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How do we know that the creations of worlds

are not determined by falling grains of sand?

Victor Hugo — Les Miserables
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Abstract

Flow and filling behavior of granular matter was investigated within the framework
of the discrete element method (DEM) in this work. The large number of individual
grains in many systems prevents a one-to-one mapping between experiments and
numerical simulations even on parallel computing clusters. Based on the conser-
vation of local energy density a novel coarse graining scheme was developed which
allows for the representation of a given system using artificially enlarged grains.
Thereby, a dimensional analysis yielded scaling rules for the DEM force laws.

In comparison with experiments, grain models of different mechanical and mor-
phological complexity were assessed with respect to their ability to reproduce and
predict statical properties (angle of repose) as well as dynamical properties (flow
rates, filling behavior) of an iron powder. It was found that an adequate modeling
of the grain shape is of particular importance in addition to the consideration of
inter-granular friction and cohesion.

A reliable grain model was used to analyze kinematics of hopper discharge (com-
pare Fig. 0.1) and density inhomogeneities in cavity filling (compare Fig. 0.2). An
existing continuum model for the velocity field inside a hopper was improved by
taking the influence of the local volume fraction into account. Another contribution
to the theoretical description of granular matter was made by deriving an analytic
expression for the mass discharge through a slit orifice from a moving shoe. Process
variations for cavity filling were developed which yield a considerable homogeniza-
tion of the density distribution.
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Figure 0.1: DEM simulation of granular discharge from a hopper. (a): Color
coded snapshot of velocity magnitude where blue means fast and red
means slow; (b): color coded averaged volume fraction where blue
means dilute and red means dense. The discovery of a relationship
between these two quantities is presented in Chapter 5.
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Figure 0.2: DEM simulation of cavity filling using a feeding shoe. (a): Snapshot
of the filling process; (b): final density distribution. Parts of the
cavity and the shoe are not displayed for clarity. Color coding is same
as in Fig. 0.1. The influence of shoe movement and other process
parameters on the density distribution is investigated in Chapter 6.
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Kurzzusammenfassung

In dieser Arbeit wurden Fließ- und Füllvorgänge granularer Medien mit der
Diskrete-Elemente-Methode (DEM) numerisch untersucht. Die Anzahl der einzel-
nen Körner ist in vielen granularen Systemen so enorm groß, dass eine Eins-zu-eins-
Abbildung zwischen Experiment und numerischer Simulation selbst auf parallelen
Rechenclustern derzeit nicht möglich ist. Basierend auf der Erhaltung der lokalen
Energiedichte wurde ein neuartiges coarse graining-Schema entwickelt, welches
die Darstellung eines gegebenen Systems unter Verwendung künstlich vergrößerter
Körner erlaubt. Eine Dimensionsanalyse führte dabei auf Skalierungsregeln für die
DEM-Kraftgesetze.

Im Vergleich mit Experimenten wurden Kornmodelle unterschiedlicher mecha-
nischer und morphologischer Komplexität hinsichtlich ihrer Fähigkeit zur Repro-
duktion bzw. Vorhersage sowohl statischer Eigenschaften (Böschungswinkel) als
auch dynamischer Eigenschaften (Flussraten, Füllverhalten) eines Eisenpulvers un-
tersucht. Hierbei zeigte sich, dass neben der Abbildung inter-granularer Reibung
und Kohäsion insbesondere eine adäquate Modellierung der Kornform erforderlich
ist.

Ein belastbares Kornmodell wurde zur Analyse der Kinematik des Siloaus-
flusses (vgl. Abb. 0.1) sowie von Dichteinhomogenitäten beim Matrizenfüllen (vgl.
Abb. 0.2) verwendet. Für den Siloausfluss wurde ein bestehendes Kontinuumsmod-
ell für das Geschwindigkeitsfeld unter Berücksichtigung des Einflusses des lokalen
granularen Volumenanteils erweitert und dadurch in seiner Präzision verbessert.
Ein weiterer Beitrag zur theoretischen Beschreibung granularer Materie wurde
durch die Herleitung eines analytischen Ausdrucks für den Massenfluss durch eine
Schlitzblende aus einem bewegten Container geleistet. Für das Matrizenfüllen
wurden Variationen in der Prozessführung erarbeitet, die zu einer deutlichen Ho-
mogenisierung der Dichteverteilung führen.
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1 Introduction

Granular matter is ubiquitous [1]. A common pantry contains several granular
products, e.g. flour, mixed herbs, cereal, nuts, maybe a pile of oranges. The food
industry is concerned with packing, mixing or segregation, and transportation of
such goods [2, 3]. Pharmaceutical agents are often produced as powders which
are compacted into tablets [4]. Difficulties in the handling of bulk goods motivated
studies on the optimal design of hoppers and silos [5, 6]. Powder metallurgy exceeds
traditional casting in the cost-efficient mass production of geometrically complex
parts [7, 8]. Shot peening is used to modify mechanical properties of metal surfaces
via plastic deformations [9]. Wafers are separated from a silicon ingot by wire
sawing using a slurry with abrasive grains [10].

The term granular matter denominates particulate materials with grain diame-
ters larger than 1µm [11]. Thus, Brownian motion is negligible. Characteristic
interaction properties of grains are the inelasticity of collisions and static fric-
tion [12, 13]. The forms of appearance of granular matter resemble the three
classical states of aggregation. A bed of silica grains in a sandbox can support
large weights placed upon. Yet, in an hourglass the same material seems to flow
like a liquid. A granular gas emerges if a container filled with these grains is agitated
by vertical vibrations with an acceleration amplitude larger than the acceleration
of gravity.

The differences between granular and traditional states of aggregation become
clear upon closer examination. Unlike using a solid state body, it is not possible to
build a freestanding block out of pourable granular matter. In fact, a heap with a
material-specific maximum angle of repose will form [14]. The support of a weight
in a sandbox is realized due to the formation of a force chain network among the
grains [15]. Thereby, the load is transmitted to the surrounding walls. The volume
fraction of a granular bulk is strongly dependent on its formation history. A fine-
grained, cohesive material can have a porosity of more than 80% when piled up
carefully [16]. Via tapping [17] or compaction under external load [18, 19] the
volume fraction can be increased substantially.

If an hourglass was filled with a liquid, the markings would have to be redrawn.
A fluid obeys Torricelli’s law: The mass flow rate at the bottleneck would decrease
continuously. In contrast, Beverloo found a constant mass flow rate when analyzing
granular hopper outflow [20]. The stress exerted on the grains is also independent
of the filling level upon reaching a threshold value. The weight of additional grains
is transferred from the granular force chains via friction onto the walls [21].
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1 Introduction

Owing the dissipative collisions, a granular gas would eventually come to rest
without external agitation. Furthermore, the energy scale kBT is irrelevant for the
system and classical thermodynamics cannot be applied for a description [12].

A comprehensive theoretical framework for the description of granular matter
is not found yet. However, experimentally verified formalisms exist for certain
regimes: Quasistatic plastic deformations in compacted granular materials can be
described in a continuum picture using an appropriate yield criterion [22, 23]. The
velocity field of grains rapidly flowing down an inclined plane can be calculated by
incorporating a recently discovered constitutive law [24, 25] into the Navier-Stokes
equations. A statistical approach to granular packings explains how vibrations shift
a system through its phase space [26, 27, 28]. Thereby, energy is replaced by volume
and ordinary temperature by the newly introduced compactivity of the material.
This list is not exhaustive.

Powder metallurgical part production provides a motivation of this thesis. The
standard processing route consists of three steps [29, 7]. It starts with the filling of
the die (a cavity with the negative shape of the part): the powder is poured from
a reservoir hopper through a hose into a moveable container (feeding shoe) and
then the shoe passes the die one or more times thereby delivering powder into it
(compare Fig. 0.2). This first step is followed by uniaxial compaction with punches
resulting in a so-called green body with a very brittle consistency. The green body
is ejected from the cavity and placed in a furnace for the final sintering step: ther-
mal activation below the melting point leads to the formation and growth of necks
between adjacent grains and eventually to a fully dense structure [30]. Generally,
the filling of the die and the subsequent compaction lead to inhomogeneous distri-
butions of the powder in the green body [31, 32]. Inhomogeneous green densities1

lead to inhomogeneous shrinkage during sintering and therefore to distortions of
the sintered part. Thus, it is desirable to identify mechanisms leading to density
inhomogeneities during the cavity filling step [33]. This knowledge can then be
used to improve the overall filling homogeneity by appropriate process parameter
adjustment. The objectives of fill density prediction and homogenization as well as
the discovery of universal laws of powder flow and filling behavior establish goals
of the present study. In this regard a numerical approach is beneficial in two ways.
First, density information is accessible at the grain scale and any temporal reso-
lution. Second, variations of process parameters can be tested and analyzed with
comparably little effort.

The particulate nature of powders suggests to use a particle based method for
a numerical description. Especially for the investigation of flow phenomena with
large rearrangements and of transitions between static and dynamic regimes no
alternatives exist due to the lack of appropriate continuum models. Hence, the time-

1In this work the term density is used instead of volume fraction in the context of powder

technological processes because of its widespread usage within the community.
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driven discrete element method (DEM) is employed which describes the motion
of an ensemble of particles by time integration of Newton’s equations of motion.
The particles interact via explicitly defined force laws and they can be affected by
external forces such as gravity. A detailed illustration of the method is given in
Chapter 2. Pioneering work on the description of powders and grains using this
approach was done by Cundall [34], Campbell [35], Walton [36], Haff [37], and
Herrmann [38]. DEM is currently developing into a versatile simulation method for
particulate materials such as rocks, sand, and powders [39].

Generally, one real world grain is represented by one DEM grain. Powder met-
allurgical parts have typical dimensions in the range of centimeters. Thus, they
are formed by large numbers of grains ranging from 107–108 for 100µm diameter to
1013–1014 when using fine powders with a diameter of 1µm. Current computer clus-
ters allow for DEM simulations of up to 108 particles. However, using 106 particles
is rather reasonable for an extensive parameter space exploration. This gap can be
bridged by using a coarse graining approach, i.e. the investigation of a given system
at a coarsened resolution. In other words, degrees of freedom are neglected below a
certain scale. In the present case, the term coarse graining is to be taken literally:
The grain diameters in the simulations are scaled up with respect to the real world
grain size. Of course, meaningful coarse grained simulations require that all system
properties of interest are unaffected by the scaling. In Chapter 3 a coarse graining
scheme for DEM simulations is derived. It is based on the conservation of energy
density in granular collisions. Tests in various setups validate the applicability of
the scheme.

The identification and adjustment of an appropriate DEM grain model for gran-
ular simulations of static and dynamic regimes are presented in Chapter 4. Bench-
marking experiments are conducted using an industrial powder with irregular
shaped grains. Spherical models are often used in simulations for the sake of nu-
merical simplicity. Yet, several studies point out the importance of an adequate
description of the grain morphology due to its influence on heap shapes [40], flow
properties [41], and packing density [42]. This work opposes spherical to com-
plex shaped grain models with regard to their ability of describing both flow rates
through an orifice and the angle of repose of a real powder. The model calibra-
tion is thereby carried out via adjustment of suitable DEM force law parameters.
Similarities and differences of the models are highlighted by analyzing velocity dis-
tributions and volume fractions. The predictive power of each model is evaluated
in a cavity filling setup. A model with pronounced non-spherical morphology is
identified to represent the real powder best.

Improvements of theoretical models for granular outflow are exposed in Chap-
ter 5. First, the velocity field within a discharging hopper is studied using DEM
simulations (compare Fig. 0.1). A common, though not very accurate, continuum
approach to describe the velocity field is given by kinematic modeling [43]. This
method is refined by considering volume fraction variations within the flowing ma-
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1 Introduction

terial. A relationship between the volume fraction and the coupling of horizontal
and vertical velocity component is identified. Considerable increase in accuracy
is demonstrated by using this relationship in the proposed compressible kinematic
modeling. Second, an analytic expression for granular mass flow from a moving
shoe through a slit orifice is derived and validated in simulations and experiments.
This equation is based on a transient generalization of Beverloo’s law for hopper
discharge.

A thorough numerical analysis of cavity filling by means of a feeding shoe is
presented in Chapter 6. The simulations utilize a coarsened, complex shaped grain
model thereby making use of aforementioned findings of this work. The quality of
the numerical description is assessed via comparisons with experimentally measured
density distributions [31]. Good agreement between simulation and experiment
allows for further investigations revealing origins of density inhomogeneities. Based
upon these insights recommendations for density homogenization are derived and
successfully tested.

The usefulness of granular simulations for regenerative energy generation is
demonstrated in Appendix A. The costs of photovoltaic electricity production
need to decrease in order to achieve grid parity, i.e. equal costs of electric energy
from alternative and conventional sources. Thus, there is a strong demand for
lowered production costs of solar panels, which can be met by an increased yield
of wafers per silicon ingot. The wire sawing process for wafer separation is inves-
tigated with regard to this requirement. The abrasive slurry is thereby modeled
via coupling a DEM grain representation with a particle based fluid description,
namely dissipative particle dynamics [44].

16



2 Numerical methods

The granular simulations in this thesis were carried out using the time-driven dis-
crete element method, which is described in Section 2.1. Continuous fields like
velocity profiles or volume fraction distributions were obtained from DEM simula-
tions by a tessellation and averaging method as introduced in Section 2.2.

2.1 Discrete element method

From a technical point of view, DEM simulations are essentially the same as molecu-
lar dynamics (MD) simulations [45, 46]. Yet, the term DEM was established within
the engineering community and later also among physicists if macroscopic grains
instead of microscopic molecules are modeled.

Newton’s equations of motion,

mi v̇i = fi, ṙi = vi, (2.1a)

Ii ω̇i = ti, (2.1b)

have to be solved for an ensemble i = 1, . . . , N of N particles with masses mi, center
of mass positions ri, velocities vi, inertia tensors Ii, angular velocities ωi, forces fi,
and torques ti. This is achieved by explicit time integration using a velocity Verlet
scheme [45] with fixed timestep ∆t,

ri(t+ ∆t) = ri(t) + vi(t)∆t +
fi(t)∆t

2

2mi
, (2.2a)

vi(t+ ∆t) = vi(t) +
(fi(t) + fi(t + ∆t)) ∆t

2mi
, (2.2b)

ωi(t+ ∆t) = ωi(t) +
Ii

−1 (ti(t) + ti(t+ ∆t)) ∆t

2
. (2.2c)

An alternative particle based approach, namely the event-driven discrete element
method [47], is not suitable for the scope of this work. The latter scheme uses an
adaptive integration timestep which becomes infinitely small when describing static
granular ensembles [48]. From now on the term DEM is used synonymously with
time-driven DEM.

Grain interactions were limited to contact forces for the scope of this work. The
forces describe four basic collision mechanisms: repulsion, cohesion, damping, and

17



2 Numerical methods

Figure 2.1: Contact of grains each consisting of (a) just a single sphere or (b) an
agglomerate of spheres.

friction. These properties are characteristic for granular collisions in general al-
though the relative importance of each one depends on the actual system setup
and the used material. Long-range interactions which play a role for electrostat-
ically charged or magnetic grains were not considered. Overviews of DEM force
schemes are given in Refs. [49, 50, 51, 52].

In the most simple case spheres were used to approximate the grain geometry (see
Fig. 2.1a). Irregular shape was taken into account by rigidly connecting spheres to
form composed grains (see Fig. 2.1b). Granular models of different physical and
morphological complexity were used. Their common force laws will be described
first. The differences are introduced in detail in the following paragraphs.

2.1.1 Force Laws

The deformation of two spherical particles i and j is described by the difference
between the sum of their radii and the distance of their centers, hij = Ri + Rj −
|rij | , rij = ri − rj. Exclusively, contact forces are used, which means that they are
only applied on the particles if hij > 0.

Repulsion

Normal to the contact area of touching spheres acts an elastic force as introduced
by Hertz [53],

f e
ij =

(

2

3
Ẽ
√

Reffh
3/2
ij

)

r̂ij. (2.3)

Ẽ = E/(1 − ν2), where E is Young’s modulus and ν is Poisson’s ratio. Reff =
RiRj/(Ri + Rj) is an effective particle radius and r̂ij = rij/ |rij| is the normal
vector of the contact plane.
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2.1 Discrete element method

Cohesion

Cohesion is included using the Johnson-Kendall-Roberts (JKR) model [54], which
extends the Hertzian contact law by introducing the work of adhesion per unit
contact area w (the surface energy is w/2),

f coh
ij = −

(√

4πwẼ R
3/4
eff h

3/4
ij

)

r̂ij. (2.4)

Besides Van der Waals forces, cohesion can be caused by powder additives, e.g.
lubricants or binders, or by air humidity. The JKR model is used here to represent
the influence of various cohesive effects in a simplified way. Thus, the quantity w
should be interpreted as a generalized cohesive energy per unit contact area.

The minimum of the combined repulsive and cohesive force is

(

f e
ij + f coh

ij

)

(hmin
ij ) = −3

2
πwReffr̂ij, hmin

ij =

(

9

4
π
w

Ẽ

√

Reff

)2/3

. (2.5)

A negative external load with an absolute magnitude larger than 3πwReff/2 will
separate the spheres. The cohesive contact is modelled symmetric for loading and
unloading, i.e. decohesion occurs at hij = 0.

Powders used in this work have grain diameters of around 100µm. Van der Waals
forces become negligible already at significantly smaller separation distances [55].
Thus, modeling cohesion as pure contact force is a reasonable approximation.

Dissipation

Collisions of grains are inelastic in most cases [56]. On the one hand, kinetic energy
is absorbed due to viscous or plastic deformations of the grains. On the other hand,
kinetic energy is lost due to sound production. The inelasticity of particle collisions
is described by means of a viscous normal force [57],

fv
ij = −

(

γn

√

Reff hij (vi − vj) · r̂ij

)

r̂ij, (2.6)

where γn is an empirical damping parameter with the physical unit of a viscosity.

Friction

Static and sliding friction are described in a tangential spring scheme as introduced
by Cundall et al. [34]. When two particles collide, an imaginary spring is attached
to the initial contact points. During the finite collision time the elongation ξij of
the spring is tracked and a force is applied at each contact point in the direction
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2 Numerical methods

Figure 2.2: (a): Contact forces between two particles. (b): Tangential force law
for Coulomb friction.

of the spring. The magnitude of this force is limited by the product of the current
normal force at the contact and a Coulomb like friction coefficient µ,

f t
ij = −min

[

κt

√

hij

Reff

|ξij | , µ
∣

∣f e
ij + fv

ij

∣

∣

]

ξij/ |ξij| , (2.7)

where κt is a tangential spring constant. A schematic overview of two particles in
contact including the corresponding forces is given in Fig. 2.2a and the frictional
force law is depicted in Fig. 2.2b.

Non-contact forces

In addition to the contact forces, gravitational acceleration g in z-direction (unit
vector ẑ),

f
grav
i = −mi g ẑ, (2.8)

and Stokes damping due to air viscosity µa,

f stokes
i = −6πµaRivi. (2.9)

are taken into account. Note that for typical grain velocities in the studied flow
regimes (i.e. up to 1 m/s) the influence of air drag is extremely small compared to
all other forces.

2.1.2 Non-rotational spheres

A basic model to describe a granular medium consists just of spheres without
rotational degrees of freedom. The forces as described in Section 2.1.1 act on
the centres of mass while torques are neglected. Although this may seem to be
unphysical, both, realistic flow and static phenomena like finite angles of repose,
can be reproduced by this basic model as shown in Chapter 4.
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2.1 Discrete element method

2.1.3 Rolling spheres

When introducing rotational degrees of freedom to the particles, changes of their
angular velocity occur due to the canonical torque that results from the tangential
forces

tt
ij = Ri f

t
ij × r̂ij. (2.10)

Spherical particles then cannot form stable angles of repose any longer and behave
fluid-like in that sense, because no torques exist which oppose their rotational move-
ment. However, static behavior can be restored to some extent by incorporating a
Coulomb-like rolling friction torque [58],

tr
ij = −µr

∣

∣f e
ij + fv

ij

∣

∣ωi/ |ωi| , (2.11)

with rolling friction coefficient µr. The rolling friction torque restrains even minimal
rolling movement of a sphere proportional to the normal force at each contact and
is oriented antiparallel to the particle’s angular velocity. This torque stabilizes a
granular heap considerably. However note that this dynamic rolling friction torque
still allows for significant long-term relaxations (see Section 4.1.4). Thus, a stable
equilibrium granular heap can only be achieved by a corresponding static rolling
friction torque, a concept which was not considered further in the present work.

2.1.4 Complex grains

Even without employing rolling friction concepts it is possible to reproduce static
heaps by using complex shaped particles consisting of an agglomerate of spheres (or
circles in two dimensions [40]). Figure 2.1b shows two geometrically complex grains
in contact. In order to investigate the influence of grain shape a rigid body motion
solver [59] was implemented. Each rigid body with label k consists of a set of
spheres with labels i ∈ Sk. The mass of a rigid body k is given by mk =

∑

i∈Sk
mi

and its three principal moments of inertia are Ik,x, Ik,y and Ik,z. The principal
axes of the rigid body form a coordinate system which will be referred to as body
frame in contrast to the fixed laboratory frame. The center of mass positions
and velocities in the laboratory frame are denoted by rk and vk, respectively. The
rotation of the rigid body within the laboratory frame is represented by a quaternion
qk = (ξk, ηk, ζk, χk). The components of qk are related to the Euler angles of
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rotation, θk, φk and ψk [60] by

ξk = sin

(

θk

2

)

sin

(

ψk − φk

2

)

, (2.12a)

ηk = sin

(

θk

2

)

cos

(

ψk − φk

2

)

, (2.12b)

ζk = cos

(

θk

2

)

sin

(

ψk + φk

2

)

, (2.12c)

χk = cos

(

θk

2

)

cos

(

ψk + φk

2

)

, (2.12d)

which implies the constraint q2
k = 1 [61]. The angular velocity of the rigid body

is given by ωk in the laboratory frame and by Ωk = (Ωk,x,Ωk,y,Ωk,z) in the body
frame. The rotation matrix,

Ak (qk) =





−ξ2
k + η2

k − ζ2
k + χ2

k 2(ζkχk − ξkηk) 2(ηkζk + ξkχk)
−2(ξkηk + ζkχk) ξ2

k − η2
k − ζ2

k + χ2
k 2(ηkχk − ξkζk)

2(ηkζk − ξkχk) −2(ξkζk + ηkχk) −ξ2
k − η2

k + ζ2
k + χ2

k



 ,

(2.13)

is used for transformation between the body frame and the laboratory frame,

ωk = AT
k (qk) Ωk, (2.14)

where AT
k is the transposed of Ak. The relative positions of the centers of the

spheres with respect to rk are given by the vectors bi in the laboratory frame and
Bi in the body frame, bi = AT

k Bi. By definition, the Bi are constant.
The constituent spheres of touching rigid bodies interact with each other due to

the force laws described in Section 2.1.1 resulting in total forces fi. The force acting
on the rigid body k is then given by

fk =
∑

i∈Sk

fi, (2.15)

while the according torque is

tk =
∑

i∈Sk

bi × fi (2.16)

in the laboratory frame and

Tk = Ak (qk) tk (2.17)

in the body frame.
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2.1 Discrete element method

The time propagation of the center of mass positions and velocities is analogous
to Eqs. (2.2a) and (2.2b),

rk(t+ ∆t) = rk(t) + vk(t)∆t +
fk(t)∆t2

2mk
, (2.18a)

vk(t+ ∆t) = vk(t) +
(fk(t) + fk(t+ ∆t)) ∆t

2mk
. (2.18b)

The integration step for qk is given by

qk(t+ ∆t) = qk(t) + q̇k(t)∆t +
1

2
q̈k(t)∆t2 − λk(t)qk(t)∆t2, (2.19)

where λk(t) is a Lagrangian multiplier which satisfies q2
k(t+ ∆t) = 1,

λk(t) =
1

∆t2

(

1 − 1

2
q̇2

k(t)∆t2

−
√

1 − q̇2
k(t)∆t2 − q̇k(t) · q̈k(t)∆t3 − 1

4
(q̈2

k(t) − q̇4
k(t))∆t4

)

.

(2.20)

The first derivative of qk is

q̇k(t) =
1

2
Q(qk(t))Ωk(t) (2.21)

and the second derivative is

q̈k(t) =
1

2
Q(qk(t))Ω̇k(t) − qk(t)q̇2

k(t), (2.22)

with

Q (qk) =









−ζk −χk ηk

χk −ζk −ξk
ξk ηk χk

−ηk ξk −ζk









(2.23)

and the angular acceleration

Ω̇k,α(t) =
Tk,α(t) + (Ik,β − Ik,γ)Ωk,β(t)Ωk,γ(t)

Ik,α
(2.24)

where (α, β, γ) represent every cyclic permutation of (x, y, z).
The coupled Euler equations for the integration of the angular velocity are solved

by an iterative scheme with iteration counter j,

Ω
(j)
k,α(t+ ∆t) = Ωk,α(t) +

∆t

2Ik,α

(

Tk,α(t) + Tk,α(t+ ∆t) + (Ik,β − Ik,γ)

×
(

Ωk,β(t)Ωk,γ(t) + Ω
(j−1)
k,β (t + ∆t)Ω

(j−1)
k,γ (t + ∆t)

)

)

.

(2.25)
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A useful approximation to start with is Ω
(0)
k (t + ∆t) = Ωk(t) and three iterations

proved to be sufficient.
The new positions and velocities of the constituent spheres are given by

ri(t+ ∆t) = rk(t+ ∆t) + bi(t+ ∆t), (2.26a)

vi(t+ ∆t) = vk(t+ ∆t) + ωk(t+ ∆t) × bi(t+ ∆t). (2.26b)

2.1.5 Boundary conditions

The confining geometries, i.e. cavity or container walls and the walls of a feeding
shoe, are composed of overlapping spheres positioned on a grid. In this way arbi-
trary geometries can be defined easily or even imported from CAD programs. The
typical grid spacing is about 80% of the sphere diameter. The wall particles inter-
act with the powder particles via the same force laws acting in the powder. The
only difference is that forces on wall particles are not used for their propagation, as
the mass of both cavity and shoe can be considered infinite in comparison to the
powder. The feeding shoe movement is defined by applying a constant displace-
ment per time to all wall particles forming the shoe. Oscillations of feeding shoe or
cavity are applied analogously.

The parameters for the powder-wall interaction are equal to those for interactions
between two powder particles except for the surface energy, which has been set to
zero, and the wall friction coefficient, µw, which replaces µ. Influences of the actual
choice of µw and the wall sphere diameter are described in Section 4.2.4.

2.1.6 Initial conditions

To generate the starting configuration the powder particles are first put on a simple
cubic lattice with lattice constants of at least 1.2 grain diameters. Every grain is
displaced from its lattice node by a small random offset and given a random angular
velocity. Then the simulation is started letting the particles settle under gravity
(compare Fig. 2.3). This procedure was chosen in order to mimic powder transfer
into the container or feeding shoe to some extend. The container orifice is opened
or the shoe movement starts, respectively, after the grains have come to a rest.
Alternatively an initial distribution with predefined volume fraction could be used
as described in Ref. [62].

2.1.7 Summary of model parameters

Equations (2.3)–(2.11) constitute an effective medium whose properties can be ad-
justed by variation of the parameters R, w, µ, µr, Ẽ, γn, and κt. The influence of
R is discussed thoroughly within the coarse graining analysis in Chapter 3. The
parameters w, µ, and µr have a strong influence on static and dynamic properties
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2.1 Discrete element method

Figure 2.3: Settling of grains in a hopper under gravity.

of the effective medium and were used to model a real powder as described in Sec-
tion 4.1. Effects of the actual choice of Ẽ, γn, and κt are dealt with in Section 4.2.

Simulations were carried out with four geometrically and mechanically different
grain models (see Fig. 2.4): Spheres without and with rotational degrees of freedom
(models A and B), composed particles consisting of six spheres positioned at the
corners of an octahedron with diameters equal to the distance between the furthest
corners (model C), and composed particles consisting of a central sphere and six
spheres positioned at the corners of an octahedron touching the central one (model
D). The sizes of the composed grains were chosen such that their volumes are equal
to the volumes of the simple spheres in models A and B.

Throughout this work the following convention is used to refer to the grain size.
R denotes the sphere radius for models A and B and the radius of the constituent
spheres for models C and D. Let d = 2R for models A and B while d represents
the maximum diameter of the composed grains in models C and D (C: d = 4R; D:
d = 6R).

Figure 2.4: Different DEM grain types used in the simulations. Spheres without
(i.e. model A) or with (model B) rotational degrees of freedom and
agglomerate grains. Note, the spheres in model C have an overlap
while they are non-overlapping in model D.
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Figure 2.5: Left: Schematic of Voronöı space tessellation for volume fraction com-
putation. Grey particles are powder grains and black particles form a
wall. Straight lines separate the Voronöı cells. Note that the Voronöı
cell boundaries between wall particles and grains are defined by the
surface of the wall particles. Right: Calculated volume fractions for
varied values of the standard deviation σ in the Gaussian weighting
of local grain volume fractions. Data from a 3D simulation similar to
the schematic on the left is used for the volume fraction calculation.

2.2 Volume fraction computation

Volume fraction distributions are determined in the simulations by Voronöı tessel-
lation [63, 64, 65]. The Voronöı cell of a grain is given by the set of all points in
space which are closer to that grain than to any other (see Fig. 2.5 for details).
A local volume fraction at the position of a grain with label k is defined by the
fraction of grain volume and Voronöı cell volume, ρk = Vk/Vcell,k. This approach
was also used in a granular flow study by Rycroft et al. [66]. Continuous, smooth
fields are derived by averaging over grain volume fractions using Gaussian distance
weighting,

ρ(r) =

∑N
k=1 ρk exp

(

− (r−rk)2

2σ2

)

∑N
k=1 exp

(

− (r−rk)2

2σ2

) . (2.27)
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2.2 Volume fraction computation

The effect of the choice of the standard deviation σ in relation to the grain diameter
d is displayed on the right hand side of Fig. 2.5. For σ/d ≤ 1/4 volume fraction
variations are resolved at grain level, which is particularly important for surface
and boundary phenomena. Using larger values of σ/d yield smoothing of the calcu-
lated volume fraction distribution. In order to reduce statistical variations volume
fractions are averaged over several timesteps during steady state regimes if possi-
ble. Velocity distributions are obtained similar to volume fraction distributions by
replacing ρk in Eq. (2.27) with the velocity vk or its magnitude |vk|, respectively.
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3 A coarse graining scheme for
discrete element modeling

Due to limitations in computational power, the number of model grains in a DEM
simulation cannot be chosen arbitrarily large. Thus, it is not yet possible to simulate
any given real system on a one-to-one grain level, especially if the system has a large
ratio of outer length scale to typical grain diameter. Representing a number of real
grains by a single, larger model grain is a way to cope with this challenge. This
chapter describes a critical inspection of such a coarse graining. The motivation
for these investigations is twofold. On the one hand, it is important to assess the
errors that are related with the applied coarse graining level. On the other hand,
it is helpful to know whether or not even bigger model grains can be used to save
computational time. Both aspects lead to the more general question under which
circumstances the absolute grain size is relevant for the powder properties or if an
adequate scaling of its mechanical parameters with respect to the grain diameter
yields unchanged macroscopic properties. Notably, no attempts of establishing and
assessing a coarse graining method for DEM simulations are found in the literature.

3.1 Force scaling

A coarse graining scheme is proposed that is based on an appropriate adjustment
of the interaction laws given by Eqs. (2.3)–(2.7). The main idea is to construct an
effective medium with scaled grain size which incorporates the same energy density
and evolution of energy density as the original system with unscaled grains. The
density of gravitational potential energy is independent of grain radius R, if solid
density, ρ, and volume fraction of the grains are constant. Thus,

ρ = ρ′ (3.1)

is required. The prime shall from now on denote quantities in a scaled system while
the quantities without prime describe the system with original grain radii. It will
be shown later that volume fractions are indeed unaffected by the proposed coarse
graining scheme. In order to preserve the kinetic energy density, scaling must not
affect grain velocities. Gain of kinetic energy density is given due to gravitational
acceleration or feeding shoe movement/acceleration. Both contributions are per se
independent of grain size. Loss of kinetic energy density occurs due to inelastic
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3 A coarse graining scheme for discrete element modeling

collisions between the grains. The dissipated energy in a binary collision of grains
i and j with reduced mass meff = mimj/(mi +mj) is

∆Ekin =
meff

2

(

(

ḣb
ij

)2

−
(

ḣa
ij

)2
)

, (3.2)

where ḣb
ij and ḣa

ij are the normal components of the relative velocity before and
after the collision, respectively. The number of collisions per volume and time scales
with (R/R′)3 and the reduced mass with (R′/R)3 when going from the original
system into the scaled system. The energy dissipation per volume and time is then
preserved, if the coefficient of restitution, i.e. the quotient of relative velocities after
and before a collision, is unaffected by coarse graining.

The differential equations for normal and tangential movement during a binary
collision are

meffḧij =
2

3
Ẽ
√

Reffh
3/2
ij −

√

4πwẼR
3/4
eff h

3/4
ij − γn

√

Reffhijḣij (3.3a)

and

meffξ̈ij = − min

[

κt

√

hij

Reff

|ξij | , µ
∣

∣

∣

∣

2

3
Ẽ
√

Reffh
3/2
ij − γn

√

Reffhijḣij

∣

∣

∣

∣

]

× sgn (ξij) ,

(3.3b)

where rotational motion is neglected for simplicity. A dimensional analysis [67] of
Eqs. (3.3a) and (3.3b) yields three dimensionless numbers,

Π1 =
w

ReffẼ
, (3.4a)

Π2 =
γn

Reff

√

ρẼ
, (3.4b)

Π3 =
κt

ReffẼ
. (3.4c)

A reference velocity can be expressed as

v0 =

√

Ẽ

ρ
. (3.5)

Due to the similarity of the trajectories it is ensured that energy density dissipation
rates are unaffected by coarse graining, if Π1, Π2, Π3, and v0 are kept constant.
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These requirements yield in combination with Eq. (3.1) the scaling rules

Ẽ = Ẽ ′, (3.6a)

w

Reff
=

w′

R′

eff

, (3.6b)

γn

Reff
=

γ′n
R′

eff

, (3.6c)

κt

Reff

=
κ′t
R′

eff

, (3.6d)

and thus

w ∝ R, (3.7a)

γn ∝ R, (3.7b)

κt ∝ R. (3.7c)

Equations (3.7a)–(3.7c) imply that the respective forces scale with R2 when coarse
graining is applied. Note however that the dependencies of the forces on R and hij

are not affected on a certain scale. Only when carrying out the same simulation
with bigger (or smaller) grains, the magnitudes of the forces are adjusted in order to
obtain unchanged energy densities. Thus, by scaling the forces an effective medium
with larger grains is obtained that exhibits the same properties as the medium with
the original grain size. This substitutional medium might have no counterpart in
reality, i.e. a granular medium with such a grain size and properties might not
exist. Nevertheless, it can be used to study properties of the original system with
considerable less computational effort. The Stokes drag force, Eq. (2.9), can also
be scaled according to the above analysis. The scaling rule for the air viscosity is
µa ∝ R.

The scaling scheme should be distinguished from a reduction of the number of
grains based on scaling down all external length scales. The latter would require
a dimensional analysis of the complete system and it would be hard to obtain a
definite result on how to vary all relevant scales without changing the details of
granular flow or filling behavior. Of course, the scaling breaks down for effects that
depend intrinsically on grain size. Therefore, this possibility must be checked for
each property of interest.

The scaling rules were tested in a collision of two model D grains with a relative
velocity of 0.2 m/s (see Fig. 3.1a). The simulation parameters are listed in Ta-
ble C.1. The evolution of the contact energy density is shown in Fig. 3.1b. Indeed,
if scaling according to Eqs. (3.7a)–(3.7c) is applied, the energy density evolution of
the contact is independent of the grain diameter d. For all other cases dependencies
on d exist. The evolution of the relative contact deformation, hij/d, is shown in
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3 A coarse graining scheme for discrete element modeling

Figure 3.1: (a): Grains before, during and after the collision. Evolution of (b)
energy density and (c) contact deformation during the collision with
various scaling laws.
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3.1 Force scaling

Fig. 3.1c. A collapse is only observed for the proposed scaling rules. Thus, only in
this case the trajectories are self-similar for varied grain diameter.

The scaling could also be based on stresses instead of energy densities. As conse-
quence of the proposed force scaling the stresses in the system remain unchanged.
The stress tensor of a grain i is given by

σi =
−1

Vi

[

mi (vi − 〈v〉) ⊗ (vi − 〈v〉) +
∑

j

fij ⊗ r̂ij

(

R− hij

2

)

]

, (3.8)

where 〈v〉 is the local mean velocity. It follows directly from the discussion above
that the stress tensor is independent of R provided that the forces scale with R2.

The cohesive tensile strength of the powder shall be discussed as a specific exam-
ple. Johnson et al. [54] derived the expression F = −3πwR/4 for the load required
to separate two spheres with radius R which are initially in contact. When choosing
w ∝ R the contribution of the cohesion to the tensile strength of the powder bulk,
given by F/R2, thus becomes independent of the actual grain diameter.

The derivation of the force scaling was shown to be valid for a dilute granular
system where only binary collisions occur and for a dense system via the stress
tensor. It is not clear that the scaling is also valid in intermediate dense regimes
and for multiple grain collisions. Thus, further tests of the scaling rules in relevant
setups are presented in the following section.
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3.2 Coarse graining tests

The coarse graining scheme was verified using grain models A and D. Bulk proper-
ties, flow rates and angles of repose were studied. In these setups both static and
dynamic properties of the grain models can be monitored.

3.2.1 Bulk properties

As a first test, the scaling behavior of particle deformations hij , coordination num-
bers and the height-dependence of the volume fraction was considered. A slab
consisting of model D powder with an initial volume fraction of 0.1 is set up. Pe-
riodic boundary conditions in x and y were applied and the powder is allowed to
settle and relax under gravity on a ground plate (see Fig. 3.2). The plate consists of
an array of fixed overlapping spheres which are scaled according to the grains. Two
sets of parameters were tested using the proposed adequate parameter scaling. One
set includes no cohesion and medium friction while the other one includes cohesion
and high friction (see Table C.2 for details).

Figures 3.3a–c show histograms of hij/d and coordination numbers as well as the
spatial variation of volume fractions for grain diameters varying from d = 470µm
to 1.88 mm. All diagrams collapse for both sets of parameters. Thus, no effect
of coarse graining can be observed. The particle deformation has a maximum at
2·10−4d for the non-cohesive and at 8·10−4d for the cohesive grains. The collapse of
the curves for hij/d confirms that the applied force scaling yields self-similarity of
the contact details, i.e. the contact deformation scales linearly with the grain size.
The average coordination number of 5 of the non-cohesive grains is significantly
higher than the coordination number of about 4.5 for the cohesive case. Also the
volume fractions are independent of grain size apart from regions close to the ground
at z = 0 and close to the top.

Close to a boundary, the volume fraction is significantly reduced due to grain
confinement (see Fig. 3.3d). It can be clearly seen that the volume fraction con-
verges to the bulk value about 1 d away from the boundary in agreement with
experimental observations [68]. In the vicinity of the boundary the volume fraction
drops to values as low as 0.18 followed by a second drop to zero when the bound-
ary is reached. This behavior is considered an artifact arising from the boundary
consisting of overlapping spheres which are centered at z = 0 with a radius d/6.
These spheres were excluded from the volume fraction calculations. Therefore, the
volume fraction starts to decrease at the highest surface points of the boundary
spheres and finally vanishes when the boundary spheres completely overlap in the
xy-plane (compare also Fig. 2.5).

For comparison, the same bulk formation simulations were carried out using
inadequate scaling of the force constants, i.e. without satisfying Eqs. (3.7a)–(3.7c).
Three sets of parameters were used. First, the damping parameter, γn, was set
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Figure 3.2: From left to right: Formation of a granular bulk under gravity on a
fixed ground plate.
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Figure 3.3: Analyses of the coarse graining method for bulk formation: His-
tograms of (a) particle deformation and (b) coordination number as
well as the height dependence of the volume fractions (panels c and
d) for non-cohesive and cohesive model D grains.
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Figure 3.4: Same as Fig. 3.3 but for inadequate force scaling with γn, κt or w,
respectively, kept constant.
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to a constant value for all grain diameters tested. Second, the tangential spring
constant, κt, was kept constant during coarse graining. In both cases all other
parameters were the same as in the non-cohesive parameter set used above. Third,
the cohesive parameter set was modified by keeping the adhesion per unit contact
area, w, constant. An overview of all parameters used is given in Table C.2. Note,
the parameter sets for inadequate scaling were chosen in such a way that they
coincide with the parameter sets for adequate scaling for the smallest grain diameter,
i.e. d = 470µm.

Figure 3.4 shows the resulting bulk properties for inadequate force scaling. For
γn = const. or κt = const. the particle deformation histograms still collapse. How-
ever, coordination numbers are shifting to higher values and the volume fractions
increase with increasing grain size. Both effects are more pronounced for fixed
κt. In the cohesive case with fixed w the relative particle deformation is larger for
smaller grains. Coordination numbers and volume fractions increase slightly with
increasing grain size. In summary, it was found that the tested bulk properties are
independent of the actual grain size only if the proposed force scaling is applied.

3.2.2 Slit flow

Next, the influence of coarse graining on flow properties was examined. Discharge
rates (i.e. steady state flow rates through a slit opening during a feeding shoe
passage at constant velocity) were considered a suitable measure for evaluating
scaling effects. The setup is depicted in Fig. 3.5a. In general, discharge rates
decrease for bigger particles since boundary effects become more prominent, i.e. the
particles see an effective smaller opening. This phenomenon was already observed
by Beverloo et al. [20] in hopper discharge experiments.

Figures 3.5b–d show normalized flow rates W̃ = WpVp/b
sim as a function of

slit size D for different grain diameters and models. The according simulation
parameter sets are listed in Table C.3. Here Wp denotes the grain discharge rate,
Vp the grain volume and bsim the y-periodicity of the simulation box. The curves
collapse when the flow rate is plotted against an effective slit size D − 1.4d. This
procedure and also the value 1.4 were already proposed by Beverloo et al. for
hopper outflow. Note however that the curves are less smooth for bigger grains
(see inset in Fig. 3.5b).

The collapse for the cohesive model D powder is only obtained when the cohesive
energy per contact area is scaled with R: w/R = 128 J/m3. For constant w, flow
rates are too high for larger grains and too low for smaller grains with respect to
d = 470µm, where the parameter sets of adequate and inadequate scaling coincide
(see Fig. 3.5d). Clearly, in the latter case the powder shows a decrease of cohesive
strength with increasing grain size since the cohesive energy per volume diminishes
with R.

In Fig. 3.6 color coded velocity and volume fraction fields are displayed for dif-
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3.2 Coarse graining tests

Figure 3.5: (a): Simulation snapshot of granular outflow from a feeding shoe
(green) moving in +x-direction through a slit in the ground (gray).
(b–d): Flow rate as a function of slit size D at shoe velocity vs =
0.18 m/s for different particle sizes. (b): Model A without cohesion;
inset: blow up of the main panel with d = 450µm and d = 600µm
shifted up for clarity. (c): Model D without cohesion. (d): Model D
with cohesion; closed symbols: w ∝ R, open symbols: w = const.

ferent grain sizes of a cohesive model D powder (w/R = 1920 J/m3, µ = 1.0, all
other parameters as listed in Table C.3) flowing through a D = 10 mm slit at
vs = 0.18 m/s. The velocity fields are similar except for areas of low velocity be-
hind the slit. Here the flow is more pronounced for larger grains. The wall particles
have constant size and grid spacing and therefore the coarser powders experience
a reduced roughness resulting in a reduced effective wall friction. More details on
this effect are given in Section 4.2.4. The volume fraction fields are also alike, only
slightly noisier for larger grains.
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3 A coarse graining scheme for discrete element modeling

Figure 3.6: Velocity and volume fraction fields for varied grain diameter d using
model D. The setup is displayed in Fig. 3.5a. The velocity is nor-
malized by the shoe velocity, vs = 0.18 m/s. The volume fraction is
normalized by the bulk value of 0.30. The standard deviation of the
Gaussian weighting for smoothing is σ = 0.5 mm.

40



3.2 Coarse graining tests

d [mm] 0.235 0.47 0.94 1.88
θO [◦] 38 39 37 32
θH [◦] 39 39 37 —

Table 3.1: Dependence of outflow angle and heap angle of repose on coarse grain-
ing level for model D powder.

3.2.3 Angle of repose

Angles of repose were studied for model D grains (parameters listed in Table C.3,
w ∝ R). Figure 3.7a shows a sequence of simulation snapshots during the heap
formation using a moveable slider. The angles of repose were measured after the
grains have come to a rest. The angles θO and θH are not substantially influenced
by coarse graining (see Fig. 3.7b and Table 3.1). However, the curvature of the
heaps increases with particle size. The shape of a granular heap’s tail can be
described by the expression x = (zmax − z) / tan θ + le log (zmax/z) , where le is
proportional to the grain diameter [69]. This explains the more pronounced tail of
the ground heap for bigger grains. A similar effect is observed for the peak of the
slider heap which becomes more oblate with increasing grain size. An inspection of
the initially horizontally colored grain layers in Fig. 3.7b suggests that surface flow
extends deeper into the bulk for bigger grains. Due to computational limitations it
was not possible to carry out simulations with grain diameters significantly smaller
than 235µm. However, Fig. 3.7b hints that the simulations using d = 235µm and
d = 470µm are representative for even smaller grains.
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3 A coarse graining scheme for discrete element modeling

Figure 3.7: (a): Angle of repose formation with definitions of outflow angle, θO,
and heap angle, θH. The setup is periodic along the axis perpendicular
to the paper plane. (b): Dependence of angles of repose on grain
diameter d for model D powder.
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3.3 Conclusion

3.3 Conclusion

A coarse graining scheme was proposed which can be applied to overcome the
problem of un-manageable grain numbers in DEM simulations. Scaling rules for
the material parameters in a coarse grained system were derived by a dimensional
analysis of the equations of motion in a binary granular collision combined with the
requirement to preserve energy densities in system. Tests in dynamic bulk regimes
confirmed that the scaling scheme is not limited to dilute configurations where only
binary collisions occur. In fact, it is possible to obtain the same properties (e.g.
coordination number, volume fraction, angle of repose) of a given granular system
independent of the actual coarse graining level. Limitations arise only if length
scales of the system (e.g. the orifice diameter) become comparable to the grain size.
Of course, the scheme cannot be applied in a reasonable way if properties of the
system depend intrinsically on grain dimensions.

The results hint that the energy density rather than the grain size is characteristic
for many granular bulk systems. This supports the fact that continuum descriptions
of granular matter do not necessarily contain grain size related parameters (compare
Section 5.1).
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4 Modeling of real powders in static
and dynamic regimes

Particle based numerical simulations yield detailed insight into a granular ensemble
due to the availability of complete phase space and contact information. However,
only the usage of a reliable numerical model provides the basis for any kind of
further analysis. Thus, the objective of the investigations presented in the current
chapter is to identify a DEM model which is capable of describing static and dy-
namic properties of a real powder quantitatively in diverse setups. The model could
then be used in the virtual laboratory in order to gain trustworthy results. So far,
no studies have been conducted which try to identify a model of such flexibility. In-
vestigations were rather focused on single regimes, e.g. flow from a hopper or down
an inclined plane, shear in a couette cell or angle of repose formation [70, 71, 72, 73].
A priori, it is not clear that a model which resembles the reality well in one regime
does the same in another one. As benchmark experiments the discharge from a
moving shoe and the formation of angles of repose were used. The first setup re-
flects a strongly dynamical situation while the second one is dominated by static
powder properties. The experiments were carried out using ASC100.29 iron pow-
der provided by Höganäs AB consisting of irregular shaped grains with a mean
diameter of about 100µm (see Fig. 4.1a).

Figure 4.1: (a): Microscopic image of an ASC100.29 grain. (b): DEM grain mod-
els.
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4 Modeling of real powders in static and dynamic regimes

4.1 Model fitting and validation

The DEM powder models A, B, C, and D (Fig. 4.1b) as introduced in Section 2.1
were tested for their capabilities to resemble the behavior of ASC100.29 in both the
dynamic and the static setup. In addition, volume fractions, discharge dependence
on powder bulk height, and the filling of a circular cavity were used to distinguish
between the models in terms of realism.

The formulations of the DEM force laws are derived from physically plausible
interaction mechanisms. Yet, the force laws form a simplification of the real inter-
action. The corresponding parameters do not necessarily reflect distinct material
properties. Therefore, the parameters cannot be easily identified independent of
each other for given real powder. Rather a certain combination of force law param-
eters characterizes an effective granular medium.

The parameters were adjusted via inverse modeling using two different fitting
strategies. In the first strategy the mass flow of the ASC100.29 iron powder from a
moving shoe through a defined slit was used for the fitting yielding a certain set of
model parameters. In the second strategy the same model parameters were adjusted
such that the experimental angles of repose were reproduced as closely as possible.
The fixed model parameters are listed in Table C.4. Free fitting parameters for
all models were the Coulomb friction coefficients µA,B,C,D and the cohesive energy
densities wA,B,C,D. For model B the rolling friction coefficient µB

r was an additional
tunable parameter. These parameters were chosen, because they strongly affect
the behavior of the model powders in the studied setups. The influence of further
model parameters is discussed in Section 4.2.

4.1.1 Fitting of parameters to slit outflow

Experimental setup

A model system as shown in Fig. 4.2 was set up. Its design resembles a similar
device presented in Refs. [74, 29]. A perspex feeding shoe (32 mm long, 50 mm
wide, 37 mm high) moves over an exchangeable polished steel platen (2 mm thick)
which contains a slit orifice. The shoe is attached to a valve-controlled pneumatic
cylinder allowing movement at a constant velocity in the range between 0.1 and
0.8 m/s, matching the speed of typical industrial devices. The shoe movement is
recorded by a displacement transducer connected to a PC. The influence of the
acceleration phase was not investigated as it is negligible [74].

The powder delivered through the slit orifice is collected in a perspex box and
weighed with a milligram balance. Plots of the shoe-velocity-dependent powder
mass transfer were used as a measurement for powder flowability as done by other
authors [74, 29, 75, 76].
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4.1 Model fitting and validation

y
x
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v
S

Figure 4.2: Schematic of experimental slit discharge system. The feeding shoe
moves at constant velocity vs. The edge lengths of the slit orifice are
D and b.
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Figure 4.3: Measured powder discharge for the (a) D = 6 mm and (b) 10 mm slit,
both with 24 mm filling height in the shoe.

Experimental results

Figure 4.3 shows the powder mass delivered through orifices with D = 6 mm and
10 mm (both b = 33 mm wide) for a range of shoe velocities.

No difference in mass discharge was found between a setup with a box whose
vertical wall meets the edge of the orifice or a setup with a vertical wall that is
well separated from the edge (insets (I) and (II) in Fig. 4.3a). This means that
the results obtained from outflow through a slit are transferable to filling cuboid
shaped cavities with rectangular orifices. Discrepancies between these two cases
may arise for fine powders because of hindered powder flow due to entrapped air
in closed cavities [74, 29, 75]. However, this effect is beyond the scope of this work
and not taken into account.

The data from the D = 6 mm slit (Fig. 4.3a) are fitted using an exponential law
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4 Modeling of real powders in static and dynamic regimes

CB CI CF β
0.081 0.024 4.3 0.093

Table 4.1: Fitted parameters for slit discharge.

for mass discharge from a shoe of length l with velocity vs,

mB(vs) = ρaD b lfB

(√
gD

vs
− x0

)

,

fB(x) = CB + CF

(

x +
1 − CI/CF

β

(

e−βx − 1
)

) (4.1)

as derived in Section 5.2. The apparent density of the ASC100.29 iron powder is
ρa = 3.0 g/cm3, x0 = 1/5 characterizes the duration of an initial burst phase (see
Section 5.2.1) and g denotes the gravitational acceleration. The fitted dimensionless
parameters CB, CI, CF and β are listed in Table 4.1.

The prediction of Eq. (4.1) is compared with experimental data for the D =
10 mm slit in Fig. 4.3b. The general trend of the experimental data is reproduced
well. Only the absolute values are slightly underpredicted. A more detailed discus-
sion of this effect is given in Section 5.2.3.

Model fitting

The simulation setup for the powder discharge from a moving shoe through a slit
orifice resembles the experiment. The only difference is the application of periodic
boundary conditions along the y-axis. These were used to save computational time.
It was carefully checked that the periodic box width, bsim, has no influence on the
simulation results for bsim ≥ 5d. In order to compare experiments and simulations,
the sectional area of powder bulk in the xz-plane discharged through the orifice
was calculated,

Aexp(vs) =
mB(vs)

ρexp
a b

, Asim(vs) =
P (vs)m

ρsim
a bsim

, (4.2)

where mB(vs) denotes the discharged mass according to Eq. (4.1), b the slit width in
y-direction, P (vs) the number of discharged grains, m the mass of a single grain, and
ρexp,sim

a the apparent densities obtained in experiment and simulation, respectively.
The free parameters µ, w, and µr were adjusted in a series of subsequent simulations.
Figure 4.4a compares Aexp(vs) with Asim(vs) from simulations using initial and fitted
parameter sets (see Table 4.2). It was possible to find an optimized parameter set
for each model (referred to as A1 to D1).

In order to quantify the parameter fitting, perpendicular residuals [77] were cal-
culated. For a given set of parameters the perpendicular residual ǫ2 is the sum of
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Figure 4.4: Powder discharge through the (a) D = 6 mm and (b) 10 mm slit.
Results from various powder models (open and closed symbols) are
compared with the experiments (black line). The model parameters
labelled flow fitted were adjusted to the D = 6 mm experiment while
the D = 10 mm results represent predictions.

Model: A1 A2 B1 C1 D1 D2
initial µ [ ] 0.25
fitted µ [ ] 1.0 0.3 1.0 1.0 1.0 1.0
initial w [J/m2] 0.0
fitted w [J/m2] 1.0 · 10−2 0.0 1.0 · 10−3 2.0 · 10−1 1.5 · 10−1 1.0 · 10−2

initial µr [m] — — 3.75 · 10−5 — — —
fitted µr [m] — — 3.75 · 10−4 — — —

Table 4.2: Initial and fitted values for the adjustable parameters of the simula-
tions. A1, B1, C1, D1: fitted in slit outflow; A2, D2: fitted in angle of
repose formation.
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4 Modeling of real powders in static and dynamic regimes

squared distances di between the k data points (vs,i, Asim,i) from simulations and a
parameterized curve,

C(vs) =

(

vs

Aexp(vs)

)

, (4.3)

describing the experimentally found relation between shoe velocity and discharged
area. Note that vs is a continuous variable while the vs,i are discrete values. The
perpendicular residual is defined as

ǫ2 =
1

k

k
∑

i=1

δ2
i ,

δ2
i =

(

dist

[(

vs,i/vs,max

Asim,i/Amax

)

,

(

vs/vs,max

Aexp/Amax

)])2

= min
vs

[

(

vs,i − vs

vs,max

)2

+

(

Asim,i −Aexp

Amax

)2
]

.

(4.4)

In order to avoid the influence of the chosen physical units and absolute values
on the residuals, the axes are normalized by the maximum velocity vs,max and
the maximum area Amax, respectively. Residual plots for all tested models are
displayed in Fig. 4.5. The thick green bars represent the model parameters fitting
the experiment best. In the present work the parameters were adjusted by educated
guessing a path through the parameter space. However, this process could be
automated by using residuals as a target function in an appropriate minimization
technique.

4.1.2 Validation by using a larger slit

The predictive ability of the powder models was explored in an experiment anal-
ogous to the fitting setup but with a larger slit, i.e. D = 10 mm. The agreement
between experiment and simulation is good (Fig. 4.4b), considering that mB(vs)
underestimates the experimental discharge slightly (compare Fig. 4.3b). With any
of the four powder models A1–D1 the experimental discharge behavior is repro-
duced. Thus, it is not possible to distinguish between the quality of the models
solely based on the slit outflow observations.
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Figure 4.5: Plots of the residuals ǫ2 (Eq. (4.4)) from parameter fitting via slit
discharge for model A (a), model B with µ = 1.0 fixed (b), model C
(c), and model D (d).

4.1.3 Fitting of parameters to angle of repose

Experimental setup

To complement flow measurements the angle of repose was analyzed, which reveals
static properties of a granular material. Its theoretical maximum value is related
to the internal angle of friction of the material, φ = arctan(T/N), where T is
the maximum shear force the powder bulk can withstand when applying a normal
force N [14]. It was shown by Grasselli et al. that at least five fundamentally dif-
ferent macroscopic angles exist depending on the formation history of a granular
heap [78]. Two of them, namely the outflow angle, θO, obtained by heap decompo-
sition through slow outflow and the heap angle, θH, obtained by heap composition
via pouring grains on top of a newly forming heap were measured in a setup similar
to the one used by Grasselli et al., who found θO > θH. These two angles were
used as the second part of the fitting and validation stage. The device consists of
a perspex container (5 cm wide) with three sidewalls and a movable slider with one
vertical wall (see Fig. 4.6a). The slider is supported by a plane 4.2 cm above the
box ground and initially touches the container walls. Powder is poured into the
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4 Modeling of real powders in static and dynamic regimes

reservoir and the slider is gently moved a few millimeters by hand. The powder
flows through the slit along one sidewall and finally a heap with angle θO forms on
the slider while a heap with angle θH builds up on the container ground.

Figure 4.6: (a): Schematic of the experimental setup used for angle of repose mea-
surements. (b): Angles of repose observed in heap (de)construction.

Experimental results

Figure 4.6b shows a typical result of the angle of repose experiments. An average
over eleven experimental measurements yields values of the angles of repose of
θO = (39.7 ± 1.1)◦ and θH = (37.0 ± 0.6)◦. No influence of the actual slit size
(varying from 2–5 mm) was observed.

Model fitting

As for the slit outflow, periodic boundary conditions along the y-direction were
employed in the simulations of the angle of repose formation. In the experiment
the ratio of the perspex box width to grain diameter was roughly 500, while finite
size effects are expected to vanish for a ratio above 180 [78]. Therefore, a peri-
odic boundary approximation is considered to be a reasonable simplification of the
experimental setup.

Figure 4.7 shows the result of the angle of repose simulations and experiment.
Models B and C fail completely to describe the shape of the experimental heaps
regardless of the used parameterization. Only models A and D are able to reproduce
the experimental outflow angle, θO, as displayed in the lower panel of Fig. 4.7. The
respective parameter sets are referred to as A2 and D2 in Table 4.2. The heap
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Experiment A2 D2 D1
θO [◦] 39.7 ± 1.1 41 39 59
θH [◦] 37.0 ± 0.6 41 39 36

Table 4.3: Overview of outflow and heap angles of repose.

angles θH are slightly overestimated by the simulations. Model A2 reproduces the
discharged heap worse than model D2, because a secondary heap with very low
inclination is formed which is not observed on the experiment. Table 4.3 gives an
overview of the angles of repose from experiments and from those simulations that
exhibited straight slopes.

Figure 4.7: Angles of repose observed in heap (de-)construction. Simulations and
experiment (lower right).

4.1.4 Reciprocal validation of slit outflow and angle of repose

As a validation step, angles of repose were calculated employing the model param-
eters that were fitted to the slit outflow experiment (see upper panel of Fig. 4.7). It
can be observed that models A1 and B1 yield very unrealistic heap shapes. Grains
still detach from the model B1 heap at a long time scale compared to the typical
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heap formation time of about 2 s. This effect can be explained by the absence of
a static friction torque (see discussion in Section 2.1.3). The rolling friction torque
in Eq. (2.11) allows for a slow rotational motion of the spheres leading to the ob-
served long term relaxations. Model C1 produces irregular slopes and also shows
long term dynamical behavior, i.e. the heap melts slowly.

Only model D1 provides a reasonable description of the experiments. The ob-
served θH = 37◦ matches the experiment well. However, θO = 59◦ overestimates
the experimental value. A comparison of models D1 and D2 shows that the outflow
angle θO is strongly influenced by the cohesive energy density w while the heap
angle θH is not. In addition, the slopes for model D1 deviate stronger from straight
lines than for the less cohesive model D2. Similar experimental observations were
reported for a comparison of dry and wet particles [79].

In an additional validation step, the powder discharge through the D = 6 mm
and 10 mm slit is calculated using the models A2 and D2 from the angle of repose
fitting procedure (see Fig. 4.4). Both models overestimate the observed powder
outflow. However, model D2 comes closer to the experimental data than model A2.

In summary, either the slit discharge or the angle of repose is too large for model
D with a certain set of parameters. A comparison of models C and D reveals
that for a higher degree of sphericity the angle of repose is dramatically lower (if
the heap is stable at all) while the discharge rate is just slightly larger. Thus, a
refined model with somewhat more spherical grains than model D should be able to
describe both, slit discharge and the angle of repose of ASC100.29 quantitatively.

4.1.5 Validation with volume fractions

The four models A1, B1, C1 and D1 differ significantly in the mean volume fraction
fm. For ASC100.29 iron powder fm ≈ 0.38. Note that the value of fm for random
packing of hard spheres without cohesion lies between 0.64 (close packing [80]) and
0.55 (loose packing [81]). Table 4.4 reports mean volume fractions of the four models
calculated by Voronöı tessellation as described in Section 2.2. Two values of fm are
given: after settling in the shoe at the beginning of the slit outflow simulations and
after the acceleration phase during constant shoe motion.

The volume fractions of models A, B, and C with the initial parameter sets (before
the fitting) are rather similar. This can be explained by the spherical or sphere like
grains that were used in these models. Model D with the initial parameter set shows
a significantly lower volume fraction due to the pronounced non-spherical shape.
The optimized models with higher friction coefficients and cohesive surfaces yield
a decrease in volume fraction of the order of 0.1. Yet, the optimized models A1,
B1, and C1 are still less porous than ASC100.29 iron powder. On the other hand,
model D1 has a higher porosity. The optimized model A2 is considerable denser
than model A1. This can be explained by the fact that model A2 is non-cohesive
and has only a slightly larger friction coefficient (µ = 0.3) than the initial model
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Model: A1 A2 B1 C1 D1 D2
initial fm [ ] 0.59/0.59 0.59/0.60 0.62/0.62 0.38/0.38
fitted fm [ ] 0.48/0.49 0.57/0.58 0.51/0.53 0.51/0.52 0.30/0.31 0.32/0.33

Table 4.4: Mean volume fractions for initial parameters and parameters fitted to
slit outflow (A1, B1, C1, D1) or angle of repose (A2, D2); compare
Table 4.2 for the actual values of the parameters. The slash separates
values obtained after settling in the shoe and after acceleration of the
shoe.

A (µ = 0.25). Similarly, model D2 is a bit denser than model D1 due to weaker
cohesion.

4.1.6 Validation with powder filling height in the feeding shoe

Slit outflow experiments showed that the discharged powder mass increases with
a decrease of the initial powder filling height in the shoe (see lower right panel of
Fig. 4.8). The effect is pronounced for low shoe velocities, i.e. vs < 0.4 m/s for
the D = 6 mm slit. Small heights yield better flowability as nose flow becomes
important, i.e. the bulk surface in the shoe declines significantly towards the slit
and fast powder flow along the surface occurs [75]. For higher shoe velocities the
differences for varied filling heights vanish, which is a hint that flow in this regime
only occurs due to powder detaching from the bulk in the vicinity of the orifice (bulk
flow [75]). In addition, an overall convergence for large filling heights is observed.
Thus, the measurements with 24 mm filling height used for the model fitting in Sec-
tion 4.1.1 are representative for the limit of large filling heights. The experimental
findings were tested using models A1, B1, C1, D1, and D2 (see Fig. 4.8). Mod-
els A1 and B1 strongly overestimate the increase of discharge for a shallow filling
height. Apparently, the spherical shape of the model A1 and B1 grains significantly
promotes nose flow. Model C1 recovers the effect only rudimentary and model D1
not at all. Both models are very cohesive, which prevents surface declination and
the associated increase in flow rate to some extend. Closest to the experimental
observations comes model D2. For a shallow filling height of 10 mm the discharge
is increased compared to 19 and 41 mm which lead to similar discharge behavior.
The combination of moderate cohesion and asperitic shape appears to describe the
nose/bulk flow behavior of ASC100.29 powder at least qualitatively in an adequate
way.
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Figure 4.8: Slit discharge dependence (D = 6 mm) on powder filling height in the
shoe. Models A1, B1, C1, D1, D2, and experiment.
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4.1.7 Validation with filling levels in the circular cavity

Further filling experiments and simulations were carried out using a narrow cir-
cular cavity. The inner and outer diameter of the cavity are 16 mm and 20 mm,
respectively, with a height of 15 mm (see Fig. 4.9).

16 mm

15 mm

20 mm

17 mm
0°

20 mm

90°
180°

v
S

a b

Figure 4.9: Schematic of the experimental setup used for filling of a circular cavity
(a) and diametral view of the cavity (b).

The filling of the circular cavity was performed using two shoe velocities, 0.2 m/s
and 0.5 m/s. The shoe meets the cavity first at the azimuthal angle of 0◦ and
last at 180◦ (compare Fig. 4.9a). Figure 4.10 shows 3D visualizations of the filled
cavities from simulations with models A1, B1, C1, D1, A2, and D2 for the two
shoe velocities. Figure 4.11 presents a comparison of the filling heights measured
in experiments (averaged over five repeated runs) and simulations. The filling
heights are measured depending on the azimuthal angle of the cavity. It does
not vary significantly in radial direction. The filling heights can be considered to
be a suitable quantity for the validation of powder models since they reflect how
much powder enters the cavity and in which way it settles within the cavity. Both
velocities are sufficiently high to prevent complete filling of the cavity after just
one shoe passage. The amount of discharged powder is higher for the lower shoe
velocity. The angles of repose of the free surfaces are similar for both velocities in
the experiment.

For vs = 0.2 m/s, model D2 is the only one that almost reproduced the experi-
ment. Merely the surface slope in the incompletely filled region deviates from the
experiment. For vs = 0.5 m/s, both, models D1 and D2 reproduce the experimental
data well. The filling height close to 180◦ is slightly underestimated by model D1
and somewhat overestimated by model D2. All other models show larger devia-
tions from the experiment. The strongest deviations are found for model A1 with
the largest underestimation and model A2 with the largest overestimation of the
experimental filling levels.
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4 Modeling of real powders in static and dynamic regimes

Figure 4.10: Incompletely filled ring cavities. The shoe passes from right to left.

Figure 4.11: Comparison between experiments and simulations of filling levels
in a ring cavity (Fig. 4.9) plotted along the azimuthal angle using
different shoe velocities.
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4.1 Model fitting and validation

4.1.8 Velocity and volume fraction fields for slit outflow

Models A1, B1, C1, and D1 are able to resemble the integral mass discharge mea-
sured in the slit flow setups. In this section the question is raised whether or not
the models differ on a more detailed scale. Velocity (Fig. 4.12) and volume fraction
fields (Fig. 4.13) are analyzed in an area close to the 10 mm slit during discharge
using the shoe velocities vs = 0.18 m/s and vs = 0.4 m/s, respectively. For bet-
ter comparability the velocity fields are normalized by vs and the volume fraction
fields by the average bulk volume fraction, fm, of the respective model (as listed
in Table 4.4). Both, velocity and volume fraction fields differ significantly for the
different shoe velocities. On the scale of these differences, the four models exhibit
essentially identical velocity and volume fraction fields for a fixed vs.

For vs = 0.18 m/s, the outflowing grains at ground level are about a factor 1.3
faster than the shoe. A zone with slow granular motion (velocity < 0.6vs) is located
behind the slit close to the ground. This zone is more pronounced for models C1
and D1. All models exhibit arch-shaped velocity isolines in the vicinity of the slit
similar to the case of hopper flow, i.e. vs = 0 m/s (compare Section 5.1). The
volume fraction decreases from the bulk towards the slit and stays small in the
region of low velocity behind the slit. For vs = 0.4 m/s, the bulk velocity and
volume fraction fields are homogeneous apart from the close vicinity of the slit.
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4 Modeling of real powders in static and dynamic regimes

Figure 4.12: Velocity fields for outflow through the D = 10 mm slit. The veloc-
ity is normalized by the shoe velocity. The standard deviation of
the Gaussian weighting is chosen as σ = 0.5 mm in order to obtain
smooth maps.
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4.1 Model fitting and validation

Figure 4.13: Volume fraction fields for the D = 10 mm slit. The volume fraction
is normalized by the bulk mean value fm of each model. σ = 0.5 mm.
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4 Modeling of real powders in static and dynamic regimes

Setup # vs [m/s] fm discharged grains discharged area [mm2]
1 0.18 0.322 13982 284
2 0.18 0.323 13660 277
3 0.18 0.323 13928 282
1 0.4 0.322 4383 89
2 0.4 0.323 4346 88

Table 4.5: Volume fraction and slit outflow dependence (D = 10 mm) on initial
random packing using model D2.

4.2 Influence of further model parameters

The tangential spring constant κt was not used as a free parameter. It was observed
in hopper simulations that either κt or µ can be used to adjust the outflow rate
within a similar range while the other quantity is kept constant [82]. Therefore it
is reasonable to use just one of these two parameters for fitting purposes.

4.2.1 Initial random packing

The influence of statistical variations of the initial spatial grain configuration on
simulation results for slit outflow and angle of repose formation was tested. The
variations are introduced by using different random offsets for the initial grain po-
sitions and different random angular velocities in the setup procedure as described
in Section 2.1.6. Table 4.5 shows the results for slit outflow from a moving shoe.
The volume fraction fm is obtained after settling of the grains in the shoe. Its
variations in different setups, i.e. with statistically varied initial conditions, are
negligible. The number of discharged grains varies within three percent. This value
can be understood as a measure for statistical deviations in slit outflow simulations.

The effect of varied initial random packings on angle of repose formation is pre-
sented in Table 4.6. The outflow angle of repose θO appears to be independent
of the actual packing. In contrast, the heap angle of repose is sensitive to statis-
tical variations in the initial packing. This observation correlates with the larger
experimental error in the measurement of θH compared to θO.

4.2.2 Young’s modulus

An intrinsic difficulty in modeling metal powders is given by the high Young’s mod-
ulus. Typical values are 70 GPa for aluminum, 200 GPa for iron and up to 650 GPa
for tungsten carbide. For stable and reproducible DEM simulations a collision be-
tween two particles has to be sampled over several timesteps [49]. Because the
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4.2 Influence of further model parameters

Setup # d [mm] θO [◦] θH [◦]
1 0.94 37 37
2 0.94 37 41
3 1.88 32 —
4 1.88 32 —

Table 4.6: Dependence of outflow and heap angles of repose on initial random
packing using model D2).

collision duration decreases with increasing Ẽ, simulations using realistic Young’s
moduli are restricted to either short simulated times or small particle numbers.
The real time to be simulated is defined by the process (e.g. a few seconds for
die filling). In how far the particle number can be reduced by coarse graining is
discussed in Section 3. As this is only possible within a certain range, the only
way to simulate large systems even with present day computer clusters is via arti-
ficial reduction of the Young’s moduli of the particles. Of course, this modification
is only legitimate if it does not affect the results. DEM simulations of granular
flow on inclined planes reveal that the Young’s modulus can be chosen about five
orders of magnitude lower than the real value without affecting volume fractions
and velocity profiles [71]. It was observed in previous particle packing simulations
that a realistic value of Ẽ is important only if an external pressure is applied [83].
However, in the setups used in the present thesis the situation is different, because
the main pressure acting on the grains results from the weight of the grains above
and its magnitude is negligible, i.e. in the order of 100 Pa. In this work the value
of Ẽ is chosen about four orders of magnitude lower than the value for iron. Tests
of the influence of Ẽ on volume fractions and slit discharge are presented in the
following.

Figure 4.14a shows the dependency of height resolved volume fractions on Ẽ after
settling of grains in a feeding shoe. Up to choosing Ẽ four orders of magnitude lower
than in reality only a slight increase in the volume fraction is found. However, when
choosing Ẽ six orders of magnitude lower the volume fraction increases dramatically.
In addition, the density profile shows an unrealistic height dependency.

Slit outflow simulations with varied Ẽ are summarized in Table 4.7. Using Ẽ ≥
109 Pa deviations in the discharged grain number are comparable to statictical
effects (see Section 4.2.1). For Ẽ = 107 Pa both the volume fraction and discharged
grain number increase which leaves the discharged area unaffected. Thus, this
choice of the stiffness of the grains is legitimate. Only when applying Ẽ = 105 Pa
the discharged particle number increases dramatically. As all other simulations
throughout the thesis are carried out using Ẽ ≈ 107 Pa, the obtained flow rates
and volume fraction results are representative for real iron within an error of a few
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4 Modeling of real powders in static and dynamic regimes

Figure 4.14: Influence of (a) Young’s modulus and (b) dissipative parameter on
volume fraction. Model D with µ = 0.5 and w = 0 J/m2 was used
for the variation of Ẽ and model D2 for the variation of γn.

Ẽ [Pa] fm discharged grains discharged area [mm2]
105 (0.39) 2441 (41)
107 0.36 1476 25
109 0.34 1319 25
1011 0.34 1377 27

Table 4.7: Slit discharge dependency on Ẽ (model D, d = 0.47 mm, vs = 0.6 m/s,
D = 6 mm). The values of fm are obtained from fits to Fig. 4.14a.
Therefore, only a rough value can be given for Ẽ = 105 Pa. Model D,
µ = 0.5, w = 0 J/m2.

percent.

Increasing the work of adhesion per unit contact area, w, decreases the flowability
of the grains. To obtain a certain flowability, w is adjusted depending on Ẽ, as the
latter influences the actual contact area due to surface deformation of the grains.
The dependency is not trivial. This fact has to be considered when comparing
values of w given in this thesis to experimentally measured cohesive energies.

4.2.3 Dissipative constant

The dissipative constant γn controls the amount of kinetic energy which is dissipated
during an inelastic collision of two grains. Its value was not varied or fitted during
the fitting and validation procedures. In this section the influence of the variation
of γn on various investigated properties is addressed.
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4.2 Influence of further model parameters

γn/R [Pa s/m] fm discharged grains discharged area [mm2]
104 0.41 14629 234
105 0.37 14239 252
106 0.32 13928 285
107 0.28 12417 290

Table 4.8: Slit discharge dependence on γn/R. Model D2, vs = 0.18 m/s, D =
10 mm.

γn/R [Pa s/m] θO [◦] θH [◦]
105 38 38
106 37 37
107 37 37

Table 4.9: Dependence of outflow and heap angles of repose on γn/R. Model D2,
d = 940µm.

Volume fractions decrease with increasing γn/R which is tested during the forma-
tion of an initial distribution from previously free floating particles without contacts
(see Fig. 4.14b). This effect was already observed by Silbert et al. [84]. Stronger
inelastic collisions yield a less dense packing as the grains undergo less collisions
and are more likely to come to rest while forming a more porous network.

Table 4.8 gives a summary of outflow simulations through the D = 10 mm slit
at a shoe velocity of 0.18 m/s. Note that the dependency of the total number of
discharged grains is only weakly dependent on γn/R while the dependency of the
volume fraction fm is stronger. This leads to different values in the discharged
area which is evaluated according to Eq. (4.2). For strong dissipation, i.e. γn/R ≥
106 Pa s/m, flow rates and volume fractions depend likewise on γn/R and, thus, the
discharged area is nearly constant. Angles of repose are only marginally affected
by a variation of γn/R which is denoted in Table 4.9. Therefore, it was reasonable
not to include γn in the fitting procedure.

The results of the model fitting and validation procedure are not substantially
affected by the choice of γn/R with the exception of an overall shift in volume
fraction. Yet, a decrease from 106 to 105 Pa s/m would improve model D2, because
the volume fraction of 0.37 is closer to the experimental value of 0.38 for ASC100.29.
A lower amount of discharged area in slit outflow is in better agreement with the
experiment, too.

A direct experimental measurement of γn via binary collisions is problematic due
to the irregular grain morphology which yields complicated impact events where
a substantial amount of translational kinetic energy can be transformed into rota-
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4 Modeling of real powders in static and dynamic regimes

tional kinetic energy [85]. However such a procedure can be carried out for spherical
particles [56].

4.2.4 Effective wall friction

Confining walls are formed by spheres positioned on a grid as described in Sec-
tion 2.1.5. Thus, a wall is not perfectly smooth. The influence of the surface
roughness and the microscopic friction coefficient µw on an effective wall friction
was assessed by a setup as depicted in Fig. 4.15. A normal force fn is applied on
the green lid which is moved at constant velocity v to the right. The blue powder
is sheared against the red wall due to the vertical blade which is rigidly connected
to the lid. The setup is periodic both in the direction of lid movement and perpen-
dicular to it. The shear force ft which is necessary for the movement of the lid is
measured. An effective wall friction coefficient is then calculated via

µw,eff =
ft

fn

. (4.5)

Figure 4.15: Simulation setup for determining the effective friction of the red wall.
The wall is apparently rough for a grid spacing of 1.6Rw (a) while
it is smooth for 0.4Rw (b).

In a series of simulations the wall grid spacing was varied between 0.4Rw and
1.6Rw while µw ranges from 0.01 to 0.5. For each combination of grid spacing and
µw two values of the normal force (0.025 N and 0.125 N) and two velocities (0.1 m/s
and 0.5 m/s) were applied in subsequent simulations. The normal force corresponds
to a pressure of 1 kPa and 5 kPa, respectively. Powder model D2 (d = 470µm) was
used for the simulations. Figure 4.16 presents the obtained results. The data points
are the mean values of the four measurements, i.e. each combination of normal force
and lid velocity, while the error bars represent the standard deviations. For each
grid spacing, µw,eff depends linearly on the microscopic wall friction coefficient with
a slope of about one. An increase in grid spacing raises the wall roughness and,
thereby, the effective friction. The ratio of the radius of the wall spheres and
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4.2 Influence of further model parameters

µw grid spacing [Rw] µw,eff fm discharged grains discharged area [mm2]
0.15 0.4 0.16 0.32 14146 289
0.05 1.6 0.17 0.32 13665 279
0.15 0.8 0.18 0.32 13948 285
0.15 1.6 0.28 0.32 13660 279
0.25 1.6 0.38 0.32 14154 289

Table 4.10: Slit discharge is independent of the effective wall friction. Model D2,
vs = 0.18 m/s, D = 10 mm.

the basic spheres of the powder grains is about 2 in the presented simulations.
Presumably µw,eff is a monotonically increasing function of this ratio as the surface
roughness increases with respect to the basic sphere size. However, this is not
explicitly tested. In order to adjust µw,eff for a given real wall material, shear cell
experiments in a similar setup [86, 87] can be carried out.
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Figure 4.16: Dependence of effective wall friction µw,eff on wall friction coefficient
µw and wall grid spacing.

The influence of the effective wall friction on slit outflow and angle of repose sim-
ulations was tested. The results for outflow through a slit are shown in Table 4.10.
No systematic trend of the discharged particle number on µw,eff is observed. The
magnitude of the variations is of statistical nature (compare Section 4.2.1). Angles
of repose are not affected by the effective wall friction, too, unless the wall is very
smooth in which case it cannot support the lowest layer of the heap.
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4.3 Conclusion

The properties of ASC100.29 powder are described qualitatively well in both, static
(angle of repose) and dynamic (slit discharge) regimes by DEM grain model D if an
adequate parameterization is used. None of the remaining tested models is capable
of that. In particular, spherical grain models with rotational degrees of freedom fail
completely in reproducing realistic angles of repose. In addition, model D yields
very good predictions for the filling behavior of a circular cavity.

The strength of model D is apparently caused by its morphology, because the
inadequate model C differs from model D only in grain shape. Model D features a
rugged surface just as ASC100.29, although the ratio of the size of the asperities
(i.e. the basic spheres for model D) to grain diameter is considerably larger for
model D than for ASC100.29 (compare Fig. 4.1). On the one hand, the asperities
allow for mutual support of the grains via interlocking. Thus, they contribute to
the shape of a granular heap, i.e. the angle of repose. On the other hand, the
asperities form barriers which hinder the release of grains from the bulk. Thereby,
they influence discharge rates of the powder. A modified grain model with a slightly
higher degree of sphericity than model D should be able to cover the behavior of
ASC100.29 quantitatively in both situations, i.e. heap formation and outflow, with
a single parameterization.

The DEM force law parameters which strongly influence static and dynamic char-
acteristics of the granular medium are the friction coefficient, µ, and the work of
adhesion, w. Yet, the actual grain shape is of comparable importance. An im-
proved procedure for parameter adjustment could be the following. A morphology
parameter could be defined as the ratio of the diameter of the constituent basic
spheres to the diameter of the composed grain. A starting value for this param-
eter is set via optical analysis of the real grains. Then µ, w and the morphology
parameter are adjusted by a gradient based optimization technique using powder
discharge, angle of repose, and volume fraction as target values. The results of this
chapter indicate that a suchlike adjusted model yields reliable informations on flow
and filling behavior even in setups which differ significantly from those used for the
adjustment.

A method was presented for the determination of an effective wall friction co-
efficient within the DEM simulations. This quantity depends on the geometric
roughness of the wall which was formed by particles and the microscopic friction
coefficient of these particles. However, it was found that the effective wall friction
coefficient has no influence on the behavior of the model powders in the studied
setups.
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5 Continuum description and
analytic expressions for granular
outflow

A comprehensive theoretical framework for rapid granular flow is not yet discovered.
In this chapter granular flow through slit orifices from an immobile hopper or a
moving shoe, respectively, is analyzed. The improvement of theoretical models for
velocity profiles and the integral mass flow rate motivates these investigations. A
brief overview of existing models for these regimes is given in the following.

Several experimental and numerical analyses of granular flow down an inclined
plane have been carried out (see e.g. Refs. [88, 71, 89, 90, 91, 92, 93, 94]). A
recent success is the description of this system by means of the incompressible
Navier-Stokes equations using a constitutive law which relates the viscosity to the
local stress, shear rate, and particle size [25]. However, this model is not valid
for high inclinations of the plane and is not transferable to vertical granular flow
which occurs inside a hopper. A significant difference between the inclined plane
and the hopper flow regime exists in the stress distribution. On the inclined plane
the compressive stress increases steadily from the surface on downwards due to the
weight of the grains. In contrast, discontinuities in the stress field are characteristic
for a hopper geometry [95]. Yet, the observed velocity profiles are continuous in
both systems [96, 97, 25]. Because of this fundamental difference between stress and
velocity, a Navier-Stokes description of the hopper velocity field cannot be based
on a constitutive law which takes the local stress into account [43].

Kinematic modeling (KM) [98, 99, 43] is a continuum description for velocity
fields in a discharging hopper. The model is comparably simple as it requires only
a single fitting parameter. However, measured velocity fields can only be described
with moderate accuracy unless the fitting parameter is varied with height [100, 96].
Details of KM are given in Section 5.1.2.

The recently introduced spot model for granular flow considers collective displace-
ments of grains as a response to the motion of spots, i.e. zones of lowered volume
fraction [101, 102]. The spots enter a hopper at the orifice and drift upward, op-
posite to gravity, while diffusing horizontally. This model describes profiles of the
vertical velocity component adequately [103]. No data has yet been published on
the predictive power of the model for the horizontal velocity component.
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5 Continuum description and analytic expressions for granular outflow

The Beverloo equation [20] constitutes an early success in describing granular
discharge on a less detailed level: The mass flow rate W of a powder with apparent
density ρa from a flat-bottomed hopper through a circular orifice with diameter D0

caused by the gravitational acceleration g can be expressed as

W = Cρa
√
gD

5/2
0 , (5.1)

where C is a dimensionless constant. Note the difference between Eq. (5.1) and
Torricelli’s law for a liquid with density ρl flowing through an orifice located at a
distance h0 below the surface of the liquid: W̃ ∝ ρl

√
gh0D

2
0.

Inroads were made into expressing the mass flow rate through an orifice from a
feeding shoe which is moving at a velocity vs based on Eq. (5.1) [74, 29]. Thereby,
the constant C is substituted by a shoe-velocity-dependent term, C(vs) ∝ vp

s , with
p ≈ −1/5. Although experimental and numerical data could be fitted by using this
model [75, 76, 104], the divergence of C(vs) at vs → 0 is obviously invalid.

5.1 Continuum description of velocity distributions

DEM simulations were used to obtain detailed velocity and volume fraction dis-
tributions of a granular material which discharges from a hopper. Thereby, the
focus was on the spatial vicinity of the slit orifice, in contrast to several previous
studies which concentrated on regions farther from the orifice. The kinematic mod-
eling approach was applied in order to describe the velocity profiles. Shortcomings
of this method are pointed out. An extension of the kinematic modeling picture
was derived, which takes volume fraction variations within the granular material
into account. It is demonstrated, that this extended continuum model is able do
reproduce the DEM velocity profiles at a high level of detail.

5.1.1 DEM simulations

The setup shown in Fig. 5.1 was used for the granular discharge simulations. DEM
model D was used with grain diameter d = 470µm, friction coefficient µ = 0.5,
and without cohesion (w = 0 J/m2). The remaining simulation parameters are
listed in Table C.5. Periodic boundary conditions were used along the y-axis with
a simulation box length of about 4.5 d. Thus, discharge through an infinitely long
slit is resembled by the simulations. The upper panel of Fig. 5.2 displays station-
ary distributions of the vertical (vz) and the horizontal velocity component (vx),
respectively. The slit width is D = 15 mm and the hopper width is l = 45 mm. The
smoothness of the distributions was achieved via both, time averaging and ensemble
averaging. Up to ten simulations with statistically varied initial particle positions
and orientations ware used for the ensemble averaging. The filling height of the
hopper decreased from about 65 mm to about 50 mm during the time averaging.
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5.1 Continuum description of velocity distributions

Figure 5.1: Simulation setup for granular outflow from a hopper. The center of
the slit orifice is located at at (x = 0, z = 0). The simulation box is
periodic along the y-axis.

A typical feature of the vertical velocity component is the rapid broadening of the
distribution with respect to height. This behavior reflects the so-called mass flow

regime which occurs for granular materials without strong friction and cohesion.
In contrast, the discharge of very cohesive grains would be governed by the core

flow regime, i.e. the material is only mobilized in a vertical channel above the orifice
corresponding to a narrow velocity distribution even for large heights (several times
the slit width) [14]. Both velocity fields are symmetric with respect to the z-axis
(x = 0 mm). The horizontal velocity component vanishes at the axis of symmetry.
It also becomes negligible for heights larger than about twice the slit width. Typical
is the kidney-shaped appearance of the vx-field. The maximum magnitudes of vz

and vx differ by a factor of about 6, i.e. the grains move mainly along the direction
of gravitational acceleration. These velocity fields are used as benchmarks for
continuum descriptions presented in the following.

5.1.2 Kinematic modeling

The kinematic modeling picture of stationary granular flow inside a discharging
hopper is based upon a simple correlation of the horizontal and the vertical velocity
component [98, 99, 43]. Figure 5.3 depicts a schematic of the assumed process:
A gradient in the vertical velocity components of two adjacent grains (1 and 2)
influences the horizontal velocity component of a grain above (3) as it will move
into the void left by the faster falling grain (2). The term kinematic is adequate,
because no forces or stresses are included in this model. The idea is expressed in
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Figure 5.2: Color coded stationary velocity fields. Upper panel: DEM simula-
tions. Middle panel: Kinematic modeling (Eq. (5.4)) using B =
1.8 mm. Lower panel: Compressible kinematic modeling (Eq. (5.9)).
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5.1 Continuum description of velocity distributions

the mathematically most simple form as

vx = −B∂vz

∂x
(5.2)

where B is a parameter with the unit of length. Furthermore, the granular material
is assumed to be incompressible,

∂vx

∂x
+
∂vz

∂z
= 0. (5.3)

The combination of Eqs. (5.2) and (5.3) yields a linear partial differential equation
for the vertical velocity component,

∂vz

∂z
= B

∂2vz

∂x2
. (5.4)

The parameter B is sometimes denoted as a diffusion length because Eq. (5.4)
has the form of a diffusion equation for the vertical velocity component [99, 43].
However, in this work it will be simply referred to as the KM parameter.

x

z

1 2

3

Figure 5.3: Schematic of the idea upon which the kinematic modeling for granular
outflow is based (adapted from Ref. [43]). The higher vertical velocity
of grain 2 compared to grain 1 causes grain 3 to move to the right.

The vertical velocity component vanishes at the ground walls of the hopper and
the horizontal component at the side walls, i.e. ∂vz/∂x = 0 due to Eq. (5.2).
Equation (5.4) can be solved analytically for the boundary condition of a constant
vertical velocity along the slit orifice [14]. However, this is a strong simplification.
In the present work the partial differential equation (5.4) was solved numerically
via finite differences on a staggered grid (see Appendix B). Thereby, the vertical
velocity as observed in the DEM simulations was used as boundary condition at
the orifice. The resulting velocity distributions for a choice of B = 1.8 mm are
displayed in the middle panel of Fig. 5.2. The value of B was adjusted such that
the basic features found in the DEM simulations are described by the kinematic
modeling. Yet, the agreement is not particularly good in detail: E.g. the yellow
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5 Continuum description and analytic expressions for granular outflow

Figure 5.4: Stationary spatial distributions of (a) volume fraction n and (b) KM
parameter B for hopper discharge from DEM simulations.

isolines of vz ≈ −0.1 m/s are straight in the DEM simulations in the vicinity of
the slit while the kinematic modeling predicts them as curved. Deviations between
DEM and KM are even more pronounced for the horizontal velocity distributions.
It was checked that different choices of B do not provided a better approximation
of the DEM data.

5.1.3 Compressible kinematic modeling

It was found that the KM description of measured velocity profiles can be improved
by allowing B to increase with z [105, 106, 100, 107, 96]. However, no general rule
for the magnitude of B or its dependency on z could be provided. The correlation
between B and vz was analyzed in Ref. [108] with the result that B does not depend
monotonically on vz. A microscopic explanation for this observation was yet not
given.

The stationary volume fraction distribution, n(x, z), obtained from the DEM
simulations is displayed in Fig. 5.4a. The volume fraction decreases from a height
of about 40 mm towards the slit orifice. Above z = 40 mm the volume fraction
is approximately constant with a bulk value of n ≈ 0.365. Triangular regions of
high volume fraction exist next to the orifice where the granular material remains
motionless. Based on the velocity distributions from the DEM simulations, the KM
parameter B is evaluated locally via Eq. (5.2). The spatial distribution, B(x, z),
is displayed in Fig. 5.4b. The value of B varies over an order of magnitude within
the orifice region and depends not only on z but also on x. A visual comparison
with the volume fraction distribution suggests some degree of correlation.

The correlation was evaluated locally at the nodes of a rectangular grid with
an edge length of 0.25 mm. Figure 5.5 depicts the correlation as clouds of points,
each point representing a grid node. In Fig. 5.5a only those nodes are considered
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5.1 Continuum description of velocity distributions

Figure 5.5: KM parameter B as a function of the volume fraction. Restrictions
of data evaluation: (a): |vx| > 0.038 m/s; (b): red means |vx| >
0.038 m/s and green means 0.008 m/s< |vx| < 0.038 m/s. Inset in
(a): Coordination number cn as a function of the volume fraction.

where |vx| > 0.038 m/s, i.e. velocities greater than half the maximum horizontal
velocity. In Fig. 5.5b the data from all nodes with |vx| > 0.008 m/s is drawn.
The nodes with |vx| < 0.008 m/s are not taken into account, because B cannot
be evaluated properly in this case (see e.g. the noise along the axis of symmetry
where vx vanishes in Fig. 5.4b). A monotonic dependency is found when plotting
B against the volume fraction for |vx| > 0.038 m/s (see Fig. 5.5a). The correlation
can be described by a simple power law,

B(n) =
B0

1 − n/ndiv
, (5.5)

with fitted parameters B0 = 0.116 mm and ndiv = 0.353. The inset of Fig. 5.5a
shows the coordination number cn as a function of the volume fraction. At low
volume fractions there are less contacts between the grains than at high volume
fractions. Hence, the degree of interaction between the grains increases with n. The
increase of B with n can then be understood by recalling the idea of KM (Fig. 5.3):
If there is only little interaction between the grains, the existence of a horizontal
gradient in vz will have little influence on the horizontal grain movement. In a
denser region the influence is larger, because the motion of each grain is stronger
correlated with the motion of the surrounding grains.

The dependence of B on n becomes ambiguous at high volume fractions if smaller
horizontal velocities are also taken into account (Fig. 5.5b). However, an attempt
was made to find an expression B(n) even for high volume fractions. Clearly, B
does not diverge. On the contrary, there is a dense branch of data points indicating
a decrease of B in average towards high volume fractions. Thus, a simple approach
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5 Continuum description and analytic expressions for granular outflow

in order to approximate the complete data set was done by mirroring the power law
at npeak = 0.347 which is about 95 % of the observed maximum volume fraction,

B(n) =
B0

1 − n/ndiv
Θ(npeak − n) +

B0

1 + (n− 2npeak)/ndiv
Θ(n− npeak), (5.6)

where Θ(n) is the Heaviside step function.
This finding suggests a modification of the kinematic modeling by considering

the KM parameter as a material specific function of the volume fraction, B(n).
Thus, Eq. (5.2) turns into

vx = −B(n)
∂vz

∂x
, (5.7)

and Eq. (5.3) is replaced by the compressible continuity equation,

∂(nvx)

∂x
+
∂(nvz)

∂z
= 0. (5.8)

The combination of Eqs. (5.7) and (5.8) yields

0 =
∂

∂x

(

B(n)n
∂vz

∂x

)

− ∂(nvz)

∂z

=

(

n
∂B(n)

∂n
+B(n)

)

∂n

∂x

∂vz

∂x
+B(n)n

∂2vz

∂x2
− n

∂vz

∂z
− vz

∂n

∂z
.

(5.9)

Equation (5.9) for itself constitutes an under-determined problem for the two inde-
pendent variabes n and vz. However, its predictive quality for the velocity distri-
butions can be assessed by using the volume fraction distribution n(x, z) obtained
from the DEM simulations as fixed input quantity. The set of Eqs. (5.7) and (5.9) in
combination with an expression for B(n) is from now on referred to as compressible

kinematic modeling (CKM). Equation (5.6) is used to model B(n).
The CKM partial differential equations were solved numerically as described in

Appendix B. The lower panel of Fig. 5.2 shows the obtained velocity distributions.
Apparently, there is strong agreement with the DEM results. All features which
could not be reproduced by the KM are yet present in the CKM distributions. A
more detailed comparison of these two continuum descriptions with the DEM data
is given in Fig. 5.6. The CKM and DEM results are nearly identical except for
some slight deviations in the horizontal velocity component at small heights. In
contrast, the deviations between KM and DEM are pronounced in both velocity
components.
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5.1 Continuum description of velocity distributions

Figure 5.6: Comparison of velocity profiles from DEM, CKM, and KM at six
different heights.
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5 Continuum description and analytic expressions for granular outflow

Setup # D [mm] g [m/s2] d [µm] l [mm]
1 15 9.81 470 45
2 10 9.81 470 45
3 15 1.62 470 45
4 15 9.81 940 45
5 15 9.81 470 60

Table 5.1: Varied parameters for DEM hopper discharge simulations.

5.1.4 Scaling properties

The scaling behavior of granular outflow in the vicinity of the orifice with respect to
length and time scales is assessed in this section. Therefore, further simulations were
carried out with variations of slit width D, gravity acceleration g, grain diameter
d, and hopper width l, in addition to the DEM setup described in Section 5.1.1.
Table 5.1 gives an overview of the varied parameters for all setups. Note that the
coarse graining scheme (Chapter 3) was not applied for the varied grain size in
setup 4 in order to explicitly investigate grain size related effects.

Figure 5.7 displays profiles of both velocity components and the volume fraction
for all setups. The distributions are normalized by the length scale D and the
velocity scale

√
gD, i.e. the time scale is

√

D/g. This particular scaling for granular
flow rates through an orifice was introduced by Beverloo et al. [20] and is generally
accepted [14]. Note that the grain size does not define the length scale. A data
collapse of vz and vx is observed close to the orifice, i.e. z ≤ 0.5D. For z ≥ D
pronounced deviations of setups 2 and 5 in comparison to the remaining setups
exist. The reason is that the velocity scale at large heights is

√

gD3/l due to
continuity [14, 100]. Thus, only setups 1, 3, and 4 collapse at all heights when
normalizing the velocity via

√
gD.

The volume fraction profiles at z = D collapse within the data noise. For z ≤
0.5D the volume fraction in setups 2 and 4 is lower than in the remaining setups
within a corridor above the orifice, i.e. 0 . x . D. This observation reflects
the effect of lowered volume fraction of a granular material close to a boundary
(compare Figs. 2.5 and 3.3). The larger the ratio d/D the more pronounced is this
effect with respect to D. At large heights (z ≥ 1.5D) the deviations of setup 2 and
5 can again be explained by inadequate normalization, i.e. the z-coordinate cannot
only scale with D but must also be a function of l. Yet, it remains unclear why
setup 3 with altered gravitational acceleration differs from setup 1.

The scaling collapses of both the velocity and the volume fraction distributions
(apart from the boundary effect) in the vicinity of the orifice suggest that B(n) can
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5.1 Continuum description of velocity distributions

Figure 5.7: Velocity and volume fraction profiles at certain normalized heights,
z/D, from DEM simulations with varied length-scales and time-scales
(compare Table 5.1).
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5 Continuum description and analytic expressions for granular outflow

Figure 5.8: Evaluation of B(n) for all tested setups. The color coding of the point
clouds is in accordance with Fig. 5.7. Restrictions of data evaluation:
(a): |vx| > 0.1

√
gD; (b): |vx| > 0.02

√
gD.

be normalized by D,

B(n) =
νD

1 − n/ndiv
Θ(npeak − n) +

νD

1 + (n− 2npeak)/ndiv
Θ(n− npeak). (5.10)

The comparison with Eq. (5.6) yields ν = B0/15 mm = 0.0077. Figure 5.8a shows
the locally evaluated B(n) for all setups under the restriction of |vx| > 0.1

√
gD,

i.e. |vx| > 0.038 m/s for D = 15 mm. The data points collapse and, thus, the left
branch of Eq. (5.10) provides a valid description. The right branch of Eq. (5.10)
cannot be justified by the present simulations (see Fig. 5.8b). Thus, it should only
be understood as a necessary extension of B(n) for n > npeak in order to solve the
CKM problem numerically. The point clouds in Fig. 5.8 are more noisy compared
to Fig. 5.5, because 5 statistically different simulations were used for the ensemble
averaging for setups 2 to 5 while 10 were used for setup 1.

The scaling behavior B ∝ D is validated in Fig. 5.9. The CKM equations were
solved for setups 1 and 2 using the respective volume fraction fields n(x, z) from
the DEM simulations and the universal function B(n) as defined in Eq. (5.10). The
distinct features of both setups are reproduced by the continuum description. In
summary, it seems justified to understand B(n) as a general relationship within
the scope of the introduced CKM for the used grain model in the flat-bottomed
hopper geometry. Thus, the parameter ν and perhaps even the functional form of
B(n) could depend on both, the actual hopper shape as well as morphologic and
mechanic properties of the grains.

The independency of B on grain diameter d requires some discussion. Velocity
profiles from several experiments [105, 106, 107] were fitted using KM with the
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5.1 Continuum description of velocity distributions

Figure 5.9: Velocity profiles from DEM and CKM for setup 1 (D = 15 mm) and
setup 2 (D = 10 mm).
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5 Continuum description and analytic expressions for granular outflow

outcome of a linear dependency, B/d = s, with s varying from 1 to 3 for the
different studies. This finding was not confirmed by the present work where the
velocity distributions coincide for varied grain size. The contradicting results might
be explained as follows. The experiments did not focus on the region close to the
orifice, but rather on vertical coordinates equal to several times the orifice width. In
addition, analytic solutions of Eq. (5.4) were used with a fixed volume flow rate at a
point orifice as boundary condition. Thus, flow details in the vicinity of the orifice
are neglected. Apparently, the flow regime close to the orifice differs fundamentally
from the flow regime in sufficient distance from the orifice, i.e. at least a few times
D away [99]. Velocity profiles seem to be independent of grain size in the dilute
zone at the orifice while they are not in regions with high volume fractions, i.e.
close to the bulk value. The behavior in the dense regime is consistent with a
recently developed constitutive law for granular flow down an inclined plane where
the viscosity and, thus, velocity profiles depend on the grain diameter [25].

5.2 Analytic expressions for mass flow rates

Although hopper discharge has been studied experimentally [20, 109, 110, 111, 112,
113, 114, 115] and numerically [116, 117, 118, 82, 70, 41, 115] for a long time, only
very little attention has been paid to the onset of outflow immediately after opening
the orifice [119]. A time-dependent extension of the Beverloo equation for the initial
phase of hopper discharge is derived in this section. A formula for mass discharge
from a moving shoe is then obtained from the transient Beverloo equation.

5.2.1 Transient Beverloo equation

The powder mass flow rate W (t) from a hopper through a rectangular opening with
edge lengths D and b is given by the expression

W (t) = ρa bD ū(t), (5.11)

where ρa is the apparent density and ū(t) is the average downward velocity at
the opening. Let b ≫ D, which is true for openings with high aspect ratio or
simulations with periodic boundary conditions where b is the simulation box size
along the periodic dimension. It was observed experimentally that ū is independent
of grain size, hopper width and filling height [20, 109]. Thus the only characteristic
length scale of the system is D and the characteristic time scale is

√

D/g. This is
in agreement with the findings presented in Section 5.1.4.

Grains moving through the hopper are accelerated due to gravity. Their move-
ment is hindered by collisions with surrounding grains resulting in effective damp-
ing. The influence of the collisions is expressed as a viscous term in analogy to the
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5.2 Analytic expressions for mass flow rates

Langevin equation. Thus, the following equation is proposed to describe the time
evolution of the mass flow rate,

dW

dt
= ρa bD

dū

dt
= ρa bD (−λū+ ǫg) . (5.12)

In order to obtain only dimensionless parameters within the equation, the damping
coefficient λ is normalized by the characteristic timescale, β = λ

√

D/g. For long
times t the mass flow rate reaches its equilibrium value, ǫρabD

√
gD/β. By intro-

ducing CF = ǫ/β the well known Beverloo equation for the mass flow rate through
a rectangular opening emerges [109],

Weq = W (t→ ∞) = CF ρa bD
√

gD. (5.13)

Immediately after opening the hopper, the discharge mechanism is somewhat
different from the later stage which is governed by the damped flow regime. The
first few granular layers are rapidly pushed out of the hopper thereby releasing the
pressure in the outflow region close to the opening. Simultaneously the average
coordination number and volume fraction drops in the outflow region. Simulations
show that this initial burst occurs on a timescale smaller than t0 = 1

5

√

D/g which
is at least an order of magnitude smaller than the convergence time of the average
velocity. The amount of mass being discharged in the burst phase should be pro-
portional to ρa, b and D2. The D2-dependency is motivated by the fact that the
height of the free fall zone above the opening scales linearly with D and thus the
height of the powder volume which is bursted out should scale the same way. For
mathematical convenience the burst phase is expressed using a Dirac delta function,

W (t < t0) = CB ρa bD
2 δ

(

t− t0
2

)

, (5.14)

where CB is the dimensionless height of the powder volume being bursted out. The
complete expression for W (t) is then constructed as the sum of Eq. (5.14) for t < t0
and the time-dependent solution of Eq. (5.12) for t ≥ t0:

W (t) = CB ρa bD
2 δ

(

t− t0
2

)

+ Θ (t− t0)CF ρa bD
√

gD

(

1 −
(

1 − CI

CF

)

e−β(t−t0)

)

,

(5.15)

with a dimensionless initial velocity CI at t = t0 and the Heaviside step function
Θ(t).

Equation (5.15) is in very good agreement with DEM simulations of hopper
outflow as can be seen in Fig. 5.10a. Note that convergence to the equilibrium flow
rate happens quite fast in typical system sizes, e.g.

√

D/g = 0.03 s for D = 10 mm
and the magnitude of β lies in the order of unity. The fit parameters are listed in
Table 5.2.
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Figure 5.10: (a): Initial hopper discharge with exponential law fit. Note that the
burst phase is illustrated using a peak of finite width instead of a
delta function. (b): Mass discharge from moving shoe and theoretical
prediction. For D = 15 mm the shoe was longer (l = 45 mm) than for
the two other cases (l = 32 mm). Simulation parameters are listed
in Table C.5.

CB CI CF β
0.05 0.39 0.92 1.4

Table 5.2: Fitted dimensionless parameters of Eq. (5.15) for hopper discharge
DEM simulations.
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5.2 Analytic expressions for mass flow rates

5.2.2 Mass discharge from moving shoe

The mass discharge from a shoe moving with velocity vs along the opening edge
D is now derived. For this purpose the continuous shoe trajectory is decomposed
into a stepped movement, i.e. the shoe is assumed to remain for a time interval
D/vs immobilized while discharging powder. The shoe is then instantaneously
displaced by the distance D. Thus the average velocity vs is conserved. In each
step the powder mass above the opening has no initial vertical velocity, because it
was placed above the fixed ground just before. So the mass discharge in each step
can be calculated by integrating Eq. (5.15),

mstep =

∫ D/vs

0

dtW (t). (5.16)

A shoe of length l traverses the opening in l/D steps. Therefore the total discharged
mass is

mB(vs) =
l

D
mstep

= CB ρa bD l + CF ρa bD l

×
(√

gD

vs
− 1

5
+

1 − CI/CF

β

(

e
−β

“
√

gD

vs
−

1

5

”

− 1

))

.

(5.17)

The predictive power of Eq. (5.17) was explored by comparison with simulations
of discharge from a continuously moving shoe using the same powder model as in
Fig. 5.10a. The agreement between the derived analytic model and the simulations
is remarkable (compare Fig. 5.10b) leading to the conclusion that inertial effects in
the direction of shoe motion are negligible and, thus, the stepped movement covers
essentially the same physical mechanisms as the continuous case.

5.2.3 Experimental validation

The experimental slit discharge system (Fig. 4.2) was used to assess the applicability
of Eq. (5.17) for ASC100.29 iron powder (see Fig. 4.1). In addition, comparison
was made with an empirical power law expression for mass discharge from a shoe,

mS(vs) = CS ρaD b l

(√
gD

vs

)1+n

, (5.18)

as described in Refs. [75, 104]. Figure 5.11a shows the experimental data for a
D = 6 mm slit and the fits of mB(vs) and mS(vs). The dimensionless fit parameters
are summarized in Table 5.3. Equation (5.17) performs better in fitting the data.

The predictions of both formulas are compared with experimental data for a
varied slit width (D = 10 mm) in Fig. 5.11b. Using mB(vs) the general trend
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Figure 5.11: Comparison of mB(vs) and mS(vs) for a D = 6 mm (a) and 10 mm
(b) slit.

CB CI CF β CS n
0.081 0.024 4.3 0.093 0.25 0.20

Table 5.3: Fitted dimensionless parameters of mB(vs) and mS(vs) for shoe dis-
charge experiments.

of the experimental data is reproduced well; only the absolute values are slightly
underpredicted. Using mS(vs) the agreement is good for intermediate shoe velocities
while the discharge is strongly underestimated for low velocities. The general trend
is covered less accurately. Note that only the expression mB(vs) for mass discharge
has a sound physical motivation, while the formula for mS(vs) is purely empirical.

Deviations in the description of experimental data can be attributed to the fact
that the cohesive strength σc of the powder should also be taken into account
in Eq. (5.17). Therefore, an additional dependence on the dimensionless group
σc/ρav

2
s [104] is expected to improve the predictive power of Eq. (5.17).
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5.3 Conclusion

5.3 Conclusion

DEM simulations of granular discharge from a hopper through a slit orifice were
carried out. Stationary velocity profiles were analyzed in the vicinity of the orifice.
The profiles collapse if lengths are normalized by the slit width D and velocities are
normalized by

√
gD, where g is the gravitational acceleration. The data collapse

is in agreement with the Beverloo equation for mass discharge through an orifice
which states the same scaling properties [20, 109]. The velocity profiles are also
independent of the grain diameter which was varied by a factor of two. This obser-
vation points out that granular flow close to the orifice differs substantially from
the granular movement at further distances where grain size dependent velocity
profiles were found experimentally.

The description of velocity profiles close to the orifice by means of kinematic
modeling proved to be difficult due to pronounced spatial variations of the kine-
matic modeling parameter B. However, a correlation was found by locally relating
B to the volume fraction. An analytic expression for this relationship was used in a
modification of the kinematic modeling approach. The modification considers com-
pressibility of the granular material and is therefore named compressible kinematic
modeling. It was demonstrated that velocity profiles can be reproduced accurately
via compressible kinematic modeling for given volume fraction distributions. Of
course, the CKM approach would become more powerful, if it could predict a vol-
ume fraction distribution instead of requiring it. This issue is yet to be addressed
in future investigations.

Granular discharge from a moving shoe was investigated with emphasis on the
integral flow rate. A novel equation for the shoe-velocity-dependence of mass dis-
charge through a slit orifice was derived and validated by simulations and experi-
ments. This equation is based on a transient generalization of Beverloo’s law for
hopper discharge. The link between transient flow from a fixed hopper and station-
ary flow from a moving shoe was made by decomposing the shoe motion in discrete
steps which appears to be a valid approximation.
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6 Homogeneous filling of cavities

Cavity filling processes as introduced in Chapter 1 are investigated numerically in
the following. Special emphasis is thereby put on the homogeneity of the density
distribution.

Only few simulations of cavity filling can be found in the literature. Wu et

al. [120, 76, 121] were the first to use DEM for cavity filling simulations in order
to investigate the influence of escaping air and cavity geometry. Riera et al. [122]
modeled cavity filling using a scheme based on the finite element method. Gustafs-
son et al. [123] developed a smoothed particle hydrodynamics model for the same
purpose. Common to these approaches is that they use only two-dimensional de-
scriptions and, therefore, provide at most a generic understanding of the filling
process. So far, no studies incorporating a 3D description have been conducted.

Compared to numerous investigations on compaction and sintering only few ex-
perimental investigations on cavity filling have been carried out. Bocchini et al. [68]
found that the integral filling densities decreases for small cavity sizes. Rice et

al. [124] tested different devices for their ability to classify powder flowability and
integral filling density. Hjortsberg et al. [125] observed density variations in a nar-
row ring cavity. Wu et al. [74] studied influences of cavity geometry and shoe
kinematics on the integral filling density. In subsequent studies the same authors
developed the concept of a critical shoe velocity for complete filling [29, 126, 75].

Results from filling experiments by Burch et al. [31] were used in this work to
adjust a powder model and for comparison of density distributions. In the exper-
iments Distaloy AE powder was used which is based on ASC100.29 powder but
contains 4% nickel, 1.5% copper and 0.5% molybdenum. The results presented in
Chapter 4 show that model D grains are capable of representing the irregularly
shaped grains of ASC100.29 iron powder in both static and dynamic situations.
Due to the morphologic similarity between ASC100.29 and Distaloy AE powder it
is reasonable to use model D grains also to represent Distaloy AE in the simula-
tion (compare Figs. 4.1 and 6.1). For the experiments in Ref. [31] a narrow ring
cavity and a stepped ring cavity were used. Models of the cavities are displayed in
Fig. 6.2. Simulations in the present work were also carried out with both cavities.
Despite being rather generic in their geometry, the cavities contain typical features
of industrial parts: namely, narrow sections and rotational symmetry.
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6 Homogeneous filling of cavities

Figure 6.1: Model D grain and industrially used Distaloy AE powder grain.

Figure 6.2: Models of narrow ring cavity and stepped ring cavity used for filling
experiments and simulations. The feeding shoe moves from right to
left during its first (third, fifth) passage and from left to right during
its second (fourth, sixth) passage, i.e. it reaches the 0◦ position first
on its first passage.

6.1 Coarse graining

For computational reasons it is not possible to carry out filling simulations of cav-
ities with typical length scales in the range of centimeters, while using grains with
mean diameters around 100µm, which are typical for Distaloy AE. Thus, numerical
coarse graining was applied in order to reduce the number of grains involved in the
simulations. The investigations presented in Chapter 3 show that properties like
volume fraction, angle of repose and flow rates are independent of grain size given
that the parameters γn, κt, and w are scaled in proportion to R, while all other
parameters are kept constant. However, boundary effects are not negligible if the
grain size becomes comparable to the length scale of cavity features. In this section
the influence of coarse graining on the filling simulation results is analyzed. Scaling
of the force laws was applied as described in Chapter 3, i.e. w ∝ R, γn ∝ R, κt ∝ R.
The simulation parameters are summarized in Table C.6.

As a first test, the narrow ring (see Fig. 6.2a) was filled using a shoe velocity
of 0.2 m/s. The ring width is 3.15 mm. The obtained filling levels for grain di-
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6.1 Coarse graining

ameters d = 470µm, d = 940µm, and d = 1.88 mm are shown in Fig. 6.3a. The
levels decrease with increasing grain size. This effect reflects the empty annulus
concept [20], stating that the effective ring width is smaller for bigger grains (com-
pare Section 3.2.2). The simulations were repeated using adjusted ring widths br
according to the formula br = b0 +1.4d with b0 = 1.83 mm, while the inner ring wall
diameter is kept constant. The numerical value of 1.4d specifies the empty annu-
lus zone [20, 14]. The adjustment yields very similar filling levels for the different
grain sizes (see Fig. 6.3b). Thus, it appears necessary to adjust the dimensions of a
cavity when using coarse graining to equal out the empty annulus effect. However,
for a small ratio of grain size to cavity dimensions the relative change of the cavity
dimensions will also be small.

Figure 6.3: Filling levels in the narrow ring after one shoe passage with vs =
0.2 m/s. Simulations with non-adjusted (a) or adjusted (b) ring cavity
width with respect to grain size.

As a second test, volume fraction distributions of completely filled cavities for
different feeding shoe velocities and numbers of shoe passages were evaluated. The
volume fractions were calculated using Voronöı tessellation as described in Sec-
tion 2.2. The according density is obtained by multiplying the volume fraction
with the material density of the grains. From a physical point of view it appears
more general to express the results as volume fractions, which is done throughout
this chapter. However, volume fraction and density are used synonymously, be-
cause the term density distribution is widely established in the powder technology
community.

The density distributions are presented in Fig. 6.4. For the narrow ring cavity
(Fig. 6.2a) the density is plotted against the azimuthal angle and height. For the
stepped ring cavity (Fig. 6.2b) the density was evaluated in the yz-plane along the
diameter of the cavity. The narrow ring cavity was adjusted to the grain size as
discussed above, while the stepped ring cavity was not.

All of the distributions in the narrow ring cavity are similar for d = 470µm and
d = 940µm. The main features appear for both grain sizes. Yet, for vs = 0.2 m/s
after six shoe passages the densified surface layer reaches deeper into the cavity.
The densification depth is apparently related to the actual grain size in agreement
with a model of Hjortsberg et al. [125] (compare Section 6.4.2).
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6 Homogeneous filling of cavities

Figure 6.4: Influence of coarse graining on simulated density distributions. For
each setup grain diameters d = 470µm, d = 940µm, and d = 1.88 mm
were tested.
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A circumferential zone of low density appears for the stepped ring using d =
940µm grains in comparison to d = 470µm. This zone is the boundary layer of
grains where the density is reduced due to the confining cavity walls (compare
Fig. 3.3d and Ref. [68]). It can also be observed at the bottom of the ring cavities.

The simulations with d = 1.88 mm differ strongly from those using smaller grains.
For the narrow ring, azimuthal density variations are hardly observable and no
surface densification is found except for vs = 0.2 m/s after six shoe passages, where
it reaches halfway through the cavity. The boundary layers at the bottom are
roughly twice as large compared to d = 940µm. For the stepped ring, the boundary
layers with reduced density are of the same size as the ring width in the lower,
narrow part.

In summary, coarse graining can be applied up to a ratio of d/b ≈ 1/3, where b
is the smallest cavity dimension. Thereby, features in the density distributions are
preserved. However, narrow parts of a cavity have to be adjusted according to the
grain size to even the empty annulus effect out. Simulations with smaller grains
than d = 470µm could not be carried out for computational reasons. A typical
filling simulation with this grain size requires about 4500 CPU hours using Xeon
2 GHz processors.

6.2 Adjustment of model parameters

It is shown in Chapter 4 that the model parameters controlling friction, µ, and
cohesion, w, have strong influence on the discharge rate from a feeding shoe and
the angle of repose of the powder. Furthermore, if a numerical powder matches a
real one in discharge rate, angle of repose, and to some degree also in morphology,
it reproduces the azimuthal dependence of filling height in a narrow ring cavity
well (compare Section 4.1.7). Measurements of an incompletely filled ring cavity
using Distaloy AE powder are given in Ref. [31]. The model parameters µ and w
were adjusted in an iterative process such that the filling level of the narrow ring
cavity (Fig. 6.2) after one passage at a shoe velocity of vs = 0.2 m/s is reproduced.
The surface energy for wall-grain interaction, ww, was set to zero. The wall friction
coefficient was set to a typical value of µw = 0.15 [86]. Table C.6 gives an overview
of all simulation parameters.

The shoe reaches the 0◦/360◦ position first and the 180◦ position last on its pas-
sage. Figure 6.5 displays both experimental and simulation results of the filling
level plotted as a function of the azimuthal angle. Good agreement between ex-
periment and simulation could be achieved by using µ = 1.0 and w/R = 64 J/m3.
Especially the slopes around 90◦ and 270◦, respectively, are well reproduced.
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6 Homogeneous filling of cavities

Figure 6.5: Filling levels in the narrow ring after one shoe passage with vs =
0.2 m/s. Experiment with Distaloy AE (purple area) and simulation
(thick line).

6.3 Prediction of density distributions

Spatial density distributions in completely filled cavities after one or several shoe
passages were used as benchmarks for the filling simulations. Density distributions
were experimentally measured using X-ray CT technique [31].

Figure 6.6 shows a comparison of measured and calculated density distributions.
Only for the stepped ring cavity quantitative densities are published in Ref. [31].
Thus, the comparison between experiments and simulations for the narrow ring
cavity is of qualitative nature. All simulations presented in the current section and
in Section 6.4.1 were carried out using grains with diameter d = 470µm.

After a single shoe passage at vs = 0.09 m/s significant features in the experimen-
tal distribution are a comparably low density around 180◦ throughout the whole
height (see Fig. 6.6a). For angles smaller than 90◦ and larger than 270◦ the density
in the lower half of the ring is markedly higher while surface densification is slightly
reduced. All features found in the experiment were reproduced by the simulation.
Note that surface densification is slightly exaggerated due to coarse graining, as the
model grains are approximately five times larger than the experimental grains.

After two passages at vs = 0.2 m/s (see Fig. 6.6b) the experimental density in
the 180◦ region is higher compared to the case of vs = 0.09 m/s and one passage.
The highest density is found in small areas at the bottom of the cavity close to
90◦ and 270◦. Around 0◦/360◦ the density is lower except for a thin horizontal
line at half height, corresponding to the filling level after a single passage. Gaps
within the dense surface layer are located around 90◦ and 270◦. The simulation is
in agreement with the experiment except for some missing details around 0◦/360◦.

After six shoe passages (see Fig. 6.6c) further densification at the surface and in
the region below 90◦ and above 270◦ occurs in the experiment. The region around
180◦ is only slightly densified. The simulation reproduces the experimental features.
However, the depth of surface densification is overpredicted.
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6.3 Prediction of density distributions

Figure 6.6: Comparison of density distributions from experiments [31] and sim-
ulations. Narrow ring filled with shoe velocity vs = 0.09 m/s, 1 shoe
passage (a). Narrow ring with vs = 0.2 m/s, 2 passages (b) and 6 pas-
sages (c). Stepped ring with vs = 0.09 m/s, 1 passage (d). Compare
Fig. 6.2 for the shoe movement. Quantitative color scales refer only
to simulations.
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6 Homogeneous filling of cavities

The experimental density in the upper part of the stepped ring is significantly
higher (109% of mean density [31]) compared to the lower part (92% of mean
density) where the cavity is narrower (see Fig. 6.6d). The simulation resembles the
experimental observations. The simulated density near the surface of the stepped
ring is about 0.36, while it is about 0.30 in the lower narrow part. Thus, the relative
differences compared to the mean density of 0.33 are in very good agreement with
the experimental results.

6.4 Transient filling analyses

6.4.1 Density formation during filling

The case of filling the narrow ring cavity at vs = 0.09 m/s was chosen as an example
to illustrate the evolution of the density distribution during the filling process.
Figure 6.7 depicts density maps, ρ(φ, z, t0 + n∆t), for intervals of ∆t = 150 ms and
t0 = 100 ms. In addition, density difference maps, ρ(φ, z, t0 + n∆t) − ρ(φ, z, t0 +
n∆t−50 ms), are displayed. The plots reveal that density changes due to the newly
arriving grains only occur close to the current surface. No significant densification
can be observed in the bulk regions below the surface. Thus, the momentum of
a discharged grain is absorbed within the surface layers. Features of the final
density distribution can be explained by considering the cavity geometry and the
feeding shoe movement: At n = 0 an initial heap of grains forms around 0◦/360◦.
The remaining space in the cavity is then filled until n = 2. The density in the
lower part of the cavity (i.e. z < 0 mm) has its highest values around 0◦/360◦. In
that region the new grains impact perpendicularly onto the current surface region,
thereby compacting it. In contrast, thoughout the remaining regions the newly
arriving grains hit the surface at a lower angle and can also flow along the surface.
Thus the compaction is less efficient. In the upper part of the cavity (z > 5 mm)
the transient development of surface densification can be observed. At n = 2 the
surface is only densified around 0◦/360◦, while at n = 3 it is densified around the
whole cavity. Yet, the densification is strongest around 180◦ where the powder is
confined by the outer cavity wall in the direction of shoe movement.

6.4.2 Grain displacement and surface densification

Grain displacement fields are shown in Figs. 6.8 and 6.9 as they occur between
subsequent shoe passages at vs = 0.2 m/s for the narrow ring and for a wide ring.
All simulations presented from now on were carried out using grains with diameter
d = 940µm. The cavities are completely filled after the second shoe passage. Thus,
the displacement fields are displayed from the third passage on. The strongest
displacement is found within the topmost grain layers, which are in direct contact
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6.4 Transient filling analyses

Figure 6.7: Density evolution during filling of the narrow ring at vs = 0.09 m/s.

with the powder inside the passing shoe. The rearrangement is affected by the
cavity geometry. Compaction at the surface is especially strong near the 90◦ and
270◦ regions for the narrow ring, while it is rather homogeneous around the wide
ring. In the narrow ring notable displacements occur down to approximately one
third of the cavity height. For the wide ring the depth of displacement increases
along the direction of shoe motion. These observations confirm a mechanism as
proposed by Hjortsberg et al. [125], who ascribed compaction during subsequent
shoe passages to shear induced granular rearrangement. Independent of cavity
geometry it is observed that the strength of compaction decreases with the number
of passages.

Densification of the granular bulk within filled cavities during subsequent shoe
passages was investigated more closely by using density difference fields as plotted in
Fig. 6.10. The fields were obtained by subtracting the density distribution after two
(four) shoe passages from the distribution after four (six) passages. It is observed
that the strength of compaction decreases with the number of passages. In all
cases a gradient of densification exists, pointing from the bottom to the top of
the cavities. For the wide ring densification reaches deeper than for the narrow
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6 Homogeneous filling of cavities

Figure 6.8: Grain displacements between subsequent shoe passages, labeled by
passage number and direction. Each arrow head points towards the
direction of the average grain displacement at its position. The length
of the red arrows is proportional to the displacement magnitude. Blue
arrows represent displacements above a threshold of 0.5 mm and have
constant length. For better visibility all arrows are scaled up by a fac-
tor of five. Displacements below 0.1 mm and displacements of grains
newly entering the cavities are not drawn.
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Figure 6.9: Same as Fig. 6.8 but for fifth and sixth shoe passage.
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6 Homogeneous filling of cavities

ring. Yet, densification at the surface is stronger in the narrow ring. Between two
and four passages, compaction close to the cavity surface is homogeneous around
the wide ring while it is especially strong around 90◦ and 270◦ for the narrow
ring. Figure 6.6b shows that after two passages the surface region at 180◦ is denser
compared to 90◦ and 270◦ in the narrow ring. The surface densification is seemingly
more effective in those formerly less dense regions. In the lower half of both cavities
the densification is more pronounced at 0◦/180◦ than at 90◦/270◦. The displacement
fields (Figs. 6.8 and 6.9) give the explanation: At 0◦ and 180◦ grains move rather
vertical than lateral due to the confining cavity walls. Thereby the bulk material
beneath is compacted.

Figure 6.10: Density differences in narrow (left) and wide (right) ring cavity be-
tween second and fourth feeding shoe passage as well as between
fourth and sixth passage.

In summary, the transient filling analyses reveal that density inhomogeneities are
mainly caused by the feeding shoe movement which does not respect the typically
rotational cavity symmetry. Thus, this method of cavity filling is intrinsically
anisotropic.

6.5 Density (in)homogenization

In this section variations of the filling process are investigated for their effects on
the final density distribution.

6.5.1 Influence of shoe velocity

For both the narrow ring and the stepped ring cavity the shoe velocity was varied
in further simulations. The resulting densities after one shoe passage using three
different velocities are displayed in Fig. 6.11. In the case of the narrow ring the
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6.5 Density (in)homogenization

density distributions are more inhomogeneous for low shoe velocities. The strongest
surface densification and the most pronounced density dependency on the azimuthal
angle is observed for the lowest velocity. In the stepped ring the distributions are
very similar for all three velocities. Thus, lowering the shoe velocity does not
generally help to improve homogeneity.

Figure 6.11: Density distributions using varied shoe velocities for the narrow ring
and the stepped ring. (a): vs = 0.022 m/s, (b): vs = 0.044 m/s, (c):
vs = 0.09 m/s.

6.5.2 Cavity and shoe vibrations

The effects of oscillations of the shoe or the cavity during or after the filling stage
were investigated for the narrow ring cavity. The shoe velocity was 0.09 m/s in all
cases.

First, oscillations with a frequency f = 32 Hz and an amplitude 1 mm in the
direction of shoe motion (x-axis) were applied during the filling stage. The oscil-
lation frequency f is the inverse of the oscillatory period. Figure 6.12 shows the
density distribution after one passage of the feeding shoe. Shaking the shoe does
not alter the density significantly compared to the case without any oscillations (see
Fig 6.11c). However, cavity oscillations have a strong impact on the distribution.
The average density increases and angular density variations appear. The cavity
sections oriented parallel to the axis of oscillation (i.e. 90◦/270◦ for shaking along
the x-axis) are denser than those perpendicular to it.

Second, cavity oscillations with 1 mm amplitude perpendicular to the shoe motion
(i.e. along the y-axis) were applied after the shoe passage. The frequency was varied
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6 Homogeneous filling of cavities

Figure 6.12: Densities for the narrow ring cavity under oscillations along the x-
axis during the filling stage.

between 2 Hz and 32 Hz. Figure 6.13 shows the results. Up to 8 Hz the density
distribution remains unaffected compared to the case without any oscillations. At
20 Hz strong densification near the 0◦/360◦ and 180◦ positions occur reaching from
the surface downwards into the cavity. At 32 Hz the situation is reversed and
densification is pronounced in the lower half of the cavity. Note, that the density
distribution for f = 32 Hz is very similar to the case of cavity oscillation during
filling (Fig. 6.12) except for the different shaking direction. Thus, it appears to be
unimportant whether the oscillations are applied during or after the filling stage.

Figure 6.13: Densities for the narrow ring cavity under varied oscillation frequen-
cies along the y-axis after the filling stage.

In order to overcome the anisotropy caused by linear oscillations, the influence
of rotational oscillations was investigated. The motion of each point of the cavity
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6.5 Density (in)homogenization

Figure 6.14: Densities for the narrow ring cavity under different rotational oscil-
lation frequencies using an amplitude of 5◦ after the passage of the
shoe. A second density map with different color scale is given for
the case of f = 32 Hz for clarity.

is described by

r(t) =





cos(θ(t)) − sin(θ(t)) 0
sin(θ(t)) cos(θ(t)) 0

0 0 1



 r(0), θ(t) = θ0 sin(2πft), (6.1)

where the origin of the coordinate system lies in the center of the cavity. Thus,
the axis of rotation is the z-axis. The rotational oscillation amplitude is θ0 = 5◦,
which corresponds to a displacement of 1 mm at the circumference of the ring. The
frequency f was varied between 2 and 32 Hz. Figure 6.14 shows density distributions
using rotational oscillations applied after filling with vs = 0.09 m/s. For f = 2 Hz
the effect is negligible. However, using f = 8 Hz or 32 Hz the angular dependency
of the density distribution vanishes. Especially for f = 32 Hz the density is rather
homogeneous throughout the cavity. The overall density increases with f and the
filling height decreases as a direct consequence.

6.5.3 Volumetric filling

The technical term volumetric filling means that the lower punch of the tool set
sucks the powder into the cavity from the feeding shoe, which may stop or move
during this operation (compare Fig. 6.15). Figure 6.16 displays density distributions
using volumetric filling. Shoe oscillations along the x-axis with a frequency of 2 Hz
and an amplitude of 1 mm are applied during the punch movement, because arching
occurs in the narrow ring without oscillations and the powder does not fall into the
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6 Homogeneous filling of cavities

cavity. For the narrow ring volumetric filling yields a homogeneous distribution
without azimuthal density gradients. The density is slightly higher at the bottom
or top of the cavity compared to half height. For the stepped ring cavity the density
in the lower narrow part is increased in comparison to the case of conventional filling
(compare Fig. 6.11) and comparable to the density in the upper wide part. However,
a region of lower density exists at the transition between the wide and narrow part.

a b

Figure 6.15: Schematic of the volumetric filling process. (a): The shoe moves into
position. (b): The powder is sucked into the cavity due to punch
movement.

Figure 6.16: Densities for the narrow and stepped ring cavity using volumetric
filling with punch velocity 0.02 m/s. The filling is supported by shoe
oscillations.
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6.6 Conclusion

6.6 Conclusion

It was demonstrated that observed features of the density distribution after filling
can be reproduced and, thus, predicted by DEM simulations. A simple way of
model parameter adjustment was used to match the filling behavior observed in
the experiment using the irregular shaped Distaloy AE powder. Simulations with
up to ten times larger grain diameters than in reality are able to predict significant
density features. The simulations only fail if grain diameters are comparable to
cavity dimensions.

The density distribution appears to be strongly determined by the cavity geom-
etry. In the case of incomplete filling the feeding shoe velocity does also affect the
density. The shoe velocity has only little influence if the cavity is filled completely.

After grains have settled in the cavity they stay at their positions and the local
density remains constant. The kinetic energy of newly arriving grains does only
contribute to a slight densification of the current surface.

Regarding subsequent shoe passages, two propositions of the compaction model of
Hjortsberg et al. [125] could be verified by the present simulations: The densification
is limited to a certain depth and it is less pronounced at the location where the
shoe meets the cavity first. In addition, it was shown that the compaction depth is
correlated with grain size. Therefore, it is necessary to simulate the process with
realistic grain sizes if the effect of surface densification is not to be overestimated.

Cavity oscillations affect the density strongly and can be used to homogenize the
distribution. However, oscillations might as well introduce inhomogeneities, if they
do not respect the cavity symmetry. Thus, rotational oscillations turn out to be
helpful for a ring cavity. It is evident that the application of cavity oscillations
might not be easily implemented in a given die compaction system. However, by
using simulations the possible improvements of these technique can be estimated.

Volumetric filling by punch movement proved to be helpful for homogenization,
because intrinsic anisotropies caused by the direction of shoe movement are avoided.
However, the build-up of arches must be avoided in slender cavities e.g. by some
shaking.
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7 Summary and outlook

A numerical study of granular matter at the transition of solid-like and liquid-like
behavior was carried out in the framework of the discrete element method.

A coarse graining method was derived for scaling the grain size in DEM simula-
tions of a granular system without changing macroscopic properties of the system.
It is based on the conservation of the local energy density in the system. The
gravitational potential energy density is preserved for unvaried mass density of the
scaled grains. The kinetic energy density decreases due to inelastic grain collisions.
A dimensional analysis of binary collisions yielded scaling rules for the material
parameters in the DEM force laws. These rules ensure the independence of kinetic
energy density loss in collisions on the grain size. The application of the scaling
rules leaves the coordination number distribution, the volume fraction, and the
potential energy stored in grain contacts unchanged for variation of the grain size
in a granular bulk. Discharge through a slit and angle of repose formation were
used as further tests for the proposed coarse graining method. These setups ex-
hibit grain size related surface or boundary effects which, however, vanish in the
limit of small grain diameters. Apart from these effects, macroscopic properties
of the granular medium are invariant under the proposed coarse graining method.
Notably, the scaling rules remain valid in bulk systems with multi-grain contacts
although derived from binary contacts.

The proposed scaling method allows for the investigation of systems with large
particle numbers which were previously unapproachable. The coarse graining
scheme differs from a scaling of all external length scales as the latter proce-
dure might alter dimensionless numbers which characterize the system and thereby
change the physical process being studied. Nevertheless, it has to be checked
whether or not system properties depend intrinsically on the actual grain size.
If so, the coarse graining method cannot be applied. It will be interesting to figure
out to what extend the scaling scheme can be applied to other granular systems, e.g.
whether or not it preserves properties of sound propagation in a granular bulk [127]
or the density of a granular gas [28].

Flexible and reliable DEM models can be utilized in the virtual laboratory in
order to discover new physical laws of granular systems. This approach can be
superior to experiments due to the inherent availability of complete phase space
and grain contact information. In addition, industrial processes including powders
can be optimized numerically with an appropriate model. For the scope of this
work a grain model should be able to reflect both flow and filling properties of a
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real powder. No studies on modeling a real powder in such a comprehensive manner,
i.e. covering static and dynamic regimes as well as the transitions between them,
have been published so far. Therefore, DEM models of different mechanical and
morphological complexity were compared to a real iron powder. Model parameters
were fitted by matching macroscopic quantities, i.e. the angle of repose of a powder
heap and the powder mass flow from a moving shoe through a defined orifice. It
was found that grain shape is an essential parameter besides friction and cohesion
between the grains. The iron powder consists of irregular, asperitic grains. It could
be represented best by a model with likewise shaped grains. This model also proved
to be capable of predicting the behavior of the iron powder in a different setup: the
filling of a circular cavity with a feeding shoe.

The findings suggest a fitting procedure for the adjustment of static and dynamic
properties of a DEM grain model. Friction, cohesion, and a shape parameter should
be adjusted in order to match the angle of repose, discharge rate, and volume
fraction of a real powder. Note however that such a procedure is computationally
demanding, i.e. it would require about 105 CPU hours. Future model improvements
should address the following issues: An inclusion of particle size distributions would
allow for the study of segregation phenomena [128, 129]. Collisions between complex
shaped grains will be described in greater detail, if a closer approximation of the
real grain shape is used [85]. Especially for small and light grains the explicit
consideration of air drag is necessary [121]. This requires an efficient method to
couple DEM computations with an air flow solver in three dimensions.

An accurate continuum model for the description of granular velocity fields inside
discharging hoppers was derived. It is based on the kinematic modeling approach
which relates the horizontal velocity component to the gradient of the vertical
velocity component via a coupling constant B which has the unit of length. The
basic kinematic modeling assumption of incompressibility was replaced by explicitly
considering the volume fraction field in the hopper. Consequently, the extended
approach is referred to as compressible kinematic modeling. It was demonstrated
that B is a monotonically increasing function of the local volume fraction up to
95 % of the maximum volume fraction of the system. The only relevant length-scale
in the vicinity of the hopper orifice is the width of the orifice. Thus, B scales with
the size of the orifice. So far, compressible kinematic modeling cannot predict the
volume fraction field but requires it. A transient description of the system which
includes the evolution of the volume fraction field would therefore be beneficial and
should be addressed in the future.

Complementary to discharge from an immobile hopper, granular outflow from
a moving shoe was investigated. Thereby, a novel equation for the shoe-velocity-
dependence of mass discharge through a slit orifice was derived. This was achieved
by mapping a transient extension of the Beverloo equation for hopper discharge
onto the moving shoe regime.

The optimization of cavity filling as used in powder technological part production
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provides a challenging application for DEM simulations due to the large number of
particles involved. In order to study the filling process, use was made of a coarse
grained, non-spherical DEM grain model as developed in the course of this work.
Comparisons with X-ray computer tomography measurements [31] revealed that an
adequately adjusted, coarse grained model can predict density distributions depend-
ing on cavity geometry and process parameters (e.g. feeding shoe velocity) quali-
tatively and partly even quantitatively. It was shown that density inhomogeneities
are mainly influenced by the combination of cavity geometry and feeding shoe ve-
locity. A schematic model for surface densification in subsequent shoe passages due
to shear of the topmost granular layers in the cavity [125] was confirmed. Two
possible procedures for density homogenization were identified: First, the suction
of the powder into the cavity due to punch movement avoids density anisotropies
caused by feeding shoe movement. Second, rotational oscillations applied after the
filling stage yield homogeneous distributions in cavities with rotational symmetry.

Yet another application example with high industrial relevance is the wire sawing
process for silicon wafer separation. Numerical investigations on the interaction of
abrasive grains, wire, and ingot in a hydrodynamic environment are presented in
Appendix A with the main outcome that the spatial stress distribution on the ingot
surface strongly depends on the applied wire velocity and stress. This result adds
to a more profound understanding and, thus, improvement of the process.

Some remarks shall be given on the used computational resources in this work.
A slit outflow simulation as presented in Section 4.1.1 takes about 300 CPU hours.
Roughly 600 CPU hours are required for an angle of repose simulation as shown
in Section 4.1.3 and for a silo outflow simulation as presented in Section 5.1. A
complete die filling simulation (Chapter 6) which involves 600,000 grains, i.e. four
million basic spheres, takes about 4,500 CPU hours. All values are given for cal-
culations running on Xeon 2 GHz CPUs using model D with a grain diameter of
470µm. The computational time was reduced by using up to 35 CPUs in parallel.

In conclusion, several results of general relevance for the description and handling
of granular systems were obtained within the scope of this work: a DEM coarse
graining scheme (Chapter 3), a procedure providing realistic DEM models for rapid
flow and filling situations (Chapter 4), improvements of the kinematic modeling
picture for granular flow from a hopper as well as an analytic expression for the
powder mass discharge from a moving shoe (Chapter 5), and optimization strategies
for density homogenization in cavity filling (Chapter 6).

Future developments of discrete element modeling as well as increasing compu-
tational resources will allow for a rise in numerical optimization of technological
processes and will contribute in no small part to building a comprehensive theoret-
ical framework for granular matter.
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A Modeling of wire sawing

Wire sawing is an efficient process for wafer slicing from a silicon ingot. It is
massively employed both in the solar and the semiconductor industry. Multi-wire
saws use an assembly of several hundred parallel running wires to simultaneously
separate the wafers. The width of the sawing grooves which corresponds to non-
recyclable Si dust is referred to as kerf loss. A wafer thickness of about 220µm
and a kerf loss of about 180µm can be achieved by using a typical wire diameter
of 140µm. Yet, there is still an economic demand for a decrease in wafer thickness
and kerf loss while meeting high standards for wafer quality, e.g. strength and
roughness. A systematic optimization under these conditions requires a profound
and detailed understanding of the wire sawing process.

The abrasive slurry used in the sawing process typically consists of polyethylene
glycol (PEG) with suspended silicon carbide grains. The sawing wire drags the
slurry through a groove in the Si ingot where the SiC grains cause the abrasion.
However, microscopic details of the sawing process are not fully understood, partly
because experimental in-situ investigations are not possible so far.

In this chapter numerical investigations of the dynamic interactions between wire,
slurry, and ingot in the sawing groove are presented. The particle based simulations
allow for analyses of the process at SiC grain level.

A.1 Numerical method

The system consisting of Si ingot, sawing wire, and PEG/SiC slurry was modeled
using a hybrid approach, i.e. fluid and rigid body dynamics are coupled in the
simulation. All components of the system were composed of spherical particles as
basic building blocks. The particle movement is governed by Newton’s equations of
motion and a velocity Verlet scheme, Eq. (2.2b), is used for explicit time integration.
The actual force laws yield physically reasonable behavior of the components, e.g.
hydrodynamic flow of the PEG or repulsion between distinct SiC grains. Details of
the modeling approach are given in the following sections.

A.1.1 Modeling of PEG

An extension of the dissipative particle dynamics (DPD) method [44] was used to
describe the PEG fluid. Basic DPD particles can be interpreted as single molecules
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or lumps of fluid molecules depending on the applied level of coarse graining. Their
interaction is given by a density-dependent force as described in Ref. [130],

fC
ij =

(

2K
(

(ρi − ρ) ρ2
i + (ρi − ρ)2 ρi

+ (ρj − ρ) ρ2
j + (ρj − ρ)2 ρj

)

w (rij)

)

r̂ij,

(A.1)

a dissipative force,

fD
ij = −

(

γDw (rij)
2 (vi − vj) · r̂ij

)

r̂ij, (A.2)

and a stochastic force,

fR
ij = (σRw (rij) ζij) r̂ij , (A.3)

where rij = |rij |, K is a compressibility constant, ρis the average fluid number
density, ρi is the local number density at ri, γD is a dissipative constant, and σR

is a random force constant. w (rij)is a monotonically decreasing weight function
which vanishes for particle distances larger than the interaction range rc,

w (rij) =

{

1 − rij

rc
, rij < rc

0 , rij ≥ rc
. (A.4)

ζij is a Gaussian white noise with vanishing mean value and a variance of unity.
Equation (A.1) models the fluid’s thermodynamics and allows for the formation of
free surfaces. Equation (A.2) describes viscous damping of the fluid and Eq. (A.3) is
motivated by the influence of suppressed atomic degrees of freedom. A fluctuation-
dissipation theorem is satisfied via σ2

R = 2γD(kBT )′, where (kBT )′ is the product of
Boltzmann constant and temperature in reduced numerical units.

The DPD simulation scheme makes use of intrinsic units which cannot be con-
verted into SI units in an unambiguous way. A possible way to perform the conver-
sion is described as follows. A coarse graining level of unity is chosen, i.e. a DPD
particle corresponds to a single PEG molecule with mass mPEG = 200 u and volume
VPEG = 2.9 · 10−28 m3. This sets the unit of mass to [m] = mPEG = 3.3 · 10−25 kg.
Density conservation yields the unit of length, [rc] = 3

√
ρVPEG = 1.1 nm. The

thermal velocity of the PEG molecules, vth, defines the unit of time, [τ ] = rc/vth =
rc/
√

3kBT/mPEG = 6.0 ps for T = 300 K. An overview of the simulation parameters
is given in Table C.7.

A snapshot of a fluid drop is shown in Fig. A.1. The blue spheres are the
individual DPD particles.

112



A.1 Numerical method

Figure A.1: DPD particles forming a fluid drop.

A.1.2 Modeling of SiC grains

Each SiC grain consists of an ensemble of rigidly connected particles. The method
described in Section 2.1.4 was used to conserve the rigidity over time. The ba-
sic particles of the SiC grains interact with the DPD particles of the PEG via
Eqs. (A.1)–(A.3). Thereby, hydrodynamic coupling between the PEG model and
the grains is ensured. Linear and angular momentum of the fluid is transferred
to the grains causing drag and rotation. Basic particles of two distinct SiC grains
interact via elastic repulsion,

fE
ij =

(

κw (rij)
3/2
)

r̂ij, (A.5)

to satisfy the excluded volume of each grain; κ sets the repulsive strength. Although
no explicit frictional force is used, torque is transmitted between grains due to their
morphological ability to interlock. A microscopic image of typical SiC grains is
displayed in Fig. A.2a. Fig. A.2b shows the corresponding model grains. The grain
size distribution used for the simulations resembled the experimentally measured
one.

A.1.3 Modeling of wire and ingot

Both the sawing wire and the Si ingot are represented by rigidly connected particles.
The viscoelastic interaction between the particles of the wire or ingot and those of
the SiC grains is defined by Eqs. (2.3) and (2.6). At the interfaces between the wire
or ingot, respectively, and the PEG fluid no-slip boundary conditions are ensured
by using an adhesive DPD wall model [131]. No fracture mechanism is included in
the model. Yet, stresses acting on the SiC grains and the Si ingot can be extracted
from the simulations. Figure A.3a shows a schematic drawing of wire and ingot.
The setup is periodic along the y-axis thereby resembling an infinitely long wire
and cutting groove.
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Figure A.2: (a): Microscopic image of SiC grains. (b): Corresponding model
grains and size distribution as used in the simulations.

Figure A.3: (a): Schematic of ingot groove and wire. Snapshots from simulations
including only PEG (b) and with complete slurry (c).
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Quantity Simulation value Equivalent experimental value
Wire diameter 22 nm 100µm
Wire velocity 122 m/s 17 m/s
Wire stress 89 N/mm2 1.5 N/mm2

Slurry density 1.7 g/cm3 1.7 g/cm3

Slurry viscosity 0.34 mPa s 200 mPa s

Table A.1: Overview of simulation parameters and equivalent experimental values
in terms of dynamic similarity.

A.2 Model validation

A.2.1 Dynamic similarity

On the basis of the derived units the simulations are limited to comparably small
time (about 100 ns) and length scales (about 100 nm). However, it is possible to
compare numerical and experimental results by using two non-dimensional numbers
which characterize the system. The Reynolds number,

Re =
vdρS

η
, (A.6)

is the ratio of inertial to viscous forces. For a typical wire sawing situation using
a wire velocity v = 17 m/s, slurry density ρS = 1.7 g/cm3, slurry viscosity η =
200 mPa s and an approximate distance d = 20µm between wire and ingot the
resulting Reynolds number is Re = 3. In the simulations d and ρS are set while η is
measured using Lees-Edwards boundary conditions [45]. The requirement to meet
the experimental Reynolds number then defines the wire velocity in the simulations.
The ratio of an external stress p to the kinetic energy per volume,

C =
p

1
2
ρSv2

, (A.7)

renders the conversion of the applied wire stress between simulation and experiment
possible. Table A.1 lists the quantities as used in the simulations and their equiv-
alent experimental values as defined by Eqs. (A.6) and (A.7). For the purpose of
easy comparison, lengths, velocities, and stresses are expressed by their equivalent
experimental values throughout this chapter.

A.2.2 Hydrodynamic drag

A simplified setup consisting only of wire, ingot and PEG without SiC grains was
used to test the hydrodynamic behavior of the fluid. Figure A.3b shows a frontal
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snapshot of the simulation. The wire diameter is 100µm and the groove width is
chosen to be 140µm according to a typical value of the kerf loss. The wire was
dragged in y-direction at a velocity of 17 m/s and the velocity field of the fluid was
evaluated. The result is shown in Fig. A.4. The velocity increases linearly from
the surface of the ingot to the wire surface corresponding to a laminar flow regime,
which is expected for Re = 3. Furthermore, it can be clearly seen that no-slip
boundary conditions are fulfilled.

Figure A.4: Laminar flow of PEG: Color coded velocity field around wire (a) and
velocity profile along the marked line (b).

A.2.3 Viscosity

Rheology measurements of pure PEG and a slurry with 25volume percent SiC grains
showed that the slurry viscosity is about four times larger than the PEG viscosity.
The same viscosity ratio is obtained in according simulations. No dependence of
the viscosity on the shear rate is observed in experiments for sufficiently high shear
rates, i.e. larger than 100 s−1. Simulated viscosities are also shear rate-independent.

A.3 Wire sawing simulations

A.3.1 Setup

The model system used for the sawing simulations is similar to the one used for
the hydrodynamic drag test described in Section A.2.2. Yet, in this case 25volume
percent SiC grains are included (compare Fig. A.3c). The slurry is located initially
in the cutting groove while the wire is positioned above the slurry surface. Then the
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vy

pz 4.25 m/s 17 m/s
0.15 N/mm2 23µm 35µm
1.5 N/mm2 14µm contact

Table A.2: Average distance between wire and ingot depending on wire stress pz

and wire velocity vy.

dynamic simulation starts and the wire is forced into the slurry due to an applied
stress pz while it is dragged with constant velocity vy. The stress pz is defined
by the quotient of the normal force on the wire and the cross sectional area of the
wire. The simulations are stopped after a stationary wire floating height is reached.
Stress distributions on ingot and grains are sampled in the stationary regime. The
combinations of two wire stresses (pz = 0.15 or 1.5 N/mm2) and two wire velocities
(vy = 4.25 or 17 m/s) were applied in the simulations.

A.3.2 Contact regimes

Reference [10] distinguishes for the steady state sawing process between a non-
contact and a semi-contact regime on the basis of elasto-hydrodynamic modeling
depending on wire stress and velocity. This distinction refers on the distance be-
tween wire and ingot surface with respect to the SiC grain size. Both regimes are
observed in the particle based simulations. Average distances between wire and
ingot surface in z-direction are listed in Table A.2. When applying a low stress and
a high wire velocity, several layers of grains are located between wire and ingot, i.e.
the system is in the non-contact regime (see Fig. A.5a). For a high wire stress at a
low velocity semi-contact is observed (see Fig. A.5b): Grains within a single layer
are in contact with both the wire and the ingot. At low stress and low velocity an
intermediate regime exists where only the biggest grains are in contact with wire
and ingot. High stress and high velocity yield direct contact between the wire and
the ingot.

A.3.3 Stress on ingot surface

The stress exerted from the SiC grains on the surface of the ingot groove was
tracked during the simulations. The stress was averaged over time and along the
y-coordinate because the system is translationally invariant in that direction. Fig-
ure A.6 shows distributions of the stress normal to the ingot surface along the
tangential coordinate of the groove in the non-contact and semi-contact regime.
The stress distribution is strongly localized around the center of the groove in the
case of semi-contact. In the non-contact regime the stress is evenly distributed
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Figure A.5: (a): Non-contact regime at low wire stress and high velocity. (b):
Semi-contact regime at high stress and low velocity.

Figure A.6: Stress distribution along the ingot groove for non-contact (red) and
semi-contact (blue) regime. The tangential coordinate is defined in
Fig. A.3a.
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along the surface. Note, that the distributions are normalized by the applied wire
stress pz. Thus, the absolute normal stress exerted on the sides of the groove, i.e.
for values of the tangential coordinate larger than 100µm or smaller than −100µm,
is comparable for both cases.

A.3.4 Stress on SiC grains

Compressive stresses on the SiC grains were evaluated complementary to the ingot
stress analysis. Figure A.7 shows stress distributions for the different grain sizes. In
the non-contact regime the distributions are alike for different grain sizes. Merely
the distribution tails are wider for bigger grains. In the semi-contact regime the
situation is different. Large grains undergo by far the highest stresses. A detailed
analysis of the distributions is given in Tables A.3 and A.4, where the stresses are
divided into three intervals for each grain size.

Figure A.7: Stress distributions for different grain sizes in the non-contact regime
(a) and semi-contact regime (b). The peaks around 28 N/mm2 rep-
resent stresses higher than that value.

In Fig. A.8 the grain stress intervals from Table A.4 are spatially visualized. The
highest stresses are exerted on the grains between the wire and the bottom of the
groove.
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Compressive stress
Grain diameter [µm] low medium high
6 (black) 99.9 % 0.1 % 0.0 %
10 (purple) 94.7 % 5.3 % 0.0 %
14 (cyan) 96.7 % 3.3 % 0.0 %
20 (green) 92.7 % 7.3 % 0.0 %

Table A.3: Cumulated stress distributions for different grain sizes in the non-
contact regime. Stress intervals: low ≤ 5N/mm2 < medium ≤
25N/mm2 < high. Simulation with vy = 17 m/s, pz = 0.15 N/mm2.

Compressive stress
Grain diameter [µm] low medium high
6 (black) 98.9 % 1.1 % 0.0 %
10 (purple) 92.9 % 7.1 % 0.0 %
14 (cyan) 78.4 % 15.8 % 5.8 %
20 (green) 59.9 % 33.0 % 7.1 %

Table A.4: Same as Table A.3, but for simulation with vy = 4.25 m/s, pz =
1.5 N/mm2; semi-contact regime.

Figure A.8: Spatial occurrence of different compressive stress levels on SiC grains
in the semi-contact regime.
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A.4 Conclusion

The non-contact and the semi-contact sawing regime could be observed in the par-
ticle based simulations. Furthermore, the occurrence of semi-contact (non-contact)
for high wire loads and low wire velocities (low loads and high velocities) is in
agreement with predictions from elasto-hydrodynamic modeling [10]. It was found
that in the semi-contact regime a large share of the applied normal stress on the
wire is transmitted directly to the ground of the groove. In the non-contact case
the stress exerted on the ingot is evenly distributed along the ground and the sides
of the groove. Thus, it might be assumed that the abrasion is rather localized in
the semi-contact regime, which would imply less kerf loss. However, this has to be
checked by explicit modeling of fracture events at the ingot surface.

Furthermore, the simulation of the semi-contact regime shows that the largest SiC
grains endure the highest compressive stresses. These stresses occur at the ground of
the groove. Experiments [132] show a decrease of wafer strength and an increase of
wafer roughness with increased normal stress on the wire. The simulations support
these findings by assuming that for high wire stresses the semi-contact regime is
reached. In this case the ingot could be significantly damaged due to localized
strong impacts of SiC grains.
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B Numerical solution of partial
differential equations

The (compressible) kinematic modeling approach of granular outflow (Section 5.1)
is mathematically expressed via partial differential equations (PDEs). Instead of
solving the PDEs (5.4) and (5.9) implicitly, a time dependency is artificially intro-
duced by means of a relaxation ansatz. Thus, Eq. (5.4) transforms into

∂vz

∂t
= vr

(

B
∂2vz

∂x2
− ∂vz

∂z

)

. (B.1)

Equation (5.9) transforms analogously into

∂vz

∂t
= vr

((

n
∂B(n)

∂n
+B(n)

)

∂n

∂x

∂vz

∂x
+B(n)n

∂2vz

∂x2
− n

∂vz

∂z
− vz

∂n

∂z

)

. (B.2)

The velocity vr = 2 m/s is introduced as a relaxation constant. The stationary
solutions, vz(t → ∞), of Eqs. (B.1) and (B.2) do also solve the original (C)KM
problem without time dependency. The horizontal velocity component, vx, can
then be computed via Eqs. (5.2) and (5.7), respectively.

Equations (B.1) and (B.2) were solved numerically using finite differences on a
staggered grid [77]. Details of the algorithm are given in the following. Figure B.1
shows an exemplary grid covering the computational domain where the PDEs are
to be solved. The most simple way of discretization would be to evaluate each
quantity of interest (i.e. vx, vz, n) at the grid cell centers. However, numerically
more accurate is the so-called staggered grid approach. Thereby, only scalar values
are kept track of at the cell centers while the components of vector quantities are
shifted towards the cell edges (or cell faces in three dimensions).

An exemplary cell for the present problem is depicted in Fig. B.2. The cell
edge lengths are ∆x = 0.25 mm and ∆z = 0.25 mm while the time is discretized
in steps of ∆τ = 1µs. To simplify the notation, the quantities vx, vz, and n
are indexed using integer and half-integer values, e.g. vz(i + 1/2, j, k) = vz((i +
1/2)∆x, j∆z, k∆τ).

The spatial computational domain is limited by imin = −l/(2∆x), imax =
l/(2∆x), jmin = 0, and jmax = h/∆z, where l is the hopper width and h = 20 cm is
the hopper height. The calculations start at kstart = 0 and finish at kend = T/∆τ
with T = 40 ms. As boundary condition at jmin the velocity distribution obtained
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x

z

i=i min i=i max

maxj=j

j=j min

i=0

Figure B.1: Schematic of the staggered grid partition of the hopper for the solu-
tion of the KM and CKM equations via finite differences. The thick
outline symbolizes the hopper walls while the dashed line represents
the slit orifice (compare Fig. 5.1). Note that a finer discretization is
used for the actual computation.

Figure B.2: A single staggered grid cell. The volume fraction, n, is evaluated at
the cell center while the velocity components, vx and vz, are evaluated
at the centers of the corresponding cell edges.
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from the DEM simulations is assigned to the vertical velocity component. All
other velocities are set to zero at kstart. At imin and imax the boundary conditions
are vx = 0. No boundary condition is used at jmax. Instead, an upwind (or for-
ward) difference is used, which propagates the initial perturbation at jmin through
the domain in +z-direction.

Finite difference scheme for kinematic modeling

Apart form the domain boundaries, i.e. i ∈ [imin + 1, imin + 2, . . . , imax − 2] and
j ∈ [1, 2, . . . , jmax], the time integration of Eq. (B.1) is given by

vz(i+ 1/2, j, k + 1) = vz(i+ 1/2, j, k) + ∆τvr

×
(

B
vz(i+ 3/2, j, k) − 2vz(i+ 1/2, j, k) + vz(i− 1/2, j, k)

∆x2

− vz(i+ 1/2, j, k) − vz(i+ 1/2, j − 1, k)

∆z

)

.

(B.3)

The upwind method is expressed by the asymmetric finite difference stencil for
∂vz/∂z with respect to j.

The boundary condition vx = 0, which results in vz(imin − 1/2, j, k) = vz(imin +
1/2, j, k) and vz(imax − 1/2, j, k) = vz(imax + 1/2, j, k) via Eq. (5.2), is satisfied at
the left hopper wall via

vz(imin + 1/2, j, k + 1) = vz(imin + 1/2, j, k) + ∆τvr

×
(

B
vz(imin + 3/2, j, k) − vz(imin + 1/2, j, k)

∆x2

− vz(imin + 1/2, j, k) − vz(imin + 1/2, j − 1, k)

∆z

)

,

(B.4)

and at the right wall via

vz(imax − 1/2, j, k + 1) = vz(imax − 1/2, j, k) + ∆τvr

×
(

B
−vz(imax − 1/2, j, k) + vz(imax − 3/2, j, k)

∆x2

− vz(imax − 1/2, j, k) − vz(imax − 1/2, j − 1, k)

∆z

)

.

(B.5)

Equations (B.4) and (B.5) are applied to j ∈ [1, 2, . . . , jmax].
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The horizontal velocity component is computed via Eq. (5.2), resulting in

vx(i, j + 1/2, k) = − B

2

vz(i + 1/2, j, k) − vz(i− 1/2, j, k)

∆x

− B

2

vz(i + 1/2, j + 1, k) − vz(i− 1/2, j + 1, k)

∆x
.

(B.6)

The according index ranges are i ∈ [imin + 1, imin + 2, . . . , imax − 1] and j ∈
[0, 1, . . . , jmax − 1].

Finite difference scheme for compressible kinematic modeling

The time-dependent CKM problem, Eq. (B.2), is solved via

vz(i + 1/2, j, k + 1) = vz(i+ 1/2, j, k) + ∆τvr

×
{(

n(i + 1/2, j + 1/2) + n(i + 1/2, j − 1/2)

2

× B′ (n(i + 1/2, j + 1/2)) +B′ (n(i + 1/2, j − 1/2))

2

+
B (n(i + 1/2, j + 1/2)) +B (n(i + 1/2, j − 1/2))

2

)

×
(

1

2

n(i+ 3/2, j − 1/2) − n(i− 1/2, j − 1/2)

2∆x

+
1

2

n(i + 3/2, j + 1/2) − n(i− 1/2, j + 1/2)

2∆x

)

× vz(i+ 3/2, j, k) − vz(i− 1/2, j, k)

2∆x

+
B (n(i + 1/2, j + 1/2)) +B (n(i + 1/2, j − 1/2))

2

× n(i + 1/2, j + 1/2) + n(i + 1/2, j − 1/2)

2

× vz(i+ 3/2, j, k) − 2vz(i + 1/2, j, k) + vz(i− 1/2, j, k)

∆x2

− n(i + 1/2, j + 1/2) + n(i + 1/2, j − 1/2)

2

× vz(i+ 1/2, j, k) − vz(i + 1/2, j − 1, k)

∆z

− vz(i+ 1/2, j, k)
n(i+ 1/2, j + 1/2) − n(i + 1/2, j − 1/2)

∆z

}

,

(B.7)

126



with B′(n) = dB(n)/dn. The indices i and j take the same values as in the KM
case.

The boundary condition vx = 0 yields

vz(imin + 1/2, j, k + 1) = vz(imin + 1/2, j, k) + ∆τvr

×
(

B (n(imin + 1/2, j + 1/2)) +B (n(imin + 1/2, j − 1/2))

2

× n(imin + 1/2, j + 1/2) + n(imin + 1/2, j − 1/2)

2

× vz(imin + 3/2, j, k) − vz(imin + 1/2, j, k)

∆x2

− n(imin + 1/2, j + 1/2) + n(imin + 1/2, j − 1/2)

2

× vz(imin + 1/2, j, k) − vz(imin + 1/2, j − 1, k)

∆z

− vz(imin + 1/2, j, k)
n(imin + 1/2, j + 1/2) − n(imin + 1/2, j − 1/2)

∆z

)

.

(B.8)

at the left wall and

vz(imax − 1/2, j, k + 1) = vz(imax − 1/2, j, k) + ∆τvr

×
(

B (n(imax − 1/2, j + 1/2)) +B (n(imax − 1/2, j − 1/2))

2

× n(imax − 1/2, j + 1/2) + n(imax − 1/2, j − 1/2)

2

× −vz(imax − 1/2, j, k) + vz(imax − 3/2, j, k)

∆x2

− n(imax − 1/2, j + 1/2) + n(imax − 1/2, j − 1/2)

2

× vz(imax − 1/2, j, k) − vz(imax − 1/2, j − 1, k)

∆z

− vz(imax − 1/2, j, k)
n(imax − 1/2, j + 1/2) − n(imax − 1/2, j − 1/2)

∆z

)

.

(B.9)

at the right wall.
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Equation (5.7) leads to

vx(i, j + 1/2, k) = − B (n(i + 1/2, j + 1/2)) +B (n(i− 1/2, j + 1/2))

2

×
(

1

2

vz(i+ 1/2, j, k) − vz(i− 1/2, j, k)

∆x

+
1

2

vz(i + 1/2, j + 1, k) − vz(i− 1/2, j + 1, k)

∆x

)

(B.10)

in order to compute the horizontal velocity component.
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C Simulation parameters

This appendix contains a compilation of the used parameters for all simulations
carried out within this thesis unless already specified in the main text.
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Parameter Value
R [m] 7.84 · 10−5, 1.568 · 10−4 and 3.136 · 10−4

d [m] 4.7 · 10−4, 9.4 · 10−4 and 1.88 · 10−3

m [kg] 7.6 · 10−8, 6.1 · 10−7 and 4.9 · 10−6

Ẽ [Pa] 107

γn/R [Pa s/m] 105

κt/R [Pa] 106

w/R [J/m3] 128
µ [ ] 1.0
µa [Pa s] 2 · 10−5

∆t [s] 2.5 · 10−7

Table C.1: Parameters used for the grain-grain collision simulations (Fig. 3.1).
The radius R refers to the basic spheres, while the diameter d and
the mass m refer to the composed grains. Fixed values for the cases
of inadequate force scaling: γn = 7.8 Pa s, κt = 78 N/m and w =
1.0 · 10−2 J/m2, respectively.

Adequate scaling Inadequate scaling
Parameter

non-cohesive cohesive γn = const. κt = const. w = const.
γn/R [Pa s/m] 105 105 — 105 105

γn [Pa s] — — 7.8 — —
κt/R [Pa] 106 106 106 — 106

κt [N/m] — — — 78 —
w/R [J/m3] 0 128 0 0 —
w [J/m2] — — — — 1.0 · 10−2

µ [ ] 0.5 1.0 0.5 0.5 1.0
Rw [m] R
µw [ ] 0.15
ww [J/m2] 0
g [m/s2] 9.81

Table C.2: Parameters used for the bulk formation simulations (Figs. 3.2, 3.3, and

3.4). R, d, m, Ẽ, µa and ∆t take the same values as listed in Table C.1.
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Model A Model D
Parameter

non-cohesive non-cohesive w ∝ R w = const.

Ẽ [Pa] 107

γn/R [Pa s/m] 106

κt/R [Pa] 106

w/R [J/m3] 0 0 128 —
w [J/m2] — — — 1.0 · 10−2

µ [ ] 0.5 0.5 1.0 1.0
Rw [m] 1.5 · 10−4

µw [ ] 0.15
ww [J/m2] 0
g [m/s2] 9.81
µa [Pa s] 2 · 10−5

∆t [s] 2 · 10−6

Table C.3: Parameters used for the slit discharge and angle of repose simulations
(Figs. 3.5, 3.6, and 3.7). For model A d = 2R while for model D
d = 6R.

Model: A B C D
Parameter Value
R [m] 1.5 · 10−4 1.5 · 10−4 8.9 · 10−5 7.84 · 10−5

d [m] 3.0 · 10−4 3.0 · 10−4 3.56 · 10−4 4.7 · 10−4

m [kg] 7.63 · 10−8

Ẽ [Pa] 107

γn/R [Pa s/m] 106

κt/R [Pa] 106

Rw [m] 1.5 · 10−4

µw [ ] 0.15
ww [J/m2] 0
g [m/s2] 9.81
µa [Pa s] 2 · 10−5

∆t [s] 2 · 10−6

Table C.4: Parameters used for the simulations of slit discharge, angle of repose
formation, and cavity filling in Chapter 4. For models C and D the
radius R refers to the constituent spheres while d and m refer to the
complete grains for all models.
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Parameter Value
R [m] 7.84 · 10−5

d [m] 4.7 · 10−4

m [kg] 7.63 · 10−8

Ẽ [Pa] 107

γn/R [Pa s/m] 106

κt/R [Pa] 106

w [J/m2] 0.0
µ [ ] 0.5
Rw [m] 1.5 · 10−4

µw [ ] 0.15
ww [J/m2] 0.0
g [m/s2] 9.81
µa [Pa s] 2 · 10−5

∆t [s] 2 · 10−6

Table C.5: Parameters used for the hopper and feeding shoe discharge simulations
in Chapter 5.

Parameter Value
R [m] 7.84 · 10−5, 1.568 · 10−4 or 3.136 · 10−4

d [m] 4.7 · 10−4, 9.4 · 10−4 or 1.88 · 10−3

m [kg] 7.63 · 10−8, 6.104 · 10−7 or 4.883 · 10−6

Ẽ [Pa] 107

γn/R [Pa s/m] 106

κt/R [Pa] 106

w/R [J/m3] 63.8
µ [ ] 1.0
Rw [m] 1.5 · 10−4

µw [ ] 0.15
ww [J/m2] 0.0
g [m/s2] 9.81
µa [Pa s] 2 · 10−5

∆t [s] 2 · 10−6

Table C.6: Parameters used for the cavity filling simulations in Chapter 6.
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Parameter Numerical value Corresponds to
rc 1.0 1.1 nm
m 1.0 3.3 · 10−25 kg
(kBT )′ 1.0 4.1 · 10−21 J (= kBT )
∆t 0.01 τ 60 fs
ρ 4.15
K 0.5
σR 3.0
κ 1.0 · 103

Table C.7: Parameters used for the wire sawing simulations in Appendix A.
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[63] G. L. Dirichlet. Über die Reduction der positiven quadratischen Formen mit
drei unbestimmten ganzen Zahlen. J. reine angew. Math., 40:209–227, 1850.
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mich für die bereichernde Zusammenarbeit in verschiedenen Projekten bedanken.
Mein Dank gilt allen Mitarbeitern am Fraunhofer-Institut für Werkstoffmechanik
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