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Chapter 1Introdution
1.1 MotivationWhen steam ships beame available in the 19th entury, engineers observed a strangedamage on the blades of ship propellers aused by an unknown fore. In 1917 LordRayleigh (Lord John William Strutt) explains in his artile On the pressure developedin a liquid during the ollapse of a spherial avity [93℄ that small vapor bubbles thatondense at the surfae of the propeller blades are responsible for this e�et. He givesan equation for the ollapse of a bubble, the so alled Rayleigh-Plesset equation, seeSetion 4.4.1 and [16℄. Figure 1.3 shows this kind of avitation damage on the surfaeof a modern ship propeller.Small vapor bubbles in a liquid arise when the pressure of the surrounding liquid dropsbelow a ertain value, for example aused by operating ship propellers, fast �ows orstrong sound �elds. This e�et is alled avitation. From the physial point of view the�uid is deomposed into liquid and vapor phases and both phases an ondensate orevaporate respetively. Thus, we have a dynamial phase boundary and in general masstransfer over this interfae. Cavitation bubbles an behave quite di�erently, e.g. theyan disappear immediately or grow until they break up into an ensemble of smaller bub-bles. Depending on the environment these kinds of bubbles an also begin to osillate.For instane in weak sound �elds bubbles may osillate with the frequeny of the un-derlying sound �eld. In strong sound �elds the amplitude of the osillations an beomelarge enough suh that the bubble ollapses to a tiny volume in a periodi yle. Eahtime a bubble ollapses due to the ompression very high temperatures and pressuresan be observed in the interior of the bubble. During the ollapse a shok wave andalso a light �ash an be emitted. The latter phenomenon is alled sonolumineseneand was �rst disovered by H. Frenzel and H. Shultes [45℄ in 1934.The upper sequene of pitures in Figure 1.1 shows a ollapsing bubble in a physialexperiment with a strong sound �eld. The maximal radius of the avitation bubble (1stpiture) is 55 mirometers. The lower part of the �gure shows the sent out shok wavewhih propagates about 800 mirometers in 0.38 miroseonds.The proess of the bubble ollapse and the emission of shok waves and light �ashes9
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Figure 1.1: Collapsing bubble (upper sequene of pitures) and sent out shok wave(lower sequene). The pitures are taken from [48℄.are far from being ompletely understood. Researh and investigation of single bubblesand bubble ensembles are of high interest beause of the following reasons:
• Industrial Interest. Turbines, pumps, ships propellers and nozzles get damagedby the resulting shok waves and su�er a loss of e�ieny when the e�et ofavitation ours.
• Medial Interest. The destrutive behavior of avitation an also be of a bene�-ial use. For example kidney stones an be destroyed by appliation of foussedultrasound whih auses avitation, see [61℄.
• Chemial Interest. The hemial e�ets of ultrasound are a result of avitationand are investigated in the �eld of sonohemistry.Most of the above information, inluding the pitures of the ollapsing bubble, are takenfrom R. Geislers homepage [48℄, see also [47℄.At the time of this writing an intensive work on modelling (on the miro and marosale), numerial simulation and validation of the above mentioned proesses is be-ing arried out within the projets of the DFG-CNRS researh group Miro-MaroModelling and Simulation of Liquid-Vapor Flows. This work is also supported by thisresearh group.The presene of shok waves in the physial experiments indiate that ompressibil-ity of the �uid may have an important in�uene on the avitation proess. Thus, theunderlying mathematial model should take the e�et of ompressibility into aount.The main di�erene between the existing mirosopi models for phase transition phe-nomena onsists in the representation of the interfae between the liquid and vaporphases. The �rst group of models use a sharp resolution of the interfae. This meansthe interfae has no spatial dilatation and the thermodynami quantities are in generaldisontinuous over the interfae. This is the lass of sharp interfae models. On theother hand we have the lass of di�use interfae models. Here the interfae has a smallpositive size and the thermodynami quantities vary rapidly but smoothly within thisinterfaial region between vapor and liquid states.



1.1. MOTIVATION 11The model that we onsider belongs to the lass of di�use interfae models and is anextension of the ompressible Navier-Stokes equations that goes bak to Korteweg [72℄(1901). Here, for simpliity, we state this Navier-Stokes-Korteweg model (abbreviatedas NSK model) only in the isothermal ase
ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ ·
(

ρuuT
)

+ ∇p(ρ) = ∇ · (τ + K) ,
(1.1)with suitable initial and boundary onditions. In the equation above ρ denotes thedensity and u the veloity of the �uid. For the pressure p an appropriate equation ofstate must be hosen that has the apability of desribing the pressure in the vapor aswell as in the liquid phase. The simplest equation of state that an aomplish this isthe van der Waals equation of state. Note that there is no additional order parameterin this model that distinguishes between the phases. In this model the density itself isthe order parameter. Low density states haraterize the vapor phase and high values ofthe density the liquid phase with an unphysial set of density states in between. In theequation above τ denotes the usual visous part of the stress tensor and the di�ereneto the lassial Navier-Stokes equations is the ontribution of the Korteweg part to thestress tensor whih is given by

K = λ

[(

ρ∆ρ+
1

2
|∇ρ|2

)

I −∇ρ∇ρT

]

.This ontribution is responsible for the �nite, nonzero size of the interfae and ats asa penalty term for phase transitions. Thus, the interfae is minimized in some sensewhen the �ow approahes an equilibrium state with vanishing veloity. The idea ofusing density gradients to penalize phase transition goes bak to van der Waals [115℄(1894).The di�use Navier-Stokes-Korteweg model has several advantages over existing sharpinterfae models. For instane, sharp interfae models need an additional jump onditionbeause of the disontinuity over the interfae (kineti relation), see for example [85℄.This kind of jump ondition is not neessary for di�use interfae models beause thereis no jump aross the interfae. The NSK model impliitly inludes the physial e�etof surfae tension, sharp interfae models need an extra ontribution to the stress tensorto inlude this e�et. Topologial hanges in the solution are possible without speialtreatment and it is not neessary to trak the interfae by a Level Set or Volume of Fluidmethod as for sharp interfae methods, see [29℄. But there are still some disadvantages.Due to the resolution of a small di�use interfae and the presene of the higher orderderivatives the time step in fully disrete numerial shemes must be hosen extremelysmall to guarantee the stability of the method. Moreover, most standard shemes annotbe applied beause of the presene of the unphysial (ellipti) region in the state spae.Figure 1.2 shows a sketh of the basi physial experiment for the numerial simulationsonsidered in this work. It shows a ontainer �lled with liquid and a few vapor bubblesin the surrounding liquid. At the (solid) ontainer wall a �xed onstant temperature isimposed and depending on the experiment the ontainer wall may or may not move. Inases where the ontainer wall moves, the boundary ondition u = 0 has to be replaedby u = uw, where uw denotes the presribed veloity of the moving wall. We are
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solid wall

solid wall

u = 0, θ = const

vapour bubble(s)

liquid

liquid

liquidFigure 1.2: Sketh of the underlying physial experiment.interested in the dynamis and time evolution of the on�guration starting with thisdata.The main goal of this work is the development and implementation of a software pak-age for the disretization in multiple spae dimensions of general evolution equationsinluding onservative terms, nononservative terms, soures and higher order deriva-tives. The resulting method should be based on modern numerial tehniques suhas adaptively re�ned meshes, load balaning, parallelization, higher order spae andtime disretization. The Navier-Stokes-Korteweg model should be disretized using thispakage. Loal adaptivity and MPI based parallelization are absolutely neessary forthe resolution of the interfae and the proessing of the high numerial ost even intwo spae dimensions. The resulting C++ software pakage should have an easy tounderstand modular design suh that it an easily be applied to similar equations. Abasi desription of the pakage an be found in the appendix.

Figure 1.3: Blades of a ship propeller damaged by avitation bubbles. This piture ispublished under the ShareAlike Liense v. 2.5.



1.2. RESULTS AND NEW CONTRIBUTIONS 131.2 Results and new ContributionsThis setion summarizes the main results and (at the time of this writing) new ontri-butions of this thesis.The main fous of this work is the reliable disretization of the isothermal version ofthe Navier-Stokes-Korteweg system and the onstrution of (quasi-)exat solutions thatserve as benhmarks. A disretization of the full temperature dependent model hasalso been developed but not tested for reliability as muh as it has been done for theisothermal version.
• The existene of traveling wave solution is only proven for a modi�ed system. The�rst step of this proof is adapted to the original system (1.1) in Setion 3.2.2. Theseond step an possibly also be adapted to the original system but it is tehniallyand lengthy and does not �t properly in this work.
• Computation of stati equilibrium on�gurations: For rotational symmetri solu-tions it is lear that the NSK system redues to an ordinary di�erential equation.The ruial part is the appropriate hoie of boundary ondition in order to om-pute this kind of solutions suessfully. This is done in Setion 4.1. Using thesekinds of solutions, the physial parameters suh as surfae tension an be identi-�ed. This veri�es the formula for surfae tension, given in [75℄, numerially.
• Computation of traveling wave solutions: The method is based on the approahgiven in [43℄ but not straightforward to generalize to ompute traveling wavesolutions of the NSK equations. We give this generalization of the method as wellas numerial results in Setion 4.2.
• In Setion 5.2 we onstrut a new well balaned �rst order sheme for the dis-retization of the isothermal version of the Navier-Stokes-Korteweg system in mul-tiple spae dimensions. Numerial results indiate that this is a reliable disretiza-tion of the system.
• Also in Setion 5.3 we demonstrate that the relaxation sheme given in [29℄, [30℄does not produe the orret results (exept for stati equilibrium on�gurations).
• In Setion 6.2.3 we give a new higher order disretization for nononservativeequations based on the Disontinuous Galerkin approah and the de�nition ofnononservative produts given in [36℄. This kind of nononservative disretiza-tion is not limited to the NSK system. It is very well suited for the disretizationof general nononservative equations, for example equations arising from a ho-mogenization proess are usually nononservative.
• We prove a ell entropy inequality and a resulting L2 stability estimate for a semi-disrete Loal Disontinuous Galerkin disretization of a model problem, similarto the result given in [130℄.
• We give the omplete higher order well balaned disretization for the NSK systembased on the Disontinuous Galerkin approah for onservative, nononservativeand higher order terms in Setion 6.9. The numerial results are summarized inthe next setion.
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• The main result of this work is the developed C++ software pakage for the dis-retization of general time dependent (onvetion dominated) partial di�erentialequations. The pakage provides� loal adaptive (stable) grid re�nement of one, two and three dimensionalsimpliial meshes.� load balaning (ParMETIS based) in a parallel MPI based environment.� higher order Loal Disontinuous Galerkin disretization inluding nonon-servative disretization.� higher order time disretization based on expliit, impliit and semi-impliitRunge-Kutta methods as well as expliit and impliit Extrapolation methods.The disretization of the Navier-Stokes-Korteweg system is done by appliationof this pakage.1.3 Outline of this ThesisIn Chapter 2 we provide the thermodynami bakground and disuss the Navier-Stokes-Korteweg model together with appropriate boundary onditions in detail for the isother-mal as well as for the temperature dependent ase. We provide the dimensionless formof the omplete model as well as the quantitative relations to the orresponding phys-ial quantities. The physial e�et of surfae tension that is impliitly inluded in themodel, in ontrast to sharp interfae models where surfae tension is usually inludedby means of an additional boundary ondition at the interfae, is also disussed in thishapter.In Chapter 3 we summarize some of the known theoretial results onerning the Navier-Stokes-Korteweg equations. These inlude the results about speial kinds of solutions,suh as stati equilibrium and traveling wave solutions, as well as the existene of gen-eral loal or global in time solutions of the orresponding Cauhy-Problem.The system has a very ompliated struture suh that the onstrution of analytialsolutions seems to be out of sope. However, for the validation of numerial shemes itis important to have exat solutions available. Some of the speial solutions disussedin Chapter 3 satisfy ordinary di�erential equations. These kinds of solutions an beomputed via reliable numerial methods very aurately. This is the main purpose ofChapter 4.Chapter 5 is dediated to the onstrution of basi �rst order shemes. We presentthree di�erent shemes:
• a sheme in onservative form that produes the orret solutions in the testedases,
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• a well balaned sheme in non-onservative form that does a muh better job thanthe �rst sheme,
• and a relaxation sheme that turned out to give the orret solution only in speialases. Therefore this sheme is of very limited use.The seond sheme, the non-onservative well balaned sheme in is then generalizedto higher order shemes using the Loal Disontinuous Galerkin approah in Chapter6. We present the method in a general framework of time dependent partial di�eren-tial equations inluding onservative terms, higher order derivatives, soure terms andnononservative produts. We disuss the Loal Disontinuous Galerkin disretizationof simple examples suh as the one dimensional salar onvetion-di�usion equationand a salar model equation for the Navier-Stokes-Korteweg system. Finally we givethe omplete disretization for the isothermal NSK system in one, two and three spaedimensions and the extension to the temperature dependent model in two spae dimen-sions (the extension to 3d is straightforward).The higher order time disretization via expliit, impliit and semi-impliit Runge-Kuttamethods is disussed in Chapter 7.In order to onstrut e�ient numerial shemes modern numerial tehniques suh asloal mesh adaption, parallelization and load balaning are extremely important. Thesetehniques are disussed in Chapter 8. Without these tehniques it is not possible toresolve di�use interfaes ompletely and solve the equation in appropriate time due tothe high omputational ost.In Chapter 9 we present the numerial results using the higher order well balanedshemes. Here we summarize the results as follows:
• The approximate solutions onverge to the exat solutions in the test ases wherea (quasi-)exat solution is known.
• The expeted order of the numerial shemes is reahed in pratial appliations.This is observed using the test ases onstruted in Chapter 4. Improving theorder of the shemes really leads to more e�ient shemes.
• Loal mesh adaption is neessary for the resolution of the di�use interfaes andleads to more e�ient shemes. Simple heuristi indiators (based on densitygradients) are su�ient to trak the interfaes.
• Impliit time stepping avoids a ompliated time step restrition ontrol for theNSK system and leads to more e�ient shemes.
• Parallelization of the ode is neessary beause of the high omputational ostand high memory onsumption, even in two spae dimensions. It leads to moree�ieny in the sense that the omputation runs faster when more mahines areavailable.



16 CHAPTER 1. INTRODUCTION
• Solutions of the Navier-Stokes-Korteweg model seem to have quantitatively theorret physial behavior. However, physial experiments on the sale of the nu-merial experiments are not known and therefore existing physial data is notdiretly omparable to the data produed by the numerial simulations.A desription of the software pakage (inluding example implementations), physialdata of some �uids, notational onventions and some de�nitions that did not �t in theabove mentioned hapters an be found in the appendix.



Chapter 2
Derivation of the Model
The aim of this hapter is to derive a system of partial di�erential equations withappropriate equations of state for the simulation of a liquid-vapor �ow inluding thee�et of phase transition. However, it is not really a derivation of a mathematialmodel, it is a derivation of su�ient onditions for a model to be thermodynamiallyonsistent under the assumption that the Helmholtz free energy does not only dependon the state of the �uid (as in the lassial ase) but also on its environment, modeledby the gradient of the density.In order to lose the system we hoose a van der Waals equation of state beause itis one of the simplest equations of state that is apable to desribe liquid and vaporphases and it is in quite good agreement with many �uids when the temperature of the�uid is lose to its ritial temperature.The resulting governing equations, the Navier-Stokes-Korteweg system, belongs to thelass of di�use interfae models and an be seen as a Cahn-Hilliard type model for theequations of gas dynamis. The model ontains some nonlassial ontributions of termsthat guarantee that smooth solutions satisfy the seond law of thermodynamis, seeTheorem 2.2.2. There is no additional order parameter in the Navier-Stokes-Kortewegequations that distinguishes between the liquid and vapor phases as in other di�useinterfae models, see for example [15℄. Liquid and vapor phases are determined bythe value of the density only. An overview of the theory of di�use interfaes and theNavier-Stokes-Korteweg system an be found in [1℄, see also [41℄.For the numerial treatment of the system of partial di�erential equations it is useful tohave the thermodynami and kinemati quantities in dimensionless form available. Weprovide dimensionless quantities in terms of ritial values sine the hosen equation ofstate is a good approximation to realisti values near the ritial point of the �uid. Therelation of all dimensionless values given throughout this hapter to the orrespondingphysial quantities is summarized in Setion B.1. In Setion B.2 the neessary physialvalues are provided for three di�erent �uids. These measured values are taken from theNIST database [125℄. 17



18 CHAPTER 2. DERIVATION OF THE MODEL2.1 Thermodynami RelationsThermodynamis is a funny subjet. The �rst time you go through it, you don't under-stand it at all. The seond time you go through it, you think you understand it, exeptfor one or two small points. The third time you go through it, you know you don'tunderstand it, but by that time you are so used to it, it doesn't bother you any more.Arnold SommerfeldIn the �rst setion of this hapter we provide the neessary thermodynami bakground.Most of the information given below an be found in standard textbooks suh as [87℄and [78℄. Based on a Helmholtz free energy funtion of a �uid we an de�ne all thermo-dynami quantities we need in this work in terms of this free energy and its derivatives.We provide the equation of state we use for numerial simulations. This is the so alledvan der Waals equation of state in the most general form. With the van der Waalsequation of state the oexistene of liquid and vapor phases in the �uid are possible.This equation of state is in good agreement with many �uids when the temperature ofthe �uid is lose to the ritial temperature, see Setion B.2. Therefore it is appropriateto express this equation of state in dimensionless form in terms of the ritial values:ritial temperature, ritial density and ritial pressure. Later in this setion we pro-vide a dimensionless van der Waals equation of state with all unneessary parameterssaled out. This results in a general equation with only one parameter (heat apaityat onstant volume) left that has to be determined for di�erent �uids. In Setion B.2we provide the missing data for di�erent �uids.Given a Helmholtz free energy funtion f = f(θ, ρ) that may depend on the temper-ature θ and the density ρ of the �uid, all other important (with respet to this work)thermodynami quantities, namely the internal energy e, the entropy s, the pressure pand the hemial potential µ, an be expressed in terms of θ, ρ, f and derivatives of f .In general all thermodynami quantities are funtions of θ and ρ.De�nition 2.1.1 (Classial Thermodynami Relations)Given a Helmholtz free energy f(θ, ρ) the thermodynami quantities are de�ned by therelations
e(θ, ρ) = f(θ, ρ)− θfθ(θ, ρ), internal energy, (2.1)
s(θ, ρ) = −fθ(θ, ρ), spei� entropy, (2.2)
p(θ, ρ) = ρ2fρ(θ, ρ), pressure, (2.3)
µ(θ, ρ) = (ρf(θ, ρ))ρ, hemial potential. (2.4)Note: In a single omponent �uid (�uids of the type onsidered in this work) thehemial potential is the same as the so alled Gibbs free energy. They are not thesame in multi omponent �uids (not onsidered here).



2.1. THERMODYNAMIC RELATIONS 19The simplest (and one of the most important) example of a ompressible �uid is thatof a perfet gas. The free energy of a perfet gas and the resulting thermodynamiquantities are given below.Example 2.1.2 (Perfet Gas)The Helmholtz free energy for a perfet gas and the resulting thermodynami quantities(aording to (2.1) - (2.3)) are given by
f(θ, ρ) = Rθ log

(

ρ

ρ0

)

− cθ log

(

θ

θ0

)

+ cθ + cst.

e(θ, ρ) = cθ + cst,

s(θ, ρ) = −R log

(

ρ

ρ0

)

+ c log

(

θ

θ0

)

,

p(θ, ρ) = Rρθ.

ρ0, θ0 > 0 are referene values for the density and temperature respetively and R, c, cstare real onstants with R, c > 0.Another important example of a ompressible �uid is the van der Waals �uid. Theadvantage of a van der Waals equation of state is its apability to desribe liquid-vaporphase transitions below a ritial temperature. The free energy of a van der Waals �uidand the remaining quantities are given in Example 2.1.3.Example 2.1.3 (van der Waals Fluid)The Helmholtz free energy for a van der Waals �uid and the resulting thermodynamiquantities (aording to (2.1) - (2.4)) are given by
f(θ, ρ) = −aρ+ kθ log

(

ρ

b− ρ

)

− cθ log

(

θ

θ0

)

− dθ + cst. (2.5)
e(θ, ρ) = −aρ+ cθ + cst,

s(θ, ρ) = −k log

(

ρ

b− ρ

)

+ c log

(

θ

θ0

)

+ c+ d,

p(θ, ρ) = kb
ρθ

b− ρ
− aρ2,

µ(θ, ρ) = kθ

(

b

b− ρ
+ log

(

ρ

b− ρ

))

− 2aρ.Here a, b, c, d, k, cst are real onstants with a, b, c, k > 0 and θ0 > 0 is a referene tem-perature. The above quantities are de�ned for states (θ, ρ) ∈ (0,∞)× (0, b) but the statespae is partially meaningless from the physial point of view. For example the pressurean beome negative in parts of the state spae.In the following we will always onsider a van der Waals �uid. The free energy of a vander Waals equation of state in this general form an be found in [7℄, see also [78℄. The



20 CHAPTER 2. DERIVATION OF THE MODELonstant c in the equation of state is known as the heat apaity at onstant volume.Some of the onstants an be omitted for our purposes beause they will drop out of theequations we are interested in, but they might be important when e�ets like hemialreations are taken into aount.The ritial temperature (the smallest temperature for that the �uid an onsist of onlyone phase) of a van der Waals �uid is de�ned (using the oe�ients from Example 2.1.3)by
θcrit =

8ab

27k
.Figure 2.1 shows the pressure p and the hemial potential µ as a funtion of the density

ρ for a onstant �xed temperature θ below, at, and above the ritial temperature. Theritial temperature is the smallest temperature suh that the graphs of p and µ aremonotonially inreasing.
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Figure 2.1: Graphs of pressure (left) and hemial potential (right) for temperaturesbelow, at, above the ritial temperature.Below the ritial temperature the graph of the pressure and the graph of the hem-ial potential onsist of two monotone inreasing branhes separated by a monotonedereasing branh, the so alled ellipti region. This behavior makes it possible to de-sribe vapor and liquid phases in a van der Waals �uid. The �rst monotone inreasingbranh of p and µ de�nes the vapor phase, the seond one the liquid phase. These twobranhes are onneted smoothly by the ellipti region, whih is a set of unphysialstates. Above the ritial temperature only one phase exists, in this ase the �uid isalled superritial. A graph of the pressure with a omparison to measured real worlddata for di�erent �uids an be found in setion B.2, see Figure B.5.Assoiated with the ritial temperature the ritial density ρcrit and ritial pressure
pcrit are de�ned by the in�etion point of the p-graph at the ritial temperature. Using



2.1. THERMODYNAMIC RELATIONS 21the oe�ients from above these quantities are given by
ρcrit =

b

3
,

pcrit =
1

27
ab2.Using the ritial values θcrit, ρcrit and pcrit we an introdue a dimensionless equationof state for the pressure

p̃(θ̃, ρ̃) =
1

pcrit
p(θcrit θ̃, ρcrit ρ̃) =

8θ̃ρ̃

3 − ρ̃
− 3ρ̃2 (2.6)that does not depend on oe�ients k, a and b anymore. Additionally we introdue adimensionless equation of state for the internal energy. We hoose a referene internalenergy

eref =
pcrit

ρcrit
(2.7)that is in general not the internal energy at the ritial values θcrit and ρcrit. Thedimensionless internal energy is de�ned by

ẽ(θ̃, ρ̃) =
1

eref
e(θcrit θ̃, ρcrit ρ̃)

=
1

eref

(

cθcrit θ̃ − aρcrit ρ̃
)

=
ρcrit

pcrit

(

cθcrit θ̃ − 3
pcrit

ρcrit
ρ̃

)

= c̃θ̃ − 3ρ̃ (2.8)with a dimensionless parameter
c̃ =

θcrit ρcrit

pcrit
c. (2.9)Further we de�ne the dimensionless free energy f̃ , entropy s̃ and hemial potential µ̃by

f̃(θ̃, ρ̃) =
1

eref
f(ρcrit ρ̃, θcrit θ̃),

s̃(θ̃, ρ̃) =
θcrit

eref
s(ρcrit ρ̃, θcrit θ̃),

µ̃(θ̃, ρ̃) =
1

eref
µ(ρcrit ρ̃, θcrit θ̃).Some of the onstants in the free energy (2.5) of a van der Waals �uid are not importantas long as we neglet hemial reations, i.e., these onstants will drop out of all equa-tions we onsider. Thus, we an hoose θ0 = θcrit, d = −c, cst = 0. We summarize theabove results and de�ne the equations of state for a dimensionless van der Waals �uid.For simpliity we omit the tilde symbols that haraterized the dimensionless quantities.



22 CHAPTER 2. DERIVATION OF THE MODELExample 2.1.4 (Dimensionless van der Waals Fluid)
f(θ, ρ) = −3ρ+

8

3
θ log

(

ρ

3 − ρ

)

+ cθ(1 − log(θ)), (2.10)
e(θ, ρ) = −3ρ+ cθ, (2.11)
s(θ, ρ) = −8

3
log

(

ρ

3 − ρ

)

+ c log(θ), (2.12)
p(θ, ρ) =

8θρ

3 − ρ
− 3ρ2, (2.13)

µ(θ, ρ) =
8

3
θ

(

3

3 − ρ
+ log

ρ

3 − ρ

)

− 6ρ, (2.14)where the dimensionless heat apaity at onstant volume c is related to the physialquantity by equation (2.9).Note: The dimensionless quantities an be obtained from the dimensionless free energyby the relations (2.1) - (2.4).De�nition 2.1.5 (Liquid and Vapor Phases in a van der Waals Fluid)For a �xed temperature θ < θcrit let ρv ∈ (0, b) denote the state where p and µ havetheir loal maximum, and ρ
l
∈ (0, b) the state of their loal minimum. Then the phasesof a van der Waals �uid are de�ned by

(0, ρv) : vapor phase,
(ρv, ρl

) : ellipti or spinodal region,
(ρl, b) : liquid phase.Here b is equal to 3 in the dimensionless ase.De�nition 2.1.6 (Maxwell States in a van der Waals Fluid)Let θ < θcrit be a �xed temperature. Then the Maxwell states ρM

v ∈ (0, ρv) and ρM
l ∈

(ρ
l
, b) are uniquely de�ned by the relations

p(θ, ρM
v ) = p(θ, ρM

l ), (2.15)
µ(θ, ρM

v ) = µ(θ, ρM
l ). (2.16)For equivalent de�nitions of the Maxwell states see setion A.3.Figure 2.2 shows the phases and Maxwell states of a van der Waals �uid below theritial temperature. The Maxwell values an be seen as equilibrium values at onstanttemperature, see Setion 2.8. The set {ρM

v (θ) | θ ∈ (0, θcrit)} ∪ {ρM
l (θ) | θ ∈ (0, θcrit)}is also alled saturation urve, see the phase diagram 2.3.
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vFigure 2.2: Graphs of pressure, hemial potential for a temperature below the ritialtemperature, Maxwell states and boundary of the ellipti region.The Maxwell states ρM
v (θ) and ρM

l (θ) of a dimensionless van der Waals �uid an beapproximated by the formulas
ρM

v (θ) ≈ 1.0 −
√
θ (2.0 − 1.5(1.0 − θ)),

ρM
l (θ) ≈ 1.0 +

√
θ (2.0 + 0.5(1.0 − θ)).Note: These formulas are obtained by urve �tting and an be used as a starting guessfor a Newton iteration to ompute the exat Maxwell states. The above formulas givequite aurate results in the dimensionless temperature range θ ∈ [0.6, 1.0].Antanovskii [2℄ gives a generalization of the free energy and the thermodynami quan-tities for the ase when the free energy is not only a funtion of the states θ and ρ butalso depends on the norm of the density gradient α = 1

2 |∇ρ|2. This dependene on thedensity gradient models a dependene on the environment of the material and allowsa liquid-vapor interfae to be of �nite, nonzero thikness. For his de�nition of the freeenergy Antanovskii uses the fat that a �uid at stati equilibrium maximizes its entropywhih is assumed to depend on the density gradient. The idea of using gradients of thedensity to model di�use interfaes goes bak to van der Waals [115℄ who gave a theorybased on thermodynamial priniples.De�nition 2.1.7 (Extended Thermodynami Relations)Let an extended free energy f = f(θ, ρ, α) be given. Then the extended internal energyand entropy are de�ned by the relations
e(θ, ρ, α) = f(θ, ρ, α) − θfθ(θ, ρ, α), (2.17)
s(θ, ρ, α) = −fθ(θ, ρ, α). (2.18)
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Figure 2.3: Phase diagram of the dimensionless van der Waals �uid.For a funtion ϕ = ϕ(θ, ρ, α) where α stands for 1
2 |∇ρ|2 we use in the following thenotation

[ϕ]ρ = ϕρ −∇ · (ϕα∇ρ) (2.19)for the variational derivative as it is used in standard textbooks suh as [32℄.Antanovskii [2℄ gives also a de�nition of an extended pressure and an extended hemialpotential. We do not use these quantities expliitly but for the sake of ompleteness welist these de�nitions at this point:
p = ρ2[f ]ρ, µ = [ρf ]ρ,where we have used the de�nition of the variational derivative given in (2.19).2.2 Equations of MotionThis setion is dediated to the desription of the motion of a �uid in some domain

Ω ∈ R
3 as a ontinuous medium. The motion of the �uid is governed by the fundamentalphysial laws of onservation of mass, onservation of momentum (Newtons seond law),onservation of energy (�rst law of thermodynamis) and entropy prodution (seondlaw of thermodynamis). Smooth solutions of the resulting governing equations willsatisfy all of the above mentioned physial priniples, see Theorem 2.2.2.



2.2. EQUATIONS OF MOTION 25Based on the Reynolds transport theorem, see [42℄, we desribe the evolution in timeof a �uid in a domain Ω ∈ R
3. In the following we assume that all appearing funtionsare su�iently smooth.Let denote ω(t) ⊂ Ω an arbitrary ontrol volume that evolves in time. Then the density,momentum and total energy of the �uid have to satisfy to following balane equationsand additionally the entropy prodution equation:Conservation of mass
d

dt

∫

ω(t)
ρ dx = 0, (2.20)the momentum balane equation (Newtons seond law)

d

dt

∫

ω(t)
ρu dx =

∫

∂ω(t)
Pn dσ, (2.21)the energy balane equation (�rst law of thermodynamis)

d

dt

∫

ω(t)
ρ

(

e+
1

2
|u|2

)

dx =

∫

∂ω(t)
Pu · n − qE · n dσ, (2.22)and additionally the entropy prodution equation (seond law of thermodynamis)

d

dt

∫

ω(t)
ρs dx =

∫

ω(t)
sprod dx −

∫

∂ω(t)
qS · n dσ. (2.23)In the above relations ρ = ρ(x, t) > 0 denotes the density of the �uid, u = u(x, t) ∈ R

3the veloity, θ = θ(x, t) > 0 the temperature of the �uid. Further, e = e(θ, ρ, α) is thegeneralized spei� internal energy and s = s(θ, ρ, α) is the generalized spei� entropyof the �uid. Here and in the following α stands always for 1
2 |∇ρ|2. The generalizedinternal energy and entropy are related to the generalized free energy by the relations(2.17), (2.18). P ∈ R

3×3 denotes a general symmetri stress tensor, qE ∈ R
3 a generalheat �ux, qS ∈ R

3 a general entropy �ux and sprod > 0 a general entropy prodution.They will depend on the variables ρ, u, θ and on derivatives (possibly higher orderderivatives) of these variables.Note: The symmetry of the general stress tensor P implies the onservation of angularmomentum, see for example [42℄.For thermodynami onsisteny it is important (otherwise the behavior of the �uidwould be unphysial) that the entropy prodution sprod is nonnegative. Using the ther-modynami relations (2.17) and (2.18) we derive su�ient onditions on the stress tensor
P and the heat �ux qE that ensure the entropy prodution to be nonnegative.



26 CHAPTER 2. DERIVATION OF THE MODELUsing Reynolds transport theorem, the Gauss theorem and the fat that ω(t) an behosen arbitrarily (for details see [42℄) we derive from the integral equations (2.20) -(2.23) the equations of motion in di�erential form
D

Dt
ρ = −ρ∇ · u, (2.24)

ρ
D

Dt
u = ∇ · P , (2.25)

ρ
D

Dt
e = −∇ · qE + P : ∇u, (2.26)

ρ
D

Dt
s = −∇ · qS + sprod. (2.27)where D

Dt = ∂t + u · ∇ denotes the material derivative.using the ontinuity equation (2.24) and the hain rule
D

Dt
e =

(

eθ
D

Dt
θ + eρ

D

Dt
ρ+ eα∇ρ · (−∇(ρ∇ · u) −∇uT∇ρ)

) (2.28)we derive the relation
P : ∇u −∇ · qE = ρ

D

Dt
e

= ρ

(

eθ
D

Dt
θ + eρ

D

Dt
ρ+ eα∇ρ · (−∇(ρ∇ · u) −∇uT∇ρ)

)

= ρeθ
D

Dt
θ −∇ · (ρ2∇ · ueα∇ρ)

−
(

ρ2eρI − ρ2∇ · (eα∇ρ)I − ρeα|∇ρ|2I + ρeα∇ρ∇ρT
)

: ∇u.In the above equations the olored terms from one equation to the next orrespondto eah other (by multiplying the olored terms with the remaining terms). Using thenotation (2.19), this gives
ρeθ

D

Dt
θ =

(

P + ρ2[e]ρI + ρeα(∇ρ∇ρT − |∇ρ|2I)
)

: ∇u

−∇ ·
(

qE − ρ2∇ · ueα∇ρ
)

.Now, using eθ = θsθ and f = e− θs, see (2.17) and (2.18), we get
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ρsθ

D

Dt
θ =

1

θ

(

P + ρ2[f ]ρ + ρfα

(

∇ρ∇ρT − |∇ρ|2I
))

: ∇u

+
1

θ

(

ρ2[θs]ρ + ρθsα

(

∇ρ∇ρT − |∇ρ|2I
))

: ∇u

−1

θ
∇ ·
(

qE − ρ2∇ · ufα∇ρ
)

+
1

θ
∇ ·
(

ρ2∇ · uθsα∇ρ
)

=
1

θ

(

P + ρ2[f ]ρ + ρfα

(

∇ρ∇ρT − |∇ρ|2I
))

: ∇u

−∇ ·
(

1

θ
(qE − ρ2∇ · ufα∇ρ)

)

− 1

θ2
(qE − ρ2∇ · ufα∇ρ) · ∇θ

+
1

θ

(

ρ2(θ[s]ρ − sα∇ρ · ∇θ) + ρθsα

(

∇ρ∇ρT − |∇ρ|2I
))

: ∇u

+
1

θ
∇ ·
(

ρ2∇ · uθsα∇ρ
)

.A further manipulation shows that
−ρsρ

D

Dt
ρ− ρsα∇ρ · (−∇(ρ∇ · u) −∇uT∇ρ)

=
1

θ

(

ρ2(θ[s]ρ − sα∇ρ · ∇θ) + ρθsα

(

∇ρ∇ρT − |∇ρ|2I
))

: ∇u

+
1

θ
∇ ·
(

ρ2∇ · uθsα∇ρ
)

.Using the hain rule (2.28) for s instead of e we �nally arrive at
ρ
D

Dt
s =

1

θ

(

P + ρ2[f ]ρ + ρfα

(

∇ρ∇ρT − |∇ρ|2I
))

: ∇u

−∇ ·
(

1

θ

(

qE − ρ2∇ · ufα∇ρ
)

)

− 1

θ2

(

qE − ρ2∇ · ufα∇ρ
)

· ∇θ.We must ensure that the entropy prodution is a nonnegative funtion. This gives riseto the de�nition of a material of Korteweg type.De�nition 2.2.1 (Korteweg type material)We all a material (a �uid) to be of Korteweg type if the stress tensor, the heat �ux and



28 CHAPTER 2. DERIVATION OF THE MODELthe entropy �ux are given by the relations
P = −ρ2[f ]ρI − ρfα

(

∇ρ∇ρT − |∇ρ|2I
)

+ τ , (2.29)
qE = ρ2∇ · ufα∇ρ− κ∇θ, (2.30)
qS = −κ

θ
∇θ, (2.31)

sprod =
1

θ
τ : ∇u +

1

θ2
κ|∇θ|2. (2.32)

τ = µ
(

∇u + ∇uT
)

+ ν∇ · uI denotes the usual Navier-Stokes Tensor, µ and ν with
µ > 0, 2µ + 3ν ≥ 0 the oe�ients of visosity and κ > 0 the oe�ient of heatondutivity. The oe�ients µ, ν and κ may depend on temperature and density.Note that the oe�ient ν might be negative but the ondition 2µ+3ν ≥ 0 ensures thatthe entropy prodution is nonnegative, see for example [42℄. A typial hoie for theoe�ients of visosity is µ > 0 and ν = −2

3µ whih is physially orret for one-atomigases. The expressions for the stress tensor and the heat �ux ontain the lassial on-tributions of the Stokes and Fourier laws as well as nonlassial ontributions in termsof ∇ρ, whereas the entropy �ux and entropy prodution ontain only the lassial on-tributions.We summarize the statements above as a theorem.Theorem 2.2.2 Let a material of Korteweg type be given and let (ρ,u, θ) be a su�-iently smooth solution of (2.24), (2.25), (2.26). Then the solution satis�es the entropyequation (2.27) with the entropy �ux given by (2.31) and a positive entropy produtiongiven by (2.32), i.e., the solution makes sense from the physial point of view.Note: The above given de�nition of a material of Korteweg type is not the only knownway to ensure the positivity of the entropy prodution. It is possible to add a nonlas-sial ontribution to the entropy �ux in favor of the ontribution to the heat �ux. Thisresults in the lassial Fourier law for the heat �ux, see the appendix in [75℄.2.3 The Navier-Stokes-Korteweg SystemFor the speial hoie of the extended free energy
f(θ, ρ, α) = f vdW (θ, ρ) +

λ

ρ
α (2.33)where f vdW denotes the van der Waals free energy (2.5) and λ > 0 is a onstantequations (2.24) - (2.26) in onservative form read

ρt + ∇ · (ρu) = 0, (2.34)
(ρu)t + ∇ · (ρuuT ) + ∇p = ∇ · (τ + K), (2.35)

Et + ∇ · ((E + p)u) = ∇ · ((τ + K)u) −∇ · qE. (2.36)



2.4. DIMENSIONLESS FORM OF THE NSK-SYSTEM 29Here K = λ
[(

ρ∆ρ+ 1
2 |∇ρ|2

)

I −∇ρ∇ρT
] denotes the Korteweg part of the stresstensor, p = p(θ, ρ) the pressure with respet to the van der Waals free energy, E =

ρ
(

e(θ, ρ) + 1
2 |u|2

)

+ λ
2 |∇ρ|2 the total energy of the �uid and qE the heat �ux from(2.30).The ontribution λ

ρα in (2.33) is hosen suh that we arrive at the lassial Navier-Stokes-Korteweg system given in the literature (e.g. [1℄). Antanovskii uses the ontri-bution λθα instead, see [2℄. Hattori and Li state that the hoie λα might be morephysial but ompliated to handle from the mathematial point of view, see [57℄.For the Korteweg part of the stress tensor we have the useful identity
∇ · K = λρ∇∆ρ. (2.37)The �rst order part of system (2.34) - (2.36) is not hyperboli in the omplete state spaebeause of the shape of the pressure p below the ritial temperature. This results inan unstable behavior of solutions in parts of the state spae on the one hand and ausesproblems for the numerial treatment of the system on the other hand, i.e., numerialshemes that are based on Riemann-Solvers and Flux-Vetor-Splitting shemes annotbe applied to this system (at least not in the parts of the state spae where the soundspeed is imaginary).The Korteweg part of the stress tensor K was �rst given by Korteweg [72℄ in 1901.There, the density gradients modeled a nonloal interation of moleules within theliquid vapor interfae. The system given by equations (2.34) - (2.36) an be found inthis form in [1℄. In Chapter 3 we give some referenes to theoretial results assoiatedwith the Navier-Stokes-Korteweg system.2.4 Dimensionless Form of the NSK-SystemWe provide a dimensionless saling of all thermodynami and kinemati quantities wehave seen up to now in this setion. The result is the dimensionless Navier-Stokes-Korteweg system that has exatly the same struture and the same number of oe�-ients as system (2.34) - (2.36). The referene values for the thermodynami quantitiesare the ritial values of the �uid.Working with dimensionless values an be extremely useful for the numerial treatmentof the system sine density, veloity, temperature, pressure and other values are alwayslose to the value 1. Using dimensionless values makes it is easy to deide when aninterfae is small or large or when a visosity is too small to be resolved numerially.However, the use of dimensionless quantities does not improve the e�ieny of thenumerial method. It just gives a learer sight of the situation on the one hand and onthe other hand expressions like a total L2-error of a numerial solution may not makesense for physial values when a vetor valued solution has di�erent units for di�erentomponents.All relations between dimensionless and physial quantities given throughout this hap-ter are summarized in Setion B.1. In the following, values with a tilde denote dimen-



30 CHAPTER 2. DERIVATION OF THE MODELsionless quantities, whereas the orresponding values without the tilde symbol denotethe assoiated physial one.In order to derive a dimensionless system with exatly the same struture we hoosenew saled variables (denoted by tilde symbols) as follows:
x = Lx̃, L > 0 referene length, (2.38)
t = T t̃, T > 0 referene time, (2.39)
ρ =

m

L3
ρ̃, m > 0 referene mass in a ube L3, (2.40)

u =
L

T
ũ,

L

T
referene veloity, (2.41)

θ = θcritθ̃, θcrit ritial temperature, (2.42)
(µ, ν) =

m

LT
(µ̃, ν̃), visosity, (2.43)

λ =
L7

mT 2
λ̃, apillarity, (2.44)

κ =
mL

θcritT 3
κ̃, heat ondution. (2.45)The only non-standard saling is the relation (2.44) for the apillarity oe�ient λ.The saling between the physial and the dimensionless apillarity oe�ient is hosensuh that the �nal system has exatly the same struture as the original system. Thereferene length L is usually related to the domain Ω, for example the side length of aube that ontains Ω. When we have hosen L we identify the referene mass m andreferene time T by the relations

ρcrit =
m

L3
, (2.46)

pcrit

ρcrit
=

L2

T 2
. (2.47)Further we hoose the referene internal energy to be of size

eref =
L2

T 2
. (2.48)Using the saling (2.38) - (2.45) the mass balane equation reads

ρcrit

T
ρ̃t̃ +

ρcritL

LT
∇̃ · (ρ̃ũ) = 0,where (·)t̃ denotes the derivative with respet to the dimensionless time variable t̃ and ∇̃the derivatives with respet to the dimensionless spae variable x̃. With these salingsand the dimensionless van der Waals equation of state (2.6) the momentum balane
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ρcritL

T 2
(ρ̃ũ)t̃ +

ρcritL
2

LT 2
∇̃ · (ρ̃ũũT ) +

pcrit

L
∇̃p̃(θ̃, ρ̃)

=
mL

L3T 2
∇̃ ·
(

µ̃(∇̃ũ + ∇̃ũT ) + ν̃∇̃ · ũI
)

+
ρ2

critL
7

L3mT 2
∇̃ ·
[

λ̃

(

ρ̃∆̃ρ̃+
1

2
|∇̃ρ̃|2

)

I − λ̃∇̃ρ̃∇̃ρ̃T

]

.The total energy density an be expressed in terms of the dimensionless values in thefollowing way
E = ρcrit ρ̃

(

eref ẽ(θ̃, ρ̃) +
L2

T 2

1

2
|ũ|2

)

+
L7ρ2

crit

L2mT 2

λ̃

2
|∇̃ρ̃|2

=
ρcrit L

2

T 2

(

ρ̃ẽ(θ̃, ρ̃) +
1

2
ρ̃|ũ|2 +

λ̃

2
|∇̃ρ̃|2

)

=
ρcrit L

2

T 2
Ẽ .Here we have used the dimensionless equation of state for the internal energy (2.8) andthe relations (2.38) - (2.45). Thus, �nally the energy balane equation beomes

ρcrit L
2

T 3
Ẽt̃ +

ρcrit L
3

LT 3
∇̃
(

(Ẽ + p̃(θ̃, ρ̃))ũ
)

=
mL2

L3T 3
∇̃ · (τ̃ ũ) +

ρ2
crit L

8

L3mT 3
∇̃ ·
(

K̃ũ
)

+
mLθcrit

L2θcrit T 3
∇̃ ·
(

κ̃∇̃θ̃
)

− ρ2
crit L

8

L3mT 3
∇̃ ·
(

λ̃ρ̃∇̃ · ũ∇̃ρ̃
)

.

τ̃ and K̃ denote the dimensionless Navier-Stokes and Korteweg part of the stress tensor.Multiplying the mass balane equation by T
ρcrit

, the momentum balane equation by
T 2

Lρcrit
, the energy balane equation by T 3

L2ρcrit
and using the relations (2.46), (2.47) givesthe dimensionless Navier-Stokes-Korteweg system

ρ̃t̃ + ∇̃ · (ρ̃ũ) = 0,

(ρ̃ũ)t̃ + ∇̃ · (ρ̃ũũT ) + ∇̃p̃(θ̃, ρ̃) = ∇̃ · (τ̃ + K̃),

Ẽt̃ + ∇̃ ·
(

(Ẽ + p̃(θ̃, ρ̃))ũ
)

= ∇̃ ·
(

(τ̃ + K̃)ũ
)

+∇̃ ·
(

κ̃∇̃θ̃ − λ̃ρ̃∇̃ · ũ∇̃ρ̃
)

.The dimensionless equations of state are given by (2.6), (2.8) and the dimensionlessquantities are related to the physial ones by the saling (2.38) - (2.45).



32 CHAPTER 2. DERIVATION OF THE MODEL2.5 Inluding GravityUp to now we have negleted external (volumetri) fores, suh as gravity, and heatsoures. Taking these e�ets into aount the Navier-Stokes-Korteweg system must bemodi�ed as
ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρuuT ) + ∇p = ∇ · (τ + K) + ρg,

Et + ∇ · ((E + p)u) = ∇ · ((τ + K)u) −∇ · qE + ρg · u +Q.where the volumetri fore g ∈ Rn and the heat soure Q ∈ R may depend on spaeand time variables in general. In the ase of gravity, g is simply a onstant vetor.Using the notation of the previous setion the physial and dimensionless quantities arerelated to eah other by the relations
g =

L

T 2
g̃, (2.49)

Q = ρcrit
L2

T 3
Q̃. (2.50)2.6 Boundary ConditionsTypial boundary onditions on ∂Ω for the Navier-Stokes equations are homogeneousDirihlet data for the veloity �eld (no-slip) and Dirihlet data for the temperature.

u = 0, (2.51)
θ = θb, (2.52)where θb is a given funtion on ∂Ω. Beause of the presene of the higher order termsin the Navier-Stokes-Korteweg equations an additional boundary equation is required.The additional boundary onditions we use have the e�et that they ontrol the ontatangle of a di�use interfae at the boundary. The simplest hoie is

∇ρ · n = 0, (2.53)whih is a speial form of
− ∇ρ
|∇ρ| · n = cosϕ, (2.54)where ϕ is the ontat angle between interfae and boundary, i.e., ϕ depends on thematerial of the �uid as well as on the material of the boundary.
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wall
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− ∇ρ

|∇ρ|

ϕ

ϕ

liquid

vapour

interface

Figure 2.4: Contat angle of a di�use interfae.2.7 The Isothermal CaseThe main fous of this work is the development and veri�ation of reliable numeri-al methods for the isothermal version of the Navier-Stokes-Korteweg system. In theisothermal ase, i.e., we neglet the energy balane equation and assume that the tem-perature stays at a onstant state, the Navier-Stokes-Korteweg system redues to
ρt + ∇ · (ρu) = 0, (2.55)

(ρu)t + ∇ · (ρuuT ) + ∇p(ρ) = ∇ · (τ + K), (2.56)with the no-slip boundary ondition (2.51) and ( either (2.53) or (2.54) ).Here the free energy f vdW depends only on the density ρ and therefore the pressure isgiven by p(ρ) = ρ2f vdW
ρ (ρ). The temperature is only a parameter whih is kept at aonstant state below the ritial temperature suh that phase transitions are allowed.In the ase of boundary ondition (2.53) we have additionally an energy deay equation.Lemma 2.7.1 Let (ρ, ρu) be a (su�iently smooth) solution of the isothermal Navier-Stokes-Korteweg equations with boundary onditions (2.51) and (2.53). Then the energydeay equation
d

dt

∫

Ω

E(ρ, ρu, α) dx = −
∫

Ω

τ : ∇u dx ≤ 0 (2.57)is satis�ed, where E = ρ
(

f(ρ) + |u|2
2

)

+ λα denotes the total physial energy densityand α = 1
2 |∇ρ|2.Proof. We set

W (ρ) = ρf vdW (ρ). (2.58)Then, beause of the de�nition of the pressure (2.3), we have the relation
p(ρ) = ρW ′(ρ) −W (ρ) (2.59)for the pressure. We multiply the ontinuity equation (2.55) with (W ′(ρ)− |u|2

2 ) and themomentum equation by u. Summation of both parts and integration over the domain
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Ω gives

∫

Ω

(

W ′(ρ) − |u|2
2

)

(ρt + ∇ · (ρu))

+u ·
(

(ρu)t + ∇ · (ρuuT ) + ∇p(ρ) −∇ · τ −∇ · K
)

dx = 0.We replae the term ∇ · K using the relation (2.37), by reordering the terms we get
∫

Ω

W ′(ρ)ρt −
|u|2
2
ρt + u · (ρu)t dx −

∫

Ω

λρu · ∇∆ρ dx

=

∫

Ω

u · ∇ · τ dx −
∫

Ω

u · (W ′(ρ)∇ρ+ ∇p(ρ)) +W ′(ρ)ρ∇ · u dx

−
∫

Ω

u · ∇ · (ρuuT ) − |u|2
2

∇ · (ρu) dx.We apply integration by parts to the olored terms. All boundary integrals vanish dueto the boundary ondition u = 0 on ∂Ω.
∫

Ω

d

dt
W (ρ) +

d

dt

(

ρ
|u|2
2

)

dx +

∫

Ω

λ∇ · (ρu) ∆ρ dx

= −
∫

Ω

τ : ∇u dx −
∫

Ω

u · ∇(W (ρ) + p(ρ) −W ′(ρ)ρ) dx

−
∫

Ω

u · ∇ · (ρuuT ) + ρu · ∇
( |u|2

2

)

dx.Now we use the ontinuity equation and replae the term ∇ · (ρu) by −ρt in the seondintegral on the left hand side and again we perform integration by parts on this term.The resulting boundary integral vanishes beause of the boundary ondition ∇ρ ·n = 0on ∂Ω. The seond integral on the right hand side of the equation vanishes beauseof the identity (2.59). The integrand in the last integral an be written in divergeneform.
∫

Ω

d

dt
W (ρ) +

d

dt

(

ρ
|u|2
2

)

dx +

∫

Ω

λ∇ρt · ∇ρ dx

= −
∫

Ω

τ : ∇u dx −
∫

Ω

∇ ·
(

ρ|u|2u
)

dx.The last integral vanishes due to the Gauss theorem and u = 0 on ∂Ω. Finally we get
d

dt

∫

Ω

W (ρ) + ρ
|u|2
2

+
λ

2
|∇ρ|2 dx = −

∫

Ω

τ : ∇u dx ≤ 0.



2.7. THE ISOTHERMAL CASE 35An important lass of solutions are stati equilibrium solutions, i.e., steady state so-lutions where the veloity �eld vanishes ompletely in the domain Ω. This kind ofsolutions satis�es a nonlinear ellipti equation. We state this in the following lemma.Lemma 2.7.2 Let Ω be onneted and let (ρ, ρu) be a smooth stati equilibrium solutionof the isothermal Navier-Stokes-Korteweg equations, i.e., a solution that satis�es ρt = 0and u = 0 in Ω × (0,∞). Then the density satis�es the nonlinear ellipti equation
µ(ρ) − λ∆ρ = cst, (2.60)where the onstant on the right hand side is in general not known and µ denotes thehemial potential (2.4) that does not depend on temperature in the isothermal ase.Proof. All terms inluding u and the gradient of u, this means τ , drop out and onlythe pressure and Korteweg term in the momentum equation remain
∇p(ρ) = ∇ · K.Using the identity pρ(ρ) = ρµρ(ρ) (2.3), (2.4) and the identity (2.37) we obtain
∇µ(ρ) = λ∇∆ρand therefore we have for some onstant
µ(ρ) − λ∆ρ = cst,whih ompletes the proof.From another point of view equation (2.60) is the Euler-Lagrange equation (and theonstant on the right hand side of this equation the Lagrange multiplier) for the mini-mization problem

∫

Ω

W (ρ) +
λ

2
|∇ρ|2 dx → min, (2.61)with the onstraint that the total mass is onserved

∫

Ω

ρ dx = m, (2.62)where the funtion W is de�ned as in (2.58) and m is some positive onstant. The en-ergy funtional in (2.61) onsists of the (isothermal) internal energy and the Kortewegpart of the energy. A �uid of a given �xed mass at stati equilibrium should minimizethis energy funtional. From (2.61) one an learly see that the Korteweg term ats likea panelization term for phase transitions (at least at stati equilibrium) beause wherea phase transition ours the gradient of the density is large.The minimization problem (2.61), (2.62) and its Euler-Lagrange equation (2.60) playan important role in giving a physial meaning to the parameter λ in the Kortewegterm. This parameter is related to surfae tension (at least at stati equilibrium) insome sense. The next setion is dediated to this relation, the theoretial bakgroundis summarized in Setion 3.1.



36 CHAPTER 2. DERIVATION OF THE MODEL2.8 Surfae Tension at Stati EquilibriumThe goal of this setion is to relate the oe�ient λ in the Korteweg term to the physiale�et of surfae tension. For the theoretial bakground see Setion 3.1.In sharp interfae models, i.e., models where the hange from one phase to anotheris disontinuous and the interfae itself is a set of measure zero, the e�et of surfaetension is usually modeled by an additional ontribution to the stress tensor that atsonly on the interfae, see for example [79℄ and Setion 4.4.1.In a sharp interfae model for a liquid-vapor �ow we an deompose the domain Ω intotwo distint subsets Ωv,Ωl, the vapor and liquid parts respetively, and an interfae ofmeasure zero. At a stati equilibrium on�guration the density in the vapor and liquidpart are onstant values denoted by ρv, ρl and they satisfy a mehanial equilibriumondition (the Young-Laplae law) and a phase equilibrium ondition namely
p(ρl) − p(ρv) = (n− 1)σkm, (2.63)
µ(ρl) − µ(ρv) = 0, (2.64)see [75℄ and the referenes therein, see also [79℄. Up to now we have always onsideredthe three dimensional spae, in order to be more general we onsider the n-dimensionalspae for n ≥ 1. km denotes the mean urvature of the interfae and the onstantoe�ient σ denotes the surfae tension of the �uid.Note: If surfae tension is negleted (σ = 0) and in the planar ase the values ρv and

ρl are equal to the Maxwell values (2.15), (2.16).Charateristi for the lass of di�use interfae models is the smooth and ontinuoushange from one phase to another. Thus, we annot simply deompose the domainin liquid parts, vapor parts and an interfae of measure zero as we ould in the aseof sharp interfae models. But in the ase of our model, the Navier-Stokes-Kortewegsystem, we an �nd distint sets Ωv ⊂ Ω, Ωl ⊂ Ω, Ωi ⊂ Ω with Ωv ∪ Ωl ∪ Ωi = Ω suhthat there exist onstant density states ρv and ρl with |ρ− ρv| is small in Ωv, |ρ− ρl| issmall in Ωl and the measure of the interfae Ωi is small. See Setion 3.1 for a rigoroustreatment of the above and the following statements.Kraus and Dreyer showed [75℄ that the mehanial equilibrium ondition and the phaseequilibrium ondition an be reovered (up to an error of higher order in the oe�ient
λ) in the ase of the Navier-Stokes-Korteweg model at stati equilibrium. They showedthat

p(ρl) − p(ρv) = (n− 1)c0
√
λkm + o(

√
λ), (2.65)

µ(ρl) − µ(ρv) = o(
√
λ). (2.66)Where

c0 =
√

2

ρM
l
∫

ρM
v

√

ρf(ρ) − ρµ(ρM
v ) + p(ρM

v ) dρ. (2.67)



2.8. SURFACE TENSION AT STATIC EQUILIBRIUM 37Thus, omparing (2.63) and (2.65), we an identify the e�et of surfae tension that isimpliitly inluded in the Navier-Stokes-Korteweg model by the relation
σ = c0

√
λ. (2.68)Note that the error term o(

√
λ) is negleted.Note that equation (2.65) is an asymptoti formula for λ→ 0. Therefore the identi�a-tion with surfae tension (2.68) may make sense only in a regime where λ is su�ientlysmall. In Setion 4.1.2 we approve by numerial omputations of stati equilibriumsolutions that the error in the asymptoti is negligible in the regime of our interest andhene, the identi�ation with surfae tension makes sense in the ase of our numerialsimulations.In general, the free energy f and therefore the Maxwell values and the oe�ient c0depend on the temperature. Using dimensionless variables in terms of the ritial values,i.e., ρcrit ρ̃ = ρ and θcrit θ̃ = θ, we have

c0(θ) =
√

2

ρM
l

(θ)
∫

ρM
v (θ)

√

ρf(θ, ρ) − ρµ(θ, ρM
v (θ)) + p(θ, ρM

v (θ)) dρ

= ρcrit
√
pcrit c̃0(θ̃),where the dimensionless quantity c̃0 is de�ned by

c̃0(θ̃) =
√

2

ρ̃M
l

(θ̃)
∫

ρ̃M
v (θ̃)

√

ρ̃f̃(θ̃, ρ̃) − ρ̃µ̃(θ̃, ρ̃M
v (θ̃) + p̃(θ̃, ρ̃M

v (θ̃)) dρ̃.The oe�ient c̃0 an be approximated by the formula
c̃0(θ̃) ≈

√
2 ·
√

1.0 − θ̃ ·
(

6.4 · (1.0 − θ̃) − 0.7 · (1.0 − θ̃)2
)

. (2.69)This formula is obtained by urve �tting and gives quite aurate results in the dimen-sionless temperature range θ̃ ∈ [0.6, 1.0].Using the relation (2.68) and the saling (2.44) this gives for the dimensionless oe�ient
λ̃ the identity

λ̃ =

(

σ(θcrit θ̃)

L pcrit c̃0(θ̃)

)2

. (2.70)Note: The oe�ient λ̃ depends on the temperature θ̃ in general whereas we haveassumed that it is a onstant oe�ient in the Navier-Stokes-Korteweg model. Thus, ithas to be �xed to some mean temperature in the temperature dependent model and tothe referene temperature in the isothermal model.



38 CHAPTER 2. DERIVATION OF THE MODEL2.9 Interfae WidthA saling argument given in [95℄ (Proposition 2.2.7) shows that the width of the di�useinterfae between the phases must be proportional to √
λ. The proportional onstantremains to be determined. However, the de�nition of the interfae itself is arbitrary (upto some degree). We give possible de�nitions for the interfae and the interfae widthin Setion 4.1. Using the numerially omputed pro�les of stati bubbles for di�erentreferene temperatures and di�erent oe�ients λ we an determine the width of theinterfae w(θ, λ).Below the ritial temperature we observe (see Setion 4.1 espeially (4.9)) that the di-mensionless interfae width w̃(θ̃, λ̃) of a dimensionless �uid an (roughly) approximatedby the formula

w̃(θ̃, λ̃) = 5.4 · θ̃2 ·
√

λ̃.This is a very rough formula but quite useful to onstrut initial data that onsists ofliquid and vapor phases and for rough estimates of the interfae size. Numerial exper-iments show that a suitable interfae size of the initial data is important to guaranteethe stability of solutions. Otherwise instabilities are observed. The above formula isobtained from the omputations of stati bubbles. The interfae size may also dependon the dynamis of the phase boundary. Suh e�ets are not taken into aount butthis should not make a big di�erene.2.10 Realisti Length SaleThe goal of this setion is to determine the maximal possible diameter Lmax of a domainthat an be hosen for realisti numerial simulations of liquid-vapor �ows when allphysial parameters are adjusted orretly. This means, hosen as desribed in theprevious setions. The result of this setion is that Lmax is extremely small (in themirometer regime).We assume that the diameter of the dimensionless omputational domain is equal to one.We assume that the minimal possible interfae that must be resolved by the underlyingomputational mesh is w̃min = 1.0 ·10−3. This is what is possible at time of this writingwhen all modern numerial tehniques suh as loal mesh adaption, parallelization, loadbalaning, higher order shemes are ombined and for the omputation it is possible torun on many proessors and for many days (possibly weeks).Using the formula for the interfae width from the previous setion together with thesaling for λ̃ from (2.70) we get a formula for Lmax in terms of w̃min, the referenetemperature and the ritial values.
Lmax = 5.4 · θ̃2

ref

σ(θ̃)

w̃min pcrit c̃0(θ̃ref )
(2.71)As an example we hoose water at di�erent temperatures.



2.11. ARTIFICIAL ENLARGEMENT OF THE INTERFACE 39Example 2.10.1 (Water at di�erent temperatures)We hoose the three dimensionless referene temperatures θref = 0.85, θref = 0.90 and
θref = 0.95. As disussed above we hoose the minimal possible interfae size

w̃min = 1.0 · 10−3and the ritial pressure of water is
pcrit = 22.064 · 106 N

m2
,see Setion B.2 and Table B.1. Using the formula (2.69) we have for the oe�ient c̃0

c̃0(0.85) = 0.52, c̃0(0.90) = 0.29, c̃0(0.95) = 0.10and for the determination of the surfae tension (roughly is su�ient) we an make useof �gure B.4
σ(0.85) = 2.0 · 10−2N

m
, σ(0.90) = 1.2 · 10−2N

m
, σ(0.95) = 5.0 · 10−3N

m
.As result using the formula above we get

Lmax(0.85) = 3.54 · 10−6m,

Lmax(0.90) = 2.38 · 10−6m,

Lmax(0.95) = 1.10 · 10−6m.This means that the largest possible domain for realisti numerial simulations mustbe in the mirometer regime. This is at least one or two orders of magnitude too smallfor realisti numerial simulations of the experiment disussed in the introdution, seeSetion 1.1.2.11 Arti�ial Enlargement of the InterfaeWe have seen in the previous setion that the domain in that a liquid-vapor �ow anbe simulated using the Navier-Stokes-Korteweg model must be extremely small (in themirometer regime). This is beause the di�use interfae must be ompletely resolvedby the underlying omputational mesh. One way to overome this problem is to enlargethe interfae by inreasing the oe�ient λ. The width of the interfae in proportionalto √
λ. The problem is that at the same time the surfae tension fore is inreased thatis also proportional to √

λ. In ases where other fores do not signi�antly dominateand the e�et of surfae tension an not be inreased without hanging the dynamisompletely, this approah annot be applied.In [64℄ an approah is presented to arti�ially enlarge the interfae without hanging thee�et of surfae tension. But with this approah it is neessary to hange the behaviorof the �uid by replaing the equation of state. The idea is to replae the van der Waals



40 CHAPTER 2. DERIVATION OF THE MODELequation of state by a modi�ed equation of state suh that ertain thermodynamialproperties are preserved for density states lose to the Maxwell states.Thus, in this approah the model is modi�ed and therefore we do not onsider thisapproah in the present work sine we are interested in the validation and appliabilityof the original Navier-Stokes-Korteweg model.



Chapter 3Summary of Theoretial Results
We give a summary of existing theoretial results onerning the Navier-Stokes-Kortewegsystem. In the �rst two setions we disuss the existene of speial solutions suh asstati equilibrium solutions and traveling wave solutions. Under some assumptions,these types of solutions satisfy ordinary di�erential equations and an be solved byappliation of existing ordinary boundary value problem solvers. We do this in thenext hapter suh that we have these kinds of solution as benhmarks for numerialshemes available. Another aspet of the �rst setion is the lari�ation of the e�etof surfae tension that the Korteweg term in the NSK system impliitly inludes. Thethird setion is dediated to the disussion of general solutions, i.e., solutions of theCauhy problem in multiple spae dimensions for the isothermal and the temperaturedependent Navier-Stokes-Korteweg model as well as solutions of the initial boundaryvalue problem.3.1 Stati Equilibrium Solutions and Surfae TensionThe Objetives of this setion are the disussion of the existene of stati equilibriumsolutions for the isothermal Navier-Stokes-Korteweg equations on the one hand andthe rigorous lari�ation of the role of surfae tension in the model on the other hand.Throughout this setion we assume that the referene temperature of the van der Waalsequation of state is �xed to a value below the ritial temperature suh that the �uidan undergo phase transitions. Aording to Lemma 2.7.2 a smooth solution of theNSK equations satis�es the nonlinear ellipti equation (2.60). This equation is also theEuler-Lagrange equation for the minimization problem we state below.Let Ω ⊂ R

n be an open bounded domain and let f denote the free energy of an isother-mal van der Waals �uid. We de�ne W (ρ) = ρf(ρ). For a onstant m > 0, a salingparameter ε > 0 and ρε ∈ H1(Ω) we onsider the following minimization problem withthe onstraint that the total mass in Ω is onserved:
∫

Ω

W (ρε(x)) +
ε2

2
|∇ρε(x)|2 dx → min,

∫

Ω

ρε(x) dx = m. (3.1)41



42 CHAPTER 3. SUMMARY OF THEORETICAL RESULTSIn this setion we haraterize stati equilibrium solutions by minimizers of the mini-mization problem (3.1). A smooth minimizer of the minimization problem (3.1) satis�esthe Euler-Lagrange Equation
W ′(ρε) − ε2∆ρε = cε in Ω, (3.2)where the onstant cε ∈ R is the Lagrange multiplier, see for example [32℄. By de�nitionofW the funtionW ′ is equal to the hemial potential µ (see de�nition 2.1.1) and thus,equation (3.2) is the same as the equilibrium ondition (2.60). Here the oe�ient λ isreplaed by ε2.Gurtin and Matano proved the existene of minimizers of the variational problem (3.1),see [56℄. Gurtin and Matanos theorem, the theorem by Modia [86℄ and the results byKraus and Dreyer, we will disuss in this hapter, are not restrited to a van der Waalsequation of state. These results are valid for a general (double well) free energy f withertain properties, see [75℄ for details. These properties are satis�ed by a van der Waalsequation of state if the referene temperature is �xed to some value below the ritialtemperature.We summarize the results by Gurtin and Matano in the following theorem.Theorem 3.1.1 (Gurtin, Matano [56℄)Let ε > 0.(i) There exists a global minimizer ρε of the minimization problem (3.1).(ii) A loal minimizer ρε is ontained in C3(Ω), satis�es the Euler-Lagrange equation(3.2) and has natural boundary onditions

∇ρε · n = 0 on ∂Ω.Note: This is boundary ondition (2.53).Modia [86℄ onsidered a family of global minimizers (ρε)ε>0 of the minimization prob-lem (3.1). He proved that for ε → 0 a subsequene onverges in L1(Ω) to some limitfuntion ρ0 that assumes only two values (the Maxwell states) almost everywhere andthe (sharp) interfae between the liquid and the vapor phase is minimized in some sense.For the statement of Modias results we need some de�nitions given below. For somefuntion u ∈ L1(Ω) we de�ne
∫

Ω

|Du(x)| dx = sup

{
∫

Ω
u(x)∇ψ(x) dx

∣

∣

∣

∣

ψ ∈ C∞(Ω), |ψ| ≤ 1

}

.For some measurable set E ∈ R
n we de�ne the perimeter of E in Ω by

PΩ[E] =

∫

Ω

|DχE(x)| dx.In the above de�nition χE denotes the harateristi funtion of the set E. The perime-ter is a generalization of the (n− 1)-dimensional Hausdor� measure, i.e., if ∂E ∩Ω is aLipshitz ontinuous hypersurfae then Hn−1(∂E ∩ Ω) equals PΩ[E].



3.1. STATIC EQUILIBRIUM SOLUTIONS AND SURFACE TENSION 43Theorem 3.1.2 (Modia [86℄)For ε > 0 let ρε denote a global minimizer of the minimization problem (3.1) and let
m ∈ [ρM

v |Ω|, ρM
l |Ω|].(i) There exists a sequene (εk)k∈N with lim

k→∞
εk = 0, a orresponding sequene ofglobal minimizers ρεk and a funtion ρ0 ∈ L1(Ω) suh that

lim
k→∞

||ρεk − ρ0||L1(Ω) = 0.(ii) For the funtion ρ0 we have
ρ0 = ρM

v or ρ0 = ρM
lalmost everywhere and ρ0 ∈ BV (Ω).(iii) The set Uv = {x ∈ Ω | ρ0(x) = ρM

v } is a minimizer of the geometri variationalproblem
PΩ[Uv ] = min

{

PΩ[F ]

∣

∣

∣

∣

F ⊂ Ω, |F | =
ρM

l |Ω| −m

ρM
l − ρM

v

}

.Furthermore we de�ne the set Ul = Ω\Uv.In the ase where the mean density has a value between the two Maxwell states Modiaproved that in the limit ε → 0 a subsequene of global minimizers of problem (3.1)onverges to funtion ρ0 in L1(Ω), where the funtion ρ0 assumes only the Maxwellstates and the interfae between the liquid and vapor phases is minimized. From thephysial point of view a minimal interfae is the orret behavior but this also meansthat the pressure in the vapor phase equals the pressure in the liquid phase. We havefor the liquid and vapor states ρl and ρv

p(ρl) − p(ρv) = 0,in ontrast to the Young-Laplae law (2.63), see also [79℄, that must be satis�ed by thephysial relevant solution
p(ρl) − p(ρv) = (n− 1)σkm.Aording to the Young-Laplae law this means that either the mean urvature km ofthe interfae is equal to zero (e.g. a �at interfae) or the surfae tension is equal tozero (surfae tension negleted). However, surfae tension is a very important physialproperty and annot be negleted in most ases. Therefore the limit funtion ρ0 isobviously not the orret solution from the physial point of view and in the (sharpinterfae)-limit ε → 0 there is no surfae tension left. Thus, the above ontraditionannot be solved by the sharp interfae limit.Now the idea is not hoose the limit funtion but some funtion ρε from the limit proessfor some small value ε > 0 as the relevant solution. In this ase we have a di�use interfaeand inside the interfae the funtion ρε hanges rapidly from one nearly onstant stateto another nearly onstant state. We annot deompose the domain into vapor and



44 CHAPTER 3. SUMMARY OF THEORETICAL RESULTSliquid sets Uv, Ul and an interfae I of measure zero but we an deompose it into sets
Ûv, Ûl where the funtion ρε nearly assumes onstant vapor and liquid states. Finallythe di�use interfae Î does not have measure zero but has a small measure.Thus, the hallenge is to determine the right small parameter ε > 0 suh that the Young-Laplae law and the phase equilibrium ondition (2.64) are satis�ed in some sense.Kraus and Dreyer [75℄ showed that the parameter ε > 0 an be identi�ed with surfaetension and they give an asymptoti formula that relates the parameter ε to surfaetension. We summarize the main statements of this work in the following theorem.Theorem 3.1.3 (Kraus, Dreyer [75℄)Let (εk)k∈N with lim

k→∞
εk = 0, ρεk a sequene of global minimizers of the variationalproblem (3.1) that onverges to ρ0 as in theorem 3.1.2. Further let Ûv ⊂⊂ Uv and

Ûl ⊂⊂ Ul. Then(i) ρε(x) =

{

ρM
v + εkρ̂v + o(εk) x ∈ Ûv,

ρM
l + εkρ̂l + o(εk) x ∈ Ûl.(ii) p (ρεk(xl))−p (ρεk(xv)) = (n−1)c0kmεk+o(εk) for almost all xv ∈ Ûv and xl ∈ Ûl.Here km is the onstant mean urvature of the redued boundary of Uv.(iii) µ (ρεk(xl)) − µ (ρεk(xv)) = o(εk) for almost all xv ∈ Ûv and xl ∈ Ûl.The onstant c0 is given by relation (2.67).Note: The redued boundary ∂∗Uv of Uv is a dense subset of ∂Uv whih onsists ofountable union of smooth hypersurfaes, see [75℄ and the referenes therein.As disussed before the physially relevant solution ρ has to satisfy the Young-Laplaelaw and the phase equilibrium ondition namely

p(ρ(xl)) − p(ρ(xv)) = (n− 1)σkm,

µ(ρ(xl)) − µ(ρ(xv)) = 0,
for xv ∈ Uv and xl ∈ Uland, of ourse, ρ assumes only two values in the ase where two phases are present.We ompare these requirements to the formulas given in item (ii) and (iii) of the abovetheorem

p(ρ(xl)) − p(ρε(xv)) = (n− 1)c0εkm + o(ε),

µ(ρ(xl)) − µ(ρε(xv)) = o(ε),
for xv ∈ Ûv and xl ∈ Ûl.As a result we an assoiate the parameter ε with surfae tension, required that ε issu�iently small, by the relation

σ = c0ε. (3.3)The question that remains is where the asymptoti regime begins (where ε is smallenough) suh that the above formula is appliable. The numerial justi�ation of thisformula performed in Setion 4.1 shows that the error term o(ε) is negligible even forquite large interfaes (large values of ε).



3.2. TRAVELING WAVE SOLUTIONS 453.2 Traveling Wave SolutionsBenzoni-Gavage proved in [11℄, [12℄ based on [106℄ the existene of traveling wave so-lutions for the isothermal Navier-Stokes-Korteweg system with a modi�ed third orderapillarity term. The proof is split into two parts. The �rst part shows that travelingwave solutions exist when the visosity in the model is negleted, the seond part gen-eralizes this to the ase with small visosity. We summarize these results and give aproof for the �rst part for the unmodi�ed Navier-Stokes-Korteweg equations.We onsider another kind of speial solutions to the isothermal Navier-Stokes-Kortewegequations in this setion. We investigate the existene of propagating planar phaseboundaries and therefore we an restrit ourself to the one dimensional system whihredues to
ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p(ρ))x = εuxx + λ
(

ρρxx − 1
2ρ

2
x

)

,
in R × R>0. (3.4)We are interested in traveling wave solutions of system (3.4), i.e. smooth solutions ofthe form

ρ(x, t) = ρ̃(x− st),

u(x, t) = ũ(x− st),
(3.5)that onnet left states (ρ−, u−) and right states (ρ+, u+) in di�erent phases and prop-agate with a onstant speed s ∈ R (′ denotes the derivative with respet to x− st)

ρ̃(±∞) = ρ±, ũ(±∞) = u±, ρ̃′(±∞) = 0. (3.6)The left and right states must satisfy, see for example [100℄ or [34℄, the Rankine-Hugoniotrelation
ρ−(u− − s) = ρ+(u+ − s) =: m, (3.7)

ρ−u−(u− − s) + p(ρ−) = ρ+u+(u+ − s) + p(ρ+) =: π. (3.8)This ansatz leads to an algebrai relation between the veloity ũ and the density ρ̃ andresults in a seond order ordinary di�erential equation for ρ̃. For notational simpliitywe omit the tilde symbol
λ

(

ρρ′′ − 1

2
(ρ′)2

)

=
εm

ρ2
ρ′ +

m2

ρ
+ p(ρ) +ms− π(ρ−), (3.9)where π(ρ−) is de�ned by the relation

π(ρ−) =
m2

ρ−
+ms+ p(ρ−). (3.10)Here we have used de�nitions (3.7) and (3.8).



46 CHAPTER 3. SUMMARY OF THEORETICAL RESULTS3.2.1 Existene of Traveling Wave Solutions for a modi�ed SystemIn [12℄, [11℄ the existene of propagating planar phase boundaries was proven for themodi�ed Navier-Stokes-Korteweg system
ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p(ρ))x = εuxx − λvxxx,
(3.11)where v = 1

ρ denotes the spei� volume. The di�erene to the unmodi�ed system (3.4)is the Korteweg part of the stress tensor. The Korteweg term in (3.11) is the one thatusually appears in Lagrangian oordinates, see [106℄. It is not lear if this term has anyphysial relevane in Eulerian oordinates.The traveling wave solution ansatz (3.5), (3.6) leads to the pro�le equation
λv′′ = εmv′ −m2v − p̃(v) + π̃(v−), (3.12)

v(±∞) = v±, v′(±∞) = 0, (3.13)with the de�nitions
p̃(v) = p

(

1

v

)

, π̃(v−) = p̃(v−) +m2v−.The proof for the existene of solutions inluding phase transitions of (3.12), (3.13) in[12℄, [11℄ is split into two parts. In the �rst part the existene of pro�les is shown inthe ase where the visosity ε is equal to zero. The seond part extends this to smallvisosity ε > 0. We summarize these results below.Lemma 3.2.1 (Benzoni-Gavage)Let ε = 0. Then there exists a onstant m0 > 0 suh that for all m ∈ (−m0,m0)there exist left (vapor) and right (liquid) states v−(m) and v+(m) in neighborhoods ofthe Maxwell states and a solution of (3.12), (3.13) that onnets v− = v−(m) with
v+ = v+(m). This pro�le is unique up to translation.Theorem 3.2.2 (Benzoni-Gavage)There exists a m0 > 0 and an ε0 > 0 suh that for (m, ε) ∈ (−m0,m0) × (0, ε0) thereexist left (vapor) and right (liquid) states v−(m, ε) and v+(m, ε) in neighborhoods ofthe Maxwell states and a solution of (3.12), (3.13) that onnets v− = v−(m, ε) with
v+ = v+(m, ε). This pro�le is unique up to translation.Besides the existene of solutions for equation (3.12) in [12℄ it is also proven that trav-eling phase boundaries of the modi�ed system (3.11) have ertain stability propertiesin the ase ε > 0.3.2.2 Possible Extension to the unmodi�ed SystemThe next lemma shows that the unmodi�ed version of the NSK system has travelingwave solutions in the ase where the visosity is equal to zero, i.e., (3.9) has heteroliniorbits.



3.2. TRAVELING WAVE SOLUTIONS 47Lemma 3.2.3Let ε = 0. Then there exists a onstant m0 > 0 suh that for all m ∈ (−m0,m0)exist unique left (vapor) and right (liquid) states ρ−(m) ∈ (0, ρv) and ρ+(m) ∈ (ρ
l
, b)and a heterolini orbit of (3.9) that onnets ρ−(m) with ρ+(m) and is unique up totranslation.For m→ 0 the left and right states onverge to the Maxwell states, i.e.,

lim
m→0

ρ−(m) = ρM
v , lim

m→0
ρ+(m) = ρM

l .Note: It is also possible to hoose the left state ρ− in the liquid phase and the rightstate ρ+ in the vapor phase and Lemma 3.2.3 is also valid in this ase.Proof. We multiply equation (3.9) by ρ′ρ−2. Sine visosity oe�ient ε is equal tozero this results in
λ

2

(

(ρ′)2ρ−1
)′

=

[

m2

(

1

ρ3
− 1

ρ2ρ−

)

+
p(ρ) − p(ρ−)

ρ2

]

ρ′and integrating this equation from −∞ to t, using ρ(−∞) = ρ− and the transformationformula we get
λ

2

ρ′(t)2

ρ(t)
= φ(m,ρ−, ρ(t)),where the funtion φ is de�ned by the relation

φ(m,ρ−, ρ) =

∫ ρ

ρ−
m2

(

1

s3
− 1

s2ρ−

)

+
p(s) − p(ρ−)

s2
ds.We show that for su�iently small m there exist unique states ρ−(m) and ρ+(m) loseto the Maxwell states suh that φ(m,ρ−(m), ρ+(m)) = 0 is satis�ed.We de�ne a funtion F : R × R>0 × R>0 → R

2 by
F (m,ρ−, ρ+) =

(

m2
(

1
ρ+ − 1

ρ−

)

+ p(ρ+) − p(ρ−)

φ(m,ρ−, ρ+)

)

.For m = 0, ρ− = ρM
v and ρ+ = ρM

l we have
F (0, ρM

v , ρM
l ) = 0by lemma A.3.2 and for the derivative with respet to (ρ−, ρ+)

D(ρ−,ρ+)F (0, ρM
v , ρM

l ) =

( −p′(ρM
v ) p′(ρM

l )

p′(ρM
v )
(

1
ρM

l

− 1
ρM

v

)

0

)and
det
(

D(ρ−,ρ+)F (0, ρM
v , ρM

l )
)

= p′(ρM
v )p′(ρM

l )

(

1

ρM
v

− 1

ρM
l

)

> 0.



48 CHAPTER 3. SUMMARY OF THEORETICAL RESULTSNote that the van der Waals pressure funtion is always a monotonially inreasingfuntion in the viinity of the Maxwell states. Thus, by the impliit funtion theoremthere exists a onstant m0 > 0 suh that for |m| < m0 we have unique states ρ−(m)and ρ+(m) in the neighborhoods of the Maxwell states with
φ(m,ρ−(m), ρ+(m)) = 0.By similar arguments as in lemma A.3.3 we an show that for su�ient small m wehave

φ(m,ρ−(m), ρ) > 0 for all ρ ∈ (ρ−(m), ρ+(m)).For small m we set
Φ(ρ) =

√

2

λ
ρφ(m,ρ−(m), ρ).

Φ is a stritly positive smooth funtion on the interval (ρ−(m), ρ+(m)) and a ontinuousfuntion on [ρ−(m), ρ+(m)]. We have Φ(ρ−(m)) = 0 and Φ(ρ+(m)) = 0. Hene, forthe salar equation
ρ′(t) = Φ(ρ(t))there exists a heterolini pro�le that onnets the states ρ−(m) and ρ+(m). Thispro�le is unique up to s shift and monotonially inreasing.Hene, we have the existene and uniqueness (up to s shift) of a heterolini pro�le forequation (3.9) in the ase where ε is equal to zero. This ompletes the proof.The existene of heterolini pro�les for equation (3.4) is not proven up to now. The�rst step for this existene is proven in Lemma 3.2.3. For the seond step one ould tryto apply the Centermanifold theorem as for equation (3.12), see [11℄. The numeris inSetion 4.2 indiate that pro�les exist for this equation. We formulate these speulationsas onjeture.Conjeture 3.2.4There exists a m0 > 0 and an ε0 > 0 suh that for (m, ε) ∈ (−m0,m0)×(0, ε0) there existunique left (vapor) and right (liquid) states ρ−(m, ε) ∈ (0, ρv) and ρ+(m, ε) ∈ (ρ

l
, b) anda heterolini pro�le of (3.9) that onnets ρ−(m, ε) with ρ+(m, ε) and is unique up totranslation.For m→ 0 the left and right states onverge to the Maxwell states, i.e.,

lim
m→0

ρ−(m, ε) = ρM
v , lim

m→0
ρ+(m, ε) = ρM

l .Provided that this onjeture is true we an reformulate it in a form we use in Setion4.2.Corollary 3.2.5Let left and right states (ρ−, u−) and (ρ+, u+) that satisfy the Rankine-Hugoniot relationwith density states lose to the Maxwell states and small veloity states be given. Thenthere exists an ε > 0 suh that a pro�le of (3.9) exists. This pro�le is unique up totranslation.



3.3. GENERAL SOLUTIONS 493.3 General SolutionsWe give a summary of results onerning existene and uniqueness of solutions for theisothermal and full temperature dependent Navier-Stokes-Korteweg model in multiplespae dimensions. The results are onerning the Cauhy problem as well as the initialboundary value problem.Loal Existene for the Cauhy ProblemHattori and Li [57℄ showed that for su�iently smooth initial data the Cauhy-Problem(Ω = R
n, here with n = 2) for the isothermal Navier-Stokes-Korteweg system has a(short time) solution.For the existene result the monotoniity of the pressure p is not required as in otherexistene results. The main result is the following theorem.Theorem 3.3.1For any initial data (ρ0,u0) suh that the ondition ρ0 ≥ δ > 0 is satis�ed and (ρ0 −

ρ̄0,u0) ∈ Hk(R2)3 for k ≥ 4, where ρ̄0 > 0 is a onstant, there exists a time T > 0 suhthat in [0, T ] the Cauhy-Problem for the isothermal Navier-Stokes-Korteweg system(2.55), (2.56) has a unique solution (ρ,u) suh that ρ− ρ̄0 ∈ L∞ ([0, T ];Hk+1(R2)
) and

u ∈ L∞ ([0, T ];Hk(R2)2
).Additionally the solution an be estimated by the initial values in some norm, see [57℄.Note: The authors state that the same result an be obtained in the three dimensionalase.Global Existene for the Cauhy Problem for the full SystemIn [58℄ Hattori and Li give a loal in time existene theorem as well as a global exis-tene theorem for small initial data for the full temperature dependent Navier-Stokes-Korteweg model (2.34) - (2.36) in three spae dimensions with Ω = R

3, i.e., the Cauhyproblem.For these results some restritions on the thermodynami quantities are neessary suhas the monotoniity of the pressure in the density. This means that only one phase anexist. The requirements are the following
pρ(θ, ρ) > 0,

eθ(θ, ρ) > 0,

fθθ(θ, ρ) < 0,for all density values ρ and temperature values θ in the state spae. In the aboveequation p denotes the pressure, e the spei� internal energy and f the Helmholtz freeenergy.



50 CHAPTER 3. SUMMARY OF THEORETICAL RESULTSBefore we state the main results of [58℄ we introdue some de�nitions for notationalsimpliity. For T > 0 we de�ne the Banah spae Yk(T ) by
Yk(T ) = C

(

[0, T ), Hk(R3)
)

∩ L2
(

(0, T ), Hk+1(R3)
)and for funtions ρ̃ ∈ Y k+1(T ), ui ∈ Y k(T ) for i = 1, 2, 3 and θ̃ ∈ Y k(T ) we de�ne

Ek

[

ρ̃,u, θ̃
]

(t) = sup
s∈[0,t]

(

||ρ̃(s)||2Hk+1(R3) +

3
∑

i=1

||ui(s)||2Hk(R3) + ||θ̃(s)||2Hk(R3)

)

,

Fk

[

ρ̃,u, θ̃
]

(t) =

t
∫

0

(

||ρ̃(s)||2Hk+2(R3) +
3
∑

i=1

||ui(s)||2Hk+1(R3) + ||θ̃(s)||2Hk+1(R3)

)

ds.For the existene of loal in time solutions a smallness assumption on the initial datais not neessary (at least not expliitly stated in [58℄). However, the initial density andtemperature should be at least positive to be meaningful from the physial point ofview.Theorem 3.3.2 (Loal Existene)Let the initial data (ρ̃0 + ρ̄, u0, θ̃0 + θ̄) satisfy for some k ∈ N with k ≥ 3

ρ̃0 ∈ Hk+1(R3),

ui
0 ∈ Hk(R3) for i = 1, 2, 3, (3.14)
θ̃0 ∈ Hk(R3),where ρ̄ and θ̄ are some positive onstants. Then there exists a time T > 0 suh thatwe have a unique solution (ρ̃+ ρ̄, u1, u2, u3, θ̃+ θ̄) of the temperature dependent Navier-Stokes-Korteweg system (2.34) - (2.36) with ρ̃ ∈ Y k+1(T ), ui ∈ Y k(T ) for i = 1, 2, 3and θ̃ ∈ Y k(T ).In ontrast to the theorem above for the global existene result a smallness assumptionon the initial data is neessary.Theorem 3.3.3 (Global Existene)Let the initial data satisfy (3.14) for some k ∈ N with k ≥ 3. Then there exist positiveonstants ε0 and C0 suh that for Ek

[

ρ̃0,u0, θ̃0

]

(0) ≤ ε0 we have a unique globalsolution (ρ̃ + ρ̄, u1, u2, u3, θ̃ + θ̄) of the temperature dependent Navier-Stokes-Kortewegsystem (2.34) - (2.36) with ρ̃ ∈ Y k+1(∞), ui ∈ Y k(∞) for i = 1, 2, 3 and θ̃ ∈ Y k(∞)and the solution satis�es the estimate
Ek

[

ρ̃,u, θ̃
]

(t) + Fk

[

ρ̃,u, θ̃
]

(t) ≤ C0Ek

[

ρ̃0,u0, θ̃0

]

(0) for t ≥ 0.



3.3. GENERAL SOLUTIONS 51Global Existene of Weak SolutionsIn [17℄ the isothermal Navier-Stokes-Korteweg system in a slightly modi�ed form isonsidered.
ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρuuT ) + ∇p(ρ) = ∇ · (τ̂ + K) .
(3.15)Here the visous part of the stress tensor τ̂ di�ers from the previous de�nition of thevisous stress. τ̂ is given by the relation

τ̂ = νρ
(

∇u + ∇uT
)

.The modi�ation is done mainly for tehnial reasons and not for physial motivation.Bresh, Desjardins and Lin [17℄ proved the global existene of weak solutions in a pe-riodi domain without the restrition of smallness of initial data. However, the proofrequires that we have for the pressure
pρ(ρ) ≥ 0for all density values ρ, i.e., the �uid does not undergo phase transition. The mainresult is the following theorem.Theorem 3.3.4Let the spae dimension be n = 2 or n = 3. Then there exists a global weak solution

(ρ,u) of equation (3.15).For the de�nition of weak solutions of equation (3.15) see [17℄.Existene for the Initial Boundary Value ProblemKotshote proved in [74℄ the loal existene and uniqueness of a solution of the initialboundary value problem (2.55), (2.56), (2.51), (2.53) for the isothermal Navier-Stokes-Korteweg system. The monotoniity of the pressure is not required. We summarize themain result in the following theorem.Theorem 3.3.5Let Ω ⊂ R
n be an open bounded domain with C3-boundary and n+ 2 < p <∞. Let theinitial data satisfy the following regularity and ompatibility onditions

• u0 ∈ B
2− 2

p
pp (Ω; R

n), ρ0 ∈ B
3− 2

p
pp (Ω), ρ0 > 0 in Ω (regularity),

• u0 = 0 in B
2− 2

p
pp (∂Ω; R

n), ∇ρ0 · n = 0 in B
2− 3

p
pp (∂Ω) (ompatibility of theinitial data with the boundary onditions).Then it exists a T > 0 suh that the initial boundary value problem (2.55), (2.56),(2.51), (2.53) has a unique solution (ρ,u) with

ρ ∈ C
3

2

(

(0, T ); C1(Ω)
)

∩C
(

(0, T ); C3(Ω)
)

u ∈ C1 ((0, T ); C(Ω; Rn)) ∩C
(

(0, T ), C3(Ω)
)

.



52 CHAPTER 3. SUMMARY OF THEORETICAL RESULTSIn [74℄ the theorem is formulated more general. The apillarity and visosity oe�ientsmay depend on time and p has not neessarily to be given by the van der Waals equationof state.In [73℄ the author proved a similar result for a temperature dependent model. But themodel that is onsidered is not exatly the same the temperature dependent Navier-Stokes-Korteweg system (2.34), (2.35) and (2.36) beause some of the terms are missingthere.



Chapter 4
Constrution of Solutions andBenhmarks
The purpose of this hapter is the onstrution of solutions of the NSK system andother benhmark tests for three di�erent reasons. These are

• the validation of the numerial shemes. Therefore, we onstrut initial on�gu-rations suh as stati equilibrium and traveling wave solutions.
• the identi�ation of physial parameters suh as surfae tension and interfaewidth.
• the validation of the model.Due to the omplexity of the model it seems to be out of sope to give analytialsolutions. Thus, we seek for solutions of speial form suh that the resulting equationredues to an ordinary di�erential equation equipped with suitable boundary onditions.These kind of problems an be solved very aurately.These solutions are used to identify physial relevant parameters suh as surfae tensionand the size of the di�use interfae.For the validation of the model we hoose the physial experiment of an osillatingbubble in a liquid. When mass transfer over the interfae is negleted and the liquid isnearly inompressible an equation (the lassial Rayleigh-Plesset equation) for the radiusof the bubble an be derived from the inompressible Navier-Stokes equations equippedwith suitable boundary onditions. The behavior of an osillating bubble as a solution ofthe Navier-Stokes-Korteweg system an then be ompared to solutions of the Rayleigh-Plesset equation. However, at this point it is not lear if this is really omparablebeause of the assumption of inompressibility and the assumption of absene of masstransfer. These e�ets have to be small to be omparable.53



54 CHAPTER 4. CONSTRUCTION OF SOLUTIONS AND BENCHMARKS4.1 Stati EquilibriumIn this setion we will onstrut radial symmetri stati equilibrium solutions to theisothermal Navier-Stokes-Korteweg system by means of solving an ordinary boundaryvalue problem numerially. These kind of solutions serve as benhmarks for numerialalgorithms on the one hand and for determination of the oe�ient λ, that is related tosurfae tension, on the other hand. Theorem 3.1.3 provides an asymptoti formula forsurfae tension that is impliitly inluded in the Navier-Stokes-Korteweg model by thethird order term. With the numerial omputations in this setion we approve that thisformula is orret and the error term in negligible for our numerial simulations. Sinethe solutions we onstrut in this setion do not touh the boundary they are only loalminimizers of the energy funtional investigated in theorem 3.1.3 whereas this theoremmakes a statement about global minimizers. However, this should not make a di�erene.A stati equilibrium solution of the isothermal Navier-Stokes-Korteweg equations, i.e.,a solution with zero-veloity �eld and density independent of time satis�es the elliptiequation
µ(ρ) − λ∆ρ = cst in Ω, (4.1)where cst is a onstant whih is unknown in general (Lagrange multiplier). Now let

Ω ⊂ R
n be a ball of radius L with the origin as enter. A radial symmetri solution(with respet to the origin) ρ = ρ(r) of (4.1) ful�lls the equation

µ(ρ) − λ

(

ρrr +
n− 1

r
ρr

)

= cst.In order to get rid of the unknown onstant cst we di�erentiate this equation withrespet to r. This gives the third order ODE
ρrrr =

(

µ′(ρ)
λ

+
n− 1

r2

)

ρr −
n− 1

r
ρrr in (0, L). (4.2)Thus, we require three boundary onditions. The �rst one is the boundary ondition(2.53)

ρr(L) = 0. (4.3)The seond boundary ondition ensures smoothness at the origin
ρr(0) = 0. (4.4)The third one ensures that the Young-Laplae law is satis�ed

p(ρ(L)) − p(ρ(0)) = ξ, (4.5)where ξ > 0 is some suitable hosen onstant. Apriori, we do not know the radius R ofthe bubble (or drop) we ompute. After the omputation of suh a pro�le ρ we havethe radius available but we have to de�ne what the radius of a bubble or drop with adi�use interfae is.



4.1. STATIC EQUILIBRIUM 55Note, there is some arbitrariness in the de�nition of the radius beause of the di�useinterfae. We distinguish between bubbles and drops and de�ne their radiuses RB and
RD by

RB = sup{r ∈ (0, L) | ρ(r) ≤ ρ̂},
RD = inf{r ∈ (0, L) | ρ̂ ≤ ρ(r)},where ρ̂ an be hosen as the arithmeti average of the phase boundaries ρv, ρl

or asthe uniquely de�ned in�etion point of the pressure funtion.Now, using some de�nition of the radius R, we an alulate the surfae tension σ thatis assoiated with the parameter λ by the Young-Laplae relation
ξ = (n− 1)

σ

R
.Further we de�ne the di�use interfae to onsist of the density values of the elliptiregion and possibly a little bit more. Then the interfae width w for bubbles and dropsis de�ned by

I = {r ∈ (0, L) | ρ̂v ≤ ρ(r) ≤ ρ̂l},
w = sup I − inf I.The de�nition of the interfae I depends on the de�nition of the density states ρ̂v and

ρ̂l. These states an be de�ned in terms of the phase boundary states ρv, ρl
or as afration of the Maxwell states. The latter seems to be the better hoie.The boundary value problem (4.2), (4.3) - (4.5) an be solved with every solver fornonlinear ordinary boundary value problems. We use the COLNEW solver [6℄. Theexistene and uniqueness of solutions of the nonlinear ordinary boundary value problemis not disussed in this work. However, the numeris indiate that unique solutions existfor suitable hosen parameters.4.1.1 Computation of Stati Bubbles and DropsWe de�ne the bubble radius by the in�etion point of the pressure funtion. Then theradius of the bubble and the drop are equal to eah other and the radius an be de�nedby the intersetion point of both pro�les. The parameters are hosen as follows

n = 3,

L = 1,

λ = 0.001,

ξ = 0.115.All quantities are dimensionless, as equation of state we hoose the dimensionless vander Waals equations of state (2.13), (2.14) for the pressure and the hemial potentialwith referene temperature θref = 0.85. The result (bubble or drop) depends on the



56 CHAPTER 4. CONSTRUCTION OF SOLUTIONS AND BENCHMARKSinitial guess we have to provide for the BVP-solver. Figure 4.1 shows both results, i.e.,the density pro�les for the bubble and the drop. The omputations give as results forthe radius R, surfae tension σ and interfae width w
R = 0.284,

σ = 0.016,

w = 0.121.For the de�nition of the radius we hoose the state ρ̂ to be equal to the in�etion pointof the pressure funtion. Further we have to de�ne the states ρ̂v and ρ̂l for the de�nitionof the interfae width w. We de�ne these states by a fration of the Maxwell states
ρ̂v = 1.1 · ρM

v , ρ̂l = 0.9 · ρM
l .

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
r

Bubble
Drop

ρ

ρM
l

ρM
v

Figure 4.1: Pro�les of a bubble and a drop and the Maxwell states.4.1.2 Computation of Surfae Tension and Interfae WidthWe de�ne the radius and the interfae of a bubble as in the previous setion. Fordi�erent referene temperatures and di�erent values of the oe�ient λ we omputepro�les of bubbles for n = 3 and radius of the domain L = 1. As we have the pro�lewe an determine the surfae tension from this omputation denoted by σcomp by theformula
p(ρ(L)) − p(ρ(0)) =

n− 1

R
σcomp. (4.6)



4.2. TRAVELING WAVE SOLUTIONS 57Theorem 3.1.3 and equation (3.3) give an asymptoti formula for the surfae tensionthat inludes an error term e(λ) that we want to determine in this setion.
p(ρ(L)) − p(ρ(0)) =

n− 1

R
σform + e(λ), (4.7)where σform is given by σform = c0

√
λ, see Setion 3.1. Now we an use equation (4.6)and equation (4.7) to determine the error term sine we have

|e(λ)| =
n− 1

R
|σcomp − σform|. (4.8)The left part of Figure 4.2 shows the dependene of σform (solid line) and σcomp (disretepoints) on the parameter λ for di�erent values of the temperature θ. The error |e(λ)|is shown in Table 4.1 for some of this parameters. It an learly be seen that the erroronverges to zero as λ tends to zero and the error is almost negligible even for relativelylarge interfaes as the one in Figure 4.1. Thus, Formula (3.3) is appliable for ournumerial simulations.
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Figure 4.2: Coe�ient λ versus surfae tension (left) and λ versus interfae width(right).The right part of Figure 4.2 shows the dependene of the interfae width on the oef-�ient λ and the referene temperature. For a temperature θ below the ritial tem-perature we an onstrut a (rough) formula to approximate the interfae width of adimensionless �uid modeled by the Navier-Stokes-Korteweg equations.
w(θ, λ) = 5.4 · θ2 ·

√
λ. (4.9)This formula is simply obtained by urve �tting using the omputed values shown inthe right part of Figure 4.2. As noted before, this is a very rough formula but an beuseful to onstrut initial data.4.2 Traveling Wave SolutionsWe ompute traveling wave solutions of the isothermal Navier-Stokes-Korteweg systemthat are supposed to exist. The existene of suh solutions is only ompletely proven



58 CHAPTER 4. CONSTRUCTION OF SOLUTIONS AND BENCHMARKS
θ = 0.75 θ = 0.85

λ error EOC error EOC7.8472e-04 3.9974e-03 3.0457e-036.2835e-04 2.8642e-03 1.500 2.2464e-03 1.3705.0314e-04 2.0633e-03 1.476 1.6292e-03 1.4454.0288e-04 1.4888e-03 1.469 1.1750e-03 1.4713.2260e-04 1.0723e-03 1.477 8.7254e-04 1.3392.5831e-04 7.7166e-04 1.480 6.2802e-04 1.4802.0684e-04 5.5450e-04 1.487 4.5193e-04 1.4811.6562e-04 3.9157e-04 1.565 3.1612e-04 1.6081.3262e-04 2.7951e-04 1.517 2.2839e-04 1.4631.0619e-04 2.0384e-04 1.421 1.6636e-04 1.4268.5032e-05 1.4618e-04 1.496 1.1965e-04 1.4836.8088e-05 1.0768e-04 1.376 8.7439e-05 1.4115.4520e-05 7.5755e-05 1.582 6.2637e-05 1.5014.3656e-05 5.6876e-05 1.290 4.5604e-05 1.428Table 4.1: Error and EOC.for a modi�ed system. For the unmodi�ed system we have proven only the �rst step(without visosity) in Setion 3.2. However, without visosity these pro�les su�er a lakof stability and are therefore useless for quantitative benhmark tests. The numerialomputations below indiate that even with visosity these kinds of solutions exist butthe existene is not proven theoretially, see Setion 3.2 espeially Conjeture 3.2.4 andorollary 3.2.5.We onsider the Navier-Stokes-Korteweg system in one spae dimension
ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p(ρ))x = εuxx + λ(ρρxx − 1
2ρ

2
x)x,

(4.10)and we are interested in traveling wave solutions of (4.10), i.e. smooth solutions of theform
ρ(x, t) = ρ̃(x− st),

u(x, t) = ũ(x− st),that onnets left states (ρ−, u−) and right states (ρ+, u+) in di�erent phases thatsatisfy the Rankine-Hugoniot relation and propagate with a onstant speed s (′ denotesthe derivative with respet to x− st)
ρ̃(±∞) = ρ±, ũ(±∞) = u±, ρ̃′(±∞) = 0. (4.11)This ansatz leads to a seond order ODE for ρ̃ that we write as a system of �rst orderequations

(

ρ̃
ρ̃′

)′
= F (ρ̃, ρ̃′) :=

(

ρ̃′

1
λρ̃

(

λ
2 (ρ̃′)2 + εm

ρ̃2 ρ̃
′ + m2

ρ̃ + p(ρ̃) +ms− j
)

)

, (4.12)



4.2. TRAVELING WAVE SOLUTIONS 59with some known onstants m and j oming from the Rankine-Hugoniot relation. For
ρ− and ρ+ hosen lose to the Maxwell states traveling wave solutions may exist butthe parameters λ and ε have to satisfy a speial ratio depending on the left and rightstates. see Setion 3.2 espeially Conjeture 3.2.4 and orollary 3.2.5. This means if we�x left and right hand states and the parameter λ we have to ompute the parameter εsuh that a traveling wave solution an exist. For this purpose we add the equation

ε′ = 0. (4.13)For the numerial omputation we have to trunate the interval (−∞,∞) to some �niteinterval (τ−, τ+) and introdue suitable boundary onditions, we apply the methodintrodued in [43℄ and suessfully applied in [44℄, [39℄. An exat solution of (4.12),(4.11) has to satisfy
(

ρ̃
ρ̃′

)

(τ−) ∈Wu(ρ−, 0) and (

ρ̃
ρ̃′

)

(τ+) ∈Ws(ρ
+, 0),where Wu and Ws denote the loal unstable and stable manifolds of F that are onedimensional manifolds when ρ− and ρ+ are lose to the Maxwell states. The ompu-tation of the unstable and stable manifolds is as di�ult as the omputation of thetraveling wave solution itself but they an be approximated by their tangent spaes andthe tangent spaes an be determined by the eigenspaes of the Jaobian of F . Hene,we introdue the boundary onditions

(

ρ̃
ρ̃′

)

(τ−) ∈ T(ρ−,0)Wu(ρ−, 0) and (

ρ̃
ρ̃′

)

(τ+) ∈ T(ρ+,0)Ws(ρ
+, 0). (4.14)If ρ̃ is a solution of (4.12), (4.11) then ρ̃(· + ξ) is also one for all ξ ∈ R. We single outone of these solutions by the relation

∫ τ+

τ−

ρ̃(τ) − ρ∗(τ)dτ = ξ, (4.15)where ρ∗ is a referene objet, for example the jump from ρ− to ρ+. Now we have threeequations (4.12), (4.13) and three boundary onditions (4.14), (4.15). This nonlinearboundary value problem an be solved with every BVP-solver but the ruial part isto �nd a good initial guess. A smeared out jump is usually a good andidate. For theomputations below we have applied the COLNEW BVP-solver [6℄.We have omputed two di�erent pro�les. One belongs to a ompressive wave and theother to an underompressive wave. For the de�nition of ompressive and underom-pressive waves see standard textbook suh as [34℄. The underompressive wave is on-sidered to be typial for a propagating phase boundary whereas the ompressive wave isless typial sine phase boundaries usually propagate with a subsoni speed. Figure 4.3shows both pro�les. For the omputation the parameter λ is �xed to a onstant and thevisosity parameter ε is omputed suh that a traveling wave solution exist aording tothe additional equation (4.13), i.e., it is di�erent for every pro�le. For the two pro�leswe have the following parameters
λ = 0.001,

εc = 0.0056977, sc = −1.25273,

εu = 0.0136644, su = −0.32141,



60 CHAPTER 4. CONSTRUCTION OF SOLUTIONS AND BENCHMARKSwhere εc, εu, sc and su denote the visosity parameter and the speed of propagation forthe ompressive and underompressive pro�le respetively.
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Figure 4.3: Pro�les of an underompressive wave (left) and a ompressive wave (right).
4.3 Towards Stati EquilibriumIn the two previous setions we have provided exat stati equilibrium solutions andplanar dynamial solutions. In this setion we provide an initial on�guration suh thatthe orresponding solution of the NSK system inludes multidimensional dynamis,hanges in topology and onverges to some nontrivial stati equilibrium as time tendsto in�nity. However, it is not possible to give an exat solution that shows suh aompliated behavior, but we an onstrut a on�guration onsisting of three bubblesof di�erent sizes suh that the smaller bubbles vanish and the larger bubble grows and�nally onverges to a stati bubble.Figure 4.4 illustrates this behavior. The �rst piture shows the initial data at t = 0onsisting of three bubbles (blue) in the liquid (red) with a zero veloity �eld. Thison�guration is not a steady state. Hene, we have some dynamial hanges shown inthe seond piture with a nonzero veloity �eld (not shown). Finally the third pitureshows the stati equilibrium at t = ∞.
Figure 4.4: Initial on�guration of three bubbles of di�erent size, intermediate statewith two bubbles and �nal stati equilibrium solution onsisting of one large bubble.



4.4. FORMULAS FOR THE BUBBLE RADIUS 61We annot ompare a numerial approximation with an exat solution but we an testthe approximate solution for(i) Energy deay on the disrete level as it is satis�ed on the ontinuous level, seeLemma 2.7.1.(ii) Vanishing of kineti energy as time tends to in�nity.(iii) The equilibrium ondition (4.1) as time approahes in�nity.For the latter test we an monitor the funtion
t 7→ ||∇ (µ(ρ(·, t)) − λ∆ρ(·, t)) ||L2(Ω)whih should onverge to zero as t→ ∞.Note: The energy deay equation is also satis�ed in the ase where the omputationaldomain Ω is an n-dimensional ube and the Navier-Stokes-Korteweg system is equippedwith periodi boundary onditions.For the onstrution of the initial on�guration at a given �xed temperature below theritial temperature of the �uid we use the Maxwell values as liquid and vapor statesand Formula (4.9) for the width of the interfae. Liquid and vapor states are smoothlyonneted by a smeared out interfae using the tanh funtion.4.4 Formulas for the Bubble RadiusIn ontrast to the �rst setion of this hapter we onsider spherial symmetri gas (notneessary the vapor of the liquid) bubbles that osillate in a liquid (instead of stayingin equilibrium). The osillations of the bubble an be aused by pressure perturbationsin the liquid or by presribing the veloity of the liquid at ertain points. The formerorresponds to the physial appliation of a sound �eld, the latter to a variation of theontainer wall that holds the liquid. In order to derive a simple formula for the time-dependent radius of an osillating gas bubble we assume the liquid to be inompressibleand neglet mass transfer over the interfae, i.e., no phase transformation takes plae.Therefore the formulas apply only to vapor bubbles if the amount of mass transfer overthe interfae is small. The goal is, provided that one of the formulas is appliable, to(roughly) predit the behavior of an osillating and/or ollapsing bubble in a simple way.For the appliability of these formulas see the numerial experiments and disussion inSetion 9.12.4.4.1 Rayleigh-Plesset EquationThe derivation of the lassial Rayleigh-Plesset formula follows that in [16℄. We startfrom the inompressible Navier-Stokes equations and a free boundary ondition at thebubble interfae, (see standard textbooks, e.g. [79℄). The aim is to derive an expression
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Figure 4.5: Gas bubble in inompressible liquid of radius R(t).for bubble radius R(t) whih will depend on time.We assume that the motion of the liquid in the domain Ωt = R
n\BR(t)(0), n ≥ 2 obeysthe inompressible Navier-Stokes Equations

ut + (∇u)u +
1

ρl
∇p =

µl

ρl
∆u, (4.16)

∇ · u = 0, (4.17)where ρl > 0, µl > 0 are the onstant density and onstant visosity of the liquid.Further we assume that the Young-Laplae law is satis�ed at the free boundary Γt =
∂BR(t)(0).

(P l − P g)n = (n− 1)σkmn on Γt. (4.18)
P g = −pgI and P l = −pI +µ

(

∇u + ∇uT
) are the stress tensors of the gas and liquidphase respetively, km = 1

R(t) the mean urvature of the free boundary, σ > 0 the surfaetension and pg the pressure of the gas whih is assumed to be rotationally symmetri. Weprovide rotational symmetri (with respet to the origin) initial values for the veloityand we assume that the solution of the problem stays rotational symmetri for all times
t > 0. Thus, we seek for rotational symmetri solutions of the inompressible Navier-Stokes equations of the form

u(x, t) = v(r, t)
x

|x| , p(x, t) = p̃(r, t), r = |x|,with salar funtions v and p̃. Using this struture of the veloity and the divergeneonstraint (4.17) we get
0 = rn−1∇ · u(x, t) = rn−1

(

vr(r, t) +
n− 1

r
v(r, t)

)

= (rn−1v(r, t))r .This means
v(r, t) =

ṽ(t)

rn−1
. (4.19)



4.4. FORMULAS FOR THE BUBBLE RADIUS 63for some funtion ṽ that does not depend on the spatial variable. The momentumequation (4.16) for rotational symmetri solutions reads
(

vt + vvr +
1

ρl
p̃r −

µ

ρl

[

vrr + (n− 1)
(vr

r
− v

r2

)]

)

x

|x| = 0,and together with equation (4.19)
ṽ′(t)
rn−1

− (n− 1)
ṽ(t)2

r2n−1
+

1

ρl
p̃r(r, t) = 0.Note that the visous term vanishes. For the veloity at the interfae we have therelation

R′(t) = v(R(t), t) =
ṽ(t)

R(t)n−1
. (4.20)With this identity and the equation above we get

R(t)n−1R′′(t) + (n− 1)R(t)n−2R′(t)2

rn−1
− (n− 1)

(

R(t)n−1R′(t)
)2

r2n−1
+

1

ρl
p̃r(r, t) = 0.Integrating this equation from R(t) to L > R(t) with respet to r gives

(

R(t)n−1R′′(t) + (n− 1)R(t)n−2R′(t)2
)

L
∫

R(t)

dr
rn−1

−1
2(R′(t))2

(

1 −
(

R(t)
L

)2n−2
)

+ 1
ρl

(p̃(L, t) − p̃(R(t), t)) = 0. (4.21)We will replae the term p(R(t), t) using the boundary ondition at the interfae. With
km = 1

R(t) and equation (4.19) boundary ondition (4.18) redues to
p̃(R(t), t) = p̃g(R(t), t) − σ(n− 1)

1

R(t)
− 2µ(n− 1)

R′(t)
R(t)

.Plugging this relation into equation (4.21) we get for spae dimension n = 2

(

R(t)R′′(t) +R′(t)2
)

log

(

L

R(t)

)

− 1

2
R′(t)2

(

1 − R(t)2

L2

)

=
1

ρl

(

p̃g(R(t), t) − p̃(L, t) − σ
1

R(t)
− 2µ

R′(t)
R(t)

)

, (4.22)and for n = 3

(

R(t)R′′(t) + 2R′(t)2
)

(

1 − R(t)

L

)

− 1

2
R′(t)2

(

1 − R(t)4

L4

)

=
1

ρl

(

p̃g(R(t), t) − p̃(L, t) − 2σ
1

R(t)
− 4µ

R′(t)
R(t)

)

. (4.23)



64 CHAPTER 4. CONSTRUCTION OF SOLUTIONS AND BENCHMARKSIn the ase n = 3 and L >> R(t) we an neglet terms in (R(t)
L

)k
, k ≥ 1 and theabove equation beomes

R(t)R′′(t) +
3

2
R′(t)2 =

1

ρl

(

p̃g(R(t), t) − p̃(L, t) − 2σ
1

R(t)
− 4µ

R′(t)
R(t)

)

, (4.24)whih is the lassial Rayleigh-Plesset equation, see for example [16℄. The initial valueproblem for (4.22), (4.23) and (4.24) an be solved with every ODE solver. It remainsto presribe the pressure of the gas at the interfae p̃g, for example by a barotropi orisothermal equation of state, and the pressure in the liquid, whih is the input for thisequation.4.4.2 Vibrating Container WallWe onsider a spherial ontainer of radius L that holds the liquid and we assume thatthe ontainer wall Γw
t vibrates symmetrially, i.e., Γw

t = ∂BL+x(t)(0), where the funtion
x models the movement of the boundary.

liquid

Γt

x(t)

Γw
t

L

gas
R(t)

Figure 4.6: Gas bubble inside a vibrating ontainer.In addition to (4.16), (4.17) and (4.18) we introdue a boundary ondition for theveloity at the ontainer wall Γw
t

u · n = x′(t),

u · τ i = 0, i = 1, . . . , n− 1,here τ i denote n− 1 linear independent tangential vetors.This boundary ondition and expression (4.19), whih is a onsequene of the inom-pressibility onstraint (4.17) give the relation
x′(t) = v(L+ x(t), t) =

ṽ(t)

(L+ x(t))n−1
.This and equation (4.20) result in the formula

R′(t) =

(

L+ x(t)

R(t)

)n−1

x′(t). (4.25)



4.4. FORMULAS FOR THE BUBBLE RADIUS 65This formula is simply given by the inompressibility onstraint and the radius of thebubble does not depend on the state of the gas as in the Rayleigh-Plesset equation. Butthe fore that is neessary to ahieve the variation x(t) does. It also depends on themass of the liquid.
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Chapter 5First Order Aurate Shemes
In this hapter we will onstrut basi �rst order shemes for the numerial approxima-tion of solutions of the isothermal Navier-Stokes-Korteweg system. The system itself isa system in divergene form. Therefore one would naturally disretize it in a onser-vative form. We will see that the disretization in onservative form leads to severalproblems. On the one hand the appearane of strange veloities inside the interfaebetween the liquid and vapor phases. Similar problems were observed in [64℄ and solvedin [65℄ by disretizing ertain terms in a nononservative fashion. On the other hand anenergy deay with time is not satis�ed on the disrete level as it is on the ontinuouslevel, see Lemma 2.7.1.In order to get rid of these problems we will disretize the pressure and the Kortewegterm in the system in a nononservative form. This results in a well balaned sheme,i.e., a sheme that is able to preserve a stati equilibrium solution on the disrete level.We will see that the approximate solutions generated by this sheme will onverge to theorret solution in our test ases and the total energy deays with time on the disretelevel as it does on the ontinuous level. This is the sheme we will generalize to higherorder shemes by appliation of the Loal Disontinuous Galerkin method in the nexthapter.As a third sheme we present a relaxation sheme given in [29℄, [30℄. This sheme isdesigned to preserve the stati equilibrium but the test ase with the traveling wavesolution shows that it fails to produe the dynamis orretly. This sheme an only beused to onstrut nontrivial stati equilibrium solutions.Throughout this hapter we make the following assumptions:

• The visous part in the isothermal Navier-Stokes-Korteweg system ∇ · τ is equalto ε∆u for simpliity. In fat, the visous term redues to ε∆u for a speial hoieof the visosity parameters µ and ν, but this hoie may not make sense from thephysial point of view.
• For notational simpliity we onsider only uniform Cartesian meshes. Eah oor-dinate diretion is subdivided into N parts. Therefore the mesh onsists of Ndells in total (where d denotes the spae dimension). The width of a ell is h > 067



68 CHAPTER 5. FIRST ORDER ACCURATE SCHEMESin eah oordinate diretion.
• Unless otherwise noted, we onsider periodi boundary onditions in every oor-dinate diretion. The treatment of other boundary onditions is done in the nexthapter.Thus, the system to solve is

ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρuuT ) + ∇p(ρ) = ∇ · K + ε∆u,
in Ω × (0, T ) (5.1)and Ω must be an d-dimensional ube beause of the restrition on the underlying mesh.For simpliity we always hoose the unit ube Ω = [−1, 1]d.The three shemes we disuss in the next setions belong to the lass of Finite Volumeshemes. Finite Volume shemes are haraterized by their spei� numerial �uxes.However, on uniform Cartesian meshes a Finite Volume sheme has an equivalent FiniteDi�erene sheme. In the ase of the �rst two shemes we will use the Finite Di�ereneformulation for simpliity and omit the de�nition of numerial �uxes. The general Fi-nite Volume formulation of the well balaned sheme (the seond sheme) on arbitrarynononform meshes an be found in the next hapter. For more information on FiniteDi�erene and Finite Volume shemes see standard textbooks suh as [51℄, [52℄, [76℄, [81℄.5.1 A Sheme in Conservative FormIn this setion we onstrut a basi �rst order sheme to solve the Navier-Stokes-Korteweg (5.1) system numerially. The resulting onservative sheme is based onthe Lax-Friedrihs �ux for the �rst order part of the equation. We have hosen theLax-Friedrihs �ux beause it does not require hyperboliity of the �rst order part ofthe equation in the whole state spae expliitly as shemes based on Riemann-Solversor Flux-Vetor-Splitting shemes do. The visous and Korteweg terms in the equationare disretized by entral di�erenes in onservative form.The test ases with the traveling wave solution and the stati equilibrium solution in-diate that disrete solution onverges to the orret solution. However, we observe theappearane of strange veloity �elds lose to the interfae and on the disrete level wedo not have an energy deay as for a smooth analytial solution. Similar problems wereobserved in [64℄. In [64℄ these veloities are alled parasiti urrents.The idea of the Lax-Friedrihs sheme is to stabilize the sheme by adding an arti�ialvisosity that tends to zero with the mesh size h, see standard textbooks suh as [52℄,[76℄, [81℄. Thus, it performs the vanishing visosity method on the disrete level.

ρt + ∇ · (ρu) = α h
2 ∆ρ,

(ρu)t + ∇ · (ρuuT ) + ∇p(ρ) = α h
2 ∆(ρu) + ∇ · K + ε∆u,

(5.2)



5.1. A SCHEME IN CONSERVATIVE FORM 69where the parameter α is hosen to be equal to the fastest wave speed.Note: The arti�ial visosity in the momentum equation an be omitted when theunderlying mesh is �ne enough suh that the natural visosity dominates. The arti�ialvisosity in the ontinuity equation is important for the onvergene to the orretsolution (at least in ombination with the Disontinuous Galerkin approah). In Setion9.4 we will see that without this visosity the approximate solution generated by thehigher order well balaned sheme (desribed in the next hapter) does not onvergeto the orret solution. The same is true when the Lax-Friedrihs type sheme isgeneralized to higher order shemes.We present the omplete numerial algorithm in one spae dimension for simpliity, theextension to two spae dimensions is then straightforward.
The Numerial Algorithm in 1dIn the following we onsider a uniform mesh of N ells de�ned by the N + 1 points

x− 1

2

< x 1

2

< . . . < xN− 1

2and the (uniform) diameter of a ell is denoted by h. In one spae dimension theKorteweg tensor K redues to the salar quantity
K = λ

(

ρρxx − 1

2
ρ2

x

)

.

We provide disrete initial data by projetion
ρ0

i =
1

h

∫ x
i+1

2

x
i− 1

2

ρ0(x) dx,

(ρu)0i =
1

h

∫ x
i+1

2

x
i− 1

2

(ρ0u0)(x) dx,for i = 0, . . . , N − 1. The numerial sheme is then de�ned by the update proedure



70 CHAPTER 5. FIRST ORDER ACCURATE SCHEMESfrom the n-th to the (n+ 1)-th time step.
Kn

i =
λ

h2

(

ρn
i (ρn

i+1 − 2ρn
i + ρn

i−1) −
1

8
(ρn

i+1 − ρn
i−1)

2

)

,

un
i =

(ρu)ni
ρn

i

,

ρn+1
i = ρn

i − ∆t

2h

(

(ρu)ni+1 − (ρu)ni−1 − α(ρn
i+1 − 2ρn

i + ρn
i−1)

)

,

(ρu)n+1
i = (ρu)ni − ∆t

2h

(

(ρu)ni+1u
n
i+1 − (ρu)ni−1u

n
i−1 + p(ρn

i+1) − p(ρn
i−1)

)

+
∆t

2h

(

Kn
i+1 −Kn

i−1

)

+
∆t

2h
α
(

(ρu)ni+1 − 2(ρu)ni + (ρu)ni−1

)

+
∆t

h2
ε
(

un
i+1 − 2un

i + un
i−1

)

.In the sheme given above we hoose α to be equal to the fastest wave speed in theliquid and vapor phases
α = max

i

{

|un
i ±

√

p′(ρn
i )|
}

,where the maximum is built only over the values in the liquid and vapor phases sinethe sound speed is imaginary in the ellipti region and the above statement does notmake sense there. The time step size ∆t has to be small enough to guarantee stabilityof the sheme. It is not lear how to hoose it exatly but we observed that it is oforder O(h2), similar to the time step size of the relaxation sheme, see Setion 5.3 and(5.22), (5.23). The parameter α and the time step size ∆t may vary between the timesteps. For notational simpliity this dependene is omitted.Numerial ResultsThis paragraph is dediated to numerial tests with the onservative sheme presentedabove. We apply the �rst three test ases proposed in Chapter 4. The test ase withthe underompressive Traveling Wave solution is performed in one spae dimension with�xed onstant boundary states and the test ases Stati Equilibrium and Towards StatiEquilibrium are performed in two spae dimensions with periodi boundary onditions.Throughout this hapter the NSK system is equipped with a dimensionless van derWaals equation of state (2.13) where the referene temperature is �xed to θref = 0.85.The omputational domain in one spae dimension is the interval [−1, 1] and in twospae dimensions the square [−1, 1]2.



5.1. A SCHEME IN CONSERVATIVE FORM 71Test Case: Traveling Wave SolutionFor this one dimensional test we have hosen the underompressive traveling wave so-lution we omputed in Setion 4.2. The orresponding parameters are
λ = 0.001,

ε = 0.01366,

s = −0.3214,where s denotes the speed the wave travels with to the left. We ompare the values ofthe approximate density and the momentum with the values of the exat solution attime T = 0.5 (whih is the pro�le shifted to the left by s · T ). For this test we annotuse periodi boundary onditions. Hene, we use the values that ome from the exatsolution as boundary values. The underlying equidistant meshes vary between n = 200and n = 1800 ells.The approximate solution on the �nest grid n = 1800 is plotted in Figure 5.1. Di�erenesbetween exat and numerial solution seem to be small for this mesh size and annotbe seen from the plot.
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Figure 5.1: Exat and approximate traveling wave solution generated by the onserva-tive sheme for n = 1800.Table 5.1 shows the onvergene harateristi of the onservative sheme. Errors indensity and momentum are shown separately for di�erent mesh sizes. The EOC (ex-perimental order of onvergene) learly demonstrates �rst order onvergene.Test Case: Stati EquilibriumFor the test with a stati equilibrium initial on�guration we hoose a density pro�leomputed in Setion 4.1. For this test the orret omputational domain is a ball ofradius one with boundary onditions (2.51) and (2.53). Nevertheless we use the square
Ω = [−1, 1]2 as omputational domain and apply periodi boundary onditions forsimpliity. This should not make a di�erene sine the density values in the liquid nearthe boundary are equal to some onstant (up to the roundo� error). The parameter λ isalready hosen by the hoie of the density pro�le. The visosity parameter is arbitrary.We hoose it aording to the parameters in the test with the underompressive wave
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ρ ρuh L2-error EOC L2-error EOC1.0000e-02 2.4799e-02 4.4079e-025.0000e-03 1.6488e-02 0.589 2.2129e-02 0.9943.3333e-03 1.2221e-02 0.739 1.4832e-02 0.9872.5000e-03 9.6790e-03 0.811 1.1173e-02 0.9852.0000e-03 8.0036e-03 0.852 8.9692e-03 0.9841.6667e-03 6.8193e-03 0.878 7.4953e-03 0.9851.4286e-03 5.9388e-03 0.897 6.4395e-03 0.9851.2500e-03 5.2590e-03 0.911 5.6456e-03 0.9851.1111e-03 4.7183e-03 0.921 5.0267e-03 0.986Table 5.1: L2-errors and EOC for the approximate traveling wave solution generatedby the onservative sheme.above.

λ = 0.001,

ε = 0.01366.The resolution of the n×n Cartesian meshes varies between n = 100 and n = 800. The(omputational) time at the end of the omputation is T = 20.0.Table 5.2 shows the onvergene harateristi of the onservative sheme at a statiequilibrium on�guration. The error seems to be not in the asymptoti regime at thesemesh sizes. The EOC should approah the value 1 as h tends to zero.density and momentumh total L2-error EOC2.0000e-02 3.8279e-021.0000e-02 1.4162e-02 1.4356.6667e-03 1.2013e-02 0.4065.0000e-03 1.0672e-02 0.4114.0000e-03 9.5017e-03 0.5213.3333e-03 8.5101e-03 0.6052.8571e-03 7.6804e-03 0.6652.5000e-03 6.9851e-03 0.711Table 5.2: Test Case: Stati Equilibrium. Total L2-error and EOC for the approximatesolution generated by the onservative sheme.In Figure 5.2 the density distribution at omputational time T = 20.0 is shown. Thedensity values vary approximately between 0.3 (blue) and 1.8 (red). These values arelose to the Maxwell values for the hosen equation of state. The veloity �eld (whihis equal to zero for all times in the exat solution) is represented by the blak arrows.This display style is used throughout this hapter. The approximate solution is very



5.1. A SCHEME IN CONSERVATIVE FORM 73lose to a disrete equilibrium, i.e., there are almost no hanges in time, but we an seea veloity �eld inside the interfae that is of order O(h). The saling of the veloity �eldis the same in all sub-�gures and the sequene of omputations with n = 100, 200, 400shows that this veloity �eld onverges to zero with h.
Figure 5.2: Test Case: Stati Equilibrium. Density and veloity �eld produed by theonservative sheme at T = 20.0 for n = 100, 200, 400.The question that arises is how an this be a disrete steady state on�guration. So wehave to ask why density and momentum are independent of time. For the density thisan be seen by rewriting the mass balane equation from equation (5.2) in the form

ρt + ∇ ·
(

ρu − α h

2
∇ρ
)

= 0.The gradient of the density points from the vapor bubble to the liquid phase. Hene,with a veloity �eld shown in Figure 5.2 the blue term in the above equation anels outthe red term (arti�ial visosity) and therefore the density does not depend on time.From the above equation it an learly be seen that the veloity �eld inside the interfaemust be of order O(h). For the momentum this is more ompliated. It is essentiallydue to the struture of the pressure and Korteweg term.Suh a veloity �eld inside the interfae an ause problems espeially in the ase whenan interfae is in ontat with a solid wall and boundary ondition (2.51) is imposed suhthat the veloity must vanish at the boundary. The veloity �eld inside the interfaean then ause instabilities in the numerial solution sine the approximate solutionis not onsistent with the presribed boundary ondition. Similar veloity �elds (soalled parasiti urrents) were observed in [64℄. In [65℄ it was shown that these parasitiurrents an be eliminated when the pressure and Korteweg term are disretized in anononservative fashion. The nononservative disretization is also one of the basiideas of the well balaned sheme presented in the next setion.Test Case: Towards Stati EquilibriumThis is the test ase for testing the qualitative behavior of the approximate solutionsprodued by the numerial shemes suh as deay of the total energy, vanishing veloity�eld and the equilibrium ondition at the disrete level. The omputational domainis again the periodi square Ω = [−1, 1]2 and the apillarity and visosity parametersare hosen as in the last test ase λ = 0.001 and ε = 0.01366. The rest of the settingis as proposed in Setion 4.3. The Cartesian n × n meshes have a resolution of n =
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100, 200, 400 and the approximate solutions are omputed up to omputational time
T = 20.0. For this test ase at this time there is still a little bit movement but hangesin topology are ompleted and the solution is not too far from a stati equilibrium state.Figure 5.3 shows the initial data and the approximate solution at times t = 1.12 and
t = 20.0. The two smaller bubbles vanish and the larger on grows as time evolves.Finally the solution approahes an equilibrium state on the disrete level. Again, therising veloity �eld inside the interfae an learly be seen.

Figure 5.3: Towards stati equilibrium test. Density and veloity �eld produed by theonservative sheme at t = 0.0, 1.12, 20.0 for n = 200.The time dependent behavior of the total energy and the kineti energy is presented inFigure 5.4 for three omputations with di�erent mesh sizes (n = 100, 200, 400). Onthe disrete level the total energy is not a monotonially dereasing funtion in timeas on the ontinuous level. But the osillations are smaller on �ner grids suh that wean hope for onvergene to the exat solution (for h → 0), for whih total energy is adereasing funtion of time. The right part of the �gure shows that the kineti energydoes not onverge to zero as time tends to in�nity. This is due to the veloity �eldinside the interfae.
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Figure 5.4: Total energy and kineti energy for the onservative sheme. n =
100, 200, 400.Finally, the value κ does not approah a onstant state as time evolves as it does onthe ontinuous level when the solution approahes a stati equilibrium state. This anbe seen in �gure 5.5 beause the gradient of κ does not onverge to zero.
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Figure 5.5: Gradient of κ for the onservative sheme. n = 100, 200, 400.5.2 A Well Balaned ShemeThe problems at stati equilibrium on�gurations we have seen in the previous setionwere aused by the arti�ial visosity (that is neessary to stabilize the numerial so-lution) on the one hand and on the other hand by the struture of the pressure andKorteweg term in the momentum equation. In this setion we disretize these bothterms together in nononservative form by appliation of the theory of nononservativeproduts, see [36℄ and Setion A.4. This approah leads in a natural way to a wellbalaned sheme, i.e., a sheme that is able to preserve a stati equilibrium solutionon the disrete level. In general the appliation of nononservative disretizations anause problems. It is well known that nononservative shemes an onverge to wrongsolutions when disontinuities are present [60℄. This is not a problem in our ase sinesolutions are supposed to be su�iently smooth (at least not disontinuous). The testases show that the numerial solutions onverge to the exat solutions and the energydeays on the disrete level. This sheme seems to be the most promising sheme toonstrut approximate solutions of the NSK-system and therefore we will generalize thissheme to higher order shemes by appliation of the Disontinuous Galerkin approahin Chapter 6.The NSK System in Nononservative FormThe sheme is based on the equivalent nononservative reformulation of the NSK system
ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρuuT ) + ρ∇κ(ρ,∆ρ) = ε∆u,
in Ω × (0, T ), (5.3)where the variable κ is de�ned by the relation

κ = κ(ρ,∆ρ) = µ(ρ) − λ∆ρ (5.4)and µ denotes the hemial potential. In order to see that this is an equivalent formu-lation we refer to Lemma 2.7.2. The idea of the numerial sheme is to add a linearvisosity term saled with the mesh size to the momentum equation (the same as in the



76 CHAPTER 5. FIRST ORDER ACCURATE SCHEMESLax-Friedrihs type sheme in the previous setion) and a nonlinear visosity ombinedwith a fourth order term
α1 h

2
∆κ =

α1 h

2

[

∇ ·
(

p′(ρ)
ρ

∇ρ
)

− λ∆∆ρ

]

to the ontinuity equation. From the above equation we an see that the nonlinearvisosity has a positive sign in the vapor and liquid phases and the fourth order termhas also the orret sign to stabilize the sheme. The resulting system inluding thearti�ial visosity then beomes
ρt + ∇ · (ρu) = α1 h

2 ∆κ,

(ρu)t + ∇ · (ρuuT ) + ρ∇κ(ρ,∆ρ) = α2 h
2 ∆(ρu) + ε∆u.

(5.5)
The advantage of the nonlinear visosity in ombination with the fourth order term isthat it vanishes at stati equilibrium beause κ is a onstant at the stati equilibrium,see Lemma 2.7.2. Thus, disretizing the above equation by entral di�erenes resultsin a sheme that preserves the stati equilibrium on the disrete level, i.e., it is a wellbalaned sheme. The parameter α2 should be hosen to be equal to the fastest wavespeed (as the parameter α in the previous setion) and then parameter α1 should behosen suh that α1

p′(ρ)
ρ is of the size of α2.Note: Again, the arti�ial visosity in the momentum equation an be omitted whenthe underlying mesh is �ne enough suh that the natural visosity dominates.Below we give the omplete numerial algorithm in one spae dimension for simpliity.The sheme is based on spae disretization by entral di�erenes and appliation ofthe expliit Euler sheme for time integration. The extension to two or more spaedimensions is straightforward.



5.2. A WELL BALANCED SCHEME 77The Numerial Algorithm in 1dAs in the previous setion we provide disrete initial data by projetion. Then theupdate from one time step to another de�nes the omplete algorithm.
κn

i = µ(ρn
i ) − λ

h2
(ρn

i+1 − 2ρn
i + ρn

i−1),

un
i =

(ρu)ni
ρn

i

,

ρn+1
i = ρn

i − ∆t

2h

(

(ρu)ni+1 − (ρu)ni−1 − α1(κ
n
i+1 − 2κn

i + κn
i−1)

)

,

(ρu)n+1
i = (ρu)ni − ∆t

2h

(

(ρu)ni+1u
n
i+1 − (ρu)ni−1u

n
i−1

)

−∆t

4h

(

(ρn
i+1 + ρn

i )(κn
i+1 − κn

i ) + (ρn
i + ρn

i−1)(κ
n
i − κn

i−1)
)

+
∆t

2h
α2

(

(ρu)ni+1 − 2(ρu)ni + (ρu)ni−1

)

+
∆t

h2
ε
(

un
i+1 − 2un

i + un
i−1

)

,for i = 0, . . . , N − 1. Due to the arti�ial fourth order term saled by h in the massbalane equation the time step size must be hosen extremely small. It is not learhow small exatly but we observed that it is of order O(h3). The time step size wasdetermined by suessively lowering the time step size until the method was not longerunstable. To overome this restrition we apply impliit time stepping to the generalizedhigher order shemes in the following hapters.Numerial ResultsThe setting for the numerial tests with the well balaned sheme presented above isexatly the same as for the tests with the onservative sheme.Test Case: Traveling Wave SolutionThe test with the traveling wave solution in one spae dimension demonstrates the supe-riority of the nononservative well balaned sheme over the onservative sheme. Table5.3 shows the L2-errors of density and momentum at time T = 0.5. Compared to theerrors produed by the onservative sheme the errors assoiated with the well balanedsheme are an order of magnitude smaller. See also Setion 5.4 for a omparison of theshemes. A plot of the numerial solution on the �nest grid n = 1800 is presented inFigure 5.6.Test Case: Stati EquilibriumTable 5.4 shows a seond order onvergene rate but the projetion of the initial valuesitself produes an error of order O(h). The seond order rate is due to the use of themidpoint integration formula for initial projetion and the omputation of the error. At
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Figure 5.6: Exat and approximate traveling wave solution generated by the nonon-servative sheme for n = 1800.
ρ ρuh L2-error EOC L2-error EOC1.0000e-02 3.2879e-03 1.4845e-035.0000e-03 2.1207e-03 0.633 8.5980e-04 0.7883.3333e-03 1.5396e-03 0.790 6.1558e-04 0.8242.5000e-03 1.2063e-03 0.848 4.8070e-04 0.8602.0000e-03 9.9120e-04 0.880 3.9467e-04 0.8841.6667e-03 8.4113e-04 0.900 3.3492e-04 0.9001.4286e-03 7.3050e-04 0.915 2.9095e-04 0.9131.2500e-03 6.4559e-04 0.925 2.5723e-04 0.9231.1111e-03 5.7837e-04 0.934 2.3054e-04 0.930Table 5.3: Test Case: Traveling Wave Solution. L2-errors and EOC for the approximatesolution generated by the well balaned sheme.the midpoints the sheme produes an error of seond order (pointwise). The shemeis designed to preserve the stati equilibrium initial values. The projeted values areatually not in equilibrium on the disrete level but they are very lose to an disretestati equilibrium on�guration. Thus, the errors the sheme produes are neglegible.Finally, the time step is very small suh that the forward Euler time stepping does notdestroy the onvergene rate. The use of a higher degree integration formula wouldshow only �rst order onvergene due to the initial projetion. This is what we will seein Setion 9.1 using higher order shemes on unstrutured meshes.In ontrast to the onservative sheme the well balaned sheme does not produe astrange veloity �eld inside the liquid-vapor interfae. This is beause the sheme isdesigned to preserve a stati equilibrium on�guration on the disrete level. In fat,there is a small veloity �eld but several orders of magnitude smaller than the veloity�eld produed by the onservative sheme. A very small veloity arises beause theprojeted initial values are not a disrete equilibrium but very lose to one. Thus, somedynamis develop but the veloity onverges (up to roundo� error) ompletely to zero



5.2. A WELL BALANCED SCHEME 79density and momentumh total L2-error EOC2.0000e-02 3.7490e-031.0000e-02 9.0510e-04 2.0506.6667e-03 3.9981e-04 2.0155.0000e-03 2.2442e-04 2.0074.0000e-03 1.4349e-04 2.0043.3333e-03 9.9590e-05 2.0032.8571e-03 7.3145e-05 2.0022.5000e-03 5.5990e-05 2.002Table 5.4: Test Case: Stati Equilibrium. Total L2-error and EOC for the approximatesolution generated by the well balaned sheme.as time tends to in�nity. Figure 5.7 shows the density distribution at T = 20.0 for thethree di�erent mesh sizes (n = 100, 200, 400). The veloity �eld is also shown butsaled in the same way as for the onservative sheme and therefore it annot be seenin the �gure.

Figure 5.7: Test Case: Stati Equilibrium. Density and veloity �eld produed by thewell balaned sheme at T = 20.0 for n = 100, 200, 400.Test Case: Towards Stati EquilibriumThis is the test ase proposed in Setion 4.3. The setting is the same as for the onser-vative sheme.Figure 5.8 shows the initial data with zero veloity �eld and three bubbles at time t = 0.The mesh size is the same as in the orresponding test with the onservative sheme(n = 200). At time t = 1.12 there are only two bubbles left and the smaller one willdisappear soon. The veloity �eld is represented by the blak arrows. The saling ofthe veloity �eld is exatly the same as for the onservative sheme in all sub-�gures.Finally the solution approahes a stati equilibrium. At time T = 20.0 (third piture)there is still movement but starting from this point the density distribution will nothange essentially as time tends to in�nity. In ontrast to the onservative shemethere are no nonphysial veloities inside the liquid-vapor interfae.The behavior of the total energy and kineti energy an be seen in Figure 5.9. Thevalues of the three omputations are lose to eah other suh that one graph may hide
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Figure 5.8: Towards stati equilibrium test. Density and veloity �eld produed by thewell balaned sheme at t = 0.0, 1.12, 20.0 for n = 200.another graph. The total energy of the disrete solutions are monotonially dereasingfuntions in time. This is the orret behavior as in the ontinuous ase. The right partof the �gure shows an exponential deay of the mean kineti energy. At time T = 20.0there is still a little bit movement in the approximate solution. But as time evolvesfurther, the kineti energy onverges ompletely to zero up to a roundo� error (this isnot shown).
 0.39

 0.395

 0.4

 0.405

 0.41

 0.415

 0.42

 0.425

 0  2  4  6  8  10  12  14  16  18  20

E

t

n = 100
n = 200
n = 400

 1e−05

 1e−04

 0.001

 0.01

 0.1

 0  2  4  6  8  10  12  14  16  18  20

E k
in

t

n = 100
n = 200
n = 400

Figure 5.9: Total energy and kineti energy for the well balaned sheme. n =
100, 200, 400.In ontrast to the onservative sheme the mean value of ||∇κ||L2(Ω) does not onvergeto a onstant other than zero, see Figure 5.10. Up to time T = 20.0 the mean ofthis value deays exponentially. As time evolves further this value onverges to zero(not shown). This means κ onverges to a onstant as time tends to in�nity as in theontinuous ase when a stati equilibrium state is approahed.5.3 A Relaxation ShemeThe goal of this setion is to provide an additional numerial sheme in nononservativeform. As noted before it is not possible to apply Riemann-Solver based shemes diretlyto the NSK system due to the lak of hyperboliity of the �rst order part of the equationin the ellipti region. Here we present an approah (given in [29℄, [30℄) that is basedon the reformulation of the system as a relaxation system. This kind of reformulation
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Figure 5.10: Gradient of κ for the well balaned sheme. n = 100, 200, 400.was �rst proposed by Suliiu [110℄ and applied to the equation of gas dynamis inLagrangian oordinates. The relaxation approah an be very useful for the treatmentof ompliated pressure laws, see [31℄. The idea of the relaxation approah is to add anadditional evolution equation for the variable κ that already appeared in the previoussetion and treat this variable as an independent variable. The additional equation ishosen suh that the resulting system is hyperboli and the orresponding Riemannproblem an be solved very e�iently. By onstrution, the sheme is designed topreserve stati equilibrium solutions on the disrete level. But the drawbak of thissheme is that in general the generated approximative solution does not onverge to theorret solution. The test ase with the traveling wave solution shows this behavior.However, the sheme an be used to onstrut solutions towards a stati equilibriumon�guration.5.3.1 The Relaxation SystemSine the disretization of the term ε∆u is not the soure of the di�ulties desribedin Setion 5.1 we omit this term for a moment, i.e., we set ε = 0. With the de�nitionof κ in (5.4) we an rewrite the isothermal NSK system (5.1) as
ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρuuT ) + ρ∇κ(ρ,∆ρ) = 0,
in Ω × (0, T ). (5.6)In the next step we understand κ = κ(x, t) ∈ R as a new independent unknown andonsider the following relaxation approximation for (5.6). We searh for (ρ,u, κ)T :

R
2 × (0, T ) → (0,∞) × R

3 suh that
ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρuuT ) + ρ∇κ = 0,

κt + u · ∇κ+ a2

ρ2∇u = µ̃(ρ,∆ρ)−κ
d

(5.7)holds in Ω × (0, T ). The parameter d > 0 is the (small) relaxation parameter and
µ̃(ρ,∆ρ) := µ(ρ) − λ∆ρ.



82 CHAPTER 5. FIRST ORDER ACCURATE SCHEMESThe onstant a is hosen aording to a generalized Whitham ondition:
a2 > ρ2c2, c :=

√

p′(ρ) +
λρ

h2
(5.8)Note: This approah an be onsidered as Suliius relaxation method in Eulerian oor-dinates ([110℄).Before we disuss the disretization let us note some basi fats on system (5.7). Sinesystem (5.7) is rotationally invariant it su�es for all our analytial issues to onsiderthe one-dimensional version. The one-dimensional system is (of ourse) also a nonon-servative system. Omitting the right hand side in (5.7) we get in primitive variables the�rst-order system

ρt + (ρu)x = 0,

ut + uux + κx = 0,

κt + uκx + a2

ρ2ux = 0.

(5.9)Let us summarize the primitive unknowns ρ, u, κ of (5.9) into the vetor
w = (ρ, u, κ)T .The Jaobian of the nononservative �ux in (5.9) is given by

D :=





u ρ 0
0 u 1
0 a2/ρ2 u



 .Straightforward alulus leads us toLemma 5.3.1 (Hyperboliity and harateristi �elds)(i) The system (5.9) is hyperboli in U := (0,∞)×R
2. The eigenvalues of D ∈ R

3×3are given by
λ1(w) = u− a

ρ
, λ2(w) = u, λ3(w) = u+

a

ρ
(w ∈ U).and the orresponding eigenvetors are

r1(w) =





ρ3/a2

−ρ/a
1



 , r2(w) =





1
0
0



 , r3(w) =





ρ3/a2

ρ/a
1



 .(ii) All harateristi �elds are linear degenerate, i.e., we have for i = 1, 2, 3 and all
w ∈ U

∇λ(w) · ri(w) = 0.
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Figure 5.11: The struture of the self-similar solution of the Riemann problem in the
(x, t)-halfspae.5.3.2 The Riemann Problem for the Relaxation SystemIn this setion we solve the Riemann problem for (5.9) globally, i.e., we onsider foreah wL,wR ∈ U the initial datum

w0(x) =

{

wL : x < 0,

wR : x > 0.This Riemann problem annot be treated by routine methods sine system (5.9) is innononservative form. However, due to the linear degeneray of (5.9), it is possible togive meaning to the nononservative produts.We suppose that the solution of the Riemann problem is self-similar and onsists of (atmost) three elementary waves of ontat disontinuity type. For i = 1, 2, 3 we all theorresponding elementary wave i-wave. An i-wave travels with the speed si ∈ R givenby
si = si(w) = λi(w) (w ∈ U).Let us denote the (unknown) middle states by w∗

L and w∗
R. so that the solution of theRiemann problem has the struture as in Fig. 5.11. We apply the theory for nononserva-tive systems as developed in [36℄. To obtain a wave onneting states w−,w+ ∈ U withspeed s there must be onstants ρ̃, τ̃ ∈ R suh that the generalized Rankine-Hugoniotonditions

−s[ρ] + [ρu] = 0,

−s[ρu] + [ρu2] + ρ̃[κ] = 0,

−s[ρκ] + [ρuκ] + a2τ̃ [u] = 0

(5.10)hold. Here we denote by [ϕ] the jump ϕ− − ϕ+ for some funtion ϕ = ϕ(w), w ∈ U .Lemma 5.3.2Let w−,w+ ∈ U be states suh that (5.10) are satis�ed with s = si for some i ∈ {1, 2, 3}.
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[u] = [κ] = 0 (5.11)or

[u], [κ] 6= 0, m2 = a2τ̃ ρ̃. (5.12)Thereby we de�ned m = ρ+(u+ − s) = ρ−(u− − s).Proof. We observe that the seond and the third equation in (5.10) an be rewrittenin the form
m[u] + ρ̃[κ] = 0,

m[κ] + a2τ̃ [u] = 0.This is a linear system for the jumps and the statement follows.From Lemma 5.3.2 and [λ2(w)] = 0 we dedue that for i = 2 the ondition (5.11) musthold sine m2 = 0. Thus for a 2-wave we an hoose ρ̃, τ̃ arbitrarily and have
[v] = [κ] = 0. (5.13)For an 1/3-wave we have m2

1/3 = a2 6= 0 by [λ1/3(w)] = 0. Thus (5.12) applies andleads to the relation
ρ̃ =

1

τ̃
. (5.14)Now, let the fators ρ̃ of the 1/3-wave depend on the left hand and right hand densitystates:

ρ̃1 = ρ̃1(ρL, ρ
∗
L), ρ̃3 = ρ̃3(ρ

∗
R, ρR).We then have from the Rankine-Hugoniot onditions (5.10) and (5.13), (5.14) the equa-tions

a(u∗L − uL) + ρ̃1(ρL, ρ
∗
L)(κ∗L − κL) = 0,

u∗L = u∗R,

κ∗L = κ∗R,

a(u∗R − u∗L) + ρ̃3(ρ
∗
R, ρR)(κR − κ∗R) = 0.

(5.15)To avoid solving a system of nonlinear equations we de�ne now
ρ̃1(ρL, ρ

∗
L) := ρL, ρ̃3(ρ

∗
R, ρR) = ρR.From the �rst and the third equation of (5.15) we �nd with the seond equation (and

τ = 1/ρ)
u∗L = u∗R =

τLuL + τRuR − 1

a
(κR − κL)

τL + τR
,

κ∗L = κ∗R = κL + aτL(uL − u∗L).

(5.16)Here it is important that κ and v do not jump via the 2-wave. Finally we de�neaording to the linear degeneray of the harateristi �elds
ρ∗L =

a

u∗L − s1
, ρ∗R = − a

u∗R − s3
. (5.17)



5.3. A RELAXATION SCHEME 85Now we have de�ned all states in the postulated solution of the Riemann problem. Itis straightforward to hek for all three waves that all de�nitions of the middle states,in partiular (5.17), are onsistent with the original onditions (5.10).We summarize the results in a theorem.Theorem 5.3.3 (Solution of the Riemann Problem)Let the states uL, uR ∈ U be given. Then there exists a generalized solution u : R ×
[0, T ] → U of the orresponding Riemann problem (in the sense of [36℄).The solution u onsists of the four states uL, u

∗
L, u

∗
R, uR ∈ U whih are separated bythree ontat disontinuities whih travel with speeds s1, s2, s3 ∈ R given by

s1 = uL − a

ρL
= u∗L − a

ρ∗L
,

s2 = u∗L = u∗R,

s3 = uR +
a

ρR
= u∗R +

a

ρR
.

(5.18)The states u∗L, u∗R ∈ U are de�ned by (5.16) and (5.17).5.3.3 The Complete Numerial AlgorithmIn this setion we present the omplete numerial algorithm for solving the initial valueproblem for the Navier-Stokes-Korteweg system (5.1) in one and two spae dimensions.The disretization relies on the relaxation system (5.7) rather than on (5.1) diretly.The Sheme in 1dFirst we provide the disretized initial data
ρ0

j =
1

h

∫ x
j+1

2

x
j− 1

2

ρ0(x) dx,

(ρu)0j =
1

h

∫ x
j+1

2

x
j− 1

2

(ρ0u0)(x) dx,

κ0
j = µ(ρ0

j ) −
λ

h2
(ρ0

j+1 − 2ρ0
j + ρ0

j−1).The most important step of the update proedure from one timestep to another onsistsof two parts. First we neglet the soures in (5.7) and onsider the �rst-order system
ρt + (ρu)x = 0,

(ρu)t + (ρu2)x + ρκx = 0,

κt + uκx + a2

ρ2ux = 0.

(5.19)



86 CHAPTER 5. FIRST ORDER ACCURATE SCHEMESThe seond step is the relaxation step. We solve the ordinary di�erential equations
ρt = 0,

(ρu)t = 0,

κt =
µ̃(ρ,∆ρ) − κ

das the relaxation parameter d tends to zero. As initial data we take the data from the�rst step. This means κ is projeted bak to the equilibrium manifold. Beause d tendsto zero we simply get
κ = µ̃(ρ̃,∆ρ̃),where ρ̃ is the data that omes from the �rst step. In the following we inlude thevisous term again. We summarize the update proedure from time step n to n+ 1 asfollows:1) Choose the parameter a in (5.19) loally at the ell interfaes aording to thegeneralized Whitham ondition (5.8)

a2
j+ 1

2

= max
i=j,j+1

{

(ρn
i )2
(

p′(ρn
i ) +

λρn
i

h2

)}

.2) Solve the Riemann Problem at eah ell interfae xj+ 1

2

with initial data (ρn
j , u

n
j , κ

n
j ),

(ρn
j+1, u

n
j+1, κ

n
j+1). Let (ρ̃j+ 1

2

, ũj+ 1

2

, κ̃j+ 1

2

) denote the solution of the orrespond-ing Riemann Problem.
ρn+1

j = ρn
j − ∆t

h

(

ρ̃j+ 1

2

(0)ũj+ 1

2

(0) − ρ̃j− 1

2

(0)ũj− 1

2

(0)
)

,

(ρv)n+1
j = (ρv)nj − ∆t

h

(

ρ̃j+ 1

2

(0)ũj+ 1

2

(0)2 − ρ̃j− 1

2

(0)ũj− 1

2

(0)2
)

−∆t

h
(νR

j− 1

2

+ νL
j+ 1

2

)

+ε
∆t

h2
(un

j+1 − 2un
j + un

j−1),with
νR

j− 1

2

=

∫ xj

x
j− 1

2

ρ̃j− 1

2

(x)∂xκ̃j− 1

2

(x)dx,

νL
j+ 1

2

=

∫ x
j+1

2

xj

ρ̃j+ 1

2

(x)∂xκ̃j+ 1

2

(x)dx.3) Perform the relaxation step
κn+1

j = µ(ρn+1
j ) − λ

h2
(ρn+1

j+1 − 2ρn+1
j + ρn+1

j−1 ).



5.3. A RELAXATION SCHEME 87Note: Let a1 < a2 < a3 and
ρ(x) =

{

ρl, x ∈ (a1, a2)

ρr, x ∈ (a2, a3)
, κ(x) =

{

κl, x ∈ (a1, a2)

κr, x ∈ (a2, a3)
.Then we set ∫ a2

a1
ρ(x)κx(x)dx = 1

2(ρl + ρr)(κr − κl). Note that the solution of theRiemann Problem an have zero, one or two jumps in the intervals (xj− 1

2

, xj) and
(xj , xj+ 1

2

).2d Extension of the ShemeIn order to desribe the sheme in two spae dimensions on a Cartesian mesh we haveto onsider planar waves solving the system (5.7). Due to rotational invariane it issu�ient to onsider planar waves that propagate in x-diretion only. These wavessatisfy the equation
ρt + (ρu1)x = 0,

(ρu1)t + (ρu2
1)x + ρκx = 0,

(ρu2)t + (ρu1u2)x = 0,

κt + u1κx +
a2

ρ2
u1,x =

µ̃(ρ,∆ρ) − κ

d
.

(5.20)
We an easily verify the followingLemma 5.3.4 (Hyperboliity and harateristi �elds)(i) The system (5.20) is hyperboli (but not stritly hyperboli) in U := (0,∞) × R

3.The eigenvalues of the orresponding Jaobian are given by
λ1(w) = u1 −

a

ρ
, λ2(w) = λ3(w) = u1, λ4(w) = u1 +

a

ρ
(w ∈ U).and the orresponding eigenvalues are

r1(w) =









ρ3/a2

−ρ/a
0
1









, r2(w) =









1
0
0
0









, r3(w) =









0
0
1
0









, r4(w) =









ρ3/a2

ρ/a
0
1









.(ii) All harateristi �elds are linear degenerate, i.e., we have for i = 1, . . . , 4 and all
w ∈ U

∇λ(w) · ri(w) = 0.Now the solution of the Riemann Problem of the hyperboli part of equation (5.20) hasalmost the same struture as the Riemann Problem for the 1-D equation. We generalizeTheorem 5.3.3.



88 CHAPTER 5. FIRST ORDER ACCURATE SCHEMESTheorem 5.3.5 (Solution of the Riemann Problem)Let the states wL,wR ∈ U be given. Then there exists a generalized solution w :
R

2 × [0, T ] → U of the orresponding planar Riemann problem (in the sense of [36℄).The solution u onsists of the four states wL,w
∗
L, u

∗
R, uR ∈ U whih are separated byfour ontat disontinuities whih travel with speeds s1, s2 = s′2, s3 ∈ R given by (5.18).The states w∗

L,w
∗
R ∈ U are de�ned by (5.16), (5.17) and

u∗2,L = u2,L,

u∗2,R = u2,R.
(5.21)Thus, the formulation of the sheme on Cartesian meshes is straightforward. We omitthe details.Restrition on the Time Step SizeNow, the ritial task is to give a orret restrition on the time step size that ensuresthe stability of the method in some sense. The presene of seond and third order termsin the Navier-Stokes-Korteweg system and the lak of hyperboliity of the �rst-orderpart of the Navier-Stokes-Korteweg system make it di�ult to give rigorous argumentson the restrition of the time step size. Nevertheless, for sake of ompleteness of thealgorithm, we state at this point the ondition we atually use.We restrit ourselves to the 1-D situation. The extension to 2-D is straightforward.Solving the loal Riemann problems gives the ondition
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, (5.22)and the approximation of the visous term gives the ondition

∆t

h2
max

j

{

ε

ρj

}

≤ 1

2
. (5.23)If we take the hoie of the parameters aj+ 1

2

into aount we an see that the time stepsize is of order O(h2).Numerial ResultsThe on�guration for the numerial tests with the relaxation sheme is the same as withthe onservative sheme. However, we omit the third test ase Towards Stati Equilib-rium beause the sheme does not produe the dynamis of the solution orretly as wewill see in the test ase with the traveling wave solution. Therefore an additional testdoes not make sense.Test Case: Stati EquilibriumAgain we observe seond order onvergene as with the well balaned sheme. This is



5.4. COMPARISON OF THE THREE DIFFERENT SCHEMES 89only due to the use of a quadrature formula of insu�ient degree. See the orrespond-ing test ase with the well balaned sheme in the previous setion. We an also seethat the errors produed by the relaxation sheme and the well balaned sheme arenearly idential beause the errors are produed mainly by initial projetion. Table 5.5illustrates the results of the omputations.density and momentumh total L2-error EOC2.0000e-02 3.7576e-031.0000e-02 9.0721e-04 2.0506.6667e-03 4.0074e-04 2.0155.0000e-03 2.2494e-04 2.0074.0000e-03 1.4382e-04 2.0043.3333e-03 9.9822e-05 2.0032.8571e-03 7.3315e-05 2.002Table 5.5: Test Case: Stati Equilibrium. Total L2-error and EOC for the approximatesolution generated by the relaxation sheme.As with the well balaned sheme in the last setion, a very small veloity �eld arisesbeause the disrete initial data is not a perfet disrete equilibrium. But this velo-ity �eld onverges ompletely to zero as time tends to in�nity. A sequene of densitypro�les for di�erent mesh sizes at omputational end time would exatly look like theseshown in Figure 5.7. Therefore we omit it.Test Case: Traveling Wave SolutionThe approximate solution generated by the relaxation sheme seems to onverge tosome limit funtion as the mesh size tends to zero. But this funtion is not the exatsolution as shown in Figure 5.12 and Table 5.6. Only the momentum is shown in Figure5.12 suh that the di�erene between exat and approximate solution an be seen morelearly. The L2-errors of the density pro�les and the momentum pro�les are illustratedby Table 5.6.5.4 Comparison of the three Di�erent ShemesWe ompare the two quantitative tests applied in the previous setions to the on-servative sheme, the nononservative well balaned sheme and the nononservativerelaxation sheme.The left part of Figure 5.13 shows the error of the density pro�les of the three di�erentshemes in the test ase with the traveling wave solution. The onservative sheme andthe nononservative well balaned sheme onverge with order 1 to the exat solutionand the error of the well balaned sheme is an order of magnitude smaller than theerror of the onservative sheme. The disrete solution generated by the relaxationsheme does not onverge to the exat solution. The momentum pro�les (not shown)show exatly the same behavior.
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Figure 5.12: Exat and approximate traveling wave solution (momentum only) gener-ated by the relaxation sheme for n = 1800.
ρ ρuh L2-error EOC L2-error EOC1.0000e-02 3.3850e-02 2.3703e-025.0000e-03 3.3000e-02 0.037 2.1270e-02 0.1563.3333e-03 3.2677e-02 0.024 2.0440e-02 0.0982.5000e-03 3.2506e-02 0.018 2.0025e-02 0.0712.0000e-03 3.2399e-02 0.015 1.9776e-02 0.0561.6667e-03 3.2327e-02 0.012 1.9610e-02 0.0461.4286e-03 3.2275e-02 0.011 1.9492e-02 0.0391.2500e-03 3.2235e-02 0.009 1.9404e-02 0.0341.1111e-03 3.2204e-02 0.008 1.9335e-02 0.030Table 5.6: L2-error and EOC for the approximate traveling wave solution generated bythe relaxation sheme.The right part of Figure 5.13 ompares the onvergene rates in the test with the statiequilibrium solution. The values for the nononservative well balaned sheme and therelaxation sheme are almost the same beause after initial projetion the data doesnot hange essentially. Therefore the values of the relaxation sheme hide the values ofthe well balaned sheme in the �gure. As disussed in the previous setions, the wellbalaned sheme and the relaxation sheme are not really seond order shemes as the�gure suggests and the onvergene rate of the onservative sheme should approahone if the mesh is further re�ned. From the �gure we an onlude that the results ata stati equilibrium omputed by the well balaned sheme and the relaxation shemeare several magnitudes better than the results given by the onservative sheme.There is learly a di�erene in the qualitative behavior of the numerial solutions pro-dued by the onservative and the well balaned sheme. For those generated by thewell balaned sheme the total energy is a dereasing funtion of time, when the solutiontends to a stati equilibrium state on the disrete level the kineti energy tends to zeroand the value κ approahes a onstant as time tends to in�nity. This is exatly the
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hFigure 5.13: Left: L2-errors of the density pro�les for the three di�erent shemes,traveling wave test. Right: total L2-errors for the three shemes, stati equilibriumtest.behavior of exat solutions. For the numerial solutions produed by the onservativesheme we do not have these properties for a �xed mesh size h.Thus, the nononservative well balaned sheme seems to be the most promising sheme.The smaller time step size in omparison to the other shemes is not an issue sine thisan be bypassed using impliit time stepping. This is the sheme we will generalize tohigher order shemes on arbitrary nononform meshes by appliation of the Disontin-uous Galerkin approah in the next hapter. The numerial experiments show that therelaxation sheme is of very limited use. It an only be used to onstrut nontrivial,�rst order aurate stati equilibrium solutions. Also the generalization to higher ordershemes is muh more involved for the relaxation sheme than for the other shemes.
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Chapter 6Higher Order Shemes: TheDisontinuous Galerkin Approah
The Disontinuous Galerkin (DG) method is a lass of Finite Element methods thatuses ompletely disontinuous ansatz funtions as a basis of the Finite Element spae.In appliation to systems of onservation laws these inter element disontinuities giveextra degrees of freedom that an be used to stabilize the method. At the disontinuitiesusually numerial �uxes are applied that are known from the Finite Volume framework,see standard textbooks suh as [51℄, [52℄, [76℄, [81℄. Thus, the Disontinuous Galerkinapproah is a ombination of Finite Element and Finite Volume methods and a naturalgeneralization of Finite Volume methods to arbitrary higher order shemes.The Disontinuous Galerkin method has several advantages over other higher orderFinite Volume methods suh as methods based on ENO or WENO reonstrution.

• In the framework of the DG approah it is very easy to design higher order ansatzspaes. The polynomial degree an be hosen loally whih makes the shemesideally suited for p-adaptivity.
• Arbitrary, nononform unstrutured meshes an be used, possibly with hangingnodes due to the disontinuous ansatz funtions.
• The method is extremely loal. It is only neessary to ommuniate with thediret neighbor ells. Thus, it is very well suited for parallel implementations.But there are still some drawbaks as the need for slope limiters when the approximatedsolution is not su�iently smooth. Sometimes the omputational ost may be higherbeause at the ell boundaries in general integration formulas of twie the degree as forreonstrution based shemes have to be used. Additionally a volume integral has tobe omputed. Depending on the appliation this extra ost an be higher or lower thanthe reonstrution step in ENO or WENO methods. A omplete numerial omparisonbetween these methods applied to systems of interest is not available at time of thiswriting.The �rst Disontinuous Galerkin method was proposed 1973 by Reed and Hill [94℄.During the last two deades a major development of this type of numerial shemes was93



94 CHAPTER 6. HIGHER ORDER SCHEMES: THE DG APPROACHarried out by Cokburn, Shu and oworkers in the series of papers [22℄, [21℄, [24℄, [23℄,[26℄. The method has found rapid appliations in many di�erent areas. The reviewpaper [22℄ provides a good overview and many useful referenes onerning the DGapproah.The Loal Disontinuous Galerkin (LDG) method is a generalization of the standardDG method for onservation laws proposed by Bassi and Rebay [8℄. It is designed for theuse with onvetion dominated onservation laws that inlude higher order derivatives,suh as the ompressible Navier-Stokes equations. Further development of this methodwas done by Cokburn, Shu and oworkers espeially the appliation to equations withthird or higher order derivatives, see for example [25℄, [130℄.The LDG method has all the advantages of the standard DG method. In ontrast toother DG type methods for onvetion dominated onvetion-di�usion equations, suhas the Baumann and Oden method [9℄, the Loal Disontinuous Galerkin method anbe easily applied to equations with third or higher order derivatives. This propertymakes it ideally suited for the appliation to the Navier-Stokes-Korteweg system.In this hapter we disuss the Loal Disontinuous Galerkin method and its appliationto onservative terms, higher order term and soure terms in detail. Additionally wepresent an approah for the DG disretization of nononservative terms based on thede�nition of nononservative produts [36℄ and on the formulation given in [63℄. Wedesribe the method in a general framework of evolution equations and disuss the dis-retization of some simple examples. This general framework has also been suessfullyapplied to many other problems, see for example [19℄. For a salar model problem forthe NSK system we prove a L2-stability result of a semi-disrete Loal DisontinuousGalerkin disretization, similar to the result given in [130℄. Based on the disretizationof the model problem we give the omplete disretization of the Navier-Stokes-Kortewegsystem in multiple spae dimension at the end of this hapter.For the appliation of the method we use unstrutured triangular and tetrahedral meshessine these type of meshes are very well suited in approximation of ompliated geome-tries and have the extra advantage that the referene mapping to the standard ell isan a�ne linear transformation. This has several advantages (listed in the followingsetion) in ombination with the Disontinuous Galerkin method. We allow the meshesto be nononform in order to perform loal mesh adaption e�iently in parallel and assimple as possible. However, most (but not all) of the following applies to more generalmeshes as well. We start with the desription of the simpliial meshes we use.6.1 Simpliial MeshesThe use of simpliial meshes in ombination with the Disontinuous Galerkin methodhas the advantage that the mappings between the referene ell and the ells of the meshare a�ne linear funtions. This linearity of the referene mappings has two importantonsequenes. On the one hand the omputational ost is signi�antly lower and on theother hand orthogonality of loal base funtions is preserved as we will see in Setion6.3. The latter is also an improvement of the e�ieny of the method, espeially in



6.1. SIMPLICIAL MESHES 95ombination with expliit time stepping, and leads to a simpler implementation of themethod. We start with the desription of the underlying meshes that will in generalbe nononform but not arbitrary nononform meshes. We are mainly interested innononform meshes that are generated by suessive re�nement of a onform maromesh. For the ease of implementation and the numerial stability of the method it isalso desirable to restrit the number of levels of nononformity.The n-dimensional referene simplex (referene ell) is de�ned by
∆̂ =

{

x ∈ R
n | xi ≥ 0,

n
∑

i=1

xi ≤ 1

}

. (6.1)Let Tj : ∆̂ → R
n a nondegenerate, a�ne linear mapping for j = 0, . . . , ncells − 1. Wede�ne

∆j = Tj(∆̂),

T = {∆j | j = 0, . . . , ncells − 1}.In the following we denote both, the ompat set ∆j as de�ned above, as well its openinterior set by the symbol ∆j depending on what is more appropriate and providedthat the meaning is lear. Verties of ells are alled 0-dimensional interfaes, edges
1-dimensional interfaes, faes 2-dimensional interfaes and so on.De�nition 6.1.1 (Simpliial Mesh)
T is alled a nononform simpliial Mesh if for all i 6= j, ∆i,∆j ∈ T we have Hn(∆i ∩
∆j) = 0 and if Hn−k(∆i ∩∆j) 6= 0 for k = 1, . . . , n one of the following two onditionsholds(i) a (n− k)-dimensional interfae of ∆i is subset of a (n− k)-dimensional interfaeof ∆j ,(ii) a (n− k)-dimensional interfae of ∆j is subset of a (n− k)-dimensional interfaeof ∆i.A nononform Simpliial Mesh is alled onform if onditions (i) and (ii) hold simulta-neously, i.e., the ells ∆i and ∆j share a ommon (n − k)-dimensional interfae.In the above de�nition Hm denotes the m-dimensional Hausdor� measure in R

n. ASimpliial Mesh is alled a Triangulation for n = 2 and a Tetrahedralization for n = 3.If Hn−1(∆i ∩∆j) 6= 0 for two di�erent ells ∆i and ∆j of the mesh then they are alledneighbors.For a family of simpliial meshes (Th)h>0 we will assume in the following
δ(Th) ≤ h,

sup
h
κ(Th) < ∞,where δ and κ are de�ned by

δ(T ) = sup {diam(∆j) | ∆j ∈ T } ,

κ(T ) = sup

{

δ(T )n

|∆j |
| ∆j ∈ T

}

.



96 CHAPTER 6. HIGHER ORDER SCHEMES: THE DG APPROACHThis means that for this family the mesh size tends to zero and angles remain boundedfrom below. Ωh =
⋃

∆j∈Th

∆j denotes the domain that is partitioned by Th and |Th| thenumber of ells of mesh Th.

Figure 6.1: Conform mesh (left) and a nononform mesh obtained by suessive re�ne-ment of the onform mesh (right).6.2 The Loal Disontinuous Galerkin MethodHere we disuss the higher order spatial disretization of onservative systems with orwithout higher order derivatives, non-onservative parts and soure terms. The termloal in Loal Disontiunuous Galerkin Method is used when higher order derivativesare involved. The disretization leads to a semi-disrete formulation, i.e., a ordinarydi�erential equation. The higher order time disretization of ordinary initial valueproblems is disussed in Chapter 7.6.2.1 First Order Conservative SystemsIn this setion we onsider �rst order onservation laws of the form
ut + L[u] = 0 in Ω ⊂ R

n. (6.2)In the above equation L : C1(Ω,U) → C0(Ω,U) denotes a di�erential operator that isde�ned by
L[u](x) =

n
∑

i=1

∂

∂xi
f i(u(x),x),where f i : U×Ω → R

d, i = 1, . . . , n are smooth funtions (physial �uxes) and might ingeneral depend on further parameters suh as time. The open set U ⊂ R
d is alled statespae. For example the Euler equations of gas dynamis in multiple spae dimensionsand the invisid Burgers equation are systems of onservation laws. Usually �rst ordersystems are required to be hyperboli in (at least parts of) the state spae U , otherwisethe onservation law usually su�ers a lak of well posedness, see standard textbooks on



6.2. THE LOCAL DISCONTINUOUS GALERKIN METHOD 97Hyperboli Conservation Laws suh as [34℄, [51℄, [100℄. The aim of this setion is thedisretization of the spatial di�erential operator L.Let (·, ·)Ω denote the L2 inner produt with respet to Ω. Using partial integration wehave (for smooth funtions u and ϕ ∈ C1(Ω,Rd)) the expression
(L[u], ϕ)Ω =

∫

∂Ω

n
∑

i=1

nif i(u(x),x) · ϕ(x) dσ(x) −
∫

Ω

n
∑

i=1

f i(u(x),x) · ∂

∂xi
ϕ(x) dx,(6.3)where the ni denote the omponents of the outer normal vetor on ∂Ω.We introdue the salar Disontinuous Galerkin spae Vh by the de�nition

Vh =
{

ϕ : Ωh → R | ϕ|∆j
∈ Pk, ∆j ∈ Th

}

,where the basis funtions ϕ usually belong to the spae of polynomials Pk of degree
k loally, i.e., on eah ell ∆j of the underlying mesh Th, see Setion 6.3. The set
Ωh ⊂ R

n denotes an approximation (in some sense) of the domain Ω whih is partitionedby Th. The spae of polynomials ould be replaed by some other spae with similarapproximation properties. Based on Vh we denote the spae of vetor valued ansatzfuntions with values in R
d by V d

h .Let us de�ne a disrete di�erential operator Lh : V d
h → V d

h by (L2-)projeting L[u] to
Vh in a sense that is disussed in the following. Therefore we apply the de�nition ofnononservative produts [36℄ to the expression (6.3), see Appendix A.4. For uh ∈ V d

hwe de�ne Lh[uh] by the relation
(Lh[uh],ϕ)Ωh

= −
|Th|−1
∑

j=0

∫

∆j

n
∑

i=1

f i(uh(x),x) · ∂

∂xi
ϕ(x) dx (6.4)

+
1

2

|Th|−1
∑

j=0

∫

∂∆j\∂Ωh

g(uh|∆j
(x),uh|∆j′

(x),x,n) · (ϕ|∆j
(x) − ϕ|∆j′

(x)) dσ(x)

+

|Th|−1
∑

j=0

∫

∂∆j∩∂Ωh

n
∑

i=1

nif i(uh|∆j
(x),x) · ϕ|∆j

(x) dσ(x)for all ϕ ∈ V d
h . The ells ∆j′ denote the orresponding neighboring ells of ell ∆j inthe surfae integral above. The fator 1

2 in front of the seond term of the right handside appears beause all interfaes are ounted twie. The last term in the equationabove an be used to presribe several kinds of boundary data. The DisontinuousGalerkin method is well de�ned when the physial �uxes f i and numerial �ux g arehosen. The physial �uxes are ompletely determined by the equation whereas thehoie of the numerial �ux is the ruial part in the method. For a reasonable methodthe numerial �ux should satisfy at least



98 CHAPTER 6. HIGHER ORDER SCHEMES: THE DG APPROACH(i) g(u,u,x,n) =
n
∑

i=1
nif i(u,x) for all u ∈ U ,x ∈ Ω and n ∈ Sn−1 (Consisteny).(ii) g loally Lipshitz ontinuous.(iii) g(u,v,x,n) = −g(v,u,x,−n) for all u,v ∈ U ,x ∈ Ω and n ∈ Sn−1 (Conserva-tion Property).Many numerial �uxes for di�erent kinds of equations an be found in standard text-books suh as [52℄, [76℄, [81℄, [111℄.Now let

uh(x, t) =

|Vh|−1
∑

l=0

ϕl(x)αl(t), {ϕ0, . . . , ϕ|Vh|−1} basis of Vhthen the semi-disrete formulation of the onservation law 6.2 an be written as
(

∂

∂t
uh(·, t),ϕ

)

Ωh

+ (Lh[uh(·, t)],ϕ)Ωh
= 0 for all ϕ ∈ V d

h , t ∈ (0,∞). (6.5)This is the DG spae disretization given by Cokburn and Shu, see for example [21℄,[24℄, [23℄, [26℄. The initial value problem (initial values have to be provided by a proje-tion to the spae V d
h ) for the ordinary di�erential equation (6.5) an be solved by meansof Runge-Kutta methods or other shemes like multistep shemes. For the use withonservation laws Shu and Osher [103℄ have developed speial Runge-Kutta methods(TVD or Strong Stability Preserving) that preserve ertain properties of onservationlaws on the disrete level (suh as the TVD property of salar onservation laws), seeChapter 7.6.2.2 Conservative Systems with Higher Order TermsThe idea of the treatment of higher order derivatives in the framework of the LoalDisontinuous Galerkin method is to reformulate higher order di�erential operators asombination of �rst order di�erential operators and to apply the method desribed inthe previous setion.As an example we onsider the multidimensional nonlinear onvetion-di�usion equation

ut + L2[u] = 0,

L2[u] = ∇ · F (u) −∇ · (ε∇u),with some nonlinear �ux F . This equation an be reformulated by using two �rst orderdi�erential operators
ut + L1

2[(u,L1
1[u])] = 0,

L1
1[u] = ∇u,

L1
2[(u,v)] = ∇ · F (u) −∇ · (εv).



6.2. THE LOCAL DISCONTINUOUS GALERKIN METHOD 99In general, a m-th order di�erential operator an be onstruted by means of m �rstorder di�erential operators.
u0 = u,

u1 = L1
1[(u

0)],

u2 = L1
2[(u

0,u1)],...
Lm[u] = L1

m[(u0,u1, . . . ,um−1)].Here the �rst order di�erential operators are of the form
L1

k[u
0, . . . ,uk−1](x) =

n
∑

i=1

∂

∂xi
fk

i

(

u0(x), . . . ,uk−1(x),x
)

, k = 1, . . . ,m,with uk(x) ∈ R
dk , x ∈ R

n. These �rst order operators an then be disretized as in theprevious setion. The method is alled Loal Disontinuous Galerkin method beausethe temporary funtions uk an be eliminated loally without solving a large system ofequations.Now the spae disretization at a time t > 0 of a onservation law inluding higher(m-th) order derivatives, represented by the spatial di�erential operator Lm, of theform
ut + Lm[u] = 0 (6.6)an be arried out by the de�nition of a disrete di�erential operator Lm

h of order mfollowing the algorithm:set u0
h = uh(·, t);for k = 1, . . . ,m {ompute L1

h,k[(u
0
h, . . .u

k−1
h )] using the physial �uxes fk

iand onsistent numerial �uxes gk as in the previous setion;set uk
h = L1

h,k[(u
0
h, . . .u

k−1
h )];

}set Lm
h [uh(·, t)] = um

h .Here the disrete �rst order di�erential operators L1
h are de�ned as in the previoussetion. Using the disrete spatial operator we an formulate the semi-disrete versionof the higher order onservation law

(

∂

∂t
uh(·, t),ϕ

)

Ωh

+ (Lm
h [uh(·, t)],ϕ)Ωh

= 0 for all ϕ ∈ V d
h , t ∈ (0,∞). (6.7)



100 CHAPTER 6. HIGHER ORDER SCHEMES: THE DG APPROACHExample 6.2.1 (Salar Convetion-Di�usion Equation)For the omplete Disontinuous Galerkin disretization of the salar onvetion di�usionequation from the beginning of this setion we have to de�ne the physial �uxes f1
i , f2

iand numerial �uxes g1, g2. We use the following �uxes
f1

i (u) = uei, i = 1, . . . , n,

g1(u, ũ,n) =
1

2
(u+ ũ)n,

f2
i (u,v) = Fi(u) − εvi, i = 1, . . . , n,

g2(u,v, ũ, ṽ,n) = G(u, ũ,n) − ε

2
(v + ṽ),where the vetors ei denote the standard unit vetors in R

n and G is a onsistent nu-merial �ux for the �uxes Fi, for example the Lax-Friedrihs �ux.This is the original method of Bassi and Rebay introdued in [8℄ applied to the salaronvetion-di�usion equation (Bassi and Rebay applied this method to the ompressibleNavier-Stokes equations). In the above disretization we have negleted the treatmentof boundary onditions for simpliity, therefore the disretization of the onvetion dif-fusion is not yet omplete (with the exeption of a mesh with periodi boundary). How-ever, the treatment of boundary onditions is another ruial part of the DisontinuousGalerkin method and depends, of ourse, on the kind of boundary ondition. We will seeexamples for the DG-disretization of several kinds of boundary onditions at the end ofthis hapter in onjuntion with the DG-disretization of the Navier-Stokes-KortewegSystem in one, two and three spae dimensions.6.2.3 Non-Conservative SystemsIn this setion we onsider �rst order systems inluding non-onservative terms, i.e.,parts of the equation that an not be written in divergene form. Systems that arise fromphysis are usually in onservative form but a nonlinear transformations of oordinatesor a homogenization proess an lead to a non-onservative system of equations. Inour ase the disretization in non-onservative form simply leads to a more reliabledisretization of the system. The disretization of non-onservative �rst order systemshas to be done with are. In general the sequene of approximate solutions generated bya sheme in non-onservative form does not onverge to the physial relevant solutionin the ase where disontinuities are present, see [60℄. This is not an issue in ourase beause solutions of the NSK system are supposed to be su�iently smooth. Theapproah we desribe in this setion an formally be generalized to systems with higherorder terms and/or onservative terms as desribed in the previous setions. We onsiderdi�erential operators of the form
L[u](x) =

n
∑

i=1

Ai(u(x),x)
∂

∂xi
u(x),with matrix valued funtions Ai : R

d × R
n → R

d×d. At the moment the funtion u issupposed to be smooth. The aim of this setion is to de�ne a disrete operator that



6.2. THE LOCAL DISCONTINUOUS GALERKIN METHOD 101an be applied to disontinuous funtions uh of the �nite element spae V d
h . Similarto Setion 6.2.1 we apply the de�nition of nononservative produts [36℄, see AppendixA.4. In the following the notation of Appendix A.4 is used.We de�ne the disrete operator applied to uh ∈ V d

h by the relation
(Lh[uh],ϕ)Ωh

=

∫

Ωh

d

[

n
∑

i=1

ϕT Ai(uh, ·)
∂

∂xi
uh

]

φ

=

|Th|−1
∑

j=0

∫

∆j

n
∑

i=1

ϕ(x)T Ai(uh(x),x) · ∂

∂xi
uh(x) dx (6.8)

+
1

2

|Th|−1
∑

j=0

∫

∂∆j\∂Ωh

1
∫

0

n
∑

i=1

niφϕ(t,x)T Ai

(

φu(t,x),x
)

φ′
u
(t,x) dt dσ(x)for all ϕ ∈ V d

h . φu and φϕ in the above equation denote the u- and ϕ-omponents ofthe path φ, i.e.,
(

φu

φϕ

)

(t, x) = φ
(

t; (uh|∆j
(x),ϕ|∆j

(x)), (uh|∆j′
(x),ϕ|∆j′

(x))
)with the property that φ is linear in the test funtion arguments ϕ. The fator 1

2 inthe last term of equation (6.8) is neessary beause all interfaes are ounted twie.Note that there is no ontribution of the boundary in equation (6.8) that an be usedto impose boundary onditions as in the onservative ase (6.4). The di�erene toboundary data an be regarded as disontinuity and therefore additional boundaryterms have to be added to equation (6.8) in order to presribe data on parts of theboundary of the domain.The last term in equation (6.8) an be approximated by an averaging proess. Inpratial appliations we use the following variation
(Lh[uh],ϕ)Ωh

=

|Th|−1
∑

j=0

∫

∆j

n
∑

i=1

ϕ(x)T Ai(uh(x),x) · ∂

∂xi
uh(x) dx (6.9)

+
1

2

|Th|−1
∑

j=0

∫

∂∆j\∂Ωh

{

ϕ(x)T
}

ζ

{

n
∑

i=1

niAi

(

uh(x),x
)

}

[uh(x)] dσ(x).Here the blue term denotes the linear average in the test funtion
{

ϕ(x)T
}

ζ
= ζϕ|∆j

(x) + (1 − ζ)ϕ|∆j′
(x)for some ζ ∈ [0, 1]. The red term denotes the average in the term∑niAi, not neessarilythe arithmeti average. And

[uh(x)] =
(

uh|∆j′
(x) − uh|∆j

(x)
)



102 CHAPTER 6. HIGHER ORDER SCHEMES: THE DG APPROACHdenotes the jump of uh over the ell interfae in diretion of the normal n.In pratial appliations the test funtions have usually only support on one ell of themesh. In this ase the average in the above equation has the same struture as for theonservative terms, see (6.4). When non-onservative and onservative terms appearsimultaneously both average proedures an be ombined in one generalized numerial�ux funtion. The parameter ζ an then ontrol the average value in the test funtion.6.2.4 Soure TermsSoure terms in a balane law are simply projeted to the the ansatz spae V d
h . Thismeans a balane law of the form

ut + L[u] = B(u),where L is a di�erential operator that an inlude higher order derivatives or non-onservative parts and B is the soure term that an in general also depend on spaeand time variables, is disretized in the following way
(

∂

∂t
uh(·, t),ϕ

)

Ωh

+ (Lh[uh(·, t)],ϕ)Ωh
= (B(uh(·, t)),ϕ)Ωh

for all ϕ ∈ V d
h , t ∈ (0,∞).The formally simple approah does not neessarily mean that soure terms are triv-ial to handle. The presene of soure terms often results in sti� ordinary di�erentialequations of the semi-disrete system. Therefore it is sometimes onvenient to applyexpliit-impliit Runge-Kutta methods (see Chapter 7), where the onvetive part of theequation is disretized in an expliit fashion, and the soure term is treated impliitly.6.3 Constrution of Loal Basis FuntionsIn this setion we onstrut an orthogonal set of basis funtions that spans the FiniteElement spae Vh. For this onstrution it is important that the referene mapping fromthe referene ell to an arbitrary ell of the mesh is an a�ne linear funtion. This is thease for simpliial meshes as well as for Cartesian meshes. For general meshes this isnot the ase. By this property orthogonality on the referene ell leads to orthogonalityon an arbitrary ell.We denote the L2-inner produt on the referene ell ∆̂ by

(φ,ψ) =

∫

∆̂

φ(x)ψ(x) dxand polynomials of degree at most m and the dimension of this spae by
Pm = span{x 7→

n
∏

i=1

xki

i | ki ∈ N,
n
∑

i=1

ki ≤ m

}

, |Pm| =
1

n!

n
∏

i=1

(m+ i).



6.4. QUADRATURE FORMULAS 103We onstrut an orthonormal basis of Pm with respet to the inner produt (·, ·) byappliation of the Gram-Shmidt proedure. It is well known that the Gram-Shmidtproedure is not stable when �oating point arithmeti is used. Therefore we use rationalarithmeti to overome this problem by exploiting the fat that
∫

∆̂

n
∏

i=1

xki

i dx =

∏n
i=1 ki!

(n+
∑n

i=1 ki)!
,whih is a rational expression. This way the orthogonalization an be arried out with-out loss of auray. The normalization of the base funtions is done at the end usinghigh preision �oating point arithmeti. Both, rational arithmeti and arbitrary prei-sion �oating point arithmeti, are provided by the GNUMP pakage [82℄ whih providesa C++ interfae inluding overloaded arithmeti operators.We denote the orthonormal base polynomials of Pm by p0, . . . , p|Pm|−1. Here |Pm| standsfor the dimension of Pm. Using these loal base funtions we an de�ne global orthogonalbase funtions on Ωh

ϕj
l (x) = χ∆j

(x) pl(Tj(x)−1), j = 0, . . . , |T | − 1, l = 0, . . . , |Pm| − 1. (6.10)Orthogonality of the loal base polynomials pl is preserved beause the mapping Tj fromthe referene ell to the simplex ∆j of T is an a�ne linear mapping. Now we de�ne the
|T | · |Pm| -dimensional spae of base funtions for the (m+1)-th order DisontinuousGalerkin Method by

Vh = {ϕj
l | j = 0, . . . , |T | − 1, l = 0, . . . , |Pm| − 1}.Note: On Cartesian grids as well as on nonuniform one-dimensional grids Legendre-Polynomials an be used to onstrut orthogonal basis funtions. In this ase an or-thogonalization proedure as above is not neessary.A more sophistiated method to onstrut an orthonormal polynomial basis is presentedin [62℄. The resulting basis has additional symmetry properties. Using this symmetry inthe base polynomials together with symmetries in quadrature formulas an be exploitedto improve the performane of the Disontinuous Galerkin method (The number of�oating point operations an be redued by exploiting these symmetries). In one spaedimension the Legendre-Polynomials are already symmetri and skew symmetri. Seeexample 6.5.1 in Setion 6.5 for an exploit of symmetries in this ase.6.4 Quadrature FormulasFor the general treatment of nonlinear partial di�erential equations by the Disontin-uous Galerkin method desribed above we need quadrature formulas to evaluate thevolume and surfae integrals that appear in the Disontinuous Galerkin formulation.In ertain speial ases the appliation of quadrature formulas an be avoided by the



104 CHAPTER 6. HIGHER ORDER SCHEMES: THE DG APPROACHappliation of a quadrature-free implementation whih improves the e�ieny the Dis-ontinuous Galerkin method. This is possible for example for linear equations withonstant oe�ients, Burgers equation or Euler equations with equation of state of aperfet gas [4℄, [83℄.A n-dimensional quadrature formula with respet to the n-dimensional referene simplexis a set of points x0, . . . ,xnq−1 and orresponding weights, w0, . . . , wnq−1 suh that thesum
Ih(f) =

nq−1
∑

r=0

wrf(xr)approximates the integral
I(f) =

∫

∆̂

f(x) dxin some sense for a given funtion f : R
n → R.Note: It is not required (but reommended) that the points xr lie inside the referenesimplex.De�nition 6.4.1 (Order of Quadrature Formulas)A quadrature formula (xr, wr)r=0,...,nq−1 is of order m ∈ N\{0} if equation

Ih(p) = I(p)holds for all polynomials p ∈ Pm.As noted above the use of quadrature formulas with points xr outside the referenesimplex is not reommended beause funtions may not be de�ned at points they areevaluated at by the use of suh a formula. Some appliations have problems whenformulas with negative weights are used but the Disontinuous Galerkin method (atleast in our appliations) seems not to be sensitive to this issue. The use of quadraturerules with negative weights results in the loss of the positivity property of the numerialintegral but not in the loss of auray in general.For the implementation of Disontinuous Galerkin shemes the analysis arried out byCokburn, Hou and Shu in [23℄ shows that for the volume integrals quadrature formulasof order 2m and for the interfae integrals quadrature formulas of order 2m + 1 aresu�ient when polynomials of degree m are used as ansatz funtions. However, in theomplete linear ase quadrature formulas of order 2m−1 and 2m are su�ient for exatintegration for the volume and interfae integrals respetively. For linear soure terms avolume quadrature rule of order 2m must be hosen. Even for nonlinear equations thishoie may be su�ient as we have observed in appliations with the Navier-Stokes-Korteweg system.6.4.1 1d Quadrature FormulasQuadrature formulas in one spae dimension an be onstruted very easily by om-puting the zeroes of Legendre polynomials to obtain the quadrature points and the



6.4. QUADRATURE FORMULAS 105orresponding weights are obtained by solving a linear system of equations. In [92℄ theC/C++ method gauleg is provided that onstruts Gaussian quadrature formulas ofarbitrary degree that are known to be optimal in the sense that the number of points ofa quadrature rule of a given order is minimized. This means with nq points a Gaussianquadrature formula of order 2nq − 1 an be onstruted. The weights and points ofGaussian quadrature formulas of lower order an also be found in standard textbooks,e.g. [109℄ or [107℄.6.4.2 2d Quadrature FormulasTable 6.1 lists some properties and referenes to existing 2d quadrature formulas withrespet to the triangle. All of the 2d formulas are taken from [40℄ some of them analso be found in [109℄ and in other soures.order number of points remark1 12 33 4 has negative weights4 65 7 has negative weights6 127 138 169 1910 2511 27 has negative baryzentri oordinates12 3313 37Table 6.1: Referenes to 2d quadrature formulas.[40℄ provides integration formulas up to order 20. Some of the additional formulas notlisted in Table 6.1 also have negative weights or negative oordinates.6.4.3 3d Quadrature FormulasTable 6.2 lists some properties and referenes to existing 3d quadrature formulas withrespet to the tetrahedron.Many of the 2d and 3d quadrature formulas above an be obtained from the Enylo-pedia of Cubature Formulas website [28℄, [88℄.Note: On Cartesian meshes in arbitrary spae dimensions 1d-Gaussian quadrature for-mulas an be used to onstrut formulas of optimal order.



106 CHAPTER 6. HIGHER ORDER SCHEMES: THE DG APPROACHorder number of points remark referene1 1 [109℄2 4 [109℄, page 3073 5 has negative weights [109℄, page 3084 11 has negative weights [70℄5 14 [117℄6 24 [70℄7 35 has negative weights [117℄7 31 has negative weights [70℄8 43 has negative weights [10℄9 53 has negative weights [10℄has negative baryzentri oordinates11 87 has negative weights [99℄has negative baryzentri oordinatesnot omputed very auratelyTable 6.2: Referenes to 3d quadrature formulas.6.5 Implementational DetailsWe disuss some details on the implementation of the DG disretization for salar �rstorder onservation laws and salar nononservative equations. The extension to vetorvalued equations and equations with higher order derivatives is then straightforward.Salar �rst order onservation lawsWe onsider the Disontinuous Galerkin disretization of the salar onservation law
ut + ∇ · f(u) = 0in n spae dimensions. Appliation of the disretization given in (6.4) and using thenotation of the previous setions we get for the j-th ell of the mesh

∫

∆j

∂

∂t
uj(x, t)ϕj

k(x) dx =

∫

∆j

f(uj(x, t)) · ∇ϕj
k(x) dx

−
∑

e∈∂∆j

∫

e

g(uj(x, t), uj′(x, t),n) ϕj
k(x) dσ(x),where ϕj

k ∈ Vh denote the basis funtions that are not idential equal to zero on the ell
∆j for k = 0, . . . , np − 1 = |Pm| − 1. The approximate solution on the ells ∆j and theorresponding neighboring ells ∆j′ are de�ned by

uj(x, t) =

np−1
∑

k=0

αj
k(t)ϕ

j
k(x), uj′(x, t) =

np−1
∑

k=0

αj′

k (t)ϕj′

k (x).



6.5. IMPLEMENTATIONAL DETAILS 107By appliation of the transformation formula and the de�nition of the test funtions ϕj
kin (6.10) we get

(αj
k)′(t)

∫

∆̂n

pk(x)pk(x)|detDTj(x)| dx

=

∫

∆̂n

[

DTj(x)−1f(uj(Tj(x), t))
]

· ∇pk(x) |detDTj(x)| dx

−
n
∑

i=0

∫

∆̂n−1

g
(

uj(Si
j(x), t), uj′(Si

j(x), t),n
)

ϕj
k(S

i
j(x))

√

det
(

(DSi
j)

TDSi
j

)

dx.Here Tj : ∆̂n → ∆j denotes the a�ne linear referene mapping from the n-dimensionalreferene ell to the ell ∆j and Si
j : ∆̂n−1 → eij the referene mapping from the (n−1)-dimensional referene ell to the i-th interfae of the ell ∆j. We have

|detDTj(x)| = n! · |∆j| and √

det
(

DSi
j(x)TDSi

j(x)
)

= (n− 1)! · |eij |.Using this, the orthogonality of the test funtions and appliation of n-dimensional and
(n− 1)-dimensional integrations formulas with qn and qn−1 points respetively gives

(αj
k)

′(t) =

qn−1
∑

r=0

wn
r



DT−1
j f





np−1
∑

l=0

αj
l (t)pl(x

n
r )







 · ∇pk(x
n
r ) (6.11)

−
n
∑

i=0

|eij |
n|∆j|

qn−1−1
∑

r=0

wn−1
r g(xn−1

r , t) pk(T
−1
j Si

j(x
n−1
r ))

+Rj
k(t),with the abbreviation

g(xn−1
r , t) = g





np−1
∑

l=0

αj
l (t)pl(T

−1
j Si

j(x
n−1
r )),

np−1
∑

l=0

αj′

l (t)pl(T
−1
j′ S

i
j(x

n−1
r )), n



 .

Rj
k(t) denotes the (small) approximation error of the quadrature formulas and is ne-gleted in the implementation. Note that an evaluation of the basis funtions pk isneessary only one at the beginning of the omputation for the volume integrals. Thisdoes also hold for the surfae integrals when the maximum level of nononformity isrestrited in the mesh.Salar nononservative equationsWe onsider the nononservative salar equation in multiple spae dimensions

ut + a(u,∇u,x, t) = 0.



108 CHAPTER 6. HIGHER ORDER SCHEMES: THE DG APPROACHHere a is of the form
a(u,∇u,x, t) = b(u, x, t) +

n
∑

i=1

ai(u, x, t)
∂

∂xi
uand inludes also a soure term b. We apply the disretization given by equation (6.8).The omputation of the surfae integral is similar to the omputation of the surfaeintegral in the onservative ase disussed in the previous paragraph. So we omit it anddisuss only the omputation of the volume integral. With the notation of the previousparagraph we have

∫

∆j

a (uj(x, t),∇uj(x, t),x, t) ϕ
j
k(x) dx

=

∫

∆j

a





np−1
∑

l=0

αj
l (t)pl(T

−1
j x),

np−1
∑

l=1

αj
l (t)(DTj)

−T∇pl(T
−1
j x), x, t



 pk(T
−1
j x) dx

= n! · |∆j|
∫

∆̂n

a





np−1
∑

l=0

αj
l (t)pl(x),

np−1
∑

l=1

αj
l (t)(DTj)

−T∇pl(x), x, t



 pk(x) dxby appliation of the transformation formula. Note that p0 is a onstant and an beomitted in the omputation of ∇uj . For implementation a suitable quadrature formulaas to be applied in general. This is the same as in the onservative ase.Example 6.5.1 (Symmetry Exploit)In (6.11) we have seen that for the omputation of the volume integral over the ell
∆j the approximate solution uh has to be evaluated at the integration points Tj(xr).The same an be done with less omputational ost using symmetries in the basispolynomials and in the quadrature formulas. We onsider the one dimensional ase.In this the basis polynomials are given by saled Lagrange polynomials. For simpliitywe assume that we have an even number np of loal basis funtions. As quadratureformulas we hoose a Gaussian quadrature formula with an even number of points nq.Both, the quadrature formulas and the basis funtion have symmetries. We have theproperties

pl(xr) = pl(xnq−r−1) if l is an even number,
pl(xr) = −pl(xnq−r−1) if l is an odd numberfor l = 0, . . . , np − 1 and r = 0, . . . , nq − 1.For r = 0, . . . , nq − 1 it is neessary to ompute

uh(Tj(xr)) =

np−1
∑

l=0

αj
l pl(xr).



6.6. SIMPLE EXAMPLES 109Using the properties above this an be done also in the following way. For r = 0, . . . ,
nq

2 −
1 ompute

βr =

np

2
−1
∑

l=0

α2l p2l(xr),

γr =

np

2
−1
∑

l=0

α2l+1 p2l+1(xr),

uh(Tj(xr)) = βr + γr,

uh(Tj(xnq−r−1)) = βr − γr.In this approah only half the number of multipliation and less additions are nees-sary to evaluate the approximate solution at the quadrature points. Note that this isnot restrited to even number of basis polynomials and quadrature points. A similarapproah is also possible in multiple spae dimensions when the orthogonal basis fun-tions have additional symmetry properties. In [62℄ suh a kind of basis polynomials areonstruted.6.6 Simple ExamplesThis setion is dediated to the Loal Disontinuous Galerkin disretization of two sim-ple examples in one spae dimensions inluding higher order terms. In Setion 6.2 wehave already disussed the disretization of the salar onvetion-di�usion equation inmultiple spae dimensions as the method was proposed by Bassi and Rebay [8℄. Here wegive other possible numerial �uxes like these proposed by Cokburn and Shu in [25℄.The seond example is the LDG disretization of an equation that inludes third orderterms. This equation serves as a model problem for the Navier-Stokes-Korteweg systemnot beause it is related to this system in speial situations but the way it is disretizedis similar.6.6.1 Nonlinear Convetion-Di�usion Equation in 1dIn Example 6.2.1 we already disussed the multidimensional nonlinear onvetion-di�usionequation and we disretized it by appliation of the original LDG method proposed byBassi and Rebay [8℄. Here we onsider this equation again in one spae dimensionfor simpliity and give alternative disretizations with superior properties proposed byCokburn and Shu [25℄. We onsider the problem
ut + F (u)x = εuxx in R × R>0,

u(·, 0) = u0 in R,where F : R → R is some smooth (in general nonlinear) funtion and the onstant
ε > 0 is supposed to be small suh that the equation is onvetion dominated and theDisontinuous Galerkin disretization is an appropriate hoie.



110 CHAPTER 6. HIGHER ORDER SCHEMES: THE DG APPROACHWe rewrite the equation using two �rst order di�erential operators L1
1 and L1

2 as inSetion 6.2
ut + L1

2

[

u, L1
1[u]
]

= 0,the di�erential operators are de�ned by
L1

1[u] = f1
1 (u)x, f1

1 (u) = u,

L1
2[u, v] = f2

1 (u, v)x, f2
1 (u, v) = F (u) − εv.Here f1

1 and f2
1 denote the physial �uxes. For the omplete numerial disretizationwe have to de�ne onsistent numerial �uxes, We hoose the Loal Lax-Friedrihs �uxfor the onvetive part of the equation and a family of visous �uxes parameterized by

ξ ∈ [0, 1] for the visous part of the equation.
g1(u−, u+, n) = (ξu− + (1 − ξ)u+)n,

g2(u−, v−, u+, v+, n) = 1
2 (F (u−) + F (u+))n− α

2 (u+ − u−)

−ε ((1 − ξ)v− + ξv+)n,

(6.12)where n denotes the one dimensional normal (i.e. 1 or −1) and α is hosen to be equalto the fastest wave speed α = max(|F ′(u−)|, |F ′(u+)|). For simpliity we omit thetreatment of boundary onditions.Choosing the parameter ξ equal to zero or one means that in a �rst order sheme thevisous part of the equation is disretized by the usual three point stenil
ε

h2
(ui−1 − 2ui + ui+1) ,whereas the hoie ξ = 1

2 leads to a disretization by the spread out �ve point widestenil
ε

4h2
(ui−2 − 2ui + ui+2) .Numerial experiments show that the latter hoie an lead to a suboptimal order ofonvergene in the ase where polynomials of odd degree are used as ansatz funtions,see [102℄. This is not a problem with the hoie ξ = 0 and ξ = 1 but this hoie anlead to problems with boundary onditions, see also Setion 6.9.For a �rst order sheme it is lear that the numerial (arti�ial) visosity an be omittedin the ase ξ = 0 and ξ = 1, the method proposed by Cokburn and Shu [25℄, providedthat the omputational mesh is su�iently �ne or the time step su�iently small in thefully disrete sheme. A linear stability analysis shows that it is not possible to stabilizethe sheme by physial visosity when the parameter ξ = 1

2 , this is the original shemeproposed by Bassi and Rebay [8℄ applied to the salar onvetion-di�usion equation, ishosen. Numerial experiments show that the same is true for the higher order shemes.



6.6. SIMPLE EXAMPLES 1116.6.2 Nonlinear Convetion-Di�usion-Dispersion Equation in 1dAs a salar model problem for the Navier-Stokes-Korteweg system we onsider the salarequation in one spae dimension
ut + f(u)x = εuxx + λuxxx in Ω × R>0,

u(·, 0) = u0 in Ω,where f : R → R is some smooth funtion and ε, λ are positive onstants. For simpliitywe set the interval Ω = (0, 1) and onsider periodi boundary onditions.This equation serves as a model problem for the NSK system not beause it is related tothis system in speial situations but the way it is disretized by the loal DisontinuousGalerkin approah is similar. We apply the general approah from Setion 6.2 to theabove equation. This means we rewrite the equation as a ombination of three �rstorder di�erential operators. We omit the expliit de�nition of the di�erential operators,the physial, the numerial �uxes and we write down the disretization of the systemas we need it in Setion 6.8. We rewrite the third order equation formally as a systemof �rst order equations by the introdution of new variables p and q.
ut + (f(u) − p)x = 0,

p − (εu+ q)x = 0,

q − (λu)x = 0.Appliation of the Loal Disontinuous Galerkin disretization disussed in Setion 6.2leads to the following semi-disrete problem. Find funtions u(·, t), p, q ∈ Vh = {ϕ :
Ω → R | ϕ|∆j

∈ Pk(∆j)} suh that the equations
∫

∆j

utv dx−
∫

∆j

(f(u) − p)vx dx + (f̂ − p̂)j+ 1

2

v−
j+ 1

2

− (f̂ − p̂)j− 1

2

v+
j− 1

2

= 0

∫

∆j

pw dx+
∫

∆j

(εu+ q)wx dx − (εû+ q̂)j+ 1

2

w−
j+ 1

2

+ (εû+ q̂)j− 1

2

w+
j− 1

2

= 0

∫

∆j

qz dx+
∫

∆j

(λu)zx dx − (λû)j+ 1

2

z−
j+ 1

2

+ (λû)j− 1

2

z+
j− 1

2

= 0

(6.13)are satis�ed for all pieewise polynomial test funtions v,w, z ∈ Vh and all ells ∆j.Here we denote the numerial �uxes by the hat funtions and a values ϕ±
j+ 1

2

denotethe values of the funtion ϕ ∈ Vh at the interfae xj+ 1

2

of the ell ∆j =
(

xj− 1

2

, xj+ 1

2

)extrapolated from the right and left respetively. Note that the funtion in general isdisontinuous at the interfae. As numerial �ux for the onvetive part of the equation
f̂j+ 1

2

= f̂(u+
j+ 1

2

, u−
j+ 1

2

) (6.14)we hoose some general monotone, Lipshitz ontinuous and onsistent numerial �ux,for example the Loal Lax-Friedrihs �ux as in the previous paragraph. The remaining
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q̂j+ 1

2

= q̂

(

q−
j+ 1

2

, q+
j+ 1

2

)

= 1
2(q+

j+ 1

2

+ q−
j+ 1

2

),

p̂j+ 1

2

= p̂

(

p−
j+ 1

2

, p+
j+ 1

2

)

= ξp+
j+ 1

2

+ (1 − ξ)p−
j+ 1

2

,

ûj+ 1

2

= û

(

u−
j+ 1

2

, u+
j+ 1

2

)

= (1 − ξ)u+
j+ 1

2

+ ξu−
j+ 1

2

,

(6.15)
for some onstant ξ ∈ [0, 1]. Note that the equations p and q an be eliminated loallysuh that it is not neessary to solve a larger system of equations. This propertyis responsible for the term Loal in the Loal Disontinuous Galerkin method. Thedisrete initial data an be onstruted by L2-projetion to the Finite Element spae
Vh.For the above given disretization we prove a L2 stability result similar to that givenin [130℄ in Setion 6.8.6.7 Summary of Theoretial ResultsIn this setion we state some of the existing results about the Disontinuous Galerkindisretization for onservation laws and Loal Disontinuous Galerkin methods foronvetion-di�usion equations and equations with higher order derivatives. The Lo-al Disontinuous Galerkin disretization was proposed by Bassi and Rebay in [8℄ (theyapplied the method to the ompressible Navier-Stokes equations) and further developedby Cokburn and Shu, see for example [25℄. Cokburn, Shu and oworkers give sev-eral theoretial results for salar model problems. Results onerning multidimensionalsystems are rare or do not exist.Early resultsReed and Hill [94℄ introdued the Disontinuous Galerkin method in 1973 for the timeindependent, salar, multidimensional, linear transport equation

∇ · (au) + bu = f in Ωwith appropriate boundary onditions. For the disretization they used numerial up-wind �uxes. LeSaint and Raviart [80℄ proved that the L2-error of the approximatesolution is of order k when loal base polynomials of degree k are used on general trian-gulations. Johnson and Pitkäranta [66℄ showed that the approximate solution onvergeswith order k + 1
2 to the exat solution of the problem.Many referenes for the Disontinuous Galerkin method and its reent development anbe found in the review paper [27℄.Nonlinear salar onservation lawsZhang and Shu [133℄ onsidered the nonlinear salar onservation law in multiple spae



6.7. SUMMARY OF THEORETICAL RESULTS 113dimensions
ut + ∇ · f(u) = 0 in Ω × (0, T ),

u(·, 0) = u0 in Ω,where f : R → R
n is a su�iently smooth vetor �eld and u0 : R → R denotes thesmooth initial data. The equation is disretized in spae by the Disontinuous Galerkinapproah of arbitrary degree (polynomial degree k ≥ 1) using general monotone numer-ial �uxes. Only Cartesian meshes are onsidered. In the multidimensional ase tensorproduts of 1d base funtions are used as ansatz funtions. Time integration is doneby appliation of the seond order Runge-Kutta method TVD2 desribed in Setion 7.2(the generalization of the statements below to higher order Runge-Kutta shemes likeTVD3 is a nontrivial task). In [133℄ Zhang and Shu obtained error estimates for smoothsolutions of the salar onservation law. They proved that the error is of order

• O
(

hk+1 + ∆t2
) in the nonlinear one dimensional ase and in the linear mul-tidimensional ase. Both ases require k = 1 and the usual CFL-ondition

∆t ≤ CCFL h,
• O

(

hk+ 1

2 + ∆t2
) for k ≥ 2 in the nonlinear multidimensional ase with a morerestritive CFL-ondition ∆t < CCFL h

4

3 .As usual h denotes the mesh size and ∆t the time step size. The authors do not payattention to the treatment of boundary onditions. Thus, periodi boundary onditionsor ompatly supported initial data is onsidered.Note: Sine only smooth solutions are onsidered a slope limiting proedure, that is usu-ally neessary for �rst order onservation laws when disontinuities are present, is notneessary to maintain the stability of the method, see for example the review paper [27℄.Convetion-di�usion equationsOriginally Bassi and Rebay proposed the Loal Disontinuous Galerkin (LDG) methodin appliation to the ompressible Navier-Stokes equations [8℄. A further developmentof this method was arried out by Cokburn and Shu within the general framework ofonvetion-di�usion equations [25℄. The method is espeially well suited for onvetiondominated systems. In [25℄ the following lass of equations is onsidered:
ut + ∇ · f(u,∇u) = 0 in Ω × (0, T ),

u(·, 0) = u0 in Ω,where f : R × R
n → R

n is a smooth funtion that is linear in the seond argument(∇u). Under further assumptions on the funtion f the authors applied a similar (inthe general nonlinear ase more sophistiated) disretization as we disussed it in theSetion 6.6. They proved a L2-stability result for a semi-disrete solution whih leads toan error estimate in the L2-norm for the linear ase with onstant oe�ients. The errorof the semi-disrete solution is of order Chk when a polynomials of degree k are usedand the order of the onstant C varies between 1 and h dependent on the polynomial



114 CHAPTER 6. HIGHER ORDER SCHEMES: THE DG APPROACHdegree and the regime of the oe�ients (purely hyperboli / purely paraboli ase).For simpliity periodi domains are onsidered.The Loal Disontinuous Galerkin method is not the only DG type method for this typeof equations. There are a lot of other method that ome from the DG disretization ofellipti problems. In [3℄ all the available methods for ellipti equations are ompatlypresented and they are ompared to eah other numerially in [20℄. Espeially themethod by Baumann and Oden (BO) [9℄ seems to be attrative for the treatment ofonvetion-di�usion systems. A omparison between the Loal Disontinuous Galerkinmethod and the Baumann and Oden method in the framework of onvetion-di�usionequations an be found in [102℄, we summarize the advantages and disadvantages of theLDG method over the BO method as follows. The underlying benhmark in [102℄ wasthe disretization of the one dimensional heat equation.+ In the test with the 1d heat equation the LDG method produes muh smallererrors than the BO method.+ The LDG method onverges with optimal order for polynomials of all degrees k.The BO method is not optimal for even k.- The LDG method has a higher omputational ost than the BO method. But inthe test this is amortized by the smaller errors.- In parallel implementations the LDG method has a higher ommuniation ostthan the BO method.The main advantage of the LDG method over the Baumann and Oden method is thatthe LDG method an be easily generalized to systems with third or even higher orderderivatives. We will see this in the next paragraph. This is not possible with the Bau-mann and Oden method, at least it is not straightforward to do.KdV type equationsYan and Shu [130℄ onsidered a general lass of salar nonlinear KdV like equations inmultiple spae dimensions of the form
ut +

n
∑

i=1

∂

∂xi



fi(u) + r′i(u)
n
∑

j=1

gij(ri(u)xi
)xj



 = 0 in Ω × (0, T ),

u(·, 0) = u0 in Ω,where fi, ri and gij are smooth salar valued funtions. The boundary is assumed to beperiodi to avoid the ompliated treatment of boundary onditions. For a semi-disreteLoal Disontinuous Galerkin formulation of this equation similar to the one given forthe onvetion-di�usion-dispersion example in Setion 6.6 Yan and Shu obtained a ellentropy inequality for the square entropy in the multidimensional ase whih leads toa L2-stability result (of ourse the solution of the ontinuous problem is L2-stable,provided that it exists). This result holds for arbitrary nononform simpliial mesheswith possibly hanging nodes. In the one dimensional linear ase this leads to an errorestimate in the L2-norm whih is of order O(hk+1/2) when polynomials of degree k are



6.8. L2-STABILITY OF THE LDG-DISCRETIZATION FORAMODEL PROBLEM115used. A slope limiting tehnique as for �rst order onservation laws is not neessary toguarantee the stability of the approximate solution.In ontrast to the onvetion-di�usion equation, disussed in the paragraph before, thereis no alternative Disontinuous Galerkin method suh as the Baumann-Oden methodfor these kinds of equations inluding third order derivatives. Thus, the appliation ofthe Loal Disontinuous Galerkin method seems to be appropriate for the disretizationof the Navier-Stokes-Korteweg equations. The treatment of visous terms is missing in[130℄. Therefore we give a similar stability result in one spae dimension for the simpleonvetion-di�usion-dispersion example disussed in Setion 6.6 in the next setion.
6.8 L

2-Stability of the LDG-Disretization for a Model Prob-lemWe give a ell entropy inequality and a resulting L2-stability estimate for the semi-disrete Disontinuous Galerkin disretization for the one dimensional salar onvetion-di�usion-dispersion equation disussed in Setion 6.6, see (6.13).Theorem 6.8.1 (Cell Entropy Inequality)Let u ∈ C1 ((0,∞), Vh) be a solution of the semi-disrete Loal Disontinuous Galerkinformulation (6.13) with numerial �uxes (6.14) and (6.15). Then there exist numerialentropy �uxes Hj− 1

2

suh that the semi-disrete solution satis�es the entropy inequality
d

dt

∫

∆j

1

2
u2 dx+Hj+ 1

2

−Hj− 1

2

≤ 0 (6.16)for all ells ∆j .Proof. We denote the sum of the left hand sides of the three equations in (6.13) by
Bj(u, p, q; v,w, z) and �nd that this is equal to zero for all v,w, z ∈ Vh. We hoosespeial test funtions

v = u, w = − 1

λ
q, z =

1

λ
p+

ε

λ2
q,



116 CHAPTER 6. HIGHER ORDER SCHEMES: THE DG APPROACHand with a primitive funtion F of f we �nd that
0 = Bj

(

u, p, q; u, − 1

λ
q,

1

λ
p+

ε

λ2
q

)

=
d

dt

∫

∆j

1

2
u2 dx+

ε

λ2

∫

∆j

q2 dx+

∫

∆j

∂

∂x

(

pu− F (u) − 1

2λ
q2
)

dx

+(f̂ − p̂)j+ 1

2

u−
j+ 1

2

− (f̂ − p̂)j− 1

2

u+
j− 1

2

+
1

λ
(εû+ q̂)j+ 1

2

q−
j+ 1

2

− 1

λ
(εû+ q̂)j− 1

2

q+
j− 1

2

−ûj+ 1

2

(

p−
j+ 1

2

+
ε

δ
q−
j+ 1

2

)

+ ûj− 1

2

(

p+
j− 1

2

+
ε

δ
q+
j− 1

2

)

=
d

dt

∫

∆j

1

2
u2 dx+

ε

λ2

∫

∆j

q2 dx+Hj+ 1

2

−Hj− 1

2

+Kj− 1

2

.The quantities Hj− 1

2

and Kj− 1

2

are de�ned by the relations
Hj− 1

2

= p−
j− 1

2

u−
j− 1

2

− F (u−
j− 1

2

) − 1

2λ
(q−

j− 1

2

)2

+(f̂ − p̂)j− 1

2

u−
j− 1

2

+
1

λ
(εû+ q̂)j− 1

2

q−
j− 1

2

− ûj− 1

2

(p−
j− 1

2

+
ε

λ
q−
j− 1

2

)and
Kj− 1

2

=

u+
∫

u−

(

f(u) − f̂(u−, u+)
)

du

+
1

λ

(

1

2
(q+ + q−)(q+ − q−) − q̂(q−, q+)(q+ − q−)

)

+p̂(p−, p+)(u+ − u−) + û(u−, u+)(p+ − p−) − p+u+ + p−u−.The subsripts j− 1
2 for the values u−, u+, p−, p+, q−, q+ were omitted in the de�nition of

Kj− 1

2

for notational simpliity. Using the properties of the numerial �uxes (6.14) and(6.15) we see that the quantity Kj− 1

2

is positive. The integral in the above expressionis positive sine f̂ is a monotone �ux and everything else vanishes. As a result we getthe ell entropy inequality
d

dt

∫

∆j

1

2
u2 dx+

ε

λ2

∫

∆j

q2 dx+Hj+ 1

2

−Hj− 1

2

≤ 0. (6.17)This ompletes the proof. Note that this is a sharper estimate than the one stated inthe theorem above. The funtion q is an approximation to λux and therefore the seondintegral an approximation to ε ∫ u2
x dx. The ell entropy inequality above immediatelyleads to a L2-stability of the semi-disrete solution.



6.9. NAVIER-STOKES-KORTEWEG DG-DISCRETIZATION 117Corollary 6.8.2 (L2-stability)Let u ∈ C1 ((0,∞), Vh) be a solution of the semi-disrete Loal Disontinuous Galerkinformulation (6.13) with numerial �uxes (6.14) and (6.15). Then the semi-disretesolution satis�es the L2-stability estimate
d

dt

∫

∆j

1

2
u2 dx ≤ 0.Proof. Using the ell entropy inequality (6.17) and summing over all ells gives

d

dt

∫

Ω

1

2
u2 dx ≤ − ε

λ2

∫

Ω

q2 dx (6.18)whih is a sharper estimate than the one stated above. Note that periodi boundaryonditions are used and therefore all numerial entropy �uxes Hj− 1

2

have a ounter part.6.9 Navier-Stokes-Korteweg DG-DisretizationIn this setion we �nally desribe the Loal Disontinuous Galerkin spae disretizationof the NSK equations. This is done on the basis of the bakground of the previoussetions. The disretization of the isothermal version of the Navier-Stokes-Kortewegsystem in multiple spae dimensions as well as the disretization of the 2d (full) NSKmodel is disussed in detail. The extension to three spae dimensions is omitted for thefull system for simpliity. It is straightforward to do.6.9.1 1d isothermalWe onsider the Loal Disontinuous Galerkin spae disretization of the one dimen-sional isothermal Navier-Stokes-Korteweg equations (2.55), (2.56) in the nononserva-tive formulation
ρt + (ρu)x = 0,

(ρu)t + (ρu2)x + ρκx = εuxx,
in Ω × (0, T )with κ = µ(ρ) − λρxx and boundary onditions

u = 0, ρx = 0 on ∂Ω × (0, T )and the usual initial onditions. We rewrite the third order system as a larger formally�rst order system.
(

ρx

ux

)

− L1
1[ρ, ρu] = 0,

κ − L1
2[ρ, ρx] = 0,

∂
∂t

(

ρ
ρu

)

+ L1
3[ρ, ρu, ux, κ] = 0.



118 CHAPTER 6. HIGHER ORDER SCHEMES: THE DG APPROACHThe �rst order di�erential operators L1
1, L1

2, L1
3 are de�ned by

L1
1[ρ, ρu] = ∂

∂x

(

ρ
ρu
ρ

)

,

L1
2[ρ, ρx] = µ(ρ) − λ ∂

∂xρx,

L1
3[ρ, ρu, ux, κ] = ∂

∂x

(

ρu
ρu2 − εux

)

+

(

0

ρ ∂
∂xκ

)

.

(6.19)Here we have all kinds of operators disussed in setion 6.2. The blue terms belong toonservative parts of the di�erential operators. The µ(ρ) term in operator L1
2 has theharater of a soure term and the red part of L1

3 is a non-onservative produt.To omplete the disretization we have to hoose suitable numerial �uxes. At the innerell interfaes we hoose
g1(ρ±, ρu±, n) = n





{ρ}
{

ρu
ρ

}

ξ



,

g2(ρ±, ρ±x , n) = −nλ{ρx},

g3(ρ±, ρu±, u±x , κ
±, n) =

(

{ρu}n− α1

2 [κ]

{ρu2}n− ε {ux}1−ξn+ ζ{ρ}[κ]n− α2

2 [ρu]

)

.

(6.20)
Here and in the following {ϕ}ξ = ξϕ− + (1 − ξ)ϕ+ for ξ ∈ [0, 1] denotes the weightedaverage and [ϕ] = (ϕ+ − ϕ−) the jump over the interfae between ells for an element
ϕ ∈ Vh. In the ase were ξ is equal to 1

2 we omit the parameter, i.e., {ϕ} = 1
2(ϕ− +ϕ+)denotes the arithmeti average. As a onvention in one spae dimension the − valuesdenote the values on the left side of the ell interfae and + the values on the right.The normal n in 1d has the values −1 or 1.The olored terms are related to the olored terms in the di�erential operators. Thegreen terms represent the numerial visosity that we have introdued in Setion 5.2.The parameters α1 and α2 are hosen in the same way as in Setion 5.2. In g3 theaveraging of onservative and nononservative terms are ombined, see (6.4) and (6.8).The parameter ζ ontrols the ratio in the averaging of the test funtion. We alwayshoose ζ = 1

2 whih leads to a entral sheme. Soure terms as µ(ρ) in g2 do not givea ontribution to the numerial �uxes.The parameter α2 an be set to zero in the ase where the momentum equation isstabilized by physial visosity. It depends on the parameter ξ ∈ [0, 1] and the meshsize if this is the ase or not. This parameter has the same meaning as in Setion 6.6.1and an be hosen di�erently as disussed in the following. If it is hosen globally equalto one or zero this leads to problems with the boundary ondition u = 0 sine theondition is taken into aount only on one side of the interval Ω. Possible hoies arelisted below.
• It an be hosen loally suh that all boundary onditions an be taken intoaount. It should vary smoothly between the ells of the grid.
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• It an be hosen always equal to 1

2 . In this ase the sheme annot be stabilizedby the physial visosity and one has to impose arti�ial (numerial) visosity tothe disrete momentum equation, i.e., α2 > 0. A suboptimal order of onvergeneas for the heat equation has not been observed in the numerial tests, see thedisussion in setion 6.6.
• It an be swithed from 1 to 0 and vie versa every time step. This is of ourse adirty hak but works quite well in pratial appliations.A similar approah with the ombination of bakward an forward di�erenes is alsopossible for the seond derivative λρxx in the de�nition of κ. But in the multidimensionalase on unstrutured grids numerial experiments show that this an lead to problemswith symmetries and thus, an unstable behavior. Therefore we build the arithmetiaverage twie.For the orret treatment of the boundary onditions we hoose numerial boundary�uxes gi

b, i = 1, 2, 3 at boundary interfaes. Let, without loss of generality, the −values be in the interior of the domain and the + values at the boundary. We set
u+ = 0,

ρ+ = ρ−,

ρu+ = ρ+u+,

u+
x = u−x ,and with this we an de�ne the numerial boundary �uxes

g1
b(ρ

±, ρu±, n) = n





ρ
{

ρu
ρ

}

ξ



,

g2
b(ρ

±, ρ±x , n) = 0,

g3
b(ρ

±, ρu±, u±x , κ
±, n) =

(

{ρu}n
{ρu2}n− ε {ux}1−ξn− α2

2 [ρu]

)

.

(6.21)
The parameter ξ has the same meaning as before and jumps in κ do not appear at theboundary. This ompletes the Loal Disontinuous Galerkin disretization of the onedimensional isothermal Navier-Stokes-Korteweg system.6.9.2 2d isothermalWe onsider the two dimensional Navier-Stokes-Korteweg system. In ontrast to theone dimensional ase we inlude the e�et of gravity. Instead of adding the standardsoure term ρg to the momentum equation we ombine this term with the variable κwhih leads to a well balaned sheme when gravity is present. In the following wedenote the spatial oordinates by x = (x, y) and the veloity of the �uid by u = (u, v).

ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρuuT ) + ρ∇κ = ∇ · τ , in Ω × (0, T )



120 CHAPTER 6. HIGHER ORDER SCHEMES: THE DG APPROACHwith κ = µ(ρ) − λ∆ρ− (gxx+ gyy) and boundary onditions
u = 0 and − ∇ρ

|∇ρ| · n = cos(ϕ). on ∂Ω × (0, T ).In the de�nition of κ the e�et of gravity is inluded. The onstants gx and gy denotethe gravitational fore in x and y diretion respetively.In two spae dimensions the visous ontribution of the stress tensor an be rewrittenas
∇ · τ =

(

ε(ux + vy)x + µ(uy − vx)y

−µ(uy − vx)x + ε(ux + vy)y

)

. (6.22)Here we set ε = 2µ + ν where µ and ν denote the oe�ients of visosity. Withthis approah we have to deal only with the two quantities ux + vy and uy − vx inthe Loal Disontinuous Galerkin disretization of the two dimensional NSK systeminstead of using the four quantities ux, uy, vx and vy. This saves omputational ostand more important with this approah the treatment of boundary onditions thatinvolve tangential and normal veloities is very easy sine the terms
(

u
v

)

· n and (

−v
u

)

· nappear in the orresponding numerial boundary �uxes. These two terms are the normaland tangential veloity respetively.As in the one dimensional ase we rewrite the third order system as a larger formally�rst order system.








ρx

ρy

(ux + vy)
(uy − vx)









− L1
1[ρ, ρu] = 0,

κ − L1
2[ρ, ρx, ρy] = 0,

∂
∂t





ρ
ρu
ρv



 + L1
3[ρ, ρu, (ux + vy), (uy − vx), κ] = 0.

(6.23)
The �rst order di�erential operators L1

1, L1
2, L1

3 are de�ned by
L1

1[ρ, ρu] = ∂
∂x











ρ
0
ρu
ρ

−ρv
ρ











+ ∂
∂y











0
ρ
ρv
ρ
ρu
ρ











,

L1
2[ρ, ρx, ρy] = µ(ρ) − λ ∂

∂xρx − λ ∂
∂yρy − (gxx+ gyy),

L1
3[ρ, ρu, (ux + vy), (uy − vx), κ] =

∂
∂x





ρu
ρu2 − ε(ux + vy)
ρuv + µ(uy − vx)



+ ∂
∂y





ρv
ρuv − µ(uy − vx)
ρv2 − ε(ux + vy)



+







0

ρ ∂
∂xκ

ρ ∂
∂yκ






.

(6.24)



6.9. NAVIER-STOKES-KORTEWEG DG-DISCRETIZATION 121Again as in the one dimensional ase the blue terms represent the onservative parts,blak terms soure type parts and the red term a non-onservative part of the �rst orderdi�erential operators.Before we ontinue with the de�nition of the numerial �uxes we de�ne the + and −sides of a ell interfae. We hoose a vetor β ∈ R
2 that is not parallel to any ellinterfae of the mesh. Suh a hoie is always possible beause there are only a �nitenumber of interfaes. We take the normal of a ell interfae n = (nx, ny) and buildthe produt β · n. If this produt is positive then the ell the normal points to de�nesthe + side of the interfae and the opposite side the − side. Using this onvention thenumerial �uxes for the two dimensional disretization are given by

g1(ρ±, ρu±,n) =











{ρ}nx

{ρ}ny

{u}ξ nx + {v}1−ξ ny

{−v}1−ξ nx + {u}ξ ny











,

g2(ρ±, ρ±x , ρ
±
y , ρ

±
z ,n) = −λ ({ρx}nx + {ρy}ny),

g3(ρ±, ρu±, . . . , κ±,n) =







{ρu}nx + {ρv}ny − α1

2 [κ]

{ρu2}nx + {ρuv}ny − α2

2 [ρu]

{ρvu}nx + {ρv2}ny − α2

2 [ρv]







+







0

ζ{ρ}[κ]nx−ε {ux + vy}1−ξ nx − µ {uy − vx}1−ξ ny

ζ{ρ}[κ]ny+µ {uy − vx}ξ nx − ε {ux + vy}ξ ny







(6.25)
The treatment of the boundary onditions by de�nition of suitable numerial boundary�uxes is almost the same as in the one dimensional ase exept for the de�nition of g2

bwhere the boundary ondition − ∇ρ
|∇ρ| · n = cos(ϕ) is taken into aount. ϕ denotes theontat angle of the di�use interfae at a solid wall.

g2
b(ρ

−
x , ρ

−
y , n) = λ cos(ϕ)

√

(ρ−x )2 + (ρ−y )2. (6.26)We omit the remaining numerial boundary �uxes. It is an almost straight generaliza-tion of the 1d �uxes disussed in Setion 6.9.1.



122 CHAPTER 6. HIGHER ORDER SCHEMES: THE DG APPROACH6.9.3 3d isothermalIn this setion we denote the spatial variable by x = (x, y, z) and the veloity by
u = (u, v,w). We omit the e�et of gravity we have inluded in the two dimensionalase. It an be inluded in the disretization in the same way as in the two dimensionalase. Thus, we onsider the NSK system in 3d

ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρuuT ) + ρ∇κ = ∇ · τ , in Ω × (0, T )with κ = µ(ρ) − λ∆ρ and boundary onditions
u = 0 and − ∇ρ

|∇ρ| · n = cos(ϕ). on ∂Ω × (0, T ).In three spae dimensions almost the same approah with the visous ontribution anbe done as for the 2d model, see (6.22).
∇ · τ =







ε(ux + vy + wz)x + µ(uy − vx)y + µ(uz −wx)z

−µ(uy − vx)x + ε(ux + vy + wz)y + µ(vz − wy)z

−µ(uz − wx)x + −µ(vz − wy)y + ε(ux + vy + wz)z






. (6.27)Again we set ε = 2µ + ν where µ and ν denote the oe�ients of visosity. Now wean use the four quantities uy − vx, uz − wx, vz − wy and ux + vy + wz instead of thenine quantities in the veloity gradient. The former three quantities orrespond to thetangential veloity at the boundary and the latter to the normal veloity.We reformulate the third order system as formally �rst order system as in the one andtwo dimensional ases.





















ρx

ρy

ρz

(ux + vy + wz)
(uy − vx)
(uz − wx)
(vz − wy)





















− L1
1[ρ, ρu] = 0,

κ − L1
2[ρ, ρx, ρy, ρz] = 0,

∂
∂t









ρ
ρu
ρv
ρw









+ L1
3[ρ, ρu, . . . , κ] = 0.

(6.28)
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1, L1

2, L1
3 are then de�ned by

L1
1[ρ, ρu] = ∂

∂x





















ρ
0
0
u
−v
−w
0





















+ ∂
∂y





















0
ρ
0
v
u
0

−w





















+ ∂
∂z





















0
0
ρ
w
0
u
v





















,

L1
2[ρ, ρx, ρy, ρz] = µ(ρ) − λ ∂

∂xρx − λ ∂
∂yρy − λ ∂

∂zρz,

L1
3[ρ, ρu, . . . , κ] =













0

ρ ∂
∂xκ

ρ ∂
∂yκ

ρ ∂
∂zκ













+ ∂
∂x









ρu
ρu2 − ε(ux + vy + wz)
ρuv + µ(uy − vx)
ρuw + µ(uz − wx)









+ ∂
∂y









ρv
ρvu− µ(uy − vx)

ρv2 − ε(ux + vy + wz)
ρvw + µ(vz − wy)









+ ∂
∂z









ρw
ρwu− µ(uz −wx)
ρwv − µ(vz − wy)

ρw2 − ε(ux + vy + wz)









.

(6.29)

We de�ne + and − sides of ell interfaes in the same way as disussed in the twodimensional disretization by introdution of a vetor β ∈ R
3 that is not parallel toany interfae of the mesh. With this onvention we de�ne the orresponding numerial�uxes by

g1(ρ±, ρu±,n) =

























{ρ}nx

{ρ}ny

{ρ}nz

{u}ξ nx + {v}1−ξ ny + {w}1−ξ nz

{−v}1−ξ nx + {u}ξ ny

{−w}1−ξ nx + {u}ξ nz

{−w}ξ ny + {v}ξ nz

























,

g2(ρ±, ρ±x , ρ
±
y , ρ

±
z ,n) = −λ ({ρx}nx + {ρy}ny + {ρz}nz),

g3(ρ±, ρu±, . . . , κ±,n) =











{ρu}nx + {ρv}ny + {ρw}nz − α1

2 [κ]

{ρu2}nx + {ρuv}ny + {ρuw}nz − α2

2 [ρu]

{ρvu}nx + {ρv2}ny + {ρvw}nz − α2

2 [ρv]

{ρwu}nx + {ρwv}ny + {ρw2}nz − α2

2 [ρw]











+











0

ζ{ρ}[κ]nx−ε {ux + vy +wz}1−ξ nx − µ {uy − vx}1−ξ ny − µ {uz − wx}1−ξ nz

ζ{ρ}[κ]ny+µ {uy − vx}ξ nx − ε {ux + vy +wz}ξ ny − µ {vz − wy}1−ξ nz

ζ{ρ}[κ]nz+µ {uz − wx}ξ nx + µ {vz − wy}1−ξ ny − ε {ux + vy + wz}ξ nz











.

(6.30)



124 CHAPTER 6. HIGHER ORDER SCHEMES: THE DG APPROACHThe de�nition of the numerial boundary �uxes is a straightforward generalization ofthe one and two dimensional �uxes. Therefore we omit it.6.9.4 2d full modelWe disuss the DG spae disretization of the full temperature dependent Navier-Stokes-Korteweg model (see Setion 2.3) in this setion. Most of the following treatment isquite similar to the isothermal ase and therefore we will omit some details. Instead ofthe energy equation we use the entropy equation (2.27) as additional evolution equation.The total entropy of a Korteweg type material has the advantage that it does not dependon the density gradient whereas the total energy does. The entropy equation is not indivergene form but this should not be a problem sine solutions are supposed to besmooth and the momentum equation is also disretized in a nononservative form. Sinewe do not disretize the energy balane equation (2.36) diretly, one annot expet thatthe total physial energy is exatly onserved but the loss or gain of energy should benegligible small as long the solution is smooth. We disretize the system
ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρuuT ) + ρ∇κ+ ρs∇θ = ∇ · τ ,
(ρs)t + ∇ · (ρsu) = ∇ ·

(η
θ∇θ

)

+ 1
θτ : ∇u + η

θ2 |∇θ|2.
(6.31)Possible boundary onditions are disussed in Setion 2.6. Sine the hemial potential

µ depends on the temperature the value κ de�ned by
κ = κ(θ, ρ,∆ρ) = µ(θ, ρ) − λ∆ρdoes also depend on the temperature. Here η > 0 denotes the heat ondution oe�ientof the �uid that is assumed to be onstant. Note that the additional nononservativeterm in the momentum equation omes from the identity
∇p(θ, ρ) = ρ∇µ(θ, ρ) + ρs∇θ.A similar approah as for the 2d isothermal model (6.22) is also possible for the fullmodel but the use of only the quantities ux + vy and uy − vx is not su�ient beauseof the presene of the stress tensor in the energy and entropy equation. Therefore weneed additional values. This may help with the treatment of boundary onditions butdoes not save omputational ost. Therefore we omit it and use the quantities ux, uy,

vx and vy.Similar to the previous setions we rewrite equation (6.31) by using three �rst order
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ρx

ρy

ux

uy

vx

vy

















− L1
1[ρ, ρu] = 0,









θx

θy

θ
κ









− L1
2[ρ, ρs, ρx, ρy] = 0,

∂
∂t









ρ
ρu
ρv
ρs









+ L1
3[ρ, ρu, ρs, . . . , κ] = 0.

(6.32)
In the above de�nitions we distribute the omputational ost over the three stages.Temperature and temperature gradients are omputed in the seond stage beause eval-uation of the temperature at the quadrature points is not neessary in the �rst stageand in order to distribute the omputational ost suh that the ommuniation in theseond stage does not beome a bottlenek.The �rst order di�erential operators L1

1, L1
2, L1

3 are de�ned by
L1

1[ρ, ρu] = ∂
∂x



















ρ
0
ρu
ρ

0
ρv
ρ

0



















+ ∂
∂y



















0
ρ
0
ρu
ρ

0
ρv
ρ



















,

L1
2[ρ, ρs, ρx, ρy] = ∂

∂x









θ̃(ρ, ρs)
0
0

−λρx









+ ∂
∂y









0

θ̃(ρ, ρs)
0

−λρy









+









0
0

θ̃(ρ, ρs)

µ(θ̃(ρ, ρs), ρ)









,

L1
3[ρ, . . . , κ] = ∂

∂x









ρu
ρu2 − ε(ux + vy)
ρuv + µ(uy − vx)

ρsu− η
θ θx









+ ∂
∂y









ρv
ρuv − µ(uy − vx)
ρv2 − ε(ux + vy)

ρsv − η
θ θy









+













0

ρ ∂
∂xκ+ ρs ∂

∂xθ

ρ ∂
∂yκ+ ρs ∂

∂yθ

0













+









0
0
0

1
θτ : ∇u + η

θ2 |∇θ|2









.

(6.33)

Here the onvention is the same as before: the blue olored terms denote the on-servative terms, the red terms denote the nononservative produts and soure terms



126 CHAPTER 6. HIGHER ORDER SCHEMES: THE DG APPROACHare haraterized by blak olor. The entropy prodution term 1
θτ : ∇u + η

θ2 |∇θ|2 istreated as a soure term. The funtion θ̃ omputes the temperature from the densityand entropy aording to relation (2.12).The de�nition of the numerial �uxes and numerial boundary �uxes is very similarto the isothermal ase and straightforward to do. We omit the details. Besides theadditional entropy equation the di�erene to the isothermal ase is the appearane ofthe seond nononservative term ρs∇θ. As noted before the entropy prodution termis treated as a soure term and gives therefore no ontribution to the numerial �uxassoiated with the di�erential operator L1
3.6.10 Initial DataThe standard way to provide disrete initial data for Disontinuous Galerkin shemes isan appliation of L2-projetion to the underlying Finite Element spae. The use of anorthogonal basis of the Finite Element spae results in a very easy implementation ofthis kind of projetion. Sine we do not use slope limiters to stabilize the DG shemesit is extremely important to provide su�iently smooth initial data on the disretelevel. Disrete initial data for the Navier-Stokes-Korteweg system that onsist of bothphases should take the orret size of the interfae, approximately given by formula(4.9), into aount to avoid an unstable behavior in the approximate solution. Thisis espeially important for the higher order shemes. Inside the interfaial region theinitial on�guration should vary smoothly between the phases. Here the tanh-funtionis very useful to onstrut smooth initial data.



Chapter 7Higher Order Time Integration
The Disontinuous Galerkin spae disretization of a general evolution equation, dis-ussed in the previous hapter, results in a (in general very large) system of �rst orderordinary di�erential equations. In this hapter we disuss the time disretization ofgeneral �rst order ODEs by means of expliit, impliit and semi-impliit Runge-Kuttamethods. In the latter two ases solving large, possibly nonlinear, systems of equationsis neessary. Solving suh systems is the purpose of Setion 7.5.Runge-Kutta methods have the advantage that the approximate solution at only onetime step is neessary to ompute an approximation on the next time level. This makesthis lass of methods very well suited for the use together with loal mesh re�nement.Contrary to Runge-Kutta methods the lass of multistep methods uses more than oneapproximations on previous time steps. On the one hand these methods need a re-strition in the variation of the time step size to guarantee the stability of the methodand on the other hand these methods are ompliated to implement together with loalmesh re�nement and oarsening whih results in a hange of the dimension of the ODE.Beause of these disadvantages there are only a few multistep methods (for example theimpliit BDF2 method) that an be applied suessfully in order to onstrut reliabledisretizations of onservation laws. In the framework of the disretization of �rst orderonservation laws speial Runge-Kutta methods have been developed that preserve er-tain properties (e.g. TVD) of salar onservation laws. Initially Shu and Osher [103℄,[104℄ derived this kind of TVD methods. Later the term Strong Stability Preserving(SSP) was used in favor of the term TVD. Expliit or impliit extrapolation shemesould also be used but the use of these methods is not very ommon in the framework ofFinite Volume and Disontinuous Galerkin methods. The advantage of these methods isthat arbitrary high order methods an be onstruted by simply modifying a parameterin the methods.In this hapter we onsider the initial value problem for �rst order ordinary di�erentialequations of the form

u′(t) = f(t, u(t)) for t ∈ (0, T ), (7.1)
u(0) = u0, (7.2)127



128 CHAPTER 7. HIGHER ORDER TIME INTEGRATIONwith T ∈ (0,∞], f ∈ C([0, T ] × U) Lipshitz ontinuous in the variable u, U ⊂ Rn,
u0 ∈ U .By integrating equation (7.1) from time tm to tm+1 we have

u(tm+1) − u(tm) =

∫ tm+1

tm
f(t, u(t)) dt. (7.3)The goal of this hapter is to ompute an approximation um+1 of u(tm+1) provided thatwe already have an approximation um of u(tm).7.1 General Runge-Kutta MethodsIn the rest of this hapter we disuss the omputation of the approximation um+1 bydi�erent kinds of Runge-Kutta methods. In the following we use the notation given inde�nition A.2.2. The general s-stage Runge-Kutta sheme from time step tm to tm+1is given by







u0...
us−1






=







um...
um






+ ∆tA⊗ In







f(tm + c0∆t, u0)...
f(tm + cs−1∆t, us−1)






, (7.4)

um+1 = um + ∆tbT ⊗ In







f(tm + c0∆t, u0)...
f(tm + cs−1∆t, us−1)






. (7.5)Here the intermediate states ui ∈ U for i = 0, . . . , s − 1 are approximations of thesolution at times ti = tm +ci∆t. Runge-Kutta shemes de�ned by the Matrix A ∈ R

s×sand the two vetors b, c ∈ R
s are usually represented by a so alled Buther table (seestandard textbooks suh as [108℄)

c A

bT
. (7.6)De�nition 7.1.1 (Order of Runge-Kutta Methods)Let Φ denote the funtion that produes the approximation um+1 = Φ(tm, um,∆t) byappliation of a Runge-Kutta method. A Runge-Kutta method is of (onsisteny) order

p if
∣

∣

∣

∣

1

∆t
(u(tm + ∆t) − u(tm)) − Φ(tm, u(tm),∆t)

∣

∣

∣

∣

= O(∆tp)for su�iently smooth solutions u of the ODE (7.1).A p-th order onsisteny Runge-Kutta method implies onvergene of order p. Thereforeit is lear that the order of a s-stage Runge-Kutta sheme annot exeed 2s beause inthe ase where the funtion f does not depend on the variable u a Runge-Kutta methodredues to a quadrature formula for f .



7.2. EXPLICIT RUNGE-KUTTA METHODS 1297.2 Expliit Runge-Kutta MethodsIn this setion we onsider the lass of expliit Runge-Kutta methods, i.e., methods thatdo not need to solve linear or nonlinear systems of equations. This lass of methods isespeially well suited for the use with �rst order onservation laws. In the framework ofDisontinuous Galerkin methods the representation of the methods given by Shu andOsher in [103℄ and [104℄ is more onvenient than the lassial representation beauseslope limiters an e�iently be applied to the intermediate states u0, . . . , us−1. Belowwe reformulate general expliit Runge-Kutta shemes in the representation of Shu andOsher and give some examples for this kind of methods.A Runge-Kutta method given by the equations (7.4) and (7.5) redues to an expliitmethod if the matrix A ∈ Rs×s is a stritly lower triangular matrix. By Ã ∈ R
(s−1)×(s−1)we denote the sub matrix of A where the �rst row and the last olumn is omitted. Thematrix Ã an be deomposed into a stritly lower triangular matrix ÃL and a diagonalmatrix ÃD suh that we have Ã = ÃL+ÃD. In the following we assume that the matrix

Ã is invertible. In this ase equation (7.4) redues to
u0 = um,







u1...
us−1






=







um...
um






+ ∆tÃ⊗ In







f(tm + c0∆t, u0)...
f(tm + cs−2∆t, us−2)






. (7.7)By multipliation of equation (7.7) with (Ã⊗ In)−1 and using properties (i) and (ii) ofthe Kroneker produt, see lemma A.2.3, we have the identity

∆t







f(tm + c0∆t, u0)...
f(tm + cs−2∆t, us−2)






= Ã−1 ⊗ In







u1 − um...
us−1 − um






.Using this with equations (7.7) and (7.5) we get

u0 = um, (7.8)






u1...
us−1






=







um...
um






+ ÃLÃ

−1 ⊗ In







u1 − um...
us−1 − um






+ ∆tÃD ⊗ In







f0...
fs−2






(7.9)

um+1 = um + ∆tb̃T Ã−1 ⊗ In







u1 − um...
us−1 − um






+ bs−1fs−1, (7.10)where the vetor b̃ ∈ Rs−1 onsists of the �rst s − 1 omponents of the vetor b and

fi = f(tm + ci∆t, ui). This is the representation of Runge-Kutta methods given byShu and Osher [103℄. This representation is more suitable for the time disretization



130 CHAPTER 7. HIGHER ORDER TIME INTEGRATIONof onservation laws beause slope limiters an be applied diretly to the intermediatestates ui.Below we give some examples of expliit Runge-Kutta methods. Most of them an befound in standard textbooks suh as [108℄. The TVD methods developed by Shu andOsher an be found in [103℄.The �rst order expliit Euler and the seond order modi�ed Euler shemes with oneand two stages respetively.
0 0

1

0 0
1
2

1
2 0

0 1The seond and third order shemed TVD2 and TVD3 given in [103℄. The TVD2sheme is also known as the Heun sheme. The TVD methods in [103℄ are given usingthe representation (7.8), (7.9) and (7.10). For onsisteny with all other methods inthis hapter we write these methods using the lassial representation.
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3The lassial 3-stage and 4-stage order Runge-Kutta shemes of order three and four.
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7.3. IMPLICIT RUNGE-KUTTA METHODS 1317.3 Impliit Runge-Kutta MethodsWhen higher order derivatives or sti� soure terms are inluded in onservation lawsthe time step size restrition that guarantees the stability of the method an render asheme ine�ient. In this ase an impliit time disretization may help to improve thee�ieny of the method. We disuss the details on the implementation of a lass ofimpliit methods and give some examples. It is very important to have a formulation ofthe method suh that solving a s · n dimensional linear system an be avoided in favorof s times solving a n-dimensional systems, otherwise the methods are not usable forpratial appliations. This is possible with many impliit methods at least when theresulting Jaobians are approximated. For the lass of diagonally impliit methods thisis possible without approximation.In this setion we onsider only diagonally impliit Runge-Kutta methods. In this lassof methods the matrix A ∈ R
s×s in (7.4) is a lower triangular matrix. We assume thatthe matrix A is invertible, otherwise some of the stages are expliit. We deompose Ainto a diagonal AD and a stritly lower triangular matrix AL with A = AL+AD. Similarto the expliit ase the general Runge-Kutta method (7.4), (7.5) an be rewritten as







u0...
us−1






=







um...
um






+ALA

−1 ⊗ In







u0 − um...
us−1 − um






+ ∆tAD ⊗ In







f0...
fs−1






,

um+1 = um + bTA−1 ⊗ In







u0 − um...
us−1 − um






.With fi = f(tm + ci∆t, ui). Sine the matrix ALA
−1 is a stritly lower triangularmatrix s n-dimensional systems for ui have to be solved sequentially instead of one

(sn)-dimensional system. For the intermediate states ui this means
ui = ∆tαiif(tm + ci∆t, ui) + γiu

m +

i−1
∑

j=0

αijuj for i = 0, . . . , s− 1,

um+1 = δ +

s−1
∑

i=0

βiui,where the oe�ients are given by
αij = (ALA

−1)ij for j < i, αii = Aii,

γi = 1 −
i−1
∑

j=0

αij ,

βi =

s−1
∑

j=0

bj(A
−1)ji,

δ = 1 −
s−1
∑

i=0

βi.



132 CHAPTER 7. HIGHER ORDER TIME INTEGRATIONHere Cij denotes the entry (i, j) of a matrix C. A �xed point argument shows that theabove nonlinear system has a unique solution in the viinity of um provided that thetime step ∆t is su�iently small. The s n-dimensional nonlinear systems an be solvedby the Newton type method desribed in Setion 7.5. Below we give some examples ofdiagonally impliit methods.The �rst order impliit Euler method and the seond order Crank-Niholson methodare given by
1 1

1

1
2

1
2

1whih are both 1-stage methods. A 2-stage third order method is given by
α α

1 − α 1 − 2α α

1−2α
2−4α

1−2α
2−4αwhere α = 1

2 +
√

3
6 . Besides other methods the above methods an be found in [108℄.Additional methods of this type an also be found in the next setion.7.4 Semi-Impliit Runge-Kutta MethodsThe lass of semi-impliit (or impliit-expliit) Runge-Kutta methods ombines the ef-�ieny of expliit methods with the stability properties of impliit Runge-Kutta meth-ods. They are useful for the time disretization of onvetion-di�usion equations oronvetion dominated equations with sti� soure terms. The lass of methods we on-sider in this setion disretizes one part of the equation by an expliit TVD (or SSP)method and another part by a L-stable diagonally impliit sheme. Below we disussthe details on the implementation of these methods and we give a ouple of examplesolleted from [131℄, [132℄ and [91℄.We split the funtion f in (7.1) into a part that is disretized expliitly and a seondpart that is disretized by an impliit sheme.
u′(t) = f ex(t, u(t)) + f im(t, u(t)), for t ∈ (0, T ), (7.11)
u(0) = u0. (7.12)This splitting is useful when the spetrum of the Jaobian of f ex is some orders ofmagnitudes smaller than the spetrum of the Jaobian of f im, i.e.,

ρ (Duf
ex(t, u)) << ρ

(

Duf
im(t, u)

)

,where ρ denotes the spetral radius.



7.4. SEMI-IMPLICIT RUNGE-KUTTA METHODS 133The lass of semi-impliit Runge-Kutta shemes that uses TVD/Strong-Stability-Preservingexpliit shemes together with L-stable diagonally impliit shemes, onsidered in [131℄,[132℄ and [91℄, an be written as
ki = f ex



tm + cexi ∆t, um + ∆t

i−1
∑

j=0

aex
ij kj





+f im



tm + cimi ∆t, um + ∆t

i
∑

j=0

aex
ij kj



 for i = 0, . . . , s− 1, (7.13)
um+1 = um + ∆t

s−1
∑

i=0

biki. (7.14)This lass of Runge-Kutta methods an be represented by a pair of Buther tables witha ommon vetor b.
cex Aex

bT

cim Aim

bTThe matrix Aex ∈ R
s×s is a stritly lower triangular matrix and Aim ∈ R

s×s is aninvertible lower triangular matrix. The oe�ients aex
ij and aim

ij denote the entries ofthe matries Aex and Aim respetively.For the expliit and impliit intermediate states uex
i and uim

i for i = 0, . . . , s − 1 thisan be written as
uex

i = γex
i um +

i−1
∑

j=0

αex
ij u

im
j ,

uim
i = αim

ii ∆t
(

f ex(tm + cexi ∆t, uex
i ) + f im(tm + cimi ∆t, uim

i )
)

+γim
i um +

i−1
∑

j=0

αim
ij u

im
j ,

um+1 = δum +
s−1
∑

i=0

βiu
im
i .



134 CHAPTER 7. HIGHER ORDER TIME INTEGRATIONThe oe�ients appearing in the above equations are de�ned by
αim

ij =
(

Aim
L (Aim)−1

)

ij
, αim

ii = Aim
ii ,

αex
ij =

(

Aex
L (Aim)−1

)

ij
,

γim
i = 1 −

i−1
∑

j=0

αim
ij ,

γex
i = 1 −

i−1
∑

j=0

αex
ij ,

βi =

s−1
∑

j=0

bj
(

(Aim)−1
)

ji
,

δ = 1 −
s−1
∑

i=0

βi,where Cij denotes the entry (i, j) of a matrix C and Aim
L is the stritly lower triangularpart (without the diagonal) of the matrix Aim.Below we give several examples for semi-impliit Runge-Kutta methods taken from[131℄, [132℄ and [91℄.The seond order SIRK23 sheme (3 stages, L-stable).
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2The seond order SIRK23G sheme (3 stages, L-stable). We set α = 1√

2
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1 + α α 1 0
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1 − α 1 − α

1 − α 0 1 − α

1 α 0 1 − α

α 0 1 − αThe struture of the impliit sheme allows for a low storage implementation.



7.4. SEMI-IMPLICIT RUNGE-KUTTA METHODS 135The third order YZ33 sheme (3 stages, L-stable).
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4where the onstants α and β are de�ned by

α =
5589

6524
+

75

233
, β =

7691

26096
− 26335

78288
+

65

168
.The methods onsidered in [91℄ allow the expliit and impliit shemes to have a dif-ferent number of stages. Therefore the naming onvention of the shemes is IMEX-SPP(impliit stages, expliit stages, order). Here IMEX stands for impliit-expliit andSSP for strong stability preserving whih is the same as TVD.The seond order IMEX-SSP(2,2,2) sheme. We set α = 1 − 1√
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2The expliit sheme is the TVD2 sheme from Setion 7.2.The seond order IMEX-SPP(3,3,2) sheme.
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136 CHAPTER 7. HIGHER ORDER TIME INTEGRATIONThe third order IMEX-SPP(4,3,3) sheme.
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3The parameters α, β and η are omputed numerially

α = 0.24169426078821, β = 0.06042356519705, η = 0.12915286960590.The expliit sheme is the TVD3 sheme from Setion 7.2.7.5 Solving Nonlinear EquationsThe appliation of impliit Runge-Kutta methods to ordinary di�erential equationsmethods results in a large (in general nonlinear) system of equations that has to besolved by a Newton type method. To avoid the omputation of the Jaobian matrixin the Newton method, whih is rather ompliated for the fully disretized Navier-Stokes-Korteweg system espeially in a parallel environment, we apply a Jaobian freeNewton-Krylov method, see [71℄.We onsider the nonlinearity given by F : U → R
n, U ⊂ R

n and we seek for a solution
u ∈ U of the nonlinear equation

F (u) = 0.Provided that the funtion F is su�iently smooth, the Jaobian of F is nondegeneratein a viinity U of the solution u and an initial guess u0 ∈ U su�iently lose to thesolution is known, the solution an be omputed by appliation of Newtons method
un+1 = un −DF (un)−1F (un), n ≥ 0. (7.15)For appliation of the Newton method it is neessary to solve a linear system for avetor p of the form

DF (u)p = F (u). (7.16)In many ases the expliit alulation of the Jaobian DF is muh to expensive withrespet to the omputational ost, or with respet to the memory requirements orboth. Sometimes it is simply to ompliated to ompute the Jaobian expliitly forexample due to larger stenils in the disretization of underlying partial di�erentialequations. In the higher order spae disretization together with higher order impliittime disretization of the Navier-Stokes-Korteweg system all of the above mentionedissues our.



7.6. APPLICATION TO THE NAVIER-STOKES-KORTEWEG SYSTEM 137Nevertheless, the appliation of the Newton method is still possible by means of matrixfree methods. In ombination with Krylov spae solvers, like CG [59℄, BiCGSTAB [113℄,GMRES [98℄, et., see also [97℄, for the linear system the Newton method does not needthe Jaobian expliitly. These kind of solvers only need the matrix vetor produt
DF (u)p in (7.16) whih is nothing else than the derivative of F at u in the diretion of
p and an be approximated by the di�erene quotient

DF (u)p ≈ 1

ε
(F (u+ εp) − F (u)) .Here the ruial part is the hoie of the parameter ε > 0. There are several approahesto hoose this parameter, we use

ε =







√
(1+||u||)εmach

||p|| if ||p||2 > εmach,
√
εmach else. (7.17)Here εmach denotes the mahine preision whih is for double preision arithmeti ap-proximately εmach ≈ 10−15. For the above hoie and other possible hoies see [71℄.A matrix free method is, ompared to other methods, rather simple to ode but omesat the expense that in every iteration step of the linear solver the nonlinearity F hasto be evaluated. Depending on the problem this an be a serious performane penalty.A omparison of standard and matrix free Newton methods in the framework of thedisretization of the inompressible Navier-Stokes equations an be found in [84℄.Another problem of this method is that standard preonditioning tehniques annot beapplied sine the matrix itself is not available. A matrix free preonditioning tehniquewas proposed in [33℄ but not tested in this work.7.6 Appliation to the Navier-Stokes-Korteweg systemThe appliation of expliit Runge-Kutta methods to the higher order DisontinuousGalerkin spae disretization of the Navier-Stokes-Korteweg system disussed in hapter6, espeially Setion 6.9, leads to a time step time restrition that is di�ult to ontrol.No expliit formula is available that guarantees the stability of the method on the onehand and is su�iently sharp on the other hand.To avoid this problem with the time step size restrition we use the lass of diagonallyimpliit shemes together with a matrix free nonlinear solver disussed in Setion 7.3and 7.5 for the time disretization of the Navier-Stokes-Korteweg system. Even withouta preonditioner the resulting fully disrete sheme is more e�ient than an expliittime disretization, see the numerial experiments in 9.6. However, also in the aseof impliit disretization the time step size has to be su�iently small suh that thenonlinear system is solvable. The time step should always be hosen suh that thequotient

ρm(∆t) =
pu(tm,∆t)

∆t



138 CHAPTER 7. HIGHER ORDER TIME INTEGRATIONis minimized. Here pu(tm,∆t) stands for the pu-time the omputation needs toompute an approximate solution u(tm + ∆t) starting from an approximate solution
u(tm) at time tm. If we assume that pu(tm,∆t) does not depend on tm this hoieof the time step is the most e�ient time step size. In general this assumption is notorret but a time step size that always minimizes ρm(∆t) should be lose to the optimaltime step.Finding the optimal time step in the above sense is a hard task itself. Another, simplerand sometimes more robust, approah is to ontrol the number of iterations of theunderlying linear solver. This approah heavily depends on the problem, the dataand the used linear solver. For the Disontinuous Galerkin disretization in two spaedimensions and seond order impliit Runge-Kutta disretization and iteration ount ofabout 20 is a good hoie. In three spae dimensions and for shemes of di�erent orderother hoies are neessary and have to �gured out manually.The appliation of semi-impliit Runge-Kutta shemes is an appropriate hoie for thetime disretization of the ompressible Navier-Stokes equations or Euler equations withsti� soure terms. It is not lear how to apply this lass to the NSK system sine thevisous part of the equation is not the only soure for the resulting small time steps.The third order Korteweg term that is disretized together with the pressure term andthe arti�ial visosity in the ontinuity equation also lead to small time steps.



Chapter 8Mesh Adaption and Parallelization
In this hapter we disuss the loal re�nement and oarsening of omputational meshesas well as the parallelization of the numerial algorithms. These tehniques are veryimportant in order to be able to resolve very small liquid-vapor interfaes and to satisfymemory requirements as well as omputational power requirements of omplex prob-lems.Here we disuss the loal re�nement and oarsening of omputational meshes whih isalso alled h-adaption. Another adaption strategy is p-adaption whih makes use of theloal hoie of the polynomial degree in the Disontinuous Galerkin method. The latteradaption strategy is not taken into aount in this work sine the ontrol of the loalpolynomial degree an be quite ompliated. Sine the Disontinuous Galerkin methoddoes not need onformity, mesh re�nement is done in a nononform fashion by dividinga n-dimensional simplex into 2n hildren. This is straightforward in one and two spaedimensions but in three spae dimensions there is an ambiguity. A reasonable strategyis neessary to avoid degenerating meshes.For the parallelization of the ode a domain deomposition approah is hosen sinethis is the most suitable approah in the Finite Volume and Disontinuous Galerkinframework where stenils are usually relatively small and thus, the mesh is only weaklyoupled. With this approah the implementation of the ode in a distributed memoryenvironment is almost straightforward.8.1 Re�nement of SimpliesIn this setion we provide the basis for the appliation of an (h-)adaptive algorithm:The re�nement of a single simplex in one, two and three spae dimensions. Here wealways divide a parent simplex into 2n hild simplies, where n denotes the spae dimen-sion. Therefore this leads to a straightforward method in one and two spae dimensions,where simplies an be subdivided into 2n ongruent sub-simplies. In one and two spaedimensions this re�nement method leads to re�ned meshes of the same quality as theoriginal meshes. However, in three spae dimensions it is not possible to divide a tetra-hedron into eight ongruent hildren and therefore it is important to hoose a riterion139



140 CHAPTER 8. MESH ADAPTION AND PARALLELIZATIONfor the re�nement suh that a sequene of re�ned meshes annot degenerate. In example8.1.2 we give a riterion that seems to avoid the degeneration of meshes (at least in ourtest ases) and results in re�ned meshes of quite good quality.In this setion we desribe a simplex ∆ ⊂ R
n by its n verties [p0, . . . , pn]. The simplex

∆ is then de�ned by the onvex hull of these verties. Now let the parent simplex begiven by
∆p = [p0, . . . , pn].We de�ne the 2n hildren of the parent simplex by

∆c
i =

[

1

2

(

pα(i,0,0) + pα(i,0,1)

)

, . . . ,
1

2

(

pα(i,n,0) + pα(i,n,1)

)

]

, i = 0, . . . 2n − 1,where the funtion α : {0, . . . , 2n −1}×{0, . . . , n}×{0, 1} → {0, . . . , n} must be hosensuh that the 2n hildren form a regular subdivision parent ell ∆p. For n = 1 and
n = 2 this is straightforward. In the following the point pkl denotes the midpoint ofpoint pk and pl, i.e., pkl = 1

2(pk + pl). In one spae dimension the hildren an then bede�ned by
∆c

0 = [p0, p01], ∆c
1 = [p01, p1], (8.1)and in the two spae dimensions

∆c
0 = [p0, p01, p02], ∆c

2 = [p02, p12, p2],

∆c
1 = [p01, p1, p12], ∆c

3 = [p12, p02, p01].
(8.2)Note that in one and two spae dimensions the subdivision into 2n ongruent ells isunique up to renumbering of the hildren.
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Figure 8.1: Re�nement of one and two dimensional simplies.Now, in three spae dimensions the situation is more ompliated beause the partitionof a parent ell into eight hildren is not unique and therefore one has to deide how



8.1. REFINEMENT OF SIMPLICES 141to partition and this deision should ensure that suessively re�ned meshes annotdegenerate. The eight hildren of a three dimensional parent ell an be de�ned by
∆c

0 = [p0, p01, p02, p03], ∆c
4 = [q4, p23, p13, p12],

∆c
1 = [p01, p1, p12, p13], ∆c

5 = [p23, q5, p03, p02],

∆c
2 = [p02, p12, p2, p23], ∆c

6 = [p13, p03, q6, p01],

∆c
3 = [p03, p13, p23, p3], ∆c

7 = [p12, p02, p01, q7],

(8.3)where the verties q4, q5, q6, q7 must be de�ned suh that the eight hildren form a validpartition of the parent ell. This results in three possibilities for the hoie of theseverties. (i) q4 = q5 = p01 and q6 = q7 = p23,(ii) q4 = q6 = p02 and q5 = q7 = p13,(iii) q4 = q7 = p03 and q5 = q6 = p12.
p1 p2

p0

p1 p2

p0

p1 p2

p0

Figure 8.2: Three alternatives (i), (ii), (iii), from left to right, for the re�nement of athree dimensional simplex.At this point we have to deide whih one of the three possibilities to hoose. Onepossible hoie is to guarantee that one of the points q4, q5, q6, q7 always lies on thelongest edge of the tetrahedron. We all this the longest edge riterion.Example 8.1.1 (Longest Edge Criterion)We de�ne the η by the length of the longest edge of the tetrahedron, i.e.,
η = max{|pk − pl| | k, l ∈ {0, 1, 2, 3} },and we deide in the following wayif (|p0 − p1| = η or |p2 − p3| = η) then set q4 = q5 = p01, q6 = q7 = p23,else if (|p0 − p2| = η or |p1 − p3| = η) then set q4 = q6 = p02, q5 = q7 = p13,else set q4 = q7 = p03, q5 = q6 = p12.In [134℄ is reported that applying this riterion on suessively re�ned meshes an leadto a degenerate sequene of meshes, i.e., the smallest angle in a sequene of meshes is notbounded from below. Therefore the longest edge riterion seems to be not the optimalhoie. Numerial examples show that using another riterion whih we all the longesttwo edges riterion, that takes both edges assoiated with the verties q4, q5, q6, q7 intoaount, gives muh better results (at least in the on�gurations that have been tested).



142 CHAPTER 8. MESH ADAPTION AND PARALLELIZATIONExample 8.1.2 (Longest two Edges Criterion)We de�ne
η1 = |p0 − p1| + |p2 − p3|,
η2 = |p0 − p2| + |p1 − p3|,
η3 = |p0 − p3| + |p1 − p2|,
η = max{ηl | l = 1, 2, 3},and we deide in the following wayif (η1 = η) then set q4 = q5 = p01, q6 = q7 = p23,else if (η2 = η) then set q4 = q6 = p02, q5 = q7 = p13,else set q4 = q7 = p03, q5 = q6 = p12.Numerial examples show that the smallest angle in a sequene of suessively re�nedmeshes stays bounded from below using this riterion. The inverse of this riterion, theshortest two edges riterion, seems always to produe a sequene of degenerating meshes.8.2 L

2 Projetion of Data in the Adaption ProessWe assume that a n-dimensional simplex ∆ = T (∆̂) has been re�ned into 2n hildren
∆i = Ti(∆̂), i = 0, . . . , 2n − 1 as disussed in the previous setion, where ∆̂ denotes thereferene ell and T, Ti the referene mappings from the referene ell to the ells ∆ and
∆i respetively, see (6.1). This setion is not restrited to three spae dimensions as longas we assume that we already have onstruted 2n hildren of a ell. Due to the linearityof the referene mappings the projetion of data in the re�nement and oarsening proessis just a matrix-matrix multipliation and no further geometry information of the meshells is neessary. The matrix-matrix multipliation for re�nement and oarsening isgiven in equations (8.7) and (8.8).Let denote np = |Pm| the dimension of the spae of polynomials of degree at most m in
n spae dimensions as de�ned in setion 6.3. At the moment, for simpliity, we onsideronly salar data on the ells ∆ and ∆i of the form

u(x) =

np−1
∑

l=0

αlϕl, ui(x) =

np−1
∑

l=0

βi
lϕ

i
l,where the funtions ϕl and ϕi

l denote the loal basis funtions as de�ned in Setion 6.3,see (6.10). In the re�nement proess we have to ompute the oe�ients βi
l from theoe�ients αl in some way. We do this by means of a L2-projetion. This means for all

i we provide the data ui on the sub-ells ∆i by L2-projetion of u.
∫

∆i

u(x)ϕi
k(x) dx =

∫

∆i

ui(x)ϕ
i
k(x) dx, k = 0, . . . , np − 1.



8.2. L2 PROJECTION OF DATA IN THE ADAPTION PROCESS 143This means
np−1
∑

l=0

αl

∫

∆i

ϕl(x)ϕ
i
k(x) dx =

np−1
∑

l=0

βi
l

∫

∆i

ϕi
l(x)ϕ

i
k(x) dx, ∀k.And by transformation of the ell ∆i to the referene ell ∆̂ using the referene mapping

Ti gives
np−1
∑

l=0

αl

∫

∆̂

ϕl(Tix̂)ϕ
i
k(Tix̂) dx̂ =

np−1
∑

l=0

βi
l

∫

∆̂

ϕi
l(Tix̂)ϕ

i
k(Tix̂) dx̂, ∀k.Note that the transformation is a�ne linear and the fator |det(DTi(x))| from thetransformation has been eliminated on both sides of the equation. Using the de�nitionof the loal basis funtions ϕl and ϕi

l and the orthonormality of the funtions pl on thereferene ell we get
np−1
∑

l=0

αl

∫

∆̂

pl(T
−1Tix̂) pk(x̂) dx̂ = βi

k, k = 0, . . . , np − 1.The ombination of the mappings T−1Ti does not depend on the ell ∆. In fat we have
T−1Ti = T̂i, where T̂i denotes the a�ne linear mapping from the referene ell to the
i-th hild of the referene ell. This �nally gives the expression

βi
k =

np−1
∑

l=0

αl

∫

∆̂

pl(T̂ix̂) pk(x̂) dx̂, k = 0, . . . , np − 1,whih only depends on the number of the hild and not on the geometry of the ell ∆.Now let us de�ne for all hildren the matries Ai ∈ R
np×np by

Ai =







∫

∆̂

pl(T̂ix̂) pk(x̂) dx̂







k,l

(8.4)and we ompose them to a single adaption matrix A ∈ R
2nnp×np by

A =













A0

A1...
A2n−1













. (8.5)Now, to be more general, we onsider vetor valued data of dimension d ∈ N

u(x) =

np−1
∑

l=0

ϕlαl, ui(x) =

np−1
∑

l=0

ϕi
lβ

i
l, (8.6)



144 CHAPTER 8. MESH ADAPTION AND PARALLELIZATIONassoiated with the ells ∆ and ∆i where αl and βi
l are vetors in R

d. We de�ne matries
α,βi ∈ R

np×d by
α = (α0,α1, . . . ,αnp−1)

T , βi = (βi
0,β

i
1, . . . ,β

i
np−1)

T ,and we ompose the matries βi to a single matrix β ∈ R
2nnp×d by

β =













β0

β1...
β2n−1













.Using the above notation the projetion of the data in the Re�nement proess an bearried out by the single matrix-matrix multipliation
β = Aα. (8.7)The reverse proess of the re�nement proess is the oarsening proess. Here the prob-lem is to ompute the oe�ients α from given oe�ients β. Using the same notationas above the data projetion in the Coarsening proess is done by the single matrix-matrix multipliation

α =
1

2n
AT β. (8.8)To see that this is orret one has to start similar to the re�nement proess by a L2-projetion of the funtions ui to the ell ∆. Construting matries in a similar way tothe re�nement proess results in the formula above.In one and two spae dimensions there is only one adaption matrix A beause there�nement of a simplex into 2n sub-ells as disussed in the previous setion is unique.In three spae dimensions there are three di�erent adaption matries, one for eah of thethree di�erent re�nement patterns. Aording to the hoie of the re�nement patternthe orret matrix assoiated with this pattern has to be hosen for the projetion ofthe data.There are a lot of zeros in the matries Ai, espeially below the diagonal. when theprojetion of data beomes a bottlenek in the omputation this ould be exploited fora more e�ient implementation of the projetion. However, this is not the ase in ourappliations.8.3 Re�nement and Coarsening IndiatorThe goal of this setion is to provide a riterion to deide when a ell of the mesh is tolarge, suh that we have to re�ne it, and when a ell is to small and should be oarsened(if possible).In the framework of Finite Volume and Disontinuous Galerkin disretization of on-servation laws there are essentially two di�erent kinds of strategies for this deision.



8.3. REFINEMENT AND COARSENING INDICATOR 145The �rst strategy is to use error estimators based on rigorous theoretial results. Usu-ally these are only available for speial ases of onservation laws. The seond kindof strategies is based on heuristi indiators that are easy to ompute, appliable to alarge lass of problems and give usually good results in pratial appliations. However,there is no theoretial justi�ation as for the error estimators.
• Error estimators based on rigorous analysis, i.e., a aposteriori error ontrol of theform

||u− uh||K ≤ ηh(uh),where u is the exat solution of some onservation law, uh an approximation of ugenerated by a numerial sheme, K ⊂ Ω is some ompat set in the omputationaldomain and || · || denotes some norm. The strategy onsists (roughly) of thefollowing proedure: If the right hand side ηh(uh) is too large then we re�nethe mesh-ells assoiated with the set K, in the ase the right hand side is toosmall, the parts of the mesh assoiated with K should be oarsened to reduethe omputational ost to a minimum. Usually it is not guaranteed that theright hand side onverges to zero as the mesh size h tends to zero. Therefore thisstrategy does not always guarantee onvergene of the algorithm. Aposteriori errorestimates of the above form are available for �rst order Finite Volume shemes formulti dimensional salar onservation laws (Cauhy problem and initial boundaryvalue problem), e.g. [77℄, [89℄, [90℄, for nonlinear hyperboli systems of balanelaws with lassial solutions see [67℄. For higher order Runge-Kutta DisontinuousGalerkin approximations of multidimensional nonlinear salar onservation lawsan aposteriori error estimate an be found in [38℄.
• Heuristi indiators whih (in the framework of �uid dynamis) usually dependon the loal gradients (with respet to spae or time-spae) of thermodynamialvariables suh as density, energy, entropy and others. In this ase the riterion isquite simple: a large gradient (measured in some norm) leads to re�nement of theell, a small gradient might lead to oarsening of a group of ells.The advantages of this kind of simple heuristi indiators are: They are (usually)easy to ompute, they are available for ompliated systems in ontrast to realerror estimators, and they have been suessfully applied to many di�erent prob-lems, see for example [13℄, [37℄, [116℄, [50℄, [112℄.One disadvantage of heuristi indiators is that they may indiate for re�nementeven in ases where the error between exat and approximate solution is small(possibly equal to zero).For our appliation, the higher order Disontinuous Galerkin disretization of the om-pliated Navier-Stokes-Korteweg system, an error estimator based on rigorous analysisseems to be out of sope. However, the most important hallenge in the framework ofthe Navier-Stokes-Korteweg system is the omplete resolution of the interfae by theunderlying omputational mesh rather than the error ontrol. As an heuristi indiatorwe an use the density gradient |∇ρ|. At the interfae the density hanges rapidly andtherefore the density gradient is large. This an be used to provide a very �ne meshlose to the interfae.



146 CHAPTER 8. MESH ADAPTION AND PARALLELIZATIONWe de�ne a quantity ηi that is assoiated with the gradient of the density on the i-thell and its diret and indiret neighbors in the mesh
ηi = max

{diam(∆j)

|∆j |
||∇ρ||L2(∆j) | ∆j is neighbor of ∆i of deg. at most m} . (8.9)Here we all ∆j a neighbor of ∆i of degree at most m if there exist m+ 1 ells in themesh ∆0, . . . ,∆m with
∆i = ∆0,

∆j = ∆m,

∆k is a neighbor of ∆k+1, k = 0, . . . ,m.Note: for m = 0 we have only a ontribution of the i-th ell and for m = 1 we haveontributions of the gradients of the i-th ell and its diret neighbors.We hoose some problem dependent upper and lower values
ηupp > 0 and ηlow > 0 with ηlow < ηupp (8.10)and we deide if the i-th ell is a andidate for re�nement or oarsening aording tothe following riterionExample 8.3.1 (Mesh Adaption Criterion)if ηi > ηupp then we mark the i-th ell for re�nement,else if ηi < ηlow then we mark the i-th ell for oarsening.Note: Here we only set a mark (by setting a �ag) that means the ell is a andidatefor re�nement or oarsening. The �nal deision whether the re�nement or oarseningis performed is disussed in the next setion.The building of the maximum in the de�nition of ηi in (8.9) is rather expensive espeiallyfor large values m and parallel omputation, but it is important to have a layer of �neells around an interfae. Thus, it is important to hoose a valuem > 1. Otherwise loalequilibrium on�gurations will be destroyed in the re�nement and oarsening proessand this will slow down the underlying iterative linear solvers.8.4 Re�nement and Coarsening of Simpliial MeshesIn this setion we disuss the �nal re�nement and oarsening of a mesh. Here weassume that the ells of the mesh are already marked for re�nement and oarsening,i.e., re�nement or oarsening �ags of the ells are set due to the deision disussed inthe previous setion. Sine the Disontinuous Galerkin method does not need onformmeshes, re�nement and oarsening ould be very loal without a�eting neighboringells. However, in order to improve the stability of the method it is onvenient todisard the loality to some degree by restriting the level of nononformity to one, i.e.,



8.4. REFINEMENT AND COARSENING OF SIMPLICIAL MESHES 147the absolute di�erene between re�nement levels of neighbor ells. In the following weassume that the mesh onsists of a set of maro ells that annot be further oarsened.This set is alled maro mesh. Due to the re�nement and oarsening proedure ahierarhy of ells with a parent-hildren relation is onstruted. The set of ells that donot have hildren is alled leaf mesh. Only all hildren of a parent ell together an beoarsened to the parent ell.Note that initially, when the mesh adaption riterion 8.3.1 is applied, it is not possiblethat ells are marked with the re�nement and oarsening �ag simultaneously but thisan happen during the re�nement and oarsening proess sine the nononformity levelis restrited. In the following we assume that when the re�nement �ag of a ell is setthen the oarsening �ag is unset. Further we assume that a maro ell annot havethe oarsening �ag set. The mesh adaption follows a oarsening an, re�nement mustpoliy. This means every ell that has the re�nement �ag set has de�nitely to be re�nedwhereas the exeution of oarsening of a ell (with a set oarsening �ag) depends onthe neighborhood of the ell.First the re�nement algorithm is arried out. The following has to be done until thereis no ell left with a set re�nement �ag.Algorithm 8.4.1 (Re�nement)while there is a ell ∆ with re�nement �ag set {re�ne ∆ into subells ∆0, . . . ,∆n−1;for i = 0, . . . , n− 1 {for all neighbors ∆̃ of ∆i {if re�nement_level(∆i) − re�nement_level(∆̃) > 1 thenset the re�nement �ag of ∆̃;}}}When the re�nement has �nished the oarsening algorithm has to be exeuted until allells have been proessed and no �ags are set.Algorithm 8.4.2 (Coarsening)while there is a ell ∆ with oarsening �ag set {set ∆p = parent ell of ∆;if all hildren of ∆p have the oarsening �ag set then {if for all neighbors ∆̃ of ∆p we havere�nement_level(∆̃) - re�nement_level(∆p) ≤ 1 thenoarsen all hildren of ∆p to ∆p;else if for all neighbors ∆̃ of ∆p we havere�nement_level(∆̃) - re�nement_level(∆p) ≤ 2 and all neighborswith �= 2� have the oarsening �ag set thenrequeue ell ∆;



148 CHAPTER 8. MESH ADAPTION AND PARALLELIZATIONelse unset the oarsening �ag of ∆;}else unset the oarsening �ag of ∆;}In the oarsening algorithm above we note that in the else if statement we annotdeide whether the ell an be oarsened or not sine some of the neighbor ells haveto be oarsened (or not) �rst. Thus, the urrent ell has to be requeued in a waitingqueue of some kind. Here it is important for the termination of the algorithm that theurrent ell is requeued at the end of the waiting queue suh that all other marked ellsare proessed before the urrent ell is proessed again.8.5 ParallelizationIn the following we disuss the parallelization of the methods from the previous setionsand hapters. The parallelization using the distributed memory parallelization oneptis the appropriate hoie for Finite Volume and Disontinuous Galerkin methods sinethe partitions of the mesh given by a domain deomposition method are only weaklyoupled.Today there are mainly two di�erent parallel programming models Shared Memory Par-allelization and Distributed Memory Parallelization. The advantages and disadvantagesof these both models are listed in the following.
• Shared Memory Parallelization. Using this model the appliation makes use ofmany Threads of Exeution that share a ommon address spae in memory. Thismeans eah thread an read or write to eah loation in memory. This program-ming model an be used either by expliitly working with threads, for example byusing the PThreads API. Or alternatively OpenMP [35℄, [126℄ diretives an beused to spawn threads in parallel regions. These diretives are available for theprogramming languages C, C++ and Fortran but they are not part of the stan-dards of the languages and must be additionally implemented by the ompiler.The main disadvantage of this model on the side of the hardware is that SMPmahines with a large number of proessors are really expensive. One problem onthe software side is that many libraries are not ompletely thread safe. Anotherproblem is that it is easy to ause e�ets like ahe thrashing on modern mahinessine all threads have aess to all memory loations. One has to be aware ofthese e�ets otherwise the parallelization gives no gain in performane.
• Distributed Memory Parallelization. In this model the appliation runs using dif-ferent Proesses on the same or di�erent mahines whih ommuniate viaMessagePassing. The de fato standard for sienti� omputing appliations that makeuse of this programming model is the Message Passing Interfae (short MPI)[122℄ that de�nes a lot of useful routines ommonly used in sienti� appliations.An alternative to MPI is the PVM (Parallel Virtual Mahine) library [128℄, [49℄whih is, ompared to the MPI implementations, a light weight library that pro-vides message passing. But this omes at the ost that it is not as optimized as



8.5. PARALLELIZATION 149MPI implementations.The latest MPI standard (at time of this writing) is version 2.0 and an be foundon the MPI-Forum website [122℄. There are a number of open soure implementa-tions of MPI. All of them implement at least the 1.1 standard and some of themimplement parts of, or the omplete 2.0 standard. These are MPICH [53℄, [123℄,LAM/MPI [18℄, [120℄, MPICH2 [124℄ and OpenMPI [46℄, [127℄. The latter two ofthem implement (or will do it in the near future) the omplete MPI 2.0 standard.A good overview and many additional referenes to the Message Passing Interfaeare given in [54℄, [55℄.The main advantage of this programming models is that simply a bunh of ma-hines onneted via a network an be used as a parallel omputer. This is nor-mally muh heaper and for many appliations nearly equivalently e�ient asusing shared memory mahines. Another advantage is that memory partitionsare separated and e�ets like ahe thrashing do not our. Of ourse, messagepassing an also be used on SMP-mahines. In this ase modern MPI implemen-tations ommuniate via shared memory whih is the fastest way to ommuniate.In this work we have hosen a distributed memory parallelization beause of its �ex-ibility and usability with heap hardware. In the framework of Finite Volume andDisontinuous Galerkin methods a distributed parallelization based on a domain de-omposition seems to be the most appropriate hoie. Here the omputational domainrepresented by an underlying mesh is partitioned into piees and eah of the piees isdistributed among the available proessors. Figure 8.3 shows the original mesh on theleft and the mesh partitioned into three piees on the right. Additionally the overlap oflevel one is shown. These are ells from the other partitions that store the onnetivityinformation to ells of the other partitions.Parallel e�ienyThere are mainly two di�erent motivations for parallel implementation of software.Namely:
• The problem is too large. We have a larger memory requirement.
• The omputation needs too muh time to �nish. We need a faster exeution ofthe ode.In the �rst ase we have no other hoie: we need enough mahines to satisfy thememory requirements of the problem. But in the latter ase we have to deide howmany mahines we should use in order to aelerate the omputation. This is disussedin the following paragraph.For a given problem let T (n) denote the time the omputation using n ∈ N proessorsneeds to �nish. The speedup from n0 proessors to n1 proessors with n0 < n1 is then



150 CHAPTER 8. MESH ADAPTION AND PARALLELIZATIONde�ned by speedup(n0, n1) =
T (n0)

T (n1)
,speedup(n) = speedup(1, n).The latter denotes the speedup from one to n proessors. For real world appliationswe expet that the speedup is bounded byspeedup(n0, n1) ≤

n1

n0
,but there are examples where this is not the ase. These are usually ahe e�ets andour normally only when the problem is small and the ommuniation is really fastompared to the omputation. The expressione�(n0, n1) = speedup(n0, n1)
n0

n1is alled parallel e�ieny. This quantity deides whether it is worth to use n1 proessorsinstead of n0 or not. If this quantity is lose to one it may be worth if it is lose to zeroit is de�nitely not worth.Parallelization of the meshIn Setion 6.1 we have disussed the struture of onform and nononform meshes weuse to approximate (possibly omplex) geometries. For the implementation, espeiallyin a parallel environment, it is onvenient to restrit the set of admissible meshes a littlebit. Here we restrit this set to the set of meshes that an be generated by re�nementstarting from a onform maro mesh. The maro mesh onsists of ells that annot befurther oarsened. The mesh is initially assumed to be distributed among the availableproessors. Not all of the proessors need to hold any maro ells. The part of themesh (the partition) that is held by proessor number p is alled Th,p and the part ofthe domain that is assoiated with this partition is denoted by Ωh,p in the following.A partition Th,p needs also to store the immediate neighbors of maro ells that areadjaent to other partitions in order to store onnetivity information. These neighborsare alled overlapping maro ells of level one. Note that for the disretization by theDisontinuous Galerkin approah the information of diret neighbors is su�ient.Figure 8.3 shows the mesh of the unit ball in R
2 that is hold on only one proessor onthe left side and on the right side the same mesh is shown that is distributed amongthree proessors. The blue ells represent the overlapping ells from other partitionsthat store the onnetivity information.In the re�nement and oarsening proess a hierarhy of ells is onstruted with themaro ell as the root ell. In the ase where ells are sent from one proess to another,for example when load balaning (see 8.6) is neessary beause the omputational ostdi�ers too muh between the proessors, then the omplete ell tree with the maroell as root is sent to another proess. When re�nement or oarsening is performedsomewhere in the hierarhy of a maro ell of proess p that is part of the overlap ofa proess q then proess p needs to inform proess q about the new struture of theonerning maro ell.
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Figure 8.3: Deomposition of a mesh into three parts and the overlap of level one.Parallelization of the Disontinuous Galerkin methodThe spae disretization by the Loal Disontinuous Galerkin method is disussed inChapter 6 and espeially in Setion 6.2. In eah stage of the omputation of a higherorder di�erential operator by the LDG method the ommuniation only between diretneighboring ells is neessary. Therefore the mesh on one partition needs only to storethe information about diret neighbor ells in di�erent partitions. As disussed inthe previous paragraph, in this ase the omplete maro ell hierarhy is stored forsimpliity.The omputation of the disrete di�erential operators assoiated with the Loal Dis-ontinuous Galerkin method in one stage is then done essentially in the following way:
• The data at the boundaries of the partitions is exhanged between proessorsusing nonbloking MPI ommuniation.
• Sine nonbloking ommuniation is used it an overlap with the omputation inthe inner partition (the large part of the omputation). Communiation is donein the bakground by the system.
• When all neessary data has been reeived from neighbor partitions, the rest ofthe omputation that is assoiated with the partition boundaries an be done (thesmall part of the omputation).In the following we denote by uh,p the part of the approximate solution that is assoiatedwith the partition Th,p, i.e., the part of the approximate solution that has support on thedomain Ωh,p. The loal parts of the disrete �rst order di�erential operators are denotedby L1

h,p,k. Using this notation the pseudoode algorithm to ompute the disrete higherorder di�erential operator in m stages in equation (6.6) an be written in a parallelizedversion. Eah proess p does the following:



152 CHAPTER 8. MESH ADAPTION AND PARALLELIZATIONAlgorithm 8.5.1 (Parallel DG Method)set u0
h,p = uh,p(·, t);for k = 1, . . . ,m {for q = 0, . . . , nparts − 1, q 6= p {if p and q are adjaent partitions thensend the parts of (u0

h,p, . . .u
k−1
h,p ) that are assoiated with the partitionboundary to proess q using nonbloking ommuniation;

}ompute the part of L1
h,p,k[(u

0
h, . . .u

k−1
h )] using physial �uxes fk

i andonsistent numerial �uxes gk for whih only the inner data is neessary;wait until all neessary data from neighbor partitions has been reeived;ompute the rest of L1
h,p,k[(u

0
h, . . .u

k−1
h )];set uk

h,p = L1
h,p,k[(u

0
h, . . .u

k−1
h )];

}set Lm
h,p[uh(·, t)] = um

h,p.In the above algorithm nparts denotes the number of partitions/proessors in the parallelenvironment. Note that the treatment of nononservative produts an also be inludedin the algorithm.Parallelization of linear and nonlinear solversThe parallelization of the rest of the ode is more or less straight forward. The mostimportant remaining omponents are the expliit and impliit ODE solvers, nonlinearsolvers and linear solvers. Parallelization of these omponents is done in the followingway: First a loal (with respet to a partition/proessor) result is omputed and seondthese loal results are used to onstrut the global result by using global redutionoperations provided by the Message Passing Interfae.ODE solvers need to ompute a time step size. Expliit solvers need to do this forstability reasons and impliit solvers need to �nd an optimal time step. Usually this isdone by omputing a time step loally on eah partition followed by building a minimumover all partitions. The �nal step is done by alling the MPI global redution methodMPI_Allredue(. . . , MPI_MIN).Linear and nonlinear solvers need to ompute dot produts. Linear solvers usually needthis as part of the iteration and nonlinear solvers for a stopping riterion. Dot produtsare omputed loally for eah partition. This operation is ompleted by building thesum over all partitions. Again this is a global redution operation provided by MPI.The method to all in this ase is MPI_Allredue(. . . , MPI_SUM). Note thatomputing dot produts in parallel an be di�erent from the serial omputation due to



8.6. LOAD BALANCING 153roundo� errors sine the operations are usually reordered. This an result in a slightlydi�erent number of iterations for the linear solvers.Parallelization of other omponentsSome of the omponents like the interfae or error indiators are not disussed in theprevious paragraphs sine the parallelization of these omponents is similar or a ombi-nation of the omponents disussed before. Therefore, we omit it. The parallelizationof the re�nement and oarsening algorithm disussed in Setion 8.4 is also not disussedhere. The information of re�nement and oarsening has to be simply exhanged betweenthe partitions. This proess an ause additional adaption in other partitions. Thus,the proess has to be iterated until all partitions have �nished.8.6 Load BalaningLoad balaning is a tehnique to distribute work between the available proessors ina parallel environment in order to optimize and derease omputing time. In the asewhere the omputational ost or ommuniation ost di�ers too muh between proesses,due to loal mesh adaption, the load must be balaned with respet to
• the omputational ost, i.e., the number of ells of the mesh a partition holds.
• the ommuniation ost. The number of interfaes between di�erent partitionsshould be minimized.
• the redistribution ost. The exhange of parts of the partitions should not be tooexpensive.For purpose of the �rst item we assign weights to the maro ells of the mesh whihrepresent the ount of leaf ells in the ell hierarhy of the maro ell. The seond itemis taken into aount by assigning weights to the interfaes of the maro ells whihrepresent the ommuniation ost between two adjaent maro ells.As bakend for the partitioning of the maro mesh the graph partitioning libraryParMetis [121℄, [68℄ is used. The graph that desribes the onnetivity informationof the maro mesh is onverted into ParMetis' data struture. This struture is a kindof a parallel CSR matrix format, see the ParMetis doumentation [69℄ for details. TheParMetis library provides the methods PartKway(. . . ) and AdaptiveRepart(. . . ).The former method is used for initial partitioning and the latter is used for reparti-tioning. The repartition method preserves as muh of the initial struture of the meshas possible in order to minimize the redistribution ost. The output of both ParMetismethods is a loal part array with the information whih node of the graph has to besent to whih proessor, i.e., whih maro ell has to be sent to whih partition, in or-der to improve the distribution of omputational ost and minimize the ommuniationost.ParMetis provides additionally the possibility to assign individual weights to the parti-tions using the tpwgts array. This an be used to improve the load balaning in het-



154 CHAPTER 8. MESH ADAPTION AND PARALLELIZATIONerogen parallel environments, i.e., networks of mahines with di�erent omputationalpower.



Chapter 9Numerial Results
We apply the test ases onstruted in Chapter 4 and some other tests in the followinghapter. All tests throughout the following setions are related to the higher order Dis-ontinuous Galerkin disretization of the Navier-Stokes-Korteweg equations (isothermalor temperature dependent) in multiple spae dimensions disussed in Chapter 6. In thefollowing setions we perform a lot of di�erent tests that are dediated to

• the quantitative behavior of numerial solutions, onvergene tests with the statiequilibrium solutions and traveling wave solutions in multiple spae dimensions.
• the qualitative behavior of numerial solutions, deay of the total energy on thedisrete level, vanishing veloity �eld.
• the e�ieny of the used numerial tehniques, parallelization, loal mesh adap-tion.
• the qualitative behavior of solutions of the Navier-Stokes-Korteweg model, osil-lating bubbles, ondensation of bubbles.In the above list one point is missing: tests with respet to the quantitative behaviorof solutions. Here the problem is that no physial data of experiments are available onthe temperature and length sale that an be simulated by the NSK model, see Setion2.10.9.1 Test Case: Stati EquilibriumThe �rst test in this hapter is the test ase with the stati bubble in two and three spaedimensions. As initial on�guration we use the pro�les we have omputed in Setion4.1. We ompare the exat solution with the approximate solutions generated by thewell balaned Disontinuous Galerkin shemes disussed in Setion 6.9 for di�erentpolynomial degrees after some time of omputation. For time stepping we apply theimpliit Runge-Kutta shemes desribed in Setion 7.3.The setting is the same as in Chapter 5 exept for the domain and the boundaryonditions. The boundary onditions that are imposed in this test ase are (2.51)155



156 CHAPTER 9. NUMERICAL RESULTSand (2.53) that enfores a 90 degree ontat angle of the interfae at the boundary.However, the interfae should not touh the boundary in this ase, so it should notmake a di�erene when boundary ondition (2.53) is replaed by the more generalondition (2.54).The remaining parameters are the apillarity oe�ient λ whih must orrespond to theomputed density pro�le and the visosity parameters that an be hosen arbitrarily.However, we use the value that omes from the omputation of the underompressivetraveling wave solution, see Setion 4.2.
λ = 0.001,

ε = 0.0136644, µ =
3

4
ε, ν = −1

2
ε.Stati bubble in 2d

Figure 9.1: Stati equilibrium bubble and a omputational mesh in 2d.Figure 9.1 shows the density distribution in the omputational domain Ω = B1(0) ⊂ R
2of the initial on�guration whih is of ourse the solution for all times t ≥ 0 in thisase. The density values vary between approximately 0.3 (blue) and 1.8 (red). Thesetwo values are approximately the Maxwell values for the dimensionless van der Waalsequation of state at temperature θref = 0.85. This display style is used throughout thishapter.For this test we use globally re�ned, regular triangulations of di�erent mesh sizes. Oneof them is shown in Figure 9.1. Figure 9.2 and Table 9.1 illustrate the onvergene ofthe numerial shemes with the expeted order (whih is polynomial degree plus one)for p = 1, 2, 3.The results of the sequene of tests in two spae dimensions an be found in Table 9.1and Figure 9.2. Computations that were not suessful, beause the mesh was not �neenough (this was the ase for p = 1) or the omputation was simply to expensive to�nish in a reasonable time (in the ase of p = 3 for the �ne meshes) the results aremarked with a * symbol in Table 9.1.



9.1. TEST CASE: STATIC EQUILIBRIUM 157p=1 p=2 p=3h L2 error EOC L2 error EOC L2 error EOC2.1298e-01 * 7.6272e-02 6.1959e-021.3311e-01 8.0634e-02 * 2.7842e-02 2.144 1.0732e-02 3.7308.8740e-02 3.1137e-02 2.347 6.9194e-03 3.434 2.3610e-03 3.7346.2640e-02 1.3184e-02 2.467 4.0635e-03 1.528 3.0082e-04 5.9154.2595e-02 7.8643e-03 1.340 9.2077e-04 3.849 1.1222e-04 2.5572.8023e-02 3.6147e-03 1.856 2.4690e-04 3.144 2.1694e-05 3.9251.9016e-02 1.7118e-03 1.928 7.3168e-05 3.137 5.6071e-06 3.4891.2830e-02 7.9013e-04 1.965 2.1812e-05 3.076 1.5065e-06 3.3408.6576e-03 3.6232e-04 1.982 6.6050e-06 3.037 4.2760e-07 3.2025.8510e-03 1.6589e-04 1.994 2.0252e-06 3.017 * *3.9440e-03 7.5470e-05 1.997 6.1878e-07 3.006 * *Table 9.1: Stati bubble in 2d. Total L2 error and EOC for p = 1, 2, 3.The numerial solutions generated by the shemes with polynomial degree p = 0, 1, 2onverge learly with the expeted order p + 1. For the fourth order sheme (p = 3)either the mesh size is not in the asymptoti regime or (and this is very likely the reason)the time step size has beome too large (possible beause of the equilibrium solution)suh that the seond order Runge-Kutta method destroys the order.
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158 CHAPTER 9. NUMERICAL RESULTSin R
2. Figure 9.3 shows the initial data and an underlying tetrahedral mesh for thistest. Now it is important that at the bottom and at the top of the ylinder boundaryondition (2.53) is imposed.

Figure 9.3: Stati 2d bubble in 3d and a tetrahedral mesh.The rest of the setting is idential to the setting in the 2d ase in the previous paragraph.The results of the omputations are shown in Figure 9.4 and Table 9.2 for polynomialdegree (zero), one, two and three.
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9.2. TEST CASE: TRAVELING WAVE SOLUTION 159p=1 p=2 p=3h L2 error EOC L2 error EOC L2 error EOC2.0856e-01 * 2.4993e-02 2.4465e-021.4094e-01 2.2658e-02 * 4.3036e-03 4.489 1.5906e-03 6.9756.9520e-02 9.1541e-03 1.282 9.8393e-04 2.088 2.9740e-04 2.3734.1712e-02 3.2035e-03 2.055 2.7513e-04 2.495 3.6137e-05 4.1262.5236e-02 1.2346e-03 1.897 5.8482e-05 3.081 4.2149e-06 4.2761.4757e-02 4.5120e-04 1.876 1.2013e-05 2.950 * *Table 9.2: Stati 2d bubble in 3d. Total L2 error and EOC for p = 1, 2, 3.9.2 Test Case: Traveling Wave SolutionIn this setion we perform the test with the traveling wave solution omputed in Setion4.2 in two and three spae dimension. Therefore, the one dimensional pro�le is triviallyextended to two and three spae dimensions by setting the remaining omponents of theveloity to zero. A 1d test an be found in Setion 9.4. The isothermal Navier-Stokes-Korteweg system is in all tests equipped with a dimensionless van der Waals equationof state and the dimensionless referene temperature is �xed to θref = 0.85.The system is disretized using the well balaned Disontinuous Galerkin sheme as de-sribed in Setion 6.9 for polynomial degrees between zero and four. Time integration isdone using seond and third order impliit Runge-Kutta shemes, see Setion 7.3. Thetime step is small enough (of order O(h2), where h denotes the mesh size) suh thatthe order of the Runge-Kutta shemes is su�ient.Note: For polynomial degree zero a Disontinuous Galerkin sheme redues to a �rstorder Finite Volume sheme.Compressive wave in 2dFor the �rst test in this setion we have hosen the ompressive wave from Setion 4.2.The pro�le is extended to two spae dimensions by setting the seond omponent ofthe veloity to zero and used as initial on�guration. We impose boundary onditionsknown from the exat solution of the problem. The parameters for this pro�le are givenby
λ = 0.001,

ε = 0.0056977, µ =
3

4
ε, ν = −1

2
ε,

s = −1.25273.Here λ denotes the apillarity parameter, µ and ν the oe�ients of visosity and sthe speed of propagation of the pro�le. The approximate solutions are omputed upto omputational time T = 0.02. At this time the approximate solution is omparedto the exat solution by omputing the (total) L2-error. All omputations are doneusing idential mahines (Pentium 4, 2.4GHz, one ore per proessor) and using only a



160 CHAPTER 9. NUMERICAL RESULTSsingle partition in order to ompare the exeution times. The omputational domain isthe hannel [−1, 1]× [−0.25, 0.25] and the mesh is a regular, globally re�ned riss-rosstriangulation.
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hFigure 9.5: Compressive wave in 2d. Mesh size versus L2 error for polynomial degree
p = 0, 1, 2, 3, 4.Figure 9.5 shows that the approximate solutions generated by the Disontinuous Galerkinshemes with polynomial order p = 0, 1, 2, 3 onverge to the exat solution with the ex-peted order. In the �gure the blak lines indiate the expeted order. Note that theexpeted order of the shemes is p+1. Table 9.3 illustrates the same. The sheme with
p = 4 seems to have the same behavior but on loser inspetion that the error is notof order �ve. This is due to the insu�ient order of the Runge-Kutta sheme in thisomputation. We applied a seond order Runge-Kutta sheme and the time step size isof order O(h2). This means that the resulting sheme annot be better than order four.

p = 1 p = 2 p = 3

h L2 error EOC L2 error EOC L2 error EOC2.5000e-02 1.2265e-02 3.8326e-03 5.1287e-031.2500e-02 3.1980e-03 1.939 5.0307e-04 2.929 5.7384e-05 6.4828.3333e-03 1.4234e-03 1.997 1.5131e-04 2.963 1.1166e-05 4.0376.2500e-03 7.9961e-04 2.004 5.9397e-05 3.250 3.6240e-06 3.9125.0000e-03 5.1395e-04 1.981 3.0369e-05 3.006 1.5009e-06 3.9504.1667e-03 3.5756e-04 1.990 1.7597e-05 2.993 7.2917e-07 3.9603.5714e-03 2.6292e-04 1.994 1.1096e-05 2.992 3.9572e-07 3.9653.1250e-03 2.0137e-04 1.997 7.4416e-06 2.992 2.3285e-07 3.972Table 9.3: Compressive wave in 2d. L2 error and EOC for p = 1, 2, 3.



9.2. TEST CASE: TRAVELING WAVE SOLUTION 161From Figure 9.6 we an see that the onstrution of higher order shemes really leadsto more e�ient shemes (provided that the solution is su�iently smooth). The �gureshows the CPU time the omputation needs versus the (total) L2-error. By CPU timewe mean the time the proess has onsumed, i.e., the user+system time on UNIXsystems. We an see that the shemes with p = 3 and p = 4 are the most e�ientshemes.
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CPU time [min]Figure 9.6: CPU time versus L2 error for polynomial degree p = 0, 1, 2, 3, 4.Underompressive wave in 2dAs a seond test in this setion we repeat the test from the previous paragraph with anunderompressive wave onstruted in Setion 4.2 instead of a ompressive wave. Anunderompressive traveling wave solution is more typial for propagating phase bound-aries sine an interfae usually propagates with subsoni speed. For the sequene ofomputations in this paragraph real unstrutured (randomly perturbed) but uniformly�ne meshes are used. One of these meshes is shown in Figure 9.7. We omit time and
Figure 9.7: Randomly perturbed mesh in 2d.e�ieny measurements in this test ase suh that the omputations an be assignedto a di�erent number of proessors and di�erent mahines as it is neessary due to thedi�erent omplexity when polynomial degree and mesh size vary.



162 CHAPTER 9. NUMERICAL RESULTSThe parameters for the underompressive pro�le are di�erent from the parameters forthe ompressive wave. They are given by
λ = 0.001,

ε = 0.0136644, µ =
3

4
ε, ν = −1

2
ε,

s = −0.32141.The omputational end time for the omputations is T = 0.1. At this time the total
L2-error between the numerial solutions and exat solutions are omputed.p=1 p=2 p=3h L2 error EOC L2 error EOC L2 error EOC1.3711e-01 3.4725e-02 1.1543e-02 5.5499e-038.8213e-02 1.1685e-02 2.470 3.6984e-03 2.581 5.6154e-04 5.1946.0485e-02 7.2965e-03 1.248 1.2311e-03 2.915 2.2738e-04 2.3964.2884e-02 3.8130e-03 1.887 4.6178e-04 2.851 6.0013e-05 3.8733.1247e-02 2.0928e-03 1.895 1.8158e-04 2.948 1.6730e-05 4.0352.1225e-02 9.1363e-04 2.143 5.5332e-05 3.073 3.4654e-06 4.0711.4752e-02 4.5400e-04 1.922 1.9073e-05 2.928 8.5393e-07 3.8501.0448e-02 2.0603e-04 2.290 6.2167e-06 3.249 2.0425e-07 4.146Table 9.4: Underompressive wave in 2d. Total L2 error and EOC for p = 1, 2, 3.
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p=3Figure 9.8: Underompressive wave in 2d, polynomial degree p = 0, 1, 2, 3.The result of this onvergene test is presented in Figure 9.8 and Table 9.4 for theDisontinuous Galerkin shemes with polynomial degree p = 0, 1, 2, 3 and a seondorder impliit Runge-Kutta method for time integration. Figure 9.9 shows the graph ofsuh a density pro�le (olor variation of the density distribution is also shown) and theorresponding veloity �eld for p = 2 at time T = 0.1.



9.2. TEST CASE: TRAVELING WAVE SOLUTION 163

Figure 9.9: Underompressive wave in 2d. Density distribution and veloity �eld.Underompressive wave in 3dWe extend the underompressive traveling wave solution used in the previous paragraphtrivially to three spae dimensions by setting the additional momentum omponentsto zero. The omputational domain for the three dimensional test is the hannel Ω =
(−1, 1)×(−0.25, 0.25)2 ⊂ R

3 that is represented by regular, globally re�ned, tetrahedralmeshes of di�erent sizes. The omputational end time is T = 0.1. At this time thetotal L2-errors of the numerial solutions are omputed. Again we omit time ande�ieny measurements. The parameters are the same as in the 2d ase with theunderompressive wave before.

Figure 9.10: Underompressive wave in 3d. Density distribution and the omputationalmesh (upper piture) and the assoiated partitions marked by di�erent olors (lowerpiture).The results of the tests for polynomial degree p = 0, 1, 2, 3 are shown in Table 9.5and Figure 9.11. The onvergene with the expeted order an learly be seen for theseond and third order shemes (p = 1, 2). The test with the two �nest meshes was tooexpensive for the fourth order (p = 3) sheme.



164 CHAPTER 9. NUMERICAL RESULTSp=1 p=2 p=3h L2 error EOC L2 error EOC L2 error EOC2.3208e-01 4.2703e-02 1.6035e-02 7.8913e-031.5832e-01 2.3654e-02 1.544 8.3620e-03 1.702 4.8851e-03 1.2541.1804e-01 1.6087e-02 1.313 3.8893e-03 2.607 1.4425e-03 4.1558.0126e-02 9.7965e-03 1.280 1.4103e-03 2.618 5.9760e-04 2.2745.5051e-02 4.8885e-03 1.852 7.0490e-04 1.848 1.1244e-04 4.4513.8462e-02 2.3859e-03 2.000 2.3567e-04 3.055 3.1102e-05 3.5842.7778e-02 1.2670e-03 1.945 9.1493e-05 2.907 * *2.0000e-02 6.6492e-04 1.963 3.3963e-05 3.017 * *Table 9.5: Underompressive wave in 3d. Total L2 error and EOC for p = 1, 2, 3.
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p=3Figure 9.11: Underompressive wave in 3d, polynomial degree p = 0, 1, 2, 3.9.3 Test Case: Towards Stati EquilibriumThis is the test ase proposed in Setion 4.3 and the setting is similar to that in Chapter5 but not the same.The oe�ient λ is hosen a hundred times smaller than in the tests in Chapter 5. Thisresults in an ten times smaller interfae and also the amount of surfae tension is tentimes smaller. This leads to slower dynamis beause fores assoiated with surfaetension are muh weaker. Due to the small interfae it is neessary to apply loal meshre�nement using the interfae indiator desribed in Setion 8.3 with parameters

ηlow = 0.5,

ηupp = 4.0 · ηlow,

m = 8,where the parameter m ontrols the layer of �ne ells around the interfae and the load



9.3. TEST CASE: TOWARDS STATIC EQUILIBRIUM 165balaning is performed every 40th time step.The isothermal NSK-system is disretized by the well balaned Disontinuous Galerkinsheme with polynomial ansatz funtions of degree two and three. For polynomial degreeone the above given values for the interfae indiator do not provide a �ne enough meshfor the omplete resolution of the interfae. This results in an unstable behavior of theapproximate solution. The parameters for this test are given by
θref = 0.85, dimensionless vdW-equation of state,
λ = 1.0 · 10−5,

ε = 1.366 · 10−3, µ =
3

4
ε, ν = −1

2
ε.
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Figure 9.12: Test Case: Towards Stati Equilibrium. Total and kineti energy forpolynomial degree p = 2 and p = 3.Figure 9.12 shows the behavior of the total and kineti energy as funtions of time forthe two well balaned Disontinuous Galerkin shemes with polynomial degree two andthree. A onstant has been added to the total energy suh that it an be displayedon a logarithmi sale. The total energy E is an almost dereasing funtion in timewith small osillations. The sheme itself is not designed suh that the total energyhas this behavior. This is a side e�et observed in the numerial experiments with thebasi �rst order sheme in Chapter 5. The osillations we an observe in the graph ofthe energy are mainly aused by the L2 projetion in the re�nement and oarseningproess. We have observed that these osillations vanish when loal mesh adaption isnot applied. However, this is not possible in the ase of a very small interfae. Maybea more onvenient data projetion should be hosen to maintain the energy deay.The right part of the �gure shows that the kineti energy onverges ompletely (up toroundo� error) to zero as time tends to in�nity. The shemes are designed to preservestati equilibrium data on the disrete level but it is not lear that if we add a smallperturbation to a stable stati equilibrium on�guration that as time tends to in�nitythe approximate solution onverges to some stati equilibrium state again. This anlearly be seen from the behavior of the kineti energy.



166 CHAPTER 9. NUMERICAL RESULTSFigure 9.13 shows a sequene of six time steps in the evolution proess from the initialdata at t = 0.0 to the (nearly) stati equilibrium on�guration at time t = 40.0. Thereas still some movement at this omputational time but the topologial hanges areompleted and the large bubble in the enter of the domain has an almost spherialshape. The �gure shows the distribution of the density and the veloity at omputationaltimes t = 0.0, 7.0, 7.85, 13.07, 14.6, 40.0 (from upper left to lower right) for the thirdorder Disontinuous Galerkin sheme (p = 2). Below the density-veloity piture theorresponding adaptively re�ned mesh with the distribution over the eight proessorsused for this omputation is shown. Eah of the eight olors represents one partition.

Figure 9.13: Test Case: Towards Stati Equilibrium. Density, veloityand the adaptively re�ned meshes with distribution of the partitions. t =
0.0, 7.0, 7.85, 13.07, 14.6, 40.0 from upper left to lower right.



9.4. THE NEED FOR ARTIFICIAL VISCOSITY 1679.4 The Need for Arti�ial VisosityThis test shows that the additional arti�ial visosity, see for example Setion 5.2 es-peially equation (5.5), in the disretization of the Navier-Stokes-Korteweg equationsis really neessary to stabilize the approximate solution (at least for the higher orderDG disretization). The test ase with the ompressive traveling wave solution fromSetion 9.2 is applied to the one dimensional isothermal NSK system disretized by thewell balaned Disontinuous Galerkin shemes. The parameters are hosen as in Setion9.2 with the di�erene that in one sequene of tests the arti�ial visosity parameter α1,see (5.5), is set to zero. The approximate solutions are omputed up to time T = 0.1on uniform 1d grids.Table 9.6 shows the onvergene behavior of the two tests with the �rst order shemes,one with and the other without arti�ial visosity. The errors are not in the asymptotiregime for the used mesh sizes but it an be seen that arti�ial visosity is not neessaryto stabilize the generated approximations for the �rst order shemes (at least not in thistest ase). The result is di�erent in the ase of higher order shemes as an be seenbelow.
α1 > 0 α1 = 0h L1 error EOC L1 error EOC1.0000e-01 2.6682e-01 3.0344e-015.8824e-02 1.5707e-01 0.999 1.9467e-01 0.8373.5088e-02 5.9956e-02 1.864 9.0428e-02 1.4842.0619e-02 1.9982e-02 2.067 1.9096e-02 2.9251.2121e-02 9.9869e-03 1.306 5.4978e-03 2.3447.1685e-03 7.0067e-03 0.675 2.7571e-03 1.3144.2373e-03 4.9088e-03 0.677 1.5106e-03 1.144Table 9.6: Traveling wave in 1d, 1st order sheme. Total L1 error and EOC for thesheme with arti�ial visosity (left) and without (right).The results of the tests with the orresponding seond order Disontinuous Galerkinshemes an be found in Table 9.7. Almost seond order onvergene an be observedfor the sheme with arti�ial visosity. The sheme without arti�ial visosity does notonverge to the exat solution and Figure 9.14 learly shows the unstable behavior ofthe approximate solution. The sheme produes osillations in the viinity of the phaseboundary. The sheme that inludes arti�ial visosity (not shown) does not show thisbehavior, it onverges to the exat solution.As a result we �nd that exept for the �rst order sheme arti�ial visosity is neessaryfor the higher order shemes to produe sequenes of approximate solutions that on-verge to the exat solutions. Of ourse, instead of the expliit introdution of arti�ialvisosity another stabilization tehnique ould also be possible.



168 CHAPTER 9. NUMERICAL RESULTS
α1 > 0 α1 = 0h L1 error EOC L1 error EOC1.0000e-01 1.0310e-01 1.8342e-017.1429e-02 4.9296e-02 2.193 1.5012e-01 0.5955.1282e-02 3.9810e-02 0.645 1.1758e-01 0.7373.7037e-02 1.9147e-02 2.249 6.0010e-02 2.0672.6667e-02 9.1751e-03 2.239 3.1154e-02 1.9961.9231e-02 4.4738e-03 2.197 2.5753e-02 0.5821.3889e-02 2.0969e-03 2.329 2.3741e-02 0.2501.0000e-02 1.2653e-03 1.538 3.0897e-02 -0.802Table 9.7: Traveling wave in 1d, 2nd order DG-sheme. Total L1 error and EOC forthe sheme with arti�ial visosity (left) and without (right).
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xFigure 9.14: Traveling wave in 1d, 2nd order DG-sheme without arti�ial visosity.Density pro�les for exat and approximate solutions at time T = 0.1.9.5 Di�erent Contat AnglesIn this test we impose di�erent ontat angles for the interfae at a solid wall by mod-i�ation of the angle ϕ in boundary ondition (2.54). The omputational domain forthis test is the square/ube [−1, 1]n, n = 2, 3 partitioned by an adaptively re�ned tri-angular/tetrahedral mesh. Initially, a bubble with 90 degree ontat angle is attahedto the bottom wall with zero veloity �eld, Figure 9.15 shows the initial data in twospae dimensions. This means that (exept for a ontat angle of 90 degrees) the ini-tial on�guration is not onsistent with the presribed boundary onditions. However,this seems not to lead to instabilities in the approximate solution and as time tends toin�nity the ontat angle agrees with the imposed onditions.Again we hoose the dimensionless isothermal van der Waals equation of state with areferene temperature θref = 0.85. For this test we hoose a muh smaller interfae asin the tests before. The parameters are di�erent in two and three spae dimensions.



9.5. DIFFERENT CONTACT ANGLES 169Therefore the used apillarity and visosity parameters are listed in the orresponding2d and 3d paragraph below. The rest of the setting is the same regardless of the spaedimension. The sheme is a 3rd order Disontinuous Galerkin sheme (polynomial de-gree 2) with 2nd order impliit time integration. We ompute the approximate solutionup to omputational time T = 50.0. The solution does not hange essentially from thistime and the veloity �eld is lose to zero.The omplete resolution of the small interfae is only possible by using adaptively re�nedmeshes. For the traking of the interfae we use the interfae indiator disussed inSetion 8.3, (8.10) with parameters
ηlow = 0.8,

ηupp = 4.0 · ηlow,

m = 8,and the load balaning is performed every 40th time step. This ould be done lessfrequently beause the solution does not hange rapidly in this test ase.
Figure 9.15: Same initial data for di�erent ontat angles.Di�erent ontat angles in 2dThe apillarity and visosity parameters in the two dimensional test ase are given by

λ = 1.0 · 10−5,

ε = 1.366 · 10−3, µ =
3

4
ε, ν = −1

2
ε.The two dimensional test is performed using two proessors. The density distribution,the orresponding meshes together with the distribution of the mesh ells over thepartitions is shown in Figure 9.16 for the three ontat angles ϕ = 0.25π, 0.5π, 0.75πat time T = 50.0.A ontat angle of 135 degree in 3dFor the three dimensional test the apillarity and visosity parameters are hosen slightlylarger for two reasons: faster omputation and better display of the results. The pa-
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0.000 Figure 9.16: Di�erent ontat angles in 2d. ϕ = 0.25π, 0.5π, 0.75π from left to right.rameters are given by

λ = 2.5 · 10−4,

ε = 6.830 · 10−3, µ =
3

4
ε, ν = −1

2
ε.Only one omputation is performed with an adjusted ontat angle of ϕ = 0.75π using16 proessors in parallel. The result at time T = 50.0 is shown in Figure 9.17. This�gure shows the distribution of the density on two lipping planes with z = 0 and

y = 0, where x, y, z denote the spatial oordinates. Additionally a levelset of a bubbleis shown.

Figure 9.17: Contat angle of 135 degree in 3d.



9.6. IMPLICIT VERSUS EXPLICIT TIME STEPPING 1719.6 Impliit versus Expliit Time SteppingWe test the e�ieny of impliit time stepping versus expliit time integration in thissetion. Note that there is no formula for the time step size restrition available thatis neessary for expliit time stepping to guarantee the stability of the method. This isthe main reason for using impliit Runge-Kutta methods, e�ieny is the seond one.Sine there is no formula for ontrolling the time step size in the expliit ase we haveto �gure out manually (by suessively lowering) whih time step size gives a stablesheme. It is guaranteed that for a working time step size a �ve perent larger timestep size shows an unstable behavior.For this test ase a traveling wave solution or a stati equilibrium seems to be theappropriate hoie sine these kinds of solutions have the same shape for all times t.Thus, the most e�ient time step size for impliit shemes and the maximal possibletime step for expliit shemes remain almost the same for all times t.We have hosen both test ases in two spae dimensions using di�erent mesh sizes anda 3rd and 4th order well balaned Disontinuous Galerkin disretization (p = 2, 3) ofthe isothermal Navier-Stokes-Korteweg equations in spae. The on�guration is almostthe same as in Setions 9.1 and 9.2. In both ases seond order Runge-Kutta shemesare applied for time integration. In the expliit ase the TVD2 sheme (also known asHeun sheme) is used and in the impliit ase the Crank-Niholson sheme in ombi-nation with the GMRES(15) linear solver is applied. The omputations were run usinga sequene of suessively globally re�ned meshes. In order to ompare the exeutiontimes of the omputations without distorting the results by the overhead of parallelommuniation all tests were run on a single proessor (AMD Athlon64, 1.8GHz).Traveling wave solutionFor the �rst test with the traveling wave solution as initial data in two spae dimen-sions. We have hosen exatly the same underompressive wave from Setion 9.2. Sineeverything is in movement in the solution this should be the harder test for the impliitsheme. The rest of the on�guration is exatly the same as in Setion 9.2. The om-putational end time where the approximate and exat solutions are ompared to eahother is T = 0.01. The oarsest omputational mesh is a relatively rough but regulartriangulation of the two dimensional hannel. This mesh is subsequently re�ned forfurther omputations whih gives meshes of the same quality.Table 9.8 shows the results of this sequene of omputations for the 3rd order DG sheme(upper part of the table) and the 4th order DG sheme (lower part). For the impliitand expliit ase the total L2-errors, the time the omputation needs to �nish and thetime step sizes are shown. The time step size for the expliit shemes are �xed whereasthe size of the time step in the impliit shemes varies and the given size in the tablean be onsidered as a mean value. The errors of the approximate solutions generatedby the impliit and expliit shemes are omparable at a given mesh size. We see thatthe impliit shemes are faster on the �ner meshes and for higher polynomial degrees
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p = 2 impliit expliith L2 error Time [s℄ ∆t L2 error Time [s℄ ∆t5.77e-2 2.4377e-3 4.2 9.0e-4 2.4350e-3 1.9 2.0e-42.89e-2 2.8858e-4 44.5 2.0e-4 2.8848e-4 31.8 2.5e-51.44e-2 3.3837e-5 635.8 3.5e-5 3.3836e-5 684.2 3.1e-67.22e-3 4.1567e-6 10794.9 6.8e-6 4.1558e-6 18236.6 3.6e-7
p = 3 impliit expliith L2 error Time [s℄ ∆t L2 error Time [s℄ ∆t5.77e-2 5.2560e-4 14.5 3.5e-4 5.2486e-4 10.0 5.0e-52.89e-2 3.4592e-5 201.3 7.0e-5 3.4591e-5 218.3 6.0e-61.44e-2 2.3513e-6 3083.1 1.3e-5 2.3464e-6 5122.0 7.8e-77.22e-3 1.7510e-7 58003.0 2.5e-6 1.5714e-7 148204.7 9.0e-8Table 9.8: Impliit versus expliit time stepping. Traveling wave in 2d, 3rd order sheme(upper table) and fourth order sheme (lower table).(nearly up to three times on the �nest mesh for the 4th order sheme). On the oarsestmesh the expliit shemes are faster but here the interfae is not ompletely resolvedsuh that this mesh is not usable in pratial appliations. Note that a neessary timestep size ontrol, whih is also time onsuming, is not inluded in the expliit shemessine there is no formula for time step size restrition available.Stati equilibrium solutionThe seond test with the stati bubble in two spae dimensions uses exatly the sameon�guration as in Setion 9.1. Here only the third order Disontinuous Galerkin shemeis applied. The omputations use suessively re�ned meshes and the errors are om-puted at the omputational end time T = 1.0.
p = 2 impliit expliith L2 error Time [s℄ ∆t L2 error Time [s℄ ∆t5.32e-2 2.3135e-3 107.9 3.0e-3 2.3134e-3 199.6 1.5e-42.66e-2 2.0993e-4 2118.1 6.0e-4 2.0993e-4 6511.2 1.8e-51.33e-2 2.4471e-5 47580.3 1.3e-4 2.4471e-5 224191.2 2.1e-6Table 9.9: Impliit versus expliit time stepping. Stati equilibrium in 2d, 3rd ordersheme.Table 9.9 shows the result of these omputations. Again we see that the errors produedby the impliit and expliit sheme at a given mesh size are omparable and that theimpliit sheme is faster on the �ner meshes (by fator 4.8 for the �nest mesh). It an beobserved that the impliit sheme beomes muh faster at the end of the omputationbeause the disrete initial data provided by L2-projetion is not a disrete equilibriumbut a disrete equilibrium is approahed during the omputation.



9.7. ADAPTIVE EFFICIENCY 1739.7 Adaptive E�ienyThis test will show the gain in e�ieny that loal mesh adaption an give. In order totest only the adaptive e�ieny the sequene of tests should be run on a single proessoronly (AMD Athlon64, 1.8GHz). Adaptive mesh re�nement and oarsening is employedto resolve small di�use interfaes and to redue the error between the approximate andexat solution. We ompare approximate solutions generated on globally re�ned meshesand on adaptively re�ned and oarsened meshes. For a fair test we need a solution withrapid hanges.For this test we have hosen an underompressive traveling wave solution similar toSetion 9.2 and trivially extended to two spae dimensions. The hosen pro�le is a littlebit sharper than that in Setion 9.2 suh that some levels of re�nement are neessaryto resolve the interfae ompletely. The parameters for this wave are
λ = 0.0001,

ε = 0.0025773, µ =
3

4
ε, ν = −1

2
ε,

s = −0.65691.The equation of state is again the dimensionless van der Waals equation of state withreferene temperature θref = 0.85. The domain is the hannel Ω = [−1, 1] × [−0.2, 0.2]and the approximate solutions are omputed up to time T = 1.0. At this time the total
L2-errors are ompared. We use the rough maro mesh shown in Figure 9.18.

Figure 9.18: Maro grid of the 2d hannel.For the omputations that use a globally re�ned mesh this maro mesh is re�ned threeor four times before the initial data is L2-projeted to the orresponding Finite El-ement spae. The orresponding tests are denoted by nonadapt(3) and nonadapt(4)respetively.The adaptive omputations use the interfae indiator disussed in Setion 8.3, (8.10)with parameters
ηlow = 0.5,

ηupp = 4.0 · ηlow,

m = 3 or m = 8,where m ontrols the size of the layer of �ne ells around the interfae. A smaller valueleads to a faster omputation and a larger value gives a smaller error and a more robustsheme. These tests are denoted by adapt(3) and adapt(8). The initial mesh is hosensuh that the interfae indiator does not mark any ells for re�nement and oarseningapplied to the L2-projeted values.



174 CHAPTER 9. NUMERICAL RESULTSIn both ases, adaptive and non adaptive, The Navier-Stokes-Korteweg equations aredisretized by the well balaned Disontinuous Galerkin shemes of order three and four.In both ases the impliit seond order Crank-Niholson sheme is applied for the timeintegration. As linear solver the GMRES solver with the same Krylov spae dimension
15 is used in all ases. Test L2-error Time [s℄ number of ellsadapt(3) 1.84569e-3 814.9 377adapt(8) 1.86002e-3 1300.3 713nonadapt(3) 1.72694e-2 696.7 1280nonadapt(4) 1.88873e-3 9522.1 5120Test L2-error Time [s℄ number of ellsadapt(3) 4.25129e-4 3178.7 377adapt(8) 4.17148e-4 5419.8 713nonadapt(3) 6.52487e-3 2717.7 1280nonadapt(4) 4.28355e-4 41551.9 5120Table 9.10: Comparison of adaptive and non adaptive third order (upper table) andfourth order (lower table) DG shemes.The results of the omputations an be found in table 9.10. The tests with the globallyre�ned meshes use a �xed number of mesh ells. These numbers are shown in the tables.In the adaptive ases the number of ells an vary (but not signi�antly) during theomputation and the number shown in the tables is taken at the end of the omputation.The nonadapt(4) tests have the same resolution of the interfae as the adaptive tests,the resolution of the nonadapt(3) tests is not that �ne whih results in a larger error.For the 3rd order and 4th order DG shemes the tests adapt(3) are 11-13 times fasterthan the orresponding nonadapt(4) tests at a omparable error. This is a signi�antspeedup of the adaptive algorithm and this fator beomes even more signi�ant thesmaller the interfae is. The result of these omputations is that very small interfaesannot be resolved by uniform �ne meshes in pratial appliations. Thus, adaptivemesh re�nement is mandatory.Figure 9.19 shows the density distribution and the adaptively re�ned mesh (veloity�eld is omitted) of the adapt(3) test using the 3rd order Disontinuous Galerkin Dis-retization.9.8 Parallel E�ienyIn this setion we test the parallel performane of the Disontinuous Galerkin odeapplied to the isothermal Navier-Stokes-Korteweg system. We have hosen two di�erentthree dimensional settings for this test, both small enough to �t on a single proessor.Of ourse, larger problems show a muh better saling but the intention of this setionis to show also the limits of parallelization. Nevertheless, even for these small problems
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Figure 9.19: Density distribution and the adaptively re�ned mesh for the 3rd order testadapt(3) at times t = 0.0, 0.25, 0.5, 0.75, 1.0 from �rst to last piture.the Disontinuous Galerkin disretization is very well suited for parallel omputation.Within the lass of DG methods parallel e�ieny inreases when the order of themethod is inreased sine the loal workload beomes higher and ommuniation anbe bundled. All omputations in this setion are done on the XC4000 Cluster at theomputing enter of the university of Karlsruhe. This luster onsists of 2.6 GHz DualCore Opteron proessors (AMD64-NUMA arhiteture), 2 Dual Core CPUs per nodeand In�niBand network interonnets.For both tests we have hosen the parameters of the 3d test ase in Setion 9.5. Asomputational domain we onsider the domain Ω = [−1, 1]3. The domain is partitionedinto a maro mesh of 6.000 = 10× 10× 10× 6 maro ells. The �rst test uses a globallyre�ned mesh starting from this maro mesh. Provided that the initial partitions areequally well distributed over the available proessors, this is mainly a test for the par-allel performane of the third order Disontinuous Galerkin ode in ombination with aseond order impliit Runge-Kutta time disretization. The seond test uses an adap-tively re�ned mesh. Besides the Disontinuous Galerkin ode the quality of the loadbalaner is also tested in this example.Globally re�ned meshThe setting is the same as for the 3d ontat angle example from Setion 9.5 exeptthat for the globally re�ned mesh the bubble has no ontat to the wall sine the usedmesh is not �ne enough in this ase. The maro mesh is twie globally re�ned whihresults in 384.000 ells.The omputational end time is T = 0.2. Provided that the initial mesh is equallywell distributed a redistribution is not neessary in this test ase. Nevertheless, loadbalaning is done every 40th time step for ompleteness of the algorithm. This results
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np Time [s℄ Speedup to np/2 Speedup to np = 11 75058.32 37520.3 2.00 2.004 19965.9 1.87 3.748 10134.2 1.97 7.3716 5118.92 1.98 14.5932 2628.77 1.95 28.4564 1367.68 1.92 54.62128 702.316 1.95 106.51256 362.371 1.94 206.62512 190.991 1.90 392.581024 133.534 1.43 561.39Table 9.11: Speedup for the globally re�ned mesh.in a slightly modi�ed mesh distribution at the beginning of the omputation and doesnot further alter the mesh after a few alls of the load balaner sine the weights of themaro ells do not hange.For the sequene of omputations using the globally re�ned mesh the number of pro-essors np varied between 1, 2, 4, . . . , 1024. We have measured the real time in seondsthe omputation needed to �nish. Table 9.11 shows the result of these timings and thespeedup ompared to the previous omputation with half the number of proessors andompared to the �rst omputation that was run on one proessor only. The results showthat even for this small example a parallelization using 512 and maybe 1024 proessorsis appropriate. With a fator of 1.43 the speedup from 512 to 1024 proessors annotbe as good as previous speedups beause only 6.000 maro ells have to be distributedover 1024 proessors and even when the load balaner provides the optimal distributionof the partitions (whih is in general not possible) the omputational work annot beequally distributed sine the problem is too small.Adaptive, load balaned meshFor this test the setting is idential to 3d ontat angle example from Setion 9.5.This inludes the setting of the interfae indiator. Sine the initial data does notsatisfy the enfored ontat angle there is a movement of the interfae whih requiresan adapted and repartitioned mesh every few time steps. Therefore load balaning isdone every 40th time step. The omputational end time T = 0.1 whih is of ourse notthe omputational end time from Setion 9.5 sine the motivation for this test in thissetion is not to generate a bubble with the orret ontat angle. The same maromesh as in the previous example with 6.000 maro ells is used. The loally re�nedmesh has approximately 30.000 ells. Therefore the problem is muh smaller than theprevious one and we annot expet the same parallel saling as before.Table 9.12 shows the results of the sequene of omputations using np = 1, 2, 4, . . . , 256



9.9. BUBBLE ENSEMBLES 177number of proessors. For this small problem it is not appropriate to use more than 32or 64 proessors. In the ase of 64 proessors some of the proessors were not assigned toa partition and therefore they did no work. Using more proessors worsens the situationa lot.
np Time [s℄ Speedup to np/2 Speedup to np = 11 25058.12 13083.0 1.92 1.924 6951.35 1.88 3.608 3555.19 1.96 7.0716 1872.53 1.89 13.3732 1022.23 1.83 24.4764 661.953 1.54 37.68128 420.659 1.57 59.16256 286.044 1.47 86.97Table 9.12: Speedup for the loally re�ned, load balaned mesh.As a result we an onlude that parallelization of Disontinuous Galerkin ode anbe very e�etive and e�ient even for small problems where memory onsumption isnot the bottlenek. This also holds for the two dimensional ase and even for one di-mensional problems parallelization an be a gain in e�ieny. Here e�ieny meansruntime is redued.9.9 Bubble EnsemblesInstead of a single or a few bubbles we onsider the dynamis of a whole bubble ensemblein this setion. The on�guration of the isothermal Navier-Stokes-Korteweg equationsand the interfae indiator is the same as in Setion 9.3. The initial on�guration is arandomly distributed ensemble of 200 bubbles in the domain Ω = [−1, 1]2 ⊂ R

2. Theradiuses of the bubbles vary (randomly) between 0.02 and 0.06.The sequene of pitures in Figure 9.20 shows the distribution of vapor bubbles attimes t = 0.0, 0.2, 1.0, 4.0, 15.0, 100.0. The bubbles merge and grow until there is onlyone large bubble left. The �nal bubble stays in a stati equilibrium on�guration andthe interfae has a 90 degree ontat angle with the ontainer wall. The veloity �eldis not shown in the sequene of pitures.Figure 9.21 shows the number of vapor bubbles as a funtion of time. The left part ofthe �gure shows the deay of bubbles in the time interval (0, 50) where the number ofobjets dereases from 200 bubbles at t = 0 to only one bubble at t = 50. The rightpart of the �gure is a zoom of the time interval (0, 5). The number of bubbles dereasesrapidly at the beginning of the omputation. An exponential deay from 200 to 30objets during the time interval (0, 1) an learly be seen.



178 CHAPTER 9. NUMERICAL RESULTS

Figure 9.20: Bubble Ensemble, initially randomly distributed. Density distribution attimes t = 0.0, 0.2, 1.0, 4.0, 15.0, 100.0 from top left to lower right piture.
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tFigure 9.21: Bubble Ensemble. Time versus number of bubbles.The number of bubbles are ounted by ounting the number of ontiguous objets inthe vapor phase.9.10 The Temperature Dependent ModelThe stati equilibrium solution of the isothermal Navier-Stokes-Korteweg model on-struted in Setion 4.1 is also a solution of the temperature dependent NSK model (6.31)with boundary ondition (2.52) when the wall temperature θb is set to the onstant ref-erene temperature. Note that this is not the ase for the traveling wave solutions. Inthis setion we use the stati equilibrium solutions as initial data to perform onver-gene tests with the Disontinuous Galerkin disretization of the temperature dependentversion of the two dimensional NSK system disussed in Setion 6.9.4.The setting in this setion is the same as in Setion 9.1. The temperature in the



9.10. THE TEMPERATURE DEPENDENT MODEL 179initial data and at the boundary are set to the referene temperature θref = 0.85. Theremaining parameters in the temperature dependent model are the heat apaity atonstant volume c and the heat ondution oe�ient κ. Note that the stati equilibriumon�guration is a solution of the system independent of the hoie of these parameters.In this test we hoose the parameters
c = 6.6,

κ = 0.01366.
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L2 error for p = 0, 1, 2, 3. p=1 p=2 p=3h L2 error EOC L2 error EOC L2 error EOC2.1298e-01 * 2.5147e-01 1.8718e-011.1832e-01 3.9576e-01 * 6.4436e-02 2.317 2.7605e-02 3.2567.0992e-02 1.4322e-01 1.990 2.1098e-02 2.186 6.2847e-03 2.8974.2595e-02 4.1457e-02 2.427 7.3170e-03 2.073 5.8590e-04 4.6452.5354e-02 1.4174e-02 2.069 1.6734e-03 2.844 1.3003e-04 2.9021.4998e-02 4.6256e-03 2.133 3.4556e-04 3.005 1.5942e-05 3.9988.9486e-03 1.5875e-03 2.071 6.9507e-05 3.105 1.9765e-06 4.0425.3244e-03 5.4365e-04 2.064 1.3450e-05 3.163 * *Table 9.13: Stati bubble, temperature dependent NSK model in 2d. Total L2 errorand EOC for p = 1, 2, 3.Figure 9.22 and Table 9.13 show the results of these omputations for polynomial degree
p = 0, 1, 2, 3. The �rst order sheme seems to be not in the asymptoti regime for thetested mesh sizes (this an be seen from Figure 9.22) whereas the higher order shemesahieve the expeted order p+ 1.



180 CHAPTER 9. NUMERICAL RESULTS9.11 Condensation, EvaporationThe setting in this setion onsists of a stati bubble or a drop in a spherial ylinderinitially at a dimensionless temperature θ = 0.85. For t > 0 the temperature at thesolid wall of the ontainer is raised to the onstant θwall = 0.95 immediately. The initialdata is hosen suh that initially the mean density lies between the Maxwell states withrespet to θ = 0.85 whih admits a stable bubble or drop at this temperature. Attemperature θ = 0.95 whih orresponds to the wall temperature. The mean densitylies in the vapor or liquid phase respetively but not between the Maxwell states withrespet to θ = 0.95. The boundary ondition for the temperature implies that thesolution approahes the onstant wall temperature in the domain Ω as time tends toin�nity. Therefore the bubble or the drop is not a stable on�guration as t→ ∞ whihresults in a ondensing bubble and an evaporating drop. At the end of the omputationthere is only a onstant vapor or liquid state at t ≈ ∞.

Figure 9.23: Condensating bubble in a spherial ontainer. Density distribution attimes t = 0, 50, 250, 450, 850, 10000 from top left to lower right piture.The model onsidered in this setion is again the two dimensional temperature depen-dent Navier-Stokes-Korteweg model with the same boundary onditions as in Setion9.10.A similar experiment was proposed in [5℄. In this work the temperature dependentNavier-Stokes-Korteweg model was used together with the assumption that the datastays spherial symmetri for all times t ≥ 0. This assumption results in a time de-pendent one dimensional system that is approximately solved by a higher order �nitedi�erene sheme. However, in one spae dimension a muh smaller interfae an be re-solved by the mesh than in two spae dimensions beause of omputational omplexityand therefore we have to hoose a smaller domain (whih then gives a larger interfaethat an be resolved).



9.12. OSCILLATING BUBBLE 181In [5℄ the �uid parameters were approximately these of the noble gas Argon. Most ofthe physial parameters di�er by a fator of about ten between the vapor and the liquidphase. These parameters have to be �xed to some onstants in between the vapor andliquid states.For our experiment we have hosen the following physial parameters.
L = 1.0 · 10−7 m radius of the domain,

cphys = 4.0 · 102 K kg
Nm heat apaity at onstant volume,

µphys = 3.0 · 10−5 Ns
m2 visosity,

κphys = 4.0 · 10−2 W
mK heat ondutivity,

σphys = 5.0 · 10−3 N
m surfae tension.These are approximately the parameters of Argon at a dimensionless referene temper-ature θref = 0.85, as in [5℄, and an be found in Setion B.2. Note that some onstantstates between the vapor and liquid states have been hosen.The orresponding dimensionless parameters are then given by

c = 6.63,

µ = 5.87 · 10−3, ν = −3.91 · 10−3,

λ = 3.95 · 10−4,

κ = 1.30 · 10−1.These parameters are obtained by the physial parameters from above together withthe saling given in Setion B.1.In this experiment the veloity �eld in the whole omputation is rather small sinethe temperature propagation from the wall is mainly driven by heat ondution andthus, very slow. The omputational end time is T = 10000.0, really large omparedto the experiments in the previous setions and therefore it is not possible �nish theomputation within an aeptable time frame with the same radius of a domain as in[5℄. In our simulation the radius of the domain is ten times smaller than in [5℄.Figure 9.23 shows the density distribution of a sequene of snapshots for a ondensatingbubble at times t = 0, 50, 250, 450, 850, 10000 and the orresponding temperature distri-bution an be found in Figure 9.24. As usual the density varies between approximately
0.3 and 1.8. The temperature has values in the range (0.85, 0.95), values between initialand wall temperature.The density distribution of an evaporating drop is shown in Figure 9.25. The snapshotsare taken at times t = 0, 500, 1500, 2500, 3100, 100009.12 Osillating BubbleIn this setion we investigate the dynamis of a single spherial bubble that osillatesdue to perturbation of the veloity �eld at the boundary. We ompare the radius of the
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Figure 9.24: Condensating bubble in a spherial ontainer. Temperature distributionin the range 0.85 (blue) to 0.95 (red) at times t = 0, 50, 250, 450, 850, 10000 from topleft to lower right piture.bubble given by the numerial simulation using the isothermal Navier-Stokes-Kortewegmodel in two spae dimensions with the predited radiuses given by the Rayleigh-Plessetformula (4.22) and the Inompressibility formula (4.25). We annot expet that theresults of the simulation using the NSK model mathes exatly with the results givenby the formulas sine e�ets like ompressibility and mass transfer over the liquid-vaporinterfae are negleted. But if there are qualitatively agreements with the formulasthese ould be used to predit a ertain behavior of the solution like a bubble ollapse.The Rayleigh-Plesset equation is usually used to predit suh a behavior.We onsider the domain Ω = BL(0) ⊂ R
2 with L = 1.0. Instead of using the boundaryondition u = 0 on ∂Ω we simulate a vibrating ontainer by appliation of the boundaryonditions

u · n = x(t),

u · τ = 0,
on ∂Ω (9.1)where n denotes the normal and τ the tangent on the boundary ∂Ω. The vibratingontainer experiment in Setion 4.4.2 requires the ompliated treatment of a mov-ing domain. To avoid this we simulate the vibrating ontainer experiment using theboundary onditions (9.1) on a �xed domain whih means that we have a mass transferover the boundary of the domain. In pratie the di�erene between both experimentsshould be negligible as long the mean of the mass in Ω over a period of osillation doesnot hange. This holds for our omputation.The on�guration of the Navier-Stokes-Korteweg model is ompletely the same as in
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Figure 9.25: Evaporating drop in a spherial ontainer. Density distribution at times
t = 0, 500, 1500, 2500, 3100, 10000 from top left to lower right piture.Setion 9.3 inluding the settings of the interfae indiator (not shown below), namely

θref = 0.85,

λ = 1.0 · 10−5,

ε = 1.366 · 10−3, µ =
3

4
ε, ν = −1

2
ε.The initial data is given by a rotationally (with respet to the origin) symmetri statibubble with an equilibrium radius, vapor and liquid density states given by

Req = 0.345, ρv = 0.3208, ρl = 1.8088.The osillation in the veloity �eld by the boundary onditions (9.1) is imposed by thefuntion
x(t) = −0.005 cos(0.5 π t). (9.2)Given the density distribution from the omputation at a time t by the funtion ρh weompute the radius of the vapor bubble at time t by the relation

πR(t)2 =

∫

Ω
η(x, t) dx, η(x, t) =

{

1 if ρh(x, t) ≤ 1,

0 else.Note that here the density value 1 is the threshold for the vapor density values.



184 CHAPTER 9. NUMERICAL RESULTSComparison with the Rayleigh-Plesset formulaWe ompare the radius of the bubble omputed using the NSK model with the radiuspredited by the two dimensional Rayleigh-Plesset equation (4.22). First we have toprovide the input for the Rayleigh-Plesset equation.The pressure osillation in the liquid phase pL(t) lose to the boundary of the domainis taken from the omputation using the NSK model. We assume that there is no masstransfer over the liquid-vapor interfae and we further assume that the density insidethe bubble does not depend on the spatial variable. This leads to a density in thebubble that depends only on the radius of the bubble and the initial on�guration. Thepressure inside the bubble is then given by the funtion pB(t) stated below as well therest of the missing parameters for the two dimensional Rayleigh-Plesset formula (4.22).
n = 2,

L = 1.0,

σ = c0(θref ) ·
√
λ = 0.5238 ·

√
λ,

pB(t) = p

(

ρv

(

Req

R(t)

)n)

,

pL(t) = 0.495 − 0.005 · cos(0.5π · t).Here the surfae tension oe�ient σ is omputed by appliation of the formula (2.68).Figure 9.26 shows the radius of the bubble taken from the omputation using the Navier-Stokes-Korteweg model ompared with the radius predited by the Rayleigh-Plessetformula.
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9.12. OSCILLATING BUBBLE 185the pressure perturbation in the liquid phase and another frequeny that is assoiatedwith the bubble interfere with eah other. Sine mass transfer over the liquid-vaporinterfae is negleted in the Rayleigh-Plesset equation the gas phase is ompletely om-pressed and relaxed. This results in a fore term that determines, together with thefore term that omes from the pressure perturbation in the liquid phase, the positionof the bubble interfae. In ontrast to that we observe in the omputation using theNSK model that during the osillation there is almost no ompression in the vaporphase. The vapor lose to the interfae ondensates immediately and the bubble inter-fae an freely move. It is unlear whether this behavior is physially orret or not butit attrats the attention to the fat that there is no free parameter in the Navier-Stokes-Korteweg model left that an ontrol the amount of mass transfer over the liquid-vaporinterfae. As a result we see that the assumptions on the density and pressure in thevapor phase that serve as input for the Rayleigh-Plesset formula are ompletely wrongand the osillation of a bubble from the NSK simulation an neither quantitatively norqualitatively be predited by the Rayleigh-Plesset formula sine frequeny and ampli-tude are totally di�erent. It is also unlear whih of the omputations is loser to realworld behavior sine the size of the domain and the referene temperature is totallydi�erent with respet to the settings of existing experimental data.Comparison with the Inompressibility formulaThe only input for the Inompressibility formula (4.25) is the equilibrium radius Req ofthe bubble at time t = 0 and the perturbation in the veloity �eld given by equation(9.2).Figure 9.27 shows the resulting radiuses of the bubble given by the Navier-Stokes-Korteweg simulation and by formula (4.25) respetively.
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186 CHAPTER 9. NUMERICAL RESULTSbation at the boundary of the domain in both simulations. The amplitude given byformula (4.25) di�ers from the amplitude that omes from the NSK-omputation.We summarize the results of the omputations done in this setion as follows.
• The behavior of a NSK bubble is not preditable by the Rayleigh-Plesset equation,it is qualitatively preditable by the Inompressibility formula.
• There is almost no hange in the density and pressure in the vapor phase when aNSK bubble osillates.
• There is no free parameter in the Navier-Stokes-Korteweg model left to ontrolthe mass transfer over the phase interfae.
• The orret physial behavior is unlear sine experimental data is not availableon the temperature and length sale of our simulation.



Appendix ANotation and De�nitions
A.1 NotationThis setion gives a summary of frequently used notational onventions onerningThermodynamial and Kinemati variables and di�erential operators.Thermodynami and Kinemati quantities

t ≥ 0 time variable,
x ∈ R

n spatial variable,
ρ = ρ(x, t) > 0 density of the �uid,
u = u(x, t) ∈ R

n veloity of the �uid,
E = E(x, t) ∈ R total energy of the �uid,
θ = θ(x, t) > 0 temperature of the �uid,
f = f(θ, ρ) ∈ R (Helmholtz) free energy,denotes also the extended free energy f(θ, ρ, α)with α = 1

2 |∇ρ|2,
e = e(θ, ρ) ∈ R internal energy or extended internal energy e(θ, ρ, α),

s = s(θ, ρ) ∈ R spei� entropy or extended spei� entropy s(θ, ρ, α),

p = p(θ, ρ) ∈ R pressure,
µ = µ(θ, ρ) ∈ R hemial potential, same as Gibbs free energy for a oneomponent �uid,
µ > 0, ν ∈ R visosity oe�ients,
ε = 2µ+ ν one dimensional visosity oe�ients,
λ > 0 apillarity oe�ient,
κ > 0 heat ondution oe�ient,

(0, ρv) vapor phase,
(ρ

l
, b) liquid phase,
ρM

v , ρM
l vapor and liquid Maxwell states.187



188 APPENDIX A. NOTATION AND DEFINITIONSDi�erential OperatorsCommonly used di�erential operators with respet to the spatial variable x = (x1, . . . , xn)T ∈
R

n are de�ned in the following list.
∇u =

(

∂
∂x1

u, . . . , ∂
∂xn

u
)T . Denotes the gradient of a salar, real valued funtion

u : R
n → R, i.e., the transposed Jaobian.

∇u =
(

∂
∂xj

ui

)

i,j
. Denotes the gradient of a vetor valued funtion u : R

n → R
m,i.e., the Jaobian (not transposed).

∇ · u =
n
∑

i=1

∂
∂xi
ui. The divergene of a vetor �eld u = (u1, . . . , un)T : R

n → R
n.

∇·A =

(

n
∑

j=1

∂
∂xj

A1,j , . . . ,
n
∑

j=1

∂
∂xj

An,j

)T . Denotes the divergene of a tensor �eld
A : R

n → R
n×n. Here the Ai,j denote the entries of the matrix A.

D
Dtϕ = ϕt + u · ∇ϕ. The material derivative with respet to the veloity �eld uof a funtion ϕ : R

n × R≥0 → R.For a funtion ϕ = ϕ(ρ, α) where α stands for 1
2 |∇ρ|2 the variational derivative withrespet to ρ is denoted by

[ϕ]ρ = ϕρ −∇ · (ϕα∇ρ)as used in standard textbooks as [32℄.A.2 General De�nitionsDe�nition A.2.1 (Experimental order of onvergene)Let (hn)n∈N be a monotonially dereasing sequene that onverges to zero and ϕ ∈
C0([0,∞),R>0). Then for n > 0 the experimental order of onvergene is de�ned by

EOC(ϕ, hn) =
log
(

ϕ(hn)
ϕ(hn−1)

)

log
(

hn

hn−1

) (A.1)De�nition A.2.2 (Kroneker Produt)For two matries Q ∈ R
s×r and M ∈ R

n×m we de�ne the Kroneker produt matrix
Q⊗M ∈ R

sn×rm by
Q⊗M =







q0,0M . . . q0,s−1M... ...
qs−1,0M . . . qs−1,s−1M






, (A.2)where the salar values qi,j denote the entries of the matrix Q.



A.3. CHARACTERIZATION OF THE MAXWELL STATES 189In the following lemma we summarize some useful properties of the Kroneker produt.The proof is a straightforward alulation, so we omit it.Lemma A.2.3For s, n ∈ N let A,C ∈ R
s×s and B,D ∈ R

n×n. Then we have the following propertiesof the Kroneker produt:(i) (A⊗B)(C ⊗D) = AC ⊗BD.(ii) If the matries A and B are invertible then A⊗ B is also invertible and we havethe identity (A⊗B)−1 = A−1 ⊗B−1.(iii) Is ⊗ In = Isn, where Ik ∈ R
k×k for k ∈ N denotes the unit matrix.A.3 Charaterization of the Maxwell StatesWe give a de�nition and equivalent haraterizations of the Maxwell values for somegeneral W -shaped free energy.De�nition A.3.1Let the onstants ρv, ρl

, b ∈ R with 0 < ρv < ρ
l
< b and W ∈ C2((0, b)) with

W ′′ > 0 in (0, ρv) ∪ (ρ
l
, b) and W ′′ < 0 in (ρv, ρl

),

lim
ρ→0

W (ρ) = ∞ and lim
ρ→b

W (ρ) = ∞,
(A.3)be given. Then by the shape of W it is lear that there exist unique states ρM

v ∈ (0, ρv)and ρM
l ∈ (ρ

l
, b) with the property

W ′(ρM
v ) = W ′(ρM

l ), (A.4)
W (ρM

l ) = W (ρM
v ) +W ′(ρM

v )(ρM
l − ρM

v ). (A.5)These states are alled Maxwell states.We de�ne funtions p and µ by
p(ρ) = ρW ′(ρ) −W (ρ), (A.6)
µ(ρ) = W ′(ρ). (A.7)With the de�nition ofW (ρ) = ρf vdW (ρ) where f vdW denotes the Helmholtz free energyof an isothermal van der Waals �uid, see Setion 2.1, ρv and ρ

l
denote the phaseboundaries given in de�nition 2.1.5 and W has the properties stated in (A.3). Thefuntions p and µ are equal to the pressure and hemial potential of a van der Waals�uid. The de�nition of the Maxwell states is equivalent to that given in de�nition 2.1.6as we will see in lemma A.3.2. This lemma gives three equivalent haraterizations ofthe Maxwell states.
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W
(ρ

)

ρρM
v ρM

lFigure A.1: Energy W and the assoiated Maxwell states.Lemma A.3.2With the above de�nitions the Maxwell states an be haraterized equivalently by(i) equations (A.4) and (A.5).(ii) the equations
p(ρM

v ) = p(ρM
l ), (A.8)

µ(ρM
v ) = µ(ρM

l ). (A.9)In this way the Maxwell states are de�ned in de�nition 2.1.6 for a van der Waals�uid.(iii) the equations
p(ρM

v ) = p(ρM
l ), (A.10)

ρM
l
∫

ρM
v

p(ρ) − p(ρM
v )

ρ2
dρ = 0. (A.11)Proof. For notational simpliity we denote the Maxwell states by ρv and ρl.(i)⇔ (ii): By de�nition of µ equations (A.9) and (A.4) are the same. Using this identity,the above de�nition for the funtion p and property (A.5) we get

p(ρv) = ρvW
′(ρv) −W (ρv)

= ρvW
′(ρv) −W (ρl) +W ′(ρl)(ρl − ρv)

= W ′(ρl)ρl −W (ρl)

= p(ρl).Thus, we have property (A.8). The opposite diretion is done analogously.



A.4. DEFINITION OF NONCONSERVATIVE PRODUCTS 191(ii) ⇔ (iii): Using the above de�nitions and integration by parts we have
µ(ρl) − µ(ρv) =

ρl
∫

ρv

µ′(ρ) dρ

=

ρl
∫

ρv

p′(ρ)
ρ

dρ

=

ρl
∫

ρv

p(ρ)

ρ2
dρ + p(ρv)

(

1

ρl
− 1

ρv

)

=

ρl
∫

ρv

p(ρ) − p(ρv)

ρ2
dρ.Hene, we have the equivalene of equations (A.9) and (A.11). This ompletes the proof.Lemma A.3.3With the notation above let the funtion φ be given by

φ(ρ) =

ρ
∫

ρM
v

p(s) − p(ρM
v )

s2
ds.Then we have

φ(ρM
v ) = 0, φ(ρM

l ) = 0 and φ(ρ) > 0 for all ρ ∈ (ρM
v , ρ

M
l ).Proof. φ(ρM

v ) = 0 is trivial, φ(ρM
l ) = 0 beause of the haraterization of the Maxwellstates, see lemma A.3.2. Sine p is monotonially inreasing in the vapor phase we have

φ(ρ) > 0 in (ρM
v , ρ

M
v + ε) for some su�iently small value ε > 0. Beause of the shapeof the funtion p it is not possible for φ to have another zero in the interval [ρM

v , ρM
l ]exept the Maxwell states (the integrand hanges the sign only one in the interval).This ompletes the proof.A.4 De�nition of Nononservative ProdutsIn this setion we give a de�nition of nononservative produts, i.e., produts of theform f(u) · d

dxv. Produts of this form appear in the formulation of the DisontinuousGalerkin method (see Chapter 6) and annot be de�ned as funtions in the ase wherethe funtion u and v are disontinuous. In the ase where u and v are disontinuousfuntions we an de�ne the nononservative produt in the sense of measures following



192 APPENDIX A. NOTATION AND DEFINITIONSthe work of Dal Maso, LeFloh and Murat [36℄ in the one dimensional ase. We givea (formal) multidimensional generalization of this de�nition to produts of the form
n
∑

i=1
fi(u) · ∂

∂xi
v. Here we do not laim that the measure we onstrut in the multidimen-sional ase is well de�ned as it is in the one dimensional ase ensured by the work ofDal Maso, LeFloh and Murat.We start with the desription of paths φ. This is an objet the resulting measure willdepend on. Let φ : [0, 1] × R

d × R
d → R

d be a loally Lipshitz ontinuous map withthe following three properties(i) φ(0;u−, u+) = u− and φ(1;u−, u+) = u+ for all u−, u+ ∈ R
d,(ii) φ(t;u, u) = u for all u ∈ R

d, t ∈ [0, 1],(iii) for all bounded sets U ⊂ R
d there exists a onstant c ≥ 1, suh that for all

u−, u+, v−, v+ ∈ U and almost all t ∈ [0, 1] we have
|φ′(t;u−, u+) − φ′(t; v−, v+)| ≤ c|(u− − v−) − (u+ − v+)|.In the above statement φ′ denotes the derivative with respet to t whih exists for al-most all t ∈ [0, 1].Theorem A.4.1Let a < b, u, v ∈ BV ((a, b),Rd) and let f be loally bounded in the sense that for all

U ⊂ R
d bounded there exists a onstant c > 0 suh that for all u ∈ U and x ∈ (a, b)we have |g(u, x)| ≤ c. Then there exists a unique bounded Borel measure µ on (a, b)haraterized by the following two properties(i) If the funtion u is ontinuous in B ⊂ (a, b), then

µ(B) =

∫

B

f(u(x), x) · d(v′)(x),where the integral is de�ned with respet to vetor-valued Borel measure (v′)(ii) For x ∈ (a, b) we have
µ({x}) =

1
∫

0

g(φ(t;u(x−), u(x+)), x) · φ′(t; v(x−), v(x+))dt.

u(x−) and u(x+) denote the limit (whih exists for funtions of bounded variation inone spae dimension) from the left and right respetively.De�nition A.4.2The measure µ introdued in the above theorem is alled the nononservative produt of
f(u(·), ·) and v′ and is denoted by

[

f(u, ·) · (v′)
]

φ
= µ,



A.4. DEFINITION OF NONCONSERVATIVE PRODUCTS 193whih in general depends on the paths φ.We onsider the interval Ω = (a, b) and a partition (mesh) T of this interval as de�nedin de�nition 6.1.1. Let V = {ϕ : Ω → R | ϕ|∆j
∈ C1(∆j), ∆j ∈ T } and u, v ∈ V d.Aording to the above theorem the measure µ applied to the whole interval Ω an beomputed as

∫

Ω

d
[

f(u, ·) · (v′)
]

φ
(x)

=

|T |−1
∑

j=0

∫

∆j

f(u(x), x) · v′(x) dx

+

|T |−1
∑

j=1

1
∫

0

f
(

φ(t;u(x−j−), u(x+
j−)), xj−

)

· φ′(t; v(x−j−), v(x+
j−)) dt.Here xj− and xj+ denote the left and right verties of ell ∆j . The verties at theboundary of the interval give no ontribution to the measure beause there is no dis-ontinuity.We give a n-dimensional generalization of the measure µ as we need it to de�ne theDisontinuous Galerkin method for onservative as well as for nononservative equationsin Setion 6.2. Let Ω ⊂ R

n be an open bounded set suh that a mesh T that partitions
Ω exists. Let V = {ϕ : Ω → R | ϕ|∆j

∈ C1(∆j), ∆j ∈ T } and u, v ∈ V d. Thegeneralization of the measure
µ =

[

n
∑

i=1

fi(u, ·) ·
∂

∂xi
v

]

φapplied to the set Ω an be omputed as
∫

Ω

d

[

n
∑

i=1

fi(u, ·) ·
∂

∂xi
v

]

φ

(x)

=

|T |−1
∑

j=0

∫

∆j

n
∑

i=1

fi(u(x), x) ·
∂

∂xi
v(x) dx (A.12)

+
1

2

|T |−1
∑

j=0

∫

∂∆j\∂Ω

1
∫

0

n
∑

i=1

νifi

(

φ(t;u(xj), u(xj′)), xj

)

· φ′(t; v(xj), v(xj′)) dt dσ(x).In the above equation u(xj) stands for u|∆j
(x) and u(xj′) for u|∆j′

(x) where ∆j′ denotesa orresponding neighboring ell. νi denotes the i-th omponent of the normal vetor ν.The fator 1
2 in front of the last term appears beause all interfaes are ounted twie,exept the boundary interfaes.



194 APPENDIX A. NOTATION AND DEFINITIONSNote that we do not laim that in the multidimensional ase the measure µ is wellde�ned as it is in one spae dimension guaranteed by theorem A.4.1. We only de�nean objet µ(Ω) by the right hand side of equation (A.12), where Ω is partitioned by anunderlying mesh and u, v are funtions from the spae V d. This is what we need forthe de�nition of the Disontinuous Galerkin method in Chapter 6.Sometimes it is more onvenient to work with the notion of numerial �uxes instead ofthe notion of paths φ, i.e., in the Finite Volume and Disontinuous Galerkin Framework.Therefore we replae the term
1
∫

0

n
∑

i=1

νifi

(

φ(t;u(xj), u(xj′)), xj

)

· φ′(t; v(xj), v(xj′)) dtby the expression
g
(

u(xj), u(xj′), xj , ν
)

·
(

v(xj′) − v(xj)
)with a suitable funtion g. In order to be an approximation in some sense the funtion

g has to satisfy at least the relation
g(u, u, x, ν) =

n
∑

i=1

νifi(u, x)for all u ∈ R
d, x ∈ R

n and n ∈ {x ∈ R
n | |x| = 1}. In the Finite Volume frameworksuh a funtion g is alled numerial �ux funtion and is usually supposed to be loallyLipshitz ontinuous. Using the above expression we get

µ(Ω) ≈
|T |−1
∑

j=0

∫

∆j

n
∑

i=1

fi(u(x), x) ·
∂

∂xi
v(x) dx

+
1

2

|T |−1
∑

j=0

∫

∂∆j\∂Ω

g
(

u(xj), u(xj′), xj , ν
)

·
(

v(xj′) − v(xj)
)

dσ(x).As before, the fator 1
2 appears beause all interfaes are double ounted. Note that thedependene on the path φ is dropped in favor of the dependene on the numerial �ux

g.



Appendix BFluid Properties
In this hapter we summarize the nondimensionalization proedure given in Chapter 2and provide neessary �uid parameters for the �uids Argon, Butane and Water.B.1 Dimensionless SalingFor the dimensionless version of the Navier-Stokes-Korteweg system derived in Chapter2 we have to provide a referene length L in m. Usually L is hosen to be the diameterof the domain Ω. This is the only parameter that does not depend on the �uid.We need the ritial values of the �uid, i.e., the ritial temperature θcrit in K, theritial density ρcrit in kg

m3 and the ritial pressure in N
m2 . Table B.1 shows these valuesfor the �uids Argon, Butane and Water. Critial values of other �uids an be obtainedfor example from the NIST website [125℄.Up to now all �uid parameters were onstants, parameters like heat apaity, visosity,heat ondutivity and surfae tension depend on temperature and density in general butwe will �x them to some referene onstants for simpliity. Figures B.1 - B.4 show theseparameters on the saturation urve, i.e., at the Maxwell states for di�erent temperatures.We hoose a dimensionless referene temperature θ̃ref whih orresponds to the physial

θ temperature by the relation θcrit θ̃ref = θ. For example, if the boundary temperatureis �xed to a onstant θ̃b we hoose θ̃ref = θ̃b. Using the referene temperature we andetermine the surfae tension σ in N
m . Further we hoose referene values for the heatapaity at onstant volume c in Nm

kg K , heat ondutivity κ in W
mK and visosity µ in

Ns
m2 .Using referene length and ritial values we an de�ne the referene time

T = L

√

ρcrit

pcrit
.195



196 APPENDIX B. FLUID PROPERTIESWith the referene time we have also de�ned the referene veloity L
T . In the ase of aperfet gas the referene veloity is equal to the sound speed at some referene state.In the ase of a van der Waals �uid the referene veloity is not diretly linked to thesound speed beause p

ρ is in general not equal to pρ in a van der Waals �uid as it is inthe ase of a perfet gas.Now the following table summarizes the relations between the physial and dimension-less (tilde) values. The units of the orresponding physial values are given in the lastolumn.
x̃ = 1

Lx spatial variable m

t̃ = 1
T t time variable s

ρ̃ = 1
ρcrit

ρ density kg
m3

ũ = T
Lu veloity m

s

θ̃ = 1
θcrit

θ temperature K

µ̃ = 1
T pcrit

µ visosity Ns
m2

ν̃ = −2
3 µ̃ visosity Ns

m2

κ̃ = θcrit ρcrit

T p2
crit

κ heat ondutivity W
mK

λ̃ =
(

σ(θ̃ref )

L pcrit c̃0(θ̃ref )

)2 apillarity m7

kg s2

c̃ = θcrit ρcrit

pcrit
c heat apaity at onstant volume Kkg

Nm

g̃ = T 2

L g gravity m
s2The oe�ient c̃0(θ̃ref) an be omputed using the approximative formula (2.69)

c̃0(θ̃) =
√

2 ·
√

1.0 − θ̃ ·
(

6.4 · (1.0 − θ̃) − 0.7 · (1.0 − θ̃)2
)

.B.2 Equation of StateIn this setion we ollet all important parameters we need for the nondimensionaliza-tion proedure for the �uids Argon, Butane and Water. Finally, as an example, we givethe set of dimensionless parameters of water in a mirometer ontainer. All data istaken from the NIST website [125℄.Table B.1 shows the ritial temperature, density and pressure of all three �uids.Figures B.1 - B.3 show the heat apaity at onstant volume, visosity and heat on-dutivity of the three �uids on the saturation urve, this means at the Maxwell states inthe vapor and liquid phase. The independent variable is the dimensionless temperature
θ̃ = 1

θcrit
θ.



B.2. EQUATION OF STATE 197Figure B.5 shows the pressure as graph of the density at 95% of the ritial temperaturefor all three �uids and the van der Waals approximation (2.13). Argon and Butane arebetter approximated by the van der Waals equation of state than Water.Argon Butane Water
θcrit 150.687 K 425.125 K 647.096 K

ρcrit 535.599 kg
m3 228.000 kg

m3 322.000 kg
m3

pcrit 4.863 · 106 N
m2 3.796 · 106 N

m2 22.064 · 106 N
m2Table B.1: Critial values of Argon, Butane and Water.
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θ̃Figure B.1: Dimensionless temperature versus heat apaity at onstant volume in
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Nm
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] for Argon, Butane and Water.As an example we provide the dimensionless quantities of Water in a mirometer on-tainer at a referene temperature of 550K, i.e., 85% of the ritial temperature. Theritial values of Water are given in Table B.1. The mean values of the heat apaity,heat ondutivity and visosity are �xed to some onstant between the orrespondingvalues of the vapor and liquid phases respetively.Example B.2.1 (Water at 550K)
L = 10−6 m

c = 3.0 · 103 Nm
kg K c̃ = 2.833 · 101

µ = 5.0 · 10−5 Ns
m2 µ̃ = 5.931 · 10−5, ν̃ = −3.954 · 10−5

κ = 1.0 · 10−1 W
m K κ̃ = 1.120 · 10−3

σ = 2.0 · 10−2 Nm
kg K λ̃ = 3.071 · 10−8
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] for Argon, Butane andWater.In this setting we have a referene veloity and referene time of
L

T
= 261.767

m

s
,

T = 3.820 ns.At this temperature the sound speed in the vapor phase and in the liquid phase (at theMaxwell values) are approximately
cvsnd = 493

m

s
,

clsnd = 1025
m

s
.This means the referene veloity is approximately half the sound speed in the vaporphase.



B.2. EQUATION OF STATE 199

 0.001

 0.01

 0.1

 1

 0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Argon liquid
Argon vapour
Butane liquid
Butane vapour
Water liquid
Water vapour

κ

[

W

m
K

]

θ̃Figure B.3: Dimensionless temperature versus thermal ondution in [ W
m K

] for Argon,Butane and Water.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Argon
Butane
Water

σ
[

N m

]

θ̃Figure B.4: Dimensionless temperature versus surfae tension in [N
m

] of Argon, Butaneand Water.



200 APPENDIX B. FLUID PROPERTIES

 0

 1

 2

 3

 4

 5

 0  0.5  1  1.5  2  2.5

Argon
Butane
Water
van der Waals

p̃

ρ̃Figure B.5: Dimensionless density versus dimensionless pressure at dimensionless tem-perature 0.95 for Argon, Butane, Water and the dimensionless van der Waals equationof state (2.13).



Appendix CDesription of the Software Pakage
We give a basi desription of the parDG (parallel Disontinuous Galerkin) softwarepakage developed within the framework of this thesis. This hapter gives an overviewof the software pakage and it provides all neessary knowledge for a user to disretizegeneral time dependent partial di�erential equations by the Disontinuous Galerkin andLoal Disontinuous Galerkin method together with a higher order time disretizationin a parallel environment. It does not provide a detailed doumentation on the imple-mentation of the methods.The pakage has a modular design ompletely written in C++ and relies on the standardlibraries as well as on two external pakages. The �rst neessary library is an imple-mentation of the Message Passing Interfae (MPI). There are a number di�erent freelyavailable and ommerial implementations. Setion 8.5 gives an overview and referenesto some freely available implementations. The seond neessary external pakage is theParMETIS library [68℄, [121℄ that provides graph partitioning algorithms in a parallelMPI-based environment. This pakage is used for partitioning and repartitioning ofdistributed meshes, i.e., for load balaning. The ParMETIS library is opyrighted bythe Regents of the University of Minnesota. It an be freely used for eduational andresearh purposes by non-pro�t institutions. Setion 8.6 provides an overview of theParMETIS library. The parDG pakage itself is released under the GNU GENERALPUBLIC LICENSE, version 2.Optionally an external BLAS (basi linear algebra subprograms [14℄, [119℄) library anbe used, for example the freely available pakage from the ATLAS projet [129℄, [118℄or some vendor provided library. The software pakage itself omes with its own im-plementation of the neessary CBLAS alls whih are implemented as inline funtions.However, on the tested arhitetures (x86 and amd64) external BLAS libraries do notgive an extra performane gain.In the following setions we give an overview of the most important lasses and mem-ber funtions that are neessary to apply this pakage. All lasses and funtions aredelared inside the namespae pardg. For simpliity this namespae is omitted in thede�nition of the lasses that follow in the next setions. Some lasses have a deeper in-201



202 APPENDIX C. DESCRIPTION OF THE SOFTWARE PACKAGEheritane hierarhy, for simpliity this is negleted and the inherited member funtionsare assigned to the derived lass.At the end of this hapter we give two (stripped down) examples of usage. The �rstexample is the DG disretization of the linear advetion equation in one spae dimension.The seond example provides the basi DG disretization of the isothermal Navier-Stokes-Korteweg equations in two spae dimensions inluding the higher order impliitRunge-Kutta time stepping.C.1 Communiator ClassThe parDG pakage does not provide serial algorithms. Everything is done in parallel.For the ommuniation between proesses Communiator objets are neessary. Thisalso holds for omputations using a single partition only. The Communiator lassde�nition is listed below.lass Communiator{publi:Communiator(int arg, har *argv[℄);virtual ˜Communiator();void set_output(std::ostream &os);int id() onst;int size() onst;// global redutionvoid allredue(int n, double *in, double *out, MPI_Op op);// modi�ation of send / reeive bu�erstemplate<lass T> void put(int dest, onst T& ontent);template<lass T> void get(int soure, T& ontent);template<lass T> void put(int dest, onst T* ontent, int num);template<lass T> void get(int soure, T* ontent, int num);// ommuniation with other proessesvoid send_request(int dest);void reeive_request(int soure);virtual void start_ommuniation(onst har omment[℄ = "");virtual bool �nish_ommuniation();};The Communiator lass is the most important lass for all objets that ommuniateover proess boundaries. This holds for almost all non trivial tasks in a parallel environ-ment. The Communiator is responsible for ommuniation, basi I/O operations andmemory management for send and reeive bu�ers. Thus, it is a omfortable wrapperfor MPI_Communiators that hides the growing and shrinking of message bu�ers fromthe user.



C.2. TRIANG(1,2,3)D CLASSES 203The onstrutor takes the variables arg and argv that ome from the main method.These variables are passed to the underlyingMPI_Init() method to setup the parallelenvironment. Atually not all MPI implementations make use of these variables to buildup the environment.The destrutor alls the methodMPI_Finalize() that loses the parallel environment.The method id() returns the number of the loal proess and the method size() returnsthe total number of proesses in the parallel environment.In order to send some data from proess ps to pd the user alls one of the put(dest,. . . ) methods with dest=pd to �ll the send bu�er with the data (all memory man-agement is done automatially) and alls send_request(pd) on the soure proess
ps. Proess pd is aware of the message that it will reeive from proess ps and allsreeive_request(ps). Both proesses all the methods start_ommuniation()and �nish_ommuniation(). After that the data resides in the reeive bu�er ofproess pd and an be read by using the get(soure, . . . ) methods with soure=ps.The ommuniation is split into the two methods start_ommuniation() and �n-ish_ommuniation() to allow for omputation during the ommuniation phase.The user must not touh the send and reeive bu�ers during the ommuniation phase,i.e., until the method �nish_ommuniation() has been alled.Global redution operations like allredue() are also available. These are simply wrap-pers to the MPI equivalents and they are used in the same way.
C.2 Triang(1,2,3)d ClassesThe Triang1d, Triang2d and Triang3d lasses represent the underlying simpliial meshesfor one, two and three spae dimensions respetively. They are inherited from thetemplate lass Triang<int d> and share the same ode exept the parts onerning themesh generators. The meshes an ontain nononformities of level one. The aessto neighbor ells is aomplished by a STL style intersetion iterator provided by theSimplex lass (not shown in the ode setion). The re�nement and oarsening of themeshes is done as desribed in Chapter 8.We start with the desription of the Triang2d lass.



204 APPENDIX C. DESCRIPTION OF THE SOFTWARE PACKAGElass Triang2d{publi:Triang2d(Communiator &omm);virtual ˜Triang2d();// I/Ovoid read_triangle_�les(onst har basename[℄);void write(onst har �lename[℄);void read(onst har �lename[℄);// modi�ationsvoid partition();void repartition();void reorder();void re�ne_all();void oarsen_all();void adaption(std::set<int> &re�ne, std::set<int> &oarsen);};The onstrutor takes a referene to the ommuniator as argument. Communiationwith other partitions is established using this objet.Modi�ations of an existing mesh an be done by the methods partition() and repar-tition() these methods are wrappers to the orresponding methods in the ParMETISlibrary [68℄, [121℄ and are used to distribute or redistribute the mesh ells over theproesses in the parallel environment (Load balaning). These methods additionallyprovide all data strutures the ParMETIS library uses to generate a partition of theunderlying mesh.The method reorder() provides a (loal) Cuthill-MKee ordering of the mesh. Thisan speed up the onvergene proess of iterative solvers due to a better ordering of theunknowns but it an also speed up expliit solvers beause of the redution of ahemismathes.Re�nement and oarsening of the mesh is done either globally using the methods re-�ne_all() and oarsen_all() or eah ell an be seleted individually by storing theidenti�ation number of the ells in a re�nement and oarsening list and pass these liststo the method adaption(re�nement, oarsening). A ell in the re�nement list isguaranteed to be re�ned, a ell in the oarsening list is only oarsened if this is possible,see Setion 8.4 for details.The lass Triang2d provides an STL style iterator lass to aess eah ell of the meshin a sequential way. Random aess of mesh ells is also possible. The methods thatare neessary to aomplish these tasks are not shown in the lass de�nition above forsimpliity.All data that is assoiated with the mesh by registering is also partitioned, repartitioned,reordered and re�ned/oarsened automatially when one of these methods is alled.



C.2. TRIANG(1,2,3)D CLASSES 205For input and output of the native mesh format the methods read() and write()an be used. The output results in a raw binary format �le that is not ompatiblebetween di�erent mahine arhitetures (byte order is important). The �le an be readbak using the read() method. The number of proesses that wrote that �le and thenumber of proesses that read this �le bak do not need to math.Triang2d objets an be onstruted using the output of the Triangle mesh generator[101℄. Therefore, the basename of the Triangle �les must be passed to the methodread_triangle_�les(basename). Neessary �les are basename.node, basename.ele,basename.edge and basename.neigh. Boundary markers are mapped to negative num-bers. In the ase of negative boundary markers the numbers are preserved.lass Triang3d{publi:...// I/Ovoid read_tetgen_�les(onst har basename[℄);...};lass Triang1d{publi:...// I/Ovoid make(double x0, double x1, int n);...};The Triang3d and Triang1d are very similar to the Triang2d lass. The only di�ereneis the generation of meshes.In three spae dimensions the output of the TetGen [105℄ mesh generator an be usedto onstrut Triang3d objets. The mesh generator uses a similar syntax as the 2dmesh generator Triangle and the output �les are read by passing the basename tothe method read_tetgen_�les(basename). The neessary �les are basename.node,basename.ele, basename.fae and basename.neigh. As in the 2d ase boundary mark-ers are preserved if the numbers are negative otherwise they are mapped to negativenumbers.Mesh generation in one spae dimension is an almost trivial task. In this ase we pro-vide the method make(x0, x1, n) that onstruts an equidistant mesh of n ells of theinterval (x0, x1).



206 APPENDIX C. DESCRIPTION OF THE SOFTWARE PACKAGEC.3 Funtion Classlass Funtion{publi:virtual void operator()(onst double *u, double *f, int i = 0) = 0;virtual int dim_of_argument(int i = 0) onst = 0;virtual int dim_of_value(int i = 0) onst = 0;double& time();double time() onst;};Funtions are the entral objets in this implementation. The lass Funtion has purevirtual funtions that must be overloaded by inherited lasses. The member funtionoperator()(u, f) takes an argument u and returns the value of the funtion f. Thefuntions dim_of_argument() and dim_of_value() return the dimension of theargument and value respetively. A Funtion objet an optionally depend on parame-ters. One important parameter is the time. The parameter time an be get and set byusing the method time().C.4 Data ClassesThe FeData lasses are an abstration of the Disontinuous Galerkin spae V d
h intro-dued in Setion 6.2. The lasses provide I/O operations for data, an interfae foradaption of data and methods for projetion of data and omputation of errors.template<int n>lass FeData : publi Data{publi:FeData(Triang<n> &mesh);FeData(Triang<n> &mesh, int dim_system, int poly_order);virtual ˜FeData();void L2_projetion(Funtion &u);double Lp_distane(double p, Funtion &u);void eval(onst Simplex<n> &tr, onst double x[n℄, double *result) onst;// adaptivityvoid adaption(ErrorIndiator &error_indiator);// I/Ovoid write(onst har �lename[℄) onst;void read(onst har �lename[℄);};



C.5. DG CLASS 207The FeData lass is parameterized by the template argument n whih is the dimensionof the oordinate system. The onstrutor takes a simplex mesh Triang<n> (whihis the base lass of Triang(1,2,3)d respetively) and optionally the dimension of thestate spae d of V d
h whih is denoted by dim_system and the polynomial order of V d

hpoly_order. After alling the onstrutor the data lass is registered by the mesh.This means all operations like re�nement, oarsening, partitioning, et., that are appliedto the mesh, are impliitly applied to the orresponding data. Data is essentially avetor and is automatially onverted (by a onversion operator not shown in the lassde�nition) to double*.An instane U of the FeData<n> lass stores the oe�ients that represents someobjet uh ∈ V d
h of the Finite Element spae given by
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n,on the j-th ells of the underlying mesh (with identity number j) in the following way
αj

l,k = U [d · (np · j + l) + k], k = 0, . . . , d− 1.Here np denotes the number of the loal basis polynomials.The method L2_projetion(u) provides a L2 projetion of a given funtion u to theDisontinuous Galerkin spae V d
h . The Lp distane between the data and a given fun-tion u for p ∈ [1,∞) an be omputed using the method Lp_distane(p, u). Quadra-ture formulas are seleted automatially for these methods but an also be expliitlyset.Writing and reading to and from a �le is done using the methods write(�lename) andread(�lename). The �le �lename must be (at least) aessible from the omm.master()proess where omm denotes the Communiator.By the use of an ErrorIndiator objet, see Setion C.8, the mesh and the data an bere�ned and oarsened.C.5 DG ClassThe Disontinuous Galerkin lass implements the Disontinuous Galerkin spae dis-retization in one, two and three spae dimensions. DG lass is parameterized by thespae dimension and is therefore formally not limited to three spae dimensions, butsome neessary implementations like basis polynomials are provided for one, two andthree spae dimensions only.The input for a m-stage Disontinuous Galerkin sheme is a di�erential equation of the
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u0 = u,
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m [u0, . . . , um−1] = 0.This is the form we disussed in Setion 6.2 generalized by additional nononserva-tive and soure terms. The operators Lc
k[u

0, . . . , uk−1] for k = 1, . . . ,m represent theonservative di�erential operators of the form
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k [u0, . . . , uk−1] denote the nononservative operators in ombina-tion with soure terms of the form
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,where the funtions ak are linear in the gradients. More preisely ak have the form
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u = (u0, . . . , uk−1).All of the above funtions an additionally depend on further parameters suh as time.The output of a m-stage Disontinuous Galerkin sheme is the funtion um whih is theprojetion of the m-th order di�erential operator as disussed in Setion 6.2.The variables in the above equations have the following dimensions:
x ∈ R

n, uk ∈ R
dk , k = 0, . . . ,m. (C.1)The DG lass has three pure virtual funtions namely �ux(. . . ), num_�ux(. . . ) andbnd_�ux(. . . ) that have to be implemented by the inherited lass. The method�ux(. . . ) implements the physial �uxes fk

i , nononservative and soure terms a foreah of the m stages in the method.For the omplete method all physial �uxes fk
i and nononservative terms need assoi-ated numerial �uxes gk

j and gk
n. Here gk

j denote the numerial �uxes assoiated withthe urrent (the j-th) ell and gk
n the numerial �uxes assoiated with the orrespond-ing neighbor ell whih is in general not gk

n = −gk
j sine nononservative terms arealso taken into aount. The implementation of the numerial �uxes is provided by themethod num_�ux(. . . ). The numerial �uxes at the boundary of the omputationaldomain and with this the treatment of boundary onditions are provided by the methodbnd_�ux(. . . ). For more details see the two examples in Setion C.9.



C.5. DG CLASS 209The Disontinuous Galerkin lass has the following de�nition, here only the most im-portant member funtions are listed.template<int n>lass DG : publi Funtion{publi:DG(Communiator &omm, Triang<n> &mesh, int dim_value,int poly_order, int num_stages, onst int *dim_�ux);// from Funtionvirtual void operator()(onst double *U, double *result, int i=0);virtual int dim_of_argument(int i=0) onst;virtual int dim_of_value(int i=0) onst;void odegen(har lassname[℄) onst;proteted:// �uxes and numerial �uxesvirtual void �ux(int stage, onst double *u, onst double * onst grad_u[n℄,double *f[n℄, double *a) = 0;virtual void num_�ux(int stage, onst double *uj, onst double *un,onst double normal[n℄, double *gj, double *gn) = 0;virtual void bnd_�ux(int stage, onst double *uj,onst double normal[n℄, double *gj) = 0;};The DG lass is derived from the lass Funtion and therefore it implements the methodsoperator()(U, result), dim_of_argument() and dim_of_value(). As a funtionthe operator()(U, result) returns the oe�ients of the disrete di�erential operatorin the variable result and the variable U provides the oe�ients (with respet to thebasis funtions of the Finite Element spae) of some disrete funtion.The onstrutor of the DG<n> lass takes as arguments a referene to a Communia-tor, a referene to a mesh whih an be a one dimensional, two dimensional or threedimensional Simplex grid. With the notation from above, see (C.1), the remainingparameters are given bypoly_order = polynomial degree of the method,dim_value = d0,dim_�ux[m℄ = {d1, d2, . . . , dm},num_stages = m.By default the DG lass provides all states u at the integration points and all gradi-ents ∇u that are available in the stages. Very often not all of the states are neessary,espeially most gradients are usually not neessary sine they are only used in non-onservative produts. In order to render the method more e�ient ertain values an



210 APPENDIX C. DESCRIPTION OF THE SOFTWARE PACKAGEbe unset but the methods that are neessary for this task are not shown in the lassde�nition for simpliity. The degree of the quadrature formulas an also be hosenfreely. By default the degree of the quadrature formulas are hosen aording to thereommendation by Cokburn and Shu, see Setion 6.4.For further improvement of the e�ieny of the method the method odegen(. . . )an be used to generate highly optimized ode. Using generated ode an lead to longompilation times.C.6 ODE Solver ClassesSeveral ODE solver lasses are available to perform time stepping for ordinary initialvalue problems. The base lass for all ODE solvers is the lass ODESolver. Avail-able Solver lasses belong to the lasses of expliit, impliit, semi-impliit Runge-Kuttamethods, expliit and impliit Extrapolation methods and SSP methods.lass ODESolver{publi:ODESolver(Communiator &omm, int num_tmpobj);virtual ˜ODESolver();void set_limiter(Limiter &limiter);// user-interfae for solvingvirtual bool step(double t, double dt, double *u) = 0;proteted:Limiter *limiter;};Inherited lasses, i.e., implementations of ODE solvers, have to overload the virtualfuntion step(t, ∆t, u) whih performs the time stepping of some data u from time tto time t + ∆t. The method returns true on suess or false if it fails to perform thetime stepping. In the latter ase it is guaranteed that the data u remains unmodi�ed.An expliit method for time stepping is always suessful, so it always returns true, butan impliit method an fail to onverge in whih ase it returns false and a smaller timestep as to be hosen.Optionally a limiter an be set. A limiter is a funtion that performs some post proess-ing on the data u in order to maintain the stability of the underlying numerial method.This is usually be done in ombination with expliit higher order Runge-Kutta Dison-tinuous Galerkin shemes.C.6.1 ExpliitRungeKutta ClassThe simplest lass of ODE solvers is the lass of expliit Runge-Kutta methods disussedin Setion 7.2.



C.6. ODE SOLVER CLASSES 211The �rst order one-stage expliit Euler sheme has the following de�nition.lass ExpliitEuler : publi ExpliitRungeKutta (: publi ODESolver){publi:ExpliitEuler(Communiator &omm, Funtion &f);};The Construtor takes a referene to a Communiator objet and the right hand side ofthe ordinary di�erential equation given by the Funtion f . The Funtion f an be thedisrete di�erential operator onstruted by a Disontinuous Galerkin lass for example.For the omputation of the evolution in time the method step(t, dt, u) from theODESolver base lass is used.There are several other higher order expliit Runge-Kutta methods available. The lassde�nition of these methods is the same as for the ExpliitEuler lass. The followingmethods are available.
• ExpliitModi�edEuler, 2nd order, 2 stages.
• ExpliitTVD2, 2nd order, 2 stages.
• ExpliitRK3, 3rd order, 3 stages.
• ExpliitTVD3, 3rd order, 3 stages.
• ExpliitRK4, 4th order, 4 stages.
• ExpliitButher6, 6th order, 7 stages.For the details onerning these methods see Setion 7.2.C.6.2 ImpliitRungeKutta ClassThe lass of diagonally impliit Runge-Kutta methods, disussed in Setion 7.3, hasexatly the same lass de�nition as expliit Runge-Kutta methods exept the additionalmethod for the hoie of a linear solver. Here for example the de�nition for the impliitEuler sheme.lass ImpliitEuler : publi DIRK (: publi ODESolver){publi:ImpliitEuler(Communiator &omm, Funtion &f);void set_linear_solver(IterativeLinearSolver &ls);};The impliit methods need a linear solver to perform the Newton iteration. This anbe set by the method set_linear_solver(ls). Available linear solvers are listed inSetion C.7.Other diagonally impliit Runge-Kutta methods are
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• Gauss2 (Crank-Niholson), 2nd order, 1 stage.
• DIRK3, 3rd order, 2 stages.C.6.3 SemiImpliitRungeKutta ClassFor the semi-impliit Runge-Kutta shemes the onstrutor takes two Funtions asarguments fex whih is disretized expliitly and �m whih is disretized in an impliitfashion, see Setion 7.4 for details. Again, the impliit part needs a linear solver. Thesimplest sheme of this lass is the �rst order semi-impliit Euler sheme whih has thefollowing de�nition.lass SemiImpliitEuler : publi SIRK (: publi ODESolver){publi:SemiImpliitEuler(Communiator &omm, Funtion &�m, Funtion &fex);void set_linear_solver(IterativeLinearSolver &ls);};The shemes from Setion 7.4 that are available at the moment besides the semi-impliiteuler sheme are
• SIRK23, 2nd order, three stages.
• SIRK33 (YZ33), 3rd order, 3 stages.
• IMEX_SPP222, 2nd order, 2 stages.C.6.4 Other ClassesAdditionally to the di�erent kinds of Runge-Kutta lasses impliit and expliit extrap-olation shemes are also available but not disussed in detail here. The use of thiskind of methods is less ommon in the framework of Finite Volume and DisontinuousGalerkin approximation but they have the advantage that arbitrary order methods anbe onstruted.C.7 Linear Solver ClassesThe impliit and semi-impliit ODE solver lasses use a Newton type nonlinear iterationfor solving the orresponding systems of nonlinear equations. Newton type methodsneed to solve linear systems of equations. In the framework of Finite Element, FiniteVolume and Disontinuous Galerkin disretizations of partial di�erential equations theselinear systems are usually large but sparse. Some methods from the lass of Krylov spaesolvers are very e�ient methods for these tasks. The Conjugate Gradient (CG) methodfor symmetri problems belongs to this lass. For non symmetri problems the GMRESand BiCGSTAB methods are a good hoie.



C.7. LINEAR SOLVER CLASSES 213The GMRES lass implements the restarted GMRES algorithm given in [98℄. TheFGMRES lass has exatly the same lass de�nition (therefore we omit it) and imple-ments the �exible variant of the restarted GMRES algorithm [96℄. The advantage isthat the preonditioner an vary in eah step of the iteration. The disadvantage is thatit needs twie the amount of memory ompared to standard GMRES.lass GMRES : publi IterativeLinearSolver{publi:GMRES(Communiator &omm, int m);virtual ˜GMRES();virtual void set_preonditioner(Funtion &preonditioner);void set_tolerane(double tol, bool relative = true);void set_max_number_of_iterations(int iter);// from IterativeLinearSolver, solve Au = b, Au = op(u)virtual bool solve(Funtion &op, double *u, onst double *b);};The onstrutor takes a Communiator and the Krylov spae dimensionm as arguments.The hoie of the Krylov spae dimension is ruial in the GMRES method. Thee�ieny of the method depends heavily on this parameter. It must not be hosen tosmall to otherwise the method may fail to onverge. A value between 5 and 15 is usuallya good hoie.An optional preonditioner, i.e., a funtion u 7→ Mu, an be set using the methodset_preonditioner(preonditioner) to speed up the onvergene proess. Thematrix M is hosen to approximate the matrix A−1 in some sense.Using the method set_tolerane(tol, relative) a tolerane for the stopping riterionof the iteration an be set. With the boolean value relative=true/false it an be on-trolled whether this tolerane is interpreted as relative or absolute tolerane. It is a goodidea to hoose an absolute tolerane in ombination with a Newton method beause theright hand side of the linear system tends to zero as the Newton method onverges.The maximum number of iterations an be ontrolled using the set_max_num-ber_of_iterations(iter) method.Now, the linear system Au = b is solved using the method solve(op, u, b). The linearoperator u 7→ Au is denoted by op, the right hand side by b. On entry the vetor uarries an initial guess of the solution. Upon suess the method returns true and thesolution of the system is stored in the vetor u. If it fails to onverge it returns falseand it is guaranteed that the initial guess u is not modi�ed in that ase.Another e�ient Krylov spae method is the BiCGSTAB algorithm given in [113℄. Thestorage requirement of this algorithm does not depend on an extra parameter. Hene, inmost ases this method needs less memory than the GMRES method whih is importantfor large sale simulations. The lass de�nition is exatly the same as for the GMRESlass (exept the parameter m). For ompleteness we list it below.



214 APPENDIX C. DESCRIPTION OF THE SOFTWARE PACKAGElass BICGSTAB : publi IterativeLinearSolver{publi:BICGSTAB(Communiator &omm);virtual ˜BICGSTAB();void set_tolerane(double tol, bool relative = true);void set_max_number_of_iterations(int iter);// from IterativeLinearSolver, solve Au = b, Au = op(u)virtual bool solve(Funtion &op, double *u, onst double *b);};It depends on the problem whether the GMRES or the BiCGSTAB method performsbetter. In our test ases we have observed that the GMRES method usually performsabout 10-20% better.For symmetri problems the Conjugate Gradient method (CG) should be used beausein this ase this algorithm is muh more e�ient than the other methods for nonsym-metri problems. The interfae is exatly the same as for the BiCGSTAB method.
C.8 ErrorIndiator ClassesThe ErrorIndiator lass is an abstrat lass and serves as an interfae for problemdependent indiators. An inherited lass, that implements some indiator or estimator,has to implement the method operator()(re�ne, oarsen). Here re�ne is the setof ell ids that have to be re�ned and oarsen is the list of ell ids that should beoarsened if possible. The lass de�nition follows below.lass ErrorIndiator{publi:virtual void operator()(std::set<int> &re�ne, std::set<int> &oarsen) = 0;};As an example for an ErrorIndiator we have the spae gradient indiator Spae-GradIndiator proposed in Setion 8.3. This is atually not an error indiator beauseit has nothing to do with errors but is used to trak the liquid-vapor interfae in thesimulations using the Navier-Stokes-Korteweg system.



C.9. EXAMPLES OF USAGE 215template<int dim>lass SpaeGradIndiator : publi ErrorIndiator{publi:SpaeGradIndiator(Communiator &omm, Triang<dim> &tr,Data &U, Funtion &F);virtual ˜SpaeGradIndiator();void set(double eta_low, double eta_upp, int num_iter);// from ErrorIndiatorvirtual void operator()(std::set<int> &re�ne, std::set<int> &oarsen);};C.9 Examples of UsageIn this setion we give two examples of usage of the software pakage disussed above.The �rst appliation is the Disontinuous Galerkin disretization of the linear advetionequation in one spae dimension. Quite simple for better understanding. The seondappliation is the DG disretization of the Navier-Stokes-Korteweg system using impliittime stepping as we use it in our omputations (at some points stripped down a littlebit for simpliity).C.9.1 Example 1: Linear Advetion in 1dThe linear advetion equation in one spae dimensions we onsider in this example isgiven by
ut + (su)x = 0 in (−1, 1) × (0, T ),

u(x, 0) =

{

uleft if x < 0,
uright else, for x ∈ (−1, 1),

u(−1, t) = uleft.Here we hoose s = 1.0, uleft = 0.5 and uright = 1.0. The interval (−1, 1) is partitionedinto a uniform mesh using the method Triang1d::make(. . . ). By default the leftboundary of the mesh has the boundary id −1 and the right boundary the id −2.The Disontinuous Galerkin method uses the upwind �ux as numerial �ux and fortime integration the expliit third order Runge-Kutta method TVD3 is applied. Theomplete implementation is given in the following one hundred lines of C++ ode.#inlude <iostream>#inlude <math>#inlude "ommuniator.hpp"#inlude "triang.hpp"#inlude "dg.hpp"#inlude "ode_solver.hpp"



216 APPENDIX C. DESCRIPTION OF THE SOFTWARE PACKAGE#inlude "data.hpp"using namespae std;using namespae pardg;// global variablesonst double s = 1.0;onst double u_left = 0.5;onst double u_right = 1.0;// initial datalass InitialData : publi Funtion{publi:virtual void operator()(onst double *x, double *result, int i=0){ onst double tau = x[0℄ - s*time();result[0℄ = (tau < 0)? u_left : u_right;}virtual int dim_of_argument(int i) onst { return 1;}virtual int dim_of_value(int i) onst { return 1;}};// Disontinuous Galerkin disretizationonst int num_stages1d = 1;onst int dim_value1d = 1;onst int dim_flux1d[num_stages1d℄ = {1};lass DG1dLinAdv : publi DG<1>{publi:DG1dLinAdv(Communiator &omm, Triang<1> &mesh, int poly_order) :DG<1>(omm, mesh, dim_value1d, poly_order, num_stages1d, dim_flux1d){}private:// physial �uxvirtual void flux(int stage, onst double *u, onst double *onst grad_u[1℄,double *f[1℄, double *a){ f[0℄[0℄ = s * u[0℄;}



C.9. EXAMPLES OF USAGE 217// upwind �ux = Lax-Friedrihs �uxvirtual void num_flux(int stage, onst double *uj, onst double *un,onst double n[1℄, double *gj, double *gn){ gj[0℄ = 0.5*n[0℄*s*( uj[0℄+un[0℄ ) - 0.5*fabs(s)*( un[0℄-uj[0℄ );gn[0℄ = -gj[0℄;}// boundary treatmentvirtual void bnd_flux(int stage, onst double *uj, onst double n[1℄,double *gj){ double ub;if (bnd_id == -1) ub = u_left; // left boundaryelse ub = u_right; // right boundarygj[0℄ = 0.5*n[0℄*s*( uj[0℄+ub ) - 0.5*fabs(s)*( ub-uj[0℄ );}};int main(int arg, har *argv[℄){ // CommuniatorCommuniator omm(arg, argv);// onstrut mesh and distribute it over the available proessorsonst int n = 200;Triang1d mesh(omm);mesh.make(-1.0, 1.0, n);mesh.partition();onst double h = mesh.h();// setup DG sheme & Runge-Kutta shemeonst int poly_order = 2;DG1dLinAdv dg_linadv(omm, mesh, poly_order);ExpliitTVD3 ode_solver(omm, dg_linadv);// setup data and projetion of initial dataFeData<1> U(mesh, 1, poly_order);InitialData u0;U.L2_projetion(u0);// perform time steppingonst double T = 0.2;onst double fl = 0.45 / (1+2*poly_order); // Cokburn & Shu formuladouble dt = fl * h / fabs(s);double t = 0.0;



218 APPENDIX C. DESCRIPTION OF THE SOFTWARE PACKAGEwhile (t < T){ode_solver.step(t, dt, U);t += dt;}// outputu0.time() = t;onst double L2error = U.Lp_distane(2.0, u0);if ( omm.id() == omm.master() ){out << "L2 error: "<< L2error << " h: "<< h << endl;}}The approximate solution is omputed up to omputational end time T = 0.2. At theend of the omputation the L2-error to the exat solution is omputed.C.9.2 Example 2: Isothermal Navier-Stokes-Korteweg in 2dIn this �nal example we disuss the implementation of the higher order disretizationof the isothermal Navier-Stokes-Korteweg equations in two spae dimensions.
ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρuuT ) + ρ∇κ = ∇ · τ ,where, as usual, τ denotes the visous part of the stress tensor and κ = µ(ρ) − λ∆ρ.For this example we have hosen the boundary onditions
u = 0 and ∇ρ · n = 0 on ∂Ωand as initial data we provide an almost stati bubble. Physial and numerial �uxesare implemented as disussed in setion 6.9.2. The inherited DG lass DG2dNSKis also derived from the lass VanDerWaalsIsothermal whih provides the equationsof state. Time stepping is done using a seond order impliit Runge-Kutta sheme(Gauss2/Crank-Niholson) equiped with the GMRES(15) linear solver. The omputa-tional domain Ω = (−1, 1)2 is represented by a triangular mesh stored in the box2d.1.*�les. This mesh onstruted by the using the Triangle mesh generator [101℄.In this example loal mesh adaption is omitted for simpliity and the time step sizeis �xed to some small enough onstant. The omplete implementation is given by thefollowing 250 lines of C++ ode.#inlude <iostream>#inlude <math>#inlude "ommuniator.hpp"#inlude "triang.hpp"#inlude "dg.hpp"



C.9. EXAMPLES OF USAGE 219#inlude "ode_solver.hpp"#inlude "data.hpp"#inlude "vdw.hh"using namespae std;using namespae pardg;// global variablesstati onst double T_ref = 0.85; // referene temperaturestati onst double lambda = 0.001; // apillaritystati onst double eps = 0.0136644; // visositystati onst double nu = 0.75*eps; // visosity// initial data, bubble of radius R with enter 0lass Bubble : publi Funtion{publi:virtual void operator()(onst double *x, double *result, int i=0){ onst double width = 5.4*T_ref*T_ref * sqrt(lambda); // appr. formulaonst double r0 = R - 0.5*width;onst double r1 = R + 0.5*width;onst double r = sqrt(x[0℄*x[0℄ + x[1℄*x[1℄);// densityif (r < r0) result[0℄ = rho_v;else if(r < r1) {onst double phi = (2.0*(r-r0)/(r1-r0) - 1.0) * M_PI/2.0;result[0℄ = 0.5*(rho_v+rho_l) + 0.5*(rho_l-rho_v) * tanh(tan(phi));}else result[0℄ = rho_l;// momentumresult[1℄ = result[2℄ = 0.0;}virtual int dim_of_argument(int i) onst { return 2;}virtual int dim_of_value(int i) onst { return 3;}private:stati onst double rho_v = 0.3;stati onst double rho_l = 1.8;stati onst double R = 0.3;};



220 APPENDIX C. DESCRIPTION OF THE SOFTWARE PACKAGE// Disontinuous Galerkin disretizationonst int num_stages2d = 3;onst int dim_value2d = 3;onst int dim_flux2d[num_stages2d℄ = {4, 1, 3};lass DG2dNSK : publi DG<2>, publi VanDerWaalsIsothermal{publi:DG2dNSK(Communiator &omm, Triang<2> &mesh, int poly_order) :DG<2>(omm, mesh, dim_value2d, poly_order, num_stages2d, dim_flux2d),VanDerWaalsIsothermal(T_ref){ // some std valuesalpha_1 = 0.648676;alpha_2 = 1.86921;}private:virtual void flux(int stage, onst double *u, onst double *onst grad_u[2℄,double *f[2℄, double *a);virtual void num_flux(int stage, onst double *uj, onst double *un,onst double n[2℄, double *gj, double *gn);virtual void bnd_flux(int stage, onst double *uj, onst double n[2℄,double *gj);double alpha_1, alpha_2;};// physial �uxvoid DG2dNSK::flux(int stage, onst double *u, onst double *onst grad_u[2℄,double *f[2℄, double *a){ // u[0℄=rho, u[1℄=rho_u, u[2℄=rho_v,// u[3℄=rho_x, u[4℄=rho_y, u[5℄=u_x+v_y, u[6℄=u_y-v_x,// u[7℄=kappaif (stage == 0){ // reonstrut 1st derivativesf[0℄[0℄ = -u[0℄;f[0℄[1℄ = 0.0;f[0℄[2℄ = -u[1℄/u[0℄;f[0℄[3℄ = u[2℄/u[0℄;f[1℄[0℄ = 0.0;f[1℄[1℄ = -u[0℄;f[1℄[2℄ = -u[2℄/u[0℄;



C.9. EXAMPLES OF USAGE 221f[1℄[3℄ = -u[1℄/u[0℄;}else if (stage == 1){ // reonstrut kappaf[0℄[0℄ = lambda*u[3℄;f[1℄[0℄ = lambda*u[4℄;a[0℄ = -potential(u[0℄);}else if (stage == 2){ // evaluate �uxonst double rho = u[0℄;onst double rho_u = u[1℄;onst double rho_v = u[2℄;onst double ru_rv_r = rho_u*rho_v/rho;onst double ux_vy = u[5℄;onst double uy_vx = u[6℄;f[0℄[0℄ = u[1℄;f[0℄[1℄ = rho_u*rho_u/rho - eps*ux_vy;f[0℄[2℄ = ru_rv_r + nu*uy_vx;f[1℄[0℄ = u[2℄;f[1℄[1℄ = ru_rv_r - nu*uy_vx;f[1℄[2℄ = rho_v*rho_v/rho - eps*ux_vy;a[1℄ = rho * grad_u[0℄[7℄;a[2℄ = rho * grad_u[1℄[7℄;}}// numerial �uxvoid DG2dNSK::num_flux(int stage, onst double *uj, onst double *un,onst double n[2℄, double *gj, double *gn){ // u[0℄=rho, u[1℄=rho_u, u[2℄=rho_v,// u[3℄=rho_x, u[4℄=rho_y, u[5℄=u_x+v_y, u[6℄=u_y-v_x,// u[7℄=kappaif (stage == 0){ // reonstrut 1st derivativesonst double rho_j = uj[0℄;onst double rho_n = un[0℄;onst double u_j = uj[1℄/rho_j;onst double u_n = un[1℄/rho_n;onst double v_j = uj[2℄/rho_j;onst double v_n = un[2℄/rho_n;gj[0℄ = -0.5*(rho_n+rho_j) * n[0℄;gj[1℄ = -0.5*(rho_n+rho_j) * n[1℄;



222 APPENDIX C. DESCRIPTION OF THE SOFTWARE PACKAGEgj[2℄ = -0.5*(u_n+u_j)*n[0℄ - 0.5*(v_n+v_j)*n[1℄;gj[3℄ = 0.5*(v_n+v_j)*n[0℄ - 0.5*(u_n+u_j)*n[1℄;gn[0℄ = -gj[0℄;gn[1℄ = -gj[1℄;gn[2℄ = -gj[2℄;gn[3℄ = -gj[3℄;}if (stage == 1){ // reonstrut kappagj[0℄ = lambda * 0.5*( (un[3℄+uj[3℄)*n[0℄ + (un[4℄+uj[4℄)*n[1℄);gn[0℄ = -gj[0℄;}if (stage == 2){ // eval �uxonst double rho_j = uj[0℄;onst double rho_n = un[0℄;onst double rho_u_j = uj[1℄;onst double rho_u_n = un[1℄;onst double rho_v_j = uj[2℄;onst double rho_v_n = un[2℄;onst double ru_rv_r_j = rho_u_j * rho_v_j / rho_j;onst double ru_rv_r_n = rho_u_n * rho_v_n / rho_n;onst double kappa_j = uj[7℄;onst double kappa_n = un[7℄;onst double ux_vy_n = un[5℄;onst double ux_vy_j = uj[5℄;onst double uy_vx_n = un[6℄;onst double uy_vx_j = uj[6℄;gj[0℄ = 0.5*( (rho_u_j + rho_u_n)*n[0℄ + (rho_v_j + rho_v_n)*n[1℄ )-0.5*alpha_1*(kappa_n - kappa_j);gj[1℄ = 0.5*( (rho_u_j*rho_u_j/rho_j + rho_u_n*rho_u_n/rho_n)*n[0℄+(ru_rv_r_j + ru_rv_r_n)*n[1℄ )-0.5*alpha_2*(rho_u_n - rho_u_j)-0.5*eps*(ux_vy_n+ux_vy_j)*n[0℄ - 0.5*nu*(uy_vx_n+uy_vx_j)*n[1℄;gj[2℄ = 0.5*( (ru_rv_r_j + ru_rv_r_n)*n[0℄+(rho_v_j*rho_v_j/rho_j + rho_v_n*rho_v_n/rho_n)*n[1℄ )-0.5*alpha_2*(rho_v_n - rho_v_j)+0.5*nu*(uy_vx_n+uy_vx_j)*n[0℄ - 0.5*eps*(ux_vy_n+ux_vy_j)*n[1℄;gn[0℄ = -gj[0℄;gn[1℄ = -gj[1℄;gn[2℄ = -gj[2℄;onst double jump = 0.25*(rho_j + rho_n) * (kappa_n - kappa_j);gj[1℄ += jump*n[0℄;



C.9. EXAMPLES OF USAGE 223gn[1℄ += jump*n[0℄;gj[2℄ += jump*n[1℄;gn[2℄ += jump*n[1℄;}}// boundary treatmentvoid DG2dNSK::bnd_flux(int stage, onst double *uj, onst double n[2℄,double *gj){ // u[0℄=rho, u[1℄=rho_u, u[2℄=rho_v,// u[3℄=rho_x, u[4℄=rho_y, u[5℄=u_x+v_y, u[6℄=u_y-v_x,// u[7℄=kappaif (stage == 0){ // reonstrut 1st derivativesonst double rho_j = uj[0℄;onst double u_j = uj[1℄/rho_j;onst double v_j = uj[2℄/rho_j;gj[0℄ = -rho_j * n[0℄;gj[1℄ = -rho_j * n[1℄;gj[2℄ = -0.5*(u_j*n[0℄ + v_j*n[1℄ + 0.0);gj[3℄ = -0.5*(u_j*n[0℄ - v_j*n[1℄ + 0.0);}else if (stage == 1){ // reonstrut kappagj[0℄ = 0.0;}if (stage == 2){ // eval �uxonst double ux_vy = uj[5℄;onst double uy_vx = uj[6℄;gj[0℄ = 0.0;gj[1℄ = -eps*ux_vy*n[0℄ - nu*uy_vx*n[1℄;gj[2℄ = nu*uy_vx*n[0℄ - eps*ux_vy*n[1℄;}}int main(int arg, har *argv[℄){ // CommuniatorCommuniator omm(arg, argv);// read mesh and distribute it over the available proessorsTriang2d mesh(omm);mesh.read_triangle_files("./box2d.1");



224 APPENDIX C. DESCRIPTION OF THE SOFTWARE PACKAGEmesh.partition();// setup DG shemeonst int poly_order = 2;DG2dNSK dg_nsk(omm, mesh, poly_order);// Linear SolverGMRES linear_solver(omm, 15);linear_solver.set_tolerane(1.0e-6, false);// Impliit Runge-Kutta methodGauss2 ode_solver(omm, dg_nsk);ode_solver.set_linear_solver(linear_solver);// setup data and projetion of initial dataFeData<2> U(mesh, 3, poly_order);Bubble u0;U.L2_projetion(u0);// perform time steppingonst double T = 0.1;double dt = 1.0e-4; // small enough timestepdouble t = 0.0;while (t < T){out << omm.id() << " "<< t << endl;bool onvergene = ode_solver.step(t, dt, U);assert(onvergene);t += dt;}}The approximate solution is omputed up to omputational end time T = 0.1. Noth-ing is done with the approximate solution. It would be more onvenient to write theapproximate solution to a data �le at some points in omputational time but this isomitted here for simpliity.
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