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SUMMARY 
  

The growing demand for bio-resources, expanding and diversifying human impacts on multiple use 

forests, together with effects of climate change and aerial nitrification permanently alter forests and 

their structure with consequences for forest biodiversity. The need to integrate forest biodiversity 

conservation into forest management in order to halt biodiversity loss is of highest relevance.  

Given the limitations in assessing and monitoring species diversity at extensive spatial scales, the 

development of structural indicators linking biodiversity components (e.g. indicator species) to forest 

structure parameters and enabling monitoring of structural conditions is a widely discussed 

approach. Until recently this approach has been hampered by the lack of area-wide forest structural 

data. The growing availability of remotely sensed information now offers the possibility to assess 

forest structures across different spatial scales, from single trees to the landscape level. However, 

this requires the development of methods and metrics to assess and describe structural gradients 

and quantify the links between these metrics and selected biodiversity components.  

Until recently the assessment of forest structures used mostly in forest nature conservation research 

was based either on terrestrial sampling and forest inventory or on visual interpretation of stereo 

aerial images or orthophotos. Nowadays, with changes from analogue to digital aerial imagery and 

a growing diversity of remote sensing (RS) data varying in resolution and extent, the processing 

methods focus primarily on automatic computing. This allows for the processing a large amount of 

data with objective and reproducible data analyses methods, and for adjustable algorithm 

parameters depending on the aim of the study.  

In my doctoral thesis I focus on the value of remote sensing data and techniques for forest ecology 

research, combining the methodological development of forest structure detection methods and 

their application in habitat modelling for forest focal species. The methodological focus of the thesis 

lies on the detection of two forest structures considered highly relevant for forest biodiversity: 

canopy gaps (Chapter I) and standing deadwood (Chapter III). Regularly updated digital stereo aerial 

imagery data of state surveys (subsequently referred to as aerial imagery) and the derivatives thereof 

produced by Image Matching (Digital Surface Models (DSMs) and orthophotos) were used and 

evaluated as primary input data, as they could support a cost-efficient long-term monitoring of 

structural conditions and their changes. An emphasis however was put on the development of 

algorithms that could also be fed with data of another origin, and flexibly adjusted to the different 

ecological thresholds required by different taxa.  

In the first study (Chapter I) an automatized gap mapping method based on Canopy Height Models 

(CHMs) derived from DSMs from aerial imagery and a Digital Terrain Model (DTM) based on Aerial 

Laser Scanning (ALS) is presented. Gaps were detected and delineated in relation to height and cover 

of the surrounding forest using a hybrid pixel and neighborhood based hierarchic procedure for data 

from two public flight campaigns (2009 and 2012). Gaps were detected with high overall accuracy 

(OA) of 0.9 (2009) and 0.82 (2012) and a producer’s accuracy (PA) of more than 0.95 (both years), as 

validated by visual stereo-interpretation. Lower user’s accuracy (UA) of 0.84 (2009) and 0.73 (2012) 
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indicated an omission error (as some gaps were not detected) that could be attributed to shadow 

occurrence and the height of the surrounding forest stands, with UA dropping to 0.70 (2009) and 

0.52 (2012) in stands with mean vegetation heights of ≥ 8m. Open forest stands were mapped as an 

important interim step and side-product, as they also may be of importance for photophilic species. 

With an OA = 0.92 and uncertainties occurring mostly in areas of intermediate forest cover, the 

models for detecting this forest structure class showed high reliability. Shadow occurrence and 

geometric limitations of the central perspective of the aerial imagery, with resulting restrictions 

regarding e.g. viewing angle and image distortions towards the outer parts of an image, were 

recognized as the main sources of errors. To achieve a potential improvement I recommended using 

stereo imagery with higher overlap and resolution together with enhanced image-matching 

algorithms. 

In Chapter II I provide a greater in-depth analysis of this topic, by explicitly addressing the limitations 

of aerial imagery when used as input for the detection of canopy gaps based on the method 

described in Chapter I. The limitations of aerial imagery become obvious when attempting to 

accurately map fine structures as well as areas between trees or close to the ground. To evaluate the 

factors affecting the mapping accuracy, gap detection maps based on data from three flight 

campaigns differing in image overlap and spatial and radiometric resolution were compared, each 

covering an approx. 1000-ha study area in the Black Forest, Germany.  Gap mapping based on aerial 

imagery of higher spatial resolution and overlap delivered more detailed gap maps and showed 

higher detection accuracies. The results confirmed shadow occurrence and geometric limitations of 

the aerial imagery as serious issues influencing the accuracy of a CHM and consequentially the gap 

mapping results. Both of them can be improved by harmonizing flight times and associated solar 

altitude when planning flight campaigns over forested areas. Increasing the spatial resolution and 

overlap of the aerial imagery could considerably enhance gap detectability especially in the transition 

areas between high and low vegetation.  

In the third study (Chapter III) I present a method for detecting standing deadwood from 

orthophotos and CHMs using the same aerial imagery data, with a special focus on solving the 

problem of misclassification between deadwood and bare ground pixels. Due to deadwood mainly 

occurring in extensively managed forests, as well as its frequent association with canopy openings 

and open and complex structured stands located in rugged terrain, bare ground is often visible 

nearby. Having a similar spectral signature both classes are thus prone to misclassifications. Both 

spectral (orthophoto) and structural (CHM) predictor variables were tested for detecting standing 

deadwood of more than 5 m in height. The method was calibrated in a mountain forest area 

encompassing strictly protected and managed forests with a significant amount of deadwood in 

different decay stages. In a first step, Random Forest (RF) classification was employed to assign forest 

pixels to one of four classes: live, declining and dead trees as well as bare ground. Two enhancing 

procedures, aiming at eliminating misclassifications, were then developed and compared 1) post-

processing, based on morphological rules filtering out potentially misclassified deadwood pixels and 

isolated pixels of all classes and 2) a “deadwood-uncertainty” model quantifying and predicting the 

probability of a deadwood-pixel to be correctly classified based on the environmental conditions and 
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image texture in its neighborhood. Validation of the RF model based on data partitioning delivered 

both UA and PA over 0.9. Independent validation on stratified random sample, however, revealed 

a high commission error for deadwood mainly in areas with bare ground (UA = 0.60, PA = 0.87). Both 

enhancement-procedures, post-processing (1) and the “uncertainty filter” (2) improved the 

differentiation between the two classes and led to a more balanced relation between UA and PA of 

deadwood (UA = 0.69 and PA = 0.79 for (1) and UA = 0.74 and PA = 0.80 for (2)), with the filtering 

based on the uncertainty model (2) resulting in a substantially greater improvement. 

The final chapter (Chapter IV) presents a case study on employing deadwood detection in habitat 

selection modelling. RS data is increasingly used for generating habitat variables that describe forest 

structures relevant for protected forest species, as it offers the unique potential to provide high 

resolution information over large geographic extents. We generated RS-based variables, especially 

information on standing deadwood, to model habitat suitability of the Three-toed woodpecker 

(Picoides tridactylus) in the Bavarian Forest National Park. Combined information from ALS and color-

infrared (CIR) aerial imagery delivered tree-based information, such as tree type (broadleaved, 

coniferous), status (living, dead), as well as several tree-related metrics (e.g. tree height, projected 

crown area, tree volume, diameter at breast height and basal area). Generalized Additive Models 

(GAM) based on the single tree polygon-data, aggregated across multiple, species-relevant scales, 

showed that at least 8 dying or recently dead trees (the latter indicated by an average branch length 

of at least 2 m) within a 100 m surrounding were necessary to support woodpecker presence. In 

addition, and for the first time, an adverse effect of very large deadwood amounts (more than 40 - 55 

dead trees within 100 m) on woodpecker occurrence was shown, making a significant contribution to 

the knowledge about Three-toed woodpecker ecology. The case study illustrated the great potential 

of the RS data to deliver reliable and meaningful input parameters for habitat models and to derive 

habitat thresholds that are easily applicable in forest management.  

In summary, this thesis addressing several novel aspects of using the aerial imagery data in ecology 

research, confirms that public aerial imagery and the data products thereof, such as orthophotos and 

CHMs, enable the detection of forest structures and deriving ecologically relevant variables valuable 

for biodiversity studies. However, the methodological studies (Chapters I, II and III) showed 

limitations with regard to the accuracy of the vegetation heights derived from image matching and 

the detectability of forest gaps and standing deadwood structures in areas between tall trees and 

between high and low vegetation. In my thesis, I analyze these emerging problems, propose 

potential solutions (e.g. two alternative approaches for detecting and correcting deadwood and bare 

ground misclassifications, Chapter III) and discuss future research needs that would enable successful 

habitat modelling and deriving meaningful thresholds for forest structures to support forest 

biodiversity conservation (Chapter IV) based on data from aerial imagery and ALS .  
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ZUSAMMENFASSUNG 
 

Die steigende Nachfrage nach biologischen Ressourcen, wachsende Ansprüche an multifunktional 

genutzte Wälder, die Folgen der Klimaveränderung sowie der Nitrateinträge aus der Luft, führen zu 

Veränderungen von Wäldern und ihrer Struktur, mit Auswirkungen auf ihre Biodiversität. Um den 

Artenverlust zu stoppen, ist es unerlässlich den Schutz der biologischen Vielfalt in die 

Waldbewirtschaftung zu integrieren. Angesichts der eingeschränkten Möglichkeiten der 

großflächigen Erfassung bzw. dem großflächigem Monitoring von Arten, wird die Entwicklung von 

Strukturindikatoren, über die Zielarten mit bestimmten Waldstrukturen verknüpft werden können, 

breit diskutiert. Bisher fehlten hierfür jedoch flächendeckende Waldstrukturdaten. Die wachsende 

Verfügbarkeit von Informationen aus der Fernerkundung bietet nun zunehmend die Möglichkeit, 

Waldstrukturen auf unterschiedlichen räumlichen Maßstabsebenen (vom Einzelbaum bis zur 

Landschaftsebene) zu erfassen. Dies erfordert jedoch die Entwicklung von Methoden und Kennzahlen 

für die Beurteilung und Charakterisierung von Strukturgradienten und für die Quantifizierung von 

Zusammenhängen zwischen Parametern und ausgewählten Biodiversitätskomponenten.  

Im Rahmen der Waldnaturschutzforschung wurden Waldstrukturen bisher in der Regel mittels 

Forstinventuren an terrestrischen Stichprobenpunkten aufgenommen. Daneben spielte die visuelle 

Auswertung von Stereoluftbildern bzw. Orthophotos eine Rolle. Im Zuge der Umstellung von 

analogen auf digitale Luftbilder und der stetig wachsenden Vielfalt an Fernerkundungsdaten 

unterschiedlicher Auflösung und Ausdehnung, werden heute vorwiegend moderne, automatisierte 

Auswerteverfahren entwickelt. Sie ermöglichen eine objektive und reproduzierbare Verarbeitung von 

großen Datenmengen mit Algorithmen, deren Berechnungsparameter abhängig vom Studienziel 

angepasst werden können. 

Thema meiner Dissertation ist die Bedeutung von Fernerkundungsdaten und -methoden für die 

waldökologische Forschung. Zu diesem Zweck wurden Algorithmen zur Erfassung von 

Waldstrukturen entwickelt, die für die Habitatmodellierung von Waldzielarten Verwendung finden 

können. Der methodologische Schwerpunkt der Dissertation liegt auf der Erkennung von zwei 

verschiedenen Waldstrukturen mit anerkannt großer Bedeutung für die Waldbiodiversität: 

Waldlücken (Kapitel I) und stehendes Totholz (Kapitel III). Dabei lag der Fokus auf der Nutzung von in 

regelmäßigen Abständen aufgenommenen digitalen Stereoluftbilder der öffentlichen Behörden 

(später Luftbilder genannt) und den aus ihnen mittels Image Matching erstellten Produkte, digitale 

Oberflächenmodelle (Digital Surface Models, DSM) und Orthophotos, da sie sich potenziell für ein 

kosteneffizientes langfristiges Monitoring von Waldstrukturen und deren Veränderungen eignen. Sie 

wurden im Rahmen der Methodenentwicklung genutzt und in ihrer Rolle als primäre Inputdaten 

evaluiert. Ein Ziel war jedoch die Entwicklung von Algorithmen, die mit Daten aus unterschiedlichen 

Quellen gespeist werden können und flexibel an ökologische Schwellenwerte und Bedürfnisse von 

unterschiedlichen Arten angepasst werden können.  

In der ersten Studie der Dissertation (Kapitel I) wird eine automatisierte Methode zur Erkennung von 

Waldlücken präsentiert. Sie beruht auf Kronenhöhenmodellen (Canopy Height Models, CHMs), die 
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aus luftbildbasierten digitalen Oberflächenmodellen und einem digitalen Geländemodell (Digital 

Terrain Model, DTM) auf der Basis von ALS (Aerial Laser Scanning)-Daten berechnet wurden. Die 

Lücken wurden in Abhängigkeit von Höhe und Überschirmungsgrad des umliegenden Bestandes 

mittels eines hybriden pixel- und nachbarschaftsbasierten hierarchischen Auswertungsverfahren auf 

der Grundlage von zwei amtlichen Befliegungskampagnen (2009 und 2012) berechnet. Die 

Lückenerkennung wurde mit Hilfe einer visuellen Stereoluftbildinterpretation validiert und ergab 

hohe Gesamtgenauigkeiten (Overall Accuracy, OA) für beide Jahre (0.9 für 2009 und 0.82 für 2012). 

Die Produzentengenauigkeit (Producer’s Accuracy, PA) betrug mehr als 0.95 für beide Jahre. 

Niedrigere Nutzergenauigkeiten (User’s Accuracy, UA) von 0.84 (2009) und 0.73 (2012) deuteten auf 

das Nicht-Erkennen einiger Lücken hin. Dies kann mit dem Auftreten von Schatten und mit der Höhe 

des umliegenden Bestandes zusammenhängen, denn in Beständen mit einer mittleren 

Vegetationshöhe ≥ 8m wurden geringere OA=0.7 (2009) und OA=0.52 (2012) gemessen. Neben 

Lücken wurden als Zwischenprodukt auch lichte Waldflächen wegen ihrer Bedeutung für 

lichtliebende Arten mitkartiert. Mit einer OA=0.92 und Unsicherheiten, die vor allem in Bereichen 

mittlerer Kronenbedeckung auftraten, zeigten die Modelle eine hohe Zuverlässigkeit bei der 

Erkennung dieser Strukturklasse. Die Hauptursache von Fehlinterpretationen waren das Auftreten 

von Schatten und die geometrischen Eigenschaften der Zentralperspektive von Luftbildern mit den 

resultierenden Restriktionen in Bezug auf  z B. unterschiedliche Blickwinkel oder Verzerrungen in den 

Randbereichen der Bilder. Um die Genauigkeit der Ergebnisse zu erhöhen, empfehle ich deshalb die 

Nutzung von Stereo Luftbildern mit größerer Überlappung und höherer Auflösung in Kombination 

mit verbesserten Image Matching Algorithmen. 

In Kapitel II wird das Thema von Kapitel I vertieft, indem explizit auf die Limitierungen von 

Luftbilddaten bei der Erkennung von Waldlücken eingegangen wird. Besonders deutlich werden ihre 

eingeschränkten Möglichkeiten bei der Erkennung von Kleinstrukturen in Bereichen zwischen den 

Bäumen oder in Bodennähe. Die Einflussfaktoren auf die Kartiergenauigkeit wurden anhand von 

Luftbilddaten aus drei Befliegungskampagnen eines ca. 1000 ha großen Untersuchungsgebietes im 

Schwarzwald, Deutschland evaluiert: Dabei wurden aus Luftbilddaten, die sich hinsichtlich ihrer Bild-

Überlappung sowie ihrer räumlichen und radiometrischen Auflösung unterschieden, Lückenkarten 

berechnet und miteinander verglichen. Luftbilder mit höherer räumlicher Auflösung und größerer 

Bildüberlappung lieferten detailliertere Karten und wiesen höhere Kartiergenauigkeiten auf. Die 

Ergebnisse bestätigten den großen Einfluss von Schatten sowie der Luftbildqualität auf die 

Genauigkeit von Kronenhöhenmodellen und somit auch auf die Lückenerkennung. Beides kann 

verbessert werden, wenn schon bei der Planung von Flugkampagnen über Waldgebieten die 

Flugzeiten an den Sonnenstand angepasst werden. Auch eine höhere räumliche Auflösung und 

größere Überlappung der Luftbilder kann die Lückenerkennung insbesondere in den 

Übergangsbereichen zwischen niedriger und hoher Vegetation erheblich verbessern. 

Im dritten Teil der Dissertation (Kapitel III) stelle ich eine Methode zur Erfassung von stehendem 

Totholz aus Orthophotos und Kronenhöhenmodellen, die beide aus denselben Luftbilddaten 

generiert wurden, vor. Der Fokus lag hierbei auf der Suche nach Lösungen für das Problem 

fehlerhafter Klassifizierungen von Totholz- und Bodenpixeln. In der Umgebung von Totholz ist oft der 
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nackte Boden zu sehen, da Totholz im Allgemeinen häufiger in extensiv bewirtschafteten Wäldern 

mit Kronendachöffnungen sowie in offenen und komplex strukturierten Beständen in steilem 

Gelände vorkommt. Totholz- und Bodenpixel weisen eine ähnliche spektrale Signatur auf, so dass es 

zu Fehlklassifizierungen zwischen beiden Klassen kommen kann. In dieser Studie wurden sowohl 

spektrale (Orthophoto) als auch strukturelle (CHM) Prädiktorvariablen für die Erkennung von 

stehendem Totholz ab 5m Höhe getestet. Die Methode wurde in einem Bergwaldgebiet, an 

unbewirtschafteten und bewirtschafteten Waldflächen kalibriert, in denen jeweils erhebliche 

Mengen an Totholz in unterschiedlichen Zersetzungsstadien vorkamen. Im ersten 

Modellierungsschritt wurde der Random Forest (RF) Klassifizierungsalgorithmus verwendet, um die 

Waldpixel in vier Klassen zu klassifizieren: lebende und absterbende Bäume, stehendes Totholz sowie 

sichtbarer Boden. Um falsche Klassifizierungen zu korrigieren wurden zwei Optimierungsverfahren 

entwickelt und miteinander verglichen: 1) ein Post-Processing Verfahren basierend auf 

morphologischen Regeln zur Filterung von potenziell fehlklassifizierten Totholzpixeln und isoliert 

vorkommenden Pixeln der anderen Klassen und 2) ein „Totholz-Unsicherheits-Model“ zur 

Quantifizierung und Vorhersage der Wahrscheinlichkeit einer korrekten Klassifizierung der 

Totholzpixel in Abhängigkeit von Umweltbedingungen und der Bildtextur in der Nachbarschaft. Die 

Validierung des RF-Models mittels eines Evaluierungsdatensatzes, der auf einer Datenpartitionierung 

basierte, lieferte UA- und PA-Werte über 0.9. Eine unabhängige Validierung anhand eines 

Evaluierungsdatensatzes basierend auf einer stratifizierten Zufallsstichprobe zeigte jedoch einen 

großen Anteil falsch-positiv bestimmter Totholzpixel, meistens in Bereichen mit sichtbarem Boden 

(UA=0.60, PA=0.87). Beide Verfahren, Post-Processing (1) und “Totholz-Unsicherheits-Filter“ (2), 

führten zu einer besseren Unterscheidung zwischen den beiden Klassen und zu einem 

ausgewogeneren Verhältnis zwischen UA und PA für Totholz (UA = 0,69 und PA = 0,79 für (1) und UA 

= 0,74 und PA = 0,80 für (2)), wobei der „Totholz-Unsicherheits-Filter“ (2) zu wesentlich besseren 

Resultaten führte. 

Im letzten Kapitel (Kapitel IV) wird eine Fall-Studie für die Verwendung fernerkundungsbasierter 

Totholzdaten in Habitatmodellen vorgestellt. Fernerkundungsdaten werden immer häufiger für die 

Herleitung von Habitatvariablen eingesetzt, die relevante Strukturen für geschützte Waldarten 

beschreiben. Sie haben den großen Vorteil, dass sie großflächige und zugleich hochaufgelöste 

Informationen liefern. Aus einer Kombination von ALS-Daten und Colorinfrarot-Luftbildern aus dem 

Nationalpark Bayerischer Wald, Deutschland, wurden Einzelbaum-Parameter wie Baumart (Nadel- 

oder Laubbaum), Status (Lebend, Tot) und weitere Baum-bezogene Attribute (z.B. Baumhöhe, 

projizierte Kronenfläche, Baumvolumen, Brusthöhendurchmesser oder Grundfläche) hergeleitet. 

Diese Variablen, insbesondere die über stehendes Totholz, wurden zur Modellierung der 

Habitateignung für den Dreizehenspecht (Picoides tridactylus) im Nationalpark Bayerischer Wald 

genutzt. Dabei wurden Informationen aus den Polygondaten von Einzelbäumen auf mehreren 

artrelevanten räumlichen Ebenen aggregiert und als Prädiktoren in einem Generalisierten Additiven 

Model (GAM) getestet. Es zeigte, dass mindestens acht stehende tote Bäume (Hier definiert als 

Totholz mit einer durchschnittlichen Astlänge ≥ 2 m) innerhalb  eines 100 m Radius nötig sind, um die 

Wahrscheinlichkeit für das Vorkommen des  der Art signifikant zu erhöhen. Als neuer und 
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bedeutsamer Beitrag zur Ökologie des Dreizehenspechts konnte zum ersten Mal zusätzlich auch ein 

oberer Totholz-Schwellenwert für das Vorkommen des Dreizehenspechts ermittelt werden: Ab 40-55 

Totholzbäumen pro Hektar innerhalb des 100 m Radius um den Beobachtungspunkt, sank die 

Vorkommenswahrscheinlichkeit wieder. Diese Fall-Studie unterstreicht das große Potenzial von 

Fernerkundungsdaten für ökologische Studien: Sie liefern verlässliche und aussagekräftige Variablen 

für die Habitatmodellierung und können zur Ableitung ökologischer Schwellenwerte genutzt werden, 

die direkt in der Waldbewirtschaftung Verwendung finden können. 

Zusammenfassend bestätigt diese Arbeit, die sich mit verschiedenen Aspekten der Nutzung von 

Luftbilddaten für die ökologische Forschung beschäftigt, dass auf Grundlage von amtlichen 

Luftbildern und Produkten daraus (Orthophotos und Kronenhöhenmodelle) sowohl die 

automatisierte Erfassung von Waldstrukturen, als auch die Ableitung von ökologisch relevanten, und 

wertvollen Variablen für die Biodiversitätsforschung möglich ist. Die methodischen Studien (Kapitel I, 

II und III) zeigten jedoch auch die Grenzen von Fernerkundungsdaten auf, hinsichtlich der 

Genauigkeit der Vorhersage von Vegetationshöhen aus dem Image Matching, der Erkennbarkeit von 

Waldlücken sowie von stehendem Totholz, insbesondere in hohen Beständen und im Grenzbereich 

zwischen hoher und niedriger Vegetation. In meiner Dissertation analysiere ich diese Probleme, 

schlage mögliche Lösungen vor (z.B. zwei alternative Ansätze zur Erkennung und Korrektur von 

Fehlklassifizierungen zwischen Totholz und Bodenpixel (Kapitel III)) und diskutiere den zukünftigen 

Forschungsbedarf. Der Einsatz von Luftbild- und ALS-Daten (Kapitel IV) für Habitatmodelle und zur 

Identifikation bedeutsamer ökologischer Schwellenwerte für Waldstrukturen könnte so den 

Biodiversitäts- und Waldnaturschutz voranbringen. 
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PREFACE 
 

The idea for this dissertation grew over the last 10 years, during which time I worked on 

various applied projects in the field of remote sensing and nature conservation all over Europe. 

It evolved fully after I came back to the FVA to work on the development of automated remote 

sensing methods for the detection of selected biodiversity-relevant forest structure 

parameters.   

My earlier work experience both in research and monitoring in protected areas, including 

visual aerial imagery interpretation for nature protection purposes, was advantageous for 

designing the framework of this Thesis. Having already an idea about the needs of forest 

nature conservation regarding forest structure parameters and knowing the potential of 

remote sensing data and the techniques to acquire meaningful information, my aim was to 

elucidate the value of publicly acquired aerial imagery for deriving forest structure parameters 

as input for species habitat modelling and other forestry applications.   

The study was carried out as a part of my work at the Forest Research Institute (FVA), in the 

Department of Forest Nature Conservation, Forest Nature Reserves Research Group under 

internal scientific supervision of Dr. Veronika Braunisch and Dr. Petra Adler. This was possible 

due to the cooperation between the FVA and Freiburg University, supporting the scientific 

exchange between these organizations.  

Scientific and formal supervision was assured by Prof. Dr. Barbara Koch, Chair of Remote 

Sensing and Landscape Information Systems (FELIS), as principal supervisor, and Prof. Dr. Ilse 

Storch, Chair of Wildlife Ecology and Management, as second supervisor. The last chapter of 

the thesis (Chapter IV) resulted from a scientific cooperation with Prof. Dr. Jörg Müller, 

Biocenter, University of Würzburg and Deputy Head of the Bavarian Forest National Park and 

Head of the conservation and research department and Associate Prof. Dr. Marco Heurich, 

Chair of Wildlife Ecology and Management, University of Freiburg and Head of the Department 

of Visitor Management and National Park Monitoring, Bavarian Forest National Park.  
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1 INTRODUCTION 

 Fundamental idea  1.1

“Nature and its vital contributions to people, which together embody biodiversity and ecosystem 

functions and services, are deteriorating worldwide” (IPBES, 2019). Forest ecosystems cover 30.6 % 

of the world’s land area and are among the most important repositories of biodiversity and providers 

of ecosystem services on earth (FAO, 2018). However, forests have been exploited continuously 

throughout history leading to simplification in forest structure, deterioration of the biomass 

resources and shrinking area of the natural forests. These changes have altered forest biodiversity 

and contributed a growing list of rare, endangered or even extinct forest species across the globe.  

To save the remaining forest species dedicated conservation efforts are needed. However, the 

conservation of forest biodiversity is challenging and often seen as a competitor for other uses, as 

the large part of the world’s forests are managed for wood production or other economic, 

environmental, or cultural values (Felton et al., 2019). Effective forest biodiversity conservation 

requires reliable information at relevant spatial scales pertaining to species’ occurrence, their habitat 

requirements and the forest structures that species rely on. From a broader perspective, 

conservation measures must therefore target forest structural elements at different spatial scales, 

and provide large and medium-sized protected areas or smaller, integrative conservation elements, 

within forests actively managed for economic goals (Lindenmayer and Franklin, 2002). 

In recent years, two main research pathways on the  assessment of biodiversity relevant forest 

structures have been observed: Defining and mapping of visible forest structures such as crown 

cover, forest gaps or deadwood occurrence, which are tangible from a human perceptive; and the 

development of statistical indices that capture the structures in a mathematical or geometrical way, 

but are not necessary easily understandable for human perception (Frey et al., 2019). Such statistical 

indices may correlate with species occurrence and be important for gaining new knowledge; but are 

not easily transferable into practice. From the perspective of a forest manager clear and simple 

indicators for the quality and quantity of well-definable structures are needed.  

Due to the rapid technical development in RS in the past two decades, a wide variety of data with 

different qualities and specialties are now offered, with continuously growing capacities for faster 

and larger data acquisition, evaluation and storage. Despite the broad variety of available RS data, 

the focus of this thesis is on the use of digital stereo aerial imagery (hereafter referred to as aerial 

imagery) and the evaluation of its suitability for biodiversity studies, with the aim to develop widely 
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applicable methods for forest research and management. Aerial imagery data has been used for 

decades in the planning of forestry operations (Ackermann et al., 2012), is often available for free to 

research and forest administration, and provides high resolution (0.1 - 0.2 m) information on 

vegetation cover across large areas.  

Combining these two aspects is difficult as often a gain in area coverage is at the cost of the image 

resolution. With the very fast technical and methodological development e.g. some very high 

resolution (VHR) satellite imagery provides a large-scale resolution of 0.5 - 1 m, but not free of 

charge) data quality is often not standardized. Moreover, it is not always possible for satellites to 

deliver cloud free data, whereas the airplanes can schedule their flights on demand and acquire 

images below clouds. It is also important to mention data from Airborne Laser Scanning (ALS, also 

referred to as airborne Light Detection and Ranging or LiDAR), as it is used as a standard in many 

countries (e.g. Scandinavia) in forest applications and delivers very precise surface heights. This data 

is often referred to in this thesis as an alternative or complementary to aerial imagery.   

Two forest structures, forest gaps (1) and deadwood (2), are frequently in the focus of forest 

ecological studies as they play a key role in forest regeneration processes (Getzin et al., 2014; Meyer 

et al., 2017) and are considered key habitat elements for many forest species depending of semi 

open habitats (1) (Sierro et al., 2001; Zellweger et al., 2013), saproxylic species (2) (Müller et al., 

2005), birds and bats (Bouvet et al., 2016). In addition there are several remote sensing studies 

related to mapping these structures (Bütler and Schlaepfer, 2004; Hobi et al., 2015; Polewski et al., 

2015c; White et al., 2018). They often focus, however, on small to regional project-specific scales 

encompassing on the most part an area from few hectares up to several hundreds of square 

kilometers in size, with the latter usually being large protected areas e.g. National Parks (Krzystek 

et al., 2020)  

The aim of this thesis is to develop automated, standardized but also flexible and adjustable methods 

allowing the detection of forest gaps and standing deadwood across large spatial scales (thousands 

of square km) and at high spatial resolution. Another aim of this doctoral thesis is to evaluate the 

suitability of the aerial imagery based mapping results for ecological studies. In a case study on the 

deadwood requirements of the Three-toed woodpecker, the applicability of deadwood parameters 

derived from the remote sensing was tested and compared to the results of several studies based on 

terrestrial data.  
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 Forest structures and biodiversity  1.2

Forests are important ecosystems that on one hand accommodate a vast number of terrestrial 

species and provide non-economic ecosystem services to the society, and on the other hand deliver 

timber and other products of high monetary values. Combining the different economic, ecological 

and societal functions of forests puts them and the biodiversity they host under pressure (Messier et 

al., 2015). This is one of the reasons forest successional phases that are economically unviable (e.g. 

old-growth and decay stages), have become rare in western European forest landscapes 

(Scherzinger, 1996), are becoming rare around the world, and with them the species that depend on 

their specific structures (Barlow et al., 2016; Betts et al., 2017). As a consequence, a multitude of 

nature conservation programs for rare or endangered forest species, have been developed in the 

past decades at local, regional (Schaber-Schoor et al., 2015), country (Bundesministerium für Umwelt 

Naturschutz, Bau und Reaktorsicherheit, 2007) and international scale (Beatty et al., 2018).  

Every species requires specific habitat conditions that consist of abiotic and biotic factors (ecological 

niche concept (Guisan and Thuiller, 2005; Hirzel and Le Lay, 2008)). Many of these factors cannot be 

changed (e.g. climate, terrain) or are difficult to influence (e.g. air quality, species interactions), thus 

– to promote a given species – conservation programs focus on changing the parameters that are 

easiest to influence. With regard to forest species, forest management including forest nature 

conservation practices can alter the situation in the field and improve habitat conditions (Gustafsson 

et al., 2012; Leberger et al., 2020). As the development of conservation programs is not possible for 

all species, surrogate species, for example species with supposed umbrella (Lambeck, 1997) or key-

stone function (sensu Thompson and Angelstam (1999)), are often chosen as focal species. The 

intention is to support several other species of the associated species community through habitat 

enhancement and management for the selected species (Magg et al., 2019). To achieve this aim, 

precise, area-wide information on the abundance, distribution and main characteristics of the key 

habitat structures for the focal species is required at relevant spatial scales.   

 The investigated forest structure parameters 1.2.1

Forest species require stand structures that differ in terms of type, quantity and quality. In past 

decades a close relationship has been identified between endangered forest species and forest 

structures representing forest development phases that are rare in current European forests due to 

the prevailing management regime, such as late successional stages with large old trees (habitat, 

veteran trees), standing and lying deadwood, or open forest structures and forest gaps with 

regeneration, as produced by natural disturbance regimes (Müller et al., 2005; Seibold et al., 2014; 



1. INTRODUCTION   

4 

Bässler, 2015). Recently, there has been an increase in interest in other landscape-scale structures 

such as vertical and horizontal forest heterogeneity (Zellweger et al., 2013; Hofstetter et al., 2015) or 

forest edges (Pfeifer et al., 2017)  and smaller and dispersed structural elements such as trees with 

micro habitats (TREMs) (Bütler et al., 2013; Regnery et al., 2013) as their importance for biodiversity 

has become widely recognized. 

Forest structure can be mapped and quantified at different spatial scales ranging from tree-related 

micro-structures to stand- or landscape-scale characteristics. It is however not always easy or even 

possible to map, quantify and characterize structures at a relevant (e.g. species-relevant) level of 

detail and required spatial extent, i.e. at fine resolution over big areas. Depending on the extent and 

characteristics of the structural element, different mapping methods are required. Remote sensing 

might be a good solution for area-wide mapping of structures detectable from the air (e.g. to assess 

the canopy cover percentage and the canopy cover heterogeneity or the occurrence of forest gaps), 

whereas field sampling methods currently offer the only feasible way to inventory TreMs.   

The methodological part of this work focuses on the tree-scale (in other words: on the object scale) 

when aiming at the detection of deadwood and forest gaps. This is in line with the forest manager’s 

unit, the tree, and with his or her wish for tangible, understandable and easily identifiable forest 

structures, that can be incorporated into the planning of forest operations and nature conservation 

measures.  

1.2.1.1 Forest gaps 

Canopy cover and forest gaps are forest structure elements that are considered important for 

photophilic components of forest biodiversity, i.e. for animal and plant species that depend on (semi) 

open habitats (Sierro et al., 2001; Müller and Brandl, 2009; Zellweger et al., 2013). The simplification 

of forest structures with the establishment of even-aged forest stands in the nineteen and twentieth 

century (Boncina, 2011), and the shift towards close-to-nature forestry with continuous forest cover 

at the end of twentieth century (Johann, 2006) led to the underrepresentation of the early and late 

phases of succession, where canopy gaps and open stands naturally occur (Scherzinger, 1996). This 

trend was supported by the cessation – or even legal prohibition – of historical forest use practices, 

such as forest pasturing, litter raking or coppicing. 

Various photophilic forest focal species thus require the active creation of open stands or forest gaps 

with abundant sun light on the ground. Gaps in the canopy also create inner forest edges, which, for 

example, bats use for foraging and as guiding structures for navigation during the flight (Patriquin 

and Barclay, 2003; Runkel, 2008). Canopy openings also play a key role in stand regeneration 
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processes where the light regime is the main driver for the composition and the diversity of the 

understory biota (Getzin et al., 2014). 

Many forest biodiversity and nature conservation programs (Braunisch and Suchant, 2013; Schaber-

Schoor et al., 2015), developed in the recent years therefore underline the importance of canopy 

gaps and list their creation and maintenance as one of the objectives for promoting forest focal 

species and natural forest regeneration. Since the quality and quantity of the structural elements are 

of importance, effective species conservation management requires taxon-specific information on 

the required size, form, distribution and connectivity of gaps.  

1.2.1.2 Standing deadwood 

Deadwood is a forest structure parameter with long-recognized significance for forest biodiversity 

(Thorn et al., 2019), (Hahn and Christensen, 2004), (Schuck et al., 2004), (Paillet et al., 2010). Among 

forest species, 20-25 % depend on deadwood (Herrmann and Bauhus, 2010). Similar to forest gaps 

deadwood is typical for late development phases and as a result of natural disturbances, which are 

rarely tolerated under most forestry regimes. Deadwood is thus underrepresented in managed forest 

ecosystems. 

As a consequence, many deadwood enrichment programs in managed forest landscapes have been 

initiated in the past 30 years, e.g. in Europe and Germany in recent 30 years (Schaber-Schoor, 2010). 

An effective implementation of these programs, however, requires knowledge regarding the amount 

and distribution of deadwood elements in forests at relevant scales (Braunisch, 2008; Stighäll et al., 

2011; Kortmann et al., 2018a). Mapping of deadwood and delivering information on its quantity is 

thus essential, while complementary information on tree species and stages of decay is also desirable 

in order to address the species requirements more precisely. 

Standing or lying, fresh or in progressive stage of decay, deadwood provides habitat for 

a considerable number of species. Deadwood delivers microhabitats, substrate for lichens, 

bryophytes (Djupstrom et al., 2010) and fungi (Bader et al., 1995; Baldrian et al., 2016; Olchowik et 

al., 2019) and releases nutrients for the growth of a new generation of trees Albrecht (1991). In 

various stages of decay it hosts various rare species of saproxylic beetles (Müller et al., 2005; Seibold 

et al., 2014) and in the early decay stages it is an attractive resource for woodpeckers that feed on 

bark beetles dwelling in weakened, dead or dying trees (Fayt, 2003; Pechacek and Krištín, 2004; 

Balasso, 2016). Numerous cavity nesters such as forest birds, fat dormice or bats (Virkkala, 2006) use 

cavities in deadwood, natural or created by woodpeckers, as shelter. Bats also utilize the cracks in 

dying or dead trees or bark straps as their roosting places (Kortmann et al., 2018b).  
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Depending on the size of species’ home range, different spatial scales of deadwood occurrence may 

be of relevance. Moreover, the species’ specific requirements regarding deadwood-quality define the 

necessary detail of deadwood mapping. For some species a rough approximation of the deadwood 

amount is a sufficient proxy while for others a precise detection of a particular deadwood type (e.g. 

standing or lying, in a certain decay stage or of a particular tree species) is needed for accurately 

targeting the species needs (Balasso, 2016; Vogel et al., 2020).  

 Remote sensing in forest ecology studies 1.3

Remote sensing data and techniques have become a common source of information in forest 

research and management, including a variety of topics from forest growth and timber production 

(Holopainen et al., 2014; White et al., 2016) to habitat modelling for selected species (Imbeau and 

Desrochers, 2002; Graf et al., 2009) and nature conservation purposes (Bässler et al., 2010; Corbane 

et al., 2015).  

They offer numerous advantages for the collection of data on forest structures detectable from the 

air such as standing canopy deadwood, canopy cover or forest gaps. Main assets are continuous 

area-wide information, large spatial coverage as well as automated and standardized detection 

methods (Wulder et al., 2006; Heurich et al., 2015) founded on a long tradition and established 

standards of visual interpretation of orthophotos and stereo aerial imagery (AFL, 2003; Ackermann 

et al., 2012). 

 Data requirements  1.3.1

When mapping of biodiversity relevant forest structure parameters matters, the level of detail is of 

importance. Many species rely on very specific structures, sometimes of very small size that need to 

be mapped with high level of detail (Basile et al., 2020), whereas for other species a magnitude of the 

occurrence of a given structure in large area units is sufficient (Økland et al., 1996). In contrast, 

international or global applications, e.g. forest cover mapping or land cover change detection require 

generalized data across large geographical scales (Seebach, 2013). Most forestry applications and 

biodiversity research require trade-off between resolution and extent, as the highest possible detail 

is desired for an extensive area-coverage.  

Such area-wide information on relevant forest structures is important especially for predicting 

species’ habitats, or identifying areas for nature conservation measures (Rechsteiner et al., 2017). In 

this respect the continuous digital data and automated mapping methods from remote sensing have 

an advantage over inventory procedures, which deliver only punctual information. The latter 
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however are crucial as training and validation data to complement the remote sensing data to reveal 

its full potential.    

 Structure information for practical application 1.3.2

Effective biodiversity conservation requires solid information on species requirements accompanied 

with information on the structures the species are dependent on. Assessing the occurrence, quantity 

and quality of biodiversity-relevant forest structures helps to target the nature conservation goals.  

Recently new indices have been developed based on remote sensing data and purely mathematical 

concepts to describe forest structure richness and diversity (Ehbrecht et al., 2017; Frey et al., 2019). 

They are important to open new research perspectives and acquire new knowledge on general 

relationships between species and forest structural patterns. From the forest or conservation 

manager’s perspective, however, well measurable and definable goals for structures that can be 

identified during planning of forest operations are necessary to assure an effective implementation 

in practice. 

 Potential and limitations of remote sensing data  1.3.3

RS data of different spatial resolutions offer different levels of detail and generalization (Figure 1-1).  

Frey (2019) categorized the opportunities of remote sensing by its range into: 1) long-range 

spaceborne remote sensing, usually based on instruments carried by satellites, with flight altitudes of 

hundreds to thousands of kilometers and resolutions from below 1 m to several hundred meters, 2) 

medium-range remote sensing, usually airborne (carried by airplanes or larger Unmanned Aerial 

Vehicles (UAVs)) at altitudes between hundreds of meters to some kilometers, resulting in products 

of decimal resolution, 3) close-range remote sensors (laser scanning or digital photogrammetry 

systems), based on the ground or mounted on mobile vehicles or UAVs, covering small ranges, e.g. 

single forest sites of up to few hectares and delivering very detailed products with resolutions of 

some centimeters or even millimeters.    
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Figure 1-1 Examples of deadwood, shown by optical remote sensing data of different resolution: 

orthophoto - 0.1 m (Black Forest National Park), orthophoto - 0.5 m (State Agency of Spatial Information 

and Rural Development, LGL), orthophoto - 1 m (resampled from exemplary data of 0.1 m resolution), 

sentinel Satellite 2 data - 10 m resolution (ESA, 2020). All examples display the same area in color-infrared 

(CIR) band combination. 

The various RS data products thus represent different possibilities for answering research questions 

related to forest ecology and biodiversity. There is no “ideal” data but rather various datasets that 

are suitable for different research questions. 

Nowadays remote sensing delivers optical data suitable for spectral analyses (e.g. of the vegetation 

type and health status) (Wulder et al., 2006) and imagery or point cloud data suitable for deriving 

structural information on vegetation heights (Hobi and Ginzler, 2012; Dietmaier et al., 2019).  

Modern imaging instruments record spectral signatures of the land cover not only in three bands of 

the visible light (red, green and blue - RGB) and in the near-infrared (NIR) (e.g. as in the aerial 

imagery (RGBI), but also in short-wave infrared (SWIR), and even thermal infrared in multi- or 

hyperspectral air- or spaceborne sensors, measuring the radiation in multiple bands (Jones and 

Vaughan, 2010). Aerial RGBI images are the standard products of many public mapping agencies. 

They deliver standardized data with high resolution of 0.1 - 0.2 m and an image-overlap between 

60  % / 30 % - 80 % / 60 % (end/side lap), which allow for the derivation of vegetation heights by 
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image matching (Landesamt für Geoinformation und Landentwicklung Baden-Württemberg, 2020b). 

Since the technique is well known and the public mapping services cover large areas, the flight plans 

are scheduled for many years in advance to reliably deliver updated data products for the use in 

public services, including forestry. Certain satellite imagery products are also already available at very 

high resolution (VHR) of 0.5 - 1m, with advantages for forestry applications, especially deadwood 

detection (Pluto-Kossakowska et al., 2017). Generating large scale structural information from this 

data requires however, complex processing methods and workflows, which often hinder a fast 

uptake into practice, although there are some successful examples of area-wide forest damage 

mapping in Canada (Wulder et al., 2005; Wulder et al., 2006) and of tree species differentiation in 

Switzerland (Ginzler et al., 2019).   

In the case of ALS, an active technique that produces very high resolution point clouds (currently up 

to 200 points/m² (Amiri et al., 2019)) and depicts object surfaces in high detail, high costs and the 

complexity of the data processing are considered to be the limiting factors for frequent use (White 

et al., 2016). Although this data delivers forest structure information with a level of detail that is not 

achievable with other techniques and can be beneficial for countless applications, ALS is only used to 

a limited extent e.g. for the generation of a new accurate Digital Terrain Model (DTM) every few 

years or every decade.  Only in some forest-rich countries, such as those of Scandinavia (Kangas et 

al., 2018) , in the state of Thuringia in Germany (Thüringer Landesamt für Bodenmanagement und 

Geoinformation, 2020) or for some smaller organizational units (e.g. National Parks (Heurich et al., 

2015)) is ALS in operational use and provides area-wide data for digital remote sensing based forest 

inventories. Economic cost-benefit analyses (Holopainen et al., 2014; Bergseng et al., 2015) could 

help to weigh all potential benefits of the different data types for different applications against the 

costs for large scale mapping to deliver sound arguments on whether supplementing   public surveys 

with ALS data at regular interval would be cost-efficient for providing a more accurate detection of 

forest structures. 

 Remote sensing applications in biodiversity studies 1.3.4

Rapidly developing remote sensing techniques and new automated data processing make RS data 

particularly interesting for biodiversity studies. The main advantage is the wide area coverage, a high 

level of detail (defined by the resolution of the data) and the automatization of the data processing 

allowing efficient and standardized analyses. Traditionally forest structures were described based on 

plot-based terrestrial inventories or visual mapping from orthophotos (Ahrens, 2001; Ahrens et al., 

2004), which is in both cases costly (White et al., 2016), limited to small areas, strongly dependent on 
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the interpreter and prone to inaccuracies when extrapolating the plot-based data into the 

neighboring area.  

In recent years many biodiversity studies based on remote sensing data incorporated the information 

on vertical vegetation structure into the analyses. With its ability to penetrate through the canopy 

ALS is usually the first choice as it provides precise information on vegetation heights at and below 

the forest surface, allowing the quantification of vertical forest structure (Latifi et al., 2016). The 

structural variables based on ALS data proved to be suitable predictors for habitat selection of many 

forest species, especially birds (Lesak et al., 2011; Zellweger, 2013; Braunisch et al., 2014; 

Rechsteiner et al., 2017) and bats (Froidevaux et al., 2016; Carr et al., 2018; Kortmann et al., 2018b).    

Beside the well-known, advantageous qualities of ALS, the recent technical advances in digital 

photogrammetry demonstrate major potential for the derivation of Digital Surface Models (DSMs) 

from the stereo aerial imagery. In the next step the Canopy Height Models (CHMs) providing 

vegetation heights can be calculated through normalization of the DSMs against the DTM. CHM data 

on vegetation heights have been shown to deliver good proxy variables for forest structures at the 

plot level, stand level, e.g. for top height and periodic yearly increments of tree height (Straub et al., 

2013; Stepper et al., 2014) or landscape level e.g. for tree and forest cover, forest type and growing 

stock (Ginzler et al., 2019). 

The fusion of data from different sensors, e.g. ALS delivering the accurate structural information and 

aerial imagery or satellite data providing spectral information in multiple bands including NIR, allows 

combining both advantages. This has been shown to work well in mapping of tree species (Persson 

et al., 2004; Dalponte et al., 2008; Heinzel and Koch, 2012), in deadwood detection (Polewski et al., 

2015c, a; Krzystek et al., 2020) or in analyzing forest structure complexity (Jayathunga et al., 2018).   

In this dissertation I investigated new aspects of aerial imagery data utilization for applications in 

biodiversity studies. The usability of CHMs derived from aerial imagery, is evaluated for detection of 

forest gaps on the object level. The combination of the spectral and structural (CHM) information 

derived both from the same digital stereo aerial imagery data is tested for the detection of standing 

deadwood. Finally, I evaluate variables derived from a combination of ALS and aerial imagery for 

predicting the habitat suitability for the Three-toed woodpecker. 

 Aerial imagery and digital surface models   1.4

 Aerial Imagery  1.4.1
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Remote sensing has been successfully used for forestry applications for more than one hundred 

years. In the beginning, it were primarily analogue aerial photographs and orthophotos thereof that 

were used for forest cover and forest type mapping (Canada 1919, USA 1920), forest fire and damage 

studies (Canada 1920), forest enterprise inventory and mapping (Germany 1920, Sweden 1921) and 

vegetation studies in the tropical forests (Burma 1924) Hildebrandt (1996). Since then, aerial 

photography have been the main remote sensing technique used for various applications in forestry 

until today. In addition, research on natural forest development and nature reserves regularly 

applied stereo aerial photographs and orthophotos e.g. for deadwood detection or estimation of 

forest development phases (AFL, 2003; Ahrens et al., 2004), (Ahrens et al., 2004). Today digital stereo 

aerial imagery, usually acquired as RGBI imagery, is still the most popular RS data, as they are 

intuitive for visual interpretation with standardized interpretation keys (European Commission, 2000; 

AFL, 2003). Moreover, by recording the spectral signatures of trees in the visible spectral range (RGB 

- red, green, blue), aerial imagery provides information on leaf pigments especially chlorophyll 

(Hildebrandt, 1996). The spectral curves in the NIR spectral region indicate the status of the leaf 

inner structure and therefore the health condition of the tree (Adamczyk and Bedkowski, 2006). 

Aerial imagery acquisition can respond quickly to forest damage events and cover large areas. The 

quality standards of both the acquisition and processing techniques of the aerial imagery data are 

well established (Ackermann et al., 2012). 

Over the years, digital stereo aerial imagery  has become a standard product of public mapping 

agencies and state administrations in many countries or regions (Stepper et al., 2014; Landesamt für 

Geoinformation und Landentwicklung Baden-Württemberg, 2020b). The advantages that it offers, 

such as regular acquisition intervals, large spatial coverage, proven quality and a fine spatial 

resolution of 20 cm or less at relatively low or no cost (for public administration and research 

purposes) (Straub et al., 2013; Ginzler and Hobi, 2015; Ginzler et al., 2019), make it particularly 

interesting for long-term forest monitoring. 

Since an important aim of my thesis is to provide methods and products suitable for a broad 

application in forestry purposes, I have only used data from state surveys. All data sources were 

products of the State Agency of Spatial Information and Rural Development of Baden-Württemberg 

(LGL) (Landesamt für Geoinformation und Landentwicklung Baden-Württemberg, 2020b) or internal 

data of the State Forest Administration of Baden-Württemberg (LFV). The RGBI stereo aerial imagery 

evaluated in this doctoral thesis in Chapters I - III had a resolution of 20 cm and overlap of 60 % (end 

lap) and 30 % (side lap). Additional datasets of RGBI stereo aerial imagery of 10cm resolution and 

80 % and 60 % overlap originating from Black Forest National Park (Chapter II) and an ALS (30 - 40 
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points/m² at 0.32 m footprint) based data on canopy heights and deadwood polygons from the 

remote sensing based forest inventory in the Bavarian Forest National Park (Heurich et al., 2015) 

(Chapter IV) were used for methodological comparison.  

 Image Matching and Digital Surface Models (DSMs)  1.4.2

Technical advances in the field of digital photogrammetry in recent years revealed the potential of 

automatic image matching for deriving high-resolution surface measurements of the forest canopy 

(Straub et al., 2013; Stepper et al., 2014). In the first step of an image matching algorithm, the same 

points are searched for pixel by pixel in two or more overlapping images. Knowing the geographical 

location, flight height and the viewing angle of the camera, the absolute height of these points in two 

or more overlapping images is calculated based on trigonometric principles (Ackermann et al., 2020). 

At first, an irregular point cloud is generated, with the accuracy and completeness depending on the 

algorithm and software used, but also on site conditions, camera properties, flight parameters and 

many other factors as listed by White et al. (2013) after Baltsavias et al. (2008). 

Raster DSMs are generated from point clouds by rasterizing the results on a selected resolution, 

normally at least two times lower than the resolution of the input aerial imagery (Ackermann et al., 

2020). Depending on the density of matched points for a given area unit the surface heights differ in 

accuracy. With low point density the surface height information is interpolated between available 

points, with very high density filtering of points is applied. The occurrence of cells without surface 

height information (“no-data” cells) can be an expression of multiple sources of problems in image 

matching. To identify and analyze these was one of the aims of this thesis (Chapter I - II).  

Image matching success depends on the quality of the aerial imagery with high resolution and high 

image overlap producing more complete and denser point clouds and more accurate point matches 

between the neighboring images (Zimmermann and Hoffmann, 2017; Ganz et al., 2019) (Figure 1-2).  

Topography and forest structure also influence the image matching success (Hobi and Ginzler, 2012; 

Adler et al., 2014; Wang et al., 2015a). Together with technical camera and flight parameters e.g. 

time and date of the data acquisition, which affects sun inclination and angle and the resulting 

shadow occurrence, the many influential factors make the image matching process complex and 

prone to errors, especially in areas with varying canopy heights. Different algorithms and settings 

deliver surface heights of diverging quality, e.g. some are more accurate for tree tops, some may be 

more suited for lower surface areas and other give the best overall results when the heights are 

averaged for the stand area. Thus, the suitability of the different algorithms for derivation of 

different forest parameters varies. Generally, the results of image matching are better in flat terrain 
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compared to rugged mountainous topography (Ginzler and Hobi, 2016) or in highly structured forests 

(Adler et al., 2014) (Figure 1-2).  

 

Figure 1-2 Examples of point clouds and the differences in obtained surface heights (m) generated for the 

same 80m long and 1m wide forest stripe by: photogrammetric airborne systems acquiring aerial imagery 

of different resolution (UAV – 5 cm (in black), aircraft – 20 cm (in blue), aircraft – 50 cm (in red)) in 

comparison to a point cloud generated for the same area by the UAV LiDAR system (in green). The orange 

boxes indicate problematic areas between trees for which the optical systems often deliver false surface 

heights. Data: ProQualTools Project, FVA, 2018. Figure K. Zielewska-Büttner, S. Ganz. 

Many forest ecological studies, however, focus on stands with high structural complexity as often the 

case in protected areas. Thus, investigation of the reliability of the aerial imagery derived CHMs for 

derivation of key forest structure parameters in difficult terrain and complex structured stands, is 

a  central aspect of this doctoral thesis. 

Compared to ALS-data, CHMs from aerial imagery are less accurate particularly in transition areas 

between low and high surfaces, e.g. between trees, at the forest edges or in forest gaps (White et al., 

2018). However, as aerial imagery are the most affordable and accessible area-wide RS data in many 

regions, generating accurate CHMs from image matching is a worth-while challenge to produce 

valuable information on vegetation heights for forestry purposes. In addition, they are spatially 

compatible with the orthophotos derived from the same aerial imagery data and therefore suitable 

for combined analyses. Considering these advantages, one of the aims of this thesis (Chapter III) is to 
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explore the usability of the combined spectral and structural information from the same aerial 

imagery data.  

 True-orthophotos  1.4.3

Spectral information from aerial imagery is mainly utilized in form of orthophotos (also known as 

ortho-imagery) where it is attributed to the correct geographical location on the earth surface. 

Orthophotos were first generated based on DTMs, so some location errors were possible and image 

distortions occurred frequently as the image pixels were attributed not to the surface heights but to 

the ground elevation. With the newer DSMs based on aerial imagery, deriving true-orthophotos with 

correctly attributed surface heights based on the same data became possible. 

Correct co-registration of different data sources is of highest importance for analyses based on data 

fusion. When data differ greatly in terms of positional accuracy and resolution, the point 

correspondences are often wrong (Lanaras et al., 2015). Combining data of different type and 

resolution with even small location errors might cause major errors especially for analyses of small 

objects or object classes. Thus using the data products generated from the same RS data (as tested in 

my deadwood detection method utilizing the four orthophoto bands and the vegetation heights from 

the CHM derived from the same aerial imagery data (Chapter III)), should be advantageous because 

of the correct match of the spectral and structural information at a given point.     

 Aerial imagery in forest ecology research 1.4.4

Aerial imagery data and its derivatives play a large role in biodiversity and ecology studies, due to 

their broad accessibility and widespread familiarity with the data. Color-infrared (CIR) aerial imagery, 

being combination of: 1) near-infrared, 2) red and 3) green bands, and derived orthophotos have 

been the main data source for deadwood detection for decades in studies related to forest 

development and dynamics (Rall and Martin, 2002; Ahrens et al., 2004), forest disturbance and 

regeneration (Wulder et al., 2006; Zielewska, 2012) and forest biodiversity (Bütler and Schlaepfer, 

2004). 

The spectral properties of the NIR region of the light spectrum (0.7 -1.3 μm) (Hildebrandt, 1996) 

reflect the differences in the cell structure of a leaf particularly well, enabling differentiation 

between the different health status of trees (Commission, 2000) and live and dead vegetation 

(Kenneweg, 1970; Adamczyk and Bedkowski, 2006). Thus the CIR or RGBI aerial imagery and 

orthophotos are often used as primary data for deadwood recognition.  
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DSMs delivering the information on vegetation heights are important e.g. for delineation of forest 

stands and calculation of the canopy cover. Diversification (also called hetero- or homogeneity or 

roughness) of the canopy surface, the existence of forest gaps, open forest stands, and structures 

such as inner and outer forest edges can also be calculated. In addition in single tree and deadwood 

detection the information on the surface heights are crucial as the physical dimensions and forms of 

different tree species or live and dead trees differ. Fusion of the spectral information from aerial 

imagery with surface height information from ALS was already used frequently for the detection of 

single dead trees (Polewski et al., 2015a) or deadwood of different tree species (Amiri et al., 2016; 

Kamińska et al., 2018; Krzystek et al., 2020). Examining the value of fusion of the spectral and 

structural data originating exclusively from the aerial imagery is an aim of Chapter III.  

 Methods for the analysis of remote sensing data 1.5

 Image analysis 1.5.1

To derive information on forests from remote sensing data visual interpretation and manual 

delineation of objects were initially applied to analyze analogue aerial photographs and orthophotos 

(Hildebrandt, 1996). These methods are based on the cognitive capabilities of the human eyes and 

brain and their life-long experience and training. Automated computer classification methods are 

however much more efficient in processing large datasets and repeatable algorithms make them 

standardized and objective. With the rapid technical development in remote sensing technology in 

the last 20 years, including the transition from analogue aerial photography to digital aerial imagery, 

the automated methods outperformed the visual analyses, with the latter still remaining valuable for 

special small-scale applications (Rugani et al., 2013) or validation purposes (Waser et al., 2014a; 

Hamdi et al., 2019).  

Digital image analysis is grounded in two main techniques: image classification (1) and segmentation 

(2). Both aim to assign the single image cells to different image classes. Whereas the image 

classification is performed pixel by pixel, image segmentation additionally groups the pixels into 

disjoint, spatially continuous and homogenous regions representing objects of a given class (Seebach, 

2013).  

1.5.1.1 Image classification 

Pixel-based image classification based on machine learning (ML) became a standard tool image 

analysis in the field of remote sensing and forest ecology in recent years (Liu et al., 2018).   
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Non-parametric classifiers among which the Maximum Likelihood, Random Forest (RF) or Supported 

Vector Machines (SVM) are well known from various forestry (Gosh, 2014) and deadwood detection 

studies (Fassnacht, 2013; Stereńczak et al., 2017; Kamińska et al., 2018). They have the advantage of 

performing well with different types of input data and without the need to specify the data 

distribution (Wegmann et al., 2016). Deep learning (DL) algorithms continue to gain in popularity for 

analyzing remote sensing and show a great potential for image classification (Paoletti et al., 2019).  

The RF algorithm as originally developed by Breiman (2001) and implemented in R in Caret package 

(Kuhn et al., 2018) is an ensemble classifier making use of a large number of decision trees combined 

into a forest of decision trees. It can deal with correlated variables, produce robust results for large 

datasets and is known to both classify and predict well as it is not prone to overfitting (Wegmann et 

al., 2016), all of the above are important assets for area-wide deadwood mapping (Chapter III).  

1.5.1.2 Image segmentation 

Image segmentation also called segment-based or object-based analysis (OBIA) is an image 

processing technique that is frequently used in thematic mapping with high resolution remote 

sensing data. Segmentation algorithms group image elements following the principles of 

neighborhood and value of similarity, homo- or heterogeneity (Schiewe, 2012). 

This processing technique was initially carried out manually (Kenneweg, 1970; Rall and Martin, 2002). 

Following further technical developments semi-automatic and automatic segmentation methods 

became very popular (Blaschke et al., 2004). It has been commonly applied in RS applications for 

forestry, e.g. for forest cover mapping (Pekkarinen et al., 2009), forest type mapping (Kempeneers 

et al., 2012), stand delineation (Hernando et al., 2012) forest change analysis (Conchedda et al., 

2008; Chehata et al., 2011), delineating forest damage or disturbance areas (Kenneweg, 1970; Rall 

and Martin, 2002; Zielewska, 2012), forest nature conservation purposes (Mitchell et al., 2016), and 

estimating forest parameters such as basal area or timber volume at stand level (Hernando et al., 

2012; Straub et al., 2013). 

Various classification methods such as threshold value analyses, supervised and unsupervised 

classification organized as hierarchic or hybrid classification procedures (Hildebrandt, 1996) can be 

applied in image segmentation processing steps. Depending on the research question and the 

targeted results, different algorithmic approaches, i.e. point-based, edge-based, region-based and  

combined approaches (Schiewe, 2012) can be chosen.    

Dealing with under- or over-segmentation of the classified objects, morphological rules need to be 

set to build the model regions, detailed enough to reflect the variability in the image classes well, but 



  1. INTRODUCTION 

17 

also generalized enough in order to get a clear picture of the classes’ distribution. The formulation of 

the definitions and rules for segmenting and clustering image elements into objects of different 

classes including interim objects at different levels of the decision tree is challenging and requires 

careful considerations to achieve the desired results, especially when a flexible detection tool with 

modifiable object classes is developed (Chapter I). 

1.5.1.3 Model variables 

Various variables can be used to analyze remote sensing data and to derive thematic maps. Variables 

used during the methodological developments within this thesis (Papers I - III) can be divided into 

following classes based on the data type: 

A) Pure spectral bands  

B) Spectral ratios and indices 

C) Hue-Saturation-Value (HSV)  

D) Vegetation height information  

E) Image texture 

Objects on the earth surface reflect the visible light and the near-infrared radiation in different 

wavelengths that can be captured by optical cameras in RGBI, CIR or multi- and hyperspectral 

images. Different characteristics of the photographed objects then become visible in different 

spectral bands, e.g. chlorophyll content in the red and green bands and the different plant cell 

structure and water content in the near-infrared region of the light spectrum (Hildebrandt, 1996). 

These properties of the pure spectral bands (A) can be used directly for modelling. In such cases, 

however it is necessary to consider the atmospheric and terrain conditions of the acquired aerial 

imagery and the compatibility of the images from different flights with each other.  

Spectral indices (B) developed with the aim of recognizing vegetation types or forms are called 

vegetation indices. They are widely known in remote sensing analyses, because - depending on the 

formula and spectral bands included - they can improve the ability to measure object or vegetation 

properties and reflect them for human visual perception (Fassnacht, 2013). Combining different 

bands into one measure is also expected to reduce the atmospheric and Bidirectional Reflectance 

Distribution Function (BRDF) (Nicodemus et al., 1977; Fassnacht and Koch, 2012) noise in the imagery 

and to overcome the differences in light conditions between different scenes to make the results of 

studies from different areas based on flights by different weather and light conditions comparable 

with each other (Jones and Vaughan, 2010).   
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The Normalized Difference Vegetation Index NDVI (Eq. 1) is one of the most famous among many 

other formulas (Bannari et al., 1995; Silleos et al., 2006). Developed by (Jackson and Huete, 1991), 

using the red (strongly reflecting live vegetation) and infrared (stronger reflecting the dead compared 

to the live vegetation) bands, NDVI is especially efficient for differentiating between vital and non-

vital vegetation and other materials and is therefore broadly applied in forest health and damage 

studies (Hildebrandt, 1996; Fassnacht, 2013) and deadwood recognition (Pluto-Kossakowska et al., 

2017; Kamińska et al., 2018).  

NDVI = (I - R) / (I+ R)         (Eq. 1) 

The use of the HSV (Hue = color, Saturation = saturation of the color, Value = lightness or darkness of 

the color) (C) transformed values (from RGB) proved to contribute positively to increasing the 

information content of the remote sensing data and became a steady part in remote sensing 

applications in geology and soil science (Hildebrandt, 1996). Forestry-applications also used HSV 

transformations and showed a significant contribution to separating conifer tree species (Ganz, 2016) 

and to shadow detection for deriving shadow masks (Shahtahmassebi et al., 2013; Ginzler et al., 

2019).  

Vegetation height information (D) originating from the CHMs can be used either directly per pixel or 

indirectly through the derivation of neighborhood based values e.g. height canopy cover percentage 

or canopy height heterogeneity that can also be directly used as predictors for ecological modelling 

(Braunisch et al., 2014; Zellweger et al., 2015). The accuracy of the CHM plays a key role especially 

for pixel-based analyses. Plot or area-based values are normally less prone to errors as erroneous 

information is smoothed by the remaining correct values (Ullah et al., 2019). For more details 

regarding CHM please see section 1.4.2.    

Image texture (E) is known to provide additional information suitable for remote sensing image 

analysis (Irons and Petersen, 1981; Heinzel and Koch, 2012). Textural energy can be measured based 

on different mathematic formulas describing spatial relationship patterns in the grey-level co-

occurrence matrix (GLCM) introduced by (Haralick et al., 1973), or of pixel values of single spectral 

bands or combinations of bands (Law, 1980; Irons and Petersen, 1981). Observing different gradients 

of spectral signatures at different pixel aggregation levels, I assumed texture features to be 

meaningful for deadwood detection (Chapter III).  

Based on the specifications and expected benefits of the different data types described above 

I combined RGBI pure bands, NDVI and several other indices including some self-developed ones, the 

HSV transformed color scale, vegetation height and image texture information for standing 
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deadwood detection (Chapter III). The vegetation height information was also the main input for the 

forest gap mapping (Chapter I) and the HSV information was used for the generation of shadow 

masks (Chapter II and III).  

1.5.1.4 Role of training data (sample) 

To ensure successful classification of remote sensing data when using a supervised method the 

training sample needs to represent all relevant model classes with their intra-class heterogeneity, 

while accounting for inter-class similarities (Adamczyk and Bedkowski, 2006). To account for viewing 

angle, light condition bias and spatial autocorrelation (Jones and Vaughan, 2010; Fassnacht et al., 

2012) the reference data should originate from different geographical locations within the analyzed 

image or sequence of images.   

Various sampling approaches can be applied, with the five basic strategies being: random, random 

stratified, systematic, clustered and transect sampling, all of them having advantages and 

disadvantages (Congalton, 1991; Fassnacht, 2013). For the generation of training and validation data 

stratified random sampling was preferred in this thesis, as it is often the most efficient method to 

avoid an operator bias and reduce the chance of under sampling of underrepresented classes.  

 Postprocessing  1.5.2

In pixel based image classification inter-class variability within an image often leads to 

misclassifications of similar pixels (Adamczyk and Bedkowski, 2006). A fraction of these misclassified 

pixels occurs isolated between pixels of the respective correct class. This so-called “salt and pepper 

effect” (Kelly et al., 2011) blurs the image and can cause confusion in image interpretation. 

Neighborhood analysis can be used to single out such problematic pixel with the values of the 

neighboring pixels, their mean, median, modus or majority value assigned to the isolated pixels to 

obtain a smoother image and clearly delineated classes. I used the majority filter to smoothen the 

results of the deadwood detection method by reclassifying groups of 1 - 2 pixels to improve 

interpretability for forest practitioners. This procedure might, however, be prone to introducing 

errors as it may also misclassify correctly classified pixels. For that reason I developed and tested an 

alternative approach with the modelling of the probability of the correct deadwood classification 

based on additional structural and textural variables in the neighborhood of deadwood pixels.   

While deriving objects in the course of the image segmentation not only single pixels but also bigger 

groups of pixels may not fulfil the requirements of a defined class (e.g. when a small patch with low 

height pixels is located within a high forest stand). To achieve compact objects and to deliver clear 
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maps with all classes fulfilling the defined rules a morphological clean-up is necessary. In Chapter I 

reclassification rules were defined based on predefined thresholds and neighborhood analysis. 

The format (raster, vector or point) in which the results of the image analysis are stored, the data 

resolution and the amount of attributed information need to be specified before the processing of 

the remote sensing data in order to produce data products suitable for further analyses, applications 

and different users’ groups. RS input data (amount, resolution, quality and format), the targeted 

results (resolution, format), the available software and computer power are to be carefully 

considered. Aiming at the development of wide-area methods, also data storage for all interim- and 

final products of the analyses is an important issue requiring consideration (Chapter I and III).  

 Model validation 1.5.3

Validation is an inevitable element in the development of methods. However, depending on the 

validation data and method it can deliver either reliable results or misleading ones, when the 

validation sample is biased. The data sampling method (See 1.5.1.4), the sampling unit (e.g. point 

(Chapter III) or areas (Chapter I and II)) and the response design used to select the reference sample 

and its classification are crucial to obtain validation data which enable quantifying mapping 

accuracies and errors (Stehman and Czaplewski, 1998).  

A confusion matrix and associated accuracy measures are frequently used to evaluate multi-class 

classifications (Chapters I - III). The accuracy measures include: overall accuracy (OA, expressing the 

partition of correctly classified samples in all classes), producer’s accuracy (PA, referring to the 

probability that a certain pixel has the same real value on the ground), user’s accuracy (UA, referring 

to the probability that a pixel of a given class in the map really is this class) (Congalton, 1991) and 

Cohen´s Kappa reflecting the overall reliability of the map (Cohen, 1960). 

For binary classifications (Chapter I and III) the following model diagnostics measures (as 

implemented in “Caret” R package (Kuhn et al., 2015)) can be chosen: OA, sensitivity (equal to PA, 

measuring the proportion of actual positives of a given class to be classified as such), specificity 

(measuring the proportion of actual negatives that are correctly classified as such), as well as positive 

(PPV) and negative prediction values (NPV) (measuring the proportion of true (PPV) or false (NPV) 

classifications among all positive (PPV) or negative (NPV) classifications, respectively. In addition to 

these and Cohen´s Kappa some variant of pseudo R squared statistics can estimate the goodness of 

fit of the logistic regression (e.g. McFadden’s pseudo R-Square). Finally, the area under the receiver 

operating characteristic (ROC) curve, shortly called “area under curve” (AUC) (Hosmer and 
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Lemeshow, 2000) can estimate the probability that a model will rank a randomly chosen positive 

case higher than randomly chosen negative case.  

 Modelling species habitat suitability using remote sensing data 1.6

RS-based information is often used in ecological modelling, especially for species distribution models 

(SDM), often also referred to as habitat suitability models (HSM). Such models aim at explaining the 

distribution of different taxa and predicting their likely response to changes in the environment in 

relation to the habitat conditions (Guisan et al., 2017). Precise, area-wide information on the 

occurrence and distribution of key habitat features at relevant spatial scales is thus essential for 

assessing species’ habitat selection and for effective conservation planning and management 

(Stighäll et al., 2011). High resolution remote sensing data delivering continuous structural and 

spectral information on land cover and vegetation facilitate deriving meaningful habitat variables to 

which species occurrence data can be related.  

 Species data 1.6.1

The availability of appropriate species occurrence data is crucial for building a reliable HSM. 

Numerous research papers have reviewed the effect of the sample size on the model fit and 

reliability, and recommend a minimum of 30, but ideally at least 50 presence observations for HSMs 

(Thibaud et al., 2014; Guisan et al., 2017).   

Depending on the available data “presence-absence” vs. “presence-only” models can be generated. 

For “presence-only” models, when absence data is not available, exclusively actual species 

observations are used for modelling and contrasted against the “background” i.e. the available 

conditions in the study area (Guisan et al., 2017)  or an additional dataset of “pseudo-absence” 

samples is generated to use statistical approaches for binary data (Barbet-Massin et al., 2012). I used 

the latter approach in Chapter IV to supplement the Three-toed woodpecker occurrence data with 

pseudo-absence points randomly sampled in the areas without confirmed species presence and in 

a predefined distance between each other to avoid spatial clustering. 

Depending on the species and sampling design it might not be possible to mark or recognize single 

individuals in the presence data. This can result in pseudo replication in the response dataset when 

two or several observations of the same individual are considered as two different samples (Guisan 

et al., 2017). Spatial data filtering (i.e. selecting only one location within a predefined area) can be 

done based on the species’ home range or seasonal activity range as applied in Chapter IV of this 

thesis. The home range size, reflecting the average area which an individual of the focal species uses, 
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is also relevant for choosing an appropriate spatial resolution for the HSM (Braunisch and Suchant, 

2010). 

 Predictor variables 1.6.2

In recent years, the technical developments in the field of digital photogrammetry and image 

matching of aerial imagery also led to an increase in research that addresses their possible 

application in ecology (Wang et al., 2015a; White et al., 2018). ALS-derived gap information 

(Braunisch et al., 2014; Kortmann et al., 2018b) and habitat variables describing deadwood based on 

visual interpretation of orthophotos or field inventories (Bütler et al., 2004c; Müller and Bütler, 2010) 

has been frequently used in habitat modelling.   

Referring to this, one of the main research questions of this thesis is, whether similar variables can be 

extracted solely from the top of the canopy surface (i.e. derived by image matching of aerial imagery) 

(Chapters I - III) and whether this information is useful for conservation research and application. To 

estimate the general potential of vegetation heights from RS (CHMs) for derivation of deadwood 

variables that are relevant for habitat modelling, ALS and aerial imagery based digital inventory data 

(Heurich et al., 2015) is examined as input for HSM for an important forest focal species of boreal 

and temperate mountainous forest, Three-toed woodpecker (Chapter IV).   

 Modelling approaches 1.6.3

In the past two decades, with the increase in computer power and the development of new 

automated statistical and modelling techniques, the use of HSMs in ecological studies has increased 

immensely (Guisan et al., 2017). There are many statistical modelling approaches used in habitat 

suitability modelling, each of them having different advantages and disadvantages, e.g. related to the 

degree of model complexity, requirements towards the data distribution, predisposition to 

overfitting or data-driven behavior. In general HSMs can be divided into descriptive, explanatory or 

predictive, focusing on different aspects of the modelling process. It is crucial to identify the most 

appropriate method according to the goal of the study and the type of the response variable (Guisan 

et al., 2017).   

In this doctoral thesis three model types were used to: 1) explain and predict the probability of 

deadwood occurrence (GLM, Chapter III); 2) explain and predict the habitat suitability (Dormann 

et al., 2004) of the Three-toed woodpecker (GAM, Chapter IV) and 3) to derive critical thresholds for 

its key habitat variables (CTREE, Chapter IV).  
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The Generalized linear model (GLM) is a model-driven regression technique based on the general 

linear model enhanced with an implemented maximum likelihood approach (Dormann and Kühn, 

2012). It requires an assumption regarding the data distribution with a binomial data distribution 

(function “logit”) used for binary (e.g. true-false, presence-absence or 1 / 0) data (Chapters III and IV). 

In contrast to data-driven methods that fit the model as close as possible to the data, GLM requires 

to specify the expected shape (linear or quadratic) of the response variable as a function of the 

predictors. GLMs deliver generalized results suitable for predicting general trends. However, their 

lack of complexity may also limit their application for complex, non-linear response types. 

The Generalized Additive Model (GAM) is a model type building upon GLMs combined with 

smoothing splines (Dormann and Kühn, 2012), which enable fitting response curves “as closely as 

possible” to the data. GAMs do not require predefining the shape of the response curve and can 

deliver answers for non-linear dependencies between response and explaining variables. Being data-

driven GAMs are prone to overfitting, but also have the advantage of giving the user the opportunity 

to explore the general shape of the response functions, especially when species–habitat relationships 

are complex and cannot be easily fitted with the standard parametric functions (Guisan et al., 2017). 

The application of a tensor smooth for the spatial location furthermore allows accounting for spatial 

patterns in species locations, which was tested in Chapter IV for examining the expected spatial 

clustering of Three-toed woodpecker observations. 

Conditional Inference Trees (CTREE) (Hothorn et al., 2006; Hothorn et al., 2017) are decision tree 

based regression models frequently used in forest and wildlife ecology (Müller et al., 2009). 

Applicable to all kinds of regression problems, simple with regard to the underlying statistical 

methods and with a useful visualization of the results they have been found to be particularly useful 

to derive ecological thresholds (Müller and Bütler, 2010). The model trees split the data into 

significantly different partitions with each node of the tree representing one data split. The variables 

are ranked according to their importance until no further split is possible with the significance of the 

split being indicated in the splitting nodes. The variable values splitting the datasets are labeled on 

the branches of the tree and the final results are displayed as boxplots showing the predicted 

probability of the response variable under the given combination of variable values. CTREEs were 

applied in Chapter IV to derive ecological thresholds for habitat variables that explain Three-toed 

woodpecker presence.  
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 Validation 1.6.4

In habitat selection studies, especially of rare species, the amount of species data is often not large 

enough to generate an independent validation dataset. In this case the most frequently used method 

to evaluate the model results is the k-fold cross-validation. In this method a set of validation data is 

split into k equal folds, iteratively using k-1 folds for model training and the remaining one for 

validation. For each combination of the folds the model is trained and validated using evaluation 

metrics for binary classifications such as: OA, sensitivity, specificity, PPV, NPV, Cohen´s Kappa, 

McFadden’s pseudo R-Square and AUC (as described in p. 2.4.1.).  

This validation scheme was used in Chapter IV. Additionally, averaged results of all k validation runs 

were calculated to show the variance in the achieved accuracies. 

 Predictive mapping of species occurrence probability 1.6.5

Remote sensing data and methods, allow detailed, area-wide, large scale structural analyses that are 

useful for deriving habitat suitability maps and predictive maps of species occurrence (Guisan and 

Thuiller, 2005; Farrell et al., 2013). These maps, as generated in Chapter IV, carry continuous 

information and are thus helpful in setting targets and selecting suitable areas for conservation 

measures based on clearly defined criteria and thresholds. In addition, area-wide success-control of 

the conservation measures can be supported by evaluating data of time series using the same model 

algorithms.   

 Objectives and research questions 1.7

The first main aim of this doctoral thesis is to develop automated and standardized methods (Figure 

1-3, METHODS) for mapping two selected forest structures: canopy gaps and standing deadwood. 

These structures are well-studied in the field of forest ecology and their high value for forest 

biodiversity is confirmed. The second aim is to evaluate the potential of public aerial imagery as 

a source of information for mapping these structures (Figure 1-3, EVALUATION) and to derive 

meaningful variables from the data for use in forest and conservation research and practice (Figure 

1-3, APPLICATION). Each of the thesis’ aims is addressed by one or several research question (RQ) 

defined below, with the four chapters (Chapter I–IV) answering these research questions on selected 

examples. The interrelationships between the different parts of this thesis are illustrated in Figure 

1-3. 
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Figure 1-3 Structure of the doctoral thesis showing how the three main thesis sections (research areas: 1, 2, 

3) are embedded in the overall aims of the thesis (METHODS – method development, APPLICATIONS – 

applied ecology research and EVALUATION – evaluating the potential of aerial imagery data) are 

interconnected with each other. (DSM: digital surface model, CHM: canopy height model, HSM: habitat 

suitability model, TTW: Tree-toed woodpecker). 

The following research questions were formulated (how they are interlinked is illustrated in Figure 

1-3):  

RQ1: Are stereo aerial imagery from state surveys and the orthophotos and CHMs thereof 

reliable primary sources of information for the detection of open forest structures and 

single standing deadwood objects, for which deep insight between the trees to the ground 

is required? 

RQ2:  What are the parameters influencing the derivation of structural information and 

vegetation heights from CHMs based on aerial imagery? What alternative data sources or 

parameters can be used to enhance them? 

RQ3:   Are aerial imagery based forest structure parameters (using solely aerial imagery data or in 

fusion with ALS data) suitable to derive meaningful, reliable and practicable habitat 

variables to explain and predict the habitat requirements of a selected forest species?  

The research questions are addressed in the individual chapters of the thesis, with each chapter 

addressing a specific objective:  

Chapter I: To develop and validate a standardized adjustable automated method for the detection 

of canopy cover and forest gaps based on aerial imagery derived CHMs (RQ1-2)  
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Chapter II:   To compare and evaluate the results of the forest gap mapping method when using 

CHMs from different aerial imagery datasets varying in spatial and radiometric 

resolution and image overlap (RQ2)  

Chapter III: To develop an automated and standardized method for the detection of standing 

deadwood (height > 5m) combining structural (CHM) and spectral (orthophoto) 

information from the same aerial imagery data source (RQ1-2)   

Chapter IV: To develop and evaluate a species habitat model, derive thresholds for key habitat 

variables and generate area-wide predictions of species occurrence for the Three-toed 

woodpecker, a focal species of boreal and temperate mountain forests, based on the 

remote sensing derived variables (RQ3) 

The first three chapters address methodological questions regarding the detection of biodiversity 

relevant forest structures at a fine single-object scale. While the focus of Chapter I and III is the 

development of methods and their validation in form of accuracy assessment, the topic of Chapter II 

is to evaluate the hypothesized benefit for structure detection when using aerial imagery data with 

higher resolution and overlap. Finally, evaluating the suitability of standing deadwood information 

mapped from ALS and CIR aerial imagery data in a species ecological study and inferring 

requirements towards standing deadwood mapping for this purpose is the focus of Chapter IV.  

 Outline of the thesis 1.8

The chapters are grouped into three main thesis sections related to: 1) forest gap detection, 2) 

standing deadwood mapping and 3) habitat suitability analysis based on remote sensing derived 

variables (Table 1-1). The content of each section with the numbers of chapters included, their 

thematic focus, the research questions methodology and remote sensing data sources used is 

summarized in Table 1-1.  

Chapter I present the development of a method for the detection of forest gaps. It includes: CHM 

generation with image matching and point cloud processing, an analysis of vegetation heights for the 

delineation of open and dense forest, the identification of low and high stands and gap extraction in 

different types of stands. In order to quantify mapping accuracy, open and dense forest and different 

gap types were validated based on a stratified random sample. As I hypothesized an effect of terrain 

and gap characteristics on the model results the influence of these variables on mapping accuracy is 

explored.  
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Table 1-1 Overview over the thesis sections with their main aims, methods as well as the types of remote 

sensing data used. 

AIM                       

Thesis section 1 2 3 

Thematic  focus Gap detection Deadwood detection 
Three-toad woodpecker 
habitat suitability model 

Research question  RQ1, RQ2 RQ1, RQ2 RQ3 

Chapter I, II III IV 

METHODS 

Methodological 
focus 

REMOTE SENSING REMOTE SENSING HABITAT MODELLING 

Activity DEVELOPMENT DEVELOPMENT CASE STUDY, ANALYSIS 

MATERIAL 

Aerial imagery 
Primary input, 

Validation  
Primary input,  

Validation 
Primary input 

Orthophoto Validation 
Model input, 

Validation 
Model input  

Aerial imagery 
based CHM  

Model input  Model input  - 

ALS CHM - - 
Model input  

 (Structure analysis) 

Chapter II is based on the results of Chapter I, testing the hypothesis whether CHMs from aerial 

imagery of higher resolution and overlap deliver better results in the mapping of forest gaps. In this 

study the gap model developed in Chapter I was run on three aerial imagery datasets of different 

spatial and radiometric resolution and varying image overlap. The validation was performed by visual 

validation on a stratified sample similar to the methodology used in Chapter I. The gap mapping 

results obtained with the three test datasets were compared and the effects of shadow occurrence 

and geometric limitations of the stereo aerial imagery on mapping accuracy were evaluated.  

Chapter III describes the development and evaluation of an automated method for detecting 

standing deadwood in complex structured mountain forest stands. The aim is to evaluate the 

potential of the stereo RGBI aerial imagery data to deliver suitable spectral and structural (from 

image matching) information for deadwood prediction. Due to the fact that standing deadwood 

frequently occurs in well-structured open stands and difficult mountainous terrain the emphasis is on 

addressing the “deadwood versus bare ground misclassification” issue. This is a well-known problem 

which has rarely been addressed, and suitable solutions are lacking. I developed and evaluated two 
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possible solutions to enhance the image classification results of a RF model, 1) postprocessing with 

a morphological clean-up of the results and 2) using a deadwood uncertainty model (GLM) for 

reclassifying misclassified deadwood pixels. The accuracy of predicting standing deadwood 

occurrence based on an RGBI orthophoto and a CHM, both derived from the same aerial imagery, as 

well as the two enhancement methods are evaluated. The limitations of the input data are analyzed 

and possibilities for further development are discussed.  

Chapter IV evaluates the suitability of RS-based habitat variables, especially deadwood-variables, for 

modelling and predicting the habitat suitability for a selected forest species, the Three-toed 

woodpecker (TTW). A multivariate GAM is used to identify the decisive habitat variables and a CTREE 

model is used to find critical, species specific variables’ thresholds. Model input variables are based 

on deadwood polygon mapping using a combination of ALS and CIR aerial imagery data. I introduce 

a novel differentiation between dead trees and snags based on the mapped crown area to explore 

the TTW’s preference for trees of a particular decay stage. Based on literature I hypothesize 

a preference for freshly dead trees with large crown sizes. In addition, I hypothesize an adverse effect 

of very large amounts deadwood at the home range-scale, which I tested using data from an area 

with very high deadwood abundances. From the results, area-wide predictive habitat suitability maps 

and management recommendations for forestry and species conservation practice are drawn.  

The Chapters I, III and IV were published as stand-alone papers in international peer reviewed 

journals. Chapter II was published as a conference paper and was reprinted in this thesis with the 

agreement of the conference organizer. All papers are included in full length in the paper section 

(paragraphs 2 - 5) of this thesis. Their format has been adapted to the format of this dissertation.  
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2 CHAPTER I: AUTOMATED DETECTION OF FOREST GAPS IN SPRUCE 

DOMINATED STANDS USING CANOPY HEIGHT MODELS DERIVED 

FROM STEREO AERIAL IMAGERY  

Chapter I is based on Paper I published as research article of Zielewska-Büttner et al. (2016a) and 

Erratum to the Paper I (Zielewska-Büttner et al., 2017):   

Zielewska-Büttner, K.; Adler, P.; Ehmann, M.; Braunisch, V. (2016). Automated detection of forest 

gaps in spruce dominated stands using canopy height models derived from stereo aerial imagery. 

Remote Sens. , 8, 175. DOI: https://doi.org/10.3390/rs8030175   

Zielewska-Büttner, K.; Adler, P.; Ehmann, M.; Braunisch, V. Erratum: Zielewska-Büttner, K.; Adler, P.; 

Ehmann, M.; Braunisch, V. (2017). Automated Detection Of Forest Gaps In Spruce Dominated Stands 

Using Canopy Height Models Derived From Stereo Aerial Imagery. Remote Sens. 2016, 8, 175. Remote 

Sens., 9, 471. DOI: https://Doi.Org/10.3390/Rs9050471 

Tables 6 and 8 and the relevant text of the Paper I, as the column values in the tables were 

unintentionally exchanged, have been corrected in this chapter (Tables 2-6 and 2-8) in line with the 

content of the Erratum.  

Abstract: Forest gaps are important structural elements in forest ecology to which various 

conservation-relevant, photophilic species are associated. To automatically map forest 

gaps and detect their changes over time, we developed a method based on Digital Surface 

Models (DSM) derived from stereoscopic aerial imagery and a LiDAR-based Digital 

Elevation Model (LiDAR DEM). Gaps were detected and delineated in relation to height 

and cover of the surrounding forest comparing data from two public flight campaigns 

(2009 and 2012) in a 1023-ha model region in the Northern Black Forest, Southwest 

Germany. The method was evaluated using an independent validation dataset obtained 

by visual stereo-interpretation. Gaps were automatically detected with an overall 

accuracy of 0.90 (2009) and 0.82 (2012). However, a very high user’s accuracy of more 

than 0.95 (both years) was counterbalanced by a producer’s accuracy of 0.84 (2009) and 

0.72 (2012) as some gaps were not automatically detected. Accuracy was mainly 

dependent on the shadow occurrence and height of the surrounding forest with 

producer’s accuracies dropping to 0.70 (2009) and 0.52 (2012) in high stands (>8 m tree 

https://doi.org/10.3390/rs8030175
https://doi.org/10.3390/rs9050471
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height). As one important step in the workflow, the class of open forest, an important 

feature for many forest species, was delineated with a very good overall accuracy of 0.92 

(both years) with uncertainties occurring mostly in areas with intermediate canopy cover. 

Presence of complete or partial shadow and geometric limitations of stereo image 

matching were identified as the main sources of errors in the method performance, 

suggesting that images with a higher overlap and resolution and ameliorated image-

matching algorithms provide the greatest potential for improvement.  

Keywords: aerial imagery, RGBI, photogrammetry, DSM, nDSM, CHM, LiDAR DEM, forest gap, canopy 

opening, canopy cover 

 Introduction 2.1

Structural complexity and niche diversity within forest habitats are important predictors for forest 

biodiversity (Noss, 1990; Lindenmayer et al., 2000; Lindenmayer et al., 2006). Canopy cover (Smith 

et al., 2008), vertical variation of the canopy height (Müller and Brandl, 2009) and forest gaps 

(Zellweger et al., 2013) are considered important structural elements in forest ecology to which 

various conservation relevant forest species are associated (Koukoulas and Blackburn, 2004). 

Presence or absence of many animal species such as European  nightjar (Caprimulgus europaeus) 

(Sierro et al., 2001), Capercaillie (Tetrao urogallus) (Braunisch, 2008), Grey-headed woodpecker 

(Picus canus) (Hölzinger and Mahler, 2001), various chiroptera (Patriquin and Barclay, 2003; Aschoff 

et al., 2006; Runkel, 2008), saproxylic beetles (Seibold et al., 2014) or bird species assemblages 

(Zellweger et al., 2013; Braunisch et al., 2014) are expected to depend on semi-open forest habitats. 

Gaps in forest canopies also play a key role in various ecological processes such as the regeneration 

of trees and ground vegetation development, with the associated light regime being a main driver for 

composition and diversity of understory biota (Getzin et al., 2014). The establishment of an 

economically sustainable forest management with even-aged stands, as introduced by Hartig and 

Cotta in Europe at the beginning of 19th century (Boncina, 2011), resulted in the simplification of the 

forest structure (Noss, 1999) and an underrepresentation of the early and late phases of the forest 

succession (Scherzinger, 1996) which are characterized by a discontinuous canopy cover and the 

occurrence of forest gaps. The shift towards ecologically sustainable close-to nature forestry (Johann, 

2006) has additionally led in recent decades in many European temperate forests to a progressive 

increase of growing stocks, with detrimental effects on many photophilic species. Species 

conservation programs and habitat restoration measures in temperate forests are therefore often 

directed towards the creation of canopy openings and gaps; yet this requires quantitative, taxon-
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specific information about the required size, shape, distribution and connectivity of gaps. To 

generate such information, to develop appropriate management strategies and to monitor their 

success, precise information on spatial distribution of organisms and on forest structures at relevant - 

often broad - spatial scales are necessary (Bässler et al., 2010). While such data were long missing, 

given the impossibility to derive area-wide mosaic-structures from plot-based forest inventories or 

the huge effort to visually assess and manually map such structures based on aerial photographs, the 

rapid development of remote sensing now offers the potential to deliver forest structural 

information across large spatial scales at an unprecedented degree of precision. 

Size and spatial distribution are the most commonly mapped gap parameters for which various 

remote sensing data and techniques have been used (Kathke and Bruelheide, 2010). Gap size and 

distribution pattern were mapped from satellite imagery by Garbarino et al. (2012) and Hobi et al. 

(2015). (Vepakomma et al., 2010); Vepakomma (2012)  used LiDAR to assess spatial contiguity and 

continuity of canopy gaps over time in mixed wood boreal forests. Rugani et al. (2013) based 

a similar research question using visual stereo interpretation of scanned color-infrared CIR aerial 

photographs. Getzin et al. (2012) showed that very high-resolution images from unmanned aerial 

vehicles (UAV) can be used to effectively assess forest gaps and associated plant biodiversity in 

temperate forests. In recent years many studies confirmed the benefit from including forest 

structure parameters such as canopy cover and forest gaps derived from Light Detection and Ranging 

(LiDAR) into habitat models showing LiDAR to deliver precise, reproducible and high resolution 

information for answering a variety of ecological questions (Müller and Brandl, 2009; Zellweger et al., 

2013; Zellweger, 2013; Braunisch et al., 2014).  

Despite the well-known, advantageous qualities of LiDAR and emerging possibilities of UAVs, digital 

aerial images currently represent the most cost-effective and accessible input data for operative 

forest remote sensing applications. Digital aerial images with large spatial coverage, consistent 

quality and a spatial resolution of 20 cm or less became standard products of regional mapping 

agencies in recent years (Waser et al., 2011; Straub et al., 2013; Ginzler and Hobi, 2015; Wang et al., 

2015b). Acquired in regular time intervals and available at relative low costs they are particularly 

interesting for forest monitoring and change-detection purposes.  

Recent technical advances in the field of digital photogrammetry demonstrate the great potential of 

automatic image matching for deriving Digital Surface Models (DSMs) that can be used for an 

accurate characterization of the forest canopy structure (Straub et al., 2013). Height measurements 

from the DSMs normalized versus DEM (nDSMs) also called canopy height models (CHMs) have been 

shown to perform very well when estimating timber volume or basal area on the plot, stand or 
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country level (Straub et al., 2013; Kotremba, 2014; Ginzler and Hobi, 2015) and might thus be also 

well suited for gap detection (Betts et al., 2005; Kotremba, 2014).  

To map forest gaps and detect their changes over time in a cost-efficient way, we developed 

a method based on CHMs derived from stereo aerial imagery from public standard flight campaigns. 

We aimed for a gap mapping tool that would deliver reliable and replicable results when applied to 

available data either in form of original aerial imagery, point cloud or a raster DSM. One important 

scope thereby was to assess the viability of gap assessment based on publicly available, standard 

products of mapping agencies so as to evaluate their potential to deliver reliable forest structure 

information for monitoring programmes at various spatial scales. Our method involves several steps: 

(1) the derivation of a CHM from stereo aerial imagery, (2) the quantification of canopy cover and 

height for pre-stratification, (3) the mapping of forest gaps and their changes, (4) the detection of 

gaps in specific locations (i.e. on forest roads), (5) the evaluation of the mapping accuracy and finally 

(6) the identification of the main sources of error. In addition to the main aim, the mapping of forest 

gaps, the intermediate processing steps deliver other important forest structure parameters such as 

canopy cover and forest height diversity that are frequently required as predictor variables for 

species-habitat studies in forest ecosystems (Braunisch and Suchant, 2008; Zellweger et al., 2015).   

 Material and methods 2.2

 Study Area 2.2.1

The study area of 1023 ha is located in the State of Baden-Württemberg, Southwestern Germany, in 

the northern Black Forest (8° 34’ E, 48° 58’ N). A lake covers 1.8 ha of the area, which reduces the 

effective study area to 1021.2 ha. The area was chosen due to its high diversity with regard to 

topography, forest successional stage, protection status and consequential different management 

regime.  

The elevation within the study area ranges from 493 to 941 m. According to the classification of the  

AG Boden (1996) most slopes (77.5 %) are very steep (> 20°) or strongly inclined (10 - 20°). The 

Northern Black Forest belongs to the most forested regions in the state of Baden-Württemberg 

(forest cover of 69 % (Landesamt für Geoinformation und Landentwicklung Baden-Württemberg, 

2015c)) and has been used for litter and timber extraction over centuries (Moosmayer, 1972; Mantel, 

1990). The dominant tree species is Norway spruce (Picea abies L.) with admixture of Silver fir (Abies 

alba Mill.) and Scots pine (Pinus sylvestris). In 82 % of the forest stands the broadleaves tree species 
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account for less than 30 %.  In addition, the area is characterized by a dense forest road network of 

187 m/ha (19 km in total). 

At the time of the acquisition of the aerial photographs used for this study (2009, 2012) the southern 

part of the study area was protected according to the European law as a NATURA 2000 site 

(391.6 ha) completely overlapping with a forest reserve managed for conservation purposes 

(172.7 ha).  

 Material 2.2.2

2.2.2.1 Aerial imagery 

As a primary input data, two aerial imagery data sets from the two flight campaigns, of 2009 and 

2012, were used (Figure 2-1, Table 2-1). The data (including the absolute orientation of the images) 

was provided by the state agency of spatial information and rural development of Baden-

Württemberg (LGL) with 4 channels (red, green, blue and near-infrared (RGBI)) and radiometric 

resolution of 8 (2009) and 16 (2012) bit. The overall spatial resolution of the imagery was 20 cm with 

an overlap of 60 % (end lap) and 30 % (side lap).  

 

Figure 2-1 Photogrammetry blocks of aerial imagery covering the study area (23 images in 2009 and 48 

images in 2012) used for image-matching and generation of Digital Surface Models (DSMs) 
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Table 2-1 Technical characteristics of the aerial image data used in the study 

Year 2009 2012 

Camera  UltraCamXp DMC II 140 – 006 

Panchromatic / color lens focal length 100 / 33 mm 92 mm 

Resolution 20 cm 20 cm 

Overlap 60 % / 30 % 60 % / 30 % 

Image type 
Digital color infrared 

(RGB NIR) 
Digital color infrared 

(RGB NIR) 

Angle-of-view from vertical, cross track 
(along track) 

55° (37°) 50.7° (47.3°) 

No. of stripes in the block file 3 6 

No. of images  23 48 

Flight height 3890 m 2850 m 

Flight date  23.05.2009 01.08.2012 

2.2.2.2 Additional data sources 

In line with our goal to use only publicly available data we limited the additional data sources also to 

the products of the LGL or internal data of the forestry administration. A DEM with 1 m resolution 

(DEM01) derived from LiDAR-data (Landesamt für Geoinformation und Landentwicklung Baden-

Württemberg, 2015b) was used as a ground surface for the generation of the CHMs. Slope and 

aspect were derived from a DEM with 50 m resolution (DEM50) (Landesamt für Geoinformation und 

Landentwicklung Baden-Württemberg, 2015b). In addition, for identifying gaps along or influenced 

by forest roads, we used the forest road network datasets of the State Authority Topographical and 

Cartographical Information System (ATKIS) (Landesamt für Geoinformation und Landentwicklung 

Baden-Württemberg, 2015a) and the Department of Forest Geoinformation of Baden-Württemberg 

(Mathow, 2015). 

 Methods 2.2.3

2.2.3.1 Forest gap definition  

In the literature, there are inconsistencies with regard to terminology, methods for gap identification 

and modelling gap dynamics (Schliemann and Bockheim, 2011). Two main definitions of forest gaps 

can be found. The first defines a canopy gap as a ‘hole’ in the forest canopy cover down to 

a predefined height (e.g. 2 m) above ground (Brokaw, 1982). According to the second definition the 

gap additionally includes the ground surface below the canopy extending to the base of the trees 

which surround the canopy opening (Runkle, 1981). Definitions also vary depending on the 

assessment method and research objective: A terrestrial “bottom-up” approach, mostly used in field 

surveys (Brokaw, 1982) predefines a fixed maximum vegetation height within the gap while the aerial 
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“top-down” approach considers in the first place the technical capabilities of the sensor penetration 

through the tree canopy to forest ground and therefore defines a maximum vegetation height in 

a gap in relation to the height of the surrounding trees (Qinghong and Hytteborn, 1991; Hytteborn 

and Verwijst, 2013). Often the gap is passively mapped as the area remaining between the actively 

mapped trees.  

The definition used in this study was based on a combination of the above mentioned definitions: We 

define forest gap as a canopy opening of at least 10m2 in dense forest (≥ 60% canopy cover) reaching 

through all forest strata down to maximum 2 m vegetation height in high forest stands (≥ 8 m height) 

and down to maximum 1 m in low forest stands (<8 m height).  

We considered a minimum stand size of 0.3 ha, which corresponds to the conventional minimum 

stand size in Baden-Württemberg (Mathow, 2015). Areas with canopy cover less than 60 % and 

exceeding 0.5 ha were classified in line with Ahrens et al. (2004) as “open forest”. Open spaces 

within this forest type were considered as inherent stand characteristic and thus not mapped as 

gaps. The minimum size of a gap was set to 10 m² according to Müller and Wagner (2003) and 

Schliemann and Bockheim (2011). The maximum gap-vegetation height of 2 m was chosen compliant 

with Brokaw (1982) and adapted to 1 m in the lower stands after the first mapping tests, which 

revealed that gaps within the lower stands were not significantly distinct when using the 2 m 

threshold.  

2.2.3.2 Calculation of Canopy Height Models (CHM) 

Canopy Height Models were generated in two steps: (1) image matching and (2) point cloud 

processing (Figure 2-2).  

Image matching 

DSMs with a spatial resolution of 1 m were calculated from the stereo imagery. To avoid artefacts at 

the borders of the study area, both during the image matching process and during the subsequent 

raster analysis using a moving window, the study area was buffered with 200 m. For each study year 

two point clouds were generated using Leica Photogrammetry Suite enhanced Automatic Terrain 

Extraction (LPS eATE (ERDAS, 2012)) and Semi Global Matching (SGM XPro (Hexagon Geospatial, 

2014)) algorithms. Both algorithms returned different point clouds partially complementing each 

other (Figure 2-3).  
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Figure 2-2 Workflow for deriving of canopy height models (CHMs) from stereo aerial imagery and LiDAR 

DEM 

 

Figure 2-3 Exemplary differences in point cloud structures generated with different algorithms and settings 

from aerial imagery dated 2009 

Image matching for terrain extraction result in a first step in an irregular point cloud depending on 

the algorithm, site conditions and camera properties and situation (Adler et al., 2014). Consequently 

not every cell of a DSM raster is covered by a matched point and the generated DSMs consist of 

a certain percentage of cells without original height information (“no-data” cells).  

The input pyramid layer was identified as one of the key factors affecting point density and 

distribution of the generated point cloud. It also influences the point resolution and accuracy as the 

coarser (higher) image level delivers points with lower accuracy, especially in situations of irregular 

canopy surface. Based on visual assessment, we decided for a combination of 3 point clouds from 
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eATE and SGM processed with the pyramid levels 0, 1 and 2 respectively which provided good point 

coverage in reasonable processing time. The detailed settings of both algorithms are listed in Table 

2-2.  

Table 2-2 Settings of the image matching algorithms for point cloud generation 

Settings eATE 

Minimum images: 2; Maximum images: 2; Overlap min.: 50%; Correlator: NCC; Window size: 13; 

Coefficient start/end: 0.2 / 0.5; Interpolation: Spike; Point threshold: 5; Search window: 50; Blunder 

Type: PCA; St. Dev. Tolerance: 3; LSQ Refinement: 2;  Edge constraint: 3; Reverse matching tolerance: 

1; Smoothing: Low; Low contrast: Yes; Stop at pyramid layer: 0; Point sampling distance: 1; Pixel 

block size: 100; Most nadir: Yes;  Gradient threshold: 0;  Premier correlation band: 4; Use all spectral 

data: Yes; create radiometric layer: No 

Settings SGM 

Band: G; Last pyramid layer: 1 or 2; Disparity Difference: 1; Urban processing: 0; Keep vertical 

surfaces: Y; Thinning: Mild 

Point cloud processing 

In the next processing step only LAS points between -1 and 55 m height in relation to the DEM01 

point cloud filtered with LAStools (Isenburg, 2014) were retained, which removed most of the 

outliers and resulted in the normalized land cover surface heights (Figure 2-2). The “LasDataset to 

Raster” transformation (Data Management Toolbox in ArcGIS) with the inverse difference weighting 

(IDW) for interpolation and the natural neighbor void fill method was applied to calculate CHMs with 

a 1m resolution as a basis for subsequent height analysis and forest gaps extraction. 

2.2.3.3 Gap extraction  

Forest gap extraction based on the CHM was performed in ArcGIS 10.3 (ESRI, 2014) (raster and 

vector based) in three steps (Figure 2-4): (1) identification of open and dense forest, (2) classification 

of dense forest into height classes of low and high forest and (3) gap extraction in the latter two 

classes. In an additional post-processing step (4) gaps on and next to forest roads were located.   

Open and dense forest 

In the first step of the object based raster analysis (Figure 2-4.1), open (OF) and dense forest (DF) 

areas were identified based on the CHM (Figure 2-4.2). Based on the proportion of vegetation higher 

than 1 m within a circular moving window (r = 25 m), directly adjacent neighbouring cells with values 

of canopy cover percentage (CC) of 60 % or less were aggregated (Spatial Analyst function: region 

group, 4 neighbors) to open forest patches when aggregations were greater than 0.5 ha. The 

remaining cells representing either gaps or dense forest were submitted to further gap extraction.  
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Low and high stands  

Within dense forest, cells with CHM-values < 8 m were identified and grouped (region group, 4 

neighbors) into low forest (LF) stands, when their size exceeded 0.3 ha (Figure 2-4.3). The remaining 

cells were classified as high forest (HF). 

    

Figure 2-4 Workflow of the CHM analysis for forest gap extraction based on the following parameters: 

vegetation height (H), canopy cover (CC) and area size (1). Grey boxes indicate important in- or outputs, 

dashed lines represent an additional post-processing step. On the right, exemplary results for 2009 are 

shown: (2) discrimination between open forest (OF, yellow) and dense forest (DF, green), (3) classification 

of DF into low (LF, light green) and high (HF, dark green) and forest stands and (4) gap extraction in LF (pink) 

and HF (blue). 

Forest gaps 

Forest gaps were identified separately for LF and HF. All cells with canopy heights less than 1 m 

within LF were identified and grouped using the function region group with 8 neighbours, i.e. 
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including not only neighboring cells with adjacent border but also diagonal neighbours. The same 

procedure was carried out for raster cells less than 2 m height within HF. In both classes, LF and HF, 

groups with a minimum size of 10 m² were retained and reclassified into forest gaps.  

Gaps on and next to forest roads  

Gaps on and next to forest roads and skidding trails were identified in a post-processing step using 

2D reference vector data from ATKIS and Forest Geoinformation databases. Since both files 

contained minor errors (i.e. missing data, location inaccuracies) features missing in the more 

comprehensive ATKIS file were added from the Forest Geoinformation database. Gaps located on or 

adjacent to roads were selected within a 5m buffer to both sides of the road or skidding trail (Figure 

A 2-1). 

2.2.3.4 Validation  

The discrimination between open and dense forest and the detection of gaps were evaluated by 

a comparison with visual stereo-interpretation of the original aerial imagery using Stereo Analyst for 

ArcGIS 10.2 (GEOSYSTEMS GmbH, 2014). Therefore we generated independent evaluation data at 

circular sampling plots (r = 25 m, corresponding to the window-size used for open and dense forest 

classification). Two sets of evaluation plots were generated. For testing the accuracy of the 

classification into open and dense forest an equal amount of plots was placed randomly in both 

forest types. The plots for evaluating the performance of the forest-gap detection were selected 

according to a stratified random design.   

Open-dense forest 

For evaluating the accuracy of the classification into open and dense forest 40 plots were randomly 

placed in each of the two classes (Figure 2-5.a). With a plot size of 1962.5 m², the total evaluation 

area per class amounted to 7.9 ha, corresponding to 9.5 % and 27.0 % of the open forest of 2009 and 

2012 respectively. A change of the forest type from open to dense between 2009 and 2012 was 

allowed for additional validation of the change-recognition performance. The set of sample plots 

located in open forest of 2009 was therefore also kept in 2012. However, since 30 of the evaluation 

plots in the open forest changed to dense forest in 2012 additional 30 sample plots were generated 

within the open forest of this year to maintain a balanced verification dataset. Within the evaluation 

plots canopy cover was visually estimated in 5 % steps, aided by schematic illustrations (AFL, 2003; 

Ahrens et al., 2004), and the forest class was assigned accordingly. The agreement between visual 

and automatic mapping was assessed using different evaluation indices based on a confusion matrix. 
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Overall, producer’s (probability that the automatically mapped class was also visually confirmed) and 

user´s (Story and Congalton, 1986) (probability that visually interpreted class was also automatically 

classified as such) accuracy (Congalton, 1991; Stehman and Czaplewski, 1998; Rossiter, 2014) as well 

as Cohen’s kappa (Cohen, 1960) were calculated  using the package “caret” in R (Kuhn et al., 2015).   

 

Figure 2-5 Sampling design of the evaluation dataset: Location of sample plots for gap verification with 

regard to the strata defined by slope (a) and aspect (b); Example of an evaluation plot with visually 

identified gaps and “non-gap” evaluation circle indicated in pink (c).  

Gaps  

Since the gap-mapping accuracy was expected to vary in relation to two terrain parameters, slope 

and aspect, evaluation plots were stratified along these two gradients: Three classes of slope (0 – 10° 

plane, 10 – 20° strong inclined or steep, > 20° very steep, according to the definition of AG Boden 

(1996) and in line with Wrbka et al. (1997)) and 4 classes of aspect (north 315 - 45°, east 45 – 135°, 

south 135 – 225°, west 225 - 315°) resulted in 12 terrain situations that were extracted from the 

DEM50 (Figure 2-5.a, b). The focal point of each 50x50 m cell represented a possible center of an 

evaluation plot (r = 25 m).  

Forest gaps were evaluated on 120 evaluation plots (10 per terrain stratum) (Figure 2-5.a, b) covering 

a total area of 23.6 ha, which corresponds to 2.4 % of the dense forest in each study year. Within the 

evaluation plots gaps with an area of at least 10 m2 inside the plot (168 in 2009 and 171 in 2012) 

were visually assessed, delineated and (Figure 2-5.c) compared with the automatically mapped gaps 

located with at least 10 m² inside the evaluation plot. To assess the correct classification of gap–

absence, we randomly placed circles in the dense forest areas within the sampling plots, equal in 

a) b) c) 
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amount to the visually verified gaps and in size corresponding to their mean size per year (95 m² in 

both years). 

Correct agreement between visually and automatically mapped gaps was assigned if there was an 

overlap of at least 80%. “Non-gap” circles were attributed as “wrongly classified” when a gap of at 

least 8 m² (80% of the minimum gap size) was identified within it. The agreement between visual and 

automatic mapping was again assessed by means of overall, producers´ and users´ accuracy and 

Cohen’s Kappa.  

Variables affecting mapping accuracy  

Since we expected the accuracy of the method to be affected by external factors, selected 

characteristics of the viewed gaps were visually assessed for each of the gaps mapped in the 

evaluation plots (Table 2-3). Effects of the recorded variables such as gap size, height of the 

surrounding forest, presence of shadow, slope, aspect and gap location were tested using 

Conditional Inference Trees (ctree) vignette of R-package ‘partykit’ (Hothorn et al., 2006; Hothorn 

and Zeileis, 2015).  

Table 2-3 List of variables tested in ctree for having an effect on gap mapping accuracy 

Variable Characteristics Source 
Input format 

in ctree 

Gap size Area (m²) Automated 
mapping, Visual 
interpretation 

numeric 

Height of the 
surrounding forest 

1=Low forest (LF<8 m) 
2=High forest (HF>= 8m) 

Automated mapping factor 

Shadow occurrence  0=none  
1=complete 
2=partial 

Visual interpretation factor 

Slope (degree) 1= plane (0–10°) 
2=strongly inclined or steep          

(10–20°)  
3=very steep (>20°) 

DEM50 (LGL) factor 

Aspect  Easting (sine of aspect) 
Northing (cosine of aspect) 

DEM50 (LGL) numeric 

Gap type (gap 
location) 

0=inner forest stand,  
1=on storm throw 
2=on a forest road 
3=next to open forest 
4=on a skidding trail 
5=next to a road or a skidding trail 

Visual interpretation factor 

We also evaluated whether missing information in some raster cells (“no-data” cells) could be 

a reason for a fraction of the undetected gaps. In a DSM created from an eATE point cloud “no-data” 

cells amounted to 10-15% whereas in a DSM generated from the SGM point cloud this percentage 
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was much lower (2-3%). This difference was caused by an internal interpolation used by the SGM 

algorithm during the matching process resulting in an artificial assignment of values to cells, where 

no points were directly matched. 

 Results  2.3

 Mapping of open and dense forest 2.3.1

Mapping of open forest areas resulted in 82.7 ha (8 % of the study area) and 28.8 ha (3 %) in 2009 

and 2012 respectively. The number of open forest patches decreased from 31 to 28. This includes 

also open forest patches smaller than 0.5 ha located at the border of the study area but being part of 

larger open forest areas. The mean size of the open forest patches within the study area changed 

from 3.5 ha to 1.6 ha, which illustrates the closure of open forest areas from their borders inwards. 

Dense forest amounted to 938.5 ha (92 % of the study area) in 2009 and 992.5 ha (97 %) in 2012.   

The classification obtained with the chosen settings agreed well with the results of the visual 

assessment (Table 2-4, Figure A 2-2, Table A 2-1) with accuracy measures between 0.85 and 1.00 

confirming a very good performance of the method. An assessment of the 12 erroneous 

classifications revealed that deviations between automatic and visual estimation occurred in plots 

with canopy cover estimates ranging between 30 and 80 %, with most (75%) of the errors occurring 

within a narrow 10 % buffer (50-70%) around the canopy cover threshold of 60 %.  In 9 of the 12 

cases the automated method overestimated the canopy cover. An increased rate of deviation (20%) 

was found in the 30 plots that changed from open forest in 2009 to dense forest in 2012, which 

confirms that areas with canopy cover close to the threshold are particularly prone to 

misclassification.  

Table 2-4 Mapping accuracies of the open (positive class) and dense forest (accessed with 95 % confidence 

interval (CI)) 

 
Producer´s 
accuracy 

User´s 
accuracy 

Producer´s 
accuracy 

User´s 
accuracy 

Kappa 
Overall 

accuracy 

 OF OF DF DF  with 95 % CI 

2009 0.92 0.92 0.92 0.92 0.85 0.92 

2012 0.87 1.00 1.00 0.85 0.85 0.92 

 Identification of low and high forest  2.3.2

Patches with low (LF) and high (HF) forest amounted to 82 (175.0 ha) and 18 (763.6 ha) respectively 

in 2009, versus 70 (211.3 ha) and 22 (781.3 ha) in 2012 (Table A 2-2). Within the dense forest, high 

forest stands dominated with a share of about 80 % forming large compact patches with a mean size 
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of 42.4 ha (2009) and 35.5 ha (2012). The total area of both low and high dense forest increased from 

2009 to 2012 to the disadvantage of the open forest. Low stands - on average much smaller than 

high stands - got consolidated and increased significantly in area and size, from a mean size of 1.8 ha 

in 2009 to 2.9 ha in 2012.  

  Forest gaps mapping 2.3.3

The automated mapping approach detected 4575 (2009) and 4667 (2012) gaps in the dense forest. 

Total gap density was 4.9 gaps per ha (7.2 % of the dense forest area) in 2009 and 4.7 gaps per ha 

(6.3 %) in 2012 (Table A 2-3). Generally, many more (13.7 – 14.6 N/ha) gaps were mapped in the low 

forest than in the high forest (2.0 – 2.8 N/ha).  

2.3.3.1  Mapping accuracy 

The comparison of automatic gap-detection with the visually identified gaps revealed good 

agreement (Table 2-5 and Table 2-6) with an overall accuracy of 0.90 and 0.82 in 2009 and 2012, 

respectively, and corresponding Kappa values of 0.80 and 0.66. User’s accuracies greater than 0.96 

show that almost all automatically detected gaps were correctly classified. However, a fraction of the 

visually identified gaps were not captured during the automated mapping process, which is reflected 

in omission errors of 0.16 (2009) and 0.28 (2012). Method performance for the “non-gap” areas 

showed an opposite pattern with producer’s accuracies greater than user’s accuracies. 

Table 2-5 Evaluation results: Comparison of the automated mapping with the results of visual stereo 

interpretation  

 Visual reference 

 2009 2012 

Automated 
mapping 

“Non-gap” Gap Total “Non-gap” Gap Total 

“Non-gap”  166 31 197 164 63 227 

Gap  3 166 171 7 167 174 

Total 171 197 368 171 230 401 

Table 2-6 Mapping accuracies of automatically generated gaps derived from a comparison with the results 

of visual interpretation (accessed with 95 % confidence interval (CI)) 

 

Producer’s 
Accuracy 

User’s 
Accuracy 

Producer’s 
Accuracy 

User’s 
Accuracy Kappa 

Overall 
Accuracy 

Gap Gap “Non-Gap” “Non-Gap” with 95% CI 

2009 0.84 0.97 0.97 0.84 0.80 0.90 

2012 0.72 0.96 0.96 0.73 0.66 0.82 
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However, 71 % (2009) and 73 % (2012) of the visually but not automatically identified gaps were 

adjacent to automatically mapped gaps indicating that a significant proportion of the gaps have been 

captured correctly, but the extent delineated was too small. 

2.3.3.2 Variables affecting mapping accuracy 

Among the tested variables, shadow occurrence and forest height class affected mapping accuracy 

(Figure 2-6), while no significant effect was found in relation to the other variables tested (Table 2-3). 

Presence of shadow strongly limits the penetrability of an optical sensor into the lower parts of the 

canopy. In both study years the occurrence of full shadow in the incision in the forest canopy was the 

main cause for the erroneous delineation of gaps. The effect of shadow was also confirmed directly 

during visual verification, as the most of the visually identified but not automatically mapped gaps 

(70 - 87 %) were identified in areas of total or partial shadow (Table A 2-4). 

The height of the surrounding forest stand (LF and HF) determining the depth in the canopy, to which 

the light can penetrate, is also strongly linked to shadow occurrence. While in 2012 the height of the 

surrounding forest caused increased failure in gap mapping in HF, in 2009 this tendency was not 

pronounced. Generally the gaps in locations without or with partial shadow occurrence were 

mapped with a high accuracy in LF and less reliability in HF, whereas the complete shadow 

occurrence hinders the gap mapping performance in all stand types.     

 

Figure 2-6 Conditional inference tree showing the variables that affected the user´s accuracy of gap-

prediction in the evaluation plots in 2009 and 2012. Each node of the tree plot represents one split of the 

data into significantly different partitions, with variables ranked according to their importance, until no 

further split is possible (nodes 3, 4, 5). The significance of the split (p-values after Bonferroni correction) is 

indicated in the splitting nodes. The Y-axis shows the predicted probability of correct gap detection under 

the given combination of variable values. The variable values splitting the datasets are indicated on the tree 

branches: Shadow (0=none, 1=complete, 2=partial), Ftype: Forest height class (1=low and 2=high forest).  
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Despite similar user’s accuracies of 0.96–0.98 and overall accuracies higher than 0.79, producer’s 

accuracy in high forest was much lower than in low forest with 0.70 in 2009 and 0.52 in 2012 (Table 

2-7 and Table 2-8) 

The analysis of the “no-data” cells revealed that they did not only occur in shadowy incisions in the 

canopy cover, e.g. along roads or in stands with a highly heterogeneous vertical structure but also in 

low forest stands and on hilltops where aerial photographs should theoretically deliver good 

material. Such “no-data” cells were mostly located along flight strips (2009), particularly in the outer 

parts of the lateral and longitudinal overlapping zone of the images (2009, 2012) ().  

Table 2-7 Confusion matrix comparing the automated gap mapping results with visually verified gaps and 

“non-gap” areas in low forest (LF) and high forest (HF) in 2009 and 2012  

Automated mapping 

Visual interpretation 

2009 2012 

“Non-gap” Gap “Non-gap” Gap 

LF “Non-gap” 17 8 32 22 

Gap 2 112 2 122 

HF “Non-gap”  149 23 132 41 

Gap 3 54 5 45 

Table 2-8 Accuracy of the automated mapping of gap and “non-gap” areas assessed visually (with 95 % of 

confidence interval (CI)) in low forest (LF) and high forest (HF) in 2009 and 2012  

 
Forest 
Height 
Class 

Producer’s 
Accuracy 

User’s 
Accuracy 

Producer’s 
Accuracy 

User’s 
Accuracy 

Kappa 

Overall 
Accuracy 

Gap Gap “Non-Gap” “Non-Gap” 
with 95% 

CI 

2009 LF 0.93 0.98 0.89 0.68 0.73 0.93 

 HF 0.70 0.98 0.98 0.87 0.73 0.88 

2012 LF 0.85 0.98 0.94 0.59 0.93 0.86 

 HF 0.52 0.96 0.96 0.76 0.84 0.79 

An intersection of the “no-data”- layer with the gap validation dataset showed that only ca. 10 % 

cells of all visually, but not automatically identified gaps were actually classified as “no-data” cells 

(Table A 2-5). The assignement of new values to original no-data cells by means of interpolation from 

the neighbouring points during the image matching or raster transformation resulted in height values 

depending on the surrounding forest characteristics. 
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Figure 2-7 Distribution of “no-data” points (white) from eATE image matching algorithm in the study area in 

relation to aerial imagery footprints in 2009 (left) and 2012 (right). 

2.3.3.3 Gap size and total area 

In the study area, gap sizes ranged from 10 m² (predefined minimum size) to 19091 m² and 12556 m2 

in low forest (2009 and 2012 respectively) and to 2105 and 2495 m² in high forest (Table A 2-3). 

Despite the great difference in maximum sizes, median values ranged between 26 and 36 m². In 

2009, gap size was significantly greater in LF than in HF (Wilcoxon rank sum test, p-value=0.0006) 

whereas in 2012 this characteristic was no longer pronounced (p-value=0.5644).  

The most and the largest gaps were mapped in low stands, even though they constituted only about 

20 % of the dense forest in both years.  Moreover, the variance in gap size was most pronounced in 

LF, with standard deviations 2.5 – 3.2 times larger than for gaps in HF in the same study year. In high 

forest, number, mean size, median size and density of the gaps decreased between 2009 and 2012 

amounting to a 36 % reduction of the total gap area in this class. In contrast, the amount and density 

of gaps in low forest increased from 13.8 gaps per ha in 2009 to 14.6 gaps per ha in 2012, with only 

minor increase of the total area.  

Most gaps mapped in both stand types were very small (10 – 30 m²) or small (31 – 100 m²), together 

making up 75 - 81 % of all gaps and 13 - 23 % of the total gap area in all height classes and years 

(Figure 2-8). In low stands the greatest fraction of the total gap area (53 – 60 %) consisted of very 

large gaps (>1000 m²) whereas in high stands 58 - 59 % pertained to large gaps (101-1000 m²). In 

both low and high forest the number and area of smaller gaps increased whereas the large and very 

large gaps decreased from 2009 to 2012.  
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Figure 2-8 Number (N) and area (m²) of mapped gaps breakdown into size classes per year and forest height 

class (green scale – low forest LF, <8m height, grey scale – high forest HF, >8m height) given as percent of 

the total gap number or area in the respective class. 

2.3.3.4   Gap changes 

55% of the gaps recorded in low stands and 30 % of the gaps in high stands mapped in 2009 were 

also confirmed in 2012 (Table A 2-3, Persisting gaps 2009-2012, Figure 2-9). A substantial proportion 

(37 % of N, 45% of the total area) of gaps found in low forest in 2012 originated from open forest in 

2009. Shifts between low and high forest were not that significant with 17 % of gaps in high forest of 

2012 originating from gaps in low stands of 2009. The remaining differences in the amount of 

mapped gaps between the study years were due to displacement or shrinking of gaps.  

2.3.3.5 Gaps on forest roads 

Within the evaluation plots, 60 (30 %) gaps in 2009 and 85 (36 %) in 2012 were identified directly on 

a road or skidding trail, another 18 (9 %) and 17 (7 %) were found adjacent to these distinct linear 

features (Table A 2-6).  

These figures were slightly higher than in the total study area where - depending on the mapping 

year and forest height class - 37 % (2009) and 25 % (2012) were located on or adjacent to a forest 

road (Table A 2-7). Even though not all these gaps were captured due to shadow occurrence and 

canopy closure above the road (Figure A 2-1), this gap type represented 67-80% of the total gap area 

each year and forest height class, with an average gap-size varying from 40 to 88m².   

Excluding the gaps on or next to roads resulted in an average gap density of 10-11 gaps/ha in LF and 

1-2 gaps/ha in HF and average gap-size of about 50 m2 (Table A 2-8). 
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Figure 2-9 Example of gap mapping results: a) Canopy Height Model (CHM) of 2009, b) CHM of 2012, 

c) Mapping results of 2009, d) Mapping results of 2012, e) Change detection: gaps in 2012 vs. 2009. Gaps 

were only mapped in dense forest (> 60% canopy cover) classified into LF: low forest (<8m height) and HF: 

high forest (>=8m height). The remaining area is open forest (<60% canopy cover). 

 Discussion 2.4

Assessing forest gaps for biodiversity research purposes requires a clear definition and classification 

of gaps in relation to the research goal. The definition we adopted adhered to the fact that most 

species-habitat studies refer to gaps as canopy openings with a fixed maximum height of vegetation 

in a gap. Given the great variance in species-specific requirements regarding forms and types of gaps 

and in order to maintain a broad applicability for habitat assessments for various species, we applied 

a low threshold regarding minimum gap size and no a priori restrictions regarding shape or minimum 

diameter. With regard to gap-delineation based on remote-sensing this definition entails some 

general limitations which are related to the penetrability of the light through the tree canopy. In 

addition, compared to using LiDAR-based assessments, specific problems arise when using aerial 

imagery for deriving measures of vegetation height as a basis for gap-delineation. 
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 Image matching and Canopy Height Models 2.4.1

Regularly updated and standardized aerial photographs from public flight mapping campaigns offer 

good possibilities for assessing forest structure in a cost-efficient way, especially when aiming at 

long-term monitoring. Primarily acquired to deliver high accuracy 3D earth surface measurements for 

general administration, economy and science applications these data - offered for public research at 

a special low cost - also provide a valid basis for mapping forest gaps with high accuracy. Even so, the 

image matching algorithms using aerial and satellite imagery for deriving DSMs still bear some 

potential for improvement, especially in rugged terrain and forest stands of complex structure (Hobi 

et al., 2015). Wang et al. (2015b) indicate that their method provides a high degree of accuracy in 

managed mixed forest, with lower accuracies in mountainous forests, which can be explained by the 

mismatch between the generated DSMs as a result of different flight angles of the imagery from 

different flight campaigns. Similar situations can be observed in our study, due to the acquisition of 

the aerial imagery in different study years, where the data provider used two different cameras. 

Adler et al. (2014) observed that even in flat terrain different DSM matching algorithms produce 

different results, especially in highly structured canopy situations. Mountainous forests are likely 

more structured than intensively managed stands in the lowlands and thus particularly prone to 

shadow occurrence. In our study most of slopes were steep or very steep which definitely influenced 

the quality of the aerial imagery and the DSM accuracy.  

The distribution of “no-data” cells points towards multiple sources of problems: first, inaccurate 

point matching in the outer areas of the camera viewing angle, second, shadow occurrence and third 

a possible inaccurate relative orientation of the stereo images.  

The use of a “terrestrial bottom-up” gap-definition with predefined fixed (in contrast to a relative) 

maximum gap-vegetation height entails a significant effect of the DSM quality on the gap mapping 

performance, as inaccuracies in the surface heights in the order of magnitude of 1 m or more (Hobi 

and Ginzler, 2012; Ginzler and Hobi, 2015) significantly affect the delimitation of gaps with 

a maximum ground vegetation heights of 1 or 2 m. 

Since the user’s influence on the acquisition process and quality of aerial imagery from standard 

flight campaigns of national or regional mapping agencies is limited, some shadows have to be 

accepted (Wang et al., 2015b).  Yet, it is crucial to know the accuracy of the input data as they 

influence the usability and reliability of the generated DSM (Hobi and Ginzler, 2012). A quality 

assessment of the aerial imagery concerning light conditions and associated shadow occurrence 
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could thus be beneficial. In our study, the details regarding flight time of acquisition of the aerial 

images were not available.  

 Forest classification and gap identification 2.4.2

DSMs derived from aerial imagery proved promising for forest gap identification as the results of 

canopy cover and forest gaps mapping were good. Moreover, important for application across large 

areas, gap extraction from a ready CHM was very fast (i.e. 170 – 250 ha per minute, depending on 

processor and memory), whereas the image matching was the most time-consuming part. 

As one crucial step in the workflow the class of open forest was delineated. This is an important 

feature for many forest species and therefore a valuable side-product of our study. Canopy cover 

estimation both in entirely open areas as well as in a mixture of open and dense forest stands 

worked well, with uncertainties mostly occurring in areas with intermediate canopy cover (i.e. close 

to the predefined threshold for differentiation between open and dense forest of 60% cover). 

A sharp delimitation of naturally complex and continuous structures such as canopy cover is 

inherently difficult and can be considered as the main reason for misclassifications. In addition, some 

minor omission errors at the edges of the open areas were later captured and classified as gaps in 

the automated mapping process.  

Forest gap mapping accuracy decreased with forest height and associated shadow occurrence. 

Presence of complete shadow strongly limited the method performance, where the areas of biggest 

mismatch between the automated detection and visual interpretation of gap features were 

observed. In areas with good visibility or with a partial shadow occurrence the method results were 

coupled with the height of the surrounding forest. Generally more gaps and bigger gap areas were 

automatically mapped in low forest stands, even though they constituted of only ca. 20 % of the 

dense forest in each study year. While the maximum height of 8 m of the low forest stands mostly 

allowed good insight in the inner parts of the stand, the results of gap mapping in the high stands, 

especially in 2012 where the relative shadow occurrence was higher, probably due to a later summer 

flight date, were not fully satisfying as gaps were underestimated.  

Canopy gaps are an important structural attribute associated with variance in canopy cover 

(McElhinny et al., 2005). In the aerial imagery this variance is represented by different spectral 

reflections, different texture and shadow occurrence in the obscured locations between trees. The 

latter affected not only the results of the automatic matching but also their verification, as the visual 

interpretation of gaps in shadowy areas was partially obstructed. In our case some uncertainties 

occurred during visual interpretation, due to the difficulty of ground identification, shadow 
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occurrence and not always orthogonal tree projection in 3D-view. As a consequence some potential 

reference gaps were probably omitted and the evaluation dataset was possibly incomplete. On the 

other hand, gaps on roads were potentially overestimated, when verifying shadowy canopy openings 

located along roads axes, influenced by the perception and automatic complementation of linear 

features by the visual interpreter. 

We preferred visual assessment over field assessments for validation as the latter is less accurate due 

to errors caused by differences in human perception of a forest gap from the ground (Hobi et al., 

2015) and from the air, as well as to difficulties in gaining good position accuracy (Gaulton and 

Malthus, 2008). Nevertheless, an additional field check would be advisable as a control measure 

especially with regard to the vegetation height in the gap. However, good temporal agreement 

between the remote sensing data and the field assessment is crucial. Rapid vegetation growth 

following improved light conditions in canopy openings can bias the validation results, even when 

field assessments are performed only shortly after the remote sensing data had been gathered.   

Gap mapping methods presented by other authors resulted in similar accuracies, although not 

directly comparable due to differences in validation methodology based on both visual and field 

measurements. For example, 82% of the gaps mapped from satellite imagery by Garbarino et al. 

(2012) were correctly classified when compared to visual assessments, while Hobi et al. (2015), also 

using satellite imagery as input data, achieved a producer´s accuracy of more than 65% compared to 

visually interpreted data. Focusing on the ecological aspects of gaps and their dynamics most of 

authors did not provide an explicit accuracy assessment of their gap mapping results. An exception 

are Vepakomma et al. (2010) who show a pictorial example revealing a strong similarity of the gaps 

delineated based on LiDAR with high-resolution images, and report a 96.5% match with field 

assessments.  

 Gap density and post-processing  2.4.3

The total gap density in the study area was similar in both study years with 4.9 and 4.7 gaps per ha in 

2009 and 2012. 25 to 37 % of the mapped gap features and 67 to 80 % of the mapped gap area per 

forest height class of low or high forest and year were located on or next to forest roads. These gaps 

are characterized by specific environmental conditions and might thus be analyzed separately in 

ecological studies. The quantification of gap changes over time revealed clear trends in the gap 

dynamics, with forest height growth and densification leading to a decrease in gap area. However it 

is still difficult to judge, which changes in gap form and location were due to natural processes of 

forest growth and which result from technical difficulties such as inaccuracies in image matching 
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processes or different light conditions in the aerial imagery datasets. For a one-to-one analysis of gap 

dynamics (persistence, expansion, decline, displacement) and change detection, an additional 

assessment of the CHM quality is advisable (including date & time of the aerial images taken) and 

methods are required to automatically disentangle the mentioned sources of change.  

 Gaps as a parameter in the biodiversity studies 2.4.4

In biodiversity conservation context the variables representing forest structural complexity need to 

reflect observed relationships with faunal or floristic diversity (Zellweger et al., 2013).  

The characteristics of the gaps detected in our study such as: number, density, size, spatial coverage 

and form can be used directly as input into habitat models like Zellweger et al. (2013) does using 

forest gap density or Braunisch et al. (2014) calculating the number of gaps per ha, both to model the 

influence of forest structural complexity on multi species occurrence of four temperate mountain 

forest bird species: Capercaillie, Hazel Grouse (Bonasa bonasia), Three-toed woodpecker (Picoides 

tridactylus) and Pygmy Owl (Glaucidium passerinum). The mapped gap features can also serve 

derivation of suitable habitat indices e.g. gap area ratio that is used by Braunisch and Suchant (2013) 

for recommendations regarding forest management measures for Capercaillie conservation or 

calculation of desired gap metrics e.g. perimeter/area ratio or gap shape complexity index as used by 

Getzin et al. (2012) for assessment of floristic biodiversity of the forest understorey. Also canopy 

cover mapped as an interim step in our method was used as a model variable and one of 

management recommendations regarding habitat suitability for selected forest dwelling species e.g. 

Capercaille (Graf et al., 2009; Bollmann et al., 2013; Braunisch and Suchant, 2013).  

Studies mentioned above proved that the parameters derived from LiDAR describing the canopy 

cover, its vertical variation and forest gaps are valuable input into habitat models and important 

structural attributes associated with occurrence of selected conservation-relevant species. Based on 

that knowledge we anticipate that the height information of the DSMs derived from image matching 

of stereo aerial imagery, although not as accurate as the LiDAR measurements but still achieving 

a high level of detail in comparison to satellite data, are suitable for gap detection for biodiversity 

studies at various, also large spatial scales. 

 Conclusions  2.5

The gap mapping method was developed for automated identification of biodiversity relevant forest 

structures at large spatial extents to support biodiversity studies and planning of forest conservation 

measures. Overall method performance was good, with very good results in low stands. In high 
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stands the results were moderate to insufficient depending on the study year. Main error sources we 

identified were linked to the quality of the input CHM, resulting from shadow occurrence and 

geometric limitations of stereo image matching.  

 Focusing on publicly available data, used without prior radiometric and geometric enhancement for 

fast and cost-efficient processing, we expected that remote sensing products from the public 

mapping agencies serve as reliable input data. Yet, the aerial images from two standard flight 

campaigns in Baden-Württemberg differed in quality, which affected the results. The influence of the 

spatial resolution and overlap of the stereo aerial images requires further research in order to 

optimize and standardize future flight campaigns, so as to deliver suitable material for reliable 

monitoring of gaps and other forest parameters.  

We recommend a quality check of the input data prior to the gap extraction. Using shadow and “no-

data” masks, as well as analysing the sun angle at the moment of the image acquisition is advisable 

to identify areas where the DSM values might be erroneous and where additional gaps can be 

expected. Changing the settings (e.g. maximum vegetation height in a gap) to more liberal may help 

identifying additional potential gaps in these areas.  

Next to using aerial images of higher spatial resolution and/or higher overlap better mapping 

accuracies may be expected in flat terrain, where image matching algorithms perform better than in 

rugged mountainous topography (Ginzler and Hobi, 2015).  Since time series analyses demand DSMs 

calculated using the same settings for all study years, to avoid variations in systematic errors from 

different image-matching algorithms (Adler et al., 2014) quality reference standards for image 

matching as well as for outlier removal are required to improve the comparability of the results.  

Terrestrial bottom-up gap definitions, as used in most ecological studies, entail some problems in 

combination with remote sensing data since a constant maximum vegetation height in a gap in 

contrast to continuous values of forest heights can be a one factor causing the omission of some 

potential gap cells. However, our method allows changes in gap mapping parameters and flexible 

application of thresholds depending on the ecological scope of the study in which the mapped gaps 

will be used. Moreover, the mapping workflow can be applied to any raster CHM delivering 

standardized results for a rapid forest gaps analysis.  
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 Supplementary material 2.8

Figure A 2-1 Example for the verification of gaps mapped in 2012 on and next to forest roads (gaps 

intersecting 5 m buffer of the road centerline selected by location). 

Figure A 2-2 Example of the results of delimiting open forest (delineated in light green) within a dense 

forest matrix in 2009 (right) and 2012 (left) 

 



  2. CHAPTER I 

55 

Table A 2-1 Confusion Matrix for evaluating the automated determination of open forest (OF) and dense 

forest (DF) with the results of visual classification 

Automated mapping 

Visual reference 

2009 2012 

OF DF Total OF DF Total 

OF 37 3 40 40 0 40 

DF 3 37 40 6 34 40 

Total 40 40 80 46 34 80 

Table A 2-2 Descriptive statistics for low (LF<8m) and high (HF>= 8m) forest stands mapped in 2009 and 

2012 

Statistics 
2009 2012 

LF HF LF HF 

N 82 18 70 22 

Minimum size (m²) 3020 3046 3126 3874 

Maximum size (m²) 659404 6177173 834811 7383150 

Mean size (m²) 21340 424257 30180 355155 

Median size (m²) 6147 8957 5534 11478 

Interquartile 25% 4237 3981 4283 5272 

Interquartile 75% 12384 60830 17422 27214 

SD (m²) 74429 1417558 105212 1533808 

Sum area (m²) 1749919 7636625 2112599 7813413 

Table A 2-3 Descriptive statistics of gap mapping results per year (including gaps persisting in both years) 

and forest type (low (LF) and high (HF) forest and in total) 

 
2009 2012 

Persisting gaps 

2009-2012 

Statistics LF HF Total LF HF Total LF HF Total 

N 2401 2174 4575 3088 1579 4667 1330 652 2765 

Density (N/ha) 13.7 2.8 4.9 14.6 2.0 4.7 6.3 0.8 13.1 

Min size (m²) 10 10 10 10 10 10 1 1 1 

Max size (m²) 19091 2105 19091 12556 2495 12556 4129 1437 4129 

Mean size (m²) 188 113 152 151 98 133 130 66 101 

Median size (m²) 29 36 32 26 27 27 57 62 65 

Interquartile 25% 16 17 16 15 15 15 18 22 20 

Interquartile 75% 81 99 89 73 80 75 365 230 329 

SD (m²) 699 221 530 545 215 461 367 137 283 

Total area (m²) 450722 246026 696748 465853 155418 621271 173296 43169 279593 

Coverage (m²/ha) 2576 322 742 2205 199 626 820 55 1323 
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Table A 2-4 Shadow occurrence statistics (yes=shadow, in division to “partial” and “full” shadow coverage) 

in areas of visually identified and not automatically mapped gaps in 2009 and 2012 

Year 2009 2012 

Shadow occurrence no 
shadow 

no 
shadow 

yes partial full yes partial full 

No of visually and not 
automatically identified gaps 

4 27 20 7 19 38 27 17 

% of visually and not 
automatically identified gaps 

13 87 21 74 30 70 27 43 

Table A 2-5 Statistics of “No-data” raster cells located within the evaluation plots for gap validation in 2009 

and 2012  

Year 2009 2012 

“No-data” cells (no.) / % of total cells in evaluation plots 4107 (12.2 
%) 

3015 (8.8 
%) 

N of “no-data” cell groups (region group with 8 neighbors) 916 918 

Max. no. of no cells in a group 77 74 

Mean group size (N of no value cells) 4.5 4.5 

Other raster cells 29484 31146 

Total cells in the gap evaluation plots 33591 34161 

Table A 2-6 Types of gaps (in regard to their location within a forest stand (0), on a storm throw (1), on a 

road (2), next to open forest (3), on a skidding trail (4) and next to a road or a skidding trail(5)) identified 

during the visual validation in 2009 and 2012 

 2009 2012 

Gap type No % No % 

Gap within a forest stand (0) 107 54 114 50 

Gap on a storm throw (1) 1 0 13 6 

Gap on a road (2) 40 20 54 23 

Gap next to an open forest (3) 11 6 1 0 

Gap on a skidding trail (4) 20 10 31 13 

Gap next to road or skidding trail (5) 18 9 17 7 

Gaps on or next to road or skidding trail (2,4,5)  78 39 102 43 

Total 197 99 230 99 
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Table A 2-7 Statistics for gaps mapped on or next to forest roads (all gaps intersecting the 5 m buffer from 

the forest road line) 

  Gaps Gap area (m²) 

Year Forest height 
class 

 N % of all gaps  in 
class 

Sum   % of total 
class area 

Mean  Range  SD  

2009 LF 663 28 362328 80 87.6 0-6314 286 

HF 806 37 164628 67 44.5 0-1114 88 

2012 LF 760 25 343053 74 72.3 0-3108 211 

HF 547 35 120369 77 40.2 0-1020 88 

Table A 2-8 Basic statistics of gaps mapped not on or next to roads (solely within forest stands) in low (LF) 

and high (HF) forest height classes in 2009 and 2012   

  Gaps Gap area (m²) 

Year Forest height 
class 

 N Gap density 

(N/ha) 

Sum   Gap area per ha 

(m²/ha) 

Mean  

2009 LF 1738 9.9 88650 80 51 

HF 1368 1.8 80274 67 59 

2012 LF 2328 11.0 122846 74 53 

HF 1032 1.3 35130 77 34 
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3 CHAPTER II: PARAMETERS INFLUENCING FOREST GAP 

DETECTION USING CANOPY HEIGHT MODELS DERIVED FROM 

STEREO AERIAL IMAGERY  

Chapter II was published as research article:   

Zielewska-Büttner, K., Adler, P., Peteresen, M., Braunisch, V. (2016). Parameters Influencing Forest 

Gap Detection Using Canopy Height Models Derived From Stereo Aerial Imagery. In: Kersten, T.P. 

(Ed.), 3. Wissenschaftlich-Technische Jahrestagung der DGPF. Dreiländertagung der DGPF, der OVG 

und der SGPF. Publikationen der DGPF, Bern, Schweiz, pp. 405-416. URL: 

https://www.dgpf.de/src/tagung/jt2016/proceedings/papers/38_DLT2016_Zielewska-

Buettner_et_al.pdf 

Zusammenfassung: Lücken sind wichtige Strukturelemente für die Waldbiodiversität. Zur 

automatisierten Kartierung von Lücken in Relation zur umgebenden Bestandeshöhe und –

bedeckung entwickelten wir eine Methode, welche auf von Stereo-Luftbildern 

abgeleiteten Kronenhöhenmodellen (CHMs) und einem LiDAR-Geländemodell beruht. Zur 

Evaluierung der Methode und der Bestimmung der wichtigsten Fehlerquellen wurden in 

einem 1021 ha großen Modellgebiet im Schwarzwald (Südwestdeutschland) die 

Kartierergebnisse aus drei Befliegungen (2009, 2012, 2014) verglichen. Die Befliegungen 

von 2009 und 2012 hatten eine Bodenauflösung von 20cm und eine Überlappung von 

60 % in Flugrichtung und 30% quer. 2014 war die Bodenauflösung 10cm und Überlappung 

80%, respektive 60%. Die Validierung erfolgte durch visuelle Stereointerpreation. 

Schattenvorkommen und die geometrischen Grenzen der Stereobildauswertung wurden 

als Hauptfehlerquellen erkannt. 

Summary: Gaps in the canopy are important elements for forest biodiversity. We developed 

a method based on Canopy Height Models (CHMs) derived from stereoscopic aerial 

imagery and a LiDAR-based Digital Terrain Model (LiDAR DTM) to automatically delineate 

forest gaps in relation to height and cover of the surrounding forest. To evaluate the 

factors affecting the mapping accuracy, we compared the results from three different 

flight campaigns (2009, 2012 and 2014) in a 1021-ha model region in the Black Forest, 

Southwestern Germany. The public campaigns of 2009 and 2012 were taken with an 

overlap of 60% within stripe and 30% between stripes and an overall resolution on ground 

of 20cm. Data from 2014 had a 10cm resolution and an overlap of 80% within stripe and 
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60% between stripes. The validation was done by visual stereo-interpretation. Shadow 

occurrence and geometric limitations of the stereo aerial imagery were identified as main 

error sources. 

 Introduction 3.1

Forest gaps are considered important structural elements in forest ecology. They play a key role in 

forest regeneration processes (Getzin et al., 2014) and provide suitable habitat structures for animal 

species that depend on semi open habitats (Sierro et al., 2001; Müller and Brandl, 2009; Zellweger 

et al., 2013). Canopy gaps are therefore of great interest for research in the fields of stand structure 

and regeneration dynamics as well as biodiversity and nature conservation. In addition to the widely 

used traditional field-data collection for identification and quantification of the canopy gaps in 

ecological studies, the use of remote sensing data has been recently recognized as a good source of 

suitable data enabling the analysis of the canopy structure at various, often broad spatial scales. The 

first method that is usually chosen for forest gap detection (VEPAKOMMA ET AL., 2010; VEPAKOMMA, 

2012) and habitat mapping for biodiversity and nature conservation purposes (Bässler et al., 2010; 

Braunisch et al., 2014; Seibold et al., 2014) is Light Detection and Ranging (LiDAR) that is considered 

to deliver a more detailed picture of the horizontal and vertical forest structure than any other 

remote sensing system. However the recent technical advances in the field of digital 

photogrammetry demonstrate the great potential of the automatic image matching for the 

generation of Canopy Height Models (CHMs) and for deriving important forest parameters (Betts 

et al., 2005; Straub et al., 2013; Kotremba, 2014; Wang et al., 2015b). Thus, to assess the viability of 

gap detection based on publicly available data we focused our research on CHMs derived from the 

standard stereo aerial imagery and the official LiDAR based Digital Terrain Model (LiDAR DTM), which 

are delivered in regular time intervals by the regional mapping agency of Baden-Württemberg (LGL). 

We aimed for a gap mapping tool which would deliver standardized and replicable results when 

applied on publicly available data either in form of original aerial imagery, point clouds or a raster 

CHM.  

Gaps were detected and delineated in relation to height and cover of the surrounding forest in three 

steps: (1) open and dense forest are identified, (2) dense forest is classified into low and high forest 

and (3) gaps are extracted in the latter two classes. The method is described in Zielewska-Büttner 

et al. (2016a). In this conference paper we present parameters influencing the method performance 

with regard to canopy gaps detection (1). In addition we test in more detail the benefits of using 

a shadow mask (2) and discuss effects associated with variance in flight conditions (3). We also 
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consider the variance introduced by different image matching algorithms (4). Finally, the influence of 

spatial resolution and overlap of the stereo aerial images are presented comparing the results 

obtained with data of different flight campaigns (5).  

 Material and Method 3.2

 Study area 3.2.1

The study area of 1021 ha (excluding the mountain lake surface of the Huzenbacher See) is located in 

the State of Baden-Württemberg, Southwestern Germany, in the northern Black Forest (8° 34’ E, 

48° 58’ N). It is characterized by a heterogeneous topography with elevation ranging from 493 to 

941 m, and a high variance in forest successional stages. Most slopes (77,5 %) are very steep (> 20°) 

or strongly inclined (10 - 20°) (AG Boden, 1996). Among the dominant tree species are Norway 

spruce (Picea abies L.) with admixture of Silver fir (Abies alba Mill.) and Scots pine (Pinus sylvestris). 

The broadleaved tree species account for less than 30 % in most (> 80 %) forest stands. The area is 

covered by a dense forest road network of 187 m/ha and underlying different protection regimes.  

 Remote sensing data 3.2.2

As primary input data for the method development, aerial imagery datasets from three flight 

campaigns (2009, 2012, 2014) were used (Table 3-1).  

Table 3-1 Technical characteristics of the aerial image data used in the method development (2009, 2012) 

and the higher resolution and overlap data comparison (2014) (from ZIELEWSKA-BÜTTNER et al. 2016, 

modified) 

Year 2009 2012 2014 

Camera UltraCamXp DMC II 140 – 006 UltraCamXp 

Panchromatic / color lens 
focal length 

100 / 33 mm 92 mm 100.5 mm 

Resolution 20 cm 20 cm 10 cm 

Overlap 60 % / 30 % 60 % / 30 % 80 % / 60 % 

Image type 
Digital color infrared 

(RGB NIR) 

Digital color infrared 

(RGB NIR) 

Pansharpened digital 
color infrared 

(RGB NIR) 

Angle-of-view from vertical, 
cross track (along track) 

55° (37°) 50,7° (47,3°) 55° (37°) 

No. of stripes in the block file 3 6 4 

No. of pictures in the block 
file 

23 48 69 

Flight date 23.05.2009 01.08.2012 17.07. – 19.07.2014 
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Data (including the absolute orientation of the images) were provided by the state agency of spatial 

information and rural development of Baden-Württemberg (LGL) as pan sharpened, 4 channels (red, 

green, blue and near-infrared (RGB NIR)) stereo aerial images with radiometric resolution of 8 (2009) 

and 16 (2012 and 2014) bit. Data of 2014 originated from a special flight campaign of the Black Forest 

National Park. The overall spatial resolution of the imagery was 20 cm with an overlap of 60 % (end 

lap) and 30 % (side lap) in 2009 and 2012; and 10cm, 80% and 60% respectively, in 2014. In line with 

our goal of using only publicly available data, we limited the additional data used in the study to the 

products of the LGL (LiDAR DTM) or internal data of the forestry administration (forest road network 

dataset).  

 Gap mapping method 3.2.3

The gap mapping method was based on Canopy Height Models (CHMs) of 1 m ground resolution 

including the potential vegetation points of height between -1 and 55 m vs. the LiDAR DTM. The 

Digital Surface Models (DSMs) serving as basis for the CHMs generation were calculated from the 

stereoscopic aerial imagery using two image matching algorithms: Leica Photogrammetry Suite 

enhanced Automatic Terrain Extraction (LPS eATE (ERDAS 2012)) and Semi Global Matching (SGM 

XPro (Hexagon Geospatial 2015). As the two algorithms returned different point clouds partially 

complementing each other, in the initial study for the method development we decided, based on 

visual assessment, for a combination of three point clouds from eATE and SGM processed with the 

pyramid levels 0, 1 and 2 respectively to reach the best point coverage in a reasonable processing 

time. The detailed settings of both algorithms and the single processing steps are given in Zielewska-

Büttner et al. (2016a). The point cloud editing was carried out with LAStools (Isenburg, 2014) 

whereas the LAS to a raster transformation was done in ArcGIS (“LasDataset to Raster”). For the gap 

detection a constantly closed surface was produced by filling the no-data areas with a including 

inverse distance weighting (IDW) interpolation method.    

The gap detection was carried out in ArcGIS 10.3 (ESRI, 2014) (raster and vector based) in three 

steps: (1) identification of open and dense forest, (2) classification of dense forest into height classes 

of low and high forest and (3) gap extraction in the latter two classes. We defined gaps as canopy 

openings in dense forest (≥60% canopy cover) of at least 10 m² reaching through all forest strata 

down to maximum 2 m vegetation height in high forest stands (≥8 m height) and down to maximum 

1 m in low forest stands (<8 m height). A minimum stand size of 0.3 ha is related to the size of the 

conventional minimum stand size in Baden-Württemberg (Mathow, 2015). Areas with canopy cover 

less than 60% and exceeding 0.5 ha were classified in line with Ahrens et al. (2004) as “open forest”, 
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where the free spaces between the trees are considered as inherent stand characteristic and thus 

not mapped as gaps. 10 m² is the minimum size of a gap defined in line with Müller and Wagner 

(2003) and Schliemann and Bockheim (2011). The maximum gap-vegetation height was set to 2 m 

after Brokaw (1982) and adapted by the authors to 1 m in the lower stands.  

 Validation  3.2.4

To evaluate the gap mapping performance we compared the automatic mapping results with the 

visual stereo-interpretation of the original aerial imagery on an independent dataset of sample plots 

using Stereo Analyst for ArcGIS 10.2 (GEOSYSTEMS GmbH, 2014). As we expected the results to vary 

in relation to the terrain situation, 120 plots with a radius of 25 m (covering 2.4 % of the dense forest 

area) were placed according to a stratified random design into stands of three steepness classes 

(0-10°, 10-20°, >20° (AG Boden, 1996) and four aspect classes (N, E, S, W), resulting in 12 terrain 

classes represented by 10 sampling plots each. Gaps with an area of at least 10 m2 inside the plot 

(168 in 2009 and 171 in 2012) were visually assessed, delineated and compared with the 

automatically mapped gaps located with at least 10 m² inside the evaluation plot. The gap–absence 

was evaluated on circles of 95 m² (mean size of the visually mapped gaps in both years) randomly 

placed in dense forest within the sampling plots in an amount equal to the visually verified gaps per 

year. At least 8 m² (80% of the minimum gap size) of overlap with the visually identified gaps was 

needed to confirm the correct classification of the automatically detected gaps or to classify a “non-

gap” circle as incorrect. The agreement between visual and automatic mapping was then quantified 

in form of overall, producers´ and users´ accuracy as well as Cohen’s Kappa. An effect of selected 

parameters such as height of the surrounding forest, shadow occurrence (assessed visually), gap size, 

slope, aspect and gap location in relation to forest road, skidding trail or an open area (storm throw, 

open forest) on gap mapping results was tested using the Conditional Inference Trees (ctree) vignette 

of R-package “partykit”  (Hothorn et al., 2006).  

To evaluate the influence of the missing original height information on the gap mapping 

performance, a no-data mask was generated as a raster of 1 m resolution from the final point clouds 

(combination of eATE and SGM pyramid 1 and 2 point clouds) of 2009 and 2012. It included only the 

raster cells, where no points were directly matched during the image matching process. As for the 

gap detection a constantly closed surface was used, by a comparison with the no-data mask the 

resulting improvement in accuracy was evaluated.  

To quantify the effect of sun elevation on the image quality, we calculated a shadow mask for the 

data of 2009 and 2012. We defined as shadow an area without any textural differentiation. The 
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classification was done by a visually defined threshold. As the data from the two study years had 

different radiometric resolution, two different methods had to be used to calculate the shadow 

fraction in the aerial images. For the images from 2009 that had been resampled to 8-bit resolution 

we used for this year a Ratio S calculated according to Sarabandi et al. (2004) as S=arctan(Blue/max 

{Red/Green}). For 2012 data with 16-bit resolution we used the Intensity channel of the transformed 

images (Conrac Corp., 1980).  

 Comparison with data of higher overlap and resolution  3.2.5

To evaluate the potential influence of higher resolution and overlap of the aerial imagery on the 

method performance, Petersen (2015) applied the gap mapping method to a study polygon of 95 ha 

located in the south-western corner of the original research area (Figure 3-1) using data from 

a special flight campaign of the National Park Black Forest in 2014 (Table 3-1). Gap mapping results 

based on these pansharpened RGB NIR aerial imagery of 10 cm resolution and 80% and 60% end and 

side lap were compared with those obtained from the lower-resolution public data of 2012, using the 

eATE algorithm for point cloud generation. The CHMs used for gap extraction in 2014 were 

calculated based on the LiDAR derived DTM of the National Park Black Forest, as obtained from their 

own flight campaign in 2015.  

Figure 3-1 Location the test area for comparison of 2012 and 2014 data within the original study area 

presented on the background of the available orthophotos from 2012 and 2014.  

 Results   3.3

 Gap mapping results 3.3.1
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We detected 4575 (2009) and 4667 (2012) gaps in the dense forest of the study area using the 

automated method, what results in a total gap density of 4.9 gaps per ha (7.2 % of the dense forest 

area) in 2009 and 4.7 gaps per ha (6.3 %) in 2012. Considering the forest height classes, more gaps 

(13.7 and 14.6 N/ha in 2009 and 2012) covering a greater area (45 and 46 ha respectively) were 

mapped in the forest stands lower than 8 m compared to the higher forests with a gap density of 2.0 

and 2.8 N/ha and mapped gap area of 25 and 16 ha in 2009 and 2012, respectively. The most (> 75%) 

of all detected gaps in both study years were very small or small (less than 100 m²) accounting for 

13 % and 23% of the total gap area per year in 2009 and 2012, respectively. The visual validation 

resulted in an overall accuracy of 0.90 and 0.82 in 2009 and 2012 and the corresponding Kappa 

values of 0.80 and 0.66 (Table 3-2). Producer´s accuracies greater than 0.96 confirmed almost all 

automatically detected gaps as correctly classified. Yet, a fraction of the visually identified gaps were 

not detected during the automated mapping process, which is reflected in lower user´s accuracies of 

0.84 in 2009 and 0.72 in 2012. However, more than 70 % of the visually but not automatically 

identified gaps in both study years were adjacent to the automatically mapped gaps, what suggest 

that gaps were correctly localized, but  they were detected with a too small extent. 

Table 3-2 Mapping accuracies of automatically generated gaps per year and forest high class derived from 

a comparison with the results of visual interpretation (accessed with 95 % confidence interval (CI)) (from 

ZIELEWSKA-BÜTTNER et al. 2016, modified) 

 Producer´s 
accuracy 

User´s 
accuracy 

Producer´s 

accuracy 

User´s 

accuracy 

Kappa Overall 
accuracy 

 Gap Gap “Non-gap” “Non-gap”  with 95 % CI 

2009  DF 0.97 0.84 0.84 0.97 0.80 0.90 

          LF 0.98 0.93 0.68 0.89 0.73 0.93 

          HF 0.98 0.70 0.87 0.98 0.73 0.88 

2012  DF 0.96 0.72 0.73 0.96 0.66 0.82 

          LF 0.98 0.85 0.59 0.94 0.93 0.86 

          HF 0.96 0.52 0.76 0.96 0.84 0.79 

 Shadow occurrence 3.3.2

Among the variables tested only the height of the surrounding forest and shadow occurrence 

significantly affected the gap mapping results. The occurrence of full shadow in the lower sections of 

the forest canopy was identified as the main cause for gap mapping omission errors in both years 

(ctree, p<0.001). This was confirmed also by means of visual verification, as the most of the visually 

identified but not automatically mapped gaps (70%–87%) were identified in areas of total or partial 

shadow. The height of the surrounding forest stands (LF and HF) is strongly linked to shadow 

occurrence as it determines the depth in the canopy, to which the light can penetrate. Despite 
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similar producer´s accuracies of 0.96-0.98 and overall accuracies of more than 0.79, gaps in LF were 

mapped with higher user´s accuracies than those in HF (0.93 vs. 0.70 in 2009 and 0.85 vs. 0.52 in 

2012).  

The shadow masks identifying complete shadow cells covered 29 % of the study area in 2009 and 

16 % in 2012. However, the comparison with the location of automatically mapped gaps showed that 

only less than 5 % of the gaps were automatically detected in these areas. Shadow occurrence was 

mostly linked to steep slopes and exposition as well as to heterogeneous vertical structure and stand 

height (Figure 3-2), indicating a strong influence of the sun angle and associated time of data 

acquisition. The two flight campaigns of 2009 and 2012 were carried out in May and August, so the 

sun position at the time of data acquisition didn´t correspond which produced shadow in different 

areas (Figure 3-2). 

Figure 3-2 Example of complete shadow and no-data cells distribution in a steep part of the study area 

around the mountain lake “Huzenbacher See” 

3.3.2.1 Image matching algorithm 

The amount and distribution of no-data cells was influenced by the algorithms and pyramid levels of 

the images used for point matching. The area with no data ranged between 38% with SGM pyramid 

level 2 in 2012 and 9 % with SGM pyramid level 1 in 2009. Combining different algorithms and 

pyramid levels led to a reduction of no-data within the study area to less than 3%. Evaluating 

whether missing information in some raster cells could be a reason for a fraction of the undetected 

gaps, we found that only about 10 % of the visually, but not automatically identified gap cells (gap 

area) in both years belonged initially to the no-data cells.  
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The distribution of no-data and shadow raster cells (Figure 3-2) revealed that the points were 

mismatched not only in shadowy areas of the forest stands (8 % (2009) and 5 % (2012) of no-data 

cells intersected with the shadow mask) but also in low forest stands and on hilltops where aerial 

photographs should theoretically deliver good material for image matching. No-data cells were often 

located along flight strips (2009) or at the outer parts in the overlapping zone of the images (both 

years).  

3.3.2.2 Image resolution and overlap 

Comparing the results based on the original data from 2012 and the high-resolution dataset of 2014, 

a slightly larger amount of open forest (3 % in 2012 and 2 % in 2014) was mapped for 2012. Also the 

percentage of low forest was higher in 2012 (21 %) than in 2014 (14 %) (Figure 3-3). 

 

Figure 3-3 Results of the automated gap mapping in the test area for the comparison of data with different 

resolution and overlap: 1) results from 2012 (20 cm, overlap 60% /30%), 2) results from 2014 (10 cm, 80% 

/60%), 3) Zoom-in window as example for a comparison of 2012 and 2014 results. 

To be able to compare the results of the gap mapping of both years the study area was reduced by 

the area that had been classified as open forest within either of the datasets. For the remaining area 

of 94 ha a larger total gap area was obtained with the dataset of 2012 (4.9 ha) compared to the 
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dataset of 2014 (2.5 ha) though a larger number of gaps was identified in the latter (2012: 240 gaps, 

2014: 281 gaps). The reason for this can be found in the size of the mapped gaps. While more very 

small (10 m² - 30 m²) and small (31 m² - 100 m²) gaps were detected with the dataset of 2014 there 

were more large (100 m² - 1000 m²) and very large gaps with a size of more than 1000 m² mapped 

with the data of 2012 (Figure 3-4). The large and very large gaps were located mostly within the class 

of low forest or along forest tracks. 

 

Figure 3-4 Distribution of gap sizes in the dataset of 2012 (blue bars) and 2014 (red/orange bars). “High” 

and “low” indicate high and low forest stands.  

 Discussion and Conclusions 3.4

Gap mapping from stereo aerial imagery with 20 cm resolution and 60/30% overlap proved to deliver 

promising results, with a good overall method performance and even very good results in low stands. 

Depending on the quality of the aerial imagery and the input CHM as well as the height of the 

surrounding forest and the associated shadow occurrence, the results in stands higher than 8 m were 

moderate to insufficient, depending on the study year. The mapping results might also depend on 

the topography and the structure of the forest stands. Ginzler and Hobi (2015) observed better 

mapping accuracies in a flat terrain than in rugged mountainous topography, which also 

characterised our study area, whereas Adler et al. (2014) found that even in flat terrain different 

DSM matching algorithms produce different results, especially in highly structured canopy situations. 

In addition, mountainous forests are likely more structured than intensively managed stands in the 

lowlands. 

Shadow occurrence in aerial images is related to exposition, surface characteristics and caused by 

sun inclination and angle. Therefore the occurrence and distribution of shadow varies a lot between 

the different flight campaigns, especially in hilly areas comparable to our study area. Comparing the 
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overall amount of shadow within the images with the shadow pixels within the classified gaps, we 

see that only a very small portion of gaps was detected in the shadow areas. This can be influenced 

by a strong fragmentation of the shadow areas with single patches not bigger that 10m² (minimum 

gap size). It can also be interpreted, that shadow pixels may have influenced negatively the image 

correlation for point matching within stand surface openings. The latter argument was confirmed by 

the visual interpretation of the gaps as 70-80% of visually interpreted gaps that hadn’t been detected 

automatically were located in partial or total shadow.  

The superimposition of no-data areas with shadow areas showed no direct correlation. The 

appearance of no-data areas was more related to the geometric characteristics of the image, as they 

mainly occurred along image und flight strip borders.  

By combining point clouds generated with two different image matching methods we expected 

a compensation effect and improvement of the point cloud structure in areas where no points were 

matched using only one of the algorithms. The results of our study underline the importance of the 

image matching method. Not all algorithms perform equally well with regard to specific mapping 

goals e.g. detection of canopy gaps, mapping of the tree tops or calculation of forest stand 

parameters. Developments in technology and image matching algorithms are rapid, which makes the 

choice of the “best” algorithm combination very difficult, with “best” being often only valid for the 

used data and software combination.  

The data used to analyze the influence of image resolution and overlap originated from two different 

years. The images with 20 cm resolution and 60/30 % overlap were taken in 2012, whereas the 

images with 10 cm resolution and an overlap of 80/40 % were from 2014. However, as there were no 

disturbances in the two years between the flights, and the forest stands wasn’t in an age-class where 

natural mortality causes the disappearance of single trees, a decrease in detected gaps would have 

been expected. Nevertheless, the number of forest gaps increased from 240 to 281 with 

simultaneous decrease in size. This change in average gap size could be either explained by 

vegetation growth, at the gap edges, which reduces gap size. The increasing number of very small 

and small gaps could be explained ingrowth of vegetation, partially closing larger forest gaps, leaving 

more and smaller gaps behind. A visual examination, however, showed that the many of these very 

small and small gaps detected in 2014 where not mapped in 2012. Especially within high forest 

stands the number of detected gaps rose by almost 30 % while the amount of high forest only 

increased by 8 % between the years. This increase can not only be explained by ingrowth but by 

a better insight into the canopy structure due to a higher image overlap and resolution in the 2014 

data. 
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The results from different flight campaigns indicate shadow occurrence and geometric limitations of 

the aerial imagery as serious constraints, both bearing a high potential for improvement. Flight 

campaigns should consider the issues arising from varying flight time and associated solar altitude. 

Moreover, an increase in spatial resolution and overlap of the aerial images could considerably 

improve the spatial accuracy of the results. Further improvements can be expected from an 

amelioration of the image matching algorithms. The use of shadow and no-data masks proved useful 

for the interpretation and evaluation of the automatically produced gap maps and we recommend 

them especially for change detection. Further research on these topics could help to optimize and 

standardize future flight campaigns, so that they can be used for reliable monitoring of gaps and 

other forest structure parameters.  
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4 CHAPTER III: DETECTION OF STANDING DEADWOOD FROM 

STEREO AERIAL IMAGERY DERIVED ORTHOIMAGERY AND 

DIGITAL SURFACE MODELS. ADDRESSING DEADWOOD AND BARE 

GROUND MISSCLASSIFICATION ISSUE 

 

Chapter III was published as research article:  

Zielewska-Büttner, K., Adler, P., Kolbe, S., Beck, R., Ganter, L., Koch, B., Braunisch, V.  Detection of 

Standing Deadwood from Aerial Imagery Products: Two Methods for Addressing the Bare Ground 

Misclassification Issue. Forests 2020, 11, 801. DOI: https://www.mdpi.com/1999-4907/11/8/801 

Abstract: Deadwood mapping is of high relevance for studies on forest biodiversity, forest 

disturbance and dynamics. As deadwood predominantly occurs in forests characterized by 

a high structural complexity and rugged terrain, the use of remote sensing offers numerous 

advantages over terrestrial inventory. However, deadwood misclassifications can occur in 

the presence of bare ground, displaying a similar spectral signature. We tested the 

potential to detect standing deadwood (h>5m) using orthophotos of 0.5m and digital 

surface models (DSM) of 1m resolution, both derived from image matching of stereo aerial 

imagery of 0.2m resolution and 60/30 % overlap (end/side lap). Models were calibrated in 

a 600ha mountain forest area, rich in deadwood of various stages of decay. We employed 

Random Forest (RF) classification, followed by two approaches for addressing the 

deadwood-bare ground misclassification issue: 1) post-processing, with a mean 

neighborhood filter for “deadwood”-pixels and filtering out isolated pixels and 2) 

a “deadwood-uncertainty” filter, quantifying the probability of a “deadwood”-pixel to be 

correctly classified as a function of the environmental and spectral conditions in its 

neighborhood. RF model validation based on data partitioning delivered high user’s (UA) 

and producer’s (PA) accuracies (both >0.9). Independent validation, however, revealed a 

high commission error for deadwood mainly in areas with bare ground (UA=0.60, PA=0.87). 

Post-processing (1) and the application of the uncertainty filter (2) both improved the 

distinction between deadwood and bare ground and led to a more balanced relation 

between UA and PA (UA of 0.69 and 0.74, PA of 0.79 and 0.80, under (1) and (2), 

respectively). Deadwood-pixels showed 90% location agreement with manually delineated 

reference deadwood objects. With both alternative solutions deadwood mapping achieved 

reliable results however the highest accuracies were obtained with deadwood-uncertainty 
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filter. Since the information on surface heights was crucial for correct classification, 

enhancing DSM quality could substantially improve the results.  

Keywords: deadwood detection, forest structure, remote sensing, orthophoto, RGBI, digital surface 

model, DSM, canopy height model CHM, Random Forest 

 

 Introduction 4.1

Deadwood is an important resource for more than 30 % of all forest species and thus of great 

relevance for forest biodiversity (Hahn and Christensen, 2004; Schuck et al., 2004; Paillet et al., 2010; 

Thorn et al., 2019). Standing or laying, fresh or in later stages of decay it offers a variety of 

microhabitats for various species (Pechacek and Krištín, 2004; Müller et al., 2005; Seibold et al., 

2014; Kortmann et al., 2018b), provides substrate for lichens, mosses and fungi (Bader et al., 1995; 

Baldrian et al., 2016; Olchowik et al., 2019), and nutrients for a new generation of trees. Effective 

biodiversity conservation in forest landscapes requires information about the amount and 

distribution of deadwood at relevant spatial scales (Braunisch, 2008; Stighäll et al., 2011; Kortmann 

et al., 2018a).  

Mapping deadwood across large areas is therefore of general interest for biodiversity studies and 

nature conservation (Bouvet et al., 2016), although the requirements regarding the detail of 

deadwood mapping may vary. While for assessing habitat quality for generalist species a rough 

approximation of deadwood amounts may be a sufficient proxy, for specialists a differentiation 

between standing and lying deadwood, various stages of decay, or even between different tree 

species may be required (Balasso, 2016; Zielewska-Büttner et al., 2018). In this context, remote 

sensing offers numerous advantages for deadwood detection such as continuous spatial information, 

well-established visual interpretation keys (AFL, 2003; Ackermann et al., 2012), as well as automated 

and standardized detection methods (Wulder et al., 2006; Heurich et al., 2015).  

Detection of deadwood from remote sensing data relies on the spectral properties in the near-

infrared region (NIR) of the light spectrum (0.7 - 1,3 µm) (Hildebrandt, 1996), that reflects best the 

difference between vital and non-vital vegetation tissues (Hildebrandt, 1996) as e.g. in desiccating 

leaves or dying trees (Kenneweg, 1970; Adamczyk and Bedkowski, 2006). Also the red edge gradient 

between the red and infrared bands (0.69 - 0.73 µm) and in some cases also bands from the short-

wave-infrared region (SWIR ca 1.3 - 2.6 µm (Hildebrandt, 1996) or 1,1 – 3,0 µm (NASA Earth 

Observatory, 2014)) (Fassnacht et al., 2014; Adamczyk and Osberger, 2015) (both not included in the 
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standard 4 channel (red, green, blue and near-infrared, RGBI) imagery can improve the detection of 

deadwood in an automated process. To diminish the influences and interdependencies between the 

bands, spectral indices based on algebraic combinations of reflectance in different bands were found 

to be helpful in mapping of different land cover and object classes (ENVI, 2019) among which is also 

the live, senescing and dead vegetation (Fassnacht, 2013; Waser et al., 2014b). 

Over decades deadwood has been mapped visually based on color-infrared (CIR) aerial imagery and 

applied in forest research and management e.g. for mapping bark beetle infestations (Heurich et al., 

2001; Wulder et al., 2006; Zielewska, 2012), in forest tree health assessment (Commission, 2000), or 

in studies of forest dynamics (Ahrens et al., 2004) and forest wildlife ecology (Bütler and Schlaepfer, 

2004; Martinuzzi et al., 2009). Nowadays, with the growing availability of digital optical data with 

very high resolutions (e.g. < 0.1 m from unmanned aerial vehicles (UAV), 0.1 - 0.2 m from aerial 

imagery, and < 10 m from satellite imagery (White et al., 2016)), together with the availability of 

airborne laser scanning (ALS) data and the development of classification workflows, automated 

deadwood detection became possible. It brings the deadwood mapping to a higher level of detail and 

allows standardized processing of big datasets (Heurich et al., 2015).  

The suitability of remote sensing data for deadwood mapping differs. The spectral information from 

the infrared band of aerial or satellite imagery is indispensable to detect differences between the 

healthy, weakened and dead vegetation. It can be used as the only input to differentiate in an analog 

(visual) or automated way between the dead and live vegetation. The results differ depending on the 

study and the validation method with overall accuracies (OA) between 0.67 and 0.94 (Bütler and 

Schlaepfer, 2004; Pasher and King, 2009).   

To enhance deadwood detection structural information on canopy heights is helpful. For automated 

analyses ALS data in combination with CIR aerial imagery showed the best results to date with OA of 

about 0.9 (Polewski et al., 2015a; Kamińska et al., 2018; Krzystek et al., 2020). Detection of standing 

deadwood solely from ALS data was also tested and delivered heterogeneous results, depending on 

forest type and detection method (Maltamo et al., 2014; Marchi et al., 2018), with OAs from 

0.65 - 0.73 (Yao et al., 2012a; Korhonen et al., 2016; Amiri et al., 2019) to 0.86 - 0.92 (Martinuzzi 

et al., 2009; Casas et al., 2016).  

In Germany, as in many other countries, up-to-date, area-wide ALS data is rarely available, whereas 

CIR aerial imagery is regularly updated by state surveys. As deadwood frequently occurs in rough 

terrain and forest stands with high structural complexity, the use of aerial imagery data imposes 

challenges on deadwood detection that need special addressing. Solar angle and viewing geometry 
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of aerial images cause shadow occurrence and limited insight into the canopy openings. These 

factors influence the derivation of correct canopy surface heights by image matching, especially in 

forest gaps and clearances or at the edges of forest roads (Zielewska-Büttner et al., 2016a; White 

et al., 2018; Ackermann et al., 2020). These inaccuracies result in image and object distortions of 

derived “true-orthophotos”.  

This is where the correct separation of dead or senescing trees from bare ground becomes 

challenging (Meddens et al., 2011; Fassnacht et al., 2014). Bare ground, visible by eye through the 

canopy of open stands or at the border to forest roads, mimics the spectral signature of deadwood 

objects and is a source of misclassification in automated methods when vegetation heights are not 

reliable. 

We used Random Forest (RF) models to classify standing deadwood among live and declining trees 

and bare ground. As input data vegetation heights from a canopy height model (CHM) derived from 

a digital surface model (DSM) from image matching of aerial images, and an ALS-based Digital Terrain 

Model (DTM) were used. The same aerial images and DSM were used to calculate a “true-

orthophoto” (in the following termed “orthophoto”), from which spectral variables were generated. 

For improving the differentiation between “deadwood” and “bare ground” we developed and tested 

two alternative approaches: a post-processing procedure and the application of a “deadwood-

uncertainty” filter. Based on the results we evaluated the suitability of regularly updated aerial 

imagery data of state surveys and the products thereof as a sole basis for reliable standing deadwood 

detection.  

 Materials and Methods  4.2

 Study site 4.2.1

The study area of 600 ha is located on the northern slopes of Feldberg (1493 m a.s.l.), the highest 

mountain in the Black Forest mountain chain (Southwestern Germany). It encompasses 102 ha of 

a strictly protected forest reserve “Feldseewald” named from the mountain glacier lake “Feldsee” 

located at 1100 m a.s.l. within the reserve. The terrain of the study area is characterized by steep 

slopes with rock formations in the north-west of the lake and smoothly rising elevations from the 

lake to the east and north-east (Figure 4-1).  

The reserve is surrounded by large, managed forest stands and some mountain meadows. The 

dominating tree species of the montane and subalpine conifer and mixed forests is Norway spruce 

(Picea abies) accompanied by Silver fir (Abies alba) and European beech (Fagus sylvatica). No 
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intervention policy since the creation of the forest nature reserve in 1993, natural disturbances and 

natural tree mortality caused a high abundance of deadwood in different forms and decay stages, 

which makes the area a suitable model region for developing and evaluating a deadwood detection 

method under difficult topographic conditions.  

 

Figure 4-1 Location of the Black Forest in Germany (1); Study area (2) with the lake “Feldsee”, the second 

top of Feldberg mountain “Seebuck” (1448 m a.s.l.), the “Feldseewald” strict forest reserve and the 

reference polygons for the 4 classes (“live”, “dead”, “declining” and “bare ground”, see Figure 4-2) on the 

background of the color-infrared (CIR) orthophoto; Examples of standing dead trees (3, 4) and snags (4).   

 Remote sensing and GIS data 4.2.2

As a primary input the 4 channels (red, green, blue and near-infrared, RGBI) of stereo aerial imagery 

with a ground resolution of 0.2 m and overlap of 60/30 % (end/side lap) owned by the State Agency 

of Spatial Information and Rural Development (LGL) (Landesamt für Geoinformation und 

Landentwicklung Baden-Württemberg, 2020b) were used. The aerial imagery was acquired on 08 

August 2016 between 07:12:08 - 07:41:37 with a UC-SXp-1-30019136 camera with a focal length of 

100.5 mm. Orthophotos of 0.5 m resolution, as well as a DSM and CHM of 1 m resolution from the 

LGL (Landesamt für Geoinformation und Landentwicklung Baden-Württemberg, 2020b), all derived 

by image matching from the stereo aerial imagery in line with the methodology described in 

Schumacher et al. (2019), were used to deliver both spectral and surface height information for the 

modelling.  



4. CHAPTER III   

76 

To avoid misclassifications with non-forest areas only land declared as “forest” (according to the 

forest-ownership GIS-layer administrated by the Department of Forest Geoinformation of Baden-

Württemberg (Mathow, 2015)) was analyzed. Standing water was masked out based on 

a topographical GIS-layer produced by the State Authority Topographical and Cartographical 

Information System (ATKIS) (Landesamt für Geoinformation und Landentwicklung Baden-

Württemberg, 2020a). A DTM of 1 m resolution (LGL) (Landesamt für Geoinformation und 

Landentwicklung Baden-Württemberg, 2020b) was used to derive slope for identifying steep rocks.  

Shadow pixels were excluded from the classification to guarantee that only spectral information from 

the sunlit tree crowns was used. We generated two shadow masks based on hue (H) and value (V) 

from an HSV-transformation (hue, saturation, value) of the RGB bands and their histograms 

(calculated using the package “grDevices” implemented in the software R (R, 2019)). Deep (darkest) 

shadow pixels (H =≥0.51 or V ≤ 0.18) were removed during the data preparation. Partial shadow cells 

(H ≥ 0.37 or V ≤ 0.24) were used later in the post-processing.  

All analyses were carried out on data with 0.5 m resolution to make best possible use of the high 

resolution information in the data. Raster-data with lower resolution were disaggregated to 0.5 m 

and polygon features were rasterized based on the resolution of the orthophoto and analyzed using 

the “raster” package in R (Hijmans, 2020). For polygon operations the “rgdal” (Bivand et al., 2019) 

package in R was used. 

 Standing deadwood definition and model classes 4.2.3

The aim of our study was the detection of standing deadwood in different stages of decay, i.e. from 

recently dead trees with crown and needles to high snags (stages 3 to 6, according to  Thomas et al. 

(1979) , Figure 4-2).  

To exclude low stumps and avoid misclassifications with visible bare ground or lying deadwood, only 

pixels above 5 m in height according to the CHM were selected for the analysis. Considering the 

advantages of the infrared band in depicting differences in cell structure and water content in the 

vegetation, we did not only distinguish between “dead” and “live” (vital) vegetation, but considered 

also “declining” trees with signs of dieback, breakage or foliage discoloration. A fourth class “bare 

ground” was included in the model to account for pixels where the CHM was not accurate enough to 

exclude bare ground areas.  
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Figure 4-2 Classification of forest trees in three model classes (“live” – green, “declining” – blue, “dead”– 

red), the corresponding decay stages as adapted from Thomas et al. (1979) in Zielewska-Büttner et al. 

(2018), as well as their appearance photographed in the field (field photo) and from the air (orthophoto). 

Low snags and stumps (h < 5m) were excluded from the study.  

 Reference polygons for model calibration 4.2.4

515 reference polygons were digitized as a basis reference data pool for model training as well as for 

the validation on pure classes and a polygon-based validation (Table 4-1). The reference data was 

collected mainly from the forest reserve and adjacent stands, where selected trees of the classes 

“dead” and “declining” had been additionally verified in the field in 2017.  

The reference polygons of the classes “dead” and “declining” were delineated as single tree objects, 

while “bare ground” and the “live” stand was mostly mapped as larger uniform areas to include 

potential partial shadows between trees standing close to each other. While delineating the 

reference data we made sure to create uniform object classes, while at the same time including the 

variability within the classes, e.g. selecting deadwood of various sizes and stages of decay. The 
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objects were also chosen from diverse spatial locations of the study area to account for regional 

differences and bidirectional reflection function effects (Fassnacht et al., 2012).  

The collected polygon data was rasterized with each pixel having its center inside the polygon 

assigned to the respective class.  

The polygon sizes for the class “dead” varied from 0.1 (snags) to 65.9 m² (with a median of 11 m² 

(corresponding to a dead tree with branches of 1.5 - 2 m length). Declining trees had larger crowns 

and a minimum polygon size of 6.9 m² (median: 22.1 m²).    

Table 4-1 Reference polygons, their number and size per class, as well as the amount of pixels available for 

training and validation on “pure classes” after converting polygon areas into raster maps with 0.5 m 

resolution.  

Model class N 
Polygon area (m²) 

No. of pixels 
Sum Min Max Mean Median SD 

live 33 24789.7 1.2 2797 751.2 576.6 659.9 98137 

dead 315 4295.7 0.1 65.9 13.6 11 12.1 17143 

declining 64 1510.8 6.9 52 23.6 22.1 10.7 6048 

bare ground 103 1208.9 0.5 178.7 11.7 4.2 22.3 4272 

4.2.4.1 Deadwood detection method 

The deadwood detection method was developed in 3 analysis steps as depicted in Figure 4-3. First, 

a RF model (“DDLG”) was calibrated for predicting the model classes: “dead”, “declining”, “live” and 

“bare ground”. The following two scenarios aimed at improving the differentiation between 

deadwood and bare ground: Firstly, a post-processing procedure (DDLG_P), estimating the 

probability of “deadwood”-pixel with a mean neighborhood filter and removing isolated pixels 

causing the so called “salt and pepper”-effect (Kelly et al., 2011). Secondly, the application of 

a deadwood-uncertainty filter for identifying unreliable deadwood patches (DDLG_U). 

4.2.4.2 Random forest model (DDLG) 

The Random Forests (RF) algorithm (Breiman, 2001) implemented in the R-package “caret” (Kuhn et 

al., 2018) was used in the first step (DDLG) as a classifier to distinguish standing deadwood from the 

three other model classes. We trained the RF model (DDLG) using 2000 pixels per class, randomly 

drawn from the reference polygons.  
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Figure 4-3 Methodological steps used for deadwood detection: First, a random forest model (DDLG) was 

calibrated, distinguishing between “dead”, “declining” and “live” trees, as well as “bare ground”. The model 

results were enhanced using two alternative approaches for addressing the deadwood - bare ground 

misclassification issue: (1) a chain of post-processing steps (DDLG_P) and (2) with the generation of 

a model-based deadwood-uncertainty filter (DDLG_U). Bold frames represent the classification results. The 

acronyms for the analysis steps correspond with the model classes: dead (D), declining (D), live (L), bare 

ground (G), as well as indicated post-processing (P) and uncertainty filter (U). For methodological details of 

the single analysis steps see 2.5.1-2.5.3. 

The model was run 15 times using 3 repetitions and 5-fold cross-validation with 10 variables at each 

split, allowing 500 trees. Model input consisted of 18 variables: red (R), green (G), blue (B) and 

infrared (I) spectral bands of the orthophoto and ratios thereof (Table 4-2) complemented with hue, 

saturation and value (HSV) and information on vegetation height (CHM). We expected the latter to 

improve the differentiation between standing deadwood of more than 5m height and bare ground 

with expected heights close to 0 m.  

To reduce model complexity, we selected the following uncorrelated (Spearman’s r ≤ |0.7|) variables 

with the highest model contribution: Vegetation height (Vegetation_h), red-to-all band ratio 

(R_ratio), blue-to-infrared ratio (B_I_ratio), hue (H) and saturation (S). As RF algorithm can deal with 

correlated variables we also included the Normalized Difference Vegetation Index (NDVI), which was 

correlated with R_ratio and B_I_ratio, but is a standard variable used for studies on vegetation health 

and deadwood detection and the information of the blue spectral band (B) for potentially improving 
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bare ground recognition. The contributions of the individual variables to the full and the reduced RF 

model are shown in Table A 1. 

Table 4-2 List of ratios tested as predictor variables for the Random Forest RF model. Variables selected in 

the final model are displayed in bold.  

 Predictor variables Description or formula Reference 

R, G, B, I Red, green, blue, infrared bands - 

H, S, V Hue, saturation, value calculated with 
“rgb2hsv” function in “grDevices” 

R-package “grDevices” (R, 2019) 

Vegetation_h Vegetation height from CHM - 

R_ratio R / (R + G + B + I) 

Ganz (2016) 
G_ratio G / (R + G + B + I) 

B_ratio B / (R + G + B + I) 

I_ratio I / (R + G + B + I) 

NDVI (I - R) / (I + R) Jackson and Huete (1991) 

NDVI_green (I - G) / (I + G) Ahamed et al. (2011) 

G_R_ratio G / R Waser et al. (2014b) 

G_R_ratio_2 (G - R) / (G + R) Gitelson et al. (1996) 

B_ratio_2 (R / B) * (G / B) * (I / B) self-developed after Waser et al. [11] 

B_I_ratio B / I self-developed 

Finally, to identify steep rocks and reclassify them to “bare ground”, a slope-mask was used. Derived 

from the DTM and smoothed using the Gaussian filter in a 3-pixel neighborhood, it was applied to 

the model outcome, to reclassify “dead”-pixels to “bare ground” in areas with slopes > 50° and CHM-

values < 15 m. 

4.2.4.3 Post-processing of RF results (DDLG_P) 

To enhance the results of the RF classification (DDLG) a post-processing procedure was developed to 

remove the salt and pepper effects (single pixels and groups of two) and to improve the 

differentiation between the classes “bare ground” and “dead” (Figure 4-3). 

First, clumps of isolated deadwood pixels were identified (using the function “clump” of the “raster” 

package) and the amount of pixels in each clump (“dead” patch) was calculated. Clumps smaller than 

0.5 m² (2 pixels) were considered unreliable and reclassified based on the most frequent pixel value 

occurring in its 3 x 3 pixel neighborhood (majority filter). In case isolated “dead” pixels were 

surrounded by NA values, they were reclassified to NA. 

Hypothesizing that isolated deadwood pixels surrounded by pixels of the classes “dead” or 

“declining” had a higher probability to be correctly classified than when surrounded by “bare 

ground” or ”live”-pixels, focal statistics was applied to categorize deadwood pixels based on their 
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surroundings. For this purpose, pixels of all classes were reclassified into: “NA”= 0 , “bare ground”= 1, 

“live” = 2 , “declining” = 3, “dead” = 4 and for each pixel the mean value k of the neighboring pixels 

within a 3 x 3 pixel window was calculated. Pixels of the classes “dead” and “bare ground” with 

k ≥ 3.1 were classified as “dead”. The remaining “dead”-pixels were reclassified as follows: 

”declining” with 2.8 ≤ k < 3.1, “live” with 1.4 ≤ k < 2.8 and “bare ground” with k < 1.4. 

The majority-filter to remove the salt & pepper effect was then applied a second time, this time to 

three remaining pixel classes. Finally, a “partial shadow-filter” was applied. Clumps of deadwood 

pixels located entirely (> 99 % of the clump size area) in partial shadow (for details see data section 

2.2) were reclassified to “bare ground”.   

The steps of the post-processing procedure were calculated using packages: "raster", "igraph" 

(Csardi. and Nepusz, 2006), and "data.table” (Dowle and Srinivasan, 2019) in R. The package “tictoc” 

(Izrailev, 2014) was applied to monitor the processing time. The results were saved as geoTiff in 

unsigned integer raster format.  

4.2.4.4 Deadwood uncertainty filter (DDLG_U) 

As an alternative solution to improve the differentiation between “bare ground” and deadwood 

a deadwood-uncertainty filter was developed, based on a binomial generalized linear model (GLM) 

quantifying the probability of a “dead”-pixel to be correctly classified (1 = ”dead”, 0 = ”not dead”), as 

a function of the surrounding environmental and spectral conditions.  

To generate the training and evaluation data for this model, a visual evaluation of the results of the 

deadwood model layer (DDLG) was carried out. All “dead” DDLG pixels were clumped into patches 

(3482) and converted to polygons in ArcGIS. A random selection of 2000 clumps was visually 

classified into “dead” (correctly classified = 1) or “not-dead” (misclassified = 0). Where no reliable 

classification was possible by visual interpretation, the respective polygon was dropped. Of the 762 

verified and 1236 falsified deadwood patches consisting of 23119 and 5169 pixels respectively, 1000 

pixels per class were then randomly selected for the training and four evaluation datasets 

respectively (i.e. consisting of 2000 pixels each).  

Six predictor variables were entered in this model (Table 4-3): the clump size the deadwood pixel was 

embedded in, bare-ground occurrence and canopy cover within a 11.5 x 11.5 m (23 x 23 pixels) 

moving window corresponding roughly to a size of a dead tree’s crown, and three image texture 

variables: the curvature, as well as the mean value of curvature and the Mean Euclidean Distance 

(Irons and Petersen, 1981) both calculated in a 5 x 5 pixel moving window to explore the texture of 

smaller sections of deadwood objects, e.g. changing reflections in the infrared (I) band at the outer 



4. CHAPTER III   

82 

parts of dead trees. Curvature was calculated using “Curvature” function of ArcMap (ESRI, 2018) and 

Mean Euclidean Distance was used as implemented ERDAS Imagine (HEXAGON, 2020).  

Table 4-3 Predictor variables tested for the deadwood-uncertainty model with their description, 

hypothesized meaning and unit. Variables selected for the final model are presented in bold. I – infrared 

spectral band.  

Variable Description Hypothesized meaning Unit 

Clump_size Size of the “dead” pixel 
clumps grouped with 8 

neighbors (1 pixel = 0.25 m²) 

Very small and very big clumps are 
more likely to be falsely classified 

N 

Bare_ground Proportion of bare ground 
within a 11.5 x 11.5 m (23 x 23 

pixels) moving window 

Occurrence of “bare ground” next 
to “dead” pixels may indicate a 

possible misclassifications of both 
classes 

0-1 

Canopy_cover Proportion of pixels above 2 
m vegetation height within a 
11.5 x 11.5 m (23 x 23 pixels) 

moving window 

Pixels with low canopy cover are 
likely to have false height values in 
transition areas between high and 

low vegetation 

0-1 

Curvature Curvature values per pixel 
based on the I  band 

Form and direction of the I spectral 
signal may differ between “dead” 

and “bare ground” objects 

Value 

(-∞) - 
∞ 

Curvature_Mean Mean curvature values within 
a 2.5 x 2.5 m (5 x 5 pixels) 

moving window based on the 
I band 

Form and direction of the I spectral 
signal in a wider surrounding may 
show differences between  “dead” 

and “bare ground” objects 

Value 

(-∞) - 
∞ 

Mean Euclidean 
Distance  

(Texture 
Features) 

Mean Euclidean Distance  
values within a 2.5 x 2.5 m 

(5 x 5 pixels) moving window 
based on the I band 

“Dead” and “bare ground” objects 
may show different texture 
characteristics in the I band 

Value 

0 - ∞ 

We followed a hierarchical variable selection procedure: First, variables were tested univariately and 

in their quadratic form. Uncorrelated (Spearman’s r <= |0.7|) variables which significantly 

contributed to distinguishing correctly and falsely classified “dead” pixels were retained (Table 

A  4-2). We then tested all possible combinations of these variables using the dredge-function (R-

package MuMIN (Barton, 2019)) to select the best model based on Akaike’s Information Criterion 

(AIC). Model fit was measured by means of several evaluation metrics: the Area Under the Receiver 

Operating Characteristic Curve (AUC) as implemented in R package “AUC” (Ballings and Van den Poel, 

2013) as well as  sensitivity, specificity, positive prediction value (PPV), negative prediction value 

(NPV), overall accuracy (OA) and Cohen´s Kappa as implemented in the R package “caret” and 

described by Hosmer and Lemeshow (2000).  
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In addition, the uncertainty model was evaluated using four independent evaluation datasets (2000 

pixels each), drawn without replacement and with an equal proportion of presence and absence 

observations in each set.  

To analyze the influence of the single predictor variables, we plotted them against the target variable 

using the R-package “ggplot2” (Wickham, 2016).  

Finally, to convert continuous values into a binary filter (deadwood-classification correct/false), 

different cut-off values were tested: The value at Kappa maximum and the value resulting in 

a maximum sensitivity with a specificity of at least 0.7 (identified using the multiple optimal cutpoint 

selection with increments of 0.05, R-package “cutpointr” (Thiele, 2019)), with the intention of 

keeping as many of the correctly classified “dead” pixels as possible while removing a large 

proportion of the falsely classified pixels.   

 Model validation 4.2.5

4.2.5.1 Visual assessment 

As a first step, the outcome of all models was visually examined based on orthophoto, CHM and 

stereo aerial imagery using GIS (2D) and Summit Evolution (3D) (DAT/EM, 2012) to appraise the 

plausibility of the predictions in a real-world situation.  

4.2.5.2 “Pure classes” validation  

We evaluated the RF model (DDLG) using the validation dataset consisting of 2000 pixels per class, 

randomly drawn from the reference polygons. 

The confusion matrix and associated accuracy measures, i.e. overall accuracy (OA) with a 95 percent 

confidence interval (95% CI), producer’s (PA) and user’s (UA) accuracy as well as Cohen´s Kappa were 

calculated for each class as implemented in the package “caret”, comparing each class factor level to 

the remaining levels (i.e. a "one versus all" approach).  

4.2.5.3 Pixel-based validation based on a stratified random sample 

In addition to the validation on “pure classes” an independent stratified random sample was 

collected. For this purpose, 750 pixels per class (“dead”, “declining”, “live”, “bare-ground”) with only 

1 pixel randomly sampled per clump (defined based on the DDLG_P layer) were selected. Pixels were 

then classified by visual interpretation, with pixels of different classes randomized before 

interpretation to avoid any interpreters’ bias. For evaluation, the results of the visual classification 
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were compared with the results of the three model outcomes (DDLG, DDLG_P and DDLG_U) for 

generating the confusion matrices and associated accuracy measures.  

4.2.5.4 Polygon-based deadwood validation 

Finally, to estimate the accuracy of single tree detection of the three modelling outcomes, the results 

for the class “dead” were compared with the reference polygons of “dead” class. For this purpose an 

intersection analysis was conducted to assess to which extent the deadwood reference polygons 

intersected with pixels of the deadwood class identified by each model (DDLG, DDLG_P and 

DDLG_U). ”Positive detection” was assigned, when at least one deadwood pixel (single “dead” pixels 

often representing deadwood in decay stages 5 or 6 (Figure 4-2)) intersected. In addition, we 

compared the overall area covered by all intersecting pixels with the area of the reference polygons.  

 Results 4.3

 Random Forest model and pure classes’ validation 4.3.1

The reduced Random Forest model based on 7 variables (DDLG) performed similar compared to the 

initial, full model including 18 variables, with a Cohen’s Kappa of 0.92 and 0.93 and an overall 

accuracy of 0.95 and 0.94 respectively (Table 4-4). All classes were predicted with very good 

producer’s and user’s accuracy values (all around 0.9 or above). 

Table 4-4 Results of the “pure classes” validation for the DDLG model with all 18 and the finally selected 7 

variables respectively, measured by producer’s, user’s and overall (in bold) accuracies as well as Cohen’s 

Kappa. Confusion matrices are presented in (Table A 4-1)   

DDLG 

version 
Accuracy measure 

Class 
Overall 

accuracy 
Kappa Bare 

ground 
Live Declining Dead 

18 
variables 

Producer's accuracy  0.99 0.97 0.90 0.92 
0.94 0.93 

User’s accuracy  0.99 0.94 0.89 0.95 

 7 
variables 

Producer's accuracy  0.99 0.97 0.91 0.92 
0.95 0.92 

User’s accuracy  0.98 0.95 0.90 0.96 

The most important predictor variables were Vegetation height (CHM), R_ratio, NDVI, B_I_ratio and 

hue (Figure A 4-1). Vegetation heights were a key factor for separating pixels of the classes “bare 

ground” and “dead”. NDVI and R_ratio were especially decisive for the recognition of “live” trees, 

and NDVI, hue and B_I_ratio were important for distinguishing between the classes “live”, 

“declining” and “dead”. Blue band and saturation showed only little contributions to the model.  
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 Uncertainty model 4.3.2

The deadwood-uncertainty model included 5 of the 6 tested input variables (Table A 4-2), Clump_size 

and Bare_ground, both as linear and quadratic terms, Canopy_cover, Curvature and 

Curvature_Mean. All retained variables contributed significantly to the model. The effect plots 

(Figure A 4-2) show that correct classification of deadwood was associated with larger clump sizes, 

higher canopy cover and low amount of “bare ground” in the neighborhood. Moreover, deadwood 

was more likely to be correctly classified under higher texture parameter values (higher structural 

complexity). 

With an AUC of 0.89 the model showed good predictive power. Cohen´s Kappa ranged between 0.58 

to 0.60 and the overall accuracy between 0.79 and 0.80, depending on the selected threshold (Table 

4-5). The Kappa maximum threshold (0.39) showed slightly better overall performance and better 

predictive power for identifying misclassified pixels. However, as we prioritised keeping a wrongly 

classified over discarding a correctly classified “dead” pixel, the maximum sensitivity by specificity of 

0.7 - value (0.31) was selected to discriminate between “dead” and “not-dead”. 

Table 4-5 Model fit and predictive performance of the “deadwood-uncertainty” model measured by 

sensitivity, specificity, positive prediction value (PPV), negative prediction value (NPV), overall accuracy and 

Cohen´s Kappa for thresholds based on Kappa maximum (0.39) and the maximum sensitivity by the 

specificity of 0.7 (0.31). In addition threshold-independent Area Under the ROC-Curve (AUC) was provided 

for different classes’ separation. Independent validation was performed on four independent validation 

datasets with their results calculated for the selected threshold of maximum sensitivity by specificity of 0.7 

(0.31). The validation results are presented below for comparison with arithmetic mean and standard error 

values showing the amount of variation between the results of different folds. 

Performance  Model fit 
4 FOLDS validation  

Max sensitivity by specificity=0.7 (0.31) 

metrics 
Kappa maximum 

(0.39) 
Max sensitivity by 

specificity=0.7 (0.31) 
Mean Standard deviation 

Sensitivity 0.82 0.88 0.89 0.007 

Specificity 0.77 0.70 0.72 0.009 

PPV 0.78 0.75 0.76 0.005 

NPV 0.81 0.85 0.87 0.007 

Overall accuracy 0.80 0.79 0.80 0.003 

Cohen's Kappa 0.60 0.58 0.61 0.005 

AUC 0.89 0.90 0.005 

The results of the independent model validation, using four validation folds showed consistently 

good model performance for all metrics (Table 4-5), with an average AUC-value of 0.90, mean 
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Cohen’s Kappa of 0.61, and mean value for overall accuracy of 0.80 across folds by standard 

deviation of less than 0.005.  

 Classification results 4.3.3

The different classification scenarios DDLG, DDLG_P and DDLG_U (Table 4-5) resulted in different 

amounts of pixels per class, but showed a consistent general pattern with 39.4% “live”,   0.4 - 0.5% 

“dead”, 5.2 - 5.5% “declining” and 0.2% “bare ground” areas. About 55% of the area was masked out 

as NA (Figure 4-4, Table 4-6). 

 

Figure 4-4 Examples of the results obtained with different classification scenarios: Random Forest (RF) 

classification (DDLG), RF classification with post-processing (DDLG_P) and with additional deadwood-

uncertainty filter (DDLG_U), compared to the input CIR aerial imagery (upper left). Note the reduction of 

isolated pixels in DDLG_P and the improved “bare ground” recognition in DDLG_P and DDLG_U compared 

to DDLG (lower left corner). 
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With post-processing, the amount isolated pixels of the classes “dead”, “declining” and “bare 

ground” decreased, mostly in favour of “live” pixels (Table 4-6, Figure 4-4). The uncertainty filter 

targeting at a better differentiation between “dead” and “bare ground” changed the proportions of 

these two classes from about 3 / 1 to 2 / 1 (Table 4-6).     

Table 4-6 Classification results per class in number and percent (%) of pixels (0.5 x 0.5m) for the three 

classification scenarios: Random Forest (RF) classification (DDLG), RF classification with post-processing 

(DDLG_P) and with additional deadwood-uncertainty filter (DDLG_U)  

Class  
DDLG DDLG_P DDLG_U 

Pixel % Pixel % Pixel % 

Live 9341179 39.4% 9342529 39.4% 9341179 39.4% 

Dead 119790 0.5% 105661 0.4% 102815 0.4% 

Declining 1274349 5.4% 1237793 5.2% 1274349 5.4% 

Bare ground 35690 0.2% 36265 0.2% 52665 0.2% 

NA 12933862 54.6% 12982622 54.8% 12933862 54.6% 

Total 23704870 100.0% 23704870 100.0% 23704870 100.0% 

The number of deadwood clumps (“dead”-pixels consolidated to patches) (Table 4-7) decreased 

successively from almost 10000 (DDLG) to 3482 in DDLG_P and 3139 in DDLG_U, while their total 

area decreased from ca. 3 ha to 2.64 and 2.57 ha respectively. In all cases small deadwood patches 

dominated with a median size of 0.5 for DDLG and 2.25 - 3 m² for DDLG_P and DDLG_U, a minimum 

size of 0.25 m² (1 pixel) and a maximum size of over 800 m² (a large group of dead trees aggregated 

to one patch). 

Table 4-7 Classification results for deadwood patches (clumps of pixels classified “dead”) expressed in 

number of pixels (size 0.5 x 0.5m) per classification scenario: Random Forest (RF) classification (DDLG), RF 

classification with post-processing (DDLG_P) and with “deadwood-uncertainty” filter (DDLG_U). 

  DDLG DDLG_P DDLG_U 

  Pixel m² Pixel m² Pixel m² 

N 9868 3482 3139 

SUM 119790.00 29947.50 105661.00 26415.25 102815.00 25703.75 

MEAN 12.14 3.04 30.34 7.59 32.75 8.19 

MEDIAN 2.00 0.50 10.00 2.50 12.00 3.00 

MIN 1.00 0.25 1.00 0.25 1.00 0.25 

MAX 3281.00 820.25 3258.00 814.50 3281.00 820.25 

SD 53.82 13.45 87.30 21.82 91.98 22.99 
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 Model validation 4.3.4

4.3.4.1 Visual assessment 

The visual assessment, carried out parallel to the statistical validation, didn´t confirm the high 

accuracy values of the pure classes validation of the DDLG model. Visual control identified rocks and 

bare ground within the forest stands and on forest stand borders being misclassified as “dead”, not 

conforming to the very high accuracy values for predicting this class and to the almost 100 % 

accuracy for the class “bare ground”.  

4.3.4.2 Pixel-based validation  

For all three classification scenarios, validation on an independent, stratified random sample of pixels 

showed lower accuracies per class than that obtained with pure classes’ validation on the DDLG. 

Cohen’s Kappa (0.59 - 0.65) and overall accuracies (0.70 - 0.74) (Table 4-8) were of similar magnitude 

for all three scenarios, with the best results for DDLG_U.  

Table 4-8 Results of the validation on an independent stratified random sample of 750 pixels per class for 

the three classification scenarios Random Forest (RF) classification (DDLG), RF classification with post-

processing (DDLG_P) and with deadwood-uncertainty filter (DDLG_U). Presented are producer’s, user’s and 

overall accuracy and Cohen’s Kappa. Detailed confusion matrices with the amount of validated pixels per 

class are shown in Table A 4-3. 

Model 
scenario 

Accuracy measure 

Class 
Overall 

accuracy 
Kappa Bare 

ground 
Live Declining Dead 

DDLG 
User's accuracy 0.82 0.77 0.67 0.60 

0.70 0.60 
Producer's accuracy 0.57 0.79 0.56 0.87 

DDLG_P 
User's accuracy 0.75 0.73 0.61 0.69 

0.70 0.59 
Producer's accuracy 0.66 0.79 0.55 0.79 

DDLG_U 
User's accuracy 0.76 0.77 0.66 0.74 

0.74 0.65 
Producer's accuracy 0.82 0.77 0.56 0.80 

The greatest balance between producer’s and user’s accuracies were consistently achieved for the 

class “live” with PA of 0.79 for the DDLG and 0.77 for the two other scenarios and UA of 0.77 (DDLG, 

DDLG_U) and 0.73 (DDLG_P). The drop in PA after post-processing was probably caused by the 

majority filter applied to smooth the results. The class “live” had the most misclassifications with the 

class “declining”, for which classification was generally least reliable (PA of 0.55 - 0.56 and UA of 0.61 

- 0.67), and additional misclassifications occurred with the class “dead”. “Bare ground” classified by 

DDLG achieved PA = 0.57 and UA = 0.82 and was almost exclusively misclassified as “dead”. This 
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improved with post-processing to PA = 0.66 and to PA = 0.82 after applying the uncertainty filter. 

Simultaneously, the UA dropped from 0.82 to 0.75 (DDLG_P) and 0.76 (DDLG_U).  

The classification of “dead” pixels showed the best PA=0.87 in the first scenario (DDLG). On the other 

hand a low UA = 0.60 indicated a high commission error, with misclassifications especially in the 

classes “bare ground” (283 pixels) and “declining” (138 pixels) (Table A 4-3). Post processing and the 

application of the deadwood-uncertainty filter, both led to a more balanced PA to UA relationship. 

UA increased significantly from 0.60 (DDLG) to 0.69 (DDLG_P) and 0.74 (DDLG_U) whereas PA 

decreased from 0.87 to 0.79 and 0.80 for the same scenarios.  

4.3.4.3 Polygon based deadwood validation 

The polygon-based validation confirmed good detection of standing deadwood objects with 91 - 96 % 

of the reference deadwood-patches and 90 % of their area being detected in all classification 

scenarios (Table 4-9). Mean (12.8-13.4) and median (10.4-10.6) patch-size, and their standard 

deviation (11.5) showed similar values for both the intersected and the reference polygons, 

indicating that detected deadwood patches correctly depicted the “real” deadwood occurrence in 

most cases. 

Table 4-9 Results of the polygon-based validation. Basic statistics (N, % of N, area sum and percent  (%), 

area mean, median, maximum and standard deviation) for the deadwood patches identified by the three 

classification scenarios: Random Forest (RF) classification (DDLG), RF classification with post-processing 

(DDLG_P) and with a deadwood-uncertainty filter (DDLG_U), that were validated (Intersected) and not 

validated (Not intersected) when compared with the reference deadwood polygons.  

Polygon data 

DDLG DDLG_P DDLG_PU 

Intersected 
Not 

intersected 
Intersected 

Not 
intersected 

Intersected 
Not 

intersected 

N 303 12 287 22 291 24 

N (% of reference) 96% 4% 91% 7% 92% 8% 

AREA SUM (m²) 3868.5 7.5 3844.7 23.1 3855.2 22.3 

AREA (% of reference) 90% 0% 90% 1% 90% 1% 

AREA MEAN (m²) 12.8 0.6 13.4 0.8 13.2 0.9 

AREA MEDIAN (m²) 10.4 0.1 10.6 0.7 10.6 0.5 

AREA MAX (m²) 64.9 4.3 65.1 4.3 64.9 4.3 

AREA SD (m²) 11.5 1.2 11.5 0.9 11.5 1.1 

The intersection of the deadwood reference polygons with the patches constructed from pixels 

classified as “dead” showed that their total area exceeded the total area of the reference polygons 
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by 40% in all three classification scenarios: DDLG, DDLG_P and DDLG_U (Table A 4-4). The maximum 

area of a single deadwood-patch of 811-813.8 m² (identified by all 3 scenarios) compared to the 

maximum size of a single reference polygon of 65.9 m² indicated grouping of several deadwood-

objects into one patch.  

For DDLG, the number of intersecting deadwood-patches (323) was larger than those of the 

reference polygons (315). For DDLG_P and DDLG_U the number of intersecting deadwood-patches 

dropped to 76 % (238) and 90 % (285) of the reference polygon numbers (Table A 4-4). Given 

detection rates of more than 90% (Table 4-9) this again indicates clustering of pixels of several dead 

trees into a larger patch. The number of omitted (i.e. not detected) polygons (Table 4-9) was lowest 

for DDLG and highest for DDLG_P, with an increasing trend of omitting small polygons for DDLG_U 

and DDLG_P. The mean area of the not detected polygons was less than 1 m² and the median less 

than 0.7 m², corresponding to 1 - 3 pixel and the total area of omitted deadwood did not exceed 1 % 

in either scenario. 

 Discussion 4.4

 Deadwood detection 4.4.1

With Random Forest classification, we used a standard procedure to detect standing deadwood and 

distinguish it from living and declining trees, as well as bare ground. Although the validation on pure 

classes appeared promising, with very high accuracies above 0.9, visual assessment revealed grave 

misclassifications of “bare ground” as “deadwood”. This result was confirmed when applying an 

independent, random sampling validation, revealing a low UA of 0.60 (Table 4-8). The latter 

improved with post-processing (UA = 0.69) and the application of a deadwood uncertainty filter (UA 

= 0.74), but for the price of decreasing PA from 0.87 to 0.79 and 0.80, a reliable, and therefore 

satisfactory level. OA remained constant for DDLG and DDLG_P at 0.7 and increased to 0.74 for 

DDLG_U. This level of accuracy places our method in line with visual methods based on CIR aerial 

imagery and methods for detecting snags using solely ALS data, e.g.  Yao et al. (2012a) with OA of 

0.7 - 0.75. Combining CIR and ALS data delivered mostly better results with OA between 0.83 

(Kantola et al., 2010) and > 0.9 (Polewski et al., 2015a; Kamińska et al., 2018) depending on the 

algorithm used. 

The polygon-based validation, with more than 90 % of the deadwood-patches and their area 

correctly identified, proved a very good detectability of single dead trees. Not-detected polygons 

with a median area of 1 - 3 pixels in all classification scenarios indicate the biggest problems in the 
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detection of snags and small dead crowns. This is in line with Wing et al. (2015), who showed 

detection reliability rising with the tree’s diameter at breast height (DBH) and Krzystek et al. (2020) 

who found lower accuracies for snags (UA= 0.56, PA = 0.66) than for dead trees (UA and PA > 0.9). 

Although our method was pixel-based, the deadwood-detection accuracy corresponds with the 

accuracy of 0.71 - 0.77 (by 1 to 1 pixel correspondence) achieved by Polewski et al. (2015c) using 

object detection methods based on ALS and CIR aerial imagery.  

The larger overall area of our classified deadwood patches compared to the area of the reference 

polygons partially resulted from aggregating pixels to coarse clumps encompassing several 

neighbouring dead trees. However, for many ecological questions and applications in practical 

forestry identifying single deadwood objects and quantifying their size is important and can give 

a hint e.g. on the decay stage of a dead tree (Zielewska-Büttner et al., 2018). Our pixel-based method 

produced information on the location and area of standing deadwood together with a probability 

that a pixel was correctly classified. Adding object detection would thus be a valuable extension of 

our method. 

Adamczyk and Bedkowski (2006) underlined the difficulty in deadwood detection, as spectral 

differences between the classes are very fluent and influenced by light conditions, the location of the 

tree, crown geometry and individual trees coloring (Adamczyk and Bedkowski, 2006). We decided to 

use declining trees as a supporting class, having in mind that especially in the outer parts of crowns 

there is no sharp transition between a healthy crown and bare ground or the live stand. As expected, 

the PAs for this class were constantly the lowest (0.55 - 0.56) across all scenarios as this class was not 

targeted for improvement. Although not highly reliable (UA between 0.61 and 0.67) the trees 

identified as “declining” still have a potential to be used in forestry practice for identifying trees 

differing from the rest of the stand, e.g. by showing dry branches, breakage or lichens in the crown, 

or being weakened and thus potentially prone to or in early stage of insect (e.g. bark beetle) 

infestation.  

 Bare ground issue 4.4.2

The class “bare ground” occurred to be the key to the optimization of our deadwood detection 

method. Problems with discriminating between soil and deadwood were also pointed out by 

Fassnacht et al. (2014) and Meddens et al. (2011), who observed that misclassifications occurred 

mostly in sunned parts of dead trees. Most studies mapping senescent or dead trees from remotely 

sensed data neglect the possible confusion with bare ground. The magnitude of this issue largely 

depends on the amount of bare ground in the study area. Forest regeneration regime and soil 
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productivity also play a role, when areas remain non-vegetated for long times after disturbance 

events (Fassnacht et al., 2014). Given the high proportion (38 %) of “bare ground” pixels misclassified 

as “dead” in the DDLG raster, which dropped to 21 % (DDLG_P) and 14 % (DDLG_U), we claim that for 

reliable deadwood mapping this potential error needs to be addressed, especially if the results are 

intended for nature conservation measures, forestry operations or field campaigns which would 

incur a waste of resources if planned where no dead trees are present (Wulder et al., 2005). On the 

other hand increasing “bare ground” detection on the cost of reducing PA of deadwood could be 

disadvantageous, when the goal was the identification of dead trees e.g. for traffic safety, where 

detection of every dead tree is important (Stereńczak et al., 2017).  

Decreasing the image resolution from 0.3 to 2.4 m enabled Meddens et al. (2011) resolving the “bare 

ground” vs. “dead” misclassification problem. This underlines the necessity of using data of 

a resolution that matches the resolution of the analyzed objects. Hengl (2006) proposed a minimum 

of four pixels for representing the smallest circular objects and at least two pixels for representing 

the narrowest objects as vital for reliably detecting an object in an image, while Dalponte et al. 

(2015) recommended the spatial resolution of the imagery to match the expected minimum size of 

the tree crowns in the scene. Exploring the optimal spatial resolution of multispectral satellite images 

for detecting single dead trees in forest areas Pluto-Kossakowska et al. (2017) found 0.5 - 1 m to be 

the best pixel size. In that respect the 0.5 m resolution in our study seems to be a good choice, when 

aiming at mapping all standing deadwood including single snags without branches (i.e. corresponding 

to one to a few pixels in size). 

Resampling images of lower resolution didn’t suffice to achieve good results in single tree detection. 

However a pixel size of > 2.5 m can be enough if the goal of the study is the detection of deadwood-

patches, not single trees, as already used in some applications, e.g. for planning forest operations 

(Kamińska et al., 2018). Quantifying the effect of decreasing the resolution (e.g. to 1 x 1 m) on the 

classification results would be an important future research topic, as this would strongly reduce 

processing time and the amount of data. Still, the intended practical use of the model results will 

always be a critical factor for defining the appropriate method. 

 Canopy height information  4.4.3

As we limited our scope to the detection of standing deadwood while neglecting lying deadwood, a 

5 m height mask based on the CHM was included in the model set-up at the very beginning to mask 

out all areas close to the ground,. The same was proposed by Fassnacht et al. (2014) for a better 

separation of forest from non-forest areas. They suggested using vegetation height information 
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provided by the spaceborne mission TanDEM-X or stereo-photogrammetry of overlapping aerial 

photographs in combination with an accurate DTM from ALS data. Our results, based on the second 

option, show that the CHM was insufficient for detecting small forest openings with bare ground 

which could possibly be detected when using ALS data (White et al., 2018). 

The accuracy of digital surface models is highly related to the point density acquired either by ALS or 

by the matching of overlapping aerial images, with the former achieving much higher point densities. 

The amount of points matched from stereo aerial imagery depends on numerous factors e.g. image 

resolution, overlap between neighboring images, image geometry, light and weather conditions at 

the time of data acquisition (Ackermann et al., 2020). In shaded areas and near the ground surface 

with surrounding higher vegetation matching success is limited (Straub et al., 2013; Zielewska-

Büttner et al., 2016b).  

The aerial imagery material we used was acquired in August at very early hours (7 - 9 am) and thus 

image quality was negatively affected by grave occurrence of shadow and varying spectral signals. 

Controlling the flight times to limit shadow occurrence, as well as increasing the resolution and 

overlap of the stereo imagery, would certainly enhance the quality of the orthophotos and DSMs 

derived from the data, and consequentially enhance the accuracy of both spectral and structural 

predictor variables and classification results.  

Information on vegetation height was among the most important predictor variables in both, our RF 

model and the deadwood-uncertainty model. We expect that using ALS data for deriving DSM and 

CHM would bear the greatest potential for model improvement. In many countries, e.g. in 

Scandinavia (Trier et al., 2018) or Canada (White et al., 2016), ALS data is already a standard element 

of the mapping services provided by the public authorities and widely used in forestry, as delivering 

accurate information on canopy heights, tree species and timber volume for forest management.  

 Deadwood detection algorithms  4.4.4

In the last two decades various machine learning (ML) algorithms have been used for image 

classification (Valbuena et al., 2016; Liu et al., 2018) in the field of forest ecology. Also in deadwood 

detection ML algorithms, such as Maximum Likelihood (Pluto-Kossakowska et al., 2017; Stereńczak 

et al., 2017), RF (Kamińska et al., 2018) or Supported Vector Machines (SVM) (Fassnacht et al., 2014), 

were applied.  

We used RF as it demands little parametrization, being at the same time robust to large datasets and 

not requiring a-priori assumptions on statistical distributions (Wegmann et al., 2016). Even though RF 

can deal with correlated variables we reduced the number of predictors from 18 to 7 variables to 
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save processing time. The results of both models showed similar - very high - accuracies, when 

validated on the pure classes’ dataset, our reason for focusing on improving the classification results 

by post-processing and extra filtering instead of further optimizing the RF model.  

After vegetation height, other important variables were R_ratio, NDVI, B_I_ratio and hue, what 

confirms the higher suitability of ratios and indices for image classification than the use of pure 

bands (Jackson and Huete, 1991; Waser et al., 2014b) and that the crucial spectral information is 

found in red, infrared and blue bands.  

Both alternative solutions applied to enhance the RF output (DDLG) improved the classification 

results in the targeted classes “dead” and “bare ground”. Post-processing (DDLG_P) incorporated 

a mean neighborhood filter for “dead” pixels assuming a lower accuracy of dead pixels in the 

neighborhood of “bare ground” and a “salt and pepper effect” filter removing isolated pixels of all 

classes, which are considered as most prone to errors. This process enhanced the separation of the 

classes “dead” and “bare ground” and the overall classification results to acceptable accuracies of 

UA=0.69 by PA=0.79.  

 The best results, however, were achieved when applying the deadwood uncertainty filter with 

UA=0.74 and PA=0.80 for “dead” and UA=0.76 and PA=0.82 for “bare ground” (DDLG_U). Texture 

patterns of the infrared band and structural variables (canopy cover and neighboring “bare ground” 

pixels) included in the deadwood-uncertainty model were crucial for separating correctly classified 

“dead”-pixels from misclassified ones. However, since the texture variables needed extra pre-

processing and the uncertainty model itself required time for the generation of new training data 

and model calibration, this approach was more costly compared to post-processing. 

In recent years deep learning (DL) algorithms have become increasingly popular for analyzing remote 

sensing data (Paoletti et al., 2019). In deadwood mapping they showed very good results for 

identifying windthrow areas (Hamdi et al., 2019) or detecting deadwood objects from very high 

resolution (VHR) CIR aerial imagery (Jiang et al., 2019). Convolutional neural networks (CNN), which 

use different levels of generalization of the same data (O'Shea and Nash, 2015) could possibly help to 

correctly delineate deadwood objects that are characterized by smooth transition edges. The 

variables Curvature and Curvature_mean for example, which both significantly contributed to the 

deadwood-uncertainty model, represent different aggregation levels of the same structure and 

suggest a potential benefit of using CNNs. Exploring the capability of DLAs to deal with large datasets 

of high resolution (0.5 - 1 m) for large-scale deadwood detection is thus a promising future research 

direction. 
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Our method using solely RGBI and CHM data could potentially be transferred to other areas, for 

which similar spectral and structural digital information is available. However, the requirements and 

possibilities for model transferability to areas with different quality aerial imagery and other forest 

types need to be evaluated. The method could also be tested on satellite imagery data, with 

additional attention in this case needed to be paid to proper data pre-processing including 

atmospheric correction, accurate georeferencing and co-registration with the DSM and subsidiary 

data.  

 Conclusions 4.5

We presented two alternative methods for enhancing pixel-based standing deadwood detection 

based on RF classification, using either post-processing or a deadwood-uncertainty filter. Both 

methods proved to deliver satisfactory results in a standardized automated manner, but the best 

accuracies were achieved when applying the deadwood-uncertainty filter. Problems with 

differentiating between deadwood and bare ground at forest borders and in areas with 

heterogeneous vegetation heights were addressed and partially solved, leading to more balanced 

accuracies for “deadwood” and “bare ground” classification. In this context, we also show the 

misleading results of pure-classes validation and highlight the need for various independent 

validation methods including visual appraisal. 

Our methods were solely based on spectral variables and vegetation heights derived from RGBI 

spectral bands and the CHM and can potentially be used for other datasets containing this 

information. For further improvement we suggest using ALS as a source for reliable surface heights or 

stereo aerial imagery with higher resolution and overlap. The latter becoming successively more and 

more available could deliver more detailed DSMs and accurate “true-orthophotos”. Finally, object 

based image analysis enabling the mapping of single dead tree polygons could be an additional step 

in our analysis and added value for forest ecology studies and management applications based on 

these data, e.g. for habitat suitability modelling, monitoring of deadwood and forest development or 

for the evaluation of deadwood enrichment programs.   
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 Appendix A 4.8

    1) 

 

    2)  

 

Figure A 4-1 Variable importance in a Random Forest model (DDLG) including all 18 predictor variables (1) 

and a model reduced to 7 predictor variables (2). (For variable abbreviations see Table 4-2).    
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Table A 4-1 Confusion matrix presenting the pure class validation results of the Random Forest model 

(DDLG) with 1) 18 variables vs. 2) 7 variables 

DDLG 

Reference 
Predicted 

total 
User's 

accuracy 
Bare 

ground 
Live Declining Dead 

1
8

 v
ar

ia
b

le
s 

Predicted 

Bare ground 1971 1 8 14 1994 0.99 

Live 1 1940 112 4 2057 0.94 

Declining 10 59 1792 145 2006 0.89 

Dead 18 0 88 1837 1943 0.95 

Reference total 2000 2000 2000 1986 7540 

 Producer's accuracy  0.99 0.97 0.90 0.92 

 

0.94 

7
 v

ar
ia

b
le

s 

Predicted 

Bare ground 1989 0 12 22 2023 0.98 

Live 0 1930 104 4 2038 0.95 

Declining 4 66 1812 131 2013 0.90 

Dead 7 4 72 1843 1926 0.96 

Reference total 2000 2000 2000 2000 7574 

 Producer's accuracy  0.99 0.97 0.91 0.92 

 

0.95 

 

Table A 4-2 Variables tested and retained (in bold) in the “deadwood-uncertainty model”, a generalized 

linear model GLM predicting the probability of standing deadwood being correctly classified. Variables are 

presented with their mean and standard deviation (SD) for correctly (PRES) and falsely (ABS) classified 

deadwood pixels. Also provided are the p-value and AIC of univariate models including the linear (l) and 

quadratic (q) term of the variable. Variable codes and descriptions are listed in Table 4-3. 

 

PRES_mean PRES_SD ABS_mean ABS_SD p_l AIC_l p_q AIC_q 

Clump_size 634.17 1121.12 27.81 33.21 0.00 1791.67 0.00 1792.66 

Bare_ground 0.01 0.02 0.02 0.06 0.00 2680.88 0.01 2678.66 

Canopy_cover 0.97 0.08 0.91 0.13 0.00 2633.00 0.00 2601.77 

Curvature 504964.4 5138583.2 -510916.8 6535890.7 0.0 2761.7 NA NA 

Curvature_mean 101697.8 546521.5 -169517.6 520512.3 0.0 2650.9 NA NA 

Mean_Eucklidean
_Distance 4945.2 2088.6 5078.5 3116.0 0.3 2775.3 NA NA 
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Figure A 4-2 Effect plots showing probability of a deadwood-pixel to be correctly classified as “dead” as 

a function of the predictor variables included in the deadwood-uncertainty model (Table A 4-2). The blue 

line indicates the estimated smoothing parameter of a given variable, while keeping all other variables set 

to their median value. Shadowed areas indicate the 95 % confidence intervals conditional on the estimated 

smoothing parameter. Variable codes and descriptions are listed in Table 4-3. 

Table A 4-3 Results of the validation of the three deadwood classification models Random Forest (RF) 

classification (DDLG), RF classification with post-processing (DDLG_P) and after applying a deadwood-

uncertainty filter (DDLG_U) based on a stratified random sample (750 pixels per class). Results are 

presented as confusion matrix, user’s and producer’s accuracy and the overall accuracy in italics.  (Table 

continues on the next page) 

 

Reference 
Total 

predicted 
User's 

accuracy Bare 
ground 

Live Declining Dead 

D
D

LG
 Predicted 

Bare ground 427 4 26 64 521 0.82 

Live 8 590 163 3 764 0.77 

Declining 32 148 423 30 633 0.67 

Dead 283 7 138 653 1081 0.60 

Total reference 750 749 750 750 2093 

 Producer's & overall accuracy  0.57 0.79 0.56 0.87 

 

0.70 

D
D

LG
_P

 

Predicted 

Bare ground 492 7 51 110 660 0.75 

Live 29 595 186 7 817 0.73 

Declining 71 146 410 42 669 0.61 

Dead 158 2 103 591 854 0.69 

Total reference 750 750 750 750 2088 

 Producer's & overall accuracy  0.66 0.79 0.55 0.79 

 

0.70 



  4. CHAPTER III 

99 

 

Reference 
Total 

predicted 
User's 

accuracy 
Bare 

ground 
Live Declining Dead 

D
D

LG
_U

 

Predicted 

Bare ground 612 8 67 119 806 0.76 

Live 3 581 167 3 754 0.77 

Declining 30 155 421 28 634 0.66 

Dead 105 6 95 600 806 0.74 

Total reference 750 750 750 750 2214 

 Producer's & overall accuracy  0.82 0.77 0.56 0.80 

 

0.74 

 

Table A 4-4 Basic statistics summary (number and area) of deadwood-patches, identified by the three 

classification scenarios: Random Forest (RF) classification (DDLG), RF classification with post-processing 

(DDLG_P) and with additional deadwood-uncertainty filter (DDLG_U), compared to the visually delineated 

reference polygons used for validation 

  Reference polygons DDLG DDLG_P DDLG_U 

N 315 323 238 285 

AREA SUM (m²) 4295.7 6034.8 6024.5 6013.5 

% of reference polygons 100% 145% 145% 144% 

AREA MEAN (m²) 13.6 18.7 25.3 21.1 

AREA MEDIAN (m²) 11.0 5.2 11.0 6.5 

AREA MAX (m²) 65.9 813.8 811.0 813.8 

AREA SD (m²) 12.1 56.6 64.6 59.8 
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5 CHAPTER IV: REMOTELY SENSED SINGLE TREE DATA ENABLE THE 

DETERMINATION OF HABITAT THRESHOLDS FOR THE THREE-

TOED WOODPECKER (PICOIDES TRIDACTYLUS) 

 

Chapter IV was published as a following research paper:  

Zielewska-Büttner, K.; Heurich, M.; Müller, J.; Braunisch, V. (2018). Remotely Sensed Single Tree Data 

Enable the Determination of Habitat Thresholds for the Three-Toed Woodpecker (Picoides 

tridactylus). Remote Sens., 10, 1972. DOI: 10.3390/rs10121972. 

 

Abstract: Forest biodiversity conservation requires precise, area-wide information on the abundance and 

distribution of key habitat structures at multiple spatial scales. We combined airborne laser 

scanning (ALS) data with color-infrared (CIR) aerial imagery for identifying individual tree 

characteristics and quantifying multi-scale habitat requirements using the example of the three-

toed woodpecker (Picoides tridactylus) (TTW) in the Bavarian Forest National Park 

(Germany). This bird, a keystone species of boreal and mountainous forests, is highly reliant 

on bark beetles dwelling in dead or dying trees. While previous studies showed a positive 

relationship between the TTW presence and the amount of deadwood as a limiting 

resource, we hypothesized a unimodal response with a negative effect of very high 

deadwood amounts and tested for effects of substrate quality. Based on 104 woodpecker 

presence or absence locations, habitat selection was modelled at four spatial scales 

reflecting different woodpecker home range sizes. The abundance of standing dead trees 

was the most important predictor, with an increase in the probability of TTW occurrence up 

to a threshold of 44–50 dead trees per hectare, followed by a decrease in the probability of 

occurrence. A positive relationship with the deadwood crown size indicated the importance 

of fresh deadwood. Remote sensing data allowed both an area-wide prediction of species 

occurrence and the derivation of ecological threshold values for deadwood quality and 

quantity for more informed conservation management. 

Keywords: deadwood; standing deadwood; dead tree; snags; three-toed woodpecker (Picoides 

tridactylus), habitat suitability model (HSM), habitat requirements; airborne laser scanning (ALS), 

CIR aerial imagery 
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 Introduction 5.1

Effective biodiversity conservation in managed forest landscapes requires knowledge about the 

distribution of key habitat features at relevant scales (Müller et al., 2009; Stighäll et al., 2011). This 

knowledge is essential for assessing species’ habitat selection, deriving threshold values for key 

features, and evaluating habitat quality across large spatial scales. Habitat suitability models (HSMs) 

(Guisan and Thuiller, 2005) and their spatially explicit variant, species distribution models (SDMs), 

have been widely employed in the last decades to predict species occurrence (Magg et al., 2015), 

abundance, or richness (Lesak et al., 2011; Vogeler et al., 2014; Zellweger et al., 2016) based on 

environmental variables (Hirzel and Le Lay, 2008). Given their need for area-wide environmental 

information across large spatial scales, SDMs have mostly been based on publicly available 

topographic, climatic, or land-cover variables, which are often too coarse-grained and imprecise for 

reliably assessing habitat characteristics and quality for forest-dwelling species.  

Forests, especially those with natural stand characteristics, are habitats with a high vertical and 

horizontal structural complexity (Jayathunga et al., 2018) and are difficult to characterize with 

simultaneously high precision and the required generalization. Traditionally, forest structure is 

described based on plot-based forest inventories or high-resolution mapping in the field, which are 

costly (White et al., 2016) and therefore often carried out at limited spatial extents (Zellweger, 2013). 

Moreover, they do not deliver continuous spatial information. The rapid development of remote 

sensing techniques and efficient methods for data processing make information originating from 

airborne and satellite surveys increasingly attractive for forest ecology and biodiversity research, 

conservation and management (Lausch et al., 2016; Vogeler and Cohen, 2016). These techniques and 

methods allow detailed and area-wide structural analyses, alleviating the trade-off between 

precision and extent (Zellweger, 2013; Lindberg et al., 2015).  

Initially forest structural and compositional parameters used in conservation studies predominantly 

originated from passive remote sensing such as aerial and satellite imagery and were obtained using 

manual or semi-automatic mapping methods (Ahrens et al., 2004; Bütler and Schlaepfer, 2004). 

Current trends increasingly turn towards active remote sensing with airborne laser scanning (ALS, 

also referred to as airborne Light Detection and Ranging or LiDAR) and the fusion of data from 

different sources enabling the combination of structural and spectral information (White et al., 

2016). With its ability to penetrate through the canopy, ALS provides information on vegetation 

heights at and below the forest surface, allowing a precise, high-resolution description of the vertical 

and horizontal vegetation structure (Müller et al., 2010; Rechsteiner et al., 2017). ALS-based 
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structural information has been shown to perform well in predicting the habitat selection of various 

forest species, especially bats and birds (Graf et al., 2009; Martinuzzi et al., 2009; Lesak et al., 2011; 

Zellweger, 2013; Braunisch et al., 2014; Froidevaux et al., 2016; Rechsteiner et al., 2017; Kortmann et 

al., 2018b) using three-dimensional habitat structures. The fusion of ALS data with satellite or aerial 

imagery combines accurate measurements of vertical structure with the advantages of using spectral 

information (e.g., for identifying tree species (Persson et al., 2004; Dalponte et al., 2008; Heinzel et 

al., 2008; Säynäjoki et al., 2008; Heinzel and Koch, 2012; Amiri et al., 2016), distinguishing between 

living and dead trees (Dalponte et al., 2008; Polewski et al., 2015c, b) or analyzing forest structural 

complexity (Latifi et al., 2016; Jayathunga et al., 2018). Such information can be highly relevant for 

analyzing and predicting the habitat requirements of forest species linked to specific tree-

characteristics and for determining their abundance across large spatial scales (Vogeler and Cohen, 

2016).  

The three-toed woodpecker (TTW) is a forest bird typical for boreal and mountainous natural spruce 

dominated forests with a high amount of standing deadwood. Although globally red-listed with 

a status of least concern and stable population size (BirdLife, 2016), this species is regionally rare and 

vulnerable (Głowaciński et al., 2002) or even threatened with extinction (Hölzinger and Mahler, 2001; 

Südbeck et al., 2007; Bauer et al., 2016). The TTW is frequently selected as a focal species of forest 

biodiversity conservation programs, as its occurrence is associated with a high forest bird diversity 

(Mikusiński et al., 2001). It functions as a key-stone species (sensu Thompson and Angelstam (1999)) 

(Bütler et al., 2004b) as it provides breeding opportunities for a variety of cavity-breeding species 

(Saari and Mikusinski, 1996; Virkkala, 2006). Feeding mainly on larvae of bark and wood-boring 

insects (Fayt, 2003; Pechacek and Krištín, 2004), the TTW is highly dependent on dying and dead 

conifer (mostly spruce) trees (Braunisch et al., 2014) and is therefore considered an umbrella species 

for the saproxylic species community (Angelstam et al., 2003).  

The habitat variables determining TTW home range selection in its boreo-alpine distribution range 

(Mikusiński et al., 2018; Mollet et al., 2018) correspond to the attributes of mature, spruce 

dominated, hemiboreal, boreal, or mountain forests. Spruce-dominated natural old-growth forests 

with a high variability in tree diameters (diameter at breast height, DBH) as well as a high abundance 

and diversity of deadwood provide suitable conditions for a continuous woodpecker presence, as 

they host stable populations of spruce bark and longhorn beetles, its staple food (Pechacek and 

Krištín, 1996; Fayt, 2003; Pechacek and d’Oleire-Oltmanns, 2004; Pechacek and Krištín, 2004). In 

other habitats, woodpecker breeding density varies greatly with the abundance of insect prey (Fayt, 

2003).  



5. CHAPTER IV          

104 

Spruce trees infested by bark beetles as well as standing deadwood (Pechacek and Krištín, 1996) are 

key habitat components for both TTW subspecies: Picoides tridactylus alpinus inhabiting 

mountainous conifer and mixed forests and Picoides tridactylus tridactylus inhabiting hemi- and 

boreal lowland mixed and spruce forests. Deadwood diversity, i.e., the presence of various stages of 

decay, allows woodpeckers to adjust their diet to varying external conditions and energetic needs 

(Pechacek and Krištín, 1993, 1996, 2004). Kratzer et al. (2009) showed a significantly higher 

abundance of deadwood in the early stages of decay (comparable to stage three to four according to 

Thomas et al. (1979), Figure 5-1) at sites with woodpecker presence compared to absence sites. Also, 

Balasso (2016) underlined the preference of TTW for fresh snags, especially recently dead spruce 

with loose but attached bark, still inhabited by large numbers of bark beetles. 

 

Figure 5-1 For the purpose of this study, trees were classified as: living trees (LIVE) and standing deadwood 

objects (DEAD), which were further divided into dead trees (DEADTREE) and snags (SNAG) representing the 

stages of conifer tree decomposition after Thomas et al. (1979). Note the shrinking of the horizontal 

extension of the tree crown during the progress in decay. 

In addition, various authors showed the bird’s preference for old-growth stands (Imbeau and 

Desrochers, 2002; Pakkala et al., 2002; Fayt, 2003; Südbeck, 2005; Pugacewicz, 2011; Kajtoch et al., 

2013a; Amcoff and Eriksson, 1996), with TTW territories documented mostly in stands older than 60 

years (Matysek and Kajtoch, 2010a; Kajtoch et al., 2013a), 80 years (Romero-Calcerrada and Luque, 

2006; Matysek and Kajtoch, 2010b), or 100 years (Bütler et al., 2004a; Bütler et al., 2004c), and with 

a high abundance of veteran trees (Pechacek and d’Oleire-Oltmanns, 2004; Kajtoch et al., 2013a; 

Kajtoch and Figarski, 2014).  

Outside of the boreal zone, TTW occurrence mostly coincides with a high protection status, as in 

Białowieża National Park (Walankiewicz et al., 2011; Kajtoch et al., 2013b; Czeszczewik et al., 2015), 
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in the Polish Carpathians (Kajtoch, 2009; Matysek and Kajtoch, 2010b) or other protected areas 

(Andris and Kaiser, 1995; Kratzer et al., 2009; Senitza and Gutzinger, 2010; Kajtoch et al., 2013a; 

Kajtoch et al., 2013b). In these areas, the bird’s home range sizes are smallest ranging from 16 ha 

(Pechacek, 2006) to 40–60 ha (Dorka, 1996; Pechacek and Krištín, 1996; Pugacewicz, 2011; Kajtoch 

et al., 2013b), while home range sizes in managed forests, with lower densities of the required 

habitat requisites, are larger (i.e., between 100 and 400 ha (Pechacek and d’Oleire-Oltmanns, 2004; 

Amcoff and Eriksson, 1996). Territory density is lower in managed forest landscapes with 0.2–0.7 

territories per 100 ha compared to 1–5 territories per 100 ha in natural old growth and unmanaged 

forests (Pakkala et al., 2002; Matysek and Kajtoch, 2010a, b; Kajtoch et al., 2013b).  

Due mainly to harvesting and sanitation cutting, deadwood, to which TTW occurrence is closely 

linked, is an especially limited resource in managed forest ecosystems (Müller and Bütler, 2010; 

Kajtoch et al., 2013a; Braunisch et al., 2014; Kajtoch and Figarski, 2014; Czeszczewik et al., 2015). 

Deadwood thresholds of European forest-dwelling species range from 10 to 150 m3/ha with values 

of 20–50 m3/ha given for the majority of species as reviewed by Müller and Bütler (2010). This 

corresponds well with the 15–18 m3/ha to 30 m3/ha given for TTW occurrence (Bütler et al., 2004b; 

Bütler et al., 2004c; Kajtoch et al., 2013a; Kajtoch and Figarski, 2014). Higher densities of deadwood 

are rare in Europe and occur only locally, mainly in protected areas (Hahn and Christensen, 2004; 

Müller and Bütler, 2010), so that an upper deadwood limit could not be determined yet. However, 

the existence of a deadwood-optimum is likely, as a share of living trees would be necessary to allow 

for a continuous provision of dying and freshly dead trees. 

In this study, we test the usability of remotely sensed single tree data for analyzing habitat selection 

and predicting area-wide occurrence of the TTW, identifying the most important variables explaining 

home range selection at multiple spatial scales, and deriving threshold values for conservation 

management. We test the hypothesis that extremely high amounts of deadwood lead to a decrease 

in the probability of TTW occurrence and assess the influence of deadwood quality on habitat 

selection.  

 Materials and Methods 5.2

 Study Area 5.2.1

The study was conducted in the Bavarian Forest National Park. Founded in 1970 as the first German 

National Park, it initially covered an area of 13,300 ha which was extended to 24,218 ha in 1998. The 

park is located in southeastern Bavaria (Germany) and borders the Šumava National Park (69,030 ha), 
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Czech Republic to the East. The park covers a large part of the Bavarian Forest mountain chain with 

an elevational gradient ranging from 600 to 1453 m a.s.l. Depending on elevation, the mean annual 

temperature (1972–2001) varies from 3.5 to 7.0 °C, and the total annual precipitation varies from 

1300 to 1900 mm (Bässler et al., 2008). The predominant vegetation is mountainous spruce and 

mixed forest with a share of Norway spruce (Picea abies) of 67.0%, European beech (Fagus sylvatica): 

24.5%, Silver fir (Abies alba): 2.6%, and other tree species: 5.9% (Cailleret et al., 2014).  

Following its non-intervention policy, the National Park authority allowed for natural forest dynamics 

in the core zone (currently encompassing 68% of the park area), with massive bark beetle outbreaks 

after severe storm and windthrow events in 1983 and 1984. This resulted in a dieback of spruce 

forests at an unprecedented rate in Central Europe in recent decades (Lausch et al., 2011).  

 Remote Sensing Data  5.2.2

Habitat variables were extracted from a full, remote sensing-based tree inventory (Heurich et al., 

2015). Full waveform ALS data was acquired on the 24th/26th/27th of July 2012 through the Milan 

Flug GmbH, using a Riegl LMS-Q 600i laser scanner of 350 KHz. A nominal point density of 30–40 

points/m2 was obtained from data recorded at a 0.32 m footprint. CIR aerial images were acquired in 

August 2012 using a DMC camera and a ground sampling distance of 20 cm. The images are 

composed of 3 spectral bands: near infrared, red, and green. 

The preprocessing of the raw ALS data to the georeferenced three-dimensional (3D) point cloud, 

including the derivation of the intensity and the pulse width values using a sum of Gaussian 

functions, is described in Reitberger et al. (2008) and Yao et al. (2012b). Single tree detection and 

delineation was carried out with a 3D segmenting method solely based on ALS data and the 

geographical position and top height (H) were calculated for each segmented tree (Yao et al., 2014). 

This resulted in a dataset containing 12,106,320 trees, consisting of two types of geographical data, 

point data for tree tops and polygons for crown delineation. In the next steps, for each tree, the tree 

type (conifer, broadleaf, or deadwood), projected crown area (C), crown base height and crown 

volume, were derived using both types of remote sensing data. Spectral information from CIR aerial 

imagery fused with segmented ALS point cloud data was used for tree species classification based on 

Reitberger et al. (2008) and for the detection of snags and standing deadwood in line with Polewski 

et al. (2015c) and Polewski et al. (2015a). The crown base height and the crown volume originated 

from a 3D Alpha-Shape-triangulation of the segmented ALS point cloud. Diameter at breast height 

(DBH), basal area (BA) and volume (VOL) were also calculated for live trees in an extra modelling step 

based on a calibration with an extensive ground reference database (Heurich, 2008).  
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In addition to the automatically derived, tree-based information, we tested independent data of 

yearly visual assessment of deadwood areas based on the CIR aerial imagery  (Heurich, 2008), dated 

2010–2015 (Table A 5-1).  

 Species Data and Sampling Design 5.2.3

Presence locations of the TTW originated from the database of the Bavarian Forest National Park, 

including data from the biological monitoring, various research projects, and chance observations by 

trained park staff (Figure 5-2). Locations of TTW, either observed directly or through sound 

identification, were recorded with a GPS. Data were collected in two time periods (2007–2008 and 

2012–2014), however, to achieve a temporal synchronization with the remote sensing data from 

2012, we only used the observations from the latter sampling period (N = 115). 

To study habitat selection at different relevant scales, we generated circular sample plots around 

each presence location, with sizes reflecting the area requirements of the species reported under 

different conditions: 

 R = 100 m to evaluate the habitat characteristics in close vicinity of the TTW presence locations. 

 R = 250 m (19.6 ha) representing the minimum reported home range of an individual TTW under 

excellent habitat conditions (ca. 16–19 ha (Pechacek and d’Oleire-Oltmanns, 2004));  

 R = 450 m (63.6 ha) depicting the average minimum home range size reported for areas with 

presumably good conditions such as protected areas (Goggans et al., 1989; Fayt, 2003; Kajtoch 

et al., 2013a; Kajtoch et al., 2013b);  

 R = 600 m (113 ha) corresponding to the average home range size reported by various authors 

(Pechacek and Krištín, 1996; Angelstam et al., 2004; Pechacek, 2004; Kajtoch et al., 2013b).  

The presence locations showed spatial clumping in some regions, indicating multiple observations 

originating from the same individual. To avoid pseudoreplication, we thinned the initial set of 

presence locations allowing a maximum 18% overlap of the sampling plots at the largest scale 

(R = 600 m), after Pechacek (2004) who reported average territory overlaps of 17.6% (±3.9). Using 

R-package “Spatstat” package (Baddeley et al., 2018) to discard all presence locations that fell below 

the resulting minimum distance of 840 m, resulted in a final set of 52 presence locations. 

In addition, we randomly created a similar number of pseudo-absence locations (in the following 

referred to as “absence”) with the same minimum distance to any presence location and to each 

other.  
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Figure 5-2 Study area (Bavarian Forest National Park) and the locations with TTW presence (black points) 

and absence (red points) used for the analysis. Presence locations closer than 840 m to the next location 

were discarded to avoid using multiple observations of the same bird (blue points). Grey buffers represent 

different home range sizes with radii of 100 (A), 250 (B), 450 (C), and 600 m (D) (inset). 

 Predictor Variables 5.2.4

Predictor variables were generated for each of the four sampling plot scales and encompassed three 

classes: general forest stand characteristics, specific tree features, as well as topographic information 

(Table 5-1).  

Based on a literature review, predictor variables describing general forest stand characteristics were 

selected according to their hypothesized ecological relevance for the species. Forest cover per plot 

was defined as the share of the horizontal plot area covered by all trees’ crowns. The proportion of 

forest cover attributed to trees higher than 15 m was assessed as a proxy for mature forest, and the 

proportion the sampling plot covered by crowns of standing deadwood, as an indicator for areal 

deadwood availability. We also included a similar variable derived from the standard visual mapping 

(CIR): the proportion of area with standing deadwood originating from the period 2010–2015. This 

data was compared with the available ALS and CIR based data. In addition, the number and 

proportion of living trees (i.e., conifers, deciduous trees, and all trees) were calculated for each plot 

size, as well as the average height (H), diameter (DBH), and volume (VOL) and the variance thereof.  
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Specific tree features such as dead, “resource” or “veteran” trees have been observed to be 

important for the TTW. We defined resource trees (RESOURCE) as all living trees with a DBH > 30 cm, 

based on Pechacek and d’Oleire-Oltmanns (2004), Kajtoch and Figarski (2014) and Kajtoch et al. 

(2013a). To approximate the different decay stages of deadwood in adherence to Thomas et al. 

(1979) (Figure 5-1), and to distinguish between potential foraging trees (stages 2–4) and other dead 

trees (stages 5–7) as proposed by Bütler et al. (2004c), we subdivided the deadwood (category DEAD 

including all standing deadwood objects) into snags (SNAG) and dead trees (DEADTREE). The category 

SNAG encompassed all deadwood with either a crown area of C < 4 m2 (1st Quartile of the DEAD 

crown area values) or deadwood with C ≥ 4 m2 but a height of H < 15 m. DEADTREE objects were 

characterized as C ≥ 4 m2 and H ≥ 15 m. The threshold of 15 m was chosen because in our study area, 

living spruce trees of that height had an approximate DBH of 20 cm (Figure A 5-1), allowing a direct 

comparison with DBH-based classifications of deadwood used by other authors (Bütler et al., 2004c). 

Finally, we calculated the mean crown area of the trees in the respective classes (DEAD, DEADTREE, 

and SNAG) per plot to obtain a continuous metric of the crown status as a proxy of the stage of 

decay.  

All structural predictors, except the variable derived from visual interpretation (DEADCIR_part), were 

thus calculated based on the single tree data originating from the ALS and CIR remote sensing 

dataset, either used directly to describe specific tree features or aggregated to describe forest stand 

related characteristics. 

In addition, topographic variables were generated using a digital terrain model (DTM) with 

a 25 × 25 m resolution and included altitude, slope, eastern (sine of aspect), and northern (cosine of 

aspect) exposition as well as solar radiation, calculated using the Solar Analyst module in ArcGIS 

(ESRI, 2018). We also included latitude and longitude to test for random spatial clustering of the 

woodpecker observations.  

The preparation and calculation of variables with a horizontal dimension (i.e., referring to the 

proportion of the plot area) was carried out in ArcMap 10.4.1. (ESRI, 2016). The processing and 

calculation of the remaining variables was carried out in RStudio (RStudio, 2016) using R (R Core 

Team, 2017) with the packages: “Raster” (Hijmans et al., 2017) and “Rgdal” (Bivand et al., 2017).  
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Table 5-1 Tested predictor variables each calculated for circular sampling plots of r = 100, 200, 450, and 600 m respectively, with their potential ecological relevance 

for the model species. (BB = bark beetle, DBH = diameter at breast height, RS = remote sensing). 

Category Variable Description Ecological Meaning Unit 

Forest stand  FCOVER_part  Proportion of forest cover per plot based on crown area  Stand structure and shelter function  0–1 

characteristics STANDH15_partF Proportion of crown cover of trees with H > 15 m to forest cover Stand structure: mature trees 0–1 

 
DEADCIR_part Proportion of deadwood area per plot (2010–2016 aerial imagery) Feeding potential for BB/Option for cavities 0–1 

 DEADRSI_part Proportion of deadwood area per plot (2012 RS tree inventory) Feeding potential for BB/Option for cavities 0–1 

 
LIVE_Nha Amount of living trees per ha Forest stand density and tree shelter function N/ha 

 
LIVE_VOLha Total volume of live trees per ha Forest stand structure m3/ha 

 
LIVE_BAha Mean basal area of live trees per plot Proxy for stand mass and forest age m2/ha 

 
LIVE_BAvar Variance of live tree basal area per plot Proxy for stand age heterogeneity  m2/ha 

 
LIVE_Hmean Mean height of live trees per plot Proxy for stand vertical structure and age m 

 
LIVE_Hvar Variance of live tree height per plot Proxy for vertical structure/age heterogeneity m 

 
CONIF_Npart Proportion of conifer trees (N) in all live trees Forest type and potential food resources  0-1 

 
CONIF_VOLpart Proportion of conifers (Volume) in all live trees Forest type and resources food resources 0-1 

 
DECID_VOLha Volume of deciduous trees per ha Forest type and shelter function m3/ha 

Specific tree  RESOURCE_Nha Amount of trees with DBH > 30 cm per ha Feeding potential for BB/Option for cavities N/ha 

features DEAD_Nha Amount of all standing deadwood per ha  Feeding potential for BB/Option for cavities N/ha 

 
DEAD_Hmean Mean height of all standing deadwood per plot Feeding potential for BB/Option for cavities m 

 
DEAD_Cmean Mean crown area of all standing deadwood per plot Feeding potential for BB/Option for cavities m2 

 
SNAG_Nha Amount of snags per ha Old deadwood (rather unsuitable) N/ha 

 
SNAG_Hmean Snags mean height per plot Old deadwood (rather unsuitable) m 

 
SNAG_Cmean Snags mean crown area per plot Old deadwood (rather unsuitable) m2 

 
DEADTREE_Nha Amount of all standing dead trees per ha Deadwood with BB potential  N/ha 

 
DEADTREE_Hmean Mean H of all standing dead trees per plot Deadwood with BB potential  m 

 
DEADTREE_Cmean Mean crown area of all standing dead trees per plot Deadwood with BB potential  m2 

Topography  ALTITUDE_mean Mean altitude a.s.l. of a sampling plot Proxy for climate m 

 SLOPE_mean Mean slope of a sampling plot Proxy for terrain Degree 

 EAST Easting (sine of aspect) of a sampling plot Sun exposure (−1)–1 

 NORTH Northing (cosine of aspect) of a sampling plot Sun exposure (−1)–1 

 SOLAR_mean Yearly mean of solar radiation per plot Proxy for climate h 
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 Statistical Analysis 5.2.5

We modelled species occurrence as a function of the environmental variables using General Additive 

Models (GAM) facilitated in the R-package “mgcv” (Wood and Augustin, 2002; Wood, 2004; Wood, 

2018). GAMs combine General Linear Models with smoothing splines (Dormann and Kühn, 2012), 

thereby allowing to fit the response curves “as closely as possible” to the data, within a permitted 

level of smoothing.  

For each plot size we selected the best explaining variables following a hierarchical procedure. First, 

we ran univariate models for each variable, also testing their quadratic term. Predictor variables 

which significantly explained woodpecker occurrence (p ≤ 0.05) or showed a trend (p ≤ 0.1) and were 

significant in other studies (such as information on amount and volume of conifers and amount of 

live trees per plot) were retained. To avoid collinearity among variables in the multivariate models, 

we removed from any pair of correlated variables (Spearman’s r ≥ |0.7|)(Dormann et al., 2004) the 

“weaker” predictor based on Akaike’s Information Criterion (AIC) (Burnham and Anderson, 2002).  

In a first step, a common initial set of input variables (i.e., all variables retained at any of the four 

scales) was used for model calibration on all plot sizes. In addition to the environmental variables 

smoothed with a smooth term s(), a tensor smooth for the spatial location te(x, y) was added to 

account for effects of random spatial clustering of the TTW data (Figure A 5-2).  

To avoid overfitting, as it was observed when running the model with automatic settings, we set the 

upper limit of the degrees of freedom associated with a smooth term to k = 3, as Guisan et al. (2017) 

recommends after Hastie et al. (2009) to use lower degrees of freedom (df < 4) for deductive species 

distribution and habitat modelling, while avoiding degrees of smoothing higher than 4 or 5 for 

predictive purposes. We used automatic variable selection (function “select=TRUE” in mgcv) which 

indicates variables that do not contribute to the model and can therefore be dismissed with p = 1. 

After the removal of these variables, the models were recalibrated and variables were again 

removed until no p = 1 occurred. In a second step, we used chi-square test statistics for assessing the 

significance of the smooth terms and removed variables with p < 1 but with chi-square equal 0 as not 

contributing to the model. At each step we compared the AIC of the resulting model with the 

previous step until no further reduction was achieved This way, we obtained one “best model” for 

each of the 4 plot sizes.  

The models’ fit was evaluated using 5-fold cross validation with 20% of the observations held back 

randomly with a condition of an equal proportion of presence and absence observations in folds. 

Multiple evaluation metrics, i.e., sensitivity, specificity, correctly classified rate, and Cohen’s Kappa 

(all using the threshold 0.5), as well as the area under the receiver operating characteristics (ROC) 

curve (AUC) were calculated using the “caret” package in “R” (Kuhn et al., 2018) and evaluated 

according to Hosmer and Lemeshow (2000). The best model was then used to predict TTW 

occurrence probability across the entire National Park. 
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To analyze the model results, we plotted the single predictor variables against their smooths 

(function “gam.check” in the “mgcv” package) and against the target variable using the packages 

“mgcv” and “ggplot2” (Wickham and Chang, 2016). 

Finally, we calculated conditional inference trees (CTREEs), as implemented in the R-package “party” 

(Hothorn et al., 2017), to obtain thresholds for the most important variables for practical 

management recommendations. Trees based on maximally selected rank statistics were fitted using 

the Bonferroni correction for multiple testing and a minimum sum of weights in a node to be 

considered for splitting of 20 (minsplit = 20). All variables selected for the respective “best” GAM at 

each scale were included in the multivariate trees. In addition, univariate trees were fitted for 

variables with a significant split in the multivariate tree. 

 Results 5.3

 Habitat Selection 5.3.1

Univariate models revealed eight environmental variables that significantly contributed to explaining 

woodpecker presence at least one of the four scales and were retained for calibrating multivariate 

models (Table 5-2). With the exception of altitude all of the significant variables described stand and tree-

related habitat characteristics. Three additional variables (DEAD_Nha, DEADTREE_Cmean, and 

DEADRSI_part) were significant but discarded as correlated with retained variables. 

Table 5-2 Retained predictor variables for modelling the occurrence of the three-toed woodpecker and 

their univariate (simple and quadratic) p-value (<0.1) on the four plot sizes. Variables with p < 0.05 are bold. 

Mean values and the standard deviation (SD) of these variables at presence, absence and both study plots 

are listed in Table A 5-1. 

  R = 100 m R = 250 m R = 450 m R = 600 m 

Variables p < 0.05/0.1 Linear Quadratic Linear Quadratic Linear Quadratic Linear Quadratic 

Altitude_mean 0.040 
 

0.042 
 

0.043 
 

0.045 
 

CONIF_Nha 
  

0.063 
 

0.025 
 

0.031 
 

DEAD_Cmean 0.003 
 

0.006 
 

0.028 
 

0.096 
 

DEADTREE_Nha 0.025 0.000 0.034 0.005 0.035 0.066 0.091 0.089 

SNAG_Cmean 
 

0.052 
 

0.043 
 

0.063 
  

LIVE_Nha 0.081 
 

0.076 
 

0.07 
   

CONIF_VOLpart 
 

0.051 
 

0.096 
    

DEADCIR_part 
 

0.007 
 

0.064 
    

The final models consisted of 4 to 6 variables, depending on the plot scale (Table 5-3). The amount of 

dead trees was the only variable with a significant contribution at all scales. Altitude and the mean 

crown diameter of all standing deadwood were also included in all models, but the former was only 

significant at the two smaller scales, while the latter was only significant at the two intermediate 

scales. The proportional volume of conifer trees was included at 3 scales and the mean crown 

diameter of snags only on sampling plots with a 250 m radius, but neither of them had a significant 
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contribution. The spatial location was also included in all models, suggesting a spatially clustered 

distribution of the woodpecker observations. The two preselected variables representing the living 

stand (the amount of living trees per ha and the amount of conifers per ha), although univariately 

significant at 3 scales, did not contribute to any of the multivariate GAMs.  

Table 5-3 General Additive Models (GAMs) explaining the occurrence of the three-toed woodpecker (TTW) 

as a function of remote sensing-based forest inventory variables and altitude at four sampling scales, i.e., 

within different radii (R) around TTW sampling locations. Parametric coefficients and approximate 

significance of the smooth terms (effective degrees of freedom (edf), p-value) are given for the variables 

selected in the best model for each scale. Variable codes and descriptions are listed in Table A 5-1. Bold 

figures indicate significant variables (p < 0.05). 

 

R = 100 m R = 250 m R = 450 m R = 600 m 

edf p-Value edf p-Value edf p-Value edf p-Value 

Intercept estimate 0.134 
 

0.035 
 

0.013 
 

0.006 
 

Standard error 0.249 0.227 0.208 0.205 

Z-Value 0.537 0.156 0.064 0.032 

Pr(>|z|) 
 

0.591 
 

0.876 
 

0.949 
 

0.975 

s(Altitude_mean) 0.817 0.049 0.929 0.020 0.681 0.076 0.605 0.105 

s(DEAD_Cmean) 0.167 0.239 0.947 0.018 0.784 0.038 0.627 0.103 

s(DEADTREE_Nha) 1.000 0.000 0.906 0.007 0.953 0.021 0.855 0.027 

s(SNAG_Cmean) 
  

0.790 0.099 
    

s(CONIF_VOLpart) 0.620 0.114 1.571 0.107 
  

0.176 0.252 

te(x,y)  1.795 0.045 1.742 0.154 1.509 0.033 1.640 0.037 

 

The most meaningful variable at all scales was the amount of dead trees (DEADRTREE_Nha). The 

response plots (Figure 5-3 and Table A 5-2) indicate a unimodal response with adverse effects on 

woodpecker presence when the amount of dead trees increased beyond a threshold of 40–55 trees 

per hectare. However, these results need to be interpreted with caution due to only a few plots with 

extremely high numbers of dead tree driving this trend (i.e., two sample plots with DEADTREE_Nha > 

90 on R = 100 m and R = 250 m and three sample plots with DEADTREE_Nha > 70 on R: 250, 450, and 

600 m).  

Another deadwood variable, the mean crown area of all standing deadwood (Dead_Cmean), showed 

a significant positive effect on TTW occurrence at the two intermediate scales (R = 250 and R = 450 

m), suggesting a preference for deadwood with large crowns, i.e., in the early stages of decay (Figure 

5-1). This is in line with the species’ opposite response trend to the mean crown area of snags 

(SNAG_Cmean) at the intermediate scale (R = 250 m). Finally, the share of conifers in the total 

volume of living trees (CONIF_VOLpart) showed a slightly unimodal, but non-significant relationship 

with TTW presence, with the highest occurrence probabilities in stands with about 50–80% conifers, 

depending on the sampling scale. Altitude was included in all models and significant at the two 

smallest scales, with higher probabilities of TTW presence at higher altitudes. 
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Figure 5-3 Effect plots showing predicted TTW occurrence as a function of the environmental predictors 

included in the best models at different plot scales (Table 5-3). The blue line indicates the estimated 

smoothing parameter of a given variable, while keeping all other variables set on the median. Shadowed 

areas indicate the 95% confidence intervals conditional on the estimated smoothing parameter. Variable 

codes and descriptions are listed in Table 5-1. 

 Model Performance  5.3.2

Model performance decreased with increasing sampling scale. This trend applied to both model fit 

and predictive performance over the 5-fold cross validation replicates and was consistent across all 

evaluation metrics (Table 5-4). Based on the AUC, our final models showed a good to excellent fit at 

the two small scales (R = 100 m and R = 250 m, AUC > 0.8) and an acceptable fit at the two larger 

scales (R = 450 and 600, 0.7 < AUC < 0.8) (Hosmer and Lemeshow, 2000). Five-fold cross validation 
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confirmed an acceptable predictive performance of the models at the two smallest scales (AUC > 

0.7), but less so at the two larger scales (0.6 < AUC < 0.7). Similar trends were found for the other 

evaluation metrics R-Square (Adjusted), Correct Classification Rate (CCR), and Cohen’s Kappa (Table 

5-4). Sensitivity was generally higher than specificity at all scales indicating better detection and 

prediction of TTW presence than of absence locations. Complete results of the cross validation are 

presented in Appendix A, Table A 5-2. 

Table 5-4 Fit of the final models (Fit) and the averaged results of the 5-fold cross-validation (CV, in italics) at 

four spatial scales: Akaike’s Information Criterion (AIC), R-Square adjusted (R-sq. adj.), and Area Under the 

ROC-Curve (AUC), Sensitivity, Specificity, Correct Classification Rate (CCR), and Cohen’s Kappa. Variable 

codes and descriptions are listed in Table 5-1. 

  

R = 100 m R = 250 m R = 450 m R = 600 m 

Model Fit 
CV 

Model Fit 
CV 

Model Fit 
CV 

Model Fit 
CV 

Mean SD Mean SD Mean SD Mean SD 

R-sq.(adj.) 0.33 0.34 0.04 0.25 0.25 0.06 0.14 0.15 0.04 0.11 0.12 0.03 

AUC 0.85  0.77 0.10 0.82  0.71 0.08 0.74  0.63 0.09 0.72  0.61 0.10 

Sensitivity 0.85 0.75 0.14 0.83 0.66 0.06 0.75 0.58 0.13 0.71 0.54 0.07 

Specificity 0.73 0.67 0.24 0.69 0.65 0.13 0.64 0.52 0.17 0.60 0.58 0.12 

CCR 0.79 0.71 0.12 0.76 0.65 0.08 0.69 0.55 0.12 0.65 0.56 0.06 

Cohen’s Kappa 0.58 0.41 0.24 0.52 0.31 0.15 0.39 0.10 0.24 0.31 0.12 0.12 

 Model Prediction 5.3.3

The model calibrated at the smallest scale (R = 100 m) was employed to predict TTW occurrence 

throughout the National Park. The results are shown for a raster of 100 × 100 m (Figure 5-4), with the 

occurrence probability of each raster cell calculated based on the conditions within R = 100 m around 

the grid cell center. When using a presence probability of 0.5 as a threshold for occurrence, 36% of 

the park area was classified as potentially suitable TTW habitat.  

 Variable Thresholds 5.3.4

The results of the conditional inference trees (Figure 5-5) revealed significant thresholds for two 

variables, the mean crown area and the amount of standing deadwood per plot. Multivariate trees 

were only found at the two smallest scales, with a first split indicating the highest TTW presence 

probability (>0.7) when deadwood with large crowns (>11–13 m2) was available, intermediate 

probabilities (>0.5) when the abundance of dead trees per hectare was at least 4–5 (R = 100) or 3 

(R = 250) respectively, and a low probability when none of the two variables exceeded these 

thresholds. These results indicate substrate selection with a first priority for fresh and then for other 

deadwood. No split was observed for variables measured on plots of 450 m radius or larger. 

Univariate models of the two variables with significant splits showed a TTW-presence probability of 

0.7–0.8 when more than 8 dead trees per hectare were present in the surrounding of 100 and 250 m, 

respectively, or when the mean crown size DEAD_Cmean was larger than 11 m2 (R = 100 m) to 13 m2 

(R = 250). 
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Figure 5-4 Predicted probability of three-toed woodpecker (TTW) occurrence for the Bavarian Forest 

National Park using the best GAM model according to Table 5-3 (calibrated for R = 100 m). The occurrence 

probability is shown for a 100 × 100 m raster, with the value of each cell calculated based on the 

environmental conditions within R = 100 m around the grid cell center. Black and transparent circles 

indicate the TTW presence and absence locations used for model calibration. 

R (a) All variables (b) DEADTREE_Nha (c) DEAD_Cmean 

100 m 

   

250 m 

   

Figure 5-5 Multivariate (a) conditional inference trees (CTREEs) constructed from the variables selected into 

the best Generalized Additive Models (GAMs) at four sampling scales (R = 100 m, 250 m, 450 m, 600 m, see 

Table 5-3), and univariate trees (b) constructed from the variables with a significant split in (a). Each node of 

the trees represents one split of the data into significantly different partitions, with variables ranked 

according to their importance, until no further split is possible. The significance of the split (p-values after 

Bonferroni correction) is indicated in the splitting nodes. The Y-axis shows the predicted probability of TTW 

occurrence (1—presence; 0—absence) under the given combination of variable values. The variable values 

splitting the datasets are indicated on the tree branches. DEAD_Cmean: mean crown area of all standing 

deadwood, DEADTREE_Nha: number of dead trees per hectare. No significant splits were obtained for 

variables included at the two larger scales (R = 450 m, 600 m). 
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 Discussion 5.4

Our analysis shows the usability of area-wide, remote-sensing-based, single tree data for modelling 

the habitat selection of an endangered and highly specialized forest species such as the three-toed 

woodpecker. Combining remote sensing information from different sources with a comprehensive 

set of species observation data enabled finding species-relevant predictor variables and thresholds 

for practical forest management and species conservation.  

 Remote Sensing Data 5.4.1

The fusion of multiple sources of remote sensing data, especially ALS and aerial imagery 

technologies, has high potential for complementing traditional, field-based forest inventories (White 

et al., 2016). Although original ALS point clouds deliver more detailed information on tree height and 

forest structure (Farrell et al., 2013) and are widely used as input data for habitat modelling (Davies 

and Asner, 2014), the combination of ALS data with aerial imagery for deriving single tree-related 

information proved crucial for our purpose: While ALS data enabled accurate mapping of single trees 

and their projected crown areas with subsequent modelling of tree volume, multispectral data 

allowed deadwood detection and — in combination with the structural information — the detection 

of specific deadwood characteristics, such as fresh deadwood and snags. This approach offered two 

additional advantages: First, by summarizing structural information at the tree-level, our variables 

refer to a species-relevant ecological scale of habitat selection. Second, other than abstract point-

cloud metrics, our data describe environmental features that can be directly translated into target 

values for conservation management.  

Our deadwood variables at the tree scale outperformed the deadwood information (area-percentage 

of deadwood per plot, DEADCIR_part, Table 5-3) obtained from the yearly visual assessment of aerial 

imagery. Although univariately significant at the smallest plot size, it did not enter the final model. 

Only new deadwood areas were mapped each year (Rall and Martin, 2002; Heurich et al., 2010), 

thereby neglecting forest dynamics such as ingrowth and regeneration in the dieback areas of 

previous years. Complete mapping of standing deadwood for a given year may therefore have 

improved the performance of this variable.  

The corresponding variable based on remote sensing tree inventory data, the area percentage of 

deadwood per plot (DEADRSI_part), showed better explanatory power (lower AIC than DEADCIR) on 

100 and 250 m plot sizes, but was correlated with the number of dead trees (DEADTREE_Nha), our 

most important predictor. It was therefore discarded. Nevertheless, the relationship of the two 

variables with TTW occurrence shows some potential for the planar mapping of standing deadwood 

areas when single tree crown delineation is not possible. 

We show the usability of remotely sensed single tree data and derived variables using the example of 

the TTW, a keystone species of boreal and mountainous spruce dominated forests. However, these 

data could also be of high relevance for modelling the habitat of other species or species 

assemblages of that forest types (Mikusiński et al., 2001; Braunisch et al., 2014). Information on 

deadwood features and their quality (dead trees, snags and stumps) could be vital for species 
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depending on deadwood in different decay stages either for food, shelter, or roosting such as 

saproxylic beetles (Økland et al., 1996), birds (Mollet et al., 2018), or bats (Bouvet et al., 2016; Tillon 

et al., 2016) and crown delineation, allowing the determination of canopy cover and forest gaps, 

could be used in studies deriving habitat thresholds for species responding to these structures e.g., 

capercaille (Braunisch and Suchant, 2008) or hazel grouse (Zellweger et al., 2013).  

 Species Data 5.4.2

TTW presence data originated from three survey projects, including non-systematically collected 

chance observations of park staff. Despite thinning the original data according to the expected home 

range for one pair of birds, the models still indicated a clustering of the observations and a spatial 

correlation of the model performance with the locations of the observations. This may reflect a bias 

in sampling intensity, e.g., related to the road and walking paths network in the National Park, or be 

caused by a species-relevant environmental variable not included in the model. Our final models 

showed notably higher sensitivity than specificity, indicating a better classification of presence than 

absence data. This may be because of the random generation of pseudo-absence data outside the 

TTW presence areas, where false absences could not be ruled out.  

We used species observations from three consecutive years starting in year one of the remote 

sensing data acquisition. At this time, the area of the National Park offered a large range of 

conditions, including optimal TTW habitat of mountainous, spruce dominated forests with a large 

amount of standing deadwood in different stages of decay. As both species and environmental data 

originated within a limited period of time and a unique environment, our models reflect only 

a snapshot of the species–habitat relationship (Guisan and Thuiller, 2005). The time lag of two years 

between the acquisition of remote sensing and species data we consider negligible, as also 

demonstrated by Vierling et al. (2014), since no significant changes due to disturbance events were 

recorded in the respective period and the National Park is not subjected to regular harvesting. 

Moreover, our models showed a high predictive performance, with results largely conforming to 

those of other studies. This makes us confident that they captured TTW habitat requirements with 

a high level of generality. 

 Modelling Approach 5.4.3

GAMs are increasingly used in ecological modelling, especially when species–habitat relationships are 

complex and not easily fitted with the standard parametric functions of the predictors (Guisan et al., 

2017). Using GAMs for the exploratory analysis of predictor variables is advantageous as GAMs fit the 

data in the most exact way possible (Dormann and Kühn, 2012). However, being data-driven, they 

are prone to overfitting. We applied stronger smoothing to address this issue. The most important 

feature of GAMs for our study was the possibility of including a multidimensional smoother (Guisan 

et al., 2017) for the spatial location (x,y) of TTW observations to account for spatial clumping of the 

data.  

Although useful for identifying key variables and describing the species response, GAMs do not 

provide threshold values which are frequently required in ecology and forestry to define 
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conservation targets (Toms and Villard, 2015). We used conditional inference trees for this purpose 

as Müller and Bütler (2010) found them particularly useful among a variety of methods (Andersen 

et al., 2009). The simplicity of the underlying model and the visualization of the results facilitate the 

development of applicable guidelines.  

 TTW Habitat Selection  5.4.4

From the initial broad set of environmental predictors (Table 5-1), only four structural variables 

indicating food resources, cavities, and altitude affected the occurrence of the TTW in our study area. 

Dead tree abundance was the most important variable. The species had a preference for deadwood 

in the early stages of decay when the abundance of insect food is highest (Hogstad, 1976, 1977). 

Dying and dead spruce trees provide the major food sources of the TTW due to bark beetles (esp. Ips 

typographus) and wood-boring longhorn beetles inhabiting them. Müller and Bütler (2010) showed 

the probability of TTW presence increasing from 0.1 to 0.9 when more than 0.81 (0.56–1.22, 

Switzerland) and 0.44 (0.25–0.62, Sweden) m3/ha basal area of standing deadwood corresponding to 

approx. seven and four dead trees with DBH ≥ 21 were present. Our results of 8 or more dead trees 

per hectare resulting in an 80% probability of TTW presence are in accordance with these findings. 

In contrast with previous findings focusing on the minimum deadwood threshold, we show that very 

high amounts of deadwood, especially of late decay stages with little foraging value, negatively affect 

TTW occurrence probability. The detection of this tendency was made possible by very few 

observations at the extreme end of the gradient (i.e., sites with up to 120 trees per hectare), 

stemming from the large-scale area-wide bark beetle infestations. The lack of suitable research areas 

in Europe exhibiting the full possible gradient of deadwood abundance may be the reason that this 

effect has remained undetected, although Scherzinger (2006) observed a recession in TTW 

occurrence, a few years after a significant increase following the bark beetle outbreak. This implies 

that a patchy distribution of bark-beetle infested trees and tree groups in the forest landscape is 

favorable compared to large-scale area-wide dieback, which is more likely in homogeneous, even-

aged stands. Such heterogeneous deadwood distributions may be furthered by natural topographic 

complexity and increasing forest structural variability through active management or strict protection 

(Senf and R., 2017), as structural heterogeneity is expected to increase in unmanaged forests 

(Donato et al., 2012). 

We also found a positive effect of the mean crown area of the dead trees per plot, indicating the 

availability of fresh deadwood with still complete tree crowns. This variable was selected into all 

models, although only significant at the two intermediate scales. Conditional inference trees 

indicated high probabilities (0.7–0.8) of woodpecker occurrence when the mean crown area per plot 

was larger than 11 m2 (R = 100 m) or 13–13.5 m2 (R = 250–450 m), respectively, corresponding to an 

average branch length of about 2 m. These findings are in line with Balasso (2016), who found that 

the presence of TTW was related to abundance of fresh snags, and Scherzinger (2006), who reported 

an initial increase in TTW occurrence shortly after bark beetle infestations with a subsequent 

decrease after some years. Nevertheless, the relationship between remotely sensed crown 

parameters and bark conditions needs further research.  
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In most field-based studies, deadwood is classified into standing dead trees, snags, and logs, 

representing different decay stages to account for TTW’s prey diversity. In our study, the input data 

was limited to information that can be derived from the air. The first limitation was the omission of 

logs, the recognition of which, although theoretically possible by using ALS data from scanning in 

leaf-off conditions (Polewski et al., 2014), was impossible with our data. Studies relying on field data 

often included this variable in HSMs (Bütler et al., 2004b; Kajtoch et al., 2013a), however it was rarely 

significant (Kratzer et al., 2009). In addition, our remote sensing data could not provide information 

about the DBH, basal area (BA) and volume (Vol) of deadwood objects as often used in other studies 

(Roberge et al., 2008; Kratzer et al., 2009; Müller and Bütler, 2010; Kajtoch et al., 2013a; Balasso, 

2016). This was due to the difficulty of modelling these values without reliable height measurements 

of the tree tops that are often broken in standing deadwood.  

Similar to the findings of Braunisch et al. (2014), our study suggested a positive, but non-significant 

correlation of TTW occurrence with the presence of conifers. In the Bavarian Forest National Park, 

conifer trees are predominantly Norway spruce, the primary host tree of Ips typographus which is 

the staple food of the TTW (Hohlfeld, 1997). Scherzinger (2006) concluded that not the pure amount 

of deadwood, but a permanent occurrence of dying and freshly dead trees originating from 

a continuous share of live spruce stands are crucial for the presence of TTW in the area. Mapping still 

alive, but degenerating spruce trees (the so called green attack stage) that were not detectable from 

our data and that remain a challenge for the remote sensing research (Lausch et al., 2013; Ortiz 

et al., 2013; Immitzer and Atzberger, 2014) could potentially be of high explanatory value for TTW 

habitat selection. Further research using hyperspectral data could bring important progress here 

(Waser et al., 2014b; Abdullah et al., 2018a; Abdullah et al., 2018b). Resource trees that were an 

important variable in other studies (Pechacek and d’Oleire-Oltmanns, 2004; Kajtoch et al., 2013a; 

Kajtoch and Figarski, 2014) did not correlate with TTW occurrence in our study, due to a similar, very 

high resource supply in both presence and absence plots over the entire study area. 

Decreasing model performance from the smallest to the largest sampling scale indicates habitat 

conditions, especially the amount and quality of deadwood, in the surrounding approximately 20 ha 

are most decisive for the TTW’s habitat choice (Rechsteiner et al., 2017). As species’ area 

requirements depend on habitat quality, TTW home range sizes have been shown to vary 

considerably among regions and foraging conditions (Pechacek, 2004; Südbeck, 2005; Romero-

Calcerrada and Luque, 2006; Mikusiński et al., 2018). Bütler et al. (2004c) reports TTW ranges vary 

between 44 and 176 ha, depending on food availability and snag abundance. Kajtoch et al. (2013b) 

suggests at least 100 ha with optimal conditions and 200 ha in suboptimal stands are necessary, 

conforming to the results of other studies (Goggans et al., 1989; Fayt, 2003; Angelstam et al., 2004; 

Pechacek, 2004; Amcoff and Eriksson, 1996). Our study area, with its consistently high abundance of 

patchily distributed deadwood in different stages of decay therefore seems to represent an optimal 

habitat for the TTW. 
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 Management Recommendations 5.4.5

Effective forest and biodiversity management requires habitat thresholds at a scale and resolution 

that are ecologically relevant to the species and can be practically implemented (Farrell et al., 2013). 

Bütler et al. (2004c) recommended a precautious 1.6 m2 (basal area), corresponding to 5% of all standing 

trees or 14 standing dead trees with a DBH ≥ 21 cm per ha. We show the best response of TTW to habitat 

features within 100 to 250 m, i.e., related to a surrounding of up to 20 hectares. Within this area, at least 

eight dead trees per hectare should be retained, focusing on fresh deadwood in the early stages of decay, 

indicated by an average branch length of at least 2 m. Pechacek and Krištín (2004) give similar 

management recommendations claiming that “dead trees should not be removed within a 250 m 

circle from nests”. 

To favour the coexistence of alternative prey for TTW and ensure a constant input of fresh 

deadwood, retaining and restoring dead coniferous trees in different stages of decay and 

a  substantial portion of live spruce trees is required. At the landscape scale, Bütler et al. (2004b) 

showed an effect of the spatial arrangement and density of deadwood rich patches, and 

recommended a network of forest stands with high deadwood densities embedded in a forest 

landscape with lower deadwood densities. As bark beetle spread was revealed to be strongly 

distance dependent with the most new infestations occurring within a 250 m radius of the previous 

year’s infestation and 95% thereof in 500 m (Kautz et al., 2011), safeguarding a wide enough inter-

patch distance is crucial for preventing of bark beetle outbreak. Patches of declining and dead trees 

large enough to host bark beetle populations but disconnected from each other, would therefore aid 

forest managers in effectively controlling bark beetle dispersion (Seidl et al., 2016), while at the same 

time promoting woodpecker habitat.  

Our map showing current TTW habitat suitability allows distinguishing deadwood rich versus 

deadwood poor areas, so as to accurately target conservations measures. 

 Conclusions 5.5

Our study highlights the value of remote sensing, especially the fusion of ALS data with digital aerial 

imagery, for generating a full inventory of live and dead standing trees for large-scale, area-wide 

habitat analyses. Combining structural and spectral data enabled not only the identification of 

deadwood, but also of deadwood characteristics, which is indispensable for reliably modelling the 

habitat requirements of species highly specialized on particular types of standing deadwood. While 

our habitat analysis confirms the amount of standing dead trees as a key predictor of TTW 

occurrence, and the species’ preference for fresh deadwood characterized by large and intact 

crowns, our study is the first showing a negative impact of very high deadwood amounts, with 

a tipping point at about 40–55 standing dead trees per ha. Moreover, we highlight the importance of 

resource diversity including also snags and live conifers. Based on tree-related remote sensing 

information, we were able to draw management recommendations. For example, keeping at least 

eight dead trees in the early stages of decay per hectare within 20 ha (corresponding to a small 

woodpecker’s home range) leads to an increase in habitat suitability for the TTW.  
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Our models show a high predictive power, nevertheless, they may be improved by a more precise 

separation of fresh and old deadwood or even a further differentiation of decay stages or deadwood 

quality obtainable from field studies. Comparing decay stages from field assessments with time 

series of remote sensing data, and using hyperspectral imagery to detect tree decline in an early 

stage (e.g., the first stage of a bark beetle infestation), may further advance the set of predictors 

and aid foresters to better identify and carry out effective management measures to support 

biodiversity.  
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 Appendix A 5.8

Table A 5-1 Environmental variables with their mean and standard deviation (SD) at presence, absence and 

all study plots. Variable codes and descriptions are listed in Table 5-1. (Table continues on the next page) 

R Variable Unit 
All Plots Presence  Absence 

Mean SD Mean SD Mean SD 

100 

Altitude_mean m a.s.l. 953.84 182.37 990.93 187.98 916.74 170.36 

CONIF_Nha N/ha 172.96 91.54 159.96 90.21 185.95 91.89 

DEAD_Cmean m
2
 10.35 5.32 11.92 5.13 8.78 5.09 

DEADTREE_Nha N/ha 12.75 19.74 17.55 19.56 7.95 18.91 

SNAG_Cmean m
2
 4.76 4.28 5.19 4.01 4.34 4.53 

LIVE_Nha N/ha 299.55 134.15 276.43 137.98 322.66 127.35 

CONIF_VOL % 0.65 0.24 0.66 0.22 0.65 0.27 

DEADCIR_part % 0.04 0.09 0.05 0.09 0.03 0.09 

250 

Altitude_mean m a.s.l. 953.53 180.50 989.86 184.95 917.20 170.00 

CONIF_Nha N/ha 178.28 78.48 163.82 75.10 192.73 79.84 

DEAD_Cmean m
2
 11.01 4.13 12.16 4.14 9.86 3.82 
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R Variable Unit 
All Plots Presence  Absence 

Mean SD Mean SD Mean SD 

DEADTREE_Nha N/ha 12.58 18.97 16.94 20.03 8.21 16.93 

SNAG_Cmean m
2
 5.02 3.63 5.48 3.33 4.56 3.89 

LIVE_Nha N/ha 311.07 116.69 290.57 119.85 331.57 110.81 

CONIF_VOLpart % 0.63 0.22 0.63 0.21 0.63 0.24 

DEADCIR_part % 0.04 0.08 0.05 0.08 0.03 0.08 

450 

Altitude_mean m a.s.l. 952.71 176.60 987.99 179.23 917.44 168.31 

CONIF_Nha N/ha 184.81 71.52 168.79 69.50 200.84 70.54 

DEAD_Cmean m131 11.52 3.61 12.31 3.76 10.73 3.30 

DEADTREE_Nha N/ha 11.77 15.01 15.24 17.31 8.30 11.43 

SNAG_Cmean m
2
 5.56 3.44 5.87 3.12 5.25 3.74 

LIVE_Nha N/ha 329.25 108.90 309.69 113.58 348.81 101.35 

CONIF_VOLpart % 0.60 0.19 0.59 0.18 0.61 0.21 

DEADCIR_part % 0.37 0.65 0.47 0.73 0.28 0.56 

600 

Altitude_mean m a.s.l. 951.77 173.45 986.13 174.79 917.41 166.72 

CONIF_Nha N/ha 187.38 70.91 172.16 67.59 202.60 71.51 

DEAD_Cmean m131 11.76 3.47 12.33 3.62 11.19 3.26 

DEADTREE_Nha N/ha 11.96 14.24 14.50 15.71 9.43 12.24 

SNAG_Cmean m
2
 5.69 3.18 5.90 2.91 5.49 3.45 

LIVE_Nha N/ha 335.78 105.28 319.20 112.90 352.35 95.29 

CONIF_VOLpart % 0.58 0.18 0.57 0.16 0.59 0.20 

DEADCIR_part % 0.04 0.06 0.04 0.06 0.03 0.06 

 

Figure A 5-1 Scatter plots showing the relationship between the diameter at breast height (DBH in cm) and 

the height (m) of live conifer trees on various plot sizes. The green horizontal line shows the threshold of 

H = 15 m. The vertical blue line shows the DBH = 20 cm. 

250 
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Table A 5-2 Performance of the four models including the predictors at 4 spatial scales (i.e., within different 

radii R, in meters), measured for each of the 5-fold cross-validation replicates as well as for their mean (and 

standard deviation (SD)). The following evaluation metrics are shown: AIC: Akaikes Information Criterion, 

R-Sq. (adj.): Adjusted R-Squared, AUC: Area under the ROC curve, Sensitivity, Specificity, Correct 

Classification Rate (measured with a threshold of 0.5), and Cohen’s Kappa. 

R Model Fit Measures Fold_1 Fold_2 Fold_3 Fold_4 Fold_5 Mean SD 

100 

AIC 91.00 93.32 91.55 87.59 83.49 89.39 3.49 
R-sq.(adj.) 0.31 0.28 0.35 0.37 0.40 0.34 0.04 

AUC 0.80 0.89 0.84 0.74 0.59 0.77 0.10 
Sensitivity 0.91 0.82 0.50 0.70 0.80 0.75 0.14 
Specificity 0.73 0.91 0.90 0.50 0.30 0.67 0.24 

Correct Class. Rate 0.82 0.86 0.70 0.60 0.55 0.71 0.12 
Cohen’s Kappa 0.64 0.73 0.40 0.20 0.10 0.41 0.24 

250 

AIC 98.43 97.17 106.73 104.61 91.30 99.65 5.52 
R-sq.(adj.) 0.25 0.28 0.18 0.18 0.35 0.25 0.06 

AUC 0.65 0.74 0.83 0.71 0.60 0.71 0.08 
Sensitivity 0.55 0.64 0.70 0.70 0.70 0.66 0.06 
Specificity 0.55 0.82 0.80 0.60 0.50 0.65 0.13 

Correct Class. Rate 0.55 0.73 0.75 0.65 0.60 0.65 0.08 
Cohen’s Kappa 0.09 0.46 0.50 0.30 0.20 0.31 0.15 

450 

AIC 104.04 105.93 113.38 109.05 104.26 107.33 3.51 
R-sq.(adj.) 0.18 0.16 0.09 0.13 0.19 0.15 0.04 

AUC 0.55 0.63 0.76 0.70 0.51 0.63 0.09 
Sensitivity 0.36 0.64 0.70 0.70 0.50 0.58 0.13 
Specificity 0.55 0.55 0.80 0.40 0.30 0.52 0.17 

Correct Class. Rate 0.46 0.59 0.75 0.55 0.40 0.55 0.12 
Cohen’s Kappa −0.09 0.18 0.50 0.10 −0.20 0.10 0.24 

600 

AIC 106.22 109.15 113.70 113.15 108.39 110.12 2.87 
R-sq.(adj.) 0.17 0.12 0.09 0.09 0.15 0.12 0.03 

AUC 0.50 0.63 0.71 0.71 0.49 0.61 0.10 
Sensitivity 0.46 0.64 0.50 0.60 0.50 0.54 0.07 
Specificity 0.55 0.46 0.80 0.60 0.50 0.58 0.12 

Correct Class. Rate 0.50 0.55 0.65 0.60 0.50 0.56 0.06 
Cohen’s Kappa 0.00 0.09 0.30 0.20 0.00 0.12 0.12 
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Figure A 5-2 Variable smooth effect plots for the predictor variables at all spatial scales produced using 

“gam.check”. In brackets on y-axis: variables’ edf (the estimated degrees of freedom of the smooth’) from 

the GAM model. Variable codes and descriptions are listed in Table 5-1. 
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6 SYNTHESIS 

 Main findings and contributions 6.1

The following main findings related to the three research questions (see 1.7) have been identified as 

a result of this thesis: 

RQ1:  The aerial imagery can deliver reliable but limited information on vertical vegetation 

structure. Single objects of open forest structures and standing deadwood can be derived 

only with limited accuracy and inaccurate object extents. 

RQ2:   The resolution and overlap of the aerial imagery, the forest structure, the topography as 

well as the day and time of the data acquisition with the related shadow occurrence are the 

main factors influencing the detail and accuracy of the CHMs derived from image matching. 

Using aerial imagery with higher resolution and overlap, taken at times of highest possible 

solar elevation or employing the ALS data can improve the detection of forest structures.  

RQ3:  Forest structure parameters based solely on aerial imagery or aerial imagery combined with 

ALS data enable the quantification and characterization of meaningful habitat variables for 

predicting the occurrence of the focal species. Area-wide data coverage and standardized 

automated procedures open new perspectives for forest and conservation planning.  

 Novel aspects  6.1.1

Several novel aspects were addressed in my thesis. In the methodological part aerial imagery data 

and products thereof (orthophotos and CHMs) were used and evaluated for automatized derivation 

of biodiversity relevant forest structure parameters. So far, ecology studies were mainly based on 

variables derived using visual assessment from aerial imagery and orthophotos or using automatized 

procedures from ALS data (Müller and Brandl, 2009; Zellweger, 2013; White et al., 2018).  

The gap mapping method (Chapter I) was implemented in an automated tool allowing the 

adjustment of mapping thresholds for gaps and forest types if required by the user. The method, 

aiming at area-wide analyses, was based solely on the vegetation heights from the aerial imagery 

based CHM. I obtained good overall results, but also revealed limitations regarding data accuracy in 

high forests stands. These limitations could be improved when using CHMs derived from ALS (White 

et al., 2018) or aerial imagery of higher resolution (Chapter II) (Petersen, 2015).  

As an intermediate product in the hierarchic image segmentation algorithm of the gap detection 

method canopy cover was also calculated and delineated. This forest structure parameter has been 

considered an important attribute in forest ecology as it determines the light and thermal regime on 

the ground and affects the occurrence and diversity of many conservation-relevant forest taxa (e.g. 

bats (Russo et al., 2007; Bouvet et al., 2016), birds (Graf et al., 2009; Bollmann et al., 2013),  

saproxylic beetles (Vogel et al., 2020) or butterflies (Bergman, 2001; Freese et al., 2006)). 

Stereo aerial imagery is currently the only available high resolution data source that simultaneously 

provides both spectral and structural (in course of image matching) information at an operational 
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scale. To evaluate the potential of combining this information was one of the objectives of this thesis. 

My deadwood detection method (Chapter III) combined the spectral information from orthophotos 

and the vegetation heights (CHM) originating from the same aerial imagery which assures 

appropriate spatial alignment of the different spatial variables at the pixel level.   

A further novel aspect of the deadwood detection method (Chapter III) was resolving the bare 

ground and deadwood misclassification issue. Although a well-known problem, it is rarely  addressed 

and enhancement-methods are lacking (Meddens et al., 2011; Fassnacht et al., 2014). I explored the 

reasons for the misclassification issues and presented two alternative solutions for addressing them, 

one based on morphological analyses of the RF results and the second employing an additional 

deadwood uncertainty filer, developed based on a linear regression model  (Chapter III).   

Finally, extracting large-scale, area-wide habitat variables, especially on deadwood quantity and 

quality, from RS-data combining CIR aerial imagery and ALS (Chapter IV) allowed addressing new 

ecological questions. All habitat models for the Three-toed woodpecker developed so far predicted 

habitat suitability to increase steadily with a growing amount of dead wood within the bird’s home 

range (Pechacek and Krištín, 1996; Bütler et al., 2004a; Müller and Bütler, 2010). Referring to 

Scherzinger (2006) we hypothesized and were able to confirm that this relationship is unimodal, i.e. 

that bird’s habitat suitability decreases after reaching an optimum of 44-50 dead trees per ha, which 

makes a significant contribution to the knowledge on TTW ecology.  

 Developed methods 6.1.2

The development of remote sensing-based methods for the area-wide detection of forest gaps and 

standing deadwood was the goal of the methodological part of this thesis. I aimed at automated, 

flexible and cost-efficient methods that can be adjusted to the various requirements of ecological 

research questions, but also standardized for long-term monitoring programs. The selection of 

methods was based on the overall goal, to focus on aerial imagery data from state surveys. Given the 

need for and the problems associated with processing very large aerial imagery datasets the choice 

was also influenced by the given technical possibilities and limitations. Obviously, some aspects of 

the methodology could have benefitted from other, newer or just emerging solutions.  

To map forest gaps (Chapter I) and detect their changes over time across large spatial extents 

I developed a hierarchic image segmentation procedure combining point- and region-based 

threshold value analyses. Following the structure of a decision tree, including pixel-based threshold- 

and neighborhood analyses, model objects were delineated. The object-class “open forest”, 

potentially of high relevance for forest biodiversity, was delineated with high overall accuracy OA = 

0.92. Despite good overall performance (OA ≥ 0.82 for two different datasets), the gap mapping 

method showed problems in high stands (height ≥ 8m) indicating the limitations of aerial imagery 

data and derived CHMs. 

Different image matching software: Leica Photogrammetry Suite enhanced Automatic Terrain 

Extraction (LPS eATE (ERDAS 2012)) and Semi Global Matching (SGM XPro (Hexagon Geospatial 2015) 

were employed in Chapters I and II for point clouds derivation, whereas in deadwood detection 

(Chapter III) DSMs based on the SURE algorithm (Rothermel et al., 2012; Kirchhoefer et al., 2017) 
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were used. Different algorithms delivered diverging results (Chapter I, II) (Ackermann et al., 2020). 

The suitability of the software therefore often depends on the goal of the vegetation height analysis 

(e.g. single object vs. area estimation, or top canopy measurements vs. derivation of heights in 

complex structured stands and close to the ground) and some limitations need to be accepted.  

To detect standing deadwood above 5m height in mountainous stands of the Black Forest pixel-

based RF classification was applied in the first step. The vegetation heights (CHM) were the most 

important predictor variable followed by vegetation indices: NDVI,  R_ratio (Eq. 2) (Ganz, 2016) and 

B_I_ratio (Eq. 3) (self-developed). R_ratio was based on the R-band capabilities to differentiate 

between different chlorophyll content. B_I_Ratio was developed based on the different spectral 

reflections of the vegetation and bare ground in the blue and infrared band. All three ratios showed 

in the study area “Feldseewald” good separation between the different vegetation classes: live, 

declining and dead. However, the recognition of bare ground pixels remained difficult as the ratios’ 

values of this class showed similar values to another classes, especially these of the dead vegetation 

(Figure 6-1).  

R_ratio = R/(R+G+B+I)      (Eq. 2) 

B_I_ratio = B/I       (Eq. 3) 
  

 

Figure 6-1 Distribution of values per class (Live, Dead and Declining (trees) and Bare ground) for three 

vegetation indices (R_ratio, NDVI, B_I_ratio) used in the deadwood detection method (Chapter III) based on 

the training data pixels (2000 pixels per class) used for training of Random Forest model in the study area 

“Feldseewald”.    

Hue was among the most significant variables predicting deadwood (Chapter III), which confirms the 

added value of the HSV-transformation for image analysis.  

Hue and Value were also used for shadow detection in Chapter III. Remarkably, my deadwood 

mapping method included two shadow masks, 1) a deep shadow mask to exclude shadow areas from 

the analysis and 2) a newly developed special partial shadow mask to identify potentially unreliable 

deadwood pixels for additional filtering based on additional rules. I also used Ratio S calculated 

according to SARABANDI et al. (2004) (Eq. 4) and the Intensity channel of the transformed images 
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(CONRAC CORP. 1980) to identify shadow areas in the aerial imagery. The shadow pixels could be 

a reason for problems in image matching and erroneous surface heights in  derived DSMs, which in 

turn deliver inaccurate CHMs and causes misclassifications in the subsequent analyses (Chapter II). 

S = arctan(Blue/max {Red/Green})        (Eq. 4) 

The selection of all thresholds for defining shadow was based on visual assessment of the shadow 

fraction in the orthophotos and the distribution of values in the selected bands. This is a common 

practice in remote sensing studies (Shahtahmassebi et al., 2013; Waser et al., 2014a), along with 

visual delineation of big dark shadow areas (Piermattei et al., 2019) or shadow modelling approaches 

(Sarabandi et al., 2004; Polewski et al., 2015c) as shadow thresholds depend on data and differ 

between flights and study areas according to the site and flight conditions.  

To describe the texture of the aerial imagery I used Mean Euclidean Distance (Irons and Petersen, 

1981) as implemented in ERDAS Imagine (HEXAGON, 2020) and the “Curvature” function in ArcMap 

(ESRI, 2018) As in the topographical concept of curvature, I hypothesized a similar contribution of the 

spectral information from the infrared band to the description of the spatial form of single deadwood 

objects. Both curvature and mean curvature, calculated at two aggregation levels, contributed 

significantly to deadwood recognition in the deadwood uncertainty model.    

Addressing the bare ground-misclassification issue with 1) morphological post-processing and 2) 

a deadwood uncertainty filter including structural and textural information from the pixel’s 

neighborhood, both applied on top of the RF classification, improved the discriminating between 

deadwood and bare ground pixels. Both solutions led to deadwood mapping results with a more 

balanced ratio between user’s and producer’s accuracy (i.e. a UA of 0.69 and 0.74 and PA of 0.79 and 

0.80, under (1) and (2), respectively). The deadwood uncertainty filter delivered better results, but 

was also the more time and resource consuming procedure. The accuracy of my results  correspond 

to that of other deadwood detection studies either based on visual interpretation of CIR aerial 

imagery (Bütler and Schlaepfer, 2004) or on methods using solely ALS data  (Yao et al., 2012a). 

 Potential and limitations of aerial imagery data 6.1.3

A thorough analysis of the meta-data and aerial imagery properties (Chapter I) pointed at shadow 

occurrence and geometric limitations of the source data being the limiting factor for the quality and 

accuracy of the derived CHMs. By focusing on data from state surveys, used without prior 

radiometric and geometric enhancement for fast and cost-efficient processing, reliable input data 

was expected. However, the aerial imagery originated from different flight campaigns differed in 

quality, especially in the amount of shadow, due to the date and time of data acquisition, which 

affected the results. 

The results of Chapter II, comparing data from three different surveys, confirmed the findings of 

Chapter I. Introducing and keeping standards for flight time and solar altitude, so as to assure a low 

level of shadow occurrence and a good insight between the trees, should be seriously considered as 

bringing significant benefits for the successive data analyses, especially in complex surface situations.  
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Forest stand characteristics and topography were important parameters influencing the results of 

the gap mapping, with low reliability in high forest stands (Chapter I). This is in line with Adler et al. 

(2014) and Hobi et al. (2015), who observed a higher image matching success in plain or smooth 

terrain and even-aged homogenous stands compared to rugged terrain and forest of complex 

structure. Using aerial imagery with higher resolution and overlap for image matching can improve 

the detail and accuracy of the CHMs (Ganz et al., 2019) and derived gap structures (Petersen, 2015) 

as proven in Chapter II. The number of detected gaps increased with the overlap and resolution of 

the data, with simultaneous decrease in size of the detected gaps pointing to higher spatial detail 

and accuracy achieved with the enhancement of the input data. Aerial imagery with higher 

resolution and overlap are recommended where possible over the data with corresponding lower 

parameters with an ultimate choice of ALS data, if available. 

Knowing the drawbacks of the aerial imagery based DSMs and CHMs based on the DTMs from state 

surveys, which are especially prone to errors in complex or open structured stands and in 

mountainous rugged topography, a minimum threshold of 5 m height for detection of standing 

deadwood (Chapter III) was applied a-priori. However, it was not able to eliminate the bare ground 

pixels, known for their varying reflectance pattern depending on surface roughness and wetness as 

well as the angle of view in relation to the angle of illumination (Jones and Vaughan, 2010). Specific 

solutions were required to solve the bare ground and deadwood misclassification issue.  

The primary input data for the ecological study on Three toed woodpecker habitat suitability 

(Chapter IV), combining the ALS structural data and spectral information from the color-infrared 

aerial imagery, allowed the mapping of single tree polygons and the calculation of tree-related 

attributes among which the tree type, tree height and crown area occurred to be decisive for the 

TTW’s habitat selection. The available data, with the CIR component being crucial for differentiation 

between live and dead vegetation, did not only deliver information on the occurrence of standing 

deadwood but also enabled the estimation of different decay stages, which is relevant for many 

forest species (e.g. Balasso (2016)).  

 Model Validation 6.1.4

In this thesis I used stratified random sampling of both point objects (Chapter III) and areas (Chapter 

I, II) to generate quantitative validation data with minimal operator bias and good representation of 

all mapped classes. The calculation of a confusion matrix and associated accuracy metrics for multi-

class classifications allowed the assessment of model performance (Chapters I-III) and the 

comparison between the different models and validation datasets (Chapter III). 

In Chapter III, I showed a major drawback of generating validation data by partitioning the reference 

data revealed, as they can deliver too optimistic results not representing the actual situation. 

Collecting the training and reference data at the same time is not advisable and may lead to biased 

results (Fassnacht, 2013) potentially due to over-fitting the classifier to the sample (Kuhn and 

Johnson, 2013) or to the fact that validation data collected only from “pure class’” pixels do not 

account for problematic inter-class similarities.  
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An additional polygon based validation was applied similar to Fassnacht et al. (2014) to estimate the 

accuracy of the pixel-based approach in the detection of single dead tree objects (Chapter III). The 

results of the deadwood detection were intersected with the deadwood reference polygons with 

positive detection assigned to an overlap of at least one deadwood pixel. The analysis of the 

intersected area allowed an estimation of the spatial extent of the correct deadwood recognition.    

Although the level of automatization in the modelling and validation is growing, visual assessment 

still remains an important validation element to gain a full understanding of the characteristics of the 

data and the associated problems.  The visual inspection on the occurrence of outliers, missing data 

or false results is essential, especially during method development and optimization of algorithms 

while testing different settings. Orthophotos, CHMs and stereo aerial imagery are well suited for that 

purpose. 

 Practical use of the data products 6.1.5

For this doctoral thesis two forest structural elements: canopy gaps and standing deadwood, both 

being key habitat elements in forests and affecting the occurrence of many plant and animal species, 

were selected and methods for their detection were developed. A reliable detection of these 

structures is expected to support research and management in various fields of forestry such as 

forest growth and regeneration (Yamamoto, 2000; Diaci et al., 2005; Nagel et al., 2009) or species-

habitat relationships and forest nature conservation (Angelstam et al., 2003; Suchant et al., 2009; 

Vihervaara et al., 2017).   

Information on deadwood occurrence can be valuable for bark beetle prevention and management 

(Kautz et al., 2011) or for planning of traffic safety operations (Stereńczak et al., 2017).  Moreover,  it 

can support the evaluation of deadwood enrichment programs (Schaber-Schoor, 2010) or other 

forest conservation plans and strategies (Schaber-Schoor et al., 2015).  

Forest structure detection based on automated processing methods also allows the generation of 

time series from aerial imagery of multiple flight campaigns. Analyzing deadwood occurrence and 

dynamics in protected and not protected forests (Rall and Martin, 2002; Zielewska, 2012) or 

observing the forest gaps’ dynamics (Vepakomma, 2008; Rugani et al., 2013) is of significant value 

both for forest managers developing or optimizing forest management plans, and for researchers 

investigating ecological processes in forests.  

 Limitation of this study and perspectives for future research 6.2

All methodological studies (Chapters I, II and III) showed limitations with regard to the accuracy of 

the vegetation heights derived from image matching. The aerial imagery data used was not sufficient 

to provide reliable values in low areas between trees and at the borders between high and low 

surfaces e.g. at the borders to forest roads or between stands. 

Technical development and advances in aerial imagery data acquisition with increasing availability of 

data with higher resolution and overlap make further research necessary examining potential of 

these data for deriving more accurate surface heights. Furthermore, cost-benefit studies comparing 
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the ALS-based CHMs with these derived from image matching of aerial imagery, similar to study of 

Eid et al. (2004), are required to rate the real potential of both data sources and may deliver 

arguments for integrating regularly updated ALS data into the product-portfolio of large scale public 

services. There are good examples from Scandinavia where ALS is the main data source for forest 

inventories (Kangas et al., 2018). However it needs to be taken into consideration that an increase in 

the spatial extent of the ALS campaigns also inflates the variation within the scanned areas and in the 

quality of the resulting data.  

More accurate data on surface heights could aid detection of small forest gaps and deadwood 

objects in various stages of decay and possibly also reduce misclassifications with bare-ground areas 

with low surface height. In addition, the detection of single dead trees and snags (objects, polygons), 

which provide valuable habitat information for specialized species (Chapter IV), would benefit from 

more accurate vegetation heights.  

VHR stereoscopic satellite imagery such as WorldView-3 (European-Space-Imaging, 2018a), 

WorldView-4 (European-Space-Imaging, 2018b) or Pléiades (Coeurdev and Gabriel-Robe, 2012) 

imagery data might be an alternative to aerial images for mapping high-resolution forest structures 

such as deadwood or canopy gaps, especially when the methods are intended to be used at bigger 

spatial scales (Pluto-Kossakowska et al., 2017; Piermattei et al., 2019). More research is required on 

the combined use of satellite stereoscopic data for the generation of both spectral and structural 

information for analyses and applications in ecology.  

Taking into consideration the rapid methodological development and first successful small scale 

studies on deadwood detection using DL algorithms (Jiang et al., 2019), further research in this field 

is necessary to examine the potential of these techniques for accurate classification and 

segmentation of forest structures across large areas. In Chapter III of this thesis, two curvature 

variables calculated at different aggregation levels were fed into the deadwood uncertainty model to 

separate bare ground from deadwood pixels. Their positive contribution to the model suggests 

a potential benefit of using the DL structures, such as e.g. convolutional neural networks (CNN), for 

mapping of deadwood objects and thus a promising research direction. 

The study on TTW habitat suitability (Chapter IV) shows the value of combining aerial imagery with 

ALS data, allowing not only the detection of standing deadwood but also the separation of fresh and 

old deadwood. Further analyses of decay stages observed in the field with time series of remote 

sensing data, including hyperspectral data for the detection of early stage vegetation tissue damage 

and tree decline (Abdullah et al., 2019) may advance the studies on deadwood dynamics and allow 

more accurate predictor variables for ecological studies and effective forest nature conservation. 

 Final remarks 6.3

Remotely sensed data and mapping techniques are valuable for biodiversity studies, as they provide 

continuous data and can be used to derive ecologically relevant variables on vertical and horizontal 

structural dimensions across large spatial scales. Such data are not only relevant for analyzing and 
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predicting species occurrence patterns but also for deriving ecological threshold values and to 

distinguish between suitable and unsuitable areas for targeted conservation measures.  

This work confirms that public aerial imagery and the data products thereof such as orthophotos and 

DSMs enable the detection of forest structures; it does, however, have limits. Although more 

accurate information on vegetation heights can be derived from other sources especially from ALS, 

aerial images remain the most flexible data that provides both spectral information and the 

possibility of obtaining structural information with image matching technique.  

The quality of the structural information from DSMs was a drawback, since this thesis targeted fine 

forest structures located in-between tall trees and between high and low vegetation. Main 

possibilities for improvement are in using aerial imagery of higher resolution and overlap, as they 

enable better insight in-between the trees and allow image matching with higher accuracy. The 

standards of data from state surveys have been changing in the last years and aerial imagery and the 

products thereof have successively become more accurate and detailed, the benefit of which needs 

to be evaluated. 

The deadwood detection method optimized for a better separation of bare ground and deadwood 

shows that new approaches combining different methods and data at different aggregation levels 

can unveil valuable information. Although there are so many RS data types available on the market, 

aerial imagery data shall still be explored further as it might bear a potential to deliver additional 

useful information resulting from new technical developments. 
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