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Chapter 1

Introduction

1.1 Motivation

When steam ships became available in the 19th century, engineers observed a strange
damage on the blades of ship propellers caused by an unknown force. In 1917 Lord
Rayleigh (Lord John William Strutt) explains in his article On the pressure developed
in a liquid during the collapse of a spherical cavity [93] that small vapor bubbles that
condense at the surface of the propeller blades are responsible for this effect. He gives
an equation for the collapse of a bubble, the so called Rayleigh-Plesset equation, see
Section 4.4.1 and [16]. Figure 1.3 shows this kind of cavitation damage on the surface
of a modern ship propeller.

Small vapor bubbles in a liquid arise when the pressure of the surrounding liquid drops
below a certain value, for example caused by operating ship propellers, fast flows or
strong sound fields. This effect is called cawitation. From the physical point of view the
fluid is decomposed into liquid and vapor phases and both phases can condensate or
evaporate respectively. Thus, we have a dynamical phase boundary and in general mass
transfer over this interface. Cavitation bubbles can behave quite differently, e.g. they
can disappear immediately or grow until they break up into an ensemble of smaller bub-
bles. Depending on the environment these kinds of bubbles can also begin to oscillate.
For instance in weak sound fields bubbles may oscillate with the frequency of the un-
derlying sound field. In strong sound fields the amplitude of the oscillations can become
large enough such that the bubble collapses to a tiny volume in a periodic cycle. Each
time a bubble collapses due to the compression very high temperatures and pressures
can be observed in the interior of the bubble. During the collapse a shock wave and
also a light flash can be emitted. The latter phenomenon is called sonoluminescence
and was first discovered by H. Frenzel and H. Schultes [45] in 1934.

The upper sequence of pictures in Figure 1.1 shows a collapsing bubble in a physical
experiment with a strong sound field. The maximal radius of the cavitation bubble (1st
picture) is 55 micrometers. The lower part of the figure shows the sent out shock wave
which propagates about 800 micrometers in 0.38 microseconds.

The process of the bubble collapse and the emission of shock waves and light flashes
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Figure 1.1: Collapsing bubble (upper sequence of pictures) and sent out shock wave
(lower sequence). The pictures are taken from [48|.

are far from being completely understood. Research and investigation of single bubbles
and bubble ensembles are of high interest because of the following reasons:

e Industrial Interest. Turbines, pumps, ships propellers and nozzles get damaged
by the resulting shock waves and suffer a loss of efficiency when the effect of
cavitation occurs.

e Medical Interest. The destructive behavior of cavitation can also be of a benefi-
cial use. For example kidney stones can be destroyed by application of focussed
ultrasound which causes cavitation, see [61].

e Chemical Interest. The chemical effects of ultrasound are a result of cavitation
and are investigated in the field of sonochemistry.

Most of the above information, including the pictures of the collapsing bubble, are taken
from R. Geislers homepage [48], see also [47].

At the time of this writing an intensive work on modelling (on the micro and macro
scale), numerical simulation and validation of the above mentioned processes is be-
ing carried out within the projects of the DFG-CNRS research group Micro-Macro
Modelling and Simulation of Liquid-Vapor Flows. This work is also supported by this
research group.

The presence of shock waves in the physical experiments indicate that compressibil-
ity of the fluid may have an important influence on the cavitation process. Thus, the
underlying mathematical model should take the effect of compressibility into account.
The main difference between the existing microscopic models for phase transition phe-
nomena consists in the representation of the interface between the liquid and vapor
phases. The first group of models use a sharp resolution of the interface. This means
the interface has no spatial dilatation and the thermodynamic quantities are in general
discontinuous over the interface. This is the class of sharp interface models. On the
other hand we have the class of diffuse interface models. Here the interface has a small
positive size and the thermodynamic quantities vary rapidly but smoothly within this
interfacial region between vapor and liquid states.
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The model that we consider belongs to the class of diffuse interface models and is an
extension of the compressible Navier-Stokes equations that goes back to Korteweg [72]
(1901). Here, for simplicity, we state this Navier-Stokes-Korteweg model (abbreviated
as NSK model) only in the isothermal case

pe+V-(pu) = 0,

(pu)i + V- (puu?) + Vp(p) = V- (1+K), (1.1)

with suitable initial and boundary conditions. In the equation above p denotes the
density and w the velocity of the fluid. For the pressure p an appropriate equation of
state must be chosen that has the capability of describing the pressure in the vapor as
well as in the liquid phase. The simplest equation of state that can accomplish this is
the van der Waals equation of state. Note that there is no additional order parameter
in this model that distinguishes between the phases. In this model the density itself is
the order parameter. Low density states characterize the vapor phase and high values of
the density the liquid phase with an unphysical set of density states in between. In the
equation above 7 denotes the usual viscous part of the stress tensor and the difference
to the classical Navier-Stokes equations is the contribution of the Korteweg part to the
stress tensor which is given by

1
K=\ KpAp + i\Vp\2> I- VprT] .

This contribution is responsible for the finite, nonzero size of the interface and acts as
a penalty term for phase transitions. Thus, the interface is minimized in some sense
when the flow approaches an equilibrium state with vanishing velocity. The idea of
using density gradients to penalize phase transition goes back to van der Waals [115]
(1894).

The diffuse Navier-Stokes-Korteweg model has several advantages over existing sharp
interface models. For instance, sharp interface models need an additional jump condition
because of the discontinuity over the interface (kinetic relation), see for example [85].
This kind of jump condition is not necessary for diffuse interface models because there
is no jump across the interface. The NSK model implicitly includes the physical effect
of surface tension, sharp interface models need an extra contribution to the stress tensor
to include this effect. Topological changes in the solution are possible without special
treatment and it is not necessary to track the interface by a Level Set or Volume of Fluid
method as for sharp interface methods, see [29]|. But there are still some disadvantages.
Due to the resolution of a small diffuse interface and the presence of the higher order
derivatives the time step in fully discrete numerical schemes must be chosen extremely
small to guarantee the stability of the method. Moreover, most standard schemes cannot
be applied because of the presence of the unphysical (elliptic) region in the state space.

Figure 1.2 shows a sketch of the basic physical experiment for the numerical simulations
considered in this work. It shows a container filled with liquid and a few vapor bubbles
in the surrounding liquid. At the (solid) container wall a fixed constant temperature is
imposed and depending on the experiment the container wall may or may not move. In
cases where the container wall moves, the boundary condition w4 = 0 has to be replaced
by w = wu,, where u,, denotes the prescribed velocity of the moving wall. We are
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Figure 1.2: Sketch of the underlying physical experiment.

interested in the dynamics and time evolution of the configuration starting with this
data.

The main goal of this work is the development and implementation of a software pack-
age for the discretization in multiple space dimensions of general evolution equations
including conservative terms, nonconservative terms, sources and higher order deriva-
tives. The resulting method should be based on modern numerical techniques such
as adaptively refined meshes, load balancing, parallelization, higher order space and
time discretization. The Navier-Stokes-Korteweg model should be discretized using this
package. Local adaptivity and MPI based parallelization are absolutely necessary for
the resolution of the interface and the processing of the high numerical cost even in
two space dimensions. The resulting C++ software package should have an easy to
understand modular design such that it can easily be applied to similar equations. A
basic description of the package can be found in the appendix.

Figure 1.3: Blades of a ship propeller damaged by cavitation bubbles. This picture is
published under the ShareAlike License v. 2.5.
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1.2 Results and new Contributions

This section summarizes the main results and (at the time of this writing) new contri-
butions of this thesis.

The main focus of this work is the reliable discretization of the isothermal version of
the Navier-Stokes-Korteweg system and the construction of (quasi-)exact solutions that
serve as benchmarks. A discretization of the full temperature dependent model has
also been developed but not tested for reliability as much as it has been done for the
isothermal version.

e The existence of traveling wave solution is only proven for a modified system. The
first step of this proof is adapted to the original system (1.1) in Section 3.2.2. The
second step can possibly also be adapted to the original system but it is technically
and lengthy and does not fit properly in this work.

e Computation of static equilibrium configurations: For rotational symmetric solu-
tions it is clear that the NSK system reduces to an ordinary differential equation.
The crucial part is the appropriate choice of boundary condition in order to com-
pute this kind of solutions successfully. This is done in Section 4.1. Using these
kinds of solutions, the physical parameters such as surface tension can be identi-
fied. This verifies the formula for surface tension, given in [75]|, numerically.

e Computation of traveling wave solutions: The method is based on the approach
given in [43] but not straightforward to generalize to compute traveling wave
solutions of the NSK equations. We give this generalization of the method as well
as numerical results in Section 4.2.

e In Section 5.2 we construct a new well balanced first order scheme for the dis-
cretization of the isothermal version of the Navier-Stokes-Korteweg system in mul-
tiple space dimensions. Numerical results indicate that this is a reliable discretiza-
tion of the system.

e Also in Section 5.3 we demonstrate that the relaxation scheme given in [29], [30]
does not produce the correct results (except for static equilibrium configurations).

e In Section 6.2.3 we give a new higher order discretization for nonconservative
equations based on the Discontinuous Galerkin approach and the definition of
nonconservative products given in [36]. This kind of nonconservative discretiza-
tion is not limited to the NSK system. It is very well suited for the discretization
of general nonconservative equations, for example equations arising from a ho-
mogenization process are usually nonconservative.

e We prove a cell entropy inequality and a resulting L? stability estimate for a semi-
discrete Local Discontinuous Galerkin discretization of a model problem, similar
to the result given in [130].

e We give the complete higher order well balanced discretization for the NSK system
based on the Discontinuous Galerkin approach for conservative, nonconservative
and higher order terms in Section 6.9. The numerical results are summarized in
the next section.
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e The main result of this work is the developed C++ software package for the dis-
cretization of general time dependent (convection dominated) partial differential
equations. The package provides

— local adaptive (stable) grid refinement of one, two and three dimensional
simplicial meshes.

— load balancing (ParMETIS based) in a parallel MPI based environment.

— higher order Local Discontinuous Galerkin discretization including noncon-
servative discretization.

— higher order time discretization based on explicit, implicit and semi-implicit
Runge-Kutta methods as well as explicit and implicit Extrapolation methods.

The discretization of the Navier-Stokes-Korteweg system is done by application
of this package.

1.3 Outline of this Thesis

In Chapter 2 we provide the thermodynamic background and discuss the Navier-Stokes-
Korteweg model together with appropriate boundary conditions in detail for the isother-
mal as well as for the temperature dependent case. We provide the dimensionless form
of the complete model as well as the quantitative relations to the corresponding phys-
ical quantities. The physical effect of surface tension that is implicitly included in the
model, in contrast to sharp interface models where surface tension is usually included
by means of an additional boundary condition at the interface, is also discussed in this
chapter.

In Chapter 3 we summarize some of the known theoretical results concerning the Navier-
Stokes-Korteweg equations. These include the results about special kinds of solutions,
such as static equilibrium and traveling wave solutions, as well as the existence of gen-
eral local or global in time solutions of the corresponding Cauchy-Problem.

The system has a very complicated structure such that the construction of analytical
solutions seems to be out of scope. However, for the validation of numerical schemes it
is important to have exact solutions available. Some of the special solutions discussed
in Chapter 3 satisfy ordinary differential equations. These kinds of solutions can be
computed via reliable numerical methods very accurately. This is the main purpose of
Chapter 4.

Chapter 5 is dedicated to the construction of basic first order schemes. We present
three different schemes:

e a scheme in conservative form that produces the correct solutions in the tested
cases,
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e a well balanced scheme in non-conservative form that does a much better job than
the first scheme,

e and a relaxation scheme that turned out to give the correct solution only in special
cases. Therefore this scheme is of very limited use.

The second scheme, the non-conservative well balanced scheme in is then generalized
to higher order schemes using the Local Discontinuous Galerkin approach in Chapter
6. We present the method in a general framework of time dependent partial differen-
tial equations including conservative terms, higher order derivatives, source terms and
nonconservative products. We discuss the Local Discontinuous Galerkin discretization
of simple examples such as the one dimensional scalar convection-diffusion equation
and a scalar model equation for the Navier-Stokes-Korteweg system. Finally we give
the complete discretization for the isothermal NSK system in one, two and three space
dimensions and the extension to the temperature dependent model in two space dimen-
sions (the extension to 3d is straightforward).

The higher order time discretization via explicit, implicit and semi-implicit Runge-Kutta
methods is discussed in Chapter 7.

In order to construct efficient numerical schemes modern numerical techniques such as
local mesh adaption, parallelization and load balancing are extremely important. These
techniques are discussed in Chapter 8. Without these techniques it is not possible to
resolve diffuse interfaces completely and solve the equation in appropriate time due to
the high computational cost.

In Chapter 9 we present the numerical results using the higher order well balanced
schemes. Here we summarize the results as follows:

e The approximate solutions converge to the exact solutions in the test cases where
a (quasi-)exact solution is known.

e The expected order of the numerical schemes is reached in practical applications.
This is observed using the test cases constructed in Chapter 4. Improving the
order of the schemes really leads to more efficient schemes.

e Local mesh adaption is necessary for the resolution of the diffuse interfaces and
leads to more efficient schemes. Simple heuristic indicators (based on density
gradients) are sufficient to track the interfaces.

e Implicit time stepping avoids a complicated time step restriction control for the
NSK system and leads to more efficient schemes.

e Parallelization of the code is necessary because of the high computational cost
and high memory consumption, even in two space dimensions. It leads to more
efficiency in the sense that the computation runs faster when more machines are
available.
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e Solutions of the Navier-Stokes-Korteweg model seem to have quantitatively the
correct physical behavior. However, physical experiments on the scale of the nu-
merical experiments are not known and therefore existing physical data is not
directly comparable to the data produced by the numerical simulations.

A description of the software package (including example implementations), physical
data of some fluids, notational conventions and some definitions that did not fit in the
above mentioned chapters can be found in the appendix.



Chapter 2

Derivation of the Model

The aim of this chapter is to derive a system of partial differential equations with
appropriate equations of state for the simulation of a liquid-vapor flow including the
effect of phase transition. However, it is not really a derivation of a mathematical
model, it is a derivation of sufficient conditions for a model to be thermodynamically
consistent under the assumption that the Helmholtz free energy does not only depend
on the state of the fluid (as in the classical case) but also on its environment, modeled
by the gradient of the density.

In order to close the system we choose a van der Waals equation of state because it
is one of the simplest equations of state that is capable to describe liquid and vapor
phases and it is in quite good agreement with many fluids when the temperature of the
fluid is close to its critical temperature.

The resulting governing equations, the Navier-Stokes-Korteweg system, belongs to the
class of diffuse interface models and can be seen as a Cahn-Hilliard type model for the
equations of gas dynamics. The model contains some nonclassical contributions of terms
that guarantee that smooth solutions satisfy the second law of thermodynamics, see
Theorem 2.2.2. There is no additional order parameter in the Navier-Stokes-Korteweg
equations that distinguishes between the liquid and vapor phases as in other diffuse
interface models, see for example [15|. Liquid and vapor phases are determined by
the value of the density only. An overview of the theory of diffuse interfaces and the
Navier-Stokes-Korteweg system can be found in [1], see also [41].

For the numerical treatment of the system of partial differential equations it is useful to
have the thermodynamic and kinematic quantities in dimensionless form available. We
provide dimensionless quantities in terms of critical values since the chosen equation of
state is a good approximation to realistic values near the critical point of the fluid. The
relation of all dimensionless values given throughout this chapter to the corresponding
physical quantities is summarized in Section B.1. In Section B.2 the necessary physical
values are provided for three different fluids. These measured values are taken from the
NIST database [125].

17
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2.1 Thermodynamic Relations

Thermodynamics is a funny subject. The first time you go through it, you don’t under-
stand it at all. The second time you go through it, you think you understand it, except
for one or two small points. The third time you go through it, you know you don’t
understand it, but by that time you are so used to it, it doesn’t bother you any more.

Arnold Sommerfeld

In the first section of this chapter we provide the necessary thermodynamic background.
Most of the information given below can be found in standard textbooks such as [87]
and [78]. Based on a Helmholtz free energy function of a fluid we can define all thermo-
dynamic quantities we need in this work in terms of this free energy and its derivatives.
We provide the equation of state we use for numerical simulations. This is the so called
van der Waals equation of state in the most general form. With the van der Waals
equation of state the coexistence of liquid and vapor phases in the fluid are possible.
This equation of state is in good agreement with many fluids when the temperature of
the fluid is close to the critical temperature, see Section B.2. Therefore it is appropriate
to express this equation of state in dimensionless form in terms of the critical values:
critical temperature, critical density and critical pressure. Later in this section we pro-
vide a dimensionless van der Waals equation of state with all unnecessary parameters
scaled out. This results in a general equation with only one parameter (heat capacity
at constant volume) left that has to be determined for different fluids. In Section B.2
we provide the missing data for different fluids.

Given a Helmholtz free energy function f = f(6,p) that may depend on the temper-
ature 6 and the density p of the fluid, all other important (with respect to this work)
thermodynamic quantities, namely the internal energy e, the entropy s, the pressure p
and the chemical potential p, can be expressed in terms of 6, p, f and derivatives of f.
In general all thermodynamic quantities are functions of 6 and p.

Definition 2.1.1 (Classical Thermodynamic Relations)
Given a Helmholtz free energy f(0,p) the thermodynamic quantities are defined by the

relations
e(6.0) = 1(6.p) — 05(0. ), internal energy, (2.1)
S(a’p) = _fQ(evp)v speciﬁc entropy, (22)
p(0.p) = p°f,(0,p), pressure, (2.3)
w8, p) = (pf(0,p)),, chemical potential. (2.4)

Note: In a single component fluid (fluids of the type considered in this work) the
chemical potential is the same as the so called Gibbs free energy. They are not the
same in multi component fluids (not considered here).
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The simplest (and one of the most important) example of a compressible fluid is that
of a perfect gas. The free energy of a perfect gas and the resulting thermodynamic
quantities are given below.

Example 2.1.2 (Perfect Gas)

The Helmholtz free energy for a perfect gas and the resulting thermodynamic quantities
(according to (2.1) - (2.3)) are given by

f@,p) = ROlog <ﬁ> — cflog <£> + cf + cst.
o to

e(d,p) = b+ cst,

_ V4 L
s(@,p) = Rlog <po> + clog <90>,

p(0,p) = Rpb.

00,00 > 0 are reference values for the density and temperature respectively and R, c, cst
are real constants with R,c > 0.

Another important example of a compressible fluid is the van der Waals fluid. The
advantage of a van der Waals equation of state is its capability to describe liquid-vapor
phase transitions below a critical temperature. The free energy of a van der Waals fluid
and the remaining quantities are given in Example 2.1.3.

Example 2.1.3 (van der Waals Fluid)
The Helmholtz free energy for a van der Waals fluid and the resulting thermodynamic
quantities (according to (2.1) - (2.4)) are given by

F0.0) = —ap+kblog [ —L—) — ctlog (L) — db + cst. (2.5)
b—p 90
e(d,p) = —ap+ch+cst,
s(@,p) = —klo P )il v +c+d
) = e\, e (% :
p0.p) = kLl —ap?
b b—p b

00.p) = k0 (—"— tiog (L)) = 2p.
b—p b—p

Here a,b,c,d, k,cst are real constants with a,b,c,k > 0 and 0y > 0 is a reference tem-
perature. The above quantities are defined for states (0, p) € (0,00) x (0,b) but the state
space is partially meaningless from the physical point of view. For example the pressure
can become negative in parts of the state space.

In the following we will always consider a van der Waals fluid. The free energy of a van
der Waals equation of state in this general form can be found in [7], see also |78]. The
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constant ¢ in the equation of state is known as the heat capacity at constant volume.
Some of the constants can be omitted for our purposes because they will drop out of the
equations we are interested in, but they might be important when effects like chemical
reactions are taken into account.

The critical temperature (the smallest temperature for that the fluid can consist of only
one phase) of a van der Waals fluid is defined (using the coefficients from Example 2.1.3)

by

| Sab
crit — 271@"

Figure 2.1 shows the pressure p and the chemical potential p as a function of the density
p for a constant fixed temperature 6 below, at, and above the critical temperature. The
critical temperature is the smallest temperature such that the graphs of p and p are
monotonically increasing.
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Figure 2.1: Graphs of pressure (left) and chemical potential (right) for temperatures
below, at, above the critical temperature.

Below the critical temperature the graph of the pressure and the graph of the chem-
ical potential consist of two monotone increasing branches separated by a monotone
decreasing branch, the so called elliptic region. This behavior makes it possible to de-
scribe vapor and liquid phases in a van der Waals fluid. The first monotone increasing
branch of p and p defines the vapor phase, the second one the liquid phase. These two
branches are connected smoothly by the elliptic region, which is a set of unphysical
states. Above the critical temperature only one phase exists, in this case the fluid is
called supercritical. A graph of the pressure with a comparison to measured real world
data for different fluids can be found in section B.2, see Figure B.5.

Associated with the critical temperature the critical density pe;+ and critical pressure
perit are defined by the inflection point of the p-graph at the critical temperature. Using
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the coefficients from above these quantities are given by

b
Perit = ga
1
= —-ab’.
Perit 27a

Using the critical values 6., perit and peri¢ we can introduce a dimensionless equation
of state for the pressure
- . 86p By
p(ecm‘t 0, perit p) = =~ — 3,02 (2.6)
Perit 3—p

ﬁ(e?ﬁ) =

that does not depend on coefficients k,a and b anymore. Additionally we introduce a
dimensionless equation of state for the internal energy. We choose a reference internal
energy

€rey = L (2.7)

that is in general not the internal energy at the critical values 0..;; and perir. The
dimensionless internal energy is defined by

a5 1 ~ -
6(97 P) = —e(acrit 0, perit P)
Eref
1 ~ -
= (cecm't 0 — aperit p)
Cref

_ Perit <Cecm’t é B 3pcm‘t [))
Perit Perit

= & —3p (2.8)
with a dimensionless parameter

= acrit Perit c. (29)
DPerit

Further we define the dimensionless free energy f, entropy s and chemical potential
by

-~ 1 B -

f(g, p) = o ff(pcrit 12 Ocrit 9)’
re

8(97 p) = ec Z;S(pcm‘t P, Ocrit 9)7

[P 1 _ -

/J,((g, P) = ° fu(pcm't P Ocrit 9)
re

Some of the constants in the free energy (2.5) of a van der Waals fluid are not important
as long as we neglect chemical reactions, i.e., these constants will drop out of all equa-
tions we consider. Thus, we can choose 6y = 0.1, d = —c, cst = 0. We summarize the
above results and define the equations of state for a dimensionless van der Waals fluid.
For simplicity we omit the tilde symbols that characterized the dimensionless quantities.
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Example 2.1.4 (Dimensionless van der Waals Fluid)

8
f@,p) = =3p+ g@log <ﬁ> + cf(1 —log(h)), (2.10)
e(@,p) = —3p+cb, (2.11)
8 p >
s(0, = ——=log|—— ) +clog(f), 2.12
.0 = ~3tog (2] +clox(®) 212
86
p(#.p) = ﬁ ~ 3%, (2.13)
8 3 p )
0,p) = 60— +1o — 6p, 9.14
(0, p) 3 <3 —, sz p (2.14)

where the dimensionless heat capacity at constant volume c is related to the physical
quantity by equation (2.9).

Note: The dimensionless quantities can be obtained from the dimensionless free energy
by the relations (2.1) - (2.4).

Definition 2.1.5 (Liquid and Vapor Phases in a van der Waals Fluid)
For a fized temperature 0 < Oy let p, € (0,b) denote the state where p and p have

their local maximum, and P, € (0,b) the state of their local minimum. Then the phases
of a van der Waals fluid are defined by

(0,5,) : wapor phase,
(ﬁv,gl) . elliptic or spinodal region,
(p1,b) : liquid phase.

Here b is equal to 3 in the dimensionless case.

Definition 2.1.6 (Maxwell States in a van der Waals Fluid)
Let O < Oqpit be a fived temperature. Then the Mazwell states pM € (0,p,) and p{w €

p(ﬁ,p{,\/[) = p(@,p{w), (2'15)
w01 = p@,p"). (2.16)

For equivalent definitions of the Maxwell states see section A.3.

Figure 2.2 shows the phases and Maxwell states of a van der Waals fluid below the
critical temperature. The Maxwell values can be seen as equilibrium values at constant
temperature, see Section 2.8. The set {pM(0) | 0 € (0,00i)} U {pM(0) | 0 € (0,0crit)}
is also called saturation curve, see the phase diagram 2.3.
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Figure 2.2: Graphs of pressure, chemical potential for a temperature below the critical
temperature, Maxwell states and boundary of the elliptic region.

The Maxwell states p2 (0) and p () of a dimensionless van der Waals fluid can be
approximated by the formulas

1.0 — V0 (2.0 — 1.5(1.0 — 9)),
M) ~ 1.0+v0 (2.0 4 0.5(1.0 — 9)).

S
=
4

Note: These formulas are obtained by curve fitting and can be used as a starting guess
for a Newton iteration to compute the exact Maxwell states. The above formulas give
quite accurate results in the dimensionless temperature range 6 € [0.6, 1.0].

Antanovskii [2] gives a generalization of the free energy and the thermodynamic quan-
tities for the case when the free energy is not only a function of the states # and p but
also depends on the norm of the density gradient o = %\Vp\Q. This dependence on the
density gradient models a dependence on the environment of the material and allows
a liquid-vapor interface to be of finite, nonzero thickness. For his definition of the free
energy Antanovskii uses the fact that a fluid at static equilibrium maximizes its entropy
which is assumed to depend on the density gradient. The idea of using gradients of the
density to model diffuse interfaces goes back to van der Waals [115] who gave a theory
based on thermodynamical principles.

Definition 2.1.7 (Extended Thermodynamic Relations)
Let an extended free energy f = f(0,p, ) be given. Then the extended internal energy

6(9,/),0() = f(97p7a)_9f9(07p7a)7 (217)
3(970’05) = _f9(97p7a)' (218)
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Figure 2.3: Phase diagram of the dimensionless van der Waals fluid.

For a function ¢ = ¢(6,p,®) where a stands for $|Vp|*> we use in the following the
notation

[0lp = ¢p =V - (9aVp) (2.19)
for the variational derivative as it is used in standard textbooks such as [32].

Antanovskii |2] gives also a definition of an extended pressure and an extended chemical
potential. We do not use these quantities explicitly but for the sake of completeness we
list these definitions at this point:

p="0flp, 1=Ipflp

where we have used the definition of the variational derivative given in (2.19).

2.2 Equations of Motion

This section is dedicated to the description of the motion of a fluid in some domain
Q) € R? as a continuous medium. The motion of the fluid is governed by the fundamental
physical laws of conservation of mass, conservation of momentum (Newtons second law),
conservation of energy (first law of thermodynamics) and entropy production (second
law of thermodynamics). Smooth solutions of the resulting governing equations will
satisfy all of the above mentioned physical principles, see Theorem 2.2.2.
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Based on the Reynolds transport theorem, see [42], we describe the evolution in time
of a fluid in a domain € R3. In the following we assume that all appearing functions
are sufficiently smooth.

Let denote w(t) C Q an arbitrary control volume that evolves in time. Then the density,
momentum and total energy of the fluid have to satisfy to following balance equations
and additionally the entropy production equation:

Conservation of mass

il
— pdx =0, (2.20)
dt w(t)

the momentum balance equation (Newtons second law)

p7 pu dx = Pn do, (2.21)
w(t) Ow(t)

the energy balance equation (first law of thermodynamics)
— ple+ zlul”) de= Pu-n—qp-ndo, (2.22)
dt J o) 2 Bw(t)

and additionally the entropy production equation (second law of thermodynamics)

d
— ps dx = / Sprod AT — / qggs-mdo. (2.23)
dt J o) w(t) Bw(t)

In the above relations p = p(zx,t) > 0 denotes the density of the fluid, u = u(z,t) € R3
the velocity, 8 = 0(x,t) > 0 the temperature of the fluid. Further, e = e(0, p, ) is the
generalized specific internal energy and s = s(6, p, ) is the generalized specific entropy
of the fluid. Here and in the following « stands always for $|Vp|?. The generalized
internal energy and entropy are related to the generalized free energy by the relations
(2.17), (2.18). P € R3*3 denotes a general symmetric stress tensor, gz € R? a general
heat flux, gg € R? a general entropy flux and Sprod > 0 a general entropy production.
They will depend on the variables p, u, 6 and on derivatives (possibly higher order
derivatives) of these variables.

Note: The symmetry of the general stress tensor P implies the conservation of angular
momentum, see for example [42].

For thermodynamic consistency it is important (otherwise the behavior of the fluid
would be unphysical) that the entropy production s,.4q is nonnegative. Using the ther-
modynamic relations (2.17) and (2.18) we derive sufficient conditions on the stress tensor
P and the heat flux q that ensure the entropy production to be nonnegative.
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Using Reynolds transport theorem, the Gauss theorem and the fact that w(t) can be
chosen arbitrarily (for details see [42]) we derive from the integral equations (2.20) -
(2.23) the equations of motion in differential form

D
Dif = —pV - u, (2.24)
D
— = -P 2.25
PO V-P, (2.25)
D
D
pﬁts = —V-.gg+ Sprod- (2'27)

where % = 0; + u - V denotes the material derivative.

using the continuity equation (2.24) and the chain rule

D D D .
—e=(eprr — (- Cu) — 2.2
ot (ethG—l—ethp—l—ean (=V(pV -u) — Vu Vp)) (2.28)
we derive the relation
D
P -V = p—
Vu—-V.-qg P i€

D D
= p <69E9 + € 7P +eVp- (=V(pV -u)— VuTVp)>

D ‘
= pegﬁte — V- (p°V - ue,Vp)
— (p2€pI — p°V - (eaVp)I — pea|Vp|*T + peanVpT) : Vu.

In the above equations the colored terms from one equation to the next correspond
to each other (by multiplying the colored terms with the remaining terms). Using the
notation (2.19), this gives

D
pegﬁtﬂ = (P + p2[€]pI+ pea(VprT - ‘VPPI)) :Vu
—V - (g5 — p°V - ueaVp).

Now, using eg = 0sg and f = e — 0s, see (2.17) and (2.18), we get
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D 1
+

0
= % (P + p*([fl, + pfa (VoVp! — |Vp|2I)) : Vu

1 ., 1 .
-V 5lae - p*V - uqu/)>> - 73(an - P*V - ufaVp) - VO

+= (p*(0[s], — 5aVp - VO) + plsqa (VpVp! —|Vp[’I)) : Vu

— |

+5V (P*V - ubsaVp) .

A further manipulation shows that

D
=Psp P — P5aVp - (=V(pV - u) = Vu' Vp)

p*(0[s], — 5aVp - V) + phsa (VpVp' — |Vp|°I)) : Vu

—

1
0
+-V. (,02V - ubfs,Vp) .

S

Using the chain rule (2.28) for s instead of e we finally arrive at

S = % (P+0°[flp+ pfa (VoVp" = [Vp[T)) : Vu
-V <% (qp —P°V- Ufan)>

—— (ap — P*V - ufaVp) - V0.

We must ensure that the entropy production is a nonnegative function. This gives rise
to the definition of a material of Korteweg type.

Definition 2.2.1 (Korteweg type material)
We call a material (a fluid) to be of Korteweg type if the stress tensor, the heat flur and
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the entropy flux are given by the relations

P = —p[f],d - pfa (VpVp" = |Vp[I) + T, (2.29)

ap = p°V-uf,Vp—rVo, (2.30)

qs = _gve, (2.31)
1 1 )

Sprod = ET :Vu + ﬁ/ﬂVH\ . (232)

T = (Vu + VUT) + vV - ul denotes the usual Navier-Stokes Tensor, p and v with
w >0, 2u+ 3v > 0 the coefficients of viscosity and v > 0 the coefficient of heat
conductivity. The coefficients p, v and k may depend on temperature and density.

Note that the coefficient v might be negative but the condition 2+ 3v > 0 ensures that
the entropy production is nonnegative, see for example [42]. A typical choice for the
coefficients of viscosity is > 0 and v = _%M which is physically correct for one-atomic
gases. The expressions for the stress tensor and the heat flux contain the classical con-
tributions of the Stokes and Fourier laws as well as nonclassical contributions in terms
of Vp, whereas the entropy flux and entropy production contain only the classical con-
tributions.

We summarize the statements above as a theorem.

Theorem 2.2.2 Let a material of Korteweg type be given and let (p,u,0) be a suffi-
ciently smooth solution of (2.24), (2.25), (2.26). Then the solution satisfies the entropy
equation (2.27) with the entropy flur given by (2.31) and a positive entropy production
given by (2.32), i.e., the solution makes sense from the physical point of view.

Note: The above given definition of a material of Korteweg type is not the only known
way to ensure the positivity of the entropy production. It is possible to add a nonclas-
sical contribution to the entropy flux in favor of the contribution to the heat flux. This
results in the classical Fourier law for the heat flux, see the appendix in [75].

2.3 The Navier-Stokes-Korteweg System

For the special choice of the extended free energy
A
F0,p,0) = (0, p) + e (2.33)
where fU"W denotes the van der Waals free energy (2.5) and A > 0 is a constant
equations (2.24) - (2.26) in conservative form read
pt+V-(pu) = 0, (2.34)
(pu); +V - (puu") +Vp = V-(r+K), (2.35)
E+V-(E+pu) = V- ((t+K)u)—V-qp. (2.36)



2.4. DIMENSIONLESS FORM OF THE NSK-SYSTEM 29

Here K = A [(pAp+ 3|Vp|*) I — VpVpT] denotes the Korteweg part of the stress
tensor, p = p(@,p) the pressure with respect to the van der Waals free energy, & =

p(e(8,p) + 3|ul?) + 3|Vp|? the total energy of the fluid and gj the heat flux from
(2.30).

The contribution %a in (2.33) is chosen such that we arrive at the classical Navier-

Stokes-Korteweg system given in the literature (e.g. [1]). Antanovskii uses the contri-
bution M« instead, see [2|. Hattori and Li state that the choice Aa might be more
physical but complicated to handle from the mathematical point of view, see [57].

For the Korteweg part of the stress tensor we have the useful identity

V.- K = \pVAp. (2.37)

The first order part of system (2.34) - (2.36) is not hyperbolic in the complete state space
because of the shape of the pressure p below the critical temperature. This results in
an unstable behavior of solutions in parts of the state space on the one hand and causes
problems for the numerical treatment of the system on the other hand, i.e., numerical
schemes that are based on Riemann-Solvers and Flux-Vector-Splitting schemes cannot
be applied to this system (at least not in the parts of the state space where the sound
speed is imaginary).

The Korteweg part of the stress tensor K was first given by Korteweg [72] in 1901.
There, the density gradients modeled a nonlocal interaction of molecules within the
liquid vapor interface. The system given by equations (2.34) - (2.36) can be found in
this form in [1]. In Chapter 3 we give some references to theoretical results associated
with the Navier-Stokes-Korteweg system.

2.4 Dimensionless Form of the NSK-System

We provide a dimensionless scaling of all thermodynamic and kinematic quantities we
have seen up to now in this section. The result is the dimensionless Navier-Stokes-
Korteweg system that has exactly the same structure and the same number of coeffi-
cients as system (2.34) - (2.36). The reference values for the thermodynamic quantities
are the critical values of the fluid.

Working with dimensionless values can be extremely useful for the numerical treatment
of the system since density, velocity, temperature, pressure and other values are always
close to the value 1. Using dimensionless values makes it is easy to decide when an
interface is small or large or when a viscosity is too small to be resolved numerically.
However, the use of dimensionless quantities does not improve the efficiency of the
numerical method. It just gives a clearer sight of the situation on the one hand and on
the other hand expressions like a total L?-error of a numerical solution may not make
sense for physical values when a vector valued solution has different units for different
components.

All relations between dimensionless and physical quantities given throughout this chap-
ter are summarized in Section B.1. In the following, values with a tilde denote dimen-
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sionless quantities, whereas the corresponding values without the tilde symbol denote
the associated physical one.

In order to derive a dimensionless system with exactly the same structure we choose
new scaled variables (denoted by tilde symbols) as follows:

T = Lz, L > 0 reference length, (2.38)
t =Tt, T > 0 reference time, (2.39)
p= %ﬁ, m > 0 reference mass in a cube L3, (2.40)
L L
u = Tﬁ’ T reference velocity, (2.41)
0 = 0.0, O.ri¢ critical temperature, (2.42)
(n,v) = gn—T([L, v), viscosity, (2.43)
L7 -
A= TN capillarity, (2.44)
ml_; heat conducti (2.45)
k= ———FK, eat conduction. .
ecm'tTg

The only non-standard scaling is the relation (2.44) for the capillarity coefficient .
The scaling between the physical and the dimensionless capillarity coefficient is chosen
such that the final system has exactly the same structure as the original system. The
reference length L is usually related to the domain €2, for example the side length of a
cube that contains 2. When we have chosen L we identify the reference mass m and
reference time 7' by the relations

m

Perit = Ea (246)

Perit L?
= —. 247
Perit 172 ( )

Further we choose the reference internal energy to be of size
L2

€ref = T3 (2.48)

Using the scaling (2.38) - (2.45) the mass balance equation reads

Perit PeritL = o o

where (-); denotes the derivative with respect to the dimensionless time variable £ and V
the derivatives with respect to the dimensionless space variable . With these scalings
and the dimensionless van der Waals equation of state (2.6) the momentum balance
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equation can be written as

ZL ~~ TL2 = ~~ o~ 7
P ()i + PV - (pu”) + PV, )
mlL ~ P o~

Lol & T3 (5ap s L) 1 o
T pAD+5IVP V|

The total energy density can be expressed in terms of the dimensionless values in the
following way

N o L%1 LTp%u N = .
€ = bt 0 (erey 20.0) + 3310 ) + L35IV

_ pcritLQ ~~if o~ 1~~2 5\~~2
= e <p6(9,p) +5plul”+ SVl
Perit L2 &

= FE.

Here we have used the dimensionless equation of state for the internal energy (2.8) and
the relations (2.38) - (2.45). Thus, finally the energy balance equation becomes

Perit L
T3

&+7 C}jt v ((€+5(0,p)a)
2 8

_ (= Perit L® < N7y

= V() + Iy - (Ka)

%v (797) - %v (39 -a%7)

7 and K denote the dimensionless Navier- Stokes and Korteweg part of the stress tensor.

Multiplying the mass balance equation by , the momentum balance equation by

L,Z2 —, the energy balance equation by L2 r and using the relations (2.46), (2.47) gives

the dimensionless Navier-Stokes- Korteweg system

<1
)
[~
[l
Qe
T
+
N

<
o
+
LE\:
el
E
=
~—
Il
<
D
N
+
=
=
~—

The dimensionless equations of state are given by (2.6), (2.8) and the dimensionless
quantities are related to the physical ones by the scaling (2.38) - (2.45).
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2.5 Including Gravity

Up to now we have neglected external (volumetric) forces, such as gravity, and heat
sources. Taking these effects into account the Navier-Stokes-Korteweg system must be
modified as

pe+V-(pu) = 0,
(pu)i + V- (puu’) + Vp =
E+V-((E+pu)

(7 + K) + pg,
(t+K)u)—V-qg+pg-u+Q.

V-
V-
where the volumetric force g € R™ and the heat source () € R may depend on space

and time variables in general. In the case of gravity, g is simply a constant vector.

Using the notation of the previous section the physical and dimensionless quantities are
related to each other by the relations

L .
9 = =9, (2.49)
L? -
Q = pcritﬁ@- (2'50)

2.6 Boundary Conditions

Typical boundary conditions on 0f2 for the Navier-Stokes equations are homogeneous
Dirichlet data for the velocity field (no-slip) and Dirichlet data for the temperature.

u = 0, (2.51)
0 = 0, (2.52)

where 6 is a given function on 92. Because of the presence of the higher order terms
in the Navier-Stokes-Korteweg equations an additional boundary equation is required.
The additional boundary conditions we use have the effect that they control the contact
angle of a diffuse interface at the boundary. The simplest choice is

Vp-n = 0, (2.53)
which is a special form of
Vp
———n = Ccosp, (2.54)
Vol

where ¢ is the contact angle between interface and boundary, i.e., ¢ depends on the
material of the fluid as well as on the material of the boundary.



2.7. THE ISOTHERMAL CASE 33

liquid
1}15600

U

vapour

wall EZ/%

Figure 2.4: Contact angle of a diffuse interface.
2.7 The Isothermal Case

The main focus of this work is the development and verification of reliable numeri-

cal methods for the isothermal version of the Navier-Stokes-Korteweg system. In the

isothermal case, i.e., we neglect the energy balance equation and assume that the tem-
perature stays at a constant state, the Navier-Stokes-Korteweg system reduces to

pe+V-(pu) = 0, (2.55)

(pu)y +V - (puu’) +Vp(p) = V- (1 +K), (2.56)

with the no-slip boundary condition (2.51) and ( either (2.53) or (2.54) ).

Here the free energy fUW depends only on the density p and therefore the pressure is
given by p(p) = pr;)’dW(p). The temperature is only a parameter which is kept at a
constant state below the critical temperature such that phase transitions are allowed.

In the case of boundary condition (2.53) we have additionally an energy decay equation.

Lemma 2.7.1 Let (p, pu) be a (sufficiently smooth) solution of the isothermal Navier-
Stokes-Korteweg equations with boundary conditions (2.51) and (2.53). Then the energy
decay equation

%/g(p,pu,a) dm:—/T:Vuda: <0 (2.57)
Q Q

is satisfied, where £ = p (f(p) + @) + Aa denotes the total physical energy density
and o = 3|Vpl?.
Proof. We set

W(p) = pf*™ (p). (2.58)

Then, because of the definition of the pressure (2.3), we have the relation
p(p) = pW'(p) = W(p) (2.59)
for the pressure. We multiply the continuity equation (2.55) with (W'(p)— g) and the

momentum equation by w. Summation of both parts and integration over the domain



34 CHAPTER 2. DERIVATION OF THE MODEL
Q) gives

[ (w60 =5) (6 9 (o)
Q

+u- ((pu); + V- (puu’) + Vp(p) = V-7 - V- K) dx =0.

We replace the term V - K using the relation (2.37), by reordering the terms we get

2
/W ——‘pt—l—u (pu)y dm—/)\pu-VApd:n
= /u-V'Tda:—/u p)Vp+Vp(p) + W' (p)pV - u dz
Q Q
ry  |uf
— u-V~(puu)—TV-(pu)da¢.
Q

We apply integration by parts to the colored terms. All boundary integrals vanish due
to the boundary condition w = 0 on 9.

d d ( |ul?
/EW(p)%—%(p 5 )dm—l—/)\v-(pu)Apdm
Q Q

_ / oV de / w- V(W (p) +plp) — W'(p)p) dac

Q Q
T |ul?
—[u-V-(puu')+pu-V N dr.
Q

Now we use the continuity equation and replace the term V- (pu) by —p; in the second
integral on the left hand side and again we perform integration by parts on this term.
The resulting boundary integral vanishes because of the boundary condition Vp-n =0
on 0Q2. The second integral on the right hand side of the equation vanishes because
of the identity (2.59). The integrand in the last integral can be written in divergence

Dy + L (e d+/w Vpd
dt Ta\Pa ) pe:Vpox
Q Q

—/T:Vuda:—/v-(p|u|2u) dx
Q Q

The last integral vanishes due to the Gauss theorem and u = 0 on 0f2. Finally we get

form.

d ‘u’|2 A 2
— :¥7 < 0.
Q
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An important class of solutions are static equilibrium solutions, i.e., steady state so-
lutions where the velocity field vanishes completely in the domain €2. This kind of
solutions satisfies a nonlinear elliptic equation. We state this in the following lemma.

Lemma 2.7.2 Let 2 be connected and let (p, pu) be a smooth static equilibrium solution
of the isothermal Navier-Stokes-Korteweg equations, i.e., a solution that satisfies ps =0
and u =0 in Q x (0,00). Then the density satisfies the nonlinear elliptic equation

w(p) — AAp = est, (2.60)

where the constant on the right hand side is in general not known and p denotes the
chemical potential (2.4) that does not depend on temperature in the isothermal case.

Proof. All terms including w and the gradient of w, this means 7, drop out and only
the pressure and Korteweg term in the momentum equation remain

Vp(p) =V - K.
Using the identity p,(p) = puo(p) (2.3), (2.4) and the identity (2.37) we obtain
Viu(p) = AVAp

and therefore we have for some constant
n(p) = AAp = cst,

which completes the proof.

From another point of view equation (2.60) is the Euler-Lagrange equation (and the
constant on the right hand side of this equation the Lagrange multiplier) for the mini-
mization problem

A
/W(p)+§\vp\2 dxr — min, (2.61)
Q

with the constraint that the total mass is conserved

/p dxr = m, (2.62)
Q

where the function W is defined as in (2.58) and m is some positive constant. The en-
ergy functional in (2.61) consists of the (isothermal) internal energy and the Korteweg
part of the energy. A fluid of a given fixed mass at static equilibrium should minimize
this energy functional. From (2.61) one can clearly see that the Korteweg term acts like
a panelization term for phase transitions (at least at static equilibrium) because where
a phase transition occurs the gradient of the density is large.

The minimization problem (2.61), (2.62) and its Euler-Lagrange equation (2.60) play
an important role in giving a physical meaning to the parameter A in the Korteweg
term. This parameter is related to surface tension (at least at static equilibrium) in
some sense. The next section is dedicated to this relation, the theoretical background
is summarized in Section 3.1.
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2.8 Surface Tension at Static Equilibrium

The goal of this section is to relate the coefficient A in the Korteweg term to the physical
effect of surface tension. For the theoretical background see Section 3.1.

In sharp interface models, i.e., models where the change from one phase to another
is discontinuous and the interface itself is a set of measure zero, the effect of surface
tension is usually modeled by an additional contribution to the stress tensor that acts
only on the interface, see for example [79] and Section 4.4.1.

In a sharp interface model for a liquid-vapor flow we can decompose the domain €2 into
two distinct subsets €2, §2;, the vapor and liquid parts respectively, and an interface of
measure zero. At a static equilibrium configuration the density in the vapor and liquid
part are constant values denoted by p,, p; and they satisfy a mechanical equilibrium
condition (the Young-Laplace law) and a phase equilibrium condition namely

p(p) —plpy) = (n—1)0kp, (2.63)
u(pr) — p(ps) = 0, (2.64)

see [75] and the references therein, see also [79]. Up to now we have always considered
the three dimensional space, in order to be more general we consider the n-dimensional
space for n > 1. k,, denotes the mean curvature of the interface and the constant
coefficient ¢ denotes the surface tension of the fluid.

Note: If surface tension is neglected (o = 0) and in the planar case the values p, and
p; are equal to the Maxwell values (2.15), (2.16).

Y

Characteristic for the class of diffuse interface models is the smooth and continuous
change from one phase to another. Thus, we cannot simply decompose the domain
in liquid parts, vapor parts and an interface of measure zero as we could in the case
of sharp interface models. But in the case of our model, the Navier-Stokes-Korteweg
system, we can find distinct sets €, C Q, Q; C Q, Q; C Q with Q, UQ; UQ; = Q such
that there exist constant density states p, and p; with |p — p,| is small in Q,, |p — p1] is
small in ; and the measure of the interface €; is small. See Section 3.1 for a rigorous
treatment of the above and the following statements.

Kraus and Dreyer showed [75] that the mechanical equilibrium condition and the phase
equilibrium condition can be recovered (up to an error of higher order in the coefficient
A) in the case of the Navier-Stokes-Korteweg model at static equilibrium. They showed
that

plpr) = p(py) = (n— 1)coVAkm + o(VN), (2.65)
w(p) = plpy) = o(VA). (2.66)

Where

!
co = \/5/ \/,of(p) — pu(pd!) + p(p3?") dp. (2.67)
p3!
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Thus, comparing (2.63) and (2.65), we can identify the effect of surface tension that is
implicitly included in the Navier-Stokes-Korteweg model by the relation

o= coVA (2.68)

Note that the error term o(v/\) is neglected.

Note that equation (2.65) is an asymptotic formula for A — 0. Therefore the identifica-
tion with surface tension (2.68) may make sense only in a regime where X is sufficiently
small. In Section 4.1.2 we approve by numerical computations of static equilibrium
solutions that the error in the asymptotic is negligible in the regime of our interest and
hence, the identification with surface tension makes sense in the case of our numerical
simulations.

In general, the free energy f and therefore the Maxwell values and the coefficient ¢
depend on the temperature. Using dimensionless variables in terms of the critical values,
i.e., perit p= p and 0.5 0 = 6, we have

i (0)
w® = VE [ \/or(6.0)~ (6.l (6) + (0,01 6)) dp
P (0)

= Perit \/Perit é0(9)7

where the dimensionless quantity ¢y is defined by
A" (0)
G0 = V2 / \/ pf0,p) — pi(0, 5 (0) + p(0, 5 (0)) dp.

pA()

The coefficient ¢y can be approximated by the formula

Go(0) ~ V2-1/1.0 -4 - (6.4 (10— 6) —0.7- (1.0 — 5)2) . (2.69)
This formula is obtained by curve fitting and gives quite accurate results in the dimen-
sionless temperature range 6 € 0.6, 1.0].

Using the relation (2.68) and the scaling (2.44) this gives for the dimensionless coefficient
A the identity
NG
N Ocrit 0
o (W) ) (2.70)
L DPerit €0 (9)

Note: The coefficient \ depends on the temperature 0 in general whereas we have
assumed that it is a constant coefficient in the Navier-Stokes-Korteweg model. Thus, it
has to be fixed to some mean temperature in the temperature dependent model and to
the reference temperature in the isothermal model.
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2.9 Interface Width

A scaling argument given in [95] (Proposition 2.2.7) shows that the width of the diffuse
interface between the phases must be proportional to v/A. The proportional constant
remains to be determined. However, the definition of the interface itself is arbitrary (up
to some degree). We give possible definitions for the interface and the interface width
in Section 4.1. Using the numerically computed profiles of static bubbles for different
reference temperatures and different coefficients A we can determine the width of the
interface w(f, \).

Below the critical temperature we observe (see Section 4.1 especially (4.9)) that the di-
mensionless interface width @w(6#, A) of a dimensionless fluid can (roughly) approximated
by the formula

D6, = 5.4-0%- V).

This is a very rough formula but quite useful to construct initial data that consists of
liquid and vapor phases and for rough estimates of the interface size. Numerical exper-
iments show that a suitable interface size of the initial data is important to guarantee
the stability of solutions. Otherwise instabilities are observed. The above formula is
obtained from the computations of static bubbles. The interface size may also depend
on the dynamics of the phase boundary. Such effects are not taken into account but
this should not make a big difference.

2.10 Realistic Length Scale

The goal of this section is to determine the maximal possible diameter L,,,, of a domain
that can be chosen for realistic numerical simulations of liquid-vapor flows when all
physical parameters are adjusted correctly. This means, chosen as described in the
previous sections. The result of this section is that L., is extremely small (in the
micrometer regime).

We assume that the diameter of the dimensionless computational domain is equal to one.
We assume that the minimal possible interface that must be resolved by the underlying
computational mesh is Wy, = 1.0-1073. This is what is possible at time of this writing
when all modern numerical techniques such as local mesh adaption, parallelization, load
balancing, higher order schemes are combined and for the computation it is possible to
run on many processors and for many days (possibly weeks).

Using the formula for the interface width from the previous section together with the
scaling for A from (2.70) we get a formula for L., in terms of W,,, the reference
temperature and the critical values.
- 0
Linaz = 5.4 0%, — o) (2.71)
Wmin Perit CO(eref)

As an example we choose water at different temperatures.
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Example 2.10.1 (Water at different temperatures)

We choose the three dimensionless reference temperatures 6,.y = 0.85, 0,..; = 0.90 and
Orer = 0.95. As discussed above we choose the minimal possible interface size

Wpnin = 1.0-107°
and the critical pressure of water is
Perit = 22.064 - 106%,
m
see Section B.2 and Table B.1. Using the formula (2.69) we have for the coefficient ¢
¢(0.85) = 0.52, ¢p(0.90) =0.29, ¢,(0.95) = 0.10

and for the determination of the surface tension (roughly is sufficient) we can make use
of figure B.4

N N N
0(0.85) =2.0-1072—=, (0.90) =1.2-1072—, (0.95) =5.0-103—.
m m m

As result using the formula above we get

Limaz(0.85) = 3.54-107%m,
Limaz(0.90) = 2.38-107%m,
Limaz(0.95) = 1.10- 10 %m.

This means that the largest possible domain for realistic numerical simulations must
be in the micrometer regime. This is at least one or two orders of magnitude too small
for realistic numerical simulations of the experiment discussed in the introduction, see
Section 1.1.

2.11 Artificial Enlargement of the Interface

We have seen in the previous section that the domain in that a liquid-vapor flow can
be simulated using the Navier-Stokes-Korteweg model must be extremely small (in the
micrometer regime). This is because the diffuse interface must be completely resolved
by the underlying computational mesh. One way to overcome this problem is to enlarge
the interface by increasing the coefficient A\. The width of the interface in proportional
to vV \. The problem is that at the same time the surface tension force is increased that
is also proportional to v/A. In cases where other forces do not significantly dominate
and the effect of surface tension can not be increased without changing the dynamics
completely, this approach cannot be applied.

In [64] an approach is presented to artificially enlarge the interface without changing the
effect of surface tension. But with this approach it is necessary to change the behavior
of the fluid by replacing the equation of state. The idea is to replace the van der Waals
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equation of state by a modified equation of state such that certain thermodynamical
properties are preserved for density states close to the Maxwell states.

Thus, in this approach the model is modified and therefore we do not consider this
approach in the present work since we are interested in the validation and applicability
of the original Navier-Stokes-Korteweg model.



Chapter 3

Summary of Theoretical Results

We give a summary of existing theoretical results concerning the Navier-Stokes-Korteweg
system. In the first two sections we discuss the existence of special solutions such as
static equilibrium solutions and traveling wave solutions. Under some assumptions,
these types of solutions satisfy ordinary differential equations and can be solved by
application of existing ordinary boundary value problem solvers. We do this in the
next chapter such that we have these kinds of solution as benchmarks for numerical
schemes available. Another aspect of the first section is the clarification of the effect
of surface tension that the Korteweg term in the NSK system implicitly includes. The
third section is dedicated to the discussion of general solutions, i.e., solutions of the
Cauchy problem in multiple space dimensions for the isothermal and the temperature
dependent Navier-Stokes-Korteweg model as well as solutions of the initial boundary
value problem.

3.1 Static Equilibrium Solutions and Surface Tension

The Objectives of this section are the discussion of the existence of static equilibrium
solutions for the isothermal Navier-Stokes-Korteweg equations on the one hand and
the rigorous clarification of the role of surface tension in the model on the other hand.
Throughout this section we assume that the reference temperature of the van der Waals
equation of state is fixed to a value below the critical temperature such that the fluid
can undergo phase transitions. According to Lemma 2.7.2 a smooth solution of the
NSK equations satisfies the nonlinear elliptic equation (2.60). This equation is also the
Euler-Lagrange equation for the minimization problem we state below.

Let £ C R™ be an open bounded domain and let f denote the free energy of an isother-
mal van der Waals fluid. We define W (p) = pf(p). For a constant m > 0, a scaling
parameter € > 0 and p° € H'(2) we consider the following minimization problem with
the constraint that the total mass in {2 is conserved:

2
/W(ps(w)) + %|Vp5(m)\2 dx — min, /ps(a:) dx =m. (3.1)
Q Q

41
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In this section we characterize static equilibrium solutions by minimizers of the mini-
mization problem (3.1). A smooth minimizer of the minimization problem (3.1) satisfies
the FEuler-Lagrange Equation

W/ (p°) — ?Ap® = in Q, (3.2)

where the constant ¢ € R is the Lagrange multiplier, see for example [32]. By definition
of W the function W' is equal to the chemical potential p (see definition 2.1.1) and thus,
equation (3.2) is the same as the equilibrium condition (2.60). Here the coefficient A is
replaced by 2.

Gurtin and Matano proved the existence of minimizers of the variational problem (3.1),
see [56]. Gurtin and Matanos theorem, the theorem by Modica [86] and the results by
Kraus and Dreyer, we will discuss in this chapter, are not restricted to a van der Waals
equation of state. These results are valid for a general (double well) free energy f with
certain properties, see [75] for details. These properties are satisfied by a van der Waals
equation of state if the reference temperature is fixed to some value below the critical
temperature.

We summarize the results by Gurtin and Matano in the following theorem.

Theorem 3.1.1 (Gurtin, Matano [56])
Let € > 0.

(1) There exists a global minimizer p* of the minimization problem (3.1).

(ii) A local minimizer p¢ is contained in C3(SY), satisfies the Euler-Lagrange equation
(3.2) and has natural boundary conditions

Vp*n=0 ondf.

Note: This is boundary condition (2.53).

Modica [86] considered a family of global minimizers (p®)cso of the minimization prob-
lem (3.1). He proved that for ¢ — 0 a subsequence converges in L(Q) to some limit
function p° that assumes only two values (the Maxwell states) almost everywhere and
the (sharp) interface between the liquid and the vapor phase is minimized in some sense.
For the statement of Modicas results we need some definitions given below. For some
function u € LY(Q) we define

Q/\Du(a:)\ dx = sup{/ﬂu(m)VdJ(m) dx

b e Q). 0] < 1}.

For some measurable set £ € R™ we define the perimeter of £ in () by
PolF] :/|DXE(:L')| de.
Q

In the above definition x g denotes the characteristic function of the set . The perime-
ter is a generalization of the (n — 1)-dimensional Hausdorff measure, i.e., if 0ENQ is a
Lipschitz continuous hypersurface then H,,_1(0E N Q) equals Po[E].
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Theorem 3.1.2 (Modica [86])
For e > 0 let p° denote a global minimizer of the minimization problem (3.1) and let
m e [py! 19, p[9].

(i) There exists a sequence (eg)ren with lim e, = 0, a corresponding sequence of
k—o00

global minimizers p°* and a function p° € L'(Q) such that

Jm [[p% = 7|1 ) = 0.

(ii) For the function p° we have
P =p or P =p
almost everywhere and py € BV ().

(iii) The set U, = {x € Q| p°(x) = pM} is a minimizer of the geometric variational
problem

Po[U,] = min {pQ[F] ' FcQl|F| = PR —m } .

pt = pM

Furthermore we define the set U; = Q\U,,.

In the case where the mean density has a value between the two Maxwell states Modica
proved that in the limit ¢ — 0 a subsequence of global minimizers of problem (3.1)
converges to function p? in L'(Q), where the function p° assumes only the Maxwell
states and the interface between the liquid and vapor phases is minimized. From the
physical point of view a minimal interface is the correct behavior but this also means
that the pressure in the vapor phase equals the pressure in the liquid phase. We have
for the liquid and vapor states p; and p,

p(pr) —p(py) = 0,

in contrast to the Young-Laplace law (2.63), see also [79], that must be satisfied by the
physical relevant solution

p(p) —plpy) = (n—1)cky,.

According to the Young-Laplace law this means that either the mean curvature k,, of
the interface is equal to zero (e.g. a flat interface) or the surface tension is equal to
zero (surface tension neglected). However, surface tension is a very important physical
property and cannot be neglected in most cases. Therefore the limit function p¥ is
obviously not the correct solution from the physical point of view and in the (sharp
interface)-limit € — 0 there is no surface tension left. Thus, the above contradiction
cannot be solved by the sharp interface limit.

Now the idea is not choose the limit function but some function p® from the limit process
for some small value € > 0 as the relevant solution. In this case we have a diffuse interface
and inside the interface the function p® changes rapidly from one nearly constant state
to another nearly constant state. We cannot decompose the domain into vapor and
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hquld sets U,, U; and an interface I of measure zero but we can decompose it into sets
U Ul where the function p® nearly assumes constant vapor and liquid states. Finally
the diffuse interface I does not have measure zero but has a small measure.

Thus, the challenge is to determine the right small parameter € > 0 such that the Young-
Laplace law and the phase equilibrium condition (2.64) are satisfied in some sense.
Kraus and Dreyer [75] showed that the parameter £ > 0 can be identified with surface
tension and they give an asymptotic formula that relates the parameter € to surface
tension. We summarize the main statements of this work in the following theorem.

Theorem 3.1.3 (Kraus, Dreyer [75])
Let (eg)gen with klim er = 0, p°% a sequence of global minimizers of the variational
— 00

problem (3.1) that converges to p° as in theorem 3.1.2. Further let U, cc U, and
U, ccU,. Then

() oF(a) = oM 4 ek p, +o(eh) x e U,
pM + ek p +o(eF) x €U
(ii) p (p%*(21))—p (p°% (24)) = (n—1)cokmer~+o(er) for almost all z, € U, and x; € U;.
Here ky, is the constant mean curvature of the reduced boundary of U,.
(iii) (oo (1)) — p (p°* (22,)) = o(er,) for almost all z, € U, and x; € U},

The constant cy is given by relation (2.67).

Note: The reduced boundary 0*U, of U, is a dense subset of U, which consists of
countable union of smooth hypersurfaces, see [75] and the references therein.

As discussed before the physically relevant solution p has to satisfy the Young-Laplace
law and the phase equilibrium condition namely

p(p(x1)) = p(p(xy)) = (n—1)okn,
n(p(z)) — plp(zy)) = 0,
and, of course, p assumes only two values in the case where two phases are present.

We compare these requirements to the formulas given in item (ii) and (iii) of the above
theorem

p(p(w1)) —p(p°(20)) = (n—1)cockm + o(e),
plp(xr)) — p(p®(wy)) = ofe),

for z, € U, and z; € U

for x, € Uv and x; € Ul.

As a result we can associate the parameter ¢ with surface tension, required that e is
sufficiently small, by the relation

o = CoE. (3.3)

The question that remains is where the asymptotic regime begins (where ¢ is small
enough) such that the above formula is applicable. The numerical justification of this
formula performed in Section 4.1 shows that the error term o(e) is negligible even for
quite large interfaces (large values of ¢).



3.2. TRAVELING WAVE SOLUTIONS 45

3.2 Traveling Wave Solutions

Benzoni-Gavage proved in [11], [12| based on [106] the existence of traveling wave so-
lutions for the isothermal Navier-Stokes-Korteweg system with a modified third order
capillarity term. The proof is split into two parts. The first part shows that traveling
wave solutions exist when the viscosity in the model is neglected, the second part gen-
eralizes this to the case with small viscosity. We summarize these results and give a
proof for the first part for the unmodified Navier-Stokes-Korteweg equations.

We consider another kind of special solutions to the isothermal Navier-Stokes-Korteweg
equations in this section. We investigate the existence of propagating planar phase
boundaries and therefore we can restrict ourself to the one dimensional system which
reduces to

Pt + (pu)x - 07

inRxRso.  (3.4)
(pu)e + (pu® +p(p))e = Uaw + A (ppzz — 302) =

We are interested in traveling wave solutions of system (3.4), i.e. smooth solutions of
the form

plet) = pla—st),

t
u(z,t) = u(z— st), (8:5)

that connect left states (p~,u~) and right states (p*,u™) in different phases and prop-
agate with a constant speed s € R (' denotes the derivative with respect to x — st)

p(Eoo) = pt,  d(£oo) =uF,  j(+o0) =0. (3.6)

The left and right states must satisfy, see for example [100] or [34], the Rankine-Hugoniot
relation

p (u” —s)=pT(ut —s5) = m, (3.7)
pru(um —s)+p(p) =p ut(ut —s)+plpt) = (3:8)

This ansatz leads to an algebraic relation between the velocity @ and the density p and
results in a second order ordinary differential equation for p. For notational simplicity
we omit the tilde symbol

1 em m? _
A <pp” - Q(p')2> = ?p’ = +p(p) +ms —m(p”), (3.9)

where 7(p™) is defined by the relation

m2
w(p~) = = +ms+p(p). (3.10)

Here we have used definitions (3.7) and (3.8).
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3.2.1 Existence of Traveling Wave Solutions for a modified System

In [12], [11] the existence of propagating planar phase boundaries was proven for the
modified Navier-Stokes-Korteweg system

pt+(pu)33 = 0,

3.11
(pu)t + (pu2 +p(p))x = EUzy — AVggz, ( )

where v = 1 denotes the specific volume. The difference to the unmodified system (3.4)
is the Korteweg part of the stress tensor. The Korteweg term in (3.11) is the one that
usually appears in Lagrangian coordinates, see [106]. It is not clear if this term has any
physical relevance in Eulerian coordinates.

The traveling wave solution ansatz (3.5), (3.6) leads to the profile equation
M = emv’ —m?v — p(v) + 7(v7), (3.12)
v(do0) = v, V(£o0) =0, (3.13)
with the definitions

~ 1 L o 9 _
P =p(3). 70 =)+t
The proof for the existence of solutions including phase transitions of (3.12), (3.13) in
[12], [11] is split into two parts. In the first part the existence of profiles is shown in
the case where the viscosity € is equal to zero. The second part extends this to small
viscosity € > 0. We summarize these results below.

Lemma 3.2.1 (Benzoni-Gavage)

Let € = 0. Then there exists a constant mo > 0 such that for all m € (—mg, mo)
there exist left (vapor) and right (liquid) states v~ (m) and v (m) in neighborhoods of
the Mazwell states and a solution of (3.12), (3.13) that connects v~ = v~ (m) with
vt =wvT(m). This profile is unique up to translation.

Theorem 3.2.2 (Benzoni-Gavage)

There exists a mg > 0 and an g9 > 0 such that for (m,e) € (—mg, mg) x (0,gq) there
exist left (vapor) and right (liquid) states v—(m,e) and v*(m,e) in neighborhoods of
the Mazwell states and a solution of (3.12), (3.13) that connects v~ = v~ (m,¢e) with
vt =wvT(m,e). This profile is unique up to translation.

Besides the existence of solutions for equation (3.12) in [12] it is also proven that trav-
eling phase boundaries of the modified system (3.11) have certain stability properties
in the case € > 0.

3.2.2 Possible Extension to the unmodified System

The next lemma shows that the unmodified version of the NSK system has traveling
wave solutions in the case where the viscosity is equal to zero, i.e., (3.9) has heteroclinic
orbits.
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Lemma 3.2.3

Let ¢ = 0. Then there exists a constant mg > 0 such that for all m € (—mq,mg)
exist unique left (vapor) and right (liquid) states p~(m) € (0,5,) and p*(m) € (p,,b)
and a heteroclinic orbit of (3.9) that connects p~(m) with p™(m) and is unique up to
translation.

For m — 0 the left and right states converge to the Mazwell states, i.e.,

lim p~(m) = py’,  lim p*(m) = p".

m—0

Note: It is also possible to choose the left state p~ in the liquid phase and the right
state pT in the vapor phase and Lemma 3.2.3 is also valid in this case.

Proof. We multiply equation (3.9) by p/p~2. Since viscosity coefficient € is equal to
zero this results in

%((P’)%‘l)’: [m2 <13 ! >+p(p) —229(/))}[),

pd pPp” p

and integrating this equation from —oo to ¢, using p(—oc) = p~ and the transformation
formula we get

Ap'(t)?
2 p(t)
where the function ¢ is defined by the relation

(b(m’p_’p):/’) 2 (i_ 21>+p(8)—p(p) i,

2
P s

= ¢(m? P, p(t))a

We show that for sufficiently small m there exist unique states p~(m) and p*(m) close
to the Maxwell states such that ¢(m, p~(m), p*(m)) = 0 is satisfied.

We define a function F : R x Ryg x Ryg — R? by
2(L L Y\ p(p—
F(m,p_,f):(m <P+ P*)er(p) plp )>.
¢(m,p~,p")
For m =0, p~ = p} and p™ = pM we have
F(O’pf)w’pljw):()

by lemma A.3.2 and for the derivative with respect to (p~, p™)

Dy, iy F(0, oM, pM) =
(o) (0,07, 01) (p/(M)(l 1) 0
and

1 1
det (D(pipﬂF(O,Pf)w’PzM)) =" (py") (p") (p_M - p_M) > 0.
v 1
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Note that the van der Waals pressure function is always a monotonically increasing
function in the vicinity of the Maxwell states. Thus, by the implicit function theorem
there exists a constant mgy > 0 such that for |m| < mg we have unique states p~(m)
and p*(m) in the neighborhoods of the Maxwell states with

¢(m, p~(m),p*(m)) =0.

By similar arguments as in lemma A.3.3 we can show that for sufficient small m we
have

¢(m, p~(m),p) >0 forall pe (p~(m),p" (m)).

For small m we set

B(0) = |/ 2p0tm. o (m). )

® is a strictly positive smooth function on the interval (p~(m), p™(m)) and a continuous
function on [p~(m), p*(m)]. We have ®(p~(m)) = 0 and ®(p™(m)) = 0. Hence, for
the scalar equation

P (t) = 2(p(t))

there exists a heteroclinic profile that connects the states p~(m) and p*(m). This
profile is unique up to s shift and monotonically increasing.

Hence, we have the existence and uniqueness (up to s shift) of a heteroclinic profile for
equation (3.9) in the case where ¢ is equal to zero. This completes the proof.

The existence of heteroclinic profiles for equation (3.4) is not proven up to now. The
first step for this existence is proven in Lemma 3.2.3. For the second step one could try
to apply the Centermanifold theorem as for equation (3.12), see [11|. The numerics in
Section 4.2 indicate that profiles exist for this equation. We formulate these speculations
as conjecture.

Conjecture 3.2.4

There exists a mg > 0 and an ey > 0 such that for (m,e) € (—mgo,mo)x(0,e9) there exist
unique left (vapor) and right (liquid) states p~(m,e) € (0,5,) and p*(m,e) € (p,,b) and
a heteroclinic profile of (3.9) that connects p~(m,e) with p*™(m,e) and is unique up to
translation.

For m — 0 the left and right states converge to the Mazwell states, i.e.,

lim p_(m,s) = pfz\/l’ lim p+(m,5) = pl]\/l'
m—0 m—0

Provided that this conjecture is true we can reformulate it in a form we use in Section
4.2.

Corollary 3.2.5

Let left and right states (p~,u™) and (p™,u™) that satisfy the Rankine-Hugoniot relation
with density states close to the Mazwell states and small velocity states be given. Then
there exists an € > 0 such that a profile of (3.9) exists. This profile is unique up to
translation.
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3.3 General Solutions

We give a summary of results concerning existence and uniqueness of solutions for the
isothermal and full temperature dependent Navier-Stokes-Korteweg model in multiple
space dimensions. The results are concerning the Cauchy problem as well as the initial
boundary value problem.

Local Existence for the Cauchy Problem

Hattori and Li [57] showed that for sufficiently smooth initial data the Cauchy-Problem
(2 = R™, here with n = 2) for the isothermal Navier-Stokes-Korteweg system has a
(short time) solution.

For the existence result the monotonicity of the pressure p is not required as in other
existence results. The main result is the following theorem.

Theorem 3.3.1

For any initial data (po,wo) such that the condition py > § > 0 is satisfied and (py —
po,wo) € HF(R?)? for k > 4, where py > 0 is a constant, there exists a time T > 0 such
that in [0, T] the Cauchy-Problem for the isothermal Navier-Stokes-Korteweg system
(2.55), (2.56) has a unique solution (p,u) such that p—po € L™ ([0,T]; H**1(R?)) and
u € L™ ([0,T]; H*(R?)?).

Additionally the solution can be estimated by the initial values in some norm, see [57].

Note: The authors state that the same result can be obtained in the three dimensional
case.

Global Existence for the Cauchy Problem for the full System

In [58] Hattori and Li give a local in time existence theorem as well as a global exis-
tence theorem for small initial data for the full temperature dependent Navier-Stokes-
Korteweg model (2.34) - (2.36) in three space dimensions with = R3, i.e., the Cauchy
problem.

For these results some restrictions on the thermodynamic quantities are necessary such
as the monotonicity of the pressure in the density. This means that only one phase can
exist. The requirements are the following

pp(0,p) > 0,
69(07p > 0,
foa(0,p) < 0,

for all density values p and temperature values 6 in the state space. In the above
equation p denotes the pressure, e the specific internal energy and f the Helmholtz free
energy.
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Before we state the main results of [58] we introduce some definitions for notational
simplicity. For T'> 0 we define the Banach space Y;(T) by

Yi(T) = C ([O,T), Hk(R3)> N L2 ((o,T), Hk+1(R3))

and for functions p € Y*H(T), vt € Y¥(T) for i = 1,2,3 and 0 € Y*(T') we define

By [pu,0] 1) = sup (Hp( ) s e +Z\|u ) sy + 1100 >|\zk(Rs)>,

s€[0,t]

t
Fy, |:ﬁ7u7é:| (t) = /(HP HH’€+2(R3 ‘f’ZHU HHk+l(R3 -|-H¢9( )H%{kJrl(RB)) ds.
0

=1

For the existence of local in time solutions a smallness assumption on the initial data
is not necessary (at least not explicitly stated in [58]|). However, the initial density and
temperature should be at least positive to be meaningful from the physical point of
view.

Theorem 3.3.2 (Local Ezistence)
Let the initial data (po + p, wo, 0o + 0) satisfy for some k € N with k > 3

po € HTURY),
uy € HFR®)  fori=1,2,3, (3.14)
6y € HFR?),
where p and O are some positive constants. Then there exists a time T > 0 such that
we have a unique solution (p+ p,u,u?, u3,0+0) of the temperature dependent Navier-

Stokes-Korteweg system (2.34) - (2.56) with p € YEU(T), ut € YR(T) fori =1,2,3
and 0 € Y*(T).

In contrast to the theorem above for the global existence result a smallness assumption
on the initial data is necessary.

Theorem 3.3.3 (Global Existence)
Let the initial data satisfy (3.14) for some k € N with k > 3. Then there exist positive

constants €y and Cy such that for Ej [ﬁo,uo,éo] (0) < &9 we have a unique global

solution (p + p,ut,u?, u?, 6 + 0) of the temperature dependent Nawvier-Stokes-Korteweg
system (2.84) - (2.36) with p € Y*1(00), u' € Y¥(c0) fori =1,2,3 and 0 € Y*(0)
and the solution satisfies the estimate

By [ﬁ, u,é} (1) + F [ﬁ,u, é] (1) < CoEy [ﬁo,uo,éo] (0) for t>0.
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Global Existence of Weak Solutions

In [17] the isothermal Navier-Stokes-Korteweg system in a slightly modified form is

considered.

(pu); + V-(puu")+Vp(p) = V- (F+K).
Here the viscous part of the stress tensor 7 differs from the previous definition of the
viscous stress. 7 is given by the relation

T=vp (Vu—i— VuT) .

(3.15)

The modification is done mainly for technical reasons and not for physical motivation.
Bresch, Desjardins and Lin [17]| proved the global existence of weak solutions in a pe-
riodic domain without the restriction of smallness of initial data. However, the proof
requires that we have for the pressure

pp(P) >0

for all density values p, i.e., the fluid does not undergo phase transition. The main
result is the following theorem.

Theorem 3.3.4
Let the space dimension be n = 2 or n = 3. Then there exists a global weak solution
(p,u) of equation (3.15).

For the definition of weak solutions of equation (3.15) see [17].

Existence for the Initial Boundary Value Problem

Kotschote proved in [74] the local existence and uniqueness of a solution of the initial
boundary value problem (2.55), (2.56), (2.51), (2.53) for the isothermal Navier-Stokes-

Korteweg system. The monotonicity of the pressure is not required. We summarize the
main result in the following theorem.

Theorem 3.3.5
Let Q C R™ be an open bounded domain with C3-boundary and n+2 < p < co. Let the
inatial data satisfy the following regularity and compatibility conditions

2

2-2 3-2 5 ,
o ug € By, "(1;R™),  po € Bpp " (), po>0inQ (reqularity),
22 2.3
e ug = 0 in By, (0 R™), Vpg-n =0 in By, "(0Q) (compatibility of the
initial data with the boundary conditions).

Then it exists a T > 0 such that the initial boundary value problem (2.55), (2.56),
(2.51), (2.53) has a unique solution (p,w) with

p e C3((0,T); CY(Q) NC((0,T); C¥(Q))
u € C'(0,7); C(RM)NC((0,T), C*()).
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In |74] the theorem is formulated more general. The capillarity and viscosity coefficients
may depend on time and p has not necessarily to be given by the van der Waals equation
of state.

In [73] the author proved a similar result for a temperature dependent model. But the
model that is considered is not exactly the same the temperature dependent Navier-
Stokes-Korteweg system (2.34), (2.35) and (2.36) because some of the terms are missing
there.



Chapter 4

Construction of Solutions and
Benchmarks

The purpose of this chapter is the construction of solutions of the NSK system and
other benchmark tests for three different reasons. These are

e the validation of the numerical schemes. Therefore, we construct initial configu-
rations such as static equilibrium and traveling wave solutions.

e the identification of physical parameters such as surface tension and interface
width.

e the validation of the model.

Due to the complexity of the model it seems to be out of scope to give analytical
solutions. Thus, we seek for solutions of special form such that the resulting equation
reduces to an ordinary differential equation equipped with suitable boundary conditions.
These kind of problems can be solved very accurately.

These solutions are used to identify physical relevant parameters such as surface tension
and the size of the diffuse interface.

For the validation of the model we choose the physical experiment of an oscillating
bubble in a liquid. When mass transfer over the interface is neglected and the liquid is
nearly incompressible an equation (the classical Rayleigh-Plesset equation) for the radius
of the bubble can be derived from the incompressible Navier-Stokes equations equipped
with suitable boundary conditions. The behavior of an oscillating bubble as a solution of
the Navier-Stokes-Korteweg system can then be compared to solutions of the Rayleigh-
Plesset equation. However, at this point it is not clear if this is really comparable
because of the assumption of incompressibility and the assumption of absence of mass
transfer. These effects have to be small to be comparable.

03
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4.1 Static Equilibrium

In this section we will construct radial symmetric static equilibrium solutions to the
isothermal Navier-Stokes-Korteweg system by means of solving an ordinary boundary
value problem numerically. These kind of solutions serve as benchmarks for numerical
algorithms on the one hand and for determination of the coefficient A, that is related to
surface tension, on the other hand. Theorem 3.1.3 provides an asymptotic formula for
surface tension that is implicitly included in the Navier-Stokes-Korteweg model by the
third order term. With the numerical computations in this section we approve that this
formula is correct and the error term in negligible for our numerical simulations. Since
the solutions we construct in this section do not touch the boundary they are only local
minimizers of the energy functional investigated in theorem 3.1.3 whereas this theorem
makes a statement about global minimizers. However, this should not make a difference.

A static equilibrium solution of the isothermal Navier-Stokes-Korteweg equations, i.e.,
a solution with zero-velocity field and density independent of time satisfies the elliptic
equation

w(p) — AAp = est in Q, (4.1)

where c¢st is a constant which is unknown in general (Lagrange multiplier). Now let
Q C R™ be a ball of radius L with the origin as center. A radial symmetric solution
(with respect to the origin) p = p(r) of (4.1) fulfills the equation

n—1
wip) — A (pm« + Tm) = cst.

In order to get rid of the unknown constant cst we differentiate this equation with
respect to r. This gives the third order ODE

/
P n—1 n—1 .
Prrr = <H§\ ) + 2 ) Pr — Tprr mn (O,L) (42)

Thus, we require three boundary conditions. The first one is the boundary condition
(2.53)
pr(L) = 0. (4.3)

The second boundary condition ensures smoothness at the origin

pr(0) = 0. (4.4)

The third one ensures that the Young-Laplace law is satisfied

p(p(L)) — p(p(0)) =&, (4.5)

where £ > 0 is some suitable chosen constant. Apriori, we do not know the radius R of
the bubble (or drop) we compute. After the computation of such a profile p we have
the radius available but we have to define what the radius of a bubble or drop with a
diffuse interface is.
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Note, there is some arbitrariness in the definition of the radius because of the diffuse
interface. We distinguish between bubbles and drops and define their radiuses Rp and
Rp by

Rp = sup{r € (0,L) | p(r) < p},
Rp = inf{re(0,L)|p<p(r)},

where p can be chosen as the arithmetic average of the phase boundaries p,, p, or as
the uniquely defined inflection point of the pressure function.

Now, using some definition of the radius R, we can calculate the surface tension o that
is associated with the parameter A\ by the Young-Laplace relation

E=mn-1)—=.

= Q

Further we define the diffuse interface to consist of the density values of the elliptic
region and possibly a little bit more. Then the interface width w for bubbles and drops
is defined by

= {T €(0,L) ‘ pv < p(r) < ﬁl}v
w = supl —infl.

The definition of the interface I depends on the definition of the density states p, and
p1- These states can be defined in terms of the phase boundary states p,, p, or as a
fraction of the Maxwell states. The latter seems to be the better choice.

The boundary value problem (4.2), (4.3) - (4.5) can be solved with every solver for
nonlinear ordinary boundary value problems. We use the COLNEW solver [6]. The
existence and uniqueness of solutions of the nonlinear ordinary boundary value problem
is not discussed in this work. However, the numerics indicate that unique solutions exist

for suitable chosen parameters.

4.1.1 Computation of Static Bubbles and Drops

We define the bubble radius by the inflection point of the pressure function. Then the
radius of the bubble and the drop are equal to each other and the radius can be defined
by the intersection point of both profiles. The parameters are chosen as follows

n = 3,
L = 1,
A = 0.001,
¢ = 0.115.

All quantities are dimensionless, as equation of state we choose the dimensionless van
der Waals equations of state (2.13), (2.14) for the pressure and the chemical potential
with reference temperature 6,.; = 0.85. The result (bubble or drop) depends on the
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initial guess we have to provide for the BVP-solver. Figure 4.1 shows both results, i.e.,
the density profiles for the bubble and the drop. The computations give as results for
the radius R, surface tension ¢ and interface width w

= 0.284,

o = 0.016,

= 0.121.
For the definition of the radius we choose the state p to be equal to the inflection point
of the pressure function. Further we have to define the states p, and g; for the definition

of the interface width w. We define these states by a fraction of the Maxwell states

po=11-p)", pr=09-p".

2
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Figure 4.1: Profiles of a bubble and a drop and the Maxwell states.

4.1.2 Computation of Surface Tension and Interface Width

We define the radius and the interface of a bubble as in the previous section. For
different reference temperatures and different values of the coefficient A we compute
profiles of bubbles for n = 3 and radius of the domain L = 1. As we have the profile
we can determine the surface tension from this computation denoted by ocomp by the
formula

p(p(L)) = p(p(0)) = —5—0comp- (4.6)
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Theorem 3.1.3 and equation (3.3) give an asymptotic formula for the surface tension
that includes an error term e(\) that we want to determine in this section.

PO(L)) = p(p(0)) = "= orm + ¢ (), (47

where 04,1, is given by o forp = co\/X, see Section 3.1. Now we can use equation (4.6)
and equation (4.7) to determine the error term since we have

n—1
|€()\)| = T|Ucomp - Uform‘- (48)

The left part of Figure 4.2 shows the dependence of 0 ¢y, (solid line) and oo, (discrete
points) on the parameter A for different values of the temperature 6. The error |e())]
is shown in Table 4.1 for some of this parameters. It can clearly be seen that the error
converges to zero as A tends to zero and the error is almost negligible even for relatively
large interfaces as the one in Figure 4.1. Thus, Formula (3.3) is applicable for our
numerical simulations.

0.1
0=075 + 0=10.75
0=0.80 * 0 =10.80
0=085 * 0=10.85
0=0.90 © 0.1160 =0.90
©  0.01p
0.001 ! L L !
le-05 le-04 0.001 le-05 le-04 0.001
A A

Figure 4.2: Coefficient A versus surface tension (left) and A versus interface width
(right).

The right part of Figure 4.2 shows the dependence of the interface width on the coef-
ficient A and the reference temperature. For a temperature 6 below the critical tem-
perature we can construct a (rough) formula to approximate the interface width of a
dimensionless fluid modeled by the Navier-Stokes-Korteweg equations.

w(d,\) =5.4-6 -V (4.9)

This formula is simply obtained by curve fitting using the computed values shown in
the right part of Figure 4.2. As noted before, this is a very rough formula but can be
useful to construct initial data.

4.2 Traveling Wave Solutions

We compute traveling wave solutions of the isothermal Navier-Stokes-Korteweg system
that are supposed to exist. The existence of such solutions is only completely proven
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0 =0.75 0 =0.85

A error ‘ EOC error ‘ EOC
7.8472e-04 || 3.9974e-03 3.0457e-03
6.2835e-04 || 2.8642e-03 | 1.500 || 2.2464e-03 | 1.370
5.0314e-04 || 2.0633e-03 | 1.476 || 1.6292e-03 | 1.445
4.0288e-04 || 1.4888e-03 | 1.469 || 1.1750e-03 | 1.471
3.2260e-04 || 1.0723e-03 | 1.477 || 8.7254e-04 | 1.339
2.5831e-04 || 7.7166e-04 | 1.480 || 6.2802e-04 | 1.480
2.0684e-04 || 5.5450e-04 | 1.487 || 4.5193e-04 | 1.481
1.6562e-04 || 3.9157e-04 | 1.565 || 3.1612e-04 | 1.608
1.3262e-04 || 2.7951e-04 | 1.517 || 2.2839e-04 | 1.463
1.0619e-04 || 2.0384e-04 | 1.421 || 1.6636e-04 | 1.426
8.5032¢e-05 || 1.4618e-04 | 1.496 || 1.1965e-04 | 1.483
6.8088e-05 || 1.0768e-04 | 1.376 || 8.7439e-05 | 1.411
5.4520e-05 || 7.5755e-05 | 1.582 || 6.2637e-05 | 1.501
4.3656e-05 || 5.6876e-05 | 1.290 || 4.5604e-05 | 1.428

Table 4.1: Error and EOC.

for a modified system. For the unmodified system we have proven only the first step
(without viscosity) in Section 3.2. However, without viscosity these profiles suffer a lack
of stability and are therefore useless for quantitative benchmark tests. The numerical
computations below indicate that even with viscosity these kinds of solutions exist but
the existence is not proven theoretically, see Section 3.2 especially Conjecture 3.2.4 and
corollary 3.2.5.

We consider the Navier-Stokes-Korteweg system in one space dimension

Pt + (Pu)x - 07

(pu); + (pu® +p(p))z = ctgs + AN PPz — (4.10)

%Pg)m

and we are interested in traveling wave solutions of (4.10), i.e. smooth solutions of the
form

ﬁ(l‘ - 8t)7
u(x — st),

p(l‘, t) =
u(x,t) =

that connects left states (p~,u~) and right states (p*,u™) in different phases that
satisfy the Rankine-Hugoniot relation and propagate with a constant speed s (* denotes
the derivative with respect to x — st)

ploo) = pF,  d(xoo) =ut, F(£o0) = 0. (4.11)
This ansatz leads to a second order ODE for p that we write as a system of first order

equations
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with some known constants m and j coming from the Rankine-Hugoniot relation. For
p~ and pT chosen close to the Maxwell states traveling wave solutions may exist but
the parameters A and € have to satisfy a special ratio depending on the left and right
states. see Section 3.2 especially Conjecture 3.2.4 and corollary 3.2.5. This means if we
fix left and right hand states and the parameter A we have to compute the parameter €
such that a traveling wave solution can exist. For this purpose we add the equation

g =0. (4.13)

For the numerical computation we have to truncate the interval (—oo, c0) to some finite
interval (77,7") and introduce suitable boundary conditions, we apply the method
introduced in [43] and successfully applied in [44], [39]. An exact solution of (4.12),
(4.11) has to satisfy

( 5/ ) (77) € Wu(p™,0) and ( ﬁp’ ) (r+) € Wi(p*,0),

where W, and Wy denote the local unstable and stable manifolds of F' that are one
dimensional manifolds when p~ and p* are close to the Maxwell states. The compu-
tation of the unstable and stable manifolds is as difficult as the computation of the
traveling wave solution itself but they can be approximated by their tangent spaces and
the tangent spaces can be determined by the eigenspaces of the Jacobian of F'. Hence,
we introduce the boundary conditions

< 5, ) (77) € T(p- 0)Wulp~,0) and (5, ) (77) € T ) Ws(p™,0). (4.14)

If p is a solution of (4.12), (4.11) then p(- + &) is also one for all £ € R. We single out
one of these solutions by the relation
o+

[ otn) == (4.15)

where p* is a reference object, for example the jump from p~ to p™. Now we have three
equations (4.12), (4.13) and three boundary conditions (4.14), (4.15). This nonlinear
boundary value problem can be solved with every BVP-solver but the crucial part is
to find a good initial guess. A smeared out jump is usually a good candidate. For the
computations below we have applied the COLNEW BVP-solver [6].

We have computed two different profiles. One belongs to a compressive wave and the
other to an undercompressive wave. For the definition of compressive and undercom-
pressive waves see standard textbook such as [34]. The undercompressive wave is con-
sidered to be typical for a propagating phase boundary whereas the compressive wave is
less typical since phase boundaries usually propagate with a subsonic speed. Figure 4.3
shows both profiles. For the computation the parameter A is fixed to a constant and the
viscosity parameter € is computed such that a traveling wave solution exist according to
the additional equation (4.13), i.e., it is different for every profile. For the two profiles
we have the following parameters

A = 0.001,

ec = 0.0056977, s.= —1.25273,
ew = 0.0136644, s, = —0.32141,
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where €., €4, s. and s, denote the viscosity parameter and the speed of propagation for
the compressive and undercompressive profile respectively.
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Figure 4.3: Profiles of an undercompressive wave (left) and a compressive wave (right).

4.3 Towards Static Equilibrium

In the two previous sections we have provided exact static equilibrium solutions and
planar dynamical solutions. In this section we provide an initial configuration such that
the corresponding solution of the NSK system includes multidimensional dynamics,
changes in topology and converges to some nontrivial static equilibrium as time tends
to infinity. However, it is not possible to give an exact solution that shows such a
complicated behavior, but we can construct a configuration consisting of three bubbles
of different sizes such that the smaller bubbles vanish and the larger bubble grows and
finally converges to a static bubble.

Figure 4.4 illustrates this behavior. The first picture shows the initial data at ¢ = 0
consisting of three bubbles (blue) in the liquid (red) with a zero velocity field. This
configuration is not a steady state. Hence, we have some dynamical changes shown in
the second picture with a nonzero velocity field (not shown). Finally the third picture
shows the static equilibrium at ¢t = oo.

Figure 4.4: Initial configuration of three bubbles of different size, intermediate state
with two bubbles and final static equilibrium solution consisting of one large bubble.
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We cannot compare a numerical approximation with an exact solution but we can test
the approximate solution for

(i) Energy decay on the discrete level as it is satisfied on the continuous level, see
Lemma 2.7.1.

(ii) Vanishing of kinetic energy as time tends to infinity.
(iii) The equilibrium condition (4.1) as time approaches infinity.

For the latter test we can monitor the function

t= IV (ulp(5 1) = AAp (5 1) [ 20

which should converge to zero as t — oc.

Note: The energy decay equation is also satisfied in the case where the computational
domain € is an n-dimensional cube and the Navier-Stokes-Korteweg system is equipped
with periodic boundary conditions.

For the construction of the initial configuration at a given fixed temperature below the
critical temperature of the fluid we use the Maxwell values as liquid and vapor states
and Formula (4.9) for the width of the interface. Liquid and vapor states are smoothly
connected by a smeared out interface using the tanh function.

4.4 Formulas for the Bubble Radius

In contrast to the first section of this chapter we consider spherical symmetric gas (not
necessary the vapor of the liquid) bubbles that oscillate in a liquid (instead of staying
in equilibrium). The oscillations of the bubble can be caused by pressure perturbations
in the liquid or by prescribing the velocity of the liquid at certain points. The former
corresponds to the physical application of a sound field, the latter to a variation of the
container wall that holds the liquid. In order to derive a simple formula for the time-
dependent radius of an oscillating gas bubble we assume the liquid to be incompressible
and neglect mass transfer over the interface, i.e., no phase transformation takes place.
Therefore the formulas apply only to vapor bubbles if the amount of mass transfer over
the interface is small. The goal is, provided that one of the formulas is applicable, to
(roughly) predict the behavior of an oscillating and /or collapsing bubble in a simple way.
For the applicability of these formulas see the numerical experiments and discussion in
Section 9.12.

4.4.1 Rayleigh-Plesset Equation

The derivation of the classical Rayleigh-Plesset formula follows that in [16]. We start
from the incompressible Navier-Stokes equations and a free boundary condition at the
bubble interface, (see standard textbooks, e.g. [79]). The aim is to derive an expression
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Figure 4.5: Gas bubble in incompressible liquid of radius R(t).

for bubble radius R(t) which will depend on time.

We assume that the motion of the liquid in the domain €; = R™\Bp4)(0), n > 2 obeys
the incompressible Navier-Stokes Equations

1

u; + (Vu)u+ —Vp = ﬂAu, (4.16)
P p1
Vou = 0, (4.17)

where p; > 0,p; > 0 are the constant density and constant viscosity of the liquid.
Further we assume that the Young-Laplace law is satisfied at the free boundary I'; =

OB g4 (0).
(P —Pyn=(n—1)ck,n only. (4.18)

P, = —p,I and P, = —pl+p (Vu + VuT) are the stress tensors of the gas and liquid
phase respectively, k,,, = ﬁ the mean curvature of the free boundary, o > 0 the surface
tension and p, the pressure of the gas which is assumed to be rotationally symmetric. We
provide rotational symmetric (with respect to the origin) initial values for the velocity
and we assume that the solution of the problem stays rotational symmetric for all times
t > 0. Thus, we seek for rotational symmetric solutions of the incompressible Navier-
Stokes equations of the form

w(a,t) = o(r,t) =, p(@,t) = p(r,t), r=lz|,

||

with scalar functions v and p. Using this structure of the velocity and the divergence
constraint (4.17) we get

0=r""'V u(z,t) =r""" <vr(r,t) + 2 v(r,t)> = ("o (r, 1),

r

This means

v(r,t) = f(t) . (4.19)
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The momentum

for some function v that does not depend on the spatial variable.
equation (4.16) for rotational symmetric solutions reads
1 " Uy v x
v + VU + —Dp — — vrr+(n—1)(———2>} — =0,
PP roor ||

and together with equation (4.19)

v'(t)
1 (n— 1)7.27171 o
Note that the viscous term vanishes. For the velocity at the interface we have the
relation
o(t
R'(t) =v(R(t),t) = - 4.20
(1) = (0.0 = 7ol (4.20)
With this identity and the equation above we get
2
R)"'R"(t) + (n — YR()"R'(t)? R(t)"'R'(t) 1
Tn—l - (n - 1) ( 7”2”_1 ) + Ep?‘(r) t) = 0
Integrating this equation from R(t) to L > R(t) with respect to r gives
L
(R 'R"(t) + (n = DR R(1)*) [ 5
R(t)
(B(L,t) = B(R(E), ) =0.  (4.21)

R(t 2n—2 5
—dwe? (1- (5" ) 4 2
We will replace the term p(R(t),t) using the boundary condition at the interface. With

kp, = % and equation (4.19) boundary condition (4.18) reduces to
(t)

R(t)

Fo(R(0).0) = o0 = ) s = 2nln =1

Plugging this relation into equation (4.21) we get for space dimension n = 2

) o5

(ROR' 0+ R0P) e (5 ) -
_1/( ~ R'(t)
= (B0 0) = ULt) = o ~ 2 ). a2)
and for n =3
4
(RER" (1) + 2R (1)?) (1 - @) Ak (1 - Ré—t)>
- 4ug((f))> : (4.23)

- ~
= (B0~ L.1) = 20
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k
In the case n = 3 and L >> R(t) we can neglect terms in (@) , k> 1 and the

above equation becomes

ROR' (1) + SR ()2 = < (R(E). ) — (L, 4) — 20—— — 4 R/(t)> (4.24)
- = —|P 9 —D ) — 20 - ) :
2 o\ R(t) 'R
which is the classical Rayleigh-Plesset equation, see for example [16]. The initial value
problem for (4.22), (4.23) and (4.24) can be solved with every ODE solver. It remains
to prescribe the pressure of the gas at the interface p,, for example by a barotropic or
isothermal equation of state, and the pressure in the liquid, which is the input for this

equation.

4.4.2 Vibrating Container Wall

We consider a spherical container of radius L that holds the liquid and we assume that
the container wall I'}” vibrates symmetrically, i.e., It = Br () (0), where the function
x models the movement of the boundary.

Figure 4.6: Gas bubble inside a vibrating container.
In addition to (4.16), (4.17) and (4.18) we introduce a boundary condition for the
velocity at the container wall I'Y
u-n = 2(t),
vu-T; = 0, 1=1,...,n—1,
here 7; denote n — 1 linear independent tangential vectors.

This boundary condition and expression (4.19), which is a consequence of the incom-

Y

pressibility constraint (4.17) give the relation

o(t)
(L+ ()"
This and equation (4.20) result in the formula

n—1
R(t) = (%f)(t)) 2(8). (4.25)

2 (t) =v(L +z(t),t) =
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This formula is simply given by the incompressibility constraint and the radius of the
bubble does not depend on the state of the gas as in the Rayleigh-Plesset equation. But
the force that is necessary to achieve the variation x(¢) does. It also depends on the
mass of the liquid.
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Chapter 5

First Order Accurate Schemes

In this chapter we will construct basic first order schemes for the numerical approxima-
tion of solutions of the isothermal Navier-Stokes-Korteweg system. The system itself is
a system in divergence form. Therefore one would naturally discretize it in a conser-
vative form. We will see that the discretization in conservative form leads to several
problems. On the one hand the appearance of strange velocities inside the interface
between the liquid and vapor phases. Similar problems were observed in [64] and solved
in [65] by discretizing certain terms in a nonconservative fashion. On the other hand an
energy decay with time is not satisfied on the discrete level as it is on the continuous
level, see Lemma 2.7.1.

In order to get rid of these problems we will discretize the pressure and the Korteweg
term in the system in a nonconservative form. This results in a well balanced scheme,
i.e., a scheme that is able to preserve a static equilibrium solution on the discrete level.
We will see that the approximate solutions generated by this scheme will converge to the
correct solution in our test cases and the total energy decays with time on the discrete
level as it does on the continuous level. This is the scheme we will generalize to higher
order schemes by application of the Local Discontinuous Galerkin method in the next
chapter.

As a third scheme we present a relazation scheme given in [29], [30]. This scheme is
designed to preserve the static equilibrium but the test case with the traveling wave
solution shows that it fails to produce the dynamics correctly. This scheme can only be
used to construct nontrivial static equilibrium solutions.

Throughout this chapter we make the following assumptions:

e The viscous part in the isothermal Navier-Stokes-Korteweg system V - 7 is equal
to eAw for simplicity. In fact, the viscous term reduces to eAw for a special choice
of the viscosity parameters p and v, but this choice may not make sense from the
physical point of view.

e For notational simplicity we consider only uniform Cartesian meshes. Each coor-
dinate direction is subdivided into N parts. Therefore the mesh consists of N¢
cells in total (where d denotes the space dimension). The width of a cell is h > 0

67
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in each coordinate direction.

e Unless otherwise noted, we consider periodic boundary conditions in every coor-
dinate direction. The treatment of other boundary conditions is done in the next
chapter.

Thus, the system to solve is

pe + V- (pu) = 0,
in Qx (0,7) (5.1)
(pu); + V- (puu")+Vp(p) = V- K +cAu,

and €2 must be an d-dimensional cube because of the restriction on the underlying mesh.
For simplicity we always choose the unit cube Q = [~1,1]%.

The three schemes we discuss in the next sections belong to the class of Finite Volume
schemes. Finite Volume schemes are characterized by their specific numerical fluxes.
However, on uniform Cartesian meshes a Finite Volume scheme has an equivalent Finite
Difference scheme. In the case of the first two schemes we will use the Finite Difference
formulation for simplicity and omit the definition of numerical fluxes. The general Fi-
nite Volume formulation of the well balanced scheme (the second scheme) on arbitrary
nonconform meshes can be found in the next chapter. For more information on Finite
Difference and Finite Volume schemes see standard textbooks such as [51], [52], [76], [81].

5.1 A Scheme in Conservative Form

In this section we construct a basic first order scheme to solve the Navier-Stokes-
Korteweg (5.1) system numerically. The resulting conservative scheme is based on
the Lax-Friedrichs flux for the first order part of the equation. We have chosen the
Lax-Friedrichs flux because it does not require hyperbolicity of the first order part of
the equation in the whole state space explicitly as schemes based on Riemann-Solvers
or Flux-Vector-Splitting schemes do. The viscous and Korteweg terms in the equation
are discretized by central differences in conservative form.

The test cases with the traveling wave solution and the static equilibrium solution in-
dicate that discrete solution converges to the correct solution. However, we observe the
appearance of strange velocity fields close to the interface and on the discrete level we
do not have an energy decay as for a smooth analytical solution. Similar problems were
observed in [64]. In [64] these velocities are called parasitic currents.

The idea of the Lax-Friedrichs scheme is to stabilize the scheme by adding an artificial
viscosity that tends to zero with the mesh size h, see standard textbooks such as [52],
[76], [81]. Thus, it performs the vanishing viscosity method on the discrete level.

pr + V- (pu) = ot Ap, 52)
(pu)e + V- (puu")+Vp(p) = %4 Alpu) + V- K +elu, |
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where the parameter « is chosen to be equal to the fastest wave speed.

Note: The artificial viscosity in the momentum equation can be omitted when the
underlying mesh is fine enough such that the natural viscosity dominates. The artificial
viscosity in the continuity equation is important for the convergence to the correct
solution (at least in combination with the Discontinuous Galerkin approach). In Section
9.4 we will see that without this viscosity the approximate solution generated by the
higher order well balanced scheme (described in the next chapter) does not converge
to the correct solution. The same is true when the Lax-Friedrichs type scheme is
generalized to higher order schemes.

We present the complete numerical algorithm in one space dimension for simplicity, the
extension to two space dimensions is then straightforward.

The Numerical Algorithm in 1d

In the following we consider a uniform mesh of N cells defined by the NV + 1 points

1 < ...<Xx 1
3 N—3

and the (uniform) diameter of a cell is denoted by h. In one space dimension the
Korteweg tensor K reduces to the scalar quantity

1
K= (ppm — §p§> :

We provide discrete initial data by projection

1 [*%itd
pi = ﬁ L tg pO(x) d.’E,
=3
1 i+3
(pu); = ﬁ/ * (pouo)(z) d,
. 1
im3

for = 0,...,N — 1. The numerical scheme is then defined by the update procedure



70 CHAPTER 5. FIRST ORDER ACCURATE SCHEMES

from the n-th to the (n 4 1)-th time step.

A 1
Kl = 3 <p?(p?+1 =207 + i) = g (Pl — P?—1)2> )
NN )
7 p? ’
At n 7 n
P == 5 ()i = (pw)iy = alply = 20f +p10)
il n At n n n o ,n 7 1
At
+E ( 1~ K;‘n—l)
At
—I-ﬁa ((pu)?H —2(pu)i + (P“)?—l)
At
—I-ﬁff (U?Jrl —2u;' + u?fl) :

In the scheme given above we choose a to be equal to the fastest wave speed in the
liquid and vapor phases

@ = max {IU? +/P'(p}) } ,
where the maximum is built only over the values in the liquid and vapor phases since
the sound speed is imaginary in the elliptic region and the above statement does not
make sense there. The time step size At has to be small enough to guarantee stability
of the scheme. It is not clear how to choose it exactly but we observed that it is of
order O(h?), similar to the time step size of the relaxation scheme, see Section 5.3 and
(5.22), (5.23). The parameter o and the time step size At may vary between the time
steps. For notational simplicity this dependence is omitted.

Numerical Results

This paragraph is dedicated to numerical tests with the conservative scheme presented
above. We apply the first three test cases proposed in Chapter 4. The test case with
the undercompressive Traveling Wawve solution is performed in one space dimension with
fixed constant boundary states and the test cases Static Equilibrium and Towards Static
Equilibrium are performed in two space dimensions with periodic boundary conditions.
Throughout this chapter the NSK system is equipped with a dimensionless van der
Waals equation of state (2.13) where the reference temperature is fixed to 6.,y = 0.85.
The computational domain in one space dimension is the interval [—1,1] and in two
space dimensions the square [—1,1]2.



5.1. A SCHEME IN CONSERVATIVE FORM 71

Test Case: Traveling Wave Solution
For this one dimensional test we have chosen the undercompressive traveling wave so-
lution we computed in Section 4.2. The corresponding parameters are

A = 0.001,
= 0.01366,
s = —0.3214,

where s denotes the speed the wave travels with to the left. We compare the values of
the approximate density and the momentum with the values of the exact solution at
time T'= 0.5 (which is the profile shifted to the left by s-7'). For this test we cannot
use periodic boundary conditions. Hence, we use the values that come from the exact
solution as boundary values. The underlying equidistant meshes vary between n = 200

and n = 1800 cells.

The approximate solution on the finest grid n = 1800 is plotted in Figure 5.1. Differences
between exact and numerical solution seem to be small for this mesh size and cannot
be seen from the plot.

15

P, pu
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Figure 5.1: Exact and approximate traveling wave solution generated by the conserva-
tive scheme for n = 1800.

Table 5.1 shows the convergence characteristic of the conservative scheme. Errors in
density and momentum are shown separately for different mesh sizes. The EOC (ex-
perimental order of convergence) clearly demonstrates first order convergence.

Test Case: Static Equilibrium

For the test with a static equilibrium initial configuration we choose a density profile
computed in Section 4.1. For this test the correct computational domain is a ball of
radius one with boundary conditions (2.51) and (2.53). Nevertheless we use the square
Q = [~1,1]? as computational domain and apply periodic boundary conditions for
simplicity. This should not make a difference since the density values in the liquid near
the boundary are equal to some constant (up to the roundoff error). The parameter \ is
already chosen by the choice of the density profile. The viscosity parameter is arbitrary.
We choose it according to the parameters in the test with the undercompressive wave
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14 pu
h L?-error ‘ EOC L?-error ‘ EOC

1.0000e-02 || 2.4799e-02 4.4079e-02
5.0000e-03 || 1.6488e-02 | 0.589 || 2.2129e-02 | 0.994
3.3333e-03 || 1.2221e-02 | 0.739 || 1.4832e¢-02 | 0.987
2.5000e-03 || 9.6790e-03 | 0.811 || 1.1173e-02 | 0.985
2.0000e-03 || 8.0036e-03 | 0.852 || 8.9692¢-03 | 0.984
1.6667e-03 || 6.8193e-03 | 0.878 || 7.4953e-03 | 0.985
1.4286e-03 || 5.9388e-03 | 0.897 || 6.4395e-03 | 0.985
1.2500e-03 || 5.2590e-03 | 0.911 || 5.6456e-03 | 0.985
1.1111e-03 || 4.7183e-03 | 0.921 || 5.0267e-03 | 0.986

Table 5.1: L?-errors and EOC for the approximate traveling wave solution generated
by the conservative scheme.

above.

0.001,
= 0.01366.

The resolution of the n x n Cartesian meshes varies between n = 100 and n = 800. The
(computational) time at the end of the computation is T" = 20.0.

Table 5.2 shows the convergence characteristic of the conservative scheme at a static
equilibrium configuration. The error seems to be not in the asymptotic regime at these
mesh sizes. The EOC should approach the value 1 as h tends to zero.

density and momentum

h total L%-error | EOC
2.0000e-02 3.8279e-02
1.0000e-02 1.4162e-02 1.435
6.6667e-03 1.2013e-02 0.406
5.0000e-03 1.0672e-02 0.411
4.0000e-03 9.5017e-03 0.521
3.3333e-03 8.5101e-03 0.605
2.8571e-03 7.6804e-03 0.665
2.5000e-03 6.9851e-03 0.711

Table 5.2: Test Case: Static Equilibrium. Total L?-error and EOC for the approximate
solution generated by the conservative scheme.

In Figure 5.2 the density distribution at computational time 7" = 20.0 is shown. The
density values vary approximately between 0.3 (blue) and 1.8 (red). These values are
close to the Maxwell values for the chosen equation of state. The velocity field (which
is equal to zero for all times in the exact solution) is represented by the black arrows.
This display style is used throughout this chapter. The approximate solution is very
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close to a discrete equilibrium, i.e., there are almost no changes in time, but we can see
a velocity field inside the interface that is of order O(h). The scaling of the velocity field
is the same in all sub-figures and the sequence of computations with n = 100, 200, 400
shows that this velocity field converges to zero with h.

Figure 5.2: Test Case: Static Equilibrium. Density and velocity field produced by the
conservative scheme at T' = 20.0 for n = 100, 200, 400.

The question that arises is how can this be a discrete steady state configuration. So we
have to ask why density and momentum are independent of time. For the density this
can be seen by rewriting the mass balance equation from equation (5.2) in the form

pt+V'<pu—a7th> =0.

The gradient of the density points from the vapor bubble to the liquid phase. Hence,
with a velocity field shown in Figure 5.2 the blue term in the above equation cancels out
the red term (artificial viscosity) and therefore the density does not depend on time.
From the above equation it can clearly be seen that the velocity field inside the interface
must be of order O(h). For the momentum this is more complicated. It is essentially
due to the structure of the pressure and Korteweg term.

Such a velocity field inside the interface can cause problems especially in the case when
an interface is in contact with a solid wall and boundary condition (2.51) is imposed such
that the velocity must vanish at the boundary. The velocity field inside the interface
can then cause instabilities in the numerical solution since the approximate solution
is not consistent with the prescribed boundary condition. Similar velocity fields (so
called parasitic currents) were observed in [64]. In [65] it was shown that these parasitic
currents can be eliminated when the pressure and Korteweg term are discretized in a
nonconservative fashion. The nonconservative discretization is also one of the basic
ideas of the well balanced scheme presented in the next section.

Test Case: Towards Static Equilibrium

This is the test case for testing the qualitative behavior of the approximate solutions
produced by the numerical schemes such as decay of the total energy, vanishing velocity
field and the equilibrium condition at the discrete level. The computational domain
is again the periodic square = [—1,1]? and the capillarity and viscosity parameters
are chosen as in the last test case A = 0.001 and € = 0.01366. The rest of the setting
is as proposed in Section 4.3. The Cartesian n x n meshes have a resolution of n =



74 CHAPTER 5. FIRST ORDER ACCURATE SCHEMES

100, 200, 400 and the approximate solutions are computed up to computational time
T = 20.0. For this test case at this time there is still a little bit movement but changes
in topology are completed and the solution is not too far from a static equilibrium state.

Figure 5.3 shows the initial data and the approximate solution at times ¢ = 1.12 and
t = 20.0. The two smaller bubbles vanish and the larger on grows as time evolves.
Finally the solution approaches an equilibrium state on the discrete level. Again, the
rising velocity field inside the interface can clearly be seen.

1111
w7z
QY
N

7,

Figure 5.3: Towards static equilibrium test. Density and velocity field produced by the
conservative scheme at ¢ = 0.0, 1.12, 20.0 for n = 200.

The time dependent behavior of the total energy and the kinetic energy is presented in
Figure 5.4 for three computations with different mesh sizes (n = 100, 200, 400). On
the discrete level the total energy is not a monotonically decreasing function in time
as on the continuous level. But the oscillations are smaller on finer grids such that we
can hope for convergence to the exact solution (for h — 0), for which total energy is a
decreasing function of time. The right part of the figure shows that the kinetic energy
does not converge to zero as time tends to infinity. This is due to the velocity field
inside the interface.
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Figure 5.4: Total energy and kinetic energy for the conservative scheme. n =

100, 200, 400.

Finally, the value x does not approach a constant state as time evolves as it does on
the continuous level when the solution approaches a static equilibrium state. This can
be seen in figure 5.5 because the gradient of x does not converge to zero.
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Figure 5.5: Gradient of x for the conservative scheme. n = 100, 200, 400.

5.2 A Well Balanced Scheme

The problems at static equilibrium configurations we have seen in the previous section
were caused by the artificial viscosity (that is necessary to stabilize the numerical so-
lution) on the one hand and on the other hand by the structure of the pressure and
Korteweg term in the momentum equation. In this section we discretize these both
terms together in nonconservative form by application of the theory of nonconservative
products, see [36] and Section A.4. This approach leads in a natural way to a well
balanced scheme, i.e., a scheme that is able to preserve a static equilibrium solution
on the discrete level. In general the application of nonconservative discretizations can
cause problems. It is well known that nonconservative schemes can converge to wrong
solutions when discontinuities are present [60]. This is not a problem in our case since
solutions are supposed to be sufficiently smooth (at least not discontinuous). The test
cases show that the numerical solutions converge to the exact solutions and the energy
decays on the discrete level. This scheme seems to be the most promising scheme to
construct approximate solutions of the NSK-system and therefore we will generalize this
scheme to higher order schemes by application of the Discontinuous Galerkin approach
in Chapter 6.

The NSK System in Nonconservative Form

The scheme is based on the equivalent nonconservative reformulation of the NSK system

pe + V- (pu) = 0,
in Q x (0,7), (5.3)
(pu): + V- (puu”) 4+ pVer(p,Ap) = eAu,
where the variable k is defined by the relation
k= K(p, Ap) = pu(p) — AAp (5.4)

and p denotes the chemical potential. In order to see that this is an equivalent formu-
lation we refer to Lemma 2.7.2. The idea of the numerical scheme is to add a linear
viscosity term scaled with the mesh size to the momentum equation (the same as in the
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Lax-Friedrichs type scheme in the previous section) and a nonlinear viscosity combined
with a fourth order term

/
O‘lTh Ak = O”Th [V- (MVp> - )\AAp]

to the continuity equation. From the above equation we can see that the nonlinear
viscosity has a positive sign in the vapor and liquid phases and the fourth order term
has also the correct sign to stabilize the scheme. The resulting system including the
artificial viscosity then becomes

pr + V- (pu) = 2 Ag,

(pu)e + V- (puu®)+pVi(p,Ap) = 5" Alpu) + cAu.

The advantage of the nonlinear viscosity in combination with the fourth order term is

that it vanishes at static equilibrium because k is a constant at the static equilibrium,

see Lemma 2.7.2. Thus, discretizing the above equation by central differences results

in a scheme that preserves the static equilibrium on the discrete level, i.e., it is a well

balanced scheme. The parameter ao should be chosen to be equal to the fastest wave

speed (as the parameter « in the previous section) and then parameter a; should be
?'(p)

chosen such that == is of the size of as.

Note: Again, the artificial viscosity in the momentum equation can be omitted when
the underlying mesh is fine enough such that the natural viscosity dominates.

Below we give the complete numerical algorithm in one space dimension for simplicity.
The scheme is based on space discretization by central differences and application of
the explicit Euler scheme for time integration. The extension to two or more space
dimensions is straightforward.
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The Numerical Algorithm in 1d

As in the previous section we provide discrete initial data by projection. Then the
update from one time step to another defines the complete algorithm.

A
Ri = o) = 15 (P — 207+ pila),
oo i
7 - n )
P
n+l no__ g no_ no_ N 9N n
i = P oh ((Pu)iﬂ (pu)iy al(“iﬂ K +"£i71))7
At
()it = (pu)j — 57 ((pu)Py1uiy — (pu)iqui ;)
At 7 7 n n 7 7 n n
~Ih ((Pz‘+1 + i) (ki1 — K7+ (o + pi) (K] — K‘i—l))
At n n n
+%OK2 ((PU)Z‘H —2(pu)i’ + (/)“)7:—1)
At
—i—ﬁs (u?ﬂ —2u? + u?,l) ,

for i = 0,..., N — 1. Due to the artificial fourth order term scaled by h in the mass
balance equation the time step size must be chosen extremely small. It is not clear
how small exactly but we observed that it is of order O(h®). The time step size was
determined by successively lowering the time step size until the method was not longer
unstable. To overcome this restriction we apply implicit time stepping to the generalized
higher order schemes in the following chapters.

Numerical Results

The setting for the numerical tests with the well balanced scheme presented above is
exactly the same as for the tests with the conservative scheme.

Test Case: Traveling Wave Solution

The test with the traveling wave solution in one space dimension demonstrates the supe-
riority of the nonconservative well balanced scheme over the conservative scheme. Table
5.3 shows the L?-errors of density and momentum at time 7" = 0.5. Compared to the
errors produced by the conservative scheme the errors associated with the well balanced
scheme are an order of magnitude smaller. See also Section 5.4 for a comparison of the
schemes. A plot of the numerical solution on the finest grid n = 1800 is presented in
Figure 5.6.

Test Case: Static Equilibrium

Table 5.4 shows a second order convergence rate but the projection of the initial values
itself produces an error of order O(h). The second order rate is due to the use of the
midpoint integration formula for initial projection and the computation of the error. At
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Figure 5.6: Exact and approximate traveling wave solution generated by the noncon-
servative scheme for n = 1800.

P pu

h L%-error | EOC L?-error | EOC
1.0000e-02 || 3.2879e-03 1.4845e-03
5.0000e-03 || 2.1207e-03 | 0.633 || 8.5980e-04 | 0.788
3.3333e-03 || 1.5396e-03 | 0.790 || 6.1558e-04 | 0.824
2.5000e-03 || 1.2063e-03 | 0.848 || 4.8070e-04 | 0.860
2.0000e-03 || 9.9120e-04 | 0.880 || 3.9467e-04 | 0.884
1.6667e-03 || 8.4113e-04 | 0.900 || 3.3492e-04 | 0.900
1.4286e-03 || 7.3050e-04 | 0.915 || 2.9095e-04 | 0.913
1.2500e-03 || 6.4559e-04 | 0.925 || 2.5723e-04 | 0.923
1.1111e-03 || 5.7837e-04 | 0.934 || 2.3054e-04 | 0.930

Table 5.3: Test Case: Traveling Wave Solution. L?-errors and EOC for the approximate
solution generated by the well balanced scheme.

the midpoints the scheme produces an error of second order (pointwise). The scheme
is designed to preserve the static equilibrium initial values. The projected values are
actually not in equilibrium on the discrete level but they are very close to an discrete
static equilibrium configuration. Thus, the errors the scheme produces are neglegible.
Finally, the time step is very small such that the forward Euler time stepping does not
destroy the convergence rate. The use of a higher degree integration formula would
show only first order convergence due to the initial projection. This is what we will see
in Section 9.1 using higher order schemes on unstructured meshes.

In contrast to the conservative scheme the well balanced scheme does not produce a
strange velocity field inside the liquid-vapor interface. This is because the scheme is
designed to preserve a static equilibrium configuration on the discrete level. In fact,
there is a small velocity field but several orders of magnitude smaller than the velocity
field produced by the conservative scheme. A very small velocity arises because the
projected initial values are not a discrete equilibrium but very close to one. Thus, some
dynamics develop but the velocity converges (up to roundoff error) completely to zero
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density and momentum

h total L2-error ‘ EOC
2.0000e-02 3.7490e-03
1.0000e-02 9.0510e-04 2.050
6.6667e-03 3.9981e-04 2.015
5.0000e-03 2.2442e-04 2.007
4.0000e-03 1.4349e-04 2.004
3.3333e-03 9.9590e-05 2.003
2.8571e-03 7.3145e-05 2.002
2.5000e-03 5.5990e-05 2.002
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Table 5.4: Test Case: Static Equilibrium. Total L?-error and EOC for the approximate
solution generated by the well balanced scheme.

as time tends to infinity. Figure 5.7 shows the density distribution at 7" = 20.0 for the
three different mesh sizes (n = 100, 200, 400). The velocity field is also shown but
scaled in the same way as for the conservative scheme and therefore it cannot be seen
in the figure.

Figure 5.7: Test Case: Static Equilibrium. Density and velocity field produced by the
well balanced scheme at 1" = 20.0 for n = 100, 200, 400.

Test Case: Towards Static Equilibrium
This is the test case proposed in Section 4.3. The setting is the same as for the conser-
vative scheme.

Figure 5.8 shows the initial data with zero velocity field and three bubbles at time ¢ = 0.
The mesh size is the same as in the corresponding test with the conservative scheme
(n = 200). At time t = 1.12 there are only two bubbles left and the smaller one will
disappear soon. The velocity field is represented by the black arrows. The scaling of
the velocity field is exactly the same as for the conservative scheme in all sub-figures.
Finally the solution approaches a static equilibrium. At time 7' = 20.0 (third picture)
there is still movement but starting from this point the density distribution will not
change essentially as time tends to infinity. In contrast to the conservative scheme
there are no nonphysical velocities inside the liquid-vapor interface.

The behavior of the total energy and kinetic energy can be seen in Figure 5.9. The
values of the three computations are close to each other such that one graph may hide
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Figure 5.8: Towards static equilibrium test. Density and velocity field produced by the
well balanced scheme at ¢t = 0.0, 1.12, 20.0 for n = 200.

another graph. The total energy of the discrete solutions are monotonically decreasing
functions in time. This is the correct behavior as in the continuous case. The right part
of the figure shows an exponential decay of the mean kinetic energy. At time T = 20.0
there is still a little bit movement in the approximate solution. But as time evolves
further, the kinetic energy converges completely to zero up to a roundoff error (this is
not shown).
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Figure 5.9: Total energy and kinetic energy for the well balanced scheme. n =

100, 200, 400.

In contrast to the conservative scheme the mean value of ||Vk||12(q) does not converge
to a constant other than zero, see Figure 5.10. Up to time 7' = 20.0 the mean of
this value decays exponentially. As time evolves further this value converges to zero
(not shown). This means x converges to a constant as time tends to infinity as in the
continuous case when a static equilibrium state is approached.

5.3 A Relaxation Scheme

The goal of this section is to provide an additional numerical scheme in nonconservative
form. As noted before it is not possible to apply Riemann-Solver based schemes directly
to the NSK system due to the lack of hyperbolicity of the first order part of the equation
in the elliptic region. Here we present an approach (given in [29], [30]) that is based
on the reformulation of the system as a relazation system. This kind of reformulation
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Figure 5.10: Gradient of k for the well balanced scheme. n = 100, 200, 400.

was first proposed by Suliciu [110] and applied to the equation of gas dynamics in
Lagrangian coordinates. The relaxation approach can be very useful for the treatment
of complicated pressure laws, see [31]. The idea of the relaxation approach is to add an
additional evolution equation for the variable s that already appeared in the previous
section and treat this variable as an independent variable. The additional equation is
chosen such that the resulting system is hyperbolic and the corresponding Riemann
problem can be solved very efficiently. By construction, the scheme is designed to
preserve static equilibrium solutions on the discrete level. But the drawback of this
scheme is that in general the generated approximative solution does not converge to the
correct solution. The test case with the traveling wave solution shows this behavior.
However, the scheme can be used to construct solutions towards a static equilibrium
configuration.

5.3.1 The Relaxation System

Since the discretization of the term Aw is not the source of the difficulties described
in Section 5.1 we omit this term for a moment, i.e., we set ¢ = 0. With the definition
of k in (5.4) we can rewrite the isothermal NSK system (5.1) as

et vl -0 Q% (0,7) (5.6)
in Q x (0,7). .
(pu)e + V- (puu®) + pVk(p,Ap) = 0,

In the next step we understand k = k(x,t) € R as a new independent unknown and
consider the following relaxation approximation for (5.6). We search for (p,u, ) :
R? x (0,T) — (0,00) x R3 such that

Pt V- (pu) = 0,
(pw)e + V- (puul)+pVk = 0, (5.7)
ke o+ uw Vet GVu o= Hedpes

holds in © x (0,7"). The parameter d > 0 is the (small) relaxation parameter and

[i(p, Ap) == p(p) — AAp.
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The constant a is chosen according to a generalized Whitham condition:

Ap

= (5.8)

a’ > p’c®, ci=1\/p/(p) +

Note: This approach can be considered as Sulicius relaxation method in Eulerian coor-
dinates (|110]).

Before we discuss the discretization let us note some basic facts on system (5.7). Since
system (5.7) is rotationally invariant it suffices for all our analytical issues to consider
the one-dimensional version. The one-dimensional system is (of course) also a noncon-
servative system. Omitting the right hand side in (5.7) we get in primitive variables the
first-order system

pr + (pu), = 0,
u 4+ uuy+r, = 0, (5.9)
Kt + ukg+ ‘;—iugg = 0.

Let us summarize the primitive unknowns p, u, £ of (5.9) into the vector
T
w = (p,u,K)" .

The Jacobian of the nonconservative flux in (5.9) is given by

U P 0
D:=| 0 U 1
0 a?/p® u

Straightforward calculus leads us to

Lemma 5.3.1 (Hyperbolicity and characteristic fields)

(i) The system (5.9) is hyperbolic in U = (0,00) x R%. The eigenvalues of D € R3*3
are given by

and the corresponding eigenvectors are

p?’/a2 1 p?’/a2
ri(w)=| —p/a |, rAw)=| 0], r3(w)=| p/a
1 0 1

(i) All characteristic fields are linear degenerate, i.e., we have for i = 1,2,3 and all
welu
VA(w) - ri(w) = 0.
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Figure 5.11: The structure of the self-similar solution of the Riemann problem in the
(z,t)-halfspace.

5.3.2 The Riemann Problem for the Relaxation System

In this section we solve the Riemann problem for (5.9) globally, i.e., we consider for
each wy,wgr € U the initial datum

wr: x <0,
wo(z) =
wpr: x>0.

This Riemann problem cannot be treated by routine methods since system (5.9) is in
nonconservative form. However, due to the linear degeneracy of (5.9), it is possible to
give meaning to the nonconservative products.
We suppose that the solution of the Riemann problem is self-similar and consists of (at
most) three elementary waves of contact discontinuity type. For i = 1,2,3 we call the
corresponding elementary wave i-wave. An i-wave travels with the speed s; € R given
by

si=si(w) = A\(w) (welU).
Let us denote the (unknown) middle states by w} and wj,. so that the solution of the
Riemann problem has the structure as in Fig. 5.11. We apply the theory for nonconserva-
tive systems as developed in [36]. To obtain a wave connecting states w_, w4 € U with
speed s there must be constants p,7 € R such that the generalized Rankine-Hugoniot
conditions

—slp] +[pu] = 0,
—slpu] + [pu?] + plx] = 0, (5.10)
—s[pk] + [puk] + a*F[u] = 0

hold. Here we denote by [¢] the jump p_ — ¢ for some function ¢ = p(w), w € Y.

Lemma 5.3.2
Let w_,wy € U be states such that (5.10) are satisfied with s = s; for some i € {1,2,3}.
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Then we have either

[u] = [k] =0 (5.11)

[u], [k] #0, m?*=a*7p. (5.12)

Thereby we defined m = py(uy — 8) = p—(u_ — s).

Proof. We observe that the second and the third equation in (5.10) can be rewritten
in the form

mlu] + le] = 0,
m[k] + a*Flu] = 0.
This is a linear system for the jumps and the statement follows.

From Lemma 5.3.2 and [A2(w)] = 0 we deduce that for i = 2 the condition (5.11) must
hold since mo = 0. Thus for a 2-wave we can choose p, 7 arbitrarily and have

[v] = [k] = 0. (5.13)

For an 1/3-wave we have m%/:g = a® # 0 by [A\3(w)] = 0. Thus (5.12) applies and
leads to the relation

. (5.14)

N =

p=

Now, let the factors p of the 1/3-wave depend on the left hand and right hand density
states:

p1= ﬁl(Pvaz)’ p3 = ﬁ?)(p*Rva)'
We then have from the Rankine-Hugoniot conditions (5.10) and (5.13), (5.14) the equa-
tions

a(uz - UL) + ﬁl(PL’ p*L)(H*L - HL) = 07
ur = ulb,
b n (5.15)
* _ *
Kk = FKpg»
a(up —uj) + p3(pk, pr) (KR — KR) = 0.

To avoid solving a system of nonlinear equations we define now
p1(prspL) = pL,  P3(PRsPR) = PR-

From the first and the third equation of (5.15) we find with the second equation (and
T=1/p) X

§ TLUL, —f—TRuR—E(I{R—HL)

urp =ur = T, + TR ’ (5.16)

K} =Kp = kr+arp(up —uj).
Here it is important that x and v do not jump via the 2-wave. Finally we define
according to the linear degeneracy of the characteristic fields

b= = (5.17)
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Now we have defined all states in the postulated solution of the Riemann problem. It
is straightforward to check for all three waves that all definitions of the middle states,
in particular (5.17), are consistent with the original conditions (5.10).

We summarize the results in a theorem.

Theorem 5.3.3 (Solution of the Riemann Problem)

Let the states up,ur € U be given. Then there exists a generalized solution u : R X
[0,T] — U of the corresponding Riemann problem (in the sense of [36]).

The solution w consists of the four states up,uj,up,ur € U which are separated by
three contact discontinuities which travel with speeds si,s2,s3 € R given by

a N a

§1 = UL —-— = UL — —,
PL L

_ * _ *

52 = ur, = Up (5.18)
a " a

§83 = UR+— = Up+ —.
PR PR

The states uj,up € U are defined by (5.16) and (5.17).

5.3.3 The Complete Numerical Algorithm

In this section we present the complete numerical algorithm for solving the initial value
problem for the Navier-Stokes-Korteweg system (5.1) in one and two space dimensions.
The discretization relies on the relaxation system (5.7) rather than on (5.1) directly.

The Scheme in 1d

First we provide the discretized initial data

1 [T+l
o= E/IJ * po(x) da,

1 [%i+)
(pu)] = E/ " (pouo) (2) dz,
xr

i-%

A
kj = 1)) = 73(pj — 205 + p-1)-

The most important step of the update procedure from one timestep to another consists
of two parts. First we neglect the sources in (5.7) and consider the first-order system

Pt + (pu)x - 07
(pu)e + (pu?)s + phiz 0, (5.19)

2
Kt + ukg + Z—ngg =
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The second step is the relaxation step. We solve the ordinary differential equations

Pt = 07
(pu)t = 0,
(. Ap)
. fi(p, Ap) — K

d

as the relaxation parameter d tends to zero. As initial data we take the data from the
first step. This means & is projected back to the equilibrium manifold. Because d tends
to zero we simply get

k= (5, AB).

where p is the data that comes from the first step. In the following we include the
viscous term again. We summarize the update procedure from time step n to n + 1 as
follows:

1) Choose the parameter a in (5.19) locally at the cell interfaces according to the
generalized Whitham condition (5.8)

2 _ ( n)2 /( n) 4 )‘p?
oy = PO+ 5 ) 1

2) Solve the Riemann Problem at each cell interface z; 1 with initial data (p;?, ult, H?),
2

(PF1 g, KT q). Let (ﬁj+%,ﬁj+%,%j+%) denote the solution of the correspond-

ing Riemann Problem.

At
n+1 ~ ~ ~ ~
Pi = /- h (ijr%(O)ujJr%(O) - ijé(o)ujfé(o)) )
At
+1 n ~ ~ 2 _ =~ ~ 2
(o)t = (o) = 5 (P (01 (0)* = 5,3 (0),_3(0)?)
At
_T(Vié i)
At .
tegg (Wi — 2uf +ujy),
with
R A _
vl = - p]_l(w)axmj_%(aj)daj,
iz
Tivd . B
VJL+§ = /gc 2pj+1(33)8$/<aj+1(;1:)d33

3) Perform the relaxation step

,{7?44*1 — n+1 n+l 2p;1+1 + n+1).

A
j H(Pj ) — ﬁ(ﬂj_u Pj-1
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Note: Let a1 < as < ag and

{ pr, T S ((117(12) { Ry, & S (a17a2)

pl) = L) =

pr, T € (az,a3) K, T € (a2,a3)

Then we set faaf p(z)kz(x)dx = L(p + pr)(kr — K;). Note that the solution of the
Riemann Problem can have zero, one or two jumps in the intervals (:rjil,xj) and
2

(acj,ijr%).

2d Extension of the Scheme

In order to describe the scheme in two space dimensions on a Cartesian mesh we have
to consider planar waves solving the system (5.7). Due to rotational invariance it is
sufficient to consider planar waves that propagate in z-direction only. These waves
satisfy the equation

Pt + (pul)zr = 0,
(pur)e +  (pui)s +phiz = 0,
(pu2)e + (puruz)y = 0, (5.20)
2 ~ A _
ke + UMJFG_QUM _ A Ap) — K
p d

We can easily verify the following

Lemma 5.3.4 (Hyperbolicity and characteristic fields)

(i) The system (5.20) is hyperbolic (but not strictly hyperbolic) in U := (0,00) x R3.
The eigenvalues of the corresponding Jacobian are given by

a a
Al(w):ul—g, )\g(w):)\g(w):ul, )\4(11]):’&1-1—; (w GU).
and the corresponding eigenvalues are
p3/a2 1 0 p3/a2
—p/a 0 0 a
mw) = | )= [ O ey = | )] )= | 7
1 0 0 1
(i) All characteristic fields are linear degenerate, i.e., we have for i =1,...,4 and all
welu

VA(w) - ri(w) = 0.

Now the solution of the Riemann Problem of the hyperbolic part of equation (5.20) has
almost the same structure as the Riemann Problem for the 1-D equation. We generalize
Theorem 5.3.3.
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Theorem 5.3.5 (Solution of the Riemann Problem)

Let the states wp,wr € U be given. Then there exists a generalized solution w :
R? x [0,T] — U of the corresponding planar Riemann problem (in the sense of [36]).
The solution u consists of the four states wy, w7}, up, ugr € U which are separated by

four contact discontinuities which travel with speeds s1,s2 = s5,s3 € R given by (5.18).
The states w}, wp € U are defined by (5.16), (5.17) and

us = u
2L 2l (5.21)
UQ,R - UQ’R.
Thus, the formulation of the scheme on Cartesian meshes is straightforward. We omit
the details.

Restriction on the Time Step Size

Now, the critical task is to give a correct restriction on the time step size that ensures
the stability of the method in some sense. The presence of second and third order terms
in the Navier-Stokes-Korteweg system and the lack of hyperbolicity of the first-order
part of the Navier-Stokes-Korteweg system make it difficult to give rigorous arguments
on the restriction of the time step size. Nevertheless, for sake of completeness of the
algorithm, we state at this point the condition we actually use.

We restrict ourselves to the 1-D situation. The extension to 2-D is straightforward.
Solving the local Riemann problems gives the condition

Oy
hij

uj — ——
J

j+s
)

a1 1
w4 223 ‘} <L (5.22)
Pi+1 2

and the approximation of the viscous term gives the condition

At 1
J

1 into account we can see that the time step

If we take the choice of the parameters a1
2

size is of order O(h?).

Numerical Results

The configuration for the numerical tests with the relaxation scheme is the same as with
the conservative scheme. However, we omit the third test case Towards Static Equilib-
rium because the scheme does not produce the dynamics of the solution correctly as we
will see in the test case with the traveling wave solution. Therefore an additional test
does not make sense.

Test Case: Static Equilibrium
Again we observe second order convergence as with the well balanced scheme. This is
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only due to the use of a quadrature formula of insufficient degree. See the correspond-
ing test case with the well balanced scheme in the previous section. We can also see
that the errors produced by the relaxation scheme and the well balanced scheme are
nearly identical because the errors are produced mainly by initial projection. Table 5.5
illustrates the results of the computations.

density and momentum

h total L2-error ‘ EOC
2.0000e-02 3.7576e-03
1.0000e-02 9.0721e-04 2.050
6.6667e-03 4.0074e-04 2.015
5.0000e-03 2.2494e-04 2.007
4.0000e-03 1.4382e-04 2.004
3.3333e-03 9.9822e-05 2.003
2.8571e-03 7.3315e-05 2.002

Table 5.5: Test Case: Static Equilibrium. Total L?-error and EOC for the approximate
solution generated by the relaxation scheme.

As with the well balanced scheme in the last section, a very small velocity field arises
because the discrete initial data is not a perfect discrete equilibrium. But this veloc-
ity field converges completely to zero as time tends to infinity. A sequence of density
profiles for different mesh sizes at computational end time would exactly look like these
shown in Figure 5.7. Therefore we omit it.

Test Case: Traveling Wave Solution

The approximate solution generated by the relaxation scheme seems to converge to
some limit function as the mesh size tends to zero. But this function is not the exact
solution as shown in Figure 5.12 and Table 5.6. Only the momentum is shown in Figure
5.12 such that the difference between exact and approximate solution can be seen more
clearly. The L?-errors of the density profiles and the momentum profiles are illustrated
by Table 5.6.

5.4 Comparison of the three Different Schemes

We compare the two quantitative tests applied in the previous sections to the con-
servative scheme, the nonconservative well balanced scheme and the nonconservative
relaxation scheme.

The left part of Figure 5.13 shows the error of the density profiles of the three different
schemes in the test case with the traveling wave solution. The conservative scheme and
the nonconservative well balanced scheme converge with order 1 to the exact solution
and the error of the well balanced scheme is an order of magnitude smaller than the
error of the conservative scheme. The discrete solution generated by the relaxation
scheme does not converge to the exact solution. The momentum profiles (not shown)
show exactly the same behavior.
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Figure 5.12: Exact and approximate traveling wave solution (momentum only) gener-
ated by the relaxation scheme for n = 1800.

14 pu
h L?-error ‘ EOC L?-error ‘ EOC

1.0000e-02 || 3.3850e-02 2.3703e-02
5.0000e-03 || 3.3000e-02 | 0.037 || 2.1270e-02 | 0.156
3.3333e-03 || 3.2677e-02 | 0.024 || 2.0440e-02 | 0.098
2.5000e-03 || 3.2506e-02 | 0.018 || 2.0025e-02 | 0.071
2.0000e-03 || 3.2399e-02 | 0.015 || 1.9776e-02 | 0.056
1.6667e-03 || 3.2327e-02 | 0.012 || 1.9610e-02 | 0.046
1.4286e-03 || 3.2275e-02 | 0.011 || 1.9492e-02 | 0.039
1.2500e-03 || 3.2235e-02 | 0.009 || 1.9404e-02 | 0.034
1.1111e-03 || 3.2204e-02 | 0.008 || 1.9335e-02 | 0.030

Table 5.6: L?-error and EOC for the approximate traveling wave solution generated by
the relaxation scheme.

The right part of Figure 5.13 compares the convergence rates in the test with the static
equilibrium solution. The values for the nonconservative well balanced scheme and the
relaxation scheme are almost the same because after initial projection the data does
not change essentially. Therefore the values of the relaxation scheme hide the values of
the well balanced scheme in the figure. As discussed in the previous sections, the well
balanced scheme and the relaxation scheme are not really second order schemes as the
figure suggests and the convergence rate of the conservative scheme should approach
one if the mesh is further refined. From the figure we can conclude that the results at
a static equilibrium computed by the well balanced scheme and the relaxation scheme
are several magnitudes better than the results given by the conservative scheme.

There is clearly a difference in the qualitative behavior of the numerical solutions pro-
duced by the conservative and the well balanced scheme. For those generated by the
well balanced scheme the total energy is a decreasing function of time, when the solution
tends to a static equilibrium state on the discrete level the kinetic energy tends to zero
and the value x approaches a constant as time tends to infinity. This is exactly the
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Figure 5.13: Left: L?-errors of the density profiles for the three different schemes,
traveling wave test. Right: total L2-errors for the three schemes, static equilibrium
test.

behavior of exact solutions. For the numerical solutions produced by the conservative
scheme we do not have these properties for a fixed mesh size h.

Thus, the nonconservative well balanced scheme seems to be the most promising scheme.
The smaller time step size in comparison to the other schemes is not an issue since this
can be bypassed using implicit time stepping. This is the scheme we will generalize to
higher order schemes on arbitrary nonconform meshes by application of the Discontin-
uous Galerkin approach in the next chapter. The numerical experiments show that the
relaxation scheme is of very limited use. It can only be used to construct nontrivial,
first order accurate static equilibrium solutions. Also the generalization to higher order
schemes is much more involved for the relaxation scheme than for the other schemes.
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Chapter 6

Higher Order Schemes: The
Discontinuous Galerkin Approach

The Discontinuous Galerkin (DG) method is a class of Finite Element methods that
uses completely discontinuous ansatz functions as a basis of the Finite Element space.
In application to systems of conservation laws these inter element discontinuities give
extra degrees of freedom that can be used to stabilize the method. At the discontinuities
usually numerical fluxes are applied that are known from the Finite Volume framework,
see standard textbooks such as [51], [52], [76], [81]. Thus, the Discontinuous Galerkin
approach is a combination of Finite Element and Finite Volume methods and a natural
generalization of Finite Volume methods to arbitrary higher order schemes.

The Discontinuous Galerkin method has several advantages over other higher order
Finite Volume methods such as methods based on ENO or WENO reconstruction.

e In the framework of the DG approach it is very easy to design higher order ansatz
spaces. The polynomial degree can be chosen locally which makes the schemes
ideally suited for p-adaptivity.

e Arbitrary, nonconform unstructured meshes can be used, possibly with hanging
nodes due to the discontinuous ansatz functions.

e The method is extremely local. It is only necessary to communicate with the
direct neighbor cells. Thus, it is very well suited for parallel implementations.

But there are still some drawbacks as the need for slope limiters when the approximated
solution is not sufficiently smooth. Sometimes the computational cost may be higher
because at the cell boundaries in general integration formulas of twice the degree as for
reconstruction based schemes have to be used. Additionally a volume integral has to
be computed. Depending on the application this extra cost can be higher or lower than
the reconstruction step in ENO or WENO methods. A complete numerical comparison
between these methods applied to systems of interest is not available at time of this
writing.

The first Discontinuous Galerkin method was proposed 1973 by Reed and Hill [94].
During the last two decades a major development of this type of numerical schemes was

93
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carried out by Cockburn, Shu and coworkers in the series of papers [22], [21], [24], [23],
[26]. The method has found rapid applications in many different areas. The review
paper [22| provides a good overview and many useful references concerning the DG
approach.

The Local Discontinuous Galerkin (LDG) method is a generalization of the standard
DG method for conservation laws proposed by Bassi and Rebay [8]. It is designed for the
use with convection dominated conservation laws that include higher order derivatives,
such as the compressible Navier-Stokes equations. Further development of this method
was done by Cockburn, Shu and coworkers especially the application to equations with
third or higher order derivatives, see for example [25], [130].

The LDG method has all the advantages of the standard DG method. In contrast to
other DG type methods for convection dominated convection-diffusion equations, such
as the Baumann and Oden method [9], the Local Discontinuous Galerkin method can
be easily applied to equations with third or higher order derivatives. This property
makes it ideally suited for the application to the Navier-Stokes-Korteweg system.

In this chapter we discuss the Local Discontinuous Galerkin method and its application
to conservative terms, higher order term and source terms in detail. Additionally we
present an approach for the DG discretization of nonconservative terms based on the
definition of nonconservative products [36] and on the formulation given in [63]. We
describe the method in a general framework of evolution equations and discuss the dis-
cretization of some simple examples. This general framework has also been successfully
applied to many other problems, see for example [19]. For a scalar model problem for
the NSK system we prove a L2-stability result of a semi-discrete Local Discontinuous
Galerkin discretization, similar to the result given in [130]. Based on the discretization
of the model problem we give the complete discretization of the Navier-Stokes-Korteweg
system in multiple space dimension at the end of this chapter.

For the application of the method we use unstructured triangular and tetrahedral meshes
since these type of meshes are very well suited in approximation of complicated geome-
tries and have the extra advantage that the reference mapping to the standard cell is
an affine linear transformation. This has several advantages (listed in the following
section) in combination with the Discontinuous Galerkin method. We allow the meshes
to be nonconform in order to perform local mesh adaption efficiently in parallel and as
simple as possible. However, most (but not all) of the following applies to more general
meshes as well. We start with the description of the simplicial meshes we use.

6.1 Simplicial Meshes

The use of simplicial meshes in combination with the Discontinuous Galerkin method
has the advantage that the mappings between the reference cell and the cells of the mesh
are affine linear functions. This linearity of the reference mappings has two important
consequences. On the one hand the computational cost is significantly lower and on the
other hand orthogonality of local base functions is preserved as we will see in Section
6.3. The latter is also an improvement of the efficiency of the method, especially in
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combination with explicit time stepping, and leads to a simpler implementation of the
method. We start with the description of the underlying meshes that will in general
be nonconform but not arbitrary nonconform meshes. We are mainly interested in
nonconform meshes that are generated by successive refinement of a conform macro
mesh. For the ease of implementation and the numerical stability of the method it is
also desirable to restrict the number of levels of nonconformaty.

The n-dimensional reference simplex (reference cell) is defined by

n
A:{xeR”\xi>0,in<1}. (6.1)
=1

Let Tj : A - R"a nondegenerate, affine linear mapping for j = 0, ..., neeys — 1. We
define

Aj = T’](A)v
T = {Aj|j:07"'ancells_1}'

In the following we denote both, the compact set A; as defined above, as well its open
interior set by the symbol A; depending on what is more appropriate and provided
that the meaning is clear. Vertices of cells are called 0-dimensional interfaces, edges
1-dimensional interfaces, faces 2-dimensional interfaces and so on.

Definition 6.1.1 (Simplicial Mesh)

T s called a nonconform simplicial Mesh if for all i # j, A, Aj € T we have H"(A; N
A;) =0 and if H"*(A;NA;) £0 for k=1,...,n one of the following two conditions
holds

(i) a (n— k)-dimensional interface of A; is subset of a (n — k)-dimensional interface
Of A];
(i1) a (n — k)-dimensional interface of Aj is subset of a (n — k)-dimensional interface

Of Az

A nonconform Simplicial Mesh is called conform if conditions (i) and (ii) hold simulta-
neously, i.e., the cells A; and Aj share a common (n — k)-dimensional interface.

In the above definition H™ denotes the m-dimensional Hausdorff measure in R". A
Simplicial Mesh is called a Triangulation for n = 2 and a Tetrahedralization for n = 3.
If H*1(A;NA;) # 0 for two different cells A; and A; of the mesh then they are called
neighbors.

For a family of simplicial meshes (7,),~0 we will assume in the following

5(T) < b

supk(Tp) < oo,
h

where § and k are defined by
0(7T) = sup{diam(A;)|A; €T},

K(T) = Sup{%‘A]’ GT}.
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This means that for this family the mesh size tends to zero and angles remain bounded

from below. Q) = |J A, denotes the domain that is partitioned by 7, and |7}, the
AjETh

number of cells of mesh 7},
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Figure 6.1: Conform mesh (left) and a nonconform mesh obtained by successive refine-
ment of the conform mesh (right).

6.2 The Local Discontinuous Galerkin Method

Here we discuss the higher order spatial discretization of conservative systems with or
without higher order derivatives, non-conservative parts and source terms. The term
local in Local Discontiunuous Galerkin Method is used when higher order derivatives
are involved. The discretization leads to a semi-discrete formulation, i.e., a ordinary
differential equation. The higher order time discretization of ordinary initial value
problems is discussed in Chapter 7.

6.2.1 First Order Conservative Systems

In this section we consider first order conservation laws of the form
ur+ Llu] =0 in QCR™ (6.2)

In the above equation £ : CH(Q,U) — C°(Q,U) denotes a differential operator that is
defined by

Llul(w) = Y o f (u(w), @)
i=1 "

where f, : UxQ — R? i =1,...,n are smooth functions (physical fluxes) and might in
general depend on further parameters such as time. The open set & C R? is called state
space. For example the Euler equations of gas dynamics in multiple space dimensions
and the inviscid Burgers equation are systems of conservation laws. Usually first order
systems are required to be hyperbolic in (at least parts of) the state space U, otherwise
the conservation law usually suffers a lack of well posedness, see standard textbooks on
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Hyperbolic Conservation Laws such as [34], [51], [L00]. The aim of this section is the
discretization of the spatial differential operator L.

Let (-,-)q denote the L? inner product with respect to 2. Using partial integration we
have (for smooth functions u and ¢ € C1(Q2, R?)) the expression

(Lhul. oo = [ S mif(u().2) - ¢l@) do@) — [ 3 filu@).2) 5 plw) du(6:3)
o0 ¢ o =1 '

o) =1

where the n; denote the components of the outer normal vector on 9f).

We introduce the scalar Discontinuous Galerkin space V}, by the definition
Vi = {o: Q> R|pla, €Pr, AjeTh},

where the basis functions ¢ usually belong to the space of polynomials Py of degree
k locally, i.e., on each cell A; of the underlying mesh 7;, see Section 6.3. The set
Qp C R™ denotes an approximation (in some sense) of the domain  which is partitioned
by 7;. The space of polynomials could be replaced by some other space with similar
approximation properties. Based on Vj we denote the space of vector valued ansatz
functions with values in R? by Vhd.

Let us define a discrete differential operator Lj, : V,f — Vhd by (L?-)projecting L[u] to
Vi, in a sense that is discussed in the following. Therefore we apply the definition of
nonconservative products [36] to the expression (6.3), see Appendix A.4. For uy € V,{i
we define Lp[up] by the relation

(Lnlunl, @)a,

[7n]-1 o
= Y [ @) (@) da (6.4
=0 }, i=1 v
1 [ 7|1
+§ g(uh‘A]‘(m)7uh‘AJ-/ (z),z,n) - (90|Aj(m) - QO‘A]-/ (z)) do(z)
7=0 aa\oxy,
[7n|—1 n

+ D / > nifi(unla, (@), @) - @|a, () do(z)

7=0 on,n00, =1

for all ¢ € Vhd. The cells Aj denote the corresponding neighboring cells of cell A; in
the surface integral above. The factor % in front of the second term of the right hand
side appears because all interfaces are counted twice. The last term in the equation
above can be used to prescribe several kinds of boundary data. The Discontinuous
Galerkin method is well defined when the physical fluxes f, and numerical flux g are
chosen. The physical fluxes are completely determined by the equation whereas the
choice of the numerical flux is the crucial part in the method. For a reasonable method

the numerical flux should satisfy at least
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n
(i) gu,u,z,n) = > n;f;(u,z) for all u € U,z € Q and n € S*~! (Consistency).
i=1

(ii) g locally Lipschitz continuous.

(iii) g(u,v,z,n) = —g(v,u,xz,—n) for all u,v € U,x € Q and n € S"~! (Conserva-
tion Property).

Many numerical fluxes for different kinds of equations can be found in standard text-
books such as [52], [76], [81], [111].

Now let
[Vi|—1
wp(@,t) = > @i(@au(t), {0, P,-1} basis of V,
=0
then the semi-discrete formulation of the conservation law 6.2 can be written as

0
<Euh('vt)v¢> + (Eh[uh('vt)]?(to)ﬁh =0 forall pE Vlfl? te (0,00) (65)
Qpn

This is the DG space discretization given by Cockburn and Shu, see for example [21],
[24], [23], [26]. The initial value problem (initial values have to be provided by a projec-
tion to the space V,{i) for the ordinary differential equation (6.5) can be solved by means
of Runge-Kutta methods or other schemes like multistep schemes. For the use with
conservation laws Shu and Osher [103] have developed special Runge-Kutta methods
(TVD or Strong Stability Preserving) that preserve certain properties of conservation
laws on the discrete level (such as the TVD property of scalar conservation laws), see
Chapter 7.

6.2.2 Conservative Systems with Higher Order Terms

The idea of the treatment of higher order derivatives in the framework of the Local
Discontinuous Galerkin method is to reformulate higher order differential operators as
combination of first order differential operators and to apply the method described in
the previous section.

As an example we consider the multidimensional nonlinear convection-diffusion equation
ur + EQ [U] = 0,
L%u] = V-F(u)—V-(eVu),

with some nonlinear flux F'. This equation can be reformulated by using two first order
differential operators

up + Ly[(u, Li[u])] = 0,
i
Li(u,v)] = V- F(u)—V-(ev).

=
Il
<

I



6.2. THE LOCAL DISCONTINUOUS GALERKIN METHOD 99

In general, a m-th order differential operator can be constructed by means of m first
order differential operators.

LMu] = L1[(u®ul,. . u™ ).

Here the first order differential operators are of the form

Lhul,. . () =)

i=1

(;zalff(uo(m),...,uk_l(:n),a:), k=1,...,m,

with u®(z) € R%, x € R™. These first order operators can then be discretized as in the
previous section. The method is called Local Discontinuous Galerkin method because
the temporary functions u* can be eliminated locally without solving a large system of
equations.

Now the space discretization at a time ¢ > 0 of a conservation law including higher
(m-th) order derivatives, represented by the spatial differential operator L™, of the
form

ur+ L"u] =0 (6.6)

can be carried out by the definition of a discrete differential operator L} of order m
following the algorithm:
set u) = up(-,1);

fork=1,...,m{
compute L [(uf, ... uﬁ_l)] using the physical fluxes f¥
and consistent numerical fluxes g* as in the previous section;
k _ prl 0 k—1\1.
set uy = L; 4 [(w, .. uy )

}

set L' [up(-,t)] = uj'.

Here the discrete first order differential operators E,ll are defined as in the previous
section. Using the discrete spatial operator we can formulate the semi-discrete version
of the higher order conservation law

0
(auhc,t),so) (L)) ), =0 forall p € VS, tE (0,00, (6.7)
Qp
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Example 6.2.1 (Scalar Convection-Diffusion Equation)

For the complete Discontinuous Galerkin discretization of the scalar convection diffusion
equation from the beginning of this section we have to define the physical fluxes le, ff
and numerical fluxes g', g?. We use the following fluxes

flw) = ue;, i=1,...,n
gl(% w,n) = %(u +u)n,
fA(u,v) = F(u)—ev;, i=1,...,n,
g2(u,v,ﬂ,f2,n) = G(u,u,n)— 5(1} + ),

where the vectors e; denote the standard unit vectors in R™ and G is a consistent nu-
merical flux for the fluxes F;, for example the Lax-Friedrichs flux.

This is the original method of Bassi and Rebay introduced in [8] applied to the scalar
convection-diffusion equation (Bassi and Rebay applied this method to the compressible
Navier-Stokes equations). In the above discretization we have neglected the treatment
of boundary conditions for simplicity, therefore the discretization of the convection dif-
fusion is not yet complete (with the exception of a mesh with periodic boundary). How-
ever, the treatment of boundary conditions is another crucial part of the Discontinuous
Galerkin method and depends, of course, on the kind of boundary condition. We will see
examples for the DG-discretization of several kinds of boundary conditions at the end of
this chapter in conjunction with the DG-discretization of the Navier-Stokes-Korteweg
System in one, two and three space dimensions.

6.2.3 Non-Conservative Systems

In this section we consider first order systems including non-conservative terms, i.e.,
parts of the equation that can not be written in divergence form. Systems that arise from
physics are usually in conservative form but a nonlinear transformations of coordinates
or a homogenization process can lead to a non-conservative system of equations. In
our case the discretization in non-conservative form simply leads to a more reliable
discretization of the system. The discretization of non-conservative first order systems
has to be done with care. In general the sequence of approximate solutions generated by
a scheme in non-conservative form does not converge to the physical relevant solution
in the case where discontinuities are present, see [60]. This is not an issue in our
case because solutions of the NSK system are supposed to be sufficiently smooth. The
approach we describe in this section can formally be generalized to systems with higher
order terms and/or conservative terms as described in the previous sections. We consider
differential operators of the form

Z A 81 (x),

with matrix valued functions A; : R? x R” — R%*? At the moment the function w is
supposed to be smooth. The aim of this section is to define a discrete operator that
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can be applied to discontinuous functions uy, of the finite element space V,f. Similar
to Section 6.2.1 we apply the definition of nonconservative products [36], see Appendix
A 4. In the following the notation of Appendix A.4 is used.

We define the discrete operator applied to uy € Vhd by the relation
(Lnlun], @)a,

:/d

" )

T Q. .
E p Ai(up,-) 8aziuh]
=1 1)

Qp
|7h|—1
0
- wn(@),w) - () do 68)
|Th\ 1 n
+ Z / / nz¢¢ (t.z)" Ai(du(t, ), ) ¢,(t, ) dt do(z)
=0 gn\o0, 0 =

for all ¢ € Vhd. ¢ and ¢, in the above equation denote the u- and ¢-components of
the path ¢, i.e.,

( f;: > (t,z) =9 (t; (unla; (2), @la; (@), (unla, (), ¢la, (@))

with the property that ¢ is linear in the test function arguments ¢. The factor % in
the last term of equation (6.8) is necessary because all interfaces are counted twice.
Note that there is no contribution of the boundary in equation (6.8) that can be used
to impose boundary conditions as in the conservative case (6.4). The difference to
boundary data can be regarded as discontinuity and therefore additional boundary
terms have to be added to equation (6.8) in order to prescribe data on parts of the
boundary of the domain.

The last term in equation (6.8) can be approximated by an averaging process. In
practical applications we use the following variation

(Lnlunl, p)a,

[7n] -1 n 9
- X /Z‘P(‘B)TAi(uh(w)vl‘) 5, un(@) dz (6.9)
j=0 A; i=1 i
\Thl 1
+ z; / {e( {Z n; A (up(x 83)} [up(x)] do(x).
I=V aa 00y,

Here the blue term denotes the linear average in the test function

{Qo(m)T}C = CQO‘A]‘ (x) + (1 - C)‘AO‘A]-/ (x)

for some ¢ € [0, 1]. The red term denotes the average in the term ) n;A;, not necessarily
the arithmetic average. And

fun(@)] = (wnla, (@) = unla, @)
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denotes the jump of uy over the cell interface in direction of the normal n.

In practical applications the test functions have usually only support on one cell of the
mesh. In this case the average in the above equation has the same structure as for the
conservative terms, see (6.4). When non-conservative and conservative terms appear
simultaneously both average procedures can be combined in one generalized numerical
flux function. The parameter ¢ can then control the average value in the test function.

6.2.4 Source Terms

Source terms in a balance law are simply projected to the the ansatz space V,f. This
means a balance law of the form

u; + L[u] = B(u),

where £ is a differential operator that can include higher order derivatives or non-
conservative parts and B is the source term that can in general also depend on space
and time variables, is discretized in the following way

(%uh('at)vlp> + (Lh[uh('at)]790)ﬂh = (B(uh(Wt))an)Qh for all ¢ € Vhd7 te (0,00)
Qpn

The formally simple approach does not necessarily mean that source terms are triv-
ial to handle. The presence of source terms often results in stiff ordinary differential
equations of the semi-discrete system. Therefore it is sometimes convenient to apply
explicit-implicit Runge-Kutta methods (see Chapter 7), where the convective part of the
equation is discretized in an explicit fashion, and the source term is treated implicitly.

6.3 Construction of Local Basis Functions

In this section we construct an orthogonal set of basis functions that spans the Finite
Element space V},. For this construction it is important that the reference mapping from
the reference cell to an arbitrary cell of the mesh is an affine linear function. This is the
case for simplicial meshes as well as for Cartesian meshes. For general meshes this is
not the case. By this property orthogonality on the reference cell leads to orthogonality
on an arbitrary cell.

We denote the L2-inner product on the reference cell A by

(6.0) = / (@) (x) d
A

and polynomials of degree at most m and the dimension of this space by

n n n
. 1 .
Pm:span{xHfol\kieN, g ki<m}, \Pm|:EH(m—|—z).
Ti=1

i=1 i=1
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We construct an orthonormal basis of P, with respect to the inner product (-,-) by
application of the Gram-Schmidt procedure. It is well known that the Gram-Schmidt
procedure is not stable when floating point arithmetic is used. Therefore we use rational
arithmetic to overcome this problem by exploiting the fact that

/ka g — ALz Kt
il (n+ 320 ki)l
A

which is a rational expression. This way the orthogonalization can be carried out with-
out loss of accuracy. The normalization of the base functions is done at the end using
high precision floating point arithmetic. Both, rational arithmetic and arbitrary preci-
sion floating point arithmetic, are provided by the GNU MP package [82] which provides
a C++ interface including overloaded arithmetic operators.

We denote the orthonormal base polynomials of P, by po, . .., pp,,|—1- Here [Py, | stands
for the dimension of P,,,. Using these local base functions we can define global orthogonal
base functions on €,

¢l(x) = xa, (@) p(Ti(x)™Y), j=0,...,|T| -1, 1=0,...,[By| -1  (6.10)

Orthogonality of the local base polynomials p; is preserved because the mapping 7 from
the reference cell to the simplex A; of 7 is an affine linear mapping. Now we define the
|7| - |P,,| -dimensional space of base functions for the (m+1)-th order Discontinuous
Galerkin Method by

Vi=1{¢l |j=0,...,|T| =1, 1=0,...,|Pp| —1}.

Note: On Cartesian grids as well as on nonuniform one-dimensional grids Legendre-
Polynomials can be used to construct orthogonal basis functions. In this case an or-
thogonalization procedure as above is not necessary.

A more sophisticated method to construct an orthonormal polynomial basis is presented
in [62]. The resulting basis has additional symmetry properties. Using this symmetry in
the base polynomials together with symmetries in quadrature formulas can be exploited
to improve the performance of the Discontinuous Galerkin method (The number of
floating point operations can be reduced by exploiting these symmetries). In one space
dimension the Legendre-Polynomials are already symmetric and skew symmetric. See
example 6.5.1 in Section 6.5 for an exploit of symmetries in this case.

6.4 Quadrature Formulas

For the general treatment of nonlinear partial differential equations by the Discontin-
uous Galerkin method described above we need quadrature formulas to evaluate the
volume and surface integrals that appear in the Discontinuous Galerkin formulation.
In certain special cases the application of quadrature formulas can be avoided by the
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application of a quadrature-free implementation which improves the efficiency the Dis-
continuous Galerkin method. This is possible for example for linear equations with
constant coefficients, Burgers equation or Fuler equations with equation of state of a
perfect gas [4], [83].

A n-dimensional quadrature formula with respect to the n-dimensional reference simplex

is a set of points @, ..., ®,,—1 and corresponding weights, wo, ..., wp,—1 such that the
sum
ng—1
In(f) = Z wr f(xr)
r=0

approximates the integral

1(f) = / /() da
A

in some sense for a given function f: R"™ — R.
Note: It is not required (but recommended) that the points @, lie inside the reference
simplex.

Definition 6.4.1 (Order of Quadrature Formulas)
A quadrature formula (T, w;)r=o,..n,—1 15 of order m € N\{0} if equation

In(p) = 1(p)
holds for all polynomials p € P,,.

As noted above the use of quadrature formulas with points x, outside the reference
simplex is not recommended because functions may not be defined at points they are
evaluated at by the use of such a formula. Some applications have problems when
formulas with negative weights are used but the Discontinuous Galerkin method (at
least in our applications) seems not to be sensitive to this issue. The use of quadrature
rules with negative weights results in the loss of the positivity property of the numerical
integral but not in the loss of accuracy in general.

For the implementation of Discontinuous Galerkin schemes the analysis carried out by
Cockburn, Hou and Shu in [23] shows that for the volume integrals quadrature formulas
of order 2m and for the interface integrals quadrature formulas of order 2m + 1 are
sufficient when polynomials of degree m are used as ansatz functions. However, in the
complete linear case quadrature formulas of order 2m —1 and 2m are sufficient for exact
integration for the volume and interface integrals respectively. For linear source terms a
volume quadrature rule of order 2m must be chosen. Even for nonlinear equations this
choice may be sufficient as we have observed in applications with the Navier-Stokes-
Korteweg system.

6.4.1 1d Quadrature Formulas

Quadrature formulas in one space dimension can be constructed very easily by com-
puting the zeroes of Legendre polynomials to obtain the quadrature points and the
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corresponding weights are obtained by solving a linear system of equations. In [92] the
C/C++ method gauleg is provided that constructs Gaussian quadrature formulas of
arbitrary degree that are known to be optimal in the sense that the number of points of
a quadrature rule of a given order is minimized. This means with n, points a Gaussian
quadrature formula of order 2n, — 1 can be constructed. The weights and points of
Gaussian quadrature formulas of lower order can also be found in standard textbooks,
e.g. [109] or [107].

6.4.2 2d Quadrature Formulas

Table 6.1 lists some properties and references to existing 2d quadrature formulas with
respect to the triangle. All of the 2d formulas are taken from [40] some of them can
also be found in [109] and in other sources.

order | number of points | remark

1 1

2 3

3 4 has negative weights
4 6

) 7 has negative weights
6 12

7 13

8 16

9 19

10 25

11 27 has negative baryzentric coordinates
12 33

13 37

Table 6.1: References to 2d quadrature formulas.

[40] provides integration formulas up to order 20. Some of the additional formulas not
listed in Table 6.1 also have negative weights or negative coordinates.

6.4.3 3d Quadrature Formulas

Table 6.2 lists some properties and references to existing 3d quadrature formulas with
respect to the tetrahedron.

Many of the 2d and 3d quadrature formulas above can be obtained from the Encyclo-
pedia of Cubature Formulas website |28], [88].

Note: On Cartesian meshes in arbitrary space dimensions 1d-Gaussian quadrature for-
mulas can be used to construct formulas of optimal order.
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order | number of points | remark reference
1 1 [109]
2 4 [109], page 307
3 5 has negative weights [109], page 308
4 11 has negative weights [70]
5 14 [117]
6 24 [70]
7 35 has negative weights [117]
7 31 has negative weights [70]
8 43 has negative weights [10]
9 53 has negative weights [10]
has negative baryzentric coordinates
11 87 has negative weights [99]
has negative baryzentric coordinates
not computed very accurately

Table 6.2: References to 3d quadrature formulas.
6.5 Implementational Details

We discuss some details on the implementation of the DG discretization for scalar first
order conservation laws and scalar nonconservative equations. The extension to vector
valued equations and equations with higher order derivatives is then straightforward.

Scalar first order conservation laws
We consider the Discontinuous Galerkin discretization of the scalar conservation law

u+V-f(u)=0

in n space dimensions. Application of the discretization given in (6.4) and using the
notation of the previous sections we get for the j-th cell of the mesh

/%uj(ac,t)goi(m) de = /f(uj(ac,t)) . Vgoi(ac) dx
A, A,

- Z g(uj(mvt)vuj/(m>t)>n) QD?C(I) da(w)v
e€OA; ¢

where goi, € V}, denote the basis functions that are not identical equal to zero on the cell
Ajfor k=0,...,n,—1=|Py,| —1. The approximate solution on the cells A; and the
corresponding neighboring cells A/ are defined by
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By application of the transformation formula and the definition of the test functions goi
in (6.10) we get

(od) (1) / pe(@)pi(@)] det DT ()| da
An
= / [DTj(a:)*lf(uj(Tj(w),t))] - Vpi(x) |det DT(x)| de
An

- i / g (v (Si(@).0).7'(S}(@).1).n) gpi(Sj(m))\/det (s Ds;) da.
iZOAn71

Here T} : A, — A denotes the affine linear reference mapping from the n-dimensional
reference cell to the cell A; and S;- A — eg the reference mapping from the (n—1)-
dimensional reference cell to the i-th interface of the cell A;. We have

|det DTj(z)| =n!-|A;| and \/det (DS;(QJ)TDS;(QZ)) =(n—1)! |e§|

Using this, the orthogonality of the test functions and application of n-dimensional and
(n — 1)-dimensional integrations formulas with ¢" and ¢"~! points respectively gives

q"—1 np—1
(@)t = > wp (DT Y ofpa)) | | - Vor()) (6.11)
r=0 =0
n ‘ei' -1
-1 1 —1 @i -1
YA X w0 TS )
i=0 IV =0
+Ry (1),
with the abbreviation
np—1 np—1
g@p ) =g | D> o] Op(T; SH@r ), Y of (Opu(T5 Sy ),
=0 =0

Ri(t) denotes the (small) approximation error of the quadrature formulas and is ne-
glected in the implementation. Note that an evaluation of the basis functions pg is
necessary only once at the beginning of the computation for the volume integrals. This
does also hold for the surface integrals when the maximum level of nonconformity is
restricted in the mesh.

Scalar nonconservative equations
We consider the nonconservative scalar equation in multiple space dimensions

ug + a(u, Vu, x,t) = 0.
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Here a is of the form

n

0
a(u, Vu, z,t) = b(u, z,t) + ; ai(u,x,t)a—xiu

and includes also a source term b. We apply the discretization given by equation (6.8).
The computation of the surface integral is similar to the computation of the surface
integral in the conservative case discussed in the previous paragraph. So we omit it and
discuss only the computation of the volume integral. With the notation of the previous
paragraph we have

/a(uj(a:,t),Vuj(m,t),m,t) ol (x) d

A
np—1 ' np—1 '
= /a Z a{(t)pl(j’jilm)? a?(t)(DTj)_TvPl(Tjilm)v x, t pk(Tjilm) dx
J
np—1 ' np—1 .
= nl- |4 /a > al®pi(®), Y o (()(DT) TVpy(x), @, t | pi(e) da
=0 =1

by application of the transformation formula. Note that py is a constant and can be
omitted in the computation of Vu;. For implementation a suitable quadrature formula
as to be applied in general. This is the same as in the conservative case.

Example 6.5.1 (Symmetry Exploit)

In (6.11) we have seen that for the computation of the volume integral over the cell
A; the approximate solution uj has to be evaluated at the integration points T)(x;).
The same can be done with less computational cost using symmetries in the basis
polynomials and in the quadrature formulas. We consider the one dimensional case.
In this the basis polynomials are given by scaled Lagrange polynomials. For simplicity
we assume that we have an even number n, of local basis functions. As quadrature
formulas we choose a Gaussian quadrature formula with an even number of points n,.
Both, the quadrature formulas and the basis function have symmetries. We have the
properties

p(xr) = pi(Tp,—r—1) if [ is an even number,

p(zr) = —pi(@n,—r—1) if I is an odd number
forl =0,...,n, —land r =0,...,ny — 1.
For r =0,...,n4 — 1 it is necessary to compute

np—1

wn(Tyer) = 3 of pie,).
=0
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Using the properties above this can be done also in the following way. Forr =0,..., 5 —
1 compute

op_

1
2
Be = > oy pular),
1=0

g
Yo = Z a2i+1 P+ (r),
=0
uh(TJ($T)) = Br+
uh(Tj(an—'r—l)) = Br =

In this approach only half the number of multiplication and less additions are neces-
sary to evaluate the approximate solution at the quadrature points. Note that this is
not restricted to even number of basis polynomials and quadrature points. A similar
approach is also possible in multiple space dimensions when the orthogonal basis func-
tions have additional symmetry properties. In [62] such a kind of basis polynomials are
constructed.

6.6 Simple Examples

This section is dedicated to the Local Discontinuous Galerkin discretization of two sim-
ple examples in one space dimensions including higher order terms. In Section 6.2 we
have already discussed the discretization of the scalar convection-diffusion equation in
multiple space dimensions as the method was proposed by Bassi and Rebay [8]. Here we
give other possible numerical fluxes like these proposed by Cockburn and Shu in [25].
The second example is the LDG discretization of an equation that includes third order
terms. This equation serves as a model problem for the Navier-Stokes-Korteweg system
not because it is related to this system in special situations but the way it is discretized
is similar.

6.6.1 Nonlinear Convection-Diffusion Equation in 1d

In Example 6.2.1 we already discussed the multidimensional nonlinear convection-diffusion
equation and we discretized it by application of the original LDG method proposed by
Bassi and Rebay [8]. Here we consider this equation again in one space dimension
for simplicity and give alternative discretizations with superior properties proposed by
Cockburn and Shu [25]. We consider the problem

ug+ F(u)y = eugy in R X Ry,
u(-,0) = wp inR,

where F' : R — R is some smooth (in general nonlinear) function and the constant
e > 0 is supposed to be small such that the equation is convection dominated and the
Discontinuous Galerkin discretization is an appropriate choice.
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We rewrite the equation using two first order differential operators £1 and £} as in
Section 6.2

up + L3 [u, Li[u]] =0,
the differential operators are defined by

L) = Sl A = u,
Lyuv] = fHuv)e,  fiuo) = Flu)—ev.

Here fi and f? denote the physical fluxes. For the complete numerical discretization
we have to define consistent numerical fluxes, We choose the Local Lax-Friedrichs flux
for the convective part of the equation and a family of viscous fluxes parameterized by
¢ €0, 1] for the viscous part of the equation.

gt ,utin) = (Gu +(1—&ut)n,
P v utvtn) = F(Fw )+ Fut)n— 9wt —u) (6.12)
—((1=&v™ +&vh)n,

where n denotes the one dimensional normal (i.e. 1 or —1) and « is chosen to be equal
to the fastest wave speed o = max(|F'(u™)|,|F'(u")]). For simplicity we omit the
treatment of boundary conditions.

Choosing the parameter £ equal to zero or one means that in a first order scheme the
viscous part of the equation is discretized by the usual three point stencil

€

72 (wi—1 — 2u; + uig1),

whereas the choice £ = % leads to a discretization by the spread out five point wide
stencil

€

2 (Uimo — 2u; + Uiy2) .
Numerical experiments show that the latter choice can lead to a suboptimal order of
convergence in the case where polynomials of odd degree are used as ansatz functions,
see [102]. This is not a problem with the choice £ = 0 and & = 1 but this choice can
lead to problems with boundary conditions, see also Section 6.9.

For a first order scheme it is clear that the numerical (artificial) viscosity can be omitted
in the case £ = 0 and £ = 1, the method proposed by Cockburn and Shu |25], provided
that the computational mesh is sufficiently fine or the time step sufficiently small in the
fully discrete scheme. A linear stability analysis shows that it is not possible to stabilize
the scheme by physical viscosity when the parameter £ = %, this is the original scheme
proposed by Bassi and Rebay [8] applied to the scalar convection-diffusion equation, is
chosen. Numerical experiments show that the same is true for the higher order schemes.
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6.6.2 Nonlinear Convection-Diffusion-Dispersion Equation in 1d

As a scalar model problem for the Navier-Stokes-Korteweg system we consider the scalar
equation in one space dimension

U + f(u)x = EUzg + Mgze 0 X Ry,
u(-,0) = wo in €,

where f : R — R is some smooth function and &, A are positive constants. For simplicity
we set the interval = (0, 1) and consider periodic boundary conditions.

This equation serves as a model problem for the NSK system not because it is related to
this system in special situations but the way it is discretized by the local Discontinuous
Galerkin approach is similar. We apply the general approach from Section 6.2 to the
above equation. This means we rewrite the equation as a combination of three first
order differential operators. We omit the explicit definition of the differential operators,
the physical, the numerical fluxes and we write down the discretization of the system
as we need it in Section 6.8. We rewrite the third order equation formally as a system
of first order equations by the introduction of new variables p and gq.

u + (f(u)—p), = 0,
p — (eu+q)y = 0,
q — (Au)z = 0.

Application of the Local Discontinuous Galerkin discretization discussed in Section 6.2
leads to the following semi-discrete problem. Find functions u(-,t), p, ¢ € V), = {¢:
Q—R|pla;, € Pr(A;)} such that the equations

F o - N + _

Afjuw dw—Afj(f(U) P dr + (f-D)ygvy —(F-p)ov, = 0
i - - +

Af.pw dx +!(6u+q)wx dr — (€u+q)j+%wj+% +(€U+Q)j_%wj,% = 06.13)
J J

. ~ - + _

quz dx—l—!()m)zz dr — (Au)j+%zj+% —i—()\u)j_%zji% =0

J J

are satisfied for all piecewise polynomial test functions v,w,z € Vj and all cells A;.

Here we denote the numerical fluxes by the hat functions and a values goj,il denote
2

.1 of the cell A; = ($-71,a:- ;)
Jt3 J—37"i+3

extrapolated from the right and left respectively. Note that the function in general is
discontinuous at the interface. As numerical flux for the convective part of the equation

the values of the function ¢ € V}, at the interface x

fivy = f(u].++%,u;+%) (6.14)

[N

we choose some general monotone, Lipschitz continuous and consistent numerical flux,
for example the Local Lax-Friedrichs flux as in the previous paragraph. The remaining
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numerical fluxes we define as follows:

5 N _ 1t -

Givr = 4 <qj+;,qj+;> = 30 T a),

. Y + _ + O\

Pivt = p<pj+%7pj+;> = &t =8pp (6.15)
N A (1Ot -

ey = () = 0o, e,

for some constant £ € [0,1]. Note that the equations p and ¢ can be eliminated locally
such that it is not necessary to solve a larger system of equations. This property
is responsible for the term Local in the Local Discontinuous Galerkin method. The
discrete initial data can be constructed by L?-projection to the Finite Element space

Vh.

For the above given discretization we prove a L? stability result similar to that given
in [130] in Section 6.8.

6.7 Summary of Theoretical Results

In this section we state some of the existing results about the Discontinuous Galerkin
discretization for conservation laws and Local Discontinuous Galerkin methods for
convection-diffusion equations and equations with higher order derivatives. The Lo-
cal Discontinuous Galerkin discretization was proposed by Bassi and Rebay in [8] (they
applied the method to the compressible Navier-Stokes equations) and further developed
by Cockburn and Shu, see for example [25]. Cockburn, Shu and coworkers give sev-
eral theoretical results for scalar model problems. Results concerning multidimensional
systems are rare or do not exist.

Early results
Reed and Hill [94] introduced the Discontinuous Galerkin method in 1973 for the time
independent, scalar, multidimensional, linear transport equation

V- (au)+bu=f inQ

with appropriate boundary conditions. For the discretization they used numerical up-
wind fluxes. LeSaint and Raviart [80] proved that the L2-error of the approximate
solution is of order k when local base polynomials of degree k are used on general trian-
gulations. Johnson and Pitkiranta [66] showed that the approximate solution converges
with order k + % to the exact solution of the problem.

Many references for the Discontinuous Galerkin method and its recent development can
be found in the review paper [27].

Nonlinear scalar conservation laws
Zhang and Shu [133] considered the nonlinear scalar conservation law in multiple space
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dimensions

u+V-flu) = 0 inQx(0,7),
u(-,0) = wp in Q,

where f : R — R" is a sufficiently smooth vector field and up : R — R denotes the
smooth initial data. The equation is discretized in space by the Discontinuous Galerkin
approach of arbitrary degree (polynomial degree k > 1) using general monotone numer-
ical fluxes. Only Cartesian meshes are considered. In the multidimensional case tensor
products of 1d base functions are used as ansatz functions. Time integration is done
by application of the second order Runge-Kutta method TVD2 described in Section 7.2
(the generalization of the statements below to higher order Runge-Kutta schemes like
TVD3 is a nontrivial task). In [133] Zhang and Shu obtained error estimates for smooth
solutions of the scalar conservation law. They proved that the error is of order

e O (thrl —|—At2) in the nonlinear one dimensional case and in the linear mul-
tidimensional case. Both cases require £k = 1 and the usual CFL-condition
At < Ccrr h,

e O (hk+% + At2> for k > 2 in the nonlinear multidimensional case with a more

restrictive CFL-condition At < Copy, hs.

As usual h denotes the mesh size and At the time step size. The authors do not pay
attention to the treatment of boundary conditions. Thus, periodic boundary conditions
or compactly supported initial data is considered.

Note: Since only smooth solutions are considered a slope limiting procedure, that is usu-
ally necessary for first order conservation laws when discontinuities are present, is not
necessary to maintain the stability of the method, see for example the review paper [27].

Convection-diffusion equations

Originally Bassi and Rebay proposed the Local Discontinuous Galerkin (LDG) method
in application to the compressible Navier-Stokes equations [8]. A further development
of this method was carried out by Cockburn and Shu within the general framework of
convection-diffusion equations [25|. The method is especially well suited for convection
dominated systems. In [25] the following class of equations is considered:

u+V-fu,Vu) = 0 in Q x (0,7),
u(-,0) = wp in Q,

where f : R x R®" — R” is a smooth function that is linear in the second argument
(Vu). Under further assumptions on the function f the authors applied a similar (in
the general nonlinear case more sophisticated) discretization as we discussed it in the
Section 6.6. They proved a L?-stability result for a semi-discrete solution which leads to
an error estimate in the L?-norm for the linear case with constant coefficients. The error
of the semi-discrete solution is of order Ch* when a polynomials of degree k are used
and the order of the constant C varies between 1 and h dependent on the polynomial
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degree and the regime of the coefficients (purely hyperbolic / purely parabolic case).
For simplicity periodic domains are considered.

The Local Discontinuous Galerkin method is not the only DG type method for this type
of equations. There are a lot of other method that come from the DG discretization of
elliptic problems. In [3]| all the available methods for elliptic equations are compactly
presented and they are compared to each other numerically in [20]. Especially the
method by Baumann and Oden (BO) [9] seems to be attractive for the treatment of
convection-diffusion systems. A comparison between the Local Discontinuous Galerkin
method and the Baumann and Oden method in the framework of convection-diffusion
equations can be found in [102], we summarize the advantages and disadvantages of the
LDG method over the BO method as follows. The underlying benchmark in [102] was
the discretization of the one dimensional heat equation.

+ In the test with the 1d heat equation the LDG method produces much smaller
errors than the BO method.

+ The LDG method converges with optimal order for polynomials of all degrees k.
The BO method is not optimal for even k.

- The LDG method has a higher computational cost than the BO method. But in
the test this is amortized by the smaller errors.

- In parallel implementations the LDG method has a higher communication cost
than the BO method.

The main advantage of the LDG method over the Baumann and Oden method is that
the LDG method can be easily generalized to systems with third or even higher order
derivatives. We will see this in the next paragraph. This is not possible with the Bau-
mann and Oden method, at least it is not straightforward to do.

KdV type equations
Yan and Shu [130] considered a general class of scalar nonlinear KdV like equations in
multiple space dimensions of the form

i

n 8 n
ug + 21 o fi(w) + ri(w) Zlgij(ri(u).ri):c]- = 0 inQx(0,7),
= j=

u(+,0)

() in Q,

where f;, ; and g;; are smooth scalar valued functions. The boundary is assumed to be
periodic to avoid the complicated treatment of boundary conditions. For a semi-discrete
Local Discontinuous Galerkin formulation of this equation similar to the one given for
the convection-diffusion-dispersion example in Section 6.6 Yan and Shu obtained a cell
entropy inequality for the square entropy in the multidimensional case which leads to
a L2-stability result (of course the solution of the continuous problem is L2-stable,
provided that it exists). This result holds for arbitrary nonconform simplicial meshes
with possibly hanging nodes. In the one dimensional linear case this leads to an error
estimate in the L%norm which is of order O(h¥*1/2) when polynomials of degree k are



6.8. L2-STABILITY OF THE LDG-DISCRETIZATION FOR A MODEL PROBLEM115

used. A slope limiting technique as for first order conservation laws is not necessary to
guarantee the stability of the approximate solution.

In contrast to the convection-diffusion equation, discussed in the paragraph before, there
is no alternative Discontinuous Galerkin method such as the Baumann-Oden method
for these kinds of equations including third order derivatives. Thus, the application of
the Local Discontinuous Galerkin method seems to be appropriate for the discretization
of the Navier-Stokes-Korteweg equations. The treatment of viscous terms is missing in
[130]. Therefore we give a similar stability result in one space dimension for the simple
convection-diffusion-dispersion example discussed in Section 6.6 in the next section.

6.8 L’-Stability of the LDG-Discretization for a Model Prob-
lem

We give a cell entropy inequality and a resulting L2-stability estimate for the semi-
discrete Discontinuous Galerkin discretization for the one dimensional scalar convection-
diffusion-dispersion equation discussed in Section 6.6, see (6.13).

Theorem 6.8.1 (Cell Entropy Inequality)

Let u € C1((0,00), V4,) be a solution of the semi-discrete Local Discontinuous Galerkin
formulation (6.13) with numerical fluzes (6.14) and (6.15). Then there exist numerical
entropy fluxes Hj_% such that the semi-discrete solution satisfies the entropy inequality

d
4 / W do+ H,, <0 (6.16)
A

ol
<.
|
vl

N —

for all cells A;.

Proof. We denote the sum of the left hand sides of the three equations in (6.13) by
Bj(u,p,q; v,w,z) and find that this is equal to zero for all v,w,z € V. We choose
special test functions

1 1 n €
V=1U w = —— Z = — _
; q, NP et
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and with a primitive function F' of f we find that
1 1 €
0 = By <u,p,q; Uy =3¢ P ﬁq)

d 1 1
= —u2dac—i—i q2dx+/2(pu—F(u)——q2> dx

dt | 2 A2 O 2\
A_ ~ — - A_ A~ +

L - N
+< (et +4);,1q; A_X(EZH’Q)]e q"

A\ 2 1+ 3451
—a - 4 &4 ; + 4 St
Yi+g (pH; T 5qj+;) UL <pj; * 5%;)
d [1 4 € 9

A A

The quantities Hj_; and Kj_; are defined by the relations
2 2

Hiy = pyyuyy = Flu )= %(q*_%)Q
H = B)yoyuyy 3 Ea )y ya — i), + S0 )
and
ut
Ky = [ (f—Fam ) du
/
1 (Gl et — )~ i) - 00)

+p(p,p )Wt —uT )+ a(u,ut)(pt —p7) —pTut +p .

The subscripts j— 3 for the values u™,u™, p~,p™, ¢~ ¢ were omitted in the definition of

K 1 for notational simplicity. Using the properties of the numerical fluxes (6.14) and

2

(6.15) we see that the quantity Kj_; is positive. The integral in the above expression
2

is positive since f is a monotone flux and everything else vanishes. As a result we get
the cell entropy inequality

d [1 4 € 9
Aj

<0. (6.17)

1 -1
2 J—3
Aj

This completes the proof. Note that this is a sharper estimate than the one stated in
the theorem above. The function ¢ is an approximation to Au, and therefore the second
integral an approximation to € fug dx. The cell entropy inequality above immediately
leads to a L2-stability of the semi-discrete solution.
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Corollary 6.8.2 (L?-stability)

Let u € C((0,00),V4) be a solution of the semi-discrete Local Discontinuous Galerkin
formulation (6.13) with numerical fluzes (6.14) and (6.15). Then the semi-discrete
solution satisfies the L?-stability estimate

— — < 0.
p 2u dr <0
Aj

Proof. Using the cell entropy inequality (6.17) and summing over all cells gives

da (1, €

i < =

@) 2% sy
Q Q

¢* dx (6.18)

which is a sharper estimate than the one stated above. Note that periodic boundary
have a counter part.

conditions are used and therefore all numerical entropy fluxes Hj 1
2

6.9 Navier-Stokes-Korteweg DG-Discretization

In this section we finally describe the Local Discontinuous Galerkin space discretization
of the NSK equations. This is done on the basis of the background of the previous
sections. The discretization of the isothermal version of the Navier-Stokes-Korteweg
system in multiple space dimensions as well as the discretization of the 2d (full) NSK
model is discussed in detail. The extension to three space dimensions is omitted for the
full system for simplicity. It is straightforward to do.

6.9.1 1d isothermal

We consider the Local Discontinuous Galerkin space discretization of the one dimen-
sional isothermal Navier-Stokes-Korteweg equations (2.55), (2.56) in the nonconserva-

Y

tive formulation

+ = 0,
Pt 2(”“)“ in Q x (0,7)
(pu)t + (pu ):73 + PRz = ElUgg,

with kK = u(p) — Apz, and boundary conditions
u=0, py,=0 ondQx(0,T)

and the usual initial conditions. We rewrite the third order system as a larger formally
first order system.

<px> - Lilppu] = 0,

Uy

R - E% [pv paz] = 0’

%( p) + Eé[p,pu,ugg,/ﬁ] = 0.
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The first order differential operators £}, £1, £} are defined by

p
Lilp.pu] = a%< ou )
D
Lilp.pal = nlp) = Ag5pr, o
1 g - )
L3[p, pu, ug, k| = Oz < pu? — cuy > " < pc’?i'% >

Here we have all kinds of operators discussed in section 6.2. The blue terms belong to
conservative parts of the differential operators. The ju(p) term in operator £3 has the
character of a source term and the red part of E% is a non-conservative product.

To complete the discretization we have to choose suitable numerical fluxes. At the inner
cell interfaces we choose

{r}
7n) = n {%}5 s
g (p*,pz,n) = —nMp.}, (6.20)

N - _ {oun = 5w
g°(p*, pu™ uz K m) - = <{pu2}n—5{ua;}1§n+C{P}[”]”_%[/""} '

g'(p*, pu*

Here and in the following {¢}e = £o~ + (1 — &)™ for £ € [0,1] denotes the weighted
average and [p] = (o™ — ¢7) the jump over the interface between cells for an element
@ € V3. In the case were £ is equal to % we omit the parameter, i.e., {p} = %(gp’ + ™)
denotes the arithmetic average. As a convention in one space dimension the — values
denote the values on the left side of the cell interface and + the values on the right.
The normal n in 1d has the values —1 or 1.

The colored terms are related to the colored terms in the differential operators. The
green terms represent the numerical viscosity that we have introduced in Section 5.2.
The parameters o and as are chosen in the same way as in Section 5.2. In g3 the
averaging of conservative and nonconservative terms are combined, see (6.4) and (6.8).
The parameter ¢ controls the ratio in the averaging of the test function. We always
choose ¢ = % which leads to a central scheme. Source terms as u(p) in g2 do not give

a contribution to the numerical fluxes.

The parameter as can be set to zero in the case where the momentum equation is
stabilized by physical viscosity. It depends on the parameter £ € [0,1] and the mesh
size if this is the case or not. This parameter has the same meaning as in Section 6.6.1
and can be chosen differently as discussed in the following. If it is chosen globally equal
to one or zero this leads to problems with the boundary condition u = 0 since the
condition is taken into account only on one side of the interval €. Possible choices are
listed below.

e It can be chosen locally such that all boundary conditions can be taken into
account. It should vary smoothly between the cells of the grid.
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e It can be chosen always equal to % In this case the scheme cannot be stabilized
by the physical viscosity and one has to impose artificial (numerical) viscosity to
the discrete momentum equation, i.e., ag > 0. A suboptimal order of convergence
as for the heat equation has not been observed in the numerical tests, see the

discussion in section 6.6.

e It can be switched from 1 to 0 and vice versa every time step. This is of course a
dirty hack but works quite well in practical applications.

A similar approach with the combination of backward an forward differences is also
possible for the second derivative Ap,, in the definition of x. But in the multidimensional
case on unstructured grids numerical experiments show that this can lead to problems
with symmetries and thus, an unstable behavior. Therefore we build the arithmetic
average twice.

For the correct treatment of the boundary conditions we choose numerical boundary
fluzes gf), i = 1,2,3 at boundary interfaces. Let, without loss of generality, the —
values be in the interior of the domain and the 4 values at the boundary. We set

ut = 0,
pt o= 7,
put = prut,
u; - U;,

p
gt(pt,put,n) = n {ﬂ} :

Pe
gi(p*,pE,n) = 0, (6.21)

{puin

3/, + ,,+ &+

g bl u 7u ?F': ?n = a9 N
(P pu™, i, 55, m) ( {pu?n — e {ug}y_en — % [pul

The parameter £ has the same meaning as before and jumps in k£ do not appear at the
boundary. This completes the Local Discontinuous Galerkin discretization of the one
dimensional isothermal Navier-Stokes-Korteweg system.

6.9.2 2d isothermal

We consider the two dimensional Navier-Stokes-Korteweg system. In contrast to the
one dimensional case we include the effect of gravity. Instead of adding the standard
source term pg to the momentum equation we combine this term with the variable s
which leads to a well balanced scheme when gravity is present. In the following we
denote the spatial coordinates by & = (z,y) and the velocity of the fluid by u = (u,v).

pt + V- (pu)

in Qx (0,7
(pu)y + V-(puul)+pVk = V.T, o 0.7)
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with k = pu(p) — AAp — (9o« + gyy) and boundary conditions
_Vr
Vol

In the definition of x the effect of gravity is included. The constants g, and g, denote
the gravitational force in x and y direction respectively.

u=0 and -m = cos(p). on I x (0,7).

In two space dimensions the viscous contribution of the stress tensor can be rewritten

T.ro ( _s(ux Fuy)e + p(uy —ve)y ) ‘ (6.22)

as

M(uy - Ua:)a: + 5(“33 + Uy)y

Here we set ¢ = 2u + v where p and v denote the coefficients of viscosity. With
this approach we have to deal only with the two quantities u, + v, and u, — v, in
the Local Discontinuous Galerkin discretization of the two dimensional NSK system
instead of using the four quantities wu,, u,, v, and v,. This saves computational cost
and more important with this approach the treatment of boundary conditions that
involve tangential and normal velocities is very easy since the terms

(:}L).n and <_Z>.n

appear in the corresponding numerical boundary fluxes. These two terms are the normal
and tangential velocity respectively.

As in the one dimensional case we rewrite the third order system as a larger formally
first order system.

Px
py _ El U = 0
(g + vy) 11ps pu )
(uy — vg)
R - L%[/% p;mpy] - 07 (623)
5 p
ot pu + Eili[p?puv (U:D"i'vy)?(uy_vit)”ﬁ] = 0.
pU
The first order differential operators £}, £1, £} are defined by
P 0
0 p
Lilppul = & | o | +5| 2 |
v pu
P P
Lo, pespy) = 1(p) = Agepr — AgEpy — (927 + 94y)s  (6.24)
ﬁil’)[f)u pu, (ug + vy), (Uy — va), K] =
pU pv g
a% pu® —e(ugy +vy) | + a% puv — p(uy —vg) | + | Pazh

puv + p(uy — vg) pv* — e(ug + vy) p%/ﬁ
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Again as in the one dimensional case the blue terms represent the conservative parts,
black terms source type parts and the red term a non-conservative part of the first order
differential operators.

Before we continue with the definition of the numerical fluxes we define the + and —
sides of a cell interface. We choose a vector 3 € R? that is not parallel to any cell
interface of the mesh. Such a choice is always possible because there are only a finite
number of interfaces. We take the normal of a cell interface n = (ng,,n,) and build
the product 8- n. If this product is positive then the cell the normal points to defines
the + side of the interface and the opposite side the — side. Using this convention the
numerical fluxes for the two dimensional discretization are given by

{p}ng
{p}ny
1o su® n) =
g (p*, pu™,m) {uhene + {vh_eny |

{_U}1—§ Ny + {u}g ny

92(p17p%t’p2:’p§:7n) = —A ({Px}nx+{py}ny)u
{oudng + {pvdny — %11 (6.25)
a(pT, put,.. . kT,n) = {pu*Ing + {puvin, — % [pul
{ovulne + {o?}my — %[0

0
+ | Aptllne—e{us + vyt _¢na — pnf{uy —va}y ¢ ny
Hptlrlng+p{uy — Uw}g ng — & {us + Uy}g Ny

The treatment of the boundary conditions by definition of suitable numerical boundary
fluxes is almost the same as in the one dimensional case except for the definition of g%
where the boundary condition —% -m = cos(ip) is taken into account. ¢ denotes the
contact angle of the diffuse interface at a solid wall.

9w py m) = X cos(p) \/(pz)?+ (py)? (6.26)

We omit the remaining numerical boundary fluxes. It is an almost straight generaliza-
tion of the 1d fluxes discussed in Section 6.9.1.
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6.9.3 3d isothermal

In this section we denote the spatial variable by = (x,y,z) and the velocity by
u = (u,v,w). We omit the effect of gravity we have included in the two dimensional
case. It can be included in the discretization in the same way as in the two dimensional
case. Thus, we consider the NSK system in 3d

e+ V- (pu) in Qx (0,7)
(pu)y + V-(puul)+pVk = V.T, '

with kK = u(p) — AAp and boundary conditions

Vp

=0 and - —
Vol

-m =cos(p). on I x (0,7).

In three space dimensions almost the same approach with the viscous contribution can
be done as for the 2d model, see (6.22).

e(ug +vy +wy), + ety — vg)y + w(uy —wy),
V-r= —p(uy —vg)r  + e(uy +vy,+w.)y + (v, —wy), . (6.27)
(v, —we)e  F —p(vz — wy)y + e(ug + Uy + W),

Again we set € = 2u + v where 1 and v denote the coefficients of viscosity. Now we
can use the four quantities u, — vy, u, — Wy, v, — wy and u, + v, + w, instead of the
nine quantities in the velocity gradient. The former three quantities correspond to the
tangential velocity at the boundary and the latter to the normal velocity.

We reformulate the third order system as formally first order system as in the one and
two dimensional cases.

(ue +vy+w.) | —  Lilp, pul = 0,

(6.28)
R - ﬁ%[ﬂapx’ﬁ)yapz] = 07

+ Lilp,pu,...,5] = 0.
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The first order differential operators £}, £1, £} are then defined by

P 0 0
0 p 0
0 0 P
Lilppu] = Z| v | +5| v [+&| v |
—v U 0
—w 0 "
0 —w ;
L3lp, paspysps) = p(p) = Agppw — Aoy — AGeps,
(6.29)
0
oLk , pu
oz u® — e(ug + vy +w;)
El s ’u,’ ce . ,K, e . + i p x y -
slosp ] i | T pun ey — o)
P@%Fd puw + pi(u, — wy)
pv ow
+2 pou — ity — vg) L2 pwu — (U, — wy)
Oy | pv? —e(uy + vy +w,) 9z pww — (v, — wy)
pow + (v, — wy) pw? — e(ug + vy +w,)

We define + and — sides of cell interfaces in the same way as discussed in the two
dimensional discretization by introduction of a vector 3 € R3 that is not parallel to
any interface of the mesh. With this convention we define the corresponding numerical
fluxes by

{pine

{p}ny

{p}n.

g'(p*, pu*t,n) = {ubena +{vh_¢ny +{w}_¢n.

{—v}_ena +{upeny

{_w}l—g N + {U}g Ny
{—wheny + (v} ns

g*(p*, P;:pta Pffy Pzi7 n) = —A({pztne + {pytny + {p:}n-),

(6.30)
{putne +{pviny +{pwin. — 4]
{pu?}ng + {puving + {puwin, — % [pu]
{pvutng + {pv*}ny + {prwin. — % [pv]

a9

{pwuln, + {pwvlny + {pw?In. — % |pu]
0
HptrIng—e {us + vy + wz}kg Ny — pu{uy — Uw}kg ny — p{u. —wely_¢ e
Hptlrlny+p{uy —vatene — e{ue + vy + w2t ny — pfve —wyty e
HptrnAp{u: —wate ne + pfv: —wyty ny —e{us + vy +w:pene

+
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The definition of the numerical boundary fluxes is a straightforward generalization of
the one and two dimensional fluxes. Therefore we omit it.

6.9.4 2d full model

We discuss the DG space discretization of the full temperature dependent Navier-Stokes-
Korteweg model (see Section 2.3) in this section. Most of the following treatment is
quite similar to the isothermal case and therefore we will omit some details. Instead of
the energy equation we use the entropy equation (2.27) as additional evolution equation.
The total entropy of a Korteweg type material has the advantage that it does not depend
on the density gradient whereas the total energy does. The entropy equation is not in
divergence form but this should not be a problem since solutions are supposed to be
smooth and the momentum equation is also discretized in a nonconservative form. Since
we do not discretize the energy balance equation (2.36) directly, one cannot expect that
the total physical energy is exactly conserved but the loss or gain of energy should be
negligible small as long the solution is smooth. We discretize the system

pe+V-(pu) = 0,
(pu)e +V - (puu®) + pVi + psVO = V-, (6.31)
(ps)e +V - (psw) = V- (§VO) + 57 : Vu+ VoL,

Possible boundary conditions are discussed in Section 2.6. Since the chemical potential
1 depends on the temperature the value s defined by

k= k0, p, Ap) = pu(b,p) — AAp

does also depend on the temperature. Here n > 0 denotes the heat conduction coefficient
of the fluid that is assumed to be constant. Note that the additional nonconservative
term in the momentum equation comes from the identity

Vp(0, p) = pV (0, p) + psVo.

A similar approach as for the 2d isothermal model (6.22) is also possible for the full
model but the use of only the quantities u, + vy, and u, — v, is not sufficient because
of the presence of the stress tensor in the energy and entropy equation. Therefore we
need additional values. This may help with the treatment of boundary conditions but
does not save computational cost. Therefore we omit it and use the quantities wu,, u,,
vz and vy,

Similar to the previous sections we rewrite equation (6.31) by using three first order
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differential operators.

- ‘CHP7 pu] = 0,

0 (6.32)
9y - ﬁ%[p, psap;mpy] = 07
K

5 + Lilp,pu,ps,...,k] = 0.

pS

In the above definitions we distribute the computational cost over the three stages.
Temperature and temperature gradients are computed in the second stage because eval-
uation of the temperature at the quadrature points is not necessary in the first stage

and in order to distribute the computational cost such that the communication in the
second stage does not become a bottleneck.

The first order differential operators £}, £1, [,:1,) are defined by

p 0
0 p
o | 5 a | O
Lilpspul = 5| § |+ | e |
)
I 0
)
ﬂ
0 p
0(p, ps) 0 0
O O 0 9 p7 S O
‘C%[/%P&nypy] = % 0 +8_y ( Op ) + é(p ps) ’
~\pa —Apy 1(0(p, ps),p) ) (6:33)
pU pv
2
— e(ug + vy) puv — p(uy — ve)
Clip..n] = 2| Pv—eluatuy 2 Y
30, 5K 9z | puv + p(uy — vy) oy pv? — e(ug + vy)
psu — 46, psv — 30,
0
2Lt psl 0
ox ox 0
p(%m + ps(%@ 0
0 %T:VU—I—Q%\VHP

Here the convention is the same as before: the blue colored terms denote the con-
servative terms, the red terms denote the nonconservative products and source terms
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are characterized by black color. The entropy production term %’T : Vu + %\VGP is
treated as a source term. The function 6 computes the temperature from the density
and entropy according to relation (2.12).

The definition of the numerical fluxes and numerical boundary fluxes is very similar
to the isothermal case and straightforward to do. We omit the details. Besides the
additional entropy equation the difference to the isothermal case is the appearance of
the second nonconservative term psV#. As noted before the entropy production term
is treated as a source term and gives therefore no contribution to the numerical flux
associated with the differential operator £1.

6.10 Initial Data

The standard way to provide discrete initial data for Discontinuous Galerkin schemes is
an application of L?-projection to the underlying Finite Element space. The use of an
orthogonal basis of the Finite Element space results in a very easy implementation of
this kind of projection. Since we do not use slope limiters to stabilize the DG schemes
it is extremely important to provide sufficiently smooth initial data on the discrete
level. Discrete initial data for the Navier-Stokes-Korteweg system that consist of both
phases should take the correct size of the interface, approximately given by formula
(4.9), into account to avoid an unstable behavior in the approximate solution. This
is especially important for the higher order schemes. Inside the interfacial region the
initial configuration should vary smoothly between the phases. Here the tanh-function

is very useful to construct smooth initial data.



Chapter 7

Higher Order Time Integration

The Discontinuous Galerkin space discretization of a general evolution equation, dis-
cussed in the previous chapter, results in a (in general very large) system of first order
ordinary differential equations. In this chapter we discuss the time discretization of
general first order ODEs by means of explicit, implicit and semi-implicit Runge-Kutta
methods. In the latter two cases solving large, possibly nonlinear, systems of equations
is necessary. Solving such systems is the purpose of Section 7.5.

Runge-Kutta methods have the advantage that the approximate solution at only one
time step is necessary to compute an approximation on the next time level. This makes
this class of methods very well suited for the use together with local mesh refinement.
Contrary to Runge-Kutta methods the class of multistep methods uses more than one
approximations on previous time steps. On the one hand these methods need a re-
striction in the variation of the time step size to guarantee the stability of the method
and on the other hand these methods are complicated to implement together with local
mesh refinement and coarsening which results in a change of the dimension of the ODE.
Because of these disadvantages there are only a few multistep methods (for example the
implicit BDF2 method) that can be applied successfully in order to construct reliable
discretizations of conservation laws. In the framework of the discretization of first order
conservation laws special Runge-Kutta methods have been developed that preserve cer-
tain properties (e.g. TVD) of scalar conservation laws. Initially Shu and Osher [103],
[104] derived this kind of TVD methods. Later the term Strong Stability Preserving
(SSP) was used in favor of the term TVD. Explicit or implicit extrapolation schemes
could also be used but the use of these methods is not very common in the framework of
Finite Volume and Discontinuous Galerkin methods. The advantage of these methods is
that arbitrary high order methods can be constructed by simply modifying a parameter
in the methods.

In this chapter we consider the initial value problem for first order ordinary differential
equations of the form

u'(t) = f(t,u(t)) for te(0,7T), (7.1)
u(0) = o, (7.2)

127
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with T € (0,00|, f € C([0,T] x U) Lipschitz continuous in the variable v, U C R",
ug € U.

By integrating equation (7.1) from time ™ to ™! we have

tm+1

W™y — (e = /t F(tu(t) dt. (7.3)

m

The goal of this chapter is to compute an approximation 4™ ! of u(t™*!) provided that
we already have an approximation u™ of u(t™).

7.1 General Runge-Kutta Methods

In the rest of this chapter we discuss the computation of the approximation u™*! by
different kinds of Runge-Kutta methods. In the following we use the notation given in
definition A.2.2. The general s-stage Runge-Kutta scheme from time step t™ to ¢!
is given by
g u™ FE™ + coAt, ugp)
: - L | +AtARI, : ;o (14)
Us—1 u™ f(tm +cs1At, us—l)

f(tm + coAt, UO)
W = AT @ 1, 5 (75)
f(tm + cs_1At, us_l)
Here the intermediate states u; € U for ¢ = 0,...,s — 1 are approximations of the
solution at times t; = t™ + ¢;At. Runge-Kutta schemes defined by the Matrix A € RS*¢
and the two vectors b, c € R® are usually represented by a so called Butcher table (see
standard textbooks such as [108])

c| A

— (7.6)

Definition 7.1.1 (Order of Runge-Kutta Methods)

Let ® denote the function that produces the approzimation u™! = ®(t™ u™, At) by
application of a Runge-Kutta method. A Runge-Kutta method is of (consistency) order
pif

1 m m m m — p
- (u(t™ + At) — u(t™)) = S, u(t™), At)| = O(AF)

for sufficiently smooth solutions u of the ODE (7.1).

A p-th order consistency Runge-Kutta method implies convergence of order p. Therefore
it is clear that the order of a s-stage Runge-Kutta scheme cannot exceed 2s because in
the case where the function f does not depend on the variable v a Runge-Kutta method
reduces to a quadrature formula for f.
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7.2 Explicit Runge-Kutta Methods

In this section we consider the class of explicit Runge-Kutta methods, i.e., methods that
do not need to solve linear or nonlinear systems of equations. This class of methods is
especially well suited for the use with first order conservation laws. In the framework of
Discontinuous Galerkin methods the representation of the methods given by Shu and
Osher in [103] and [104] is more convenient than the classical representation because
slope limiters can efficiently be applied to the intermediate states ug,...,us_1. Below
we reformulate general explicit Runge-Kutta schemes in the representation of Shu and
Osher and give some examples for this kind of methods.

A Runge-Kutta method given by the equations (7.4) and (7.5) reduces to an explicit
method if the matrix A € R®* is a strictly lower triangular matrix. By A € R(s=1x(s—1)
we denote the sub matrix of A where the first row and the last column is omitted. The
matrix A can be decomposed into a strictly lower triangular matrix A, and a diagonal
matrix le such that we have A = AL+AD. In the following we assume that the matrix
A is invertible. In this case equation (7.4) reduces to

ug = u",

U1 u™ FE™ 4+ coAt, ugp)

: - L | +AtA® I, : (7.7)

Us—1 u™ f(tm +cs oAt us—2)

By multiplication of equation (7.7) with (A ® I,)~! and using properties (i) and (ii) of
the Kronecker product, see lemma A.2.3, we have the identity

FE™ 4+ coAt, up) up —u™
At : =A1'eI, :
f(tm + cs2At, Usz) ug—1 —u"™

Using this with equations (7.7) and (7.5) we get

U u™ up — u™ fo
= D | +AATt e, : +AtAp @I, | |(7.9)
Us—1 u™ ug—1 —u" fs—2
up — u'
umtl = oy ATAT 9 T, : + bs—1fs-1, (7.10)
Us—1 —u™

where the vector b € R*~1 consists of the first s — 1 components of the vector b and
fi = f(t"™ + ¢;At,u;). This is the representation of Runge-Kutta methods given by
Shu and Osher [103]. This representation is more suitable for the time discretization
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of conservation laws because slope limiters can be applied directly to the intermediate
states u;.

Below we give some examples of explicit Runge-Kutta methods. Most of them can be
found in standard textbooks such as [108]. The TVD methods developed by Shu and
Osher can be found in [103].

The first order explicit Euler and the second order modified Euler schemes with one
and two stages respectively.

= O
Q|- O

The second and third order schemed TVD2 and TVD3 given in [103]. The TVD2
scheme is also known as the Heun scheme. The TVD methods in [103| are given using
the representation (7.8), (7.9) and (7.10). For consistency with all other methods in
this chapter we write these methods using the classical representation.

00
0|0
110 O
111 1
T 3/1 10
2 2 11 2
6 6 3

The classical 3-stage and 4-stage order Runge-Kutta schemes of order three and four.

010
00 11
11 2|2
2 2 1 0 1 0
2 2
11-1 2 0
11 110 0 1 0
6 6 6 L1 1 1
6 3 3 6
A sixth order scheme with seven stages.
0o O
1 1
3| 3 0
2 2 4
2 R T
1 7 2 1
sl 0§ "m0
513 _5 35 15 0
6 144 36 48 8
L N N | 1 L
6 360 36 8 2 10
1] -4 22 43 118 32 8
260 13 156 39 195 39
13 0 1 1 4 4 13
200 40 40 25 25 200
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7.3 Implicit Runge-Kutta Methods

When higher order derivatives or stiff source terms are included in conservation laws
the time step size restriction that guarantees the stability of the method can render a
scheme inefficient. In this case an implicit time discretization may help to improve the
efficiency of the method. We discuss the details on the implementation of a class of
implicit methods and give some examples. It is very important to have a formulation of
the method such that solving a s - n dimensional linear system can be avoided in favor
of s times solving a n-dimensional systems, otherwise the methods are not usable for
practical applications. This is possible with many implicit methods at least when the
resulting Jacobians are approximated. For the class of diagonally implicit methods this
is possible without approximation.

In this section we consider only diagonally implicit Runge-Kutta methods. In this class
of methods the matrix A € R*** in (7.4) is a lower triangular matrix. We assume that
the matrix A is invertible, otherwise some of the stages are explicit. We decompose A
into a diagonal Ap and a strictly lower triangular matrix Ay, with A = Ay + Ap. Similar
to the explicit case the general Runge-Kutta method (7.4), (7.5) can be rewritten as

U u™ ug — u™ fo
= : +AAT @ I, : + AtAp @ I, : ,
Us—1 u™ Ug—1 —u™ fs—1
ug — u™
um—f—l = "4+ bTA—l ® In

Ug—1 — U™

With f; = f(t™ + ¢;At,u;). Since the matrix Ay A1 is a strictly lower triangular
matrix s n-dimensional systems for u; have to be solved sequentially instead of one
(sn)-dimensional system. For the intermediate states u; this means

i—1
u; = Ataiif(tm + ¢ At, UZ) + ’yium + Z QiU fori=0,...,s —1,
j=0
s—1
W™t = 5+ Z/Biu’iu
=0
where the coefficients are given by
aij = (ALA™Y)yfor j <i, i = Ay,
i—1
v o= 1= Z Qi
7=0
s—1
Bi o= D bi(A),
7=0
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Here C;; denotes the entry (7, j) of a matrix C'. A fixed point argument shows that the
above nonlinear system has a unique solution in the vicinity of u™ provided that the
time step At is sufficiently small. The s n-dimensional nonlinear systems can be solved
by the Newton type method described in Section 7.5. Below we give some examples of
diagonally implicit methods.

The first order implicit Euler method and the second order Crank-Nicholson method
are given by

L1 3|

E |

= | rol—

which are both 1-stage methods. A 2-stage third order method is given by

o (@

l1—-al|l—-2« o

12« 1—2a
2—4a 2—4a

where a = % + ?. Besides other methods the above methods can be found in [108].
Additional methods of this type can also be found in the next section.

7.4 Semi-Implicit Runge-Kutta Methods

The class of semi-implicit (or implicit-explicit) Runge-Kutta methods combines the ef-
ficiency of explicit methods with the stability properties of implicit Runge-Kutta meth-
ods. They are useful for the time discretization of convection-diffusion equations or
convection dominated equations with stiff source terms. The class of methods we con-
sider in this section discretizes one part of the equation by an explicit TVD (or SSP)
method and another part by a L-stable diagonally implicit scheme. Below we discuss
the details on the implementation of these methods and we give a couple of examples
collected from [131], [132] and [91].

We split the function f in (7.1) into a part that is discretized explicitly and a second
part that is discretized by an implicit scheme.

W) = M ut) + (¢ ut), for te (0,T), (7.11)
u(0) = wup. (7.12)

This splitting is useful when the spectrum of the Jacobian of f¢* is some orders of
magnitudes smaller than the spectrum of the Jacobian of f“”, i.e.,

p(Dyf(t,u)) << p(Dufim(t,u)),

where p denotes the spectral radius.
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The class of semi-implicit Runge-Kutta schemes that uses TVD /Strong-Stability-Preserving
explicit schemes together with L-stable diagonally implicit schemes, considered in [131],
[132] and [91], can be written as

i1
ki = [+ AL + Atz agi k;
=0

A
AT AT+ ALY afThy | fori=0,...,5—1, (7.13)

J=0

s—1
T Um—i-Athik‘i. (7.14)
=0

This class of Runge-Kutta methods can be represented by a pair of Butcher tables with
a common vector b.

CGI

Ae cim ‘ Aim
| o | ¥

The matrix A% € R*® is a strictly lower triangular matrix and A™ € R®*% is an
invertible lower triangular matrix. The coefficients a7} and a;j" denote the entries of
the matrices A°® and A" respectively.

For the explicit and implicit intermediate states u{* and uﬁm fori =0,...,s — 1 this
can be written as

i—1
ut = "y el
§=0
um = QBPAE(FEET 4 AL UE) + T+ AL ul™))

1—1
im, m im, im
U™ Y g
Jj=0

s—1
u™tt = 5um—|—§ Biui™.
i=0
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The coefficients appearing in the above equations are defined by

o = (AP(A™)TY),, ol = AT

iJ ij” i

off = (AF(A™T),.
i—1
W= 1= ol
j=0
i—1
71'6$ = 1_205?;'6’
7=0
s—1
pi = ij ((Aim)_l)jw
j=0

s—1
b = 1—2@‘7
=0

where C;; denotes the entry (i, j) of a matrix C' and A7™ is the strictly lower triangular
part (without the diagonal) of the matrix A™™.

Below we give several examples for semi-implicit Runge-Kutta methods taken from
[131], [132] and [91].

The second order STRK23 scheme (3 stages, L-stable).

010 s 13
1{1 0 -3|-1 3
1 1 1 1 1
210 5 0 Lz 1 2
1 1 1 1 1 1
4 4 2 4 4 2

The second order STRK23G scheme (3 stages, L-stable). We set o = %
0 0 l-a|l—-a
1 1 0 11—« 0 11—«
l+a|a 1 0 1 o 0 l1-—«o
a 0 1-a o 0 11—«

The structure of the implicit scheme allows for a low storage implementation.
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The third order YZ33 scheme (3 stages, L-stable).

01]0 30 3
8 8 5589 75
7|7 O | G521 73
120 | 71 49 g | JeoL 26335 65
252 | 252 252 26096 78288 168
1 1 3 1 1 3
8 8 4 8 3 4
where the constants « and 3 are defined by
5589 75 7691 26335 65
_ B = -

= G521 T 233 26096 78288 ' 168

The methods considered in [91] allow the explicit and implicit schemes to have a dif-
ferent number of stages. Therefore the naming convention of the schemes is IMEX-
SPP(implicit stages, explicit stages, order). Here IMEX stands for implicit-explicit and
SSP for strong stability preserving which is the same as TVD.

The second order IMEX-SSP(2,2,2) scheme. We set a = 1 — %

0
1

l—al|ll—2a «

= = O

0
1
2

D=

1
2

The explicit scheme is the TVD2 scheme from Section 7.2.

The second order IMEX-SPP(3,3,2) scheme.

0]0 ili

3|2 0 10 1

tito ali iy
1 1 1 1 1 1
3 3 3 3 3 3

The second order IMEX-SPP(3,2,2) scheme.

00 il 2

0/0 0 0|-3 3

1/0 1 0 1o 114
05 3 0 5 3

The explicit scheme is the TVD2 scheme from Section 7.2.
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The third order IMEX-SPP(4,3,3) scheme.

010 al| o

0/0 O 0| —« «a

10 1 0 110 1-« «

310 1 10 5|8 nm s-a-f-n a
01 E ot 1 3

The parameters «, § and n are computed numerically

a = 0.24169426078821, [ = 0.06042356519705, n = 0.12915286960590.

The explicit scheme is the TVD3 scheme from Section 7.2.

7.5 Solving Nonlinear Equations

The application of implicit Runge-Kutta methods to ordinary differential equations
methods results in a large (in general nonlinear) system of equations that has to be
solved by a Newton type method. To avoid the computation of the Jacobian matrix
in the Newton method, which is rather complicated for the fully discretized Navier-
Stokes-Korteweg system especially in a parallel environment, we apply a Jacobian free
Newton-Krylov method, see [71].

We consider the nonlinearity given by F': U — R™, U C R" and we seek for a solution
u € U of the nonlinear equation

F(u)=0.

Provided that the function F is sufficiently smooth, the Jacobian of I’ is nondegenerate
in a vicinity U of the solution v and an initial guess ug € U sufficiently close to the
solution is known, the solution can be computed by application of Newtons method

Upt1 = Up — DF(un)le(un), n > 0. (7.15)

For application of the Newton method it is necessary to solve a linear system for a
vector p of the form

DF(u)p = F(u). (7.16)

In many cases the explicit calculation of the Jacobian DF' is much to expensive with
respect to the computational cost, or with respect to the memory requirements or
both. Sometimes it is simply to complicated to compute the Jacobian explicitly for
example due to larger stencils in the discretization of underlying partial differential
equations. In the higher order space discretization together with higher order implicit
time discretization of the Navier-Stokes-Korteweg system all of the above mentioned
issues occur.
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Nevertheless, the application of the Newton method is still possible by means of matrix
free methods. In combination with Krylov space solvers, like CG [59]|, BICGSTAB [113],
GMRES [98], etc., see also |97], for the linear system the Newton method does not need
the Jacobian explicitly. These kind of solvers only need the matrix vector product
DF(u)p in (7.16) which is nothing else than the derivative of F" at u in the direction of
p and can be approximated by the difference quotient

DF(u)p - (F(u+<p) — F(u)

Here the crucial part is the choice of the parameter € > 0. There are several approaches
to choose this parameter, we use

1+ mac .
s [

/Emach else.

Here €,,4ch denotes the machine precision which is for double precision arithmetic ap-
proximately €,,4en =~ 10712, For the above choice and other possible choices see [71].
A matrix free method is, compared to other methods, rather simple to code but comes
at the expense that in every iteration step of the linear solver the nonlinearity F' has
to be evaluated. Depending on the problem this can be a serious performance penalty.
A comparison of standard and matrix free Newton methods in the framework of the
discretization of the incompressible Navier-Stokes equations can be found in [84].

(7.17)

Another problem of this method is that standard preconditioning techniques cannot be
applied since the matrix itself is not available. A matrix free preconditioning technique
was proposed in [33] but not tested in this work.

7.6 Application to the Navier-Stokes-Korteweg system

The application of explicit Runge-Kutta methods to the higher order Discontinuous
Galerkin space discretization of the Navier-Stokes-Korteweg system discussed in chapter
6, especially Section 6.9, leads to a time step time restriction that is difficult to control.
No explicit formula is available that guarantees the stability of the method on the one
hand and is sufficiently sharp on the other hand.

To avoid this problem with the time step size restriction we use the class of diagonally
implicit schemes together with a matrix free nonlinear solver discussed in Section 7.3
and 7.5 for the time discretization of the Navier-Stokes-Korteweg system. Even without
a preconditioner the resulting fully discrete scheme is more efficient than an explicit
time discretization, see the numerical experiments in 9.6. However, also in the case
of implicit discretization the time step size has to be sufficiently small such that the
nonlinear system is solvable. The time step should always be chosen such that the
quotient

cpu(t™, At)

At) =
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is minimized. Here cpu(t", At) stands for the cpu-time the computation needs to
compute an approximate solution u(t™ + At) starting from an approximate solution
u(t™) at time ™. If we assume that cpu(¢t™, At) does not depend on ™ this choice
of the time step is the most efficient time step size. In general this assumption is not
correct but a time step size that always minimizes p,, (At) should be close to the optimal
time step.

Finding the optimal time step in the above sense is a hard task itself. Another, simpler
and sometimes more robust, approach is to control the number of iterations of the
underlying linear solver. This approach heavily depends on the problem, the data
and the used linear solver. For the Discontinuous Galerkin discretization in two space
dimensions and second order implicit Runge-Kutta discretization and iteration count of
about 20 is a good choice. In three space dimensions and for schemes of different order
other choices are necessary and have to figured out manually.

The application of semi-implicit Runge-Kutta schemes is an appropriate choice for the
time discretization of the compressible Navier-Stokes equations or Euler equations with
stiff source terms. It is not clear how to apply this class to the NSK system since the
viscous part of the equation is not the only source for the resulting small time steps.
The third order Korteweg term that is discretized together with the pressure term and
the artificial viscosity in the continuity equation also lead to small time steps.



Chapter 8

Mesh Adaption and Parallelization

In this chapter we discuss the local refinement and coarsening of computational meshes
as well as the parallelization of the numerical algorithms. These techniques are very
important in order to be able to resolve very small liquid-vapor interfaces and to satisfy
memory requirements as well as computational power requirements of complex prob-
lems.

Here we discuss the local refinement and coarsening of computational meshes which is
also called h-adaption. Another adaption strategy is p-adaption which makes use of the
local choice of the polynomial degree in the Discontinuous Galerkin method. The latter
adaption strategy is not taken into account in this work since the control of the local
polynomial degree can be quite complicated. Since the Discontinuous Galerkin method
does not need conformity, mesh refinement is done in a nonconform fashion by dividing
a n-dimensional simplex into 2" children. This is straightforward in one and two space
dimensions but in three space dimensions there is an ambiguity. A reasonable strategy
is necessary to avoid degenerating meshes.

For the parallelization of the code a domain decomposition approach is chosen since
this is the most suitable approach in the Finite Volume and Discontinuous Galerkin
framework where stencils are usually relatively small and thus, the mesh is only weakly
coupled. With this approach the implementation of the code in a distributed memory
environment is almost straightforward.

8.1 Refinement of Simplices

In this section we provide the basics for the application of an (h-)adaptive algorithm:
The refinement of a single simplex in one, two and three space dimensions. Here we
always divide a parent simplex into 2" child simplices, where n denotes the space dimen-
sion. Therefore this leads to a straightforward method in one and two space dimensions,
where simplices can be subdivided into 2" congruent sub-simplices. In one and two space
dimensions this refinement method leads to refined meshes of the same quality as the
original meshes. However, in three space dimensions it is not possible to divide a tetra-
hedron into eight congruent children and therefore it is important to choose a criterion

139
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for the refinement such that a sequence of refined meshes cannot degenerate. In example
8.1.2 we give a criterion that seems to avoid the degeneration of meshes (at least in our
test cases) and results in refined meshes of quite good quality.

In this section we describe a simplex A C R™ by its n vertices [po, ..., pn]. The simplex
A is then defined by the convex hull of these vertices. Now let the parent simplex be
given by

AP = [p()u"' 7pn]

We define the 2™ children of the parent simplex by

1 1 .
Af = 9 (Pa(z‘,o,o) +pa(i,0,1)) g (Pa(z‘,n,o) +Pa(i,n71)) , 1=0,..2" =1,

where the function o : {0,...,2" =1} x{0,...,n} x{0,1} — {0,...,n} must be chosen
such that the 2™ children form a reqular subdivision parent cell AP. For n = 1 and
n = 2 this is straightforward. In the following the point pg; denotes the midpoint of
point pr and py, i.e., pr = %(pk + p). In one space dimension the children can then be
defined by

A§ = [po, por], AT = [por, pil, (8.1)

and in the two space dimensions

A§ = [po, po1, Po2, AS = [poz2, P12, D2,

(8.2)
AS = [po1, p1, P12 A§ = [p12, Po2; Po1l-

Note that in one and two space dimensions the subdivision into 2" congruent cells is
unique up to renumbering of the children.

AP
D )
Po p1
Po
P
coarsen coarsen
refine refine

Po

p2
P21 A
P12
Po Po1 21 !
Po1
P1

Figure 8.1: Refinement of one and two dimensional simplices.

Now, in three space dimensions the situation is more complicated because the partition
of a parent cell into eight children is not unique and therefore one has to decide how
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to partition and this decision should ensure that successively refined meshes cannot
degenerate. The eight children of a three dimensional parent cell can be defined by

A§ = [po, pot, Po2, Po3l, 1= [q4, P23, P13, P12],
Af = [po1, p1, P12, P13); AE = [p23, g5, Po3, P02, (8.3)
AS = [poz2, p12, P2, P23); A§ = [p13; Po3; g6, Potl,
A§ = [po3, P13, P23, P3l; A% = [p12, po2; Pot1, q7l,

where the vertices qq, g5, g6, g7 must be defined such that the eight children form a valid
partition of the parent cell. This results in three possibilities for the choice of these
vertices.

(i) a=¢5=po1 and ¢ = q7 = pas,
(ii) ¢4 =¢gs =po2 and g5 = g7 = P13,
(iii) g4 = g7 =po3 and g5 = g = p12-

Po Do Po

P p2 P1 D2 p1 p2

Figure 8.2: Three alternatives (i), (ii), (iii), from left to right, for the refinement of a
three dimensional simplex.

At this point we have to decide which one of the three possibilities to choose. One
possible choice is to guarantee that one of the points qq, g5, gs, g7 always lies on the
longest edge of the tetrahedron. We call this the longest edge criterion.

Example 8.1.1 (Longest Edge Criterion)
We define the n by the length of the longest edge of the tetrahedron, i.e.,
n = max{[pr —pi| | k1 €{0,1,2,3} },
and we decide in the following way
if (|po — p1|l =7 or |p2 — ps| = n) then set g4 = g5 = po1, g6 = q7 = P23,
else if (|po — p2| =1 or [p1 — p3| = n) then set ¢4 = g6 = po2, ¢5 = g7 = p13.
else set g1 = g7 = po3, ¢5 = g6 = P12

In [134] is reported that applying this criterion on successively refined meshes can lead
to a degenerate sequence of meshes; i.e., the smallest angle in a sequence of meshes is not
bounded from below. Therefore the longest edge criterion seems to be not the optimal
choice. Numerical examples show that using another criterion which we call the longest
two edges criterion, that takes both edges associated with the vertices qq, g5, g6, g7 into
account, gives much better results (at least in the configurations that have been tested).
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Example 8.1.2 (Longest two Edges Criterion)

We define
m = |po—pi|+ |p2 — 3l
n2 = |po—p2|+ |p1 — D3l
N3 = |po—p3|+ |p1 — D2l

n = max{ny |l=1,2,3},
and we decide in the following way
if (n =n) then set ¢4 = ¢5 = po1. g6 = g7 = pa3,
else if (7o =) then set g4 = g6 = po2, ¢5 = g7 = P13,

else set g4 = g7 = po3, 45 = g6 = p12-

Numerical examples show that the smallest angle in a sequence of successively refined
meshes stays bounded from below using this criterion. The inverse of this criterion, the
shortest two edges criterion, seems always to produce a sequence of degenerating meshes.

8.2 L? Projection of Data in the Adaption Process

~

We assume that a n-dimensional simplex A = T'(A) has been refined into 2" children
A; = E(A) i=0,...,2" — 1 as discussed in the previous section, where A denotes the
reference cell and T, T; the reference mappings from the reference cell to the cells A and
A; respectively, see (6.1). This section is not restricted to three space dimensions as long
as we assume that we already have constructed 2™ children of a cell. Due to the linearity
of the reference mappings the projection of data in the refinement and coarsening process
is just a matrix-matrix multiplication and no further geometry information of the mesh
cells is necessary. The matrix-matrix multiplication for refinement and coarsening is
given in equations (8.7) and (8.8).

Let denote n, = |P;,| the dimension of the space of polynomials of degree at most m in
n space dimensions as defined in section 6.3. At the moment, for simplicity, we consider
only scalar data on the cells A and A; of the form

np—1 np—1

ue) = 3w, uwil@)= Y Bl
=0 =0

where the functions ¢; and ¢! denote the local basis functions as defined in Section 6.3,
see (6.10). In the refinement process we have to compute the coefficients ﬁ; from the
coefficients oy in some way. We do this by means of a L?-projection. This means for all
i we provide the data wu; on the sub-cells A; by L?-projection of w.

/u(az)g@}c(aﬁ) dx = /uz(aj)goﬁc(aj) de, k=0,...,n,—1

Ai Ai
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This means

np—1 np—1
> o [ dm—zﬂz/so; Gi(x) dz, k.

And by transformation of the cell A; to the reference cell A using the reference mapping
T; gives

np—1 npl

Zal/golT$ @b (Tyz) di = ﬂ/gp (T;z) d&, Vk.
=0

Note that the transformation is affine linear and the factor |det(DT;(z))| from the
transformation has been eliminated on both sides of the equation. Using the definition
of the local basis functions ¢; and gof and the orthonormality of the functions p; on the
reference cell we get

np—1

Zaz/pzT T.3) pp(2) di = 3., k=0,...,n,— 1.

The combination of the mappings T~'7T; does not depend on the cell A. In fact we have
71T, = TZ7 where T denotes the affine linear mapping from the reference cell to the
i-th child of the reference cell. This finally gives the expression

np—1

Bk—Zal/plT )dz, k=0,...,n,—1,

which only depends on the number of the child and not on the geometry of the cell A.
Now let us define for all children the matrices A* € R"™*"r by

A= | [ o(@id) puia) di (8.4)
A kil
and we compose them to a single adaption matrix A € R2"™*™ hy
yu
Al
A= _ . (8.5)

A2”71

Now, to be more general, we consider vector valued data of dimension d € N

np—1 np—1

=0 =0
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associated with the cells A and A; where «; and ﬂf are vectors in R4, We define matrices
a, 3" € Rw*d by

. . o . T
Oé:(Oé(),Otl,...,Otnp_l) 5 522 (56,,@3,...,,6;17_1) 5
and we compose the matrices 3' to a single matrix 3 € R2"w*d by

50
Bl

BQ;L—I

Using the above notation the projection of the data in the Refinement process can be
carried out by the single matrix-matrix multiplication

B=Ac. (8.7)

The reverse process of the refinement process is the coarsening process. Here the prob-
lem is to compute the coefficients a from given coefficients 3. Using the same notation
as above the data projection in the Coarsening process is done by the single matrix-
matrix multiplication
1 T

To see that this is correct one has to start similar to the refinement process by a L*-
projection of the functions u; to the cell A. Constructing matrices in a similar way to
the refinement process results in the formula above.

In one and two space dimensions there is only one adaption matrix A because the
refinement of a simplex into 2™ sub-cells as discussed in the previous section is unique.
In three space dimensions there are three different adaption matrices, one for each of the
three different refinement patterns. According to the choice of the refinement pattern
the correct matrix associated with this pattern has to be chosen for the projection of
the data.

There are a lot of zeros in the matrices A’, especially below the diagonal. when the
projection of data becomes a bottleneck in the computation this could be exploited for
a more efficient implementation of the projection. However, this is not the case in our
applications.

8.3 Refinement and Coarsening Indicator

The goal of this section is to provide a criterion to decide when a cell of the mesh is to
large, such that we have to refine it, and when a cell is to small and should be coarsened
(if possible).

In the framework of Finite Volume and Discontinuous Galerkin discretization of con-
servation laws there are essentially two different kinds of strategies for this decision.
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The first strategy is to use error estimators based on rigorous theoretical results. Usu-
ally these are only available for special cases of conservation laws. The second kind
of strategies is based on heuristic indicators that are easy to compute, applicable to a
large class of problems and give usually good results in practical applications. However,
there is no theoretical justification as for the error estimators.

e FError estimators based on rigorous analysis, i.e., a aposteriori error control of the
form

l|w — up||x < nn(un),

where u is the exact solution of some conservation law, u, an approximation of u
generated by a numerical scheme, K C €)is some compact set in the computational
domain and || - || denotes some norm. The strategy consists (roughly) of the
following procedure: If the right hand side n,(up) is too large then we refine
the mesh-cells associated with the set K, in the case the right hand side is too
small, the parts of the mesh associated with K should be coarsened to reduce
the computational cost to a minimum. Usually it is not guaranteed that the
right hand side converges to zero as the mesh size h tends to zero. Therefore this
strategy does not always guarantee convergence of the algorithm. Aposteriori error
estimates of the above form are available for first order Finite Volume schemes for
multi dimensional scalar conservation laws (Cauchy problem and initial boundary
value problem), e.g. [77], [89], [90], for nonlinear hyperbolic systems of balance
laws with classical solutions see [67]. For higher order Runge-Kutta Discontinuous
Galerkin approximations of multidimensional nonlinear scalar conservation laws
an aposteriori error estimate can be found in [38].

e Heuristic indicators which (in the framework of fluid dynamics) usually depend
on the local gradients (with respect to space or time-space) of thermodynamical
variables such as density, energy, entropy and others. In this case the criterion is
quite simple: a large gradient (measured in some norm) leads to refinement of the
cell, a small gradient might lead to coarsening of a group of cells.

The advantages of this kind of simple heuristic indicators are: They are (usually)
easy to compute, they are available for complicated systems in contrast to real
error estimators, and they have been successfully applied to many different prob-
lems, see for example [13], [37], [116], [50], [112].

One disadvantage of heuristic indicators is that they may indicate for refinement
even in cases where the error between exact and approximate solution is small
(possibly equal to zero).

For our application, the higher order Discontinuous Galerkin discretization of the com-
plicated Navier-Stokes-Korteweg system, an error estimator based on rigorous analysis
seems to be out of scope. However, the most important challenge in the framework of
the Navier-Stokes-Korteweg system is the complete resolution of the interface by the
underlying computational mesh rather than the error control. As an heuristic indicator
we can use the density gradient |Vp|. At the interface the density changes rapidly and
therefore the density gradient is large. This can be used to provide a very fine mesh
close to the interface.
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We define a quantity 7; that is associated with the gradient of the density on the i-th
cell and its direct and indirect neighbors in the mesh

diam(A,
7; = max {m‘rzi("J)HVpHLz(Aj) | Aj is neighbor of A; of deg. at most m} . (8.9)
J

Here we call A; a neighbor of A; of degree at most m if there exist m + 1 cells in the
mesh A%, ..., A™ with

A; =AY,
Aj=A",
AF is a neighbor of A*1 Lk =0,...,m.

Note: for m = 0 we have only a contribution of the i-th cell and for m = 1 we have
contributions of the gradients of the i-th cell and its direct neighbors.

We choose some problem dependent upper and lower values
Nupp > 0 and Mo, >0 With 700 < Nupp (8.10)

and we decide if the i-th cell is a candidate for refinement or coarsening according to
the following criterion

Example 8.3.1 (Mesh Adaption Criterion)
if 7, > nypp then we mark the i-th cell for refinement,

else if 1; < 110w then we mark the i-th cell for coarsening.

Note: Here we only set a mark (by setting a flag) that means the cell is a candidate
for refinement or coarsening. The final decision whether the refinement or coarsening
is performed is discussed in the next section.

The building of the maximum in the definition of n; in (8.9) is rather expensive especially
for large values m and parallel computation, but it is important to have a layer of fine
cells around an interface. Thus, it is important to choose a value m > 1. Otherwise local
equilibrium configurations will be destroyed in the refinement and coarsening process
and this will slow down the underlying iterative linear solvers.

8.4 Refinement and Coarsening of Simplicial Meshes

In this section we discuss the final refinement and coarsening of a mesh. Here we
assume that the cells of the mesh are already marked for refinement and coarsening,
i.e., refinement or coarsening flags of the cells are set due to the decision discussed in
the previous section. Since the Discontinuous Galerkin method does not need conform
meshes, refinement and coarsening could be very local without affecting neighboring
cells. However, in order to improve the stability of the method it is convenient to
discard the locality to some degree by restricting the level of nonconformity to one, i.e.,
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the absolute difference between refinement levels of neighbor cells. In the following we
assume that the mesh consists of a set of macro cells that cannot be further coarsened.
This set is called macro mesh. Due to the refinement and coarsening procedure a
hierarchy of cells with a parent-children relation is constructed. The set of cells that do
not have children is called leaf mesh. Only all children of a parent cell together can be
coarsened to the parent cell.

Note that initially, when the mesh adaption criterion 8.3.1 is applied, it is not possible
that cells are marked with the refinement and coarsening flag simultaneously but this
can happen during the refinement and coarsening process since the nonconformity level
is restricted. In the following we assume that when the refinement flag of a cell is set
then the coarsening flag is unset. Further we assume that a macro cell cannot have
the coarsening flag set. The mesh adaption follows a coarsening can, refinement must
policy. This means every cell that has the refinement flag set has definitely to be refined
whereas the execution of coarsening of a cell (with a set coarsening flag) depends on
the neighborhood of the cell.

First the refinement algorithm is carried out. The following has to be done until there
is no cell left with a set refinement flag.

Algorithm 8.4.1 (Refinement)

while there is a cell A with refinement flag set {
refine A into subcells Ay, ..., A,_1;

fori=0,....,n—1{
for all neighbors A of A; {

if refinement_level(A;) —~reﬁnement_level(A) > 1 then
set the refinement flag of A;

¥
}
}

When the refinement has finished the coarsening algorithm has to be executed until all
cells have been processed and no flags are set.

Algorithm 8.4.2 (Coarsening)

while there is a cell A with coarsening flag set {

set A, = parent cell of A;

if all children of A, have the coarsening flag set then {
if for all neighbors A of A, we have

refinement_ level(A) - refinement level(A,) <1 then
coarsen all children of A, to A,;

else if for all neighbors A of A, we have
refinement _level(A) - refinement_level(A,) < 2 and all neighbors
with “= 2” have the coarsening flag set then

requeue cell A;
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else unset the coarsening flag of A;

}

else unset the coarsening flag of A;

}

In the coarsening algorithm above we note that in the else if statement we cannot
decide whether the cell can be coarsened or not since some of the neighbor cells have
to be coarsened (or not) first. Thus, the current cell has to be requeued in a waiting
queue of some kind. Here it is important for the termination of the algorithm that the
current cell is requeued at the end of the waiting queue such that all other marked cells
are processed before the current cell is processed again.

8.5 Parallelization

In the following we discuss the parallelization of the methods from the previous sections
and chapters. The parallelization using the distributed memory parallelization concept
is the appropriate choice for Finite Volume and Discontinuous Galerkin methods since
the partitions of the mesh given by a domain decomposition method are only weakly
coupled.

Today there are mainly two different parallel programming models Shared Memory Par-
allelization and Distributed Memory Parallelization. The advantages and disadvantages
of these both models are listed in the following.

e Shared Memory Parallelization. Using this model the application makes use of
many Threads of Ezecution that share a common address space in memory. This
means each thread can read or write to each location in memory. This program-
ming model can be used either by explicitly working with threads, for example by
using the PThreads API. Or alternatively OpenMP [35], [126] directives can be
used to spawn threads in parallel regions. These directives are available for the
programming languages C, C++ and Fortran but they are not part of the stan-
dards of the languages and must be additionally implemented by the compiler.

The main disadvantage of this model on the side of the hardware is that SMP
machines with a large number of processors are really expensive. One problem on
the software side is that many libraries are not completely thread safe. Another
problem is that it is easy to cause effects like cache thrashing on modern machines
since all threads have access to all memory locations. One has to be aware of
these effects otherwise the parallelization gives no gain in performance.

e Distributed Memory Parallelization. In this model the application runs using dif-
ferent Processes on the same or different machines which communicate via Message
Passing. The de facto standard for scientific computing applications that make
use of this programming model is the Message Passing Interface (short MPT)
[122] that defines a lot of useful routines commonly used in scientific applications.
An alternative to MPI is the PVM (Parallel Virtual Machine) library [128], [49]
which is, compared to the MPI implementations, a light weight library that pro-
vides message passing. But this comes at the cost that it is not as optimized as
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MPT implementations.

The latest MPI standard (at time of this writing) is version 2.0 and can be found
on the MPI-Forum website [122]|. There are a number of open source implementa-
tions of MPI. All of them implement at least the 1.1 standard and some of them
implement parts of, or the complete 2.0 standard. These are MPICH [53], [123],
LAM/MPT [18], [120], MPICH2 [124] and OpenMPI [46], [127]. The latter two of
them implement (or will do it in the near future) the complete MPI 2.0 standard.
A good overview and many additional references to the Message Passing Interface
are given in [54], [55].

The main advantage of this programming models is that simply a bunch of ma-
chines connected via a network can be used as a parallel computer. This is nor-
mally much cheaper and for many applications nearly equivalently efficient as
using shared memory machines. Another advantage is that memory partitions
are separated and effects like cache thrashing do not occur. Of course, message
passing can also be used on SMP-machines. In this case modern MPI implemen-
tations communicate via shared memory which is the fastest way to communicate.

In this work we have chosen a distributed memory parallelization because of its flex-
ibility and usability with cheap hardware. In the framework of Finite Volume and
Discontinuous Galerkin methods a distributed parallelization based on a domain de-
composition seems to be the most appropriate choice. Here the computational domain
represented by an underlying mesh is partitioned into pieces and each of the pieces is
distributed among the available processors. Figure 8.3 shows the original mesh on the
left and the mesh partitioned into three pieces on the right. Additionally the overlap of
level one is shown. These are cells from the other partitions that store the connectivity
information to cells of the other partitions.

Parallel efficiency

There are mainly two different motivations for parallel implementation of software.
Namely:

e The problem is too large. We have a larger memory requirement.

e The computation needs too much time to finish. We need a faster execution of
the code.

In the first case we have no other choice: we need enough machines to satisfy the
memory requirements of the problem. But in the latter case we have to decide how
many machines we should use in order to accelerate the computation. This is discussed
in the following paragraph.

For a given problem let T'(n) denote the time the computation using n € N processors
needs to finish. The speedup from ng processors to ny processors with ng < ny is then
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defined by
T(n
speedup(ng,ny) = TETL(1)§7
speedup(n) = speedup(l,n).

The latter denotes the speedup from one to n processors. For real world applications
we expect that the speedup is bounded by
speedup(ng,ny) < ﬂ,
no
but there are examples where this is not the case. These are usually cache effects and
occur normally only when the problem is small and the communication is really fast
compared to the computation. The expression

eff(no, n1) = speedup (g, n1) -
ni

is called parallel efficiency. This quantity decides whether it is worth to use ny processors
instead of ng or not. If this quantity is close to one it may be worth if it is close to zero
it is definitely not worth.

Parallelization of the mesh

In Section 6.1 we have discussed the structure of conform and nonconform meshes we
use to approximate (possibly complex) geometries. For the implementation, especially
in a parallel environment, it is convenient to restrict the set of admissible meshes a little
bit. Here we restrict this set to the set of meshes that can be generated by refinement
starting from a conform macro mesh. The macro mesh consists of cells that cannot be
further coarsened. The mesh is initially assumed to be distributed among the available
processors. Not all of the processors need to hold any macro cells. The part of the
mesh (the partition) that is held by processor number p is called 7}, and the part of
the domain that is associated with this partition is denoted by €2, in the following.
A partition 7}, needs also to store the immediate neighbors of macro cells that are
adjacent to other partitions in order to store connectivity information. These neighbors
are called overlapping macro cells of level one. Note that for the discretization by the
Discontinuous Galerkin approach the information of direct neighbors is sufficient.

Figure 8.3 shows the mesh of the unit ball in R? that is hold on only one processor on
the left side and on the right side the same mesh is shown that is distributed among
three processors. The blue cells represent the overlapping cells from other partitions
that store the connectivity information.

In the refinement and coarsening process a hierarchy of cells is constructed with the
macro cell as the root cell. In the case where cells are sent from one process to another,
for example when load balancing (see 8.6) is necessary because the computational cost
differs too much between the processors, then the complete cell tree with the macro
cell as root is sent to another process. When refinement or coarsening is performed
somewhere in the hierarchy of a macro cell of process p that is part of the overlap of
a process ¢ then process p needs to inform process ¢ about the new structure of the
concerning macro cell.
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Figure 8.3: Decomposition of a mesh into three parts and the overlap of level one.

Parallelization of the Discontinuous Galerkin method

The space discretization by the Local Discontinuous Galerkin method is discussed in
Chapter 6 and especially in Section 6.2. In each stage of the computation of a higher
order differential operator by the LDG method the communication only between direct
neighboring cells is necessary. Therefore the mesh on one partition needs only to store
the information about direct neighbor cells in different partitions. As discussed in
the previous paragraph, in this case the complete macro cell hierarchy is stored for
simplicity.

The computation of the discrete differential operators associated with the Local Dis-
continuous Galerkin method in one stage is then done essentially in the following way:

e The data at the boundaries of the partitions is exchanged between processors
using nonblocking MPI communication.

e Since nonblocking communication is used it can overlap with the computation in
the inner partition (the large part of the computation). Communication is done
in the background by the system.

e When all necessary data has been received from neighbor partitions, the rest of
the computation that is associated with the partition boundaries can be done (the
small part of the computation).

In the following we denote by wuy, ,, the part of the approximate solution that is associated
with the partition 7j, ,, i.e., the part of the approximate solution that has support on the
domain €2y, ;,. The local parts of the discrete first order differential operators are denoted
by Efll,p,k' Using this notation the pseudocode algorithm to compute the discrete higher
order differential operator in m stages in equation (6.6) can be written in a parallelized
version. Fach process p does the following:
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Algorithm 8.5.1 (Parallel DG Method)
set u?w =up,(-,1);

for k=1,...,m {

forq:07~~~7nparts_17 Q#p{
if p and ¢ are adjacent partitions then
send the parts of (u%p, e uﬁ;l) that are associated with the partition

boundary to process ¢ using nonblocking communication;

}
compute the part of E,llp I uﬁ_l)] using physical fluxes f¥ and

consistent numerical fluxes g¥ for which only the inner data is necessary;

wait until all necessary data from neighbor partitions has been received;

compute the rest of L,llp Ll uﬁfl)];
| 0 E—117.

set uy , =L [(up,..oup )]

}

set L} [un(-1)] = up’,.

In the above algorithm 7,45 denotes the number of partitions/processors in the parallel
environment. Note that the treatment of nonconservative products can also be included
in the algorithm.

Parallelization of linear and nonlinear solvers

The parallelization of the rest of the code is more or less straight forward. The most
important remaining components are the explicit and implicit ODE solvers, nonlinear
solvers and linear solvers. Parallelization of these components is done in the following
way: First a local (with respect to a partition/processor) result is computed and second
these local results are used to construct the global result by using global reduction
operations provided by the Message Passing Interface.

ODE solvers need to compute a time step size. Explicit solvers need to do this for
stability reasons and implicit solvers need to find an optimal time step. Usually this is
done by computing a time step locally on each partition followed by building a minimum
over all partitions. The final step is done by calling the MPI global reduction method
MPI _ Allreduce(..., MPI_MIN).

Linear and nonlinear solvers need to compute dot products. Linear solvers usually need
this as part of the iteration and nonlinear solvers for a stopping criterion. Dot products
are computed locally for each partition. This operation is completed by building the
sum over all partitions. Again this is a global reduction operation provided by MPI.
The method to call in this case is MPI Allreduce(..., MPI SUM). Note that
computing dot products in parallel can be different from the serial computation due to
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roundoff errors since the operations are usually reordered. This can result in a slightly
different number of iterations for the linear solvers.

Parallelization of other components

Some of the components like the interface or error indicators are not discussed in the
previous paragraphs since the parallelization of these components is similar or a combi-
nation of the components discussed before. Therefore, we omit it. The parallelization
of the refinement and coarsening algorithm discussed in Section 8.4 is also not discussed
here. The information of refinement and coarsening has to be simply exchanged between
the partitions. This process can cause additional adaption in other partitions. Thus,
the process has to be iterated until all partitions have finished.

8.6 Load Balancing

Load balancing is a technique to distribute work between the available processors in
a parallel environment in order to optimize and decrease computing time. In the case
where the computational cost or communication cost differs too much between processes,
due to local mesh adaption, the load must be balanced with respect to

e the computational cost, i.e., the number of cells of the mesh a partition holds.

e the communication cost. The number of interfaces between different partitions
should be minimized.

e the redistribution cost. The exchange of parts of the partitions should not be too
expensive.

For purpose of the first item we assign weights to the macro cells of the mesh which
represent the count of leaf cells in the cell hierarchy of the macro cell. The second item
is taken into account by assigning weights to the interfaces of the macro cells which
represent the communication cost between two adjacent macro cells.

As backend for the partitioning of the macro mesh the graph partitioning library
ParMetis [121], [68] is used. The graph that describes the connectivity information
of the macro mesh is converted into ParMetis’ data structure. This structure is a kind
of a parallel CSR matrix format, see the ParMetis documentation [69] for details. The
ParMetis library provides the methods PartKway(...) and AdaptiveRepart(...).
The former method is used for initial partitioning and the latter is used for reparti-
tioning. The repartition method preserves as much of the initial structure of the mesh
as possible in order to minimize the redistribution cost. The output of both ParMetis
methods is a local part array with the information which node of the graph has to be
sent to which processor, i.e., which macro cell has to be sent to which partition, in or-
der to improve the distribution of computational cost and minimize the communication
cost.

ParMetis provides additionally the possibility to assign individual weights to the parti-
tions using the tpwgts array. This can be used to improve the load balancing in het-
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erogen parallel environments, i.e., networks of machines with different computational
power.



Chapter 9

Numerical Results

We apply the test cases constructed in Chapter 4 and some other tests in the following
chapter. All tests throughout the following sections are related to the higher order Dis-
continuous Galerkin discretization of the Navier-Stokes-Korteweg equations (isothermal
or temperature dependent) in multiple space dimensions discussed in Chapter 6. In the
following sections we perform a lot of different tests that are dedicated to

e the quantitative behavior of numerical solutions, convergence tests with the static
equilibrium solutions and traveling wave solutions in multiple space dimensions.

e the qualitative behavior of numerical solutions, decay of the total energy on the
discrete level, vanishing velocity field.

e the efficiency of the used numerical techniques, parallelization, local mesh adap-
tion.

e the qualitative behavior of solutions of the Navier-Stokes-Korteweg model, oscil-
lating bubbles, condensation of bubbles.

In the above list one point is missing: tests with respect to the quantitative behavior
of solutions. Here the problem is that no physical data of experiments are available on
the temperature and length scale that can be simulated by the NSK model, see Section
2.10.

9.1 Test Case: Static Equilibrium

The first test in this chapter is the test case with the static bubble in two and three space
dimensions. As initial configuration we use the profiles we have computed in Section
4.1. We compare the exact solution with the approximate solutions generated by the
well balanced Discontinuous Galerkin schemes discussed in Section 6.9 for different
polynomial degrees after some time of computation. For time stepping we apply the
implicit Runge-Kutta schemes described in Section 7.3.

The setting is the same as in Chapter 5 except for the domain and the boundary
conditions. The boundary conditions that are imposed in this test case are (2.51)

155
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and (2.53) that enforces a 90 degree contact angle of the interface at the boundary.
However, the interface should not touch the boundary in this case, so it should not
make a difference when boundary condition (2.53) is replaced by the more general
condition (2.54).

The remaining parameters are the capillarity coefficient A which must correspond to the
computed density profile and the viscosity parameters that can be chosen arbitrarily.
However, we use the value that comes from the computation of the undercompressive
traveling wave solution, see Section 4.2.

A = 0.001,

3
e = 0.0136644, NZZ€7 V= ——¢c.

Static bubble in 2d

Figure 9.1: Static equilibrium bubble and a computational mesh in 2d.

Figure 9.1 shows the density distribution in the computational domain = B;(0) C R?
of the initial configuration which is of course the solution for all times ¢ > 0 in this
case. The density values vary between approximately 0.3 (blue) and 1.8 (red). These
two values are approximately the Maxwell values for the dimensionless van der Waals
equation of state at temperature 6,.y = 0.85. This display style is used throughout this
chapter.

For this test we use globally refined, regular triangulations of different mesh sizes. One
of them is shown in Figure 9.1. Figure 9.2 and Table 9.1 illustrate the convergence of
the numerical schemes with the expected order (which is polynomial degree plus one)
forp=1,2,3.

The results of the sequence of tests in two space dimensions can be found in Table 9.1
and Figure 9.2. Computations that were not successful, because the mesh was not fine
enough (this was the case for p = 1) or the computation was simply to expensive to
finish in a reasonable time (in the case of p = 3 for the fine meshes) the results are
marked with a * symbol in Table 9.1.



9.1. TEST CASE: STATIC EQUILIBRIUM
p—1 p 2 p3
h L? error ‘ EOC L? error ‘ EOC L? error ‘ EOC
2.1298¢-01 * 7.6272e-02 6.1959e-02
1.3311e-01 || 8.0634e-02 * 2.7842e-02 | 2.144 || 1.0732e-02 | 3.730
8.8740e-02 || 3.1137e-02 | 2.347 || 6.9194e-03 | 3.434 || 2.3610e-03 | 3.734
6.2640e-02 || 1.3184e-02 | 2.467 || 4.0635e-03 | 1.528 || 3.0082e-04 | 5.915
4.2595e-02 || 7.8643e-03 | 1.340 || 9.2077e-04 | 3.849 || 1.1222e-04 | 2.557
2.8023e-02 || 3.6147e-03 | 1.856 || 2.4690e-04 | 3.144 || 2.1694e-05 | 3.925
1.9016e-02 || 1.7118e-03 | 1.928 || 7.3168e-05 | 3.137 || 5.6071e-06 | 3.489
1.2830e-02 || 7.9013e-04 | 1.965 || 2.1812e-05 | 3.076 || 1.5065e-06 | 3.340
8.6576e-03 || 3.6232e-04 | 1.982 || 6.6050e-06 | 3.037 || 4.2760e-07 | 3.202
5.8510e-03 || 1.6589¢e-04 | 1.994 || 2.0252e-06 | 3.017 * *
3.9440e-03 || 7.5470e-05 | 1.997 || 6.1878e-07 | 3.006 * *

Table 9.1: Static bubble in 2d. Total L? error and EOC for p = 1,2, 3.
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The numerical solutions generated by the schemes with polynomial degree p = 0,1,2
converge clearly with the expected order p 4+ 1. For the fourth order scheme (p = 3

the time step size has become too large (possible because of the equilibrium solution

)
either the mesh size is not in the asymptotic regime or (and this is very likely the reason)
)

such that the second order Runge-Kutta method destroys the order.
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Figure 9.2: Static bubble in 2d. Mesh size versus L? error for p = 0, 1,2, 3.

Static 2d bubble in 3d

We apply the 2d test case from the previous paragraph in three space dimensions.
Therefore, we set the remaining velocity component to zero and choose as computational
domain the cylinder Q = B;(0) x [~0.1,0.1] C R3, where B;(0) denotes the unit ball
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in R2. Figure 9.3 shows the initial data and an underlying tetrahedral mesh for this
test. Now it is important that at the bottom and at the top of the cylinder boundary
condition (2.53) is imposed.

Figure 9.3: Static 2d bubble in 3d and a tetrahedral mesh.

The rest of the setting is identical to the setting in the 2d case in the previous paragraph.
The results of the computations are shown in Figure 9.4 and Table 9.2 for polynomial
degree (zero), one, two and three.
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Figure 9.4: Static 2d bubble in 3d. Mesh size versus L? error for p=0,1,2,3.

The schemes with p = 1,2 seem to converge with the expected order p + 1 but for
the schemes with p = 0 and p = 3 the mesh seems to be not fine enough such that
the schemes can be in the asymptotic regime. Note that the mesh is not as fine as
in the purely 2d test case since convergence tests in three space dimensions are really
expensive, regardless of parallelization.
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p—1 p 2 p3
h L? error ‘ EOC L? error ‘ EOC L? error ‘ EOC
2.0856e-01 * 2.4993e-02 2.4465e-02
1.4094e-01 || 2.2658e-02 * 4.3036e-03 | 4.489 || 1.5906e-03 | 6.975
6.9520e-02 || 9.1541e-03 | 1.282 || 9.8393e-04 | 2.088 || 2.9740e-04 | 2.373
4.1712e-02 || 3.2035e-03 | 2.055 || 2.7513e-04 | 2.495 || 3.6137e-05 | 4.126
2.5236e-02 || 1.2346e-03 | 1.897 || 5.8482e-05 | 3.081 || 4.2149e-06 | 4.276
1.4757e-02 || 4.5120e-04 | 1.876 | 1.2013e-05 | 2.950 * *

Table 9.2: Static 2d bubble in 3d. Total L? error and EOC for p = 1,2, 3.

9.2 Test Case: Traveling Wave Solution

In this section we perform the test with the traveling wave solution computed in Section
4.2 in two and three space dimension. Therefore, the one dimensional profile is trivially
extended to two and three space dimensions by setting the remaining components of the
velocity to zero. A 1d test can be found in Section 9.4. The isothermal Navier-Stokes-
Korteweg system is in all tests equipped with a dimensionless van der Waals equation
of state and the dimensionless reference temperature is fixed to 0,5 = 0.85.

The system is discretized using the well balanced Discontinuous Galerkin scheme as de-
scribed in Section 6.9 for polynomial degrees between zero and four. Time integration is
done using second and third order implicit Runge-Kutta schemes, see Section 7.3. The
time step is small enough (of order O(h?), where h denotes the mesh size) such that
the order of the Runge-Kutta schemes is sufficient.

Note: For polynomial degree zero a Discontinuous Galerkin scheme reduces to a first
order Finite Volume scheme.

Compressive wave in 2d

For the first test in this section we have chosen the compressive wave from Section 4.2.
The profile is extended to two space dimensions by setting the second component of
the velocity to zero and used as initial configuration. We impose boundary conditions
known from the exact solution of the problem. The parameters for this profile are given

by

A = 0.001,

3 1
e = 00056977, p=Te v=-—ge
s = —1.25273.

Here A denotes the capillarity parameter, pu and v the coefficients of viscosity and s
the speed of propagation of the profile. The approximate solutions are computed up
to computational time 7" = 0.02. At this time the approximate solution is compared
to the exact solution by computing the (total) L2-error. All computations are done
using identical machines (Pentium 4, 2.4GHz, one core per processor) and using only a
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single partition in order to compare the execution times. The computational domain is
the channel [—1,1] x [-0.25,0.25] and the mesh is a regular, globally refined criss-cross
triangulation.
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Figure 9.5: Compressive wave in 2d. Mesh size versus L? error for polynomial degree

p=0,1,234.

Figure 9.5 shows that the approximate solutions generated by the Discontinuous Galerkin
schemes with polynomial order p = 0,1, 2, 3 converge to the exact solution with the ex-
pected order. In the figure the black lines indicate the expected order. Note that the
expected order of the schemes is p+ 1. Table 9.3 illustrates the same. The scheme with
p = 4 seems to have the same behavior but on closer inspection that the error is not
of order five. This is due to the insufficient order of the Runge-Kutta scheme in this
computation. We applied a second order Runge-Kutta scheme and the time step size is
of order O(h?). This means that the resulting scheme cannot be better than order four.

p=1 p=2 p=3

h L? error ‘ EOC L? error ‘ EOC L? error ‘ EOC
2.5000e-02 || 1.2265e-02 3.8326e-03 5.1287¢e-03
1.2500e-02 || 3.1980e-03 | 1.939 || 5.0307e-04 | 2.929 || 5.7384e-05 | 6.482
8.3333e-03 || 1.4234e-03 | 1.997 || 1.5131e-04 | 2.963 || 1.1166e-05 | 4.037
6.2500e-03 || 7.9961e-04 | 2.004 || 5.9397e-05 | 3.250 || 3.6240e-06 | 3.912
5.0000e-03 || 5.1395e-04 | 1.981 || 3.0369e-05 | 3.006 || 1.5009e-06 | 3.950
4.1667e-03 || 3.5756e-04 | 1.990 || 1.7597e-05 | 2.993 || 7.2917e-07 | 3.960
3.5714e-03 || 2.6292e-04 | 1.994 || 1.1096e-05 | 2.992 || 3.9572e-07 | 3.965
3.1250e-03 || 2.0137e-04 | 1.997 || 7.4416e-06 | 2.992 || 2.3285e-07 | 3.972

Table 9.3: Compressive wave in 2d. L? error and EOC for p = 1,2, 3.
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From Figure 9.6 we can see that the construction of higher order schemes really leads
to more efficient schemes (provided that the solution is sufficiently smooth). The figure
shows the CPU time the computation needs versus the (total) L?-error. By CPU time
we mean the time the process has consumed, i.e., the user+system time on UNIX
systems. We can see that the schemes with p = 3 and p = 4 are the most efficient
schemes.
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Figure 9.6: CPU time versus L? error for polynomial degree p = 0,1,2,3,4.

Undercompressive wave in 2d

As a second test in this section we repeat the test from the previous paragraph with an
undercompressive wave constructed in Section 4.2 instead of a compressive wave. An
undercompressive traveling wave solution is more typical for propagating phase bound-
aries since an interface usually propagates with subsonic speed. For the sequence of
computations in this paragraph real unstructured (randomly perturbed) but uniformly
fine meshes are used. One of these meshes is shown in Figure 9.7. We omit time and

Figure 9.7: Randomly perturbed mesh in 2d.

efficiency measurements in this test case such that the computations can be assigned
to a different number of processors and different machines as it is necessary due to the
different complexity when polynomial degree and mesh size vary.
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The parameters for the undercompressive profile are different from the parameters for
the compressive wave. They are given by

A = 0.001,

3 1
e = 00136644, p=Te v=-—gc
s = —0.32141.

The computational end time for the computations is 7" = 0.1. At this time the total
L?-error between the numerical solutions and exact solutions are computed.

p—1 p 2 p3
h L? error ‘ EOC L? error ‘ EOC L? error ‘ EOC

1.3711e-01 || 3.4725e-02 1.1543e-02 5.5499e-03
8.8213e-02 || 1.1685e-02 | 2.470 || 3.6984e-03 | 2.581 || 5.6154e-04 | 5.194
6.0485e-02 || 7.2965e-03 | 1.248 || 1.2311e-03 | 2.915 || 2.2738e-04 | 2.396
4.2884e-02 || 3.8130e-03 | 1.887 || 4.6178e-04 | 2.851 || 6.0013e-05 | 3.873
3.1247e-02 || 2.0928e-03 | 1.895 || 1.8158e-04 | 2.948 || 1.6730e-05 | 4.035
2.1225e-02 || 9.1363e-04 | 2.143 || 5.5332e-05 | 3.073 || 3.4654e-06 | 4.071
1.4752e-02 || 4.5400e-04 | 1.922 || 1.9073e-05 | 2.928 || 8.5393e-07 | 3.850
1.0448e-02 || 2.0603e-04 | 2.290 || 6.2167e-06 | 3.249 || 2.0425e-07 | 4.146

Table 9.4: Undercompressive wave in 2d. Total L? error and EOC for p = 1,2, 3.
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Figure 9.8: Undercompressive wave in 2d, polynomial degree p = 0,1, 2, 3.

The result of this convergence test is presented in Figure 9.8 and Table 9.4 for the
Discontinuous Galerkin schemes with polynomial degree p = 0,1,2,3 and a second
order implicit Runge-Kutta method for time integration. Figure 9.9 shows the graph of
such a density profile (color variation of the density distribution is also shown) and the
corresponding velocity field for p = 2 at time 7' = 0.1.
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Figure 9.9: Undercompressive wave in 2d. Density distribution and velocity field.

Undercompressive wave in 3d

We extend the undercompressive traveling wave solution used in the previous paragraph
trivially to three space dimensions by setting the additional momentum components
to zero. The computational domain for the three dimensional test is the channel ) =
(—1,1)x (—0.25,0.25)? C R3 that is represented by regular, globally refined, tetrahedral
meshes of different sizes. The computational end time is 7' = 0.1. At this time the
total L%-errors of the numerical solutions are computed. Again we omit time and
efficiency measurements. The parameters are the same as in the 2d case with the
undercompressive wave before.

Figure 9.10: Undercompressive wave in 3d. Density distribution and the computational
mesh (upper picture) and the associated partitions marked by different colors (lower
picture).

The results of the tests for polynomial degree p = 0,1,2,3 are shown in Table 9.5
and Figure 9.11. The convergence with the expected order can clearly be seen for the
second and third order schemes (p = 1,2). The test with the two finest meshes was too
expensive for the fourth order (p = 3) scheme.
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p—1 p 2 p3
h L? error ‘ EOC L? error ‘ EOC L? error ‘ EOC
2.3208e-01 || 4.2703e-02 1.6035e-02 7.8913e-03
1.5832e-01 || 2.3654e-02 | 1.544 || 8.3620e-03 | 1.702 || 4.8851e-03 | 1.254
1.1804e-01 || 1.6087e-02 | 1.313 || 3.8893e-03 | 2.607 || 1.4425e-03 | 4.155
8.0126e-02 || 9.7965e-03 | 1.280 || 1.4103e-03 | 2.618 || 5.9760e-04 | 2.274
5.5051e-02 || 4.8885e-03 | 1.852 || 7.0490e-04 | 1.848 || 1.1244e-04 | 4.451
3.8462e-02 || 2.3859e-03 | 2.000 || 2.3567e-04 | 3.055 || 3.1102e-05 | 3.584
2.7778e-02 || 1.2670e-03 | 1.945 || 9.1493e-05 | 2.907 * *
2.0000e-02 || 6.6492e-04 | 1.963 || 3.3963e-05 | 3.017 * *

Table 9.5: Undercompressive wave in 3d. Total L? error and EOC for p = 1,2, 3.
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Figure 9.11: Undercompressive wave in 3d, polynomial degree p = 0,1,2, 3.
9.3 Test Case: Towards Static Equilibrium

This is the test case proposed in Section 4.3 and the setting is similar to that in Chapter
5 but not the same.

The coefficient A is chosen a hundred times smaller than in the tests in Chapter 5. This
results in an ten times smaller interface and also the amount of surface tension is ten
times smaller. This leads to slower dynamics because forces associated with surface
tension are much weaker. Due to the small interface it is necessary to apply local mesh
refinement using the interface indicator described in Section 8.3 with parameters

Now 057
Thupp 4.0 - Mow,
m = 8§,

where the parameter m controls the layer of fine cells around the interface and the load
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balancing is performed every 40th time step.

The isothermal NSK-system is discretized by the well balanced Discontinuous Galerkin
scheme with polynomial ansatz functions of degree two and three. For polynomial degree
one the above given values for the interface indicator do not provide a fine enough mesh
for the complete resolution of the interface. This results in an unstable behavior of the
approximate solution. The parameters for this test are given by

Orey = 0.85, dimensionless vdW-equation of state,
A = 1.0-1075,
_ 3 1
e = 1366-1073, p=e, v=—=c.
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Figure 9.12: Test Case: Towards Static Equilibrium. Total and kinetic energy for
polynomial degree p =2 and p = 3.

Figure 9.12 shows the behavior of the total and kinetic energy as functions of time for
the two well balanced Discontinuous Galerkin schemes with polynomial degree two and
three. A constant has been added to the total energy such that it can be displayed
on a logarithmic scale. The total energy £ is an almost decreasing function in time
with small oscillations. The scheme itself is not designed such that the total energy
has this behavior. This is a side effect observed in the numerical experiments with the
basic first order scheme in Chapter 5. The oscillations we can observe in the graph of
the energy are mainly caused by the L? projection in the refinement and coarsening
process. We have observed that these oscillations vanish when local mesh adaption is
not applied. However, this is not possible in the case of a very small interface. Maybe
a more convenient data projection should be chosen to maintain the energy decay.
The right part of the figure shows that the kinetic energy converges completely (up to
roundoff error) to zero as time tends to infinity. The schemes are designed to preserve
static equilibrium data on the discrete level but it is not clear that if we add a small
perturbation to a stable static equilibrium configuration that as time tends to infinity
the approximate solution converges to some static equilibrium state again. This can
clearly be seen from the behavior of the kinetic energy.
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Figure 9.13 shows a sequence of six time steps in the evolution process from the initial
data at ¢t = 0.0 to the (nearly) static equilibrium configuration at time ¢ = 40.0. There
as still some movement at this computational time but the topological changes are
completed and the large bubble in the center of the domain has an almost spherical
shape. The figure shows the distribution of the density and the velocity at computational
times ¢t = 0.0, 7.0, 7.85, 13.07, 14.6, 40.0 (from upper left to lower right) for the third
order Discontinuous Galerkin scheme (p = 2). Below the density-velocity picture the
corresponding adaptively refined mesh with the distribution over the eight processors
used for this computation is shown. Each of the eight colors represents one partition.
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Figure 9.13:  Test Case:  Towards Static Equilibrium. Density, velocity
and the adaptively refined meshes with distribution of the partitions. ¢t =
0.0, 7.0, 7.85, 13.07, 14.6, 40.0 from upper left to lower right.
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9.4 The Need for Artificial Viscosity

This test shows that the additional artificial viscosity, see for example Section 5.2 es-
pecially equation (5.5), in the discretization of the Navier-Stokes-Korteweg equations
is really necessary to stabilize the approximate solution (at least for the higher order
DG discretization). The test case with the compressive traveling wave solution from
Section 9.2 is applied to the one dimensional isothermal NSK system discretized by the
well balanced Discontinuous Galerkin schemes. The parameters are chosen as in Section
9.2 with the difference that in one sequence of tests the artificial viscosity parameter aj,
see (5.5), is set to zero. The approximate solutions are computed up to time 7' = 0.1
on uniform 1d grids.

Table 9.6 shows the convergence behavior of the two tests with the first order schemes,
one with and the other without artificial viscosity. The errors are not in the asymptotic
regime for the used mesh sizes but it can be seen that artificial viscosity is not necessary
to stabilize the generated approximations for the first order schemes (at least not in this
test case). The result is different in the case of higher order schemes as can be seen
below.

a; >0 a; =0

h L error ‘ EOC L' error ‘ EOC
1.0000e-01 || 2.6682e-01 3.0344e-01
5.8824e-02 || 1.5707e-01 | 0.999 || 1.9467e-01 | 0.837
3.5088e-02 || 5.9956e-02 | 1.864 || 9.0428e-02 | 1.484
2.0619e-02 || 1.9982e-02 | 2.067 || 1.9096e-02 | 2.925
1.2121e-02 || 9.9869¢e-03 | 1.306 || 5.4978e-03 | 2.344
7.1685e-03 || 7.0067e-03 | 0.675 || 2.7571e-03 | 1.314
4.2373e-03 || 4.9088e-03 | 0.677 || 1.5106e-03 | 1.144

Table 9.6: Traveling wave in 1d, 1st order scheme. Total L! error and EOC for the
scheme with artificial viscosity (left) and without (right).

The results of the tests with the corresponding second order Discontinuous Galerkin
schemes can be found in Table 9.7. Almost second order convergence can be observed
for the scheme with artificial viscosity. The scheme without artificial viscosity does not
converge to the exact solution and Figure 9.14 clearly shows the unstable behavior of
the approximate solution. The scheme produces oscillations in the vicinity of the phase
boundary. The scheme that includes artificial viscosity (not shown) does not show this
behavior, it converges to the exact solution.

As a result we find that except for the first order scheme artificial viscosity is necessary
for the higher order schemes to produce sequences of approximate solutions that con-
verge to the exact solutions. Of course, instead of the explicit introduction of artificial
viscosity another stabilization technique could also be possible.
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a; >0 a; =0

h L' error ‘ EOC L' error ‘ EOC
1.0000e-01 || 1.0310e-01 1.8342e-01
7.1429¢e-02 || 4.9296e-02 | 2.193 || 1.5012e-01 | 0.595
5.1282e-02 || 3.9810e-02 | 0.645 || 1.1758e-01 | 0.737
3.7037e-02 || 1.9147e-02 | 2.249 || 6.0010e-02 | 2.067
2.6667e-02 || 9.1751e-03 | 2.239 || 3.1154e-02 | 1.996
1.9231e-02 || 4.4738e-03 | 2.197 || 2.5753e-02 | 0.582
1.3889¢-02 || 2.0969e-03 | 2.329 || 2.3741e-02 | 0.250
1.0000e-02 || 1.2653e-03 | 1.538 || 3.0897e-02 | -0.802

Table 9.7: Traveling wave in 1d, 2nd order DG-scheme. Total L! error and EOC for
the scheme with artificial viscosity (left) and without (right).
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Figure 9.14: Traveling wave in 1d, 2nd order DG-scheme without artificial viscosity.
Density profiles for exact and approximate solutions at time 7" = 0.1.

9.5 Different Contact Angles

In this test we impose different contact angles for the interface at a solid wall by mod-
ification of the angle ¢ in boundary condition (2.54). The computational domain for
this test is the square/cube [—1,1]", n = 2,3 partitioned by an adaptively refined tri-
angular/tetrahedral mesh. Initially, a bubble with 90 degree contact angle is attached
to the bottom wall with zero velocity field, Figure 9.15 shows the initial data in two
space dimensions. This means that (except for a contact angle of 90 degrees) the ini-
tial configuration is not consistent with the prescribed boundary conditions. However,
this seems not to lead to instabilities in the approximate solution and as time tends to
infinity the contact angle agrees with the imposed conditions.

Again we choose the dimensionless isothermal van der Waals equation of state with a
reference temperature 0.,y = 0.85. For this test we choose a much smaller interface as
in the tests before. The parameters are different in two and three space dimensions.
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Therefore the used capillarity and viscosity parameters are listed in the corresponding
2d and 3d paragraph below. The rest of the setting is the same regardless of the space
dimension. The scheme is a 3rd order Discontinuous Galerkin scheme (polynomial de-
gree 2) with 2nd order implicit time integration. We compute the approximate solution
up to computational time 7" = 50.0. The solution does not change essentially from this
time and the velocity field is close to zero.

The complete resolution of the small interface is only possible by using adaptively refined
meshes. For the tracking of the interface we use the interface indicator discussed in
Section 8.3, (8.10) with parameters

NMow = 08’
Nupp = 4.0 - Mow,
m = 8§,

and the load balancing is performed every 40th time step. This could be done less
frequently because the solution does not change rapidly in this test case.

Figure 9.15: Same initial data for different contact angles.

Different contact angles in 2d

The capillarity and viscosity parameters in the two dimensional test case are given by
A = 1.0-1077,

3
e = 1.366-1073, p=e v=-ge

The two dimensional test is performed using two processors. The density distribution,
the corresponding meshes together with the distribution of the mesh cells over the
partitions is shown in Figure 9.16 for the three contact angles ¢ = 0.257, 0.57, 0.757
at time T" = 50.0.

A contact angle of 135 degree in 3d

For the three dimensional test the capillarity and viscosity parameters are chosen slightly
larger for two reasons: faster computation and better display of the results. The pa-
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Figure 9.16: Different contact angles in 2d. ¢ = 0.257, 0.57, 0.757 from left to right.

rameters are given by
A = 25-107%,

3 1
e = 6.830-1073, p=ge V=3¢

Only one computation is performed with an adjusted contact angle of ¢ = 0.757 using
16 processors in parallel. The result at time 7" = 50.0 is shown in Figure 9.17. This
figure shows the distribution of the density on two clipping planes with z = 0 and
y = 0, where x,y, z denote the spatial coordinates. Additionally a levelset of a bubble
is shown.

Figure 9.17: Contact angle of 135 degree in 3d.
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9.6 Implicit versus Explicit Time Stepping

We test the efficiency of implicit time stepping versus explicit time integration in this
section. Note that there is no formula for the time step size restriction available that
is necessary for explicit time stepping to guarantee the stability of the method. This is
the main reason for using implicit Runge-Kutta methods, efficiency is the second one.
Since there is no formula for controlling the time step size in the explicit case we have
to figure out manually (by successively lowering) which time step size gives a stable
scheme. It is guaranteed that for a working time step size a five percent larger time
step size shows an unstable behavior.

For this test case a traveling wave solution or a static equilibrium seems to be the
appropriate choice since these kinds of solutions have the same shape for all times ¢.
Thus, the most efficient time step size for implicit schemes and the maximal possible
time step for explicit schemes remain almost the same for all times t.

We have chosen both test cases in two space dimensions using different mesh sizes and
a 3rd and 4th order well balanced Discontinuous Galerkin discretization (p = 2,3) of
the isothermal Navier-Stokes-Korteweg equations in space. The configuration is almost
the same as in Sections 9.1 and 9.2. In both cases second order Runge-Kutta schemes
are applied for time integration. In the explicit case the TVD2 scheme (also known as
Heun scheme) is used and in the implicit case the Crank-Nicholson scheme in combi-
nation with the GMRES(15) linear solver is applied. The computations were run using
a sequence of successively globally refined meshes. In order to compare the execution
times of the computations without distorting the results by the overhead of parallel
communication all tests were run on a single processor (AMD Athlon64, 1.8GHz).

Traveling wave solution

For the first test with the traveling wave solution as initial data in two space dimen-
sions. We have chosen exactly the same undercompressive wave from Section 9.2. Since
everything is in movement in the solution this should be the harder test for the implicit
scheme. The rest of the configuration is exactly the same as in Section 9.2. The com-
putational end time where the approximate and exact solutions are compared to each
other is 7" = 0.01. The coarsest computational mesh is a relatively rough but regular
triangulation of the two dimensional channel. This mesh is subsequently refined for
further computations which gives meshes of the same quality.

Table 9.8 shows the results of this sequence of computations for the 3rd order DG scheme
(upper part of the table) and the 4th order DG scheme (lower part). For the implicit
and explicit case the total L?-errors, the time the computation needs to finish and the
time step sizes are shown. The time step size for the explicit schemes are fixed whereas
the size of the time step in the implicit schemes varies and the given size in the table
can be considered as a mean value. The errors of the approximate solutions generated
by the implicit and explicit schemes are comparable at a given mesh size. We see that
the implicit schemes are faster on the finer meshes and for higher polynomial degrees
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p= implicit explicit

h L? error | Time [s] | At L? error | Time [s] | At
5.77e-2 || 2.4377e-3 4.2 | 9.0e-4 || 2.4350e-3 1.9 | 2.0e-4
2.89e-2 || 2.8858e-4 44.5 | 2.0e-4 || 2.8848e-4 31.8 | 2.5e-5
1.44e-2 || 3.3837e-5 635.8 | 3.5e-5 || 3.3836e-5 684.2 | 3.1e-6
7.22e-3 || 4.1567e-6 | 10794.9 | 6.8e-6 || 4.1558e-6 | 18236.6 | 3.6e-7
p=3 implicit explicit

h L? error ‘ Time [s] ‘ At L? error ‘ Time |s] ‘ At
5.77e-2 || 5.2560e-4 14.5 | 3.5e-4 || 5.2486e-4 10.0 | 5.0e-5
2.89e-2 || 3.4592e-5 201.3 | 7.0e-5 || 3.4591e-5 218.3 | 6.0e-6
1.44e-2 || 2.3513e-6 3083.1 | 1.3e-5 || 2.3464e-6 5122.0 | 7.8e-7
7.22e-3 || 1.7510e-7 | 58003.0 | 2.5e-6 || 1.5714e-7 | 148204.7 | 9.0e-8

Table 9.8: Implicit versus explicit time stepping. Traveling wave in 2d, 3rd order scheme
(upper table) and fourth order scheme (lower table).

(nearly up to three times on the finest mesh for the 4th order scheme). On the coarsest
mesh the explicit schemes are faster but here the interface is not completely resolved
such that this mesh is not usable in practical applications. Note that a necessary time
step size control, which is also time consuming, is not included in the explicit schemes
since there is no formula for time step size restriction available.

Static equilibrium solution

The second test with the static bubble in two space dimensions uses exactly the same
configuration as in Section 9.1. Here only the third order Discontinuous Galerkin scheme
is applied. The computations use successively refined meshes and the errors are com-
puted at the computational end time T = 1.0.

p=2 implicit explicit

h L? error | Time [s|] | At L? error | Time [s] | At
5.32e-2 || 2.3135e-3 107.9 | 3.0e-3 || 2.3134e-3 199.6 | 1.5e-4
2.66e-2 || 2.0993e-4 2118.1 | 6.0e-4 || 2.0993e-4 6511.2 | 1.8e-5
1.33e-2 || 2.4471e-5 | 47580.3 | 1.3e-4 || 2.4471e-5 | 224191.2 | 2.1e-6

Table 9.9: Implicit versus explicit time stepping. Static equilibrium in 2d, 3rd order
scheme.

Table 9.9 shows the result of these computations. Again we see that the errors produced
by the implicit and explicit scheme at a given mesh size are comparable and that the
implicit scheme is faster on the finer meshes (by factor 4.8 for the finest mesh). It can be
observed that the implicit scheme becomes much faster at the end of the computation
because the discrete initial data provided by L?-projection is not a discrete equilibrium
but a discrete equilibrium is approached during the computation.



9.7. ADAPTIVE EFFICIENCY 173

9.7 Adaptive Efficiency

This test will show the gain in efficiency that local mesh adaption can give. In order to
test only the adaptive efficiency the sequence of tests should be run on a single processor
only (AMD Athlon64, 1.8GHz). Adaptive mesh refinement and coarsening is employed
to resolve small diffuse interfaces and to reduce the error between the approximate and
exact solution. We compare approximate solutions generated on globally refined meshes
and on adaptively refined and coarsened meshes. For a fair test we need a solution with
rapid changes.

For this test we have chosen an undercompressive traveling wave solution similar to
Section 9.2 and trivially extended to two space dimensions. The chosen profile is a little
bit sharper than that in Section 9.2 such that some levels of refinement are necessary
to resolve the interface completely. The parameters for this wave are

A = 0.0001,

3 1
e = 0.0025773, p= 15 V=55
s = —0.65691.

The equation of state is again the dimensionless van der Waals equation of state with
reference temperature 6,.y = 0.85. The domain is the channel 2 = [-1,1] x [-0.2,0.2]
and the approximate solutions are computed up to time 7" = 1.0. At this time the total
L?-errors are compared. We use the rough macro mesh shown in Figure 9.18.

Figure 9.18: Macro grid of the 2d channel.

For the computations that use a globally refined mesh this macro mesh is refined three
or four times before the initial data is L?-projected to the corresponding Finite El-
ement space. The corresponding tests are denoted by nonadapt(3) and nonadapt(4)
respectively.

The adaptive computations use the interface indicator discussed in Section 8.3, (8.10)
with parameters

Now = 0'57
Nupp = 4.0 - MNow>

m=3 or m=3§,

where m controls the size of the layer of fine cells around the interface. A smaller value
leads to a faster computation and a larger value gives a smaller error and a more robust
scheme. These tests are denoted by adapt(3) and adapt(8). The initial mesh is chosen
such that the interface indicator does not mark any cells for refinement and coarsening
applied to the L2-projected values.
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In both cases, adaptive and non adaptive, The Navier-Stokes-Korteweg equations are
discretized by the well balanced Discontinuous Galerkin schemes of order three and four.
In both cases the implicit second order Crank-Nicholson scheme is applied for the time
integration. As linear solver the GMRES solver with the same Krylov space dimension
15 is used in all cases.

‘ Test || L?-error | Time [s| | number of cells |

adapt(3) || 1.84569e-3 814.9 377
adapt(3) || 1.86002¢-3 | 13003 713
nonadapt(3) || 1.72694e-2 696.7 1280
nonadapt(4) || 1.88873e-3 9522.1 5120

Test || L?-error | Time [s| | number of cells |

adapt(3) || 4.25129e-4 | 3178.7 377
adapt(8) || 4.17148e-4 | 5419.8 713
nonadapt(3) || 6.52487e-3 2717.7 1280
nonadapt(4) || 4.28355e-4 | 41551.9 5120

Table 9.10: Comparison of adaptive and non adaptive third order (upper table) and
fourth order (lower table) DG schemes.

The results of the computations can be found in table 9.10. The tests with the globally
refined meshes use a fixed number of mesh cells. These numbers are shown in the tables.
In the adaptive cases the number of cells can vary (but not significantly) during the
computation and the number shown in the tables is taken at the end of the computation.
The nonadapt(4) tests have the same resolution of the interface as the adaptive tests,
the resolution of the nonadapt(3) tests is not that fine which results in a larger error.
For the 3rd order and 4th order DG schemes the tests adapt(3) are 11-13 times faster
than the corresponding nonadapt(4) tests at a comparable error. This is a significant
speedup of the adaptive algorithm and this factor becomes even more significant the
smaller the interface is. The result of these computations is that very small interfaces
cannot be resolved by uniform fine meshes in practical applications. Thus, adaptive
mesh refinement is mandatory.

Figure 9.19 shows the density distribution and the adaptively refined mesh (velocity
field is omitted) of the adapt(3) test using the 3rd order Discontinuous Galerkin Dis-
cretization.

9.8 Parallel Efficiency

In this section we test the parallel performance of the Discontinuous Galerkin code
applied to the isothermal Navier-Stokes-Korteweg system. We have chosen two different
three dimensional settings for this test, both small enough to fit on a single processor.
Of course, larger problems show a much better scaling but the intention of this section
is to show also the limits of parallelization. Nevertheless, even for these small problems
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Figure 9.19: Density distribution and the adaptively refined mesh for the 3rd order test
adapt(3) at times ¢ = 0.0,0.25,0.5,0.75,1.0 from first to last picture.

the Discontinuous Galerkin discretization is very well suited for parallel computation.
Within the class of DG methods parallel efficiency increases when the order of the
method is increased since the local workload becomes higher and communication can
be bundled. All computations in this section are done on the XC4000 Cluster at the
computing center of the university of Karlsruhe. This cluster consists of 2.6 GHz Dual
Core Opteron processors (AMD64-NUMA architecture), 2 Dual Core CPUs per node
and InfiniBand network interconnects.

For both tests we have chosen the parameters of the 3d test case in Section 9.5. As
computational domain we consider the domain Q = [—1, 1]3. The domain is partitioned
into a macro mesh of 6.000 = 10 x 10 x 10 x 6 macro cells. The first test uses a globally
refined mesh starting from this macro mesh. Provided that the initial partitions are
equally well distributed over the available processors, this is mainly a test for the par-
allel performance of the third order Discontinuous Galerkin code in combination with a
second order implicit Runge-Kutta time discretization. The second test uses an adap-
tively refined mesh. Besides the Discontinuous Galerkin code the quality of the load
balancer is also tested in this example.

Globally refined mesh

The setting is the same as for the 3d contact angle example from Section 9.5 except
that for the globally refined mesh the bubble has no contact to the wall since the used
mesh is not fine enough in this case. The macro mesh is twice globally refined which
results in 384.000 cells.

The computational end time is T = 0.2. Provided that the initial mesh is equally
well distributed a redistribution is not necessary in this test case. Nevertheless, load
balancing is done every 40th time step for completeness of the algorithm. This results
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‘ np H Time |s] ‘ Speedup to np/2 ‘ Speedup to np =1 ‘

1 75058.3
2 37520.3 2.00 2.00
4 19965.9 1.87 3.74
8 10134.2 1.97 7.37
16 5118.92 1.98 14.59
32 2628.77 1.95 28.45
64 1367.68 1.92 54.62
128 || 702.316 1.95 106.51
256 || 362.371 1.94 206.62
512 || 190.991 1.90 392.58
1024 || 133.534 1.43 561.39

Table 9.11: Speedup for the globally refined mesh.

in a slightly modified mesh distribution at the beginning of the computation and does
not further alter the mesh after a few calls of the load balancer since the weights of the
macro cells do not change.

For the sequence of computations using the globally refined mesh the number of pro-
cessors np varied between 1,2,4,...,1024. We have measured the real time in seconds
the computation needed to finish. Table 9.11 shows the result of these timings and the
speedup compared to the previous computation with half the number of processors and
compared to the first computation that was run on one processor only. The results show
that even for this small example a parallelization using 512 and maybe 1024 processors
is appropriate. With a factor of 1.43 the speedup from 512 to 1024 processors cannot
be as good as previous speedups because only 6.000 macro cells have to be distributed
over 1024 processors and even when the load balancer provides the optimal distribution
of the partitions (which is in general not possible) the computational work cannot be
equally distributed since the problem is too small.

Adaptive, load balanced mesh

For this test the setting is identical to 3d contact angle example from Section 9.5.
This includes the setting of the interface indicator. Since the initial data does not
satisfy the enforced contact angle there is a movement of the interface which requires
an adapted and repartitioned mesh every few time steps. Therefore load balancing is
done every 40th time step. The computational end time 7" = 0.1 which is of course not
the computational end time from Section 9.5 since the motivation for this test in this
section is not to generate a bubble with the correct contact angle. The same macro
mesh as in the previous example with 6.000 macro cells is used. The locally refined
mesh has approximately 30.000 cells. Therefore the problem is much smaller than the
previous one and we cannot expect the same parallel scaling as before.

Table 9.12 shows the results of the sequence of computations using np = 1,2,4,...,256
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number of processors. For this small problem it is not appropriate to use more than 32
or 64 processors. In the case of 64 processors some of the processors were not assigned to
a partition and therefore they did no work. Using more processors worsens the situation
a lot.

‘ np H Time [s] ‘ Speedup to np/2 ‘ Speedup to np =1

1 25058.1

2 13083.0 1.92 1.92
4 6951.35 1.88 3.60
8 3555.19 1.96 7.07
16 || 1872.53 1.89 13.37
32 || 1022.23 1.83 24.47
64 | 661.953 1.54 37.68
128 || 420.659 1.57 29.16
256 || 286.044 1.47 86.97

Table 9.12: Speedup for the locally refined, load balanced mesh.

As a result we can conclude that parallelization of Discontinuous Galerkin code can
be very effective and efficient even for small problems where memory consumption is
not the bottleneck. This also holds for the two dimensional case and even for one di-
mensional problems parallelization can be a gain in efficiency. Here efficiency means
runtime is reduced.

9.9 Bubble Ensembles

Instead of a single or a few bubbles we consider the dynamics of a whole bubble ensemble
in this section. The configuration of the isothermal Navier-Stokes-Korteweg equations
and the interface indicator is the same as in Section 9.3. The initial configuration is a
randomly distributed ensemble of 200 bubbles in the domain = [~1,1]? C R%. The
radiuses of the bubbles vary (randomly) between 0.02 and 0.06.

The sequence of pictures in Figure 9.20 shows the distribution of vapor bubbles at
times ¢t = 0.0,0.2,1.0,4.0,15.0,100.0. The bubbles merge and grow until there is only
one large bubble left. The final bubble stays in a static equilibrium configuration and
the interface has a 90 degree contact angle with the container wall. The velocity field
is not shown in the sequence of pictures.

Figure 9.21 shows the number of vapor bubbles as a function of time. The left part of
the figure shows the decay of bubbles in the time interval (0,50) where the number of
objects decreases from 200 bubbles at ¢ = 0 to only one bubble at ¢ = 50. The right
part of the figure is a zoom of the time interval (0,5). The number of bubbles decreases
rapidly at the beginning of the computation. An exponential decay from 200 to 30
objects during the time interval (0,1) can clearly be seen.
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Figure 9.20: Bubble Ensemble, initially randomly distributed. Density distribution at
times ¢t = 0.0,0.2,1.0,4.0, 15.0,100.0 from top left to lower right picture.

100
100

# Bubbles
# Bubbles

Figure 9.21: Bubble Ensemble. Time versus number of bubbles.

The number of bubbles are counted by counting the number of contiguous objects in

the vapor phase.

9.10 The Temperature Dependent Model

The static equilibrium solution of the isothermal Navier-Stokes-Korteweg model con-
structed in Section 4.1 is also a solution of the temperature dependent NSK model (6.31)
with boundary condition (2.52) when the wall temperature 6 is set to the constant ref-
erence temperature. Note that this is not the case for the traveling wave solutions. In
this section we use the static equilibrium solutions as initial data to perform conver-
gence tests with the Discontinuous Galerkin discretization of the temperature dependent
version of the two dimensional NSK system discussed in Section 6.9.4.

The setting in this section is the same as in Section 9.1. The temperature in the
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initial data and at the boundary are set to the reference temperature 0,y = 0.85. The
remaining parameters in the temperature dependent model are the heat capacity at
constant volume c and the heat conduction coefficient x. Note that the static equilibrium
configuration is a solution of the system independent of the choice of these parameters.
In this test we choose the parameters

C =

6.6,

x = 0.01366.
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Figure 9.22: Static bubble, temperature dependent NSK model in 2d. Mesh size versus
L? error for p=0,1,2,3.

p=1 p=2 p=3
h L? error ‘ EOC L? error ‘ EOC L? error ‘ EOC
2.1298e-01 * 2.5147e-01 1.8718e-01
1.1832e-01 || 3.9576e-01 * 6.4436e-02 | 2.317 || 2.7605e-02 | 3.256
7.0992e-02 || 1.4322e-01 | 1.990 || 2.1098e-02 | 2.186 || 6.2847e-03 | 2.897
4.2595e-02 || 4.1457e-02 | 2.427 || 7.3170e-03 | 2.073 || 5.8590e-04 | 4.645
2.5354e-02 || 1.4174e-02 | 2.069 || 1.6734e-03 | 2.844 || 1.3003e-04 | 2.902
1.4998e-02 || 4.6256e-03 | 2.133 || 3.4556e-04 | 3.005 || 1.5942e-05 | 3.998
8.9486e-03 || 1.5875e-03 | 2.071 || 6.9507e-05 | 3.105 || 1.9765e-06 | 4.042
5.3244e-03 || 5.4365e-04 | 2.064 || 1.3450e-05 | 3.163 * *

Table 9.13: Static bubble, temperature dependent NSK model in 2d. Total L? error
and EOC for p=1,2,3.

Figure 9.22 and Table 9.13 show the results of these computations for polynomial degree
p=0,1,2,3. The first order scheme seems to be not in the asymptotic regime for the
tested mesh sizes (this can be seen from Figure 9.22) whereas the higher order schemes
achieve the expected order p + 1.
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9.11 Condensation, Evaporation

The setting in this section consists of a static bubble or a drop in a spherical cylinder
initially at a dimensionless temperature § = 0.85. For ¢ > 0 the temperature at the
solid wall of the container is raised to the constant 6,,,; = 0.95 immediately. The initial
data is chosen such that initially the mean density lies between the Maxwell states with
respect to 6 = 0.85 which admits a stable bubble or drop at this temperature. At
temperature 8 = 0.95 which corresponds to the wall temperature. The mean density
lies in the vapor or liquid phase respectively but not between the Maxwell states with
respect to = 0.95. The boundary condition for the temperature implies that the
solution approaches the constant wall temperature in the domain ) as time tends to
infinity. Therefore the bubble or the drop is not a stable configuration as t — oo which
results in a condensing bubble and an evaporating drop. At the end of the computation
there is only a constant vapor or liquid state at ¢ =~ oco.

Figure 9.23: Condensating bubble in a spherical container. Density distribution at
times ¢ = 0, 50, 250, 450, 850, 10000 from top left to lower right picture.

The model considered in this section is again the two dimensional temperature depen-
dent Navier-Stokes-Korteweg model with the same boundary conditions as in Section
9.10.

A similar experiment was proposed in [5]. In this work the temperature dependent
Navier-Stokes-Korteweg model was used together with the assumption that the data
stays spherical symmetric for all times ¢ > 0. This assumption results in a time de-
pendent one dimensional system that is approximately solved by a higher order finite
difference scheme. However, in one space dimension a much smaller interface can be re-
solved by the mesh than in two space dimensions because of computational complexity
and therefore we have to choose a smaller domain (which then gives a larger interface
that can be resolved).
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In [5] the fluid parameters were approximately these of the noble gas Argon. Most of
the physical parameters differ by a factor of about ten between the vapor and the liquid
phase. These parameters have to be fixed to some constants in between the vapor and
liquid states.

For our experiment we have chosen the following physical parameters.

L = 1.0-107"m radius of the domain,
Cphys = 4.0- 102 % heat capacity at constant volume,
Hphys = 3.0- 107° % viscosity,
Kphys = 4.0- 1072 % heat conductivity,
Ophys = 9.0- 1073 % surface tension.

These are approximately the parameters of Argon at a dimensionless reference temper-
ature 0,.y = 0.85, as in [5], and can be found in Section B.2. Note that some constant
states between the vapor and liquid states have been chosen.

The corresponding dimensionless parameters are then given by

c = 6.63,
p = 587-1073, v=-391-10"3,
A = 395-1074,
k = 1.30-107%

These parameters are obtained by the physical parameters from above together with
the scaling given in Section B.1.

In this experiment the velocity field in the whole computation is rather small since
the temperature propagation from the wall is mainly driven by heat conduction and
thus, very slow. The computational end time is 7" = 10000.0, really large compared
to the experiments in the previous sections and therefore it is not possible finish the
computation within an acceptable time frame with the same radius of a domain as in
[5]. In our simulation the radius of the domain is ten times smaller than in [5].

Figure 9.23 shows the density distribution of a sequence of snapshots for a condensating
bubble at times t = 0, 50, 250, 450, 850, 10000 and the corresponding temperature distri-
bution can be found in Figure 9.24. As usual the density varies between approximately
0.3 and 1.8. The temperature has values in the range (0.85,0.95), values between initial
and wall temperature.

The density distribution of an evaporating drop is shown in Figure 9.25. The snapshots
are taken at times ¢ = 0, 500, 1500, 2500, 3100, 10000

9.12 Oscillating Bubble

In this section we investigate the dynamics of a single spherical bubble that oscillates
due to perturbation of the velocity field at the boundary. We compare the radius of the
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Figure 9.24: Condensating bubble in a spherical container. Temperature distribution
in the range 0.85 (blue) to 0.95 (red) at times ¢ = 0, 50, 250,450, 850, 10000 from top
left to lower right picture.

bubble given by the numerical simulation using the isothermal Navier-Stokes-Korteweg
model in two space dimensions with the predicted radiuses given by the Rayleigh-Plesset
formula (4.22) and the Incompressibility formula (4.25). We cannot expect that the
results of the simulation using the NSK model matches exactly with the results given
by the formulas since effects like compressibility and mass transfer over the liquid-vapor
interface are neglected. But if there are qualitatively agreements with the formulas
these could be used to predict a certain behavior of the solution like a bubble collapse.
The Rayleigh-Plesset equation is usually used to predict such a behavior.

We consider the domain = B (0) C R? with L = 1.0. Instead of using the boundary
condition w = 0 on 0f) we simulate a vibrating container by application of the boundary
conditions

uno =2l g (9.1)

)

where n denotes the normal and 7 the tangent on the boundary 0€). The wvibrating
container experiment in Section 4.4.2 requires the complicated treatment of a mov-
ing domain. To avoid this we simulate the vibrating container experiment using the
boundary conditions (9.1) on a fixed domain which means that we have a mass transfer
over the boundary of the domain. In practice the difference between both experiments
should be negligible as long the mean of the mass in € over a period of oscillation does
not change. This holds for our computation.

The configuration of the Navier-Stokes-Korteweg model is completely the same as in
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Figure 9.25: Evaporating drop in a spherical container. Density distribution at times
t = 0,500, 1500, 2500, 3100, 10000 from top left to lower right picture.

Section 9.3 including the settings of the interface indicator (not shown below), namely

Oref = 0.85,
A = 1.0-1077,
3 1
e = 1.366-1073, p=ge v=-ge

The initial data is given by a rotationally (with respect to the origin) symmetric static
bubble with an equilibrium radius, vapor and liquid density states given by

Rey = 0.345, p, = 0.3208, p; = 1.8088.

The oscillation in the velocity field by the boundary conditions (9.1) is imposed by the
function

x(t) = —0.005 cos(0.5 7 t). (9.2)

Given the density distribution from the computation at a time ¢t by the function p; we
compute the radius of the vapor bubble at time ¢ by the relation

1 if pp(x,t) <1,

0 else.

77R(t)2 = /Qn(w,t) dx, n(x,t) = {

Note that here the density value 1 is the threshold for the vapor density values.
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Comparison with the Rayleigh-Plesset formula

We compare the radius of the bubble computed using the NSK model with the radius
predicted by the two dimensional Rayleigh-Plesset equation (4.22). First we have to
provide the input for the Rayleigh-Plesset equation.

The pressure oscillation in the liquid phase pr(t) close to the boundary of the domain
is taken from the computation using the NSK model. We assume that there is no mass
transfer over the liquid-vapor interface and we further assume that the density inside
the bubble does not depend on the spatial variable. This leads to a density in the
bubble that depends only on the radius of the bubble and the initial configuration. The
pressure inside the bubble is then given by the function pp(t) stated below as well the
rest of the missing parameters for the two dimensional Rayleigh-Plesset formula (4.22).

n = 2,
L = 1.0,
o = co(Brey) - VA =0.5238 - V),

pa(t) = p<pu<§ff)>n>,

pr(t) = 0.495 —0.005 - cos(0.57 - £).

Here the surface tension coefficient o is computed by application of the formula (2.68).

Figure 9.26 shows the radius of the bubble taken from the computation using the Navier-
Stokes-Korteweg model compared with the radius predicted by the Rayleigh-Plesset
formula.

0.6 \

.‘ NSK co‘mputatio‘n i
Rayleigh—Plesset formula—

Figure 9.26: Oscillating bubble. Comparison with the Rayleigh-Plesset formula.

The radius computed by the NSK simulation oscillates with the frequency of the per-
turbation with an almost constant amplitude whereas the radius given by the Rayleigh-
Plesset equation shows a completely different behavior. It seems that the frequency of
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the pressure perturbation in the liquid phase and another frequency that is associated
with the bubble interfere with each other. Since mass transfer over the liquid-vapor
interface is neglected in the Rayleigh-Plesset equation the gas phase is completely com-
pressed and relaxed. This results in a force term that determines, together with the
force term that comes from the pressure perturbation in the liquid phase, the position
of the bubble interface. In contrast to that we observe in the computation using the
NSK model that during the oscillation there is almost no compression in the vapor
phase. The vapor close to the interface condensates immediately and the bubble inter-
face can freely move. It is unclear whether this behavior is physically correct or not but
it attracts the attention to the fact that there is no free parameter in the Navier-Stokes-
Korteweg model left that can control the amount of mass transfer over the liquid-vapor
interface. As a result we see that the assumptions on the density and pressure in the
vapor phase that serve as input for the Rayleigh-Plesset formula are completely wrong
and the oscillation of a bubble from the NSK simulation can neither quantitatively nor
qualitatively be predicted by the Rayleigh-Plesset formula since frequency and ampli-
tude are totally different. It is also unclear which of the computations is closer to real
world behavior since the size of the domain and the reference temperature is totally
different with respect to the settings of existing experimental data.

Comparison with the Incompressibility formula

The only input for the Incompressibility formula (4.25) is the equilibrium radius Req of
the bubble at time t = 0 and the perturbation in the velocity field given by equation
(9.2).

Figure 9.27 shows the resulting radiuses of the bubble given by the Navier-Stokes-
Korteweg simulation and by formula (4.25) respectively.

AAARARAAAT
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Figure 9.27: Oscillating bubble. Comparison with the Incompressibility formula.

We can see that the liquid-vapor interface oscillates with the frequency of the pertur-
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bation at the boundary of the domain in both simulations. The amplitude given by
formula (4.25) differs from the amplitude that comes from the NSK-computation.

We summarize the results of the computations done in this section as follows.

e The behavior of a NSK bubble is not predictable by the Rayleigh-Plesset equation,
it is qualitatively predictable by the Incompressibility formula.

e There is almost no change in the density and pressure in the vapor phase when a
NSK bubble oscillates.

e There is no free parameter in the Navier-Stokes-Korteweg model left to control
the mass transfer over the phase interface.

e The correct physical behavior is unclear since experimental data is not available
on the temperature and length scale of our simulation.



Appendix A

Notation and Definitions

A.1 Notation

This section gives a summary of frequently used notational conventions concerning

Thermodynamical and Kinematic variables and differential operators.

Thermodynamic and Kinematic quantities

~ > ™M & v 8 «~

m v

V

VoV

0

R™

p(xz,t) >0
u(x,t) € R”
E(x,t) eR
O(x,t) >0
f(#,p) €R
e(d,p) e R
s(@,p) e R
p(0,p) €R
n(0,p) € R
0, veR
2u+v

0

0

P

time variable,

spatial variable,

density of the fluid,

velocity of the fluid,

total energy of the fluid,

temperature of the fluid,

(Helmholtz) free energy,

denotes also the extended free energy f(0, p, @)

with a = 1|Vp|?,

internal energy or extended internal energy e(, p, a),
specific entropy or extended specific entropy s(6, p, ),
pressure,

chemical potential, same as Gibbs free energy for a one
component fluid,

viscosity coefficients,

one dimensional viscosity coefficients,
capillarity coefficient,

heat conduction coefficient,

vapor phase,

liquid phase,

vapor and liquid Maxwell states.
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Differential Operators

Commonly used differential operators with respect to the spatial variable € = (z1,...,2,)" €
R™ are defined in the following list.
T
Vu = aixlu, e %u) . Denotes the gradient of a scalar, real valued function

u:R™ — R, i.e., the transposed Jacobian.

Vu = <£Ui> . Denotes the gradient of a vector valued function u : R” — R™,
J Z7J
i.e., the Jacobian (not transposed).

o)

V-u =} g-u;. The divergence of a vector field u = (u1,... ,un)T  R™ — R™.

M=

1

-
Il

T
n n
V-A= <Z1 %Al,j yeees '21 %Arm) . Denotes the divergence of a tensor field
Jj= Jj=

A :R"™ — R" "™ Here the A; ; denote the entries of the matrix A.
J

%gp = ¢y +u - V. The material derivative with respect to the velocity field w
of a function ¢ : R” x R>o — R.

For a function ¢ = ¢(p, @) where a stands for 1|Vp|? the variational derivative with
respect to p is denoted by

[elp = 0p =V - (£aVp)

as used in standard textbooks as [32].

A.2 General Definitions

Definition A.2.1 (Experimental order of convergence)
Let (hp)nen be a monotonically decreasing sequence that converges to zero and ¢ €
C°([0,00),Rq). Then for n > 0 the experimental order of convergence is defined by

log (Jfg}:i)l))

log (h:’il)
Definition A.2.2 (Kronecker Product)
For two matrices Q@ € R5*" and M € R™ ™ we define the Kronecker product matrix
Q ® M e RSTLXT’T)’L by

EOC(p, hy) = (A1)

qo,0M ... qos—1M
QM= : : ; (A.2)
qgs—1,0M ... qs—1s 1M

where the scalar values g; ; denote the entries of the matriz Q).
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In the following lemma we summarize some useful properties of the Kronecker product.

The proof is a straightforward calculation, so we omit it.

Lemma A.2.3

For s,n € N let A,C € R**® and B, D € R™"™. Then we have the following properties

of the Kronecker product:
(1)) (A® B)(C® D)= AC ® BD.

(i1) If the matrices A and B are invertible then A ® B is also invertible and we have

the identity (A® B)™! = A=l @ B~1.

(iii) I, @ I, = Igp,, where I;, € R¥¥F for k € N denotes the unit matriz.

A.3 Characterization of the Maxwell States

We give a definition and equivalent characterizations of the Maxwell values for some

general W-shaped free energy.
Definition A.3.1
Let the constants p,, p,,b € R with 0 <p, <p, <band W € C?((0,b)) with
W">0in (0,p,) U(p;b) and W" <0 in (p,,p,),
lim W(p) =00 and lim W (p)= oo,
p—0 p—b

(A.3)

be given. Then by the shape of W it is clear that there exist unique states p,f)/[ € (0,p,)

and pM € (p,: b) with the property

W' (py') = W),
Wpt") = W)+ W (ed") (e = ph).

These states are called Maxwell states.

We define functions p and p by

plp) = pW'(p) = W(p),
uip) = Wiip).

(A.6)
(A7)

With the definition of W (p) = pf* (p) where f*" denotes the Helmholtz free energy
of an isothermal van der Waals fluid, see Section 2.1, p, and P denote the phase
boundaries given in definition 2.1.5 and W has the properties stated in (A.3). The
functions p and p are equal to the pressure and chemical potential of a van der Waals
fluid. The definition of the Maxwell states is equivalent to that given in definition 2.1.6
as we will see in lemma A.3.2. This lemma gives three equivalent characterizations of

the Maxwell states.
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! p o’

Figure A.1: Energy W and the associated Maxwell states.

Lemma A.3.2
With the above definitions the Mazwell states can be characterized equivalently by

(i) equations (A.4) and (A.5).

(ii) the equations

pey") = ppi"), (A.8)
wy') = ulo"). (A.9)
In this way the Mazwell states are defined in definition 2.1.6 for a van der Waals
fluid.
(ii1) the equations
p(py") = p(p"), (A.10)
2
_ M
p
py!

Proof. For notational simplicity we denote the Maxwell states by p, and p;.
(i) < (ii): By definition of y equations (A.9) and (A.4) are the same. Using this identity,
the above definition for the function p and property (A.5) we get

plpy) = poW'(py) — W(py)
= pW'(po) = W(pt) + W (o) (pr — po)
= Wi(p)p —W(p)
= plp)-

Thus, we have property (A.8). The opposite direction is done analogously.
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(ii) < (iii): Using the above definitions and integration by parts we have

Pl

w(p) = plpo) = /u’(p) dp
¢
14
_ /p’(p) d
o
P
11
= /ZLQ)dp +p(pv)<——p—v)
s
7 p(o) = p(py)
_ /pp p2ppv dp.
pé

Hence, we have the equivalence of equations (A.9) and (A.11). This completes the proof.

Lemma A.3.3
With the notation above let the function ¢ be given by

s) — M
o(p) = /p( ) SQP(pU ) 4.
P

Then we have

dpa') =0, ¢(p") =0 and ¢(p) >0 forall p € (p)', p").

Proof. ¢(p) = 0 is trivial, ¢(p}’) = 0 because of the characterization of the Maxwell
states, see lemma A.3.2. Since p is monotonically increasing in the vapor phase we have
é(p) > 0in (pM, pM + ¢) for some sufficiently small value € > 0. Because of the shape
of the function p it is not possible for ¢ to have another zero in the interval [p}!, pM]
except the Maxwell states (the integrand changes the sign only once in the interval).
This completes the proof.

A.4 Definition of Nonconservative Products

In this section we give a definition of nonconservative products, i.e., products of the
form f(u) - %v. Products of this form appear in the formulation of the Discontinuous
Galerkin method (see Chapter 6) and cannot be defined as functions in the case where
the function u and v are discontinuous. In the case where u and v are discontinuous
functions we can define the nonconservative product in the sense of measures following
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the work of Dal Maso, LeFloch and Murat [36] in the one dimensional case. We give
a (formal) multidimensional generalization of this definition to products of the form

n
> filu)- a%iv. Here we do not claim that the measure we construct in the multidimen-
i=1

sional case is well defined as it is in the one dimensional case ensured by the work of
Dal Maso, LeFloch and Murat.

We start with the description of paths ¢. This is an object the resulting measure will
depend on. Let ¢ : [0,1] x R x R — R? be a locally Lipschitz continuous map with
the following three properties

(i) ¢(0;u~,ut) =u~ and ¢(1;u,ut) = u™ for all u=,ut € RY,
(ii) ¢(t;u,u) = u for all u € RY ¢ € [0, 1],

(iii) for all bounded sets U C RY there exists a constant ¢ > 1, such that for all
uw”,ut, v, 0" € U and almost all ¢t € [0, 1] we have

16/ (lum ut) — @ (07, 0T < el(w —v7) — (ut — )],

In the above statement ¢’ denotes the derivative with respect to ¢t which exists for al-
most all ¢ € [0, 1].

Theorem A.4.1

Let a < b, u,v € BV ((a,b),R%) and let f be locally bounded in the sense that for all
U C R? bounded there exists a constant ¢ > 0 such that for all w € U and x € (a,b)
we have |g(u,z)| < c. Then there exists a unique bounded Borel measure (1 on (a,b)
characterized by the following two properties

(1) If the function u is continuous in B C (a,b), then

u(B) = / f(ule),z) - d@) (),
B

where the integral is defined with respect to vector-valued Borel measure (v')

(ii) For x € (a,b) we have
1
u({a}) = / g(d(tu(z™),ulat)),z) - ¢/t v(a), v(a™))d.
0

u(z~) and u(z™) denote the limit (which exists for functions of bounded variation in
one space dimension) from the left and right respectively.

Definition A.4.2
The measure v introduced in the above theorem is called the nonconservative product of

fu(:),") and v’ and is denoted by
[Fw) - @], = b



A.4. DEFINITION OF NONCONSERVATIVE PRODUCTS 193

which in general depends on the paths ¢.

We consider the interval £ = (a,b) and a partition (mesh) 7 of this interval as defined
in definition 6.1.1. Let V = {¢ : @ = R | ¢|a, € C(4;), Aj € T} and u,v € V<.
According to the above theorem the measure p applied to the whole interval € can be
computed as

Q
IT|-1
= flu(zx),x) 'v'($) dzx
j=0 A]-
7]-1 1
+ Y [ 16tutar ) uta ))& o) olal) dh
Jj=1 0

Here z;_ and z;; denote the left and right vertices of cell A;. The vertices at the
boundary of the interval give no contribution to the measure because there is no dis-
continuity.

We give a n-dimensional generalization of the measure p as we need it to define the
Discontinuous Galerkin method for conservative as well as for nonconservative equations
in Section 6.2. Let 2 C R™ be an open bounded set such that a mesh 7 that partitions
Q exists. Let V = {p: Q — R | ¢gla, € C(A)), Aj € T} and u,v € V% The
generalization of the measure

p= [Z filu,-) - 8%”]
=1 v &

applied to the set 2 can be computed as

g i o
i=1 L P

Q
|7]-1 n
= Z /Zfl(u(x),x) . %v(az) dz (A.12)
=0 &, =1 !
T]-1 L n

|
b0 [ [ o nsettsutey)atey).) - & tote). olay) di doe).

— —
I=Yan\00 0 °

In the above equation u(z;) stands for u|, (#) and u(z;) for u|a , (x) where A ;s denotes
a corresponding neighboring cell. v; denotes the i-th component of the normal vector v.
The factor % in front of the last term appears because all interfaces are counted twice,
except the boundary interfaces.
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Note that we do not claim that in the multidimensional case the measure p is well
defined as it is in one space dimension guaranteed by theorem A.4.1. We only define
an object u(€2) by the right hand side of equation (A.12), where 2 is partitioned by an
underlying mesh and w,v are functions from the space V¢ This is what we need for
the definition of the Discontinuous Galerkin method in Chapter 6.

Sometimes it is more convenient to work with the notion of numerical fluzes instead of
the notion of paths ¢, i.e., in the Finite Volume and Discontinuous Galerkin Framework.
Therefore we replace the term

1

/Z Z/Z‘fi(qb(t;U(ij),U(ﬂfj/)),ij) : ¢/(t§ U(ij),’[)(l‘j/)) dt
=1

0

by the expression

g(u(xj),u(xj/),ajj,u) . (U(asj/) — v(a;j))

with a suitable function g. In order to be an approximation in some sense the function
g has to satisfy at least the relation

n

g(u,u,z,v) = Z v fi(u, x)

=1

for all u € R:,z € R" and n € {x € R" | |z| = 1}. In the Finite Volume framework
such a function g is called numerical fluz function and is usually supposed to be locally
Lipschitz continuous. Using the above expression we get

[7]-1 n
0
Q) ~ i(u(z), x) - z—v(x) do
w(®) ;l;f(() ) 5ev(@
IT|-1
+% Z / g(ulzy),u(zj),z;,v) - (v(zy) — v(z;)) do(z).
I=0 9a\00

As before, the factor % appears because all interfaces are double counted. Note that the
dependence on the path ¢ is dropped in favor of the dependence on the numerical flux

g.
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Fluid Properties

In this chapter we summarize the nondimensionalization procedure given in Chapter 2
and provide necessary fluid parameters for the fluids Argon, Butane and Water.

B.1 Dimensionless Scaling

For the dimensionless version of the Navier-Stokes-Korteweg system derived in Chapter
2 we have to provide a reference length L in m. Usually L is chosen to be the diameter
of the domain ). This is the only parameter that does not depend on the fluid.

We need the critical values of the fluid, i.e., the critical temperature 6..; in K, the
critical density perit in % and the critical pressure in % Table B.1 shows these values
for the fluids Argon, Butane and Water. Critical values of other fluids can be obtained
for example from the NIST website [125].

Up to now all fluid parameters were constants, parameters like heat capacity, viscosity,
heat conductivity and surface tension depend on temperature and density in general but
we will fix them to some reference constants for simplicity. Figures B.1 - B.4 show these
parameters on the saturation curve, i.e., at the Maxwell states for different temperatures.

We choose a dimensionless reference temperature éTef which corresponds to the physical
0 temperature by the relation 6., eref = 0. For example, if the boundary temperature
is fixed to a constant 9b we choose Href = Hb Using the reference temperature we can
determine the surface tension ¢ in =. Further we choose reference values for the heat

capacity at constant volume c in k—K heat conductivity  in mﬂK and viscosity p in

Ns
m2-

Using reference length and critical values we can define the reference time

T—1 Perit .
DPerit

195
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With the reference time we have also defined the reference velocity % In the case of a
perfect gas the reference velocity is equal to the sound speed at some reference state.
In the case of a van der Waals fluid the reference velocity is not directly linked to the
sound speed because £ is in general not equal to p, in a van der Waals fluid as it is in

the case of a perfect gas.

Now the following table summarizes the relations between the physical and dimension-
less (tilde) values. The units of the corresponding physical values are given in the last

column.
~ 1 . .
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p pcrztp o ‘y m3
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T locity .
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The coefficient é(0,¢¢) can be computed using the approximative formula (2.69)

(@) =v2-1/1.0-0- (6.4 S(1.0—0)—0.7- (1.0 — é)2> .

B.2 Equation of State

In this section we collect all important parameters we need for the nondimensionaliza-
tion procedure for the fluids Argon, Butane and Water. Finally, as an example, we give
the set of dimensionless parameters of water in a micrometer container. All data is
taken from the NIST website [125].

Table B.1 shows the critical temperature, density and pressure of all three fluids.

Figures B.1 - B.3 show the heat capacity at constant volume, viscosity and heat con-
ductivity of the three fluids on the saturation curve, this means at the Maxwell states in
the vapor and liquid phase. The independent variable is the dimensionless temperature

i= g

ecrit
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Figure B.5 shows the pressure as graph of the density at 95% of the critical temperature
for all three fluids and the van der Waals approximation (2.13). Argon and Butane are
better approximated by the van der Waals equation of state than Water.

Argon Butane Water

Ocrit | 150.687 K 425.125 K 647.096 K
perit | 535.599 24 | 228.000 X% | 322.000 X4
Perit | 4.863-105 L5 [ 3.796 - 106 2 [ 22.064 - 10° 55

Table B.1: Critical values of Argon, Butane and Water.
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Figure B.1: Dimensionless temperature versus heat capacity at constant volume in
Nm | for Argon, Butane and Water.
kg K ’

As an example we provide the dimensionless quantities of Water in a micrometer con-
tainer at a reference temperature of 550K, i.e., 85% of the critical temperature. The
critical values of Water are given in Table B.1. The mean values of the heat capacity,
heat conductivity and viscosity are fixed to some constant between the corresponding
values of the vapor and liquid phases respectively.

Example B.2.1 (Water at 550K )

L = 10°m

c 3.0-10° 2 ¢ 2.833 - 10!

po= 5.0-107° 2 fi = 5931-107°, 7=-3954-107°
ko= 1.0-1071 1 o= 1120-1073

o = 20-1072 A = 3.071-107%
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Figure B.2: Dimensionless temperature versus viscosity in [%] for Argon, Butane and
Water.

In this setting we have a reference velocity and reference time of

— 261.767 2,
S

N Nl

= 3.820 ns.

At this temperature the sound speed in the vapor phase and in the liquid phase (at the
Maxwell values) are approximately

m
and = 493 ;,
A= 1025~

S

This means the reference velocity is approximately half the sound speed in the vapor
phase.
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Figure B.3: Dimensionless temperature versus thermal conduction in [%] for Argon,
Butane and Water.
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Figure B.4: Dimensionless temperature versus surface tension in [%] of Argon, Butane
and Water.
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Figure B.5: Dimensionless density versus dimensionless pressure at dimensionless tem-
perature 0.95 for Argon, Butane, Water and the dimensionless van der Waals equation
of state (2.13).



Appendix C

Description of the Software Package

We give a basic description of the parDG (parallel Discontinuous Galerkin) software
package developed within the framework of this thesis. This chapter gives an overview
of the software package and it provides all necessary knowledge for a user to discretize
general time dependent partial differential equations by the Discontinuous Galerkin and
Local Discontinuous Galerkin method together with a higher order time discretization
in a parallel environment. It does not provide a detailed documentation on the imple-
mentation of the methods.

The package has a modular design completely written in C++ and relies on the standard
libraries as well as on two external packages. The first necessary library is an imple-
mentation of the Message Passing Interface (MPI). There are a number different freely
available and commercial implementations. Section 8.5 gives an overview and references
to some freely available implementations. The second necessary external package is the
ParMETIS library [68], [121] that provides graph partitioning algorithms in a parallel
MPI-based environment. This package is used for partitioning and repartitioning of
distributed meshes, i.e., for load balancing. The ParMETIS library is copyrighted by
the Regents of the University of Minnesota. It can be freely used for educational and
research purposes by non-profit institutions. Section 8.6 provides an overview of the
ParMETIS library. The parDG package itself is released under the GNU GENERAL
PUBLIC LICENSE, version 2.

Optionally an external BLAS (basic linear algebra subprograms [14], [119]) library can
be used, for example the freely available package from the ATLAS project [129], [118]
or some vendor provided library. The software package itself comes with its own im-
plementation of the necessary CBLAS calls which are implemented as inline functions.
However, on the tested architectures (x86 and amd64) external BLAS libraries do not
give an extra performance gain.

In the following sections we give an overview of the most important classes and mem-
ber functions that are necessary to apply this package. All classes and functions are
declared inside the namespace pardg. For simplicity this namespace is omitted in the
definition of the classes that follow in the next sections. Some classes have a deeper in-
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heritance hierarchy, for simplicity this is neglected and the inherited member functions
are assigned to the derived class.

At the end of this chapter we give two (stripped down) examples of usage. The first
example is the DG discretization of the linear advection equation in one space dimension.
The second example provides the basic DG discretization of the isothermal Navier-
Stokes-Korteweg equations in two space dimensions including the higher order implicit
Runge-Kutta time stepping.

C.1 Communicator Class

The parDG package does not provide serial algorithms. Everything is done in parallel.
For the communication between processes Communicator objects are necessary. This
also holds for computations using a single partition only. The Communicator class
definition is listed below.

class Communicator

{

public:
Communicator(int arge, char *argv||);
virtual “Communicator();
void set _output(std::ostream &os);
int id() const;
int size() const;

// global reduction
void allreduce(int n, double *in, double *out, MPI_Op op);

// modification of send / receive buffers

template<class T> void put(int dest, const T& content);
template<class T> void get(int source, T& content);
template<class T> void put(int dest, const T* content, int num);
template<class T> void get(int source, T* content, int num);

// communication with other processes

void send _request(int dest);

void receive request(int source);

virtual void start communication(const char comment|[] ="");
virtual bool finish communication();

%

The Communicator class is the most important class for all objects that communicate
over process boundaries. This holds for almost all non trivial tasks in a parallel environ-
ment. The Communicator is responsible for communication, basic I/O operations and
memory management for send and receive buffers. Thus, it is a comfortable wrapper
for MPI Communicators that hides the growing and shrinking of message buffers from
the user.
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The constructor takes the variables argc and argv that come from the main method.
These variables are passed to the underlying MPI _Init() method to setup the parallel
environment. Actually not all MPI implementations make use of these variables to build
up the environment.

The destructor calls the method MPI _Finalize() that closes the parallel environment.
The method id() returns the number of the local process and the method size() returns
the total number of processes in the parallel environment.

In order to send some data from process ps to pg the user calls one of the put(dest,
...) methods with dest=py to fill the send buffer with the data (all memory man-
agement is done automatically) and calls send request(p;) on the source process
ps- Process pg is aware of the message that it will receive from process ps and calls
receive request(p;). Both processes call the methods start communication()
and finish communication(). After that the data resides in the receive buffer of
process pg and can be read by using the get(source, ...) methods with source=pj.

The communication is split into the two methods start communication() and fin-
ish communication() to allow for computation during the communication phase.
The user must not touch the send and receive buffers during the communication phase,
i.e., until the method finish communication() has been called.

Global reduction operations like allreduce() are also available. These are simply wrap-
pers to the MPI equivalents and they are used in the same way.

C.2 Triang(1,2,3)d Classes

The Triangld, Triang2d and Triang3d classes represent the underlying simplicial meshes
for one, two and three space dimensions respectively. They are inherited from the
template class Triang<int d> and share the same code except the parts concerning the
mesh generators. The meshes can contain nonconformities of level one. The access
to neighbor cells is accomplished by a STL style intersection iterator provided by the
Simplex class (not shown in the code section). The refinement and coarsening of the
meshes is done as described in Chapter 8.

We start with the description of the Triang2d class.
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class Triang2d

{

public:
Triang2d(Communicator &comm);
virtual ~Triang2d();

// 1/0

void read _triangle files(const char basename]]);
void write(const char filenamel]);

void read(const char filename]||);

// modifications

void partition();

void repartition();

void reorder();

void refine _all();

void coarsen_ all();

void adaption(std::set<int> &refine, std::set<int> &coarsen);

%

The constructor takes a reference to the communicator as argument. Communication
with other partitions is established using this object.

Modifications of an existing mesh can be done by the methods partition() and repar-
tition() these methods are wrappers to the corresponding methods in the ParMETIS
library [68], [121] and are used to distribute or redistribute the mesh cells over the
processes in the parallel environment (Load balancing). These methods additionally
provide all data structures the ParMETIS library uses to generate a partition of the
underlying mesh.

The method reorder() provides a (local) Cuthill-McKee ordering of the mesh. This
can speed up the convergence process of iterative solvers due to a better ordering of the
unknowns but it can also speed up explicit solvers because of the reduction of cache
mismatches.

Refinement and coarsening of the mesh is done either globally using the methods re-
fine all() and coarsen all() or each cell can be selected individually by storing the
identification number of the cells in a refinement and coarsening list and pass these lists
to the method adaption(refinement, coarsening). A cell in the refinement list is
guaranteed to be refined, a cell in the coarsening list is only coarsened if this is possible,
see Section 8.4 for details.

The class Triang2d provides an STL style iterator class to access each cell of the mesh
in a sequential way. Random access of mesh cells is also possible. The methods that
are necessary to accomplish these tasks are not shown in the class definition above for
simplicity.

All data that is associated with the mesh by registering is also partitioned, repartitioned,
reordered and refined/coarsened automatically when one of these methods is called.
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For input and output of the native mesh format the methods read() and write()
can be used. The output results in a raw binary format file that is not compatible
between different machine architectures (byte order is important). The file can be read
back using the read() method. The number of processes that wrote that file and the
number of processes that read this file back do not need to match.

Triang2d objects can be constructed using the output of the Triangle mesh generator
[101]. Therefore, the basename of the Triangle files must be passed to the method
read triangle files(basename). Necessary files are basename.node, basename.ele,
basename.edge and basename.neigh. Boundary markers are mapped to negative num-
bers. In the case of negative boundary markers the numbers are preserved.

class Triang3d

{

public:

//1/0

void read tetgen files(const char basenamel]);

};.

class Triangld

{

public:

//1/0

void make(double x0, double x1, int n);

};.

The Triang3d and Triangld are very similar to the Triang2d class. The only difference
is the generation of meshes.

In three space dimensions the output of the TetGen [105] mesh generator can be used
to construct Triang3d objects. The mesh generator uses a similar syntax as the 2d
mesh generator Triangle and the output files are read by passing the basename to
the method read tetgen files(basename). The necessary files are basename.node,
basename.ele, basename.face and basename.neigh. As in the 2d case boundary mark-
ers are preserved if the numbers are negative otherwise they are mapped to negative
numbers.

Mesh generation in one space dimension is an almost trivial task. In this case we pro-
vide the method make(zg, x1, n) that constructs an equidistant mesh of n cells of the
interval (xg,x1).
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C.3 Function Class

class Function
{
public:
virtual void operator()(const double *u, double *f, int i — 0) — 0;
virtual int dim_of argument(int i = 0) const = 0;
virtual int dim of value(int i — 0) const — 0;
double& time();

double time() const;

it

Functions are the central objects in this implementation. The class Function has pure
virtual functions that must be overloaded by inherited classes. The member function
operator()(u, f) takes an argument u and returns the value of the function f. The
functions dim of argument() and dim of value() return the dimension of the
argument and value respectively. A Function object can optionally depend on parame-
ters. One important parameter is the time. The parameter time can be get and set by
using the method time().

C.4 Data Classes

The FeData classes are an abstraction of the Discontinuous Galerkin space Vhd intro-
duced in Section 6.2. The classes provide I/O operations for data, an interface for
adaption of data and methods for projection of data and computation of errors.

template<int n>

class FeData : public Data

{

public:
FeData(Triang<n> &mesh);
FeData(Triang<n> &mesh, int dim system, int poly order);
virtual “FeData();

void L2 projection(Function &u);
double Lp _distance(double p, Function &u);
void eval(const Simplex<n> &tr, const double x[n|, double *result) const;

// adaptivity
void adaption(ErrorIndicator &error indicator);

// 1/O
void write(const char filename]|) const;
void read(const char filename]||);
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The FeData class is parameterized by the template argument n which is the dimension
of the coordinate system. The constructor takes a simplex mesh Triang<n> (which
is the base class of Triang(1,2,3)d respectively) and optionally the dimension of the
state space d of Vhd which is denoted by dim_system and the polynomial order of Vhd
poly order. After calling the constructor the data class is registered by the mesh.
This means all operations like refinement, coarsening, partitioning, etc., that are applied
to the mesh, are implicitly applied to the corresponding data. Data is essentially a
vector and is automatically converted (by a conversion operator not shown in the class
definition) to double*.

An instance U of the FeData<n> class stores the coefficients that represents some
object up € V,f of the Finite Element space given by

J
A0

uh|Aj($) = Z Soj(w) , T E an
=0

J
QA7 41

np—1

on the j-th cells of the underlying mesh (with identity number j) in the following way
O‘{,k:U[d'(np‘j-i-l)—i-k], k=0,...,d—1.

Here n, denotes the number of the local basis polynomials.

The method L2 projection(u) provides a L? projection of a given function u to the
Discontinuous Galerkin space Vhd. The LP distance between the data and a given func-
tion u for p € [1,00) can be computed using the method Lp _distance(p, u). Quadra-
ture formulas are selected automatically for these methods but can also be explicitly
set.

Writing and reading to and from a file is done using the methods write(filename) and
read(filename). The file filename must be (at least) accessible from the comm.master()
process where comm denotes the Communicator.

By the use of an ErrorIndicator object, see Section C.8, the mesh and the data can be
refined and coarsened.

C.5 DG Class

The Discontinuous Galerkin class implements the Discontinuous Galerkin space dis-
cretization in one, two and three space dimensions. DG class is parameterized by the
space dimension and is therefore formally not limited to three space dimensions, but
some necessary implementations like basis polynomials are provided for one, two and
three space dimensions only.

The input for a m-stage Discontinuous Galerkin scheme is a differential equation of the
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form
W = w,
u' L5l + L0 =0,
'+ L5l ]+ L5 ul] =0,
u™ 4 LY ™) L0 ™ = 0.

This is the form we discussed in Section 6.2 generalized by additional nonconserva-
tive and source terms. The operators Ei[uo, .. ,uk’l] for kK = 1,...,m represent the
conservative differential operators of the form

L5l ub () = ; %fﬁ(uo(@«), uP ), 2)

and the operators chs[uo, .. ,uk_l] denote the nonconservative operators in combina-
tion with source terms of the form

Lo, ub Y (2) = a ((uo(az), (@), V(e (), . .. ,u’ffl(g;)),x) ,

where the functions ay are linear in the gradients. More precisely ax have the form

n
0
ag(u,Vu,z) = B(u,x)—i—ZAf(u)%u,
i=1 !
u = @°,... ,uFh)

All of the above functions can additionally depend on further parameters such as time.
The output of a m-stage Discontinuous Galerkin scheme is the function «™ which is the
projection of the m-th order differential operator as discussed in Section 6.2.

The variables in the above equations have the following dimensions:

reR”, WFeR® k=0,...,m. (C.1)

The DG class has three pure virtual functions namely flux(...), num_flux(...) and
bnd flux(...) that have to be implemented by the inherited class. The method
flux(...) implements the physical fluxes fik, nonconservative and source terms a for
each of the m stages in the method.

For the complete method all physical fluxes ff and nonconservative terms need associ-
ated numerical fluxes g;? and g¥. Here g;? denote the numerical fluxes associated with
the current (the j-th) cell and g¥ the numerical fluxes associated with the correspond-
ing neighbor cell which is in general not gﬁ = —gf since nonconservative terms are
also taken into account. The implementation of the numerical fluxes is provided by the
method num_ flux(...). The numerical fluxes at the boundary of the computational
domain and with this the treatment of boundary conditions are provided by the method
bnd flux(...). For more details see the two examples in Section C.9.
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The Discontinuous Galerkin class has the following definition, here only the most im-
portant member functions are listed.

template<int n>
class DG : public Function
{
public:
DG(Communicator &comm, Triang<n> &mesh, int dim value,
int poly order, int num_ stages, const int *dim_flux);

// from Function

virtual void operator()(const double *U, double *result, int i—0);
virtual int dim_of argument(int i=0) const;

virtual int dim_of value(int i=0) const;

void codegen(char classname||) const;

protected:
// fluxes and numerical fluxes
virtual void flux(int stage, const double *u, const double * const grad u[n]|,
double *f[n], double *a) — 0;
virtual void num_flux(int stage, const double *uj, const double *un,
const double normal|n|, double *gj, double *gn) — 0;
virtual void bnd _flux(int stage, const double *uj,
const double normal|n|, double *gj) = 0;

i

The DG class is derived from the class Function and therefore it implements the methods
operator()(U, result), dim of argument()and dim of wvalue(). As a function
the operator()(U, result) returns the coefficients of the discrete differential operator
in the variable result and the variable U provides the coefficients (with respect to the
basis functions of the Finite Element space) of some discrete function.

The constructor of the DG<n> class takes as arguments a reference to a Communica-
tor, a reference to a mesh which can be a one dimensional, two dimensional or three
dimensional Simplex grid. With the notation from above, see (C.1), the remaining

parameters are given by
poly order = polynomial degree of the method,
dim_value = d,
dim flux|m| = {di,da,...,dn},
num_stages = m.
By default the DG class provides all states u at the integration points and all gradi-
ents Vu that are available in the stages. Very often not all of the states are necessary,

especially most gradients are usually not necessary since they are only used in non-
conservative products. In order to render the method more efficient certain values can
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be unset but the methods that are necessary for this task are not shown in the class
definition for simplicity. The degree of the quadrature formulas can also be chosen
freely. By default the degree of the quadrature formulas are chosen according to the
recommendation by Cockburn and Shu, see Section 6.4.

For further improvement of the efficiency of the method the method codegen(...)
can be used to generate highly optimized code. Using generated code can lead to long
compilation times.

C.6 ODE Solver Classes

Several ODE solver classes are available to perform time stepping for ordinary initial
value problems. The base class for all ODE solvers is the class ODESolver. Avail-
able Solver classes belong to the classes of explicit, implicit, semi-implicit Runge-Kutta
methods, explicit and implicit Extrapolation methods and SSP methods.

class ODESolver

{

public:
ODESolver(Communicator &comm, int num__tmpobj);
virtual “ODESolver();
void set limiter(Limiter &limiter);

// user-interface for solving
virtual bool step(double t, double dt, double *u) = 0;

protected:
Limiter *limiter;

%

Inherited classes, i.e., implementations of ODE solvers, have to overload the virtual
function step(¢, At, u) which performs the time stepping of some data u from time ¢
to time t + At. The method returns true on success or false if it fails to perform the
time stepping. In the latter case it is guaranteed that the data u remains unmodified.
An explicit method for time stepping is always successful, so it always returns true, but
an implicit method can fail to converge in which case it returns false and a smaller time
step as to be chosen.

Optionally a limiter can be set. A limiter is a function that performs some post process-
ing on the data u in order to maintain the stability of the underlying numerical method.
This is usually be done in combination with explicit higher order Runge-Kutta Discon-
tinuous Galerkin schemes.

C.6.1 ExplicitRungeKutta Class

The simplest class of ODE solvers is the class of explicit Runge-Kutta methods discussed
in Section 7.2.
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The first order one-stage explicit Euler scheme has the following definition.

class ExplicitEuler : public ExplicitRungeKutta (: public ODESolver)

{
public:
ExplicitEuler(Communicator &comm, Function &f);

it

The Constructor takes a reference to a Communicator object and the right hand side of
the ordinary differential equation given by the Function f. The Function f can be the
discrete differential operator constructed by a Discontinuous Galerkin class for example.

For the computation of the evolution in time the method step(t, dt, u) from the
ODESolver base class is used.

There are several other higher order explicit Runge-Kutta methods available. The class
definition of these methods is the same as for the ExplicitEuler class. The following
methods are available.

e ExplicitModifiedEuler, 2nd order, 2 stages.

ExplicitTVD2, 2nd order, 2 stages.

ExplicitRK3, 3rd order, 3 stages.

ExplicitTVD3, 3rd order, 3 stages.
e ExplicitRK4, 4th order, 4 stages.

ExplicitButcher6, 6th order, 7 stages.

For the details concerning these methods see Section 7.2.

C.6.2 ImplicitRungeKutta Class

The class of diagonally implicit Runge-Kutta methods, discussed in Section 7.3, has
exactly the same class definition as explicit Runge-Kutta methods except the additional
method for the choice of a linear solver. Here for example the definition for the implicit
Euler scheme.

class ImplicitEuler : public DIRK (: public ODESolver)
{
public:
ImplicitEuler(Communicator &comm, Function &f);
void set linear _solver(IterativeLinearSolver &Is);

i

The implicit methods need a linear solver to perform the Newton iteration. This can
be set by the method set linear solver(ls). Available linear solvers are listed in
Section C.7.

Other diagonally implicit Runge-Kutta methods are
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e Gauss2 (Crank-Nicholson), 2nd order, 1 stage.
e DIRKS, 3rd order, 2 stages.

C.6.3 SemilmplicitRungeKutta Class

For the semi-implicit Runge-Kutta schemes the constructor takes two Functions as
arguments fex which is discretized explicitly and fim which is discretized in an implicit
fashion, see Section 7.4 for details. Again, the implicit part needs a linear solver. The
simplest scheme of this class is the first order semi-implicit Euler scheme which has the
following definition.

class SemilmplicitEuler : public SIRK (: public ODESolver)

{

public:
SemilmplicitEuler(Communicator &comm, Function &fim, Function &fex);
void set linear solver(IterativeLinearSolver &ls);

i

The schemes from Section 7.4 that are available at the moment besides the semi-implicit
euler scheme are

e SIRK23, 2nd order, three stages.
e STRK33 (YZ33), 3rd order, 3 stages.
e IMEX SPP222, 2nd order, 2 stages.

C.6.4 Other Classes

Additionally to the different kinds of Runge-Kutta classes implicit and explicit extrap-
olation schemes are also available but not discussed in detail here. The use of this
kind of methods is less common in the framework of Finite Volume and Discontinuous
Galerkin approximation but they have the advantage that arbitrary order methods can
be constructed.

C.7 Linear Solver Classes

The implicit and semi-implicit ODE solver classes use a Newton type nonlinear iteration
for solving the corresponding systems of nonlinear equations. Newton type methods
need to solve linear systems of equations. In the framework of Finite Element, Finite
Volume and Discontinuous Galerkin discretizations of partial differential equations these
linear systems are usually large but sparse. Some methods from the class of Krylov space
solvers are very efficient methods for these tasks. The Conjugate Gradient (CG) method
for symmetric problems belongs to this class. For non symmetric problems the GMRES
and BiICGSTAB methods are a good choice.
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The GMRES class implements the restarted GMRES algorithm given in [98]. The
FGMRES class has exactly the same class definition (therefore we omit it) and imple-
ments the flexible variant of the restarted GMRES algorithm [96]. The advantage is
that the preconditioner can vary in each step of the iteration. The disadvantage is that
it needs twice the amount of memory compared to standard GMRES.

class GMRES : public IterativeLinearSolver
{
public:
GMRES(Communicator &comm, int m);
virtual "GMRES();
virtual void set_preconditioner(Function &preconditioner);
void set_tolerance(double tol, bool relative — true);
void set _max_ number of iterations(int iter);

// from IterativeLinearSolver, solve Au = b, Au = op(u)
virtual bool solve(Function &op, double *u, const double *b);

i

The constructor takes a Communicator and the Krylov space dimension m as arguments.
The choice of the Krylov space dimension is crucial in the GMRES method. The
efficiency of the method depends heavily on this parameter. It must not be chosen to
small to otherwise the method may fail to converge. A value between 5 and 15 is usually
a good choice.

An optional preconditioner, i.e., a function u — Mu, can be set using the method
set preconditioner(preconditioner) to speed up the convergence process. The
matrix M is chosen to approximate the matrix A~! in some sense.

Using the method set _tolerance(tol, relative) a tolerance for the stopping criterion
of the iteration can be set. With the boolean value relative—true/false it can be con-
trolled whether this tolerance is interpreted as relative or absolute tolerance. It is a good
idea to choose an absolute tolerance in combination with a Newton method because the
right hand side of the linear system tends to zero as the Newton method converges.
The maximum number of iterations can be controlled using the set max num-
ber of iterations(iter) method.

Now, the linear system Au = b is solved using the method solve(op, u, b). The linear
operator u — Au is denoted by op, the right hand side by b. On entry the vector u
carries an initial guess of the solution. Upon success the method returns true and the
solution of the system is stored in the vector u. If it fails to converge it returns false
and it is guaranteed that the initial guess u is not modified in that case.

Another efficient Krylov space method is the BICGSTAB algorithm given in [113|. The
storage requirement of this algorithm does not depend on an extra parameter. Hence, in
most cases this method needs less memory than the GMRES method which is important
for large scale simulations. The class definition is exactly the same as for the GMRES
class (except the parameter m). For completeness we list it below.
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class BICGSTARB : public IterativeLinearSolver
{
public:
BICGSTAB(Communicator &comm);
virtual "BICGSTAB();
void set_tolerance(double tol, bool relative = true);
void set max number of iterations(int iter);

// from IterativeLinearSolver, solve Au — b, Au — op(u)
virtual bool solve(Function &op, double *u, const double *b);

it

It depends on the problem whether the GMRES or the BICGSTAB method performs
better. In our test cases we have observed that the GMRES method usually performs
about 10-20% better.

For symmetric problems the Conjugate Gradient method (CG) should be used because
in this case this algorithm is much more efficient than the other methods for nonsym-
metric problems. The interface is exactly the same as for the BICGSTAB method.

C.8 ErrorIndicator Classes

The ErrorIndicator class is an abstract class and serves as an interface for problem
dependent indicators. An inherited class, that implements some indicator or estimator,
has to implement the method operator()(refine, coarsen). Here refine is the set
of cell ids that have to be refined and coarsen is the list of cell ids that should be
coarsened if possible. The class definition follows below.

class ErrorIndicator

{

public:
virtual void operator()(std::set<int> &refine, std::set<int> &coarsen) — 0;

%

As an example for an ErrorIndicator we have the space gradient indicator Space-
GradIndicator proposed in Section 8.3. This is actually not an error indicator because
it has nothing to do with errors but is used to track the liquid-vapor interface in the
simulations using the Navier-Stokes-Korteweg system.



C.9. EXAMPLES OF USAGE 215

template<int dim>
class SpaceGradIndicator : public ErrorIndicator
{
public:
SpaceGradIndicator(Communicator &comm, Triang<dim> &tr,
Data &U, Function &F);
virtual ~SpaceGradIndicator();
void set(double eta_low, double eta_upp, int num__iter);

// from ErrorIndicator
virtual void operator()(std::set<int> &refine, std::set<int> &coarsen);

it

C.9 Examples of Usage

In this section we give two examples of usage of the software package discussed above.
The first application is the Discontinuous Galerkin discretization of the linear advection
equation in one space dimension. Quite simple for better understanding. The second
application is the DG discretization of the Navier-Stokes-Korteweg system using implicit
time stepping as we use it in our computations (at some points stripped down a little
bit for simplicity).

C.9.1 Example 1: Linear Advection in 1d

The linear advection equation in one space dimensions we consider in this example is
given by

ut + (su), = 0 in(=1,1) x (0,7),

u(z,0) = e it @ <0, for x € (—1,1)
’ Uright €lse, T

u(=1,t) = U

Here we choose s = 1.0, uepr = 0.5 and uyigpe = 1.0. The interval (—1, 1) is partitioned
into a uniform mesh using the method Triangld::make(...). By default the left
boundary of the mesh has the boundary id —1 and the right boundary the id —2.
The Discontinuous Galerkin method uses the upwind flux as numerical flux and for
time integration the explicit third order Runge-Kutta method TVD3 is applied. The
complete implementation is given in the following one hundred lines of C++ code.

#include <iostream>
#include <cmath>

#include "communicator.hpp"
#include "triang.hpp"
#include "dg.hpp"

#include "ode_solver.hpp"
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#include "data.hpp"

using namespace std;
using namespace pardg;

// global variables

const double s = 1.0;

const double u_left = 0.5;
const double u_right = 1.0;

// initial data
class InitialData : public Function
{
public:
virtual void operator() (const double #*x, double *result, int i=0)
{
const double tau = x[0] - s*time();
result[0] = (tau < 0)7 u_left : wu_right;
}

virtual int dim_of_argument(int i) const { return 1;}
virtual int dim_of_value(int i) const { return 1;}

};

// Discontinuous Galerkin discretization

const int num_stagesld = 1;

const int dim_valueld = 1;

const int dim_fluxld[num_stagesid] = {1};

class DG1dLinAdv : public DG<1>
{
public:
DG1dLinAdv(Communicator &comm, Triang<1> &mesh, int poly_order)
DG<1>(comm, mesh, dim_valueld, poly_order, num_stagesld, dim_fluxid)

{3

private:
physical fluz
virtual void flux(int stage, const double *u, const double *const grad_ull],
double *f[1], double *a)

f[0]1[0] = s * ul0];
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// upwind flur = Laz-Friedrichs flux
virtual void num_flux(int stage, const double *uj, const double *un,
const double n[1], double *gj, double *gn)

gj o]
gn[0]

0.5%n[0]*s*( uj[0]+un[0] ) - 0.5*fabs(s)*( un[0]-uj[0] );
-gj[0];

¥

// boundary treatment
virtual void bnd_flux(int stage, const double #*uj, const double n[1],
double *gj)

{

double ub;

if (bnd_id == -1) ub = u_left; // lefl boundary

else ub = u_right; // right boundary

gj[0] = 0.5*n[0]*s*( uj[0]+ub ) - 0.5*fabs(s)*( ub-uj[0] );
}

int main(int argc, char *argv[])

{

// Communicator
Communicator comm(argc, argv);

// construct mesh and distribute it over the available processors
const int n = 200;

Triangld mesh(comm) ;

mesh.make(-1.0, 1.0, n);

mesh.partition();

const double h = mesh.h();

setup DG scheme & Runge-Kutta scheme
const int poly_order = 2;
DG1dLinAdv dg_linadv(comm, mesh, poly_order);
ExplicitTVD3 ode_solver(comm, dg_linadv);

// setup data and projection of initial data
FeData<1> U(mesh, 1, poly_order);
InitialData uO;

U.L2_projection(u0);

// perform time stepping

const double T = 0.2;

const double cfl = 0.45 / (1+2%poly_order); // Cockburn & Shu formula
double dt = cfl * h / fabs(s);

double t = 0.0;
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while (¢t < T){
ode_solver.step(t, dt, U);
t += dt;

}

// output
u0.time() = t;
const double L2error = U.Lp_distance(2.0, u0);
if ( comm.id() == comm.master() ){
cout << "L2 error: "<< L2error << " h: "<< h << endl;

The approximate solution is computed up to computational end time T = 0.2. At the
end of the computation the L?-error to the exact solution is computed.

C.9.2 Example 2: Isothermal Navier-Stokes-Korteweg in 2d

In this final example we discuss the implementation of the higher order discretization
of the isothermal Navier-Stokes-Korteweg equations in two space dimensions.

pe+V-(pu) = 0,
(pu); + V- (puu’) +pVk = V-7,

where, as usual, 7 denotes the viscous part of the stress tensor and x = u(p) — AAp.
For this example we have chosen the boundary conditions

u=0 and Vp-n=0 on 0

and as initial data we provide an almost static bubble. Physical and numerical fluxes
are implemented as discussed in section 6.9.2. The inherited DG class DG2dNSK
is also derived from the class VanDerWaalslsothermal which provides the equations
of state. Time stepping is done using a second order implicit Runge-Kutta scheme
(Gauss2/Crank-Nicholson) equiped with the GMRES(15) linear solver. The computa-
tional domain Q = (—1,1)2 is represented by a triangular mesh stored in the box2d.1.*
files. This mesh constructed by the using the Triangle mesh generator [101].

In this example local mesh adaption is omitted for simplicity and the time step size
is fixed to some small enough constant. The complete implementation is given by the
following 250 lines of C++ code.

#include <iostream>
#include <cmath>

#include "communicator.hpp"
#include "triang.hpp"
#include "dg.hpp"



C.9. EXAMPLES OF USAGE 219

#include "ode_solver.hpp"
#include "data.hpp"
#include "vdw.hh"

using namespace std;
using namespace pardg;

global variables

static const double T_ref = 0.85; // reference temperature
static const double lambda = 0.001; // capillarity

static const double eps = 0.0136644; // wiscosity

static const double nu = 0.75%eps; // wviscosity

// initial data, bubble of radius R with center 0
class Bubble : public Function
{
public:
virtual void operator() (const double *x, double *result, int i=0)
{
const double width = 5.4#T_ref*T_ref * sqrt(lambda); // appr. formula
const double rO = R - 0.5*width;
const double ri R + 0.5%width;
const double r = sqrt(x[0]*x[0] + x[1]*x[1]);

// densily
if (r < r0) result[0] = rho_v;
else if(r < r1) {
const double phi = (2.0%(r-r0)/(r1-r0) - 1.0) * M_PI/2.0;
result[0] = 0.5%(rho_v+rho_1) + 0.5*(rho_l-rho_v) * tanh(tan(phi));
}

else result[0] = rho_1;

// momentum
result[1] = result[2] = 0.0;
3

virtual int dim_of_argument(int i) const { return 2;}
virtual int dim_of_value(int i) const { return 3;}

private:
static const double rho_v =
static const double rho_1
static const double R = 0.3;
};

. we

|
= O
0 W
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// Discontinuous Galerkin discretization

const int num_stages2d = 3;

const int dim_value2d = 3;

const int dim_flux2d[num_stages2d] = {4, 1, 3};

class DG2dNSK :

{
public:

public DG<2>, public VanDerWaalsIsothermal

DG2dNSK (Communicator &comm, Triang<2> &mesh, int poly_order)
DG<2>(comm, mesh, dim_value2d, poly_order, num_stages2d, dim_flux2d),
VanDerWaalsIsothermal (T_ref)

{
// some
alpha_1
alpha_2
3

private:

virtual void

virtual void

virtual void

std values

0.648676;
1.86921;

flux(int stage, const double *u, const double *const grad_ul2],
double *f[2], double *a);
num_flux(int stage, const double #*uj, const double *un,
const double n[2], double *gj, double *gn);
bnd_flux(int stage, const double #*uj, const double n[2],
double *gj);

double alpha_1, alpha_2;

};

physical fluz
void DG2dNSK: :flux(int stage, const double *u, const double *const grad_ul2],

{

double *f[2], double *a)

u/0]=rho, u[1]=rho_u, u[2]=rho_wv,
uf3]—rho_xz, uf4]-rho y, u[5]-u z+v y, ul6]-u y-v =
ul7|=kappa

if (stage =

£ [0] [0]
£[0] [1]
f[0] [2]
f[0] [3]

f[1][0]
fL11[1]
f[1][2]

0){ // reconstruct 1st derivatives
-u[0];

0.0;

-ul1]/ul0];

ul2]/ul0];

0.0;
-ul0];
-ul[2]/ul0];
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f[11[38] = -ul1]l/ul0];

3

else if (stage == 1){ /

£ [0] [0]
f[1][0]

alo]
}

reconstruct kappa

lambdax*u[3];
lambdax*u[4] ;

-potential(ul0]);

else if (stage == 2){
ul0];

const
const
const
const
const
const

£ [0] [0]

double
double
double
double
double
double

rho =
rho_u
rho_v

ru_rv_

ux_vy
uy_vx

ull];

r

evaluate fluz

ull];
ul2];
= rho_u*rho_v/rho;
ul5];
ul6];

f[0] [1] = rho_u*rho_u/rho - eps*ux_vy;
f[0]1[2] = ru_rv_r + nu*uy_vx;

fl1100] = ul2];
f[1]1[1] = ru_rv_r - nu*uy_vx;
f[11[2] = rho_v*rho_v/rho - eps*ux_vy;

al1]
al2]

rho * grad_ul0][7];
rho * grad_u[1][7];

numerical fluz

void DG2dNSK: :num_flux(int stage, const double *uj, const double *un,

{

const double n[2], double *gj, double *gn)

uf0]—rho, u[1]-rho u,
u/3[=rho_z, ul4[|=rho_vy, u[5]=u_z+v_vy, u[6]=u_y-v_z,
uf7]kappa

if(stage == 0){

const
const
const
const
const
const

gjlo]
gjl[1]

double
double
double
double
double
double

uf2]-rho_ v,

'/ reconstruct 1st derivatives

rho_j
rho_n
u_j =
u_n =
v_j =
v_n =

uj [0];
un[0] ;

uj[1]/rho_j;
un[1]/rho_n;
uj[2]/rho_j;
un[2]/rho_n;

-0.5%(rho_n+rho_j) * n[0];
-0.5*%(rho_n+rho_j) * n[1];

221
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gj[2] = -0.5x(u_n+u_j)*n[0] - 0.5x(v_n+v_j)*n[1];
gil3] = 0.5%(v_n+v_j)*n[0] - 0.5%(u_n+u_j)*n[1];
gn[0] = -gj[0];
gnl1] = -gjl1];
gnl2] = -gjl2];
gn[3] = -gj[3];

}
if (stage == 1){ reconstruct kappa
gj[0] = lambda * 0.5%( (un[3]+uj[3]1)*n[0] + (un[4]+uj[41)*n[1]);
gn[0] = -gj[0];
}
if (stage == 2){ eval flux
const double rho_j = uj[0];
const double rho_n = un[0];
const double rho_u_j = uj[1];
const double rho_u_n = unfl1];
const double rho_v_j = uj[2];
const double rho_v_n = un[2];
const double ru_rv_r_j
const double ru_rv_r_n = rho_u_n * rho_v_n / rho_n;
const double kappa_j = ujl[7];
const double kappa_n = un[7];
const double ux_vy_n = un[5];
const double ux_vy_j = ujl[5];
const double uy_vx_n = un[6];
uj[6];

= rho_u_j * rho_v_j / rho_j;

const double uy_vx_j

gjl0] = 0.5%( (rho_u_j + rho_u_n)*n[0] + (rho_v_j + rho_v_n)#*n[1] )
-0.5*alpha_1*(kappa_n - kappa_j);

gj[1] = 0.5%( (rho_u_j*rho_u_j/rho_j + rho_u_n*rho_u_n/rho_n)*n[0]
+(ru_rv_r_j + ru_rv_r_n)*n[1] )
-0.5%alpha_2#(rho_u_n - rho_u_j)
-0.5*xeps*(ux_vy_n+ux_vy_j)*n[0] - O0.5*nu*(uy_vx_n+uy_vx_j)*n[1];

gjl2] = 0.5%( (ru_rv_r_j + ru_rv_r_n)*n[0]
+(rho_v_j*rho_v_j/rho_j + rho_v_n*rho_v_n/rho_n)*n[1] )
-0.5*alpha_2*(rho_v_n - rho_v_j)
+0.5*nu* (uy_vx_n+uy_vx_j)*n[0] - 0.5%eps*(ux_vy_n+ux_vy_j)*n[1];

gn[0] = -gj[0];
gnl[1] = -gj[1];
gnl[2] = -gjl2];

const double jump = 0.25*%(rho_j + rho_n) * (kappa_n - kappa_j);
gj[1] += jump*n[0];
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gn[1] += jump#*n[0];
gj[2] += jump*n[1];
gnl[2] += jump*n[1];
}
}

// boundary treatment
void DG2dNSK: :bnd_flux(int stage, const double #uj, const double n[2],
double *gj)
{
// u[0]=rho, u[l]=rho_u, u[2]=rho_wv,
/ul3]=rho_m, ul4]-rho_y, u[5]-u_z+v_y, u[6]-u y-v =,
ul7|=kappa
if (stage == 0){ // reconstruct 1st derivatives
const double rho_j = uj[0];
const double u_j = ujl[1]/rho_j;
const double v_j = uj[2]/rho_j;

gjlo]
gjl[1]
gjl2]
gj[3]
3
else if (stage == 1){ // reconstruct kappa
gj[0]l = 0.0;
3
if (stage == 2){ // eval flux
const double ux_vy = uj[5];
const double uy_vx = uj[6];

-rho_j * n[0];
-rho_j * n[1];
~0.5%(u_j*n[0] + v_j*n[1] + 0.0);
-0.5%(u_j*n[0] - v_j*n[1] + 0.0);

gj o]

gjl[1]

gjl[2]
}

0.0;
-eps*ux_vy*n[0] - nu*uy_vx*n[1];
nuxuy_vx*n[0] - eps*ux_vy*n[1];

int main(int argc, char *argv([])
{

// Communicator

Communicator comm(argc, argv);

// read mesh and distribute it over the available processors
Triang2d mesh(comm) ;
mesh.read_triangle_files("./box2d.1");
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mesh.partition();

// setup DG scheme
const int poly_order = 2;
DG2dNSK dg_nsk(comm, mesh, poly_order);

// Linear Solver
GMRES linear_solver(comm, 15);
linear_solver.set_tolerance(1l.0e-6, false);

/ Implicit Runge-Kutta method
Gauss2 ode_solver(comm, dg_nsk);
ode_solver.set_linear_solver(linear_solver);

// setup data and projection of initial data
FeData<2> U(mesh, 3, poly_order);
Bubble u0;

U.L2_projection(u0);

// perform time stepping

const double T = 0.1;

double dt = 1.0e-4; // small enough timestep

double t = 0.0;

while (t < T){
cout << comm.id() << " "<< t << endl;
bool convergence = ode_solver.step(t, dt, U);
assert(convergence) ;
t += dt;

}

The approximate solution is computed up to computational end time 17" = 0.1. Noth-
ing is done with the approximate solution. It would be more convenient to write the
approximate solution to a data file at some points in computational time but this is
omitted here for simplicity.
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