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Zusammenfassung

In den letzten Jahren haben tiefe neuronale Netze bewiesen, dass sie klassische Methoden
bei verschiedenen Aufgaben des maschinellen Lernens übertreffen. Solche künstlichen
neuronalen Netze machen Vorhersagen auf Basis von Mustervergleichen und werden an-
hand von Erfahrungenswerten trainiert. Durch die Nutzung großer Datenmengen sind sie in
der Lage, hierarchische Repräsentationen von rohen Eingabedaten zu lernen und somit das
Lernen von Merkmalen sowie die Klassifikation zu kombinieren. Allerdings sind eine hohe
anfängliche Modellkapazität sowie Fließkommaoperationen erforderlich, um ein tiefes
neuronales Netzwerk erfolgreich von Grund auf zu trainieren. Daher sind die trainierten
Modelle meist überparametrisiert und benötigen leistungsfähige Recheneinheiten.

Im Gegensatz dazu verfügen mobile Endgeräte nur über begrenzte Ressourcen in Bezug
auf Speicher-, Energie-, und Rechenkapazität. Dadurch wird die Komplexität von neurona-
len Netzen stark begrenzt. Für den Gebrauch auf Geräten mit begrenzter Kapazität werden
daher Reduktionsmethoden eingesetzt, um die Komplexität der trainierten Modelle zu
verringern. Einerseits reduzieren Quantisierungsmethoden die Bitgrößen von Operanden
und Operationen, wodurch der Speicherbedarf unmittelbar gesenkt wird. Darüber hinaus
reduzieren Quantisierungen mittels Festkommaarithmetik zusätzlich den Rechen- und
Energieaufwand auf dedizierter Hardware. Andererseits wird beim sogenannten Pruning
die Anzahl der Operanden und Operationen verringert, indem redundante Netzwerkverbin-
dungen gelöscht werden. Hier reduziert das Löschen ganzer Filter und Neuronen (genannt
Filter Pruning) direkt die Speicher-, Energie- und Berechnungskomplexität, ohne dass
spezielle Hardware erforderlich ist. Ein gängiger Ansatz ist daher, zunächst ein großes und
überparametrisiertes Modell zu trainieren und es im Anschluss mit geeigneten Reduktions-
techniken zu komprimieren.

Allerdings gibt es mehrere Probleme mit bisherigen Reduktionsansätzen. Zum einen
sind viele von ihnen aufwendig zu implementieren oder müssen außerhalb der für neurona-
le Netze üblichen Optimierungskette gelöst werden. Außerdem ist die Vernachlässigung
von Bedingungen für Festkommazahlen ein häufiges Problem bei Quantisierungsmetho-
den. Zum anderen ist es meist nicht möglich, die entscheidenden Einschränkungen der
Zielhardware exakt zu spezifizieren, was iterative Reduktionsverfahren notwendig macht.

In der zugrundeliegenden Arbeit adressieren wir diese Probleme mit verschiedenen An-
sätzen zu Pruning und Quantisierung. Unsere Ansätze bestehen jeweils aus einem Redukti-
onsfehler, der mit geringem Implementierungsaufwand in das übliche Trainingsverfahren
für neuronalen Netzen integriert werden kann. Die Minimierung dieses Reduktionsfeh-
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lers während des Trainings reduziert die Modellkomplexität entweder durch Quantisieren
mittels Festkommaarithmetik, durch Filter Pruning, oder durch eine Kombination aus
beidem.

Zunächst stellen wir einen einfachen und effizienten Reduktionsfehler vor, um tiefe
neuronale Netze mit multimodalen Gewichtsverteilungen und minimalem Quantisierungs-
fehler zu trainieren. Dadurch können die Gewichte nach dem Training ohne signifikanten
Genauigkeitsverlust in eine Darstellungen mittels Festkommaarithmetik überführt werden.
Somit is unser Ansatz sehr einfach zu implementieren und erbringt selbst für sehr kleine
Bitgrößen eine hervorragende Leistung. Darüber hinaus erweitern wir unseren Ansatz, in-
dem wir sowohl die Batch-Normalisierungsschichten als auch die Aktivierungsfunktionen
berücksichtigen. Auf diese Weise ist es möglich, tiefe neuronale Netze zu trainieren, die
im Anschluss an das Training ohne Fließkommaoperationen ausgewertet werden können.

Als Nächstes schlagen wir eine neue Filter Pruning Methode vor, die in der Lage
ist, die Anzahl der Parameter und Multiplikationen eines tiefen neuronalen Netzwerks
basierend auf einer bestimmten Zielgröße zu reduzieren. Diesbezüglich ist der Nutzer in
der Lage, Maximalwerte für die Anzahl an Parametern und Multiplikationen entsprechend
den Speicher- und Rechenressourcen des Zielgeräts zu definieren. Während des Trainings
berechnet ein Reduktionsfehler die Differenz zwischen der tatsächlichen Modellgröße
und der Zielgröße in Bezug auf die Anzahl der Parameter und Multiplikationen. Dieser
Reduktionsfehler wird minimiert, indem ganze Filter und Neuronen über die Kanäle der
Batch-Normalisierungsschichten gelöscht werden. So kann eine globale Lösung gefunden
werden, die die Bedingungen der Zielhardware erfüllt und zugleich möglichst viel Leistung
in Bezug auf die Lernaufgabe erhält.

Schließlich schlagen wir eine neue und besonders effiziente Kombination aus Filter Pru-
ning und Quantisierung mittels Festkommaarithmetik vor. Hier definieren wir Komplexität
zunächst als ein Zusammenschluss aus vier essentiellen Metriken: den Speicherbedarf, die
aus der Anzahl der Bitoperationen resultierende Rechenkomplexität, die aus der Kommu-
nikation zwischen der Recheneinheit und dem Speicher resultierende Bandbreite, und die
maximalen Speicherkosten der Aktivierungen. Basierend auf diesen vier Metriken berech-
net der Reduktionsfehler nach jedem Trainingsschritt die Differenz zwischen der tatsächli-
chen Modellkomplexität und den auf dem Zielgerät verfügbaren Ressourcen. Durch den
Einsatz von speziell entwickelten Pruning- und Quantisierungsmodulen kann der Redukti-
onsfehler während des Training durch eine Kombination aus Festkomma-Quantisierung
und Filter Pruning minimiert werden. Das trainierte Modell ist somit hocheffizient: Es
hat keine Batch-Normalisierungsschichten, rechnet alle Parameter und Aktivierungen in
Festkommaarithmetik, und erfüllt die Komplexitätsmetriken des Zielgerätes.



Abstract

In recent years, deep neural networks have proven to outperform classical methods on
several machine learning tasks. Such deep networks make predictions based on pattern
matching and receive training based on experience. By leveraging large amounts of data,
they are capable of learning hierarchical representations of raw input data and thus combine
both feature learning and classification. However, a high initial model capacity as well
as floating-point operations are required to successfully train a deep neural network from
scratch. As a result, trained models are usually over-parameterized after training and
require powerful processing units.

In contrast, both mobile and embedded devices have finite resources regarding their
memory, energy, and computational capacity. This severely limits the complexity of neural
networks. Nevertheless, to make them available for use on devices with limited capacity,
reduction methods are employed to reduce the complexity of trained models. On the
one hand, quantization methods reduce the bit sizes of operands and operations, which
immediately decreases the memory requirements. Furthermore, fixed-point quantization
methods additionally reduce the computational and energy requirements on dedicated
hardware. On the other hand, pruning reduces the number of operands and operations by
removing redundant network connections. Furthermore, pruning entire filters and neurons
from the network architecture directly reduces the memory, energy, and computational
complexity without the need for specialized hardware. A common approach is therefore
to first train a large and over-parameterized network and then reduce it using appropriate
reduction methods.

However, there are several problems with previous approaches. First, many of them
are either complicated to implement or must be solved outside the standard optimization
procedure of deep neural networks. Moreover, neglecting fixed-point constraints is a
common problem with quantization approaches. On the other hand, it is usually not
possible to directly specify the critical limitations of the target hardware, which makes
iterative reduction procedures necessary.

In the underlying thesis, we address these problems by different contributions to both
pruning and quantization. Each of our approaches consists of a reduction loss that can
be integrated into the common training procedure of deep neural networks with little
implementation effort. Minimizing the reduction loss during training reduces the model
complexity either by fixed-point quantization, filter pruning, or a combination of both.

At first, we propose a simple and efficient reduction loss to train deep neural networks
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with multi-modal weight distributions and minimal quantization error. Consequently, the
weights can be quantized into fixed-point representations after training with no significant
loss in accuracy. Thus, we present an approach that is very easy to implement and yields
excellent performance even for small bit sizes. Furthermore, we extend our approach by
taking into account both the batch-normalization layers and activation functions. In this
way, it is possible to train deep neural networks that can be evaluated without floating-point
operations after training.

Next, we propose a novel filter pruning method that is capable of reducing the number
of parameters and multiplication of a deep neural network based on a given target size.
Therefore, the user is able to define maximum values for both the number of parameters and
multiplications according to the memory and computational resources of the target device.
During training, the reduction loss calculates the difference between the actual model
size and the target size in terms of the number of parameters and required multiplications.
Furthermore, the reduction loss is minimized by pruning whole filters and neurons via the
channel-wise affine transformation of the batch-normalization layers. In this way, a global
selection of filters and neurons can be found that, on the one hand, solves the learning task
in the best possible way and, on the other hand, fulfills the constraints of the target device.

Finally, we propose a novel and highly efficient combination of filter pruning and fixed-
point quantization. Here, we define complexity as an aggregation of four essential metrics:
the memory requirement, the computational complexity resulting from the number of bit
operations, the bandwidth resulting from the communication between the processing unit
and the memory, and the maximum storage cost of the activations. Based on these four
metrics, the reduction loss calculates the difference between the actual model complexity
and the resources available on the target device. The reduction loss can be minimized
during training by using pruning and quantization layers specially developed by us for this
purpose. The trained model is thus highly efficient: it runs without batch-normalization
layers, has all parameters and activations in fixed-point representation, and fulfills the
complexity metrics of the target device.
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Chapter 1

Introduction

Thinking, Fast and Slow is the title of a bestseller by Daniel Kahneman published in
2011 [1]. Therein Kahneman summarizes his scientific work on cognitive psychology and
decision making and introduces his thesis that the way of thinking can be divided into
two categories. The first way of thinking (System 1) is fast, intuitive, error-prone, and
especially effective in solving everyday decisions [1]. It is directly related to our emotional,
visual, and acoustic perception system. In contrast, the second way of thinking (System 2)
is slow, conscious, thoughtful, and reliable in making complex decisions [1]. System 2 has
the ability to reason and to control its attention towards specific objects or circumstances.
Furthermore, it contains a physical model of the world that surrounds it and can thus verify
its own decisions.

Considering the current research in the field of Machine Learning, it seems that the
progress in Deep Learning resembles a System 1 rather than a System 2. Deep Learning
describes an information processing system based on deep neural networks [2, 3]. Such
deep neural networks make predictions based on pattern matching, receive training based
on experience, and automatically learn hierarchical representations of raw input data.
However, deep neural networks have not yet been able to reason nor to represent causality
within their architecture [4]. Verifying the predictions made is one of the major open
problems in Deep Learning [4].

However, taking into account the importance of System 1 for solving everyday problems,
the potential benefit of Deep Learning for people’s lives becomes visible. Even today,
deep neural networks solve challenging tasks in computer vision, object detection, and
speech recognition [2, 5, 6]. In private transport, driver assistance systems increasingly
utilize deep learning algorithms to improve both driving comfort and safety [7]. Future
highway pilots will combine algorithms of classical robotics and machine learning systems
including deep learning to perform localization, perception, and navigation. Furthermore,
medical research is increasingly relying on data-driven approaches [8]. For example, many
of the vaccines against Covid-19 have been developed by means of artificial intelligence
and data-driven approaches [9].

Nevertheless, there are still a number of problems regarding the application of deep
neural networks. Besides their inability to represent causality, the performance of deep
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neural networks depends on both their initial model size and the amount of data used for
training [10]. As a matter of fact, the greatest results have been accomplished by training
large models with many parameters using large amounts of training data [10, 11]. In this
context, Frankle and Corbin showed the correlation between the initial model size and the
probability of effective training: The higher the number of parameters that are initialized
with random values, the greater the chance of initializing a subset of the parameters
with values that represent an effective baseline for training (Frankle and Corbin refer to
this subgraph as the Lottery Ticket [10]). As a result, deep neural networks are usually
over-parameterized after the training and have high memory requirements. Furthermore,
floating-point multiplications are especially expensive in terms of computation time and
energy consumption [12, 13].

Due to massive GPU parallelization, the computational effort required to train deep
neural networks is no longer a critical bottleneck. In contrast, mobile devices, as well as
embedded systems, have a very limited memory capacity, may only consume little energy,
and have significantly fewer parallelization capabilities [12]. This leads to two major
problems. First, starting with a significantly reduced model capacity usually downgrades
the training progress of deep neural networks [10] (see the description of the Lottery-Ticket
in the previous paragraph). Second, distributing the limited capacity across the individual
layers is a challenging problem: finding both a suitable network depth and layer widths
requires a time-consuming hyper-parameter search.

As a consequence, reduction techniques have been developed to reduce the complexity of
trained and over-parameterized deep neural networks [14, 15, 16, 17, 18]. Approaches that
are capable of reducing both the memory requirements and the computational complexity
can be grouped into two categories [12]. On the one hand, quantization reduces the
precision of the parameters and activations by reducing their respective bit size. On
the other hand, pruning, factorization, and network distillation reduce the number of
parameters and activations by removing redundant network connections. While pruning
sets single weights our groups of weights to zero, factorization decomposes weight matrices
into the product of two low-rank matrices. Furthermore, network distillation utilizes an
over-parameterized teacher network to train a smaller student network by using both the
soft targets of the trained teacher and the known class labels for training [19]. An overview
is given in Figure 1.1 and can also be found in [12]. In this thesis, we make contributions
to network quantization, network pruning, and its joint combination.

Network quantization is achieved by having several weights sharing the same value.
Although unconditional weight sharing (which is also called weight clustering) can signifi-
cantly reduce memory costs [20], additional constraints are needed to enable its benefits
on various devices. Arbitrary weight clusters require lookup tables during each forward
pass and thus lead to cumbersome data accesses. In contrast, fixed-point representations
of the weights and activations enable both reduced memory requirements and efficient
processing on dedicated hardware [12, 13]. Fixed-point numbers consist of an integer
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Figure 1.1: An overview of different approaches that are capable of reducing the complexity of
deep neural networks. In general, model reduction techniques can be divided into four subgroups.
On the one hand, pruning, factorization, and network distillation aim at reducing the number of
parameters and multiplications of deep neural networks [12]. Here, pruning describes the process
of deleting redundant network connections by setting weight values to zero. This can either be done
by pruning single weights (i.e. weight pruning) or complete filters and neurons (i.e. filter pruning).
In contrast, factorization reduces the tensor sizes of weights and activations by decomposing the
weight-tensor or -matrix of single layers. Furthermore, network distillation transfers the knowledge
learned by a complex teacher network to a smaller student network. This is done by utilizing both
the known hard labels of the classification task and the soft targets predicted by the teacher network.
On the other hand, quantization reduces the precision (i.e. the bit sizes) of weights and activations,
which immediately reduces the memory requirements of the network [12]. Furthermore, if both the
weights and activations are quantized using fixed-point arithmetic, the computational effort that
is needed to evaluate the model can be significantly reduced on dedicated fixed-point hardware.
In this thesis, we make contributions to the field of fixed-point quantization and filter pruning.
Furthermore, we provide an efficient combination of both approaches.
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and a power-of-two scaling factor that indicates the position of the decimal point [12].
Using the same scaling factor for all weights of a given group (e.g. for all weights of one
network layer) can significantly increase the efficiency of data processing. In Chapter
4, we propose a novel reduction loss to train deep neural networks with minimal quanti-
zation error. During training, the distribution of the weights changes from a uni-modal
distribution to a symmetric and multi-modal distribution, where each mode belongs to a
particular fixed-point number. After training, the network weights can be converted into
a fixed-point representation with no significant loss in accuracy. The proposed method
is a soft quantization approach, which means that all parameters remain in floating-point
precision during training and are only quantized afterwards. In addition, we integrate the
batch-normalization layers into the reduction loss of our soft quantization approach and
replace the ReLU activation functions with an unsigned fixed-point quantization func-
tion. Thus, we can train deep neural networks that can be evaluated without the use of
floating-point operations after training.

Network pruning is achieved by inducing sparsity constraints among network connec-
tions. Such sparsity constraints can either be unstructured or structured [21]. Setting
individual weight values to zero leads to unstructured weight tensors or matrices. Dur-
ing inference, multiply-and-accumulate operations that access zero weights do not have
to be computed [12]. However, unstructured sparsity does not change the tensor sizes
of weights and activations and therefore has only little impact on the overall memory
requirements of deep neural networks. In contrast, filter pruning (which is also called
channel pruning) deletes entire filters and neurons from the network architecture and thus
directly decreases the tensor sizes of both the weights and activations [22, 23, 24]. As
a result, filter pruning reduces the number of parameters and required multiplications
without the need for specialized hardware. In Chapter 5, we propose a novel filter pruning
method to reduce the complexity of deep neural networks based on a given target size
that is specified by the user according to the number of parameters and multiplications
that are available on the target device. During training, a reduction loss is minimized
that calculates the difference between the desired and the actual model size. Thus, the
algorithm automatically distributes the pruning budget across the individual layers such
that the target size is fulfilled. Here, filter pruning is induced via the affine transformations
of the batch-normalization layers, so no additional variables are needed.

Combined pruning and quantization reduces the total number of parameters and acti-
vations as well as their respective bit sizes. Furthermore, a combination of fixed-point
quantization and filter pruning is especially effective in reducing both the memory and
computational effort of deep neural networks. However, bringing the two approaches
together in one optimization problem is complex and most of the proposed concepts apply
pruning and quantization separately even though both influence each other [20, 25, 26]. For
example, there are infinite combinations of possible pruning and quantization rates to halve
the memory requirements of a single layer. The problem becomes even more complex:
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when reducing a multi-layer neural network, each layer can have different bit sizes and
pruning rates to fulfill the overall target size. In Chapter 6, we propose a holistic approach
for reducing the complexity of deep neural networks by simultaneous filter pruning and
fixed-point quantization. First, we define complexity using four essential metrics that
directly result from the network architecture: the memory requirement, the computational
effort during inference, the bandwidth, and the maximum storage effort required for the
activations. By defining maximum values for each of these metrics, the user specifies a
comprehensive target size. Based on this, we propose a computational graph equipped with
custom layers that allow to change the architecture during training and consequently to
reduce complexity. Thus, we achieve high reduction rates with at the same time excellent
performance on several network architectures.

1.1 Scientific Contributions

We contribute to the field of model reduction by various approaches to quantization,
pruning, and a combination of both. In general, our approaches include a reduction loss
Lreduce whose minimization leads to a reduction of the model complexity. The reduction
loss can be integrated into the common training procedure of deep neural networks by
combining it with the learning loss Llearn. Consequently, the overall training objective is
composed as follows:

Ltrain = Llearn + λLreduce . (1.1)

Here, λ is the regularization parameter that controls the weighting between the learning
loss and the reduction loss. In this way, both can be minimized simultaneously by gradient
descent. In detail, we make the following contributions:

• In Chapter 4, we propose a novel soft quantization approach for deep neural net-
works with fixed-point weights. We introduce a reduction loss whose minimization
during training causes the distribution of weights to change from a uni-modal to a
multi-modal distribution. Thus, the training is done in floating-point precision and
simultaneously reduces the expected quantization error. Our approach has compar-
atively low implementation effort and delivers excellent performance, especially
for low bit sizes. Furthermore, we amplify our approach and propose the first soft
quantization that takes into account the parameters of the batch-normalization layers.
By quantizing the layer activations as well, the trained networks can be evaluated
using pure fixed-point arithmetic.

• In Chapter 5, we propose a novel filter pruning method to reduce the complexity
of deep neural networks based on a given target size. Here, the user can define the
target size by the number of parameters and multiplications that are available on
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the target device. During training, the reduction loss that indicates the difference
between the actual model size and the target size is minimized by pruning complete
filters and neurons from the network architecture. By allowing each layer to have its
own pruning rate, the algorithm distributes the pruning budget across the individual
layers such that a global solution is found.

• In Chapter 6, we propose the first combination of filter pruning and fixed-point
quantization that reduces the complexity of trained networks based on four essential
metrics: the memory requirement, the computation effort during inference, the
bandwidth, and the maximum storage effort required for the activations. The user
is able to define maximum values for each of these metrics, with the reduction
loss indicating the deviation between the actual model complexity and the target
complexity based on these four metrics. By learning individual layer widths and
bit sizes, the resources available are distributed automatically such that the target
complexity is not exceeded.

1.2 Publications

The work presented in this thesis is based on the following publications in conference
proceedings and journals:

• Lukas Enderich, Fabian Timm, Lars Rosenbaum, and Wolfram Burgard. Learning
Multimodal Fixed-Point Weights using Gradient Descent. In Proceedings of the
European Symposium on Artificial Neural Networks (ESANN), Bruges, Belgium,
2019.

• Lukas Enderich, Fabian Timm, and Wolfram Burgard. SYMOG: Learning symmetric
mixture of Gaussian modes for improved fixed-point quantization. In Proceedings
of the Neurocomputing Journal. Year 2020, Volume 4/6, Pages 310 - 315.

• Lukas Enderich, Fabian Timm, and Wolfram Burgard. Holistic Filter Pruning for
Efficient Deep Neural Networks. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV), 2021.



Chapter 2

Background Theory

This chapter briefly introduces the theoretical concepts and definitions on which the con-
tributions of this thesis are built. First, Section 2.1 presents the theoretical foundations
of deep neural networks including the different layer types, loss functions, and the opti-
mization procedure, which is based on the backpropagation algorithm. The mathematical
interpretation of a deep neural network being a parametric function approximation used in
this thesis derives primarily from Goodfellow et al. [3]. Second, Section 2.2 introduces the
numerical representations of fixed-point numbers and their advantages over floating-point
representations. Based on this, Section 2.3 introduces the basic concepts of fixed-point
quantization functions. Here, we also give an example to illustrate the computational path
of a neural network layer that is converted into a fixed-point representation.

2.1 Deep Neural Networks

Deep neural networks form a special class of computational graphs parameterized by a set
of learnable parameters Θ = {w1, ..., wM}. Here, M is the number of parameters, and w ∈ Θ

are called weights. Thus, a neural network is a parameterized function fΘ : RN → RC

which maps an input signal x ∈ RN to an output signal ŷ ∈ RC, where N represents the
input dimension and C the output dimension. In a Deep Learning system, ŷ is usually
referred to as the prediction of a certain learning task, which is in turn described by the
unknown target function f ∗ : RN → RC. Here, f ∗ maps the same input signal x ∈ RN

to y ∈ RC, the corresponding correct output of the learning task, which may represent a
discrete class label (if the learning task is a classification problem with C classes) or a
continuous variable (if the learning task is a regression problem of dimension C).

In supervised learning, the parameters of a neural network can be adjusted by observing a
set of training examples D = {(xi, yi)}d

i=1. Here, yi is the known output of the corresponding
input example xi, and d indicates the number of training examples. The training seeks
to adjust the parameters of the network such that the trained model is capable of making
correct predictions on previously unseen data. Thus, observing empirical data is used for
approximating the unknown target function f ∗ of the learning task by adjusting the set of
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parameters Θ accordingly. In general, the training consists of several epochs, during each
of which the set of training examples is observed once. The whole procedure consists of
six basic steps, parts of which are repeated in sequential order:

1. Initialization: The parameters of the network are initialized with random values.

2. Shuffling: Before each epoch, the training data is randomly shuffled and divided into
so-called mini-batches of certain batch size. These mini-batches are successively
propagated through the network and utilized to adjust its parameters.

3. Forward pass: A mini-batch of training examples x is propagated through the
network to calculate the predicted output according to ŷ = fΘ(x).

4. Loss calculation: A loss functions L
(
ŷ, y
)

calculates the difference between the
network prediction ŷ and the correct output y of the current mini-batch.

5. Backward pass: The loss is derived with respect to the predicted output ŷ. The
resulting gradient is propagated backward through the network to calculate the
gradients for the network parameters w ∈ Θ. This is done by applying the chain rule
at each node of the computational graph.

6. Update step: After calculating the gradients with respect to the parameters, each
parameter is updated in the direction of its negative gradient:

w← w – η
∂L
∂w

. (2.1)

Here, the increment of the update step is defined by the learning rate η. There are
several strategies for improving the adaptation of the weights including momentum,
Nesterov momentum, running averages, and learning rate schedules [27, 28]. Widely
used optimizers are Stochastic Gradient Descent (SGD) [28] and Adam [27].

Following the update step, the training returns to the next forward pass (see step 3.).
After a single epoch is completed (meaning that the training data has been observed once),
the training returns to the shuffling process (see step 2.). This continues until either the
desired maximum number of iterations is reached, or a termination criterion is fulfilled.

A deep neural network consists of one input layer, at least one hidden layer, and one
output layer. Different types of layers with different functionalities are available for this
purpose. These layer types are described in the following section. Subsequently, widely
used loss functions as well as the basic concept of the backpropagation algorithm are
introduced.
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Figure 2.1: A simplified representation of a convolutional layer. The input consists of O feature
maps of size W × H. The weights consist of F kernel filters of size K × K × O. The filters
are convoluted over the width and height of the input tensor, each of which computing a two-
dimensional output feature map. The size of these output feature maps depends on the input and
filter dimensions, the stride S, and the number of zeros P padded to each spatial input dimension.

2.1.1 Layer Types

A feed-forward deep neural network consists of several sequentially stacked layers, each
layer operating on the output of the previous layer:

ŷ = fΘ(x) = f L (. . . f 2 ( f 1 (x, w1) , w2
)

, . . .wL
)

. (2.2)

Here, l ∈ {1, . . . , L} is the layer index with L being the number of layers, f l is the layer
of index l, wl denotes the weights used in layer l, and Θ = {w1, ..., wL} is the set of
learnable parameters. Different types of layers perform, for instance, weighted sums,
batch-normalization, pooling, or non-linear transformations. The following is a brief
description of the layer types that are used in the experimental setup of this thesis.

Fully-connected Layers: A fully-connected layer is a single-layer perceptron that consists
of one or several neurons. Each neuron is connected to all input values xi of the input
vector x ∈ RN and computes the following weighted sum:

a =
N∑

i=1

wi xi + b . (2.3)

Here, N is the number of input values, wi the corresponding weight value, b the added
bias, and a the weighted sum which is calculated by the neuron. Furthermore, if the
fully-connected layer consists of several neurons, the output is a one-dimensional vector
containing the weighted sums of each neuron. With xl–1 ∈ RN being the input of layer l,
the output can be calculated by:

al = wl xl–1 + bl . (2.4)
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Here, wl ∈ RM×N is the weight matrix of layer l, bl ∈ RM the corresponding bias vector,
M the number of neurons, and al ∈ RM the layer output. Both the weights and the bias
can be adjusted during training to adapt the linear transformation of the layer according to
the training data. Since each output neuron interacts with each input neuron, the learned
features span the entire visual field and thus possess global properties. Consequently, fully-
connected layers are usually located at the end of the network to perform the classification.

Convolutional Layers: Unlike fully-connected layers, convolutional layers perform the
convolution operator instead of ordinary matrix multiplications. More precisely, each
layer consists of one or several filters, each performing a discrete convolution over a
multi-dimensional input space. The filters contain learnable parameters, have certain
spatial dimensions but cover the entire depth of the input signal. Taking into account the
stride, each filter is convoluted over the width and height of the input tensor to compute a
two-dimensional feature map. Hence, each feature map contains weighted sums calculated
from the same filter weights but different input values. Therefore, convolutional layers
possess significantly fewer parameters than fully-connected layers and compute local
features that contain spatial information. The number of output feature maps is equal to
the number of filters used.

Considering a 2D convolutional layer as shown in Figure 2.1, x ∈ RW×H×O represents
the layer input consisting of O feature maps of size W×H. The filter kernel w ∈ RK×K×O×F

consists of F filters of size K×K×O with K being the kernel size. In most cases, quadratic
filters are used to calculate the convolution. However, it is also feasible to use non-quadratic
filters with different spatial dimensions. Furthermore, the input tensor can optionally be
padded with zero values to preserve its spatial dimensions (zero-padding). Hence, the layer
output consists of F feature maps of size

⌊
W – K + 2P

S

⌋
+ 1×

⌊
H – K + 2P

S

⌋
+ 1 . (2.5)

Here, ⌊·⌋ rounds to the subjacent integer, S indicates the stride by which the filters
are convoluted over the input signal, and P is the number of zeros padded to each input
dimension. After the convolution, a bias b ∈ RF is optionally added to the F output feature
maps.

Batch-normalization Layers: Both fully-connected and convolutional layers calculate
weighted sums. With l being the layer index and xl–1 being the input of layer l, the
computation of both layers can be summarized as

al = wl ∗ xl–1 + bl . (2.6)

Here, ∗ is either a convolution operator or a matrix-vector multiplication, wl is either a
weight tensor or matrix, and bl is the bias vector. The layer output al consists of several
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channels, the number of channels being equal to the number of convolution filters or matrix
rows in wl. Following the weighted sums computed by either a convolutional or a fully-
connected layer, batch-normalization layers are frequently used to first normalize and then
linearly transform each channel of al. Therefore, the output âc of the batch-normalization
layer can be written as

âl,c =





al,c – E[al,c]√
Var[al,c] + ϵ

γl,c + βl,c during training,

al,c – µl,c√
σ2

l,c + ϵ
γl,c + βl,c during inference,

(2.7)

where c is the channel index, E[ac] and Var[ac] are the mean and variance of the current
mini-batch (the so-called batch statistics), µc and σc are the running estimates of the mean
and the variance, and {γc, βc} are the learnable parameters of the linear transformation.
During the training, the normalization is done using the batch statistics, whereas the
running estimates of the mean and the variance are continuously updated. During the
inference, the running estimates are used for normalization.

After the training, batch-normalization layers can be folded into the preceding convo-
lutional or fully-connected layers to accelerate the forward pass and reduce the memory
requirements [13]. Combining Equation 2.6 and Equation 2.7, the calculation of the folded
layers during the inference can be written as

âl = ŵl ∗ xl–1 + b̂l (2.8)

with ŵl = wl
γl√
σ2

l + ϵ
and b̂l = (bl – µl)

γl√
σ2

l + ϵ
+ βl . (2.9)

Here, ŵ and b̂ are the parameters of the folded layers.

Non-linear Activation Functions: In order to enable non-linear transformations, deep
neural networks use non-linear activation functions subsequent to batch-normalization
layers. For example, if âl is the output of the batch-normalization layer with index l, the
non-linear activation function calculates the layer activation as follows

xl = σ
(
âl
)

. (2.10)

The most common non-linear activation function is the rectified linear unit (ReLU [29])
that sets all negative input values to zero. The computation can therefore be written as

x = ReLU
(
â
)

=

{
â if â ≥ 0

0 if â < 0
. (2.11)
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Whereas the ReLU activation function is commonly used between hidden layers to extract
meaningful features, the softmax activation function is a widely used output for classifica-
tion problems. The softmax function maps an input vector x ∈ RN to an output of the same
size, with each value being restricted to the domain (0, 1] (hence: softmax(xi) ∈ (0, 1]).
Furthermore, the sum of all output values accumulates to one (hence:

∑N
i=1softmax(xi) = 1).

The computation is as follows

softmax(x)i =
exp(xi)∑N
j=1 exp(xj)

. (2.12)

Due to its range of values and accumulative property, the softmax output is widely used
for representing class probabilities in a classification problem. Thus, it usually forms the
output layer, with each output value representing a single class probability.

Other commonly used non-linear activation functions are sigmoid, hyperbolic tangent,
or Leaky ReLU [3].

Pooling Layers: Pooling layers reduce the spatial dimensions of their input feature maps.
They are usually located after a convolutional layer or a batch-normalization layer and offer
different pooling operations. For example, the spatial dimension can be reduced by select-
ing only the maximum of a two-dimensional group of input values (max-pooling). Other
pooling operations can for example be based on the average calculation (average-pooling),
the L2-norm, or on stochastic pooling [3]. In general, pooling layers have two areas of
application. First, by shrinking the spatial dimensions of the feature maps, pooling layers
reduce the number of both the parameters and multiplications, improving the efficiency
of deep neural networks. Second, pooling layers help to make their output feature maps
approximately invariant towards small translations of the input feature maps.

Flattening Layers: Since convolutional layers compute a multidimensional output, it
must be flattened to a one-dimensional vector for processing by a fully-connected layer.
Thus, flattening layers are located between a convolutional and a fully-connected layer to
reorganize the shape of the data.

2.1.2 Loss Functions

After each forward pass, a loss function L
(
ŷ, y
)

calculates the difference between the
model prediction ŷ = fΘ(x) and the known output y of the corresponding training example
x. Depending on the type of learning task, various loss functions are employed. In the
following, a brief description of the most common loss functions is given.

Mean squared error: The mean squared error (MSE) calculates the Euclidean distance
between the prediction and target output and is therefore also known as the L2-loss. It is
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widely used for regression problems and is calculated as follows:

MSE
(
ŷ, y
)

= ∥ŷ – y∥2 =
1
N

N∑

i=1

(
ŷi – yi

)2 . (2.13)

Here, N is the output dimension.

Mean absolute error: The mean absolute error (MAE) calculates the normalized sum of
the absolute differences between the prediction and target output. It is also known as the
L1-loss and is mainly used for regression problems. The calculation is as follows:

MAE
(
ŷ, y
)

=
1
N

N∑

i=1

∣∣̂yi – yi

∣∣ . (2.14)

Categorical Cross Entropy: The cross entropy (CE) is a comparative measurement that
indicates the similarity between two probability distributions. If the cross entropy is used
in combination with a softmax output, one speaks about the categorical cross entropy loss.
The latter is widely used for classification problems. The computation is as follows

CE
(
ŷ, y
)

= –
N∑

i=1

yi log
(
ŷi
)

= –
N∑

i=1

yi log(softmax(s)i) . (2.15)

Here, s is the output of the last layer before the softmax function has been applied.
Since the categorical cross entropy loss measures the difference between two probability
distributions, it is widely used for classification problems.

2.1.3 Backpropagation

Once the loss L
(
ŷ, y
)

has been calculated, it is derived with respect to the network
prediction ŷ. According to Equation 2.2, the derivative can be written as

∂L
(
ŷ, y
)

∂ ŷ
=
∂L
(

f L
(
. . . f 2

(
f 1 (x0, w1) , w2

)
, . . .wL

)
, y
)

∂ ŷ
. (2.16)

Here, xl–1 is the input of layer f l, and wl indicates the set of parameters of layer f l. Since
each layer f l forms a node of the computational graph that receives both wl and xl–1 as
input, the chain rule can be recursively applied to compute the gradient with respect to
every variable of the graph. Consequently, the gradient for the set of learnable parameters
wl of layer l can be calculated as follows:

∂L
(
ŷ, y
)

∂wl
=

∂L
∂ f L (xL–1, wL)

∂f L (xL–1, wL)
∂ f L–1 (xL–2, wL–1)

. . .
∂f l+1 (xl, wl+1)
∂ f l (xl–1, wl)

∂f l (xl–1, wl)
∂wl

(2.17)

=
∂L
∂ ŷ

∂ ŷ
∂xL–1

∂xL–1

∂xL–2
. . .

∂xl+1

∂xl

∂xl

∂wl
. (2.18)
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Operation Energy (pJ) Relative (%) Area Cost (µm2) Relative (%)

Add
08-bit fixed-point 0.03 3 36 0.8
16-bit fixed-point 0.05 5 67 1.6
32-bit fixed-point 0.1 11 137 3.2
16-bit floating-point 0.4 44 1360 32
32-bit floating-point 0.9 100 4184 100

Mult
08-bit fixed-point 0.2 5 282 4
16-bit fixed-point - - - -
32-bit fixed-point 3.1 83 3495 45
16-bit floating-point 1.1 30 1640 21
32-bit floating-point 3.7 100 7700 100

Table 2.1: A comparison between fixed-point and floating-point operations regarding their energy
and area costs. All values correspond to an 45nm system with 0.9 V and are taken from [12, 30].

This makes it possible to reuse both the gradients already computed and the intermediate
results of the forward pass to efficiently backpropagate the gradients even through complex
models. In this way, it can be determined how the learnable parameters must be adjusted
to reduce the learning loss. Consequently, the backpropagation algorithm is an application
of the chain rule to efficiently compute the gradients of a computational graph with respect
to its variables.

2.2 Fixed-Point Representation

Fixed-point numbers use a fixed partition of their bit size B for the integer part and the
fractional part. In principle, the representation of a fixed-point number consists of an integer
(sometimes also referred to as the mantissa) and a global scaling factor which can either be
a power-of-two or a power-of-ten. In computer science, binary fixed-point numbers with
a power-of-two scaling factor are widely preferred because rescaling operations can be
efficiently implemented by shifting the decimal point accordingly.

On the one hand, the representation of an unsigned fixed-point number can be written
as

x = m× 2–f , m ∈ Z+
0 , f ∈ Z , (2.19)

where m is the non-negative B-bit mantissa, 2–f the global scaling factor, and f the position
of the decimal point. If B = 8 bits and f = 0, the dynamic range is from 0 to 255. On the
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other hand, there are several possibilities to represent signed fixed-point numbers that differ
in their representation of the negative values. In the sign-and-magnitude representation,
signed fixed-point numbers are described as follows:

x = (–1)s × m× 2–f , s ∈ {0, 1}, m ∈ Z+
0 , f ∈ Z . (2.20)

Here, s is the sign bit, m is the non-negative (B – 1)-bit mantissa, and f is the position of
the decimal point. If B = 8 bits and f = 0, the dynamic range of the sign-and-magnitude
representation ranges from –127 to 127, which creates an ambiguity of the zero value
[31]. In contrast, if the twos’ complement is used to represent negative values, the
representation can be written as:

x = m× 2–f , m ∈ Z, f ∈ Z . (2.21)

Here, m indicates a signed B-bit mantissa which is based on the twos’ complement. If
B = 8 bits and f = 0, the dynamic range of the twos’ complement representation ranges
from –128 to 127. Since the twos’ complement offers unambiguousness for all numbers, it
is commonly preferred in computer systems [31].

Compared to floating-point numbers, each of which has its separate scaling factor, fixed-
point numbers share a global scaling factor over a given group of numbers. Considering
the numerical representation of deep neural networks, a global scaling factor shared by
all weights of a single layer can provide significant computational benefits. On the one
hand, this allows the calculations of the respective layers to be parallelized very efficiently.
On the other hand, if the global scaling factor is a power-of-two, multiplications with
powers-of-two result in efficient bit shifts. In Table 2.2, a comparison between fixed-point
and floating-point operations regarding their energy and area costs on a 45 nanometer (45
nm) lithography process is given. The values are taken from [30] and can also be found in
[12]. In the case of additions, both the energy and area costs can be significantly reduced
by using fixed-point instead of floating-point operations. For example, a 32-bit fixed-point
add requires only 0.11 times as much energy as a 32-bit floating-point add does. In the
case of multiplications, the main benefit is associated with a reduction of the bit size. For
example, an 8-bit fixed-point multiplication requires only 0.064 times as much energy
as a 32-bit fixed-point multiplication does. However, if the bit sizes of the operands and
operations are to be reduced to less than 16-bits, both must be represented using fixed-point
arithmetic.

In the underlying thesis, the proposed quantization methods use binary fixed-point
numbers with power-of-two scaling factors. Furthermore, unsigned fixed-point numbers
are represented as shown in Equation 2.19, whereas signed fixed-point numbers are
represented using the twos’ complement from Equation 2.21.
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Figure 2.2: Illustration of two fixed-point quantization functions with the position of the decimal
point at f = 0. On the left-hand side, a quantization function with B = 3 bits and a dynamic range
from -4 to 3 is shown. On the right-hand side, a quantization function with B = 2 bits is shown that
quantizes the input x to the ternary values, i.e. x̃ ∈ {–1, 0, 1}. In deep neural networks, ternary-
valued weights offer the possibility of replacing many multiplications with additions. However, one
possible quantization bin is lost.

2.3 Fixed-Point Quantization

A quantization function Q : R→ {q1, ..., qK} maps a real-valued input signal x ∈ R to a
discrete output. Here, {q1, ..., qK} is the set of discrete output values of size K, and B is the
minimum number of bits necessary to represent all possible output values. Furthermore, if
the quantization function is symmetric and has a uniform step size, the quantization can
be calculated using scaling, rounding, and clipping functions. In this case, the zero-point
remains unchanged, which is beneficial on computer systems [12, 18]. The computation of
a symmetric and uniform quantization function can therefore be written as

x̃ =





QU(x,∆, B) = clip
(⌊ x

∆

⌉
, 0, 2B – 1

)
∆ if x̃ is unsigned ,

QS(x,∆, B) = clip
(⌊ x

∆

⌉
, –2B–1, 2B–1 – 1

)
∆ if x̃ is signed .

(2.22)

Here, QU describes the unsigned quantization function, QS the signed quantization
function, ⌊·⌉ rounds to the closest integer, clip(z, min, max) truncates all values z to the
domain [min, max], ∆ is the step size, and B is the bit size of the quantized value x̃.

Comparing the quantization functions from Equation 2.22 with the unsigned fixed-point
representation from Equation 2.19 and the signed representation from Equation 2.21, it can
be seen that the quantized value x̃ is in fixed-point representation if and only of the step-size
is a power-of-two. Hence, ∆ = 2–f , f ∈ Z is the resulting fixed-point constraint with f



2.3 Fixed-Point Quantization 17

being the position decimal point of the quantized value x̃. The corresponding fixed-point
quantization functions can therefore be written as

x̃ =





QU(x, f , B) = clip
(⌊ x

2–f

⌉
, 0, 2B – 1

)
2–f if x̃ is unsigned,

QS(x, f , B) = clip
(⌊ x

2–f

⌉
, –2B–1, 2B–1 – 1

)
2–f if x̃ is signed.

(2.23)

2.3.1 Ternary-valued weights

However, there is a special case for ternary-valued weights. To replace many multiplica-
tions with additions, it is especially desirable to encode the layer weights with values from
{–1, 0, 1}. Therefore, the 2-bit signed quantization function from Equation 2.23 can be
modified to clip all values to the domain [-1, 1], which results in the set of quantized values
{–2–f , 0, 2–f }. By factoring out the step-size of 2–f , the layer weights can be encoded using
binary values and the weighted sums that occur during the forward pass can be calculated
using additions and subtractions. Afterwards, the step size is reintegrated by shifting the
decimal point accordingly. Thus, ternary-valued weights are encoded using the following
ternary quantization function QT :

x̃ = QT(x, f ) = clip
(⌊ x

2–f

⌉
, –1, 1

)
2–f . (2.24)

In Figure 2.2, a comparison between the 3-bit signed quantization function and the 2-
bit ternary-valued quantization function is given. Due to the symmetric property of the
clipping function, one quantization bin gets lost when quantizing the weights using ternary
values.

2.3.2 Example: The Bit-shift Mechanism

This section provides an example to illustrate the computational path of a fixed-point
quantization including the bit shift mechanism. The example is shown using a small
fully-connected layer (see Equation 2.4) which is followed by a ReLU activation function
(see Equation 2.11). For simplicity, the bias is assumed to be zero. Thus, the computation
of the quantized layer can be written as:

x̃l = QU (ReLU
(
w̃l x̃l–1

)
, fx,l = 2, B = 4 bits

)
with w̃l = QT (wl, fw,l = 1

)
. (2.25)

Here, x̃l is the input of layer l which is quantized to B = 4 bits using the unsigned fixed-
point quantization function QU from Equation. 2.23, and w̃l is the ternary-valued weight
matrix of layer l which is quantized using B = 2 bits and the ternary quantization function
QT from Equation 2.24. Furthermore, fx,l = 2 is the position of the decimal point of the
quantized activations x̃l, and fw,l = 1 is the position of the decimal point of the quantized
weight matrix w̃l.
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In Figure 2.3, the computational path is shown for exemplary weights and input values:
The upper part shows intermediate results in the decimal notation whereas the lower part
provides the corresponding binary code. According to Section 2.3.1, ternary-valued weights
can be decomposed into binary values {–1, 0, 1} and the layer-specific step size 2–fw,l , with
fw,l being the position of the decimal point of the weights in layer l. In the underlying
example, the fully-connected layer consists of three neurons, resulting in a 3× 3 weight
matrix. Since the decomposed weight values are either 0 or ±1, multiply-and-accumulate
operations that occur during the forward pass

(
by calculating w̃l x̃l–1

)
can be computed

using additions and subtractions, depending on whether the corresponding weight value
is negative or positive. Thus, the corresponding computation block is marked with ADD
in Figure 2.3. After accumulating the input values, the step size 2–fw,l is reintegrated by
shifting the decimal points fw,l = 1 positions to the left (see the Shift block at the top in
Figure 2.3).

Next, the ReLU activation function truncates all negative input values (see ≥ in Fig-
ure 2.3). Subsequently, the unsigned fixed-point quantization function QU quantizes the
layer activation using B = 4 bits. Here, the decimal point of the quantized activations is
fx,l = 2. Therefore, the decimal point is shifted two positions to the right (see the Shift block
at the bottom left in Figure 2.3), which is equivalent to dividing by 2–2. The following
rounding can be implemented as follows: If there is an active bit directly to the right of the
decimal point, the corresponding value is rounded up (which is the case for the upper two
values). If this is not the case, the value is rounded down. The following clipping function
takes into account the quantization domain consisting of the B = 4 bits on the left side
of the decimal point (which are marked in blue in Figure 2.3). If there is another active
bit to the left of the quantization domain, the value is clipped by activating all four bits
of the quantization domain. In the underlying example, this is the case for the topmost
value. Since all negative values have already been clipped by the ReLU activation function,
the decimal point is now shifted back two positions to the right and the quantization is
finished.

Notice: This is only a semantic representation to demonstrate the bit shift mechanism
using fixed-point arithmetic. Both the dimensions and the values are arbitrarily selected.
Furthermore, the ReLU and the unsigned fixed-point quantization can be converted into a
single function (since the unsigned quantization function truncates all negative activations).
However, to make the example more comprehensible, both functions were calculated
separately here.
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Figure 1. Semantic representation of the computation path during test time using out Fix-Net model with Wq = BNq = 2bit and Aq = 4bit.

2

Figure 2.3: Computational path of a small fully-connected layer that can be evaluated using pure
fixed-point arithmetic. The activations x̃l–1 and x̃l are quantized using the unsigned fixed-point
quantization function QU from Equation 2.23 with B = 4 bits. The layer weights w̃l are quantized
using the ternary quantization function QT from Equation 2.24. The example shows how the
forward pass can be computed without the need for multiplications. First, the ternary-valued
weights can be decomposed into binary values and the layer-specific step size which is a power
of two whose exponent indicates the position of the decimal point. As a result, multiplying the
binary weights with the quantized input can be done using additions and subtractions, depending
on whether the corresponding weight value is negative or positive. Subsequently, the decimal point
is shifted according to the exponent of the respective step size (the so-called bit shift mechanism).
Next, the ReLU activation function truncates all negative input values. Subsequently, the unsigned
fixed-point quantization function quantizes the activations to B = 4 bits by the following steps: 1.)
Dividing by the step size 2–fx,l results in shifting the decimal point fx,l = 2 positions to the right.
2.) The values are rounded by considering the bit directly to the right of the decimal point. 3.)
All values are clipped according to the quantization domain, which consists of B = 4 bits and is
marked in blue. If there is an active bit to the left of the quantization domain, the respective value is
clipped by activating all bits of the quantization domain (which is the case for the topmost value).
4.) Subsequently, the decimal point is shifted backward two positions to the left.





Chapter 3

Data Sets and Architectures

This section introduces both the data sets and the network architectures that are used for
the experimental evaluation of this thesis.

3.1 MNIST

MNIST is a handwritten-digits classification task with 28×28 gray scale images [32].
Here, each image contains a handwritten number between 0 and 9, which is to be classified
correctly by a computer vision algorithm. The data set is divided into 60,000 training and
10,000 test samples. We preprocess the data by subtracting the mean and dividing it by the
standard deviation over the training set.

Architectures: For the MNIST classification task, we use the LeNet-5 architecture from
[33]. The composition of the layers is as follows:

C6-5x5 + SS2 + C16-5x5 + SS2 + FC120 + FC84 + FC10 . (3.1)

Here, C6-5x5 represents a convolutional layer with six kernel filters of size 5x5 each,
FC120 is a fully-connected layer with 120 output neurons, and SS2 is a sub-sampling
module that reduces the spatial dimensions of the corresponding output feature maps by
two. Each layer except the last uses a hyperbolic tangent activation function. In contrast,
the output layer is followed by a softmax activation function.

3.2 CIFAR-10

CIFAR-10 is an image classification task with 10 different classes [34]. The data consists
of 32 × 32 colored natural images and is divided into 50,000 training and 10,000 test
samples. We preprocess the images as recommended in [35]: We normalize the data by
subtracting the channel means and dividing it by the standard deviations. Furthermore, we
use the standard data augmentation by applying random horizontal flips and shifting [35].
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Architectures: For the CIFAR-10 classification task, we evaluate different network ar-
chitectures. On the one hand, we use the VGG7 architecture proposed in [36]. The layer
composition is as follows:

2 C128-3×3 + MP2 + 2 C256-3×3 + MP2 + 2 C512-3×3 + MP2 + FC1024 + FC10 .
(3.2)

Here, 2 C128-3x3 represents two convolutional layers with 128 kernel filters of size 3x3
each, FC1024 is a fully-connected layer with 1024 output neurons, and MP2 is a max-
pooling layer that reduces the spatial dimensions of the corresponding feature maps by
two. Each layer except the last is followed by a batch-normalization layer and a ReLU
activation function. The output layer is followed by a softmax activation function.

On the other hand, we use ResNet-20 and ResNet-56. A description of both the
implementation details and the layer compositions can be found in [5] as well as in the
PyTorch model zoo [37]. Compared to LeNet-5 and VGG7, which are conventional feed-
forward neural networks, ResNet architectures use shortcut connections between single
layers that sum up the respective output feature maps. The residual functions learned this
way improve the gradient flow during backpropagation and thus increase the performance
of deep network architectures [5].

In addition, we use DenseNet with 76 layers and a growth rate of 12 (L = 76, k =
12, [35]). In DenseNet architectures, each layer receives the output feature maps of all
preceding layers as input. This reduces the vanishing gradient problem, improves the reuse
of features learned, and decreases the number of parameters [35]. Due to its lower number
of redundancies, DenseNet is described as difficult to reduce [38]. The implementation
details can be found in [35].

3.3 CIFAR-100

CIFAR-100 uses the same images as CIFAR-10 but provides 10 additional sub-classes
for each class in CIFAR-10. Thus, only 500 training samples and 100 test samples are
available for each class, which makes CIFAR-100 a challenging classification task. We use
the same preprocessing steps and data augmentation as in the case of CIFAR-10.

Architectures: For the CIFAR-100 image classification task, we use VGG11 and VGG16.
Both network architectures are similar to VGG7 but use 11 and 16 layers, respectively.
The computational graph of VGG11 is as follows:

C64-3x3 + MP2 + C128-3x3 + MP2 + 2 C256-3x3 + MP2 + 2 C512-3x3 + MP2 +

2 C512-3x3 + MP2 + FC4096 + FC4096 + FC100 . (3.3)
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Here, the notation is the same as for VGG7. Each layer except the last is followed by a
batch-normalization layer and a ReLU activation function. The output layer is followed by
a softmax activation function. The computational graph of VGG16 is as follows:

2 C64-3x3 + MP2 + 2 C128-3x3 + MP2 + 3 C256-3x3 + MP2 + 3 C512-3x3 + MP2 +

3 C512-3x3 + MP2 + FC4096 + FC4096 + FC100 . (3.4)

The notation is the same as for VGG7 and VGG11. Each layer except the last is followed by
a batch-normalization layer and a ReLU activation function. The output layer is followed
by a softmax activation function.

3.4 ImageNet

ImageNet is a data set consisting of real-world color images. It is used for image classifi-
cation tasks and provides 1,000 class labels. We use ILSVRC12 from [39], which consists
of 1,281,167 training and 50,000 test samples. The data is preprocessed by subtracting the
mean and dividing it by the standard deviation over the training set. If data augmentation
is applied, the data is mutated by applying random horizontal flips and random cropping to
the size 224× 224.

Architectures: For the ImageNet classification task, we use different network architectures
including ResNet-18 and ResNet-50. The implementation details and the compositions
of layers can be found in [5] as well as in the PyTorch model zoo [37]. Furthermore, we
use MobileNet-V1 and MobileNet-V2 [40]. MobileNet architectures apply depth-wise
separable convolutions, which reduces both the computational and memory requirements
[40]. The implementation details and the composition of layers can be found in [40] as
well as in the PyTorch model zoo [37]. In addition, we use InceptionV3 [41].





Chapter 4

Network Quantization

Deep neural networks have proven to outperform classical methods
on several machine learning benchmarks. However, they have high
computational complexity and require powerful processing units.
Especially when deployed on embedded systems, both their mem-
ory requirements and inference time must be significantly reduced.
Therefore, we propose SYMOG (symmetric mixture of Gaussian
modes), a novel soft quantization approach that significantly de-
creases the complexity of deep neural networks through low-bit
fixed-point quantization. SYMOG uses a reduction loss to train deep
neural networks with minimal quantization error. After training,
the distribution of the weights resembles a multi-model distribution,
with each mode corresponding to a certain fixed-point number. We
evaluate our approach by quantizing the weights using ternary val-
ues. Thus, most multiplications required during the forward pass
can be replaced by additions. Compared to related quantization
approaches, we achieve new state-of-the-art performance with the
lowest number of training epochs.
Furthermore, we propose EEquant (easy and effective quantization),
an approach to train deep neural networks that can be evaluated us-
ing pure fixed-point arithmetic afterwards. EEquant is an extension
of our SYMOG soft quantization approach that takes into account
the distribution of the parameters of the batch-normalization lay-
ers. Furthermore, by using a discrete ReLU activation function,
EEquant quantizes the layer activations during each forward pass.
After training, the batch-normalization layers are folded into the
preceding convolutional or fully-connected layers and the model can
be evaluated without the need for floating-point multiplications.
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4.1 Introduction

Deep neural networks are state-of-the-art in many machine learning problems, enabling
recent progress in computer vision, speech recognition, and object detection [2, 42, 43].
However, the best results have been accomplished by training large models with many
parameters using large amounts of training data [2, 43]. As a result, modern deep neural
networks have an extensive memory footprint, with floating-point multiplications being
especially expensive in terms of computation time and power consumption [12]. When
deployed on embedded devices, deep neural networks are necessarily restricted by their
computational complexity.

Therefore, various approaches have been developed to optimize deep neural networks
to better match embedded hardware constraints [13, 18, 44, 45]. One of these approaches
involves reducing the bit sizes of the parameters and activations through quantization
[15, 16, 36, 46, 47, 48]. On ordinary computational hardware, the quantization of the
parameters reduces the memory requirements, as well as the amount of data accesses
[12]. Furthermore, ternary- or even binary-valued parameters replace many multiplication
with additions [36, 46, 49]. On dedicated fixed-point hardware, the quantization of both
the parameters and activations using fixed-point representations simultaneously reduces
memory cost, inference time, and energy consumption [13, 18].

Since post-training quantization usually fails to maintain the accuracy of deep neural
networks with floating-point precision [48], quantization-aware training methods have been
developed to integrate fixed-point constraints into the training of deep neural networks [13,
18]. These quantization-aware training methods are mainly grouped into two categories.
On the one hand, hard quantization methods use quantized parameters (and optionally even
quantized activations) during both the forward and backward pass. Thus, the quantization
noise is taken into account during training and the parameters can be adjusted accordingly.
However, since the derivative of the rounding function is zero almost everywhere, the local
gradients of the applied quantization functions must be estimated during the backward
pass, which creates gradient mismatches. On the other hand, soft quantization approaches
use floating-point parameters during the training but simultaneously promote posterior
distributions of the parameters that are well qualified for post quantization. This is done by
including additional constraints (e.g. additional loss functions or regularization terms) into
the training of deep neural networks such that both the learning loss and the quantization
noise are minimized simultaneously. Thus, soft quantization allows training in floating-
point precision without the need for gradient estimators. After the training, the parameters
can ideally be quantized with no significant loss in accuracy.

However, previous approaches have several drawbacks. The quantization functions
used in [20, 36, 46, 47, 49] apply high-precision scaling factors, which exclude the
possibility of pure fixed-point arithmetic on dedicated hardware. In [36, 46, 47, 49],
the batch-normalization layers are not integrated into the fixed-point representation of
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the parameters of the preceding layers and thus remain in floating-point precision. In
[13, 18, 50], the computational graph must be changed significantly to calculate first the
batch statistics of the layer activations and subsequently the quantized output of the folded
batch normalization layers. This increases the computational effort during training, and
the quantized weights start to jitter [50]. As a result, several modifications must be made
to stabilize the training procedure and increase the test performance, such as freezing
batch-normalization layers and the correction of quantized weights [18, 50]. All these
methods and their modifications are discussed in detail in Section 4.4.

In this chapter, we propose the following quantization approaches:

• In Section 4.2, we propose SYMOG, a novel soft quantization approach to train
deep neural networks with minimal quantization error. With SYMOG training, the
distribution of the weights changes from and uni-modal to a symmetric and multi-
modal distribution as shown in Figure 4.1. Here, the center of each mode corresponds
to a certain fixed-point number. After training, the weights can be quantized into
a fixed-point representation with no significant loss in accuracy. Since only the
reduction loss representing the expected quantization error has to be integrated,
SYMOG is easy to implement and does not require gradient estimators.

We evaluate our SYMOG approach with the special case of ternary-valued weights.
Due to the fixed-point constraint, the ternary weights can be decomposed into binary
values and a power-of-two scaling factor. Thus, most of the multiplications that are
required during the forward pass can be replaced by additions. Furthermore, scaling
with a power-of-two results in a simple bit shift.

• In Section 4.3, we propose EEquant by extending our SYMOG soft quantiza-
tion approach towards batch-normalization. After training with EEquant, the
batch-normalization layers can be folded into the preceding convolutional or fully-
connected layers, with the parameters of the folded layers resembling a symmetric
and multi-modal distribution. Consequently, the folded layers can be converted
into a fixed-point representation with no significant loss in accuracy. Furthermore,
by quantizing the layer activations using a discrete ReLU activation function, the
trained networks can be evaluated using pure fixed-point arithmetic.

4.2 SYMOG: Symmetric Mixture of Gaussian Modes

The training of deep neural networks works best using floating-point precision. However,
in soft quantization, the training must promote posterior distributions of the parameters
that can be quantized with no significant loss in accuracy afterwards. Therefore, we first
introduce a reduction loss whose minimization results in a distribution of the weights
well suited for post-quantization using fixed-point arithmetic. Furthermore, we give
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–2–f 0 2–f

Weight distribution
after standard training

–2–f 0 2–f

Weight distribution
after SYMOG training

–2–f 0 2–f

Weight distribution
with SYMOG and clipping

Figure 4.1: A simplified comparison of different weight distributions after training. After con-
ventional training, the weights are usually uni-modal Gaussian distributed. Thus, a quantization
to symmetric bins results in a high quantization error and poor performance (left). Here, 2–f

is the uniform step-size of the quantization function, f is the position of the decimal point of
the fixed-point representation, and {–2–f , 0, 2f } is the corresponding set of quantization bins. In
contrast, with SYMOG, each quantization bin is represented by a single Gaussian distribution such
that both the quantization error (i.e. the variance of the Gaussian modes) as well as the learning loss
can be minimized simultaneously during training. The resulting weight distribution is multi-modal
Gaussian distributed (middle) and yields only a small quantization error. Furthermore, the weight
adaptation can be improved by clipping the weights according to the quantization domain (right).

implementation details that improve the weight adaptation during training. We evaluate
our approach with symmetric 2-bit weights, which significantly improves both the memory
requirements and the computational complexity during inference.

4.2.1 Reduction Loss

According to Section 2.1, a deep neural network is a computational graph fΘ parameterized
by a set of parameters w ∈ Θ, Θ = {w1, ..., wM} of size M. The network is trained by
minimizing a learning loss Llearn

(
ŷ, y
)

with respect to its set of parameters Θ. Here, Llearn

calculates the difference between the network prediction ŷ = fΘ (x) and the true output y
of a corresponding training example x. To influence the distribution of the parameters, a
regularization term R : RM → R can be added to the learning loss that takes as input the
set parameters Θ. Thus, the training represents a trade-off between fulfilling the learning
task and regularizing the distribution of the weights.

A widely used regularization for preventing high weight values is the L2-norm [51],
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which is applied to the entire set of trainable parameters as follows:

RL2 =
M∑

m=1

∥wm∥2
2 =

M∑

m=1

w2
m . (4.1)

Training with the L2-regularization penalizes the squared absolute values of the weights
and usually results in a uni-modal Gaussian distribution of the parameters, as can be seen
in Figure 4.1 on the left. In order to combine multiple Gaussian modes and the fixed-point
representation stated in Section 2.2, we propose the following L2-norm based reduction
loss:

Lreduce =
L∑

l=1

Ml∑

i=1

1
Ml

∥∥wl,i – QS (wl,i, fl, B
)∥∥2

2 =
L∑

l=1

Ml∑

i=1

1
Ml

(
wl,i – w̃l,i

)2 . (4.2)

Here, L is the number of layers, Ml the number of weights in layer l, w̃l,i the quantized
weight value, fl ∈ Z the position of the decimal point of the fixed-point representation
in layer l, B the bit size, and QS the signed fixed-point quantization function from Equa-
tion 2.23.

Effectively, the reduction loss gives individual Gaussian priors to each network weight
by calculating the mean squared quantization error for each network layer. The priors are
updated during each forward pass with respect to the closest fixed-point mode, enabling the
weights to continuously switch between neighboring modes. The gradient of the reduction
loss with respect to a certain weight value wl,i is as follows:

∂Lreduce

∂wl,i
=

2
Ml

(
wl,i – w̃l,i

)(
1 –

∂w̃l,i

∂wl,i

)
=

{
±∞ if wl,i =

(
k + 1

2

)
2–fl , k ∈ Z

2
Ml

(
wl,i – w̃l,i

)
else

. (4.3)

The derivative of the quantization function is zero except at the threshold values of the
rounding function, see Figure 2.2. However, due to real-valued layer weights, this case
can be neglected, and the partial derivative of the quantization function can be calculated
with zero for all input values. Thus, the gradient is a scaled version of the corresponding
quantization error, see case two in Equation 4.3. Updating the weights in the direction of
their negative gradients decreases the quantization error and approximates the fixed-point
representation of the weights.

During training, the reduction loss is added to the learning loss Llearn according to

Ltrain = Llearn + λLreduce . (4.4)

Here, Ltrain is the overall training objective, and λ is the regularization parameter that
controls the weighting between both losses: the larger λ, the higher the contribution of
the reduction loss whose minimization results in a reduction of the model capacity. To
increase the model capacity at the beginning of the training, we start with a small value of
λ and increase it as the training progresses. Therefore, we recommend exponential growth
as described in Section 4.2.3.
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4.2.2 Weight Clipping

Soft quantization approaches use regularization terms or additional loss functions during
the training of deep neural networks to promote posterior distributions of the parameters
that are well qualified for post quantization. Since SYMOG is a fixed-point quantization
approach, the potential solution space of the layer weights is limited to the quantization
domain

[
2–fl
(
– 2B–1

)
, 2–fl

(
2B–1 – 1

)]
, see Equation 2.22. Consequently, weights should

not exceed this interval during training. For example, a configuration with B = 3 bits and
fl = 0 leads to the following set of quantized values: {–4, –3, .., 2, 3}. Once a weight takes
the value –4, it is useless to update it in the negative direction because it would diverge
from the solution space. The same concept applies on the opposite side. Therefore, we clip
all weights to the quantization domain

[
2–fl
(
– 2B–1

)
, 2–fl

(
2B–1 – 1

)]
after each update step

to promote constructive weight adaptations. Except in the case of quantizing the weights
using ternary-values, when we clip to the quantization domain

[
–2–fl , 2–fl

]
. A simplified

visualization of the clipping procedure is given in Figure 4.1 on the right-hand side. We
will also demonstrate the benefit of the weight clipping in the experimental section.

4.2.3 Implementation Details

Algorithm 1 summarizes our SYMOG approach to train a deep neural network with multi-
modal weight distributions that enable an accurate fixed-point quantization after the training.
The pretrained model fΘ, the number of training epochs E, the training set D = {(xi, yi)}d

i=1,
the batch size S, the learning loss Llearn, the learning rate domain [η1, ηE], the start value
λ0 as well as the growth-factor αE of the regularization parameter, and the bit size B are
required as input values. Regarding the learning rate and the regularization parameter, we
recommend using [η0, ηE] = [0.01, 0.001], λ0 = 10, and αE = 9/E. Furthermore, if B = 2
bits, the weights are quantized using the ternary quantization function QT from Equation
2.24 (see line 3). Otherwise, the signed fixed-point quantization function QS from Equation
2.23 is used (see line 5).

First of all, the layer-wise decimal points are initialized such the quantization error
of the pretrained weights is minimized (see lines 7 to 10). Since the decimal points are
integer values, the corresponding optimization problem is discrete and can be solved by a
grid search. Once the decimal points have been initialized, SYMOG training starts. At
the beginning of each epoch, both the learning rate and the regularization parameter are
scheduled. Here, we linearly decrease the learning rate from η0 to ηE (see line 12), whereas
the regularization parameter is exponentially increased over the training epochs (see line
13). Furthermore, the training data is shuffled and divided into N mini-batches of size S.
Here, we use a batch size of 128.

A single training step is implemented as follows. First, the respective mini-batch is
propagated through the model to compute the model prediction (see line 17). Next, both
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Algorithm 1 SYMOG: Training a deep neural network with minimal quantization error.
During training, the distribution of the weights changes from a uni-modal distribution to
a multi-modal distribution with each mode corresponding to a fixed-point number. After
training, the weights can be quantized with no significant loss in accuracy.

1: Input: Pretrained model fΘ, Number of Epochs E, Training Data D = {(xi, yi)}d
i=1,

Batch size S, Learning loss L, Learning-rate domain [η0, ηE], Regularization start
value λ0 and growth-factor αE, Desired bit size B.

2: if B = 2 then
3: Q← QT

4: else if B > 2 then
5: Q← QS

6: end if
7: for l = 1 to L do
8: min. ∥wl – Q(wl, fl, B)∥2

9: s.t. fl ∈ Z
10: end for
11: for e = 1 to E do
12: η ← η0 – (η0 – ηE) e/E
13: λ← λ0 · exp(αE e)
14: Randomly shuffle D.
15: Divide D into N batches {Xn, Yn}N

n=1 of size S.
16: for n = 1 to N do
17: Ŷn ← fΘ(Xn)
18: Compute Llearn

(
Ŷn, Yn

)

19: Compute Lreduce according to Equation 4.2
20: Compute Ltrain ← Llearn + λLreduce

21: Compute ∂Ltrain
∂w

22: w← w – SGD
(
w, η, ∂Ltrain

∂w

)

23: for l = 1 to L do
24: wl ← clip

(
wl, 2–fl

(
–2B–1

)
, 2–fl

(
2B–1 – 1

) )

25: end for
26: end for
27: end for
28: for l = 1 to L do
29: w̃l ← Q(wl, fl, B)
30: end for
31: return {w̃l}L

l=1
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the learning loss and the reduction loss are calculated (see lines 18 and 19) and added
together to form the training loss (see line 20). Subsequently, the training loss is derived
with respect to the model parameters (see line 21), and each weight is updated in the
direction of its negative gradient. Here, we use stochastic gradient descent optimization
(SGD [28]) with the Nesterov momentum set to 0.9 (see line 22). After the update step,
the layer weights are clipped according to their quantization domain (see line 24). This
is repeated until the number of epochs E is reached. After the training, all weights are
quantized with respect to the closest fixed-point mode (see line 29).

4.2.4 Experiments and Results

We evaluate our SYMOG approach on the benchmark data sets MNIST, CIFAR-10, and
CIFAR-100. A detailed description of the datasets and architectures can be found in
Section 3. We quantize the weights to power-of-two ternary values w̃ ∈ {–2–f , 0, 2–f } as
shown in Figure 4.1 by using the fixed-point quantization function QT from Equation 2.24.
Thus, the network weights can be encoded using binary values {–1, 0, 1} and a power-of-
two scaling factor. As a result, most of the multiply-and-accumulate operations that are
required during the forward pass can be replaced by additions and subtractions [36, 46, 47].
Furthermore, scaling by a power-of-two can be computed by shifting the decimal point
accordingly. In this way, ternary-valued weights combined with power-of-two scaling
factors can significantly reduce the memory requirements and the computational effort
during inference.

We organize our experiments in two parts. First, we show state-of-the-art performance
on different classification tasks by quantizing different network architectures, from small-
to large-scale. The results are shown in Table 4.1. Here, we compare our SYMOG ap-
proach with weight compression results from BinnaryConnect (BC, [46]), Ternary Weight
Networks (TWN, [36]), Variational Network Quantization (VNQ, [38]), and BinaryRelax
(BR, [52]). We also show that our method requires significantly fewer training epochs than
competitive approaches. Second, we give insights into the training procedure and illustrate
the adaptation of the weights during training. All experiments are done using Algorithm 1.

MNIST with LeNet-5: For the MNIST classification task, we use the LeNet-5 architecture
and train for 25 epochs. Our approach achieves a Top-1 accuracy slightly higher than
the baseline accuracy (99.37% vs. 99.30% baseline accuracy). This may be due to the
reduction loss, which can behave like regularization and thus improve the generalization ca-
pability on simple classification tasks. Compared to TWN and VNQ, which both quantize
the weights to ternary values, our approach slightly improves the Top-1 accuracy (99.37%
vs. 99.35% and 99.27%, respectively) and significantly reduces the number of training
epochs (25 vs. 40 and 195, respectively). However, both TWN and VNQ use real-valued
scaling factors, making it impossible to encode the weights using fixed-point arithmetic.
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Data set Method Model #Parameter Bits FP Epochs Top-1 [%]

MNIST Baseline LeNet5 60k 32 ○␣ 25 99.30

BC [46] - - 1 ○ - 98.71

TWN [48] LeNet5 60k 2 ○␣ 40 99.35

VNQ [38] LeNet5 60k 2 ○␣ 195 99.27

SYMOG LeNet5 60k 2 ○ 25 99.37

CIFAR-10 Baseline VGG7 12M 32 ○␣ 100 94.48

BC [46] VGG8 14M 1 ○ 500 90.10

TWN [48] VGG7 12M 2 ○␣ 170 92.56

SYMOG VGG7 12M 2 ○ 100 94.29

Baseline DenseNet 0.49M 32 ○␣ 100 94.28

VNQ [38] DenseNet 0.49M 2 ○␣ 150 91.17

SYMOG DenseNet 0.49M 2 ○ 100 94.04

CIFAR-100 Baseline VGG11 32M 32 ○␣ 100 68.58

TWN [48] VGG11 32M 2 ○␣ 300 63.82

BR [52] VGG11 32M 2 ○␣ 300 65.87

SYMOG VGG11 32M 2 ○ 100 67.95

Baseline VGG11 34M 32 ○␣ 100 73.42

TWN [48] VGG16 34M 2 ○␣ 300 71.41

BR [52] VGG16 34M 2 ○␣ 300 72.10

SYMOG VGG16 34M 2 ○ 100 72.35

Table 4.1: Results of different quantization methods on MNIST, CIFAR-10, and CIFAR-100. The
table indicates the model name, the number of parameters of the respective model, the number of
bits used for quantization, the number of training epochs, as well as the test accuracy. Furthermore,
column six indicates whether the respective method fulfills the fixed-point (FP) constraint of
power-of-two scaling factors: ○␣ = False, ○ = True. The baseline gives the 32-bit floating-point
accuracy. Our SYMOG approach yields both the highest Top-1 accuracies and the smallest number
of training epochs.
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On the other hand, BC uses binary values to quantize the weights without using scaling
factors, which can be highly efficient on dedicated hardware. However, the Top-1 accuracy
drops below 98%, and the model used in BC consists of large fully-connected layers with
significantly more parameters. Thus, it is much easier to quantize compared to LeNet-5.

CIFAR-10 with VGG7 & DenseNet: For the CIFAR-10 classification task, we evaluate
two different network architectures. First, we test VGG7 by training for 100 epochs. With
ternary-valued weights, our approach achieves a Top-1 accuracy that is only 0.2% below
the baseline accuracy (94.29% vs. 94.48% baseline accuracy). Compared to TWN, our ap-
proach improves the Top-1 accuracy by 1.7% with a simultaneous reduction in the number
of training epochs from 170 to 100. Compared to BC, our approach improves the Top-1
accuracy by 4% with only one-fifth of the training epochs. Second, we evaluate DenseNet,
which has an optimized architecture with comparatively few parameters. Due to its lower
number of redundancies, DenseNet is described as difficult to quantize [38]. However,
after 100 epochs of training, our approach achieves a 2-bit performance that is only 0.24%
below the baseline accuracy (94.04% vs. 94.28% baseline accuracy). Compared to the
Bayesian approach of VNQ, our approach improves the Top-1 accuracy by nearly 3% with
a simultaneous reduction of the number of training epochs from 150 to 100.

CIFAR-100 with VGG11 & VGG16: CIFAR-100 uses the same images as CIFAR-10 but
provides 10 additional sub-classes for each class in CIFAR-10. Thus, only 500 training
samples and 100 test samples are available for each class, which makes CIFAR-100 a
challenging classification task. On the one hand, we evaluate with VGG11. After 100
epochs of training, our approach achieves a Top-1 accuracy which is only 0.63% below the
baseline (67.95% vs. 68.58% baseline accuracy). Thus, we outperform BR by more than
2% (67.95% vs 65.87%) and TWN by more than 4% (67.95% vs. 63.82%). Furthermore,
our approach significantly reduces the number of training epochs from 300 to 100. On the
other hand, we evaluate with VGG16. Here, our approach performs best using symmetric
ternary-valued weights as well. The Top-1 accuracy is slightly higher compared to BR
(72.35% vs 72.10%) at one-third of the training time (100 vs 300 epochs).

In summary, our soft quantization approach outperforms the hard quantization ap-
proaches BC, TWN, and BR in both training time and accuracy. Especially, the number
of training epochs is significantly reduced by a factor of up to five. This may be due to
our soft quantization approach: In contrast to hard quantization, the training remains in
floating-point precision. Consequently, there are no gradient mismatches due to gradient
estimators and training converges better. Compared to VNQ, which is a Bayesian soft
quantization approach, our approach increases performance substantially using the small
DenseNet architecture.
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Weight adaptation: SYMOG is a soft quantization approach to train deep neural networks
with multi-modal weight distributions, where each mode corresponds to a certain fixed-
point number. This is done by minimizing both the learning loss and the quantization
error simultaneously during training. After training, the weights are quantized concerning
their closest fixed-point number. In this section, we give insights into the training and
visualize the adaptation of the weights using the example of VGG11 (the corresponding
Top-1 accuracy is shown in Table 4.1).

On the one hand, Figure 4.2 shows the weight distributions of the layers with index 1, 4,
and 7 after different epochs of training. Since L2-norm based regularization is used for
pretraining, the distribution of the weights at epoch zero is uni-modal with a single peak at
zero. As training with SYMOG begins, two additional peaks arise at±2–f since the weights
are clipped to the quantization domain

[
–2–f , 2–f

]
after each update step (clearly visible at

epoch 20). With an increasing training time, the layer weights are continuously rearranged
into a distribution consisting of three symmetric Gaussian modes. The variance of the
Gaussian modes is continuously decreased by an exponentially increasing regularization
parameter. After 100 epochs of training, the variance is so small that the remaining
quantization error has no significant impact on the accuracy of the learning task.

On the other hand, Figure 4.3 visualizes the weight adaptation by showing the percentage
of weights that switch to another fixed-point mode during a single epoch. The upper plot
shows the result with weight clipping enabled as shown in Algorithm 1. Due to a small
but exponentially increasing regularization parameter, the regularization effect is rather
low at the beginning of the training, favoring an increased fluctuation of the weights. For
example, on average 22% of the weights in the 7th layer change their fixed-point mode
during each epoch in the first half of the training. After 80 epochs, when the variance
of the Gaussian modes is already significantly smaller (see Figure 4.2), still 1.8% of the
weights change their fixed-point mode until the end of training. However, the adaptation
of the weights behaves differently from layer to layer. For example, the adaptation of the
weights in the 1st layer is completed first after 32 epochs of training, whereas the weights
in the 10th layer change their fixed-point mode until the end of the training. This may
come from different step sizes and layer-dependent gradient scales, which results from the
layer-wise mean squared error used in Equation 4.2.

In contrast, the lower plot in Figure 4.3 shows the percentage of weights that switch
to another fixed-point mode with weight clipping turned off. First of all, it is noticeable
that the number of changing modes is significantly lower for all layers. For example, on
average 8% of the weights in the 7th layer change their fixed-point mode during each
epoch in the first half of the training (compared to 22% when weight clipping is enabled).
Furthermore, one can observe that the changing rates of the 4th and 7th layer increase
once again after epoch 40. This is due to weights that are located outside the quantization
domain [–2–f , 2–f ]. These weights have to pass the distance to the outlying modes first.
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–2–f 0 2–f

w1 at epoch 0

–2–f 0 2–f

w4 at epoch 0

–2–f 0 2–f

w7 at epoch 0

–2–f 0 2–f

w1 at epoch 20

–2–f 0 2–f

w4 at epoch 20

–2–f 0 2–f

w7 at epoch 20

–2–f 0 2–f

w1 at epoch 80

–2–f 0 2–f

w4 at epoch 80

–2–f 0 2–f

w7 at epoch 80

–2–f 0 2–f

w1 at epoch 100

–2–f 0 2–f

w4 at epoch 100

–2–f 0 2–f

w7 at epoch 100

Figure 4.2: Weight distributions of the layers with index 1, 4, and 7 of VGG11 after different
epochs of training. Since L2-regularization is used for pretraining, the distribution of the weights
at epoch zero is uni-modal with a single peak at zero. Then, training with SYMOG clips the
weights to the domain

[
–2–f , 2–f

]
and continuously rearranges them into a three-modal Gaussian

distribution. The variance of each mode is continuously decreased as training progresses. After 100
epochs, the weights are that close to the fixed-point centers that post-quantization does not produce
a remarkable quantization error. Note: the y-axes are scaled individually for convenience.
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Figure 4.3: Both plots illustrate the weight adaptation in SYMOG training. The y-axes give the
percentage of weights that change their fixed-point mode during a single epoch. The upper plot
results if weight clipping is used as described in Algorithm 1, the lower plot results if the clipping
is disabled. One can observe that the weight adaptation is improved by clipping the weights to the
quantization domain. Especially in the very beginning of training, many weights are rearranged.
Thus, the weight clipping improves SYMOG in both accuracy and training time.
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4.3 EEquant: Easy and Effective Quantization of Deep
Neural Networks

In this section, we propose EEquant, an easy and effective quantization approach to
evaluate deep neural networks using pure fixed-point arithmetic after training. First,
we extend our SYMOG soft quantization approach proposed in Section 4.2 by taking
into account the parameters of the batch-normalization layers. In so doing, each batch-
normalization layer can be folded into the preceding convolutional or fully-connected
layer after training, resulting in a multi-modal distribution of the folded parameters well
qualified for post-quantization. Furthermore, we use a discrete ReLU activation function
to quantize the layer activations during each forward pass. Thus, the trained networks
require significantly less memory and can furthermore be evaluated without the need for
floating-point operations.

4.3.1 Reduction Loss

After training deep neural networks, the batch-normalization layers (if included) can be
folded into the preceding convolutional or fully-connected layers as shown in Section 2.1.1,
see Equation 2.9. This increases efficiency by reducing the number of both parameters
and multiplications. However, to further improve efficiency through quantization, the
weights of the folded layers must be quantized into a fixed-point representation after
training. Therefore, the parameters of the convolutional or fully-connected layer with
index l {wl, bl} as well as the parameters of the corresponding batch-normalization layer
{γl, βl} must be optimized during training to reduce both the learning loss and the expected
quantization error of the folded parameters {ŵl, b̂l}. Here, {ŵl, b̂l} are calculated according
to Equation 2.9 (for a detailed description of the folding process as well as the symbols
used, please see the paragraph about batch-normalization layers in Section 2.1.1).

In SYMOG, the expected quantization error is minimized by training deep neural
networks using the L2-norm based reduction loss from Equation 4.2. To transfer the
same approach to the parameters of the folded layers, we introduce the following weight
regularization term:

Rw =
L∑

l=1

1
2

∥∥∥∥∥wl
γl√
σ2

l + ϵ
– QS

(
wl

γl√
σ2

l + ϵ
, fw,l, Bw

)∥∥∥∥∥

2

2

=
L∑

l=1

1
2
∥ŵl – w̃l∥2

2 . (4.5)

Here, QS is the signed fixed-point quantization function from Equation 2.23, w̃l is the
quantized version of the folded weight tensor ŵl, fw,l is the position of the decimal point
of the fixed-point representation of the weights in layer l, and Bw is the bit size of the
quantized weights. Hence, the weight regularization penalizes the quantization error
caused by folding the batch-normalization layers into the preceding convolutional or fully-
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connected layers. The gradients of Rw with respect to the trainable parameters wl and γl

are as follows:
∂Rw

∂wl
=
(
ŵl – w̃l

)(∂ŵl

∂wl
–
∂w̃l

∂wl

)
=
(
ŵl – w̃l

) γl√
σ2

l + ϵ
, (4.6)

∂Rw

∂γl
=
(
ŵl – w̃l

)(∂ŵl

∂γl
–
∂w̃l

∂γl

)
=
(
ŵl – w̃l

) wl√
σ2

l + ϵ
. (4.7)

As in the case of our SYMOG approach, the derivative of the quantization function can
be considered zero for any input value. Thus, both wl and γl can be optimized during
training such that the folded weights ŵl resemble a multi-modal distribution with minimal
quantization error that can be quantized well after training.

In order to apply the same approach to the bias, we define the following bias regularization
term:

Rb =
L∑

l=1

1
2

∥∥∥∥∥(bl – µl)
γl√
σ2

l + ϵ
+ βl – QS

(
(bl – µl)

γl√
σ2

l + ϵ
+ βl, fb,l, Bb

)∥∥∥∥∥

2

2

=
L∑

l=1

1
2

∥∥∥b̂l – b̃l

∥∥∥
2

2
. (4.8)

Here, b̃l is the quantized version of the folded bias b̂l, fb,l is the position of the decimal
point of the bias in layer l, and Bb is the bit size of the quantized bias. Consequently, the
gradients of Rb with respect to the trainable parameters bl, γl, and βl are as follows:

∂Rb

∂bl
=
(

b̂l – b̃l

)(∂b̂l

∂bl
–
∂b̃l

∂bl

)
=
(

b̂l – b̃l

) γl√
σ2

l + ϵ
, (4.9)

∂Rb

∂γl
=
(

b̂l – b̃l

)(∂b̂l

∂γl
–
∂b̃l

∂γl

)
=
(

b̂l – b̃l

) bl – µl√
σ2

l + ϵ
, (4.10)

∂Rb

∂βl
=
(

b̂l – b̃l

)
. (4.11)

When calculating the gradients, it is also feasible to compute the derivatives with respect
to the decimal points fw and fb. However, if EEquant reduces a pretrained model, we
recommend initializing fw and fb with the integer values that provide the lowest initial
quantization error on the pretrained weights.

Since both the weights and the bias each require a separate regularization term, we define
the reduction loss as follows:

Lreduce = Rw + Rb . (4.12)
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Consequently, the reduction loss penalizes the quantization errors that would result from
quantizing the parameters of the folded layers. During training, the reduction loss is added
to the learning loss Llearn according to

Ltrain = Llearn + λLreduce . (4.13)

Here, Ltrain is the overall training objective, and λ is the regularization parameter that
controls the weighting between both losses. The larger λ, the higher the contribution of
the reduction loss whose minimization reduces of the model capacity. As for our SYMOG
approach, we initialize λ with a comparatively small start value to spend more model
capacity at the beginning of the training. The regularization parameter is then exponentially
increased over the training time according to:

λ(t) = λ0 exp
(
α

e
E

)
. (4.14)

Here, λ0 denotes the start value, α the exponential growth factor, t the current iteration,
and T the total number of iterations. For example, if the training data consists of 1000
samples, the batch size is 10, and the number of training epochs is 5, the total number of
iterations is 500.

4.3.2 Weight Clipping

As for our SYMOG approach, EEquant promotes posterior distributions of the parameters
that are well-qualified for post-quantization. Consequently, each layer has a corresponding
quantization domain within which the weight values should be located to avoid saturation
effects. The procedure is illustrated in Figure 4.1. Taking into account the folding of the
batch-normalization layers, the quantization domain of the weights in layer l is as follows:

[√
σ2

l + ϵ

γl
2–fw,l

(
–2Bw–1) ,

√
σ2

l + ϵ

γl
2–fw,l

(
2Bw–1 – 1

)
]

. (4.15)

Here, both the parameters of the batch-normalization layers and the parameters of the
fixed-point representation (i.e. the decimal point and the bit size) determine the respective
quantization domain. Therefore, to speed up the training, the weights are clipped after
each update step according to the quantization domain 4.15.

4.3.3 Fixed-Point Activations

The rectified linear unit (ReLU) is the state-of-the-art non-linear activation function in
deep neural networks [3]. As mentioned in Section 2.1.1, ReLU activation layers are
usually located subsequent to batch-normalization layers and set negative input values to
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zero. Since the activations, unlike the parameters, cannot be reliably optimized to a multi-
modal distribution using regularization, we quantize the ReLU activations during each
forward pass. Therefore, we use the unsigned (i.e. non-negative) fixed-point quantization
function from Equation 2.23 and combine it with the ReLU function from Equation 2.11.
Accordingly, the quantized activation is implemented as follows:

x̃l = QU (âl, fx,l, Bx
)

= clip
(⌊

âl

2–fx,l

⌉
, 0, 2Bx – 1

)
2–fx,l . (4.16)

Here, l is the layer index, âl the output of the preceding batch-normalization layer, x̃l the
quantized activation, fx,l the position of the decimal point of the quantized activations in
layer l, and Bx the bit size of the quantized activations. Since the derivative of the rounding
function is zero almost everywhere (see Figure 2.2), we use the straight-through estimator
[53] during each backward pass to approximate its gradient as follows:

∂ ⌊x⌉
∂x

:= 1 . (4.17)

Thus, the gradient of the quantized activation x̃l with respect to its input âl can be approxi-
mated as follows:

∂x̃l

∂âl
=





0 if âl < 0

0 if âl > (2Bx – 1) 2–fx,l

1 if else.

(4.18)

In this way, training with quantized activations is feasible. As in the case of the weight and
bias regularization (Equation 4.5 and 4.8), the decimal points of the activation quantization
are initialized with the integer values that provide the lowest quantization errors based
on a pretrained model. Therefore, a subset of the training data is propagated through the
network to minimize the resulting mean squared quantization error, i.e. min. ∥xl – x̃l∥2

2 so
that fx,l ∈ Z. For more details, please see also Algorithm 2.

4.3.4 Implementation Details

Algorithm 2 summarizes our EEquant approach to train a deep neural network that can be
evaluated using pure fixed-point arithmetic after training. The pretrained model fΘ, the
number of training epochs E, the training set D = {(xi, yi)}d

i=1, the batch size S, the learning
loss Llearn, the learning-rate domain [η1, ηE], the start value λ0 and growth-factor α of the
regularization parameter, as well as the bit sizes Bw and Bx are required as input values.
For simplicity, we choose Bw and Bx according to the desired model complexity and define
the bit size of the bias Bb as Bb := 2Bx. Regarding the learning rate and the regularization
parameter, we use [η0, ηE] = [0.01, 0.001] and λ0 = 0.001 for the CIFAR classification
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Algorithm 2 EEquant: Training a deep neural network with both minimal quantization
error and fixed-point activations. EEquant takes into account the distributions of the
parameters of the batch-normalization layers. After training, the batch-normalization
layers can be folded into the preceding convolutional or fully-connected layers, with the
parameters of the folded layers resembling a multi-modal distribution.

1: Input: Pretrained model fΘ, Number of Epochs E, Training Data D = {(xi, yi)}d
i=1,

Batch size S, Learning loss Llearn, Learning-rate domain [η0, ηE], Regularization start
value λ0 and growth-factor α, Desired bit sizes Bw and Bx.

2: Replace all ReLU activations with Equation 4.16
3: for l = 1 to L do
4: min.

∥∥ŵl – QS
(
ŵl, fw,l, Bw

)∥∥2 +
∥∥∥b̂l – QS

(
b̂l, fb,l, 2Bx

)∥∥∥
2

+
∥∥xl – QU

(
xl, fx,l, Bx

)∥∥2

5: s.t.
{

fw,l, fb,l, fx,l
}
∈ Z

6: end for
7: for e = 1 to E do
8: η ← η0 – (η0 – ηE) e/E
9: Randomly shuffle D.

10: Divide D into N batches {Xn, Yn}N
n=1 of size S.

11: for n = 1 to N do
12: λ← λ0 · exp

(
α e n

E N

)

13: Ŷn ← fΘ(Xn)
14: Compute Llearn

(
Ŷn, Yn

)

15: Compute Lreduce according to Equation 4.12
16: Compute Ltrain = Llearn + λLreduce

17: Compute ∂Ltrain
∂w

18: w← SGD
(
w, η, ∂Ltrain

∂w

)

19: for l = 1 to L do
20: wl ← clip

(
wl, 2–fl

(
–2B–1

)
, 2–fl

(
2B–1 – 1

) )

21: end for
22: end for
23: end for
24: for l = 1 to L do
25: Compute ŵl and b̂l according to Equation 2.9
26: w̃l ← QS

(
ŵl, fw,l, Bw

)

27: b̃l ← QS
(

b̂l, fb,l, 2Bx

)

28: end for
29: return {w̃l, b̃l}L

l=1
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tasks, and [η0, ηE] = [0.0001, 0.00001] and λ0 = 0.01 for the ImageNet classification task.
Furthermore, we use α = 10. However, these values can be adjusted according to the
learning task. In general, the value of the regularization parameter should be sufficiently
high to ensure that the reduction loss is close to (or equal to) zero at the end of training.

Scheduling and Preparation: Initially, all ReLU functions used in fΦ are replaced with
the fixed-point ReLU activation function proposed in Equation 4.16. Subsequently, the
layer-wise decimal points of the weights, the bias, and the activations are initialized such
that the corresponding quantization error is minimized based on the pretrained model
fΦ (see lines 3 to 6). Since this is a discrete optimization problem with a finite number
of possible values, the solution can be found by a grid search. To find the layer-wise
decimal points of the activations, a subset of the training data is propagated through the
model. Furthermore, the bit sizes of the weights, the bias, and the activations are initialized.

Training with EEquant: Next, training with EEquant begins. Before each epoch, the
learning rate is scheduled and linearly decreased from η0 to ηE over the training epochs
(see line 8). Furthermore, the training data is shuffled and divided into N batches of size S.
For the CIFAR classification tasks, we use a batch size of 128. In the case of the ImageNet
classification task, a batch size of 32 is used.

In EEquant, a single training step is implemented as follows. First, the regularization
parameter is scheduled according to the current iteration (see line 12), and the respective
mini-batch is propagated through the network to calculate its prediction (see line 13). After
calculating the learning loss, the reduction loss is calculated according to Equation 4.12
and added to the learning loss (see lines 14 to 16). The resulting training loss is derived
with respect to the model parameters before each parameter is updated in the direction of
its negative gradient (see lines 17 to 18). Here, we use SGD optimization with the Nesterov
momentum set to 0.9 [28]. After the update step, the layer weights are clipped according
to the quantization domain 4.15 (see line 20). The procedure is repeated until the number
of epochs is reached. Thus, EEquant fits seamlessly into the common training procedure of
deep neural networks. Compared to hard quantization approaches, the batch-normalization
layers do not have to be folded into the preceding layers during training.

Post Quantization: After the training with EEquant is completed, the batch-normalization
layers are folded into the preceding layers according to Equation 2.9, and the parameters of
the folded layers are quantized using the signed fixed-point quantization function QS from
Equation 2.23. Thus, the final model runs without batch-normalization layers, and has all
parameters and activations in fixed-point representation with per-tensor decimal points.
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Bit sizes SGD Adam RMSprop

4/8 68.7% 68.5% 68.1%
4/4 68.0% 68.1% 67.7%

Table 4.2: EEquant with VGG11 on CIFAR-100.
Fixed-point accuracy after 3 epochs using SGD,
Adam, and RMSprop. The baseline is 69.1%.
The bit sizes are (weights/activations).

Bit sizes SGD Adam RMSprop

4/8 91.4% 91.7% 90.2%
4/4 91.1% 90.8% 89.9%

Table 4.3: EEquant with ResNet-20 on CIFAR-
10. Fixed-point accuracy after 3 epochs using
SGD, Adam, and RMSprop. The baseline is
91.9%. The bit sizes are (weights/activations).

4.3.5 Experiments and Results

In this section, we evaluate EEquant on different benchmark data sets. First, we show in-
variance towards different optimizers on the classification tasks CIFAR-10 and CIFAR-100.
Second, we illustrate the training procedure and show the negative correlation between
the reduction loss and the accuracy of the corresponding fixed-point model. Subsequently,
we show state-of-the-art performance on the ImageNet classification task. Therefore, we
use different network architectures and compare our approach with recent fixed-point
quantization approaches. Here, all models are initialized with pretrained weights. We do
not use any data augmentation but normalize each input channel by subtracting the mean
and dividing by the standard deviation over the training set. All experiments are done using
Algorithm 2. The data sets and architectures used are described in detail in Section 3.

Invariance towards different optimizers: We claim that EEquant provides effective and
stable optimization since high-precision parameters are used during training. Indeed, Chen
et al. reported the convergence issues that may occur with hard quantization methods
that quantize the parameters during each forward pass [54]. Their main observation: the
training success depends most on the optimizer used. Especially between SGD and Adam,
there are significant differences. Furthermore, an SGD based optimization fails to maintain
the floating-point accuracy in many cases.

In order to show that EEquant is invariant towards different optimizers, we make experi-
ments on the CIFAR classification tasks using SGD, Adam, and RMSprop optimization
[27, 28]. The training time is three epochs, and we use a batch size of 128. All optimizers
are initialized using their default values according to their PyTorch implementation [37].
We train ResNet-20 [5] on CIFAR-10 and VGG11 [11] on CIFAR-100, the results are
shown in Table 4.2 and Table 4.3. For both classification tasks, all three optimizers provide
similar fixed-point performances, with Adam and SGD being slightly superior to RMSprop.
Furthermore, the fixed-point accuracies with 4-bit weights and 8-bit activations almost
reach the baseline performances, which are based on 32-bit floating-point weights and
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Figure 4.4: Training with EEquant using ResNet-20 on CIFAR-10. The bit sizes are 4 bits for both
the weights and activations. The training loss consists of the learning loss Llearn and the reduction
loss Lreduce, which are both normalized on the left y-axis so that their maximum value is one. On
the right y-axis, the test accuracies of both the floating-point model and the fixed-point model
are shown. Here, the fixed-point accuracy indicates the test performance that would have been
achieved if the parameters had been quantized after the respective training step (e.g. quantizing
the parameters after one epoch would have resulted in a test accuracy of 88.7% compared to a
floating-point accuracy of 91.1%). With EEquant, minimizing the learning loss increases the
performance using floating-point parameters. Furthermore, minimizing the reduction loss decreases
the performance gap obtained using floating-point parameters on the one hand and fixed-point
parameters on the other.

activations.

Correlation between the reduction loss and the fixed-point accuracy: The approach
of EEquant is to minimize both the learning loss Llearn and the reduction loss Lreduce

simultaneously during training. While reducing the learning loss increases the accuracy
of the model that uses floating-point parameters, we claim that minimizing the reduction
loss sufficiently prepares the parameters for an accurate post-quantization. Consequently,
the value of Lreduce should be correlated with the difference between the test accuracies
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obtained using floating-point parameters on the one hand and fixed-point parameters on the
other. To review our claim, Figure 4.4 compares the two losses and the test accuracies of
ResNet-20 on CIFAR-10 using 4-bit weights and activations. Here, both the learning loss
and the reduction loss are each normalized on the left y-axis so that their maximum value
is one. The accuracies are shown on the right y-axis and indicate the test performances
that would have been achieved using either floating-point parameters or their quantized
counterparts at the current time step. ResNet-20 is initialized using pretrained weights with
a corresponding baseline accuracy of 91.9%. Due to an initial learning rate of 0.01 (which
is significantly higher than the final learning rate of the pretraining) and the inclusion of
the reduction loss, the accuracy using floating-point parameters diverges from the baseline
accuracy at the beginning of the training. However, with a decreasing learning loss, the
accuracy increases again and approaches the baseline. Furthermore, as the reduction
loss decreases, the difference between the accuracies obtained with either floating-point
parameters or fixed-point parameters decreases. Thus, the trained model has both good
performance and low quantization error.

Furthermore, Figure 4.5 illustrates the functionality of EEquant using the example
of the 13th layer of ResNet-20. On the left side, the distribution of the weights w of
the unfolded convolutional layer is shown after several epochs of training. On the right
side, the corresponding distribution of the folded weights ŵ are shown (ŵ results from
folding the corresponding batch-normalization layer into the convolutional layer accord-
ing to Equation 2.9). Here, a bit size of 4 results in 16 fixed-point modes with uniform
distance. As noticeable, the quantization of the unfolded weights w would lead to a
significant quantization error. However, EEquant optimizes the trainable parameters of
the convolutional layer {w, b} as well as the batch-normalization layer {γ, β} so that the
folded weights {ŵ, b̂} resemble a multi-modal distribution with low quantization error.
Thus, the folded weights can be quantized with no significant loss in accuracy after training.

ImageNet classification task: For the ImageNet classification task, we use MobileNetV1,
MobileNetV2, InceptionV3, and ResNet-50. The training time is three epochs. We compare
with the following quantization approaches: Trained Quantization Thresholds (TQT, [18]),
Google’s Quantization-Aware Training (QAT, [13, 50]), and Fast Adjustable Threshold for
Uniform Neural Network Quantization (FAT, [55]). All methods use pretrained weights as
initialization.

Besides the test accuracy of the quantized model, there are certain criteria to rate the
capability of individual methods concerning their application on embedded devices: sym-
metric vs asymmetric quantization functions, per-tensor vs per-channel step-sizes, and
power-of-two vs real-valued step-sizes. Symmetric quantization functions do not shift
zero points and therefore avoid cross-terms within matrix multiplications, per-tensor step-
sizes share the same value across all weights or activations of a tensor, and power-of-two
step-sizes enable bit-shift operations. Thus, the most economical quantization function is
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w at epoch 0 ŵ at epoch 0

w after 1 epoch ŵ after 1 epoch

w after 2 epochs ŵ after 2 epochs

w after 3 epochs ŵ after 3 epochs

Figure 4.5: Qualitative illustration of the functionality of EEquant using the example of the 13th
layer of ResNet-20. On the left side, the distribution of the weights w of the unfolded convolutional
layer is shown after several epochs of training. On the right side, the corresponding distribution
of the folded weights ŵ are shown (ŵ results from folding the corresponding batch-normalization
layer into the convolutional layer according to Equation 2.9). Comparisons are made at different
training times. The bit size is 4 bits, resulting in 16 fixed-point modes with uniform distance. As
noticeable, the quantization of w would lead to a high quantization error. However, the goal is
to optimize the trainable parameters {w, b, γ,β} so that their folded counterparts {w̃, b̃} yield a
multi-modal distribution with a small quantization error.
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MobileNetV1 on ImageNet

Table 4.4: Top-1 accuracies and quantization criteria of different fixed-point quantization methods
using MobileNetV1 on ImageNet. The best quantization function to implement is symmetric and
uses per-tensor scaling factors that are powers-of-two. ○␣ = False, ○ = True.

Method Bit sizes (w/x) per-tensor symmetric pow-of-2 Top-1 Accuracy

Baseline 32 / 32 ○␣ ○␣ ○␣ 70.9%
QAT [13] 8 / 8 ○␣ ○ ○␣ 70.7%
QAT [13] 8 / 8 ○ ○␣ ○␣ 70.0%
TQT [18] 8 / 8 ○ ○ ○ 71.1%
EEquant 8 / 8 ○ ○ ○ 71.0%

MobileNetV2 on ImageNet

Table 4.5: Top-1 accuracies and quantization criteria of different fixed-point quantization methods
using MobileNetV2 on ImageNet. The best quantization function to implement is symmetric and
uses per-tensor scaling factors that are powers-of-two. ○␣ = False, ○ = True.

Method Bit sizes (w/x) per-tensor symmetric pow-of-2 Top-1 Accuracy

Baseline 32 / 32 ○␣ ○␣ ○␣ 71.9%
FAT [55] 8 / 8 ○␣ ○ ○␣ 71.1%
FAT [55] 8 / 8 ○ ○␣ ○␣ 19.9%
FAT [55] 8 / 8 ○ ○ ○␣ 8.1%
QAT [13] 8 / 8 ○␣ ○ ○␣ 71.1%
QAT [13] 8 / 8 ○ ○␣ ○␣ 70.9%
TQT [18] 8 / 8 ○ ○ ○ 71.8%
EEquant 8 / 8 ○ ○ ○ 71.4%
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InceptionV3 on ImageNet

Table 4.6: Top-1 accuracies and quantization criteria of different fixed-point quantization methods
using InceptionV3 on ImageNet. The best quantization function to implement is symmetric and
uses per-tensor scaling factors that are powers-of-two. ○␣ = False, ○ = True.

Method Bit sizes (w/x) per-tensor symmetric pow-of-2 Top-1 Accuracy

Baseline 32 / 32 ○␣ ○␣ ○␣ 78.0%
QAT [13] 8 / 8 ○ ○␣ ○␣ 75.4%
TQT [18] 8 / 8 ○ ○ ○ 78.3%
EEquant 8 / 8 ○ ○ ○ 78.1%
QAT [13] 7 / 7 ○ ○␣ ○␣ 75.0%
EEquant 7 / 7 ○ ○ ○ 77.1%
EEquant 6 / 6 ○ ○ ○ 76.2%

ResNet-50 on ImageNet

Table 4.7: Top-1 accuracies and quantization criteria of different fixed-point quantization methods
using ResNet-50 on ImageNet. The best quantization function to implement is symmetric and uses
per-tensor scaling factors that are powers-of-two. ○␣ = False, ○ = True.

Method Bit sizes (w/x) per-tensor symmetric pow-of-2 Top-1 Accuracy

Baseline 32 / 32 ○␣ ○␣ ○␣ 75.2%
QAT [13] 8 / 8 ○ ○␣ ○␣ 74.9%
TQT [18] 8 / 8 ○ ○ ○ 75.4%
EEquant 8 / 8 ○ ○ ○ 75.6%
QAT [13] 4 / 8 ○␣ ○␣ ○␣ 73.2%
TQT [18] 4 / 8 ○ ○ ○ 74.4%
EEquant 4 / 8 ○ ○ ○ 73.4%
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symmetric with per-tensor and power-of-two step-sizes.

MobileNets: The results are shown in Table 4.4 and Table 4.5. Due to their limited capacity
and depth-wise separable convolutions, MobileNet architectures are considered difficult to
quantize [18, 55]. However, with a performance of 71%, we can quantize MobileNetV1 to
8-bit fixed-point weights and activations with no loss in accuracy (71% vs 70.9% baseline
accuracy). Thus, we achieve a similar performance compared to TQT and slightly better
than QAT. On MobileNetV2, TQT provides the best result with a fixed-point accuracy of
71.8% compared to 71.4% of EEquant. Furthermore, both QAT and FAT are not capable of
fulfilling more than one quantization criterion in a single experiment without a significant
loss in accuracy. On the one hand, the accuracy of FAT drops below 10% when both
per-tensor scaling factors and symmetric quantization functions are combined. On the
other hand, QAT does not provide any experiments at all with two criteria fulfilled.

InceptionV3 and ResNet-50: The results of InceptionV3 are shown in Table 4.6. With
8-bit fixed-point weights and activations, our EEquant approach achieves a Top1 accuracy
of 78.1%, which is slightly higher than the baseline accuracy of 78%. Here, TQT performs
best with a very slight margin to EEquant. For 7-bit fixed-point weights and activations,
our approach achieves the highest performance in comparison and outperforms QAT by
more than 2%. Furthermore, we are the only ones that quantize InceptionV3 with 6-bit
fixed-point weights and activations. Here, our approach achieves a Top1 accuracy of
76.2%, which is only 1.8% below the baseline accuracy.

The results of ResNet-50 are shown in Table 4.7. With 8-bit fixed-point weights and
activations, our EEquant approach achieves a Top-1 accuracy of 75.6%, which is slightly
better than the baseline accuracy and the performance reported by TQT. This may be due
to regularization effect of the reduction loss. Using 4-bit weights and 8-bit activations,
TQT yields a fixed-point accuracy of 74.5% compared to EEquant with 73.4%.

4.4 Related Work

Network quantization reduces the precision of the weights and activations by reducing
their respective bit sizes. There are different quantization approaches that can be divided
into three categories: post-training quantization, hard quantization, and soft quantization
[12, 38]. The latter two coincide under the term quantization-aware training methods. An
overview can also be seen in Figure 1.1.
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4.4.1 Post-training Quantization

Post-training quantization transforms an already trained floating-point model into a quan-
tized representation by analyzing the network statistics. The training of the floating-point
model does not include any quantization constraints. Instead, the distributions of the
weights (and optionally those of the layer activations) are analyzed in post-processing to
find appropriate quantization functions for each layer and to correct the resulting quantiza-
tion noise.

In [48], Lin et al. collected and analyzed statistics of the parameters and activations to
estimate suitable quantization functions for each layer. Furthermore, Lin et al. enabled
flexible bit sizes and proposed a method to find an optimal bit size assignment for each
layer across the network. In [56], Choukroun et al. formulated the quantization of both the
weights and activations as minimum mean squared error problem. In order to fine-tune
the scaling factors of the linear quantization functions, Choukroun et al. utilized a small
subset of the training data. In [57], Meller et al. combined factorization and quantization
to reduce the degradation caused by weight quantization. On the one hand, Meller et al.
rearranged the weights to make them less sensitive towards the quantization noise. On the
other hand, they proposed transformations to align the ranges of the channels that belong
to the same layer, which also makes the layer more robust to quantization. In [58], Banner
et al. introduced a post-training quantization approach to quantize both the weights and
activations to 4-bit. Therefore, Banner et al. proposed three approaches for minimizing
the quantization error: First, approximating the optimal clipping value by minimizing the
mean squared quantization error of the activations, second, allocating flexible bit sizes for
all layer weights regarding their dynamic range, and third, updating the bias to correct the
shift in the mean and the variance of the weights caused by quantization. Recently, Li et
al. proposed a post-training quantization approach that is capable of reducing the bit sizes
down to INT2 [59]. By using second-order analysis, Li et al. defined reconstruction units
that compensate (at least in part) the quantization error.

In general, post-training quantization has both advantages and disadvantages. On the one
hand, post-processing is not as time consuming as retraining the entire model using large
amounts of the training data. On the other hand, low-bit configurations reduce accuracy
tremendously in many cases.

4.4.2 Hard Quantization

Hard quantization methods quantize the weights and optionally also the activations during
the training of deep neural networks. Nevertheless, to enable convergence, the local
gradients of the quantization functions used must be estimated during the backward pass.
Thus, hard quantization methods integrate the quantization noise into the training of deep
neural networks and adapt the network parameters accordingly.
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On the one hand, the hard quantization approach became popular for quantizing the
weights with BinaryConnect, where Courbariaux et al. quantized the weights of the
fully-connected layers to ±1 during each forward pass [46]. During the backward pass,
the gradients of the quantized weights were passed through to their high-precision coun-
terparts. Practically, this was a variation of the straight-through estimator [53], which
approximates the local gradient of the rounding function with one. In the following, Li and
Liu increased the model capacity by combining ternary-valued weights with a real-valued
scaling factor [36]. Here, an optimal value of the scaling factor was found by minimizing
the euclidean distance between the high-precision weights and the scaled ternary-valued
weights. Furthermore, Zha et al. investigated asymmetrical ternary weights with two
independent scaling factors [49].

On the other hand, Courbariaux et al. introduced Binarized Neural Networks and
quantized both the weights and activations to ±1 during each forward pass [47]. During
the backward pass, Courbariaux et al. utilized the straight-through estimator to approximate
the derivative of the rounding function with one. However, parts of the network, such as
the batch-normalization layers, remained in floating-point precision, which complicated
an efficient implementation on dedicated hardware. As a result, the focus shifted towards
embedded hardware constraints. The following steps essentially improved the usability on
embedded devices: uniform quantization functions to enable variable integer domains [13,
55], symmetric and uniform quantization functions to restrict zero-points to 0 [13, 50, 55],
per-tensor quantization to share the same step-size across all weights or activations of a
single layer [13, 18], and power-of-two step-sizes to enable bit-shift operations [18, 44].
However, in order to merge the batch-normalization layers into the fixed-point precision
of the preceding convolutional or fully-connected layers, the training graph has to be
changed to first calculate the batch statistics of the layer activations and then the quantized
output of the folded layers [13]. This increases the computation costs during training and
the quantized weights start to jitter [50]. In the following, several modifications were
presented to increase both the stability and the performance [50]. This includes, among
others, corrections terms within the folded layers, as well as frozen batch statistics [50].
Furthermore, [18] froze all batch-normalization layers after a certain amount of iterations.
These modifications further increased the implementation effort and introduce additional
heuristics (e.g. finding a suitable time step for freezing the batch-normalization layers).

4.4.3 Soft Quantization

Although hard quantization methods achieve convergence, they induce a gradient mis-
match since the derivative of the quantization functions used must be estimated during
each backward pass. In order to avoid such gradient noise, soft quantization approaches
use floating-point parameters during both the forward pass and the backward pass but si-
multaneously promote parameter distributions that are well-qualified for post-quantization.
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In Figure 4.1, a simplified comparison between a uni-modal and a multi-modal weight
distribution is given. For quantizing the weights using ternary values {–2–f , 0, 2–f }, the
multi-modal weight distribution yields significantly less quantization error.

On the one hand, Bayesian methods were used for compressing deep neural networks
using either low-bit weights or zero weights. These methods derive prior distributions
of the weights that result in either sparse or multi-modal weight distributions. In [60],
Ullrich et al. fitted a mixture of Gaussian priors over the model parameters to rearrange
the weights of single layers around certain cluster centers. After the training, Ullrich
et al. achieved compression by assigning each weight to one of these clusters. In [61],
Louizos et al. proposed a prior to induce group sparsity within the network layers. In
order to find an appropriate bit size for each layer to quantize its parameters using fixed-
point precision, Louizos et al. analyzed the uncertainties of the posterior distributions.
Furthermore, Achterhold et al. introduced a quantizing prior to train deep neural networks
with multi-modal weight distributions that can be quantized using symmetric ternary values
[38]. In addition, Achterhold pruned weights with high variance.

On the other hand, optimization strategies for ordinary deep neural networks (i.e. deter-
ministic after the training) have been developed that progressively reduce the quantization
error during training. In [62], Zhou et al. proposed a loss-error-aware training method for
deep neural networks with low-bit weights. Zhou et al. repeatedly divided the weights
into two partitions, constantly quantizing one part and retraining the second part using an
additional regularization term. In [63], Choi et al. investigated both quantized weights
and quantized activations using regularization. However, [62, 63] also kept floating-point
batch-normalization layers as well as real-valued quantization step-sizes, which makes a
complete fixed-point implementation of the network impossible.

4.5 Conclusion

In this chapter, we proposed two fixed-point quantization approaches for deep neural
networks. Our methods use floating-point parameters during training but promote posterior
distributions of the parameters that are well-qualified for post quantization. This is done
by using an additional reduction loss during training. The reduction loss represents the
respective fixed-point constraints and can be added to the learning loss for solving both the
learning task and the fixed-point constraints simultaneously during training.

At first, we proposed SYMOG, an approach to train deep neural networks with mini-
mal quantization error. During training, the distribution of the weights changes from a
uni-modal to a symmetric and multi-modal distribution, with each mode corresponding
to a certain fixed-point number. This allows the weights to be quantized with no sig-
nificant loss in accuracy after training. Compared to hard quantization approaches, the
computational graph remains unchanged and no gradient estimators are needed. Instead,
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only the reduction loss has to be integrated into the training. Thus, SYMOG is easy to
implement and we believe it is an appropriate quantization approach for a wide range of
deep neural network applications. Furthermore, SYMOG enables quantizing the weights
using symmetric ternary values with power-of-two scaling factors. Thus, most of the
multiply-and-accumulate operations of the forward pass can be replaced by additions and
subtractions. In multiple experiments we demonstrated the benefit of SYMOG in terms of
training time and test accuracy: with the lowest number of training epochs, we achieved
new state-of-the-art performance on MNIST, CIFAR-10, and CIFAR-100. Furthermore,
we provided insights into the training and illustrated the effect of single components such
as the weight clipping.

In addition, we proposed EEquant, a quantization approach to evaluate deep neural
networks using pure fixed-point arithmetic. EEquant is the first soft quantization approach
that considers the distribution of the parameters of the batch-normalization layers. As
in the case of SYMOG, all parameters remain in floating-point precision during training.
However, the training promotes distributions of the parameters that resemble a multi-modal
distribution after folding the batch-normalization layers into the preceding convolutional
or fully-connected layers. Compared to hard quantization approaches that require the
batch-normalization layers to be folded during each training step, EEquant only needs
to do this once after training, which makes training more efficient. Thus, EEquant has a
comparatively low implementation effort. Furthermore, EEquant uses a discrete ReLU
activation function that quantizes the layer activations using fixed-point arithmetic during
each forward pass. Thus, deep neural networks trained with EEquant can be evaluated
using pure fixed-point arithmetic after training. In various experiments on CIFAR-10
and ImageNet, EEquant reaches performance that is comparable to state-of-the-art hard
quantization approaches.



Chapter 5

Network Pruning

Deep neural networks are usually overparameterized before training
begins to increase the likelihood of getting adequate initial weights
by random initialization. Consequently, trained neural networks
have many redundancies and are computationally complex in terms
of the number of parameters and required multiplications. In or-
der to reduce complexity and improve their ability to generalize,
redundant network connections can be pruned from the model ar-
chitecture. Here, structured sparsity, as achieved by filter pruning,
directly reduces the tensor sizes of the weights and activations and
is thus particularly effective for reducing both the memory and the
computational effort.
In this chapter, we propose Holistic Filter Pruning, a training pro-
cedure to reduce the memory and computational complexity of a
deep neural network to a given target size. The user determines the
target size in terms of the number of parameters and multiplications
that are available on the target device. Training with Holistic Fil-
ter Pruning includes a reduction loss that calculates the difference
between the actual model size and the target size. The reduction
loss can be minimized during training by inducing sparsity over the
channel-wise affine transformations of the batch-normalization lay-
ers. Thus, a global solution can be found that allocates the resources
available over the individual layers such that the desired target size
is fulfilled. In various experiments, we give insights into the training
and achieve state-of-the-art performance on the CIFAR-10 and Ima-
geNet classification tasks.
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Input features Convolution filter Output features Convolution filter

Layer 1 Layer 2

Figure 5.1: In order to reduce the complexity of deep neural networks, pruning methods reduce the
number of parameters and multiplication by setting weight values to zero. However, pruning single
weights leads to unstructured sparsity, which has only a minor impact on the memory requirements.
In contrast, pruning entire filters and neurons results in a structured sparsity: Since filter pruning in
Layer 1 reduces the number of filters as well as the number of output feature maps, the tensor sizes
of both the weights and activations decrease. Furthermore, with a reduced number of output feature
maps, the depth of the following Layer 2 decreases to the same degree.

5.1 Introduction

Deep neural networks have a strong ability for data abstraction and outperform classical
methods in many machine learning challenges such as computer vision, object detection,
or speech recognition [2, 42, 43]. But, recent progress has been made by training powerful
models with many parameters using large-scale data sets [5, 11, 12]. Frankle and Carbin
demonstrated the correlation between the initial model size and the probability of getting
meaningful initial values for the parameters by random initialization: The chance that a
subset of the parameters is initialized with values that constitute a suitable starting point for
training increases with the number of parameters initialized with random values [10]. As a
result, trained deep neural networks are usually over-parameterized, have high memory
requirements, and need many floating-point multiplications, which are especially expensive
concerning computation time and energy consumption [12].

However, reduction techniques can significantly reduce the complexity of trained deep
neural networks. On the one hand, quantization reduces the precision of both the parame-
ters and activations to accelerate neural networks on dedicated hardware [12, 44, 64]. On
the other hand, pruning and factorization methods reduce the number of parameters and
multiplications rather than their bit sizes [12, 65, 66]. structured sparsity, as achieved by
filter pruning, reduces the computation time, energy consumption, and memory require-
ments of deep neural networks without the need for specialized hardware. A visualization
of filter pruning is given in Figure 5.1.
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Unsupervised filter pruning usually fails to preserve the accuracy of the original model
without retraining. Therefore, data-driven approaches have been developed which either
iteratively prune filters based on saliency scores [24, 65, 67, 68, 69, 70], or retrain the
model under consideration of sparsity constraints [71, 72, 73, 74, 75].

Methods of the first category calculate saliency scores to rate the importance of individual
filters. Such saliency scores can either be based on the magnitudes of the weights and
activations [65, 67, 68], or on the discriminative power of single filters [69, 70]. Channels
associated with low saliency scores are considered unimportant for fulfilling the learning
task and are therefore deleted whereas the remaining filters are retrained. This process is
repeated until the desired pruning rate is reached. However, determining saliency scores
requires a lot of human labor and is usually a heuristic practice. Furthermore, layer-
by-layer pruning, as well as iterative pruning and retraining, are unsuitable procedures
for determining a global selection of filters to be pruned. Considering that all networks
layers jointly contribute to the learning task, it is inappropriate to prune single layers
independently. Moreover, iterative pruning and retraining may prune filters that become
important again at a later iteration.

Methods of the second category investigate sparsity constraints that can be integrated into
the training of deep neural networks. Many approaches apply regularization terms to push
the sum of absolute values of filter weights or feature maps towards zero. Frequently used
regularization terms are based on the L0-norm [73], the L1-norm [71], or on the LASSO
regression [72]. Furthermore, [74, 75] introduced gate variables that scale single weights
[74] or complete filters [75] by one or zero. In some cases, however, batch-normalization
layers are neglected which reactivates previously pruned channels [75]. Furthermore, it
is usually unfeasible to specify accurate pruning rates for the number of parameters and
multiplications, which is why an iterative procedure of pruning and retraining becomes
necessary.

In this chapter, we make the following contributions:

• We propose a holistic approach for reducing the number of parameters and required
multiplication of a deep neural network by filter pruning. Therefore, the user specifies
the desired model size in terms of the number of parameters and multiplications that
are available on the target device. During training, a reduction loss is minimized that
indicates the difference between the desired and the actual model size.

• The proposed method induces sparsity via the channel-wise scaling factors of the
batch-normalization layers. Hence, no additional variables are needed. Furthermore,
the pruning budget is allocated over the individual layers automatically such that the
target size is reached. Thus, a global solution is found.

• We evaluate our pruning approach on two benchmark data sets. We provide compar-
isons with recent filter pruning results and prove state-of-the-art performance with
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Figure 5.2: An illustration of the indicator function during both the forward and backward pass.
During the forward pass, the indicator function outputs whether the absolute values of the batch-
normalization scaling factors are greater than t. During the backward pass, the indicator function is
approximated using two piece-wise linear functions. Thus, the gradient with respect to the scaling
factor is either 1 or –1, depending on the sign of the scaling factor.

various network architectures. Furthermore, we analyze the allocation of pruning
rates over the individual layers for different target sizes and layer types.

5.2 Technical Approach: Holistic Filter Pruning

First of all, this section introduces an indicator function that can be applied to the channel-
wise scaling factors of the batch-normalization layers to distinguish between active and
inactive channels. Next, a reduction loss is introduced that uses the indicator function to
determine the difference between the desired model size and the actual model size in terms
of the number of parameters and multiplication. Thus, minimizing both the learning loss
and the reduction loss during training prunes channels across all layers such that the target
size is fulfilled.

5.2.1 Indicator Function

According to Section 2.1.1, batch-normalization layers first normalize and then linearly
transform each channel of a given input variable. Since they are furthermore applied after
convolutional or fully-connected layers, the pruning of complete filters or neurons can be
done via the channel-wise parameters of the batch-normalization layers: as the absolute
values decrease, {γl,c, βl,c} scale the output of channel c in layer l towards zero. Here, γl,c

is the scaling parameter of the affine transformation, and βl,c is the corresponding bias (for
more details, please see Section 2.1.1). Therefore, we first implement a magnitude-based
indicator function that determines whether the absolute value of γ is smaller than the
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magnitude t:

Φ(γ, t) =





0 if |γ| ≤ t

1 if |γ| > t
. (5.1)

If the indicator function outputs zero, the respective channel is considered negligible, since
only the bias of the affine transformation remains (more on this below).

As can be seen in Figure 5.2, the indicator function is a non-smooth quantization
function whose gradient is zero almost everywhere. Therefore, we utilize the straight-
through estimator [53], which is widely used in network quantization to approximate the
local gradient of the rounding function during the backward pass [18]. However, since
the indicator function is symmetrical to the y-axis (in contrast, fixed-point quantization
functions are usually symmetrical to the origin), we flip the estimator on the y-axis as well:

∂Φ(γ)
∂γ

:=





– 1 if γ ≤ 0

1 if γ > 0
. (5.2)

As shown in Figure 5.2, this is the most suitable approach for approximating the indicator
function with linear segments. As a result, the gradient estimator is easy to implement and
non-zero for all input values.

Liu et al. found that scaling factors with absolute values below 10–4 can be set to zero
without a noticeable drop in accuracy [76]. Therefore, we use t = 10–4 for our experiments.
According to Equation 2.9, this results in the channel output being approximately equal to
the batch-normalization bias βl,c:

âl,c = wl,c
γl,c√
σ2

l,c + ϵ
∗ xl–1,c + (bl,c – µl,c)

γl,c√
σ2

l,c + ϵ
+ βl,c

|γl,c| < 10–4

≈ βl,c . (5.3)

Here, {wl,c, bl,c} are the weights and bias of channel c in layer l (which is either a
convolutional or a fully-connected layer), {µl,c,σ2

l,c} are the running estimates of the
channel mean and variance, {γl,c, βl,c} are the learnable parameters of the corresponding
batch-normalization layer, and âl,c is the batch-normalization output. The remaining
batch-normalization bias βl,c is independent of the channel input. When propagating it
through the following convolution or fully-connected layer, it shifts the resulting feature
maps. However, this shift is corrected by the subsequent batch-normalization layer, which
subtracts the mean over the respective mini-batch. After training, both the scaling factor γ
and the bias β of the batch-normalization layers are set to zero if the indicator function
outputs zero. Subsequently, the remaining filters and neurons are retrained to adjust the
batch statistics.

If the network architecture used does not include batch-normalization layers, the indi-
cator function can also be applied on learnable affine transformations that follow each
convolution or fully-connected layer.
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5.2.2 Reduction Loss

The complexity of a deep neural network results on the one hand from the number of its
parameters P and on the other hand from the number of floating-point multiplications M
that are needed to propagate one sample through the network. Furthermore, if P∗ and M∗

denote the number of parameters and multiplications that are available on the target device,
the deviation between the actual model size and the target size can be described by the
following reduction loss:

Lreduce = relu
(

P – P∗

P0

)
+ relu

(
M – M∗

M0

)
. (5.4)

Here, P0 and M0 denote the number of parameters and multiplications of the original
model. Thus, the terms within the rectifier functions denote the normalized differences
between the actual model size (i.e. during training) and the target size. Using another
notation, 1 – P/P0 denotes the actual pruning rate, whereas 1 – P∗/P0 denotes the desired
pruning rate regarding the number of parameters. The rectifier functions are used to limit
the reduction loss at zero whenever the desired pruning rates are reached. In contrast
to the mean squared error, the rectifier function has the advantage of only penalizing
deviations greater than zero. Consequently, both summands vary between zero and the
desired pruning rates. For example, if the goal is to prune 50% of the parameters and 40%
of the required multiplications, the reduction loss takes values between 0 and 0.9.

Both the original model size {P0, M0} and the target sizes {P∗, M∗} are constant values:
the former is fixed whereas the latter is specified by the user according to the target
device. Therefore, P and M remain the only variable quantities in Equation 5.4, which
can be reduced by pruning filters and neurons from the network architecture. Utilizing the
indicator function from Equation 5.1, the number of parameters in a feed-forward neural
network can be calculated as follows:

P =
L∑

l=1

K2
l Cl–1 Cl =

L∑

l=1

K2
l ∥Φ (γl–1)∥1 ∥Φ (γl)∥1 . (5.5)

Here, l denotes the layer index, L the number of layers, Cl the number of active channels in
layer l, and Kl is the kernel size of layer l (if layer l is fully-connected, Kl is equal to one).
Here, we assume quadratic kernel tensors. Of course, it is also feasible to use non-quadratic
kernel sizes. The number of active channels Cl can be calculated by accumulating over
the output of the indicator function Φ (γl) (that is, a channel is considered active if the
indicator function outputs 1 for the corresponding scaling factor). Since the indicator
function outputs only non-negative values, the p = 1-norm can be used to calculate the
sum over Φ (γl).
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Calculating the gradient of P with respect to the scaling factor γl,c results in:

∂P
∂γl,c

= K2
l ∥Φ (γl–1)∥1

∂Φ
(
γl,c
)

∂γl,c
=





–K2
l ∥Φ (γl–1)∥1 if γl,c ≤ 0

K2
l ∥Φ (γl–1)∥1 if γl,c > 0

. (5.6)

Hence, the gradient consists of the sign of the scaling factor and the respective channel size
that is the number of parameters. Therefore, the magnitude of the gradient is proportional
to the impact that the corresponding channel has on the model complexity (the larger the
channel, the more its deletion reduces complexity). This is more useful than applying
the L1-norm to the batch-normalization scaling factors as recommended in [76]. The L1

regularization does not consider the channel sizes and thus treats all channels equally in
terms of complexity.

The same procedure can be done for calculating the number of multiplications:

M =
L∑

l=1

K2
l Wl Hl Cl–1Cl =

L∑

l=1

K2
l Wl Hl ∥Φ (γl–1)∥1 ∥Φ (γl)∥1 . (5.7)

Here, Wl and Hl are the width and height of the output feature maps of layer l (see also
Figure 2.1). Furthermore, the gradient of M with respect to γl,c is as follows:

∂M
∂γl,c

=





–K2
l Wl Hl ∥Φ (γl–1)∥1 if γl,c ≤ 0

K2
l Wl Hl ∥Φ (γl–1)∥1 if γl,c > 0

. (5.8)

Consequently, after each forward pass, the reduction loss calculates the deviation
between the current model size and the target size in terms of the number of parameters
and required multiplications. The reduction loss can be minimized by pruning complete
filters and neurons via the channel-wise scaling factors of the batch-normalization layers.
During training, it is added to the learning loss Llearn according to

Ltrain = Llearn + λLreduce . (5.9)

Here, Ltrain is the overall training objective, and λ is the regularization parameter that
controls the weighting between both losses: the larger λ, the higher the contribution of the
reduction loss whose minimization results in a reduction of the model capacity. Thus, one
intuitive approach is to scale both losses to the same magnitude. The same procedure for
combining different loss functions has also been used in [77]. Therefore, we initialize λ

such that λLreduce is equal to the expectation value of the learning loss over the training
set. For example, if the average cross-entropy loss for an untrained model is 7.25 on the
ImageNet classification task, and the desired pruning rate is 0.5 for both the parameters
and the multiplications, λ is equal to 7.25. Furthermore, since we use pretrained models,
we recommend heating up the pruning parameter over the training epochs.
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5.2.3 Shortcut Connections

State-of-the-art deep neural networks such as ResNet or DenseNet [5, 35] use shortcut
connections between single layers that sum up the output feature maps of both layers. This
makes filter pruning more complicated since shortcut connections can reactive already
pruned channels. Several solutions have been proposed for this problem: In [22, 65], layers
with shortcut connections were not pruned to avoid the problem of reactivated channels.
Furthermore, in [72, 76], feature maps were sampled in front of each residual block to
reduce their dimension. Yet, sampling layers bring additional computation costs. The
authors of [23] proposed a group pruning method in which layers connected by a shortcut
connection share the same pruning patterns.

In our case, the application of shortcut connections is not a problem as long as the
counting functions from Equation 5.5 and Equation 5.7 are implemented correctly: when
calculating the layer-wise pruning rates, it must be taken into account whether a shortcut
connection is added and if so, whether the inactive channels match on both sides of the
shortcut connection. If the network uses shortcut connections in sequential order, such
as ResNet-20, it is necessary to verify that the pruned channels match for all sequential
shortcut connections. However, since shortcut connections can only reactivate the input
channels of layer blocks, their impact on the pruning budget is rather small [22, 65].

5.3 Implementation Details

Algorithm 5.3 summarizes our Holistic Filter Pruning approach to reduce the number of
parameters and multiplication of a deep neural network based on a given target size. The
pretrained model fΘ, the target size {P∗, M∗}, the number of training epochs E, the training
data D = {(xi, yi)}d

i=1, the batch-size S, the learning loss Llearn, the learning-rate domain
[η0, ηE], as well as the final value of the regularization parameter λE are required as input
values. Regarding the learning rate, we use [η0, ηE] = [0.01, 0.0001] for the CIFAR-10
classification task, and [η0, ηE] = [0.1, 0.0001] for the ImageNet classification.

Sparsity learning (lines 2 to 14): Before each epoch, both the learning rate and the regu-
larization parameter are scheduled. Here, the learning rate is linearly decreased from η0 to
ηE according to the current training epoch (see line 3), and the regularization parameter
is linearly increased to λE (see line 4). Furthermore, the training data is shuffled and
divided into N batches of size S. Training with Holistic Filter Pruning consists of the
following steps. First, the current mini-batch is propagated through the model to compute
the network prediction (see line 8), which is used to calculate the learning loss (see line
9). Next, the reduction loss is calculated according to the equations 5.4 to 5.7 and added
to the learning loss (see lines 10 and 11). The resulting training loss is then derived with
respect to the parameters before each parameter is updated in the direction of its negative
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Algorithm 3 Holistic Filter Pruning: Reducing the complexity of a deep neural network
based on a given target size, which is defined by the number of parameters P∗ and
multiplication M∗ that are available on the target device. The implementation effort
is comparatively low since Holistic filter pruning can be integrated seamlessly into the
common training procedure of deep neural networks.

1: Input: Pretrained model fΘ with Θ = {w1, ·, wM}, Number of Epochs E, Training
Data D = {(xi, yi)}d

i=1, Batch size S, Learning loss Llearn, Learning-rate domain [η0, ηE],
Regularization parameter λE, Target sizes P∗ and M∗.

2: for e = 1 to E do
3: η ← η0 – (η0 – ηE) e/E
4: λ← λE e/E
5: Randomly shuffle D.
6: Divide D into N batches {Xn, Yn}N

n=1 of size S.
7: for n = 1 to N do
8: Ŷn ← fΘ(Xn)
9: Compute Llearn

(
Ŷn, Yn

)

10: Compute Lreduce according to Equation 5.4
11: Compute Ltrain ← Llearn + λLreduce

12: Compute
∂Ltrain

∂w
13: w← SGD

(
w, η, ∂Ltrain

∂w

)

14: end for
15: end for
16: fΘ← Prune(fΘ)
17: for e = 1 to 3 do
18: ηe ← η0 – (η0 – ηE) e/3
19: Randomly shuffle D.
20: Divide D into N batches {Xn, Yn}N

n=1 of size S.
21: for n = 1 to N do
22: Ŷn ← fΘ(Xn)
23: Compute Llearn

(
Ŷn, Yn

)

24: w← SGD
(
w, ηe, ∂Llearn

∂w

)

25: end for
26: end for
27: return fΘ
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gradient (see lines 12 and 13). Here, we use SGD optimization with the Nesterov mo-
mentum set to 0.9. The training procedure is repeated until the number of epochs is reached.

Pruning and retraining (line 15 to 24): After training using the reduction loss, the chan-
nels whose scaling factors are set to zero by the indicator function are completely deleted
from the network architecture (see line 16). Subsequently, the remaining channels are
retrained for three epochs in order to update the batch statistics of the batch-normalization
layers (see lines 17 to 25). Here we reduce the learning rate again from η0 to ηE.

As noticeable in Algorithm 5.3, the implementation effort of Holistic Filter Pruning is
low. Compared to related work, there is no need for solving or approximating complicated
optimization problems. On the contrary, the reduction loss can be easily integrated into
the common training procedure and the indicator function can be applied to the already
existing batch-normalization layers.

5.4 Experiments and Results

In this section, we evaluate our Holistic Filter Pruning (HFP) approach on the classification
tasks CIFAR-10 and ImageNet. First, we compare with recent filter pruning methods and
show state-of-the-art performance before giving insights into the training procedure. The
baselines of experiments on CIFAR-10 are calculated by training for 200 epochs using
SGD optimization with the Nesterov momentum set to 0.9 and a batch size of 64. The
learning rate is reduced linearly during the training from 10–2 to 10–4. For ImageNet, the
baselines are taken from the torchvision model zoo*. All experiments are done using
Algorithm 5.3. The data sets and architectures used are described in detail in Section 3.

5.4.1 CIFAR-10 with VGG7 and ResNet-56

On the one hand, Table 5.1 shows the pruning results with VGG7 using CIFAR-10. In our
first experiment, we specify to prune the number of parameters by 90% and the number of
multiplications by 80%. Thus, we achieve comparable pruning rates to HRank [24] but
improve the accuracy by almost 3%. In comparison to Zhao et al. [79] and SSS [78], we
achieve higher pruning rates, while simultaneously increasing the accuracy by more than
1%. Compared to the baseline accuracy, our approach can reduce the number of parameters
by 90% with an accuracy drop of only 0.6%. In our second experiment, we can reduce the
number of parameters by 95% with only about 1% loss in accuracy.

On the other hand, Table 5.2 shows the pruning results with ResNet-56 using CIFAR-10.
We use two different settings with a parameter reduction rate of 50% and 70%, respectively.
Thus, our approach is able to prune both the parameters and multiplications by at least

* https://pytorch.org/docs/stable/torchvision/models.html
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VGG7 on CIFAR-10

Table 5.1: Top-1 accuracies and percentage reduction in the number of multiplications and pa-
rameters for VGG7 (CIFAR-10). Here, a parameter reduction rate of 90% means that 10% of the
parameters remain in the reduced model (i.e., the higher the reduction rate the better). Results
marked with ’-’ are not reported by the authors or correspond to the baseline accuracy.

Method Reduced multiplications [%] Reduced parameters [%] Top-1 %

Baseline - - 94.89
SSS [78] 41.6 73.8 93.02
Zhao et al. [79] 39.1 73.3 93.18
GAL-0.1 [80] 45.2 82.2 90.73
HRank [24] 65.3 82.1 92.34
HRank [24] 76.5 92.0 91.23

HFP 82.0 90.0 94.21
HFP 88.0 95.0 93.86

ResNet-56 on CIFAR-10

Table 5.2: Top-1 accuracies and percentage reduction in the number of multiplications and parame-
ters for ResNet-56 (CIFAR-10). Here, a parameter reduction rate of 90% means that 10% of the
parameters remain in the reduced model (i.e., the higher the reduction rate the better). Results
marked with ’-’ are not reported by the authors or correspond to the baseline accuracy.

Method Reduced multiplications [%] Reduced parameters [%] Top-1 %

Baseline - - 93.30
NISP [81] 35.50 42.40 93.01
DCP [69] 47.10 70.30 93.79
GBN-40 [23] 60.10 53.50 93.41
GBN-60 [23] 70.30 66.70 93.07
HRank [24] 50.00 42.40 93.17
HRank [24] 74.10 68.10 90.72

HFP 56.00 50.00 93.30
HFP 76.09 71.58 92.31
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ResNet-50 on ImageNet

Table 5.3: Top-1 accuracies and percentage reduction in the number of multiplications and parame-
ters for ResNet-50 (ImageNet). Here, a parameter reduction rate of 90% means that 10% of the
parameters remain in the reduced model (i.e., the higher the reduction rate the better). Results
marked with ’-’ are not reported by the authors or correspond to the baseline accuracy.

Method Reduced multiplications [%] Reduced parameters [%] Top-1 %

Baseline - - 76.15

NIPS 2018, NIPS 2019, CVPR 2019
DCP [69] 55.76 51.45 74.95
FPGM [70] 53.50 - 74.83
GBN-60 [23] 40.54 31.83 76.19
GBN-50 [23] 55.06 53.40 75.18

CVPR 2020
Hinge [82] 53.45 - 74.70
He et al. [83] 60.80 - 74.56
DMCP [84] 73.17 - 74.40
HRank [24] 62.10 - 71.98
HRank [24] 76.04 - 69.10

HFP 55.25 51.01 76.08
HFP 70.02 54.93 75.24
HFP 73.45 59.20 74.81
HFP 78.24 68.48 74.14

50% with no loss in accuracy. In comparison to HRank, our HFP approach achieves higher
pruning rates with a slightly improved Top-1 accuracy. GBN [23] achieves a slightly higher
Top-1 accuracy for comparable pruning rates. However, in our second experiment, we
can reduce the number of multiplication by more than 75% with only 1% loss in accuracy,
which is the highest reduction rate in comparison.

5.4.2 ImageNet with ResNet-18 and ResNet-50

Table 5.3 shows the pruning results of ResNet-50. To enable accurate comparisons, we
evaluate four configurations with various pruning rates and compare with the latest results
from CVPR and NIPS. The first configuration of HFP reduces the number of required
multiplications by 55% and the number of parameters by 51% with no significant loss
in accuracy. The second configuration reduces the number of required multiplications
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ResNet-18 on ImageNet

Table 5.4: Top-1 accuracies and percentage reduction in the number of multiplications and parame-
ters for ResNet-18 (ImageNet). Here, a parameter reduction rate of 90% means that 10% of the
parameters remain in the reduced model (i.e., the higher the reduction rate the better). Results
marked with ’-’ are not reported by the authors or correspond to the baseline accuracy.

Method Reduced multiplications [%] Reduced parameters [%] Top-1 [%]

Baseline - - 69.75
SFP [68] 41.80 - 67.10
FPGM [70] 41.80 - 68.41

HFP 36.30 22.07 69.15
HFP 45.00 37.27 68.53

by 70% and thus achieves both higher pruning rates and a higher Top-1 accuracy than
reported in [23, 24, 82, 83]. Compared to [84], our third configuration slightly improves
both the number of multiplications and the Top-1 accuracy. Furthermore, HFP can reduce
the number of multiplications of ResNet-50 by 78% and the number of parameters by 68%
with only 2% loss in accuracy.

Table 5.4 shows the pruning results of ResNet-18, which is much smaller than ResNet-
50, less over-parameterized and consequently more difficult to reduce. Our HFP approach
provides new state-of-the-art performance with 36% reduced multiplications and 22%
reduced parameters with only 0.6% accuracy decrease. Furthermore, HFP is able to reduce
the number of multiplications by 45% with only 1.2% loss in accuracy, which outperforms
FPGM [70] and SFP [68] in terms of both accuracy and reduction rates.

5.4.3 Ablation Study on the Regularization Parameter

Table 5.5 shows the pruning results of ResNet-50 intending to prune 60% of the required
multiplications and 40% of the parameters by using different values of the regularization
parameter λ. As can be seen in Equation 5.9, the regularization parameter controls the
weighting between the learning loss on the one hand an the reduction loss on the other: the
larger λ, the higher the contribution of the reduction loss whose minimization reduces the
model capacity.

The first experiment uses the constant value λ = 1. As noticeable, the desired pruning
rates are not fulfilled after training since the weighting of the reduction loss is to low.
The second experiment uses λ = 7.25, which regularizes the weighting between the
learning loss and the reduction loss so that both components have approximately the same
magnitude on an untrained model. Here, the desired pruning rates are fulfilled after training.
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Ablation study: ResNet-50 on ImageNet

Table 5.5: Ablation study on the effect of the regularization parameter: Top-1 accuracies and
percentage reduction in the number of multiplications and parameters for different values of λ. The
first two experiments use the constant values 1 and 7.25. During the third experiment, λ is linearly
increased from 0 to 7.25.

λ Reduced multiplications [%] Reduced parameters [%] Top-1 %

1. 48 36 76.41
7.25 62 42 75.73
0→ 7.25 60 41 76.08

However, the accuracy drops below 76% since the imbalance between both losses is high
at the beginning of the training since a pretrained model is used for initialization. The third
experiment utilizes the proposed strategy of heating up λ from 0 to 7.25 over the training
time: The pruning rates are still fulfilled and the accuracy increases in comparison to the
second experiment.

5.4.4 Ablation Study on the Pruning Rate Allocation of VGG7

Distributing the resources available to the individual network layers is a well-known
problem in filter pruning [23, 45, 75]. In HFP, the budget on parameters and multiplica-
tions is distributed automatically across the network depth such that the reduction loss
is minimized and the target size is fulfilled. To verify the plausibility of the solutions
found, we analyze two different experiments using VGG7 on CIFAR-10: (a) with the
objective of pruning 90% of the parameters, and (b) with the objective of pruning 90%
of the multiplications. Depending on the objective, the same layers should be pruned
to different extents, depending on whether they have comparatively many parameters or
comparatively many multiplications. The results of both experiments are visualized in
Figure 5.3. On the left y-axis, the pruning rates of the individual layers are shown. Here,
a pruning rate of 0.9 means that 90% of the parameters (or multiplications, respectively)
of the corresponding layer are pruned. On the right y-axis, the proportional layer sizes in
terms of the number of parameters and multiplications are shown. Here, a proportional
layer size of 0.9 means that 90% of the total number of parameters (or multiplications,
respectively) are located in the respective layer.

VGG7 consists of six convolution layers and two fully-connected layers, see Section 3.
As can be seen in Figure 5.3 on the right y-axis, the convolutional layers are particularly
expensive in terms of the number of multiplication, while the first fully-connected layer
contains the most parameters. In experiment (a), HFP primarily reduces the layers that
contribute most to the number of parameters (conv6 and fc7). Especially fc7 has a
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Figure 5.3: Layer-wise pruning rates of VGG7 on CIFAR-10 for two different experiments: (a)
with the aim of pruning 90% of the parameters, and (b) with the aim of pruning 90% of the
multiplications. On the left-hand side, the pruning rates of the individual layers are shown. Here, a
pruning rate of 0.5 means that 50% of the channels (i.e. 50% of the filters or neurons, respectively)
are pruned. On the right-hand side, the proportional layers sizes are shown. Here, a proportional
layer size of 0.5 means that 50% of the network parameters (or multiplications) are located in the
respective layer. Depending on the target reduction, the pruning budget is distributed differently
across the individual layers: (a) reduces the layers with many parameters, while (b) especially
prunes the convolution layers that have the most multiplications.

large number of parameters and is therefore pruned by approximately 97%. In contrast,
experiment (b) mainly leads to a reduction of the convolution layers as they offer more
potential for saving multiplications. Consequently, we can first state that HFP distributes
flexible pruning rates over the individual layers. Furthermore, the distribution of the
pruning budget varies depending on the target reduction. Comparisons with the layer sizes
regarding the number of parameters and multiplications result in a meaningful distribution.

5.4.5 Visualization of ResNet-56 on CIFAR-10

This section analyzes how the overall reduction rates of the multiplications and parameters
are proportionally distributed among the individual layers for ResNet-56 on CIFAR-10.
The final reduction rate is 56% for the number of required multiplications and 50% for the
number of parameters. The corresponding Top-1 accuracy is shown in Table 5.2.

Figure 5.4 shows the proportional pruning rates for the multiplications after 1 epoch,
10 epochs, and 100 epochs of training. Here, the proportional pruning rates indicate the
contributions of single layers to the overall pruning rate at the current time step. For
example, after 10 epochs, 47% of the multiplications are pruned from the model. Of
these, 2.3% are proportionally allotted to the first layer. Additionally, the diagram shows
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the total number of multiplications of the original layers (dotted line). The three basic
blocks (sometimes also called the basic layers) of the ResNet architecture are visible and
marked with A, B, and C. Here, one can observe that the proportional pruning rates of
the individual layers change over the training time. While in block A the pruning rates
decrease as training progresses, the rates in block C increase: the allocation of the pruning
budget changes continuously during training. At the end of the training, the second and
third block achieve slightly higher pruning rates compared to the first block. However,
the differences are comparably small as all intermediate layers share the same number of
multiplications.

Analogically, Figure 5.5 shows the proportional pruning rates for the number of param-
eters. In comparison to the pruned multiplications, the proportional pruning rates of the
parameters change significantly depending on the layer index: with an increasing layer
size, the pruning rates increase as well. At the end of the training, block C shows the
highest contribution to the overall reduction rate of 55%. Thus, the same observation can
be made as for the pruning rate allocation of VGG7 (see Section 5.4.4): the layer-wise
pruning rates are proportional to the effect that each layer has on reduction loss.

Furthermore, Figure 5.6 shows the Top-1 accuracies of various experiments with differ-
ent pruning rates using ResNet-56. The performance values are illustrated by colored level
curves created by fitting a second-order polynomial function. The baseline accuracy of
approximately 93.30% can be maintained with reduction rates up to 50%. Furthermore,
one can observe that pruning the parameters has a greater impact on the performance than
pruning the multiplications.

5.4.6 Visualization of ResNet-50 on ImageNet

This section analyzes how the overall reduction rates of the multiplications and parameters
are proportionally distributed among the individual layers for ResNet-50 on ImageNet.
The final reduction rate is 55% for the number of required multiplications and 51% for the
number of parameters. The corresponding Top-1 accuracy is shown in Table 5.3.

Figure 5.7 shows the proportional pruning rates for the multiplications after 1 epoch,
10 epochs, and 100 epochs of training. Here, the proportional pruning rates indicate the
contributions of single layers to the overall pruning rate at the current time step. For
example, after 10 epochs, 46% of the multiplications are pruned from the model. Of these,
3.4% are proportionally allotted to the fourth layer. Additionally, the diagram shows the
total number of multiplications of the original layers (dotted line). Initially, a correlation
between the layer size and the proportional pruning rates can be observed. As in the case
of ResNet-56, the proportional pruning rates change over time. Here, the pruning rates of
the first layers decrease, while the pruning rates with layer index 11, 23, and 41 increase.
These are exactly the layers that contribute most to the overall number of multiplications.

Figure 5.8 shows the proportional pruning rates for the number of parameters. Here, the
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Figure 5.6: Top-1 accuracies of several experiments using ResNet-56 on CIFAR-10. The pruning
rates of the parameters and multiplication differ between 20% and 90%. The performance values
are illustrated by colored level curves created by fitting a second-order polynomial function.

original layer sizes differ depending on the respective block. Again, the three basic blocks
are marked with A, B, and C. With an increasing layer size, the pruning rates increase
to the same degree. Since block C has the highest contribution to the total number of
parameters, it also shows the highest proportional pruning rates.

In addition, Figure 5.9 shows the Top-1 accuracies of ResNet-50 on ImageNet for differ-
ent pruning rates. The performance values are illustrated by colored level curves created
by fitting a second-order polynomial. HFP can reduce the number of multiplication by up
to 60% and the number of parameters by up to 40% with no significant loss in accuracy
(76.1% vs 76.15% baseline accuracy). Furthermore, pruning 50% of the multiplications
and 28% of the parameters even improves the Top-1 accuracy by approximately 0.5%.
This is due to the capability of pruning methods to improve the ability of deep neural
networks to generalize. If more than 50% of the parameters are pruned, the Top-1 accuracy
drops below 76%. Overall, one can observe that pruning the parameters of ResNet-50 has
a greater impact on the performance than pruning the multiplications. Hence, HFP prunes
nearly 80% of the multiplication with less than 2% drop in accuracy.
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Figure 5.9: Top-1 accuracies of ResNet-50 on ImageNet with different pruning rates. The perfor-
mance values are illustrated by colored level curves created by fitting a second-order polynomial.

5.5 Related Work

Deep neural networks are usually over-parameterized after the training and have many
redundant network connections. These redundancies can be eliminated (e.g. pruned) from
the network architecture in order to reduce the model complexity and improve their ability
to generalize [10]. The first pruning methods were aimed at setting single weight values
to zero in order to trim intermediate layer connections. In this regard, Optimal Brain
Damage [85] utilized the second-order derivative of the loss function to calculate saliency
scores for each network weight. Subsequently, weights with small saliency scores were
pruned iteratively whereas the remaining weights were retrained. Since calculating the
second-order derivatives of the loss function with respect to the parameters is too complex
for large models, many approaches applied magnitude-based pruning [71, 73, 86, 87].

However, pruning single weights leads to unstructured sparsity, which has no direct
benefit on the hardware implementation of deep neural networks since the tensor sizes
of both the weights and activations remain unchanged. Thus, the percentage of non-zero
weights is an insufficient indicator for rating the complexity of deep neural networks.
In contrast, pruning complete filters or neurons from the network architecture leads to
structured sparsity, which reduces the tensor sizes of both the weights and activations
without the need for specialized hardware [23, 45, 70, 73]. A visualization of the structured
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sparsity resulting from filter pruning is given in Figure 5.1. Consequently, filter pruning
can also be used to find an appropriate architecture based on a highly over-parameterized
model.

According to Figure 1.1, filter pruning can be divided into two subcategories [66]:
saliency based pruning and retraining on the one hand and sparsity learning on the
other. Both subcategories are based on pretrained and usually over-parameterized models.
These methods are described below. Here, a filter is equivalent to a neuron and a channel.

5.5.1 Saliency-based Pruning and Retraining

Saliency-based pruning methods determine heuristics to calculate saliency scores for each
filter of the network. The saliency score indicates the importance of the respective filter:
The higher the score the more important the filter is considered to be for fulfilling the
learning task. Based on the saliency scores, a certain number or percentage of filters is
pruned whereas the remaining ones are retrained. This process is iteratively repeated until
the desired network size is reached.

Hu et al. identified unimportant filters by analyzing the magnitudes of the output
feature maps [67]. Here, feature maps with comparatively small sums of absolute values
were considered less important and hence removed. In contrast, Li et al. measured
the importance of individual filters by calculating the sum over the absolute values of
the weights [65]. They argued that filters with small weight values have comparatively
less impact on the output of the network and can therefore be pruned. Besides, Zhuang
et al. argued that distinct channels should have discriminative power: They proposed
a ranking heuristic to identify channels with high discriminative power while deleting
redundant channels and their corresponding filters [69]. Furthermore, He et al. proposed
an iterative method in which the weights of filters with a small L2-norm are first set to
zero [68]. However, in the subsequent retraining step, the pruned filters are updated as
well to improve the training behavior. The whole procedure is repeated iteratively until the
selection of filters with small L2-norms converges [68]. This selection of filters is finally
pruned. Moreover, Yu et al. calculated saliency scores by minimizing the reconstruction
error in the second-to-last layer before the classification output [81]. Here, Yu et al.
formulated the resulting optimization problem as a binary integer optimization problem
and derived a closed-form solution to prune filters in the front layers as well [81].

However, other saliency-based pruning methods do not use numerical norms to calculate
the saliency scores. In [23], Zhonghui et al. introduced Gate Decorator, a pruning
framework that uses gate variables to scale the channel-wise output of intermediate layers.
The change in the loss function caused by setting gates variables to zero is calculated
using a Taylor expansion. This change is subsequently used for calculating the saliency
scores. In [24], Lin et al. used the training data to estimate the rank of each feature map
of intermediate layers. Subsequently, low-rank feature maps were pruned by deleting the
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corresponding filter weights whereas the remaining weights were retrained. Furthermore,
He et al. proposed a pruning method which is based on the Geometric Median of the filter
weights [70]. Here, the Geometric Median was used to identify filters that have the most
replaceable contribution regarding the learning task. Thus, He et al. pruned the filters that
are most replaceable and not the least relevant concerning the learning task.

Recently, Persand et al. proposed an approach to combine different strategies for
calculating the saliency scores of the filters [88]. They argued that a composition of
different saliency scores is more robust than using the same each time [88].

5.5.2 Sparsity Learning

Sparsity learning means integrating sparsity constraints into the training of deep neural
networks. Such constraints are aimed at gradually minimizing the influence of individual
channels during training. Subsequently, channels with negligible influence can be pruned
with no significant loss in accuracy.

Pan et al. proposed an approximation of the L0-norm to penalize incoming and outgoing
connections of single filters [89]. After training, filters with small inputs and outputs were
pruned. In contrast, He et al. proposed a channel selection based on the LASSO regression
[72]. Here, pruning individual layers was achieved by minimizing the reconstruction error
of the output feature maps of the pruned model and the original model. Furthermore,
Liu et al. applied an L1-norm based regularization on the scaling factors of the batch-
normalization layers to minimize the influence of single channels during training [76].
After training, a certain percentile of channels with small scaling factors was pruned. Here,
Liu et al. used a global threshold across all layers. However, the scaling factors were
penalized without considering the respective filter size. Furthermore, channels that have
already been pruned could not be reactivated again. Besides, Huang et al. proposed a
try-and-learn algorithm to train pruning agents that identify superfluous filters [90].

Recently, Xiao et al. introduced Auto Prune, a framework that uses a set of additional
parameters to prune single weights or filters during each forward pass [75]. However, in
their implementation, the pruning layers are located in front of the batch-normalization
layers, reactivating the pruned channels (unless batch-normalization is disabled). Srinivas
et al. proposed a similar approach using gate variables but neglected batch-normalization
layers as well [74].

In [83], He et al. proposed a learnable pruning criteria sampler that generates different
pruning criteria for different layers. The sampler is differentiable and can therefore be
optimized according to the validation loss of the pruned network that is generated based on
the sampled pruning criteria. Furthermore, Guo et al. modeled the process of filter pruning
as a Markov process to efficiently select the filters to be pruned [84]. Since their model is
differentiable, it can be optimized according to the learning loss that is used for training. In
[82], Li et al. combined filter pruning and matrix decomposition by introducing a unified



5.6 Conclusion 79

formulation including sparsity-inducing matrices.

5.6 Conclusion

In this chapter, we proposed Holistic Filter Pruning, an approach for reducing the com-
plexity of deep neural networks by pruning complete filters and neurons from the network
architecture. To the best of our knowledge, we were the first to develop a filter pruning
method that allows specifying accurate maximum values for both the number of parameters
and multiplications. The user is able to define both maximum values depending on the
target device: On the one hand, the number of parameters directly results from the amount
of storage the network is able to allocate on the target device. On the other hand, the
number of required multiplications indicates the computational effort that is needed to
evaluate the model on previously unseen data. During training, a reduction loss calculates
the difference between the actual model size and the target size in terms of the number of
parameters and required multiplications. The reduction loss is then minimized by pruning
filters and neurons via the channel-wise affine transformation of the batch-normalization
layers. Thus, we also solved common problems in filter pruning: the resources available
are distributed automatically across the individual layers so that a global solution is found,
and the implementation effort is low since no additional parameters are needed and the
reduction loss fits seamlessly into the training procedure of deep neural networks.

In various experiments on the classification tasks CIFAR-10 and ImageNet, our method
achieved state-of-the-art performance. Especially for large pruning rates (> 70%), Holistic
Filter Pruning yields excellent accuracy and outperforms recent approaches by up to 3%.
Furthermore, we investigated how our approach distributes the available resources for
different experiments using different network architectures. Here, we found that our
Holistic Filter Pruning approach seeks flexible solutions that fit the given target reduction.





Chapter 6

Joint Pruning & Quantization

Deep neural networks dominate current research in machine learn-
ing. Due to massive GPU parallelization, the training time is no
longer a bottleneck and large models with many parameters lead
common benchmark tables. However, mobile devices have finite re-
sources, strictly limiting the memory and computational cost of deep
neural networks. In order to reduce complexity, redundant network
connections as well as the bit sizes of weights and activations can
be reduced. Here, structured sparsity, as achieved by filter pruning,
decreases the tensor sizes of weights and activations and is therefore
particularly effective in reducing both the memory computational
complexity. Furthermore, fixed-point quantization reduces the bit
sizes of weights and activations, accelerating the computations on
dedicated hardware.
We propose a holistic approach for reducing the complexity of deep
neural networks based on four essential metrics: the memory re-
quirement, the computational cost defined by the number of bit
operations required during the forward pass, the bandwidth, and
the maximum memory cost of the activations. The user is able to
specify maximum values for each of these four metrics based on the
target device. Our approach then learns both the width and the
bit size of each layer so that the maximum values are not exceeded.
After training, the batch-normalization layers are folded into the
preceding layers, where all weights are encoded using efficient fixed-
point quantization. In various experiments, our approach yields
excellent performance and we are able to reduce the number of bit
operations of ResNet-18 on ImageNet by 55 with no significant loss
in accuracy.
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Figure 6.1: Comparison between our holistic reduction approach and different configurations that
perform pruning and quantization in sequential order using VGG7 and CIFAR-10. The overall
compression rate regarding the number of bits is 50, and all approaches use the same pruning
and quantization techniques proposed in Section 6.2. For the sequential approaches, the target
compression rate of 50 must be distributed in advance to both pruning and quantization. For
example, an overall compression rate of 50 can be achieved by reducing the average bit size of the
weights by 8 (via quantization, a compression rate of 8 results from an average bit size of 4 bits)
and the number of parameters by 6.3 (via filter pruning). This example belongs to the result of
the 3rd column from the left. In contrast, our holistic approach (green bar) automatically learns
both the bit size and the number of channels for each layer such that the target compression rate is
reached. This saves training time and significantly increases performance.

6.1 Introduction

Deep neural networks are state-of-the-art in many machine learning challenges, outper-
forming classical methods in computer vision, object detection, and speech recognition
[2, 42]. However, a high initial model capacity as well as floating-point operations are
necessary to successfully train a deep neural network from scratch [10]. Thus, the greatest
results have been accomplished by training large models with many parameters using
large-scale data sets [5, 12]. As a result, modern deep neural networks have an extensive
memory footprint and consume a lot of energy [12]. Both training and evaluation are thus
restricted to powerful processing units.

In contrast, mobile or embedded devices have very limited resources, which must be
shared among all mobile applications [12]. Thus, only a fixed number of bits and bit
operations are available for individual deep learning applications. This limitation leads
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to two major challenges. First, starting with a very limited capacity usually downgrades
the training progress of deep neural networks [10]. Instead, many randomly initialized
parameters must be provided to successfully train a deep neural network from scratch [10].
Second, distributing the number of available bits and bit operations across the individual
layers is a complex and time-consuming problem [91]. Consequently, trained deep neural
networks are usually over-parameterized after training and must be significantly reduced
when deployed on mobile or embedded devices.

Therefore, reduction techniques have been developed which decrease the complexity of
deep neural networks [12]. These approaches can be roughly grouped into two categories:
On the one hand, pruning reduces the number of parameters and multiplications by
removing redundant network connections. Here, filter pruning directly reduces the tensor
sizes of both weights and activations without the need for specialized hardware [22, 91].
On the other hand, quantization reduces the bit sizes of the parameters and activations,
whereas fixed-point quantization is particularly efficient on dedicated hardware [13, 18].

However, a combination of filter pruning and fixed-point quantization is essential for
finding an efficient deep neural network architecture. Starting with an over-parameterized
model, the target size (which is given by a fixed number of bits, e.g. 100 Mbit) can then
be achieved by both pruning whole filters and quantizing the remaining. Nevertheless,
current approaches that combine pruning and quantization have several drawbacks: [20,
25, 92] only prune single weights, which is ineffective as it leads to unstructured sparsity,
[20, 25, 26, 92] omit fixed-point constraints such as bit shifts and integer weights, which
are computationally efficient on dedicated hardware, and [20, 25, 26] apply pruning and
quantization separately even though both influence each other. For example, there is
an infinite number of combinations of pruning and quantization rates that reduce the
number of bits of a deep neural network by a factor of 50, see Figure 6.1. Furthermore,
[20, 25, 26, 92, 93] use only a single criterion (e.g. the memory requirement), which is
used for reduction. This is inappropriate because complexity is always determined by
several factors (e.g. by the memory requirement, the bandwidth, and the computational
complexity.)

In order to find both an efficient and high-performance architecture starting from an
over-parameterized model, we make the following contributions:

• We propose a novel reduction loss consisting of four essential metrics that serve
as a measure of complexity: the memory requirement, the computational cost, the
bandwidth, and the maximum storage cost of the activations. By setting maximum
values for each of those metrics with respect to the target device, the reduction loss
becomes an indicator of the difference between the actual and the target complexity.

• We propose a computational graph equipped with custom layers that allows mini-
mizing the reduction loss during training. This is done by changing the architecture
using both filter pruning and fixed-point quantization.
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• Combined, our contributions result in the ordinary training procedure of reducing
a (multi-task) loss by gradient descent optimization. Thus we benefit from all the
optimization techniques specially designed for this purpose, such as momentum,
running averages, data augmentation, and learning rate schedules.

6.2 Technical Approach: Holistic Reduction

First, we propose a novel reduction loss that calculates the difference between the actual
model size and the target size in terms of four essential complexity metrics. Here, the
target size results on the one hand from the number of bits and bit operations that are
available on the target device, and on the other hand from the bandwidth that is available
between the processing unit (e.g. the neural network accelerator) and the corresponding
memory unit (e.g. the SRAM or DRAM). Based on the reduction loss, we propose a
computational graph equipped with custom layers that allows minimizing the reduction
loss during training. Therefore, we propose a novel pruning layer as well as quantization
layers that either amplify or replace the original layers. Thus, the network architecture (i.e.
the width and bit size of each layer) can be learned such that the target size is fulfilled.

6.2.1 Reduction Loss

Reducing the complexity of deep neural networks first requires a suitable criterion for
measuring complexity, which can then be used as an indicator in a reduction method.
Neglecting specific constraints on the network architecture, the complexity of a deep neural
network is essentially dominated by four criteria, which are described in the following.

Memory requirement: On the one hand, the number of bits required to store a deep
neural network depends on both the number of its parameters and their respective bit sizes.
Consequently, the memory requirement of a convolutional neural network with L layers
can be calculated as follows:

Mem =
L∑

l=1

Cl–1 Cl K2
l Bw,l . (6.1)

Here, l is the layer index, Cl the number of channels in layer l, Kl the kernel size in layer
l (if layer l is fully connected, Kl is equal to one), and Bw,l the bit size of the weights in
layer l. One characterizes this as a layer-wise quantization, which enables a more efficient
implementation compared to channel-wise quantization.

Computational complexity: Furthermore, the minimum number of bit operations that are
necessary to evaluate a deep neural network in an optimal computer environment can be
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calculated by:

Bit-Ops =
L∑

l=1

Cl–1 Cl K2
l Hl Wl Bw,l Bx,l–1 . (6.2)

Here, Hl and Wl are the height and width of the output feature maps of layer l (if layer l is
fully connected, Hl and Wl are both equal to one), and Bx,l–1 is the bit size of the activation
function in layer l – 1. Consequently, the number of required bit operations results from
the number of multiply-and-accumulate operations (MACs) multiplied with the respective
bit sizes of the weights and activations. This metric has also been used in [93, 94, 95]
and assumes an optimal processing unit to specify a lower bound for the computational
complexity during the inference.

Bandwidth: On the other hand, the bandwidth of a deep neural network indicates the
amount of data traffic that originates between the processing unit (e.g. the deep neural
network accelerator) and the memory unit (e.g. the DRAM or SRAM [12]). Consequently,
the bandwidth depends on both the size of the output feature maps and their respective bit
sizes:

Bandwidth =
1
T

L∑

l=1

Cl Hl Wl Bx,l . (6.3)

Here, T is the cycle duration that depends on the actual learning task. For example, in an
object detection framework, a frame rate of 20fps (frames per second) results in a cycle
duration of 0.05s. The cycle duration is usually a fixed quantity, which remains unchanged
between the original model and the reduced model.

Maximum storage activations: Furthermore, the maximum memory requirement of the
activations can also be a critical factor when evaluating the network on embedded devices
[12, 77]. Therefore, we use an additional metric and calculate the maximum storage cost
for the activations according to

Max-Storage = max
(
C1H1W1Bx,1, . . . , CLHLWLBx,L

)
. (6.4)

Based on these four complexity metrics, we define the reduction loss as follows:

Lreduce =
4∑

i=1

ReLU
(

Criterioni – Criterion∗
i

Criterion0
i

)
,

Criterioni ∈ {Mem, Bit-Ops, Bandwidth, Max-Storage}

(6.5)

Here, Criterioni denotes the corresponding complexity metric from the equations 6.1 to
6.4. Furthermore, Criterion0

i describes the respective complexity of the original model, and
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Criterion∗
i specifies the target complexity resulting from the target device. For example,

Mem0 denotes the number of bits of the original model, and Mem∗ specifiers the number
of bits that are available on the target device. Hence, the terms within the rectifier function
indicate the normalized differences between the actual mode complexity and the target
complexity. The rectifier function is used to limit the reduction loss at zero. In contrast
to the mean squared error, the rectifier function has the advantage of only penalizing
deviations greater than zero. Since the differences are normalized to the range [0,1], they
can be accumulated to calculate the total deviation between the actual model complexity
and the target complexity.

In Equation 6.5, the original model complexities Criterion0
i as well as the target complex-

ities Criterion∗
i are constant values. In contrast, the actual model complexities Criterioni

can be adjusted during training: quantization reduces the bit sizes of the weights and
activations, while filter pruning reduces the number of active channels. In the following,
we will design custom layers so that the bit sizes Bw,l and Bx,l as well as the width Cl of
layer l can be learned during the training to minimize the reduction loss.

According to Equation 1.1, the reduction loss can be integrated into the common training
procedure of deep neural networks as follows:

Ltrain = Llearn + λLreduce . (6.6)

Here, Llearn is the learning loss that represents the learning task, Ltrain is the overall training
objective, and λ is the regularization parameter that scales the weighting between both
losses. Hence, the regularization parameter is chosen so that the learning loss and the
scaled reduction loss have approximately the same magnitude. The same procedure for
combining different loss functions has also been used in [77, 91]. Therefore, we initialize
λ so that λLreduce is equal to the expectation value of the learning loss over the training set.
For example, if the average cross-entropy loss for an untrained model is 3 on the CIFAR-10
classification task, and the reduction loss has an initial value of 2, λ is equal to 1.5.

6.2.2 Pruning Layer

In [91], Enderich et al. pruned complete filters and neurons from the network architec-
ture by minimizing the scaling factors of the batch-normalization layers during training.
However, this has several drawbacks. First, batch-normalization layers have a fixed lo-
cation after convolutional or fully-connected layers and therefore have difficulty pruning
shortcut connections. Second, filters with small scaling factors must be manually set to
zero after the training and the remaining ones must be retrained [91]. Third, some network
architectures do not include batch-normalization layers or have to freeze them [97].

Therefore, we propose a novel pruning layer f (·) that can be included at any layer index
l of the network architecture. The pruning layer has a trainable scalar ρl,c for each channel
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Figure 6.2: During the forward pass, h(ρ) outputs one if ρ is positive and zero otherwise. During
the backward pass, a long-tailed estimator is used to approximate the gradient of h(ρ) with respect
to ρ. Within the range [–0.4, 0.4], a piece-wise polynomial function approximates the gradient of
the non-differentiable step of the Heaviside function [96]. Outside the range [–1, 1], the gradient is
significantly reduced to address the saturation effect. However, since ρ is a real-valued parameter
with an open range of values, we use a non-vanishing gradient of 0.1 to continue learning.

c in layer l. During each forward pass, the pruning layer multiplies each channel input xl,c

with the output of the Heaviside step function h(ρl,c) according to

f (xl,c, ρl,c) = xl,c h(ρl,c) =

{
0 if ρl,c ≤ 0

xl,c if ρl,c > 0
. (6.7)

Thus, the pruning layer deactivates single channels if the corresponding parameter is
smaller than or equal to zero.

However, as noticeable in Figure 6.2, the derivative of the Heaviside function is zero
almost everywhere, which makes optimization by gradient descent infeasible. Therefore,
the gradient of the Heaviside function must be estimated during each backward pass. This
has been thoroughly discussed in [96], in which Liu et al. recommended using a long-tailed
estimator. However, we modify their proposed approximation by using a non-vanishing
gradient as follows:

∂ h(ρl,c)
∂ρl,c

:=





2 – 4|ρl,c| if |ρl,c| < 0.4

0.4 if 0.4 ≤ |ρl,c| ≤ 1

0.1 if |ρl,c| > 1

. (6.8)

Within the range [–0.4, 0.4], a piece-wise polynomial function approximates the gradient
of the non-differentiable step of the Heaviside function [96]. Outside the range [–1, 1],
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Figure 6.3: Illustration of the computational graph during training. The pruning layers are included
after the batch-normalization layers. However, if the network uses shortcut connections, an
additional pruning layer is inserted after the shortcut connection to prune the input dimension of
the following layer (see layer no. 1). If the shortcut connection itself has a computation layer, the
additional pruning layer is inserted in front of the shortcut to prune both input dimensions (see layer
no. 2). Furthermore, the last pruning layer of the respective block is shifted behind the shortcut to
simultaneously prune both output channels (see layer no. 3). In this way, different channels can be
propagated through the shortcut connections, which is also different from the method proposed in
[75]. After training, the pruning layers that are located right behind batch-normalization layers can
be folded into the preceding convolutional or filly-connected layers.

the gradient is significantly reduced to address the saturation effect. However, since ρ is a
real-valued parameter with an open range of values, we use a non-vanishing gradient of
0.1 to continue learning.

Using the Heaviside function of the pruning layer, the number of active channels Cl in
layer l (see equations 6.1 to 6.4) can be calculated as follows:

Cl =
∑

c

h(ρl,c) = ||h(ρl)||1 . (6.9)

Location & Shortcut Connections: In general, the pruning layers are inserted after
convolutional or fully-connected layers. However, if batch-normalization is applied, the
pruning layers must be inserted after the batch-normalization layers to prune their affine
transformations as well.

However, some deep neural network architectures such as ResNet [5] or DenseNet
[35] use shortcut connections between single layers to sum up the corresponding output
feature maps. A visualization is given in Figure 6.3. In the case of filter pruning, shortcut
connections can reactivate already pruned channels and must also be taken into account.
Therefore, we place an additional pruning layer after the shortcut connection to prune the
input dimension of the following basic block (see layer no. 1 in Figure 6.3). Furthermore,
if the shortcut itself has a computational layer, we place the pruning layer in front of
the shortcut connection to prune both the input dimension of the basic block and the
input dimension of the computational layer of the shortcut connection (see layer no. 2).
In addition, the last pruning layer of the respective block is shifted behind the shortcut
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connection to simultaneously prune both output dimensions (see layer no. 3).

Initialization: In general, we recommend to initialize the trainable parameters ρ of the
pruning layers with 0.5, which does not change the computation of the forward pass in
the first place. However, to speed up training, we recommend using information from
the corresponding convolutional and batch-normalization layers. The most common and
intuitive assumption in filter pruning states that weights with relatively small absolute
values are less important for fulfilling the learning task [65, 67, 68]. The same principle can
be applied to the scaling factors of the batch-normalization layers [76]. Thus, we calculate
the mean absolute value of the weights of each filter and multiply it with the absolute
value of the scaling factor of the corresponding batch-normalization layer. For each layer,
we normalize the resulting values to the range (0,1], which gives a first indication of the
importance of individual filters in the respective layer. Subsequently, we use the normalized
values as an initialization for the trainable parameters of the corresponding pruning layer
(i.e. the pruning layer that is located right after the batch-normalization layer.)

6.2.3 Fixed-Point Quantization Layers

A quantization function Q maps an input signal x to a smaller set of discrete values x̃.
However, three additional constraints enable to efficiently store x̃ as fixed-point number:
symmetric quantization functions do not shift zero-points and therefore avoid cross-
terms within matrix-multiplications [18, 44], power-of-two step-sizes enable bit-shift
operations [13, 18, 44], and per-tensor step-sizes share the same value across all entries in
a tensor and therefrom enable group-wise bit-shifts [18, 44]. The corresponding fixed-point
quantization function can therefore be written as

x̃ = Q(x, f , B) = clip
(⌊ x

2–⌊f ⌉

⌉
, minB, maxB

)
2–⌊f ⌉ (6.10)

= clip (xI , minB, maxB) 2–⌊f ⌉ . (6.11)

Here, xI is rounded to integer values, ⌊·⌉ rounds to the closest integer, ⌊f ⌉ is the position
of the decimal point, 2–⌊f ⌉ is the uniform step-size, and [minB, maxB] is the dynamic range
of the quantization function that depends on both the bit size B and the sign:

[minB, maxB] =

{
[0, 2⌊B⌉ – 1] if x̃ is unsigned

[–2⌊B⌉–1, 2⌊B⌉–1 – 1] if x̃ is signed
. (6.12)

In order to learn an individual quantization for each layer, f and B are trainable parame-
ters with a continuous range of values that must be rounded to integers during each forward
pass. Otherwise, optimization with gradient descent would be unfeasible. As in the case of
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the Heaviside function, the derivative of the rounding function is zero almost everywhere.
Therefore, we utilize the straight-through estimator [53] to approximate its local gradient
as follows:

∂ ⌊x⌉
∂x

:= 1 . (6.13)

Thus, the derivatives of the unsigned quantization function
(
[minB, maxB] = [0, 2⌊B⌉ – 1]

)

with respect to x, B, and f can be calculated as follows:

∂x̃
∂x

=





1 if minB < xI < maxB

0 else
, (6.14)

∂x̃
∂B

=





log(2) 2–⌊f ⌉ 2⌊B⌉ if xI > maxB

0 else
, (6.15)

∂x̃
∂f

=





log(2) (x – xq) if minB < xI < maxB

–log(2)(2⌊B⌉ – 1)2–⌊f ⌉ if xI > maxB

0 else

. (6.16)

In the case of a signed quantization function
(
[minB, maxB] = [–2⌊B⌉–1, 2⌊B⌉–1 – 1]

)
, the

derivatives with respect to x, B, and f are:

∂x̃
∂x

=





1 if minB < xI < maxB

0 else
, (6.17)

∂x̃
∂B

=





log(2) 2–⌊f ⌉ 2⌊B⌉–1 if xI > maxB

–log(2) 2–⌊f ⌉ 2⌊B⌉–1 if xI < minB

0 else

, (6.18)

∂x̃
∂f

=





log(2) (x – xq) if minB < xI < maxB

–log(2)(2⌊B⌉–1 – 1)2–⌊f ⌉ if xI > maxB

log(2)(2⌊B⌉–1)2–⌊f ⌉ if xI < minB

. (6.19)

During each forward pass, the signed fixed-point quantization function quantizes the
network parameters whereas the ReLU activation function is replaced by an unsigned
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fixed-point quantization function. Therefore, each layer has its quantization parameters.
Consequently, the bit sizes of the parameters Bw and activations Bx from the equations 6.1
and 6.4 are calculated by:

⌊Bw,l⌉ and ⌊Bx,l⌉ . (6.20)

Initialization: The initialization of the bit sizes Bw and Bx depends on the target
reduction: the higher the reduction rate the lower the initial bit sizes. We recommend
initializing with 8 bits unless the reduction rate is greater than 80%, where initialization is
done with 6 bits. If the reduction rate is greater than 90%, initialization is done with 4 bits.
The positions of the decimal points are initialized such that the mean squared quantization
error is minimized on pretrained weights.

6.3 Implementation Details

Algorithm 4 summarizes our Holistic Reduction approach to train and simultaneously
reduce deep neural networks based on four essential criteria. The pretrained model fΘ, the
target complexities {Mem∗, Bit-Ops∗, Bandwidth∗, Max-Storage∗}, the number of training
epochs E, the training data D = {(xi, yi)}d

i=1, the batch-size S, the learning loss Llearn, as
well as the regularization parameter λ are required as input values. Here, we train for
100 epochs on the ImageNet classification task, and for 250 epochs on the CIFAR-10
classification task. The batch size is 128 and the learning loss is Categorical the Cross
Entropy from Equation 2.15.

Before the training begins, the pruning layers are inserted according to the explanations
in Section 6.2.2. Furthermore, the computations of the convolutional layers, the fully-
connected layers, and the ReLU activation functions are provided with the fixed-point
quantization functions from Section 6.2.3. Subsequently, the bit sizes are initialized
according to the target reduction rate, and the decimal points of the quantization functions
are initialized so that the resulting quantization error is minimized based on the pretrained
model (see lines 4 to 8). Here, a subset of the training data is used to calculate the layer
activations and their quantized counterparts.

Before each epoch, the training data is shuffled and divided into N batches of size S.
Before each training step, the learning rate is scheduled using the One-Cycle method
proposed in [98] (see line 14). Here, the maximum value for the learning rate is 10–3, the
division factor is 25, and the final division factor is 100. Next, the fixed-point quantization
function from Equation 6.11 quantizes both the parameters and activations during the first
forward pass to update the batch statistics of the batch-normalization layers (see line 15).
Subsequently, the batch-normalization layers are folded into the preceding convolutional
or fully-connected layers according to Equation 2.9 (see line 16). During the second
forward pass, the folded weights as well as the layer activations are quantized using the
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Algorithm 4 Holistic Reduction: We train and simultaneously reduce the complexity of a
deep neural network based on state-of-the-art optimization techniques. Here, complexity
is defined by four essential metrics: the memory requirement, the computational effort, the
bandwidth, and the maximum storage of the activations. By setting maximum values for
each metric, a reduction loss can be calculated that indicates the difference between the
actual and the target complexity.

1: Input: Pretrained model fΘ, Number of Epochs E, Training Data D = {(xi, yi)}d
i=1,

Batch size S, Learning loss Llearn, Learning-rate domain [η0, ηE], Regularization pa-
rameter λ, Target complexities {Mem∗,Bit-Ops∗,Bandwidth∗,Max-Storage∗}.

2: Insert pruning layers according to Section 6.2.2
3: Equip quantization layers according to Section 6.2.3
4: for l = 1 to L do
5: Initialize Bw,l and Bx,l with 4 bits.
6: Initialize fw,l ∈ Z and fx,l ∈ Z s.t.
7:

∥∥ŵl – QS
(
ŵl, fw,l, Bw,l

)∥∥2 and
8:

∥∥xl – QU
(
xl, fx,l, Bx,l

)∥∥2 are minimized.
9: end for

10: for e = 1 to E do
11: Randomly shuffle D.
12: Divide D into N batches {Xn, Yn}N

n=1 of size S.
13: for n = 1 to N do
14: η ← OneCycleLR
15: Forward pass: Update batch statistics
16: Fold the BN layers according to Equation 2.9
17: Forward pass: Ŷn ← fΘ(Xn)
18: Compute Llearn(Ŷn, Yn)
19: Compute Lreduce according to Equation 6.5
20: Compute Ltrain = Llearn + λLreduce

21: Compute ∂Ltrain
∂w

22: w← Adam
(
w, η, ∂Ltrain

∂w

)

23: end for
24: end for
25: Fold the BN layers according to Equation 2.9
26: Quantize the folded weights according to Equation 6.11
27: return reduced model
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fixed-point quantization function from Equation 6.11 (see line 17). Since the last layer
is usually not followed by a batch-normalization layer, the weights of the last layer are
used for quantization. After calculating both the learning loss and the reduction loss, the
overall training objective is derived with respect to the model parameters by using the
gradient estimators from Equation 6.8 and Equation 6.13 (see line 21). Subsequently, each
parameter is updated in the direction of its negative gradient (see line 22). Here, we use
the Adam optimizer with the beta coefficients set to (0.9, 0.999) [27, 37]. The training
procedure is repeated until the number of epochs is reached.

After training, the batch-normalization layers are folded into the preceding convolutional
or fully-connected layers, and the weights of the folded layers are quantized.

6.4 Experiments and Results

In this section, we evaluate our Holistic Reduction approach on the benchmark data sets
CIFAR-10 and ImageNet. First, we compare with state-of-the-art reduction techniques that
are capable of reducing at least one of the four complexity metrics defined in the equations
6.1 to 6.4. However, most of the related approaches focus only on single complexity
metrics (e.g. on the number of required bit operations), which is why we conduct several
experiments to provide adequate comparisons. Second, we provide an ablation study
on the benefits of our holistic reduction approach compared to sequential pruning and
quantization. Furthermore, we give insights into the training procedure and analyze the
allocation of both the bit sizes and the layer widths. All experiments are done using
Algorithm 4. The data sets and architectures used are described in detail in Section 3.
Note for all figures and tables: For example, a compression rate of 50 corresponds to
a reduction of 98% (which means that only 2% of the respective quantity remains in the
reduced model).

6.4.1 Reducing the Number of Bit Operations

In this section, we reduce the number of bit operations, which is calculated according to
Equation 6.2. On the one hand, Figure 6.4 (a) shows the Top-1 accuracies as well as the
compression rates of VGG7 on CIFAR-10. Here, our approach can reduce the number of
bit operations by a factor of 215 with only about 1% loss in accuracy (93.25% vs 94.39%
baseline accuracy). Compared to DJPQ [93], which is a recently published joint pruning
and quantization approach (ECCV 2020), we improve the Top-1 accuracy by almost 2%
(93.25% vs. 91.43% ) at the same compression rate of 215. Compared to RQ [95] and
WAGE [99], we achieve a comparable Top-1 accuracy (93.25% vs. 93.22% and 92.04%,
respectively) while increasing the compression rate from 64 to 215. Thus, our approach
yields either a higher reduction rate at a comparable accuracy or a higher accuracy at a
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Figure 6.4: Accuracies and compression rates of different reduction methods that reduce the
number of bit operations (see Eq. 6.2) of VGG7 and ResNet-18 on CIFAR-10 and ImageNet.

comparable reduction rate.
On the other hand, Figure 6.4 (b) shows the Top-1 accuracies as well as the compression

rates of ResNet-18 on ImageNet. Here, our approach reduces the number of bit operations
by a factor of 55 with only 0.5% loss in accuracy (69.22% vs. 69.74% baseline accuracy).
Furthermore, we achieve a compression rate of 70 with only about 2.2% loss in accuracy.
Compared to DJPQ [93], we slightly improve both the Top-1 accuracy (69.22% vs. 69.12%)
and the compression rate (55 vs. 52).

6.4.2 Reducing the Number of Bits

In this section, we reduce the number of bits, which is calculated according to Equation 6.1.
On the one hand, Figure 6.5 (a) shows the Top-1 accuracies as well as the compression
rates of ResNet-56 on CIFAR-10. Our approach reduces the number of bit operations
by a factor of 6.6 with no significant loss in accuracy (93.10% vs. 93.30% baseline
accuracy). Compared to GBN [23], which achieves a comparable Top-1 accuracy (93.10%
vs. 93.07%), we significantly improve the compression rate from 3 to 6.6. DCP [69] is the
only method that achieves a higher accuracy of 93.79%. However, DCP also uses a higher
baseline of 93.8% for initialization.

On the other hand, Figure 6.5 (b) shows the Top-1 accuracies as well as the compression
rates of ResNet-18 on ImageNet. Here, we compare with Guerra et al. [26], who recently
proposed an approach for sequential pruning and quantization. In their experiments, they
first apply a quantization method such as BinaryConnect [46] or DoReFa-Net [14] and then
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Figure 6.5: Accuracies and compression rates of different reduction methods that reduce the
memory requirements (see Eq. 6.1) of ResNet-56 and ResNet-18 on CIFAR-10 and ImageNet.

ResNet-20 on CIFAR-10

Table 6.1: Top-1 accuracies and compression rates (CR) regarding the number of bits, the number
of bit operations, the bandwidth, and the maximum storage cost of the activations using ResNet-20
on CIFAR-10. Results marked with ’-’ are not reported by the authors.

Method CR Mem CR Bandwidth CR Max-Storage CR Bit-Ops Top-1 %

Baseline - - - - 92.30
TQT [18] 16 8 8 - 88.71
DQ [77] 15 8 - - 88.71
DQ [77] 15 - 8 - 88.77

Ours 16 8 8 117 90.03
Ours 17.3 9.2 8.5 150 89.93

use their pruning method to further reduce the quantized model. In contrast, our Holistic
Reduction significantly improves the Top-1 accuracy by almost 9% (68.11% vs. 59.30%)
with a bit compression rate of 11. In the second experiment, our approach improves both
the compression rate (21 vs. 17) and the Top-1 accuracy (65.93% vs. 58.38%) compared
to Guerra et al. [26].
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6.4.3 Holistic Reduction using all Metrics

In this section, we reduce all four complexity metrics: the number of bits, the number of
bit operations, the bandwidth, and the maximum storage cost of the activations. Therefore,
Table 6.1 shows the reduction results of ResNet-20 on CIFAR-10. ResNet-20 is rather
small (1048KB memory requirement) and consequently comparatively hard to reduce [77].
In our first experiment, we set the target complexities so that the reduction is at least equal
to TQT [18] and DQ [77]. Here, we are able to improve the Top-1 accuracy by more than
1% (90.03% vs. 88.71%). In addition, we provide a compression rate of 117 regarding the
number of bit operations. In our second experiment, we provide both higher compression
rates and a higher Top-1 accuracy compared to TQT and DQ.

6.4.4 Ablation Study on the Holistic Approach

We claim that our holistic approach simultaneously learns both the width and the bit size of
each layer so that the target complexity - which is defined by the four complexity criteria -
is not exceeded. Thus, the target size is fulfilled without the need to determine in advance
how the overall reduction rate is distributed among pruning and quantization. To verify
our claim, we compare our holistic approach with five configurations that first prune and
then quantize based on predefined pruning and quantization rates, please see Figure 6.1.
For example, a compression rate of 50 can be achieved by reducing the average bit size
of the parameters by 8 (which corresponds to an average bit size of 4 bits) and pruning
the number of parameters by a factor of 6.3. The corresponding result is shown in the
third column from the left in Figure 6.1. As noticeable, the predefined configurations
differ significantly in their Top-1 accuracies (93% vs. 90.3%). Furthermore, none of the
predefined configurations that sequentially perform pruning and quantization achieves the
same accuracy as our Holistic Reduction approach (93% vs. 93.7%).

6.4.5 Visualization of VGG7 and ResNet-18

This section analyzes the learned bit sizes and layer widths of VGG7 (CIFAR-10) and
ResNet-18 (ImageNet). On the one hand, Figure 6.6 visualizes the result of our Holistic
Reduction applied to VGG7 with a reduction rate of 98% in the number of bits (see
Equation 6.1). This corresponds to a compression rate of 50. The reduced model yields a
test accuracy of 93.51%, which is less than 1% below the baseline accuracy of 94.39%.

The topmost diagram shows the proportional layer sizes of the original model. Here,
a proportional layer size of 0.6 means that 60% of the total memory requirement of the
original model is allocated to the respective layer. As can be seen, VGG7 consists of six
convolutional and two fully-connected layers, with most of the parameters being located in
the layers with index conv6 and fc7.
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The second diagram shows the final reduction rates after training. Here, a reduction rate
of 90% means that the memory requirement of the respective layer is reduced by 90% (by
both pruning and quantization). As noticeable, the layers conv6 and fc7 are reduced the
most, which is reasonable, as they are the layers with the highest capacity. Especially fc7
is highly over-parameterized and can therefore be reduced by more than 99%.

The third and fourth figures show how the overall reduction rate is distributed among
pruning and quantization. Since the target reduction is greater than 90%, the bit sizes are
initialized with 4 bits. According to Equation 6.6, a trade-off between the learning task and
the reduction loss must be weighed for each layer: The learning task takes advantage of
increasing bit sizes, while the pruning loss is reduced by decreasing bit sizes. This trade-off
is also evident here. On the one hand, the bit size of the small input layer is increased to
6-bit. On the other hand, the bit sizes of the large layers are reduced to 3-bit or even 2-bit.
This is a reasonable result, as it has often been reported that both the input and output
layer are more sensitive towards quantization and therefore require higher bit sizes [14].
Furthermore, one can observe that the pruning rates are rather small in combination with
low bit sizes. However, for the highly over-parameterized layers (e.g. fc7), the pruning
rate significantly increases to support the reduction of bits.

On the other hand, Figure 6.7 visualizes the result of our Holistic Reduction applied
to ResNet-18 with a reduction rate of 95.2% in the number of bits (see Equation 6.1).
This is equivalent to a compression rate of 21. The reduced model yields a test accuracy
of 65.93%. The corresponding experiment is also shown in Figure 6.5 (b). ResNet-18
consists of 18 layers whereas 3 shortcut connections have computational layers (resulting
in a total number of 21 layers).

As in the case of VGG7, the largest layers are reduced the most as they offer more
capacity. For ResNet-18, these are the layers with indexes 17, 19, and 20. Furthermore,
our approach learns layer-specific bit sizes so that the first and the last layer receive more
capacity. Regarding the pruning rates, it seems that the small layers in the front half of
the network are mainly reduced by quantization. As the layer size increases, pruning is
increasingly involved to further reduce the layer complexities. Thus, the largest layers are
reduced up to 98%.
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Figure 6.6: Our Holistic Reduction approach applied to VGG7 with a bit compression rate of
50 (which corresponds to 98% bit reduction). The plots visualize the layer-wise reduction rates,
pruning rates, and bit sizes after training. Second plot: our approach yields the highest bit reduction
rates for proportionally large layers (fc7 with 99.3% bit reduction rate). Third plot: our approach
learns layer-specific bit sizes such that the first and the last layer have a higher bit-precision (4-6
bits) compared to intermediate layers (2-3 bits).
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Figure 6.7: Our Holistic Reduction approach applied to ResNet-18 with a compression rate of 21
(which corresponds to 95.2% bit reduction), the result is shown in Figure 6.5. The plots visualize
the layer-wise reduction rates, pruning rates, and bit sizes after training. Second plot: our approach
yields the highest bit reduction rates for proportionally large layers (layer 17 with 98% bit reduction).
Third plot: our approach learns layer-specific bit sizes such that the first and the last layer have
higher bit sizes compared to intermediate layers. Fourth plot: the individual pruning rate is low for
the first layers and rises with increasing layer size.
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6.5 Related Work

Deep neural networks are usually over-parameterized after training and have a high model
complexity. When deployed on embedded or mobile devices, both the memory and
computational complexity of trained networks must be significantly reduced. Various
approaches are available for this purpose. For the proposed method, filter pruning and
fixed-point quantization are especially important and thus described in the following.

6.5.1 Filter Pruning

Pruning removes redundant network connections by setting weight values to zero. However,
pruning single weights is rather inefficient since it has no direct benefit on the tensor sizes
of both the weights and activations and thus leads to unstructured sparsity. In contrast,
methods that achieve structured sparsity by removing whole filters and neurons from the
network architecture are called filter pruning. These methods can be separated into two
categories: saliency-based pruning and sparsity learning.

Saliency-based pruning methods investigate norms to calculate an importance score
for each filter. The higher the saliency score the more important the filter is considered to
be for calculating the correct network output. Subsequently, filters with the lowest saliency
scores are deleted and the remaining ones are retrained. Saliency scores can either be
determined by analyzing the magnitudes of the weights and activations [65, 67, 68], the
discriminative power of individual filters [69], the reconstruction error of the classification
output by setting single filters to zero [81], or the change in the loss function caused by
setting single filters to zero [23].

Sparsity learning induces sparsity constraints during the training of deep neural net-
works. Such sparsity constraints can either be based on the L0-norm to penalize incoming
and outgoing filter connections [89], the LASSO regression to prune filters by minimizing
the reconstruction error of the output feature maps [72], the L1-norm, applied to either
the scaling factors of the batch-normalization layers or the sum of the absolute values of
the filter weights [76], or on pruning layers that use additional parameters to prune single
weights or filters during each forward pass [75]. However, the pruning layers proposed
in [75] are located in front of the batch-normalization layers, which reactivate the pruned
channels. In [91], a training procedure was proposed that reduces the number of both the
parameters and multiplications to a given quantity.

6.5.2 Fixed-Point Quantization

Quantization-aware training methods integrate quantization constraints into the training
of deep neural networks. Depending on the type of these quantization constraints, the
methods subdivide into two categories: hard and soft quantization.
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Hard quantization methods quantize the network weights during each forward pass.
During the backward pass, the straight-through estimator is used to approximate the local
gradient of the rounding function [53]. This approach became popular with BinaryConnect,
which quantized weights to ±1 [46]. Extensions investigated ternary-valued weights and
a real-valued scaling factor [36], as well as asymmetrical weights with two independent
scaling factors [49]. Recently, the focus has been shifted to essentially improve the usability
of deep networks on embedded devices. These modifications include uniform quantization
functions to enable integer domains [13, 55], symmetric and uniform quantization to
restrict zero-points to 0 [50, 55], per-tensor quantization to share the same scaling factor
across all weights or activations in a tensor[13, 18], and power-of-two step-sizes to enable
bit-shift operations [13, 18].

Soft quantization methods use floating-point parameters during training but simul-
taneously promote parameter distributions that are well-qualified for post-quantization.
Soft-quantization methods are either based on Bayesian methods that learn a posterior
distribution over the weights by approximating a sparsity-inducing prior [38], Gaussian
priors that result in multi-modal fixed-point weights [44, 64], or regularization terms that
minimize the quantization error during training [63].

6.5.3 Pruning & Quantization

Han et al. combined weight pruning, weight sharing, and Huffman coding to compress
the memory footprint of deep neural networks [20]. Tung and Mori proposed a similar
approach but performed weight pruning and quantization in parallel [92]. Paupamah et
al. iteratively pruned the weights with the smallest absolute values in order to perform
a per-channel quantization afterwards [25]. However, pruning single weights leads to
unstructured sparsity [20, 25, 92], and quantizing using clustering or look-up tables results
in time-consuming data accesses during each forward pass [20]. Furthermore, Guerra
et al. proposed a selection strategy for pruning filters that have already been quantized
before [26]. To determine the layer-wise pruning rates, they apply Bayesian optimization.
However, since both pruning and quantization aim at reducing the number of required
bits, both approaches should be combined in the same optimization problem. Another
Bayesian optimization approach for combining pruning and quantization was introduced
by Achterhold et al. [38]. Therein, Achterhold et al. introduced a quantizing prior to train
deep neural networks with multi-modal weight distributions. Furthermore, weights with
comparatively high variance were set to zero to further reduce complexity.

Kwon et al. presented an encryption to decode weight matrices with unstructured sparsity
through XOR-gates [102]. However, XOR-gates require very specialized hardware and
are limited to binary weights. Recently, Wang et al. combined the variational information
bottleneck approach and mixed-bit quantization to simultaneously prune and quantize deep
neural networks [93]. Furthermore, Wang et al. proposed a design methodology for an
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efficient network architecture by training an accuracy predictor for both full-precision and
quantized deep neural networks [94]. Afterwards, an evolutionary search is performed to
find a suitable architecture with quantized weights based on certain hardware constraints.

6.6 Conclusion

In this chapter, we proposed Holistic Reduction, an approach for reducing the complexity
of deep neural networks by an efficient combination of filter pruning and fixed-point
quantization. More precisely, we presented the first joint pruning and quantization approach
that allows defining maximum values for all important complexity metrics: the memory
requirement, the computational effort that is based on the number of required bit operations,
the bandwidth, and the maximum storage cost of the activations. The maximum values (i.e.
the target complexity) can be derived directly from the target device or specified as desired.
Based on this, the architecture of the network as well as the bit sizes of both the weights and
activations are reduced so that the target complexity is fulfilled. The final model is highly
efficient, runs without batch-normalization layers, and has all weights and activations in
fixed-point representation with per-tensor decimal points. Compared to related work, our
approach has several advantages: the resources available are distributed automatically so
that a global solution is found, it can be easily extended to new complexity metrics, and it
fits seamlessly into the common training procedure of deep neural networks. In various
experiments, we showed state-of-the-art performance on different data sets using several
deep learning architectures. Especially for very high reduction rates, our approach achieves
excellent performance and reduces the number of required bit operations of ResNet-18 on
ImageNet by 55 with no significant loss in accuracy (≈ 0.5%). Furthermore, we examined
the learned bit sizes and layer widths and made reasonable observations: the critical input
and output layers receive more capacity (both by more channels and higher bit sizes), and
the reduction rates of the intermediate layers depend on their respective influence on the
target complexity.
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Conclusion

In this thesis, we proposed several approaches to reduce the complexity of deep neural
networks. In general, the field of model reduction includes all approaches that are ca-
pable of reducing the memory or computational complexity of trained networks. These
approaches can be divided into several categories and subcategories, an overview is vi-
sualized in Figure 1.1. On the one hand, pruning, factorization, and network distillation
reduce the number of parameters and required multiplications by removing redundant
network connections. On the other hand, quantization reduces the bit sizes of operands and
operations, immediately reducing memory complexity. The benefit of quantization in terms
of computational complexity, in contrast, depends on the available hardware resources.
Here, a dedicated fixed-point quantization can significantly reduce computation time, area
cost, and energy consumption. We made contributions to both pruning and quantization
and also provided a particularly efficient combination of both approaches.

In Section 4.2, we addressed the problem of integrating fixed-point constraints into
soft quantization approaches. In contrast to hard quantization, soft quantization methods
use floating-point parameters during the training but simultaneously promote posterior
distributions of the parameters that are well qualified for post quantization. However,
previous soft quantization approaches had several drawbacks: they mainly ignored the fixed-
point constraint of power-of-two scaling factors, completely neglected the integration of
batch-normalization layers, and were often difficult to implement. Thus, we first proposed
an approach to train deep neural networks with multi-modal weight distributions and
minimal quantization error. With each mode corresponding to a certain fixed-point number,
the weights can be quantized using fixed-point arithmetic after training with no significant
loss in accuracy. Our approach involves a reduction loss that can be integrated into the
common training procedure of deep neural networks with very little implementation effort.
In various experiments, our soft quantization approach achieved excellent performance
even with low-bit weights.

In Section 4.3, we extended our work on fixed-point quantization and proposed the
first soft quantization approach that takes into account the distribution of the parame-
ters of the batch-normalization layers. Here, minimizing the reduction loss promotes
distributions of the parameters that resemble a multi-modal distribution after folding the



104 Chapter 7: Conclusion

batch-normalization layers into the preceding convolutional or fully-connected layers. As
a result, the batch-normalization layers can be integrated into the fixed-point representation
of the preceding layers with so significant loss in accuracy. Furthermore, we used a discrete
ReLU activation function that quantizes the network activations during each forward pass.
Thus, the trained networks can be evaluated using pure fixed-point arithmetic after training.
In this way, we have provided a useful alternative to related hard quantization methods that
have significantly higher implementation effort with comparable performance.

Furthermore, in Section 5, we proposed a novel filter pruning method that reduces
the memory and computational complexity of a deep neural network to a given target
size. Here, our main contribution is the first filter pruning method that allows to directly
specify accurate maximum values for the most important complexity metrics: the number
of parameters and required multiplications. Based on these two maximum values, the
resources available are distributed across the individual layers by pruning filters and
neurons from the network architecture. Thus, our major motivation was as follows. The
users of deep neural networks usually do not care about the exact size of single layers or
how the resources available are distributed over the network depth. However, the main
issue is that the final model complexity must not exceed the limitations imposed by the
target hardware. On the one hand, the number of model parameters is strictly limited by
the amount of storage the network can allocate on the target device. On the other hand,
the number of required multiplications results from the available computation units and
the capability to parallelize computations. As in the case of our fixed-point quantization
approaches, the network is reduced by using an additional reduction loss during training.
Before each update step, the reduction loss calculates the difference between the current
model size and the target size, in which the current model size can be reduced by pruning
filters and neurons via the channel-wise affine transformations of the batch-normalization
layers. Thus, a global solution can be found and no additional variables are needed. In
various experiments, our filter pruning approach achieved state-of-the-art performance and
outperformed related work especially for large pruning rates.

Finally, in Section 6, we proposed a combination of filter pruning and fixed-point
quantization that is capable of training very efficient deep neural networks. First, we
proposed a novel reduction loss consisting of four essential metrics that serve as a measure
of complexity: the memory requirement, the computational cost defined by the number of
bit operations, the bandwidth, and the maximum storage cost of the activations. Setting a
maximum value for each complexity metric gives a comprehensive description of the target
hardware and the reduction loss becomes an indicator of the difference between the actual
model complexity and the target complexity. Based on this, we proposed custom layers
that either replace or extend the original layers and enable to reduce the reduction loss
during training. Here, pruning layers reduce the layer widths and fixed-point quantization
layers reduce the bit sizes of both the weights and activations. Thus, we benefit from all
the optimization techniques specially designed for training deep neural networks, such
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as momentum, running averages, data augmentation, and learning rate schedules. In
various experiments, we showed new state-of-the-art performance on different data sets
and architectures. We also showed the benefit of our joint pruning and quantization
approach over iterative procedures.

For future work, we plan to enhance our holistic reduction approach. It has been shown
that a joint combination of filter pruning and fixed-point quantization can significantly
reduce the complexity of deep neural networks. On the one hand, fixed-point quantization
reduces the bit sizes of both the weights and activations. On the other hand, filter pruning
reduces the number of channels in each layer. The very next step is to also reduce the
network depth, i.e. the number of layers, by a novel layer pruning method. Combined
with our already presented pruning and quantization layers, the entire network architecture
could be learned according to the capacity of the target device. This would combine the
field of model reduction with that of neural architecture search. Thus, one could train an
over-parameterized floating-point model, consisting of many wide layers, and subsequently
retrain and reduce the network depth, the layer widths, and the bit precision to find both an
efficient and powerful architecture.

Furthermore, we want to extend our soft quantization approach towards weight clustering.
In Section 4.2, we proposed a reduction loss that can be used to train deep neural networks
with minimal quantization error. In this way, the weights cluster around predefined fixed-
point numbers. One intuitive modification therefore involves learning the cluster centers as
well. This can be done by deriving the reduction loss with respect to the cluster centers,
which can then be updated in the direction of their negative gradients. Thus, an intelligent
clustering algorithm can be developed that is easy to implement and learns both appropriate
cluster centers and weight values. The number of clusters as well as additional fixed-point
constraints can furthermore be specified by the user according to the target device.
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1.1 An overview of different approaches that are capable of reducing the com-
plexity of deep neural networks. In general, model reduction techniques
can be divided into four subgroups. On the one hand, pruning, factoriza-
tion, and network distillation aim at reducing the number of parameters and
multiplications of deep neural networks [12]. Here, pruning describes the
process of deleting redundant network connections by setting weight val-
ues to zero. This can either be done by pruning single weights (i.e. weight
pruning) or complete filters and neurons (i.e. filter pruning). In contrast,
factorization reduces the tensor sizes of weights and activations by decom-
posing the weight-tensor or -matrix of single layers. Furthermore, network
distillation transfers the knowledge learned by a complex teacher network
to a smaller student network. This is done by utilizing both the known hard
labels of the classification task and the soft targets predicted by the teacher
network. On the other hand, quantization reduces the precision (i.e. the bit
sizes) of weights and activations, which immediately reduces the memory
requirements of the network [12]. Furthermore, if both the weights and
activations are quantized using fixed-point arithmetic, the computational
effort that is needed to evaluate the model can be significantly reduced on
dedicated fixed-point hardware. In this thesis, we make contributions to
the field of fixed-point quantization and filter pruning. Furthermore, we
provide an efficient combination of both approaches. . . . . . . . . . . . 3

2.1 A simplified representation of a convolutional layer. The input consists
of O feature maps of size W × H. The weights consist of F kernel filters
of size K × K × O. The filters are convoluted over the width and height
of the input tensor, each of which computing a two-dimensional output
feature map. The size of these output feature maps depends on the input
and filter dimensions, the stride S, and the number of zeros P padded to
each spatial input dimension. . . . . . . . . . . . . . . . . . . . . . . . . 9
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2.2 Illustration of two fixed-point quantization functions with the position of
the decimal point at f = 0. On the left-hand side, a quantization function
with B = 3 bits and a dynamic range from -4 to 3 is shown. On the
right-hand side, a quantization function with B = 2 bits is shown that
quantizes the input x to the ternary values, i.e. x̃ ∈ {–1, 0, 1}. In deep
neural networks, ternary-valued weights offer the possibility of replacing
many multiplications with additions. However, one possible quantization
bin is lost. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Computational path of a small fully-connected layer that can be eval-
uated using pure fixed-point arithmetic. The activations x̃l–1 and x̃l are
quantized using the unsigned fixed-point quantization function QU from
Equation 2.23 with B = 4 bits. The layer weights w̃l are quantized using
the ternary quantization function QT from Equation 2.24. The example
shows how the forward pass can be computed without the need for mul-
tiplications. First, the ternary-valued weights can be decomposed into
binary values and the layer-specific step size which is a power of two
whose exponent indicates the position of the decimal point. As a result,
multiplying the binary weights with the quantized input can be done us-
ing additions and subtractions, depending on whether the corresponding
weight value is negative or positive. Subsequently, the decimal point is
shifted according to the exponent of the respective step size (the so-called
bit shift mechanism). Next, the ReLU activation function truncates all
negative input values. Subsequently, the unsigned fixed-point quantization
function quantizes the activations to B = 4 bits by the following steps: 1.)
Dividing by the step size 2–fx,l results in shifting the decimal point fx,l = 2
positions to the right. 2.) The values are rounded by considering the bit
directly to the right of the decimal point. 3.) All values are clipped accord-
ing to the quantization domain, which consists of B = 4 bits and is marked
in blue. If there is an active bit to the left of the quantization domain, the
respective value is clipped by activating all bits of the quantization domain
(which is the case for the topmost value). 4.) Subsequently, the decimal
point is shifted backward two positions to the left. . . . . . . . . . . . . . 19
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4.1 A simplified comparison of different weight distributions after training.
After conventional training, the weights are usually uni-modal Gaussian
distributed. Thus, a quantization to symmetric bins results in a high quanti-
zation error and poor performance (left). Here, 2–f is the uniform step-size
of the quantization function, f is the position of the decimal point of the
fixed-point representation, and {–2–f , 0, 2f } is the corresponding set of
quantization bins. In contrast, with SYMOG, each quantization bin is rep-
resented by a single Gaussian distribution such that both the quantization
error (i.e. the variance of the Gaussian modes) as well as the learning loss
can be minimized simultaneously during training. The resulting weight
distribution is multi-modal Gaussian distributed (middle) and yields only
a small quantization error. Furthermore, the weight adaptation can be
improved by clipping the weights according to the quantization domain
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Weight distributions of the layers with index 1, 4, and 7 of VGG11 after
different epochs of training. Since L2-regularization is used for pretraining,
the distribution of the weights at epoch zero is uni-modal with a single
peak at zero. Then, training with SYMOG clips the weights to the domain[
–2–f , 2–f

]
and continuously rearranges them into a three-modal Gaussian

distribution. The variance of each mode is continuously decreased as
training progresses. After 100 epochs, the weights are that close to the
fixed-point centers that post-quantization does not produce a remarkable
quantization error. Note: the y-axes are scaled individually for convenience. 36

4.3 Both plots illustrate the weight adaptation in SYMOG training. The y-
axes give the percentage of weights that change their fixed-point mode
during a single epoch. The upper plot results if weight clipping is used as
described in Algorithm 1, the lower plot results if the clipping is disabled.
One can observe that the weight adaptation is improved by clipping the
weights to the quantization domain. Especially in the very beginning of
training, many weights are rearranged. Thus, the weight clipping improves
SYMOG in both accuracy and training time. . . . . . . . . . . . . . . . . 37



110 List of Figures

4.4 Training with EEquant using ResNet-20 on CIFAR-10. The bit sizes are
4 bits for both the weights and activations. The training loss consists
of the learning loss Llearn and the reduction loss Lreduce, which are both
normalized on the left y-axis so that their maximum value is one. On the
right y-axis, the test accuracies of both the floating-point model and the
fixed-point model are shown. Here, the fixed-point accuracy indicates the
test performance that would have been achieved if the parameters had been
quantized after the respective training step (e.g. quantizing the parameters
after one epoch would have resulted in a test accuracy of 88.7% compared
to a floating-point accuracy of 91.1%). With EEquant, minimizing the
learning loss increases the performance using floating-point parameters.
Furthermore, minimizing the reduction loss decreases the performance gap
obtained using floating-point parameters on the one hand and fixed-point
parameters on the other. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Qualitative illustration of the functionality of EEquant using the example
of the 13th layer of ResNet-20. On the left side, the distribution of the
weights w of the unfolded convolutional layer is shown after several epochs
of training. On the right side, the corresponding distribution of the folded
weights ŵ are shown (ŵ results from folding the corresponding batch-
normalization layer into the convolutional layer according to Equation 2.9).
Comparisons are made at different training times. The bit size is 4 bits,
resulting in 16 fixed-point modes with uniform distance. As noticeable,
the quantization of w would lead to a high quantization error. However,
the goal is to optimize the trainable parameters {w, b, γ, β} so that their
folded counterparts {w̃, b̃} yield a multi-modal distribution with a small
quantization error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 In order to reduce the complexity of deep neural networks, pruning meth-
ods reduce the number of parameters and multiplication by setting weight
values to zero. However, pruning single weights leads to unstructured
sparsity, which has only a minor impact on the memory requirements. In
contrast, pruning entire filters and neurons results in a structured sparsity:
Since filter pruning in Layer 1 reduces the number of filters as well as
the number of output feature maps, the tensor sizes of both the weights
and activations decrease. Furthermore, with a reduced number of output
feature maps, the depth of the following Layer 2 decreases to the same
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