
R O B U S T A N D E F F I C I E N T AU T O M AT E D M A C H I N E L E A R N I N G

Systems, Infrastructure and Advances in Hyperparameter Optimization

dissertation zur erlangung des doktorgrades der

technischen fakultät der

albert-ludwigs-universität freiburg im breisgau

vorgelegt von

matthias feurer

Dekan
Prof. Dr. Roland Zengerle

Erstgutachter und Betreuer der Arbeit
Prof. Dr. Frank Hutter

Zweitgutachter
Prof. Dr. Joaquin Vanschoren

Datum der mündlichen Prüfung
16.09.2022

License: CC-BY 4.0, see
https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

A B S T R A C T

Automated Machine Learning (AutoML) is a new paradigm that de-
mocratizes machine learning and that will enable its widespread use.
AutoML systems provide hands-free machine learning and automat-
ically search for the best models, tune their hyperparameters, and
ensemble them. Hyperparameter Optimization (HPO) is a core part of
AutoML research and also a research field on its own as models and
datasets increase in size and complexity. However, current AutoML
systems and HPO methods are resource-hungry and not yet robust
enough for all the settings in which we would like to deploy them.

While machine learning automates programming by learning pro-
grams from data, AutoML goes one step further and allows us to
leave such tasks entirely to the computer. It reduces the burden on
the human expert and automates many steps required to build well-
performing machine learning models. We are in dire need of such
systems because of the increased usage of machine learning and the
simultaneous shortage of machine learning practitioners and experts.

In this thesis, we make three contributions to increase the accessibil-
ity of machine learning by developing efficient and robust AutoML
methods.

First, we address the problem of optimizing hyperparameters effi-
ciently. Concretely, we survey the field of HPO, focusing on so-called
multi-fidelity methods that efficiently optimize expensive machine
learning algorithms by using cheaper approximations. Then, we de-
velop a new method for transfer HPO, i.e., an HPO method that lever-
ages knowledge gained on previous optimization tasks. It features
strong empirical performance, worst-case performance guarantees,
and is hyperparameter-free.

Second, we introduce our work on the efficient and robust AutoML
system Auto-sklearn and its successor Auto-sklearn 2.0. We start by
proposing Auto-sklearn, an extensible AutoML system that constructs
linear machine learning pipelines from 15 classifiers, 16 preprocessing
methods, and four data cleaning methods from scikit-learn. To im-
prove over previous AutoML systems, we propose meta-learning and
ensembling. We extend on this with Auto-sklearn 2.0, in which we
improve the meta-learning component and add new options to make
Auto-sklearn suitable for a broader number of use cases. However, this
opens up an HPO problem on the AutoML system level, and we in-
troduce a meta-level meta-learning approach that adapts the AutoML
system itself to the task at hand. Moreover, we describe how we used
Auto-sklearn to win the 1st and 2nd ChaLearn AutoML competition.

iii

Third, we enable AutoML research by contributing to the OpenML
platform. Concretely, we create the OpenML-Python API, which gives
us access to the OpenML platform with all its datasets. Then, to
simplify access to datasets on OpenML and organize the thousands
of datasets on OpenML, we develop OpenML benchmarking suites.
These are curated datasets to standardize benchmarking practices in
machine learning, and we have also used them in our works on HPO
and AutoML.

Finally, we discuss how to improve the Auto-sklearn AutoML sys-
tem further, pose several open questions to the field of AutoML to
further increase the automation in machine learning practice and
better understand the developed AutoML methods, and give sugges-
tions on how to facilitate better benchmarking in AutoML using the
OpenML platform.

In total, we demonstrate how machine learning can be made ac-
cessible by robust and efficient Automated Machine Learning and
demonstrate substantial performance gains compared to previous
AutoML systems.

Z U S A M M E N FA S S U N G

Automatisiertes maschinelles Lernen (AutoML) ist ein neues Para-
digma, das maschinelles Lernen demokratisiert und es einer breiten
Anwendergruppe zur Verfügung stellen wird. AutoML-Systeme er-
möglichen maschinelles Lernen ohne händische Eingriffe und suchen
automatisch nach den besten Modellen, optimieren ihre Hyperparame-
ter und kombinieren sie in Ensembles. Hyperparameter-Optimierung
(HPO) ist ein Kernstück der AutoML-Forschung und auch ein eigen-
ständiges Forschungsfeld, da Modelle und Datensätze immer grö-
ßer und komplexer werden. Aktuelle AutoML-Systeme und HPO-
Methoden benötigen jedoch viele Resourcen und sind noch nicht
robust genug.

Maschinelles Lernen automatisiert das Programmieren, indem Pro-
gramme aus Daten gelernt werden. AutoML geht noch einen Schritt
weiter und erlaubt uns, solche Aufgaben vollständig dem Computer
zu überlassen. Es reduziert die Arbeitsbelastung von Experten und au-
tomatisiert viele Schritte, die zum Erstellen leistungsfähiger Modelle
für maschinelles Lernen erforderlich sind. Es besteht ein großer Bedarf
an solchen Systeme, da auf der einen Seite maschinelles Lernen im-
mer öfters eingesetzt wird, aber andererseits auch Fachkräftemangel
herrscht.

In dieser Arbeit leisten wir drei wichtige Beiträge, um die Zugang zu
maschinellem Lernen durch die Entwicklung effizienter und robuster
AutoML-Methoden zu erleichtern.

iv

Zuerst widmen wir uns HPO. Wir erstellene eine Übersichtsarbeit,
wobei wir uns auf sogenannte Multi-Fidelity-Methoden konzentrieren,
die teure maschinelle Lernalgorithmen effizient optimieren, indem
sie günstigere Näherungen mit niedrigerer Genauigkeit verwenden.
Danach entwickeln wir eine neue Transfer-HPO-Methode, d. h. eine
HPO-Methode, die Erkenntnisse aus vorherigen Optimierungsaufga-
ben nutzt. Sie zeichnet sich durch eine starke empirische Leistung
und dem Vorhandensein von Worst-Case-Leistungsgarantien aus und
kommt zudem komplett ohne Hyperparameter aus.

Als Zweites stellen wir unsere Arbeit am effizienten und robusten
AutoML-System Auto-sklearn und seinem Nachfolger Auto-sklearn
2.0 vor. Wir beschreiben zuerst Autosklearn, ein erweiterbares AutoML-
System, das lineare Pipelines für maschinelles Lernen aus 15 Klassifika-
toren, 16 Vorverarbeitungsmethoden und vier Datenbereinigungsme-
thoden von scikit-learn erstellt. Zur Verbesserung gegenüber früheren
AutoML-Systemen schlagen wir Meta-Learning und Ensembling vor.
Mit Auto-sklearn 2.0 erweitern wir die Methodik und verbessern zum
einen die Meta-Learning-Komponente und erweitern zum anderen die
Einstellmöglichkeiten von Auto-sklearn um es für eine größere Menge
von Anwendungsfällen geeignet zu machen. Dies eröffnet jedoch ein
HPO-Problem auf der Ebene des AutoML-Systems, und wir führen
einen Meta-Learning-Ansatz auf der Meta-Ebene ein, welcher das
AutoML-System selbst an die jeweilige Aufgabe anpasst. Darüber hin-
aus beschreiben wir, wie wir mit Auto-sklearn den 1. und 2. ChaLearn
AutoML-Wettbewerb gewonnen haben.

Als Drittes tragen wir zur OpenML-Plattform bei und ermöglichen
somit AutoML-Forschung im großen Stil. Konkret erstellen wir die
OpenML-Python-API, die uns Zugriff auf die OpenML-Plattform mit
all ihren Datensätzen gibt. Anschließend entwickeln wir OpenML-
Benchmarking-Suiten, um den Zugriff auf Datensätze auf OpenML
zu vereinfachen und die Tausenden von Datensätzen auf OpenML zu
organisieren. Dies sind kuratierte Datensätze zur Standardisierung von
Benchmarking-Praktiken beim maschinellen Lernen, und wir haben
sie auch in unseren Beiträgen zu HPO und AutoML verwendet.

Abschließend diskutieren wir, wie das AutoML-System Auto-sklearn
weiter verbessert werden kann, erörtern offene Fragen zum Bereich
AutoML, und machen Vorschläge, wie ein mit der OpenML-Plattform
besseres Benchmarking für AutoML erreicht werden kann.

Zusammenfassend zeigen wir wie maschinelles Lernen durch robus-
tes und effizientes AutoML besser verfügbar gemacht werden kann,
und demonstrieren erhebliche Leistungssteigerungen im Vergleich zu
früheren Ansätzen.

v

A C K N O W L E D G M E N T S

First of all I am sincerely grateful to my supervisor and first examiner,
Frank Hutter. His Master’s seminar on tuning hyperparameters made
me start working on what is now known as AutoML. I’m thankful that
he gave me the chance to do the PhD in the first place, supported me
throughout the whole time, allowed me to contribute to the AutoML
workshop series and all the different projects that I had the honor to
participate in. His genuine enthusiasm, his capability to come up with
an endless stream of great ideas, and his great dedication to details,
simplification, and always submitting the best possible paper had a
great impact on me and my thesis.

Second, I would like to extend my sincere thanks to Joaquin Van-
schoren for being not only the second examiner, but also for initiat-
ing, maintaining and advancing the OpenML project, organizing the
OpenML workshops, and being a wonderful co-author.

Third, I would like to thank Professor Nebel and Josif Grabocka
who completed my PhD thesis examination committee as chairperson
and observer. Moreover, I would like to acknowledge the DFG, ERC
and Robert Bosch GmbH for funding the projects at the University of
Freiburg I was employed to work on, which made my thesis possible
at all. Furthermore, special thanks to Ben Letham and Eytan Bakshy
from Facebook (now Meta) for hiring me as an intern and guiding me
through my internship project, and also to everyone from the AE team
for giving me a great time.

Furthermore, I would like to express my deepest gratitude to all co-
authors of the papers in this thesis for their work, support, comments,
ideas and input; as well as all co-authors of the papers which are not
part of this thesis for letting me contribute. Then I’d like to thank
everyone from the machine learning lab (the former AAD group)
and also the former machine learning lab of Professor Riedmiller
for the great time and discussions. The AAD group started small
with just Aaron Klein, Marius Lindauer, Tobias Domhan, Katharina
Eggensperger and me (and Robin Schirrmeister sometimes joining),
and we often met with Manuel Watter, Manuel Blum and Tobias
Springenberg from the former machine learning lab. Over time the
group grew, and Stefan Falkner, Ilya Loshchilov, Matilde Gargiani,
Jan van Rijn and James Wilson joined; together we have formed Mark
1 of what is now Frank’s machine learning lab and played a lot of
Smash Brothers. For the Mark 2 formation of the lab Thomas Elsken,
Arbër Zela, André Biedenkapp, Raghu Rajan, Jörg Franke, Noor Awad
and Lucas Zimmer joined. Unfortunately, I haven’t really seen those
who joined during the pandemic, except for Eddie Bergman, who

vii

is already shaping the future of Auto-sklearn. During my time at
the University Petra Geiger, Steffi Beysel, Svenja Wittpoth, Morgan
Bambey, Zwetelina Steinbach and Evelyn Rusdea took care of my (up
to three parallel) contracts and made sure everything went smooth on
the administrative side. The thesis would also not have been possible
without our clusters META and META2 which were administered by
Uli Jakob, Samuel Weishaupt and Stefan Stäglich. Besides doing my
own research I had the opportunity to supervise students doing their
research and also learn from them, and in no particular would like to
thank Hector, Konstantina, Misgana, Mohsin, Francisco, Jorn, Anatolii,
Farooq, Jinu, Guilherme, Lukas, Arlind and Neeratyoy.

Next, I would like to thank the academic and open source commu-
nities. Throughout the thesis I developed and maintained several open
source packages (OpenML-Python and liac-arff ; ConfigSpace, SMAC3
and Auto-sklearn). I am grateful for the opportunity to do so, and
would like to thank everyone who contributed back to them to further
improve the projects. They are a core part of my thesis and hopefully
continue to be so for other researchers, too. I conducted the work on
OpenML together with the great OpenML community. I had the great
pleasure to attend a total of nine OpenML workshops in person (and
the tenth one only online due to the pandemic) and always had a
great time. These workshops have tremendously helped me moving
forward with the papers and my thesis. Everyone from the OpenML
community was always happy to discuss and explain all aspects of ma-
chine learning, and besides Joaquin who I already mentioned above, I
would like to thank Jan van Rijn and Bernd Bischl for their devotion
to make OpenML a huge success, and Andreas Müller for teaching
me a lot about developing open source software. I also very much
enjoyed developing SMAC3 and very much appreciate the great effort
of Marius Lindauer and the whole SMAC3 team. Lastly in this block,
I would like to thank ChaLearn and in particular Hugo Jair Escalante
and Isabelle Guyon for organizing the 1st and 2nd AutoML challenge
in which we could demonstrate our work, and which also challenged
us to push the limits of our software and methods.

I would be remiss not to mention my family who always supported
me, believed in me, and always encouraged me. Then, I am also
thankful to my friends for distracting me from the PhD student life.

Last by not least, I would like to thank Katha for the joy and
sunshine she brings into my life and for her endless support and
patience during my time as a PhD student.

viii

C O N T E N T S

i introduction

1 introduction 3

1.1 Motivation 3

1.2 Goals of this Thesis 5

1.3 How to read this Thesis 9

2 contributions 11

2.1 Contributions 11

2.1.1 Part ii: Hyperparameter optimization 11

2.1.2 Part iii: Automated Machine Learning 13

2.1.3 Part iv: Benchmarking and the OpenML Plat-
form 16

2.2 List of Publications 19

ii publications on hyperparameter optimization

3 hyperparameter optimization 23

4 practical transfer learning for bayesian opti-
mization 57

iii publications on automated machine learning

5 efficient and robust automated machine learn-
ing 99

6 auto-sklearn 2 .0 : hands-free automl via meta-
learning 111

iv publications on benchmarking and the openml

platform

7 openml-python : an extensible python api for

openml 161

8 openml benchmarking suites 169

v conclusion

9 conclusion 187

9.1 Summary and Discussion 187

9.1.1 Hyperparameter optimization 187

9.1.2 Automated Machine Learning 188

9.1.3 Benchmarking and the OpenML Platform 190

9.2 Future Work 191

9.2.1 Future Work To Improve Auto-sklearn 191

9.2.2 What makes a well-performing AutoML sys-
tem? 192

9.2.3 Extending the Scope of AutoML and Bringing
the Human Back into the Loop 196

ix

x acronyms

9.2.4 Relation to Deep Learning and Neural Architec-
ture Search 197

9.2.5 OpenML and Benchmarking 198

vi appendix

a appendix for practical transfer learning for

bayesian optimization 203

b appendix for efficient and robust automated ma-
chine learning 219

c appendix for auto-sklearn 2 .0 : hands-free au-
toml via meta-learning 235

d appendix for openml benchmarking suites 253

bibliography 257

Part I

I N T R O D U C T I O N

1
I N T R O D U C T I O N

1.1 motivation

The problems we aim to solve with computer programs are growing
in size and complexity beyond what can be efficiently programmed in
a traditional manner. Two examples are winning the game of Go and
image classification in computer vision. For playing Go, in principle,
we know the algorithm to find the optimal move for every board
position at every turn of the game: we simulate all possible games and
pick the move with the highest chance of winning. Unfortunately, Go
has too many board positions, and we cannot iterate over all of them
because of their combinatorial explosion.1 For image classification,
things are even worse. Here we know what a classification system
should output (the object visible in an image), but not how to create
such a program. It would be infeasible to write rules for such a system
yet to account for all edge cases. While the nature of these two example
problems is different, they share the same solution: machine learning.

Machine learning has not only disrupted playing the game of Go (Sil-
ver, A. Huang, et al., 2016; Silver, Hubert, et al., 2018; Schrittwieser
et al., 2020) and computer vision (LeCun et al., 1989; Krizhevsky,
Sutskever, and Hinton, 2012; He et al., 2016). It has also disrupted
other fields where there is an abundance of data but no feasible or
known program to handle the problem, for example, biology (King,
Hirst, and Sternberg, 1993; Jumper et al., 2021) and natural language
processing (Jurafsky and Martin, 2022). There are many other ap-
plications, which can be found in numerous text books on machine
learning (Hastie, Tibshirani, and Friedman, 2001; Bishop, 2006; Alpay-
din, 2010; Murphy, 2012; Goodfellow, Bengio, and Courville, 2016).

The following two sentences from Alpaydin’s book Introduction to
Machine Learning (Alpaydin, 2010) are an excellent summary of the
goal and inner working of machine learning:

Machine learning is programming computers to optimize
a performance criterion using example data or past expe-
rience. We have a model defined up to some parameters,
and learning is the execution of a computer program to
optimize the parameters of the model using the training
data or past experience.

1 The exact number of legal Go positions was computed only in 2016 (Tromp, 2016); it is
2081681993819799846994786333448627702865224538845305484256394568209274196127

3801537852564845169851964390725991601562812854608988831442712971531931755773

6620397247064840935, and can be approximated by 2.081681994e170.

3

4 introduction

From a high-level point of view, machine learning has two ingredi-
ents: data and models. Data is required to train the models, and our
goal is to extract patterns and rules from that data that cannot be
programmed otherwise.

However, choosing the right model requires understanding them
in-depth to choose the right one for the problem at hand. To make
things worse, such models have hyperparameters that govern how the
model handles the data that needs to be tuned to the problem at hand.
Moreover, it is insufficient to apply only a model to new data. Instead,
one must include several preprocessing steps that must be selected
and tuned for the current data.

In practice, one experiments with multiple models and hyperpa-
rameter settings in a trial-and-error fashion which can be time and
compute-intensive. Therefore, applying machine learning requires a
thorough understanding of the target domain, machine learning mod-
els and pipelines, and their optimization. In addition, it also requires
understanding experimentation in order to tune the hyperparameters
properly.

Human experts use the algorithms they know about; for exam-
ple, a user trained only in deep learning will apply it even though
tree-based methods might perform superior for the given data (King,
Feng, and Sutherland, 1995; LeDell, 2019). Also, the space of possible
choices might be too large to have a good overview for a human
practitioner (Fernández-Delgado et al., 2014). Besides these method-
ological problems, there is also a severe shortage of machine learning
practitioners to make such modeling choices in all of the relevant
applications (Teichmann, 2021).

To unlock the full potential of machine learning, it is therefore of
paramount importance to reduce the barriers to machine learning.
AutoML, short for Automated Machine Learning,2 aims to overcome
these barriers by researching and developing methods and tools that
automatically search for the best machine learning model for a dataset
at hand.

The problem of correctly setting the hyperparameters is referred
to as Hyperparameter Optimization (HPO). HPO can be used to
tune the hyperparameters of a model in a one-off fashion to improve
its performance, and HPO has been shown to perform superior to
manual tuning (Bergstra, Bardenet, et al., 2011; Snoek, Larochelle, and
Adams, 2012; Melis, Dyer, and Blunsom, 2018). Advanced methods
for HPO take properties of the model fitting process into account
and improve the efficiency of such HPO procedures even further.
Additionally, if one conducts HPO repeatedly for the same machine
learning model but different datasets, one can use knowledge gained
in earlier optimization runs.

2 Sometimes also autonomous machine learning (Escalante, 2021) or automatic machine
learning (Hoffman, Shahriari, and Freitas, 2014).

1.2 goals of this thesis 5

AutoML systems, such as Auto-sklearn, which we will introduce in
Part iii, are general-purpose machine learning algorithms themselves.
They tune themselves for maximal performance on new datasets by
automatically choosing between different machine learning models,
tuning their hyperparameters, applying necessary preprocessing steps
and following tricks of the trade. With such systems available, the ma-
chine learning expert can focus on other parts of the machine learning
problem, for example, data preparation or better problem formulation.
Also, they enable novice users or domain experts to use advanced
machine learning in the first place. Under the hood AutoML systems
combine an HPO tool with a machine learning library. As the devel-
opers of the AutoML system, we can flexibly design the individual
components and optimize them jointly for maximal performance.

Our goal in this thesis is to develop AutoML methods to democra-
tize machine learning. We will lay out the concrete research questions
we that we wish to answer in the next section.

1.2 goals of this thesis

A lot of work exists on creating new methods for machine learning, as
can be seen by the number of submissions to machine learning journals
and conferences. The number of submissions to the Journal of Machine
Learning Research (JMLR, the top journal for machine learning papers)
doubled in the last three years, as shown in Figure 1.1. Similarly,
for the Neural Information Processing Systems conference (NeurIPS),
the number of submissions increased by 40% per year for 2017-2020,
culminating in over 9400 submissions in 2020.

Yet, in order to develop new methods, to decide which of the many
methods to use for a new problem and how to set their hyperpa-
rameters, we need to enable the users and developers to make these
decisions in an efficient manner, i.e., by using efficient methods in a
fully automated fashion. The definition of efficiency can vary, but it is
often measured in terms of a computing budget.

The main question behind this thesis is Can we make machine learning
more accessible by efficient and robust Automated Machine Learning? We
have researched this question under the following three aspects:

1. Hyperparameter Optimization (HPO): Can we improve the applica-
bility of HPO to costly problems?

2. Automated Machine Learning: Can we improve the efficiency of
Combined Algorithm Selection and Hyperparameter Optimiza-
tion (CASH) for supervised learning?

3. Benchmarking and the OpenML platform: Can we facilitate AutoML
research and development by providing better data to the re-
searcher?

6 introduction

Figure 1.1: Number of yearly submissions to the Journal of Machine Learning
Research (Image from (Pedregosa, Maharaj, et al., 2022)).

We have identified these three aspects during our research and
found several open questions and challenges. In the remainder of this
subsection, we will dive further into these three directions and give
further details on what we aim to achieve with this thesis.

Hyperparameter Optimization

Hyperparameter Optimization (HPO) is the process of searching for
the optimal hyperparameters for a machine learning model or pipeline
for a dataset at hand. HPO methods are iterative algorithms that train
and evaluate the model they optimize in each iteration.

Optimizing the hyperparameters of a machine learning model or
pipeline can be expensive for different reasons:

1. because the model itself is huge and takes a long time to train,

2. because the data used to train the model is large, or

3. because one is constantly re-optimizing the model for new data.

Since datasets increase in size, models grow larger, and the number of
datasets themselves explodes, researchers have started to extend HPO
to tackle these challenges.

To make HPO feasible for the first two dimensions, HPO researchers
make use of so-called learning curves of machine learning models. The
term learning curve originally described how growing dataset sizes im-
pact model performance; which can also be modeled (Provost, Jensen,
and Oates, 1999). Recently, they also describe how the performance
of iterative algorithm evolves, and researchers can often guesstimate
the performance of such algorithms from the observation of just a few
iterations (Domhan, Springenberg, and Hutter, 2015). Both types of
learning curves are important to design so-called multi-fidelity meth-
ods. These multi-fidelity methods use cheap approximations, so-called
low-fidelity versions, of the expensive, actual target. By this, they
save computational budget with the goal of querying the expensive,

1.2 goals of this thesis 7

high-fidelity model (i.e., training on all data or training for the highest
amount of iterations possible) as few times as possible. However, there
is no literature overview of multi-fidelity methods available to make
an informed decision on how to improve on them and which one to
use in one’s work. Therefore, we consider it to be an important step to
summarize available work on standard and multi-fidelity HPO and
provide such a survey in Chapter 3 of this thesis.

In contrast, for the third dimension, where one constantly re-optimi-
zes the same model for new data, it is customary to re-use knowledge
from earlier optimization runs to speed up the optimization. So far, all
methods in the literature suffer from at least one issue that prevents
easy applicability: they do not scale to a dozen tasks or more, they have
a too high modeling overhead, they have hyperparameters themselves,
require other task-specific settings, or provide no guarantees that re-
using knowledge does not hurt the performance. Developing such a
method would advance the practical applicability of HPO in large-
scale settings; and we do so in Chapter 4.

Automated Machine Learning

As mentioned above, AutoML systems are off-the-shelf general-pur-
pose machine learning algorithms and they draw their power from
combining an HPO tool with a machine learning library. We can
take this information into account when designing such an applica-
tion (Hoos, 2012) to get the most out of the methods used within the
AutoML system.

Previous work on AutoML falls into two realms: the field of meta-
learning, which learns which machine learning algorithm to apply
in which situation in a one-shot manner (see Brazdil, Gama, and
Henery (1994) and Gama and Brazdil (1995) for two early examples
and Brazdil, Giraud-Carrier, et al. (2008), Smith-Miles (2008) and Van-
schoren (2019) for an overview) and the field of HPO which aims to
find the correct algorithm and its hyperparameters by joint optimiza-
tion (Escalante, Montes, and Sucar, 2009; Thornton et al., 2013; Q. Sun,
Pfahringer, and Mayo, 2013; Komer, Bergstra, and Eliasmith, 2014;
Bürger and Pauli, 2015).3

The first is limited (i.e., does not include hyperparameter tuning),
while the second is slow for either large datasets or when many mod-
els need to be searched over. Furthermore, previous algorithms would
return only a single model while it is known that ensembles generally
improve predictive performance (Brazdil, Giraud-Carrier, et al., 2008,

3 There have been intermediate works, for example, meta-learning that predicts which
algorithm would be best after HPO (Q. Sun and Pfahringer, 2013; Reif, Shafait, Gold-
stein, et al., 2014) and meta-learning to find the initial starting points for HPO (Reif,
Shafait, and Dengel, 2012; Gomes et al., 2012; Feurer, Springenberg, and Hutter,
2015). Furthermore, the third realm of Neural Architecture Search (NAS) emerged in
parallel to this thesis and we discuss it in Section 9.2.4.

8 introduction

Section 5). Lastly, the methods neither took direct optimization for
generalization to new data into account nor did they study how to
measure performance on the available data to maximize generalization
performance within a given time horizon. We consider overcoming
these limitations crucial for the success of AutoML systems and intro-
duce our approaches for doing so, Auto-sklearn and Auto-sklearn 2.0,
in Chapters 5 and 6 of this thesis.

Benchmarking and the OpenML platform

While we conducted research on AutoML methodology for this thesis,
we encountered several roadblocks that we had to remove to work
efficiently on the two previous subproblems:

1. Accessibility of a large amount of realistic data to develop meta-
learning systems, and

2. well-defined and standardized sets of datasets for benchmarking.

When we started this thesis, there already existed several repos-
itories dedicated to machine learning data: UCI machine learning
repository (Dua and Graff, 2019), LibSVM (Chang and C.-J. Lin, 2011),
MLData (Vanschoren, Braun, and Ong, 2014), skdata (Bergstra, Pinto,
and Cox, 2015) and OpenML (Vanschoren, Rijn, et al., 2014). UCI did
not allow easy interaction, i.e., there is neither a universal, machine-
readable description of the datasets available nor an API for listing all
datasets. The datasets on LibSVM are not very diverse, and the overall
number is limited. MLData also allowed for arbitrary data formats.
skdata had only a very limited amount of data available, with most
datasets being for computer vision. OpenML, on the other hand, con-
tained many diverse datasets, searchable via an accessible REST API,
and all datasets were available in a unified, machine-readable format.
Out of those, only OpenML allowed for easy and programmatic access
to a large number of consistently formatted datasets. OpenML allowed
access via a Java, R, and REST API, but not yet via a Python API.

However, researchers require easy access to large amounts of data,
easily searchable, well-described. To provide researchers easy access to
curated data within the Python programming language and enhance
their capabilities in researching meta-learning and large-scale AutoML,
we introduce the OpenML-Python package in Chapter 7 of this thesis.

In addition to the aforementioned repositories, several papers pro-
vided the datasets as supplementary material. To the date of when
we started this thesis, the paper introducing Auto-WEKA (Thornton
et al., 2013; Kotthoff et al., 2019) had the most extensive evaluation
of an AutoML system, using a total of 21 datasets, which are avail-
able for download. In the field of meta-learning works were using
up to 466 datasets (Q. Sun and Pfahringer, 2013). However, they did
not come with a dataset-level description and were only available

1.3 how to read this thesis 9

in private communication. Furthermore, these datasets were heav-
ily preprocessed (and consisted only of binary classification datasets,
including binarized multiclass classification datasets and regression
problems that were converted to binary classification problems) and
downsampled to contain at most 5000 data points.4 The paper asking
the question Do we need hundreds of classifiers to solve real world classifi-
cation problems? (Fernández-Delgado et al., 2014) used a total of 121

datasets and the authors provide access to them as a downloadable
archive of files. They are, however, also preprocessed and only contain
numerical and normalized features. Unfortunately, such preprocessing
simplifies the machine learning problems and reduces the generality of
the datasets. For example, using datasets without categorical features
would not allow building a general-purpose AutoML system that can
handle categorical features, or using only of up to 5000 samples would
only allow us to build AutoML systems for small-scale data. While
these are excellent data sources, they are, however, not sufficient for
constructing large-scale AutoML systems.

Nonetheless, we would like to have an integration of defined bench-
marks and a dataset repository. With access to OpenML, researchers
now have hundreds of datasets in a machine-readable format and
searchable via an API at their fingertips. As a next step, we integrate
the definition of collections of benchmarks into OpenML and make
them easy to access and easy to develop further with the concept of
OpenML benchmarking suites, which we introduce in Chapter 8.

1.3 how to read this thesis

This thesis is a thesis by publication, which combines several works
published in leading venues that follow a common research ques-
tion into a single thesis. We structure it into five parts. In this part,
Part i, we have so far discussed the problem setup and the general
research question. Additionally, we have introduced the three angles
from which we tackle this research question. We will next describe
the contributions of this thesis. We will follow up on this with the
individual works in Parts ii (HPO), iii (AutoML) and iv (Benchmark-
ing and the OpenML platform). Each of these parts consists of two
chapters, and each chapter consists of one publication. We close this
thesis in Part v by summarizing and discussing our contributions and
by providing an extended discussion of the impact of our works to
put each publication into the context of the latest research.

As mentioned above, this is a thesis by publication. Therefore, we
wrote papers with different states of knowledge and audiences in mind
and used different notations throughout the thesis. Moreover, we do

4 While summarizing this thesis, we learned that Macià and Bernadó-Mansilla (2014)
had collected a total of 166 classification datasets in a common format. However, they
were also available only upon request.

10 introduction

not order the papers chronologically, but rather by topic. However,
the different chapters can be read independently and do not require
knowledge of other chapters of this thesis. We suggest the interested
reader proceed directly to the chapter of interest. Each chapter is
self-contained and contains relevant pointers to related literature.
However, for a reader who is new to this field, we suggest starting
with Chapter 3, which is also the first chapter of the book Automated
Machine Learning: Methods, Systems, Challenges (Hutter, Kotthoff, and
Vanschoren, 2019), and then continue with Chapters 2 and 3 of said
book (Vanschoren, 2019; Elsken, Metzen, and Hutter, 2019b) before
returning to this thesis.

2
C O N T R I B U T I O N S

In this chapter, we will discuss the contributions we made to address
the main research question we posed in the previous chapter: Can we
make machine learning more accessible by efficient and robust Automated Ma-
chine Learning? We tackled this question by approaching it from three
different directions: Hyperparameter Optimization (HPO), Automated
Machine Learning (AutoML), and Benchmarking and the OpenML
platform. Pushing the research frontier in each of these directions
corresponds to the three goals we aim to achieve. During our quest
to solve these goals, we published a total of six papers, which we
consolidated in this thesis.

In this chapter, first, we discuss the contributions of our publications
towards achieving our goals. Second, we provide the references for
these. Third, we also provide references for publications the thesis
author contributed to, which are related but not part of this thesis.

2.1 contributions

In this section, we will discuss the individual contributions part by part.
Concretely, we will give a brief introduction for each part, followed by
the two contributions we made to the goal of the respective part.

2.1.1 Part ii: Hyperparameter optimization

Hyperparameter Optimization (HPO) is a cornerstone of AutoML.
It powers AutoML systems such as particle swarm model selection (Es-
calante, Montes, and Sucar, 2009, PSMS), Auto-WEKA (Thornton et
al., 2013; Kotthoff et al., 2019), hyperopt-sklearn (Komer, Bergstra, and
Eliasmith, 2019), Auto-sklearn (Chapter 5), MOSAIC (Rakotoarison,
Schoenauer, and Sebag, 2019) and many more. Deep neural networks
are another prime application for HPO and one that sparked interest
in AutoML (Bergstra, Bardenet, et al., 2011; Snoek, Larochelle, and
Adams, 2012).

HPO can lead to substantial performance gains and solely make
the difference between a good model and state-of-the-art (Snoek,
Larochelle, and Adams, 2012; Melis, Dyer, and Blunsom, 2018; Y. Chen
et al., 2018; Bello et al., 2021) However, standard HPO can be too costly
to conduct. As an example, training AlexNet took five to six days
on recent hardware of that time (Krizhevsky, Sutskever, and Hinton,
2012). Such training times make regular, sequential HPO infeasible.

11

12 contributions

On a similar note, the cost for training the recent GPT3 model is
estimated to be above $4.000.000 (C. Li, 2020).

We present two publications on making HPO more efficient to
allow scaling it to larger problems: the first is a review of modern
HPO methods that features cost-efficient multi-fidelity methods and
upcoming trends for improving HPO’s efficiency, and the second is a
new HPO method that re-uses knowledge from earlier optimization
tasks to speed up optimization on a new task.

Survey on Hyperparameter Optimization

Matthias Feurer and Frank Hutter (2019). “Hyperparameter Optimiza-
tion.” In: AutoML: Methods, Systems, Challenges. Ed. by Frank Hutter,
Lars Kotthoff, and Joaquin Vanschoren. Springer. Chap. 1, pp. 3–38.

Our first contribution to the field of efficient Hyperparameter Op-
timization (HPO) is a survey on HPO. We assess modern HPO ap-
proaches and focus on multi-fidelity optimization methods that started
gaining traction.

Concretely, we define the problem statement of HPO and discuss
why it is a particularly hard problem. We also discuss the related
approaches of ensembling and marginalization of hyperparameters.
On the optimization side, we start by discussing popular techniques
for black-box HPO: grid search and random search (Bergstra and
Bengio, 2012), population-based algorithms such as CMA-ES (Hansen,
2006), and Bayesian optimization (Brochu, Cora, and de Freitas, 2010;
Shahriari et al., 2016; Frazier, 2018; Garnett, 2022). Next, we thoroughly
discuss multi-fidelity HPO. We identify three overarching techniques:
learning curves, bandits, and adaptive methods. Furthermore, we
discuss the applications of HPO to AutoML and give an overview of
the first dedicated papers introducing methods for HPO. We conclude
this chapter by posing open research questions that we believe are
important to the field of HPO.

Practical Transfer Learning For Bayesian Optimization

Matthias Feurer, Benjamin Letham, Frank Hutter, and Eytan Bakshy
(2022). “Practical Transfer Learning for Bayesian Optimization.” In:
arXiv:1802.02219v4 [cs.LG].

An alternative angle to reduce the costs of HPO can be found in
applications where problems are repeatedly solved, for example, for
different datasets. As our second contribution to the field of HPO,
we introduce new methods that re-use knowledge from earlier opti-
mization tasks to speed up optimization on a new task. Because they
transfer knowledge, they go by the name of transfer HPO methods.

2.1 contributions 13

We introduce properties of a desirable transfer HPO algorithm, such
as scalability to many tasks, fast updates of the surrogate model, no
dependence on task-specific hyperparameter settings or numerical task
descriptors, and no performance degradation because of the transfer
learning setup. These properties are inspired by the fact that the
algorithm was developed in a setting where there was no direct access
to the machine learning model and dataset, for example, because the
machine learning model is maintained by a different department or
there are issues adapting the code.

We base our algorithms, which follow these design principles, on
a linear combination of Gaussian processes. Each Gaussian process
models the performance of the target model on one previous opti-
mization task. Additionally, we use one Gaussian process to model the
performance for the current task. Our methods also feature theoretical
guarantees about falling back to single task Bayesian optimization
and being only a constant factor slower than single task Bayesian
optimization. We explain how our algorithms generalize two exist-
ing algorithms and relate to an older meta-learning technique (Leite,
Brazdil, and Vanschoren, 2012), which gives us a better understanding
of the previous work.

We then introduce the largest benchmark to date, including six
transfer HPO tasks and nine baselines, and conduct an extensive
evaluation, including a thorough ablation study. Our evaluation shows
that the proposed methods improve over the previous state-of-the-art.
This thesis chapter also supplements the HPO survey as it contains a
thorough overview of the related work on transfer HPO.

2.1.2 Part iii: Automated Machine Learning

In this next part of this thesis, we study whether we can increase
the accessibility of machine learning by making AutoML systems
more efficient and robust. Concretely, we study how we can combine
HPO and a machine learning library into an efficient AutoML system
by exploiting the fact that we can develop and configure both. We
focus on supervised classification, and we aim to provide users with
an automated problem solver if they formulate their problem in the
required format. In the course of this work, we developed the popular
AutoML system Auto-sklearn, which we validated by winning the 1st
and 2nd ChaLearn AutoML competition (Guyon et al., 2019) and by
using the OpenML AutoML benchmark (Gijsbers et al., 2019).

Robust and Efficient Automated Machine Learning

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias
Springenberg, Manuel Blum, and Frank Hutter (2015). “Efficient
and Robust Automated Machine Learning.” In: Advances in Neu-

14 contributions

ral Information Processing Systems. Ed. by Corinna Cortes, Neil D
Lawrence, Daniel D Lee, Masashi Sugiyama, and Roman Garnett.
Vol. 28, pp. 2962–2970.

Auto-WEKA (Thornton et al., 2013; Kotthoff et al., 2019) has demon-
strated that one can build general-purpose AutoML systems by ex-
tending the HPO problem to also treating the choice of the machine
learning models as a hyperparameter. This extended formulation is
known as the Combined Algorithm Selection and Hyperparameter
Optimization (CASH) problem. However, Auto-WEKA had to start
each optimization from scratch, which is a significant drawback if eval-
uating a single machine learning pipeline takes minutes or hours. This
drawback drastically reduced Auto-WEKA’s applicability in settings
that require fast execution, such as the setting of the ChaLearn Au-
toML competition, in which the contestants had to return a prediction
within a 20-minute time limit.

To overcome these limitations we designed and implemented the ro-
bust, efficient, and extensible AutoML tool Auto-sklearn. Auto-sklearn
constructs linear machine learning pipelines from 15 classifiers, 16

preprocessing methods, and four data cleaning methods from scikit-
learn (Pedregosa, Varoquaux, et al., 2011). To make Auto-sklearn as
resource-efficient as possible, we extend previous work of warmstart-
ing Bayesian optimization for small search spaces to the high dimen-
sionality of this new search space with more than 100 hyperparameters.
Specifically, we use a k-nearest neighbor approach previously devel-
oped for smaller search spaces (Feurer, Springenberg, and Hutter,
2015).

Previous AutoML systems would only return the single best model,
which is wasteful given that the AutoML systems train dozens or
hundreds of models in the course of finding the best model. To over-
come this limitation, we introduce post-hoc ensembling, which creates
an ensemble from all models evaluated while running the AutoML
procedure.1

We demonstrate that our tool outperformed the two existing AutoML
systems of that time, Auto-WEKA and hyperopt-sklearn, on the bench-
mark defined by Thornton et al. (2013) and Kotthoff et al. (2019). We
crawled OpenML for a total of 140 benchmark datasets from diverse
domains, such as text classification, digit and letter recognition, gene
sequence and RNA classification, advertisement, particle classification
for telescope data, and cancer detection in tissue samples. We then
did a leave-one-dataset out evaluation, e.g., running Auto-sklearn on
one of the datasets and using the remaining 139 as meta-datasets. This
evaluation was the broadest one to that date. In a detailed analysis
on a representative subset of datasets, we showed that different com-

1 As we will discuss in Chapters 3 and 6, we later on learned that such ideas had been
around before (Escalante, Montes, and Sucar, 2010; Bürger and Pauli, 2015). However,
these methods did not construct ensembles in a principled fashion.

2.1 contributions 15

ponents are required for different datasets. Finally, we demonstrated
Auto-sklearn’s robustness in the ChaLearn AutoML competition, win-
ning the first round of the ChaLearn AutoML competition (Guyon
et al., 2019).2

Auto-sklearn 2.0: Hands-free AutoML via Meta-Learning

Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lin-
dauer, and Frank Hutter (2022). “Auto-Sklearn 2.0: Hands-free Au-
toML via Meta-Learning.” In: Journal of Machine Learning Research
23.261. Ed. by Marc Schoenauer, pp. 1–61.

The AutoML system Auto-sklearn, which we introduced in the
previous section, features impressive out-of-the-box performance. In
this work, first, we manually tune and improve the Auto-sklearn
system for the 2nd ChaLearn AutoML competition and then, second,
introduce a new meta-learning layer on top of the existing AutoML
scheme.

We tackled the 2nd ChaLearn AutoML competition by introducing
the concepts of budget allocation strategies and model selection strategies
and by developing an improved meta-learning strategy.

Budget allocation strategies define how the available budget is allo-
cated between configurations, and we proposed using successive halv-
ing (Jamieson and Talwalkar, 2016). Besides, model selection strategies
define how to estimate the generalization error, and we stuck to a stan-
dard holdout procedure. However, we also used a manually designed
fallback if datasets had less than 1000 samples in the competition:
assign all configurations the same budget and use cross-validation.
The meta-learning strategy takes inspiration from portfolio construc-
tion for algorithm selection (Xu, Hoos, and Leyton-Brown, 2010; Xu,
Hutter, et al., 2011) and is based on the greedy algorithm (Krause
and Golovin, 2014). We relate the greedy portfolio construction to
the sensor placement problem for minimizing detection time (Krause,
Leskovec, et al., 2008), which allows us to apply existing results for
the sensor set problem, such as submodularity and monotonicity of
the optimization problem to our setting. These results provide us
with a worst-case guarantee for the performance of the portfolio. We
validated this manually improved AutoML system, which we dubbed
PoSH-Auto-sklearn based on their two main components POrtfolios

2 Up to the date the paper was submitted to the NeurIPS conference, we had only won
the first out of five rounds of the ChaLearn AutoML competition. We continued to
participate in the ChaLearn AutoML competition using Auto-sklearn and won two
more first places and one second place. Moreover, using Auto-sklearn, we also won
three first places and one third place in the Tweakathon track in which participants
could tackle the problem locally without any time or hardware restrictions. In partic-
ular, for the two final phases, we placed first in both the Tweakathon and the AutoML
track. We refer to Guyon et al. (2019) for details on the competition and leaderboards.

16 contributions

and Successive Halving, by winning the 2nd ChaLearn AutoML com-
petition (Guyon et al., 2019). Furthermore, we experimentally studied
the budget allocation and model selection strategies and found that
the combination of successive halving and holdout was indeed the best
option. Lastly, we demonstrate that the choice differs per dataset and
time horizon, which is an important pre-condition for the remainder
of this work.

When we manually manually configured the AutoML system for
the 2nd ChaLearn AutoML competition we realized that the design
of the AutoML system is an optimization problem itself, and that we
should tackle it in a data-driven manner.

While the previous AutoML formalism has only targeted the perfor-
mance on a single dataset, we explicitly formalize that AutoML sys-
tems should optimize generalization performance across a distribution
of datasets, following the expected risk minimization principle (Vap-
nik, 1991). We then use this formalism to design a self-tuning AutoML
system that can automatically select the appropriate budget allocation
strategy and model selection strategy for the dataset at hand based on
algorithm selection (Rice, 1976; Kerschke et al., 2019). Because the
meta-learning now contains an offline stage, we can no longer per-
form leave-one-dataset out evaluation and rather use the OpenML
AutoML benchmark (Gijsbers et al., 2019) for evaluations. To actually
train the algorithm selector and also build the portfolios, we compiled
a complementary set of 209 datasets for meta-learning. This is the
first work that conducts hyperparameter optimization of an AutoML
system, or hyper-hyperparameter optimization.

Again, we conduct a large-scale evaluation against popular competi-
tor systems. We show that our new Auto-sklearn 2.0 outperforms the
previous Auto-sklearn 1.0 and also TPOT (Olson and Moore, 2019),
H2O (LeDell and Poirier, 2020) and Auto-WEKA (Thornton et al., 2013;
Kotthoff et al., 2019). In a large-scale ablation study, we take a detailed
look into the design decisions to give recommendations on how to
improve such AutoML systems further.

2.1.3 Part iv: Benchmarking and the OpenML Platform

AutoML research is dataset-heavy. For our work on Auto-sklearn and
Auto-sklearn 2.0 (see Part iii) we require machine learning datasets at
two levels:

1. Evaluation: Because AutoML is a general-purpose tool, we re-
quire many diverse datasets, and,

2. Meta-learning: Because we aim to build a general-purpose tool,
meta-learning also needs to provide solutions in the general-
purpose case.

2.1 contributions 17

To access datasets, we opted for the collaborative science platform
OpenML (Vanschoren, Rijn, et al., 2014). It allows researchers to share
artifacts produced during machine learning research. OpenML is or-
ganized around four core concepts: datasets, tasks, flows and runs.
A dataset is a tabular dataset, and a task describes how to conduct
machine learning on that dataset. The task defines all aspects of the
evaluation, and there can be multiple tasks for a single dataset. A
flow describes an implementation of a machine learning algorithm,
and a run is the outcome of executing a flow on a task. Further-
more, OpenML follows several design patterns for collaborative sci-
ence (Nielsen, 2011; Vanschoren, Rijn, et al., 2014).

One such design pattern of OpenML is to “construct rich and struc-
tured information commons so that people can efficiently build on
prior knowledge”. Another design pattern is “Split[ting] up complex
tasks into many small subtasks that can be attacked (nearly) individu-
ally”. Following these two design patterns, OpenML provides datasets
and tasks in a machine-readable fashion that researchers can exploit;
and we made heavy use of this to design the AutoML systems we
described in the previous section.

We now describe our contributions to the OpenML platform, the
OpenML-Python API, and OpenML benchmarking suites, which organize
datasets into reusable benchmarks. Even though our work on bench-
marking and the OpenML platform forms the final methodological
part of this thesis, we conducted this work in parallel to all other
publications.

OpenML-Python: an extensible Python API for OpenML

Matthias Feurer, Jan N. van Rijn, Arlind Kadra, Pieter Gijsbers, Neer-
atyoy Mallik, Sahithya Ravi, Andreas Müller, Joaquin Vanschoren,
and Frank Hutter (2021). “OpenML-Python: an extensible Python
API for OpenML.” In: Journal of Machine Learning Research 22.100.
Ed. by Balazs Kegl, pp. 1–5.

Over the years, Python has become the de-facto standard program-
ming language for machine learning and data science (Elliott, 2019).
However, when we started working on Auto-sklearn, OpenML only
offered a Java (Rijn, 2016) and an R (Casalicchio et al., 2017) API. With
Python rising in popularity, this would have hindered networked sci-
ence success factors “designed serendipity” and “dynamic division of
labor” as researcher using the Python programming language would
have had no access to OpenML. Also, this would have prevented
our Python-based tools from interacting with OpenML. To overcome
these limitations, we created the OpenML-Python API. It accesses
the OpenML platform using its REST API. While our primary goal
was having convenient access to datasets to construct meta-data for
Auto-sklearn and Auto-sklearn 2.0, the API provides full access to

18 contributions

all concepts hosted on OpenML. To simplify its usage in machine
learning experimentation, we implement a plugin mechanism to con-
nect 3rd-party machine learning libraries directly to OpenML. We
integrated scikit-learn (Pedregosa, Varoquaux, et al., 2011) as a proto-
typical plugin, and this integration allows running scikit-learn models
so that the results can readily be shared on OpenML. We provide two
examples of how to use the API. Then we also describe use cases of the
package, such as using it to obtain meta-data for meta-learning (Chap-
ter 5, Fusi, Sheth, and Elibol (2018)) and building hyperparameter
surrogates (Eggensperger, Hutter, et al., 2015; Perrone, Jenatton, et al.,
2018).

OpenML Benchmarking Suites

Bischl, Bernd, Giuseppe Casalicchio, Matthias Feurer, Pieter Gijsbers,
Frank Hutter, Michel Lang, Rafael G. Mantovani, Jan N. van Rijn,
and Joaquin Vanschoren (2021). “OpenML Benchmarking Suites.”
In: Proceedings of the Neural Information Processing Systems Track on
Datasets and Benchmarks. Ed. by J. Vanschoren and S. Yeung. Vol. 1.

Algorithm benchmarks are a pillar of machine learning research. To
fulfill their duty of tracking progress, they need to be well-designed,
challenging, easily accessible, and practical to use. Nonetheless, bench-
marks in machine learning research were often restricted to a few
datasets (Rahimi and Recht, 2007; T. Chen and Guestrin, 2016) or
were crafted manually from multiple repositories in a one-off fashion
(Thornton et al., 2013; Q. Sun, Pfahringer, and Mayo, 2013; Fernández-
Delgado et al., 2014), making it hard to extend them. Therefore, re-
searchers had to define their own set of tasks to use from OpenML,
which was possible because of the aforementioned design patterns.
Nevertheless, to create the datasets for Auto-sklearn and Auto-sklearn
2.0 (see Part iii), two 2 PhD students and one research student assistant
spent countless hours on semi-automatically sorting through datasets
to assemble dataset lists to use.

While OpenML contains the concepts of datasets and tasks, it did not
provide mechanisms to organize these and provide benchmark suites,
i.e., collections of OpenML tasks. In this paper, we advocate for the
use of benchmarking suites and also provide a software tool to create
and use the benchmark suites. To demonstrate benchmarking suites in
action, we propose the OpenML-CC18 benchmark suite for supervised
classification. It is carefully curated and contains no subsampled or
preprocessed datasets. Moreover, we review the OpenML AutoML
benchmark, a popular benchmarking suite for comparing AutoML
tools. We close the chapter by discussing the impact of benchmarking
suites on machine learning research in general.

2.2 list of publications 19

2.2 list of publications

We briefly restate the publications that we combine into this thesis.
We discussed their contributions in the previous section and give the
full papers in Parts ii, iii, and iv.

Matthias Feurer and Frank Hutter (2019). “Hyperparameter Optimiza-
tion.” In: AutoML: Methods, Systems, Challenges. Ed. by Frank Hutter,
Lars Kotthoff, and Joaquin Vanschoren. Springer. Chap. 1, pp. 3–38.

Matthias Feurer, Benjamin Letham, Frank Hutter, and Eytan Bakshy
(2022). “Practical Transfer Learning for Bayesian Optimization.” In:
arXiv:1802.02219v4 [cs.LG].

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias
Springenberg, Manuel Blum, and Frank Hutter (2015). “Efficient
and Robust Automated Machine Learning.” In: Advances in Neu-
ral Information Processing Systems. Ed. by Corinna Cortes, Neil D
Lawrence, Daniel D Lee, Masashi Sugiyama, and Roman Garnett.
Vol. 28, pp. 2962–2970.

Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lin-
dauer, and Frank Hutter (2022). “Auto-Sklearn 2.0: Hands-free Au-
toML via Meta-Learning.” In: Journal of Machine Learning Research
23.261. Ed. by Marc Schoenauer, pp. 1–61.

Matthias Feurer, Jan N. van Rijn, Arlind Kadra, Pieter Gijsbers, Neer-
atyoy Mallik, Sahithya Ravi, Andreas Müller, Joaquin Vanschoren,
and Frank Hutter (2021). “OpenML-Python: an extensible Python
API for OpenML.” In: Journal of Machine Learning Research 22.100.
Ed. by Balazs Kegl, pp. 1–5.

Bischl, Bernd, Giuseppe Casalicchio, Matthias Feurer, Pieter Gijsbers,
Frank Hutter, Michel Lang, Rafael G. Mantovani, Jan N. van Rijn,
and Joaquin Vanschoren (2021). “OpenML Benchmarking Suites.”
In: Proceedings of the Neural Information Processing Systems Track on
Datasets and Benchmarks. Ed. by J. Vanschoren and S. Yeung. Vol. 1.

For completeness, we list further publications by the thesis author
that are not part of this thesis. We do not list intermediate workshop
publications that are superseded by a follow-up publication.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias
Springenberg, Manuel Blum, and Frank Hutter (2019). “Auto-sklearn:
Efficient and Robust Automated Machine Learning.” In: AutoML:
Methods, Systems, Challenges. Ed. by Frank Hutter, Lars Kotthoff, and
Joaquin Vanschoren. Springer. Chap. 6, pp. 113–134.

Mendoza, Hector, Aaron Klein, Matthias Feurer, Jost Tobias Springen-
berg, Matthias Urban, Michael Burkart, Maximilian Dippel, Mar-
ius Lindauer, and Frank Hutter (2019). “Towards Automatically-
Tuned Deep Neural Networks.” In: AutoML: Methods, Systems, Chal-
lenges. Ed. by Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren.
Springer. Chap. 7, pp. 135–149.

20 contributions

Lindauer, Marius, Matthias Feurer, Katharina Eggensperger, André
Biedenkapp, and Frank Hutter (2019). “Towards Assessing the Im-
pact of Bayesian Optimization’s Own Hyperparameters.” In: IJCAI
2019 Data Science Meets Optimisation Workshop.

Lindauer, Marius, Katharina Eggensperger, Matthias Feurer, André
Biedenkapp, Joshua Marben, Philipp Müller, and Frank Hutter
(2019). “BOAH: A Tool Suite for Multi-Fidelity Bayesian Optimiza-
tion & Analysis of Hyperparameters.” In: arXiv:1908.06756 [cs.LG].

Awad, Noor, Gresa Shala, Difan Deng, Neeratyoy Mallik, Matthias
Feurer, Katharina Eggensperger, André Biedenkapp, Diederick Ver-
metten, Hao Wang, Carola Doerr, Marius Lindauer, and Frank Hut-
ter (2020). “Squirrel: A Switching Hyperparameter Optimizer De-
scription of the entry by AutoML.org & IOHprofiler to the NeurIPS
2020 BBO challenge.” In: arXiv:2012.08180 [cs.LG].

Eggensperger, Katharina, Philipp Müller, Neeratyoy Mallik, Feurer,
Matthias, René Sass, Aaron Klein, Noor Awad, Marius Lindauer,
and Frank Hutter (2021). “HPOBench: A Collection of Reproducible
Multi-Fidelity Benchmark Problems for HPO.” In: Proceedings of the
Neural Information Processing Systems Track on Datasets and Benchmarks.
Ed. by J. Vanschoren and S. Yeung. Vol. 1.

Lindauer, Marius, Katharina Eggensperger, Feurer, Matthias, André
Biedenkapp, Difan Deng, Carolin Benjamins, Tim Ruhkopf, René
Sass, and Frank Hutter (2022). “SMAC3: A Versatile Bayesian Opti-
mization Package for Hyperparameter Optimization.” In: Journal of
Machine Learning Research 23.54, pp. 1–9.

Part II

P U B L I C AT I O N S O N H Y P E R PA R A M E T E R
O P T I M I Z AT I O N

3
H Y P E R PA R A M E T E R O P T I M I Z AT I O N

Matthias Feurer and Frank Hutter (2019). “Hyperparameter Optimiza-
tion.” In: AutoML: Methods, Systems, Challenges. Ed. by Frank Hutter,
Lars Kotthoff, and Joaquin Vanschoren. Springer. Chap. 1, pp. 3–38.

paper summary. This book chapter carefully reviews the state-
of-the-art in hyperparameter optimization. First, it introduces the
traditional hyperparameter optimization problem and alternative prob-
lem setups. Second, it discusses the two dominant hyperparameter
optimization paradigms, which are black-box hyperparameter opti-
mization and multi-fidelity hyperparameter optimization. Third, it
then discusses the application of these techniques to the research field
of Automated Machine Learning before closing with a list of open
problems and future research directions.

project idea . Frank Hutter proposed to write this book chapter.
Matthias Feurer conducted the literature review for the survey and
drafted the survey structure, which was then jointly developed by
Matthias Feurer and Frank Hutter.

paper writing . Matthias Feurer wrote the first draft. Matthias
Feurer and Frank Hutter revised the book chapter. The final version
was, to a large extent, written by Matthias Feurer.

note . This chapter is part of the book Automated Machine Learning:
Methods, Systems, Challenges (Hutter, Kotthoff, and Vanschoren, 2019).
Consequently, all references to other chapters in Chapter 3 reference
chapters in the book, not in this thesis.

license . This chapter was published by Springer as part of the
book Automated Machine Learning: Methods, Systems, Challenges (Hutter,
Kotthoff, and Vanschoren, 2019) and is licensed under the terms of
the Creative Commons Attribution 4.0 International License (http:
//creativecommons.org/licenses/by/4.0/). No changes were made
to the original publication.

23

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 1
Hyperparameter Optimization

Matthias Feurer and Frank Hutter

Abstract Recent interest in complex and computationally expensive machine
learning models with many hyperparameters, such as automated machine learning
(AutoML) frameworks and deep neural networks, has resulted in a resurgence
of research on hyperparameter optimization (HPO). In this chapter, we give an
overview of the most prominent approaches for HPO. We first discuss blackbox
function optimization methods based on model-free methods and Bayesian opti-
mization. Since the high computational demand of many modern machine learning
applications renders pure blackbox optimization extremely costly, we next focus
on modern multi-fidelity methods that use (much) cheaper variants of the blackbox
function to approximately assess the quality of hyperparameter settings. Lastly, we
point to open problems and future research directions.

1.1 Introduction

Every machine learning system has hyperparameters, and the most basic task in
automated machine learning (AutoML) is to automatically set these hyperparam-
eters to optimize performance. Especially recent deep neural networks crucially
depend on a wide range of hyperparameter choices about the neural network’s archi-
tecture, regularization, and optimization. Automated hyperparameter optimization
(HPO) has several important use cases; it can

• reduce the human effort necessary for applying machine learning. This is
particularly important in the context of AutoML.

M. Feurer (�)
Department of Computer Science, University of Freiburg, Freiburg, Baden-Württemberg,
Germany
e-mail: feurerm@informatik.uni-freiburg.de

F. Hutter
Department of Computer Science, University of Freiburg, Freiburg, Germany

© The Author(s) 2019
F. Hutter et al. (eds.), Automated Machine Learning, The Springer Series
on Challenges in Machine Learning, https://doi.org/10.1007/978-3-030-05318-5_1

3

hyperparameter optimization 25

4 M. Feurer and F. Hutter

• improve the performance of machine learning algorithms (by tailoring them
to the problem at hand); this has led to new state-of-the-art performances for
important machine learning benchmarks in several studies (e.g. [105, 140]).

• improve the reproducibility and fairness of scientific studies. Automated HPO
is clearly more reproducible than manual search. It facilitates fair comparisons
since different methods can only be compared fairly if they all receive the same
level of tuning for the problem at hand [14, 133].

The problem of HPO has a long history, dating back to the 1990s (e.g., [77,
82, 107, 126]), and it was also established early that different hyperparameter
configurations tend to work best for different datasets [82]. In contrast, it is a rather
new insight that HPO can be used to adapt general-purpose pipelines to specific
application domains [30]. Nowadays, it is also widely acknowledged that tuned
hyperparameters improve over the default setting provided by common machine
learning libraries [100, 116, 130, 149].

Because of the increased usage of machine learning in companies, HPO is also of
substantial commercial interest and plays an ever larger role there, be it in company-
internal tools [45], as part of machine learning cloud services [6, 89], or as a service
by itself [137].

HPO faces several challenges which make it a hard problem in practice:

• Function evaluations can be extremely expensive for large models (e.g., in deep
learning), complex machine learning pipelines, or large datesets.

• The configuration space is often complex (comprising a mix of continuous, cat-
egorical and conditional hyperparameters) and high-dimensional. Furthermore,
it is not always clear which of an algorithm’s hyperparameters need to be
optimized, and in which ranges.

• We usually don’t have access to a gradient of the loss function with respect to
the hyperparameters. Furthermore, other properties of the target function often
used in classical optimization do not typically apply, such as convexity and
smoothness.

• One cannot directly optimize for generalization performance as training datasets
are of limited size.

We refer the interested reader to other reviews of HPO for further discussions on
this topic [64, 94].

This chapter is structured as follows. First, we define the HPO problem for-
mally and discuss its variants (Sect. 1.2). Then, we discuss blackbox optimization
algorithms for solving HPO (Sect. 1.3). Next, we focus on modern multi-fidelity
methods that enable the use of HPO even for very expensive models, by exploiting
approximate performance measures that are cheaper than full model evaluations
(Sect. 1.4). We then provide an overview of the most important hyperparameter
optimization systems and applications to AutoML (Sect. 1.5) and end the chapter
with a discussion of open problems (Sect. 1.6).

26 hyperparameter optimization

1 Hyperparameter Optimization 5

1.2 Problem Statement

Let A denote a machine learning algorithm with N hyperparameters. We denote
the domain of the n-th hyperparameter by �n and the overall hyperparameter
configuration space as � = �1 × �2 × . . . �N . A vector of hyperparameters is
denoted by λ ∈ �, and A with its hyperparameters instantiated to λ is denoted
by Aλ.

The domain of a hyperparameter can be real-valued (e.g., learning rate), integer-
valued (e.g., number of layers), binary (e.g., whether to use early stopping or not), or
categorical (e.g., choice of optimizer). For integer and real-valued hyperparameters,
the domains are mostly bounded for practical reasons, with only a few excep-
tions [12, 113, 136].

Furthermore, the configuration space can contain conditionality, i.e., a hyper-
parameter may only be relevant if another hyperparameter (or some combination
of hyperparameters) takes on a certain value. Conditional spaces take the form of
directed acyclic graphs. Such conditional spaces occur, e.g., in the automated tuning
of machine learning pipelines, where the choice between different preprocessing
and machine learning algorithms is modeled as a categorical hyperparameter, a
problem known as Full Model Selection (FMS) or Combined Algorithm Selection
and Hyperparameter optimization problem (CASH) [30, 34, 83, 149]. They also
occur when optimizing the architecture of a neural network: e.g., the number of
layers can be an integer hyperparameter and the per-layer hyperparameters of layer
i are only active if the network depth is at least i [12, 14, 33].

Given a data set D, our goal is to find

λ∗ = argmin
λ∈�

E(Dtrain,Dvalid)∼DV(L,Aλ,Dtrain,Dvalid), (1.1)

where V(L,Aλ,Dtrain,Dvalid) measures the loss of a model generated by algo-
rithm A with hyperparameters λ on training data Dtrain and evaluated on validation
data Dvalid . In practice, we only have access to finite data D ∼ D and thus need to
approximate the expectation in Eq. 1.1.

Popular choices for the validation protocol V(·, ·, ·, ·) are the holdout and cross-
validation error for a user-given loss function (such as misclassification rate);
see Bischl et al. [16] for an overview of validation protocols. Several strategies
for reducing the evaluation time have been proposed: It is possible to only test
machine learning algorithms on a subset of folds [149], only on a subset of
data [78, 102, 147], or for a small amount of iterations; we will discuss some of
these strategies in more detail in Sect. 1.4. Recent work on multi-task [147] and
multi-source [121] optimization introduced further cheap, auxiliary tasks, which
can be queried instead of Eq. 1.1. These can provide cheap information to help HPO,
but do not necessarily train a machine learning model on the dataset of interest and
therefore do not yield a usable model as a side product.

hyperparameter optimization 27

6 M. Feurer and F. Hutter

1.2.1 Alternatives to Optimization: Ensembling and
Marginalization

Solving Eq. 1.1 with one of the techniques described in the rest of this chapter
usually requires fitting the machine learning algorithm A with multiple hyperpa-
rameter vectors λt . Instead of using the argmin-operator over these, it is possible
to either construct an ensemble (which aims to minimize the loss for a given
validation protocol) or to integrate out all the hyperparameters (if the model under
consideration is a probabilistic model). We refer to Guyon et al. [50] and the
references therein for a comparison of frequentist and Bayesian model selection.

Only choosing a single hyperparameter configuration can be wasteful when
many good configurations have been identified by HPO, and combining them
in an ensemble can improve performance [109]. This is particularly useful in
AutoML systems with a large configuration space (e.g., in FMS or CASH), where
good configurations can be very diverse, which increases the potential gains from
ensembling [4, 19, 31, 34]. To further improve performance, Automatic Franken-
steining [155] uses HPO to train a stacking model [156] on the outputs of the
models found with HPO; the 2nd level models are then combined using a traditional
ensembling strategy.

The methods discussed so far applied ensembling after the HPO procedure.
While they improve performance in practice, the base models are not optimized
for ensembling. It is, however, also possible to directly optimize for models which
would maximally improve an existing ensemble [97].

Finally, when dealing with Bayesian models it is often possible to integrate
out the hyperparameters of the machine learning algorithm, for example using
evidence maximization [98], Bayesian model averaging [56], slice sampling [111]
or empirical Bayes [103].

1.2.2 Optimizing for Multiple Objectives

In practical applications it is often necessary to trade off two or more objectives,
such as the performance of a model and resource consumption [65] (see also
Chap. 3) or multiple loss functions [57]. Potential solutions can be obtained in two
ways.

First, if a limit on a secondary performance measure is known (such as the
maximal memory consumption), the problem can be formulated as a constrained
optimization problem. We will discuss constraint handling in Bayesian optimization
in Sect. 1.3.2.4.

Second, and more generally, one can apply multi-objective optimization to search
for the Pareto front, a set of configurations which are optimal tradeoffs between the
objectives in the sense that, for each configuration on the Pareto front, there is no
other configuration which performs better for at least one and at least as well for all
other objectives. The user can then choose a configuration from the Pareto front. We
refer the interested reader to further literature on this topic [53, 57, 65, 134].

28 hyperparameter optimization

1 Hyperparameter Optimization 7

1.3 Blackbox Hyperparameter Optimization

In general, every blackbox optimization method can be applied to HPO. Due to
the non-convex nature of the problem, global optimization algorithms are usually
preferred, but some locality in the optimization process is useful in order to make
progress within the few function evaluations that are usually available. We first
discuss model-free blackbox HPO methods and then describe blackbox Bayesian
optimization methods.

1.3.1 Model-Free Blackbox Optimization Methods

Grid search is the most basic HPO method, also known as full factorial design [110].
The user specifies a finite set of values for each hyperparameter, and grid search
evaluates the Cartesian product of these sets. This suffers from the curse of dimen-
sionality since the required number of function evaluations grows exponentially
with the dimensionality of the configuration space. An additional problem of grid
search is that increasing the resolution of discretization substantially increases the
required number of function evaluations.

A simple alternative to grid search is random search [13].1 As the name suggests,
random search samples configurations at random until a certain budget for the search
is exhausted. This works better than grid search when some hyperparameters are
much more important than others (a property that holds in many cases [13, 61]).
Intuitively, when run with a fixed budget of B function evaluations, the number of
different values grid search can afford to evaluate for each of the N hyperparameters
is only B1/N , whereas random search will explore B different values for each; see
Fig. 1.1 for an illustration.

Fig. 1.1 Comparison of grid search and random search for minimizing a function with one
important and one unimportant parameter. This figure is based on the illustration in Fig. 1 of
Bergstra and Bengio [13]

1In some disciplines this is also known as pure random search [158].

hyperparameter optimization 29

8 M. Feurer and F. Hutter

Further advantages over grid search include easier parallelization (since workers
do not need to communicate with each other and failing workers do not leave holes
in the design) and flexible resource allocation (since one can add an arbitrary number
of random points to a random search design to still yield a random search design;
the equivalent does not hold for grid search).

Random search is a useful baseline because it makes no assumptions on the
machine learning algorithm being optimized, and, given enough resources, will,
in expectation, achieves performance arbitrarily close to the optimum. Interleaving
random search with more complex optimization strategies therefore allows to
guarantee a minimal rate of convergence and also adds exploration that can improve
model-based search [3, 59]. Random search is also a useful method for initializing
the search process, as it explores the entire configuration space and thus often
finds settings with reasonable performance. However, it is no silver bullet and often
takes far longer than guided search methods to identify one of the best performing
hyperparameter configurations: e.g., when sampling without replacement from a
configuration space with N Boolean hyperparameters with a good and a bad setting
each and no interaction effects, it will require an expected 2N−1 function evaluations
to find the optimum, whereas a guided search could find the optimum in N + 1
function evaluations as follows: starting from an arbitrary configuration, loop over
the hyperparameters and change one at a time, keeping the resulting configuration
if performance improves and reverting the change if it doesn’t. Accordingly, the
guided search methods we discuss in the following sections usually outperform
random search [12, 14, 33, 90, 153].

Population-based methods, such as genetic algorithms, evolutionary algorithms,
evolutionary strategies, and particle swarm optimization are optimization algo-
rithms that maintain a population, i.e., a set of configurations, and improve this
population by applying local perturbations (so-called mutations) and combinations
of different members (so-called crossover) to obtain a new generation of better
configurations. These methods are conceptually simple, can handle different data
types, and are embarrassingly parallel [91] since a population of N members can be
evaluated in parallel on N machines.

One of the best known population-based methods is the covariance matrix
adaption evolutionary strategy (CMA-ES [51]); this simple evolutionary strategy
samples configurations from a multivariate Gaussian whose mean and covariance
are updated in each generation based on the success of the population’s individ-
uals. CMA-ES is one of the most competitive blackbox optimization algorithms,
regularly dominating the Black-Box Optimization Benchmarking (BBOB) chal-
lenge [11].

For further details on population-based methods, we refer to [28, 138]; we discuss
applications to hyperparameter optimization in Sect. 1.5, applications to neural
architecture search in Chap. 3, and genetic programming for AutoML pipelines in
Chap. 8.

30 hyperparameter optimization

1 Hyperparameter Optimization 9

1.3.2 Bayesian Optimization

Bayesian optimization is a state-of-the-art optimization framework for the global
optimization of expensive blackbox functions, which recently gained traction in
HPO by obtaining new state-of-the-art results in tuning deep neural networks
for image classification [140, 141], speech recognition [22] and neural language
modeling [105], and by demonstrating wide applicability to different problem
settings. For an in-depth introduction to Bayesian optimization, we refer to the
excellent tutorials by Shahriari et al. [135] and Brochu et al. [18].

In this section we first give a brief introduction to Bayesian optimization, present
alternative surrogate models used in it, describe extensions to conditional and
constrained configuration spaces, and then discuss several important applications
to hyperparameter optimization.

Many recent advances in Bayesian optimization do not treat HPO as a blackbox
any more, for example multi-fidelity HPO (see Sect. 1.4), Bayesian optimization
with meta-learning (see Chap. 2), and Bayesian optimization taking the pipeline
structure into account [159, 160]. Furthermore, many recent developments in
Bayesian optimization do not directly target HPO, but can often be readily applied
to HPO, such as new acquisition functions, new models and kernels, and new
parallelization schemes.

1.3.2.1 Bayesian Optimization in a Nutshell

Bayesian optimization is an iterative algorithm with two key ingredients: a prob-
abilistic surrogate model and an acquisition function to decide which point to
evaluate next. In each iteration, the surrogate model is fitted to all observations
of the target function made so far. Then the acquisition function, which uses the
predictive distribution of the probabilistic model, determines the utility of different
candidate points, trading off exploration and exploitation. Compared to evaluating
the expensive blackbox function, the acquisition function is cheap to compute and
can therefore be thoroughly optimized.

Although many acquisition functions exist, the expected improvement (EI) [72]:

E[I(λ)] = E[max(fmin − y, 0)] (1.2)

is common choice since it can be computed in closed form if the model prediction
y at configuration λ follows a normal distribution:

E[I(λ)] = (fmin − μ(λ))�

(
fmin − μ(λ)

σ

)
+ σφ

(
fmin − μ(λ)

σ

)
, (1.3)

where φ(·) and �(·) are the standard normal density and standard normal distribu-
tion function, and fmin is the best observed value so far.

Fig. 1.2 illustrates Bayesian optimization optimizing a toy function.

hyperparameter optimization 31

10 M. Feurer and F. Hutter

1.3.2.2 Surrogate Models

Traditionally, Bayesian optimization employs Gaussian processes [124] to model
the target function because of their expressiveness, smooth and well-calibrated

Fig. 1.2 Illustration of Bayesian optimization on a 1-d function. Our goal is to minimize the
dashed line using a Gaussian process surrogate (predictions shown as black line, with blue tube
representing the uncertainty) by maximizing the acquisition function represented by the lower
orange curve. (Top) The acquisition value is low around observations, and the highest acquisition
value is at a point where the predicted function value is low and the predictive uncertainty is
relatively high. (Middle) While there is still a lot of variance to the left of the new observation, the
predicted mean to the right is much lower and the next observation is conducted there. (Bottom)
Although there is almost no uncertainty left around the location of the true maximum, the next
evaluation is done there due to its expected improvement over the best point so far

32 hyperparameter optimization

1 Hyperparameter Optimization 11

uncertainty estimates and closed-form computability of the predictive distribution.
A Gaussian process G (

m(λ), k(λ,λ′)
)

is fully specified by a mean m(λ) and a
covariance function k(λ,λ′), although the mean function is usually assumed to be
constant in Bayesian optimization. Mean and variance predictions μ(·) and σ 2(·)
for the noise-free case can be obtained by:

μ(λ) = kT∗ K−1y, σ 2(λ) = k(λ,λ) − kT∗ K−1k∗, (1.4)

where k∗ denotes the vector of covariances between λ and all previous observations,
K is the covariance matrix of all previously evaluated configurations and y are
the observed function values. The quality of the Gaussian process depends solely
on the covariance function. A common choice is the Mátern 5/2 kernel, with its
hyperparameters integrated out by Markov Chain Monte Carlo [140].

One downside of standard Gaussian processes is that they scale cubically in
the number of data points, limiting their applicability when one can afford many
function evaluations (e.g., with many parallel workers, or when function evaluations
are cheap due to the use of lower fidelities). This cubic scaling can be avoided
by scalable Gaussian process approximations, such as sparse Gaussian processes.
These approximate the full Gaussian process by using only a subset of the original
dataset as inducing points to build the kernel matrix K. While they allowed Bayesian
optimization with GPs to scale to tens of thousands of datapoints for optimizing the
parameters of a randomized SAT solver [62], there are criticism about the calibration
of their uncertainty estimates and their applicability to standard HPO has not been
tested [104, 154].

Another downside of Gaussian processes with standard kernels is their poor
scalability to high dimensions. As a result, many extensions have been proposed
to efficiently handle intrinsic properties of configuration spaces with large number
of hyperparameters, such as the use of random embeddings [153], using Gaussian
processes on partitions of the configuration space [154], cylindric kernels [114], and
additive kernels [40, 75].

Since some other machine learning models are more scalable and flexible than
Gaussian processes, there is also a large body of research on adapting these models
to Bayesian optimization. Firstly, (deep) neural networks are a very flexible and
scalable models. The simplest way to apply them to Bayesian optimization is as a
feature extractor to preprocess inputs and then use the outputs of the final hidden
layer as basis functions for Bayesian linear regression [141]. A more complex, fully
Bayesian treatment of the network weights, is also possible by using a Bayesian
neural network trained with stochastic gradient Hamiltonian Monte Carlo [144].
Neural networks tend to be faster than Gaussian processes for Bayesian optimization
after ∼250 function evaluations, which also allows for large-scale parallelism. The
flexibility of deep learning can also enable Bayesian optimization on more complex
tasks. For example, a variational auto-encoder can be used to embed complex inputs
(such as the structured configurations of the automated statistician, see Chap. 9)
into a real-valued vector such that a regular Gaussian process can handle it [92].
For multi-source Bayesian optimization, a neural network architecture built on

hyperparameter optimization 33

12 M. Feurer and F. Hutter

factorization machines [125] can include information on previous tasks [131] and
has also been extended to tackle the CASH problem [132].

Another alternative model for Bayesian optimization are random forests [59].
While GPs perform better than random forests on small, numerical configuration
spaces [29], random forests natively handle larger, categorical and conditional
configuration spaces where standard GPs do not work well [29, 70, 90]. Further-
more, the computational complexity of random forests scales far better to many
data points: while the computational complexity of fitting and predicting variances
with GPs for n data points scales as O(n3) and O(n2), respectively, for random
forests, the scaling in n is only O(n log n) and O(log n), respectively. Due to
these advantages, the SMAC framework for Bayesian optimization with random
forests [59] enabled the prominent AutoML frameworks Auto-WEKA [149] and
Auto-sklearn [34] (which are described in Chaps. 4 and 6).

Instead of modeling the probability p(y|λ) of observations y given the config-
urations λ, the Tree Parzen Estimator (TPE [12, 14]) models density functions
p(λ|y < α) and p(λ|y ≥ α). Given a percentile α (usually set to 15%), the
observations are divided in good observations and bad observations and simple
1-d Parzen windows are used to model the two distributions. The ratio p(λ|y<α)

p(λ|y≥α)
is

related to the expected improvement acquisition function and is used to propose new
hyperparameter configurations. TPE uses a tree of Parzen estimators for conditional
hyperparameters and demonstrated good performance on such structured HPO
tasks [12, 14, 29, 33, 143, 149, 160], is conceptually simple, and parallelizes
naturally [91]. It is also the workhorse behind the AutoML framework Hyperopt-
sklearn [83] (which is described in Chap. 5).

Finally, we note that there are also surrogate-based approaches which do not
follow the Bayesian optimization paradigm: Hord [67] uses a deterministic RBF
surrogate, and Harmonica [52] uses a compressed sensing technique, both to tune
the hyperparameters of deep neural networks.

1.3.2.3 Configuration Space Description

Bayesian optimization was originally designed to optimize box-constrained, real-
valued functions. However, for many machine learning hyperparameters, such as the
learning rate in neural networks or regularization in support vector machines, it is
common to optimize the exponent of an exponential term to describe that changing
it, e.g., from 0.001 to 0.01 is expected to have a similarly high impact as changing
it from 0.1 to 1. A technique known as input warping [142] allows to automatically
learn such transformations during the optimization process by replacing each input
dimension with the two parameters of a Beta distribution and optimizing these.

One obvious limitation of the box-constraints is that the user needs to define
these upfront. To avoid this, it is possible to dynamically expand the configura-
tion space [113, 136]. Alternatively, the estimation-of-distribution-style algorithm
TPE [12] is able to deal with infinite spaces on which a (typically Gaussian) prior is
placed.

34 hyperparameter optimization

1 Hyperparameter Optimization 13

Integers and categorical hyperparameters require special treatment but can be
integrated fairly easily into regular Bayesian optimization by small adaptations of
the kernel and the optimization procedure (see Sect. 12.1.2 of [58], as well as [42]).
Other models, such as factorization machines and random forests, can also naturally
handle these data types.

Conditional hyperparameters are still an active area of research (see Chaps. 5
and 6 for depictions of conditional configuration spaces in recent AutoML systems).
They can be handled natively by tree-based methods, such as random forests [59]
and tree Parzen estimators (TPE) [12], but due to the numerous advantages of
Gaussian processes over other models, multiple kernels for structured configuration
spaces have also been proposed [4, 12, 63, 70, 92, 96, 146].

1.3.2.4 Constrained Bayesian Optimization

In realistic scenarios it is often necessary to satisfy constraints, such as memory
consumption [139, 149], training time [149], prediction time [41, 43], accuracy of a
compressed model [41], energy usage [43] or simply to not fail during the training
procedure [43].

Constraints can be hidden in that only a binary observation (success or failure)
is available [88]. Typical examples in AutoML are memory and time constraints to
allow training of the algorithms in a shared computing system, and to make sure
that a single slow algorithm configuration does not use all the time available for
HPO [34, 149] (see also Chaps. 4 and 6).

Constraints can also merely be unknown, meaning that we can observe and model
an auxiliary constraint function, but only know about a constraint violation after
evaluating the target function [46]. An example of this is the prediction time of a
support vector machine, which can only be obtained by training it as it depends on
the number of support vectors selected during training.

The simplest approach to model violated constraints is to define a penalty
value (at least as bad as the worst possible observable loss value) and use it
as the observation for failed runs [34, 45, 59, 149]. More advanced approaches
model the probability of violating one or more constraints and actively search for
configurations with low loss values that are unlikely to violate any of the given
constraints [41, 43, 46, 88].

Bayesian optimization frameworks using information theoretic acquisition func-
tions allow decoupling the evaluation of the target function and the constraints
to dynamically choose which of them to evaluate next [43, 55]. This becomes
advantageous when evaluating the function of interest and the constraints require
vastly different amounts of time, such as evaluating a deep neural network’s
performance and memory consumption [43].

hyperparameter optimization 35

14 M. Feurer and F. Hutter

1.4 Multi-fidelity Optimization

Increasing dataset sizes and increasingly complex models are a major hurdle in HPO
since they make blackbox performance evaluation more expensive. Training a single
hyperparameter configuration on large datasets can nowadays easily exceed several
hours and take up to several days [85].

A common technique to speed up manual tuning is therefore to probe an
algorithm/hyperparameter configuration on a small subset of the data, by training
it only for a few iterations, by running it on a subset of features, by only using one
or a few of the cross-validation folds, or by using down-sampled images in computer
vision. Multi-fidelity methods cast such manual heuristics into formal algorithms,
using so-called low fidelity approximations of the actual loss function to minimize.
These approximations introduce a tradeoff between optimization performance and
runtime, but in practice, the obtained speedups often outweigh the approximation
error.

First, we review methods which model an algorithm’s learning curve during
training and can stop the training procedure if adding further resources is predicted
to not help. Second, we discuss simple selection methods which only choose
one of a finite set of given algorithms/hyperparameter configurations. Third, we
discuss multi-fidelity methods which can actively decide which fidelity will provide
most information about finding the optimal hyperparameters. We also refer to
Chap. 2 (which discusses how multi-fidelity methods can be used across datasets)
and Chap. 3 (which describes low-fidelity approximations for neural architecture
search).

1.4.1 Learning Curve-Based Prediction for Early Stopping

We start this section on multi-fidelity methods in HPO with methods that evaluate
and model learning curves during HPO [82, 123] and then decide whether to
add further resources or stop the training procedure for a given hyperparameter
configuration. Examples of learning curves are the performance of the same con-
figuration trained on increasing dataset subsets, or the performance of an iterative
algorithm measured for each iteration (or every i-th iteration if the calculation of
the performance is expensive).

Learning curve extrapolation is used in the context of predictive termination [26],
where a learning curve model is used to extrapolate a partially observed learning
curve for a configuration, and the training process is stopped if the configuration
is predicted to not reach the performance of the best model trained so far in the
optimization process. Each learning curve is modeled as a weighted combination of
11 parametric functions from various scientific areas. These functions’ parameters
and their weights are sampled via Markov chain Monte Carlo to minimize the loss
of fitting the partially observed learning curve. This yields a predictive distribution,

36 hyperparameter optimization

1 Hyperparameter Optimization 15

which allows to stop training based on the probability of not beating the best known
model. When combined with Bayesian optimization, the predictive termination cri-
terion enabled lower error rates than off-the-shelve blackbox Bayesian optimization
for optimizing neural networks. On average, the method sped up the optimization
by a factor of two and was able to find a (then) state-of-the-art neural network for
CIFAR-10 (without data augmentation) [26].

While the method above is limited by not sharing information across different
hyperparameter configurations, this can be achieved by using the basis functions as
the output layer of a Bayesian neural network [80]. The parameters and weights of
the basis functions, and thus the full learning curve, can thereby be predicted for
arbitrary hyperparameter configurations. Alternatively, it is possible to use previous
learning curves as basis function extrapolators [21]. While the experimental results
are inconclusive on whether the proposed method is superior to pre-specified
parametric functions, not having to manually define them is a clear advantage.

Freeze-Thaw Bayesian optimization [148] is a full integration of learning curves
into the modeling and selection process of Bayesian optimization. Instead of
terminating a configuration, the machine learning models are trained iteratively for
a few iterations and then frozen. Bayesian optimization can then decide to thaw one
of the frozen models, which means to continue training it. Alternatively, the method
can also decide to start a new configuration. Freeze-Thaw models the performance
of a converged algorithm with a regular Gaussian process and introduces a special
covariance function corresponding to exponentially decaying functions to model the
learning curves with per-learning curve Gaussian processes.

1.4.2 Bandit-Based Algorithm Selection Methods

In this section, we describe methods that try to determine the best algorithm
out of a given finite set of algorithms based on low-fidelity approximations of
their performance; towards its end, we also discuss potential combinations with
adaptive configuration strategies. We focus on variants of the bandit-based strategies
successive halving and Hyperband, since these have shown strong performance,
especially for optimizing deep learning algorithms. Strictly speaking, some of the
methods which we will discuss in this subsection also model learning curves, but
they provide no means of selecting new configurations based on these models.

First, however, we briefly describe the historical evolution of multi-fidelity
algorithm selection methods. In 2000, Petrak [120] noted that simply testing various
algorithms on a small subset of the data is a powerful and cheap mechanism to
select an algorithm. Later approaches used iterative algorithm elimination schemes
to drop hyperparameter configurations if they perform badly on subsets of the
data [17], if they perform significantly worse than a group of top-performing
configurations [86], if they perform worse than the best configuration by a user-
specified factor [143], or if even an optimistic performance bound for an algorithm
is worse than the best known algorithm [128]. Likewise, it is possible to drop

hyperparameter optimization 37

16 M. Feurer and F. Hutter

hyperparameter configurations if they perform badly on one or a few cross-
validation folds [149]. Finally, Jamieson and Talwalkar [69] proposed to use the
successive halving algorithm originally introduced by Karnin et al. [76] for HPO.

Fig. 1.3 Illustration of successive halving for eight algorithms/configurations. After evaluating all
algorithms on 1

8 of the total budget, half of them are dropped and the budget given to the remaining
algorithms is doubled

Successive halving is an extremely simple, yet powerful, and therefore popular
strategy for multi-fidelity algorithm selection: for a given initial budget, query all
algorithms for that budget; then, remove the half that performed worst, double the
budget 2 and successively repeat until only a single algorithm is left. This process is
illustrated in Fig. 1.3. Jamieson and Talwalkar [69] benchmarked several common
bandit methods and found that successive halving performs well both in terms
of the number of required iterations and in the required computation time, that
the algorithm theoretically outperforms a uniform budget allocation strategy if the
algorithms converge favorably, and that it is preferable to many well-known bandit
strategies from the literature, such as UCB and EXP3.

While successive halving is an efficient approach, it suffers from the budget-
vs-number of configurations trade off. Given a total budget, the user has to decide
beforehand whether to try many configurations and only assign a small budget to
each, or to try only a few and assign them a larger budget. Assigning too small a
budget can result in prematurely terminating good configurations, while assigning
too large a budget can result in running poor configurations too long and thereby
wasting resources.

2More precisely, drop the worst fraction η−1
η

of algorithms and multiply the budget for the
remaining algorithms by η, where η is a hyperparameter. Its default value was changed from 2
to 3 with the introduction of HyperBand [90].

38 hyperparameter optimization

1 Hyperparameter Optimization 17

HyperBand [90] is a hedging strategy designed to combat this problem when
selecting from randomly sampled configurations. It divides the total budget into
several combinations of number of configurations vs. budget for each, to then call
successive halving as a subroutine on each set of random configurations. Due to the
hedging strategy which includes running some configurations only on the maximal
budget, in the worst case, HyperBand takes at most a constant factor more time
than vanilla random search on the maximal budget. In practice, due to its use
of cheap low-fidelity evaluations, HyperBand has been shown to improve over
vanilla random search and blackbox Bayesian optimization for data subsets, feature
subsets and iterative algorithms, such as stochastic gradient descent for deep neural
networks.

Despite HyperBand’s success for deep neural networks it is very limiting to not
adapt the configuration proposal strategy to the function evaluations. To overcome
this limitation, the recent approach BOHB [33] combines Bayesian optimization and
HyperBand to achieve the best of both worlds: strong anytime performance (quick
improvements in the beginning by using low fidelities in HyperBand) and strong
final performance (good performance in the long run by replacing HyperBand’s
random search by Bayesian optimization). BOHB also uses parallel resources
effectively and deals with problem domains ranging from a few to many dozen
hyperparameters. BOHB’s Bayesian optimization component resembles TPE [12],
but differs by using multidimensional kernel density estimators. It only fits a model
on the highest fidelity for which at least |�| + 1 evaluations have been performed
(the number of hyperparameters, plus one). BOHB’s first model is therefore fitted
on the lowest fidelity, and over time models trained on higher fidelities take over,
while still using the lower fidelities in successive halving. Empirically, BOHB was
shown to outperform several state-of-the-art HPO methods for tuning support vector
machines, neural networks and reinforcement learning algorithms, including most
methods presented in this section [33]. Further approaches to combine HyperBand
and Bayesian optimization have also been proposed [15, 151].

Multiple fidelity evaluations can also be combined with HPO in other ways.
Instead of switching between lower fidelities and the highest fidelity, it is possible to
perform HPO on a subset of the original data and extract the best-performing con-
figurations in order to use them as an initial design for HPO on the full dataset [152].
To speed up solutions to the CASH problem, it is also possible to iteratively remove
entire algorithms (and their hyperparameters) from the configuration space based on
poor performance on small dataset subsets [159].

1.4.3 Adaptive Choices of Fidelities

All methods in the previous subsection follow a predefined schedule for the
fidelities. Alternatively, one might want to actively choose which fidelities to
evaluate given previous observations to prevent a misspecification of the schedule.

hyperparameter optimization 39

18 M. Feurer and F. Hutter

Multi-task Bayesian optimization [147] uses a multi-task Gaussian process
to model the performance of related tasks and to automatically learn the tasks’
correlation during the optimization process. This method can dynamically switch
between cheaper, low-fidelity tasks and the expensive, high-fidelity target task based
on a cost-aware information-theoretic acquisition function. In practice, the proposed
method starts exploring the configuration space on the cheaper task and only
switches to the more expensive configuration space in later parts of the optimization,
approximately halving the time required for HPO. Multi-task Bayesian optimization
can also be used to transfer information from previous optimization tasks, and we
refer to Chap. 2 for further details.

Multi-task Bayesian optimization (and the methods presented in the previous
subsection) requires an upfront specification of a set of fidelities. This can be
suboptimal since these can be misspecified [74, 78] and because the number of
fidelities that can be handled is low (usually five or less). Therefore, and in order to
exploit the typically smooth dependence on the fidelity (such as, e.g., size of the data
subset used), it often yields better results to treat the fidelity as continuous (and, e.g.,
choose a continuous percentage of the full data set to evaluate a configuration on),
trading off the information gain and the time required for evaluation [78]. To exploit
the domain knowledge that performance typically improves with more data, with
diminishing returns, a special kernel can be constructed for the data subsets [78].
This generalization of multi-task Bayesian optimization improves performance and
can achieve a 10–100 fold speedup compared to blackbox Bayesian optimization.

Instead of using an information-theoretic acquisition function, Bayesian opti-
mization with the Upper Confidence Bound (UCB) acquisition function can also
be extended to multiple fidelities [73, 74]. While the first such approach, MF-
GP-UCB [73], required upfront fidelity definitions, the later BOCA algorithm [74]
dropped that requirement. BOCA has also been applied to optimization with more
than one continuous fidelity, and we expect HPO for more than one continuous
fidelity to be of further interest in the future.

Generally speaking, methods that can adaptively choose their fidelity are very
appealing and more powerful than the conceptually simpler bandit-based methods
discussed in Sect. 1.4.2, but in practice we caution that strong models are required
to make successful choices about the fidelities. When the models are not strong
(since they do not have enough training data yet, or due to model mismatch), these
methods may spend too much time evaluating higher fidelities, and the more robust
fixed budget schedules discussed in Sect. 1.4.2 might yield better performance given
a fixed time limit.

1.5 Applications to AutoML

In this section, we provide a historical overview of the most important hyperparam-
eter optimization systems and applications to automated machine learning.

40 hyperparameter optimization

1 Hyperparameter Optimization 19

Grid search has been used for hyperparameter optimization since the 1990s [71,
107] and was already supported by early machine learning tools in 2002 [35].
The first adaptive optimization methods applied to HPO were greedy depth-first
search [82] and pattern search [109], both improving over default hyperparam-
eter configurations, and pattern search improving over grid search, too. Genetic
algorithms were first applied to tuning the two hyperparameters C and γ of an RBF-
SVM in 2004 [119] and resulted in improved classification performance in less time
than grid search. In the same year, an evolutionary algorithm was used to learn a
composition of three different kernels for an SVM, the kernel hyperparameters and
to jointly select a feature subset; the learned combination of kernels was able to
outperform every single optimized kernel. Similar in spirit, also in 2004, a genetic
algorithm was used to select both the features used by and the hyperparameters of
either an SVM or a neural network [129].

CMA-ES was first used for hyperparameter optimization in 2005 [38], in that
case to optimize an SVM’s hyperparameters C and γ , a kernel lengthscale li for
each dimension of the input data, and a complete rotation and scaling matrix. Much
more recently, CMA-ES has been demonstrated to be an excellent choice for parallel
HPO, outperforming state-of-the-art Bayesian optimization tools when optimizing
19 hyperparameters of a deep neural network on 30 GPUs in parallel [91].

In 2009, Escalante et al. [30] extended the HPO problem to the Full Model
Selection problem, which includes selecting a preprocessing algorithm, a feature
selection algorithm, a classifier and all their hyperparameters. By being able to
construct a machine learning pipeline from multiple off-the-shelf machine learning
algorithms using HPO, the authors empirically found that they can apply their
method to any data set as no domain knowledge is required, and demonstrated the
applicability of their approach to a variety of domains [32, 49]. Their proposed
method, particle swarm model selection (PSMS), uses a modified particle swarm
optimizer to handle the conditional configuration space. To avoid overfitting,
PSMS was extended with a custom ensembling strategy which combined the best
solutions from multiple generations [31]. Since particle swarm optimization was
originally designed to work on continuous configuration spaces, PSMS was later
also extended to use a genetic algorithm to optimize the pipeline structure and
only use particle swarm optimization to optimize the hyperparameters of each
pipeline [145].

To the best of our knowledge, the first application of Bayesian optimization to
HPO dates back to 2005, when Frohlich and Zell [39] used an online Gaussian
process together with EI to optimize the hyperparameters of an SVM, achieving
speedups of factor 10 (classification, 2 hyperparameters) and 100 (regression, 3
hyperparameters) over grid search. Tuned Data Mining [84] proposed to tune the
hyperparameters of a full machine learning pipeline using Bayesian optimization;
specifically, this used a single fixed pipeline and tuned the hyperparameters of the
classifier as well as the per-class classification threshold and class weights.

In 2011, Bergstra et al. [12] were the first to apply Bayesian optimization to
tune the hyperparameters of a deep neural network, outperforming both manual
and random search. Furthermore, they demonstrated that TPE resulted in better

hyperparameter optimization 41

20 M. Feurer and F. Hutter

performance than a Gaussian process-based approach. TPE, as well as Bayesian
optimization with random forests, were also successful for joint neural architecture
search and hyperparameter optimization [14, 106].

Another important step in applying Bayesian optimization to HPO was made by
Snoek et al. in the 2012 paper Practical Bayesian Optimization of Machine Learning
Algorithms [140], which describes several tricks of the trade for Gaussian process-
based HPO implemented in the Spearmint system and obtained a new state-of-the-
art result for hyperparameter optimization of deep neural networks.

Independently of the Full Model Selection paradigm, Auto-WEKA [149] (see
also Chap. 4) introduced the Combined Algorithm Selection and Hyperparameter
Optimization (CASH) problem, in which the choice of a classification algorithm is
modeled as a categorical variable, the algorithm hyperparameters are modeled as
conditional hyperparameters, and the random-forest based Bayesian optimization
system SMAC [59] is used for joint optimization in the resulting 786-dimensional
configuration space.

In recent years, multi-fidelity methods have become very popular, especially
in deep learning. Firstly, using low-fidelity approximations based on data subsets,
feature subsets and short runs of iterative algorithms, Hyperband [90] was shown
to outperform blackbox Bayesian optimization methods that did not take these
lower fidelities into account. Finally, most recently, in the 2018 paper BOHB:
Robust and Efficient Hyperparameter Optimization at Scale, Falkner et al. [33]
introduced a robust, flexible, and parallelizable combination of Bayesian optimiza-
tion and Hyperband that substantially outperformed both Hyperband and blackbox
Bayesian optimization for a wide range of problems, including tuning support vector
machines, various types of neural networks, and reinforcement learning algorithms.

At the time of writing, we make the following recommendations for which tools
we would use in practical applications of HPO:

• If multiple fidelities are applicable (i.e., if it is possible to define substantially
cheaper versions of the objective function of interest, such that the performance
for these roughly correlates with the performance for the full objective function
of interest), we recommend BOHB [33] as a robust, efficient, versatile, and
parallelizable default hyperparameter optimization method.

• If multiple fidelities are not applicable:

– If all hyperparameters are real-valued and one can only afford a few dozen
function evaluations, we recommend the use of a Gaussian process-based
Bayesian optimization tool, such as Spearmint [140].

– For large and conditional configuration spaces we suggest either the random
forest-based SMAC [59] or TPE [14], due to their proven strong performance
on such tasks [29].

– For purely real-valued spaces and relatively cheap objective functions, for
which one can afford more than hundreds of evaluations, we recommend
CMA-ES [51].

42 hyperparameter optimization

1 Hyperparameter Optimization 21

1.6 Open Problems and Future Research Directions

We conclude this chapter with a discussion of open problems, current research
questions and potential further developments we expect to have an impact on
HPO in the future. Notably, despite their relevance, we leave out discussions on
hyperparameter importance and configuration space definition as these fall under
the umbrella of meta-learning and can be found in Chap. 2.

1.6.1 Benchmarks and Comparability

Given the breadth of existing HPO methods, a natural question is what are the
strengths and weaknesses of each of them. In order to allow for a fair com-
parison between different HPO approaches, the community needs to design and
agree upon a common set of benchmarks that expands over time, as new HPO
variants, such as multi-fidelity optimization, emerge. As a particular example for
what this could look like we would like to mention the COCO platform (short
for comparing continuous optimizers), which provides benchmark and analysis
tools for continuous optimization and is used as a workbench for the yearly
Black-Box Optimization Benchmarking (BBOB) challenge [11]. Efforts along
similar lines in HPO have already yielded the hyperparameter optimization library
(HPOlib [29]) and a benchmark collection specifically for Bayesian optimization
methods [25]. However, neither of these has gained similar traction as the COCO
platform.

Additionaly, the community needs clearly defined metrics, but currently different
works use different metrics. One important dimension in which evaluations differ
is whether they report performance on the validation set used for optimization or
on a separate test set. The former helps to study the strength of the optimizer
in isolation, without the noise that is added in the evaluation when going from
validation to test set; on the other hand, some optimizers may lead to more
overfitting than others, which can only be diagnosed by using the test set. Another
important dimension in which evaluations differ is whether they report perfor-
mance after a given number of function evaluations or after a given amount of
time. The latter accounts for the difference in time between evaluating different
hyperparameter configurations and includes optimization overheads, and therefore
reflects what is required in practice; however, the former is more convenient and
aids reproducibility by yielding the same results irrespective of the hardware used.
To aid reproducibility, especially studies that use time should therefore release an
implementation.

We note that it is important to compare against strong baselines when using
new benchmarks, which is another reason why HPO methods should be published
with an accompanying implementation. Unfortunately, there is no common software
library as is, for example, available in deep learning research that implements all

hyperparameter optimization 43

22 M. Feurer and F. Hutter

the basic building blocks [2, 117]. As a simple, yet effective baseline that can
be trivially included in empirical studies, Jamieson and Recht [68] suggest to
compare against different parallelization levels of random search to demonstrate
the speedups over regular random search. When comparing to other optimization
techniques it is important to compare against a solid implementation, since, e.g.,
simpler versions of Bayesian optimization have been shown to yield inferior
performance [79, 140, 142].

1.6.2 Gradient-Based Optimization

In some cases (e.g., least-squares support vector machines and neural networks) it
is possible to obtain the gradient of the model selection criterion with respect to
some of the model hyperparameters. Different to blackbox HPO, in this case each
evaluation of the target function results in an entire hypergradient vector instead of
a single float value, allowing for faster HPO.

Maclaurin et al. [99] described a procedure to compute the exact gradients of
validation performance with respect to all continuous hyperparameters of a neural
network by backpropagating through the entire training procedure of stochastic
gradient descent with momentum (using a novel, memory-efficient algorithm).
Being able to handle many hyperparameters efficiently through gradient-based
methods allows for a new paradigm of hyperparametrizing the model to obtain
flexibility over model classes, regularization, and training methods. Maclaurin et
al. demonstrated the applicability of gradient-based HPO to many high-dimensional
HPO problems, such as optimizing the learning rate of a neural network for each
iteration and layer separately, optimizing the weight initialization scale hyperpa-
rameter for each layer in a neural network, optimizing the l2 penalty for each
individual parameter in logistic regression, and learning completely new training
datasets. As a small downside, backpropagating through the entire training proce-
dure comes at the price of doubling the time complexity of the training procedure.
The described method can also be generalized to work with other parameter
update algorithms [36]. To overcome the necessity of backpropagating through
the complete training procedure, later work allows to perform hyperparameter
updates with respect to a separate validation set interleaved with the training process
[5, 10, 36, 37, 93].

Recent examples of gradient-based optimization of simple model’s hyperparam-
eters [118] and of neural network structures (see Chap. 3) show promising results,
outperforming state-of-the-art Bayesian optimization models. Despite being highly
model-specific, the fact that gradient-based hyperparemeter optimization allows
tuning several hundreds of hyperparameters could allow substantial improvements
in HPO.

44 hyperparameter optimization

1 Hyperparameter Optimization 23

1.6.3 Scalability

Despite recent successes in multi-fidelity optimization, there are still machine
learning problems which have not been directly tackled by HPO due to their scale,
and which might require novel approaches. Here, scale can mean both the size of the
configuration space and the expense of individual model evaluations. For example,
there has not been any work on HPO for deep neural networks on the ImageNet
challenge dataset [127] yet, mostly because of the high cost of training even a
simple neural network on the dataset. It will be interesting to see whether methods
going beyond the blackbox view from Sect. 1.3, such as the multi-fidelity methods
described in Sect. 1.4, gradient-based methods, or meta-learning methods (described
in Chap. 2) allow to tackle such problems. Chap. 3 describes first successes in
learning neural network building blocks on smaller datasets and applying them to
ImageNet, but the hyperparameters of the training procedure are still set manually.

Given the necessity of parallel computing, we are looking forward to new
methods that fully exploit large-scale compute clusters. While there exists much
work on parallel Bayesian optimization [12, 24, 33, 44, 54, 60, 135, 140], except
for the neural networks described in Sect. 1.3.2.2 [141], so far no method has
demonstrated scalability to hundreds of workers. Despite their popularity, and with
a single exception of HPO applied to deep neural networks [91],3 population-
based approaches have not yet been shown to be applicable to hyperparameter
optimization on datasets larger than a few thousand data points.

Overall, we expect that more sophisticated and specialized methods, leaving the
blackbox view behind, will be needed to further scale hyperparameter to interesting
problems.

1.6.4 Overfitting and Generalization

An open problem in HPO is overfitting. As noted in the problem statement (see
Sect. 1.2), we usually only have a finite number of data points available for
calculating the validation loss to be optimized and thereby do not necessarily
optimize for generalization to unseen test datapoints. Similarly to overfitting a
machine learning algorithm to training data, this problem is about overfitting the
hyperparameters to the finite validation set; this was also demonstrated to happen
experimentally [20, 81].

A simple strategy to reduce the amount of overfitting is to employ a different
shuffling of the train and validation split for each function evaluation; this was
shown to improve generalization performance for SVM tuning, both with a holdout
and a cross-validation strategy [95]. The selection of the final configuration can

3See also Chap. 3 where population-based methods are applied to Neural Architecture Search
problems.

hyperparameter optimization 45

24 M. Feurer and F. Hutter

be further robustified by not choosing it according to the lowest observed value,
but according to the lowest predictive mean of the Gaussian process model used in
Bayesian optimization [95].

Another possibility is to use a separate holdout set to assess configurations
found by HPO to avoid bias towards the standard validation set [108, 159].
Different approximations of the generalization performance can lead to different
test performances [108], and there have been reports that several resampling
strategies can result in measurable performance differences for HPO of support
vector machines [150].

A different approach to combat overfitting might be to find stable optima instead
of sharp optima of the objective function [112]. The idea is that for stable optima,
the function value around an optimum does not change for slight perturbations of
the hyperparameters, whereas it does change for sharp optima. Stable optima lead to
better generalization when applying the found hyperparameters to a new, unseen set
of datapoints (i.e., the test set). An acquisition function built around this was shown
to only slightly overfit for support vector machine HPO, while regular Bayesian
optimization exhibited strong overfitting [112].

Further approaches to combat overfitting are the ensemble methods and Bayesian
methods presented in Sect. 1.2.1. Given all these different techniques, there is no
commonly agreed-upon technique for how to best avoid overfitting, though, and it
remains up to the user to find out which strategy performs best on their particular
HPO problem. We note that the best strategy might actually vary across HPO
problems.

1.6.5 Arbitrary-Size Pipeline Construction

All HPO techniques we discussed so far assume a finite set of components
for machine learning pipelines or a finite maximum number of layers in neural
networks. For machine learning pipelines (see the AutoML systems covered in
Part II of this book) it might be helpful to use more than one feature preprocessing
algorithm and dynamically add them if necessary for a problem, enlarging the search
space by a hyperparameter to select an appropriate preprocessing algorithm and
its own hyperparameters. While a search space for standard blackbox optimization
tools could easily include several extra such preprocessors (and their hyperparame-
ters) as conditional hyperparameters, an unbounded number of these would be hard
to support.

One approach for handling arbitrary-sized pipelines more natively is the tree-
structured pipeline optimization toolkit (TPOT [115], see also Chap. 8), which uses
genetic programming and describes possible pipelines by a grammar. TPOT uses
multi-objective optimization to trade off pipeline complexity with performance to
avoid generating unnecessarily complex pipelines.

46 hyperparameter optimization

1 Hyperparameter Optimization 25

A different pipeline creation paradigm is the usage of hierarchical planning; the
recent ML-Plan [101, 108] uses hierarchical task networks and shows competitive
performance compared to Auto-WEKA [149] and Auto-sklearn [34].

So far these approaches are not consistently outperforming AutoML systems
with a fixed pipeline length, but larger pipelines may provide more improvement.
Similarly, neural architecture search yields complex configuration spaces and we
refer to Chap. 3 for a description of methods to tackle them.

Acknowledgements We would like to thank Luca Franceschi, Raghu Rajan, Stefan Falkner and
Arlind Kadra for valuable feedback on the manuscript.

Bibliography

1. Proceedings of the International Conference on Learning Representations (ICLR’18) (2018),
published online: iclr.cc

2. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia,
Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S.,
Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker,
P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke,
M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems
(2015), https://www.tensorflow.org/

3. Ahmed, M., Shahriari, B., Schmidt, M.: Do we need “harmless” Bayesian optimization
and “first-order” Bayesian optimization. In: NeurIPS Workshop on Bayesian Optimization
(BayesOpt’16) (2016)

4. Alaa, A., van der Schaar, M.: AutoPrognosis: Automated Clinical Prognostic Modeling via
Bayesian Optimization with Structured Kernel Learning. In: Dy and Krause [27], pp. 139–148

5. Almeida, L.B., Langlois, T., Amaral, J.D., Plakhov, A.: Parameter Adaptation in Stochastic
Optimization, p. 111–134. Cambridge University Press (1999)

6. Amazon: Automatic model tuning (2018), https://docs.aws.amazon.com/sagemaker/latest/dg/
automatic-model-tuning.html

7. Bach, F., Blei, D. (eds.): Proceedings of the 32nd International Conference on Machine
Learning (ICML’15), vol. 37. Omnipress (2015)

8. Balcan, M., Weinberger, K. (eds.): Proceedings of the 33rd International Conference on
Machine Learning (ICML’17), vol. 48. Proceedings of Machine Learning Research (2016)

9. Bartlett, P., Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.): Proceedings of the
26th International Conference on Advances in Neural Information Processing Systems
(NeurIPS’12) (2012)

10. Baydin, A.G., Cornish, R., Rubio, D.M., Schmidt, M., Wood, F.: Online Learning Rate
Adaption with Hypergradient Descent. In: Proceedings of the International Conference on
Learning Representations (ICLR’18) [1], published online: iclr.cc

11. BBOBies: Black-box Optimization Benchmarking (BBOB) workshop series (2018), http://
numbbo.github.io/workshops/index.html

12. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization.
In: Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., Weinberger, K. (eds.) Proceedings of
the 25th International Conference on Advances in Neural Information Processing Systems
(NeurIPS’11). pp. 2546–2554 (2011)

13. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. Journal of
Machine Learning Research 13, 281–305 (2012)

hyperparameter optimization 47

26 M. Feurer and F. Hutter

14. Bergstra, J., Yamins, D., Cox, D.: Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. In: Dasgupta and McAllester
[23], pp. 115–123

15. Bertrand, H., Ardon, R., Perrot, M., Bloch, I.: Hyperparameter optimization of deep
neural networks: Combining hyperband with Bayesian model selection. In: Conférence sur
l’Apprentissage Automatique (2017)

16. Bischl, B., Mersmann, O., Trautmann, H., Weihs, C.: Resampling methods for meta-model
validation with recommendations for evolutionary computation. Evolutionary Computation
20(2), 249–275 (2012)

17. Van den Bosch, A.: Wrapped progressive sampling search for optimizing learning algorithm
parameters. In: Proceedings of the sixteenth Belgian-Dutch Conference on Artificial Intelli-
gence. pp. 219–226 (2004)

18. Brochu, E., Cora, V., de Freitas, N.: A tutorial on Bayesian optimization of expensive cost
functions, with application to active user modeling and hierarchical reinforcement learning.
arXiv:1012.2599v1 [cs.LG] (2010)

19. Bürger, F., Pauli, J.: A Holistic Classification Optimization Framework with Feature Selec-
tion, Preprocessing, Manifold Learning and Classifiers., pp. 52–68. Springer (2015)

20. Cawley, G., Talbot, N.: On Overfitting in Model Selection and Subsequent Selection Bias in
Performance Evaluation. Journal of Machine Learning Research 11 (2010)

21. Chandrashekaran, A., Lane, I.: Speeding up Hyper-parameter Optimization by Extrapolation
of Learning Curves using Previous Builds. In: Ceci, M., Hollmen, J., Todorovski, L.,
Vens, C., Džeroski, S. (eds.) Machine Learning and Knowledge Discovery in Databases
(ECML/PKDD’17). Lecture Notes in Computer Science, vol. 10534. Springer (2017)

22. Dahl, G., Sainath, T., Hinton, G.: Improving deep neural networks for LVCSR using
rectified linear units and dropout. In: Adams, M., Zhao, V. (eds.) International Conference
on Acoustics, Speech and Signal Processing (ICASSP’13). pp. 8609–8613. IEEE Computer
Society Press (2013)

23. Dasgupta, S., McAllester, D. (eds.): Proceedings of the 30th International Conference on
Machine Learning (ICML’13). Omnipress (2014)

24. Desautels, T., Krause, A., Burdick, J.: Parallelizing exploration-exploitation tradeoffs in
Gaussian process bandit optimization. Journal of Machine Learning Research 15, 4053–4103
(2014)

25. Dewancker, I., McCourt, M., Clark, S., Hayes, P., Johnson, A., Ke, G.: A stratified analysis of
Bayesian optimization methods. arXiv:1603.09441v1 [cs.LG] (2016)

26. Domhan, T., Springenberg, J.T., Hutter, F.: Speeding up automatic hyperparameter optimiza-
tion of deep neural networks by extrapolation of learning curves. In: Yang, Q., Wooldridge,
M. (eds.) Proceedings of the 25th International Joint Conference on Artificial Intelligence
(IJCAI’15). pp. 3460–3468 (2015)

27. Dy, J., Krause, A. (eds.): Proceedings of the 35th International Conference on Machine
Learning (ICML’18), vol. 80. Proceedings of Machine Learning Research (2018)

28. Eberhart, R., Shi, Y.: Comparison between genetic algorithms and particle swarm optimiza-
tion. In: Porto, V., Saravanan, N., Waagen, D., Eiben, A. (eds.) 7th International conference
on evolutionary programming. pp. 611–616. Springer (1998)

29. Eggensperger, K., Feurer, M., Hutter, F., Bergstra, J., Snoek, J., Hoos, H., Leyton-Brown, K.:
Towards an empirical foundation for assessing Bayesian optimization of hyperparameters. In:
NeurIPS Workshop on Bayesian Optimization in Theory and Practice (BayesOpt’13) (2013)

30. Escalante, H., Montes, M., Sucar, E.: Particle Swarm Model Selection. Journal of Machine
Learning Research 10, 405–440 (2009)

31. Escalante, H., Montes, M., Sucar, E.: Ensemble particle swarm model selection. In: Proceed-
ings of the 2010 IEEE International Joint Conference on Neural Networks (IJCNN). pp. 1–8.
IEEE Computer Society Press (2010)

32. Escalante, H., Montes, M., Villaseñor, L.: Particle swarm model selection for authorship
verification. In: Bayro-Corrochano, E., Eklundh, J.O. (eds.) Progress in Pattern Recognition,
Image Analysis, Computer Vision, and Applications. pp. 563–570 (2009)

48 hyperparameter optimization

1 Hyperparameter Optimization 27

33. Falkner, S., Klein, A., Hutter, F.: BOHB: Robust and Efficient Hyperparameter Optimization
at Scale. In: Dy and Krause [27], pp. 1437–1446

34. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.T., Blum, M., Hutter, F.: Efficient
and robust automated machine learning. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M.,
Garnett, R. (eds.) Proceedings of the 29th International Conference on Advances in Neural
Information Processing Systems (NeurIPS’15). pp. 2962–2970 (2015)

35. Fischer, S., Klinkenberg, R., Mierswa, I., Ritthoff, O.: Yale: Yet another learning environment
– tutorial. Tech. rep., University of Dortmund (2002)

36. Franceschi, L., Donini, M., Frasconi, P., Pontil, M.: Forward and Reverse Gradient-Based
Hyperparameter Optimization. In: Precup and Teh [122], pp. 1165–1173

37. Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., Pontil, M.: Bilevel Programming for
Hyperparameter Optimization and Meta-Learning. In: Dy and Krause [27], pp. 1568–1577

38. Friedrichs, F., Igel, C.: Evolutionary tuning of multiple SVM parameters. Neurocomputing
64, 107–117 (2005)

39. Frohlich, H., Zell, A.: Efficient parameter selection for support vector machines in classifica-
tion and regression via model-based global optimization. In: Prokhorov, D., Levine, D., Ham,
F., Howell, W. (eds.) Proceedings of the 2005 IEEE International Joint Conference on Neural
Networks (IJCNN). pp. 1431–1436. IEEE Computer Society Press (2005)

40. Gardner, J., Guo, C., Weinberger, K., Garnett, R., Grosse, R.: Discovering and Exploiting
Additive Structure for Bayesian Optimization. In: Singh, A., Zhu, J. (eds.) Proceedings of
the Seventeenth International Conference on Artificial Intelligence and Statistics (AISTATS).
vol. 54, pp. 1311–1319. Proceedings of Machine Learning Research (2017)

41. Gardner, J., Kusner, M., Xu, Z., Weinberger, K., Cunningham, J.: Bayesian Optimization with
Inequality Constraints. In: Xing and Jebara [157], pp. 937–945

42. Garrido-Merchán, E., Hernández-Lobato, D.: Dealing with integer-valued variables in
Bayesian optimization with Gaussian processes. arXiv:1706.03673v2 [stats.ML] (2017)

43. Gelbart, M., Snoek, J., Adams, R.: Bayesian optimization with unknown constraints. In:
Zhang, N., Tian, J. (eds.) Proceedings of the 30th conference on Uncertainty in Artificial
Intelligence (UAI’14). AUAI Press (2014)

44. Ginsbourger, D., Le Riche, R., Carraro, L.: Kriging Is Well-Suited to Parallelize Optimization.
In: Computational Intelligence in Expensive Optimization Problems, pp. 131–162. Springer
(2010)

45. Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., Sculley, D.: Google Vizier: A
service for black-box optimization. In: Matwin, S., Yu, S., Farooq, F. (eds.) Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD). pp. 1487–1495. ACM Press (2017)

46. Gramacy, R., Lee, H.: Optimization under unknown constraints. Bayesian Statistics 9(9), 229–
246 (2011)

47. Gretton, A., Robert, C. (eds.): Proceedings of the Seventeenth International Conference on
Artificial Intelligence and Statistics (AISTATS), vol. 51. Proceedings of Machine Learning
Research (2016)

48. Guyon, I., von Luxburg, U., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R.
(eds.): Proceedings of the 31st International Conference on Advances in Neural Information
Processing Systems (NeurIPS’17) (2017)

49. Guyon, I., Saffari, A., Dror, G., Cawley, G.: Analysis of the IJCNN 2007 agnostic learning
vs. prior knowledge challenge. Neural Networks 21(2), 544–550 (2008)

50. Guyon, I., Saffari, A., Dror, G., Cawley, G.: Model Selection: Beyond the Bayesian/Frequen-
tist Divide. Journal of Machine Learning Research 11, 61–87 (2010)

51. Hansen, N.: The CMA evolution strategy: A tutorial. arXiv:1604.00772v1 [cs.LG] (2016)
52. Hazan, E., Klivans, A., Yuan, Y.: Hyperparameter optimization: A spectral approach. In:

Proceedings of the International Conference on Learning Representations (ICLR’18) [1],
published online: iclr.cc

53. Hernandez-Lobato, D., Hernandez-Lobato, J., Shah, A., Adams, R.: Predictive Entropy
Search for Multi-objective Bayesian Optimization. In: Balcan and Weinberger [8], pp. 1492–
1501

hyperparameter optimization 49

28 M. Feurer and F. Hutter

54. Hernández-Lobato, J., Requeima, J., Pyzer-Knapp, E., Aspuru-Guzik, A.: Parallel and
distributed Thompson sampling for large-scale accelerated exploration of chemical space.
In: Precup and Teh [122], pp. 1470–1479

55. Hernández-Lobato, J., Gelbart, M., Adams, R., Hoffman, M., Ghahramani, Z.: A general
framework for constrained Bayesian optimization using information-based search. The
Journal of Machine Learning Research 17(1), 5549–5601 (2016)

56. Hoeting, J., Madigan, D., Raftery, A., Volinsky, C.: Bayesian model averaging: a tutorial.
Statistical science pp. 382–401 (1999)

57. Horn, D., Bischl, B.: Multi-objective parameter configuration of machine learning algorithms
using model-based optimization. In: Likas, A. (ed.) 2016 IEEE Symposium Series on
Computational Intelligence (SSCI). pp. 1–8. IEEE Computer Society Press (2016)

58. Hutter, F.: Automated Configuration of Algorithms for Solving Hard Computational Prob-
lems. Ph.D. thesis, University of British Columbia, Department of Computer Science,
Vancouver, Canada (2009)

59. Hutter, F., Hoos, H., Leyton-Brown, K.: Sequential model-based optimization for general
algorithm configuration. In: Coello, C. (ed.) Proceedings of the Fifth International Conference
on Learning and Intelligent Optimization (LION’11). Lecture Notes in Computer Science,
vol. 6683, pp. 507–523. Springer (2011)

60. Hutter, F., Hoos, H., Leyton-Brown, K.: Parallel algorithm configuration. In: Hamadi, Y.,
Schoenauer, M. (eds.) Proceedings of the Sixth International Conference on Learning and
Intelligent Optimization (LION’12). Lecture Notes in Computer Science, vol. 7219, pp. 55–
70. Springer (2012)

61. Hutter, F., Hoos, H., Leyton-Brown, K.: An efficient approach for assessing hyperparameter
importance. In: Xing and Jebara [157], pp. 754–762

62. Hutter, F., Hoos, H., Leyton-Brown, K., Murphy, K.: Time-bounded sequential parameter
optimization. In: Blum, C. (ed.) Proceedings of the Fourth International Conference on
Learning and Intelligent Optimization (LION’10). Lecture Notes in Computer Science, vol.
6073, pp. 281–298. Springer (2010)

63. Hutter, F., Osborne, M.: A kernel for hierarchical parameter spaces. arXiv:1310.5738v1
[stats.ML] (2013)

64. Hutter, F., Lücke, J., Schmidt-Thieme, L.: Beyond Manual Tuning of Hyperparameters. KI -
Künstliche Intelligenz 29(4), 329–337 (2015)

65. Igel, C.: Multi-objective Model Selection for Support Vector Machines. In: Coello, C.,
Aguirre, A., Zitzler, E. (eds.) Evolutionary Multi-Criterion Optimization. pp. 534–546.
Springer (2005)

66. Ihler, A., Janzing, D. (eds.): Proceedings of the 32nd conference on Uncertainty in Artificial
Intelligence (UAI’16). AUAI Press (2016)

67. Ilievski, I., Akhtar, T., Feng, J., Shoemaker, C.: Efficient Hyperparameter Optimization
for Deep Learning Algorithms Using Deterministic RBF Surrogates. In: Sierra, C. (ed.)
Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI’17)
(2017)

68. Jamieson, K., Recht, B.: The news on auto-tuning (2016), http://www.argmin.net/2016/06/20/
hypertuning/

69. Jamieson, K., Talwalkar, A.: Non-stochastic best arm identification and hyperparameter
optimization. In: Gretton and Robert [47], pp. 240–248

70. Jenatton, R., Archambeau, C., González, J., Seeger, M.: Bayesian Optimization with Tree-
structured Dependencies. In: Precup and Teh [122], pp. 1655–1664

71. John, G.: Cross-Validated C4.5: Using Error Estimation for Automatic Parameter Selection.
Tech. Rep. STAN-CS-TN-94-12, Stanford University, Stanford University (1994)

72. Jones, D., Schonlau, M., Welch, W.: Efficient global optimization of expensive black box
functions. Journal of Global Optimization 13, 455–492 (1998)

73. Kandasamy, K., Dasarathy, G., Oliva, J., Schneider, J., Póczos, B.: Gaussian Process Bandit
Optimisation with Multi-fidelity Evaluations. In: Lee et al. [87], pp. 992–1000

50 hyperparameter optimization

1 Hyperparameter Optimization 29

74. Kandasamy, K., Dasarathy, G., Schneider, J., Póczos, B.: Multi-fidelity Bayesian Optimisa-
tion with Continuous Approximations. In: Precup and Teh [122], pp. 1799–1808

75. Kandasamy, K., Schneider, J., Póczos, B.: High Dimensional Bayesian Optimisation and
Bandits via Additive Models. In: Bach and Blei [7], pp. 295–304

76. Karnin, Z., Koren, T., Somekh, O.: Almost optimal exploration in multi-armed bandits. In:
Dasgupta and McAllester [23], pp. 1238–1246

77. King, R., Feng, C., Sutherland, A.: Statlog: comparison of classification algorithms on large
real-world problems. Applied Artificial Intelligence an International Journal 9(3), 289–333
(1995)

78. Klein, A., Falkner, S., Bartels, S., Hennig, P., Hutter, F.: Fast bayesian hyperparameter
optimization on large datasets. In: Electronic Journal of Statistics. vol. 11 (2017)

79. Klein, A., Falkner, S., Mansur, N., Hutter, F.: RoBO: A flexible and robust Bayesian optimiza-
tion framework in Python. In: NeurIPS workshop on Bayesian Optimization (BayesOpt’17)
(2017)

80. Klein, A., Falkner, S., Springenberg, J.T., Hutter, F.: Learning curve prediction with Bayesian
neural networks. In: Proceedings of the International Conference on Learning Representations
(ICLR’17) (2017), published online: iclr.cc

81. Koch, P., Konen, W., Flasch, O., Bartz-Beielstein, T.: Optimizing support vector machines for
stormwater prediction. Tech. Rep. TR10-2-007, Technische Universität Dortmund (2010)

82. Kohavi, R., John, G.: Automatic Parameter Selection by Minimizing Estimated Error. In:
Prieditis, A., Russell, S. (eds.) Proceedings of the Twelfth International Conference on
Machine Learning, pp. 304–312. Morgan Kaufmann Publishers (1995)

83. Komer, B., Bergstra, J., Eliasmith, C.: Hyperopt-sklearn: Automatic hyperparameter config-
uration for scikit-learn. In: Hutter, F., Caruana, R., Bardenet, R., Bilenko, M., Guyon, I.,
Kégl, B., Larochelle, H. (eds.) ICML workshop on Automated Machine Learning (AutoML
workshop 2014) (2014)

84. Konen, W., Koch, P., Flasch, O., Bartz-Beielstein, T., Friese, M., Naujoks, B.: Tuned data
mining: a benchmark study on different tuners. In: Krasnogor, N. (ed.) Proceedings of the
13th Annual Conference on Genetic and Evolutionary Computation (GECCO’11). pp. 1995–
2002. ACM (2011)

85. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional
neural networks. In: Bartlett et al. [9], pp. 1097–1105

86. Krueger, T., Panknin, D., Braun, M.: Fast cross-validation via sequential testing. Journal of
Machine Learning Research (2015)

87. Lee, D., Sugiyama, M., von Luxburg, U., Guyon, I., Garnett, R. (eds.): Proceedings of
the 30th International Conference on Advances in Neural Information Processing Systems
(NeurIPS’16) (2016)

88. Lee, H., Gramacy, R.: Optimization Subject to Hidden Constraints via Statistical Emulation.
Pacific Journal of Optimization 7(3), 467–478 (2011)

89. Li, F.F., Li, J.: Cloud AutoML: Making AI accessible to every business (2018), https://www.
blog.google/products/google-cloud/cloud-automl-making-ai-accessible-every-business/

90. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: A
novel bandit-based approach to hyperparameter optimization. Journal of Machine Learning
Research 18(185), 1–52 (2018)

91. Loshchilov, I., Hutter, F.: CMA-ES for hyperparameter optimization of deep neural networks.
In: International Conference on Learning Representations Workshop track (2016), published
online: iclr.cc

92. Lu, X., Gonzalez, J., Dai, Z., Lawrence, N.: Structured Variationally Auto-encoded Optimiza-
tion. In: Dy and Krause [27], pp. 3273–3281

93. Luketina, J., Berglund, M., Greff, K., Raiko, T.: Scalable Gradient-Based Tuning of Continu-
ous Regularization Hyperparameters. In: Balcan and Weinberger [8], pp. 2952–2960

94. Luo, G.: A review of automatic selection methods for machine learning algorithms and hyper-
parameter values. Network Modeling Analysis in Health Informatics and Bioinformatics 5(1)
(2016)

hyperparameter optimization 51

30 M. Feurer and F. Hutter

95. Lévesque, J.C.: Bayesian Hyperparameter Optimization: Overfitting, Ensembles and Condi-
tional Spaces. Ph.D. thesis, Université Laval (2018)

96. Lévesque, J.C., Durand, A., Gagné, C., Sabourin, R.: Bayesian optimization for conditional
hyperparameter spaces. In: Howell, B. (ed.) 2017 International Joint Conference on Neural
Networks (IJCNN). pp. 286–293. IEEE (2017)

97. Lévesque, J.C., Gagné, C., Sabourin, R.: Bayesian Hyperparameter Optimization for Ensem-
ble Learning. In: Ihler and Janzing [66], pp. 437–446

98. MacKay, D.: Hyperparameters: Optimize, or Integrate Out?, pp. 43–59. Springer (1996)
99. Maclaurin, D., Duvenaud, D., Adams, R.: Gradient-based Hyperparameter Optimization

through Reversible Learning. In: Bach and Blei [7], pp. 2113–2122
100. Mantovani, R., Horvath, T., Cerri, R., Vanschoren, J., Carvalho, A.: Hyper-Parameter Tuning

of a Decision Tree Induction Algorithm. In: 2016 5th Brazilian Conference on Intelligent
Systems (BRACIS). pp. 37–42. IEEE Computer Society Press (2016)

101. Marcel Wever, F.M., Hüllermeier, E.: ML-Plan for unlimited-length machine learning
pipelines. In: Garnett, R., Vanschoren, F.H.J., Brazdil, P., Caruana, R., Giraud-Carrier, C.,
Guyon, I., Kégl, B. (eds.) ICML workshop on Automated Machine Learning (AutoML
workshop 2018) (2018)

102. Maron, O., Moore, A.: The racing algorithm: Model selection for lazy learners. Artificial
Intelligence Review 11(1–5), 193–225 (1997)

103. McInerney, J.: An Empirical Bayes Approach to Optimizing Machine Learning Algorithms.
In: Guyon et al. [48], pp. 2712–2721

104. McIntire, M., Ratner, D., Ermon, S.: Sparse Gaussian Processes for Bayesian Optimization.
In: Ihler and Janzing [66]

105. Melis, G., Dyer, C., Blunsom, P.: On the state of the art of evaluation in neural language mod-
els. In: Proceedings of the International Conference on Learning Representations (ICLR’18)
[1], published online: iclr.cc

106. Mendoza, H., Klein, A., Feurer, M., Springenberg, J., Hutter, F.: Towards automatically-tuned
neural networks. In: ICML 2016 AutoML Workshop (2016)

107. Michie, D., Spiegelhalter, D., Taylor, C., Campbell, J. (eds.): Machine Learning, Neural and
Statistical Classification. Ellis Horwood (1994)

108. Mohr, F., Wever, M., Höllermeier, E.: ML-Plan: Automated machine learning via hierarchical
planning. Machine Learning 107(8–10), 1495–1515 (2018)

109. Momma, M., Bennett, K.: A Pattern Search Method for Model Selection of Support Vector
Regression. In: Proceedings of the 2002 SIAM International Conference on Data Mining,
pp. 261–274 (2002)

110. Montgomery, D.: Design and analysis of experiments. John Wiley & Sons, Inc, eighth edn.
(2013)

111. Murray, I., Adams, R.: Slice sampling covariance hyperparameters of latent Gaussian models.
In: Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel, R., Culotta, A. (eds.) Proceedings of
the 24th International Conference on Advances in Neural Information Processing Systems
(NeurIPS’10). pp. 1732–1740 (2010)

112. Nguyen, T., Gupta, S., Rana, S., Venkatesh, S.: Stable Bayesian Optimization. In: Kim, J.,
Shim, K., Cao, L., Lee, J.G., Lin, X., Moon, Y.S. (eds.) Advances in Knowledge Discovery
and Data Mining (PAKDD’17). Lecture Notes in Artificial Intelligence, vol. 10235, pp. 578–
591 (2017)

113. Nguyen, V., Gupta, S., Rana, S., Li, C., Venkatesh, S.: Filtering Bayesian optimization
approach in weakly specified search space. Knowledge and Information Systems (2018)

114. Oh, C., Gavves, E., Welling, M.: BOCK: Bayesian Optimization with Cylindrical Kernels. In:
Dy and Krause [27], pp. 3865–3874

115. Olson, R., Bartley, N., Urbanowicz, R., Moore, J.: Evaluation of a Tree-based Pipeline
Optimization Tool for Automating Data Science. In: Friedrich, T. (ed.) Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO’16). pp. 485–492. ACM (2016)

116. Olson, R., La Cava, W., Mustahsan, Z., Varik, A., Moore, J.: Data-driven advice for applying
machine learning to bioinformatics problems. In: Proceedings of the Pacific Symposium in
Biocomputing 2018. pp. 192–203 (2018)

52 hyperparameter optimization

1 Hyperparameter Optimization 31

117. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A.,
Antiga, L., Lerer, A.: Automatic differentiation in PyTorch. In: NeurIPS Autodiff Workshop
(2017)

118. Pedregosa, F.: Hyperparameter optimization with approximate gradient. In: Balcan and
Weinberger [8], pp. 737–746

119. Peng-Wei Chen, Jung-Ying Wang, Hahn-Ming Lee: Model selection of SVMs using GA
approach. In: Proceedings of the 2004 IEEE International Joint Conference on Neural
Networks (IJCNN). vol. 3, pp. 2035–2040. IEEE Computer Society Press (2004)

120. Petrak, J.: Fast subsampling performance estimates for classification algorithm selection.
Technical Report TR-2000-07, Austrian Research Institute for Artificial Intelligence (2000)

121. Poloczek, M., Wang, J., Frazier, P.: Multi-Information Source Optimization. In: Guyon et al.
[48], pp. 4288–4298

122. Precup, D., Teh, Y. (eds.): Proceedings of the 34th International Conference on Machine
Learning (ICML’17), vol. 70. Proceedings of Machine Learning Research (2017)

123. Provost, F., Jensen, D., Oates, T.: Efficient progressive sampling. In: Fayyad, U., Chaudhuri,
S., Madigan, D. (eds.) The 5th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’99). pp. 23–32. ACM Press (1999)

124. Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning. The MIT Press
(2006)

125. Rendle, S.: Factorization machines. In: Webb, G., Liu, B., Zhang, C., Gunopulos, D., Wu, X.
(eds.) Proceedings of the 10th IEEE International Conference on Data Mining (ICDM’06).
pp. 995–1000. IEEE Computer Society Press (2010)

126. Ripley, B.D.: Statistical aspects of neural networks. Networks and chaos—statistical and
probabilistic aspects 50, 40–123 (1993)

127. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,
A., Khosla, A., Bernstein, M., Berg, A., Fei-Fei, L.: Imagenet large scale visual recognition
challenge. International Journal of Computer Vision 115(3), 211–252 (2015)

128. Sabharwal, A., Samulowitz, H., Tesauro, G.: Selecting Near-Optimal Learners via Incremen-
tal Data Allocation. In: Schuurmans, D., Wellman, M. (eds.) Proceedings of the Thirtieth
National Conference on Artificial Intelligence (AAAI’16). AAAI Press (2016)

129. Samanta, B.: Gear fault detection using artificial neural networks and support vector machines
with genetic algorithms. Mechanical Systems and Signal Processing 18(3), 625–644 (2004)

130. Sanders, S., Giraud-Carrier, C.: Informing the Use of Hyperparameter Optimization Through
Metalearning. In: Gottumukkala, R., Ning, X., Dong, G., Raghavan, V., Aluru, S., Karypis,
G., Miele, L., Wu, X. (eds.) 2017 IEEE International Conference on Big Data (Big Data).
IEEE Computer Society Press (2017)

131. Schilling, N., Wistuba, M., Drumond, L., Schmidt-Thieme, L.: Hyperparameter optimization
with factorized multilayer perceptrons. In: Appice, A., Rodrigues, P., Costa, V., Gama,
J., Jorge, A., Soares, C. (eds.) Machine Learning and Knowledge Discovery in Databases
(ECML/PKDD’15). Lecture Notes in Computer Science, vol. 9285, pp. 87–103. Springer
(2015)

132. Schilling, N., Wistuba, M., Drumond, L., Schmidt-Thieme, L.: Joint Model Choice and
Hyperparameter Optimization with Factorized Multilayer Perceptrons. In: 2015 IEEE 27th
International Conference on Tools with Artificial Intelligence (ICTAI). pp. 72–79. IEEE
Computer Society Press (2015)

133. Sculley, D., Snoek, J., Wiltschko, A., Rahimi, A.: Winner’s curse? on pace, progress, and
empirical rigor. In: International Conference on Learning Representations Workshop track
(2018), published online: iclr.cc

134. Shah, A., Ghahramani, Z.: Pareto Frontier Learning with Expensive Correlated Objectives.
In: Balcan and Weinberger [8], pp. 1919–1927

135. Shahriari, B., Swersky, K., Wang, Z., Adams, R., de Freitas, N.: Taking the human out of the
loop: A review of Bayesian optimization. Proceedings of the IEEE 104(1), 148–175 (2016)

136. Shahriari, B., Bouchard-Cote, A., de Freitas, N.: Unbounded Bayesian optimization via
regularization. In: Gretton and Robert [47], pp. 1168–1176

hyperparameter optimization 53

32 M. Feurer and F. Hutter

137. SIGOPT: Improve ML models 100x faster (2018), https://sigopt.com/
138. Simon, D.: Evolutionary optimization algorithms. John Wiley & Sons (2013)
139. Snoek, J.: Bayesian optimization and semiparametric models with applications to assistive

technology. PhD Thesis, University of Toronto (2013)
140. Snoek, J., Larochelle, H., Adams, R.: Practical Bayesian optimization of machine learning

algorithms. In: Bartlett et al. [9], pp. 2960–2968
141. Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N., Patwary, M., Prabhat,

Adams, R.: Scalable Bayesian optimization using deep neural networks. In: Bach and Blei
[7], pp. 2171–2180

142. Snoek, J., Swersky, K., Zemel, R., Adams, R.: Input warping for Bayesian optimization of
non-stationary functions. In: Xing and Jebara [157], pp. 1674–1682

143. Sparks, E., Talwalkar, A., Haas, D., Franklin, M., Jordan, M., Kraska, T.: Automating model
search for large scale machine learning. In: Balazinska, M. (ed.) Proceedings of the Sixth
ACM Symposium on Cloud Computing - SoCC ’15. pp. 368–380. ACM Press (2015)

144. Springenberg, J., Klein, A., Falkner, S., Hutter, F.: Bayesian optimization with robust
Bayesian neural networks. In: Lee et al. [87]

145. Sun, Q., Pfahringer, B., Mayo, M.: Towards a Framework for Designing Full Model Selection
and Optimization Systems. In: Multiple Classifier Systems, vol. 7872, pp. 259–270. Springer
(2013)

146. Swersky, K., Duvenaud, D., Snoek, J., Hutter, F., Osborne, M.: Raiders of the lost architecture:
Kernels for Bayesian optimization in conditional parameter spaces. In: NeurIPS Workshop on
Bayesian Optimization in Theory and Practice (BayesOpt’14) (2014)

147. Swersky, K., Snoek, J., Adams, R.: Multi-task Bayesian optimization. In: Burges, C., Bottou,
L., Welling, M., Ghahramani, Z., Weinberger, K. (eds.) Proceedings of the 27th International
Conference on Advances in Neural Information Processing Systems (NeurIPS’13). pp. 2004–
2012 (2013)

148. Swersky, K., Snoek, J., Adams, R.: Freeze-thaw Bayesian optimization arXiv:1406.3896v1
[stats.ML] (2014)

149. Thornton, C., Hutter, F., Hoos, H., Leyton-Brown, K.: Auto-WEKA: combined selection and
hyperparameter optimization of classification algorithms. In: Dhillon, I., Koren, Y., Ghani,
R., Senator, T., Bradley, P., Parekh, R., He, J., Grossman, R., Uthurusamy, R. (eds.) The
19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD’13). pp. 847–855. ACM Press (2013)

150. Wainer, J., Cawley, G.: Empirical Evaluation of Resampling Procedures for Optimising SVM
Hyperparameters. Journal of Machine Learning Research 18, 1–35 (2017)

151. Wang, J., Xu, J., Wang, X.: Combination of hyperband and Bayesian optimization for
hyperparameter optimization in deep learning. arXiv:1801.01596v1 [cs.CV] (2018)

152. Wang, L., Feng, M., Zhou, B., Xiang, B., Mahadevan, S.: Efficient Hyper-parameter
Optimization for NLP Applications. In: Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing. pp. 2112–2117. Association for Computational
Linguistics (2015)

153. Wang, Z., Hutter, F., Zoghi, M., Matheson, D., de Feitas, N.: Bayesian optimization in a billion
dimensions via random embeddings. Journal of Artificial Intelligence Research 55, 361–387
(2016)

154. Wang, Z., Gehring, C., Kohli, P., Jegelka, S.: Batched Large-scale Bayesian Optimization
in High-dimensional Spaces. In: Storkey, A., Perez-Cruz, F. (eds.) Proceedings of the
21st International Conference on Artificial Intelligence and Statistics (AISTATS). vol. 84.
Proceedings of Machine Learning Research (2018)

155. Wistuba, M., Schilling, N., Schmidt-Thieme, L.: Automatic Frankensteining: Creating Com-
plex Ensembles Autonomously. In: Proceedings of the 2017 SIAM International Conference
on Data Mining (2017)

156. Wolpert, D.: Stacked generalization. Neural Networks 5(2), 241–259 (1992)
157. Xing, E., Jebara, T. (eds.): Proceedings of the 31th International Conference on Machine

Learning, (ICML’14). Omnipress (2014)

54 hyperparameter optimization

1 Hyperparameter Optimization 33

158. Zabinsky, Z.: Pure Random Search and Pure Adaptive Search. In: Stochastic Adaptive Search
for Global Optimization, pp. 25–54. Springer (2003)

159. Zeng, X., Luo, G.: Progressive sampling-based Bayesian optimization for efficient and
automatic machine learning model selection. Health Information Science and Systems 5(1)
(2017)

160. Zhang, Y., Bahadori, M.T., Su, H., Sun, J.: FLASH: Fast Bayesian Optimization for Data
Analytic Pipelines. In: Krishnapuram, B., Shah, M., Smola, A., Aggarwal, C., Shen, D.,
Rastogi, R. (eds.) Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD). pp. 2065–2074. ACM Press (2016)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

hyperparameter optimization 55

4
P R A C T I C A L T R A N S F E R L E A R N I N G F O R B AY E S I A N
O P T I M I Z AT I O N

Matthias Feurer, Benjamin Letham, Frank Hutter, and Eytan Bakshy
(2022). “Practical Transfer Learning for Bayesian Optimization.” In:
arXiv:1802.02219v4 [cs.LG].

paper summary. This paper proposes a novel ensemble of Gaus-
sian processes for hyperparameter optimization in a transfer learning
setting. It is hyperparameter-free and comes with theoretical guaran-
tees that using transfer learning does not have a negative effect on
hyperparameter optimization. Moreover, we show that it is superior
to other transfer hyperparameter optimization algorithms in extensive
experiments.

project idea . Matthias Feurer proposed the project and devel-
oped the RGPE methodology with feedback from Benjamin Letham.
Matthias Feurer and Frank Hutter extended the project to contain the
mixture of Gaussian processes ensemble and the relation of RGPE and
the transfer acquisition function.

implementation and experimentation. The initial imple-
mentation was done by Matthias Feurer with help from Benjamin
Letham while doing an internship at Facebook. The final code, includ-
ing a re-implementation of the work done at Facebook, was conducted
solely by Matthias Feurer. All final experiments were conducted by
Matthias Feurer.

paper writing . Benjamin Letham wrote the first draft, which
Matthias Feurer and Eytan Bakshy revised. Then, Matthias Feurer
extended it with the related work sections, new methodology, and
theoretical sections. Matthias Feurer, Benjamin Letham, and Frank
Hutter edited the final version.

license . This chapter was published as an arXiv preprint and is
licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.
0/). No changes were made to the original publication.

57

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Practical Transfer Learning for Bayesian Optimization

Matthias Feurer feurerm@cs.uni-freiburg.de
Department of Computer Science, Faculty of Engineering
University of Freiburg, 79110 Freiburg, Germany

Benjamin Letham bletham@fb.com
Meta
1 Hacker Way, Menlo Park, CA 94025, USA

Frank Hutter fh@cs.uni-freiburg.de
Department of Computer Science, Faculty of Engineering
University of Freiburg, 79110 Freiburg, Germany, and
Bosch Center for Artificial Intelligence, Germany

Eytan Bakshy ebakshy@fb.com

Meta

1 Hacker Way, Menlo Park, CA 94025, USA

Abstract

When hyperparameter optimization of a machine learning algorithm is repeated for multiple
datasets it is possible to transfer knowledge to an optimization run on a new dataset.
We develop a new hyperparameter-free ensemble model for Bayesian optimization that
is a generalization of two existing transfer learning extensions to Bayesian optimization
and establish a worst-case bound compared to vanilla Bayesian optimization. Using a
large collection of hyperparameter optimization benchmark problems, we demonstrate that
our contributions substantially reduce optimization time compared to standard Gaussian
process-based Bayesian optimization and improve over the current state-of-the-art for
transfer hyperparameter optimization.

Keywords: Bayesian optimization, Hyperparameter optimization, Meta-learning, Transfer
HPO, AutoML

1. Introduction

Bayesian optimization (BO) is a data-efficient blackbox optimization technique that is
routinely used for hyperparameter optimization (HPO) of machine learning (ML) algo-
rithms (Snoek et al., 2012; Feurer and Hutter, 2019). Given a small initial set of function
evaluations, BO proceeds by fitting a surrogate model to those observations, typically a
Gaussian process (GP), and then optimizing an acquisition function that balances exploration
and exploitation in determining what point to evaluate next.

If the same ML algorithm with the same hyperparameters is routinely optimized for
different datasets, for example in online machine learning services, we can lift the blackbox
assumption and use data from prior BO runs as ancillary information. As the hyperparameter
surfaces of an ML algorithm applied to different datasets are similar, we aim for a strategy to
transfer this ancillary information across datasets to find good solutions faster than vanilla
BO. To facilitate such transfer learning in BO we specify several desiderata to allow broad
applicability to new applications:

©2022 Matthias Feurer, Benjamin Letham, Frank Hutter and Eytan Bakshy.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/.

ar
X

iv
:1

80
2.

02
21

9v
4

 [
st

at
.M

L
]

 2
4

O
ct

 2
02

2
practical transfer learning for bayesian optimization 59

Feurer, Letham, Hutter and Bakshy

1. Scalability to many tasks: having many potentially related past BO runs requires a
method that is able to handle both many tasks and many observations in total across
all tasks.

2. Fast update of the surrogate model: similarly, such a method needs to be able to easily
update the surrogate model after adding a new observation on the current target task.

3. Easy and fast adaptability to different tasks: the method should neither depend on
task-specific hyperparameter settings, nor depend on numerical task descriptors which
have to be manually defined by experts.

4. No performance degradation: transfer learning must not substantially worsen perfor-
mance compared to vanilla BO, even in the worst case of misleading prior information.

Even though several BO methods have been developed to borrow strength across runs
(see Section 2.3 for a review), none of them satisfy all of the desiderata above. The main
merit of this work is to introduce a set of methods that does so. Our specific contributions
are:1

1. We develop a new ensemble model for BO, based on a linear combination of GPs and
show that this is a generalization of two existing, scalable transfer learning extensions
to BO and is similarly scalable (desiderata #1 and #2).

2. We introduce a novel, hyperparameter-free (desideratum #3) method to weight models
in a transfer learning setting based on Agnostic Bayesian Learning of Ensembles,
which allows us to bound the worst-case slowdown over BO to a multiplicative factor
(desideratum #4).

3. We perform the largest experimental evaluation of transfer learning for hyperparameter
optimization (transfer HPO) to date, using six hyperparameter optimization bench-
marks with a total of 249 tasks and 9 competitor methods from the literature. Our
contributions robustly improve over the current state of the art, without any need for
hyperparameter tuning or benchmark-specific modifications.

4. We provide the implementation of our methods, the reimplementations of the competi-
tor methods, and the collection of benchmarks as open-source code, to both simplify
further research and reproducing our experiments.

The paper is structured as follows. First, in Section 2 we give background information
on BO, introduce the problem setting and give a primer on related work. Then, in Section 3
we review related work on linear combinations of models for Bayesian optimization. Next,
we present our methodology in Section 4. Then, we describe the baselines and benchmarks
we release (Section 5) and provide experimental evidence that our proposed methodology is
preferable (Section 6). Finally, we give a comprehensive overview of related work (Section 7)
before concluding the paper (Section 8).

1. An earlier version of this work is available on arXiv and we compare against it in Appendix D.5.

2

60 practical transfer learning for bayesian optimization

Practical Transfer Learning for Bayesian Optimization

2. Background and Problem Setup

In this section we provide the necessary background and introduce the problem setup for the
related work on linear combinations of models in Section 3 and our own, new methodology
in Section 4.

2.1 Bayesian Optimization

The goal of BO is to find a global minimum xopt of a blackbox function in a bounded space
X by iteratively querying the function at input configurations x1,x2, . . . ,xn and observing
the corresponding outputs y1, y2, . . . , yn. In each iteration, we first fit a probabilistic model
f on observations D = {(xk, yk)}nk=1 made so far. We then use an acquisition function α(x)
to select a promising configuration to evaluate next, balancing exploration and exploitation.

In general, yk may be a noisy estimate of the function value. We estimate the underlying
function with GP regression, yielding a posterior f(x|D) with an analytical mean µ(x) and
variance σ2(x) (Rasmussen and Williams, 2006, Eqs. 2.25 and 2.26):

µ(x∗) = kT∗ (K + σ2nI)−1y, σ2(x∗) = kθ(x∗,x∗)− kT∗ (K + σ2nI)−1k∗, (1)

where kθ(·, ·) is a kernel function with hyperparameters θ, k∗ is the vector of covariances
between the new point x∗ and all training points, and K is the kernel matrix of size n× n
where each entry Ki,j = kθ(xi,xj).

The most commonly used acquisition function is the expected improvement (EI) (Jones
et al., 1998), which can be computed in closed form and generally gives good results. Let
f(xbest) be the current best function value: f(xbest) = mink∈(1,...,n) f(xk). The EI is

α(x|D) = Ef(x|D) [max(0, f(xbest)− f(x))] = σ(x)zΦ(z) + σ(x)φ(z), (2)

with z = f(xbest)−µ(x)
σ(x) , Φ(·) being the CDF and φ(·) being the PDF of the normal distribution.

Thorough introductions to Bayesian optimization are given by Brochu et al. (2010), Shahriari
et al. (2016), Frazier (2018) and Garnett (2022).

2.2 Problem Setup

We suppose that t− 1 BO runs have been completed on previous tasks with the same search
space X . Let Di =

{
(xik, y

i
k)
}ni
k=1

be the function evaluations made for past optimization
run i ∈ (1, . . . , t− 1). We fit a GP model to the observations of each past run i and refer to
these models as base models. They have posterior f i(x|Di), with mean and variance µi(x)
and σ2i (x), respectively. These remain fixed throughout the optimization, inasmuch as we
do not obtain new observations for them. The current optimization problem we are trying
to solve is task t. We fit a GP to observations from task t and call it the target model f t.
The target model is refit after each new function evaluation. We overload notation and
define D = {D1, . . . ,Dt}. Our goal is to minimize the target function using the base models
f1, . . . , f t−1 and the target model f t.

2.3 A Primer on Related Work

Borrowing strength from past runs is a form of meta-learning and transfer learning. Tech-
niques for transfer learning for hyperparameter optimization (transfer HPO) can be catego-

3

practical transfer learning for bayesian optimization 61

Feurer, Letham, Hutter and Bakshy

rized into 9 approaches: 1) a single model that is trained on all tasks simultaneously, 2) a
learned kernel that is trained on the base tasks and applied to the target task, 3) learning an
adaptation of each base task to the current task, 4) an initial design learned from previous
optimization runs, 5) reducing the design space based on previous optimization runs, 6)
changing the acquisition function to include past data or models, 7) learning a separate model
for each base task and combining those, 8) hybrid methods, and 9) prior-based methods.
We review these techniques in Section 7 and refer to Vanschoren (2019) for an in-depth
overview of meta-learning. We discuss two relevant methods which fall into categories 6 and
7 in Section 3, since they are special cases of the methods we introduce in this paper.

3. Weighting-Based Bayesian Optimization Transfer Learning

Several recent works in transfer learning for BO suggest modeling the current task t as a
linear combination of a surrogate model fit to current task t, as well as one surrogate model
fit to each of the base tasks (1, . . . , t− 1) (Wistuba et al., 2016; Lindauer and Hutter, 2018;
Wistuba et al., 2018). If the fitted base models were stored during past runs, they can be
used directly without any refitting of prior results, and only the GP for the current task
needs to be updated. As an additional advantage, such methods do not require the existence
of meta-features. However, they depend crucially on the strategy for computing the weights.
In this section, we review the ranking method employed by the two-stage transfer surrogate
for learning this linear combination and an acquisition function that is used on top of such
an ensemble, and assess them with respect to the design criteria given in the introduction.

3.1 Two-Stage Transfer Surrogate Model with Rankings

The two-stage transfer surrogate model with rankings (TST-R, Wistuba et al., 2016) suggests
combining the mean predictions of the models as

µ̄(x∗) =
t∑

i=1

wiµi(x∗),

while dropping the variance of the base models, and using for a predictive variance just that
of the target model. It uses a Nadaraya-Watson kernel weighting to linearly combine the
predictions from each GP according to a normalized distance measure across tasks:

wi =
kρ(χi, χt)∑t
j=1 kρ(χj , χt)

,

with the kernel

kρ(χi, χj) = γ

(||χi − χj ||2
ρ

)
.

Here ρ is a bandwidth hyperparameter and γ is given by the Epanechnikov kernel:

γ(r) =

{
3
4(1− r2) if r ≤ 1

0 otherwise.

4

62 practical transfer learning for bayesian optimization

Practical Transfer Learning for Bayesian Optimization

The most important question is how to describe each task with a vector χ, and Wis-
tuba et al. (2016) proposed two different methods to obtain them: (1) descriptive meta-
features (Brazdil et al., 1994; Rivolli et al., 2018), and (2) directly modeling the distance
as the proportion of discordant pairs when the base model is evaluated on configurations
evaluated on the current task:

||χi − χt||2 =
2

nt(nt − 1)

nt−1∑

k=1

nt∑

l=k+1

1((f i(xtk) < f i(xtl))⊕ (ytk < ytl)),

where ⊕ is the exclusive-or operator.
The bandwidth ρ, a sensitive hyperparameter which must be chosen by the user (violating

desideratum #3), gives the fraction of discordant pairs a previously observed dataset may
share with the target dataset before being discarded. Updating the distance measure
over time improves over the meta-feature based distance measure (as also shown by Leite
et al. (2012) for a closely related method), and we will therefore not compare to any
meta-feature-based method (requiring meta-features would also violate desideratum #3).

The kernel is used to combine mean predictions of base models with the mean prediction
of the target model, but variances are not combined—the combined model is given the
variance of the target model and variances of base models are ignored. Furthermore, TST-R
assigns a constant value to the distance of the target model to itself; therefore the actual
weight of the target model in the ensemble depends on the magnitude of the weights of
the base models. As weights are computed independently of each other, correlated base
tasks can shift the weight in the combined model. Due to the close relation to our proposed
model, we include TST-R for comparison in our experiments of Section 6, where we will
refer to using the model as a drop-in replacement of the standard GP in BO as TST-R(EI).

3.2 Transfer Acquisition Function

Another approach to handling meta-data in BO is to adapt the acquisition function to a
so-called transfer acquisition function (TAF, Wistuba et al., 2018). Similarly to TST-R(EI),
the TAF uses a weighting of the different tasks, but applies them to the acquisition function
rather than to the surrogate model. The expected improvement acquisition function using
only the target model f t on the target task is combined linearly with an improvement term
computed on each base task:

α(x) = wtEIt(x) +
t−1∑

i=1

wiIi(x)

= wtEIt(x) +

t−1∑

i=1

wi max

(
0,

(
min
xk∈Dt

f i(xk)

)
− f i(x)

)

= wtEf t(x)
[
max(0, f t(xbest)− f t(x))

]
+

t−1∑

i=1

wi max

(
0,

(
min
xk∈Dt

f i(xk)

)
− f i(x)

)
,

where f(xbest) = mink∈(1,...,nt) f t(xtk), i.e. the best observation on the target task as predicted
by the target model.

5

practical transfer learning for bayesian optimization 63

Feurer, Letham, Hutter and Bakshy

The idea is to fade out base tasks more quickly than TST-R(EI) by not only measuring
the similarity with the target task as discussed in the previous subsection, but also by
measuring whether there is still information that can be transferred (i.e., whether the base
model “knows” about a better hyperparameter setting than those tried so far).

The TAF uses the TST-R weighting scheme which we described in the previous subsection,
and inherits the bandwidth hyperparameter ρ. As TAF is a special case of the model we
develop in this paper, we will include it as a baseline in Section 6. We discuss this method in
more detail in Appendix A, where we also relate it to the well-known meta-learning strategy
of active testing (Leite et al., 2012).

4. Methodology

In this section, we describe our new approach for transfer learning in BO. We first develop a
new probabilistic weighting scheme for combining base models with the target model (Section
4.1). Next, we demonstrate how it can be used in a linear combination of GPs and present
how to use this ensemble model for BO (Section 4.2). Then, we introduce a regularization
mechanism to deal with a potentially large number of unrelated base models (Section 4.3).
We end this section by providing theoretical insight into the described weighting scheme
and regularization (Section 4.4).

4.1 Computing Ensemble Weights

Intuitively, we wish to learn a stacking meta-model that combines all base models and the
target model into a single, joint model (Pardoe and Stone, 2010). Training data for the
stacking meta-model is generated in two ways. For base models, we evaluate their ability
to predict the observations Dt for task t. For the target model, these would be in-sample
predictions and thus overly optimistic, so we use leave-one-out cross-validation on Dt to
get an estimate of the target model’s ability to correctly predict the target task. Then, a
combined model is learned to explain the target task observations in the best possible way.
In the BO setting, the target model has access to data from the correct function (the target
task), but it will not be the best model to use early in the optimization because it does
not yet have enough data to accurately model the function. Therefore, for each timestep,
we need to find out which models perform best at explaining the data observed so far. In
the beginning, base models trained on previous tasks might perform better than the target
model, so we would like to use them to transfer knowledge. As soon as we are certain that
the target model is the best, we would like to rely on it instead.

A solution for this problem is given by agnostic Bayesian ensemble learning (ABE,
Lacoste et al., 2014). Given a desired loss function, each predictor in the ensemble is
weighted according to the probability that it is the best predictor in the ensemble for the
target task.2 This has the desirable property of taking into account our uncertainty about
when to trust the target model and which base models to rely on. This strategy further
allows us to also learn the weight of the target model, which is not possible with the TST-R

2. ABE was introduced to construct an ensemble from models trained on a single dataset where we have
access to a validation dataset or can obtain it via cross-validation. In contrast, we use ABE here to
transfer knowledge from prior tasks to new tasks in a transfer stacking manner and have therefore adjusted
the way we obtain this validation set.

6

64 practical transfer learning for bayesian optimization

Practical Transfer Learning for Bayesian Optimization

strategy. Concretely, ABE constructs an ensemble as

f̄(x) =
t∑

i=1

p(f i == f∗|Dt)f i(x),

where f∗ ∈ {f1, f2, . . . , f t} is the predictor that minimizes the desired loss function.
ABE either directly models the posterior risk of a potential ensemble member or uses the

bootstrap of the predictions on the target tasks; both of these approaches are agnostic to
the models used. We use the latter method due to its simplicity and because it only requires
the models’ predictions on the target task.

We first construct the loss function for use with ABE. Our goal in BO is to find the
minimum function value and a model will be useful for optimization if it is able to correctly
order observations according to their function value. For meta-learning, we wish to assess the
ability of model i to generalize to the target function, and so construct a loss function that
measures the degree to which each model is able to correctly rank the target observations
Dt. Given nt > 1 target function evaluations, we define the loss as the number of misranked
pairs:

L(f,Dt) =

nt∑

k=1

nt∑

l=1

1((f(xtk) < f(xtl))⊕ (ytk < ytl)), (3)

where ⊕ denotes the exclusive OR operator (XOR).
Note here that we are evaluating base models only on their predictions for the target

task, and thus are assessing their ability to generalize to the target function. For the target
model, as mentioned above, this would be an estimate of the in-sample error and would
not accurately reflect generalization. We estimate generalization in the target model using
cross-validation, in practice with leave-one-out models. Let f t−j indicate the target model
with observation (xtj , y

t
j) left out. The loss for the target model is computed as

L(f t,Dt) =

nt∑

k=1

nt∑

l=1

1((f t−k(x
t
k) < ytl)⊕ (ytk < ytl)). (4)

Models f t−j are only useful when we fit them with at least two observations. For this
reason we start the weighting procedure only when we have gathered three observations.
Before that we assign uniform weights to all models.

The ranking loss is preferable to other choices, such as squared error or model log-
likelihood, because the actual values of the predictions do not matter for optimization—we
only need to identify the location of an optimum. It is easy to see that if all of the models
are able to correctly order a set of points then the ensemble will also correctly order those
points.

We now weight each model with the probability that it is the ensemble member with
the lowest ranking loss. We estimate this probability with a Monte Carlo approximation.
Namely, we draw S bootstrap samples `i,s ∼ L(f i,Dts) from each of our models i = 1, . . . , t,
and for each sample s assess which model aligns best with the observed data Dt. The weight
for model i is then computed as

wi =
1

S

S∑

s=1

(
I(i ∈ arg mini′ li′,s)∑t
j=1 I(j ∈ arg mini′ li′,s)

)
, (5)

7

practical transfer learning for bayesian optimization 65

Feurer, Letham, Hutter and Bakshy

Algorithm 1: Learning weights with the agnostic Bayesian learning of ensembles

1: Input: Number of bootstrap samples S, all observations on all base tasks and the target task
Di∀i ∈ (1, . . . , t), all base models and the target model f i∀i ∈ (1, . . . , t)

2: if |Dt| < 3 then
3: return weights

[
1
t |i ∈ (1, . . . , t)

]

4: end if
5: L = [[l1,1, . . . , l1,S], . . . , [lt,1, lt,S]] // Initialize 2d array to store the losses per

model and bootstrap sample

6: for s ∈ (1, 2, . . . , S) do
7: B = {randint(1, nt)}nt

k=1 // Draw bootstrap indices with replacement

8: Dt
s = {(xt

k, y
t
k)|k ∈ B} // Resample the target task data

9: for i ∈ (1, 2, . . . , t) do
10: if i < t then
11: li,s = L(f i,Dt

s) // Equation 3

12: else
13: lt,s = L(f t,Dt

s) // Equation 4

14: end if
15: end for
16: end for
17: Compute weights w =

[
1
S

∑S
s=1

(I(i∈argmini′ li′,s)∑t
j=1 I(j∈argmini′ li′,s)

)
|i ∈ (1, . . . , t)

]
// Equation 5

18: return weights w

which distributes the weight of a sample across all members of the argmin in case of a tie.
Because base models compete against each other, correlated base models are weighted down
as in the original ABE strategy (Lacoste et al., 2014). Using ABE induces a slight overhead
compared to TST-R, but is still substantially faster than using a single Gaussian process for
all data points (see Appendix B). We present pseudo-code in Algorithm 1.

4.2 Ranking-Weighted Gaussian Process Ensemble

Having established a weighting strategy, we propose to use a weighted combination of the
predictions of each base model and the target model itself: f̄(x|D) =

∑t
i=1wif

i(x|Di). We
will show that this is a very powerful formalism. First, this ensemble model remains a GP,
and in particular

f̄(x|D) ∼ N
(∑t

i=1
wiµi(x),

∑t

i=1
w2
i σ

2
i (x)

)
, (6)

which leaves the usual computational machinery for BO with GPs valid, such as the
applicability of arbitrary acquisition functions, a closed-form expression for EI, and the
ability to draw joint samples for parallel optimization. We dub this model ranking-weighted
Gaussian process ensemble, or short, RGPE.

Additionally, each base model remains unchanged throughout the optimization and can
be loaded directly from the previous runs. The fitting cost is only the cost of fitting the
target model and inferring the weights wi. Finally, predictions are made independently for
each GP, and at prediction time we obtain only a linear slowdown relative to using only the
target model. In case there would be too many data points for the base tasks to fit a GP
on them, one could also replace them with more scalable models, such as Bayesian neural

8

66 practical transfer learning for bayesian optimization

Practical Transfer Learning for Bayesian Optimization

Abbreviation Description Section

RGPE(mean) Ranking-weighted Gaussian process ensemble using only the
variance of the target model

4.2.1

RGPE(NEI) Ranking-weighted Gaussian process ensemble with noisy EI 4.2.2
RGPE(MoGP) Mixture of Gaussian processes weighted by RGPE 4.2.3
RGPE(TAF) Transfer acquisition function with the RGPE model 4.2.4

Table 1: Instantiations of RGPE.

networks (Schilling et al., 2015; Snoek et al., 2015; Springenberg et al., 2016) or random
forests (Hutter et al., 2011), but this is beyond the scope of this paper.

To compensate for the fact that response values of different tasks can live on different
scales, we standardize each model prior to inclusion in the ensemble (Yogatama and Mann,
2014). We study alternatives to this strategy in Appendix D.3.

We now present how we will use the RGPE model for BO and give an overview of the
different instantiations of RGPE in Table 1.

4.2.1 Expected improvement and Dropping Base Model Variance

The most straight-forward application of RGPE for BO is to use the ensemble as a plug-in
replacement for the standard GP. As the most simple strategy one can use regular expected
improvement with the posterior mean as a plug-in estimate for f(xbest). As a second ad-hoc
strategy we consider using only the variance of the target model and drop the base model
variances as suggested by TST-R(EI) (see Section 3).3 We refer to these techniques as
RGPE(EI) and RGPE(mean).

4.2.2 Noisy Expected Improvement

However, with the formulation in Equation 6, the base models can add uncertainty to points
where the target model is certain. In particular, they can add posterior variance to points
where the target model has noiseless observations, which can inflate the acquisition value
around already-observed points. Because base models are not updated over time, this could
lead to the optimization process stalling when using standard EI as we discussed in the
previous subsection. Also, if observations are noisy or if there is uncertainty in base models
at the current best, f(xbest) in the expected improvement (see Equation 2) is not a constant,
but rather is a random variable with uncertainty both in which point is the best, and what
the function value at that point is. This can occur when the locations of the observations
in the base models do not overlap with those of the target model or if there is overlap but
noise in the base models, or if there is noise in the target model.

3. An alternative derivation of dropping the base model variances is using the weighted base models as a
mean function in the GP model. If we define the mean function to be m(x) =

∑t−1
i=1 wif

i(x) and the
target GP to regress ỹ = m(x) + wty we obtain a predictive mean of the form

µ(x∗) = m(x∗) + kT∗ (K + σ2
nI)−1(ỹ −m(X)), (7)

while the variances of the base models are not considered at all.

9

practical transfer learning for bayesian optimization 67

Feurer, Letham, Hutter and Bakshy

Typical approaches for computing the expected improvement with noisy observations can
be used with the RGPE; we use the so-called noisy expected improvement to account for the
uncertainty in the best value (Letham et al., 2019). We refer to the resulting combination of
RGPE and the noisy expected improvement as RGPE(NEI).

With this approach, we integrate out the uncertainty in the current best value, extending
the expectation in Equation 2 to be over the joint posterior of p(f(x), f(xbest)|D). We first
describe the procedure for a single Gaussian process before explaining how to use it with
the RGPE model.

The expectation is computed by first using Monte-Carlo (MC) sampling to integrate over
the posterior p(f(xbest)|D), by drawing joint samples from the ensemble posterior at all of
the observations x1,x2, . . . ,xn. In each sample, f(xbest) is deterministically computed as the
best value in the sample draw. For each joint sample, we can then compute the conditional
posterior p(f(x)|f(xbest),D) by conditioning the Gaussian process on the (noiseless) sample
values at the observations. This means that we condition the GP on {(xk, f̃(xk)}nk=1 with
f̃ ∼ p(f |D).4 Afterwards, f(xbest) is deterministic and we can compute EI for each MC
sample in the usual manner using Equation 2. Averaging EI over the MC samples produces
an estimate for the joint expectation.

For use with an ensemble model the noisy EI requires us to sample from the ensemble
posterior. Because all models in the ensembles we consider are independent, the sampling
and conditioning described above can be done independently for each base model. The
integration procedure does not change for the target model, but for the base models. Here
we need to draw joint samples at the locations observed on the target task and the respective
base tasks, i.e. conditioning the GP for task i on {(xik, f̃ i(xik)}n

i

k=1 ∪ {(xtk, f̃ i(xtk)}n
t

k=1 with
f̃ i ∼ p(f i|Di). For each draw we then computed EI using the ensemble. In practice we used
30 draws of quasi-Monte Carlo integration (using scrambled Sobol sequences as described by
Letham et al. (2019)).

4.2.3 Ranking-Weighted Mixture of Gaussian Processes

Having introduced a combination of models based on the addition of random variables, we
now establish a way in which the combination of GPs can be used in a mixture-of-GPs
fashion (Tresp, 2001). The PDF of a Gaussian mixture model at f(x) with t components is
pmix(f(x)) =

∑t
i=1wipi(f(x)), where pi is the (Gaussian) PDF of component i. Making use

of the fact that we can sample from a mixture-of-GPs by first sampling a mixture component
and then sampling from the GP, the expected improvement at x can be decomposed:

EImix(x) = Ef(x)∼pmix
[I(x)] = EiEf(x)∼pi [I(x)] =

∑t

i=1
wiEIi(x), (8)

where EIi(x) is the EI computed under mixture component i. Thus, EI for the mixture
model is a weighted sum of the EI for each of member of the ensemble. In order to select
xbest for EIi we use the predictive mean of the respective model i. Importantly, we choose
xbest ∈ Dt, so we aim to improve only over observations made on the target task. We call
the resulting procedure RGPE(MoGP).

4. In practice, for numerical stability the noise levels at these conditioning points will not be exactly 0, so
we set it to the minimum noise level our GP can take on during its hyperparameter optimization: e−25.

10

68 practical transfer learning for bayesian optimization

Practical Transfer Learning for Bayesian Optimization

In order to deal with noise in the base models we use the re-interpolation trick (Forrester
et al., 2008). The re-interpolation trick can be regarded as a one-shot alternative to the
noisy EI described in Section 4.2.2. Instead of using MC integration, we condition the base
model GP f i on the predictive mean at the target observations, i.e. Di ∪ {(xtk, f i(xtk)}ntk=1.
This ensures that the individual f i(xbest) per base model are constants and the EIs using
the individual base models can be computed in closed form.

Additionally, the result in Equation 8 makes it clear how the mixture of GPs can be used
with any other acquisition function that is based on the expectation of a quantity (Wilson
et al., 2018), for example the knowledge gradient (Frazier, 2018) and max-value entropy
search (Wang et al., 2017), while it is not clear whether this can be done with the TAF.

4.2.4 Transfer Acquisition Function

Finally, we notice a striking resemblance between this method and the transfer acquisition
function from Section 3.2, with a single difference: Equation 8 uses the EI and not only the
improvement for the base models. The transfer acquisition function is therefore a different
approach of dealing with the variance of the base models in a mixture-of-GPs, and this line
of reasoning gives us a derivation of the TAF from our RGPE model given in Equation 6.
This combination of our RGPE model with the well-performing transfer acquisition function
will be the overall best method in our experiments and we will refer to it as RGPE(TAF).

4.3 Preventing Weight Dilution

One challenge with this type of ensemble is preventing weight dilution by a large number of
models. Due to the bootstrap sampling, even models with bad generalization performance
have a chance of obtaining a non-zero weight. This is because when we consider a very large
number of poor models, the chance of at least one of them producing the correct ranking on
a sample goes to 1 as the number of models increases.

In order to prevent weight dilution we add a base model filtering step to drop base models
which are unlikely to improve over the target model. The weight calculation mechanism
presented in the previous section allows us to directly compare two models according to their
quality, and in particular to compare the quality of any base model to the quality of the
current target model. We prevent weight dilution by discarding base models with frequency
proportional to their probability of producing a worse ranking than the target model. Base
model i ∈ (1, . . . , t− 1) is discarded from the ensemble in each iteration with probability

pdrop(i) = 1−
((

1− nt
H

) ∑S
s=1 1(li,s < lt,s)

S

)
, (9)

where H is the optimization horizon. The factor
∑S
s=1 1(li,s<lt,s)

S is the probability that the
base model outperforms the target model. Instead of a conjugate beta prior, we use a
multiplicative prior (1− nt

H) that reduces the probability of keeping a base model linearly
over time and encodes our belief that the target model is the correct model and should be
favored. This ensures that at the end of the optimization we use only the target model. We
highlight that this mechanism does not automatically give a higher weight to the target

11

practical transfer learning for bayesian optimization 69

Feurer, Letham, Hutter and Bakshy

model. Base models are discarded prior to computing the weights. Therefore, the target
model still needs to outperform the remaining base models in order to obtain a high weight.

Preventing weight dilution also has computational benefits in that it results in fewer
GP predictions for each ensemble prediction. Models are only removed from the ensemble
proportionally to their probability of performing worse than the target model. In contrast,
TST-R removes models if they perform badly on the observed function evaluations without
taking into account the performance of the target model, rather based on the hyperparameter
ρ. Furthermore, there is a non-zero probability that we only consider the target model in
each iteration, which we will use in Section 4.4.

4.4 Theoretical Analysis

Here, we show that in each iteration the proposed weighting mechanism has a positive chance
of performing vanilla BO, in which only the target model is used. Therefore, standard proofs
for the convergence of BO apply (Bull, 2011) with a multiplicative slowdown factor.5

Theorem 1 Bayesian optimization using a linear combination of Gaussian processes with
weights learned according to Section 4.3 is at most a factor of

1/

(
1

H

H∑

h=1

(
h

H

)t−1)

slower than Bayesian optimization in the worst case.

As before, H is the optimization horizon, while we change the number of observed data
points nt to h, i.e. the current iteration.

Proof sketch: In order for the proposed method to fall back to vanilla BO, we need the
weights of all models except that of the base model to be zero. Given the definition of pdrop
in Equation 9, and setting nt to h in pdrop(i, h), we can calculate the probability of dropping
all base models at step h as

∏t−1
i=0 pdrop(i, h), and so the expected proportion of iterations

that proceed as vanilla BO is

1

H

H∑

h=1

t−1∏

i=1

pdrop(i, h) (10)

=
1

H

H∑

h=1

t−1∏

i=1

(
1−

((
1− h

H

) ∑S
s=1 1(li,s < lt,s)

S

))
(11)

≥ 1

H

H∑

h=1

(
1−

((
1− h

H

)
S

S

))t−1
(12)

=
1

H

H∑

h=1

(
h

H

)t−1
(13)

> 0 (14)

5. This only applies to results that give guarantees in terms of the simple regret and not the cumulative
regret.

12

70 practical transfer learning for bayesian optimization

Practical Transfer Learning for Bayesian Optimization

The observations gathered in iterations when not all base models are dropped do not impose
any issues on the convergence proof by Bull, which we show in Appendix C. �

This analysis is for the worst-case setting in which every base model consistently out-
performs the target model. In practice, base models are frequently worse than the target
model, leading to an improved bound.

5. An Experimental Framework for Transfer Hyperparameter
Optimization

In this section we describe the experimental framework we implemented to develop our new
methods and compare them to prior work from the literature. For this, we give an overview
of the benchmark problems we use and also detail our implementation of the proposed
methods and prior work into the Bayesian optimization framework SMAC3.

We provide all code at https://github.com/automl/transfer-hpo-framework.

5.1 Benchmarks

We evaluate our methods on six benchmark problems we collected from the literature. We
make them available with a uniform API to simplify their usage and allow them to be reused.

First, we use two HPO benchmark problems for optimizing the four hyperparameters
of a support vector machine (SVMs,4D) and the ten hyperparameters of gradient boosting
(XGBoosts,10D) following Perrone et al. (2018). These benchmark problems are surrogate
benchmarks built on data from OpenML.org (Vanschoren et al., 2014). They were not released
to the public, but data to construct the surrogates is available from OpenML.org, and so we
have reconstructed them and made them publicly available as part of our framework release.6

These are evaluations on 38 binary datasets without missing values from the OpenML
100 (Bischl et al., 2019). We follow the standard methodology of employing a random forest
as a surrogate (Eggensperger et al., 2015), and optimize its hyperparameters using random
search and 10-fold cross-validation to maximize the Spearman rank correlation. We then
also use the data from the same source that is available for generalized linear models to
construct a 2-d HPO problem (GLMNETs,2D).

Second, we use LCBench, a neural network benchmark that contains the performance of
deep neural networks implemented in Auto-Pytorch (Zimmer et al., 2021, NNt,7D). These
networks are trained on 35 different tasks from the OpenML AutoML benchmark (Gijsbers
et al., 2019), excluding the four large ones. For each dataset, the benchmark contains 2000
randomly sampled hyperparameter settings from a 7-d hyperparameter space.

Third, we use two large sets of hyperparameter optimization benchmark problems for
AdaBoostg,2D and SVMg,6D on a diverse set of 50 datasets, with sizes ranging from 35 to
250000 training examples, and from 2 to 7000 features from Schilling et al. (2016) and
Wistuba et al. (2018). Both of them are grid benchmarks, meaning that they contain a
discretized grid of hyperparameter settings and the corresponding test-set accuracies. The
AdaBoostg,2D benchmark, inspired by a benchmark suggested by Bardenet et al. (2013),

6. We use the curated data by Kühn et al. (2018), which is actually a superset of what was used by Perrone
et al. (2018). This data is available in multiple csv files created by the uploaders of the data to OpenML,
while Perrone et al. (2018) downloaded the data from OpenML.org independently. These csv files contain
all results required to construct the surrogates.

13

practical transfer learning for bayesian optimization 71

Feurer, Letham, Hutter and Bakshy

Name

#
D

im

#
C

at

#
C

on
t

#
C

on
d

#
T
as

ks

#
Sa

m
p

R
ef

er
en

ce

AdaBoostg,2D 2 0 2 0 50 50 Schilling et al. (2016)
SVMg,6D 6 3 3 0 50 50 Schilling et al. (2016)
GLMNETs,2D 2 0 2 0 38 50 ours
SVMs,4D 4 1 3 2 38 50 Perrone et al. (2018)
XGBoosts,10D 10 1 9 4 38 50 Perrone et al. (2018)
NNt,7D 7 0 7 0 35 50 Zimmer et al. (2021)

Table 2: Summary of the benchmark problems considered. We give the name; dimensionality;
number of categorical, continuous, and conditional hyperparameters; number of
tasks; and the number of samples used to train the base models.

contains a grid of two hyperparameters, the number of iterations and the number of product
terms, for a total of 108 evaluations. The SVMg,6D benchmark contains a grid of six
hyperparameters: three binary hyperparameters indicating a linear, polynomial, or RBF
kernel; the penalty hyperparameter C; the degree of the polynomial kernel (0 if unused);
and the RBF kernel bandwidth (0 if unused) for a total of 288 function evaluations. Note
that this is a harder problem than the common 2-dimensional RBF SVM problem.

All of these are available under a unified interface for the first time which allows them
to easily be reused by other researchers. We summarize the benchmarks in Table 5.1 and
provide the exact search spaces in Appendix D.

5.2 Implementation of Transfer HPO Methods

We used the SMAC3 Bayesian optimization package (Lindauer et al., 2021), which to the
best of our knowledge is the only BO package that natively supports Gaussian processes with
categorical and conditional hyperparameters. SMAC3 implements GPs with scikit-learn (Pe-
dregosa et al., 2011), and we used the ARD Matérn 5/2 kernel. Kernel hyperparameters θ
were optimized in each iteration for the maximum a-posteriori estimate via L-BFGS-B using
priors on the GP hyperparameters (a top-hat prior on the length-scales, a log-normal prior
on the function scale and a horseshoe prior on the noise). We used a Latin-hypercube initial
design of size 10 for the GP-based vanilla BO.

For categorical hyperparameters, SMAC3 uses a Hamming kernel (Hutter, 2009) and it
uses a kernel separating the search spaces into subspaces if there are hyperparameters that
are dependent on the exact setting of another hyperparameter (Lévesque et al., 2017). In
order to optimize the acquisition function for such mixed spaces, SMAC3 uses a stochastic
local search starting from promising points in the search space (Hutter et al., 2011; Lévesque
et al., 2017). Obviously, this is not necessary for the grid-based benchmarks, for which we
can simply compute the acquisition function value for each point. We used the expected
improvement acquisition function (Jones et al., 1998) in all experiments unless the method
provides an alternate acquisition function itself (TAF, RGPE(MoGP)) or requires special

14

72 practical transfer learning for bayesian optimization

Practical Transfer Learning for Bayesian Optimization

treatment of uncertainty (RGPE). We give an overview over all implemented methods in
Table 3.

5.3 Implemented Methods

We briefly describe the HPO methods we implemented. We start with single task standard
HPO baselines, then go on to prior transfer HPO baselines from the literature, before finishing
with the methods we propose in this paper. We give an overview of these methods in Table 3.
Following the design of SMAC3 (Lindauer et al., 2021) we can implement them as four
distinct building blocks of a Bayesian optimization algorithm: 1. the hyperparameter search
space, 2. the initial design of Bayesian optimization, 3. the model, and 4. the acquisition
function.

As standard HPO methods we provide a standard GP as described above and a Gaus-
sian Copula process (GCP, Salinas et al., 2020), in which the responses for each task are
transformed to follow a standard normal distribution using a Copula transformation. Fur-
thermore, we provide random search (Bergstra and Bengio, 2012) and random search with
simulated parallelism, which are suggested as sanity checks for hyperparameter optimization
methods (Recht and Jamieson, 2016) (Random 2x, 4x and 10x).7

We implemented the competitor methods search space learning (Perrone and Shen,
2019), sequential model-free hyperparameter optimization (Wistuba et al., 2015a), warm-
starting algorithm configuration (Lindauer and Hutter, 2018), ABLR (Perrone et al., 2018),
GCP+Prior (Salinas et al., 2020), TST-R(EI) (Wistuba et al., 2016) and TAF (Wistuba
et al., 2018) as closely as possible within our Python-based system. Methods not described
in Section 3.1 are described in Section 7.

For the search space learning methods (Perrone and Shen, 2019) there is no code
available. We reimplemented the low-volume bounding box using for-loops (Section 4.2)
and the handling of outliers using scipy (Virtanen et al., 2020) (Section 5). We then use it
together with Random Search (Random+Box) and a GP (GP(Box)).8 Search space learning
is implemented to run prior to calling Bayesian optimization and its only action is creating
a new searchspace. Similarly, we had to reimplement sequential model-free hyperparameter
optimization (Wistuba et al., 2015a, SMFO), which then is an initial design passed to
SMAC3.

For the WAC method (Lindauer and Hutter, 2018) we used the publicly available code
as a starting point for our implementation.

For the linear weighting of models using the Kullback-Leibler divergence (Ramachandran
et al., 2019b) we used the MATLAB implementation provided by the authors as a starting
point to reimplement the weighting scheme in Python.

For the ABLR method (Perrone et al., 2018) there is no code available which we could
either reuse or compare against and therefore used a Pytorch reimplementation.

7. These are available as post-hoc methods. For each seed we perform random search once with 500 function
evaluations and then postprocess each run to have 50 steps, where each step consists of running multiple
evaluations (2, 4 or 10) in parallel in a synchronous fashion. We cannot run this for two of our grid-based
benchmarks, AdaBoostg,2D and SVMg,6D, as they have less than 500 points in the grid.

8. Our implementation currently does not allow combining search space pruning with other transfer HPO
methods.

15

practical transfer learning for bayesian optimization 73

Feurer, Letham, Hutter and Bakshy

Abbreviation Description Reference

GP Standard Gaussian process Jones et al. (1998); Lin-
dauer et al. (2021)

GCP Gaussian process with Copula trans-
form

Salinas et al. (2020)

Random (1x) Random search Bergstra and Bengio (2012)
Random (2x,4x,10x) Random search with simulated par-

allelism
Recht and Jamieson (2016)

Random+Box Random search with a learned box-
shaped search space

Perrone and Shen (2019)

GP(Box) Gaussian process with a learned box-
shaped search space

Perrone and Shen (2019)

SMFO sequential model-free optimization Xu et al. (2010, 2011); Wis-
tuba et al. (2015a); Pfisterer
et al. (2021)

WAC warmstarting algorithm configura-
tion

Lindauer and Hutter (2018)

KL-weighting Two-stage transfer surrogate model
using KL-divergence based weighting

Ramachandran et al.
(2019b)

ABLR adaptive basis function linear regres-
sion

Perrone et al. (2018)

GCP+Prior Gaussian Copula process with a neu-
ral network prior

Salinas et al. (2020)

TST-R(EI) Two-stage transfer surrogate model
using pairwise rankings, see Sec-
tion 3.1

Wistuba et al. (2016)

TST-R(TAF) Transfer acquisition function, see Sec-
tion 3.2

Wistuba et al. (2018)

RGPE(mean) Ranking-weighted Gaussian process
ensemble using only the variance of
the target model

ours, see Section 4.2.1

RGPE(NEI) Ranking-weighted Gaussian process
ensemble with noisy EI

ours, see Section 4.2.2

RGPE(MoGP) Mixture of Gaussian processes
weighted by RGPE

ours, see Section 4.2.3

RGPE(TAF) Transfer acquisition function with the
RGPE model

ours, see Section 4.2.4

Table 3: Methods compared throughout this work. Top: standard HPO baselines. Middle:
prior work on transfer HPO. Bottom: our methods.

16

74 practical transfer learning for bayesian optimization

Practical Transfer Learning for Bayesian Optimization

For GCP+Prior there is a reimplementation available by one of the authors9, but it
was made available only after we wrote our own reimplementation using Pytorch. As the
author’s reimplementation does not achieve the exact numbers from the paper either, we
stick to our own reimplementation.

While Java code is publicly available for TST-R (Wistuba, 2016), we obtained the
code for TAF via private communication with the authors. TST-R(EI) and TAF with
the TST-R weighting (TST-R(TAF)) require setting a bandwidth hyperparameter ρ and
we choose it per benchmark to be the best on the remaining five benchmarks (ρ ∈
(0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0)). We refer to Appendix D.2 for
further details on our reimplementation.

Our code for these is organized as follows. For the approaches that learn an ensemble
(WAC, KL-weighting, TST-R) or are a single model (ABLR) we implement a new model
class for SMAC3. The acquisition function is then implemented as a separate acquisition
function class that can be used together with an ensemble. Because GCP+Prior requires
both a model and an acquisition function, we provide two classes that can be used together.
All model-based methods use the same initial design and the minimal number of observations
required to start the method from SMFO as a starting point. The minimal number is two
for all methods that scale the observations to have zero mean and unit variance or using the
copula transform and one for all methods that do not scale the data.

Finally, we implemented our methods as follows. We first implemented a model class for
the RGPE model described in Sections 4.1 and 4.3, and second, implemented two acquisition
functions, the noisy EI (4.2.2) and the mixture of Gaussian processes (4.2.3). This allows us
to combine our ensemble with the noisy EI (RGPE(NEI)), use our ensemble with regular EI
(RGPE(EI)) and only the variance of the target model (RGPE(mean)), with the acquisition
function based on the mixture of GPs (RGPE(MoGP)) and also with the transfer acquisition
function (RGPE(TAF)). For our methods we used S = 1000 for each experiment and study
its effect in Section 6.4.

6. Experiments

In this section we describe the experimental validation of the methods introduced so far.
We first give the experimental setup and then we show and discuss the results. For better
readability we split the presentation into three parts: 1) a comparison to prior work and
baselines, 2) a study on the evolution of weights over time, and 3) an ablation study of our
methods’ components. We provide further experiments on how to scale data, an ablation
study on the effect of the hyperparameters of the baselines and comparisons to versions we
proposed in earlier preprints of this paper in Appendix D.

6.1 Experimental Setup

We optimize each function for a total of 50 iterations. For each meta-task we provide 50
function evaluations obtained by vanilla BO to the transfer HPO method. We then start
each transfer HPO method with a single meta-learned configuration (or two if the method
performs some sort of data scaling that requires at least two observations on the target task)

9. https://github.com/geoalgo/A-Quantile-based-Approach-for-Hyperparameter-Transfer-Learning

17

practical transfer learning for bayesian optimization 75

Feurer, Letham, Hutter and Bakshy

and each other method with a Latin hypercube design of size 10. To account for randomness
we conducted 15 repetitions.

We evaluated each benchmark in a leave-one-task-out fashion: we use one task as the
target task and the remaining ones as base tasks. For reporting comparable numbers, we
first normalize the regret on each dataset between zero and one. Second, we average the
normalized regret for all tasks within a benchmark. This metric is also known as the average
distance to the global minimum (ADTM, (Wistuba et al., 2018)).

We provide results as tables and rescale the ADTM to be percentages (between zero and
one hundred). We typeset the best method in boldface and underline all methods which are
not significantly different from the best according to a paired Wilcoxon signed-rank. For
comparing performance, the paired differences on the different tasks are the key quantity of
interest, and the Wilcoxon signed-rank test provides a correct statistical test for assessing
if one method performs better than another (Demšar, 2006). The standard deviations in
performance often used in BO papers are not useful here (and so are not given) because
they include the significant variance from the different meta-datasets.

All experiments were conducted on a standard compute cluster with Broadwell E5-2630v4
2.2GHz processors.

6.2 Comparison to Prior Work and Baselines

In the first part of our experiments we compare the methods proposed in this paper to
other popular hyperparameter optimization methods (standard HPO) and transfer learning
hyperparameter optimization methods (transfer HPO) from the literature. We already
described all methods in Section 5.2 and gave an overview in Table 3. To fit all methods into
a single table we have to split the results across three tables in total and present results for
GLMNETs,2D and SVMs,4D in Table 4, results for XGBoosts,10D and NNt,7D in Table 5 and
results for AdaBoostg,2D and SVMg,6D in Table 6. For each method we give the averaged
distance to the minimum at 10, 20, 30, 40 and 50 iterations of BO.

On a high level, we find that our proposed methods (bottom groups) consistently improve
over the standard HPO baselines (top groups) and transfer HPO baselines (middle groups).
Remarkably, RGPE(TAF) is either the best model or performs statistically equivalent to
the best model on all six benchmarks. RGPE(TAF) is also able to outperform Random(10x)
on three out of four benchmarks and is always better than Random(4x) (we cannot apply
Random(2x) etc. on AdaBoostg,2D and SVMg,6D as there are not sufficient points in the
grid).

Our proposed methods consistently outperform the standard HPO baselines vanilla BO
and random search. Comparing our proposed method to the TST-R(EI) baseline, we find that
TST-R(EI) can perform well on some tasks, but fails to do so on the SVMs,4D and NNt,7D

benchmarks. We find that our methods consistently outperform the additional baselines
WAC, ABLR and KL-weighting. We find these baselines to have unreliable performance and
suggest further research into their robustness. GCP+Prior showed good performance on
some problems, but our proposed methods yield further improvements in mean performance
on all six benchmarks, and significant improvements on three of them.

The SMFO baseline is a stronger baseline than the regular GP and is particularly strong
on the NNt,7D benchmark, where it outperforms all methods except for RGPE(TAF). The

18

76 practical transfer learning for bayesian optimization

Practical Transfer Learning for Bayesian Optimization

10 20 30 40 50 10 20 30 40 50

GLMNETs,2D SVMs,4D

GP 1.92 0.59 0.45 0.38 0.35 5.38 1.60 1.06 0.76 0.68
GCP 1.92 0.55 0.44 0.39 0.36 5.38 2.25 1.78 1.51 1.33
Random(1x) 4.80 1.40 0.89 0.70 0.52 5.60 2.99 2.12 1.77 1.58
Random(2x) 1.40 0.70 0.47 0.36 0.32 2.99 1.77 1.44 1.15 1.02
Random(4x) 0.70 0.36 0.29 0.24 0.21 1.77 1.15 0.89 0.78 0.69
Random(10x) 0.32 0.21 0.16 0.13 0.10 1.02 0.69 0.56 0.51 0.46

Random+Box 0.96 0.65 0.50 0.38 0.32 4.08 2.30 2.11 1.72 1.58
GP(Box) 0.73 0.27 0.22 0.19 0.17 5.10 1.31 0.68 0.52 0.45
SMFO 0.60 0.32 0.29 0.27 0.25 3.71 2.12 1.98 1.76 1.74
WAC 5.14 4.84 4.82 4.81 4.81 3.64 3.30 2.99 2.90 2.84
KL-weighting 0.94 0.68 0.61 0.28 0.19 - - - - -
ABLR 4.09 3.05 2.98 2.96 2.95 4.52 2.46 1.34 0.93 0.86
GCP+Prior 2.98 2.48 1.69 0.30 0.26 5.23 4.08 2.61 2.24 2.11
TST-R(EI) 0.44 0.38 0.23 0.23 0.20 1.35 0.90 0.64 0.52 0.49
TST-R(TAF) 0.36 0.26 0.21 0.19 0.17 2.76 1.15 0.85 0.60 0.48

RGPE(TAF) 0.29 0.22 0.19 0.17 0.16 2.17 1.78 0.78 0.48 0.38
RGPE(MoGP) 0.39 0.23 0.20 0.18 0.16 2.33 1.08 0.74 0.50 0.30
RGPE(mean) 0.43 0.31 0.27 0.25 0.23 1.78 0.78 0.45 0.38 0.26
RGPE(NEI) 3.29 2.67 2.22 2.21 2.20 2.97 0.91 0.66 0.44 0.37

Table 4: Final results on the GLMNETs,2D and SVMs,4D benchmarks. The numbers
reported are the average normalized regret (Wistuba et al., 2018). We boldface
the best value per benchmark and number of function evaluations and underline
methods that are not significantly different according to a Wilcoxon signed-rank
test with α = 0.05 (Demšar, 2006). Top group: standard HPO baselines; middle
group: transfer HPO baselines; bottom group: our methods.

small difference in performance between the GP and random search shows that modeling
provides limited benefit on this benchmark. However, it is outperformed on the other five
benchmarks by most transfer learning methods. We would like to note that the SMFO baseline
outperforming the proposed methods on a single benchmark is not a drawback (Sculley
et al., 2018) as one would not know that the baseline performs well on this benchmark in
advance, and using the baseline on all benchmarks would lead to clearly inferior results.

The search space pruning baselines (Random+Box and GP(Box)) show that shrinking
the search space indeed improves performance. However, shrinking the search space does
not simplify the search space and therefore does not improve the GP much on the NNt,7D

benchmark. Nonetheless, there is still a performance improvement on this benchmark,
and the reduced search space appears to be a good idea. We further find that search
space pruning is consistently outperformed on the table-lookup benchmarks (AdaBoostg,2D,
SVMg,6D and NNt,7D) while it performed competitively on the surrogate benchmarks. This
hints at the two types of benchmarks (tabular vs. surrogates) having a different underlying
structure, which is an interesting topic for further studies.

19

practical transfer learning for bayesian optimization 77

Feurer, Letham, Hutter and Bakshy

10 20 30 40 50 10 20 30 40 50

NNt,7D XGBoosts,10D

GP 16.40 11.51 9.69 8.62 7.84 5.31 2.36 1.46 1.22 1.09
GCP 16.40 11.61 9.80 8.56 7.76 5.31 2.75 2.10 1.77 1.50
Random(1x) 14.65 11.50 9.95 8.75 7.93 5.68 3.42 2.47 2.11 1.80
Random(2x) 11.50 8.75 7.11 6.13 5.42 3.42 2.11 1.62 1.53 1.36
Random(4x) 8.75 6.13 4.81 4.24 3.56 2.11 1.53 1.31 1.23 1.17
Random(10x) 5.42 3.56 2.62 2.19 1.78 1.36 1.17 1.00 0.92 0.88

Random+Box 12.73 9.78 8.38 7.23 6.51 3.92 2.60 1.62 1.53 1.43
GP(Box) 11.79 8.85 7.08 6.06 5.14 2.75 1.18 0.89 0.78 0.73
SMFO 3.59 2.77 2.17 1.86 1.75 1.25 1.09 0.94 0.91 0.87
WAC 7.44 6.68 5.98 5.79 5.51 1.88 1.85 1.84 1.75 1.75
KL-weighting 6.43 5.44 4.67 4.17 3.78 - - - - -
ABLR 7.88 6.60 6.02 5.45 5.03 2.29 1.88 1.75 1.61 1.58
GCP+Prior 5.93 4.30 3.28 2.74 2.38 1.37 1.18 1.08 0.94 0.84
TST-R(EI) 5.37 4.46 3.88 3.31 3.00 1.14 0.88 0.84 0.79 0.78
TST-R(TAF) 4.88 4.02 3.58 3.24 2.95 0.98 0.82 0.73 0.69 0.64

RGPE(TAF) 3.60 2.54 2.09 1.70 1.55 0.97 0.80 0.70 0.67 0.67
RGPE(MoGP) 3.52 2.63 2.34 2.07 1.93 1.55 1.16 0.89 0.83 0.80
RGPE(mean) 5.20 3.92 3.29 2.91 2.55 1.12 0.79 0.68 0.67 0.65
RGPE(NEI) 5.09 3.90 3.38 3.00 2.71 1.19 0.98 0.87 0.73 0.64

Table 5: Final results on the NNt,7D and XGBoosts,10D benchmarks. The numbers reported
are the average normalized regret (Wistuba et al., 2018). We boldface the best
value per benchmark and number of function evaluations and underline methods
that are not significantly different according to a Wilcoxon signed-rank test with
α = 0.05 (Demšar, 2006). Top group: standard HPO baselines; middle group:
transfer HPO baselines; bottom group: our methods.

Figure 1 provides a graphical representation of the results comparing our best method
based on a single ensemble (RGPE(mean)) and our best method based on an improved
acquisition function (RGPE(TAF)) against their respective baselines (TST-R(EI) and TST-
R(TAF)). We present the baselines GP and random search together with TST-R(EI) and
RGPE(mean) (top), and TST-R(TAF) and RGPE(TAF) (bottom) . We can observe all
transfer HPO methods benefit from the learned initial design immediately, while the GP
using the Latin hypercube initial design and random search cannot keep up. The ranks of
the GP and random search appear to converge towards each other until iteration 10, where
the GP’s initial design is over and BO actually starts, and from that moment on the GP
clearly outperforms random search. The transfer HPO methods maintain their lead over
the single-task methods over the course of the 50 function evaluations. We can observe
that our proposed methods outperform the respective competitors without requiring any
hyperparameter optimization (in contrast to the methods based on TST-R).

20

78 practical transfer learning for bayesian optimization

Practical Transfer Learning for Bayesian Optimization

0 10 20 30 40 50
Number of function evaluations

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e

ra
nk

All benchmarks
GP
Random
TST-R(EI)
RGPE(mean)

0 10 20 30 40 50
Number of function evaluations

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e

ra
nk

All benchmarks
GP
Random
TST-R(TAF)
RGPE(TAF)

Figure 1: Ranking plots across all benchmarks (lower is better) comparing our methods
(4,6) with small sets of baselines (1-3,5), as indicated in each panel legend. Our
methods consistently outperformed baselines across all benchmarks.

21

practical transfer learning for bayesian optimization 79

Feurer, Letham, Hutter and Bakshy

10 20 30 40 50 10 20 30 40 50

AdaBoostg,2D SVMg,6D

GP 5.42 2.26 1.26 0.82 0.66 9.66 3.64 2.06 1.43 1.13
GCP 5.42 2.26 1.18 0.92 0.72 9.66 3.59 1.97 1.18 0.81
Random(1x) 6.27 3.62 2.53 1.72 1.32 11.52 6.44 5.07 4.07 3.24

Random+Box 5.43 3.61 2.37 1.79 1.45 10.64 6.09 4.26 3.37 2.89
GP(Box) 5.38 2.31 1.27 0.81 0.72 9.86 3.53 2.02 1.48 1.18
SMFO 4.03 2.76 1.96 1.52 1.11 4.30 2.63 1.97 1.37 1.21
WAC 5.97 4.11 3.01 2.18 1.42 8.49 6.02 3.67 2.63 1.90
KL-weighting 5.49 3.48 2.73 2.23 1.81
ABLR 4.65 2.39 1.51 0.88 0.52 7.65 4.84 3.39 2.47 1.86
GCP+Prior 5.37 3.38 1.92 1.25 0.89 4.23 2.59 2.02 1.85 1.61
TST-R(EI) 4.75 2.59 1.65 0.94 0.52 3.69 2.07 1.36 0.89 0.64
TST-R(TAF) 3.96 2.35 1.54 1.14 0.73 3.89 2.24 1.39 0.78 0.46

RGPE(TAF) 3.91 2.29 1.39 1.00 0.63 2.95 1.54 0.91 0.61 0.45
RGPE(MoGP) 4.01 2.26 1.47 0.95 0.76 3.35 2.04 1.35 0.92 0.58
RGPE(mean) 4.71 2.48 1.63 0.94 0.55 3.22 1.70 0.99 0.71 0.47
RGPE(NEI) 4.55 2.58 1.76 1.09 0.62 3.75 1.41 0.75 0.61 0.39

Table 6: Final results on the AdaBoostg,2D and SVMg,6D benchmarks. The numbers reported
are the average normalized regret (Wistuba et al., 2018). We boldface the best
value per benchmark and number of function evaluations and underline methods
that are not significantly different according to a Wilcoxon signed-rank test with
α = 0.05 (Demšar, 2006). Top group: standard HPO baselines; middle group:
transfer HPO baselines; bottom group: our methods.

6.3 Evolution of Model Weights

Figure 2 shows how the ensemble weights evolved for the RGPE(NEI) method on the NNt,7D

benchmark. The top panel depicts how the weight of the target model increases over the
course of the 50 function evaluations and its relation to the weights of the base models.
This plot shows the average of the weight over all 15 repetitions and 35 tasks. For the
highest and 2nd highest weight of a base model, we identify it per time step before taking
the average. We can see that the weight of the target model is initially close to zero before
rapidly approaching a weight close to 1 by the final iteration. In early iterations the weight
was spread across all of the base models, but with more data, weight quickly concentrated
on a small number of base models, before finally concentrating on the target model. By
iteration 11 the two most highly-weighted base models already had more weight than all
of the other base models combined. On the bottom we can see the evolution of non-zero
weights for the NNt,7D benchmark. For the first three iterations there are none, as the
proposed weighting scheme requires three function evaluations before it can be used. As
soon as the weighting kicks in, half of the weights are set to zero (in the median). The
number of non-zero weights decreases monotonically and the median approaches one (all
weight on the target model) at 28 function evaluations.

22

80 practical transfer learning for bayesian optimization

Practical Transfer Learning for Bayesian Optimization

10 20 30 40 50
Number of function evaluations

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

we
ig

ht

Evolution of highest weights for the NNt, 7D benchmark

Target model weight
Highest base model weight
2nd-highest base model weight
Remaining models weights

5 10 15 20 25 30 35 40 45 50
Number of function evaluations

0

5

10

15

20

25

30

35

Nu
m

be
r o

f n
on

-z
er

o-
we

ig
ht

s

Evolution of non-zero-weights for the NNt, 7D benchmark

Figure 2: (Top) Evolution of the individual model weights over time for the RGPE(NEI)
model. (Bottom) Evolution of the number of non-zero weights over time for the
RGPE(NEI) model.

23

practical transfer learning for bayesian optimization 81

Feurer, Letham, Hutter and Bakshy

G
LM

N
E
T s,

2D

SV
M
s,
4D

N
N t,

7D

X
G

B
oo

st
s,
10
D

A
da

B
oo

st
g,
2D

SV
M
g,
6D

RGPE(mean) 0.23 0.26 2.55 0.65 0.55 0.47
RGPE(EI) 0.21 0.31 2.69 0.67 0.57 0.46
RGPE(NEI) 2.20 0.37 2.71 0.64 0.62 0.39
RGPE(NEI,None) 0.16 0.48 3.27 0.71 0.68 0.45

RGPE(TAF) 0.16 0.38 1.55 0.67 0.63 0.45
RGPE(TAF,None) 0.15 0.51 1.61 0.62 0.71 0.45
RGPE(MoGP) 0.16 0.30 1.93 0.80 0.76 0.58
RGPE(MoGP,None) 0.11 0.56 1.96 0.75 0.61 0.58

RGPE(MoGP,S = 100) 0.15 0.55 2.00 0.72 0.64 0.49
RGPE(MoGP,S = 1000, default) 0.16 0.30 1.93 0.80 0.76 0.58
RGPE(MoGP,S = 10000) 0.14 0.37 1.90 0.68 0.58 0.54
RGPE(MoGP,S = 100000) 0.17 0.31 1.83 0.73 0.40 0.50

Table 7: Ablation study on the proposed methods. The numbers reported are the average
normalized regret (Wistuba et al., 2018). We boldface the best value per benchmark
and number of function evaluations and underline methods that are not significantly
different according to a Wilcoxon signed-rank test with α = 0.05 (Demšar, 2006);
separately for RGPE(NEI), RGPE(TAF) and RGPE(MoGP) with different values
of S.

6.4 Ablation Study

In this second part of the experimental validation we examine the effect of the proposed
building blocks of our method on the performance. We conduct an ablation study and
sensitivity analaysis for the TST-R(EI) and TST-R(TAF) baselines in Appendix D.4.

In the methodology section we have introduced the RGPE model and how it can be used
for transfer HPO. Because the weighting mechanism contains a regularization mechanism
that can be turned off, we conduct an ablation study about it. Moreover, it contains a
hyperparameter (the number of bootstrap samples) of which we study the sensitivity. We
present all results in Table 7. Furthermore, we provide an overview of how the method
names and the exact contributions discussed in Section 4 correspond in Table 8.

First, we check whether using the weight dilution prevention is a useful addition, and
we can compare RGPE(NEI) and RGPE(NEI,None), RGPE(TAF) and RGPE(TAF,None),
and RGPE(MoGP) and RGPE(MoGP)(None). We can see that there is no large difference
between using and not using the weight dilution mechanism, and a slight trend toward
the methods with weight dilution prevention achieving lower regret values. However, there
are two outliers. RGPE(NEI) with the weight dilution prevention has a drastically worse
performance than RGPE(NEI,None) on GLMNETs,2D, but this is not significant and
caused by a single dataset. On the other hand, RGPE(NEI,None) is significantly worse
than RGPE(NEI) on NNt,7D. Therefore, we can conclude that using the weight dilution

24

82 practical transfer learning for bayesian optimization

Practical Transfer Learning for Bayesian Optimization

Method name 4.1 4.3 Acquisition function

TST-R(EI) EI
TST-R(EI,wd), see Appendix D.4 X EI
RGPE(NEI) X X NoisyEI
RGPE(NEI,None) X NoisyEI
RGPE(mean) X X EI
RGPE(EI) X X EI
TST-R(TAF) TAF
TST-R(TAF,wd), see Appendix D.4 X TAF
RGPE(TAF) X X TAF
RGPE(TAF,None) X TAF
RGPE(MoGP) X X Weighted sum of EIs
RGPE(MoGP)(None) X Weighted sum of EIs

Table 8: Overview of how our proposed methods and their ablations compare against the
baselines TST-R(EI) (line 1) and TST-R(TAF) (line 6).

prevention, which is also central to our proof that the proposed methods are in the worst
case only a multiplicative factor slower than vanilla Bayesian optimization and improves
optimization speed by more aggressively dropping base models, is a valuable contribution
for methods combining multiple models into an ensemble.

Second, we analyze whether the methods that make use of the predictive variance in
the base models have an edge over those that do not. This time we compare RGPE(NEI)
and RGPE(mean), and RGPE(MoGP) and RGPE(TAF). Surprisingly, even though we
have shown in a principled manner why the variance of the base models should matter,
ignoring the variance of the base models as done by RGPE(mean) and RGPE(TAF) gives
better results. While the difference in results for RGPE(mean) and RGPE(NEI) are not
statistically significant, RGPE(mean) has lower regret on four out of six benchmarks and
the lowest regret among the four compared methods on three out of six benchmarks. The
situation for RGPE(MoGP) and RGPE(TAF) is slightly more nuanced, but similar overall.
Our best explanations for this surprising result are 1) that predictive variance in base models
can be misleading and increase the supposed variance of the combined model in regions
where the target model is already certain, thereby misleading Bayesian optimization; and 2)
that as there is no variance around already evaluated points in base models, these points
(including the optima on the base models) appear less promising after combining all base
models, repelling the transfer HPO methods from such locations.

Third, we discuss whether the special treatment of noise in the RGPE(NEI) model is
actually necessary or whether plain expected improvement would work, too (RGPE(EI),
line 2 of Table 7). It turns out that there is no statistically significant degradation of the
performance. We can currently not explain why there is no significant difference in the way
we treat the uncertainty of the base model and suggest checking this finding when using the
RGPE model with a different GP library.

25

practical transfer learning for bayesian optimization 83

Feurer, Letham, Hutter and Bakshy

Fourth, we have a look at using a different number of bootstrap samples than the default
1000, and also test 100, 10000 and 100000 bootstrap samples. Using as many as 100000
appears to perform consistently better or equivalent to using only 1000 samples. Contrarily,
using only 100 samples results in significantly worse performance in two out of six cases.
Therefore, we do not see a reason to tune the number of bootstrap samples but rather use
the maximum number of samples that can be afforded. As a concrete example, it takes
less than roughly 1.6 seconds to compute the weights with 1000 bootstrap samples after
50 observations on a 2d problem, while it takes 140 seconds for 100000 bootstrap samples.
This increase in computational requirements would not have been feasible for the large
experimental study we conducted, but can be used in practical settings.

Overall, we find our proposed methods to be very robust. We see some advantage to
ignoring the predictive variance of the base models and using the weight dilution prevention.
Based on the ablation study and the overall results in the previous section, our clear
recommendation is to use RGPE(TAF) for transfer HPO.

7. Related Work

This section extends the primer on related work in Section 2.3 by discussing techniques of
types 1-5 and 7-9 which are not required as background for our newly developed methods.

1. A single model that is trained on all tasks simultaneously. Several past methods
have used manually defined meta-features to measure task similarity (Brazdil et al., 1994) and
then adapted GP-based Bayesian optimization (Bardenet et al., 2013; Yogatama and Mann,
2014; Schilling et al., 2016). Besides the drawback of requiring additional hand-designed
features (which violates desideratum #3), these methods share the issue that meta-features
are non-adaptive throughout the optimization process and do not update task similarity
based on the new observations (Leite et al., 2012; Wistuba et al., 2018).

Another set of methods attempts to learn the task similarity without the use of meta-
features in order to fit a joint model. Swersky et al. (2013) and Poloczek et al. (2016)
propose different kernels to jointly model all past runs and the current task. However,
multitask GPs suffer from the same poor scaling as putting all observations into a single
GP (violating desideratum #1) and cannot be used for the benchmarks we use in the main
paper. Furthermore, Swersky et al. (2013) sample a t× t lower triangular matrix describing
task correlations, which prohibits a large number of past runs as observed by Klein et al.
(2017). We demonstrate this scaling issue in Appendix B where one can see that the fitting
time for the multitask GP with only five tasks is already higher than that of RGPE for 50
tasks, and that fitting with 15 tasks already requires more than 1000 seconds.

Such scaling issues can be alleviated by using neural network models. One option is
to learn a task embedding for every task inside a Bayesian neural network (Springenberg
et al., 2016) and another option is to fine-tune a pre-trained deep kernel surrogate on the
target task (Wistuba and Grabocka, 2021). Two recent works (Perrone et al., 2018; Law
et al., 2019) circumvent both the scaling issue as well as the issue of explicitly learning task
correlations by using a neural network as a feature extractor for tasks and hyperparameters
and Bayesian linear regression as a scalable probabilistic output layer of the neural network.
We compared to adaptive basis function linear regression (Perrone et al., 2018, ABLR) in
Section 6.

26

84 practical transfer learning for bayesian optimization

Practical Transfer Learning for Bayesian Optimization

When the hyperparameter search space is discrete it is also possible to use methods
based on a matrix factorization model (Fusi et al., 2018; Yang et al., 2019, 2020). However,
these methods require that there are overlapping observations between the datasets and
were also only tested in settings where the metadata matrix (i.e. results of pipelines on all
datasets) has between 10% of the entries (Fusi et al., 2018) or is even fully populated. Such
approaches are related to algorithm selection, where the goal is to select a single algorithm
from a discrete set without observing any feedback on the target task (Kerschke et al., 2019),
see also the method we discuss in Appendix A.

2. A learned kernel that is trained on the base tasks and applied to the target
task. As an alternative solution, Wang et al. (2018b) suggest to estimate the Gaussian
process prior from offline data via empirical Bayes. While the learned kernel leads to
performance improvements compared to a standard RBF prior, the size of the meta dataset
required for the method to perform en-par with the RBF prior with optimized hyperpa-
rameters is between 2916 and 20000, which is above what we will have available during the
experimental evaluation.

3. Learning an adaptation of each base task to the current task A number of
papers propose to learn an adaptation of each past BO run to the current BO run. Schilling
et al. (2016) learn a joint model for each past run and the target task and combine those
models using meta-features as similarity descriptors in a Product of Gaussian Process
Experts model. Shilton et al. (2017) model the difference between the past run and the
target task with a GP, which is then used to adjust the past run observations for inclusion
in the current model. Such approaches are not scalable as they require re-fitting a model
for each meta-task in each iteration of the optimization process (violating desideratum #2).
Ramachandran et al. (2018) then suggest a bandit method to select a base task to update
within this transfer setting. Due to the necessary exploration this method is only applicable
in the setting where the number of base tasks is substantially lower than the number of
observations allowed on the target task (violating desideratum #1). Golovin et al. (2017)
take a similar approach for an ordered set of past runs. Rather than fitting a GP to each
run separately, a GP is fit to the residuals of each run relative to the predictions of the
previous model in the stack. However, this method assumes an ordering of the runs, which
would not be the case for transferring information from a collection of unrelated problems.

4. An initial design learned from previous optimization runs Orthogonal to
optimization is learning the initial design based on past observations, which can be done
both with meta-features (Reif et al., 2012; Gomes et al., 2012; Feurer et al., 2015b) and
without (Wistuba et al., 2015a; Pfisterer et al., 2021). Using an adapted initial design is
complementary to our strategy and would benefit our proposed method as well. We compared
against an initial design-only baseline, also called sequential model-free optimization (Xu
et al., 2010, 2011; Wistuba et al., 2015a; Pfisterer et al., 2021, SMFO), in Section 6.

5. Reducing the design space based on previous optimization runs Yet another
orthogonal strategy is to use past optimization runs to shrink the considered search space
to only contain promising areas from past runs (Wistuba et al., 2015b; Probst et al., 2019;
Perrone and Shen, 2019). However, most of these strategies introduce at least one new
hyperparameter (violating desideratum #4). The only exception is given by Perrone and

27

practical transfer learning for bayesian optimization 85

Feurer, Letham, Hutter and Bakshy

Shen (2019), which also introduces a hyperparameter-free method to reduce the search space
to a box which only contains all prior observed optima. We compared to this technique in
Section 6 (Random+Box,GP(Box)).

7. Linear combination of models In the related field of algorithm configuration (Hutter,
2009), Lindauer and Hutter (2018) use stochastic gradient descent to learn a weighted
combination of random forests as surrogates for a runtime optimization task. The mean
predictions are combined linearly as in TST-R (Wistuba et al., 2016), and the variances
are combined according to σ̄2(x∗) =

∑t
i=1wiσ

2
i (x∗). While the usage of a simple stacking

approach is appealing, it introduces a new model selection problem to find a stacking
regressor (violating desideratum #3). Without proper tuning, obtaining a sparse solution
(sparse in terms of taking only relevant base tasks into account while ignoring unrelated
ones) is not possible. Furthermore, minimizing the least squares error is not necessarily
a good criterion when our goal is to obtain a good model for Bayesian optimization. We
compared against this stacking approach abbreviated WAC in Section 6.

Another line of work extends the Predictive Entropy Search (PES) acquisition function
to a multi-task Bayesian optimization algorithm in which the distribution over the minimum
is a weighted linear combination of the distribution of the minimum on different tasks (Ra-

machandran et al., 2019b). The linear weighting is computed as exp (−KL(pbaseopt (x)||ptargetopt (x))

η),
where η is a hyperparameter and KL the Kullback-Leibler divergence estimated with a
nearest-neighbor approach Perez-Cruz (2008). Later, they also proposed a modification
that takes uncertainty on the source task into account at the cost of yet an additional
hyperparameter (Ramachandran et al., 2019a). While here, we restrict ourselves to EI-based
acquisition functions, we note that our proposed weighting scheme could also be used as a
hyperparameter-free alternative in PES.

8. Hybrid methods While the ideas above can be categorized rather easily, it is also
possible to define models and techniques that are combinations of the methods described
above. One such method is to fit a joint neural network to all base tasks without taking the
tasks into account for the network architecture to learn a global prior. To take the target
task into account, this method uses a GP that only learns the differences of the current
task to the global prior. To ensure all tasks live on the same scale, the data is scaled using
copula transformations. As this changes the predictive distribution of the GP, they also
derive a custom, closed-form solution for EI tailored to this model. We compare against this
method Copula Gaussian processes with prior, or short GCP+Prior (Salinas et al., 2020),
in the experimental section. Another combination involves meta-features and a learning a
data-dependent default (Gijsbers et al., 2021).

9. Prior-based methods A transfer that we did not discussed yet is inferring a prior
from previous task and applying to existing methods. An obvious choice is random search,
where van Rijn and Hutter (2018) replace the uniform prior with a prior learned from
hyperparameter optima on other datasets. An interesting line of work also aims to allow the
users to manually specify their prior to guide BO (Souza et al., 2021; Anonymous, 2021).

Scalable models for standard HPO Bayesian optimization has also been done with
models that scale better with the number of observations, such as random forests (Hutter
et al., 2011), Parzen estimators (Bergstra et al., 2011) and neural networks (Snoek et al., 2015;

28

86 practical transfer learning for bayesian optimization

Practical Transfer Learning for Bayesian Optimization

Springenberg et al., 2016). These models come with challenges of their own, such as poor
uncertainty extrapolation with limited observations and hyperparameter sensitivity. There
are also extensions of GPs for large datasets, most notably sparse GPs (Csató and Opper,
2002). However, sparse GPs can also have poor uncertainty extrapolation (Bauer et al., 2016;
Wang et al., 2018a) and were shown to perform less well for Bayesian optimization than
standard GPs (McIntire et al., 2016). Recently, there has been interest in scaling GPs by
only optimizing in subspaces (Eriksson et al., 2019), however, it is unclear how to combine
such approaches with transfer HPO. Therefore, GPs remain the standard model for practical
Bayesian optimization, especially since most methods to jointly model several tasks require
the definition of meta-features or expensive calculation of task similarities.

8. Discussion and Conclusion

Our goal was to have a transfer hyperparameter optimization method that scales beyond
standard GPs, is hyperparameter free, does not require meta-features, and guarantees to not
perform substantially worse than standard BO. We showed that a linear combination of GPs,
weighted by their posterior probability of describing the observations, and probabilistically
dropping underperforming models, gives rise to several novel methods to fulfill these four
desiderata. Our experiments on six hyperparameter optimization benchmarks showed that
the proposed methods performed better than alternatives from the literature, and they are
scalable and effective methods for conducting transfer learning in GP-based BO. Because of
the weight dilution prevention we also obtain a performance guarantee in terms of simple
regret. In particular, using both our new RGPE weighting scheme and our novel weight
dilution prevention mechanism together with the transfer acquisition function leads to very
stable performance, and we recommend this RGPE(TAF) combination as the new default
algorithm for transfer HPO.

A side-effect of our study is the better understanding of the previous transfer HPO
methods TST-R (Wistuba et al., 2016) and TAF (Wistuba et al., 2018), which we showed
are special cases of the linear combination of Gaussian processes proposed in this work.

Furthermore, we have made available the largest collection of transfer HPO methods and
benchmarks in a single framework to date with a total of six benchmarks and 9 competitor
methods from the literature. This will allow future researchers to more easily conduct
research on transfer HPO by having a set of benchmarking problems and baselines to
compare against readily available.

Finally, we acknowledge limitations of the proposed method which give directions for
future work. First, they are limited to predictive models and cannot be used with models
like the Tree Parzen Estimator (Bergstra et al., 2011). Second, our evaluations are limited to
spaces that can be modeled well by regular Gaussian processes, which does not include the
complex spaces of, e.g., Auto-sklearn (Feurer et al., 2015a), Auto-WEKA (Thornton et al.,
2013), or Auto-PyTorch (Zimmer et al., 2021). As the only requirement for the model is
being a probabilistic model, we expect that using random forests or neural networks for these
is a promising direction. Third, all methods introduced hinge on the underlying BO library
as they converge to vanilla BO. If the BO library cannot provide excellent performance by
itself, putting transfer learning on top of it does not guarantee that it would outperform
a well-tuned BO tool. Finally, it would be interesting to extend the proposed methods to

29

practical transfer learning for bayesian optimization 87

Feurer, Letham, Hutter and Bakshy

other acquisition functions to explicitly handle noise (Letham et al., 2019) or work in a
multi-fidelity setting (Wu et al., 2020).

Acknowledgements

Thanks to Till Varoquaux for support in developing the method, Sam Daulton for help
with the implementation, Martin Wistuba for help with the TST-R and TAF baselines, and
Rodolphe Jenatton and Valerio Perrone for help with the ABLR baseline. We thank Josif
Grabocka and the anonymous reviewers of previous versions for helpful feedback on the
manuscript, and Carl Hvafner and Luigi Nardi for feedback on the theory. The authors
acknowledge support by the state of Baden-Württemberg through bwHPC and the German
Research Foundation (DFG) through grant no INST 39/963-1 FUGG (bwForCluster NEMO).

References

Anonymous. πBO: Augmenting acquisition functions with user beliefs for bayesian optimiza-
tion. In Under review at ICLR 2022: https://openreview.net/forum?id=MMAeCXIa89,
2021.

M. Balandat, B. Karrer, D. Jiang, S. Daulton, B. Letham, A. Wilson, and E. Bakshy. BoTorch:
A Framework for Efficient Monte-Carlo Bayesian Optimization. In H. Larochelle, M. Ran-
zato, R. Hadsell, M.-F. Balcan, and H. Lin, editors, Proceedings of the 33rd International
Conference on Advances in Neural Information Processing Systems (NeurIPS’20). Curran
Associates, 2020.

R. Bardenet, M. Brendel, B. Kégl, and M. Sebag. Collaborative hyperparameter tuning. In
S. Dasgupta and D. McAllester, editors, Proceedings of the 30th International Conference
on Machine Learning (ICML’13), pages 199–207. Omnipress, 2013.

M. Bauer, M. van der Wilk, and C. Rasmussen. Understanding probabilistic sparse Gaussian
process approximations. In D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon, and
R. Garnett, editors, Proceedings of the 29th International Conference on Advances in
Neural Information Processing Systems (NeurIPS’16), pages 1533–1541. Curran Associates,
2016.

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of
Machine Learning Research, 13:281–305, 2012.

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimiza-
tion. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, editors,
Proceedings of the 24th International Conference on Advances in Neural Information
Processing Systems (NeurIPS’11), pages 2546–2554. Curran Associates, 2011.

B. Bischl, G. Casalicchio, M. Feurer, F. Hutter, M. Lang, R. Mantovani, J. N. van Rijn, and
J. Vanschoren. Openml benchmarking suites and the openml100. arXiv:1708.03731v1,
2019.

30

88 practical transfer learning for bayesian optimization

Practical Transfer Learning for Bayesian Optimization

P. Brazdil, J. Gama, and B. Henery. Characterizing the applicability of classification
algorithms using meta-level learning. In F. Bergadano and L. De Raedt, editors, Machine
Learning: ECML-94, Lecture Notes in Artificial Intelligence, pages 83–102. Springer, 1994.

E. Brochu, V. Cora, and N. de Freitas. A tutorial on Bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement
learning. arXiv:1012.2599v1 [cs.LG], 2010.

A. Bull. Convergence rates of efficient global optimization algorithms. Journal of Machine
Learning Research, 12:2879–2904, 2011.

L. Csató and M. Opper. Sparse on-line Gaussian processes. Neural Computation, 14(3):
641–668, 2002.

J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine
Learning Research, 7:1–30, 2006.

K. Eggensperger, F. Hutter, H. Hoos, and K. Leyton-Brown. Efficient benchmarking of
hyperparameter optimizers via surrogates. In B. Bonet and S. Koenig, editors, Proceedings
of the Twenty-ninth National Conference on Artificial Intelligence (AAAI’15), pages
1114–1120. AAAI Press, 2015.

D. Eriksson, M. Pearce, J. Gardner, R. Turner, and M. Poloczek. Scalable global optimization
via local bayesian optimization. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-
Buc, E. Fox, and R. Garnett, editors, Proceedings of the 32nd International Conference
on Advances in Neural Information Processing Systems (NeurIPS’19). Curran Associates,
2019.

M. Feurer and F. Hutter. Hyperparameter optimization. In F. Hutter, L. Kotthoff, and
J. Vanschoren, editors, Automated Machine Learning: Methods, Systems, Challenges,
volume 5 of The Springer Series on Challenges in Machine Learning, chapter 1, pages
3–38. Springer, 2019. Available for free at http://automl.org/book.

M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter. Efficient
and robust automated machine learning. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama,
and R. Garnett, editors, Proceedings of the 28th International Conference on Advances in
Neural Information Processing Systems (NeurIPS’15), pages 2962–2970. Curran Associates,
2015a.

M. Feurer, J. Springenberg, and F. Hutter. Initializing Bayesian hyperparameter optimization
via meta-learning. In B. Bonet and S. Koenig, editors, Proceedings of the Twenty-ninth
National Conference on Artificial Intelligence (AAAI’15), pages 1128–1135. AAAI Press,
2015b.

M. Feurer, B. Letham, and E. Bakshy. Scalable meta-learning for Bayesian optimization.
arXiv:1802.02219v1 [stat.ML], 2018.

M. Feurer, B. Letham, F. Hutter, and E. Bakshy. Practical transfer learning for Bayesian
optimization. arXiv:1802.02219v2 [stat.ML], 2021.

31

practical transfer learning for bayesian optimization 89

Feurer, Letham, Hutter and Bakshy

A. Forrester, A. Sobester, and A. Keane. Engineering design via surrogate modelling: a
practical guide. John Wiley & sons, 2008.

P. Frazier. A tutorial on Bayesian optimization. arXiv:1807.02811 [stat.ML], 2018.

N. Fusi, R. Sheth, and M. Elibol. Probabilistic Matrix Factorization for Automated Machine
Learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Proceedings of the 31st International Conference on Advances in
Neural Information Processing Systems (NeurIPS’18), pages 3348–3357. Curran Associates,
2018.

R. Garnett. Bayesian Optimization. Cambridge University Press, 2022. in preparation.

P. Gijsbers, E. LeDell, S. Poirier, J. Thomas, B. Bischl, and J. Vanschoren. An open source
automl benchmark. In K. Eggensperger, M. Feurer, F. Hutter, and J. Vanschoren, editors,
ICML workshop on Automated Machine Learning (AutoML workshop 2019), 2019.

P. Gijsbers, F. Pfisterer, J. van Rijn, B. Bischl, and J. Vanschoren. Meta-learning for symbolic
hyperparameter defaults. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion, page 151–152. Association for Computing Machinery, 2021.

D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley. Google Vizier: A
service for black-box optimization. In S. Matwin, S. Yu, and F. Farooq, editors, Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), pages 1487–1495. ACM Press, 2017.

T.A.F. Gomes, R.B.C. Prudêncio, C. Soares, A. Rossi, and A. Carvalho. Combining
meta-learning and search techniques to select parameters for support vector machines.
Neurocomputing, 75(1):3–12, 2012.

F. Hutter. Automated Configuration of Algorithms for Solving Hard Computational Problems.
PhD thesis, University of British Columbia, Department of Computer Science, Vancouver,
Canada, 2009.

F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general
algorithm configuration. In C. Coello, editor, Proceedings of the Fifth International
Conference on Learning and Intelligent Optimization (LION’11), volume 6683 of Lecture
Notes in Computer Science, pages 507–523. Springer, 2011.

D. Jones, M. Schonlau, and W. Welch. Efficient global optimization of expensive black box
functions. Journal of Global Optimization, 13:455–492, 1998.

P. Kerschke, H. Hoos, F. Neumann, and H. Trautmann. Automated algorithm selection:
Survey and perspectives. Evolutionary Computation, 27(1):3–45, 2019.

A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter. Fast Bayesian optimization of
machine learning hyperparameters on large datasets. In A. Singh and J. Zhu, editors,
Proceedings of the Seventeenth International Conference on Artificial Intelligence and
Statistics (AISTATS), volume 54. Proceedings of Machine Learning Research, 2017.

32

90 practical transfer learning for bayesian optimization

Practical Transfer Learning for Bayesian Optimization

D. Kühn, P. Probst, J. Thomas, and B. Bischl. Automatic exploration of machine learning
experiments on openml. arXiv:1806.10961 [stats.ML], 2018.

A. Lacoste, M. Marchand, F. Laviolette, and H. Larochelle. Agnostic Bayesian learning
of ensembles. In E. Xing and T. Jebara, editors, Proceedings of the 31th International
Conference on Machine Learning, (ICML’14), pages 611–619. Omnipress, 2014.

H. Law, P. Zhao, L. Chan, J. Huang, and D. Sejdinovic. Hyperparameter learning via
distributional transfer. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,
E. Fox, and R. Garnett, editors, Proceedings of the 32nd International Conference on
Advances in Neural Information Processing Systems (NeurIPS’19), pages 6804–6815.
Curran Associates, 2019.

R. Leite, P. Brazdil, and J. Vanschoren. Selecting classification algorithms with active
testing. In P. Perner, editor, Machine Learning and Data Mining in Pattern Recognition,
volume 7376 of Lecture Notes in Computer Science, pages 117–131. Springer, 2012.

B. Letham, K. Brian, G. Ottoni, and E. Bakshy. Constrained Bayesian optimization with
noisy experiments. Bayesian Analysis, 14:495–519, 2019.

M. Lindauer and F. Hutter. Warmstarting of model-based algorithm configuration. In
S. McIlraith and K. Weinberger, editors, Proceedings of the Conference on Artificial
Intelligence (AAAI’18), pages 1355–1362. AAAI Press, 2018.

M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, D Deng, C. Benjamins, R. Sass,
and F. Hutter. Smac3: A versatile bayesian optimization package for hyperparameter
optimization, 2021. Accepted for publication.

J. Lévesque, A. Durand, C. Gagné, and R. Sabourin. Bayesian optimization for conditional
hyperparameter spaces. In B. Howell, editor, 2017 International Joint Conference on
Neural Networks (IJCNN), pages 286–293. IEEE Computer Society Press, 2017.

M. McIntire, D. Ratner, and S. Ermon. Sparse Gaussian Processes for Bayesian Optimization.
In A. Ihler and D. Janzing, editors, Proceedings of the 32nd conference on Uncertainty in
Artificial Intelligence (UAI’16), pages 517–526. AUAI Press, 2016.

D. Pardoe and P. Stone. Boosting for regression transfer. In J. Fürnkranz and T. Joachims,
editors, Proceedings of the 27th International Conference on Machine Learning (ICML’10),
pages 863–870. Omnipress, 2010.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

F. Perez-Cruz. Kullback-Leibler divergence estimation of continuous distributions. In 2008
IEEE International Symposium on Information Theory, pages 1666–1670, 2008.

33

practical transfer learning for bayesian optimization 91

Feurer, Letham, Hutter and Bakshy

V. Perrone and H. Shen. Learning search spaces for Bayesian optimization: Another view
of hyperparameter transfer learning. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. Fox, and R. Garnett, editors, Proceedings of the 32nd International
Conference on Advances in Neural Information Processing Systems (NeurIPS’19), pages
12751–12761. Curran Associates, 2019.

V. Perrone, R. Jenatton, M. Seeger, and C. Archambeau. Scalable hyperparameter transfer
learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Proceedings of the 31st International Conference on Advances in Neural
Information Processing Systems (NeurIPS’18), pages 12751–12761. Curran Associates,
2018.

F. Pfisterer, J. van Rijn, P. Probst, A. Müller, and B. Bischl. Learning multiple defaults
for machine learning algorithms. In F. Chicano, editor, GECCO ’21: Proceedings of
the Genetic and Evolutionary Computation Conference Companion, page 241–242. ACM
Press, 2021.

M. Poloczek, J. Wang, and P. Frazier. Warm starting Bayesian optimization. In Proceedings
of the 2016 Winter Simulation Conference, pages 770—-781. IEEE Computer Society
Press, 2016.

P. Probst, A. Boulesteix, and B. Bischl. Tunability: Importance of hyperparameters of
machine learning algorithms. Journal of Machine Learning Research, 20(53):1–32, 2019.

A. Ramachandran, S. Gupta, S. Rana, and S. Venkatesh. Selecting optimal source for transfer
learning in Bayesian optimisation. In PRICAI 2018: Trends in Artificial Intelligence,
pages 42–56. Springer, 2018.

A. Ramachandran, S. Gupta, S. Rana, and S. Venkatesh. Information-theoretic multi-
task learning framework for Bayesian optimisation. In AI 2019: Advances in Artificial
Intelligence, pages 497–509. Springer, 2019a.

A. Ramachandran, S. Gupta, S. Rana, and S. Venkatesh. Information-theoretic transfer
learning framework for Bayesian optimisation. In M. Berlingerio, F. Bonchi, T. Gärtner,
N. Hurley, and G. Ifrim, editors, Machine Learning and Knowledge Discovery in Databases
(ECML/PKDD’19), Lecture Notes in Computer Science, pages 827–842. Springer, 2019b.

C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. The MIT Press,
2006.

B. Recht and K. Jamieson. The news on auto-tuning. 4http://www.argmin.net/2016/06/
20/hypertuning/, 2016. Accessed: 2020-02-06.

M. Reif, F. Shafait, and A. Dengel. Meta-learning for evolutionary parameter optimization
of classifiers. Machine Learning, 87:357–380, 2012.

A Rivolli, L. Garcia, C. Soares, J. Vanschoren, and A. de Carvalho. Characterizing classifi-
cation datasets: a study of meta-features for meta-learning. arXiv:1808.10406 [cs.LG],
2018.

34

92 practical transfer learning for bayesian optimization

Practical Transfer Learning for Bayesian Optimization

D. Salinas, H. Shen, and V. Perrone. A quantile-based approach for hyperparameter transfer
learning. In H. Daume III and A. Singh, editors, Proceedings of the 37th International
Conference on Machine Learning (ICML’20), volume 98, pages 8438–8448. Proceedings of
Machine Learning Research, 2020.

N. Schilling, M. Wistuba, L. Drumond, and L. Schmidt-Thieme. Hyperparameter opti-
mization with factorized multilayer perceptrons. In A. Appice, P. Rodrigues, V. Costa,
J. Gama, A. Jorge, and C. Soares, editors, Machine Learning and Knowledge Discovery in
Databases (ECML/PKDD’15), volume 9285 of Lecture Notes in Computer Science, pages
87–103. Springer, 2015.

N. Schilling, M. Wistuba, and L. Schmidt-Thieme. Scalable hyperparameter optimiza-
tion with products of Gaussian process experts. In F. Paolo, N. Landwehr, G. Manco,
and J. Vreeken, editors, Machine Learning and Knowledge Discovery in Databases
(ECML/PKDD’16), Lecture Notes in Computer Science, pages 33–48. Springer, 2016.

D. Sculley, J. Snoek, A. Wiltschko, and A. Rahimi. Winner’s curse? on pace, progress, and
empirical rigor. In International Conference on Learning Representations Workshop track,
2018. Published online: iclr.cc.

B. Shahriari, K. Swersky, Z. Wang, R. Adams, and N. de Freitas. Taking the human out of
the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1):148–175,
2016.

A. Shilton, S. Gupta, S. Rana, and S. Venkatesh. Regret bounds for transfer learning in
Bayesian optimisation. In A. Singh and J. Zhu, editors, Proceedings of the Seventeenth
International Conference on Artificial Intelligence and Statistics (AISTATS), volume 54,
pages 307–315. Proceedings of Machine Learning Research, 2017.

J. Snoek, H. Larochelle, and R. Adams. Practical Bayesian optimization of machine learning
algorithms. In P. Bartlett, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, editors,
Proceedings of the 25th International Conference on Advances in Neural Information
Processing Systems (NeurIPS’12), pages 2960–2968. Curran Associates, 2012.

J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. Patwary, Prabhat,
and R. Adams. Scalable Bayesian optimization using deep neural networks. In F. Bach and
D. Blei, editors, Proceedings of the 32nd International Conference on Machine Learning
(ICML’15), volume 37, pages 2171–2180. Omnipress, 2015.

A. Souza, L. Nardi, L. Oliveira, K. Olukotun, M. Lindauer, and F. Hutter. Bayesian
optimization with a prior for the optimum. In N. Oliver, F. Pérez-Cruz, S. Kramer,
J. Read, and J.. Lozano, editors, Machine Learning and Knowledge Discovery in Databases.
Research Track (ECML/PKDD’21), volume 12977 of Lecture Notes in Computer Science,
pages 265–296. Springer, 2021.

J. Springenberg, A. Klein, S. Falkner, and F. Hutter. Bayesian optimization with robust
Bayesian neural networks. In D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon, and
R. Garnett, editors, Proceedings of the 29th International Conference on Advances in
Neural Information Processing Systems (NeurIPS’16). Curran Associates, 2016.

35

practical transfer learning for bayesian optimization 93

Feurer, Letham, Hutter and Bakshy

K. Swersky, J. Snoek, and R. Adams. Multi-task Bayesian optimization. In C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, editors, Proceedings of the
26th International Conference on Advances in Neural Information Processing Systems
(NeurIPS’13), pages 2004–2012. Curran Associates, 2013.

C. Thornton, F. Hutter, H. Hoos, and K. Leyton-Brown. Auto-WEKA: combined selection
and hyperparameter optimization of classification algorithms. In I. Dhillon, Y. Koren,
R. Ghani, T. Senator, P. Bradley, R. Parekh, J. He, R. Grossman, and R. Uthurusamy,
editors, The 19th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD’13), pages 847–855. ACM Press, 2013.

V. Tresp. Mixtures of Gaussian processes. In T. Leen, T. Dietterich, and V. Tresp, editors,
Proceedings of the 14th International Conference on Advances in Neural Information
Processing Systems (NeurIPS’01), pages 654–660. MIT Press, 2001.

J. van Rijn and F. Hutter. Hyperparameter importance across datasets. In Y. Guo and
F.Farooq, editors, Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), pages 2367–2376. ACM Press, 2018.

J. Vanschoren. Meta-learning. In F. Hutter, L. Kotthoff, and J. Vanschoren, editors, Auto-
mated Machine Learning: Methods, Systems, Challenges, volume 5 of The Springer Series
on Challenges in Machine Learning, chapter 2, pages 35–61. Springer, 2019. Available for
free at http://automl.org/book.

J. Vanschoren, J. van Rijn, B. Bischl, and L. Torgo. OpenML: Networked science in machine
learning. SIGKDD Explor. Newsl., 15(2):49–60, 2014.

P. Virtanen, R. Gommers, T. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski,
P. Peterson, W. Weckesser, J. Bright, S. van der Walt, M. Brett, J. Wilson, K. Millman,
N. Mayorov, A. Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng, E. Moore,
J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. Quintero, C. Harris,
A. Archibald, A. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 contributors.
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods,
17:261–272, 2020.

Z. Wang, C. Li, S. Jegelka, and P. Kohli. Batched High-dimensional Bayesian Optimization
via Structural Kernel Learning. In D. Precup and Y. Teh, editors, Proceedings of the 34th
International Conference on Machine Learning (ICML’17), volume 70, pages 3656–3664.
Proceedings of Machine Learning Research, 2017.

Z. Wang, C. Gehring, P. Kohli, and S. Jegelka. Batched Large-scale Bayesian Optimization
in High-dimensional Spaces. In A. Storkey and F Perez-Cruz, editors, Proceedings of
the 21st International Conference on Artificial Intelligence and Statistics (AISTATS),
volume 84, pages 745–754. Proceedings of Machine Learning Research, 2018a.

Z. Wang, B. Kim, and L. Kaelbling. Regret bounds for meta bayesian optimization with an
unknown gaussian process prior. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Proceedings of the 31st International Conference

36

94 practical transfer learning for bayesian optimization

Practical Transfer Learning for Bayesian Optimization

on Advances in Neural Information Processing Systems (NeurIPS’18), pages 10477–10488.
Curran Associates, 2018b.

J. Wilson, F. Hutter, and M. Deisenroth. Maximizing acquisition functions for Bayesian
optimization. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Proceedings of the 31st International Conference on Advances in
Neural Information Processing Systems (NeurIPS’18), pages 9906–9917. Curran Associates,
2018.

M. Wistuba. TST-R implementation, 2016. https://github.com/wistuba/TST.

M. Wistuba and J. Grabocka. Few-shot Bayesian optimization with deep kernel surrogates.
In Proceedings of the International Conference on Learning Representations (ICLR’21),
2021. Published online: iclr.cc.

M. Wistuba, N. Schilling, and L. Schmidt-Thieme. Sequential Model-Free Hyperparameter
Tuning. In ICDM ’15: Proceedings of the 2015 IEEE International Conference on Data
Mining (ICDM), pages 1033–1038. IEEE Computer Society Press, 2015a.

M. Wistuba, N. Schilling, and L. Schmidt-Thieme. Hyperparameter search space pruning -
A new component for sequential model-based hyperparameter optimization. In A. Appice,
P. Rodrigues, V. Costa, J. Gama, A. Jorge, and C. Soares, editors, Machine Learning and
Knowledge Discovery in Databases (ECML/PKDD’15), volume 9285 of Lecture Notes in
Computer Science, pages 104–119. Springer, 2015b.

M. Wistuba, N. Schilling, and L. Schmidt-Thieme. Two-stage transfer surrogate model for au-
tomatic hyperparameter optimization. In F. Paolo, N. Landwehr, G. Manco, and J. Vreeken,
editors, Machine Learning and Knowledge Discovery in Databases (ECML/PKDD’16),
Lecture Notes in Computer Science, pages 199–214. Springer, 2016.

M. Wistuba, N. Schilling, and L. Schmidt-Thieme. Scalable Gaussian process-based transfer
surrogates for hyperparameter optimization. Machine Learning, 107(1):43–78, 2018.

J. Wu, S. Toscano-Palmerin, P. Frazier, and A. Wilson. Practical multi-fidelity Bayesian
optimization for hyperparameter tuning. In R. Adams and V. Gogate, editors, Proceedings
of The 35th Uncertainty in Artificial Intelligence Conference (UAI’20), volume 115, pages
788–798. Proceedings of Machine Learning Research, 2020.

L. Xu, H. Hoos, and K. Leyton-Brown. Hydra: Automatically configuring algorithms for
portfolio-based selection. In M. Fox and D. Poole, editors, Proceedings of the Twenty-fourth
National Conference on Artificial Intelligence (AAAI’10), pages 210–216. AAAI Press,
2010.

L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown. Hydra-MIP: Automated algorithm
configuration and selection for mixed integer programming. In Proc. of RCRA workshop
at IJCAI, 2011.

C. Yang, J. Akimoto, D. Kim, and M. Udell. OBOE: Collaborative filtering for AutoML
model selection. In A. Teredesai, V. Kumar, Y. Li, R. Rosales, E. Terzi, and G. Karypis,

37

practical transfer learning for bayesian optimization 95

Feurer, Letham, Hutter and Bakshy

editors, Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD’19, pages 1173–1183. ACM Press, 2019.

C. Yang, J. Fan, Z. Wu, and M. Udell. AutoML pipeline selection: Efficiently navigating the
combinatorial space. In J. Tang and B. Prakash, editors, Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’20),
pages 1446–1456. ACM Press, 2020.

D. Yogatama and G. Mann. Efficient transfer learning method for automatic hyperparameter
tuning. In S. Kaski and J. Corander, editors, Proceedings of the Seventeenth International
Conference on Artificial Intelligence and Statistics (AISTATS), volume 33, pages 1077–
1085. Proceedings of Machine Learning Research, 2014.

L. Zimmer, M. Lindauer, and F. Hutter. Auto-Pytorch: Multi-fidelity metalearning for
efficient and robust AutoDL. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 1–1, 2021.

38

96 practical transfer learning for bayesian optimization

Part III

P U B L I C AT I O N S O N AU T O M AT E D M A C H I N E
L E A R N I N G

5
E F F I C I E N T A N D R O B U S T AU T O M AT E D M A C H I N E
L E A R N I N G

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias
Springenberg, Manuel Blum, and Frank Hutter (2015). “Efficient
and Robust Automated Machine Learning.” In: Advances in Neu-
ral Information Processing Systems. Ed. by Corinna Cortes, Neil D
Lawrence, Daniel D Lee, Masashi Sugiyama, and Roman Garnett.
Vol. 28, pp. 2962–2970.

paper summary. This paper proposed to robustify automated
machine learning systems and presents the winning solution to the
1st ChaLearn AutoML competition. Its contributions are:

1. Formally defining the AutoML problem.

2. Demonstrating that warm-starting can be applied to a fully-
fledged AutoML systems to overcome the so-called cold-start
problem when optimizing hyperparameters.

3. Introducing post-hoc ensemble building as a final step to not
only return a single machine learning model, but an ensemble
of the models constructed throughout the search for an optimal
machine learning pipeline, robustifying the AutoML system.

4. A large-scale empirical study, comparing against two available
competitor systems, AutoWEKA and Hyperopt-sklearn.

project idea . Writing this paper was proposed by Frank Hutter.
It is based on the winning solution to the 1st ChaLearn AutoML
competition, which was developed and researched by all co-authors
spearheaded by Matthias Feurer.

implementation and experimentation. Matthias Feurer led
the implementation. Matthias Feurer implemented the software frame-
work with help from Katharina Eggensperger, Matthias Feurer imple-
mented the meta-learning component and Aaron Klein implemented
the ensembling component. Experiments were conducted by Matthias
Feurer and Katharina Eggensperger.

paper writing . Aaron Klein, Katharina Eggensperger and Mat-
thias Feurer prepared a first draft of this paper. All co-authors jointly
revised and extended it. The final paper version was largely revised
and edited by Frank Hutter.

99

Efficient and Robust Automated Machine Learning

Matthias Feurer Aaron Klein Katharina Eggensperger
Jost Tobias Springenberg Manuel Blum Frank Hutter

Department of Computer Science
University of Freiburg, Germany

{feurerm,kleinaa,eggenspk,springj,mblum,fh}@cs.uni-freiburg.de

Abstract

The success of machine learning in a broad range of applications has led to an
ever-growing demand for machine learning systems that can be used off the shelf
by non-experts. To be effective in practice, such systems need to automatically
choose a good algorithm and feature preprocessing steps for a new dataset at hand,
and also set their respective hyperparameters. Recent work has started to tackle this
automated machine learning (AutoML) problem with the help of efficient Bayesian
optimization methods. Building on this, we introduce a robust new AutoML system
based on scikit-learn (using 15 classifiers, 14 feature preprocessing methods, and
4 data preprocessing methods, giving rise to a structured hypothesis space with
110 hyperparameters). This system, which we dub AUTO-SKLEARN, improves on
existing AutoML methods by automatically taking into account past performance
on similar datasets, and by constructing ensembles from the models evaluated
during the optimization. Our system won the first phase of the ongoing ChaLearn
AutoML challenge, and our comprehensive analysis on over 100 diverse datasets
shows that it substantially outperforms the previous state of the art in AutoML. We
also demonstrate the performance gains due to each of our contributions and derive
insights into the effectiveness of the individual components of AUTO-SKLEARN.

1 Introduction

Machine learning has recently made great strides in many application areas, fueling a growing
demand for machine learning systems that can be used effectively by novices in machine learning.
Correspondingly, a growing number of commercial enterprises aim to satisfy this demand (e.g.,
BigML.com, Wise.io, SkyTree.com, RapidMiner.com, Dato.com, Prediction.io, DataRobot.com, Microsoft’s Azure Machine

Learning, Google’s Prediction API, and Amazon Machine Learning). At its core, every effective machine learning
service needs to solve the fundamental problems of deciding which machine learning algorithm to
use on a given dataset, whether and how to preprocess its features, and how to set all hyperparameters.
This is the problem we address in this work.

More specifically, we investigate automated machine learning (AutoML), the problem of automatically
(without human input) producing test set predictions for a new dataset within a fixed computational
budget. Formally, this AutoML problem can be stated as follows:

Definition 1 (AutoML problem). For i = 1, . . . , n+m, let xi ∈ Rd denote a feature vector and yi ∈
Y the corresponding target value. Given a training dataset Dtrain = {(x1, y1), . . . , (xn, yn)} and
the feature vectors xn+1, . . . ,xn+m of a test dataset Dtest = {(xn+1, yn+1), . . . , (xn+m, yn+m)}
drawn from the same underlying data distribution, as well as a resource budget b and a loss metric
L(·, ·), the AutoML problem is to (automatically) produce test set predictions ŷn+1, . . . , ŷn+m. The
loss of a solution ŷn+1, . . . , ŷn+m to the AutoML problem is given by 1

m

∑m
j=1 L(ŷn+j , yn+j).

1

efficient and robust automated machine learning 101

In practice, the budget b would comprise computational resources, such as CPU and/or wallclock time
and memory usage. This problem definition reflects the setting of the ongoing ChaLearn AutoML
challenge [1]. The AutoML system we describe here won the first phase of that challenge.

Here, we follow and extend the AutoML approach first introduced by AUTO-WEKA [2] (see
http://automl.org). At its core, this approach combines a highly parametric machine learning
framework F with a Bayesian optimization [3] method for instantiating F well for a given dataset.

The contribution of this paper is to extend this AutoML approach in various ways that considerably
improve its efficiency and robustness, based on principles that apply to a wide range of machine
learning frameworks (such as those used by the machine learning service providers mentioned above).
First, following successful previous work for low dimensional optimization problems [4, 5, 6],
we reason across datasets to identify instantiations of machine learning frameworks that perform
well on a new dataset and warmstart Bayesian optimization with them (Section 3.1). Second, we
automatically construct ensembles of the models considered by Bayesian optimization (Section 3.2).
Third, we carefully design a highly parameterized machine learning framework from high-performing
classifiers and preprocessors implemented in the popular machine learning framework scikit-learn [7]
(Section 4). Finally, we perform an extensive empirical analysis using a diverse collection of datasets
to demonstrate that the resulting AUTO-SKLEARN system outperforms previous state-of-the-art
AutoML methods (Section 5), to show that each of our contributions leads to substantial performance
improvements (Section 6), and to gain insights into the performance of the individual classifiers and
preprocessors used in AUTO-SKLEARN (Section 7).

2 AutoML as a CASH problem

We first review the formalization of AutoML as a Combined Algorithm Selection and Hyperparameter
optimization (CASH) problem used by AUTO-WEKA’s AutoML approach. Two important problems
in AutoML are that (1) no single machine learning method performs best on all datasets and (2) some
machine learning methods (e.g., non-linear SVMs) crucially rely on hyperparameter optimization.
The latter problem has been successfully attacked using Bayesian optimization [3], which nowadays
forms a core component of an AutoML system. The former problem is intertwined with the latter since
the rankings of algorithms depend on whether their hyperparameters are tuned properly. Fortunately,
the two problems can efficiently be tackled as a single, structured, joint optimization problem:
Definition 2 (CASH). LetA = {A(1), . . . , A(R)} be a set of algorithms, and let the hyperparameters
of each algorithm A(j) have domain Λ(j). Further, let Dtrain = {(x1, y1), . . . , (xn, yn)} be a train-
ing set which is split into K cross-validation folds {D(1)

valid, . . . , D
(K)
valid} and {D(1)

train, . . . , D
(K)
train}

such that D(i)
train = Dtrain\D(i)

valid for i = 1, . . . ,K. Finally, let L(A
(j)
λ , D

(i)
train, D

(i)
valid) denote the

loss that algorithm A(j) achieves on D
(i)
valid when trained on D

(i)
train with hyperparameters λ. Then,

the Combined Algorithm Selection and Hyperparameter optimization (CASH) problem is to find the
joint algorithm and hyperparameter setting that minimizes this loss:

A?,λ? ∈ argmin
A(j)∈A,λ∈Λ(j)

1

K

K∑

i=1

L(A
(j)
λ , D

(i)
train, D

(i)
valid). (1)

This CASH problem was first tackled by Thornton et al. [2] in the AUTO-WEKA system using the
machine learning framework WEKA [8] and tree-based Bayesian optimization methods [9, 10]. In
a nutshell, Bayesian optimization [3] fits a probabilistic model to capture the relationship between
hyperparameter settings and their measured performance; it then uses this model to select the most
promising hyperparameter setting (trading off exploration of new parts of the space vs. exploitation
in known good regions), evaluates that hyperparameter setting, updates the model with the result,
and iterates. While Bayesian optimization based on Gaussian process models (e.g., Snoek et al. [11])
performs best in low-dimensional problems with numerical hyperparameters, tree-based models have
been shown to be more successful in high-dimensional, structured, and partly discrete problems [12] –
such as the CASH problem – and are also used in the AutoML system HYPEROPT-SKLEARN [13].
Among the tree-based Bayesian optimization methods, Thornton et al. [2] found the random-forest-
based SMAC [9] to outperform the tree Parzen estimator TPE [10], and we therefore use SMAC
to solve the CASH problem in this paper. Next to its use of random forests [14], SMAC’s main
distinguishing feature is that it allows fast cross-validation by evaluating one fold at a time and
discarding poorly-performing hyperparameter settings early.

2

102 efficient and robust automated machine learning

AutoML
system

ML framework

{Xtrain, Ytrain,
Xtest, b,L}

meta-
learning

data pre-
processor

feature
preprocessor

classifier
build

ensemble
Ŷtest

Bayesian optimizer

Figure 1: Our improved AutoML approach. We add two components to Bayesian hyperparameter optimization
of an ML framework: meta-learning for initializing the Bayesian optimizer and automated ensemble construction
from configurations evaluated during optimization.

3 New methods for increasing efficiency and robustness of AutoML

We now discuss our two improvements of the AutoML approach. First, we include a meta-learning
step to warmstart the Bayesian optimization procedure, which results in a considerable boost in
efficiency. Second, we include an automated ensemble construction step, allowing us to use all
classifiers that were found by Bayesian optimization.

Figure 1 summarizes the overall AutoML workflow, including both of our improvements. We note
that we expect their effectiveness to be greater for flexible ML frameworks that offer many degrees of
freedom (e.g., many algorithms, hyperparameters, and preprocessing methods).

3.1 Meta-learning for finding good instantiations of machine learning frameworks

Domain experts derive knowledge from previous tasks: They learn about the performance of machine
learning algorithms. The area of meta-learning [15] mimics this strategy by reasoning about the
performance of learning algorithms across datasets. In this work, we apply meta-learning to select
instantiations of our given machine learning framework that are likely to perform well on a new
dataset. More specifically, for a large number of datasets, we collect both performance data and a set
of meta-features, i.e., characteristics of the dataset that can be computed efficiently and that help to
determine which algorithm to use on a new dataset.

This meta-learning approach is complementary to Bayesian optimization for optimizing an ML
framework. Meta-learning can quickly suggest some instantiations of the ML framework that are
likely to perform quite well, but it is unable to provide fine-grained information on performance.
In contrast, Bayesian optimization is slow to start for hyperparameter spaces as large as those of
entire ML frameworks, but can fine-tune performance over time. We exploit this complementarity by
selecting k configurations based on meta-learning and use their result to seed Bayesian optimization.
This approach of warmstarting optimization by meta-learning has already been successfully applied
before [4, 5, 6], but never to an optimization problem as complex as that of searching the space
of instantiations of a full-fledged ML framework. Likewise, learning across datasets has also
been applied in collaborative Bayesian optimization methods [16, 17]; while these approaches are
promising, they are so far limited to very few meta-features and cannot yet cope with the high-
dimensional partially discrete configuration spaces faced in AutoML.

More precisely, our meta-learning approach works as follows. In an offline phase, for each machine
learning dataset in a dataset repository (in our case 140 datasets from the OpenML [18] repository),
we evaluated a set of meta-features (described below) and used Bayesian optimization to determine
and store an instantiation of the given ML framework with strong empirical performance for that
dataset. (In detail, we ran SMAC [9] for 24 hours with 10-fold cross-validation on two thirds of the
data and stored the resulting ML framework instantiation which exhibited best performance on the
remaining third). Then, given a new dataset D, we compute its meta-features, rank all datasets by
their L1 distance to D in meta-feature space and select the stored ML framework instantiations for
the k = 25 nearest datasets for evaluation before starting Bayesian optimization with their results.

To characterize datasets, we implemented a total of 38 meta-features from the literature, including
simple, information-theoretic and statistical meta-features [19, 20], such as statistics about the number
of data points, features, and classes, as well as data skewness, and the entropy of the targets. All
meta-features are listed in Table 1 of the supplementary material. Notably, we had to exclude the
prominent and effective category of landmarking meta-features [21] (which measure the performance
of simple base learners), because they were computationally too expensive to be helpful in the online
evaluation phase. We note that this meta-learning approach draws its power from the availability of

3

efficient and robust automated machine learning 103

a repository of datasets; due to recent initiatives, such as OpenML [18], we expect the number of
available datasets to grow ever larger over time, increasing the importance of meta-learning.

3.2 Automated ensemble construction of models evaluated during optimization

While Bayesian hyperparameter optimization is data-efficient in finding the best-performing hyperpa-
rameter setting, we note that it is a very wasteful procedure when the goal is simply to make good
predictions: all the models it trains during the course of the search are lost, usually including some
that perform almost as well as the best. Rather than discarding these models, we propose to store them
and to use an efficient post-processing method (which can be run in a second process on-the-fly) to
construct an ensemble out of them. This automatic ensemble construction avoids to commit itself to a
single hyperparameter setting and is thus more robust (and less prone to overfitting) than using the
point estimate that standard hyperparameter optimization yields. To our best knowledge, we are the
first to make this simple observation, which can be applied to improve any Bayesian hyperparameter
optimization method.

It is well known that ensembles often outperform individual models [22, 23], and that effective
ensembles can be created from a library of models [24, 25]. Ensembles perform particularly well if
the models they are based on (1) are individually strong and (2) make uncorrelated errors [14]. Since
this is much more likely when the individual models are different in nature, ensemble building is
particularly well suited for combining strong instantiations of a flexible ML framework.

However, simply building a uniformly weighted ensemble of the models found by Bayesian optimiza-
tion does not work well. Rather, we found it crucial to adjust these weights using the predictions of
all individual models on a hold-out set. We experimented with different approaches to optimize these
weights: stacking [26], gradient-free numerical optimization, and the method ensemble selection [24].
While we found both numerical optimization and stacking to overfit to the validation set and to be
computationally costly, ensemble selection was fast and robust. In a nutshell, ensemble selection
(introduced by Caruana et al. [24]) is a greedy procedure that starts from an empty ensemble and then
iteratively adds the model that maximizes ensemble validation performance (with uniform weight,
but allowing for repetitions). Procedure 1 in the supplementary material describes it in detail. We
used this technique in all our experiments – building an ensemble of size 50.

4 A practical automated machine learning system

data
preprocessor

estimatorfeature
preprocessor classifier

AdaBoost· · ·RF kNN

estimatorslearning rate max. depth

preprocessing

· · ·NonePCA fast ICA

rescaling

· · ·min/max standard

one hot enc.

· · ·

imputation

mean · · · median

balancing

weighting None

Figure 2: Structured configuration space. Squared boxes
denote parent hyperparameters whereas boxes with rounded
edges are leaf hyperparameters. Grey colored boxes mark
active hyperparameters which form an example configuration
and machine learning pipeline. Each pipeline comprises one
feature preprocessor, classifier and up to three data prepro-
cessor methods plus respective hyperparameters.

To design a robust AutoML system, as
our underlying ML framework we chose
scikit-learn [7], one of the best known
and most widely used machine learning
libraries. It offers a wide range of well es-
tablished and efficiently-implemented ML
algorithms and is easy to use for both ex-
perts and beginners. Since our AutoML
system closely resembles AUTO-WEKA,
but – like HYPEROPT-SKLEARN – is based
on scikit-learn, we dub it AUTO-SKLEARN.

Figure 2 depicts AUTO-SKLEARN’s overall
components. It comprises 15 classification
algorithms, 14 preprocessing methods, and
4 data preprocessing methods. We param-
eterized each of them, which resulted in a
space of 110 hyperparameters. Most of these are conditional hyperparameters that are only active
if their respective component is selected. We note that SMAC [9] can handle this conditionality
natively.

All 15 classification algorithms in AUTO-SKLEARN are listed in Table 1a (and described in detail in
Section A.1 of the supplementary material). They fall into different categories, such as general linear
models (2 algorithms), support vector machines (2), discriminant analysis (2), nearest neighbors
(1), naı̈ve Bayes (3), decision trees (1) and ensembles (4). In contrast to AUTO-WEKA [2], we

4

104 efficient and robust automated machine learning

name #λ cat (cond) cont (cond)

AdaBoost (AB) 4 1 (-) 3 (-)
Bernoulli naı̈ve Bayes 2 1 (-) 1 (-)
decision tree (DT) 4 1 (-) 3 (-)
extreml. rand. trees 5 2 (-) 3 (-)
Gaussian naı̈ve Bayes - - -
gradient boosting (GB) 6 - 6 (-)
kNN 3 2 (-) 1 (-)
LDA 4 1 (-) 3 (1)
linear SVM 4 2 (-) 2 (-)
kernel SVM 7 2 (-) 5 (2)
multinomial naı̈ve Bayes 2 1 (-) 1 (-)
passive aggressive 3 1 (-) 2 (-)
QDA 2 - 2 (-)
random forest (RF) 5 2 (-) 3 (-)
Linear Class. (SGD) 10 4 (-) 6 (3)

(a) classification algorithms

name #λ cat (cond) cont (cond)

extreml. rand. trees prepr. 5 2 (-) 3 (-)
fast ICA 4 3 (-) 1 (1)
feature agglomeration 4 3 () 1 (-)
kernel PCA 5 1 (-) 4 (3)
rand. kitchen sinks 2 - 2 (-)
linear SVM prepr. 3 1 (-) 2 (-)
no preprocessing - - -
nystroem sampler 5 1 (-) 4 (3)
PCA 2 1 (-) 1 (-)
polynomial 3 2 (-) 1 (-)
random trees embed. 4 - 4 (-)
select percentile 2 1 (-) 1 (-)
select rates 3 2 (-) 1 (-)

one-hot encoding 2 1 (-) 1 (1)
imputation 1 1 (-) -
balancing 1 1 (-) -
rescaling 1 1 (-) -

(b) preprocessing methods

Table 1: Number of hyperparameters for each possible classifier (left) and feature preprocessing method
(right) for a binary classification dataset in dense representation. Tables for sparse binary classification and
sparse/dense multiclass classification datasets can be found in the Section E of the supplementary material,
Tables 2a, 3a, 4a, 2b, 3b and 4b. We distinguish between categorical (cat) hyperparameters with discrete values
and continuous (cont) numerical hyperparameters. Numbers in brackets are conditional hyperparameters, which
are only relevant when another parameter has a certain value.

focused our configuration space on base classifiers and excluded meta-models and ensembles that
are themselves parameterized by one or more base classifiers. While such ensembles increased
AUTO-WEKA’s number of hyperparameters by almost a factor of five (to 786), AUTO-SKLEARN
“only” features 110 hyperparameters. We instead construct complex ensembles using our post-hoc
method from Section 3.2. Compared to AUTO-WEKA, this is much more data-efficient: in AUTO-
WEKA, evaluating the performance of an ensemble with 5 components requires the construction and
evaluation of 5 models; in contrast, in AUTO-SKLEARN, ensembles come largely for free, and it is
possible to mix and match models evaluated at arbitrary times during the optimization.

The preprocessing methods for datasets in dense representation in AUTO-SKLEARN are listed in
Table 1b (and described in detail in Section A.2 of the supplementary material). They comprise data
preprocessors (which change the feature values and are always used when they apply) and feature
preprocessors (which change the actual set of features, and only one of which [or none] is used). Data
preprocessing includes rescaling of the inputs, imputation of missing values, one-hot encoding and
balancing of the target classes. The 14 possible feature preprocessing methods can be categorized into
feature selection (2), kernel approximation (2), matrix decomposition (3), embeddings (1), feature
clustering (1), polynomial feature expansion (1) and methods that use a classifier for feature selection
(2). For example, L1-regularized linear SVMs fitted to the data can be used for feature selection by
eliminating features corresponding to zero-valued model coefficients.

As with every robust real-world system, we had to handle many more important details in AUTO-
SKLEARN; we describe these in Section B of the supplementary material.

5 Comparing AUTO-SKLEARN to AUTO-WEKA and HYPEROPT-SKLEARN

As a baseline experiment, we compared the performance of vanilla AUTO-SKLEARN (without our
improvements) to AUTO-WEKA and HYPEROPT-SKLEARN, reproducing the experimental setup
with 21 datasets of the paper introducing AUTO-WEKA [2]. We describe this setup in detail in
Section G in the supplementary material.

Table 2 shows that AUTO-SKLEARN performed statistically significantly better than AUTO-WEKA
in 6/21 cases, tied it in 12 cases, and lost against it in 3. For the three datasets where AUTO-
WEKA performed best, we found that in more than 50% of its runs the best classifier it chose is not
implemented in scikit-learn (trees with a pruning component). So far, HYPEROPT-SKLEARN is more
of a proof-of-concept – inviting the user to adapt the configuration space to her own needs – than
a full AutoML system. The current version crashes when presented with sparse data and missing
values. It also crashes on Cifar-10 due to a memory limit which we set for all optimizers to enable a

5

efficient and robust automated machine learning 105

A
ba

lo
ne

A
m

az
on

C
ar

C
ifa

r-
10

C
ifa

r-
10

Sm
al

l

C
on

ve
x

D
ex

te
r

D
or

ot
he

a

G
er

m
an

C
re

di
t

G
is

et
te

K
D

D
09

A
pp

et
en

cy

K
R

-v
s-

K
P

M
ad

el
on

M
N

IS
T

B
as

ic

M
R

B
I

Se
co

m

Se
m

ei
on

Sh
ut

tle

W
av

ef
or

m

W
in

e
Q

ua
lit

y

Y
ea

st

AS 73.50 16.00 0.39 51.70 54.81 17.53 5.56 5.51 27.00 1.62 1.74 0.42 12.44 2.84 46.92 7.87 5.24 0.01 14.93 33.76 40.67
AW 73.50 30.00 0.00 56.95 56.20 21.80 8.33 6.38 28.33 2.29 1.74 0.31 18.21 2.84 60.34 8.09 5.24 0.01 14.13 33.36 37.75
HS 76.21 16.22 0.39 - 57.95 19.18 - - 27.67 2.29 - 0.42 14.74 2.82 55.79 - 5.87 0.05 14.07 34.72 38.45

Table 2: Test set classification error of AUTO-WEKA (AW), vanilla AUTO-SKLEARN (AS) and HYPEROPT-
SKLEARN (HS), as in the original evaluation of AUTO-WEKA [2]. We show median percent error across
100 000 bootstrap samples (based on 10 runs), simulating 4 parallel runs. Bold numbers indicate the best result.
Underlined results are not statistically significantly different from the best according to a bootstrap test with
p = 0.05.

500 1000 1500 2000 2500 3000 3500
time [sec]

1.8

2.0

2.2

2.4

2.6

2.8

3.0

a
v
e
ra

g
e
 r

a
n
k

vanilla auto-sklearn

auto-sklearn + ensemble

auto-sklearn + meta-learning

auto-sklearn + meta-learning + ensemble

Figure 3: Average rank of all four AUTO-SKLEARN variants (ranked by balanced test error rate (BER)) across
140 datasets. Note that ranks are a relative measure of performance (here, the rank of all methods has to add up
to 10), and hence an improvement in BER of one method can worsen the rank of another. The supplementary
material shows the same plot on a log-scale to show the time overhead of meta-feature and ensemble computation.

fair comparison. On the 16 datasets on which it ran, it statistically tied the best optimizer in 9 cases
and lost against it in 7.

6 Evaluation of the proposed AutoML improvements

In order to evaluate the robustness and general applicability of our proposed AutoML system on
a broad range of datasets, we gathered 140 binary and multiclass classification datasets from the
OpenML repository [18], only selecting datasets with at least 1000 data points to allow robust
performance evaluations. These datasets cover a diverse range of applications, such as text classifi-
cation, digit and letter recognition, gene sequence and RNA classification, advertisement, particle
classification for telescope data, and cancer detection in tissue samples. We list all datasets in Table 7
and 8 in the supplementary material and provide their unique OpenML identifiers for reproducibility.
Since the class distribution in many of these datasets is quite imbalanced we evaluated all AutoML
methods using a measure called balanced classification error rate (BER). We define balanced error
rate as the average of the proportion of wrong classifications in each class. In comparison to standard
classification error (the average overall error), this measure (the average of the class-wise error)
assigns equal weight to all classes. We note that balanced error or accuracy measures are often used
in machine learning competitions (e.g., the AutoML challenge [1] uses balanced accuracy).

We performed 10 runs of AUTO-SKLEARN both with and without meta-learning and with and without
ensemble prediction on each of the datasets. To study their performance under rigid time constraints,
and also due to computational resource constraints, we limited the CPU time for each run to 1 hour; we
also limited the runtime for a single model to a tenth of this (6 minutes). To not evaluate performance
on data sets already used for meta-learning, we performed a leave-one-dataset-out validation: when
evaluating on dataset D, we only used meta-information from the 139 other datasets.

Figure 3 shows the average ranks over time of the four AUTO-SKLEARN versions we tested. We
observe that both of our new methods yielded substantial improvements over vanilla AUTO-SKLEARN.
The most striking result is that meta-learning yielded drastic improvements starting with the first

6

106 efficient and robust automated machine learning

O
pe

nM
L

da
ta

se
tI

D

A
U

T
O

-
S

K
L

E
A

R
N

A
da

B
oo

st

B
er

no
ul

li
na

ı̈v
e

B
ay

es

de
ci

si
on

tr
ee

ex
tr

em
l.

ra
nd

.t
re

es

G
au

ss
ia

n
na

ı̈v
e

B
ay

es

gr
ad

ie
nt

bo
os

tin
g

kN
N

L
D

A

lin
ea

rS
V

M

ke
rn

el
SV

M

m
ul

tin
om

ia
l

na
ı̈v

e
B

ay
es

pa
ss

iv
e

ag
gr

es
iv

e

Q
D

A

ra
nd

om
fo

re
st

L
in

ea
rC

la
ss

.
(S

G
D

)

38 2.15 2.68 50.22 2.15 18.06 11.22 1.77 50.00 8.55 16.29 17.89 46.99 50.00 8.78 2.34 15.82
46 3.76 4.65 - 5.62 4.74 7.88 3.49 7.57 8.67 8.31 5.36 7.55 9.23 7.57 4.20 7.31

179 16.99 17.03 19.27 18.31 17.09 21.77 17.00 22.23 18.93 17.30 17.57 18.97 22.29 19.06 17.24 17.01
184 10.32 10.52 - 17.46 11.10 64.74 10.42 31.10 35.44 15.76 12.52 27.13 20.01 47.18 10.98 12.76
554 1.55 2.42 - 12.00 2.91 10.52 3.86 2.68 3.34 2.23 1.50 10.37 100.00 2.75 3.08 2.50
772 46.85 49.68 47.90 47.75 45.62 48.83 48.15 48.00 46.74 48.38 48.66 47.21 48.75 47.67 47.71 47.93
917 10.22 9.11 25.83 11.00 10.22 33.94 10.11 11.11 34.22 18.67 6.78 25.50 20.67 30.44 10.83 18.33

1049 12.93 12.53 15.50 19.31 17.18 26.23 13.38 23.80 25.12 17.28 21.44 26.40 29.25 21.38 13.75 19.92
1111 23.70 23.16 28.40 24.40 24.47 29.59 22.93 50.30 24.11 23.99 23.56 27.67 43.79 25.86 28.06 23.36
1120 13.81 13.54 18.81 17.45 13.86 21.50 13.61 17.23 15.48 14.94 14.17 18.33 16.37 15.62 13.70 14.66
1128 4.21 4.89 4.71 9.30 3.89 4.77 4.58 4.59 4.58 4.83 4.59 4.46 5.65 5.59 3.83 4.33
293 2.86 4.07 24.30 5.03 3.59 32.44 24.48 4.86 24.40 14.16 100.00 24.20 21.34 28.68 2.57 15.54
389 19.65 22.98 - 33.14 19.38 29.18 19.20 30.87 19.68 17.95 22.04 20.04 20.14 39.57 20.66 17.99

Table 3: Median balanced test error rate (BER) of optimizing AUTO-SKLEARN subspaces for each classification
method (and all preprocessors), as well as the whole configuration space of AUTO-SKLEARN, on 13 datasets.
All optimization runs were allowed to run for 24 hours except for AUTO-SKLEARN which ran for 48 hours.
Bold numbers indicate the best result; underlined results are not statistically significantly different from the best
according to a bootstrap test using the same setup as for Table 2.

O
pe

nM
L

da
ta

se
tI

D

A
U

T
O

-
S

K
L

E
A

R
N

de
ns

ifi
er

ex
tr

em
l.

ra
nd

.
tr

ee
s

pr
ep

r.

fa
st

IC
A

fe
at

ur
e

ag
gl

om
er

at
io

n

ke
rn

el
PC

A

ra
nd

.
ki

tc
he

n
si

nk
s

lin
ea

r
SV

M
pr

ep
r.

no pr
ep

ro
c.

ny
st

ro
em

sa
m

pl
er

PC
A

po
ly

no
m

ia
l

ra
nd

om
tr

ee
s

em
be

d.

se
le

ct
pe

rc
en

til
e

cl
as

si
fic

at
io

n

se
le

ct
ra

te
s

tr
un

ca
te

dS
V

D

38 2.15 - 4.03 7.27 2.24 5.84 8.57 2.28 2.28 7.70 7.23 2.90 18.50 2.20 2.28 -
46 3.76 - 4.98 7.95 4.40 8.74 8.41 4.25 4.52 8.48 8.40 4.21 7.51 4.17 4.68 -

179 16.99 - 17.83 17.24 16.92 100.00 17.34 16.84 16.97 17.30 17.64 16.94 17.05 17.09 16.86 -
184 10.32 - 55.78 19.96 11.31 36.52 28.05 9.92 11.43 25.53 21.15 10.54 12.68 45.03 10.47 -
554 1.55 - 1.56 2.52 1.65 100.00 100.00 2.21 1.60 2.21 1.65 100.00 3.48 1.46 1.70 -
772 46.85 - 47.90 48.65 48.62 47.59 47.68 47.72 48.34 48.06 47.30 48.00 47.84 47.56 48.43 -
917 10.22 - 8.33 16.06 10.33 20.94 35.44 8.67 9.44 37.83 22.33 9.11 17.67 10.00 10.44 -

1049 12.93 - 20.36 19.92 13.14 19.57 20.06 13.28 15.84 18.96 17.22 12.95 18.52 11.94 14.38 -
1111 23.70 - 23.36 24.69 23.73 100.00 25.25 23.43 22.27 23.95 23.25 26.94 26.68 23.53 23.33 -
1120 13.81 - 16.29 14.22 13.73 14.57 14.82 14.02 13.85 14.66 14.23 13.22 15.03 13.65 13.67 -
1128 4.21 - 4.90 4.96 4.76 4.21 5.08 4.52 4.59 4.08 4.59 50.00 9.23 4.33 4.08 -

293 2.86 24.40 3.41 - - 100.00 19.30 3.01 2.66 20.94 - - 8.05 2.86 2.74 4.05
389 19.65 20.63 21.40 - - 17.50 19.66 19.89 20.87 18.46 - - 44.83 20.17 19.18 21.58

Table 4: Like Table 3, but instead optimizing subspaces for each preprocessing method (and all classifiers).

configuration it selected and lasting until the end of the experiment. We note that the improvement
was most pronounced in the beginning and that over time, vanilla AUTO-SKLEARN also found good
solutions without meta-learning, letting it catch up on some datasets (thus improving its overall rank).

Moreover, both of our methods complement each other: our automated ensemble construction
improved both vanilla AUTO-SKLEARN and AUTO-SKLEARN with meta-learning. Interestingly, the
ensemble’s influence on the performance started earlier for the meta-learning version. We believe
that this is because meta-learning produces better machine learning models earlier, which can be
directly combined into a strong ensemble; but when run longer, vanilla AUTO-SKLEARN without
meta-learning also benefits from automated ensemble construction.

7 Detailed analysis of AUTO-SKLEARN components

We now study AUTO-SKLEARN’s individual classifiers and preprocessors, compared to jointly
optimizing all methods, in order to obtain insights into their peak performance and robustness. Ideally,
we would have liked to study all combinations of a single classifier and a single preprocessor in
isolation, but with 15 classifiers and 14 preprocessors this was infeasible; rather, when studying the
performance of a single classifier, we still optimized over all preprocessors, and vice versa. To obtain
a more detailed analysis, we focused on a subset of datasets but extended the configuration budget for
optimizing all methods from one hour to one day and to two days for AUTO-SKLEARN. Specifically,
we clustered our 140 datasets with g-means [27] based on the dataset meta-features and used one
dataset from each of the resulting 13 clusters (see Table 6 in the supplementary material for the list of
datasets). We note that, in total, these extensive experiments required 10.7 CPU years.

Table 3 compares the results of the various classification methods against AUTO-SKLEARN. Overall,
as expected, random forests, extremely randomized trees, AdaBoost, and gradient boosting, showed

7

efficient and robust automated machine learning 107

101 102 103 104

time [sec]

0

2

4

6

8

10

B
a
la

n
ce

d
 E

rr
o
r

R
a
te

auto-sklearn

gradient boosting

kernel SVM

random forest

(a) MNIST (OpenML dataset ID 554)

101 102 103 104

time [sec]

15

20

25

30

35

40

45

50

B
a
la

n
ce

d
 E

rr
o
r

R
a
te

auto-sklearn

gradient boosting

kernel SVM

random forest

(b) Promise pc4 (OpenML dataset ID 1049)

Figure 4: Performance of a subset of classifiers compared to AUTO-SKLEARN over time. We show median test
error rate and the fifth and 95th percentile over time for optimizing three classifiers separately with optimizing
the joint space. A plot with all classifiers can be found in Figure 4 in the supplementary material. While
AUTO-SKLEARN is inferior in the beginning, in the end its performance is close to the best method.

the most robust performance, and SVMs showed strong peak performance for some datasets. Besides
a variety of strong classifiers, there are also several models which could not compete: The decision
tree, passive aggressive, kNN, Gaussian NB, LDA and QDA were statistically significantly inferior
to the best classifier on most datasets. Finally, the table indicates that no single method was the best
choice for all datasets. As shown in the table and also visualized for two example datasets in Figure
4, optimizing the joint configuration space of AUTO-SKLEARN led to the most robust performance.
A plot of ranks over time (Figure 2 and 3 in the supplementary material) quantifies this across all
13 datasets, showing that AUTO-SKLEARN starts with reasonable but not optimal performance and
effectively searches its more general configuration space to converge to the best overall performance
over time.

Table 4 compares the results of the various preprocessors against AUTO-SKLEARN. As for the
comparison of classifiers above, AUTO-SKLEARN showed the most robust performance: It performed
best on three of the datasets and was not statistically significantly worse than the best preprocessor on
another 8 of 13.

8 Discussion and Conclusion

We demonstrated that our new AutoML system AUTO-SKLEARN performs favorably against the
previous state of the art in AutoML, and that our meta-learning and ensemble improvements for
AutoML yield further efficiency and robustness. This finding is backed by the fact that AUTO-
SKLEARN won the auto-track in the first phase of ChaLearn’s ongoing AutoML challenge. In this
paper, we did not evaluate the use of AUTO-SKLEARN for interactive machine learning with an expert
in the loop and weeks of CPU power, but we note that that mode has also led to a third place in
the human track of the same challenge. As such, we believe that AUTO-SKLEARN is a promising
system for use by both machine learning novices and experts. The source code of AUTO-SKLEARN is
available under an open source license at https://github.com/automl/auto-sklearn.

Our system also has some shortcomings, which we would like to remove in future work. As one
example, we have not yet tackled regression or semi-supervised problems. Most importantly, though,
the focus on scikit-learn implied a focus on small to medium-sized datasets, and an obvious direction
for future work will be to apply our methods to modern deep learning systems that yield state-of-
the-art performance on large datasets; we expect that in that domain especially automated ensemble
construction will lead to tangible performance improvements over Bayesian optimization.

Acknowledgments

This work was supported by the German Research Foundation (DFG), under Priority Programme Autonomous
Learning (SPP 1527, grant HU 1900/3-1), under Emmy Noether grant HU 1900/2-1, and under the BrainLinks-
BrainTools Cluster of Excellence (grant number EXC 1086).

8

108 efficient and robust automated machine learning

References

[1] I. Guyon, K. Bennett, G. Cawley, H. Escalante, S. Escalera, T. Ho, N.Macià, B. Ray, M. Saeed, A. Statnikov,
and E. Viegas. Design of the 2015 ChaLearn AutoML Challenge. In Proc. of IJCNN’15, 2015.

[2] C. Thornton, F. Hutter, H. Hoos, and K. Leyton-Brown. Auto-WEKA: combined selection and hyperpa-
rameter optimization of classification algorithms. In Proc. of KDD’13, pages 847–855, 2013.

[3] E. Brochu, V. Cora, and N. de Freitas. A tutorial on Bayesian optimization of expensive cost functions,
with application to active user modeling and hierarchical reinforcement learning. CoRR, abs/1012.2599,
2010.

[4] M. Feurer, J. Springenberg, and F. Hutter. Initializing Bayesian hyperparameter optimization via meta-
learning. In Proc. of AAAI’15, pages 1128–1135, 2015.

[5] Reif M, F. Shafait, and A. Dengel. Meta-learning for evolutionary parameter optimization of classifiers.
Machine Learning, 87:357–380, 2012.

[6] T. Gomes, R. Prudêncio, C. Soares, A. Rossi, and A. Carvalho. Combining meta-learning and search
techniques to select parameters for support vector machines. Neurocomputing, 75(1):3–13, 2012.

[7] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. JMLR, 12:2825–2830, 2011.

[8] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Witten. The WEKA data mining
software: An update. SIGKDD, 11(1):10–18, 2009.

[9] F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm
configuration. In Proc. of LION’11, pages 507–523, 2011.

[10] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In Proc.
of NIPS’11, pages 2546–2554, 2011.

[11] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine learning algorithms.
In Proc. of NIPS’12, pages 2960–2968, 2012.

[12] K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H. Hoos, and K. Leyton-Brown. Towards
an empirical foundation for assessing Bayesian optimization of hyperparameters. In NIPS Workshop on
Bayesian Optimization in Theory and Practice, 2013.

[13] B. Komer, J. Bergstra, and C. Eliasmith. Hyperopt-sklearn: Automatic hyperparameter configuration for
scikit-learn. In ICML workshop on AutoML, 2014.

[14] L. Breiman. Random forests. MLJ, 45:5–32, 2001.
[15] P. Brazdil, C. Giraud-Carrier, C. Soares, and R. Vilalta. Metalearning: Applications to Data Mining.

Springer, 2009.
[16] R. Bardenet, M. Brendel, B. Kégl, and M. Sebag. Collaborative hyperparameter tuning. In Proc. of

ICML’13 [28], pages 199–207.
[17] D. Yogatama and G. Mann. Efficient transfer learning method for automatic hyperparameter tuning. In

Proc. of AISTATS’14, pages 1077–1085, 2014.
[18] J. Vanschoren, J. van Rijn, B. Bischl, and L. Torgo. OpenML: Networked science in machine learning.

SIGKDD Explorations, 15(2):49–60, 2013.
[19] D. Michie, D. Spiegelhalter, C. Taylor, and J. Campbell. Machine Learning, Neural and Statistical

Classification. Ellis Horwood, 1994.
[20] A. Kalousis. Algorithm Selection via Meta-Learning. PhD thesis, University of Geneve, 2002.
[21] B. Pfahringer, H. Bensusan, and C. Giraud-Carrier. Meta-learning by landmarking various learning

algorithms. In Proc. of (ICML’00), pages 743–750, 2000.
[22] I. Guyon, A. Saffari, G. Dror, and G. Cawley. Model selection: Beyond the Bayesian/Frequentist divide.

JMLR, 11:61–87, 2010.
[23] A. Lacoste, M. Marchand, F. Laviolette, and H. Larochelle. Agnostic Bayesian learning of ensembles. In

Proc. of ICML’14, pages 611–619, 2014.
[24] R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes. Ensemble selection from libraries of models. In

Proc. of ICML’04, page 18, 2004.
[25] R. Caruana, A. Munson, and A. Niculescu-Mizil. Getting the most out of ensemble selection. In Proc. of

ICDM’06, pages 828–833, 2006.
[26] D. Wolpert. Stacked generalization. Neural Networks, 5:241–259, 1992.
[27] G. Hamerly and C. Elkan. Learning the k in k-means. In Proc. of NIPS’04, pages 281–288, 2004.
[28] Proc. of ICML’13, 2014.

9

efficient and robust automated machine learning 109

6
AU T O - S K L E A R N 2 . 0 : H A N D S - F R E E AU T O M L V I A
M E TA - L E A R N I N G

Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lin-
dauer, and Frank Hutter (2022). “Auto-Sklearn 2.0: Hands-free Au-
toML via Meta-Learning.” In: Journal of Machine Learning Research
23.261. Ed. by Marc Schoenauer, pp. 1–61.

paper summary. This paper aims to reduce the human involve-
ment in setting up and developing AutoML systems. It proposes using
a new, portfolio-based meta-learning strategy and subsampling for
faster evaluation of individual machine learning models, which to-
gether form the technique of PoSH-Auto-sklearn. It then goes one
step further and proposes using meta-level meta-learning to choose
between different instantiations of an AutoML system, giving rise to
Auto-sklearn 2.0.

project idea . This paper is a follow-up of two previous, peer-
reviewed workshop papers (one by Matthias Feurer, Katharina Eggen-
sperger, Stefan Falkner, Marius Lindauer and Frank Hutter, and the
other one by Matthias Feurer and Frank Hutter), both published at the
AutoML workshop at the International Conference on Machine Learning
in 2018. PoSH-Auto-sklearn was developed by Matthias Feurer, Katha-
rina Eggensperger, Stefan Falkner, Marius Lindauer and Frank Hutter
for the 2nd ChaLearn AutoML challenge. The theoretical statements
were derived by Matthias Feurer based on an idea by Frank Hutter.
The meta-level meta-learning strategy was suggested by Frank Hutter
and revised by Matthias Feurer.

implementation and experimentation. All software used
in this paper was implemented by Matthias Feurer and Katharina
Eggensperger and is based on the publicly available Auto-sklearn
software (which is maintained by Matthias Feurer but also contains
contributions from others, including numerous working students).
An earlier version of PoSH-Auto-sklearn used for the 2nd ChaLearn
AutoML competition was developed by Matthias Feurer, Katharina
Eggensperger, Stefan Falkner and Marius Lindauer. Code for meta-
level meta-learning was written solely by Matthias Feurer. An initial
version of the experiment code was written by Matthias Feurer and
Katharina Eggensperger, and revised by Matthias Feurer, who also
conducted the final experiments.

111

112 auto-sklearn 2 .0 : hands-free automl via meta-learning

paper writing . Matthias Feurer, Katharina Eggensperger and
Marius Lindauer wrote the first draft. Marius Lindauer, Frank Hutter,
Katharina Eggensperger and Matthias Feurer revised the first paper
draft with feedback from Stefan Falkner. The final paper version was to
a large extent written by Matthias Feurer and Katharina Eggensperger.

license . This chapter was published by the Journal of Machine
Learning Research and is licensed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.
org/licenses/by/4.0/). No changes were made to the original publi-
cation.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Journal of Machine Learning Research 23 (2022) 1-61 Submitted 8/21; Revised 3/22; Published 8/22

Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning

Matthias Feurer1 feurerm@cs.uni-freiburg.de

Katharina Eggensperger1 eggenspk@cs.uni-freiburg.de

Stefan Falkner2 Stefan.Falkner@de.bosch.com

Marius Lindauer3 lindauer@tnt.uni-hannover.de

Frank Hutter1,2 fh@cs.uni-freiburg.de
1Department of Computer Science, Albert-Ludwigs-Universität Freiburg
2Bosch Center for Artificial Intelligence, Renningen, Germany
3Institute of Information Processing, Leibniz University Hannover

Editor: Marc Schoenauer

Abstract

Automated Machine Learning (AutoML) supports practitioners and researchers with the
tedious task of designing machine learning pipelines and has recently achieved substantial
success. In this paper, we introduce new AutoML approaches motivated by our winning
submission to the second ChaLearn AutoML challenge. We develop PoSH Auto-sklearn,
which enables AutoML systems to work well on large datasets under rigid time limits by
using a new, simple and meta-feature-free meta-learning technique and by employing a suc-
cessful bandit strategy for budget allocation. However, PoSH Auto-sklearn introduces even
more ways of running AutoML and might make it harder for users to set it up correctly.
Therefore, we also go one step further and study the design space of AutoML itself, propos-
ing a solution towards truly hands-free AutoML. Together, these changes give rise to the
next generation of our AutoML system, Auto-sklearn 2.0 . We verify the improvements by
these additions in an extensive experimental study on 39 AutoML benchmark datasets. We
conclude the paper by comparing to other popular AutoML frameworks and Auto-sklearn
1.0 , reducing the relative error by up to a factor of 4.5, and yielding a performance in 10
minutes that is substantially better than what Auto-sklearn 1.0 achieves within an hour.

Keywords: Automated machine learning, hyperparameter optimization, meta-learning,
automated AutoML, benchmark

1. Introduction

The recent substantial progress in machine learning (ML) has led to a growing demand
for hands-free ML systems that can support developers and ML novices in efficiently cre-
ating new ML applications. Since different datasets require different ML pipelines, this
demand has given rise to the area of automated machine learning (AutoML; Hutter et al.,
2019). Popular AutoML systems, such as Auto-WEKA (Thornton et al., 2013), hyperopt-
sklearn (Komer et al., 2014), Auto-sklearn (Feurer et al., 2015a), TPOT (Olson et al.,
2016a) and Auto-Keras (Jin et al., 2019) perform a combined optimization across different
preprocessors, classifiers or regressors and their hyperparameter settings, thereby reducing
the effort for users substantially.

c©2022 Matthias Feurer and Katharina Eggensperger and Stefan Falkner and Marius Lindauer and Frank Hutter.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/21-0992.html.

auto-sklearn 2 .0 : hands-free automl via meta-learning 113

Feurer, Eggensperger, Falkner, Lindauer and Hutter

To assess the current state of AutoML and, more importantly, to foster progress in
AutoML, ChaLearn conducted a series of AutoML challenges (Guyon et al., 2019), which
evaluated AutoML systems in a systematic way under rigid time and memory constraints.
Concretely, in these challenges, the AutoML systems were required to deliver predictions
in less than 20 minutes. On the one hand, this would allow to efficiently integrate AutoML
into the rapid prototype-driven workflow of many data scientists and, on the other hand,
help to democratize ML by requiring less compute resources.

We won both the first and second AutoML challenge with modified versions of Auto-
sklearn. In this work, we describe in detail how we improved Auto-sklearn from the first
version (Feurer et al., 2015a) to construct PoSH Auto-sklearn, which won the second com-
petition and then describe how we improved PoSH Auto-sklearn further to yield our current
approach for Auto-sklearn 2.0 .

Particularly, while AutoML relieves the user from making low-level design decisions
(e.g. which model to use), AutoML itself opens a myriad of high-level design decisions, e.g.
which model selection strategy to use (Guyon et al., 2010, 2015; Raschka, 2018) or how to
allocate the given time budget (Jamieson and Talwalkar, 2016). Whereas our submissions
to the AutoML challenges were mostly hand-designed, in this work, we go one step further
by automating AutoML itself to fully unfold the potential of AutoML in practice.1

After detailing the AutoML problem we consider in Section 2, we present two main
parts making the following contributions:

Part I: Portfolio Successive Halving in PoSH Auto-sklearn. In this part (see Sec-
tion 3), we introduce budget allocation strategies as a complementary design choice
to model selection strategies (holdout (HO) and cross-validation (CV)) for AutoML
systems. We suggest using the budget allocation strategy successive halving (SH) as
an alternative to always using the full budget (FB) to evaluate a configuration to
allocate more resources to promising ML pipelines. Furthermore, we introduce both
the practical approach as well as the theory behind building better portfolios for the
meta-learning component of Auto-sklearn. We show that this combination substan-
tially improves performance, yielding stronger results in 10 minutes than Auto-sklearn
1.0 achieved in 60 minutes.

Part II: Automating AutoML in Auto-sklearn 2.0 . In this part (see Section 4), we
propose a meta-learning technique based on algorithm selection to automatically select
the best setting of the AutoML system itself for a given dataset. We dub the resulting
system Auto-sklearn 2.0 and depict the evolution from Auto-sklearn 1.0 via PoSH
Auto-sklearn to Auto-sklearn 2.0 in Figure 1.

In Section 5, we additionally use the AutoML benchmark (Gijsbers et al., 2019) to evaluate
Auto-sklearn 2.0 against other popular AutoML systems and show improved performance
under rigid time constraints. Section 6 then puts our work into the context of related works,
and Section 7 concludes the paper with open questions, limitations and future work.

1. The work presented in this paper is in part based on two earlier workshop papers introducing some of
the presented ideas in preliminary form (Feurer et al., 2018; Feurer and Hutter, 2018).

2

114 auto-sklearn 2 .0 : hands-free automl via meta-learning

Auto-sklearn 2.0

Auto-sklearn 2.0
{Xtrain, Ytrain,
Xtest, b,L}

Selector selects
π ∈ {HO,CV } ×
{SH,FB}

Portfolio for π

AutoML system using π

initial
design

run
BO

Ŷtest

PoSH Auto-sklearn
{Xtrain, Ytrain,
Xtest, b,L} π = (HO,SH) Portfolio for π

AutoML system using π

initial
design

run
BO

Ŷtest

Auto-sklearn 1.0
{Xtrain, Ytrain,
Xtest, b,L}

User selects∗

π ∈ {HO,CV } KND

AutoML system using π

initial
design

run
BO

Ŷtest
∗ by default select HO

Figure 1: Schematic overview of Auto-sklearn 1.0 , PoSH Auto-sklearn, and Auto-sklearn
2.0 . Orange rectangular boxes refer to input and output data, while rounded
purple boxes denote parts of the AutoML system (surrounded by a green dashed
line). The pink, rounded box refers to a human in the loop required for manual
design decisions. The newer AutoML systems simplify the usage of Auto-sklearn
and reduce the required user input. We describe PoSH Auto-sklearn in Section 3
and give a schematic overview in Figure 2. Similarly, we describe Auto-sklearn
2.0 in Section 4 and provide a schematic overview in Figure 5.

2. Problem Statement

AutoML is a widely used term, so, here we first define the problem we consider in this
work. Let P (D) be a distribution of datasets from which we can sample an individual
dataset’s distribution Pd = Pd(x, y). The AutoML problem we consider is to generate a
trained pipeline Mλ : x 7→ y, hyperparameterized by λ ∈ Λ that automatically produces
predictions for samples from the distribution Pd minimizing the expected generalization
error:2

GE(Mλ) = E(x,y)∼Pd
[L(Mλ(x), y)] . (1)

Since a dataset can only be observed through a set of n independent observations Dd =
{(x1, y1), . . . , (xn, yn)} ∼ Pd, we can only empirically approximate the generalization error
on sample data:

GE
∧

(Mλ,Dd) =
1

n

n∑

i=1

L(Mλ(xi), yi). (2)

In practice we have access to two disjoint, finite samples which we from now on denote Dtrain

and Dtest (Dd,train and Dd,test in case we reference a specific dataset Pd). For searching the
best ML pipeline, we only have access toDtrain, however, in the end performance is estimated
once on Dtest. AutoML systems use this to automatically search for the best Mλ∗ :

Mλ∗ ∈ argmin
λ∈Λ

GE
∧

(Mλ,Dtrain), (3)

2. Our notation follows Vapnik (1991).

3

auto-sklearn 2 .0 : hands-free automl via meta-learning 115

Feurer, Eggensperger, Falkner, Lindauer and Hutter

and estimate GE, e.g., by a K-fold cross-validation:

GE
∧

CV(Mλ,Dtrain) =
1

K

K∑

k=1

GE
∧

(MD
(train,k)
train

λ ,D(val,k)
train), (4)

whereMD
(train,k)
train

λ denotes thatMλ was trained on the training split of k-th fold D(train,k)
train ⊂

Dtrain, and it is then evaluated on the validation split of the k-th fold D(val,k)
train = Dtrain \

D(train,k)
train .3 Assuming that, via λ, an AutoML system can select both, an algorithm and

its hyperparameter settings, this definition using GE
∧

CV is equivalent to the definition
of the CASH (C ombined Algorithm Selection and H yperparameter optimization) prob-
lem (Thornton et al., 2013; Feurer et al., 2015a). However, it is unlikely that, whatever
optimization algorithm we use, the AutoML system finds the exact optimum location λ∗.
Instead, the AutoML system will return the best ML pipeline it has trained during the
search process, which we denote by Mλ̂∗ , and the hyperparameter settings it was trained

with by λ̂∗.

2.1 Time-bounded AutoML

In practice, users are not only interested in obtaining an optimal pipeline Mλ∗ eventually,
but have constraints on how much time and compute resources they are willing to invest.
We denote the time it takes to evaluate GE

∧

(Mλ,Dtrain) as tλ and the overall optimization
budget by T . Our goal is to find

Mλ∗ ∈ argmin
λ∈Λ

GE
∧

(Mλ,Dtrain) s.t.
(∑

tλi

)
< T (5)

where the sum is over all evaluated pipelines λi, explicitly honouring the optimization
budget T . As before, the AutoML system will return the best model it has found within
the optimization budget, Mλ̂∗ .

2.2 Generalization of AutoML

Ultimately, an AutoML system A : D 7→ MD
λ̂∗

should not only perform well on a single

dataset but on the entire distribution over datasets P (D). Therefore, the meta-problem of
AutoML can be formalized as minimizing the generalization error over this distribution of
datasets:

GE(A) = EDd∼P (D)

[
GE
∧

(A(Dd),Dd)
]
, (6)

which in turn can again only be approximated by a finite set of meta-train datasets Dmeta

(each with a finite set of observations):

GE
∧

(A,Dmeta) =
1

| Dmeta |

|Dmeta|∑

d=1

GE
∧

(A(Dd),Dd). (7)

3. Alternatively, one could use holdout to estimate GE with GE
∧

HO(Mλ,Dtrain) = GE
∧

(MDtrain
train

λ ,Dval
train).

4

116 auto-sklearn 2 .0 : hands-free automl via meta-learning

Auto-sklearn 2.0

Having set up the problem statement, we can use this to further formalize our goals.
Instead of using a single, fixed AutoML system A, we will introduce optimization policies π,
a combination of hyperparameters of the AutoML system and specific components to be
used in a run, which can be used to configure an AutoML system for specific use cases. We
then denote such a configured AutoML system as Aπ.

We will first construct π manually in Section 3, introduce a novel system for designing
π from data in Section 4 and then extend this to a (learned) mapping Ξ : D → π which
automatically suggests an optimization policy for a new dataset using algorithm selection.
This problem setup can also be used to introduce generalizations of the algorithm selection
problem such as algorithm configuration (Birattari et al., 2002; Hutter et al., 2009; Kleinberg
et al., 2017), per-instance algorithm configuration (Xu et al., 2010; Malitsky et al., 2012)
and dynamic algorithm configuration (Biedenkapp et al., 2020) on a meta-level; but we
leave these for future work. In addition, instead of selecting between multiple policies of a
single AutoML system, the presented method can be applied to choose between different
AutoML systems without adjustments. However, instead of maximizing performance by
invoking many AutoML systems, thereby increasing the complexity, our goal is to improve
single AutoML systems to make them easier to use by decreasing complexity for the user.

3. Part I: Portfolio Successive Halving in PoSH Auto-sklearn

In this section we introduce our winning solution for the second AutoML competition (Guyon
et al., 2019), PoSH Auto-sklearn, short for Portfolio Successive Halving. We first describe
our use of portfolios to warmstart an AutoML system and then motivate using the successive
halving bandit strategy. Next, we describe practical considerations for building PoSH Auto-
sklearn, give a schematic overview and recap additional handcrafted techniques we used in
the competition. We end this first part of our main contributions with an experimental
evaluation demonstrating the performance of PoSH Auto-sklearn.

3.1 Portfolio Building

Finding the optimal solution to the time-bounded optimization problem from Equation (5)
requires searching a large space of possible ML pipelines as efficiently as possible. BO is a
strong approach for this, but its vanilla version starts from scratch for every new problem.
A better solution is to warmstart BO with ML pipelines that are expected to work well, as
done in the k-nearest dataset (KND) approach of Auto-sklearn 1.0 (Reif et al., 2012; Feurer
et al., 2015b,a; see also the related work in Section 6.4.1). However, we found this solution
to introduce new problems:

1. It is time-consuming since it requires to compute meta-features describing the char-
acteristics of datasets.

2. It adds complexity to the system as the computation of the meta-features must also
be done with a time and memory limit.

3. Many meta-features are not defined with respect to categorical features and missing
values, making them hard to apply for most datasets.

4. It is not immediately clear which meta-features work best for which problem.

5

auto-sklearn 2 .0 : hands-free automl via meta-learning 117

Feurer, Eggensperger, Falkner, Lindauer and Hutter

5. In the KND approach, there is no mechanism to guarantee that we do not execute
redundant ML pipelines.

We indeed suffered from these issues in the first AutoML challenge, failing on one track
due to running over time for the meta-feature generation, although we had already removed
landmarking meta-features due to their potentially high runtime. Therefore, here we pro-
pose a meta-feature-free approach that does not warmstart with a set of configurations
specific to a new dataset, but which uses a static portfolio – a set of complementary config-
urations that covers as many diverse datasets as possible and minimizes the risk of failure
when facing a new task.

So, instead of evaluating configurations chosen online by the KND method, we construct
a portfolio, consisting of high-performing and complementary ML pipelines to perform well
on as many datasets as possible, offline. Then, for a dataset at hand, all pipelines in this
portfolio are simply evaluated one after the other. If time is left afterwards, we continue with
pipelines suggested by BO warmstarted with the evaluated portfolio pipelines. We introduce
portfolio-based warmstarting to avoid computing meta-features for a new dataset. However,
the portfolios also work inherently differently. While the KND method is aimed at using
only well-performing configurations, a portfolio is built such that there is a diverse set of
configurations, starting with ones that perform well on average and then moving to more
specialized ones. Thus, it can be seen as an optimized initial design for the BO method.

In the following, we describe our offline procedure for constructing such a portfolio and
give theoretical underpinning by a performance bound.

3.1.1 Approach

We first describe how we construct a portfolio given a finite set of candidate pipelines
C = {λ1, ...,λl}. Additionally, we assume that there exists a set of datasets Dmeta =
{D1, . . . ,D|Dmeta|} and we wish to build a portfolio P consisting of a subset of the pipelines
in C that performs well on Dmeta.

We outline the process to build such a portfolio in Algorithm 1. First, we initialize
our portfolio P to the empty set (Line 2). Then, we repeat the following procedure until
|P| reaches a pre-defined limit: From a set of candidate ML pipelines C, we greedily add a
candidate λ+ ∈ C to P that reduces the estimated generalization error over all meta-datasets
most (Line 4), and then remove λ+ from C (Line 5).

The estimated generalization error of a portfolio P on a single dataset D is the per-
formance of the best pipeline λ ∈ P on D according to the model selection and budget
allocation strategy. This can be described via a function S(·, ·, ·), which takes as input a
function to compute the estimated generalization error (e.g., as defined in Equation 4), a
set of machine learning pipelines to train, and a dataset. It then returns the pipeline with
the lowest estimated generalization error as

MDλ∗ = S(GE
∧

,P,D) ∈ argmin
MDλ∈P

GE
∧

(MDλ ,D). (8)

6

118 auto-sklearn 2 .0 : hands-free automl via meta-learning

Auto-sklearn 2.0

Algorithm 1: Greedy Portfolio Building

1: Input: Set of candidate ML pipelines C, Dmeta = {D1, . . . ,D|Dmeta|}, maximal portfolio
size p, model selection strategy S

2: P = ∅
3: while |P| < p do

4: λ+ = argminλ∈C GE
∧

S(P ∪ {λ},Dmeta)
// Ties are broken favoring the model trained first.

5: P = P ∪ λ+, C = C \ {λ+}
6: end while
7: return Portfolio P

In case the result of argmin is not unique, we return the model that was evaluated first. The
estimated generalization error of P across all meta-datasets Dmeta = {D1, . . . ,D|Dmeta|} is
then

GE
∧

S(P,Dmeta) =

|Dmeta|∑

d=1

GE
∧(

S
(
GE
∧

,P,Dd
)
,Dval

d

)
, (9)

Here, we give the equation for using holdout, and in Appendix A we provide the exact
notation for cross-validation and successive halving.

We now detail how to construct the set of candidate pipelines C and describe how finding
the candidate pipelines and constructing the portfolio fit in the larger picture. We give a
schematic overview of this process in Figure 2. It consists of a training (TR1–TR3) and a
testing stage (TE1–TE2).

Having collected datasets Dmeta (we describe in Section 3.4.1 how we did this for our
experiments), we obtain the candidate ML pipelines (TR1) by running Auto-sklearn without
meta-learning and without ensembling on each dataset. We limit ourselves to a finite set of
portfolio candidates C, and pick one candidate per dataset. Then, we build a performance
matrix of size |C| × |Dmeta| by evaluating each of these candidate pipelines on each dataset
(TR2, we refer to Section 3.4.2 for a detailed description of the meta-data generation).
Finally, we then use this matrix to build a portfolio using Algorithm 1 for the combination
of model selection strategy holdout and budget allocation strategy SH in training step TR3.

For a new dataset Dnew ∈ Dtest, we apply the AutoML system using SH, holdout and the
portfolio to Dnew (TE1). Finally, we return the best found pipelineMλ̂∗ , or an ensemble of
the evaluated pipelines, based on the training set of Dnew (TE2.1). Optionally, we can then
compute the loss ofMλ̂∗ on the test set of Dnew (TE2.2); we emphasize that this would be
the only time we ever access the test set of Dnew.

To build a portfolio across datasets, we need to take into account that the generalization
errors for different datasets live on different scales (Bardenet et al., 2013). Thus, before
taking averages, for each dataset, we transform the generalization errors to the distance
to the best observed performance scaled between zero and one, a metric named distance
to minimum; which when averaged across all datasets is known as average distance to the
minimum (ADTM) (Wistuba et al., 2015a, 2018). We compute the statistics for zero-one
scaling individually for each combination of model selection and budget allocation (i.e., we
use the lowest observed test loss and the largest observed test loss for each meta-dataset).

7

auto-sklearn 2 .0 : hands-free automl via meta-learning 119

Feurer, Eggensperger, Falkner, Lindauer and Hutter

Optional

Representative
set of datasets
{D1, . . . ,D|Dmeta|} TR1: Obtain

set of candidate
ML pipelines C

TR2: Evaluate full
performance matrix

of shape |C| × |Dmeta|
TR3: Construct

portfolio P

TE1: Run
AutoML system

eval
P

run
BO

TE2.1: Return best
found pipeline Mλ̂∗ or
ensemble of pipelines

TE2.2: Report
loss on Dnew,test

Dnew,train Dnew Dnew,test

TRain (offline)

TEst (online)

Figure 2: Schematic Overview of PoSH Auto-sklearn with the offline portfolio building
phase (TR1-TR3) above and the test phase (TE1-TE2) below the dashed line.
Rounded, purple boxes refer to computational steps while rectangular, orange
boxes depict the input data to the AutoML system.

For each meta-dataset Dd ∈ Dmeta we have access to both Dd,train and Dd,test. In the
case of holdout, we split the training set Dd,train into two smaller disjoint sets Dtrain

d,train and

Dval
d,train. We usually train models using Dtrain

d,train and use Dval
d,train to choose a ML pipeline

Mλ from the portfolio by means of the model selection strategy S (instead of holdout
we can of course also use cross-validation to compute the validation loss). However, if we
instead choose the ML pipeline on the test set Dd,test, Equation 9 becomes a monotone and
submodular set function, which results in favorable guarantees for the greedy algorithm
that we detail in Section 3.1.2. We follow this approach for the portfolio construction in
the offline phase; we emphasize that for a new dataset Dnew, we of course do not require
access to the test set Dnew,test.

3.1.2 Theoretical Properties of the Greedy Algorithm

Besides the already mentioned practical advantages of the proposed greedy algorithm, this
algorithm also enjoys a bounded worst-case error.

Proposition 1 Minimizing the test loss of a portfolio P on a set of datasets D1, . . . ,D|Dmeta|,
when choosing an ML pipeline from P for Dd using holdout or cross-validation based on
its performance on Dd,test, is equivalent to the sensor placement problem for minimizing
detection time (Krause et al., 2008).

We detail this equivalence in Appendix C.2. Thereby, we can apply existing results for the
sensor placement problem to our problem. Using the test set of the meta-datasets Dmeta to
construct a portfolio is perfectly fine as long as we do not use new datasets Dnew ∈ Dtest

which we use for testing the approach.

Corollary 1 The penalty function for all meta-datasets is submodular.

We can directly apply the proof from Krause et al. (2008) that the so-called penalty function
(i.e., maximum estimated generalization error minus the observed estimated generalization
error) is submodular and monotone to our problem setup. Since linear combinations of

8

120 auto-sklearn 2 .0 : hands-free automl via meta-learning

Auto-sklearn 2.0

submodular functions are also submodular (Krause and Golovin, 2014), the penalty function
is also submodular.

Corollary 2 The problem of finding an optimal portfolio P∗ is NP-hard (Nemhauser et al.,
1978; Krause et al., 2008).

Corollary 3 Let R denote the expected penalty reduction of a portfolio across all datasets,
compared to the empty portfolio (which yields the worst possible score for each dataset). The
greedy algorithm returns a portfolio P such that R(P∗) ≥ R(P) ≥ (1− 1

e)R(P∗).

This means that the greedy algorithm closes at least 63% of the gap between the worst
ADTM score (1.0) and the score the best possible portfolio P∗ of size |P| would achieve
(Nemhauser et al., 1978; Krause and Golovin, 2014). A generalization of this result given by
Krause and Golovin (2014, Theorem 1.5) also tightens this bound to close 99% of the gap
between the worst ADTM score and the score the optimal portfolio P∗ of size |P∗| would
achieve, by extending the portfolio constructed by the greedy algorithm to size 5·|P|. Please
note that a portfolio of size 5 · |P| could be better than the optimal portfolio of size |P|.
This means that we can find a close-to-optimal portfolio on the meta-train datasets Dmeta

at the very least. Under the assumption that we apply the portfolio to datasets from the
same distribution of datasets, we have a strong set of default ML pipelines.

We could also apply other strategies for the sensor set placement in our setting, such as
mixed integer programming strategies, which can solve it optimally; however, these do not
scale to portfolio sizes of a dozen ML pipelines (Krause et al., 2008; Pfisterer et al., 2018).

The same proposition (with the same proof) and corollaries apply if we select an ML
pipeline based on an intermediate step in a learning curve or use cross-validation instead of
holdout. We discuss using the validation set and other model selection and budget allocation
strategies in Appendix C.3 and Appendix C.4.

3.2 Budget Allocation using Successive Halving

A key issue we identified during the last AutoML challenge was that training expensive
configurations on the complete training set, combined with a low time budget, does not
scale well to large datasets. At the same time, we noticed that our (then manual) strategy
to run predefined pipelines on subsets of the data already yielded predictions good enough
for ensemble building. This questions the common choice of assigning the same amount of
resources to all pipeline evaluations, i.e. time, compute and data.

For this reason we introduce the principle of budget allocation strategies to AutoML, that
describe how the resources are allocated to the pipeline evaluations. This is an orthogonal
design decision to the model selection strategy, which approximates the generalization error
of a single ML pipeline, and which is typically tackled by holdout or K-fold cross-validation
(see Section 6.4.1).

As a principled alternative to always using the full budget, we used the successive halving
bandit strategy (SH; Karnin et al., 2013; Jamieson and Talwalkar, 2016), which assigns more
budget to promising machine learning pipelines and can easily be combined with iterative
algorithms.

9

auto-sklearn 2 .0 : hands-free automl via meta-learning 121

Feurer, Eggensperger, Falkner, Lindauer and Hutter

3.2.1 Approach

AutoML systems evaluate each pipeline under the same resource limitations and on the
same budget (e.g., number of iterations using iterative algorithms). To increase efficiency
for cases with tight resource limitations, we suggest allocating more resources to promising
pipelines by using SH (Karnin et al., 2013; Jamieson and Talwalkar, 2016) to prune poor-
performing pipelines aggressively.

Given a minimal and maximal budget per ML pipeline, SH starts by training a fixed
number of ML pipelines for the smallest budget. Then, it iteratively selects 1

η of the pipelines
with the lowest generalization error, multiplies their budget by η, and re-evaluates. This
process is continued until only a single ML pipeline is left or the maximal budget is spent,
and replaces the standard holdout procedure in which every ML pipeline is trained for the
full budget.

While SH itself chooses new pipelines Mλ to evaluate at random, we aim to extend on
our work on Auto-sklearn 1.0 and continue to use BO. To do so, we follow work combining
SH with BO (Falkner et al., 2018).4 Specifically, we use BO to iteratively suggest new ML
pipelinesMλ, which we evaluate on the lowest budget until a fixed number of pipelines has
been evaluated. Then, we run SH as described above. We are using Auto-sklearn’s standard
random forest-based BO method SMAC and, according to the methodology of Falkner et al.
(2018) build the model for BO on the highest available budget for which we have sufficient
datapoints. While the original model had a mathematical requirement for n + 1 finished
pipelines, where n is the number of hyperparameters to be optimized, the random forest
model can guide the optimization with fewer datapoints, and we define sufficient as n

2 . The
portfolios we have introduced in Section 3.1 integrate seamlessly into this scheme: as long
as not all members of the portfolio have been evaluated, we suggest them instead of asking
BO for a new suggestion.

SH potentially provides large speedups, but it could also too aggressively cut away good
configurations that need a higher budget to perform best. Thus, we expect SH to work best
for large datasets, for which there is not enough time to train many ML pipelines for the
full budget (FB), but for which training an ML pipeline on a small budget already yields a
good indication of the generalization error.

We note that SH can be used in combination with both, holdout or cross-validation, and
thus indeed adds another hyper-hyperparameter to the AutoML system, namely whether to
use SH or FB. However, it also adds more flexibility to tackle a broader range of problems.

3.3 Practical Considerations and Challenge Results

In order to make best use of the successive halving algorithm we had to do certain adjust-
ments to obtain high performance.

First, we restricted the search space to contain only iterative algorithms and no more
feature preprocessing. This simplifies the usage of SH as we only have to deal with a single
type of fidelity, the number of iterations, while we would otherwise have to also consider
dataset subsets as an alternative. This leaves us with extremely randomized trees (Geurts

4. Falkner et al. (2018) proposed using Hyperband (Li et al., 2018) together with BO; however, we use
only SH as we expect it to work better in the extreme of having very little time, as it more aggressively
reduces the budget per ML pipeline.

10

122 auto-sklearn 2 .0 : hands-free automl via meta-learning

Auto-sklearn 2.0

et al., 2006), random forests (Breimann, 2001), histogram-based gradient boosting (Fried-
man, 2001; Ke et al., 2017), a linear model fitted with a passive aggressive algorithm (Cram-
mer et al., 2006) or stochastic gradient descent and a multi-layer perceptron. The exact
configuration space can be found in Table 18 of the appendix.

Second, because of using only iterative algorithms, we are able to store partially fitted
models to disk to prevent having no predictions in case of time- and memouts. That is, after
2, 4, 8, . . . iterations, we make predictions for the validation set and dump the model for
later usage. We provide further details, such as the restricted search space, in Appendix B.

For our submission to the second AutoML challenge, we implemented the following
safeguards and tricks (Feurer et al., 2018), which we do not use in this paper since we
instead focus on automatically designing a robust AutoML system:

• For the submission, we also employed support vector machines using subsets of the
dataset as lower fidelities. Since none of the five final ensembles in the competition
contained support vector machines, we did not consider them anymore for this paper,
simplifying our methodology.

• We developed an additional library pruning method for ensemble selection. However,
in preliminary experiments, we found that this, in the best case, provides an insignif-
icant boost for the area under curve and not balanced accuracy, which we use in this
work and thus did not follow up on that any further.

• To increase robustness against arbitrarily large datasets, we reduced all datasets to
have at most 500 features using univariate feature selection. Similarly, we also reduced
all datasets to have at most 45 000 datapoints using stratified subsampling. We do
not think these are good strategies in general and only implemented them because we
had no information about the dimensionality of the datasets used in the challenge,
and to prevent running out of time and memory. Retrospectively, only one out of five
datasets triggered this feature selection step. Now, we have instead a fallback strategy
that is defined by data, see Section 4.1.1.

• In case the datasets had less than 1000 datapoints, we would have reverted from hold-
out to cross-validation. However, this fallback was not triggered due to the datasets
being larger in the competition.

• We manually added a linear regression fitted with stochastic gradient descent with
its hyperparameters optimized for fast runtime as the first entry in the portfolio to
maximize the chances of fitting a model within the given time. We had implemented
this strategy because we did not know the time limit of the competition. However, as
for the paper at hand and future applications of Auto-sklearn, we expect to know the
optimization budget we are optimizing the portfolio for, we no longer require such a
safeguard.

Our submission, PoSH Auto-sklearn, was the overall winner of the second AutoML
challenge. We give the results of the competition in Table 1 and refer to Feurer et al. (2018)
and Guyon et al. (2019) for further details, especially for information on our competitors.

11

auto-sklearn 2 .0 : hands-free automl via meta-learning 123

Feurer, Eggensperger, Falkner, Lindauer and Hutter

Name Rank Dataset #1 Dataset #2 Dataset #3 Dataset #4 Dataset #5

PoSH Auto-sklearn 2.8 0.5533(3) 0.2839(4) 0.3932(1) 0.2635(1) 0.6766(5)
narnars0 3.8 0.5418(5) 0.2894(2) 0.3665(2) 0.2005(9) 0.6922(1)
Malik 5.4 0.5085(7) 0.2297(7) 0.2670(6) 0.2413(5) 0.6853(2)
wlWangl 5.4 0.5655(2) 0.4851(1) 0.2829(5) −0.0886(16) 0.6840(3)
thanhdng 5.4 0.5131(6) 0.2256(8) 0.2605(7) 0.2603(2) 0.6777(4)

Table 1: Results for the second AutoML challenge (Guyon et al., 2019). Name is the team
name, Rank the final rank of the submission, followed by the individual results on
the five datasets used in the competition. All performances are the normalized area
under the ROC curve (Guyon et al., 2015) with the per-dataset rank in brackets.
In case a rank is missing, for example, rank 1 for dataset 1, this rank was achieved
by a contestant who did not place within the top 5.

3.4 Experimental Setup

So far, AutoML systems were designed without any optimization budget or with a single,
fixed optimization budget T in mind (see Equation 5).5 Our system takes the optimiza-
tion budget into account when constructing the portfolio. We will study two optimiza-
tion budgets: a short, 10 minute optimization budget and a long, 60 minute optimization
budget as in the original Auto-sklearn paper. To have a single metric for binary classi-
fication, multiclass classification and unbalanced datasets, we report the balanced error
rate (1− balanced accuracy), following the 1st AutoML challenge (Guyon et al., 2019). As
different datasets can live on different scales, we apply a linear transformation to obtain
comparable values. Concretely, we obtain the minimal and maximal error obtained by ex-
ecuting Auto-sklearn with portfolios and using ensembles for each combination of model
selection and budget allocation strategies per dataset. Then, we rescale by subtracting
the minimal error and dividing by the difference between the maximal and minimal error
(ADTM, as introduced in Section 3.1.1).6 With this transformation, we obtain a normalized
error which can be interpreted as the regret of our method.

We also limit the time and memory for each ML pipeline evaluation. For the time limit,
we allow for at most 1/10 of the optimization budget, while for the memory, we allow the
pipeline 4GB before forcefully terminating the execution.

3.4.1 Datasets

We require two disjoint sets of datasets for our setup: (i) Dmeta, on which we build portfolios
and the model-based policy selector that we will introduce in Section 4, and (ii) Dtest, on
which we evaluate our method. The distribution of both sets ideally spans a wide variety of
problem domains and dataset characteristics. For Dtest, we rely on 39 datasets selected for

5. The OBOE AutoML system (Yang et al., 2019) is a potential exception that takes the optimization
budget into consideration, but the experiments by Yang et al. (2019) were only conducted for a single
optimization budget, not demonstrating that the system adapts itself to multiple optimization budgets.

6. We would like to highlight that this is slightly different than in Section 3.1.1 where we did not have
access to the ensemble performance and also only normalized per model selection strategy.

12

124 auto-sklearn 2 .0 : hands-free automl via meta-learning

Auto-sklearn 2.0

Figure 3: Distribution of meta and test datasets. We visualize each dataset w.r.t. its meta-
features and highlight the datasets outside our meta distribution using black
crosses.

the AutoML benchmark proposed by Gijsbers et al. (2019), which consists of datasets for
comparing classifiers (Bischl et al., 2021) and datasets from the AutoML challenges (Guyon
et al., 2019).

We collected the meta datasets Dmeta based on OpenML (Vanschoren et al., 2014)
using the OpenML-Python API (Feurer et al., 2021). To obtain a representative set, we
considered all datasets on OpenML with more than 500 and less than 1 000 000 samples
with at least two attributes. Next, we dropped all datasets that are sparse, contain time
attributes or string type attributes as Dtest does not contain any such datasets. Then, we
dropped synthetic datasets and subsampled clusters of highly similar datasets. Finally, we
manually checked for overlap with Dtest and ended up with a total of 208 training datasets
and used them to train our method.

We show the distribution of the datasets in Figure 3. Green points refer to Dmeta and
orange crosses to Dtest. We can see that Dmeta spans the underlying distribution of Dtest

quite well, but several datasets are outside the Dmeta distribution indicated by the green
lines, marked with a black cross. We give the full list of datasets for Dmeta and Dtest in
Appendix E.

For all datasets, we use a single holdout test set of 33.33%, which is defined by the
corresponding OpenML task. The remaining 66.66% are the training data of our AutoML
systems, which handle further splits for model selection themselves based on the chosen
model selection strategy.

13

auto-sklearn 2 .0 : hands-free automl via meta-learning 125

Feurer, Eggensperger, Falkner, Lindauer and Hutter

3.4.2 Meta-data Generation

For each optimization budget we created four performance matrices of size |Dmeta| × |C|,
see Section 3.1.1 for details on performance matrices. Each matrix refers to one way of
assessing the generalization error of a model: holdout, 3-fold CV, 5-fold CV or 10-fold CV.
To obtain each matrix, we did the following. For each dataset D in Dmeta, we used combined
algorithm selection and hyperparameter optimization to find a customized ML pipeline. In
practice, we ran Auto-sklearn without meta-learning and without ensemble building three
times and picked the best resulting ML pipeline on the test split of D. To ensure that Auto-
sklearn finds a good configuration, we ran it for ten times the optimization budget given
by the user (see Equation 5). Then, we ran the cross-product of all candidate ML pipelines
and datasets to obtain the performance matrix. We also stored intermediate results for the
iterative algorithms so that we could build custom portfolios for SH, too.

3.4.3 Other Experimental Details

We always report results averaged across 10 repetitions to account for randomness and
report the mean and standard deviation over these repetitions. To check whether perfor-
mance differences are significant, where possible, we ran the Wilcoxon signed-rank test as a
statistical hypothesis test with α = 0.05 (Demšar, 2006). In addition, we plot the average
rank as follows. For each dataset, we draw one run per method (out of 10 repetitions) and
rank these draws according to performance, using the average rank in case of ties. We then
average over all 39 dataset and repeat this sampling 500 times to and then plot the median
and the 10th and 90th percentile of these samples. In the case of only three methods to
compare, we can enumerate all 1000 combinations of the seeds and do so. We use the exact
method for Figure 6 and the sampling method for Figure 7 in the appendix.

We conducted all experiments using ensemble selection, and we constructed ensembles of
size 50 with replacement. We give results without ensemble selection in the Appendix B.2.

All experiments were conducted on a compute cluster with machines equipped with
2 Intel Xeon Gold 6242 CPUs with 2.8GHz (32 cores) and 192 GB RAM, running Ubuntu
20.04.01. We provide scripts for reproducing all our experimental results at https://

github.com/automl/ASKL2.0_experiments and provide a clean integration of our methods
into the official Auto-sklearn repository.

3.5 Experimental Results

In this subsection, we now validate the improvements for PoSH Auto-sklearn. First, we will
compare using a portfolio to the previous KND approach and no warmstarting and second,
we will compare PoSH Auto-sklearn to the previous Auto-sklearn 1.0 .

3.5.1 Portfolio vs. KND

Here, we study the performance of the learned portfolio and compare it against Auto-sklearn
1.0 ’s default meta-learning strategy using 25 configurations. Additionally, we also study
how pure BO would perform. We give results in Table 2.

For the new AutoML-hyperparameter |P|, we chose 32 to allow two full iterations of SH
with our hyperparameter setting of SH. Unsurprisingly, warmstarting, in general, improves

14

126 auto-sklearn 2 .0 : hands-free automl via meta-learning

Auto-sklearn 2.0

10 minutes 60 minutes
BO KND Port BO KND Port

FB; holdout 5.98 5.29 3.70 3.84 3.98 3.08
SH; holdout 5.15 4.82 4.11 3.77 3.55 3.19
FB; 3CV 8.52 7.76 6.90 6.42 6.31 4.96
SH; 3CV 7.82 7.67 6.16 6.08 5.91 5.17
FB; 5CV 9.48 9.45 7.93 6.64 6.47 5.05
SH; 5CV 9.48 8.85 7.05 6.19 5.83 5.40
FB; 10CV 16.10 15.11 12.42 10.82 10.44 9.68
SH; 10CV 16.14 15.10 12.61 10.54 10.33 9.23

Table 2: Averaged normalized balanced error rate. We report the aggregated performance
across 10 repetitions and 39 datasets of our AutoML system using only Bayesian
optimization (BO), or BO warmstarted with k-nearest-datasets (KND) or a greedy
portfolio (Port). Per line, we boldface the best mean value (per model selection and
budget allocation strategy and optimization budget, and underline results that are
not statistically different according to a Wilcoxon-signed-rank Test (α = 0.05)).

10MIN 60MIN
∅ std ∅ std

(1) PoSH-Auto-sklearn 4.11 0.09 3.19 0.12
(2) Auto-sklearn (1.0) 16.21 0.27 7.17 0.30

Table 3: Final performance of PoSH Auto-sklearn and Auto-sklearn 1.0 . We report the
normalized balanced error rate averaged across 10 repetitions on 39 datasets. We
boldface the best mean value (per optimization budget) and underline results that
are not statistically different according to a Wilcoxon signed-rank test (α = 0.05).

the performance on all optimization budgets and most model selection strategies, often by
a large margin. The portfolios always improve over BO, while KND does so in all but
one case. When comparing the portfolios to KND, we find that the raw results are always
favorable and that for half of the settings, the differences are also significant.

3.5.2 PoSH Auto-sklearn vs Auto-sklearn 1.0

We can also look at the performance of PoSH Auto-sklearn compared to Auto-sklearn 1.0 .

First, we compare the performance of PoSH Auto-sklearn to Auto-sklearn 1.0 using the
full search space, and we provide those numbers in Table 3. For both time horizons, there
is a strong reduction in the loss (10min: 16.21→ 4.11 and 60min: 7.17→ 3.19), indicating
that the proposed PoSH Auto-sklearn is indeed an improvement over the existing solution
and is able to fit better machine learning models in the given time limit.

15

auto-sklearn 2 .0 : hands-free automl via meta-learning 127

Feurer, Eggensperger, Falkner, Lindauer and Hutter

Second, we compare the performance of PoSH Auto-sklearn (SH; holdout and Port) to
Auto-sklearn 1.0 (FB; holdout and KND) using only the reduced search space based on
the results in Table 2. Again, there is a strong reduction in the loss for both time hori-
zons (10min: 5.29 → 4.11 and 60min: 3.98 → 3.19), confirming abovementioned findings.
Combined with the portfolio, the average results are inconclusive about whether our use of
successive halving was the right choice or whether plain holdout would have been better.
We also provide the raw numbers in Appendix B.3, but they are inconclusive, too.

4. Part II: Automating Design Decisions in AutoML

The goal of AutoML is to yield state-of-the-art performance without requiring the user to
make low-level decisions, e.g., which model and hyperparameter configurations to apply.
Using a portfolio and SH, PoSH Auto-sklearn is already an improvement over Auto-sklearn
1.0 in terms of efficiency and scalability. However, high-level design decisions, such as
choosing between cross-validation and holdout or whether to use SH or not, remain. Thus,
PoSH Auto-sklearn, and AutoML systems in general, suffer from a similar problem as they
are trying to solve, as users have set their arguments on a per-dataset basis manually.

To highlight this dilemma, in Figure 4 we show exemplary results comparing the bal-
anced error rates of the best ML pipeline found by searching our configuration space with
BO using holdout, 3CV, 5CV and 10CV with SH and FB on different optimization budgets
and datasets. The top row shows results obtained using the same optimization budget of
10 minutes on two different datasets. While FB; 10CV is best on dataset sylvine (top left)
the same strategy on median performs amongst the worst strategies on dataset adult (top
right). Also, on sylvine, SH performs overall slightly worse in contrast to adult, where SH
performs better on average. The bottom rows show how the given time-limit impacts the
performance on the dataset jungle chess 2pcs raw endgame complete. Using a quite restric-
tive optimization budget of 10 minutes (bottom left), SH; 3CV, which aggressively cuts ML
pipelines on lower budgets, performs best on average. With a higher optimization budget
(bottom right), the overall results improve and more strategies become competitive.

Therefore, we propose to extend AutoML systems with a policy selector to automatically
choose an optimization policy given a dataset (see Figure 1 in Section 1 for a schematic
overview). In this second part, we discuss the resulting approach, which led to Auto-sklearn
2.0 as the first implementation of it.

4.1 Automated Policy Selection

Specifically, we consider the case, where an AutoML system can be run with different
optimization policies π ∈ Π and study how to further automate AutoML using algorithm
selection on this meta-meta level. In practice, we extend the formulation introduced in
Equation 7 to not use an AutoML system Aπ with a fixed policy π, but to contain a policy
selector Ξ : D → π:

GE
∧

(A,Ξ,Dmeta) =
1

| Dmeta |

|Dmeta|∑

d=1

GE
∧

(AΞ(Dd)(Dd),Dd). (10)

In the remainder of this section, we describe how to construct such a policy selector.

16

128 auto-sklearn 2 .0 : hands-free automl via meta-learning

Auto-sklearn 2.0

Figure 4: Final balanced error rate of BO using different model selection strategies averaged
across 10 repetitions. Top row: Results for a optimization budget of 10 minutes
on two different datasets. Bottom row: Results for a optimization budget of 10
and 60 minutes on the same dataset.

4.1.1 Approach

AutoML systems themselves are often heavily hyperparameterized. In our case, we deem
the model selection strategy and budget allocation strategy (see Sections 3.2 and 6.4.1)
as important choices the user has to make when using an AutoML system to obtain high
performance. These decisions depend on both the given dataset and the available resources.
As there is also an interaction between the two strategies and the optimal portfolio P, we
consider here that the optimization policy π is parameterized by a combination of (i) model
selection strategy, (ii) budget allocation strategy and (iii) a portfolio constructed for the
choice of the two strategies. In our case, these are eight different policies ({3-fold CV, 5-fold
CV, 10-fold CV, holdout} × {SH, FB}).

We introduce a new layer on top of AutoML systems that automatically selects a policy π
for a new dataset. We show an overview of this system in Figure 5 which consists of a

17

auto-sklearn 2 .0 : hands-free automl via meta-learning 129

Feurer, Eggensperger, Falkner, Lindauer and Hutter

Optional

Representative
set of datasets
{D1, . . . ,D|Dmeta|}

For ∀π ∈ π:
execute TR1-TR3:

construct portfolio P

TR4: Execute AutoML
systems Aπ∀π ∈ π

on {D1, . . . ,D|Dmeta|}

TR5: Compute
meta-features of
{D1, . . . ,D|Dmeta|}

TR6: Con-
struct selector Ξ

MtL1: Compute meta-
features of Dnew,train

MtL2: Apply selector
Ξ to choose policy π

TE1: Run
AutoML system Aπ

eval
P

run
BO

TE2.1: Return best
found pipeline Mλ̂∗ or
ensemble of pipelines

TE2.2: Report
loss on Dnew,test

Dnew,train Dnew Dnew,test

TRain (offline)

Meta-Learning/TEst (online)

Figure 5: Schematic overview of the proposed Auto-sklearn 2.0 system with the training
phase (TR1–TR6) above and the test phase (MtL1–MtL2&TE1–TE2) below the
dashed line. Rounded, purple boxes refer to computational steps, while rectan-
gular, orange boxes depict the input data to the AutoML system.

training (TR1–TR6) and a testing stage (MtL1–2 and TE1–TE2). In brief, in training steps
TR1–TR3, we perform the same steps that we have already outlined in Figure 2. However,
we now do so for each combination of model selection and budget allocation strategy. Our
policies are combinations of a portfolio, a model selection strategy and a budget allocation
strategy. We then execute the full AutoML system for each such policy in step TR4 to
obtain a realistic performance estimate. In step TR5, we compute meta-features and use
them together with the performance estimate from TR4 in step TR6 to train a model-based
policy selector Ξ, which we will use in the online test phase.

In order to not overestimate the performance of π on a dataset Dd, dataset Dd must not
be part of the meta-data for constructing the portfolio. To overcome this issue, we perform
an inner 5-fold cross-validation and build each π on four fifths of the meta-datasets Dmeta

and evaluate it on the left-out fifth of meta-datasets Dmeta. For the final AutoML system
we then use a portfolio built on all meta-datasets Dmeta.

For a new dataset Dnew ∈ Dtest, we first compute meta-features describing Dnew (MtL1)
and use the model-based policy selector from step TR6 to automatically select an appropri-
ate policy for Dnew based on the meta-features (MtL2). This will relieve users from making
this decision on their own. Given an optimization policy π, we then apply the AutoML
system Aπ to Dnew (TE1). Finally, we return the best found pipeline Mλ̂∗ based on the
training set of Dnew (TE2.1). Optionally, we can then compute the loss of Mλ̂∗ on the
test set of Dnew (TE2.2); we emphasize that this would be the only time we ever access the
test set of Dnew. Steps TE1–TE2 are the same as in Figure 2, and the only difference at
evaluation time is that we use algorithm selection to decide which policy π to use at test
time instead of relying on a hand-picked one.

In the following, we describe two ways to construct a policy selector and introduce an
additional backup strategy to make it robust towards failures.

Constructing the single best policy A straightforward way to construct a selector
relies on the assumption that the meta-datasets Dmeta are homogeneous and that a new
dataset is similar to these. In such a case, we can use per-set algorithm selection (Kerschke
et al., 2019), which aims to find the single algorithm that performs best on average on a set

18

130 auto-sklearn 2 .0 : hands-free automl via meta-learning

Auto-sklearn 2.0

hyperparameter type values

Min. number of samples to create a further split int [3, 20]
Min. number of samples to create a new leaf int [2, 20]
Max. depth of a tree int [0, 20]
Max. number of features to be used for a split int [1, 2]
Bootstrapping in the random forest cat {yes, no}
Soft or hard voting when combining models cat {soft, hard}
Error value scaling to compute dataset weights cat see text

Table 4: configuration space of the model-based policy selector.

of problem instances. In our context, it aims to find the combination of model selection and
budget allocation that is best on average for the given set of meta-datasets Dmeta. This
single best policy is then the automated replacement for our manual selection of SH and
holdout in PoSH Auto-sklearn. While this seems to be a trivial baseline, it actually requires
the same amount of compute power as the more elaborate strategy we introduce next.

Constructing the per-dataset Policy Selector Instead of using a fixed, learned policy,
we now propose to adapt the policy to the dataset at hand by using per-instance algorithm
selection, which means we select the appropriate algorithm for each dataset by taking its
properties into account. To construct the meta selection model (TR6), we follow the policy
selector design of HydraMIP (Xu et al., 2011): for each pair of AutoML policies, we fit
a random forest to predict whether policy πA outperforms policy πB given the current
dataset’s meta-features. Since the misclassification loss depends on the difference between
the losses of the two policies (i.e. the ADTM when choosing the wrong policy), we weight
each meta-observation by their loss difference. To make errors comparable across different
datasets (Bardenet et al., 2013), we scale the individual error values for each dataset. At
test time (TE2), we query all pairwise models for the given meta-features and use voting
for Ξ to choose a policy π. We will refer to this strategy as the Policy Selector.

To improve the performance of the model-based policy selector, we applied BO to op-
timize the model-based policy selector’s hyperparameters to minimize the cross-validation
error (Lindauer et al., 2015). We optimized in total seven hyperparameters, five of which
are related to the random forest, one is how to combine the pairwise models to get a pre-
diction, and the last one is the strategy of how to scale error values to compute weights for
comparing datasets, i.e. using the raw observations, scale with [min,max] / [min, 1] across
a pair or all policies or use the difference in ranks as the weight (see Table 4). Hyperpa-
rameters are shared between all pairwise models to avoid factorial growth of the number of
hyperparameters with the number of new model selection strategies. We allow a tree depth
of 0, i.e., a tree with all data in a single leaf, which is equivalent to the single best strategy
described above.

Meta-Features. To train our model-based policy selector and to select a policy, as well
to use the backup strategy, we use meta-features (Brazdil et al., 2008; Vanschoren, 2019)
describing all meta-train datasets (TR5) and new datasets (TE1). To avoid the problems
discussed in Section 3.1 we only use very simple and robust meta-features, which can be

19

auto-sklearn 2 .0 : hands-free automl via meta-learning 131

Feurer, Eggensperger, Falkner, Lindauer and Hutter

reliably computed in linear time for every dataset: 1) the number of datapoints and 2) the
number of features. In fact, these are already stored as meta-data for the data structure
holding the dataset. Using only these two meta-features for the selector can be regarded
as learning the manually-designed fallbacks that we discussed in Section 3.3. In our ex-
periments, we will show that even with only these trivial and cheap meta-features, we can
substantially improve over a static policy.

Backup strategy. Since there is no guarantee that our model-based policy selector will
extrapolate well to datasets outside of the meta-datasets, we implement a fallback measure
to avoid failures. Such failures can be harmful if a new dataset is, e.g., much larger than
any dataset in the meta-dataset, and the model-based policy selector proposes to use a
policy that would time out without any solution. More specifically, if there is no dataset
in the meta-datasets that has higher or equal values for each meta-feature (i.e. dominates
the dataset meta-features), our system falls back to use holdout with SH, which is the most
aggressive and cheapest policy we consider. We visualize this in Figure 3 where we mark
datasets outside our meta distribution using black crosses.

4.2 Experimental Results

To study the performance of the policy selector, we compare it to PoSH Auto-sklearn as
described in Section 3 and Auto-sklearn 1.0 . From now on we refer to PoSH Auto-sklearn
+ policy selector as Auto-sklearn 2.0 . As before, we study two horizons, 10 minutes and 60
minutes, and use versions of PoSH Auto-sklearn and Auto-sklearn 2.0 that were constructed
with these time horizons in mind. Similarly, we use the same 208 datasets for constructing
our AutoML systems and the same 39 for evaluating them.

Looking at Table 5, we see that Auto-sklearn 2.0 achieves the lowest error, being signif-
icantly better for both optimization budgets. Most notably, Auto-sklearn 2.0 reduces the
relative error compared to Auto-sklearn 1.0 by 78% (10MIN) and 65%, respectively, which
means a reduction by a factor of 4.5 and three.

It turns out that these results are skewed by several large datasets (task IDs 189873
and 75193 for both horizons; 189866, 189874, 168796 and 168797 only for the ten minutes
horizon) on which the KND initialization of Auto-sklearn 1.0 only suggests ML pipelines

10MIN 60MIN
∅ std ∅ std

(1) Auto-sklearn (2.0) 3.58 0.23 2.47 0.18
(2) PoSH-Auto-sklearn 4.11 0.09 3.19 0.12
(3) Auto-sklearn (1.0) 16.21 0.27 7.17 0.30

Table 5: Average normalized balanced error (ADTM, lower is better) of Auto-sklearn 2.0 ,
PoSH Auto-sklearn and Auto-sklearn 1.0 averaged across 10 repetitions on 39
datasets. We boldface the best mean value (per optimization budget) and under-
line results that are not statistically different according to a Wilcoxon-signed-rank
Test (α = 0.05).

20

132 auto-sklearn 2 .0 : hands-free automl via meta-learning

Auto-sklearn 2.0

0 10 20 30 40 50 60
time [min]

1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

av
er

ag
e

ra
nk

Auto-sklearn (2.0)
PoSH-Auto-sklearn
Auto-sklearn (1.0)

Figure 6: Performance over time. We report the median ranks (lower is better) and the
10th and 90th percentiles over time for Auto-sklearn 2.0 and the previous Au-
toML systems. Concretely, we compute the mean rank for for all 39 for all 1000
combinations of the 10 seeds of the 3 AutoML systems, and compute the median
and percentiles of these 1000 average ranks.

that time out or hit the memory limit and thus exhaust the optimization budget for the
full configuration space. Our new AutoML system does not suffer from this problem as it
a) selects SH to avoid spending too much time on unpromising ML pipelines and b) can
return predictions and results even if an ML pipeline was not evaluated for the full budget
or converged early; and even after removing the datasets in question from the average, the
performance of Auto-sklearn 1.0 is substantially worse than that Auto-sklearn 2.0 .

When looking at the intermediate system, i.e. PoSH Auto-sklearn, we find that it
outperforms Auto-sklearn 1.0 in terms of the normalized balanced error rate, but that the
additional step of selecting the model selection and budget allocation strategy gives Auto-
sklearn 2.0 an edge. When not considering the large datasets Auto-sklearn 1.0 failed on,
their performance becomes very similar.

Figure 6 provides another view on the results, presenting average ranks (where failures
obtain less weight compared to the averaged performance). Auto-sklearn 2.0 is still able
to deliver best results, PoSH Auto-sklearn should be preferred to Auto-sklearn 1.0 for the
first 30 minutes and then converges to roughly the same ranking.

4.3 Ablation

Now, we study the contribution of each of our improvements in an ablation study. We
iteratively disable one component and compare the performance to the entire system using
the 39 datasets from the AutoML benchmark as done in the previous experimental sections.

21

auto-sklearn 2 .0 : hands-free automl via meta-learning 133

Feurer, Eggensperger, Falkner, Lindauer and Hutter

These components are (1) using a per-dataset model-based policy selector to choose a policy,
(2) using only a subset of the available policies, and (3) warmstarting BO with a portfolio.

4.3.1 Do we need per-dataset selection?

We first examine how much performance we gain by having a model-based policy selector
to decide between different AutoML strategies based on meta-features and how to con-
struct this model-based policy selector, or whether it is sufficient to select a single strategy
based on meta-training datasets. We compare the performance of the entire system us-
ing a model-based policy selector to using a single, static strategy (single best) and both,
the model-based policy selector and the single best, without the fallback mechanism for
out-of-distribution datasets and give all results in Table 6. We also provide two additional
baselines: a random baseline, which randomly assigns a policy to a run and an oracle
baseline, which marks the lowest possible error that can be achieved by any of the policies.7

First, we compare the performance of the model-based policy selector with the single
best. We can observe that for 10 minutes, there is a slight improvement in terms of perfor-
mance, while the performance for 60 minutes is almost equal. While there is no significant
difference to the single best for 10 minutes, there is for 60 minutes. These numbers can be
compared with Table 2 to see how we fare against picking a single policy by hand. We find
that our proposed algorithm selection compares favorably, especially for the longer time
horizon.

Second, to study how much resources we need to spend on generating training data for
our model-based policy selector, we consider three approaches: (P) only using the portfolio
performance which we pre-computed and stored in the performance matrices as described
in Section 3.1.1, (P+BO) actually running Auto-sklearn using the portfolio and BO for
10 and 60 minutes, respectively, and (P+BO+E) additionally also constructing ensembles,
which yields the most realistic meta-data. Running BO on all 208 datasets (P+BO) is by
far more expensive than the table lookups (P); building an ensemble (P+BO+E) adds only
several seconds to minutes on top compared to (P+BO).

For both optimization budgets using P+BO yields the best results using the model-
based policy selector closely followed by P+BO+ENS, see Table 6. The cheapest method,
P, yields the worst results showing that it is worth investing resources into computing good
meta-data. Surprisingly, looking at the single best, performance gets worse when using
seemingly better meta-data. We investigated the reason why P+BO performs slightly better
than P+BO+ENS. When using a model-based policy selector, this can be explained by a
single dataset for both time horizons for which the policy chosen by the model-based policy
selector is worse than the single best policy. When looking at the single best, there is no
single dataset which stands out. To summarize, investing additional resources to compute
realistic meta-data results in improved performance, but so far, it appears that having
the effect of BO in the meta-data is sufficient, while the ensemble seems to lead to lower
meta-data quality.

7. We would like to note that the oracle performance can be unequal to zero because we normalize the
results using the single best test loss found for a single model to normalize the results. When evaluating
the best policy on a dataset, this most likely results in selecting a model on the validation set that is
not the single best model on the test set we use to normalize data.

22

134 auto-sklearn 2 .0 : hands-free automl via meta-learning

Auto-sklearn 2.0

10 Min 60 Min
trained on P P+BO P+BO+E P P+BO P+BO+E

model-based policy selector 3.58 3.56 3.58 2.53 2.32 2.47
model-based policy selector w/o fallback 5.43 5.68 4.79 4.98 5.36 5.43
single best 3.88 3.67 3.69 2.49 2.38 2.44
single best w/o fallback 5.18 6.38 6.40 5.10 5.01 5.07

oracle 2.33 1.22
random 8.32 6.18

Table 6: Average normalized balanced error (ADTM, lower is better) for 10 and 60 minutes.
We report the performance for the model-based policy selector policy and the single
best when trained on different data obtained on Dmeta (P = Portfolio, BO =
Bayesian Optimization, E = Ensemble) as well as the model-based policy selector
without the fallback. The second part of the table shows the results of always
choosing the best policy on the test set (oracle) and results for choosing a random
policy (random) as baselines. We boldface the best mean value (per optimization
budget) and underline results that are not statistically different according to a
Wilcoxon-signed-rank Test (α = 0.05).

Finally, we also take a closer look at the impact of the fallback mechanism to verify that
our improvements are not solely due to this component. We observe that the performance
drops for all policy selection strategies that do not use the fallback mechanism. For the
shorter 10 minutes setting, we find that the model-based policy selector still outperforms
the single best, while for the longer 60 minutes setting, the single best leads to better
performance. The rather stark performance degradation compared to the regular model-
based policy selector can mainly be explained by a few, huge datasets, to which the model-
based policy selector cannot extrapolate (and which the single best does not account for).
Based on these observations, we suggest research into an adaptive fallback strategy that
can change the model selection strategy during the execution of the AutoML system so
that a policy selector can be used on out-of-distribution datasets. We conclude that using
a model-based policy selector is beneficial, and using a fallback strategy to cope with out-
of-distribution datasets can substantially improve performance.

4.3.2 Do we need different model selection strategies?

Next, we study whether we need the different model selection strategies. For this, we
build model-based policy selectors on different subsets of the available eight combinations
of model selection strategies and budget allocations: {3-fold CV, 5-fold CV, 10-fold CV,
holdout} × {SH, FB}. Only Holdout consists of holdout with SH or FB (2 combinations),
Only CV comprises 3-fold CV, 5-fold CV and 10-fold CV, all of them with SH or FB (6
combinations), FB contains both holdout and cross-validation and assigns each pipeline
evaluation the same budget (4 combinations) and Only SH uses SH to assign budgets (4
combinations).

23

auto-sklearn 2 .0 : hands-free automl via meta-learning 135

Feurer, Eggensperger, Falkner, Lindauer and Hutter

Selector Random Oracle
∅ std ∅ std ∅ std

10 Min

All 3.58 0.23 7.46 2.02 2.33 0.06
Only Holdout 4.03 0.14 3.78 0.23 3.23 0.10
Only CV 6.11 0.11 8.66 0.70 5.28 0.06
Only FB 3.50 0.20 7.64 2.00 2.59 0.09
Only SH 3.63 0.19 6.95 1.98 2.75 0.07

60 Min

All 2.47 0.18 5.64 1.95 1.22 0.08
Only Holdout 3.18 0.15 3.13 0.12 2.62 0.07
Only CV 5.09 0.19 6.85 0.86 3.94 0.10
Only FB 2.39 0.18 5.46 1.52 1.51 0.06
Only SH 2.44 0.24 5.13 1.72 1.68 0.12

Table 7: Average Normalized balanced error (ADTM, lower is better) for the full system
and when not considering all model selection strategies.

In Table 7, we compare the performance of selecting a policy at random (random), the
performance of selecting the best policy on the test set and thus giving a lower bound on the
ADTM (oracle) and our model-based policy selector. The oracle indicates the best possible
performance with each of these subsets of model selection strategies. It turns out that
both Only Holdout and Only CV have a much worse oracle performance than All, with the
oracle performance of Only CV being even worse than the performance of the model-based
policy selector for All. Looking at Full budget (FB), it turns out that this subset would
be slightly preferable in terms of performance with a policy selector. However, the oracle
performance is worse than that of All which shows that there is some complementarity
between the different policies which cannot yet be exploited by the policy selector. For
Only Holdout, surprisingly, the random policy selector performs slightly better than the
model-based policy selector. We attribute this to the fact that holdout with both SH and
FB performs similarly and that the choice between these two cannot yet be learned, possibly
also indicated by the close performance of the random selector.

These results show that a large variety of available model selection strategies to choose
from increases best possible performances. However, they also show that a model-based
policy selector cannot yet necessarily leverage this potential. This questions the usefulness
of choosing from all model selection strategies, similar to a recent finding which proves that
increasing the number of different policies a policy selector can choose from leads to reduced
generalization (Balcan et al., 2021). However, we believe this points to the research question
of whether we can learn on the meta-datasets which model selection and budget allocation
strategies to include in the set of strategies to choose from. Also, with an ever-growing
availability of meta-datasets and continued research on robust policy selectors, we expect
this flexibility to eventually yield improved performance.

24

136 auto-sklearn 2 .0 : hands-free automl via meta-learning

Auto-sklearn 2.0

10min 60min
∅ std ∅ std

With Portfolio
Policy selector 3.58 0.23 2.47 0.18
Single best 3.69 0.14 2.44 0.12

Without Portfolio
Policy selector 5.63 0.89 3.42 0.32
Single best 5.37 0.58 3.61 0.61

Table 8: Average normalized balanced error (ADTM, lower is better) after 10 and after 60
minutes with portfolios (top) and without (bottom). The row ”with portfolio”
and ”policy selector” constitutes the full AutoML system including portfolios,
BO and ensembles) and the row ”without portfolios” and ”policy selector” only
removes the portfolios (both from the meta-data for model-based policy selector
construction and at runtime). We boldface the best mean value (per optimization
budget) and underline results that are not statistically different according to a
Wilcoxon-signed-rank Test (α = 0.05).

4.3.3 Do we still need to warm-start Bayesian optimization?

Last, we analyze the impact of the portfolio. Given the other improvements, we now discuss
whether we still need to add the additional complexity and invest resources to warm-start
BO (and can therefore save the time to build the performance matrices to construct the
portfolios). For this study, we completely remove the portfolio from our AutoML system,
meaning that we directly start with BO and construct ensembles – both for creating the
data we train our policy selector on and for reporting performance. We report the results
in Table 8.

Comparing the performance of an AutoML system with a model-based policy selector
with and without portfolios (Row 1 and 3), there is a clear drop in performance when
disabling the portfolios. Comparing Rows 2 and 4 also demonstrates that a portfolio is
necessary when using the single best policy. This ablation highlights the importance of
initializing the search procedure of AutoML systems with well-performing pipelines.

5. Comparison to other AutoML systems

Having established that Auto-sklearn 2.0 does indeed improve over Auto-sklearn 1.0 , we now
compare our system to other well established AutoML systems. For this, we use the publicly
available AutoML benchmark suite which defines a fixed benchmarking environment for
AutoML systems (Gijsbers et al., 2019) comparisons. We use the original implementation
of the benchmark and compare Auto-sklearn 1.0 and Auto-sklearn 2.0 to the provided
implementations of Auto-WEKA (Thornton et al., 2013), TPOT (Olson et al., 2016a,b),
H2O AutoML (LeDell and Poirier, 2020) and a random forest baseline with hyperparameter
tuning on 39 datasets as implemented by the benchmark suite. These 39 datasets are the
same datasets as in Dtest and we provide details in Table 20 in the appendix.

25

auto-sklearn 2 .0 : hands-free automl via meta-learning 137

Feurer, Eggensperger, Falkner, Lindauer and Hutter

5.1 Integration and setup

To avoid hardware-dependent performance differences, we (re-)ran all AutoML systems on
our local hardware (see Section 3.4.3). We used the pre-defined 1h8c setting, which divides
each dataset into ten folds and gives each framework one hour on eight CPU cores to pro-
duce a final model. We furthermore assigned each run 32GB of RAM, which a SLURM
cluster manager controlls. In addition, we conducted five repeats to account for random-
ness. The benchmark comes with Docker containers (Merkel, 2014). However, Docker
requires superuser access on the execution nodes, which is not available on our compute
cluster. Therefore, we extended the AutoML benchmark with support for Singularity im-
ages (Kurtzer et al., 2017), and used them to isolate the framework installations from each
other. For reproducibility, we give the exact versions we used in Table 17 in the Appendix.

The default resource allocation of the AutoML benchmark is a highly parallel set-
ting with eight cores. We chose the most straightforward way of making use of these
resources for Auto-sklearn and evaluated eight ML pipelines in parallel, assigning each
total memory/num cores RAM, which are 4GB. This allows us to evaluate configurations
obtained from the portfolio or KND in parallel but also requires a parallel strategy for run-
ning BO afterwards. We extended the Bayesian optimization package SMAC3 (Lindauer
et al., 2022) to allow for asynchronous parallel optimization. In preliminary experiments,
we found that the inherent randomness of the random forest used by SMAC combined
with the interleaved random search of SMAC is sufficient to obtain results that perform a
lot better than the previous parallelism implemented in Auto-sklearn via SMAC (Ramage,
2015). Whenever a pipeline finishes training, Auto-sklearn checks whether there is an in-
stance of the ensemble construction running, and if not, it uses one of the eight slots to
conduct ensemble building and otherwise continues to fit a new pipeline. We implemented
this version of parallel Auto-sklearn using Dask (Dask Development Team, 2016).

5.2 Results

We give results for the AutoML benchmark in Table 9. For each dataset, we give the average
performance of the AutoML systems across all ten folds and five repetitions and boldface
the one with the lowest error (we cannot give any information about whether differences
are significant as we cannot compute significances on cross-validation folds as described by
Bengio and Grandvalet, 2004).

We report the log loss for multiclass datasets and 1 − AUC for binary datasets (lower
is better). In addition, we provide the average rank as an aggregate measure (computed by
averaging all folds and repetitions per dataset and then computing the rank). Furthermore,
we count how often each framework is the winner on a dataset (champion), and give the
losses, wins and ties against Auto-sklearn 2.0 . We then use these to perform a binomial
sign test (Demšar, 2006) to compare the individual algorithms against Auto-sklearn 2.0 .

The results in Table 9 show that none of the AutoML systems is best on all datasets, and
even the TunedRF performs best on a few datasets. However, we can also observe that the
proposed Auto-sklearn 2.0 has the lowest average rank. It is followed by H2O AutoML and
Auto-sklearn 1.0 which perform roughly en par wrt the ranking scores and the number of
times they are the winner on a dataset. According to both aggregate metrics, the TunedRF,
Auto-WEKA and TPOT cannot keep up and lead to substantially worse results. Finally,

26

138 auto-sklearn 2 .0 : hands-free automl via meta-learning

Auto-sklearn 2.0

AS 2.0 AS 1.0 AW TPOT H2O TunedRF

adult 0.0692 0.0701 0.0920 0.0750 0.0690 0.0902
airlines 0.2724 0.2726 0.3241 0.2758 0.2682 -
albert 0.2413 0.2381 - 0.2681 0.2530 0.2616
amazon 0.1233 0.1412 0.1836 0.1345 0.1218 0.1377
apsfailure 0.0085 0.0081 0.0365 0.0099 0.0081 0.0087
australian 0.0594 0.0702 0.0709 0.0670 0.0607 0.0610
bank-marketing 0.0607 0.0616 0.1441 0.0664 0.0610 0.0692
blood-transfusion 0.2428 0.2474 0.2619 0.2761 0.2430 0.3122
car 0.0012 0.0046 0.1910 2.7843 0.0032 0.0421
christine 0.1821 0.1703 0.2026 0.1821 0.1763 0.1908
cnae-9 0.1424 0.1779 0.7045 0.1483 0.1807 0.3119
connect-4 0.3387 0.3535 1.7083 0.3856 0.3127 0.4777
covertype 0.1103 0.1435 3.3515 0.5332 0.1281 -
credit-g 0.2031 0.2159 0.2505 0.2144 0.2078 0.1985
dilbert 0.0399 0.0332 2.0791 0.1153 0.0359 0.3283
dionis 0.5620 0.7171 - - 4.7758 -
fabert 0.7386 0.7466 5.4784 0.8431 0.7274 0.8060
fashion-mnist 0.2511 0.2524 0.9505 0.4314 0.2762 0.3613
guillermo 0.0945 0.0871 0.1251 0.1680 0.0911 0.0973
helena 2.4974 2.5432 14.3523 2.8738 2.7578 -
higgs 0.1824 0.1846 0.3379 0.1969 0.1846 0.1966
jannis 0.6709 0.6637 2.9576 0.7244 0.6695 0.7288
jasmine 0.1141 0.1196 0.1356 0.1123 0.1141 0.1118
jungle chess 0.2104 0.1956 1.6969 0.9557 0.1479 0.4020
kc1 0.1611 0.1594 0.1780 0.1530 0.1745 0.1590
kddcup09 0.1580 0.1632 - 0.1696 0.1636 0.2058
kr-vs-kp 0.0001 0.0003 0.0217 0.0003 0.0002 0.0004
mfeat-factors 0.0726 0.0901 0.5678 0.1049 0.1009 0.2091
miniboone 0.0121 0.0128 0.0352 0.0177 0.0129 0.0183
nomao 0.0035 0.0039 0.0157 0.0047 0.0036 0.0049
numerai28.6 0.4696 0.4705 0.4729 0.4741 0.4695 0.4792
phoneme 0.0299 0.0366 0.0416 0.0307 0.0325 0.0347
riccardo 0.0002 0.0002 0.0020 0.0021 0.0003 0.0002
robert 1.4302 1.3800 - 1.8600 1.4927 1.6877
segment 0.1482 0.1749 1.2497 0.1660 0.1580 0.1718
shuttle 0.0002 0.0004 0.0100 0.0008 0.0004 0.0006
sylvine 0.0105 0.0091 0.0290 0.0075 0.0106 0.0159
vehicle 0.3341 0.3754 2.0662 0.4402 0.3067 0.4839
volkert 0.7477 0.7862 3.4235 0.9852 0.8121 0.9792

Rank 1.79 2.64 5.72 4.08 2.38 4.38

Best performance 19 8 0 2 8 2
Wins/Losses/Ties of AS 2.0 - 28/11/0 39/0/0 35/4/0 26/13/0 36/3/0
P-values (AS 2.0 vs. other methods), - .009 < .000 < .000 .053 < .000
based on a Binomial sign test

Table 9: Results of the AutoML benchmark averaged across five repetitions. We report log
loss for multiclass datasets and 1−AUC for binary classification datasets (lower is
better). AS is short for Auto-sklearn and AW for Auto-WEKA. Auto-sklearn has
the best overall rank, the best performance in most datasets and, based on the P-
values of a Binomial sign test, we gain further confidence in its strong performance.

27

auto-sklearn 2 .0 : hands-free automl via meta-learning 139

Feurer, Eggensperger, Falkner, Lindauer and Hutter

both versions of Auto-sklearn appear to be quite robust as they reliably provide results on
all datasets, including the largest ones where several of the other methods fail.

6. Related Work

We now present related work on our individual contributions (portfolios, model selection
strategies, and algorithm selection) as well as on related AutoML systems.

6.1 Related Work on Portfolios

Portfolios were introduced for hard combinatorial optimization problems, where the run-
time between different algorithms varies drastically and allocating time shares to multiple
algorithms instead of allocating all available time to a single one reduces the average cost
for solving a problem (Huberman et al., 1997; Gomes and Selman, 2001), and had applica-
tions in different sub-fields of AI (Smith-Miles, 2008; Kotthoff, 2014; Kerschke et al., 2019).
Algorithm portfolios were introduced to ML by the name of algorithm ranking to reduce
the required time to perform model selection compared to running all algorithms under
consideration (Brazdil and Soares, 2000; Soares and Brazdil, 2000), ignoring redundant
ones (Brazdil et al., 2001). ML portfolios can be superior to hyperparameter optimization
with Bayesian optimization (Wistuba et al., 2015b), Bayesian optimization with a model
which takes past performance data into account (Wistuba et al., 2015a) or can be ap-
plied when there is simply no time to perform full hyperparameter optimization (Feurer
et al., 2018). Furthermore, such a portfolio-based model-free optimization is both easier to
implement than regular Bayesian optimization and meta-feature based solutions, and the
portfolio can be shared easily across researchers and practitioners without the necessity of
sharing meta-data (Wistuba et al., 2015a,b; Pfisterer et al., 2018) or additional hyperpa-
rameter optimization software. Here, our goal is to have strong hyperparameter settings
when there is no time to optimize with a typical black-box algorithm.

The efficient creation of algorithm portfolios is an active area of research with the Greedy
Algorithm being a popular choice (Xu et al., 2010, 2011; Seipp et al., 2015; Wistuba et al.,
2015b; Lindauer et al., 2017; Feurer et al., 2018; Feurer and Hutter, 2018) due to its sim-
plicity. Wistuba et al. (2015b) first proposed the use of the Greedy Algorithm for pipelines
of ML portfolios, minimizing the average rank on meta-datasets for a single ML algorithm.
Later, they extended their work to update the members of a portfolio in a round-robin
fashion, this time using the average normalized misclassification error as a loss function and
relying on a Gaussian process model (Wistuba et al., 2015a). The loss function of the first
method does not optimize the metric of interest, while the second method requires a model
and does not guarantee that well-performing algorithms are executed early on, which could
be harmful under time constraints.

Research into the Greedy Algorithm continued after our submission to the second Au-
toML challenge and the publication of the employed methods (Feurer et al., 2018). Pfisterer
et al. (2018) suggested using a set of default values to simplify hyperparameter optimiza-
tion. They argued that constructing an optimal portfolio of hyperparameter settings is
a generalization of the Maximum coverage problem and propose two solutions based on
Mixed Integer Programming and the Greedy Algorithm which we also use as the base of
our algorithm. The greedy algorithm recently also drew interest in deep learning research,

28

140 auto-sklearn 2 .0 : hands-free automl via meta-learning

Auto-sklearn 2.0

where it was applied in its basic form for tuning the hyperparameters of the popular ADAM
algorithm (Metz et al., 2020).

Extending these portfolio strategies, which are learned offline, there are online portfolios
that can select from a fixed set of machine learning pipelines, taking previous evaluations
into account (Leite et al., 2012; Wistuba et al., 2015a,b; Fusi et al., 2018; Yang et al.,
2019, 2020). However, such methods cannot be directly combined with all budget alloca-
tion strategies as they require the definition of a special model for extrapolating learning
curves (Klein et al., 2017b; Falkner et al., 2018) and also introduce additional complexity
into AutoML systems.

There exists other work on building portfolios without prior discretization (which we do
for our work and was done for most work mentioned above), which directly optimizes the
hyperparameters of ML pipelines to add next to the portfolio in a greedy fashion (Xu et al.,
2010, 2011; Seipp et al., 2015), to jointly optimize all configurations of the portfolio with
global optimization (Winkelmolen et al., 2020), and also to build parallel portfolios (Lin-
dauer et al., 2017). We consider these to be orthogonal to using portfolios in the first place
and plan to study improved optimization strategies in future work.

6.2 Related Work on Successive Halving

Large datasets, expensive ML pipelines and tight resource limitations demand sophisticated
methods to speed up pipeline selection. One line of research, multi-fidelity optimization
methods, tackle this problem by using cheaper approximations of the objective of interest.
Practical examples are evaluating a pipeline only on a subset of the dataset or for iterative
algorithms limiting the number of iterations. There exists a large body of research on
optimization methods leveraging lower fidelities, for example working with a fixed set of
auxiliary tasks (Forrester et al., 2007; Swersky et al., 2013; Poloczek et al., 2017; Moss
et al., 2020), solutions for specific model classes (Swersky et al., 2014; Domhan et al.,
2015; Chandrashekaran and Lane, 2017) and selecting a fidelity value from a continuous
range (Klein et al., 2017a; Kandasamy et al., 2017; Wu et al., 2020; Takeno et al., 2020).
Here, we focus on a methodologically simple bandit strategy, SH (Karnin et al., 2013;
Jamieson and Talwalkar, 2016), which successively reduces the number of candidates and at
the same time increases the allocated resources per run till only one candidate remains. Our
use of SH in the 2nd AutoML challenge also inspired work on combining a genetic algorithm
with SH (Parmentier et al., 2019). Another way of quickly discarding unpromising pipelines
is the intensify procedure which was used by Auto-WEKA (Thornton et al., 2013) to speed
up cross-validation. Instead of evaluating all folds at once, it evaluates the folds in an
iterative fashion. After each evaluation, the average performance on the evaluated folds is
compared to the performance of the so-far best pipeline on these folds. The evaluation is
only continued if the performance is equal or better. While this allows evaluating many
configurations in a short time, it cannot be combined with post-hoc ensembling and reduces
the cost of a pipeline to, at most, the cost of holdout, which might already be too high.

6.3 Related Work on Algorithm Selection

Automatically choosing a model selection strategy to assess the performance of an ML
pipeline for hyperparameter optimization has not previously been tackled, and only Guyon

29

auto-sklearn 2 .0 : hands-free automl via meta-learning 141

Feurer, Eggensperger, Falkner, Lindauer and Hutter

et al. (2015) acknowledge the lack of such an approach. However, treating the choice of
model selection strategy as an algorithm selection problem allows us to apply methods from
the field of algorithm selection (Smith-Miles, 2008; Kotthoff, 2014; Kerschke et al., 2019)
and we can in future work reuse existing techniques besides the pairwise classification we
employ in this paper (Xu et al., 2011), such as the AutoAI system AutoFolio (Lindauer
et al., 2015).

6.4 Background on AutoML Systems and Their Components

AutoML systems have recently gained traction in the research community, and there exists
a multitude of approaches, often accompanied by open-source software. In the following,
we provide background on the main components of AutoML frameworks before describing
several prominent instantiations in more depth.

6.4.1 Components of AutoML systems

AutoML systems require a flexible pipeline configuration space and are driven by an efficient
method to search this space. Furthermore, they rely on model selection and budget allo-
cation strategies when evaluating different pipelines. Additionally, to speed up the search
procedure, information gained on other datasets can be used to kick-start or guide the
search procedure (i.e. meta-learning). Finally, one can also combine the models trained
during the search phase in a post-hoc ensembling step.

Configuration Space and Search Mechanism While there are configuration space
formulations that allow the application of multiple search mechanisms, not all formulations
of a configuration space and a search mechanism can be mixed and matched, and we,
therefore, describe the different formulations and the applicable search mechanisms in turn.

The most common description of the search space is the CASH formulation. There
is a fixed amount of hyperparameters, each with a range of legal values or categorical
choices, and some of them can be conditional, meaning that they are only active if other
hyperparameters fulfill certain conditions. One such example is the choice of a classification
algorithm and its hyperparameters. The hyperparameters of an SVM are only active if the
categorical hyperparameter of the classification algorithm is set to SVM.

Standard black-box optimization algorithms can solve the CASH problem, and SMAC
(Hutter et al., 2011) and TPE (Bergstra et al., 2011) were proposed first for this task.
Others proposed the use of evolutionary algorithms (Bürger and Pauli, 2015) and random
search (LeDell and Poirier, 2020). It is also known as the full model selection problem (Es-
calante et al., 2009), and solutions in that strain of work proposed the use of particle swarm
optimization (Escalante et al., 2009) and a combination of a genetic algorithm with par-
ticle swarm optimization (Sun et al., 2013). To improve performance one can prune the
configuration space to reduce the size of the space the optimization algorithm has to search
through (Zhang et al., 2016), split the configuration space into smaller, more manageable
subspaces (Alaa and van der Schaar, 2018; Liu et al., 2020), or heavily employ expert
knowledge (LeDell and Poirier, 2020).

Instead of a fixed configuration space, genetic programming can make use of a flexible
and possibly infinite space of components to be connected (Olson et al., 2016b,a). This
approach can be formalized further by using grammar-based genetic programming (de Sa

30

142 auto-sklearn 2 .0 : hands-free automl via meta-learning

Auto-sklearn 2.0

et al., 2017). Context-free grammars can also be searched by model-based reinforcement
learning algorithms (Drori et al., 2019).

Formalizing the search problem as a search tree allows the application of a custom
Monte-Carlo tree search (Rakotoarison et al., 2019) and hierarchical task networks with
best-first search (Mohr et al., 2018). With discrete spaces it is also possible to use combina-
tions of meta-learning and matrix factorization (Yang et al., 2019, 2020; Fusi et al., 2018).
In the special case of using only neural networks in an AutoML system it is possible to stick
with standard black-box optimization (Mendoza et al., 2016, 2019; Zimmer et al., 2021),
but one can also employ recent advances in neural architecture search (Elsken et al., 2019).

Meta-Learning. When there is knowledge about previous runs of the AutoML system
on other datasets available, it is possible to employ meta-learning. One option is to define
a dataset similarity measure, often by using hand-crafted meta-features which describe the
datasets (Brazdil et al., 1994), to use the best solutions on the closest seen datasets to
warmstart the search algorithm (Feurer et al., 2015a). While this way of meta-learning can
be seen as an add-on to existing methods, other works use search strategies designed to
take meta-learning into account, for example matrix factorization (Yang et al., 2019, 2020;
Fusi et al., 2018) or reinforcement learning (Drori et al., 2019; Heffetz et al., 2020).

Model Selection. Given training data, the goal of an AutoML system is to find the best
performing ML pipeline. Doing so requires to best approximate the generalization error to
1) provide a reliable and precise signal for the optimization procedure8 and 2) select the
model to be returned in the end. Typically, the generalization error is assessed via the train-
validation-test protocol (Bishop, 1995; Raschka, 2018). This means that several models are
trained on a training set, the best one is selected via holdout (using a single split) or the
K-fold cross-validation, and the generalization error is then reported on the test set. The
AutoML system then returns a single model in case of holdout and a combination of K
models in case of K-fold cross-validation (Caruana et al., 2006). One could also use model
selection strategies aiming to reduce the effect of overfitting to the validation set (Dwork
et al., 2015; Tsamardinos et al., 2018), but while such model selection strategies are an
important area of research, houldout or K-fold cross-validation remain the most prominent
choices (Henery, 1994; Kohavi and John, 1995; Hastie et al., 2001; Guyon et al., 2010; Bischl
et al., 2012; Raschka, 2018).

The influence of the model selection strategy on the performance is well known (Kalousis
and Hilario, 2003), and researchers have studied their impact (Kohavi, 1995). However,
there is no single best strategy, since there is a tradeoff between approximation quality and
time required to compute the validation loss.

Post-hoc Ensembling. AutoML systems evaluate dozens or hundreds of models during
their optimization procedure. Thus, it is a natural next step to not only use a single model
at the end but to ensemble multiple for improved performance and reduced overfitting.

8. Different model selection strategies could be ignored from an optimization point of view, where the goal
is to optimize performance given a loss function, as is often done in the research fields of meta-learning
and hyperparameter optimization. However, for AutoML systems, this is highly relevant as we are not
interested in the optimization performance (of some subpart) of these systems, but the final estimated
generalization performance when applied to new data.

31

auto-sklearn 2 .0 : hands-free automl via meta-learning 143

Feurer, Eggensperger, Falkner, Lindauer and Hutter

This was first proposed to combine the solutions found by particle swarm optimiza-
tion (Escalante et al., 2010) and then by an evolutionary algorithm (Bürger and Pauli,
2015). While these works used heuristic methods to combine multiple models into a final
ensemble, it is also possible to treat this as another optimization problem (Feurer et al.,
2015a) and solve it with ensemble selection (Caruana et al., 2004) or stacking (LeDell and
Poirier, 2020).

Instead of using a single layer of machine learning models, Automatic Frankenstein-
ing (Wistuba et al., 2017) proposed two-layer stacking, applying AutoML to the outputs
of an AutoML system instead of a single layer of ML algorithms followed by an ensem-
bling mechanism. Auto-Stacker went one step further, directly optimizing for a two-layer
AutoML system (Chen et al., 2018).

6.4.2 AutoML systems

To the best of our knowledge, the first AutoML system which tunes both hyperparameters
and chooses algorithms was an ensemble method (Caruana et al., 2004). This system
randomly produces 2 000 classifiers from a wide range of ML algorithms and constructs
a post-hoc ensemble. It was later robustified (Caruana et al., 2006) and employed in a
winning submission to the KDD challenge (Niculescu-Mizil et al., 2009).

The first AutoML system to jointly optimize the whole pipeline was Particle Swarm
Model Selection (Escalante et al., 2007, 2009). It used a fixed-length representation of
the pipeline and contained feature selection, feature processing, classification and post-
processing implemented in the CLOP package9 and was developed for the IJCNN 2007
agnostic learning vs. prior knowledge challenge (Guyon et al., 2007). It placed 2nd among
the solutions using the CLOP package provided by the organizers, only losing to a sub-
mission based on robust hyperparameter optimization and ensembling (Reunanen, 2007).
Later systems started employing model-based global optimization algorithms, such as Auto-
WEKA (Thornton et al., 2013; Kotthoff et al., 2019), which is built around the WEKA
software (Hall et al., 2009) and SMAC (Hutter et al., 2011) and uses cross-validation with
racing for model evaluation, and Hyperopt-sklearn (Komer et al., 2014), which was the first
tool to use the now-popular scikit-learn (Pedregosa et al., 2011) and paired it with the TPE
algorithm from the hyperopt package (Bergstra et al., 2011, 2013) and holdout.

We extended the approach of parametrizing a popular machine learning library and op-
timizing its hyperparameters with a black-box optimization algorithm using meta-learning
and post-hoc ensembles in Auto-sklearn (Feurer et al., 2015a, 2019). For classification, the
space of possible ML pipelines currently spans 16 classifiers, 14 feature preprocessing meth-
ods and numerous data preprocessing methods, adding up to 122 hyperparameters for the
latest release. Auto-sklearn uses holdout as a default model selection strategy but allows
for other strategies such as cross-validation. Auto-sklearn was the dominating solution of
the first AutoML challenge (Guyon et al., 2019).

The tree-based pipeline optimization tool (TPOT ; Olson et al., 2016b; Olson and Moore,
2019) uses grammatical evolution to construct ML pipelines of arbitrary length. Currently,
it uses scikit-leearn (Pedregosa et al., 2011) and XGBoost (Chen and Guestrin, 2016) for
its ML building blocks and 5-fold cross-validation to evaluate individual solutions. TPOT-

9. http://clopinet.com/CLOP/

32

144 auto-sklearn 2 .0 : hands-free automl via meta-learning

Auto-sklearn 2.0

SH (Parmentier et al., 2019), inspired by our submission to the second AutoML challenge,
uses successive halving to speed up TPOT on large datasets.

There are also multiple AutoML systems that exploit stacking (Wolpert, 1992). First,
Automatic Frankensteining (Wistuba et al., 2017) introduces a two-stage optimization pro-
cess to build a two-layer stacking model. Second, AutoStacker directly optimizes a two-layer
stacking model with a genetic algorithm (Chen et al., 2018). Third, H2O AutoML package
builds on a manually designed set of defaults and random search and combines them in
a post-hoc stacking step, using building blocks from the H2O library (H2O.ai, 2020) and
XGBoost (Chen and Guestrin, 2016), and employing cross-validation. Lastly, AutoGluon
takes a radically different approach and completely drops hyperparameter optimization and
invests all available time into building a robust stacking model (Erickson et al., 2020).

Recently, there also have been works that aim to use dataset subsets to speed up the
evaluation (Parmentier et al., 2019; Wang et al., 2021).

Finally, there is also work on creating AutoML systems that can leverage recent ad-
vancements in deep learning, using either black-box optimization (Mendoza et al., 2016;
Zimmer et al., 2021) or neural architecture search (Jin et al., 2019).

Of course, there are also many techniques related to AutoML which are not used in one
of the AutoML systems discussed in this section, and we refer to Hutter et al. (2019) for
an overview of the field of Automated Machine Learning, to Brazdil et al. (2008) for an
overview on meta-learning research which pre-dates the work on AutoML and to Escalante
(2021) for a discussion on the history of AutoML.

7. Discussion and Conclusion

In this paper, we introduced our winning entry to the 2nd ChaLearn AutoML challenge,
PoSH Auto-sklearn, and automated its internal settings further, resulting in the next gen-
eration of our AutoML system: Auto-sklearn 2.0 . It provides a truly hands-free solution,
which, given a new task and resource limitations, automatically chooses the best setup.
Specifically, we introduce three improvements for faster and more efficient AutoML: (i) to
get strong results quickly, we propose to use portfolios, which can be built offline and thus
reduce startup costs, (ii) to reduce time spent on poorly performing pipelines we propose
to add successive halving as a budget allocation strategy to the configuration space of our
AutoML system and (iii) to close the design space we opened up for AutoML we propose
to automatically select the best configuration of our system.

We conducted a large-scale study based on 208 meta-datasets for constructing our Au-
toML systems and 39 datasets for evaluating them and obtained substantially improved
performance compared to Auto-sklearn 1.0 , reducing the ADTM by up to a factor of 4.5
and achieving a lower loss after 10 minutes than Auto-sklearn 1.0 after 60 minutes. Our
ablation study showed that using a model-based policy selector to choose the model selec-
tion strategy has the largest impact on performance and allows Auto-sklearn 2.0 to run
robustly on new, unseen datasets. Furthermore, we showed that our method is highly com-
petitive and outperforms other state-of-the-art AutoML systems in the OpenML AutoML
benchmark.

However, our system also introduces some shortcomings since it optimizes performance
towards a given optimization budget, performance metric and configuration space. Although

33

auto-sklearn 2 .0 : hands-free automl via meta-learning 145

Feurer, Eggensperger, Falkner, Lindauer and Hutter

all of these, along with the meta datasets, could be provided by a user to automatically
build a customized version of Auto-sklearn 2.0 , it would be interesting whether we can learn
how to transfer a specific AutoML system to different optimization budgets and metrics.
Although we have observed strong empirical performance using SH, we do not have any
performance guarantee when we combine SH with BO. Therefore, we deem developing
approaches that increase successive halving’s lower budget over time promising next steps.
Also, there remain several hand-picked hyperparameters on the level of the AutoML system,
which we plan to automate in future work. These are, for example, automatically learning
the portfolio size, learning more hyper-hyperparameters of the different budget allocation
strategies (for instance, of SH) and proposing suitable configuration spaces given a dataset
and resources. Besides these, our use of two meta-features for the selector opens up the
research question of whether other meta-features could result in better performance. We
expect that we can tackle many of these problems by performing an additional optimization
loop on the training data. Finally, building the training data is currently quite expensive.
Even though this has to be done only once, it will be interesting to see whether we can
take shortcuts here, for example, by using a joint ranking model (Tornede et al., 2020) or
non-linear collaborative filtering (Fusi et al., 2018).

Acknowledgments

The authors acknowledge support by the state of Baden-Württemberg through bwHPC
and the German Research Foundation (DFG) through grant no INST 39/963-1 FUGG.
This work has partly been supported by the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme under grant no.
716721. Robert Bosch GmbH is acknowledged for financial support. We furthermore thank
all contributors to Auto-sklearn for their help in making it a useful AutoML tool and also
thank Francisco Rivera for providing a Singularity integration for the AutoML benchmark.

34

146 auto-sklearn 2 .0 : hands-free automl via meta-learning

Feurer, Eggensperger, Falkner, Lindauer and Hutter

References

2007 International Joint Conference on Neural Networks (IJCNN’07), 2007. IEEE Com-
puter Society Press.

A. Alaa and M. van der Schaar. AutoPrognosis: Automated clinical prognostic modeling
via Bayesian optimization with structured kernel learning. In Dy and Krause (2018),
pages 139–148.

M.-F. Balcan, T. Sandholm, and E. Vitercik. Generalization in portfolio-based algorithm
selection. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI’21),
volume 35, pages 12225–12232, 2021.

R. Bardenet, M. Brendel, B. Kégl, and M. Sebag. Collaborative hyperparameter tuning. In
Dasgupta and McAllester (2013), pages 199–207.

Y. Bengio and Y. Grandvalet. No unbiased estimator of the variance of k-fold cross-
validation. Journal of Machine Learning Research, 4:1089–1105, 2004.

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter op-
timization. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger,
editors, Proceedings of the 24th International Conference on Advances in Neural Infor-
mation Processing Systems (NeurIPS’11), pages 2546–2554. Curran Associates, 2011.

J. Bergstra, D. Yamins, and D. Cox. Making a science of model search: Hyperparame-
ter Optimization in hundreds of dimensions for vision architectures. In Dasgupta and
McAllester (2013), pages 115–123.

A. Biedenkapp, H. F. Bozkurt, T. Eimer, F. Hutter, and M. Lindauer. Dynamic algorithm
configuration: Foundation of a new meta-algorithmic framework. In J. Lang, G. De
Giacomo, B. Dilkina, and M. Milano, editors, Proceedings of the Twenty-fourth European
Conference on Artificial Intelligence (ECAI’20), pages 427–434, June 2020.

M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algorithm for configuring
metaheuristics. In W. Langdon, E. Cantu-Paz, K. Mathias, R. Roy, D. Davis, R. Poli,
K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. Potter, A. Schultz,
J. Miller, E. Burke, and N. Jonoska, editors, Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO’02), pages 11–18. Morgan Kaufmann Publishers,
2002.

B. Bischl, O. Mersmann, H. Trautmann, and C. Weihs. Resampling methods for meta-model
validation with recommendations for evolutionary computation. Evolutionary Computa-
tion, 20(2):249–275, 2012.

B. Bischl, G. Casalicchio, M. Feurer, F. Hutter, M. Lang, R. Mantovani, J. van Rijn,
and J. Vanschoren. OpenML benchmarking suites. In J. Vanschoren, S. Yeung, and
M. Xenochristou, editors, Proceedings of the Neural Information Processing Systems
Track on Datasets and Benchmarks, 2021.

50

auto-sklearn 2 .0 : hands-free automl via meta-learning 147

Auto-sklearn 2.0

C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, Inc.,
1995.

B. Bonet and S. Koenig, editors. Proceedings of the Twenty-ninth National Conference on
Artificial Intelligence (AAAI’15), 2015. AAAI Press.

P. Brazdil and C. Soares. A comparison of ranking methods for classification algorithm
selection. In R. Lopez de Mantaras and E. Plaza, editors, Machine Learning: ECML
2000, volume 1810 of Lecture Notes in Computer Science, pages 63–74. Springer, 2000.

P. Brazdil, J. Gama, and B. Henery. Characterizing the applicability of classification al-
gorithms using meta-level learning. In F. Bergadano and L. De Raedt, editors, Machine
Learning: ECML-94, pages 83–102. Springer Berlin Heidelberg, 1994.

P. Brazdil, C. Soares, and R. Pereira. Reducing rankings of classifiers by eliminating redun-
dant classifiers. In P. Brazdil and A. Jorge, editors, Progress in Artificial Intelligence:
Knowledge Extraction, Multi-agent Systems, Logic Programming, and Constraint Solving,
Lecture Notes in Artificial Intelligence, pages 14–21. Springer, 2001.

P. Brazdil, C. Giraud-Carrier, C. Soares, and R. Vilalta. Metalearning: Applications to
Data Mining. Springer, 1 edition, 2008.

L. Breimann. Random forests. Machine Learning Journal, 45:5–32, 2001.

F. Bürger and J. Pauli. A holistic classification optimization framework with feature se-
lection, preprocessing, manifold learning and classifiers. In A. Fred, M. De Marsico, and
M. Figueiredo, editors, Procceedings of 4th International Conference on Pattern Recog-
nition: Applications and Methods (ICPRAM’15), volume 9493 of Lecture Notes in Com-
puter Science, pages 52–68. Springer, 2015.

R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes. Ensemble selection from libraries
of models. In R. Greiner, editor, Proceedings of the 21st International Conference on
Machine Learning (ICML’04). Omnipress, 2004.

R. Caruana, A. Munson, and A. Niculescu-Mizil. Getting the most out of ensemble selection.
In Proceedings of the 6th IEEE International Conference on Data Mining (ICDM’06),
pages 828–833. IEEE Computer Society Press, 2006.

A. Chandrashekaran and I. Lane. Speeding up Hyper-parameter Optimization by Extrap-
olation of Learning Curves using Previous Builds. In M. Ceci, J. Hollmen, L. Todor-
ovski, C. Vens, and S. Džeroski, editors, Machine Learning and Knowledge Discovery
in Databases (ECML/PKDD’17), volume 10534 of Lecture Notes in Computer Science,
pages 477–492. Springer, 2017.

B. Chen, H. Wu, W. Mo, I. Chattopadhyay, and H. Lipson. Autostacker: A Compositional
Evolutionary Learning System. In H. Aguirre and K. Takadama, editors, Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO’18), pages 402–409.
ACM, 2018.

51

148 auto-sklearn 2 .0 : hands-free automl via meta-learning

Feurer, Eggensperger, Falkner, Lindauer and Hutter

T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In Krishnapuram
et al. (2016), pages 785–794.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive-
aggressive algorithms. Journal of Machine Learning Research, 7(19):551–585, 2006.

S. Dasgupta and D. McAllester, editors. Proceedings of the 30th International Conference
on Machine Learning (ICML’13), 2013. Omnipress.

Dask Development Team. Dask: Library for dynamic task scheduling, 2016. URL https:

//dask.org.

A. de Sa, W. Pinto, L. Oliveira, and G. Pappa. RECIPE: A grammar-based framework
for automatically evolving classification pipelines. In M. Castelli, J. McDermott, and
L. Sekanina, editors, EuroGP 2017: Proceedings of the 20th European Conference on
Genetic Programming, volume 10196 of LNCS, pages 246–261. Springer Verlag, 2017.

J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine
Learning Research, 7:1–30, 2006.

T. Domhan, J. Springenberg, and F. Hutter. Speeding up automatic Hyperparameter
Optimization of deep neural networks by extrapolation of learning curves. In Q. Yang
and M. Wooldridge, editors, Proceedings of the 24th International Joint Conference on
Artificial Intelligence (IJCAI’15), pages 3460–3468, 2015.

I. Drori, Y. Krishnamurthy, R. Lourenco, R. Rampin, K. Cho, C. Silva, and J. Freire. Au-
tomatic machine learning by pipeline synthesis using model-based reinforcement learning
and a grammar. In K. Eggensperger, M. Feurer, F. Hutter, and J. Vanschoren, editors,
ICML workshop on Automated Machine Learning (AutoML workshop 2019), 2019.

C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and A. Roth. The reusable
holdout: Preserving validity in adaptive data analysis. Science, 349(6248):636–638, 2015.

J. Dy and A. Krause, editors. Proceedings of the 35th International Conference on Machine
Learning (ICML’18), volume 80, 2018. Proceedings of Machine Learning Research.

T. Elsken, J. Metzen, and F. Hutter. Neural architecture search. In Hutter et al. (2019),
chapter 3, pages 63–77. Available for free at http://automl.org/book.

N. Erickson, J. Mueller, A. Shirkov, H. Zhang, P. Larroy, M. Li, and A. Smola. Autogluon-
tabular: Robust and accurate automl for structured data. arXiv:2003.06505 [stat.ML],
2020.

H. Escalante. Automated machine learning—a brief review at the end of the early years.
In N. Pillay and R. Qu, editors, Automated Design of Machine Learning and Search
Algorithms, pages 11–28. Springer, 2021.

H. Escalante, M. Gomez, and L. Sucar. PSMS for neural networks on the ijcnn 2007 agnostic
vs prior knowledge challenge. In 2007 International Joint Conference on Neural Networks
(IJCNN’07) ijc (2007), pages 678–683.

52

auto-sklearn 2 .0 : hands-free automl via meta-learning 149

Auto-sklearn 2.0

H. Escalante, M. Montes, and E. Sucar. Particle Swarm Model Selection. Journal of
Machine Learning Research, 10:405–440, 2009.

H. Escalante, M. Montes, and E. Sucar. Ensemble particle swarm model selection. In
2010 International Joint Conference on Neural Networks (IJCNN’10), pages 1–8. IEEE
Computer Society Press, 2010.

S. Falkner, A. Klein, and F. Hutter. BOHB: Robust and efficient Hyperparameter Opti-
mization at scale. In Dy and Krause (2018), pages 1437–1446.

M. Feurer and F. Hutter. Towards further automation in automl. In Garnett et al. (2018).

M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter. Efficient
and robust automated machine learning. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama,
and R. Garnett, editors, Proceedings of the 28th International Conference on Advances
in Neural Information Processing Systems (NeurIPS’15), pages 2962–2970. Curran As-
sociates, 2015a.

M. Feurer, J. Springenberg, and F. Hutter. Initializing Bayesian Hyperparameter Opti-
mization via meta-learning. In Bonet and Koenig (2015), pages 1128–1135.

M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and F. Hutter. Practical automated
machine learning for the automl challenge 2018. In Garnett et al. (2018).

M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter. Auto-
sklearn: Efficient and robust automated machine learning. In Hutter et al. (2019), chap-
ter 6, pages 113–134. Available for free at http://automl.org/book.

M. Feurer, J. van Rijn, A. Kadra, P. Gijsbers, N. Mallik, S. Ravi, A. Müller, J. Vanschoren,
and F. Hutter. OpenML-Python: an extensible Python API for OpenML. Journal of
Machine Learning Research, 22(100):1–5, 2021.

A. Forrester, A. Sóbester, and A. Keane. Multi-fidelity optimization via surrogate modelling.
Proceedings of the royal society A: mathematical, physical and engineering sciences, 463
(2088):3251–3269, 2007.

J. Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, 29:1189–1232, 2001.

N. Fusi, R. Sheth, and M. Elibol. Probabilistic matrix factorization for automated machine
learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Proceedings of the 31st International Conference on Advances in Neu-
ral Information Processing Systems (NeurIPS’18), pages 3348–3357. Curran Associates,
2018.

R. Garnett, F. Hutter J. Vanschoren, P. Brazdil, R. Caruana, C. Giraud-Carrier, I. Guyon,
and B. Kégl, editors. ICML workshop on Automated Machine Learning (AutoML work-
shop 2018), 2018.

53

150 auto-sklearn 2 .0 : hands-free automl via meta-learning

Feurer, Eggensperger, Falkner, Lindauer and Hutter

P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Machine Learning
Journal, 63(1):3–42, 2006.

P. Gijsbers, E. LeDell, S. Poirier, J. Thomas, B. Bischl, and J. Vanschoren. An open source
automl benchmark. In K. Eggensperger, M. Feurer, F. Hutter, and J. Vanschoren, editors,
ICML workshop on Automated Machine Learning (AutoML workshop 2019), 2019.

C. Gomes and B. Selman. Algorithm portfolios. Artificial Intelligence, 126(1-2):43–62, 2001.

I. Guyon, A. Saffari, G. Dror, and G. Cawley. Analysis of the IJCNN 2007 agnostic learning
vs. prior knowledge challenge. In 2007 International Joint Conference on Neural Networks
(IJCNN’07) ijc (2007), pages 544–550.

I. Guyon, A. Saffari, G. Dror, and G. Cawley. Model selection: Beyond the
Bayesian/Frequentist divide. Journal of Machine Learning Research, 11:61–87, 2010.

I. Guyon, K. Bennett, G. Cawley, H. J. Escalante, S. Escalera, Tin Kam Ho, N. Macià,
B. Ray, M. Saeed, A. Statnikov, and E. Viegas. Design of the 2015 ChaLearn AutoML
challenge. In 2015 International Joint Conference on Neural Networks (IJCNN’15), pages
1–8. IEEE Computer Society Press, 2015.

I. Guyon, U. von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors. Proceedings of the 30th International Conference on Advances in Neural
Information Processing Systems (NeurIPS’17), 2017. Curran Associates.

I. Guyon, L. Sun-Hosoya, M. Boullé, H. Escalante, S. Escalera, Z. Liu, D. Jajetic, B. Ray,
M. Saeed, M. Sebag, A. Statnikov, W. Tu, and E. Viegas. Analysis of the AutoML
Challenge Series 2015-2018. In Hutter et al. (2019), chapter 10, pages 177–219. Available
for free at http://automl.org/book.

H2O.ai. H2O: Scalable Machine Learning Platform, 2020. URL https://github.com/

h2oai/h2o-3. version 3.30.0.6.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Witten. The WEKA
data mining software: An update. SIGKDD Explorations, 11(1):10–18, 2009.

C. Harris, K. Millman, S. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau,
E. Wieser, J. Taylor, S. Berg, N. Smith, R. Kern, M. Picus, S. Hoyer, M. van Kerk-
wijk, M. Brett, A. Haldane, J. del Ŕıo, M. Wiebe, P. Peterson, P. Gérard-Marchant,
K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. Oliphant. Array
programming with numpy. Nature, 585(7825):357–362, 2020.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer,
2001.

Y. Heffetz, R. Vainshtein, G. Katz, and L. Rokach. DeepLine: AutoML Tool for Pipelines
Generation using Deep Reinforcement Learning and Hierarchical Actions Filtering. In
Tang and Prakash (2020), pages 2103–2113.

54

auto-sklearn 2 .0 : hands-free automl via meta-learning 151

Auto-sklearn 2.0

R. Henery. Methods for comparison. In Machine Learning, Neural and Statistical Classifi-
cation, chapter 7, pages 107–124. Ellis Horwood, 1994.

B. Huberman, R. Lukose, and T. Hogg. An economic approach to hard computational
problems. Science, 275:51–54, 1997.

J. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering,
9(3):90–95, 2007.

F. Hutter, H. Hoos, K. Leyton-Brown, and T. Stützle. ParamILS: An automatic algorithm
configuration framework. Journal of Artificial Intelligence Research, 36:267–306, 2009.

F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for gen-
eral algorithm configuration. In C. Coello, editor, Proceedings of the Fifth International
Conference on Learning and Intelligent Optimization (LION’11), volume 6683 of Lecture
Notes in Computer Science, pages 507–523. Springer, 2011.

F. Hutter, L. Kotthoff, and J. Vanschoren, editors. Automated Machine Learning: Methods,
Systems, Challenges. Springer, 2019. Available for free at http://automl.org/book.

K. Jamieson and A. Talwalkar. Non-stochastic best arm identification and Hyperparameter
Optimization. In A. Gretton and C. Robert, editors, Proceedings of the Seventeenth Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS’16), volume 51.
Proceedings of Machine Learning Research, 2016.

H. Jin, Q. Song, and X. Hu. Auto-Keras: An efficient neural architecture search system. In
Teredesai et al. (2019), pages 1946–1956.

A. Kalousis and M. Hilario. Representational Issues in Meta-Learning. In T. Fawcett and
N. Mishra, editors, Proceedings of the 20th International Conference on Machine Learning
(ICML’03), pages 313–320. Omnipress, 2003.

K. Kandasamy, G. Dasarathy, J. Schneider, and B. Póczos. Multi-fidelity Bayesian Optimi-
sation with Continuous Approximations. In D. Precup and Y. Teh, editors, Proceedings
of the 34th International Conference on Machine Learning (ICML’17), volume 70, pages
1799–1808. Proceedings of Machine Learning Research, 2017.

Z. Karnin, T. Koren, and O. Somekh. Almost optimal exploration in multi-armed bandits.
In Dasgupta and McAllester (2013), pages 1238–1246.

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu. Lightgbm:
A highly efficient gradient boosting decision tree. In Guyon et al. (2017).

P. Kerschke, H. Hoos, F. Neumann, and H. Trautmann. Automated algorithm selection:
Survey and perspectives. Evolutionary Computation, 27(1):3–45, 2019.

A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter. Fast Bayesian optimization of
machine learning hyperparameters on large datasets. In A. Singh and J. Zhu, editors,
Proceedings of the Seventeenth International Conference on Artificial Intelligence and
Statistics (AISTATS’17), volume 54. Proceedings of Machine Learning Research, 2017a.

55

152 auto-sklearn 2 .0 : hands-free automl via meta-learning

Feurer, Eggensperger, Falkner, Lindauer and Hutter

A. Klein, S. Falkner, J. Springenberg, and F. Hutter. Learning curve prediction with
Bayesian neural networks. In Proceedings of the International Conference on Learning
Representations (ICLR’17), 2017b. Published online: iclr.cc.

R. Kleinberg, K. Leyton-Brown, and B. Lucier. Efficiency through procrastination: Ap-
proximately optimal algorithm configuration with runtime guarantees. In C. Sierra, ed-
itor, Proceedings of the 26th International Joint Conference on Artificial Intelligence
(IJCAI’17), pages 2023–2031, 2017.

R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model
selection. In C. Mellish, editor, Proceedings of the 14th International Joint Conference on
Artificial Intelligence (IJCAI’95), pages 1137–1143. Morgan Kaufmann Publishers, 1995.

R. Kohavi and G. John. Automatic Parameter Selection by Minimizing Estimated Error. In
A. Prieditis and S. Russell, editors, Proceedings of the Twelfth International Conference
on Machine Learning (ICML’95), pages 304–312. Morgan Kaufmann Publishers, 1995.

B. Komer, J. Bergstra, and C. Eliasmith. Hyperopt-sklearn: Automatic hyperparame-
ter configuration for scikit-learn. In F. Hutter, R. Caruana, R. Bardenet, M. Bilenko,
I. Guyon, B. Kégl, and H. Larochelle, editors, ICML workshop on Automated Machine
Learning (AutoML workshop 2014), 2014.

L. Kotthoff. Algorithm selection for combinatorial search problems: A survey. AI Magazine,
35(3):48–60, 2014.

L. Kotthoff, C. Thornton, H. Hoos, F. Hutter, and K. Leyton-Brown. Auto-WEKA: au-
tomatic model selection and hyperparameter optimization in WEKA. In Hutter et al.
(2019), chapter 4, pages 81–95. Available for free at http://automl.org/book.

J. Krarup and P. Pruzan. The simple plant location problem: Survey and synthesis. Euro-
pean Journal of Operations Research, 12:36–81, 1983.

A. Krause and D. Golovin. Submodular function maximization. In L. Bordeaux, Y. Hamadi,
and P. Kohli, editors, Tractability: Practical Approaches to Hard Problems, pages 71–104.
Cambridge University Press, 2014.

A. Krause, J. Leskovec, C. Guestrin, J. VanBriesen, and C. Faloutsos. Efficient sensor
placement optimization for securing large water distribution networks. Journal of Water
Resources Planning and Management, 134:516–526, 2008.

B. Krishnapuram, M. Shah, A. Smola, C. Aggarwal, D. Shen, and R. Rastogi, editors.
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD’16), 2016. ACM Press.

G. Kurtzer, V. Sochat, and M. Bauer. Singularity: Scientific containers for mobility of
compute. PloS one, 12(5), 2017.

E. LeDell and S. Poirier. H2O AutoML: Scalable automatic machine learning. In
K. Eggensperger, M. Feurer, C. Weill, M.Lindauer, F. Hutter, and J. Vanschoren, ed-
itors, ICML workshop on Automated Machine Learning (AutoML workshop 2020), 2020.

56

auto-sklearn 2 .0 : hands-free automl via meta-learning 153

Auto-sklearn 2.0

R. Leite, P. Brazdil, and J. Vanschoren. Selecting classification algorithms with active
testing. In P. Perner, editor, Machine Learning and Data Mining in Pattern Recognition,
volume 7376 of Lecture Notes in Computer Science, pages 117–131. Springer, 2012.

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: A novel
bandit-based approach to Hyperparameter Optimization. Journal of Machine Learning
Research, 18(185):1–52, 2018.

M. Lindauer, H. Hoos, F. Hutter, and T. Schaub. Autofolio: An automatically configured
algorithm selector. Journal of Artificial Intelligence Research, 53:745–778, 2015.

M. Lindauer, H. Hoos, K. Leyton-Brown, and T. Schaub. Automatic construction of parallel
portfolios via algorithm configuration. Artificial Intelligence, 244:272–290, 2017.

M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng, C. Benjamins,
T. Ruhkopf, R. Sass, and F. Hutter. SMAC3: A versatile bayesian optimization pack-
age for Hyperparameter Optimization. Journal of Machine Learning Research (JMLR)
– MLOSS, 23(54):1–9, 2022.

S. Liu, P. Ram, D. Vijaykeerthy, D. Bouneffouf, G. Bramble, H. Samulowitz, D. Wang,
A. Conn, and A. Gray. An ADMM based framework for automl pipeline configuration.
In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI’20), volume 34,
pages 4892–4899, 2020.

Y. Malitsky, A. Sabharwal, H. Samulowitz, and M. Sellmann. Parallel SAT solver selection
and scheduling. In M. Milano, editor, Proceedings of the Eighteenth International Con-
ference on Principles and Practice of Constraint Programming (CP’12), volume 7514 of
Lecture Notes in Computer Science, pages 512–526. Springer, 2012.

H. Mendoza, A. Klein, M. Feurer, J. Springenberg, and F. Hutter. Towards automatically-
tuned neural networks. In F. Hutter, L. Kotthoff, and J. Vanschoren, editors, ICML
workshop on Automated Machine Learning (AutoML workshop 2016), volume 64. PMLR,
2016.

H. Mendoza, A. Klein, M. Feurer, J. Springenberg, M. Urban, M. Burkart, M. Dippel,
M. Lindauer, and F. Hutter. Towards automatically-tuned deep neural networks. In Hut-
ter et al. (2019), chapter 7, pages 135–149. Available for free at http://automl.org/book.

D. Merkel. Docker: lightweight linux containers for consistent development and deployment.
Linux journal, 2014(239), 2014.

L. Metz, N. Maheswaranathan, C. Freeman, B. Poole, and J. Sohl-Dickstein. Tasks, stability,
architecture, and compute: Training more effective learned optimizers, and using them
to train themselves. arXiv:2009.11243[cs.LG], 2020.

F. Mohr, M. Wever, and E. Hüllermeier. ML-Plan: Automated machine learning via hier-
archical planning. Machine Learning, 107(8-10):1495–1515, 2018.

57

154 auto-sklearn 2 .0 : hands-free automl via meta-learning

Feurer, Eggensperger, Falkner, Lindauer and Hutter

H. Moss, D. Leslie, and P. Rayson. MUMBO: Multi-task max-value Bayesian optimiza-
tion. In F. Hutter, K. Kersting, J. Lijffijt, and I. Valera, editors, Machine Learning
and Knowledge Discovery in Databases (ECML/PKDD’20), Lecture Notes in Computer
Science. Springer, 2020.

G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of approximations for maximizing
submodular set functions. Mathematical Programming, 14(1):265–294, 1978.

A. Niculescu-Mizil, C. Perlich, G. Swirszcz, V. Sindhwani, Y. Liu, P. Melville, D. Wang,
J. Xiao, J. Hu, M. Singh, W. Shang, and Y. Zhu. Winning the KDD cup orange challenge
with ensemble selection. In G. Dror, M. Boullé, I. Guyon, V. Lemaire, and D. Vogel,
editors, Proceedings of KDD-Cup 2009 Competition, volume 7, pages 23–34, 2009.

R. Olson and J. Moore. TPOT: A tree-based pipeline optimization tool for automat-
ing machine learning. In Hutter et al. (2019), pages 151–160. Available for free at
http://automl.org/book.

R. Olson, N. Bartley, R. Urbanowicz, and J. Moore. Evaluation of a Tree-based Pipeline
Optimization Tool for Automating Data Science. In T. Friedrich, editor, Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO’16), pages 485–492.
ACM, 2016a.

R. Olson, R. Urbanowicz, P. Andrews, N. Lavender, L. Kidd, and J. Moore. Automat-
ing biomedical data science through tree-based pipeline optimization. In G. Squillero
and P. Burelli, editors, Proceedings of the 19th European Conference on Applications of
Evolutionary Computation (EvoApplications’16), pages 123–137. Springer, 2016b.

L. Parmentier, O. Nicol, L. Jourdan, and M. Kessaci. TPOT-SH: A faster optimization
algorithm to solve the automl problem on large datasets. In IEEE 31st International
Conference on Tools with Artificial Intelligence (ICTAI’19), pages 471–478, 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

F. Pfisterer, J. van Rijn, P. Probst, A. Müller, and B. Bischl. Learning multiple defaults
for machine learning algorithms. arXiv:1811.09409 [stat.ML] , 2018.

M. Poloczek, J. Wang, and P. Frazier. Multi-Information Source Optimization. In Guyon
et al. (2017), pages 4288–4298.

H. Rakotoarison, M. Schoenauer, and M. Sebag. Automated machine learning with Monte-
Carlo tree search. In S. Kraus, editor, Proceedings of the 28th International Joint Con-
ference on Artificial Intelligence (IJCAI’19), pages 3296–3303, 2019.

S. Ramage. Advances in meta-algorithmic software libraries for distributed automated
algorithm configuration. PhD thesis, University of British Columbia, 2015. URL
https://open.library.ubc.ca/collections/ubctheses/24/items/1.0167184.

58

auto-sklearn 2 .0 : hands-free automl via meta-learning 155

Auto-sklearn 2.0

S. Raschka. Model evaluation, model selection, and algorithm selection in machine learning.
arXiv:1811.12808 [stat.ML], 2018.

J. Reback, jbrockmendel, W. McKinney, J. Van den Bossche, T. Augspurger, P. Cloud,
S. Hawkins, gfyoung, Sinhrks, M. Roeschke, and et al. pandas-dev/pandas: Pandas 1.2.5,
2021.

M. Reif, F. Shafait, and A. Dengel. Meta-learning for evolutionary parameter optimization
of classifiers. Machine Learning, 87:357–380, 2012.

J. Reunanen. Model selection and assessment using cross-indexing. In 2007 International
Joint Conference on Neural Networks (IJCNN’07) ijc (2007), pages 2581–2585.

J. Seipp, S. Sievers, M. Helmert, and F. Hutter. Automatic configuration of sequential
planning portfolios. In Bonet and Koenig (2015).

K. Smith-Miles. Cross-disciplinary perspectives on meta-learning for algorithm selection.
ACM Computing Surveys, 41(1), 2008.

C. Soares and P. Brazdil. Zoomed ranking: Selection of classification algorithms based on
relevant performance information. In D. Zighed, J. Komorowski, and J. Żytkow, editors,
Principles of Data Mining and Knowledge Discovery, volume 1910 of Lecture Notes in
Computer Science, pages 126–135. Springer, 2000.

Q. Sun, B. Pfahringer, and M. Mayo. Towards a Framework for Designing Full Model
Selection and Optimization Systems. In Multiple Classifier Systems, volume 7872, pages
259–270. Springer, 2013.

K. Swersky, J. Snoek, and R. Adams. Multi-task Bayesian optimization. In C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, editors, Proceedings of the
26th International Conference on Advances in Neural Information Processing Systems
(NeurIPS’13), pages 2004–2012. Curran Associates, 2013.

K. Swersky, J. Snoek, and R. Adams. Freeze-thaw Bayesian optimization. arXiv:1406.3896
[stats.ML], 2014.

S. Takeno, H. Fukuoka, Y. Tsukada, T. Koyama, M. Shiga, I. Takeuchi, and M. Kara-
suyama. Multi-fidelity Bayesian optimization with max-value entropy search and its par-
allelization. In H. Daume III and A. Singh, editors, Proceedings of the 37th International
Conference on Machine Learning (ICML’20), volume 98, pages 9334–9345. Proceedings
of Machine Learning Research, 2020.

J. Tang and B. Prakash, editors. Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’20), 2020. ACM Press.

A. Teredesai, V. Kumar, Y. Li, R. Rosales, E. Terzi, and G. Karypis, editors. Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining (KDD’19), 2019. ACM Press.

59

156 auto-sklearn 2 .0 : hands-free automl via meta-learning

Feurer, Eggensperger, Falkner, Lindauer and Hutter

C. Thornton, F. Hutter, H. Hoos, and K. Leyton-Brown. Auto-WEKA: combined selection
and Hyperparameter Optimization of classification algorithms. In I. Dhillon, Y. Koren,
R. Ghani, T. Senator, P. Bradley, R. Parekh, J. He, R. Grossman, and R. Uthurusamy,
editors, The 19th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD’13), pages 847–855. ACM Press, 2013.

A. Tornede, M. Wever, and E. Hüllermeier. Extreme algorithm selection with dyadic feature
representation. In A. Appice, G. Tsoumakas, Y. Manolopoulos, and S. Matwin, editors,
Discovery Science (DS), volume 12323 of Lecture Notes in Computer Science, pages 309–
324. Springer, 2020.

I. Tsamardinos, E. Greasidou, and G. Borboudakis. Bootstrapping the out-of-sample pre-
dictions for efficient and accurate cross-validation. Machine Learning, 107(12):1895–1922,
2018.

J. Vanschoren. Meta-learning. In Hutter et al. (2019), pages 35–61. Available for free at
http://automl.org/book.

J. Vanschoren, J. van Rijn, B. Bischl, and L. Torgo. OpenML: Networked science in machine
learning. SIGKDD Explorations, 15(2):49–60, 2014.

V. Vapnik. Principles of risk minimization for learning theory. In J. Moody, S. Hanson,
and R. Lippmann, editors, Proceedings of the 4th International Conference on Advances
in Neural Information Processing Systems (NeurIPS’91). Morgan Kaufmann Publishers,
1991.

P. Virtanen, R. Gommers, T. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. van der Walt, M. Brett, J. Wil-
son, K. Millman, N. Mayorov, A. Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ.
Polat, Y. Feng, E. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Hen-
riksen, E. Quintero, C. Harris, A. Archibald, A. Ribeiro, F. Pedregosa, P. van Mulbregt,
A. Vijaykumar, Alessandro P. Bardelli, A. Rothberg, A. Hilboll, A. Kloeckner, A. Sco-
patz, A. Lee, A. Rokem, C. Woods, C. Fulton, C. Masson, C. Häggström, C. Fitzger-
ald, D. Nicholson, D. Hagen, D. Pasechnik, E. Olivetti, E Martin, E. Wieser, F. Silva,
F. Lenders, F. Wilhelm, G. Young, G. Price, G.-L. Ingold, G. Allen, G. Lee, H. Audren,
I. Probst, J. Dietrich, J. Silterra, J. Webber, J. Slavič, J. Nothman, J. Buchner, J. Kulick,
J. Schönberger, J. de Miranda Cardoso, J. Reimer, J. Harrington, J. Rodŕıguez, J. Nunez-
Iglesias, J. Kuczynski, K. Tritz, M. Thoma, M. Newville, M. Kümmerer, M. Bolingbroke,
M. Tartre, M. Pak, N. Smith, N. Nowaczyk, N. Shebanov, O. Pavlyk, P. Brodtkorb,
P. Lee, R. McGibbon, R. Feldbauer, S. Lewis, S. Tygier, S. Sievert, S. Vigna, S. Peter-
son, S. More, T. Pudlik, T. Oshima, T. Pingel, T. Robitaille, T. Spura, T. Jones, T. Cera,
T. Leslie, T. Zito, T. Krauss, U. Upadhyay, Y. Halchenko, Y. Vázquez-Baeza, and SciPy
1.0 Contributors. SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nature Methods, 17(3):261–272, 2020.

C. Wang, Q. Wu, M. Weimer, and E. Zhu. Flaml: A fast and lightweight automl library.
In A. Smola, A. Dimakis, and I. Stoica, editors, Proceedings of Machine Learning and
Systems, volume 3, pages 434–447, 2021.

60

auto-sklearn 2 .0 : hands-free automl via meta-learning 157

Auto-sklearn 2.0

Wes McKinney. Data Structures for Statistical Computing in Python. In Stéfan van der
Walt and Jarrod Millman, editors, Proceedings of the 9th Python in Science Conference,
pages 56 – 61, 2010.

F. Winkelmolen, N. Ivkin, H. Bozkurt, and Z. Karnin. Practical and sample efficient zero-
shot HPO. arXiv:2007.13382 [stat.ML], 2020.

M. Wistuba, N. Schilling, and L. Schmidt-Thieme. Learning Hyperparameter Optimiza-
tion initializations. In Proceedings of the International Conference on Data Science and
Advanced Analytics (DSAA), pages 1–10. IEEE, 2015a.

M. Wistuba, N. Schilling, and L. Schmidt-Thieme. Sequential Model-Free Hyperparameter
Tuning. In ICDM ’15: Proceedings of the 2015 IEEE International Conference on Data
Mining (ICDM), pages 1033–1038. IEEE Computer Society Press, 2015b.

M. Wistuba, N. Schilling, and L. Schmidt-Thieme. Automatic Frankensteining: Creating
Complex Ensembles Autonomously. In N. Chawla and W. Wang, editors, Proceedings
of the 2017 SIAM International Conference on Data Mining (SDM’17), pages 741–749.
Society for Industrial and Applied Mathematics, 2017.

M. Wistuba, N. Schilling, and L. Schmidt-Thieme. Scalable Gaussian process-based transfer
surrogates for Hyperparameter Optimization. Machine Learning, 107(1):43–78, 2018.

D. Wolpert. Stacked generalization. Neural Networks, 5(2):241–259, 1992.

J. Wu, S. Toscano-Palmerin, P. Frazier, and A. Wilson. Practical multi-fidelity Bayesian
optimization for hyperparameter tuning. In J. Peters and D. Sontag, editors, Proceedings
of The 36th Uncertainty in Artificial Intelligence Conference (UAI’20), pages 788–798.
PMLR, 2020.

L. Xu, H. Hoos, and K. Leyton-Brown. Hydra: Automatically configuring algorithms for
portfolio-based selection. In M. Fox and D. Poole, editors, Proceedings of the Twenty-
fourth National Conference on Artificial Intelligence (AAAI’10), pages 210–216. AAAI
Press, 2010.

L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown. Hydra-MIP: Automated algorithm
configuration and selection for mixed integer programming. In Proceedings of the RCRA
workshop at IJCAI 2011, 2011.

C. Yang, J. Akimoto, D. Kim, and M. Udell. OBOE: Collaborative filtering for AutoML
model selection. In Teredesai et al. (2019), pages 1173–1183.

C. Yang, J. Fan, Z. Wu, and M. Udell. AutoML pipeline selection: Efficiently navigating
the combinatorial space. In Tang and Prakash (2020), pages 1446–1456.

Y. Zhang, M. Bahadori, H. Su, and J. Sun. FLASH: Fast Bayesian Optimization for Data
Analytic Pipelines. In Krishnapuram et al. (2016), pages 2065–2074.

L. Zimmer, M. Lindauer, and F. Hutter. Auto-Pytorch: Multi-fidelity metalearning for
efficient and robust AutoDL. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 43(9):1–1, 2021.

61

158 auto-sklearn 2 .0 : hands-free automl via meta-learning

Part IV

P U B L I C AT I O N S O N B E N C H M A R K I N G A N D T H E
O P E N M L P L AT F O R M

7
O P E N M L - P Y T H O N : A N E X T E N S I B L E P Y T H O N A P I
F O R O P E N M L

Matthias Feurer, Jan N. van Rijn, Arlind Kadra, Pieter Gijsbers, Neer-
atyoy Mallik, Sahithya Ravi, Andreas Müller, Joaquin Vanschoren,
and Frank Hutter (2021). “OpenML-Python: an extensible Python
API for OpenML.” In: Journal of Machine Learning Research 22.100.
Ed. by Balazs Kegl, pp. 1–5.

paper summary. This paper describes the OpenML-Python pack-
age. OpenML-Python is a Python API to the popular OpenML.org plat-
form and also the backbone to many studies in the field of AutoML
and meta-learning. The paper discusses the API design, the API’s
extensibility, and also how the API was used in previous publications.

project idea . This project was initiated by Matthias Feurer based
on experiences during his Master’s thesis. Over time, the project
was extended and improved based on the ideas from all authors,
community involvement on github.com, and discussions with the
OpenML community at OpenML workshops.

implementation. Matthias Feurer provided the first implemen-
tation. He then extended and maintained the project during his time
as a PhD student. Matthias Feurer was the main contributor, and
further implementations were mostly conducted by Jan N. van Rijn,
Andreas Müller, Neeratyoy Mallik, Pieter Gijsbers, Sahithya Ravi,
Joaquin Vanschoren, and Arlind Kadra. Detailed contribution statis-
tics and the exact contribution of each author can be obtained on
github.com/openml/openml-python.

paper writing . Matthias Feurer wrote the first paper draft. Jan
N. van Rijn, Pieter Gijsbers, Joaquin Vanschoren, Frank Hutter and
Matthias Feurer prepared the final version. All co-authors provided
valuable feedback.

license . This chapter was published by the Journal of Machine
Learning Research and is licensed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.
org/licenses/by/4.0/). No changes were made to the original publi-
cation.

161

OpenML.org
github.com/openml/openml-python
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Journal of Machine Learning Research 22 (2021) 1-5 Submitted 11/19; Published 5/21

OpenML-Python: an extensible Python API for OpenML

Matthias Feurer feurerm@cs.uni-freiburg.de
University of Freiburg, Freiburg, Germany

Jan N. van Rijn j.n.van.rijn@liacs.leidenuniv.nl
Leiden University, Leiden, Netherlands

Arlind Kadra kadraa@cs.uni-freiburg.de
University of Freiburg, Freiburg, Germany

Pieter Gijsbers p.gijsbers@tue.nl
Eindhoven University of Technology, Eindhoven, Netherlands

Neeratyoy Mallik mallik@cs.uni-freiburg.de
University of Freiburg, Freiburg, Germany

Sahithya Ravi s.ravi@tue.nl
Eindhoven University of Technology, Eindhoven, Netherlands

Andreas Müller andreas.mueller.ml@gmail.com
Microsoft, Sunnyvale, USA

Joaquin Vanschoren j.vanschoren@tue.nl
Eindhoven University of Technology, Eindhoven, Netherlands

Frank Hutter fh@cs.uni-freiburg.de

University of Freiburg & Bosch Center for Artificial Intelligence, Freiburg, Germany

Editor: Balazs Kegl

Abstract

OpenML is an online platform for open science collaboration in machine learning, used to
share datasets and results of machine learning experiments. In this paper, we introduce
OpenML-Python, a client API for Python, which opens up the OpenML platform for a
wide range of Python-based machine learning tools. It provides easy access to all datasets,
tasks and experiments on OpenML from within Python. It also provides functionality
to conduct machine learning experiments, upload the results to OpenML, and reproduce
results which are stored on OpenML. Furthermore, it comes with a scikit-learn extension
and an extension mechanism to easily integrate other machine learning libraries written
in Python into the OpenML ecosystem. Source code and documentation are available at
https://github.com/openml/openml-python/.

Keywords: Python, Collaborative Science, Meta-Learning, Reproducible Research

1. Introduction

OpenML is a collaborative online machine learning (ML) platform, meant for sharing and
building on prior empirical machine learning research (Vanschoren et al., 2014).

It goes beyond open data repositories, such as UCI (Dua and Graff, 2019), PMLB (Ol-
son et al., 2017), the ‘datasets’ submodules in scikit-learn and tensorflow (Pedregosa et al.,

c©2021 Matthias Feurer, Jan N. van Rijn, Arlind Kadra, Pieter Gijsbers, Neeratyoy Mallik, Sahithya Ravi, Andreas
Müller, Joaquin Vanschoren and Frank Hutter.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v22/19-920.html.

openml-python : an extensible python api for openml 163

Feurer et al.

2011; Abadi et al., 2016), and the closed-source data sharing platform at Kaggle.com, since
OpenML also collects millions of shared experiments on these datasets, linked to the ex-
act ML pipelines and hyperparameter settings, and includes comprehensive logging and
uploading functionalities which can be accessed programmatically via a REST API. An
introduction and detailed information can be found on https://docs.openml.org.

OpenML-Python is a seamless integration of OpenML into the popular Python ML
ecosystem,1 that takes away this complexity by providing easy programmatic access to all
OpenML data and by automating the sharing of new experiments.2 In this paper, we
introduce OpenML-Python’s core design, showcase its extensibility to new ML libraries,
and give code examples for several common research tasks.

2. Use cases for the OpenML-Python API

OpenML-Python allows for easy dataset and experiment sharing and reuse by handling all
communication with OpenML’s REST API. In this section, we briefly describe how the
package can be used in several common machine learning tasks and highlight recent uses.

Working with datasets. OpenML-Python can retrieve the thousands of datasets on
OpenML (all of them, or specific subsets) in a unified format, retrieve meta-data describing
them, and search through them with filters. Datasets are converted from OpenML’s internal
format into numpy, scipy or pandas data structures, which are standard for ML in Python.
To facilitate contributions from the community, it allows people to upload new datasets
in only two function calls, and to define new tasks on them (combinations of a dataset,
train/test split and target attribute).

Publishing and retrieving results. Sharing empirical results allows anyone to search
and download them in order to reproduce and reuse them in their own research. One
goal of OpenML is to simplify the comparison of new algorithms and implementations to
existing approaches by comparing to the results on OpenML. To this end we also provide an
interface for integrating new machine learning libraries with OpenML and we have already
integrated scikit-learn. OpenML-Python can then be used to set up and conduct machine
learning experiments for a given task and flow (an ML pipeline), and publish reproducible
results (including hyperparameter settings and random states).

Use cases in published works. OpenML-Python has already been used to scale up
studies with hundreds of consistently formatted datasets (Feurer et al., 2015; Fusi et al.,
2018), supply large amounts of meta-data for meta-learning (Perrone et al., 2018), answer
questions about algorithms such as hyperparameter importance (van Rijn and Hutter, 2018)
and facilitate large-scale comparisons of algorithms (Strang et al., 2018).

3. High-level Design of OpenML-Python

The OpenML platform is organized around several entity types which describe different
aspects of a machine learning study. It hosts datasets, tasks that define how models should
be evaluated on them, flows that record the structure and other details of ML pipelines, and

1. https://github.blog/2019-01-24-the-state-of-the-octoverse-machine-learning/
2. Other clients already exist for R (Casalicchio et al., 2017) and Java (van Rijn, 2016).

2

164 openml-python : an extensible python api for openml

OpenML-Python: an extensible Python API for OpenML

1 import openml; import numpy as np
2 import matplotlib.pyplot as plt
3 df = openml.evaluations.list evaluations setups(
4 ’predictive accuracy’, flows=[8353], tasks=[6],
5 output format=’dataframe’, parameters in separate columns=True,
6) # Choose an SVM flow (e.g. 8353), and the dataset ’letter’ (task 6).
7 hp names = [’sklearn.svm.classes.SVC(16) C’,’sklearn.svm.classes.SVC(16) gamma’]
8 df[hp names] = df[hp names].astype(float).apply(np.log)
9 C, gamma, score = df[hp names[0]], df[hp names[1]], df[’value’]

10 cntr = plt.tricontourf(C, gamma, score, levels=12, cmap=’RdBu r’)
11 plt.colorbar(cntr, label=’accuracy’)
12 plt.xlim((min(C), max(C))); plt.ylim((min(gamma), max(gamma)))
13 plt.xlabel(’C (log10)’, size=16); plt.ylabel(’gamma (log10)’, size=16)
14 plt.title(’SVM performance landscape’, size=20)

Figure 1: Code for retrieving the predictive accuracy of an SVM classifier on the ‘letter’
dataset and creating a contour plot with the results.

runs that record the experiments evaluating specific flows on certain tasks. For instance,
an experiment (run) shared on OpenML can show how a random forest (flow) performs
on ‘Iris’ (dataset) if evaluated with 10-fold cross-validation (task), and how to reproduce
that result. In OpenML-Python, all these entities are represented by classes, each defined
in their own submodule. This implements a natural mapping from OpenML concepts to
Python objects. While OpenML is an online platform, we facilitate offline usage as well.

Extensions. To allow users to automatically run and share machine learning experiments
with different libraries through the same OpenML-Python interface, we designed an exten-
sion interface that standardizes the interaction between machine learning library code and
OpenML-Python. We also created an extension for scikit-learn (Pedregosa et al., 2011), as
it is one of the most popular Python machine learning libraries. This extension can be used
for any library which follows the scikit-learn API (Buitinck et al., 2013).

An extension’s responsibility is to convert between the libraries’ models and OpenML
flows, interact with its training interface and format predictions. For example, the scikit-
learn extension can convert an OpenMLFlow to an Estimator (including hyperparameter
settings), train models and produce predictions for a task, and create an OpenMLRun ob-
ject to upload the predictions to the OpenML server. The extension also handles advanced
procedures, such as scikit-learn’s random search or grid search and uploading its traces
(hyperparameters and scores of each model evaluated
during search). We are working on more extensions, and
anyone can contribute their own using the scikit-learn
extension implementation as a reference.

2 0 2 4 6 8 10
C (log10)

10

8

6

4

2

0

2

ga
m

m
a

(lo
g1

0)

SVM performance landscape

0.00

0.16

0.32

0.48

0.64

0.80

0.96

ac
cu

ra
cy

SVM hyperparameter contour plot
generated by the code in Figure 1.

4. Examples

We show two example uses of OpenML-Python to
demonstrate its API’s simplicity. First, we show how
to retrieve results and evaluations from the OpenML
server in Figure 1 (generating the plot on the right).

3

openml-python : an extensible python api for openml 165

Feurer et al.

1 from openml import study, tasks, runs, extensions
2 from sklearn import compose, impute, pipeline, preprocessing , tree
3 cont, cat = extensions.sklearn.cont, extensions.sklearn.cat # feature types
4 clf = pipeline.make pipeline(compose.make column transformer(
5 (impute.SimpleImputer(), cont),
6 (preprocessing.OneHotEncoder(handle unknown=’ignore’), cat)),
7 tree.DecisionTreeClassifier()) # build a classification pipeline
8 benchmark suite = study.get suite(’OpenML−CC18’) # task collection
9 for task id in benchmark suite.tasks: # iterate over all tasks

10 task = tasks.get task(task id) # download the OpenML task
11 run = runs.run model on task(clf, task) # run classifier on splits
12 # run.publish() # upload the run to the server; optional, requires API key

Figure 2: Training and evaluating a classification pipeline from scikit-learn on each task of
the OpenML-CC18 benchmark suite (Bischl et al., 2019).

Second, in Figure 2 we show how to conduct experiments on a benchmark suite (Bischl et al.,
2019). Further examples, including how to create datasets and tasks and how OpenML-
Python was used in previous publications, can be found in the online documentation.3

5. Project development

The project has been set up for development through community effort from different re-
search groups, and has received contributions from numerous individuals. The package is
developed publicly through Github which also provides an issue tracker for bug reports,
feature requests and usage questions. To ensure a coherent and robust code base we use
continuous integration for Windows and Linux as well as automated type and style check-
ing. Documentation is also rendered on continuous integration servers and consists of a mix
of tutorials, examples and API documentation.

For ease of use and stability, we use well-known and established 3rd-party packages where
needed. For instance, we build documentation using the popular sphinx Python documen-
tation generator,4 use an extension to automatically compile examples into documentation
and Jupyter notebooks,5 and employ standard open-source packages for scientific computing
such as numpy (Harris et al., 2020), scipy (Virtanen et al., 2020), and pandas (McKinney,
2010). The package is written in Python3 and open-sourced with a 3-Clause BSD License.3

6. Conclusion

OpenML-Python allows easy interaction with OpenML from within Python. It makes it easy
for people to share and reuse the data, meta-data, and empirical results which are generated
as part of an ML study. This allows for better reproducibility, simpler benchmarking and
easier collaboration on ML projects. Our software is shipped with a scikit-learn extension
and has an extension mechanism to easily integrate other ML libraries written in Python.

3. We provide documentation, a list of extensions and code examples on http://openml.github.io/
openml-python and host the project on http://github.com/openml/openml-python.

4. http://www.sphinx-doc.org 5https://sphinx-gallery.github.io/

4

166 openml-python : an extensible python api for openml

OpenML-Python: an extensible Python API for OpenML

Acknowledgments

MF, NM and FH acknowledge funding by the Robert Bosch GmbH. AK, JvR and FH ac-
knowledge funding by the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme under grant no. 716721. JV and PG acknowledge fund-
ing by the Data Driven Discovery of Models (D3M) program run by DARPA and the Air Force
Research Laboratory. The authors also thank Bilge Celik, Victor Gal and everyone listed at
https://github.com/openml/openml-python/graphs/contributors for their contributions.

References

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, et al. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed Systems. In Proc. of OSDI’16, 2016.

B. Bischl, G. Casalicchio, M. Feurer, F. Hutter, M. Lang, R. G. Mantovani, J. N. van Rijn, and
J. Vanschoren. OpenML Benchmarking Suites. arXiv:1708.03731v2 [cs.LG], 2019.

L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Müller, O. Grisel, V. Niculae, P. Prettenhofer,
A. Gramfort, J. Grobler, et al. API design for machine learning software: experiences from the
scikit-learn project. In ECML PKDD LML Workshop, 2013.

G. Casalicchio, J. Bossek, M. Lang, D. Kirchhoff, P. Kerschke, B. Hofner, H. Seibold, J. Vanschoren,
and B. Bischl. OpenML: An R package to connect to the machine learning platform OpenML.
Computational Statistics, 32(3), 2017.

D. Dua and C. Graff. UCI machine learning repository, 2019. URL http://archive.ics.uci.edu/ml.

M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum, and F. Hutter. Efficient and
Robust Automated Machine Learning. In Proc. of NeurIPS’15, 2015.

N. Fusi, R. Sheth, and M. Elibol. Probabilistic Matrix Factorization for Automated Machine Learn-
ing. In Proc. of NeurIPS’18. 2018.

C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser,
J. Taylor, S. Berg, N. J. Smith, et al. Array programming with NumPy. Nature, 585, 2020.

W. McKinney. Data Structures for Statistical Computing in Python. In Proc. of SciPy, 2010.

R. S. Olson, W. La Cava, P. Orzechowski, R. J. Urbanowicz, and J. H. Moore. PMLB: a large
benchmark suite for machine learning evaluation and comparison. BioData Mining, 10(36), 2017.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, et al. Scikit-learn: Machine Learning in Python. JMLR, 12, 2011.

V. Perrone, R. Jenatton, M. Seeger, and C. Archambeau. Scalable Hyperparameter Transfer Learn-
ing. In Proc. of NeurIPS’18. 2018.

B. Strang, P. van der Putten, J. N. van Rijn, and F. Hutter. Don’t Rule Out Simple Models
Prematurely: A Large Scale Benchmark Comparing Linear and Non-linear Classifiers in OpenML.
In Proc. of IDA XVII, 2018.

J. N. van Rijn. Massively Collaborative Machine Learning. PhD thesis, Leiden University, 2016.

J. N. van Rijn and F. Hutter. Hyperparameter Importance Across Datasets. In Proc. of KDD’18,
2018.

J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo. OpenML: Networked science in machine
learning. SIGKDD, 15(2):49–60, 2014.

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, et al. SciPy
1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17, 2020.

5

openml-python : an extensible python api for openml 167

8
O P E N M L B E N C H M A R K I N G S U I T E S

Bischl, Bernd, Giuseppe Casalicchio, Matthias Feurer, Pieter Gijsbers,
Frank Hutter, Michel Lang, Rafael G. Mantovani, Jan N. van Rijn,
and Joaquin Vanschoren (2021). “OpenML Benchmarking Suites.”
In: Proceedings of the Neural Information Processing Systems Track on
Datasets and Benchmarks. Ed. by J. Vanschoren and S. Yeung. Vol. 1.

paper summary. This paper introduces benchmarking suites, col-
lections of clearly defined machine learning tasks, for reproducible and
simplified machine learning research. Moreover, this paper describes
their implementation into OpenML.org, introduces an exemplary bench-
marking suite (OpenML-CC18), and discusses other existing suites.

project idea . This project idea was developed by Bernd Bischl,
Giuseppe Casalicchio, Matthias Feurer, Frank Hutter, Michel Lang,
Rafael G. Mantovani, Jan N. van Rijn, and Joaquin Vanschoren.

implementation and experimentation. Most of the work
was put in creating the OpenML-CC18: defining selection criteria for
datasets and curating datasets according to these criteria, and this work
was conducted by Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer,
Frank Hutter, Michel Lang, Rafael G. Mantovani, Jan N. van Rijn and
Joaquin Vanschoren. Jan N. van Rijn and Joaquin Vanschoren were
responsible for the REST API and several server extensions to provide
an interface to OpenML for creating and retrieving benchmarking
suites. Matthias Feurer, Jan N. van Rijn and Pieter Gijsbers were
responsible for extending and adapting the Python interface. Giuseppe
Casalicchio was responsible for extending and adapting the R interface.
Jan N. van Rijn was responsible for extending the WEKA interface.

paper writing . The paper was drafted by all co-authors jointly
except for the section on the AutoML benchmark, which was drafted
by Pieter Gijsbers. The paper was then revised by all co-authors. The
final version was, to a large extent, written by Pieter Gijsbers, Matthias
Feurer, Giuseppe Casalicchio, and Joaquin Vanschoren.

169

OpenML.org

OpenML Benchmarking Suites

Bernd Bischl1∗, Giuseppe Casalicchio1, Matthias Feurer2, Pieter Gijsbers3, Frank Hutter2,4,
Michel Lang5, Rafael G. Mantovani6, Jan N. van Rijn7, Joaquin Vanschoren3

1 Department of Statistics, LMU Munich, Germany
2 Department of Computer Science, University of Freiburg, Germany

3 Department of Computer Science, Eindhoven University of Technology, the Netherlands
4 Bosch Center for Artificial Intelligence

5 Department of Statistics, TU Dortmund University, Germany
6 Federal Technology University Paraná (UTFPR), Brazil

7 Leiden Institute of Advanced Computer Science (LIACS), Leiden University, the Netherlands

Abstract

Machine learning research depends on objectively interpretable, comparable, and
reproducible algorithm benchmarks. We advocate the use of curated, compre-
hensive suites of machine learning tasks to standardize the setup, execution, and
reporting of benchmarks. We enable this through software tools that help to create
and leverage these benchmarking suites. These are seamlessly integrated into
the OpenML platform, and accessible through interfaces in Python, Java, and
R. OpenML benchmarking suites (a) are easy to use through standardized data
formats, APIs, and client libraries; (b) come with extensive meta-information on
the included datasets; and (c) allow benchmarks to be shared and reused in future
studies. We then present a first, carefully curated and practical benchmarking suite
for classification: the OpenML Curated Classification benchmarking suite 2018
(OpenML-CC18). Finally, we discuss use cases and applications which demon-
strate the usefulness of OpenML benchmarking suites and the OpenML-CC18 in
particular.

1 Introduction

Algorithm benchmarks shine a beacon for machine learning research. They allow us, as a community,
to track progress over time, identify challenging issues, to raise the bar and learn how to do better. To
learn as much as possible from them, they must include well-designed, challenging sets of tasks, be
easily accessible and practical to use. Evaluations of algorithms on these tasks should be performed
in standardized ways to support a rigorous analysis and clear conclusions. And above all, these
evaluations must be easy to find, easily interpretable, reproducible, and directly comparable to
evaluations run by other scientists.

The OpenML platform [Vanschoren et al., 2013] already serves thousands of datasets together
with tasks in a machine-readable way. Tasks define the evaluation procedure for a specific dataset.
Concretely, a task contains a reference to a dataset, information on the task type (e.g., classification
or regression), the target feature (in the case of supervised problems), the evaluation procedure
(e.g., k-fold CV, hold-out), the specific splits for that procedure, and the target performance metric,
which together allow for reproducible evaluation schemes. OpenML is also integrated into many
machine learning libraries, so that fine details about machine learning models (or pipelines) and
their performance evaluations can be automatically collected. This integration allows experiments to
be automatically shared and organized on the platform, linked to the underlying datasets and tasks.

∗Authors are ordered alphabetically. Correspondence to {bernd.bischl | giuseppe.casalicchio}@lmu.de.

35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks.

openml benchmarking suites 171

However, OpenML did not yet facilitate the simple creation and sharing of well-designed benchmark
suites and results of experiments ran on them.

We introduce a novel benchmarking layer on top of OpenML, fully integrated into the platform and
its APIs, that streamlines the creation of benchmarking suites, i.e., collections of tasks designed
to thoroughly evaluate algorithms. These suites can then be easily imported, used in systematic
benchmarking experiments, and the results can be automatically shared and organized on the OpenML
platform, where they can be easily searched, reused and compared to the results of others. We develop
tools that allow for creating a well-defined benchmark suite, and propose a new benchmark suite
designed with these tools: the Curated Classification benchmarking suite 2018 (OpenML-CC18).

In short, the contributions of this paper are as follows: (1) we advocate the use of curated, compre-
hensive suites of machine learning tasks (i.e., a dataset with meta-information about the evaluation
procedure) to standardize benchmarking, (2) we provide software tools to easily create and use these
benchmarking suites, (3) we propose a new benchmark suite (OpenML-CC18), (4) have a closer look
at an existing AutoML benchmark suite, and (5) discuss their impact on machine learning research. 1

We will first discuss related work. Next, we explain how OpenML benchmarking suites work and
how to use them in practice. We then present the OpenML-CC18 and review other benchmarking
suites, including the AutoML benchmark. Finally, we discuss the impact of benchmarking suites on
machine learning research and present our conclusions.

2 A Brief History of Benchmarking Suites

The machine learning field has long recognized the importance of dataset repositories. The UCI
repository [Dheeru and Taniskidou, 2017] and LIBSVM [Chang and Lin, 2011] offer a wide range
of datasets. Many more focused repositories also exist, such as UCR [Chen et al., 2015] for time
series data and Mulan [Tsoumakas et al., 2011] for multilabel datasets. Some repositories also
provide programmatic access. Kaggle.com and PMLB [Olson et al., 2017] offer a Python API for
downloading datasets, skdata [Bergstra et al., 2015] offers a Python API for downloading computer
vision and natural language processing datasets, and KEEL [Alcala et al., 2010] offers a Java and R
API for imbalanced classification and datasets with missing values.

Several platforms can also link datasets to reproducible experiments (similar to OpenML tasks).
Reinforcement learning environments such as the OpenAI Gym [Brockman et al., 2016] run and
evaluate reinforcement learning experiments, the COCO suite standardizes benchmarking for black-
box optimization [Hansen et al., 2020] and ASLib provides a benchmarking protocol for algorithm
selection [Bischl et al., 2016a]. The Ludwig Benchmarking Toolkit orchestrates the use of datasets,
tasks and models for personalized benchmarking and so far integrates the Ludwig deep learning
toolbox [Narayan et al., 2021]. PapersWithCode maintains a manually updated overview of model
evaluations linked to datasets.

Although for many years machine learning researchers have benchmarked their algorithms on some
subset of these datasets, this has not yet led to standardized benchmarks that can be easily compared
between individual studies. This often results in suboptimal shortcuts in study design, producing
rather small-scale experiments that should be interpreted with caution [Aha, 1992], are hard to
reproduce [Pedersen, 2008, Hutson, 2018], and even lead to contradictory results [Keogh and Kasetty,
2003]. An often criticized aspect is the competitive mindset in benchmarking which focuses too
much on dominating the state-of-art on a few datasets, instead of a rigorous and informative analysis
of large-scale studies, including negative results where popular algorithms fail [Sculley et al., 2018].

3 OpenML

OpenML is a collaborative platform that allows anyone to share new datasets, and enables anyone to
easily import these datasets and subsequently share their own models and experiments run on them.
It organizes everything based on four fundamental, machine-readable building blocks: (1) the data,
(2) the machine learning task to be solved, specifying the dataset, the task type (e.g., classification or

1We previously published a preprint on arXiv, which has already been used in new research. This is the reason
we can both introduce OpenML-CC18 and benchmark suites technology, but also review their use. For example,
the AutoML benchmark suite was created with the technology described in this paper (and the preprint).

2

172 openml benchmarking suites

Figure 1: OpenML website showing a list of benchmark studies on the left, and interactive exploration
of the results of the AutoML Benchmark (see Section 7.1) on the right. Can be viewed online at
https://www.openml.org/s/226.

regression), the target feature (in the case of supervised problems), the evaluation procedure (e.g.,
k-fold CV, hold-out), the specific splits for that procedure, and the target performance metric (3) the
flow which specifies a machine learning pipeline that solves the task, and (4) the run that contains
experiment results (e.g., predictions and performance evaluations) when a flow is executed on a task
(see Vanschoren et al. [2013] for more details). OpenML goes beyond the platforms mentioned
in Section 2, as it includes extensive programmatic access to all datasets, tasks, flows, and runs,
comprehensive logging of experiments, and automated sharing of results, which have enabled the
collection of millions of publicly shared and reproducible experiments, linked to the exact datasets,
machine learning pipelines and hyperparameter settings. OpenML offers bindings with the Java,
Python and R ecosystems [van Rijn, 2016, Feurer et al., 2021b, Casalicchio et al., 2017] to provide
easy integration in common machine learning tools, workflows, and environments. An introduction
and detailed information can be found on https://docs.openml.org.

4 OpenML Benchmarking Suites

As with any platform where people can upload new datasets, an overwhelming amount and variety
of datasets is available, and it can be unclear how well they are curated. We designed OpenML
benchmarking suites as a remedy to allow researchers to compile and publish well-defined collections
of curated tasks and datasets, and collect benchmarking results from many scientists in a single place.
More precisely, we define:

An OpenML benchmarking suite is a set of OpenML tasks carefully selected to evaluate algorithms
under a precise set of conditions.

Using a set of tasks instead of a set of datasets makes experiments performed on them comparable and
reproducible. Compared to other (static) collections of datasets, the use of OpenML benchmarking
suites has the following advantages:

• Easy creation of benchmarks (see Section 5.1): OpenML hosts thousands of datasets, and scientists
can easily filter them down to those needed for their benchmarks (see Sections 6 and 7 for examples).

• Convenient access and sharing of suites: Each suite receives a unique ID, which can be used to
retrieve the suite via APIs, and via its own webpage. Figure 1 illustrates how results collected on
these suites can be explored online.

• Permanence and provenance: Because benchmarking suites are its own entity on OpenML, it is
clear who created them (provenance). It also guarantees no one but the original creator can edit or
remove the suite (permanence), this is an advantage over the previously used community tagging
mechanism which allowed any user to add tasks to a suite.

3

openml benchmarking suites 173

• Community of practice: Curated benchmark suites allow scientists to thoroughly benchmark their
machine learning methods without having to worry about finding and selecting datasets for their
benchmarks.

• Building on existing suites: Scientists can extend, subset, or adapt existing benchmarking suites to
correct issues, raise the bar, or run personalized benchmarks.

• Reproducibility of benchmarks: Based on machine-readable OpenML tasks, with detailed instruc-
tions for evaluation procedures and train-test splits, shared results are comparable and reproducible.

• Conducting benchmark studies: After creating an OpenML benchmarking suite, existing and new
experiments (runs) on the underlying tasks can be associated with the suite. This is also illustrated
in Figure 3. Such data reuse bootstraps the creation of new benchmark studies that can analyze
existing machine learning algorithms in new ways, or to design new challenging benchmark suites.

• Collaborative work: OpenML benchmarking suites benefit from the OpenML community, where
users can help to identify and report bugs and errors in the contained datasets.

• Dynamic benchmarks: Benchmarks are never perfect, and when used for a long time, scientists
may overfit on specific sets of tasks. However, benchmarking suites can be easily corrected and
extended over time (e.g., on a yearly basis), leading to dynamic benchmarks that respond to novel
concerns, and evaluate methods on new and ever more challenging tasks. More than providing a
snapshot, this allows longitudinal studies that truly track progress over time.

5 How to Use OpenML Benchmarking Suites

To realize all these benefits, we have developed a series of extensions to the OpenML platform:2

• We added the concepts of a ‘benchmark suite’ as a collection of tasks, and a ‘benchmark study’ as
a collection of benchmark results (runs) obtained on them.

• We added data filtering procedures to the APIs and website that allow researchers to exactly specify
the constraints for tasks to be included in a benchmark suite.

• We provide scripts and notebooks that facilitate the creation and quality assessment of benchmark
suites. For instance, they filter out datasets that are modeled too easily, and hence cannot be used to
differentiate between most algorithms (see Section 5.1).

• Certain types of datasets, such as multilabel, time series, or artificial datasets, may require additional
care. We added collaborative and automated annotation (tagging) to filter such datasets accordingly.

In the following, we discuss the three main use cases for benchmarking suites, i.e., creating new suites,
retrieving existing suites, and running benchmarks. We provide code examples on how to retrieve,
iterate the contents of a benchmark suite and run machine learning algorithms on it in Figure 2.3

5.1 Creating New Suites

To collect data sets for a new suite, one usually starts by determining a list of constraints that datasets
or tasks should adhere to (e.g., have a minimal size, a limited amount of class imbalance, and not
be a time series). This is often an iterative refinement process, during which the distribution of
currently selected tasks can be visualized, and any existing benchmarking results on these tasks
can be retrieved. An example of this workflow is illustrated in the provided notebook.4 The final
selection of tasks can then be used to create a new benchmark suite. Each benchmark suite is
assigned a unique id and an overview webpage with a description and an analysis dashboard (e.g.,
https://www.openml.org/s/99). The description text can be used to describe the goals and
design criteria, provide links to external resources, and address any ethical concerns that should be
taken into consideration when using the benchmark suite. We give an exemplary curation protocol in
Appendix C.

5.2 Retrieving Existing Suites

Existing benchmark suites can be easily downloaded via any of the OpenML client libraries using
its unique id or alias (see Figure 2). The tasks and datasets are all uniformly formatted, and come

2All code is open, BSD-3 licenced, and available on https://github.com/openml
3More detailed and up-to-date instructions can be found on: https://docs.openml.org/benchmark
4Notebooks can be found at https://github.com/openml/benchmark-suites

4

174 openml benchmarking suites

with extensive meta-data to streamline the execution of benchmarks on them. For instance, if a
dataset contains missing values, this is indicated in a machine-readable way so that researchers

1 from openml import config, study, tasks, runs, extensions
2 from sklearn import compose, impute, metrics, pipeline, preprocessing, tree
3
4 clf = pipeline.make_pipeline(
5 compose.make_column_transformer(
6 (impute.SimpleImputer(), extensions.sklearn.cont),
7 (preprocessing.OneHotEncoder(handle_unknown='ignore'), extensions.sklearn.cat),
8),
9 tree.DecisionTreeClassifier(max_depth=1)

10) # build a fast and simple classification pipeline
11
12 benchmark_suite = study.get_suite('OpenML-CC18') # obtain the benchmark suite
13 # config.apikey = 'FILL_IN_OPENML_API_KEY' # uploading to OpenML requires an API key
14
15 run_ids = []
16 for task_id in benchmark_suite.tasks: # iterate over all tasks
17 task = tasks.get_task(task_id) # download the OpenML task
18 X, y = task.get_X_and_y() # get the data (not used in this example)
19 run = runs.run_model_on_task(clf, task) # run classifier on splits given by the task
20 score = run.get_metric_fn(metrics.accuracy_score) # compute and print the accuracy score
21 print(f'Data set: {task.get_dataset().name}; Accuracy: {score.mean():.2}')
22 run.publish()
23 run_ids.append(run.id)
24
25 benchmark_study = study.create_study(# create a study to share the set of results
26 name="CC18-Example",
27 description="An example study reporting results of a decision stump.",
28 run_ids=run_ids,
29 benchmark_suite=benchmark_suite.id
30)
31 benchmark_study.publish()
32 print(f"Results are stored at {benchmark_study.openml_url}")

(a) Python, available as pypi package OpenML

1 public static void runTasksAndUpload() throws Exception {
2 OpenmlConnector openml = new OpenmlConnector("FILL_IN_OPENML_API_KEY");
3 Study benchmarksuite = openml.studyGet("OpenML-CC18", "tasks"); // obtain the benchmark suite
4 Classifier tree = new REPTree(); // build a Weka classifier
5 for (Integer taskId : benchmarksuite.getTasks()) { // iterate over all tasks
6 Task t = openml.taskGet(taskId); // download the OpenML task
7 Instances d = InstancesHelper.getDatasetFromTask(openml, t); // obtain the dataset
8 Pair<Integer, Run> result = RunOpenmlJob.executeTask(openml, new WekaConfig(), taskId, tree);
9 Run run = openml.runGet(result.getLeft());

10 }
11 }

(b) Java, available on Maven Central with artifact id org.openml.openmlweka

1 library(OpenML) # requires at least package version 1.8
2 library(mlr)
3 lrn = makeLearner('classif.rpart') # construct a simple CART classifier
4 bsuite = getOMLStudy('OpenML-CC18') # obtain the benchmark suite
5 task.ids = extractOMLStudyIds(bsuite, 'task.id') # obtain the list of suggested tasks
6 for (task.id in task.ids) { # iterate over all tasks
7 task = getOMLTask(task.id) # download single OML task
8 data = as.data.frame(task) # obtain raw data set
9 run = runTaskMlr(task, learner = lrn) # run constructed learner

10 setOMLConfig(apikey = 'FILL_IN_OPENML_API_KEY')
11 upload = uploadOMLRun(run) # upload and tag the run
12 }

(c) R, available on CRAN via package OpenML

Figure 2: Complete code examples, in different programming languages, of how any benchmarking
suite (here the ‘OpenML-CC18’ suite) can be downloaded and used to evaluate a given algorithm.
The Python code also creates a new benchmark study and shares all results. Uploading requires a
(free) API key.

5

openml benchmarking suites 175

can automatically adjust for this when running their algorithms. Datasets can be investigated using
exploratory data analysis tools, and existing runs on these tasks can be downloaded and analyzed.

5.3 Running Benchmarks

After retrieving the tasks from a suite, new experiments can be conducted locally. As illustrated
in Figure 2, this is easiest with the readily integrated machine learning libraries, such as scikit-
learn [Pedregosa et al., 2011], mlr [Bischl et al., 2016b] or its successor mlr3 [Lang et al., 2019],
and Weka [Hall et al., 2009]. Integrations for deep learning libraries are under development, and
we welcome further open source integrations.5 Custom code can often be wrapped, e.g., using the
scikit-learn interface.

The results of these experiments (runs) can also (optionally) be bundled in a benchmark study and
published on OpenML, as illustrated for Python in Figure 2. Runs include all experiment details,
including hyperparameter configurations, in a structured way. This allows entire communities of
scientists to bring together benchmarks of a wide range of algorithms, all evaluated uniformly on
the same tasks, in a single place where they can be directly compared on predictive performance
and analysed in novel ways. Figure 3 visualizes the results of 3.8 million runs collected on a single
benchmarking suite, which we will discuss next.

6 OpenML-CC18

To demonstrate the functionality of OpenML benchmarking suites, we created a first standard of
72 classification tasks built on a carefully curated selection of datasets from the many thousands
available on OpenML: the OpenML-CC18. It can be used as a drop-in replacement for many typical
benchmarking setups. These datasets are deliberately medium-sized for practical reasons. An
overview of the benchmark suite can be found at https://www.openml.org/s/99 and in Table 1.
We first describe the design criteria of the OpenML-CC18 before discussing uses of the benchmark
and success stories.1,6

6.1 Design Criteria

The OpenML-CC18 contains all verified and publicly licenced OpenML datasets until mid-2018 that
satisfy a large set of clear requirements for thorough yet practical benchmarking:

(a) The number of observations is between 500 and 100 000 to focus on medium-sized datasets that
can be used to train models on almost any computing hardware.

(b) The dataset has less than 5000 features, counted after one-hot-encoding categorical features
(which is the most frequent way to deal with categorical variables), to avoid most memory issues.

(c) The target attribute has at least two classes, with no class of less than 20 observations. This
ensures sufficient samples per class per fold when running 10-fold cross-validation experiments.

(d) The ratio of the minority and majority class is above 0.05 (to eliminate highly imbalanced
datasets which require special treatment for both algorithms and evaluation measures).

(e) The dataset is not sparse because not all machine learning models can handle them gracefully,
this constraint facilitates our goal of wide applicability.

(f) The dataset does not require taking time dependency between samples into account, e.g., time
series or data streams, as this is often not implemented in standard machine learning libraries.
As a precaution, we also removed datasets where each sample constitutes a single data stream.

(g) The dataset does not require grouped sampling. Such datasets would contain multiple data points
for one subject and require that all data points for a subject are put into the same data split for
evaluation. We introduce this constraint and the one above to simplify usage of the datasets, as
one does not have to use specialized cross-validation procedures.

We also applied several more opinionated criteria to avoid issues with problematic datasets:

5Development is carried out on GitHub. Contributor guidance can be found at https://docs.openml.org.
6The OpenML-CC18 is the successor of a preliminary benchmarking study called OpenML100, containing

100 classification datasets, and fixes several issues we encountered when working with the OpenML100.

6

176 openml benchmarking suites

Figure 3: Distribution of the scores (average area under ROC curve, weighted by class support) of 3.8
million experiments with thousands of machine learning pipelines, shared on the CC18 benchmark
tasks. Some tasks prove harder than others, some have wide score ranges, and for all there exist
models that perform poorly (0.5 AUC). Code to reproduce this figure (for any metric) is available on
GitHub.4

(a) We strived to remove artificial datasets, as it is hard to reliably assess their difficulty. Admittedly,
there is no perfect distinction between artificial and simulated datasets (for example, a lot of
phenomena can be simulated that can be as simple as an artificial dataset). Therefore, we
removed datasets if we were in doubt of whether they are simulated or artificial.

(b) We removed datasets which are a subset of larger datasets. Allowing subsets would be very
subjective, as there is no objective choice of a dataset subset size or a subset of the variables or
classes.

(c) We excluded tasks for which the original target feature has been transformed or changed, e.g.,
when classes of a categorical target feature were merged or when a continuous target feature (for
original regression tasks) was discretized to create a classification task.

(d) We removed datasets without any source or reference. We want to be able to learn more about
their intended use and how to interpret learned models, and avoid black box datasets.

Finally, to ensure that datasets are sufficiently challenging, we applied the following restrictions:

(a) We removed datasets which can be perfectly classified by a single attribute or a decision stump,
as they do not allow us to meaningfully compare machine learning algorithms.

(b) We removed datasets where a decision tree could achieve 100% accuracy on a 10-fold cross-
validation task, to remove datasets which can be solved by a simple algorithm which is prone to
overfitting training data. We found that this is a good indicator of too easy datasets. Obviously,
other datasets will appear easy for several algorithms, and we aim to learn more about the
characteristics of such datasets in future studies.

We created the OpenML-CC18 as a first, practical benchmark suite. In hindsight, we acknowledge
that our initial selection still contains several mistakes. Concretely, sick is a newer version of the
hypothyroid dataset with several classes merged, electricity has time-related features, balance_scale
is an artificial dataset and mnist_784 requires grouping samples by writers. We will correct these
mistakes in new versions of this suite and also screen the more than 900 new datasets that were
uploaded to OpenML since the creation of the OpenML-CC18. Moreover, to avoid the risk of

7

openml benchmarking suites 177

overfitting on a specific benchmark, and to include feedback from the community, we plan to create a
dynamic benchmark with regular release updates that evolve with the machine learning field. We
want to clarify that while we include some datasets which may have ethical concerns, we do not
expect this to have an impact if the suite is used responsibly (i.e., the benchmark suite is used for its
intended purpose of benchmarking algorithms, and not to construct models to be used in real-world
applications).

6.2 Usage of the OpenML-CC18

The OpenML-CC18 has been acknowledged and used in various studies.1 For instance, Van Wolputte
and Blockeel [2020] used it to study iterative imputation algorithms for imputing missing values,
König et al. [2020] used it to develop methods to improve upon uncertainty quantification of machine
learning classifiers and De Bie et al. [2020] introduced deep networks for learning meta-features,
which they computed for all OpenML-CC18 datasets. In some cases, the authors needed a filtered
subset of the OpenML-CC18, which is natively supported in most OpenML clients. Other uses
of the OpenML-CC18 include interpreting its multiclass datasets as multi-arm contextual bandit
problems [Bibaut et al., 2021a,b] and using the individual columns to test quantile sketch algo-
rithms [Mitchell et al., 2021].

Cardoso et al. [2021] claim that the machine learning community has a strong focus on algorithmic
development, and advocate a more data-centric approach. To this end, they studied the OpenML-
CC18 utilizing methods from Item Response Theory to determine which datasets are hard for many
classifiers. After analyzing 60 of its datasets (excluding the largest), they find that the OpenML-CC18
consists of both easy and hard datasets. They conclude that the suite is not very challenging as
a whole, but that it includes many appropriate datasets to distinguish good classifiers from bad
classifiers, and then propose two subsets: one that can be considered challenging, and one subset to
replicate the behavior of the full suite. The careful analysis and subsequent proposed updates are a
nice example of the natural evolution of benchmarking suites.

For completeness, we also briefly mention uses of OpenML100, a predecessor of the OpenML-CC18
that includes 100 datasets and less strict constraints. Fabra-Boluda et al. [2020] use this suite to
build a taxonomy of classifiers. They argue that the taxonomies provided by the community can be
misleading, and therefore learn taxonomies to cluster classifiers based on predictive behavior. van
Rijn and Hutter [2018] and Probst et al. [2019a] used it to quantify the hyperparameter importance
of machine learning algorithms, while Probst et al. [2019b] used it to learn the best strategy for
tuning random forest based on large-scale experiments (although Probst et al. [2019a] and Probst
et al. [2019b] use only the binary datasets without missing values).

Based upon these works, we conclude that the OpenML-CC18 is being used to facilitate very diverse
directions of machine learning research.

7 Further OpenML Benchmarking Suites

We now review other OpenML benchmarking suites. For this, we focus on AutoML benchmarking
suites, but also provide examples of others.

7.1 The AutoML Benchmark Suite

The AutoML benchmark [Gijsbers et al., 2019] also makes use of an OpenML benchmark suite
to evaluate AutoML tools in a reproducible manner. Combined with code to automatically run
experiments, any of the integrated AutoML tools can be evaluated on any suitable OpenML task or
suite directly from the command line.

7.1.1 Benchmark Suite Design

The AutoML benchmark explicitly sources part of their datasets from the OpenML-CC18, but
also includes datasets used in AutoML competitions (primarily Guyon et al. [2019]) or previous
comparisons of AutoML systems. A step-by-step list of recreating the benchmark suite does not exist,
but general guidelines are provided. Since the original release in 2019, the AutoML benchmark has

8

178 openml benchmarking suites

been extending their selection of datasets.7,8 In the discussion below, aspects which are specific to
the newer selection are indicated with an asterisk (*).

The suite shares some of its design criteria with OpenML-CC18, such as the minimum number of
instances, as well as the exclusion of artificial datasets and those which require grouped sampling.
However, it loosens some other restrictions specifically because of the assumption that AutoML tools
should be able to deal with additional complexities:

(a) There is no limit to 100 000 instances or 5000 features, tools can restrict themselves to learners
which scale well or use, e.g., low-fidelity estimates.

(b) There is no limit for class imbalance, tools can use their preferred techniques to deal with
imbalanced data (e.g., SMOTE [Chawla et al., 2002]).

(c) It includes sparse data, though it is currently converted to dense format for tools that don’t
support sparse data.*

(d) It includes a suite of regression problems.*

Some other restrictions are instead stricter because of the tabular AutoML context:

(a) The "easy dataset" filter also takes into account results from OpenML across various learners, to
try to avoid datasets which need little search beyond algorithm selection.

(b) The number of image classification problems is explicitly restricted, as they are typically better
solved with Deep Learning and the benchmark’s focus is tabular AutoML tools.

Similar to OpenML-CC18, the AutoML benchmark suite is intended to be regularly updated to reflect
modern day challenges and to avoid overfitting.

7.1.2 Usage of the AutoML Benchmark Suite

Before the introduction of the AutoML benchmark suite, the closest to an accepted standard for
tabular AutoML benchmarking was the set of datasets on which Auto-WEKA was originally evalu-
ated [Thornton et al., 2013]. This selection of tasks was still used in, e.g., Mohr et al. [2018] and
consisted of 21 problems, a third of which are image classification tasks which are typically not the
intended use-case for the AutoML tools. However, it was by no means a standard. For example, Drori
et al. [2018], Rakotoarison et al. [2019] and Gil et al. [2018], all published at the same workshop,
each used different selections of datasets.

The original AutoML benchmark suite has been used in multiple AutoML publications, either as is
[LeDell and Poirier, 2020, Wang et al., 2021, Feurer et al., 2021a] or with modifications. Sometimes
more datasets are used, as Zöller and Huber [2021] combine it with OpenML-CC18 and OpenML100
and Kadra et al. [2021] add datasets from UCI and Kaggle. For the latter, hold-out evaluation is used
instead of the suite-defined 10-fold cross-validation. Erickson et al. [2020] use additional datasets
from Kaggle competitions to compare directly to solutions proposed by human competitors.

Other times not all datasets in the benchmark suite are used, e.g., Zimmer et al. [2021] uses all but
four big datasets for computational reasons, while Parmentier et al. [2019] limit themselves to only
four of the big datasets in the suite to assess their method designed for big datasets. Mohr and Wever
[2021] omitted some datasets because of technical issues.

7.2 Further Existing OpenML Benchmarking Suites

OpenML contains other benchmark suites as well, such as the OpenML100-friendly that only contains
the subset of the OpenML100 without missing values and with only numerical features, or Foreign
Exchange data for machine learning research [Schut et al., 2019].

We invite the community to create additional benchmarks suites for other tasks besides classification,
for larger datasets or more high-dimensional ones, for imbalanced or extremely noisy datasets, as
well as for text, time series, and many other types of data. We are confident that benchmarking suites
will help standardize evaluation and track progress in many subfields of machine learning, and also
intend to create new suites and make it ever easier for others to do so.

7Announcement of the new suites: https://github.com/openml/automlbenchmark/issues/187
8https://www.openml.org/s/{218,269,271} are the original, regression, and expanded suite, respec-

tively

9

openml benchmarking suites 179

8 Limitations and Future Work

As benchmarking suites are increasingly being picked up by the machine learning community, we
also observed several limitations that should be tackled in future work.

Overfitting. While it has not yet been demonstrated, we assume that as more methods are being
evaluated on benchmarking suites, overfitting on fixed suites is increasingly likely. We therefore aim
to periodically update existing suites with new datasets that follow the specifications laid out by the
benchmark designers (e.g., as done for computer vision research [Recht et al., 2019]) and invite the
community to extend existing suites with harder tasks, as done in NLP research [Kiela et al., 2021].

Credit Assignment. Curating a benchmark is a lot of work, and we have manually inspected and
corrected datasets for the OpenML-CC18 over the course of multiple months. It is therefore important
to give proper credit to everyone involved in creating benchmarking suites, for example by somehow
making benchmarking suites citable.

Automating the curation of useful suites. We are not aware of any related work that describes how
to curate machine learning benchmark suites. In this paper we have defined benchmarking suites
by formalizing objective, but also more subjective constraints. Providing automated ways to create
high quality, diverse and realistic benchmarking suites is thus an important, open research question.
Additionally, post-hoc research, such as the one conducted by Cardoso et al. [2021], is important to
check the validity of benchmarking suites, and we hope for more such techniques to be developed
and also to become applicable during the suite design process.

Computational issues. While studying applications of the OpenML-CC18 in Section 6.2 we realized
that even though we consciously focused on mid-size datasets, some larger ones still incurred too
high computational load, so some researchers have used subsets of the OpenML-CC18 in their
work. Future suites could more carefully trade off the completeness of benchmarking suites and
computational issues, for example by choosing representative subsets [Cardoso et al., 2021].

Breadth of current benchmarking suites. On the other hand, many researchers are interested
in benchmarking larger (deep learning) models on larger datasets from many domains (including
language and vision). We are working on ways to enable the creation of such benchmarking suites as
well, and welcome further involvement from the community.

Specification of resource constraints. The task and suite specifications do not yet allow for con-
straints on resources, e.g., memory or time limits. Specific benchmark studies could impose identical
hardware requirements, e.g., to compare running times. Where requiring identical hardware is
impractical, general constraints would ensure results are more comparable when multiple people run
their experiments on a suite. Explicit constraints also help interpret earlier results.

Disclosure of ethical issues We currently encourage creators to disclose any ethical concerns with
datasets in their benchmark suite in its description. In the future we want to support this natively on
a dataset level (e.g., by integrating datasheets [Gebru et al., 2018]) and benchmark suite level (by
providing a dedicated information field).

9 Conclusion

Our goal is to simplify the creation of well-designed benchmarks to push machine learning research
forward. More than just creating and sharing benchmarks, we want to allow anyone to effortlessly run
and publish their own benchmarking results and organize them online in a single place where they can
be easily explored, downloaded, shared, compared, and analyzed. We created a new benchmarking
layer on the OpenML platform that allows scientists to do all the above with just a few lines of
code. We then introduced the OpenML-CC18, a benchmark suite created with these tools for general
classification benchmarking.

The use of suites is further motivated by a closer look at the AutoML benchmark suite. We also
reviewed how other scientists have adopted these benchmarking suites in their own work, from which
it becomes clear that a continuous conversation with the research community is essential to evolve
benchmarks and make them better and more useful over time. We hope that this work will unleash
a rapid evolution of benchmarks suites and large-scale studies that teach us more about machine
learning than any single study could.

10

180 openml benchmarking suites

Acknowledgements This work has partly been funded by the German Federal Ministry of Education
and Research (BMBF) under grant no. 01IS18036A, by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – 460135501 (NFDI project MaRDI), by the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under
grant no. 716721 (Beyond BlackBox) and 952215 (TAILOR), through grant #2015/03986-0 from the
São Paulo Research Foundation (FAPESP), by AFRL and DARPA under contract FA8750-17-C-0141,
as well as through the Priority Programme Autonomous Learning (SPP 1527, grant HU 1900/3-1)
and Collaborative Research Center SFB 876/A3 from the German Research Foundation (DFG).

References
D. W. Aha. Generalizing from case studies: A case study. Proceedings of the International Conference

on Machine Learning (ICML), pages 1–10, 1992.

J. Alcala, A. Fernandez, J. Luengo, J. Derrac, S. Garcia, L. Sanchez, and F. Herrera. Keel datamining
software tool: Data set repository, integration of algorithms and experimental analysis framework.
Journal of Multiple-Valued Logic and Soft Computing, 17(2-3):255–287, 2010.

J. Bergstra, N. Pinto, and D. Cox. Skdata: data sets and algorithm evaluation protocols in python.
Computational Science & Discovery, 8(1), 2015.

A. Bibaut, A. Chambaz, M. Dimakopoulou, N. Kallus, and M. van der Laan. Risk minimization
from adaptively collected data: Guarantees for supervised and policy learning. arXiv:2106.01723
[stat.ML], 2021a.

A. Bibaut, A. Chambaz, M. Dimakopoulou, N. Kallus, and M. van der Laan. Post-contextual-bandit
inference. arXiv:2106.00418 [stat.ML], 2021b.

B. Bischl, P. Kerschke, L. Kotthoff, M. Lindauer, Y. Malitsky, A. Frechétte, H. Hoos, F. Hutter,
K. Leyton-Brown, K. Tierney, and J. Vanschoren. ASlib: A benchmark library for algorithm
selection. Artificial Intelligence, 237:41–58, 2016a.

B. Bischl, M. Lang, L. Kotthoff, J. Schiffner, J. Richter, E. Studerus, G. Casalicchio, and Z. M. Jones.
mlr: Machine learning in R. Journal of Machine Learning Research, 17(170), 2016b.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. OpenAI
Gym. arXiv:1606.01540 [cs.LG], 2016.

L. F. Cardoso, V. C. Santos, R. S. K. Francês, R. B. Prudêncio, and R. C. Alves. Data vs classifiers,
who wins? arXiv:2107.07451 [cs.LG], 2021.

G. Casalicchio, J. Bossek, M. Lang, D. Kirchhoff, P. Kerschke, B. Hofner, H. Seibold, J. Vanschoren,
and B. Bischl. OpenML: An R package to connect to the machine learning platform OpenML.
Computational Statistics, 34(3):977–991, 2017.

C. C. Chang and C. J. Lin. LIBSVM: A library for support vector machines. ACM Transactions on
Intelligent Systems and Technology (TIST), 2(3):27, 2011.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: Synthetic minority
over-sampling technique. Journal of Artificial Intelligence Research, 16(1):321–357, 2002.

Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen, and G. Batista. The UCR time series
classification archive, July 2015. www.cs.ucr.edu/~eamonn/time_series_data/.

G. De Bie, H. Rakotoarison, G. Peyré, and M. Sebag. Distribution-based invariant deep networks for
learning meta-features. arXiv:2006.13708 [stat.ML], 2020.

D. Dheeru and E. K. Taniskidou. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

I. Drori, Y. Krishnamurthy, R. Rampin, R. Lourenço, J. One, K. Cho, C. Silva, and J. Freire.
Alphad3m: Machine learning pipeline synthesis. In 5th ICML Workshop on Automated Machine
Learning (AutoML), 2018.

11

openml benchmarking suites 181

N. Erickson, J. Mueller, A. Shirkov, H. Zhang, P. Larroy, M. Li, and A. Smola. Autogluon-tabular:
Robust and accurate automl for structured data. arXiv:2003.06505 [stat.ML], 2020.

R. Fabra-Boluda, C. Ferri, F. Martínez-Plumed, J. Hernández-Orallo, and M. J. Ramírez-Quintana.
Family and prejudice: A behavioural taxonomy of machine learning techniques. In ECAI 2020 -
24th European Conference on Artificial Intelligence, pages 1135–1142. IOS Press, 2020.

M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and F. Hutter. Auto-sklearn 2.0: Hands-free
automl via meta-learning. arXiv:2007.04074 [cs.LG], 2021a.

M. Feurer, J. N. van Rijn, A. Kadra, P. Gijsbers, N. Mallik, S. Ravi, A. Müller, J. Vanschoren, and
F. Hutter. Openml-python: an extensible python api for openml. Journal of Machine Learning
Research, 22(100):1–5, 2021b.

T. Gebru, J. Morgenstern, B. Vecchione, J. W. Vaughan, H. Wallach, H. Daumé III, and K. Crawford.
Datasheets for datasets. arXiv:1803.09010 [cs.DB], 2018.

P. Gijsbers, E. LeDell, J. Thomas, S. Poirier, B. Bischl, and J. Vanschoren. An open source automl
benchmark. In 6th ICML Workshop on Automated Machine Learning (AutoML), 2019.

Y. Gil, K.-T. Yao, V. Ratnakar, D. Garijo, G. Ver Steeg, P. Szekely, R. Brekelmans, M. Kejriwal,
F. Luo, and I.-H. Huang. P4ml: A phased performance-based pipeline planner for automated
machine learning. In 5th ICML Workshop on Automated Machine Learning (AutoML), 2018.

I. Guyon, L. Sun-Hosoya, M. Boullé, H. J. Escalante, S. Escalera, Z. Liu, D. Jajetic, B. Ray, M. Saeed,
M. Sebag, A. Statnikov, W.-W. Tu, and E. Viegas. Analysis of the automl challenge series 2015–
2018. In F. Hutter, L. Kotthoff, and J. Vanschoren, editors, Automated Machine Learning: Methods,
Systems, Challenges, pages 177–219. Springer International Publishing, 2019.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The WEKA data
mining software: An update. ACM SIGKDD Explorations Newsletter, 11(1):10–18, 2009.

N. Hansen, A. Auger, R. Ros, O. Mersman, T. Tušar, and D. Brockhoff. COCO: A platform for
comparing continuous optimizers in a black-box setting. Optimization Methods and Software,
2020.

M. Hutson. Missing data hinder replication of artificial intelligence studies. Sci-
ence News, 2018. URL https://www.science.org/content/article/
missing-data-hinder-replication-artificial-intelligence-studies.

A. Kadra, M. Lindauer, F. Hutter, and J. Grabocka. Regularization is all you need: Simple neural
nets can excel on tabular data. arXiv:2106.11189 [cs.LG], 2021.

E. Keogh and S. Kasetty. On the need for time series data mining benchmarks: A survey and empirical
demonstration. Data Mining and Knowledge Discovery, 7(4):349–371, 2003.

D. Kiela, M. Bartolo, Y. Nie, D. Kaushik, A. Geiger, Z. Wu, B. Vidgen, G. Prasad, A. Singh,
P. Ringshia, Z. Ma, T. Thrush, S. Riedel, Z. Waseem, P. Stenetorp, R. Jia, M. Bansal, C. Potts,
and A. Williams. Dynabench: Rethinking benchmarking in NLP. In Proceedings of the 2021
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 4110–4124. Association for Computational Linguistics,
2021.

M. König, H. H. Hoos, and J. N. van Rijn. Towards algorithm-agnostic uncertainty estimation:
Predicting classification error in an automated machine learning setting. In 7th ICML Workshop on
Automated Machine Learning (AutoML), 2020.

M. Lang, M. Binder, J. Richter, P. Schratz, F. Pfisterer, S. Coors, Q. Au, G. Casalicchio, L. Kotthoff,
and B. Bischl. mlr3: A modern object-oriented machine learning framework in r. Journal of Open
Source Software, 4(44):1903, 2019.

E. LeDell and S. Poirier. H2o automl: Scalable automatic machine learning. In 7th ICML Workshop
on Automated Machine Learning (AutoML), 2020.

12

182 openml benchmarking suites

R. Mitchell, E. Frank, and G. Holmes. An empirical study of moment estimators for quantile
approximation. ACM Transactions on Database Systems, 46(1), 2021.

F. Mohr and M. Wever. Replacing the ex-def baseline in automl by naive automl. In 8th ICML
Workshop on Automated Machine Learning (AutoML), 2021.

F. Mohr, M. Wever, and E. Hüllermeier. Ml-plan: Automated machine learning via hierarchical
planning. Machine Learning, 107(8-10):1495–1515, 2018.

A. Narayan, P. Molino, K. Goel, W. Neiswanger, and C. Re. Personalized benchmarking with the
ludwig benchmarking toolkit. In Proceedings of the Neural Information Processing Systems Track
on Datasets and Benchmarks, 2021.

R. S. Olson, W. La Cava, P. Orzechowski, R. J. Urbanowicz, and J. H. Moore. PMLB: A large
benchmark suite for machine learning evaluation and comparison. BioData Mining, 10(36), 2017.

L. Parmentier, O. Nicol, L. Jourdan, and M.-E. Kessaci. TPOT-SH: A faster optimization algorithm
to solve the automl problem on large datasets. In 2019 IEEE 31st International Conference on
Tools with Artificial Intelligence (ICTAI), pages 471–478. IEEE, 2019.

T. Pedersen. Empiricism is not a matter of faith. Computational Linguistics, 34:465–470, 2008.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

P. Probst, A.-L. Boulesteix, and B. Bischl. Tunability: Importance of hyperparameters of machine
learning algorithms. Journal of Machine Learning Research, 20(53):1–32, 2019a.

P. Probst, M. N. Wright, and A.-L. Boulesteix. Hyperparameters and tuning strategies for random
forest. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(3):e1301,
2019b.

H. Rakotoarison, M. Schoenauer, and M. Sebag. Automated machine learning with monte-carlo
tree search. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, pages 3296–3303, 2019.

B. Recht, R. Roelofs, L. Schmidt, and V. Shankar. Do ImageNet classifiers generalize to ImageNet?
In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, volume 97, pages 5389–5400, 2019.

F. Schut, J. N. van Rijn, and H. Hoos. Towards automated technical analysis for foreign exchange
data. In Workshop on Automating Data Science @ ECML/PKDD, 2019.

D. Sculley, J. Snoek, A. Wiltschko, and A. Rahimi. Winner’s curse? on pace, progress, and empirical
rigor. In Workshop of the International Conference on Representation Learning (ICLR), 2018.

C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-weka: Combined selection and
hyperparameter optimization of classification algorithms. In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 847–855, 2013.

G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, and I. Vlahavas. Mulan: A java library for
multi-label learning. Journal of Machine Learning Research, pages 2411–2414, Jul 2011.

J. N. van Rijn. Massively collaborative machine learning. PhD thesis, Leiden University, 2016.

J. N. van Rijn and F. Hutter. Hyperparameter importance across datasets. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
2367–2376. ACM, 2018.

E. Van Wolputte and H. Blockeel. Missing value imputation with mercs: A faster alternative to
missforest. In Discovery Science - 23rd International Conference, volume 12323 of Lecture Notes
in Computer Science, pages 502–516. Springer, 2020.

13

openml benchmarking suites 183

J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo. OpenML: Networked science in machine
learning. SIGKDD Explorations, 15(2):49–60, 2013.

C. Wang, Q. Wu, M. Weimer, and E. Zhu. FLAML: A fast and lightweight automl library. Proceedings
of Machine Learning and Systems, 3, 2021.

L. Zimmer, M. Lindauer, and F. Hutter. Auto-pytorch: Multi-fidelity metalearning for efficient and
robust autodl. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(9):3079–3090,
2021.

M.-A. Zöller and M. F. Huber. Benchmark and survey of automated machine learning frameworks.
Journal of Artificial Intelligence Research, 70:409–472, 2021.

14

184 openml benchmarking suites

Part V

C O N C L U S I O N

9
C O N C L U S I O N

In this final part of the thesis, we discuss how far we have come
to make machine learning more accessible by efficient and robust
Automated Machine Learning. First, we summarize what we have
achieved and discuss the impact of our work. Second, and finally, we
state what we deem important future work.

9.1 summary and discussion

Our goal with this thesis was to find answers to the question Can we
make machine learning more accessible by efficient and robust automated
machine learning? In order to do so we have conducted work and
research in the three directions outlined in Section 1.2:

1. Hyperparameter Optimization (HPO): Can we improve the applica-
bility of HPO to costly problems?

2. Automated Machine Learning (AutoML): Can we improve the effi-
ciency of Combined Algorithm Selection and Hyperparameter
Optimization (CASH) for supervised learning?

3. Benchmarking and the OpenML platform: Can we facilitate AutoML
research and development by providing better data to the re-
searcher?

We now summarize and discuss each direction in turn in the following
three subsections.

9.1.1 Hyperparameter optimization

In Part ii, we have advanced the state of the art for efficient HPO
by surveying HPO methods with a focus on efficient multi-fidelity
methods and by developing a new HPO method that can take into
account prior knowledge.

First, we have summarized the state-of-the-art in HPO in Chap-
ter 3. We have put a strong focus on multi-fidelity HPO and de-
scribed the three overarching approaches: learning curves, bandits,
and adaptive methods. Multi-fidelity HPO continues to receive a lot
of attention, and there are now multi-fidelity versions of population-
based algorithms (Parmentier et al., 2019; Awad, Mallik, and Hutter,
2021) and new multi-fidelity extensions of popular acquisition func-
tions in Bayesian optimization (Wu et al., 2019; Takeno et al., 2020).

187

188 conclusion

Multi-fidelity is becoming even more important as models continue to
increase in size (Kaplan et al., 2020). The most important follow-up
on this work is HPOBench (Eggensperger, Müller, et al., 2021, also
co-authored by the author of this thesis), which empirically verifies
the benefits of multi-fidelity optimization compared with their single-
fidelity counterparts.

We have also posed open questions, and we are excited about
the tremendous progress in solving some of the open problems we
have identified. There are now multiple benchmark collections avail-
able (Eggensperger, Müller, et al., 2021; Pineda et al., 2021; Turner et
al., 2021), and gradient-based HPO has been extended to tackle archi-
tectural hyperparameters of deep neural networks (H. Liu, Simonyan,
and Y. Yang, 2019). Moreover, evolutionary algorithms have become
more efficient (Awad, Mallik, and Hutter, 2021), and researchers tackle
the problem of optimizing larger pipelines, which we discuss further
in Section 9.2.2.

It is hard to quantify the impact of our survey on the development
and usage of more efficient HPO. However, the paper is being cited
widely as a standard reference for HPO, and we hope that it helps
future researchers to get into HPO.

Second, in Chapter 4, we proposed the first transfer HPO method
to fulfill four desirable properties for applying transfer HPO without
human intervention. An early version of RGPE, that we have published
in an arXiv preprint (Feurer, Letham, and Bakshy, 2018), has been
picked up as a baseline for transfer HPO (Pineda et al., 2021; Xiao,
Xing, and Neiswanger, 2021), implemented as transfer HPO method
in a Bayesian optimization package (Y. Li et al., 2021), and used for
tuning databases (X. Zhang et al., 2021). Even as more complex and
potentially more powerful transfer learning methods based on deep
networks are developed (Volpp et al., 2020; Wei, Zhao, and J. Huang,
2021; Wistuba and Grabocka, 2021), we believe our hyperparameter-
free, linear ensemble of standard Gaussian process models has its
raison d’être because it is a very transparent method, which allows
interpreting and understanding its behavior and potential failure
cases.

9.1.2 Automated Machine Learning

In part iii, we have researched whether we can further increase the
accessibility of machine learning by improving the performance of
AutoML systems. More specifically, we have researched whether we
can increase the efficiency of CASH solvers.

To this end, we introduced Auto-sklearn in Chapter 5, which ex-
tended Auto-WEKA by including meta-learning and post-hoc ensem-
bling. We demonstrated that Auto-sklearn improves over the previous
CASH-based AutoML systems Auto-WEKA and hyperopt-sklearn.

9.1 summary and discussion 189

Furthermore, we have conducted the most extensive evaluation of
AutoML systems to that point in time using 140 datasets. We demon-
strated that both of our methodological additions improve perfor-
mance over the pure CASH setting by themselves and combined. To-
gether with our success in the 1st ChaLearn AutoML competition, and
especially the Tweakathon track in which participants were allowed to
tackle datasets on their local computers without budget restrictions,
this clearly demonstrates that efficient and robust automated machine
learning can increase the accessibility of machine learning.

Auto-sklearn has been a popular baseline since its inception (Y.
Zhang et al., 2016; de Sa et al., 2017; Mohr, Wever, and Hüllermeier,
2018; B. Chen et al., 2018; Fusi, Sheth, and Elibol, 2018; Drori, Krishna-
murthy, Rampin, et al., 2018; Drori, Krishnamurthy, Lourenco, et al.,
2019; C. Yang, Akimoto, et al., 2019; Rakotoarison, Schoenauer, and
Sebag, 2019; Gijsbers et al., 2019; C. Yang, Fan, et al., 2020; Zöller,
Nguyen, and Huber, 2021). While researchers have claimed improved
performance by using better CASH optimizers, this is not yet univer-
sally agreed upon (Mohr and Wever, 2021). The datasets collection
we introduced to build meta-data for Auto-sklearn and run the ex-
periments also presents an early incarnation of a benchmarking suite
from OpenML; others, later on, used this to benchmark their AutoML
systems (L. Li et al., 2018; Rakotoarison, Schoenauer, and Sebag, 2019).
Due to its popularity, the PipelineProfiler (Ono et al., 2021) implements
a connection to Auto-sklearn to visualize the found pipelines.

Moreover, others have used the open-source implementation of
Auto-sklearn in their applications and we briefly mention a small
sample of them. One application domain is medicine, where it has
been used to classify EEG recordings (Gemein et al., 2020), predict
the 9-year course of mood and anxiety disorders (van Eeden et al.,
2021) and predict the short- and long-term treatment response in
schizophrenia (Ambrosen et al., 2020). Auto-sklearn has also been
used for software analysis (Wattanakriengkrai et al., 2018; Maipradit,
B. Lin, et al., 2020; Maipradit, Treude, et al., 2020; Chinthanet et al.,
2021), graph analysis and combinatorial optimization (Lauri and Dutta,
2019; Lauri, Dutta, et al., 2020) and opinion quantification (Gurukar
et al., 2020). Denkena et al. (2020) applied Auto-sklearn in machining,
Huo et al. (2019) in smart-grid monitoring and G. Liu et al. (2021)
to climate modeling, receiving a best paper award at the NeurIPS
2021 AI for climate change workshop. All these applications have a
common story: Auto-sklearn matches or outperforms the manually
designed machine learning pipelines, and most importantly, it does
so without human intervention. The fact that researchers who are
not affiliated with us successfully implemented their projects with
Auto-sklearn demonstrates the potential of capabilities of AutoML
systems to broaden access to machine learning and is a strong case to

190 conclusion

apply both AutoML and Auto-sklearn for machine learning problems
with manually extracted features.

We presented our follow-up Auto-sklearn 2.0 in Chapter 6. We first
introduced new building blocks that helped win the 2nd ChaLearn Au-
toML competition: successive halving for faster evaluation of pipelines
and static portfolios for warmstarting Bayesian optimization. In ad-
dition, we used a manually designed fallback to cross-validation.
Therefore, we generalized the assignment of budget and the way we
measure generalization to budget allocation strategies and model selec-
tion strategies. The portfolios are of particular interest as they are a
meta-feature-free and simple initialization of Auto-sklearn with per-
formance guarantees. In an experimental study, we found that the
best one differs per dataset and time horizon, but our choice for the
2nd ChaLearn AutoML competition was the best overall choice. Most
importantly, we were the first to exploit the fact that different model
selection strategies, i.e., holdout or cross-validation, behave differently
depending on the time budget and dataset size.

However, we realized that this system was very much hand-designed
which is against the main idea of AutoML. A practitioner applying
Auto-sklearn would have to manually make such decisions as we did
for the 2nd ChaLearn AutoML competition. Therefore, we defined the
meta-problem of AutoML, which is a generalization of the expected
risk minimization paradigm over datasets (instead of over individual
data points). We could use meta-learning to tune the AutoML system
itself based on this. Concretely, we used algorithm selection to choose
which of multiple instantiations of Auto-sklearn to apply for a new
dataset.

In contrast to when we introduced Auto-sklearn 1.0, there was now
a standardized benchmark: the OpenML AutoML benchmark. It de-
fines the full evaluation setting and includes 39 datasets to evaluate
AutoML systems (Gijsbers et al., 2019). We constructed a comple-
mentary set of 209 datasets for meta-learning. Using both the bench-
mark and the additional datasets for meta-learning, we demonstrated
improved performance over Auto-sklearn 1.0 and the AutoML sys-
tems Auto-WEKA (Thornton et al., 2013; Kotthoff et al., 2019), H2O
AutoML (LeDell and Poirier, 2020), and TPOT (Olson, Urbanowicz, et
al., 2016; Olson and Moore, 2019). This improved performance further
supports our finding that we can boost machine learning accessibility
by going beyond the standard CASH formalism.

9.1.3 Benchmarking and the OpenML Platform

All improvements to the realm of automated machine learning from
Parts ii and iii hinge on the availability of extensive meta-data. We
introduced the tools to increase their availability in Part iv by intro-

9.2 future work 191

ducing OpenML-Python (Chapter 7) and OpenML benchmarking suites
(Chapter 8).

OpenML-Python allows for full access to OpenML and contains a
scikit-learn integration. We furthermore demonstrated research adop-
tion by giving examples of how other researchers used OpenML-
Python. As of today, OpenML-Python is the most successful OpenML
API by the number of contributors, open issues, and GitHub stars
(OpenML.org, 2022).

While the availability of a large amount of datasets is the first step,
these datasets need to be curated to form realistic benchmarks. For
this, we have introduced benchmarking suites in Chapter 8, which can be
used to organize the datasets on OpenML and provide fully-defined
benchmarks for further use. Furthermore, we introduced the OpenML-
CC18 benchmarking suite as the first practical example, which should
be used to compare standard machine learning algorithms. Because
we introduced the first benchmarking suites in 2017 we were able to
discuss their adoption in research and show that researchers appreciate
having access to pre-selected datasets.1

We omit further discussions of our contribution to the OpenML
benchmarking platform because both Chapters 7 and 8 themselves
already include an extensive and up-to-date discussion of the work.

9.2 future work

The field of Automated Machine Learning (AutoML) has made great
strides over the last years. Our work provides important contributions
to the field of AutoML. We conclude this thesis by discussing possible
extensions to our work and additional future research that we expect
to be important over the next few years.

9.2.1 Future Work To Improve Auto-sklearn

Despite our continuous effort to improve the AutoML system Auto-
sklearn, there are numerous possible extensions and potential open
research questions.

To improve performance, Auto-sklearn could use ideas from green
AutoML (T. Tornede et al., 2021) that predict whether configurations
will be able to finish within the given budget to not waste time evalu-
ating configurations unnecessarily (Nguyen, Musial, and Gabrys, 2021;
Mohr, Wever, A. Tornede, et al., 2021).

In Chapter 4, we have demonstrated strong performance of our new
transfer HPO method RGPE(TAF). Like the portfolios currently used in
Auto-sklearn, it comes with theoretical guarantees but can dynamically
adapt to the dataset at hand. In addition, it is hyperparameter-free

1 We have introduced the first benchmarking suites in 2017, but only published our
work in Chapter 8 in 2021.

192 conclusion

and does not require setting the size of the portfolio. Therefore, we
suspect that it would be a fruitful addition to Auto-sklearn.

Next, the search space of Auto-sklearn is currently hand-designed.
The reader of this thesis should immediately understand that this is
sub-optimal and that by creating an automated procedure, we will
be able to use better search spaces. We could also add alternative
primitives that do not reside within scikit-learn, such as XGBoost (T.
Chen and Guestrin, 2016) or LightGBM (Ke et al., 2017), and let an
automated method decide which ones to use in the final search space.
Similar to the meta-learning ideas we developed in Chapter 6, the
search space could be targeted at a specific time horizon, or extending
on that, be constructed with a specific application in mind. To realize
such automated search space construction, ideas from search space
pruning could be used (Wistuba, Schilling, and Schmidt-Thieme, 2015;
Perrone and Shen, 2019). However, we expect a combination of prior-
guided Bayesian optimization (Hvarfner et al., 2022) and learned
priors (Rijn and Hutter, 2018) to be an even better option. Such a
method would not prune the search space but instead focus on the
most promising parts of the search space in the beginning. In the long
run, it would fade out the prior and consider the full search space.

To improve the efficiency of Auto-sklearn 2.0 we also suggest us-
ing the budget as a context in the selector to not have to rebuild the
AutoML system for each budget setting. Yet, this will be very chal-
lenging as it would at least require us to change the way we generate
the training data to train the selector to include the performance of
Auto-sklearn for multiple budgets.

We designed Auto-sklearn to mimic the API of scikit-learn (Pe-
dregosa, Varoquaux, et al., 2011; Buitinck et al., 2013) and users can
add or exclude components that are searched over. However, our sys-
tem does not allow for changing the overall pipeline structure. Other
AutoML systems such as Auto-KERAS (Jin, Song, and Hu, 2019) and
LALE (Baudart et al., 2021) provide expert interfaces, in which the
user can pass in the pipeline structure to optimize. We consider this
important future work because it would allow Auto-sklearn to cover
more use cases, for example, Gemein et al., 2020 could have optimized
the hyperparameters of the feature extraction from EEG readings by
adding it as an additional pipeline step in Auto-sklearn.

9.2.2 What makes a well-performing AutoML system?

AutoML systems are complex pieces of engineering that consist of
many individual parts. So far we only know very little about how to
design efficient AutoML systems, and which parts are responsible for
the performance under which circumstances.

9.2 future work 193

Machine Learning Primitives Used in AutoML Research

Auto-sklearn is based solely on scikit-learn (Pedregosa, Varoquaux,
et al., 2011). Its development started before more powerful machine
learning packages such as XGBoost (T. Chen and Guestrin, 2016),
LightGBM (Ke et al., 2017), CatBoost (Prokhorenkova et al., 2018) and
PyTorch (Paszke et al., 2019) were available and contained implemen-
tations of state-of-the-art algorithms at the time. Using these packages
can result both in improved predictive performance and lower training
times.

Recent AutoML systems, such as FLAML (C. Wang et al., 2021),
AutoGluon (Erickson et al., 2020), and LightAutoML (Vakhrushev
et al., 2021) make heavy use of these and therefore have access to
potentially stronger base models to optimize and combine. Therefore,
it is important to not conflate research on AutoML methods with re-
search on AutoML systems. On one hand, we acknowledge that using
different sets of primitives is valid when comparing AutoML systems.
While it can be interesting which method can be implemented best to
maximally boost performance, one must ensure to not just conduct a
bake-off that provides us with little scientific knowledge (Langley, 1996;
Drummond, 2006), and keep in mind that different implementations
of the same algorithm can have large runtime deviations (Kriegel,
Schubert, and Zimek, 2017). On the other hand, a fair comparison
of AutoML methods requires them to use the same set of primitives.
This means they would have to use the same set of machine learning
algorithms, with the same implementation and the same hyperparam-
eter ranges to choose from. Such an approach is for example proposed
by the D3M project (DARPA, 2022; Milutinovic, 2019). To the best of
our knowledge, this has not been adopted by the research community
in general, and it is therefore an open question how to approach fair
comparisons.

Search Space Design

Unfortunately, there is a plethora of different pipeline and search
space representations, and their expressiveness and searchability are
not immediately clear. To make things worse, papers that introduce a
new pipeline representation often intertwine it with the search method
and vice versa.

In Chapters 5 and 6 we follow the CASH (Thornton et al., 2013;
Kotthoff et al., 2019) paradigm. In the realm of evolutionary algo-
rithms, some researchers describe the search problem using strongly
typed genetic programming (Křen, Pilát, and Neruda, 2015; Pilát,
Křen, and Neruda, 2016; Křen, Pilát, and Neruda, 2017, GP-ML), tree-
structured genetic programming (Olson, Bartley, et al., 2016; Olson and
Moore, 2019, TPOT) and grammar-based genetic programming (de
Sa et al., 2017, RECIPE) and mutation and crossover rules in a ge-

194 conclusion

netic algorithm (Qi et al., 2019, DarwinML). There are also works that
employ heuristic search algorithms to find pipelines (Mohr, Wever,
and Hüllermeier, 2018; Rakotoarison, Schoenauer, and Sebag, 2019;
Katz et al., 2020; Zöller, Nguyen, and Huber, 2021; Marinescu et al.,
2021), however, they use different formalisms to describe the search
graph. Moreover, the pipeline and search space representation can also
follow the methodology and be tailored to a reinforcement learning
algorithm. Reinforcement learning has been applied to pipeline edit
operations (Drori, Krishnamurthy, Rampin, et al., 2018; Drori, Krish-
namurthy, Lourenco, et al., 2019), linear pipelines (X. Sun, J. Lin, and
Bischl, 2019; Khurana and Samulowitz, 2020) and pipelines in a grid
world (Heffetz et al., 2020).2

To overcome the representation issues we propose to use a general
pipeline description language, that incorporates the pipeline struc-
ture. It must also allow describing operations, their hyperparameters
and search spaces, as well as the pre- and post-conditions for apply-
ing them. Such a language would allow describing the problem to be
solved independently of the search algorithm. We could then better de-
scribe AutoML by breaking it down into the search space, search method
and performance estimation as it was proposed for Neural Architecture
Search (NAS) algorithms (Elsken, Metzen, and Hutter, 2019b). Based
on this we could for example, compare the different Monte Carlo
Tree Search (MCTS) approaches described in the literature (Rakotoari-
son, Schoenauer, and Sebag, 2019; Zöller, Nguyen, and Huber, 2021)
with respect to different pipeline sizes, operators, and maybe even
with respect to the applicability of a method to construct pipelines of
unlimited size.

Leveraging Heterogeneous Ensembles in AutoML

Currently, the majority of AutoML systems, including our own Auto-
sklearn 1.0 and Auto-sklearn 2.0 (see Chapters 5 and 6), follow the
CASH paradigm (Escalante, Montes, and Sucar, 2009; Q. Sun, Pfah-
ringer, and Mayo, 2013; Thornton et al., 2013; Komer, Bergstra, and
Eliasmith, 2014; Bürger and Pauli, 2015; Y. Zhang et al., 2016; Swearin-
gen et al., 2017; Alaa and Schaar, 2018; Fusi, Sheth, and Elibol, 2018;
C. Yang, Akimoto, et al., 2019; Zimmer, Lindauer, and Hutter, 2021;
C. Wang et al., 2021; Vakhrushev et al., 2021). Some of them use ad-
ditional post-hoc ensembling similar to the post-hoc ensembling we
introduced in Chapter 5 (Escalante, Montes, and Sucar, 2009; Bürger

2 We have chosen the above mentioned works because they represent unique contri-
butions in the description of the search space or the search strategy. However, there
are several other works, also earlier ones, that would already qualify as AutoML
systems but did not focus on the search for pipelines and can therefore for example
be subsumed by the CASH formalism (Caruana et al., 2004; Statnikov et al., 2005).
We would like to point the interested reader to a great survey on intelligent assistants
for data analysis (Serban et al., 2013).

9.2 future work 195

and Pauli, 2015; Alaa and Schaar, 2018; C. Yang, Akimoto, et al., 2019;
Zimmer, Lindauer, and Hutter, 2021).

Systems based on genetic algorithms go a different route. They al-
low classifiers as intermediate pipeline steps, that either allow implicit
stacking (Olson, Bartley, et al., 2016; Olson and Moore, 2019; Qi et al.,
2019) or explicitly incorporate stacking into their search space (Pilát,
Křen, and Neruda, 2016; Křen, Pilát, and Neruda, 2017). Instead of
allowing for stacking architectures, Automatic Frankensteining (Wis-
tuba, Schilling, and Schmidt-Thieme, 2017) explicitly builds a stacking
model in a 2-stage process. Auto-Stacker goes one step further and
directly searches for a two-level stacking ensemble (B. Chen et al.,
2018).

All these methods include an HPO component. Contrarily, Auto-
Gluon completely discards HPO, and instead invests all available
time budget into robustly stacking models, potentially in multiple
layers (Erickson et al., 2020).3 This resulted in superior performance
compared to Auto-sklearn 1.0 (see Chapter 5), TPOT (Olson, Urbanow-
icz, et al., 2016; Olson and Moore, 2019) and H2O AutoML (LeDell
and Poirier, 2020).

These differences raise several obvious questions that need to be
examined further:

1. Is stacking in an AutoML system in general preferable to solving
a CASH problem? Or can the improved performance of Auto-
Gluon be explained by other factors, for example the other set
of primitives used by AutoGluon (see also Section 9.2.2)?

2. Can we find a middle ground that combines efficient HPO and
stacking in one single-stage approach (compared to multiple
stages used by Wistuba, Schilling, and Schmidt-Thieme (2017))?

3. Do we require different models on the stacking level, or can
we employ the base models found by a CASH procedure in a
post-hoc phase to realize the gains of stacking?

4. Are the post-hoc ensembles, such as those employed by Auto-
sklearn, a good idea, and could other methods that do not use
them, for example, TPOT, be improved by using such post-hoc
ensembles, too?

As many of the above-mentioned tools are based on CASH solvers,
it is a natural question whether we can gain further performance
improvements in this area. Recent publications (Y. Zhang et al., 2016;
Mohr, Wever, and Hüllermeier, 2018; Rakotoarison, Schoenauer, and
Sebag, 2019; S. Liu et al., 2020) suggest that the optimization algorithm
used in Auto-sklearn could be improved. We deem further improve-
ments in this area important, too. Such improved CASH solvers can

3 Multi-layer stacking was originally introduced by the StackNet model which was
successfully applied to win multiple Kaggle competitions (Michailidis, 2017).

196 conclusion

lead to better AutoML systems for short time horizons, or better ways
to generate meta-data for AutoML systems such as Auto-sklearn 1.0
and Auto-sklearn 2.0. However, except for MOSAIC (Rakotoarison,
Schoenauer, and Sebag, 2019), none of these publications evaluate
whether such improvements can also be realized together with meta-
learning. On the other side, there were numerous improvements in
transfer HPO that could be leveraged here as well, as for example, the
RGPE method we introduced in Chapter 4, that could lead to further
improvements.

9.2.3 Extending the Scope of AutoML and Bringing the Human Back into
the Loop

Until now we have interpreted AutoML as an instance of the CASH
problem, and have only discussed extensions that optimize the ma-
chine learning pipeline itself in Section 9.2.2. Moreover, we have only
discussed optimizing the predictive performance of AutoML systems.
However, in real-world applications we are often interested in sec-
ondary objectives or have to abide constraints, for example the final
machine learning pipeline must have a low enough latency that al-
lows the system to be deployed. Therefore, researchers have started to
build multi-objective AutoML systems (Pfisterer, Thomas, and Bischl,
2019; Pfisterer, Coors, et al., 2019; S. Liu et al., 2020; D. Wang, Ram,
et al., 2020).4 It will be an interesting question whether such secondary
objectives can be taken into account when designing meta-learning
approaches, too.

Next, the full machine learning workflow consists of more steps
than constructing the machine learning pipeline. Caruana (2015) sug-
gested a sequential workflow of Problem Definition, Data Collection,
Data Cleaning, Data Coding, Metric Selection, Algorithm Selection, Param-
eter Optimization, Post-Processing, Deployment, Online Evaluation and
Debug. D. Wang, Liao, et al. (2021) created an even more detailed
breakdown of steps and describes 10 stages and 43 sub-tasks of the
data science and machine learning lifecycle. Many of these steps have
the potential to be automated, but we would like to note that there
are steps like Problem Definition or Metric Selection that must be left
to a human expert. The ease.ML (Aguilar Melgar et al., 2021) system
is an example of a fully integrated lifecycle management system for
machine learning, and it integrates a total of eight steps. The sys-
tem was constructed based on interaction with human practitioners
and contains automated data ingestion, cleaning, and a traditional

4 We would like to note that other subfields of AutoML suggested secondary objectives
earlier, for example HPO research suggested fairness and model size as a secondary
objectives (Gardner et al., 2014; Gelbart, Snoek, and Adams, 2014; Chakraborty et al.,
2019) and both neuro-evolution and NAS researchers suggested optimizing for model
size (Kim et al., 2017; Hsu et al., 2018; Zhou et al., 2018; Dong et al., 2018; Elsken,
Metzen, and Hutter, 2019a; Lu et al., 2019).

9.2 future work 197

AutoML system to construct machine learning pipelines. However,
such a front-to-end approach is not suitable for every user and use
case (Drozdal et al., 2020; D. Wang, Liao, et al., 2021) and there need
to be solutions that automate only individual steps. While the state
of HPO and AutoML can be well-observed these days using common
benchmarking tools (Turner et al., 2021; Eggensperger, Müller, et al.,
2021; Gijsbers et al., 2019), other steps such as data ingestion from
CSVs, data cleaning and data coding need to be integrated in the
benchmarking process. As a community, we need to agree on the steps
we are interested in and then define useful benchmarks to measure
progress and analyze proposed solutions. In the long run we also need
benchmark problems for the full end-to-end machine learning process
in case this is even possible at all.

Besides blindly increasing automation there are also other dimen-
sions to which the scope of AutoML could be extended. Several works
argue for various ways to include humans into the loop and 1) give
them more control over the AutoML process (Q. Wang et al., 2019;
Pfisterer, Thomas, and Bischl, 2019), 2) study whether they trust the
AutoML systems in place (Drozdal et al., 2020), 3) provide them
with more analysis capabilities of the AutoML systems’ output (Q.
Wang et al., 2019; Weidele et al., 2020; Ono et al., 2021)5, or 4) study
the accessibility of commercial AutoML services by their functional-
ity (Xanthopoulos et al., 2020).

Similarly, AutoML could be approached from a user perspective
and improved w.r.t. the outcome of user studies (Q. Wang et al.,
2019; Crisan and Fiore-Gartland, 2021) instead of solely targeting
performance benchmarks.

9.2.4 Relation to Deep Learning and Neural Architecture Search

In this work, we focus on featurized, i.e., tabular, data. Furthermore,
we only used “traditional” machine learning methods such as tree-
based methods, support vector machines and multi-layer perceptrons.
Given the recent progress in deep learning research, this begs two
questions:

1. Will such “traditional” methods remain relevant?

2. Will the methodology we developed in this thesis be applicable
to deep learning-based AutoML systems?

Answering the first question is, of course, very speculative. First
works claim that deep learning can be state-of-the-art for tabular

5 There exists a related stream of works that analyze hyperparameter importance
which could be used here, too (Jones, Schonlau, and Welch, 1998; Hutter, Hoos,
and Leyton-Brown, 2014; Fawcett and Hoos, 2016; Golovin et al., 2017; Biedenkapp,
Lindauer, et al., 2017; Biedenkapp, Marben, et al., 2018; Rijn and Hutter, 2018; Probst,
Boulesteix, and Bischl, 2019; Moosbauer et al., 2021).

198 conclusion

data (Kadra et al., 2021) and mixed tabular and text data (Shi et al.,
2021). However, these methods are novel and not yet battle-tested,
for example in Kaggle competitions. Still, we expect deep learning
methods to catch up to states where they will be used at least as
frequently as tree-based methods. Nonetheless, we expect that at least
a subset of the “traditional” machine learning methods will remain
relevant as they can match the performance of deep learning, but bring
other benefits, such as better interpretability and better scalability. Fur-
thermore, they have a different inductive biases that enables boosting
predictive performance by constructing hybrid ensembles (Mendoza
et al., 2019; Zimmer, Lindauer, and Hutter, 2021).

Luckily, the second question can be answered more scientifically. It
has already been shown that the techniques of Auto-sklearn 2.0 can be
applied to deep learning models on both tabular and image data (Zim-
mer, Lindauer, and Hutter, 2021). Interestingly, at the moment, there
is a gap between CASH and NAS, although both can be tackled with
similar methods (Kandasamy et al., 2018; Mendoza et al., 2019; White,
Neiswanger, and Savani, 2021). Efficient methods for NAS, such as
DARTS (H. Liu, Simonyan, and Y. Yang, 2019), use gradients, and it
would be unclear how to integrate general-purpose machine learn-
ing algorithms into such a framework. Future work should explore
combining the different paradigms of CASH and NAS into powerful,
hybrid algorithms.

While the methods that will be useful in the future are unclear
yet, we think that one must take into account that we will be able to
conduct search and optimization on a larger scale in the future, and
that all methods we develop must therefore scale to such enhanced
compute capabilities (Sutton, 2019).

9.2.5 OpenML and Benchmarking

The future work for OpenML-Python is very clearly laid-out by the
roadmap of the OpenML platform to which OpenML-Python provides
an interface; it is therefore more interesting to discuss how we can
extend on the benchmark suites and improve upon them. In Chapter 8

we have already discussed the issues of overfitting to benchmarking
suites, credit assignment for contributions to a benchmarking suite,
automating the curation of useful suites, computational issues, breadth
of current benchmarking suites, specification of resource constraints
and disclosure of ethical issues. We have further identified several new
research questions.

Integrating the Latest Datasets

Another issue the author observed is that there is no automated
process to upload new datasets to OpenML. As an example, at the
NeurIPS 2021 datasets and benchmarks track (Vanschoren, Yeung,

9.2 future work 199

and Xenochristou, 2021), several papers introduced tabular datasets
for supervised classification, for example the folktables datasets (Ding
et al., 2021). They are reproductions of the famous UCI Adult dataset.
Because the data was gathered with the goal of understanding bias
in the original UCI Adult dataset, it was converted into one dataset
per year (2014-2018) and state (i.e., the 50 states of the United States
of America) and contains additional prediction targets to allow more
fine-grained analysis. However, at the time of writing, they were not
available on OpenML. This could be due to three issues: no incentive
to upload the data to OpenML, no knowledge about the OpenML plat-
form, or too much hassle to upload to OpenML. Instead, we propose
that future work considers a bot that parses conference submissions
for dataset artifacts so that an editor can upload them to OpenML in
a semi-automated fashion.

Furthermore, we must also find ways to automatically flag datasets
as superseded. The folktables datasets, for example, are reproductions of
the famous UCI Adult dataset and aim to fix several issues and make
the dataset more realistic. Ideally, we would also like to learn about
such updates in an automated fashion to then retire outdated datasets.

Can We Improve The Curation Protocols For Benchmarking Suites?

To the best of our knowledge, the OpenML-CC18is the first bench-
marking suite that was created following strict curation standards. In
the future, it would be good to study the field of dataset design (Aroyo
and Welty, 2015; Recht et al., 2019) to check whether we can apply
their findings on the meta-level. One such example would be a dataset
distribution shift, meaning that datasets could be labeled differently
at different time steps.

Consider a digit classification dataset for which the dataset cre-
ator computed HOG (Dalal and Triggs, 2005), SIFT (Lowe, 1999), or
other manually defined features from the raw features. These datasets
would have been of interest until the early 2010s; however, current
approaches to digit classification solely rely on deep neural networks,
which only consume raw data (Clune, 2019; Sutton, 2019), rendering
these preprocessed datasets uninteresting. In retrospect, both bench-
marking suites we introduced and described in Chapter 8 contain
image datasets with manually extracted features that we consider
to be no longer relevant. Future dataset collections should at least
consider checking whether the concept a certain dataset represents is
still of interest.

Can We Support Meta-Learning Research by Providing Training Suites?

For meta-learning research, it is important to not only have access
to benchmarking suites that can be used as test datasets, such as the
OpenML AutoML benchmark (Gijsbers et al., 2019). To generate meta-

200 conclusion

data, we also need access to training datasets, such as the ones we
created in Chapters 5 and 6.

Such training and testing suites could be designed following differ-
ent aspects or different goals in meta-learning research:

• in-distribution meta-learning: the test datasets come from the
same distribution or data generator, for example, the folktables
datasets (Ding et al., 2021) contain a dataset per US state and we
could split them into training and test,

• concept drift meta-learning: the training and test datasets come
from the same dataset distribution at different time steps, for
example the folktables datasets (Ding et al., 2021) are given for
the years 2014-2018, and one could use 2014-2017 as training
datasets and 2018 as the test dataset,

• mixed-distribution meta-learning: the test datasets share some
overlap with the distribution of training datasets, which is what
we implicitly do by using all data available on OpenML, and

• out-of-distribution meta-learning: e.g., training the AutoML sys-
tem on manufacturing tasks and then applying them to biology
tasks.

So far only HPO-B (Pineda et al., 2021) recognizes the necessity of
separating an available benchmark collection into a training and a
testing set. However, HPO-B assigns the datasets at random and it
is therefore unclear whether it follows any of the aspects mentioned
above.

In this last section, we have laid out current research challenges for
AutoML systems. We believe that tackling these will allow us to better
understand the factors that enable efficient and robust AutoML. With
this knowledge, we will be capable of designing AutoML systems that
support human experts in all steps of the machine learning and data
science workflow and thereby fully democratize machine learning.

Part VI

A P P E N D I X

A
A P P E N D I X F O R P R A C T I C A L T R A N S F E R L E A R N I N G
F O R B AY E S I A N O P T I M I Z AT I O N

203

Practical Transfer Learning for Bayesian Optimization

A. Relation between TAF, SFMO and Active Testing

Leite et al. (2012) introduced active testing which uses relative landmarking (pairwise
ranking of all observations so far) to decide which configuration x, from a finite set of choices,
to run next. For each candidate configuration x that was not yet run on the target dataset,
they do a table lookup to determine whether and by how much that algorithm has improved
over the current best observed algorithm on each meta-dataset, and weight its improvement
by a task similarity measure computed using the pairwise ranking of all observations so far.
More specifically, active testing selects the next algorithm according to

arg max
x

t−1∑

i=1

RL(xi,xibest)Sim(t, i) (15)

with RL being a relative landmark defined as

RL(xik,x
i
best)

= 1(yik < yibest)(y
i
best − yik))

= max(0, yibest − yik)))
= I(xik), (16)

xbest being the best algorithm observed on the target task t and Sim(t, ·) is a similarity
function defined as the fraction ranking pairs after a Laplace correction. We briefly clarify
that xi means the configuration x on dataset i, similarly xik is the configuration indexed by
k on dataset i and yik is the observed performance value.

Replacing the similarity Sim(·, ·) in Equation 15 with the similarity divided by the sum

of all similarities to the target model, wi = Sim(t,i)∑t−1
j=1 Sim(t,j)

, and also replacing the relative

landmark in Equation 15 with the improvement from Equation 16 shows us that active
testing is similar to the transfer acquisition function (TAF) with the following differences:

1. Active Testing works only on a finite set of algorithms a, while TAF can be applied to
problems with continuous hyperparameters.

2. TAF models function values with a surrogate model, while active testing relies only on
previously conducted function evaluations.

3. TAF includes a model and an expected improvement term for the target task as well.

4. The weighting function is slightly different to TAF, as it only takes the proportion of
correct pairwise comparisons into account, but performs Laplace smoothing to compute
Sim(·, ·). Most importantly, active testing does not include a bandwidth factor which
determines whether a base model should be dropped.

5. Active Testing models the improvement over the current best known design point,
while TAF leaves the choice of xbest to the individual base models.

This finding has two implications: First, we can use the weighting scheme we developed
in the main paper in this setting as well, and would benefit from all improvements over

39

appendix for practical transfer learning for bayesian optimization 205

Feurer, Letham, Hutter and Bakshy

TST-R(TAF) described in the text. Second, we have shown how to extend active testing to
work on a continuous design space10 and incorporate a model for the target tasks.

If we instead drop the similarity term from Equation 15 and replace yibest by mink∈(1,2,...,n) yik,
which means we consider improving over the performance of everything evaluated so far on
dataset i, we obtain sequential model-free optimization described in Section 7.

B. Scaling Study

In this section we compare the online training time of the RGPE weighting scheme we
proposed in Section 4 of the main paper with two competitor methods:

1. TST-R (Wistuba et al., 2016, also see Section 3.1), which for each model in the
ensemble requires a prediction of the current observation and the computation of the
loss function.

2. Multi-task Gaussian processes (MTGP) (Swersky et al., 2013, also see Section 7),
which defines a covariance function K((xk, i), (xl, j)) between both the input location
and the tasks, and put all observations on all tasks into a single Gaussian process. Task
descriptions are then learned jointly with the kernel hyperparameters. The multi-task
Gaussian process has a fitting complexity of O(t3n3) and requires fitting and requires
expensive hyperparameter tuning (see Appendix 7). We use the implementation from
BoTorch (Balandat et al., 2020), as it is, to the best of our knowledge, the only actively
maintained implementation of a multi-task Gaussian process for Bayesian optimization.

We give the fitting times on the AdaBoostg,2D benchmark in Figure 3. Each bar represents
the average over five repetitions, and we used 5, 10, . . . , 50 tasks for fitting. Furthermore, we
used 50 randomly sampled observations per task.

We can observe that TST-R and RGPE are substantially faster than the multi-task
Gaussian process, with TST-R always requiring less than a second to fit the whole ensemble.
In contrast, RGPE required at most 2 seconds to fit the whole ensemble for 50 tasks. In
practice RGPE requires less overhead as the fitting time is strongly influenced by the number
of observations for the target task; we used 50 observations for the target task, while in
practice we only observe these many observations at the very end of an optimization run.
This overhead is a small premium one has to pay to obtain a hyperparameter-free transfer
learning algorithm in Bayesian optimization. Lastly, we can observe why using a single
Gaussian process to fit all observations from all tasks does not scale to the size of benchmarks
we consider here. The MTGP model requires more time to fit five tasks than the RPGE
model for the highest number of tasks. Fitting the model takes roughly one hour for 25
tasks. The maximum time it required to fit the model was roughly 21000 seconds, which is
almost six hours. Such an overhead rules out the usage of MTGP for the kind of problems
we discuss in this paper.

10. In order to make this extension of active testing work on a design space which only contains discrete
choices one would simply have to use a different model, such as matrix factorization models (Fusi et al.,
2018; Yang et al., 2019, 2020)

40

206 appendix for practical transfer learning for bayesian optimization

Practical Transfer Learning for Bayesian Optimization

5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
Number of tasks

100

101

102

103

104

ru
nt

im
e

[s
]

Scaling Study
TST-R
RGPE
MTGP

Figure 3: Scaling study comparing the proposed RGPE to TST-R and multi-task GPs.

C. Full Proof of Theorem 4.1

In this section, we show that the Bayesian optimization methods we introduced in the main
paper which are built on our sampling-based weighting scheme are only a multiplicative
factor slower than regular Bayesian optimization in the worst case. Specifically, we show
that the convergence rates given by Bull (2011) still hold and are slowed down by only a
multiplicative factor. We will first restate the theoretical statement from the main paper.
Second, we will discuss a statement for the specific case of functions with smoothness ν < 1.
Third, we will discuss a more general statement for functions with smoothness ν <∞.

C.1 General Statement

In each iteration, the proposed weighting mechanism has a positive chance of performing
vanilla BO, in which only the target model is used. In these iterations, regular BO is
conducted, and standard proofs for the convergence of BO therefore apply (Bull, 2011) with
a slowdown factor.11

Theorem 1 (From the main paper) Bayesian optimization using a linear combination of
Gaussian processes with weights learned according to Section 4.2 of the main paper is at
most a factor of

1/

(
1

H

H∑

h=1

(
h

H

)t−1)

11. We note that this only applies to results which provide guarantees in terms of the simple regret and not
the cumulative regret.

41

appendix for practical transfer learning for bayesian optimization 207

Feurer, Letham, Hutter and Bakshy

slower than Bayesian optimization in the worst case. As before, H is the optimization
horizon, while we change the number of observed data points nt to h, i.e. the current
iteration.

Proof sketch: In order for the proposed method to fall back to vanilla BO, we need the
weights of all models except that of the base model to be zero. Given the definition of pdrop
in Equation 9, and setting nt to h in pdrop(i, h), we can calculate the probability of dropping
all base models at step h as

∏t−1
i=0 pdrop(i, h), and so the expected proportion of iterations

that proceed as vanilla BO is

1

H

H∑

h=1

t−1∏

i=1

pdrop(i, h) (17)

=
1

H

H∑

h=1

t−1∏

i=1

(
1−

((
1− h

H

) ∑S
s=1 1(li,s < lt,s)

S

))
(18)

≥ 1

H

H∑

h=1

(
1−

((
1− h

H

)
S

S

))t−1
(19)

=
1

H

H∑

h=1

(
h

H

)t−1
(20)

> 0 (21)

The observations gathered in iterations when not all base models are dropped do not impose
any issues on the convergence proof by Bull (2011). We will show this in the remainder of
the section for fixed hyperparameters of a Gaussian process.

C.2 Functions with Smoothness ν < 1

We briefly restate Theorem 2 from Bull (2011), which gives near-optimal convergence rates
for GP-based Bayesian optimization with prior smoothness ν ≤ 1:
Theorem 2 (From Bull (2011)), Let π be a prior with length-scale θ ∈ Rd+. For any R > 0,

Ln(EI(π),Hθ(X), R) =

{
O(n−ν/d(log n)α), ν ≤ 1,

O(n−1/d), ν > 1.
(22)

The smoothness ν can be seen as a kernel (prior) hyperparameter to the Matérn
kernel, and the kernel (prior) approaches the squared exponential covariance function for
ν → ∞ (Rasmussen and Williams, 2006). Ln is the loss suffered over the ball BR in the
reproducing Hilbert space Hθ(X) after n steps when applying an expected improvement
strategy with given prior (kernel with hyperparameter values set to θ):

Ln(EI(π),Hθ(X), R)

= sup
||f ||Hθ(X)≤R

EEI(π)f [f(x∗n)−min f].

42

208 appendix for practical transfer learning for bayesian optimization

Practical Transfer Learning for Bayesian Optimization

In contrast to the main paper, we follow the notation from Bull (2011) and use f to
denote the function we aim to minimize and x to denote a single observation (in contrast to
x in the main paper). We will describe symbols which are different from the notation in the
main paper when introducing them. α is either zero for ν /∈ N or 0.5 otherwise, and R is an
upper bound on the function norm, i.e. the maximum absolute value of the function f . X is
a subset of Rd, and x∗n is the estimated optimizer of f after n steps.
Proof of Bull’s Theorem 2 still valid The proof for Theorem 2 bounds the simple regret
at some time step n via several inequalities depending on Lemma 8 (which bounds the
improvement over the current best observation based on a fitted GP), but the regret bound
itself and its proof do not have a dependence on the Gaussian process conditioned on the
observed data. Furthermore, the proof shows that there is a time step nk, where the expected
improvement is low and therefore BO must be close to the minimum. The existence of such
a time step depends on Lemma 7, which states that there are at most k time steps in which
the posterior variance of the Gaussian process exceeds a certain value (which converges
linearly to zero as we observe more data points). Together with an argument that BO can
only improve k times in total, Bull concludes that there must be a time step k ≤ kn < 3k
where the posterior variance at a future observation is small and some improvement occurs.
We will therefore continue to discuss Lemma 7 and Lemma 8. We first start by restating
Lemma 8:
Lemma 8 (From Bull (2011)) Let ||f ||Hθ(X) ≤ R. For x ∈ X,n ∈ N, set I = max(0, f(x∗n)−
f(x)), and s = sn(x, θ). Then for

τ(x) := xΦ(x) + φ(x),

we have

max

(
I −Rs, τ(−R/σ)

τ(R/σ)
I

)
≤ EIn(x;π) ≤ I + (R+ σ)s,

where sn is the predictive standard deviation of the Gaussian process at iteration n
without the global scale of variation (Bull, 2011, Equation 2), which is given by σ in the
above Lemma.

This bounds the expected improvement at a given point x ∈ X for the case of the
Gaussian process model predicting a variance larger than zero for x. The actual predictive
distribution of the underlying Gaussian process changes with the observed data, but the
Lemma is stated with respect to a Gaussian process conditioned on data, and therefore,
Bull’s proof holds for any sequence of previous observations x1, . . . , xn.

In contrast, Lemma 7 has a dependence on the sequence of data points observed.
Lemma 7 (From Bull (2011)) Set

β :=

{
α, ν ≤ 1,

0, ν > 1.

Given θ ∈ Rd+, there is a constant C ′ > 0 depending only on X, K and θ which satisfies the
following. For any k ∈ N, and sequences xn ∈ X, θn ≥ θ, the inequality

sn(xn+1; θn) ≥ C ′k−(ν∧1)/d(log k)β

holds for at most k distinct n.

43

appendix for practical transfer learning for bayesian optimization 209

Feurer, Letham, Hutter and Bakshy

The proof of Lemma 7 consists of two parts. The first part shows that the posterior
variance is bounded by the distance to the nearest point observed so far. As this describes
the general behavior of a Gaussian process, it is a bound on the posterior variance given the
observed data. The second part shows that most design points xn+1 are close to a previous
xi, and that therefore the posterior variance of the Gaussian process model is effectively
bounded. As we alter the strategy with which we choose the “previous” xi, we need to
ensure that this property still holds for points not chosen by the standard EI strategy. We
fully restate this part of the proof:

We next show that most future evaluations xn+1 are close to a previous xi. X is bounded,
so can be covered by k balls of radius O(k−1/d). If xn+1 lies in a ball containing some earlier
point xi, i ≤ n, then we may conclude

s2n(xn+1; θn) ≤ C ′2k−2(ν∧1)/d(log k)2β,

for a constant C ′ > 0 depending only on X, K and θ. Hence as there are k balls, at most k
points xn+1 can satisfy

sn(xn+1; θn) ≤ C ′k−(ν∧1)/d(log k)β.

Having stated this part of the original proof, we can see that the location of previously
queried points is used to bound the predictive variance of the Gaussian process. However,
whether a previously queried point in one of the k balls was found by the initial design,
EI with only the target GP, or BO with meta-learning does not matter for the posterior
variance of the Gaussian process. We therefore conclude that BO methods based on the
weighting mechanism introduced in the main paper take at most a multiplicative factor
given by Theorem 4.1 longer to reach the time where most future evaluations xn+1 are close
to a previous xi compared to running only vanilla BO. This slowdown is exactly what we
stated in Theorem 4.1.

As both Lemma 7 and Lemma 8 still hold, we conclude that Theorem 2 does not
suffer from additional points observed between the iterations performing Bayesian optimiza-
tion. As methods using the sampling-based weighting mechanism perform vanilla Bayesian

optimization with probability 1
H

∑H
h=1

(
h
H

)t−1
, these methods are at most a factor of

1(
1
H

∑H
h=1

(
h
H

)t−1)

slower than vanilla Bayesian optimization. �

C.3 Functions with Smoothness ν <∞
We briefly restate Theorem 5 from Bull (2011), which gives near-optimal convergence rates
for GP-based Bayesian optimization in the more general case of prior smoothness ν <∞.
Theorem 5 (Adapted from Bull (2011) to only describe the case of a known prior π.), If
ν <∞, then for any R > 0,

Ln(EI(π, ε),HθU (X), R) = O((n/ log n)−ν/d(log n)α),

while if ν =∞, the statement holds for all ν <∞.

44

210 appendix for practical transfer learning for bayesian optimization

Practical Transfer Learning for Bayesian Optimization

Proof of Bull’s Theorem 5 still valid Bull’s proof of Theorem 5 works slightly differently
than the proof of Theorem 2. Instead of relying on previously sampled points to bound the
variance of the Gaussian process (and thereby also bound expected improvement and actual
improvement), this proof relies on the observations being quasi-uniform in the search space.
For this, the presented technique relies on falling back to a random sampling strategy with
probability 0 < ε < 1.

The proof of Theorem 5 depends on Lemma 12, the proof for which preludes the proof
of Theorem 5. It basically gives a probabilistic bound on the mesh norm of points chosen
at random. More specifically, it gives the probability for supx∈X minni=1 ||x− xi|| exceeding
a certain value, which converges to zero with rate log n/n. Conversely, the probability of
having a low mesh norm increases with the number of randomly drawn samples, and having
a small mesh norm is important for the remainder of Bull’s proof. The proof of Lemma 12
does not take into account points selected by Bayesian optimization, but only points selected
by random sampling, and therefore will not depend on points suggested by a meta-learning
strategy.

Interestingly, the proof of Theorem 5 also does not depend on the points selected by
Bayesian optimization, but rather states that posterior variances are small due to the
quasi-uniform coverage of the search space, and therefore there exist times nk where the
observed function values are close to min f . The resulting bound is

EEI(π,ε)f [z∗2n+1 − z∗] ≤ (2C ′R+ C ′′(2R+ σ))rn.

As stated in Equation 2.1 and Sections 2.0 and 2.1 by Bull (2011), the left-hand side is
the average-case performance at some future time 2n+ 1, given by the expected loss under
an expected improvement strategy with known hyperparameters of the Gaussian process.
The quantities on the right-hand side are:

• rn: a constant depending on the current iteration n: rn = (n/ log n)−ν/d(log n)α.

• R: an upper bound on the function norm: ||f ||Hθ(X) ≤ R.

• C ′: a constant > 0, which multiplied with rn gives the upper bound on the probability
of having chosen enough points at random, one point by expected improvement, and
the mesh norm being small enough. Bull (2011) states that this constant does not
depend on f . As only a fraction of points are gathered by a combination of vanilla BO
with every 1

ε th step sampled at random, it can take up to a factor given in Theorem
4.1 longer to observe the necessary points.

• C ′′: a constant > 0, which multiplied with rn gives the upper bound on the predictive
variance sn(x) of the Gaussian process for a given time step n, which in turn is bounded
by the mesh norm. Bull (2011) states that this constant depends only on X, K and C
(a constant introduced in the proof of Lemma 12, which explains the random sampling
behavior), therefore, it follows that it does not depend on f .

We conclude that Theorem 5 does not suffer from additional points observed in iterations
where meta-learning is used and that the presented methods are at most a factor of

1(
1
H

∑H
h=1

(
h
H

)t−1)

45

appendix for practical transfer learning for bayesian optimization 211

Feurer, Letham, Hutter and Bakshy

slower than vanilla Bayesian optimization. �

D. Experiments

In this section we give further details on the software used for this paper and details on the
experiments to help reproducibility and replicability of our results. Furthermore, we give
additional results on what scaling to use within the presented ensemble models, provide a
sensitivity analysis of the hyperparameter of both the TST-R(EI) and TST-R(TAF) method
and finish with a comparison to our earlier work published in arXiv preprints.

D.1 Search Spaces

The search spaces for the surrogate benchmarks can be found in Tables 9, 10 and 11 and
the search space for the grid benchmarks can be found in Tables 12, 13 and 14.

Name Range Log Cond

α [0, 1] No No
λ [2−10, 210] Yes No

Table 9: Search space for the GLMNETs,2D surrogate benchmark.

Name Range Log Cond

Kernel {Linear, Polynomial, Radial} No No
C [2−10, 210] Yes Yes
γ [2−10, 210] Yes Yes
Degree [2, 5] Yes Yes

Table 10: Search space for the SVMs,4D surrogate benchmark.

Name Range Log Cond

#Rounds [1, 5000] No No
η [2−10, 20] Yes No
Subsample [0, 1] No No
Booster {GBLinear, GBTree} No No
Max depth {1, 15} No Yes
Min child weight [20, 27] Yes Yes
Colsample by tree [0, 1] No Yes
Colsample by level [0, 1] No Yes
λ [2−10, 210] Yes No
α [2−10, 210] Yes No

Table 11: Search space for the XGBoosts,10D surrogate benchmark.

46

212 appendix for practical transfer learning for bayesian optimization

Practical Transfer Learning for Bayesian Optimization

Name Range Log Cond

I [2, 10000] Yes No
M [2, 30] Yes No

Table 12: Search space for the AdaBoostg,2D grid benchmark.

Name Range Log Cond

Use linear kernel {No, Yes} No No
Use polynomial kernel {No, Yes} No No
Use RBF kernel {No, Yes} No No
C [2−5, 26] No No
d [2, 10] No No
γ [0.0001, 1000] Yes No

Table 13: Search space for the SVMg,6D grid benchmark.

Name Range Log Cond

Batch size [16, 256] Yes No
Learning rate [1e−4, 1e−1] Yes No
Momentum [0.1, 0.99] No No
Weight decay [1e−5, 1e5] No No
Number of layers [0.1, 0.99] No No
Maximum number of units per layer [16, 1024] Yes No
Dropout [0.0, 1.0] No No

Table 14: Search space for the Neural Network grid benchmark.

D.2 Further Implementation Details

We now further discuss how we verified that our reimplementations of TST-R and TAF
are correct. The results reported in Figure 9 of Wistuba et al. (2018) were obtained by
measuring the performance of Bayesian optimization with respect to multiple random seeds
while keeping the random sample of configurations for training the base models the same
across repetitions. This experimental design measures the performance with respect to one
way the available meta-data is sampled. In contrast, we aim to measure the robustness of
our method with respect to different ways the meta-data is obtained (i.e. every repetition
having a different sample of configurations to train the base models on). To ensure that our
reimplementation is correct we strived to compare it to the original Java implementation in
the same experimental setting. To allow a fair comparison we modified the implementation
of TST-R Wistuba (2016) to sample the configurations for each repetition based on the
random seed. Then, we ran both our reimplementation and the original implementation
with 25 different random seeds on the SVMg,6D benchmark and observed that both methods
perform highly similar and conclude that our reimplementation is correct.

47

appendix for practical transfer learning for bayesian optimization 213

Feurer, Letham, Hutter and Bakshy

D.3 Standardization, Copula Transform or Raw Values?

As the results for different tasks can live on different scales, the different methods need to
take this into account. We discussed in Section 4.2 that we standardize the observations
{yik}nik=1 separately per task i ∈ (1, . . . , t) so that for each task the mean of the observations
is zero and the variance is one. However, it has so far not been studied whether this is
necessary or one can also use the raw values. Moreover, we are interested in whether the
Copula transformation that was recently proposed as an alternative scaling for meta-learning
in hyperparameter optimization is a generally applicable option (Salinas et al., 2020).

We apply the three different transformations to the proposed methods as well as to
baseline methods: Our proposed RGPE(NEI) and RGPE(mean) as well as the accompanying
TST-R baseline (including HPO); our proposed RGPE(MoGP) and RGPE(TAF) as well as
the TST-R(TAF) baseline (including HPO); and also the ABLR (Perrone et al., 2018) and
SMFO (Wistuba et al., 2015a; Pfisterer et al., 2021) (see Section 7 for more information on
these). We give these results in Table 15.

Methods that combine on a model level (RGPE(NEI), RGPE(mean), TST-R, ABLR
and SMFO) use the zero mean unit variance scaling as their default. In contrast, the
methods that combine the individual models on the acquisition function level do not scale
by default. Looking at the former, using no scaling on average results in worse performance
than using the default scaling. However, we find that using the Copula transform can lead to
further improvements, and except for two methods on the AdaBoostg,2D benchmark, always
performs best or not significantly worse than the best scaling for the respective method.
Looking at the latter, not scaling the data at all appears to be a good default. The Copula
appears to perform en par for the two TAF versions, and appears to be slightly better for
RGPE(MoGP). Finally, the zero mean unit variance scaling performs rather well, too, but
the other two methods have a slight edge.

Interestingly, the Copula transform appears to work very well on average, but leads to
substantially worse results on the SVMs,4D benchmark and can lead to slightly worse results
for the TAF methods on the NNt,7D benchmark. We checked what caused these performance
drops and found that for SVMs,4D this was caused by a single dataset. Consequently, we
checked that the target model was picked as the sole model for sufficient amount of time,
and found that this is the case. Therefore, we attribute this failure to our underlying GP
which was not able to escape this local minimum (most likely due to the conditional nature
of the hyperparameter space). For the NNt,7D benchmark we cannot fully attribute this
failure to a single dataset.

D.4 Sensitivity Analysis for TST-R(EI) and TST-R(TAF) Methods

In this subsection we study certain aspects of the baseline methods TST-R(EI) and TST-
R(TAF). Specifically, we are interested in effect of weight dilution prevention on both
methods and in how to set the hyperparameter ρ.

We compare both methods with and without weight dilution prevention in Table 16.

Lastly, we study the effect of tuning the hyperparameter ρ for TST-R(EI) and TST-
R(TAF) and show results in Table 17. In total, we compare three different strategies to set
ρ:

48

214 appendix for practical transfer learning for bayesian optimization

Practical Transfer Learning for Bayesian Optimization

G
LM

N
E
T s,

2D

SV
M
s,
4D

N
N t,

7D

X
G

B
oo

st
s,
10
D

A
da

B
oo

st
g,
2D

SV
M
g,
6D

RGPE(NEI,mean/var)* 2.20 0.37 2.71 0.64 0.62 0.39
RGPE(NEI,Copula) 0.13 1.41 2.13 0.60 0.57 0.32
RGPE(NEI,unscaled) 2.70 0.34 3.05 0.94 0.49 0.34

RGPE(mean,mean/var)* 0.23 0.26 2.55 0.65 0.55 0.47
RGPE(mean,Copula) 0.20 1.55 2.22 0.62 0.66 0.42
RGPE(mean,unscaled) 0.15 0.62 2.94 0.64 0.44 0.43

TST-R(EI,HPO,mean/var)* 0.21 0.27 3.19 0.61 0.57 0.55
TST-R(EI,HPO,Copula) 0.29 2.17 2.69 0.57 0.49 0.53
TST-R(EI,HPO,unscaled) 0.18 0.60 4.73 0.64 0.64 0.59

TST-R(TAF,HPO,mean/var) 0.10 0.58 1.67 0.66 0.68 0.49
TST-R(TAF,HPO,Copula) 0.08 1.13 1.85 0.53 0.60 0.47
TST-R(TAF,HPO,unscaled)* 0.17 0.50 1.71 0.62 0.57 0.50

RGPE(TAF,mean/var) 0.14 1.30 2.06 0.57 0.65 0.35
RGPE(TAF,Copula) 0.14 1.30 2.06 0.57 0.65 0.35
RGPE(TAF,unscaled)* 0.16 0.38 1.55 0.67 0.63 0.45

RGPE(MoGP,mean/var) 0.17 0.38 1.99 0.71 0.73 0.53
RGPE(MoGP,Copula) 0.16 1.28 1.89 0.56 0.76 0.37
RGPE(MoGP,unscaled)* 0.16 0.30 1.93 0.80 0.76 0.58

ABLR(mean/var)* 2.95 0.86 5.03 1.58 0.52 1.86
ABLR(Copula) 0.19 0.61 5.18 1.19 0.72 1.71

SMFO(mean/var)* 0.25 1.74 1.75 0.87 1.11 1.21
SMFO(Copula) 0.30 1.67 1.85 0.90 0.71 1.08

Table 15: Results comparing standardization (Yogatama and Mann, 2014, mean/var), the
Copula transform (Salinas et al., 2020, Copula) and no transformation (un-
scaled) for RGPE(NEI), RGPE(mean), TST-R(EI), TST-R(TAF), RGPE(TAF),
RGPE(MoGP), ABLR and SMFO. We mark the method’s default by an aster-
isk. The numbers reported are the average normalized regret (Wistuba et al.,
2018). We boldface the best value per benchmark and underline methods that
are not significantly different according to a Wilcoxon signed-rank test with
α = 0.05 (Demšar, 2006).

49

appendix for practical transfer learning for bayesian optimization 215

Feurer, Letham, Hutter and Bakshy

G
LM

N
E
T s,

2D

SV
M
s,
4D

N
N t,

7D

X
G

B
oo

st
s,
10
D

A
da

B
oo

st
g,
2D

SV
M
g,
6D

TST-R(EI) 0.20 0.49 3.00 0.78 0.52 0.64
TST-R(EI,wd) 0.14 0.43 3.01 0.72 0.59 0.76

TST-R(TAF) 0.17 0.48 2.95 0.64 0.73 0.46
TST-R(TAF,wd) 0.17 0.60 2.84 0.67 0.89 0.40

Table 16: Ablation study on the effect of weight dilution for TST-R(EI) and TST-R(TAF).
The numbers reported are the average normalized regret (Wistuba et al., 2018).
We boldface the best value per benchmark and number of function evaluations
and underline methods that are not significantly different according to a Wilcoxon
signed-rank test with α = 0.05 (Demšar, 2006); separately for TST-R(EI) and
TST-R(TAF)

TST-R(EI): The hyperparameter value that has the best average result on the remaining
five benchmarks.

TST-R(EI,HPO): Leave-one-task-out hyperparameter tuning. For this, we conducted a
grid search on the all but t − 1 tasks of a benchmark and applied the best found
hyperparameter setting to the target task.

TST-R(EI,benchmark name): The hyperparameter value that is best on all tasks of the given
benchmark. This should be overly optimistic when applied to the same benchmark.

For TST-R(EI) we observe that tuning the hyperparameters using the leave-one-task-out
procedure directly on the benchmark does not necessarily give an advantage over using a
fixed setting. Tuning directly on the remaining tasks of the benchmark improves in only
three out of six benchmarks (SVMs,4D, XGBoosts,10D and SVMg,6D) while it results in
roughly the same performance for another two (GLMNETs,2D and AdaBoostg,2D) and a
performance degradation for the NNt,7D benchmark. Interestingly, it never arrives at a value
as good as choosing the hyperparameter on all t tasks of a benchmark, and in two cases it is
significantly worse. When looking at the performance of transferring the hyperparameter
setting from a single benchmark, we find quite different results for the different benchmarks.
For GLMNETs,2D the transfer works from all other benchmarks, while for SVMs,4D only
the transfer from SVMg,6D gives significantly similar results as the best setting. For the
NNt,7D benchmark three out of five settings give good results, while two give results that
are significantly worse than the best.

Conversely, we can observe a strong influence of hyperparameter optimization on TST-
R(TAF). Tuning hyperparameters using the leave-one-task-out procedure directly on the
benchmark improves two out of six benchmarks and ties on the remaining six, and tuning
hyperparameters directly on the benchmark is not significantly worse picking the hyperpa-
rameter value on the remaining tasks. The most drastic change is for the neural network

50

216 appendix for practical transfer learning for bayesian optimization

Practical Transfer Learning for Bayesian Optimization

G
LM

N
E
T s,

2D

SV
M
s,
4D

N
N t,

7D

X
G

B
oo

st
s,
10
D

A
da

B
oo

st
g,
2D

SV
M
g,
6D

TST-R(EI) 0.20 0.49 3.00 0.78 0.52 0.64
TST-R(EI,HPO) 0.21 0.27 3.24 0.61 0.58 0.55
TST-R(EI,HPO,GLMNETs,2D) 0.14 0.49 2.97 0.77 0.46 0.58
TST-R(EI,HPO,SVMs,4D) 0.20 0.27 3.00 0.78 0.52 0.64
TST-R(EI,HPO,XGBoosts,10D) 0.15 0.51 3.21 0.61 0.51 0.63
TST-R(EI,HPO,AdaBoostg,2D) 0.14 0.49 2.97 0.77 0.46 0.58
TST-R(EI,HPO,SVMg,6D) 0.17 1.06 3.57 0.81 0.61 0.51
TST-R(EI,HPO,NNt,7D) 0.14 0.49 2.97 0.77 0.46 0.58

TST-R(TAF) 0.17 0.48 2.95 0.64 0.73 0.46
TST-R(TAF,HPO) 0.17 0.50 1.72 0.62 0.56 0.49
TST-R(TAF,HPO,GLMNETs,2D) 0.12 0.50 1.73 0.68 0.71 0.44
TST-R(TAF,HPO,SVMs,4D) 0.16 0.37 3.08 0.87 0.51 0.53
TST-R(TAF,HPO,XGBoosts,10D) 0.18 0.53 1.63 0.62 0.78 0.40
TST-R(TAF,HPO,AdaBoostg,2D) 0.16 0.45 2.84 0.67 0.44 0.50
TST-R(TAF,HPO,SVMg,6D) 0.18 0.43 1.63 0.67 0.89 0.34
TST-R(TAF,HPO,NNt,7D) 0.16 0.60 1.58 0.64 0.75 0.40

Table 17: Ablation study for how to set the hyperparameter ρ of TST-R(EI) and TST-
R(TAF). The numbers reported are the average normalized regret (Wistuba
et al., 2018). We boldface the best value per benchmark and number of function
evaluations and underline methods that are not significantly different according
to a Wilcoxon signed-rank test with α = 0.05 (Demšar, 2006); separately for
TST-R(EI) and TST-R(TAF)

benchmark, where TST-R(TAF) improves substantially and becomes very competitive with
the proposed RGPE-based methods (see Tables 4, 5 and 6). Furthermore, we find that for
TST-R(TAF) all methods of choosing ρ work for the grid-based benchmarks AdaBoostg,2D
and SVMg,6D, while success is not guaranteed for the remaining four benchmarks.

Based on these results, we find that TST-R(TAF) can be a competitive method, but
is very sensitive to the setting of its hyperparameters ρ. If tuned correctly it drastically
outperforms its competitor TST-R(EI) in terms of raw performance.

We would like to highlight that none of these hyperparameter optimization would be
practically feasible, as they require tremendous amount of computation. For the hyperpa-
rameter value that was best on all other benchmarks we required access to five auxiliary
benchmarks and needed to do meta-level hyperparameter optimization on them. For the
leave-one-task-out hyperparameter tuning we would only require access to the remaining
t− 1 tasks and run Bayesian optimization with all meta-level hyperparameters on it. The
hyperparameter that is tuned based on a single benchmark has similar costs in that it
requires to solve t tasks for each hyperparameter value. While the overhead of the BO
method is negligible, real function calls to the algorithm to be optimized make such procedure

51

appendix for practical transfer learning for bayesian optimization 217

Feurer, Letham, Hutter and Bakshy

extremely expensive. We were only able to conduct this hyperparameter optimization of
the hyperparameter optimization algorithm because the calls to the target algorithms were
either pre-recorded or simulated by a surrogate benchmark. In some settings it might also
not be possible to access the base tasks any more, for example due to data retention rules.

D.5 Comparison to Earlier Versions

For the sake of completeness, in this section we compare against previous implementations
of the methods in this paper that were laid out in earlier, publicly available preprints.
Concretely, we compare the RGPE version from this paper (RGPE(NEI)) against the closed-
form noisy EI (Feurer et al., 2021, RGPE(CFNEI)) and noisy EI, using posterior samples
from the Gaussian processes to compute the weightings and a 95-quantile weight-dilution
strategy (Feurer et al., 2018, RGPE(NEI,95)), and give results in Table 18.12 We can observe
that the latest implementation of our method is either the best or not significantly worse
than the best on all six benchmark problems. The older competitors are not significantly
worse, either, except on the neural network benchmark. Nevertheless, since the RGPE(NEI)
from this paper is substantially worse than RGPE(TAF) we also introduced in this work,
we conclude that we have made significant improvements over these earlier versions.

GLMNETs,2D SVMs,4D NNt,7D XGBoosts,10D AdaBoostg,2D SVMg,6D

RGPE(CFNEI) 0.16 0.54 2.94 0.68 0.67 0.44
RGPE(NEI,95) 0.21 0.45 3.28 0.78 0.90 0.41
RGPE(NEI) 2.20 0.37 2.71 0.64 0.62 0.39

Table 18: Comparison of the method proposed in this paper (RGPE(NEI)) to previous
versions proposed in earlier preprints (Feurer et al., 2018, 2021). The numbers
reported are the average normalized regret (Wistuba et al., 2018). We boldface
the best value per benchmark and number of function evaluations and underline
methods that are not significantly different according to a Wilcoxon signed-rank
test with α = 0.05 (Demšar, 2006).

12. We would like to highlight that Equation 2 of Feurer et al. (2018) was used with a noise-free Gaussian
process. In the more general case of also tuning the noise hyperparameter of the Gaussian process that
we consider in this work we employ Equation 4 from this paper.

52

218 appendix for practical transfer learning for bayesian optimization

B
A P P E N D I X F O R E F F I C I E N T A N D R O B U S T
AU T O M AT E D M A C H I N E L E A R N I N G

219

Supplementary Material for Efficient and Robust
Automated Machine Learning

Matthias Feurer Aaron Klein Katharina Eggensperger
Jost Tobias Springenberg Manuel Blum Frank Hutter

Department of Computer Science
University of Freiburg, Germany

{feurerm,kleinaa,eggenspk,springj,mblum,fh}@cs.uni-freiburg.de

A Description of the classification algorithms and preprocessing methods

In this section we give a more detailed explanation of the classification and preprocessing methods
that we used in AUTO-SKLEARN.

A.1 Classification algorithms

Our AUTO-SKLEARN framework contains 15 base classifiers from scikit learn (out of which exactly
one is chosen at each point during the optimization process). The 15 algorithms can generally be
separated into 7 categories: generalized linear models (2 algorithms), support vector machines (2),
discriminant analysis (2), nearest neighbors (1), naı̈ve Bayes (3), decision trees (1) and ensemble
methods (4). A complete list of the algorithms is given in Table 1a in the main paper. While an in-
depth description of each algorithm is out of the scope of this paper we want to give a brief description
of each category and highlight complementary strengths of algorithms within one category.

Generalized linear models. The first class of algorithms we consider are generalized linear models
(GLM) for classification. These are linear classification algorithms. Since we are interested in scaling
our AutoML system to medium to large datasets we only use online learning algorithms from this
category: Linear Classification via online stochastic gradient descent (SGD) either with a negative log
likelihood, a hinge or a Huber los, and maximum margin classification via online passive aggressive
algorithms [1] – which iteratively solve constrained optimization problems to update the model
weights to both guarantee small steps and retain a large margin.

Support vector machines. Closely related to the algorithms from the GLM class described above
support vector machines construct a maximal margin separating hyperplane by minimizing the hinge
loss on the training data. As is well known, they can also be used for non-linear classification by
employing the “kernel trick”. The SVM implementations used in scikit-learn are based on online
optimization using LibSVM [2] or liblinear [3] as backends.

Discriminant analysis. We also consider two instantiations from the family of discriminant analysis
methods: (1) Quadratic discriminant analysis (QDA) assumes that the feature values for each class
are normally distributed. Classification is done by applying the likelihood ratio test. (2) Linear
discriminant analysis (LDA) makes the additional assumption that the covariance of each of the
classes is identical, which leads to a linear decision boundary.

Nearest neighbors classification. k-nearest neighbors is a non-parametric classification algorithm
that classifies samples based on the class membership of their nearest neighbors in feature space.
Nearest neighbor classifiers often exhibit strong performance in problems where a proper metric in
feature space is known, but can be computationally expensive to compute for large datasets (when
using a basic implementation as that contained in scikit-learn).

1

appendix for efficient and robust automated machine learning 221

Naı̈ve Bayes. Naı̈ve Bayes methods assume independence between every pair of features allowing
the use of Bayes’ theorem to find the most probable class given the training data. They are fast to
train and very robust due to their simplifying assumptions. We consider three variants of Naı̈ve Bayes:
In Gaussian Naı̈ve Bayes the likelihood of the features is assumed to be Gaussian. Multinomial
Naı̈ve Bayes is a variant suitable for multinomially distributed data. Bernoulli Naı̈ve Bayes assumes a
Bernoulli distribution. However, as shown in our experiments they proved too simplistic of a classifier
choice to be effective in the AutoML setting.

Decision trees. Decision trees are one of the most frequently used baseline classifiers in operation.
They also constitute the building block of ensemble methods such as random forests which often
show strong empirical performance. Basic decision trees (as used in our pipeline) are constructed
by recursively splitting the training data into subsets based on the feature values. The criteria for
determining the best rule for splitting in scikit-learn are based on a cross-entropy measurement or
Gini impurity.

Ensemble methods. The final set of machine learning models we consider are simple, yet powerful,
ensemble methods. Concretely we consider AdaBoost, gradient boosting, random forests and
extremely randomized trees. Among these, AdaBoost is perhaps the most prototypical ensemble
method which combines a sequence of “weak learners” into a weighted majority vote. Successive
weak learners are trained with reweighted versions of the training data, where higher weights are
assigned to misclassified samples. We use decision trees with a maximum depth of 10 as weak
learners. The other ensemble methods we consider also use decision trees as base classifiers: Gradient
boosting generalizes the idea of AdaBoost to arbitrarily differentiable loss functions. Random forests
and extremely randomized trees are ensembles of decision trees that are trained with a bootstrap
sample of the training data. In random forests the best splitting rule is determined by optimizing Gini
impurity or information gain among a random subset of the features. Extremely randomized trees use
randomly generated splitting rules as candidates and choose the best one.

A.2 Feature preprocessing algorithms

In addition to the classifier choices AUTO-SKLEARN contains a large set of different feature prepro-
cessing algorithms; which can optionally be selected by the Bayesian optimization algorithm. These
again can be separated roughly into 8 categories.

Matrix decomposition. The first category of feature preprocessing methods decomposes the given
data into maximally descriptive components. Among these we consider Principal component analysis
(PCA), a truncated SVD, Kernel PCA and Independent component analysis (ICA). Principal compo-
nent analysis (PCA) is perhaps the most well known feature preprocessing method and performs a
linear mapping of the data onto its principal components. Truncated SVD is an approximation to PCA
which also works in a spare data regime. Kernel PCA is performing principal component analysis
in a reproducing kernel Hilbert space, allowing for non-linear mappings. Independent component
analysis (ICA) finds basis vectors such that data projected onto these basis have maximum statistical
independence.

Univariate feature selection. A second category of feature preprocessing methods which, although
simple, often performs well is to “simply” select features based on univariate statistical tests on the
dataset. From these, scikit-learn includes: (1) feature selection according to a percentile of the highest
scores given some scoring function (such as the feature variance) (2) discarding features lower than a
given threshold on a scoring function (this is called select rates in the main paper).

Classification-based feature selection. Feature selection can also be performed by more elaborate
machine learning methods. We include classification-based feature selection which consists of fitting
a classifier to the data and choosing features that the classifier deems to be important for correct
classification. Concretely, we allow for the use of l1-regularized linear SVMs for feature selection
by fitting the SVM to the data and choosing features corresponding to non-zero model coefficients.
Additionally, extremely randomized trees can be used as a preprocessor for feature selection. The
relative importance of a feature is calculated as the reduction of the splitting criterion brought by that
feature. Then only the most important features are selected.

2

222 appendix for efficient and robust automated machine learning

Feature clustering. Instead of feature selection one can also merge features (i.e. add them together)
which highly correlate. For this purpose the feature agglomeration preprocessing, implemented in
scikit-learn is included in our AutoML system.

Kernel approximations. Can be used to approximate kernel functions (such as the RBF kernel)
over the dataset without the need for actual (costly) computation of the kernel between all data points.
From these we consider random kitchen sinks and nystroem sampling. Random kitchen sinks map the
data to a higher dimensional feature space through a randomized feature map that guarantees that
inner product between pairs of points in feature space approximates the evaluation of a kernel (in our
case the Gaussian kernel). Nystroem sampling is a technique that accomplishes the same goal by
projecting examples on a random subset of the data.

Polynomial feature expansion. Simply expands the set of available features by calculating all
polynomial combinations (up to a given degree) of the features.

Feature embeddings. Project the set of features into a feature space through a non-linear embed-
ding. While there exists a multitude of such embedding methods we consider only embedding through
random forests. More precisely our random trees embedding uses an ensemble of totally random trees
for unsupervised transformation of the data to a sparse representation. Points are encoded according
to the leaf of each tree they are sorted in.

Sparse representation transformation. For completeness we also include a simple sparse to dense
transformation in our preprocessing pipeline which, while costly, allows us to use algorithms on
sparse data that cannot natively handle sparsely represented inputs.

A.3 Data preprocessing algorithms

Prior to doing feature preprocessing and classification, the data is preprocessed by the following
algorithms in the presented order:

1. One Hot Encoding replaces categorical features f with domain v1, . . . , vk by k binary
variables, only the i-th of which is set to true for data points where f is set to vi.

2. Imputation will replace missing values by the mean, median or most frequent value.

3. Rescaling either standardizes the features to have zero mean and unit variance or rescales
them into the range [0, 1]. Alternatively, it can normalize samples to have unit length or
leave features unscaled.

4. Balancing activates a class weight mechanism of the classification algorithm if it supports
one.

B Details of AUTO-SKLEARN

As with every robust real-world system, we had to handle many important details in AUTO-SKLEARN.
To make the most of our computational power and not get stuck in a very slow run of a certain
combination of preprocessing and machine learning algorithm, we implemented measures to prevent
such long runs. First, we limited the time for each evaluation of an instantiation of the ML framework,
typically to 1

10 of the overall time limit. We also limited the memory of such evaluations to prevent
the operating system from swapping. When an evaluation went over one of those limits, we killed it
and returned the worst possible score for the given evaluation metric. For some of the models we
employed an iterative training procedure; we instrumented these to still return a performance value
when a limit was reached. To further reduce the amount of overly long runs, we forbade several
combinations of preprocessors and classification methods: in particular, kernel approximation was
forbidden to be active in conjunction with non-linear and tree-based methods as well as the KNN
algorithm. (SMAC handles such forbidden combinations natively.) For the same reason we also left
out feature learning algorithms, such as dictionary learning.

Another issue in hyperparameter optimization is overfitting and data resampling. Here we had to
trade off between running a more robust cross-validation (which comes at little additional overhead
in SMAC) and evaluating models on all cross-validation folds to allow for ensemble construction
with these models. Thus, for tasks with a rigid time limit of 1h, we used a simple train/test split. In

3

appendix for efficient and robust automated machine learning 223

contrast, we are able to employ ten-fold crossvalidation in our 24h and 30h runs, as well as in our
experiments for the human track of the AutoML challenge.

Finally, not every supervised learning task (for example classification with multiple targets), can be
solved by all of the algorithms available in AUTO-SKLEARN. Thus, given a new dataset, AUTO-
SKLEARN preselects the methods that are suitable for the dataset’s properties. Since scikit-learn
methods are restricted to numerical input values, we transformed data by applying a one-hot encoding
to categorical features. In order to keep the number of dummy features low, we configured a
percentage threshold. A value occurring more seldom than this percentage was transformed to a
special other variable [4].

4

224 appendix for efficient and robust automated machine learning

C Meta-features

Meta-feature Value Calculation time (s)
Minimum Mean Maximum Minimum Mean Maximum

class-entropy 0.64 1.92 4.70 0.00 0.00 0.00
class-probability-max 0.04 0.43 0.90 0.00 0.00 0.00
class-probability-mean 0.04 0.28 0.50 0.00 0.00 0.00
class-probability-min 0.00 0.19 0.48 0.00 0.00 0.00
class-probability-std 0.00 0.10 0.35 0.00 0.00 0.00
dataset-ratio 0.00 0.06 0.62 0.00 0.00 0.00
inverse-dataset-ratio 1.62 141.90 1620.00 0.00 0.00 0.00
kurtosis-max -1.30 193.43 4812.49 0.00 0.01 0.05
kurtosis-mean -1.30 24.32 652.23 0.00 0.01 0.05
kurtosis-min -3.00 -0.59 5.25 0.00 0.01 0.05
kurtosis-std 0.00 48.83 1402.86 0.00 0.01 0.05
landmark-1NN* 0.20 0.79 1.00 0.01 0.61 8.97
landmark-decision-node-learner* 0.07 0.55 0.96 0.00 0.13 1.34
landmark-decision-tree* 0.20 0.78 1.00 0.00 0.49 5.23
landmark-lda* 0.26 0.79 1.00 0.00 1.39 70.08
landmark-naive-bayes* 0.10 0.68 0.97 0.00 0.06 1.05
landmark-random-node-learner* 0.07 0.47 0.91 0.00 0.02 0.26
log-dataset-ratio -7.39 -3.80 -0.48 0.00 0.00 0.00
log-inverse-dataset-ratio 0.48 3.80 7.39 0.00 0.00 0.00
log-number-of-features 1.10 2.92 5.63 0.00 0.00 0.00
log-number-of-instances 4.04 6.72 9.90 0.00 0.00 0.00
number-of-Instances-with-missing-values 0.00 96.00 2480.00 0.00 0.00 0.01
number-of-categorical-features 0.00 13.25 240.00 0.00 0.00 0.00
number-of-classes 2.00 6.58 28.00 0.00 0.00 0.00
number-of-features 3.00 33.91 279.00 0.00 0.00 0.00
number-of-features-with-missing-values 0.00 3.54 34.00 0.00 0.00 0.00
number-of-instances 57.00 2126.33 20000.00 0.00 0.00 0.00
number-of-missing-values 0.00 549.49 22175.00 0.00 0.00 0.00
number-of-numeric-features 0.00 20.67 216.00 0.00 0.00 0.00
pca-95percent* 0.02 0.52 1.00 0.00 0.00 0.00
pca-kurtosis-first-pc* -2.00 13.38 730.92 0.00 0.00 0.01
pca-skewness-first-pc* -27.07 -0.16 6.46 0.00 0.00 0.04
percentage-of-Instances-with-missing-values 0.00 0.14 1.00 0.00 0.00 0.00
percentage-of-features-with-missing-values 0.00 0.16 1.00 0.00 0.00 0.00
percentage-of-missing-values 0.00 0.03 0.65 0.00 0.00 0.00
ratio-categorical-to-numerical 0.00 1.35 33.00 0.00 0.00 0.00
ratio-numerical-to-categorical 0.00 0.49 7.00 0.00 0.00 0.00
skewness-max 0.00 5.34 67.41 0.00 0.00 0.04
skewness-mean -0.56 1.27 14.71 0.00 0.00 0.04
skewness-min -21.19 -0.62 1.59 0.00 0.00 0.04
skewness-std 0.00 1.60 18.89 0.00 0.01 0.05
symbols-max 0.00 13.09 429.00 0.00 0.00 0.00
symbols-mean 0.00 3.01 41.38 0.00 0.00 0.00
symbols-min 0.00 1.44 12.00 0.00 0.00 0.00
symbols-std 0.00 3.06 107.21 0.00 0.00 0.00
symbols-sum 0.00 71.04 1648.00 0.00 0.00 0.00

Table 1: List of implemented meta-features. Meta-features marked with an asterisks were only used to do the
dataset clustering in Section 6

D Ensemble selection

Pseudocode explaining our implementation of the ensemble selection algorithm [5].

Procedure 1: EnsembleSelection(M,S)
Input :Models M , Ensemble size S , n = |M |
Output :Ensemble E

1 E ← ∅
2 for i = 0 . . . S do
3 b← argmaxj=0...n performance(E ∪M [j])
4 E ← E ∪M [b]

5 return E

5

appendix for efficient and robust automated machine learning 225

E Configuration spaces for different dataset properties

(a) classifiers

name #λ cat (cond) cont (cond)

AdaBoost (AB) 4 1 (-) 3 (-)
Bernoulli naı̈ve Bayes 2 1 (-) 1 (-)
decision tree (DT) 4 1 (-) 3 (-)
extreml. rand. trees 5 2 (-) 3 (-)
Gaussian naı̈ve Bayes - - -
gradient boosting (GB) 6 - 6 (-)
kNN 3 2 (-) 1 (-)
LDA 4 1 (-) 3 (1)
linear SVM 4 2 (-) 2 (-)
kernel SVM 7 2 (-) 5 (2)
multinomial naı̈ve Bayes 2 1 (-) 1 (-)
passive aggressive 3 1 (-) 2 (-)
QDA 2 - 2 (-)
random forest (RF) 5 2 (-) 3 (-)
SGD 10 4 (-) 6 (3)

(b) preprocessing methods

name #λ cat (cond) cont (cond)

densifier - - -
extreml. rand. trees prepr. 5 2 (-) 3 (-)
kernel PCA 5 1 (-) 4 (3)
rand. kitchen sinks 2 - 2 (-)
linear SVM prepr. 3 1 (-) 2 (-)
no preprocessing - - -
nystroem sampler 5 1 (-) 4 (3)
random trees embed. 4 - 4 (-)
select percentile 2 1 (-) 1 (-)
select rates 3 2 (-) 1 (-)
truncated SVD 1 - 1 (-)

one-out-of-k encoding 2 1 (-) 1 (1)
imputation 1 1 (-) -
balancing 1 1 (-) -
rescaling 1 1 (-) -

Table 2: Number of hyperparameters for each possible classifier (left) and feature preprocessing method (right)
for a binary classification dataset in sparse representation.

(a) classifiers

name #λ cat (cond) cont (cond)

AdaBoost (AB) 4 1 (-) 3 (-)
decision tree (DT) 4 1 (-) 3 (-)
extreml. rand. trees 5 2 (-) 3 (-)
Gaussian naı̈ve Bayes - - -
gradient boosting (GB) 6 - 6 (-)
kNN 3 2 (-) 1 (-)
LDA 4 1 (-) 3 (1)
linear SVM 4 2 (-) 2 (-)
kernel SVM 7 2 (-) 5 (2)
multinomial naı̈ve Bayes 2 1 (-) 1 (-)
passive aggressive 3 1 (-) 2 (-)
QDA 2 - 2 (-)
random forest (RF) 5 2 (-) 3 (-)
SGD 10 4 (-) 6 (3)

(b) preprocessing methods

name #λ cat (cond) cont (cond)

extreml. rand. trees prepr. 5 2 (-) 3 (-)
fast ICA 4 3 (-) 1 (1)
feature agglomeration 4 3 (-) 1 (-)
kernel PCA 5 1 (-) 4 (3)
rand. kitchen sinks 2 - 2 (-)
linear SVM prepr. 3 1 (-) 2 (-)
no preprocessing - - -
nystroem sampler 5 1 (-) 4 (3)
PCA 2 1 (-) 1 (-)
polynomial 3 2 (-) 1 (-)
random trees embed. 4 - 4 (-)
select percentile 2 1 (-) 1 (-)
select rates 3 2 (-) 1 (-)

one-out-of-k encoding 2 1 (-) 1 (1)
imputation 1 1 (-) -
balancing 1 1 (-) -
rescaling 1 1 (-) -

Table 3: Number of hyperparameters for each possible classifier (left) and feature preprocessing method (right)
for a multiclass classification dataset in dense representation.

(a) classifiers

name #λ cat (cond) cont (cond)

AdaBoost (AB) 4 1 (-) 3 (-)
decision tree (DT) 4 1 (-) 3 (-)
extreml. rand. trees 5 2 (-) 3 (-)
Gaussian naı̈ve Bayes - - -
gradient boosting (GB) 6 - 6 (-)
kNN 3 2 (-) 1 (-)
LDA 4 1 (-) 3 (1)
linear SVM 4 2 (-) 2 (-)
kernel SVM 7 2 (-) 5 (2)
multinomial naı̈ve Bayes 2 1 (-) 1 (-)
passive aggressive 3 1 (-) 2 (-)
QDA 2 - 2 (-)
random forest (RF) 5 2 (-) 3 (-)
SGD 10 4 (-) 6 (3)

(b) preprocessing methods

name #λ cat (cond) cont (cond)

densifier - - -
extreml. rand. trees prepr. 5 2 (-) 3 (-)
kernel PCA 5 1 (-) 4 (3)
rand. kitchen sinks 2 - 2 (-)
linear SVM prepr. 3 1 (-) 2 (-)
no preprocessing - - -
nystroem sampler 5 1 (-) 4 (3)
random trees embed. 4 - 4 (-)
select percentile 2 1 (-) 1 (-)
select rates 3 2 (-) 1 (-)
truncated SVD 1 - 1 (-)

one-out-of-k encoding 2 1 (-) 1 (1)
imputation 1 1 (-) -
balancing 1 1 (-) -
rescaling 1 1 (-) -

Table 4: Number of hyperparameters for each possible classifier (left) and feature preprocessing method (right)
for a multiclass classification dataset in sparse representation.

6

226 appendix for efficient and robust automated machine learning

F Properties of datasets used in the experiments

Name #Continuous #Nominal #Classes Sparse? Missing Values #Training Samples #Test Samples

Abalone 7 1 26 - - 2924 1253
Amazon 10000 0 50 - - 1050 450
Car 0 6 4 - - 1210 518
Cifar10 3072 0 10 - - 50000 10000
Cifar-10-Small 3072 0 10 - - 10000 10000
Convex 784 0 2 - - 8000 50000
Dexter 20000 0 2 X - 420 180
Dorothea 100000 0 2 X - 805 345
GermanCredit 7 13 2 - - 700 300
Gisette 5000 0 2 - - 4900 2100
KDD09-Appetency 192 38 2 - X 35000 15000
KR-vs-KP 0 36 2 - - 2238 958
Madelon 500 0 2 - - 1820 780
MNIST Basic 784 0 10 - - 12000 50000
Rot. MNIST + BI 784 0 10 - - 12000 50000
Secom 590 0 2 - X 1097 470
Semeion 256 0 10 - - 1116 477
Shuttle 9 0 7 - - 43500 14500
Waveform 40 0 3 - - 3500 1500
Wine Quality 11 0 7 - - 3429 1469
Yeast 8 0 10 - - 1039 445

Table 5: Auto-WEKA datasets [6].

ID Name #Continuous #Nominal #Classes Sparse? Missing
Values

#Training
Samples

#Test
Samples

38 Sick 7 22 2 - X 2527 1245
46 Splice 0 60 3 - - 2137 1053
179 adult 2 12 2 - X 32724 16118
184 KROPT 0 6 18 - - 18797 9259
554 MNIST 784 0 10 - - 46900 23100
772 quake 3 0 2 - - 1459 719
917 fri c1 1000 25 (binarized) 25 0 2 - - 670 330
1049 pc4 37 0 2 - - 976 482
1111 KDDCup09 Appetency 192 38 2 (X) X 33500 16500
1120 Magic Telescope 10 0 2 - - 12743 6277
1128 OVA Breast 10935 0 2 - - 1035 510
293 Covertype (binarized) 54 0 2 X - 389278 191734
389 fbis wc 2000 0 17 X - 1651 812

Table 6: Representative datasets for the 13 clusters obtained via g-means clustering of the 140 datasets’
meta-feature vectors.

7

appendix for efficient and robust automated machine learning 227

ID Name #Continuous #Nominal #Classes Sparse? Missing Values #Training Samples #Test Samples

3 kr-vs-kp 0 36 2 - - 2141 1055
6 letter 16 0 26 - - 13402 6598
12 mfeat-factors 216 0 10 - - 1340 660
14 mfeat-fourier 76 0 10 - - 1340 660
16 mfeat-karhunen 64 0 10 - - 1340 660
18 mfeat-morphological 6 0 10 - - 1340 660
21 car 0 6 4 - - 1157 571
22 mfeat-zernike 47 0 10 - - 1340 660
23 cmc 2 7 3 - - 986 487
24 mushroom 0 22 2 - X 5443 2681
26 nursery 0 8 5 - - 8682 4278
28 optdigits 64 0 10 - - 3765 1855
30 page-blocks 10 0 5 - - 3666 1807
31 credit-g 7 13 2 - - 670 330
32 pendigits 16 0 10 - - 7364 3628
36 segment 19 0 7 - - 1547 763
38 sick 7 22 2 - X 2527 1245
44 spambase 57 0 2 - - 3082 1519
46 splice 0 60 3 - - 2137 1053
57 hypothyroid 7 22 4 - X 2527 1245
60 waveform-5000 40 0 3 - - 3351 1649
179 adult 2 12 2 - X 32724 16118
180 covertype 14 40 7 - - 73962 36431
181 yeast 8 0 10 - - 991 493
182 satimage 36 0 6 - - 4308 2122
184 kropt 0 6 18 - - 18797 9259
185 baseball 15 1 3 - X 897 443
273 IMDB.drama 1001 0 2 X - 81007 39899
293 covertype 54 0 2 X - 389278 191734
300 isolet 617 0 26 - - 5224 2573
351 codrna 8 0 2 X - 327338 161227
354 poker 10 0 2 X - 686756 338254
357 vehicle sensIT 100 0 2 X - 66012 32516
389 fbis.wc 2000 0 17 X - 1651 812
390 new3s.wc 26832 0 44 X - 6401 3157
391 re0.wc 2886 0 13 X - 1007 497
392 oh0.wc 3182 0 10 X - 672 331
393 la2s.wc 12432 0 6 X - 2059 1016
395 re1.wc 3758 0 25 X - 1109 548
396 la1s.wc 13195 0 6 X - 2146 1058
398 wap.wc 8460 0 20 X - 1044 516
399 ohscal.wc 11465 0 10 X - 7478 3684
401 oh10.wc 3238 0 10 X - 702 348
554 mnist 784 784 0 10 - - 46900 23100
679 rmftsa sleepdata 2 0 4 - - 687 337
715 fri c3 1000 25 25 0 2 - - 670 330
718 fri c4 1000 100 100 0 2 - - 670 330
720 abalone 7 1 2 - - 2798 1379
722 pol 48 0 2 - - 10050 4950
723 fri c4 1000 25 25 0 2 - - 670 330
727 2dplanes 10 0 2 - - 27314 13454
728 analcatdata supreme 7 0 2 - - 2714 1338
734 ailerons 40 0 2 - - 9212 4538
735 cpu small 12 0 2 - - 5488 2704
737 space ga 6 0 2 - - 2081 1026
740 fri c3 1000 10 10 0 2 - - 670 330
741 rmftsa sleepdata 1 1 2 - - 686 338
743 fri c1 1000 5 5 0 2 - - 670 330
751 fri c4 1000 10 10 0 2 - - 670 330
752 puma32H 32 0 2 - - 5488 2704
761 cpu act 21 0 2 - - 5488 2704
772 quake 3 0 2 - - 1459 719
797 fri c4 1000 50 50 0 2 - - 670 330
799 fri c0 1000 5 5 0 2 - - 670 330
803 delta ailerons 5 0 2 - - 4776 2353
806 fri c3 1000 50 50 0 2 - - 670 330
807 kin8nm 8 0 2 - - 5488 2704
813 fri c3 1000 5 5 0 2 - - 670 330
816 puma8NH 8 0 2 - - 5488 2704
819 delta elevators 6 0 2 - - 6376 3141
821 house 16H 16 0 2 - - 15265 7519
822 cal housing 8 0 2 - - 13828 6812
823 houses 8 0 2 - - 13828 6812
833 bank32nh 32 0 2 - - 5488 2704
837 fri c1 1000 50 50 0 2 - - 670 330
843 house 8L 8 0 2 - - 15265 7519
845 fri c0 1000 10 10 0 2 - - 670 330
846 elevators 18 0 2 - - 11121 5478
847 wind 14 0 2 - - 4404 2170

Table 7: All datasets which were used for generating metadata and the experiments in Section 5 of the main
paper.

8

228 appendix for efficient and robust automated machine learning

ID Name #Continuous #Nominal #Classes Sparse? Missing Values #Training Samples #Test Samples

849 fri c0 1000 25 25 0 2 - - 670 330
866 fri c2 1000 50 50 0 2 - - 670 330
871 pollen 5 0 2 - - 2578 1270
881 mv 7 3 2 - - 27314 13454
897 colleges aaup 13 2 2 - X 777 384
901 fried 10 0 2 - - 27314 13454
903 fri c2 1000 25 25 0 2 - - 670 330
904 fri c0 1000 50 50 0 2 - - 670 330
910 fri c1 1000 10 10 0 2 - - 670 330
912 fri c2 1000 5 5 0 2 - - 670 330
913 fri c2 1000 10 10 0 2 - - 670 330
914 balloon 1 0 2 - - 1340 661
917 fri c1 1000 25 25 0 2 - - 670 330
923 visualizing soil 3 1 2 - - 5789 2852
930 colleges usnews 32 1 2 - X 872 430
934 socmob 1 4 2 - - 774 382
953 splice 0 60 2 - - 2137 1053
958 segment 19 0 2 - - 1547 763
959 nursery 0 8 2 - - 8683 4277
962 mfeat-morphological 6 0 2 - - 1340 660
966 analcatdata halloffame 15 1 2 - X 897 443
971 mfeat-fourier 76 0 2 - - 1340 660
976 kdd JapaneseVowels 14 0 2 - - 6673 3288
977 letter 16 0 2 - - 13400 6600
978 mfeat-factors 216 0 2 - - 1340 660
979 waveform-5000 40 0 2 - - 3350 1650
980 optdigits 64 0 2 - - 3765 1855
991 car 0 6 2 - - 1157 571
993 kdd ipums la 97-small 33 27 2 - X 4702 2317
995 mfeat-zernike 47 0 2 - - 1340 660
100 hypothyroid 7 22 2 - X 2527 1245
100 kdd ipums la 98-small 16 39 2 - X 5014 2471
101 kdd ipums la 99-small 15 41 2 - X 5925 2919
101 pendigits 16 0 2 - - 7364 3628
102 mfeat-karhunen 64 0 2 - - 1340 660
102 page-blocks 10 0 2 - - 3666 1807
103 sylva agnostic 216 0 2 - - 9644 4751
104 sylva prior 108 0 2 - - 9644 4751
104 gina prior2 784 0 10 - - 2322 1146
104 pc4 37 0 2 - - 976 482
105 pc3 37 0 2 - - 1047 516
105 jm1 21 0 2 - X 7292 3593
105 mc1 38 0 2 - - 6342 3124
106 kc1 21 0 2 - - 1413 696
106 pc1 21 0 2 - - 743 366
106 pc2 36 0 2 - - 3744 1845
1111 KDDCup09 appetency 192 38 2 - X 33500 16500
1112 KDDCup09 churn 192 38 2 - X 33500 16500
1114 KDDCup09 upselling 192 38 2 - X 33500 16500
1116 musk 166 1 2 - - 4420 2178
1119 adult-census 6 8 2 - X 21815 10746
1120 MagicTelescope 10 0 2 - - 12743 6277
1128 OVA Breast 10935 0 2 - - 1035 510
1130 OVA Lung 10935 0 2 - - 1035 510
1134 OVA Kidney 10935 0 2 - - 1035 510
1138 OVA Uterus 10935 0 2 - - 1035 510
1139 OVA Omentum 10935 0 2 - - 1035 510
1142 OVA Endometrium 10935 0 2 - - 1035 510
1146 OVA Prostate 10935 0 2 - - 1035 510
1161 OVA Colon 10935 0 2 - - 1035 510
1166 OVA Ovary 10935 0 2 - - 1035 510

Table 8: All datasets which were used for generating metadata and the experiments in Section 5 of the main
paper (continued).

9

appendix for efficient and robust automated machine learning 229

G Setup section 4

To compare against Auto-WEKA, we used 21 datasets (detailed in Table 5) with their original
train/test split [6], a walltime limit of 30 hours, 10-fold cross validation (where the evaluation of each
fold was allowed to take 150 minutes, except for hyperopt-sklearn which uses a 80/20 train/test split),
and 10 independent optimization runs with SMAC on each dataset. Our results for Auto-WEKA
resemble those of Thornton et al. [7], with minor differences caused by our faster machines: All
our experiments ran on Intel Xeon E5-2650 v2 eight-core processors with 2.60GHz and 4GiB of
RAM. We allowed the machine learning framework to use 3GiB and reserved the rest for SMAC. All
experiments used Auto-WEKA 0.5 and scikit-learn 0.16.1.

H Evaluation of our new AutoML methods - additional plot

101 102 103

time [sec]

1.8

2.0

2.2

2.4

2.6

2.8

3.0

a
v
e
ra

g
e
 r

a
n
k

vanilla auto-sklearn

auto-sklearn + ensemble

auto-sklearn + meta-learning

auto-sklearn + meta-learning + ensemble

Figure 1: Average rank of all four AUTO-SKLEARN versions ranked by balanced error (BER) across 140
datasets. In contrast to the plot in the main paper, this plot is on a log-scale. Due to the little additional overhead
that meta-learning and ensemble selection cause, vanilla AUTO-SKLEARN is able to achieve the best rank within
the first 10 seconds as it produces predictions before the other AUTO-SKLEARN variants finish training their first
model.

10

230 appendix for efficient and robust automated machine learning

I Average rank over datasets for optimizing single classifiers and preproces-
sors compared to AUTO-SKLEARN

101 102 103 104

time [sec]

4

6

8

10

12

a
v
e
ra

g
e
 r

a
n
k

auto-sklearn

AdaBoost

decision tree

extreml. rand. trees

Gaussian naïve bayes

gradient boosting

kNN

LDA

linear SVM

kernel SVM

multinomial naïve bayes

passive aggressive

QDA

random forest

SGD

Figure 2: Average rank. We compare test performance over time for optimizing each classifier with all
preprocessing methods separately with optimizing the joint space AUTO-SKLEARN. We optimize each method
for one day. Each line shows the average across 13 datasets; for each dataset drew a bootstrap sample of 100
joint runs and computed the average rank across these runs.

11

appendix for efficient and robust automated machine learning 231

101 102 103 104

time [sec]

4

5

6

7

8

9

10

11

a
v
e
ra

g
e
 r

a
n
k

auto-sklearn

extreml. rand. trees preproc for classification

fast ICA

feature agglomeration

kernel PCA

rand. kitchen sinks

linear SVM preprocessor

no preprocessing

nystroem sampler

PCA

polynomial

random trees embed.

select percentile classification

select rates

Figure 3: Average rank for different preprocessing methods on a dense dataset. We compare test performance
over time for optimizing each preprocessing method with all classifier with optimizing the joint space AUTO-
SKLEARN. We optimize each method for one day. Each line shows the average across 13 datasets; for each
dataset drew a bootstrap sample of 100 joint runs and computed the average rank across these runs.

101 102 103 104

time [sec]

0

2

4

6

8

10

B
a
la

n
ce

d
 E

rr
o
r

R
a
te

AdaBoost

auto-sklearn

decision tree

extreml. rand. trees

Gaussian naïve bayes

gradient boosting

kNN

LDA

linear SVM

kernel SVM

multinomial naïve bayes

passive aggressive

QDA

random forest

SGD

(a) Classifiers on dataset 554

101 102 103 104

time [sec]

10

15

20

25

30

35

40

45

50

B
a
la

n
ce

d
 E

rr
o
r

R
a
te

AdaBoost

auto-sklearn

Bernoulli naïve bayes

decision tree

extreml. rand. trees

Gaussian naïve bayes

gradient boosting

kNN

LDA

linear SVM

kernel SVM

multinomial naïve bayes

passive aggressive

QDA

random forest

SGD

(b) Classifiers on dataset 1049

Figure 4: Performance (balanced classification error, BER) of different subspaces compared to AUTO-SKLEARN
over time. We show the median test performance over time for all classifiers with all preprocessing methods
separately with optimizing the joint space.

12

232 appendix for efficient and robust automated machine learning

References

[1] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer. Online passive-
aggressive algorithms. Journal of Machine Learning Research, 7:551–585, 2006.

[2] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM Transactions
on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available at http://www.csie.
ntu.edu.tw/˜cjlin/libsvm.

[3] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. LIBLINEAR: A library
for large linear classification. The Journal of Machine Learning Research, 9:1871–1874, 2008.

[4] A. Niculescu-Mizil, C. Perlich, G. Swirszcz, V. Sindhwani, Y. Liu, P. Melville, D. Wang, J. Xiao, J. Hu,
M. Singh, W. Shang, and Y. Zhu. Winning the KDD cup orange challenge with ensemble selection. The
2009 Knowledge Discovery in Data Competition, pages 23–34, 2009.

[5] R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes. Ensemble selection from libraries of models. In
Proc. of ICML’04, page 18, 2004.

[6] Auto-WEKA website. http://www.cs.ubc.ca/labs/beta/Projects/autoweka.

[7] C. Thornton, F. Hutter, H. Hoos, and K. Leyton-Brown. Auto-WEKA: combined selection and hyperparam-
eter optimization of classification algorithms. In Proc. of KDD’13, pages 847–855, 2013.

13

appendix for efficient and robust automated machine learning 233

C
A P P E N D I X F O R AU T O - S K L E A R N 2 . 0 : H A N D S - F R E E
AU T O M L V I A M E TA - L E A R N I N G

235

Auto-sklearn 2.0

Appendix A. Additional pseudo-code

We give pseudo-code for computing the estimated generalization error of P across all meta-
datasets Dmeta for K-folds cross-validation in Algorithm 2 and successive halving in Algo-
rithm 3.

Algorithm 2: Estimating the generalization error of a portfolio with K-Fold Cross-
Validation

1: Input: Ordered set of ML pipelines P, datasets Dmeta, number of folds K,
2: L = 0
3: for d ∈ (1, 2, . . . , |Dmeta|) do
4: ld =∞
5: for p ∈ P do
6: l = 0
7: for k ∈ (1, 2, . . . ,K) do

8: l = l +GE
∧

(MD
(train,k)
train

λ ,D(val,k)
train)

9: end for
10: l = l/K
11: if l < ld then
12: ld = l
13: end if
14: end for
15: L = L+ ld
16: end for
17: return L/|Dmeta|

Appendix B. Additional results and experiments

In this section we will give additional results backing up our findings. Concretely, we will
give further details on the reduced search space and provide further experimental evidence,
we will provide the main results from the main paper without post-hoc ensembles, and we
will give the raw numbers before averaging.

B.1 Early Stopping and Retrieving Intermittent Results

Estimating the generalization error of a pipeline Mλ practically requires to restrict the
CPU-time per evaluation to prevent that one single, very long algorithm run stalls the
optimization procedure (Thornton et al., 2013; Feurer et al., 2015a). If an algorithm does
not return a result within the assigned time limit, it is terminated and the worst possible
generalization error is assigned. If the time limit is set too low, a majority of the algorithms
do not return a result and thus provide very scarce information for the optimization pro-
cedure. A too high time limit, however, might as well not return any meaningful results
since all time may be spent on long-running, under-performing pipelines. Additionally,
for iterative algorithms (e.g., gradient boosting and linear models trained with stochastic

35

appendix for auto-sklearn 2 .0 : hands-free automl via meta-learning 237

Feurer, Eggensperger, Falkner, Lindauer and Hutter

Algorithm 3: Estimating the generalization error of a portfolio with Successive
Halving

1: Input: Ordered set of ML pipelines P, datasets Dmeta, minimal budget bmin,
maximal budget bmax, downsampling rate η

2: L =∞
3: R = bmax/bmin
4: smax = blogη(R)c
5: B = (smax + 1)R
6: n = dBR

ηsmax

(smax+1)e
7: r = Rη−smax

8: for d ∈ (1, 2, . . . , |Dmeta|) do
9: ld =∞

10: Pd = P
11: while True do
12: P ′ = P.pop(r) # Pop top r machine learning pipelines
13: l = []
14: for i ∈ (0, . . . , smax) do
15: ni = bnη−ic
16: ri = rηi

17: for p ∈ P ′ do

18: l = GE
∧

(MD
train
train

λ ,Dval
train)

19: l = l ∪ l
20: if l < ld then
21: ld = l
22: end if
23: end for
24: P ′ = top(P ′, l, b(ni/eta)c), where top(P, l, k) returns the top k performing

machine learning pipelines.
25: end for
26: if |Pd| == 0 then
27: break
28: end if
29: end while
30: L = L+ ld
31: end for
32: return L/|Dmeta|

36

238 appendix for auto-sklearn 2 .0 : hands-free automl via meta-learning

Auto-sklearn 2.0

10 STD 10 60 STD 60

(1) Auto-sklearn (1.0) 16.21 0.27 7.17 0.30
(2) Auto-sklearn (1.0) ISS 18.10 0.13 9.57 0.22
(3) Auto-sklearn (1.0) ISS + IRR 5.29 0.13 3.98 0.21
(4) Auto-sklearn (1.0) ISS + IRR + Port 3.70 0.14 3.08 0.13

Table 10: Comparison of Auto-sklearn 1.0 (1) with using only the iterative search space
(2), using the iterative search space and iterative results retrieval (3) and also
using a portfolio (4).

gradient descent), it is important to set the number of iterations such that the training
converges and does not overfit, but most importantly finishes within this timelimit. Setting
this number too high (training exceeds time limit and/or overfit) or too low (training has
not yet converged although there is time left) has detrimental effects to the final perfor-
mance of the AutoML system. To mitigate this risk we implemented two measures for
iterative algorithms. Firstly, we use the early stopping mechanisms implemented by scikit-
learn. Specifically, training stops if the loss on the training or validation set (depending on
the model and the configuration) increases or stalls, which prevents overfitting (i.e. early
stopping). Secondly, we make use of intermittent results retrieval, e.g., saving the results
at checkpoints spaced at geometrically increasing iteration numbers, thereby ensuring that
every evaluation of an iterative algorithm returns a performance and thus yields information
for the optimizer. With this, our AutoML tool can robustly tackle large datasets without
the necessity to finetune the number of iterations dependent on the time limit.

To study the effect of using the iterative results retrieval we compare standard Auto-
sklearn 1.0 with Auto-sklearn with the following changes applied one after the other: 1)
move to a configuration space which consists only of iterative algorithms 2) enable intermit-
tent results retrieval and 3) replace the KND by the portfolio. We give results in Table 10
and note that the KND uses meta-data gathered specifically for use with the reduced con-
figuration space. Only restricting the configuration space leads to decreased performance
which we attribute to the reduced hypothesis space. Intermittently writing results to disk
reduces the amount of failures, and using a portfolio instead of the KND results in the best
overall performance.

Once again, we also view the results through the eyes of a ranking plot in Figure 7.
These results demonstrate that the iterative search space combined with intermittent results
retrieval and a portfolio is especially dominating in the short term, and it takes a total of
50 minutes for Auto-sklearn 1.0 to catch up. We would like to note that the performance of
Auto-sklearn 2.0 is even better as can be seen in Table 5, but it would be interesting to see
how a portfolio of the full configuration space would perform, which we note as a further
research question.

37

appendix for auto-sklearn 2 .0 : hands-free automl via meta-learning 239

Feurer, Eggensperger, Falkner, Lindauer and Hutter

0 10 20 30 40 50 60
time [min]

1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2

av
er

ag
e

ra
nk

Auto-sklearn (1.0)
Auto-sklearn (1.0) ISS
Auto-sklearn (1.0) ISS + IRR
Auto-sklearn (1.0) ISS + IRR + Port

Figure 7: Ranking plot (lower is better) comparing Auto-sklearn 1.0 (1) with using only
the iterative search space (2), using the iterative search space and iterative results
retrieval (3) and also using a portfolio (4). Compared to Figure 6 we randomly
sample 500 combinations of the 10000 combinations of the 10 seeds of the 4
AutoML systems.

38

240 appendix for auto-sklearn 2 .0 : hands-free automl via meta-learning

Auto-sklearn 2.0

10 minutes 60 minutes
BO KND Port BO KND Port

holdout 7.27 6.43 4.76 4.58 4.99 4.02
SH; holdout 6.61 6.70 5.76 4.70 4.63 3.97
3CV 9.58 8.95 7.88 7.10 7.12 5.98
SH; 3CV 8.88 8.97 7.20 6.81 6.47 6.01
5CV 10.48 15.24 13.77 7.34 7.47 5.66
SH; 5CV 11.70 13.29 8.06 7.05 6.69 5.93
10CV 23.20 27.45 18.73 17.59 17.47 16.17
SH; 10CV 23.98 27.70 18.84 16.94 16.98 16.07

Table 11: Results from Table 2 without post-hoc ensembles.

10MIN 60MIN
∅ std ∅ std

Auto-sklearn (2.0) 5.01 0.18 3.18 0.31
PoSH-Auto-sklearn 5.76 0.12 3.97 0.22
Auto-sklearn (1.0) 23.24 0.29 8.68 0.21

Table 12: Results from Table 5 without post-hoc ensembles.

B.2 Performance Without Post-Hoc Ensembling

We first give numbers comparing only Bayesian optimization, k-nearest datasets (KND)
and a greedy portfolio. These results are similar to Table 2, but do not show the results of
post-hoc ensembling, but using the single best model. Overall, they are qualitatively very
similar, but it can be observed that the ensemble improves the average normalized balanced
error rate in every case.

Next, we compare Auto-sklearn 2.0 with PoSH Auto-sklearn and Auto-sklearn 1.0 , but
again only show the performance of the single best model and not of an ensemble as in
the main paper. Again, the ensemble result in uniform performance improvements with
Auto-sklearn 2.0 still leading in terms of performance.

B.3 Unaggregated results

To allow the readers to asses the performance of the individual methods on the individual
datasets we present the balanced error rates before normalizing and averaging them. We
give the raw results for portfolios from Table 2 in Tables 13 and 14. Additionally, we give
the raw results for Auto-sklearn 2.0 , PoSH Auto-sklearn and Auto-sklearn 1.0 in Tables 15
and 16.

39

appendix for auto-sklearn 2 .0 : hands-free automl via meta-learning 241

Feurer, Eggensperger, Falkner, Lindauer and Hutter

Task ID Name holdout SH; holdout 3CV SH; 3CV 5CV SH; 5CV 10CV SH; 10CV

167104 Australian 0.1721 0.1569 0.1622 0.1617 0.1583 0.1602 0.1556 0.1559
167184 blood-transfusion 0.3641 0.3610 0.3725 0.3666 0.3689 0.3722 0.3674 0.3689
167168 vehicle 0.2211 0.2267 0.2017 0.2093 0.2172 0.2052 0.2310 0.1870
167161 credit-g 0.2942 0.2841 0.2939 0.2955 0.2942 0.2911 0.2939 0.2934
167185 cnae-9 0.0658 0.0680 0.0651 0.0616 0.0550 0.0629 0.0626 0.0553
189905 car 0.0049 0.0049 0.0097 0.0029 0.0047 0.0017 0.0023 0.0009
167152 mfeat-factors 0.0152 0.0164 0.0141 0.0107 0.0150 0.0117 0.0153 0.0149
167181 kc1 0.2735 0.2688 0.2720 0.2713 0.2547 0.2660 0.2477 0.2719
189906 segment 0.0666 0.0687 0.0681 0.0620 0.0664 0.0621 0.0643 0.0671
189862 jasmine 0.2044 0.2051 0.1982 0.1986 0.2010 0.2027 0.2043 0.2027
167149 kr-vs-kp 0.0067 0.0077 0.0093 0.0085 0.0079 0.0078 0.0071 0.0080
189865 sylvine 0.0592 0.0594 0.0600 0.0608 0.0582 0.0582 0.0560 0.0578
167190 phoneme 0.1231 0.1245 0.1168 0.1160 0.1152 0.1136 0.1129 0.1144
189861 christine 0.2670 0.2621 0.2608 0.2556 0.2517 0.2567 0.2587 0.2645
189872 fabert 0.3387 0.3399 0.3140 0.3120 0.3096 0.3204 0.3180 0.3172
189871 dilbert 0.0241 0.0248 0.0258 0.0220 0.0191 0.0211 0.0303 0.0647
168794 robert 0.5489 0.5861 0.5762 0.5583 0.5854 0.5873 0.6230 0.6230
168797 riccardo 0.0035 0.0052 0.0067 0.0054 0.0027 0.0027 0.5000 0.5000
168796 guillermo 0.2186 0.2102 0.2311 0.2228 0.2165 0.2837 0.5000 0.5000
75097 Amazon 0.2361 0.2431 0.2526 0.2526 0.2379 0.2385 0.2448 0.2443

126026 nomao 0.0353 0.0381 0.0360 0.0345 0.0312 0.0331 0.0403 0.0401
189909 jungle chess 0.1212 0.1251 0.1232 0.1156 0.1280 0.1180 0.1134 0.1141
126029 bank-marketing 0.1397 0.1436 0.1402 0.1407 0.1352 0.1435 0.1378 0.1362
126025 adult 0.1579 0.1575 0.1553 0.1540 0.1591 0.1562 0.1545 0.1585
75105 KDDCup09 0.2450 0.2495 0.2449 0.2512 0.2525 0.2487 0.2497 0.2456

168795 shuttle 0.0093 0.0086 0.0085 0.0084 0.0085 0.0087 0.0088 0.0084
168793 volkert 0.3735 0.3724 0.3939 0.3703 0.3720 0.3775 0.3867 0.3957
189874 helena 0.7483 0.7624 0.7475 0.7478 0.7483 0.7534 0.7476 0.7575
167201 connect-4 0.2629 0.2721 0.2653 0.2630 0.2537 0.2565 0.3003 0.2771
189908 Fashion-MNIST 0.1050 0.1098 0.1217 0.1195 0.1181 0.1153 0.1437 0.1437
189860 APSFailure 0.0384 0.0402 0.0355 0.0364 0.0355 0.0354 0.0410 0.0455
168792 jannis 0.3654 0.3685 0.3648 0.3655 0.3651 0.3567 0.3912 0.3881
167083 numerai28.6 0.4776 0.4765 0.4752 0.4749 0.4747 0.4775 0.4789 0.4788
167200 higgs 0.2736 0.2764 0.2730 0.2742 0.2724 0.2744 0.2832 0.2844
168798 MiniBooNE 0.0581 0.0589 0.0691 0.0633 0.0585 0.0644 0.0691 0.0685
189873 dionis 0.1172 0.1205 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
189866 albert 0.3135 0.3171 0.3469 0.3277 0.5000 0.3354 0.3714 0.3703
75127 airlines 0.3423 0.3424 0.3450 0.3384 0.3419 0.3429 0.3408 0.3456
75193 covertype 0.0568 0.0564 0.0683 0.0600 0.0548 0.0556 0.2519 0.2527

Table 13: Results from Table 2 for 10 minutes using portfolios. We boldface the lowest
error.

40

242 appendix for auto-sklearn 2 .0 : hands-free automl via meta-learning

Auto-sklearn 2.0

Task ID Name holdout SH; holdout 3CV SH; 3CV 5CV SH; 5CV 10CV SH; 10CV

167104 Australian 0.1742 0.1674 0.1623 0.1626 0.1598 0.1608 0.1625 0.1557
167184 blood-transfusion 0.3648 0.3618 0.3631 0.3641 0.3689 0.3692 0.3684 0.3692
167168 vehicle 0.2125 0.2344 0.1702 0.1944 0.1657 0.1960 0.1959 0.2151
167161 credit-g 0.2922 0.2895 0.3035 0.2957 0.3056 0.2978 0.3008 0.2931
167185 cnae-9 0.0733 0.0761 0.0560 0.0616 0.0537 0.0536 0.0675 0.0518
189905 car 0.0036 0.0013 0.0037 0.0098 0.0007 0.0012 0.0008 0.0010
167152 mfeat-factors 0.0169 0.0186 0.0130 0.0117 0.0139 0.0132 0.0151 0.0122
167181 kc1 0.2728 0.2739 0.2680 0.2724 0.2678 0.2804 0.2546 0.2576
189906 segment 0.0708 0.0692 0.0647 0.0635 0.0588 0.0596 0.0621 0.0613
189862 jasmine 0.2048 0.2049 0.1995 0.1989 0.1995 0.1976 0.1995 0.1980
167149 kr-vs-kp 0.0060 0.0080 0.0081 0.0068 0.0064 0.0068 0.0055 0.0053
189865 sylvine 0.0590 0.0591 0.0584 0.0587 0.0577 0.0578 0.0573 0.0573
167190 phoneme 0.1222 0.1237 0.1152 0.1155 0.1111 0.1130 0.1117 0.1105
189861 christine 0.2673 0.2666 0.2575 0.2584 0.2532 0.2575 0.2549 0.2588
189872 fabert 0.3381 0.3319 0.3099 0.3097 0.3119 0.3080 0.3027 0.3071
189871 dilbert 0.0200 0.0200 0.0132 0.0146 0.0185 0.0209 0.0212 0.0149
168794 robert 0.5273 0.5199 0.5238 0.5183 0.5456 0.5605 0.5652 0.5407
168797 riccardo 0.0029 0.0016 0.0018 0.0019 0.0025 0.0076 0.5000 0.5000
168796 guillermo 0.2012 0.2025 0.2057 0.2081 0.2100 0.2039 0.5000 0.5000
75097 Amazon 0.2376 0.2394 0.2338 0.2381 0.2431 0.2384 0.2312 0.2324

126026 nomao 0.0352 0.0353 0.0334 0.0331 0.0320 0.0327 0.0313 0.0319
189909 jungle chess 0.1214 0.1221 0.1154 0.1172 0.1171 0.1153 0.1108 0.1141
126029 bank-marketing 0.1388 0.1398 0.1380 0.1392 0.1382 0.1382 0.1370 0.1380
126025 adult 0.1546 0.1541 0.1550 0.1540 0.1550 0.1550 0.1539 0.1538
75105 KDDCup09 0.2492 0.2461 0.2477 0.2532 0.2466 0.2488 0.2617 0.2485

168795 shuttle 0.0136 0.0107 0.0125 0.0093 0.0084 0.0063 0.0127 0.0087
168793 volkert 0.3600 0.3673 0.3449 0.3551 0.3496 0.3487 0.3581 0.3563
189874 helena 0.7449 0.7494 0.7331 0.7369 0.7407 0.7404 0.7562 0.7452
167201 connect-4 0.2539 0.2556 0.2382 0.2428 0.2370 0.2373 0.2416 0.2369
189908 Fashion-MNIST 0.1010 0.0971 0.1046 0.1066 0.1102 0.1105 0.1191 0.1075
189860 APSFailure 0.0362 0.0374 0.0345 0.0364 0.0372 0.0347 0.0343 0.0334
168792 jannis 0.3670 0.3638 0.3589 0.3576 0.3584 0.3565 0.3473 0.3572
167083 numerai28.6 0.4765 0.4763 0.4774 0.4770 0.4750 0.4767 0.4755 0.4743
167200 higgs 0.2712 0.2734 0.2718 0.2680 0.2696 0.2680 0.2701 0.2683
168798 MiniBooNE 0.0576 0.0583 0.0560 0.0536 0.0571 0.0565 0.0560 0.0608
189873 dionis 0.0961 0.1068 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
189866 albert 0.3116 0.3168 0.3170 0.3172 0.3094 0.3199 0.3183 0.3186
75127 airlines 0.3403 0.3410 0.3375 0.3401 0.3388 0.3390 0.3398 0.3399
75193 covertype 0.0537 0.0519 0.0496 0.0496 0.0454 0.0461 0.0458 0.0459

Table 14: Results from Table 2 for 60 minutes using portfolios. We boldface the lowest
error.

41

appendix for auto-sklearn 2 .0 : hands-free automl via meta-learning 243

Feurer, Eggensperger, Falkner, Lindauer and Hutter

Task ID Name Auto-sklearn (2.0) PoSH-Auto-sklearn Auto-sklearn (1.0)

167104 Australian 0.1617 0.1569 0.1628
167184 blood-transfusion 0.3694 0.3610 0.3534
167168 vehicle 0.2030 0.2267 0.1654
167161 credit-g 0.2903 0.2841 0.2951
167185 cnae-9 0.0635 0.0680 0.0674
189905 car 0.0015 0.0049 0.0057
167152 mfeat-factors 0.0123 0.0164 0.0185
167181 kc1 0.2707 0.2688 0.2301
189906 segment 0.0646 0.0687 0.0624
189862 jasmine 0.2020 0.2051 0.1989
167149 kr-vs-kp 0.0086 0.0077 0.0089
189865 sylvine 0.0597 0.0594 0.0583
167190 phoneme 0.1158 0.1245 0.1257
189861 christine 0.2562 0.2621 0.2666
189872 fabert 0.3250 0.3399 0.3323
189871 dilbert 0.0240 0.0248 0.0066
168794 robert 0.5861 0.5861 0.6545
168797 riccardo 0.0052 0.0052 0.5000
168796 guillermo 0.2102 0.2102 0.5000
75097 Amazon 0.2435 0.2431 0.2610

126026 nomao 0.0336 0.0381 0.0383
189909 jungle chess 0.1205 0.1251 0.1231
126029 bank-marketing 0.1402 0.1436 0.1412
126025 adult 0.1547 0.1575 0.1608
75105 KDDCup09 0.2460 0.2495 0.2863

168795 shuttle 0.0084 0.0086 0.0111
168793 volkert 0.3717 0.3724 0.4233
189874 helena 0.7493 0.7624 0.9157
167201 connect-4 0.2642 0.2721 0.2809
189908 Fashion-MNIST 0.1070 0.1098 0.1383
189860 APSFailure 0.0372 0.0402 0.0370
168792 jannis 0.3654 0.3685 0.3637
167083 numerai28.6 0.4753 0.4765 0.4774
167200 higgs 0.2746 0.2764 0.2777
168798 MiniBooNE 0.0603 0.0589 0.0622
189873 dionis 0.1205 0.1205 0.6731
189866 albert 0.3171 0.3171 0.4407
75127 airlines 0.3404 0.3424 0.3536
75193 covertype 0.0564 0.0564 0.8571

Table 15: Results from Table 5 for 10 minutes. We boldface the lowest error.

42

244 appendix for auto-sklearn 2 .0 : hands-free automl via meta-learning

Auto-sklearn 2.0

Task ID Name Auto-sklearn (2.0) PoSH-Auto-sklearn Auto-sklearn (1.0)

167104 Australian 0.1562 0.1674 0.1658
167184 blood-transfusion 0.3669 0.3618 0.3572
167168 vehicle 0.2187 0.2344 0.1822
167161 credit-g 0.2980 0.2895 0.3004
167185 cnae-9 0.0566 0.0761 0.0620
189905 car 0.0038 0.0013 0.0043
167152 mfeat-factors 0.0126 0.0186 0.0136
167181 kc1 0.2600 0.2739 0.2250
189906 segment 0.0609 0.0692 0.0697
189862 jasmine 0.1971 0.2049 0.1985
167149 kr-vs-kp 0.0060 0.0080 0.0085
189865 sylvine 0.0572 0.0591 0.0555
167190 phoneme 0.1140 0.1237 0.1235
189861 christine 0.2592 0.2666 0.2619
189872 fabert 0.3120 0.3319 0.3185
189871 dilbert 0.0163 0.0200 0.0090
168794 robert 0.5199 0.5199 0.5327
168797 riccardo 0.0016 0.0016 0.0016
168796 guillermo 0.2025 0.2025 0.1964
75097 Amazon 0.2371 0.2394 0.2481

126026 nomao 0.0323 0.0353 0.0361
189909 jungle chess 0.1145 0.1221 0.1136
126029 bank-marketing 0.1387 0.1398 0.1428
126025 adult 0.1544 0.1541 0.1574
75105 KDDCup09 0.2504 0.2461 0.2549

168795 shuttle 0.0093 0.0107 0.0109
168793 volkert 0.3563 0.3673 0.3440
189874 helena 0.7399 0.7494 0.7693
167201 connect-4 0.2408 0.2556 0.2709
189908 Fashion-MNIST 0.1023 0.0971 0.0984
189860 APSFailure 0.0343 0.0374 0.0375
168792 jannis 0.3591 0.3638 0.3641
167083 numerai28.6 0.4759 0.4763 0.4760
167200 higgs 0.2690 0.2734 0.2738
168798 MiniBooNE 0.0561 0.0583 0.0620
189873 dionis 0.1068 0.1068 0.6731
189866 albert 0.3168 0.3168 0.3143
75127 airlines 0.3394 0.3410 0.3449
75193 covertype 0.0519 0.0519 0.8571

Table 16: Results from Table 5 for 60 minutes. We boldface the lowest error.

43

appendix for auto-sklearn 2 .0 : hands-free automl via meta-learning 245

Feurer, Eggensperger, Falkner, Lindauer and Hutter

Appendix C. Theoretical properties of the greedy algorithm

C.1 Definitions

Definition 1 (Discrete derivative, from Krause and Golovin, 2014) For a set function
f : 2V → R,S ⊆ V and e ∈ V let ∆f (e|S) = f(S ∪ {e})− f(S) be the discrete derivative of
f at S with respect to e.

Definition 2 (Submodularity, from Krause and Golovin, 2014): A function f : 2V → R is
submodular if for every A ⊆ B ⊆ V and e ∈ V \ B it holds that ∆f (e|A) ≥ ∆f (e|B).

Definition 3 (Monotonicity, from Krause and Golovin, 2014): A function f : 2V → R is
monotone if for every A ⊆ B ⊆ V, f(A) ≤ f(B).

C.2 Choosing on the test set

In this section we give a proof of Proposition 1 from the main paper:

Proposition 2 Minimizing the test loss of a portfolio P on a set of datasets D1, . . . ,D|Dmeta|,
when choosing a ML pipeline from P for Dd based on performance on Dd,test, is equivalent
to the sensor placement problem for minimizing detection time (Krause et al., 2008).

Following Krause et al. (Krause et al., 2008), sensor set placement aims at maximizing
a so-called penalty reduction R(A) =

∑
i∈I P (i)R(A, i), where I are intrusion scenarios

following a probability distribution P with i being a specific intrusion. A ⊂ C is a sensor
placement, a subset of all possible locations C where sensors are actually placed. Penalty
reduction R is defined as the reduction of the penalty when choosing A compared to the
maximum penalty possible on scenario i: R(A, i) = penaltyi(∞) − penaltyi(T (A, i)). In
the simplest case where action is taken upon intrusion detection, the penalty is equal to the
detection time (penaltyi(t) = t). The detection time of a sensor placement T (A, i) is simply
defined as the minimum of the detection times of its individual members: mins∈A T (s, i).

In our setting, we need to do the following replacements to find that the problems are
equivalent:

1. Intrusion scenarios I: datasets {D1, . . . ,D|Dmeta|},
2. Possible sensor locations C: set of candidate ML pipelines of our algorithm C, De-

tection time T (s ∈ A, i) on intrusion scenario i: test performance L(MC ,Dd,test) on
dataset Dd,

3. Detection time of a sensor placement T (A, i): test loss of applying portfolio P on
dataset Dd: minp∈P L(p,Dd,test)

4. Penalty function penaltyi(t): loss function L, in our case, the penalty is equal to the
loss.

5. Penalty reduction for an intrusion scenario R(A, i): the penalty reduction for success-
fully applying a portfolio P to dataset d: R(P, d) = penaltyd(∞)−minp∈P L(p,Dd,test).

10

�
10. This would be the general case for a metric with no upper bound. In case of metrics such as the

misclassification error, the maximal penalty would be 1.

44

246 appendix for auto-sklearn 2 .0 : hands-free automl via meta-learning

Auto-sklearn 2.0

C.3 Choosing on the validation set

We demonstrate that choosing an ML pipeline from the portfolio via holdout (i.e. a val-
idation set) and reporting its test performance is neither submodular nor monotone by a
simple example. To simplify notation we argue in terms of performance instead of penalty
reduction, which is equivalent.

Let B = {(5, 5), (7, 7), (10, 10)} and A = {(5, 5), (7, 7)}, where each tuple represents
the validation and test performance. For e = (8, 6) we obtain the discrete derivatives
∆f (e|A) = −1 and ∆f (e|B) = 0 which violates Definition 2. The fact that the discrete
derivative is negative violates Definition 3 because f(A) > f(A ∪ {e}).

C.4 Successive Halving

As in the previous subsection, we use a simple example to demonstrate that selecting an
algorithm via the successive halving model selection strategy is neither submodular nor
monotone. To simplify notation we argue in terms of performance instead of penalty re-
duction, which is equivalent.

Let B = {((5, 5), (8, 8)), ((5, 5), (6, 6)), ((4, 4), (5, 5))} and A = {((5, 5), (7, 7))}, where
each tuple is a learning curve of validation-, test performance tuples. For e = ((6, 5), (6, 5)),
we eliminate entries 2 and 3 from B in the first iteration of successive halving (while we
advance entries 1 and 4), and we eliminate entry 1 from A. After the second stage, the
performances are f(B) = 8 and f(A) = 5, and the discrete derivatives ∆f (e|A) = −1 and
∆f (e|B) = 0 which violates Definition 2. The fact that the discrete derivative is negative
violates Definition 3 because f(A) > f(A ∪ {e}).

C.5 Further equalities

In addition, our problem can also be phrased as a facility location problem (Krarup and
Pruzan, 1983) and statements about the facility location problem can be applied to our
problem setup as well.

Appendix D. Implementation Details

D.1 Software

We implemented the AutoML systems and experiments in the Python3 programming lan-
guage, using numpy (Harris et al., 2020), scipy (Virtanen et al., 2020), scikit-learn (Pe-
dregosa et al., 2011), pandas (Wes McKinney, 2010; Reback et al., 2021), and matplotlib (Hunter,
2007). We used version 0.12.6 of the Auto-sklearn Python package for the experiments and
added Auto-sklearn 2.0 functionality in version 0.12.7 which we then used for the AutoML
benchmark. We give the exact version numbers used for the AutoML benchmark in Ta-
ble 17.

D.2 Configuration Space

We give the configuration space we use in Auto-sklearn 2.0 in Table 18.

45

appendix for auto-sklearn 2 .0 : hands-free automl via meta-learning 247

Feurer, Eggensperger, Falkner, Lindauer and Hutter

Package Version

Auto-sklearn 2.0 0.12.7
Auto-sklearn 1.0 0.12.6
Auto-WEKA 2.6.3
TPOT 0.11.7
H2O AutoML 3.32.1.4
Tuned Random Forest 0.24.2
AutoML benchmark 973de79617e68a881dcc640842ea1d21dfd4b36c

Table 17: Package versions used for the AutoML benchmark.

D.3 Successive Halving hyperparameters

We used the same hyperparameters for all experiments. First, we set to eta = 4. Next, we
had to choose the minimal and maximal budgets assigned to each algorithm. For the tree-
based methods we chose to go from 32 to 512, while for the linear models (SGD and passive
aggressive) we chose 64 as the minimal budget and 1024 as the maximal budget. Further
tuning these hyperparameters would be an interesting, but an expensive way forward.

Appendix E. Datasets

We give the name, OpenML task ID and the size of all datasets we used in Table 19 and 20.

46

248 appendix for auto-sklearn 2 .0 : hands-free automl via meta-learning

Auto-sklearn 2.0

Name Domain Default Log

Classifier (Extra Trees, Gradient Boosting, MLP, Random Forest -
Passive Aggressive, Random Forest, SGD)

Extra Trees: Bootstrap (True, False) False -
Extra Trees: Criterion (gini, entropy) gini -
Extra Trees: Max Features [0.0, 1.0] 0.5 No
Extra Trees: Min Samples Leaf [1, 20] 1 No
Extra Trees: Min Samples Split [2, 20] 2 No
Gradient Boosting: Early Stopping (off, valid, train) off -
Gradient Boosting: L2 Regularization [1e− 10, 1.0] 0.0 Yes
Gradient Boosting: Learning Rate [0.01, 1.0] 0.1 Yes
Gradient Boosting: Max Leaf Nodes [3, 2047] 31 Yes
Gradient Boosting: Min Samples Leaf [1, 200] 20 Yes
Gradient Boosting: N Iter No Change [1, 20] 10 No
Gradient Boosting: Validation Fraction [0.01, 0.4] 0.1 No
MLP: Activation (tanh, relu) relu -
MLP: Alpha [1e− 07, 0.1] 0.0001 Yes
MLP: Early Stopping (valid, train) valid -
MLP: Hidden Layer Depth [1, 3] 1 No
MLP: Learning Rate Init [0.0001, 0.5] 0.001 Yes
MLP: Num Nodes Per Layer [16, 264] 32 Yes
Passive Aggressive: C [1e− 05, 10.0] 1.0 Yes
Passive Aggressive: Average (False, True) False -
Passive Aggressive: Loss (hinge, squared hinge) hinge -
Passive Aggressive: Tol [1e− 05, 0.1] 0.0001 Yes
Random Forest: Bootstrap (True, False) True -
Random Forest: Criterion (gini, entropy) gini -
Random Forest: Max Features [0.0, 1.0] 0.5 No
Random Forest: Min Samples Leaf [1, 20] 1 No
Random Forest: Min Samples Split [2, 20] 2 No
Sgd: Alpha [1e− 07, 0.1] 0.0001 Yes
Sgd: Average (False, True) False -
Sgd: Epsilon [1e− 05, 0.1] 0.0001 Yes
Sgd: Eta0 [1e− 07, 0.1] 0.01 Yes
Sgd: L1 Ratio [1e− 09, 1.0] 0.15 Yes
Sgd: Learning Rate (optimal, invscaling, constant) invscaling -
Sgd: Loss (hinge, log, modified Huber, log -

squared hinge, perceptron)
Sgd: Penalty (l1, l2, elasticnet) l2 -
Sgd: Power T [1e− 05, 1.0] 0.5 No
Sgd: Tol [1e− 05, 0.1] 0.0001 Yes

Balancing: Strategy (none, weighting) none -
Categorical Encoding: Choice (no encoding, one hot encoding) one hot encoding -
Category Coalescence: Choice (minority coalescer, no coalescense) minority coalescer -
Category Coalescence: Minimum Fraction [0.0001, 0.5] 0.01 Yes
Imputation of missing values (mean, median, most frequent) mean -
Rescaling: Choice (Min/Max, none, normalize, Power, standardize -

Quantile, Robust, standardize)
Quantile Transformer: N Quantiles [10, 2000] 1000 No
Quantile Transformer: Output Distribution (uniform, normal) uniform -
Robust Scaler: Q Max [0.7, 0.999] 0.75 No
Robust Scaler: Q Min [0.001, 0.3] 0.25 No

Table 18: Configuration space for Auto-sklearn 2.0 using only iterative models and only
preprocessing to transform data into a format that can be usefully employed by
the different classification algorithms. The final column (log) states whether we
actually search log10(λ).

47

appendix for auto-sklearn 2 .0 : hands-free automl via meta-learning 249

Feurer, Eggensperger, Falkner, Lindauer and Hutter

name tid #obs #feat #cls

OVA O. . . 75126 1545 10937 2
OVA C. . . 75125 1545 10937 2
OVA P. . . 75121 1545 10937 2
OVA E. . . 75120 1545 10937 2
OVA K. . . 75116 1545 10937 2
OVA L. . . 75115 1545 10937 2
OVA B. . . 75114 1545 10937 2
UMIST. . . 189859 575 10305 20
amazo. . . 189878 1500 10001 50
eatin. . . 189786 945 6374 7
CIFAR. . . 167204 60000 3073 10
GTSRB. . . 190156 51839 2917 43
Biore. . . 75156 3751 1777 2
hiva . . . 166996 4229 1618 2
GTSRB. . . 190157 51839 1569 43
GTSRB. . . 190158 51839 1569 43
Inter. . . 168791 3279 1559 2
micro. . . 146597 571 1301 20
Devna. . . 167203 92000 1025 46
GAMET. . . 167085 1600 1001 2
Kuzus. . . 190154 270912 785 49
mnist. . . 75098 70000 785 10
Kuzus. . . 190159 70000 785 10
isole. . . 75169 7797 618 26
har 126030 10299 562 6
madel. . . 146594 2600 501 2
KDD98. . . 211723 82318 478 2
phili. . . 189864 5832 309 2
madel. . . 189863 3140 260 2
USPS 189858 9298 257 10
semei. . . 75236 1593 257 10
GTSRB. . . 190155 51839 257 43
India. . . 211720 9144 221 8
dna 167202 3186 181 3
musk 75108 6598 170 2
Speed. . . 146679 8378 123 2
hill-. . . 146592 1212 101 2
fri c. . . 166866 500 101 2
MiceP. . . 167205 1080 82 8
meta . . . 2356 45164 75 11
ozone. . . 75225 2534 73 2
analc. . . 146576 841 71 4
kdd i. . . 166970 10108 69 2
optdi. . . 258 5620 65 10
one-h. . . 75154 1600 65 100
synth. . . 146574 600 62 6
splic. . . 275 3190 61 3
spamb. . . 273 4601 58 2
first. . . 75221 6118 52 6
fri c. . . 75180 1000 51 2
fri c. . . 166944 500 51 2
fri c. . . 166951 500 51 2
Diabe. . . 189828 101766 50 3
oil s. . . 3049 937 50 2
pol 75139 15000 49 2
tokyo. . . 167100 959 45 2
qsar-. . . 75232 1055 42 2
textu. . . 126031 5500 41 11
autoU. . . 189899 750 41 8
ailer. . . 75146 13750 41 2
wavef. . . 288 5000 41 3
cylin. . . 146600 540 40 2
water. . . 166953 527 39 2
annea. . . 232 898 39 5
mc1 75133 9466 39 2
pc4 75092 1458 38 2
pc3 75129 1563 38 2
porto. . . 211722 595212 38 2
pc2 75100 5589 37 2

name tid # obs # feat # class

satim. . . 2120 6430 37 6
Satel. . . 189844 5100 37 2
soybe. . . 271 683 36 19
cardi. . . 75217 2126 36 10
cjs 146601 2796 35 6
colle. . . 75212 1302 35 2
puma3. . . 75153 8192 33 2
Gestu. . . 75109 9873 33 5
kick 189870 72983 33 2
bank3. . . 75179 8192 33 2
wdbc 146596 569 31 2
Phish. . . 75215 11055 31 2
fars 189840 100968 30 8
hypot. . . 3044 3772 30 4
steel. . . 168785 1941 28 7
eye m. . . 189779 10936 28 3
fri c. . . 75136 1000 26 2
fri c. . . 75199 1000 26 2
wall-. . . 75235 5456 25 4
led24. . . 189841 3200 25 10
colli. . . 189845 1000 24 30
rl 189869 31406 23 2
mushr. . . 254 8124 23 2
meta 166875 528 22 2
jm1 75093 10885 22 2
pc1 75159 1109 22 2
kc2 146583 522 22 2
cpu a. . . 75233 8192 22 2
autoU. . . 75089 1000 21 2
GAMET. . . 167086 1600 21 2
GAMET. . . 167087 1600 21 2
bosto. . . 166905 506 21 2
GAMET. . . 167088 1600 21 2
GAMET. . . 167089 1600 21 2
churn. . . 167097 5000 21 2
clima. . . 167106 540 21 2
micro. . . 189875 20000 21 5
GAMET. . . 167090 1600 21 2
Traff. . . 211724 70340 21 3
ringn. . . 75234 7400 21 2
twono. . . 75187 7400 21 2
eucal. . . 2125 736 20 5
eleva. . . 75184 16599 19 2
pbcse. . . 166897 1945 19 2
baseb. . . 2123 1340 18 3
house. . . 75174 22784 17 2
colle. . . 75196 1161 17 2
BachC. . . 189829 5665 17 102
pendi. . . 262 10992 17 10
lette. . . 236 20000 17 26
spoke. . . 75178 263256 15 10
eeg-e. . . 75219 14980 15 2
wind 75185 6574 15 2
Japan. . . 126021 9961 15 9
compa. . . 211721 5278 14 2
vowel. . . 3047 990 13 11
cpu s. . . 75147 8192 13 2
autoU. . . 189900 700 13 3
autoU. . . 75118 1100 13 5
dress. . . 146602 500 13 2
senso. . . 166906 576 12 2
wine-. . . 189836 4898 12 7
wine-. . . 189843 1599 12 6
Magic. . . 75112 19020 12 2
mv 75195 40768 11 2
parit. . . 167101 1124 11 2
mofn-. . . 167094 1324 11 2
fri c. . . 75149 1000 11 2
poker. . . 340 829201 11 10

name tid #obs #feat #cls

fri c. . . 166950 500 11 2
page-. . . 260 5473 11 5
ilpd 146593 583 11 2
2dpla. . . 75142 40768 11 2
fried. . . 75161 40768 11 2
rmfts. . . 166859 508 11 2
stock. . . 166915 950 10 2
tic-t. . . 279 958 10 2
breas. . . 245 699 10 2
xd6 167096 973 10 2
cmc 253 1473 10 3
profb. . . 146578 672 10 2
diabe. . . 267 768 9 2
abalo. . . 2121 4177 9 28
bank8. . . 75141 8192 9 2
elect. . . 336 45312 9 2
kdd e. . . 166913 782 9 2
house. . . 75176 20640 9 2
nurse. . . 256 12960 9 5
kin8n. . . 75166 8192 9 2
yeast. . . 2119 1484 9 10
puma8. . . 75171 8192 9 2
analc. . . 75143 4052 8 2
ldpa 75134 164860 8 11
pm10 166872 500 8 2
no2 166932 500 8 2
LED-d. . . 146603 500 8 10
artif. . . 126028 10218 8 10
monks. . . 3055 554 7 2
space. . . 75148 3107 7 2
kr-vs. . . 75223 28056 7 18
monks. . . 3054 601 7 2
Run o. . . 167103 88588 7 2
delta. . . 75173 9517 7 2
strik. . . 166882 625 7 2
mammo. . . 3048 11183 7 2
monks. . . 3053 556 7 2
kropt. . . 2122 28056 7 18
delta. . . 75163 7129 6 2
wilt 167105 4839 6 2
fri c. . . 75131 1000 6 2
mozil. . . 126024 15545 6 2
polle. . . 75192 3848 6 2
socmo. . . 75213 1156 6 2
irish. . . 146575 500 6 2
fri c. . . 166931 500 6 2
arsen. . . 166957 559 5 2
arsen. . . 166956 559 5 2
walki. . . 75250 149332 5 22
analc. . . 146577 797 5 6
bankn. . . 146586 1372 5 2
arsen. . . 166959 559 5 2
visua. . . 75210 8641 5 2
balan. . . 241 625 5 3
arsen. . . 166958 559 5 2
volca. . . 189902 10130 4 5
skin-. . . 75237 245057 4 2
tamil. . . 189846 45781 4 20
quake. . . 75157 2178 4 2
volca. . . 189893 8654 4 5
volca. . . 189890 8753 4 5
volca. . . 189887 9989 4 5
volca. . . 189884 10668 4 5
volca. . . 189883 10176 4 5
volca. . . 189882 1515 4 5
volca. . . 189881 1521 4 5
volca. . . 189880 1623 4 5
Titan. . . 167099 2201 4 2
volca. . . 189894 1183 4 5

Table 19: Characteristics of the 208 datasets in Dmeta (first part) sorted by number of
features. We report for each dataset the name and the task id (as a link) as
used on OpenML.org, and furthermore the number of observations, the number
of features and the number of classes.

48

250 appendix for auto-sklearn 2 .0 : hands-free automl via meta-learning

Auto-sklearn 2.0

name tid #obs #feat #cls

rober. . . 168794 10000 7201 10
ricca. . . 168797 20000 4297 2
guill. . . 168796 20000 4297 2
dilbe. . . 189871 10000 2001 5
chris. . . 189861 5418 1637 2
cnae-. . . 167185 1080 857 9
faber. . . 189872 8237 801 7
Fashi. . . 189908 70000 785 10
KDDCu. . . 75105 50000 231 2
mfeat. . . 167152 2000 217 10
volke. . . 168793 58310 181 10
APSFa. . . 189860 76000 171 2
jasmi. . . 189862 2984 145 2
nomao. . . 126026 34465 119 2
alber. . . 189866 425240 79 2
dioni. . . 189873 416188 61 355
janni. . . 168792 83733 55 4
cover. . . 75193 581012 55 7
MiniB. . . 168798 130064 51 2
conne. . . 167201 67557 43 3

name tid #obs #feat #cls

kr-vs. . . 167149 3196 37 2
higgs. . . 167200 98050 29 2
helen. . . 189874 65196 28 100
kc1 167181 2109 22 2
numer. . . 167083 96320 22 2
credi. . . 167161 1000 21 2
sylvi. . . 189865 5124 21 2
segme. . . 189906 2310 20 7
vehic. . . 167168 846 19 4
bank-. . . 126029 45211 17 2
Austr. . . 167104 690 15 2
adult. . . 126025 48842 15 2
Amazo. . . 75097 32769 10 2
shutt. . . 168795 58000 10 7
airli. . . 75127 539383 8 2
car 189905 1728 7 4
jungl. . . 189909 44819 7 3
phone. . . 167190 5404 6 2
blood. . . 167184 748 5 2

Table 20: Characteristics of the 39 datasets in Dtest sorted by number of features. We report
for each dataset the name and the task id (as a link) as used on OpenML.org, and
furthermore the number of observations, the number of features and the number
of classes.

49

appendix for auto-sklearn 2 .0 : hands-free automl via meta-learning 251

D
A P P E N D I X F O R O P E N M L B E N C H M A R K I N G S U I T E S

253

A OpenML-CC18 dataset list

Table 1: Datasets included in the OpenML-CC18 benchmarking suite. For each dataset, we show:
the OpenML task id, dataset id and name, the number of classes (cl), features (p) and observations
(n), as well as the ratio of the minority and majority class sizes (MinMaj).

Data id Task id Name cl p n MinMaj

3 3 kr-vs-kp 2 37 3196 0.91
6 6 letter 26 17 20000 0.90

11 11 balance-scale 3 5 625 0.17
12 12 mfeat-factors 10 217 2000 1.00
14 14 mfeat-fourier 10 77 2000 1.00

15 15 breast-w 2 10 699 0.53
16 16 mfeat-karhunen 10 65 2000 1.00
18 18 mfeat-morphological 10 7 2000 1.00
22 22 mfeat-zernike 10 48 2000 1.00
23 23 cmc 3 10 1473 0.53

28 28 optdigits 10 65 5620 0.97
29 29 credit-approval 2 16 690 0.80
31 31 credit-g 2 21 1000 0.43
32 32 pendigits 10 17 10992 0.92
37 37 diabetes 2 9 768 0.54

38 3021 sick 2 30 3772 0.07
44 43 spambase 2 58 4601 0.65
46 45 splice 3 62 3190 0.46
50 49 tic-tac-toe 2 10 958 0.53
54 53 vehicle 4 19 846 0.91

151 219 electricity 2 9 45312 0.74
182 2074 satimage 6 37 6430 0.41
188 2079 eucalyptus 5 20 736 0.49
300 3481 isolet 26 618 7797 0.99
307 3022 vowel 11 13 990 1.00

458 3549 analcatdata_authorship 4 71 841 0.17
469 3560 analcatdata_dmft 6 5 797 0.79
554 3573 mnist_784 10 785 70000 0.80

1049 3902 pc4 2 38 1458 0.14
1050 3903 pc3 2 38 1563 0.11

1053 3904 jm1 2 22 10885 0.24
1063 3913 kc2 2 22 522 0.26
1067 3917 kc1 2 22 2109 0.18
1068 3918 pc1 2 22 1109 0.07
1461 14965 bank-marketing 2 17 45211 0.13

1462 10093 banknote-authentication 2 5 1372 0.80

Data id Task id Name cl p n MinMaj

1464 10101 blood-transfusion-service-center 2 5 748 0.31
1468 9981 cnae-9 9 857 1080 1.00
1475 9985 first-order-theorem-proving 6 52 6118 0.19
1478 14970 har 6 562 10299 0.72
1480 9971 ilpd 2 11 583 0.40

1485 9976 madelon 2 501 2600 1.00
1486 9977 nomao 2 119 34465 0.40
1487 9978 ozone-level-8hr 2 73 2534 0.07
1489 9952 phoneme 2 6 5404 0.42
1494 9957 qsar-biodeg 2 42 1055 0.51

1497 9960 wall-robot-navigation 4 25 5456 0.15
1501 9964 semeion 10 257 1593 0.96
1510 9946 wdbc 2 31 569 0.59
1590 7592 adult 2 15 48842 0.31
4134 9910 Bioresponse 2 1777 3751 0.84

4534 14952 PhishingWebsites 2 31 11055 0.80
4538 14969 GesturePhaseSegmentationProcessed 5 33 9873 0.34
6332 14954 cylinder-bands 2 40 540 0.73

23381 125920 dresses-sales 2 13 500 0.72
23517 167120 numerai28.6 2 22 96320 0.98

40499 125922 texture 11 41 5500 1.00
40668 146195 connect-4 3 43 67557 0.15
40670 167140 dna 3 181 3186 0.46
40701 167141 churn 2 21 5000 0.16
40923 167121 Devnagari-Script 46 1025 92000 1.00

40927 167124 CIFAR_10 10 3073 60000 1.00
40966 146800 MiceProtein 8 82 1080 0.70
40975 146821 car 4 7 1728 0.05
40978 167125 Internet-Advertisements 2 1559 3279 0.16
40979 146824 mfeat-pixel 10 241 2000 1.00

40982 146817 steel-plates-fault 7 28 1941 0.08
40983 146820 wilt 2 6 4839 0.06
40984 146822 segment 7 20 2310 1.00
40994 146819 climate-model-simulation-crashes 2 21 540 0.09
40996 146825 Fashion-MNIST 10 785 70000 1.00

41027 167119 jungle_chess_2pcs_raw_endgame_complete 3 7 44819 0.19

B Useful links

We now collect all relevant links in a single place to simplify access to online material on OpenML
benchmarking studies:

• General online documentation: https://docs.openml.org

• Online documentation on benchmarking suites: https://docs.openml.org/benchmark

• Github repository with additional material, including a notebook to create updated suites:
https://github.com/openml/benchmark-suites

• Github organization for OpenML.org: https://github.com/openml

• Python package: OpenML (PyPI)

• R package: OpenML (CRAN)

• Java package: org.openml.openmlweka (Maven Central)

C Suggested curation protocol

In this section we give an exemplary curation protocol for constructing new benchmarking suites. It
is based on our experience constructing the OpenML-CC18 and its predecessor, the OpenML100.
Steps can be removed or added depending on the desired benchmark purpose, the steps below serve
as a guideline.

1. Steps that can be automated:

15

appendix for openml benchmarking suites 255

(a) Specify the OpenML task type, for example supervised classification or supervised
regression.

(b) Specify criteria on dataset properties, such as the size of the dataset, the number of
features or the number of classes.

(c) Specify criteria on the data modalities that are supposed to be in the data. Currently,
OpenML supports numerical, categorical, date and string.

(d) Specify whether the data should be sparse or not.
(e) Specify whether the data should contain missing values or not.
(f) Check whether tasks are too easy, either by querying for existing results on OpenML

or by running machine learning algorithms locally.
2. Steps that cannot be automated and should be performed on the outcome of the previous,

automated steps. For our benchmark the following manual steps were added:
(a) Check for artificial datasets.
(b) Check for dataset that require grouped or time-aware splitting.
(c) Check for datasets that are subsets of larger datasets (or binarized datasets in case of

classification).
(d) Check for other forms of derived datasets, for example versions that do no longer

contain feature names or only a subset of features.
(e) Check that all remaining datasets feature a reference.

16

256 appendix for openml benchmarking suites

B I B L I O G R A P H Y

Aguilar Melgar, L., D. Dao, S. Gan, N. Gürel, N. Hollenstein, J. Jiang,
B. Karlaš, T. Lemmin, T. Li, Y. Li, S. Rao, J. Rausch, C. Renggli,
L. Rimanic, M. Weber, S. Zhang, Z. Zhao, K. Schawinski, W. Wu,
and C. Zhang (2021). “Ease. ML: A Lifecycle Management System
for Machine Learning.” In: Proceedings of the Annual Conference on
Innovative Data Systems Research (CIDR), 2021. CIDR.

Alaa, A. and M. van der Schaar (2018). “AutoPrognosis: Automated
Clinical Prognostic Modeling via Bayesian Optimization with Struc-
tured Kernel Learning.” In: Proceedings of the 35th International Con-
ference on Machine Learning (ICML’18). Ed. by J. Dy and A. Krause.
Vol. 80. Proceedings of Machine Learning Research, pp. 139–148.

Alpaydin, E. (2010). Introduction to machine learning. 2nd ed. MIT press.
Ambrosen, K., M. Skjerbæk, J Foldager, M. Axelsen, N Bak, L. Arvast-

son, S. Christensen, L. Johansen, J. Raghava, B. Oranje, E Rostrup, M.
Nielsen, M. Osler, B. Fagerlund, C. Pantelis, B. Kinon, B. Glenthøj, L.
Hansen, and B Ebdrup (2020). “A machine-learning framework for
robust and reliable prediction of short- and long-term treatment re-
sponse in initially antipsychotic-naïve schizophrenia patients based
on multimodal neuropsychiatric data.” In: Translational Psychiatry
10.276.

Aroyo, L. and C. Welty (2015). “Truth Is a Lie: Crowd Truth and the
Seven Myths of Human Annotation.” In: AI Magazine 36.1, pp. 15–
24.

Awad, N., N. Mallik, and F. Hutter (2021). “DEHB: Evolutionary
Hyberband for Scalable, Robust and Efficient Hyperparameter Op-
timization.” In: Proceedings of the 30th International Joint Conference
on Artificial Intelligence, IJCAI’21. Ed. by Z. Zhou. ijcai.org, pp. 2147–
2153.

Baudart, G., M. Hirzel, K. Kate, P. Ram, A. Shinnar, and J. Tsay (2021).
“Pipeline Combinators for Gradual AutoML.” In: Proceedings of the
34th International Conference on Advances in Neural Information Pro-
cessing Systems (NeurIPS’21). Ed. by M. Ranzato, A. Beygelzimer, K.
Nguyen, P. Liang, J. Vaughan, and Y. Dauphin. Curran Associates.

Bello, I., W. Fedus, X. Du, E. Cubuk, A. Srinivas, T.-Y. Lin, J. Shlens,
and B. Zoph (2021). “Revisiting ResNets: Improved Training and
Scaling Strategies.” In: Proceedings of the 34th International Conference
on Advances in Neural Information Processing Systems (NeurIPS’21).
Ed. by M. Ranzato, A. Beygelzimer, K. Nguyen, P. Liang, J. Vaughan,
and Y. Dauphin. Curran Associates.

Bergstra, J., R. Bardenet, Y. Bengio, and B. Kégl (2011). “Algorithms for
Hyper-Parameter Optimization.” In: Proceedings of the 24th Interna-

257

258 bibliography

tional Conference on Advances in Neural Information Processing Systems
(NeurIPS’11). Ed. by J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira,
and K. Weinberger. Curran Associates, pp. 2546–2554.

Bergstra, J. and Y. Bengio (2012). “Random Search for Hyper-Parameter
Optimization.” In: Journal of Machine Learning Research 13, pp. 281–
305.

Bergstra, J., N. Pinto, and D. Cox (2015). “SkData: data sets and
algorithm evaluation protocols in Python.” In: Computational Science
& Discovery 8.1.

Biedenkapp, A., M. Lindauer, K. Eggensperger, C. Fawcett, H. Hoos,
and F. Hutter (2017). “Efficient Parameter Importance Analysis
via Ablation with Surrogates.” In: Proceedings of the Thirty-First
Conference on Artificial Intelligence (AAAI’17). Ed. by S.Singh and S.
Markovitch. AAAI Press, pp. 773–779.

Biedenkapp, A., J. Marben, M. Lindauer, and F. Hutter (2018). “CAVE:
Configuration Assessment, Visualization and Evaluation.” In: Pro-
ceedings of the International Conference on Learning and Intelligent Op-
timization (LION). Ed. by R. Battiti, M. Brunato, I. Kotsireas, and
P. Pardalos. Lecture Notes in Computer Science. Springer.

Bishop, C. (2006). Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer.

Brazdil, P., J. Gama, and B. Henery (1994). “Characterizing the Appli-
cability of Classification Algorithms Using Meta-Level Learning.”
In: Machine Learning: ECML-94. Ed. by F. Bergadano and L. De Raedt.
Lecture Notes in Artificial Intelligence. Springer, pp. 83–102.

Brazdil, P., C. Giraud-Carrier, C. Soares, and R. Vilalta (2008). Met-
alearning: Applications to Data Mining. 1st ed. Springer.

Brochu, E., V. Cora, and N. de Freitas (2010). “A Tutorial on Bayesian
Optimization of Expensive Cost Functions, with Application to
Active User Modeling and Hierarchical Reinforcement Learning.”
In: arXiv:1012.2599v1 [cs.LG].

Buitinck, L., G. Louppe, M. Blondel, F. Pedregosa, A. Müller, O. Grisel,
V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J.
Vanderplas, A. Joly, B. Holt, and G. Varoquaux (2013). “API design
for machine learning software: experiences from the scikit-learn
project.” In: ECML PKDD Workshop: Languages for Data Mining and
Machine Learning, pp. 108–122.

Bürger, F. and J. Pauli (2015). “A Holistic Classification Optimization
Framework with Feature Selection, Preprocessing, Manifold Learn-
ing and Classifiers.” In: Procceedings of 4th International Conference
on Pattern Recognition: Applications and Methods (ICPRAM’15). Ed. by
A. Fred, M. De Marsico, and M. Figueiredo. Vol. 9493. Lecture Notes
in Computer Science. Springer, pp. 52–68.

Caruana, R. (2015). Research Opportunities in AutoML. Presentation at
the 2nd AutoML workshop @ IMCL. url: https://indico.ijclab.

https://indico.ijclab.in2p3.fr/event/2914/contributions/6481/attachments/6048/7173/CaruanaAutoMLWorkshopICML2015rev4.pdf
https://indico.ijclab.in2p3.fr/event/2914/contributions/6481/attachments/6048/7173/CaruanaAutoMLWorkshopICML2015rev4.pdf
https://indico.ijclab.in2p3.fr/event/2914/contributions/6481/attachments/6048/7173/CaruanaAutoMLWorkshopICML2015rev4.pdf

bibliography 259

in2p3.fr/event/2914/contributions/6481/attachments/6048/

7173/CaruanaAutoMLWorkshopICML2015rev4.pdf.
Caruana, R., A. Niculescu-Mizil, G. Crew, and A. Ksikes (2004). “En-

semble Selection from Libraries of Models.” In: Proceedings of the
21st International Conference on Machine Learning (ICML’04). Ed. by
R. Greiner. Omnipress.

Casalicchio, G., J. Bossek, M. Lang, D. Kirchhoff, P. Kerschke, B. Hofner,
H. Seibold, J. Vanschoren, and B. Bischl (2017). “OpenML: An R
package to connect to the machine learning platform OpenML.” In:
Computational Statistics 32.3.

Chakraborty, J., T. Xia, F. Fahid, and T. Menzies (2019). “Software
Engineering for Fairness: A Case Study with Hyperparameter Op-
timization.” In: Late Breaking Results Track of the 34th IEEE/ACM
International Conference on Automated Software Engineering.

Chang, Chih-Chung and Chih-Jen Lin (2011). “LIBSVM: A Library
for Support Vector Machines.” In: ACM Transactions on Intelligent
Systems and Technology 2.3, pp. 1–27.

Chen, B., H. Wu, W. Mo, I. Chattopadhyay, and H. Lipson (2018).
“Autostacker: A Compositional Evolutionary Learning System.” In:
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO’18). Ed. by K. Takadama H. Aguirre. ACM, pp. 402–409.

Chen, T. and C. Guestrin (2016). “XGBoost: A Scalable Tree Boost-
ing System.” In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD). Ed. by
B. Krishnapuram, M. Shah, A. Smola, C. Aggarwal, D. Shen, and
R. Rastogi. ACM Press, pp. 785–794.

Chen, Y., A. Huang, Z. Wang, I. Antonoglou, J. Schrittwieser, D. Silver,
and N. de Freitas (2018). “Bayesian Optimization in AlphaGo.” In:
arXiv:1812.06855 [cs.LG].

Chinthanet, B., B. Reid, C. Treude, M. Wagner, R. Kula, T. Ishio, and
K. Matsumoto (2021). “What makes a good Node.js package? Inves-
tigating Users, Contributors, and Runnability.” In: arXiv:2106.12239
[cs.SE].

Clune, J. (2019). “AI-GAs: AI-generating algorithms, an alternate
paradigm for producing general artificial intelligence.” In: arXiv:
1905.10985 [cs.AI].

Crisan, A. and B. Fiore-Gartland (2021). “Fits and Starts: Enterprise
Use of AutoML and the Role of Humans in the Loop.” In: Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems.
CHI ’21 601. Association for Computing Machinery.

Dalal, N. and B. Triggs (2005). “Histograms of oriented gradients
for human detection.” In: 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05). Vol. 1, pp. 886–
893.

DARPA (2022). Data-Driven Discovery of Models (D3M). Retrieved on
January 28, 2022. url: https://datadrivendiscovery.org/.

https://indico.ijclab.in2p3.fr/event/2914/contributions/6481/attachments/6048/7173/CaruanaAutoMLWorkshopICML2015rev4.pdf
https://indico.ijclab.in2p3.fr/event/2914/contributions/6481/attachments/6048/7173/CaruanaAutoMLWorkshopICML2015rev4.pdf
https://indico.ijclab.in2p3.fr/event/2914/contributions/6481/attachments/6048/7173/CaruanaAutoMLWorkshopICML2015rev4.pdf
https://indico.ijclab.in2p3.fr/event/2914/contributions/6481/attachments/6048/7173/CaruanaAutoMLWorkshopICML2015rev4.pdf
https://datadrivendiscovery.org/

260 bibliography

de Sa, A., W. Pinto, L. Oliveira, and G. Pappa (2017). “RECIPE: A
Grammar-based Framework for Automatically Evolving Classifi-
cation Pipelines.” In: Proceedings of the 20th European Conference on
Genetic Programming (EuroGP’17). Ed. by M. Castelli, J. McDermott,
and L. Sekanina. Vol. 10196. Lecture Notes in Computer Science.
Springer, pp. 246–261.

Denkena, B., M.-A. Dittrich, M. Lindauer, J. Mainka, and L. Stüren-
burg (2020). “Using AutoML to Optimize Shape Error Prediction
in Milling Processes.” In: Proceedings of the Machining Innovations
Conference (MIC) 2020, pp. 160–165.

Ding, F., M. Hardt, J. Miller, and L. Schmidt (2021). “Retiring Adult:
New Datasets for Fair Machine Learning.” In: Proceedings of the 34th
International Conference on Advances in Neural Information Processing
Systems (NeurIPS’21). Ed. by M. Ranzato, A. Beygelzimer, K. Nguyen,
P. Liang, J. Vaughan, and Y. Dauphin. Curran Associates.

Domhan, T., J. Springenberg, and F. Hutter (2015). “Speeding Up
Automatic Hyperparameter Optimization of Deep Neural Networks
by Extrapolation of Learning Curves.” In: Proceedings of the 24th
International Joint Conference on Artificial Intelligence (IJCAI’15). Ed. by
Q. Yang and M. Wooldridge, pp. 3460–3468.

Dong, J.-D., A.-C. Cheng, D.-C. Juan, W. Wei, and M. Sun (2018). “PPP-
Net: Platform-aware Progressive Search for Pareto-optimal Neural
Architectures.” In: International Conference on Learning Representations
Workshop track. Published online: iclr.cc.

Drori, I., Y. Krishnamurthy, R. Lourenco, R. Rampin, K. Cho, C. Silva,
and J. Freire (2019). “Automatic Machine Learning by Pipeline Syn-
thesis using Model-Based Reinforcement Learning and a Grammar.”
In: ICML workshop on Automated Machine Learning (AutoML workshop
2019). Ed. by K. Eggensperger, M. Feurer, F. Hutter, and J. Van-
schoren.

Drori, I., Y. Krishnamurthy, R. Rampin, R. Lourenco, J. One, K. Cho, C.
Silva, and J. Freire (2018). “AlphaD3M: Machine Learning Pipeline
Synthesis.” In: ICML workshop on Automated Machine Learning (Au-
toML workshop 2018). Ed. by R. Garnett, F. Hutter J. Vanschoren, P.
Brazdil, R. Caruana, C. Giraud-Carrier, I. Guyon, and B. Kégl.

Drozdal, J., J. Weisz, D. Wang, G. Dass, B. Yao, C. Zhao, M. Muller,
L. Ju, and H. Su (2020). “Trust in AutoML: Exploring Informa-
tion Needs for Establishing Trust in Automated Machine Learning
Systems.” In: Proceedings of the 25th International Conference on Intelli-
gent User Interfaces. IUI ’20. Association for Computing Machinery,
pp. 297–307.

Drummond, C. (2006). “Machine learning as an experimental science
(revisited).” In: AAAI workshop on evaluation methods for machine
learning.

Dua, D. and C. Graff (2019). UCI Machine Learning Repository. url:
http://archive.ics.uci.edu/ml.

iclr.cc
http://archive.ics.uci.edu/ml

bibliography 261

Eggensperger, K., F. Hutter, H. Hoos, and K. Leyton-Brown (2015).
“Efficient Benchmarking of Hyperparameter Optimizers via Sur-
rogates.” In: Proceedings of the Twenty-ninth National Conference on
Artificial Intelligence (AAAI’15). Ed. by B. Bonet and S. Koenig. AAAI
Press, pp. 1114–1120.

Eggensperger, K., P. Müller, N. Mallik, M. Feurer, R. Sass, A. Klein, N.
Awad, M. Lindauer, and F. Hutter (2021). “HPOBench: A Collection
of Reproducible Multi-Fidelity Benchmark Problems for HPO.”
In: Proceedings of the Neural Information Processing Systems Track on
Datasets and Benchmarks. Ed. by J. Vanschoren, S. Yeung, and M.
Xenochristou. Curran Associates.

Elliott, T. (2019). The State of the Octoverse: machine learning. Retrieved:
January 14, 2022. url: https://github.blog/2019-01-24-the-
state-of-the-octoverse-machine-learning/.

Elsken, T., J. Metzen, and F. Hutter (2019a). “Efficient Multi-Objective
Neural Architecture Search via Lamarckian Evolution.” In: Pro-
ceedings of the International Conference on Learning Representations
(ICLR’19). Published online: iclr.cc.

– (2019b). “Neural Architecture Search.” In: Automated Machine Learn-
ing: Methods, Systems, Challenges. Ed. by F. Hutter, L. Kotthoff, and
J. Vanschoren. Vol. 5. The Springer Series on Challenges in Machine
Learning. Available for free at http://automl.org/book. Springer,
pp. 63–77.

Erickson, N., J. Mueller, A. Shirkov, H. Zhang, P. Larroy, M. Li, and A.
Smola (2020). “AutoGluon-Tabular: Robust and Accurate AutoML
for Structured Data.” In: arXiv:2003.06505 [stat.ML].

Escalante, H. (2021). “Automated Machine Learning—A Brief Review
at the End of the Early Years.” In: Automated Design of Machine
Learning and Search Algorithms. Ed. by N. Pillay and R. Qu. Springer,
pp. 11–28.

Escalante, H., M. Montes, and E. Sucar (2009). “Particle Swarm Model
Selection.” In: Journal of Machine Learning Research 10, pp. 405–440.

– (2010). “Ensemble particle swarm model selection.” In: Proceedings
of the 2010 IEEE International Joint Conference on Neural Networks
(IJCNN). IEEE Computer Society Press, pp. 1–8.

Fawcett, C. and H. Hoos (2016). “Analysing differences between algo-
rithm configurations through ablation.” In: Journal of Heuristics 22.4,
pp. 431–458.

Fernández-Delgado, M., E. Cernadas, S. Barro, and D. Amorim (2014).
“Do we Need Hundreds of Classifiers to Solve Real World Classi-
fication Problems?” In: Journal of Machine Learning Research 15.90,
pp. 3133–3181.

Feurer, M., B. Letham, and E. Bakshy (2018). “Scalable Meta-Learning
for Bayesian Optimization.” In: arXiv:1802.02219v1 [stat.ML].

Feurer, M., J. Springenberg, and F. Hutter (2015). “Initializing Bayesian
Hyperparameter Optimization via Meta-Learning.” In: Proceedings of

https://github.blog/2019-01-24-the-state-of-the-octoverse-machine-learning/
https://github.blog/2019-01-24-the-state-of-the-octoverse-machine-learning/
iclr.cc

262 bibliography

the Twenty-ninth National Conference on Artificial Intelligence (AAAI’15).
Ed. by B. Bonet and S. Koenig. AAAI Press, pp. 1128–1135.

Frazier, P. (2018). “A Tutorial on Bayesian Optimization.” In: arXiv:
1807.02811 [stat.ML].

Fusi, N., R. Sheth, and M. Elibol (2018). “Probabilistic Matrix Factor-
ization for Automated Machine Learning.” In: Proceedings of the 31st
International Conference on Advances in Neural Information Processing
Systems (NeurIPS’18). Ed. by S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett. Curran Associates,
pp. 3348–3357.

Gama, J. and P. Brazdil (1995). “Characterization of Classification
Algorithms.” In: Proceedings of the 7th Portuguese Conference on Artifi-
cial Intelligence (EPAI’95). Ed. by C. Pinto-Ferreira and N. Mamede.
Vol. 990. Lecture Notes in Computer Science. Springer, pp. 189–200.

Gardner, J., M. Kusner, Z. Xu, K. Weinberger, and J. Cunningham
(2014). “Bayesian Optimization with Inequality Constraints.” In:
Proceedings of the 31th International Conference on Machine Learning,
(ICML’14). Ed. by E. Xing and T. Jebara. Omnipress, pp. 937–945.

Garnett, R. (2022). Bayesian Optimization. in preparation. Cambridge
University Press.

Gelbart, M., J. Snoek, and R. Adams (2014). “Bayesian Optimization
with Unknown Constraints.” In: Proceedings of the 30th conference on
Uncertainty in Artificial Intelligence (UAI’14). Ed. by N. Zhang and
J. Tian. AUAI Press, pp. 250–258.

Gemein, L., R. Schirrmeister, P. Chrabąszcz, D. Wilson, J. Boedecker, A.
Schulze-Bonhage, F. Hutter, and T. Ball (2020). “Machine-learning-
based diagnostics of EEG pathology.” In: NeuroImage 220.117021.

Gijsbers, P., E. LeDell, S. Poirier, J. Thomas, B. Bischl, and J. Vanschoren
(2019). “An Open Source AutoML Benchmark.” In: ICML workshop
on Automated Machine Learning (AutoML workshop 2019). Ed. by K.
Eggensperger, M. Feurer, F. Hutter, and J. Vanschoren.

Golovin, D., B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Scul-
ley (2017). “Google Vizier: A Service for Black-Box Optimization.”
In: Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD). Ed. by S. Matwin, S. Yu,
and F. Farooq. ACM Press, pp. 1487–1495.

Gomes, T., R. Prudêncio, C. Soares, A. Rossi, and A. Carvalho (2012).
“Combining meta-learning and search techniques to select parame-
ters for support vector machines.” In: Neurocomputing 75.1, pp. 3–
12.

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep Learning. MIT
Press.

Gurukar, S., D. Ajwani, S. Dutta, J. Lauri, S. Parthasarathy, and A.
Sala (2020). “Towards Quantifying the Distance between Opinions.”
In: Proceedings of the International AAAI Conference on Web and Social
Media 14.1, pp. 229–239.

bibliography 263

Guyon, I., L. Sun-Hosoya, M. Boullé, H. Escalante, S. Escalera, Z. Liu,
D. Jajetic, B. Ray, M. Saeed, M. Sebag, A. Statnikov, W. Tu, and
E. Viegas (2019). “Analysis of the AutoML Challenge Series 2015-
2018.” In: Automated Machine Learning: Methods, Systems, Challenges.
Ed. by F. Hutter, L. Kotthoff, and J. Vanschoren. Vol. 5. The Springer
Series on Challenges in Machine Learning. Available for free at
http://automl.org/book. Springer. Chap. 10, pp. 177–219.

Hansen, N. (2006). “The CMA evolution strategy: a comparing review.”
In: Towards a new evolutionary computation. Advances on estimation of
distribution algorithms. Ed. by J. Lozano, P. Larranaga, I. Inza, and
E. Bengoetxea. Springer, pp. 75–102.

Hastie, T., R. Tibshirani, and J. Friedman (2001). The Elements of Statis-
tical Learning. Springer.

He, K., X. Zhang, S. Ren, and J. Sun (2016). “Deep Residual Learning
for Image Recognition.” In: Proceedings of the International Confer-
ence on Computer Vision and Pattern Recognition (CVPR’16). IEEE
Computer Society Press.

Heffetz, Y., R. Vainshtein, G. Katz, and L. Rokach (2020). “DeepLine:
AutoML Tool for Pipelines Generation Using Deep Reinforcement
Learning and Hierarchical Actions Filtering.” In: Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD’20). Ed. by J. Tang and B. Prakash. ACM
Press, pp. 2103–2113.

Hoffman, M., B. Shahriari, and N. de Freitas (2014). “On correlation
and budget constraints in model-based bandit optimization with
application to automatic machine learning.” In: Proceedings of the
Seventeenth International Conference on Artificial Intelligence and Statis-
tics (AISTATS). Ed. by S. Kaski and J. Corander. Vol. 33. Proceedings
of Machine Learning Research, pp. 365–374.

Hoos, H. (2012). “Programming by optimization.” In: Communications
of the ACM 55.2, pp. 70–80.

Hsu, C.-H., S.-H. Chang, J.-H. Liang, H.-P. Chou, C.-H. Liu, S.-C.
Chang, J.-Y. Pan, Y.-T. Chen, and D.-C. Juan W. Wei (2018). “MONAS:
Multi-Objective Neural Architecture Search using Reinforcement
Learning.” In: arXiv:1806.10332.

Huo, Y., G. Prasad, L. Lampe, and C. Victor Leung (2019). “Smart-Grid
Monitoring: Enhanced Machine Learning for Cable Diagnostics.” In:
2019 IEEE International Symposium on Power Line Communications and
its Applications (ISPLC), pp. 1–6.

Hutter, F., H. Hoos, and K. Leyton-Brown (2014). “An Efficient Ap-
proach for Assessing Hyperparameter Importance.” In: Proceedings
of the 31th International Conference on Machine Learning, (ICML’14).
Ed. by E. Xing and T. Jebara. Omnipress, pp. 754–762.

Hutter, F., L. Kotthoff, and J. Vanschoren, eds. (2019). Automated Ma-
chine Learning: Methods, Systems, Challenges. Vol. 5. The Springer

264 bibliography

Series on Challenges in Machine Learning. Available for free at
http://automl.org/book. Springer.

Hvarfner, C., D. Stoll, A. Souza, L. Nardi, M. Lindauer, and F. Hutter
(2022). “πBO: Augmenting Acquisition Functions with User Beliefs
for Bayesian Optimization.” In: International Conference on Learning
Representations.

Jamieson, K. and A. Talwalkar (2016). “Non-stochastic Best Arm Iden-
tification and Hyperparameter Optimization.” In: Proceedings of the
Seventeenth International Conference on Artificial Intelligence and Statis-
tics (AISTATS). Ed. by A. Gretton and C. Robert. Vol. 51. Proceedings
of Machine Learning Research.

Jin, H., Q. Song, and X. Hu (2019). “Auto-Keras: An Efficient Neu-
ral Architecture Search System.” In: Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Min-
ing, KDD’19. Ed. by A. Teredesai, V. Kumar, Y. Li, R. Rosales, E.
Terzi, and G. Karypis. ACM Press, pp. 1946–1956.

Jones, D., M. Schonlau, and W. Welch (1998). “Efficient Global Opti-
mization of Expensive Black Box Functions.” In: Journal of Global
Optimization 13, pp. 455–492.

Jumper, J. et al. (2021). “Highly accurate protein structure prediction
with AlphaFold.” In: Nature 596.7873, pp. 583–589.

Jurafsky, D. and J. Martin (2022). Speech and Language Processing. 3rd ed.
Draft of January 12, 2022.

Kadra, A., M. Lindauer, F. Hutter, and J. Grabocka (2021). “Well-tuned
Simple Nets Excel on Tabular Datasets.” In: Proceedings of the 34th
International Conference on Advances in Neural Information Processing
Systems (NeurIPS’21). Ed. by M. Ranzato, A. Beygelzimer, K. Nguyen,
P. Liang, J. Vaughan, and Y. Dauphin. Curran Associates.

Kandasamy, K., W. Neiswanger, J. Schneider, B. Poczos, and E. Xing
(2018). “Neural Architecture Search with Bayesian Optimisation and
Optimal Transport.” In: Proceedings of the 31st International Conference
on Advances in Neural Information Processing Systems (NeurIPS’18).
Ed. by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett. Curran Associates, pp. 2016–2025.

Kaplan, J., S. McCandlish, T. Henighan, T. Brown, B. Chess, R. Child,
S. Gray, A. Radford, J. Wu, and D. Amodei (2020). “Scaling laws for
neural language models.” In: arXiv:2001.08361 [cs.LG].

Katz, M., P. Ram, S. Sohrabi, and O. Udrea (2020). “Exploring Context-
Free Languages via Planning: The Case for Automating Machine
Learning.” In: Proceedings of the 30th International Conference on Auto-
mated Planning and Scheduling (ICAPS). AAAI Press, pp. 403–411.

Ke, G., Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and
T.-Y. Liu (2017). “LightGBM: A Highly Efficient Gradient Boosting
Decision Tree.” In: Proceedings of the 30th International Conference
on Advances in Neural Information Processing Systems (NeurIPS’17).

bibliography 265

Ed. by I. Guyon, U. von Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett. Curran Associates, pp. 3149–3157.

Kerschke, P., H. Hoos, F. Neumann, and H. Trautmann (2019). “Auto-
mated Algorithm Selection: Survey and Perspectives.” In: Evolution-
ary Computation 27.1, pp. 3–45.

Khurana, U. and H. Samulowitz (2020). “Autonomous Predictive Mod-
eling via Reinforcement Learning.” In: Proceedings of the 29th ACM In-
ternational Conference on Information & Knowledge Management. CIKM
’20. Association for Computing Machinery, pp. 3285–3288.

Kim, Y.-H., B. Reddy, S. Yun, and H Seo (2017). “NEMO: Neuro-
Evolution with Multiobjective Optimization of Deep Neural Net-
work for Speed and Accuracy.” In: ICML workshop on Automated
Machine Learning (AutoML workshop 2017). Ed. by J. Vanschoren and
R. Garnett.

King, R., C. Feng, and A. Sutherland (1995). “Statlog: comparison of
classification algorithms on large real-world problems.” In: Applied
Artificial Intelligence 9.3, pp. 289–333.

King, R., J. Hirst, and M. Sternberg (1993). “New approaches to QSAR:
Neural networks and machine learning.” In: Perspectives in Drug
Discovery and Design 1.2, pp. 279–290.

Komer, B., J. Bergstra, and C. Eliasmith (2014). “Hyperopt-Sklearn: Au-
tomatic Hyperparameter Configuration for Scikit-Learn.” In: ICML
workshop on Automated Machine Learning (AutoML workshop 2014).
Ed. by F. Hutter, R. Caruana, R. Bardenet, M. Bilenko, I. Guyon,
B. Kégl, and H. Larochelle.

– (2019). “Hyperopt-Sklearn.” In: Automated Machine Learning: Methods,
Systems, Challenges. Ed. by F. Hutter, L. Kotthoff, and J. Vanschoren.
Vol. 5. The Springer Series on Challenges in Machine Learning.
Available for free at http://automl.org/book. Springer. Chap. 5,
pp. 97–111.

Kotthoff, L., C. Thornton, H. Hoos, F. Hutter, and K. Leyton-Brown
(2019). “Auto-WEKA: Automatic Model Selection and Hyperpa-
rameter Optimization in WEKA.” In: Automated Machine Learning:
Methods, Systems, Challenges. Ed. by F. Hutter, L. Kotthoff, and J.
Vanschoren. Vol. 5. The Springer Series on Challenges in Machine
Learning. Available for free at http://automl.org/book. Springer.
Chap. 4, pp. 81–95.

Krause, A. and D. Golovin (2014). “Submodular Function Maximiza-
tion.” In: Tractability: Practical Approaches to Hard Problems. Ed. by
L. Bordeaux, Y. Hamadi, and P. Kohli. Cambridge University Press.
Chap. 3, pp. 71–104.

Krause, A., J. Leskovec, C. Guestrin, J. VanBriesen, and C. Faloutsos
(2008). “Efficient Sensor Placement Optimization for Securing Large
Water Distribution Networks.” In: Journal of Water Resources Planning
and Management 134 (6), pp. 516–526.

266 bibliography

Křen, T., M. Pilát, and R. Neruda (2015). “Evolving Workflow Graphs
Using Typed Genetic Programming.” In: 2015 IEEE Symposium Series
on Computational Intelligence, pp. 1407–1414.

– (2017). “Automatic Creation of Machine Learning Workflows with
Strongly Typed Genetic Programming.” In: International Journal on
Artificial Intelligence Tools 26.05, pp. 1760020-1–1760020-24.

Kriegel, H., E. Schubert, and A. Zimek (2017). “The (Black) Art of
Runtime Evaluation: Are We Comparing Algorithms or Implemen-
tations?” In: Knowledge Information System 52.2, pp. 341–378.

Krizhevsky, A., I. Sutskever, and G. Hinton (2012). “ImageNet Classifi-
cation with Deep Convolutional Neural Networks.” In: Proceedings of
the 25th International Conference on Advances in Neural Information Pro-
cessing Systems (NeurIPS’12). Ed. by P. Bartlett, F. Pereira, C. Burges,
L. Bottou, and K. Weinberger. Curran Associates, pp. 1097–1105.

Langley, P. (1996). “Relevance and Insight in Experimental Studies.”
In: IEEE Expert Online. Ed. by D. Price, pp. 11–12.

Lauri, J. and S. Dutta (2019). “Fine-Grained Search Space Classification
for Hard Enumeration Variants of Subset Problems.” In: Proceedings
of the Thirty-Third Conference on Artificial Intelligence (AAAI’19). Ed. by
P. Van Hentenryck and Z. Zhou. AAAI Press, pp. 2314–2321.

Lauri, J., S. Dutta, M. Grassia, and D. Ajwani (2020). “Learning fine-
grained search space pruning and heuristics for combinatorial opti-
mization.” In: arXiv:2001.01230 [cs.DS].

LeCun, Y., B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard,
and L. Jackel (1989). “Backpropagation Applied to Handwritten Zip
Code Recognition.” In: Neural Comput. 1.4, pp. 541–551.

LeDell, E. (2019). Panel discussion of the 6th ICML Workshop on Automated
Machine Learning. Ed. by K. Eggensperger, M. Feurer, F. Hutter, and
J Vanschoren.

LeDell, E. and S. Poirier (2020). “H2O AutoML: Scalable Automatic
Machine Learning.” In: ICML workshop on Automated Machine Learn-
ing (AutoML workshop 2020). Ed. by K. Eggensperger, M. Feurer, C.
Weill, M.Lindauer, F. Hutter, and J. Vanschoren.

Leite, R., P. Brazdil, and J. Vanschoren (2012). “Selecting classification
algorithms with active testing.” In: Machine Learning and Data Mining
in Pattern Recognition. Ed. by P. Perner. Vol. 7376. Lecture Notes in
Computer Science. Springer, pp. 117–131.

Li, C. (2020). OpenAI’s GPT-3 Language Model: A Technical Overview.
Retrieved on Mar 7, 2022. url: https://lambdalabs.com/blog/
demystifying-gpt-3/.

Li, L., K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar
(2018). “Hyperband: A Novel Bandit-Based Approach to Hyper-
parameter Optimization.” In: Journal of Machine Learning Research
18.185, pp. 1–52.

Li, Y., Y. Shen, W. Zhang, Y. Chen, H. Jiang, M. Liu, J. Jiang, J. Gao,
W. Wu, Z. Yang, C. Zhang, and B. Cui (2021). “OpenBox: A Gener-

https://lambdalabs.com/blog/demystifying-gpt-3/
https://lambdalabs.com/blog/demystifying-gpt-3/

bibliography 267

alized Black-Box Optimization Service.” In: Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining.
Association for Computing Machinery, pp. 3209–3219.

Liu, G., P. Wang, M. Beveridge, Y.-O. Kwon, and I. Drori (2021). “Pre-
dicting Atlantic Multidecadal Variability.” In: NeurIPS 2021 Workshop
on Tackling Climate Change with Machine Learning.

Liu, H., K. Simonyan, and Y. Yang (2019). “DARTS: Differentiable
Architecture Search.” In: Proceedings of the International Conference on
Learning Representations (ICLR’19). Published online: iclr.cc.

Liu, S., P. Ram, D. Vijaykeerthy, D. Bouneffouf, G. Bramble, H. Samu-
lowitz, D. Wang, A. Conn, and A. Gray (2020). “An ADMM Based
Framework for AutoML Pipeline Configuration.” In: Proceedings of
the Thirty-Fourth Conference on Artificial Intelligence (AAAI’20). Ed. by
F. Rossi, V. Conitzer, and F. Sha. AAAI Press, pp. 4892–4899.

Lowe, D. (1999). “Object recognition from local scale-invariant fea-
tures.” In: Proceedings of the Seventh IEEE International Conference on
Computer Vision. Vol. 2, pp. 1150–1157.

Lu, Z., I. Whalen, V. Boddeti, Y. Dhebar, K. Deb, E. Goodman, and
W. Banzhaf (2019). “NSGA-Net: Neural Architecture Search Using
Multi-Objective Genetic Algorithm.” In: Proceedings of the Genetic
and Evolutionary Computation Conference. GECCO ’19. Association for
Computing Machinery, pp. 419–427.

Macià, N. and E. Bernadó-Mansilla (2014). “Towards UCI+: A mindful
repository design.” In: Information Sciences 261, pp. 237–262.

Maipradit, R., B. Lin, C. Nagy, G. Bavota, M. Lanza, H. Hata, and
K. Matsumoto (2020). “Automated Identification of On-hold Self-
admitted Technical Debt.” In: 2020 IEEE 20th International Working
Conference on Source Code Analysis and Manipulation (SCAM), pp. 54–
64.

Maipradit, R., C. Treude, H. Hata, and K. Matsumoto (2020). “Wait for
it: identifying “On-Hold” self-admitted technical debt.” In: Empirical
Software Engineering 25.5, pp. 3770–3798.

Marinescu, R., A. Kishimoto, P. Ram, A. Rawat, M. Wistuba, P. Palmes,
and A. Botea (2021). “Searching for Machine Learning Pipelines
Using a Context-Free Grammar.” In: pp. 8902–8911.

Melis, G., C. Dyer, and P. Blunsom (2018). “On the State of the Art of
Evaluation in Neural Language Models.” In: Proceedings of the Inter-
national Conference on Learning Representations (ICLR’18). Published
online: iclr.cc.

Mendoza, H., A. Klein, M. Feurer, J. Springenberg, M. Urban, M.
Burkart, M. Dippel, M. Lindauer, and F. Hutter (2019). “Towards
Automatically-Tuned Deep Neural Networks.” In: Automated Ma-
chine Learning: Methods, Systems, Challenges. Ed. by F. Hutter, L. Kot-
thoff, and J. Vanschoren. Vol. 5. The Springer Series on Challenges
in Machine Learning. Available for free at http://automl.org/book.
Springer, pp. 135–149.

iclr.cc
iclr.cc

268 bibliography

Michailidis, M. (2017). “Investigating machine learning methods in
recommender systems - Improving prediction for the top K items.”
PhD thesis. University College London.

Milutinovic, M. (2019). “Towards Automatic Machine Learning Pipeline
Design.” PhD thesis. University of California, Berkeley.

Mohr, F. and M. Wever (2021). “Replacing the Ex-Def Baseline in
AutoML by Naive AutoML.” In: ICML workshop on Automated Ma-
chine Learning (AutoML workshop 2021). Ed. by K. Eggensperger,
M.Lindauer, F. Hutter, and J. Vanschoren.

Mohr, F., M. Wever, and E. Hüllermeier (2018). “ML-Plan: Automated
machine learning via hierarchical planning.” In: Machine Learning
107.8-10, pp. 1495–1515.

Mohr, F., M. Wever, A. Tornede, and E. Hüllermeier (2021). “Predicting
Machine Learning Pipeline Runtimes in the Context of Automated
Machine Learning.” In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 43.9, pp. 3055–3066.

Moosbauer, J., J. Herbinger, G. Casalicchio, M. Lindauer, and B. Bischl
(2021). “Explaining Hyperparameter Optimization via Partial De-
pendence Plots.” In: Proceedings of the 34th International Conference
on Advances in Neural Information Processing Systems (NeurIPS’21).
Ed. by M. Ranzato, A. Beygelzimer, K. Nguyen, P. Liang, J. Vaughan,
and Y. Dauphin. Curran Associates.

Murphy, K. (2012). Machine learning: a probabilistic perspective. Cam-
bridge, MA: The MIT Press.

Nguyen, T.-D., K. Musial, and B. Gabrys (2021). “AutoWeka4MCPS-
AVATAR: Accelerating automated machine learning pipeline com-
position and optimisation.” In: Expert Systems with Applications
185.115643.

Nielsen, M. (2011). Reinventing Discovery: The New Era of Networked
Science. Princeton University Press.

Olson, R., N. Bartley, R. Urbanowicz, and J. Moore (2016). “Evaluation
of a Tree-based Pipeline Optimization Tool for Automating Data
Science.” In: Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO’16). Ed. by T. Friedrich. ACM, pp. 485–492.

Olson, R. and J. Moore (2019). “TPOT: A Tree-Based Pipeline Optimiza-
tion Tool for Automating Machine Learning.” In: Automated Machine
Learning: Methods, Systems, Challenges. Ed. by F. Hutter, L. Kotthoff,
and J. Vanschoren. Vol. 5. The Springer Series on Challenges in
Machine Learning. Available for free at http://automl.org/book.
Springer. Chap. 8, pp. 151–160.

Olson, R., R. Urbanowicz, P. Andrews, N. Lavender, L. Kidd, and J.
Moore (2016). “Automating Biomedical Data Science Through Tree-
Based Pipeline Optimization.” In: Proceedings of the 19th European
Conference on Applications of Evolutionary Computation (EvoApplica-
tions’16). Ed. by G. Squillero and P. Burelli. Springer, pp. 123–137.

bibliography 269

Ono, J., S. Castelo, R. Lopez, E. Bertini, J. Freire, and C. Silva (2021).
“PipelineProfiler: A Visual Analytics Tool for the Exploration of Au-
toML Pipelines.” In: IEEE Transactions on Visualization and Computer
Graphics 27.2, pp. 390–400.

OpenML.org (2022). Repositories of the OpenML organization on github.com.
Retrieved on Feb 23, 2022. url: https://github.com/orgs/openml/
repositories?q=&type=all&language=&sort=stargazers.

Parmentier, L., O. Nicol, L. Jourdan, and M. Kessaci (2019). “TPOT-SH:
A Faster Optimization Algorithm to Solve the AutoML Problem
on Large Datasets.” In: Proceedings of the 31st IEEE International
Conference on Tools with Artificial Intelligence (ICTAI’19), pp. 471–478.

Paszke, A. et al. (2019). “PyTorch: An Imperative Style, High-Perfor-
mance Deep Learning Library.” In: Proceedings of the 32nd Interna-
tional Conference on Advances in Neural Information Processing Systems
(NeurIPS’19). Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F.
d’Alché-Buc, E. Fox, and R. Garnett. Curran Associates, pp. 8024–
8035.

Pedregosa, F., T. Maharaj, A. Kucukelbir, R. Das, V. Borghesani, F.
Bach, D. Blei, and B. Schölkopf (2022). Retrospectives from 20 Years of
JMLR. url: https://jmlr.org/news/2022/retrospectives.html.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E.
Duchesnay (2011). “Scikit-learn: Machine Learning in Python.” In:
Journal of Machine Learning Research 12, pp. 2825–2830.

Perrone, V., R. Jenatton, M. Seeger, and C. Archambeau (2018). “Scal-
able hyperparameter transfer learning.” In: Proceedings of the 31st
International Conference on Advances in Neural Information Processing
Systems (NeurIPS’18). Ed. by S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett. Curran Associates,
pp. 12751–12761.

Perrone, V. and H. Shen (2019). “Learning search spaces for Bayesian
optimization: Another view of hyperparameter transfer learning.”
In: Proceedings of the 32nd International Conference on Advances in
Neural Information Processing Systems (NeurIPS’19). Ed. by H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett.
Curran Associates, pp. 12751–12761.

Pfisterer, F., S. Coors, J. Thomas, and B. Bischl (2019). “Multi-Objective
Automatic Machine Learning with AutoxgboostMC.” In: arXiv:
1908.10796 [stat.ML].

Pfisterer, F., J. Thomas, and B. Bischl (2019). “Towards Human Centered
AutoML.” In: arXiv:1911.02391 [cs.HC].

Pilát, M., T. Křen, and R. Neruda (2016). “Asynchronous Evolution
of Data Mining Workflow Schemes by Strongly Typed Genetic Pro-
gramming.” In: 2016 IEEE 28th International Conference on Tools with
Artificial Intelligence (ICTAI), pp. 577–584.

https://github.com/orgs/openml/repositories?q=&type=all&language=&sort=stargazers
https://github.com/orgs/openml/repositories?q=&type=all&language=&sort=stargazers
https://jmlr.org/news/2022/retrospectives.html

270 bibliography

Pineda, S., H. Jomaa, M. Wistuba, and J. Grabocka (2021). “HPO-B: A
Large-Scale Reproducible Benchmark for Black-Box HPO based on
OpenML.” In: Proceedings of the Neural Information Processing Systems
Track on Datasets and Benchmarks. Ed. by J. Vanschoren, S. Yeung, and
M. Xenochristou. Curran Associates.

Probst, P., A. Boulesteix, and B. Bischl (2019). “Tunability: Importance
of Hyperparameters of Machine Learning Algorithms.” In: Journal
of Machine Learning Research 20.53, pp. 1–32.

Prokhorenkova, L., G. Gusev, A. Vorobev, A. Dorogush, and A. Gulin
(2018). “CatBoost: unbiased boosting with categorical features.”
In: Proceedings of the 31st International Conference on Advances in
Neural Information Processing Systems (NeurIPS’18). Ed. by S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R.
Garnett. Curran Associates.

Provost, F., D. Jensen, and T. Oates (1999). “Efficient progressive
sampling.” In: The 5th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD’99). Ed. by U. Fayyad,
S. Chaudhuri, and D. Madigan. ACM Press, pp. 23–32.

Qi, F., Z. Xia, G. Tang, H. Yang, Y. Song G. Qian, X. An, C. Lin, and
G. Shi (2019). “DarwinML: A Graph-based Evolutionary Algorithm
for Automated Machine Learning.” In: arXiv:1901.08013 [cs.NE].

Rahimi, A. and B. Recht (2007). “Random Features for Large-Scale
Kernel Machines.” In: Proceedings of the 20th International Conference
on Advances in Neural Information Processing Systems (NeurIPS’07).
Ed. by J. Platt, D. Koller, Y. Singer, and S. Roweis. Curran Associates.

Rakotoarison, H., M. Schoenauer, and M. Sebag (2019). “Automated
Machine Learning with Monte-Carlo Tree Search.” In: Proceedings of
the 28th International Joint Conference on Artificial Intelligence (IJCAI’19).
Ed. by S. Kraus. ijcai.org, pp. 3296–3303.

Recht, B., R. Roelofs, L. Schmidt, and V. Shankar (2019). “Do Ima-
geNet Classifiers Generalize to ImageNet?” In: Proceedings of the
36th International Conference on Machine Learning (ICML’19). Ed. by K.
Chaudhuri and R. Salakhutdinov. Vol. 97. Proceedings of Machine
Learning Research, pp. 5389–5400.

Reif, M., F. Shafait, and A. Dengel (2012). “Meta-learning for evolu-
tionary parameter optimization of classifiers.” In: Machine Learning
87, pp. 357–380.

Reif, M., F. Shafait, M. Goldstein, T. Breuel, and A. Dengel (2014).
“Automatic classifier selection for non-experts.” In: Pattern Analysis
and Applications 17.1, pp. 83–96. issn: 1433-7541.

Rice, J. (1976). “The Algorithm Selection Problem.” In: Advances in
Computers 15, pp. 65–118.

Rijn, J. van (2016). “Massively Collaborative Machine Learning.” PhD
thesis. Leiden University.

Rijn, J. van and F. Hutter (2018). “Hyperparameter Importance Across
Datasets.” In: Proceedings of the 24th ACM SIGKDD International

bibliography 271

Conference on Knowledge Discovery and Data Mining (KDD). Ed. by
Y. Guo and F. Farooq. ACM Press, pp. 2367–2376.

Schrittwieser, J., I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S.
Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel, T. Lillicrap,
and D. Silver (2020). “Mastering Atari, Go, chess and shogi by
planning with a learned model.” In: Nature 588.7839, pp. 604–609.

Serban, F., J. Vanschoren, J.-U. Kietz, and A. Bernstein (2013). “A Sur-
vey of Intelligent Assistants for Data Analysis.” In: ACM Computing
Surveys 45.3.

Shahriari, B., K. Swersky, Z. Wang, R. Adams, and N. de Freitas
(2016). “Taking the Human Out of the Loop: A Review of Bayesian
Optimization.” In: Proceedings of the IEEE 104.1, pp. 148–175.

Shi, X., J. Mueller, N. Erickson, M. Li, and A. Smola (2021). “Bench-
marking Multimodal AutoML for Tabular Data with Text Fields.”
In: Proceedings of the Neural Information Processing Systems Track on
Datasets and Benchmarks. Ed. by J. Vanschoren, S. Yeung, and M.
Xenochristou. Curran Associates.

Silver, D., A. Huang, C. Maddison, A. Guez, L. Sifre, G. Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S.
Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T.
Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis
(2016). “Mastering the game of Go with deep neural networks and
tree search.” In: Nature 529.7587, pp. 484–489.

Silver, D., T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M.
Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan,
and D. Hassabis (2018). “A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play.” In: Science
362.6419, pp. 1140–1144.

Smith-Miles, K. (2008). “Cross-disciplinary perspectives on meta-
learning for algorithm selection.” In: ACM Computing Surveys 41.1.

Snoek, J., H. Larochelle, and R. Adams (2012). “Practical Bayesian
Optimization of Machine Learning Algorithms.” In: Proceedings of
the 25th International Conference on Advances in Neural Information
Processing Systems (NeurIPS’12). Ed. by P. Bartlett, F. Pereira, C.
Burges, L. Bottou, and K. Weinberger. Curran Associates, pp. 2960–
2968.

Statnikov, A., I. Tsamardinos, Y. Dosbayev, and C. Aliferis (2005).
“GEMS: a system for automated cancer diagnosis and biomarker
discovery from microarray gene expression data.” In: International
Journal of Medical Informatics 74, pp. 491–503.

Sun, Q., B. Pfahringer, and M. Mayo (2013). “Towards a Framework
for Designing Full Model Selection and Optimization Systems.” In:
Multiple Classifier Systems. Vol. 7872. Springer, pp. 259–270.

Sun, Q. and B. Pfahringer (2013). “Pairwise meta-rules for better
meta-learning-based algorithm ranking.” In: Machine Learning 93.1,
pp. 141–161.

272 bibliography

Sun, X., J. Lin, and B. Bischl (2019). “ReinBo: Machine Learning
pipeline search and configuration with Bayesian Optimization em-
bedded Reinforcement Learning.” In: arXiv:1904.05381 [cs.LG].

Sutton, R. (2019). The Bitter Lesson. url: http://www.incompleteideas.
net/IncIdeas/BitterLesson.html.

Swearingen, T., W. Drevo, B. Cyphers, A. Cuesta-Infante, A. Ross,
and K. Veeramachaneni (2017). “ATM: A distributed, collaborative,
scalable system for automated machine learning.” In: 2017 IEEE
International Conference on Big Data. IEEE Computer Society Press,
pp. 151–162.

Takeno, S., H. Fukuoka, Y. Tsukada, T. Koyama, M. Shiga, I. Takeuchi,
and M. Karasuyama (2020). “Multi-fidelity Bayesian Optimization
with Max-value Entropy Search and its Parallelization.” In: Proceed-
ings of the 37th International Conference on Machine Learning (ICML’20).
Ed. by H. Daume III and A. Singh. Vol. 98. Proceedings of Machine
Learning Research, pp. 9334–9345.

Teichmann, M. (2021). Machine Learning 2021. Published by IDG Busi-
ness Media GbmH. Available at https://www.lufthansa-industry-
solutions.com/de-de/studien/mailing/idg-studie-machine-

learning-2021.
Thornton, C., F. Hutter, H. Hoos, and K. Leyton-Brown (2013). “Auto-

WEKA: combined selection and hyperparameter optimization of
classification algorithms.” In: The 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’13). Ed. by
I. Dhillon, Y. Koren, R. Ghani, T. Senator, P. Bradley, R. Parekh, J.
He, R. Grossman, and R. Uthurusamy. ACM Press, pp. 847–855.

Tornede, T., A. Tornede, J. Hanselle, M. Wever, F. Mohr, and E. Hüller-
meier (2021). “Towards Green Automated Machine Learning: Status
Quo and Future Directions.” In: arXiv:2111.05850 [cs.LG].

Tromp, J. (2016). “The Number of Legal Go Positions.” In: Comput-
ers and Games. Ed. by A. Plaat, W. Kosters, and J. van den Herik.
Vol. 10068. Lecture Notes in Computer Science. Springer, pp. 183–
190.

Turner, R., D. Eriksson, M. McCourt, J. Kiili, E. Laaksonen, Z. Xu, and
I. Guyon (2021). “Bayesian Optimization is Superior to Random
Search for Machine Learning Hyperparameter Tuning: Analysis
of the Black-Box Optimization Challenge 2020.” In: Proceedings of
the NeurIPS 2020 Competition and Demonstration Track. Ed. by H.
Escalante and K. Hofmann. PMLR, pp. 3–26.

Vakhrushev, A., A. Ryzhkov, M. Savchenko, D. Simakov, R. Damdinov,
and A. Tuzhilin (2021). “LightAutoML: AutoML Solution for a Large
Financial Services Ecosystem.” In: arXiv:2109.01528 [cs.LG].

van Eeden, W., C. Luo, A. van Hemert, I. Carlier, B. Penninx, K. War-
denaar, H. Hoos, and E. Giltay (2021). “Predicting the 9-year course
of mood and anxiety disorders with automated machine learning:

http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
https://www.lufthansa-industry-solutions.com/de-de/studien/mailing/idg-studie-machine-learning-2021
https://www.lufthansa-industry-solutions.com/de-de/studien/mailing/idg-studie-machine-learning-2021
https://www.lufthansa-industry-solutions.com/de-de/studien/mailing/idg-studie-machine-learning-2021

bibliography 273

A comparison between auto-sklearn, naïve Bayes classifier, and
traditional logistic regression.” In: Psychiatry Research 299.113823.

Vanschoren, J. (2019). “Meta-Learning.” In: Automated Machine Learn-
ing: Methods, Systems, Challenges. Ed. by F. Hutter, L. Kotthoff, and
J. Vanschoren. Vol. 5. The Springer Series on Challenges in Machine
Learning. Available for free at http://automl.org/book. Springer.
Chap. 2, pp. 35–61.

Vanschoren, J., M. Braun, and C. Ong (2014). “Open science in machine
learning.” In: arXiv:1402.6013 [cs.LG].

Vanschoren, J., J. van Rijn, B. Bischl, and L. Torgo (2014). “OpenML:
Networked Science in Machine Learning.” In: SIGKDD Explor. Newsl.
15.2, pp. 49–60.

Vanschoren, J., S. Yeung, and M. Xenochristou, eds. (2021). Proceedings
of the Neural Information Processing Systems Track on Datasets and
Benchmarks. Curran Associates.

Vapnik, V. (1991). “Principles of Risk Minimization for Learning The-
ory.” In: Proceedings of the 4th International Conference on Advances in
Neural Information Processing Systems (NeurIPS’91). Ed. by J. Moody,
S. Hanson, and R. Lippmann. Morgan Kaufmann Publishers.

Volpp, M., L. Fröhlich, K. Fischer, A. Doerr, S. Falkner, F. Hutter, and
C. Daniel (2020). “Meta-Learning Acquisition Functions for Transfer
Learning in Bayesian Optimization.” In: Proceedings of the Interna-
tional Conference on Learning Representations (ICLR’20). Published
online: iclr.cc.

Wang, C., Q. Wu, M. Weimer, and E. Zhu (2021). “FLAML: A Fast and
Lightweight AutoML Library.” In: Proceedings of Machine Learning
and Systems 3. Ed. by A. Smola, A. Dimakis, and I. Stoica. Vol. 3,
pp. 434–447.

Wang, D., Q. Liao, Y. Zhang, U. Khurana, H. Samulowitz, S. Park,
M. Muller, and L. Amini (2021). “How Much Automation Does a
Data Scientist Want?” In: arXiv:2101.03970 [cs.LG].

Wang, D., P. Ram, D. Weidele, S. Liu, M. Muller, J. Weisz, A. Va-
lente, A. Chaudhary, D. Torres, H. Samulowitz, and L. Amini (2020).
“AutoAI: Automating the End-to-End AI Lifecycle with Humans-
in-the-Loop.” In: Proceedings of the 25th International Conference on
Intelligent User Interfaces Companion. IUI ’20. Association for Com-
puting Machinery, pp. 77–78.

Wang, Q., Y. Ming, Z. Jin, Q. Shen, D. Liu, M. Smith, K. Veeramacha-
neni, and H. Qu (2019). “ATMSeer: Increasing Transparency and
Controllability in Automated Machine Learning.” In: Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems,
pp. 1–12.

Wattanakriengkrai, S., R. Maipradit, H. Hata, M. Choetkiertikul, T.
Sunetnanta, and K. Matsumoto (2018). “Identifying Design and
Requirement Self-Admitted Technical Debt Using N-gram IDF.” In:

iclr.cc

274 bibliography

2018 9th International Workshop on Empirical Software Engineering in
Practice (IWESEP), pp. 7–12.

Wei, Y., P. Zhao, and J. Huang (2021). “Meta-learning Hyperparameter
Performance Prediction with Neural Processes.” In: Proceedings of the
38th International Conference on Machine Learning (ICML’21). Ed. by
M. Meila and T. Zhang. Vol. 139. Proceedings of Machine Learning
Research. PMLR, pp. 11058–11067.

Weidele, D., J. Weisz, E. Oduor, M. Muller, J. Andres, A. Gray, and
D. Wang (2020). “AutoAIViz: Opening the Blackbox of Automated
Artificial Intelligence with Conditional Parallel Coordinates.” In: Pro-
ceedings of the 25th International Conference on Intelligent User Interfaces.
IUI ’20. Association for Computing Machinery, pp. 308–312.

White, C., W. Neiswanger, and Y. Savani (2021). “BANANAS: Bayesian
Optimization with Neural Architectures for Neural Architecture
Search.” In: Proceedings of the Thirty-Fifth Conference on Artificial
Intelligence (AAAI’21). AAAI Press, pp. 10293–10301.

Wistuba, M. and J. Grabocka (2021). “Few-Shot Bayesian Optimization
with deep kernel surrogates.” In: Proceedings of the International
Conference on Learning Representations (ICLR’21). Published online:
iclr.cc.

Wistuba, M., N. Schilling, and L. Schmidt-Thieme (2015). “Hyperpa-
rameter Search Space Pruning - A New Component for Sequential
Model-Based Hyperparameter Optimization.” In: Machine Learning
and Knowledge Discovery in Databases (ECML/PKDD’15). Ed. by A.
Appice, P. Rodrigues, V. Costa, J. Gama, A. Jorge, and C. Soares.
Vol. 9285. Lecture Notes in Computer Science. Springer, pp. 104–119.

– (2017). “Automatic Frankensteining: Creating Complex Ensembles
Autonomously.” In: Proceedings of the 2017 SIAM International Con-
ference on Data Mining (SDM’17). Ed. by N. Chawla and W. Wang.
Society for Industrial and Applied Mathematics, pp. 741–749.

Wu, J., S. Toscano-Palmerin, P. Frazier, and A. Wilson (2019). “Practical
Multi-fidelity Bayesian Optimization for Hyperparameter Tuning.”
In: Proceedings of The 35th Uncertainty in Artificial Intelligence Confer-
ence (UAI’19). Ed. by R. Adams and V. Gogate. AUAI Press, pp. 788–
798.

Xanthopoulos, I., I. Tsamardinos, V. Christophides, E. Simon, and A.
Salinger (2020). “Putting the Human Back in the AutoML Loop.” In:
ETLMP 2020: Explainability for Trustworthy ML Pipelines.

Xiao, Y., E. Xing, and W. Neiswanger (2021). “Amortized Auto-Tuning:
Cost-Efficient Transfer Optimization for Hyperparameter Recom-
mendation.” In: arXiv:2106.09179 [cs.LG].

Xu, L., H. Hoos, and K. Leyton-Brown (2010). “Hydra: Automatically
Configuring Algorithms for Portfolio-Based Selection.” In: Proceed-
ings of the Twenty-fourth National Conference on Artificial Intelligence
(AAAI’10). Ed. by M. Fox and D. Poole. AAAI Press, pp. 210–216.

iclr.cc

bibliography 275

Xu, L., F. Hutter, H. Hoos, and K. Leyton-Brown (2011). “Hydra-
MIP: Automated Algorithm Configuration and Selection for Mixed
Integer Programming.” In: Proc. of RCRA workshop at IJCAI.

Yang, C., J. Akimoto, D. Kim, and M. Udell (2019). “OBOE: Collabo-
rative Filtering for AutoML Model Selection.” In: Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, KDD’19. Ed. by A. Teredesai, V. Kumar, Y. Li, R.
Rosales, E. Terzi, and G. Karypis. ACM Press, pp. 1173–1183.

Yang, C., J. Fan, Z. Wu, and M. Udell (2020). “AutoML Pipeline Selec-
tion: Efficiently Navigating the Combinatorial Space.” In: Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD’20). Ed. by J. Tang and B. Prakash.
ACM Press, pp. 1446–1456.

Zhang, X., Z. Chang, Y. Li, H. Wu, J. Tan, F. Li, and B Cui (2021).
“Facilitating Database Tuning with Hyper-Parameter Optimization:
A Comprehensive Experimental Evaluation.” In: arXiv:2110.12654
[cs.DB].

Zhang, Y., M. Bahadori, H. Su, and J. Sun (2016). “FLASH: Fast
Bayesian Optimization for Data Analytic Pipelines.” In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD). Ed. by B. Krishnapuram, M. Shah, A.
Smola, C. Aggarwal, D. Shen, and R. Rastogi. ACM Press, pp. 2065–
2074.

Zhou, Y., S. Ebrahimi, S. Arık, H. Yu, H. Liu, and G. Diamos (2018).
“Resource-Efficient Neural Architect.” In: arXiv:1806.07912 [cs.NE].

Zimmer, L., M. Lindauer, and F. Hutter (2021). “Auto-Pytorch: Multi-
Fidelity MetaLearning for Efficient and Robust AutoDL.” In: IEEE
Transactions on Pattern Analysis and Machine Intelligence, pp. 3079–
3090.

Zöller, M.-A., T.-D. Nguyen, and M. Huber (2021). “Incremental Search
Space Construction for Machine Learning Pipeline Synthesis.” In:
Advances in Intelligent Data Analysis XIX. Ed. by P. Abreu, P. Ro-
drigues, A. Fernández, and J. Gama. Springer, pp. 103–115.

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	Acronyms
	 Introduction
	1 Introduction
	1.1 Motivation
	1.2 Goals of this Thesis
	1.3 How to read this Thesis

	2 Contributions
	2.1 Contributions
	2.1.1 Part ii: Hyperparameter optimization
	2.1.2 Part iii: Automated Machine Learning
	2.1.3 Part iv: Benchmarking and the OpenML Platform

	2.2 List of Publications

	 Publications on Hyperparameter Optimization
	3 Hyperparameter Optimization
	4 Practical Transfer Learning for Bayesian Optimization

	 Publications on Automated Machine Learning
	5 Efficient and Robust Automated Machine Learning
	6 Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning

	 Publications on Benchmarking and the OpenML Platform
	7 OpenML-Python: an extensible Python API for OpenML
	8 OpenML Benchmarking Suites

	 Conclusion
	9 Conclusion
	9.1 Summary and Discussion
	9.1.1 Hyperparameter optimization
	9.1.2 Automated Machine Learning
	9.1.3 Benchmarking and the OpenML Platform

	9.2 Future Work
	9.2.1 Future Work To Improve Auto-sklearn
	9.2.2 What makes a well-performing AutoML system?
	9.2.3 Extending the Scope of AutoML and Bringing the Human Back into the Loop
	9.2.4 Relation to Deep Learning and Neural Architecture Search
	9.2.5 OpenML and Benchmarking

	 Appendix
	A Appendix for Practical Transfer Learning for Bayesian Optimization
	B Appendix for Efficient and Robust Automated Machine Learning
	C Appendix for Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
	D Appendix for OpenML Benchmarking Suites
	 Bibliography

