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Abstract

This thesis can essentially be split up into two parts.
The theoretical part (Chapters 1 and 2) is devoted to a thorough study

of uni- and multivariate generalized hyperbolic (GH) distributions which are
defined as normal mean-variance mixtures with generalized inverse Gaussian
(GIG) mixing distributions. We provide moment formulas and analyze the tail
behaviour of the distribution functions and their convolutions, including all
possible limit distributions which are derived in detail. Univariate GH and GIG
distributions are shown to belong to the class of (extended) generalized Γ-
convolutions which allows an explicit derivation of their Lévy–Khintchine rep-
resentation and the construction of weakly convergent approximation schemes
for the associated Lévy processes. From the formulas of the Lévy measure of
multivariate GH distributions we conclude that, in contrast to the univariate
case, not all of them are selfdecomposable. Moreover, we take a closer look at
their dependence structure and show that they are either tail independent or
completely dependent.

In the applied part (Chapter 3) we give a detailed introduction to synthetic
CDOs and discuss the deficiencies of the normal factor model which is used
as a market standard to price the latter. We demonstrate how these can be
remedied by implementing more flexible and advanced factor distributions. Ex-
tended models using GH distributions provide an excellent fit to market data,
but remain numerically tractable as the calibration examples to DJ iTraxx Eu-
rope spread quotes show. We also discuss further possible applications of the
developed algorithms.
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Chapter 1

Univariate GH distributions
and their limits

In continuous time finance prices S = (St)t≥0 of risky assets are often modeled
by exponential processes of the form

St = S0e
Lt

where L = (Lt)t≥0 is a Lévy process. This approach is based on the assumption
that log returns from price series which are recorded along equidistant time
grids are independent and identically distributed random variables. The model
is completely specified by L(L1), the distribution of the Lévy process at time 1.
It is a crucial property of this model that the log returns ln(St) − ln(St−1) =
Lt − Lt−1 are independent and, because of the stationarity of L, also L(L1)-
distributed. Thus if L(L1) is the (infinitely divisible) distribution derived from
fitting data—say daily closing prices—the log returns from the model should
have almost exactly the distribution which one sees in the data. The goodness
of fit of theoretical to empirical densities shows if the model is able to reproduce
the observed market movements reasonably well. In the classical case, the so-
called geometric Brownian motion, the Lévy process is

Lt = σBt +

(
µ− σ2

2

)
t, µ ∈ R, σ > 0, (1.1)

where (Bt)t≥0 denotes a standard Brownian motion, µ is a drift and σ a volatility
parameter. In this case the distribution of daily log returns is a normal one.

This model has become the standard in financial mathematics, although its
deficiencies are widely known. Comparing empirical densities with normal ones
exhibits substantial deviations between them. Empirical densities are typically
leptokurtic, that is, they have more mass around the origin and in the tails,
but less in the flanks, and in addition they are often skewed. It is therefore a
natural task to look for alternative classes of infinitely divisible distributions
which provide a better fit to market data and induce a Lévy process L such that
the model above admits more realistic log return distributions. We just name a
few references from the large amount of literature on this line of research here, a
more comprehensive overview can be obtained in the books of Schoutens (2003)
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and Cont and Tankov (2004). One of the first to investigate the deviations from
normality was Mandelbrot (1963). He suggested to replace the Brownian motion
by a symmetric α-stable Lévy process. Other proposals include the Student’s
t-distribution (Blattberg and Gonedes 1974), the Variance Gamma distribution
(Madan and Seneta 1990; Madan, Carr, and Chang 1998), the Normal Inverse
Gaussian distribution (Barndorff-Nielsen 1998; Barndorff-Nielsen and Prause
2001) and the CGMY distribution (Carr, Geman, Madan, and Yor 2002).

Most of the above mentioned distributions are, as we shall see in the follow-
ing sections, either special subclasses or limiting cases of the class of generalized
hyperbolic distributions which allows an almost perfect fit to financial data. The
hyperbolic subclass was the first to be introduced to finance as a more realistic
model for stock returns in Eberlein and Keller (1995) and Eberlein, Keller, and
Prause (1998). The general case was considered in Eberlein (2001), Eberlein
and Prause (2002) and Eberlein and Özkan (2003). Generalized hyperbolic dis-
tributions have further been successfully applied to interest rate theory where
they allow for a very accurate pricing of caplets and other derivatives, see for
example Eberlein and Raible (1999), Eberlein and Kluge (2006) and Eberlein
and Kluge (2007), and on currency market data (Eberlein and Koval 2006). In
Chapter 3 it will be shown that generalized hyperbolic distributions also enable
significant improvements in credit portfolio modeling and CDO pricing. But
first we want to provide a thorough investigation of this distribution class itself
and give detailed proofs for some of its most useful and interesting properties.

The present chapter is devoted to the study of univariate generalized hy-
perbolic distributions. Section 1.1 contains some technical preliminaries and
inroduces the concept of normal mean-variance mixtures. In Section 1.2 we
take a closer look at a special class of mixture distributions, the generalized
inverse Gaussian distributions, which lead to the class of generalized hyperbolic
distributions. After presenting some basic facts of the latter in Section 1.3, we
derive all possible limit distributions in Section 1.4. Section 1.5 gives a short
introduction to the class of extended generalized Γ-convolutions. In Section 1.6
we show that this class contains both the generalized inverse Gaussian and
the generalized hyperbolic distributions as subclasses which allows an explicit
derivation of their Lévy–Khintchine representations. Moreover, this result en-
tails the possibility to approximate these distributions and the corresponding
Lévy processes by sums of suitably scaled and shifted Gamma variables which
is discussed in Section 1.7. Greater parts of this chapter are based on Eberlein
and v. Hammerstein (2004) where many of the results can also be found.

1.1 Infinitely divisible distributions and
normal mean-variance mixtures

We want to provide some basic definitions and facts which will be referred to
in later sections and start with

Definition 1.1 A probability measure µ on (R,B) is infinitely divisible if for
any integer n ≥ 1 there exists a probability measure µn on (R,B) such that µ
equals the n-fold convolution of µn, that is, µ = µn ∗ · · · ∗ µn =: ∗ni=1 µn.
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The characteristic function φµ(u) :=
∫
R
eiuxµ(dx) of every infinitely divisible

distribution µ can be repesented in a very special form, the Lévy–Khintchine
formula:

φµ(u) = exp

(
iub− 1

2
cu2 +

∫
R

(
eiux − 1− iux1[−1,1](x)

)
ν(dx)

)
.

In this representation, the coefficients b ∈ R, c ≥ 0 and the Lévy measure ν(dx)
which satisfies ν({0}) = 0 and

∫
R

(x2∧1) ν(dx) <∞ are unique (see for example
Sato 1999, Theorem 8.1) and completely characterize µ.

Definition 1.2 Assume a filtered probability space (Ω,F , (Ft)t≥0, P ) with in-
creasing filtration to be given. An adapted process L = (Lt)t≥0, with values in
R and L0 = 0 almost surely, is a Lévy process if the following conditions hold:

1. L has independent increments, that is, Lt − Ls is independent of Fs,
0 ≤ s < t <∞.

2. L has stationary increments, that is, Lt−Ls has the same distribution as
Lt−s, 0 ≤ s < t <∞.

3. L is continuous in probability, that is, lims→t P (|Ls − Lt| > ε) = 0.

The stationarity and independence of the increments Lt − Ls imply that the
distribution L(Lt) is infinitely divisible for all t ∈ R+, and its characteris-
tic function φLt fulfills φLt(u) = φL1(u)t. Conversely, every infinitely divisible
distribution µ induces a Lévy process L via φLt(u) = φµ(u)t (Sato 1999, Theo-
rem 7.10).

An important subclass of infinitely divisible distributions are the selfdecom-
posable distributions (also called (Lévy’s) class L) which are defined as follows:

Definition 1.3 A probability measure µ on (R,B) is called selfdecomposable
if for every 0 < s < 1 there is a probability measure µs on (R,B) such that

φµ(u) = φµ(su)φµs(u).

Equivalently, a real valued random variable X is said to have a selfdecomposable
distribution if for every 0 < s < 1 there exists a real valued random variable
X(s) independent of X such that

X
d
= sX +X(s),

where
d
= means equality in distribution.

The selfdecomposable distributions are uniquely characterized by the following
lemma which can be found in Sato (1999, Corollary 15.11).

Lemma 1.4 A probability measure µ on (R,B) is selfdecomposable if and only

if it is infinitely divisible and has a Lévy measure of the form ν(dx) = k(x)
|x| dx

where k(x) is non-decreasing on (−∞, 0) and non-increasing on (0,∞).

In particular, the Lévy measure of every selfdecomposable distribution possesses
a Lebesgue density that is strictly increasing on R− and strictly decreasing on
R+. The properties of this subclass are very useful in financial modeling; a
discussion of the implications on option pricing can be found in Carr, Geman,
Madan, and Yor (2007).
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Figure 1.1: Discrete normal mixture of four equally weighted normal densities

As already mentioned in the introduction, realistic models for return distri-
butions should also allow for skewness and kurtosis. For a distribution F having
a finite fourth moment, the skewness γ1(F ) and the excess kurtosis γ2(F ) are

defined as follows: γ1(F ) := m3m
−3/2
2 and γ2(F ) := m4m

−2
2 − 3, where mk de-

notes the kth central moment of F . For every normal distribution N(µ, σ2) one
has γ1(N(µ, σ2)) = 0 = γ2(N(µ, σ2)). Although normal distributions are nei-
ther skewed nor leptokurtic themselves, it is, however, fairly easy to construct
new distributions from them which do have these properties: one just has to pass
from single distributions to mixtures. In the simplest case, a normal mixture
is a weighted average of several normal distributions with different means and
variances which has the density fmix(x) =

∑n
i=1 aidN(µi,σ2

i )(x) where ai ≥ 0,∑n
i=1 ai = 1 and dN(µ,σ2) denotes the density of N(µ, σ2). Figure 1.1 shows an

example where four normal densities are mixed with equal weights ai = 0.25.
Apparently, the obtained mixture density fmix (in black) is skewed and has
positive kurtosis. Some simple calculations yield that for the above choice of
parameters we have γ1(Fmix) = 0.543 and γ2(Fmix) = 0.522. This concept can
be formalized by

Definition 1.5 A real valued random variable X is said to have a normal
mean-variance mixture distribution if

X
d
= µ+ βZ +

√
ZW,

where µ, β ∈ R, W ∼ N(0, 1) and Z ∼ G is a real-valued, non-negative random
variable which is independent of W .
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Equivalently, a probability measure F on (R,B) is said to be a normal mean-
variance mixture if

F (dx) =

∫
R+

N(µ+ βy, y)(dx)G(dy),

where the mixing distribution G is a probability measure on (R+,B+).
We shall use the short hand notation F = N(µ+ βy, y) ◦G. If G is a class of
mixing distributions, then N(µ+βy, y)◦G := {N(µ+βy, y)◦G |G ∈ G, µ ∈ R}.

Remark: Sometimes random variables with normal mean-variance mixture dis-
tributions are defined more generally by X

d
= m(Z) +

√
ZW with an arbitrary

measurable function m : R+ → R (see for example McNeil, Frey, and Embrechts
2005, Definition 3.11), but for most purposes the above setting m(z) = µ+βz is
completely sufficient. If β = 0, one obtains the so-called normal variance mix-
tures which are obviously symmetric around µ and therefore have no skewness.

Also note that the mixture distribution F in general does not possess a
Lebesgue density. If for example G = Pois(λ) with λ ∈ R+, then F ({µ}) =
e−λ > 0. Necessary conditions that ensure the existence of a density of F are
that the mixing distribution G either possesses a density itself or has an at most
countable support which is bounded away from 0.

The most important facts about normal mean-variance mixtures are summa-
rized in the following lemma. It especially shows that properties like stability
under convolutions, infinite divisibility and selfdecomposability are inherited
from the mixing distributions.

Lemma 1.6 Let G be a class of probability distributions on (R+,B+) and
G,G1, G2 ∈ G.

a) If G possesses a moment generating function MG(u) =
∫
R+

euxG(dx) on

some open interval (a, b) with a < 0 < b, then F = N(µ+ βy, y) ◦G also

possesses a moment generating function and MF (u) = eµuMG(u
2

2 + βu),

a < u2

2 + βu < b.

b) If G = G1 ∗G2 ∈ G, then
(
N(µ1 + βy, y) ◦G1

)
∗
(
N(µ2 + βy, y) ◦G2

)
=

N(µ1 + µ2 + βy, y) ◦G ∈ N(µ+ βy, y) ◦G.

c) If G is infinitely divisible, then so is N(µ+ βy, y) ◦G.

d) If G is selfdecomposable, then so is N(µ+ βy, y) ◦G.

Proof: a) Since the moment generating function of a normal distribution

N(µ, σ2) is given by MN(µ,σ2)(u) = e
σ2u2

2
+µu, we get with the help of Fubini’s

theorem

MF (u) =

∫
R

eux
∫
R+

N(µ+ βy, y)(dx)G(dy) =

∫
R+

G(dy)

∫
R

euxN(µ+ βy, y)(dx)

=

∫
R+

eµu e(u
2

2
+βu)y G(dy) = eµuMG

(
u2

2 + βu
)
.
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b) Since G1, G2 are measures on (R+,B+), their Laplace transforms LGi(u) =∫
R+

e−uxGi(dx) are well defined for u ∈ R+ and can be extended to complex

arguments z ∈ C with Re(z) ≥ 0 because
∫
R+
|e−zx|Gi(dx) = LGi(Re(z)) <∞.

From Doetsch (1950, p. 123, Satz 3) we have LG1∗G2(z) = LG1(z)LG2(z) (see
also Raible (2000, Theorem B.2)). Similar to a) we obtain for the characteristic
function of F := N(µ+ βy, y) ◦G:

φF (u) =

∫
R

eiuxF (dx) =

∫
R

eiux
∫
R+

N(µ+ βy, y)(dx)G(dy)

=

∫
R+

G(dy)

∫
R

eiuxN(µ+ βy, y)(dx) =

∫
R+

eiuµ e−
(
u2

2
−iuβ

)
y G(dy)

= eiuµ LG
(
u2

2 − iuβ
)
.

Now if F = N(µ1 + µ2 + βy, y) ◦ G, Fi := N(µi + βy, y) ◦ Gi, i = 1, 2, and
G1 ∗G2 = G, then

φF1(u)φF2(u) = eiuµ1 LG1

(
u2

2 − iuβ
)
eiuµ2 LG2

(
u2

2 − iuβ
)

= eiu(µ1+µ2)LG
(
u2

2 − iuβ
)

= φF (u)

which proves F1 ∗ F2 = F .

c) If G is infinitely divisible, then by Definition 1.1 for every n ≥ 1 there exists
a probability measure Gn on (R+,B+) (which not necessarily is an element of
G itself) such that G = ∗ni=1Gn. Analogously to part b) it follows

N(µ+ βy, y) ◦G = ∗ni=1

(
N
(µ
n + βy, y

)
◦Gn

)
,

hence again by Definition 1.1 also N(µ+ βy, y) ◦G is infinitely divisible.

d) Here we give a short proof for the special case that F = N(µ, y) ◦ G is a
normal variance mixture, using the idea of Halgreen (1979). The general result
was established in Sato (2001, Theorem 1.1).
Because probability measures on (R+,B+) are uniquely determined by their
Laplace transforms (see for example Feller 1971, Chapter XIII.1, Theorem 1),
we may rewrite the first part of Definition 1.3 for G in the following way: For
every 0 < s < 1 we have LG(u) = LG(su)LGs(u), where Gs is some probability
measure on (R+,B+), too. If 0 < s < 1, then also 0 < s2 < 1, so it follows from
the proof of part b) that

φF (u)

φF (su)
= eiµ(1−s)u LG

(
u2

2

)
LG
(
s2u2

2

) = eiµ(1−s)u LGs2
(
u2

2

)
= φFs(u)

where Fs := N((1− s)µ, y) ◦Gs2 is a probability measure on (R,B), hence F is
selfdecomposable by Definition 1.3. �

Lemma 1.7 Let (µn)n≥1 and (βn)n≥1 be convergent sequences of real numbers
with finite limits µ, β < ∞, and (Gn)n≥1 be a sequence of mixing distributions

with Gn
w−→ G. Then N(µn + βny, y) ◦Gn

w−→ N(µ+ βy, y) ◦G.
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Proof: Let Fn := N(µn + βny, y) ◦Gn and F := N(µ+ βy, y) ◦G. According
to the proof of part b) of the previous lemma we have to show that for an
arbitrarily fixed u ∈ R

φFn(u) = eiuµn LGn
(
u2

2 − iuβn
)
−→
n→∞

eiuµ LG
(
u2

2 − iuβ
)

= φF (u).

Because eiuµn → eiuµ holds trivially, it suffices to prove convergence of the above
Laplace transforms. From Doetsch (1950, pp. 71/72 and 156) it follows that the
Laplace transform LH(z) of every finite measure H on (R+,B+) is holomor-
phic on the open complex half-plane Co+ := {z ∈ C |Re(z) > 0}, and the weak
convergence of the sequence (Gn)n≥1 implies LGn(v)→ LG(v) pointwise for all
v ∈ R+. Moreover, |LGn(z)| ≤ LGn

(
Re(z)

)
≤ 1. In particular (LGn)n≥1 is a

locally bounded sequence of holomorphic functions on Co+ which converges on a
subset that has an accumulation point in Co+. Thus by Jänich (1996, Korollar on
p. 96) the sequence converges uniformly on every compact subset of Co+. Since

βn → β <∞ by assumption, {u2

2 − iuβn |n ∈ N}∪{
u2

2 − iuβ} is a compact sub-

set of Co+ (remember u is fixed), hence we have LGn
(
u2

2 −iuβn
)
→ LG

(
u2

2 −iuβ
)

which completes the proof. �

As pointed out before, the Lévy processes induced by infinitely divisible
normal mean-variance mixtures provide a natural and more realistic general-
ization of the classical model (1.1). The next proposition shows that they can
be represented as subordinated Brownian motions where the subordinator is
generated by the mixing distribution.

Proposition 1.8 Let F = N(µ+βy, y)◦G be a normal mean-variance mixture
with infinitely divisible mixing distribution G and (Xt)t≥0, (τ(t))t≥0 be two Lévy
processes with L(X1) = F and L(τ(1)) = G. Then (Yt)t≥0, defined by

Yt := µt+ βτ(t) +Bτ(t),

where (Bt)t≥0 is a standard Brownian motion independent of (τ(t))t≥0, is a
Lévy process that is identical in law to (Xt)t≥0.

Proof: First observe that the process (τ(t))t≥0 is increasing because the fact
that L(τ(1)) = G is a measure concentrated on R+ implies that for every t > 0
the same holds for L(τ(t)) (Sato 1999, Theorem 24.11). By stationarity we have
L(τ(t+ ε)− τ(t)) = L(τ(ε)), hence for arbitrary t ≥ 0 and ε > 0 the increment
τ(t+ ε)− τ(t) is almost surely non-negative.

If (Bt)t≥0 is a standard Brownian motion independent of (τ(t))t≥0, then
(βτ(t) + Bτ(t))t≥0 is a Lévy process according to Sato (1999, Theorem 30.1)
and hence so is (Yt)t≥0. The characteristic function of Y1 is given by

φY1(u) = E
[
eiuY1

]
= eiuµ E

[
eiuβτ(1)E[eiuBτ(1) |τ(1)]

]
= eiuµ E

[
e−(u

2

2
−iuβ)τ(1)

]
= eiuµ LG

(
u2

2 − iuβ
)
,

because L(τ(1)) = G. From the proof of Lemma 1.6 b) we know that φY1(u) =
φF (u) = φX1(u), so (Xt)t≥0 and (Yt)t≥0 are Lévy processes with L(X1) = L(Y1).
The assertion now follows from Sato (1999, Theorem 7.10 (iii)). �
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Remark: By Jacod and Shiryaev (2003, Corollary VII.3.6) a sequence of Lévy
processes (Xn

t )t≥0 converges in law to a Lévy process (Xt)t≥0 if and only

if Xn
1

L−→ X1. Combining Lemma 1.7 and Proposition 1.8 we see that if
(τn(t))t≥0 are Lévy processes with L(τn(1)) = Gn, then the sequence (Y n

t )t≥0

with Y n
t := µnt+ βnτn(t) +Bτn(t) converges in law to the process (Yt)t≥0.

This can easily be extended to general subordinated Lévy processes; a cor-
responding result can be found in Küchler and Tappe (2008, Lemma 3.2).
The proof given there is similar to ours of Lemma 1.7, but—in our opinion—
incomplete since they just claim the uniform convergence of the Laplace trans-
forms would hold and could be proven analogously to Lévy’s continuity theorem.
They do not seem to be aware that this line of argumentation only yields uni-
form convergence on compact subsets of R, whereas in the present case the
domain of the Laplace transforms is C+, and the extension of the well-known
convergence result to complex arguments requires a more precise justification.

Comparing the Lévy processes (Yt)t≥0 defined in the proposition above and
(Lt)t≥0 from (1.1) one might also conclude that more realistic models emerge
from the classical one via suitable time changes t  τ(t). This new time τ(t)
is often called operational or business time and can be regarded as a measure
of economic activity. Since the latter is obviously not evolving uniformly, the
introduction of a “random clock” seems to be quite natural also from this
perspective. An extensive discussion on this topic can be found in Geman,
Madan, and Yor (2001).

1.2 Generalized inverse Gaussian distributions

In this section we are concerned with a special class of mixing distributions:
the generalized inverse Gaussian distributions (henceforth GIG). This class was
introduced more than 50 years ago (one of the first papers where its densities
are mentioned is Good (1953)) and rediscovered by Sichel (1973, 1974) and
Barndorff-Nielsen (1977). An extensive survey with statistical applications can
be found in Jørgensen (1982). The density of a GIG distribution is as follows:

dGIG(λ,δ,γ)(x) =
(γ
δ

)λ 1

2Kλ(δγ)
xλ−1e−

1
2(δ2x−1+γ2x) 1(0,∞)(x), (1.2)

where Kλ(x) denotes the modified Bessel function of third kind with index λ
(see Appendix A for further details). Permitted parameters are

δ ≥ 0, γ > 0, if λ > 0,
δ > 0, γ > 0, if λ = 0,
δ > 0, γ ≥ 0, if λ < 0.

Parametrizations with δ = 0 or γ = 0 have to be understood as limiting cases.
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Figure 1.2: Densities of various GIG distributions

By equation (A.8) we have

(γ
δ

)λ 1

2Kλ(δγ)
−→



(
γ2

2

)λ
1

Γ(λ)
, λ > 0, δ → 0,

0, λ > 0, γ → 0,

0, λ < 0, δ → 0,(
2

δ2

)λ 1

Γ(−λ)
, λ < 0, γ → 0,

hence in the second and third case one obtains no probability density in the
limit. (Here and in the following Γ(x) denotes the Gamma function.) In the two
other cases the limits are given by

dGIG(λ,0,γ)(x) =

(
γ2

2

)λ
xλ−1

Γ(λ)
e−

γ2

2
x 1(0,∞)(x), λ > 0, (1.3)

dGIG(λ,δ,0)(x) =

(
2

δ2

)λ xλ−1

Γ(−λ)
e−

δ2

2x 1(0,∞)(x), λ < 0, (1.4)

which are the densities of a Gamma distribution G
(
λ,γ

2

2

)
and an inverse Gamma

distribution iG
(
λ, δ

2

2

)
, respectively. The blue and red densities in Figure 1.2

show an example of each case.
If λ = 0, then equation (A.9) implies(γ

δ

)λ 1

2Kλ(δγ)
=

1

2K0(δγ)
∼ 1

−2 ln(δγ)
→ 0 if δγ → 0,
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therefore aGIG(0, δ, γ)-distribution does not converge weakly if δ → 0 or γ → 0.
If λ = −1

2 , we get with the help of (A.7)

dGIG(− 1
2
,δ,γ)(x) =

γ√
2πx3

e−
1
2x

(δ+γx)2
1(0,∞)(x),

which equals the density of an inverse Gaussian distribution IG(δ, γ), so the
GIG distributions are in fact a natural extension of this subclass.

Proposition 1.9 The Laplace transforms of GIG distributions are given by

LGIG(λ,δ,γ)(u) =

(
γ√

γ2 + 2u

)λ
Kλ

(
δ
√
γ2 + 2u

)
Kλ(δγ)

, δ, γ > 0,

LGIG(λ,0,γ)(u) =

(
1 +

2u

γ2

)−λ
, λ > 0,

LGIG(λ,δ,0)(u) =

(
2

δ
√

2u

)λ 2Kλ

(
δ
√

2u
)

Γ(−λ)
, λ < 0.

Proof: Let n1(λ, δ, γ) :=
(γ
δ

)λ 1
2Kλ(δγ) denote the norming constant of the GIG

density, then

LGIG(λ,δ,γ)(u) =

∫ ∞
0

n1(λ, δ, γ) e−uxxλ−1e−
1
2(δ2x−1+γ2x) dx

=

∫ ∞
0

n1(λ, δ, γ)xλ−1e−
1
2(δ2x−1+(γ2+2u)x) dx

=
n1(λ, δ, γ)

n1

(
λ, δ,

√
γ2 + 2u

) =

(
γ√

γ2 + 2u

)λ
Kλ

(
δ
√
γ2 + 2u

)
Kλ(δγ)

.

Similarly, we get with n2

(
λ, γ

2

2

)
:=
(γ2

2

)λ
Γ(λ)−1

LGIG(λ,0,γ)(u) =
n2

(
λ, γ

2

2

)
n2

(
λ, γ

2

2 + u
) =

(
1 +

2u

γ2

)−λ
.

For the inverse Gamma limit we set n3

(
λ, δ

2

2

)
:=
(

2
δ2

)λ
Γ(−λ)−1 and calculate

LGIG(λ,δ,0)(u) =

∫ ∞
0

n3

(
λ, δ

2

2

)
eux xλ−1 e−

δ2

2x dx

=

∫ ∞
0

n3

(
λ, δ

2

2

)
xλ−1 e−

1
2(δ2x−1+2ux) dx

=
n3

(
λ, δ

2

2

)
n1

(
λ, δ,
√

2u
) =

(
2

δ
√

2u

)λ 2Kλ

(
δ
√

2u
)

Γ(−λ)
.

�
Remark: The proof of Lemma 1.6 b) also implies that the characteristic func-
tions of GIG distributions can be obtained from the above via the relation
φGIG(λ,δ,γ)(u) = LGIG(λ,δ,γ)(−iu).
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Corollary 1.10 Let εa denote the degenerate distribution (or unit mass) lo-
cated at a ∈ R. If δ →∞, γ →∞ and δ

γ → σ ≥ 0, then GIG(λ, δ, γ)
w−→ εσ.

Proof: From equation (A.10) it follows that for δ, γ →∞ we have

LGIG(λ,δ,γ)(u) ∼

(
γ√

γ2 + 2u

)λ√
γ√

γ2 + 2u
eδγ−δγ

√
1+2u/γ2 ∼ eδγ−δγ

√
1+2u/γ2

.

Using the Taylor series expansion
√

1 + 2x = 1 + x+ o(x), x→ 0, we conclude

lim
δ,γ→∞
δ/γ→σ

LGIG(λ,δ,γ)(u) = lim
δ,γ→∞
δ/γ→σ

eδγ−δγ(1+u/γ2) = e−σu = Lεσ(u)

which proves the assertion (see Feller 1971, Chapter XIII.1, Theorem 2). �

Because the densities of all GIG(λ, δ, γ)-distributions with γ > 0 decay at
an exponential rate for x → ∞, they possess moments of arbitrary order, and
the moment generating functions are given by

MGIG(λ,δ,γ)(u) =

∫ ∞
0

eux dGIG(λ,δ,γ)(x) dx = LGIG(λ,δ,γ)(−u), u ∈
(
−∞, γ

2

2

)
.

The rth moments can easily be derived with the same technique and notation
used in the proof of Proposition 1.9. If X ∼ GIG(λ, δ, γ), then

E[Xr] =

∫ ∞
0

n(λ, δ, γ)xrxλ−1e−
1
2(δ2x−1+γ2x) dx =

n(λ, δ, γ)

n(λ+ r, δ, γ)
,

where n(λ, δ, γ) again denotes the norming constant of the corresponding GIG
density. Exploiting this relation we get the following expressions:

E[Xr] =
Kλ+r(δγ)

Kλ(δγ)

(
δ

γ

)r
, if λ ∈ R, δ, γ > 0,

E[Xr] =


Γ(λ+ r)

Γ(λ)

(
2

γ2

)r
, if r > −λ

∞, if r ≤ −λ
and λ, γ > 0, δ = 0,

E[Xr] =


Γ(−λ− r)

Γ(−λ)

(
δ2

2

)r
, if r < −λ

∞, if r ≥ −λ
and λ < 0, δ > 0, γ = 0.

We close this section with an examination of convolution formulas for GIG
distributions which by Lemma 1.6 b) transfer to the corresponding normal
mean-variance mixtures derived from them.

Proposition 1.11 Within the class of GIG distributions the following convo-
lution properties hold:

a) GIG
(
−1

2 , δ1, γ
)
∗GIG

(
−1

2 , δ2, γ
)

= GIG
(
−1

2 , δ1 + δ2, γ
)
,

b) GIG
(
−1

2 , δ1, γ
)
∗GIG

(
1
2 , δ2, γ

)
= GIG

(
1
2 , δ1 + δ2, γ

)
,

c) GIG(−λ, δ, γ) ∗GIG(λ, 0, γ) = GIG(λ, δ, γ), λ > 0,

d) GIG(λ1, 0, γ) ∗GIG(λ2, 0, γ) = GIG(λ1 + λ2, 0, γ), λ1, λ2 > 0.
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Proof: We use the Laplace transforms derived in Proposition 1.9 and the fact
that LG1(u)LG2(u) = LG(u) implies G1 ∗G2 = G.

a) In case of the inverse Gaussian distribution the Laplace transforms simplify
considerably using equation (A.7):

LGIG(− 1
2
,δ,γ)(u) =

(
γ√

γ2 + 2u

)− 1
2 K− 1

2

(
δ
√
γ2 + 2u

)
K− 1

2
(δγ)

= eδγ−δ
√
γ2+2u.

Thus

LGIG(− 1
2
,δ1,γ)(u)LGIG(− 1

2
,δ2,γ)(u) = eδ1(γ−

√
γ2+2u) eδ2(γ−

√
γ2+2u)

= e(δ1+δ2)(γ−
√
γ2+2u) = LGIG(− 1

2
,δ1+δ2,γ)(u).

b) Again with equation (A.7) it follows

LGIG( 1
2
,δ,γ)(u) =

γ√
γ2 + 2u

eδγ−δ
√
γ2+2u

and hence

LGIG(− 1
2
,δ1,γ)(u)LGIG( 1

2
,δ2,γ)(u) =

γ√
γ2 + 2u

e(δ1+δ2)(γ−
√
γ2+2u)

= LGIG( 1
2
,δ1+δ2,γ)(u).

c) Using K−λ(x) = Kλ(x) (see equation (A.2)) we calculate

LGIG(−λ,δ,γ)(u)LGIG(λ,0,γ)(u) =

=

(
γ√

γ2 + 2u

)−λ
K−λ

(
δ
√
γ2 + 2u

)
K−λ(δγ)

(
1 +

2u

γ2

)−λ

=

(
γ√

γ2 + 2u

γ2 + 2u

γ2

)−λ
Kλ

(
δ
√
γ2 + 2u

)
Kλ(δγ)

=

(
γ√

γ2 + 2u

)λ
Kλ

(
δ
√
γ2 + 2u

)
Kλ(δγ)

= LGIG(λ,δ,γ)(u).

d) It is easily seen from Proposition 1.9 that

LGIG(λ1,0,γ)(u)LGIG(λ2,0,γ)(u) =

(
1 +

2u

γ2

)−(λ1+λ2)

= LGIG(λ1+λ2,0,γ)(u).

�
Remark: The convolution formulas a) and d) of Proposition 1.11 imply the
well-known fact that

IG(δ, γ) = ∗ni=1 IG
(
δ
n , γ

)
and G

(
λ, γ

2

2

)
= ∗ni=1G

(
λ
n ,

γ2

2

)
,

so all inverse Gaussian and Gamma distributions are infinitely divisible accord-
ing to Definition 1.1. But this property is not restricted to these two subclasses.
Actually every GIG distribution is not only infinitely divisible, but even selfde-
composable. This was shown in Barndorff-Nielsen and Halgreen (1977) and
Halgreen (1979) and also follows from Propositions 1.20 and 1.23 later on.
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1.3 Generalized hyperbolic distributions

Generalized hyperbolic distributions (henceforth GH) have been introduced in
Barndorff-Nielsen (1977) in connection with the modeling of aeolian sand de-
posits and dune movements. They are defined as a normal mean-variance mix-
ture with a GIG mixing distribution as follows:

GH(λ, α, β, δ, µ) := N(µ+ βy, y) ◦GIG
(
λ, δ,

√
α2 − β2

)
. (1.5)

The parameter restrictions for GIG distributions (see p. 8) immediately imply
that the GH parameters have to fulfill the constraints

λ, µ ∈ R and
δ ≥ 0, 0 ≤ |β| < α, if λ > 0,
δ > 0, 0 ≤ |β| < α, if λ = 0,
δ > 0, 0 ≤ |β| ≤ α, if λ < 0.

As before, parametrizations with δ = 0 and |β| = α have to be understood
as limiting cases which by Lemma 1.7 equal normal mean-variance mixtures
with the corresponding GIG limit distributions. We defer a thorough study
of these limits to the next section and assume in the following, if not stated
otherwise, that δ > 0 and |β| < α. Note that by (1.5) and Lemma 1.6 c) all GH
distributions (and their limits) inherit the property of infinite divisibility from
the GIG distributions. For the Lebesgue densities one obtains

dGH(λ,α,β,δ,µ)(x) =

=

∫ ∞
0

dN(µ+βy,y)(x) d
GIG

(
λ,δ,
√
α2−β2

)(y) dy (1.6)

= a(λ, α, β, δ, µ)
(
δ2 + (x− µ)2

)(λ− 1
2

)/2
Kλ− 1

2

(
α
√
δ2 + (x− µ)2

)
eβ(x−µ)

with the norming constant

a(λ, α, β, δ, µ) =

(
α2 − β2

)λ
2

√
2παλ−

1
2 δλKλ

(
δ
√
α2 − β2

) . (1.7)

(A more detailed derivation will be given in Chapter 2 for the multivariate case.)
A closer look at the densities reveals that the influence of the parameters is as
follows: α determines the shape, β the skewness, µ is a location parameter and δ
serves for scaling. λ characterizes certain subclasses and considerably influences
the size of mass contained in the tails. See also Figure 1.3 for an illustration. α
and β can be replaced by the alternative parameters

ρ :=
β

α
, ζ := δ

√
α2 − β2 or χ := ρξ, ξ :=

1√
1 + ζ

. (1.8)

From Theorem 2.11 c) in Chapter 2 it follows that if X ∼ GH(λ, α, β, δ, µ),
then X̃ = aX + b ∼ GH

(
λ, α|a| ,

β
a , δ|a|, aµ + b), hence for a > 0 the last two

parametrizations are scale- and location-invariant. Moreover, the above men-
tioned parameter restrictions imply 0 ≤ |χ| ≤ ξ ≤ 1, so all possible values for
χ and ξ lie within a triangle with upper corners (−1, 1), (1, 1) and lower corner
(0, 0), the so-called shape triangle.
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Figure 1.3: Influence of the GH parameters β (left) and λ (right), where on
the right hand side log densities are plotted.

Let us mention two important subclasses of GH distributions which will also
be used in the calibration procedures described in Chapter 3. For λ = 1 one
obtains the class of hyperbolic distributions (HYP) whose densities have, com-
bining equations (1.6) and (A.7), a much simpler form:

dHYP(α,β,δ,µ)(x) =

√
α2 − β2

2αδK1

(
δ
√
α2 − β2

) e−α√δ2+(x−µ)2+β(x−µ).

Its name stems from the fact that the exponent −α
√
δ2 + (x− µ)2 + β(x− µ)

describes a scaled and shifted hyperbola, or, in other words, the graphs of the log
densities are hyperbolas with asymptotes having the slopes α+β and −(α−β).
The green log density on the right hand side of Figure 1.3 shows an example
with parameters (α, β, δ, µ) = (10, 0, 1, 0).

Setting λ = −1
2 leads to the subclass of normal inverse Gaussian distri-

butions (NIG). By (1.5) these are the normal mean-variance mixtures arising
from inverse Gaussian mixing distributions which explains their name. Using
again equations (1.6) and (A.7), its densities are given by

dNIG(α,β,δ,µ)(x) =
αδ

π

K1

(
α
√
δ2 + (x− µ)2

)√
δ2 + (x− µ)2

eδ
√
α2−β2+β(x−µ).

Lemma 1.6 b) and Proposition 1.11 imply the following convolution prop-
erties of the GH family:

NIG(α, β, δ1, µ1) ∗NIG(α, β, δ2, µ2) = NIG(α, β, δ1 + δ2, µ1 + µ2),

NIG(α, β, δ1, µ1) ∗GH
(

1
2 , α, β, δ2, µ2

)
= GH

(
1
2 , α, β, δ1 + δ2, µ1 + µ2

)
,

(1.9)
GH(−λ, α, β, δ, µ1) ∗GH(λ, α, β, 0, µ2) = GH(λ, α, β, δ, µ1 + µ2),

GH(λ1, α, β, 0, µ1) ∗GH(λ2, α, β, 0, µ2) = GH(λ1 + λ2, α, β, 0, µ1 + µ2),

where in the last two equations of course λ, λ1, λ2 > 0.

Remark: Inspecting the Laplace transforms of GIG distributions given in
Proposition 1.9 more closely one can deduce that the list of convolution for-
mulas in Proposition 1.11 is complete, that is, no other convolution of two GIG



1.3 Generalized hyperbolic distributions 15

distributions will yield a distribution that itself is contained in the GIG class.
Consequently there do not exist more than the four convolution formulas (1.9)
for the GH family either, and the NIG subclass is, apart from the limiting dis-
tributions with δ = 0, the only one which forms a semigroup under convolution.

From Lemma 1.6 a) and Proposition 1.9 we conclude that all GH distribu-
tions (except for some of their limits) possess a moment generating function of
the following form:

MGH(λ,α,β,δ,µ)(u) = eµuM
GIG(λ,δ,

√
α2−β2)

(
u2

2 + βu
)

= eµu L
GIG(λ,δ,

√
α2−β2)

(
−u2

2 − βu
)

(1.10)

= eµu
(

α2 − β2

α2 − (β + u)2

)λ
2 Kλ

(
δ
√
α2 − (β + u)2

)
Kλ

(
δ
√
α2 − β2

) ,

which is defined for all u ∈ (−α− β, α− β).

Remark: The characteristic functions of GH distributions are easily obtained
via the relation

φGH(λ,α,β,δ,µ)(u) = eiuµ L
GIG(λ,δ,

√
α2−β2)

(
u2

2 − iuβ
)

= MGH(λ,α,β,δ,µ)(iu)

which follows from the proof of Lemma 1.6 b) and equation (1.10) above.

The existence of a moment generating function implies that GH distribu-
tions possess moments of arbitrary order which can be obtained by calculating
the derivatives of MGH(λ,α,β,δ,µ)(u) at u = 0. With the help of equation (A.4)
we get the following expressions for mean and variance:

E[GH(λ, α, β, δ, µ)] = µ +
βδ2

ζ

Kλ+1(ζ)

Kλ(ζ)
,

(1.11)

Var[GH(λ, α, β, δ, µ)] =
δ2

ζ

Kλ+1(ζ)

Kλ(ζ)
+ β2 δ

4

ζ2

(
Kλ+2(ζ)

Kλ(ζ)
−
K2
λ+1(ζ)

K2
λ(ζ)

)
.

Skipping the tedious details of the differentiation, we arrive at the following
formulas for skewness and kurtosis:

γ1(GH) = Var[GH]−
3
2

[
β3δ6

ζ3

(
Kλ+3(ζ)

Kλ(ζ)
− 3Kλ+2(ζ)Kλ+1(ζ)

K2
λ(ζ)

+
2K3

λ+1(ζ)

K3
λ(ζ)

)

+
3βδ4

ζ2

(
Kλ+2(ζ)

Kλ(ζ)
−
K2
λ+1(ζ)

K2
λ(ζ)

)]

γ2(GH) = −3 + Var[GH]−2 ·

·

[
δ8β4

ζ4

(
Kλ+4(ζ)

Kλ(ζ)
− 4Kλ+3(ζ)Kλ+1(ζ)

K2
λ(ζ)

+
6Kλ+2(ζ)K2

λ+1(ζ)

K3
λ(ζ)

−
3K4

λ+1(ζ)

K4
λ(ζ)

)

+
δ6β2

ζ3

(
6Kλ+3(ζ)

Kλ(ζ)
− 12Kλ+2(ζ)Kλ+1(ζ)

K2
λ(ζ)

+
6K3

λ+1(ζ)

K3
λ(ζ)

)
+

3δ4

ζ2

Kλ+2(ζ)

Kλ(ζ)

]
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Figure 1.4: Dependence of kurtosis and skewness on GH parameters α and β.
Left: skewness of NIG(10, β, 0.01, 0). Right: kurtosis of NIG(α, 0, 0.01, 0).

It was already mentioned in Section 1.1 that mixtures of normal distribu-
tions are capable of having non-zero skewness and kurtosis. Figure 1.4 shows
that for GH distributions the range of attainable values of each quantity can
be fairly large. Moreover, it clarifies the role of α as a shape parameter which
considerably influences the kurtosis of a GH distribution.

From the existence of a moment generating function one may also con-
clude that the tails of the GH densities decay at an exponential rate. More
precisely, for |x| → ∞ we have δ2 + (x − µ)2 ∼ x2 and by equation (A.10)
Kλ− 1

2

(
α
√
δ2 + (x− µ)2

)
∼
√

π
2α |x|

−1/2 e−α|x|, consequently

dGH(λ,α,β,δ,µ)(x) ∼ c |x|λ−1 e−α|x|+βx, x→ ±∞, (1.12)

where c =
√

π
2αa(λ, α, β, δ, µ) and a(λ, α, β, δ, µ) is the norming constant from

(1.7). Thus the GH densities have semi-heavy tails in the sense of the following

Definition 1.12 A probability density f with support R has semi-heavy tails
if there exist some constants a1, a2 ∈ R and b1, b2, c1, c2 > 0 such that

f(x) ∼ c1 |x|a1 e−b1|x|, x→ −∞, and f(x) ∼ c2 x
a2 e−b2x, x→ +∞.

Remark: From the above definition it can be easily deduced that every prob-
ability distribution F having a Lebesgue density f with semi-heavy tails also
possesses a moment generating function which is defined at least on the open
interval (−b1, b2). In case of the GH distributions we have a1 = a2 = λ − 1,
b1 = α+ β, b2 = α− β and c1 = c2 = c.

A remarkable and probably surprising property of densities with semi-heavy
tails is that the tail behaviour of the corresponding distribution functions is the
same up to a multiplicative constant, which is shown in the next proposition.

Proposition 1.13 Let f be a probability density with semi-heavy tails char-
acterized by a1, a2, b1, b2, c1, c2, F (x) :=

∫ x
−∞ f(y) dy be the associated distribu-

tion function and F̄ (x) := 1 − F (x). Then f(x) ∼ b1 F (x) as x → −∞ and
f(x) ∼ b2 F̄ (x) as x→ +∞.
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Proof: Let us consider the right tail F̄ (x) first. From the assumptions we get,
using partial integration,

F̄ (x) =

∫ ∞
x
f(y) dy ∼ c2

∫ ∞
x
ya2 e−b2y dy =

c2

b2
xa2 e−b2x+

c2a2

b2

∫ ∞
x
ya2−1 e−b2y dy.

The claim now follows if we can show that
(∫∞
x ya2−1 e−b2y dy

)(
xa2e−b2x

)−1 → 0
as x→∞. But the latter quotient equals

1

x

∫ ∞
x

(y
x

)a2−1
e−b2(y−x) dy =

1

x

∫ ∞
0

(
y + x

x

)a2−1

e−b2y dy

and thus converges to zero as x → ∞ because the existence of an integrable
majorant ensures that the integral on the right hand side remains bounded.
Possible majorants are g(y) = (y + 1)a2−1e−b2y if a2 > 1 and g(y) = e−b2y if
a2 ≤ 1. Using the change of variables z = −y we see that for x→ −∞

F (x) ∼ c1

∫ x

−∞
|y|a1 e−b1|y| dy = c1

∫ ∞
|x|

za1 e−b1z dz,

hence the assertion for the left tail immediately follows from what we have
proven above. �

It seems worthwhile to be noticed that distributions with semi-heavy tails
form a subclass of La,b, the class of distributions with exponential tails with
rates a and b, which we define as follows:

Definition 1.14 A distribution function F is said to have exponential tails
with rates a > 0 and b > 0 (F ∈ La,b) if for all y ∈ R

lim
x→−∞

F (x− y)

F (x)
= e−ay and lim

x→∞

F̄ (x− y)

F̄ (x)
= eby.

Remark: Most definitions of exponential tails only use one index which char-
acterizes the behaviour of the right tail F̄ (x). This is due to the fact that these
arose from extreme value theory or more generally actuarial sciences where one
typically works with probability distributions on R+. The above is a natural
generalization to distributions having support R we are concerned with.

The class La,b is closely related to the class Rp of regularly varying functions
to be introduced in

Definition 1.15 A measurable function g is regularly varying with exponent
p ∈ R (g ∈ Rp) if limt→∞

g(st)
g(t) = sp for all s > 0.

Remark:We have F ∈ La,b iff F (− ln(x)) ∈ R−a and F̄ (ln(x)) ∈ R−b. To see
this, put s = ey and t = e−x, then

e−ay = lim
x→−∞

F (x− y)

F (x)
⇐⇒ s−a = lim

t→∞

F (− ln(t)− ln(s))

F (− ln(t))
= lim

t→∞

F (− ln(st))

F (− ln(t))
,

and the assertion for the right tails follows analogously with s = e−y and t = ex.
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Using Definition 1.12 and Proposition 1.13, it is immediately seen that for a
probability distribution F possessing a density f with semi-heavy tails we have

lim
x→−∞

F (x− y)

F (x)
= lim

x→−∞

f(x− y)

f(x)
= lim

x→−∞

(
|x− y|
|x|

)a1

e−b1(|x−y|−|x|) = e−b1y

and an analogous limit is obtained for the right tails, hence F ∈ Lb1,b2 . For
practical purposes, especially in risk management, also the behaviour of con-
volution tails is of some interest. An easy solution occurs if the factors of the
convolution have semi-heavy tails which decay at different rates: the convolu-
tion tails are determined by the factor with the heavier left (respectively right)
tail. This seems to be a well-known result for distributions on R+ with expo-
nential tails which is stated, for example, in Cline (1986, Lemma 1), but since
we could not find an explicit proof in the literature, we provide one here.

Proposition 1.16 Let F1 ∈ Lb1,b2, F2 ∈ Lb̃1,b̃2
with moment generating func-

tions MF1(u) and MF2(u). If b1 < b̃1 and b2 < b̃2, then F1 ∗ F2 ∈ Lb1,b2 and

lim
x→−∞

(F1 ∗ F2)(x)

F1(x)
= MF2(−b1), lim

x→∞

(F1 ∗ F2)(x)

F̄1(x)
= MF2(b2).

Proof: Suppose X and Y are independent random variables with distribution
functions F1 and F2, respectively. For x ∈ R and s > 1 we have

P (X + Y > x) = P
(
X + Y > x, X ≤ x

s

)
+ P

(
X + Y > x, Y ≤ x− x

s

)
+ P

(
X > x

s

)
P
(
Y > x− x

s

)
.

With the help of Fubini’s theorem, the first summand can be written as

P
(
X + Y > x, X ≤ x

s

)
=

∫ ∞
x

∫ x
s

−∞
dF2(z − y)F1(dy) =

∫ x
s

−∞
F̄2(x− y)F1(dy),

and the second one can be represented analogously, thus

(F1 ∗ F2)(x)

F̄1(x)
=

∫ x
s

−∞

F̄2(x− y)

F̄1(x)
F1(dy) +

∫ x−x
s

−∞

F̄1(x− y)

F̄1(x)
F2(dy)

(1.13)

+
F̄1

(
x
s

)
F̄2

(
x− x

s

)
F̄1(x)

.

Since b2 < b̃2 by assumption, we can find some s > 1 such that b̃2(1− 1
s )− 2

s > b2
which is kept fix for the arguments to come. Observing that F̄2(x − y) is in-
creasing in y, we have∫ x

s

−∞

F̄2(x− y)

F̄1(x)
F1(dy) ≤

∫ x
s

−∞

F̄2

(
x− x

s

)
F̄1(x)

F1(dy) ≤
F̄2

(
x− x

s

)
F̄1(x)

.

From Definition 1.12 and Proposition 1.13 we conclude that for sufficiently large
x0 and x ≥ x0 the inequalities e−(b2+ 1

s
)x ≤ F̄1(x) ≤ e−(b2− 1

s
)x and F̄2(x) ≤

e−(b̃2− 1
s

)x hold. Consequently
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lim
x→∞

∫ x
s

−∞

F̄2(x− y)

F̄1(x)
F1(dy) ≤ lim

x→∞

F̄2

(
x− x

s

)
F̄1(x)

≤ lim
x→∞

e−(b̃2− 1
s

)x(1− 1
s

)+(b2+ 1
s

)x

= lim
x→∞

e
−x
(
b̃2(1− 1

s
)− 2

s
−b2+ 1

s2

)
= 0,

because the term in brackets in the last exponent is positive by the above choice
of s. To determine the limit behaviour of the second and third summand on the
right hand side of (1.13), we first derive an upper bound for F̄1(z)

F̄1(x)
. As pointed

out before, F1 ∈ Lb1,b2 implies that F̄1

(
ln(x)

)
∈ R−b2 . By Bingham, Goldie,

and Teugels (1987, Potter’s Theorem 1.5.6 iii)) there exists some x1 > 1 such

that F̄1(ln(z̄))
F̄1(ln(x̄))

≤ 2
(
z̄
x̄

)−b2− 1
s if x̄, z̄ ≥ x1 and z̄ ≤ x̄. Setting z̄ := ez, x̄ := ex gives

F̄1(z)

F̄1(x)
≤ 2e−(b2+ 1

s
)(z−x) if z, x ≥ ln(x1) and z ≤ x.

Therewith we obtain

lim
x→∞

F̄1

(
x
s

)
F̄1(x)

F̄2

(
x− x

s

)
≤ lim

x→∞
2e−(b2+ 1

s
)(x
s
−x)−(b̃2− 1

s
)(x−x

s
)

= lim
x→∞

2e−(x−x
s

)(b̃2−b2− 2
s

) = 0,

hence by (1.13) we have

lim
x→∞

(F1 ∗ F2)(x)

F̄1(x)
= lim

x→∞

∫ x−x
s

−∞

F̄1(x− y)

F̄1(x)
F2(dy) .

If y ≤ 0, then F̄1(x−y)
F̄1(x)

≤ 1 for all x. If 0 ≤ y ≤ x− x
s , then x

s ≤ x− y ≤ x, and

the above considerations imply

F̄1(x− y)

F̄1(x)
≤ 2e−(b2+ 1

s
)(x−y−x) = 2e(b2+ 1

s
)y if x ≥ s ln(x1).

Since the moment generating function MF2(u) of F2 is defined on (−b̃1, b̃2) and

0 < b2 + 1
s < b̃2, the function e(b2+ 1

s
)y is integrable with respect to F2, and the

dominated convergence theorem yields

lim
x→∞

(F1 ∗ F2)(x)

F̄1(x)
=

∫ +∞

−∞
lim
x→∞

F̄1(x− y)

F̄1(x)
F2(dy) =

∫ +∞

−∞
eb2y F2(dy) = MF2(b2).

Analogously it can be verified that limx→−∞
(F1∗F2)(x)
F1(x) = MF2(−b1), and both

limit equations together entail F1 ∗ F2 ∈ Lb1,b2 which completes the proof. �

Remark: The assumption above that both tails of F1 are heavier than those
of F2 was just made for notational convenience. As it is easily seen, in general
we have F1 ∗F2 = Lb1∧b̃1,b2∧b̃2 , that is, one factor may determine the left tail of
the convolution and the other one the right tail. Embrechts and Goldie (1980,
Theorem 3 b)) have shown that if the right tails of F1 and F2 are both expo-
nential with the same rate a, then the right tail of F1 ∗ F2 is also exponential
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with rate a, so we may conclude that F1 ∗ F2 = Lb1∧b̃1,b2∧b̃2 remains valid if

b1 = b̃1 and/or b2 = b̃2.

Since GH distributions possess densities with semi-heavy tails as pointed
out before, an application of Propositions 1.13 and 1.16 to this class yields

Corollary 1.17 Let F be the distribution function of GH(λ, α, β, δ, µ), then

F (x) ∼
x→−∞

c

α+ β
|x|λ−1 e−α|x|+βx and F̄ (x) ∼

x→∞

c

α− β
xλ−1 e−αx+βx,

where c =
√

π
2α a(λ, α, β, δ, µ) and a(λ, α, β, δ, µ) is given by (1.7).

Moreover, GH(λ1, α1, β1, δ1, µ1) ∗ GH(λ2, α2, β2, δ2, µ2) ∈ Lb1,b2 where b1 =
min(α1 + β1, α2 + β2) and b2 = min(α1 − β1, α2 − β2).

1.4 Limits of generalized hyperbolic distributions

This section is devoted to a thorough study of possible weak limits of GH
distributions. As was already mentioned in the last section, most of them can be
obtained as normal mean-variance mixtures where, according to Lemma 1.7, the
mixing distribution is the corresponding GIG limit. However, in the following we
shall derive the limit distributions by investigating the pointwise convergence
of the GH densities (1.6) instead of calculating lots of mixture integrals for two
reasons: firstly, the latter method is often more lengthy and extensive, and in
addition it can not capture all possible limiting cases.

To determine the limits of GH densities, we will frequently use some asymp-
totic properties of the Bessel functions Kλ which are collected in Appendix A,
so the careful reader is encouraged to take a look out there before continuing
here. As we shall see, some limiting cases occur when one ore more GH param-
eters tend to certain finite values, whereas for other limits some GH parameters
necessarily have to tend to infinity. Because the limit distributions obtained in
the first case are much more interesting and will also be used in Chapter 3 for
CDO pricing, they will be examined first within the next subsection, thereafter
we consider the limits with infinite parameters.

1.4.1 Limits with finite parameters

From the mixture representation (1.5) of GH distributions and the properties
of the GIG distributions described on page 9 one can deduce that limiting cases
with finite parameters can only be obtained if λ > 0, δ = 0 or λ < 0, |β| = α.
Indeed, if λ = 0, then by (A.9) the behaviour of the norming constant (1.7) is

√
α

√
2πKλ

(
δ
√
α2 − β2

) ∼ − √
α

√
2π ln

(
δ
√
α2 − β2

) → 0 if δ → 0 or |β| → α,

consequently no weak limits exist, and we can concentrate on the case λ 6= 0.
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Positive λ

By equation (A.8), the asymptotic behaviour of the norming constant (1.7) for
λ > 0 is given by

a(λ, α, β, δ, µ) ∼ (α2 − β2)λ
√

2π αλ−
1
2 2λ−1Γ(λ)

if δ → 0 or |β| → α,

hence a non-degenerate limit can only be obtained for δ → 0. In this case we
have

√
δ2 + (x− µ)2 → |x− µ|, and inserting into (1.6) yields for x− µ 6= 0

lim
δ→0

dGH(λ,α,β,δ,µ)(x) =
(α2 − β2)λ

√
π (2α)λ−

1
2 Γ(λ)

|x− µ|λ−
1
2 Kλ− 1

2
(α|x− µ|) eβ(x−µ)

(1.14)
=: dV G(λ,α,β,µ)(x)

(if λ > 0.5, convergence also holds for x − µ = 0) which equals the density of
a Variance-Gamma distribution (henceforth VG). This class was introduced in
Madan and Seneta (1990) (symmetric case β = θ = 0) and Madan, Carr, and
Chang (1998) (general case), but with a different parametrization VG(σ, ν, θ, µ̃).
The latter is obtained by

σ2 =
2λ

α2 − β2
, ν =

1

λ
, θ = βσ2 =

2βλ

α2 − β2
, µ̃ = µ.

Variance-Gamma distributions themselves are a subclass of CGMY-distribu-
tions introduced in Carr, Geman, Madan, and Yor (2002) which corresponds
to the setting Y = 0. The other parameters are related as follows:

C =
1

ν
= λ,

G−M
2

=
θ

σ
= β,

G+M

2
=

√
2
ν + θ2

σ2

σ
= α.

If λ = 1 (hyperbolic limiting case), (1.14) simplifies using (A.7) to

dV G(1,α,β,µ)(x) =
α2 − β2

2α
e−α|x−µ|+β(x−µ)

which is the density of a skewed and shifted Laplace distribution.
Now we can reformulate the fourth line of the convolution properties (1.9)

of GH distributions as follows:

V G(λ1, α, β, µ1) ∗ V G(λ2, α, β, µ2) = V G(λ1 + λ2, α, β, µ1 + µ2), (1.15)

and by Lemma 1.7 all VG distributions are normal mean-variance mixtures
with

V G(λ, α, β, µ) = N(µ+ βy, y) ◦G
(
λ, α

2−β2

2

)
.

Lemma 1.6 a) and Proposition 1.9 then imply that all VG distributions possess
a moment generating function of the following form:

MV G(λ,α,β,µ)(u) = eµuL
GIG(λ,0,

√
α2−β2)

(
−u2

2 − βu
)

= eµu
(

α2 − β2

α2 − (β + u)2

)λ
.
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The characteristic functions are easily obtained via the relation φV G(λ,α,β,µ)(u)=
MVG(λ,α,β,µ)(iu) which can be justified analogously as in the GH case. Calcula-
ting the derivatives of MV G(λ,α,β,µ)(u) at u = 0, we get the following expressions
for mean and variance of VG distributions:

E[V G(λ, α, β, µ)] = µ+
2λβ

α2 − β2
,

(1.16)

Var[V G(λ, α, β, µ)] =
2λ

α2 − β2
+

4λβ2

(α2 − β2)2
.

Some more tedious and lengthy calculations yield the following formulas for
skewness and kurtosis:

γ1(V G) =

(
12λβ

(α2 − β2)2
+

16λβ3

(α2 − β2)3

)
·Var[V G]−

3
2

γ2(V G) =
12λ

(α2 − β2)2

(
(4λ+ 8)β4

(α2 − β2)2
+

(4λ+ 8)β2

(α2 − β2)
+ λ+ 1

)
·Var[V G]−2 − 3

Comparing GH and VG densities it is obvious that the latter show an identical
behaviour for large arguments:

dV G(λ,α,β.µ)(x) ∼ c̃ |x|λ−1 e−α|x|+βx, x→ ±∞,

where c̃ = (α2−β2)λ

(2α)λ+ 1
2 Γ(λ)

. Hence also VG distributions possess densities with semi-

heavy tails, and the assertions of Corollary 1.17 remain valid also in the VG
case (only c has to be replaced by c̃).

Negative λ

If δ → 0, then equation (A.8) implies

a(λ, α, β, δ, µ) =
(α2 − β2)

λ
2

√
2π αλ−

1
2 δλKλ

(
δ
√
α2 − β2

) ∼ 2λ+ 1
2 δ−2λ

√
π αλ−

1
2 Γ(−λ)

→ 0

and thus limδ→0 dGH(λ,α,β,δ,µ)(x) = 0 if λ < 0. In the limiting cases where
|β| → α there are two possibilities: |β| = α > 0 or β = α = 0. We investigate
the latter one first.

If α, β → 0, then we conclude from (A.8)

(α2 − β2)
λ
2 Kλ− 1

2

(
α
√
δ2 + (x− µ)2

)
√

2π αλ−
1
2 δλKλ

(
δ
√
α2 − β2

) →
Γ
(
−λ+ 1

2

)(
δ2 + (x− µ)2

)(λ− 1
2

)/2

√
π δ2λ Γ(−λ)

,

hence

lim
α,β→0

dGH(λ,α,β,δ,µ)(x) =
Γ
(
−λ+ 1

2

)
√
π δ2λ Γ(−λ)

(
δ2 + (x− µ)2

)λ− 1
2

(1.17)

=
Γ
(
−λ+ 1

2

)
√
πδ2 Γ(−λ)

(
1 +

(x− µ)2

δ2

)λ− 1
2

=: dt(λ,δ,µ)(x),
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which is the density of a scaled and shifted t distribution with f = −2λ degrees
of freedom (the usual Student’s t-distribution is obtained with δ2 ≡ −2λ). Using
Γ(1) = 1 and Γ

(
1
2

)
=
√
π, (1.17) reduces in the NIG limiting case (λ = −1

2) to

dGH(− 1
2
,0,0,δ,µ)(x) =

δ

π
(
δ2 + (x− µ)2

) ,
the density of a scaled and shifted Cauchy distribution.

Again by Lemma 1.7, all t distributions are normal variance mixtures with

t(λ, δ, µ) = N(µ, y) ◦ iG
(
λ, δ

2

2

)
.

The pointwise convergence of the densities of course implies weak convergence
of the corresponding probability measures and hence convergence of the char-
acteristic functions as well. From equation (1.10), the remark thereafter and
(A.8), the characteristic function of t(λ, δ, µ) is found to be

φt(λ,δ,µ)(u) = lim
α,β→0

eiuµ
(

α2 − β2

α2 − (β + iu)2

)λ
2 Kλ

(
δ
√
α2 − (β + iu)2

)
Kλ

(
δ
√
α2 − β2

)
(1.18)

=

(
2

δ

)λ 2Kλ(δ|u|)
Γ(−λ)|u|λ

eiuµ.

In the NIG limiting case, (1.18) simplifies using (A.7) and Γ(0.5) =
√
π to

φt(−1/2,δ,µ)(u) = eiuµ−δ|u|, the well-known characteristic function of a Cauchy
distribution. Specializing δ2 ≡ −2λ = f we get the characteristic function of a
Student’s t-distribution with f > 0 degrees of freedom:

φt(f,µ)(u) =

(
f

4

) f
4 2Kf/2

(√
f |u|

)
Γ
(f

2

) |u|
f
2 eiuµ.

If f = m is an odd integer, by equation (A.6) this coincides with the formulas
given in Johnson, Kotz, and Balakrishnan (1995, p. 367).

It is immediately seen from (1.17) that the asymptotic behaviour of the
densities is given by dt(λ,δ,µ)(x) ∼ c̄ |x|2λ−1, x → ±∞, consequently rth mo-
ments exist only if r < −2λ = f or, in other words, t distributions only possess
moments of orders smaller than the degrees of freedom. The symmetry of the
densities implies E[t(λ, δ, µ)] = µ if λ < −1

2 , and for λ < −1 the variance can
be calculated as follows:

Var[t(λ, δ, µ)] =

∫ +∞

−∞
(x− µ)2 dt(λ,δ,µ)(x) dx

=

∫ +∞

−∞

(
(x− µ)2 + δ2 − δ2

) Γ
(
−λ+ 1

2

)
√
π δ2λ Γ(−λ)

(
δ2 + (x− µ)2

)λ− 1
2 dx

=

∫ +∞

−∞

Γ
(
−λ+ 1

2

)
√
π δ2λ Γ(−λ)

(
δ2 + (x− µ)2

)λ+ 1
2 dx− δ2

=
Γ
(
−λ+ 1

2

)
√
π δ2λ Γ(−λ)

√
π δ2λ+2 Γ(−λ− 1)

Γ
(
−λ− 1

2

) − δ2

= δ2

(
λ+ 1

2

λ+ 1
− 1

)
=

δ2

−2λ− 2
. (1.19)
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If δ2 = −2λ = f , then the above expression becomes f
f−2 , the familiar formula

for the variance of a Student’s t-distribution with f > 2 degrees of freedom.
For skewness and kurtosis we obtain by similar considerations and calculations

γ1

(
t(λ, δ, µ)

)
= 0, γ2

(
t(λ, δ, µ)

)
= 3

(
λ+ 1

λ+ 2
− 1

)
, λ < −2.

Note that the kurtosis γ2 is always positive and tends to zero if λ→ −∞, reflec-
ting the fact that t distributions become approximately normal if the number
of degrees of freedom is increasing.

The above mentioned asymptotic behaviour of the density dt(λ,δ,µ) implies
dt(λ,δ,µ)(±x) ∈ R2λ−1 and Ft(λ,δ,µ)(−x), F̄t(λ,δ,µ)(x) ∈ R2λ. Applying Bingham,
Goldie, and Omey (2006, Theorem 1.1 and the Theorem on p. 54) we get

Corollary 1.18 Let F1, F2 be the distribution functions of t(λ1, δ1, µ1) and
t(λ2, δ2, µ2) with corresponding densities f1, f2, then

lim
|x|→∞

(f1 ∗ f2)(x)

f1(x) + f2(x)
= 1 and lim

x→−∞

(F1 ∗ F2)(x)

F1(x) + F2(x)
= lim

x→∞

(F1 ∗ F2)(x)

F̄1(x) + F̄2(x)
= 1.

Remark: If λ1 < λ2, then with the notations of the preceeding corollary we
have f1(x) = o

(
f2(x)

)
as |x| → ∞ and F1(x) = o

(
F2(x)

)
, x → −∞, as well as

F̄1(x) = o
(
F̄2(x)

)
, x→∞, consequently

lim
|x|→∞

(f1 ∗ f2)(x)

f2(x)
= 1 and lim

x→−∞

(F1 ∗ F2)(x)

F2(x)
= lim

x→∞

(F1 ∗ F2)(x)

F̄2(x)
= 1

(see also Bingham, Goldie, and Omey 2006, Theorem 2.1). Hence also in this
case the tail behaviour of the convolution and the asymptotic behaviour of the
convolution density is determined by the factor with the heavier tails.

Now suppose that |β| → α > 0, then by equation (A.8) we have

a(λ, α, β, δ, µ) =
(α2 − β2)

λ
2

√
2π αλ−

1
2 δλKλ

(
δ
√
α2 − β2

) → 2λ+ 1
2

√
π αλ−

1
2 δ2λ Γ(−λ)

,

and inserting into (1.6) yields

lim
|β|→α>0

dGH(λ,α,β,δ,µ)(x) =
2λ+ 1

2

√
π αλ−

1
2 δ2λ Γ(−λ)

(
δ2 + (x− µ)2

)(λ− 1
2

)/2 ·
(1.20)

·Kλ− 1
2

(
α
√
δ2 + (x− µ)2

)
e±α(x−µ)

which is the density of a normal mean-variance mixture N(µ±αy, y)◦iG
(
λ, δ

2

2

)
by Lemma 1.7. This was called generalized hyperbolic skew Student t distribution
and applied to financial data in Aas and Haff (2006). Its characteristic function
is obtained similarly as before:

φGH(λ,α,±α,δ,µ)(u) = lim
β→±α

eiuµ
(

α2 − β2

α2 − (β + iu)2

)λ
2 Kλ

(
δ
√
α2 − (β + iu)2

)
Kλ

(
δ
√
α2 − β2

)
=

(
2

δ

)λ 2Kλ

(
δ
√
u2 ∓ 2iuα

)
Γ(−λ)(u2 ∓ 2iuα)

λ
2

eiuµ.
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The tails of the density (1.20) behave completely different for large argu-
ments. If β = α, then by (A.10) the asymptotic behaviour is as follows:

dGH(λ,α,α,δ,µ)(x) ∼ c̃1 |x|λ−1 e−2α|x|, x→ −∞,

dGH(λ,α,α,δ,µ)(x) ∼ c̃2 |x|λ−1, x→ +∞,

and the other way round if β = −α, hence rth moments exist only if r < −λ.
Consider a sequence of random variables Xn ∼ GH(λ, α, βn, δ, µ) with |βn| < α

and βn
n→∞−→ ±α, then (1.20) implies Xn

L−→ X ∼ GH(λ, α,±α, δ, µ) and

hence also Xr
n
L−→ Xr. Further it follows from the convergence of the norming

constants a(λ, α, βn, δ, µ)→ a(λ, α,±α, δ, µ), (1.12) and the above asymptotics
that there exist some constants ĉ, x0 > 0 such that dGH(λ,α,βn,δ,µ)(x) ≤ ĉ |x|λ−1

for all n and |x| > x0, consequently the sequence (Xr
n)n≥1 is uniformly integrable

if r < −λ, and therefore we also have E[Xr
n] → E[Xr]. Expressions for the rth

moments of the limit distributions can thus be obtained by determining the
limits of the corresponding formulas for ordinary GH distributions for |β| → α
and hence ζ = δ

√
α2 − β2 → 0. If λ < −1, then by equations (1.11) and (A.8)

we get

E[GH(λ, α,±α, δ, µ)] =

= lim
β→±α

µ+
βδ2

ζ

Kλ+1(ζ)

Kλ(ζ)
= lim

β→±α
µ+

βδ2

ζ

Γ
(
−(λ+ 1)

)
Γ(−λ)

(
ζ

2

)λ+1−λ

= µ± αδ2

2

Γ
(
−(λ+ 1)

)
Γ(−λ)

= µ∓ αδ2

2(λ+ 1)
.

Similarly, we find for λ < −2

Var[GH(λ, α,±α, δ, µ)] =

= lim
β→±α

[
δ2

ζ

Kλ+1(ζ)

Kλ(ζ)
+ β2 δ

4

ζ2

(
Kλ+2(ζ)

Kλ(ζ)
−
K2
λ+1(ζ)

K2
λ(ζ)

)]

= lim
β→±α

[
δ2

ζ

Γ
(
−(λ+ 1)

)
Γ(−λ)

(
ζ

2

)λ+1−λ
+
β2δ4

ζ2

(
Γ
(
−(λ+ 2)

)
Γ(−λ)

(
ζ

2

)λ+2−λ

−
Γ
(
−(λ+ 1)

)2
Γ(−λ)2

(
ζ

2

)2(λ+1−λ)
)]

=
δ2

−2λ− 2
+

α2δ4

4(λ+ 1)

(
1

(λ+ 2)
− 1

(λ+ 1)

)
,

which is strictly greater than Var[t(λ, δ, µ)], but converges to the latter if α→ 0.
Some analogous, but longer calculations yield the following formulas for skew-
ness and kurtosis:

γ1

(
GH(λ, α,±α, δ, µ)

)
= v−

3
2

(
∓ α3δ6

4(λ+ 3)(λ+ 2)(λ+ 1)3
∓ 3αδ4

4(λ+ 2)(λ+ 1)2

)
,

γ2

(
GH(λ, α,±α, δ, µ)

)
=

(
δ8α4(3λ− 15)

16(λ+ 4)(λ+ 3)(λ+ 2)(λ+ 1)3
+

3δ4

4(λ+ 2)(λ+ 1)

+
3δ6α2(λ− 1)

4(λ+ 3)(λ+ 2)(λ+ 1)3

)
v−2 − 3,
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where v = Var[GH(λ, α,±α, δ, µ)] and λ < −4. From the asymptotic behaviour
of the densities we conclude that GH(λ, α,±α, δ, µ)-distributions possess one
semi-heavy and one regularly varying tail, so the tail behaviour of their convo-
lutions can be determined by combining Corollaries 1.17 and 1.18.

1.4.2 Limits with infinite parameters

Now we turn to the limiting cases arising if α, β or δ tend to infinity. As we
shall see, at most two of the three parameters can do so, whereas the third one
necessarily has to remain finite to obtain a well-defined weak limit. We first
consider the case where α, β →∞. More precisely we assume

β = α− η2

2
, α→∞, δ → 0, αδ2 → ψ2, and η, ψ > 0.

By equation (A.10), for sufficiently large α we have

(δ2 + (x− µ)2)(λ− 1
2

)/2

√
2π αλ−

1
2 δλ

Kλ− 1
2

(
α
√
δ2 + (x− µ)2

)
∼ (δ2 + (x− µ)2)

λ−1
2

2αλ δλ eα
√
δ2+(x−µ)2

,

and the above assumptions on the parameters imply
√
δ2 + (x− µ)2 → |x−µ|,

α
λ
2 δλ → ψλ, δ

√
α2 − β2 → ηψ and

(α2 − β2)
λ
2

α
λ
2

=

(
α2 −

(
α− η2

2

)2)λ2
α
λ
2

=

(
η2 − η4

4α

)λ
2

→ ηλ.

Collecting these results we find

dGH(λ,α,β,δ,µ)(x) =

=
(α2 − β2)

λ
2

α
λ
2

(δ2 + (x− µ)2)(λ− 1
2

)/2

√
2π α

λ−1
2 δλKλ

(
δ
√
α2 − β2

) Kλ− 1
2

(
α
√
δ2 + (x− µ)2

)
eβ(x−µ)

∼
(
η

ψ

)λ |x− µ|λ−1

2Kλ(ηψ)
eβ(x−µ)−α

√
δ2+(x−µ)2

.

Comparing the last expression with the GIG densities (1.2) the conjecture of
weak convergence to a shifted GIG distribution is obvious. To prove the latter,
it remains to show that

eβ(x−µ)−α
√
δ2+(x−µ)2

= e

(
α− η

2

2

)
(x−µ)−α

√
δ2+(x−µ)2

→

{
e−

1
2(ψ2(x−µ)−1+η2(x−µ)), x− µ > 0,

0, x− µ < 0.

From the Taylor series expansion
√

1 + x2 = 1+ x2

2 +o(x2), x→ 0, we conclude

√
δ2 + (x− µ)2 = |x− µ|

√
1 +

(
δ

x− µ

)2

∼ |x− µ|
(

1 +
δ2

2(x− µ)2
+ o
(
δ2
))
,
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consequently if x− µ > 0, then(
α− η2

2

)
(x− µ)− α

√
δ2 + (x− µ)2 → −1

2

(
ψ2

x− µ
− η2(x− µ)

)
,

and if x− µ < 0,(
α− η2

2

)
(x− µ)− α

√
δ2 + (x− µ)2 ∼ −2α|x− µ| → −∞,

thus dGH(λ,α,β,δ,µ)(x) → dGIG(λ,ψ,η)(x − µ) pointwise for all x ∈ R under the

above assumptions on α, β and δ. Setting β = −α+ η2

2 , analogous calculations
yield dGH(λ,α,β,δ,µ)(x)→ dGIG(λ,ψ,η)

(
−(x−µ)

)
, so in this case the GH distribu-

tions converge weakly to a shifted GIG distribution on R−. If in addition we let
η → 0 or ψ → 0, we may also obtain Gamma and inverse Gamma distributions
as possible limits.

If δ tends to infinity instead of β and we further assume

α→∞, δ →∞, δ

α
→ σ2,

then GIG
(
λ, δ,

√
α2 − β2

) w−→ εσ2 by Corollary 1.10, and Lemma 1.7 entails

GH(λ, α, β, δ, µ)
w−→ N(µ+ βy, y) ◦ εσ2 = N

(
µ+ βσ2, σ2

)
. (1.21)

This is probably the easiest way to prove weak convergence to the normal
distribution, but since we announced to show pointwise convergence of the
densities before, we also do this here for the sake of completeness. Again by
equation (A.10), we have for α, δ large enough similar as before

(α2 − β2)
λ
2

αλ−
1
2 δλKλ

(
δ
√
α2 − β2

) (δ2 + (x− µ)2
)(λ− 1

2
)/2
Kλ− 1

2

(
α
√
δ2 + (x− µ)2

)
∼ (α2 − β2)

λ
2

αλ
(δ2 + (x− µ)2)

λ
2

δλ

√
δ(α2 − β2)

1
4√

δ2 + (x− µ)2
e−α
√
δ2+(x−µ)2+δ

√
α2−β2

.

The above assumptions on α and δ imply

(α2 − β2)
λ
2

αλ
→ 1,

(δ2 + (x− µ)2)
λ
2

δλ
→ 1,

√
δ (α2 − β2)

1
4√

δ2 + (x− µ)2
=
(α
δ

) 1
2

(
1− β2

α2

) 1
4√

1 +
(x−µ

δ

)2 → 1√
σ2
,

and together it follows

dGH(λ,α,β,δ,µ)(x) ∼ 1√
2πσ2

e−α
√
δ2+(x−µ)2+δ

√
α2−β2+β(x−µ).
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Again from the Taylor series expansion
√

1± x2 = 1 ± x2

2 + o
(
x2
)
, x → 0, the

convergence of the above exponent is found to be

−α
√
δ2 + (x− µ)2 + δ

√
α2 − β2 + β(x− µ)

= −αδ
√

1 +
(x− µ)2

δ2
+ αδ

√
1− β2

α2
+ β(x− µ)

= −αδ
[
1 +

1

2

(x− µ)2

δ2
+ o

(
1

δ2

)]
+ αδ

[
1− 1

2

β2

α2
+ o

(
1

α2

)]
+ β(x− µ)

→ −1

2

(x− µ)2

σ2
− σ2β2

2
− β(x− µ) = − 1

2σ2

(
x− (µ+ βσ2)

)2
which shows dGH(λ,α,β,δ,µ)(x)→ dN(µ+βσ2,σ2)(x) pointwise for all x ∈ R.

Remark: Note that a necessary condition for normal convergence is that α and
δ grow with the same rate. If δ is growing much slower than α or even kept fixed
instead, then σ2 = 0, and from (1.21) we conclude GH(λ, α, β, δ, µ)

w−→ εµ. This
can alternatively be deduced from

lim
α→∞

φGH(λ,α,β,δ,µ)(u) = lim
α→∞

MGH(λ,α,β,δ,µ)(iu) = eiuµ

which immediately follows from equation (1.10).

Because we always have to have |β| ≤ α, β cannot tend to infinity if α
remains bounded, and if δ →∞ while α, β are kept fixed, then equation (A.10)
implies

(δ2 + (x− µ)2)(λ− 1
2

)/2Kλ− 1
2

(
α
√
δ2 + (x− µ)2

)
δλKλ

(
δ
√
α2 − β2

) ∼ e−δα+δ
√
α2−β2

√
αδ (α2 − β2)−1/4

→ 0,

hence in the latter case the GH densities degenerate. Therefore the considera-
tions in this section are sufficiently general and cover all possible limiting cases.

1.5 Generalized and extended generalized Γ-convo-
lutions

In this section we give a short introduction to the families of generalized and
extended generalized Γ-convolutions. They provide a unified framework which
allows an easy derivation of many important properties of GH and GIG distri-
butions. Our presentation follows Thorin (1977a), Thorin (1977b) and Thorin
(1978). A thorough investigation of generalized Γ-convolutions with many fur-
ther examples can be found in the book of Bondesson (1992).

Gamma distributions G(λ, σ) have already been encountered in Section 1.2
as possible limits of GIG distributions (see page 9). Here we are concerned with
the slightly more general case of right-shifted Gamma distributions G(λ, σ, a)
which are defined as follows: If X ∼ G(λ, σ) and Y = X + a with a ≥ 0,
then G(λ, σ, a) := L(Y ) = G(λ, σ) ∗ εa. From Proposition 1.11 d) we have
G(λ1, σ, a1) ∗ G(λ2, σ, a2) = G(λ1 + λ2, σ, a1 + a2) which implies the infinite
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divisibility of G(λ, σ, a). By Proposition 1.9 and the remark thereafter the char-
acteristic functions are given by

φG(λ,σ,a)(u) = LG(λ,σ)(iu) eiua =

(
1− iu

σ

)−λ
eiua

which can also be represented in the following form:

φG(λ,σ,a)(u) = exp

[
iua−

∫ ∞
0

ln

(
1− iu

y

)
λεσ(dy)

]
, (1.22)

where ln(z) denotes the main branch of the complex logarithm. If more generally

Un(x) =

n∑
i=1

λi1[σi,∞)(x), λi > 0, 1 ≤ i ≤ n, 0 < σ1 < σ2 < · · · < σn <∞,

and 0 ≤ a =

n∑
i=1

ai, ai ≥ 0, 1 ≤ i ≤ n,

then it follows from (1.22) and the above mentioned convolution property that

φ n∗
i=1

G(λi,σi,ai)
(u) = exp

[
iua−

∫ ∞
0

ln

(
1− iu

y

)
Un(dy)

]
.

These considerations lead to the following

Definition 1.19 The class Γ0 of generalized Γ-convolutions consists of all
probability distributions G on (R+,B+) whose characteristic functions φG can
be represented in the following form:

φG(u) = exp

[
iua−

∫ ∞
0

ln

(
1− iu

y

)
U(dy)

]
, (1.23)

a ≥ 0, U : R+ → R+ non-decreasing with U(0) = 0,∫ 1

0
| ln(y)|U(dy) <∞,∫ ∞

1

1

y
U(dy) <∞.


(1.24)

The last two conditions of (1.24) ensure the finiteness of the integral term in
(1.23) such that |φG(u)| > 0 for all u ∈ R. The above definition suggests that
every distribution given by (1.23) and (1.24) is infinitely divisible. In fact, this
holds true as we will prove below by showing that the characteristic functions
of all elements G ∈ Γ0 also possess a Khintchine representation

φG(u) = exp

(
iaGu+

∫ +∞

−∞

(
eiux − 1− iux

1 + x2

)
1 + x2

x2
ψG(dx)

)
.

This is an alternative representation of infinitely divisible distributions (see,
for example, Loève (1977, pp. 310–313 and 344)) which for technical reasons is
sometimes more convenient than the equivalent Lévy–Khintchine formula

φG(u) = exp

(
iubG −

1

2
cGu

2 +

∫
R

(
eiux − 1− iux1[−1,1](x)

)
νG(dx)

)
.
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Both formulas can be transformed into each other via the relations

bG = aG +

∫
R

(
x1[−1,1](x)− x−11R\[−1,1](x)

)
ψG(dx),

cG = ∆ψG(0) = ψG(0)− ψG(0−), (1.25)

νG(dx) =
1 + x2

x2
ψG(dx),

and since bG, cG and νG are uniquely determined, so are aG and ψG.

Remark: Wolfe (1971) has shown that for every infinitely divisible distribu-
tion F with Lévy measure νF one has the equivalence

∫
R
|x|r F (dx) < ∞ ⇔∫

R\[−1,1] |x|
r νF (dx) < ∞. Thus if the distribution G has finite first moments,

we can omit the truncation function within the integral of the Lévy–Khintchine
formula, and the first equation of (1.25) simplifies to

bG = aG +

∫ +∞

−∞
x ψG(dx) = E[G].

Proposition 1.20 A generalized Γ-convolution is uniquely determined by the
pair (a, U) defined in equations (1.23) and (1.24).
Moreover, every G ∈ Γ0 is selfdecomposable, and the characteristic pair (aG, ψG)
of its Khintchine representation is given by

aG = a+

∫ ∞
0

∫ ∞
0

e−yx

1 + x2
dxU(dy),

ψG(x) =


0, x ≤ 0,∫ x

0
ψ′G(y) dy, x > 0,

ψ′G(y) =
y

1 + y2

∫ ∞
0

e−yt U(dt).

Proof: Inserting the above expressions for aG and ψG into the Khintchine
formula yields

ln
(
φG(u)

)
= iua+ iu

∫ ∞
0

∫ ∞
0

e−yx

1 + x2
dxU(dy)

+

∫ ∞
0

(
eiux − 1− iux

1 + x2

)
1 + x2

x2

x

1 + x2

∫ ∞
0

e−xt U(dt) dx

= iua+ iu

∫ ∞
0

∫ ∞
0

e−yx

1 + x2
dxU(dy)− iu

∫ ∞
0

∫ ∞
0

e−xt

1 + x2
dxU(dt)

+

∫ ∞
0

∫ ∞
0

eiux − 1

x
e−xt U(dt) dx

= iua−
∫ ∞

0

∫ ∞
0

e−xt − e−x(t−iu)

x
dxU(dt)

= iua−
∫ ∞

0

∫ ∞
0

∫ t−iu

t
e−xz dz dxU(dt)

= iua−
∫ ∞

0

∫ t−iu

t

1

z
dz U(dt) = iua−

∫ ∞
0

ln(t− iu)− ln(t)U(dt)

= iua−
∫ ∞

0
ln

(
1− iu

t

)
U(dt)
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which equals the exponent on the right hand side of (1.23) as desired. Since
the characteristic pair (aG, ψG) of the Khintchine representation is uniquely
determined, the uniqueness of (a, U) immediately follows from the formulas
verified above (observe that the density of the Khintchine measure is ψ′G(y) =
y

1+y2 LU (y), so the Laplace transform LU (y) and thus U are uniquely charac-

terized, hence so is a). Together with the last equation of (1.25) we have

νG(dx) =
1 + x2

x2
ψG(dx) = 1(0,∞)(x)

1 + x2

x2

x

1 + x2

∫ ∞
0

e−xt U(dt) dx,

thus the Lévy measure of every generalized Γ-convolution has a density of the
form k(x)

|x| where k(x) = 1(0,∞)(x)
∫∞

0 e−xt U(dt) is non-decreasing on (−∞, 0)

and non-increasing (actually decreasing) on (0,∞), so all generalized Γ-convo-
lutions are selfdecomposable by Lemma 1.4. �

The class Γ0 is closed under weak limits (see Theorem 1.22 below). If it is
enlarged by permitting translations to the left and thus canceling the condition
a ≥ 0 in (1.24), one obtains a class Γ−∞ which is not closed under passages to
the limit: Take for example an = −n and Un(x) = n21[n,∞)(x), then we have
for n sufficiently large

ln
(
φn(u)

)
= −iun−n2 ln

(
1− iu

n

)
= −iun+ iun+

(iu)2

2
+n2o(n2) −→

n→∞
−u

2

2
,

hence normal distributions are in the closure of Γ−∞, but obviously not in Γ−∞
itself. Also note that the weaker condition a ∈ R allows, according to (1.24),
the decomposition

a = ã−
∫ ∞

0

y

1 + y2
U(dy).

The closure of Γ−∞ is called the class of left-extended generalized Γ-convolutions
and denoted by ΓL. With the above considerations, its elements G can be
defined as probability distributions on (R,B) whose characteristic functions
are uniquely given by

φG(u) = exp

[
iub− cu2

2
−
∫ ∞

0

(
ln

(
1− iu

y

)
+

iuy

1 + y2

)
U(dy)

]
,

b ∈ R, c ≥ 0,

U : R+ → R+ non-decreasing with U(0) = 0,∫ 1

0
| ln(y)|U(dy) <∞ and

∫ ∞
1

1

y2
U(dy) <∞.

Remark: As before, the two integrability conditions ensure the finiteness of the
characteristic exponent such that |φG(u)| > 0. They immediately follow from
the asymptotic relations ln

(
1− iu

y

)
= ln(y − iu)− ln(y) ∼ − ln(y), y → 0, and

iuy
1+y2 + ln

(
1 − iu

y

)
∼ iu

y −
iu
y + u2

y2 + o
(
u2

y2

)
, y → ∞. Note that the additional

summand iuy
1+y2 allows a weakening of the last condition compared to (1.24).
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Analogously to Proposition 1.20 it can be shown that all elements G ∈ ΓL are
selfdecomposable and possess a Khintchine representation obtained by

aG = b+

∫ ∞
0

(∫ ∞
0

e−yx

1 + x2
dx − y

1 + y2

)
U(dy),

ψG(x) =


0, x < 0,

c, x = 0,

c+

∫ x

0
ψ′G(y) dy, x > 0,

ψ′G(y) =
y

1 + y2

∫ ∞
0

e−yt U(dt).

Of course we could have started our investigations with negative Gamma
variables leading to the counterpart Γ′0 of Γ0 consisting of distributions on
(R−,B−). In the same way as above one obtains the class ΓR as the closure of
right-shifts of Γ′0. Following Thorin (1978), we define the class Γ by

Definition 1.21 The class Γ of convolutions ΓL ∗ΓR, called extended general-
ized Γ-convolutions, consists of all probability distributions F on (R,B) whose
characteristic functions φF are of the form

φF (u) = exp

[
iub− cu2

2
−
∫ +∞

−∞

(
ln

(
1− iu

y

)
+

iuy

1 + y2

)
U(dy)

]
, (1.26)

b ∈ R, c ≥ 0, U : R→ R non-decreasing with U(0) = 0,∫ 1

−1

∣∣ ln(|y|)
∣∣U(dy) <∞,∫ −1

−∞

1

y2
U(dy) +

∫ +∞

1

1

y2
U(dy) <∞.


(1.27)

Again, this representation is unique, and all elements of Γ are also selfdecom-
posable. Their Khintchine representations are

aF = b+

∫ ∞
0

(∫ ∞
0

e−yx

1 + x2
dx− y

1 + y2

)
U(dy)

(1.28)

−
∫ 0

−∞

(∫ 0

−∞

e−yx

1 + x2
dx+

y

1 + y2

)
U(dy),

ψF (x) =



∫ x

−∞
ψ′F (y) dy, x < 0,

c+

∫ 0

−∞
ψ′F (y) dy x = 0,

ψF (0) +

∫ x

0
ψ′F (y) dy, x > 0,

(1.29)

ψ′F (y) = −1(−∞,0)(y)
y

1 + y2

∫ 0

−∞
e−yt U(dt) + 1(0,∞)(y)

y

1 + y2

∫ ∞
0

e−yt U(dt).

Remark: Equations (1.25) remain of course valid if G is replaced by F . Further
note that not only every normal distribution belongs to Γ (take U(y) ≡ 0),
but also all α-stable distributions with 0 < α < 2. The latter are obtained from
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the generating triplet (b, 0, U) with

U(y) =


− c1

Γ(α+ 1)
|y|α, y < 0,

c2

Γ(α+ 1)
yα, y ≥ 0,

c1, c2 ≥ 0, c1 + c2 > 0.

It is easily seen that U fulfills the conditions (1.27), and from equations (1.28)
and (1.25) it follows that for the proof of the assertion it is sufficient to show
that the above choice of U yields the correct Lévy measure. By (1.29) and
(1.25), for x < 0 the density dνF (x) of the Lévy measure is given by

dνF (x) = −1 + x2

x2

x

1 + x2

∫ 0

−∞
e−xt U(dt) =

1

|x|

∫ 0

−∞
e|x|t

c1

Γ(α+ 1)
α|t|α−1 dt

= − c1

Γ(α+ 1)

1

|x|

(
−e|x|t |t|α

∣∣∣0
−∞

+

∫ 0

−∞
|x|e|x|t |t|α dt

)
=

c1

Γ(α+ 1)

1

|x|1+α

∫ ∞
0

e−yyα dy = c1|x|−1−α

and analogously we get dνF (x) = c2x
−1−α for x > 0, which together equals the

density of the Lévy measure of an α-stable distribution (see Sato 1999, p. 80).

The next theorem, taken from Thorin (1977b) and Thorin (1978), shows the
closedness of the classes Γ0 and Γ.

Theorem 1.22 (Continuity Theorem) If a sequence (Gn)n≥1 of generalized
Γ-convolutions generated by (an, Un)n≥1 converges weakly to a distribution func-
tion G, then G is also a generalized Γ-convolution generated by (a, U) where

U(x) = lim
n→∞

Un(x) in every continuity point x of U,

a = lim
M→∞

lim
n→∞

[
an +

∫ ∞
M

1

x
Un(dx)

]
.

If instead (Fn)n≥1 is a sequence of extended generalized Γ-convolutions gener-
ated by (bn, cn, Un)n≥1 which converges weakly to a distribution function F, then
F is also an extended generalized Γ-convolution generated by (b, c, U) where

U(x) = lim
n→∞

Un(x) in every continuity point x of U,

b = lim
n→∞

bn, c = lim
M→∞

lim
n→∞

[
cn +

∫
R\[−M,M ]

1

x2
Un(dx)

]
.

By construction every sum of a finite number of positive (and negative) Gamma
variables is an (extended) generalized Γ-convolution. Thus it follows as a special
case from the continuity theorem that if a sequence of such sums converges in
distribution to a random variable X, then L(X) is an (extended) generalized
Γ-convolution as well. Conversely, every extended generalized Γ-convolution
generated by (b, c, U) may be approximated arbitrarily well in distribution by
sums of suitably scaled and shifted independent Gamma variables. As it is
easily seen from our considerations on p. 29, the main task in the latter case
is to choose the parameters λi and σi of the summands in such a way that the
functions Un corresponding to the finite sums converge pointwise to U .
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1.6 Representations of GIG and GH distributions as
subclasses of Γ

We now show that all GIG and GH distributions belong to Γ0 and Γ, respec-
tively. The first statement was already proven in Halgreen (1979), the second
was indicated in Thorin (1978). We give detailed proofs of both and extend
the results with the help of the Continuity Theorem 1.22 to the limiting cases
which allows to explicitly compute the Lévy–Khintchine representations for all
distributions.

1.6.1 GIG distributions and their limits

The results of the present subsection are summarized in the following

Proposition 1.23 Every GIG(λ, δ, γ)-distribution is a generalized Γ-convolu-
tion with generating pair (aGIG, UGIG) as follows:

a) If δ, γ > 0, then

aGIG(λ,δ,γ) = 0,

UGIG(λ,δ,γ)(x) = 1[γ2/2,∞)(x)

(
max(0, λ) + δ2

∫ x

γ2

2

g|λ|
(
2δ2y − δ2γ2

)
dy

)
where gν is defined by

gν(x) :=
2

π2x
[
J2
ν

(√
x
)

+ Y 2
ν

(√
x
)] , ν ≥ 0.

b) If λ > 0 and δ = 0 (Gamma limiting case), we have

aGIG(λ,0,γ) = 0, UGIG(λ,0,γ)(x) = λ1[γ2/2,∞)(x).

c) If λ < 0 and γ = 0 (inverse Gamma limiting case), then

aGIG(λ,δ,0) = 0, UGIG(λ,δ,0)(x) = δ21[0,∞)(x)

∫ x

0
g|λ|
(
2δ2y

)
dy.

d) The degenerate limiting case (δ, γ → ∞, δ
γ → σ ≥ 0) is characterized by

a = σ, U(x) ≡ 0.

Proof: a) From Proposition 1.11 c) and equation (1.3) of Section 1.2 we have

GIG(−λ, δ, γ)∗GIG(λ, 0, γ) = GIG(−λ, δ, γ)∗G
(
λ, γ

2

2

)
= GIG(λ, δ, γ), λ > 0.

Since the class Γ0 is closed under convolutions with Gamma distributions by
construction, it suffices to prove that all GIG(λ, δ, γ)-distributions with λ ≤ 0
belong to Γ0 to establish the general result. Therefore we suppose −λ =: ν ≥ 0
for the moment. By Proposition 1.9 and equation (A.2) the Laplace transform
of GIG(λ, δ, γ) is given by

LGIG(λ,δ,γ)(u) =

(
γ2

γ2 + 2u

)λ
2 Kν

(
δ
√
γ2 + 2u

)
Kν(δγ)

.
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Combining equations (A.3) and (A.4) we get K ′λ(x) = −Kλ−1(x) − λ
xKλ(x).

With the help of this we find

ln
(
LGIG(λ,δ,γ)(u)

)′
=

L′GIG(λ,δ,γ)(u)

LGIG(λ,δ,γ)(u)

=
−λγλ

(
γ2 + 2u

)−λ
2
−1 Kν(δ

√
γ2+2u)

Kν(δγ) + δγλ
(
γ2 + 2u

)−λ+1
2

K′ν(δ
√
γ2+2u)

Kν(δγ)

γλ
(
γ2 + 2u

)−λ
2
Kν(δ
√
γ2+2u)

Kν(δγ)

=
ν

γ2 + 2u
+

δ√
γ2 + 2u

K ′ν
(
δ
√
γ2 + 2u

)
Kν

(
δ
√
γ2 + 2u

)
=

ν

γ2 + 2u
− δ√

γ2 + 2u

Kν−1

(
δ
√
γ2 + 2u

)
+ ν
(
δ
√
γ2 + 2u

)−1
Kν

(
δ
√
γ2 + 2u

)
Kν

(
δ
√
γ2 + 2u

)
= −δ2 Φν

[
δ2
(
γ2 + 2u

)]
, where Φν(t) :=

Kν−1

(√
t
)

√
tKν

(√
t
) .

Using the integral representation of Grosswald (1976),

Φν(t) =

∫ ∞
0

1

t+ x
gν(x) dx with gν(x) =

2

π2x
[
J2
ν

(√
x
)

+ Y 2
ν

(√
x
)] , (1.30)

(Jν(x) and Yν(x) denote the Bessel functions of first and second kind with index
ν, see Appendix A for further information) we obtain with Fubini’s theorem

ln
(
LGIG(λ,δ,γ)(u)

)
= −

∫ u

0

∫ ∞
0

δ2

δ2γ2 + 2δ2t+ x
gν(x) dx dt

= −
∫ ∞
γ2

2

∫ u

0

δ2

t+ y
gν
(
2δ2y − δ2γ2

)
dt dy

= −
∫ ∞
γ2

2

ln

(
1 +

u

y

)
δ2gν

(
2δ2y − δ2γ2

)
dy.

Since the corresponding characteristic functions are given by LGIG(λ,δ,γ)(−iu), it
immediately follows from (1.23) in Definition 1.19 that all GIG(λ, δ, γ)-distribu-
tions with λ ≤ 0 and δ, γ > 0 are generalized Γ-convolutions with characteristics

aGIG = 0, UGIG(x) = δ21[γ2/2,∞)(x)

∫ x

γ2

2

g|λ|
(
2δ2y − δ2γ2

)
dy,

if UGIG fulfills the integrability conditions (1.24) which is shown below. Since

a Gamma distribution G
(
λ, γ

2

2

)
is characterized by a jump of U of height λ at

x = γ2

2 (that is, λ = U
(γ2

2

)
−U

(γ2

2 −
)
, see also equation (1.22) and the consider-

ations thereafter), the general representation of GIG(λ, δ, γ)-distributions with
arbitrary λ ∈ R and δ, γ > 0 immediately follows from what we have shown so
far and the above mentioned convolution property of Proposition 1.11 c).
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To verify conditions (1.24), note that
∫ 1

0 | ln(y)|UGIG(dy) < ∞ holds triv-

ially if γ > 0 because UGIG(y) ≡ 0 on
[
0, γ

2

2

)
. Equations (A.16) and (A.17) im-

ply the following asymptotic behavior of the Bessel functions Jλ(x) and Yλ(x)
for x→∞:

Jλ(x) ∼
√

2

πx
cos

(
x− λπ

2
− π

4

)
, Yλ(x) ∼

√
2

πx
sin

(
x− λπ

2
− π

4

)
,

therefore g|λ|(x) ∼ (π2x)−
1
2 , x→∞, and consequently

∫∞
1 y−1 UGIG(dy) <∞.

b) Observing that GIG(λ, 0, γ) = G
(
λ, γ

2

2

)
, the corresponding result has al-

ready been shown implicitly in the proof of part a). However, we also provide
an alternative proof here which is based on the Continuity Theorem 1.22 since
we need some of the enclosed calculations later anyway.

First we require the asymptotics of the Bessel functions near the origin.
According to equations (A.13) and (A.14), for |λ| > 0 these are given by

J|λ|(x) ∼
(x

2

)|λ| (
Γ(|λ|)

)−1
, Y|λ|(x) ∼ Γ(|λ|)

π

(x
2

)−|λ|
, x→ 0.

For an arbitrary but fixed x > γ2

2 we get combining the results of part a),
equation (1.30), and the above mentioned asymptotics

lim
δ→0

U ′GIG(λ,δ,γ)(x) = lim
δ→0

2

π2(2x− γ2)
[
J2
λ

(
δ
√

2x− γ2
)

+ Y 2
λ

(
δ
√

2x− γ2
)] = 0,

hence limδ→0 UGIG(λ,δ,γ)(x) = λ1[γ2/2,∞)(x) = UGIG(λ,0,γ)(x) by the Continuity
Theorem. Further we conclude from the asymptotic behaviour of the Bessel
functions that

1

x
U ′GIG(λ,δ,γ)(x) ∼ δ2λ(2x− γ2)λ−1

Γ(λ)2 22λ−1x
, δ
√
x→ 0,

1

x
U ′GIG(λ,δ,γ)(x) ∼ δ(2x− γ2)−

1
2

πx
, δ

√
x→∞,

consequently x−1U ′GIG(x) is bounded on [M,∞) by an integrable majorant for
sufficiently large M and 0 < δ ≤ 1. The Continuity Theorem and the dominated
convergence theorem then yield

aGIG(λ,0,γ) =

= lim
M→∞

lim
δ→0

[
aGIG(λ,δ,γ) +

∫ ∞
M

1

x
UGIG(λ,δ,γ)(dx)

]
= lim

M→∞
lim
δ→0

∫ ∞
M

1

x
U ′GIG(λ,δ,γ)(x) dx = lim

M→∞

∫ ∞
M

1

x
U ′GIG(λ,0,γ)(x) dx = 0,

where the last step follows from U ′GIG(λ,0,γ)(x) = 0 for sufficiently large x as
shown above.

c) The asymptotics of U ′GIG(λ,δ,γ)(x) derived in the proof of part b) imply

lim
M→∞

lim
γ→0

[
aGIG(λ,δ,γ) +

∫ ∞
M

1

x
UGIG(λ,δ,γ)(dx)

]
= lim

M→∞

∫ ∞
M

δ

π
√

2
x−

3
2 dx = 0,
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hence by the Continuity Theorem every inverse Gamma distribution iG
(
λ, δ

2

2

)
=

GIG(λ, δ, 0) ∈ Γ0 with generating pair aGIG(λ,δ,0) = 0 and, as is obvious from
part a), UGIG(λ,δ,0)(x) = limγ→0 UGIG(λ,δ,γ)(x) = δ21[0,∞)(x)

∫ x
0 g|λ|

(
2δ2y

)
dy.

d) The generating pair (a, U) of the degenerate distribution εσ can of course
immediately be obtained by comparing the characteristic function φεσ(u) = eiuσ

with the general representation (1.23) in Definition 1.19. We derive it here again
with the help of the Continuity Theorem which also provides an alternative
proof of Corollary 1.10.

By part a) we have UGIG(λ,δ,γ)(x) ≡ 0 for x ∈
[
0, γ

2

2

)
, consequently U(x) =

limδ,γ→∞ UGIG(λ,δ,γ)(x) = 0 for all x ≥ 0. The first further implies

lim
M→∞

lim
δ,γ→∞

[
aGIG(λ,δ,γ) +

∫ ∞
M

1

x
UGIG(λ,δ,γ)(dx)

]
= lim
δ,γ→∞

∫ ∞
γ2

2

1

x
UGIG(λ,δ,γ)(dx)

and from the Continuity Theorem and the asymptotics of x−1U ′GIG(λ,δ,γ)(x)

derived in b) we finally conclude

a = lim
δ,γ→∞

∫ ∞
γ2

2

1

x
UGIG(λ,δ,γ)(dx) = lim

δ,γ→∞

∫ ∞
γ2

2

δ(2x− γ2)−
1
2

πx
dx

= lim
δ,γ→∞

δ

π

2

γ
arctan

(√
2x− γ2

γ

)∣∣∣∣∞
γ2

2

= lim
δ,γ→∞

δ

γ
= σ.

�

Remark: The proof of part d) also shows that the limits occuring in the Conti-
nuity Theorem must not be interchanged. By (1.24), the measure induced by the
function U of every generalized Γ-convolution has to fulfill

∫∞
1 x−1U(dx) <∞,

so a swap of the limits would imply

a = lim
n→∞

lim
M→∞

[
an +

∫ ∞
M

1

x
Un(dx)

]
= lim

n→∞
an.

Therewith one would obtain in the situation of Proposition 1.23 d) that a =
limδ,γ→∞ aGIG(λ,δ,γ) = 0 which is obviously false in general.

1.6.2 Lévy–Khintchine representations of GIG distributions

With the above characteristics (aGIG, UGIG) of GIG distributions, their Lévy–
Khintchine representation can now easily be derived using Proposition 1.20 and
formulas (1.25). Again we summarize the results in

Proposition 1.24 The characteristic functions of GIG(λ, δ, γ)-distributions
can be represented as follows:

a) If δ, γ > 0, then

φGIG(λ,δ,γ)(u) = exp

(
iu
δKλ+1(δγ)

γKλ(δγ)
+

∫ ∞
0

(
eiux − 1− iux

)
gGIG(λ,δ,γ)(x) dx

)
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where the density of the Lévy measure is defined for x > 0 by

gGIG(λ,δ,γ)(x) =
e−x

γ2

2

x

[∫ ∞
0

e−xy

π2y
[
J2
|λ|
(
δ
√

2y
)

+ Y 2
|λ|
(
δ
√

2y
)] dy + max(0, λ)

]
.

b) If λ > 0 and δ = 0 (Gamma limiting case), we have

φGIG(λ,0,γ)(u) = exp

(
iu

2λ

γ2
+

∫ ∞
0

(
eiux − 1− iux

)
gGIG(λ,0,γ)(x) dx

)
,

and the density of the Lévy measure is gGIG(λ,0,γ)(x) = 1(0,∞)(x) λx e
− γ

2

2
x.

c) If λ < 0 and γ = 0 (inverse Gamma limiting case), then

φGIG(λ,δ,0)(u)= exp

(
iuδ2

∫ ∞
0

1− e−x

x
g|λ|
(
2δ2x

)
dx

+

∫ ∞
0

(
eiux − 1− iux1[0,1](x)

)
gGIG(λ,δ,0)(x) dx

)
with corresponding Lévy density

gGIG(λ,δ,0)(x) =
1

x

∫ ∞
0

e−xy

π2y
[
J2
|λ|
(
δ
√

2y
)

+ Y 2
|λ|
(
δ
√

2y
)] dy, x > 0.

Proof: a) Since all moments of GIG(λ, δ, γ) distributions with δ, γ > 0 exist
(see p. 11), according to the remark on p. 30 the truncation function within the
integral of the Lévy–Khintchine formula can be omitted, and the drift term bG
then equals the mean of the distribution. From the moment formulas given on

p. 11 we get bGIG(λ,δ,γ) = E[GIG(λ, δ, γ)] =
Kλ+1(δγ)
Kλ(δγ)

δ
γ . Thus it only remains

to prove the above formula for the Lévy density. By Proposition 1.20, the last
equation of (1.25) and Proposition 1.23 a) we have

gGIG(λ,δ,γ)(x) =
1 + x2

x2

x

1 + x2

∫ ∞
0

e−xy UGIG(λ,δ,γ)(dy)

=
1

x

[∫ ∞
γ2

2

2δ2e−xy

π2
(
2δ2y − δ2γ2

)[
J2
|λ|
(√

2δ2y − δ2γ2
)

+ Y 2
|λ|
(√

2δ2y − δ2γ2
)] dy

+ max(0, λ)e−x
γ2

2

]

=
e−x

γ2

2

x

[∫ ∞
0

e−xy

π2y
[
J2
|λ|
(
δ
√

2y
)

+ Y 2
|λ|
(
δ
√

2y
)] dy + max(0, λ)

]
, x > 0.

b) Because Gamma distributions G
(
λ, γ

2

2

)
= GIG(λ, 0, γ) also possess mo-

ments of arbitrary (positive) order, analogously to part a) we conclude that a
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truncation function within the Lévy–Khintchine representation is dispensable,
bGIG(λ,0,γ) = E[GIG(λ, 0, γ)] = 2λ

γ2 , and the Lévy density is given by

gGIG(λ,0,γ)(x) =
1 + x2

x2

x

1 + x2

∫ ∞
0

e−xy UGIG(λ,0,γ)(dy)

=
λ

x

∫ ∞
0

e−xy ε γ2

2

(dy) =
λ

x
e−

γ2

2
x, x > 0,

because UGIG(λ,0,γ)(x) = λ1[γ2/2,∞)(x).

c) Contrary to a) and b), the limiting reciprocal Gamma distributions have
finite first moments only if λ < −1 (see p. 11), so in general we have to use a
truncation function and determine the drift term bGIG(λ,δ,0) according to (1.25).
By Proposition 1.23 c) the measure induced by UGIG(λ,δ,0) is concentrated on
R+ and aGIG(λ,δ,0) = 0, so Proposition 1.20 and (1.25) imply

bGIG(λ,δ,0) =

∫ ∞
0

∫ ∞
0

e−xy

1 + x2
dxUGIG(λ,δ,0)(dy)

+

∫ ∞
0

∫ ∞
0

(
x2e−xy

1 + x2
1[0,1](x)− e−xy

1 + x2
1R\[0,1](x)

)
dxUGIG(λ,δ,0)(dy)

=

∫ ∞
0

∫ 1

0
e−xy dxUGIG(λ,δ,0)(dy) = δ2

∫ ∞
0

1− e−y

y
g|λ|
(
2δ2y

)
dy,

and similarly to part a) the Lévy density is obtained to be

gGIG(λ,δ,0)(x) =
1

x

∫ ∞
0

e−xy

π2y
[
J2
|λ|
(
δ
√

2y
)

+ Y 2
|λ|
(
δ
√

2y
)] dy, x > 0.

�

Remark: If the GIG distributions arise as a limit of GH distributions studied
in Section 1.4.2, and the parameter µ of the converging sequence is not equal to
0, all characteristic functions have an additional factor eiuµ. The corresponding
formulas for the “negative” GIG distributions on (R−,B−) are obtained from
the above by changing bGIG(λ,δ,γ) to −bGIG(λ,δ,γ), the integration interval from
R+ to R− and the truncation function from 1[0,1] to 1[−1,0]. In the expressions
for the Lévy densities x has to be replaced by |x|.

Observe that the Lévy densities of GIG(λ, δ, γ)-distributions with δ > 0 are
essentially Laplace transforms of the function gν defined in Proposition 1.23:

gGIG(λ,δ,γ)(x) =
e−x

γ2

2

x

[
max(0, λ) +

∫ ∞
0

e−xy δ2g|λ|
(
2δ2y

)
dy

]
.

This fact allows us to derive their asymptotic behaviour near the origin with
the help of the following Tauberian theorem which can be found in Feller (1971,
p. 446, and Problem 16 on p. 464).
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Theorem 1.25 Let G be a measure concentrated on R+ with density g and
existing Laplace transform LG(x) for every x > 0. Suppose g(y) ∼ v(y) for
y → ∞ and v is monotone on some interval (y0,∞). Let 0 < ρ < ∞, then as
x→ 0 and y →∞, respectively,

LG(x) ∼ 1

xρ
L

(
1

x

)
iff v(y) ∼ yρ−1

Γ(ρ)
L(y)

for some positive function L defined on R+ and varying slowly at ∞ (that is,

for every fixed x > 0 and t→∞ we have L(tx)
L(x) → 1).

As we have already seen on p. 36, the asymptotic behaviour of the Bessel func-
tions Jλ and Yλ implies δ2g|λ|(2δ

2y) ∼ δ(2π2y)−
1
2 , y → ∞. The assumptions

of Theorem 1.25 are thus fulfilled with ρ = 0.5 and L(y) ≡ δΓ(0.5)√
2π

= δ(2π)−
1
2 ,

hence for x→ 0 the asymptotics of the Laplace transform above are δ(2πx)−
1
2 .

Using the expansion e−x
γ2

2 = 1− xγ
2

2 + o(x), x→ 0, we see that the behaviour
of gGIG(λ,δ,γ) near the origin is dominated by the integral term, multiplied with
the preceeding factor x−1, which gives

gGIG(λ,δ,γ)(x) ∼ δ√
2π

x−
3
2 , x ↓ 0. (1.31)

Only the Lévy densities of the limiting Gamma distributions show a different
behaviour; in this case we have gGIG(λ,0,γ)(x) = λ

x e
−xγ2/2 and consequently

gGIG(λ,0,γ)(x) ∼ λ

x
, x ↓ 0.

1.6.3 GH distributions and their limits

The fact that GH distributions are a subclass of Γ is an immediate consequence
of the more general result to be shown below that every normal mean-variance
mixture is an extended generalized Γ-convolution if the mixing distribution
belongs to Γ0. This was already mentioned, but not rigorously proven in Thorin
(1978).

Proposition 1.26 If F = N(µ + βy, y) ◦ G is a normal mean-variance mix-
ture where the mixing distribution G ∈ Γ0 is a generalized Γ-convolution with
characteristic pair (aG, UG), then F is an extended generalized Γ-convolution
(F ∈ Γ) generated by (bF , cF , UF ) with

bF = µ+ βaG +

∫ ∞
0

2β(2y − 1)

(2y + 1)2 + 4β2
UG(dy), cF = aG,

UF (y) =


−UG

(y2

2 + βy
)
, y ≤ −|β| − β,

0, −|β| − β < y < |β| − β,

UG
(y2

2 + βy
)
, y ≥ |β| − β.
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Proof: At first we note that equation (1.26) is equivalent to

φΓ(0) = 1, ln
(
φΓ(u)

)′
= ib− cu+ i

∫ +∞

−∞

(
1

y − iu
− y

1 + y2

)
U(dy) (1.32)

(conditions (1.27) justify the interchange between differentiation and integra-
tion). Because G ∈ Γ0 by assumption, equation (1.23) implies

LG(u) = φG(iu) = exp

[
−aGu−

∫ ∞
0

ln

(
1 +

u

y

)
UG(dy)

]
.

From the proof of Lemma 1.6 b) we further know that the characteristic function
of F = N(µ+ βy, y) ◦G is given by

φF (u) = eiuµ LG
(
u2

2 − iuβ
)

= exp

[
iu(µ+ βaG)− aG

u2

2
−
∫ ∞

0
ln

(
1 +

u2

2 − iuβ
y

)
UG(dy)

]

and therefore

ln
(
φF (u)

)′
= i(µ+ βaG)− aGu+ i

∫ ∞
0

iu+ β

y +
(
u2

2 − iuβ
) UG(dy).

We thus have to show that the right hand side of the last equation admits a
representation in the form of (1.32). A first calculation yields∫ ∞

0

iu+ β

y +
(
u2

2 − iuβ
) UG(dy)

=

∫ ∞
0

2(iu+ β)(√
2y + β2 + β + iu

)(√
2y + β2 − β − iu

) UG(dy)

=

∫ ∞
|β|−β

2(iu+ β)

(x+ 2β + iu)(x− iu)
Ū(dx)

with x =
√

2y + β2 − β and Ū(x) = UG
(
x2

2 + βx
)
. Extending the function Ū

to the whole real line requires some care because by (1.24) the domain of UG is

R+, but x2

2 + βx < 0 if β < 0 and 0 < x < −2β. Therefore we set

Ū(x) :=

{
0, 0 ≤ x < |β| − β,

UG
(
x2

2 + βx
)
, x ≥ |β| − β,

and complete it to a non-decreasing function on R symmetric around −β by

Ū(x) :=

{
0, −|β| − β < x < 0,

−UG
(
x2

2 + βx
)
, x ≤ −|β| − β.
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Continuing the calculation (and writing y again instead of x) we find∫ ∞
0

iu+ β

y +
(
u2

2 − iuβ
) UG(dy) =

∫ ∞
0

2(iu+ β)

(y + 2β + iu)(y − iu)
Ū(dy)

=

∫ ∞
0

2(iu+ β)

(y + β)2 + (u− iβ)2
Ū(dy) =

∫ +∞

−∞

iu+ β

(y + β)2 + (u− iβ)2
Ū(dy)

=

∫ +∞

−∞

iu+ β

(y + β)2 + (u− iβ)2
+

y + β

(y + β)2 + (u− iβ)2
Ū(dy)

=

∫ +∞

−∞

1

y − iu
Ū(dy)

where the second and third lines follow from the symmetry of Ū(y) around −β.
Summing up we have ln

(
φF (u)

)′
= i(µ+ βaG)− aGu+ i

∫ +∞
−∞

1
y−iu Ū(dy), and

a comparison with equation (1.32) reveals that F is an extended generalized
Γ-convolution with

bF = µ+ βaG +

∫ +∞

−∞

y

1 + y2
UF (dy), cF = aG, UF (y) = Ū(y).

To complete the proof we must verify conditions (1.27) and show that the sum-
mand

∫ +∞
−∞

y
1+y2 UF (dy) of bF is finite and admits the desired representation.

The definition of UF implies∫ 1

0
| ln(x)| UF (dx) =

∫ 1

(|β|−β)∧1
| ln(x)| UF (dx)

=


∫ 1

2
+β

0

∣∣ ln(√2y + β2 − β
)∣∣ UG(dy), β > −1

2 ,

0, β ≤ −1
2 .

If β > −1
2 and y ∈

[
0, 1

2 +β
]
, then 1 ≥

√
2y + β2−β ≥ 1−|β|+β

β+1/2 y+ |β|−β, thus

∫ 1
2

+β

0

∣∣ln(√2y + β2−β
)∣∣UG(dy) ≤

∫ 1
2

+β

0

∣∣ln(1−|β|+β
β+1/2 y + |β| − β

)∣∣UG(dy) <∞

because UG fulfills the integrability conditions (1.24) since G ∈ Γ0. Analogously
it can be verified that

∫ 0
−1 | ln(|x|)|UF (dx) < ∞. Using similar arguments we

conclude, again with the help of (1.24), that

∞∫
1

1

x2
UF (dx) =

∞∫
(|β|−β)∨1

1

x2
UF (dx) =

∞∫
0∨( 1

2
+β)

1

(
√

2y + β2 − β)2
UG(dy) <∞

and, with almost the same reasoning,
∫ −1
−∞

1
x2 UF (dx) <∞.

Since UF is symmetric around −β and UF (x) ≡ 0 for x ∈ [−|β| − β, |β| − β]
by definition, it follows that for some x2 > |β| − β ≥ 0 and x1 = −x2 − 2β < 0
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we have −UF (x1) = UF (x2), consequently∫ +∞

−∞

x

1 + x2
UF (dx) =

∫ ∞
|β|−β

x

1 + x2
− x+ 2β

1 + (x+ 2β)2
UF (dx)

=

∫ ∞
|β|−β

2β(x2 + 2βx− 1)

(x2 + 2βx+ 1)2 + 4β2
UF (dx)

=

∫ ∞
0

2β(2y − 1)

(2y + 1)2 + 4β2
UG(dy) <∞

where the finiteness of the last integral follows again from (1.24). �

Remark: An alternative proof of the statement of the previous proposition
can be found in Bondesson (1992, Theorem 7.3.2). It uses a different technique
and therefore is much shorter, but does not provide any information about the
generating triplet (bF , cF , UF ) of F and its connection to (aG, UG) we are in-
terested in to derive the Lévy–Khintchine representations thereof.

With the help of Proposition 1.26 we now can easily derive the generating
triplet (bGH , cGH , UGH) of GH distributions using the mixture representation
GH(λ, α, β, δ, µ) = N(µ+ βy, y) ◦GIG

(
λ, β,

√
α2 − β2

)
and the characteristic

pairs (aGIG, UGIG) of the corresponding GIG distributions given in Proposi-
tion 1.23. We obtain

Corollary 1.27 All GH distributions are extended generalized Γ-convolutions
with generating triplets as follows:

a) If δ > 0 and |β| < α, then

bGH(λ,α,β,δ,µ) = µ+

∫ ∞
0

2β(2y − 1)

(2y + 1)2 + 4β2
U
GIG(λ,δ,

√
α2−β2)

(dy),

cGH(λ,α,β,δ,µ) = 0,

UGH(λ,α,β,δ,µ)(x) =
(
1[α−β,∞)(x)− 1(−∞,−α−β](x)

)
·

max(0, λ) + δ2

∫ x2

2
+βx

α2−β2

2

g|λ|
(
2δ2y − δ2(α2 − β2)

)
dy

 .

b) If λ > 0 and δ = 0 (Variance-Gamma limit), we have

bV G(λ,α,β,µ) = µ+
2λβ(α2 − β2 − 1)

(α2 − β2 + 1)2 + 4β2
, cV G(λ,α,β,µ) = 0,

UV G(λ,α,β,µ)(x) = λ
(
1[α−β,∞)(x)− 1(−∞,−α−β](x)

)
.

c) If λ < 0 and α = β = 0 (t limiting case), then

bt(λ,δ,µ) = µ, ct(λ,δ,µ) = 0,

Ut(λ,δ,µ)(x) =
(
1R+(x)− 1R−(x)

) ∫ x2

2

0
δ2g|λ|

(
2δ2y

)
dy.
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d) In the limit case with λ < 0 and |β| = α > 0 we have

bGH(λ,α,±α,δ,µ) = µ±
∫ ∞

0

2α(2y − 1) δ2

(2y + 1)2 + 4α2
g|λ|
(
2δ2y

)
dy,

cGH(λ,α,±α,δ,µ) = 0,

UGH(λ,α,±α,δ,µ)(x) =
(
1[α∓α,∞)(x)− 1(−∞,−α∓α](x)

) ∫ x2

2
±αx

0
δ2g|λ|

(
2δ2y

)
dy.

Proof: a) The representation follows almost immediately by combining Propo-
sitions 1.23 a) and 1.26. A direct application of the latter yields that the first
factor of UGH (which constitutes the symmetry around −β) has the following
form:

1[(α2−β2)/2,∞)

(
x2

2 + βx
) (
1[|β|−β,∞)(x)− 1(−∞,−|β|−β](x)

)
But since the solutions of x2

2 + βx = α2−β2

2 are given by −α − β and α − β,
and −α − β < −|β| − β as well as α − β > |β| − β because α > |β|, the above
expression can be simplified to

(
1[α−β,∞)(x)− 1(−∞,−α−β](x)

)
.

The generating triplets (b, c, U) of the GH limit distributions could be obtained
from part a) using the Continuity Theorem 1.22, but a careful determination of
the limit expressions would require lengthy calculations and estimations. How-
ever, by Lemma 1.7 we know that the GH limits considered in b)–d) can also
be represented as normal mean-variance mixtures, so we can apply Proposi-
tion 1.26 directly to the pairs (a, U) of the corresponding GIG limits derived in
Proposition 1.23 b) and c). For the rest of the proof we follow this approach.

b) As seen on p. 21, the mixture representation of Variance-Gamma distribu-
tions is V G(λ, α, β, µ) = N(µ + βy, y) ◦ G(λ, (α2 − β2)/2), and according to
Proposition 1.23 b) the generating pair of the mixing Gamma distribution is
given by aG(λ,(α2−β2)/2) = 0 and UG(λ,(α2−β2)/2)(y) = λ1[(α2−β2)/2,∞)(y). By
Proposition 1.26 we thus have cV G(λ,α,β,µ) = 0 and

UV G(λ,α,β,µ)(x) = λ1[(α2−β2)/2,∞)

(
x2

2 + βx
) (
1[|β|−β,∞)(x)− 1(−∞,−|β|−β](x)

)
= λ

(
1[α−β,∞)(x)− 1(−∞,−α−β](x)

)
where the last equation follows with exactly the same arguments as in part a).
With UG(λ,(α2−β2)/2)(y) = λ1[(α2−β2)/2,∞)(y) we further obtain

bV G(λ,α,β,µ) = µ+

∫ ∞
0

2β(2y − 1)

(2y + 1)2 + 4β2
UG(λ,(α2−β2)/2)(dy)

= µ+
2λβ(α2 − β2 − 1)

(α2 − β2 + 1)2 + 4β2
.

c) The limiting t distributions are normal variance mixtures with an inverse

Gamma distribution: t(λ, δ, µ) = N(µ, y) ◦ iG(λ, δ
2

2 ). By Proposition 1.23 c)
we have aiG(λ,δ2/2) = 0 and UiG(λ,δ2/2)(x) = δ21[0,∞)(x)

∫ x
0 g|λ|

(
2δ2y

)
dy. Thus

the generating triplet can be obtained from the formulas derived in part a) by
inserting α = β = 0 and observing that max(0, λ) = 0 in this case.
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d) This case is very similar to the latter one. Here we have GH(λ, α,±α, δ, µ) =

N(µ± αy, y) ◦ iG(λ, δ
2

2 ), so we get the generating triplet analogously as before
by inserting β = ±α and max(0, λ) = 0 in the formulas of part a). �

Observe that the function UV G(λ,α,β,µ) has only two jumps of height λ at −α−β
and α−β, and is constant elsewhere. From the definition of (extended) genera-
lized Γ-convolutions (see pp. 29–32) we infer that these jumps correspond to the
Gamma distributions G(λ, α−β) and −G(λ, α+β) (where the latter denotes a
Gamma distribution on (R−,B−) with density d−G(λ,α+β)(x) = dG(λ,α+β)(−x))
and conclude that a VG distributed random variable equals in probability the
shifted difference of two independent Gamma variables. More precisely we have

Corollary 1.28 For every VG distribution we have the decomposition

V G(λ, α, β, µ) = −G(λ, α+ β) ∗G(λ, α− β) ∗ εµ.

Equivalently, let X ∼ V G(λ, α, β, µ) and X1, X2 be independent random vari-

ables with L(X1) = G(λ, α−β) and L(X2) = G(λ, α+β), then X
d
= X1−X2+µ.

Proof: From the proof of Proposition 1.26 we know, using aG(λ,(α2−β2)/2) = 0,
that bV G(λ,α,β,µ) = µ+

∫∞
−∞

y
1+y2 UV G(λ,α,β,µ)(dy). Thus inserting the generating

triplet given in Corollary 1.27 b) into the general equation (1.26) yields

φV G(λ,α,β,µ)(u) = exp

[
iubV G −

∫ +∞

−∞

(
ln

(
1− iu

y

)
+

iuy

1 + y2

)
UV G(dy)

]
= exp

[
iuµ−

∫ +∞

−∞
ln

(
1− iu

y

)
UV G(λ,α,β,µ)(dy)

]
= exp

[
iuµ− λ ln

(
1 +

iu

α+ β

)
− λ ln

(
1− iu

α− β

)]
=

(
1 +

iu

α+ β

)−λ(
1− iu

α− β

)−λ
eiuµ

= φ−G(λ,α+β)(u)φG(λ,α−β)(u)φεµ(u)

where the last line follows from Proposition 1.9 and the remark thereafter (see
also p. 29). The reformulation in terms of random variables is obvious. �

Remark: The fact that all GH distributions and their limits discussed above
are extended generalized Γ-convolutions in particular implies that all of them
are selfdecomposable. This can be shown analogously as in the proof of Propo-
sition 1.20: Combining equations (1.29) and (1.25) one easily sees that the Lévy
measure of every extended generalized Γ-convolution possesses a density that is
increasing on (−∞, 0) and decreasing on (0,∞), hence the corresponding dis-
tributions are selfdecomposable by Lemma 1.4. Alternatively this can also be
proven with the help of the mixture representations: Since GIG distributions
and, by the Continuity Theorem 1.22, all of its weak limits are contained in Γ0,
they are selfdecomposable according to Proposition 1.20, and by Lemma 1.6 d)
this property transfers to every normal mean-variance mixture generated from
them.
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1.6.4 Lévy–Khintchine representations of GH distributions

Similarly as in the GIG case, the Lévy–Khintchine representations of GH dis-
tributions can easily be derived from the generating triplets (bGH , cGH , UGH)
given in Corollary 1.27 and equations (1.29) and (1.25). The results are merged
in the following

Proposition 1.29 The characteristic functions of GH(λ, α, β, δ, µ)-distributi-
ons can be represented as follows:

a) If δ > 0 and |β| < α, then

φGH(λ,α,β,δ,µ)(u) = exp

[
iuE[GH] +

∫ +∞

−∞

(
eiux − 1− iux

)
gGH(λ,α,β,δ,µ)(x) dx

]
where the mean E[GH] of GH(λ, α, β, δ, µ) is given by (1.11), and the density
of the Lévy measure is

gGH(λ,α,β,δ,µ)(x) =

=
eβx

|x|

(∫ ∞
0

e−|x|
√

2y+α2

π2y
[
J2
|λ|
(
δ
√

2y
)

+ Y 2
|λ|
(
δ
√

2y
)] dy + max(0, λ)e−α|x|

)
. (1.33)

b) If λ > 0 and δ = 0 (Variance-Gamma limit), we have

φV G(λ,α,β,µ)(u) = exp

[
iuE[V G] +

∫ +∞

−∞

(
eiux − 1− iux

)
gV G(λ,α,β,µ)(x) dx

]
.

The mean E[V G] of V G(λ, α, β, µ) is given by (1.16), and the Lévy density is

gV G(λ,α,β,µ)(x) =
λ

|x|
eβx−α|x|. (1.34)

c) If λ < 0 and α = β = 0 (t limiting case), then

φt(λ,δ,µ)(u) = exp

(
iuµ+

∫ +∞

−∞

(
eiux − 1− iux1[−1,1](x)

)
gt(λ,δ,µ)(x) dx

)
,

and the density of the Lévy measure is

gt(λ,δ,µ)(x) =
1

|x|

∫ ∞
0

e−|x|
√

2y

π2y
[
J2
|λ|
(
δ
√

2y
)

+ Y 2
|λ|
(
δ
√

2y
)] dy . (1.35)

d) In the limit case with λ < 0 and |β| = α > 0 we have

φGH(λ,α,±α,δ,µ)(u) =

= exp

[
iu

(
µ+

∫ +∞

−∞

(
1− e−|y|

y
− y

1 + y2

)
UGH(λ,α,±α,δ,µ)(dy)

)

+

∫ +∞

−∞

(
eiux − 1− iux1[−1,1](x)

)
gGH(λ,α,±α,δ,µ)(x) dx

]
,

and the Lévy density is obtained from (1.33) by inserting β = ±α.
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Proof: a) It follows from (1.25) and (1.29) that the parameter c within the
representation (1.26) of the characteristic function of an extended generalized
Γ-convolution equals the Gaussian coefficient c of the Lévy–Khintchine formula
(which justifies to use the same letter in both cases). By Corollary 1.27 a)
we have cGH(λ,α,β,δ,µ) = 0, consequently the Gaussian part of the correspond-
ing Lévy–Khintchine representation vanishes. Moreover, a truncation function
within the integral term of the Lévy–Khintchine representation can be omitted
since GH distributions possess moments of arbitrary orders, and the drift term
then is given by the mean of the distribution (see the remark on p. 30). Hence
it only remains to show that the density of the Lévy measure has the desired
form. Equations (1.25) and (1.29) imply

gGH(x) = −1(−∞,0)(x)
1

x

∫ 0

−∞
e−xy UGH(dy) + 1(0,∞)(x)

1

x

∫ ∞
0

e−xy UGH(dy)

with UGH as given in Corollary 1.27 a). The measure induced by UGH has
two point masses of size max(0, λ) at −α − β and α − β and the density
sign(x)U ′GH(λ,α,β,δ,µ)(x) = sign(x)δ2g|λ|

(
δ2x2 + 2δ2βx − δ2(α2 − β2)

)
(x + β)

on R \ [−α− β, α− β], thus we get

gGH(λ,α,β,δ,µ)(x) =

= −1(−∞,0)(x)
1

x

(
max(0, λ)e−(−α−β)x

−
∫ −α−β
−∞

δ2e−xy(y + β)g|λ|
(
δ2y2 + 2δ2βy − δ2(α2 − β2)

)
dy

)

+1(0,∞)(x)
1

x

(
max(0, λ)e−(α−β)x

+

∫ ∞
α−β

δ2e−xy(y + β)g|λ|
(
δ2y2 + 2δ2βy − δ2(α2 − β2)

)
dy

)
,

and with the substitution z = y2

2 + βy we finally obtain

gGH(λ,α,β,δ,µ)(x) =

= 1(−∞,0)(x)
eβx

|x|

(
max(0, λ)e−α|x|

−
∫ α2−β2

2

∞
δ2ex
√

2z+β2
g|λ|
(
2δ2z − δ2(α2 − β2)

)
dz

)

+1(0,∞)(x)
eβx

|x|

(
max(0, λ)e−α|x|

+

∫ ∞
α2−β2

2

δ2e−x
√

2z+β2
g|λ|
(
2δ2z − δ2(α2 − β2)

)
dz

)
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=
eβx

|x|

(∫ ∞
0

δ2e−|x|
√

2y+α2
g|λ|
(
2δ2y

)
dy + max(0, λ)e−α|x|

)
=
eβx

|x|

(∫ ∞
0

e−|x|
√

2y+α2

π2y
[
J2
|λ|
(
δ
√

2y
)

+ Y 2
|λ|
(
δ
√

2y
)] dy + max(0, λ)e−α|x|

)
.

b) Similarly as before, VG distributions possess arbitrary moments, and by
Corollary 1.27 b) cV G(λ,α,β,µ) = 0, so again it only remains to verify the formula
for the Lévy density. With UV G(λ,α,β,δ,µ)(x) = λ

(
1[α−β,∞)(x)−1(−∞,−α−β](x)

)
,

it is found to be

gV G(λ,α,β,µ)(x) =

= −1(−∞,0)(x)
1

x

∫ 0

−∞
e−xy UV G(dy) + 1(0,∞)(x)

1

x

∫ ∞
0

e−xy UV G(dy)

= −1(−∞,0)(x)
λ

x
e−(−α−β)x + 1(0,∞)(x)

λ

x
e−(α−β)x

=
λ

|x|
eβx−α|x|.

c) Again the Gaussian part within the Lévy–Khintchine representation vanishes
because ct(λ,δ,µ) = 0 by Corollary 1.27 c). However, the t distributions have finite

means iff λ < −1
2 , so in general the truncation function within the integral term

of the Lévy–Khintchine formula is indispensable, and the drift coefficient has to
be determined according to (1.25). Together with (1.28) and (1.29) we obtain

b = µ+

∫ ∞
0

[∫ ∞
0

e−xy

1 + x2
dx− y

1 + y2

]
Ut(λ,δ,µ)(dy)

−
∫ 0

−∞

[∫ 0

−∞

e−xy

1 + x2
dx+

y

1 + y2

]
Ut(λ,δ,µ)(dy)

+

∫ ∞
0

(
x1[0,1](x)− 1

x
1R\[0,1](x)

)
x

1 + x2

∫ ∞
0
e−xy Ut(λ,δ,µ)(dy) dx

−
∫ 0

−∞

(
x1[−1,0](x)− 1

x
1R\[−1,0](x)

)
x

1 + x2

∫ 0

−∞
e−xy Ut(λ,δ,µ)(dy) dx

= µ+

∫ ∞
0

(∫ 1

0
e−xy dx− y

1 + y2

)
Ut(λ,δ,µ)(dy)

−
∫ 0

−∞

(∫ 0

−1
e−xy dx+

y

1 + y2

)
Ut(λ,δ,µ)(dy)

= µ+

∫ +∞

−∞

(
1− e−|y|

y
− y

1 + y2

)
Ut(λ,δ,µ)(dy) = µ,

because the measure induced by Ut(λ,δ,µ) is symmetric around the origin (see
Corollary 1.27 c)) but the integrand is antisymmetric. The density of the cor-
responding Lévy measure can be derived in exactly the same way as in part a).

d) This case is very similar to the previous one: By Corollary 1.27 d) we have
cGH(λ,α,±α,δ,µ) = 0, and the Lévy density can again be derived analogously as
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in part a). In general, the truncation function within the integral term of the
Lévy–Khintchine formula cannot be omitted either because the limit distribu-
tions have finite first moments only if λ < −1. The drift term of the Lévy–
Khintchine representation is obtained from almost the same calculation as in
c) if one replaces Ut(λ,δ,µ) by UGH(λ,α,±α,δ,µ), but because of the asymmetry of
the latter function one does not get closed expressions in the end. �

Remark: The Lévy measure of a Gamma distribution G(λ, σ) has the density
gG(λ,σ)(x) = λ

x e
−σx (see Proposition 1.24 b)), so equation (1.34) shows that gV G

is just the sum of the Lévy densities g−G(λ,−α−β) and gG(λ,α−β). This agrees with
(and is in fact equivalent to) the statement of Corollary 1.28.

Also note that in the t limiting case the truncation function within the
integral of the Lévy–Khintchine representation can be omitted without further
changes if λ < −1

2 , because the Lévy measure is symmetric around the origin.
In the Student’s t limiting case (δ2 = −2λ = f), we can rewrite (1.35) in the
following form:

gt(f,µ)(x) =
1

|x|

∫ ∞
0

e−|x|
√

2y

π2y
[
J2
f/2

(√
2fy

)
+ Y 2

f/2

(√
2fy

)] dy,

which is the density of the Lévy measure of a Student’s t-distribution with f
degrees of freedom.

The asymptotics of the Lévy densities near the origin can be derived simi-
larly as in the GIG case. By equation (1.33) we have

gGH(λ,α,β,δ,µ)(x) =
eβx

|x|

(∫ ∞
0

δ2e−|x|
√

2y+α2
g|λ|
(
2δ2y

)
dy + max(0, λ)e−α|x|

)
,

which remains also valid for all limit distributions with negative λ as seen above.
Applying the substitution z =

√
2y + α2 − α we get

gGH(x) =
eβx−α|x|

|x|

(∫ ∞
0

e−|x|zδ2(z + α)g|λ|
(
δ2(z2 + 2αz)

)
dz + max(0, λ)

)
.

Clearly, the integral term now is a Laplace transform, hence its asymptotic
behaviour can also be determined with the help of Theorem 1.25. On page 40
we already saw that δ2g|λ|(2δ

2y) ∼ δ(2π2y)−
1
2 , y →∞. Replacing y by z2

2 and

multiplying the result by z we get δ2(z + α)g|λ|(δ
2(z2 + 2αz)) ∼ δ

π , z →∞, so

the assumptions on v in Theorem 1.25 are fulfilled with ρ = 1 and L(y) ≡ δ
π .

Consequently the asymptotic behaviour of the Laplace transform near the origin

is given by δ
π |x|

−1, and for the preceeding factor obviously holds eβx−α|x|

|x| ∼ |x|−1,
x→ 0, so altogether we have

gGH(λ,α,β,δ,µ)(x) ∼ δ

π
x−2, x→ 0, (1.36)

including the limits GH(λ, 0, 0, δ, µ) = t(λ, δ, µ) and GH(λ, α,±α, δ, µ) with
λ < 0. Only the Lévy densities of VG distributions behave differently, namely

gV G(λ,α,β,µ)(x) =
λ

|x|
eβx−α|x| ∼ λ

|x|
, x→ 0.
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Remark: Apart from the VG limiting case, the asymptotic behaviour of the
Lévy densities implies

∫
[−1,1] |x| νGH(dx) =

∫
[−1,1] |x| gGH(x) dx = ∞, conse-

quently the sample paths Xt(ω) of all Lévy processes induced by GH distribu-
tions and their limits with λ < 0 considered above almost surely have infinite
variation on (0, t] for every t > 0 (Sato (1999, Theorem 21.9)). The sample
paths of a VG Lévy process, however, have finite variation on every interval
(0, t] almost surely because

∫
[−1,1] |x| νV G(dx) =

∫
[−1,1] λe

βx−α|x| dx < ∞. The
latter can alternatively be deduced from Corollary 1.28: it implies that a VG
process equals in law the difference of two Gamma processes which have in-
creasing paths almost surely (see, for example, the proof of Proposition 1.8).

One may ask if the above method could be exploited further to obtain higher-
order asymptotics of the Lévy densities around the origin. Unfortunately this is
not the case. Equations (A.16) and (A.17) imply that δ2(z+α)g|λ|(δ

2(z2+2αz))

has an asymptotic expansion of the form δ
π +

∑
n≥1 anz

−n for z →∞, but pow-
ers xr with r ≤ −1 do not provide any information about the behaviour of
the Laplace transform at the origin since the bound ρ > 0 in Theorem 1.25
cannot be lowered. Thus higher-order terms can only be obtained with different
approaches.

In Raible (2000, Proposition 2.18), the second-order terms have been derived
with the help of the Fourier transform of the modified Lévy measure ν̃GH(dx) =
x2νGH(dx). For GH distributions with 0 ≤ |β| < α and δ > 0, he found the
asymptotic behaviour

gGH(λ,α,β,δ,µ)(x) =
δ

π
x−2 +

λ+ 1
2

2
|x|−1 +

δβ

π
x−1 + o

(
|x|−1

)
, x→ 0.

Since the Lévy densities gt(λ,δ,µ) and gGH(λ,α,±α,δ,µ) equal the pointwise limits
of gGH(λ,α,β,δ,µ) for α, β → 0 and |β| → α, respectively, it is tempting to infer
that the above asymptotics are also valid for these limiting cases, but in general
this is not necessarily true: A crucial assumption in the proof of Raible (2000,
Proposition 2.18) is that the modified Lévy measure ν̃GH(dx) is a finite mea-
sure on (R,B), that is,

∫
R
x2gGH(x) dx < ∞. By the remark on p. 30, this is

equivalent to the existence of finite second moments of the corresponding GH
distribution, but as we have seen before (cf. pp. 23 and 25), for the limit distri-
butions t(λ, δ, µ) and GH(λ, α,±α, δ, µ) this imposes an additional constraint
on λ, so we arrive at the following

Conjecture 1.30

a) For every t distribution t(λ, δ, µ) with λ < −1, the asymptotic behaviour
of the corresponding Lévy density near the origin is given by

gt(λ,δ,µ)(x) =
δ

π
x−2 +

λ+ 1
2

2
|x|−1 + o

(
|x|−1

)
, x→ 0.

b) For every GH(λ, α,±α, δ, µ)-distribution with λ < −2, the asymptotics of
the corresponding Lévy densitiy are

gGH(λ,α,±α,δ,µ)(x) =
δ

π
x−2 +

λ+ 1
2

2
|x|−1± δα

π
x−1 + o

(
|x|−1

)
, x→ 0.
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The following example shows that in some cases the asymptotic behaviour of
the Lévy density is still correctly described by the conjecture above although
the constraints on λ are not fulfilled, so it might be possible that the latter
could either be weakened or be replaced by some other condition.

By (1.35), the Lévy densitiy of a Cauchy distribution t(−1
2 , δ, µ) is given by

gt(− 1
2
,δ,µ)(x) =

1

|x|

∫ ∞
0

e−|x|
√

2y

π2y
[
J2

1
2

(
δ
√

2y
)

+ Y 2
1
2

(
δ
√

2y
)] dy,

and from equation (A.12) it follows that J2
1
2

(δ
√

2y
)

+Y 2
1
2

(
δ
√

2y
)

= 2
πδ
√

2y
, hence

gt(− 1
2
,δ,µ)(x) =

δ

π|x|

∫ ∞
0

e−|x|
√

2y

√
2y

dy =
z=
√

2y

δ

π|x|

∫ ∞
0

e−|x|z dz =
δ

π
x−2,

so part a) of Conjecture 1.30 still applies, but λ = −1
2 > −1. Finally we take a

closer look at the NIG distributions from which the Cauchy distributions arise
as weak limits if the parameters α and β both tend to zero. In this case we have

gNIG(α,β,δ,µ)(x) =
eβx

|x|

∫ ∞
0

e−|x|
√

2y+α2

π2y
[
J2

1
2

(
δ
√

2y
)

+ Y 2
1
2

(
δ
√

2y
)] dy

=
δeβx

π|x|

∫ ∞
0

e−|x|
√

2y+α2

√
2y

dy =
δeβx

π|x|

∫ ∞
0

e−|x|
√
z2+α2

dz

=
δα

π|x|
eβxK1

(
α|x|

)
,

where the last equality follows from the fact that e−|x|
√
z2+α2

equals a non-
normalized density of a symmetric hyperbolic distribution with parameters
α = |x|, β = 0, δ = α and µ = 0, consequently the value of the integral in the
last but one line must be 1

2 a(1, |x|, 0, α, 0)−1 where a(1, |x|, 0, α, 0) = 1
2αK1(α|x|)

is the norming constant of a HYP(|x|, 0, α, 0)-distribution (see p. 14). By equa-
tion (A.8) K1(y) ∼ 1

y for y ↓ 0, thus

lim
α,β→0

gNIG(α,β,δ,µ)(x) = lim
α,β→0

δα

π|x|
eβxK1

(
α|x|

)
=
δ

π
x−2 = gt(− 1

2
,δ,µ)(x),

so the Lévy density of a Cauchy distribution can in fact be obtained as pointwise
limit of the Lévy density of an NIG distribution.

1.7 Approximations based on Gamma and Normal
variables

At the beginning of the present chapter we pointed out that exponential Lévy
processes St = S0e

Lt provide a flexible and accurate model for asset prices. A
central application of such models is the pricing of options and other derivatives.
We are not going to discuss option pricing theory and methods in greater detail
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here (an overview of option pricing in Lévy models with many references can
be obtained from Schoutens (2006)), but simply want to make the following
point: If the option to be considered is of European type (that is, it can only be
exercised at some fixed future date T ) and its payoff only depends on the asset
price ST at the maturity time T , then it is usually possible to derive an explicit
formula for the option price which can be evaluated numerically in an efficient
way. If, however, the payoff of the option depends on the whole path (St)0≤t≤T
and/or the option is of American type and thus can be exercised at an arbitrary
point of time between the present date t = 0 and the maturity date T , closed-
form solutions of the option pricing problem typically do not exist. In these cases
a fair option price can only be determined by either trying to solve the associated
partial (integro) differential equation numerically (if an appropriate algorithm
for this purpose is known at all) or by Monte Carlo-methods. The main task
of the latter approach is to find an approximation scheme for the driving Lévy
process L which enables a reasonable fast and accurate generation of sample
paths (Lnt )0≤t≤T and hence (Snt )0≤t≤T which converge in law to (Lt)0≤t≤T and
(St)0≤t≤T , respectively.

Remark: We shall use the notation
L−→ to indicate weak convergence of the

laws of real valued random variables as well as of laws of stochastic processes. In

the latter case (Lnt )t≥0
L−→ (Lt)t≥0 has to be understood in the sense of Jacod

and Shiryaev (2003, p. 349), that is, as weak convergence of L(Ln) to L(L) in
P(D(R)), where P(D(R)) denotes the space of all probability measures on the
Skorokhod space D(R) equipped with the Skorokhod topology.

For the classical model where (St)t≥0 is a geometric Brownian motion and

Lt = σBt+
(
r− σ2

2

)
t is a Brownian motion with drift, a very simple approxima-

tion scheme using only Bernoulli variables exists: Suppose ξni, 1 ≤ i ≤ n, are iid

with Q
(
ξn1 = σ√

n

)
= 1

2 + 1
2

r−σ
2

2

σ
√
n

= 1 − Q
(
ξn1 = − σ√

n

)
, then

∑n
i=1 ξni

L−→ L1

for n → ∞. With slight modifications it is also possible to approximate the
process (Lt)0≤t≤T on the whole time interval. Take iid Bernoulli variables ξ̄ni,

1 ≤ i ≤ kn = [Tn], with Q
(
ξ̄n1 = σ

√
T√
n

)
= 1

2 +
(r−σ

2

2
)
√
T

2σ
√
n

= 1−Q
(
ξ̄n1 = −σ

√
T√
n

)
,

and define Lnt :=
∑[knt]

i=1 ξ̄ni, then (Lnt )0≤t≤T
L−→ (Lt)0≤t≤T for n → ∞. This

approach and its application to option pricing goes back to Cox, Ross, and
Rubinstein (1979). In the following we present some possible approximations of
GH distributions and Lévy processes.

Remark: If the sample paths (Lnt )0≤t≤T or (Snt )0≤t≤T are generated in order
to derive some option prices thereof, one has to be aware that all simulations
have to be performed under a risk neutral martingale measure Q. To emphasize
this fact, we used Q in the notation above and also changed the drift of the
Brownian motion from µ to r accordingly. Contrary to the Brownian world, in
models driven by general Lévy processes the risk neutral measure is typically
not unique (in fact, the class of equivalent martingale measures can be very
large, as Eberlein and Jacod (1997) have shown), and it is a priori not clear if
the driving process L remains in the desired model class under a corresponding
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measure change. However, here we do not necessarily need to care about this,
because Raible (2000, Corollary 2.29) has shown that assuming L is a GH Lévy
process under both the real world measure P and the risk neutral measure Q
imposes no essential restriction.

For the rest of the section we suppose that (Lt)t≥0 is a Lévy process in-
duced by a GH(λ, α, β, δ, µ)-distribution (including the limits with finite pa-
rameters). Our first aim is to define a uan triangular scheme (Xni)1≤i≤kn,n≥1

with
∑kn

i=1Xni
L−→ L1 for n→∞, where uan means uniformly asymptotically

negligible, that is, limn→∞ sup1≤i≤kn P (|Xni| > ε) = 0 for all ε > 0. For practi-
cal purposes, one may wish to keep the triangular scheme as simple as possible
and thus ask which minimal requirements the Xni have to fulfill in any case. If
we denote the distribution function of Xni by Fni, necessary conditions for the
desired convergence of

∑kn
i=1Xni are

kn∑
i=1

Fni(y) −→
n→∞

νGH
(
(−∞, y]

)
=

∫ y

−∞
gGH(x) dx, y < 0,

(1.37)
kn∑
i=1

(
1− Fni(y)

)
−→
n→∞

νGH
(
[y,∞)

)
=

∫ ∞
y

gGH(x) dx, y > 0.

(see for example Loève (1977, p. 323)). The formulas for the Lévy densities
derived in the previous section imply that gGH is strictly positive on the whole
real line, so we conclude from the above that the joint range

⋃kn
i=1Xni(Ω) of

the Xni necessarily must be, at least in the limit, a dense subset of R.

Remark: If the Xni are iid and
∑kn

i=1Xni
L−→ L1, then (Lt)0≤t≤1 can easily be

approximated by Lnt :=
∑[knt]

i=1 Xni, 0 ≤ t ≤ 1, because in this case we have

φLnt (u) = φXn1(u)[knt] =
(
φknXn1

(u)
) [knt]
kn ,

and φknXn1
(u)→ φL1(u) for every u ∈ R. Moreover, [knt]

kn
→ t uniformly on [0, 1],

so it follows from the equation above that for arbitrarily fixed u the convergence
φLnt (u) → φLt(u) = φL1(u)t is uniform in t ∈ [0, 1], and Jacod and Shiryaev

(2003, Chapter VII, Corollary 4.43) then assures that (Lnt )0≤t≤1
L−→ (Lt)0≤t≤1.

The approximation can readily be extended from the time intervall [0, 1] to
[0, T ] by using iid copies Ln,j of Ln to simulate the increments (Lt−Lj)j≤t≤j+1

where 1 ≤ j < T . Alternatively, if one can find iid random variables X̄ni with∑k′n
i=1 X̄ni

L−→ LT and defines Lnt :=
∑[k′nt/T ]

i=1 X̄ni, 0 ≤ t ≤ T , then a completely

analogous reasoning as before yields (Lnt )0≤t≤T
L−→ (Lt)0≤t≤T .

Equation (1.37) suggests that a convergent triangular scheme with iid ran-
dom variables (Xni)1≤i≤kn,n≥1 may be obtained from a suitable discretization
of the Lévy measure νGH . This approach was used by Maller, Solomon, and
Szimayer (2006) to derive American option prices from the simulated sample
paths. They choose sequences m+

n ,m
−
n ≥ 1 and ∆n with m±n →∞, ∆n ↓ 0 and
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limn→∞m
±
n∆n > 0. The random variables Xni are then defined on an equidis-

tant grid by P (Xni = k∆n) = 1
kn
νGH

((
(k − 1

2)∆n, (k + 1
2)∆n]

)
, where −m−n ≤

k ≤ m+
n , k 6= 0, and P (Xni = 0) = 1−

∑m+
n

k=−m−n , k 6=0
P (Xni = k∆n). To ensure

that the Xni have a proper probability distribution, one has to make the techni-
cal assumption lim infn→∞

√
kn∆n > 0. This essentially amounts to an approx-

imation of the Lévy measure νGH on
(
−(m−n + 1

2)∆n, (m
+
n + 1

2)∆n

]
\
(
−∆n

2 ,
∆n
2

]
with point masses of size νGH

((
(k − 1

2)∆n, (k + 1
2)∆n]

)
located at k∆n with

−m−n ≤ k ≤ m+
n , k 6= 0. Because the definition of the Xni is solely based on the

truncated Lévy measure and neglects possible non-zero drift terms occuring in
the Lévy–Khintchine representation, one further has to add a suitable centering

sequence an to get the desired convergence, that is,
∑kn

i=1(Xni − an)
L−→ L1. If

E[L1] <∞, a possible choice is an := E[L1]
kn

+E
[
Xn11{|Xn1|≤1}

]
, otherwise E[L1]

in the preceeding equation has to be replaced by the drift term b of the Lévy–
Khintchine triplet of L1.

The results of the previous section allow for an alternative approxima-
tion scheme consisting of suitably scaled and shifted Gamma variables. Let
us note before that the proof of Proposition 1.26 implies that the charac-
teristic functions of extended generalized Γ-convolutions F arising as normal
mean-variance mixtures with mixing distributions G ∈ Γ0 may be represented
in a simpler form as in equation (1.26) because in this case we have bF =
µ+βaG+

∫ +∞
−∞

y
1+y2 UF (dy), and the integral term at the end has a finite value,

hence it cancels out with the second summand under the integral occuring in
(1.26). Applying this to the case of GH distributions we obtain

φGH(u) = exp

[
iuµ−

∫ +∞

−∞
ln

(
1− iu

y

)
UGH(dy)

]
(1.38)

und thus arrive at the following

Proposition 1.31 Consider a GH(λ, α, β, δ, µ)-distribution with corresponding
function UGH given by either of the cases considered in Corollary 1.27 and the
following assumptions:

a) For all n ≥ 1 there exists some Kn > α−β and a partition α−β = xn1 <
xn2 < · · · < xnkn = Kn of [α− β,Kn].

b) If λ > 0, set Xn1 := X+
n1 −X

−
n1 + µ with independent Gamma variables

X+
n1 ∼ G(λ, α− β) and X−n1 ∼ G(λ, α+ β), otherwise set Xn1 ≡ µ.

For 2 ≤ i ≤ kn, let Xni = X+
ni − X

−
ni be independent random variables

where X+
ni ∼ G(λni, σ

+
ni) and X−ni ∼ G(λni, σ

−
ni) are independent Gamma

variables with σ+
ni = xni, σ

−
ni = xni + 2β and

λni = UGH(xni)−UGH(xni−1) = δ2

∫ x2
ni
2

+βxni

x2
ni−1

2
+βxni−1

g|λ|
(
2δ2y−δ2(α2−β2)

)
dy.

If Kn ↑ ∞ and sup2≤i≤kn |xni − xni−1| → 0 for n→∞, then
∑kn

i=1Xni
L−→ L1

where L1 ∼ GH(λ, α, β, δ, µ).
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Proof: The assertion immediately follows from the Continuity Theorem 1.22
and the remarks thereafter (see also the considerations on p. 29). Note that
with the above setting UGH is approximated from below on [α − β,Kn] and
from above on [−Kn − 2β,−α− β] by step functions of the form

Un(x) =
(
1[α−β,∞)(x)− 1(−∞,−α−β](x)

)
·max(0, λ) +

+

kn∑
i=2

(
UGH(xni)− UGH(xni−1)

)(
1[xni,∞)(x)− 1(−∞,−xni−2β](x)

)
.

Since UGH is continuous on R \ [−α− β, α− β], this is of course by far not the
only possibility, but probably one of the simplest. �

The careful reader will also observe that the triangular scheme above is not
completely uniformly asymptotically negligible because Xn1 does in general
not fulfill the uan-condition, only the Xni with i ≥ 2 do so. But since in this
case all Xni are already infinitely divisible themselves, the uan-property can be
neglected here. What is more important, the Xni are obviously not identically
distributed, so the triangular scheme cannot directly be used to simulate paths
of a GH Lévy process (Lt)0≤t≤T over some finite time intervall [0, T ], but it can
easily be extended to obtain the desired properties. We first note that LT can
be approximated along exactly the same lines of Proposition 1.31 if one replaces
µ by µT and UGH by UGHT . This follows immediately from (1.38) and the fact
that φLT (u) = φTL1

. Therewith we get

Corollary 1.32 Let (Lt)t≥0 be a Lévy process with L(L1) = GH(λ, α, β, δ, µ)
and corresponding function UGH . Suppose that

a) For all n ≥ 1 there exists some Kn > α−β and a partition α−β = xn1 <
xn2 < · · · < xnmn = Kn of [α− β,Kn].

b) If λ > 0, set Yn1 := Y +
n1 − Y

−
n1 + µT

kn
with independent Gamma variables

Y +
n1 ∼ G

(
λT
kn
, α− β

)
and Y −n1 ∼ G

(
λT
kn
, α+ β

)
, otherwise set Yn1 ≡ µT

kn
.

For 2 ≤ j ≤ mn, let Ynj = Y +
nj − Y −nj be independent random vari-

ables where Y +
nj ∼ G(λnj , σ

+
nj) and Y −nj ∼ G(λnj , σ

−
nj) are independent

and σ+
nj = xnj, σ

−
nj = xnj + 2β and λnj = T

kn

(
UGH(xnj)− UGH(xnj−1)

)
.

c) Let (X̄ni)1≤i≤kn be iid copies of X̄n :=
∑mn

j=1 Ynj and Lnt :=
∑[knt/T ]

i=1 X̄ni,
0 ≤ t ≤ T .

If Kn, kn ↑ ∞ and sup2≤j≤mn |xnj − xnj−1| → 0 for n → ∞, then we have

(Lnt )0≤t≤T
L−→ (Lt)0≤t≤T .

Proof: The result is an immediate consequence of the convolution property
of Gamma distributions (see Proposition 1.11 d) and the remark on p. 12),
Proposition 1.31 and the remark on p. 53. �

Remark: In the VG limiting case the approximation scheme simplifies con-
siderably because UV G is constant on [α− β,∞) by Corollary 1.27 b) and thus
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Y +
nj = Y −nj ≡ 0 for j ≥ 2 (observe that by Proposition 1.9 limλ→0 LG(λ,σ)(u) =

limλ→0

(
1 + u

σ

)−λ
= 1 = Lε0(u), so we may identify a G(0, σ)-distribution with

the unit mass located in the origin). If we assume that (Y +
ni )1≤i≤kn are iid with

Y +
n1 ∼ G

(
λT
kn
, α− β

)
, (Y −ni )1≤i≤kn are iid with Y −n1 ∼ G

(
λT
kn
, α+ β

)
and kn ↑ ∞,

then the process

Lnt :=

[knt/T ]∑
i=1

(
Y +
ni − Y

−
ni +

µT

kn

)
=

[knt/T ]∑
i=1

Y +
ni −

[knt/T ]∑
i=1

Y −ni +
[kn

t
T ]

kn
µT

converges on [0, T ] in law to the VG process generated by V G(λ, α, β, µ), and
the two sums in the rightmost equation converge in law to the Gamma processes
generated by G(λ, α− β) and G(λ, α+ β), respectively.

Note that under the assumptions of Corollary 1.32 the range of the approxi-
mating process (Lnt )0≤t≤T is R, in contrast to the approach of Maller, Solomon,
and Szimayer (2006) where by construction Lnt can only take values on a finite
grid. The latter of course eases the calculation of American option prices (for
which the corresponding scheme was originally designed), but might be less
useful in simulation based pricing of exotic options such as Asian or Lookback
options where it is important to reproduce the path properties in a more realistic
way. Moreover, the Gamma approximation method might in general be easier
to implement than the scheme suggested by Maller et al. It does not require
an additional centering sequence, and the discretization of the measure UGH
only involves the evaluation of a single integral (see Proposition 1.31), whereas
the discretization of the Lévy measure νGH usually requires the computation of
double integrals since the formulas of the Lévy densities gGH already contain an
integral term (only some special GH subclasses like NIG or VG admit simpler
representations of their Lévy densities).

Having solved the difficulties of calculating the necessary weights and pa-
rameters, the remaining task is to simulate the random variables X̄ni. Within
the framework of Maller et al. this amounts to sampling from a discrete dis-
tribution with finite support, whereas under the assumptions of Corollary 1.32
the X̄ni are obtained as sums of finitely many Gamma variables. At first glance
the latter method seems to be fairly ineffective compared to the first one since
generating many random variates to finally obtain a single one appears much
more time-consuming than to sample once from the desired distribution di-
rectly. But one should keep in mind that sampling from an arbitrary discrete
distribution becomes more complicated and thus slower as the number of el-
ements in the support increases. Gamma variates, however, can be simulated
very fast and efficiently by rejection methods for any choice of the parameters λ
and σ (see, for example, Devroye (1986, chapter IX.3) or Marsaglia and Tsang
(2000) and the references therein). Therefore one could expect that the differ-
ence in performance of both approximation methods is not too large and might
even decrease as n increases, but we leave a thorough investigation of numerical
implementations to future research.

Proposition 1.8 and equation (1.5) imply that every GH Lévy process (Lt)t≥0

admits a representation of the form Lt = µt+ βτ(t) +Bτ(t), where (τ(t))t≥0 is
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a GIG process with L
(
τ(1)

)
= GIG

(
λ, δ,

√
α2 − β2

)
and (Bt)t≥0 is a standard

Brownian motion independent of τ . This provides an alternative simulation
method for L using approximations τn of the subordinating GIG process τ :

Suppose X̄ni are iid random variables with
∑kn

i=1 X̄ni
L−→ τ(T ). Define τn(t) :=∑[knt/T ]

i=1 X̄ni, 0 ≤ t ≤ T , and Lnt := µt + βτn(t) + Bτn(t), then we also have

(Lnt )0≤t≤T
L−→ (Lt)0≤t≤T . This can be proven as follows: Similarly to the proof

of Lemma 1.6 (part b) and c)) we see that

φLnt (u) = eiuµtLX̄n1

(
u2

2 − iuβ
)[knt/T ]

= eiuµt
(
LX̄n1

(
u2

2 − iuβ
)kn) [knt/T ]

kn ,

and analogously as in the remark on p. 53 we conclude φLnt (u) → φLt(u) uni-
formly on [0, T ]. Jacod and Shiryaev (2003, Chapter VII, Corollary 4.43) then
again yields the desired convergence.

The approximation of GIG processes can be done in a very similar way to
that of GH processes. For the sake of completeness, we summarize the result in
the following corollary which can be proven along the same lines as before.

Corollary 1.33 Let (τ(t))t≥0 be a Lévy process with L
(
τ(1)

)
= GIG(λ, δ, γ)

and corresponding function UGIG. Suppose that

a) For all n ≥ 1 there exists some Kn > γ2

2 and a partition γ2

2 = xn1 <

xn2 < · · · < xnmn = Kn of
[γ2

2 ,Kn

]
.

b) Let Yn1 ∼ G
(
λT
kn
, γ

2

2

)
if λ > 0 and Yn1 ≡ 0 otherwise. For 2 ≤ j ≤ mn, let

Ynj ∼ G(λnj , σnj) be independent Gamma variables with σnj = xnj and

λnj =
T

kn

(
UGIG(xnj)− UGIG(xnj−1)

)
=
δ2T

kn

∫ xnj

xnj−1

g|λ|
(
2δ2y − δ2γ2

)
dy.

c) Let (X̄ni)1≤i≤kn be iid copies of X̄n :=
∑mn

j=1 Ynj and τn(t) :=
∑[knt/T ]

i=1 X̄ni,
0 ≤ t ≤ T .

If Kn, kn ↑ ∞ and sup2≤j≤mn |xnj − xnj−1| → 0 for n → ∞, then we have

(τn(t))0≤t≤T
L−→ (τ(t))0≤t≤T .

Remark: For inverse Gaussian distributions there exists a much simpler simu-
lation algorithm developed in Michael, Schucany, and Haas (1976) which only
needs a χ2

1- and a uniformly distributed random variable to generate an IG-
distributed random variate thereof. This and the convolution property of in-
verse Gaussian distributions (see Proposition 1.11 and the remark thereafter)
allow for a very fast and easy simulation of inverse Gaussian Lévy processes

(τ(t))t≥0 with L
(
τ(1)

)
= IG(δ, γ): Set kn := [Tn] and τn(t) :=

∑[knt]
i=1 X̄ni

where X̄ni ∼ IG
(
δT
kn
, γ
)

are iid, then (τn(t))0≤t≤T
L−→ (τ(t))0≤t≤T .

This also implies an easy simulation method for NIG Lévy processes (Lt)t≥0

with L(L1) = NIG(α, β, δ, µ): Since the NIG distributions inherit the convo-
lution property from the inverse Gaussian class (see equation (1.9)), the NIG
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process L can be approximated by Lnt :=
∑[knt]

i=1 Ȳni where kn is defined as

above and Ȳni are iid with Ȳni ∼ NIG
(
α, β, δTkn ,

µT
kn

)
. Using the mixture repre-

sentation Ȳni
d
= µT

kn
+ βZni +

√
ZniWni where Zni ∼ IG

(
δT
kn
,
√
α2 − β2

)
and

Wni ∼ N(0, 1) is independent of Zni, the increments Ȳni can be obtained by
generating standard normal and inverse Gaussian random variates with the help
of the Michael-Schucany-Haas-algorithm.

Let us return to the problem of simulating GH distributed random variables
for a moment. If one uses the triangular scheme defined in Proposition 1.31,
the function Un corresponding to the approximating sum

∑kn
i=1Xni (which is

given in explicit form within the proof on p. 55) is constant outside the interval
[−Kn − 2β,Kn], hence the characteristic function of

∑kn
i=1Xni is given by

φ∑kn
i=1 Xni

(u) = exp

[
iuµ−

∫ Kn

−Kn−2β
ln

(
1− iu

y

)
Un(dy)

]
.

A comparison with φGH in equation (1.38) shows that this procedure basically
leads to a truncation of the tails of the integral in the exponent. If one generates
GIG distributed random variables along the same lines, then analogously the
right tail of the integral within φGIG(u) = exp

[∫∞
0 ln

(
1− iu

y

)
UGIG(dy)

]
will be

ignored. The next proposition shows that this may be compensated by adding
an independent normal variable to the series

∑kn
i=1Xni. It goes back to Bon-

desson (1982) where the result was mentioned (in a slightly different form), but
not strictly proven. We first ensure that all required moments exist: Suppose
that XK is a random variable whose distribution is a generalized Γ-convolution
(L(XK) ∈ Γ0) with characteristic function

φXK (u) = exp

[
−
∫ ∞
K

ln

(
1− iu

y

)
U(dy)

]
(1.39)

where U fulfills the conditions (1.24), then its mean is given by

E[XK ] =
1

i

dφXK (u)

du

∣∣∣∣
u=0

=
φXK (u)

i

∫ ∞
K

i

y − iu
U(dy)

∣∣∣∣
u=0

(1.40)

=

∫ ∞
K

1

y
U(dy) <∞

if K ≥ 1 according to (1.24) which also justifies the interchange between differ-
entiation and integration, and for the variance we get

σ2
K := Var[XK ] =

1

i

d

du

∫ ∞
K

1

y − iu
U(dy)

∣∣∣∣
u=0

(1.41)

=
1

i

∫ ∞
K

i

(y − iu)2
U(dy)

∣∣∣∣
u=0

=

∫ ∞
K

1

y2
U(dy).

If instead of (1.39) the distribution of XK is an extended generalized Γ-convolu-
tion (L(XK) ∈ Γ) and has the characteristic function

φXK (u) = exp

[
−
∫
R\[−K,K]

(
ln

(
1− iu

y

)
+

iuy

1 + y2

)
U(dy)

]
(1.42)
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with U fulfilling the constraints (1.27), then for K ≥ 1 we obtain analogously

E[XK ] =

∫
R\[−K,K]

1

y(1 + y2)
U(dy) and σ2

K =

∫
R\[−K,K]

1

y2
U(dy). (1.43)

Now we are ready to state the announced

Proposition 1.34 Suppose XK has a characteristic function defined by (1.39)
or (1.42). If KσK →∞ for K →∞, then

L
(
XK − E[XK ]

σK

)
w−→ N(0, 1)

where E[XK ] and σ2
K are given by (1.40) and (1.41) or (1.43), respectively.

Proof: By the remark on p. 30, every infinitely divisible random variable X
which possesses a finite second moment admits a Lévy–Khintchine representa-
tion of the form

φX(u) = exp

(
iubX −

cXu
2

2
+

∫
R

(
eiux − 1− iux

)
νX(dx)

)
from which mean and variance are found to be

E[X] =
1

i

dφX(u)

du

∣∣∣∣
u=0

= bX , Var[X] = −
d2 ln

(
φX(u)

)
du2

∣∣∣∣
u=0

= cX +

∫
R

x2 νX(dx).

If φXK (u) is given by (1.39), then it follows from Proposition 1.20 and equa-
tions (1.25) that the Gaussian coefficient in the corresponding Lévy–Khintchine
representation vanishes (cXK = 0), and the Lévy measure of XK is νXK (dx) =

1(0,∞)(x) 1
x

∫∞
K e−xy U(dy) dx. Thus the characteristic triplet ofX∗K := XK−E[XK ]

σK
is

bX∗K = 0, cX∗K = 0, νX∗K (dx) = 1(0,∞)(x)
1

x

∫ ∞
K

e−σKxy U(dy) dx.

Applying Jacod and Shiryaev (2003, Theorem VII.2.14), to prove the weak
convergence of L(X∗K) to N(0, 1) it suffices to show that

i) lim
a↑∞

lim sup
K→∞

∫ ∞
a

x2 νX∗K (dx) = 0.

ii) lim
K→∞

∫ ∞
0

g(x) νX∗K (dx) =

∫ +∞

−∞
g(x) νN(0,1)(dx) = 0

for all continuous, bounded functions g : R → R which are 0 in some
neighbourhood of the origin.

(The further conditions [β′1] and [γ′1] of Theorem VII.2.14 are trivially met
because of the standardization of X∗K .)
Using Fubini’s theorem, the expression in i) can be written as

lim
a↑∞

lim sup
K→∞

∫ ∞
a
x2 1

x

∫ ∞
K
e−σKxy U(dy) dx = lim

a↑∞
lim sup
K→∞

∫ ∞
K

∫ ∞
a
xe−σKxy dxU(dy)

= lim
a↑∞

lim sup
K→∞

∫ ∞
K

e−aσK y

σ2
Ky

2
(1 + aσKy)U(dy) ≤ lim

a↑∞
lim sup
K→∞

∫ ∞
K

1

aσ3
Ky

3
U(dy),
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because y ≥ K and KσK → ∞ by assumption, so for sufficiently large K we
have e−aσK y ≤ (aσKy(1 + aσKy))−1. Continuing the calculation we find

lim
a↑∞

lim sup
K→∞

∫ ∞
a
x2 1

x

∫ ∞
K
e−σKxyU(dy) dx ≤ lim

a↑∞
lim sup
K→∞

∫ ∞
K

1

aσ3
Ky

3
U(dy)

≤ lim
a↑∞

lim sup
K→∞

1

aKσ3
K

∫ ∞
K

1

y2
U(dy) = lim

a↑∞
lim sup
K→∞

1

aKσK
= 0

as desired.
To verify ii), fix some g and set M+ := supx∈R g(x), M− := infx∈R g(x) and
εg := sup{ε > 0 | g(x) ≡ 0, x ∈ (−ε, ε)} (note that the assumptions on g in ii)
imply −∞ < M− ≤ 0 ≤ M+ <∞ and εg > 0). Then we conclude with similar
arguments as before

lim
K→∞

∫ ∞
0

g(x)
1

x

∫ ∞
K

e−σKxy U(dy) dx ≤M+ lim
K→∞

∫ ∞
K

∫ ∞
εg

e−σKxy

x
dx U(dy)

≤M+ lim
K→∞

∫ ∞
K

∫ ∞
εg

1

σ3
Ky

3x4
dx U(dy) =

M+

3ε3
g

lim
K→∞

∫ ∞
K

1

σ3
Ky

3
U(dy) = 0

as well as

lim
K→∞

∫ ∞
0

g(x)
1

x

∫ ∞
K

e−σKxy U(dy) dx ≥ M−
3ε3
g

lim
K→∞

∫ ∞
K

1

σ3
Ky

3
U(dy) = 0,

thus ii) is also fulfilled.

If φXK is given by (1.42), then the characteristics of X∗K := XK−E[XK ]
σK

are
bX∗K = 0, cX∗K = 0 and

νX∗K (dx) =

[
1(−∞,0)(x)

|x|

∫ −K
−∞

e−σKxy U(dy) +
1(0,∞)(x)

x

∫ ∞
K
e−σKxy U(dy)

]
dx,

and the conditions for normal convergence in this case are

i′) lim
a↑∞

lim sup
K→∞

∫
R\[−a,a]

x2 νX∗K (dx) = 0.

ii′) lim
K→∞

∫ +∞

−∞
g(x) νX∗K (dx) =

∫ +∞

−∞
g(x) νN(0,1)(dx) = 0

for all continuous, bounded functions g : R → R which are 0 in some
neighbourhood of the origin.

Either integral occuring in these conditions can obviously be split up into two
integrals over R− and R+ which then can separately be shown to converge to
zero in exactly the same way as above. This completes the proof. �

By Proposition 1.23 the measure induced by UGIG possesses the Lebesgue

density δ2g|λ|
(
2δ2x− δ2γ2

)
on the set

(γ2

2 ,∞
)

for all GIG(λ, δ, γ)-distributions
with 0 < δ <∞ and 0 ≤ γ <∞. Its asymptotic behaviour for x→∞ is given
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by δ2g|λ|
(
2δ2x − δ2γ2

)
∼ δ(2π2x)−

1
2 (see p. 40), hence for sufficiently large K

and δ
π
√

2
> C > 0 we have

σ2
K =

∫ ∞
K

1

y2
UGIG(dy) ≥ C

∫ ∞
K

y−
5
2 dy =

2C

3
K−

3
2 ,

consequently limK→∞KσK ≥ limK→∞
(

2C
3

) 1
2 K

1
4 = ∞. Thus if

∑kn
i=1Xni is a

sum of Gamma variables defined along the lines of Corollary 1.33 that converges
in law to some random variable X ∼ GIG(λ, δ, γ) with δ > 0, Proposition 1.34
suggests that the convergence can be improved by adding an independent nor-
mal variate Xnkn+1 ∼ N

(
E[XK ], σ2

K

)
to the series

∑kn
i=1Xni. (Here an “im-

provement of convergence” is to be understood in the sense that the total vari-
ation distance between the law of the series and GIG(λ, δ, γ) will be reduced
by amending the summand Xnkn+1.) At first it may be surprising that adding
a Gaussian random variable with range R could lead to a better approximation
of a GIG distributed random variate whose law is concentrated on R+, but one
should observe that by (1.40) and (1.41)

σ2
K =

∫ ∞
K

1

y2
U(dy) ≤ 1

K

∫ ∞
K

1

y
U(dy) =

E[XK ]

K
,

hence E[XK ] � σ2
K as K increases, so an N(E[XK ], σ2

K)-distributed random
variable will take positive values with high probability.

Moreover, Corollary 1.27 implies that for all GH(λ, α, β, δ, µ)-distributions
with δ > 0 the measure induced by UGH possesses a Lebesgue density of the
form sign(x)δ2(x+ β)g|λ|

(
δ2x2 + 2δ2βx− δ2(α2 − β2)

)
on R \ [−α− β, α− β].

On p. 49 we saw that δ2(z + α)g|λ|
(
δ2(z2 + 2αz)

)
∼ δ

π , z → ∞, consequently

the density of UGH also converges to δ
π as x → ±∞. For sufficiently large K

and δ
π > C > 0 we thus have

σ2
K =

∫
R\[−K,K]

1

y2
UGH(dy) ≥ C

∫
R\[−K,K]

1

y2
dy =

2C

K

and therefore limK→∞KσK ≥ limK→∞
√

2CK = ∞. Hence again the condi-
tions of Proposition 1.34 are met, and all conclusions drawn above can also be
transferred to the GH distributions.

Remark: If a GH distributed random variable is approximated along the lines
of Proposition 1.31, then the characteristic function φX̄K of the “error term”
X̄K is roughly given by

φX̄K (u) = exp

[
−
∫
R\[−K,K]

ln

(
1− iu

y

)
UGH(dy)

]
which slightly differs from (1.42), but it is easily seen that this only has an effect
on the mean E[X̄K ] whereas the variance remains unchanged: σ̄2

K := Var[X̄K ] =
σ2
K , where σ2

K is given by (1.43). Thus the assertion of Proposition 1.34 remains
valid in this case.
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Note that the condition KσK →∞ is not fulfilled in the limiting cases with
δ = 0, that is, for GIG(λ, 0, γ)- and V G(λ, α, β, µ)-distributions, because the

corresponding functions UGIG(λ,0,γ)(x) and UV G(x) are constant for x > γ2

2 and

x 6∈ [−α − β, α − β], respectively, hence in both cases σ2
K ≡ 0 if K > γ2

2 or
K > α+ |β|. But since a VG distributed random variable by Corollary 1.28 in
law exactly equals the difference of two Gamma variables, one does not need
an additional Gaussian variate for the approximation either, and the relation

GIG(λ, 0, γ) = G
(
λ, γ

2

2

)
shows that such a variate is also superfluous in the

latter case for trivial reasons.

Of course, Proposition 1.34 can be applied to every summand X̄ni occuring
in the approximating schemes of GH and GIG Lévy processes defined in Corol-
laries 1.32 and 1.33 as well. This amounts to the conclusion that for all GH and
GIG distributions with parameter δ > 0 the approximation of the corresponding
Lévy processes can be improved by adding a suitably scaled Brownian motion
with drift to the processes (Lnt )0≤t≤T and (τn(t))0≤t≤T . This may be regarded
as a compensation of the small jumps of the processes L and τ that are not cov-
ered by Ln and τn, because the tail behaviour of the measures induced by UGH
and UGIG significantly influences the masses the Lévy measures νGH and νGIG
concentrate around the origin. (Recall that this is an immediate consequence
of the Tauberian Theorem 1.25 and its application in Sections 1.6.4 and 1.6.2.)

These findings coincide with a result of Asmussen and Rosiński (2001) to
be explained in the following: Suppose (Xt)t≥0 is a Lévy process without a
Brownian part (this assumption is in general not necessary, but simplifies the
exposition and is fulfilled for all GH and GIG Lévy processes we are concerned
with here). Then X may be represented as the sum of two independent Lévy
processes X −Xε and Xε which are defined by the following decomposition of
the characteristic function of X1:

φX1(u) = exp

(
iubX +

∫
R

(
eiux − 1− iux1[−1,1](x)

)
νX(dx)

)
= exp

(
iubX +

∫
R\(−ε,ε)

(
eiux − 1− iux1[−1,1](x)

)
νX(dx)

)

· exp

(∫
(−ε,ε)

(
eiux − 1− iux

)
νX(dx)

)
=: φX1−Xε

1
(u) · φXε

1
(u)

The process X −Xε is a compound Poisson process with drift which contains
all jumps of X whose absolute heights are bigger or equal than ε, whereas
Xε equals the compensated sum of jumps that are smaller than ε. Within the
previous framework, one may, roughly speaking, identify X−Xε with Ln or τn.
Now let us concentrate on Xε. The characteristic function of Xε

1 given above
implies

E[Xε
1 ] = 0 and σ2(ε) := Var[Xε

1 ] =

∫
(−ε,ε)

x2 νX(dx).
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If the variance σ2(ε) satisfies a certain growth condition, then the scaled process
σ(ε)−1Xε converges in law to a standard Brownian motion B. More precisely,
Asmussen and Rosiński (2001, Theorem 2.1 and Proposition 2.1) showed that

If lim
ε→0

σ(ε)

ε
=∞, then

(
σ(ε)−1Xε

t

)
t≥0

L−→ (Bt)t≥0 as ε→ 0.

Remark: Under an additional assumption on the Lévy measure νX , this result
can be extended: If νX(dx) does not have atoms (point masses) in some neigh-
bourhood of the origin, then both assertions above are even equivalent (see
Asmussen and Rosiński 2001, Proposition 2.1), that is, σ(ε)−1Xε converges in

law to B if and only if limε→0
σ(ε)
ε =∞.

From the asymptotic behaviour of the Lévy densities gGIG(λ,δ,γ) and gGH(λ,α,β,δ,µ)

derived in equations (1.31) and (1.36) we conclude that

σGIG(ε) ∼
√
δ

3

(
2ε3

π

) 1
4

and σGH(ε) ∼
(

2δε

π

) 1
2

for ε→ 0,

hence we have that limε→0
σGIG(ε)

ε = limε→0
σGH(ε)

ε =∞ holds for all GIG and
GH distributions with parameter δ > 0, including the limit distributions with
λ < 0. Consequently the small jumps of the corresponding Lévy processes can
be approximated by an appropriately scaled Brownian motion.

Again this does not hold true for the Gamma and VG processes, because
the asymptotics of their Lévy densities are given by gG(λ,σ)(x) ∼ λ

x , x ↓ 0, and

gV G(λ,α,β,µ)(x) ∼ λ
|x| , x → 0, respectively. This implies limε↓0

σG(λ,σ)(ε)

(ε) =
√
λ√
2

and limε→0
σV G(λ,α,β,µ)(ε)

(ε) =
√
λ, thus the convergence of the compensated small

jumps to a Brownian motion fails according to the remark above. In the VG
case, this is also plausible from an intuitive point of view: Recall that the paths
of a VG process are of finite variation (see the remark on p. 50), whereas in
contrast to this the paths of Brownian motions are almost surely of infinite
variation, so any approximation of VG processes that comprehends a Brownian
part will lead to sample paths with completely different (and hence wrong) path
properties.

It was already mentioned in the remark on p. 8 that a sequence of Lévy

processes (Xn
t )t≥0 converges in law to a Lévy process (Xt)t≥0 iff Xn

1
L−→ X1.

This provides an immediate extension of Proposition 1.34 to

Corollary 1.35 Let (XK
t )t≥0 be a Lévy process defined by φXK

t
(u) = φXK (u)t

where φXK (u) is given by (1.39) or (1.42), and set σ2
K := Var[XK

1 ].
If KσK →∞ for K →∞, then

(
σ−1
K (XK

t − tE[XK
1 ])
)
t≥0

L−→ (Bt)t≥0

where (Bt)t≥0 denotes a standard Brownian motion.
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Intuitively one may assume the correspondence ε ↔ 1
K such that the above

corollary can to some extent be regarded as a reformulation of the Asmussen-
Rosiński result for the special case that the underlying Lévy process X is gener-
ated by an (extended) generalized Γ-convolution. In fact, under some additional

assumptions the conditions limK→∞KσK = ∞ and limε→0
σ(ε)
ε = ∞ can be

fulfilled simultaneously and are thus equivalent under these circumstances.
Suppose for example that (Xt)t≥0 is a Lévy process where L(X1) ∈ Γ0,

X1 = (X1 −XK) +XK , and φXK is defined by equation (1.39). If the measure
U(dy) has a Lebesgue density u with the asymptotic behaviour u(y) ∼ cy−a for
y →∞ with 0 < a < 1 and c > 0, then the conditions on σK and σ(ε) are both
met: First, the asymptotics of u imply

σ2
K =

∫ ∞
K

1

y2
U(dy) ∼ c

∫ ∞
K

y−2−a dy =
c

1 + a
K−(1+a), K →∞,

hence limK→∞KσK = limK→∞
√
c√

1+a
K

1−a
2 = ∞ because a < 1. Moreover, by

Proposition 1.20 and equations (1.25) the density of the Lévy measure νX1(dx)
of X1 is given by g(x) = 1

x

∫∞
0 e−xy u(y) dy, x > 0. The assumptions on u allow

the application of Theorem 1.25 with ρ = 1− a > 0 and L(y) ≡ cΓ(1− a) from
which we obtain g(x) ∼ cΓ(1− a)x−(2−a), x ↓ 0. Consequently

σ2(ε) =

∫ ε

0
x2g(x) dx ∼ cΓ(1− a)

∫ ε

0
xa dx =

cΓ(1− a)

1 + a
ε1+a, ε→ 0,

and thus limε→0
σ(ε)
ε = limε→0

( cΓ(1−a)
1+a

) 1
2 ε−

1−a
2 =∞.

If instead L(X1) is an extended generalized Γ-convolution (L(X1) ∈ Γ),
then its Lévy measure has a density which is the sum of two Laplace trans-
forms, and analogously as in the proof of Proposition 1.34, every integral under
consideration can be split up into two integrals over R− and R+ which can be
examined separately as above. Therefore both conditions on σK and σ(ε) are
also met in this case if the measure U(dy) possesses a density u which behaves
like u(y) ∼ c1|y|−a1 , y → −∞, or u(y) ∼ c2y

−a2 , y →∞, where −1 < a1, a2 < 1
and c1, c2 > 0 (note that one of these asymptotic relations is already sufficient
because of the possible splitting of the involved integrals).

Remark: The upper bound a < 1 resp. a1, a2 < 1 is required by the constraint
ρ > 0 in Theorem 1.25, the lower bounds a > 0 and a1, a2 > −1 are enforced
by the integrability conditions in (1.24) and (1.27). All GIG and GH distri-
butions with parameter δ > 0 can be regarded as special cases of this more
general framework which fulfill the assumptions above with c = δ√

2π
, a = 1

2 and

c1 = c2 = δ
π , a1 = a2 = 0, respectively.



Chapter 2

Multivariate GH distributions
and their limits

In the last chapter we have focussed on univariate distributions and processes.
However, many tasks and problems arising in financial mathematics are inher-
ently multivariate: consider for example a portfolio of assets or an option whose
payoff depends on two or more underlyings, such as swap-, spread-, rainbow- or
basket options. To determine a trading strategy which maximizes the expected
future value of the portfolio or to estimate potential portfolio losses, as well
as to prize the above mentioned options, one essentially needs a multivariate
model. In other words, one requires an assumption on the joint distribution of
all portfolio ingredients respectively stocks on which the option depends. The
knowledge of the corresponding univariate marginals is by no means sufficient
since they provide no information about the dependence structure which con-
siderably influences the risks and returns of the portfolio and the value of the
option. Specifying the dependencies between portfolio constituents is also a key
ingredient of credit risk models, as we shall see in Chapter 3.

Many higher-dimensional models used in financial mathematics are still
based on multivariate normal distributions, despite the fact that empirical in-
vestigations strongly reject the hypothesis of multivariate normal distributed
asset returns: see for example Affleck-Graves and McDonald (1989), Richardson
and Smith (1993) or McNeil, Frey, and Embrechts (2005, Chapter 3, pp. 70–73).
Apart from the fact that the marginal log return-distributions deviate signif-
icantly from the normal ones, as was already pointed out at the beginning of
Chapter 1, a second reason for the rejection of the multivariate normal distri-
bution is its far too simple dependence structure. The components of a mul-
tivariate normal distributed random vector are only linearly dependent. This
means, their dependencies are already completely characterized by the corre-
sponding covariance matrix, whereas financial data typically exhibits a much
more complex dependence structure. In particular, the probability of joint ex-
treme outcomes is severly underestimated by the normal distribution because
it also assigns too little weight to the joint tails.

To overcome the deficiencies of the multivariate normal distribution, various
alternatives have been proposed in the literature from which we just want to



66 Multivariate GH distributions and their limits

mention the following examples (the list could surely be extended much fur-
ther): the class of elliptical distributions (Owen and Rabinovitch 1983, Kring,
Rachev, Höchstötter, Fabozzi, and Bianchi 2009), (extended) multivariate t dis-
tributions (Khan and Zhou 2006, Adcock 2010), multivariate Variance Gamma
distributions (Luciano and Schoutens 2006, Semeraro 2008), and multivariate
GH distributions (Prause 1999, Chapter 4, Eberlein and Prause 2002, Sections 6
and 7, McNeil, Frey, and Embrechts 2005, Chapter 3.2). In the present chapter
the latter are investigated in greater detail, and it is shown how they are related
to the other aforementioned distribution classes.

The chapter is organized as follows: Section 2.1 provides some notations
and technical preliminaries, especially the concept of multivariate normal mean-
variance mixtures. Many of them are natural and straightforward generaliza-
tions of the results presented in Section 1.1 of Chapter 1, but are written down
here explicitly again for the sake of completeness. Multivariate generalized hy-
perbolic distributions are introduced in Section 2.2, in which also some basic
properties and possible limit distributions are described. The corresponding
Lévy–Khintchine representations are derived in Section 2.3, and in the last
section we take a closer look at the dependence structure of multivariate gen-
eralized hyperbolic distributions. In particular we analyze the tail dependence
of GH distributions and provide necessary and sufficient conditions for tail in-
dependence.

2.1 Multivariate normal mean-variance mixtures and
infinite divisibility

Let us first fix some notations which will be used throughout this chapter: The
vectors u = (u1, . . . , ud)

> and x = (x1, . . . , xd)
> are elements of Rd, the super-

script > stands for the transpose of a vector or matrix. 〈u, x〉 = u>x =
∑d

i=1 uixi
denotes the scalar product of the vectors u, x and ‖u‖ = (u2

1 + · · · + u2
d)

1/2

the Euclidean norm of u. If A is a real-valued d× d-square matrix, then det(A)
denotes the determinant of A. The d × d-identity matrix is labeled Id. In con-
trast to u and x, the letters y, s and t are reserved for univariate real variables,
that is, we assume y, s, t ∈ R or R+. To properly distinguish between the real
number zero and the zero vector, we write 0 ∈ R and 0 := (0, . . . , 0)> ∈ Rd.

Remark: Note that here and in the following d ≥ 2 indicates the dimension,
whereas n is usually used as running index for all kinds of sequences. In particu-
lar the notation Nd(µ,∆) will be used for the d-dimensional normal distribution
with mean vector µ and covariance matrix ∆.

Having clarified the notation, we now turn to the more sophisticated parts of
this section. The definition of multivariate infinite divisibility can be transferred
almost literally from Definition 1.1. More precisely we have

Definition 2.1 A probability measure µ on (Rd,Bd) is infinitely divisible if for
any integer n ≥ 1 there exists a probability measure µn on (Rd,Bd) such that µ
equals the n-fold convolution of µn, that is, µ = µn ∗ · · · ∗ µn =: ∗ni=1 µn.
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Similar to the univariate case, the characteristic function φµ(u)=
∫
Rd
ei〈u,x〉µ(dx)

of every infinitely divisible probability measure µ on (Rd,Bd) admits a Lévy–
Khintchine representation

φµ(u) = exp

(
i〈u, b〉 − 1

2
〈u,Cu〉+

∫
Rd

(
ei〈u,x〉 − 1− i〈u, x〉1{‖x‖≤1}(x)

)
ν(dx)

)
where b ∈ Rd, C is a symmetric positive-semidefinite d×d matrix and the Lévy
measure ν(dx) on Rd satisfies ν({0}) = 0 as well as

∫
Rd

(‖x‖2 ∧ 1) ν(dx) < ∞.
Again, the triplet (b, C, ν) is unique and completely characterizes µ (Sato 1999,
Theorem 8.1).

An Rd-valued stochastic process (Lt)t≥0 with L0 = 0 almost surely that is
adapted to some underlying filtration is a Lévy process if it has stationary, inde-
pendent increments and is continuous in probability in the sense of Definition 1.2
in Chapter 1. As before, these properties imply that L(Lt) is infinitely divisible
for all t ∈ R+, and the characteristic functions φLt fulfill φLt(u) = φL1(u)t.
Moreover, there is a one-to-one correspondence between multivariate infinitely
divisible distributions µ and Lévy processes L via the relation φLt(u) = φµ(u)t

(Sato 1999, Theorem 7.10). Thus we may occasionally speak of the characteristic
triplet of L in the sense that (b, C, ν) is the characteristic triplet of µ = L(L1).
Though the class of selfdecomposable distributions is defined in the same way
as in the univariate case, we restate its definition for the reader’s convenience:

Definition 2.2 A probability measure µ on (Rd,Bd) is called selfdecomposable
if for every 0 < s < 1 there is a probability measure µs on (Rd,Bd) such that

φµ(u) = φµ(su)φµs(u).

The characterization of multivariate selfdecomposable distributions by means
of their Lévy measures is much more involved as the following lemma shows. It
can be found in Sato (1999, Theorem 15.10 and Remark 15.12).

Lemma 2.3 A probability measure µ on (Rd,Bd) is selfdecomposable if and
only if it is infinitely divisible and its Lévy measure admits the representation

ν(B) =

∫
S
λ̄(dξ)

∫ ∞
0
1B(rξ)

kξ(r)

r
dr ∀B ∈ Bd

where λ̄(dξ) is a finite measure on the unit sphere S := {ξ ∈ Rd | ‖ξ‖ = 1}, and
kξ(r) is a non-negative function that is measurable in ξ ∈ S and decreasing in
r > 0. If ν(dx) is not the zero measure, then λ̄(dξ) and kξ(r) can be chosen

such that λ̄(S) = 1 and
∫∞

0 (r2 ∧ 1)
kξ(r)
r dr is finite and independent of ξ.

Remark: The so-called polar decomposition of the Lévy measure into a spher-
ical and a radial part itself is not a distinguished property of selfdecomposable
distributions, but can be done for every Lévy measure ν(dx) of an infinitely di-
visible distribution on (Rd,Bd), as Barndorff-Nielsen, Maejima, and Sato (2006,
Lemma 2.1) have shown. The characteristic feature of a seldecomposable distri-
bution is that the radial component of its Lévy measure has a Lebesgue density
kξ(r)
r with decreasing kξ(r) (whereas the spherical measure λ̄(dξ), which should

not be confused with the Lebesgue measure, is not supposed to have a density).
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Definition 2.4 An Rd-valued random variable X is said to have a multivariate
normal mean-variance mixture distribution if

X
d
= µ+ Zβ +

√
ZAW,

where µ, β ∈ Rd, A is a real-valued d×d-matrix such that ∆ := AA> is positive
definite, W is a standard normal distributed random vector (W ∼ Nd(0, Id))
and Z ∼ G is a real-valued, non-negative random variable independent of W .

Equivalently, a probability measure F on (Rd,Bd) is said to be a multivariate
normal mean-variance mixture if

F (dx) =

∫
R+

Nd(µ+ yβ, y∆)(dx)G(dy),

where the mixing distribution G is a probability measure on (R+,B+).
We use the short hand notation F = Nd(µ+yβ, y∆)◦G. If G is a class of mixing
distributions, then Nd(µ+yβ, y∆)◦G := {Nd(µ+yβ, y∆)◦G |G ∈ G, µ ∈ Rd}.

Remark: Note that one can further assume without loss of generality |det(A)| =
det(∆) = 1, since a (positive) multiplicative constant can always be included
within the variable Z. More precisely, let Ā = | det(A)|−1/dA, β̄ = |det(A)|−2/dβ
and Z̄ = | det(A)|2/dZ, then | det(Ā)| = 1 and µ + Zβ +

√
ZAW = µ + Z̄β̄ +√

Z̄ĀW . Equivalently, if ∆̄ = ĀĀ> and Ḡ = L(Z̄), then also det(∆̄) = 1 and
Nd(µ+ yβ, y∆) ◦G = Nd(µ+ yβ̄, y∆̄) ◦ Ḡ.

The use of a single univariate mixing variable Z causes dependencies be-
tween all entries of X, as we shall see in Section 2.4. A more general approach
based on multivariate mixing variables which also allows for independence of
all components of X has been proposed in Luciano and Semeraro (2010). But
since the multivariate GH distributions to be studied in the subsequent sections
are defined along the lines above, we shall not extend the setting further here.

The next lemma summarizes the most important properties of multivariate
normal mean-variance mixtures. It is a straightforward generalization of the
Lemmas 1.6 and 1.7 in Chapter 1.

Lemma 2.5 Let G be a class of probability distributions on (R+,B+) and
G,G1, G2 ∈ G.

a) If G possesses a moment generating function MG(y) on some open interval
(a, b) with a < 0 < b, then F =Nd(µ+yβ, y∆)◦G also possesses a moment

generating function MF (u) = e〈u,µ〉MG

( 〈u,∆u〉
2 +〈u, β〉

)
that is defined for

all u ∈ Rd with a < 〈u,∆u〉
2 + 〈u, β〉 < b.

b) If G = G1∗G2 ∈ G, then
(
Nd(µ1+yβ, y∆)◦G1

)
∗
(
Nd(µ2+yβ, y∆)◦G2

)
=

Nd(µ1 + µ2 + yβ, y∆) ◦G ∈ Nd(µ+ yβ, y∆) ◦G.

c) If G is infinitely divisible, then so is Nd(µ+ yβ, y∆) ◦G.

d) If G is selfdecomposable, then so is the multivariate normal variance mix-
ture Nd(µ, y∆) ◦G.
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e) If (µn)n≥1 and (βn)n≥1 are convergent sequences of real vectors with finite
limits µ, β ∈ Rd (that is, ‖µ‖, ‖β‖ < ∞), and (Gn)n≥1 is a sequence of

mixing distributions with Gn
w−→ G, then Nd(µn + yβn, y∆) ◦ Gn

w−→
Nd(µ+ yβ, y∆) ◦G.

Proof: Because the moment generating function and the characteristic func-
tion of a multivariate normal distribution Nd(µ,∆) are given by MNd(µ,∆)(u) =

e
〈u,∆u〉

2
+〈u,µ〉 and φNd(µ,∆)(u) = MNd(µ,∆)(iu), respectively, parts a)–c) can be

verified completely analogously to the proof of Lemma 1.6. From this one espe-
cially obtains that the characteristic function of F = Nd(µ+yβ, y∆)◦G admits

the representation φF (u) = ei〈u,µ〉LG
( 〈u,∆u〉

2 − i〈u, β〉
)
. Using this and the fact

that the definition of selfdecomposability is the same for uni- and multivariate
distributions, it is easily seen that the proof of Lemma 1.6 d) can also be trans-
ferred almost literally to the present case.
Setting Fn := Nd(µn + yβn, y∆) ◦Gn and F := Nd(µ+ yβ, y∆) ◦G, to prove e)
it suffices to show that for an arbitrarily fixed u ∈ Rd we have

φFn(u) = ei〈u,µn〉LGn

(
〈u,∆u〉

2 − i〈u, βn〉
)
−→
n→∞

ei〈u,µ〉LG

(
〈u,∆u〉

2 − i〈u, β〉
)

=φF (u)

but this follows with exactly the same reasoning as in the proof of Lemma 1.7.
(It would even be possible to slightly generalize the assertion by additionally
assuming that there exists a sequence (∆n)n≥1 of covariance matrices which
converges element-wise to ∆, that is, max1≤i,j≤d |∆n

ij −∆ij | → 0 if n→∞.) �

Remark: Observe that in contrast to the univariate case the selfdecompos-
ability of the mixing distribution only transfers to the corresponding normal
variance mixtures, but in general not to normal mean-variance mixtures with
β 6= 0. As an example we shall see in Section 2.3 that multivariate VG distri-
butions are selfdecomposable if and only if β = 0.

The next lemma is the multivariate analogon of Proposition 1.8 in Chapter 1.
We state it here for further reference in Section 2.3.

Lemma 2.6 Let F = Nd(µ + yβ, y∆) ◦ G be a multivariate normal mean-
variance mixture with infinitely divisible mixing distribution G and (Xt)t≥0,
(τ(t))t≥0 be two Lévy processes with L(X1) = F and L(τ(1)) = G.
Set (B̄t)t≥0 := (ABt)t≥0 where (Bt)t≥0 is a d-dimensional standard Brownian
motion independent of (τ(t))t≥0, and A is a d × d-matrix fulfilling AA> = ∆.
Then (Yt)t≥0, defined by

Yt := µt+ βτ(t) + B̄τ(t),

is a Lévy process that is identical in law to (Xt)t≥0.

Proof: The independence of (Bt)t≥0, (τ(t))t≥0 implies that (βτ(t) + B̄τ(t))t≥0

and hence (Yt)t≥0 are Lévy processes according to Sato (1999, Theorem 30.1)
(see Theorem 2.13 in this thesis). The characteristic function of Y1 is given by

φY1(u) = E
[
ei〈u,Y1〉] = ei〈u,µ〉 E

[
ei〈u,τ(1)β〉E[ei〈u,B̄τ(1)〉|τ(1)]

]
= ei〈u,µ〉 E

[
e−
(
〈u,∆u〉

2
−i〈u,β〉

)
τ(1)
]

= ei〈u,µ〉 LG
( 〈u,∆u〉

2 − i〈u, β〉
)
,
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because L(τ(1)) = G. From the proof of Lemma 2.5 we know that φY1(u) =
φF (u) = φX1(u), so (Xt)t≥0 and (Yt)t≥0 are two Lévy processes with L(X1) =
L(Y1), and the assertion then follows from Sato (1999, Theorem 7.10 (iii)). �

In the last part of this section we want to highlight the relationship between
multivariate normal mean-variance mixtures and elliptical distributions. From
a financial point of view, the latter are of some interest because they have
the nice property that within this class the Value-at-Risk (VaR) is a coherent
risk measure in the sense of Artzner, Delbaen, Eber, and Heath (1999) (this
has been shown in Embrechts, McNeil, and Straumann (2002, Theorem 1),
see also McNeil, Frey, and Embrechts (2005, Theorem 6.8)). However, in the
following we only report some basic facts of elliptical distributions, for a more
comprehensive overview we refer to Cambanis, Huang, and Simons (1981) and
the book of Fang, Kotz, and Ng (1990). Our presentation here is inspired by
McNeil, Frey, and Embrechts (2005, Section 3.3).

Since elliptical distributions emerge as a natural generalization of the class
of spherical distributions, we first introduce the latter.

Definition 2.7 An Rd-valued random vector X has a spherical distribution
if there exists a function ψ : R+ → R such that the characteristic function
φX(u) = E

[
ei〈u,X〉

]
of X admits the representation

φX(u) = ψ
(
〈u, u〉

)
∀u ∈ Rd.

The function ψ(t) uniquely determining φX(u) is called characteristic generator
of the spherical distribution L(X), and the notation X ∼ Sd

(
ψ(t)

)
will be used.

Remark: The probably most popular example of a spherical distribution is the
multivariate standard normal distribution Nd(0, Id). Its characteristic function
is given by φNd(0,Id)(u) = e−〈u,u〉/2, and from the above definition it immediately

follows that Nd(0, Id) = Sd
(
e−t/2

)
. Moreover, every normal variance mixture

F = Nd(0, yId) ◦G is spherical because from the proof of Lemma 2.5 we know

that φF (u) = LG
( 〈u,u〉

2

)
, hence Nd(0, yId) ◦G = Sd

(
LG
(
t
2

))
.

Not only the characteristic functions, but even the densities (if existent) of
spherical distributions have a very special form as the following considerations
show: Suppose L(X) is spherical and possesses a bounded Lebesgue density
f(x), then by the inversion formula we have

f(x) =
1

(2π)d

∫
Rd
e−i〈u,x〉φX(u) du =

1

(2π)d

∫
Rd
e−i〈u,x〉ψ

(
〈u, u〉

)
du.

Now if O is an orthogonal d × d-matrix (that is, OO> = O>O = Id), then
〈O>u,O>u〉 = 〈u, u〉 and

f(Ox) =
1

(2π)d

∫
Rd
e−i〈u,Ox〉ψ

(
〈u, u〉

)
du

=
1

(2π)d

∫
Rd
e−i〈O

>u,x〉ψ
(
〈O>u,O>u〉

)
du

=
1

(2π)d

∫
Rd
e−i〈ū,x〉ψ

(
〈ū, ū〉

)
dū = f(x),
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where in the last line we made the coordinate transform ū = O>u and used the
fact that | det(O)| = |det(O>)| = 1. Since the equation f(x) = f(Ox) holds for
every orthogonal matrix O, f(x) must necessarily be of the form

f(x) = h
(
〈x, x〉

)
for some function h : R→ R+ .

Consequently the level sets {x ∈ Rd | f(x) = c}, c > 0, of f are exactly the
d − 1-dimensional hyperspheres {x ∈ Rd | 〈x, x〉 = c̄}, c̄ > 0, which gave the
class of spherical distributions its name. Now we turn to the more general case
of elliptical distributions which are defined by

Definition 2.8 An Rd-valued random vector X has an elliptical distribution
if there exists a function ψ : R+ → R, a symmetric, positive semidefinite d×d-
matrix Σ and some µ ∈ Rd such that the characteristic function φX(u) of X
admits the representation

φX(u) = ei〈u,µ〉ψ
(
〈u,Σu〉

)
∀u ∈ Rd.

The elliptical distribution L(X) then is denoted by Ed
(
µ,Σ, ψ(t)

)
.

Remark: Clearly Sd
(
ψ(t)

)
= Ed

(
0, Id, ψ(t)

)
, but in contrast to the spheri-

cal subclass the representation Ed
(
µ,Σ, ψ(t)

)
of elliptical distributions is not

unique. Only µ is uniquely determined, but Σ and ψ(t) are not: Setting Σ̄ := cΣ
and ψ̄(t) := ψ( tc) for some arbitrary c > 0 yields Ed

(
µ,Σ, ψ(t)

)
= Ed

(
µ, Σ̄, ψ̄(t)

)
.

A useful alternative characterization of elliptical distributions is provided by

Corollary 2.9 X ∼ Ed
(
µ,Σ, ψ(t)

)
if and only if

X
d
= µ+AY

where Y ∼ Sd
(
ψ(t)

)
and A is a d× d-matrix fulfilling AA> = Σ.

Proof: If X
d
= µ + AY with Y ∼ Sd

(
ψ(t)

)
and AA> = Σ, then using Defini-

tion 2.7 we obtain

φX(u) = ei〈u,µ〉φY
(
A>u

)
= ei〈u,µ〉ψ

(
〈A>u,A>u〉

)
= ei〈u,µ〉ψ

(
〈u,Σu〉

)
,

hence X ∼ Ed
(
µ,Σ, ψ(t)

)
by Definition 2.8. On the other hand, for every sym-

metric, positive semidefinite d×d-matrix Σ it is always possible to find a d×d-
matrix A such that AA> = Σ. Thus we can also go through the above chain of
equations from the right to the left which proves the “only if”-part. �

Remark: Every spherically distributed random vector Y ∼ Sd
(
ψ(t)

)
has the

alternative representation Y
d
= RS, where R is an R+-valued random variable

and S is a random vector which is independent of R and uniformly distributed
on the unit sphere S := {ξ ∈ Rd | ‖ξ‖ = 1} (see McNeil, Frey, and Embrechts

2005, Theorem 3.22). Hence X ∼ Ed
(
µ,Σ, ψ(t)

)
if and only if X

d
= µ + RAS

with A as defined in the above corollary.

This allows us to draw some conclusions on the density f(x) of an elliptically
distributed random vector X which exists if L(Y ) possesses a Lebesgue density
and the matrix Σ is positive definite. In this case we have Y = A−1(X − µ),
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and since L(Y ) is spherical, its density must be of the form h
(
〈x, x〉

)
as shown

above. Because (A−1)>A−1 = Σ−1, the density of X is thus given by

f(x) =
1√

det(Σ)
h
(
〈x− µ,Σ−1(x− µ)〉

)
whose level sets obviously are the ellipsoids {x ∈ Rd | 〈x−µ,Σ−1(x−µ)〉 = c̄},
c̄ > 0. Therefore this class of distributions is sometimes also called “elliptically
contoured distributions”. The last corollary of this section shows their relation
to the class of multivariate normal mean-variance mixtures.

Corollary 2.10 A normal mean-variance mixture F = Nd(µ+ yβ, y∆) ◦G is
an elliptical distribution if and only if β = 0, that is, if and only if it is a normal
variance mixture.

Proof: The proof of Lemma 2.5 implies that the characteristic function of F is
given by φF (u) = ei〈u,µ〉LG

( 〈u,∆u〉
2 −i〈u, β〉

)
which evidently has the representa-

tion ei〈u,µ〉ψ
(
〈u,Σu〉

)
required by Definition 2.8 with Σ = ∆ and ψ(t) = LG

(
t
2

)
if and only if β = 0. �

2.2 Multivariate generalized hyperbolic distributions

Multivariate generalized hyperbolic distributions have already been introduced
as a natural generalization of the univariate case at the end of the seminal paper
Barndorff-Nielsen (1977) and were investigated further in Blæsild (1981) and
Blæsild and Jensen (1981). They are defined as normal mean-variance mixtures
with GIG mixing distributions in the following way:

GHd(λ, α, β, δ, µ,∆) := Nd(µ+ y∆β, y∆) ◦GIG
(
λ, δ,

√
α2 − 〈β,∆β〉

)
, (2.1)

where it is usually assumed without loss of generality (see the remark on p. 68)
that det(∆) = 1 which we shall also do in the following if not stated otherwise.
Due to the parameter restrictions of GIG distributions (see p. 8), the other GH
parameters have to fulfill the constraints

λ ∈ R, α, δ ∈ R+, β, µ ∈ Rd and

δ ≥ 0, 0 ≤
√
〈β,∆β〉 < α, if λ > 0,

δ > 0, 0 ≤
√
〈β,∆β〉 < α, if λ = 0,

δ > 0, 0 ≤
√
〈β,∆β〉 ≤ α, if λ < 0.

The meaning and influence of the parameters is essentially the same as in the
univariate case (see p. 13). Again, parametrizations with δ = 0, α = 0 or√
〈β,∆β〉 = α have to be understood as limiting cases.

Remark: Note that the above definition of multivariate GH distributions as
normal mean-variance mixtures of the form Nd(µ + y∆β, y∆) ◦ G is of course
equivalent to the representation Nd(µ+yβ̃, y∆)◦G used in the previous section
because the d× d-matrix ∆ is always regular by assumption. The modification
of the mean term just simplifies some formulas as we shall see below.

For notational consistency with Chapter 1, the term GHd(λ, α, β, δ, µ,∆)
will be reserved for multivariate GH distributions with β, µ ∈ Rd, whereas
GH(λ, α, β, δ, µ) denotes a univariate GH distribution with β, µ ∈ R as before.
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If δ > 0 and
√
〈β,∆β〉 < α, then the density of GHd(λ, α, β, δ, µ,∆) can be

obtained from (2.1) with the help of equations (1.2) and (A.1) as follows:

dGHd(λ,α,β,δ,µ,∆)(x) =

∫ ∞
0

dNd(µ+y∆β,y∆)(x) d
GIG

(
λ,δ,
√
α2−〈β,∆β〉

)(y) dy

=
(1.2)

∫ ∞
0

(2πy)−
d
2 e−

1
2
〈x−µ−y∆β,(y∆)−1(x−µ−y∆β)〉 (α2 − 〈β,∆β〉)

λ
2

δλ 2Kλ(δ
√
α2 − 〈β,∆β〉)

yλ−1

· e−
1
2

(
δ2

y
+(α2−〈β,∆β〉)y

)
dy

=
(α2 − 〈β,∆β〉)

λ
2

(2π)
d
2 δλ 2Kλ(δ

√
α2 − 〈β,∆β〉)

e〈β,x−µ〉

·
∫ ∞

0
yλ−

d
2
−1 e

− 1
2

(
1
y

(〈x−µ,∆−1(x−µ)〉+δ2)+α2y
)

dy

=
(α2 − 〈β,∆β〉)

λ
2

(2π)
d
2 δλ 2Kλ(δ

√
α2 − 〈β,∆β〉)

e〈β,x−µ〉

(√
〈x− µ,∆−1(x− µ)〉+ δ2

α

)λ− d
2

·
∫ ∞

0
ȳλ−

d
2
−1 e

− 1
2

(
1
ȳ

+ȳ
)
α
√
〈x−µ,∆−1(x−µ)〉+δ2

dȳ

=
(A.1)

(α2 − 〈β,∆β〉)
λ
2

(2π)
d
2αλ−

d
2 δλKλ(δ

√
α2 − 〈β,∆β〉)

(
〈x− µ,∆−1(x− µ)〉+ δ2

)(λ− d
2

)/2

(2.2)
· Kλ− d

2

(
α
√
〈x− µ,∆−1(x− µ)〉+ δ2

)
e〈β,x−µ〉

where in the last but one equation the substitution ȳ = α√
〈x−µ,∆−1(x−µ)〉+δ2

y

was made. The univariate density given in equations (1.6) and (1.7) is immedi-
ately obtained from (2.2) by setting d = ∆ = 1.

Remark: If the d × d-matrix ∆ is replaced by a matrix ∆̄ of the same di-
mensions with det(∆̄) 6= 1, then the normal density dNd(µ+y∆̄β,y∆̄)(x) has an

additional factor det(∆̄)−1/2 which will be incorporated in the norming con-
stant of dGHd(λ,α,β,δ,µ,∆̄)(x) as the above calculation shows. Suppose ∆̄ = c1/d∆

for some c > 0, then det(∆̄) = c, and if we also replace λ, α, β, δ, µ by the barred
parameters

λ̄ := λ, ᾱ := c
1
2dα, β̄ := β, δ̄ := c−

1
2d δ, µ̄ := µ,

then it is easily seen from (2.2) that the densities of GHd(λ, α, β, δ, µ,∆) and
GHd(λ̄, ᾱ, β̄, δ̄, µ̄, ∆̄) and thus both distributions coincide. Note that these con-
siderations also remain true for all subsequently defined limit distributions. This
again shows that the assumption det(∆) = 1 is not an essential restriction. The
barred parameters will be used later at some points in Section 2.4 to indicate
that det(∆̄) = 1 is not assumed there.

If multivariate GH distributions would have been defined as a mixture of
the form Nd(µ + yβ, y∆) ◦ GIG

(
λ, δ,

√
α2 − 〈β,∆β〉

)
(see the remark on the

previous page), then the last factor of the density (2.2) would be e〈∆
−1β,x−µ〉

instead of e〈β,x−µ〉, and β̄ would have to be defined by β̄ = c1/dβ.
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For some special choices of λ the density formula simplifies considerably us-
ing the representation (A.7) of the Bessel function K 1

2
(x). With λ = −1

2 one ob-

tains the multivariate normal inverse Gaussian distribution NIGd(α, β, δ, µ,∆)
possessing the density

dNIGd(α,β,δ,µ,∆)(x) =

√
2

π

δα
d+1

2 eδ
√
α2−〈β,∆β〉

(2π)
d
2

(
〈x− µ,∆−1(x− µ)〉+ δ2

)− d+1
4

· K d+1
2

(
α
√
〈x− µ,∆−1(x− µ)〉+ δ2

)
e〈β,x−µ〉,

and λ = d+1
2 yields the d-dimensional hyperbolic distribution HYPd(α, β, δ, µ,∆)

with density

dHYPd(α,β,δ,µ,∆)(x) =
(2π)−

d−1
2 (α2 − 〈β,∆β〉)

d+1
4

2αδ
d+1

2 K d+1
2

(δ
√
α2 − 〈β,∆β〉)

e−α
√
〈x−µ,∆−1(x−µ)〉+δ2

· e〈β,x−µ〉.

The proof of Lemma 2.5, Proposition 1.9 and (2.1) imply that the characteristic
function of GHd(λ, α, β, δ, µ,∆) is given by

φGHd(λ,α,β,δ,µ,∆)(u) = ei〈u,µ〉L
GIG

(
λ,δ,
√
α2−〈β,∆β〉

)( 〈u,∆u〉
2 − i〈u,∆β〉

)
(2.3)

= ei〈u,µ〉
(

α2 − 〈β,∆β〉
α2 − 〈β + iu,∆(β + iu)〉

)λ
2 Kλ

(
δ
√
α2 − 〈β + iu,∆(β + iu)〉

)
Kλ

(
δ
√
α2 − 〈β,∆β〉

)
Since all GIG distributions and thus by Lemma 2.5 c) also all multivariate
GH distributions (including the limits mentioned below) are infinitely divisi-
ble, the above characteristic function alternatively admits a Lévy–Khintchine
representation which will be derived in Section 2.3.

Let us briefly mention possible weak limits of multivariate GH distributions
here. If λ > 0 and δ → 0, then by (2.1), (1.3) and Lemma 2.5 e) we have
convergence to a multivariate Variance-Gamma distribution:

GHd(λ, α, β, δ, µ,∆)
w−→Nd(µ+y∆β, y∆)◦G

(
λ, α

2−〈β,∆β〉
2

)
=VGd(λ, α, β, µ,∆).

The corresponding density can easily be derived from equation (2.2) observing
that δλKλ(δ

√
α2 − 〈β,∆β〉)→ 2λ−1Γ(λ)(α2−〈β,∆β〉)−λ/2 for δ → 0 by (A.8)

which yields

dV Gd(λ,α,β,µ,∆)(x) =
(α2 − 〈β,∆β〉)λ

(2π)
d
2αλ−

d
2 2λ−1Γ(λ)

(
〈x− µ,∆−1(x− µ)〉

)(λ− d
2

)/2

(2.4)

·Kλ− d
2

(
α
√
〈x− µ,∆−1(x− µ)〉

)
e〈β,x−µ〉,

and the characteristic function is obtained by

φV Gd(λ,α,β,µ,∆)(u) = ei〈u,µ〉L
G
(
λ,
α2−〈β,∆β〉

2

)( 〈u,∆u〉
2 − i〈u,∆β〉

)
(2.5)

= ei〈u,µ〉
(

α2 − 〈β,∆β〉
α2 − 〈β + iu,∆(β + iu)〉

)λ
.
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For λ < 0 and α→ 0 as well as β → 0 we arrive at the multivariate scaled
and shifted t distribution with f = −2λ degrees of freedom:

GHd(λ, α, β, δ, µ,∆)
w−→ Nd(µ, y∆) ◦ iG

(
λ, δ

2

2

)
= td(λ, δ, µ,∆).

Its density can be calculated as follows:

dtd(λ,δ,µ,∆)(x) =

∫ ∞
0

dNd(µ,y∆)(x) d
iG(λ, δ

2

2
)
(y) dy

=
(1.4)

∫ ∞
0

(2πy)−
d
2 e−

1
2
〈x−µ,(y∆)−1(x−µ)〉

(
2

δ2

)λ yλ−1

Γ(−λ)
e
− δ

2

2y dy

=

(
2

δ2

)λ (2π)−
d
2

Γ(−λ)

∫ ∞
0

yλ−
d
2
−1 e

− 1
2

(
1
y

(〈x−µ,∆−1(x−µ)〉+δ2)
)

dy

=
Γ
(
−λ+ d

2

)
(δ2π)

d
2 Γ(−λ)

(
1 +
〈x− µ,∆−1(x− µ)〉

δ2

)λ− d
2

, (2.6)

where the last line follows from the fact that the integrand in the last but
one equation is equal to the density of iG

(
λ − d

2 ,
√
〈x− µ,∆−1(x− µ)〉+ δ2

)
without the corresponding norming constant

(
2/(〈x−µ,∆−1(x−µ)〉+δ2)

)λ−d/2·
Γ(−λ+ d

2)−1. Hence the value of the integral must equal the inverse of the latter.
The characteristic function is given by

φtd(λ,δ,µ,∆)(u) = ei〈u,µ〉L
iG
(
λ, δ

2

2

)(〈u,∆u〉
2

)
= ei〈u,µ〉

(
2

δ

)λ 2Kλ

(
δ
√
〈u,∆u〉

)
Γ(−λ) (〈u,∆u〉)

λ
2

. (2.7)

If λ < 0, but 〈β,∆β〉 → α2, then we have weak convergence to the normal
mean-variance mixture

GHd(λ, α, β, δ, µ,∆)
w−→ Nd(µ+ y∆β, y∆) ◦ iG

(
λ, δ

2

2

)
.

Combining the arguments leading to (2.2) and (2.6), its density is seen to be

d
GHd(λ,

√
〈β,∆β〉,β,δ,µ,∆)

(x) =
2λ+1− d

2 δ−2λ

π
d
2 Γ(−λ)αλ−

d
2

(
〈x− µ,∆−1(x− µ)〉+ δ2

)(λ− d
2

)/2

(2.8)

· Kλ− d
2

(
α
√
〈x− µ,∆−1(x− µ)〉+ δ2

)
e〈β,x−µ〉

where α =
√
〈β,∆β〉, and the corresponding characteristic function is obtained

similarly as in the t limiting case to be

φ
GHd(λ,

√
〈β,∆β〉,β,δ,µ,∆)

(u) =

(
2

δ

)λ 2Kλ

(
δ
√
〈u,∆u〉 − 2i〈u,∆β〉

)
Γ(−λ)

(
〈u,∆u〉 − 2i〈u,∆β〉

)λ
2

. (2.9)

Last but not least also the multivariate normal distribution emerges as a
weak limit if α→∞, δ →∞ and δ

α → σ2 <∞. Analogously as in the univariate
case, these assumptions entail, together with Corollary 1.10 and Lemma 2.5 e),
that

GHd(λ, α, β, δ, µ,∆)
w−→ Nd(µ+ y∆β, y∆) ◦ εσ2 = Nd(µ+ σ2∆β, σ2∆).
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The most important properties of multivariate GH distributions are summa-
rized in the following theorem which goes back to Blæsild (1981, Theorem 1),
see also Blæsild and Jensen (1981, p. 49f). It shows that this distribution class
is closed under forming marginals, conditioning and affine transformations.

Theorem 2.11 Suppose X ∼ GHd(λ, α, β, δ, µ,∆). Let (X1, X2)> be a parti-
tion of X where X1 has the dimension r and X2 the dimension k = d− r, and
let (β1, β2)> and (µ1, µ2)> be similar partitions of β and µ. Furthermore, let

∆ =

(
∆11 ∆12

∆21 ∆22

)
be a partition of ∆ such that ∆11 is an r× r-matrix. Then the following holds:

a) X1 ∼ GHr(λ
∗, α∗, β∗, δ∗, µ∗,∆∗) with starred parameters given by λ∗ = λ,

α∗= det(∆11)−
1
2r

√
α2− 〈β2, (∆22 −∆21∆−1

11 ∆12)β2〉, β∗= β1+∆−1
11 ∆12β2,

δ∗ = det(∆11)
1
2r δ, µ∗ = µ1 and ∆∗ = det(∆11)−

1
r∆11.

b) The conditional distribution of X2 given X1 = x1 is GHk(λ̃, α̃, β̃, δ̃, µ̃, ∆̃)

with tilded parameters given by λ̃ = λ− r
2 , α̃ = det(∆11)

1
2kα, β̃ = β2, δ̃ =

det(∆11)−
1
2k

√
δ2 + 〈x1 − µ1,∆

−1
11 (x1 − µ1)〉, µ̃ = µ2 + ∆21∆−1

11 (x1 − µ1)

and ∆̃ = det(∆11)
1
k (∆22 −∆21∆−1

11 ∆12).

c) Suppose Y = BX + b where B is a regular d× d-matrix and b ∈ Rd, then

Y ∼ GHd(λ̂, α̂, β̂, δ̂, µ̂, ∆̂) where λ̂ = λ, α̂ = |det(B)|−
1
dα, β̂ = (B−1)>β,

δ̂ = | det(B)|
1
d δ, µ̂ = Bµ+ b and ∆̂ = |det(B)|−

2
dB∆B>.

Remark: An important fact we want to stress here is that the above theorem
remains also valid for all multivariate GH limit distributions considered before.
Thus one can in particular conclude from part b) that the limiting subclass
of VG distributions itself is, in contrast to the t limit distributions, not closed
under conditioning. This holds because the parameter δ̃ of the conditional dis-
tribution in general is greater than zero, and the parameter λ̃ = λ − r

2 may
become negative if the subdimension r is sufficiently large.

Moreover, all margins of td(λ, δ, µ,∆) are again t distributed tr(λ, δ
∗, µ∗,∆∗)

because if the joint distribution has the parameters α = 0 and β = 0, part a)
of the theorem implies that α∗ = 0 and β∗ = 0 for every marginal distribution.
Similarly, all margins of VGd(λ, α, β, µ,∆) are again VG distributions because
if δ = 0, then also δ∗ = 0. In addition it can be shown that all margins of
GHd

(
λ,
√
〈β,∆β〉, β, δ, µ,∆

)
-distributions are of the same limiting type as their

joint distribution, too.

Further note that a d-dimensional hyperbolic distribution does not have
univariate hyperbolic margins because part a) of the theorem states that the
parameter λ∗ of the marginal distributions is λ∗ = λ = d+1

2 6= 1 for d ≥ 2.

Since every linear mapping X̃ = aX + b with a ∈ R \ {0}, b ∈ Rd, of a
GH distributed random vector X ∼ GHd(λ, α, β, δ, µ,∆) can alternatively be
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written in the form X̃ = BX + b where B = aId and hence det(B) = ad, it
follows from Theorem 2.11 c) that X̃ ∼ GHd(λ, |a|−1α, a−1β, |a|δ, aµ + b,∆).
Thus the parameters

ζ := δ
√
α2 − 〈β,∆β〉 and Π :=

∆β√
α2 − 〈β,∆β〉

(2.10)

which may replace α and β are scale- and location-invariant. The definition
and notation of the invariant parameters of multivariate GH distributions is,
however, by no means unique in the literature.

The next corollary deals with the special case of linear transforms 〈h,X〉,
h ∈ Rd, of GH distributed random vectors X. The corresponding distributions
can, of course, also be derived with the help of parts a) and c) of Theorem
2.11, but we shall give a short alternative proof below based on characteristic
functions.

Corollary 2.12 Let X ∼ GHd(λ, α, β, δ, µ,∆) and Y := 〈h,X〉 with h ∈ Rd,

h 6= 0, then Y ∼ GH(λ̂, α̂, β̂, δ̂, µ̂) where λ̂ = λ, α̂ =

√
α2−〈β,∆β〉
〈h,∆h〉 +

(
〈h,∆β〉
〈h,∆h〉

)2
,

β̂ = 〈h,∆β〉
〈h,∆h〉 , δ̂ = δ

√
〈h,∆h〉 and µ̂ = 〈h, µ〉.

Proof: We have φY (y) = E[eiy〈h,X〉] = φX(yh) and thus by (2.3)

φY (y) =

= ei〈yh,µ〉
(

α2 − 〈β,∆β〉
α2 − 〈β + iyh,∆(β + iyh)〉

)λ
2 Kλ

(
δ
√
α2 − 〈β + iyh,∆(β + iyh)〉

)
Kλ

(
δ
√
α2 − 〈β,∆β〉

)

= eiy〈h,µ〉

 〈h,∆h〉
(
α2−〈β,∆β〉
〈h,∆h〉 +

(
〈h,∆β〉
〈h,∆h〉

)2
−
(
〈h,∆β〉
〈h,∆h〉

)2
)

〈h,∆h〉
(
α2−〈β,∆β〉
〈h,∆h〉 +

(
〈h,∆β〉
〈h,∆h〉

)2
−
(
〈h,∆β〉
〈h,∆h〉 + iy

)2
)

λ
2

·
Kλ

(
δ
√
〈h,∆h〉

√
α2−〈β,∆β〉
〈h,∆h〉 +

(
〈h,∆β〉
〈h,∆h〉

)2
−
(
〈h,∆β〉
〈h,∆h〉 + iy

)2
)

Kλ

(
δ
√
〈h,∆h〉

√
α2−〈β,∆β〉
〈h,∆h〉 +

(
〈h,∆β〉
〈h,∆h〉

)2
−
(
〈h,∆β〉
〈h,∆h〉

)2
)

= eiyµ̂

(
α̂2 − β̂2

α̂2 − (β̂ + iy)2

)λ
2 Kλ

(
δ̂

√
α̂2 − (β̂ + iy)2

)
Kλ

(
δ̂

√
α̂2 − β̂2

) = φGH(λ̂,α̂,β̂,δ̂,µ̂)(y).

Analogous calculations using the characteristic functions given in (2.5), (2.7),
and (2.9) show that the assertion remains valid in all corresponding limiting
cases. �

Let us finally take a closer look at the moments of multivariate GH distri-
butions. By Definition 2.4, every random variable X possessing a multivariate
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normal mean-variance mixture distribution admits the stochastic representation

X
d
= µ+Zβ+

√
ZAW with independent random variables Z and W ∼ Nd(0, Id).

The standardization of W and its independence from Z imply that

E(X) = µ+ E(Z)β
(2.11)

Cov(X) = E
[
(X − E(X))(X − E(X))>

]
= E(Z)∆ + Var(Z)ββ>

with ∆ = AA>, provided that E(|Z|),Var(Z) <∞. IfX ∼ GHd(λ, α, β, δ, µ,∆),

then by (2.1) X
d
= µ + Z∆β +

√
ZAW and Z ∼ GIG

(
λ, δ,

√
α2 − 〈β,∆β〉

)
.

Using the moment formulas on p. 11 we get explicit expressions for E(Z) and
Var(Z) which can be inserted into the general equations above to finally obtain

E[GHd(λ, α, β, δ, µ,∆)] = µ+
δ2

ζ

Kλ+1(ζ)

Kλ(ζ)
β,

(2.12)

Cov[GHd(λ, α, β, δ, µ,∆)] =
δ2

ζ

Kλ+1(ζ)

Kλ(ζ)
∆ +

δ4

ζ2

(
Kλ+2(ζ)

Kλ(ζ)
−
K2
λ+1(ζ)

K2
λ(ζ)

)
ββ>

with ζ = δ
√
α2 − 〈β,∆β〉 as defined in (2.10). In case of the Variance-Gamma

limits we have

E[VGd(λ, α, β, µ,∆)] = µ+
2λ

α2 − 〈β,∆β〉
β,

(2.13)

Cov[VGd(λ, α, β, µ,∆)] =
2λ

α2 − 〈β,∆β〉
∆ +

4λ

(α2 − 〈β,∆β〉)2
ββ>.

Observe that by Lemma 2.5 both multivariate GH and VG distributions pos-
sess moment generating functions and hence finite moments of arbitrary order
because the mixing GIG and Gamma distributions do have this property. This
is no longer true for the limit distributions with λ < 0 because the correspond-
ing inverse Gamma mixing distributions only have finite moments up to order
r < −λ. By Theorem 2.11 a), the marginal distributions of td(λ, δ, µ,∆) are
given by t(λ,

√
∆iiδ, µi), 1 ≤ i ≤ d (recall that α = 0 and β = 0 in this case),

and from their tail behaviour (see p. 22/23) one can easily conclude that mean
vector and covariance matrix of the t limit distributions are well defined and
finite only if λ < −1

2 resp. λ < −1. If these constraints are fulfilled, then

E[td(λ, δ, µ,∆)] = µ and Cov[td(λ, δ, µ,∆)] =
δ2

−2λ− 2
∆ . (2.14)

In the other limiting case where 〈β,∆β〉 = α2 > 0 equations (2.11) state that
necessary and sufficient conditions for the existence of a mean vector and co-
variance matrix of the limit distributions are that the inverse Gamma mixing
distributions have finite means and variances which holds true if and only if
λ < −1 and λ < −2, respectively. If λ is appropriately small, then

E
[
GHd

(
λ,
√
〈β,∆β〉, β, δ, µ,∆

)]
= µ+

δ2

−2λ− 2
β,

(2.15)

Cov
[
GHd

(
λ,
√
〈β,∆β〉, β, δ, µ,∆

)]
=

δ2

−2λ− 2
∆ +

δ4

4(λ+ 1)2(−λ− 2)
ββ>.
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2.3 Lévy–Khintchine representations of multivariate
GH distributions

It was already mentioned on page 74 that also all higher-dimensional GH distri-
butions are infinitely divisible because they are defined as multivariate normal
mean-variance mixtures with an infinitely divisible mixing distribution. In the
present section we derive the corresponding Lévy–Khintchine representations
of their characteristic functions which allows us in particular to characterize
the subclass of multivariate VG distributions that are in addition selfdecom-
posable. It will turn out that, in contrast to the univariate case, in general only
symmetric VG distributions with β = 0 do have this property.

The key result for the subsequent analysis is the following theorem from Sato
(1999, Theorem 30.1) which we cite here (with a slightly adapted notation) for
further reference.

Theorem 2.13 (Subordinated Lévy processes) Let (Zt)t≥0 be an increas-
ing Lévy process on R with Lévy measure ρ(dy), drift b0 and PZs =: Gs, that
is,

E
[
e−vZs

]
= LGs(v) =

∫ ∞
0

e−vy Gs(dy) = esΨ(−v), v ≥ 0,

where for any complex z with Re(z) ≤ 0

Ψ(z) = b0z +

∫ ∞
0

(
ezy − 1

)
ρ(dy) with b0 ≥ 0 and

∫ ∞
0

(1 ∧ y) ρ(dy) <∞.

Let further (Xt)t≥0 be a Lévy process on Rd with characteristic triplet (b, C, ν)
and PXs =: Φs. Suppose (Xt)t≥0 and (Zt)t≥0 are independent and define

Yt(ω) := XZt(ω)(ω), t ≥ 0.

Then (Yt)t≥0 is a Lévy process on Rd with

P [Yt ∈ B] =

∫ ∞
0

Φs(B)Gt(ds), B ∈ Bd,

φYt(u) = E
[
ei〈u,Yt〉

]
= etΨ(log(φX1

(u))),

and the characteristic triplet (b̃, C̃, ν̃) of Y is given by

b̃ = b0b+

∫ ∞
0

∫
{x∈Rd | ‖x‖≤1}

xΦs(dx) ρ(ds), (2.16)

C̃ = b0C, (2.17)

ν̃(B) = b0ν(B) +

∫ ∞
0

Φs(B) ρ(ds), B ∈ B
(
Rd \ {0}

)
. (2.18)

Remark: The characteristic triplets (b, C, ν) and (b̃, C̃, ν̃) in the above theorem
correspond to the Lévy–Khintchine representation

φµ(u) = exp

(
i〈u, b〉 − 1

2
〈u,Cu〉+

∫
Rd

(
ei〈u,x〉 − 1− i〈u, x〉1{‖x‖≤1}(x)

)
ν(dx)

)
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with µ = PX1 or µ = P Y1 . But analogously as in the one-dimensional case one
has the equivalence

∫
Rd
‖x‖r µ(dx) < ∞ ⇔

∫
{x | ‖x‖>1} ‖x‖

r ν(dx) < ∞ (Sato

1999, Theorem 25.3 and Proposition 25.4), so if all marginal distributions of µ
possess finite first moments, the truncation function within the integral term of
the Lévy–Khintchine formula can again be omitted, implying that at the same
time the drift vector b is modified to

b̄ = b+

∫
{x | ‖x‖>1}

x ν(dx) = E[µ]

where the integral has to be understood componentwise (see also Sato 1999,
Example 25.12).

Before applying Theorem 2.13 to the special case of multivariate GH distri-
butions resp. Lévy processes, we first have to calculate the required alternative
representation of the Laplace transforms of GIG distributions. This is done in
the following

Lemma 2.14 The Laplace transforms of GIG(λ, δ, γ)-distributions, including
the weak limits with parameters δ = 0 and γ = 0, can be written in the form

LGIG(λ,δ,γ)(v) = exp

(∫ ∞
0

(
e−vy − 1

)
gGIG(λ,δ,γ)(y) dy

)
where gGIG(λ,δ,γ)(y) denotes the density of the corresponding Lévy measure.

Proof: It has beeen shown in Chapter 1.6, Proposition 1.23, that all GIG
distributions and the weak Gamma and inverse Gamma limits are generalized
Gamma convolutions with generating pairs (0, UGIG(λ,δ,γ)). By Definition 1.19,
their characteristic functions thus admit the representation

φGIG(λ,δ,γ)(v) = exp

[
−
∫ ∞

0
ln

(
1− iv

y

)
UGIG(λ,δ,γ)(dy)

]
.

Because LGIG(λ,δ,γ)(v) = φGIG(λ,δ,γ)(iv) (see the remark on p. 10), we have

ln
(
LGIG(λ,δ,γ)(v)

)
= −

∫ ∞
0

ln

(
1 +

v

y

)
UGIG(λ,δ,γ)(dy)

= −
∫ ∞

0

(
ln(v + y)− ln(y)

)
UGIG(λ,δ,γ)(dy) = −

∫ ∞
0

∫ v+y

y

1

t
dt UGIG(λ,δ,γ)(dy)

= −
∫ ∞

0

∫ v+y

y

∫ ∞
0

e−st ds dt UGIG(λ,δ,γ)(dy)

= −
∫ ∞

0

∫ ∞
0

∫ v+y

y
e−st dt UGIG(λ,δ,γ)(dy) ds

= −
∫ ∞

0

∫ ∞
0

e−sy − e−s(v+y)

s
UGIG(λ,δ,γ)(dy) ds

=

∫ ∞
0

(
e−vs − 1

) 1

s

∫ ∞
0
e−sy UGIG(λ,δ,γ)(dy) ds =

∫ ∞
0

(
e−vs − 1

)
gGIG(λ,δ,γ)(s) ds



2.3 Lévy–Khintchine representations of mvGH distributions 81

where the last equation follows from the proof of Proposition 1.20 (see also
the proof of Proposition 1.24). Hence the desired representation of the Laplace
transforms is valid for all GIG distributions with finite parameters δ, γ ≥ 0. �

With the help of the preceeding prerequisites we are now ready to derive the
announced Lévy–Khintchine representations of multivariate GH distributions
and its weak limits.

Proposition 2.15 The characteristic functions of GHd(λ, α, β, δ, µ,∆)-distri-
butions can be represented as follows:

a) If δ > 0 and 〈β,∆β〉 < α2, then

φGHd(λ,α,β,δ,µ,∆)(u) =

= exp

[
i〈u,E[GHd]〉+

∫
Rd

(
ei〈u,x〉 − 1− i〈u, x〉

)
gGHd(λ,α,β,δ,µ,∆)(x) dx

]
where E[GHd] is given in (2.12), and the density of the Lévy measure is

gGHd(λ,α,β,δ,µ,∆)(x) =

=
2e〈x,β〉(

2π
√
〈x,∆−1x〉

) d
2

∫ ∞
0

(2y + α2)
d
4K d

2

(√
(2y + α2)〈x,∆−1x〉

)
π2y
[
J2
|λ|
(
δ
√

2y
)

+ Y 2
|λ|
(
δ
√

2y
)] dy

(2.19)

+ max(0, λ)α
d
2K d

2

(
α
√
〈x,∆−1x〉

)]
.

b) If λ > 0 and δ = 0 (Variance-Gamma limit), we have

φV Gd(λ,α,β,µ,∆)(u) =

= exp

[
i〈u,E[V Gd]〉+

∫
Rd

(
ei〈u,x〉 − 1− i〈u, x〉

)
gV Gd(λ,α,β,µ,∆)(x) dx

]
where E[V Gd] is given in (2.13), and the Lévy density is

gV Gd(λ,α,β,µ,∆)(x) =
2α

d
2λe〈x,β〉(

2π
√
〈x,∆−1x〉

) d
2

K d
2

(
α
√
〈x,∆−1x〉

)
. (2.20)

c) If λ < 0 and α = 0, β = 0 (t limit), then

φtd(λ,δ,µ,∆)(u) =

= exp

[
i〈u, µ〉+

∫
Rd

(
ei〈u,x〉 − 1− i〈u, x〉1{‖x‖≤1}(x)

)
gtd(λ,δ,µ,∆)(x) dx

]
,

and the corresponding Lévy density is

gtd(λ,δ,µ,∆)(x) =
(2.21)

=
2(

2π
√
〈x,∆−1x〉

) d
2

∫ ∞
0

(2y)
d
4K d

2

(√
(2y)〈x,∆−1x〉

)
π2y
[
J2
|λ|
(
δ
√

2y
)

+ Y 2
|λ|
(
δ
√

2y
)] dy.

If λ < −1
2 , then the truncation function within the integral term of the

characteristic function can be omitted without further changes.
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d) In the case λ < 0 and 〈β,∆β〉 = α2 we have

φ
GHd(λ,

√
〈β,∆β〉,β,δ,µ,∆)

(u) =

= exp

[
i〈u, b〉+

∫
Rd

(
ei〈u,x〉 − 1− i〈u, x〉1{‖x‖≤1}(x)

)
g(x) dx

]
,

where the drift vector is given by

b =

∫ ∞
0

∫
{x∈Rd | ‖x‖≤1}

x dNd((s∆)β,s∆)(x) g
iG(λ, δ

2

2
)
(s) dx ds,

and the Lévy density g(x) = g
GHd(λ,

√
〈β,∆β〉,β,δ,µ,∆)

(x) is obtained from

(2.19) by inserting α =
√
〈β,∆β〉. If λ < −1, one can omit the truncation

function within the integral term of the characteristic function and replace
the above expression for b by the mean E

[
GHd

(
λ,
√
〈β,∆β〉, β, δ, µ,∆

)]
from (2.15).

Proof: a) Suppose µ = 0 for the moment, then the defining equality (2.1), the
infinite divisibility of GIG distributions and Lemma 2.6 imply that the Lévy
process (Yt)t≥0 induced by GHd(λ, α, β, δ,0,∆) admits the stochastic represen-
tation Yt = B̂τ(t) where B̂t = ∆βt + ABt is a d-dimensional Brownian motion

with drift ∆β and covariance matrix Cov(B̂1) = AA> = ∆, and (τ(t))t≥0 is
an increasing Lévy process with L(τ(1)) = GIG(λ, δ,

√
α2 − 〈β,∆β〉). Hence

(Yt)t≥0 is a subordinated Lévy process of the form Yt = XZt assumed in The-
orem 2.13 with Xt = B̂t and Zt = τ(t), and the characteristic triplet (b̃, C̃, ν̃)
of L(Y1) = GHd(λ, α, β, δ,0,∆) can thus be obtained from equations (2.16)–
(2.18). The parameter assumptions δ > 0 and 〈β,∆β〉 < α2 ensure a finite
mean, so by the remark on p. 79f we can choose b̃ = E[GHd(λ, α, β, δ,0,∆)] and
omit the truncation function within the integral term of the Lévy–Khintchine
formula. If µ 6= 0, then the proof of Lemma 2.5 as well as equation (2.3)
show that this only leads to an additional summand i〈u, µ〉 in the exponent
of the characteristic function which by (2.12) is directly included in i〈u, b̃〉 if
b̃ = E[GHd(λ, α, β, δ, µ,∆)] and obviously does not affect the components C̃
and ν̃ of the characteristic triplet.

Lemma 2.14 shows that the Laplace transforms of all GIG distributions with
finite parameters have an exponent Ψ(z) = log

(
LGIG(−z)

)
with drift parameter

b0 = 0, therefore by (2.17) the Gaussian part 1
2〈u, C̃u〉 of the Lévy–Khintchine

representation vanishes for all GHd(λ, α, β, δ, µ,∆)-distributions and their weak
limits considered in parts b)–d). Moreover, in the present case we have Φs =
L(Xs) = L(B̂s) = Nd(s(∆β), s∆) and ρ(ds) = gGIG(s) ds, so equation (2.18)
and Fubini’s theorem imply that the Lévy measures of multivariate GH distri-
butions and their weak limits are given by

ν̃(dx) =

∫ ∞
0

Φs(dx) ρ(ds) =

∫ ∞
0

dNd(s(∆β),s∆)(x) gGIG(s) ds dx

and hence always possess a Lebesgue density. If δ > 0 and 〈β,∆β〉 < α2, this
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density is obtained with the help of Proposition 1.24 a) as follows:

gGHd(λ,α,β,δ,µ,∆)(x) =

∫ ∞
0

dNd(s(∆β),s∆)(x) g
GIG(λ,δ,

√
α2−〈β,∆β〉)(s) ds

=

∫ ∞
0

e−
1
2
〈x−(s∆)β,(s∆)−1(x−(s∆)β)〉

(2πs)
d
2

e−
s
2

(α2−〈β,∆β〉)

s

·

[∫ ∞
0

e−sy

π2y
[
J2
|λ|
(
δ
√

2y
)

+ Y 2
|λ|
(
δ
√

2y
)] dy + max(0, λ)

]
ds

= e〈x,β〉
∫ ∞

0

e−
1
2

(〈x,(s∆)−1x〉+sα2)

(2πs)
d
2 s

(2.22)

·

[∫ ∞
0

e−sy

π2y
[
J2
|λ|
(
δ
√

2y
)

+ Y 2
|λ|
(
δ
√

2y
)] dy + max(0, λ)

]
ds

=
e〈x,β〉

(2π)
d
2

∫ ∞
0

∫∞
0 s−

d
2
−1e−

1
2

(
〈x,∆−1x〉

s
+s(2y+α2)

)
ds

π2y
[
J2
|λ|
(
δ
√

2y
)

+ Y 2
|λ|
(
δ
√

2y
)] dy

(2.23)

+ max(0, λ)

∫ ∞
0

s−
d
2
−1e−

1
2

(
〈x,∆−1x〉

s
+sα2

)
ds


Observing that s−

d
2
−1e−

1
2

(
〈x,∆−1x〉

s
+s(2y+α2)

)
is the non-normalized density of

a GIG
(
−d

2 ,
√
〈x,∆−1x〉,

√
2y + α2

)
-distribution, the value of the integral over

this function from 0 to ∞ must be equal to the inverse of the corresponding
norming constant. A comparison with (1.2) yields∫ ∞

0
s−

d
2
−1e−

1
2

(
〈x,∆−1x〉

s
+s(2y+α2)

)
ds = 2

(
2y + α2

〈x,∆−1x〉

)d
4

K d
2

(√
(2y + α2)〈x,∆−1x〉

)
.

Similarly, s−
d
2
−1e−

1
2

(
〈x,∆−1x〉

s
+sα2

)
is the density of a GIG

(
−d

2 ,
√
〈x,∆−1x〉, α

)
-

distribution without norming constant and thus∫ ∞
0

s−
d
2
−1e−

1
2

(
〈x,∆−1x〉

s
+sα2

)
ds = 2α

d
2
(
〈x,∆−1x〉

)− d
4K d

2

(
α
√
〈x,∆−1x〉

)
.

Inserting both expressions into (2.23) we obtain (2.19).

b) Because all VG distributions have finite means, it follows from the same
reasoning as in part a) that the drift vector within the Lévy–Khintchine rep-
resentation is given by E[V Gd(λ, α, β, µ,∆)], the Gaussian part vanishes, and
the density of the Lévy measure can be calculated using Proposition 1.24 b) as
follows:

gV Gd(λ,α,β,µ,∆)(x) =

∫ ∞
0

dNd(s(∆β),s∆)(x) g
G
(
λ,
α2−〈β,∆β〉

2

)(s) ds

=

∫ ∞
0

e−
1
2
〈x−(s∆)β,(s∆)−1(x−(s∆)β)〉

(2πs)
d
2

λe−
1
2

(α2−〈β,∆β〉)

s
ds
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=
λe〈x,β〉

(2π)
d
2

∫ ∞
0

s−
d
2
−1e−

1
2

(〈x,(s∆)−1x〉+sα2) ds

=
2α

d
2λe〈x,β〉(

2π
√
〈x,∆−1x〉

) d
2

K d
2

(
α
√
〈x,∆−1x〉

)

where the last equation has already been shown in the proof of part a).

c) Since the t limit-distributions have a finite mean only if λ < −1
2 , we have

to calculate the drift vector b̃ according to equation (2.16) of Theorem 2.13.
To apply it correctly, we again assume µ = 0 first. From the normal variance
mixture representation of td(λ, δ,0,∆) (see p. 75) we then conclude that Φs =
Nd(0, s∆) and ρ(ds) = g

iG(λ, δ
2

2
)
(s) ds in this case. By Lemma 2.14, b0 = 0

holds. Therefore we obtain

b̃ =

∫ ∞
0

∫
{x∈Rd | ‖x‖≤1}

x dNd(0,s∆)(x) dx g
iG(λ, δ

2

2
)
(s) ds = 0,

because the value of the inner integral is 0 by symmetry. If µ 6= 0, then the
drift vector becomes b̃ = 0 + µ = µ as pointed out in the proof of part a). The
drift vector remains unchanged if the truncation function within the integral
term of the Lévy–Khintchine representation is removed for sufficiently small λ,
because E[td(λ, δ, µ,∆)] = µ by (2.14).

Moreover, Proposition 1.24 shows that the Lévy density g
iG(λ, δ

2

2
)
(s) can be

obtained from gGIG(λ,δ,γ)(s) by setting γ = 0 within the latter, hence the den-
sity gtd(λ,δ,µ,∆)(x) of the Lévy measure of td(λ, δ, µ,∆) is immediately obtained
from the corresponding calculation in the proof of part a) by inserting α = 0,
β = 0 and observing that λ < 0 here. Alternatively, these insertions can be
made directly within the formula for gGHd(λ,α,β,δ,µ,∆)(x), which yields (2.21).

d) The assertions follow along almost the same lines as before, but the drift
coefficient b̃ can hardly be calculated more explicitly because in this limit case
we always have β 6= 0. Consequently the density of Φs = Nd(s(∆β), s∆) is
never symmetric around the origin. �

Note that the Lévy densities (2.19)and (2.21) can be simplified considerably
if λ = ±1

2 . Using equations (A.12) and assuming δ > 0, the inner integral in
(2.22) becomes

∫ ∞
0

e−sy

π2y
[
J2

1
2

(
δ
√

2y
)

+ Y 2
1
2

(
δ
√

2y
)] dy =

δ

π

∫ ∞
0

e−sy√
2y

dy

=
t:=
√
y

2δ√
π

∫ ∞
0

1√
2π

e−st
2

dt =
δ√
2πs

∫ ∞
−∞

1√
2π(2s)−1

e−st
2

dt =
δ√
2πs

,

because the last integrand equals the density of a N
(
0, 1

2s

)
-distribution. Insert-
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ing this expression into (2.22) and continuing the calculation, we obtain

gGHd(|λ|= 1
2
,α,β,δ,µ,∆)(x) = e〈x,β〉

∫ ∞
0

e−
1
2

(〈x,(s∆)−1x〉+sα2)

(2πs)
d
2 s

[
δ√
2πs

+ max(0, λ)

]
ds

=
e〈x,β〉

(2π)
d
2

[∫ ∞
0

δ√
2π

s−
d+1

2
−1e−

1
2

(
〈x,∆−1x〉

s
+sα2

)
ds

+ max(0, λ)

∫ ∞
0

s−
d
2
−1e−

1
2

(
〈x,∆−1x〉

s
+sα2

)
ds

]

=
2α

d
2 e〈x,β〉(

2π
√
〈x,∆−1x〉

) d
2

[
δ
√
α

√
2π〈x,∆−1x〉

1
4

K d+1
2

(
α
√
〈x,∆−1x〉

)
(2.24)

+ max(0, λ)K d
2

(
α
√
〈x,∆−1x〉

)]
.

The last line follows from the same arguments used in the proof of Proposi-
tion 2.15 a).

Remark: If d = ∆ = 1, then
√
〈x,∆−1x〉 becomes |x|, and together with

the representation of the Bessel function K 1
2
(x) (see equation (A.7)), the Lévy

density (2.19) in Proposition 2.15 a) simplifies to

gGH(λ,α,β,δ,µ)(x) =

=
eβx

|x|

[∫ ∞
0

e−|x|
√

2y+α2

π2y
[
J2
|λ|
(
δ
√

2y
)

+ Y 2
|λ|
(
δ
√

2y
)] dy + max(0, λ)e−α|x|

]
,

which exactly coincides with the representation derived in Chapter 1, Proposi-
tion 1.29 a). This also holds true for the limit distributions considered in parts
b)–d) of both propositions, showing that the formulas (2.19)–(2.21) are in fact
the natural generalizations of the univariate Lévy densities. Inserting d = ∆ = 1
and λ = −1

2 in (2.24) yields in the same way

gNIG(α,β,δ,µ)(x) =
δα

π|x|
eβxK1

(
α|x|

)
.

This agrees with our calculations on page 51.

All symmetric GHd(λ, α,0, δ, µ,∆)-distributions and their weak limits con-
sidered above (in particular all td(λ, δ, µ,∆)-distributions) are selfdecompos-
able. This is an immediate consequence of the fact that all GH distributions
(including the weak limits) with β = 0 are normal variance mixtures with
selfdecomposable GIG mixing distributions (see pp. 72–75) and thus are self-
decomposable themselves by Lemma 2.5 d). However, this property in general
does not transfer to the skewed distributions as the subsequent proposition
shows.

Proposition 2.16 A multivariate V Gd(λ, α, β, µ,∆)-distribution is selfdecom-
posable if and only if β = 0.
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Proof: Because of the preceding remarks it only remains to show the “only if”-
part for which we use some ideas from Takano (1989). We first derive the polar
decomposition of the corresponding Lévy densities, that is, we move from the
Cartesian coordinates x to polar coordinates r := ‖x‖ and ξ := x

‖x‖ . Inserting

the new variables into the density formula (2.20) and observing that, according
to the transformation rule of integration dx = rd−1 dr dξ, we obtain

νV Gd(λ,α,β,µ,∆)(dr dξ) =
2λ r

d
2
−1α

d
2 er〈ξ,β〉(

2π
√
〈ξ,∆−1ξ〉

) d
2

K d
2

(
αr
√
〈ξ,∆−1ξ〉

)
dr dξ

Setting λ̄(dξ) := 2λ
(
2π〈ξ,∆−1ξ〉

)− d
2 dξ and

kξ(r) := er〈ξ,β〉(αr
√
〈ξ,∆−1ξ〉)

d
2 K d

2

(
αr
√
〈ξ,∆−1ξ〉

)
,

we get the representation νV Gd(λ,α,β,µ,∆)(dr dξ) =
kξ(r)
r dr λ̄(dξ). By Lemma 2.3,

the distribution V Gd(λ, α, β, µ,∆) is selfdecomposable if and only if the func-
tion kξ(r) is decreasing in r for every (or, to be more precisely, λ̄-almost all)
ξ. But below we will show that for every β 6= 0 there exist some ξβ and a
neighbourhood B(ξβ) ⊂ S = {ξ ∈ Rd | ‖ξ‖ = 1} of ξβ with λ̄(B(ξβ)) > 0 such
that kξ̄(r) has a strictly positive derivative near the origin for every ξ̄ ∈ B(ξβ).
Hence a VG distribution with β 6= 0 cannot be selfdecomposable.

Let us write kξ(r) = er〈ξ,β〉L d
2

(
αr
√
〈ξ,∆−1ξ〉

)
with L d

2
(y) := y

d
2K d

2
(y).

Equations (A.8) and (A.9) from Appendix A imply that for d ≥ 2 we have

lim
y→0

L d
2
(y) = 2

d−2
2 Γ

(
d
2

)
and lim

y→0
yL d−2

2
(y) = 0,

and from equations (A.4) and (A.3) we conclude

L′d
2

(y) =
d

2
y
d−2

2 K d
2
(y) + y

d
2K ′d

2

(y)

(2.25)

=
d

2
y
d−2

2 K d
2
(y)− y

d−2
2

(
d

2
K d

2
(y) + yK d−2

2
(y)

)
= −yL d−2

2
(y).

Consequently the derivative of kξ(r) with respect to r is

k′ξ(r) = er〈ξ,β〉
[
〈ξ, β〉L d

2

(
αr
√
〈ξ,∆−1ξ〉

)
− rα2〈ξ,∆−1ξ〉L d−2

2

(
αr
√
〈ξ,∆−1ξ〉

)]
and thus limr→0 k

′
ξ(r) = 〈ξ, β〉 2

d−2
2 Γ

(
d
2

)
. Now if β 6= 0, we obviously can find

some ξβ and a neighbourhood B(ξβ) ⊂ S of ξβ with λ̄(B(ξβ)) > 0 such that
〈ξ̄, β〉 > 0 for all ξ̄ ∈ B(ξβ) (note that by the above definition λ̄(dξ) is equivalent
to the Lebesgue measure restricted on the sphere S), and from the continuity
of k′ξ(r) it follows that k′

ξ̄
(r) is strictly positive on some open intervall (0, r0)

for all ξ̄ ∈ B(ξβ). This proves the assertion. �

Unfortunately, the previous proof cannot be transferred to other GH distri-
butions than the VG subclass as will be explained below. By Proposition 2.15
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a) and d), the corresponding Lévy measures are, using the polar coordinates r
and ξ defined above and the relation dx = rd−1 dr dξ, given by

νGHd(λ,α,β,δ,µ,∆)(dr dξ) =

=
2er〈ξ,β〉

r
(
2π
√
〈ξ,∆−1ξ〉

) d
2

∫ ∞
0

r
d
2 (2y + α2)

d
4K d

2

(
r
√

(2y + α2)〈ξ,∆−1ξ〉
)

π2y
[
J2
|λ|
(
δ
√

2y
)

+ Y 2
|λ|
(
δ
√

2y
)] dy

+ max(0, λ) (αr)
d
2K d

2

(
αr
√
〈ξ,∆−1ξ〉

)]
dr dξ .

Setting λ̄(dξ) := 2
(
2π〈ξ,∆−1ξ〉

)− d
2 dξ and

kξ(r) := er〈ξ,β〉

∫ ∞
0

(
r
√

(2y + α2)〈ξ,∆−1ξ〉
) d

2K d
2

(
r
√

(2y + α2)〈ξ,∆−1ξ〉
)

π2y
[
J2
|λ|
(
δ
√

2y
)

+ Y 2
|λ|
(
δ
√

2y
)] dy

+ max(0, λ)
(
αr
√
〈ξ,∆−1ξ〉

) d
2K d

2

(
αr
√
〈ξ,∆−1ξ〉

)]

= er〈ξ,β〉

∫ ∞
0

L d
2

(
r
√

(2y + α2)〈ξ,∆−1ξ〉
)

π2y
[
J2
|λ|
(
δ
√

2y
)

+ Y 2
|λ|
(
δ
√

2y
)] dy

(2.26)

+ max(0, λ)L d
2

(
αr
√
〈ξ,∆−1ξ〉

)]
with L d

2
(y) := y

d
2K d

2
(y) as before yields νGHd(λ,α,β,δ,µ,∆)(dr dξ) =

kξ(r)
r dr λ̄(dξ).

Differentiating kξ(r) with respect to r we get, using (2.25),

k′ξ(r) = er〈ξ,β〉

〈ξ, β〉 ∫ ∞
0

L d
2

(
r
√

(2y + α2)〈ξ,∆−1ξ〉
)

π2y
[
J2
|λ|
(
δ
√

2y
)

+ Y 2
|λ|
(
δ
√

2y
)] dy

−r
∫ ∞

0

(2y + α2)〈ξ,∆−1ξ〉L d−2
2

(
r
√

(2y + α2)〈ξ,∆−1ξ〉
)

π2y
[
J2
|λ|
(
δ
√

2y
)

+ Y 2
|λ|
(
δ
√

2y
)] dy


+ max(0, λ)

(
〈ξ, β〉L d

2

(
αr
√
〈ξ,∆−1ξ〉

)
(2.27)

−rα2〈ξ,∆−1ξ〉L d−2
2

(
αr
√
〈ξ,∆−1ξ〉

))]
,

where the interchange between differentiation and integration in the second
integral term can be justified as follows: Since every Lévy measure ν(dx) on
Rd fulfills ν

(
{x ∈ Rd | ‖x‖ ≥ ε}

)
< ∞ for all ε > 0 and arbitrary dimension

d, the function kξ(r) and hence especially the integral in (2.26) must be finite
for all r > 0, ξ ∈ S, and d ∈ N. By equation (A.5) we have the inequality

L d+2
2

(y) = y
d+2

2 K d+2
2

(y) > y
d+2

2 K d−2
2

(y) = y2L d−2
2

(y) for y > 0, which provides

an integrable majorant for the derivative. But here the problem arises that
the behaviour of k′ξ(r) near the origin can hardly be determined. Since the
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denominator within both integrals asymptotically behaves like δ(2π2y)−
1
2 for

y → ∞ (see pp. 36 and 40) and L d
2
(y) tends to a constant for y → 0, the first

integral in (2.27) diverges to infinity if r → 0. The second integral does so as
well, but it is not clear if this may be compensated by the preceding factor r
such that the product remains bounded if r tends to zero. But even if this would
not be the case, the overall difference of the two integral terms might converge
to a finite limit. All in all, it seems not feasible to deduce from (2.27) whether
the right hand side is ≤ 0 for all r > 0 or if there exists some open intervall
(r1, r2) ⊂ R+ on which k′ξ(r) is strictly positive. A complete characterization
of all selfdecomposable GH distributions will probably require some different
approaches and techniques and is therefore left for future research.

2.4 On the dependence structure of multivariate GH
distributions

Correlation is probably the most established dependence measure due to its
simplicity and its predominant role within the normal world where it char-
acterizes dependencies almost completely. This follows from the fact that the
components Wi, 1 ≤ i ≤ d, of a standard normal distributed random vector
W ∼ Nd(0, Id) are independent from each other (the joint density is just the
product of the marginal ones in this case) and the stochastic representation

X ∼ Nd(µ,∆) ⇐⇒ X
d
= µ+AW where W ∼ Nd(0, Id) and AA> = ∆.

Since X in distribution is nothing but a linear transform of a random vec-
tor W with independent (normal distributed) entries, the components of X
can, roughly speaking, exhibit at most linear dependencies, and exactly these
are specified and quantified by the pairwise correlations. However, things com-
pletely change if we depart from normality and consider normal variance mix-
tures instead. Suppose

X ∼ Nd(µ, y∆) ◦G, that is, X
d
= µ+

√
ZAW

where L(Z) = G, W ∼ Nd(0, Id) and AA> = ∆ according to Definition 2.4.
As we already remarked on p. 68, the mixing variable Z causes dependencies
between the components of X, but these are typically not captured by corre-
lation as the following lemma shows. It is a slightly more general version of
McNeil, Frey, and Embrechts (2005, Lemma 3.5) which we adopt here since—in
our opinion—the result is as simple as illustrative.

Lemma 2.17 Suppose that X
d
= µ +

√
ZAW has a normal variance mixture

distribution where E(Z) < ∞ and ∆ = AA> is a d × d-diagonal matrix such
that Cov(Xi, Xj) = 0, 1 ≤ i, j ≤ d, i 6= j, by (2.11). Then the Xi, 1 ≤ i ≤ d,
are independent if and only if Z is almost surely constant, that is, if and only
if X is multivariate normal distributed.

Proof: Because ∆ is diagonal (and positive definite by Definition 2.4), we
can assume without loss of generality that also the matrix A is diagonal and
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Aii =
√

∆ii, 1 ≤ i ≤ d. The independence of Z and W and Jensen’s inequality
then imply

E

(
d∏
i=1

|Xi − µi|

)
= E

(
(
√
Z)d

d∏
i=1

|
√

∆iiWi|

)
= E

(
(
√
Z)d

) d∏
i=1

E
(
|
√

∆iiWi|
)

≥ E
(√
Z
)d d∏

i=1

E
(
|
√

∆iiWi|
)

=
d∏
i=1

E
(
|Xi − µi|

)
.

Since the function f(x) = xd is strictly convex on R+ for d ≥ 2, equality
throughout holds if and only if Z is constant almost surely. �

Remark: The above result can even be extended: If X
d
= µ+Zβ+

√
ZAW has

a normal mean-variance mixture distribution with 0 < Var(Z) <∞, ∆ = AA>

is a d × d-diagonal matrix and Cov(Xi, Xj) = 0 for some 1 ≤ i 6= j ≤ d, then
Xi and Xj are not independent either. This can be seen as follows: Since ∆ is
diagonal and Var(Z) > 0, by (2.11) Cov(Xi, Xj) = 0 implies that (ββ>)ij = 0.
This means, either βi = 0 or βj = 0 (or both, but then we would be within the
setting of Lemma 2.17 again). Suppose βi 6= 0 and βj = 0, then we calculate
using similar arguments as above

E
(
(Xi − µi) |Xj − µj |

)
= E

(
(βiZ +

√
Z
√

∆iiWi) |
√
Z
√

∆jjWj |
)

= E
(
(βiZ

3
2 + Z

√
∆iiWi)

)
E
(
|
√

∆jjWj |
)

= βi E
(
Z

3
2
)

E
(
|
√

∆jjWj |
)

> βi E(Z)
3
2 E
(
|
√

∆jjWj |
)

= E(βiZ) E(Z)
1
2 E
(
|
√

∆jjWj |
)

> E(βiZ) E
(
Z

1
2
)
E
(
|
√

∆jjWj |
)

= E(Xi − µi) E
(
|Xj − µj |

)
,

and the inequalities are strict because f(x) = x
3
2 and g(x) =

√
x are strictly

convex resp. concave and L(Z) is non-degenerate by assumption.

Thus in general zero correlation within multivariate normal mean-variance
mixture models must not be interpreted as independence. In particular the com-
ponents Xi of a GH distributed random vector X ∼ GHd(λ, α, β, δ, µ,∆) can
never be independent because Theorem 2.11 b) states that the conditional dis-
tribution L

(
Xi | (X1, . . . , Xi−1, Xi+1, . . . , Xd)

> = x̄
)

= GH(λ̃, α̃, β̃, δ̃, µ̃) always

depends on the vector x̄ (at least the parameter δ̃ does so) for every 1 ≤ i ≤ d.
Moreover, it should be observed that for generalized hyperbolic distributed
random variables the maximal attainable absolute correlation is usually strictly
smaller than one: the Cauchy–Schwarz inequality states that |Corr(X1, X2)| = 1
can occur if and only if X2 = aX1 +b almost surely for some a, b ∈ R and a 6= 0,
but if X1 ∼ GH(λ1, α1, β1, δ1, µ1) and X2 ∼ GH(λ2, α2, β2, δ2, µ2), the required
linear relationship imposes some conditions on the GH parameters. Recall that
aX1 + b ∼ GH(λ, α|a| ,

β
a , δ|a|, aµ+ b) by Theorem 2.11 c). Thus using the scale-

and location-invariant parameters ζi = δi(α
2
i − β2

i )
1
2 and ρi = βi

αi
, i = 1, 2, we

conclude that X2 = aX1 + b can hold only if ζ1 = ζ2, |ρ1| = |ρ2| and λ1 = λ2.
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Having seen that correlation is in general not the tool to precisely describe
and measure dependencies in multivariate models, one may ask if there exists a
more powerful notion for this purpose. The answer is positive and provided by

Definition 2.18 A d-dimensional copula C is a distribution function on [0, 1]d

with standard uniform marginal distributions, that is, C : [0, 1]d → [0, 1] has the
following properties:

a) C(u) = C(u1, . . . , ud) is increasing in each argument ui,

b) C(1, . . . , 1, ui, 1, . . . , 1) = ui for all 1 ≤ i ≤ d and ui ∈ [0, 1],

c) For all (a1, . . . , ad)
>, (b1, . . . , bd)

> ∈ [0, 1]d with ai ≤ bi, 1 ≤ i ≤ d, we
have

2∑
i1=1

· · ·
2∑

id=1

(−1)i1+···+id C(u1i1 , . . . , udid) ≥ 0,

where uj1 = aj and uj2 = bj for all 1 ≤ j ≤ d.

Remark: Properties a) and b) immediately follow from the definition of C(u)
as a distribution function with identically uniformly distributed marginals on
[0, 1], c) essentially is a reformulation of the fact that if U = (U1, . . . , Ud)

>

is a random vector possessing the distribution function C(u), then necessarily
P (a1 ≤ U1 ≤ b1, . . . , ad ≤ Ud ≤ bd) ≥ 0. It can also be shown that these
properties are sufficient, that is, every function C : [0, 1]d → [0, 1] fulfilling a),
b) and c) is a copula. Clearly, the k-dimensional margins of a copula C are also
copulas for every 2 ≤ k < d.

We do not intend to give a detailed survey on the fairly large theory of cop-
ulas in the following, but simply want to mention some basic facts and results
related to the topic of tail-dependence we shall be concerned with later on. For
further reading, we refer to the literature hereafter (which of course is a subjec-
tive and incomplete choice): A concise and readable introduction to copulas can
be found in McNeil, Frey, and Embrechts (2005, Chapter 5), a comprehensive
overview is provided by the monograph of Nelsen (1999), and the application
of copulas to finance is discussed in Cherubini, Luciano, and Vecchiato (2004).

The central role of copulas in the study of multivariate distributions is high-
lighted by the following fundamental result which goes back to Sklar (1959).
It not only shows that copulas are inherent in every multivariate distribution,
but also that the latter can be constructed by plugging the desired marginal
distributions into a suitably chosen copula.

Theorem 2.19 (Sklar’s Theorem) Let F be a d-dimensional distribution
function with margins F1, . . . , Fd. Then there exists a copula C : [0, 1]d → [0, 1]
such that for all x = (x1, . . . , xd)

> ∈ [−∞,∞]d

F (x1, . . . , xd) = C
(
F1(x1), . . . , Fd(xd)

)
. (2.28)

If F1, . . . , Fd are all continuous, then C is unique, otherwise C is uniquely
determined on F1(R)× · · · × Fd(R) where Fi(R) denotes the range of Fi.



2.4 On the dependence structure of mvGH distributions 91

Conversely, if C : [0, 1]d → [0, 1] is a copula and F1, . . . , Fd are univariate
distribution functions, then the function F (x) defined by (2.28) is a multivariate
distribution function with margins F1, . . . , Fd.

Remark: In most books, Sklar’s Theorem is only proven in the special case
of continuous margins Fi (see, for example, McNeil, Frey, and Embrechts 2005,
p. 187), the proof of the general case is usually referred to the original articles
or, if given explicitly, written down in a rather lengthy and technical way (see
Nelsen 1999, p. 16ff). A short and elegant proof of the general case which is
based on the distributional transform can be found in Rüschendorf (2009).

If all marginal distribution functions Fi of F are continuous and their gen-
eralized inverses F−1

i are defined by F−1
i (ui) := inf{y |Fi(y) ≥ ui} (with the

usual convention inf ∅ = ∞), then Fi
(
F−1
i (ui)

)
= ui. Thus it immediately fol-

lows from (2.28) by inserting xi = F−1
i (ui), ui ∈ [0, 1], 1 ≤ i ≤ d, that in this

case the unique copula CF (u) contained in F is given by

CF (u1, . . . , ud) = F
(
F−1

1 (u1), . . . , F−1
d (ud)

)
. (2.29)

The computation of this so-called implied copula CF (u) is in general numerically
demanding if the distribution function F (x) is not known explicitly. Suppose
for example that only the density f(x) of F can be expressed in closed form,
then already the determination of a single value F (x0) requires to evaluate a
d-dimensional integral which especially for greater dimensions d can hardly be
done sufficiently precise in reasonable time. But for multivariate normal mean-
variance mixtures it is sometimes possible to significantly reduce the numerical
complexity: Suppose that F = Nd(µ + yβ, y∆) ◦ G with known margins Fi
possessing Lebesgue densities fi as above, and let O be an orthogonal d × d-
matrix such that O∆O> is diagonal, then

CF (u1, . . . , ud) = F
(
F−1

1 (u1), . . . , F−1
d (ud)

)
=

∫ F−1
d (ud)

−∞
. . .

∫ F−1
1 (u1)

−∞

∫ ∞
0

dNd(µ+yβ,y∆)(x1, . . . , xd)G(dy) dx1 . . . dxd

=

∫ ∞
0

d∏
i=1

Φ((O(µ+yβ))i,(O∆O>)ii)

((
O(F−1

1 (u1), . . . , F−1
d (ud))

>)
i

)
G(dy),

where Φ(µ,σ2) denotes the (univariate) distribution function of N(µ, σ2). The
last expression can be evaluated much easier on a computer since it only requires
the calculation of one-dimensional integrals (possibly more than one because
the values F−1

i (ui) of the marginal quantile functions may only be obtained by
integrating the corresponding densities fi(xi) numerically).

If in addition to the marginal distributions Fi also F itself possesses a
Lebesgue density f(x), a further simplification can be achieved by using the
(implied) copula density cF (u) which is defined by

cF (u1, . . . , ud) :=
∂CF (u1, . . . , ud)

∂u1 . . . ∂ud
=

f
(
F−1

1 (u1), . . . , F−1
d (ud)

)
f1

(
F−1

1 (u1)
)
· · · fd

(
F−1
d (ud)

) , (2.30)
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Figure 2.1: Densities of implied copulas of bivariate GH distributions and
their limits. The underlying distributions are as follows:

top left: symmetric NIG2(10,0, 0.2,0, ∆̄),
top right: skewed NIG2(10,

(
4
1

)
, 0.2,0, ∆̄),

bottom left: skewed NIG2(4,
(

3
−2

)
, 0.2,0, ∆̄), bottom right: t2(−2, 2,0, ∆̄).

For all distributions ∆̄ =
(

1 ρ
ρ 1

)
with ρ = 0.3.

where the last equation immediately follows from (2.29). Combining (2.30) and
Theorem 2.11 a) allows to calculate the copula densities cGHd(λ,α,β,δ,µ,∆)(u) of
all multivariate GH distributions including the aforementioned limits. Some
results for the bivariate case are visualized in Figure 2.1 above. Note that the
choice of ρ = 0.3 implies det(∆̄) = 1− ρ2 < 1, so the parameters of the t- and
NIG distributions are the barred ones (λ̄, ᾱ, β̄, δ̄, µ̄) defined in the remark on
page 73. If β̄ = β = 0, then by equations (2.12)–(2.14) ∆̄ equals the correlation
matrix of the related distribution.

Apart from being inherent in every multivariate distribution, the impor-
tance of copulas relies on the fact that they encode the dependencies between
the margins Fi of F . Many popular dependence measures like, for example,
Kendall’s tau, Spearman’s rho, or the Gini coefficient can be expressed and
calculated solely in terms of the associated copulas (see McNeil, Frey, and Em-
brechts 2005, Proposition 5.29, and Nelsen 1999, Corollary 5.1.13). Thus the
assertion of Sklar’s Theorem might alternatively be stated in the following way:
Every multivariate distribution can be split up into two parts, the marginal
distributions and the dependence structure. The next proposition shows that
copulas and hence all dependence measures that can be derived from them are
invariant under strictly increasing transformations of the margins.
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Proposition 2.20 Suppose that (X1, . . . , Xd)
> is a random vector with joint

distribution function F , continuous margins Fi, 1 ≤ i ≤ d, and implied copula
CF given by (2.29). Let T1, . . . , Td be strictly increasing functions and G be the

joint distribution function of
(
T1(X1), . . . , Td(Xd)

)>
. Then the implied copulas

of F and G coincide, that is, CF = CG.

Proof: See McNeil, Frey, and Embrechts (2005, Proposition 5.6). �

Remark: From the above proposition it especially follows that the correlation
of two random variables does not depend on the inherent copula of their joint
distribution alone because correlation is invariant under (strictly) increasing
linear transformations only, but not under arbitrary increasing mappings. Cor-
relation is also linked to the marginal distributions since it requires them to
possess finite second moments to be well defined, whereas by Sklar’s Theorem a
copula of the joint distribution always exists without imposing any conditions
on the margins.

We now turn to the dependence measure we shall be concerned with for
the rest of the present section, the coefficients of tail dependence, which are
formally defined by

Definition 2.21 Let F be the joint distribution function of the bivariate ran-
dom vector (X1, X2)> and F1, F2 be the marginal distribution functions of X1

and X2, then the coefficient of upper tail dependence of F resp. X1 and X2 is

λu := λu(F ) = λu(X1, X2) = lim
q↑1

P
(
X2 > F−1

2 (q) |X1 > F−1
1 (q)

)
,

provided a limit λu ∈ [0, 1] exists. If 0 < λu ≤ 1, then F resp. X1 and X2 are
said to be upper tail dependent; if λu = 0, they are called upper tail independent
or asymptotically independent in the upper tail. Similarly, the coefficient of
lower tail dependence is

λl := λl(F ) = λl(X1, X2) = lim
q↓0

P
(
X2 ≤ F−1

2 (q) |X1 ≤ F−1
1 (q)

)
,

again provided a limit λl ∈ [0, 1] exists. If λu = λl = 0, then F resp. X1 and
X2 are tail independent.

Remark: If the distribution functions F1 and F2 are not continuous and strictly
increasing, F−1

1 and F−1
2 in the previous definition again have to be understood

as generalized inverses as defined on page 91.

The larger (or less) q, the more rare is the event {Xi > F−1
i (q)} (respectively

{Xi ≤ F−1
i (q)}). Thus the coefficients of tail dependence are nothing but the

limits of the conditional probabilities that the second random variable takes
extremal values given the first one also does so. In other words, they may
be regarded as the probabilities of joint extremal outcomes of X1 and X2. This
concept also is of some importance in finance: Suppose for example that X1 and
X2 represent two risky assets. If their joint distribution is lower tail dependent,
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the possibility that both of them suffer severe losses at the same time cannot be
neglected. In portfolio credit risk models, X1 and X2 may be the state variables
of two different firms or credit instruments, and the coefficient of lower tail
dependence can then be interpreted as the probability of a joint default. Tail
dependence is a copula property, which is illustrated by the subsequent

Proposition 2.22 Let (X1, X2)> be a bivariate random vector with joint dis-
tribution function F , continuous margins F1, F2, and implied copula CF as de-
fined in (2.29). Then the following holds:

a) The coefficients of lower and upper tail dependence can be calculated by

λl = lim
q↓0

CF (q, q)

q
and λu = lim

q↑1

1− 2q + CF (q, q)

1− q
.

b) If in addition F1, F2 are strictly increasing, λl and λu can be obtained by

λl = lim
q↓0

P
(
X2 ≤ F−1

2 (q) |X1 = F−1
1 (q)

)
+ lim

q↓0
P
(
X1 ≤ F−1

1 (q) |X2 = F−1
2 (q)

)
,

λu = lim
q↑1

P
(
X2 > F−1

2 (q) |X1 = F−1
1 (q)

)
+ lim

q↑1
P
(
X1 > F−1

1 (q) |X2 = F−1
2 (q)

)
.

Proof: The assertion of part a) of the proposition can be found in many
textbooks on copulas and dependence, and part b) essentially follows from the
ideas of McNeil, Frey, and Embrechts (2005, pp. 197 and 210). However, due to
its importance we provide a detailed proof here for the sake of completeness.

a) By Definition 2.21 we have

λl = lim
q↓0

P
(
X2 ≤ F−1

2 (q) |X1 ≤ F−1
1 (q)

)
= lim

q↓0

P
(
X1 ≤ F−1

1 (q), X2 ≤ F−1
2 (q)

)
P
(
X1 ≤ F−1

1 (q)
)

= lim
q↓0

F
(
F−1

1 (q), F−1
2 (q)

)
F1

(
F−1

1 (q)
) =

(2.29)
lim
q↓0

CF (q, q)

q
,

and similarly we obtain

λu = lim
q↑1

P
(
X2 > F−1

2 (q) |X1 > F−1
1 (q)

)
= lim

q↑1

P
(
X1 > F−1

1 (q), X2 > F−1
2 (q)

)
P
(
X1 > F−1

1 (q)
)

= lim
q↑1

1− P
(
{X1 ≤ F−1

1 (q)} ∪ {X2 ≤ F−1
2 (q)}

)
1− P

(
X1 ≤ F−1

1 (q)
)

= lim
q↑1

1− F1

(
F−1

1 (q)
)
− F2

(
F−1

2 (q)
)

+ F
(
F−1

1 (q), F−1
2 (q)

)
1− F1

(
F−1

1 (q)
)

= lim
q↑1

1− 2q + CF (q, q)

1− q
.

(Note that the continuity of Fi is required to apply equation (2.29) and for
Fi
(
F−1
i (q)

)
= q to hold).

b) Since F1 and F2 are continuous, the random variables Ui := Fi(Xi), i = 1, 2,
are both uniformly distributed on (0, 1). By Definition 2.18, the joint distri-
bution function of (U1, U2)> thus is a copula itself which by Proposition 2.20
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equals CF because F1 and F2 are strictly increasing by assumption, that is,
P (U1 ≤ u1, U2 ≤ u2) = CF (u1, u2). Moreover, for every bivariate copula C we

have 0 ≤ ∂C(u1,u2)
∂ui

≤ 1, i = 1, 2, and the partial derivatives exist for Lebesgue-

almost all (u1, u2) ∈ [0, 1]2 (Nelsen 1999, Theorem 2.2.7). Together we obtain

∂C

∂u1
(u1, u2) = lim

ε→0

CF (u1 + ε, u2)− CF (u1, u2)

ε

= lim
ε→0

P (u1 ≤ U1 ≤ u1 + ε, U2 ≤ u2)

P (u1 ≤ U1 ≤ u1 + ε)
= P (U2 ≤ u2 |U1 = u1)

and analogously ∂C(u1,u2)
∂u2

= P (U1 ≤ u1 |U2 = u2). The continuity and strict

monotonicity of the Fi further implies {Ui ≤ ui} = {Xi ≤ F−1
i (ui)} for all

ui ∈ (0, 1) and hence P (Ui ≤ ui |Uj = uj) = P
(
Xi ≤ F−1

i (ui) |Xj = F−1
j (uj)

)
for i, j ∈ {1, 2}, i 6= j. Applying L ’Hôpital’s rule to the expressions derived in
part a) we finally get

λl = lim
q↓0

CF (q, q)

q
= lim

q↓0

dC(q, q)

dq
= lim

q↓0

(
∂C

∂u1
(q, q) +

∂C

∂u2
(q, q)

)
= lim

q↓0

(
P (U2 ≤ q |U1 = q) + P (U1 ≤ q |U2 = q)

)
= lim

q↓0

(
P
(
X2 ≤ F−1

2 (q) |X1 = F−1
1 (q)

)
+ P

(
X1 ≤ F−1

1 (q) |X2 = F−1
2 (q)

))
and, with the same reasoning,

λu = lim
q↑1

1− 2q + CF (q, q)

1− q
= lim

q↑1

(
2− ∂C

∂u1
(q, q)− ∂C

∂u2
(q, q)

)
= lim

q↑1

(
(1− P (U2 ≤ q |U1 = q) + 1− P (U1 ≤ q |U2 = q)

)
= lim

q↑1

(
P
(
X2 > F−1

2 (q) |X1 = F−1
1 (q)

)
+ P

(
X1 > F−1

1 (q) |X2 = F−1
2 (q)

))
.

�

With the help of these preliminaries we are now able to give a complete an-
swer to the question which members of the multivariate GH family show tail de-
pendence and which do not. To our knowledge, only symmetric GH distributions
have been considered in this regard in the literature so far. By equation (2.1)
and Corollary 2.10, every multidimensional GH distribution with parameter
β = 0 belongs to the class of elliptical distributions, thus the tail independence
of GHd(λ, α,0, δ, µ,∆) (apart from the t limit case with α = 0) can be deduced
from the more general result below of Hult and Lindskog (2002, Theorem 4.3).

It uses the representation X
d
= µ + RAS of an elliptically distributed random

vector X which was introduced in Corollary 2.9 and the remark thereafter.

Theorem 2.23 Let X
d
= µ+RAS ∼ Ed

(
µ,Σ, ψ(t)

)
be an elliptically distributed

random vector with Σii > 0, 1 ≤ i ≤ d, and |ρij | := |Σij/
√

ΣiiΣjj | < 1 for all
i 6= j. Then the following statements are equivalent:
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a) The distribution function FR of R is regularly varying with exponent
p < 0, that is, FR ∈ Rp (see Definition 1.15).

b) (Xi, Xj)
> is tail dependent for all i 6= j.

Moreover, if FR ∈ Rp with p < 0, then for all i 6= j

λu(Xi, Xj) = λl(Xi, Xj) =

∫ π/2
(π/2−arcsin(ρij))/2

cos|p|(t) dt∫ π/2
0 cos|p|(t) dt

.

If X ∼ Nd(µ, y∆) ◦ G has a normal variance mixture distribution which is
elliptical by Corollary 2.10, then X admits the two stochastic representations

µ+
√
ZAW

d
= X

d
= µ+RAS where the vector µ and the d×d-matrix A on the

left and right hand side coincide. This equation suggests that the tail behaviour
of the distribution FR of R is mainly influenced by the distribution G of Z and
vice versa. Indeed, one can show that FR is regularly varying with exponent
2p < 0 (FR ∈ R2p) if and only if G ∈ Rp (see McNeil, Frey, and Embrechts
2005, pp. 92 and 295f).

Suppose now X ∼ GHd(λ, α,0, δ, µ,∆) (excluding the t limiting case for a
moment), then by equation (1.2) the density of the corresponding mixing dis-
tribution GIG(λ, δ, α) has a semi-heavy right tail in the sense of Definition 1.12

with constants a2 = λ−1, b2 = α2

2 and c2 = (α/δ)λ

2Kλ(δα) . (In case of the VG limit, the

density of the mixing Gamma distribution G
(
λ, α

2

2

)
also has a semi-heavy right

tail with the same constants a2 and b2, but c2 = (α2/2)λ

Γ(λ) .) By Proposition 1.13

and Definition 1.14, the distribution functions of GIG(λ, δ, α) and G
(
λ, α

2

2

)
both have an exponential right tail with rate b2. In view of Definition 1.15
and the subsequent remark, distribution functions with exponential right tails
can be regarded as regularly varying with exponent −∞. Consequently, for the

distribution function FR of R in the representation X
d
= µ + RAS we have

FR ∈ R−∞ as well. Applying Theorem 2.23 yields

λu(Xi, Xj) = λl(Xi, Xj) = lim
p→−∞

∫ π/2
(π/2−arcsin(ρij))/2

cos|p|(t) dt∫ π/2
0 cos|p|(t) dt

= 0,

showing the tail independence of all symmetric GHd(λ, α,0, δ, µ,∆)-distribu-
tions with parameter α > 0.

Remark: The convergence of the ratio of the two integrals can be justified as
follows: Since h : (−π

2 ,
π
2 )→ R− with h(x) = log(cos(x)) has an absolute max-

imum at x0 = 0 and h′′(x) = − cos−2(x), an application of Laplace’s method
shows that for all 0 < b ≤ π

2∫ b

0
cos|p|(t) dt =

∫ b

0
e|p|h(t) dt ∼

√
π

−2|p|h′′(0)
e|p|h(0) =

√
π

2|p|
, |p| → ∞,

consequently

lim
p→−∞

∫ π/2
(π/2−arcsin(ρij))/2

cos|p|(t) dt∫ π/2
0 cos|p|(t) dt

= 1− lim
p→−∞

∫ (π/2−arcsin(ρij))/2
0 cos|p|(t) dt∫ π/2

0 cos|p|(t) dt
= 0.
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In the t limiting case, however, we have X
d
= µ +

√
ZAW ∼ td(λ, δ, µ,∆)

with Z ∼ iG
(
λ, δ

2

2

)
, and from equation (1.4) it is easily seen that the density

diG(λ,δ2/2) is regularly varying with exponent λ − 1. Hence G = FZ ∈ Rλ and
thus, as pointed out above, FR ∈ R2λ, so we conclude from Theorem 2.23 that
λu(Xi, Xj) = λl(Xi, Xj) > 0 for all t distributions td(λ, δ, µ,∆). The coefficients
are quantified more accurately in Proposition 2.24 below.

This main result of the present section shows that the dependence behaviour
can change dramatically if we move from symmetric to skewed GH distributions
with parameter β 6= 0: in addition to tail independence also complete depen-
dence can occur, that is, both of the coefficients λl and λu may be equal to one.
More precisely we have

Proposition 2.24 Let X ∼ GH2(λ, α, β, δ, µ,∆) and define ρ := ∆12√
∆11∆22

as

well as β̄i :=
√

∆iiβi for i = 1, 2. Then the following holds:

a) If 0 ≤
√
〈β,∆β〉 < α, then the GH distribution (including possible V G

limits) is tail independent if −1 < ρ ≤ 0. If 0 < ρ < 1, then

λl(X1, X2) = λu(X1, X2) =

{
0, c∗, c

−1
∗ > ρ,

1, min(c∗, c
−1
∗ ) < ρ,

where c∗ :=

√
α2−(1−ρ2)β̄2

2+β̄1+ρβ̄2√
α2−(1−ρ2)β̄2

1+β̄2+ρβ̄1
.

b) If λ < 0 and α = 0, then X ∼ t2(λ, δ, µ,∆) and

λu(X1, X2) = λl(X1, X2) = 2Ft(λ− 1
2
,
√
−2λ+1,0)

(
−

√
(−2λ+ 1)(1− ρ)

1 + ρ

)
,

where Ft(λ− 1
2
,
√
−2λ+1,0) denotes the distribution function of the univariate

Student’s t-distribution t
(
λ − 1

2 ,
√
−2λ+ 1, 0

)
with f = −2λ + 1 degrees

of freedom.

c) Let λ < 0 and 0 <
√
〈β,∆β〉 = α. If (β̄1 + ρβ̄2)(β̄2 + ρβ̄1) < 0, then

λu(X1, X2) = λl(X1, X2) =

{
0, ρ < 0,

1, ρ > 0.

If (β̄1 + ρβ̄2)(β̄2 + ρβ̄1) > 0, then

λu(X1, X2) = λl(X1, X2) =

{
0, c∗, c

−1
∗ > ρ,

1, min(c∗, c
−1
∗ ) < ρ,

where c∗ :=
β̄1 + ρβ̄2

β̄2 + ρβ̄1
.

For the proof, we need the following lemma which is a slightly modified version
of Banachewicz and van der Vaart (2008, Lemma 3.1):

Lemma 2.25 Suppose F : R → [0, 1] is a continuous and strictly increasing
distribution function.
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a) If F (y) ∼ c1|y|−a1 as y → −∞ and 1 − F (y) ∼ c2y
−a2 as y → ∞ for

some a1, a2, c1, c2 > 0, then F−1(u) ∼ −
(
c1
u

) 1
a1 and F−1(1− u) ∼

(
c2
u

) 1
a2

for u ↓ 0.

b) If instead F (y) ∼ c1|y|a1e−b1|y| as y → −∞ and 1 − F (y) ∼ c2y
a2e−b2y

as y →∞ for some a1, a2 ∈ R and b1, b2, c1, c2 > 0, then F−1(u) ∼ log(u)
b1

and F−1(1− u) ∼ − log(u)
b2

for u ↓ 0.

Proof: a) If 1− F (y) ∼ c2y
−a2 as y →∞, then for any r > 0

lim
u↓0

1− F
(
r
(
c2
u

) 1
a2

)
u

= r−a2 .

For r < 1, the right hand side of the above equation is greater than one, so we

conclude that in this case 1−F
(
r
(
c2
u

) 1
a2

)
> u for sufficiently small u and hence

F−1(1− u) > r
(
c2
u

) 1
a2 (note that the assumptions on F imply F−1

(
F (y)

)
= y

for all y ∈ R). If r > 1, then we similarly obtain 1− F
(
r
(
c2
u

) 1
a2

)
< u and thus

F−1(1 − u) < r
(
c2
u

) 1
a2 for sufficiently small u. This proves the assertion for

F−1(1 − u), and the asymptotic behaviour of F−1(u) for u ↓ 0 can be shown
analogously.

b) If 1− F (y) ∼ c2y
a2e−b2y as y →∞, then we have

lim
u↓0

1− F
(
− r log(u)

b2

)
u

= lim
u↓0

c2

(
−r log(u)

b2

)a2

ur−1 =

{
∞, r < 1,

0, r > 1.

With the same reasoning as before we conclude F−1(1− u) ∼ − log(u)
b2

for u ↓ 0,

and the corresponding result for F−1(u) is easily obtained along the same lines.
�

Proof of Proposition 2.24: Propositions 2.22 and 2.20 state that tail de-
pendence is a copula property and therefore invariant under strictly increasing
transformations of X1 and X2. But if X ∼ GH2(λ, α, β, δ, µ,∆), the linear

transformation Y =
(1/
√

∆11 0

0 1/
√

∆22

)
(X − µ) obviously is strictly increasing in

each component, and Theorem 2.11 c) implies that Y ∼ GH2(λ̄, ᾱ, β̄, δ̄,0, ∆̄)

with λ̄ = λ, ᾱ = α, β̄ =
(√∆11 0

0
√

∆22

)
β, δ̄ = δ, ∆̄ =

(
1 ρ
ρ 1

)
and ρ := ∆12/

√
∆11∆22.

Note that we here use the barred parameters defined in the remark on p. 73 be-
cause in general det(∆̄) = 1−ρ2 < 1. As already pointed out in the remarks on
pages 73 and 76, these considerations remain also valid for all GH limit distri-
butions. Hence we can and will always assume X ∼ GH2(λ, α, β̄, δ,0, ∆̄) in the
following. The fact that ∆ is supposed to be positive definite with det(∆) = 1

by definition implies the inequality 0 < 1
∆11∆22

=
∆11∆22−∆2

12
∆11∆22

= 1 − ρ2, thus
|ρ| < 1.

a) If X ∼ GH2(λ, α, β̄, δ,0, ∆̄) and 0 ≤
√
〈β,∆β〉 < α, then by Theorem 2.11 a)

the marginal distributions are X1 ∼ GH
(
λ, (α2 − (1− ρ2)β̄2

2)1/2, β̄1 + ρβ̄2, δ, 0
)
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and X2 ∼ GH
(
λ, (α2 − (1− ρ2)β̄2

1)1/2, β̄2 + ρβ̄1, δ, 0
)
. To simplify notations we

set α̂1 := (α2 − (1− ρ2)β̄2
2)1/2, β̂1 := β̄1 + ρβ̄2, and α̂2 := (α2 − (1− ρ2)β̄2

1)1/2,
β̂2 := β̄2 + ρβ̄1, then we obtain α̂2

1 − β̂2
1 = α̂2

2 − β̂2
2 = α2 − 〈β,∆β〉 > 0.

Thus the densities of L(X1) and L(X2) both have semi-heavy tails (see Defi-
nition 1.12 and the remark thereafter), and Proposition 1.13 (or equivalently
Corollary 1.17) implies that the corresponding distribution functions F1 and F2

fulfill the assumptions of Lemma 2.25 b) with b1 = α̂i + β̂i and b2 = α̂i − β̂i,
i = 1, 2. From this we conclude that F−1

1 (q) ∼ clF
−1
2 (q) for q ↓ 0 as well as

F−1
1 (q) ∼ cuF

−1
2 (q) for q ↑ 1 where cl := α̂2+β̂2

α̂1+β̂1
> 0 and cu := α̂2−β̂2

α̂1−β̂1
> 0. Note

that clcu =
α̂2

2−β̂2
2

α̂2
1−β̂2

1

= 1 and thus cu = c−1
l . All this also holds in the VG limit

case with δ = 0 because Theorem 2.11 a) still applies there and the univariate
VG marginal densities have semi-heavy tails, too (see page 22).

By Theorem 2.11 b), the conditional distribution of Xi given Xj = xj (where
here and in the following i, j ∈ {1, 2} and i 6= j) is given by P (Xi |Xj = xj) =

GH
(
λ − 1

2 , α(1 − ρ2)−1/2, β̄i,
√
δ2 + x2

j

√
1− ρ2, ρxj

)
, and part c) of the same

theorem then yields

P

 Xi − ρxj√
δ2 + x2

j

√
1− ρ2

∣∣∣∣Xj = xj


= GH

(
λ− 1

2 , α
√
δ2 + x2

j , β̄i

√
δ2 + x2

j

√
1− ρ2, 1, 0

)
=: GH∗i|j

(
λ− 1

2 , α, β̄i, δ, ρ, xj
)
.

Again, this also remains true in the VG limit case (see the remark on p. 76).
Let F qi|j denote the distribution function of GH∗i|j

(
λ− 1

2 , α, β̄i, δ, ρ, F
−1
j (q)

)
and

set

hi|j(q) := (1− ρ2)−
1
2

F−1
i (q)− ρF−1

j (q)√
δ2 +

(
F−1
j (q)

)2 for q ∈ (0, 1),

then we have

lim
q↓0

P
(
Xi ≤ F−1

i (q)
∣∣Xj = F−1

j (q)
)

= lim
q↓0

F qi|j
(
hi|j(q)

)
,

lim
q↑1

P
(
Xi > F−1

i (q)
∣∣Xj = F−1

j (q)
)

= lim
q↑1

1− F qi|j
(
hi|j(q)

)
.

Moreover, if α > |β| ≥ 0, then GH(λ, rα, rβ, δ, µ)
w−→ εµ for r →∞ because

lim
r→∞

φGH(λ,rα,rβ,δ,µ)(u) =

= lim
r→∞

eiuµ
(

(rα)2 − (rβ)2

(rα)2 − (rβ + iu)2

)λ
2 Kλ

(
δ
√

(rα)2 − (rβ + iu)2
)

Kλ

(
δ
√

(rα)2 − (rβ)2
)

= lim
r→∞

eiuµ

(
α2 − β2

α2 − (β + iu
r )2

)λ
2 Kλ

(
rδ
√
α2 − (β + iu

r )2
)

Kλ

(
rδ
√
α2 − β2

) = eiuµ
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which implies that GH∗i|j
(
λ− 1

2 , α, β̄i, δ, ρ, F
−1
j (q)

)
converges weakly to the de-

generate distribution ε0 if q ↓ 0 or q ↑ 1. From the asymptotic relations of the
quantile functions F−1

1 (q) and F−1
2 (q) we further obtain

lim
q↓0

hi|j(q) = (1− ρ2)−
1
2
(
ρ− cj−il

)
, and lim

q↑1
hi|j(q) = (1− ρ2)−

1
2
(
ci−jl − ρ

)
(remember cu = c−1

l ), consequently

lim
q↓0

P
(
Xi ≤ F−1

i (q)
∣∣Xj = F−1

j (q)
)

= Fε0

(
ρ− cj−il√

1− ρ2

)
=

{
0, cj−il > ρ,

1, cj−il < ρ,

as well as

lim
q↑1

P
(
Xi > F−1

i (q)
∣∣Xj = F−1

j (q)
)

= 1− Fε0

(
ci−jl − ρ√

1− ρ2

)
=

{
0, ci−jl > ρ,

1, ci−jl < ρ,

and Proposition 2.22 b) finally implies that λl(X1, X2) = λu(X1, X2) = 0 if
and only if cl, c

−1
l > ρ. Since cl > 0, the conditions are trivially met if ρ ≤ 0.

If 0 < ρ < 1, then at most one of the quantities cl and c−1
l can be smaller

than ρ (note that the convergence to a well-defined limit cannot be assured if
cj−il = ρ > 0, therefore we exclude these possibilities in our considerations).
This completes the proof of part a).

c) Because Theorem 2.11 a) still applies if X ∼ GH2(λ, α, β̄, δ,0, ∆̄), λ < 0,
and 0 <

√
〈β,∆β〉 = α, we have, using the notations from above, that Xi ∼

GH(λ, α̂i, β̂i, δ, 0), i = 1, 2. However, in this case α̂2
i − β̂2

i = α2−
√
〈β,∆β〉 = 0,

hence both marginal distributions are univariate GH limit distributions with
λ < 0 and α̂i = |β̂i|. If β̂i > 0, we conclude from equations (1.20), (A.10) and
Proposition 1.13 that the tail behaviour of the distribution function is given by
Fi(y) ∼ ci1|y|λ−1e−2α̂i|y| for y → −∞ and 1− Fi(y) ∼ ci2|y|λ as y →∞ where

ci1 =
2λ−1

α̂λ+1
i δ2λΓ(|λ|)

and ci2 =
2λ

|λ|α̂λi δ2λΓ(|λ|)
.

Lemma 2.25 now states that F−1
i (q) ∼ log(q)

2α̂i
for q ↓ 0 and F−1

i (q) ∼
(
ci2
1−q
) 1
|λ|

for q ↑ 1. If β̂i < 0, then we analogously obtain F−1
i (q) ∼ −

(
ci2
q

) 1
|λ| as q ↓ 0

and F−1
i (q) ∼ − log(1−q)

2α̂i
as q ↑ 1. Because the case β̂i = β̄i + ρβ̄j = 0 is ruled

out by assumption, the equality 0 = α̂2
i − β̂2

i = α2 − (1 − ρ2)β̄2
j − (β̄i + ρβ̄j)

2

implies that α >
√

1− ρ2|β̄i|. Thus we can proceed along the same lines as in
the proof of part a) and get

lim
q↓0

P
(
Xi ≤ F−1

i (q)
∣∣Xj = F−1

j (q)
)

= Fε0

(
lim
q↓0

hi|j(q)
)
,

lim
q↑1

P
(
Xi > F−1

i (q)
∣∣Xj = F−1

j (q)
)

= 1− Fε0
(

lim
q↑1

hi|j(q)
)

if we again exclude the cases where hi|j(q)→ 0 for the same reasons as above.
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Suppose β̂1, β̂2 > 0, then F−1
1 (q) ∼ clF−1

2 (q) with cl = α̂2
α̂1

= β̂2

β̂1
> 0 as q ↓ 0

and F−1
1 (q) ∼ cuF

−1
2 (q) with cu =

(
c12
c22

)1/|λ|
=
( α̂λ2
α̂λ1

)1/|λ|
= β̂1

β̂2
= c−1

l for q ↑ 1.

Consequently we again have

lim
q↓0

hi|j(q) = (1− ρ2)−
1
2
(
ρ− cj−il

)
, and lim

q↑1
hi|j(q) = (1− ρ2)−

1
2
(
ci−jl − ρ

)
and conclude, analogously as before, that λl(X1, X2) = λu(X1, X2) = 0 if and
only if cl, c

−1
l > ρ. If β̂1, β̂2 < 0, the tail behaviour of the quantile functions is

just exchanged (cl  c−1
l and cu = c−1

l  cl), hence the assertion remains also
valid in this case.

Finally, let β̂1 > 0 and β̂2 < 0, then F−1
1 (q) ∼ log(q)

2α̂1
and F−1

2 (q) ∼ −
(
c22
q

) 1
|λ|

as q ↓ 0, thus limq↓0
F−1

1 (q)

F−1
2 (q)

= 0 and

lim
q↓0

hi|j(q) =

{
(1− ρ2)−

1
2 ρ, i− j = −1,

−∞, i− j = 1,

hence λl(X1, X2) = 0 if and only if ρ < 0. Further F−1
1 (q) ∼

(
c12
1−q
) 1
|λ| and

F−1
2 (q) ∼ − log(1−q)

2α̂1
for q ↑ 1, consequently limq↑1

F−1
2 (q)

F−1
1 (q)

= 0 and

lim
q↑1

hi|j(q) =

{
−(1− ρ2)−

1
2 ρ, i− j = 1,

∞, i− j = −1,

which implies that also λu(X1, X2) = 0 if and only if ρ < 0. Trivially, all con-
clusions remain true if β̂1 < 0 and β̂2 > 0.

b) The proof of this part goes back to Embrechts, McNeil, and Straumann
(2002), see also McNeil, Frey, and Embrechts (2005, p. 211). If λ < 0 and α = 0,
we can assume X ∼ GH2(λ, 0,0, δ,0, ∆̄) = t2(λ, δ,0, ∆̄), and the marginal dis-
tributions are given by L(X1) = L(X2) = GH(λ, 0, 0, δ, 0) = t(λ, δ, 0) according
to Theorem 2.11 a), hence we have F−1

1 (q) = F−1
2 (q) for all q ∈ (0, 1) in this

case. By Theorem 2.11 b), the conditional distributions also coincide, that is,
P (X2 |X1 = x) = P (X1 |X2 = x) = t

(
λ,
√
δ2 + x2

√
1− ρ2, ρx

)
, and part c) of

the same theorem implies

P

(√
−2λ+ 1√
1− ρ2

X2 − ρx√
δ2 + x2

∣∣∣∣X1 = x

)
= P

(√
−2λ+ 1√
1− ρ2

X1 − ρx√
δ2 + x2

∣∣∣∣X2 = x

)
= t
(
λ− 1

2 ,
√
−2λ+ 1, 0

)
.

(Note that, in principle, the additional scaling factor
√
−2λ+ 1 is not necessary,

but leads to the relation δ2 = −2λ + 1 = −2(λ − 1
2) of the parameters of

the conditional distribution which therewith becomes a classical Student’s t-
distributiom with f = −2λ+ 1 degrees of freedom.) If we set

h(q) :=

√
−2λ+ 1√
1− ρ2

F−1
2 (q)− ρF−1

1 (q)√
δ2 + (F−1

1 (q))2
for q ∈ (0, 1),
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we get, using that F−1
1 (q) = F−1

2 (q),

lim
q↓0

h(q) = −
√
−2λ+ 1 (1− ρ)√

1− ρ2
= −

√
(−2λ+ 1)(1− ρ)

1 + ρ
= − lim

q↑1
h(q),

consequently

lim
q↓0

P
(
X2 ≤ F−1

2 (q)
∣∣X1 = F−1

1 (q)
)

= lim
q↓0

P
(
X1 ≤ F−1

1 (q)
∣∣X2 = F−1

2 (q)
)

= lim
q↓0

Ft(λ− 1
2
,
√
−2λ+1,0)

(
h(q)

)
= Ft(λ− 1

2
,
√
−2λ+1,0)

(
−

√
(−2λ+ 1)(1− ρ)

1 + ρ

)
and

lim
q↑1

P
(
X2 > F−1

2 (q)
∣∣X1 = F−1

1 (q)
)

= lim
q↑1

P
(
X1 > F−1

1 (q)
∣∣X2 = F−1

2 (q)
)

= lim
q↑1

1− Ft(λ− 1
2
,
√
−2λ+1,0)

(
h(q)

)
= 1− Ft(λ− 1

2
,
√
−2λ+1,0)

(√
(−2λ+ 1)(1− ρ)

1 + ρ

)
.

The symmetry relation Ft(λ−1/2,
√
−2λ+1,0)(−x) = 1− Ft(λ−1/2,

√
−2λ+1,0)(x) and

Proposition 2.22 b) now yield the desired result. �

The conditions c∗ > ρ and c−1
∗ > ρ in Proposition 2.24 a) are trivially

fulfilled if β̄1 = β̄2, because then c∗ = c−1
∗ = 1. This in particular includes the

case β = 0 which provides an alternative proof for the tail independence of
symmetric GH distributions (apart from the t limit case). In general, however,
a checking of the condition might seem to be a little bit cumbersome. The
following corollary provides a simpler criterion for tail independence of GH
distributions.

Corollary 2.26 Suppose that X ∼ GH2(λ, α, β, δ, µ,∆) and ρ := ∆12√
∆11∆22

> 0.

Then λl(X1, X2) = λu(X1, X2) = 0 if either
√
〈β,∆β〉 < α and β1β2 ≥ 0 or

0 <
√
〈β,∆β〉 = α and β1β2 > 0.

Proof: According to Proposition 2.24 a) and c), we just have to show that the
conditions β1β2 ≥ 0 resp. > 0 imply c∗, c

−1
∗ > ρ. Assume

√
〈β,∆β〉 < α first. If

both β1, β2 ≥ 0, then so are β̄1 =
√

∆11β1 and β̄2 =
√

∆22β2. Since ρ > 0, we
see from the inequality 0 < α2 − 〈β,∆β〉 = α2 − β̄2

1 − 2ρβ̄1β̄2 − β̄2
2 that β̄i < α,

i = 1, 2. Therewith we obtain

c∗ =

√
α2 − (1− ρ2)β̄2

2 + β̄1 + ρβ̄2√
α2 − (1− ρ2)β̄2

1 + β̄2 + ρβ̄1

>

√
α2 − (1− ρ2)α2 + ρβ̄1 + ρβ̄2

α+ β̄1 + β̄2
= ρ,

and an analogous estimate shows that also c−1
∗ > ρ. If β1 ≤ 0 and β2 ≤ 0, we use

the fact that c−1
∗ may alternatively be represented by c−1

∗ =

√
α2−(1−ρ2)β̄2

2−β̄1−ρβ̄2√
α2−(1−ρ2)β̄2

1−β̄2−ρβ̄1

and similarly conclude that c∗, c
−1
∗ > ρ.
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Now, let 0 <
√
〈β,∆β〉 = α and note that the condition β1β2 > 0 implies

(β̄1 + ρβ̄2)(β̄2 + ρβ̄1) > 0. If both β1, β2 > 0, then c∗ = β̄1+ρβ̄2

β̄2+ρβ̄1
> ρβ̄1+ρβ̄2

β̄2+β̄1
= ρ,

and c−1
∗ > ρ follows analogously. If β1, β2 < 0, the same result is obtained by

using the representation c∗ = −β̄1−ρβ̄2

−β̄2−ρβ̄1
. �

Remark: An immediate consequence of the preceding corollary is that complete
dependence (λl(X1, X2) = λu(X1, X2) = 1) within bivariate GH distributions
can only occur if the parameters β1 and β2 have opposite signs, and one might
conjecture that the conditions c∗, c

−1
∗ > ρ are also always fulfilled in these cases

such that a two-dimensional GH distribution would be tail independent for
almost any choice of parameters. However, this is not true, and it is fairly easy
to construct counterexamples: Take α = 4, β̄1 = 3, β̄2 = −2, and ρ = 0.3, then
α2 − 〈β,∆β〉 = α2 − β̄2

1 − 2ρβ̄1β̄2 − β̄2
2 = 6.6 and

c−1
∗ =

√
α2 − (1− ρ2)β̄2

1 + β̄2 + ρβ̄1√
α2 − (1− ρ2)β̄2

2 + β̄1 + ρβ̄2

≈ 0.286 < ρ.

The corresponding copula density is shown in Figure 2.1. In view of Proposi-
tion 2.24, the densities displayed there represent all possible tail dependencies
of GH distributions: NIG2(10,0, 0.2,0, ∆̄) and NIG2(10,

(
4
1

)
, 0.2,0, ∆̄) are tail

independent, NIG2(4,
(

3
−2

)
, 0.2,0, ∆̄) is completely dependent, and the t distri-

bution t2(−2, 2,0, ∆̄) lies in between.

The fact that for GH distributions the coefficients of tail dependence can
only take the most extreme values 0 and 1 may surely be surprising at first
glance, but this phenomenon can also be observed in other distribution classes
(making it possibly less astonishing). For example, Banachewicz and van der
Vaart (2008) found a similar behaviour for the upper tail dependence coefficient
λu(X1, X2) of a skewed grouped t distribution. An alternative derivation and
discussion of their results can also be found in Fung and Seneta (2010).

Thus the dependence structure of multivariate GH distributions is fairly
strict in some sense since it neither allows independent components nor non-
trivial values of the tail dependence coefficients. A possible way to relax these
restrictions is to consider affine mappings of random vectors with indepen-

dent GH distributed components: If Y
d
= AX + µ, where µ ∈ Rd, A is a

lower triangular d× d-matrix, and X = (X1, . . . , Xd)
> with independent Xi ∼

GH(λi, αi, βi, 1, 0), 1 ≤ i ≤ d, then Y is said to have a multivariate affine GH
distribution. Dependent on the choice of A, L(Y ) can either possess indepen-
dent margins or show upper and lower tail dependence. Schmidt, Hrycej, and
Stützle (2006) provide a thorough discussion of this model.





Chapter 3

Applications to credit
portfolio modeling and CDO
pricing

Credit risk represents by far the biggest risk in the activities of a traditional
bank. In particular, during recession periods financial institutions loose enor-
mous amounts as a consequence of bad loans and default events. Traditionally,
the risk arising from a loan contract could not be transferred and remained
in the books of the lending institution until maturity. This has changed com-
pletely since the introduction of credit derivatives such as credit default swaps
(CDSs) and collateralized debt obligations (CDOs) roughly fifteen years ago.
The volume in trading these products at the exchanges and directly between
individual parties (OTC) has increased enormously. This success is due to the
fact that credit derivatives allow the transfer of credit risk to a larger commu-
nity of investors. The risk profile of a bank can now be shaped according to
specified limits, and concentrations of risk caused by geographic and industry
sector factors can be reduced.

However, credit derivatives are complex products, and a sound risk-manage-
ment methodology based on appropriate quantitative models is needed to judge
and control the risks involved in a portfolio of such instruments. Quantitative
approaches are particularly important in order to understand the risks involved
in portfolio products such as CDOs. Here we need mathematical models which
allow to derive the statistical distribution of portfolio losses. This distribution
is influenced by the default probabilities of the individual instruments in the
portfolio, and, more importantly, by the joint behaviour of the components of
the portfolio. Therefore the probabilistic dependence structure of default events
has to be modeled appropriately.

In the present chapter, this will be achieved by an extension of the factor
model approach which goes back to Vasiček (1987, 1991). He assumed the fac-
tors to be normal distributed which still is the industry standard up to now.
We shall replace the normal distribution by the much more flexible class of GH
distributions which have been introduced and extensively studied in the first
chapter of this thesis. As will be shown, this approach leads to a substantial im-
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provement of performance in the pricing of synthetic CDO tranches. The main
results of this chapter can also be found in Eberlein, Frey, and v. Hammerstein
(2008).

3.1 CDOs: Basic concepts and modeling approaches

A collateralized debt obligation (CDO) is a structured product based on an
underlying portfolio of reference entities subject to credit risk, such as corporate
bonds, mortgages, loans, or credit derivatives. Although several types of CDOs
are traded in the market which mainly differ in the content of the portfolio
and the cash flows between counterparties, the basic structure is the same.
The originator (usually a bank) sells the assets of the portfolio to a so-called
special purpose vehicle (SPV), a company which is set up only for the purpose
of carrying out the securitization and the necessary transactions. The SPV does
not need capital itself, instead it issues notes to finance the acquisition of the
assets. Each note belongs to a certain loss piece or tranche after the portfolio
has been divided into a number of them. Consequently, the portfolio is no longer
regarded as an asset pool but as a collateral pool. The tranches have different
seniorities: The first loss piece or equity tranche has the lowest, followed by
junior mezzanine, mezzanine, senior and finally super-senior tranches. The
interest payments the SPV has to make to the buyer of a CDO tranche are
financed from the cash flow generated by the collateral pool. Therefore the
performance and the default risk of the portfolio is taken over by the investors.
Since all liabilities of the SPV as a tranche seller are funded by proceeds from
the portfolio, CDOs can be regarded as a subclass of so-called asset-backed
securities. If the assets consist mainly of bonds resp. loans, the CDO is also
called collateralized bond obligation (CBO) resp. collateralized loan obligation
(CLO). For a synthetic CDO which we shall discuss in greater detail below, the
portfolio contains only credit default swaps. The motivation to build a CDO is
given by economic reasons:

• By selling the assets to the SPV, the originator removes them from his
balance sheet, and therefore he is able to reduce his regulatory capital. The
capital which is set free can then be used for new business opportunities.

• The proceeds from the sale of the CDO tranches are typically higher than
the initial value of the asset portfolio because the risk-return profile of the
tranches is more attractive for investors. This is both the result from and
the reason for slicing the portfolio into tranches and the implicit collation
and rebalancing hereby. Arbitrage CDOs are mainly set up to exploit this
difference.

In general, CDO contracts can be quite sophisticated because there are no
regulations for the compilation of the reference portfolio and its tranching or
the payments to be made between the parties. The originator and the SPV can
design the contract in a taylormade way, depending on the purposes they want
to achieve. To avoid unnecessary complications, we concentrate in the following
on synthetic CDOs which are based on a portfolio of credit default swaps.
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until C defaults or maturity buyer
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B A

Figure 3.1: Basic structure of a CDS

3.1.1 Structure and payoffs of CDSs and synthetic CDOs

As mentioned before, the reference portfolio of a synthetic CDO consists en-
tirely of credit default swaps (CDSs). These are insurance contracts protecting
from losses caused by default of defaultable assets. The protection buyer A pe-
riodically pays a fixed premium to the protection seller B until a prespecified
credit event occurs or the contract terminates. In turn, B makes a payment to
A that covers his losses if the credit event has happened during the lifetime of
the contract. Since there are many possibilities to specify the default event as
well as the default payment, different types of CDSs are traded in the market,
depending on the terms the counterparties have agreed on. The basic structure
is shown in Figure 3.1. Throughout this chapter we will make the following
assumptions: The reference entity of the CDS is a defaultable bond with nom-
inal value L, and the credit event is the default of the bond issuer. If default
has happened, B pays (1 − R)L to A where R denotes the recovery rate. On
the other side, A quarterly pays a fixed premium of 0.25rCDSL where rCDS

is the annualized fair CDS rate. To determine this rate explicitly, we fix some
notation:

r is the riskless interest rate, assumed to be constant over the lifetime
[0, T ] of the CDS,

u(t) is the discounted value of all premiums paid up to time t when the
annualized premium is standardized to 1,

G1(t) is the distribution function of the default time T1 with correspond-
ing density g1(t) (its existence will be justified by the assumptions in
subsequent sections).

The expected value of the discounted premiums (premium leg) can then be
written as

PL(rCDS ) = rCDS L

∫ T

0
u(t)g1(t) dt+ rCDS Lu(T )

(
1−G1(T )

)
.

The expected discounted default payment (default leg) is given by

D = (1−R)L

∫ T

0
g1(t) e−rt dt .

The no-arbitrage condition PL(rCDS ) = D then implies

rCDS =
(1−R)

∫ T
0 g1(t) e−rt dt∫ T

0 u(t)g1(t) dt+ u(T )
(
1−G1(T )

) =
D

PL(1)
. (3.1)
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Figure 3.2: Schematic representation of the payments in a synthetic CDO.
The choice of the attachment points corresponds to DJ iTraxx Europe

standard tranches.

To explain the structure and the cash flows of a synthetic CDO, assume that
its reference portfolio consists of N different CDSs with the same notional
value L. We divide this portfolio in subsequent tranches. Each tranche covers
a certain range of the percentage losses of the total portfolio value NL defined
by lower and upper attachment points 0 ≤ Kl,Ku ≤ 1. The buyer of a tranche
compensates as protection seller for all losses that exceed the amount of KlNL
up to a maximum of KuNL. On the other hand, the SPV as protection buyer
has to make quarterly payments of 0.25rcVt, where Vt is the notional value of
the tranche at payment date t. Note that Vt starts with NL(Ku −Kl) and is
reduced by every default that hits the tranche. rc is the fair tranche rate. See
also Figure 3.2.

In recent years a new and simplified way of buying and selling CDO tranches
has become very popular, the trading of single index tranches. For this purpose
standardized portfolios and tranches are defined. Two counterparties can agree
to buy and sell protection on an individual tranche and exchange the cash flows
shown in the right half of Figure 3.2. The underlying CDS portfolio, however, is
never physically created, it is merely a reference portfolio from which the cash
flows are derived. So the left hand side of Figure 3.2 vanishes in this case, and
the SPV is replaced by the protection buyer. The portfolios for the two most
traded indices, the Dow Jones CDX NA IG and the Dow Jones iTraxx Europe,
are composed of 125 investment grade US and European firms, respectively.
The index itself is nothing but the weighted credit default swap spread of the
reference portfolio. In Sections 3.1.2 and 3.2, we shall derive the corresponding
default probabilities. We will use market quotes for different iTraxx tranches
and maturities to calibrate our models later in Section 3.2.2.

In the following we denote the attachment points by 0 = K0 < K1 < · · · <
Km ≤ 1 such that the lower and upper attachment points of tranche i are
Ki−1 and Ki, respectively. Suppose, for example, that (1 − R)j = Ki−1N and
(1−R)k = KiN for some j < k, j, k ∈ N. Then the protection seller B of tranche
i pays (1−R)L if the (j+1)st reference entity in the portfolio defaults. For each
of the following possible k − j − 1 defaults, the protection buyer receives the
same amount from B. After the kth default occurred, the outstanding notional
of the tranche is zero and the contract terminates. However, the losses will



3.1 CDOs: Basic concepts and modeling approaches 109

usually not match the attachment points. In general, some of them are divided
up between subsequent tranches: If (j−1)(1−R)

N < Ki <
j(1−R)
N for some j ∈ N,

then tranche i bears a loss of NL
(
Ki− (j−1)(1−R)

N

)
(and is exhausted thereafter)

if the jth default occurs. The overshoot is absorbed by the following tranche
whose outstanding notional is reduced byNL

( j(1−R)
N −Ki

)
. We use the following

notation:

Ki−1,Ki are the lower/upper attachment points of tranche i,

Zt is the relative amount of CDSs which have defaulted up to time t,
expressed as a fraction of the total number N ,

Lit = min[(1 − R)Zt,Ki] − min[(1 − R)Zt,Ki−1] is the loss of tranche i
up to time t, expressed as a fraction of the total notional value NL,

ri is the fair spread rate of tranche i,

0 = t0 < · · · < tn are the payment dates of protection buyer and seller,

β(t0, tk) is the discount factor for time tk.

Remark: Under the assumption of a constant riskless interest rate r we would
have β(t0, tk) = e−rtk . Since this assumption is too restrictive one uses zero
coupon bond prices for discounting instead. Therefore β(t0, tk) will denote the
price of a zero coupon bond with maturity tk at time t0.

The assumption that all CDSs have the same notional value may seem some-
what artificial, but it is fulfilled for CDOs on standardized portfolios like the
Dow Jones CDX or the iTraxx Europe.

With the above notation, the premium leg as well as the default leg of
tranche i can be expressed as

PLi(ri) =
n∑
k=1

(tk − tk−1)β(t0, tk) ri E
[(
Ki −Ki−1 − Litk

)
NL

]
,

(3.2)

Di =
n∑
k=1

β(t0, tk)E
[(
Litk − L

i
tk−1

)
NL

]
,

where E[ · ] denotes expectation. For the fair spread rate one obtains

ri =

∑n
k=1 β(t0, tk)

(
E
[
Litk
]
− E

[
Litk−1

])∑n
k=1(tk − tk−1)β(t0, tk)

(
Ki −Ki−1 − E

[
Litk
]) . (3.3)

Remark: To get arbitrage-free prices, all expectations above have to be taken
under a risk neutral probability measure, which is assumed implicitly. One
should be aware that risk neutral probabilities cannot be estimated from his-
torical default data.
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Since payment dates and attachment points are specified in the CDO con-
tract and discount factors can be obtained from the market, the remaining task
is to develop a realistic portfolio model from which the risk neutral distribution
of Zt can be derived, that is, we need to model the joint distribution of the
default times T1, . . . , TN of the reference entities.

3.1.2 Factor models with normal distributions

To construct this joint distribution, the first step is to define the marginal
distributions Qi(t) = P (Ti ≤ t). The standard approach, which was proposed
in Li (2000), is to assume that the default times Ti are exponential distributed,
that is, Qi(t) = 1− e−λit. The default intensities λi can be estimated from the

clean spreads
riCDS
1−R where riCDS is the fair CDS spread of firm i which can be

derived using the formula (3.1). In fact, the relationship λi ≈
riCDS
1−R is obtained

directly from (3.1) by inserting the default density g1(t) = λie
−λit (see McNeil,

Frey, and Embrechts 2005, Chapter 9.3.3).
As mentioned before, the CDX and iTraxx indices quote an average CDS

spread for the whole portfolio in basis points (100bp = 1%), therefore the
market convention is to set

λi ≡ λa =
sa

(1−R)10000
, (3.4)

where sa is the average CDX or iTraxx spread in basis points. This implies that
all firms in the portfolio have the same default probability. One can criticize this
assumption from a theoretical point of view, but it simplifies and fastens the
calculation of the loss distribution considerably as we will see below. Since λa is
obtained from data of derivative markets, it can be considered as a risk neutral
parameter, and therefore the Qi(t) can be regarded as risk neutral probability
distributions as well.

The second step to obtain the joint distribution of the default times is to
impose a suitable coupling between the marginals. Since all firms are subject
to the same economic environment and many of them are linked by direct busi-
ness relations, the assumption of independence of defaults between different
firms obviously is not realistic. The empirically observed occurrence of dispro-
portionally many defaults in certain time periods also contradicts the indepen-
dence assumption. Therefore the main task in credit portfolio modeling is to
implement a realistic dependence structure which generates loss distributions
that are consistent with market observations. The following approach goes back
to Vasiček (1987) and was motivated by the model of Merton (1974).

For each CDS in the CDO portfolio, we define a random variable Xi as
follows:

Xi :=
√
ρM +

√
1− ρZi, 0 ≤ ρ < 1, i = 1, . . . , N, (3.5)

where M,Z1, . . . , ZN are independent and standard normal distributed. Obvi-
ously Xi ∼ N(0, 1) and Corr(Xi, Xj) = ρ, i 6= j. Xi can be interpreted as state
variable for the firm that issued the bond which CDS number i secures. The
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state is driven by two factors: the systematic factor M represents the macroe-
conomic environment to which all firms are exposed, whereas the idiosyncratic
factor Zi incorporates firm specific strengths or weaknesses.

To model the individual defaults, we define time-dependent thresholds by

di(t) := Φ−1
(
Qi(t)

)
where Φ−1(x) denotes the inverse of the standard normal distribution function
resp. the quantile function of N(0, 1). Observe that the di(t) are increasing
because so are Φ−1 and Qi. Therefore we can define each default time Ti as the
first point in time at which the corresponding variable Xi is smaller than the
threshold di(t), that is,

Ti := inf{t ≥ 0 |Xi ≤ di(t)}, i = 1, . . . , N. (3.6)

This also ensures that the Ti have the desired distribution, because

P (Ti ≤ t) = P
(
Xi ≤ Φ−1

(
Qi(t)

))
= P

(
Φ(Xi) ≤ Qi(t)

)
= Qi(t),

where the last equation follows from the fact that the random variable Φ(Xi)
is uniformly distributed on the interval [0, 1]. Moreover, the leftmost equation

shows that Ti
d
= Q−1

i

(
Φ(Xi)

)
, so the default times inherit the dependence struc-

ture of the Xi. Since the latter are not observable, but serve only as auxiliary
variables to construct dependencies, such models are also termed “latent vari-
able” models. Note that by (3.4) we have Qi(t) ≡ Q(t) and thus di(t) ≡ d(t),
therefore we omit the index i in the following.

Remark: Instead of inducing dependence by latent variables that are linked by
the factor equation (3.5), one can also define the dependence structure of the
default times more directly by inserting the marginal distribution functions into
an appropriately chosen copula (see Sklar’s Theorem 2.19 and the subsequent
discussion in Chapter 2.4). We do not discuss this approach here further, but
give some references at the end of Section 3.1.3.

To derive the loss distribution, let Atk be the event that exactly k defaults
have happened up to time t. From equations (3.6) and (3.5) we get

P (Ti < t |M) = P (Xi < d(t) |M) = Φ

(
d(t)−√ρM
√

1− ρ

)
.

Since the Xi are independent conditional on M , the conditional probability
P (Atk |M) equals the probability of a binomial distribution with parameters N
and p = P (Ti < t |M):

P (Atk |M) =

(
N
k

)
Φ

(
d(t)−√ρM
√

1− ρ

)k(
1− Φ

(
d(t)−√ρM
√

1− ρ

))N−k
.

The probability that at time t the relative number of defaults Zt does not exceed
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q is

FZt(q) =

[Nq]∑
k=0

P (Atk)

=

∞∫
−∞

[Nq]∑
k=0

(
N
k

)
Φ

(
d(t)−√ρy
√

1− ρ

)k (
1− Φ

(
d(t)−√ρy
√

1− ρ

))N−k
FM (dy) .

If the portfolio is very large, one can simplify FZt further using the following
approximation which was introduced in Vasiček (1991) and is known as large

homogeneous portfolio (LHP) approximation. Let pt(M) := Φ
(
d(t)−√ρM√

1−ρ

)
and

Gpt be the corresponding distribution function, then we can rewrite FZt in the
following way:

FZt(q) =

1∫
0

[Nq]∑
k=0

(
N
k

)
sk(1− s)N−kGpt(ds). (3.7)

Applying the LHP approximation means that we have to determine the be-
haviour of the integrand for N → ∞. For this purpose, suppose that Yi are
independent and identically distributed Bernoulli variables with P (Yi = 1) =
s = 1 − P (Yi = 0). Then the strong law of large numbers states that ȲN =
1
N

∑N
i=1 Yi → s almost surely which implies convergence of the distribution

functions FȲN (x)→ 1[0,x](s) pointwise on R \ {s}. For all q 6= s we thus have

[Nq]∑
k=0

(
N
k

)
sk(1− s)N−k = P

(
N∑
i=1

Yi ≤ Nq

)
= P

(
ȲN ≤ q

)
−→
N→∞

1[0,q](s).

Since the sum on the left hand side is bounded by 1, we can apply the dominated
convergence theorem to (3.7) and obtain

FZt(q) ≈
∫ 1

0
1[0,q](s) dGpt(s) = Gpt(q) = P

(
−
√

1− ρΦ−1(q)− d(t)
√
ρ

≤M
)

= Φ

(√
1− ρΦ−1(q)− d(t)

√
ρ

)
(3.8)

where in the last equation the symmetry relation 1 − Φ(x) = Φ(−x) has been
used. This distribution is, together with the above assumptions, the current
market standard for the calculation of CDO spreads according to equation (3.3).
Since the relative portfolio loss up to time t is given by (1 − R)Zt, the expec-
tations E

[
Litk
]

within (3.3) can be written as follows:

E
[
Litk
]

=

∫ Ki
1−R∧1

Ki−1
1−R ∧1

(1−R)
(
q− Ki−1

1−R
)
FZtk (dq) + (Ki−Ki−1)

[
1−FZtk

(
Ki

1−R ∧ 1
)]
.

(3.9)



3.1 CDOs: Basic concepts and modeling approaches 113

im
p

lie
d

 c
o

rr
e

la
ti
o

n
s

0
.0

0
.0

5
0

.1
0

0
.1

5
0

.2
0

0
.2

5
0

.3
0

0−3% 3−6% 6−9% 9−12% 12−22%
equity junior mezzanine mezzanine senior super−senior

  5 years
  7 years
10 years

Figure 3.3: Implied correlations calculated from the prices of DJ iTraxx
Europe standard tranches at November 13, 2006, for different maturities T .

3.1.3 Deficiencies and extensions

The pricing formula obtained from (3.3), (3.8), and (3.9) contains one unknown
quantity: the correlation parameter ρ. This parameter has to be estimated be-
fore one can calculate the fair rate of a CDO tranche. A priori it is not clear
which data and which estimation procedure one could use to get ρ. In the Mer-
ton approach, defaults are driven by the evolution of the asset value of a firm.
Consequently, the dependence between defaults is derived from the dependence
between asset values. The latter cannot be observed directly, therefore some
practitioners have used equity correlations which can be estimated from stock
price data. A more direct and plausible alternative would be to infer correla-
tions from historical default data, but since default typically is a rare event,
this would require data sets over very long time periods which are usually not
available.

With the development of a liquid market for single index tranches in the last
years, a new source of correlation information has arisen: the implied correla-
tions from index tranche prices. Similar to the determination of implied volatil-
ities from option prices by inverting the Black–Scholes formula, one can invert
the above pricing formula and solve numerically for the correlation parameter
ρ which reproduces the quoted market price. This also provides a method to
examine if the model and its assumptions are appropriate. If this is the case, the
correlations derived from market prices of different tranches of the same index
should coincide. However, in reality one observes a so-called correlation smile:
the implied correlations of the equity and (super-)senior tranches are typically
much higher than those of the mezzanine tranches. An example of this stylized
feature is shown in Figure 3.3.
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However, one should observe that in general implied correlations are uniquely
determined for the equity tranche only. For higher tranches, it can happen that
there exist two different solutions, or even none at all, which yield the observed
market spread. To circumvent this problem, market practitioners have devel-
oped the concept of base correlations. To explain this, let us take a look back to
equation (3.2): If payment dates, discount factors, and the total notional value
are given and fixed, the premium leg and the default leg of each tranche can be
regarded as functions that depend on the correlation, the market spread, and
the corresponding attachment points, that is, PLi = PLi(ρ, ri,Ki−1,Ki) and
Di = Di(ρ,Ki−1,Ki). Note that the dependence on ρ stems from the expecta-
tions E

[
Litk
]
, see also equations (3.8) and (3.9). The no-arbitrage condition can

then be written in the following form: 0 = PLi(ρ, ri,Ki−1,Ki)−Di(ρ,Ki−1,Ki).
Inserting the attachment points and the market spread, this becomes a defining
equation for ρ, and the implied correlation ρ̂i is nothing but a root of it.

The central idea in the definition of base correlations ρ̃i is that investing in
a tranche having the attachment points Ki−1,Ki is equivalent to being short
in a tranche with attachment points 0,Ki−1 and being long in a tranche with
attachment points 0,Ki. Thus we may reformulate the no-arbitrage condition
as follows:

0 = PLi(ρ, ri,Ki−1,Ki)−Di(ρ,Ki−1,Ki)

=
[
PL(ρ, ri, 0,Ki)−D(ρ, 0,Ki)

]
−
[
PL(ρ̃i−1, ri, 0,Ki−1)−D(ρ̃i−1, 0,Ki−1)

]
Inserting attachment points and market spreads into the second equation, it can
recursively be solved to get the values ρ̃i. For i = 1, the second term in square
brackets vanishes sinceK0 = 0, and the equation becomes 0 = PL(ρ, r1, 0,K1)−
D(ρ, 0,K1) which coincides with the defining one for ρ̂1. Hence the solution is
ρ̃1 = ρ̂1, that is, in case of the equity tranche base correlation and implied
correlation are the same. ρ̃2 then is obtained as the root of

0 =
[
PL(ρ, r2, 0,K2)−D(ρ, 0,K2)

]
−
[
PL(ρ̃1, r2, 0,K1)−D(ρ̃1, 0,K1)

]
,

and ρ̃i, i ≥ 3, can be calculated consecutively along the same lines. The ad-
vantage of this approach is that equations of the type ci = PL(ρ, ri, 0,Ki) −
D(ρ, 0,Ki) have exactly one solution (similar to the implied correlation of an
equity tranche), thus the base correlations ρ̃i are uniquely determined. There-
fore prices of CDO tranches can alternatively be expressed in terms of base
correlations which in fact many market participants do. Figure 3.4 shows the
base correlations corresponding to the iTraxx quotes of November 13, 2006.
(These are recomputed as described above because our dataset only contains
the different spreads ri in basis points.) Despite their advantages in practice,
one should be aware that base correlations do not remedy any weakness of the
model. The model imperfections here express themselves by the increase of ρ̃i
from tranche to tranche. In a perfect model, ρ̃i should be constant for all i (and
hence unnecessary).

The correlation smile as well as the inconstancy of the base correlations
indicate that the classical model is not flexible enough to generate realistic
dependence structures. This is only partly due to the simplifications made by
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Figure 3.4: Base correlations calculated from the prices of DJ iTraxx Europe
standard tranches at November 13, 2006, for different maturities T .

using the LHP approach. The deeper reason for this phenomenon lies in the fact
that the model with normal factors strongly underestimates the probabilities of
joint defaults. This has led to severe mispricings and inadequate risk forecasts
in the past. The problem became evident in the so-called correlation crisis in
May 2005: the factor model based on normal distributions was unable to follow
the movement of market quotes occuring in reaction to the downgrading of Ford
and General Motors to non-investment grade.

A number of different approaches for dealing with this problem have been
investigated. A rather intuitive extension to remedy the deficiencies of the nor-
mal factor model which we shall exploit in Section 3.2 is to allow for factor
distributions which are much more flexible than the standard normal ones. Dif-
ferent factor distributions do not only change the shape of FZt , but also have
a great influence on the copula implicitly contained in the joint distribution of
the latent variables. In fact, the replacement of the normal distribution leads to
a fundamental modification of the dependence structure which becomes much
more complex and can even exhibit tail dependence. The first paper in which al-
ternative factor distributions are used is Hull and White (2004) where both fac-
tors are assumed to follow a Student’s t-distribution with 5 degrees of freedom.
In Kalemanova, Schmid, and Werner (2007), normal inverse Gaussian distribu-
tions are applied for pricing synthetic CDOs, and in Albrecher, Ladoucette, and
Schoutens (2007) several models based on Gamma, inverse Gaussian, Variance-
Gamma, normal inverse Gaussian and Meixner distributions are presented. In
the last paper the systematic and idiosyncratic factors are represented by the
values of a suitably scaled and shifted Lévy process at times ρ and 1− ρ.

Another way to extend the classical model is to implement stochastic corre-
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lations and random factor loadings. In the first approach, which was developed
in Gregory and Laurent (2004), the constant correlation parameter ρ in (3.5)
is replaced by a random variable taking values in [0, 1]. The cumulative default
distribution can then be derived similarly as before, but one has to condition on
both, the systematic factor and the correlation variable. The concept of random
factor loadings was first published in Andersen and Sidenius (2005). There the
Xi are defined by Xi := mi(M) + σi(M)Zi with some deterministic functions
mi and σi. In the simplest case, Xi = m+ (l1{M<e}+h1{M≥e})M + νZi where
l, h, e ∈ R are additional parameters and m, ν are constants chosen such that
E[Xi] = 0 and Var[Xi] = 1. Further information and numerical details for the
calibration of such models to market data can be found in Burtschell, Gregory,
and Laurent (2007).

As already mentioned in the remark on p. 111, other approaches use copula
models to define the dependencies between the default times Ti. The first papers
where copulas were used in credit risk models are Li (2000) and Schönbucher and
Schubert (2001). A more recent approach based on Archimedean copulas can be
found in Berrada, Dupuis, Jacquier, Papageorgiou, and Rémillard (2006). The
pricing performance of models with Clayton and Marshall–Olkin copulas was
investigated and compared with some other popular approaches in Burtschell,
Gregory, and Laurent (2005). There the prices calculated from the Clayton
copula model showed a slightly better fit to the market quotes, but they were
still relatively close to those generated by the Gaussian model. The Marshall–
Olkin copulas performed worse, since the deviations from market prices were
greater than those of other models considered.

3.2 Calibration with GH distributions

As outlined above, we want to overcome the deficiencies of the standard model
by using more advanced and flexible distributions. The implementation of alter-
native factor distributions not only provides additional parameters for a more
precise calibration, but also has a significant impact on the dependence struc-
ture of the default times as the following considerations show. Recall that the
general factor model is given by

Xi :=
√
ρM +

√
1− ρZi, 0 ≤ ρ < 1, i = 1, . . . , N, (3.10)

where M,Z1, . . . , ZN are assumed to be independent and, in addition, the Zi
are identically distributed (hence so are the Xi). The corresponding distribution
functions are denoted by FM , FZ , FX and are supposed to be continuous and
strictly increasing on R. Analogously to (3.6), the default times Ti are defined
by

Ti := inf
{
t ≥ 0

∣∣Xi ≤ F−1
X

(
1− e−λat

)}
, i = 1, . . . , N,

with λa from equation (3.4), thus P (Ti ≤ t) = 1 − e−λat =: Q(t). Since FX is
continuous and strictly increasing, the random variables FX(Xi) are uniformly
distributed on (0, 1). Further, let GX and GU denote the distribution functions
of (X1, . . . , XN )> and U := (FX(X1), . . . , FX(XN ))>, respectively, then GU is
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a copula according to Definition 2.18 which coincides with CGX by Proposi-
tion 2.20. Consequently

F (t1, . . . , tN ) := P (T1 ≤ t1, . . . , TN ≤ tN )

= P
(
FX(X1) ≤ Q(t1), . . . , FX(XN ) ≤ Q(tN )

)
= CGX

(
Q(t1), . . . , Q(tN )

)
,

and hence CF = CGX , that is, the implied copulas of the joint distributions of
the Xi and the default times Ti are the same. (This can also be regarded as
a more rigorous mathematical formulation of the assertion that the Ti inherit
the dependence structure of the Xi, see p. 111.) Moreover, the conditional
independence of the Xi given M implies

CF (u1, . . . , uN ) = CGX (u1, . . . , uN ) = GX
(
F−1
X (u1), . . . , F−1

X (uN )
)

= E
[
P
(
X1 ≤ F−1

X (u1), . . . , XN ≤ F−1
X (uN ) |M

)]
=

∫
R

N∏
i=1

FZ

(
F−1
X (ui)−

√
ρy

√
1− ρ

)
FM (dy)

which shows the direct and predominant influence of the factor distributions FM
and FZ on the dependencies of the default times. In particular, the distributions
F and GX are tail dependent (λu(Ti, Tj) = λu(Xi, Xj) > 0, 1 ≤ i 6= j ≤ N)
if and only if the systematic factor M is heavy tailed, that is, FM ∈ Rp for
some −∞ < p < 0 (see Definition 1.15 in Chapter 1.3). This was proven by
Malevergne and Sornette (2004).

Remark: By the above equations, the factor model may also be regarded as
a special case of the more general approach to couple the individual default
times by a suitably chosen copula. Because of its particular structure, CF is
sometimes called factor copula.

We therefore suppose, in addition to the aforementioned assumptions, that
the factor distributions are given by M ∼ GH(λM , αM , βM , δM , µM ) and Zi ∼
GH(λZ , αZ , βZ , δZ , µZ) for all 1 ≤ i ≤ N . Applying the LHP approximation
and letting N → ∞, the cumulative default distribution FZt can be derived
analogously as described at the end of Section 3.1.2. One obtains

FZt(q) ≈ 1− FM

(
F−1
X (Q(t))−

√
1− ρF−1

Z (q)
√
ρ

)
. (3.11)

Note that this expression cannot be simplified further as in equation (3.8) be-
cause the distribution of M is in general not symmetric (symmetry only holds
if βM = 0). For the calibration of the model to the iTraxx data later on, we
restrict ourselves to some specific subclasses and limiting cases of the gener-
alized hyperbolic class. We shall use normal inverse Gaussian and hyperbolic
distributions, whose characteristic functions are

φNIG(α,β,δ,µ)(u) = eiuµ eδ(
√
α2−β2−

√
α2−(β+iu)2) (3.12)
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and

φHYP(α,β,δ,µ)(u) = eiuµ
(

α2 − β2

α2 − (β + iu)2

) 1
2 K1

(
δ
√
α2 − (β + iu)2

)
K1

(
δ
√
α2 − β2

) . (3.13)

The corresponding probability densities can be found in Chapter 1.3 on page 14.
Further, we shall apply Variance-Gamma and t distributions which have the
characteristic funtions

φV G(λ,α,β,µ)(u) = eiuµ
(

α2 − β2

α2 − (β + iu)2

)λ
, (3.14)

φt(λ,δ,µ)(u) = eiuµ
(

2

δ

)λ 2Kλ(δ|u|)
Γ(−λ)|u|λ

. (3.15)

The appropriate densities are given in Chapter 1.4.1 on pages 21 and 22.

Remark: As shown in Chapters 1.3 and 1.4.1, the densities and distribution
functions of almost all GH distributions possess exponentially decreasing tails,
only the t- and skew Student t limit distributions (see equation (1.20)) have a
power tail. According to the already alluded results of Malevergne and Sornette
(2004), the joint distributions F and GX of the default times and the latent
variables Xi therefore show (upper) tail dependence if and only if the systematic
factor M is t- or skew Student t-distributed.

Moreover, by equation (1.21) in Chapter 1.4.2 we have GH(λ, α, β, δ, µ)
w−→

N(µ + βσ2, σ2) if α, δ → ∞ and δ
α → σ2, thus the normal factor model is in-

cluded as a limit in our setting.

3.2.1 Factor scaling and calculation of quantiles

To preserve the role of ρ as a correlation parameter, we have to standardize the
factor distributions such that they have zero mean and unit variance. In the
general case of GH distributions we fix shape, skewness and tail behaviour by
specifying α, β, λ, and then calculate δ̄ and µ̄ that scale and shift the density
appropriately. For this purpose we first solve the equation

1 = Var[GH(λ, α, β, δ, µ)] =
δ2

ζ

Kλ+1(ζ)

Kλ(ζ)
+ β2 δ

4

ζ2

(
Kλ+2(ζ)

Kλ(ζ)
−
K2
λ+1(ζ)

K2
λ(ζ)

)

with ζ := δ
√
α2 − β2 numerically to obtain δ̄, and then determine µ̄ that fulfills

0 = E[GH (λ, α, β, δ̄, µ̄)] = µ̄+
βδ̄2

ζ̄

Kλ+1(ζ̄)

Kλ(ζ̄)
, ζ̄ := δ̄

√
α2 − β2.

Since the Bessel functions Kn+1/2, n ≥ 0, can be expressed explicitly in closed
forms (see equation (A.6) in Appendix A), the calculations simplify considerably
for the NIG subclass. There we have

Var[NIG(α, β, δ, µ)] =
δα2

(α2 − β2)
3
2

, E[NIG(α, β, δ, µ)] = µ+
βδ√
α2 − β2

,
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so the distribution can be standardized by choosing δ̄ = (α2−β2)
3
2

α2 and µ̄ =

−β(α2−β2)
α2 . In the VG limiting case the variance is given by

Var[V G(λ, α, β, µ)] =
2λ

α2 − β2
+

4λβ2

(α2 − β2)2
=: σ2

V G,

so it is tempting to use λ as a scaling parameter, but this would change the
tail behaviour which we want to keep fixed. Recalling that, by Corollary 1.28,
a VG distributed random variable X ∼ V G(λ, α, β, µ) admits the stochastic

representation X
d
= X1−X2 +µ with X1 ∼ G(λ, α− β) and X2 ∼ G(λ, α+ β),

the correct scaling that preserves the shape is ᾱ = σVG α, β̄ = σVG β. Then µ̄
has to fulfill

0 = E[V G(λ, ᾱ, β̄, µ̄)] = µ̄+
2λβ̄

ᾱ2 − β̄2
.

The second moment of a t distribution t(λ, δ, µ) exists only if λ < −1 (confer
page 23). With this constraint, mean and variance are given by

Var[t(λ, δ, µ)] =
δ2

−2λ− 2
and E[t(λ, δ, µ)] = µ,

therefore one has to choose δ̄ =
√
−2λ− 2 and µ̄ = 0.

We thus have a minimum number of three free parameters in our generalized
factor model, namely λM , λZ , and ρ, if both M and Zi are t-distributed, up
to a maximum number of seven (λM , αM , βM , λZ , αZ , βZ , ρ) if both factors are
GH or VG distributed. If we restrict the distributions of M and Zi to certain
GH subclasses by fixing λM and λZ , five free parameters are remaining.

After the standardization of the factor distributions, the remaining problem
is to compute the quantiles F−1

X (Q(t)) which enter the default distribution FZt
according to equation (3.11). Since the class of GH distributions is in general
not closed under convolutions as was pointed out in Chapter 1.3, the distri-
bution function FX is not known explicitly. Therefore the central task in the
implementation of the model is to develop a fast and stable algorithm for the
numerical calculation of the quantiles F−1

X (q), because simulation techniques
have to be ruled out from the very beginning for two reasons: The default prob-
abilities Q(t) are very small, so one would have to generate a very large data set
to get reasonably accurate quantile estimates, and the simulation would have to
be restarted whenever at least one model parameter has been modified. Since
the pricing formula is evaluated thousands of times with different parameters
during the calibration procedure, this would be too time-consuming. Further,
the routine used to calibrate the models tries to find an extremal point by
searching the direction of the steepest ascend within the parameter space in
each optimization step. This can only be done successfully if the model prices
depend exclusively on the parameters and not additionally on random effects.
In the latter case the optimizer may behave erratically and possibly will never
reach an extremum.

Therefore we compute the quantiles via Fourier inversion. Let P̂X , P̂M , and
P̂Z denote the characteristic functions of Xi, M , and Zi, then by equation (3.10)
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and the independence of the factors we have P̂X(t) = P̂M (
√
ρ t)P̂Z(

√
1− ρ t).

The inversion formula yields

FX(y) = lim
a→−∞

lim
c→∞

1

2π

∫ c

−c

e−iat − e−iyt

it
P̂M (
√
ρ t)P̂Z(

√
1− ρ t) dt.

Thus we can approximate the distribution function FX by choosing sufficiently
small a and large c and evaluating the above integral numerically. The desired
quantiles F−1

X (Q(t)) are then derived by Newton’s method. The accuracy can
be adjusted by modifying a and c accordingly, which might also depend on the
parameters of the factor distributions to improve the results. The characteristic
functions we used for our calibrations are given explicitly in (3.12)–(3.15).

In contrast to this approach, there exist at least two special settings in which
the quantiles F−1

X (Q(t)) can be calculated directly. The first one relies on the
convolution property of the NIG subclass,

NIG(α, β, δ1, µ1) ∗NIG(α, β, δ2, µ2) = NIG(α, β, δ1 + δ2, µ1 + µ2),

and the fact that if Y ∼ NIG(α, β, δ, µ), then aY ∼ NIG
(
α
|a| ,

β
a , δ|a|, µa

)
(see

pp. 13–14). Thus if both M and Zi follow an NIG distribution and the distribu-

tion parameters of the latter are defined by αZ := αM
√

1−ρ√
ρ and βZ = βM

√
1−ρ√
ρ ,

then equation (3.10) implies that Xi ∼ NIG
(
αM√
ρ ,

βM√
ρ ,

δ̄M√
ρ ,

µ̄M√
ρ

)
. Here δ̄M and µ̄M

are the parameters of the standardized distribution of M as described before.
In the VG limiting case, the behaviour of the parameters α, β and µ is the

same under scaling, and the corresponding convolution property is

V G(λ1, α, β, µ1) ∗VG(λ2, α, β, µ2) = V G(λ1 + λ2, α, β, µ1 + µ2).

Consequently, if both factors are VG distributed and the free parameters of the
idiosyncratic factor are chosen as λZ = λM (1−ρ)

ρ , αZ = αM , βZ = βM , then

Xi ∼ VG
(
λM
ρ ,

ᾱM√
ρ ,

β̄M√
ρ ,

µ̄M√
ρ ). The remaining two convolution formulas in (1.9)

may be exploited similarly to obtain the distribution of Xi in closed form.
This stability under convolutions, together with the appropriate param-

eter choices for the idiosyncratic factor, was used in Kalemanova, Schmid,
and Werner (2007) and all models considered in Albrecher, Ladoucette, and
Schoutens (2007). We do not use this approach here because it reduces the num-
ber of free parameters and therefore the flexibility of the factor model. Moreover,
in such a setting the distribution of the idiosyncratic factor is uniquely deter-
mined by the systematic factor, which contradicts the intuitive idea behind the
factor model and lacks an economic interpretation.

3.2.2 Calibration results for the DJ iTraxx Europe

We calibrate our generalized factor model with market quotes of DJ iTraxx Eu-
rope standard tranches. As mentioned before, the iTraxx Europe index is based
on a reference portfolio of 125 European investment grade firms and quotes its
average credit spread which can be used to estimate the default intensity of
all constituents according to equation (3.4). The diversification of the portfolio



3.2 Calibration with GH distributions 121

always remains the same. It contains CDSs of 10 firms from automotive indus-
try, 30 consumers, 20 energy firms, 20 industrials, 20 TMTs (technology, media
and telecommunication companies) and 25 financials. In each sector, the firms
with the highest liquidity and volume of trade with respect to their default-
able assets (bonds and CDSs) are selected. The iTraxx portfolio is reviewed
and updated quarterly. Not only companies that have defaulted in between are
replaced by new ones, but also those which no longer fulfill the liquidity and
trading demands. Of course, the recomposition affects future deals only. Once
two counterparties have agreed to buy and sell protection on a certain iTraxx
tranche, the current portfolio is kept fixed for them in order to determine the
corresponding cash flows described in Section 3.1.1. The names and attachment
points of the five iTraxx standard tranches are given in Figures 3.2, 3.3, and
3.4. For each of them, four contracts with different maturities (3, 5, 7 and 10
years) are available.

The settlement date of the sixth iTraxx series was December 20, 2006, so
the 5, 7, and 10 year contracts mature on December 20, 2011, 2013, and 2016,
respectively. We consider the market prices of the latter on all standard tranches
at November 13, 2006. For the mezzanine and senior tranches, these are equal
to the annualized fair spreads ri which can be obtained from equation (3.3) and
are also termed running spreads. However, the market convention for pricing the
equity tranche is somewhat different: In this case the protection buyer has to
pay a certain percentage s1 of the notional value K1NL as an up-front fee at the
starting time t0 of the contract and a fixed spread of 500bp on the outstanding
notional at t1, . . . , tn. Therefore the premium leg for the equity tranche is given
by

PL1(s1) = s1K1NL+ 0.05

n∑
k=1

(tk − tk−1)β(t0, tk)E
[(
K1 − L1

tk

)
NL

]
,

and the no-arbitrage condition PL1(s1) = D1 then implies

s1 =

∑n
k=1β(t0, tk)

(
E
[
L1
tk

]
−E

[
L1
tk−1

]
− 0.05(tk−tk−1)

(
K1−E

[
L1
tk

]))
K1

. (3.16)

Since the running spread is set to a constant of 500bp, the varying market price
quoted for the equity tranche is the percentage s1 defining the magnitude of
the up-front fee.

We calibrate our generalized factor model by least squares optimization,
that is, we first specify to which subclass of the GH family the distributions FM
and FZ belong, and then determine the correlation and distribution parameters
numerically which minimize the sum of the squared differences between model
and market prices over all tranches. Although our algorithm for computing the
quantiles F−1

X (Q(t)) allows us to combine factor distributions of different GH
subclasses, we restrict both factors to the same subclass for simplicity reasons.
Therefore in the following table and figures the expression VG, for example,
denotes a factor model where M and the Zi are Variance-Gamma distributed.
The model prices are calculated from equations (3.3) and (3.16), using the
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Figure 3.5: Comparison of calibrated model prices and market prices of the
5 year iTraxx contracts.

cumulative default distribution (3.11) resp. (3.8) for the normal factor model
which serves as a benchmark. The recovery rate R which has a great influence
on the expected losses E[Litk ] according to equation (3.9) is always set to 40%;
this is the common market assumption for the iTraxx portfolio.

One should observe that the prices of the equity tranches are usually given
in percent, whereas the spreads of all other tranches are quoted in basis points.
In order to use the same units for all tranches in the objective function to
be minimized, the equity prices are transformed into basis points within the
optimization algorithm. Thus they are much higher than the mezzanine and
senior spreads and therefore react to parameter changes in a more sensitive
way, which amounts to an increased weighting of the equity tranche in the
calibration procedure. This is also desirable from an economical point of view
since the costs for mispricing the equity tranche are typically greater than for
all other tranches.

Remark: For the same reason, the normal factor model is usually calibrated by
determining the implied correlation of the equity tranche first and then using
this to calculate the fair spreads of the other tranches. This ensures that at
least the equity price is matched perfectly. To provide a better comparison with
our model, we give up this convention and also use least squares estimation in
this case. Therefore the fit of the equity tranche is sometimes less accurate, but
the distance between model and market prices is smaller for the higher tranches
instead.

Our calibration results are summarized in Table 3.1. The normal benchmark
model performs worst in all cases, which can also be seen from Figures 3.5
and 3.6. The performance of the t model is comparable with the NIG and HYP
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Tranches 0–3% 3–6% 6–9% 9–12% 12–22% estimated parameters

iTraxx 5Y S6 (sa = 24.88bp)

Market 13.60% 57.16bp 16.31bp 6.65bp 2.67bp

Normal 13.64% 90.93bp 19.42bp 5.03bp 0.60bp ρ = 0.181

t 13.60% 57.12bp 19.75bp 10.42bp 4.59bp λM = −1.982, λZ = −65.317,
ρ = 0.133

NIG 13.60% 56.67bp 18.66bp 9.74bp 4.60bp αM = 5.683, αZ = 2.934,
βM = −0.174, βZ = −2.599,
ρ = 0.616

HYP 13.60% 56.67bp 20.51bp 10.76bp 4.65bp αM = 2.773, αZ = 2.320,
βM = −1.510, βZ = −1.280,
ρ = 0.290

VG 13.60% 57.16bp 16.21bp 7.00bp 2.25bp λM = 1.565, λZ = 2.118,
αM = 4.112, αZ = 6.355,
βM = 1.415, βZ = −2.177,
ρ = 0.444

iTraxx 7Y S6 (sa = 33.38bp)

Market 28.71% 140.27bp 41.64bp 21.05bp 7.43bp

Normal 28.75% 205.39bp 58.04bp 18.54bp 2.75bp ρ = 0.172

t 28.71% 139.45bp 47.44bp 24.94bp 11.16bp λM = −1.633, λZ = −65.209,
ρ = 0.174

NIG 28.71% 138.27bp 48.27bp 25.16bp 11.48bp αM = 4.346, αZ = 2.537,
βM = −0.037, βZ = −2.171,
ρ = 0.541

HYP 28.71% 138.60bp 51.21bp 26.84bp 11.45bp αM = 3.561, αZ = 2.227,
βM = −2.084, βZ = −1.181,
ρ = 0.326

VG 28.71% 140.15bp 42.72bp 19.77bp 7.04bp λM = 1.061, λZ = 1.842,
αM = 3.696, αZ = 7.821,
βM = 1.320, βZ = −1.582,
ρ = 0.415

iTraxx 10Y S6 (sa = 43.38bp)

Market 42.67% 360.34bp 105.08bp 43.33bp 13.52bp

Normal 42.69% 387.27bp 157.51bp 70.08bp 16.34bp ρ = 0.191

t 42.69% 342.74bp 130.40bp 63.56bp 23.39bp λM = −2.195, λZ = −65.072,
ρ = 0.212

NIG 42.67% 358.94bp 111.56bp 56.02bp 22.63bp αM = 0.824, αZ = 11.156,
βM = 0.734, βZ = 10.647,
ρ = 0.275

HYP 42.67% 356.55bp 104.59bp 33.61bp 5.96bp αM = 2.613, αZ = 1.700,
βM = 0.897, βZ = −0.025,
ρ = 0.181

VG 42.67% 358.79bp 107.92bp 41.06bp 10.97bp λM = 1.422, λZ = 2.438,
αM = 11.352, αZ = 4.210,
βM = 4.620, βZ = −2.711,
ρ = 0.421

Table 3.1: Market prices of the 5, 7, and 10 year iTraxx contracts at
November 13, 2006, and calibrated model prices.
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Figure 3.6: Comparison of calibrated model prices and market prices of the
7 year iTraxx contracts.

models for the 5 and 7 year iTraxx contracts, but worse for the 10 year contracts.
The goodness of fit of the NIG and HYP models is similar. The absolute pricing
errors of the NIG model are slightly smaller for the shorter maturities, but
greater than those of the HYP model for the 10 year maturity. The VG model
always provides the best fit. Since the t-model is the only one exhibiting tail
dependence (confer the remark on page 118) but does not outperform the NIG,
HYP and VG models, one may conclude that this property is negligible in the
presence of more flexible factor distributions. This may also be confirmed by
the fact that all estimated GH parameters βM and βZ are different from zero,
which means the factor distributions are skewed. Furthermore, the parameter
ρ is usually higher in the GH factor models than in the normal benchmark
model. This indicates that correlation is still of some importance, but has a
different impact on the pricing formula because of the more complex dependence
structure.

The VG model even has the potential to fit the market prices of all tranches
and maturities simultaneously with high accuracy, which we shall show below.
However, before that we want to point out that the calibration over different
maturities requires some additional care to avoid inconsistencies when calculat-
ing the default probabilities. As can be seen from Figure 3.7, the average iTraxx
spreads sa are increasing in maturity, and by equation (3.4) so do the default in-
tensities λa. This means that the estimated default probabilitiesQ(t) = 1−e−λat
of a CDO with a longer lifetime are always greater than those of a CDO with a
shorter maturity. While this can be neglected when concentrating on just one
maturity, this fact has to be taken into account when considering iTraxx CDOs
of different maturities together. Since the underlying portfolio is the same, the
default probabilities should coincide during the common lifetime.
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Figure 3.7: Constant iTraxx spreads of November 13, 2006, and fitted
Nelson–Siegel curve r̂NS with parameters

β̂0 = 0.0072, β̂1 = −0.0072, β̂2 = −0.0069, τ̂1 = 2.0950.

To avoid these problems, we now assume that the average spreads sa = s(t)
are time-dependent and follow a Nelson–Siegel curve. This parametric family of
functions has been introduced in Nelson and Siegel (1987) and has become very
popular in interest rate theory for the modeling of yield curves where the task
is the following: Let β(0, tk) denote today’s price of a zero coupon bond with
maturity tk as before, then one has to find a function f (instantaneous forward
rates) such that the model prices β(0, tk) = exp

(
−
∫ tk

0 f(t) dt
)

approximate the
market prices reasonably well for all maturities tk. Since instantaneous forward
rates cannot be observed directly in the market, one often uses an equivalent
expression in terms of spot rates: β(0, tk) = exp(−r(tk)tk), where the spot rate
is given by r(tk) = 1

tk

∫ tk
0 f(t) dt. Nelson and Siegel suggested to model the

forward rates by

fNS(β0,β1,β2,τ1)(t) = β0 + β1e
− t
τ1 + β2

t

τ1
e
− t
τ1 .

The corresponding spot rates are given by

rNS(β0,β1,β2,τ1)(t) = β0 + (β1 + β2)
τ1

t

(
1− e−

t
τ1

)
− β2e

− t
τ1 . (3.17)

In order to obtain time-consistent default probabilities resp. intensities, we re-
place sa in equation (3.4) by a Nelson–Siegel spot rate curve (3.17) that has
been fitted to the four quoted average iTraxx spreads, that is,

λa = λ(t) =
r̂NS (t)

(1−R)10000
, (3.18)



126 Applications to credit portfolio modeling and CDO pricing

Tranches Market VG Market VG Market VG

5Y 7Y 10Y

0–3% 13.60% 13.60% 28.71% 28.72% 42.67% 42.67%

3–6% 57.16bp 53.30bp 140.27bp 132.27bp 360.34bp 357.60bp

6–9% 16.31bp 17.19bp 41.64bp 41.83bp 105.08bp 111.17bp

9–12% 6.65bp 8.23bp 21.05bp 19.90bp 43.33bp 52.00bp

12–22% 2.67bp 3.05bp 7.43bp 7.34bp 13.52bp 18.97bp

Table 3.2: Results of the VG model calibration simultaneously over all
maturities. The estimated parameters are as follows: λM = 0.920,

αM = 5.553, βM = 1.157, λZ = 2.080, αZ = 2.306, βZ = −0.753, ρ = 0.321.

and Q(t) := 1 − e−λ(t) t. The Nelson–Siegel curve estimated from the iTraxx
spreads of November 13, 2006, is shown in Figure 3.7. At first glance the differ-
ences between constant and time-varying spreads seem to be fairly large, but
one should observe that these are the absolute values which have already been
divided by 10000 and therefore range from 0 to 0.004338, so the differences in
the default probabilities are almost negligible.

Under the additional assumption (3.18), we have calibrated a model with
VG distributed factors to the tranche prices of all maturities simultaneously.
The results are summarized in Table 3.2 and visualized in Figure 3.8. The fit
is excellent. The maximal absolute pricing error is less than 9bp, and for the 5
and 7 year maturities the errors are, apart from the junior mezzanine tranches,
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Figure 3.8: Graphical representation of the differences between model and
market prices obtained from the simultaneous VG calibration.
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almost as small as in the previous calibrations. The junior mezzanine tranche is
underpriced for all maturities, but it is difficult to say whether this is caused by
model or by market imperfections. Nevertheless the overall pricing performance
of the extended VG model is comparable or better than the performance of the
models considered in Albrecher, Ladoucette, and Schoutens (2007), Burtschell,
Gregory, and Laurent (2005), and Kalemanova, Schmid, and Werner (2007),
although the latter were only calibrated to tranche quotes of a single maturity.

Also note that this model admits a flat correlation structure not only over
all tranches, but also over different maturities: all model prices in Table 3.2
were calculated using the same parameter ρ. Thus the correlation smiles shown
in Figure 3.3 which in some sense question the factor equation (3.5) resp. (3.10)
are completely eliminated, and there is no need for a somewhat artificial base
correlation framework. Therefore the intuitive idea of the factor approach is
preserved, but one should keep in mind that in the case of GH distributed
factors the dependence structure of the joint distribution of the Xi is more
complex and cannot be described by correlation alone.

3.3 Summary and outlook

In this chapter we presented a detailed description of synthetic CDOs, a wide-
spread instrument in portfolio credit risk management, and the normal factor
model used to price them. Though the latter has been established as a market
standard, it is completely unable to capture and reproduce the quoted prices,
which can be seen from the implied correlation smile as well as from the poor
calibration results. The main reasons for this unsatisfactory behaviour are the
lack of additional parameters and a too simple dependence structure between
individual default times. We have shown how these deficiencies can be remedied
by implementing more flexible and advanced factor distributions. Extended
models using generalized hyperbolic distributions provide an excellent fit to
quoted market spreads, but remain analytically and numerically tractable yet.
This in particular means that the cumulative default distribution FZt derived
from the model assumptions can be computed reasonably fast and accurate.

A consistent modeling of FZt is not only essential for a correct pricing of
credit portfolio tranches, but also for an adequate rating and determination
of tranche sizes as the following example clarifies. Suppose there is a senior
tranche of a large homogeneous credit portfolio with lower attachment point
Kl and upper attachment point Ku = 1. Depending on the risk aversion of
potential investors, the tranche has to get a certain rating. Let us assume for
simplicity that it will be assigned to a certain rating class i if the probability
that the notional value of the tranche is reduced by defaults during the lifetime
of the contract is smaller than the corresponding rating probability pdi. Using
the notation of the previous sections, this means that the senior tranche will get
the rating i if and only if FZT (Kl) ≥ 1−pdi. Thus the desired rating can always
be achieved by choosing Kl accordingly, but this choice crucially depends on
the shape of FZT and hence on the underlying factor model.

Assuming zero recovery (R = 0) and an individual default probability
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Figure 3.9: Dependence of optimal lower attachment points K∗l = F−1
ZT

(1− pi)
for different rating classes on ρ in the normal factor model (M,Zi ∼ N(0, 1)).

Q(T ) = 0.02, Figure 3.9 shows the dependence of the lower attachment points
K∗l = F−1

ZT
(1− pdi) on the correlation parameter ρ in the normal factor model

where FZT is given by equation (3.8). The probabilities pdi associated to the
different rating classes given there are just chosen for illustration purposes and
do not correspond to real market values. Note that in this model ρ is the only
parameter that can influence K∗l . However, things change significantly if we
move to the extended model and allow for alternative factor distributions such
that FZT is given by (3.11). Two examples are visualized in Figure 3.10. In com-
parison the the normal factor model, the differences in the shapes of the curves
K∗l (ρ) are obvious. This again shows the great impact of the factor distributions
on the dependence structure and the loss distribution of the portfolio.

In the present state, our model only incorporates constant default intensities
λa resp. deterministic intensity functions λ(t) (see equations (3.4) and (3.18)).
A topic for future research is the extension to dynamic intensity models which
can also capture the movements of tranche spreads over several trading days.
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CDO senior tranche structure under NIG distributions
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CDO senior tranche structure under GH distributions
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Figure 3.10: Dependence of optimal lower attachment points
K∗l = F−1

ZT
(1 − pi) for different rating classes on ρ in the extended factor model

(M ∼ GH(λM , αM , βM , δ̄M , µ̄M ), Zi ∼ GH(λZ , αZ , βZ , δ̄Z , µ̄Z)).





Appendix A

Bessel functions

We summarize some properties of Bessel functions used within this thesis.
The modified Bessel functions of third kind Kλ(z) are solutions of the dif-

ferential equation

z2 d
2f

dz2
+ z

df

dz
− (z2 + λ2)f = 0.

They are regular functions of z throughout the complex z-plane cut along the
negative real axis, and for fixed z 6= 0, Kλ(z) is an entire function of λ. Kλ(z)
tends to zero for all λ as |z| → ∞ in the sector |arg(z)| < π

2 . Moreover, Kλ(z) is
real and positive if z = x ∈ R and x > 0 (Abramowitz and Stegun 1968, p. 374).

Integral representation

Kλ(x) =
1

2

∫ ∞
0

yλ−1 e−
x
2

(y+y−1) dy, x > 0. (A.1)

Reference: Watson (1952, p. 182, formula (8))

Basic properties

Kλ(x) = K−λ(x), (A.2)

Kλ+1(x) =
2λ

x
Kλ(x) +Kλ−1(x), (A.3)

−2K ′λ(x) = Kλ−1(x) +Kλ+1(x), (A.4)

Kλ+ε(x)−Kλ(x) > 0 for all λ ≥ 0 and ε > 0. (A.5)

References: Watson (1952, p. 79, formulas (8), (1) and (2)) for (A.2)–(A.4), the
last inequality is mentioned in Lorch (1967, p. 2) and goes back to Soni (1965).

Series representation for λ = n+ 1
2
, n ∈ N0

Kn+ 1
2
(x) =

√
π

2x
e−x

[
1 +

n∑
i=1

(n+ i)!

(n− i)!i!
(2x)−i

]
, (A.6)

⇒ K− 1
2
(x) = K 1

2
(x) =

√
π

2x
e−x. (A.7)

Reference: Watson (1952, p. 80, formula (12)).
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Asymptotic behaviour

Kλ(x) ∼ 1

2
Γ(|λ|)

(x
2

)−|λ|
, x ↓ 0, λ 6= 0, (A.8)

K0(x) ∼ − ln(x), x ↓ 0, (A.9)

Kλ(x) ∼
√

π

2x
e−x, x→∞, (A.10)

References: Abramowitz and Stegun (1968, fomulas 9.6.8, 9.6.9 and 9.7.2).

The Bessel functions of first and second kind, Jλ(z) and Yλ(z), respectively,
are solutions of the differential equation

z2 d
2f

dz2
+ z

df

dz
+ (z2 − λ2)f = 0.

They are also regular functions of z throughout the complex z-plane cut along
the negative real axis, and for fixed z 6= 0, Jλ(z) and Yλ(z) are entire func-
tions of λ. Moreover, both functions are real valued if z = x ∈ R and x > 0
(Abramowitz and Stegun 1968, p. 358).

Relations between Jλ and Yλ

Yλ(x) =
Jλ(x) cos(λπ)− J−λ(x)

sin(λπ)
(A.11)

Reference: Watson (1952, p. 64, formula (1)).

Representations for |λ| = 1
2

J 1
2
(x) =

√
2

πx
sin(x), J− 1

2
(x) =

√
2

πx
cos(x),

(A.12)

Y 1
2
(x) = −

√
2

πx
cos(x), Y− 1

2
(x) = −

√
2

πx
sin(x)

References: The representations of J 1
2

and J− 1
2

can be found in Watson (1952,

p. 54, formula (3) and p. 55, formula (6)), those of Y 1
2

and Y− 1
2

then immedi-

ately follow from (A.11).

Asymptotic behaviour for x ↓ 0

Jλ(x) ∼
(x

2

)λ (
Γ(λ+ 1)

)−1
, λ ≥ 0, (A.13)

Yλ(x) ∼ −Γ(λ)

π

(x
2

)−λ
, λ > 0, (A.14)

Y0(x) ∼ 2

π
ln(x). (A.15)

References: Abramowitz and Stegun (1968, fomulas 9.1.7, 9.1.9 and 9.1.8).
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Asymptotic expansions for x → ∞

Jλ(x) ∼
√

2

πx

cos

(
x− λπ

2
− π

4

)∑
m≥0

(−1)m
(λ, 2m)

(2x)2m

(A.16)

− sin

(
x− λπ

2
− π

4

)∑
m≥0

(−1)m
(λ, 2m+ 1)

(2x)2m+1

 ,
Yλ(x) ∼

√
2

πx

sin

(
x− λπ

2
− π

4

)∑
m≥0

(−1)m
(λ, 2m)

(2x)2m

(A.17)

+ cos

(
x− λπ

2
− π

4

)∑
m≥0

(−1)m
(λ, 2m+ 1)

(2x)2m+1

 ,
where (λ,m) =

(4λ2 − 12)(4λ2 − 32) . . . (4λ2 − (2m− 1)2)

22mm!
.

References: Watson (1952, p. 199).





References

Aas, K. and I. H. Haff (2006). The generalized hyperbolic skew Student’s
t-distribution. Journal of Financial Econometrics 4 (2), 275–309.

Abramowitz, M. and I. A. Stegun (1968). Handbook of Mathematical Func-
tions (5th ed.). New York: Dover Publications.

Adcock, C. J. (2010). Asset pricing and portfolio selection based on the mul-
tivariate extended skew-Student-t distribution. Annals of Operations Re-
search 176 (1), 221–234.

Affleck-Graves, J. and B. McDonald (1989). Nonnormalities and tests of asset
pricing theories. Journal of Finance 44 (4), 889–908.

Albrecher, H., S. A. Ladoucette, and W. Schoutens (2007). A generic one-
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Mathematics - Key Technology for the Future: Joint Projects between Uni-
versities and Industry 2004–2007, pp. 253–280. Berlin: Springer.

Eberlein, E. and J. Jacod (1997). On the range of options prices. Finance
and Stochastics 1, 131–140.

Eberlein, E. and U. Keller (1995). Hyperbolic distributions in finance.
Bernoulli 1, 281–299.

Eberlein, E., U. Keller, and K. Prause (1998). New insights into smile, mis-
pricing, and value at risk: the hyperbolic model. Journal of Business 71,
371–405.

Eberlein, E. and W. Kluge (2006). Exact pricing formulae for caps and
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