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Chapter 1Introdu
tion
1.1 MotivationWhen steam ships be
ame available in the 19th 
entury, engineers observed a strangedamage on the blades of ship propellers 
aused by an unknown for
e. In 1917 LordRayleigh (Lord John William Strutt) explains in his arti
le On the pressure developedin a liquid during the 
ollapse of a spheri
al 
avity [93℄ that small vapor bubbles that
ondense at the surfa
e of the propeller blades are responsible for this e�e
t. He givesan equation for the 
ollapse of a bubble, the so 
alled Rayleigh-Plesset equation, seeSe
tion 4.4.1 and [16℄. Figure 1.3 shows this kind of 
avitation damage on the surfa
eof a modern ship propeller.Small vapor bubbles in a liquid arise when the pressure of the surrounding liquid dropsbelow a 
ertain value, for example 
aused by operating ship propellers, fast �ows orstrong sound �elds. This e�e
t is 
alled 
avitation. From the physi
al point of view the�uid is de
omposed into liquid and vapor phases and both phases 
an 
ondensate orevaporate respe
tively. Thus, we have a dynami
al phase boundary and in general masstransfer over this interfa
e. Cavitation bubbles 
an behave quite di�erently, e.g. they
an disappear immediately or grow until they break up into an ensemble of smaller bub-bles. Depending on the environment these kinds of bubbles 
an also begin to os
illate.For instan
e in weak sound �elds bubbles may os
illate with the frequen
y of the un-derlying sound �eld. In strong sound �elds the amplitude of the os
illations 
an be
omelarge enough su
h that the bubble 
ollapses to a tiny volume in a periodi
 
y
le. Ea
htime a bubble 
ollapses due to the 
ompression very high temperatures and pressures
an be observed in the interior of the bubble. During the 
ollapse a sho
k wave andalso a light �ash 
an be emitted. The latter phenomenon is 
alled sonolumines
en
eand was �rst dis
overed by H. Frenzel and H. S
hultes [45℄ in 1934.The upper sequen
e of pi
tures in Figure 1.1 shows a 
ollapsing bubble in a physi
alexperiment with a strong sound �eld. The maximal radius of the 
avitation bubble (1stpi
ture) is 55 mi
rometers. The lower part of the �gure shows the sent out sho
k wavewhi
h propagates about 800 mi
rometers in 0.38 mi
rose
onds.The pro
ess of the bubble 
ollapse and the emission of sho
k waves and light �ashes9
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Figure 1.1: Collapsing bubble (upper sequen
e of pi
tures) and sent out sho
k wave(lower sequen
e). The pi
tures are taken from [48℄.are far from being 
ompletely understood. Resear
h and investigation of single bubblesand bubble ensembles are of high interest be
ause of the following reasons:
• Industrial Interest. Turbines, pumps, ships propellers and nozzles get damagedby the resulting sho
k waves and su�er a loss of e�
ien
y when the e�e
t of
avitation o

urs.
• Medi
al Interest. The destru
tive behavior of 
avitation 
an also be of a bene�-
ial use. For example kidney stones 
an be destroyed by appli
ation of fo
ussedultrasound whi
h 
auses 
avitation, see [61℄.
• Chemi
al Interest. The 
hemi
al e�e
ts of ultrasound are a result of 
avitationand are investigated in the �eld of sono
hemistry.Most of the above information, in
luding the pi
tures of the 
ollapsing bubble, are takenfrom R. Geislers homepage [48℄, see also [47℄.At the time of this writing an intensive work on modelling (on the mi
ro and ma
ros
ale), numeri
al simulation and validation of the above mentioned pro
esses is be-ing 
arried out within the proje
ts of the DFG-CNRS resear
h group Mi
ro-Ma
roModelling and Simulation of Liquid-Vapor Flows. This work is also supported by thisresear
h group.The presen
e of sho
k waves in the physi
al experiments indi
ate that 
ompressibil-ity of the �uid may have an important in�uen
e on the 
avitation pro
ess. Thus, theunderlying mathemati
al model should take the e�e
t of 
ompressibility into a

ount.The main di�eren
e between the existing mi
ros
opi
 models for phase transition phe-nomena 
onsists in the representation of the interfa
e between the liquid and vaporphases. The �rst group of models use a sharp resolution of the interfa
e. This meansthe interfa
e has no spatial dilatation and the thermodynami
 quantities are in generaldis
ontinuous over the interfa
e. This is the 
lass of sharp interfa
e models. On theother hand we have the 
lass of di�use interfa
e models. Here the interfa
e has a smallpositive size and the thermodynami
 quantities vary rapidly but smoothly within thisinterfa
ial region between vapor and liquid states.



1.1. MOTIVATION 11The model that we 
onsider belongs to the 
lass of di�use interfa
e models and is anextension of the 
ompressible Navier-Stokes equations that goes ba
k to Korteweg [72℄(1901). Here, for simpli
ity, we state this Navier-Stokes-Korteweg model (abbreviatedas NSK model) only in the isothermal 
ase
ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ ·
(

ρuuT
)

+ ∇p(ρ) = ∇ · (τ + K) ,
(1.1)with suitable initial and boundary 
onditions. In the equation above ρ denotes thedensity and u the velo
ity of the �uid. For the pressure p an appropriate equation ofstate must be 
hosen that has the 
apability of des
ribing the pressure in the vapor aswell as in the liquid phase. The simplest equation of state that 
an a

omplish this isthe van der Waals equation of state. Note that there is no additional order parameterin this model that distinguishes between the phases. In this model the density itself isthe order parameter. Low density states 
hara
terize the vapor phase and high values ofthe density the liquid phase with an unphysi
al set of density states in between. In theequation above τ denotes the usual vis
ous part of the stress tensor and the di�eren
eto the 
lassi
al Navier-Stokes equations is the 
ontribution of the Korteweg part to thestress tensor whi
h is given by

K = λ

[(

ρ∆ρ+
1

2
|∇ρ|2

)

I −∇ρ∇ρT

]

.This 
ontribution is responsible for the �nite, nonzero size of the interfa
e and a
ts asa penalty term for phase transitions. Thus, the interfa
e is minimized in some sensewhen the �ow approa
hes an equilibrium state with vanishing velo
ity. The idea ofusing density gradients to penalize phase transition goes ba
k to van der Waals [115℄(1894).The di�use Navier-Stokes-Korteweg model has several advantages over existing sharpinterfa
e models. For instan
e, sharp interfa
e models need an additional jump 
onditionbe
ause of the dis
ontinuity over the interfa
e (kineti
 relation), see for example [85℄.This kind of jump 
ondition is not ne
essary for di�use interfa
e models be
ause thereis no jump a
ross the interfa
e. The NSK model impli
itly in
ludes the physi
al e�e
tof surfa
e tension, sharp interfa
e models need an extra 
ontribution to the stress tensorto in
lude this e�e
t. Topologi
al 
hanges in the solution are possible without spe
ialtreatment and it is not ne
essary to tra
k the interfa
e by a Level Set or Volume of Fluidmethod as for sharp interfa
e methods, see [29℄. But there are still some disadvantages.Due to the resolution of a small di�use interfa
e and the presen
e of the higher orderderivatives the time step in fully dis
rete numeri
al s
hemes must be 
hosen extremelysmall to guarantee the stability of the method. Moreover, most standard s
hemes 
annotbe applied be
ause of the presen
e of the unphysi
al (ellipti
) region in the state spa
e.Figure 1.2 shows a sket
h of the basi
 physi
al experiment for the numeri
al simulations
onsidered in this work. It shows a 
ontainer �lled with liquid and a few vapor bubblesin the surrounding liquid. At the (solid) 
ontainer wall a �xed 
onstant temperature isimposed and depending on the experiment the 
ontainer wall may or may not move. In
ases where the 
ontainer wall moves, the boundary 
ondition u = 0 has to be repla
edby u = uw, where uw denotes the pres
ribed velo
ity of the moving wall. We are



12 CHAPTER 1. INTRODUCTION
solid wall

solid wall

u = 0, θ = const

vapour bubble(s)

liquid

liquid

liquidFigure 1.2: Sket
h of the underlying physi
al experiment.interested in the dynami
s and time evolution of the 
on�guration starting with thisdata.The main goal of this work is the development and implementation of a software pa
k-age for the dis
retization in multiple spa
e dimensions of general evolution equationsin
luding 
onservative terms, non
onservative terms, sour
es and higher order deriva-tives. The resulting method should be based on modern numeri
al te
hniques su
has adaptively re�ned meshes, load balan
ing, parallelization, higher order spa
e andtime dis
retization. The Navier-Stokes-Korteweg model should be dis
retized using thispa
kage. Lo
al adaptivity and MPI based parallelization are absolutely ne
essary forthe resolution of the interfa
e and the pro
essing of the high numeri
al 
ost even intwo spa
e dimensions. The resulting C++ software pa
kage should have an easy tounderstand modular design su
h that it 
an easily be applied to similar equations. Abasi
 des
ription of the pa
kage 
an be found in the appendix.

Figure 1.3: Blades of a ship propeller damaged by 
avitation bubbles. This pi
ture ispublished under the ShareAlike Li
ense v. 2.5.



1.2. RESULTS AND NEW CONTRIBUTIONS 131.2 Results and new ContributionsThis se
tion summarizes the main results and (at the time of this writing) new 
ontri-butions of this thesis.The main fo
us of this work is the reliable dis
retization of the isothermal version ofthe Navier-Stokes-Korteweg system and the 
onstru
tion of (quasi-)exa
t solutions thatserve as ben
hmarks. A dis
retization of the full temperature dependent model hasalso been developed but not tested for reliability as mu
h as it has been done for theisothermal version.
• The existen
e of traveling wave solution is only proven for a modi�ed system. The�rst step of this proof is adapted to the original system (1.1) in Se
tion 3.2.2. These
ond step 
an possibly also be adapted to the original system but it is te
hni
allyand lengthy and does not �t properly in this work.
• Computation of stati
 equilibrium 
on�gurations: For rotational symmetri
 solu-tions it is 
lear that the NSK system redu
es to an ordinary di�erential equation.The 
ru
ial part is the appropriate 
hoi
e of boundary 
ondition in order to 
om-pute this kind of solutions su

essfully. This is done in Se
tion 4.1. Using thesekinds of solutions, the physi
al parameters su
h as surfa
e tension 
an be identi-�ed. This veri�es the formula for surfa
e tension, given in [75℄, numeri
ally.
• Computation of traveling wave solutions: The method is based on the approa
hgiven in [43℄ but not straightforward to generalize to 
ompute traveling wavesolutions of the NSK equations. We give this generalization of the method as wellas numeri
al results in Se
tion 4.2.
• In Se
tion 5.2 we 
onstru
t a new well balan
ed �rst order s
heme for the dis-
retization of the isothermal version of the Navier-Stokes-Korteweg system in mul-tiple spa
e dimensions. Numeri
al results indi
ate that this is a reliable dis
retiza-tion of the system.
• Also in Se
tion 5.3 we demonstrate that the relaxation s
heme given in [29℄, [30℄does not produ
e the 
orre
t results (ex
ept for stati
 equilibrium 
on�gurations).
• In Se
tion 6.2.3 we give a new higher order dis
retization for non
onservativeequations based on the Dis
ontinuous Galerkin approa
h and the de�nition ofnon
onservative produ
ts given in [36℄. This kind of non
onservative dis
retiza-tion is not limited to the NSK system. It is very well suited for the dis
retizationof general non
onservative equations, for example equations arising from a ho-mogenization pro
ess are usually non
onservative.
• We prove a 
ell entropy inequality and a resulting L2 stability estimate for a semi-dis
rete Lo
al Dis
ontinuous Galerkin dis
retization of a model problem, similarto the result given in [130℄.
• We give the 
omplete higher order well balan
ed dis
retization for the NSK systembased on the Dis
ontinuous Galerkin approa
h for 
onservative, non
onservativeand higher order terms in Se
tion 6.9. The numeri
al results are summarized inthe next se
tion.
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• The main result of this work is the developed C++ software pa
kage for the dis-
retization of general time dependent (
onve
tion dominated) partial di�erentialequations. The pa
kage provides� lo
al adaptive (stable) grid re�nement of one, two and three dimensionalsimpli
ial meshes.� load balan
ing (ParMETIS based) in a parallel MPI based environment.� higher order Lo
al Dis
ontinuous Galerkin dis
retization in
luding non
on-servative dis
retization.� higher order time dis
retization based on expli
it, impli
it and semi-impli
itRunge-Kutta methods as well as expli
it and impli
it Extrapolation methods.The dis
retization of the Navier-Stokes-Korteweg system is done by appli
ationof this pa
kage.1.3 Outline of this ThesisIn Chapter 2 we provide the thermodynami
 ba
kground and dis
uss the Navier-Stokes-Korteweg model together with appropriate boundary 
onditions in detail for the isother-mal as well as for the temperature dependent 
ase. We provide the dimensionless formof the 
omplete model as well as the quantitative relations to the 
orresponding phys-i
al quantities. The physi
al e�e
t of surfa
e tension that is impli
itly in
luded in themodel, in 
ontrast to sharp interfa
e models where surfa
e tension is usually in
ludedby means of an additional boundary 
ondition at the interfa
e, is also dis
ussed in this
hapter.In Chapter 3 we summarize some of the known theoreti
al results 
on
erning the Navier-Stokes-Korteweg equations. These in
lude the results about spe
ial kinds of solutions,su
h as stati
 equilibrium and traveling wave solutions, as well as the existen
e of gen-eral lo
al or global in time solutions of the 
orresponding Cau
hy-Problem.The system has a very 
ompli
ated stru
ture su
h that the 
onstru
tion of analyti
alsolutions seems to be out of s
ope. However, for the validation of numeri
al s
hemes itis important to have exa
t solutions available. Some of the spe
ial solutions dis
ussedin Chapter 3 satisfy ordinary di�erential equations. These kinds of solutions 
an be
omputed via reliable numeri
al methods very a

urately. This is the main purpose ofChapter 4.Chapter 5 is dedi
ated to the 
onstru
tion of basi
 �rst order s
hemes. We presentthree di�erent s
hemes:
• a s
heme in 
onservative form that produ
es the 
orre
t solutions in the tested
ases,



1.3. OUTLINE OF THIS THESIS 15
• a well balan
ed s
heme in non-
onservative form that does a mu
h better job thanthe �rst s
heme,
• and a relaxation s
heme that turned out to give the 
orre
t solution only in spe
ial
ases. Therefore this s
heme is of very limited use.The se
ond s
heme, the non-
onservative well balan
ed s
heme in is then generalizedto higher order s
hemes using the Lo
al Dis
ontinuous Galerkin approa
h in Chapter6. We present the method in a general framework of time dependent partial di�eren-tial equations in
luding 
onservative terms, higher order derivatives, sour
e terms andnon
onservative produ
ts. We dis
uss the Lo
al Dis
ontinuous Galerkin dis
retizationof simple examples su
h as the one dimensional s
alar 
onve
tion-di�usion equationand a s
alar model equation for the Navier-Stokes-Korteweg system. Finally we givethe 
omplete dis
retization for the isothermal NSK system in one, two and three spa
edimensions and the extension to the temperature dependent model in two spa
e dimen-sions (the extension to 3d is straightforward).The higher order time dis
retization via expli
it, impli
it and semi-impli
it Runge-Kuttamethods is dis
ussed in Chapter 7.In order to 
onstru
t e�
ient numeri
al s
hemes modern numeri
al te
hniques su
h aslo
al mesh adaption, parallelization and load balan
ing are extremely important. Thesete
hniques are dis
ussed in Chapter 8. Without these te
hniques it is not possible toresolve di�use interfa
es 
ompletely and solve the equation in appropriate time due tothe high 
omputational 
ost.In Chapter 9 we present the numeri
al results using the higher order well balan
eds
hemes. Here we summarize the results as follows:
• The approximate solutions 
onverge to the exa
t solutions in the test 
ases wherea (quasi-)exa
t solution is known.
• The expe
ted order of the numeri
al s
hemes is rea
hed in pra
ti
al appli
ations.This is observed using the test 
ases 
onstru
ted in Chapter 4. Improving theorder of the s
hemes really leads to more e�
ient s
hemes.
• Lo
al mesh adaption is ne
essary for the resolution of the di�use interfa
es andleads to more e�
ient s
hemes. Simple heuristi
 indi
ators (based on densitygradients) are su�
ient to tra
k the interfa
es.
• Impli
it time stepping avoids a 
ompli
ated time step restri
tion 
ontrol for theNSK system and leads to more e�
ient s
hemes.
• Parallelization of the 
ode is ne
essary be
ause of the high 
omputational 
ostand high memory 
onsumption, even in two spa
e dimensions. It leads to moree�
ien
y in the sense that the 
omputation runs faster when more ma
hines areavailable.



16 CHAPTER 1. INTRODUCTION
• Solutions of the Navier-Stokes-Korteweg model seem to have quantitatively the
orre
t physi
al behavior. However, physi
al experiments on the s
ale of the nu-meri
al experiments are not known and therefore existing physi
al data is notdire
tly 
omparable to the data produ
ed by the numeri
al simulations.A des
ription of the software pa
kage (in
luding example implementations), physi
aldata of some �uids, notational 
onventions and some de�nitions that did not �t in theabove mentioned 
hapters 
an be found in the appendix.



Chapter 2
Derivation of the Model
The aim of this 
hapter is to derive a system of partial di�erential equations withappropriate equations of state for the simulation of a liquid-vapor �ow in
luding thee�e
t of phase transition. However, it is not really a derivation of a mathemati
almodel, it is a derivation of su�
ient 
onditions for a model to be thermodynami
ally
onsistent under the assumption that the Helmholtz free energy does not only dependon the state of the �uid (as in the 
lassi
al 
ase) but also on its environment, modeledby the gradient of the density.In order to 
lose the system we 
hoose a van der Waals equation of state be
ause itis one of the simplest equations of state that is 
apable to des
ribe liquid and vaporphases and it is in quite good agreement with many �uids when the temperature of the�uid is 
lose to its 
riti
al temperature.The resulting governing equations, the Navier-Stokes-Korteweg system, belongs to the
lass of di�use interfa
e models and 
an be seen as a Cahn-Hilliard type model for theequations of gas dynami
s. The model 
ontains some non
lassi
al 
ontributions of termsthat guarantee that smooth solutions satisfy the se
ond law of thermodynami
s, seeTheorem 2.2.2. There is no additional order parameter in the Navier-Stokes-Kortewegequations that distinguishes between the liquid and vapor phases as in other di�useinterfa
e models, see for example [15℄. Liquid and vapor phases are determined bythe value of the density only. An overview of the theory of di�use interfa
es and theNavier-Stokes-Korteweg system 
an be found in [1℄, see also [41℄.For the numeri
al treatment of the system of partial di�erential equations it is useful tohave the thermodynami
 and kinemati
 quantities in dimensionless form available. Weprovide dimensionless quantities in terms of 
riti
al values sin
e the 
hosen equation ofstate is a good approximation to realisti
 values near the 
riti
al point of the �uid. Therelation of all dimensionless values given throughout this 
hapter to the 
orrespondingphysi
al quantities is summarized in Se
tion B.1. In Se
tion B.2 the ne
essary physi
alvalues are provided for three di�erent �uids. These measured values are taken from theNIST database [125℄. 17



18 CHAPTER 2. DERIVATION OF THE MODEL2.1 Thermodynami
 RelationsThermodynami
s is a funny subje
t. The �rst time you go through it, you don't under-stand it at all. The se
ond time you go through it, you think you understand it, ex
eptfor one or two small points. The third time you go through it, you know you don'tunderstand it, but by that time you are so used to it, it doesn't bother you any more.Arnold SommerfeldIn the �rst se
tion of this 
hapter we provide the ne
essary thermodynami
 ba
kground.Most of the information given below 
an be found in standard textbooks su
h as [87℄and [78℄. Based on a Helmholtz free energy fun
tion of a �uid we 
an de�ne all thermo-dynami
 quantities we need in this work in terms of this free energy and its derivatives.We provide the equation of state we use for numeri
al simulations. This is the so 
alledvan der Waals equation of state in the most general form. With the van der Waalsequation of state the 
oexisten
e of liquid and vapor phases in the �uid are possible.This equation of state is in good agreement with many �uids when the temperature ofthe �uid is 
lose to the 
riti
al temperature, see Se
tion B.2. Therefore it is appropriateto express this equation of state in dimensionless form in terms of the 
riti
al values:
riti
al temperature, 
riti
al density and 
riti
al pressure. Later in this se
tion we pro-vide a dimensionless van der Waals equation of state with all unne
essary parameterss
aled out. This results in a general equation with only one parameter (heat 
apa
ityat 
onstant volume) left that has to be determined for di�erent �uids. In Se
tion B.2we provide the missing data for di�erent �uids.Given a Helmholtz free energy fun
tion f = f(θ, ρ) that may depend on the temper-ature θ and the density ρ of the �uid, all other important (with respe
t to this work)thermodynami
 quantities, namely the internal energy e, the entropy s, the pressure pand the 
hemi
al potential µ, 
an be expressed in terms of θ, ρ, f and derivatives of f .In general all thermodynami
 quantities are fun
tions of θ and ρ.De�nition 2.1.1 (Classi
al Thermodynami
 Relations)Given a Helmholtz free energy f(θ, ρ) the thermodynami
 quantities are de�ned by therelations
e(θ, ρ) = f(θ, ρ)− θfθ(θ, ρ), internal energy, (2.1)
s(θ, ρ) = −fθ(θ, ρ), spe
i�
 entropy, (2.2)
p(θ, ρ) = ρ2fρ(θ, ρ), pressure, (2.3)
µ(θ, ρ) = (ρf(θ, ρ))ρ, 
hemi
al potential. (2.4)Note: In a single 
omponent �uid (�uids of the type 
onsidered in this work) the
hemi
al potential is the same as the so 
alled Gibbs free energy. They are not thesame in multi 
omponent �uids (not 
onsidered here).



2.1. THERMODYNAMIC RELATIONS 19The simplest (and one of the most important) example of a 
ompressible �uid is thatof a perfe
t gas. The free energy of a perfe
t gas and the resulting thermodynami
quantities are given below.Example 2.1.2 (Perfe
t Gas)The Helmholtz free energy for a perfe
t gas and the resulting thermodynami
 quantities(a

ording to (2.1) - (2.3)) are given by
f(θ, ρ) = Rθ log

(

ρ

ρ0

)

− cθ log

(

θ

θ0

)

+ cθ + cst.

e(θ, ρ) = cθ + cst,

s(θ, ρ) = −R log

(

ρ

ρ0

)

+ c log

(

θ

θ0

)

,

p(θ, ρ) = Rρθ.

ρ0, θ0 > 0 are referen
e values for the density and temperature respe
tively and R, c, cstare real 
onstants with R, c > 0.Another important example of a 
ompressible �uid is the van der Waals �uid. Theadvantage of a van der Waals equation of state is its 
apability to des
ribe liquid-vaporphase transitions below a 
riti
al temperature. The free energy of a van der Waals �uidand the remaining quantities are given in Example 2.1.3.Example 2.1.3 (van der Waals Fluid)The Helmholtz free energy for a van der Waals �uid and the resulting thermodynami
quantities (a

ording to (2.1) - (2.4)) are given by
f(θ, ρ) = −aρ+ kθ log

(

ρ

b− ρ

)

− cθ log

(

θ

θ0

)

− dθ + cst. (2.5)
e(θ, ρ) = −aρ+ cθ + cst,

s(θ, ρ) = −k log

(

ρ

b− ρ

)

+ c log

(

θ

θ0

)

+ c+ d,

p(θ, ρ) = kb
ρθ

b− ρ
− aρ2,

µ(θ, ρ) = kθ

(

b

b− ρ
+ log

(

ρ

b− ρ

))

− 2aρ.Here a, b, c, d, k, cst are real 
onstants with a, b, c, k > 0 and θ0 > 0 is a referen
e tem-perature. The above quantities are de�ned for states (θ, ρ) ∈ (0,∞)× (0, b) but the statespa
e is partially meaningless from the physi
al point of view. For example the pressure
an be
ome negative in parts of the state spa
e.In the following we will always 
onsider a van der Waals �uid. The free energy of a vander Waals equation of state in this general form 
an be found in [7℄, see also [78℄. The
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onstant c in the equation of state is known as the heat 
apa
ity at 
onstant volume.Some of the 
onstants 
an be omitted for our purposes be
ause they will drop out of theequations we are interested in, but they might be important when e�e
ts like 
hemi
alrea
tions are taken into a

ount.The 
riti
al temperature (the smallest temperature for that the �uid 
an 
onsist of onlyone phase) of a van der Waals �uid is de�ned (using the 
oe�
ients from Example 2.1.3)by
θcrit =

8ab

27k
.Figure 2.1 shows the pressure p and the 
hemi
al potential µ as a fun
tion of the density

ρ for a 
onstant �xed temperature θ below, at, and above the 
riti
al temperature. The
riti
al temperature is the smallest temperature su
h that the graphs of p and µ aremonotoni
ally in
reasing.

0 0.5 1 1.5 2
0

1

2

ρ

p

θ < θcrit

θ = θcrit

θ > θcrit

0 0.5 1 1.5 2
ρ

µ

θ < θcrit

θ = θcrit

θ > θcrit

Figure 2.1: Graphs of pressure (left) and 
hemi
al potential (right) for temperaturesbelow, at, above the 
riti
al temperature.Below the 
riti
al temperature the graph of the pressure and the graph of the 
hem-i
al potential 
onsist of two monotone in
reasing bran
hes separated by a monotonede
reasing bran
h, the so 
alled ellipti
 region. This behavior makes it possible to de-s
ribe vapor and liquid phases in a van der Waals �uid. The �rst monotone in
reasingbran
h of p and µ de�nes the vapor phase, the se
ond one the liquid phase. These twobran
hes are 
onne
ted smoothly by the ellipti
 region, whi
h is a set of unphysi
alstates. Above the 
riti
al temperature only one phase exists, in this 
ase the �uid is
alled super
riti
al. A graph of the pressure with a 
omparison to measured real worlddata for di�erent �uids 
an be found in se
tion B.2, see Figure B.5.Asso
iated with the 
riti
al temperature the 
riti
al density ρcrit and 
riti
al pressure
pcrit are de�ned by the in�e
tion point of the p-graph at the 
riti
al temperature. Using
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oe�
ients from above these quantities are given by
ρcrit =

b

3
,

pcrit =
1

27
ab2.Using the 
riti
al values θcrit, ρcrit and pcrit we 
an introdu
e a dimensionless equationof state for the pressure

p̃(θ̃, ρ̃) =
1

pcrit
p(θcrit θ̃, ρcrit ρ̃) =

8θ̃ρ̃

3 − ρ̃
− 3ρ̃2 (2.6)that does not depend on 
oe�
ients k, a and b anymore. Additionally we introdu
e adimensionless equation of state for the internal energy. We 
hoose a referen
e internalenergy

eref =
pcrit

ρcrit
(2.7)that is in general not the internal energy at the 
riti
al values θcrit and ρcrit. Thedimensionless internal energy is de�ned by

ẽ(θ̃, ρ̃) =
1

eref
e(θcrit θ̃, ρcrit ρ̃)

=
1

eref

(

cθcrit θ̃ − aρcrit ρ̃
)

=
ρcrit

pcrit

(

cθcrit θ̃ − 3
pcrit

ρcrit
ρ̃

)

= c̃θ̃ − 3ρ̃ (2.8)with a dimensionless parameter
c̃ =

θcrit ρcrit

pcrit
c. (2.9)Further we de�ne the dimensionless free energy f̃ , entropy s̃ and 
hemi
al potential µ̃by

f̃(θ̃, ρ̃) =
1

eref
f(ρcrit ρ̃, θcrit θ̃),

s̃(θ̃, ρ̃) =
θcrit

eref
s(ρcrit ρ̃, θcrit θ̃),

µ̃(θ̃, ρ̃) =
1

eref
µ(ρcrit ρ̃, θcrit θ̃).Some of the 
onstants in the free energy (2.5) of a van der Waals �uid are not importantas long as we negle
t 
hemi
al rea
tions, i.e., these 
onstants will drop out of all equa-tions we 
onsider. Thus, we 
an 
hoose θ0 = θcrit, d = −c, cst = 0. We summarize theabove results and de�ne the equations of state for a dimensionless van der Waals �uid.For simpli
ity we omit the tilde symbols that 
hara
terized the dimensionless quantities.



22 CHAPTER 2. DERIVATION OF THE MODELExample 2.1.4 (Dimensionless van der Waals Fluid)
f(θ, ρ) = −3ρ+

8

3
θ log

(

ρ

3 − ρ

)

+ cθ(1 − log(θ)), (2.10)
e(θ, ρ) = −3ρ+ cθ, (2.11)
s(θ, ρ) = −8

3
log

(

ρ

3 − ρ

)

+ c log(θ), (2.12)
p(θ, ρ) =

8θρ

3 − ρ
− 3ρ2, (2.13)

µ(θ, ρ) =
8

3
θ

(

3

3 − ρ
+ log

ρ

3 − ρ

)

− 6ρ, (2.14)where the dimensionless heat 
apa
ity at 
onstant volume c is related to the physi
alquantity by equation (2.9).Note: The dimensionless quantities 
an be obtained from the dimensionless free energyby the relations (2.1) - (2.4).De�nition 2.1.5 (Liquid and Vapor Phases in a van der Waals Fluid)For a �xed temperature θ < θcrit let ρv ∈ (0, b) denote the state where p and µ havetheir lo
al maximum, and ρ
l
∈ (0, b) the state of their lo
al minimum. Then the phasesof a van der Waals �uid are de�ned by

(0, ρv) : vapor phase,
(ρv, ρl

) : ellipti
 or spinodal region,
(ρl, b) : liquid phase.Here b is equal to 3 in the dimensionless 
ase.De�nition 2.1.6 (Maxwell States in a van der Waals Fluid)Let θ < θcrit be a �xed temperature. Then the Maxwell states ρM

v ∈ (0, ρv) and ρM
l ∈

(ρ
l
, b) are uniquely de�ned by the relations

p(θ, ρM
v ) = p(θ, ρM

l ), (2.15)
µ(θ, ρM

v ) = µ(θ, ρM
l ). (2.16)For equivalent de�nitions of the Maxwell states see se
tion A.3.Figure 2.2 shows the phases and Maxwell states of a van der Waals �uid below the
riti
al temperature. The Maxwell values 
an be seen as equilibrium values at 
onstanttemperature, see Se
tion 2.8. The set {ρM

v (θ) | θ ∈ (0, θcrit)} ∪ {ρM
l (θ) | θ ∈ (0, θcrit)}is also 
alled saturation 
urve, see the phase diagram 2.3.
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vFigure 2.2: Graphs of pressure, 
hemi
al potential for a temperature below the 
riti
altemperature, Maxwell states and boundary of the ellipti
 region.The Maxwell states ρM
v (θ) and ρM

l (θ) of a dimensionless van der Waals �uid 
an beapproximated by the formulas
ρM

v (θ) ≈ 1.0 −
√
θ (2.0 − 1.5(1.0 − θ)),

ρM
l (θ) ≈ 1.0 +

√
θ (2.0 + 0.5(1.0 − θ)).Note: These formulas are obtained by 
urve �tting and 
an be used as a starting guessfor a Newton iteration to 
ompute the exa
t Maxwell states. The above formulas givequite a

urate results in the dimensionless temperature range θ ∈ [0.6, 1.0].Antanovskii [2℄ gives a generalization of the free energy and the thermodynami
 quan-tities for the 
ase when the free energy is not only a fun
tion of the states θ and ρ butalso depends on the norm of the density gradient α = 1

2 |∇ρ|2. This dependen
e on thedensity gradient models a dependen
e on the environment of the material and allowsa liquid-vapor interfa
e to be of �nite, nonzero thi
kness. For his de�nition of the freeenergy Antanovskii uses the fa
t that a �uid at stati
 equilibrium maximizes its entropywhi
h is assumed to depend on the density gradient. The idea of using gradients of thedensity to model di�use interfa
es goes ba
k to van der Waals [115℄ who gave a theorybased on thermodynami
al prin
iples.De�nition 2.1.7 (Extended Thermodynami
 Relations)Let an extended free energy f = f(θ, ρ, α) be given. Then the extended internal energyand entropy are de�ned by the relations
e(θ, ρ, α) = f(θ, ρ, α) − θfθ(θ, ρ, α), (2.17)
s(θ, ρ, α) = −fθ(θ, ρ, α). (2.18)
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Figure 2.3: Phase diagram of the dimensionless van der Waals �uid.For a fun
tion ϕ = ϕ(θ, ρ, α) where α stands for 1
2 |∇ρ|2 we use in the following thenotation

[ϕ]ρ = ϕρ −∇ · (ϕα∇ρ) (2.19)for the variational derivative as it is used in standard textbooks su
h as [32℄.Antanovskii [2℄ gives also a de�nition of an extended pressure and an extended 
hemi
alpotential. We do not use these quantities expli
itly but for the sake of 
ompleteness welist these de�nitions at this point:
p = ρ2[f ]ρ, µ = [ρf ]ρ,where we have used the de�nition of the variational derivative given in (2.19).2.2 Equations of MotionThis se
tion is dedi
ated to the des
ription of the motion of a �uid in some domain

Ω ∈ R
3 as a 
ontinuous medium. The motion of the �uid is governed by the fundamentalphysi
al laws of 
onservation of mass, 
onservation of momentum (Newtons se
ond law),
onservation of energy (�rst law of thermodynami
s) and entropy produ
tion (se
ondlaw of thermodynami
s). Smooth solutions of the resulting governing equations willsatisfy all of the above mentioned physi
al prin
iples, see Theorem 2.2.2.



2.2. EQUATIONS OF MOTION 25Based on the Reynolds transport theorem, see [42℄, we des
ribe the evolution in timeof a �uid in a domain Ω ∈ R
3. In the following we assume that all appearing fun
tionsare su�
iently smooth.Let denote ω(t) ⊂ Ω an arbitrary 
ontrol volume that evolves in time. Then the density,momentum and total energy of the �uid have to satisfy to following balan
e equationsand additionally the entropy produ
tion equation:Conservation of mass
d

dt

∫

ω(t)
ρ dx = 0, (2.20)the momentum balan
e equation (Newtons se
ond law)

d

dt

∫

ω(t)
ρu dx =

∫

∂ω(t)
Pn dσ, (2.21)the energy balan
e equation (�rst law of thermodynami
s)

d

dt

∫

ω(t)
ρ

(

e+
1

2
|u|2

)

dx =

∫

∂ω(t)
Pu · n − qE · n dσ, (2.22)and additionally the entropy produ
tion equation (se
ond law of thermodynami
s)

d

dt

∫

ω(t)
ρs dx =

∫

ω(t)
sprod dx −

∫

∂ω(t)
qS · n dσ. (2.23)In the above relations ρ = ρ(x, t) > 0 denotes the density of the �uid, u = u(x, t) ∈ R

3the velo
ity, θ = θ(x, t) > 0 the temperature of the �uid. Further, e = e(θ, ρ, α) is thegeneralized spe
i�
 internal energy and s = s(θ, ρ, α) is the generalized spe
i�
 entropyof the �uid. Here and in the following α stands always for 1
2 |∇ρ|2. The generalizedinternal energy and entropy are related to the generalized free energy by the relations(2.17), (2.18). P ∈ R

3×3 denotes a general symmetri
 stress tensor, qE ∈ R
3 a generalheat �ux, qS ∈ R

3 a general entropy �ux and sprod > 0 a general entropy produ
tion.They will depend on the variables ρ, u, θ and on derivatives (possibly higher orderderivatives) of these variables.Note: The symmetry of the general stress tensor P implies the 
onservation of angularmomentum, see for example [42℄.For thermodynami
 
onsisten
y it is important (otherwise the behavior of the �uidwould be unphysi
al) that the entropy produ
tion sprod is nonnegative. Using the ther-modynami
 relations (2.17) and (2.18) we derive su�
ient 
onditions on the stress tensor
P and the heat �ux qE that ensure the entropy produ
tion to be nonnegative.



26 CHAPTER 2. DERIVATION OF THE MODELUsing Reynolds transport theorem, the Gauss theorem and the fa
t that ω(t) 
an be
hosen arbitrarily (for details see [42℄) we derive from the integral equations (2.20) -(2.23) the equations of motion in di�erential form
D

Dt
ρ = −ρ∇ · u, (2.24)

ρ
D

Dt
u = ∇ · P , (2.25)

ρ
D

Dt
e = −∇ · qE + P : ∇u, (2.26)

ρ
D

Dt
s = −∇ · qS + sprod. (2.27)where D

Dt = ∂t + u · ∇ denotes the material derivative.using the 
ontinuity equation (2.24) and the 
hain rule
D

Dt
e =

(

eθ
D

Dt
θ + eρ

D

Dt
ρ+ eα∇ρ · (−∇(ρ∇ · u) −∇uT∇ρ)

) (2.28)we derive the relation
P : ∇u −∇ · qE = ρ

D

Dt
e

= ρ

(

eθ
D

Dt
θ + eρ

D

Dt
ρ+ eα∇ρ · (−∇(ρ∇ · u) −∇uT∇ρ)

)

= ρeθ
D

Dt
θ −∇ · (ρ2∇ · ueα∇ρ)

−
(

ρ2eρI − ρ2∇ · (eα∇ρ)I − ρeα|∇ρ|2I + ρeα∇ρ∇ρT
)

: ∇u.In the above equations the 
olored terms from one equation to the next 
orrespondto ea
h other (by multiplying the 
olored terms with the remaining terms). Using thenotation (2.19), this gives
ρeθ

D

Dt
θ =

(

P + ρ2[e]ρI + ρeα(∇ρ∇ρT − |∇ρ|2I)
)

: ∇u

−∇ ·
(

qE − ρ2∇ · ueα∇ρ
)

.Now, using eθ = θsθ and f = e− θs, see (2.17) and (2.18), we get
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ρsθ

D

Dt
θ =

1

θ

(

P + ρ2[f ]ρ + ρfα

(

∇ρ∇ρT − |∇ρ|2I
))

: ∇u

+
1

θ

(

ρ2[θs]ρ + ρθsα

(

∇ρ∇ρT − |∇ρ|2I
))

: ∇u

−1

θ
∇ ·
(

qE − ρ2∇ · ufα∇ρ
)

+
1

θ
∇ ·
(

ρ2∇ · uθsα∇ρ
)

=
1

θ

(

P + ρ2[f ]ρ + ρfα

(

∇ρ∇ρT − |∇ρ|2I
))

: ∇u

−∇ ·
(

1

θ
(qE − ρ2∇ · ufα∇ρ)

)

− 1

θ2
(qE − ρ2∇ · ufα∇ρ) · ∇θ

+
1

θ

(

ρ2(θ[s]ρ − sα∇ρ · ∇θ) + ρθsα

(

∇ρ∇ρT − |∇ρ|2I
))

: ∇u

+
1

θ
∇ ·
(

ρ2∇ · uθsα∇ρ
)

.A further manipulation shows that
−ρsρ

D

Dt
ρ− ρsα∇ρ · (−∇(ρ∇ · u) −∇uT∇ρ)

=
1

θ

(

ρ2(θ[s]ρ − sα∇ρ · ∇θ) + ρθsα

(

∇ρ∇ρT − |∇ρ|2I
))

: ∇u

+
1

θ
∇ ·
(

ρ2∇ · uθsα∇ρ
)

.Using the 
hain rule (2.28) for s instead of e we �nally arrive at
ρ
D

Dt
s =

1

θ

(

P + ρ2[f ]ρ + ρfα

(

∇ρ∇ρT − |∇ρ|2I
))

: ∇u

−∇ ·
(

1

θ

(

qE − ρ2∇ · ufα∇ρ
)

)

− 1

θ2

(

qE − ρ2∇ · ufα∇ρ
)

· ∇θ.We must ensure that the entropy produ
tion is a nonnegative fun
tion. This gives riseto the de�nition of a material of Korteweg type.De�nition 2.2.1 (Korteweg type material)We 
all a material (a �uid) to be of Korteweg type if the stress tensor, the heat �ux and



28 CHAPTER 2. DERIVATION OF THE MODELthe entropy �ux are given by the relations
P = −ρ2[f ]ρI − ρfα

(

∇ρ∇ρT − |∇ρ|2I
)

+ τ , (2.29)
qE = ρ2∇ · ufα∇ρ− κ∇θ, (2.30)
qS = −κ

θ
∇θ, (2.31)

sprod =
1

θ
τ : ∇u +

1

θ2
κ|∇θ|2. (2.32)

τ = µ
(

∇u + ∇uT
)

+ ν∇ · uI denotes the usual Navier-Stokes Tensor, µ and ν with
µ > 0, 2µ + 3ν ≥ 0 the 
oe�
ients of vis
osity and κ > 0 the 
oe�
ient of heat
ondu
tivity. The 
oe�
ients µ, ν and κ may depend on temperature and density.Note that the 
oe�
ient ν might be negative but the 
ondition 2µ+3ν ≥ 0 ensures thatthe entropy produ
tion is nonnegative, see for example [42℄. A typi
al 
hoi
e for the
oe�
ients of vis
osity is µ > 0 and ν = −2

3µ whi
h is physi
ally 
orre
t for one-atomi
gases. The expressions for the stress tensor and the heat �ux 
ontain the 
lassi
al 
on-tributions of the Stokes and Fourier laws as well as non
lassi
al 
ontributions in termsof ∇ρ, whereas the entropy �ux and entropy produ
tion 
ontain only the 
lassi
al 
on-tributions.We summarize the statements above as a theorem.Theorem 2.2.2 Let a material of Korteweg type be given and let (ρ,u, θ) be a su�-
iently smooth solution of (2.24), (2.25), (2.26). Then the solution satis�es the entropyequation (2.27) with the entropy �ux given by (2.31) and a positive entropy produ
tiongiven by (2.32), i.e., the solution makes sense from the physi
al point of view.Note: The above given de�nition of a material of Korteweg type is not the only knownway to ensure the positivity of the entropy produ
tion. It is possible to add a non
las-si
al 
ontribution to the entropy �ux in favor of the 
ontribution to the heat �ux. Thisresults in the 
lassi
al Fourier law for the heat �ux, see the appendix in [75℄.2.3 The Navier-Stokes-Korteweg SystemFor the spe
ial 
hoi
e of the extended free energy
f(θ, ρ, α) = f vdW (θ, ρ) +

λ

ρ
α (2.33)where f vdW denotes the van der Waals free energy (2.5) and λ > 0 is a 
onstantequations (2.24) - (2.26) in 
onservative form read

ρt + ∇ · (ρu) = 0, (2.34)
(ρu)t + ∇ · (ρuuT ) + ∇p = ∇ · (τ + K), (2.35)

Et + ∇ · ((E + p)u) = ∇ · ((τ + K)u) −∇ · qE. (2.36)
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[(

ρ∆ρ+ 1
2 |∇ρ|2

)

I −∇ρ∇ρT
] denotes the Korteweg part of the stresstensor, p = p(θ, ρ) the pressure with respe
t to the van der Waals free energy, E =

ρ
(

e(θ, ρ) + 1
2 |u|2

)

+ λ
2 |∇ρ|2 the total energy of the �uid and qE the heat �ux from(2.30).The 
ontribution λ

ρα in (2.33) is 
hosen su
h that we arrive at the 
lassi
al Navier-Stokes-Korteweg system given in the literature (e.g. [1℄). Antanovskii uses the 
ontri-bution λθα instead, see [2℄. Hattori and Li state that the 
hoi
e λα might be morephysi
al but 
ompli
ated to handle from the mathemati
al point of view, see [57℄.For the Korteweg part of the stress tensor we have the useful identity
∇ · K = λρ∇∆ρ. (2.37)The �rst order part of system (2.34) - (2.36) is not hyperboli
 in the 
omplete state spa
ebe
ause of the shape of the pressure p below the 
riti
al temperature. This results inan unstable behavior of solutions in parts of the state spa
e on the one hand and 
ausesproblems for the numeri
al treatment of the system on the other hand, i.e., numeri
als
hemes that are based on Riemann-Solvers and Flux-Ve
tor-Splitting s
hemes 
annotbe applied to this system (at least not in the parts of the state spa
e where the soundspeed is imaginary).The Korteweg part of the stress tensor K was �rst given by Korteweg [72℄ in 1901.There, the density gradients modeled a nonlo
al intera
tion of mole
ules within theliquid vapor interfa
e. The system given by equations (2.34) - (2.36) 
an be found inthis form in [1℄. In Chapter 3 we give some referen
es to theoreti
al results asso
iatedwith the Navier-Stokes-Korteweg system.2.4 Dimensionless Form of the NSK-SystemWe provide a dimensionless s
aling of all thermodynami
 and kinemati
 quantities wehave seen up to now in this se
tion. The result is the dimensionless Navier-Stokes-Korteweg system that has exa
tly the same stru
ture and the same number of 
oe�-
ients as system (2.34) - (2.36). The referen
e values for the thermodynami
 quantitiesare the 
riti
al values of the �uid.Working with dimensionless values 
an be extremely useful for the numeri
al treatmentof the system sin
e density, velo
ity, temperature, pressure and other values are always
lose to the value 1. Using dimensionless values makes it is easy to de
ide when aninterfa
e is small or large or when a vis
osity is too small to be resolved numeri
ally.However, the use of dimensionless quantities does not improve the e�
ien
y of thenumeri
al method. It just gives a 
learer sight of the situation on the one hand and onthe other hand expressions like a total L2-error of a numeri
al solution may not makesense for physi
al values when a ve
tor valued solution has di�erent units for di�erent
omponents.All relations between dimensionless and physi
al quantities given throughout this 
hap-ter are summarized in Se
tion B.1. In the following, values with a tilde denote dimen-
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orresponding values without the tilde symbol denotethe asso
iated physi
al one.In order to derive a dimensionless system with exa
tly the same stru
ture we 
hoosenew s
aled variables (denoted by tilde symbols) as follows:
x = Lx̃, L > 0 referen
e length, (2.38)
t = T t̃, T > 0 referen
e time, (2.39)
ρ =

m

L3
ρ̃, m > 0 referen
e mass in a 
ube L3, (2.40)

u =
L

T
ũ,

L

T
referen
e velo
ity, (2.41)

θ = θcritθ̃, θcrit 
riti
al temperature, (2.42)
(µ, ν) =

m

LT
(µ̃, ν̃), vis
osity, (2.43)

λ =
L7

mT 2
λ̃, 
apillarity, (2.44)

κ =
mL

θcritT 3
κ̃, heat 
ondu
tion. (2.45)The only non-standard s
aling is the relation (2.44) for the 
apillarity 
oe�
ient λ.The s
aling between the physi
al and the dimensionless 
apillarity 
oe�
ient is 
hosensu
h that the �nal system has exa
tly the same stru
ture as the original system. Thereferen
e length L is usually related to the domain Ω, for example the side length of a
ube that 
ontains Ω. When we have 
hosen L we identify the referen
e mass m andreferen
e time T by the relations

ρcrit =
m

L3
, (2.46)

pcrit

ρcrit
=

L2

T 2
. (2.47)Further we 
hoose the referen
e internal energy to be of size

eref =
L2

T 2
. (2.48)Using the s
aling (2.38) - (2.45) the mass balan
e equation reads

ρcrit

T
ρ̃t̃ +

ρcritL

LT
∇̃ · (ρ̃ũ) = 0,where (·)t̃ denotes the derivative with respe
t to the dimensionless time variable t̃ and ∇̃the derivatives with respe
t to the dimensionless spa
e variable x̃. With these s
alingsand the dimensionless van der Waals equation of state (2.6) the momentum balan
e
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an be written as
ρcritL

T 2
(ρ̃ũ)t̃ +

ρcritL
2

LT 2
∇̃ · (ρ̃ũũT ) +

pcrit

L
∇̃p̃(θ̃, ρ̃)

=
mL

L3T 2
∇̃ ·
(

µ̃(∇̃ũ + ∇̃ũT ) + ν̃∇̃ · ũI
)

+
ρ2

critL
7

L3mT 2
∇̃ ·
[

λ̃

(

ρ̃∆̃ρ̃+
1

2
|∇̃ρ̃|2

)

I − λ̃∇̃ρ̃∇̃ρ̃T

]

.The total energy density 
an be expressed in terms of the dimensionless values in thefollowing way
E = ρcrit ρ̃

(

eref ẽ(θ̃, ρ̃) +
L2

T 2

1

2
|ũ|2

)

+
L7ρ2

crit

L2mT 2

λ̃

2
|∇̃ρ̃|2

=
ρcrit L

2

T 2

(

ρ̃ẽ(θ̃, ρ̃) +
1

2
ρ̃|ũ|2 +

λ̃

2
|∇̃ρ̃|2

)

=
ρcrit L

2

T 2
Ẽ .Here we have used the dimensionless equation of state for the internal energy (2.8) andthe relations (2.38) - (2.45). Thus, �nally the energy balan
e equation be
omes

ρcrit L
2

T 3
Ẽt̃ +

ρcrit L
3

LT 3
∇̃
(

(Ẽ + p̃(θ̃, ρ̃))ũ
)

=
mL2

L3T 3
∇̃ · (τ̃ ũ) +

ρ2
crit L

8

L3mT 3
∇̃ ·
(

K̃ũ
)

+
mLθcrit

L2θcrit T 3
∇̃ ·
(

κ̃∇̃θ̃
)

− ρ2
crit L

8

L3mT 3
∇̃ ·
(

λ̃ρ̃∇̃ · ũ∇̃ρ̃
)

.

τ̃ and K̃ denote the dimensionless Navier-Stokes and Korteweg part of the stress tensor.Multiplying the mass balan
e equation by T
ρcrit

, the momentum balan
e equation by
T 2

Lρcrit
, the energy balan
e equation by T 3

L2ρcrit
and using the relations (2.46), (2.47) givesthe dimensionless Navier-Stokes-Korteweg system

ρ̃t̃ + ∇̃ · (ρ̃ũ) = 0,

(ρ̃ũ)t̃ + ∇̃ · (ρ̃ũũT ) + ∇̃p̃(θ̃, ρ̃) = ∇̃ · (τ̃ + K̃),

Ẽt̃ + ∇̃ ·
(

(Ẽ + p̃(θ̃, ρ̃))ũ
)

= ∇̃ ·
(

(τ̃ + K̃)ũ
)

+∇̃ ·
(

κ̃∇̃θ̃ − λ̃ρ̃∇̃ · ũ∇̃ρ̃
)

.The dimensionless equations of state are given by (2.6), (2.8) and the dimensionlessquantities are related to the physi
al ones by the s
aling (2.38) - (2.45).
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luding GravityUp to now we have negle
ted external (volumetri
) for
es, su
h as gravity, and heatsour
es. Taking these e�e
ts into a

ount the Navier-Stokes-Korteweg system must bemodi�ed as
ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρuuT ) + ∇p = ∇ · (τ + K) + ρg,

Et + ∇ · ((E + p)u) = ∇ · ((τ + K)u) −∇ · qE + ρg · u +Q.where the volumetri
 for
e g ∈ Rn and the heat sour
e Q ∈ R may depend on spa
eand time variables in general. In the 
ase of gravity, g is simply a 
onstant ve
tor.Using the notation of the previous se
tion the physi
al and dimensionless quantities arerelated to ea
h other by the relations
g =

L

T 2
g̃, (2.49)

Q = ρcrit
L2

T 3
Q̃. (2.50)2.6 Boundary ConditionsTypi
al boundary 
onditions on ∂Ω for the Navier-Stokes equations are homogeneousDiri
hlet data for the velo
ity �eld (no-slip) and Diri
hlet data for the temperature.

u = 0, (2.51)
θ = θb, (2.52)where θb is a given fun
tion on ∂Ω. Be
ause of the presen
e of the higher order termsin the Navier-Stokes-Korteweg equations an additional boundary equation is required.The additional boundary 
onditions we use have the e�e
t that they 
ontrol the 
onta
tangle of a di�use interfa
e at the boundary. The simplest 
hoi
e is

∇ρ · n = 0, (2.53)whi
h is a spe
ial form of
− ∇ρ
|∇ρ| · n = cosϕ, (2.54)where ϕ is the 
onta
t angle between interfa
e and boundary, i.e., ϕ depends on thematerial of the �uid as well as on the material of the boundary.
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wall
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− ∇ρ

|∇ρ|

ϕ

ϕ

liquid

vapour

interface

Figure 2.4: Conta
t angle of a di�use interfa
e.2.7 The Isothermal CaseThe main fo
us of this work is the development and veri�
ation of reliable numeri-
al methods for the isothermal version of the Navier-Stokes-Korteweg system. In theisothermal 
ase, i.e., we negle
t the energy balan
e equation and assume that the tem-perature stays at a 
onstant state, the Navier-Stokes-Korteweg system redu
es to
ρt + ∇ · (ρu) = 0, (2.55)

(ρu)t + ∇ · (ρuuT ) + ∇p(ρ) = ∇ · (τ + K), (2.56)with the no-slip boundary 
ondition (2.51) and ( either (2.53) or (2.54) ).Here the free energy f vdW depends only on the density ρ and therefore the pressure isgiven by p(ρ) = ρ2f vdW
ρ (ρ). The temperature is only a parameter whi
h is kept at a
onstant state below the 
riti
al temperature su
h that phase transitions are allowed.In the 
ase of boundary 
ondition (2.53) we have additionally an energy de
ay equation.Lemma 2.7.1 Let (ρ, ρu) be a (su�
iently smooth) solution of the isothermal Navier-Stokes-Korteweg equations with boundary 
onditions (2.51) and (2.53). Then the energyde
ay equation
d

dt

∫

Ω

E(ρ, ρu, α) dx = −
∫

Ω

τ : ∇u dx ≤ 0 (2.57)is satis�ed, where E = ρ
(

f(ρ) + |u|2
2

)

+ λα denotes the total physi
al energy densityand α = 1
2 |∇ρ|2.Proof. We set

W (ρ) = ρf vdW (ρ). (2.58)Then, be
ause of the de�nition of the pressure (2.3), we have the relation
p(ρ) = ρW ′(ρ) −W (ρ) (2.59)for the pressure. We multiply the 
ontinuity equation (2.55) with (W ′(ρ)− |u|2

2 ) and themomentum equation by u. Summation of both parts and integration over the domain
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Ω gives

∫

Ω

(

W ′(ρ) − |u|2
2

)

(ρt + ∇ · (ρu))

+u ·
(

(ρu)t + ∇ · (ρuuT ) + ∇p(ρ) −∇ · τ −∇ · K
)

dx = 0.We repla
e the term ∇ · K using the relation (2.37), by reordering the terms we get
∫

Ω

W ′(ρ)ρt −
|u|2
2
ρt + u · (ρu)t dx −

∫

Ω

λρu · ∇∆ρ dx

=

∫

Ω

u · ∇ · τ dx −
∫

Ω

u · (W ′(ρ)∇ρ+ ∇p(ρ)) +W ′(ρ)ρ∇ · u dx

−
∫

Ω

u · ∇ · (ρuuT ) − |u|2
2

∇ · (ρu) dx.We apply integration by parts to the 
olored terms. All boundary integrals vanish dueto the boundary 
ondition u = 0 on ∂Ω.
∫

Ω

d

dt
W (ρ) +

d

dt

(

ρ
|u|2
2

)

dx +

∫

Ω

λ∇ · (ρu) ∆ρ dx

= −
∫

Ω

τ : ∇u dx −
∫

Ω

u · ∇(W (ρ) + p(ρ) −W ′(ρ)ρ) dx

−
∫

Ω

u · ∇ · (ρuuT ) + ρu · ∇
( |u|2

2

)

dx.Now we use the 
ontinuity equation and repla
e the term ∇ · (ρu) by −ρt in the se
ondintegral on the left hand side and again we perform integration by parts on this term.The resulting boundary integral vanishes be
ause of the boundary 
ondition ∇ρ ·n = 0on ∂Ω. The se
ond integral on the right hand side of the equation vanishes be
auseof the identity (2.59). The integrand in the last integral 
an be written in divergen
eform.
∫

Ω

d

dt
W (ρ) +

d

dt

(

ρ
|u|2
2

)

dx +

∫

Ω

λ∇ρt · ∇ρ dx

= −
∫

Ω

τ : ∇u dx −
∫

Ω

∇ ·
(

ρ|u|2u
)

dx.The last integral vanishes due to the Gauss theorem and u = 0 on ∂Ω. Finally we get
d

dt

∫

Ω

W (ρ) + ρ
|u|2
2

+
λ

2
|∇ρ|2 dx = −

∫

Ω

τ : ∇u dx ≤ 0.



2.7. THE ISOTHERMAL CASE 35An important 
lass of solutions are stati
 equilibrium solutions, i.e., steady state so-lutions where the velo
ity �eld vanishes 
ompletely in the domain Ω. This kind ofsolutions satis�es a nonlinear ellipti
 equation. We state this in the following lemma.Lemma 2.7.2 Let Ω be 
onne
ted and let (ρ, ρu) be a smooth stati
 equilibrium solutionof the isothermal Navier-Stokes-Korteweg equations, i.e., a solution that satis�es ρt = 0and u = 0 in Ω × (0,∞). Then the density satis�es the nonlinear ellipti
 equation
µ(ρ) − λ∆ρ = cst, (2.60)where the 
onstant on the right hand side is in general not known and µ denotes the
hemi
al potential (2.4) that does not depend on temperature in the isothermal 
ase.Proof. All terms in
luding u and the gradient of u, this means τ , drop out and onlythe pressure and Korteweg term in the momentum equation remain
∇p(ρ) = ∇ · K.Using the identity pρ(ρ) = ρµρ(ρ) (2.3), (2.4) and the identity (2.37) we obtain
∇µ(ρ) = λ∇∆ρand therefore we have for some 
onstant
µ(ρ) − λ∆ρ = cst,whi
h 
ompletes the proof.From another point of view equation (2.60) is the Euler-Lagrange equation (and the
onstant on the right hand side of this equation the Lagrange multiplier) for the mini-mization problem

∫

Ω

W (ρ) +
λ

2
|∇ρ|2 dx → min, (2.61)with the 
onstraint that the total mass is 
onserved

∫

Ω

ρ dx = m, (2.62)where the fun
tion W is de�ned as in (2.58) and m is some positive 
onstant. The en-ergy fun
tional in (2.61) 
onsists of the (isothermal) internal energy and the Kortewegpart of the energy. A �uid of a given �xed mass at stati
 equilibrium should minimizethis energy fun
tional. From (2.61) one 
an 
learly see that the Korteweg term a
ts likea panelization term for phase transitions (at least at stati
 equilibrium) be
ause wherea phase transition o

urs the gradient of the density is large.The minimization problem (2.61), (2.62) and its Euler-Lagrange equation (2.60) playan important role in giving a physi
al meaning to the parameter λ in the Kortewegterm. This parameter is related to surfa
e tension (at least at stati
 equilibrium) insome sense. The next se
tion is dedi
ated to this relation, the theoreti
al ba
kgroundis summarized in Se
tion 3.1.
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e Tension at Stati
 EquilibriumThe goal of this se
tion is to relate the 
oe�
ient λ in the Korteweg term to the physi
ale�e
t of surfa
e tension. For the theoreti
al ba
kground see Se
tion 3.1.In sharp interfa
e models, i.e., models where the 
hange from one phase to anotheris dis
ontinuous and the interfa
e itself is a set of measure zero, the e�e
t of surfa
etension is usually modeled by an additional 
ontribution to the stress tensor that a
tsonly on the interfa
e, see for example [79℄ and Se
tion 4.4.1.In a sharp interfa
e model for a liquid-vapor �ow we 
an de
ompose the domain Ω intotwo distin
t subsets Ωv,Ωl, the vapor and liquid parts respe
tively, and an interfa
e ofmeasure zero. At a stati
 equilibrium 
on�guration the density in the vapor and liquidpart are 
onstant values denoted by ρv, ρl and they satisfy a me
hani
al equilibrium
ondition (the Young-Lapla
e law) and a phase equilibrium 
ondition namely
p(ρl) − p(ρv) = (n− 1)σkm, (2.63)
µ(ρl) − µ(ρv) = 0, (2.64)see [75℄ and the referen
es therein, see also [79℄. Up to now we have always 
onsideredthe three dimensional spa
e, in order to be more general we 
onsider the n-dimensionalspa
e for n ≥ 1. km denotes the mean 
urvature of the interfa
e and the 
onstant
oe�
ient σ denotes the surfa
e tension of the �uid.Note: If surfa
e tension is negle
ted (σ = 0) and in the planar 
ase the values ρv and

ρl are equal to the Maxwell values (2.15), (2.16).Chara
teristi
 for the 
lass of di�use interfa
e models is the smooth and 
ontinuous
hange from one phase to another. Thus, we 
annot simply de
ompose the domainin liquid parts, vapor parts and an interfa
e of measure zero as we 
ould in the 
aseof sharp interfa
e models. But in the 
ase of our model, the Navier-Stokes-Kortewegsystem, we 
an �nd distin
t sets Ωv ⊂ Ω, Ωl ⊂ Ω, Ωi ⊂ Ω with Ωv ∪ Ωl ∪ Ωi = Ω su
hthat there exist 
onstant density states ρv and ρl with |ρ− ρv| is small in Ωv, |ρ− ρl| issmall in Ωl and the measure of the interfa
e Ωi is small. See Se
tion 3.1 for a rigoroustreatment of the above and the following statements.Kraus and Dreyer showed [75℄ that the me
hani
al equilibrium 
ondition and the phaseequilibrium 
ondition 
an be re
overed (up to an error of higher order in the 
oe�
ient
λ) in the 
ase of the Navier-Stokes-Korteweg model at stati
 equilibrium. They showedthat

p(ρl) − p(ρv) = (n− 1)c0
√
λkm + o(

√
λ), (2.65)

µ(ρl) − µ(ρv) = o(
√
λ). (2.66)Where

c0 =
√

2

ρM
l
∫

ρM
v

√

ρf(ρ) − ρµ(ρM
v ) + p(ρM

v ) dρ. (2.67)
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omparing (2.63) and (2.65), we 
an identify the e�e
t of surfa
e tension that isimpli
itly in
luded in the Navier-Stokes-Korteweg model by the relation
σ = c0

√
λ. (2.68)Note that the error term o(

√
λ) is negle
ted.Note that equation (2.65) is an asymptoti
 formula for λ→ 0. Therefore the identi�
a-tion with surfa
e tension (2.68) may make sense only in a regime where λ is su�
ientlysmall. In Se
tion 4.1.2 we approve by numeri
al 
omputations of stati
 equilibriumsolutions that the error in the asymptoti
 is negligible in the regime of our interest andhen
e, the identi�
ation with surfa
e tension makes sense in the 
ase of our numeri
alsimulations.In general, the free energy f and therefore the Maxwell values and the 
oe�
ient c0depend on the temperature. Using dimensionless variables in terms of the 
riti
al values,i.e., ρcrit ρ̃ = ρ and θcrit θ̃ = θ, we have

c0(θ) =
√

2

ρM
l

(θ)
∫

ρM
v (θ)

√

ρf(θ, ρ) − ρµ(θ, ρM
v (θ)) + p(θ, ρM

v (θ)) dρ

= ρcrit
√
pcrit c̃0(θ̃),where the dimensionless quantity c̃0 is de�ned by

c̃0(θ̃) =
√

2

ρ̃M
l

(θ̃)
∫

ρ̃M
v (θ̃)

√

ρ̃f̃(θ̃, ρ̃) − ρ̃µ̃(θ̃, ρ̃M
v (θ̃) + p̃(θ̃, ρ̃M

v (θ̃)) dρ̃.The 
oe�
ient c̃0 
an be approximated by the formula
c̃0(θ̃) ≈

√
2 ·
√

1.0 − θ̃ ·
(

6.4 · (1.0 − θ̃) − 0.7 · (1.0 − θ̃)2
)

. (2.69)This formula is obtained by 
urve �tting and gives quite a

urate results in the dimen-sionless temperature range θ̃ ∈ [0.6, 1.0].Using the relation (2.68) and the s
aling (2.44) this gives for the dimensionless 
oe�
ient
λ̃ the identity

λ̃ =

(

σ(θcrit θ̃)

L pcrit c̃0(θ̃)

)2

. (2.70)Note: The 
oe�
ient λ̃ depends on the temperature θ̃ in general whereas we haveassumed that it is a 
onstant 
oe�
ient in the Navier-Stokes-Korteweg model. Thus, ithas to be �xed to some mean temperature in the temperature dependent model and tothe referen
e temperature in the isothermal model.



38 CHAPTER 2. DERIVATION OF THE MODEL2.9 Interfa
e WidthA s
aling argument given in [95℄ (Proposition 2.2.7) shows that the width of the di�useinterfa
e between the phases must be proportional to √
λ. The proportional 
onstantremains to be determined. However, the de�nition of the interfa
e itself is arbitrary (upto some degree). We give possible de�nitions for the interfa
e and the interfa
e widthin Se
tion 4.1. Using the numeri
ally 
omputed pro�les of stati
 bubbles for di�erentreferen
e temperatures and di�erent 
oe�
ients λ we 
an determine the width of theinterfa
e w(θ, λ).Below the 
riti
al temperature we observe (see Se
tion 4.1 espe
ially (4.9)) that the di-mensionless interfa
e width w̃(θ̃, λ̃) of a dimensionless �uid 
an (roughly) approximatedby the formula

w̃(θ̃, λ̃) = 5.4 · θ̃2 ·
√

λ̃.This is a very rough formula but quite useful to 
onstru
t initial data that 
onsists ofliquid and vapor phases and for rough estimates of the interfa
e size. Numeri
al exper-iments show that a suitable interfa
e size of the initial data is important to guaranteethe stability of solutions. Otherwise instabilities are observed. The above formula isobtained from the 
omputations of stati
 bubbles. The interfa
e size may also dependon the dynami
s of the phase boundary. Su
h e�e
ts are not taken into a

ount butthis should not make a big di�eren
e.2.10 Realisti
 Length S
aleThe goal of this se
tion is to determine the maximal possible diameter Lmax of a domainthat 
an be 
hosen for realisti
 numeri
al simulations of liquid-vapor �ows when allphysi
al parameters are adjusted 
orre
tly. This means, 
hosen as des
ribed in theprevious se
tions. The result of this se
tion is that Lmax is extremely small (in themi
rometer regime).We assume that the diameter of the dimensionless 
omputational domain is equal to one.We assume that the minimal possible interfa
e that must be resolved by the underlying
omputational mesh is w̃min = 1.0 ·10−3. This is what is possible at time of this writingwhen all modern numeri
al te
hniques su
h as lo
al mesh adaption, parallelization, loadbalan
ing, higher order s
hemes are 
ombined and for the 
omputation it is possible torun on many pro
essors and for many days (possibly weeks).Using the formula for the interfa
e width from the previous se
tion together with thes
aling for λ̃ from (2.70) we get a formula for Lmax in terms of w̃min, the referen
etemperature and the 
riti
al values.
Lmax = 5.4 · θ̃2

ref

σ(θ̃)

w̃min pcrit c̃0(θ̃ref )
(2.71)As an example we 
hoose water at di�erent temperatures.



2.11. ARTIFICIAL ENLARGEMENT OF THE INTERFACE 39Example 2.10.1 (Water at di�erent temperatures)We 
hoose the three dimensionless referen
e temperatures θref = 0.85, θref = 0.90 and
θref = 0.95. As dis
ussed above we 
hoose the minimal possible interfa
e size

w̃min = 1.0 · 10−3and the 
riti
al pressure of water is
pcrit = 22.064 · 106 N

m2
,see Se
tion B.2 and Table B.1. Using the formula (2.69) we have for the 
oe�
ient c̃0

c̃0(0.85) = 0.52, c̃0(0.90) = 0.29, c̃0(0.95) = 0.10and for the determination of the surfa
e tension (roughly is su�
ient) we 
an make useof �gure B.4
σ(0.85) = 2.0 · 10−2N

m
, σ(0.90) = 1.2 · 10−2N

m
, σ(0.95) = 5.0 · 10−3N

m
.As result using the formula above we get

Lmax(0.85) = 3.54 · 10−6m,

Lmax(0.90) = 2.38 · 10−6m,

Lmax(0.95) = 1.10 · 10−6m.This means that the largest possible domain for realisti
 numeri
al simulations mustbe in the mi
rometer regime. This is at least one or two orders of magnitude too smallfor realisti
 numeri
al simulations of the experiment dis
ussed in the introdu
tion, seeSe
tion 1.1.2.11 Arti�
ial Enlargement of the Interfa
eWe have seen in the previous se
tion that the domain in that a liquid-vapor �ow 
anbe simulated using the Navier-Stokes-Korteweg model must be extremely small (in themi
rometer regime). This is be
ause the di�use interfa
e must be 
ompletely resolvedby the underlying 
omputational mesh. One way to over
ome this problem is to enlargethe interfa
e by in
reasing the 
oe�
ient λ. The width of the interfa
e in proportionalto √
λ. The problem is that at the same time the surfa
e tension for
e is in
reased thatis also proportional to √

λ. In 
ases where other for
es do not signi�
antly dominateand the e�e
t of surfa
e tension 
an not be in
reased without 
hanging the dynami
s
ompletely, this approa
h 
annot be applied.In [64℄ an approa
h is presented to arti�
ially enlarge the interfa
e without 
hanging thee�e
t of surfa
e tension. But with this approa
h it is ne
essary to 
hange the behaviorof the �uid by repla
ing the equation of state. The idea is to repla
e the van der Waals



40 CHAPTER 2. DERIVATION OF THE MODELequation of state by a modi�ed equation of state su
h that 
ertain thermodynami
alproperties are preserved for density states 
lose to the Maxwell states.Thus, in this approa
h the model is modi�ed and therefore we do not 
onsider thisapproa
h in the present work sin
e we are interested in the validation and appli
abilityof the original Navier-Stokes-Korteweg model.



Chapter 3Summary of Theoreti
al Results
We give a summary of existing theoreti
al results 
on
erning the Navier-Stokes-Kortewegsystem. In the �rst two se
tions we dis
uss the existen
e of spe
ial solutions su
h asstati
 equilibrium solutions and traveling wave solutions. Under some assumptions,these types of solutions satisfy ordinary di�erential equations and 
an be solved byappli
ation of existing ordinary boundary value problem solvers. We do this in thenext 
hapter su
h that we have these kinds of solution as ben
hmarks for numeri
als
hemes available. Another aspe
t of the �rst se
tion is the 
lari�
ation of the e�e
tof surfa
e tension that the Korteweg term in the NSK system impli
itly in
ludes. Thethird se
tion is dedi
ated to the dis
ussion of general solutions, i.e., solutions of theCau
hy problem in multiple spa
e dimensions for the isothermal and the temperaturedependent Navier-Stokes-Korteweg model as well as solutions of the initial boundaryvalue problem.3.1 Stati
 Equilibrium Solutions and Surfa
e TensionThe Obje
tives of this se
tion are the dis
ussion of the existen
e of stati
 equilibriumsolutions for the isothermal Navier-Stokes-Korteweg equations on the one hand andthe rigorous 
lari�
ation of the role of surfa
e tension in the model on the other hand.Throughout this se
tion we assume that the referen
e temperature of the van der Waalsequation of state is �xed to a value below the 
riti
al temperature su
h that the �uid
an undergo phase transitions. A

ording to Lemma 2.7.2 a smooth solution of theNSK equations satis�es the nonlinear ellipti
 equation (2.60). This equation is also theEuler-Lagrange equation for the minimization problem we state below.Let Ω ⊂ R

n be an open bounded domain and let f denote the free energy of an isother-mal van der Waals �uid. We de�ne W (ρ) = ρf(ρ). For a 
onstant m > 0, a s
alingparameter ε > 0 and ρε ∈ H1(Ω) we 
onsider the following minimization problem withthe 
onstraint that the total mass in Ω is 
onserved:
∫

Ω

W (ρε(x)) +
ε2

2
|∇ρε(x)|2 dx → min,

∫

Ω

ρε(x) dx = m. (3.1)41



42 CHAPTER 3. SUMMARY OF THEORETICAL RESULTSIn this se
tion we 
hara
terize stati
 equilibrium solutions by minimizers of the mini-mization problem (3.1). A smooth minimizer of the minimization problem (3.1) satis�esthe Euler-Lagrange Equation
W ′(ρε) − ε2∆ρε = cε in Ω, (3.2)where the 
onstant cε ∈ R is the Lagrange multiplier, see for example [32℄. By de�nitionofW the fun
tionW ′ is equal to the 
hemi
al potential µ (see de�nition 2.1.1) and thus,equation (3.2) is the same as the equilibrium 
ondition (2.60). Here the 
oe�
ient λ isrepla
ed by ε2.Gurtin and Matano proved the existen
e of minimizers of the variational problem (3.1),see [56℄. Gurtin and Matanos theorem, the theorem by Modi
a [86℄ and the results byKraus and Dreyer, we will dis
uss in this 
hapter, are not restri
ted to a van der Waalsequation of state. These results are valid for a general (double well) free energy f with
ertain properties, see [75℄ for details. These properties are satis�ed by a van der Waalsequation of state if the referen
e temperature is �xed to some value below the 
riti
altemperature.We summarize the results by Gurtin and Matano in the following theorem.Theorem 3.1.1 (Gurtin, Matano [56℄)Let ε > 0.(i) There exists a global minimizer ρε of the minimization problem (3.1).(ii) A lo
al minimizer ρε is 
ontained in C3(Ω), satis�es the Euler-Lagrange equation(3.2) and has natural boundary 
onditions

∇ρε · n = 0 on ∂Ω.Note: This is boundary 
ondition (2.53).Modi
a [86℄ 
onsidered a family of global minimizers (ρε)ε>0 of the minimization prob-lem (3.1). He proved that for ε → 0 a subsequen
e 
onverges in L1(Ω) to some limitfun
tion ρ0 that assumes only two values (the Maxwell states) almost everywhere andthe (sharp) interfa
e between the liquid and the vapor phase is minimized in some sense.For the statement of Modi
as results we need some de�nitions given below. For somefun
tion u ∈ L1(Ω) we de�ne
∫

Ω

|Du(x)| dx = sup

{
∫

Ω
u(x)∇ψ(x) dx

∣

∣

∣

∣

ψ ∈ C∞(Ω), |ψ| ≤ 1

}

.For some measurable set E ∈ R
n we de�ne the perimeter of E in Ω by

PΩ[E] =

∫

Ω

|DχE(x)| dx.In the above de�nition χE denotes the 
hara
teristi
 fun
tion of the set E. The perime-ter is a generalization of the (n− 1)-dimensional Hausdor� measure, i.e., if ∂E ∩Ω is aLips
hitz 
ontinuous hypersurfa
e then Hn−1(∂E ∩ Ω) equals PΩ[E].
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a [86℄)For ε > 0 let ρε denote a global minimizer of the minimization problem (3.1) and let
m ∈ [ρM

v |Ω|, ρM
l |Ω|].(i) There exists a sequen
e (εk)k∈N with lim

k→∞
εk = 0, a 
orresponding sequen
e ofglobal minimizers ρεk and a fun
tion ρ0 ∈ L1(Ω) su
h that

lim
k→∞

||ρεk − ρ0||L1(Ω) = 0.(ii) For the fun
tion ρ0 we have
ρ0 = ρM

v or ρ0 = ρM
lalmost everywhere and ρ0 ∈ BV (Ω).(iii) The set Uv = {x ∈ Ω | ρ0(x) = ρM

v } is a minimizer of the geometri
 variationalproblem
PΩ[Uv ] = min

{

PΩ[F ]

∣

∣

∣

∣

F ⊂ Ω, |F | =
ρM

l |Ω| −m

ρM
l − ρM

v

}

.Furthermore we de�ne the set Ul = Ω\Uv.In the 
ase where the mean density has a value between the two Maxwell states Modi
aproved that in the limit ε → 0 a subsequen
e of global minimizers of problem (3.1)
onverges to fun
tion ρ0 in L1(Ω), where the fun
tion ρ0 assumes only the Maxwellstates and the interfa
e between the liquid and vapor phases is minimized. From thephysi
al point of view a minimal interfa
e is the 
orre
t behavior but this also meansthat the pressure in the vapor phase equals the pressure in the liquid phase. We havefor the liquid and vapor states ρl and ρv

p(ρl) − p(ρv) = 0,in 
ontrast to the Young-Lapla
e law (2.63), see also [79℄, that must be satis�ed by thephysi
al relevant solution
p(ρl) − p(ρv) = (n− 1)σkm.A

ording to the Young-Lapla
e law this means that either the mean 
urvature km ofthe interfa
e is equal to zero (e.g. a �at interfa
e) or the surfa
e tension is equal tozero (surfa
e tension negle
ted). However, surfa
e tension is a very important physi
alproperty and 
annot be negle
ted in most 
ases. Therefore the limit fun
tion ρ0 isobviously not the 
orre
t solution from the physi
al point of view and in the (sharpinterfa
e)-limit ε → 0 there is no surfa
e tension left. Thus, the above 
ontradi
tion
annot be solved by the sharp interfa
e limit.Now the idea is not 
hoose the limit fun
tion but some fun
tion ρε from the limit pro
essfor some small value ε > 0 as the relevant solution. In this 
ase we have a di�use interfa
eand inside the interfa
e the fun
tion ρε 
hanges rapidly from one nearly 
onstant stateto another nearly 
onstant state. We 
annot de
ompose the domain into vapor and



44 CHAPTER 3. SUMMARY OF THEORETICAL RESULTSliquid sets Uv, Ul and an interfa
e I of measure zero but we 
an de
ompose it into sets
Ûv, Ûl where the fun
tion ρε nearly assumes 
onstant vapor and liquid states. Finallythe di�use interfa
e Î does not have measure zero but has a small measure.Thus, the 
hallenge is to determine the right small parameter ε > 0 su
h that the Young-Lapla
e law and the phase equilibrium 
ondition (2.64) are satis�ed in some sense.Kraus and Dreyer [75℄ showed that the parameter ε > 0 
an be identi�ed with surfa
etension and they give an asymptoti
 formula that relates the parameter ε to surfa
etension. We summarize the main statements of this work in the following theorem.Theorem 3.1.3 (Kraus, Dreyer [75℄)Let (εk)k∈N with lim

k→∞
εk = 0, ρεk a sequen
e of global minimizers of the variationalproblem (3.1) that 
onverges to ρ0 as in theorem 3.1.2. Further let Ûv ⊂⊂ Uv and

Ûl ⊂⊂ Ul. Then(i) ρε(x) =

{

ρM
v + εkρ̂v + o(εk) x ∈ Ûv,

ρM
l + εkρ̂l + o(εk) x ∈ Ûl.(ii) p (ρεk(xl))−p (ρεk(xv)) = (n−1)c0kmεk+o(εk) for almost all xv ∈ Ûv and xl ∈ Ûl.Here km is the 
onstant mean 
urvature of the redu
ed boundary of Uv.(iii) µ (ρεk(xl)) − µ (ρεk(xv)) = o(εk) for almost all xv ∈ Ûv and xl ∈ Ûl.The 
onstant c0 is given by relation (2.67).Note: The redu
ed boundary ∂∗Uv of Uv is a dense subset of ∂Uv whi
h 
onsists of
ountable union of smooth hypersurfa
es, see [75℄ and the referen
es therein.As dis
ussed before the physi
ally relevant solution ρ has to satisfy the Young-Lapla
elaw and the phase equilibrium 
ondition namely

p(ρ(xl)) − p(ρ(xv)) = (n− 1)σkm,

µ(ρ(xl)) − µ(ρ(xv)) = 0,
for xv ∈ Uv and xl ∈ Uland, of 
ourse, ρ assumes only two values in the 
ase where two phases are present.We 
ompare these requirements to the formulas given in item (ii) and (iii) of the abovetheorem

p(ρ(xl)) − p(ρε(xv)) = (n− 1)c0εkm + o(ε),

µ(ρ(xl)) − µ(ρε(xv)) = o(ε),
for xv ∈ Ûv and xl ∈ Ûl.As a result we 
an asso
iate the parameter ε with surfa
e tension, required that ε issu�
iently small, by the relation

σ = c0ε. (3.3)The question that remains is where the asymptoti
 regime begins (where ε is smallenough) su
h that the above formula is appli
able. The numeri
al justi�
ation of thisformula performed in Se
tion 4.1 shows that the error term o(ε) is negligible even forquite large interfa
es (large values of ε).



3.2. TRAVELING WAVE SOLUTIONS 453.2 Traveling Wave SolutionsBenzoni-Gavage proved in [11℄, [12℄ based on [106℄ the existen
e of traveling wave so-lutions for the isothermal Navier-Stokes-Korteweg system with a modi�ed third order
apillarity term. The proof is split into two parts. The �rst part shows that travelingwave solutions exist when the vis
osity in the model is negle
ted, the se
ond part gen-eralizes this to the 
ase with small vis
osity. We summarize these results and give aproof for the �rst part for the unmodi�ed Navier-Stokes-Korteweg equations.We 
onsider another kind of spe
ial solutions to the isothermal Navier-Stokes-Kortewegequations in this se
tion. We investigate the existen
e of propagating planar phaseboundaries and therefore we 
an restri
t ourself to the one dimensional system whi
hredu
es to
ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p(ρ))x = εuxx + λ
(

ρρxx − 1
2ρ

2
x

)

,
in R × R>0. (3.4)We are interested in traveling wave solutions of system (3.4), i.e. smooth solutions ofthe form

ρ(x, t) = ρ̃(x− st),

u(x, t) = ũ(x− st),
(3.5)that 
onne
t left states (ρ−, u−) and right states (ρ+, u+) in di�erent phases and prop-agate with a 
onstant speed s ∈ R (′ denotes the derivative with respe
t to x− st)

ρ̃(±∞) = ρ±, ũ(±∞) = u±, ρ̃′(±∞) = 0. (3.6)The left and right states must satisfy, see for example [100℄ or [34℄, the Rankine-Hugoniotrelation
ρ−(u− − s) = ρ+(u+ − s) =: m, (3.7)

ρ−u−(u− − s) + p(ρ−) = ρ+u+(u+ − s) + p(ρ+) =: π. (3.8)This ansatz leads to an algebrai
 relation between the velo
ity ũ and the density ρ̃ andresults in a se
ond order ordinary di�erential equation for ρ̃. For notational simpli
itywe omit the tilde symbol
λ

(

ρρ′′ − 1

2
(ρ′)2

)

=
εm

ρ2
ρ′ +

m2

ρ
+ p(ρ) +ms− π(ρ−), (3.9)where π(ρ−) is de�ned by the relation

π(ρ−) =
m2

ρ−
+ms+ p(ρ−). (3.10)Here we have used de�nitions (3.7) and (3.8).



46 CHAPTER 3. SUMMARY OF THEORETICAL RESULTS3.2.1 Existen
e of Traveling Wave Solutions for a modi�ed SystemIn [12℄, [11℄ the existen
e of propagating planar phase boundaries was proven for themodi�ed Navier-Stokes-Korteweg system
ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p(ρ))x = εuxx − λvxxx,
(3.11)where v = 1

ρ denotes the spe
i�
 volume. The di�eren
e to the unmodi�ed system (3.4)is the Korteweg part of the stress tensor. The Korteweg term in (3.11) is the one thatusually appears in Lagrangian 
oordinates, see [106℄. It is not 
lear if this term has anyphysi
al relevan
e in Eulerian 
oordinates.The traveling wave solution ansatz (3.5), (3.6) leads to the pro�le equation
λv′′ = εmv′ −m2v − p̃(v) + π̃(v−), (3.12)

v(±∞) = v±, v′(±∞) = 0, (3.13)with the de�nitions
p̃(v) = p

(

1

v

)

, π̃(v−) = p̃(v−) +m2v−.The proof for the existen
e of solutions in
luding phase transitions of (3.12), (3.13) in[12℄, [11℄ is split into two parts. In the �rst part the existen
e of pro�les is shown inthe 
ase where the vis
osity ε is equal to zero. The se
ond part extends this to smallvis
osity ε > 0. We summarize these results below.Lemma 3.2.1 (Benzoni-Gavage)Let ε = 0. Then there exists a 
onstant m0 > 0 su
h that for all m ∈ (−m0,m0)there exist left (vapor) and right (liquid) states v−(m) and v+(m) in neighborhoods ofthe Maxwell states and a solution of (3.12), (3.13) that 
onne
ts v− = v−(m) with
v+ = v+(m). This pro�le is unique up to translation.Theorem 3.2.2 (Benzoni-Gavage)There exists a m0 > 0 and an ε0 > 0 su
h that for (m, ε) ∈ (−m0,m0) × (0, ε0) thereexist left (vapor) and right (liquid) states v−(m, ε) and v+(m, ε) in neighborhoods ofthe Maxwell states and a solution of (3.12), (3.13) that 
onne
ts v− = v−(m, ε) with
v+ = v+(m, ε). This pro�le is unique up to translation.Besides the existen
e of solutions for equation (3.12) in [12℄ it is also proven that trav-eling phase boundaries of the modi�ed system (3.11) have 
ertain stability propertiesin the 
ase ε > 0.3.2.2 Possible Extension to the unmodi�ed SystemThe next lemma shows that the unmodi�ed version of the NSK system has travelingwave solutions in the 
ase where the vis
osity is equal to zero, i.e., (3.9) has hetero
lini
orbits.



3.2. TRAVELING WAVE SOLUTIONS 47Lemma 3.2.3Let ε = 0. Then there exists a 
onstant m0 > 0 su
h that for all m ∈ (−m0,m0)exist unique left (vapor) and right (liquid) states ρ−(m) ∈ (0, ρv) and ρ+(m) ∈ (ρ
l
, b)and a hetero
lini
 orbit of (3.9) that 
onne
ts ρ−(m) with ρ+(m) and is unique up totranslation.For m→ 0 the left and right states 
onverge to the Maxwell states, i.e.,

lim
m→0

ρ−(m) = ρM
v , lim

m→0
ρ+(m) = ρM

l .Note: It is also possible to 
hoose the left state ρ− in the liquid phase and the rightstate ρ+ in the vapor phase and Lemma 3.2.3 is also valid in this 
ase.Proof. We multiply equation (3.9) by ρ′ρ−2. Sin
e vis
osity 
oe�
ient ε is equal tozero this results in
λ

2

(

(ρ′)2ρ−1
)′

=

[

m2

(

1

ρ3
− 1

ρ2ρ−

)

+
p(ρ) − p(ρ−)

ρ2

]

ρ′and integrating this equation from −∞ to t, using ρ(−∞) = ρ− and the transformationformula we get
λ

2

ρ′(t)2

ρ(t)
= φ(m,ρ−, ρ(t)),where the fun
tion φ is de�ned by the relation

φ(m,ρ−, ρ) =

∫ ρ

ρ−
m2

(

1

s3
− 1

s2ρ−

)

+
p(s) − p(ρ−)

s2
ds.We show that for su�
iently small m there exist unique states ρ−(m) and ρ+(m) 
loseto the Maxwell states su
h that φ(m,ρ−(m), ρ+(m)) = 0 is satis�ed.We de�ne a fun
tion F : R × R>0 × R>0 → R

2 by
F (m,ρ−, ρ+) =

(

m2
(

1
ρ+ − 1

ρ−

)

+ p(ρ+) − p(ρ−)

φ(m,ρ−, ρ+)

)

.For m = 0, ρ− = ρM
v and ρ+ = ρM

l we have
F (0, ρM

v , ρM
l ) = 0by lemma A.3.2 and for the derivative with respe
t to (ρ−, ρ+)

D(ρ−,ρ+)F (0, ρM
v , ρM

l ) =

( −p′(ρM
v ) p′(ρM

l )

p′(ρM
v )
(

1
ρM

l

− 1
ρM

v

)

0

)and
det
(

D(ρ−,ρ+)F (0, ρM
v , ρM

l )
)

= p′(ρM
v )p′(ρM

l )

(

1

ρM
v

− 1

ρM
l

)

> 0.



48 CHAPTER 3. SUMMARY OF THEORETICAL RESULTSNote that the van der Waals pressure fun
tion is always a monotoni
ally in
reasingfun
tion in the vi
inity of the Maxwell states. Thus, by the impli
it fun
tion theoremthere exists a 
onstant m0 > 0 su
h that for |m| < m0 we have unique states ρ−(m)and ρ+(m) in the neighborhoods of the Maxwell states with
φ(m,ρ−(m), ρ+(m)) = 0.By similar arguments as in lemma A.3.3 we 
an show that for su�
ient small m wehave

φ(m,ρ−(m), ρ) > 0 for all ρ ∈ (ρ−(m), ρ+(m)).For small m we set
Φ(ρ) =

√

2

λ
ρφ(m,ρ−(m), ρ).

Φ is a stri
tly positive smooth fun
tion on the interval (ρ−(m), ρ+(m)) and a 
ontinuousfun
tion on [ρ−(m), ρ+(m)]. We have Φ(ρ−(m)) = 0 and Φ(ρ+(m)) = 0. Hen
e, forthe s
alar equation
ρ′(t) = Φ(ρ(t))there exists a hetero
lini
 pro�le that 
onne
ts the states ρ−(m) and ρ+(m). Thispro�le is unique up to s shift and monotoni
ally in
reasing.Hen
e, we have the existen
e and uniqueness (up to s shift) of a hetero
lini
 pro�le forequation (3.9) in the 
ase where ε is equal to zero. This 
ompletes the proof.The existen
e of hetero
lini
 pro�les for equation (3.4) is not proven up to now. The�rst step for this existen
e is proven in Lemma 3.2.3. For the se
ond step one 
ould tryto apply the Centermanifold theorem as for equation (3.12), see [11℄. The numeri
s inSe
tion 4.2 indi
ate that pro�les exist for this equation. We formulate these spe
ulationsas 
onje
ture.Conje
ture 3.2.4There exists a m0 > 0 and an ε0 > 0 su
h that for (m, ε) ∈ (−m0,m0)×(0, ε0) there existunique left (vapor) and right (liquid) states ρ−(m, ε) ∈ (0, ρv) and ρ+(m, ε) ∈ (ρ

l
, b) anda hetero
lini
 pro�le of (3.9) that 
onne
ts ρ−(m, ε) with ρ+(m, ε) and is unique up totranslation.For m→ 0 the left and right states 
onverge to the Maxwell states, i.e.,

lim
m→0

ρ−(m, ε) = ρM
v , lim

m→0
ρ+(m, ε) = ρM

l .Provided that this 
onje
ture is true we 
an reformulate it in a form we use in Se
tion4.2.Corollary 3.2.5Let left and right states (ρ−, u−) and (ρ+, u+) that satisfy the Rankine-Hugoniot relationwith density states 
lose to the Maxwell states and small velo
ity states be given. Thenthere exists an ε > 0 su
h that a pro�le of (3.9) exists. This pro�le is unique up totranslation.



3.3. GENERAL SOLUTIONS 493.3 General SolutionsWe give a summary of results 
on
erning existen
e and uniqueness of solutions for theisothermal and full temperature dependent Navier-Stokes-Korteweg model in multiplespa
e dimensions. The results are 
on
erning the Cau
hy problem as well as the initialboundary value problem.Lo
al Existen
e for the Cau
hy ProblemHattori and Li [57℄ showed that for su�
iently smooth initial data the Cau
hy-Problem(Ω = R
n, here with n = 2) for the isothermal Navier-Stokes-Korteweg system has a(short time) solution.For the existen
e result the monotoni
ity of the pressure p is not required as in otherexisten
e results. The main result is the following theorem.Theorem 3.3.1For any initial data (ρ0,u0) su
h that the 
ondition ρ0 ≥ δ > 0 is satis�ed and (ρ0 −

ρ̄0,u0) ∈ Hk(R2)3 for k ≥ 4, where ρ̄0 > 0 is a 
onstant, there exists a time T > 0 su
hthat in [0, T ] the Cau
hy-Problem for the isothermal Navier-Stokes-Korteweg system(2.55), (2.56) has a unique solution (ρ,u) su
h that ρ− ρ̄0 ∈ L∞ ([0, T ];Hk+1(R2)
) and

u ∈ L∞ ([0, T ];Hk(R2)2
).Additionally the solution 
an be estimated by the initial values in some norm, see [57℄.Note: The authors state that the same result 
an be obtained in the three dimensional
ase.Global Existen
e for the Cau
hy Problem for the full SystemIn [58℄ Hattori and Li give a lo
al in time existen
e theorem as well as a global exis-ten
e theorem for small initial data for the full temperature dependent Navier-Stokes-Korteweg model (2.34) - (2.36) in three spa
e dimensions with Ω = R

3, i.e., the Cau
hyproblem.For these results some restri
tions on the thermodynami
 quantities are ne
essary su
has the monotoni
ity of the pressure in the density. This means that only one phase 
anexist. The requirements are the following
pρ(θ, ρ) > 0,

eθ(θ, ρ) > 0,

fθθ(θ, ρ) < 0,for all density values ρ and temperature values θ in the state spa
e. In the aboveequation p denotes the pressure, e the spe
i�
 internal energy and f the Helmholtz freeenergy.



50 CHAPTER 3. SUMMARY OF THEORETICAL RESULTSBefore we state the main results of [58℄ we introdu
e some de�nitions for notationalsimpli
ity. For T > 0 we de�ne the Bana
h spa
e Yk(T ) by
Yk(T ) = C

(

[0, T ), Hk(R3)
)

∩ L2
(

(0, T ), Hk+1(R3)
)and for fun
tions ρ̃ ∈ Y k+1(T ), ui ∈ Y k(T ) for i = 1, 2, 3 and θ̃ ∈ Y k(T ) we de�ne

Ek

[

ρ̃,u, θ̃
]

(t) = sup
s∈[0,t]

(

||ρ̃(s)||2Hk+1(R3) +

3
∑

i=1

||ui(s)||2Hk(R3) + ||θ̃(s)||2Hk(R3)

)

,

Fk

[

ρ̃,u, θ̃
]

(t) =

t
∫

0

(

||ρ̃(s)||2Hk+2(R3) +
3
∑

i=1

||ui(s)||2Hk+1(R3) + ||θ̃(s)||2Hk+1(R3)

)

ds.For the existen
e of lo
al in time solutions a smallness assumption on the initial datais not ne
essary (at least not expli
itly stated in [58℄). However, the initial density andtemperature should be at least positive to be meaningful from the physi
al point ofview.Theorem 3.3.2 (Lo
al Existen
e)Let the initial data (ρ̃0 + ρ̄, u0, θ̃0 + θ̄) satisfy for some k ∈ N with k ≥ 3

ρ̃0 ∈ Hk+1(R3),

ui
0 ∈ Hk(R3) for i = 1, 2, 3, (3.14)
θ̃0 ∈ Hk(R3),where ρ̄ and θ̄ are some positive 
onstants. Then there exists a time T > 0 su
h thatwe have a unique solution (ρ̃+ ρ̄, u1, u2, u3, θ̃+ θ̄) of the temperature dependent Navier-Stokes-Korteweg system (2.34) - (2.36) with ρ̃ ∈ Y k+1(T ), ui ∈ Y k(T ) for i = 1, 2, 3and θ̃ ∈ Y k(T ).In 
ontrast to the theorem above for the global existen
e result a smallness assumptionon the initial data is ne
essary.Theorem 3.3.3 (Global Existen
e)Let the initial data satisfy (3.14) for some k ∈ N with k ≥ 3. Then there exist positive
onstants ε0 and C0 su
h that for Ek

[

ρ̃0,u0, θ̃0

]

(0) ≤ ε0 we have a unique globalsolution (ρ̃ + ρ̄, u1, u2, u3, θ̃ + θ̄) of the temperature dependent Navier-Stokes-Kortewegsystem (2.34) - (2.36) with ρ̃ ∈ Y k+1(∞), ui ∈ Y k(∞) for i = 1, 2, 3 and θ̃ ∈ Y k(∞)and the solution satis�es the estimate
Ek

[

ρ̃,u, θ̃
]

(t) + Fk

[

ρ̃,u, θ̃
]

(t) ≤ C0Ek

[

ρ̃0,u0, θ̃0

]

(0) for t ≥ 0.



3.3. GENERAL SOLUTIONS 51Global Existen
e of Weak SolutionsIn [17℄ the isothermal Navier-Stokes-Korteweg system in a slightly modi�ed form is
onsidered.
ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρuuT ) + ∇p(ρ) = ∇ · (τ̂ + K) .
(3.15)Here the vis
ous part of the stress tensor τ̂ di�ers from the previous de�nition of thevis
ous stress. τ̂ is given by the relation

τ̂ = νρ
(

∇u + ∇uT
)

.The modi�
ation is done mainly for te
hni
al reasons and not for physi
al motivation.Bres
h, Desjardins and Lin [17℄ proved the global existen
e of weak solutions in a pe-riodi
 domain without the restri
tion of smallness of initial data. However, the proofrequires that we have for the pressure
pρ(ρ) ≥ 0for all density values ρ, i.e., the �uid does not undergo phase transition. The mainresult is the following theorem.Theorem 3.3.4Let the spa
e dimension be n = 2 or n = 3. Then there exists a global weak solution

(ρ,u) of equation (3.15).For the de�nition of weak solutions of equation (3.15) see [17℄.Existen
e for the Initial Boundary Value ProblemKots
hote proved in [74℄ the lo
al existen
e and uniqueness of a solution of the initialboundary value problem (2.55), (2.56), (2.51), (2.53) for the isothermal Navier-Stokes-Korteweg system. The monotoni
ity of the pressure is not required. We summarize themain result in the following theorem.Theorem 3.3.5Let Ω ⊂ R
n be an open bounded domain with C3-boundary and n+ 2 < p <∞. Let theinitial data satisfy the following regularity and 
ompatibility 
onditions

• u0 ∈ B
2− 2

p
pp (Ω; R

n), ρ0 ∈ B
3− 2

p
pp (Ω), ρ0 > 0 in Ω (regularity),

• u0 = 0 in B
2− 2

p
pp (∂Ω; R

n), ∇ρ0 · n = 0 in B
2− 3

p
pp (∂Ω) (
ompatibility of theinitial data with the boundary 
onditions).Then it exists a T > 0 su
h that the initial boundary value problem (2.55), (2.56),(2.51), (2.53) has a unique solution (ρ,u) with

ρ ∈ C
3

2

(

(0, T ); C1(Ω)
)

∩C
(

(0, T ); C3(Ω)
)

u ∈ C1 ((0, T ); C(Ω; Rn)) ∩C
(

(0, T ), C3(Ω)
)

.



52 CHAPTER 3. SUMMARY OF THEORETICAL RESULTSIn [74℄ the theorem is formulated more general. The 
apillarity and vis
osity 
oe�
ientsmay depend on time and p has not ne
essarily to be given by the van der Waals equationof state.In [73℄ the author proved a similar result for a temperature dependent model. But themodel that is 
onsidered is not exa
tly the same the temperature dependent Navier-Stokes-Korteweg system (2.34), (2.35) and (2.36) be
ause some of the terms are missingthere.



Chapter 4
Constru
tion of Solutions andBen
hmarks
The purpose of this 
hapter is the 
onstru
tion of solutions of the NSK system andother ben
hmark tests for three di�erent reasons. These are

• the validation of the numeri
al s
hemes. Therefore, we 
onstru
t initial 
on�gu-rations su
h as stati
 equilibrium and traveling wave solutions.
• the identi�
ation of physi
al parameters su
h as surfa
e tension and interfa
ewidth.
• the validation of the model.Due to the 
omplexity of the model it seems to be out of s
ope to give analyti
alsolutions. Thus, we seek for solutions of spe
ial form su
h that the resulting equationredu
es to an ordinary di�erential equation equipped with suitable boundary 
onditions.These kind of problems 
an be solved very a

urately.These solutions are used to identify physi
al relevant parameters su
h as surfa
e tensionand the size of the di�use interfa
e.For the validation of the model we 
hoose the physi
al experiment of an os
illatingbubble in a liquid. When mass transfer over the interfa
e is negle
ted and the liquid isnearly in
ompressible an equation (the 
lassi
al Rayleigh-Plesset equation) for the radiusof the bubble 
an be derived from the in
ompressible Navier-Stokes equations equippedwith suitable boundary 
onditions. The behavior of an os
illating bubble as a solution ofthe Navier-Stokes-Korteweg system 
an then be 
ompared to solutions of the Rayleigh-Plesset equation. However, at this point it is not 
lear if this is really 
omparablebe
ause of the assumption of in
ompressibility and the assumption of absen
e of masstransfer. These e�e
ts have to be small to be 
omparable.53



54 CHAPTER 4. CONSTRUCTION OF SOLUTIONS AND BENCHMARKS4.1 Stati
 EquilibriumIn this se
tion we will 
onstru
t radial symmetri
 stati
 equilibrium solutions to theisothermal Navier-Stokes-Korteweg system by means of solving an ordinary boundaryvalue problem numeri
ally. These kind of solutions serve as ben
hmarks for numeri
alalgorithms on the one hand and for determination of the 
oe�
ient λ, that is related tosurfa
e tension, on the other hand. Theorem 3.1.3 provides an asymptoti
 formula forsurfa
e tension that is impli
itly in
luded in the Navier-Stokes-Korteweg model by thethird order term. With the numeri
al 
omputations in this se
tion we approve that thisformula is 
orre
t and the error term in negligible for our numeri
al simulations. Sin
ethe solutions we 
onstru
t in this se
tion do not tou
h the boundary they are only lo
alminimizers of the energy fun
tional investigated in theorem 3.1.3 whereas this theoremmakes a statement about global minimizers. However, this should not make a di�eren
e.A stati
 equilibrium solution of the isothermal Navier-Stokes-Korteweg equations, i.e.,a solution with zero-velo
ity �eld and density independent of time satis�es the ellipti
equation
µ(ρ) − λ∆ρ = cst in Ω, (4.1)where cst is a 
onstant whi
h is unknown in general (Lagrange multiplier). Now let

Ω ⊂ R
n be a ball of radius L with the origin as 
enter. A radial symmetri
 solution(with respe
t to the origin) ρ = ρ(r) of (4.1) ful�lls the equation

µ(ρ) − λ

(

ρrr +
n− 1

r
ρr

)

= cst.In order to get rid of the unknown 
onstant cst we di�erentiate this equation withrespe
t to r. This gives the third order ODE
ρrrr =

(

µ′(ρ)
λ

+
n− 1

r2

)

ρr −
n− 1

r
ρrr in (0, L). (4.2)Thus, we require three boundary 
onditions. The �rst one is the boundary 
ondition(2.53)

ρr(L) = 0. (4.3)The se
ond boundary 
ondition ensures smoothness at the origin
ρr(0) = 0. (4.4)The third one ensures that the Young-Lapla
e law is satis�ed

p(ρ(L)) − p(ρ(0)) = ξ, (4.5)where ξ > 0 is some suitable 
hosen 
onstant. Apriori, we do not know the radius R ofthe bubble (or drop) we 
ompute. After the 
omputation of su
h a pro�le ρ we havethe radius available but we have to de�ne what the radius of a bubble or drop with adi�use interfa
e is.



4.1. STATIC EQUILIBRIUM 55Note, there is some arbitrariness in the de�nition of the radius be
ause of the di�useinterfa
e. We distinguish between bubbles and drops and de�ne their radiuses RB and
RD by

RB = sup{r ∈ (0, L) | ρ(r) ≤ ρ̂},
RD = inf{r ∈ (0, L) | ρ̂ ≤ ρ(r)},where ρ̂ 
an be 
hosen as the arithmeti
 average of the phase boundaries ρv, ρl

or asthe uniquely de�ned in�e
tion point of the pressure fun
tion.Now, using some de�nition of the radius R, we 
an 
al
ulate the surfa
e tension σ thatis asso
iated with the parameter λ by the Young-Lapla
e relation
ξ = (n− 1)

σ

R
.Further we de�ne the di�use interfa
e to 
onsist of the density values of the ellipti
region and possibly a little bit more. Then the interfa
e width w for bubbles and dropsis de�ned by

I = {r ∈ (0, L) | ρ̂v ≤ ρ(r) ≤ ρ̂l},
w = sup I − inf I.The de�nition of the interfa
e I depends on the de�nition of the density states ρ̂v and

ρ̂l. These states 
an be de�ned in terms of the phase boundary states ρv, ρl
or as afra
tion of the Maxwell states. The latter seems to be the better 
hoi
e.The boundary value problem (4.2), (4.3) - (4.5) 
an be solved with every solver fornonlinear ordinary boundary value problems. We use the COLNEW solver [6℄. Theexisten
e and uniqueness of solutions of the nonlinear ordinary boundary value problemis not dis
ussed in this work. However, the numeri
s indi
ate that unique solutions existfor suitable 
hosen parameters.4.1.1 Computation of Stati
 Bubbles and DropsWe de�ne the bubble radius by the in�e
tion point of the pressure fun
tion. Then theradius of the bubble and the drop are equal to ea
h other and the radius 
an be de�nedby the interse
tion point of both pro�les. The parameters are 
hosen as follows

n = 3,

L = 1,

λ = 0.001,

ξ = 0.115.All quantities are dimensionless, as equation of state we 
hoose the dimensionless vander Waals equations of state (2.13), (2.14) for the pressure and the 
hemi
al potentialwith referen
e temperature θref = 0.85. The result (bubble or drop) depends on the



56 CHAPTER 4. CONSTRUCTION OF SOLUTIONS AND BENCHMARKSinitial guess we have to provide for the BVP-solver. Figure 4.1 shows both results, i.e.,the density pro�les for the bubble and the drop. The 
omputations give as results forthe radius R, surfa
e tension σ and interfa
e width w
R = 0.284,

σ = 0.016,

w = 0.121.For the de�nition of the radius we 
hoose the state ρ̂ to be equal to the in�e
tion pointof the pressure fun
tion. Further we have to de�ne the states ρ̂v and ρ̂l for the de�nitionof the interfa
e width w. We de�ne these states by a fra
tion of the Maxwell states
ρ̂v = 1.1 · ρM

v , ρ̂l = 0.9 · ρM
l .
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Figure 4.1: Pro�les of a bubble and a drop and the Maxwell states.4.1.2 Computation of Surfa
e Tension and Interfa
e WidthWe de�ne the radius and the interfa
e of a bubble as in the previous se
tion. Fordi�erent referen
e temperatures and di�erent values of the 
oe�
ient λ we 
omputepro�les of bubbles for n = 3 and radius of the domain L = 1. As we have the pro�lewe 
an determine the surfa
e tension from this 
omputation denoted by σcomp by theformula
p(ρ(L)) − p(ρ(0)) =

n− 1

R
σcomp. (4.6)



4.2. TRAVELING WAVE SOLUTIONS 57Theorem 3.1.3 and equation (3.3) give an asymptoti
 formula for the surfa
e tensionthat in
ludes an error term e(λ) that we want to determine in this se
tion.
p(ρ(L)) − p(ρ(0)) =

n− 1

R
σform + e(λ), (4.7)where σform is given by σform = c0

√
λ, see Se
tion 3.1. Now we 
an use equation (4.6)and equation (4.7) to determine the error term sin
e we have

|e(λ)| =
n− 1

R
|σcomp − σform|. (4.8)The left part of Figure 4.2 shows the dependen
e of σform (solid line) and σcomp (dis
retepoints) on the parameter λ for di�erent values of the temperature θ. The error |e(λ)|is shown in Table 4.1 for some of this parameters. It 
an 
learly be seen that the error
onverges to zero as λ tends to zero and the error is almost negligible even for relativelylarge interfa
es as the one in Figure 4.1. Thus, Formula (3.3) is appli
able for ournumeri
al simulations.
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Figure 4.2: Coe�
ient λ versus surfa
e tension (left) and λ versus interfa
e width(right).The right part of Figure 4.2 shows the dependen
e of the interfa
e width on the 
oef-�
ient λ and the referen
e temperature. For a temperature θ below the 
riti
al tem-perature we 
an 
onstru
t a (rough) formula to approximate the interfa
e width of adimensionless �uid modeled by the Navier-Stokes-Korteweg equations.
w(θ, λ) = 5.4 · θ2 ·

√
λ. (4.9)This formula is simply obtained by 
urve �tting using the 
omputed values shown inthe right part of Figure 4.2. As noted before, this is a very rough formula but 
an beuseful to 
onstru
t initial data.4.2 Traveling Wave SolutionsWe 
ompute traveling wave solutions of the isothermal Navier-Stokes-Korteweg systemthat are supposed to exist. The existen
e of su
h solutions is only 
ompletely proven
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θ = 0.75 θ = 0.85

λ error EOC error EOC7.8472e-04 3.9974e-03 3.0457e-036.2835e-04 2.8642e-03 1.500 2.2464e-03 1.3705.0314e-04 2.0633e-03 1.476 1.6292e-03 1.4454.0288e-04 1.4888e-03 1.469 1.1750e-03 1.4713.2260e-04 1.0723e-03 1.477 8.7254e-04 1.3392.5831e-04 7.7166e-04 1.480 6.2802e-04 1.4802.0684e-04 5.5450e-04 1.487 4.5193e-04 1.4811.6562e-04 3.9157e-04 1.565 3.1612e-04 1.6081.3262e-04 2.7951e-04 1.517 2.2839e-04 1.4631.0619e-04 2.0384e-04 1.421 1.6636e-04 1.4268.5032e-05 1.4618e-04 1.496 1.1965e-04 1.4836.8088e-05 1.0768e-04 1.376 8.7439e-05 1.4115.4520e-05 7.5755e-05 1.582 6.2637e-05 1.5014.3656e-05 5.6876e-05 1.290 4.5604e-05 1.428Table 4.1: Error and EOC.for a modi�ed system. For the unmodi�ed system we have proven only the �rst step(without vis
osity) in Se
tion 3.2. However, without vis
osity these pro�les su�er a la
kof stability and are therefore useless for quantitative ben
hmark tests. The numeri
al
omputations below indi
ate that even with vis
osity these kinds of solutions exist butthe existen
e is not proven theoreti
ally, see Se
tion 3.2 espe
ially Conje
ture 3.2.4 and
orollary 3.2.5.We 
onsider the Navier-Stokes-Korteweg system in one spa
e dimension
ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p(ρ))x = εuxx + λ(ρρxx − 1
2ρ

2
x)x,

(4.10)and we are interested in traveling wave solutions of (4.10), i.e. smooth solutions of theform
ρ(x, t) = ρ̃(x− st),

u(x, t) = ũ(x− st),that 
onne
ts left states (ρ−, u−) and right states (ρ+, u+) in di�erent phases thatsatisfy the Rankine-Hugoniot relation and propagate with a 
onstant speed s (′ denotesthe derivative with respe
t to x− st)
ρ̃(±∞) = ρ±, ũ(±∞) = u±, ρ̃′(±∞) = 0. (4.11)This ansatz leads to a se
ond order ODE for ρ̃ that we write as a system of �rst orderequations

(

ρ̃
ρ̃′

)′
= F (ρ̃, ρ̃′) :=

(

ρ̃′

1
λρ̃

(

λ
2 (ρ̃′)2 + εm

ρ̃2 ρ̃
′ + m2

ρ̃ + p(ρ̃) +ms− j
)

)

, (4.12)
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onstants m and j 
oming from the Rankine-Hugoniot relation. For
ρ− and ρ+ 
hosen 
lose to the Maxwell states traveling wave solutions may exist butthe parameters λ and ε have to satisfy a spe
ial ratio depending on the left and rightstates. see Se
tion 3.2 espe
ially Conje
ture 3.2.4 and 
orollary 3.2.5. This means if we�x left and right hand states and the parameter λ we have to 
ompute the parameter εsu
h that a traveling wave solution 
an exist. For this purpose we add the equation

ε′ = 0. (4.13)For the numeri
al 
omputation we have to trun
ate the interval (−∞,∞) to some �niteinterval (τ−, τ+) and introdu
e suitable boundary 
onditions, we apply the methodintrodu
ed in [43℄ and su

essfully applied in [44℄, [39℄. An exa
t solution of (4.12),(4.11) has to satisfy
(

ρ̃
ρ̃′

)

(τ−) ∈Wu(ρ−, 0) and (

ρ̃
ρ̃′

)

(τ+) ∈Ws(ρ
+, 0),where Wu and Ws denote the lo
al unstable and stable manifolds of F that are onedimensional manifolds when ρ− and ρ+ are 
lose to the Maxwell states. The 
ompu-tation of the unstable and stable manifolds is as di�
ult as the 
omputation of thetraveling wave solution itself but they 
an be approximated by their tangent spa
es andthe tangent spa
es 
an be determined by the eigenspa
es of the Ja
obian of F . Hen
e,we introdu
e the boundary 
onditions

(

ρ̃
ρ̃′

)

(τ−) ∈ T(ρ−,0)Wu(ρ−, 0) and (

ρ̃
ρ̃′

)

(τ+) ∈ T(ρ+,0)Ws(ρ
+, 0). (4.14)If ρ̃ is a solution of (4.12), (4.11) then ρ̃(· + ξ) is also one for all ξ ∈ R. We single outone of these solutions by the relation

∫ τ+

τ−

ρ̃(τ) − ρ∗(τ)dτ = ξ, (4.15)where ρ∗ is a referen
e obje
t, for example the jump from ρ− to ρ+. Now we have threeequations (4.12), (4.13) and three boundary 
onditions (4.14), (4.15). This nonlinearboundary value problem 
an be solved with every BVP-solver but the 
ru
ial part isto �nd a good initial guess. A smeared out jump is usually a good 
andidate. For the
omputations below we have applied the COLNEW BVP-solver [6℄.We have 
omputed two di�erent pro�les. One belongs to a 
ompressive wave and theother to an under
ompressive wave. For the de�nition of 
ompressive and under
om-pressive waves see standard textbook su
h as [34℄. The under
ompressive wave is 
on-sidered to be typi
al for a propagating phase boundary whereas the 
ompressive wave isless typi
al sin
e phase boundaries usually propagate with a subsoni
 speed. Figure 4.3shows both pro�les. For the 
omputation the parameter λ is �xed to a 
onstant and thevis
osity parameter ε is 
omputed su
h that a traveling wave solution exist a

ording tothe additional equation (4.13), i.e., it is di�erent for every pro�le. For the two pro�leswe have the following parameters
λ = 0.001,

εc = 0.0056977, sc = −1.25273,

εu = 0.0136644, su = −0.32141,
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osity parameter and the speed of propagation forthe 
ompressive and under
ompressive pro�le respe
tively.
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Figure 4.3: Pro�les of an under
ompressive wave (left) and a 
ompressive wave (right).
4.3 Towards Stati
 EquilibriumIn the two previous se
tions we have provided exa
t stati
 equilibrium solutions andplanar dynami
al solutions. In this se
tion we provide an initial 
on�guration su
h thatthe 
orresponding solution of the NSK system in
ludes multidimensional dynami
s,
hanges in topology and 
onverges to some nontrivial stati
 equilibrium as time tendsto in�nity. However, it is not possible to give an exa
t solution that shows su
h a
ompli
ated behavior, but we 
an 
onstru
t a 
on�guration 
onsisting of three bubblesof di�erent sizes su
h that the smaller bubbles vanish and the larger bubble grows and�nally 
onverges to a stati
 bubble.Figure 4.4 illustrates this behavior. The �rst pi
ture shows the initial data at t = 0
onsisting of three bubbles (blue) in the liquid (red) with a zero velo
ity �eld. This
on�guration is not a steady state. Hen
e, we have some dynami
al 
hanges shown inthe se
ond pi
ture with a nonzero velo
ity �eld (not shown). Finally the third pi
tureshows the stati
 equilibrium at t = ∞.
Figure 4.4: Initial 
on�guration of three bubbles of di�erent size, intermediate statewith two bubbles and �nal stati
 equilibrium solution 
onsisting of one large bubble.
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annot 
ompare a numeri
al approximation with an exa
t solution but we 
an testthe approximate solution for(i) Energy de
ay on the dis
rete level as it is satis�ed on the 
ontinuous level, seeLemma 2.7.1.(ii) Vanishing of kineti
 energy as time tends to in�nity.(iii) The equilibrium 
ondition (4.1) as time approa
hes in�nity.For the latter test we 
an monitor the fun
tion
t 7→ ||∇ (µ(ρ(·, t)) − λ∆ρ(·, t)) ||L2(Ω)whi
h should 
onverge to zero as t→ ∞.Note: The energy de
ay equation is also satis�ed in the 
ase where the 
omputationaldomain Ω is an n-dimensional 
ube and the Navier-Stokes-Korteweg system is equippedwith periodi
 boundary 
onditions.For the 
onstru
tion of the initial 
on�guration at a given �xed temperature below the
riti
al temperature of the �uid we use the Maxwell values as liquid and vapor statesand Formula (4.9) for the width of the interfa
e. Liquid and vapor states are smoothly
onne
ted by a smeared out interfa
e using the tanh fun
tion.4.4 Formulas for the Bubble RadiusIn 
ontrast to the �rst se
tion of this 
hapter we 
onsider spheri
al symmetri
 gas (notne
essary the vapor of the liquid) bubbles that os
illate in a liquid (instead of stayingin equilibrium). The os
illations of the bubble 
an be 
aused by pressure perturbationsin the liquid or by pres
ribing the velo
ity of the liquid at 
ertain points. The former
orresponds to the physi
al appli
ation of a sound �eld, the latter to a variation of the
ontainer wall that holds the liquid. In order to derive a simple formula for the time-dependent radius of an os
illating gas bubble we assume the liquid to be in
ompressibleand negle
t mass transfer over the interfa
e, i.e., no phase transformation takes pla
e.Therefore the formulas apply only to vapor bubbles if the amount of mass transfer overthe interfa
e is small. The goal is, provided that one of the formulas is appli
able, to(roughly) predi
t the behavior of an os
illating and/or 
ollapsing bubble in a simple way.For the appli
ability of these formulas see the numeri
al experiments and dis
ussion inSe
tion 9.12.4.4.1 Rayleigh-Plesset EquationThe derivation of the 
lassi
al Rayleigh-Plesset formula follows that in [16℄. We startfrom the in
ompressible Navier-Stokes equations and a free boundary 
ondition at thebubble interfa
e, (see standard textbooks, e.g. [79℄). The aim is to derive an expression



62 CHAPTER 4. CONSTRUCTION OF SOLUTIONS AND BENCHMARKS
Γt

R(t)

gas

liquid

liquid

liquid

Figure 4.5: Gas bubble in in
ompressible liquid of radius R(t).for bubble radius R(t) whi
h will depend on time.We assume that the motion of the liquid in the domain Ωt = R
n\BR(t)(0), n ≥ 2 obeysthe in
ompressible Navier-Stokes Equations

ut + (∇u)u +
1

ρl
∇p =

µl

ρl
∆u, (4.16)

∇ · u = 0, (4.17)where ρl > 0, µl > 0 are the 
onstant density and 
onstant vis
osity of the liquid.Further we assume that the Young-Lapla
e law is satis�ed at the free boundary Γt =
∂BR(t)(0).

(P l − P g)n = (n− 1)σkmn on Γt. (4.18)
P g = −pgI and P l = −pI +µ

(

∇u + ∇uT
) are the stress tensors of the gas and liquidphase respe
tively, km = 1

R(t) the mean 
urvature of the free boundary, σ > 0 the surfa
etension and pg the pressure of the gas whi
h is assumed to be rotationally symmetri
. Weprovide rotational symmetri
 (with respe
t to the origin) initial values for the velo
ityand we assume that the solution of the problem stays rotational symmetri
 for all times
t > 0. Thus, we seek for rotational symmetri
 solutions of the in
ompressible Navier-Stokes equations of the form

u(x, t) = v(r, t)
x

|x| , p(x, t) = p̃(r, t), r = |x|,with s
alar fun
tions v and p̃. Using this stru
ture of the velo
ity and the divergen
e
onstraint (4.17) we get
0 = rn−1∇ · u(x, t) = rn−1

(

vr(r, t) +
n− 1

r
v(r, t)

)

= (rn−1v(r, t))r .This means
v(r, t) =

ṽ(t)

rn−1
. (4.19)
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tion ṽ that does not depend on the spatial variable. The momentumequation (4.16) for rotational symmetri
 solutions reads
(

vt + vvr +
1

ρl
p̃r −

µ

ρl

[

vrr + (n− 1)
(vr

r
− v

r2

)]

)

x

|x| = 0,and together with equation (4.19)
ṽ′(t)
rn−1

− (n− 1)
ṽ(t)2

r2n−1
+

1

ρl
p̃r(r, t) = 0.Note that the vis
ous term vanishes. For the velo
ity at the interfa
e we have therelation

R′(t) = v(R(t), t) =
ṽ(t)

R(t)n−1
. (4.20)With this identity and the equation above we get

R(t)n−1R′′(t) + (n− 1)R(t)n−2R′(t)2

rn−1
− (n− 1)

(

R(t)n−1R′(t)
)2

r2n−1
+

1

ρl
p̃r(r, t) = 0.Integrating this equation from R(t) to L > R(t) with respe
t to r gives

(

R(t)n−1R′′(t) + (n− 1)R(t)n−2R′(t)2
)

L
∫

R(t)

dr
rn−1

−1
2(R′(t))2

(

1 −
(

R(t)
L

)2n−2
)

+ 1
ρl

(p̃(L, t) − p̃(R(t), t)) = 0. (4.21)We will repla
e the term p(R(t), t) using the boundary 
ondition at the interfa
e. With
km = 1

R(t) and equation (4.19) boundary 
ondition (4.18) redu
es to
p̃(R(t), t) = p̃g(R(t), t) − σ(n− 1)

1

R(t)
− 2µ(n− 1)

R′(t)
R(t)

.Plugging this relation into equation (4.21) we get for spa
e dimension n = 2

(

R(t)R′′(t) +R′(t)2
)

log

(

L

R(t)

)

− 1

2
R′(t)2

(

1 − R(t)2

L2

)

=
1

ρl

(

p̃g(R(t), t) − p̃(L, t) − σ
1

R(t)
− 2µ

R′(t)
R(t)

)

, (4.22)and for n = 3

(

R(t)R′′(t) + 2R′(t)2
)

(

1 − R(t)

L

)

− 1

2
R′(t)2

(

1 − R(t)4

L4

)

=
1

ρl

(

p̃g(R(t), t) − p̃(L, t) − 2σ
1

R(t)
− 4µ

R′(t)
R(t)

)

. (4.23)
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ase n = 3 and L >> R(t) we 
an negle
t terms in (R(t)
L

)k
, k ≥ 1 and theabove equation be
omes

R(t)R′′(t) +
3

2
R′(t)2 =

1

ρl

(

p̃g(R(t), t) − p̃(L, t) − 2σ
1

R(t)
− 4µ

R′(t)
R(t)

)

, (4.24)whi
h is the 
lassi
al Rayleigh-Plesset equation, see for example [16℄. The initial valueproblem for (4.22), (4.23) and (4.24) 
an be solved with every ODE solver. It remainsto pres
ribe the pressure of the gas at the interfa
e p̃g, for example by a barotropi
 orisothermal equation of state, and the pressure in the liquid, whi
h is the input for thisequation.4.4.2 Vibrating Container WallWe 
onsider a spheri
al 
ontainer of radius L that holds the liquid and we assume thatthe 
ontainer wall Γw
t vibrates symmetri
ally, i.e., Γw

t = ∂BL+x(t)(0), where the fun
tion
x models the movement of the boundary.

liquid

Γt

x(t)

Γw
t

L

gas
R(t)

Figure 4.6: Gas bubble inside a vibrating 
ontainer.In addition to (4.16), (4.17) and (4.18) we introdu
e a boundary 
ondition for thevelo
ity at the 
ontainer wall Γw
t

u · n = x′(t),

u · τ i = 0, i = 1, . . . , n− 1,here τ i denote n− 1 linear independent tangential ve
tors.This boundary 
ondition and expression (4.19), whi
h is a 
onsequen
e of the in
om-pressibility 
onstraint (4.17) give the relation
x′(t) = v(L+ x(t), t) =

ṽ(t)

(L+ x(t))n−1
.This and equation (4.20) result in the formula

R′(t) =

(

L+ x(t)

R(t)

)n−1

x′(t). (4.25)



4.4. FORMULAS FOR THE BUBBLE RADIUS 65This formula is simply given by the in
ompressibility 
onstraint and the radius of thebubble does not depend on the state of the gas as in the Rayleigh-Plesset equation. Butthe for
e that is ne
essary to a
hieve the variation x(t) does. It also depends on themass of the liquid.
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Chapter 5First Order A

urate S
hemes
In this 
hapter we will 
onstru
t basi
 �rst order s
hemes for the numeri
al approxima-tion of solutions of the isothermal Navier-Stokes-Korteweg system. The system itself isa system in divergen
e form. Therefore one would naturally dis
retize it in a 
onser-vative form. We will see that the dis
retization in 
onservative form leads to severalproblems. On the one hand the appearan
e of strange velo
ities inside the interfa
ebetween the liquid and vapor phases. Similar problems were observed in [64℄ and solvedin [65℄ by dis
retizing 
ertain terms in a non
onservative fashion. On the other hand anenergy de
ay with time is not satis�ed on the dis
rete level as it is on the 
ontinuouslevel, see Lemma 2.7.1.In order to get rid of these problems we will dis
retize the pressure and the Kortewegterm in the system in a non
onservative form. This results in a well balan
ed s
heme,i.e., a s
heme that is able to preserve a stati
 equilibrium solution on the dis
rete level.We will see that the approximate solutions generated by this s
heme will 
onverge to the
orre
t solution in our test 
ases and the total energy de
ays with time on the dis
retelevel as it does on the 
ontinuous level. This is the s
heme we will generalize to higherorder s
hemes by appli
ation of the Lo
al Dis
ontinuous Galerkin method in the next
hapter.As a third s
heme we present a relaxation s
heme given in [29℄, [30℄. This s
heme isdesigned to preserve the stati
 equilibrium but the test 
ase with the traveling wavesolution shows that it fails to produ
e the dynami
s 
orre
tly. This s
heme 
an only beused to 
onstru
t nontrivial stati
 equilibrium solutions.Throughout this 
hapter we make the following assumptions:

• The vis
ous part in the isothermal Navier-Stokes-Korteweg system ∇ · τ is equalto ε∆u for simpli
ity. In fa
t, the vis
ous term redu
es to ε∆u for a spe
ial 
hoi
eof the vis
osity parameters µ and ν, but this 
hoi
e may not make sense from thephysi
al point of view.
• For notational simpli
ity we 
onsider only uniform Cartesian meshes. Ea
h 
oor-dinate dire
tion is subdivided into N parts. Therefore the mesh 
onsists of Nd
ells in total (where d denotes the spa
e dimension). The width of a 
ell is h > 067
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h 
oordinate dire
tion.
• Unless otherwise noted, we 
onsider periodi
 boundary 
onditions in every 
oor-dinate dire
tion. The treatment of other boundary 
onditions is done in the next
hapter.Thus, the system to solve is

ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρuuT ) + ∇p(ρ) = ∇ · K + ε∆u,
in Ω × (0, T ) (5.1)and Ω must be an d-dimensional 
ube be
ause of the restri
tion on the underlying mesh.For simpli
ity we always 
hoose the unit 
ube Ω = [−1, 1]d.The three s
hemes we dis
uss in the next se
tions belong to the 
lass of Finite Volumes
hemes. Finite Volume s
hemes are 
hara
terized by their spe
i�
 numeri
al �uxes.However, on uniform Cartesian meshes a Finite Volume s
heme has an equivalent FiniteDi�eren
e s
heme. In the 
ase of the �rst two s
hemes we will use the Finite Di�eren
eformulation for simpli
ity and omit the de�nition of numeri
al �uxes. The general Fi-nite Volume formulation of the well balan
ed s
heme (the se
ond s
heme) on arbitrarynon
onform meshes 
an be found in the next 
hapter. For more information on FiniteDi�eren
e and Finite Volume s
hemes see standard textbooks su
h as [51℄, [52℄, [76℄, [81℄.5.1 A S
heme in Conservative FormIn this se
tion we 
onstru
t a basi
 �rst order s
heme to solve the Navier-Stokes-Korteweg (5.1) system numeri
ally. The resulting 
onservative s
heme is based onthe Lax-Friedri
hs �ux for the �rst order part of the equation. We have 
hosen theLax-Friedri
hs �ux be
ause it does not require hyperboli
ity of the �rst order part ofthe equation in the whole state spa
e expli
itly as s
hemes based on Riemann-Solversor Flux-Ve
tor-Splitting s
hemes do. The vis
ous and Korteweg terms in the equationare dis
retized by 
entral di�eren
es in 
onservative form.The test 
ases with the traveling wave solution and the stati
 equilibrium solution in-di
ate that dis
rete solution 
onverges to the 
orre
t solution. However, we observe theappearan
e of strange velo
ity �elds 
lose to the interfa
e and on the dis
rete level wedo not have an energy de
ay as for a smooth analyti
al solution. Similar problems wereobserved in [64℄. In [64℄ these velo
ities are 
alled parasiti
 
urrents.The idea of the Lax-Friedri
hs s
heme is to stabilize the s
heme by adding an arti�
ialvis
osity that tends to zero with the mesh size h, see standard textbooks su
h as [52℄,[76℄, [81℄. Thus, it performs the vanishing vis
osity method on the dis
rete level.

ρt + ∇ · (ρu) = α h
2 ∆ρ,

(ρu)t + ∇ · (ρuuT ) + ∇p(ρ) = α h
2 ∆(ρu) + ∇ · K + ε∆u,

(5.2)



5.1. A SCHEME IN CONSERVATIVE FORM 69where the parameter α is 
hosen to be equal to the fastest wave speed.Note: The arti�
ial vis
osity in the momentum equation 
an be omitted when theunderlying mesh is �ne enough su
h that the natural vis
osity dominates. The arti�
ialvis
osity in the 
ontinuity equation is important for the 
onvergen
e to the 
orre
tsolution (at least in 
ombination with the Dis
ontinuous Galerkin approa
h). In Se
tion9.4 we will see that without this vis
osity the approximate solution generated by thehigher order well balan
ed s
heme (des
ribed in the next 
hapter) does not 
onvergeto the 
orre
t solution. The same is true when the Lax-Friedri
hs type s
heme isgeneralized to higher order s
hemes.We present the 
omplete numeri
al algorithm in one spa
e dimension for simpli
ity, theextension to two spa
e dimensions is then straightforward.
The Numeri
al Algorithm in 1dIn the following we 
onsider a uniform mesh of N 
ells de�ned by the N + 1 points

x− 1

2

< x 1

2

< . . . < xN− 1

2and the (uniform) diameter of a 
ell is denoted by h. In one spa
e dimension theKorteweg tensor K redu
es to the s
alar quantity
K = λ

(

ρρxx − 1

2
ρ2

x

)

.

We provide dis
rete initial data by proje
tion
ρ0

i =
1

h

∫ x
i+1

2

x
i− 1

2

ρ0(x) dx,

(ρu)0i =
1

h

∫ x
i+1

2

x
i− 1

2

(ρ0u0)(x) dx,for i = 0, . . . , N − 1. The numeri
al s
heme is then de�ned by the update pro
edure



70 CHAPTER 5. FIRST ORDER ACCURATE SCHEMESfrom the n-th to the (n+ 1)-th time step.
Kn

i =
λ

h2

(

ρn
i (ρn

i+1 − 2ρn
i + ρn

i−1) −
1

8
(ρn

i+1 − ρn
i−1)

2

)

,

un
i =

(ρu)ni
ρn

i

,

ρn+1
i = ρn

i − ∆t

2h

(

(ρu)ni+1 − (ρu)ni−1 − α(ρn
i+1 − 2ρn

i + ρn
i−1)

)

,

(ρu)n+1
i = (ρu)ni − ∆t

2h

(

(ρu)ni+1u
n
i+1 − (ρu)ni−1u

n
i−1 + p(ρn

i+1) − p(ρn
i−1)

)

+
∆t

2h

(

Kn
i+1 −Kn

i−1

)

+
∆t

2h
α
(

(ρu)ni+1 − 2(ρu)ni + (ρu)ni−1

)

+
∆t

h2
ε
(

un
i+1 − 2un

i + un
i−1

)

.In the s
heme given above we 
hoose α to be equal to the fastest wave speed in theliquid and vapor phases
α = max

i

{

|un
i ±

√

p′(ρn
i )|
}

,where the maximum is built only over the values in the liquid and vapor phases sin
ethe sound speed is imaginary in the ellipti
 region and the above statement does notmake sense there. The time step size ∆t has to be small enough to guarantee stabilityof the s
heme. It is not 
lear how to 
hoose it exa
tly but we observed that it is oforder O(h2), similar to the time step size of the relaxation s
heme, see Se
tion 5.3 and(5.22), (5.23). The parameter α and the time step size ∆t may vary between the timesteps. For notational simpli
ity this dependen
e is omitted.Numeri
al ResultsThis paragraph is dedi
ated to numeri
al tests with the 
onservative s
heme presentedabove. We apply the �rst three test 
ases proposed in Chapter 4. The test 
ase withthe under
ompressive Traveling Wave solution is performed in one spa
e dimension with�xed 
onstant boundary states and the test 
ases Stati
 Equilibrium and Towards Stati
Equilibrium are performed in two spa
e dimensions with periodi
 boundary 
onditions.Throughout this 
hapter the NSK system is equipped with a dimensionless van derWaals equation of state (2.13) where the referen
e temperature is �xed to θref = 0.85.The 
omputational domain in one spa
e dimension is the interval [−1, 1] and in twospa
e dimensions the square [−1, 1]2.



5.1. A SCHEME IN CONSERVATIVE FORM 71Test Case: Traveling Wave SolutionFor this one dimensional test we have 
hosen the under
ompressive traveling wave so-lution we 
omputed in Se
tion 4.2. The 
orresponding parameters are
λ = 0.001,

ε = 0.01366,

s = −0.3214,where s denotes the speed the wave travels with to the left. We 
ompare the values ofthe approximate density and the momentum with the values of the exa
t solution attime T = 0.5 (whi
h is the pro�le shifted to the left by s · T ). For this test we 
annotuse periodi
 boundary 
onditions. Hen
e, we use the values that 
ome from the exa
tsolution as boundary values. The underlying equidistant meshes vary between n = 200and n = 1800 
ells.The approximate solution on the �nest grid n = 1800 is plotted in Figure 5.1. Di�eren
esbetween exa
t and numeri
al solution seem to be small for this mesh size and 
annotbe seen from the plot.
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Figure 5.1: Exa
t and approximate traveling wave solution generated by the 
onserva-tive s
heme for n = 1800.Table 5.1 shows the 
onvergen
e 
hara
teristi
 of the 
onservative s
heme. Errors indensity and momentum are shown separately for di�erent mesh sizes. The EOC (ex-perimental order of 
onvergen
e) 
learly demonstrates �rst order 
onvergen
e.Test Case: Stati
 EquilibriumFor the test with a stati
 equilibrium initial 
on�guration we 
hoose a density pro�le
omputed in Se
tion 4.1. For this test the 
orre
t 
omputational domain is a ball ofradius one with boundary 
onditions (2.51) and (2.53). Nevertheless we use the square
Ω = [−1, 1]2 as 
omputational domain and apply periodi
 boundary 
onditions forsimpli
ity. This should not make a di�eren
e sin
e the density values in the liquid nearthe boundary are equal to some 
onstant (up to the roundo� error). The parameter λ isalready 
hosen by the 
hoi
e of the density pro�le. The vis
osity parameter is arbitrary.We 
hoose it a

ording to the parameters in the test with the under
ompressive wave
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ρ ρuh L2-error EOC L2-error EOC1.0000e-02 2.4799e-02 4.4079e-025.0000e-03 1.6488e-02 0.589 2.2129e-02 0.9943.3333e-03 1.2221e-02 0.739 1.4832e-02 0.9872.5000e-03 9.6790e-03 0.811 1.1173e-02 0.9852.0000e-03 8.0036e-03 0.852 8.9692e-03 0.9841.6667e-03 6.8193e-03 0.878 7.4953e-03 0.9851.4286e-03 5.9388e-03 0.897 6.4395e-03 0.9851.2500e-03 5.2590e-03 0.911 5.6456e-03 0.9851.1111e-03 4.7183e-03 0.921 5.0267e-03 0.986Table 5.1: L2-errors and EOC for the approximate traveling wave solution generatedby the 
onservative s
heme.above.

λ = 0.001,

ε = 0.01366.The resolution of the n×n Cartesian meshes varies between n = 100 and n = 800. The(
omputational) time at the end of the 
omputation is T = 20.0.Table 5.2 shows the 
onvergen
e 
hara
teristi
 of the 
onservative s
heme at a stati
equilibrium 
on�guration. The error seems to be not in the asymptoti
 regime at thesemesh sizes. The EOC should approa
h the value 1 as h tends to zero.density and momentumh total L2-error EOC2.0000e-02 3.8279e-021.0000e-02 1.4162e-02 1.4356.6667e-03 1.2013e-02 0.4065.0000e-03 1.0672e-02 0.4114.0000e-03 9.5017e-03 0.5213.3333e-03 8.5101e-03 0.6052.8571e-03 7.6804e-03 0.6652.5000e-03 6.9851e-03 0.711Table 5.2: Test Case: Stati
 Equilibrium. Total L2-error and EOC for the approximatesolution generated by the 
onservative s
heme.In Figure 5.2 the density distribution at 
omputational time T = 20.0 is shown. Thedensity values vary approximately between 0.3 (blue) and 1.8 (red). These values are
lose to the Maxwell values for the 
hosen equation of state. The velo
ity �eld (whi
his equal to zero for all times in the exa
t solution) is represented by the bla
k arrows.This display style is used throughout this 
hapter. The approximate solution is very
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lose to a dis
rete equilibrium, i.e., there are almost no 
hanges in time, but we 
an seea velo
ity �eld inside the interfa
e that is of order O(h). The s
aling of the velo
ity �eldis the same in all sub-�gures and the sequen
e of 
omputations with n = 100, 200, 400shows that this velo
ity �eld 
onverges to zero with h.
Figure 5.2: Test Case: Stati
 Equilibrium. Density and velo
ity �eld produ
ed by the
onservative s
heme at T = 20.0 for n = 100, 200, 400.The question that arises is how 
an this be a dis
rete steady state 
on�guration. So wehave to ask why density and momentum are independent of time. For the density this
an be seen by rewriting the mass balan
e equation from equation (5.2) in the form

ρt + ∇ ·
(

ρu − α h

2
∇ρ
)

= 0.The gradient of the density points from the vapor bubble to the liquid phase. Hen
e,with a velo
ity �eld shown in Figure 5.2 the blue term in the above equation 
an
els outthe red term (arti�
ial vis
osity) and therefore the density does not depend on time.From the above equation it 
an 
learly be seen that the velo
ity �eld inside the interfa
emust be of order O(h). For the momentum this is more 
ompli
ated. It is essentiallydue to the stru
ture of the pressure and Korteweg term.Su
h a velo
ity �eld inside the interfa
e 
an 
ause problems espe
ially in the 
ase whenan interfa
e is in 
onta
t with a solid wall and boundary 
ondition (2.51) is imposed su
hthat the velo
ity must vanish at the boundary. The velo
ity �eld inside the interfa
e
an then 
ause instabilities in the numeri
al solution sin
e the approximate solutionis not 
onsistent with the pres
ribed boundary 
ondition. Similar velo
ity �elds (so
alled parasiti
 
urrents) were observed in [64℄. In [65℄ it was shown that these parasiti

urrents 
an be eliminated when the pressure and Korteweg term are dis
retized in anon
onservative fashion. The non
onservative dis
retization is also one of the basi
ideas of the well balan
ed s
heme presented in the next se
tion.Test Case: Towards Stati
 EquilibriumThis is the test 
ase for testing the qualitative behavior of the approximate solutionsprodu
ed by the numeri
al s
hemes su
h as de
ay of the total energy, vanishing velo
ity�eld and the equilibrium 
ondition at the dis
rete level. The 
omputational domainis again the periodi
 square Ω = [−1, 1]2 and the 
apillarity and vis
osity parametersare 
hosen as in the last test 
ase λ = 0.001 and ε = 0.01366. The rest of the settingis as proposed in Se
tion 4.3. The Cartesian n × n meshes have a resolution of n =
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100, 200, 400 and the approximate solutions are 
omputed up to 
omputational time
T = 20.0. For this test 
ase at this time there is still a little bit movement but 
hangesin topology are 
ompleted and the solution is not too far from a stati
 equilibrium state.Figure 5.3 shows the initial data and the approximate solution at times t = 1.12 and
t = 20.0. The two smaller bubbles vanish and the larger on grows as time evolves.Finally the solution approa
hes an equilibrium state on the dis
rete level. Again, therising velo
ity �eld inside the interfa
e 
an 
learly be seen.

Figure 5.3: Towards stati
 equilibrium test. Density and velo
ity �eld produ
ed by the
onservative s
heme at t = 0.0, 1.12, 20.0 for n = 200.The time dependent behavior of the total energy and the kineti
 energy is presented inFigure 5.4 for three 
omputations with di�erent mesh sizes (n = 100, 200, 400). Onthe dis
rete level the total energy is not a monotoni
ally de
reasing fun
tion in timeas on the 
ontinuous level. But the os
illations are smaller on �ner grids su
h that we
an hope for 
onvergen
e to the exa
t solution (for h → 0), for whi
h total energy is ade
reasing fun
tion of time. The right part of the �gure shows that the kineti
 energydoes not 
onverge to zero as time tends to in�nity. This is due to the velo
ity �eldinside the interfa
e.
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Figure 5.4: Total energy and kineti
 energy for the 
onservative s
heme. n =
100, 200, 400.Finally, the value κ does not approa
h a 
onstant state as time evolves as it does onthe 
ontinuous level when the solution approa
hes a stati
 equilibrium state. This 
anbe seen in �gure 5.5 be
ause the gradient of κ does not 
onverge to zero.
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Figure 5.5: Gradient of κ for the 
onservative s
heme. n = 100, 200, 400.5.2 A Well Balan
ed S
hemeThe problems at stati
 equilibrium 
on�gurations we have seen in the previous se
tionwere 
aused by the arti�
ial vis
osity (that is ne
essary to stabilize the numeri
al so-lution) on the one hand and on the other hand by the stru
ture of the pressure andKorteweg term in the momentum equation. In this se
tion we dis
retize these bothterms together in non
onservative form by appli
ation of the theory of non
onservativeprodu
ts, see [36℄ and Se
tion A.4. This approa
h leads in a natural way to a wellbalan
ed s
heme, i.e., a s
heme that is able to preserve a stati
 equilibrium solutionon the dis
rete level. In general the appli
ation of non
onservative dis
retizations 
an
ause problems. It is well known that non
onservative s
hemes 
an 
onverge to wrongsolutions when dis
ontinuities are present [60℄. This is not a problem in our 
ase sin
esolutions are supposed to be su�
iently smooth (at least not dis
ontinuous). The test
ases show that the numeri
al solutions 
onverge to the exa
t solutions and the energyde
ays on the dis
rete level. This s
heme seems to be the most promising s
heme to
onstru
t approximate solutions of the NSK-system and therefore we will generalize thiss
heme to higher order s
hemes by appli
ation of the Dis
ontinuous Galerkin approa
hin Chapter 6.The NSK System in Non
onservative FormThe s
heme is based on the equivalent non
onservative reformulation of the NSK system
ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρuuT ) + ρ∇κ(ρ,∆ρ) = ε∆u,
in Ω × (0, T ), (5.3)where the variable κ is de�ned by the relation

κ = κ(ρ,∆ρ) = µ(ρ) − λ∆ρ (5.4)and µ denotes the 
hemi
al potential. In order to see that this is an equivalent formu-lation we refer to Lemma 2.7.2. The idea of the numeri
al s
heme is to add a linearvis
osity term s
aled with the mesh size to the momentum equation (the same as in the
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hs type s
heme in the previous se
tion) and a nonlinear vis
osity 
ombinedwith a fourth order term
α1 h

2
∆κ =

α1 h

2

[

∇ ·
(

p′(ρ)
ρ

∇ρ
)

− λ∆∆ρ

]

to the 
ontinuity equation. From the above equation we 
an see that the nonlinearvis
osity has a positive sign in the vapor and liquid phases and the fourth order termhas also the 
orre
t sign to stabilize the s
heme. The resulting system in
luding thearti�
ial vis
osity then be
omes
ρt + ∇ · (ρu) = α1 h

2 ∆κ,

(ρu)t + ∇ · (ρuuT ) + ρ∇κ(ρ,∆ρ) = α2 h
2 ∆(ρu) + ε∆u.

(5.5)
The advantage of the nonlinear vis
osity in 
ombination with the fourth order term isthat it vanishes at stati
 equilibrium be
ause κ is a 
onstant at the stati
 equilibrium,see Lemma 2.7.2. Thus, dis
retizing the above equation by 
entral di�eren
es resultsin a s
heme that preserves the stati
 equilibrium on the dis
rete level, i.e., it is a wellbalan
ed s
heme. The parameter α2 should be 
hosen to be equal to the fastest wavespeed (as the parameter α in the previous se
tion) and then parameter α1 should be
hosen su
h that α1

p′(ρ)
ρ is of the size of α2.Note: Again, the arti�
ial vis
osity in the momentum equation 
an be omitted whenthe underlying mesh is �ne enough su
h that the natural vis
osity dominates.Below we give the 
omplete numeri
al algorithm in one spa
e dimension for simpli
ity.The s
heme is based on spa
e dis
retization by 
entral di�eren
es and appli
ation ofthe expli
it Euler s
heme for time integration. The extension to two or more spa
edimensions is straightforward.



5.2. A WELL BALANCED SCHEME 77The Numeri
al Algorithm in 1dAs in the previous se
tion we provide dis
rete initial data by proje
tion. Then theupdate from one time step to another de�nes the 
omplete algorithm.
κn

i = µ(ρn
i ) − λ

h2
(ρn

i+1 − 2ρn
i + ρn

i−1),

un
i =

(ρu)ni
ρn

i

,

ρn+1
i = ρn

i − ∆t

2h

(

(ρu)ni+1 − (ρu)ni−1 − α1(κ
n
i+1 − 2κn

i + κn
i−1)

)

,

(ρu)n+1
i = (ρu)ni − ∆t

2h

(

(ρu)ni+1u
n
i+1 − (ρu)ni−1u

n
i−1

)

−∆t

4h

(

(ρn
i+1 + ρn

i )(κn
i+1 − κn

i ) + (ρn
i + ρn

i−1)(κ
n
i − κn

i−1)
)

+
∆t

2h
α2

(

(ρu)ni+1 − 2(ρu)ni + (ρu)ni−1

)

+
∆t

h2
ε
(

un
i+1 − 2un

i + un
i−1

)

,for i = 0, . . . , N − 1. Due to the arti�
ial fourth order term s
aled by h in the massbalan
e equation the time step size must be 
hosen extremely small. It is not 
learhow small exa
tly but we observed that it is of order O(h3). The time step size wasdetermined by su

essively lowering the time step size until the method was not longerunstable. To over
ome this restri
tion we apply impli
it time stepping to the generalizedhigher order s
hemes in the following 
hapters.Numeri
al ResultsThe setting for the numeri
al tests with the well balan
ed s
heme presented above isexa
tly the same as for the tests with the 
onservative s
heme.Test Case: Traveling Wave SolutionThe test with the traveling wave solution in one spa
e dimension demonstrates the supe-riority of the non
onservative well balan
ed s
heme over the 
onservative s
heme. Table5.3 shows the L2-errors of density and momentum at time T = 0.5. Compared to theerrors produ
ed by the 
onservative s
heme the errors asso
iated with the well balan
eds
heme are an order of magnitude smaller. See also Se
tion 5.4 for a 
omparison of thes
hemes. A plot of the numeri
al solution on the �nest grid n = 1800 is presented inFigure 5.6.Test Case: Stati
 EquilibriumTable 5.4 shows a se
ond order 
onvergen
e rate but the proje
tion of the initial valuesitself produ
es an error of order O(h). The se
ond order rate is due to the use of themidpoint integration formula for initial proje
tion and the 
omputation of the error. At
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Figure 5.6: Exa
t and approximate traveling wave solution generated by the non
on-servative s
heme for n = 1800.
ρ ρuh L2-error EOC L2-error EOC1.0000e-02 3.2879e-03 1.4845e-035.0000e-03 2.1207e-03 0.633 8.5980e-04 0.7883.3333e-03 1.5396e-03 0.790 6.1558e-04 0.8242.5000e-03 1.2063e-03 0.848 4.8070e-04 0.8602.0000e-03 9.9120e-04 0.880 3.9467e-04 0.8841.6667e-03 8.4113e-04 0.900 3.3492e-04 0.9001.4286e-03 7.3050e-04 0.915 2.9095e-04 0.9131.2500e-03 6.4559e-04 0.925 2.5723e-04 0.9231.1111e-03 5.7837e-04 0.934 2.3054e-04 0.930Table 5.3: Test Case: Traveling Wave Solution. L2-errors and EOC for the approximatesolution generated by the well balan
ed s
heme.the midpoints the s
heme produ
es an error of se
ond order (pointwise). The s
hemeis designed to preserve the stati
 equilibrium initial values. The proje
ted values area
tually not in equilibrium on the dis
rete level but they are very 
lose to an dis
retestati
 equilibrium 
on�guration. Thus, the errors the s
heme produ
es are neglegible.Finally, the time step is very small su
h that the forward Euler time stepping does notdestroy the 
onvergen
e rate. The use of a higher degree integration formula wouldshow only �rst order 
onvergen
e due to the initial proje
tion. This is what we will seein Se
tion 9.1 using higher order s
hemes on unstru
tured meshes.In 
ontrast to the 
onservative s
heme the well balan
ed s
heme does not produ
e astrange velo
ity �eld inside the liquid-vapor interfa
e. This is be
ause the s
heme isdesigned to preserve a stati
 equilibrium 
on�guration on the dis
rete level. In fa
t,there is a small velo
ity �eld but several orders of magnitude smaller than the velo
ity�eld produ
ed by the 
onservative s
heme. A very small velo
ity arises be
ause theproje
ted initial values are not a dis
rete equilibrium but very 
lose to one. Thus, somedynami
s develop but the velo
ity 
onverges (up to roundo� error) 
ompletely to zero



5.2. A WELL BALANCED SCHEME 79density and momentumh total L2-error EOC2.0000e-02 3.7490e-031.0000e-02 9.0510e-04 2.0506.6667e-03 3.9981e-04 2.0155.0000e-03 2.2442e-04 2.0074.0000e-03 1.4349e-04 2.0043.3333e-03 9.9590e-05 2.0032.8571e-03 7.3145e-05 2.0022.5000e-03 5.5990e-05 2.002Table 5.4: Test Case: Stati
 Equilibrium. Total L2-error and EOC for the approximatesolution generated by the well balan
ed s
heme.as time tends to in�nity. Figure 5.7 shows the density distribution at T = 20.0 for thethree di�erent mesh sizes (n = 100, 200, 400). The velo
ity �eld is also shown buts
aled in the same way as for the 
onservative s
heme and therefore it 
annot be seenin the �gure.

Figure 5.7: Test Case: Stati
 Equilibrium. Density and velo
ity �eld produ
ed by thewell balan
ed s
heme at T = 20.0 for n = 100, 200, 400.Test Case: Towards Stati
 EquilibriumThis is the test 
ase proposed in Se
tion 4.3. The setting is the same as for the 
onser-vative s
heme.Figure 5.8 shows the initial data with zero velo
ity �eld and three bubbles at time t = 0.The mesh size is the same as in the 
orresponding test with the 
onservative s
heme(n = 200). At time t = 1.12 there are only two bubbles left and the smaller one willdisappear soon. The velo
ity �eld is represented by the bla
k arrows. The s
aling ofthe velo
ity �eld is exa
tly the same as for the 
onservative s
heme in all sub-�gures.Finally the solution approa
hes a stati
 equilibrium. At time T = 20.0 (third pi
ture)there is still movement but starting from this point the density distribution will not
hange essentially as time tends to in�nity. In 
ontrast to the 
onservative s
hemethere are no nonphysi
al velo
ities inside the liquid-vapor interfa
e.The behavior of the total energy and kineti
 energy 
an be seen in Figure 5.9. Thevalues of the three 
omputations are 
lose to ea
h other su
h that one graph may hide
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Figure 5.8: Towards stati
 equilibrium test. Density and velo
ity �eld produ
ed by thewell balan
ed s
heme at t = 0.0, 1.12, 20.0 for n = 200.another graph. The total energy of the dis
rete solutions are monotoni
ally de
reasingfun
tions in time. This is the 
orre
t behavior as in the 
ontinuous 
ase. The right partof the �gure shows an exponential de
ay of the mean kineti
 energy. At time T = 20.0there is still a little bit movement in the approximate solution. But as time evolvesfurther, the kineti
 energy 
onverges 
ompletely to zero up to a roundo� error (this isnot shown).
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Figure 5.9: Total energy and kineti
 energy for the well balan
ed s
heme. n =
100, 200, 400.In 
ontrast to the 
onservative s
heme the mean value of ||∇κ||L2(Ω) does not 
onvergeto a 
onstant other than zero, see Figure 5.10. Up to time T = 20.0 the mean ofthis value de
ays exponentially. As time evolves further this value 
onverges to zero(not shown). This means κ 
onverges to a 
onstant as time tends to in�nity as in the
ontinuous 
ase when a stati
 equilibrium state is approa
hed.5.3 A Relaxation S
hemeThe goal of this se
tion is to provide an additional numeri
al s
heme in non
onservativeform. As noted before it is not possible to apply Riemann-Solver based s
hemes dire
tlyto the NSK system due to the la
k of hyperboli
ity of the �rst order part of the equationin the ellipti
 region. Here we present an approa
h (given in [29℄, [30℄) that is basedon the reformulation of the system as a relaxation system. This kind of reformulation
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Figure 5.10: Gradient of κ for the well balan
ed s
heme. n = 100, 200, 400.was �rst proposed by Suli
iu [110℄ and applied to the equation of gas dynami
s inLagrangian 
oordinates. The relaxation approa
h 
an be very useful for the treatmentof 
ompli
ated pressure laws, see [31℄. The idea of the relaxation approa
h is to add anadditional evolution equation for the variable κ that already appeared in the previousse
tion and treat this variable as an independent variable. The additional equation is
hosen su
h that the resulting system is hyperboli
 and the 
orresponding Riemannproblem 
an be solved very e�
iently. By 
onstru
tion, the s
heme is designed topreserve stati
 equilibrium solutions on the dis
rete level. But the drawba
k of thiss
heme is that in general the generated approximative solution does not 
onverge to the
orre
t solution. The test 
ase with the traveling wave solution shows this behavior.However, the s
heme 
an be used to 
onstru
t solutions towards a stati
 equilibrium
on�guration.5.3.1 The Relaxation SystemSin
e the dis
retization of the term ε∆u is not the sour
e of the di�
ulties des
ribedin Se
tion 5.1 we omit this term for a moment, i.e., we set ε = 0. With the de�nitionof κ in (5.4) we 
an rewrite the isothermal NSK system (5.1) as
ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρuuT ) + ρ∇κ(ρ,∆ρ) = 0,
in Ω × (0, T ). (5.6)In the next step we understand κ = κ(x, t) ∈ R as a new independent unknown and
onsider the following relaxation approximation for (5.6). We sear
h for (ρ,u, κ)T :

R
2 × (0, T ) → (0,∞) × R

3 su
h that
ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρuuT ) + ρ∇κ = 0,

κt + u · ∇κ+ a2

ρ2∇u = µ̃(ρ,∆ρ)−κ
d

(5.7)holds in Ω × (0, T ). The parameter d > 0 is the (small) relaxation parameter and
µ̃(ρ,∆ρ) := µ(ρ) − λ∆ρ.
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onstant a is 
hosen a

ording to a generalized Whitham 
ondition:
a2 > ρ2c2, c :=

√

p′(ρ) +
λρ

h2
(5.8)Note: This approa
h 
an be 
onsidered as Suli
ius relaxation method in Eulerian 
oor-dinates ([110℄).Before we dis
uss the dis
retization let us note some basi
 fa
ts on system (5.7). Sin
esystem (5.7) is rotationally invariant it su�
es for all our analyti
al issues to 
onsiderthe one-dimensional version. The one-dimensional system is (of 
ourse) also a non
on-servative system. Omitting the right hand side in (5.7) we get in primitive variables the�rst-order system

ρt + (ρu)x = 0,

ut + uux + κx = 0,

κt + uκx + a2

ρ2ux = 0.

(5.9)Let us summarize the primitive unknowns ρ, u, κ of (5.9) into the ve
tor
w = (ρ, u, κ)T .The Ja
obian of the non
onservative �ux in (5.9) is given by

D :=





u ρ 0
0 u 1
0 a2/ρ2 u



 .Straightforward 
al
ulus leads us toLemma 5.3.1 (Hyperboli
ity and 
hara
teristi
 �elds)(i) The system (5.9) is hyperboli
 in U := (0,∞)×R
2. The eigenvalues of D ∈ R

3×3are given by
λ1(w) = u− a

ρ
, λ2(w) = u, λ3(w) = u+

a

ρ
(w ∈ U).and the 
orresponding eigenve
tors are

r1(w) =





ρ3/a2

−ρ/a
1



 , r2(w) =





1
0
0



 , r3(w) =





ρ3/a2

ρ/a
1



 .(ii) All 
hara
teristi
 �elds are linear degenerate, i.e., we have for i = 1, 2, 3 and all
w ∈ U

∇λ(w) · ri(w) = 0.
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Figure 5.11: The stru
ture of the self-similar solution of the Riemann problem in the
(x, t)-halfspa
e.5.3.2 The Riemann Problem for the Relaxation SystemIn this se
tion we solve the Riemann problem for (5.9) globally, i.e., we 
onsider forea
h wL,wR ∈ U the initial datum

w0(x) =

{

wL : x < 0,

wR : x > 0.This Riemann problem 
annot be treated by routine methods sin
e system (5.9) is innon
onservative form. However, due to the linear degenera
y of (5.9), it is possible togive meaning to the non
onservative produ
ts.We suppose that the solution of the Riemann problem is self-similar and 
onsists of (atmost) three elementary waves of 
onta
t dis
ontinuity type. For i = 1, 2, 3 we 
all the
orresponding elementary wave i-wave. An i-wave travels with the speed si ∈ R givenby
si = si(w) = λi(w) (w ∈ U).Let us denote the (unknown) middle states by w∗

L and w∗
R. so that the solution of theRiemann problem has the stru
ture as in Fig. 5.11. We apply the theory for non
onserva-tive systems as developed in [36℄. To obtain a wave 
onne
ting states w−,w+ ∈ U withspeed s there must be 
onstants ρ̃, τ̃ ∈ R su
h that the generalized Rankine-Hugoniot
onditions

−s[ρ] + [ρu] = 0,

−s[ρu] + [ρu2] + ρ̃[κ] = 0,

−s[ρκ] + [ρuκ] + a2τ̃ [u] = 0

(5.10)hold. Here we denote by [ϕ] the jump ϕ− − ϕ+ for some fun
tion ϕ = ϕ(w), w ∈ U .Lemma 5.3.2Let w−,w+ ∈ U be states su
h that (5.10) are satis�ed with s = si for some i ∈ {1, 2, 3}.
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[u] = [κ] = 0 (5.11)or

[u], [κ] 6= 0, m2 = a2τ̃ ρ̃. (5.12)Thereby we de�ned m = ρ+(u+ − s) = ρ−(u− − s).Proof. We observe that the se
ond and the third equation in (5.10) 
an be rewrittenin the form
m[u] + ρ̃[κ] = 0,

m[κ] + a2τ̃ [u] = 0.This is a linear system for the jumps and the statement follows.From Lemma 5.3.2 and [λ2(w)] = 0 we dedu
e that for i = 2 the 
ondition (5.11) musthold sin
e m2 = 0. Thus for a 2-wave we 
an 
hoose ρ̃, τ̃ arbitrarily and have
[v] = [κ] = 0. (5.13)For an 1/3-wave we have m2

1/3 = a2 6= 0 by [λ1/3(w)] = 0. Thus (5.12) applies andleads to the relation
ρ̃ =

1

τ̃
. (5.14)Now, let the fa
tors ρ̃ of the 1/3-wave depend on the left hand and right hand densitystates:

ρ̃1 = ρ̃1(ρL, ρ
∗
L), ρ̃3 = ρ̃3(ρ

∗
R, ρR).We then have from the Rankine-Hugoniot 
onditions (5.10) and (5.13), (5.14) the equa-tions

a(u∗L − uL) + ρ̃1(ρL, ρ
∗
L)(κ∗L − κL) = 0,

u∗L = u∗R,

κ∗L = κ∗R,

a(u∗R − u∗L) + ρ̃3(ρ
∗
R, ρR)(κR − κ∗R) = 0.

(5.15)To avoid solving a system of nonlinear equations we de�ne now
ρ̃1(ρL, ρ

∗
L) := ρL, ρ̃3(ρ

∗
R, ρR) = ρR.From the �rst and the third equation of (5.15) we �nd with the se
ond equation (and

τ = 1/ρ)
u∗L = u∗R =

τLuL + τRuR − 1

a
(κR − κL)

τL + τR
,

κ∗L = κ∗R = κL + aτL(uL − u∗L).

(5.16)Here it is important that κ and v do not jump via the 2-wave. Finally we de�nea

ording to the linear degenera
y of the 
hara
teristi
 �elds
ρ∗L =

a

u∗L − s1
, ρ∗R = − a

u∗R − s3
. (5.17)



5.3. A RELAXATION SCHEME 85Now we have de�ned all states in the postulated solution of the Riemann problem. Itis straightforward to 
he
k for all three waves that all de�nitions of the middle states,in parti
ular (5.17), are 
onsistent with the original 
onditions (5.10).We summarize the results in a theorem.Theorem 5.3.3 (Solution of the Riemann Problem)Let the states uL, uR ∈ U be given. Then there exists a generalized solution u : R ×
[0, T ] → U of the 
orresponding Riemann problem (in the sense of [36℄).The solution u 
onsists of the four states uL, u

∗
L, u

∗
R, uR ∈ U whi
h are separated bythree 
onta
t dis
ontinuities whi
h travel with speeds s1, s2, s3 ∈ R given by

s1 = uL − a

ρL
= u∗L − a

ρ∗L
,

s2 = u∗L = u∗R,

s3 = uR +
a

ρR
= u∗R +

a

ρR
.

(5.18)The states u∗L, u∗R ∈ U are de�ned by (5.16) and (5.17).5.3.3 The Complete Numeri
al AlgorithmIn this se
tion we present the 
omplete numeri
al algorithm for solving the initial valueproblem for the Navier-Stokes-Korteweg system (5.1) in one and two spa
e dimensions.The dis
retization relies on the relaxation system (5.7) rather than on (5.1) dire
tly.The S
heme in 1dFirst we provide the dis
retized initial data
ρ0

j =
1

h

∫ x
j+1

2

x
j− 1

2

ρ0(x) dx,

(ρu)0j =
1

h

∫ x
j+1

2

x
j− 1

2

(ρ0u0)(x) dx,

κ0
j = µ(ρ0

j ) −
λ

h2
(ρ0

j+1 − 2ρ0
j + ρ0

j−1).The most important step of the update pro
edure from one timestep to another 
onsistsof two parts. First we negle
t the sour
es in (5.7) and 
onsider the �rst-order system
ρt + (ρu)x = 0,

(ρu)t + (ρu2)x + ρκx = 0,

κt + uκx + a2

ρ2ux = 0.

(5.19)



86 CHAPTER 5. FIRST ORDER ACCURATE SCHEMESThe se
ond step is the relaxation step. We solve the ordinary di�erential equations
ρt = 0,

(ρu)t = 0,

κt =
µ̃(ρ,∆ρ) − κ

das the relaxation parameter d tends to zero. As initial data we take the data from the�rst step. This means κ is proje
ted ba
k to the equilibrium manifold. Be
ause d tendsto zero we simply get
κ = µ̃(ρ̃,∆ρ̃),where ρ̃ is the data that 
omes from the �rst step. In the following we in
lude thevis
ous term again. We summarize the update pro
edure from time step n to n+ 1 asfollows:1) Choose the parameter a in (5.19) lo
ally at the 
ell interfa
es a

ording to thegeneralized Whitham 
ondition (5.8)

a2
j+ 1

2

= max
i=j,j+1

{

(ρn
i )2
(

p′(ρn
i ) +

λρn
i

h2

)}

.2) Solve the Riemann Problem at ea
h 
ell interfa
e xj+ 1

2

with initial data (ρn
j , u

n
j , κ

n
j ),

(ρn
j+1, u

n
j+1, κ

n
j+1). Let (ρ̃j+ 1

2

, ũj+ 1

2

, κ̃j+ 1

2

) denote the solution of the 
orrespond-ing Riemann Problem.
ρn+1

j = ρn
j − ∆t

h

(

ρ̃j+ 1

2

(0)ũj+ 1

2

(0) − ρ̃j− 1

2

(0)ũj− 1

2

(0)
)

,

(ρv)n+1
j = (ρv)nj − ∆t

h

(

ρ̃j+ 1

2

(0)ũj+ 1

2

(0)2 − ρ̃j− 1

2

(0)ũj− 1

2

(0)2
)

−∆t

h
(νR

j− 1

2

+ νL
j+ 1

2

)

+ε
∆t

h2
(un

j+1 − 2un
j + un

j−1),with
νR

j− 1

2

=

∫ xj

x
j− 1

2

ρ̃j− 1

2

(x)∂xκ̃j− 1

2

(x)dx,

νL
j+ 1

2

=

∫ x
j+1

2

xj

ρ̃j+ 1

2

(x)∂xκ̃j+ 1

2

(x)dx.3) Perform the relaxation step
κn+1

j = µ(ρn+1
j ) − λ

h2
(ρn+1

j+1 − 2ρn+1
j + ρn+1

j−1 ).
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ρ(x) =

{

ρl, x ∈ (a1, a2)

ρr, x ∈ (a2, a3)
, κ(x) =

{

κl, x ∈ (a1, a2)

κr, x ∈ (a2, a3)
.Then we set ∫ a2

a1
ρ(x)κx(x)dx = 1

2(ρl + ρr)(κr − κl). Note that the solution of theRiemann Problem 
an have zero, one or two jumps in the intervals (xj− 1

2

, xj) and
(xj , xj+ 1

2

).2d Extension of the S
hemeIn order to des
ribe the s
heme in two spa
e dimensions on a Cartesian mesh we haveto 
onsider planar waves solving the system (5.7). Due to rotational invarian
e it issu�
ient to 
onsider planar waves that propagate in x-dire
tion only. These wavessatisfy the equation
ρt + (ρu1)x = 0,

(ρu1)t + (ρu2
1)x + ρκx = 0,

(ρu2)t + (ρu1u2)x = 0,

κt + u1κx +
a2

ρ2
u1,x =

µ̃(ρ,∆ρ) − κ

d
.

(5.20)
We 
an easily verify the followingLemma 5.3.4 (Hyperboli
ity and 
hara
teristi
 �elds)(i) The system (5.20) is hyperboli
 (but not stri
tly hyperboli
) in U := (0,∞) × R

3.The eigenvalues of the 
orresponding Ja
obian are given by
λ1(w) = u1 −

a

ρ
, λ2(w) = λ3(w) = u1, λ4(w) = u1 +

a

ρ
(w ∈ U).and the 
orresponding eigenvalues are

r1(w) =









ρ3/a2

−ρ/a
0
1









, r2(w) =









1
0
0
0









, r3(w) =









0
0
1
0









, r4(w) =









ρ3/a2

ρ/a
0
1









.(ii) All 
hara
teristi
 �elds are linear degenerate, i.e., we have for i = 1, . . . , 4 and all
w ∈ U

∇λ(w) · ri(w) = 0.Now the solution of the Riemann Problem of the hyperboli
 part of equation (5.20) hasalmost the same stru
ture as the Riemann Problem for the 1-D equation. We generalizeTheorem 5.3.3.



88 CHAPTER 5. FIRST ORDER ACCURATE SCHEMESTheorem 5.3.5 (Solution of the Riemann Problem)Let the states wL,wR ∈ U be given. Then there exists a generalized solution w :
R

2 × [0, T ] → U of the 
orresponding planar Riemann problem (in the sense of [36℄).The solution u 
onsists of the four states wL,w
∗
L, u

∗
R, uR ∈ U whi
h are separated byfour 
onta
t dis
ontinuities whi
h travel with speeds s1, s2 = s′2, s3 ∈ R given by (5.18).The states w∗

L,w
∗
R ∈ U are de�ned by (5.16), (5.17) and

u∗2,L = u2,L,

u∗2,R = u2,R.
(5.21)Thus, the formulation of the s
heme on Cartesian meshes is straightforward. We omitthe details.Restri
tion on the Time Step SizeNow, the 
riti
al task is to give a 
orre
t restri
tion on the time step size that ensuresthe stability of the method in some sense. The presen
e of se
ond and third order termsin the Navier-Stokes-Korteweg system and the la
k of hyperboli
ity of the �rst-orderpart of the Navier-Stokes-Korteweg system make it di�
ult to give rigorous argumentson the restri
tion of the time step size. Nevertheless, for sake of 
ompleteness of thealgorithm, we state at this point the 
ondition we a
tually use.We restri
t ourselves to the 1-D situation. The extension to 2-D is straightforward.Solving the lo
al Riemann problems gives the 
ondition

∆t

h
max

j

{∣

∣

∣

∣

uj −
aj+ 1

2

ρj

∣

∣

∣

∣

,

∣

∣

∣

∣

uj+1 +
aj+ 1

2

ρj+1

∣

∣

∣

∣

}

≤ 1

2
, (5.22)and the approximation of the vis
ous term gives the 
ondition

∆t

h2
max

j

{

ε

ρj

}

≤ 1

2
. (5.23)If we take the 
hoi
e of the parameters aj+ 1

2

into a

ount we 
an see that the time stepsize is of order O(h2).Numeri
al ResultsThe 
on�guration for the numeri
al tests with the relaxation s
heme is the same as withthe 
onservative s
heme. However, we omit the third test 
ase Towards Stati
 Equilib-rium be
ause the s
heme does not produ
e the dynami
s of the solution 
orre
tly as wewill see in the test 
ase with the traveling wave solution. Therefore an additional testdoes not make sense.Test Case: Stati
 EquilibriumAgain we observe se
ond order 
onvergen
e as with the well balan
ed s
heme. This is



5.4. COMPARISON OF THE THREE DIFFERENT SCHEMES 89only due to the use of a quadrature formula of insu�
ient degree. See the 
orrespond-ing test 
ase with the well balan
ed s
heme in the previous se
tion. We 
an also seethat the errors produ
ed by the relaxation s
heme and the well balan
ed s
heme arenearly identi
al be
ause the errors are produ
ed mainly by initial proje
tion. Table 5.5illustrates the results of the 
omputations.density and momentumh total L2-error EOC2.0000e-02 3.7576e-031.0000e-02 9.0721e-04 2.0506.6667e-03 4.0074e-04 2.0155.0000e-03 2.2494e-04 2.0074.0000e-03 1.4382e-04 2.0043.3333e-03 9.9822e-05 2.0032.8571e-03 7.3315e-05 2.002Table 5.5: Test Case: Stati
 Equilibrium. Total L2-error and EOC for the approximatesolution generated by the relaxation s
heme.As with the well balan
ed s
heme in the last se
tion, a very small velo
ity �eld arisesbe
ause the dis
rete initial data is not a perfe
t dis
rete equilibrium. But this velo
-ity �eld 
onverges 
ompletely to zero as time tends to in�nity. A sequen
e of densitypro�les for di�erent mesh sizes at 
omputational end time would exa
tly look like theseshown in Figure 5.7. Therefore we omit it.Test Case: Traveling Wave SolutionThe approximate solution generated by the relaxation s
heme seems to 
onverge tosome limit fun
tion as the mesh size tends to zero. But this fun
tion is not the exa
tsolution as shown in Figure 5.12 and Table 5.6. Only the momentum is shown in Figure5.12 su
h that the di�eren
e between exa
t and approximate solution 
an be seen more
learly. The L2-errors of the density pro�les and the momentum pro�les are illustratedby Table 5.6.5.4 Comparison of the three Di�erent S
hemesWe 
ompare the two quantitative tests applied in the previous se
tions to the 
on-servative s
heme, the non
onservative well balan
ed s
heme and the non
onservativerelaxation s
heme.The left part of Figure 5.13 shows the error of the density pro�les of the three di�erents
hemes in the test 
ase with the traveling wave solution. The 
onservative s
heme andthe non
onservative well balan
ed s
heme 
onverge with order 1 to the exa
t solutionand the error of the well balan
ed s
heme is an order of magnitude smaller than theerror of the 
onservative s
heme. The dis
rete solution generated by the relaxations
heme does not 
onverge to the exa
t solution. The momentum pro�les (not shown)show exa
tly the same behavior.
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Figure 5.12: Exa
t and approximate traveling wave solution (momentum only) gener-ated by the relaxation s
heme for n = 1800.
ρ ρuh L2-error EOC L2-error EOC1.0000e-02 3.3850e-02 2.3703e-025.0000e-03 3.3000e-02 0.037 2.1270e-02 0.1563.3333e-03 3.2677e-02 0.024 2.0440e-02 0.0982.5000e-03 3.2506e-02 0.018 2.0025e-02 0.0712.0000e-03 3.2399e-02 0.015 1.9776e-02 0.0561.6667e-03 3.2327e-02 0.012 1.9610e-02 0.0461.4286e-03 3.2275e-02 0.011 1.9492e-02 0.0391.2500e-03 3.2235e-02 0.009 1.9404e-02 0.0341.1111e-03 3.2204e-02 0.008 1.9335e-02 0.030Table 5.6: L2-error and EOC for the approximate traveling wave solution generated bythe relaxation s
heme.The right part of Figure 5.13 
ompares the 
onvergen
e rates in the test with the stati
equilibrium solution. The values for the non
onservative well balan
ed s
heme and therelaxation s
heme are almost the same be
ause after initial proje
tion the data doesnot 
hange essentially. Therefore the values of the relaxation s
heme hide the values ofthe well balan
ed s
heme in the �gure. As dis
ussed in the previous se
tions, the wellbalan
ed s
heme and the relaxation s
heme are not really se
ond order s
hemes as the�gure suggests and the 
onvergen
e rate of the 
onservative s
heme should approa
hone if the mesh is further re�ned. From the �gure we 
an 
on
lude that the results ata stati
 equilibrium 
omputed by the well balan
ed s
heme and the relaxation s
hemeare several magnitudes better than the results given by the 
onservative s
heme.There is 
learly a di�eren
e in the qualitative behavior of the numeri
al solutions pro-du
ed by the 
onservative and the well balan
ed s
heme. For those generated by thewell balan
ed s
heme the total energy is a de
reasing fun
tion of time, when the solutiontends to a stati
 equilibrium state on the dis
rete level the kineti
 energy tends to zeroand the value κ approa
hes a 
onstant as time tends to in�nity. This is exa
tly the
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hFigure 5.13: Left: L2-errors of the density pro�les for the three di�erent s
hemes,traveling wave test. Right: total L2-errors for the three s
hemes, stati
 equilibriumtest.behavior of exa
t solutions. For the numeri
al solutions produ
ed by the 
onservatives
heme we do not have these properties for a �xed mesh size h.Thus, the non
onservative well balan
ed s
heme seems to be the most promising s
heme.The smaller time step size in 
omparison to the other s
hemes is not an issue sin
e this
an be bypassed using impli
it time stepping. This is the s
heme we will generalize tohigher order s
hemes on arbitrary non
onform meshes by appli
ation of the Dis
ontin-uous Galerkin approa
h in the next 
hapter. The numeri
al experiments show that therelaxation s
heme is of very limited use. It 
an only be used to 
onstru
t nontrivial,�rst order a

urate stati
 equilibrium solutions. Also the generalization to higher orders
hemes is mu
h more involved for the relaxation s
heme than for the other s
hemes.
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Chapter 6Higher Order S
hemes: TheDis
ontinuous Galerkin Approa
h
The Dis
ontinuous Galerkin (DG) method is a 
lass of Finite Element methods thatuses 
ompletely dis
ontinuous ansatz fun
tions as a basis of the Finite Element spa
e.In appli
ation to systems of 
onservation laws these inter element dis
ontinuities giveextra degrees of freedom that 
an be used to stabilize the method. At the dis
ontinuitiesusually numeri
al �uxes are applied that are known from the Finite Volume framework,see standard textbooks su
h as [51℄, [52℄, [76℄, [81℄. Thus, the Dis
ontinuous Galerkinapproa
h is a 
ombination of Finite Element and Finite Volume methods and a naturalgeneralization of Finite Volume methods to arbitrary higher order s
hemes.The Dis
ontinuous Galerkin method has several advantages over other higher orderFinite Volume methods su
h as methods based on ENO or WENO re
onstru
tion.

• In the framework of the DG approa
h it is very easy to design higher order ansatzspa
es. The polynomial degree 
an be 
hosen lo
ally whi
h makes the s
hemesideally suited for p-adaptivity.
• Arbitrary, non
onform unstru
tured meshes 
an be used, possibly with hangingnodes due to the dis
ontinuous ansatz fun
tions.
• The method is extremely lo
al. It is only ne
essary to 
ommuni
ate with thedire
t neighbor 
ells. Thus, it is very well suited for parallel implementations.But there are still some drawba
ks as the need for slope limiters when the approximatedsolution is not su�
iently smooth. Sometimes the 
omputational 
ost may be higherbe
ause at the 
ell boundaries in general integration formulas of twi
e the degree as forre
onstru
tion based s
hemes have to be used. Additionally a volume integral has tobe 
omputed. Depending on the appli
ation this extra 
ost 
an be higher or lower thanthe re
onstru
tion step in ENO or WENO methods. A 
omplete numeri
al 
omparisonbetween these methods applied to systems of interest is not available at time of thiswriting.The �rst Dis
ontinuous Galerkin method was proposed 1973 by Reed and Hill [94℄.During the last two de
ades a major development of this type of numeri
al s
hemes was93
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arried out by Co
kburn, Shu and 
oworkers in the series of papers [22℄, [21℄, [24℄, [23℄,[26℄. The method has found rapid appli
ations in many di�erent areas. The reviewpaper [22℄ provides a good overview and many useful referen
es 
on
erning the DGapproa
h.The Lo
al Dis
ontinuous Galerkin (LDG) method is a generalization of the standardDG method for 
onservation laws proposed by Bassi and Rebay [8℄. It is designed for theuse with 
onve
tion dominated 
onservation laws that in
lude higher order derivatives,su
h as the 
ompressible Navier-Stokes equations. Further development of this methodwas done by Co
kburn, Shu and 
oworkers espe
ially the appli
ation to equations withthird or higher order derivatives, see for example [25℄, [130℄.The LDG method has all the advantages of the standard DG method. In 
ontrast toother DG type methods for 
onve
tion dominated 
onve
tion-di�usion equations, su
has the Baumann and Oden method [9℄, the Lo
al Dis
ontinuous Galerkin method 
anbe easily applied to equations with third or higher order derivatives. This propertymakes it ideally suited for the appli
ation to the Navier-Stokes-Korteweg system.In this 
hapter we dis
uss the Lo
al Dis
ontinuous Galerkin method and its appli
ationto 
onservative terms, higher order term and sour
e terms in detail. Additionally wepresent an approa
h for the DG dis
retization of non
onservative terms based on thede�nition of non
onservative produ
ts [36℄ and on the formulation given in [63℄. Wedes
ribe the method in a general framework of evolution equations and dis
uss the dis-
retization of some simple examples. This general framework has also been su

essfullyapplied to many other problems, see for example [19℄. For a s
alar model problem forthe NSK system we prove a L2-stability result of a semi-dis
rete Lo
al Dis
ontinuousGalerkin dis
retization, similar to the result given in [130℄. Based on the dis
retizationof the model problem we give the 
omplete dis
retization of the Navier-Stokes-Kortewegsystem in multiple spa
e dimension at the end of this 
hapter.For the appli
ation of the method we use unstru
tured triangular and tetrahedral meshessin
e these type of meshes are very well suited in approximation of 
ompli
ated geome-tries and have the extra advantage that the referen
e mapping to the standard 
ell isan a�ne linear transformation. This has several advantages (listed in the followingse
tion) in 
ombination with the Dis
ontinuous Galerkin method. We allow the meshesto be non
onform in order to perform lo
al mesh adaption e�
iently in parallel and assimple as possible. However, most (but not all) of the following applies to more generalmeshes as well. We start with the des
ription of the simpli
ial meshes we use.6.1 Simpli
ial MeshesThe use of simpli
ial meshes in 
ombination with the Dis
ontinuous Galerkin methodhas the advantage that the mappings between the referen
e 
ell and the 
ells of the meshare a�ne linear fun
tions. This linearity of the referen
e mappings has two important
onsequen
es. On the one hand the 
omputational 
ost is signi�
antly lower and on theother hand orthogonality of lo
al base fun
tions is preserved as we will see in Se
tion6.3. The latter is also an improvement of the e�
ien
y of the method, espe
ially in
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ombination with expli
it time stepping, and leads to a simpler implementation of themethod. We start with the des
ription of the underlying meshes that will in generalbe non
onform but not arbitrary non
onform meshes. We are mainly interested innon
onform meshes that are generated by su

essive re�nement of a 
onform ma
romesh. For the ease of implementation and the numeri
al stability of the method it isalso desirable to restri
t the number of levels of non
onformity.The n-dimensional referen
e simplex (referen
e 
ell) is de�ned by
∆̂ =

{

x ∈ R
n | xi ≥ 0,

n
∑

i=1

xi ≤ 1

}

. (6.1)Let Tj : ∆̂ → R
n a nondegenerate, a�ne linear mapping for j = 0, . . . , ncells − 1. Wede�ne

∆j = Tj(∆̂),

T = {∆j | j = 0, . . . , ncells − 1}.In the following we denote both, the 
ompa
t set ∆j as de�ned above, as well its openinterior set by the symbol ∆j depending on what is more appropriate and providedthat the meaning is 
lear. Verti
es of 
ells are 
alled 0-dimensional interfa
es, edges
1-dimensional interfa
es, fa
es 2-dimensional interfa
es and so on.De�nition 6.1.1 (Simpli
ial Mesh)
T is 
alled a non
onform simpli
ial Mesh if for all i 6= j, ∆i,∆j ∈ T we have Hn(∆i ∩
∆j) = 0 and if Hn−k(∆i ∩∆j) 6= 0 for k = 1, . . . , n one of the following two 
onditionsholds(i) a (n− k)-dimensional interfa
e of ∆i is subset of a (n− k)-dimensional interfa
eof ∆j ,(ii) a (n− k)-dimensional interfa
e of ∆j is subset of a (n− k)-dimensional interfa
eof ∆i.A non
onform Simpli
ial Mesh is 
alled 
onform if 
onditions (i) and (ii) hold simulta-neously, i.e., the 
ells ∆i and ∆j share a 
ommon (n − k)-dimensional interfa
e.In the above de�nition Hm denotes the m-dimensional Hausdor� measure in R

n. ASimpli
ial Mesh is 
alled a Triangulation for n = 2 and a Tetrahedralization for n = 3.If Hn−1(∆i ∩∆j) 6= 0 for two di�erent 
ells ∆i and ∆j of the mesh then they are 
alledneighbors.For a family of simpli
ial meshes (Th)h>0 we will assume in the following
δ(Th) ≤ h,

sup
h
κ(Th) < ∞,where δ and κ are de�ned by

δ(T ) = sup {diam(∆j) | ∆j ∈ T } ,

κ(T ) = sup

{

δ(T )n

|∆j |
| ∆j ∈ T

}

.



96 CHAPTER 6. HIGHER ORDER SCHEMES: THE DG APPROACHThis means that for this family the mesh size tends to zero and angles remain boundedfrom below. Ωh =
⋃

∆j∈Th

∆j denotes the domain that is partitioned by Th and |Th| thenumber of 
ells of mesh Th.

Figure 6.1: Conform mesh (left) and a non
onform mesh obtained by su

essive re�ne-ment of the 
onform mesh (right).6.2 The Lo
al Dis
ontinuous Galerkin MethodHere we dis
uss the higher order spatial dis
retization of 
onservative systems with orwithout higher order derivatives, non-
onservative parts and sour
e terms. The termlo
al in Lo
al Dis
ontiunuous Galerkin Method is used when higher order derivativesare involved. The dis
retization leads to a semi-dis
rete formulation, i.e., a ordinarydi�erential equation. The higher order time dis
retization of ordinary initial valueproblems is dis
ussed in Chapter 7.6.2.1 First Order Conservative SystemsIn this se
tion we 
onsider �rst order 
onservation laws of the form
ut + L[u] = 0 in Ω ⊂ R

n. (6.2)In the above equation L : C1(Ω,U) → C0(Ω,U) denotes a di�erential operator that isde�ned by
L[u](x) =

n
∑

i=1

∂

∂xi
f i(u(x),x),where f i : U×Ω → R

d, i = 1, . . . , n are smooth fun
tions (physi
al �uxes) and might ingeneral depend on further parameters su
h as time. The open set U ⊂ R
d is 
alled statespa
e. For example the Euler equations of gas dynami
s in multiple spa
e dimensionsand the invis
id Burgers equation are systems of 
onservation laws. Usually �rst ordersystems are required to be hyperboli
 in (at least parts of) the state spa
e U , otherwisethe 
onservation law usually su�ers a la
k of well posedness, see standard textbooks on
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 Conservation Laws su
h as [34℄, [51℄, [100℄. The aim of this se
tion is thedis
retization of the spatial di�erential operator L.Let (·, ·)Ω denote the L2 inner produ
t with respe
t to Ω. Using partial integration wehave (for smooth fun
tions u and ϕ ∈ C1(Ω,Rd)) the expression
(L[u], ϕ)Ω =

∫

∂Ω

n
∑

i=1

nif i(u(x),x) · ϕ(x) dσ(x) −
∫

Ω

n
∑

i=1

f i(u(x),x) · ∂

∂xi
ϕ(x) dx,(6.3)where the ni denote the 
omponents of the outer normal ve
tor on ∂Ω.We introdu
e the s
alar Dis
ontinuous Galerkin spa
e Vh by the de�nition

Vh =
{

ϕ : Ωh → R | ϕ|∆j
∈ Pk, ∆j ∈ Th

}

,where the basis fun
tions ϕ usually belong to the spa
e of polynomials Pk of degree
k lo
ally, i.e., on ea
h 
ell ∆j of the underlying mesh Th, see Se
tion 6.3. The set
Ωh ⊂ R

n denotes an approximation (in some sense) of the domain Ω whi
h is partitionedby Th. The spa
e of polynomials 
ould be repla
ed by some other spa
e with similarapproximation properties. Based on Vh we denote the spa
e of ve
tor valued ansatzfun
tions with values in R
d by V d

h .Let us de�ne a dis
rete di�erential operator Lh : V d
h → V d

h by (L2-)proje
ting L[u] to
Vh in a sense that is dis
ussed in the following. Therefore we apply the de�nition ofnon
onservative produ
ts [36℄ to the expression (6.3), see Appendix A.4. For uh ∈ V d

hwe de�ne Lh[uh] by the relation
(Lh[uh],ϕ)Ωh

= −
|Th|−1
∑

j=0

∫

∆j

n
∑

i=1

f i(uh(x),x) · ∂

∂xi
ϕ(x) dx (6.4)

+
1

2

|Th|−1
∑

j=0

∫

∂∆j\∂Ωh

g(uh|∆j
(x),uh|∆j′

(x),x,n) · (ϕ|∆j
(x) − ϕ|∆j′

(x)) dσ(x)

+

|Th|−1
∑

j=0

∫

∂∆j∩∂Ωh

n
∑

i=1

nif i(uh|∆j
(x),x) · ϕ|∆j

(x) dσ(x)for all ϕ ∈ V d
h . The 
ells ∆j′ denote the 
orresponding neighboring 
ells of 
ell ∆j inthe surfa
e integral above. The fa
tor 1

2 in front of the se
ond term of the right handside appears be
ause all interfa
es are 
ounted twi
e. The last term in the equationabove 
an be used to pres
ribe several kinds of boundary data. The Dis
ontinuousGalerkin method is well de�ned when the physi
al �uxes f i and numeri
al �ux g are
hosen. The physi
al �uxes are 
ompletely determined by the equation whereas the
hoi
e of the numeri
al �ux is the 
ru
ial part in the method. For a reasonable methodthe numeri
al �ux should satisfy at least
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n
∑

i=1
nif i(u,x) for all u ∈ U ,x ∈ Ω and n ∈ Sn−1 (Consisten
y).(ii) g lo
ally Lips
hitz 
ontinuous.(iii) g(u,v,x,n) = −g(v,u,x,−n) for all u,v ∈ U ,x ∈ Ω and n ∈ Sn−1 (Conserva-tion Property).Many numeri
al �uxes for di�erent kinds of equations 
an be found in standard text-books su
h as [52℄, [76℄, [81℄, [111℄.Now let

uh(x, t) =

|Vh|−1
∑

l=0

ϕl(x)αl(t), {ϕ0, . . . , ϕ|Vh|−1} basis of Vhthen the semi-dis
rete formulation of the 
onservation law 6.2 
an be written as
(

∂

∂t
uh(·, t),ϕ

)

Ωh

+ (Lh[uh(·, t)],ϕ)Ωh
= 0 for all ϕ ∈ V d

h , t ∈ (0,∞). (6.5)This is the DG spa
e dis
retization given by Co
kburn and Shu, see for example [21℄,[24℄, [23℄, [26℄. The initial value problem (initial values have to be provided by a proje
-tion to the spa
e V d
h ) for the ordinary di�erential equation (6.5) 
an be solved by meansof Runge-Kutta methods or other s
hemes like multistep s
hemes. For the use with
onservation laws Shu and Osher [103℄ have developed spe
ial Runge-Kutta methods(TVD or Strong Stability Preserving) that preserve 
ertain properties of 
onservationlaws on the dis
rete level (su
h as the TVD property of s
alar 
onservation laws), seeChapter 7.6.2.2 Conservative Systems with Higher Order TermsThe idea of the treatment of higher order derivatives in the framework of the Lo
alDis
ontinuous Galerkin method is to reformulate higher order di�erential operators as
ombination of �rst order di�erential operators and to apply the method des
ribed inthe previous se
tion.As an example we 
onsider the multidimensional nonlinear 
onve
tion-di�usion equation

ut + L2[u] = 0,

L2[u] = ∇ · F (u) −∇ · (ε∇u),with some nonlinear �ux F . This equation 
an be reformulated by using two �rst orderdi�erential operators
ut + L1

2[(u,L1
1[u])] = 0,

L1
1[u] = ∇u,

L1
2[(u,v)] = ∇ · F (u) −∇ · (εv).



6.2. THE LOCAL DISCONTINUOUS GALERKIN METHOD 99In general, a m-th order di�erential operator 
an be 
onstru
ted by means of m �rstorder di�erential operators.
u0 = u,

u1 = L1
1[(u

0)],

u2 = L1
2[(u

0,u1)],...
Lm[u] = L1

m[(u0,u1, . . . ,um−1)].Here the �rst order di�erential operators are of the form
L1

k[u
0, . . . ,uk−1](x) =

n
∑

i=1

∂

∂xi
fk

i

(

u0(x), . . . ,uk−1(x),x
)

, k = 1, . . . ,m,with uk(x) ∈ R
dk , x ∈ R

n. These �rst order operators 
an then be dis
retized as in theprevious se
tion. The method is 
alled Lo
al Dis
ontinuous Galerkin method be
ausethe temporary fun
tions uk 
an be eliminated lo
ally without solving a large system ofequations.Now the spa
e dis
retization at a time t > 0 of a 
onservation law in
luding higher(m-th) order derivatives, represented by the spatial di�erential operator Lm, of theform
ut + Lm[u] = 0 (6.6)
an be 
arried out by the de�nition of a dis
rete di�erential operator Lm

h of order mfollowing the algorithm:set u0
h = uh(·, t);for k = 1, . . . ,m {
ompute L1

h,k[(u
0
h, . . .u

k−1
h )] using the physi
al �uxes fk

iand 
onsistent numeri
al �uxes gk as in the previous se
tion;set uk
h = L1

h,k[(u
0
h, . . .u

k−1
h )];

}set Lm
h [uh(·, t)] = um

h .Here the dis
rete �rst order di�erential operators L1
h are de�ned as in the previousse
tion. Using the dis
rete spatial operator we 
an formulate the semi-dis
rete versionof the higher order 
onservation law

(

∂

∂t
uh(·, t),ϕ

)

Ωh

+ (Lm
h [uh(·, t)],ϕ)Ωh

= 0 for all ϕ ∈ V d
h , t ∈ (0,∞). (6.7)



100 CHAPTER 6. HIGHER ORDER SCHEMES: THE DG APPROACHExample 6.2.1 (S
alar Conve
tion-Di�usion Equation)For the 
omplete Dis
ontinuous Galerkin dis
retization of the s
alar 
onve
tion di�usionequation from the beginning of this se
tion we have to de�ne the physi
al �uxes f1
i , f2

iand numeri
al �uxes g1, g2. We use the following �uxes
f1

i (u) = uei, i = 1, . . . , n,

g1(u, ũ,n) =
1

2
(u+ ũ)n,

f2
i (u,v) = Fi(u) − εvi, i = 1, . . . , n,

g2(u,v, ũ, ṽ,n) = G(u, ũ,n) − ε

2
(v + ṽ),where the ve
tors ei denote the standard unit ve
tors in R

n and G is a 
onsistent nu-meri
al �ux for the �uxes Fi, for example the Lax-Friedri
hs �ux.This is the original method of Bassi and Rebay introdu
ed in [8℄ applied to the s
alar
onve
tion-di�usion equation (Bassi and Rebay applied this method to the 
ompressibleNavier-Stokes equations). In the above dis
retization we have negle
ted the treatmentof boundary 
onditions for simpli
ity, therefore the dis
retization of the 
onve
tion dif-fusion is not yet 
omplete (with the ex
eption of a mesh with periodi
 boundary). How-ever, the treatment of boundary 
onditions is another 
ru
ial part of the Dis
ontinuousGalerkin method and depends, of 
ourse, on the kind of boundary 
ondition. We will seeexamples for the DG-dis
retization of several kinds of boundary 
onditions at the end ofthis 
hapter in 
onjun
tion with the DG-dis
retization of the Navier-Stokes-KortewegSystem in one, two and three spa
e dimensions.6.2.3 Non-Conservative SystemsIn this se
tion we 
onsider �rst order systems in
luding non-
onservative terms, i.e.,parts of the equation that 
an not be written in divergen
e form. Systems that arise fromphysi
s are usually in 
onservative form but a nonlinear transformations of 
oordinatesor a homogenization pro
ess 
an lead to a non-
onservative system of equations. Inour 
ase the dis
retization in non-
onservative form simply leads to a more reliabledis
retization of the system. The dis
retization of non-
onservative �rst order systemshas to be done with 
are. In general the sequen
e of approximate solutions generated bya s
heme in non-
onservative form does not 
onverge to the physi
al relevant solutionin the 
ase where dis
ontinuities are present, see [60℄. This is not an issue in our
ase be
ause solutions of the NSK system are supposed to be su�
iently smooth. Theapproa
h we des
ribe in this se
tion 
an formally be generalized to systems with higherorder terms and/or 
onservative terms as des
ribed in the previous se
tions. We 
onsiderdi�erential operators of the form
L[u](x) =

n
∑

i=1

Ai(u(x),x)
∂

∂xi
u(x),with matrix valued fun
tions Ai : R

d × R
n → R

d×d. At the moment the fun
tion u issupposed to be smooth. The aim of this se
tion is to de�ne a dis
rete operator that
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an be applied to dis
ontinuous fun
tions uh of the �nite element spa
e V d
h . Similarto Se
tion 6.2.1 we apply the de�nition of non
onservative produ
ts [36℄, see AppendixA.4. In the following the notation of Appendix A.4 is used.We de�ne the dis
rete operator applied to uh ∈ V d

h by the relation
(Lh[uh],ϕ)Ωh

=

∫

Ωh

d

[

n
∑

i=1

ϕT Ai(uh, ·)
∂

∂xi
uh

]

φ

=

|Th|−1
∑

j=0

∫

∆j

n
∑

i=1

ϕ(x)T Ai(uh(x),x) · ∂

∂xi
uh(x) dx (6.8)

+
1

2

|Th|−1
∑

j=0

∫

∂∆j\∂Ωh

1
∫

0

n
∑

i=1

niφϕ(t,x)T Ai

(

φu(t,x),x
)

φ′
u
(t,x) dt dσ(x)for all ϕ ∈ V d

h . φu and φϕ in the above equation denote the u- and ϕ-
omponents ofthe path φ, i.e.,
(

φu

φϕ

)

(t, x) = φ
(

t; (uh|∆j
(x),ϕ|∆j

(x)), (uh|∆j′
(x),ϕ|∆j′

(x))
)with the property that φ is linear in the test fun
tion arguments ϕ. The fa
tor 1

2 inthe last term of equation (6.8) is ne
essary be
ause all interfa
es are 
ounted twi
e.Note that there is no 
ontribution of the boundary in equation (6.8) that 
an be usedto impose boundary 
onditions as in the 
onservative 
ase (6.4). The di�eren
e toboundary data 
an be regarded as dis
ontinuity and therefore additional boundaryterms have to be added to equation (6.8) in order to pres
ribe data on parts of theboundary of the domain.The last term in equation (6.8) 
an be approximated by an averaging pro
ess. Inpra
ti
al appli
ations we use the following variation
(Lh[uh],ϕ)Ωh

=

|Th|−1
∑

j=0

∫

∆j

n
∑

i=1

ϕ(x)T Ai(uh(x),x) · ∂

∂xi
uh(x) dx (6.9)

+
1

2

|Th|−1
∑

j=0

∫

∂∆j\∂Ωh

{

ϕ(x)T
}

ζ

{

n
∑

i=1

niAi

(

uh(x),x
)

}

[uh(x)] dσ(x).Here the blue term denotes the linear average in the test fun
tion
{

ϕ(x)T
}

ζ
= ζϕ|∆j

(x) + (1 − ζ)ϕ|∆j′
(x)for some ζ ∈ [0, 1]. The red term denotes the average in the term∑niAi, not ne
essarilythe arithmeti
 average. And

[uh(x)] =
(

uh|∆j′
(x) − uh|∆j

(x)
)
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ell interfa
e in dire
tion of the normal n.In pra
ti
al appli
ations the test fun
tions have usually only support on one 
ell of themesh. In this 
ase the average in the above equation has the same stru
ture as for the
onservative terms, see (6.4). When non-
onservative and 
onservative terms appearsimultaneously both average pro
edures 
an be 
ombined in one generalized numeri
al�ux fun
tion. The parameter ζ 
an then 
ontrol the average value in the test fun
tion.6.2.4 Sour
e TermsSour
e terms in a balan
e law are simply proje
ted to the the ansatz spa
e V d
h . Thismeans a balan
e law of the form

ut + L[u] = B(u),where L is a di�erential operator that 
an in
lude higher order derivatives or non-
onservative parts and B is the sour
e term that 
an in general also depend on spa
eand time variables, is dis
retized in the following way
(

∂

∂t
uh(·, t),ϕ

)

Ωh

+ (Lh[uh(·, t)],ϕ)Ωh
= (B(uh(·, t)),ϕ)Ωh

for all ϕ ∈ V d
h , t ∈ (0,∞).The formally simple approa
h does not ne
essarily mean that sour
e terms are triv-ial to handle. The presen
e of sour
e terms often results in sti� ordinary di�erentialequations of the semi-dis
rete system. Therefore it is sometimes 
onvenient to applyexpli
it-impli
it Runge-Kutta methods (see Chapter 7), where the 
onve
tive part of theequation is dis
retized in an expli
it fashion, and the sour
e term is treated impli
itly.6.3 Constru
tion of Lo
al Basis Fun
tionsIn this se
tion we 
onstru
t an orthogonal set of basis fun
tions that spans the FiniteElement spa
e Vh. For this 
onstru
tion it is important that the referen
e mapping fromthe referen
e 
ell to an arbitrary 
ell of the mesh is an a�ne linear fun
tion. This is the
ase for simpli
ial meshes as well as for Cartesian meshes. For general meshes this isnot the 
ase. By this property orthogonality on the referen
e 
ell leads to orthogonalityon an arbitrary 
ell.We denote the L2-inner produ
t on the referen
e 
ell ∆̂ by

(φ,ψ) =

∫

∆̂

φ(x)ψ(x) dxand polynomials of degree at most m and the dimension of this spa
e by
Pm = span{x 7→

n
∏

i=1

xki

i | ki ∈ N,
n
∑

i=1

ki ≤ m

}

, |Pm| =
1

n!

n
∏

i=1

(m+ i).
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onstru
t an orthonormal basis of Pm with respe
t to the inner produ
t (·, ·) byappli
ation of the Gram-S
hmidt pro
edure. It is well known that the Gram-S
hmidtpro
edure is not stable when �oating point arithmeti
 is used. Therefore we use rationalarithmeti
 to over
ome this problem by exploiting the fa
t that
∫

∆̂

n
∏

i=1

xki

i dx =

∏n
i=1 ki!

(n+
∑n

i=1 ki)!
,whi
h is a rational expression. This way the orthogonalization 
an be 
arried out with-out loss of a

ura
y. The normalization of the base fun
tions is done at the end usinghigh pre
ision �oating point arithmeti
. Both, rational arithmeti
 and arbitrary pre
i-sion �oating point arithmeti
, are provided by the GNUMP pa
kage [82℄ whi
h providesa C++ interfa
e in
luding overloaded arithmeti
 operators.We denote the orthonormal base polynomials of Pm by p0, . . . , p|Pm|−1. Here |Pm| standsfor the dimension of Pm. Using these lo
al base fun
tions we 
an de�ne global orthogonalbase fun
tions on Ωh

ϕj
l (x) = χ∆j

(x) pl(Tj(x)−1), j = 0, . . . , |T | − 1, l = 0, . . . , |Pm| − 1. (6.10)Orthogonality of the lo
al base polynomials pl is preserved be
ause the mapping Tj fromthe referen
e 
ell to the simplex ∆j of T is an a�ne linear mapping. Now we de�ne the
|T | · |Pm| -dimensional spa
e of base fun
tions for the (m+1)-th order Dis
ontinuousGalerkin Method by

Vh = {ϕj
l | j = 0, . . . , |T | − 1, l = 0, . . . , |Pm| − 1}.Note: On Cartesian grids as well as on nonuniform one-dimensional grids Legendre-Polynomials 
an be used to 
onstru
t orthogonal basis fun
tions. In this 
ase an or-thogonalization pro
edure as above is not ne
essary.A more sophisti
ated method to 
onstru
t an orthonormal polynomial basis is presentedin [62℄. The resulting basis has additional symmetry properties. Using this symmetry inthe base polynomials together with symmetries in quadrature formulas 
an be exploitedto improve the performan
e of the Dis
ontinuous Galerkin method (The number of�oating point operations 
an be redu
ed by exploiting these symmetries). In one spa
edimension the Legendre-Polynomials are already symmetri
 and skew symmetri
. Seeexample 6.5.1 in Se
tion 6.5 for an exploit of symmetries in this 
ase.6.4 Quadrature FormulasFor the general treatment of nonlinear partial di�erential equations by the Dis
ontin-uous Galerkin method des
ribed above we need quadrature formulas to evaluate thevolume and surfa
e integrals that appear in the Dis
ontinuous Galerkin formulation.In 
ertain spe
ial 
ases the appli
ation of quadrature formulas 
an be avoided by the
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ation of a quadrature-free implementation whi
h improves the e�
ien
y the Dis-
ontinuous Galerkin method. This is possible for example for linear equations with
onstant 
oe�
ients, Burgers equation or Euler equations with equation of state of aperfe
t gas [4℄, [83℄.A n-dimensional quadrature formula with respe
t to the n-dimensional referen
e simplexis a set of points x0, . . . ,xnq−1 and 
orresponding weights, w0, . . . , wnq−1 su
h that thesum
Ih(f) =

nq−1
∑

r=0

wrf(xr)approximates the integral
I(f) =

∫

∆̂

f(x) dxin some sense for a given fun
tion f : R
n → R.Note: It is not required (but re
ommended) that the points xr lie inside the referen
esimplex.De�nition 6.4.1 (Order of Quadrature Formulas)A quadrature formula (xr, wr)r=0,...,nq−1 is of order m ∈ N\{0} if equation

Ih(p) = I(p)holds for all polynomials p ∈ Pm.As noted above the use of quadrature formulas with points xr outside the referen
esimplex is not re
ommended be
ause fun
tions may not be de�ned at points they areevaluated at by the use of su
h a formula. Some appli
ations have problems whenformulas with negative weights are used but the Dis
ontinuous Galerkin method (atleast in our appli
ations) seems not to be sensitive to this issue. The use of quadraturerules with negative weights results in the loss of the positivity property of the numeri
alintegral but not in the loss of a

ura
y in general.For the implementation of Dis
ontinuous Galerkin s
hemes the analysis 
arried out byCo
kburn, Hou and Shu in [23℄ shows that for the volume integrals quadrature formulasof order 2m and for the interfa
e integrals quadrature formulas of order 2m + 1 aresu�
ient when polynomials of degree m are used as ansatz fun
tions. However, in the
omplete linear 
ase quadrature formulas of order 2m−1 and 2m are su�
ient for exa
tintegration for the volume and interfa
e integrals respe
tively. For linear sour
e terms avolume quadrature rule of order 2m must be 
hosen. Even for nonlinear equations this
hoi
e may be su�
ient as we have observed in appli
ations with the Navier-Stokes-Korteweg system.6.4.1 1d Quadrature FormulasQuadrature formulas in one spa
e dimension 
an be 
onstru
ted very easily by 
om-puting the zeroes of Legendre polynomials to obtain the quadrature points and the
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orresponding weights are obtained by solving a linear system of equations. In [92℄ theC/C++ method gauleg is provided that 
onstru
ts Gaussian quadrature formulas ofarbitrary degree that are known to be optimal in the sense that the number of points ofa quadrature rule of a given order is minimized. This means with nq points a Gaussianquadrature formula of order 2nq − 1 
an be 
onstru
ted. The weights and points ofGaussian quadrature formulas of lower order 
an also be found in standard textbooks,e.g. [109℄ or [107℄.6.4.2 2d Quadrature FormulasTable 6.1 lists some properties and referen
es to existing 2d quadrature formulas withrespe
t to the triangle. All of the 2d formulas are taken from [40℄ some of them 
analso be found in [109℄ and in other sour
es.order number of points remark1 12 33 4 has negative weights4 65 7 has negative weights6 127 138 169 1910 2511 27 has negative baryzentri
 
oordinates12 3313 37Table 6.1: Referen
es to 2d quadrature formulas.[40℄ provides integration formulas up to order 20. Some of the additional formulas notlisted in Table 6.1 also have negative weights or negative 
oordinates.6.4.3 3d Quadrature FormulasTable 6.2 lists some properties and referen
es to existing 3d quadrature formulas withrespe
t to the tetrahedron.Many of the 2d and 3d quadrature formulas above 
an be obtained from the En
y
lo-pedia of Cubature Formulas website [28℄, [88℄.Note: On Cartesian meshes in arbitrary spa
e dimensions 1d-Gaussian quadrature for-mulas 
an be used to 
onstru
t formulas of optimal order.



106 CHAPTER 6. HIGHER ORDER SCHEMES: THE DG APPROACHorder number of points remark referen
e1 1 [109℄2 4 [109℄, page 3073 5 has negative weights [109℄, page 3084 11 has negative weights [70℄5 14 [117℄6 24 [70℄7 35 has negative weights [117℄7 31 has negative weights [70℄8 43 has negative weights [10℄9 53 has negative weights [10℄has negative baryzentri
 
oordinates11 87 has negative weights [99℄has negative baryzentri
 
oordinatesnot 
omputed very a

uratelyTable 6.2: Referen
es to 3d quadrature formulas.6.5 Implementational DetailsWe dis
uss some details on the implementation of the DG dis
retization for s
alar �rstorder 
onservation laws and s
alar non
onservative equations. The extension to ve
torvalued equations and equations with higher order derivatives is then straightforward.S
alar �rst order 
onservation lawsWe 
onsider the Dis
ontinuous Galerkin dis
retization of the s
alar 
onservation law
ut + ∇ · f(u) = 0in n spa
e dimensions. Appli
ation of the dis
retization given in (6.4) and using thenotation of the previous se
tions we get for the j-th 
ell of the mesh

∫

∆j

∂

∂t
uj(x, t)ϕj

k(x) dx =

∫

∆j

f(uj(x, t)) · ∇ϕj
k(x) dx

−
∑

e∈∂∆j

∫

e

g(uj(x, t), uj′(x, t),n) ϕj
k(x) dσ(x),where ϕj

k ∈ Vh denote the basis fun
tions that are not identi
al equal to zero on the 
ell
∆j for k = 0, . . . , np − 1 = |Pm| − 1. The approximate solution on the 
ells ∆j and the
orresponding neighboring 
ells ∆j′ are de�ned by

uj(x, t) =

np−1
∑

k=0

αj
k(t)ϕ

j
k(x), uj′(x, t) =

np−1
∑

k=0

αj′

k (t)ϕj′

k (x).
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ation of the transformation formula and the de�nition of the test fun
tions ϕj
kin (6.10) we get

(αj
k)′(t)

∫

∆̂n

pk(x)pk(x)|detDTj(x)| dx

=

∫

∆̂n

[

DTj(x)−1f(uj(Tj(x), t))
]

· ∇pk(x) |detDTj(x)| dx

−
n
∑

i=0

∫

∆̂n−1

g
(

uj(Si
j(x), t), uj′(Si

j(x), t),n
)

ϕj
k(S

i
j(x))

√

det
(

(DSi
j)

TDSi
j

)

dx.Here Tj : ∆̂n → ∆j denotes the a�ne linear referen
e mapping from the n-dimensionalreferen
e 
ell to the 
ell ∆j and Si
j : ∆̂n−1 → eij the referen
e mapping from the (n−1)-dimensional referen
e 
ell to the i-th interfa
e of the 
ell ∆j. We have

|detDTj(x)| = n! · |∆j| and √

det
(

DSi
j(x)TDSi

j(x)
)

= (n− 1)! · |eij |.Using this, the orthogonality of the test fun
tions and appli
ation of n-dimensional and
(n− 1)-dimensional integrations formulas with qn and qn−1 points respe
tively gives

(αj
k)

′(t) =

qn−1
∑

r=0

wn
r



DT−1
j f





np−1
∑

l=0

αj
l (t)pl(x

n
r )







 · ∇pk(x
n
r ) (6.11)

−
n
∑

i=0

|eij |
n|∆j|

qn−1−1
∑

r=0

wn−1
r g(xn−1

r , t) pk(T
−1
j Si

j(x
n−1
r ))

+Rj
k(t),with the abbreviation

g(xn−1
r , t) = g





np−1
∑

l=0

αj
l (t)pl(T

−1
j Si

j(x
n−1
r )),

np−1
∑

l=0

αj′

l (t)pl(T
−1
j′ S

i
j(x

n−1
r )), n



 .

Rj
k(t) denotes the (small) approximation error of the quadrature formulas and is ne-gle
ted in the implementation. Note that an evaluation of the basis fun
tions pk isne
essary only on
e at the beginning of the 
omputation for the volume integrals. Thisdoes also hold for the surfa
e integrals when the maximum level of non
onformity isrestri
ted in the mesh.S
alar non
onservative equationsWe 
onsider the non
onservative s
alar equation in multiple spa
e dimensions

ut + a(u,∇u,x, t) = 0.
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a(u,∇u,x, t) = b(u, x, t) +

n
∑

i=1

ai(u, x, t)
∂

∂xi
uand in
ludes also a sour
e term b. We apply the dis
retization given by equation (6.8).The 
omputation of the surfa
e integral is similar to the 
omputation of the surfa
eintegral in the 
onservative 
ase dis
ussed in the previous paragraph. So we omit it anddis
uss only the 
omputation of the volume integral. With the notation of the previousparagraph we have

∫

∆j

a (uj(x, t),∇uj(x, t),x, t) ϕ
j
k(x) dx

=

∫

∆j

a





np−1
∑

l=0

αj
l (t)pl(T

−1
j x),

np−1
∑

l=1

αj
l (t)(DTj)

−T∇pl(T
−1
j x), x, t



 pk(T
−1
j x) dx

= n! · |∆j|
∫

∆̂n

a





np−1
∑

l=0

αj
l (t)pl(x),

np−1
∑

l=1

αj
l (t)(DTj)

−T∇pl(x), x, t



 pk(x) dxby appli
ation of the transformation formula. Note that p0 is a 
onstant and 
an beomitted in the 
omputation of ∇uj . For implementation a suitable quadrature formulaas to be applied in general. This is the same as in the 
onservative 
ase.Example 6.5.1 (Symmetry Exploit)In (6.11) we have seen that for the 
omputation of the volume integral over the 
ell
∆j the approximate solution uh has to be evaluated at the integration points Tj(xr).The same 
an be done with less 
omputational 
ost using symmetries in the basispolynomials and in the quadrature formulas. We 
onsider the one dimensional 
ase.In this the basis polynomials are given by s
aled Lagrange polynomials. For simpli
itywe assume that we have an even number np of lo
al basis fun
tions. As quadratureformulas we 
hoose a Gaussian quadrature formula with an even number of points nq.Both, the quadrature formulas and the basis fun
tion have symmetries. We have theproperties

pl(xr) = pl(xnq−r−1) if l is an even number,
pl(xr) = −pl(xnq−r−1) if l is an odd numberfor l = 0, . . . , np − 1 and r = 0, . . . , nq − 1.For r = 0, . . . , nq − 1 it is ne
essary to 
ompute

uh(Tj(xr)) =

np−1
∑

l=0

αj
l pl(xr).
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an be done also in the following way. For r = 0, . . . ,
nq

2 −
1 
ompute

βr =

np

2
−1
∑

l=0

α2l p2l(xr),

γr =

np

2
−1
∑

l=0

α2l+1 p2l+1(xr),

uh(Tj(xr)) = βr + γr,

uh(Tj(xnq−r−1)) = βr − γr.In this approa
h only half the number of multipli
ation and less additions are ne
es-sary to evaluate the approximate solution at the quadrature points. Note that this isnot restri
ted to even number of basis polynomials and quadrature points. A similarapproa
h is also possible in multiple spa
e dimensions when the orthogonal basis fun
-tions have additional symmetry properties. In [62℄ su
h a kind of basis polynomials are
onstru
ted.6.6 Simple ExamplesThis se
tion is dedi
ated to the Lo
al Dis
ontinuous Galerkin dis
retization of two sim-ple examples in one spa
e dimensions in
luding higher order terms. In Se
tion 6.2 wehave already dis
ussed the dis
retization of the s
alar 
onve
tion-di�usion equation inmultiple spa
e dimensions as the method was proposed by Bassi and Rebay [8℄. Here wegive other possible numeri
al �uxes like these proposed by Co
kburn and Shu in [25℄.The se
ond example is the LDG dis
retization of an equation that in
ludes third orderterms. This equation serves as a model problem for the Navier-Stokes-Korteweg systemnot be
ause it is related to this system in spe
ial situations but the way it is dis
retizedis similar.6.6.1 Nonlinear Conve
tion-Di�usion Equation in 1dIn Example 6.2.1 we already dis
ussed the multidimensional nonlinear 
onve
tion-di�usionequation and we dis
retized it by appli
ation of the original LDG method proposed byBassi and Rebay [8℄. Here we 
onsider this equation again in one spa
e dimensionfor simpli
ity and give alternative dis
retizations with superior properties proposed byCo
kburn and Shu [25℄. We 
onsider the problem
ut + F (u)x = εuxx in R × R>0,

u(·, 0) = u0 in R,where F : R → R is some smooth (in general nonlinear) fun
tion and the 
onstant
ε > 0 is supposed to be small su
h that the equation is 
onve
tion dominated and theDis
ontinuous Galerkin dis
retization is an appropriate 
hoi
e.



110 CHAPTER 6. HIGHER ORDER SCHEMES: THE DG APPROACHWe rewrite the equation using two �rst order di�erential operators L1
1 and L1

2 as inSe
tion 6.2
ut + L1

2

[

u, L1
1[u]
]

= 0,the di�erential operators are de�ned by
L1

1[u] = f1
1 (u)x, f1

1 (u) = u,

L1
2[u, v] = f2

1 (u, v)x, f2
1 (u, v) = F (u) − εv.Here f1

1 and f2
1 denote the physi
al �uxes. For the 
omplete numeri
al dis
retizationwe have to de�ne 
onsistent numeri
al �uxes, We 
hoose the Lo
al Lax-Friedri
hs �uxfor the 
onve
tive part of the equation and a family of vis
ous �uxes parameterized by

ξ ∈ [0, 1] for the vis
ous part of the equation.
g1(u−, u+, n) = (ξu− + (1 − ξ)u+)n,

g2(u−, v−, u+, v+, n) = 1
2 (F (u−) + F (u+))n− α

2 (u+ − u−)

−ε ((1 − ξ)v− + ξv+)n,

(6.12)where n denotes the one dimensional normal (i.e. 1 or −1) and α is 
hosen to be equalto the fastest wave speed α = max(|F ′(u−)|, |F ′(u+)|). For simpli
ity we omit thetreatment of boundary 
onditions.Choosing the parameter ξ equal to zero or one means that in a �rst order s
heme thevis
ous part of the equation is dis
retized by the usual three point sten
il
ε

h2
(ui−1 − 2ui + ui+1) ,whereas the 
hoi
e ξ = 1

2 leads to a dis
retization by the spread out �ve point widesten
il
ε

4h2
(ui−2 − 2ui + ui+2) .Numeri
al experiments show that the latter 
hoi
e 
an lead to a suboptimal order of
onvergen
e in the 
ase where polynomials of odd degree are used as ansatz fun
tions,see [102℄. This is not a problem with the 
hoi
e ξ = 0 and ξ = 1 but this 
hoi
e 
anlead to problems with boundary 
onditions, see also Se
tion 6.9.For a �rst order s
heme it is 
lear that the numeri
al (arti�
ial) vis
osity 
an be omittedin the 
ase ξ = 0 and ξ = 1, the method proposed by Co
kburn and Shu [25℄, providedthat the 
omputational mesh is su�
iently �ne or the time step su�
iently small in thefully dis
rete s
heme. A linear stability analysis shows that it is not possible to stabilizethe s
heme by physi
al vis
osity when the parameter ξ = 1

2 , this is the original s
hemeproposed by Bassi and Rebay [8℄ applied to the s
alar 
onve
tion-di�usion equation, is
hosen. Numeri
al experiments show that the same is true for the higher order s
hemes.



6.6. SIMPLE EXAMPLES 1116.6.2 Nonlinear Conve
tion-Di�usion-Dispersion Equation in 1dAs a s
alar model problem for the Navier-Stokes-Korteweg system we 
onsider the s
alarequation in one spa
e dimension
ut + f(u)x = εuxx + λuxxx in Ω × R>0,

u(·, 0) = u0 in Ω,where f : R → R is some smooth fun
tion and ε, λ are positive 
onstants. For simpli
itywe set the interval Ω = (0, 1) and 
onsider periodi
 boundary 
onditions.This equation serves as a model problem for the NSK system not be
ause it is related tothis system in spe
ial situations but the way it is dis
retized by the lo
al Dis
ontinuousGalerkin approa
h is similar. We apply the general approa
h from Se
tion 6.2 to theabove equation. This means we rewrite the equation as a 
ombination of three �rstorder di�erential operators. We omit the expli
it de�nition of the di�erential operators,the physi
al, the numeri
al �uxes and we write down the dis
retization of the systemas we need it in Se
tion 6.8. We rewrite the third order equation formally as a systemof �rst order equations by the introdu
tion of new variables p and q.
ut + (f(u) − p)x = 0,

p − (εu+ q)x = 0,

q − (λu)x = 0.Appli
ation of the Lo
al Dis
ontinuous Galerkin dis
retization dis
ussed in Se
tion 6.2leads to the following semi-dis
rete problem. Find fun
tions u(·, t), p, q ∈ Vh = {ϕ :
Ω → R | ϕ|∆j

∈ Pk(∆j)} su
h that the equations
∫

∆j

utv dx−
∫

∆j

(f(u) − p)vx dx + (f̂ − p̂)j+ 1

2

v−
j+ 1

2

− (f̂ − p̂)j− 1

2

v+
j− 1

2

= 0

∫

∆j

pw dx+
∫

∆j

(εu+ q)wx dx − (εû+ q̂)j+ 1

2

w−
j+ 1

2

+ (εû+ q̂)j− 1

2

w+
j− 1

2

= 0

∫

∆j

qz dx+
∫

∆j

(λu)zx dx − (λû)j+ 1

2

z−
j+ 1

2

+ (λû)j− 1

2

z+
j− 1

2

= 0

(6.13)are satis�ed for all pie
ewise polynomial test fun
tions v,w, z ∈ Vh and all 
ells ∆j.Here we denote the numeri
al �uxes by the hat fun
tions and a values ϕ±
j+ 1

2

denotethe values of the fun
tion ϕ ∈ Vh at the interfa
e xj+ 1

2

of the 
ell ∆j =
(

xj− 1

2

, xj+ 1

2

)extrapolated from the right and left respe
tively. Note that the fun
tion in general isdis
ontinuous at the interfa
e. As numeri
al �ux for the 
onve
tive part of the equation
f̂j+ 1

2

= f̂(u+
j+ 1

2

, u−
j+ 1

2

) (6.14)we 
hoose some general monotone, Lips
hitz 
ontinuous and 
onsistent numeri
al �ux,for example the Lo
al Lax-Friedri
hs �ux as in the previous paragraph. The remaining
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al �uxes we de�ne as follows:
q̂j+ 1

2

= q̂

(

q−
j+ 1

2

, q+
j+ 1

2

)

= 1
2(q+

j+ 1

2

+ q−
j+ 1

2

),

p̂j+ 1

2

= p̂

(

p−
j+ 1

2

, p+
j+ 1

2

)

= ξp+
j+ 1

2

+ (1 − ξ)p−
j+ 1

2

,

ûj+ 1

2

= û

(

u−
j+ 1

2

, u+
j+ 1

2

)

= (1 − ξ)u+
j+ 1

2

+ ξu−
j+ 1

2

,

(6.15)
for some 
onstant ξ ∈ [0, 1]. Note that the equations p and q 
an be eliminated lo
allysu
h that it is not ne
essary to solve a larger system of equations. This propertyis responsible for the term Lo
al in the Lo
al Dis
ontinuous Galerkin method. Thedis
rete initial data 
an be 
onstru
ted by L2-proje
tion to the Finite Element spa
e
Vh.For the above given dis
retization we prove a L2 stability result similar to that givenin [130℄ in Se
tion 6.8.6.7 Summary of Theoreti
al ResultsIn this se
tion we state some of the existing results about the Dis
ontinuous Galerkindis
retization for 
onservation laws and Lo
al Dis
ontinuous Galerkin methods for
onve
tion-di�usion equations and equations with higher order derivatives. The Lo-
al Dis
ontinuous Galerkin dis
retization was proposed by Bassi and Rebay in [8℄ (theyapplied the method to the 
ompressible Navier-Stokes equations) and further developedby Co
kburn and Shu, see for example [25℄. Co
kburn, Shu and 
oworkers give sev-eral theoreti
al results for s
alar model problems. Results 
on
erning multidimensionalsystems are rare or do not exist.Early resultsReed and Hill [94℄ introdu
ed the Dis
ontinuous Galerkin method in 1973 for the timeindependent, s
alar, multidimensional, linear transport equation

∇ · (au) + bu = f in Ωwith appropriate boundary 
onditions. For the dis
retization they used numeri
al up-wind �uxes. LeSaint and Raviart [80℄ proved that the L2-error of the approximatesolution is of order k when lo
al base polynomials of degree k are used on general trian-gulations. Johnson and Pitkäranta [66℄ showed that the approximate solution 
onvergeswith order k + 1
2 to the exa
t solution of the problem.Many referen
es for the Dis
ontinuous Galerkin method and its re
ent development 
anbe found in the review paper [27℄.Nonlinear s
alar 
onservation lawsZhang and Shu [133℄ 
onsidered the nonlinear s
alar 
onservation law in multiple spa
e
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ut + ∇ · f(u) = 0 in Ω × (0, T ),

u(·, 0) = u0 in Ω,where f : R → R
n is a su�
iently smooth ve
tor �eld and u0 : R → R denotes thesmooth initial data. The equation is dis
retized in spa
e by the Dis
ontinuous Galerkinapproa
h of arbitrary degree (polynomial degree k ≥ 1) using general monotone numer-i
al �uxes. Only Cartesian meshes are 
onsidered. In the multidimensional 
ase tensorprodu
ts of 1d base fun
tions are used as ansatz fun
tions. Time integration is doneby appli
ation of the se
ond order Runge-Kutta method TVD2 des
ribed in Se
tion 7.2(the generalization of the statements below to higher order Runge-Kutta s
hemes likeTVD3 is a nontrivial task). In [133℄ Zhang and Shu obtained error estimates for smoothsolutions of the s
alar 
onservation law. They proved that the error is of order

• O
(

hk+1 + ∆t2
) in the nonlinear one dimensional 
ase and in the linear mul-tidimensional 
ase. Both 
ases require k = 1 and the usual CFL-
ondition

∆t ≤ CCFL h,
• O

(

hk+ 1

2 + ∆t2
) for k ≥ 2 in the nonlinear multidimensional 
ase with a morerestri
tive CFL-
ondition ∆t < CCFL h

4

3 .As usual h denotes the mesh size and ∆t the time step size. The authors do not payattention to the treatment of boundary 
onditions. Thus, periodi
 boundary 
onditionsor 
ompa
tly supported initial data is 
onsidered.Note: Sin
e only smooth solutions are 
onsidered a slope limiting pro
edure, that is usu-ally ne
essary for �rst order 
onservation laws when dis
ontinuities are present, is notne
essary to maintain the stability of the method, see for example the review paper [27℄.Conve
tion-di�usion equationsOriginally Bassi and Rebay proposed the Lo
al Dis
ontinuous Galerkin (LDG) methodin appli
ation to the 
ompressible Navier-Stokes equations [8℄. A further developmentof this method was 
arried out by Co
kburn and Shu within the general framework of
onve
tion-di�usion equations [25℄. The method is espe
ially well suited for 
onve
tiondominated systems. In [25℄ the following 
lass of equations is 
onsidered:
ut + ∇ · f(u,∇u) = 0 in Ω × (0, T ),

u(·, 0) = u0 in Ω,where f : R × R
n → R

n is a smooth fun
tion that is linear in the se
ond argument(∇u). Under further assumptions on the fun
tion f the authors applied a similar (inthe general nonlinear 
ase more sophisti
ated) dis
retization as we dis
ussed it in theSe
tion 6.6. They proved a L2-stability result for a semi-dis
rete solution whi
h leads toan error estimate in the L2-norm for the linear 
ase with 
onstant 
oe�
ients. The errorof the semi-dis
rete solution is of order Chk when a polynomials of degree k are usedand the order of the 
onstant C varies between 1 and h dependent on the polynomial
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oe�
ients (purely hyperboli
 / purely paraboli
 
ase).For simpli
ity periodi
 domains are 
onsidered.The Lo
al Dis
ontinuous Galerkin method is not the only DG type method for this typeof equations. There are a lot of other method that 
ome from the DG dis
retization ofellipti
 problems. In [3℄ all the available methods for ellipti
 equations are 
ompa
tlypresented and they are 
ompared to ea
h other numeri
ally in [20℄. Espe
ially themethod by Baumann and Oden (BO) [9℄ seems to be attra
tive for the treatment of
onve
tion-di�usion systems. A 
omparison between the Lo
al Dis
ontinuous Galerkinmethod and the Baumann and Oden method in the framework of 
onve
tion-di�usionequations 
an be found in [102℄, we summarize the advantages and disadvantages of theLDG method over the BO method as follows. The underlying ben
hmark in [102℄ wasthe dis
retization of the one dimensional heat equation.+ In the test with the 1d heat equation the LDG method produ
es mu
h smallererrors than the BO method.+ The LDG method 
onverges with optimal order for polynomials of all degrees k.The BO method is not optimal for even k.- The LDG method has a higher 
omputational 
ost than the BO method. But inthe test this is amortized by the smaller errors.- In parallel implementations the LDG method has a higher 
ommuni
ation 
ostthan the BO method.The main advantage of the LDG method over the Baumann and Oden method is thatthe LDG method 
an be easily generalized to systems with third or even higher orderderivatives. We will see this in the next paragraph. This is not possible with the Bau-mann and Oden method, at least it is not straightforward to do.KdV type equationsYan and Shu [130℄ 
onsidered a general 
lass of s
alar nonlinear KdV like equations inmultiple spa
e dimensions of the form
ut +

n
∑

i=1

∂

∂xi



fi(u) + r′i(u)
n
∑

j=1

gij(ri(u)xi
)xj



 = 0 in Ω × (0, T ),

u(·, 0) = u0 in Ω,where fi, ri and gij are smooth s
alar valued fun
tions. The boundary is assumed to beperiodi
 to avoid the 
ompli
ated treatment of boundary 
onditions. For a semi-dis
reteLo
al Dis
ontinuous Galerkin formulation of this equation similar to the one given forthe 
onve
tion-di�usion-dispersion example in Se
tion 6.6 Yan and Shu obtained a 
ellentropy inequality for the square entropy in the multidimensional 
ase whi
h leads toa L2-stability result (of 
ourse the solution of the 
ontinuous problem is L2-stable,provided that it exists). This result holds for arbitrary non
onform simpli
ial mesheswith possibly hanging nodes. In the one dimensional linear 
ase this leads to an errorestimate in the L2-norm whi
h is of order O(hk+1/2) when polynomials of degree k are
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hnique as for �rst order 
onservation laws is not ne
essary toguarantee the stability of the approximate solution.In 
ontrast to the 
onve
tion-di�usion equation, dis
ussed in the paragraph before, thereis no alternative Dis
ontinuous Galerkin method su
h as the Baumann-Oden methodfor these kinds of equations in
luding third order derivatives. Thus, the appli
ation ofthe Lo
al Dis
ontinuous Galerkin method seems to be appropriate for the dis
retizationof the Navier-Stokes-Korteweg equations. The treatment of vis
ous terms is missing in[130℄. Therefore we give a similar stability result in one spa
e dimension for the simple
onve
tion-di�usion-dispersion example dis
ussed in Se
tion 6.6 in the next se
tion.
6.8 L

2-Stability of the LDG-Dis
retization for a Model Prob-lemWe give a 
ell entropy inequality and a resulting L2-stability estimate for the semi-dis
rete Dis
ontinuous Galerkin dis
retization for the one dimensional s
alar 
onve
tion-di�usion-dispersion equation dis
ussed in Se
tion 6.6, see (6.13).Theorem 6.8.1 (Cell Entropy Inequality)Let u ∈ C1 ((0,∞), Vh) be a solution of the semi-dis
rete Lo
al Dis
ontinuous Galerkinformulation (6.13) with numeri
al �uxes (6.14) and (6.15). Then there exist numeri
alentropy �uxes Hj− 1

2

su
h that the semi-dis
rete solution satis�es the entropy inequality
d

dt

∫

∆j

1

2
u2 dx+Hj+ 1

2

−Hj− 1

2

≤ 0 (6.16)for all 
ells ∆j .Proof. We denote the sum of the left hand sides of the three equations in (6.13) by
Bj(u, p, q; v,w, z) and �nd that this is equal to zero for all v,w, z ∈ Vh. We 
hoosespe
ial test fun
tions

v = u, w = − 1

λ
q, z =

1

λ
p+

ε

λ2
q,
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tion F of f we �nd that
0 = Bj

(

u, p, q; u, − 1

λ
q,

1

λ
p+

ε

λ2
q

)

=
d

dt

∫

∆j

1

2
u2 dx+

ε

λ2

∫

∆j

q2 dx+

∫

∆j

∂

∂x

(

pu− F (u) − 1

2λ
q2
)

dx

+(f̂ − p̂)j+ 1

2

u−
j+ 1

2

− (f̂ − p̂)j− 1

2

u+
j− 1

2

+
1

λ
(εû+ q̂)j+ 1

2

q−
j+ 1

2

− 1

λ
(εû+ q̂)j− 1

2

q+
j− 1

2

−ûj+ 1

2

(

p−
j+ 1

2

+
ε

δ
q−
j+ 1

2

)

+ ûj− 1

2

(

p+
j− 1

2

+
ε

δ
q+
j− 1

2

)

=
d

dt

∫

∆j

1

2
u2 dx+

ε

λ2

∫

∆j

q2 dx+Hj+ 1

2

−Hj− 1

2

+Kj− 1

2

.The quantities Hj− 1

2

and Kj− 1

2

are de�ned by the relations
Hj− 1

2

= p−
j− 1

2

u−
j− 1

2

− F (u−
j− 1

2

) − 1

2λ
(q−

j− 1

2

)2

+(f̂ − p̂)j− 1

2

u−
j− 1

2

+
1

λ
(εû+ q̂)j− 1

2

q−
j− 1

2

− ûj− 1

2

(p−
j− 1

2

+
ε

λ
q−
j− 1

2

)and
Kj− 1

2

=

u+
∫

u−

(

f(u) − f̂(u−, u+)
)

du

+
1

λ

(

1

2
(q+ + q−)(q+ − q−) − q̂(q−, q+)(q+ − q−)

)

+p̂(p−, p+)(u+ − u−) + û(u−, u+)(p+ − p−) − p+u+ + p−u−.The subs
ripts j− 1
2 for the values u−, u+, p−, p+, q−, q+ were omitted in the de�nition of

Kj− 1

2

for notational simpli
ity. Using the properties of the numeri
al �uxes (6.14) and(6.15) we see that the quantity Kj− 1

2

is positive. The integral in the above expressionis positive sin
e f̂ is a monotone �ux and everything else vanishes. As a result we getthe 
ell entropy inequality
d

dt

∫

∆j

1

2
u2 dx+

ε

λ2

∫

∆j

q2 dx+Hj+ 1

2

−Hj− 1

2

≤ 0. (6.17)This 
ompletes the proof. Note that this is a sharper estimate than the one stated inthe theorem above. The fun
tion q is an approximation to λux and therefore the se
ondintegral an approximation to ε ∫ u2
x dx. The 
ell entropy inequality above immediatelyleads to a L2-stability of the semi-dis
rete solution.



6.9. NAVIER-STOKES-KORTEWEG DG-DISCRETIZATION 117Corollary 6.8.2 (L2-stability)Let u ∈ C1 ((0,∞), Vh) be a solution of the semi-dis
rete Lo
al Dis
ontinuous Galerkinformulation (6.13) with numeri
al �uxes (6.14) and (6.15). Then the semi-dis
retesolution satis�es the L2-stability estimate
d

dt

∫

∆j

1

2
u2 dx ≤ 0.Proof. Using the 
ell entropy inequality (6.17) and summing over all 
ells gives

d

dt

∫

Ω

1

2
u2 dx ≤ − ε

λ2

∫

Ω

q2 dx (6.18)whi
h is a sharper estimate than the one stated above. Note that periodi
 boundary
onditions are used and therefore all numeri
al entropy �uxes Hj− 1

2

have a 
ounter part.6.9 Navier-Stokes-Korteweg DG-Dis
retizationIn this se
tion we �nally des
ribe the Lo
al Dis
ontinuous Galerkin spa
e dis
retizationof the NSK equations. This is done on the basis of the ba
kground of the previousse
tions. The dis
retization of the isothermal version of the Navier-Stokes-Kortewegsystem in multiple spa
e dimensions as well as the dis
retization of the 2d (full) NSKmodel is dis
ussed in detail. The extension to three spa
e dimensions is omitted for thefull system for simpli
ity. It is straightforward to do.6.9.1 1d isothermalWe 
onsider the Lo
al Dis
ontinuous Galerkin spa
e dis
retization of the one dimen-sional isothermal Navier-Stokes-Korteweg equations (2.55), (2.56) in the non
onserva-tive formulation
ρt + (ρu)x = 0,

(ρu)t + (ρu2)x + ρκx = εuxx,
in Ω × (0, T )with κ = µ(ρ) − λρxx and boundary 
onditions

u = 0, ρx = 0 on ∂Ω × (0, T )and the usual initial 
onditions. We rewrite the third order system as a larger formally�rst order system.
(

ρx

ux

)

− L1
1[ρ, ρu] = 0,

κ − L1
2[ρ, ρx] = 0,

∂
∂t

(

ρ
ρu

)

+ L1
3[ρ, ρu, ux, κ] = 0.



118 CHAPTER 6. HIGHER ORDER SCHEMES: THE DG APPROACHThe �rst order di�erential operators L1
1, L1

2, L1
3 are de�ned by

L1
1[ρ, ρu] = ∂

∂x

(

ρ
ρu
ρ

)

,

L1
2[ρ, ρx] = µ(ρ) − λ ∂

∂xρx,

L1
3[ρ, ρu, ux, κ] = ∂

∂x

(

ρu
ρu2 − εux

)

+

(

0

ρ ∂
∂xκ

)

.

(6.19)Here we have all kinds of operators dis
ussed in se
tion 6.2. The blue terms belong to
onservative parts of the di�erential operators. The µ(ρ) term in operator L1
2 has the
hara
ter of a sour
e term and the red part of L1

3 is a non-
onservative produ
t.To 
omplete the dis
retization we have to 
hoose suitable numeri
al �uxes. At the inner
ell interfa
es we 
hoose
g1(ρ±, ρu±, n) = n





{ρ}
{

ρu
ρ

}

ξ



,

g2(ρ±, ρ±x , n) = −nλ{ρx},

g3(ρ±, ρu±, u±x , κ
±, n) =

(

{ρu}n− α1

2 [κ]

{ρu2}n− ε {ux}1−ξn+ ζ{ρ}[κ]n− α2

2 [ρu]

)

.

(6.20)
Here and in the following {ϕ}ξ = ξϕ− + (1 − ξ)ϕ+ for ξ ∈ [0, 1] denotes the weightedaverage and [ϕ] = (ϕ+ − ϕ−) the jump over the interfa
e between 
ells for an element
ϕ ∈ Vh. In the 
ase were ξ is equal to 1

2 we omit the parameter, i.e., {ϕ} = 1
2(ϕ− +ϕ+)denotes the arithmeti
 average. As a 
onvention in one spa
e dimension the − valuesdenote the values on the left side of the 
ell interfa
e and + the values on the right.The normal n in 1d has the values −1 or 1.The 
olored terms are related to the 
olored terms in the di�erential operators. Thegreen terms represent the numeri
al vis
osity that we have introdu
ed in Se
tion 5.2.The parameters α1 and α2 are 
hosen in the same way as in Se
tion 5.2. In g3 theaveraging of 
onservative and non
onservative terms are 
ombined, see (6.4) and (6.8).The parameter ζ 
ontrols the ratio in the averaging of the test fun
tion. We always
hoose ζ = 1

2 whi
h leads to a 
entral s
heme. Sour
e terms as µ(ρ) in g2 do not givea 
ontribution to the numeri
al �uxes.The parameter α2 
an be set to zero in the 
ase where the momentum equation isstabilized by physi
al vis
osity. It depends on the parameter ξ ∈ [0, 1] and the meshsize if this is the 
ase or not. This parameter has the same meaning as in Se
tion 6.6.1and 
an be 
hosen di�erently as dis
ussed in the following. If it is 
hosen globally equalto one or zero this leads to problems with the boundary 
ondition u = 0 sin
e the
ondition is taken into a

ount only on one side of the interval Ω. Possible 
hoi
es arelisted below.
• It 
an be 
hosen lo
ally su
h that all boundary 
onditions 
an be taken intoa

ount. It should vary smoothly between the 
ells of the grid.
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• It 
an be 
hosen always equal to 1

2 . In this 
ase the s
heme 
annot be stabilizedby the physi
al vis
osity and one has to impose arti�
ial (numeri
al) vis
osity tothe dis
rete momentum equation, i.e., α2 > 0. A suboptimal order of 
onvergen
eas for the heat equation has not been observed in the numeri
al tests, see thedis
ussion in se
tion 6.6.
• It 
an be swit
hed from 1 to 0 and vi
e versa every time step. This is of 
ourse adirty ha
k but works quite well in pra
ti
al appli
ations.A similar approa
h with the 
ombination of ba
kward an forward di�eren
es is alsopossible for the se
ond derivative λρxx in the de�nition of κ. But in the multidimensional
ase on unstru
tured grids numeri
al experiments show that this 
an lead to problemswith symmetries and thus, an unstable behavior. Therefore we build the arithmeti
average twi
e.For the 
orre
t treatment of the boundary 
onditions we 
hoose numeri
al boundary�uxes gi

b, i = 1, 2, 3 at boundary interfa
es. Let, without loss of generality, the −values be in the interior of the domain and the + values at the boundary. We set
u+ = 0,

ρ+ = ρ−,

ρu+ = ρ+u+,

u+
x = u−x ,and with this we 
an de�ne the numeri
al boundary �uxes

g1
b(ρ

±, ρu±, n) = n





ρ
{

ρu
ρ

}

ξ



,

g2
b(ρ

±, ρ±x , n) = 0,

g3
b(ρ

±, ρu±, u±x , κ
±, n) =

(

{ρu}n
{ρu2}n− ε {ux}1−ξn− α2

2 [ρu]

)

.

(6.21)
The parameter ξ has the same meaning as before and jumps in κ do not appear at theboundary. This 
ompletes the Lo
al Dis
ontinuous Galerkin dis
retization of the onedimensional isothermal Navier-Stokes-Korteweg system.6.9.2 2d isothermalWe 
onsider the two dimensional Navier-Stokes-Korteweg system. In 
ontrast to theone dimensional 
ase we in
lude the e�e
t of gravity. Instead of adding the standardsour
e term ρg to the momentum equation we 
ombine this term with the variable κwhi
h leads to a well balan
ed s
heme when gravity is present. In the following wedenote the spatial 
oordinates by x = (x, y) and the velo
ity of the �uid by u = (u, v).

ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρuuT ) + ρ∇κ = ∇ · τ , in Ω × (0, T )



120 CHAPTER 6. HIGHER ORDER SCHEMES: THE DG APPROACHwith κ = µ(ρ) − λ∆ρ− (gxx+ gyy) and boundary 
onditions
u = 0 and − ∇ρ

|∇ρ| · n = cos(ϕ). on ∂Ω × (0, T ).In the de�nition of κ the e�e
t of gravity is in
luded. The 
onstants gx and gy denotethe gravitational for
e in x and y dire
tion respe
tively.In two spa
e dimensions the vis
ous 
ontribution of the stress tensor 
an be rewrittenas
∇ · τ =

(

ε(ux + vy)x + µ(uy − vx)y

−µ(uy − vx)x + ε(ux + vy)y

)

. (6.22)Here we set ε = 2µ + ν where µ and ν denote the 
oe�
ients of vis
osity. Withthis approa
h we have to deal only with the two quantities ux + vy and uy − vx inthe Lo
al Dis
ontinuous Galerkin dis
retization of the two dimensional NSK systeminstead of using the four quantities ux, uy, vx and vy. This saves 
omputational 
ostand more important with this approa
h the treatment of boundary 
onditions thatinvolve tangential and normal velo
ities is very easy sin
e the terms
(

u
v

)

· n and (

−v
u

)

· nappear in the 
orresponding numeri
al boundary �uxes. These two terms are the normaland tangential velo
ity respe
tively.As in the one dimensional 
ase we rewrite the third order system as a larger formally�rst order system.








ρx

ρy

(ux + vy)
(uy − vx)









− L1
1[ρ, ρu] = 0,

κ − L1
2[ρ, ρx, ρy] = 0,

∂
∂t





ρ
ρu
ρv



 + L1
3[ρ, ρu, (ux + vy), (uy − vx), κ] = 0.

(6.23)
The �rst order di�erential operators L1

1, L1
2, L1

3 are de�ned by
L1

1[ρ, ρu] = ∂
∂x











ρ
0
ρu
ρ

−ρv
ρ











+ ∂
∂y











0
ρ
ρv
ρ
ρu
ρ











,

L1
2[ρ, ρx, ρy] = µ(ρ) − λ ∂

∂xρx − λ ∂
∂yρy − (gxx+ gyy),

L1
3[ρ, ρu, (ux + vy), (uy − vx), κ] =

∂
∂x





ρu
ρu2 − ε(ux + vy)
ρuv + µ(uy − vx)



+ ∂
∂y





ρv
ρuv − µ(uy − vx)
ρv2 − ε(ux + vy)



+







0

ρ ∂
∂xκ

ρ ∂
∂yκ






.

(6.24)
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ase the blue terms represent the 
onservative parts,bla
k terms sour
e type parts and the red term a non-
onservative part of the �rst orderdi�erential operators.Before we 
ontinue with the de�nition of the numeri
al �uxes we de�ne the + and −sides of a 
ell interfa
e. We 
hoose a ve
tor β ∈ R
2 that is not parallel to any 
ellinterfa
e of the mesh. Su
h a 
hoi
e is always possible be
ause there are only a �nitenumber of interfa
es. We take the normal of a 
ell interfa
e n = (nx, ny) and buildthe produ
t β · n. If this produ
t is positive then the 
ell the normal points to de�nesthe + side of the interfa
e and the opposite side the − side. Using this 
onvention thenumeri
al �uxes for the two dimensional dis
retization are given by

g1(ρ±, ρu±,n) =











{ρ}nx

{ρ}ny

{u}ξ nx + {v}1−ξ ny

{−v}1−ξ nx + {u}ξ ny











,

g2(ρ±, ρ±x , ρ
±
y , ρ

±
z ,n) = −λ ({ρx}nx + {ρy}ny),

g3(ρ±, ρu±, . . . , κ±,n) =







{ρu}nx + {ρv}ny − α1

2 [κ]

{ρu2}nx + {ρuv}ny − α2

2 [ρu]

{ρvu}nx + {ρv2}ny − α2

2 [ρv]







+







0

ζ{ρ}[κ]nx−ε {ux + vy}1−ξ nx − µ {uy − vx}1−ξ ny

ζ{ρ}[κ]ny+µ {uy − vx}ξ nx − ε {ux + vy}ξ ny







(6.25)
The treatment of the boundary 
onditions by de�nition of suitable numeri
al boundary�uxes is almost the same as in the one dimensional 
ase ex
ept for the de�nition of g2

bwhere the boundary 
ondition − ∇ρ
|∇ρ| · n = cos(ϕ) is taken into a

ount. ϕ denotes the
onta
t angle of the di�use interfa
e at a solid wall.

g2
b(ρ

−
x , ρ

−
y , n) = λ cos(ϕ)

√

(ρ−x )2 + (ρ−y )2. (6.26)We omit the remaining numeri
al boundary �uxes. It is an almost straight generaliza-tion of the 1d �uxes dis
ussed in Se
tion 6.9.1.



122 CHAPTER 6. HIGHER ORDER SCHEMES: THE DG APPROACH6.9.3 3d isothermalIn this se
tion we denote the spatial variable by x = (x, y, z) and the velo
ity by
u = (u, v,w). We omit the e�e
t of gravity we have in
luded in the two dimensional
ase. It 
an be in
luded in the dis
retization in the same way as in the two dimensional
ase. Thus, we 
onsider the NSK system in 3d

ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρuuT ) + ρ∇κ = ∇ · τ , in Ω × (0, T )with κ = µ(ρ) − λ∆ρ and boundary 
onditions
u = 0 and − ∇ρ

|∇ρ| · n = cos(ϕ). on ∂Ω × (0, T ).In three spa
e dimensions almost the same approa
h with the vis
ous 
ontribution 
anbe done as for the 2d model, see (6.22).
∇ · τ =







ε(ux + vy + wz)x + µ(uy − vx)y + µ(uz −wx)z

−µ(uy − vx)x + ε(ux + vy + wz)y + µ(vz − wy)z

−µ(uz − wx)x + −µ(vz − wy)y + ε(ux + vy + wz)z






. (6.27)Again we set ε = 2µ + ν where µ and ν denote the 
oe�
ients of vis
osity. Now we
an use the four quantities uy − vx, uz − wx, vz − wy and ux + vy + wz instead of thenine quantities in the velo
ity gradient. The former three quantities 
orrespond to thetangential velo
ity at the boundary and the latter to the normal velo
ity.We reformulate the third order system as formally �rst order system as in the one andtwo dimensional 
ases.





















ρx

ρy

ρz

(ux + vy + wz)
(uy − vx)
(uz − wx)
(vz − wy)





















− L1
1[ρ, ρu] = 0,

κ − L1
2[ρ, ρx, ρy, ρz] = 0,

∂
∂t









ρ
ρu
ρv
ρw









+ L1
3[ρ, ρu, . . . , κ] = 0.

(6.28)



6.9. NAVIER-STOKES-KORTEWEG DG-DISCRETIZATION 123The �rst order di�erential operators L1
1, L1

2, L1
3 are then de�ned by

L1
1[ρ, ρu] = ∂

∂x





















ρ
0
0
u
−v
−w
0





















+ ∂
∂y





















0
ρ
0
v
u
0

−w





















+ ∂
∂z





















0
0
ρ
w
0
u
v





















,

L1
2[ρ, ρx, ρy, ρz] = µ(ρ) − λ ∂

∂xρx − λ ∂
∂yρy − λ ∂

∂zρz,

L1
3[ρ, ρu, . . . , κ] =













0

ρ ∂
∂xκ

ρ ∂
∂yκ

ρ ∂
∂zκ













+ ∂
∂x









ρu
ρu2 − ε(ux + vy + wz)
ρuv + µ(uy − vx)
ρuw + µ(uz − wx)









+ ∂
∂y









ρv
ρvu− µ(uy − vx)

ρv2 − ε(ux + vy + wz)
ρvw + µ(vz − wy)









+ ∂
∂z









ρw
ρwu− µ(uz −wx)
ρwv − µ(vz − wy)

ρw2 − ε(ux + vy + wz)









.

(6.29)

We de�ne + and − sides of 
ell interfa
es in the same way as dis
ussed in the twodimensional dis
retization by introdu
tion of a ve
tor β ∈ R
3 that is not parallel toany interfa
e of the mesh. With this 
onvention we de�ne the 
orresponding numeri
al�uxes by

g1(ρ±, ρu±,n) =

























{ρ}nx

{ρ}ny

{ρ}nz

{u}ξ nx + {v}1−ξ ny + {w}1−ξ nz

{−v}1−ξ nx + {u}ξ ny

{−w}1−ξ nx + {u}ξ nz

{−w}ξ ny + {v}ξ nz

























,

g2(ρ±, ρ±x , ρ
±
y , ρ

±
z ,n) = −λ ({ρx}nx + {ρy}ny + {ρz}nz),

g3(ρ±, ρu±, . . . , κ±,n) =











{ρu}nx + {ρv}ny + {ρw}nz − α1

2 [κ]

{ρu2}nx + {ρuv}ny + {ρuw}nz − α2

2 [ρu]

{ρvu}nx + {ρv2}ny + {ρvw}nz − α2

2 [ρv]

{ρwu}nx + {ρwv}ny + {ρw2}nz − α2

2 [ρw]











+











0

ζ{ρ}[κ]nx−ε {ux + vy +wz}1−ξ nx − µ {uy − vx}1−ξ ny − µ {uz − wx}1−ξ nz

ζ{ρ}[κ]ny+µ {uy − vx}ξ nx − ε {ux + vy +wz}ξ ny − µ {vz − wy}1−ξ nz

ζ{ρ}[κ]nz+µ {uz − wx}ξ nx + µ {vz − wy}1−ξ ny − ε {ux + vy + wz}ξ nz











.

(6.30)



124 CHAPTER 6. HIGHER ORDER SCHEMES: THE DG APPROACHThe de�nition of the numeri
al boundary �uxes is a straightforward generalization ofthe one and two dimensional �uxes. Therefore we omit it.6.9.4 2d full modelWe dis
uss the DG spa
e dis
retization of the full temperature dependent Navier-Stokes-Korteweg model (see Se
tion 2.3) in this se
tion. Most of the following treatment isquite similar to the isothermal 
ase and therefore we will omit some details. Instead ofthe energy equation we use the entropy equation (2.27) as additional evolution equation.The total entropy of a Korteweg type material has the advantage that it does not dependon the density gradient whereas the total energy does. The entropy equation is not indivergen
e form but this should not be a problem sin
e solutions are supposed to besmooth and the momentum equation is also dis
retized in a non
onservative form. Sin
ewe do not dis
retize the energy balan
e equation (2.36) dire
tly, one 
annot expe
t thatthe total physi
al energy is exa
tly 
onserved but the loss or gain of energy should benegligible small as long the solution is smooth. We dis
retize the system
ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρuuT ) + ρ∇κ+ ρs∇θ = ∇ · τ ,
(ρs)t + ∇ · (ρsu) = ∇ ·

(η
θ∇θ

)

+ 1
θτ : ∇u + η

θ2 |∇θ|2.
(6.31)Possible boundary 
onditions are dis
ussed in Se
tion 2.6. Sin
e the 
hemi
al potential

µ depends on the temperature the value κ de�ned by
κ = κ(θ, ρ,∆ρ) = µ(θ, ρ) − λ∆ρdoes also depend on the temperature. Here η > 0 denotes the heat 
ondu
tion 
oe�
ientof the �uid that is assumed to be 
onstant. Note that the additional non
onservativeterm in the momentum equation 
omes from the identity
∇p(θ, ρ) = ρ∇µ(θ, ρ) + ρs∇θ.A similar approa
h as for the 2d isothermal model (6.22) is also possible for the fullmodel but the use of only the quantities ux + vy and uy − vx is not su�
ient be
auseof the presen
e of the stress tensor in the energy and entropy equation. Therefore weneed additional values. This may help with the treatment of boundary 
onditions butdoes not save 
omputational 
ost. Therefore we omit it and use the quantities ux, uy,

vx and vy.Similar to the previous se
tions we rewrite equation (6.31) by using three �rst order
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















ρx

ρy

ux

uy

vx

vy

















− L1
1[ρ, ρu] = 0,









θx

θy

θ
κ









− L1
2[ρ, ρs, ρx, ρy] = 0,

∂
∂t









ρ
ρu
ρv
ρs









+ L1
3[ρ, ρu, ρs, . . . , κ] = 0.

(6.32)
In the above de�nitions we distribute the 
omputational 
ost over the three stages.Temperature and temperature gradients are 
omputed in the se
ond stage be
ause eval-uation of the temperature at the quadrature points is not ne
essary in the �rst stageand in order to distribute the 
omputational 
ost su
h that the 
ommuni
ation in these
ond stage does not be
ome a bottlene
k.The �rst order di�erential operators L1

1, L1
2, L1

3 are de�ned by
L1

1[ρ, ρu] = ∂
∂x



















ρ
0
ρu
ρ

0
ρv
ρ

0



















+ ∂
∂y



















0
ρ
0
ρu
ρ

0
ρv
ρ



















,

L1
2[ρ, ρs, ρx, ρy] = ∂

∂x









θ̃(ρ, ρs)
0
0

−λρx









+ ∂
∂y









0

θ̃(ρ, ρs)
0

−λρy









+









0
0

θ̃(ρ, ρs)

µ(θ̃(ρ, ρs), ρ)









,

L1
3[ρ, . . . , κ] = ∂

∂x









ρu
ρu2 − ε(ux + vy)
ρuv + µ(uy − vx)

ρsu− η
θ θx









+ ∂
∂y









ρv
ρuv − µ(uy − vx)
ρv2 − ε(ux + vy)

ρsv − η
θ θy









+













0

ρ ∂
∂xκ+ ρs ∂

∂xθ

ρ ∂
∂yκ+ ρs ∂

∂yθ

0













+









0
0
0

1
θτ : ∇u + η

θ2 |∇θ|2









.

(6.33)

Here the 
onvention is the same as before: the blue 
olored terms denote the 
on-servative terms, the red terms denote the non
onservative produ
ts and sour
e terms



126 CHAPTER 6. HIGHER ORDER SCHEMES: THE DG APPROACHare 
hara
terized by bla
k 
olor. The entropy produ
tion term 1
θτ : ∇u + η

θ2 |∇θ|2 istreated as a sour
e term. The fun
tion θ̃ 
omputes the temperature from the densityand entropy a

ording to relation (2.12).The de�nition of the numeri
al �uxes and numeri
al boundary �uxes is very similarto the isothermal 
ase and straightforward to do. We omit the details. Besides theadditional entropy equation the di�eren
e to the isothermal 
ase is the appearan
e ofthe se
ond non
onservative term ρs∇θ. As noted before the entropy produ
tion termis treated as a sour
e term and gives therefore no 
ontribution to the numeri
al �uxasso
iated with the di�erential operator L1
3.6.10 Initial DataThe standard way to provide dis
rete initial data for Dis
ontinuous Galerkin s
hemes isan appli
ation of L2-proje
tion to the underlying Finite Element spa
e. The use of anorthogonal basis of the Finite Element spa
e results in a very easy implementation ofthis kind of proje
tion. Sin
e we do not use slope limiters to stabilize the DG s
hemesit is extremely important to provide su�
iently smooth initial data on the dis
retelevel. Dis
rete initial data for the Navier-Stokes-Korteweg system that 
onsist of bothphases should take the 
orre
t size of the interfa
e, approximately given by formula(4.9), into a

ount to avoid an unstable behavior in the approximate solution. Thisis espe
ially important for the higher order s
hemes. Inside the interfa
ial region theinitial 
on�guration should vary smoothly between the phases. Here the tanh-fun
tionis very useful to 
onstru
t smooth initial data.



Chapter 7Higher Order Time Integration
The Dis
ontinuous Galerkin spa
e dis
retization of a general evolution equation, dis-
ussed in the previous 
hapter, results in a (in general very large) system of �rst orderordinary di�erential equations. In this 
hapter we dis
uss the time dis
retization ofgeneral �rst order ODEs by means of expli
it, impli
it and semi-impli
it Runge-Kuttamethods. In the latter two 
ases solving large, possibly nonlinear, systems of equationsis ne
essary. Solving su
h systems is the purpose of Se
tion 7.5.Runge-Kutta methods have the advantage that the approximate solution at only onetime step is ne
essary to 
ompute an approximation on the next time level. This makesthis 
lass of methods very well suited for the use together with lo
al mesh re�nement.Contrary to Runge-Kutta methods the 
lass of multistep methods uses more than oneapproximations on previous time steps. On the one hand these methods need a re-stri
tion in the variation of the time step size to guarantee the stability of the methodand on the other hand these methods are 
ompli
ated to implement together with lo
almesh re�nement and 
oarsening whi
h results in a 
hange of the dimension of the ODE.Be
ause of these disadvantages there are only a few multistep methods (for example theimpli
it BDF2 method) that 
an be applied su

essfully in order to 
onstru
t reliabledis
retizations of 
onservation laws. In the framework of the dis
retization of �rst order
onservation laws spe
ial Runge-Kutta methods have been developed that preserve 
er-tain properties (e.g. TVD) of s
alar 
onservation laws. Initially Shu and Osher [103℄,[104℄ derived this kind of TVD methods. Later the term Strong Stability Preserving(SSP) was used in favor of the term TVD. Expli
it or impli
it extrapolation s
hemes
ould also be used but the use of these methods is not very 
ommon in the framework ofFinite Volume and Dis
ontinuous Galerkin methods. The advantage of these methods isthat arbitrary high order methods 
an be 
onstru
ted by simply modifying a parameterin the methods.In this 
hapter we 
onsider the initial value problem for �rst order ordinary di�erentialequations of the form

u′(t) = f(t, u(t)) for t ∈ (0, T ), (7.1)
u(0) = u0, (7.2)127



128 CHAPTER 7. HIGHER ORDER TIME INTEGRATIONwith T ∈ (0,∞], f ∈ C([0, T ] × U) Lips
hitz 
ontinuous in the variable u, U ⊂ Rn,
u0 ∈ U .By integrating equation (7.1) from time tm to tm+1 we have

u(tm+1) − u(tm) =

∫ tm+1

tm
f(t, u(t)) dt. (7.3)The goal of this 
hapter is to 
ompute an approximation um+1 of u(tm+1) provided thatwe already have an approximation um of u(tm).7.1 General Runge-Kutta MethodsIn the rest of this 
hapter we dis
uss the 
omputation of the approximation um+1 bydi�erent kinds of Runge-Kutta methods. In the following we use the notation given inde�nition A.2.2. The general s-stage Runge-Kutta s
heme from time step tm to tm+1is given by







u0...
us−1






=







um...
um






+ ∆tA⊗ In







f(tm + c0∆t, u0)...
f(tm + cs−1∆t, us−1)






, (7.4)

um+1 = um + ∆tbT ⊗ In







f(tm + c0∆t, u0)...
f(tm + cs−1∆t, us−1)






. (7.5)Here the intermediate states ui ∈ U for i = 0, . . . , s − 1 are approximations of thesolution at times ti = tm +ci∆t. Runge-Kutta s
hemes de�ned by the Matrix A ∈ R

s×sand the two ve
tors b, c ∈ R
s are usually represented by a so 
alled But
her table (seestandard textbooks su
h as [108℄)

c A

bT
. (7.6)De�nition 7.1.1 (Order of Runge-Kutta Methods)Let Φ denote the fun
tion that produ
es the approximation um+1 = Φ(tm, um,∆t) byappli
ation of a Runge-Kutta method. A Runge-Kutta method is of (
onsisten
y) order

p if
∣

∣

∣

∣

1

∆t
(u(tm + ∆t) − u(tm)) − Φ(tm, u(tm),∆t)

∣

∣

∣

∣

= O(∆tp)for su�
iently smooth solutions u of the ODE (7.1).A p-th order 
onsisten
y Runge-Kutta method implies 
onvergen
e of order p. Thereforeit is 
lear that the order of a s-stage Runge-Kutta s
heme 
annot ex
eed 2s be
ause inthe 
ase where the fun
tion f does not depend on the variable u a Runge-Kutta methodredu
es to a quadrature formula for f .
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it Runge-Kutta MethodsIn this se
tion we 
onsider the 
lass of expli
it Runge-Kutta methods, i.e., methods thatdo not need to solve linear or nonlinear systems of equations. This 
lass of methods isespe
ially well suited for the use with �rst order 
onservation laws. In the framework ofDis
ontinuous Galerkin methods the representation of the methods given by Shu andOsher in [103℄ and [104℄ is more 
onvenient than the 
lassi
al representation be
auseslope limiters 
an e�
iently be applied to the intermediate states u0, . . . , us−1. Belowwe reformulate general expli
it Runge-Kutta s
hemes in the representation of Shu andOsher and give some examples for this kind of methods.A Runge-Kutta method given by the equations (7.4) and (7.5) redu
es to an expli
itmethod if the matrix A ∈ Rs×s is a stri
tly lower triangular matrix. By Ã ∈ R
(s−1)×(s−1)we denote the sub matrix of A where the �rst row and the last 
olumn is omitted. Thematrix Ã 
an be de
omposed into a stri
tly lower triangular matrix ÃL and a diagonalmatrix ÃD su
h that we have Ã = ÃL+ÃD. In the following we assume that the matrix

Ã is invertible. In this 
ase equation (7.4) redu
es to
u0 = um,







u1...
us−1






=







um...
um






+ ∆tÃ⊗ In







f(tm + c0∆t, u0)...
f(tm + cs−2∆t, us−2)






. (7.7)By multipli
ation of equation (7.7) with (Ã⊗ In)−1 and using properties (i) and (ii) ofthe Krone
ker produ
t, see lemma A.2.3, we have the identity

∆t







f(tm + c0∆t, u0)...
f(tm + cs−2∆t, us−2)






= Ã−1 ⊗ In







u1 − um...
us−1 − um






.Using this with equations (7.7) and (7.5) we get

u0 = um, (7.8)






u1...
us−1






=







um...
um






+ ÃLÃ

−1 ⊗ In







u1 − um...
us−1 − um






+ ∆tÃD ⊗ In







f0...
fs−2






(7.9)

um+1 = um + ∆tb̃T Ã−1 ⊗ In







u1 − um...
us−1 − um






+ bs−1fs−1, (7.10)where the ve
tor b̃ ∈ Rs−1 
onsists of the �rst s − 1 
omponents of the ve
tor b and

fi = f(tm + ci∆t, ui). This is the representation of Runge-Kutta methods given byShu and Osher [103℄. This representation is more suitable for the time dis
retization
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onservation laws be
ause slope limiters 
an be applied dire
tly to the intermediatestates ui.Below we give some examples of expli
it Runge-Kutta methods. Most of them 
an befound in standard textbooks su
h as [108℄. The TVD methods developed by Shu andOsher 
an be found in [103℄.The �rst order expli
it Euler and the se
ond order modi�ed Euler s
hemes with oneand two stages respe
tively.
0 0

1

0 0
1
2

1
2 0

0 1The se
ond and third order s
hemed TVD2 and TVD3 given in [103℄. The TVD2s
heme is also known as the Heun s
heme. The TVD methods in [103℄ are given usingthe representation (7.8), (7.9) and (7.10). For 
onsisten
y with all other methods inthis 
hapter we write these methods using the 
lassi
al representation.
0 0

1 1 0

1
2

1
2

0 0

1 1 0

1
2

1
4

1
4 0

1
6

1
6

2
3The 
lassi
al 3-stage and 4-stage order Runge-Kutta s
hemes of order three and four.

0 0

1
2

1
2 0

1 −1 2 0

1
6

4
6

1
6

0 0

1
2

1
2 0

1
2 0 1

2 0

1 0 0 1 0

1
6

1
3

1
3

1
6A sixth order s
heme with seven stages.

0 0

1
2

1
2 0

2
3

2
9

4
9 0

1
3

7
36

2
9 − 1

12 0

5
6 − 35

144 −55
36

35
48

15
8 0

1
6 − 1

360 −11
36 −1

8
1
2

1
10 0

1 − 41
260

22
13

43
156 −118

39
32
195

80
39 0

13
200 0 11

40
11
40

4
25

4
25

13
200



7.3. IMPLICIT RUNGE-KUTTA METHODS 1317.3 Impli
it Runge-Kutta MethodsWhen higher order derivatives or sti� sour
e terms are in
luded in 
onservation lawsthe time step size restri
tion that guarantees the stability of the method 
an render as
heme ine�
ient. In this 
ase an impli
it time dis
retization may help to improve thee�
ien
y of the method. We dis
uss the details on the implementation of a 
lass ofimpli
it methods and give some examples. It is very important to have a formulation ofthe method su
h that solving a s · n dimensional linear system 
an be avoided in favorof s times solving a n-dimensional systems, otherwise the methods are not usable forpra
ti
al appli
ations. This is possible with many impli
it methods at least when theresulting Ja
obians are approximated. For the 
lass of diagonally impli
it methods thisis possible without approximation.In this se
tion we 
onsider only diagonally impli
it Runge-Kutta methods. In this 
lassof methods the matrix A ∈ R
s×s in (7.4) is a lower triangular matrix. We assume thatthe matrix A is invertible, otherwise some of the stages are expli
it. We de
ompose Ainto a diagonal AD and a stri
tly lower triangular matrix AL with A = AL+AD. Similarto the expli
it 
ase the general Runge-Kutta method (7.4), (7.5) 
an be rewritten as







u0...
us−1






=







um...
um






+ALA

−1 ⊗ In







u0 − um...
us−1 − um






+ ∆tAD ⊗ In







f0...
fs−1






,

um+1 = um + bTA−1 ⊗ In







u0 − um...
us−1 − um






.With fi = f(tm + ci∆t, ui). Sin
e the matrix ALA
−1 is a stri
tly lower triangularmatrix s n-dimensional systems for ui have to be solved sequentially instead of one

(sn)-dimensional system. For the intermediate states ui this means
ui = ∆tαiif(tm + ci∆t, ui) + γiu

m +

i−1
∑

j=0

αijuj for i = 0, . . . , s− 1,

um+1 = δ +

s−1
∑

i=0

βiui,where the 
oe�
ients are given by
αij = (ALA

−1)ij for j < i, αii = Aii,

γi = 1 −
i−1
∑

j=0

αij ,

βi =

s−1
∑

j=0

bj(A
−1)ji,

δ = 1 −
s−1
∑

i=0

βi.



132 CHAPTER 7. HIGHER ORDER TIME INTEGRATIONHere Cij denotes the entry (i, j) of a matrix C. A �xed point argument shows that theabove nonlinear system has a unique solution in the vi
inity of um provided that thetime step ∆t is su�
iently small. The s n-dimensional nonlinear systems 
an be solvedby the Newton type method des
ribed in Se
tion 7.5. Below we give some examples ofdiagonally impli
it methods.The �rst order impli
it Euler method and the se
ond order Crank-Ni
holson methodare given by
1 1

1

1
2

1
2

1whi
h are both 1-stage methods. A 2-stage third order method is given by
α α

1 − α 1 − 2α α

1−2α
2−4α

1−2α
2−4αwhere α = 1

2 +
√

3
6 . Besides other methods the above methods 
an be found in [108℄.Additional methods of this type 
an also be found in the next se
tion.7.4 Semi-Impli
it Runge-Kutta MethodsThe 
lass of semi-impli
it (or impli
it-expli
it) Runge-Kutta methods 
ombines the ef-�
ien
y of expli
it methods with the stability properties of impli
it Runge-Kutta meth-ods. They are useful for the time dis
retization of 
onve
tion-di�usion equations or
onve
tion dominated equations with sti� sour
e terms. The 
lass of methods we 
on-sider in this se
tion dis
retizes one part of the equation by an expli
it TVD (or SSP)method and another part by a L-stable diagonally impli
it s
heme. Below we dis
ussthe details on the implementation of these methods and we give a 
ouple of examples
olle
ted from [131℄, [132℄ and [91℄.We split the fun
tion f in (7.1) into a part that is dis
retized expli
itly and a se
ondpart that is dis
retized by an impli
it s
heme.
u′(t) = f ex(t, u(t)) + f im(t, u(t)), for t ∈ (0, T ), (7.11)
u(0) = u0. (7.12)This splitting is useful when the spe
trum of the Ja
obian of f ex is some orders ofmagnitudes smaller than the spe
trum of the Ja
obian of f im, i.e.,

ρ (Duf
ex(t, u)) << ρ

(

Duf
im(t, u)

)

,where ρ denotes the spe
tral radius.



7.4. SEMI-IMPLICIT RUNGE-KUTTA METHODS 133The 
lass of semi-impli
it Runge-Kutta s
hemes that uses TVD/Strong-Stability-Preservingexpli
it s
hemes together with L-stable diagonally impli
it s
hemes, 
onsidered in [131℄,[132℄ and [91℄, 
an be written as
ki = f ex



tm + cexi ∆t, um + ∆t

i−1
∑

j=0

aex
ij kj





+f im



tm + cimi ∆t, um + ∆t

i
∑

j=0

aex
ij kj



 for i = 0, . . . , s− 1, (7.13)
um+1 = um + ∆t

s−1
∑

i=0

biki. (7.14)This 
lass of Runge-Kutta methods 
an be represented by a pair of But
her tables witha 
ommon ve
tor b.
cex Aex

bT

cim Aim

bTThe matrix Aex ∈ R
s×s is a stri
tly lower triangular matrix and Aim ∈ R

s×s is aninvertible lower triangular matrix. The 
oe�
ients aex
ij and aim

ij denote the entries ofthe matri
es Aex and Aim respe
tively.For the expli
it and impli
it intermediate states uex
i and uim

i for i = 0, . . . , s − 1 this
an be written as
uex

i = γex
i um +

i−1
∑

j=0

αex
ij u

im
j ,

uim
i = αim

ii ∆t
(

f ex(tm + cexi ∆t, uex
i ) + f im(tm + cimi ∆t, uim

i )
)

+γim
i um +

i−1
∑

j=0

αim
ij u

im
j ,

um+1 = δum +
s−1
∑

i=0

βiu
im
i .
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oe�
ients appearing in the above equations are de�ned by
αim

ij =
(

Aim
L (Aim)−1

)

ij
, αim

ii = Aim
ii ,

αex
ij =

(

Aex
L (Aim)−1

)

ij
,

γim
i = 1 −

i−1
∑

j=0

αim
ij ,

γex
i = 1 −

i−1
∑

j=0

αex
ij ,

βi =

s−1
∑

j=0

bj
(

(Aim)−1
)

ji
,

δ = 1 −
s−1
∑

i=0

βi,where Cij denotes the entry (i, j) of a matrix C and Aim
L is the stri
tly lower triangularpart (without the diagonal) of the matrix Aim.Below we give several examples for semi-impli
it Runge-Kutta methods taken from[131℄, [132℄ and [91℄.The se
ond order SIRK23 s
heme (3 stages, L-stable).

0 0

1 1 0

1
2 0 1

2 0

1
4

1
4

1
2

1
2

1
2

−1
2 −1 1

2

1 1
4

1
4

1
2

1
4

1
4

1
2The se
ond order SIRK23G s
heme (3 stages, L-stable). We set α = 1√

2
.

0 0

1 1 0

1 + α α 1 0

α 0 1 − α

1 − α 1 − α

1 − α 0 1 − α

1 α 0 1 − α

α 0 1 − αThe stru
ture of the impli
it s
heme allows for a low storage implementation.
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heme (3 stages, L-stable).
0 0

8
7

8
7 0

120
252

71
252

49
252 0

1
8

1
8

3
4

3
4

3
4

α 5589
6524

75
233

β 7691
26096 −26335

78288
65
168

1
8

1
8

3
4where the 
onstants α and β are de�ned by

α =
5589

6524
+

75

233
, β =

7691

26096
− 26335

78288
+

65

168
.The methods 
onsidered in [91℄ allow the expli
it and impli
it s
hemes to have a dif-ferent number of stages. Therefore the naming 
onvention of the s
hemes is IMEX-SPP(impli
it stages, expli
it stages, order). Here IMEX stands for impli
it-expli
it andSSP for strong stability preserving whi
h is the same as TVD.The se
ond order IMEX-SSP(2,2,2) s
heme. We set α = 1 − 1√

2
.

0 0

1 1 0

1
2

1
2

α α

1 − α 1 − 2α α

1
2

1
2The expli
it s
heme is the TVD2 s
heme from Se
tion 7.2.The se
ond order IMEX-SPP(3,3,2) s
heme.

0 0

1
2

1
2 0

1 1
2

1
2 0

1
3

1
3

1
3

1
4

1
4

1
4 0 1

4

1 1
3

1
3

1
3

1
3

1
3

1
3The se
ond order IMEX-SPP(3,2,2) s
heme.

0 0

0 0 0

1 0 1 0

0 1
2

1
2

1
2

1
2

0 −1
2

1
2

1 0 1
2

1
2

0 1
2

1
2The expli
it s
heme is the TVD2 s
heme from Se
tion 7.2.



136 CHAPTER 7. HIGHER ORDER TIME INTEGRATIONThe third order IMEX-SPP(4,3,3) s
heme.
0 0

0 0 0

1 0 1 0

1
2 0 1

4
1
4 0

0 1
6

1
6

2
3

α α

0 −α α

1 0 1 − α α

1
2 β η 1

2 − α− β − η α

0 1
6

1
6

2
3The parameters α, β and η are 
omputed numeri
ally

α = 0.24169426078821, β = 0.06042356519705, η = 0.12915286960590.The expli
it s
heme is the TVD3 s
heme from Se
tion 7.2.7.5 Solving Nonlinear EquationsThe appli
ation of impli
it Runge-Kutta methods to ordinary di�erential equationsmethods results in a large (in general nonlinear) system of equations that has to besolved by a Newton type method. To avoid the 
omputation of the Ja
obian matrixin the Newton method, whi
h is rather 
ompli
ated for the fully dis
retized Navier-Stokes-Korteweg system espe
ially in a parallel environment, we apply a Ja
obian freeNewton-Krylov method, see [71℄.We 
onsider the nonlinearity given by F : U → R
n, U ⊂ R

n and we seek for a solution
u ∈ U of the nonlinear equation

F (u) = 0.Provided that the fun
tion F is su�
iently smooth, the Ja
obian of F is nondegeneratein a vi
inity U of the solution u and an initial guess u0 ∈ U su�
iently 
lose to thesolution is known, the solution 
an be 
omputed by appli
ation of Newtons method
un+1 = un −DF (un)−1F (un), n ≥ 0. (7.15)For appli
ation of the Newton method it is ne
essary to solve a linear system for ave
tor p of the form

DF (u)p = F (u). (7.16)In many 
ases the expli
it 
al
ulation of the Ja
obian DF is mu
h to expensive withrespe
t to the 
omputational 
ost, or with respe
t to the memory requirements orboth. Sometimes it is simply to 
ompli
ated to 
ompute the Ja
obian expli
itly forexample due to larger sten
ils in the dis
retization of underlying partial di�erentialequations. In the higher order spa
e dis
retization together with higher order impli
ittime dis
retization of the Navier-Stokes-Korteweg system all of the above mentionedissues o

ur.



7.6. APPLICATION TO THE NAVIER-STOKES-KORTEWEG SYSTEM 137Nevertheless, the appli
ation of the Newton method is still possible by means of matrixfree methods. In 
ombination with Krylov spa
e solvers, like CG [59℄, BiCGSTAB [113℄,GMRES [98℄, et
., see also [97℄, for the linear system the Newton method does not needthe Ja
obian expli
itly. These kind of solvers only need the matrix ve
tor produ
t
DF (u)p in (7.16) whi
h is nothing else than the derivative of F at u in the dire
tion of
p and 
an be approximated by the di�eren
e quotient

DF (u)p ≈ 1

ε
(F (u+ εp) − F (u)) .Here the 
ru
ial part is the 
hoi
e of the parameter ε > 0. There are several approa
hesto 
hoose this parameter, we use

ε =







√
(1+||u||)εmach

||p|| if ||p||2 > εmach,
√
εmach else. (7.17)Here εmach denotes the ma
hine pre
ision whi
h is for double pre
ision arithmeti
 ap-proximately εmach ≈ 10−15. For the above 
hoi
e and other possible 
hoi
es see [71℄.A matrix free method is, 
ompared to other methods, rather simple to 
ode but 
omesat the expense that in every iteration step of the linear solver the nonlinearity F hasto be evaluated. Depending on the problem this 
an be a serious performan
e penalty.A 
omparison of standard and matrix free Newton methods in the framework of thedis
retization of the in
ompressible Navier-Stokes equations 
an be found in [84℄.Another problem of this method is that standard pre
onditioning te
hniques 
annot beapplied sin
e the matrix itself is not available. A matrix free pre
onditioning te
hniquewas proposed in [33℄ but not tested in this work.7.6 Appli
ation to the Navier-Stokes-Korteweg systemThe appli
ation of expli
it Runge-Kutta methods to the higher order Dis
ontinuousGalerkin spa
e dis
retization of the Navier-Stokes-Korteweg system dis
ussed in 
hapter6, espe
ially Se
tion 6.9, leads to a time step time restri
tion that is di�
ult to 
ontrol.No expli
it formula is available that guarantees the stability of the method on the onehand and is su�
iently sharp on the other hand.To avoid this problem with the time step size restri
tion we use the 
lass of diagonallyimpli
it s
hemes together with a matrix free nonlinear solver dis
ussed in Se
tion 7.3and 7.5 for the time dis
retization of the Navier-Stokes-Korteweg system. Even withouta pre
onditioner the resulting fully dis
rete s
heme is more e�
ient than an expli
ittime dis
retization, see the numeri
al experiments in 9.6. However, also in the 
aseof impli
it dis
retization the time step size has to be su�
iently small su
h that thenonlinear system is solvable. The time step should always be 
hosen su
h that thequotient

ρm(∆t) =

pu(tm,∆t)

∆t
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pu(tm,∆t) stands for the 
pu-time the 
omputation needs to
ompute an approximate solution u(tm + ∆t) starting from an approximate solution
u(tm) at time tm. If we assume that 
pu(tm,∆t) does not depend on tm this 
hoi
eof the time step is the most e�
ient time step size. In general this assumption is not
orre
t but a time step size that always minimizes ρm(∆t) should be 
lose to the optimaltime step.Finding the optimal time step in the above sense is a hard task itself. Another, simplerand sometimes more robust, approa
h is to 
ontrol the number of iterations of theunderlying linear solver. This approa
h heavily depends on the problem, the dataand the used linear solver. For the Dis
ontinuous Galerkin dis
retization in two spa
edimensions and se
ond order impli
it Runge-Kutta dis
retization and iteration 
ount ofabout 20 is a good 
hoi
e. In three spa
e dimensions and for s
hemes of di�erent orderother 
hoi
es are ne
essary and have to �gured out manually.The appli
ation of semi-impli
it Runge-Kutta s
hemes is an appropriate 
hoi
e for thetime dis
retization of the 
ompressible Navier-Stokes equations or Euler equations withsti� sour
e terms. It is not 
lear how to apply this 
lass to the NSK system sin
e thevis
ous part of the equation is not the only sour
e for the resulting small time steps.The third order Korteweg term that is dis
retized together with the pressure term andthe arti�
ial vis
osity in the 
ontinuity equation also lead to small time steps.



Chapter 8Mesh Adaption and Parallelization
In this 
hapter we dis
uss the lo
al re�nement and 
oarsening of 
omputational meshesas well as the parallelization of the numeri
al algorithms. These te
hniques are veryimportant in order to be able to resolve very small liquid-vapor interfa
es and to satisfymemory requirements as well as 
omputational power requirements of 
omplex prob-lems.Here we dis
uss the lo
al re�nement and 
oarsening of 
omputational meshes whi
h isalso 
alled h-adaption. Another adaption strategy is p-adaption whi
h makes use of thelo
al 
hoi
e of the polynomial degree in the Dis
ontinuous Galerkin method. The latteradaption strategy is not taken into a

ount in this work sin
e the 
ontrol of the lo
alpolynomial degree 
an be quite 
ompli
ated. Sin
e the Dis
ontinuous Galerkin methoddoes not need 
onformity, mesh re�nement is done in a non
onform fashion by dividinga n-dimensional simplex into 2n 
hildren. This is straightforward in one and two spa
edimensions but in three spa
e dimensions there is an ambiguity. A reasonable strategyis ne
essary to avoid degenerating meshes.For the parallelization of the 
ode a domain de
omposition approa
h is 
hosen sin
ethis is the most suitable approa
h in the Finite Volume and Dis
ontinuous Galerkinframework where sten
ils are usually relatively small and thus, the mesh is only weakly
oupled. With this approa
h the implementation of the 
ode in a distributed memoryenvironment is almost straightforward.8.1 Re�nement of Simpli
esIn this se
tion we provide the basi
s for the appli
ation of an (h-)adaptive algorithm:The re�nement of a single simplex in one, two and three spa
e dimensions. Here wealways divide a parent simplex into 2n 
hild simpli
es, where n denotes the spa
e dimen-sion. Therefore this leads to a straightforward method in one and two spa
e dimensions,where simpli
es 
an be subdivided into 2n 
ongruent sub-simpli
es. In one and two spa
edimensions this re�nement method leads to re�ned meshes of the same quality as theoriginal meshes. However, in three spa
e dimensions it is not possible to divide a tetra-hedron into eight 
ongruent 
hildren and therefore it is important to 
hoose a 
riterion139



140 CHAPTER 8. MESH ADAPTION AND PARALLELIZATIONfor the re�nement su
h that a sequen
e of re�ned meshes 
annot degenerate. In example8.1.2 we give a 
riterion that seems to avoid the degeneration of meshes (at least in ourtest 
ases) and results in re�ned meshes of quite good quality.In this se
tion we des
ribe a simplex ∆ ⊂ R
n by its n verti
es [p0, . . . , pn]. The simplex

∆ is then de�ned by the 
onvex hull of these verti
es. Now let the parent simplex begiven by
∆p = [p0, . . . , pn].We de�ne the 2n 
hildren of the parent simplex by

∆c
i =

[

1

2

(

pα(i,0,0) + pα(i,0,1)

)

, . . . ,
1

2

(

pα(i,n,0) + pα(i,n,1)

)

]

, i = 0, . . . 2n − 1,where the fun
tion α : {0, . . . , 2n −1}×{0, . . . , n}×{0, 1} → {0, . . . , n} must be 
hosensu
h that the 2n 
hildren form a regular subdivision parent 
ell ∆p. For n = 1 and
n = 2 this is straightforward. In the following the point pkl denotes the midpoint ofpoint pk and pl, i.e., pkl = 1

2(pk + pl). In one spa
e dimension the 
hildren 
an then bede�ned by
∆c

0 = [p0, p01], ∆c
1 = [p01, p1], (8.1)and in the two spa
e dimensions

∆c
0 = [p0, p01, p02], ∆c

2 = [p02, p12, p2],

∆c
1 = [p01, p1, p12], ∆c

3 = [p12, p02, p01].
(8.2)Note that in one and two spa
e dimensions the subdivision into 2n 
ongruent 
ells isunique up to renumbering of the 
hildren.

refine

coarsen

refine

coarsen

p0 p1

p0 p1

p01

p12

p21
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∆c
0

∆c
1

∆c
2

∆c
3

∆
p

∆c
0 ∆c

1

p01

p0

p1

p2

p0

p1

p2

Figure 8.1: Re�nement of one and two dimensional simpli
es.Now, in three spa
e dimensions the situation is more 
ompli
ated be
ause the partitionof a parent 
ell into eight 
hildren is not unique and therefore one has to de
ide how



8.1. REFINEMENT OF SIMPLICES 141to partition and this de
ision should ensure that su

essively re�ned meshes 
annotdegenerate. The eight 
hildren of a three dimensional parent 
ell 
an be de�ned by
∆c

0 = [p0, p01, p02, p03], ∆c
4 = [q4, p23, p13, p12],

∆c
1 = [p01, p1, p12, p13], ∆c

5 = [p23, q5, p03, p02],

∆c
2 = [p02, p12, p2, p23], ∆c

6 = [p13, p03, q6, p01],

∆c
3 = [p03, p13, p23, p3], ∆c

7 = [p12, p02, p01, q7],

(8.3)where the verti
es q4, q5, q6, q7 must be de�ned su
h that the eight 
hildren form a validpartition of the parent 
ell. This results in three possibilities for the 
hoi
e of theseverti
es. (i) q4 = q5 = p01 and q6 = q7 = p23,(ii) q4 = q6 = p02 and q5 = q7 = p13,(iii) q4 = q7 = p03 and q5 = q6 = p12.
p1 p2

p0

p1 p2

p0

p1 p2

p0

Figure 8.2: Three alternatives (i), (ii), (iii), from left to right, for the re�nement of athree dimensional simplex.At this point we have to de
ide whi
h one of the three possibilities to 
hoose. Onepossible 
hoi
e is to guarantee that one of the points q4, q5, q6, q7 always lies on thelongest edge of the tetrahedron. We 
all this the longest edge 
riterion.Example 8.1.1 (Longest Edge Criterion)We de�ne the η by the length of the longest edge of the tetrahedron, i.e.,
η = max{|pk − pl| | k, l ∈ {0, 1, 2, 3} },and we de
ide in the following wayif (|p0 − p1| = η or |p2 − p3| = η) then set q4 = q5 = p01, q6 = q7 = p23,else if (|p0 − p2| = η or |p1 − p3| = η) then set q4 = q6 = p02, q5 = q7 = p13,else set q4 = q7 = p03, q5 = q6 = p12.In [134℄ is reported that applying this 
riterion on su

essively re�ned meshes 
an leadto a degenerate sequen
e of meshes, i.e., the smallest angle in a sequen
e of meshes is notbounded from below. Therefore the longest edge 
riterion seems to be not the optimal
hoi
e. Numeri
al examples show that using another 
riterion whi
h we 
all the longesttwo edges 
riterion, that takes both edges asso
iated with the verti
es q4, q5, q6, q7 intoa

ount, gives mu
h better results (at least in the 
on�gurations that have been tested).



142 CHAPTER 8. MESH ADAPTION AND PARALLELIZATIONExample 8.1.2 (Longest two Edges Criterion)We de�ne
η1 = |p0 − p1| + |p2 − p3|,
η2 = |p0 − p2| + |p1 − p3|,
η3 = |p0 − p3| + |p1 − p2|,
η = max{ηl | l = 1, 2, 3},and we de
ide in the following wayif (η1 = η) then set q4 = q5 = p01, q6 = q7 = p23,else if (η2 = η) then set q4 = q6 = p02, q5 = q7 = p13,else set q4 = q7 = p03, q5 = q6 = p12.Numeri
al examples show that the smallest angle in a sequen
e of su

essively re�nedmeshes stays bounded from below using this 
riterion. The inverse of this 
riterion, theshortest two edges 
riterion, seems always to produ
e a sequen
e of degenerating meshes.8.2 L

2 Proje
tion of Data in the Adaption Pro
essWe assume that a n-dimensional simplex ∆ = T (∆̂) has been re�ned into 2n 
hildren
∆i = Ti(∆̂), i = 0, . . . , 2n − 1 as dis
ussed in the previous se
tion, where ∆̂ denotes thereferen
e 
ell and T, Ti the referen
e mappings from the referen
e 
ell to the 
ells ∆ and
∆i respe
tively, see (6.1). This se
tion is not restri
ted to three spa
e dimensions as longas we assume that we already have 
onstru
ted 2n 
hildren of a 
ell. Due to the linearityof the referen
e mappings the proje
tion of data in the re�nement and 
oarsening pro
essis just a matrix-matrix multipli
ation and no further geometry information of the mesh
ells is ne
essary. The matrix-matrix multipli
ation for re�nement and 
oarsening isgiven in equations (8.7) and (8.8).Let denote np = |Pm| the dimension of the spa
e of polynomials of degree at most m in
n spa
e dimensions as de�ned in se
tion 6.3. At the moment, for simpli
ity, we 
onsideronly s
alar data on the 
ells ∆ and ∆i of the form

u(x) =

np−1
∑

l=0

αlϕl, ui(x) =

np−1
∑

l=0

βi
lϕ

i
l,where the fun
tions ϕl and ϕi

l denote the lo
al basis fun
tions as de�ned in Se
tion 6.3,see (6.10). In the re�nement pro
ess we have to 
ompute the 
oe�
ients βi
l from the
oe�
ients αl in some way. We do this by means of a L2-proje
tion. This means for all

i we provide the data ui on the sub-
ells ∆i by L2-proje
tion of u.
∫

∆i

u(x)ϕi
k(x) dx =

∫

∆i

ui(x)ϕ
i
k(x) dx, k = 0, . . . , np − 1.
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np−1
∑

l=0

αl

∫

∆i

ϕl(x)ϕ
i
k(x) dx =

np−1
∑

l=0

βi
l

∫

∆i

ϕi
l(x)ϕ

i
k(x) dx, ∀k.And by transformation of the 
ell ∆i to the referen
e 
ell ∆̂ using the referen
e mapping

Ti gives
np−1
∑

l=0

αl

∫

∆̂

ϕl(Tix̂)ϕ
i
k(Tix̂) dx̂ =

np−1
∑

l=0

βi
l

∫

∆̂

ϕi
l(Tix̂)ϕ

i
k(Tix̂) dx̂, ∀k.Note that the transformation is a�ne linear and the fa
tor |det(DTi(x))| from thetransformation has been eliminated on both sides of the equation. Using the de�nitionof the lo
al basis fun
tions ϕl and ϕi

l and the orthonormality of the fun
tions pl on thereferen
e 
ell we get
np−1
∑

l=0

αl

∫

∆̂

pl(T
−1Tix̂) pk(x̂) dx̂ = βi

k, k = 0, . . . , np − 1.The 
ombination of the mappings T−1Ti does not depend on the 
ell ∆. In fa
t we have
T−1Ti = T̂i, where T̂i denotes the a�ne linear mapping from the referen
e 
ell to the
i-th 
hild of the referen
e 
ell. This �nally gives the expression

βi
k =

np−1
∑

l=0

αl

∫

∆̂

pl(T̂ix̂) pk(x̂) dx̂, k = 0, . . . , np − 1,whi
h only depends on the number of the 
hild and not on the geometry of the 
ell ∆.Now let us de�ne for all 
hildren the matri
es Ai ∈ R
np×np by

Ai =







∫

∆̂

pl(T̂ix̂) pk(x̂) dx̂







k,l

(8.4)and we 
ompose them to a single adaption matrix A ∈ R
2nnp×np by

A =













A0

A1...
A2n−1













. (8.5)Now, to be more general, we 
onsider ve
tor valued data of dimension d ∈ N

u(x) =

np−1
∑

l=0

ϕlαl, ui(x) =

np−1
∑

l=0

ϕi
lβ

i
l, (8.6)
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iated with the 
ells ∆ and ∆i where αl and βi
l are ve
tors in R

d. We de�ne matri
es
α,βi ∈ R

np×d by
α = (α0,α1, . . . ,αnp−1)

T , βi = (βi
0,β

i
1, . . . ,β

i
np−1)

T ,and we 
ompose the matri
es βi to a single matrix β ∈ R
2nnp×d by

β =













β0

β1...
β2n−1













.Using the above notation the proje
tion of the data in the Re�nement pro
ess 
an be
arried out by the single matrix-matrix multipli
ation
β = Aα. (8.7)The reverse pro
ess of the re�nement pro
ess is the 
oarsening pro
ess. Here the prob-lem is to 
ompute the 
oe�
ients α from given 
oe�
ients β. Using the same notationas above the data proje
tion in the Coarsening pro
ess is done by the single matrix-matrix multipli
ation

α =
1

2n
AT β. (8.8)To see that this is 
orre
t one has to start similar to the re�nement pro
ess by a L2-proje
tion of the fun
tions ui to the 
ell ∆. Constru
ting matri
es in a similar way tothe re�nement pro
ess results in the formula above.In one and two spa
e dimensions there is only one adaption matrix A be
ause there�nement of a simplex into 2n sub-
ells as dis
ussed in the previous se
tion is unique.In three spa
e dimensions there are three di�erent adaption matri
es, one for ea
h of thethree di�erent re�nement patterns. A

ording to the 
hoi
e of the re�nement patternthe 
orre
t matrix asso
iated with this pattern has to be 
hosen for the proje
tion ofthe data.There are a lot of zeros in the matri
es Ai, espe
ially below the diagonal. when theproje
tion of data be
omes a bottlene
k in the 
omputation this 
ould be exploited fora more e�
ient implementation of the proje
tion. However, this is not the 
ase in ourappli
ations.8.3 Re�nement and Coarsening Indi
atorThe goal of this se
tion is to provide a 
riterion to de
ide when a 
ell of the mesh is tolarge, su
h that we have to re�ne it, and when a 
ell is to small and should be 
oarsened(if possible).In the framework of Finite Volume and Dis
ontinuous Galerkin dis
retization of 
on-servation laws there are essentially two di�erent kinds of strategies for this de
ision.



8.3. REFINEMENT AND COARSENING INDICATOR 145The �rst strategy is to use error estimators based on rigorous theoreti
al results. Usu-ally these are only available for spe
ial 
ases of 
onservation laws. The se
ond kindof strategies is based on heuristi
 indi
ators that are easy to 
ompute, appli
able to alarge 
lass of problems and give usually good results in pra
ti
al appli
ations. However,there is no theoreti
al justi�
ation as for the error estimators.
• Error estimators based on rigorous analysis, i.e., a aposteriori error 
ontrol of theform

||u− uh||K ≤ ηh(uh),where u is the exa
t solution of some 
onservation law, uh an approximation of ugenerated by a numeri
al s
heme, K ⊂ Ω is some 
ompa
t set in the 
omputationaldomain and || · || denotes some norm. The strategy 
onsists (roughly) of thefollowing pro
edure: If the right hand side ηh(uh) is too large then we re�nethe mesh-
ells asso
iated with the set K, in the 
ase the right hand side is toosmall, the parts of the mesh asso
iated with K should be 
oarsened to redu
ethe 
omputational 
ost to a minimum. Usually it is not guaranteed that theright hand side 
onverges to zero as the mesh size h tends to zero. Therefore thisstrategy does not always guarantee 
onvergen
e of the algorithm. Aposteriori errorestimates of the above form are available for �rst order Finite Volume s
hemes formulti dimensional s
alar 
onservation laws (Cau
hy problem and initial boundaryvalue problem), e.g. [77℄, [89℄, [90℄, for nonlinear hyperboli
 systems of balan
elaws with 
lassi
al solutions see [67℄. For higher order Runge-Kutta Dis
ontinuousGalerkin approximations of multidimensional nonlinear s
alar 
onservation lawsan aposteriori error estimate 
an be found in [38℄.
• Heuristi
 indi
ators whi
h (in the framework of �uid dynami
s) usually dependon the lo
al gradients (with respe
t to spa
e or time-spa
e) of thermodynami
alvariables su
h as density, energy, entropy and others. In this 
ase the 
riterion isquite simple: a large gradient (measured in some norm) leads to re�nement of the
ell, a small gradient might lead to 
oarsening of a group of 
ells.The advantages of this kind of simple heuristi
 indi
ators are: They are (usually)easy to 
ompute, they are available for 
ompli
ated systems in 
ontrast to realerror estimators, and they have been su

essfully applied to many di�erent prob-lems, see for example [13℄, [37℄, [116℄, [50℄, [112℄.One disadvantage of heuristi
 indi
ators is that they may indi
ate for re�nementeven in 
ases where the error between exa
t and approximate solution is small(possibly equal to zero).For our appli
ation, the higher order Dis
ontinuous Galerkin dis
retization of the 
om-pli
ated Navier-Stokes-Korteweg system, an error estimator based on rigorous analysisseems to be out of s
ope. However, the most important 
hallenge in the framework ofthe Navier-Stokes-Korteweg system is the 
omplete resolution of the interfa
e by theunderlying 
omputational mesh rather than the error 
ontrol. As an heuristi
 indi
atorwe 
an use the density gradient |∇ρ|. At the interfa
e the density 
hanges rapidly andtherefore the density gradient is large. This 
an be used to provide a very �ne mesh
lose to the interfa
e.



146 CHAPTER 8. MESH ADAPTION AND PARALLELIZATIONWe de�ne a quantity ηi that is asso
iated with the gradient of the density on the i-th
ell and its dire
t and indire
t neighbors in the mesh
ηi = max

{diam(∆j)

|∆j |
||∇ρ||L2(∆j) | ∆j is neighbor of ∆i of deg. at most m} . (8.9)Here we 
all ∆j a neighbor of ∆i of degree at most m if there exist m+ 1 
ells in themesh ∆0, . . . ,∆m with
∆i = ∆0,

∆j = ∆m,

∆k is a neighbor of ∆k+1, k = 0, . . . ,m.Note: for m = 0 we have only a 
ontribution of the i-th 
ell and for m = 1 we have
ontributions of the gradients of the i-th 
ell and its dire
t neighbors.We 
hoose some problem dependent upper and lower values
ηupp > 0 and ηlow > 0 with ηlow < ηupp (8.10)and we de
ide if the i-th 
ell is a 
andidate for re�nement or 
oarsening a

ording tothe following 
riterionExample 8.3.1 (Mesh Adaption Criterion)if ηi > ηupp then we mark the i-th 
ell for re�nement,else if ηi < ηlow then we mark the i-th 
ell for 
oarsening.Note: Here we only set a mark (by setting a �ag) that means the 
ell is a 
andidatefor re�nement or 
oarsening. The �nal de
ision whether the re�nement or 
oarseningis performed is dis
ussed in the next se
tion.The building of the maximum in the de�nition of ηi in (8.9) is rather expensive espe
iallyfor large values m and parallel 
omputation, but it is important to have a layer of �ne
ells around an interfa
e. Thus, it is important to 
hoose a valuem > 1. Otherwise lo
alequilibrium 
on�gurations will be destroyed in the re�nement and 
oarsening pro
essand this will slow down the underlying iterative linear solvers.8.4 Re�nement and Coarsening of Simpli
ial MeshesIn this se
tion we dis
uss the �nal re�nement and 
oarsening of a mesh. Here weassume that the 
ells of the mesh are already marked for re�nement and 
oarsening,i.e., re�nement or 
oarsening �ags of the 
ells are set due to the de
ision dis
ussed inthe previous se
tion. Sin
e the Dis
ontinuous Galerkin method does not need 
onformmeshes, re�nement and 
oarsening 
ould be very lo
al without a�e
ting neighboring
ells. However, in order to improve the stability of the method it is 
onvenient todis
ard the lo
ality to some degree by restri
ting the level of non
onformity to one, i.e.,
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e between re�nement levels of neighbor 
ells. In the following weassume that the mesh 
onsists of a set of ma
ro 
ells that 
annot be further 
oarsened.This set is 
alled ma
ro mesh. Due to the re�nement and 
oarsening pro
edure ahierar
hy of 
ells with a parent-
hildren relation is 
onstru
ted. The set of 
ells that donot have 
hildren is 
alled leaf mesh. Only all 
hildren of a parent 
ell together 
an be
oarsened to the parent 
ell.Note that initially, when the mesh adaption 
riterion 8.3.1 is applied, it is not possiblethat 
ells are marked with the re�nement and 
oarsening �ag simultaneously but this
an happen during the re�nement and 
oarsening pro
ess sin
e the non
onformity levelis restri
ted. In the following we assume that when the re�nement �ag of a 
ell is setthen the 
oarsening �ag is unset. Further we assume that a ma
ro 
ell 
annot havethe 
oarsening �ag set. The mesh adaption follows a 
oarsening 
an, re�nement mustpoli
y. This means every 
ell that has the re�nement �ag set has de�nitely to be re�nedwhereas the exe
ution of 
oarsening of a 
ell (with a set 
oarsening �ag) depends onthe neighborhood of the 
ell.First the re�nement algorithm is 
arried out. The following has to be done until thereis no 
ell left with a set re�nement �ag.Algorithm 8.4.1 (Re�nement)while there is a 
ell ∆ with re�nement �ag set {re�ne ∆ into sub
ells ∆0, . . . ,∆n−1;for i = 0, . . . , n− 1 {for all neighbors ∆̃ of ∆i {if re�nement_level(∆i) − re�nement_level(∆̃) > 1 thenset the re�nement �ag of ∆̃;}}}When the re�nement has �nished the 
oarsening algorithm has to be exe
uted until all
ells have been pro
essed and no �ags are set.Algorithm 8.4.2 (Coarsening)while there is a 
ell ∆ with 
oarsening �ag set {set ∆p = parent 
ell of ∆;if all 
hildren of ∆p have the 
oarsening �ag set then {if for all neighbors ∆̃ of ∆p we havere�nement_level(∆̃) - re�nement_level(∆p) ≤ 1 then
oarsen all 
hildren of ∆p to ∆p;else if for all neighbors ∆̃ of ∆p we havere�nement_level(∆̃) - re�nement_level(∆p) ≤ 2 and all neighborswith �= 2� have the 
oarsening �ag set thenrequeue 
ell ∆;
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oarsening �ag of ∆;}else unset the 
oarsening �ag of ∆;}In the 
oarsening algorithm above we note that in the else if statement we 
annotde
ide whether the 
ell 
an be 
oarsened or not sin
e some of the neighbor 
ells haveto be 
oarsened (or not) �rst. Thus, the 
urrent 
ell has to be requeued in a waitingqueue of some kind. Here it is important for the termination of the algorithm that the
urrent 
ell is requeued at the end of the waiting queue su
h that all other marked 
ellsare pro
essed before the 
urrent 
ell is pro
essed again.8.5 ParallelizationIn the following we dis
uss the parallelization of the methods from the previous se
tionsand 
hapters. The parallelization using the distributed memory parallelization 
on
eptis the appropriate 
hoi
e for Finite Volume and Dis
ontinuous Galerkin methods sin
ethe partitions of the mesh given by a domain de
omposition method are only weakly
oupled.Today there are mainly two di�erent parallel programming models Shared Memory Par-allelization and Distributed Memory Parallelization. The advantages and disadvantagesof these both models are listed in the following.
• Shared Memory Parallelization. Using this model the appli
ation makes use ofmany Threads of Exe
ution that share a 
ommon address spa
e in memory. Thismeans ea
h thread 
an read or write to ea
h lo
ation in memory. This program-ming model 
an be used either by expli
itly working with threads, for example byusing the PThreads API. Or alternatively OpenMP [35℄, [126℄ dire
tives 
an beused to spawn threads in parallel regions. These dire
tives are available for theprogramming languages C, C++ and Fortran but they are not part of the stan-dards of the languages and must be additionally implemented by the 
ompiler.The main disadvantage of this model on the side of the hardware is that SMPma
hines with a large number of pro
essors are really expensive. One problem onthe software side is that many libraries are not 
ompletely thread safe. Anotherproblem is that it is easy to 
ause e�e
ts like 
a
he thrashing on modern ma
hinessin
e all threads have a

ess to all memory lo
ations. One has to be aware ofthese e�e
ts otherwise the parallelization gives no gain in performan
e.
• Distributed Memory Parallelization. In this model the appli
ation runs using dif-ferent Pro
esses on the same or di�erent ma
hines whi
h 
ommuni
ate viaMessagePassing. The de fa
to standard for s
ienti�
 
omputing appli
ations that makeuse of this programming model is the Message Passing Interfa
e (short MPI)[122℄ that de�nes a lot of useful routines 
ommonly used in s
ienti�
 appli
ations.An alternative to MPI is the PVM (Parallel Virtual Ma
hine) library [128℄, [49℄whi
h is, 
ompared to the MPI implementations, a light weight library that pro-vides message passing. But this 
omes at the 
ost that it is not as optimized as



8.5. PARALLELIZATION 149MPI implementations.The latest MPI standard (at time of this writing) is version 2.0 and 
an be foundon the MPI-Forum website [122℄. There are a number of open sour
e implementa-tions of MPI. All of them implement at least the 1.1 standard and some of themimplement parts of, or the 
omplete 2.0 standard. These are MPICH [53℄, [123℄,LAM/MPI [18℄, [120℄, MPICH2 [124℄ and OpenMPI [46℄, [127℄. The latter two ofthem implement (or will do it in the near future) the 
omplete MPI 2.0 standard.A good overview and many additional referen
es to the Message Passing Interfa
eare given in [54℄, [55℄.The main advantage of this programming models is that simply a bun
h of ma-
hines 
onne
ted via a network 
an be used as a parallel 
omputer. This is nor-mally mu
h 
heaper and for many appli
ations nearly equivalently e�
ient asusing shared memory ma
hines. Another advantage is that memory partitionsare separated and e�e
ts like 
a
he thrashing do not o

ur. Of 
ourse, messagepassing 
an also be used on SMP-ma
hines. In this 
ase modern MPI implemen-tations 
ommuni
ate via shared memory whi
h is the fastest way to 
ommuni
ate.In this work we have 
hosen a distributed memory parallelization be
ause of its �ex-ibility and usability with 
heap hardware. In the framework of Finite Volume andDis
ontinuous Galerkin methods a distributed parallelization based on a domain de-
omposition seems to be the most appropriate 
hoi
e. Here the 
omputational domainrepresented by an underlying mesh is partitioned into pie
es and ea
h of the pie
es isdistributed among the available pro
essors. Figure 8.3 shows the original mesh on theleft and the mesh partitioned into three pie
es on the right. Additionally the overlap oflevel one is shown. These are 
ells from the other partitions that store the 
onne
tivityinformation to 
ells of the other partitions.Parallel e�
ien
yThere are mainly two di�erent motivations for parallel implementation of software.Namely:
• The problem is too large. We have a larger memory requirement.
• The 
omputation needs too mu
h time to �nish. We need a faster exe
ution ofthe 
ode.In the �rst 
ase we have no other 
hoi
e: we need enough ma
hines to satisfy thememory requirements of the problem. But in the latter 
ase we have to de
ide howmany ma
hines we should use in order to a

elerate the 
omputation. This is dis
ussedin the following paragraph.For a given problem let T (n) denote the time the 
omputation using n ∈ N pro
essorsneeds to �nish. The speedup from n0 pro
essors to n1 pro
essors with n0 < n1 is then



150 CHAPTER 8. MESH ADAPTION AND PARALLELIZATIONde�ned by speedup(n0, n1) =
T (n0)

T (n1)
,speedup(n) = speedup(1, n).The latter denotes the speedup from one to n pro
essors. For real world appli
ationswe expe
t that the speedup is bounded byspeedup(n0, n1) ≤

n1

n0
,but there are examples where this is not the 
ase. These are usually 
a
he e�e
ts ando

ur normally only when the problem is small and the 
ommuni
ation is really fast
ompared to the 
omputation. The expressione�(n0, n1) = speedup(n0, n1)
n0

n1is 
alled parallel e�
ien
y. This quantity de
ides whether it is worth to use n1 pro
essorsinstead of n0 or not. If this quantity is 
lose to one it may be worth if it is 
lose to zeroit is de�nitely not worth.Parallelization of the meshIn Se
tion 6.1 we have dis
ussed the stru
ture of 
onform and non
onform meshes weuse to approximate (possibly 
omplex) geometries. For the implementation, espe
iallyin a parallel environment, it is 
onvenient to restri
t the set of admissible meshes a littlebit. Here we restri
t this set to the set of meshes that 
an be generated by re�nementstarting from a 
onform ma
ro mesh. The ma
ro mesh 
onsists of 
ells that 
annot befurther 
oarsened. The mesh is initially assumed to be distributed among the availablepro
essors. Not all of the pro
essors need to hold any ma
ro 
ells. The part of themesh (the partition) that is held by pro
essor number p is 
alled Th,p and the part ofthe domain that is asso
iated with this partition is denoted by Ωh,p in the following.A partition Th,p needs also to store the immediate neighbors of ma
ro 
ells that areadja
ent to other partitions in order to store 
onne
tivity information. These neighborsare 
alled overlapping ma
ro 
ells of level one. Note that for the dis
retization by theDis
ontinuous Galerkin approa
h the information of dire
t neighbors is su�
ient.Figure 8.3 shows the mesh of the unit ball in R
2 that is hold on only one pro
essor onthe left side and on the right side the same mesh is shown that is distributed amongthree pro
essors. The blue 
ells represent the overlapping 
ells from other partitionsthat store the 
onne
tivity information.In the re�nement and 
oarsening pro
ess a hierar
hy of 
ells is 
onstru
ted with thema
ro 
ell as the root 
ell. In the 
ase where 
ells are sent from one pro
ess to another,for example when load balan
ing (see 8.6) is ne
essary be
ause the 
omputational 
ostdi�ers too mu
h between the pro
essors, then the 
omplete 
ell tree with the ma
ro
ell as root is sent to another pro
ess. When re�nement or 
oarsening is performedsomewhere in the hierar
hy of a ma
ro 
ell of pro
ess p that is part of the overlap ofa pro
ess q then pro
ess p needs to inform pro
ess q about the new stru
ture of the
on
erning ma
ro 
ell.
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Figure 8.3: De
omposition of a mesh into three parts and the overlap of level one.Parallelization of the Dis
ontinuous Galerkin methodThe spa
e dis
retization by the Lo
al Dis
ontinuous Galerkin method is dis
ussed inChapter 6 and espe
ially in Se
tion 6.2. In ea
h stage of the 
omputation of a higherorder di�erential operator by the LDG method the 
ommuni
ation only between dire
tneighboring 
ells is ne
essary. Therefore the mesh on one partition needs only to storethe information about dire
t neighbor 
ells in di�erent partitions. As dis
ussed inthe previous paragraph, in this 
ase the 
omplete ma
ro 
ell hierar
hy is stored forsimpli
ity.The 
omputation of the dis
rete di�erential operators asso
iated with the Lo
al Dis-
ontinuous Galerkin method in one stage is then done essentially in the following way:
• The data at the boundaries of the partitions is ex
hanged between pro
essorsusing nonblo
king MPI 
ommuni
ation.
• Sin
e nonblo
king 
ommuni
ation is used it 
an overlap with the 
omputation inthe inner partition (the large part of the 
omputation). Communi
ation is donein the ba
kground by the system.
• When all ne
essary data has been re
eived from neighbor partitions, the rest ofthe 
omputation that is asso
iated with the partition boundaries 
an be done (thesmall part of the 
omputation).In the following we denote by uh,p the part of the approximate solution that is asso
iatedwith the partition Th,p, i.e., the part of the approximate solution that has support on thedomain Ωh,p. The lo
al parts of the dis
rete �rst order di�erential operators are denotedby L1

h,p,k. Using this notation the pseudo
ode algorithm to 
ompute the dis
rete higherorder di�erential operator in m stages in equation (6.6) 
an be written in a parallelizedversion. Ea
h pro
ess p does the following:



152 CHAPTER 8. MESH ADAPTION AND PARALLELIZATIONAlgorithm 8.5.1 (Parallel DG Method)set u0
h,p = uh,p(·, t);for k = 1, . . . ,m {for q = 0, . . . , nparts − 1, q 6= p {if p and q are adja
ent partitions thensend the parts of (u0

h,p, . . .u
k−1
h,p ) that are asso
iated with the partitionboundary to pro
ess q using nonblo
king 
ommuni
ation;

}
ompute the part of L1
h,p,k[(u

0
h, . . .u

k−1
h )] using physi
al �uxes fk

i and
onsistent numeri
al �uxes gk for whi
h only the inner data is ne
essary;wait until all ne
essary data from neighbor partitions has been re
eived;
ompute the rest of L1
h,p,k[(u

0
h, . . .u

k−1
h )];set uk

h,p = L1
h,p,k[(u

0
h, . . .u

k−1
h )];

}set Lm
h,p[uh(·, t)] = um

h,p.In the above algorithm nparts denotes the number of partitions/pro
essors in the parallelenvironment. Note that the treatment of non
onservative produ
ts 
an also be in
ludedin the algorithm.Parallelization of linear and nonlinear solversThe parallelization of the rest of the 
ode is more or less straight forward. The mostimportant remaining 
omponents are the expli
it and impli
it ODE solvers, nonlinearsolvers and linear solvers. Parallelization of these 
omponents is done in the followingway: First a lo
al (with respe
t to a partition/pro
essor) result is 
omputed and se
ondthese lo
al results are used to 
onstru
t the global result by using global redu
tionoperations provided by the Message Passing Interfa
e.ODE solvers need to 
ompute a time step size. Expli
it solvers need to do this forstability reasons and impli
it solvers need to �nd an optimal time step. Usually this isdone by 
omputing a time step lo
ally on ea
h partition followed by building a minimumover all partitions. The �nal step is done by 
alling the MPI global redu
tion methodMPI_Allredu
e(. . . , MPI_MIN).Linear and nonlinear solvers need to 
ompute dot produ
ts. Linear solvers usually needthis as part of the iteration and nonlinear solvers for a stopping 
riterion. Dot produ
tsare 
omputed lo
ally for ea
h partition. This operation is 
ompleted by building thesum over all partitions. Again this is a global redu
tion operation provided by MPI.The method to 
all in this 
ase is MPI_Allredu
e(. . . , MPI_SUM). Note that
omputing dot produ
ts in parallel 
an be di�erent from the serial 
omputation due to
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e the operations are usually reordered. This 
an result in a slightlydi�erent number of iterations for the linear solvers.Parallelization of other 
omponentsSome of the 
omponents like the interfa
e or error indi
ators are not dis
ussed in theprevious paragraphs sin
e the parallelization of these 
omponents is similar or a 
ombi-nation of the 
omponents dis
ussed before. Therefore, we omit it. The parallelizationof the re�nement and 
oarsening algorithm dis
ussed in Se
tion 8.4 is also not dis
ussedhere. The information of re�nement and 
oarsening has to be simply ex
hanged betweenthe partitions. This pro
ess 
an 
ause additional adaption in other partitions. Thus,the pro
ess has to be iterated until all partitions have �nished.8.6 Load Balan
ingLoad balan
ing is a te
hnique to distribute work between the available pro
essors ina parallel environment in order to optimize and de
rease 
omputing time. In the 
asewhere the 
omputational 
ost or 
ommuni
ation 
ost di�ers too mu
h between pro
esses,due to lo
al mesh adaption, the load must be balan
ed with respe
t to
• the 
omputational 
ost, i.e., the number of 
ells of the mesh a partition holds.
• the 
ommuni
ation 
ost. The number of interfa
es between di�erent partitionsshould be minimized.
• the redistribution 
ost. The ex
hange of parts of the partitions should not be tooexpensive.For purpose of the �rst item we assign weights to the ma
ro 
ells of the mesh whi
hrepresent the 
ount of leaf 
ells in the 
ell hierar
hy of the ma
ro 
ell. The se
ond itemis taken into a

ount by assigning weights to the interfa
es of the ma
ro 
ells whi
hrepresent the 
ommuni
ation 
ost between two adja
ent ma
ro 
ells.As ba
kend for the partitioning of the ma
ro mesh the graph partitioning libraryParMetis [121℄, [68℄ is used. The graph that des
ribes the 
onne
tivity informationof the ma
ro mesh is 
onverted into ParMetis' data stru
ture. This stru
ture is a kindof a parallel CSR matrix format, see the ParMetis do
umentation [69℄ for details. TheParMetis library provides the methods PartKway(. . . ) and AdaptiveRepart(. . . ).The former method is used for initial partitioning and the latter is used for reparti-tioning. The repartition method preserves as mu
h of the initial stru
ture of the meshas possible in order to minimize the redistribution 
ost. The output of both ParMetismethods is a lo
al part array with the information whi
h node of the graph has to besent to whi
h pro
essor, i.e., whi
h ma
ro 
ell has to be sent to whi
h partition, in or-der to improve the distribution of 
omputational 
ost and minimize the 
ommuni
ation
ost.ParMetis provides additionally the possibility to assign individual weights to the parti-tions using the tpwgts array. This 
an be used to improve the load balan
ing in het-



154 CHAPTER 8. MESH ADAPTION AND PARALLELIZATIONerogen parallel environments, i.e., networks of ma
hines with di�erent 
omputationalpower.



Chapter 9Numeri
al Results
We apply the test 
ases 
onstru
ted in Chapter 4 and some other tests in the following
hapter. All tests throughout the following se
tions are related to the higher order Dis-
ontinuous Galerkin dis
retization of the Navier-Stokes-Korteweg equations (isothermalor temperature dependent) in multiple spa
e dimensions dis
ussed in Chapter 6. In thefollowing se
tions we perform a lot of di�erent tests that are dedi
ated to

• the quantitative behavior of numeri
al solutions, 
onvergen
e tests with the stati
equilibrium solutions and traveling wave solutions in multiple spa
e dimensions.
• the qualitative behavior of numeri
al solutions, de
ay of the total energy on thedis
rete level, vanishing velo
ity �eld.
• the e�
ien
y of the used numeri
al te
hniques, parallelization, lo
al mesh adap-tion.
• the qualitative behavior of solutions of the Navier-Stokes-Korteweg model, os
il-lating bubbles, 
ondensation of bubbles.In the above list one point is missing: tests with respe
t to the quantitative behaviorof solutions. Here the problem is that no physi
al data of experiments are available onthe temperature and length s
ale that 
an be simulated by the NSK model, see Se
tion2.10.9.1 Test Case: Stati
 EquilibriumThe �rst test in this 
hapter is the test 
ase with the stati
 bubble in two and three spa
edimensions. As initial 
on�guration we use the pro�les we have 
omputed in Se
tion4.1. We 
ompare the exa
t solution with the approximate solutions generated by thewell balan
ed Dis
ontinuous Galerkin s
hemes dis
ussed in Se
tion 6.9 for di�erentpolynomial degrees after some time of 
omputation. For time stepping we apply theimpli
it Runge-Kutta s
hemes des
ribed in Se
tion 7.3.The setting is the same as in Chapter 5 ex
ept for the domain and the boundary
onditions. The boundary 
onditions that are imposed in this test 
ase are (2.51)155



156 CHAPTER 9. NUMERICAL RESULTSand (2.53) that enfor
es a 90 degree 
onta
t angle of the interfa
e at the boundary.However, the interfa
e should not tou
h the boundary in this 
ase, so it should notmake a di�eren
e when boundary 
ondition (2.53) is repla
ed by the more general
ondition (2.54).The remaining parameters are the 
apillarity 
oe�
ient λ whi
h must 
orrespond to the
omputed density pro�le and the vis
osity parameters that 
an be 
hosen arbitrarily.However, we use the value that 
omes from the 
omputation of the under
ompressivetraveling wave solution, see Se
tion 4.2.
λ = 0.001,

ε = 0.0136644, µ =
3

4
ε, ν = −1

2
ε.Stati
 bubble in 2d

Figure 9.1: Stati
 equilibrium bubble and a 
omputational mesh in 2d.Figure 9.1 shows the density distribution in the 
omputational domain Ω = B1(0) ⊂ R
2of the initial 
on�guration whi
h is of 
ourse the solution for all times t ≥ 0 in this
ase. The density values vary between approximately 0.3 (blue) and 1.8 (red). Thesetwo values are approximately the Maxwell values for the dimensionless van der Waalsequation of state at temperature θref = 0.85. This display style is used throughout this
hapter.For this test we use globally re�ned, regular triangulations of di�erent mesh sizes. Oneof them is shown in Figure 9.1. Figure 9.2 and Table 9.1 illustrate the 
onvergen
e ofthe numeri
al s
hemes with the expe
ted order (whi
h is polynomial degree plus one)for p = 1, 2, 3.The results of the sequen
e of tests in two spa
e dimensions 
an be found in Table 9.1and Figure 9.2. Computations that were not su

essful, be
ause the mesh was not �neenough (this was the 
ase for p = 1) or the 
omputation was simply to expensive to�nish in a reasonable time (in the 
ase of p = 3 for the �ne meshes) the results aremarked with a * symbol in Table 9.1.



9.1. TEST CASE: STATIC EQUILIBRIUM 157p=1 p=2 p=3h L2 error EOC L2 error EOC L2 error EOC2.1298e-01 * 7.6272e-02 6.1959e-021.3311e-01 8.0634e-02 * 2.7842e-02 2.144 1.0732e-02 3.7308.8740e-02 3.1137e-02 2.347 6.9194e-03 3.434 2.3610e-03 3.7346.2640e-02 1.3184e-02 2.467 4.0635e-03 1.528 3.0082e-04 5.9154.2595e-02 7.8643e-03 1.340 9.2077e-04 3.849 1.1222e-04 2.5572.8023e-02 3.6147e-03 1.856 2.4690e-04 3.144 2.1694e-05 3.9251.9016e-02 1.7118e-03 1.928 7.3168e-05 3.137 5.6071e-06 3.4891.2830e-02 7.9013e-04 1.965 2.1812e-05 3.076 1.5065e-06 3.3408.6576e-03 3.6232e-04 1.982 6.6050e-06 3.037 4.2760e-07 3.2025.8510e-03 1.6589e-04 1.994 2.0252e-06 3.017 * *3.9440e-03 7.5470e-05 1.997 6.1878e-07 3.006 * *Table 9.1: Stati
 bubble in 2d. Total L2 error and EOC for p = 1, 2, 3.The numeri
al solutions generated by the s
hemes with polynomial degree p = 0, 1, 2
onverge 
learly with the expe
ted order p + 1. For the fourth order s
heme (p = 3)either the mesh size is not in the asymptoti
 regime or (and this is very likely the reason)the time step size has be
ome too large (possible be
ause of the equilibrium solution)su
h that the se
ond order Runge-Kutta method destroys the order.
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p=0
p=1
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p=3Figure 9.2: Stati
 bubble in 2d. Mesh size versus L2 error for p = 0, 1, 2, 3.Stati
 2d bubble in 3dWe apply the 2d test 
ase from the previous paragraph in three spa
e dimensions.Therefore, we set the remaining velo
ity 
omponent to zero and 
hoose as 
omputationaldomain the 
ylinder Ω = B1(0) × [−0.1, 0.1] ⊂ R

3, where B1(0) denotes the unit ball



158 CHAPTER 9. NUMERICAL RESULTSin R
2. Figure 9.3 shows the initial data and an underlying tetrahedral mesh for thistest. Now it is important that at the bottom and at the top of the 
ylinder boundary
ondition (2.53) is imposed.

Figure 9.3: Stati
 2d bubble in 3d and a tetrahedral mesh.The rest of the setting is identi
al to the setting in the 2d 
ase in the previous paragraph.The results of the 
omputations are shown in Figure 9.4 and Table 9.2 for polynomialdegree (zero), one, two and three.
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p=3Figure 9.4: Stati
 2d bubble in 3d. Mesh size versus L2 error for p = 0, 1, 2, 3.The s
hemes with p = 1, 2 seem to 
onverge with the expe
ted order p + 1 but forthe s
hemes with p = 0 and p = 3 the mesh seems to be not �ne enough su
h thatthe s
hemes 
an be in the asymptoti
 regime. Note that the mesh is not as �ne asin the purely 2d test 
ase sin
e 
onvergen
e tests in three spa
e dimensions are reallyexpensive, regardless of parallelization.



9.2. TEST CASE: TRAVELING WAVE SOLUTION 159p=1 p=2 p=3h L2 error EOC L2 error EOC L2 error EOC2.0856e-01 * 2.4993e-02 2.4465e-021.4094e-01 2.2658e-02 * 4.3036e-03 4.489 1.5906e-03 6.9756.9520e-02 9.1541e-03 1.282 9.8393e-04 2.088 2.9740e-04 2.3734.1712e-02 3.2035e-03 2.055 2.7513e-04 2.495 3.6137e-05 4.1262.5236e-02 1.2346e-03 1.897 5.8482e-05 3.081 4.2149e-06 4.2761.4757e-02 4.5120e-04 1.876 1.2013e-05 2.950 * *Table 9.2: Stati
 2d bubble in 3d. Total L2 error and EOC for p = 1, 2, 3.9.2 Test Case: Traveling Wave SolutionIn this se
tion we perform the test with the traveling wave solution 
omputed in Se
tion4.2 in two and three spa
e dimension. Therefore, the one dimensional pro�le is triviallyextended to two and three spa
e dimensions by setting the remaining 
omponents of thevelo
ity to zero. A 1d test 
an be found in Se
tion 9.4. The isothermal Navier-Stokes-Korteweg system is in all tests equipped with a dimensionless van der Waals equationof state and the dimensionless referen
e temperature is �xed to θref = 0.85.The system is dis
retized using the well balan
ed Dis
ontinuous Galerkin s
heme as de-s
ribed in Se
tion 6.9 for polynomial degrees between zero and four. Time integration isdone using se
ond and third order impli
it Runge-Kutta s
hemes, see Se
tion 7.3. Thetime step is small enough (of order O(h2), where h denotes the mesh size) su
h thatthe order of the Runge-Kutta s
hemes is su�
ient.Note: For polynomial degree zero a Dis
ontinuous Galerkin s
heme redu
es to a �rstorder Finite Volume s
heme.Compressive wave in 2dFor the �rst test in this se
tion we have 
hosen the 
ompressive wave from Se
tion 4.2.The pro�le is extended to two spa
e dimensions by setting the se
ond 
omponent ofthe velo
ity to zero and used as initial 
on�guration. We impose boundary 
onditionsknown from the exa
t solution of the problem. The parameters for this pro�le are givenby
λ = 0.001,

ε = 0.0056977, µ =
3

4
ε, ν = −1

2
ε,

s = −1.25273.Here λ denotes the 
apillarity parameter, µ and ν the 
oe�
ients of vis
osity and sthe speed of propagation of the pro�le. The approximate solutions are 
omputed upto 
omputational time T = 0.02. At this time the approximate solution is 
omparedto the exa
t solution by 
omputing the (total) L2-error. All 
omputations are doneusing identi
al ma
hines (Pentium 4, 2.4GHz, one 
ore per pro
essor) and using only a



160 CHAPTER 9. NUMERICAL RESULTSsingle partition in order to 
ompare the exe
ution times. The 
omputational domain isthe 
hannel [−1, 1]× [−0.25, 0.25] and the mesh is a regular, globally re�ned 
riss-
rosstriangulation.
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hFigure 9.5: Compressive wave in 2d. Mesh size versus L2 error for polynomial degree
p = 0, 1, 2, 3, 4.Figure 9.5 shows that the approximate solutions generated by the Dis
ontinuous Galerkins
hemes with polynomial order p = 0, 1, 2, 3 
onverge to the exa
t solution with the ex-pe
ted order. In the �gure the bla
k lines indi
ate the expe
ted order. Note that theexpe
ted order of the s
hemes is p+1. Table 9.3 illustrates the same. The s
heme with
p = 4 seems to have the same behavior but on 
loser inspe
tion that the error is notof order �ve. This is due to the insu�
ient order of the Runge-Kutta s
heme in this
omputation. We applied a se
ond order Runge-Kutta s
heme and the time step size isof order O(h2). This means that the resulting s
heme 
annot be better than order four.

p = 1 p = 2 p = 3

h L2 error EOC L2 error EOC L2 error EOC2.5000e-02 1.2265e-02 3.8326e-03 5.1287e-031.2500e-02 3.1980e-03 1.939 5.0307e-04 2.929 5.7384e-05 6.4828.3333e-03 1.4234e-03 1.997 1.5131e-04 2.963 1.1166e-05 4.0376.2500e-03 7.9961e-04 2.004 5.9397e-05 3.250 3.6240e-06 3.9125.0000e-03 5.1395e-04 1.981 3.0369e-05 3.006 1.5009e-06 3.9504.1667e-03 3.5756e-04 1.990 1.7597e-05 2.993 7.2917e-07 3.9603.5714e-03 2.6292e-04 1.994 1.1096e-05 2.992 3.9572e-07 3.9653.1250e-03 2.0137e-04 1.997 7.4416e-06 2.992 2.3285e-07 3.972Table 9.3: Compressive wave in 2d. L2 error and EOC for p = 1, 2, 3.



9.2. TEST CASE: TRAVELING WAVE SOLUTION 161From Figure 9.6 we 
an see that the 
onstru
tion of higher order s
hemes really leadsto more e�
ient s
hemes (provided that the solution is su�
iently smooth). The �gureshows the CPU time the 
omputation needs versus the (total) L2-error. By CPU timewe mean the time the pro
ess has 
onsumed, i.e., the user+system time on UNIXsystems. We 
an see that the s
hemes with p = 3 and p = 4 are the most e�
ients
hemes.

 1e−08

 1e−07

 1e−06

 1e−05

 1e−04

 0.001

 0.01

 0.1

 0.01  0.1  1  10  100  1000  10000

p=0
p=1
p=2
p=3
p=4

L
2

er
ro

r

CPU time [min]Figure 9.6: CPU time versus L2 error for polynomial degree p = 0, 1, 2, 3, 4.Under
ompressive wave in 2dAs a se
ond test in this se
tion we repeat the test from the previous paragraph with anunder
ompressive wave 
onstru
ted in Se
tion 4.2 instead of a 
ompressive wave. Anunder
ompressive traveling wave solution is more typi
al for propagating phase bound-aries sin
e an interfa
e usually propagates with subsoni
 speed. For the sequen
e of
omputations in this paragraph real unstru
tured (randomly perturbed) but uniformly�ne meshes are used. One of these meshes is shown in Figure 9.7. We omit time and
Figure 9.7: Randomly perturbed mesh in 2d.e�
ien
y measurements in this test 
ase su
h that the 
omputations 
an be assignedto a di�erent number of pro
essors and di�erent ma
hines as it is ne
essary due to thedi�erent 
omplexity when polynomial degree and mesh size vary.



162 CHAPTER 9. NUMERICAL RESULTSThe parameters for the under
ompressive pro�le are di�erent from the parameters forthe 
ompressive wave. They are given by
λ = 0.001,

ε = 0.0136644, µ =
3

4
ε, ν = −1

2
ε,

s = −0.32141.The 
omputational end time for the 
omputations is T = 0.1. At this time the total
L2-error between the numeri
al solutions and exa
t solutions are 
omputed.p=1 p=2 p=3h L2 error EOC L2 error EOC L2 error EOC1.3711e-01 3.4725e-02 1.1543e-02 5.5499e-038.8213e-02 1.1685e-02 2.470 3.6984e-03 2.581 5.6154e-04 5.1946.0485e-02 7.2965e-03 1.248 1.2311e-03 2.915 2.2738e-04 2.3964.2884e-02 3.8130e-03 1.887 4.6178e-04 2.851 6.0013e-05 3.8733.1247e-02 2.0928e-03 1.895 1.8158e-04 2.948 1.6730e-05 4.0352.1225e-02 9.1363e-04 2.143 5.5332e-05 3.073 3.4654e-06 4.0711.4752e-02 4.5400e-04 1.922 1.9073e-05 2.928 8.5393e-07 3.8501.0448e-02 2.0603e-04 2.290 6.2167e-06 3.249 2.0425e-07 4.146Table 9.4: Under
ompressive wave in 2d. Total L2 error and EOC for p = 1, 2, 3.
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p=3Figure 9.8: Under
ompressive wave in 2d, polynomial degree p = 0, 1, 2, 3.The result of this 
onvergen
e test is presented in Figure 9.8 and Table 9.4 for theDis
ontinuous Galerkin s
hemes with polynomial degree p = 0, 1, 2, 3 and a se
ondorder impli
it Runge-Kutta method for time integration. Figure 9.9 shows the graph ofsu
h a density pro�le (
olor variation of the density distribution is also shown) and the
orresponding velo
ity �eld for p = 2 at time T = 0.1.
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Figure 9.9: Under
ompressive wave in 2d. Density distribution and velo
ity �eld.Under
ompressive wave in 3dWe extend the under
ompressive traveling wave solution used in the previous paragraphtrivially to three spa
e dimensions by setting the additional momentum 
omponentsto zero. The 
omputational domain for the three dimensional test is the 
hannel Ω =
(−1, 1)×(−0.25, 0.25)2 ⊂ R

3 that is represented by regular, globally re�ned, tetrahedralmeshes of di�erent sizes. The 
omputational end time is T = 0.1. At this time thetotal L2-errors of the numeri
al solutions are 
omputed. Again we omit time ande�
ien
y measurements. The parameters are the same as in the 2d 
ase with theunder
ompressive wave before.

Figure 9.10: Under
ompressive wave in 3d. Density distribution and the 
omputationalmesh (upper pi
ture) and the asso
iated partitions marked by di�erent 
olors (lowerpi
ture).The results of the tests for polynomial degree p = 0, 1, 2, 3 are shown in Table 9.5and Figure 9.11. The 
onvergen
e with the expe
ted order 
an 
learly be seen for these
ond and third order s
hemes (p = 1, 2). The test with the two �nest meshes was tooexpensive for the fourth order (p = 3) s
heme.



164 CHAPTER 9. NUMERICAL RESULTSp=1 p=2 p=3h L2 error EOC L2 error EOC L2 error EOC2.3208e-01 4.2703e-02 1.6035e-02 7.8913e-031.5832e-01 2.3654e-02 1.544 8.3620e-03 1.702 4.8851e-03 1.2541.1804e-01 1.6087e-02 1.313 3.8893e-03 2.607 1.4425e-03 4.1558.0126e-02 9.7965e-03 1.280 1.4103e-03 2.618 5.9760e-04 2.2745.5051e-02 4.8885e-03 1.852 7.0490e-04 1.848 1.1244e-04 4.4513.8462e-02 2.3859e-03 2.000 2.3567e-04 3.055 3.1102e-05 3.5842.7778e-02 1.2670e-03 1.945 9.1493e-05 2.907 * *2.0000e-02 6.6492e-04 1.963 3.3963e-05 3.017 * *Table 9.5: Under
ompressive wave in 3d. Total L2 error and EOC for p = 1, 2, 3.
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ompressive wave in 3d, polynomial degree p = 0, 1, 2, 3.9.3 Test Case: Towards Stati
 EquilibriumThis is the test 
ase proposed in Se
tion 4.3 and the setting is similar to that in Chapter5 but not the same.The 
oe�
ient λ is 
hosen a hundred times smaller than in the tests in Chapter 5. Thisresults in an ten times smaller interfa
e and also the amount of surfa
e tension is tentimes smaller. This leads to slower dynami
s be
ause for
es asso
iated with surfa
etension are mu
h weaker. Due to the small interfa
e it is ne
essary to apply lo
al meshre�nement using the interfa
e indi
ator des
ribed in Se
tion 8.3 with parameters

ηlow = 0.5,

ηupp = 4.0 · ηlow,

m = 8,where the parameter m 
ontrols the layer of �ne 
ells around the interfa
e and the load



9.3. TEST CASE: TOWARDS STATIC EQUILIBRIUM 165balan
ing is performed every 40th time step.The isothermal NSK-system is dis
retized by the well balan
ed Dis
ontinuous Galerkins
heme with polynomial ansatz fun
tions of degree two and three. For polynomial degreeone the above given values for the interfa
e indi
ator do not provide a �ne enough meshfor the 
omplete resolution of the interfa
e. This results in an unstable behavior of theapproximate solution. The parameters for this test are given by
θref = 0.85, dimensionless vdW-equation of state,
λ = 1.0 · 10−5,

ε = 1.366 · 10−3, µ =
3

4
ε, ν = −1

2
ε.
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Figure 9.12: Test Case: Towards Stati
 Equilibrium. Total and kineti
 energy forpolynomial degree p = 2 and p = 3.Figure 9.12 shows the behavior of the total and kineti
 energy as fun
tions of time forthe two well balan
ed Dis
ontinuous Galerkin s
hemes with polynomial degree two andthree. A 
onstant has been added to the total energy su
h that it 
an be displayedon a logarithmi
 s
ale. The total energy E is an almost de
reasing fun
tion in timewith small os
illations. The s
heme itself is not designed su
h that the total energyhas this behavior. This is a side e�e
t observed in the numeri
al experiments with thebasi
 �rst order s
heme in Chapter 5. The os
illations we 
an observe in the graph ofthe energy are mainly 
aused by the L2 proje
tion in the re�nement and 
oarseningpro
ess. We have observed that these os
illations vanish when lo
al mesh adaption isnot applied. However, this is not possible in the 
ase of a very small interfa
e. Maybea more 
onvenient data proje
tion should be 
hosen to maintain the energy de
ay.The right part of the �gure shows that the kineti
 energy 
onverges 
ompletely (up toroundo� error) to zero as time tends to in�nity. The s
hemes are designed to preservestati
 equilibrium data on the dis
rete level but it is not 
lear that if we add a smallperturbation to a stable stati
 equilibrium 
on�guration that as time tends to in�nitythe approximate solution 
onverges to some stati
 equilibrium state again. This 
an
learly be seen from the behavior of the kineti
 energy.
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e of six time steps in the evolution pro
ess from the initialdata at t = 0.0 to the (nearly) stati
 equilibrium 
on�guration at time t = 40.0. Thereas still some movement at this 
omputational time but the topologi
al 
hanges are
ompleted and the large bubble in the 
enter of the domain has an almost spheri
alshape. The �gure shows the distribution of the density and the velo
ity at 
omputationaltimes t = 0.0, 7.0, 7.85, 13.07, 14.6, 40.0 (from upper left to lower right) for the thirdorder Dis
ontinuous Galerkin s
heme (p = 2). Below the density-velo
ity pi
ture the
orresponding adaptively re�ned mesh with the distribution over the eight pro
essorsused for this 
omputation is shown. Ea
h of the eight 
olors represents one partition.

Figure 9.13: Test Case: Towards Stati
 Equilibrium. Density, velo
ityand the adaptively re�ned meshes with distribution of the partitions. t =
0.0, 7.0, 7.85, 13.07, 14.6, 40.0 from upper left to lower right.



9.4. THE NEED FOR ARTIFICIAL VISCOSITY 1679.4 The Need for Arti�
ial Vis
osityThis test shows that the additional arti�
ial vis
osity, see for example Se
tion 5.2 es-pe
ially equation (5.5), in the dis
retization of the Navier-Stokes-Korteweg equationsis really ne
essary to stabilize the approximate solution (at least for the higher orderDG dis
retization). The test 
ase with the 
ompressive traveling wave solution fromSe
tion 9.2 is applied to the one dimensional isothermal NSK system dis
retized by thewell balan
ed Dis
ontinuous Galerkin s
hemes. The parameters are 
hosen as in Se
tion9.2 with the di�eren
e that in one sequen
e of tests the arti�
ial vis
osity parameter α1,see (5.5), is set to zero. The approximate solutions are 
omputed up to time T = 0.1on uniform 1d grids.Table 9.6 shows the 
onvergen
e behavior of the two tests with the �rst order s
hemes,one with and the other without arti�
ial vis
osity. The errors are not in the asymptoti
regime for the used mesh sizes but it 
an be seen that arti�
ial vis
osity is not ne
essaryto stabilize the generated approximations for the �rst order s
hemes (at least not in thistest 
ase). The result is di�erent in the 
ase of higher order s
hemes as 
an be seenbelow.
α1 > 0 α1 = 0h L1 error EOC L1 error EOC1.0000e-01 2.6682e-01 3.0344e-015.8824e-02 1.5707e-01 0.999 1.9467e-01 0.8373.5088e-02 5.9956e-02 1.864 9.0428e-02 1.4842.0619e-02 1.9982e-02 2.067 1.9096e-02 2.9251.2121e-02 9.9869e-03 1.306 5.4978e-03 2.3447.1685e-03 7.0067e-03 0.675 2.7571e-03 1.3144.2373e-03 4.9088e-03 0.677 1.5106e-03 1.144Table 9.6: Traveling wave in 1d, 1st order s
heme. Total L1 error and EOC for thes
heme with arti�
ial vis
osity (left) and without (right).The results of the tests with the 
orresponding se
ond order Dis
ontinuous Galerkins
hemes 
an be found in Table 9.7. Almost se
ond order 
onvergen
e 
an be observedfor the s
heme with arti�
ial vis
osity. The s
heme without arti�
ial vis
osity does not
onverge to the exa
t solution and Figure 9.14 
learly shows the unstable behavior ofthe approximate solution. The s
heme produ
es os
illations in the vi
inity of the phaseboundary. The s
heme that in
ludes arti�
ial vis
osity (not shown) does not show thisbehavior, it 
onverges to the exa
t solution.As a result we �nd that ex
ept for the �rst order s
heme arti�
ial vis
osity is ne
essaryfor the higher order s
hemes to produ
e sequen
es of approximate solutions that 
on-verge to the exa
t solutions. Of 
ourse, instead of the expli
it introdu
tion of arti�
ialvis
osity another stabilization te
hnique 
ould also be possible.
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α1 > 0 α1 = 0h L1 error EOC L1 error EOC1.0000e-01 1.0310e-01 1.8342e-017.1429e-02 4.9296e-02 2.193 1.5012e-01 0.5955.1282e-02 3.9810e-02 0.645 1.1758e-01 0.7373.7037e-02 1.9147e-02 2.249 6.0010e-02 2.0672.6667e-02 9.1751e-03 2.239 3.1154e-02 1.9961.9231e-02 4.4738e-03 2.197 2.5753e-02 0.5821.3889e-02 2.0969e-03 2.329 2.3741e-02 0.2501.0000e-02 1.2653e-03 1.538 3.0897e-02 -0.802Table 9.7: Traveling wave in 1d, 2nd order DG-s
heme. Total L1 error and EOC forthe s
heme with arti�
ial vis
osity (left) and without (right).
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ial vis
osity.Density pro�les for exa
t and approximate solutions at time T = 0.1.9.5 Di�erent Conta
t AnglesIn this test we impose di�erent 
onta
t angles for the interfa
e at a solid wall by mod-i�
ation of the angle ϕ in boundary 
ondition (2.54). The 
omputational domain forthis test is the square/
ube [−1, 1]n, n = 2, 3 partitioned by an adaptively re�ned tri-angular/tetrahedral mesh. Initially, a bubble with 90 degree 
onta
t angle is atta
hedto the bottom wall with zero velo
ity �eld, Figure 9.15 shows the initial data in twospa
e dimensions. This means that (ex
ept for a 
onta
t angle of 90 degrees) the ini-tial 
on�guration is not 
onsistent with the pres
ribed boundary 
onditions. However,this seems not to lead to instabilities in the approximate solution and as time tends toin�nity the 
onta
t angle agrees with the imposed 
onditions.Again we 
hoose the dimensionless isothermal van der Waals equation of state with areferen
e temperature θref = 0.85. For this test we 
hoose a mu
h smaller interfa
e asin the tests before. The parameters are di�erent in two and three spa
e dimensions.
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apillarity and vis
osity parameters are listed in the 
orresponding2d and 3d paragraph below. The rest of the setting is the same regardless of the spa
edimension. The s
heme is a 3rd order Dis
ontinuous Galerkin s
heme (polynomial de-gree 2) with 2nd order impli
it time integration. We 
ompute the approximate solutionup to 
omputational time T = 50.0. The solution does not 
hange essentially from thistime and the velo
ity �eld is 
lose to zero.The 
omplete resolution of the small interfa
e is only possible by using adaptively re�nedmeshes. For the tra
king of the interfa
e we use the interfa
e indi
ator dis
ussed inSe
tion 8.3, (8.10) with parameters
ηlow = 0.8,

ηupp = 4.0 · ηlow,

m = 8,and the load balan
ing is performed every 40th time step. This 
ould be done lessfrequently be
ause the solution does not 
hange rapidly in this test 
ase.
Figure 9.15: Same initial data for di�erent 
onta
t angles.Di�erent 
onta
t angles in 2dThe 
apillarity and vis
osity parameters in the two dimensional test 
ase are given by

λ = 1.0 · 10−5,

ε = 1.366 · 10−3, µ =
3

4
ε, ν = −1

2
ε.The two dimensional test is performed using two pro
essors. The density distribution,the 
orresponding meshes together with the distribution of the mesh 
ells over thepartitions is shown in Figure 9.16 for the three 
onta
t angles ϕ = 0.25π, 0.5π, 0.75πat time T = 50.0.A 
onta
t angle of 135 degree in 3dFor the three dimensional test the 
apillarity and vis
osity parameters are 
hosen slightlylarger for two reasons: faster 
omputation and better display of the results. The pa-
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0.000 

1.900
0.000 Figure 9.16: Di�erent 
onta
t angles in 2d. ϕ = 0.25π, 0.5π, 0.75π from left to right.rameters are given by

λ = 2.5 · 10−4,

ε = 6.830 · 10−3, µ =
3

4
ε, ν = −1

2
ε.Only one 
omputation is performed with an adjusted 
onta
t angle of ϕ = 0.75π using16 pro
essors in parallel. The result at time T = 50.0 is shown in Figure 9.17. This�gure shows the distribution of the density on two 
lipping planes with z = 0 and

y = 0, where x, y, z denote the spatial 
oordinates. Additionally a levelset of a bubbleis shown.

Figure 9.17: Conta
t angle of 135 degree in 3d.



9.6. IMPLICIT VERSUS EXPLICIT TIME STEPPING 1719.6 Impli
it versus Expli
it Time SteppingWe test the e�
ien
y of impli
it time stepping versus expli
it time integration in thisse
tion. Note that there is no formula for the time step size restri
tion available thatis ne
essary for expli
it time stepping to guarantee the stability of the method. This isthe main reason for using impli
it Runge-Kutta methods, e�
ien
y is the se
ond one.Sin
e there is no formula for 
ontrolling the time step size in the expli
it 
ase we haveto �gure out manually (by su

essively lowering) whi
h time step size gives a stables
heme. It is guaranteed that for a working time step size a �ve per
ent larger timestep size shows an unstable behavior.For this test 
ase a traveling wave solution or a stati
 equilibrium seems to be theappropriate 
hoi
e sin
e these kinds of solutions have the same shape for all times t.Thus, the most e�
ient time step size for impli
it s
hemes and the maximal possibletime step for expli
it s
hemes remain almost the same for all times t.We have 
hosen both test 
ases in two spa
e dimensions using di�erent mesh sizes anda 3rd and 4th order well balan
ed Dis
ontinuous Galerkin dis
retization (p = 2, 3) ofthe isothermal Navier-Stokes-Korteweg equations in spa
e. The 
on�guration is almostthe same as in Se
tions 9.1 and 9.2. In both 
ases se
ond order Runge-Kutta s
hemesare applied for time integration. In the expli
it 
ase the TVD2 s
heme (also known asHeun s
heme) is used and in the impli
it 
ase the Crank-Ni
holson s
heme in 
ombi-nation with the GMRES(15) linear solver is applied. The 
omputations were run usinga sequen
e of su

essively globally re�ned meshes. In order to 
ompare the exe
utiontimes of the 
omputations without distorting the results by the overhead of parallel
ommuni
ation all tests were run on a single pro
essor (AMD Athlon64, 1.8GHz).Traveling wave solutionFor the �rst test with the traveling wave solution as initial data in two spa
e dimen-sions. We have 
hosen exa
tly the same under
ompressive wave from Se
tion 9.2. Sin
eeverything is in movement in the solution this should be the harder test for the impli
its
heme. The rest of the 
on�guration is exa
tly the same as in Se
tion 9.2. The 
om-putational end time where the approximate and exa
t solutions are 
ompared to ea
hother is T = 0.01. The 
oarsest 
omputational mesh is a relatively rough but regulartriangulation of the two dimensional 
hannel. This mesh is subsequently re�ned forfurther 
omputations whi
h gives meshes of the same quality.Table 9.8 shows the results of this sequen
e of 
omputations for the 3rd order DG s
heme(upper part of the table) and the 4th order DG s
heme (lower part). For the impli
itand expli
it 
ase the total L2-errors, the time the 
omputation needs to �nish and thetime step sizes are shown. The time step size for the expli
it s
hemes are �xed whereasthe size of the time step in the impli
it s
hemes varies and the given size in the table
an be 
onsidered as a mean value. The errors of the approximate solutions generatedby the impli
it and expli
it s
hemes are 
omparable at a given mesh size. We see thatthe impli
it s
hemes are faster on the �ner meshes and for higher polynomial degrees
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p = 2 impli
it expli
ith L2 error Time [s℄ ∆t L2 error Time [s℄ ∆t5.77e-2 2.4377e-3 4.2 9.0e-4 2.4350e-3 1.9 2.0e-42.89e-2 2.8858e-4 44.5 2.0e-4 2.8848e-4 31.8 2.5e-51.44e-2 3.3837e-5 635.8 3.5e-5 3.3836e-5 684.2 3.1e-67.22e-3 4.1567e-6 10794.9 6.8e-6 4.1558e-6 18236.6 3.6e-7
p = 3 impli
it expli
ith L2 error Time [s℄ ∆t L2 error Time [s℄ ∆t5.77e-2 5.2560e-4 14.5 3.5e-4 5.2486e-4 10.0 5.0e-52.89e-2 3.4592e-5 201.3 7.0e-5 3.4591e-5 218.3 6.0e-61.44e-2 2.3513e-6 3083.1 1.3e-5 2.3464e-6 5122.0 7.8e-77.22e-3 1.7510e-7 58003.0 2.5e-6 1.5714e-7 148204.7 9.0e-8Table 9.8: Impli
it versus expli
it time stepping. Traveling wave in 2d, 3rd order s
heme(upper table) and fourth order s
heme (lower table).(nearly up to three times on the �nest mesh for the 4th order s
heme). On the 
oarsestmesh the expli
it s
hemes are faster but here the interfa
e is not 
ompletely resolvedsu
h that this mesh is not usable in pra
ti
al appli
ations. Note that a ne
essary timestep size 
ontrol, whi
h is also time 
onsuming, is not in
luded in the expli
it s
hemessin
e there is no formula for time step size restri
tion available.Stati
 equilibrium solutionThe se
ond test with the stati
 bubble in two spa
e dimensions uses exa
tly the same
on�guration as in Se
tion 9.1. Here only the third order Dis
ontinuous Galerkin s
hemeis applied. The 
omputations use su

essively re�ned meshes and the errors are 
om-puted at the 
omputational end time T = 1.0.
p = 2 impli
it expli
ith L2 error Time [s℄ ∆t L2 error Time [s℄ ∆t5.32e-2 2.3135e-3 107.9 3.0e-3 2.3134e-3 199.6 1.5e-42.66e-2 2.0993e-4 2118.1 6.0e-4 2.0993e-4 6511.2 1.8e-51.33e-2 2.4471e-5 47580.3 1.3e-4 2.4471e-5 224191.2 2.1e-6Table 9.9: Impli
it versus expli
it time stepping. Stati
 equilibrium in 2d, 3rd orders
heme.Table 9.9 shows the result of these 
omputations. Again we see that the errors produ
edby the impli
it and expli
it s
heme at a given mesh size are 
omparable and that theimpli
it s
heme is faster on the �ner meshes (by fa
tor 4.8 for the �nest mesh). It 
an beobserved that the impli
it s
heme be
omes mu
h faster at the end of the 
omputationbe
ause the dis
rete initial data provided by L2-proje
tion is not a dis
rete equilibriumbut a dis
rete equilibrium is approa
hed during the 
omputation.
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ien
yThis test will show the gain in e�
ien
y that lo
al mesh adaption 
an give. In order totest only the adaptive e�
ien
y the sequen
e of tests should be run on a single pro
essoronly (AMD Athlon64, 1.8GHz). Adaptive mesh re�nement and 
oarsening is employedto resolve small di�use interfa
es and to redu
e the error between the approximate andexa
t solution. We 
ompare approximate solutions generated on globally re�ned meshesand on adaptively re�ned and 
oarsened meshes. For a fair test we need a solution withrapid 
hanges.For this test we have 
hosen an under
ompressive traveling wave solution similar toSe
tion 9.2 and trivially extended to two spa
e dimensions. The 
hosen pro�le is a littlebit sharper than that in Se
tion 9.2 su
h that some levels of re�nement are ne
essaryto resolve the interfa
e 
ompletely. The parameters for this wave are
λ = 0.0001,

ε = 0.0025773, µ =
3

4
ε, ν = −1

2
ε,

s = −0.65691.The equation of state is again the dimensionless van der Waals equation of state withreferen
e temperature θref = 0.85. The domain is the 
hannel Ω = [−1, 1] × [−0.2, 0.2]and the approximate solutions are 
omputed up to time T = 1.0. At this time the total
L2-errors are 
ompared. We use the rough ma
ro mesh shown in Figure 9.18.

Figure 9.18: Ma
ro grid of the 2d 
hannel.For the 
omputations that use a globally re�ned mesh this ma
ro mesh is re�ned threeor four times before the initial data is L2-proje
ted to the 
orresponding Finite El-ement spa
e. The 
orresponding tests are denoted by nonadapt(3) and nonadapt(4)respe
tively.The adaptive 
omputations use the interfa
e indi
ator dis
ussed in Se
tion 8.3, (8.10)with parameters
ηlow = 0.5,

ηupp = 4.0 · ηlow,

m = 3 or m = 8,where m 
ontrols the size of the layer of �ne 
ells around the interfa
e. A smaller valueleads to a faster 
omputation and a larger value gives a smaller error and a more robusts
heme. These tests are denoted by adapt(3) and adapt(8). The initial mesh is 
hosensu
h that the interfa
e indi
ator does not mark any 
ells for re�nement and 
oarseningapplied to the L2-proje
ted values.
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ases, adaptive and non adaptive, The Navier-Stokes-Korteweg equations aredis
retized by the well balan
ed Dis
ontinuous Galerkin s
hemes of order three and four.In both 
ases the impli
it se
ond order Crank-Ni
holson s
heme is applied for the timeintegration. As linear solver the GMRES solver with the same Krylov spa
e dimension
15 is used in all 
ases. Test L2-error Time [s℄ number of 
ellsadapt(3) 1.84569e-3 814.9 377adapt(8) 1.86002e-3 1300.3 713nonadapt(3) 1.72694e-2 696.7 1280nonadapt(4) 1.88873e-3 9522.1 5120Test L2-error Time [s℄ number of 
ellsadapt(3) 4.25129e-4 3178.7 377adapt(8) 4.17148e-4 5419.8 713nonadapt(3) 6.52487e-3 2717.7 1280nonadapt(4) 4.28355e-4 41551.9 5120Table 9.10: Comparison of adaptive and non adaptive third order (upper table) andfourth order (lower table) DG s
hemes.The results of the 
omputations 
an be found in table 9.10. The tests with the globallyre�ned meshes use a �xed number of mesh 
ells. These numbers are shown in the tables.In the adaptive 
ases the number of 
ells 
an vary (but not signi�
antly) during the
omputation and the number shown in the tables is taken at the end of the 
omputation.The nonadapt(4) tests have the same resolution of the interfa
e as the adaptive tests,the resolution of the nonadapt(3) tests is not that �ne whi
h results in a larger error.For the 3rd order and 4th order DG s
hemes the tests adapt(3) are 11-13 times fasterthan the 
orresponding nonadapt(4) tests at a 
omparable error. This is a signi�
antspeedup of the adaptive algorithm and this fa
tor be
omes even more signi�
ant thesmaller the interfa
e is. The result of these 
omputations is that very small interfa
es
annot be resolved by uniform �ne meshes in pra
ti
al appli
ations. Thus, adaptivemesh re�nement is mandatory.Figure 9.19 shows the density distribution and the adaptively re�ned mesh (velo
ity�eld is omitted) of the adapt(3) test using the 3rd order Dis
ontinuous Galerkin Dis-
retization.9.8 Parallel E�
ien
yIn this se
tion we test the parallel performan
e of the Dis
ontinuous Galerkin 
odeapplied to the isothermal Navier-Stokes-Korteweg system. We have 
hosen two di�erentthree dimensional settings for this test, both small enough to �t on a single pro
essor.Of 
ourse, larger problems show a mu
h better s
aling but the intention of this se
tionis to show also the limits of parallelization. Nevertheless, even for these small problems
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Figure 9.19: Density distribution and the adaptively re�ned mesh for the 3rd order testadapt(3) at times t = 0.0, 0.25, 0.5, 0.75, 1.0 from �rst to last pi
ture.the Dis
ontinuous Galerkin dis
retization is very well suited for parallel 
omputation.Within the 
lass of DG methods parallel e�
ien
y in
reases when the order of themethod is in
reased sin
e the lo
al workload be
omes higher and 
ommuni
ation 
anbe bundled. All 
omputations in this se
tion are done on the XC4000 Cluster at the
omputing 
enter of the university of Karlsruhe. This 
luster 
onsists of 2.6 GHz DualCore Opteron pro
essors (AMD64-NUMA ar
hite
ture), 2 Dual Core CPUs per nodeand In�niBand network inter
onne
ts.For both tests we have 
hosen the parameters of the 3d test 
ase in Se
tion 9.5. As
omputational domain we 
onsider the domain Ω = [−1, 1]3. The domain is partitionedinto a ma
ro mesh of 6.000 = 10× 10× 10× 6 ma
ro 
ells. The �rst test uses a globallyre�ned mesh starting from this ma
ro mesh. Provided that the initial partitions areequally well distributed over the available pro
essors, this is mainly a test for the par-allel performan
e of the third order Dis
ontinuous Galerkin 
ode in 
ombination with ase
ond order impli
it Runge-Kutta time dis
retization. The se
ond test uses an adap-tively re�ned mesh. Besides the Dis
ontinuous Galerkin 
ode the quality of the loadbalan
er is also tested in this example.Globally re�ned meshThe setting is the same as for the 3d 
onta
t angle example from Se
tion 9.5 ex
eptthat for the globally re�ned mesh the bubble has no 
onta
t to the wall sin
e the usedmesh is not �ne enough in this 
ase. The ma
ro mesh is twi
e globally re�ned whi
hresults in 384.000 
ells.The 
omputational end time is T = 0.2. Provided that the initial mesh is equallywell distributed a redistribution is not ne
essary in this test 
ase. Nevertheless, loadbalan
ing is done every 40th time step for 
ompleteness of the algorithm. This results
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np Time [s℄ Speedup to np/2 Speedup to np = 11 75058.32 37520.3 2.00 2.004 19965.9 1.87 3.748 10134.2 1.97 7.3716 5118.92 1.98 14.5932 2628.77 1.95 28.4564 1367.68 1.92 54.62128 702.316 1.95 106.51256 362.371 1.94 206.62512 190.991 1.90 392.581024 133.534 1.43 561.39Table 9.11: Speedup for the globally re�ned mesh.in a slightly modi�ed mesh distribution at the beginning of the 
omputation and doesnot further alter the mesh after a few 
alls of the load balan
er sin
e the weights of thema
ro 
ells do not 
hange.For the sequen
e of 
omputations using the globally re�ned mesh the number of pro-
essors np varied between 1, 2, 4, . . . , 1024. We have measured the real time in se
ondsthe 
omputation needed to �nish. Table 9.11 shows the result of these timings and thespeedup 
ompared to the previous 
omputation with half the number of pro
essors and
ompared to the �rst 
omputation that was run on one pro
essor only. The results showthat even for this small example a parallelization using 512 and maybe 1024 pro
essorsis appropriate. With a fa
tor of 1.43 the speedup from 512 to 1024 pro
essors 
annotbe as good as previous speedups be
ause only 6.000 ma
ro 
ells have to be distributedover 1024 pro
essors and even when the load balan
er provides the optimal distributionof the partitions (whi
h is in general not possible) the 
omputational work 
annot beequally distributed sin
e the problem is too small.Adaptive, load balan
ed meshFor this test the setting is identi
al to 3d 
onta
t angle example from Se
tion 9.5.This in
ludes the setting of the interfa
e indi
ator. Sin
e the initial data does notsatisfy the enfor
ed 
onta
t angle there is a movement of the interfa
e whi
h requiresan adapted and repartitioned mesh every few time steps. Therefore load balan
ing isdone every 40th time step. The 
omputational end time T = 0.1 whi
h is of 
ourse notthe 
omputational end time from Se
tion 9.5 sin
e the motivation for this test in thisse
tion is not to generate a bubble with the 
orre
t 
onta
t angle. The same ma
romesh as in the previous example with 6.000 ma
ro 
ells is used. The lo
ally re�nedmesh has approximately 30.000 
ells. Therefore the problem is mu
h smaller than theprevious one and we 
annot expe
t the same parallel s
aling as before.Table 9.12 shows the results of the sequen
e of 
omputations using np = 1, 2, 4, . . . , 256
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essors. For this small problem it is not appropriate to use more than 32or 64 pro
essors. In the 
ase of 64 pro
essors some of the pro
essors were not assigned toa partition and therefore they did no work. Using more pro
essors worsens the situationa lot.
np Time [s℄ Speedup to np/2 Speedup to np = 11 25058.12 13083.0 1.92 1.924 6951.35 1.88 3.608 3555.19 1.96 7.0716 1872.53 1.89 13.3732 1022.23 1.83 24.4764 661.953 1.54 37.68128 420.659 1.57 59.16256 286.044 1.47 86.97Table 9.12: Speedup for the lo
ally re�ned, load balan
ed mesh.As a result we 
an 
on
lude that parallelization of Dis
ontinuous Galerkin 
ode 
anbe very e�e
tive and e�
ient even for small problems where memory 
onsumption isnot the bottlene
k. This also holds for the two dimensional 
ase and even for one di-mensional problems parallelization 
an be a gain in e�
ien
y. Here e�
ien
y meansruntime is redu
ed.9.9 Bubble EnsemblesInstead of a single or a few bubbles we 
onsider the dynami
s of a whole bubble ensemblein this se
tion. The 
on�guration of the isothermal Navier-Stokes-Korteweg equationsand the interfa
e indi
ator is the same as in Se
tion 9.3. The initial 
on�guration is arandomly distributed ensemble of 200 bubbles in the domain Ω = [−1, 1]2 ⊂ R

2. Theradiuses of the bubbles vary (randomly) between 0.02 and 0.06.The sequen
e of pi
tures in Figure 9.20 shows the distribution of vapor bubbles attimes t = 0.0, 0.2, 1.0, 4.0, 15.0, 100.0. The bubbles merge and grow until there is onlyone large bubble left. The �nal bubble stays in a stati
 equilibrium 
on�guration andthe interfa
e has a 90 degree 
onta
t angle with the 
ontainer wall. The velo
ity �eldis not shown in the sequen
e of pi
tures.Figure 9.21 shows the number of vapor bubbles as a fun
tion of time. The left part ofthe �gure shows the de
ay of bubbles in the time interval (0, 50) where the number ofobje
ts de
reases from 200 bubbles at t = 0 to only one bubble at t = 50. The rightpart of the �gure is a zoom of the time interval (0, 5). The number of bubbles de
reasesrapidly at the beginning of the 
omputation. An exponential de
ay from 200 to 30obje
ts during the time interval (0, 1) 
an 
learly be seen.
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Figure 9.20: Bubble Ensemble, initially randomly distributed. Density distribution attimes t = 0.0, 0.2, 1.0, 4.0, 15.0, 100.0 from top left to lower right pi
ture.
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ontiguous obje
ts inthe vapor phase.9.10 The Temperature Dependent ModelThe stati
 equilibrium solution of the isothermal Navier-Stokes-Korteweg model 
on-stru
ted in Se
tion 4.1 is also a solution of the temperature dependent NSK model (6.31)with boundary 
ondition (2.52) when the wall temperature θb is set to the 
onstant ref-eren
e temperature. Note that this is not the 
ase for the traveling wave solutions. Inthis se
tion we use the stati
 equilibrium solutions as initial data to perform 
onver-gen
e tests with the Dis
ontinuous Galerkin dis
retization of the temperature dependentversion of the two dimensional NSK system dis
ussed in Se
tion 6.9.4.The setting in this se
tion is the same as in Se
tion 9.1. The temperature in the



9.10. THE TEMPERATURE DEPENDENT MODEL 179initial data and at the boundary are set to the referen
e temperature θref = 0.85. Theremaining parameters in the temperature dependent model are the heat 
apa
ity at
onstant volume c and the heat 
ondu
tion 
oe�
ient κ. Note that the stati
 equilibrium
on�guration is a solution of the system independent of the 
hoi
e of these parameters.In this test we 
hoose the parameters
c = 6.6,

κ = 0.01366.
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 bubble, temperature dependent NSK model in 2d. Mesh size versus

L2 error for p = 0, 1, 2, 3. p=1 p=2 p=3h L2 error EOC L2 error EOC L2 error EOC2.1298e-01 * 2.5147e-01 1.8718e-011.1832e-01 3.9576e-01 * 6.4436e-02 2.317 2.7605e-02 3.2567.0992e-02 1.4322e-01 1.990 2.1098e-02 2.186 6.2847e-03 2.8974.2595e-02 4.1457e-02 2.427 7.3170e-03 2.073 5.8590e-04 4.6452.5354e-02 1.4174e-02 2.069 1.6734e-03 2.844 1.3003e-04 2.9021.4998e-02 4.6256e-03 2.133 3.4556e-04 3.005 1.5942e-05 3.9988.9486e-03 1.5875e-03 2.071 6.9507e-05 3.105 1.9765e-06 4.0425.3244e-03 5.4365e-04 2.064 1.3450e-05 3.163 * *Table 9.13: Stati
 bubble, temperature dependent NSK model in 2d. Total L2 errorand EOC for p = 1, 2, 3.Figure 9.22 and Table 9.13 show the results of these 
omputations for polynomial degree
p = 0, 1, 2, 3. The �rst order s
heme seems to be not in the asymptoti
 regime for thetested mesh sizes (this 
an be seen from Figure 9.22) whereas the higher order s
hemesa
hieve the expe
ted order p+ 1.



180 CHAPTER 9. NUMERICAL RESULTS9.11 Condensation, EvaporationThe setting in this se
tion 
onsists of a stati
 bubble or a drop in a spheri
al 
ylinderinitially at a dimensionless temperature θ = 0.85. For t > 0 the temperature at thesolid wall of the 
ontainer is raised to the 
onstant θwall = 0.95 immediately. The initialdata is 
hosen su
h that initially the mean density lies between the Maxwell states withrespe
t to θ = 0.85 whi
h admits a stable bubble or drop at this temperature. Attemperature θ = 0.95 whi
h 
orresponds to the wall temperature. The mean densitylies in the vapor or liquid phase respe
tively but not between the Maxwell states withrespe
t to θ = 0.95. The boundary 
ondition for the temperature implies that thesolution approa
hes the 
onstant wall temperature in the domain Ω as time tends toin�nity. Therefore the bubble or the drop is not a stable 
on�guration as t→ ∞ whi
hresults in a 
ondensing bubble and an evaporating drop. At the end of the 
omputationthere is only a 
onstant vapor or liquid state at t ≈ ∞.

Figure 9.23: Condensating bubble in a spheri
al 
ontainer. Density distribution attimes t = 0, 50, 250, 450, 850, 10000 from top left to lower right pi
ture.The model 
onsidered in this se
tion is again the two dimensional temperature depen-dent Navier-Stokes-Korteweg model with the same boundary 
onditions as in Se
tion9.10.A similar experiment was proposed in [5℄. In this work the temperature dependentNavier-Stokes-Korteweg model was used together with the assumption that the datastays spheri
al symmetri
 for all times t ≥ 0. This assumption results in a time de-pendent one dimensional system that is approximately solved by a higher order �nitedi�eren
e s
heme. However, in one spa
e dimension a mu
h smaller interfa
e 
an be re-solved by the mesh than in two spa
e dimensions be
ause of 
omputational 
omplexityand therefore we have to 
hoose a smaller domain (whi
h then gives a larger interfa
ethat 
an be resolved).



9.12. OSCILLATING BUBBLE 181In [5℄ the �uid parameters were approximately these of the noble gas Argon. Most ofthe physi
al parameters di�er by a fa
tor of about ten between the vapor and the liquidphase. These parameters have to be �xed to some 
onstants in between the vapor andliquid states.For our experiment we have 
hosen the following physi
al parameters.
L = 1.0 · 10−7 m radius of the domain,

cphys = 4.0 · 102 K kg
Nm heat 
apa
ity at 
onstant volume,

µphys = 3.0 · 10−5 Ns
m2 vis
osity,

κphys = 4.0 · 10−2 W
mK heat 
ondu
tivity,

σphys = 5.0 · 10−3 N
m surfa
e tension.These are approximately the parameters of Argon at a dimensionless referen
e temper-ature θref = 0.85, as in [5℄, and 
an be found in Se
tion B.2. Note that some 
onstantstates between the vapor and liquid states have been 
hosen.The 
orresponding dimensionless parameters are then given by

c = 6.63,

µ = 5.87 · 10−3, ν = −3.91 · 10−3,

λ = 3.95 · 10−4,

κ = 1.30 · 10−1.These parameters are obtained by the physi
al parameters from above together withthe s
aling given in Se
tion B.1.In this experiment the velo
ity �eld in the whole 
omputation is rather small sin
ethe temperature propagation from the wall is mainly driven by heat 
ondu
tion andthus, very slow. The 
omputational end time is T = 10000.0, really large 
omparedto the experiments in the previous se
tions and therefore it is not possible �nish the
omputation within an a

eptable time frame with the same radius of a domain as in[5℄. In our simulation the radius of the domain is ten times smaller than in [5℄.Figure 9.23 shows the density distribution of a sequen
e of snapshots for a 
ondensatingbubble at times t = 0, 50, 250, 450, 850, 10000 and the 
orresponding temperature distri-bution 
an be found in Figure 9.24. As usual the density varies between approximately
0.3 and 1.8. The temperature has values in the range (0.85, 0.95), values between initialand wall temperature.The density distribution of an evaporating drop is shown in Figure 9.25. The snapshotsare taken at times t = 0, 500, 1500, 2500, 3100, 100009.12 Os
illating BubbleIn this se
tion we investigate the dynami
s of a single spheri
al bubble that os
illatesdue to perturbation of the velo
ity �eld at the boundary. We 
ompare the radius of the
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Figure 9.24: Condensating bubble in a spheri
al 
ontainer. Temperature distributionin the range 0.85 (blue) to 0.95 (red) at times t = 0, 50, 250, 450, 850, 10000 from topleft to lower right pi
ture.bubble given by the numeri
al simulation using the isothermal Navier-Stokes-Kortewegmodel in two spa
e dimensions with the predi
ted radiuses given by the Rayleigh-Plessetformula (4.22) and the In
ompressibility formula (4.25). We 
annot expe
t that theresults of the simulation using the NSK model mat
hes exa
tly with the results givenby the formulas sin
e e�e
ts like 
ompressibility and mass transfer over the liquid-vaporinterfa
e are negle
ted. But if there are qualitatively agreements with the formulasthese 
ould be used to predi
t a 
ertain behavior of the solution like a bubble 
ollapse.The Rayleigh-Plesset equation is usually used to predi
t su
h a behavior.We 
onsider the domain Ω = BL(0) ⊂ R
2 with L = 1.0. Instead of using the boundary
ondition u = 0 on ∂Ω we simulate a vibrating 
ontainer by appli
ation of the boundary
onditions

u · n = x(t),

u · τ = 0,
on ∂Ω (9.1)where n denotes the normal and τ the tangent on the boundary ∂Ω. The vibrating
ontainer experiment in Se
tion 4.4.2 requires the 
ompli
ated treatment of a mov-ing domain. To avoid this we simulate the vibrating 
ontainer experiment using theboundary 
onditions (9.1) on a �xed domain whi
h means that we have a mass transferover the boundary of the domain. In pra
ti
e the di�eren
e between both experimentsshould be negligible as long the mean of the mass in Ω over a period of os
illation doesnot 
hange. This holds for our 
omputation.The 
on�guration of the Navier-Stokes-Korteweg model is 
ompletely the same as in



9.12. OSCILLATING BUBBLE 183

Figure 9.25: Evaporating drop in a spheri
al 
ontainer. Density distribution at times
t = 0, 500, 1500, 2500, 3100, 10000 from top left to lower right pi
ture.Se
tion 9.3 in
luding the settings of the interfa
e indi
ator (not shown below), namely

θref = 0.85,

λ = 1.0 · 10−5,

ε = 1.366 · 10−3, µ =
3

4
ε, ν = −1

2
ε.The initial data is given by a rotationally (with respe
t to the origin) symmetri
 stati
bubble with an equilibrium radius, vapor and liquid density states given by

Req = 0.345, ρv = 0.3208, ρl = 1.8088.The os
illation in the velo
ity �eld by the boundary 
onditions (9.1) is imposed by thefun
tion
x(t) = −0.005 cos(0.5 π t). (9.2)Given the density distribution from the 
omputation at a time t by the fun
tion ρh we
ompute the radius of the vapor bubble at time t by the relation

πR(t)2 =

∫

Ω
η(x, t) dx, η(x, t) =

{

1 if ρh(x, t) ≤ 1,

0 else.Note that here the density value 1 is the threshold for the vapor density values.



184 CHAPTER 9. NUMERICAL RESULTSComparison with the Rayleigh-Plesset formulaWe 
ompare the radius of the bubble 
omputed using the NSK model with the radiuspredi
ted by the two dimensional Rayleigh-Plesset equation (4.22). First we have toprovide the input for the Rayleigh-Plesset equation.The pressure os
illation in the liquid phase pL(t) 
lose to the boundary of the domainis taken from the 
omputation using the NSK model. We assume that there is no masstransfer over the liquid-vapor interfa
e and we further assume that the density insidethe bubble does not depend on the spatial variable. This leads to a density in thebubble that depends only on the radius of the bubble and the initial 
on�guration. Thepressure inside the bubble is then given by the fun
tion pB(t) stated below as well therest of the missing parameters for the two dimensional Rayleigh-Plesset formula (4.22).
n = 2,

L = 1.0,

σ = c0(θref ) ·
√
λ = 0.5238 ·

√
λ,

pB(t) = p

(

ρv

(

Req

R(t)

)n)

,

pL(t) = 0.495 − 0.005 · cos(0.5π · t).Here the surfa
e tension 
oe�
ient σ is 
omputed by appli
ation of the formula (2.68).Figure 9.26 shows the radius of the bubble taken from the 
omputation using the Navier-Stokes-Korteweg model 
ompared with the radius predi
ted by the Rayleigh-Plessetformula.
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9.12. OSCILLATING BUBBLE 185the pressure perturbation in the liquid phase and another frequen
y that is asso
iatedwith the bubble interfere with ea
h other. Sin
e mass transfer over the liquid-vaporinterfa
e is negle
ted in the Rayleigh-Plesset equation the gas phase is 
ompletely 
om-pressed and relaxed. This results in a for
e term that determines, together with thefor
e term that 
omes from the pressure perturbation in the liquid phase, the positionof the bubble interfa
e. In 
ontrast to that we observe in the 
omputation using theNSK model that during the os
illation there is almost no 
ompression in the vaporphase. The vapor 
lose to the interfa
e 
ondensates immediately and the bubble inter-fa
e 
an freely move. It is un
lear whether this behavior is physi
ally 
orre
t or not butit attra
ts the attention to the fa
t that there is no free parameter in the Navier-Stokes-Korteweg model left that 
an 
ontrol the amount of mass transfer over the liquid-vaporinterfa
e. As a result we see that the assumptions on the density and pressure in thevapor phase that serve as input for the Rayleigh-Plesset formula are 
ompletely wrongand the os
illation of a bubble from the NSK simulation 
an neither quantitatively norqualitatively be predi
ted by the Rayleigh-Plesset formula sin
e frequen
y and ampli-tude are totally di�erent. It is also un
lear whi
h of the 
omputations is 
loser to realworld behavior sin
e the size of the domain and the referen
e temperature is totallydi�erent with respe
t to the settings of existing experimental data.Comparison with the In
ompressibility formulaThe only input for the In
ompressibility formula (4.25) is the equilibrium radius Req ofthe bubble at time t = 0 and the perturbation in the velo
ity �eld given by equation(9.2).Figure 9.27 shows the resulting radiuses of the bubble given by the Navier-Stokes-Korteweg simulation and by formula (4.25) respe
tively.
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186 CHAPTER 9. NUMERICAL RESULTSbation at the boundary of the domain in both simulations. The amplitude given byformula (4.25) di�ers from the amplitude that 
omes from the NSK-
omputation.We summarize the results of the 
omputations done in this se
tion as follows.
• The behavior of a NSK bubble is not predi
table by the Rayleigh-Plesset equation,it is qualitatively predi
table by the In
ompressibility formula.
• There is almost no 
hange in the density and pressure in the vapor phase when aNSK bubble os
illates.
• There is no free parameter in the Navier-Stokes-Korteweg model left to 
ontrolthe mass transfer over the phase interfa
e.
• The 
orre
t physi
al behavior is un
lear sin
e experimental data is not availableon the temperature and length s
ale of our simulation.



Appendix ANotation and De�nitions
A.1 NotationThis se
tion gives a summary of frequently used notational 
onventions 
on
erningThermodynami
al and Kinemati
 variables and di�erential operators.Thermodynami
 and Kinemati
 quantities

t ≥ 0 time variable,
x ∈ R

n spatial variable,
ρ = ρ(x, t) > 0 density of the �uid,
u = u(x, t) ∈ R

n velo
ity of the �uid,
E = E(x, t) ∈ R total energy of the �uid,
θ = θ(x, t) > 0 temperature of the �uid,
f = f(θ, ρ) ∈ R (Helmholtz) free energy,denotes also the extended free energy f(θ, ρ, α)with α = 1

2 |∇ρ|2,
e = e(θ, ρ) ∈ R internal energy or extended internal energy e(θ, ρ, α),

s = s(θ, ρ) ∈ R spe
i�
 entropy or extended spe
i�
 entropy s(θ, ρ, α),

p = p(θ, ρ) ∈ R pressure,
µ = µ(θ, ρ) ∈ R 
hemi
al potential, same as Gibbs free energy for a one
omponent �uid,
µ > 0, ν ∈ R vis
osity 
oe�
ients,
ε = 2µ+ ν one dimensional vis
osity 
oe�
ients,
λ > 0 
apillarity 
oe�
ient,
κ > 0 heat 
ondu
tion 
oe�
ient,

(0, ρv) vapor phase,
(ρ

l
, b) liquid phase,
ρM

v , ρM
l vapor and liquid Maxwell states.187



188 APPENDIX A. NOTATION AND DEFINITIONSDi�erential OperatorsCommonly used di�erential operators with respe
t to the spatial variable x = (x1, . . . , xn)T ∈
R

n are de�ned in the following list.
∇u =

(

∂
∂x1

u, . . . , ∂
∂xn

u
)T . Denotes the gradient of a s
alar, real valued fun
tion

u : R
n → R, i.e., the transposed Ja
obian.

∇u =
(

∂
∂xj

ui

)

i,j
. Denotes the gradient of a ve
tor valued fun
tion u : R

n → R
m,i.e., the Ja
obian (not transposed).

∇ · u =
n
∑

i=1

∂
∂xi
ui. The divergen
e of a ve
tor �eld u = (u1, . . . , un)T : R

n → R
n.

∇·A =

(

n
∑

j=1

∂
∂xj

A1,j , . . . ,
n
∑

j=1

∂
∂xj

An,j

)T . Denotes the divergen
e of a tensor �eld
A : R

n → R
n×n. Here the Ai,j denote the entries of the matrix A.

D
Dtϕ = ϕt + u · ∇ϕ. The material derivative with respe
t to the velo
ity �eld uof a fun
tion ϕ : R

n × R≥0 → R.For a fun
tion ϕ = ϕ(ρ, α) where α stands for 1
2 |∇ρ|2 the variational derivative withrespe
t to ρ is denoted by

[ϕ]ρ = ϕρ −∇ · (ϕα∇ρ)as used in standard textbooks as [32℄.A.2 General De�nitionsDe�nition A.2.1 (Experimental order of 
onvergen
e)Let (hn)n∈N be a monotoni
ally de
reasing sequen
e that 
onverges to zero and ϕ ∈
C0([0,∞),R>0). Then for n > 0 the experimental order of 
onvergen
e is de�ned by

EOC(ϕ, hn) =
log
(

ϕ(hn)
ϕ(hn−1)

)

log
(

hn

hn−1

) (A.1)De�nition A.2.2 (Krone
ker Produ
t)For two matri
es Q ∈ R
s×r and M ∈ R

n×m we de�ne the Krone
ker produ
t matrix
Q⊗M ∈ R

sn×rm by
Q⊗M =







q0,0M . . . q0,s−1M... ...
qs−1,0M . . . qs−1,s−1M






, (A.2)where the s
alar values qi,j denote the entries of the matrix Q.



A.3. CHARACTERIZATION OF THE MAXWELL STATES 189In the following lemma we summarize some useful properties of the Krone
ker produ
t.The proof is a straightforward 
al
ulation, so we omit it.Lemma A.2.3For s, n ∈ N let A,C ∈ R
s×s and B,D ∈ R

n×n. Then we have the following propertiesof the Krone
ker produ
t:(i) (A⊗B)(C ⊗D) = AC ⊗BD.(ii) If the matri
es A and B are invertible then A⊗ B is also invertible and we havethe identity (A⊗B)−1 = A−1 ⊗B−1.(iii) Is ⊗ In = Isn, where Ik ∈ R
k×k for k ∈ N denotes the unit matrix.A.3 Chara
terization of the Maxwell StatesWe give a de�nition and equivalent 
hara
terizations of the Maxwell values for somegeneral W -shaped free energy.De�nition A.3.1Let the 
onstants ρv, ρl

, b ∈ R with 0 < ρv < ρ
l
< b and W ∈ C2((0, b)) with

W ′′ > 0 in (0, ρv) ∪ (ρ
l
, b) and W ′′ < 0 in (ρv, ρl

),

lim
ρ→0

W (ρ) = ∞ and lim
ρ→b

W (ρ) = ∞,
(A.3)be given. Then by the shape of W it is 
lear that there exist unique states ρM

v ∈ (0, ρv)and ρM
l ∈ (ρ

l
, b) with the property

W ′(ρM
v ) = W ′(ρM

l ), (A.4)
W (ρM

l ) = W (ρM
v ) +W ′(ρM

v )(ρM
l − ρM

v ). (A.5)These states are 
alled Maxwell states.We de�ne fun
tions p and µ by
p(ρ) = ρW ′(ρ) −W (ρ), (A.6)
µ(ρ) = W ′(ρ). (A.7)With the de�nition ofW (ρ) = ρf vdW (ρ) where f vdW denotes the Helmholtz free energyof an isothermal van der Waals �uid, see Se
tion 2.1, ρv and ρ

l
denote the phaseboundaries given in de�nition 2.1.5 and W has the properties stated in (A.3). Thefun
tions p and µ are equal to the pressure and 
hemi
al potential of a van der Waals�uid. The de�nition of the Maxwell states is equivalent to that given in de�nition 2.1.6as we will see in lemma A.3.2. This lemma gives three equivalent 
hara
terizations ofthe Maxwell states.
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W
(ρ

)

ρρM
v ρM

lFigure A.1: Energy W and the asso
iated Maxwell states.Lemma A.3.2With the above de�nitions the Maxwell states 
an be 
hara
terized equivalently by(i) equations (A.4) and (A.5).(ii) the equations
p(ρM

v ) = p(ρM
l ), (A.8)

µ(ρM
v ) = µ(ρM

l ). (A.9)In this way the Maxwell states are de�ned in de�nition 2.1.6 for a van der Waals�uid.(iii) the equations
p(ρM

v ) = p(ρM
l ), (A.10)

ρM
l
∫

ρM
v

p(ρ) − p(ρM
v )

ρ2
dρ = 0. (A.11)Proof. For notational simpli
ity we denote the Maxwell states by ρv and ρl.(i)⇔ (ii): By de�nition of µ equations (A.9) and (A.4) are the same. Using this identity,the above de�nition for the fun
tion p and property (A.5) we get

p(ρv) = ρvW
′(ρv) −W (ρv)

= ρvW
′(ρv) −W (ρl) +W ′(ρl)(ρl − ρv)

= W ′(ρl)ρl −W (ρl)

= p(ρl).Thus, we have property (A.8). The opposite dire
tion is done analogously.



A.4. DEFINITION OF NONCONSERVATIVE PRODUCTS 191(ii) ⇔ (iii): Using the above de�nitions and integration by parts we have
µ(ρl) − µ(ρv) =

ρl
∫

ρv

µ′(ρ) dρ

=

ρl
∫

ρv

p′(ρ)
ρ

dρ

=

ρl
∫

ρv

p(ρ)

ρ2
dρ + p(ρv)

(

1

ρl
− 1

ρv

)

=

ρl
∫

ρv

p(ρ) − p(ρv)

ρ2
dρ.Hen
e, we have the equivalen
e of equations (A.9) and (A.11). This 
ompletes the proof.Lemma A.3.3With the notation above let the fun
tion φ be given by

φ(ρ) =

ρ
∫

ρM
v

p(s) − p(ρM
v )

s2
ds.Then we have

φ(ρM
v ) = 0, φ(ρM

l ) = 0 and φ(ρ) > 0 for all ρ ∈ (ρM
v , ρ

M
l ).Proof. φ(ρM

v ) = 0 is trivial, φ(ρM
l ) = 0 be
ause of the 
hara
terization of the Maxwellstates, see lemma A.3.2. Sin
e p is monotoni
ally in
reasing in the vapor phase we have

φ(ρ) > 0 in (ρM
v , ρ

M
v + ε) for some su�
iently small value ε > 0. Be
ause of the shapeof the fun
tion p it is not possible for φ to have another zero in the interval [ρM

v , ρM
l ]ex
ept the Maxwell states (the integrand 
hanges the sign only on
e in the interval).This 
ompletes the proof.A.4 De�nition of Non
onservative Produ
tsIn this se
tion we give a de�nition of non
onservative produ
ts, i.e., produ
ts of theform f(u) · d

dxv. Produ
ts of this form appear in the formulation of the Dis
ontinuousGalerkin method (see Chapter 6) and 
annot be de�ned as fun
tions in the 
ase wherethe fun
tion u and v are dis
ontinuous. In the 
ase where u and v are dis
ontinuousfun
tions we 
an de�ne the non
onservative produ
t in the sense of measures following
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h and Murat [36℄ in the one dimensional 
ase. We givea (formal) multidimensional generalization of this de�nition to produ
ts of the form
n
∑

i=1
fi(u) · ∂

∂xi
v. Here we do not 
laim that the measure we 
onstru
t in the multidimen-sional 
ase is well de�ned as it is in the one dimensional 
ase ensured by the work ofDal Maso, LeFlo
h and Murat.We start with the des
ription of paths φ. This is an obje
t the resulting measure willdepend on. Let φ : [0, 1] × R

d × R
d → R

d be a lo
ally Lips
hitz 
ontinuous map withthe following three properties(i) φ(0;u−, u+) = u− and φ(1;u−, u+) = u+ for all u−, u+ ∈ R
d,(ii) φ(t;u, u) = u for all u ∈ R

d, t ∈ [0, 1],(iii) for all bounded sets U ⊂ R
d there exists a 
onstant c ≥ 1, su
h that for all

u−, u+, v−, v+ ∈ U and almost all t ∈ [0, 1] we have
|φ′(t;u−, u+) − φ′(t; v−, v+)| ≤ c|(u− − v−) − (u+ − v+)|.In the above statement φ′ denotes the derivative with respe
t to t whi
h exists for al-most all t ∈ [0, 1].Theorem A.4.1Let a < b, u, v ∈ BV ((a, b),Rd) and let f be lo
ally bounded in the sense that for all

U ⊂ R
d bounded there exists a 
onstant c > 0 su
h that for all u ∈ U and x ∈ (a, b)we have |g(u, x)| ≤ c. Then there exists a unique bounded Borel measure µ on (a, b)
hara
terized by the following two properties(i) If the fun
tion u is 
ontinuous in B ⊂ (a, b), then

µ(B) =

∫

B

f(u(x), x) · d(v′)(x),where the integral is de�ned with respe
t to ve
tor-valued Borel measure (v′)(ii) For x ∈ (a, b) we have
µ({x}) =

1
∫

0

g(φ(t;u(x−), u(x+)), x) · φ′(t; v(x−), v(x+))dt.

u(x−) and u(x+) denote the limit (whi
h exists for fun
tions of bounded variation inone spa
e dimension) from the left and right respe
tively.De�nition A.4.2The measure µ introdu
ed in the above theorem is 
alled the non
onservative produ
t of
f(u(·), ·) and v′ and is denoted by

[

f(u, ·) · (v′)
]

φ
= µ,
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h in general depends on the paths φ.We 
onsider the interval Ω = (a, b) and a partition (mesh) T of this interval as de�nedin de�nition 6.1.1. Let V = {ϕ : Ω → R | ϕ|∆j
∈ C1(∆j), ∆j ∈ T } and u, v ∈ V d.A

ording to the above theorem the measure µ applied to the whole interval Ω 
an be
omputed as

∫

Ω

d
[

f(u, ·) · (v′)
]

φ
(x)

=

|T |−1
∑

j=0

∫

∆j

f(u(x), x) · v′(x) dx

+

|T |−1
∑

j=1

1
∫

0

f
(

φ(t;u(x−j−), u(x+
j−)), xj−

)

· φ′(t; v(x−j−), v(x+
j−)) dt.Here xj− and xj+ denote the left and right verti
es of 
ell ∆j . The verti
es at theboundary of the interval give no 
ontribution to the measure be
ause there is no dis-
ontinuity.We give a n-dimensional generalization of the measure µ as we need it to de�ne theDis
ontinuous Galerkin method for 
onservative as well as for non
onservative equationsin Se
tion 6.2. Let Ω ⊂ R

n be an open bounded set su
h that a mesh T that partitions
Ω exists. Let V = {ϕ : Ω → R | ϕ|∆j

∈ C1(∆j), ∆j ∈ T } and u, v ∈ V d. Thegeneralization of the measure
µ =

[

n
∑

i=1

fi(u, ·) ·
∂

∂xi
v

]

φapplied to the set Ω 
an be 
omputed as
∫

Ω

d

[

n
∑

i=1

fi(u, ·) ·
∂

∂xi
v

]

φ

(x)

=

|T |−1
∑

j=0

∫

∆j

n
∑

i=1

fi(u(x), x) ·
∂

∂xi
v(x) dx (A.12)

+
1

2

|T |−1
∑

j=0

∫

∂∆j\∂Ω

1
∫

0

n
∑

i=1

νifi

(

φ(t;u(xj), u(xj′)), xj

)

· φ′(t; v(xj), v(xj′)) dt dσ(x).In the above equation u(xj) stands for u|∆j
(x) and u(xj′) for u|∆j′

(x) where ∆j′ denotesa 
orresponding neighboring 
ell. νi denotes the i-th 
omponent of the normal ve
tor ν.The fa
tor 1
2 in front of the last term appears be
ause all interfa
es are 
ounted twi
e,ex
ept the boundary interfa
es.
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laim that in the multidimensional 
ase the measure µ is wellde�ned as it is in one spa
e dimension guaranteed by theorem A.4.1. We only de�nean obje
t µ(Ω) by the right hand side of equation (A.12), where Ω is partitioned by anunderlying mesh and u, v are fun
tions from the spa
e V d. This is what we need forthe de�nition of the Dis
ontinuous Galerkin method in Chapter 6.Sometimes it is more 
onvenient to work with the notion of numeri
al �uxes instead ofthe notion of paths φ, i.e., in the Finite Volume and Dis
ontinuous Galerkin Framework.Therefore we repla
e the term
1
∫

0

n
∑

i=1

νifi

(

φ(t;u(xj), u(xj′)), xj

)

· φ′(t; v(xj), v(xj′)) dtby the expression
g
(

u(xj), u(xj′), xj , ν
)

·
(

v(xj′) − v(xj)
)with a suitable fun
tion g. In order to be an approximation in some sense the fun
tion

g has to satisfy at least the relation
g(u, u, x, ν) =

n
∑

i=1

νifi(u, x)for all u ∈ R
d, x ∈ R

n and n ∈ {x ∈ R
n | |x| = 1}. In the Finite Volume frameworksu
h a fun
tion g is 
alled numeri
al �ux fun
tion and is usually supposed to be lo
allyLips
hitz 
ontinuous. Using the above expression we get

µ(Ω) ≈
|T |−1
∑

j=0

∫

∆j

n
∑

i=1

fi(u(x), x) ·
∂

∂xi
v(x) dx

+
1

2

|T |−1
∑

j=0

∫

∂∆j\∂Ω

g
(

u(xj), u(xj′), xj , ν
)

·
(

v(xj′) − v(xj)
)

dσ(x).As before, the fa
tor 1
2 appears be
ause all interfa
es are double 
ounted. Note that thedependen
e on the path φ is dropped in favor of the dependen
e on the numeri
al �ux

g.



Appendix BFluid Properties
In this 
hapter we summarize the nondimensionalization pro
edure given in Chapter 2and provide ne
essary �uid parameters for the �uids Argon, Butane and Water.B.1 Dimensionless S
alingFor the dimensionless version of the Navier-Stokes-Korteweg system derived in Chapter2 we have to provide a referen
e length L in m. Usually L is 
hosen to be the diameterof the domain Ω. This is the only parameter that does not depend on the �uid.We need the 
riti
al values of the �uid, i.e., the 
riti
al temperature θcrit in K, the
riti
al density ρcrit in kg

m3 and the 
riti
al pressure in N
m2 . Table B.1 shows these valuesfor the �uids Argon, Butane and Water. Criti
al values of other �uids 
an be obtainedfor example from the NIST website [125℄.Up to now all �uid parameters were 
onstants, parameters like heat 
apa
ity, vis
osity,heat 
ondu
tivity and surfa
e tension depend on temperature and density in general butwe will �x them to some referen
e 
onstants for simpli
ity. Figures B.1 - B.4 show theseparameters on the saturation 
urve, i.e., at the Maxwell states for di�erent temperatures.We 
hoose a dimensionless referen
e temperature θ̃ref whi
h 
orresponds to the physi
al

θ temperature by the relation θcrit θ̃ref = θ. For example, if the boundary temperatureis �xed to a 
onstant θ̃b we 
hoose θ̃ref = θ̃b. Using the referen
e temperature we 
andetermine the surfa
e tension σ in N
m . Further we 
hoose referen
e values for the heat
apa
ity at 
onstant volume c in Nm

kg K , heat 
ondu
tivity κ in W
mK and vis
osity µ in

Ns
m2 .Using referen
e length and 
riti
al values we 
an de�ne the referen
e time

T = L

√

ρcrit

pcrit
.195
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e time we have also de�ned the referen
e velo
ity L
T . In the 
ase of aperfe
t gas the referen
e velo
ity is equal to the sound speed at some referen
e state.In the 
ase of a van der Waals �uid the referen
e velo
ity is not dire
tly linked to thesound speed be
ause p

ρ is in general not equal to pρ in a van der Waals �uid as it is inthe 
ase of a perfe
t gas.Now the following table summarizes the relations between the physi
al and dimension-less (tilde) values. The units of the 
orresponding physi
al values are given in the last
olumn.
x̃ = 1

Lx spatial variable m

t̃ = 1
T t time variable s

ρ̃ = 1
ρcrit

ρ density kg
m3

ũ = T
Lu velo
ity m

s

θ̃ = 1
θcrit

θ temperature K

µ̃ = 1
T pcrit

µ vis
osity Ns
m2

ν̃ = −2
3 µ̃ vis
osity Ns

m2

κ̃ = θcrit ρcrit

T p2
crit

κ heat 
ondu
tivity W
mK

λ̃ =
(

σ(θ̃ref )

L pcrit c̃0(θ̃ref )

)2 
apillarity m7

kg s2

c̃ = θcrit ρcrit

pcrit
c heat 
apa
ity at 
onstant volume Kkg

Nm

g̃ = T 2

L g gravity m
s2The 
oe�
ient c̃0(θ̃ref) 
an be 
omputed using the approximative formula (2.69)

c̃0(θ̃) =
√

2 ·
√

1.0 − θ̃ ·
(

6.4 · (1.0 − θ̃) − 0.7 · (1.0 − θ̃)2
)

.B.2 Equation of StateIn this se
tion we 
olle
t all important parameters we need for the nondimensionaliza-tion pro
edure for the �uids Argon, Butane and Water. Finally, as an example, we givethe set of dimensionless parameters of water in a mi
rometer 
ontainer. All data istaken from the NIST website [125℄.Table B.1 shows the 
riti
al temperature, density and pressure of all three �uids.Figures B.1 - B.3 show the heat 
apa
ity at 
onstant volume, vis
osity and heat 
on-du
tivity of the three �uids on the saturation 
urve, this means at the Maxwell states inthe vapor and liquid phase. The independent variable is the dimensionless temperature
θ̃ = 1

θcrit
θ.



B.2. EQUATION OF STATE 197Figure B.5 shows the pressure as graph of the density at 95% of the 
riti
al temperaturefor all three �uids and the van der Waals approximation (2.13). Argon and Butane arebetter approximated by the van der Waals equation of state than Water.Argon Butane Water
θcrit 150.687 K 425.125 K 647.096 K

ρcrit 535.599 kg
m3 228.000 kg

m3 322.000 kg
m3

pcrit 4.863 · 106 N
m2 3.796 · 106 N

m2 22.064 · 106 N
m2Table B.1: Criti
al values of Argon, Butane and Water.
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c
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N
m

k
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K

]

θ̃Figure B.1: Dimensionless temperature versus heat 
apa
ity at 
onstant volume in
[

Nm
kg K

] for Argon, Butane and Water.As an example we provide the dimensionless quantities of Water in a mi
rometer 
on-tainer at a referen
e temperature of 550K, i.e., 85% of the 
riti
al temperature. The
riti
al values of Water are given in Table B.1. The mean values of the heat 
apa
ity,heat 
ondu
tivity and vis
osity are �xed to some 
onstant between the 
orrespondingvalues of the vapor and liquid phases respe
tively.Example B.2.1 (Water at 550K)
L = 10−6 m

c = 3.0 · 103 Nm
kg K c̃ = 2.833 · 101

µ = 5.0 · 10−5 Ns
m2 µ̃ = 5.931 · 10−5, ν̃ = −3.954 · 10−5

κ = 1.0 · 10−1 W
m K κ̃ = 1.120 · 10−3

σ = 2.0 · 10−2 Nm
kg K λ̃ = 3.071 · 10−8
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µ
[
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θ̃Figure B.2: Dimensionless temperature versus vis
osity in [Ns
m2

] for Argon, Butane andWater.In this setting we have a referen
e velo
ity and referen
e time of
L

T
= 261.767

m

s
,

T = 3.820 ns.At this temperature the sound speed in the vapor phase and in the liquid phase (at theMaxwell values) are approximately
cvsnd = 493

m

s
,

clsnd = 1025
m

s
.This means the referen
e velo
ity is approximately half the sound speed in the vaporphase.
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Appendix CDes
ription of the Software Pa
kage
We give a basi
 des
ription of the parDG (parallel Dis
ontinuous Galerkin) softwarepa
kage developed within the framework of this thesis. This 
hapter gives an overviewof the software pa
kage and it provides all ne
essary knowledge for a user to dis
retizegeneral time dependent partial di�erential equations by the Dis
ontinuous Galerkin andLo
al Dis
ontinuous Galerkin method together with a higher order time dis
retizationin a parallel environment. It does not provide a detailed do
umentation on the imple-mentation of the methods.The pa
kage has a modular design 
ompletely written in C++ and relies on the standardlibraries as well as on two external pa
kages. The �rst ne
essary library is an imple-mentation of the Message Passing Interfa
e (MPI). There are a number di�erent freelyavailable and 
ommer
ial implementations. Se
tion 8.5 gives an overview and referen
esto some freely available implementations. The se
ond ne
essary external pa
kage is theParMETIS library [68℄, [121℄ that provides graph partitioning algorithms in a parallelMPI-based environment. This pa
kage is used for partitioning and repartitioning ofdistributed meshes, i.e., for load balan
ing. The ParMETIS library is 
opyrighted bythe Regents of the University of Minnesota. It 
an be freely used for edu
ational andresear
h purposes by non-pro�t institutions. Se
tion 8.6 provides an overview of theParMETIS library. The parDG pa
kage itself is released under the GNU GENERALPUBLIC LICENSE, version 2.Optionally an external BLAS (basi
 linear algebra subprograms [14℄, [119℄) library 
anbe used, for example the freely available pa
kage from the ATLAS proje
t [129℄, [118℄or some vendor provided library. The software pa
kage itself 
omes with its own im-plementation of the ne
essary CBLAS 
alls whi
h are implemented as inline fun
tions.However, on the tested ar
hite
tures (x86 and amd64) external BLAS libraries do notgive an extra performan
e gain.In the following se
tions we give an overview of the most important 
lasses and mem-ber fun
tions that are ne
essary to apply this pa
kage. All 
lasses and fun
tions arede
lared inside the namespa
e pardg. For simpli
ity this namespa
e is omitted in thede�nition of the 
lasses that follow in the next se
tions. Some 
lasses have a deeper in-201
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e hierar
hy, for simpli
ity this is negle
ted and the inherited member fun
tionsare assigned to the derived 
lass.At the end of this 
hapter we give two (stripped down) examples of usage. The �rstexample is the DG dis
retization of the linear adve
tion equation in one spa
e dimension.The se
ond example provides the basi
 DG dis
retization of the isothermal Navier-Stokes-Korteweg equations in two spa
e dimensions in
luding the higher order impli
itRunge-Kutta time stepping.C.1 Communi
ator ClassThe parDG pa
kage does not provide serial algorithms. Everything is done in parallel.For the 
ommuni
ation between pro
esses Communi
ator obje
ts are ne
essary. Thisalso holds for 
omputations using a single partition only. The Communi
ator 
lassde�nition is listed below.
lass Communi
ator{publi
:Communi
ator(int arg
, 
har *argv[℄);virtual ˜Communi
ator();void set_output(std::ostream &os);int id() 
onst;int size() 
onst;// global redu
tionvoid allredu
e(int n, double *in, double *out, MPI_Op op);// modi�
ation of send / re
eive bu�erstemplate<
lass T> void put(int dest, 
onst T& 
ontent);template<
lass T> void get(int sour
e, T& 
ontent);template<
lass T> void put(int dest, 
onst T* 
ontent, int num);template<
lass T> void get(int sour
e, T* 
ontent, int num);// 
ommuni
ation with other pro
essesvoid send_request(int dest);void re
eive_request(int sour
e);virtual void start_
ommuni
ation(
onst 
har 
omment[℄ = "");virtual bool �nish_
ommuni
ation();};The Communi
ator 
lass is the most important 
lass for all obje
ts that 
ommuni
ateover pro
ess boundaries. This holds for almost all non trivial tasks in a parallel environ-ment. The Communi
ator is responsible for 
ommuni
ation, basi
 I/O operations andmemory management for send and re
eive bu�ers. Thus, it is a 
omfortable wrapperfor MPI_Communi
ators that hides the growing and shrinking of message bu�ers fromthe user.
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onstru
tor takes the variables arg
 and argv that 
ome from the main method.These variables are passed to the underlyingMPI_Init() method to setup the parallelenvironment. A
tually not all MPI implementations make use of these variables to buildup the environment.The destru
tor 
alls the methodMPI_Finalize() that 
loses the parallel environment.The method id() returns the number of the lo
al pro
ess and the method size() returnsthe total number of pro
esses in the parallel environment.In order to send some data from pro
ess ps to pd the user 
alls one of the put(dest,. . . ) methods with dest=pd to �ll the send bu�er with the data (all memory man-agement is done automati
ally) and 
alls send_request(pd) on the sour
e pro
ess
ps. Pro
ess pd is aware of the message that it will re
eive from pro
ess ps and 
allsre
eive_request(ps). Both pro
esses 
all the methods start_
ommuni
ation()and �nish_
ommuni
ation(). After that the data resides in the re
eive bu�er ofpro
ess pd and 
an be read by using the get(sour
e, . . . ) methods with sour
e=ps.The 
ommuni
ation is split into the two methods start_
ommuni
ation() and �n-ish_
ommuni
ation() to allow for 
omputation during the 
ommuni
ation phase.The user must not tou
h the send and re
eive bu�ers during the 
ommuni
ation phase,i.e., until the method �nish_
ommuni
ation() has been 
alled.Global redu
tion operations like allredu
e() are also available. These are simply wrap-pers to the MPI equivalents and they are used in the same way.
C.2 Triang(1,2,3)d ClassesThe Triang1d, Triang2d and Triang3d 
lasses represent the underlying simpli
ial meshesfor one, two and three spa
e dimensions respe
tively. They are inherited from thetemplate 
lass Triang<int d> and share the same 
ode ex
ept the parts 
on
erning themesh generators. The meshes 
an 
ontain non
onformities of level one. The a

essto neighbor 
ells is a

omplished by a STL style interse
tion iterator provided by theSimplex 
lass (not shown in the 
ode se
tion). The re�nement and 
oarsening of themeshes is done as des
ribed in Chapter 8.We start with the des
ription of the Triang2d 
lass.
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lass Triang2d{publi
:Triang2d(Communi
ator &
omm);virtual ˜Triang2d();// I/Ovoid read_triangle_�les(
onst 
har basename[℄);void write(
onst 
har �lename[℄);void read(
onst 
har �lename[℄);// modi�
ationsvoid partition();void repartition();void reorder();void re�ne_all();void 
oarsen_all();void adaption(std::set<int> &re�ne, std::set<int> &
oarsen);};The 
onstru
tor takes a referen
e to the 
ommuni
ator as argument. Communi
ationwith other partitions is established using this obje
t.Modi�
ations of an existing mesh 
an be done by the methods partition() and repar-tition() these methods are wrappers to the 
orresponding methods in the ParMETISlibrary [68℄, [121℄ and are used to distribute or redistribute the mesh 
ells over thepro
esses in the parallel environment (Load balan
ing). These methods additionallyprovide all data stru
tures the ParMETIS library uses to generate a partition of theunderlying mesh.The method reorder() provides a (lo
al) Cuthill-M
Kee ordering of the mesh. This
an speed up the 
onvergen
e pro
ess of iterative solvers due to a better ordering of theunknowns but it 
an also speed up expli
it solvers be
ause of the redu
tion of 
a
hemismat
hes.Re�nement and 
oarsening of the mesh is done either globally using the methods re-�ne_all() and 
oarsen_all() or ea
h 
ell 
an be sele
ted individually by storing theidenti�
ation number of the 
ells in a re�nement and 
oarsening list and pass these liststo the method adaption(re�nement, 
oarsening). A 
ell in the re�nement list isguaranteed to be re�ned, a 
ell in the 
oarsening list is only 
oarsened if this is possible,see Se
tion 8.4 for details.The 
lass Triang2d provides an STL style iterator 
lass to a

ess ea
h 
ell of the meshin a sequential way. Random a

ess of mesh 
ells is also possible. The methods thatare ne
essary to a

omplish these tasks are not shown in the 
lass de�nition above forsimpli
ity.All data that is asso
iated with the mesh by registering is also partitioned, repartitioned,reordered and re�ned/
oarsened automati
ally when one of these methods is 
alled.
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an be used. The output results in a raw binary format �le that is not 
ompatiblebetween di�erent ma
hine ar
hite
tures (byte order is important). The �le 
an be readba
k using the read() method. The number of pro
esses that wrote that �le and thenumber of pro
esses that read this �le ba
k do not need to mat
h.Triang2d obje
ts 
an be 
onstru
ted using the output of the Triangle mesh generator[101℄. Therefore, the basename of the Triangle �les must be passed to the methodread_triangle_�les(basename). Ne
essary �les are basename.node, basename.ele,basename.edge and basename.neigh. Boundary markers are mapped to negative num-bers. In the 
ase of negative boundary markers the numbers are preserved.
lass Triang3d{publi
:...// I/Ovoid read_tetgen_�les(
onst 
har basename[℄);...};
lass Triang1d{publi
:...// I/Ovoid make(double x0, double x1, int n);...};The Triang3d and Triang1d are very similar to the Triang2d 
lass. The only di�eren
eis the generation of meshes.In three spa
e dimensions the output of the TetGen [105℄ mesh generator 
an be usedto 
onstru
t Triang3d obje
ts. The mesh generator uses a similar syntax as the 2dmesh generator Triangle and the output �les are read by passing the basename tothe method read_tetgen_�les(basename). The ne
essary �les are basename.node,basename.ele, basename.fa
e and basename.neigh. As in the 2d 
ase boundary mark-ers are preserved if the numbers are negative otherwise they are mapped to negativenumbers.Mesh generation in one spa
e dimension is an almost trivial task. In this 
ase we pro-vide the method make(x0, x1, n) that 
onstru
ts an equidistant mesh of n 
ells of theinterval (x0, x1).
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tion Class
lass Fun
tion{publi
:virtual void operator()(
onst double *u, double *f, int i = 0) = 0;virtual int dim_of_argument(int i = 0) 
onst = 0;virtual int dim_of_value(int i = 0) 
onst = 0;double& time();double time() 
onst;};Fun
tions are the 
entral obje
ts in this implementation. The 
lass Fun
tion has purevirtual fun
tions that must be overloaded by inherited 
lasses. The member fun
tionoperator()(u, f) takes an argument u and returns the value of the fun
tion f. Thefun
tions dim_of_argument() and dim_of_value() return the dimension of theargument and value respe
tively. A Fun
tion obje
t 
an optionally depend on parame-ters. One important parameter is the time. The parameter time 
an be get and set byusing the method time().C.4 Data ClassesThe FeData 
lasses are an abstra
tion of the Dis
ontinuous Galerkin spa
e V d
h intro-du
ed in Se
tion 6.2. The 
lasses provide I/O operations for data, an interfa
e foradaption of data and methods for proje
tion of data and 
omputation of errors.template<int n>
lass FeData : publi
 Data{publi
:FeData(Triang<n> &mesh);FeData(Triang<n> &mesh, int dim_system, int poly_order);virtual ˜FeData();void L2_proje
tion(Fun
tion &u);double Lp_distan
e(double p, Fun
tion &u);void eval(
onst Simplex<n> &tr, 
onst double x[n℄, double *result) 
onst;// adaptivityvoid adaption(ErrorIndi
ator &error_indi
ator);// I/Ovoid write(
onst 
har �lename[℄) 
onst;void read(
onst 
har �lename[℄);};
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lass is parameterized by the template argument n whi
h is the dimensionof the 
oordinate system. The 
onstru
tor takes a simplex mesh Triang<n> (whi
his the base 
lass of Triang(1,2,3)d respe
tively) and optionally the dimension of thestate spa
e d of V d
h whi
h is denoted by dim_system and the polynomial order of V d

hpoly_order. After 
alling the 
onstru
tor the data 
lass is registered by the mesh.This means all operations like re�nement, 
oarsening, partitioning, et
., that are appliedto the mesh, are impli
itly applied to the 
orresponding data. Data is essentially ave
tor and is automati
ally 
onverted (by a 
onversion operator not shown in the 
lassde�nition) to double*.An instan
e U of the FeData<n> 
lass stores the 
oe�
ients that represents someobje
t uh ∈ V d
h of the Finite Element spa
e given by

uh|∆j
(x) =

np−1
∑

l=0

ϕj(x)







αj
l,0...
αj

l,d−1






, x ∈ R

n,on the j-th 
ells of the underlying mesh (with identity number j) in the following way
αj

l,k = U [d · (np · j + l) + k], k = 0, . . . , d− 1.Here np denotes the number of the lo
al basis polynomials.The method L2_proje
tion(u) provides a L2 proje
tion of a given fun
tion u to theDis
ontinuous Galerkin spa
e V d
h . The Lp distan
e between the data and a given fun
-tion u for p ∈ [1,∞) 
an be 
omputed using the method Lp_distan
e(p, u). Quadra-ture formulas are sele
ted automati
ally for these methods but 
an also be expli
itlyset.Writing and reading to and from a �le is done using the methods write(�lename) andread(�lename). The �le �lename must be (at least) a

essible from the 
omm.master()pro
ess where 
omm denotes the Communi
ator.By the use of an ErrorIndi
ator obje
t, see Se
tion C.8, the mesh and the data 
an bere�ned and 
oarsened.C.5 DG ClassThe Dis
ontinuous Galerkin 
lass implements the Dis
ontinuous Galerkin spa
e dis-
retization in one, two and three spa
e dimensions. DG 
lass is parameterized by thespa
e dimension and is therefore formally not limited to three spa
e dimensions, butsome ne
essary implementations like basis polynomials are provided for one, two andthree spa
e dimensions only.The input for a m-stage Dis
ontinuous Galerkin s
heme is a di�erential equation of the
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u0 = u,

u1 + Lc
1[u

0] + Lncs
1 [u0] = 0,

u2 + Lc
2[u

0, u1] + Lncs
2 [u0, u1] = 0,...

um + Lc
m[u0, . . . , um−1] + Lncs

m [u0, . . . , um−1] = 0.This is the form we dis
ussed in Se
tion 6.2 generalized by additional non
onserva-tive and sour
e terms. The operators Lc
k[u

0, . . . , uk−1] for k = 1, . . . ,m represent the
onservative di�erential operators of the form
Lc

k[u
0, . . . , uk−1](x) =

n
∑

i=1

∂

∂xi
fk

i (u0(x), . . . , uk−1(x), x)and the operators Lncs
k [u0, . . . , uk−1] denote the non
onservative operators in 
ombina-tion with sour
e terms of the form

Lncs
k [u0, . . . , uk−1](x) = ak

(

(u0(x), . . . , uk−1(x)),∇(u0(x), . . . , uk−1(x)), x
)

,where the fun
tions ak are linear in the gradients. More pre
isely ak have the form
ak(u,∇u, x) = B(u, x) +

n
∑

i=1

Ak
i (u)

∂

∂xi
u,

u = (u0, . . . , uk−1).All of the above fun
tions 
an additionally depend on further parameters su
h as time.The output of a m-stage Dis
ontinuous Galerkin s
heme is the fun
tion um whi
h is theproje
tion of the m-th order di�erential operator as dis
ussed in Se
tion 6.2.The variables in the above equations have the following dimensions:
x ∈ R

n, uk ∈ R
dk , k = 0, . . . ,m. (C.1)The DG 
lass has three pure virtual fun
tions namely �ux(. . . ), num_�ux(. . . ) andbnd_�ux(. . . ) that have to be implemented by the inherited 
lass. The method�ux(. . . ) implements the physi
al �uxes fk

i , non
onservative and sour
e terms a forea
h of the m stages in the method.For the 
omplete method all physi
al �uxes fk
i and non
onservative terms need asso
i-ated numeri
al �uxes gk

j and gk
n. Here gk

j denote the numeri
al �uxes asso
iated withthe 
urrent (the j-th) 
ell and gk
n the numeri
al �uxes asso
iated with the 
orrespond-ing neighbor 
ell whi
h is in general not gk

n = −gk
j sin
e non
onservative terms arealso taken into a

ount. The implementation of the numeri
al �uxes is provided by themethod num_�ux(. . . ). The numeri
al �uxes at the boundary of the 
omputationaldomain and with this the treatment of boundary 
onditions are provided by the methodbnd_�ux(. . . ). For more details see the two examples in Se
tion C.9.
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ontinuous Galerkin 
lass has the following de�nition, here only the most im-portant member fun
tions are listed.template<int n>
lass DG : publi
 Fun
tion{publi
:DG(Communi
ator &
omm, Triang<n> &mesh, int dim_value,int poly_order, int num_stages, 
onst int *dim_�ux);// from Fun
tionvirtual void operator()(
onst double *U, double *result, int i=0);virtual int dim_of_argument(int i=0) 
onst;virtual int dim_of_value(int i=0) 
onst;void 
odegen(
har 
lassname[℄) 
onst;prote
ted:// �uxes and numeri
al �uxesvirtual void �ux(int stage, 
onst double *u, 
onst double * 
onst grad_u[n℄,double *f[n℄, double *a) = 0;virtual void num_�ux(int stage, 
onst double *uj, 
onst double *un,
onst double normal[n℄, double *gj, double *gn) = 0;virtual void bnd_�ux(int stage, 
onst double *uj,
onst double normal[n℄, double *gj) = 0;};The DG 
lass is derived from the 
lass Fun
tion and therefore it implements the methodsoperator()(U, result), dim_of_argument() and dim_of_value(). As a fun
tionthe operator()(U, result) returns the 
oe�
ients of the dis
rete di�erential operatorin the variable result and the variable U provides the 
oe�
ients (with respe
t to thebasis fun
tions of the Finite Element spa
e) of some dis
rete fun
tion.The 
onstru
tor of the DG<n> 
lass takes as arguments a referen
e to a Communi
a-tor, a referen
e to a mesh whi
h 
an be a one dimensional, two dimensional or threedimensional Simplex grid. With the notation from above, see (C.1), the remainingparameters are given bypoly_order = polynomial degree of the method,dim_value = d0,dim_�ux[m℄ = {d1, d2, . . . , dm},num_stages = m.By default the DG 
lass provides all states u at the integration points and all gradi-ents ∇u that are available in the stages. Very often not all of the states are ne
essary,espe
ially most gradients are usually not ne
essary sin
e they are only used in non-
onservative produ
ts. In order to render the method more e�
ient 
ertain values 
an
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essary for this task are not shown in the 
lassde�nition for simpli
ity. The degree of the quadrature formulas 
an also be 
hosenfreely. By default the degree of the quadrature formulas are 
hosen a

ording to there
ommendation by Co
kburn and Shu, see Se
tion 6.4.For further improvement of the e�
ien
y of the method the method 
odegen(. . . )
an be used to generate highly optimized 
ode. Using generated 
ode 
an lead to long
ompilation times.C.6 ODE Solver ClassesSeveral ODE solver 
lasses are available to perform time stepping for ordinary initialvalue problems. The base 
lass for all ODE solvers is the 
lass ODESolver. Avail-able Solver 
lasses belong to the 
lasses of expli
it, impli
it, semi-impli
it Runge-Kuttamethods, expli
it and impli
it Extrapolation methods and SSP methods.
lass ODESolver{publi
:ODESolver(Communi
ator &
omm, int num_tmpobj);virtual ˜ODESolver();void set_limiter(Limiter &limiter);// user-interfa
e for solvingvirtual bool step(double t, double dt, double *u) = 0;prote
ted:Limiter *limiter;};Inherited 
lasses, i.e., implementations of ODE solvers, have to overload the virtualfun
tion step(t, ∆t, u) whi
h performs the time stepping of some data u from time tto time t + ∆t. The method returns true on su

ess or false if it fails to perform thetime stepping. In the latter 
ase it is guaranteed that the data u remains unmodi�ed.An expli
it method for time stepping is always su

essful, so it always returns true, butan impli
it method 
an fail to 
onverge in whi
h 
ase it returns false and a smaller timestep as to be 
hosen.Optionally a limiter 
an be set. A limiter is a fun
tion that performs some post pro
ess-ing on the data u in order to maintain the stability of the underlying numeri
al method.This is usually be done in 
ombination with expli
it higher order Runge-Kutta Dis
on-tinuous Galerkin s
hemes.C.6.1 Expli
itRungeKutta ClassThe simplest 
lass of ODE solvers is the 
lass of expli
it Runge-Kutta methods dis
ussedin Se
tion 7.2.
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it Euler s
heme has the following de�nition.
lass Expli
itEuler : publi
 Expli
itRungeKutta (: publi
 ODESolver){publi
:Expli
itEuler(Communi
ator &
omm, Fun
tion &f);};The Constru
tor takes a referen
e to a Communi
ator obje
t and the right hand side ofthe ordinary di�erential equation given by the Fun
tion f . The Fun
tion f 
an be thedis
rete di�erential operator 
onstru
ted by a Dis
ontinuous Galerkin 
lass for example.For the 
omputation of the evolution in time the method step(t, dt, u) from theODESolver base 
lass is used.There are several other higher order expli
it Runge-Kutta methods available. The 
lassde�nition of these methods is the same as for the Expli
itEuler 
lass. The followingmethods are available.
• Expli
itModi�edEuler, 2nd order, 2 stages.
• Expli
itTVD2, 2nd order, 2 stages.
• Expli
itRK3, 3rd order, 3 stages.
• Expli
itTVD3, 3rd order, 3 stages.
• Expli
itRK4, 4th order, 4 stages.
• Expli
itBut
her6, 6th order, 7 stages.For the details 
on
erning these methods see Se
tion 7.2.C.6.2 Impli
itRungeKutta ClassThe 
lass of diagonally impli
it Runge-Kutta methods, dis
ussed in Se
tion 7.3, hasexa
tly the same 
lass de�nition as expli
it Runge-Kutta methods ex
ept the additionalmethod for the 
hoi
e of a linear solver. Here for example the de�nition for the impli
itEuler s
heme.
lass Impli
itEuler : publi
 DIRK (: publi
 ODESolver){publi
:Impli
itEuler(Communi
ator &
omm, Fun
tion &f);void set_linear_solver(IterativeLinearSolver &ls);};The impli
it methods need a linear solver to perform the Newton iteration. This 
anbe set by the method set_linear_solver(ls). Available linear solvers are listed inSe
tion C.7.Other diagonally impli
it Runge-Kutta methods are
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• Gauss2 (Crank-Ni
holson), 2nd order, 1 stage.
• DIRK3, 3rd order, 2 stages.C.6.3 SemiImpli
itRungeKutta ClassFor the semi-impli
it Runge-Kutta s
hemes the 
onstru
tor takes two Fun
tions asarguments fex whi
h is dis
retized expli
itly and �m whi
h is dis
retized in an impli
itfashion, see Se
tion 7.4 for details. Again, the impli
it part needs a linear solver. Thesimplest s
heme of this 
lass is the �rst order semi-impli
it Euler s
heme whi
h has thefollowing de�nition.
lass SemiImpli
itEuler : publi
 SIRK (: publi
 ODESolver){publi
:SemiImpli
itEuler(Communi
ator &
omm, Fun
tion &�m, Fun
tion &fex);void set_linear_solver(IterativeLinearSolver &ls);};The s
hemes from Se
tion 7.4 that are available at the moment besides the semi-impli
iteuler s
heme are
• SIRK23, 2nd order, three stages.
• SIRK33 (YZ33), 3rd order, 3 stages.
• IMEX_SPP222, 2nd order, 2 stages.C.6.4 Other ClassesAdditionally to the di�erent kinds of Runge-Kutta 
lasses impli
it and expli
it extrap-olation s
hemes are also available but not dis
ussed in detail here. The use of thiskind of methods is less 
ommon in the framework of Finite Volume and Dis
ontinuousGalerkin approximation but they have the advantage that arbitrary order methods 
anbe 
onstru
ted.C.7 Linear Solver ClassesThe impli
it and semi-impli
it ODE solver 
lasses use a Newton type nonlinear iterationfor solving the 
orresponding systems of nonlinear equations. Newton type methodsneed to solve linear systems of equations. In the framework of Finite Element, FiniteVolume and Dis
ontinuous Galerkin dis
retizations of partial di�erential equations theselinear systems are usually large but sparse. Some methods from the 
lass of Krylov spa
esolvers are very e�
ient methods for these tasks. The Conjugate Gradient (CG) methodfor symmetri
 problems belongs to this 
lass. For non symmetri
 problems the GMRESand BiCGSTAB methods are a good 
hoi
e.
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lass implements the restarted GMRES algorithm given in [98℄. TheFGMRES 
lass has exa
tly the same 
lass de�nition (therefore we omit it) and imple-ments the �exible variant of the restarted GMRES algorithm [96℄. The advantage isthat the pre
onditioner 
an vary in ea
h step of the iteration. The disadvantage is thatit needs twi
e the amount of memory 
ompared to standard GMRES.
lass GMRES : publi
 IterativeLinearSolver{publi
:GMRES(Communi
ator &
omm, int m);virtual ˜GMRES();virtual void set_pre
onditioner(Fun
tion &pre
onditioner);void set_toleran
e(double tol, bool relative = true);void set_max_number_of_iterations(int iter);// from IterativeLinearSolver, solve Au = b, Au = op(u)virtual bool solve(Fun
tion &op, double *u, 
onst double *b);};The 
onstru
tor takes a Communi
ator and the Krylov spa
e dimensionm as arguments.The 
hoi
e of the Krylov spa
e dimension is 
ru
ial in the GMRES method. Thee�
ien
y of the method depends heavily on this parameter. It must not be 
hosen tosmall to otherwise the method may fail to 
onverge. A value between 5 and 15 is usuallya good 
hoi
e.An optional pre
onditioner, i.e., a fun
tion u 7→ Mu, 
an be set using the methodset_pre
onditioner(pre
onditioner) to speed up the 
onvergen
e pro
ess. Thematrix M is 
hosen to approximate the matrix A−1 in some sense.Using the method set_toleran
e(tol, relative) a toleran
e for the stopping 
riterionof the iteration 
an be set. With the boolean value relative=true/false it 
an be 
on-trolled whether this toleran
e is interpreted as relative or absolute toleran
e. It is a goodidea to 
hoose an absolute toleran
e in 
ombination with a Newton method be
ause theright hand side of the linear system tends to zero as the Newton method 
onverges.The maximum number of iterations 
an be 
ontrolled using the set_max_num-ber_of_iterations(iter) method.Now, the linear system Au = b is solved using the method solve(op, u, b). The linearoperator u 7→ Au is denoted by op, the right hand side by b. On entry the ve
tor u
arries an initial guess of the solution. Upon su

ess the method returns true and thesolution of the system is stored in the ve
tor u. If it fails to 
onverge it returns falseand it is guaranteed that the initial guess u is not modi�ed in that 
ase.Another e�
ient Krylov spa
e method is the BiCGSTAB algorithm given in [113℄. Thestorage requirement of this algorithm does not depend on an extra parameter. Hen
e, inmost 
ases this method needs less memory than the GMRES method whi
h is importantfor large s
ale simulations. The 
lass de�nition is exa
tly the same as for the GMRES
lass (ex
ept the parameter m). For 
ompleteness we list it below.
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lass BICGSTAB : publi
 IterativeLinearSolver{publi
:BICGSTAB(Communi
ator &
omm);virtual ˜BICGSTAB();void set_toleran
e(double tol, bool relative = true);void set_max_number_of_iterations(int iter);// from IterativeLinearSolver, solve Au = b, Au = op(u)virtual bool solve(Fun
tion &op, double *u, 
onst double *b);};It depends on the problem whether the GMRES or the BiCGSTAB method performsbetter. In our test 
ases we have observed that the GMRES method usually performsabout 10-20% better.For symmetri
 problems the Conjugate Gradient method (CG) should be used be
ausein this 
ase this algorithm is mu
h more e�
ient than the other methods for nonsym-metri
 problems. The interfa
e is exa
tly the same as for the BiCGSTAB method.
C.8 ErrorIndi
ator ClassesThe ErrorIndi
ator 
lass is an abstra
t 
lass and serves as an interfa
e for problemdependent indi
ators. An inherited 
lass, that implements some indi
ator or estimator,has to implement the method operator()(re�ne, 
oarsen). Here re�ne is the setof 
ell ids that have to be re�ned and 
oarsen is the list of 
ell ids that should be
oarsened if possible. The 
lass de�nition follows below.
lass ErrorIndi
ator{publi
:virtual void operator()(std::set<int> &re�ne, std::set<int> &
oarsen) = 0;};As an example for an ErrorIndi
ator we have the spa
e gradient indi
ator Spa
e-GradIndi
ator proposed in Se
tion 8.3. This is a
tually not an error indi
ator be
auseit has nothing to do with errors but is used to tra
k the liquid-vapor interfa
e in thesimulations using the Navier-Stokes-Korteweg system.
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lass Spa
eGradIndi
ator : publi
 ErrorIndi
ator{publi
:Spa
eGradIndi
ator(Communi
ator &
omm, Triang<dim> &tr,Data &U, Fun
tion &F);virtual ˜Spa
eGradIndi
ator();void set(double eta_low, double eta_upp, int num_iter);// from ErrorIndi
atorvirtual void operator()(std::set<int> &re�ne, std::set<int> &
oarsen);};C.9 Examples of UsageIn this se
tion we give two examples of usage of the software pa
kage dis
ussed above.The �rst appli
ation is the Dis
ontinuous Galerkin dis
retization of the linear adve
tionequation in one spa
e dimension. Quite simple for better understanding. The se
ondappli
ation is the DG dis
retization of the Navier-Stokes-Korteweg system using impli
ittime stepping as we use it in our 
omputations (at some points stripped down a littlebit for simpli
ity).C.9.1 Example 1: Linear Adve
tion in 1dThe linear adve
tion equation in one spa
e dimensions we 
onsider in this example isgiven by
ut + (su)x = 0 in (−1, 1) × (0, T ),

u(x, 0) =

{

uleft if x < 0,
uright else, for x ∈ (−1, 1),

u(−1, t) = uleft.Here we 
hoose s = 1.0, uleft = 0.5 and uright = 1.0. The interval (−1, 1) is partitionedinto a uniform mesh using the method Triang1d::make(. . . ). By default the leftboundary of the mesh has the boundary id −1 and the right boundary the id −2.The Dis
ontinuous Galerkin method uses the upwind �ux as numeri
al �ux and fortime integration the expli
it third order Runge-Kutta method TVD3 is applied. The
omplete implementation is given in the following one hundred lines of C++ 
ode.#in
lude <iostream>#in
lude <
math>#in
lude "
ommuni
ator.hpp"#in
lude "triang.hpp"#in
lude "dg.hpp"#in
lude "ode_solver.hpp"



216 APPENDIX C. DESCRIPTION OF THE SOFTWARE PACKAGE#in
lude "data.hpp"using namespa
e std;using namespa
e pardg;// global variables
onst double s = 1.0;
onst double u_left = 0.5;
onst double u_right = 1.0;// initial data
lass InitialData : publi
 Fun
tion{publi
:virtual void operator()(
onst double *x, double *result, int i=0){ 
onst double tau = x[0℄ - s*time();result[0℄ = (tau < 0)? u_left : u_right;}virtual int dim_of_argument(int i) 
onst { return 1;}virtual int dim_of_value(int i) 
onst { return 1;}};// Dis
ontinuous Galerkin dis
retization
onst int num_stages1d = 1;
onst int dim_value1d = 1;
onst int dim_flux1d[num_stages1d℄ = {1};
lass DG1dLinAdv : publi
 DG<1>{publi
:DG1dLinAdv(Communi
ator &
omm, Triang<1> &mesh, int poly_order) :DG<1>(
omm, mesh, dim_value1d, poly_order, num_stages1d, dim_flux1d){}private:// physi
al �uxvirtual void flux(int stage, 
onst double *u, 
onst double *
onst grad_u[1℄,double *f[1℄, double *a){ f[0℄[0℄ = s * u[0℄;}



C.9. EXAMPLES OF USAGE 217// upwind �ux = Lax-Friedri
hs �uxvirtual void num_flux(int stage, 
onst double *uj, 
onst double *un,
onst double n[1℄, double *gj, double *gn){ gj[0℄ = 0.5*n[0℄*s*( uj[0℄+un[0℄ ) - 0.5*fabs(s)*( un[0℄-uj[0℄ );gn[0℄ = -gj[0℄;}// boundary treatmentvirtual void bnd_flux(int stage, 
onst double *uj, 
onst double n[1℄,double *gj){ double ub;if (bnd_id == -1) ub = u_left; // left boundaryelse ub = u_right; // right boundarygj[0℄ = 0.5*n[0℄*s*( uj[0℄+ub ) - 0.5*fabs(s)*( ub-uj[0℄ );}};int main(int arg
, 
har *argv[℄){ // Communi
atorCommuni
ator 
omm(arg
, argv);// 
onstru
t mesh and distribute it over the available pro
essors
onst int n = 200;Triang1d mesh(
omm);mesh.make(-1.0, 1.0, n);mesh.partition();
onst double h = mesh.h();// setup DG s
heme & Runge-Kutta s
heme
onst int poly_order = 2;DG1dLinAdv dg_linadv(
omm, mesh, poly_order);Expli
itTVD3 ode_solver(
omm, dg_linadv);// setup data and proje
tion of initial dataFeData<1> U(mesh, 1, poly_order);InitialData u0;U.L2_proje
tion(u0);// perform time stepping
onst double T = 0.2;
onst double 
fl = 0.45 / (1+2*poly_order); // Co
kburn & Shu formuladouble dt = 
fl * h / fabs(s);double t = 0.0;



218 APPENDIX C. DESCRIPTION OF THE SOFTWARE PACKAGEwhile (t < T){ode_solver.step(t, dt, U);t += dt;}// outputu0.time() = t;
onst double L2error = U.Lp_distan
e(2.0, u0);if ( 
omm.id() == 
omm.master() ){
out << "L2 error: "<< L2error << " h: "<< h << endl;}}The approximate solution is 
omputed up to 
omputational end time T = 0.2. At theend of the 
omputation the L2-error to the exa
t solution is 
omputed.C.9.2 Example 2: Isothermal Navier-Stokes-Korteweg in 2dIn this �nal example we dis
uss the implementation of the higher order dis
retizationof the isothermal Navier-Stokes-Korteweg equations in two spa
e dimensions.
ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρuuT ) + ρ∇κ = ∇ · τ ,where, as usual, τ denotes the vis
ous part of the stress tensor and κ = µ(ρ) − λ∆ρ.For this example we have 
hosen the boundary 
onditions
u = 0 and ∇ρ · n = 0 on ∂Ωand as initial data we provide an almost stati
 bubble. Physi
al and numeri
al �uxesare implemented as dis
ussed in se
tion 6.9.2. The inherited DG 
lass DG2dNSKis also derived from the 
lass VanDerWaalsIsothermal whi
h provides the equationsof state. Time stepping is done using a se
ond order impli
it Runge-Kutta s
heme(Gauss2/Crank-Ni
holson) equiped with the GMRES(15) linear solver. The 
omputa-tional domain Ω = (−1, 1)2 is represented by a triangular mesh stored in the box2d.1.*�les. This mesh 
onstru
ted by the using the Triangle mesh generator [101℄.In this example lo
al mesh adaption is omitted for simpli
ity and the time step sizeis �xed to some small enough 
onstant. The 
omplete implementation is given by thefollowing 250 lines of C++ 
ode.#in
lude <iostream>#in
lude <
math>#in
lude "
ommuni
ator.hpp"#in
lude "triang.hpp"#in
lude "dg.hpp"
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lude "ode_solver.hpp"#in
lude "data.hpp"#in
lude "vdw.hh"using namespa
e std;using namespa
e pardg;// global variablesstati
 
onst double T_ref = 0.85; // referen
e temperaturestati
 
onst double lambda = 0.001; // 
apillaritystati
 
onst double eps = 0.0136644; // vis
ositystati
 
onst double nu = 0.75*eps; // vis
osity// initial data, bubble of radius R with 
enter 0
lass Bubble : publi
 Fun
tion{publi
:virtual void operator()(
onst double *x, double *result, int i=0){ 
onst double width = 5.4*T_ref*T_ref * sqrt(lambda); // appr. formula
onst double r0 = R - 0.5*width;
onst double r1 = R + 0.5*width;
onst double r = sqrt(x[0℄*x[0℄ + x[1℄*x[1℄);// densityif (r < r0) result[0℄ = rho_v;else if(r < r1) {
onst double phi = (2.0*(r-r0)/(r1-r0) - 1.0) * M_PI/2.0;result[0℄ = 0.5*(rho_v+rho_l) + 0.5*(rho_l-rho_v) * tanh(tan(phi));}else result[0℄ = rho_l;// momentumresult[1℄ = result[2℄ = 0.0;}virtual int dim_of_argument(int i) 
onst { return 2;}virtual int dim_of_value(int i) 
onst { return 3;}private:stati
 
onst double rho_v = 0.3;stati
 
onst double rho_l = 1.8;stati
 
onst double R = 0.3;};
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ontinuous Galerkin dis
retization
onst int num_stages2d = 3;
onst int dim_value2d = 3;
onst int dim_flux2d[num_stages2d℄ = {4, 1, 3};
lass DG2dNSK : publi
 DG<2>, publi
 VanDerWaalsIsothermal{publi
:DG2dNSK(Communi
ator &
omm, Triang<2> &mesh, int poly_order) :DG<2>(
omm, mesh, dim_value2d, poly_order, num_stages2d, dim_flux2d),VanDerWaalsIsothermal(T_ref){ // some std valuesalpha_1 = 0.648676;alpha_2 = 1.86921;}private:virtual void flux(int stage, 
onst double *u, 
onst double *
onst grad_u[2℄,double *f[2℄, double *a);virtual void num_flux(int stage, 
onst double *uj, 
onst double *un,
onst double n[2℄, double *gj, double *gn);virtual void bnd_flux(int stage, 
onst double *uj, 
onst double n[2℄,double *gj);double alpha_1, alpha_2;};// physi
al �uxvoid DG2dNSK::flux(int stage, 
onst double *u, 
onst double *
onst grad_u[2℄,double *f[2℄, double *a){ // u[0℄=rho, u[1℄=rho_u, u[2℄=rho_v,// u[3℄=rho_x, u[4℄=rho_y, u[5℄=u_x+v_y, u[6℄=u_y-v_x,// u[7℄=kappaif (stage == 0){ // re
onstru
t 1st derivativesf[0℄[0℄ = -u[0℄;f[0℄[1℄ = 0.0;f[0℄[2℄ = -u[1℄/u[0℄;f[0℄[3℄ = u[2℄/u[0℄;f[1℄[0℄ = 0.0;f[1℄[1℄ = -u[0℄;f[1℄[2℄ = -u[2℄/u[0℄;



C.9. EXAMPLES OF USAGE 221f[1℄[3℄ = -u[1℄/u[0℄;}else if (stage == 1){ // re
onstru
t kappaf[0℄[0℄ = lambda*u[3℄;f[1℄[0℄ = lambda*u[4℄;a[0℄ = -potential(u[0℄);}else if (stage == 2){ // evaluate �ux
onst double rho = u[0℄;
onst double rho_u = u[1℄;
onst double rho_v = u[2℄;
onst double ru_rv_r = rho_u*rho_v/rho;
onst double ux_vy = u[5℄;
onst double uy_vx = u[6℄;f[0℄[0℄ = u[1℄;f[0℄[1℄ = rho_u*rho_u/rho - eps*ux_vy;f[0℄[2℄ = ru_rv_r + nu*uy_vx;f[1℄[0℄ = u[2℄;f[1℄[1℄ = ru_rv_r - nu*uy_vx;f[1℄[2℄ = rho_v*rho_v/rho - eps*ux_vy;a[1℄ = rho * grad_u[0℄[7℄;a[2℄ = rho * grad_u[1℄[7℄;}}// numeri
al �uxvoid DG2dNSK::num_flux(int stage, 
onst double *uj, 
onst double *un,
onst double n[2℄, double *gj, double *gn){ // u[0℄=rho, u[1℄=rho_u, u[2℄=rho_v,// u[3℄=rho_x, u[4℄=rho_y, u[5℄=u_x+v_y, u[6℄=u_y-v_x,// u[7℄=kappaif (stage == 0){ // re
onstru
t 1st derivatives
onst double rho_j = uj[0℄;
onst double rho_n = un[0℄;
onst double u_j = uj[1℄/rho_j;
onst double u_n = un[1℄/rho_n;
onst double v_j = uj[2℄/rho_j;
onst double v_n = un[2℄/rho_n;gj[0℄ = -0.5*(rho_n+rho_j) * n[0℄;gj[1℄ = -0.5*(rho_n+rho_j) * n[1℄;



222 APPENDIX C. DESCRIPTION OF THE SOFTWARE PACKAGEgj[2℄ = -0.5*(u_n+u_j)*n[0℄ - 0.5*(v_n+v_j)*n[1℄;gj[3℄ = 0.5*(v_n+v_j)*n[0℄ - 0.5*(u_n+u_j)*n[1℄;gn[0℄ = -gj[0℄;gn[1℄ = -gj[1℄;gn[2℄ = -gj[2℄;gn[3℄ = -gj[3℄;}if (stage == 1){ // re
onstru
t kappagj[0℄ = lambda * 0.5*( (un[3℄+uj[3℄)*n[0℄ + (un[4℄+uj[4℄)*n[1℄);gn[0℄ = -gj[0℄;}if (stage == 2){ // eval �ux
onst double rho_j = uj[0℄;
onst double rho_n = un[0℄;
onst double rho_u_j = uj[1℄;
onst double rho_u_n = un[1℄;
onst double rho_v_j = uj[2℄;
onst double rho_v_n = un[2℄;
onst double ru_rv_r_j = rho_u_j * rho_v_j / rho_j;
onst double ru_rv_r_n = rho_u_n * rho_v_n / rho_n;
onst double kappa_j = uj[7℄;
onst double kappa_n = un[7℄;
onst double ux_vy_n = un[5℄;
onst double ux_vy_j = uj[5℄;
onst double uy_vx_n = un[6℄;
onst double uy_vx_j = uj[6℄;gj[0℄ = 0.5*( (rho_u_j + rho_u_n)*n[0℄ + (rho_v_j + rho_v_n)*n[1℄ )-0.5*alpha_1*(kappa_n - kappa_j);gj[1℄ = 0.5*( (rho_u_j*rho_u_j/rho_j + rho_u_n*rho_u_n/rho_n)*n[0℄+(ru_rv_r_j + ru_rv_r_n)*n[1℄ )-0.5*alpha_2*(rho_u_n - rho_u_j)-0.5*eps*(ux_vy_n+ux_vy_j)*n[0℄ - 0.5*nu*(uy_vx_n+uy_vx_j)*n[1℄;gj[2℄ = 0.5*( (ru_rv_r_j + ru_rv_r_n)*n[0℄+(rho_v_j*rho_v_j/rho_j + rho_v_n*rho_v_n/rho_n)*n[1℄ )-0.5*alpha_2*(rho_v_n - rho_v_j)+0.5*nu*(uy_vx_n+uy_vx_j)*n[0℄ - 0.5*eps*(ux_vy_n+ux_vy_j)*n[1℄;gn[0℄ = -gj[0℄;gn[1℄ = -gj[1℄;gn[2℄ = -gj[2℄;
onst double jump = 0.25*(rho_j + rho_n) * (kappa_n - kappa_j);gj[1℄ += jump*n[0℄;



C.9. EXAMPLES OF USAGE 223gn[1℄ += jump*n[0℄;gj[2℄ += jump*n[1℄;gn[2℄ += jump*n[1℄;}}// boundary treatmentvoid DG2dNSK::bnd_flux(int stage, 
onst double *uj, 
onst double n[2℄,double *gj){ // u[0℄=rho, u[1℄=rho_u, u[2℄=rho_v,// u[3℄=rho_x, u[4℄=rho_y, u[5℄=u_x+v_y, u[6℄=u_y-v_x,// u[7℄=kappaif (stage == 0){ // re
onstru
t 1st derivatives
onst double rho_j = uj[0℄;
onst double u_j = uj[1℄/rho_j;
onst double v_j = uj[2℄/rho_j;gj[0℄ = -rho_j * n[0℄;gj[1℄ = -rho_j * n[1℄;gj[2℄ = -0.5*(u_j*n[0℄ + v_j*n[1℄ + 0.0);gj[3℄ = -0.5*(u_j*n[0℄ - v_j*n[1℄ + 0.0);}else if (stage == 1){ // re
onstru
t kappagj[0℄ = 0.0;}if (stage == 2){ // eval �ux
onst double ux_vy = uj[5℄;
onst double uy_vx = uj[6℄;gj[0℄ = 0.0;gj[1℄ = -eps*ux_vy*n[0℄ - nu*uy_vx*n[1℄;gj[2℄ = nu*uy_vx*n[0℄ - eps*ux_vy*n[1℄;}}int main(int arg
, 
har *argv[℄){ // Communi
atorCommuni
ator 
omm(arg
, argv);// read mesh and distribute it over the available pro
essorsTriang2d mesh(
omm);mesh.read_triangle_files("./box2d.1");
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heme
onst int poly_order = 2;DG2dNSK dg_nsk(
omm, mesh, poly_order);// Linear SolverGMRES linear_solver(
omm, 15);linear_solver.set_toleran
e(1.0e-6, false);// Impli
it Runge-Kutta methodGauss2 ode_solver(
omm, dg_nsk);ode_solver.set_linear_solver(linear_solver);// setup data and proje
tion of initial dataFeData<2> U(mesh, 3, poly_order);Bubble u0;U.L2_proje
tion(u0);// perform time stepping
onst double T = 0.1;double dt = 1.0e-4; // small enough timestepdouble t = 0.0;while (t < T){
out << 
omm.id() << " "<< t << endl;bool 
onvergen
e = ode_solver.step(t, dt, U);assert(
onvergen
e);t += dt;}}The approximate solution is 
omputed up to 
omputational end time T = 0.1. Noth-ing is done with the approximate solution. It would be more 
onvenient to write theapproximate solution to a data �le at some points in 
omputational time but this isomitted here for simpli
ity.
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