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Abstract

Quantifying debris throw of concrete structures under abnormal loading con-
ditions is of high importance for risk assessment analysis in certain settings.
However, determining mass and initial velocities of dispersing debris is a unique
challenge and not yet satisfyingly addressed. Experimental characterization is
very cost-intensive, complicated, laborious and yet often not significant. Current
simulation approaches consider mostly small to laboratory-sized specimens or
employ modeling approaches either not accurate or not efficient enough to
tackle the tenacious predicament of simulating the debris throw of real concrete
structures.

It is therefore the aim of this thesis to develop a finite element based simulation
approach that overcomes these limitations. A basic ingredient is the representa-
tion of concrete on its mesoscale. A three-phase modeling approach has been
identified through an extensive literature study to capture all necessary effects
in the fragmentation of concrete sufficiently: explicitly resolved, spherical inclu-
sions represent the stiff aggregates embedded in a softer mortar matrix; both
constituents are modeled with the RHT plasticity model, which is furnished with
an additional principal stress criterion for improved brittle behavior under tension.
The contact zone between mortar and aggregate, the interfacial transition zone –
prevalent locus of microcracks and faults – is represented by extrinsic cohesive
zone elements. The employment of these elements only for this weakest material
link limits the number of topology changes of the mesh to a moderate and
manageable magnitude. Matrix and transgranular failure is in contrast considered
by application of a smeared crack approach in combination with simple element
removal. Three example simulations validate the approach in terms of crack
propagation and branching as well as fragment sizes and velocities.

In order to keep the overall computational efforts for large structures manageable,
it is proposed to model only specific regions of interest on the mesoscale. The
surrounding structure should be represented by a macroscale homogenization,
as is common today. For the connection between both scales, a novel weak
staggered coupling for direct solution schemes with explicit time integration
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(historically often denoted as “hydrocodes”), is presented. Within this scheme,
the macro interface movement serves as boundary condition on the micro- (or
meso-)scales’ interface. An averaged stress state of a finite microscale volume in
the vicinity of the interface is then used to determine the resistance of this lower-
level scale against deformation. Equivalent forces are derived in virtual macro
elements and returned to the macro interface nodes to update their kinematic
state. It is shown that this coupling achieves equivalent results to an established
standard coupling based on Lagrange multipliers, while simultaneously possessing
advantages regarding computational performance: The amount of data to be
communicated between the scales is less, the number of additional operations
for the coupling is of linear order with respect to the coupled degree of freedoms,
and – most importantly – changing mesh topologies at the interface can be
handled intuitively with ease. The parallel implementation, discussed at the
end of the thesis, exhibits outstanding scalability and sets simulation of large
structures within reach.

After discussing some remaining limitations, results from fragmentation simu-
lations are used to highlight the usefulness of the modeling approach by de-
termining potential flight distances for each fragment considering individual
aerodynamic factors depending on its unique shape.
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Zusammenfassung

Die Quantifizierung des Trümmerwurfs von Betonstrukturen unter außergewöhn-
lichen Belastungen ist für die Risikobewertung in bestimmten Situationen von
großer Bedeutung. Die Bestimmung von Masse und Anfangsgeschwindigkeit
der sich herauslösenden Trümmerteile stellt jedoch eine besondere Herausforde-
rung dar und ist bislang noch nicht zufriedenstellend gelöst. Die experimentelle
Charakterisierung ist sehr kostenintensiv, aufwendig und dennoch oft nicht
aussagekräftig. Aktuelle Simulationsansätze werden meist nur auf kleine oder
mittelgroße Geometrien angewandt oder verwenden Modellierungsansätze, die
entweder nicht genau oder nicht effizient genug sind, um die anspruchsvolle
Simulation der Trümmerbildung an realen Betonstrukturen zu bewältigen.

Ziel dieser Arbeit ist es daher, einen auf der Finite Elemente Methode basierenden
Simulationsansatz zu entwickeln, der diese Einschränkungen überwindet. Ein
grundlegender Bestandteil dabei ist die Abbildung von Beton auf der Mesoskala.
In einer umfangreichen Literaturrecherche wurde ein dreiphasiger Modellierungs-
ansatz identifiziert, der alle notwendigen Effekte der Fragmentierung von Beton
hinreichend erfasst: Explizit modellierte, kugelförmige Einschlüsse stellen die harte
Gesteinskörnung dar, die in einer weicheren Mörtelmatrix eingebettet ist; für
beide Bestandteile wird das RHT-Plastizitätsmodell verwendet, das um ein zusätzli-
ches Hauptspannungskriterium für ein verbessertes Zugversagen erweitert wurde.
Die Kontakfläche zwischen Matrix und Zuschlagskorn – ein bevorzugter Ort für
Mikrorisse und andere Defekte – wird mit extrinsischen Kohäsivzonenelementen
idealisiert. Die Verwendung dieser Elemente nur für dieses schwächste Bindeglied
begrenzt die Anzahl der Topologieänderungen des Netzes auf ein moderates
Maß. Matrix und transgranulares Versagen wird hingegen berücksichtigt, indem
Elemente nach einem bestimmten Kriterium aus der Simulation entfernt werden.
Drei Anwendungsbeispiele validieren den Ansatz hinsichtlich Rissausbreitung und
-verzweigung sowie Fragmentgrößen und -geschwindigkeiten.

Um den gesamten Rechenaufwand für große Strukturen überschaubar zu halten,
wird vorgeschlagen, nur bestimmte Regionen auf der Mesoskala zu modellieren.
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Die umgebende Struktur sollte homogenisiert auf der Makroskala dargestellt
werden. Für die Verbindung zwischen beiden Skalen wird eine neuartige Kopp-
lung speziell für direkte Lösungsschemata mit expliziter Zeitintegration (sog.
Hydrocodes) vorgestellt. In diesem Konzept dient die Bewegung der Makrogrenz-
fläche als Randbedingung für die Grenzfläche der Mesoskala. Ein gemittelter
Spannungszustand eines begrenzten Mesoskalenvolumens in unmittelbarer Nä-
he der Grenzfläche wird verwendet, um den Widerstand dieser Materialregion
gegen Deformation zu bestimmen. Entsprechende Kräfte werden in virtuellen
Makroelementen ermittelt und an die Makro-Grenzflächenknoten zurückgege-
ben, um deren kinematischen Zustand zu aktualisieren. Es wird gezeigt, dass
diese Kopplung äquivalente Ergebnisse zu einer etablierten Standardkopplung
auf der Grundlage von Lagrange-Multiplikatoren erzielt, während sie gleichzeitig
Vorteile hinsichtlich der Rechenleistung aufweist: Die Menge der zwischen den
Skalen zu kommunizierenden Daten ist geringer, die Anzahl der zusätzlichen
Operationen für die Kopplung ist von linearer Größenordnung in Bezug auf die
gekoppelten Freiheitsgrade und – ein bedeutender Vorteil – eine sich verändernde
Netztopologie an der Schnittstelle wird intuitiv berücksichtigt. Der am Ende der
Arbeit diskutierte Vorschlag zur parallelen Implementierung der Kopplung weist
eine hervorragende Skalierbarkeit auf und rückt die Simulation großer Strukturen
in greifbare Nähe.

Nach der Erörterung einiger verbleibender Einschränkungen werden Ergebnisse
von Fragmentierungssimulationen verwendet, um die Nützlichkeit des Model-
lierungsansatzes zu verdeutlichen. Dabei werden potenzielle Flugdistanzen für
jedes Fragment unter Berücksichtigung individueller aerodynamischer Faktoren in
Abhängigkeit von der jeweiligen Trümmerform bestimmt.
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Notes on notation and list of
abbreviations

Throughout this work, the following notation is used:

• Italic Roman and Greek letters are used to denote scalars, as a, α.
• Italic bold Roman and Greek letters are used to denote first- or second-

order tensors, such as the displacement vector

u =

uxuy
uz


or Cauchy’s stress tensor:

σ =

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz


• Regular bold Roman letters denote arrays of entities or matrices – usually

in the context of finite elements due to discretization – such as the array
of discrete displacements of node k:

uk =

uk,xuk,y

uk,z


or the massmatrix M. Due to the nonavailability of a well-performing (ap-
pealing) font for upright bold Greek symbols, the standard italic symbols
are used for discretized arrays as well. In this case, the context decides.
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The following tables declares frequently used symbols and abbreviations used in
this thesis. Symbols which occur only once within a specific context are declared
there and not listed here.

Symbol Explanation

aj,x, aj,y, aj,z Weight factors in Gauss integration for integration point j
B Discrete symmetric gradient operator
cD Aerodynamic drag coefficient
cS , cB Speed of sound, Bulk speed of sound
C Coupling matrix for LM coupling
d Dimension (Chapter 5.2)
D,DR,D Damage factor RHT, damage factor Rankine, combined dam-

age factor
D,D Rate of deformation tensor / matrix
DIFt,c Dynamic increase factor tension, compression
e, ė Internal energy, rate of internal energy
E Young’s modulus
E Symbol denoting a finite element
fc Compressive strength
fd Damping factor of the SPML approach
fs, f̂s Shear strength and normalized shear strength
ft, f̂t Tensile strength and normalized tensile strength
FR, F

c,t
R RHT strain rate factor and corresponding value for compres-

sion/tension
F Array of internal forces
F̃mJ Array of coupling forces derived from the microscale
◦F , ◦F Sub- or superscript F denotes variables of the filter region

(SPML approach)
G Shear modulus
GF Fracture energy
H,H0 Interface operator LM coupling
i, j, k Sum indices
◦I , ◦I Sub- or superscript I denotes variables of the macro interface

region
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Symbol Explanation

◦i, ◦i Sub- or superscript i denotes variables of the micro interface
I, I Identity tensor / matrix
[j] Fractional time increment in subcycling
J Jacobian matrix
◦J , ◦J Sub- or superscript J denotes variables of the macro inter-

face
J2 Second invariant of the deviatoric stress tensor
K Bulk modulus
K Stiffness matrix
lc Critical or characteristic length of a finite element
L,L Spatial gradient of velocity tensor / matrix
◦m, ◦m Sub- or superscript m denotes variables on the microscale
◦M , ◦M Sub- or superscript M denotes variables on the macroscale
◦MI , ◦MI Sub- or superscript MI denotes variables of the combined

macro- and interface domain
M Mass matrix
MLH Combined mass and coupling matrix (Chapter 5.2)
niE Number of elements in the micro domain covered by the

interface domain
ni, nJ Number of nodes on the micro, respectively macro interface
nM , nm, nI Number of nodes in the macro domain, micro domain, inter-

face domain
(n) Step / cycle designator
N Matrix of FE interpolation functions
N Symbol denoting a node
N Matrix of FE interpolation functions of macro discretization

in the micro domain (SPML approach)
p, p̂ Pressure, normalized pressure (by fc)
p̂t, p̂0 RHT failure cutoff pressure, RHT root pressure
Pm Unique microscale displacement projector
P Designator of partition or computational processing unit
q Artificial viscosity
QM Compatible macroscale displacement projector
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Symbol Explanation

R Array of external forces
R3 RHT third invariant factor
s, s, ṡ, ṡ Deviatoric stress tensor / matrix and corresponding rates
∆t,∆th,∆tc Time step, half time step and critical time step
t, t0, te Time, start- and endtime
t, t Vector / array of tractions
δu Vector of test functions
u, u̇, ü Vector of displacement, velocity and acceleration
u, u̇, ü Array of displacement, velocity and acceleration
um,uM, u̇m, u̇M Unique microscale displacement and compatible macro dis-

placement field and associated velocity field
v Velocity
W ,W Spin tensor / matrix
W2 Array of kinematic variable in the LM coupling (Chapter 5.2)
w/c Mass ratio of water to cement in concrete mixes
x,x Spatial coordinate
∇ Nabla operator

◦̂ Denotes the normalization of the variable ◦ with fc
◦̃ Symbols with the tilde refer to virtual entities in the WS

coupling (Chapter 5.3)
〈◦〉 Denotes an averaging of variable ◦
‖◦‖ Euclidian norm of ◦

Γ,ΓI ,Γi Interface, macro domain interface, micro domain interface
δ, δc Crack opening, critical crack opening
ε, ε̇ Uniaxial strain and corresponding rate
εeff , ε̇eff Effective strain and corresponding rate
εcr Rankine crack strain
εpleff , ε̇

pl
eff Effective plastic strain and corresponding rate

xii



Symbol Explanation

ε, ε̇v Volumetric strain and corresponding rate
ε, ε̇ Strain tensor and strain rate tensor
εpl Plastic strain tensor
ε, ε̇ Deviatoric strain tensor and deviatoric strain rate tensor
ζL, ζQ Artificial viscosity parameter
θ Angle of similarity (or Lode) angle
λ Vector of Lagrange multipliers
ν Poisson’s ratio
ξ Local (elemental) coordinates of a finite element
ρ Density
ω frequency, eigenfrequency
σ Uniaxial stress
σ Cauchy stress tensor
σI , σi Principal stress tensor and its components i = 1. . . 3
〈σm〉 Averaged micro domain stress
σy, σy Yield stress
σeff Effective stress
σvM von Mises equivalent stress
σ̂f , σ̂r RHT failure stress, residual limit stress
Φ Yield function
Ω Body or domain Ω

∂Ω Surface or boundary of body Ω
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Abbreviation Explanation

ATC Atomistic to continua
CZE Cohesive zone elements
DOF Degree of freedom
EOM Equation of motion
EOS Equation of state
FE Finite elements
FEM Finite element method
FPZ Fracture process zone
HPC High-Performance Computing
ITZ Interfacial transition zone
MD Molecular dynamics
LM Lagrange multiplier
RHT Riedel-Hiermaier-Thoma material model for concrete
RVE Representative volume element
SHB Split-Hopkinson-Bar
(S)PML (Selective) perfectly matched layer
WS Weak staggered

xiv



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Current state of fragment determination . . . . . . . . . . . . . . 3
1.2 Aim and scope of this thesis . . . . . . . . . . . . . . . . . . . . . 5
1.3 Structure of the dissertation . . . . . . . . . . . . . . . . . . . . . 7

2 Numerical fundamentals . . . . . . . . . . . . . . . . . . . . . 9
2.1 Momentum balance: continuous description . . . . . . . . . . . . 9
2.2 Spatial discretization with finite elements . . . . . . . . . . . . . . 10
2.3 Temporal discretization . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Wave propagation codes . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Classification of dynamic problems . . . . . . . . . . . . . . 15
2.4.2 Overview of the Lagrangian simulation cycle . . . . . . . . . 16
2.4.3 Codes used in this thesis . . . . . . . . . . . . . . . . . . . 20

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Relevant aspects of concrete material and mesomechanical
modeling – a review . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Constituents and structural features . . . . . . . . . . . . . . . . . 23
3.1.1 Constituents . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 The general behavior of concrete under loading . . . . . . . . . . 31
3.2.1 Static loading . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Dynamic loading . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Modeling concrete . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.1 Relevant material scale . . . . . . . . . . . . . . . . . . . . 47
3.3.2 Geometric representation . . . . . . . . . . . . . . . . . . . 49
3.3.3 The role and consideration of the ITZ . . . . . . . . . . . . . 54
3.3.4 Discretization and mesh resolution . . . . . . . . . . . . . . 56

3.4 Concluding choice of a suitable mesomechanical representation . . 58

xv



Contents

4 Development of a robust and efficient mesomechanical mod-
eling approach for fragmentation simulation . . . . . . . . . 59

4.1 Modeling cracking and fragmentation with FE . . . . . . . . . . . 60
4.2 Modeling the bulk material response . . . . . . . . . . . . . . . . 65

4.2.1 Original formulation of the RHT model . . . . . . . . . . . . 66
4.2.2 Critique on the RHT model . . . . . . . . . . . . . . . . . . 73
4.2.3 Formulation of an improved yield criterion for brittle failure . 75
4.2.4 Correction of the residual failure surface . . . . . . . . . . . 86
4.2.5 Equation of state . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 Validation examples . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3.1 Crack propagation and branching . . . . . . . . . . . . . . 89
4.3.2 Fragment velocities and momentum transfer . . . . . . . . 92
4.3.3 Fragment mass distribution . . . . . . . . . . . . . . . . . . 96

4.4 Summary and way forward . . . . . . . . . . . . . . . . . . . . . 101

5 Formulation of a multiscale framework for wave propagation
codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1 Review of multiscale approaches . . . . . . . . . . . . . . . . . . 104
5.1.1 Hierarchical approaches . . . . . . . . . . . . . . . . . . . . 105
5.1.2 Concurrent approaches . . . . . . . . . . . . . . . . . . . . 107
5.1.3 Wave propagation in multiscale methods . . . . . . . . . . 109

5.2 An existing coupling based on Lagrange multipliers . . . . . . . . 111
5.3 Development of an efficient weak staggered coupling . . . . . . . 116

5.3.1 Governing equations . . . . . . . . . . . . . . . . . . . . . 118
5.3.2 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3.3 Establishing the virtual interface domain . . . . . . . . . . . 121
5.3.4 Interface coupling procedure . . . . . . . . . . . . . . . . . 122
5.3.5 Averaging the micro model . . . . . . . . . . . . . . . . . . 124
5.3.6 Estimation of efficiency . . . . . . . . . . . . . . . . . . . . 126

5.4 Abating pathological wave reflections . . . . . . . . . . . . . . . . 128
5.4.1 Remedies in literature . . . . . . . . . . . . . . . . . . . . . 130
5.4.2 The SPML approach of Marchais et al. . . . . . . . . . . . . 131
5.4.3 Adaption of the SPML approach to the WS coupling . . . . 135

6 Validation and application of the weak staggered coupling
and outlook on trajectory determination . . . . . . . . . . . . 141

6.1 Validation examples and comparison between coupling approaches 141
6.1.1 Example 1 – homogeneous microscale . . . . . . . . . . . . 141
6.1.2 Example 2 – heterogeneous microscale . . . . . . . . . . . 143
6.1.3 Example 3 – wave propagation parallel to the interface . . . 144

xvi



Contents

6.1.4 Example 4 – embedded microdomain . . . . . . . . . . . . 146
6.2 Development of a parallel framework for simulations in 3D . . . . 147

6.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.2.2 Parallel set-up . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.2.3 Exemplified scalability of the WS coupling . . . . . . . . . . 152

6.3 Application example: internal explosion in a confined chamber . . 154
6.3.1 Model and set-up . . . . . . . . . . . . . . . . . . . . . . . 154
6.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.3.3 A critical note on remaining limitations . . . . . . . . . . . . 157

6.4 Outlook – detailed trajectory determination . . . . . . . . . . . . . 159

7 Closing remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.1 Main achievements of the present work . . . . . . . . . . . . . . . 163
7.2 Topics for further investigation . . . . . . . . . . . . . . . . . . . . 165

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
A.1 Generation of mesomechanical models – geometric representation 205
A.2 Subcycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

A.2.1 Overview on existing subcycling algorithms . . . . . . . . . 210
A.2.2 Proposed subcycling algorithm for the WS coupling . . . . . 214
A.2.3 Subcycling of the LM approach . . . . . . . . . . . . . . . . 216
A.2.4 Stability of subcycling . . . . . . . . . . . . . . . . . . . . . 218

A.3 Cement reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
A.4 Strain rate enhancement formulas . . . . . . . . . . . . . . . . . . 219
A.5 Loading conditions of the validation examples . . . . . . . . . . . 223
A.6 Material parameter for the mesomechanical simulations within this

work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
A.6.1 RHT model parameter for mortar matrix . . . . . . . . . . . 225
A.6.2 Aggregate material model . . . . . . . . . . . . . . . . . . 230
A.6.3 ITZ data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

xvii





1 Introduction

It was a matter of a few milliseconds only, less than a visual impression needs
from perception to processing in the brain. All that was left of the solid reinforced
concrete structure were several buckets of larger and almost uncountable smaller
fragments, spread over a radius of up to four hundred meters. Inferring the initial
velocities roughly from the mass and distance, it was found that the debris had
been propelled up to some hundred meters per second. The simple iron-made
door was later found far away within a swampy area. Severely distorted, half
sunken; the other half sprawling diagonally towards the sky. Yet nobody was
hurt. A miracle? Definitively, if the explosion of the stacked ammunition within
this storage facility had occurred at its designated location in a military camp.
Luckily, the described scenario was only a field test, although an impressive one.1

Indeed, it brings the threat which occurs due to debris throw of structures under
high dynamic loading home to everybody involved.

In scenarios involving the detonation of explosive substances, the first major threat
to humans and structures is the blast wave. However, an accurate prediction of its
propagation, the resulting pressure field, and its consequences is well done with
today’s analytical and numerical methods. A different picture emerges regarding
what should be considered the second major threat after the impact of a shock
wave on structures: debris throw.2 Especially brittle materials are susceptible to
considerable fragmentation and resulting debris throw, even beyond the hazard
range of the blast wave, and are both harmful to humans and facilities [3, 4]. But
not only military applications, such as the ammunition storage structure described
above, should be kept in mind: the calm summer day of August 20th, 1997,
changed the life of eleven families forever. Whether it was a mechanical impact

1 The actual test was done in Singapore and presented during a meeting that the author
attended. A public report is not available, but similar tests have been carried out by the
Swedish Defense Research Agency and have been reported, e.g., in [1], Figure 1.1, left.

2 Depending on the field of interest, the term “fragments” is reserved for metallic fragments
that originate from ammunition casings, and the term “debris” or “secondary fragments” is
exclusively used for those that emerge from structures, e.g., [2]. In this thesis, both terms
are used interchangeably and refer always to the concrete structure.
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or friction within the fan of the dust removal unit – nobody knows. Yet the
resulting dust explosion at the grain storage facility located on the Atlantic coast
in Bayle, France, destroyed the humongous silos within a wink. Debris pieces of
around 1 kg were found still 140 meters away and it is reported that the eleven
victims were primarily killed by debris [5]. And what about nuclear power plants,
exposed to a malicious (terrorist) act, where one might consider a pipeline with
contaminated water directly behind a wall or below a floor? What consequences
might occur if high-velocity debris hits – and potentially perforates – such a
pipeline? What about people in exposed environments, such as embassies or
buildings housing religious minorities?

But blast events are only one example. Indeed, on a more general level, every
dynamic loading situation of structures might lead to the gross emergence of
lethal or destructive fragments. For instance, the impact of objects with high
velocities – such as airplane parts – may evoke strong debris throw due to invoked
spallation phenomena, see Figure 1.1, right. Surely, there is a warranted quest
not only to quantify the effects of the blast wave but likewise the threats due
to flying fragments, presuming that most people and objects worth protecting
might be behind walls exposed to abnormal loading conditions.

Figure 1.1: Serious debris throw from structures under extreme loading. Left: Break-up of a
reinforced concrete ammunition storage [1]. Right: Rear face of a fiber-reinforced
concrete slab subjected to the impact of a scaled airplane-turbine model (snap-shot
from high-speed recordings of an experimental series detailed in [6]). The impactor
did not penetrate the slab. Nevertheless, the space behind it is not a safe place either.
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To assess the actual threat, one needs to know the initial conditions of the
dispersing debris. Having mass and the initial velocity vector, the subsequent
flight phase can be predicted by applying an equation of motion. However,
depending on the assumptions made, very different final positions and kinetic
energies might be determined. The reason is the strong dependence of the
trajectory on aerodynamic coefficients ruling drag, lift, and even rotation and
flipping of irregularly shaped fragments. Comparing only the drag coefficient for
a sphere3, which is approximately csD≈0.42, with those for a cuboid – ranging
between ccD ≈0.6. . .1.2 [8] – highlights that these assumptions considerably
affect the resulting flight distance. Besides the initial kinematics, therefore, the
actual shape of the emerging fragments is a third important piece of information.

1.1 Current state of fragment determination

This stated, the impression that the threat of debris throw is not considered in
today’s risk analysis should be strictly dismissed. Actually, this is part of a sober
risk analysis (see, e.g., [5]) and is subject to current standards and guidelines.4 But
the underlying data and methods rely almost solely on empirical data. The fact
that such a situation is not satisfying should be clear if one considers the immense
problems involved in conducting and evaluating such experiments. Not alone
that a test area has to be available, the characterization of fragments necessitates
the logging of the debris during flight or even better during emergence. In the
case of concrete, this is almost impossible with optical systems, simply due to
the large amount of dust and debris [9]. Furthermore – if these limitations may
be bypassed somehow – the observation with cameras, laser interferometer,
and other suitable measurement techniques allows only the observation of the
structures’ surface, while it is on hand that spalling effects lead to beginning
fragmentation in the inner part of the structure.

The main information about the debris is obtained by post-mortem analysis,
presuming the manual collection and recording of every fragment found after
the experiment (no comment about the tediousness of this painstaking work).
Even in the very unlikely case that the complete mass of the subject is recovered,
the picked debris pieces may differ from those which will in reality hit persons or

3 E.g., used substitutional for the determined fragments in [7].
4 E.g., national safety rules, such as the DGUV 113-017 in Germany or military standards,

such as the NATO guidelines for the storage of military ammunition and explosives [2].
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installations, since larger debris may have been again divided during impacting
and bouncing along the ground.

There is a further restriction, which stymies the direct application of experimental
results in the quantification of debris throw – the extraordinary scatter. Even small
and uncontrollable fluctuations in the detonation of explosives may lead to a
different loading of the structure and influences fragmentation and dispersal of
debris. Indeed, in any case small changes in the setup entail a different pattern
of fragmentation. Even if one might be able to control all aspects in every detail:
the heterogeneous material structure of concrete induces in each experiment
a diverse outcome, claiming several, statistically meaningful, repetitions of the
same experiment.

Scaled experiments are often in many respects a less expensive option. But while
blast effects scale well, debris throw does not. Besides the size effect of concrete
structures, where the failure of a concrete member strongly depends on its size,
the aerodynamic forces and the vertical force component due to gravitation
do not scale. Consequently, not only the initial break-up conditions of scaled
experiments are of inferior significance, the resulting flight distances and final
impact velocities are simply not transferable. Full-scale experiments remain the
only possibility.

Therefore, a simulation approach is needed that can model the initiation and
propagation of cracks under dynamic conditions, which could then be used in
a second step to evaluate fragments and debris throw. Until now, it has un-
doubtedly been possible to precisely predict the failure of concrete structures
under abnormal loading with its accompanying high strain rates and pressures.
Sophisticated material models have been developed in recent decades, which
reliably predict the amount and location of highly damaged areas. In addition,
more and more attempts have been published with explicit reference to the
evaluation of fragment data. Examples reach from applications in the mining
industry, e.g., [10, 11], over general protection concerns, such as masonry build-
ings against blast [12], to military applications, e.g., [13–15], to mention just a
few references. The numerical methods and approaches used differ significantly,
however, with works relying on the finite element method (FEM) preponderating.
Yet finite element meshes describe continuous bodies and the separation of
elements is not straightforward. Instead of separating elements, some authors
derive analytical descriptions based on internal state variables and determine frag-
ment distributions parallel to or after simulations [7, 10, 16]. Other researchers
convert finite elements into meshless particles, based on damage criteria [17, 18],

4



Introduction

others directly rely on meshfree methods, e.g., [19–21], or on a Eulerian material
description [14, 22].

However, all these approaches are not free from disadvantages. Simulations
based on the Eulerian framework suffer in the accurate delineation of material
interfaces. Furthermore, meshes required to resolve small fragments and dispers-
ing debris lead to high computational demands. The latter is also a limitation to
meshless methods; certainly a reason why this method was applied only to small
structures or in 2D until now. Moreover, the size information is lost, or at least
difficult to estimate, if elements are converted to particles. At the structural level,
attempts have been made to apply different element separation techniques to
simulate fragment generation, such as node splitting, erosion, and cohesive zone
elements; refer, for instance, to [7, 23–25]. In these cases, however, computa-
tional constraints limit the mesh resolution and, therefore, bound the fragment
distribution at a relatively large minimum size. Depending on the element sep-
aration technique, a lot of material is removed, and the results are reduced to
well-informed estimates. Finally, the resulting fragments – if resolved – are often
only rough approximations. But as mentioned above, determining the trajectories
depends then on several assumptions relating especially to the acting drag and
lift forces leading to high uncertainty.

1.2 Aim and scope of this thesis

This thesis aims to develop a numerical approach capable of simulating the frag-
mentation process from emergence to dispersion of debris in concrete structures,
overcoming the above mentioned limitations and being hence suitable for the
application in large 3D models. It is hypothesized here that two basic ingredients
are necessary to accomplish this goal: a suitable description of concrete and the
coupling of this description with a common homogenized macromechanical scale.
The detailed development and combination of these are the major contributions
of this work.

Since concrete fragmentation is a process triggered and driven by its structure
as a heterogeneous composite material, a simulation approach that attempts to
describe fragmentation accurately must explicitly consider the structure of the
underlying material on an appropriate scale. This scale will be later introduced as
“mesoscale”. Currently, this scale is only used for the simulation of laboratory-sized

5



Introduction

specimens to understand the behavior of the material or to limit the number of
specific experiments by replacing them with simulations. But attempts to exploit
mesomechanical descriptions for fragmentation analysis in larger structures are
still missing. The reason might be the accompanying computational efforts, which
let researchers and engineers hesitate to utilize this description. In fact, not all
attempts to model concrete on the mesoscale are capable of delivering fragments
in reasonable computational time. While, e.g., the application of cohesive zone
elements renders cracking phenomena and dispersing material regions with
high accuracy, the computational burden in 3D is extremely high. On the other
hand, smeared crack approaches are potentially not accurate enough. It will
be argued in Chapter 4 that a combination of both approaches with a fine
mesh and an apt representation of concrete constituents provides a powerful
and robust modeling paradigm able to capture the basic phenomena within
acceptable computational times. Therefore, the choice and formulation of a
suitable mesomechanical modeling approach for concrete constitute the first key
component of this work.

However, discretization of complete structures on the mesoscale will still be
not feasible in the foreseeable future. This fact motivates the appropriation of
multiscale analysis, where two scales simultaneously exist and the mesoscale is
utilized only for relevant parts of the structure. The second major contribution
of this thesis is therefore the development of a method which allows a strong
coupling of two disparate finite element meshes with wave propagation in both
domains. Again, applicable couplings already exist, as will be shown in Chapter 5.
Yet none of the existing ones respects the classical “direct” solution scheme,
employed in wave propagation codes with explicit time integration. Application
and implementation of such schemes in these codes is nevertheless possible,
but will either lead to considerably increased computational efforts or to an
intricate handling of changing mesh topologies at the interface due to emerging
cracks in the lower scale. In contrast, the coupling approach proposed here
respects the given solution scheme, adds only a few additional operations, and is
consequently highly efficient. Thereby, the way should be paved for the simulation
of fragmentation and debris throw in regions of interest, while simultaneously
considering the effects of the surrounding structure – an important aspect in
some scenarios.
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The two major subjects of this work will be sustained by the following individual
contributions:

• Identification and application of a suitable description of concrete on its
mesoscale, capable of covering element separation with robustness, but
sufficient accuracy.

• Enhancing and improving a widely used material model for concrete
under dynamic loading with a rate-dependent, regularized principal stress
criterion.

• Exploiting the mesoscale description beyond the simulation of failure to
actual determination and analysis of fragments – utilizing their individual
shapes to determine unique aerodynamic coefficients.

• Developing a two-scale coupling approach for direct solution schemes
with explicit time integration and comparison with an existing method
based on Lagrange multipliers.

• Application of a “selective perfectly matched layer” to the coupling inter-
face to dwindle pathological wave reflections.

If one follows reference [26] in the principal differentiation of (a) fragments’
emergence, (b) their dispersal, and finally (c) their effects, this thesis is mainly
concerned with the first issue. The subsequent trajectories of the debris will be
only briefly discussed for one application scenario, while the effects of fragments
on human bodies or structures are completely out of the scope. But even the
emergence of fragments will be covered within this thesis only to a certain extent.
Focus is on the overall framework, the identification of necessary ingredients, less
on the perfect solution in every detail. Nevertheless, some application examples
will clearly show that the aim of predictive fragmentation simulation is within
reach.

1.3 Structure of the dissertation

The structure of this dissertation is as follows: Chapter 2 commences with a
review of the numerical fundamentals necessary for the understanding of this
thesis. Its focus is on the description of wave propagation codes. Chapter 3
deals with the material concrete – its composition and behavior under loading
– and the different options for numerical idealization on the macro- as well
as the mesoscale in the literature. Subsequently, a specific modeling approach
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– a combination of a plasticity model for the matrix and distinctly modeled
aggregates and cohesive zone elements for the interfacial failure between the
two constituents – is formulated and applied in Chapter 4, which is the first
main pillar of this thesis. The second one is the following Chapter 5, in which
a novel two-scale coupling approach is introduced. While this chapter contains
more or less the theoretical basis and specific issues, such as pathological wave
reflections, validation and application of the coupling is deferred to Chapter 6.
Finally, Chapter 7 summarizes this thesis and discusses open issues for future
research.
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2 Numerical fundamentals

The purpose of this chapter is to equip the reader with the necessary numerical
peculiarities employed in this thesis, which is mainly the solution of dynamic
problems with wave propagation codes. It is assumed that the reader is familiar
with the basic idea and discretization of the finite element method, which will
not be elaborated on in detail.

2.1 Momentum balance: continuous description

Let Ω be a continuous body and x the representation of a material point in R3.
The local momentum balance for this body – Cauchy’s first law of motion – then
reads in the spatial (deformed) configuration [27, 28]:

ρü(x, t)− ρk(x, t)−∇ · σ(x, t) = 0 (2.1)

The symbols in equation (2.1) denote the density ρ, the second derivative of
displacements u(x, t) with respect to time t – accelerations ü(x, t), body forces
k, the nabla operator ∇, and the Cauchy stress tensor σ(x, t). The multiplication
operator · implies the scalar product. For legibility, the explicit dependence on
the spatial coordinate x will be omitted from now on. Together with the initial
conditions

u(t0) = 0 (2.2a)
u̇(t0) = 0 (2.2b)

and potential kinematic and traction boundary conditions on the body’s surface
∂Ω

u̇(t) = u̇e(t) on ∂Ωu (2.3a)
t(t) = te(t) on ∂Ωt (2.3b)
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the problem forms an initial boundary value problem, with ∂Ω = ∂Ωu ∪ ∂Ωt

and ∂Ωu ∩ ∂Ωt = ∅. t denotes the traction vector. In the following, body forces
are neglected for simplicity throughout, i.e. ρk(t) = 0. However, it poses no
difficulty to consider body forces.

Using the virtual work principle, a weak formulation of the momentum balance
with an admissible test function δu reads after some transformations (see, e.g.,
[29]): ∫

Ω

δu · ρüdΩ +

∫
Ω

∇δu : σ(t)dΩ−
∫
∂Ωt

δu · t(t)d∂Ω = 0 (2.4)

The test functions δu have to vanish on ∂Ωu and are to be sufficiently smooth
with respect to x.

2.2 Spatial discretization with finite elements

In order to solve the weak formulation of the momentum balance, equation
(2.4) has to be discretized in space and time. For spatial discretization, finite
differences or finite elements (FE) are often employed. A detailed derivation of
the discretization is omitted here for the sake of brevity and the reader is referred
to standard textbooks, such as reference [29]. In this thesis, only Lagrangian FE
will be used.

Discretizing the body Ω now with nE finite elements E and nN nodes N , the
semi-discretized (spatially discretized) equation of motion (EOM) reads then5:

Mü(t) + K(t)u(t) = R(t) (2.5)

5 Please note that u is now the array of displacements, which has one entry for each degree
of freedom, i.e. u = [u1,x u1,y u1,z u2,x . . . unN ,z]ᵀ.
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with the mass matrix M, the stiffness matrix K and the vector of outer forces R
which are defined by:

M =

nE∑
j=1

∫
ΩEj

ρNNᵀdΩEj (2.6a)

K(t) =

nE∑
j=1

∫
ΩEj

BᵀCE(t)BdΩEj (2.6b)

R(t) =

nE∑
j=1

∫
∂ΩEt,j

Nt(t)d∂ΩEt,j (2.6c)

with ΩEj being the volume of the j−th element and N the array of shape or
interpolation functions. B = ∂N/∂x is the discrete symmetric gradient operator
(or “strain-displacement matrix”) and CE the elasticity matrix.

The product of stiffness matrix and displacement vector is a force vector, desig-
nated as “internal” forces, F. From elementary equilibrium considerations, one
can show that:

F(t) = K(t)u(t) =

nE∑
j=1

∫
ΩEj

Bᵀσ(t)dΩEj (2.7)

Then the equation of motion finally reads:

Mü(t) = R(t)− F(t) (2.8)

This equation can be solved by left multiplication with M−1. However, the
inversion is costly and – although M is sparse, M−1 is not. Reducing M to a
diagonal matrix, one can avoid the inversion and equation (2.8) expresses then
an array of independent equations – one for each degree of freedom (DOF). For
each DOF k, the solution is then simply determined by:

ük =
Rk − Fk
mN

(2.9)
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with mN being the mass of the corresponding node.6 Together with the fact
that F is a vector that can be filled by looping through the element assembly,
there is no need to store or factorize global matrices. Consequently, this scheme
is very efficient and robust – even the loss of elements can be inherently covered
(in the following the diagonalization of M is presupposed if the opposite is not
explicitly mentioned). Since the elemental contribution to the inner force vector is
accomplished “directly” at the element level, this scheme was labeled “direct” by
Belytschko [32, 33]. However, the effectiveness of this scheme depends strongly
on the choice of the time integration algorithm, which is touched on next.

2.3 Temporal discretization

A natural discretization of a second-order differential equation ü = f(u) would
be the application of central differences. Defining the (time) increment, the “time
step”, from step (n) to (n+ 1) as ∆t, one finds:

u̇(n) =
1

2∆t

(
−u(n−1) + u(n+1)

)
(2.10a)

ü(n) =
1

∆t2

(
u(n−1) − 2u(n) + u(n+1)

)
(2.10b)

The displacements for the next step (n+ 1) can be determined with the second
line by formulating:

u(n+1) = −u(n−1) + 2u(n) + ∆t2ü(n) (2.11)

The accelerations ü(n) are determined by solving the EoM:

ü(n) = M−1
(
R(n) − F(n)

)
(2.12)

Note that the EOM is formulated for current step (n); thus, the solution advances
to the next step simply based on already known values. This integration scheme

6 Besides the pure computational advantage of this representation, there are physical argu-
ments why a diagonal mass matrix delivers more accurate results under impulsive loading.
In case of a consistent mass matrix, the whole system/mesh will perceive the loading of a
single node immediately, which is not physical. For a diagonal mass matrix, only the nodes
where the impulsive loading is applied feel the load, and neighbored nodes are not affected
before the next cycle. This leads to a correct shock propagation [30, 31].
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Figure 2.1: Leapfrog time integration scheme of a one dimensional function q(t), v = q̇.
Derivatives are approximated by central difference quotients on a staggered time grid.
The definition of the time steps as ∆t and ∆th follows the convention in SOPHIA.
Figure redrawn from [34].

is labeled “explicit”. In practice, a slightly more complex scheme is applied to
achieve second-order accuracy. In this so-called “Leapfrog-scheme”7, the first
derivatives are determined at a staggered grid, refer to Figure 2.1. From this
figure, one can easily derive the following definitions for moving from t(n) to
t(n+1):

u̇(n−1/2) =
1

∆th

(
u(n) − u(n−1)

)
(2.13a)

u̇(n+1/2) =
1

∆th

(
u(n+1) − u(n)

)
(2.13b)

ü(n) =
1

∆t

(
u̇(n+1/2) − u̇(n−1/2)

)
(2.13c)

leading to the update equations:

u̇(n+1/2) = u̇(n−1/2) + ∆tü(n) (2.14a)

u(n+1) = u(n) + ∆thu̇
(n+1/2) (2.14b)

7 The scheme inherits its name due to its staggered characteristics. In molecular dynamics,
the scheme is known as the “Verlet” algorithm, whereas the terms “Störmer”- or “Encke”-
method are also known. Störmer has used the scheme already 1907, Encke even around
1860 and – most remarkably – Richard Feynman noted in 1965 that the underlying idea is
already used by Isaac Newton in his Principia, see [34] for a brief historic review.

13



Numerical fundamentals

As previously written, this scheme has the advantage of having all the values for
the evaluation of the next step at hand. On the other hand, it is only conditionally
stable. Its integration operator has to be bound by a critical time integrator to
prevent instability. One can show that this critical time step can be derived from
the highest eigenfrequency of the whole element assembly, ωmax:

∆tc ≤
2

ωmax
(2.15)

Since ωmax is not necessarily constant, evaluation of the critical time step would
necessitate the solution of the general eigenvalue problem of the FE assembly in
each computational cycle, which of course is not feasible. Therefore, in practice,
an approximation of this value is used. Based on the analytical solution of a linear
1D bar element, where the natural frequency is ω = 2cS/l (with cS =

√
E/ρ

the speed of sound, E the Young’s modulus, ρ the density, and l the length of
the bar), the observation is that ∆t has to be less than the time it takes for an
elastic wave to travel the distance from one node to the next. This descriptive
approximation can be easily extended to other finite elements and is hence
formulated as

∆tc ≤
lc
cS

(2.16)

in which lc is an – element dependent – critical length. Strictly speaking, the
above argumentation holds only for linear systems, but as Belytschko notes:
“[T]here is considerable empirical evidence that these stability limits are valid for
non-linear problems if the current highest frequency or wave speed is used in the
equations” ([32, p.25]).

For comparison, consider now a different time integration, the widely used
Newmark scheme. This scheme can be achieved by a truncated Taylor series
expansion of u and u̇. Newmark proposed the following two expressions:

u(n+1) = u(n) + ∆tu̇(n) + ∆t2
[
(1/2− β) ü(n) + βü(n+1)

]
(2.17a)

u̇(n+1) = u̇(n) + ∆t
[
(1− γ) ü(n) + γü(n+1)

]
(2.17b)

with 0 ≤ γ ≤ 1 and 0 ≤ β ≤ 1 being two numerical parameters. Now for the
evaluation of the displacements and velocities at (n + 1), the accelerations at
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(n + 1) have to be at hand.8 It follows that the EOM has to be formulated at
(n+ 1):

ü(n+1) = M−1
(
R(n+1) − F(n+1)

)
(2.18)

The crucial point is that the vector of internal forces F depends then on unknown
values and an iterative solution is necessary. Such a scheme is said to be “implicit”.
Depending on the choice of γ and β, the scheme becomes unconditionally stable,
which is an important advantage. In contrast to explicit integration, large time
steps are possible. Since, however, the solution of each step involves several
iterations until equilibrium is found, these time steps are computationally much
more expensive than a comparable explicit one and may fail in situations where
strong nonlinearities are involved. Additionally, the vector of internal forces F(n+1)

would in this case not be constituted by direct recourse to element stresses, as
written in equation (2.7). Instead, the product of the current stiffness and the
current displacement would be used, which requires factorization of the stiffness
matrix in each step. This again is a costly operation.

2.4 Wave propagation codes

2.4.1 Classification of dynamic problems

The EOM is the fundamental basis of all problems that describe the deformation
of bodies under dynamic loading. However, there exists a wide variety of solution
options, each with its unique advantages and disadvantages. In order to choose
a suitable strategy, it is therefore beneficial to distinguish two broad dynamic
problem classes. E.g. Belytschko et al. differentiate broadly between “wave
propagation problems” and “inertial problems” with the following rule of thumb:
“[If the] rise time and duration of the load [. . . ] exceed several traversal times,
the problem is often in the inertial category” ([35, p.17]) or even more general:
An inertial problem is “everything, which is not a wave problem”. Nickell labels
inertia problems more specific as “structural vibration problems [. . . which] are
almost always dominated by low-frequency components of the response” ([36, p.
303]). Dokainish et al. use the meanwhile dominant term “structural dynamics”
for this problem class. In contrast, wave propagation problems are such problems

8 Admittingly this depends on the values of γ and β. Commonly, γ =1/2 and β =1/4 or 1/6
are chosen. But if instead β = 0, the scheme renders to an explicit scheme.
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“in which the behavior at the wave front is of engineering importance, and
in such cases it is the intermediate and high-frequency structural modes that
dominate the response throughout the time span of interest” ([37, p.1371]),
while Combescure et al. differentiate between “dynamic vibration” and “fast
dynamic” problems [38]. Analysis of high- and hypervelocity impacts and effects
of explosions and blast waves are typical examples of the latter.

The resolution of stress waves necessitates very small (and therefore many)
timesteps. Furthermore, often highly nonlinear material behavior must be consid-
ered which renders explicit time integration for this class of problems superior
compared to implicit methods. Indeed, dedicated wave propagation codes, or
“hydrocodes”, to use the historical term, are the preferred choice9 [31, 40, 41].
In these codes, the detailed direct scheme described above is used during each
“cycle”.

2.4.2 Overview of the Lagrangian simulation cycle

Starting with the initial conditions of the current time t at the current cycle
(n), the kinematic variables L (spatial gradient of velocity tensor), D (rate of
deformation or stretching tensor) andW (spin or vorticity tensor) are determined
for each element E individually, based on the velocity field of its nodes. They
are written here in tensorial notation and only later in the summarizing listing
expressed for the discretized system. In general:

L(n−1/2) = ∇u̇(n−1/2) (2.19)

The rate of deformation tensor D is equal to the symmetric part of the spatial
gradient of the velocity tensor L:

D(n−1/2) =
1

2

(
L(n−1/2) +

(
L(n−1/2)

)ᵀ)
(2.20)

9 A further term found in literature is “Lagrangian shock hydrodynamics code”, e.g. in [39].
Throughout the thesis, the term “hydrocode” is used as a generic terminus technicus
synonymously to “wave propagation code”. This short form of “hydrodynamic computer
codes” stems from the fact that the shear strength of condensed matter can be neglected
in cases of very high compression and the matter behaves consequently like a fluid [40].
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Since an updated Lagrangian formulation with small strain increments is used,
the strain rate equals the deformation rate tensor [42]10:

ε̇(n−1/2) = D(n−1/2) (2.21)

with its volumetric part, defined by the trace of the tensor:

ε̇(n−1/2)
v = tr

(
D(n−1/2)

)
(2.22)

The vorticity tensor is equal to the antisymmetric part of the spatial gradient of
the velocity tensor L = D +W , with:

W (n−1/2) =
1

2

(
L(n−1/2) −

(
L(n−1/2)

)ᵀ)
(2.23)

The current specific energy, e, is determined by integrating its rate, ė:

ė(n−1/2) =
1

ρ(n−1)
σ(n−1) : D(n−1/2) (2.24a)

e(n−1/2) = e(n−1) +
1

2
∆t

(n−1/2)
h ė(n−1/2) (2.24b)

And for the density ρ:

ρ̇(n) = −ρ(n−1)L(n−1/2) (2.25a)

ρ(n) = ρ(n−1) + ∆t
(n−1/2)
h ρ̇(n) (2.25b)

Noting that so far only variables based on the velocity field and not on specific
material parameters have been determined, now a constitutive model comes
into play to determine the elements’ stress state σ. Historically, hydrocodes take
advantage of the split of the total stress state into a hydrostatic contribution, the
pressure p, and the remaining deviatoric stress tensor s:

σ(n) = s(n) − p(n)I (2.26)

with I being the identity tensor. Both contributions are determined separately,
which simplifies the application of complex, nonlinear relationships for pressure
and deviatoric stress. In scenarios with very high pressure or non-viscous fluids

10 The difference is thatD is based on the derivatives with respect to the spatial coordinates
x, while in ε̇ with respect to the material coordinatesX. In the updated Lagrangian case
X u x [42, p.150].
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only, the shear strength might even be negligible and only the pressure state has
to be calculated.

The current pressure is computed employing an equation of state (EOS). An EOS
is – in general – an arbitrary relationship between pressure p, density ρ, and
specific internal energy e of a material portion:

p = f(ρ, e) (2.27)

Equations of state in the form above are labeled “incomplete”, since they do
not take into account heat conduction effects, for which a relation based on
a Gibbs potential would be necessary [43]. Since in most cases (shock) wave
propagation is only of very short duration, adiabatic conditions can be assumed
and incomplete EOS are fully valid. On the other hand, a set of further parameters,
κ, including, e.g., porosity, can be considered in the EOS for appropriate material
modeling. Within the computational cycle, the pressure is therefore determined
by:

p(n) = f(ρ(n), e(n),κ(n)) + q (2.28)

Shock waves represent a sharp discontinuity in the field variables, which cannot
be properly described in a finite mesh. Therefore, an additional pressure term, q,
labeled “artificial viscosity”, has already been considered above. Its effect is to
“smear” the shock front over several elements:

q = ρlc∇ · u̇
(
c2Blc∇ · u̇− ζLζQ

)
(2.29)

Unless stated otherwise, all simulations within this work contain this additional
pressure term, based on the two input parameters ζL and ζQ and the materials
bulk speed of sound, cB .

Based on Hooke’s law, the deviatoric stress rate can be derived through the shear
modulus G:

ṡ(n−1/2) = 2Gε̇(n−1/2) (2.30)

in which ε̇ denotes the deviatoric portion of the strain rate tensor:

ε̇(n−1/2) = ε̇(n−1/2) − 1

3
ε̇(n−1/2)
v I (2.31)

Simply integrating the stress rate to yield deviatoric stresses is not sufficient
since the above-stated stress rate is not objective with respect to rotation. This
means that rigid body rotation would lead to contributions to the final stress
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tensor, which of course is unphysical. Therefore, objective stress rates have to be
employed. Different rates have been proposed, in most cases the Jaumann rate is
used due to its simplicity:

s(n) = s(n−1) + ∆t
(n−1/2)
h

(
ṡ(n−1/2) −W (n−1/2)s(n−1) + s(n−1)W (n−1/2)

)
(2.32)

Equation (2.26) is then used to assemble the full stress tensor if necessary.

In many cases, materials should be modeled which have a limited capacity to
withstand stresses and consequently fail if stressed above. This limit – or yield –
stress is hence an upper bound of the physical admissible stress state. In order to
derive this limit stress, a strength model describes the yield stress σy as a function
of different material and internal variables – depending on the complexity of the
model:

σ(n)
y = f(. . .) (2.33)

A yield function Φ(σy,σ) is used to check whether the current stress state σ,
derived so far, is admissible or not. Therefore, this state is labeled as “elastic trial
stress”. If the trial stress is above the yield criterion, it has to be mapped back on
the limit surface. After updating the stress state, the energy is corrected with the
current stress:

ė(n) =
1

ρ(n)
σ(n) : D(n−1/2) (2.34a)

e(n) = e(n−1/2) +
1

2
∆t(n−1/2)ė(n) (2.34b)

Whereas the above equations have been written for a material point in the
continuum, their application is in the context of a FE discretization. Consequently,
these equations have to be applied to nodal (N ) or element (E ) values, which
is achieved by replacing all variables with their discretized matrix form. Element
values are further determined at the elements integration points.

Having the updated stress at hand, the inner element forces can then be com-
puted by standard Gaussian integration with weight factors a.,. at ng Gauss
points and the elements’ Jacobian matrix J:

F(n) =

ng∑
g=1

Bᵀ
gσ

(n)
g det Jgag,xag,yag,z (2.35)
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Summing up all external forces, e.g., due to boundary conditions, contact or
cohesive forces for each nodal DOF in the vector of external loads R, the updated
acceleration is yielded by reformulating the momentum balance:

ü(n) = M−1
(
R(n) − F(n)

)
(2.36)

Note that – as mentioned above – it is tacitly assumed here that M is a diagonal
matrix and that equation (2.36) can be therefore solved for each DOF indepen-
dently by applying equation (2.9). With the updated accelerations, new velocities
and displacements are derived:

u̇(n+1/2) = ü(n)∆t(n) + u̇(n−1/2) (2.37a)

u(n+1) = u̇(n+1/2)∆t
(n+1/2)
h + u(n) (2.37b)

Finally, the time is increased, and a new admissible time step is determined.
The process starts over again. For reference use, the scheme is summarized in
Algorithm 1.

2.4.3 Codes used in this thesis

The developments detailed in this thesis were mainly developed for use in the 3D
research code SOPHIA, a wave propagation code for Lagrangian finite elements
and smooth hydroparticles (SPH). It was originally developed as a particle code at
the University of the German Armed Forces [44], and was later extended to cover
finite elements [45]. Meanwhile, the code is maintained and further developed
at EMI, where it is used mainly as research code. To investigate some aspects of
the two-scale coupling, especially to compare the developed weak staggered
coupling with an existing coupling based on Lagrange multipliers, a 2D code was
written from scratch, following the scheme detailed above, but with restriction
to 2D solid elements.
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Algorithm 1 Overview computational cycle. (n) denotes the current cycle/time.

while t < te do

∆t(n), ∆t
(n−1/2)
h , u̇(n−1/2) . Initial values for step (n)

for all Elements E do

for each integration point do

L(n−1/2) = Bu̇(n−1/2)

ε̇(n−1/2) = D(n−1/2) = 1/2
(
L(n−1/2) + LT

(n−1/2)
)

W(n−1/2) = 1/2
(
L(n−1/2) − LT

(n−1/2)
)

e(n−1/2) = e(n−1) + 1/2∆t
(n−1/2)
h

(
ρ−1(n−1)

σ(n−1) : D(n−1/2)
)

ρ(n) = ρ(n−1) −∆t
(n−1/2)
h (ρ(n−1)L(n−1/2))

p(n) = f(ρ(n), e(n), . . .)

ṡ(n−1/2) = 2Gε̇(n−1/2)

s(n) = s(n−1)+∆t
(n−1/2)
h

(
ṡ(n−1/2) −W(n−1/2)s(n−1) + s(n−1)W(n−1/2)

)
σ(n) = f(s(n), p(n), ε̇(n−1/2), . . .)

e(n) = e(n−1/2) + 1/2∆t
(n−1/2)
h

(
ρ−1(n)

σ(n) : D(n−1/2)
)

end for

F(n) =
∑ng
g=1 Bᵀ

gσ
(n)
g det Jgag,xag,yag,z

end for

for all nodes N do

ü
(n)
N =

(
R

(n)
N − F

(n)
N

)
/mN

u̇
(n+1/2)
N = ü

(n)
N ∆t(n) + u̇

(n−1/2)
N

u
(n+1)
N = u̇

(n+1/2)
N ∆t

(n−1/2)
h + u

(n)
N

end for

∆t(n+1/2) = ∆t
(n)
c , ∆t(n+1) = 1/2

(
∆t(n−1/2) + ∆t(n+1/2)

)
t(n+1) = t(n) + ∆t(n−1/2)

n→ n+ 1

end while
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2.5 Summary

With regard to the developments expounded later in this thesis, let the key
findings of this chapter be briefly summarized:

• Using explicit time integration, a solution is achieved by progressing in
time with very small but numerous time steps.

• Each time step is in general very cheap since no global matrices have to
be built, stored, or inverted.

• Since the investigation of wave propagation problems requires in any case
small time steps, explicit schemes are a natural choice for these problems.

• The explicit, direct scheme even allows the removal of elements during
run time with no difficulties.

• Highly nonlinear problems can be easily treated with this scheme since no
iterations are involved.

• Whereas the explicit scheme always achieves a solution, it is of limited
stability, and a critical step size must not be exceeded.
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3 Relevant aspects of concrete
material and mesomechanical
modeling – a review

The purpose of this chapter is to review the material concrete, its basic con-
stituents, composition and resulting microstructure. This forms the foundation
for the discussion of different concrete modeling approaches in the literature
together with the advantages and shortcomings of the individual methods. Based
on this deliberation, the next chapter proposes a robust approach for mesome-
chanical modeling, which allows the accurate simulation of fragmentation while
being still efficient enough to be employed in large FE domains.

3.1 Constituents and structural features11

3.1.1 Constituents

Ordinary concrete consists mainly of (portland) cement, coarse and fine aggre-
gates, and water. In addition to these three constituents, small amounts of other
substances are possible to control specific properties of hardened concrete, but
can be elided here.

Cement Cement is the basic constituent of concrete; it binds the aggregates
together to form a hard solid. Originally, the name “portland cement” was a
trade name: the material was patented by Joseph Aspdin, in England, 1824, and

11 If not explicitly mentioned, the information contained within this section is taken from
references [46–49].
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got its name due to its similarity with natural limestone, quarried near Portland.
Today “portland cement” designates a group of closely related cement types
and is by far the most widely used cementitious binder [50]. For the purpose of
this thesis, it is sufficient to give in the following only a very brief and concise
overview of its ingredients and hydration, since the primary focus is on hardened
cement and its mechanical behavior.

In an unreacted dry state, cement is a fine, gray powder. It is obtained mainly by
vitrification of dehydrated limestone with small amounts of clay, marl, chalk, and
shales at very high temperatures (1400–1500◦ C). During the burning, complex
chemical processes take place, passing different phases and intermediate products.
The final product that leaves the kiln is called “clinker”, dark gray porous nodules,
with diameters between 6 and 50 mm. After cooling, the clinker is ground to a
fine powder and small amounts of gypsum are added to control early reactions
of tricalcium silicate during hydration. The final mixture of clinker and gypsum is
labeled “cement” and consists basically of five different calcium oxide compounds
listed in the appendix, Page 219.

When mixed with water, “hdyration” begins – an exoergic reaction between the
water and the cement constituents – resulting in several “hydration products” by
diffusion of water through the oxides. The final, hardened reaction product is
commonly designated as “cement paste”. Again, the different reactions are very
complex involving distinguished phases and reaction products over time. It suffices
here to note that out of the hydration of the two predominant compounds
tricalcium and dicalcium silicate (C3S and C2S), two phases, namely calcium
silicate hydrates (C-S-H) – or cement gel – and calcium-hydroxide (CH) – or
portlandite, emerge. Together with water, these are the main constituents on the
microscale. Gradually, the hydration products fill the room previously occupied
by water. Broadly simplifying, longer needles or thin sheets evolve first (C-S-H
from C3S reaction) and later, shorter ones take up the remaining space (C-S-H
from less reactive C2S reaction). Hexagonal shaped oriented CH crystals with
poor mechanical properties fill the abiding room and occupy up to 25 % space.
In contrast, the amorphous, porous C-S-H phase with indifferent morphology
predominates and constitutes 50–60 % of the final hydration products. Although
many issues are still unresolved and the complex reaction process is even today not
yet fully understood in all its diversity, it is widely believed that the nanostructure
of cement gel dominates the mechanical properties of concrete [51].

The amount of water in relation to the cement mass, the w/c mass ratio, strongly
influences the chemical reaction. It is therefore one of the most important factors
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with regard to concrete’s strength, since this ratio determines the final porosity
and therefore the mechanical properties. After complete hydration, the added
water is either chemically bound (“hydration water”), physically adsorbed or free
[52]. The physically adsorbed water is attracted to surfaces of other particles
without forming further reaction products and occupies especially the gel pores.
Complete hydration of cement requires approximately 25 % of its mass as water,
but since roughly one third of the added water is adsorbed and therefore not
available for reaction, in general around 40 % water (related to the cement mass)
must be supplied for a complete reaction. However, even in this case, the water
may not reach the core of all cement particles and some unhydrated remnant
abides.12 If less than 40 % water (i.e. w/c < 0.4) is supplied, unhydrated cement
grains remain in the final mix. If – on the other hand – more water is added, the
excess water stays in capillary pores. During drying, they may drain and increase
overall porosity.

Aggregates Cement is generally combined with a large amount of filler ma-
terial, the aggregates. In fact, only the combination of (hardened) cement and
large aggregates qualifies for the designation “concrete”. In standard cases up
to roughly 70–80 % of the total volume of the final blend is constituted by aggre-
gates; not only for economical reasons, but further to increase the dimensional
stability and wear resistance. These filler particles are mainly from natural rocks
and either as gravel or as crushed particles added to the blend. However, any
chemically pure material that is free from impurities on its surface can be used
to achieve good cohesion with cement. The shape and material of deployed
aggregate in real concrete has mainly pragmatic consequences; fresh concrete is
more workable with round, almost spherical aggregates. Round particles have
furthermore less surface to volume ratio and need less cement to be covered.
Finally, simply the source of supply may be decisive.

One commonly distinguishes between “coarse” and “fine” aggregates. There
are different definitions which specify the limit between 4.0 and 4.75 mm.13

12 The reaction begins on the outer surface of cement grains and soon builds up a hardly
permeable sheet with growing thickness. The subsequent reaction is then controlled by
diffusion and slows down considerably. In fact, hydration never stops completely. Strictly
speaking, it continues throughout the lifetime of concrete, explaining its strength increase
with time [53].

13 For ASTM, coarse aggregates are those passing sieve openings in the range of 4.75 to
50 mm and fine aggregates from 0.075 to 4.75 mm. The European standard differentiates
between “rock flour” – particles passing a sieve opening of 0.063 mm; “fine” with an upper
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Hardened cement paste with fine aggregates only is commonly labeled “mortar”
or “grout”, but this term is not infrequently used in a more narrow sense for
cement paste with sand only.

Although mainly intended as an inexpensive filler material, the type and grading
of aggregates have an influence on the properties of concretes. While there are
direct effects on overall dimensional stability, wear resistance, workability14 and
the elastic properties of hardened concrete, the effects on concretes strength are
more indirect15: since the amount of aggregates dictates the necessary quantity of
water, the hydration and consequently the strength may be influenced. The use of
finer aggregates entails a lower porosity, while larger aggregates with flat shape
promote a reduced cohesion between cement paste and aggregate. Aggregates
bind a water film around their surface which may accumulate under larger,
elongated particles as filled pockets of water. This effect, known as “bleeding”,
is abetted by poor mixing and engenders strongly reduced bonding properties in
these regions and shrinkage cracks. Structural effects may influence the post-peak
behavior. In experiments an increase of fracture energy with maximum aggregate
size was observed and an increased brittleness of such concretes ascertained.
The reason seems to be aggregate interlocking, as well as crack bridging and
branching, as will be detailed below.

3.1.2 Structure

Hydration and the mixture of cement paste and aggregates yield a very specific
micro structure, which features porosity, a weak transition zone on the aggregate-
matrix interface, and promotes microcracks and residual stresses, as detailed
below.

sieve opening not larger than 4 mm; and “coarse” aggregates with the lower sieve opening
not less than 2 and the upper sieve opening not less than 4 mm, acc. to EN 12620.

14 Ease of flow, consistency, filling of small gaps.
15 Actually, contradictory findings exist in the literature. Whereas, e.g., [54] observe an increase

of tensile strength with increasing aggregate size, they refer to other works in which the
opposite was observed. In [55] an enhancement of the tensile strength is reported up to a
maximum diameter of 8 mm, for larger values the strength remains constant. Concerning
compression, [56] document a growth of strength with larger particle size. On the other side
[57] and [58] observe again an antipodal effect. In the same way, [59] cites early research
results that confirm the decrease in compressive strength with increasing aggregate diameter.
Their particle based mesomechanical model support this position.
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Porosity Concrete is a porous material and its porosity exerts a major influence
on its strength. Three levels of pores have to be distinguished:

1. Gel porosity The cement gel is not a dense structure, but has in contrast
a porosity of up to 25 % and is more an “interconnected network of void”
([60, p.509]). Gel pores occur in the size of 1×10−7 to 1×10−5 mm. Being
an inherent property of the cement gel, they are independent of the w/c
ratio and cannot, or only marginally, be influenced. Water is adsorbed in
the voids and remains within the material, even under ideal conditions.

2. Capillary porosity These pores, in the size of 1×10−5 to 1×10−1 mm,
are highly depended on thew/c ratio. If too much water is available, water-
filled spaces remain after hydration. For w/c >0.6 even a continuous
capillary system evolves, which, after draining, allows the intrusion of
fluids and gases into the concrete. Capillary voids are irregular in shape
and are usually filled by “pore solution”, a solution of alkali hydroxides.

3. Air voids Air voids emerge if air is entrained during pouring and mixing
or if larger air is entrapped during pouring. While smaller entrained air
voids have diameters of around 0.06 to 1 mm, entrapped air voids of
irregular shape can be even larger. Especially these larger lacunae have a
major impact on the strength, as was demonstrated in [61]. The authors
investigated the flexural strength of beams with different degrees of
macropore sizes and found a much higher flexural strength for beams
without larger pores, showing simultaneously no dependence of the total
porosity. It is ergo the existence of larger voids, and less the porosity of
the microstructure, which leads to a drop-down of strength. The same
fact was maintained additionally in [62].

Although porosity generally decreases mechanical strength, pores play a vital role
in the resistance of concrete to freezing and thawing. For exposed concretes,
a minimum amount of pores is therefore necessary and regulated in national
standards.

Interfacial transition zone The interface between aggregates and hydration
products – the so-called interfacial transition zone (ITZ) – has received a consid-
erable amount of interest. It is meanwhile proven and accepted that this zone
constitutes the weakest link in the material. For the rather small cement grains
with a size between 1 and 100 µm, the much larger inclusion particles (diameter
in mm range) form wall-like obstacles within the blend. Due to the “wall-effect”,
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only small cement grains can be packed in the vicinity of the aggregates. This
fact, together with the water film around aggregates due do adsorbed water
and bleeding, leads to a higher w/c ratio in this region, while the ratio in the
bulk matrix is therefore reduced.16 The increased w/c ratio results in a noticeably
porous transition zone with a preference for oriented CH panel crystals that fill
the space between small C-S-H crystals [47, 63, 64]. Whereas the thickness of
this zone is initially up to 100 µm, within some time17 the zone of high porosity
reduces to around 15–20 µm – corresponding to the average size of the cement
grains [63, 64]. It should be emphasized here that the ITZ is de facto a transition
zone, not a sharp, well definite layer with specific properties, but a nonuniform,
heterogeneous zone with considerable statistical variance.

Of course, the actual properties and structure of the ITZ depends on the aggregate
type. Despite the roughness of the surface of the particles [66], some aggregates,
such as limestone, have been found to react with the hydration products and thus
increase the local porosity. Although some pores are later filled with subsequent
reaction products, the ITZ has still been found weaker than in other cases [67].
Besides the ITZ between cement and aggregates, further ITZs appear in concrete,
e.g., between unhydrated and hydrated cement paste or additives and the
hydrated cement paste. With regard to the macromechanical properties, however,
the ITZ between cement and coarse aggregates is the most important one. If
considering only mortar, here as well the ITZ between hydration products and
sand particles is of major importance and has been claimed to be the dominating
effect on the mortar strength [66].

Not only is it a region with poor strength properties, the ITZ is also a common
location for flaws such as microcracks, which are especially present within these
zones even before the concrete is strained. Under loading, these cracks propagate
and coalesce. Post-mortem investigations in compressed cylinders revealed that
the largest amount of cracks is found in the ITZ [68]. There are two main failure
types, as stated by Königsberger et al.: (a) ITZ-aggregation separation, leading to
a clean separation of matrix and aggregate, and (b) ITZ-failure, where a slight
cover of cement is visible on the aggregates surface afterwards [69]. It seems
that the bond between aggregate and cement paste plays a vital role in these
cases. Especially for rough aggregates, typically ITZ-failure is observed.18 Focusing

16 It has been indeed shown by fluorescent light micrographs that bulk porosity decreases
when more sand is added by simultaneously keeping the total w/c ratio constant [63].

17 56 and 81 hours have been tested in [65], respectively [64].
18 Guinea et al. confirmed these findings by preparing aggregates with epoxy or bitumen to

purposefully modify the bond strength. They show that bond strength is an important factor
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on a single ITZ and not on complete structures, Zimbelmann already earlier
observed the two mentioned failure mechanism, but related them to the age of
the concrete. For young concrete (less than 80 days), ITZ-failure was observed
more commonly; for older concretes typically the adhesion within the contact
zone was lost [64]. These results indicate a change of the ITZ over time. Further
research revealed that, over time, the amount of C-S-H in the ITZ increases, owing
to slow chemical changes. Thereby, the ITZ eventually exhibits stronger properties
than the bulk paste! Nevertheless, as a matter of fact, the ITZ should be regarded
as the dominant limiting structural link of concrete.

Micro cracks and residual stresses Early research by Hsu et al. lead to the
insight that pristine concrete specimens exhibit a large concentration of initial
microcracks, see Figure 3.1. They may be traced back to thermal stresses during
hydration and to shrinkage. Considerable heat is produced during hydration and
thermal gradients appear in the hardened material. Under such circumstances,
not only the substantial disparity of the thermal dilation coefficient between
aggregates and cement paste, but also their different stiffnesses cause noticeable
stresses. Shrinkage may be attributed to the change in moisture content (either
due to environmental change or – here more important – self-desiccation),
chemical reactions and physical interactions of the hydration products with the
pore solution [71]. All these effects contribute to the internal stress distribution
in the cement matrix and engender the initiation of visible surface cracks [72],
and more importantly microcracks in the ITZ [73]. These should be regarded
as a major factor of the limited capability of concrete to carry tensile stresses.
Besides initial cracks, the aforementioned effects lead to residual stresses within
the concrete [53], which potentially direct crack propagation [72]. Table 3.1 lists
the main crack formation sources as given in [62].

for overall strength and failure behavior in three-point bending tests. With increasing bond
strength, more particle itself break during loading, whereas debonding was the major failure
mode for weak bonds. Weak interfaces have been found to reduce compressive strength to
30% of the normal value [70].
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Figure 3.1: Microcrack map of a specimen before loading. Figure redrawn from Figure 2 in
[68]. Dark blue bold lines indicate cracks. 12% of the aggregate perimeter is initially
cracked.

Stage within strength
development

Typical discontinuity

Pouring and compaction Compaction pores
Fresh concrete Bleeding cavities
Hardening concrete Thermal cracks, chemical and capillary

shrinkage cracks
Drying concrete Hygral shrinkage cracks
Loaded concrete Interfacial cracks, crack growth

Table 3.1: Crack formation at characteristic periods in concretes lifetime, according to [62].
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3.2 The general behavior of concrete under
loading

Two different aspects contribute mainly to the distinct material response of
concrete under stress and strain: On the one hand, the interaction between stiff
aggregates and a softer cement matrix leads to local structural effects such as
stress concentrations and redistribution. On the other hand, microcracks play a
vital role in the behavior. A thesis committed to the fragmentation of concrete is
interested mainly in the failure behavior, which will be discussed in the following
under the rubrics of loading rate and the most important stress states.

3.2.1 Static loading

Failure under tension

On a macroscopic perspective, the stress-strain curve of a concrete specimen
loaded under tension, initially reveals a proportional increase of stress with
strain, which becomes nonlinear only shortly before reaching a maximum value,
Figure 3.2. This value marks the ultimate tensile load the specimen can bear
and the corresponding nominal stress value is known as the tensile strength, ft.
It is reached roughly at 100 microstrain for standard concrete [74]. The initial
inclination of the stress-strain path corresponds to the Young’s modulus which is
roughly around 35 GPa with a Poisson ratio between 0.15 and 0.25. Although
ft is widely taken as a material property, mesostructural effects, such as internal
stress distribution, flaws, notches etc. hamper the hypothesis that the measured
macro stress can be really regarded as a material parameter. Additionally, it has
been widely observed that the experimental set up has a tremendous influence
on this value.19 In general, the measured value of ft is a “system parameter”, a
combination of material and structural response and esteemed to be lower than
the actual material strength [49, 75–77]. Nevertheless, this value is commonly
used as material property in design and modeling.

19 Kühn has shown in detail that the strength values show a significant scatter for different
batches, degrees of dryness, specimen geometry and loading conditions [75]. For a discussion
of the influence of the load application systems (plates, brushes etc.) see [49].
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Figure 3.2: Schematic view of the stress-strain diagram under uniaxial tension, following [76].

At peak stress, or even just before, existing microcracks start to grow or to
emerge from internal flaws. In some plane of the specimen the limit strength
is eventually reached when several growing microcracks have coalesced to one
(or more) discernible mesocracks – “geometrical discontinuit[ies] that separate
the material” ([78, p. 45]). With further loading this crack grows continually to a
macrocrack and eventually separates parts of the specimen.

In the basic understanding, crack growth is fueled in the “fracture process zone”
(FPZ), a material region in front of the crack tip with an extension of around
three times the maximum aggregate diameter [79]. Here progressive microcrack
growth and fusion constantly prolongates the mesocrack towards the macrocrack;
refer to Figure 4.2 on Page 63 for a schematic view. All further displacement
measured in the specimen appears only in the FPZ – the cracking has “localized”.
Whereas a continuing crack opening is measured (for gauge “a” in Figure 3.2),
the rest of the specimen is unloaded (gauge “b”). If the experiment is done under
displacement controlled conditions, one observes for increased displacements
still the ability of the specimen to carry a diminishing load. This gradual loss of
the mechanical resistance is marked by a decrease in the stress-strain diagram.
It is labeled “tensile-softening” [80] and is a characteristic for concrete and
comparable quasi-brittle materials. It can be related to the aggregate structure
and mesoscopic crack patterns. Stress is transferred in this post-peak branch by
friction between crack surfaces, aggregate interlocking, debonding and crack
bridging [70, 72, 74]. Due to the fact that the post-peak branch is actually
not a strain, but a crack opening which occurs only in a specific, local zone,
it seems appropriate to handle this branch uniquely as a stress-crack opening
displacement relation, see Figure 3.2, right. The crack opening, δ, is defined as
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the total deformation minus the elastic portion.20 The area below this curve is the
energy dissipated during cracking and labeled appropriately as “fracture energy”.
It is defined as the required quantity of energy necessary to generate one unit
area of a continuous crack [81]:

GF =

∫ δc

0

σdδ (3.1)

It has been observed that cracks propagate mainly around aggregates and group
of aggregates. This explains the fact that the fracture energy increases with
increasing aggregate diameter – the cracking is more tortuous. Interlocking and
tilting of crack surfaces is more pronounced and more energy is dissipated [49].

Meanwhile, experimental findings by van Mier question the above described
hypothesis of the crack growth in the FPZ [72]. Although the existence of microc-
racks has been indirectly measured in rock by acoustic emission technique, the
dictum of a “cloud of microcracks” in front of stress-free cracks appears to be
only partially correct. Instead, a more refined model includes a “bridging zone”
between the original FPZ and the stress-free macrocrack. The actual crack process
seems then to be best described by three stages:

1. growth of larger, isolated mesocracks in the vicinity of large aggregates,
nurtured by local fracture process zones. It is this stage in which the
most energy is released and which leads to the initial drastic drop in the
σ − δ-curve.

2. growth of a continuous crack structure – the bridging zone – which
consists of several (macro)cracks, which partly overlap, branch, combine,
shield or are bridged. Planes of cracks branching off the main (final)
fracture plane, have been experimentally observed, e.g., [82, 83].

3. failure of the crack interface grain bridges leads to “stress-free” macro-
cracks.

As a major implication, one has to maintain that localization occurs not in one
direction, but is a complex three-dimensional phenomenon.

The fracture energy has become a vital parameter in the modeling of concretes
failure. Again, this parameter is a mixed property of structural and material
response and shows a large scatter. Furthermore, the maximum crack opening is

20 For the more general case, δ is the accumulated crack opening displacement of all cracks
within the fracture process zone [81].
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more or less independent of the aggregate size, but in general difficult to obtain.
Values between 400 and 500 µm for normal concrete have been measured [74].
Since the maximum crack displacement defines the fracture energy, this value
depends to a noticeable amount on the assumptions of the experimenter and is
consequently not directly comparable. Nonetheless, Bažant et al. compiled the
results from a large number of published data. The mean value of 112 N/m fits
well in the interval of 65 to 200 N/m mentioned in [74].

Failure under compression

Under uniaxial compression, in general a similar macroscopic behavior is observed
as under tension, albeit with some noteworthy differences. A linear increase
of stress with strain is observed only up to approximately 30 % of the limit
load [87] with a Young’s modulus more or less equal to tension [74]. After
reaching this load level, especially the initial bond cracks evolve and propagate in
a stable manner. Between 70 and 90 % matrix cracks develop. They bridge mainly
between large aggregates and connect bond cracks. Besides further propagation,
cracks may be even arrested if they run into zones with higher strength or less
stress. For more than roughly 90 % ultimate load, unstable crack propagation
occurs. From this point on, an increasing nonlinearity is measured up to the

I

II

III

30 %

70 %

Figure 3.3: Evolution of strains under uniaxial strain, according to [85]. Right: Crack pattern in a
200 mm long specimen with frictional constraint (redrawn from Figure 6 in [86]).
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peak from which a softening branch deploys, but less steep than under tension.
Localization occurs frequently at several inclined cracks, not only one. The peak
value in the stress-strain diagram is denoted as compressive strength, fc.

With regard to the strains, an interesting phenomenon is observed, namely the
dilation21 of the volumetric strain at some point, which has been identified as
the onset of unstable crack propagation. Figure 3.3 shows a typical stress-strain
diagram for a specimen loaded under uniaxial compression. In the first stages
the total volume is reduced, whereas the lateral strain ε2 suddenly increases. The
resulting growth of volume – with Poisson’s ratios around 0.5 – is ascribed to the
onset of the development of the matrix cracks [68].

While the micromechanics under global tensile stress are relatively easy to un-
derstand, they are much more complicated under compression. Since macro-
scopical surface splitting and inclined shear planes occur as typical failure modes
(Figure 3.3, right) and shear cones are retrieved if the specimen is manually
disintegrated after testing [80], the existence of mode II cracking was postulated.
However, this issue (and even more mode III) is strongly debated and there are
cogent indicators that mode I cracking is the main failure mechanism in all cases,
as discussed thoroughly in [72] and [89]. Indeed, attempts to achieve states of
pure shear have failed, since as soon as slight tension is present, cracking is
dominated by tensile cracks. Moreover, several hypothesis recurring to complex
stress fields as a result of the heterogeneous microstructure, are able to explain a
predominance of mode I failure, even in mixed-mode loading. E.g., Figure 3.4
shows the theoretical model developed by Vile [90]. Below and above an ag-
gregate in loading direction, a zone of triaxial confinement emerges due to the
different stiffness properties. The softer matrix “flows” around these conical
zones and shear planes develop. But on an even smaller scale these shear planes
have been identified as arrays of very small mode I cracks, which weaken the
mortar matrix [91]. Subsequently, “shear fracture” along the oblique array path
occurs as a secondary effect. Stepping back one length scale, the structural
interplay of matrix and aggregates promotes again mode I cracking, as Figure 3.5
highlights. The stiffer aggregates transfer the load F to slightly displaced particles.
As a result, tensile stresses develop in the matrix between these particles if the
movement of the lower aggregates is not impeded by lateral confinement (i.e.
P = 0 in Figure 3.5).

21 Although the term dilation is in most cases used synonymously with volumetric strain, it
should be – to the opinion of some – reserved to the cause of increased volumetric strain,
namely the approaching and eventually rolling over of aggregates [88].
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Figure 3.4: Left: Failure mechanism model for a single stiff aggregate particle embedded in a soft
cement matrix under compressive load, after [90, 92]. (1) potential “shear” plane;
(2) broken bond, either due to stress or initial microcracks; (3) “flow” of soft mortar
past hard particle; (4) bond intact, mortar restrained by aggregate texture; (5) triaxial
compression due to mismatch of Poisson’s ratio; (6) array of mode I cracks. Right:
Experimental confirmation with steatite spheres by Stroeven [93, p. 469].

Multiaxial stress states

With regard to multiaxial stresses, it is obvious that a lateral force on the particles
in Figure 3.5 has a positive impact on strength. It hampers the movement of
the particles and thereby constraints the amount of tensile stresses in the matrix.
If cracks are already present, the lateral confinement increases the frictional
resistance against sliding crack surfaces and promotes aggregate interlocking
[80]. Indeed, a considerable amount of test data clearly show an increased
strength of concrete under confinement. Even if only small lateral pressure is
applied, the stress approaches a constant value after a certain degree of softening.
With increasing confinement, the softening part diminishes and the stress-strain
curve exhibits characteristics of a plastic, i.e. ductile, material behavior. This
phenomenon has been labeled “brittle-to-ductile-transition” and is an important
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Figure 3.5: Left: Effect of particle stacking in concrete under compression. Right: Exerting confin-
ing pressures leads to a higher load-bearing capacity due to compressive stresses in
the cement paste. (Both sketches after [49]).

aspect when considering high dynamic loading. Shock waves generally lead
to very high pressures in the material and therefore to a completely different
mechanical behavior of concrete than in unconfined states. For ease of discussion,
let p̂ denote the normalized confining pressure, p̂ = p/fc. Then the transition
occurs in the interval of p̂ = 0.6. . . 1.5 [94–96]. In combination, the failure pattern
changes. Already for low confinements the number of cracks reduce drastically
to “well individualized, open fractures” [95, 96]. For increasing confinement
(p̂ ≈0.7), the cracking is smeared, cracks less opened and slightly stronger
inclined, whereas for higher confinement no visible mechanical damage was
observable in the tests of Jamet et al. [96]. In this state diffuse microcracking
is spread throughout the specimen. Obviously the cement matrix has lost its
cohesive capabilities and disintegrates easily [97]; the material state resembles
a powder with embedded (but debonded) larger aggregate particles. Not only
for compressive, but likewise for tensile dominated states the “brittle-to-ductile”
transition is observable [98].

Concerning the highest regime of confining pressures up to and more than
400 MPa – which can be achieved only by a few machines world-wide – dis-
crepancies in the results of different working groups are discernible. Whereas
a strength increase is observable even for high pressures in references [99] and
[100], Williams et al. maintain that above p̂ ≈11.5 a limit stress is achieved
and no further increase visible beyond. With their own words, the material “is
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approaching full saturation after which the strength remains essentially constant
with increases in confining pressure. [. . . ] Concrete will not continue to gain
strength with increasing pressure when all of the air porosity in the concrete has
been crushed out, i.e., when void closure is reached.” ([101, p. 17]) Currently, it
is not clear how the discrepancy can be explained and it is perhaps a sagacious
position to ignore this fact for now with the comment that this thesis is more
interested in tensile stress states under low confinement.

Figure 3.6: Schematic failure surface of concrete in the principal stress space together with
typical failure modes and crack patterns under specific stress states. Figure redrawn
from [102].

As an important stress state, especially hydrostatic compression has received
considerable attention. Hydrostatic compression tests produce important data
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for direct use in equation of states. Here, the results of Poinard et al. [97] shall
be reviewed as representative for similar investigations, cited already above.
Their tests show a strong nonlinear stress-strain path with three stages during
hydrostatic compression, indicated by the development of the bulk modulus of
the loading/unloading branches:

1. Elastic regime: Up to the elastic limit, p̂el, the behavior is dominated by
the cement matrix and remains elastic.

2. “Crush-regime”22: Reaching the elastic limit23, a strong decrease of the
tangential bulk modulus can be observed up to a certain second transition
point, p̂por. Within this loading regime, i.e. p̂el < p̂ < p̂por, pores are
irreversibly compressed and extensive microcracking of the cement matrix
occurs.

3. Densified regime: If p̂por is reached, the stiffness again increases. This
pressure marks the complete closure of voids. The material’s internal
structure is destroyed and it behaves as a granular stacking arrangement
which densifies under external pressure.24 Note that this point is hardly
visible directly in the pressure-volumetric strain diagram, which exhibits a
continuous increase in the tangential bulk modulus.

Numerical values for the transition points differ between tests and concretes, but
may be – considering additionally the high-quality results of [101] and oedometer
tests of mortar mentioned in [104] – given in the following range: p̂el ≈ 2/3. . . 1
(confirming the earliest reported value of 0.6 in [98]) and p̂por ranging between
p̂por ≈5. . . 9.

Figure 3.6 schematically shows a failure envelope of concrete together with
simplistic fracture patterns under different stress states.

3.2.2 Dynamic loading

It has been observed early that the behavior of concrete materials depends
strongly on the rate of the applied load. While the effect on the elastic properties

22 Term from Williams et al. [101].
23 While this point is distinct in the pressure-compression plots of some test results, e.g., [103,

104], it is less sharp in other tests.
24 Bažant et al. give a different – or maybe supplementing – physical reasoning: Stage three is

there assumed to be determined by closing of capillary voids [103].
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(e.g., Young’s modulus) is only moderate, the strength values, especially ft, show
a drastic increase under higher strain rates. Meanwhile a large body of test results
exist, which undermine this fact. Commonly, this strength increase is expressed
by the so-called “dynamic increase factor” (DIF ), the ratio of the apparent
dynamic strength to the quasi-static value:

DIF =
fdyn
fstat

(3.2)

Figure 3.7 shows the available test data for DIFt (tension) and DIFc (compres-
sion) from literature.
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Figure 3.7: Dynamic increase factor for tension and compression. See Appendix A.4 for an
enlarged figure with distinct symbols and literature sources.

While it is out of question that a strength enhancement is observed, it is still
debated what its origin is. Is the strength increase an inherent material property?
A system property, i.e. a combination of material and structural property, or
even simply a pure artifact of the testing set-up? Explanations and reasoning for
all views exist abundantly; most researchers take either the first or the second
position. No efforts will be made to wade into the full scope of literature on
this subject, but some major findings and interpretations should be given in the
following paragraphs.
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There are several effects that have been brought into play. They may be broadly
distinguished into thermo-activated, viscous, and structural/inertial effects [105].
In the case of compressive tests, almost all researchers now accept a structural
effect due to inertia confinement – the transition from uniaxial stress to uniaxial
strain state, as brought forth by Bischoff et al. [106]. Due to inertia, a rapid
radial extension is hampered by the Poisson effect. In turn, a hydrostatic pres-
sure emerges around the core of the specimen, thereby effectually increasing
its strength. Experiments with different geometric ratios and even hollow spec-
imens confirmed the importance of these effects [107]. Additionally, frictional
constraints between specimen and testing set-up may be a further source of
confinement [108], as already known from static tests [49]. Recently, numerical
investigations have been used to posit that volumetric plastic strains constrain
emerging shear bands, thereby hindering the propagation and delaying failure
[88].

While these effects are to be expected under compressive failure, they are not
able to fully explain the strength increase in tensile mode. One major, but still
poorly understood rubric, classified above as thermodynamic effects, concerns
the role of microcracking. E.g., Lu et al. allege this to be the major factor and
argue boldly for an intrinsic material property [109]. Their position is supported
by several aspects brought up in literature, featuring the role of micro cracking:

• Failure occurs no longer at the “weakest link”. Instead, higher rates tend
to produce a more even stress distribution in the specimen and to reduce
stress intensities around micro defects [75, 110]. Overall, a strength value
corresponding to the average strength of the specimen is measured [75,
111].

• Cracks propagate through stronger aggregates since the crack surfaces
exhibit a higher momentum if loaded faster [112]. This effect explains
why the strain rate effect is less pronounced in higher strength concrete,
due to the smaller difference between strength values of aggregates and
matrix.

• Reinhardt et al. argued on the basis of a linear elastic fracture mechanic
model of a simplified cracking process that the energy supply to the crack
processing eventually is too high to be absorbed, promoting an equilibrium
around the crack tip. Energy is stored there as kinetic and deformation
energy and changes the stress distribution. This concept further explains
the difference between observed maximum crack propagation velocity
and its theoretical limit. But if the crack propagation velocity is limited, the
stress in the surrounding material further increases and additional cracks
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are activated, or existing cracks branch more often25 and leave a more
tortuous crack surface [116].26

Finally, since its first suggestion by Rossi [120, 121], the role of moisture has been
widely acknowledged to constitute a viscous effect. Experimentally shown by
Reinhardt et al. [122], and later by Ross et al. [123], Rossi referred to the “Stefan
effect” as a qualitative explanation for the different strength enhancement of
wet and dry samples. If two plates with a fluid film between are pulled apart,
a reaction force proportional to the pull velocity will emerge. It is argued that
free and adsorbed water within the pores behave similarly. This effect might
explain why the DIF is less pronounced in concretes with higher strength, since
the w/c ratio of such mixes is generally lower then in ordinary concrete. As a
second argument, Rossi pointed to the increased occurrence of intergranular
failure. Since the aggregates cannot be strengthened by the Stefan effect (due
to absence of water), the difference in apparent strength between matrix and
aggregates is reduced. The effect should (a) delay the creation and propagation
of microcracks and (b) counter the advancement of macrocracks after localization.
It seems, however, that the influence of moisture is restricted to a strain rate
regime ε̇ <1.0 1/s [124].27

There might be further effects stemming from concretes micro structure, not
yet understood, or even investigated intensively. Some results demonstrate a
correlation between the material’s porosity and the DIF , respectively energy
absorption [126]. Mayercsik et al. conjecture that collapsing pores bring forth
internal contact surfaces and a temporal change of stiffness. Even air flow in and
between pores may play a role [127]. Other findings indicate an influence on the

25 Replicated bifurcation of the main crack into multiple small microcracks along propagation
has been shown to explain the apparent fracture energy increase in PMMA [114, 115] and
might be a contributive factor for concrete as well, though much more difficult to prove
experimentally.

26 E.g., Grote et al. compared the behavior of cement paste, mortar and concrete and found
that the strength enhancement of mortar is less than that of concrete, most likely due to the
absence of aggregates. They have a “reinforcing” effect on concrete [117]. Numerically this
finding was confirmed by mesoscale simulations of Chen et al. [118] and Song et al. [119].
The latter authors showed that the phase stresses in the aggregates increase considerably
with strain rate, which – in their opinion – constitutes an inertia independent strength
increase contribution.

27 Relating to the humidity of concrete, Cadoni et al. refer to differences in stress wave propa-
gation. In dry concrete, stress waves might be reflected at defects; multiple reflections then
might increase the overall stress state, whereas the wave propagates with less interference
in a wet specimen [125]. Although physical and inventive, this hypothesis has not been
supported so far by other researchers.
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DIF by the aggregate type used [128], but there is still much research to do
before coming to firm conclusions.28

Furthermore, some of the scatter of the data (Figure 3.7) may be well explained
by the fact that measurement or derivation of the strain rate is quite delicate.
Differing definitions, gauge positions, and approaches lead to noticeable disagree-
ment between results [138]. Additionally, the rate of the assumed quasi-static
strength differs among authors by several magnitudes [106] – not to mention the
nonidentical experimental set-ups. Kühn, who devoted a considerable amount
of work in a unique analysis of the Split-Hopkinson-Bar (SHB) test set-up, goes
a step further and advocates the position, that the strength increase is purely a
phenomenon evoked by the experimental set-up and inapplicable assumptions
for evaluation.29 Although surely an extreme position, he was able to show that
alone by different evaluation methods, measurement errors, filtering of raw data
etc. gross differences in the final values emerge. He insists that the different
techniques used by the different groups make a direct comparison impossible.
It is surely important to keep in mind that almost all tensile tests of concrete
are indirect tests, relying sometimes on simple theoretical concepts. And though
the work of Forquin et al. does not endorse the extreme view of Kühn, it puts

28 The quantitative contributions of the different effects are likewise unresolved. E.g., Grote
et al. assign roughly 60 % of rate enhancement to the effect of hydrostatic pressure and only
40 % to an intrinsic material property, whereas Cotsovos et al. vote for purely inertial effects
[117, 129]. Others again insist that only the second, steeper increase of the DIF should
be explained by structural reasons, e.g., [130]. Similarly doubtful is the strain rate range in
which each effect should be dominant. As a limit rate beyond that inertial effects become
dominant in pressure tests, Cusatis, as well as Gary et al., sets the limit already at 10 1/s,
while Bischoff et al. mentions 30 and Guo et al. 40 1/s [106, 131–133]. Agreeing with most
researchers that the unifying explanation for the rate enhancement is lateral confinement,
Flores-Johnson et al. maintain it is responsible for the sharp increase only, and not relevant
below rates of 100 1/s [108]. However, this pronounced limit – again – is located differently.
For tension, Malvar et al., as well as Levi-Hevroni et al. define the transition point at 1/s, Ross
et al. at 5 and the CEB bulletin at 30 1/s [123, 134–136], whereas in [137] two transition
points are defined. Likewise, for compression, the CEB bulletin follows Bischoff et al. with
the already mentioned 30 1/s, while [123] determines 60 1/s [123].

29 In his words: “Der Autor [. . .] geht dabei davon aus, dass der klassische Dehnrateneffekt eine
rein strukturelle Eigenschaft ist, die nichts mit einer stofflichen Kenngröße zu tun hat.” ([75,
p. i]) and “Der Autor vermutet die Hauptursachen des vermeintlichen Dehnrateneffektes in
diesem Wechselspiel aus Prüftechnik und Prüfobjekt und der zu starken Vereinfachung bei
den den meisten Auswertemethoden zugrunde gelegten Annahmen. Die Folgen der lokalen
Trägheit und der inhomogenen Spannungsverteilung können in den meisten Fällen nicht
abgeschätzt werden. Dies beginnt bereits bei der korrekten Ermittlung statischer Kennwerte
und verschärft sich mit zunehmender Prüfgeschwindigkeit. Die Ergebnisse sind entsprechend
kritisch zu hinterfragen.” (p. 28)

43



Relevant aspects of concrete material and mesomechanical modeling – a review

likewise the validity of the standard evaluation of SHB results in question [138].30

Consequently, the DIFt seems to be generally overestimated.31 Indeed, it seems
to be unnoticed in current literature that the DIFt data compilation features a
group of more recent data – indicated in the figure as dark blue dots – pointing
to higher DIFt than data before 1998. The newer data have been all generated
by SHB set-ups, being the only technique available for this strain rate regime [87].
This observation nurtures further the assumption that the DIFt is (at least partly)
a system-property, depending on the complete experimental set-up – not only
on the testing device, but surely as well on specimen size and shape [107, 140],
hence obscuring the material property (if any).

Numerical analysis is certainly a possibility to gain more insight into the issue.
But again, no clear picture emerges. If the strength increase is not a material
property, a rate-independent model should be able to replicate experimental
results sufficiently accurate. That this is the case is claimed by some for com-
pressive SHB tests, e.g., in [108, 139, 141]. For tensile loading, results seem to
preponderate, which indicate that rate dependency should be modeled as part
of the constitutive model, e.g., [142–144]. Consensus exists at least to reckon
the moderate strain rate enhancement below ε̇ ≈1 1/s as a material inherent
“rate sensitivity”, e.g., [131, 145, 146]. But it is very difficult, if not impossible, to
come to a resolute conclusion. Modeling approaches, material model types and
idealizations are too different to be compared one by one. As the only certainty
currently one may hold that much more research has to be focused on this topic
until the issue is finally settled. For now it can be summarized that it is important
to validate ones own simulation models with experimental data. If the increase is
observed in the results, it may be of lesser significance why.

Besides the strength increase, the evolution of the failure strain and fracture
energy with strain rate is of importance for modeling fragmentation. While it
seems that an increase of failure strain up to at least 50 % is probable [147] (some
works indicate even a 3.5 fold increase [110]), comprehensive data is rare and
not in unison [148]. Refer to [75] for further discussion and relevant references.

30 The basic assumptions are: (a) linear acoustic approximation of waves, (b) linear elastic
material up to the point of spallation, (c) velocity rebound, measured as rear free surface
velocity, is generated by one single spall plane only. Forquin et al. furnish evidence that all
three assumptions are violated to some degree.

31 Similar arguments for the compressive tests have been risen by Song et al. They showed with
numerical analysis that the specimens exhibit a strong nonuniform stress and strain field for
high strain rates (beyond 100 1/s). The standard evaluation process hence overestimates the
DIFc for this rate regime [139].
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Regarding the increase of fracture energy, the available data will be presented
and briefly discussed in Section 4.2.3 on Page 81. Concerning the cracking and
fragmentation behavior, the experimental observations are clear. Increasing the
strain rate, cracking becomes much more diffuse, cracks branch more frequently
and the number of fragments aggrandizes considerably, see, e.g., [105, 149].

3.3 Modeling concrete

Having the complex micro structure and the different aspects of its mechanical
behavior now on the page, it should be obvious that a comprehensive mathemat-
ical description, likewise suited for all load cases and applications, is extremely
difficult – if not impossible. But with more specific situations in view, the macro-
scopic failure behavior of concrete can admittedly be modeled with remarkable
success. Driven by the increasing computational power, rigorous formulations for
numerical plasticity, and the growing field of continuous damage mechanics, a
plethora of concrete material models emerged – mainly between 1980 and 2000.
Starting with very simple descriptions, the models evolve more and more into
sophisticated descriptions able to capture the necessary effects to even model
the behavior under high dynamic loading.

Most models may be classified as phenomenological, which means that they try
to reproduce the material behavior observed on the macroscale by suitable math-
ematical descriptions of state variables.32 Although powerful in many applications
and (principally) accessible in their formulation, the choice, and parametrization
of the state variables remains always subjective, a concern aptly expressed by
Souza Neto et al.: “[D]ue to the difficulty involved in the identification of the
underlying dissipative mechanisms, the choice of the appropriate set of internal
variables is somewhat subtle and tends to be biased by the preferences and
background of the investigator.” ([28, p.75])

Indeed, many models share similarities and use only different mathematical
functions to fit the same observations. They lack in general fundamental mi-
cromechanical considerations. To cite two further important researchers in the

32 To mention just a few examples with focus (but not limited) to dynamic application: plasticity
models: [104, 150–155], continuum damage models: [133, 156–160]. Since newer models
tend to combine aspects from both descriptions, drawing a neat line between plasticity and
continuum damage models is often hardly possible.
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field: “[C]onstitutive models for concrete have been predominantly phenomeno-
logical in nature, rather than being based directly on first principles of mechanics.
The feeling is gradually growing strong, however, that this situation is not ideal.”
([161, p. 67]) And: “[A]t present, this approach has probably entered a period of
diminishing returns, in which a great effort yields only minor and insufficient im-
provements to the constitutive model. [. . . ] Lacking a complete micromechanical
model, one must partly rely on intuitive understanding of the physical mechanism
involved. To a large extent, this is an art.” ([162, pp. 944, 947])

In order to consider micromechanical mechanisms inherently, the last decades
have witnessed the raise of multiscale methods. While there are different mo-
tivations to apply multiscale techniques, one major advantage is the discrete
resolution of different phases of the material and thereby explicitly modeling the
interaction of the phases. As one of the pioneers in this field expresses: “the
physics is inherently multiscale; that is the different scales interact strongly to
produce the observed behavior” ([163, p. 2391]). Thus, instead of simply fitting
chosen experiments, multiscale methods are powerful tools to deliver a more
accurate and realistic behavior. van Mier et al. already 2002 forecast: “It would
be no surprise if future development of such tools leads to an approach where
large-scale concrete structures, at least critical components of such structures,
are analyzed directly at the particle level.” ([164, p.245])

There have been analytical attempts to formulate closed models based on mi-
cromechanical considerations33, but the fact that such models for concrete are
rare, reflects the enormous challenges which come along with such an approach.
A more widely embraced route is numerical multiscale approaches. Complex
macroscopic models are replaced by a full resolution of a lower material level
with less sophisticated material models. By the explicit consideration of different
constituents, phenomena due to the interaction of the phases are resolved di-
rectly and have no longer been somehow considered in an analytical expression.
Of course, the achieved simplification on the material level is bought by a strong
increase in computational efforts and it can be maintained with some boldness

33 The first who attempt to formulate a micromechanical model was Ortiz [161]. His model
relies on the theory of mixed continua and the insight that an applied force leads to
different phase stresses in cement and aggregate. The anisotropic damage model uses
compliance tensor of aggregates and matrix as state variables, which describe the amount
of microdamage. Similar developments are found later, e.g., in [165]. Indeed, the most
successful micromechanical model, the “microplane model” by Bažant et al., should be in
no case left unmentioned [162]. Even if it is seldom used in engineering practice (presumably
due to lack of implementation in relevant commercial codes), several application examples,
collecting static and dynamic problems, highlight the quality of the model [149, 166, 167].
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that multiscale analyses are always computationally much more expensive than
the application of homogenized material models. Besides the actual computa-
tional effort to solve the lower scale, the coupling of the scales always introduces
a certain overhead in the computation, not to speak about the complexities of
combining multiple different material scales.

Being appealing and seemingly simple at first glance, there are considerably
different approaches for multiscale analysis concerning two aspects: a) How the
lower material scale is resolved and b) how the different scales are numerically
combined. The remainder of this chapter and the next one are dedicated to the
first aspect with regard to concrete. After reviewing the different approaches in
literature, the next chapter details a synthesis of the findings and presents an
efficient description of concrete on the mesoscale. Chapter 5 then is dedicated
to the second aspect and proposes a formulation of how to combine the meso-
and the macroscale.

3.3.1 Relevant material scale

It was early recognized that a detailed and accurate description of concrete has to
include the peculiarities of the lower length scales not only by a phenomenological
description but by explicitly modeling the major constituents. This approach
delivers hence a much more micromechanical orientated description of the
behavior and one can expect higher accuracy in spite of utilizing less complex
models – although the above-cited quest for “stepwise linear analysis” by van
Mier et al. is still too optimistic for most applications. For the mechanical behavior
of concrete, inclusions (i.e. aggregates), microcracks and pores, are the most
important factors. These three elements are sufficiently resolved in the so-called
“mesoscale”. As its cognates “micro” and “macro”, the term “meso” stems from
classical greek, where the very common word µεσo simply means “between”. In
engineering or material science, the term “mesoscale” usually denotes a specific
scale of observation, where the detailed micro structure of a material is not yet
in view, but simultaneously the consideration of the material as homogeneous
on the macroscale is no longer sufficient – which is commonly applicable for
composite materials. Although the term “first-level microstructure”, used in
[168], aptly defines the mesoscale as the first scale below the macroscale, the
independent term mesoscale is meanwhile a commonly used terminus technicus
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– however with blurred size limits.34 For composite materials, it denotes the scale,
where the main ingredients of the composite are discretely resolved, but are itself
viewed as homogeneous. Figure 3.8 gives a descriptive overview of the scales
and their unique resolved features.

crystal
structure

C-S-H grain
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concrete particle
stack
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scale
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capillary porosity voids
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Figure 3.8: Definition of the three size levels of concrete after [62]. The specific sizes, as well as
the composition of the figure, have been taken from [49] and [46]. Note that the
transition between the three levels is blurred and not as specific as the figure may
indicate.

Since the first attempts in the early 1980s, with very coarse meshes, static
loading and 2D plane strain assumptions, the computational possibilities have
considerably increased and mesomechanical modeling of concrete (and of course
34 To the best knowledge of the author it were Zaitsev et al. who first mentioned the term

“meso level” with regard to concrete [169]. They described concrete as a “multi-level
hierarchy system” and distinguished between four scales: macro-, meso-, micro-, and
nanoscale. They defined each scale with regard to the size of a representative volume
element (RVE), which sufficiently describes the scale in view. Thus, the macroscale is seen as
the scale, where main inhomogeneities, e.g., aggregates are “large”. The corresponding
size of the RVE would be around 1×10−1 m – four times the dimension of the largest
inhomogeneity. On the next smaller scale, the mesoscale, the mortar volume between
the large inclusions is in view. A RVE has the size of around 1×10−2 m, encompassing
fine inclusions, such as aggregate grains. The RVE of the microlevel consists of hardened
cement paste and exhibits “big” pores, with a size of up to 1×10−4 m as main inclusions.
Correspondingly, the RVE size for this level would be around 5×10−4 m. Lastly, the nano
scale represents the material with capillary pores, with a diameter in the order of magnitude
of 1×10−7 m. Today this division is no longer used; instead only three scales – macro-,
meso- and microscale – are commonly referred to. (At least with respect to the structural
behavior. E.g., in [51, 170], reference is still made to four levels, by dividing the micro level
into Level I – the crystalline structure of C-S-H with two different properties – and Level II,
the C-S-H matrix as shown in Figure 3.8. They have been given in this form by Wittmann
already 1983, however, without mentioning specific scale limits [62].)
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other materials, such as sandstone [171], and alumina foam [172], to mention
just two examples) was used extensively by different researchers and working
groups. In almost all cases two (mortar and coarse aggregates) or three (mortar,
coarse aggregates, and ITZ) phases are resolved in the models, and until now
it seems that further subdivisions into more than these is not necessary [173].
However, besides the actual objectives of the different researchers, the modeling
approaches still differ strongly.

In the following an attempt is made to adumbrate what seems to be the most
effective way to accurately describe concrete on the mesoscale, considering the
main conclusions of other researchers. Although the finite element method is by
no way the only option to solve the underlying problem35, it is still the most widely
used; definitely one of the most versatile, available, and efficient methods and
naturally employed for considering (shock) wave propagation. It is therefore the
method of choice in this work. Due to the large number of works, the following
overview is by no means exhaustive but should provide the interested reader with
a broad picture of the different possibilities, while the next chapter describes
the approach taken in this thesis. Thilakarathna et al. have reviewed the state
of the art of concrete mesoscale modeling up to the year 2020 [187]. Besides
the references mentioned in the present work, the reader is referred to further
works cited in this exhaustive review paper. Although following basically the
same (natural) distinctions as in [187], a slightly different emphasis, additional
reasoning, and unmentioned aspects are added in the following review, while
trying to be as concise as possible where the reference to [187] suffices.

3.3.2 Geometric representation

The fact that simulating real engineering structures is the final aim, makes mod-
eling in 3D inevitable. Still today some researchers limit their models to two

35 The lattice grid method has been – especially with regard to concrete – applied successfully.
In these models, lattice grids – a network of beam elements – approximate the underlying
volume. Failure is made possible by simply removing single beams. One of the pioneering
works in this context was done by Schlangen et al. More sophisticated descriptions have been
used later, e.g., in [175–180]. Besides lattice models, models based on the discrete element
method (DEM), e.g., [80, 181–184], or related methods, such as the Rigid Body Spring
Method [185] and even combinations of DEM and lattice [186], have been successfully
used to analyze the failure behavior of concrete. [187] contains a detailed overview and a
discussion of unique (dis)advantages.
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dimensions, mostly with the assumption of plain strain conditions to reduce
computational and modeling efforts, e.g., [188–192], to name only a few. How-
ever, there are severe restrictions with regard to structural behavior. Whereas
Häfner et al. maintained that no significant difference in the case of the effective
linear material properties is observable [191], Hain et al. directly compared the
homogenized elastic properties of hardened cement paste obtained from 2D and
3D simulations. Their findings indicate that only the 3D representation of the
micro structure yields valid results [193]. Surely stress states with reference to
the third axes, as failure under biaxial and triaxial stresses, cannot be modeled
within a 2D representation [194]. But even in the case of uniaxial stress states,
the inability of 2D models to resolve complicated cracking networks entails a
potential underestimation of crack density and dissipated fracture energy [195],
an effect more pronounced for lower strain rates [144]. Yet in the case of high
rates a clear difference was shown in [173] and [196] for the case of compressive
loading. Here, the 2D model failed to account appropriately for the lateral inertia
confinement and hence wrongly predicted the dynamic increase factor. As men-
tioned above, localization is not only in one direction, but a three-dimensional
phenomenon [49, 76], affirming the remark of Zohdi et al. that in case of micro-
macro mechanics “three-dimensional simulations are unavoidable for reliable
results” ([197, p.6]).

Aggregate shape

As mentioned above, there are mainly two types of aggregates: gravel/rounded
and crushed. Whereas gravel aggregates are smooth and of round shape, crushed
ones exhibit sharp edges. Most researchers rely on simple ideal geometric repre-
sentations of aggregates, see Figure 3.9. For gravel stones, spherical aggregates
with only one parameter, are the simplest ones to generate and model and
are frequently used. More realistic are ellipsoids [190, 191, 198]. This shape is
still easy to describe mathematically, but the actual modeling process is more
involved since aggregates must not interfere, and contact checks during placing
are more complex than in the case of spheres. Even more realistic roundish shapes
may be generated by an overlay of spherical harmonic functions or frequency
distribution over a radius [188, 199]. Crushed aggregates may be resembled by
randomly generated polygons [173, 189, 196, 200], or by Voronoi discretizations,
as in [142]. Again, the actual complexity lies in the contact search between the
aggregates during the filling process, especially in 3D.
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In rare cases, aggregates are modeled based on image analysis [201–203]. It
seems, however, that there is no real advantage of this complicated process since
only 2D slices are processed. Much more realistic models would surely be achieved
by CT image processing with 3D models, which is, however, time-consuming,
costly, and does not necessarily promise a real advantage. As a final position,
Contrafatto et al. even refrains from a geometrical representation of the different
phases [204]. They simply randomly assign the material properties of the phases
to Gauss integration points of their elements. By consideration of the volumetric
portions, a realistic distribution of phases is impressed on the mesh. The advan-
tage is that the mesh is very simple and no geometric checks or constraints have
to be considered. Hence, the creation is very effective. On the other hand, only
“smeared” models can be used and it is hardly possible to track the damage at
interfaces of the aggregates/mortar or similar effects.

Figure 3.9: Different aggregate shapes for mesomechanical models. From left to right: Spherical,
elliptical, polygonal and smooth roundish.

Regarding the effect of the shape on the mechanical behavior, opposite positions
can be found abundantly. While it is perspicuous that different shapes have an
effect36, it is more questionable whether this effect can be quantified satisfac-
torily. In other words: misrepresent models with simple spherical inclusions the
actual failure behavior of concrete? That this might not be the case – at least in
confined conditions – is indicated by the experimental results of Poinard et al.
[205]. Utilizing X-ray pictures of different slices of a specimen after specified
loading/unloading cycles, they optically observed the mesostructural changes and
quantified the porosity content between two concrete batches. Apart from using
round in the first and crushed aggregates in the second, the concrete receipt was
identical. No significant differences in the stress-strain response, nor in the optical

36 E.g., the shape influences the mechanical bond and the larger surface of crushed aggregates
may affect positively the tensile strength due to an increased area for bonding available [46,
p. 125]. The surface itself may influence the bond behavior due to its roughness and finally
due to chemical interaction.
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investigation of the slice pictures were observed – indicating that the shape of
the aggregates does not matter.

Nevertheless, several numerical investigations exist and come to different con-
clusions. E.g., in [206] it is claimed that the aggregate form can significantly
change the properties of concrete, however, without further proving this state-
ment; whereas Häfner et al. demonstrated that at least the elastic properties
of concrete remain more or less equal – regardless whether elliptic or spherical
aggregates are used [191]. In contrast, a better agreement between measured
and computed elastic properties for spherical aggregates was reported in [207].
However, both works reveal higher stress concentrations in the surrounding
concrete matrix for ellipsoid forms, which indicates an influence of the aggregate
shape in crack initiation and damage accumulation. Leite et al. indeed found
that elliptical shapes with a ratio of the shortest to the longest axis of r = 0.75
yield an increase in fracture toughness when compared to spherical inclusions
[175]. They assume that this effect is the result of an interplay between crack
path orientation and a potential larger crack surface. The overall strength and
the width of the fracture process zone of a specimen was maintained to be
only slightly affected by the aggregate shape in [208], whereas the shape of the
localization zone depended strongly on it. Kim et al. considered circular, hexago-
nal, pentagonal, tetragonal, and arbitrary polygonal shapes in two dimensional
representative volume elements under tensile loading [209]. While the shape does
only marginally influence the ultimate tensile strength – with spherical inclusions
delivering the highest values due to the absence of stress concentrations – it
significantly affects crack initiation, propagation, and distribution. However, one
has to remark that alone the position of aggregates is in reality a pure random
factor, and consequently crack patterns and distributions are a less significant
parameter than more objective values such as ultimate strength and fracture
energy. Actually, the maximum difference in ultimate strength was given by the
authors to be only roughly 5 %. Although the authors of [210] as well affirm
that the aggregate shape is “crucial” to reproduce three-point bending tests,
the differences seem to be even less than 5 %. Indeed, the differences in the
reported load deflection curves are well within the expected scatter of different
model realizations, as, e.g., shown in [211], and hence do not support this bold
statement. Pedersen et al. observed in a dynamic context even no significant
difference in the overall stress-strain response of their 2D samples at all. For both,
spherical and sharp particles, the same fracture planes were activated and the
fracture process zone had almost an identical width. Again in the context of
dynamic analysis, Hao et al. refer to the works of [118, 213] and conclude that
models with spherical aggregates represent sufficiently accurate experimental
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findings [145]. Summarizing this discussion, it seems reasonable and justified
to consider only spherical inclusions, thereby simplifying the modeling process
considerably – an important point for large 3D domains. Potentially the strength
of the specimens is thereby slightly overestimated, but well within acceptable
ranges.

Pores

As detailed above on Page 27, the bulk of pores is to be found on concretes
microscale and therefore not resolved in mesomechanical models. It is clear
that the chosen mesh resolution has a direct impact on the ability to explicitly
consider pores or not. But even lager air voids are rarely modeled in literature,
although these features may have a significant impact on the material response.
An exception is reference [192]. One objective of this study was especially to
investigate the influence of the pores concerning energy dissipation and load-
bearing capacity. A very fine discretization was necessary to resolve even tiny pores.
Further works including pores are [214] and [215]. Both report a strong adverse
effect on the tensile strength with increasing porosity. Generally, cracks are
attracted by and propagate through pores. One could assert without hesitation
that this aspect is more dominant than the effect of different aggregate shapes.
On the other side, the consideration of pores is not as easy as it sounds. Pores are
generally smaller than aggregates; therefore only a certain amount of pores can
be discretized reasonably, as discussed in the next paragraph. Problems may occur
if compressive loading is applied and contact algorithms are not robust enough
to handle complex interpenetration conditions. In tensile-dominated scenarios,
this issue does not emerge and the consideration of pores is definitely a step
toward realistic material description and should not be avoided.

Inclusion size

A further issue relates to the size of the smallest inclusion. The term mesolevel
is only loosely defined, hence there is no common agreement of how detailed
the structure has to be resolved.37 From a mechanical point of view, coarse

37 Even in the textbook of van Mier [49], the level is once defined to range from 1×10−4

to 1×10−2 m, whereas the dissenting range given in Figure 3.8 on Page 48 is shown in
Figure 1.3 in the book.
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aggregates have the most decisive influence on the composites behavior, since
bond cracks start to develop there [68]. They serve as stress concentrators and
crack barriers [80]. On the other hand, one might expect an influence of the
smaller aggregates as well. Several numerical investigations have been conducted,
indicating that one should strive to discretize the smallest inclusions possible.38 In
practice, one is limited by an affordable element size, the resulting time step, and
computational power. A prominent lower limit of discretized inclusions, therefore,
lies around 1 to 3 mm [104, 143, 160, 215, 218], a range, which will be applied
here as well.

3.3.3 The role and consideration of the ITZ

The ITZ is the weakest link in the composite concrete. Not only are the strength
values lower in this transition region, but – as shown in Figure 3.1 – microcracks
prevail here, even before loading. Attempts to include the ITZ properties in a
mesomechanical model can be traced down to two approaches: (a) Adding an
element layer around the aggregates with reduced strength, as done, e.g., in
[139, 173, 196, 219] or (b) the use of cohesive zone elements or strongly related
methods; references are, among others, [142, 189, 198, 201, 220]. Bringing the
two ITZ-failure modes back in mind, it is clear that approach (a) is restricted to the

38 E.g., Gangnant et al. analyzed a 2D notched specimen under tension with a varying
number of aggregate classes. For each omitted class, the matrix behavior was appropriately
homogenized. Furthermore, a differentiation between mortar and concrete was done. In
the case of mortar, it was found that the peak strength and fracture energy decreases with
decreasing number of particles. For concrete, the peak strength remains constant, but the
fracture energy was considerably overestimated. The authors observe that damage is more
widely spread since it cannot emerge from the nonexisting small particles, more elements
participate in damage (leading to increased fracture energy) and large aggregates promote a
more tortuous fracture path. According to their opinion, small particles should consequently
be included in the model [216]. Snozzi et al. kept the aggregate content of 2D samples
under dynamic tension constant, while changing the size of the aggregates. Under high
strain rates, the overall peak strength was slightly higher in case of large aggregates (ε̇ =
1000 1/s, difference: ≈5 %) than for lower rates (ε̇ = 10 1/s, difference: ≈20 %). For
smaller aggregates, propagating cracks are more likely to find a way along ITZ of smaller
particles, whereas the crack propagates through the aggregates if large inclusions are present
[142]. A statistic model to predict the compressive strength of concrete under consideration
of the aggregate grading was developed in [59]. This model shows that an increase in small
particles leads in general to higher strength. With regard to homogenized shock properties
of a mesomechanical RVE, Riedel showed that the size of the aggregates is no decisive
factor [104, 217].
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ITZ-failure, while (b) is only capable of modeling the more common ITZ-aggregate
separation.

Only a few works are dedicated to investigate the influence of the ITZ in mesome-
chanical simulations, and again, the findings appear to be indistinct. E.g., Bernard
et al. claim in [221] that only a slight influence of the ITZ on the compressive
strength can be found, a finding supported by [222, 223]. On the other hand,
Hartmann used the first approach to model concrete specimens under tension
and compression. He yields very satisfying results for 2D samples with high res-
olution and hence a very thin ITZ (0.1 mm). In contrast, the results for much
coarser 3D models (ITZ width 0.2 mm) are not very realistic [218]. The effect of
the ITZ thickness, strength, and amount of ITZ regions was later investigated
more systematically by Kim et al. with approach (a). In their study, the ultimate
load under quasi-static uniaxial tension was only marginally influenced by the ITZ
thickness, slightly more by the number of transition regions in the model39, but
heavily by the ITZ strength properties. The thickness range studied was 0.1 to
0.8 mm – indicating that the resolution may not be the main reason for the poor
3D results of Hartmann.

A brief comparison between simulation with and without explicit consideration
of the ITZ with approach (b) is mentioned in [198]. The authors show that the
model with ITZ is better able to reproduce the experimentally observed pre-peak
nonlinearity and is in general more ductile than the one without ITZ. Tu et al.
compared both approaches directly. For tensile loading, they got comparable
results, but for compressive loading, the behavior of the model with cohesive
zone models was simply faulty. They associated this with the incapability of the
cohesive zone elements to capture shear failure under compressive states [219].

From the reviewed works, one might conclude that both approaches yield sat-
isfying results for tensile loading if the parameters are adjusted properly. Thus
said, approach (a) with added layers, has the considerable restriction that it
is applicable only to very fine and simple meshes, ideally structured ones (see
Section 3.3.4). In 3D models with free meshes, such as the complex simulations
in [143], it is virtually impossible to achieve an adequate regular mesh layer of
realistic thickness. For such models idealization (b) – cohesive zone elements –
appears to be a more appropriate and pragmatic choice, simplifying the model
generation process considerably.

39 Change of aggregate volume content by 30 % leads to a change of the ultimate strength of
approximately 5 %.
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One final comment regarding the role of the ITZ should point to a difficulty
inherent in both approaches: As Kim et al. and others correctly remark: the
mechanical properties of the ITZ are simply unknown and difficult to determine
[75, 187, 209]. Few attempts have been made to characterize strength values
experimentally for use in simulation models (e.g., in [75]) and the uncertainty
is still large. Most researchers therefore simply take values that are below the
ones for the cement matrix – usually 50 % [219] – but the exact reduction level is
unsettled.

3.3.4 Discretization and mesh resolution

A distinction can be drawn between works utilizing a structured grid, e.g., [99,
104, 160, 216, 224], to name just a few, and free or aligned meshes. In the
first case, each regular cell/element is filled with a specific material model for
either matrix or aggregate. The advantages of this kind of mesh are its simple
generation and the very regular shaped elements with equal size. Especially in
the context of dynamic simulations with explicit time integration, these meshes
deliver stable time steps and are computationally efficient. Depending on the
analysis, these qualities may be more important than an accurate depiction of the
particle’s shape, whose round geometry is projected on the grid and consequently
only roughly approximated, see Figure 3.10.

On the other hand, considerable disadvantages exist with this approach: As
just mentioned, shapes of inclusions are only coarsely approximated, unless the
mesh resolution is very high. As Dupray et al. remark, the possibility exists that
aggregates occupy neighboring cells if the overall amount is high [99]. Hence,
no cement film between the aggregates may be present, which obstructs the
sliding of aggregates. Finally, taking the ITZ into account is possible, but limited.
Cohesive zone elements are a potential choice, but the stepwise idealization of
round corners will lead to alternating opening directions of the cracks. Simply
altering the mechanical properties of the first element layer around the aggregates
is possible, but overestimates the width of the ITZ in most cases considerably,
see the discussion above. Unstructured, free, or aligned meshes may follow the
shape of the particles very closely and allow for sufficient space between the
particles. Cohesive zone elements to consider the ITZ are oriented normal to the
aggregate surface. The use of irregular meshes may even reduce the influence of
the discretization on the results, as observed in [176]. However, especially in 3D,
the meshing process itself is very demanding and a high number of elements are
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Figure 3.10: The two principal mesh types exemplified for a single spherical particle: structured
or grid mesh (left) and free or aligned mesh (right).

likely to be generated for realistic samples. Furthermore, elements with adverse
geometries, such as highly skewed or elongated elements, are likely to emerge
and the topological structure – the connectivity between nodes and elements – is
very complex, with a high number of elements connected to each node. Having
the involved models in mind, the approach furthermore necessitates in 3D the
use of tetrahedral elements. Since in wave propagation codes only linear shape
functions are used, these elements tend to be too stiff. Special precautions must
be taken against volumetric locking near the incompressible limit [225].

Several works conduct a convergence study to determine an optimal mesh
resolution, e.g., [160, 201, 210, 215]. These studies concordantly report an
element edge length between 0.5 and 1 mm as sufficiently small. Chen et
al. as well as Wang et al. even show that for SHB simulations with 4 mm
(respectively 2 mm) the force signal is still acceptable, while a qualitative crack
pattern demands an edge length of 1 mm [118, 214]. Besides an accurate
replication of the damage, even the volume content of the aggregates depends
on the mesh size, due to deviation of the meshed aggregate shape from the
perfect spherical shape.40 As often, a balance has to be found between an
appropriate resolution and the available computational power, which dictates an
upper bound of the total number of elements, hence the size of the elements in
a given model.

40 This is noticeable, particularly, for small inclusions, where the diameter is only a little larger
than the element edge. Then spherical shapes transform into diamonds during discretization,
losing a considerable amount of their volume. In general, the loss of up to 10 % of the
intended aggregate volume occurs frequently.
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3.4 Concluding choice of a suitable
mesomechanical representation

The preceding discussion has highlighted a large number of different options to
represent the meso structure of concrete. Trying to find a way that in the end
supports the aim of this thesis by capturing cracking and fragmentation under
tensile-dominated loading accurately and efficiently, the following approach will
be used herein:

• Aggregates are modeled as spherical particles only.
• Aggregates are surrounded by an ITZ that is considered by cohesive zone

elements.
• Pores are explicitly modeled.
• The smallest aggregate/pore size depends on the current model but a

diameter of less than 2 mm is unreasonable given the aspired minimal
element edge length of 1. . . 1.5 mm to keep computational efforts within
limits. Effects of smaller inclusions and defects are considered in the matrix
behavior.

• A free mesh is used for a reliable geometric representation of the structural
features.

As was found, cracking under mode I is the most prominent mode in the com-
posite concrete, even if the overall applied stress state is not tension. The reason
is the structural interplay between hard aggregates and soft matrix, delivering
tensile stresses in the mortar. Consequently, the material model for this phase
should be able to represent the tensile failure appropriately, while the overall
approach should allow a dissection of the initially continuous finite element
assembly. The next chapter covers these issues in detail.
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4 Development of a robust and
efficient mesomechanical
modeling approach for
fragmentation simulation

The previous chapter has expounded on the structure of concrete, its mechanical
behavior, and a suitable mesomechanical modeling paradigm. In the present
chapter, an appropriate mathematical description of the material behavior of the
involved phases and the actual application of the whole approach is pursued.
Starting the discussion on a suitable idealization of inter-matrix failure, a material
model for mortar and aggregates is detailed subsequently and chosen application
examples complete this first part of the thesis.

Wave propagation codes rely almost exclusively on phenomenological material
models based on plasticity, sometimes furnished with a qualitative damage de-
scription. One reason may be the historical development. Strength of materials
had not been considered in the first algorithms and was added only later as an
additional aspect to the equation of state. A different reason may be considera-
tions with regard to computational efficiency. As mentioned in Chapter 2, the
computational costs are determined by the number of operations in each cycle.
The more complex a material model, the more expensive a single cycle will be.
Consequently, many material models are based on a straightforward von Mises
yield criterion: while pressure remains constant, the inadmissible deviatoric stress
states are simply scaled back to the elastic limit surface [226]. It will be discussed
later that this assumption is untenable for brittle materials, and an extension of
an existing plasticity model will be presented to be used for the mortar matrix.

The material models and categories mentioned above simulate the macrome-
chanical behavior of concrete as a continuum. Explicitly accounting for cracks is
beyond their capabilities, but this feature is necessary to achieve fragmentation.
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Before delving into the material modeling, the next section briefly discusses the
available options for dissolving the mesh assembly.

4.1 Modeling cracking and fragmentation with FE

The capability to represent discrete cracks is at first beyond the abilities of the finite
element method, where the element assembly represents a continuum. However,
all models that consider softening may lead in certain loading states to elements
which completely “fail”, i.e., which do not exhibit any resistance in unconfined
states. Therefore, these elements may be interpreted as finite, cracked material
regions. Since the crack is not explicitly represented, the term “smeared crack” is
often used, although this term originally designated a specific class of material
models.41 The actual dissolution of the element assemblage can be achieved by
removing failed elements. This technique is known as “erosion” and is widely
used in hydrocode simulations. Originally invented to secure stable time steps
by eliminating grossly deformed elements that do not further contribute to the
system’s response, this approach has been used already for quasi-fragmentation,
e.g., in [24, 145]. Whereas for the sake of stability, geometric strain thresholds
are often used as deletion criteria, for these cases more physical-based measures
have to be employed. Chen et al. used a principal strain threshold to model cracks
in mesoscale simulations of spallation experiments [118]; other authors removed
elements after dissipation of a defined fracture energy [231].

Surely, simply taking matter out of the model is not a physical mechanism and
can be seen only as a rudimentary approximation to cracking. Besides violat-
ing the energy conservation (strain energy of eroded elements vanishes), mass
conservation may be violated as well if nodal masses are reduced after element
deletion or if finally free nodes are removed from the simulation. Additionally,
especially under pressure, the stiffness change due to removed volume, may
undesirably influence the local behavior. Furthermore, erosion alone is not able
to accurately depict aggregate debonding and, finally, it is obvious that the crack

41 Basic idea of these models was the additive split of the strain state in a strain state of the
uncracked bulk material and a strain state of a fictive crack within each element [78, 81, 89,
227, 228], which are related by operator matrices. Due to the frequent occurrence of “stress
locking” – the ability of failed elements to transfer stresses due to a mismatch between
crack orientation and element alignment [229] – the models did not hold sway. The only
current advocating work known to the author is reference [230].
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width depends on the element size. If, however, the global aim consists in a
simulation that is able to separate an initial continuum to quantify fragments,
erosion is, under the assumption of fine discretization and sound material models,
a useful approach.

The concept of embedded discontinuities should be mentioned here for com-
pleteness and to account for the fact that this approach is often mentioned in
the context of simulating fracture problems. It consists of enriching the shape
functions of standard finite elements by discontinuous contributions, which are
then able to account for the discontinuity in the displacement field [232, 233].
The most famous candidate of this technique is the “eXtended Finite Element
Method” (XFEM). It is an attractive and interesting option to simulate crack
and crack propagation – yet without really separating elements. Furthermore, a
demonstration of a large, real-sized 3D problem with this technique is still missing
(to the best knowledge of the author). It seems that this method is limited in this
context, especially with regard to multiple cracks and severely damaged material
regions [115], as common in scenarios under high dynamic loading.

A further, very simple technique used in rare cases is node splitting. For example,
this technique is available as an option in the commercial code LS-Dyna. Here,
each node is connected to one element only; coincident nodes are held together
by an artificial constraint, which is released if a certain criterion is reached.
Applications can be found, e.g., in [23, 234]. Although easily applicable, the
disadvantages preponderate: Once the constraint is set free, all coincident nodes
disassemble, leading to very brittle behavior. After release, the nodes no longer
receive forces from the surrounding elements and, finally, the number of nodes
involved is immense.

embedded discrete smeared

Figure 4.1: Different concepts to model displacement discontinuities with finite elements.
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Although in some respects similar, but much more physical and mature, are
cohesive zone methods. Based on the pioneering work of Barenblatt and Dugdale
[235, 236], they have become the de facto standard for modeling element
separation and fragmentation. The principal idea stems from the insight that
cracks develop not in a single point, but emerge from a small region. In this
zone, the voids grow and damage increases, but there are still ligaments bridging
the separating material. In concrete, this zone may be well identified as the
fracture process zone, where small aggregates can interlock and contribute
to this mechanism. Consequently, stresses are still transferred, although the
separation of material has begun. With increasing crack opening, the transferable
stress reduces until a critical crack opening is reached and the crack is fully open
and hence stress-free, see Figure 4.2. The idea was already applied to concrete at
the end of the 1970s by Hillerborg et al. [237]. It is therefore also designated as
“Hillerborg” or “fictitious crack” model in the context of concrete modeling.

The numerical realization of this idea is based on cohesive zone elements (CZE),
whose breakthrough occurred mainly through the works of Xu et al., as well as
Camacho et al. [238–240], although even earlier applied, e.g., in [241]. CZE are
a special element type (also known as interface or contact elements), connecting
standard continua elements. After activation or insertion of CZE, the correspond-
ing nodes are split, and the nodal forces are determined by a traction-separation
law. Using different laws, even sophisticated softening relations can be applied
and interaction between the different crack modes established, although elemen-
tary traction-separation laws are mostly accurate enough. After a critical crack
opening is reached, the CZE is deactivated or deleted, and the formerly connected
continuum elements are separated. For the bulk material, an inexpensive linear-
elastic model might be sufficient in many cases since damage is explicitly resolved
by the CZE. Although cracks can emerge only on the edges/facets of continuum
elements and crack propagation direction is thereby slightly limited, the method
is a very physical and powerful approach to simulate fracture problems. Knell
et al., for instance, simulated with CZE the spallation of concrete specimens [143].
While the results exhibit a slightly too brittle behavior, this work impressively
demonstrated the principal ability of this approach to model concrete fracture.

On the other hand, the approach is not free of disadvantages:

• The computational effort is considerably. The fracture process zone should
be resolved by a sufficient number of CZE, which – depending on the
material scale – may result in a very high mesh resolution. Zhou et al.
recommend two to five elements per cohesive zone [115], which for
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Fracture process zone 
 energy dissipating zone→

undamaged
      material

cracked
material

ficticious crack / cohesive zone

Figure 4.2: General principle of the fictitious crack or cohesive zone model. The crack is formed
by coalescing microcracks. Due to aggregate bridging, interlocking, zigzag cracking,
and crack branching, stresses are still transferred until a critical crack opening is
reached. In the model, these bridging stresses are expressed as tractions on the crack
surfaces.

concrete is only a few millimeter long [142]. If the resolution is already very
high, e.g., in order to discretize a lower material scale, this disadvantage
vanishes.

• There are two ways to implement CZE: Extrinsic elements are inserted
dynamically as needed, whereas intrinsic elements are included in the
mesh from the beginning at every potential failure locus. Application of
extrinsic elements necessitate a new mesh topology and change of data
structure after each nodesplit, which can be very complex, expensive and
error-prone. Intrinsic elements, on the other hand, increase the total num-
ber of elements by a factor of four to six and potentially introduce spurious
stiffness irregularities. Furthermore, measures against penetrations in case
of compression have to be applied [219].

• Although simple activation criteria for CZE are available and sufficient,
the decision on how the neighbored mesh topology should look after
a nodesplit is not trivial, especially in 3D. Criteria based on geometric
considerations, as, e.g., in [143] and [171], can be used, but lead in case
of complex meshes to a dramatic increase of computational efforts and
may fail if combined with erosion of surrounding continuum elements.42 In
the FE models employed here (see Section 4.3), on average, 80 elements

42 The criterion searches for intact “paths” via all connected continua elements from one
failed facet to the other. If such a path cannot be established because of other failed facets
around the node, the node is split. However, the path criterion may fail if eventually some
connected elements disappear due to erosion.
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are connected to a single node – in rare cases even more than 120.
The necessary time for the routines handling mesh reconfiguration after
nodesplit and the functions for stabilization increases disproportionately to
the number of elements per node. To express it differently: The approach
is feasible, but not effective. If, as is the aim of this study, large parts of a
concrete structure should be discretized on a lower material scale, then
the approaches discussed so far are too costly and simpler ones must be
found [231, 242].

• A further issue concerns parallelization of the nodesplit. If nodes of a
boundary element of partition P are split, one has to ensure that the cor-
responding node in neighboring process P + 1 has to be split in the same
manner, i.e. the mesh topology on the partition borders has to conform at
all times. Although this is feasible, the necessary synchronization routines
are complex and again take additional time.

It might be easily conceivable that these issues will eventually be resolved and
more efficient formulations and algorithms be developed, which allow the com-
prehensive application of CZE for intermatrix failure in the simulation of large
concrete structures. Yet, it seems that this is still a vision for the future and the
use of CZE should for now be limited to the ITZ. In this case, the disadvantages
still hold, but have a highly reduced impact.

Conclusion Massive damage that causes multiple fragments translates from a
numerical point of view to dramatic changes in topology in an initially continu-
ous mesh. This is almost irreconcilable with the basic demands of effectiveness,
robustness, and accuracy of such a simulation. Especially the last requirement
was scrutinized by Song et al. in a comparative study of the above-mentioned
techniques (schematically shown in Figure 4.1) for a 2D model. The disenchanting
result was expressed by the authors: “None of these methods are currently able
to accurately predict crack propagation velocities and paths for all of the relatively
simple problems that were tackled here.” ([119, p.249]) Especially erosion was
commented as follows: “The element deletion method performed especially
poorly for crack paths that are not coincident with meshlines. It is somewhat per-
plexing that this method is widely used in industry and has performed reasonably
in predicting the gross features of certain experiments.”

Yet from a pragmatic perspective one has to state – despite the findings of Song
et al. and all limitations of the approaches – that currently simply no better
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methodologies are available which are suited to model complex cracking and
fragmentation in larger domains at all. It is an undeniable fact that CZE, as well
as erosion, have been used in the past successfully to at least give good estimates
of crack paths in various contexts and problems. This should not shroud the
limitations of these approaches, and certainly calls for scrutinizing the numerical
results – but discarding the methods wholly would be similarly misguiding. In
terms of accuracy and physical legitimacy, the cohesive zone approach should
be preferred. In terms of efficiency and robustness, erosion is the technique of
choice. With regard to simulation on concretes mesoscale, therefore, a hybrid
approach is proposed in which the weak transition zone between matrix and
aggregates is modeled by CZE and erosion is used for fragmenting the bulk
material. Since the success of erosion relies utterly on the underlying material
model, it is important to deploy a suitable and proven description – an issue to
which the next section now turns.

4.2 Modeling the bulk material response

A basic motivation to apply multiscale techniques is the potential reduction
of the complexity of the material models involved. However, in the case of
concrete, this advantage only partly holds. Both main phases, mortar and coarse
aggregates, are by themselves materials with complex behavior. Mortar might
be perceived as a “low scale concrete”, constituted of a cement matrix and fine
inclusions, like sand and voids. Therefore, its material description necessitates
again a homogenization step and has to account for the not explicitly modeled
phases. Likewise, the aggregates: Although there is a huge variety in natural
stones, even crystalline magmatic rocks, such as granite, exhibit many similar
phenomena as concrete. It is therefore necessary to model both phases with a
suitable description, which respects the basic failure phenomena as detailed in
Section 3.2. The benefit arising from modeling concrete on the mesoscale in this
context lies mainly in the fact that crack paths can be resolved very realistically
and that the interaction of the matrix and aggregates locally influences the stress
field.

As mentioned at the beginning of this chapter, plasticity models prevail in wave
propagation codes. For concrete, quite a number have been proposed meanwhile.
While the pioneering, well-known Drucker-Prager model [150] first described
the expansion of the elastic limit surface under pressure influence, most current
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models consider additionally the dependence of the limit stress on stress triaxiality,
strain rate, and plastic strain, e.g., [153, 154, 159, 243, 244], to give only an
arbitrary and easily extendable selection.

In this work, the Riedel-Hiermaier-Thoma (RHT) model is utilized for mortar
and for aggregates. This model has been successfully applied to a variety of
problems in which concrete is dynamically loaded and has been proven to deliver
satisfactory overall results in a wide range of stresses. Nevertheless, it is not
free from (legitimate) critique. The model is introduced below, followed by an
extension to account for improved brittle material behavior. It should be noted,
however, that the aim of this thesis is not to develop or calibrate a perfect mortar
material model for mesomechanical simulations. Instead, the global aim is to
establish a basic framework for the simulation of debris throw. Although the
material model described below will yield satisfying results, some open issues and
room for future improvement remain.

4.2.1 Original formulation of the RHT model

The RHT model was developed until 2000 by Riedel and published in several
articles and a dissertation [104, 217, 245]. Since its implementation as standard
concrete model in ANSYS Autodyn, and later as *MAT_273 in LS-Dyna by Borrvall
et al. [246], it has been extensively used for simulating the macro response of
concrete and related geological materials under dynamic loading. A review of
applications of the Autodyn implementation has been summarized, for example,
in [247]. The formulation of the model was inspired by the Holmquist-Johnson (HJ)
model for concrete [155], but elaborates on several distinct aspects not covered
in the original HJ model. In the following, the basic ingredients of the RHT model
are briefly described, without going into too much detail, which has been done
elsewhere, e.g., in [104, 248]. After presenting the original formulation of the
model, points of critique are gathered, and improvements are suggested and
discussed afterwards.

The basic idea of the RHT strength model is to describe the current yield stress
based on two limit envelopes: The failure surface and the residual strength
surface. Once the stress exceeds the failure limit, the current yield stress is linearly
interpolated between these surfaces through a scalar damage factor stress. Prior
to that, a plastic strain measure is used as a scaling variable to describe the
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actual yield stress in a hardening regime.43 The model description resorts to the
invariants of the stress tensor in terms of pressure p, the second invariant of the
deviatoric stress tensor J2, and the Lode angle (angle of similarity) θ:

p = −1

3
tr(σ) = −1

3
(σ1 + σ2 + σ3) (4.1)

√
J2 =

√
3

2
tr(s) = σvM (4.2)

cos(3θ) = 3
√

6
det(s)

tr(s2)3/2
=

27 det(s)

2σ3
vM

(4.3)

Failure surface

The maximum distortion stress that the material can withstand is described as a
function of pressure p, lode angle θ, and effective strain rate ε̇eff :

σf = σf (p, θ, ε̇eff ) = fcσ̂f (p̂, FR (ε̇eff , p̂))R3 (θ, p̂) (4.4)

σ̂f denotes the normalized failure stress, p̂ the current normalized pressure;
FR is a strain rate increase factor detailed below, and R3 the William-Warnke
formulation to account for the angle of similarity. Note that the circumflex over a
symbol denotes the normalization of the variable by fc, the uniaxial unconfined
cylindrical compressive strength: ◦̂ ≡ ◦/fc.

A piecewise definition for σ̂f is applied, interpolating bilinear for pressure below
p = FRfc/3 and expanding polynomial above:

σ̂f (p̂, FR (ε̇eff , p̂)) =


A (p̂− p̂0)n 3p̂ ≥ FR
FRf̂s
Q1

+ 3p̂
(

1− f̂s
Q1

)
FR > 3p̂ ≥ 0

FRf̂s
Q1
− 3p̂

(
1
Q2
− f̂s

Q1f̂t

)
0 > 3p̂ ≥ 3p̂t

0 3p̂t > 3p̂

(4.5)

43 Often this is referred to as an interpolation between a virgin elastic limit and the failure
surface. However, this notion is strictly speaking not correct, since the operation is a scaling.
Yet it is not completely wrong since the scaling factor is derived by interpolating between
zero plastic strains and plastic strains at failure.
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with p̂0 = FR/3 − (FR/A)(1/n). f̂s and f̂t denote the normalized shear and
tensile strength, respectively; A and n are material parameters, p̂t is the normal-
ized failure cutoff pressure, often denoted as Hugoniot tensile limit (HTL). In the
original formulation this value is the root p̂0 of the exponential function used to
describe the failure surface for p̂ > FR/3. A second option – which has been
approached in the LS-Dyna implementation – is to linearly extrapolate the failure
surface between shear and tensile strength, by considering the projection on the
pressure meridian:

p̂t =
FRQ2f̂sf̂t

3
(
Q1f̂t −Q2f̂s

) (4.6)

Strength dependence on the stress triaxiality

Values Q1 and Q2 in equations (4.5) and (4.6) reflect the influence of the third
invariant on the failure stress; namely the fact that concrete can sustain higher
deviatoric stresses on the compressive meridian compared to the tensile meridian
(see, e.g., [249] and [98]). A suitable scaling factor is described by the William-
Warnke formulation in dependence on the Lode angle θ [250]:

R3 (θ,Q (p̂)) =
2(1−Q2) cos(θ) + (2Q− 1)

√
4(1−Q2) cos2(θ) + 5Q2 − 4Q

4(1−Q2) cos2(θ) + (1− 2Q)2

(4.7)
for 0 ≤ θ ≤ 60. R3 depends on p̂ to reflect the brittle-to-ductile transition (see
Page 36):

0.5 < Q = Q(p̂) = Q0 +Bp̂ ≤ 1 (4.8)

Q1 and Q2 have values Q1 = R3(π/6) for the shear meridian and Q2 = R3(0) =
Q(p̂) for the tensile meridian. Q0 and B are parameters derived experimentally.

68



Development of a robust and efficient mesomechanical modeling approach

Failure surface

Initial yield
surface

hyd
ro

st
at

ic
 a

xi
s

Figure 4.3: Failure surface of the RHT model and virgin elastic limit (ε∗pl = 0, “Initial yield
surface”).

.

Strain rate dependency

Strain-rate enhancement is considered by the factor FR:

FR(ε̇eff , p̂) =


F cR 3p̂ ≥ F cR
F cR −

3p̂−FcR
Fc
R

+F t
R
f̂t

(
F tR − F cR

)
F cR > 3p̂ ≥ −F tRf̂t

F tR −F tRf̂t > 3p̂

(4.9)
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Superscripts ‘c’ and ‘t’ stand for compression and tension and F c,tR (ε̇eff , p̂) can
be defined following different suggestions. In the original formulation, the form
of the CEB Bulletin 187 [251] was used, but meanwhile a large number of
different fit functions have been proposed (reference [109] contains an exhaustive
overview). In the simulations documented herein, the compressive function of the
CEB Bulletin and the tensile fit of Malvar et al. are applied [134]. The functions
are detailed in Appendix A.4. Note that in the implementation, the increase in
ε̇eff between two cycles is limited to a maximum of 20 % to prevent oscillations.
Furthermore, the current version in SOPHIA employs the total effective strain rate
ε̇eff =

√
2/3ε̇ : ε̇ for evaluation and not the effective plastic strain rate ε̇pleff , as

is done in Autodyn and LS-Dyna.

Hardening regime

Yield of the material occurs already before the stress state is beyond the failure
surface. Since the latter is experimentally the most accessible limit state, the
RHT incorporates the current elastic limit of the undamaged material by scaling
this surface radially by a factor Fe(p̂, ε∗pl, ε̇eff ). Additionally, the elastic state is
restricted to higher pressures by considering a cap factor Fc(p̂):

σy|D=0 = fcσ̂f (p̂/Fe)R3FeFc (4.10)

The scaling factor Fe interpolates between the elastic limit parameters gc(ε∗pl)
and gt(ε∗pl), depending on the normalized effective plastic strain, ε∗pl:

Fe(p̂, ε
∗
pl, ε̇eff ) =


gc 3p̂ ≥ F cRgc
gc − 3p̂−FcRgc

Fc
R
gc+F

t
R
gtf̂t

(gt − gc) F cRgc > 3p̂ ≥ −F tRgtf̂t
gt −F tRgtf̂t > 3p̂

(4.11)
To define this value, consider an uniaxial loading of a specimen beyond its elastic
limit. Let the strain after initial yield be decomposed into an elastic portion εhe
and a plastic contribution εhpl. The elastic component of the after-yield-strain is
defined as the difference between the initial failure surface, divided by the slope
of the uniaxial stress-strain diagram:

εhel =
σf (1− Fe,0Fc)

3G
(4.12)
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with Fe,0 being the scaling factor for the case ε∗pl = 0. The material parameter
Ψh is used to determine the plastic strains up to failure by:

εhpl = εhel(Ψh − 1) =
σf (1− Fe,0Fc)

3G
(Ψh − 1) (4.13)

In contrast to the formulation in [246], stiffness degradation is not considered
here. The normalized plastic strain is determined now by relating the current
effective plastic strain εeffpl to the plastic strain at failure εhpl:

ε∗pl = min

[
εeffpl
εhpl

, 1

]
(4.14)

The elastic limit parameters read then with gc,0 and gt,044:

gc(ε
∗
pl) = (1− gc,0)ε∗pl + gc,0 (4.15)

gt(ε
∗
pl) = (1− gt,0)ε∗pl + gt,0 (4.16)

The cap function Fc limits the elastic regime to ensure that stress states above
the pore crush pressure p̂c lead consistently to irreversible deformation:

Fc(p̂) =


0 p̂ ≥ p̂c√

1−
(
p̂−p̂u
p̂c−p̂u

)2

p̂c > p̂ ≥ p̂u

1 p̂u > p̂

(4.17)

With p̂u being the lower cap threshold pressure, defined as

p̂u =
F cRgc

3
(4.18)

p̂c is the maximum pressure reached.45

44 Note that this notation deviates both from the original version and the reformulated version
of Borrvall et al. It expresses the attempt to yield a consistent and more accessible notation
than hitherto.

45 In case of the default combination with the p−α equation of state, p̂c(α) is the current,
porosity dependent, pore crush pressure.
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Residual strength surface

As a second limit surface, the residual strength surface is defined by a polynomial
function, similar to the failure surface, but depending only on pressure:

σ̂r (p̂) =

{
Af p̂

nf p̂ > 0

0 p̂ ≤ 0
(4.19)

with material parameters Af and nf .

Damage

Once the stress state exceeds the failure limit σ̂f , that is, as soon as ε∗pl = 1,
softening is described using a scalar damage value D. It is defined by normalizing
the accumulated effective plastic strains by a pressure-dependent allowable plastic
strain εfpl, adopted from the HJ model46 [155]:

D =
∑ ∆εeffpl

εfpl
if ε∗pl = 1. (4.20)

εfpl = max
[
D1 (p̂− (1−D) p̂t)

D2 , εmpl

]
(4.21)

D1 and D2 are again free material parameters. A minimum allowable plastic
strain, εmpl , was introduced by Holmquist et al. to suppress fracture caused by low
magnitude tensile waves and is set to 1 % by default. D ranges from 0 to 1 and
is used to interpolate between the failure and the residual limit surface:

σy = fc [(1−D)σ̂f −Dσ̂r] (4.22)

46 The HJ-model includes a component related to the plastic volumetric strain since concrete
loses cohesion during void collapse. Since they state that the majority of damage will be due
to deviatoric plastic strain, this contribution has not been incorporated into the RHT model.
Plastic compaction is, on the other hand, reflected if a p−α equation of state is used.
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In current implementations of the model in Autodyn and LS-Dyna, an artificial
pressure degradation (“spall failure”) is implemented to mimic softening if the
pressure is below the Hugoniot tensile limit:

p̂ = max [(1−D) p̂t, p̂] (4.23)

Current yield limit and yield function

Summarizing the previous paragraphs, the current yield limit can be condensed
to the following form:

σy = fc

{
σ̂f (p̂/Fe)R3FeFc ε∗pl ≤ 1 (D = 0)

(1−D)σ̂f −Dσ̂r 0 < D ≤ 1 (ε∗pl = 1)
(4.24)

In its standard formulation, the model utilizes a von Mises yield function:

ΦvM =
√
J2 − σy(p, ε̇eff , θ, ε

eff
pl ) (4.25)

The flow rule is non-associative and leads to a simple scaling of the deviatoric
stresses [28, 226]. Finally, note that the RHT model in SOPHIA is implemented
by explicit forward integration; i.e. if history variables, e.g., the plastic strain, are
needed to determine the current yield stress, values of the last cycle are used.

4.2.2 Critique on the RHT model

Although its application has been very successful in several scenarios, shortcom-
ings in the formulation have been noted over the years. Besides some undesired
behavior in specific stress and loading combinations, especially the deficiency
of modeling plain concrete was reported very early in [252].47 Later on Tu et
al. investigated the RHT Autodyn implementation thoroughly, proposed some
improvements, and in 2010 furnished the issues further and demonstrated ad-
vances beyond simple parameter fitting [253]. Hartmann as well investigated the

47 In detail: Hansson stated that the RHT model delivers satisfying results in the case of a
hard steel impactor penetrating an unreinforced concrete target if the concrete is strongly
confined [252, p. 108]. On the other hand, he observes less accurate behavior if the failure
mode is dominated by tensile cracking.
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model intensely in his dissertation [218], which later led to a new concrete model
with strong similarities to the RHT model [154]. Furthermore, Schuler as well as
Tawadrous et al. proposed modifications [254, 255]. Summarizing the points of
critique risen in the mentioned works, the following list emerges:

1. The model exhibits unrealistic long softening branches in tension and
compression.

2. Insufficient consideration of strain rate effects.
3. Unphysical stress paths for some specific scenarios, such as biaxial com-

pression and triaxial extension.48

4. A too less sensitive tensile region, respectively, implausible failure under
pure mode I.49

5. The model is not regularized. Therefore, the dissipated fracture energy
depends on the size of the elements.

6. No damage occurs due to hydrostatic compression.50

7. The mass-based mixing rule for determining properties for the p−α
equation of state might be wrong and better replaced by a volume-based
rule.

These issues are valid points of critique, but some of them are more hypothetically
relevant and will rarely influence the simulation results in practice.51 The most

48 For triaxial extension, the stress will be kept constant, after reaching the limit value p̂t, since
no plastic flow occurs in the absence of deviatoric stresses. Pseudo-softening (“spall-failure”)
occurs only if the damage factor increases due to accumulating plastic strains.

49 This issue has been demonstrated in the thesis of Bach [256]. He modeled the compact
tensile specimen from [149] and found shear-dominated failure – elicited by the von Mises
flow hypothesis. Additionally, SHB spallation tests have been simulated by Häußler-Combe
et al. with three different concrete models, among them the RHT model [257]. Simulations
with this model were inferior with regard to the free surface velocity results, whereas – in
contrast to experiments – even no spallation was found in comparable set-ups in [255].

50 A fact that especially Schuler brought up. In fact, if no deviatoric stresses occur, compression
of the material does not cause damage, as irreversible compaction in these cases is accounted
for in the decrease in porosity α through the p−α EoS. Schuler proposed to formulate
damage as a function of the deviatoric and the spherical stress state D = f(σD, p) [254].
However, this formulation was never extensively tested and Schuler himself used it only in
some demonstration cases, where compression was not the dominant stress state [254].
Later, Nöldgen resorted to this approach, while reformulating the model for fiber-reinforced
ultra-high-performance concrete [6]. Since his anisotropic formulation differs in several
aspects from the standard RHT description, an evaluation is quite difficult. The model
formulated by Hartmann et al. incorporates a comparable approach [154].

51 E.g., results are not very sensitive regarding the properties of the solid EOS, derived by the
mixing rule. As a second example, pure triaxial extension is a very rare stress state, as Tu
et al. themselves admit [258, p. 1076]. Clearly, one should strive for a comprehensive model
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important aspect with regard to the objectives pursued in this thesis is the
inferior behavior under tensile loading. As a remedy, an improved yield criterion
is proposed as follows.

4.2.3 Formulation of an improved yield criterion for brittle
failure

For quasi-brittle materials, such as concrete, the von Mises hypothesis does not
adequately describe tensile failure, and a criterion based on the maximum princi-
pal stress is much more appropriate. A first attempt to combine such a criterion
with a von Mises-based flow rule for compressive stress states has been made by
Feenstra et al. [151]. They combined a Rankine criterion with a Drucker-Prager
model as a simple but adequate model for concrete under static loading; an
approach that was repeated for mesoscale simulations in [259]. Briefly after the
RHT development, Clegg et al. implemented a Rankine criterion in Autodyn as an
optional supplement to the material models. Since then, the combination of this
“crack-softening” option together with the RHT (or equivalents in other imple-
mentations) has been repeatedly applied to concrete under dynamic loading and
generally delivers better results than the pure RHT model, e.g., [256, 258, 261].
However, this option still lacks features such as rate enhancement. Therefore, the
following section describes in detail the augmentation of the RHT model by a
rate-dependent, regularized Rankine criterion and some minor corrections of the
model formulation.

Yield function

The principal stress criterion is formulated in the context of classical numerical
plasticity. In the present case, it is advantageous to formulate it in tensorial
notation and not – as usual – in Voigt notation. The yield function ΦR reads:

ΦR = σI − σy(ε̇, εpl)I = 0 (4.26a)
σy(ε̇, εpl) = FR,0(ε̇eff )ft(εpl) (4.26b)

that is capable of matching all possible stress states with satisfying results. But not rarely,
improved parameter fits already yield adequate solutions; see, e.g., [258] and [256].
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σI is the principal stress tensor, with the implicit understanding that the principal
stresses σi are sorted (σ1 ≥ σ2 ≥ σ3). σy is the current yield strength, ε̇ the strain
rate tensor, εpl the tensor of plastic strains and FR,0 the above defined function
to account for strain rate enhancement; ft is the current (static) tensile strength,
while I signifies the identity tensor. The subscript “0” in FR,0 denotes the fact
that this factor is evaluated only once during initial yielding and kept constant
thereafter.52 Note that equation (4.26a) defines three individual, uncoupled
equations for each principal stress component, assuming that there is no influence
on yielding by interaction (in contrast to, e.g., the formulation in [259]53). For the
elastic domain E = {σ | ΦR < 0} the standard linear-elastic constitutive law is
applied: σ = Λ : ε with Λ being the fourth order elasticity tensor.

Flow-rule

The current strain state is established by:

ε(n) = ε
(n−1)
el + ∆ε(n) (4.27)

If the corresponding “trial”-stress state trσ(n) = Λ : ε(n) exceeds the elastic
domain, that is, if ΦR > 0, the stress state has to be mapped back to an
admissible state, and the strain increment is split into an elastic and a plastic
increment:

ε(n) = ε(n−1) + ∆ε
(n)
el + ∆ε

(n)
pl (4.28)

The admissible (projected) stress state then reads:

σ(n) = trσ(n) −Λ : ∆ε
(n)
pl (4.29)

and – with the assumption of isotropic behavior:

σ(n) = trσ(n) −
(

2G∆ε
(n)
pl + 3K tr (∆ε

(n)
pl )I

)
(4.30)

52 There are several reasons for this choice, but the most important one is that after deformation
localizes, the strain rate increases strongly in the affected elements, thus rendering the
damaged material very strong and preventing proper softening.

53 There, a vector norm ||σI || is calculated with the individual principal strains σi, in which a
component is considered only if σi > 0. The yield criterion is then ΦR = ||σI || − σy . This
criterion delivers a rounded yield surface at the intersection of the three limit planes, which
might bring a numerical advantage, depending on the implementation.
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To determine the unknown plastic strain increment, the following discrete flow
rule is defined (see [28] for details):

∆ε
(n)
pl = ∆γN (4.31)

in which ∆γ is a scalar value, expressing the magnitude of the increment and N
a tensor, assigning the direction of the plastic flow. If equation (4.31) is inserted
into equation (4.30), resorting to the definition of the yield function and the split
into deviatoric and hydrostatic strain yields:

σI = σtrI −∆γ (2GND + 3K tr(N)I) (4.32)

ND = N − 1/3 tr(N)I is the deviatoric projection of N , tr(N) its trace, and I
again the identity tensor.

In this work, associative flow is assumed for the Rankine criterion, that is, the
direction of the plastic strain increments corresponds to the normal vector of the
yield surface eI . Consider first the case, that only σ1 > σy: For this condition,
the normal vector reads e1 = [1, 0, 0]ᵀ and N = e1 ⊗ e1. Equation (4.32) can
then be written for all three directions:

σ1 = σtr1 −∆γ(4/3G+K)

σ2 = σtr2 + ∆γ(2/3G−K) (4.33)

σ3 = σtr3 + ∆γ(2/3G−K)

For the general case, three plastic multipliers are defined:

∆ε
(n)
pl =

3∑
j=1

∆γjNj (4.34)

Following the steps described above, one yields – with the definitions ∆γ =
[∆γ1,∆γ2,∆γ3]ᵀ, aa = 4/3G+K, ab = −2/3G+K, as well as

A =

aa ab ab

ab aa ab

ab ab aa


– the compact form of the stress update equations:

σI = σtrI −A∆γ (4.35)
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In contrast to the von Mises criterion used in the RHT model, the associative flow
in the case of the Rankine criterion yields a pressure change, as soon as plastic
flow occurs. Thus, the criterion can cover softening inherently and no artificial
“spall criterion” is necessary.

Softening

The yield strength in equation (4.26b) is formulated in dependence on plastic
strains to consider softening.54 Besides a linear law [260], several authors apply
bi-linear laws, e.g., [258, 262, 263] or simple exponential ones [151, 264, 265].
In the present work, the more complex exponential law derived by Reinhardt et al.
and Hordijk et al. is used, which is based on a wide experimental basis and has
the advantage that it not only approximates zero but exactly delivers ft(δc) = 0.
It reads [76, 266]:

ft(δ) = ft,0

{[
1 +

(
c1δ

δc

)3
]

exp

(
−c2δ
δc

)
− e−c2

(
1 + c31

) δ
δc

}
(4.36)

The dimensionless values c1 = 3 and c2 = 6.93 are given in [76]. Figure 4.4
compares the different softening laws with data from literature for mortar and
concrete. The softening law is based on a scalar-valued crack opening δ, which
does not have a direct counterpart in the plasticity framework. Therefore, a
crack strain is defined, based on the plastic strain increments in direction of the
principal axes eI :

∆εpl = ∆γ1e1 ⊗ e1 + ∆γ2e2 ⊗ e2 + ∆γ3e3 ⊗ e3 (4.37)

If the flow occurs only in the direction of the first principal axes (i.e. ∆γ2 =
∆γ3 = 0), let ∆εcr be:

∆εcr = ∆εpl1,1 (4.38)

54 An initial hardening is not considered, although hardening is experimentally observed
starting at stress limits of approximately 0.7ft. However, the strain increment corresponding
to the hardening regime is often so small that it has been passed within one or two steps,
rendering a hardening effect negligible.
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Figure 4.4: Different softening-laws for similar fracture energy together with data points from
literature [264, 265, 267].

The index “1,1” designates the first coefficient of the first row and column of
the plastic strain increment tensor. For the general case:

∆εcr =

√
2

3
||∆εpl|| (4.39)

Based on the crack strain, a crack opening can be defined if an appropriate
characteristic length lc is available:

δ = εcrlc, δc = εcr,c lc (4.40)

The critical crack opening, δc, is derived from the input values for the initial tensile
strength and the fracture energy GF . Considering

GF =

∫ δc

0

ft(δ)dδ (4.41)

it follows for the Reinhardt-Hordijk law with the default values for c1 and c2:

δc = 5.136
GF
ft,0

(4.42)
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Crack initiation and energy regularization

For the transformation from plastic crack strain to a crack opening, the character-
istic length lc was introduced. This length is also used to transform the fracture
energy GF (energy per crack area) into a specific energy gF (energy per volume),
which is dissipated in each element. This should ensure – at least in theory –
that the energy dissipated in elements of varying size accounts for the different
volumes/crack areas. The simple relationship reads

gF =
GF
lc

(4.43)

and is a major requirement for mesh objectivity. This principle is known as
“regularization” and several proposals to determine lc can be found in the
literature. In 2D simulations, this length can be interpreted as the width of
a crack band, see [79, 268]. Unfortunately, for 3D, no ad hoc or directly intuitive
definitions are available. The most simple and, therefore, most commonly applied
method is to take the cube root of the volume of the elements [153, 254, 258,
260]. More sophisticated proposals are, among others, the projection method
[268] or the approach developed by Barzegar et al. There, the length of a line
pointing along a fictive crack plane, bounded by upper and lower element facets
is used [269]. Oliver introduced an elegant procedure in which a continuous
linear function is integrated, which has a value of 1 at the nodes of this and a
value of 0 at the nodes on the other side of a fictive crack plane. The approach
was slightly modified by Govindjee et al. to be applicable for 3D elements as well
[271].

An even more intricate, but on the other hand very intuitive approach has been
proposed by May et al. [272]. They construct a fictive crack plane with the first
principal stress direction as normal and the central point of the element as base
point; see the sketch in Figure 4.5. Subsequently, the cutting points with all
relevant element edges are calculated; the resulting polygon constitutes the
“crack surface”. Together with the element’s volume, the characteristic length can
be determined. Although this approach is elaborate, the intuitive concept and
reasoning are convincing. Since this calculation must be performed only once
in each element that has reached the yield stress, the effort is acceptable. No
rotation of the crack coordinate system is considered.55

55 May et al. keep the plane over the entire simulation and use as crack opening only the
projected part of the plastic strains in the direction of the initial crack opening. In the
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Figure 4.5: Stress-strain-diagram of single element tests of different sizes under confined tension.
The standard RHT model dissipates for each element size the same specific fracture
energy gF – and is therefore highly mesh dependent. With regularization in the
Rankine-criterion, the total fracture energy GF = gF /lc remains constant. The
inlays sketch schematically the approach of the fictive crack planes, detailed in [272]
(crack opening is normal to the plane and indicated by the blue vectors).

Considerations concerning strain rate enhancement and fracture energy

Several authors repeatedly question the employed strain rate enhancement in
the RHT model for different reasons [218, 252, 255, 258]. Yet an unambiguous
point is not made. For example, Tu et al. criticize the DIF scaling and maintain
that the strain rate effects are overestimated in the current formulation, whereas
Hartmann, likewise discontented with the implemented form, asserts an under-
estimation. These two positions amply illustrate the degree of variability in the
concept of strain rate enhancement. Indeed, the large scatter in the experimental
results, the different fit functions available and the ambiguity in interpreting this
effect, promote a certain indisposition regarding the DIF -concept in its current
form. In fact, one may ask whether a simple multiplication of the limit strength
with a scalar empirical factor is sufficient to resemble the complex material behav-

implementation used here, the crack plane is generated only to determine lc. After this
value is known, the crack plane is no longer used.
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ior reflected. Several researchers already use viscoplastic formulations, in which
the limit strength is not changed, but the amount of plastic flow depends on
the loading rate, e.g., [159, 212, 271]. Although again material parameters that
have to be fitted by experiments are introduced, considering time inherently in
the plasticity routines simply appears to be a more physical way. Nevertheless,
such an approach is not (yet) incorporated into the RHT model, and the former
empirical DIF equations are used herein as well.
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Figure 4.6: Measured fracture energy under dynamic loading (colored symbols) and data for
DIFt for comparison (gray).

Regarding a potential strain rate enhancement of the fracture energy, no con-
sensus exists. The CEB model code declared in 1990, that the available data is
too incomplete to establish a reliable function and there have been only a few
attempts to improve the situation since then. One of the first works, where the
fracture energy has been measured in conjunction with the strain rate, appears to
be reference [263]. In this study, an enhancement of fracture energy with increas-
ing strain rate was measured, but the rates considered are rather low. Higher
rates have been achieved with split SHB specimens in spallation configuration,
conducted by Schuler et al. [273]. Later, Weerheijm et al., as well as Brara et al.,
contributed more data with comparable set-ups [87, 274]. Especially Weerheijm
et al. elaborate on the problem and postulate a limit value of dynamic fracture
energy in the order of 250 J/m2. They further maintain that the increase is not
comparable to the strength increase, but is caused by the same sources. This is
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consistent with the work of Wittmann et al., who measured a stronger increase
in the fracture energy compared to the strength [263].

Regarding the scarce data and the strong scatter56 it is very difficult to settle the
matter. Figure 4.6 shows the data of the sources mentioned together with yet
unpublished values from an internal report with a set-up similar to that used by
Schuler et al. (“Millon 2012” [277]). Data for DIFt from the literature are also
plotted in gray. From this figure, one can conclude that the energy enhancement
is not limited, contrary to Weerheijm et al., and – more important – that the
enhancement is not too different with respect to the strength increase. The data
for the fracture energy de facto fits well with the second data group for the tensile
strength enhancement. Again, the question arises of whether this is a material
property or a “system value”. Numerical results published in [140, 149] and [201]
– replicating experimental results without fracture energy enhancement in the
material model – prefer to find the answer in the latter option. The work of Knell
et al. tends in the same direction. While it clearly shows that a tensile strength
enhancement is necessary to obtain realistic results, the experiments were best
replicated with a static fracture energy [143]. Consequently, it is advocated here
to take the static value as input parameter. Since the fracture energy is a derived
value and depends in the classical traction-separation laws on the tensile strength
and the critical crack opening, a static fracture energy can only be maintained by
downscaling the critical crack opening with DIFt.

There is another issue related to fracture energy, which is entailed with a very fine
discretization, as is the case in the mesoscale simulations carried out. The fracture
energy is generally dissipated not in a single discrete crack, but in the fracture
process zone (FPZ) – a region with multiple microcracks, crack interaction, and
so forth. In standard experiments for the determination of the fracture energy,
such as the three-point bending test, the work applied is typically related to
the projected fracture surface of the final macrocrack, thereby contributing the
total energy to one macrocrack only. Consequently, the smeared crack approach
is strictly valid only for discretizations, where the size of a single element size
encompasses the entire FPZ [79, 278], leading to rather large elements around
three times the largest inclusion. In finer discretizations, the FPZ spreads over
multiple elements; hence, each element should have a local fracture energy.

56 Banthia et al. even claimed a sixteen-fold increase in fracture energy, measured in dynamic
three-point bending tests on plain concrete specimens [275], whereas Weerheijm et al.
postulates an upper limit of 2.5! However, the numbers of Banthia et al. are potentially the
result of quasi-static assumptions in a dynamic environment; see [276].
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Together, all elements should – in a simulation comparable to the standard test –
dissipate the global measured energy.

Combining RHT and Rankine failure surfaces

The Rankine criterion copes only with tensile-dominated stress states. For arbitrary
states, the RHT model should be used as before. The overlay of both criteria can be
achieved by adapting the multi-surface plasticity approach. A resolute realization
has been described, e.g., in [259] or [151]. A less sophisticated alternative is a
“bifurcation” analysis, as explained in [6] with respect to reference [260]. For a
given stress state, with its unique angle of similarity, the interception between
the RHT and the Rankine yield surface is determined. Then, the pressure state
of this point is compared with the trial pressure and the appropriate criterion is
taken.

The SOPHIA implementation takes an even more pragmatic way: In each step,
the Rankine criterion is checked first. If ΦR > 0, plastic flow occurs. Afterwards,
the RHT criterion is checked with the updated stresses as well, and potentially
a second plastic flow might occur. However, this will only happen in rare cases.
Most trial stress states are expected to distinctly activate the Rankine or the RHT
criterion. At least for the tensile-dominated problems considered in this study,
the stress state is unambiguous. However, future applications to other problems
should go along with careful evaluation and potential improvements.

A slight modification of the RHT yield surface in the tensile regime is necessary to
distinctly activate Rankine plastic flow near the Hugoniot tensile limit and reads:

σ̂f =


A (p̂− p̂0)n 3p̂ ≥ FR
3FR(p̂−p̂t)
FR−3p̂t

FR > 3p̂ ≥ p̂t
0 p̂t > p̂

(4.44)

The Rankine criterion is only activated for stress states with Lode angles up to
approximately 35° and low pressures. Figure 4.7 shows the meridian plot of both
criteria, while Figure 4.8 presents the combined criterion in the principal stress
space.

By combining both criteria, the role of the damage parameter εmpl is now limited to
compressive stress states. Originally invented to control premature damage from
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Rankine limit. In the compressive regime, the RHT model yields continuously lower
limit values. The gray lines mark the stress path of uniaxial compression, respectively
tension.

rarefaction waves, the value controls in the original formulation the dissipated
fracture energy. For the Rankine criterion, a damage value DR is defined as the
ratio of the dissipated to the available fracture energy:

DR =
Gf
Gf,0

(4.45)

A total damage D from both criteria is determined by superposing the values
from each criterion:

D = min [D +DR, 1] (4.46)

Pre-damage due to shear failure (RHT criterion) is considered in the Rankine
criterion by reducing the critical crack opening:

δc(D) = δc,0(1−D) (4.47)

This relation ensures that the material does not have tensile strength if it has
already reached the residual failure surface under compression, i.e. D = 1.
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Figure 4.8: Failure envelope of the RHT model with added Rankine criterion in the principal stress
space. Left: Plots in the rendulic plane highlight the stress regime, where the Rankine
criterion is more strict. Two red arrows indicate the direction of plastic flow (top).

4.2.4 Correction of the residual failure surface

Tu et al. observed some implausible stress-strain paths in specific situations [253,
258]. Especially for confined tensile stress states, softening is not observed, but
on the contrary, the yield stress increases between ultimate failure and residual
surface. Furthermore, a simple unconfined pressure test does not eventually lead
to zero stress but keeps the failure stress constant at roughly σ̂f = 2/3 after
reaching the residual surface. The reason for this undesired and nonphysical
behavior is the lack of R3 in the formulation of the residual strength surface.
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Hence, following [258], R3 is now considered to prevent higher residual than
ultimate stress under tension:

σ̂r (p̂, θ) =


Af p̂

nfR3(θ, p̂) p̂ ≥ 1/3

κ0p̂R3(θ, p̂) 0 < p̂ < 1/3

0 p̂ ≤ 0

(4.48)

with κ0 being the failure stress for p̂ = 1/3: κ0 = 3Af (1/3)nf . The piecewise-
defined function furthermore ensures that the intersection of the polynomial and
the linear part is directly below the unconfined uniaxial compressive stress at
p̂ = 1/3. The assumption for this function is that the outer confinement can only
be maintained for pressures p̂ > 1/3. Although this assumption is true for uniaxial
cases, it is not true for biaxial or triaxial cases with very light confinement. It is
questionable, however, whether this limitation is relevant in practice.

4.2.5 Equation of state

Recalling the compiled observation concerning the failure of concrete in Chap-
ter 3, one may postulate two basic failure modes for concrete: Mode I cracking
on the microscale – as underlying failure mechanism in un- or low confined stress
states – and pore compaction in confined situations. The first effect is reflected
in the RHT model by the added Rankine criterion; together with the idealization
on the mesoscale, it should (at least theoretically) cope with all stress states with
low confinement. Pore compaction, on the contrary, is traditionally considered
by an appropriate EoS. In most cases, a Mie-Grüneisen or a polynomial EOS,
augmented with a porosity term α – hence labeled “p−α EOS” – is well suited
to describe the compaction path of the porous concrete [41, 279]. Since in this
work mainly tensile-dominated stress states are considered, the RHT model is
combined here with a linear EOS only. Indeed, even the p−α EOS implements for
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default parameters a linear expansion term, albeit augmented by the porosity,
which is neglected here. The EOS then reads57:

p = Kεv,el (4.49)

It should be noted that the implementation of the p−α EOS could improve
the description of the mortar, but has not yet been done due to the evolving
complexities with the associative yield of the Rankine criterion.

4.3 Validation examples

This chapter will close with three validation cases for the detailed mesomechani-
cal modeling approach of concrete described above. Two small-scale examples
will be used to demonstrate: (a) correct crack propagation properties, such as
inclination and branching phenomena, and (b) accurate development of defined
fragments together with proper velocities. A medium-scale experiment will then
be simulated to highlight the actual possibility of depicting gross fragmentation.
The models are generated using a modified, very efficient Take-and-Place algo-
rithm with a Fuller aggregate size distribution and meshed afterwards with linear
tetrahedral elements by the open-source software GMSH [280]. Appendix A.1
describes the process.

As detailed in the first section of this chapter, a hybrid approach is used to model
the behavior of concrete on the mesoscale: A smeared crack model with erosion
for the mortar matrix and cohesive zone elements for the ITZ.58 In this thesis, the
CZE developed by Knell and Durr are used [225, 281]. A rate-independent linear
traction-separation law is employed for the CZE together with a combined failure
57 The formulation deviates from the classical form found, e.g., in [41]:

p = K

(
ρ

ρ0
− 1

)
In this form, the EOS equates εv = ρ

ρ0
− 1, which is valid for infinitesimal strains [28], but

relates the pressure to the whole volumetric strain, including the plastic strains. This violates
the fundamental assumptions of numerical plasticity in which the admissible stress state
corresponds to an elastic strain state only.

58 For computational efficiency, the meso domain is divided into several partitions (see Sec-
tion 6.2). However, nodesplit is not allowed for nodes on partition boundaries to circumvent
the intricacies involved in synchronizing the split between partitions.
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criterion for tensile and shear tractions (refer to one of the above-mentioned
works for detailed information).

One difficulty remains, namely the choice of relevant material parameters. In this
respect, the above mentioned critique of Kim et al. that the mesoscale approach
requires material parameters, which are simply unknown, or at least not well
known, is partly justified [209]. Some values are experimentally hardly accessible
and assumptions based on engineering judgment have to be made. Although
the hereafter described experiments used all slightly different concrete receipts,
only one parameter set will be used for all simulations. While there is surely room
for improvement of some parameters, it will be seen that this single set can cover
a wide range of phenomena and loading intensities – although not yet carefully
tuned and based mainly on average values taken from different literature sources.
This observation thereby underlines the basic postulate of multiscale analysis that
the individual material model becomes less important, as long as the interaction
between the phases is resolved. The full parameter set is discussed and reported
in Appendix A.6.

4.3.1 Crack propagation and branching: compact tension
specimen

Figure 4.9 shows the set-up for a direct tension test on compact, pre-notched
concrete specimens, conducted by Ožbolt et al. [149]. As shown in the figure, the
200×200×25 mm3 specimen was held on the upper side of the notch by a steel
frame and loaded by a similar frame on the opposite side. Both frames have been
affixed to the specimen before loading. The displacement-controlled tests were
conducted with different displacement rates to investigate the phenomenon of
crack branching above a certain rate, which was reported to lie between 2 and
3 m/s. The concrete used had a compressive strength of fc = 53 MPa, a tensile
strength of ft = 3.8 MPa and a maximum grain size of 8 mm.

Two different displacement rates, namely vA = 0.49 and vB = 4.3 m/s are
simulated for five realizations each, i.e. five different generations of the specimen
with arbitrary aggregate positions. The smallest modeled inclusion is 2 mm, the
largest 8 mm, following a Fuller distribution with exponent n = 0.5. A total
porosity of 10 % is considered, while only pores between 2 and 4 mm are explicitly
modeled. Roughly 15 000 spherical aggregates are contained, representing a
total aggregate content of 65 %. The displacement rate is applied at the bottom
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nodes of the circular section and increased linearly within the first 0.2 ms until
the target value is reached and then kept constant, see Figure A.6 on Page 223;
the degrees of freedom of the nodes at the top of the model, are fixed in
vertical direction only, as indicated in Figure 4.9. No further constraints have been
applied. The steel frames and the concrete specimen are connected by shared
nodes. Employed material parameters for the improved RHT model and input
values for the cohesive zone elements are discussed in Appendix A.6 and listed
concisely in Tables A.2 to A.4.

Figure 4.10 shows the crack pattern of the five virtual specimens for the higher
loading rate. The coloring corresponds to the amount of crack opening δ. Ele-
ments are eroded if a crack opening of δE = 0.5 mm is reached. However, they
already lose their stiffness at δc, which is much lower than this threshold. A value
of 0.5 mm is reported in [273] to be the lower limit for a crack to be visible in a
light microscope and was therefore chosen as an intuitive threshold value.
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Figure 4.9: Set-up of compact specimens under direct tension tests, acc. to [149] with FE model.
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Figure 4.10: Maximum reaction force from experiment and simulation (top left), as well as crack
patterns for the high loading rate (slice through the 3D specimen).

Cracks observed in the experiments are overlaid in Figure 4.10 as dark blue,
dashed lines. Especially specimens B and E match the experimental result almost
perfectly – bearing in mind that the cracks of only one specimen are reported
in [149]. All specimens exhibit the correct crack initiation point together with
appropriate branching of the crack and very comparable inclinations of the two
subcracks. The maximum reaction force is plotted on the top left. This parameter
has been found to be very sensitive and subject to high scatter. However, the
simulated values fit well in the experimental range. Crack propagation velocity
is investigated in [149] with snapshots of high-speed cameras and reported to
be initially roughly 835 m/s, slowing down to 480 m/s before branching occurs.
The upper branch continues with 387, the bottom one with 444 m/s for the
high loading rate. The criteria was a crack opening of 0.1 mm. Trying to conduct
this analysis with the FE results by evaluating crack plots at constant time rates,
ranges for the velocity are estimated to be 785–1155 m/s for the initial crack,
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Figure 4.11: Crack patterns of two virtual specimens for the reduced loading rate (slice through
the 3D specimen). The two shown cases are representative for all five models.

and 370–566 m/s for the two emerging cracks.59 Crack patterns for the low
displacement rate are shown in Figure 4.11 for two chosen specimens only. No
crack branching appears, and the crack approximates well the experimental
pathway.

4.3.2 Fragment velocities and momentum transfer: SHB
spallation example

Experiments on the Split-Hopkinson-Bar (SHB) are well suited to investigate
material behavior at high strain rates, up to approximately 100 1/s. Data for
the rate enhancement of concrete has been generated in the past years pre-
dominantly with SHB set-ups. For example, Schuler et al. investigated standard
concrete (presumably C30/37 grade with a maximum aggregate diameter of
8 mm) in a spallation configuration [273]. The specimen – a cylinder with a
diameter of 75 mm and a length of 250 mm – is secured with adhesives to a
long aluminum bar. An impactor hits this incident bar and a compressive pulse
propagates through the bar. When the pulse reaches the free rear end of the

59 It should not be concealed that these numbers depend on the chosen crack criterion of
δ = 0.1 mm for the analysis. If a less rigid criterion is taken, e.g., the elements failure point,
the crack velocity remains constant at approximately 800 m/s in all cases.
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Figure 4.12: Left: Virtual SHB specimen; Right: Principle of wave propagation in the SHB spallation
configuration: a) The incoming compressive pulse traverses the interface between
incident bar and specimen and is partly reflected into the bar and partly transmitted
into the specimen; b) The right-running wave approaches the rear surface and
is reflected as rarefaction wave. Dashed lines show the incoming and reflected
theoretic wave, while the solid line is the actual net stress state; c) Incoming and
reflected waves annihilate each other and the specimen is – for a moment – stress-
free; d) Now the rarefaction wave supersedes the incoming wave and the resulting
(left-running) wave is a tensile wave. As soon as the stress level of this wave reaches
the material’s tensile strength, fracture occurs.

sample, it is reflected as a rarefaction wave. The beginning reflection interferes
with the still-incoming compressive pulse, engendering an increasing net tensile
stress. Eventually, the strength of the material is exceeded and cracking occurs
(see Figure 4.12, right). The newly generated (inner) surfaces again reflect the
rarefaction wave, and a characteristic wave profile can be observed in the velocity
signal of the rear surface, measured, e.g., with a laser interferometer. The typical
drop in the wave profile is called “pull-back velocity”, vpb, and can be used to
derive the dynamic strength of the specimen.
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A typical model used in the simulation is shown in Figure 4.12, left. Again,
aggregates between 2 and 8 mm are considered with a total aggregate content
of 70 %. Three different porosities, 0 %, 10 % and 20 %, are investigated. The
porous samples are modeled by discretely resolving pores between 2 and 4 mm.
The distributions are generated again with the Fuller curve with n = 0.5. Material
parameters are the same as in the previous section and listed in Tables A.2 to A.4.
The meshing is graded such that a finer mesh prevails in the region where most
cracking is expected. As input signal, a velocity is calculated from the measured
strain in the incident bar by vi = −cbε̄b, with cb being the speed of sound of
the incident bar and ε̄b the average strain from four tests. The strain gauge was
placed 400 mm in front of the specimen but the signal is nevertheless applied in
the simulation at the nodes of the specimens front surface. No further constraints
are considered. Schuler et al. conducted tests with different impact velocities and
hence loading intensities, which were labeled as “loading stages” 1 to 3. Here,
only loading stages 2 and 3 are simulated. Figure A.5 on Page 223 documents
the employed velocity input signal for these stages.
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Figure 4.13: Rear surface velocity of SHB specimens with different porosity and loading. For each
load stage and each porosity level, five samples have been simulated. The average
velocity from these runs is plotted as solid line, while the shaded background marks
the whole range of results from [273].
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Figure 4.14: Comparison of fragment size between experiment and simulation for two virtual
samples with 10 % porosity in loading stage two. Discontinuities in the velocity
field highlight the crack planes. Note that photographs and simulation snap-shots
exhibit the same scale.

Figure 4.13 shows the rear surface velocity. The range of experimental results for
the two loading stages is indicated by the gray-shaded area. For each porosity
level, five distinct virtual specimens have been simulated. The line plotted is the
respective average value, the colored shading gives the range of results. This
scatter is the sole result of the stochastic heterogeneity in the virtual samples.

Several points should be highlighted: For load stage two, all three porosities yield
very good results. As expected, the pore-free specimen exhibits the highest, and
the model with 20 % porosity the lowest strength. The 10 % specimen delivers
here the best results, fitting completely within the experimental range. The scatter
within one porosity series is small until approximately 0.2 milliseconds, indicating
only slight differences in the fracture. Most importantly – the final velocity of the
rear fragment fits very well into the experimental range, indicating a comparable
momentum transfer in simulation and experiment.
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For load stage three, results are in the lower range of the experimental findings
but still acceptable. Here, the overall strength is slightly too low. Furthermore,
one observes already a drop in inclination in the velocity profile shortly before the
maximum is reached. Consequently, the maximum is less than the expected aver-
age of the four test results. There are two issues that potentially even intertwine:
First, in the model, slight matrix damage is observable even before the reflected
wave fractures the virtual sample distinctly. Second, the conversion and appliance
of the input signal presuppose only elastic behavior. That this might in reality not
be the case, especially for high rates as here, has already been conjectured in
Section 3.2.2. Still, the results are acceptable and the final velocity of the rear
fragment is in the experimentally observed range, although on the lower limit.

Regarding the fragmentation of the samples, Figure 4.14 gives the velocity
field at t = 1 ms of two specimens with 10 % porosity under load stage two.
Discontinuities in the field mark distinct fragments. Compared to the test results
– displayed are samples 17 and 26 from [273] – the agreement in fragment size is
convincing.

4.3.3 Fragment mass distribution: air shock driven
fragmentation

Experiments focusing on fragmentation are rare. Even more scarce are tests with
quantitative data. In terms of data collection and evaluation, the tests by Bewick
et al. stand out. They conducted several series of shock tube tests with small-
and large-scale specimens of glass, concrete, and concrete masonry [9, 282, 283].
Manual fragment collection and different image analysis techniques were used to
determine the mass and velocity distribution of the fragments. Unfortunately, only
selected results are published – seriously hampering the thorough exploitation of
the test series. Nevertheless, two tests are chosen and simulated in the following.
Both tests have been conducted in a small diameter shock tube with different
loading intensities and two different slab thicknesses. The principal set-up is
shown in Figure 4.15. The slab is fixed between the shock tube and a metal
plate with a circular opening. The strength of the concrete samples are given
with fc = 21.8 MPa and ft = 2.9 MPa for test 30 and fc = 33.7 MPa and
ft = 3.6 MPa for test 36. Crushed limestone aggregates with a maximum
diameter of 9.5 mm have been used in both samples.
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Figure 4.15: Set-up of the shock tube tests, acc. to [9, 282].

For the FE model, only the slab is modeled. The total amount of aggregates is
74 %, modeled in this case with a smallest diameter of 3 up to 9.5 mm, following
the Fuller curve with n = 0.5. A porosity of 20 % in total was considered with
explicit modeling of pores between 3 and 4 mm. The material parameters are
again the same as in the previous section, refer to Tables A.2 to A.4 in the
appendix. Although concrete strength was reported to differ between the two
tests, only one parameter set is used in the simulation. A time history curve, as
given in [282] and documented in Figure A.7, Page 224, is taken as pressure
input. It is applied to element facets within a 165.1 mm diameter around the
center of the plate. Instead of modeling the constraint by the metallic plate, a
simple translational boundary in the orthogonal direction is defined at the slab’s
rear side at all nodes lying on a circle with the appropriate radius.

Figure 4.16 shows the crack pattern of the two tests as snapshots of the high-
speed recording. Comparable simulation results are shown in Figure 4.17. For
the standard value of GF = 30 J/m2 the number of cracks is obviously underes-
timated in the case of low pressure loading (left). Reducing this value to 5 J/m2
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Figure 4.16: Snap-shots from high-speed-video for two tests: no. 30 (pp = 3.7 MPa, b =
50.8 mm) and no. 36 (pp = 26.9 MPa, b = 25.1 mm, refer to Figure 4.15) from
[9, 282]. The point in time is unknown.

improves the results considerably, refer to the small inlay. The overall trend that
cracking increases with loading is clearly discernible.

The diagram in Figure 4.18 shows the development of individual fragments for
the high-pressure test 36. Five simulations have been performed for this test, with
a different virtual specimen each (“A” to “E”). Shown in the figure is the average
with the min/max values from these simulations. After 5 ms the fragmentation
is almost complete. Since fragments emerge due to erosion of elements, the
second curve in this diagram is of peculiar interest. It shows the total mass within
the model. In the current implementation, the mass of nodes is only deleted if
the node itself is completely disconnected. On average 13 % of the total mass
vanishes during fragmentation, which is an acceptable value. In the experiments,
only 65 % of the mass was recovered although even debris pieces with a mass
down to 0.005 g were physically collected (corresponding roughly to spheres
with a diameter of 0.8 mm!).

Figure 4.19 shows the break-up of specimen “A” at different points in time
and highlights the emergence of a large number of fragments of varying sizes.
Although the total number of fragments collected was considerably higher in the
tests than in the simulation, their mass distribution, as compared in Figure 4.20,

98



Development of a robust and efficient mesomechanical modeling approach

2
30 J/m

25 J/m 2
30 J/m

Figure 4.17: Snap-shots from simulation for test no. 30 (left, at 1.5 ms) and no. 36 (right at
0.5 ms, specimen “A”), as in Figure 4.16. In all shown application examples, a
fracture energy of 30 J/m2 was used. With this value, however, the number of
cracks is underestimated for the low pressure. There, a value of 5 J/m2 (inlay, left)
delivers much better results.
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Figure 4.18: Number of fragments and total model mass over time. Average value with min/max
values from five virtual specimens.

agrees satisfactorily. Unfortunately, the raw data of the experimental values
plotted are not available and the authors report a nonuniform bin definition
in their evaluation. Therefore, the simulation results could not be ordered in
the same bins. However, the general trend of an exponential distribution in the
central mass range is clear. Although the scaling is logarithmic, the probability
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Figure 4.19: Development of fragments at distinct point in times, virtual specimen A.

densities in the range of approximately 0.8 to 10 g match the experimental results
well. On the other hand, the simulation underestimates the number of very small
pieces and overestimates fragments with higher mass, which are more harmful
from a safety perspective. Surely one has to consider that some side effects, such
as secondary breaking after initial impact on the ground and rebound, are not
covered in the simulation. Overall, the results are very satisfying, and one does
not need too much imagination to ponder about further improvements by a
more careful fitting of material parameters.
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Figure 4.20: Debris mass distribution for test 36. Experimental values (black) and values from
five simulations.

4.4 Summary and way forward

The preceding work has outlined an efficient approach for modeling the fracture
and debris ejecta of concrete under dynamic loading. Although there is still
room for improvement, the foregoing results have shown that the major features
of fragmentation are satisfactorily covered: Correct crack paths and branching,
accurate fragment sizes and velocities, and an overall fragment distribution with
conforming characteristics compared to experiments. It was shown that with this
approach results are derived, which are up today incomparable and usable to
analyze the effects of debris throw on a new level.

Nevertheless, especially for indoor detonation, it is known that the confined
space, its energy dissipation capacity, and potential vent openings have a major
implication on the actual pressure distribution and consequently on the fragments
initial conditions. It follows that in some situations not only regions of interest
have to be considered but also surrounding structures. Depending on the rise
time of the pressures, they may not only influence the pressure but may also be
an important constraint to the meso domain. Chapter 5 will now turn to the
question of how the two scales can be combined efficiently and accurately.
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5 Formulation of a multiscale
framework for wave
propagation codes60

The previous chapter closes with the remark that it might be necessary to not
only focus on a small to medium-sized meso domain, but that the surrounding
structure might influence the mechanical behavior of the region of interest. While
explosions in confined spaces are the basic motivation to do so, a coupling of
two scales with wave propagation on both might be helpful not only for the
specific objective pursued in this thesis but for several other situations. Consider,
for example, the use of high-strength polyethylene in human safety wests. If
fired on in experiments, the actual penetration process is very local and features
several mechanical processes on a lower material scale. Yet the overall ballistic
performance depends as well on a membrane stress state due to the gross
deformation. In order to decrease computational efforts, one might conceive
to model the local effects on a microscale, whereas the membrane forces are
considered by a connected macro domain. More generally, every engineer has to
cope with the fact that some regions of a model are more important than others.
Reducing time and costs by combining different mesh sizes is an important aspect
of numerical analysis, hence a coupling of two disparate meshes has always a
benefit in itself. Yet for the consideration of wave propagation on both scales,
together with the ability to model fragmentation, no current coupling seems to
be efficient enough. After reviewing some of the prominent concepts in literature,
an existing coupling is outlined, followed by the proposal of a novel coupling
scheme. Although the coupling will be applied here to concretes macro- and
mesoscale, the more general term “microscale” will be used in the following to
designate the lower material scale.

60 Some of the content of this chapter, notably sections 5.1 and 5.3, have already been
published in [284]. They are here rephrased and expanded.
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5.1 Review of multiscale approaches

Taking a bird’s eye view, multiscale analysis may be divided into three basic
categories; see Figure 5.1: (a) hierarchical, (b) concurrent, and (c) mixed methods.
The latter are often very particular solutions and will not be discussed further.
Hierarchical methods are sometimes more broadly referred to as “indirect”,
“information-passing”, “sequential”, “serial” or “parameter-passing” [285, 286],
and – depending on the field – as “coarse-graining” [287]. The term concurrent
is in some works replaced by “direct”, “embedded”, “integrated”, or “hand-
shaking” methods [163]. In the following, only some remarkable representatives
of the underlying ideas will be mentioned, together with concepts closely related
to this work.61 As this thesis focuses only on numerical approaches, analytical
homogenization techniques will be completely omitted.
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Figure 5.1: Rough overview over the basic multiscale categories. In concurrent strategies,
schemes differ mainly between surface and volume coupling, whereas for mixed
approaches a variety of different schemes exist. Exemplified adumbrated are only
static condensation and the heterogeneous multiscale method (HMM) [289]. For
hierarchical methods, only the most famous candidate, the FE2 class, is shown. Most
of these approaches are based on the definition of RVEs, with the notable exception
of the works of Gitman et al., who employs equivalent volumes (EV) [290].

61 Reference [288], a book chapter by Horstemeyer, is to the author’s knowledge currently still
the most comprehensive broad review of multiscale methods, covering over 300 references
from different disciplines and may be a good starting point for interested readers.
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5.1.1 Hierarchical approaches

Hierarchical methods rely on the homogenization of the microscale response,
which is then infused into the macroscale. The least flexible of these schemes
is a fully hierarchical coupling, where the microscale response is precalculated
for multiple load cases and stored in a response map [291–293], or employed
to determine a yield surface [171]. If a certain load regime is reached, the
precalculated solution is used. In more advanced schemes, the microscale can be
calculated on the fly if a relevant load case is detected, which was not processed
beforehand.

The most common hierarchical processes are semi-concurrent methods that
homogenize the micromodel on the fly. If both scales are discretized by finite
elements, these approaches are labeled FE2-methods, a term coined by Feyel [294,
295]. The main idea is that a representative volume element (RVE), representing
the microscale, is attached to each material point on the macroscale – which
corresponds to Gaussian integration points in the context of finite elements (see
the schematic sketch in Figure 5.1, right). Typically, the deformation gradient is
passed down from the macroscale to the RVE in which the structural response of
the heterogeneous material is calculated. Afterwards, homogenized parameters –
generally stresses and strains averaged according to the condition of Hill [296]
– are passed back to the macroscale. Differences between the methods consist
mainly in the way how the deformation state is applied, how the microscale is
homogenized, and whether only first- or even higher-order variables are passed
between the scales. Examples are, e.g., [297–300] for first-order and [301] for a
second-order FE2-method. These methods are well suited not only to derive the
bulk behavior of a material, but were used extensively to determine the traction-
separation law of cohesive zones on the macroscale, e.g., [200, 302–307]. The
reader is referred to the review papers by [308] and [309, 310], which give a
detailed and extensive overview of multiscale methods and current examples.

Hierarchical schemes have the decisive advantage that they often inherit a strong
parallel characteristic. It is hence very easy to implement full parallel algorithms
that exploit modern High-Performance Computing capabilities. On the other
hand, especially FE2 approaches exhibit two serious disadvantages: If softening –
or more generally damage – shall be described as part of the material response,
one major premise is the validity of the RVE, which means that the observed
material behavior is independent of the size of the observation window. Gitman
et al. have demonstrated that a RVE no longer exists as soon as strain localization
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occurs, and therefore the use of RVEs in the nonlinear analysis of this material
class fails to deliver objective results [311]. This fact is supported, among others,
in [312] and [313]. Since damage develops in general over all length scales, Geers
et al. state more broadly that such processes violate the principle of separation of
scales [310], which is an important presupposition of the validity of standard FE2

techniques.62

A second disadvantage, especially with regard to wave propagation on both scales
and the focus on concrete, is the size of the RVEs in hierarchical approaches. The
propagation of (shock) waves on the macroscale limits the maximum element
size on this scale to resolve the almost discontinuous pressure jump at the wave-
front. On the other hand, the RVE size is bound to a minimum size [319]: The
RVE should have a size l (refer to Figure 5.1) which leads to a homogeneous
macroscopic behavior for a considered response function. Lacy et al. note that the
size of a representative observation window may be different, depending on the
response function considered, with sizes for the resolution of functions connected
to damage at the upper end [320]. In this regard, Bažant et al. measured the
width of the fracture process zone of concrete [321]. They found a corresponding
width of the process zone of around 2.7 times the maximum aggregate size.
Later Weerheijm et al. gave an estimate of the fracture process zone in dynamic
tensile tests approximately 3 times the maximum aggregate size [87], while the
initial suggestion in [169] was 4 times the largest inhomogeneity. Since a RVE
should encompass the fracture process zone, this value indicates a minimum size
for a RVE. For an arbitrary standard concrete with a maximum aggregate size of,
e.g., 16 mm, this would lead to a RVE size of at least l = 43.2 to 64 mm. Consid-
ering wave propagation, two investigations maintain that an RVE should even
have a minimum edge length of approximately 70 mm to reflect homogeneous
properties [104, 218]. However, in practical situations, the preferred edge length
62 Two solutions exist to mitigate this problem: Several authors split the microscale response

into a discontinuous and a homogeneous bulk portion and thereby retain objectivity of the
results [287, 306, 312–315]. Nguyen et al. have shown that the existence of an objective
RVE can be maintained when applying this technique [316]. However, it seems that these
concepts are hardly applicable for cases with multiple, even intersecting cracks, as is the
case for brittle materials under high dynamic loading. The second remedy is to abstain from
the application of a RVE and to couple an equivalent volume to the underlying material
point, as suggested by Gitman in [290, 317, 318]. Instead of a RVE with an arbitrary size,
this approach refers to models on the microscale that encompass a volume equal to the
volume the corresponding macro integration point represents, Figure 5.1, right. Yet this
method then comes close to concurrent coupling approaches, where the macro volume is
replaced by the micro volume. The main difference is that the coupled volumes proposed by
Gitman are independent of each other and information is exchanged only with its attached
macroscale material volume (represented by an integration point).
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of macro element a is generally around a ≈ 20. . . 30 mm. But representing
each integration point of the macro mesh with a RVE larger than the macro
element edge length would lead to virtually overlapping material regions, which
introduces simply much more (unnecessary) computational effort than the use of
equivalent volumes. This is acceptable as long as the computational costs for the
solution of the microscale problem are low due to an implicit solution scheme,
although even this is by some authors disputed for practical cases, see, e.g.,
[291]. As soon as an explicit scheme is applied, the overall computational time
will be unnecessarily high, especially in three dimensions. Therefore, concurrent
approaches may be a better alternative and have historically been the choice for
dynamic problems.

5.1.2 Concurrent approaches

In order to discuss concurrent approaches, consider a continuous body Ω, which
is divided into a macro domain ΩM and a micro domain Ωm: Ω = ΩM ∪ Ωm,
as shown in Figure 5.2, left. For xI = xi, each domain has an interface Γ to
the other domain. In this context, capital-letter subscripts denote from now on
entities on the macro and small subscripts refer to the micro domain (swapping
to superscripts might sometimes be necessary to make room for other subscripts).

Most concurrent methods apply one of two options: Either the domains abut
each other and surfaces are coupled, or the domains overlap in a finite interface
region and, consequently, volumes are coupled. The latter is often applied in
atomic to continua (ATC) couplings, where regions of interest are modeled with
molecular dynamics (MD) and an attached FE-domain enlarges the total domain.
The overlapping regions are commonly referred to as “handshake” or “bridging”
regions, e.g., [322, 323]. In these references, weighted energy functionals of the
subdomains in the handshake region are linearly superposed. A similar approach,
but at a more structural level, is pursued in the “Arlequin-method” [324, 325], a
versatile concept that yields appealing results for different problems, including
dynamic applications [326, 327].

“Domain decomposition” schemes are often able to cope with different scales,
disparate meshes, and even different time scales. Therefore, they may be well
classified under concurrent methods. An example of a classical decomposition
technique worth mentioning with regard to the umbrella term “volume coupling”
is the alternating Schwarz algorithm, which has actually been occasionally applied
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Micro interface node
Macro interface nodeStandard node

Figure 5.2: Split of body Ω into a macro ΩM and a micro domain Ωm. Each domain has an
interface Γ to the other domain with xI = xi. For the coupling developed here, the
macro domain is slightly enlarged by an interface region ΩI , which overlaps partly
the micro domain. A point xAI in the interface region receives its variable values
by averaging a finite material portion ΩIm around its coincident counterpart xAm
in the micro domain. Right: Detail of discretized domains. The averaged values are
transferred to the interface elements and deliver proper forces to the macro domain.
Figure from [284].

to multiscale problems, e.g., [328]. In this algorithm, the continuity conditions
at the interface are fulfilled by iteratively solving the subdomains together with
special interface conditions in a small, overlapping regime. In [329], this method
was applied to linear transient ATC problems without iterations by carefully
choosing the interface operators.

As the second major class, surface coupling is employed in different works. Here,
the domain boundaries are adjacent to each other, and continuity has to be
ensured between the contiguous domains. The differential formulation of the
momentum balance for the split body then reads (neglecting body forces):

ρM üM −∇ · σM = 0 in ΩM (5.1a)
ρmüm −∇ · σm = 0 in Ωm (5.1b)

u̇m = u̇M on Γ (5.1c)

Boundary conditions at the body’s boundary ∂Ω may be defined, such as pre-
scribed displacements ue on ∂Ωu = ∂Ωu

M ∪ ∂Ωu
m, tractions te on ∂Ωt =

∂Ωt
M ∪ ∂Ωt

m with ∂Ω = ∂Ωt ∪ ∂Ωu, ∂Ωt ∩ ∂Ωu = ∅ and ∂Ωu
M ∩ ∂ΓI =
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∅, ∂Ωu
m ∩ ∂Γi = ∅, ∂Ωt

M ∩ ∂ΓI = ∅, ∂Ωt
m ∩ ∂Γi = ∅, together with initial

conditions in the domain:

uM = ueM on ∂ΩuM , um = uem on ∂Ωum, (5.2a)

tM = teM on ∂ΩtM , tm = tem on ∂Ωtm, (5.2b)
u̇M (t0) = u̇m(t0) = 0, uM (t0) = um(t0) = 0 in Ω (5.2c)

A natural choice to enforce condition (5.1c) is the application of Lagrange mul-
tipliers (LM). Indeed, they are widely used in this context, e.g., in the mortar
element method [330, 331], and in several domain decomposition concepts.
Examples are the FETI framework [332, 333] or references [38, 334, 335]. Local
multipliers are used to couple domain boundaries together with a global interface
in [336, 337] and are applicable (as are the aforementioned works) to combine
two or more scales, disparate meshes, and even different time scales [38, 337].
Less flexible but feasible is the direct formulation of constraint equations, as in
[198, 308].

5.1.3 Wave propagation in multiscale methods

A large portion of recent hierarchical multiscale methods found in the literature
consider quasi-static problems, which are solved by standard implicit methods.
Only a few approaches include the transmission and propagation of waves, which
is necessary for the consideration of high dynamic loading. Souza et al. model in
this context the behavior of composite structures [298, 338, 339] and Karamnejad
et al. are concerned with the wave propagation in concrete [315]. However, both
methods presuppose that the wavelength of the transmitted signal is substantially
larger than the local micro length scale, which allows a quasi-static solution of
the boundary value problem on the microscale. Later, the approach in [315]
was extended by including inertia effects on the microscale [340]. Nevertheless,
transient stresses on the microscale are not considered in this reference. Snozzi
applies a multiscale method to determine the cohesive traction-separation law for
concrete and solves both scales with explicit time integration [306]. Even there,
wave propagation through the bulk material is not considered, since only the
cohesive laws at macrocracks are of interest.

As a remarkable exception, the work of Knap et al. should be mentioned [341].
This contribution aims not to solve a particular problem at hand, but rather to
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establish a general, abstract framework for a hierarchical solution of dynamic
problems and focuses on the algorithmic implementation of generic functions,
which establish the coupling of two general scales. The principal functionality of
the framework is demonstrated in the paper by simulating a Taylor impact test.
However, the authors admit that the solution is very costly, thereby underlying the
above reasoning that hierarchical schemes are currently not attractive candidates
for coupling in wave propagation problems.

Concurrent couplings are – in contrast – often used for the investigation of
dynamic scenarios. Indeed, most of the references mentioned above inherently
deal with dynamic problems. In these schemes, wave propagation is naturally
allowed and does not add an extrinsic level of difficulty. Instead, only the case of
reflections at the interface due to incompatible wave lengths has to be handled –
an issue to be discussed in more detail later in Section 5.4. As mentioned above,
material failure can be considered on a lower scale without difficulties. Even
cracks that cross the interface can be approximated with some success, as will be
shown in the last application example, Section 6.3. Consequently, the concept of
concurrent multiscale techniques seems to be the most appropriate candidate for
the analysis of interest.

Given the large number of already available solutions, one may legitimately raise
the question of whether one of these might not be applicable to the aim of this
thesis. Yet most of these concepts rely on LM in either way. Admittedly, LM are an
attractive numerical instrument since they fulfill the continuity condition exactly,
thereby delivering an accurate solution of the discretized equation of motion.
But, as will be seen below, they necessitate the solution of a global system of
equations. However, recalling the remarks in Chapter 2: the basic advantage
of hydrocodes is the direct solution scheme. Storing large matrices and solving
global systems of equations abandon the attractive gist of these codes and slow
them down considerably. Bearing in mind the huge computational effort needed
to solve only the meso domain in the examples shown in Chapter 4, one should
strive for a solution that is as efficient as possible. Translated in a comprehensible
claim: The coupling should add as few additional operations as possible – per
cycle and as a whole. This is the aim pursued in the development of a weak
staggered concurrent coupling, which will be detailed in Section 5.3. Beforehand,
an already existing surface coupling based on LM is briefly described to highlight
its characteristics in case of explicit time integration and to prepare the basis of a
comparison with the new development.
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5.2 An existing coupling based on Lagrange
multipliers

LM are regularly used in the context of the FEM to fulfill certain additional con-
straints, such as imposed displacements or the coupling of degrees of freedoms
(DOF) [29]. For the coupling of two domains, in the following, the generic de-
composition approach described by Combescure et al. [38, 334], will be adapted
to nonlinear wave propagation problems in two domains.

The body Ω (Figure 5.2) may initially be undivided. The reference problem for this
body is then defined as: “Find the solution of the displacement field, u, and the
stress field, σ, which satisfy the boundary conditions, dynamic equilibrium and
constitutive material laws” [342]. The weak form of the problem may be derived
by formulating the continuous Lagrange-functional for the discretized body:

L(u, u̇) =
1

2
u̇ᵀMu̇− Φ(u) + Rᵀu (5.3)

As before, u is the vector of displacements, M the mass matrix and R the vector
of external forces; Φ(u) denotes the strain energy density. To consider additional
constraints, such as interfaces between subdomains, let C be a coupling matrix
and λ the vector of LM, which can be interpreted as forces in the following.
The energy contribution of the LM is Lλ(u) = λᵀCu, which can be added to
the functional stated above [38]. Let ΩM now be a macro domain, discretized
with nME finite elements E and nMN nodes N . Likewise, Ωm shall be an adjoining
micro domain, discretized with nmE finite elements and nmN nodes. Elements on
the microscale are assumed to be much smaller than those in the macro domain.
The interface is hence defined by ni nodes on the micro, and nI nodes on the
macro domain, ni � nI . Let further, for later discussion, denote the dimension
of the problem with d, where d = 2 for R2 and 3 for R3. The number of degrees
of freedom per domain is hence nDOF = dnN .
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Writing the Lagrange functional for both domains, and applying the principle of
least action, delivers an expression for the total problem (see [343] for a detailed
derivation):

MM üM (t) = RM (t)− FM (t) + Fl(t) ∀t ∈ [t0, te] (5.4a)
Mmüm(t) = Rm(t)− Fm(t) + Fl(t) ∀t ∈ [t0, te] (5.4b)

Cü(t) = 0 ∀t ∈ [t0, te] (5.4c)
Fl(t) = Cᵀλ(t) ∀t ∈ [t0, te] (5.4d)

along with the boundary and initial conditions, equation (5.2), and the combined
vector ü = [üM üm]ᵀ. The mass matrices are diagonal matrices, as explained
in Chapter 2. Obviously, the coupling of both domains is achieved by adding
coupling forces Fl to each domain. This vector is non-empty only for DOF of the
interface nodes ni and nI .

Combescure et al. formulate their approach flexible with regard to the choice of
the kinematic coupling variable at the interface and define Wz(t) = Wz(t −
∆t) + αzü(t). In this definition, αz, z = 1,2,3, is a time integrator derived from
the applied time integration method (e.g., Newmark scheme). If the same time
integrator is used on both domains, the choice of the coupling variable does not
matter, since in case of, e.g., coupled accelerations, velocities, and displacements
are compatible as well. Coupling is now enforced by demanding CWz = 0
(refer to equation 5.4c). From that it follows for the definition of the linear
coupling matrix: C ∈ Rdni × Rd(ni+nI ), C = [CM Cm], CM ∈ Rdni × RdnI ,
Cm ∈ Rdni × Rdni . It shall be filled such that C1 = 0 and CM1 = 1, as well as
Cm = −I.63 1 is a vector with a suitable length, filled with ones, and I denotes
the identity matrix.

63 To demonstrate the coefficients of the matrix, consider a 1D system with two macro DOF
uM1 and uM2 . Five micro DOF should be coupled to the system, with micronodes 3 and 7
being coincident to the two macronodes. Micronodes 4,5 and 6 are equally spaced between.
The coupling is then enforced by:

Cu =


1 0 −1 0 0 0 0

0.75 0.25 0 −1 0 0 0

0.5 0.5 0 0 −1 0 0

0.25 0.75 0 0 0 −1 0

0 1 0 0 0 0 −1





uM1
uM2
um3
um4
um5
um6
um7


= 0
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In the leapfrog scheme, velocities are the primary solution variable. Therefore,
the case of z = 2 is considered below. For this case, simply α2 = ∆t (the index z
and time variable (t) will be omitted in the following and the shortcut notation
W = W2(t) defined. Furthermore, all expressions are formulated at cycle (n) –
only values at a different step are explicitly marked).

With W = [WM Wm]ᵀ, the EoM for the coupled system in matrix notation
reads: MM 0 Cᵀ

M

0 Mm Cᵀ
m

CM Cm 0


üM

üm

λ

 =

RM − FM

Rm − Fm

CW/∆t

 (5.5)

Defining combined matrices for both domains:

M =

[
MM 0

0 Mm

]
, ü =

[
üM

üm

]
, F∑ =

[
RM − FM

Rm − Fm

]

gives the EOM in compact form as:[
M Cᵀ

C 0

][
ü

λ

]
=

[
F∑

CW/∆t

]
(5.6)

Introducing

MLH =

[
M Cᵀ

C 0

]
equation (5.6) can be solved by inverting MLH :[

ü

λ

]
= M−1

LH

[
F∑

CW/∆t

]
(5.7)

MLH is constant. Consequently, the costly inversion has to be done only at
the beginning of the computation. Furthermore, it suffices to assemble equa-
tion (5.7) only for the coupled DOF and to solve all others independently with
the standard EOM (equation 2.8). Then it follows for the size of the matrix MLH :
MLH ∈ Rd(2ni+nI )×Rd(2ni+nI ) and the vector

[
F∑ CW

]ᵀ ∈ Rd(2ni+nI ). The
additional effort per cycle consists then in collecting the coefficients of the right-
hand vector in equation (5.6) along with the matrix multiplication CW ∈ Rdni
and the subsequent multiplication with M−1

LH .
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For the naive implementation of a matrix multiplication of two matrices A ∈ Rl×
Rm and B ∈ Rm × Rn the number of necessary operations is of order O(mnl).
Therefore, in the worst case, the necessary operations for establishing the vector
CW is of order O

(
d2ni(ni + nI)

)
and – with the subsequent multiplication

with M−1
LH – of total order O

(
d2
[
(2ni + nI)

2 + ni (ni + nI)
])

. Considering
the fact that usually ni � nI , one can neglect nI and finally gets O

(
5d2n2

i

)
.

Combescure et al. propose a further simplification, leading to an additional
reduction in the dimensions of the matrices. The system given in equation (5.6) is
split into a free problem – the individual solution of the uncoupled subdomains –
and a constraint system, presuming ü = fü +lü. The free problem then reads:[

M 0

0 0

][
fü

0

]
=

[
F∑
0

]
(5.8)

From CW = 0 it follows that Cfü = −Clü. Recalling that the velocities are
centered at the half time step, one can write W(n+1/2) = W(n−1/2)+ ∆tü(n)

and formulate the constraint problem:

∆t

[
M Cᵀ

C 0

][
lü

λ

]
=

[
0

C(W(n−1/2)+ ∆tlü)

]
(5.9)

This approach allows for an independent, parallel solution of both domains,
without considering the coupling. After the free accelerations, fü, are determined,
the constraint (or “link”) accelerations, lü, have to be calculated, which are a
correction to the free accelerations. From the first equation of the matrix system,
equation (5.9), follows: lü = −M−1Cᵀλ. Inserting this expression in the second
row ∆tClü = C

(
W(n−1/2)+ ∆tfü

)
, delivers:

∆tCM−1Cᵀλ = −C
(
W(n−1/2)+ ∆tfü

)
(5.10)

Defining the constant interface operator H = CM−1Cᵀ, H ∈ Rdni × Rdni ,
allows rewriting equation (5.9):

∆t

[
M Cᵀ

0 H

][
lü

λ

]
=

[
0

−C
(
W(n−1/2)+ ∆tfü

)] (5.11)
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Solving for λ then yields:

λ = − 1

∆t
H−1C

(
W(n−1/2)+ ∆tfü

)
(5.12)

It is not necessary to actually determine λ. Instead, inserting the above solution
into lü = −M−1Cᵀλ, yields the final expression for the unknown constraint
accelerations:

lü = − 1

∆t
M−1CᵀH−1C

(
W(n−1/2)+ ∆tfü

)
(5.13)

Defining H0 = −M−1CᵀH−1C one finally gets:

lü =
1

∆t
H0

(
W(n−1/2)+ ∆tfü

)
(5.14)

H0 again is a constant matrix, which has to be evaluated only once at the start of
the calculation. It is of size d(ni + nI)× d(ni + nI) and by dni rows and colums
smaller as MLH above. The number of operations to solve equation (5.14)
therefore is in the worst case O(d2(ni + nI)

2). However, depending on the
number of DOFs, the inversion of H to yield H0 might not be trivial, and might
even – considering very large models – not be able to be stored in the main
memory.

Conclusion The LM coupling, as described above, allows the coupling of
two disparately meshed domains in a proper algorithm. Matrix inversions of
constant, sparse matrices have to be executed only at the beginning – as long
as the interface topology remains unchanged during simulation! But as soon
as erosion or nodesplit occurs in the interface region, computational efforts
shoot up: The coupling matrix C has to be enlarged, as well as M, followed
by re-assembling and inverting H. Especially the latter operation is very costly
and takes – depending on the problem size, of course – a substantial amount of
time and memory.64 Similarly, matrix multiplications are, in general, of non-linear

64 Test runs with large 3D application examples, comparable to the one shown in Section 6.3,
have been aborted after one day. Within this time, the matrix inversion has not yet succeeded.
Surely, the choice of the decomposition algorithm from the C++ Eigen Library used, might
not have been the best, but it was the fastest from previous (smaller) tests. In the same
time, the weak staggered coupling, to be introduced in the next section, has already passed
several thousand cycles.
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order and disproportionately increase the necessary time per cycle with increasing
problem size.

5.3 Development of an efficient weak staggered
coupling

As an alternative, in the following, a “weak staggered” (WS) coupling is pro-
posed.65 It exhibits similarities to schemes commonly used in fluid/structure
interaction (FSI) problems, see, e.g., [344, 345]. In staggered FSI problems, the
compatibility condition, equation (5.1c), is enhanced by the requirement of stress
equilibrium at the interface:

σm · nΓi = −σM · nΓI on Γ (5.15)

with nΓ denoting the normal vector of the interface Γ pointing outward the
domain. Whereas the fluid exerts pressure on the embedded solid structure,
which consequently moves and delivers a new boundary back to the fluid, this
concept is applied here to two solid domains with disparate meshes. More
specifically, the macro interface velocity is applied as a boundary condition to the
micro interface. The microscale, in turn, delivers tractions to the macro interface,
reflecting the resistance of the microscale against deformation, i.e. its stiffness.
In a pure macro homogenization, these “tractions” are nothing else than the
internal forces of the adjacent macro element (see equation (2.7)). However, in
the case of disparate meshes, there is no direct connection and consequently
no forces to be summed up at the nodes. To determine proper forces, virtual
macro elements are spanned over the micro domain in an additional interface
domain ΩI , partially overlapping the micro and adjoining the macro domain
at the common boundary ΓI , see Figure 5.2 (right) on Page 108. These virtual
elements retrieve their stress state from the underlying microscale and thereby
transform the current microscale stiffness in the vicinity of the domain border
into forces applicable to the macro interface nodes.
65 In the review introducing this chapter, a basic distinction was made between “hierarchical”

and “concurrent” multiscale methods. However, Belytschko et al. distinguish between
“weak” and “strong” coupling strategies, where the terms apply to the quality of momentum
transfer between the different scales [287]. On the contrary, the term “weak” here expresses
the fact that no exact equilibrium between the two scales is sought in each cycle and has
nothing to do with momentum transfer. Referring to the latter, the coupling should be
classified as “strong”.

116



Formulation of a multiscale framework for wave propagation codes

Although the interface domain ΩI can be considered as a bridging domain, there
is an important difference to classical bridging or handshake domains since no
common energy functional is used. Accordingly, its displacement field does not
influence the micro displacement field (except for the interface points) but instead
is defined by the micro field. Points in this region will be forced to correspond
to the movement of the underlying micro domain. A very similar approach was
described in [346] in a coupled atomistic and discrete dislocation approach. In
this ATC coupling, interface atoms are influenced through a non-local potential
by neighboring atoms in a “pad” region, a finite atomistic regime protruding the
FE continuum. While the pad atoms are fixed by the movement of the underlying
FE domain, the FE interface nodes are determined by the interface atoms, and
no common energy functional is employed. Indeed, as the authors note, there
is no well-defined energy functional for the coupled system in this case, what
– on the other hand – does not matter since “a well-defined energy is not a
requirement” ([346, p. 762]). Furthermore, references [347] and [348] describe
an approach to couple finite elements with a meshless peridynamics formulation,
which exhibits close analogies both to reference [346] and the concept employed
here. Again, an interface region consisting of finite elements is used in which
peridynamic nodes are embedded. They receive the corresponding displacement
field from the finite elements, while coupling forces of each node are added to
the surrounding FE-nodes.

In contrast to LM coupling, the staggered solution only approximates the stress
equilibrium at the interface, since σm in equation (5.15) will be replaced by
an averaged micro stress 〈σm〉. Nevertheless, the results are very satisfying, as
long as this averaged stress state is not too far away from the actual local micro
stress state, refer to the examples in Chapter 6. On the other hand, this concept
is computationally very efficient. It retains the direct character of the solution
scheme, no global system of equations has to be solved, and the number of
additional floating point operations is linear with respect to the number of entities
on the interface. In fact, the whole approach is strongly motivated by the attempt
to follow the solution cycle as closely as possible. Besides keeping the hydrocodes’
efficiency, the implementation is straightforward. It leaves the main core of the
solver kernel almost untouched, whereas the LM coupling necessitates a much
heavier change. Consequently, the WS coupling can be incorporated into existing
hydrocodes with moderate effort. Moreover, topology changes on the interface,
e.g., due to cracking, are handled with ease and memory requirements remain
more or less the same as without coupling. As a final remark, it should be noted
that both scales may be even solved by completely different codes by a simple
exchange of forces and velocities, rendering the concept very versatile.
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5.3.1 Governing equations

Writing the weak form of the continuous problem, equation (2.4), for the three
domains defined in Figure 5.2 delivers simply:∫

ΩM

δu · ρM üMdΩM +

∫
ΩM

∇δu : σMdΩM −
∫
∂ΩM

δu · tMd∂ΩM = 0 (5.16a)∫
ΩI

δu · ρI üIdΩI +

∫
ΩI

∇δu : σIdΩI −
∫
∂ΩI

δu · tId∂ΩI = 0 (5.16b)∫
Ωm

δu · ρmümdΩm +

∫
Ωm

∇δu : σmdΩm −
∫
∂Ωm

δu · tmd∂Ωm = 0 (5.16c)

along with the standard initial and boundary conditions already mentioned above
(see equation (5.2)) and the compatibility constraint u̇m = u̇M on Γi. For the
interface domain, likewise the following conditions hold: uI = ueI on ∂ΩuI , tI =
teI on ∂ΩtI , u̇I(t0) = uI(t0) = 0 in ΩI , (∂ΩuI ∪ ∂ΩtI) ∩ ΓI = ∅. The microstruc-
tural constituents define the material behavior on the microscale. Referring to
the previous chapter, in the case of concrete, this is the mortar matrix and the
aggregates, but for now an arbitrary microstructure is in view. Assuming that the
material behavior of these constituents is known, the stresses can be described
as a function of the strain tensor εm and potentially other state and material
parameters βm: σm = f(εm, β

1
m, β

2
m, . . .).

Splitting the last term of equation (5.16b) in tractions on ∂ΩI \ ΓI and tractions
on ΓI exerted by the macro domain on the interface domain (refer to equation
(5.15)), one can reformulate:∫

ΩI

δu ·ρI üIdΩI +

∫
ΩI

∇δu : σIdΩI −
∫
∂ΩI\ΓI
δu ·tId∂ΩI −

∫
ΓI

δu ·tIdΓI = 0 (5.17)

Isolating now the integral over ΓI , presupposing a similar split of the last term
with a different sign for the ΓI -integral due to Newton’s third law and inserting its
expression in equation (5.16a), and noting further that ∂ΩMI = (∂ΩM ∪ ∂ΩI) \
ΓI , yields for the combined domain ΩMI = ΩM ∪ ΩI :∫

ΩM

δu · ρM üMdΩM+

∫
ΩI

δu · ρI üIdΩI +

∫
ΩM

∇δu : σMdΩM

+

∫
ΩI

∇δu : σIdΩI −
∫
∂ΩMI

δu · tMId∂ΩMI = 0

(5.18)
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As mentioned above, the region ΩI is not a common material region with its
own material behavior. Rather, it receives its state parameters from the underlying
micro domain. Therefore, it is designated as “virtual” domain. Density and stress
are derived by averaging these values in a micro volume portion with finite size
ΩIm ⊆ Ωm, depending on the coordinate of a material point xI in the interface
domain (refer to Figure 5.2, left): σI(x) = 〈σm(x)〉 and ρI(x) = 〈ρm(x)〉. A
volume averaging operation of the variable under consideration is expressed by
the brackets:

〈◦〉 =
1

|ΩIm|

∫
ΩIm

◦ dΩIm (5.19)

By prescribing the averaged variables to the interface domain ΩI , it reflects
the density and stress state of the micro domain in the vicinity of the interface.
Consequently, the macro points on the interface ΓI receive the influence of the
micro domain. As for the kinematics, material points of the interface domain are
simply prescribed to follow their initially corresponding material point in the micro
domain: u̇I = u̇m in ΩI \ ΓI , closely following the work in [346]. If discretized,
ΩI reduces to nothing more than a slight extension of the macro mesh into
the micro domain. ΩI

m is then simply the volume covered by each protruding
element; see Figure 5.2, right. It should be highlighted already here that this
additional domain provides simply a numerical framework to determine and apply
proper forces for the macro interface nodes. If ΩI is suitably discretized by a
single element row, it can be almost eliminated from the system, and only the
additional mass at the interface nodes remains to be considered.

5.3.2 Discretization

The discretization of both domains with finite elements E is similar to the one
mentioned for the LM coupling, yielding in total nMI = nM +nI nodes N in the
combined macroscale domain ΩMI and nm nodes on the microscale. (A detailed
derivation of the matrices representing the problem is given in [284] and is not
repeated here for the sake of briefness.) The semi-discretized problem reads then
for ΩMI :

MMI üMI = R− FM − F̃m (5.20)

together with the boundary condition uMI = ue for nodes on ∂Ωu
MI and the

initial conditions u̇MI(t0) = uMI(t0) = 0 in ΩMI . The vector F̃m denotes the
internal forces of elements in the discretized interface region ΩI . With reference
to Chapter 2.4, the mass matrix is diagonalized by lumping the mass of the
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elements at the nodes. The nodal assembly can now be decomposed into nodes
completely within ΩM : NM ; nodes completely in ΩI : NI ; and nodes lying on
the interface ΓI : NJ . Due to the fact that F̃m has no entries for nodes NM and
FM = 0 for nodes NI , equation (5.20) becomes:MM 0 0

0 MJ 0

0 0 MI


üM

üJ

üI

 =

RM

RJ

RI

−
FM

FMJ
0

−
 0

F̃mJ
F̃mI

 (5.21)

The vector FMJ contains the internal forces of the elements belonging to the
macro domain, but being attached to the interface nodes, NJ , whereas F̃mJ
holds the forces of elements attached to NJ but lying in the interface domain.
These are the actual coupling forces derived from the underlying microscale. Since
the kinematic state of the nodes NI lying in the interface is taken directly from
the appropriate positions in the micro domain, the last line of equation (5.21)
has not to be solved and can be elided. Equation (5.21) then reduces to the final
form of the semi-discretized momentum balance of the macro domain:[

MM 0

0 MJ

][
üM

üJ

]
=

[
RM

RJ

]
−

[
FM

FMJ

]
−

[
0

F̃mJ

]
(5.22)

Comparing equation (5.22) with the semi-discretized EOM of a standard domain
(e.g. equation (2.8)), the difference is in the additional force term and the fact
that the masses of the interface nodes,NJ , now contain a portion of the virtually
attached region.

No peculiarities have to be considered for the micro domain – discretized with
nodes Nm within the domain Ωm and nodes Ni lying on the interface Γi:

Mmüm = Rm − Fm (5.23)

with the additional boundary condition u̇i = φ (u̇J ,xi) on Γi, where φ is a linear
interpolation function (Section 5.3.4). Supplying the boundary condition um = ue

for nodes on ∂Ωu
m and the initial conditions u̇m(t0) = um(t0) = 0 in Ωm, an

independent initial boundary value problem is achieved for the micro domain.
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Writing now the complete problem at once, for easier comparability with the LM
based approach, equation (5.4), delivers:

MM üM = RM − FM − F̃mJ (5.24a)
Mmüm = Rm − Fm (5.24b)

u̇m = u̇M (5.24c)

Note that the “linking forces” on the micro domain are “replaced” by the
compatibility condition. Furthermore, all three lines in the above-written system
are independent – but have to be solved in a specific sequence. Finally, the linking
forces, F̃mJ , are determined by a simple loop over some micro elements, with
linear complexity only.

5.3.3 Establishing the virtual interface domain

The interface domain is necessary to derive the linking forces F̃mJ at the macro
interface nodes. It is established by adding virtual nodes, ÑI , within the micro
domain. Using these nodes, virtual elements Ẽ are defined, Figure 5.3. These
entities are labeled “virtual” since they simply retrieve their state parameter
directly by reference to the micro domain, i.e. ũI = f(um) and σ̃I = 〈σm〉. In
the case of the virtual nodes, they are connected to an underlying microscale
node if a coincident node exists. Otherwise, they are connected to an underlying
micro element at the beginning of the simulation.66

Standard linear shape functions Ñ(ξ) are used in the virtual elements. The matrix

B̃ =
∂Ñ

∂ξ
J̃−1 (5.25)

serves as discrete gradient operator for the elements. In this expression, J̃ is the
Jacobian matrix built with the coordinates of NJ and ÑI and Ñ the matrix of
shape functions; ξ are the local (elemental) coordinates of the integration point

66 Using the shape functions of this element, the position of the virtual node in the local
(element) coordinate system is determined and stored. Having this original position at hand,
in each cycle the current position can be derived by recourse to the shape functions and the
elements’ nodal values.
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Standard node Micro interface nodeMacro interface node
Virtual node

Micro interface

 Virtual element
boundaries

Figure 5.3: Left: The interface domain ΩI is defined by one element row adjoining the interface,
with a resolution similar to the elements size of the macro domain. The virtual
elements Ẽ overlapping the micro domain are defined by the macro interface nodes
NJ (black squares) and virtual nodes ÑI (polygons). Right: Detailed view on the
overlay of the virtual and the micro mesh. Figure from [284].

under consideration. In this thesis, only hexahedral macro/virtual elements are
used, but the approach can be extended to other elemental shapes if necessary.

5.3.4 Interface coupling procedure

In order to prescribe the macro interface movement to the micro interface, a
linear interpolation of the velocity is used: u̇

(n+1/2)
i = φ

(
u̇

(n−1/2)
J ,x

(n−1)
i

)
,

refer to Figure 5.4, left. Together with the linear shape functions of the macro
element, the application of a linear function ensures strict compatibility between
the domains. Let ˜̇uk denote the vector of the velocity of the k−th virtual el-
ements’ nodes q = 1 . . . 8: ˜̇uk = [u̇1

k u̇2
k . . . u̇

8
k]ᵀ. The interpolation for each

micro interface node i within the bounds of the virtual element k can then be
performed with the following relation:

u̇i = Ñᵀ
k(ξi, ηi, ζi)˜̇uk (5.26)
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internal force

internal force by 
averaged stress state

horizontal nodal velocity
interpolated velocity 
at interface nodes

Figure 5.4: Left: Interpolation of the macro interface nodal velocities gives the initial velocity at
the micro interface nodes at beginning of each cycle. In the illustrated case, node l
still has zero velocity, which leads to the decreasing, linear slope between nodes i
and l. Right: The averaged stress state in the micro domain covered by each virtual
element is used to determine proper forces for the macro interface nodes.

with Ñk = [Ñ1
k Ñ

2
k . . . Ñ

8
k ]ᵀ and

Ñq
k (ξi, ηi, ζi) =

1

8
(1 + ξqξi)(1 + ηqηi)(1 + ζqζi) (5.27)

being the vector with the linear shape functions of the nodes q evaluated at
the (local) coordinates ξ, η, ζ of the micro node i in the virtual element. For this
operation, these coordinates have to be available. They can be determined once
during set-up by solving the underlying nonlinear inverse isometric mapping
problem; refer to [347] for details. For the velocity of the nodes q, defining the
virtual element under consideration, the following conventions are used: If these
nodes are interface nodes, then simply ˜̇uqk = u̇J holds; for nodes within the
micro domain: ˜̇uqk = f(u̇m), see footnote 66.

The fact that u̇
(n−1/2)
J is known is a beneficiary property of the Leapfrog algo-

rithm and cannot be presupposed for other time integration schemes. For other
schemes, more complex staggering procedures, as detailed in the context of
fluid/structure interaction, e.g., [344, 349], should be principally adaptable.
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5.3.5 Averaging the micro model

The initial boundary value problem of the microscale is fully defined as soon
as the initial velocities are applied on the micro domain interface nodes and
the solution cycle can be executed for this domain. Once the cycle has been
completed, the stress state in the virtual elements is used to derive appropriate
forces for the macro interface nodes, NJ . At each integration point g of each
virtual element k, the stress state of the ñmg,E underlying (attached) micro domain
elements is averaged, by applying equation (5.19) in a discretized form, where
Ve is the volume of each evaluated micro element:

σ̃Ik,g = 〈σm〉k,g ≈
1

Ṽ sk,g

ñmg,E∑
e=1

σme Ve (5.28)

In this work, Ṽ s in equation (5.28) is equal to the sum of the volumes of the
micro elements considered.67 If the presence of, e.g., initial voids or emerging
cracks shall be considered, a more appropriate definition of Ṽ s may be applicable.
The thus averaged stress state is afterwards used to evaluate the internal forces
of the virtual element using a discretized form of equation (2.7), with standard
Gaussian integration and weight factors a.,. at integration point g of the virtual
element k:

F̃mJ ,k =

ng∑
g=1

B̃ᵀ
k,g〈σm〉k,g det J̃k,gag,xag,yag,z (5.29)

Equation (5.29) thus expresses an average resistance force of the microscale
against deformation. The forces are finally added to the macro interface nodes
and considered during the macro cycle, see Figure 5.4, right. Recalling that, in
general, ∂F /∂u = K, one can interpret the averaging step as related to static
condensation approaches, e.g., [350, 351], since it simply delivers an averaged
stiffness 〈K〉 for the covered micro volume.

In the current study, all elements are one-integration point elements, and the
occurrence of hourglass modes is controlled by considering hourglass forces.
However, in the virtual macro elements one central integration point is used
as well, but in this case no hourglass forces are considered. Since the outer
virtual nodes (the ones not on the interface) are fixed within the micro domain,

67 Each micro element covered by a virtual element is initially assigned to the nearest integration
point of the virtual element.
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unphysical distortions cannot occur and there is no need to control these modes.
Besides that, no significant effect of the number of integration points within the
virtual elements was observed in test simulations.

Once all forces have been collected, the macro model can complete its solution
cycle and determine new accelerations, velocities, and finally positions at its nodes
NM and NJ . Having computed these values, the time is advanced by one time
step, and the process starts over again. The flowchart of one cycle is schematically
given below, Figure 5.5, together with an illustration of the marching solution
and a comparison between staggered and LM based coupling. An algorithmic
outline of the serial solution of one cycle is given in Algorithm 2.

pure macro LM coupling

(a) (b)

time step WS couplingWS coupling

Figure 5.5: (a): Schematic sketch of the marching solution in time of the herein described scheme.
A wave propagates from left to right. From the velocities at the nodes, the strain rate
and subsequently the stress state is derived in each full time step (n). The forces due
to the stress state lead to updated nodal velocities at the next half time step. Note
that the force vectors are for illustration purposes only and do not indicate a specific
direction. (b): Comparison of the proposed staggered scheme and a surface coupling
based on Lagrange multipliers, as exemplified in [38], based on the Leapfrog time
integration. Figure from [284].
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Algorithm 2 Serial solution of micro and macro domain for one cycle from (n)
to (n+ 1). Additional operations introduced by the coupling are colored in blue.

Use u̇
(n+1/2)
J to interpolate BC on Ni, eq. (5.26)

for ∀Em do . Standard hydrocode update for all micro domain elements
Update matrices
Determine σm
Calculate Fm

end for
for ∀Nm do

update üm, u̇m,um
end for
for ∀Ẽ do . Process the virtual elements

Update matrices
determine σ̃
Calculate F̃mJ

end for . Micro domain update finished
for ∀EM do . Standard update of macro domain elements

Update matrices
Determine σM
Calculate FM

end for
for ∀NM do

update üM , u̇M ,uM
end for
Add F̃mJ to all NJ . Consider the micro domain contribution
for ∀NJ do

update üJ , u̇J ,uJ
end for . Macro domain update finished

5.3.6 Estimation of efficiency

Extra effort for coupling For the LM approach, two aspects for the coupling
have been identified: Inverting matrix H and solving equation (5.14) each cycle
with the worst case of O(d2(ni + nJ )2) floating point operations. For the
WS coupling, again two operations are necessary, but this time both in each
time step: Interpolation of the velocities at the interface and averaging of the
stress state. The first operation is of order O (d(ni + nJ )/P), the second of
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O
(
niE/P

)
, with P being the number of processors used and niE the number of

micro domain elements in the interface region. Both operations are of linear order,
and although niE > (ni + nJ ) for fine meshes, this effect should be perceptible
eventually. Additionally, a costly matrix inversion is never necessary. The fact that
P is mentioned in this estimation should highlight that the operation can be
parallelized straightforwardly and scales very well; see Section 6.2.3.

Communication efforts Although the parallel implementation of the coupling
will be briefly introduced not before Chapter 6, already here, under the delib-
eration of efficiency, the necessary communication between the two domains
shall be succinctly reflected. For the discussion, assume that macro and micro
domains are solved on a different CPU. Pretending that equation (5.13) for the
LM coupling is solved by the macro processor, the free accelerations of the micro
interface nodes have to be communicated to the macro process. Afterwards,
the link accelerations have to be sent back. Presuming that for each node in
R3 one integer ID (or vector index) and three float components have to be sent
each, in total 28 bytes are necessary for each node in each communication step.
The total data to be communicated within one solution time step adds then
to 2ni×28 bytes. In the WS coupling the velocities of the nodes of the virtual
interface elements (macro interface nodes and virtual nodes) have to be available
on the microscale process, whereas the forces to the macro interface nodes and
the positions of the virtual nodes are communicated back. Assuming that there
is one row of elements for the interface, i.e. nÑI = nJ , the total amount of
data in one time step is 4nJ× 28 bytes. The theoretical difference hence is a
∆ = (2ni−4nJ )× 28 bytes higher amount of data in the LM coupling, indicating
a strong increase for fine meshes where ni � nJ .

Summary Comparing LM and WS coupling in view of additional operations and
introduced communication efforts shows that the WS coupling offers advantages
in both aspects. The additional operations are of linear order only, are easily
parallelized, and scale well, as will be shown in Section 6.2. Only data of the macro
interface nodes have to be communicated between the domains, indicating small
message sizes and fast communication. It should not be dismissed, however, that
the LM coupling benefits from compilers tuned to optimize matrix multiplication
operations. In HPC settings, communication between processes is handled by
suitable hardware, and the additional data size with respect to the WS coupling
is perceivable only in the case of large models. Furthermore, the LM coupling
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allows a full parallel solution of both domains, whereas in the WS coupling the
macro interface nodes cannot be integrated before the microscale problem is
fully solved. Yet the main disadvantage of the LM coupling remains the inversion
of H at t = 0 and each time the topology changes, which – in contrast – does
not pose a challenge for the WS coupling.

5.4 Abating pathological wave reflections

A well-known corollary of coupling domains with disparate meshes (or element
skew angle and formulation) are pathological wave reflections at the interface
[352–354]. This pathology occurs if the wave propagates from the fine into the
coarse domain and contains frequencies higher than the latter is able to resolve.
This section discusses this phenomenon and proposes an ameliorating solution,
which adapts a current formulation of a selective perfectly matched layer to the
proposed WS coupling.

To highlight the problem consider a one-dimensional rod of length l = 300 mm
with linear elastic material behavior and the following initial and boundary
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Figure 5.6: Wave propagation from micro- to macroscale in 1D. The pulse is induced at
x =−150 mm and propagates from left to right. The velocity of all nodes in
the bar are plotted here at different time points (denoted by t, the arrow indicates
the current propagation direction). “Blue” positions are in the micro, “gray” in the
macro domain. Figure from [284].
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conditions: u(x, t0) = 0, u̇(x, t0) = 0, u̇(x = −150, t) = vb(t). The rod is
evenly divided into a micro and a macro domain, with the interface ranging from
−5 ≤ x ≤ 0. Points x < −5 belong to the micro domain, all points x > 0 to
the macro domain. In the micro domain, elements with length em = 0.5 mm
and on the macro eM = 5 mm are used. A Gaussian pulse with a superimposed
sinusoidal signal with angular frequency ω1 if A1 6= 0, defines the applied velocity
vb(t) at x = −150:

vb(t) = (A0 + q(t)) e
−
(
t−2.5β
β

)2
, q(t) = A1 sin (ω1t) (5.30)

with β > 0 being a parameter that determines the width of the pulse. If t > 2.5β
and, consequently, vb(t) → 0, the condition is removed. The analytic solution
for a right-propagating elastic wave for 0 ≤ t < x/c is simply achieved by
replacing t by t − x/c in equation (5.30), with c being the wave propagation
speed, cS =

√
E/ρ.

The velocity in the bar is plotted in Figure 5.6 for A1 = 0 at distinct points in
time. An almost perfect agreement to the analytic solution is yielded (compare
the dashed and the solid line for t = 0.06). Note that in this case the result is
almost identical to the one achieved with a model, where the domains are simply
adjoined at one single node (not shown).

Consider now the case of A1 6= 0. The simulation results are plotted in Figure 5.7.
While the low-frequent signal crosses the interface, the high-frequent portion
is reflected. One can easily show that there is a cutoff frequency ωhc , marking
the limit that can be resolved by a 1D discretization with node distance h, see,
e.g., [335] or [355]. As mentioned above, this issue occurs within any attempt
to combine two different domains, and is – more or less – independent of the
actual coupling mechanism.

Of course, such behavior is not desired, although the effects on the overall
solution may be low, depending on the problem. In the following, an overview
of existing mitigation strategies will be given. After that, one special concept will
be discussed in detail since it will subsequently be adapted to be incorporated
into the WS coupling.
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Figure 5.7: Wave propagation from micro to macro in 1D. The superimposed high frequent
portion of the signal is reflected at the interface. The wave portion labeled with
t = 0.06* is the high frequency portion reflected at the interface. Figure from [284].

5.4.1 Remedies in literature

The problem of spurious wave reflections on an interface between disparate
discretizations is of special concern for ATC couplings. Besides the fact that
the scale jump in these cases is pronounced, the reflected wave introduces
spurious energy and consequently heats up the atomistic region, such that the
results may be totally useless [356, 357]. If larger scales are considered, reflected
waves still disturb the solution but may be in an acceptable range – which is of
course different from application to application. Most of the mitigation strategies
available for this problem can be assigned to one of three general categories:
(i) reducing the nodal spacing at the interface, (ii) applying absorbing boundary
conditions of some kind, and (iii) designing an absorbing interface layer. As an
example for the first category, one can allude to the already mentioned MAAD
method by Abraham et al. [163, 322]. With a refined mesh in the handshake
region, featuring element sizes comparable to the atomic spacing, the occurrence
of strong reflections is successfully eliminated but renders the solution very
inefficient. The use of transition elements to connect two FE meshes belongs
similarly to this category.

The literature dealing with the simulation of wave propagation in unbounded
domains contains examples from the second and third rubrics. In practice, un-
bounded domains translate in simulation to large but bounded problems, and
there is a need to eliminate reflections from the now existent domain border. This
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may be achieved by applying specific absorbing boundary conditions, e.g., [358,
359]. Closely related are, for instance, the so-called “optimal boundary matching
conditions” for a finite difference based coupling scheme detailed in reference
[356].

Absorbing layers integrated in the coupling interface have been the subject of
several contributions. They refer back to the “Perfectly Matched Layer” (PML) con-
cept, detailed in [360]. In this approach, the domain is surrounded by a medium
with (almost) perfect impedance matching but dissipating properties. Originally
invented in the context of electromagnetism, it was adapted to simulations of
elastic waves in [361, 362]. Meanwhile, several works have picked up the broad
idea of an absorbing layer, especially in MD-FE couplings [357, 363, 364].68

5.4.2 The SPML approach of Marchais et al.

Of special interest to this work is the so-called “Selective Perfectly Matched Layer”
(SPML) approach, introduced by Marchais et al. [335]. The classical PML technique
applies a damping term to each DOF of the whole model. Since the damping
term depends on the position of each node, only DOF within the filtering layer,
or filtering zone, ΩF , receive effective damping. For all other nodes, the term
equals zero. In the work of Marchais et al., only the EOM of the nodes within
the filtering zone is altered and furnished with a damping term. The authors
entitle their adaption of the PML concept “selected” since the intention is to
damp out only specific frequencies in the micro displacement field, namely those
that cannot be resolved by the coarser mesh. On the contrary, all frequencies
are absorbed in the classical PML method. However, although they seem to be
the first to use the term SPML, the underlying idea is comparable to the works
discussed above. The notable difference is the application of the technique to
two FE domains and not to different numerical domains, such as a FE and a MD
domain. This feature makes this work especially relevant for the current study.

The filtering zone is a finite region of the micro domain, abutting the interface
and featuring an additional, overlaying macro discretization – very similar to
the interface domain used in the WS coupling. Marchais et al. split the micro
68 As an example of a special, dissipating interface design, the work of Ben Dhia et al. should

be mentioned [326]. In this reference, it was shown that a dissipative scheme in the “gluing
zone” of the Arlequin method filters out the incompatible contribution from the refined
domain, without further specifying the dissipative scheme.
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displacement field uF in this zone into a “compatible macro displacement”,
uM, and an additional “unique microscale displacement”, um: uF = um + uM.
Individual contributions are determined by complementary operators:

uF (t) = um(t) + uM(t) = PmuF (t) + QMuF (t), Pm = I−QM (5.31)

In the context of the preceding sections, the additional usage of the terms “macro”
and “micro” may be confusing. Here, it is important to note that each DOF of
each micro node in the filtering zone has the above-mentioned contributions in
its displacement – even if no macro discretization exists. The “compatible macro
displacement” part is the ratio, which might be resolved at the position of the
considered node in an overlaying (fictive or real) macro element, see Figure 5.8.
In other words: the macro contribution of a node in the micro domain is the
displacement of this node, which is “compatible” to a real or fictive macro
discretization at this position. Therefore, the cumbrous terms “unique microscale
displacement” and “compatible macro displacement” might best express the
intended meaning and will be used from now on. To avoid confusion, the sans-
serif symbols m/M are used for the unique microscale and compatible macro
displacement.

macro node/element

filtering zone pure macropure micro

micro node
   element

Figure 5.8: Split of the displacement of micro nodes in the filtering zone into a contribution
unique of the micro domain and a part which conforms to an overlaying – fictive or
real – macro mesh.

To derive a partially damped formulation of the problem, the unique microscale
and the compatible macro displacement field may be expressed by the modal
basis of the problem at hand and the definitions

uM(t) =

nM∑
j=1

αj(t)φj um(t) =

n∑
j=nM+1

αj(t)φj (5.32)

in which αj(t) denotes the time functions related to the eigenmodes φj . n =
nM + nm is the total number of DOF. The eigenmodes up to nM are those of the
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compatible macro field, whereas all larger modes belong to the unique microscale
field (nm). Considering the split of the displacement field, the EOM may be finally
expressed by n + 1 independent ordinary differential equations for each time
function αj of the form (see [335] for details):

α̈j(t) + ω2
jαj(t) = 0 ∀j in [1, n] (5.33)

with ωj being the j−th eigenfrequency, corresponding to the j−th eigenmode
φj . The authors now modify this equation by adding a damping term with the
aim to reach lim

t→∞
um(t)→ 0:

α̈j(t) + ω2
jαj(t) =

{
0 j ≤ nM

−2fdα̇j(t)− f2
dαj(t) j > nM

(5.34)

The individual solutions of the above equation for j > nM are then

αj(t) = Aje
−fdteiωjt (5.35)

exhibiting a signal decay exponentially with rate −fd, with fd > 0. Consequently,
the EOM in the filtering zone may be written in its standard form as:

Mü(t) + F−R + 2fdMPmu̇(t) + f2
dMPmu(t) = 0 in ΩF (5.36)

Note that by applying the microfield projector Pm in the last two terms, only the
unique microscale contribution is affected by the damping.

The main issue is now to find formulations for this projector, which success-
fully partitions the displacement field into unique micro and compatible macro
contribution. A natural choice is to derive this matrix simply by using a linear
combination of the eigenmodes. However, this requires the solution of (at least)
the first nM eigenmodes. If these have to be derived only once, this formulation
is a feasible way to derive the splitting operator. But the eigenmodes actually
depend on the mesh configuration and the current stiffness. Ergo: if the mesh
becomes distorted during the simulation or the stiffness changes due to nonlinear
material behavior, the splitting operator has to be derived repeatedly, which may
be – at the long run – very costly and inefficient.

In addition to a projector defined on a wavelet basis, which should not be
discussed here, Marchais et al. propose a third variant: a definition based on the
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Figure 5.9: A 1D macro mesh (solid points) overlaid by a micro mesh together with linear shape
functions of the macro mesh.

shape functions of the macro filtering zone. The compatible macro displacement
part is thereby defined as

uM = NMdM, NM =
[
N1

M N2
M . . .N

nM
M

]
(5.37)

Matrix NM consists of the shape functions Nj
M of the overlying macro (filtering)

zone, evaluated for each node, and dM is defined as the (unknown) projection
of uF on the macro discretization. To illustrate the assignment of NM, consider
the simple 1D model in Figure 5.9 with six DOF, three of them belonging to the
micro mesh. Then uM = [u1

Mu
2
Mu

3
Mu

4
Mu

5
Mu

6
M]ᵀ in which u4

M, u5
M and u6

M are the
portions of the macro displacement field at the three micro nodes. Evaluating
the linear shape functions of the macro mesh at all nodal positions yields:

u1
M

u2
M

u3
M

u4
M

u5
M

u6
M


=



1 0 0

0 1 0

0 0 1

2/3 1/3 0

1/3 2/3 0

0 1/2 1/2


d

1
M

d2
M

d3
M



The unknown vector dM can be derived by minimizing the gap between the
global and the macro kinetic energy, which finally leads to the following definition
of the projection operator (see [335] for the detailed derivation):

Pm = I− NMM−1
M Nᵀ

MM (5.38)

This definition may then be used in equation (5.36). It should be noted that the
application of this projector necessitates the solution of the EOM as a whole,
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that is, the individual rows of equation (5.36) are no longer independent, as is
the case in the simple direct solution scheme (see Chapter 2). This means that
the efficiency of this scheme is lost as soon as such a projector is applied. If the
LM based approach detailed above is used to couple both domains, the coupling
matrix C now contains all DOF in the filtering zone, not only the ones on the
interface – an enormous rank increase! Consequently, the inversion of H0 takes
even longer. In order to apply equation (5.36) in the WS coupling, a pragmatic
and less stringent mathematical approach is suggested to determine the unique
microscale contribution, which will be detailed in the following paragraphs.

5.4.3 Adaption of the SPML approach to the WS coupling

For the application of the SPML approach, the split of the displacement field
within the filtering zone ΩF is necessary. Marchais et al. achieve this by applying
operator Pm on the total displacement field u

(n)
F . But since the operator works

simultaneously on several entries of u
(n)
F , a common solution of a system of

equations is necessary. Therefore the use of such an operator shall be dismissed
for the adaption to the WS coupling with its Leapfrog time integration scheme
and a different approach is taken. The aim is to isolate the unique microscale
displacements of the micro domain nodes within the filtering zone, which then
can be damped out. To do so, note first the triviality:

u(n)
m = u

(n)
F − u

(n)
M (5.39)

Hence, if one has the total deformation of the microscale nodes and a suitable
displacement field of a macro discretization within the filtering zone, one can
easily determine the unique microscale contribution by a simple subtraction.
Again, the employment of virtual elements, as already introduced above, will lead
exactly to such a displacement field. For the WS concept, there is already one
row of elements that protrudes from the micro mesh. If one adds one further (or
more) rows of virtual “filter elements”, ẼF , a filtering zone is established.69 Now
the nodes of these new virtual elements – the “filter” nodes NF – are integrated
as standard macro nodes, with the necessary forces derived again by averaging

69 It is not possible to use the already existing interface region, since the virtual nodes (the
ones within the micro domain, not those on the interface) retrieve their kinematic state by
direct recourse to the micro domain (Section 5.3.3), thus their state contains the unique
microscale displacement at their position.
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the stress state of the underlying micro domain.70 The resulting displacement
field within these elements is then a pure macro field, ũF , influenced by the
stress state of the micro domains, see Figure 5.10.

Standard node Macro interface node
Virtual node Filter node

internal force

internal force by 
averaged stress state

free micro nodedamped micro node

Figure 5.10: Schematic view of the coupling set up with damping. An additional filter zone (red)
is inserted between macro (grey) and interface domain (green). The filter nodes
receive forces from the averaged micro domain by the virtual filter elements ẼF
and are integrated similar to standard macro nodes. Micro nodes lying within the
filtering zone receive damping, nodes within the interface domain not.

To derive now the compatible macro displacement for each micro node within
the filtering zone, again linear shape functions of the virtual elements are used
and equation (5.37) can be applied – with the important difference, that dM is
replaced by the now known displacements of the “filter” nodes NF 71:

u
(n−1)
M = NMũ

(n−1)
F (5.40)

70 In contrast to the partially fixed interface elements, the filter elements are prone to hourglass
modes if only one integration point is used. In these cases, therefore, four integration points
in 2D and eight for 3D should be used in these elements; volumetric locking is excluded,
since no ordinary material model is used to determine the stress state.

71 This leads to the trivial definition of the projector operator: Pm = I − N′M, in which
N′M = [NM 0 . . .0] is the matrix of macro shape functions, extended by nm zero columns
to yield a size of n× n (NM is of size n× nM only).
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Note that due to the time integration scheme, the kinematic variables in (n− 1)
have to be used.72 Since NMi,j = 0 for micro nodes outside of their overlying
virtual element, it is simpler to evaluate the unique microscale contribution for
the micro nodes covered in each virtual element k individually, following the same
procedure as for the interface coupling, equation (5.26). Having u

(n)
M for each

micro node at hand (u̇(n−1/2)
M is retrieved similarly), equation (5.39) is solved and

the damping can be applied during integration of the velocities:

u̇(n+1/2)
m = u̇(n−1/2)

m + ∆tü(n)
m −2fd∆tu̇

(n−1/2)
m − f2

d∆tu(n−1)
m︸ ︷︷ ︸

damping

in ΩF (5.41)

The acceleration is still derived without damping as ü
(n)
m = M−1

m (R
(n)
m − F

(n)
m ).

Displacements are afterwards integrated by equation (2.37b). Admittedly, this
approach is pragmatic and less stringent than the concept detailed in [335]. There,
the compatible macro displacement field and the unique microscale contribution
are derived by working on the direct coupled total displacement field, whereas
here the displacement field of the (macro) filter elements does not influence
the displacement field of the covered micro domain elements within the same
timestep. But since the damping decays the signal over several time steps, this is
of inferior importance. Indeed, the following examples show that the amplitudes
of the pathological reflections are damped out to a high and satisfactory degree.

The damping factor fd has units of [1/s] and its optimal value is problem-
dependent. As detailed in [335], the filtering zone could be enlarged by several
rows of elements, and both values – the value of fd and the width of the fil-
tering layer – affect the solution. Although some rough recommendations are
mentioned in [335], optimal values must be determined by trial.

For implementational reasons, the filter nodes are handled as being part of the
macro domain. As will be detailed in the next chapter, macro- and microscale
are processed by different computational units. Since the macro velocities of
the interface and the filter nodes have to be communicated to the microscale,
the communication overhead is considerably increased if damping is activated.
Whereas for the unfiltered approach, 4nJ×28 bytes have to be considered (refer
to Page 127), the demand increases to (4nJ + nF )×28 bytes.

72 This has to be done in the original SPML approach as well if applied to the Leapfrog scheme,
and is no particularity of the WS coupling.
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Examples of the applied SPML approach in the WS coupling

Figure 5.11 shows the 1D simulation performed already at the beginning of this
section, but now with damping. A strong reduction of the amplitude of the
reflected signal is clearly seen.
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Figure 5.11: The above-mentioned 1D example, repeated with the SMPL approach. Compare to
Figure 5.7 for the undamped solution. Here, the reflected amplitude is reduced by
nearly 95 %.

As a second example, consider a linear-elastic 2D bar under plane strain. Overall,
it has a length of 600 mm and a width of 25 mm; the micro domain ranges from
−300 < x < 0 and the macro correspondingly from 0 ≥ x ≥ 300. Elements
with edge length eM = 12.5 mm are used for the macro domain, whereas
the micro domain is much finer discretized, featuring elements with an edge
length of em = 0.78125 mm. Figure 5.12 displays the velocity profile in the
micro domain, while the fringe plot shows the velocity contour at t = 1.58 ms.
One simulation is undamped; in a second run, the SPML approach was activated
with fd = 450 1/s. The differences in the amplitude of the reflected portion
are clearly observable. In this case, the reduction is about 85 % – less than in
the 1D example but still high. With view of the kinetic energy of the micro
domain, the damping dissipates more than 98 %. Marchais et al. show that their
SPML approach is theoretically capable of dissipating 99 % of the pathological
reflections, which can be achieved by a suitable combination of the layer width
and the damping value. Theoretically, an increase of fd should lead to a higher
dissipation rate, but two things should be remembered: First, a too high value of
fd would eventually lead to a noticeable impedance mismatch, and, second, fd
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Figure 5.12: Velocity profile of a 2D bar under plane strain, with a wave running from the micro
into the macroscale (left to right, macro domain not shown). Without damping, the
high-frequency content is reflected at the interface, whereas the SPML approach
damps out most of the pathological reflections.

is linked to the frequency content of the signal and should therefore be chosen
with regard to the loading signal characteristics. In fact, increasing the value leads
again to a higher amplitude of the reflected signal, and the chosen value seems
to be close to the optimum.

A second simulation with an additional filter element row was conducted. In this
case, fd = 300 1/s leads to the highest dissipation, reducing the initial amplitude
by 90 %. A third filter element and fd = 200 1/s decreases the amplitude still
further, but the additional dissipation rate is relatively low compared to the case
of one filtering zone.
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6 Validation and application of the
weak staggered coupling and
outlook on trajectory
determination

This chapter is intended to demonstrate the applicability of the developed WS cou-
pling together with the mesomechanical modeling approach. After the compari-
son of chosen 2D simulations between the LM based and the WS coupling, the
parallel and efficient implementation of the latter for large 3D models will be dis-
cussed. Subsequently, an internal explosion in a small, confined chamber serves
as a final application example, while the detailed determination of fragment
trajectories to derive a safety map highlights the benefit of the approach and
closes the chapter.

6.1 Validation examples and comparison between
coupling approaches

Example simulations demonstrating correct wave propagation with the WS cou-
pling in 3D have already been shown in [284]. Here, only 2D examples will be
reported to directly compare the WS and the LM coupling.

6.1.1 Example 1 – homogeneous microscale

As a first example, consider the homogeneous two-dimensional bar with length
l = 1000 mm and height h = 50 mm, shown in Figure 6.1, top. The macro
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Figure 6.1: Velocity history of a central node (red “x” in model). Comparison of different simula-
tions.

discretization features an element edge length of eM = 25 mm, the micro domain
is meshed with elements of size em = 3.125 mm. On the left boundary of the
model, a velocity constraint is applied with v0(t) = 15 m/s, whereas nodes on top
and bottom are fixed in orthogonal direction, promoting a plain strain state. For
comparison, the problem is additionally simulated with a pure macro and with a
pure micro discretization, whereas for the coupling, the rear half of the geometry
is replaced by the micro domain. A simple linear elastic material model is used
for the whole model, with G = 6.17 GPa, K = 15.4 GPa and ρ = 2.194 g/cm3.
Moderate viscous damping with parameters ζL = 0.01, ζQ = 0.1 has been
activated in all runs.

The velocity history of a central node on the interface is shown in the diagram,
Figure 6.1. As a result of the instantaneous velocity change on the left side, strong
oscillations occur around the theoretical value. These are a direct consequence of
the spatial discretization and would occur in every simulation with comparable
spatial and time resolution [365]. In fact, all four simulations show more or less the
same velocity development. The coupling results fit well between the pure meso
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and pure macro results, although differences are in general hardly discernible.
Most importantly: The results of the LM coupling and the WS coupling are almost
equivalent, with slightly stronger overshooting in the oscillations brought up by
the LM coupling.

6.1.2 Example 2 – heterogeneous microscale

LM coupling

WS coupling

-200.0 6.0

Stress (horizontal component)       in MPa

500

50

250

Figure 6.2: Wave propagation through a heterogeneous micro domain with both approaches.
Top: Model, bottom: horizontal stress σxx at t = 0.1 ms.

Figure 6.2, top, shows – as a second example – a bar with a heterogeneous micro
domain in its center, resulting in two coupling interfaces. The size of the macro
elements is again eM = 25 mm, the micro domain is discretized with considerably
smaller elements. All elements behave linear elastic, however, with different
material properties.73 Boundary conditions are similar to the first example above,
73 Macro: ρ = 2.194 g/cm3, G = 6.17 GPa, K = 15.4 GPa, Micro: matrix: ρ = 1.99 g/cm3,

G = 8.4 GPa, K = 10.0 GPa; aggregates: ρ = 2.69 g/cm3, G = 31.0 GPa, K = 41.4 GPa.
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whereas the Gaussian pulse, already used for the 1D example in the previous
chapter, is applied as velocity boundary at x = 0, refer to equation (5.30) on
Page 129. The parameters A0 = 15, A1 = 0, β = 0.015 are used here. Figure 6.2
shows the stress state σxx at t = 0.1 ms – the moment when the peak of the
wave just passes the second interface. No differences are observable between the
LM based and the WS coupling. For this example, no artificial viscosity was applied.
The velocity history of a central node in the micro domain is plotted in Figure 6.3.
Again, the development is almost identical, besides stronger overshooting in the
saddle points by the LM coupling with increasing problem time.
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Figure 6.3: Comparison of the velocity history of a node placed at the center of the micro
domain.

6.1.3 Example 3 – wave propagation parallel to the interface

A more demanding problem is wave propagation along a coupling interface,
as exemplified in the two-dimensional bar Figure 6.4, top. The edge lengths of
the elements, the material model and the boundary conditions are similar to
Example 1. A boundary condition, v0(t) = 10 m/s, is applied at x = 0. Figure 6.4
compares the velocity field vx at different points in time between the two
coupling approaches. The wave propagation is more or less identical. Only after
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Figure 6.4: Model and velocity field in the micro domain at three distinct points in time. The
macro domain is not shown and is only indicated at the top!

some time do slight, negligible differences appear. In the case of LM coupling,
already in the first cycle the horizontal interface nodes adjoining the first macro
element experience a non-zero velocity, whereas this velocity slowly increases in
the WS coupling, as a consequence of the rising stress state in the corresponding
virtual elements. Hence, the propagation velocity of the wave is slightly higher in
the case of LM coupling. It has to be stated that the LM coupling is more stable
if only one integration point is used for the 2D elements. In this case, instabilities
occur in the simulations by the WS coupling after some wave passes. The results
shown here have been achieved with four integration points. Test runs remained
stable in this configuration up to 100 ms. Slight oscillations in the mesh – albeit
at the correct global energy level! – are observable only after several wave passes
and therefore at problem times, which are irrelevant in most practical cases.
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6.1.4 Example 4 – embedded microdomain
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Figure 6.5: Embedded micro domain. Top: Velocity contour plot at t = 0.19 ms. Bottom: Velocity
history of the central node (red “x” in the contour plot) for a simulation with the
small micro domain and one with a significant larger domain.

Finally, the example of a (heterogeneous) micro domain that is completely
embedded in the macro domain should be considered. Again, a velocity of
v0(x = 0, t) = 10 m/s is applied on the left side, the material model and the
remaining boundary conditions are similar to Example 2. Figure 6.5 shows the
velocity field at t = 0.19 ms along with the dimensions of the model and the
velocity of a central node below. For both couplings already in the second wave
pass (approximately at 0.7 ms) an increasing oscillation is observable, which aggra-
vates to instability. Yet, this occurs for both couplings, indicating that the set-up
is the problem, not the method. Indeed, the reason for the velocity increase is

146



Validation and application of the weak staggered coupling

a difference between the macro and the micro velocity fields, imposed at the
interface. Recall from Figure 5.4 (Page 123) that the velocity (for both couplings)
is linearly interpolated between two macro nodes and then applied at the micro
interface nodes. This results instantaneously in a velocity change of the upper
micro interface nodes if node i in Figure 5.4 has a velocity vMx,i 6= 0. Yet, the
neighboring micro nodes not on the interface still have vmx = 0. Consequently,
a disturbance propagates down- (and upwards) from the interfaces into the
micro domain, although the right-running wave has not yet reached these nodes.
This disturbance is already visible in Figure 6.4 for one interface and parallel
propagation as diagonal bands in the velocity field. It is clearly observable here
as dark “x” in the contour plot, Figure 6.5, top. In this case, the disturbance
increases when the up- and downward running waves confront and reflect in the
center of the micro domain. In adverse set-ups, such as the one shown, horizontal
oscillations occur, which aggravate with time. If, however, the micro domain
is enlarged, these effects are inferior and enfeeble with time. The diagram in
Figure 6.5 also contains the results of such a simulation, in which the width, a,
of the micro domain is significant enlarged to be a = 400 mm (labeled “wide”).
This simulation remains stable.

Conclusion

The four examples presented demonstrate the equivalence of the novel WS
and the established LM based coupling. For the relatively small 2D cases, both
simulations show comparable simulation times. It is in 3D, where the WS coupling
approach unleashes its potential. The next section details some aspects of the
parallel implementation, which is a main ingredient for practical applicability.

6.2 Development of a parallel framework for
simulations in 3D

6.2.1 Introduction

Parallel implementation of algorithms generally aims to decrease overall execution
time and increase the efficient use of all affected resources. The latter aim
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encompasses mainly a balanced workload on all involved processors, which
means keeping idle times of individual processing units to a minimum. How
well these two aims – total speedup by an increasing number of processes and
their efficient use – are achieved depends mostly on how well an algorithm is
parallelizable. If it contains inherent sequential sections, the parallelizability is
bounded, as is the speedup and the efficiency; a principle known as Amdahl’s
law.

Especially hierarchical multiscale approaches inherently exhibit a parallel structure.
The macro domain and every connected RVE are processed on a unique processor,
without complications. Since the individual RVE are independent, communication
occurs only between each RVE and the macro domain. Things are slightly more
complicated in concurrent set-ups: There, initially, only two domains exist: a
macro and a micro domain. Of course, both can be processed on different
computational units, but depending on the problem set-up it is very likely that
the micro domain has a much higher number of degrees of freedom than the
macroscale. Consequently, the time needed to complete one cycle is significantly
higher there. Furthermore – depending on the overall size of the micro domain –
it is questionable whether the solution of the complete domain by one processor
is feasible at all within rational limits.74 It is necessary, therefore, to partition the
micro domain itself.

As will be shown in the following, the proposed WS coupling scheme is highly
parallelizable and only minor parts of the algorithm are inherently sequential.
Furthermore, the scheme is easily adapted to a sub-partitioning of the micro
domain – it even supports the decomposition inherently and leads to a very
balanced workload. This is in contrast to the standard LM based coupling. Of
course, such a coupling can be parallelized as well but is less straightforward.
These facts are an important ingredient to the proposed coupling since with
current computer power a dynamic solution of large domains discretizing a

74 Consider a rather medium-sized wall section of 450×450×200 mm3, which shall represent
the meso structure of concrete. If – for simplicity – one neglects the filling with aggregates
and assumes that the whole domain is meshed with regular hexahedron of edge size 2 mm,
the overall mesh contains approximately 5×106 elements. This is a number that may still be
solved by a single processor with a very well vectorized and optimized solution scheme, but
is certainly at current capacity limits. If aggregates are involved and consequently tetrahedral
elements have to be used, the overall number of elements increases roughly by a factor
of seven, see Section 6.3. If one considers a realistic time step of approximately ∆t ≈
5×10−5 ms and a total problem time of 10 ms – which alone is the loading time of the blast
example, Section 4.3.3 – the whole problem needs 2×105 cycles, within each all elements
have to be touched multiple times.
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micro or meso structure would be impossible. Although parallelization is not
a necessary feature of the described coupling, it is nevertheless a necessity for
practical application in real problems. Indeed, one may state that the coupling
is useful only in the following suggested parallel set-up and does show its
advantages only within this framework.

6.2.2 Parallel set-up

Macro domain (control process)

M
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M
icro
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M
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Standard node Micro interface nodeMacro interface node
Virtual interface nodeVirtual node Boundary condition

0 1

2 3

MPI_COMM_MICRO

MPI_COMM_WORLD

Figure 6.6: The whole model is initially available as macro domain. A part of the macro domain
is then replaced by a micro domain (light gray area), which is – in this example –
split into four subdomains. Each subdomain is processed on a single process unit.
Communication occurs between the micro domain partitions and between the micro
domain partitions and the macro domain.

Figure 6.6 shows a schematic set-up of a simple problem. A 2D macro domain
(left) should be partially replaced by a micro domain. Then, only the dark gray
elements and the black nodes have to be processed in the macro domain, which
is taken to be the primary control process. The micro domain is decomposed
into four subdomains. Those adjoining the remaining macro domain (here 0, 1,
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and 2), represent “interface”-subdomains and have to exchange data with the
macro process, whereas subdomain 3 has to communicate only with its peers.
Establishing and processing the virtual (macro) elements to provide the forces
on the interface is necessary only in the interface-subdomains. In the current
implementation, the original macro elements attached to the interface are used
to establish the virtual elements in the micro domain. Each interface-subdomain
individually communicates its averaged forces F̃mJ with the macro domain. The
decomposition of the micro domain in even more subdomains will therefore
introduce only negligible more communication between the two domains. Fur-
thermore, the evaluation of the virtual interface elements is done in parallel. More
processes available for the micro domain means, therefore, simply a reduction
of the individual workload and an increase in the number of processes involved
during communication. But still, each micro domain process is responsible for the
virtual elements covered in its subpartition and individually sends its averaged
forces once to the macro process. This is a significant advantage compared to
the LM based coupling. There, the free accelerations have to be collected at
one processor, the system of equations, (5.14), established, solved, and the link
accelerations distributed back. The solution (i.e. the matrix multiplication) can be
parallelized as well, but the optimal choice of processors is here less intuitive.75

Once the problem is finally set up, the macro process starts to distribute the
velocity of its interface nodes and the micro processes can solve their initial
boundary value problem independently. After these processes complete one
cycle, the stress state in the virtual elements is averaged, the forces determined
and sent to the macro process, where the cycle can be completed subsequently.
Algorithm 3 lists the schematic parallel algorithm. It is noteworthy that once
the velocities at the macro interface nodes are known to the micro processes,
all processes (including the macro process) can solve their domain in parallel.
There are only two limitations: (a) the interface nodes of the macro domain can
be updated only after the micro domain has reached the end of the cycle and
provided the appropriate forces, and (b) the boundary nodes of neighbored micro

75 Algorithms for a parallel computation of equation (5.14) of course exists, e.g, by using
systolic arrays, but this parallelization within the already given parallel set-up is not straight-
forward. One can think that the matrix operations are distributed to only a number of the
micro processes involved, which are idle during the solution of the system of equations
anyway. This parallelization will in any case lead to an increase of communication between
the partitions. Generally, the speedup is bound and will – after a certain point – not in-
crease further with the number of utilized processes. Furthermore, the optimal number
of processors used, strongly depends on the rank of H0, but it is difficult to choose an
optimal number beforehand. Finally, the exact structure of H0 has a direct effect on the
communication penalty; see the appropriate discussions in [366], e.g., pp. 71–73.
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domains need information from the appropriate processes before they can be
updated.

Algorithm 3 Parallel solution of micro and macro domain for one cycle from (n)
to (n+ 1). Compare with the serial Algorithm 2 on Page 126. Here, communica-
tion efforts are colored in blue.

Micro (Decomposed into P subpartitions)

Receive u̇
(n+1/2)
J

Interpolate BC, eq. (5.26)
for ∀EPm do

Update matrices
Determine σ
Calculate FPm

end for
Communicate FPm between partitions
for ∀NPm do

update üm, u̇m,um
end for
for ∀ẼP do

Update matrices
determine σ̃
Calculate P F̃mJ

end for
Send P F̃mJ

Macro
Send u̇

(n+1/2)
J

for ∀EM do
Update matrices
Determine σ
Calculate FM

end for
for ∀NM do

update üM , u̇M ,uM
end for

Receive P F̃mJ from each partition
for ∀NJ do

update üJ , u̇J ,uJ
end for

In the given implementation, the broad applicable Message Passing Interface (MPI)
protocol is used as underlying mechanism for parallelization and communication
[367]. This protocol is independent of the underlying hardware and therefore very
versatile. Although the actual communication is implemented by the protocol
with special regard to the hardware (e.g., shared or distributed memory, ethernet,
infiniband, etc.), these facts remain concealed to the software and enable the
program to run later on very different hardware. An inherent feature of this
concept is its scalability. Additionally, the OpenMP library (OMP) has been used to
further parallelize some code sections on each micro domain partition to further
speed up the simulation [368].

With respect to the different mesh sizes, it is obvious that the critical time step
of the micro domain is in general much smaller than that of the macroscale.
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One might therefore wish to employ subcycling: The micro domain can then
complete several cycles with its own time step and only if the sum of these steps
yields one time step of the macroscale, the latter is updated as well. Since this
problem occurs in any case where different mesh sizes are involved, there exists a
distinct scope of literature discussing different options and algorithms. In general,
subcycling is possible for the WS coupling as well, but several issues reduce its
attractiveness. Only if the solution of the macro domain per step needs more
time than the (parallel) solution of the entire micro domain, subcycling yields
benefits. Algorithms, requirements, and assumptions are discussed in detail in
Appendix A.2.

6.2.3 Exemplified scalability of the WS coupling

To exemplify the scalability of the coupling, consider a simple rectangular model.
Starting with a single cubical micro partition of edge size 100 mm, discretized
with 512 000 elements, in each subsequent simulation the total micro domain is
enlarged by combining an increasing number of this basic micro partition. Each
one is processed on an individual CPU-core, but the amount of entities to be
processed for the coupling and the size of the data to be shared between macro
and micro processes in total increases. Only 100 cycles have been simulated for
each case to measure the times spent in the different routines of the cycle. To
record meaningful times, each simulation has been repeated five times and the
average values are calculated afterwards. All simulations have been conducted
on a reserved partition of the HPC cluster at EMI, featuring computenodes with
two Intel Xeon Gold 6154 CPUs and 18 cores each. Communication occurs
via 56 GBit/s infiniband or shared memory if less than 36 cores are involved.
Figure 6.7 shows the results in terms of model size expressed by the number of
elements in the micro domain and the average time needed per cycle (determined
to be the average value of all processes involved in five runs each). The average
time needed for one core to complete one cycle of a single micro partition
without coupling, that is, a standard simulation of this model, has been used as
normalization factor. In fact, two further uncoupled simulations with doubled,
respectively, quadruplicated number of elements on the micro partition have been
carried out to assess the scaling of the simulations without coupling (“uncoupled”
in Figure 6.7 – the point for the quadrupled model lies outside the diagram
range). The resulting scaling comes close to an ideal linear scaling: Doubling the
model size requires twice as much time; see the dashed line in the diagram.
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Figure 6.7: Normalized average time per cycle and relative coupling time with growing size of
the micro domain. A linear scaling for an uncoupled microscale (standard simulations)
is indicated by the dashed line on the diagrams left side.

In contrast, the scaling for the coupled set-up, utilizing MPI in the scheme
detailed above, scales ways better. In the extreme, the maximum-sized model
with 64 million elements – 125 times more than in the single partition – requires
on average only twice as much time for a single cycle! A second data set is
plotted in gray on the diagram. These values show the relative time per cycle that
the algorithm spends in routines necessary for coupling, namely, interpolation
of the interface velocities and averaging of the stress state within ΩI . Error
bars mark the absolute minimum and maximum values measured during the
runs. In all cases, the average time needed is below 1 % of the total cycle
time, and even in the worst case the maximum value does not exceed 3 %,
indicating that the coupling as such is very efficient and does not lead to a
perceptible runtime increase. However, not included is the time necessary for
communicating the values between domains. Essentially, data communication,
especially between micro partitions, is responsible for most of the cycle time.
Figure 6.8, left, shows the relative time needed to communicate between the
individual microscale partitions, which, of course, is independent of the type of
coupling. With increasing size, eventually more than 50 % of the total time per
cycle is spent here. Besides the increasing amount of data to be communicated,
delays occur if some processes are not yet ready to receive data. This delay might
be reduced by an improved – but not straightforward – implementation of the
communication routines. On the right side, again the necessary time for coupling
is plotted, now against the number of microelements covered by the interface
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Figure 6.8: Left: Relative time per cycle required for communication between the individual
microscale partitions. The necessary amount of data to be communicated is exemplary
given for chosen data points. Right: Relative time per cycle required for the coupling
routines vs. the number of involved microscale elements.

region ΩI , niE . These elements have to be averaged to determine the interface
forces. As can be seen, an increase in these entities does not lead to longer run
times, as already conjectured in Section 5.3.6.

This performance analysis highlights that the theoretical considerations regarding
the coupling’s efficiency are confirmed by an actual measurement. Although the
overhead due to communication increases the total time necessary, the actual
steps to perform the coupling are very favorable with respect to the total time.

6.3 Application example: internal explosion in a
confined chamber

6.3.1 Model and set-up

To demonstrate the applicability of the developments described so far, the case
of an internal explosion within a confined chamber is well-suited. The structure
shown in Figure 6.9 might resemble a cutout of a test chamber in the chemical
industry, a manufacturing site for components containing detonatives, such
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as airbags, or a facility to store small amounts of explosives. Potential hazards
of debris thrown into adjoining chambers as a consequence of an accidental
explosion of the substances involved might be of interest. In this case, the resulting
loading of the structure is determined by the fact that the explosion is confined. In
contrast to a free-field scenario, several pressure peaks due to a reflection of the
first pronounced shock waves are to be expected, followed by a quasi-static “gas-
pressure”, pG. Only if vent openings – either intended or as a result of structural
damage – are available, this pressure eventually decreases. The total impulse,
hence, is much higher than in a comparable free-field explosion. However, in this
example, only an idealized pressure history is used, as indicated in the diagram on
the right side of Figure 6.9. It considers only the initial pressure peak and a linear
decreasing gas-pressure. In fact, since no reinforcement is included, this structure
resembles only a hypothetical case intended to sketch a potential application
of the coupling. Future applications should contain reinforcement for realistic
structural behavior and a fully coupled fluid/structure interaction to resolve real
spatial and time-dependent pressure.

For the demonstration case, the central section of the middle wall is discretized on
the mesoscale. Pressure is approximated by the equations of Kingery et al. [369]; a
second, linear decreasing portion is also considered, representing the diminishing
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Figure 6.9: Left: Model of a fictive test chamber or storage for explosive substances. The central
region of the partition wall is modeled on the micro domain. Right: Idealized pressure
history representing an internal detonation.
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gas pressure. Values for pG and te have been estimated using empirical data
provided in the UFC manual [370]. All planes where the fictive model was “cut-
out” of the remaining structure (x = 0, y = 950, y =−300, z = 0) have their
translational degrees of freedom fixed in the orthogonal direction.

Aggregates between 3 and 16 mm diameter have been considered on the
mesoscale, leading in total to 209 243 modeled inclusions (including 38 171
voids). The domain comprises in its pristine state (no cohesive zones active)
overall 35 916 639 elements and 6 390 832 nodes. The number of interface
nodes on the macroscale is nJ = 1 281, connected to 1 200 virtual elements.
Overall ni = 42 257 nodes establish the micro interface, for which in each cycle
the interface velocities have to be interpolated. The virtual elements cover in total
niE = 2 434 736 elements in the micro domain from which an averaged stress
state has to be determined in each cycle. In this example, the micro domain is
divided into P = 72 subpartitions, 21 of them adjoining the interface. Hence,
the interpolation and averaging is carried out in parallel on 21 processes, leaving
roughly 115 940 elements for each process to touch – about one-fifth of the total
number of elements processed by each CPU core. For comparison: the interface
operator H0 of the LM coupling would exhibit a size of 134 457×134 457 with
slightly more than 45 000 000 non-zero coefficients. Concerning communication
between scales, the LM coupling has to send in total roughly 2.3 megabytes
between macro and micro processes, the WS coupling only 140 kilobytes.

6.3.2 Results

Figure 6.10 shows two views of the structure at t = 2 ms. Colored is the crack
opening. The amount of explosives in this case leads to moderate structural
damage. In the micro partition, several larger and still connected “clods” dissolve
on the rear side. Two distinct cracks propagate from the center diagonally to
the upper corner. As a remarkable result, the crack bridging between micro and
macro domain should be emphasized here. Each distinct crack on the rear side of
the mesoscale is continued in the macro domain – although smeared there in a
much larger crack band. In both views, most of the macro elements adjoining the
interface exhibit distinct crack openings. It seems that failure in these elements is
caused by tensile forces exerted by the mesoscale.

Finally, Figure 6.11 features the velocity field at t = 2 ms. For illustrative purposes,
the results have been reflected here in the symmetry planes, and the rear side is
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Figure 6.10: Cracks in the wall section. Left: view on loaded side, right: view on rear side.

shown. Discontinuities in the field demarcate individual, larger emerging frag-
ments. The upper view on the side reveals a spallation plane roughly in the middle
of the wall, indicating a resulting breach of the wall.76

6.3.3 A critical note on remaining limitations

The results shown above clearly envision the possibility of simulating complex and
large geometries with an embedded mesoscale description of it. Nevertheless,
some challenges still remain and should not be dismissed here.

Besides the already mentioned difficulty of finding proper material parameters
for the different phases involved, the mesoscale approach faces the emergence
of multiple inner contact surfaces during the simulation. Once the cohesive
elements, representing the weak interfacial transition zone, failed due to tension,
the aggregates remain freely embedded in the surrounding matrix. Depending
on the loading, a closure of the partial gap between aggregate and matrix may
occur. The same holds for the matrix failure. As soon as matrix elements are
76 Fit functions for breach- and spall thresholds, based on several experiments with reinforced

concrete slabs, are given in [371]. These formulas – although not directly transferable –
classify the considered scenario slightly above the spall threshold.
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Figure 6.11: Velocity plot with view on the middle-walls rear. Note that only the upper right
quarter has been simulated. Results have been reflected at the symmetry-planes for
illustration only.

removed from the simulation, free “crack surfaces” arise within the model. Surely,
these issues can be handled by a proper contact algorithm without difficulties.
However, the algorithm currently implemented in SOPHIA is not able to deal
efficiently with the high number of evolving contact surfaces. Hence, no contact
was applied in the above simulation. For different loading scenarios this might
not be a proper assumption.

Regarding the coupling, the damage aggregation at the interface, as observed
above, deserves more investigation. In fact, the appearance of a discontinuity
between the two very different scales should not be too surprising and can be
expected for any type of coupling. While reiterating that the problem above
clearly highlights the accurate propagation of cracks beyond the interface, the
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quest for options to further improve the interface behavior is justified. This
point is closely related to the question when the coupling should be stopped.
If, eventually, the material surrounding the microscale – and the material within
the microscale – is highly damaged: is there still an influence of the scales on
each other? The current implementation keeps the coupling over the whole
time and it is essentially one feature of the WS coupling that it is able to do so.
Allowing completely new mesh topologies due to node splitting and element
removal at the microscale interface without further considerations or reevaluation
of interface operators is a strong argument in favor of this approach. But how
and how long this should be appropriately reflected in the averaging procedure
of the microscale volume to establish the macro interface forces is still an open
question. Yet despite these challenges the coupling surely opens a door towards
realistically simulating debris throw. The benefits of such simulations delivering
unique fragments in the determination of safety distances is the content of the
final section of this chapter.

6.4 Outlook – detailed trajectory determination

This chapter shall close with an outlook on the detailed determination of debris
trajectories, the final end of fragmentation simulation. For risk analysis, trajecto-
ries are of distinct importance to indicate safety distances and hit probabilities.
However, the trajectories strongly depend on the aerodynamic coefficients of
the individual pieces, which influence lift, drag, and potentially even rotation
and flipping. The equation of motion of a single debris is given by the following
coupled differential equations [372], in which the velocity of the fragments u̇
is expressed in terms of two components, v and w, in a generic 2D plane with
angle ϕ to the horizontal, see Figure 6.12:

üv −
Aρ

2m
(cD cosα(u̇)− (cL + cLA) sinα(u̇)) ‖u̇‖2 = 0 (6.1a)

üw −
Aρ

2m
(cD sinα(u̇) + (cL + cLA) cosα(u̇)) ‖u̇‖2 + g = 0 (6.1b)

with A being the projected area of the fragment, ρ and m its density and mass.
cD, cL and cLA are the coefficients for the drag force, FD, and the lift force due
to translation and auto-rotation, FL, g is the acceleration of gravity. Note that
the wind speed of the environment is already neglected in the equations above.
Furthermore, the moment around the pieces’ center of gravity, the Magnus-
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Figure 6.12: Forces acting on a single flying debris piece with velocity u̇. The top view (right)
shows additionally the surrounding debris (refer to Section 4.3.3) with strongly
irregular shapes.

moment, is omitted here for simplicity as well. α is the current angle between
the velocity vector and the ground plane. Equation (6.1) can be solved, e.g., by a
Runge-Kutta approach.

For this illustrative example, the mass, initial velocity, and length ratios for each
fragment were extracted from the simulation for the final time step. A procedure
to track fragments during emergence and not only after some time and distance
have passed is surely possible but sophisticated and costly. Moreover, it is doubtful
whether such an approach yields a surplus of information since the choice of
aerodynamic coefficients is a much more dominating factor. Assuming spherical
fragments is too simplistic and results in a gross over-prediction of the flight
distances. The detailed resolution of the fragments due to the mesomechanical
approach allows more accurate parameters to be applied. On the other hand,
exact parameters for the highly irregular and almost arbitrary shaped debris
pieces are, of course, unknown. Here, an approach detailed in reference [8] is
followed, which seems to be currently the most accurate one to derive realistic
aerodynamic coefficients for debris. The authors experimentally derived the drag
and lift parameters for several generic debris pieces in wind tunnel tests and
proposed interpolation functions based on a sphericality factor and length ratios.
With these functions and the actual debris shape from the simulation, individual
and hence very realistic coefficients can be determined for each fragment.

With the values for each fragment at hand, the final position and the kinetic
energy at impact can be determined. They are plotted for the fragments derived
in the third validation example, Section 4.3.3, in the left polar plot of Figure 6.13.
For each fragment of the five simulation runs, one point is included in the diagram.
The right-hand side of the figure displays the results slightly differently: Major
defense standards identify the hit of one piece of debris with more than 79 J
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Figure 6.13: Left: Final position of the debris pieces, according to the procedure after [372] for
each of the five specimens of the third validation example, Section 4.3.3. Right:
Combined fragment density per 55.7 m2. A value of 0.2 (gray) corresponds to one
piece of debris in one of the five simulations.

within an area of 55.7 m2 as critical threshold. Therefore, the graph shows the
fragment density per 55.7 m2. To achieve this number, for each grid point, the
number of fragments in the surrounding, circular area of 55.7 m2 is counted.
Since five runs have been carried out, the number has to be divided by five. Gray
areas, featuring a density of 0.2 fragments per 55.7 m2, consequently are those
areas hit by one fragment out of five simulations. Areas with at least one hit
of a hazardous debris piece are demarcated in the plot, which thereby clearly
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outlines critical regions and can be used to define safety distances with high
fidelity. Although far from an exhaustive analysis, this map highlights a potential
application of the simulation approach employed. That aerodynamic coefficients
are determined for each debris piece by considering its actual shape, is – together
with a detailed knowledge of its mass and initial velocity vector – surely immensely
helpful and forward-looking.
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7.1 Main achievements of the present work

Fragmentation of concrete as an important threat emerging from dynamically
loaded concrete structures could so far be considered only in experimental works
or risk assessments based on probability analysis fueled by empirical data. Given
the enormous efforts to conduct the required field tests, a suitable simulation
approach would surely considerably advance the possibilities to quantify and
mitigate risks due to flying debris. The present work addresses this systematic
gap and makes a decisive step toward predictive simulation of debris throw in
3D concrete structures. Two aspects have been combined to a potent approach:
(a) a suitable description of concrete on its mesoscale, reflected in an appropriate
composition of geometric representation and numerical methods; and (b) the
combination of two scales in one model to account for large structures within
reasonable computational times.

Until now, the idealization of concrete on its mesoscale – although meanwhile
extensively used to investigate and understand the failure behavior of concrete
– has to the best knowledge and surprise of the author not been exploited to
simulate the emergence of fragments and their quantitative analysis. Surely, the
requirements for the model to reach this aim are high but can be tackled. Based on
an extensive literature review and the identification of strengths and weaknesses
of different approaches, a three-phase system was chosen to describe concrete
on this first-order microscale: a homogenized mortar matrix with embedded
aggregates, pores, and the consideration of a zero-thickness interfacial transition
zone at the matrix-aggregate-boundary. Spherical shapes represent the explicitly
modeled aggregates and voids. The resulting models capture the dominant failure
modes under dynamic tensile loading and subsequent fragmentation to a fully
satisfying degree, while the demands to generate them are well manageable.
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Failure of the material is hereby incorporated by a twofold approach: The interfa-
cial transition zone, the weakest link in the material, is properly described by a
cohesive zone model. In contrast, a plasticity model is used to consider “cracks”
in the matrix and through aggregates – which is much more efficient than han-
dling bulk failure with cohesive zone elements as well. After exceeding a defined
criterion, failed elements are removed from the simulation, thus separating the
initial continuous body. For a reliable description of the stress-strain behavior of
the elements, an existing concrete model, the RHT model, has been improved
and furnished with an additional, regularized yield criterion. The latter is based on
a rate-dependent principal stress limit and resolves brittle failure more physically
than the von Mises yield criterion used so far.

With these assumptions, it is possible to simulate the failure of concrete beyond
the occurrence of damage up to the full constitution of fragment clouds in
medium-sized models. The achieved results exhibit a degree of detail rarely seen
in literature up to now for the considered sample sizes – and are obtained
within acceptable computational times. Besides the correct prediction of single
crack paths, branching phenomena, and fragment velocities, even the mass
distribution of a large number of fragments was simulated to a still satisfying
degree; especially if one keeps in mind that only one single material parameter set
was applied without extensive parameter fitting. Using the results to determine
the expected trajectories of the debris by considering aerodynamic factors based
on the actual shape of the individual fragments certainly goes beyond the current
state and emphasizes the usefulness of this method.

Beyond an apt description of concrete failure on the mesoscale, this thesis intro-
duces a novel coupling of two finite element domains with disparate discretization.
Intended to allow the combination of a refined region with lower scale details in
a large model, the coupling expresses a general concept, although the moderate
scale difference in concrete lends itself to the application of this method. The
approach is based on a small overlapping region, in which the micro domain is
averaged to deliver proper forces for the macro interface nodes. In return, the
movement of these nodes imposes a boundary condition on the micro interface.
Due to its similarity to conventional fluid/structure interaction procedures and
their typical staggered scheme, the coupling was labeled “weak staggered cou-
pling”. As a noteworthy feature, the concept retains the direct solution scheme
of wave propagation codes and imposes as few additional operations as possible
on the overall simulation process. Thereby, it fulfills one driving intention of the
development, namely to be as efficient as possible and keep computational costs
at a minimum.
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A detailed comparison with a conventional coupling based on Lagrange mul-
tipliers showed more or less similar results, but several advantages in terms of
efficiency and application: The efforts introduced by the coupling are of linear
order with respect to the number of coupled entities, and no system of equations
has to be solved. Communication between separate domains requires smaller
message sizes, additional memory needed is marginal, and the process is easily
parallelized and scales impressively. Finally, topology changes on the micro inter-
face, e.g., due to nodesplit or removed elements, are handled intuitively, whereas
a complete reevaluation of the coupling matrix, followed by a refactorizing of the
interface operator, would be triggered in a Lagrange multiplier based coupling.

Embedding the chosen mesomechanical idealization in a large macroscale model
by applying the weak staggered coupling provides a powerful and robust ap-
proach to simulate the effects of high dynamic loading on concrete structures
and prepares the path toward a new level of risk assessment.

7.2 Topics for further investigation

The present work aimed to establish a basic framework and to clarify which
ingredients are necessary for the intended objective. While outlining several
of them, certain aspects still need improvement. Some issues are matters of
implementation only, but others require yet more research. As in the preceding
section, the focus will be first on the material idealization, followed by aspects
concerning the coupling.

• Matrix and transgranular failure are modeled within the concept of nu-
merical plasticity. Although this procedure is highly efficient, cracks are
smeared over at least one element, and the dissolution of the body into
fragments involves erosion of a perceptible amount of volume. Applying
the cohesive element approach to bulk failure as well would represent
cracks much more realistically and maintain mass and volume. But, as de-
tailed in Chapter 4, the evolving, perpetually changing topology requires
immense computational resources and is very error-prone. More research
might be dedicated to improved implementations, topology descriptions,
and especially nodesplit criteria.
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• The role of rate-dependence – not only in the cohesive zone model –
seems to be yet not properly understood. Despite the countless efforts to
extend the amount of experimental data for the increase factor, it might
be more rewarding to focus on a clearer separation of the underlying
reasons and especially on guidelines on how and in which modeling
paradigm the rate-enhancement should be considered.

• Further on the material side, next steps should involve first of all extensive
parametric studies in order to better understand the influence of individual
parameters. Besides a deepened understanding of the models behavior,
some values for the parameter are still unknown, or at least the degree of
scatter is highly uncertain. Parametric studies might reveal on which level
further experimental work has to be done to deliver more reliable values.

• The emergence of free inner (contact) surfaces in the mesoscale demands
the application of contact algorithms. Knowledge of neighboring elements
before element removal or node split should enable smart contact detec-
tion algorithms, which might surpass current global strategies regarding
computational effort.

• Since only a few experiments dedicated to debris throw with small con-
crete specimens have been published, there is a strong need to conduct
more tests and gather reliable data for direct comparison with simula-
tions. Indeed, this is the only way for growing trust and confidence in
the numerical method. That the realization of such tests is immensely
difficult has been detailed in the introduction. That they are – nevertheless
– tremendously important is equally true.

• Regarding the coupling, the consideration of reinforcement bars is manda-
tory to give the method relevance in practical situations. In general, it is
easy to consider rebars on the microscale by their volumetric representa-
tion and with beam-elements in the macro domain. The difficulty involved
relates to the additional rotational degrees of freedom of the beam-
elements. Averaging the micro domain stress in a virtual “rebar-element”
does not naturally entail moments, and additional considerations have to
be thoroughly deliberated.

• Furthermore, it seems unavoidable at present that cracks propagate up
to the interface. Although they are aptly passed to the macroscale, their
existence could be better reflected in the interface behavior. Moreover,
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clear criteria defining the appropriateness of information change between
material scales with increasing damage at its interfaces should be devel-
oped.

• An additional issue concerns the adapted SPML approach: A better under-
standing of the damping factor, effects of an increased number of filter
elements, and the role of the involved material model is required – but
only achieved in protracted parameter studies.

Predictive simulation of the fragmentation of concrete in real structures under
dynamic loading remains an ambitious challenge. This thesis does not insist on
having reached this aim but proposes certainly a promising beginning.
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A Appendix

A.1 Generation of mesomechanical models –
geometric representation

Analyzing concrete on the mesoscale necessitates the geometric representation
of a near-real concrete sample. This includes two steps: (i) generating a realistic
aggregate size distribution and (ii) placing the generated aggregates in the target
volume. For the generation of a suitable aggregate size distribution either specific
sieve lines or analytical distributions, as the Fuller curve, may be used. In most
cases, the distribution is generated first and particles placed afterwards.

Generating the aggregate size distribution

Of course a realistic grading of the modeled aggregates is of importance. Due to
its simple mathematical description and the ideal packaging achieved, almost all
researchers revert to the Fuller curve for their models, e.g., [118, 191, 200, 207,
214, 373], as is done in this work as well. This cumulative distribution function
describes the probability P of a particle having a diameter larger than d and
reads – in the general form of Andreasen [374]:

P (d) =

(
d

dmax

)n
(A.1)

with n = 0.5 suggested by Fuller and dmax as the maximum particle diameter
considered. As it shows, this is the lowest value in practice since an even stronger
reduction of void content leads to poor workability of the fresh concrete [46].

The here employed process to generate the distribution follows closely the
algorithm detailed in reference [207]. In a first step, the diameter range of the
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particles is divided in equally-spaced “bins”. Each bin i contains finally particles
in the range of [di, di+1[. Taking the largest diameter in each bin, the volume,
Vtot,i, is determined, which should be filled by the particles within the current
bin. After that, an algorithm generates particles with random diameters, as long
as
∑Ni
j=1 Vj ≤ Vtot,i, with Ni being the number of particles in the bin and Vj

the volume of the j−th particle in the bin. For the determination of the particle
diameter, the following simple relationship can be used [207]:

d = di+1 + η(di − di+1) (A.2)

where η is a random number in the range [0, 1]. This equation generates an
even distribution of the diameters, but exhibits slight deviations from the volume
distribution, especially at smaller diameters. More accurate results are achieved if
the exact inverse cumulative distribution function is used, as given in [191] for
the Fuller distribution:

d =
(
η
(
dn−3
i − dn−3

i+1

)
+ dn−3

i+1

)1/(n−3)
(A.3)

Here, n is the Fuller exponent. This equation delivers a nearly perfect agreement
with the theoretical distribution, see Figure A.1 for a comparison.

Placing the particles

After the distribution has been generated, the particles have to be placed within
the volume. To this end, different strategies were developed in the last years.
They may be ordered broadly in (a) Take-and-Place (TaP) derivatives77 (b) ap-

77 Although sometimes imaginatively relabeled: For example, Zhang et al. developed a so called
“Random walking algorithm” [375]. In this algorithm, aggregates are placed uniformly
distributed in an initial placing layer above the considered volume and are subsequently
moved into the target domain, thereby simulating the pouring process. By the random
moving down action, aggregates are furthermore fortuitously rotated. The direction of the
walking is restricted downwards, but free in the horizontal directions and determined by
a fixed step length combined with a random number. After the walking action, a collision
check is performed and if a collision is detected, the walking action repeated. Although this
algorithm is termed “Random walking algorithm” by the authors, it may be well categorized
as a TaP approach, where only the process of determining the initial coordinate is replaced by
a more complex process, which has more similarity with the physical manufacturing process,
than the random coordinate choice.
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Figure A.1: Comparison of the generated sieve lines with equations (A.2) (“Wriggers et al.”),
(A.3) (“Häfner et al.”) and the Fuller curve, equation (A.1). Each point represents
one particle. The distribution fills a cube with edge length of 100 mm, an aggregate
volume of 70 % and a diameter range of 0.5 . . . 16 mm. The accurate formulation
delivers 378 000 particles, the naive one 324 000, a considerable difference of 16 %.
Inlet: 3D plot of the particles, though only particles larger than 2 mm are shown.

proaches based on Voronoi diagrams78 and (c) completely different approaches,
for instance, based on CT images79 or distinct singular solutions, e.g., [80].

TaP algorithms are the most widely used approaches, e.g., in [118, 145, 196,
216, 308], likely due to their simplicity and ease of implementation. Especially
for spherical aggregates they are highly suited [187]. Therefore, a TaP algorithm
is used here as well. Starting with the largest aggregate from the distribution

78 E.g., in [59, 195] randomly seeded points in the target volume were used to construct
a Voronoi diagram. Aggregates are then formed by shrinking the Voronoi cells, until the
specified amount of aggregate volume content is reached. This process has the huge
advantage that no intersection checks have to be done and is therefore highly efficient.
Furthermore, shapes resembling crushed aggregates are the result. Schutter et al. use
Delauny triangles and place aggregates within the triangles [376].

79 E.g., reference [202]. Detecting mortar and aggregate phases due to different transmittance,
pixels of the different phases were converted to finite elements. A clear advantage is a
very realistic representation of the aggregate shape and that no collision checks have to be
performed. On the other side, the process is very labor intensive and definitely less efficient
as even a naive TaP implementation.
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generated in the first step, a random position x = xmin +η∆x for the particles
center within the bounds of the target volume is generated and the aggregate
placed. xmin is the volume’s lower corner and ∆x its edge length minus the
current particles diameter. After placing, it has to be ensured that the placed
aggregate does not overlap with previous arranged aggregates. This may be
done by a contact check between the current and all previous put inclusions. If an
intersection between the inclusions is found, a new coordinate has to be chosen
and the process is repeated until all aggregates are placed. It is obvious that
this process includes contact checks of order O(N2

j ) for each particle (with Nj
being the number of already positioned particles), which makes this process very
ineffective for a large number of aggregates. Several optimized TaP algorithms
have hence be proposed.80 Häfner et al. suggested to partition the target volume
in subdomains [191]. Once a coordinate is randomly chosen, the intersection
check has to be done only with other aggregates of the relevant subdomain,
in which the coordinate falls. With a smart division algorithm, the number
of potential conflicting aggregates, and correspondingly the number of check
operations, can be highly reduced and the TaP algorithm is – even with several
thousands of aggregates, such as the example shown in Figure A.1 – highly
efficient.

The position of particles is randomly chosen within the bounds of the volume.
Strictly speaking, a position is acceptable if the distance e between the center of
an inclusion with diameter d and the center of each surrounding particle with
diameter dj fulfills the condition e ≥ 0.5 (dj + d) ∀ j ∈ Nj , where Nj is the
number of all already placed particles. In real concrete, however, particles are
covered with a thin cement layer and do not touch each other. Therefore, e
should take a minimum value emin. In the literature, several approaches how to
estimate this minimum distance exist, all based on purely pragmatic reasons.81

80 Leite et al., for instance, try to find a new position for the coordinate, once an intersection
was found, not by choosing a new random coordinate, but by recourse to a so-called
stochastic-heuristic translation and rotation process [175]. The aggregate is slightly moved
and translated around its initial coordinate until an intersection-free position is found.
Wriggers et al. followed this approach by a similar process [207]. In [173], the standard TaP
algorithm is applied only for a certain amount of aggregates to avoid the ineffectiveness for
large number of particles. After the initial placing, the model is meshed and the remaining
aggregates are generated on basis of the finite elements.

81 E.g., Schlangen et al. take a ratio of 0.1 of the sum of both particle diameter [174]. This
number is based on the theoretical assumption of Hsu, who developed a mathematical model
of equally-sized spherical inclusions to estimate the stresses of concrete under shrinkage.
Considerations of the packing density in relation to the volume content lead to minimum
distance between 0.2 . . . 0.6d [377]. The same approach is taken in [144, 208], whereas in
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emin dmin Time in s part. generated part. placed volume in %
0.25 1.0 160 66 603 50 176 93.8
0.25 0.5 2 225 377 893 162 257 90.3

0.1 0.5 434 378 233 356 328 99.2

Table A.1: Comparison of algorithm performance for different fill parameter of a 100× 100×
100 mm3 cube. Times have been determined on a standard workstation with one run
each only. Only particles with dmin ≤ d ≤16 are generated. If a particle cannot be
placed after 10 000 trials, it is discarded and the next particle will be tried. In case of
dmin = 0.5 mm, the standard value of emin = 0.25 mm is too restrictive to place all
particles successfully.

Actually, the minimum distance between aggregates plays an important role,
since it can reduce the available space for placing considerably. Meanwhile, the
principal (obvious) relationship between volume ratio and distance between
particles has been verified experimentally by Wittmann et al. They measured an
average distance of 0.56 mm for a low volume content of 30 % and of 0.08 mm
for 80 % [378]. Scrivener et al. later confirmed an average distance between
particles of several hundred microns [63]; Mindess et al. gives a range of 75 to
100 µm [46]. In the algorithm developed, a constant input parameter is used
as minimum distance, with a default of emin = 0.25 mm. Table A.1 compares
the necessary time and the achieved success to fill a cube with an edge length
of 100 mm with an aggregate content of 70 %. Larger voids are handled as
particles, which are later subtracted from the remaining matrix.

The resulting algorithm meets all five quality requirements demanded by Leite
et al. [175]:

1. location of aggregates free from correlation;
2. shape and size of aggregates randomly distributed between limits;
3. spatial distribution should be relatively uniform;
4. size distribution and content should be exactly matched and
5. maximum aggregate content should be comparable to real concrete.

[206] and [207] a variable ratio γ of the smaller of both diameter is used. The initial value
for γ is 0.3, but is iteratively reduced if not enough space is available.
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A.2 Subcycling

The straightforward implementation of the couplings detailed in Chapter 5,
employs the same time step size for the entire model. But often the critical time
step ∆tc of the microscale is significantly smaller than that of the macroscale.
In order to save computational resources, subcycling in the microscale domain
may therefore be desirable. This section introduces the challenges involved with
subcycling and discusses the options for the two couplings here presented.

A.2.1 Overview on existing subcycling algorithms

First ideas for subcycling algorithms were developed already in the 1970s. Besides
the comparison of explicit-implicit procedures in [379], Belytschko et al. suggested
an explicit time integration with different time steps for two mesh partitions [380].
The classical term for the first concept (explicit-implicit) is “mixed time integration
schemes”, while meanwhile the designation “heterogeneous asynchronous time
integration” (HATI) prevails.82 In contrast, “multi time integration schemes”, i.e.
domains with the same time integration scheme but different time steps, are
labeled “homogeneous asynchronous time integration” [343]. It is the latter,
which is here synonymously termed as “subcycling”. The multi time integration
scheme of Belytschko et al. turned out to become the basis of many following
developments. Since it highlights the actual problem of subcycling and serves as
groundwork for the multi time stepping of the WS coupling as well, it shall be
briefly reviewed here.

In the following, the time step of the macro domain, ∆tM , is termed “major time
step” in contrast to “minor time step” denoting the time integrator on the micro
domain, ∆tm. One major cycle is then the advancement of (n) to (n+ 1) with
step size ∆tM . Minor cycles fit into the interval between (n) and (n + 1) and
are marked as (n+ [j]), where [j] is a fractional time increment: [j] = j/p and
∆tM = p∆tm. Belytschko, Yen, and Mullen proposed the following decomposed

82 See [343], which – besides the thorough theoretical description of the framework – contains
an exhaustive review of homogeneous and heterogeneous asynchronous time integrator.
Since in this work only homogeneous time integration is of interest, HATI schemes will not
be further discussed.
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form for the semi-discretized momentum balance of a linear-elastic domain with
two different time steps:[

MM 0

0 Mm

][
üM

üm

]
+

[
KM KMm

KmM Km

][
uM

um

]
=

[
RM

Rm

]
(A.4)

Noting that the major domain should be evaluated only at time step (n), but the
minor domain further at intermediate time steps (n+ [j]), one may write for the
velocities and displacements of the two domains:

u̇
(n+1)
M = ∆tM ü

(n+1)
M + u̇

(n)
M , u̇(n+[j+1])

m = ∆tmü(n+[j+1])
m + u̇(n+[j])

m

(A.5a)

u
(n+1)
M = ∆tM u̇

(n+1)
M + u

(n)
M , u(n+[j+1])

m = ∆tmu̇(n+[j+1])
m + u(n+[j])

m

(A.5b)

For the sake of readability, the Leapfrog time integration is here not spelled out in
detail, hence velocities are written to be updated at full time steps using the same
time increment as acceleration and displacement; transferring the findings to
the more complex case, is, however, only paperwork. Solving equation (A.5b) for
the domain with the major time step u̇

(n+1)
M and inserting the result in equation

(A.5a) leads to:

ü
(n+1)
M =

1

∆t2M
u

(n+1)
M − 1

∆t2M
u

(n)
M − 1

∆tM
u̇

(n)
M (A.6a)

ü(n+[j+1])
m =

1

∆t2m
u(n+[j+1])
m − 1

∆t2m
u(n+[j])
m − 1

∆tm
u̇(n+[j])
m (A.6b)

Inserting the accelerations and displacements at (n), respectively (n + [j]), in
equation (A.4) and solving for u yields finally:

u
(n+1)
M = u

(n)
M + ∆tM u̇

(n)
M

+ ∆t2MM−1
M

(
RM −KMu

(n)
M −KMmu(n)

m

) (A.7a)

u(n+[j+1])
m = u(n+[j])

m + ∆tmu̇(n+[j])
m

+ ∆t2mM−1
m

(
Rm −KmMu

(n+[j])
M −Kmu(n+[j])

m

) (A.7b)

It is obvious that equation (A.7a) can be updated at each major cycle (n) inde-
pendently of equation (A.7b). In contrast, equation (A.7b) contains the position
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of the macro nodes in ΩM , u
(n+[j])
M , at minor cycles (n+[j]), which are generally

not evaluated at these points in time. The main issue is therefore to provide
values for u

(n+[j])
M , for which different possibilities are found in literature.

Belytschko et al. interpolate the values u
(n+[j])
M between two major cycles. They

found that only a linear interpolation between the positions yields stable results
(i.e. u̇M = const between two major cycles) [380]. Later they refined their algo-
rithm in order to enhance implementational aspects and stability [381]. In this
latter work, they propose to keep the acceleration at the interface nodes con-
stant, instead of the velocity. Meanwhile, Smolinski had developed a subcycling
algorithm for a system of parabolic differential equations and proved the stability
of this scheme [383]. In further works, the author applied his algorithm to second-
order systems [382, 384]. In this scheme, accelerations for the interface nodes
for cycles (n+ [j]) have to be known. The algorithm limits the ratio ∆tM/∆tm
to an even integer multiple and swaps the sign of the interface accelerations in
each minor update, which at the end leads to constant velocities. A variable-time
integration scheme based on the conservation form of the equation of motion is
presented in [385]. Again, nodes and elements are partitioned in different groups
and the equations are solved for each group individually, very similar to reference
[32], with constant velocities at the interface.

The algorithms mentioned so far have in common that the ratio between large
and small time steps of adjacent nodes has to be whole-numbered and that
they assume matching meshes between the domains. An exception to the first
condition was developed in [386]. The authors presented a subcycle algorithm
for hyperbolic problems based on individual nodal and elemental “clocks”, which
trigger an element or a node to update, once its unique time step has been
reached. The “clock” concept was later picked up in [381], where the partition
of elements and groups was not longer determined by spatial considerations
but by the time step solely. If, however, a node belongs to elements of different
groups, it remained mandatory that the time step ratio between these groups is
again an integer. For all works cited previously, matching meshes between the
domains are implied, although the employment of non-boolean coupling matrices
in connection with global LM allow for disparate meshes. Hence, LM couplings
are a convenient tool for homogeneous (and surely as well heterogeneous)
asynchronous time integration – either with global, or, as in [337], with local LM,
connecting the domains to a “common-refinement-based-interface”.

Another point to be considered is the order of updates. Daniel classifies the above
cited algorithms with regard to the update order in three different categories or
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A

C

B

D

CD

Figure A.2: Different interpretations of explicit-explicit subcycling algorithms (A to C acc. to
Daniel [387]). Dashed lines denote steps performed after the steps with continuous
lines. Only scheme “B” allows a full parallel solution of both scales. See text for
further explanation.

“interpretations”, as shown in Figure A.2 [387]. Algorithms of type “A” update
the large domain first and the smaller domain is updated subsequently with the
respective minor time step, until the major time has been reached. An example of
this type of algorithm is the above mentioned algorithm of Belytschko et al. [380].
Type “B” is a slight improvement since both domains are simultaneously updated,
each with its respective time step, and the small domain is subsequently updated
for the rest of the major time step. In both algorithms, the interface nodes
between ΩM and Ωm are assumed to have values dependent on an interpolation
between the values of ΩM at time t(n) and t(n+1) – a major premise taken by
almost all authors.

Algorithms of type “C” update the nodes of both domains always with the
small time step. However, the elements of the large domain are updated only
each major time step and values of interface nodes are kept constant for the
next subcycles. This algorithm has been criticized in [387] to be unstable and is
mentioned here for completeness only.

Algorithms of type “B” are mostly used in current multi step schemes. Yet they
have the grave disadvantage, that the macroscale determines the end time
t(n+1) of the subcycling and the models may not choose an appropriate time
step by their own stability criteria. Indeed, even modern HATI-schemes rely on
the knowledge of the number of substeps p in advance. Constant ∆tm are
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encountered frequently in linear or moderate non-linear problems, but cannot be
presupposed in highly-nonlinear cases and automatic time stepping is mandatory.
But then it is very unlikely that

∑p
j=1 ∆tm,j = ∆tM . Here, it is assumed that the

minor time steps are not known in advance and that they are allowed to change
during a major time step. Then a different update order is necessary. Before
discussing this aspect, however, the underlying equations shall be modified first
for the case of multi time integration.

A.2.2 Proposed subcycling algorithm for the WS coupling

Although the case of linear elasticity, as written in equation (A.4), elucidates the
principle of subcycling algorithms, equations (5.22) and (5.23) are reverted to
now for the more general case and the proposed decomposition in a macro and
a micro domain. For the subcyling, equation (5.22) is written for cycle (n):[

MM 0

0 MJ

][
ü

(n)
M

ü
(n)
J

]
=

[
R

(n)
M

R
(n)
J

]
−

[
F

(n)
M

FM
(n)

J

]
−

[
0

F̃m
(n)

J

]
(A.8)

and equation (5.23) for minor cycle (n+ [j]):

u̇(n+[j+1/2])
m = M−1

m

(
R(n+[j])
m − F(n+[j])

m

)
∆tmh + u̇(n+[j−1/2])

m

u̇
(n+[j])
i = ϕ

(
u̇

(n+[j]−1)
J ,x

(n+[j]−1)
i

) (A.9)

Apparently, equation (A.8) can be updated at each major cycle independently of
the minor domain. F̃m

(n)

J is available because the minor domain is updated at
the major cycles as well. On the other hand, the minor updates (equation (A.9))
need the velocities of the macro interface nodes, NJ , at (n+ [j + 1/2]), where
the latter designates the half time step of the Leapfrog scheme following the
minor step (n+ [j]). A simple interpolation is sufficient if update order B is used.
Then ΩM is advanced by p∆tm and the interface velocity at the micro domain
simply becomes

u̇
(n+[j+1/2])
i = ϕ

(
u̇∗J ,x

(n+[j]−1)
i

)
(A.10)

with
u̇∗J = (1− [j])u̇

(n−1/2)
J +

[j]

p
u̇

(n+1/2)
J (A.11)
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In this case the expression for the internal forces of the virtual elements in line
two of equation (A.8) has to be modified to be (compare with equation (5.29)):

F̃m
(n)

J =
1

∆tM

p∑
j=1

EF̃m
(n−1+[j])

J ∆t(n−1+[j])
m =

Ĩm
(n)

J

∆tM
(A.12)

Here, the summation expression gives the momentum, Ĩm
(n)

J , of the averaged
forces over the whole macro cycle and ensures momentum balance between
the domains. By division with the major time step, a force is obtained at major
cycle (n), which can be added to the macro interface nodes. But, as explained
above – this order presupposes constant and foreknown minor step sizes. If
this is not the case, one can only update Ωm first. Only when this domain has
completed one major cycle, ΩM is updated as well – an update order sketched as
“D” in Figure A.2. Here, the sum of (potentially non-constant) minor time steps
determines the final major time step, however, by guaranteeing that the latter is
bound by the critical time step ∆tM,c.

But how should u̇
(n+[j+1/2])
J now be determined for application at the micro

domain interface? Reaching major step (n) in the leapfrog-scheme presupposes
the velocities at (n+ 1/2). That means that macro velocities at a future point in
time are available for the micro domain if (n+[j+1/2]) < (n+1/2). However, (n+

1/2) has been determined in the last major cycle with ∆t
(n−1)
m . Hence, there is no

guarantee that this value falls exactly in the half interval of the current major step!
Courageously ignoring the potential mismatch, one option now is simply to use
these interface velocities. Thereby the two domains can be handled completely
independent, which is an advantage from an implementational point of view
since communication between the scales can then be reduced to the major
cycle. But even then – how should the velocities u̇

(n+[j+1/2])
i be interpolated

without knowing p beforehand? Should one guess p (which might surely be often
possible) or should one keep u̇i simply constant over the macro time step? The
first option is as dissatisfying as the latter, which leads to notable discontinuities
in the interface velocities between the last minor of a major and the following
first minor step. Both options may work in specific situations, but are surely prone
to inaccuracy and instability.

A better update scheme is displayed in Figure A.2 as “CD”. Here, the micro
domain and the macro interface nodes are updated each subcycle [j]. Macro
interior nodes and elements are updated each major step only, as shown in
Figure A.3. This algorithm does not necessitate interpolations and the interface
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Figure A.3: Subcycling update scheme CD: Macro interface nodes are updated each minor time
step as well.

conditions are always accurately fulfilled.83 As a serious disadvantage of this
scheme, one has to mention the fact that it necessitates the consecutive solution
of both domains. Only after Ωm has reached the full cycle, ΩM can be updated
as well, since only then the real time step is known. Theoretically, this scheme
has only an advantage if the solution of the macro domain needs more time than
the (parallel) solution of the micro domain; a condition which is likely only for
very large macro domains. Otherwise the scheme should be even slower than
the one without subcycling.

A.2.3 Subcycling of the LM approach

Subcycling for the LM coupling expressed in the form originally proposed by
Gravouil et al., relies again on the linear interpolation of the velocities and the
LM of the major time step, which was shown to deliver a stable time integration

83 As Belytschko, Yen, and Mullen remarked in [380], this is – in the strict sense – only correct
for a subcycle number less than two, since in each further subcycle, the nodes in the major
domain that are connected to elements with interface nodes would be affected by the
updated velocities of the interface nodes. Thus the change of the macro interface velocity
propagates theoretically with each minor cycle by one element further into the macro
domain. In test simulations, however, the loss of accuracy when treating only the interface
nodes has been found to be negligible.
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Algorithm 4 Subcycling procedure; detailed is one major step from (n) to (n+1)
with [p] subcycles. EJ are the macro elements attached to the interface nodes
NJ . Refer to Algorithm 2 on Page 126 for a detailed view of one standard cycle
and an expansion of operations, which are here abbreviated by “Solve domain”.

Micro
while t+ [j]∆tm ≤ t+ ∆tM do

Receive u̇
(n+[j]/2)
J

Interpolate BC, eq. (5.26)
Solve domain for (n+ [j])

for ∀Ẽ do
Update matrices
Determine σ̃
Calculate F̃mI

end for
Send F̃mI

end while

Macro

Send u̇
(n+[1]/2)
J

for ∀EJ do
Calculate FMJ

end for

Receive F̃mI
With ∆tM = ∆tm:
for ∀NJ do

update üJ , u̇J ,uJ
end for

With ∆tM = [p]∆tm:
Solve domain, except NJ

for arbitrary Newmark parameter [334]. The subcycling can be included simply
by modifying matrix H (Page 114) to be:

Ĥ = ∆tMCMM−1
M Cᵀ

M + ∆tmCmM−1
m Cᵀ

m (A.13)

Furthermore, W and λ have to be replaced by

W(n+[j+1]) = W(n) (1− [j]) + [j]W(n+1) (A.14a)

λ(n+[j+1]) = λ(n) (1− [j]) + [j]λ(n+1) (A.14b)

and equation 5.12 is modified to read

Ĥλ(n+[j+1]) = −
(
CmW(n+[j+1])

m + CMW
(n+[j+1])
M

)
(A.15)
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The linking forces become FMl = CMλ
(n+1) and Fml = Cmλ

(n+[j+1]). Note,
that the interface operator depends on the time step of both scales (contained
in Ĥ, equation (A.13)). Although one may define Ĥ = ∆tMĤM + ∆tmĤm,
with the constant matrices ĤM and Ĥm, the solution of the global interface
problem has to be done at each minor cycle. Exact equilibrium is achieved of
course only at major time steps.84 As a last remark, it should be noted that
the approach necessitates the solution of the macro domain first, in order to
allow the interpolation of the interface kinematic quantities. Consequently, this
presupposes an update scheme type B. The latter allows for a full parallel solution
of both domains, but again faces the problem of pre-determining the time steps
of the minor scale.

A.2.4 Stability of subcycling

Generally, stability proofs are based on spectral stability analysis or by showing
that the physical energy is bounded. Whereas the first approach has been applied
to mixed time integration and first-order schemes, e.g., [383, 388], it is very
sophisticated and energy considerations are preferred for multi time, second-
order and nonlinear cases [38, 334, 343]. A combination of spectral stability
analysis together with an energy consideration is applied to a multi time stepping
second-order scheme in [384]. Here, a Newmark-β time integration scheme
is considered. For the staggered coupling, neither approach can be applied
due to the involved complexity and the fact that no energy functional exists.
Nevertheless, without giving a detailed proof, Belytschko et al. argued that the
stability of their algorithm is most likely achieved if each domain respects its
own standard stability criterion [381]. Since (apart from the order of updates
in which the nodal and elemental variables is performed) the here proposed
scheme is essentially identical to the algorithm in [381] with constant interface
velocities, one may assume that the same standard criteria will (at least in practical
situations85) lead to a comparable stability. However, one major difference to
these algorithms is the fact, that not only the time scale of the domains exhibits

84 Later, versions satisfying the equilibrium at minor steps have been developed. See [343] and
references within.

85 Unfortunately, Daniel later showed that the algorithm of Belytschko et al. is actually stable
only in a statistical sense; that is, cases where instabilities occur theoretically exist. Yet since
the occurrence of these cases decrease with increasing number of DOF of nodal groups with
different time steps, they are unlikely to be encountered in practical calculations and one
should presume “practical” stability for real systems [389, 390].
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disparity, but that non-matching interfaces are present here as well. Especially in
case of interfaces parallel to the wave propagation, the emergence of instabilities
is observed. Although not initiated, they are proliferated by active subcycling.

A.3 Cement reaction

Chemical name Chemical formula Shorthand
notation Weight in %

Tricalcium silicate 3CaO SiO2 C3S 55
Dicalcium silicate 2CaO SiO2 C2S 18
Tricalcium aluminate 3CaO Al2O3 C3A 10
Tetracalcium
aluminoferrite 4CaO Al2O3 Fe2O3 C4AF 8

Calcium sulfate
dihydrate (gypsum) CaSO4 2H2O CSH2 6

A.4 Strain rate enhancement formulas

Different proposals have been made for the strain rate enhancement scaling
function. The version proposed in [104] and implemented in Autodyn reads:

F c,tR (ε̇eff ) =

(
ε̇eff

ε̇c,t0

)βc,t
(A.16)

Symbols ‘c’ and ‘t’ designate the respective variable for compression or tension.
The exponent is defined as

βc =
1

5 + 3fc/4
, βt =

1

10 + fc/2
(A.17)
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with fc in MPa. Later, the second, steeper branch, as observed in the data, has
been proposed in [245]:

F c,tR (ε̇eff ) =


(
ε̇eff

ε̇
c,t
0

)αc,tβc,t
ε̇eff ≤ ε̇c,teff

ξc,t 3
√
ε̇eff ε̇eff > ε̇c,teff

(A.18)

This version has been implemented in LS-Dyna [246]. There, the default values
for βc,t are given as

βc =
4

20 + 3fc
, βt =

2

20 + fc
, αc = αt = 1 (A.19)

However, these definitions actually differ from the ones found in the CEB Bulletin,
where one finds:86

βc =
1

5 + 9fc/10
, βt =

1

10 + 6fc/10

αc = 1.026, αt = 1.016

log ξc = 6.156βc − 2, log ξt = 7.112βt − 2.33

ε̇c0 = 30× 10−61/s, ε̇t0 = 3× 10−61/s

ε̇c,tp is given to be 30 1/s in [136]. These values have been implemented in the
SOPHIA Version of the RHT model.

For the tensile regime, however, it was reported that the version detailed above
agrees well with theoretic models [134], but is too high with respect to experi-
mental data for tensile loading. Therefore, Malvar et al. modified the function to
read (tension only):

F tR (ε̇) =


(
ε̇
ε̇t0

)βMt
ε̇p ≤ 1

ξMt 3

√
ε̇
ε̇t0

ε̇p > 1
(A.21)

86 ξc,t has to be determined such that an intersection of the two functions in equation (A.18)
at ε̇c,teff is ensured, from which follows that ξ = (1/ε̇c,tp )(1/3)(ε̇c,t0 /ε̇c,t0 )βc,t . Originally,
this variable was expressed in the 187 CEB Bulletin to be log ξc = 6βc − 0.492 and
log ξt = 7βt − 0.492 together with ε̇c,teff = 30 1/s. In this form it has been published
in [245], however, with a slight inconsistency. For these values, the first line in equation
(A.18) has to be modified to read (ε̇eff/ε̇

c,t
0 )ac,tβc,t with the factor ac = 1.026 and

at = 1.01. With ac,t = 1, as written above, the intersection of the two branches would be
at ε̇c,teff = 28.7948 1/s.
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βMt = 1/(1 + 8fc/10)

log ξMt = 6βMt − 2

ε̇t0 = 1× 10−61/s

As a further alternative, Hao et al. proposed the following fit for tensile loading
[137]:

F tR (ε̇) =


1.0 ε̇ < 10−4

2.06 + 0.26 log ε̇ 10−4 ≤ ε̇ < 1

2.06 + 2.0 log ε̇ ε̇ > 1

(A.23)

In the simulations shown in this thesis, the compressive branch of the CEB for-
mulation and the Malvar formula for tension is used. None of these formulations
limit the DIF with respect to high strain rates. Although no data exist for higher
rates (and it is debatable whether it is even possible to measure such data for
tension) in this work the DIFt is limited to F tR,max = 15, following [105] and the
general recommendation to limit the DIFt in [145]. Otherwise, very high-rates
in the fine discretization lead to an unnatural high strength of the matrix and
prevents damage. The role of the rate enhancement and a proper idealization in
the plasticity algorithm certainly needs more research.

Figure A.4 details the available data for the DIF together with the mentioned
fit functions.
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Figure A.4: Experimental values from literature for tensile and compressive (marked by “C” in the legend) strength increase. Only DIF
values below 8 are shown. The only data set featuring higher values is the one in [391], these data points can be deciphered in
the overview plot, Figure 3.7 on Page 40. Data marked with an asterisk are taken from the review paper [134] and referenced
therein. All other data are from [107, 112, 117, 123, 125, 126, 132–135, 147, 149, 273, 391–398].
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A.5 Loading conditions of the validation examples

The following figures document the applied velocity, respectively pressure histories
used for the simulation of the validation examples in Chapter 4.
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Figure A.5: Velocity signal used as input for the SHB simulations in Section 4.3.2 as derived from
the strain signals in the incident bar.
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Figure A.6: Velocity applied at the bottom nodes of the steel rod in the simulation of the compact
tension tests, Section 4.3.1.
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Figure A.7: Pressure histories for the shock tube validation example, Section 4.3.3. The data has
been digitized from figures given in [9, 282].
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A.6 Material parameter for the mesomechanical
simulations within this work

A.6.1 RHT model parameter for mortar matrix

The mortar matrix is a composite of the hardened cement paste with fine aggre-
gates, i.e. sand and additives. Generally, one may assume that mortar behaves
similarly as concrete and it seems therefore to be a justified hypothesis to start
with the standard parameter set for concrete as basis. Literature reporting mortar
properties is not too abundantly and often only some parameter are given. Fur-
thermore, the receipts vary and the experimental scatter is high. The following
overview mentions only deviating parameters from the standard concrete model
as given in [248].

Elastic properties

Several works mention the elastic properties of mortar, however with very high
scatter. Especially between mechanical and ultrasonic testing large differences
appear, see Figure A.8. Values have been taken more close to the ultrasonic
measurements to be:

E = 24.3 GPa G = 10.3 GPa

it follows
ν = 0.179 K = 12.6 GPa

The density was taken as average from [104, 399, 402] to be

ρ0 = 2.08 g/cm3

These values deliver a bulk speed of sound of cb,0 = 2461 m/s.
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Figure A.8: Young’s and shear modulus. Values from literature [94, 99, 104, 170, 193, 264, 265,
399–401] and actual choice.

Strength parameter

Uniaxial compresive strength Values for the uniaxial compresive strength of
mortar as mentioned in literature are shown in Figure A.9. Again, the scatter is
very high. With increasing w/c a reduction of fc is observable. A value of

fc = 48.0 MPa

is chosen, which might be a justified choice for w/c values in the plotted range.

Uniaxial tensile strength The uniaxial tensile strength is plotted in Figure A.10.
The choice of ft = 3.5 MPa is on the upper range of the available data, but still
well supported. With this value:

f̂t = 0.073
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Figure A.9: Literature values for mortar compressive strength [94, 99, 104, 204, 264, 265, 403].
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Figure A.10: Literature values for mortar uniaxial tensile strength [68, 94, 264, 265, 404].

Compressive meridian Only few data exits for the compressive meridian data,
especially towards higher pressure. Figure A.11 shows the available data, along
with data for concrete. The failure meridian based on the standard C30/37 pa-
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rameter set is plotted as dashed line (“RHT C30”). A new fit has been determined
by a nonlinear Levenberg-Marquardt fit. The resulting parameter are:

A = 2.13
n = 0.63

and fit well for both, the concrete data and the mortar values.
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Figure A.11: Compressive meridian of the RHT model together with literature values for mortar
(colored symbols) and concrete (grey symbols) strength. Line “RHT C30” marks the
meridian with the standard parameter. A new fit (“RHT MLH Fit”) is here proposed,
which is well suited for concrete and mortar. Data for concrete is compiled and
referenced in [405], data for mortar is from [94, 99, 403].
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Additional parameter for the Rankine criterion

The only additional value for the Rankine criterion is the fracture energy. Scatter
for this value is again extraordinarily high, as illustrated by the two test series
from Cintora and Gopalaratnam et al., plotted in Figure A.12 together with a
least square fit. The distribution follows roughly a Weibull distribution (right view)
and has an arithmetic value of GF = 75 N/m (as compared to 112 N/m for
standard concrete [84]). However, as elaborated on in Section 4.2.3, this value is
not necessarily the correct one to be applied to the individual elements. Rather
the total energy dissipated in a simulation comparable to the standard testing
procedure should yield the average value. For the individual elements, a much
smaller value, here taken to be GF = 30 N/m, is appropriate and yields satisfying
results.
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Figure A.12: Literature values for mortar fracture energy plotted as cumulative probability plot.
Right: Plot with Weibull scaling. Data from [264, 265].
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The complete parameter set for mortar is listed in Table A.2:

Parameter Symbol Value Unit
Shear modulus G 10.3 GPa
Bulk modulus K 12.6 GPa
Initial Density ρ0 2.08 g/cm3

Cylindrical compressive strength fc 48.0 MPa
Normalized tensile strength f̂t 0.073 –
Fracture energy GF 30 N/m
Failure surface parameter A 2.13 –
Failure surface exponent n 0.63 –
Triaxiality parameter Q0 0.6805 –
Brittle-to-ductile parameter B 0.0105 –
Elastic to plastic strain factor Ψh 1.36 –
Onset on hardening compression gc,0 0.627 –
Onset on hardening tension gt,0 1.0 –
Residual strength surface parameter Af 2.13 –
Residual strength surface exponent nf 0.63 –
Damage parameter D1 0.04 –
Damage exponent D2 1.0 –
Minimum strain to failure εmpl 0.01 –

Table A.2: Summary of the RHT material parameter for mortar.

A.6.2 Aggregate material model

Aggregates are herein considered to represent an intrusive igneous rock, such
as granite. Most of the parameter have been taken from concretes standard set,
except a much higher compressive strength, fracture energy and fit parameter for
the failure surface. The values are documented in Table A.3. A linear failure law
(refer to Figure 4.4) was employed for the aggregates and in all cases (compression
and tension) the CEB formulation for strain rate enhancement used. Furthermore,
the simple cube-root regularization was applied in aggregate elements. As the
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work of Snozzi et al. shows, the material parameter of the aggregates are – in
tensile dominated failure – of inferior importance [142].

Parameter Symbol Value Unit
Shear modulus G 31.0 GPa
Bulk modulus K 41.4 GPa
Initial Density ρ0 2.67 g/cm3

Cylindrical compressive strength fc 220.0 MPa
Normalized tensile strength f̂t 0.1 –
Fracture energy GF 360 N/m
Failure surface parameter A 2.3 –
Failure surface exponent n 0.79 –
Triaxiality parameter Q0 0.6805 –
Brittle-to-ductile parameter B 0.0105 –
Elastic to plastic strain factor Ψh 2.0 –
Onset on hardening compression gc,0 0.7 –
Onset on hardening tension gt,0 0.53 –
Residual strength surface parameter Af 2.3 –
Residual strength surface exponent nf 0.79 –
Damage parameter D1 0.04 –
Damage exponent D2 1.0 –
Minimum strain to failure εmpl 0.01 –

Table A.3: Summary of the RHT material parameter for “hard” aggregates.

A.6.3 ITZ data

For the ITZ, a relatively simple, rate-independent cohesive zone model was
applied [225, 281]. Only three parameter are necessary to describe its behavior:
Tensile strength, shear strength and fracture energy. As already mentioned,
detailed values for these parameter are not available or include high scatter.
Most researchers therefore prefer to use strength values of approximately 50 %
of mortars strength [219]. Here, estimates of the dynamic strength are used.
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For the simulation of the SHB specimen and the shock tube sample, a value of
ft = fs = 9 MPa was applied. The lower strain rate regime at the compact
specimen tension test was considered by a reduced strength. For all simulations,
a fracture energy similar to mortar was employed for the cohesive zone elements.
Table A.4 summarizes the values.

Example ft = fs in MPa GF in N/m
Ožbolt, vA = 0.49, Section 4.3.1 3 30
Ožbolt, vB = 4.3, Section 4.3.1 5 30
Schuler, Section 4.3.2 9 30
Bewick, Section 4.3.3 9 30
Hooked wall, Section 6.3 9 30

Table A.4: Summary of the applied input parameter for the cohesive zone elements of the
application examples.
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