3.5.4. Auswertung der histomorphologischen Präparate

Die Präparate wurden verblindet und zu Frau Dr. Gerlach aus dem Institut für Pathologie der Universitätsklinik Freiburg geschickt, welche die Auswertung der gefärbten Schnitte auf einem Zeiss-Mikroskop (Axioplan 2, Jena, Deutschland) vornahm. Als Standardobjektive wurden 20x/numerische Apertur 0,45 und 40x/numerische Apertur 0,60 benutzt. Die mikroskopischen Photos wurden mit einer Spot Digitalkamera aufgenommen.

Die intestinale GVHD wurde nach einem 2004 publizierten histopathologischen Scoring System (Kaplan et al. 2004) auf der Basis der Krypten-Apoptosen und der Inflammation gemessen:

<table>
<thead>
<tr>
<th>Krypten-Apoptosen</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine bis wenig</td>
<td>Gelegentlich apoptotische Körperchen pro 10 Krypten</td>
<td>Einige apoptotische Körperchen pro 10 Krypten</td>
<td>Die Mehrheit der Krypten enthält ein apoptotisches Körperchen</td>
<td>Die Mehrheit der Krypten enthält >1 apoptotische Körperchen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inflammation</th>
<th>Keine</th>
<th>Mild</th>
<th>Moderat</th>
<th>Schwer, ohne Ulzeration</th>
<th>Schwer, mit Ulzeration</th>
</tr>
</thead>
</table>

3.6. In vitro Proliferationsversuche – Lymphozytenstimulationsmodell = Mixed Lymphocyte Reactions (MLR)

3.6.1. Gewinnung und Vorbehandlung der Responderzellen

Hierfür wurden Milzen wie oben beschrieben präpariert und anschließend die gewünschten CD4⁺-Zellen durch positive Selektion unter der Verwendung von magnetischer Zellseparation (MACS, s.o.) angereichert.

3.6.1.1. CFSE-Färbung

Die Färbung von Lymphozyten mit CFSE stellt eine etablierte und häufig genutzte Methode dar, um die Proliferation von Lymphozyten sowohl in vivo als auch in vitro zu messen (Quah et al. 2007). Wie oben beschrieben wurden CD4⁺-Zellen angereichert und vor Kultur mit CFSE gefärbt.

Dafür wurden 1 x 10⁷/ml T-Zellen in einfachem PBS (phosphate-buffered saline) suspendiert und mit dem Vybrant CFDA SE (carboxyfluorescein diacetate, succinimidyl ester) Tracer kit (Molekular Probes, Eugene OR) mit einer Endkonzentration von 5 µM für exakt 6 Minuten bei 37°C inkubiert. Sofort nach der
Färbung wurden die Zellen zweimal im 5-fachen Volumen eiskalten RPMI plus 10% FBS (Gibco, Life Sciences, Grand Island, NY) gewaschen, anschließend in PBS resuspendiert, gezählt und auf 2 x 10^5 Zellen pro 100 µl Medium eingestellt.

3.6.2. Vorbehandlung der Stimulatorzellen
BALB/c Splenozyten oder dendritische Zellen wurden in einer Petrischale mit einer Dosis von 30 Gy in der oben beschriebenen Caesiumquelle bestrahlt. Anschließend wurden sie gewaschen, gezählt und auf 2 x 10^5, 4 x 10^5 und 2 x 10^6 pro 100 µl Medium eingestellt.

3.6.3. Gewinnung von dendritischen Zellen aus Knochenmark (Bone marrow derived dendritic cells, BMDZ)
Einzelzellsuspensionen aus Knochenmark von BALB/c-Mäusen wurden isoliert und 5 x 10^6 Zellen/ml in DZ-Medium inkubiert und die DZ-Maturation durch GM-CSF (10 ng/ml) über 7 Tage stimuliert, wie von Reichardt et al. 2008 vorbeschrieben. Dabei wurden die Zellen in jeweils 10 ml DZ-Medium in Petrischalen von 10 cm Durchmesser inkubiert. An Tag 3 und 5 wurden 10 ml frisches Medium (versetzt mit 100 ng GM-CSF) hinzugegeben und die so gewonnenen dendritischen Zellen an Tag 7-9 verwendet.

3.6.4. VorinkubationResponder-/Stimulatorzellen und Kultur
Je nach gewünschter Kombination wurden entweder die Responder- oder die Stimulatorzellen mit 10 µM PPADS, 1 µM KN-62 oder Kulturmedium für drei Stunden vorinkubiert oder das Reagenz während der kompletten Kulturlänge direkt in die Wells zugegeben.

Insgesamt 2 x 10^5 T-Zellen/Well wurden in flachbodig 96-Well-Platten kultiviert und mit Splenozyten oder DZs im Verhältnis 1:1, 1:2 oder 1:10 stimuliert. Das Kulturmedium bestand aus RPMI 1640 ergänzt mit L-Glutamin (2 mM), Penicillin (100 U/ml), Streptomycin (0,1 mg/ml), 2-Mercaptoethanol (5 x 10^-5 M) und 10% fetalem Kalbserum. Nach 48 h Inkubation bei 37°C und 5% CO2 wurden die T-Zellen gesammelt und mittels FACS die CFSE-Konzentration gemessen.

3.7. Untersuchung des Einflusses von PPADS auf die T-Zell-Vitalität
Um den Einfluss von PPADS auf das Überleben zu untersuchen, wurden CD4⁺ T-Zellen bei 5% CO₂ und 37°C mit oder ohne PPADS in einer Konzentration von 2 x 10^5 T-Zellen/ml Kulturmedium inkubiert. PPADS (10 µM) wurde zu 2 x 10^5 T-Zellen pro flachbodigem Well in 96-Well-Platten zugefügt. Der Anteil von apoptotischen (Annexin V/PI doppelt positiven) Zellen wurde 2, 4 und 6 h nach Exposition mit Hilfe der Durchflusszytometrie bestimmt.

3.7.1. Durchführung Annexin V/PI-Färbung
Für die Färbung mit Annexin V wurde im Wesentlichen nach Herstellerprotokoll (BD) vorgegangen:
- Entnahme von 250 µl aus jedem Ansatz, entsprechend 500.000 Zellen
- Zentrifugieren
- Aufnahme in eisgekühlten Annexin V binding buffer (5 x 10^6 Zellen in 100 µl)
Methoden

- Zugabe von 1,5 µl Annexin V FITC
- Inkubation für 15 min bei Raumtemperatur unter Lichtabschluss
- Zugabe von 100 µl binding buffer und 1 µl PI direkt vor Messung

3.8. Zytokin-Messungen
Die Spiegel von IL-6, IL-12, IL-10, MCP-1, TNF und IFN-γ wurden aus Serum oder Zellkulturüberstand mit dem FACS-basierten CBA Inflammation kit (BD, Deutschland) gemessen. Dabei wurde streng nach Herstellerprotokoll verfahren.

3.9. Durchflusszytometrische (FACS-) Analyse der P2X₇R-Expression auf humanen Zellen
100 µl humanes peripheres Blut wurden bei Raumtemperatur unter Lichtabschluss für 20 min entweder mit anti-P2X₇R (extrazellulär) FITC-Ak (10 µl einer 0,1 µg/µl Lösung) bzw. IgG1 κ Isotyp Kontroll-FITC (5 µl, BD) inkubiert oder ungefärbt gelassen. Zu jedem Tube wurden außerdem CD14-APC (5 µl, BD) und CD45-APC-H7 (5 µl, BD) hinzugefügt. Nach Lyse der Erythrozyten (FACS lysing solution, BD) und einem zusätzlichen Waschschritt (CellWASH, BD) wurden die Monozyten (CD14⁺) und Leukozyten insgesamt (CD45⁺) mit einem FACSSanto II Durchflusszytometer (BD) auf P2X₇R-Expression untersucht. Die MFI-Werte (Mittlere Fluoreszenzintensität) für P2X₇R und IgG wurden um die Hintergrundfluoreszenz bereinigt, indem die MFI ungefärbter Zellen von ihnen subtrahiert wurde.

3.9.1. Gewinnung von mononukleären Zellen (MNZ) durch Ficoll-Paque-Isolierung
Um mononukleäre Zellen anzureichern, wurde frisch abgenommenes humanes Blut mit PBS verdünnt (1 ml Blut für 5 ml PBS) und vorsichtig auf eine Schicht von 5 ml Ficoll (Pancoll von PAN) pipettiert. Anschließend wurde für 20 min bei 2800 Umdrehungen ohne Bremse zentrifugiert. Durch dieses Standardverfahren (Lan et al. 2007) entstehen mehrere Schichten (siehe Abbildung).

3.10. Statistische Analyse

Unterschiede im Überleben der Versuchstiere (Kaplan-Meier-Überlebens Kurven) wurden durch den „log-rank“-Test analysiert. Für den Vergleich von Proliferation, konventionellen luc-transgenen T-Zellen, Zytokinen, mittlerer Fluoreszenzintensität (MFI), Photonen/Sekunde, GvHD Histopathologie Scores und Quantitativier Realtime PCR wurde der „two tailed Student’s t“-Test des arithmetischen Mittels verwendet. Ein p-Wert <0.05 wurde als statistisch signifikant angenommen.
4. Ergebnisse

4.1. Freies ATP

4.1.1. Einführung

Um die Rolle purinerger Rezeptoren in Zusammengang mit GvHD zu untersuchen, sollte zunächst festgestellt werden, in welchem Ausmaß der Agonist an diesen Rezeptoren - das Adenosintriphosphat (ATP) - im Setting der Transplantation bzw. der akuten GvHD vorkommt. Extrazelluläres ATP wird von verletzten und nekrotischen Zellen freigesetzt (Di Virgilio 2005; Granstein et al. 2005).

Zunächst wurde Aszites von Patienten gesammelt, die mit einer alloHZT behandelt worden waren und entweder eine GvHD entwickelten oder nicht. Zum Vergleich wurde Aszites von Patienten gesammelt, die keine alloHZT empfangen hatten und deren Aszites anderer Genese war (siehe Tabelle 1-1 bis 1-3 im Anhang für genaue Patientenbeschreibungen).

Abbildung 1a: ATP Spiegel im Aszites

4.1.3. **Tiermodell: Einfluss von Bestrahlung auf ATP-Freisetzung**

Im Mausmodell ist vor der Transplantation von Knochenmark eine induktive myeloablative Bestrahlung nötig, da bei einem intakten Empfängerimmunsystem die transplantierten Zellen abgestoßen werden und ein Anwachsen des allogen Knochenmarks nicht möglich ist (Peffault de Latour et al. 2008). Es ist bekannt, dass ionisierende Strahlen zu DNA-Schäden führen. Da Zellen in der Ruhephase (G0-Phase) wesentlich weniger vulnerabel auf Strahlung reagieren als z.B. beim Übergang der G1 zur S-Phase (Johnson et al. 2010), sind insbesondere Gewebe mit schnell sich teilenden Zellen von Strahlenschäden betroffen. Dies sind in erster Linie die hämatopoetischen Zellen des Knochenmarks, aber auch die sich ständig regenerierenden Epithelien des Gastrointestinaltraktes (Ong et al. 2010). Deshalb stand die Hypothese im Raum, dass es bei dem verwendeten Mausmodell bereits durch die induktive Bestrahlung noch vor alloHZT und GvHD zur Freisetzung von ATP aus geschädigten Zellen des Gastrointestinaltraktes kommen könnte.

Im zur Überprüfung dieser Hypothese durchgeführten Versuch (Abbildung 1b) wurden in der peritonealen Spüllüssigkeit von bestrahlten Mäusen (Gruppenbezeichnung GKB +) tatsächlich signifikant höhere ATP-Spiegel nachgewiesen als bei unbehandelten Tieren (GKB -).

![Abbildung 1b: ATP-Spiegel in peritonealer Spüllüssigkeit bei Zustand nach Bestrahlung](image)

4.1.4. **Tiermodell: Freies ATP nach allogener Stammzelltransplantation**

Um die Lokalisation von freiem ATP nach alloHZT nachverfolgen zu können, wurden PME Zellen mit einer membranständigen Luziferase Mäusen in die Schwanzvene injiziert. Diese Zellen verteilen sich im ganzen Körper und senden nach Luziferingabe Photonen aus. Die hierfür nötige Oxidierung von Luziferin benötigt
Ergebnisse

Abbildung 1c: Lokalisation von freiem ATP nach Knochenmarktransplantation

Ergebnisse

Abbildung 1d: Quantifizierung der Photonen
Bei jedem Imaging wurden die Photonen quantitativ erfasst und die Kurvenverläufe für die verschiedenen Gruppen erstellt. Mit * sind signifikante Unterschiede zwischen den Kurven KM (nur Knochenmarkgabe) und KM+TZ (Knochenmark und T-Zellgabe) bezeichnet, die einen p-Wert <0,05 haben.

Abbildung 1e: Ex vivo Imaging der Gastrointestinalregion zur Detektion von freiem ATP
4.2. Einfluss von unspezifischer P2X-Rezeptor-Blockade auf GvHD im Tiermodell

4.2.1. Einführung

Mit PPADS steht ein Reagenz zur Verfügung, mit dem die Rezeptorfamilie P2X breit blockiert werden kann (Lambrecht et al. 1992). Um den Einfluss dieser Blockade auf das Überleben und den Schweregrad der GvHD zu untersuchen, wurden Mäuse nach zwei vorbeschriebenen (Zeiser et al. 2006) Modellen transplantiert. Die Gruppenbezeichnungen in diesem Kapitel bedeuten:

<table>
<thead>
<tr>
<th>KM</th>
<th>Tiere wurden bestrahlt und Knochenmark injiziert, ohne die bei Mäusen zur Induktion einer GvHD zusätzlich nötigen CD4+ T-Zellen.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS</td>
<td>Tiere wurden bestrahlt, Knochenmark und T-Zellen zur GvHD-Induktion injiziert und anschließend über 10 Tage jeweils 100 µl PBS intraperitoneal appliziert.</td>
</tr>
<tr>
<td>PPADS</td>
<td>Tiere wurden bestrahlt, Knochenmark und T-Zellen zur GvHD-Induktion injiziert und anschließend über 10 Tage 10 µM PPADS in 100 µl PBS intraperitoneal appliziert.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schwarze Linie</th>
</tr>
</thead>
<tbody>
<tr>
<td>KM</td>
</tr>
<tr>
<td>PBS</td>
</tr>
<tr>
<td>PPADS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blaue Linie</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rote Linie</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPADS</td>
</tr>
</tbody>
</table>

4.2.2. Überleben

Bei den zwei untersuchten Transplantationsmodellen handelt es sich jeweils um major-mismatch Kombinationen, weshalb die Allogenität so aggressiv ist, dass zuverlässig eine GvHD induziert werden konnte, die sich klinisch durch Lethargie, Anorexie, Diarrhoe sowie Veränderungen des Fells (Struppigkeit) zeigte.

Bei ausschließlicher Gabe von Knochenmark ohne T-Zellen erkranken die Tiere nicht an einer GvHD, da im Knochenmark von Mäusen nicht genug zytotoxische T-Zellen vorhanden sind (Zeiser et al. 2006). Es überlebten 100%, was anzeigt, dass die Knochenmarktransplantation funktionierte und das Versterben der anderen Tiere tatsächlich an T-Zelleffekten liegt und nicht etwa an einem mangelhaften Anwachsen des Transplantats. Zuvor war mit einzelnen Mäusen bestätigt worden, dass die Bestrahlungsdoxis zur Myeloablation ausreicht: Wenn nach Bestrahlung kein Ersatzknochenmark transplantiert wurde, verstarben diese Tiere innerhalb weniger Tage (Daten nicht gezeigt).

Bei Transplantation von Knochenmark und T-Zellen reduzierte sich die Überlebenszeit deutlich. Mit PBS (als Plazebo) behandelte Tiere starben in beiden Modellen zwischen Tag 6 und Tag 40 an GvHD. Bei intraperitonealer Applikation von PPADS verbesserte sich das Überleben:

Sowohl im Modell A (FVB/N → BALB/c) als auch im Modell B (C57Bl/6 → BALB/c) war der Unterschied im Überleben zwischen den mit PPADS behandelten Tieren (Rote Linie) und den nur mit PBS behandelten (Blaue Linie) Tieren signifikant (p=0,010 im Modell A, p=0,04 im Modell B)
Ergebnisse

Abbildung 2a: Kaplan-Maierkurven des Überlebens nach alloHMT
Mäuse erhielten nach myeloablativer Bestrahlung entweder nur Knochenmark („KM“) oder Knochenmark und T-Zellen zur Induktion einer GvHD. Diesen Mäusen wurde über 10 Tage entweder 10 µM PPADS in 100 µl PBS („PPADS“) oder nur PBS („PBS“) intraperitoneal injiziert. In Klammern ist jeweils die Zahl der entsprechend behandelten Tiere genannt.

Bei Mäusen, bei denen die PPADS-Injektionen erst ab Tag 6 begonnen wurden, konnte die verbesserte Überlebensdauer nicht festgestellt werden, so dass ATP-Effekte offensichtlich vor allem in der frühen Phase der GvHD eine Rolle spielen.

4.2.3. T-Zellproliferation
Um die Proliferation und Lokalisation von T-Zellen nach alloHMT in vivo nachverfolgen zu können, wurden für diese Untersuchungen Wildtyp Knochenmarkzellen (C57Bl/6) auf bestrahlte Empfänger (BALB/c) übertragen und zusätzlich luc-transgene T-Zellen injiziert. So konnte nach dem im Methodenteil beschriebenen Verfahren die Lokalisation und anhand der quantitativen Photonenauwertung auch die Proliferation der T-Zellen bestimmt werden.

Ergebnisse

Abbildung 2b: T-Zellproliferation und Lokalisation nach alloHZT
Mäusen wurde nach Bestrahlung entweder nur Knochenmark („BMT“) verabreicht oder zusätzlich Luziferase-transgene T-Zellen.
Diese T-Zellen waren entweder für 3h mit dem breiten P2X-Rezeptorblocker vorbehandelt worden („Tc PPADS praeincub.“) oder den Empfängermäusen wurde über 10 Tage PPADS (10 µM in 100 µl PBS – „Tc PPADS i.p.“) oder nur 100 µl PBS („Tc PBS“) intraperitoneal injiziert. Biolumineszenz-Imaging erfolgte wie im Methodenteil beschrieben zu verschiedenen Zeitpunkten.

4.2.4. Histopathologische Graduierung der GvHD
Um den Schweregrad der aufgetretenen akuten GvHD einzuschätzen, wurden wie im Methodenteil erläutert Gefrierschnitte von Frau Dr. Gerlach aus dem pathologischen Institut der Universität Freiburg ausgewertet (Abbildung 2c). Aus der Abbildung wird ersichtlich, dass die Blockade von P2X-Rezeptoren mit PPADS gemessen am Entzündungs- und Apoptosegrad eine signifikante Reduktion der akuten GvHD-Aktivität nach sich zieht.
Ergebnisse

Abbildung 2c: Histopathologische Auswertung der akuten GvHD
Die gezeigten Daten sind gepoolt aus drei Experimenten. Es wurde nach dem im Methodenteil beschriebenen Score graduiert.

Links: Grad der Entzündung.
Rechts: Apoptose-Score

Ergebnisse

Abb 2d: Histopathologische Einteilung der chronischen GvHD
Hautbiopsien wurden an Tag 85 nach Transplantation entnommen.

4.3. Einfluss medikamentöser P2XR-Blockade auf alloantigen stimulierter T-Zell-Proliferation, Apoptoserate sowie MCP-1 und IFN-γ-Sekretion in vitro

4.3.1. Einführung
Um die alloantige Situation der major-mismatch-Transplantation in vitro nachzustellen, wurde wie im Methodenteil beschrieben ein Lymphozytenstimulationsmodell (Mixed lymphocyte reaction) benutzt: CD4⁺ Zellen aus Milz von C57Bl/6-Mäusen wurden per MACS angereichert und für 96 Stunden mit BMDZ (Bone marrow derived dendritic cells) von BALB/c-Mäusen als Stimulatorzellen koinkuvertiert. Dabei wurden die Verhältnisse CD4⁺-Responder : BMDZ Stimulatorzellen 1:1 sowie 1:2 benutzt. PPADS wurde in den entsprechenden Gruppen direkt der Kultur beigefügt. Um eine Proliferation der Stimulatorzellen auszuschließen, wurden diese vor Inkubation bestrahlt.

4.3.2. T-Zellproliferation und Apoptose
Ergebnisse

Abbildung 3a: Proliferation und Apoptoseverhalten von T-Zellen nach Stimulation mit BMDZ und PPADS-Blockade

Links: Im Ansatz für die oberen Reihen waren CFSE-gefärbte CD4+-Zellen von C57Bl/6-Mäusen für 96 Stunden mit bestrahlten BMDZ von BALB/c-Mäusen im Verhältnis 1:1 und 1:2 in Kulturmedium inkubiert worden. Unten wurde zusätzlich PPADS (10 µM) zur Blockade der P2X-Rezeptoren in das Kulturmedium gegeben. Die CFSE-Fluoreszenzintensität ist nach rechts aufgetragen, eine hohe Intensität spricht für geringe Proliferation, da in jeder Tochtergeneration ein schwächeres Signal zu erwarten ist.

Rechts: T-Zellen (C57Bl/6) wurden für 96 Stunden mit der gleichen Anzahl bestrahlter Splenozyten von BALB/c-Mäusen inkubiert und anschließend der Anteil apoptotischer Zellen mit Annexin V/PI bestimmt. Als apoptotisch wurden doppelt positive Zellen angesehen.

Um auszuschließen, dass die verminderte Proliferation der T-Zellen durch eine erhöhte Apoptoserate bei PPADS-Exposition verursacht ist, wurden Zellen aus einem ähnlichen Ansatz (T-Zellstimulation mit allogenen Splenozyten) mit einer Annexin-PI-Färbung auf ihr Apoptoseverhalten untersucht. Dabei wurde kein Unterschied zwischen PPADS exponierten und nicht exponierten Zellen gefunden. Somit ist die verminderzte Proliferation nicht auf zytotoxische Effekte durch das PPADS, sondern am ehesten auf anerge Effekte der P2X-Blockade zurückzuführen.

4.3.3. Zytokinspiegel

MCP-1 und IFN-γ sind beide als proinflammatorische Zytokine bekannt: MCP-1 wurde unter anderem als Aktivator der systemischen Entzündung bei alveolärer Hypoxie beschrieben (Chao et al. 2010). Die Rolle von IFN-γ im Rahmen der GvHD und der Überlebensvorteil bei Unterdrückung seiner Ausschüttung ist ebenfalls bekannt (Park et al. 2010).

Der Einfluss von PPADS auf die Konzentration dieser beiden Zytokine ist daher von großem Interesse. Für die Messung wurde ein Lymphozytenstimulationsmodell wie oben beschrieben genutzt und nach 48 Stunden die Zytokinspiegel im Überstand gemessen. Für beide Zytokine fanden sich unter Blockade der P2X-Rezeptoren mit PPADS signifikant niedrigere Konzentrationen.

Abbildung 3b: Einfluss von PPADS auf die Zytokinproduktion

Es wurden CD4+-Zellen für 48 Stunden mit bestrahlten BMDZ in reinem Kulturmedium oder Medium plus PPADS inkubiert. Die Zytokinspiegel für MCP-1 (links) und IFN-γ (rechts) im Überstand wurden anschließend mit dem Mouse inflammation kit (siehe Methoden) gemessen und in pg/ml aufgetragen.
4.4 Einfluss der P2X-Blockade auf den Graft-versus-Tumor Effekt im Mausmodell

4.4.1. Einführung

4.4.2. Proliferation bzw. Abstoßung von Tumorzellen

Für die Bestimmung der Proliferation wurden Mäusen nach Bestrahlung und Knochenmarktransplantation A20 luc⁺ B-Zell-Lymphomzellen injiziert und zu verschiedenen Zeitpunkten die Lokalisation und Proliferation der Lymphomzellen per BLI bestimmt. Hierbei zeigt sich wie erwartet, dass das Lymphom in Mäusen ohne zusätzliche T-Zellgabe („KM + A20“) insbesondere im Bereich der zervikalen und inguinalen Lymphknoten anwächst und es zu einer Progredienz der Signalintensität (entsprechend der Proliferation) kommt (Abbildung 4a, 4b).

Abbildung 4a: Einfluss von P2X-Rezeptorblockade auf Graft-versus-Tumor-Effekt

Es wurde wie im Methodenteil beschrieben eine Knochenmarktransplantation vorgenommen (C57Bl/6 → BALB/c). An Tag 0 nach Bestrahlung wurden 5 x 10⁵ A20 luc⁺ Lymphomzellen und Knochenmarkzellen i.v. injiziert. In einer Gruppe („KM + A20“) wurden keine zusätzlichen T-Zellen gegeben, während in den beiden anderen Gruppen zusätzliche T-Zellen (3 x 10⁵) an Tag 3 gegeben und die Mäuse entweder über 10 Tage mit PBS („TZ + PBS“) oder PPADS („TZ + PPADS“) i.p. behandelt wurden. Die repräsentative BLI an Tag 7 und Tag 14 zeigt das Tumorwachstum.

Bei zusätzlicher T-Zellgabe („TZ + PBS“) sieht man an Tag 7 zunächst ein Anwachsen des Lymphoms, welches an Tag 12 optisch nicht mehr detektierbar ist (Abb. 4a), d.h. es kommt zu einer Abstoßung des Tumors. Den gleichen Verlauf sieht man bei zusätzlicher Behandlung mit PPADS i.p. über 10 Tage (TZ + PPADS). Bei alleiniger T-Zellgabe (mittlere Spalte) erscheint das Fell an Tag 14 allerdings deutlich
Ergebnisse

struppiger als bei der PPADS-Maus, ein Hinweis auf den schlechten Zustand der Maus durch die beginnende GvHD.

Abbildung 4b: Einfluss von PPADS auf GvT-Effekt

4.4.3. Überleben
Beim Überleben der Mäuse in den unterschiedlichen Gruppen sieht man, dass Mäuse nach

Abbildung 4c: Überleben mit A20-Lymphomzellen
Knochenmarktransplantation und A20-Gabe schnell versterben (Abb. 4c, schwarze Kurve). Bei zusätzlicher Gabe von T-Zellen (blaue Kurve) gelingt die Tumorabstoßung (siehe oben, Abb. 4a+b), allerdings starben die Tiere ebenfalls rasch mit klinischen Zeichen einer akuten GvHD (Lethargie, struppiges Fell, Durchfall). In der Gruppe der mit PPADS behandelten Tiere (rote Kurve) überlebt ein großer Teil der Mäuse länger, verglichen mit der Tc + PBS-Gruppe ist die Verlängerung mit einem p-Wert von 0.024 signifikant.

Als Kontrolle, ob die Knochenmarktransplantation funktioniert, wurden zusätzlich Mäuse bestrahlt und nur mit MHC differenten Knochenmark transplantiert. Diese Tiere überleben alle (grüne Kurve).

4.5. Einfluss von aGvHD auf die Expression von P2X7R auf RNA- und Proteinebene

4.5.1. Einführung

Insbesondere von dem P2X7-Rezeptor ist bekannt, dass seine Aktivierung mit ATP zur Ausschüttung von proinflammatorischen Zytokinen führt (Ferrari et al. 2006; Lister et al. 2007) und Mäuse mit einer genetischen Defizienz für diesen Receptor (Knockout-Mäuse) eine veränderte Zytokinproduktion haben (Solle et al. 2001). Deshalb sollten nach den oben vorgestellten Versuchen zur breiten Blockade der P2X-Rezeptorfamilie mit PPADS nun gezielt die Auswirkungen einer selektiven Blockade des P2X7-Receptors untersucht werden.

4.5.2. Expression des P2X7-Rezeptors (murin)

In Abbildung 5a ist gezeigt, dass die RNA-Menge für den P2X7-Rezeptor in den untersuchten Homogenisaten aus Tieren mit aGvHD (KM + TZ) jeweils deutlich höher ist als in Tieren nach Knochenmarktransplantation ohne T-Zellgabe (KM). Bei komplett unbehandelten Tieren (Unbehandelt) sind die RNA-Mengen etwa gleich hoch wie in der Knochenmarkgruppe. Dies trifft nicht für den Thymus zu, wo die RNA-Menge bei unbehandelten Tieren signifikant niedriger ist als bei den Tieren, die eine Knochenmarktransplantation erhalten hatten.
Ergebnisse

Abbildung 5a: Einfluss von aGvHD auf die Expression von P2X-R-RNA

Abbildung 5b: Immunhistochemischer Nachweis von P2X-R-Protein
4.5.3. Expression des P2X7-Rezeptors (human)

Abbildung 5c: Expression von P2XR-RNA in humanen Zellen

4.6. Einfluss von P2X7-Defizienz bzw. –Blockade auf GvHD

4.6.1. Einführung

4.6.2. Überleben

In Abbildung 6a wird ersichtlich, dass P2X7-Defizienz auf Empfängerseite im Vergleich zu Wildtyp-Empfängern zu einem signifikant verlängertem Überleben führt (p-Wert = 0,032). Ebenso verlängert sich das Überleben bei medikamentöser Blockade des P2X7-R (p-Wert = 0,024). P2X7-Defizienz in den Spender T-Zellen führt hingegen zu einem schnelleren Versterben der Tiere.
Abbildung 6a: Einfluss von P2X7-Defizienz bzw. Blockade auf das Überleben nach alloHZT

4.6.3. Histopathologische Graduierung der GvHD

Abbildung 6b: Histopathologischer Schweregrad der GvHD bei Wildtyp- und P2X7-defizienten Empfängern
5. Diskussion

5.1. ATP als danger signal

Bours et al. 2006 konnte dokumentiert werden, dass purinerge Signale, insbesondere vermittelt durch ATP und sein Abbauprodukt Adenosin, eine Vielzahl von immunstimulierenden und –regulatorischen Effekten hervorrufen können. Hanley et al. 2004 beschrieben die verstärkte Produktion des proinflammatorischen Zytokins IL-6 durch Makrophagen bei erhöhten extrazellulären Konzentrationen von ATP.

Es ist bekannt, dass für die Entwicklung der GvHD im Darm pathogenetisch vorrangig lymphatisches Gewebe verantwortlich ist (Anderson et al. 2008; Hill und Ferrara 2000). Hierbei spielt unter anderem die Interaktion von aktivierten APZ und Spender T-Zellen eine Rolle. Räumlich gesehen scheint die ATP-Freisetzung genau in dieser Mikroumgebung stattzufinden, was als weiterer Hinweis auf die Wichtigkeit von ATP für diese Vorgänge gewertet werden kann.

Die erhöhten ATP-Spiegel wurden in zwei verschiedenen GvHD Mausmodellen gefunden und waren somit nicht modellabhängig.
Diskussion

5.2. Blockade von P2-Rezeptoren

5.2.1. Rolle von purinergen Rezeptoren

5.2.2. In vivo:

5.2.3. In vitro
In vitro bestätigte sich der negative Einfluss von PPADS auf die T-Zellproliferation. Dass hierbei das PPADS nicht durch eine rein toxische Wirkung T-Zellen vernichtet, konnte durch die konstant niedrige Apoptoserate bewiesen werden, die sich von der Rate bei unbehandelten T-Zellen nicht unterscheidet.

48
5.3. Graft-versus-Tumor-Effekt

Bei der Auswertung der Überlebenskurven dieser Gruppen fällt auf, dass Tiere der Gruppe mit Knochenmark und A20-Lymphomzellen rasch versterben, offensichtlich an dem ständig weiterwachsenden Tumor. Die Tiere mit zusätzlicher T-Zellgabe und PBS-Behandlung stoßen den Tumor zwar ab (siehe BLI), sterben aber dennoch früh mit Zeichen der akuten GvHD. Tiere mit PPADS-Behandlung stoßen den Tumor ab und leben länger, da sie wie oben beschrieben vor der akuten GvHD geschützt sind.

Die Erklärung für die intakte Tumorabstoßung bei reduzierter GvHD-Aktivität könnte in der unterschiedlichen Expression von purinergen Rezeptoren auf verschiedenen Zellen liegen. Auf den für die zytotoxische Tumorabstoßung wichtigen CD8⁺ Zellen ist zumindest der P2X7-Rezeptor nur marginal exprimiert (Heiss et al. 2008), so dass ATP bei ihrer Aktivierung für den GvT-Effekt vermutlich keine Rolle spielt.

5.4. Rolle des P2Xγ-Rezeptors

Der P2Xγ-Rezeptor ist im Zusammenhang mit Entzündungsgeschehen besonders interessant, da seine Aktivierung zur erhöhten Produktion proinflammatorischer Zytokine wie TNF-α, IFN-γ sowie IL-1 führt (Bulanova et al. 2009), wobei diese auch bei der Entwicklung einer GvHD beteiligt sind (Arnold et al. 2002; Hill et al. 1999; Wang et al. 2009).

Zunächst ist dieser Rezeptor auf Zellen von verschiedenen GvHD Zielorganen exprimiert, was sowohl auf RNA- als auch auf Proteinebene in Mäusen und auf humanen PBMZ nachgeprüft wurde. Zudem führt eine GvHD nach alloHZT zu einer erhöhten Expression, was darauf hindeutet, dass die Expression bei GvHD hochreguliert wird und somit die durch diesen Rezeptor vermittelten Effekte verstärkt werden.

Deshalb bot er sich an für in vivo-Untersuchungen mit P2Xγ-R-defizienten Mäusen bzw. medikamentöser Blockade des Rezeptors mit Kn-62.

Bei verschiedenen Transplantationskombinationen fand sich ein Überlebensvorteil sowie ein niedrigerer histopathologischer GvHD-Grad in Leber, Dünndarm und Kolon bei P2Xγ-R-defizienten Empfängern bzw. selektiver medikamentöser Blockade des Rezeptors im Vergleich zu Wildtypempfängern.

In Makrophagen stellt die Aktivierung von P2Xγ-Rezeptoren ein Ko-Signal für die Aktivierung des Inflammasoms dar und ist ein essentieller Mediator für den Synergismus zwischen ATP und TLR-Liganden bei der Maturation und Freisetzung von bioaktiven Zytokinen (Chen und Brosnan 2006; Kanneganti et al. 2007).

Klinische Daten einer eingeschränkten Zahl von Patienten mit einem Polymorphismus des P2Xγ-R-Gens (A1513C) zeigten einen Zusammenhang mit dem Auftreten von Infektionen und reduziertem Überleben nach alloHZT (Lee et al. 2007), was für einen Einfluss des P2Xγ-R auf den Transplantationserfolg spricht.

Zusätzlich zu den hier erhobenen und interpretierten Daten sind folgende Fragen zu klären: Ist der P2Xγ-Rezeptor für alle oben gezeigte vielversprechenden Effekte der breiten P2-Rezeptorblockade verantwortlich, oder ist ein Zusammenspiel verschiedener purinerger Rezeptoren dafür ursächlich? Für
Diskussion

5.5. Zusammenfassung und Ausblick

6. Anhang

6.1. Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>aGvHD</td>
<td>Akute Graft-versus-host disease</td>
</tr>
<tr>
<td>alloHZT</td>
<td>Allogene hämatopoetische Stammzelltransplantation</td>
</tr>
<tr>
<td>APZ</td>
<td>Antigen-präsentierende Zellen</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosin-Triphosphat</td>
</tr>
<tr>
<td>BD</td>
<td>Becton Dickinson</td>
</tr>
<tr>
<td>BLI</td>
<td>Biolumineszenz-Imaging</td>
</tr>
<tr>
<td>BMDZ</td>
<td>Bone marrow derived dendritic cells = Dendritische Zellen des Knochenmarks</td>
</tr>
<tr>
<td>CD</td>
<td>Cluster of differentiation</td>
</tr>
<tr>
<td>DZ</td>
<td>Dendritische Zellen</td>
</tr>
<tr>
<td>FACS</td>
<td>Fluorescence activated cell sorting = Durchflusszytometrie</td>
</tr>
<tr>
<td>GKB</td>
<td>Ganzkörperbestrahlung</td>
</tr>
<tr>
<td>GvL</td>
<td>Graft-versus-Leukämie</td>
</tr>
<tr>
<td>GvT</td>
<td>Graft-versus-Tumor</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>KM</td>
<td>Knochenmark</td>
</tr>
<tr>
<td>MACS</td>
<td>Magnetische Zellseparation</td>
</tr>
<tr>
<td>MFI</td>
<td>Mittlere Fluoreszenzintensität</td>
</tr>
<tr>
<td>PBMZ</td>
<td>Periphere mononukleäre Blutzellen</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate-buffered saline</td>
</tr>
<tr>
<td>SIRS</td>
<td>Systemic inflammatory response syndrome</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumornekrosefaktor</td>
</tr>
</tbody>
</table>
6.2. Patientencharakteristika Abbildung 1a

6.2.1. Gruppe A Patienten ohne alloHZT

<table>
<thead>
<tr>
<th>PIN</th>
<th>Krankheit</th>
<th>Grund für Aszites</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>MM, Nieren- und Leberinsuffizienz</td>
<td>Nephrotisches Syndrom mit Hypoproteinämie</td>
</tr>
<tr>
<td>A2</td>
<td>Leberzirrhose (alkoholisch)</td>
<td>HA</td>
</tr>
<tr>
<td>A3</td>
<td>Dekompensierte Herzinsuffizienz</td>
<td>Flüssigkeitsretention</td>
</tr>
<tr>
<td>A4</td>
<td>Leberzirrhose, Hepatitis B</td>
<td>HA</td>
</tr>
<tr>
<td>A5</td>
<td>Leberzirrhose (alkoholisch)</td>
<td>HA</td>
</tr>
<tr>
<td>A6</td>
<td>Leberzirrhose (alkoholisch)</td>
<td>HA</td>
</tr>
<tr>
<td>A7</td>
<td>Peritonealkarzinose bei CUP (carcinoma of unknown primary)</td>
<td>Irritation der Peritonealhöhle durch maligne Zellen</td>
</tr>
<tr>
<td>A8</td>
<td>Leberzirrhose (alkoholisch)</td>
<td>HA</td>
</tr>
<tr>
<td>A9</td>
<td>Nierenversagen</td>
<td>Nephrotisches Syndrom mit Hypoproteinämie</td>
</tr>
<tr>
<td>A10</td>
<td>Nierenversagen</td>
<td>Nephrotisches Syndrom mit Hypoproteinämie</td>
</tr>
<tr>
<td>A11</td>
<td>Leberzirrhose (alkoholisch)</td>
<td>HA</td>
</tr>
<tr>
<td>A12</td>
<td>Malinger Aszites (Pankreas-Karzinom)</td>
<td>Irritation der Peritonealhöhle durch maligne Zellen</td>
</tr>
<tr>
<td>A13</td>
<td>Leberzirrhose (alkoholisch), Dekompensierte Herzinsuffizienz</td>
<td>HA, Flüssigkeitsretention</td>
</tr>
<tr>
<td>A14</td>
<td>Leberzirrhose (alkoholisch)</td>
<td>HA</td>
</tr>
<tr>
<td>A15</td>
<td>Leberzirrhose (alkoholisch)</td>
<td>HA</td>
</tr>
<tr>
<td>A16</td>
<td>Leberzirrhose (alkoholisch)</td>
<td>HA</td>
</tr>
<tr>
<td>A17</td>
<td>Hepatozelluläres Karzinom, Leberzirrhose</td>
<td>HA</td>
</tr>
</tbody>
</table>
6.2.2. Gruppe B Patienten mit Aszites nach alloHZT ohne akute GvHD

<table>
<thead>
<tr>
<th>PIN</th>
<th>Krankheit</th>
<th>Tag nach alloHZT</th>
<th>Spender</th>
<th>Grund für Aszites</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>AML</td>
<td>34</td>
<td>MUD</td>
<td>HA</td>
</tr>
<tr>
<td>B2</td>
<td>MM</td>
<td>94</td>
<td>Sib</td>
<td>HA</td>
</tr>
<tr>
<td>B3</td>
<td>T-PLL</td>
<td>13</td>
<td>MUD</td>
<td>HA</td>
</tr>
</tbody>
</table>

6.2.3. Gruppe C Patienten mit Aszites nach alloHZT und Entwicklung einer akuten GvHD

<table>
<thead>
<tr>
<th>PIN</th>
<th>Krankheit</th>
<th>Tag nach allo-HCT</th>
<th>Spender</th>
<th>GvHD-Lokus</th>
<th>GvHD-Grad</th>
<th>Grund für Aszites</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>ABL</td>
<td>61</td>
<td>MUD</td>
<td>Darm</td>
<td>4</td>
<td>HA</td>
</tr>
<tr>
<td>C2</td>
<td>AML</td>
<td>73</td>
<td>MUD</td>
<td>Darm</td>
<td>4</td>
<td>HA</td>
</tr>
<tr>
<td>C3</td>
<td>MDS</td>
<td>147</td>
<td>Sib</td>
<td>Darm</td>
<td>3-4</td>
<td>Nephrotisches Syndrom</td>
</tr>
<tr>
<td>C4</td>
<td>SAA</td>
<td>87</td>
<td>MUD</td>
<td>Darm</td>
<td>4</td>
<td>HA</td>
</tr>
<tr>
<td>C5</td>
<td>AML</td>
<td>157</td>
<td>Sib</td>
<td>Darm</td>
<td>3-4</td>
<td>HA</td>
</tr>
<tr>
<td>C6</td>
<td>T PLL</td>
<td>532</td>
<td>MUD</td>
<td>Leber, Darm</td>
<td>3</td>
<td>HA</td>
</tr>
</tbody>
</table>

Tabelle 1-1

Abkürzungen: PIN= Patienten-Identifikationsnummer, Sib= sibling donor, MUD= matched unrelated donor, alloHZT= allogene hämatopoetische Stammzelltransplantation, AML= Akute myeloische Leukämie, MM= Multiples Myelom, T-PLL= T Prolymphozytenleukämie, ABL= akute biphenotypische Leukämie, MDS= Myelodysplastisches Syndrom, SAA= Schwere (severe) Aplastische Anämie, HA= Hypoalbuminämie
6.3. Patientencharakteristika Abbildung 6c

6.3.1. Patienten mit alloHKT ohne GvHD

<table>
<thead>
<tr>
<th>PIN</th>
<th>Krankheit</th>
<th>Tag nach alloHKT</th>
<th>Spender</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>AML</td>
<td>196</td>
<td>MUD</td>
</tr>
<tr>
<td>D2</td>
<td>ALL</td>
<td>19</td>
<td>MUD</td>
</tr>
<tr>
<td>D3</td>
<td>ALL</td>
<td>24</td>
<td>Sib</td>
</tr>
<tr>
<td>D4</td>
<td>B-NHL</td>
<td>35</td>
<td>MUD</td>
</tr>
<tr>
<td>D5</td>
<td>AML</td>
<td>19</td>
<td>Sib</td>
</tr>
<tr>
<td>D6</td>
<td>T-NHL</td>
<td>20</td>
<td>MUD</td>
</tr>
<tr>
<td>D7</td>
<td>MM</td>
<td>22</td>
<td>Sib</td>
</tr>
<tr>
<td>D8</td>
<td>AML</td>
<td>86</td>
<td>MUD</td>
</tr>
<tr>
<td>D9</td>
<td>AML</td>
<td>41</td>
<td>Sib</td>
</tr>
<tr>
<td>D10</td>
<td>B-NHL</td>
<td>47</td>
<td>MUD</td>
</tr>
<tr>
<td>D11</td>
<td>AML</td>
<td>27</td>
<td>Sib</td>
</tr>
<tr>
<td>D12</td>
<td>AML</td>
<td>48</td>
<td>MUD</td>
</tr>
<tr>
<td>D13</td>
<td>ALL</td>
<td>36</td>
<td>MUD</td>
</tr>
<tr>
<td>D14</td>
<td>AML</td>
<td>52</td>
<td>MUD</td>
</tr>
</tbody>
</table>

Tabelle 2-1

6.3.2. Patienten mit alloHKT und GvHD

<table>
<thead>
<tr>
<th>PIN</th>
<th>Krankheit</th>
<th>Tag nach alloHKT</th>
<th>Spender</th>
<th>GvHD-Lokus</th>
<th>GVHD-Grad</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>AML</td>
<td>157</td>
<td>Sib</td>
<td>Darm</td>
<td>3-4</td>
</tr>
<tr>
<td>E2</td>
<td>CML</td>
<td>55</td>
<td>Sib</td>
<td>Darm</td>
<td>4</td>
</tr>
<tr>
<td>PIN</td>
<td>Abkürzungen</td>
<td>86</td>
<td>MUD</td>
<td>Leber</td>
<td>3</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>----</td>
<td>-----</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>E3</td>
<td>B-NHL</td>
<td>86</td>
<td>MUD</td>
<td>Leber</td>
<td>3</td>
</tr>
<tr>
<td>E4</td>
<td>CML</td>
<td>104</td>
<td>Sib</td>
<td>Darm, Haut, Augen</td>
<td>3-4</td>
</tr>
<tr>
<td>E5</td>
<td>MDS</td>
<td>27</td>
<td>MUD</td>
<td>Haut</td>
<td>2-3</td>
</tr>
<tr>
<td>E6</td>
<td>AML</td>
<td>42</td>
<td>MUD</td>
<td>Darm</td>
<td>3</td>
</tr>
<tr>
<td>E7</td>
<td>MDS</td>
<td>153</td>
<td>Sib</td>
<td>Darm</td>
<td>3-4</td>
</tr>
</tbody>
</table>

Tabelle 2-2

Abkürzungen: PIN = Patienten-Identifikationsnummer, Sib = sibling donor, MUD = matched unrelated donor, alloHZT = allogene hämatopoetische Stammzelltransplantation, AML = Akute myeloische Leukämie, MM = Multiples Myelom, T-PLL = T Prolymphozytenleukämie, ABL = akute biphenotypische Leukämie, MDS = Myelodysplastisches Syndrom, SAA = Schwere (Severe) Aplastische Anämie, ALL = Akute lymphoblastische Leukämie, B-NHL=B Non-Hodgkin Lymphom, T-NHL=T Non-Hodgkin Lymphom, CML = chronische myeloische Leukämie
6.4. Abbildungsverzeichnis

Abbildung 1a: ATP Spiegel im Aszites S. 33
Abbildung 1b: ATP-Spiegel in peritonealer Spülfüssigkeit bei Zustand nach Bestrahlung S. 34
Abbildung 1c: Lokalisation von freiem ATP nach Knochenmarktransplantation S. 35
Abbildung 1d: Quantifizierung der Photonen S. 36
Abbildung 1e: Ex vivo Imaging der Gastrointestinalregion zur Detektion von freiem ATP S. 36
Abbildung 2a: Kaplan-Maierkurven des Überlebens nach alloHZT S. 38
Abbildung 2b: T-Zellproliferation und Lokalisation nach alloHZT S. 39
Abbildung 2c: Histopathologische Auswertung der akuten GvHD S. 40
Abbildung 2d: Histopathologische Einteilung der chronischen GvHD S. 41
Abbildung 3a: Proliferation und Apoptoseverhalten von T-Zellen nach Stimulation mit BMDZ und PPADS-Blockade S. 42
Abbildung 3b: Einfluss von PPADS auf die Zytokinproduktion S. 42
Abbildung 4a: Einfluss von P2X-Rezeptorblockade auf Graft-versus-Tumor-Effekt S. 43
Abbildung 4b: Einfluss von PPADS auf GvT-Effekt S. 44
Abbildung 4c: Überleben mit A20-Lymphomzellen S. 44
Abbildung 5a: Einfluss von aGvHD auf die Expression von P2X7-R-RNA S. 46
Abbildung 5b: Immunhistochemischer Nachweis von P2X7-R-Protein S. 46
Abbildung 5c: Expression von P2X7-R-RNA in humanen Zellen S. 47
Abbildung 6a: Einfluss von P2X7-Defizienz bzw. -Blockade auf das Überleben nach alloHZT S. 48
Abbildung 6b: Histopathologischer Schweregrad der GvHD bei Wildtyp- und P2X7-defizienten Empfängern S. 48
7. Literaturverzeichnis

High sensitivity of intestinal CD8+ T cells to nucleotides indicates P2X7 as a regulator for intestinal T cell responses.

Literaturverzeichnis

Danksagung

An dieser Stelle bedanke ich mich recht herzlich bei den folgenden Personen, die für das Gelingen dieser Arbeit unersetzlich waren.

An erster Stelle bedanke ich mich bei Herrn PD Dr. Robert Zeiser aus der Medizinischen Klinik I der Universität Freiburg für die interessante Aufgabenstellung und die stets exzellente Betreuung. Es hat mich gefreut, Robert, mit Dir zusammen zu arbeiten. Du hast großen Anteil am Erwachen meines wissenschaftlichen Ehrgeizes und wirst mir in dieser Hinsicht ein Vorbild bleiben. Insbesondere bedanke ich mich auch für die über diese Doktorarbeit hinausgehende menschliche und berufliche Beratung und Förderung.

Frau PD Dr. S. Laßmann aus dem Institut für Pathologie der Universitätsklinik Freiburg danke ich für die Zweitkorrektur der Arbeit.

Ebenfalls bedanke ich mich bei Herrn PD Dr. Marco Idzko aus der Medizinischen Klinik, Abteilung Pneumologie der Universität Freiburg für die Bereitstellung der P2X₇-KO-Mäuse sowie der Expertise über purinerge Rezeptoren, der stets weiterführenden Diskussion der Ergebnisse und die gute wissenschaftliche Zusammenarbeit. Seinen Mitarbeitern Herrn Dr. Tobias Müller und Frau Melanie Grimm gilt mein Dank für die ATP-Messungen sowie die PCR-Messungen der Expression purinriger Rezeptoren.

Für die pathologische Auswertung der Gefrierschnitte gebührt mein Dank Frau Dr. Ulrike Gerlach aus dem pathologischen Institut der Universitätsklinik Freiburg.

Herr Prof. Dr. J. Finke aus der Medizinischen Klinik I stand als kompetenter Ratgeber zur Seite und ich bedanke mich an dieser Stelle für die geduldige Diskussion der Ergebnisse in den gemeinsamen Laborbesprechungen. Ich freue mich, dass ich diese Doktorarbeit in der Medizinischen Klinik I von Herrn Prof. Dr. R. Mertelsmann schreiben konnte.

Ich danke der gesamten AG Zeiser sowie den Mitarbeitern des Labors Nothnagel für die immer hilfsbereite Unterstützung und Hilfe bei der technischen Durchführung der Experimente. Insbesondere möchte ich hier Herrn Dipl.-Biologen Christoph Dürr und Frau Sophie Krüger nennen, die mir als absolutem Laborneuling geduldig Fragen beantworteten und ohne deren Hilfe und Rat vieles so nicht möglich gewesen wäre. Ich freue mich, dass das Projekt nach meinem Ausscheiden von Frau Jayanthi Ganesan weitergeführt wurde und so eine Publikation möglich wurde.

Vielen Dank meiner ganzen Familie für das Ermöglichen des Medizinstudiums und für die Unterstützung.
Curriculum vitae

Diese persönlichen Angaben sind nicht Bestandteil der Onlineversion dieser Dissertation.