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A B S T R A C T

In recent years, deep convolutional neural networks (CNNs) have achieved remark-
able success in most 2D image processing tasks. Still, the direct processing of 3D
data, not only their 2D projections, is required in many applications. Naive ex-
tensions of 2D deep learning techniques into 3D rely on voxel grids which are
inefficient due to their cubic complexity and thus only support prohibitively low
resolutions. Therefore, it is crucially important to develop dedicated 3D deep learn-
ing algorithms that operate on efficient 3D representations like point clouds and
octrees. The algorithm design depends on the task type: in analysis tasks the 3D
geometry is given as input and needs to be processed efficiently, while in synthesis
tasks the 3D geometry has to be generated from an abstract representation.

The first part of this thesis proposes methods for both efficient analysis and syn-
thesis of 3D data using CNNs. In case of analysis, we focus on the task of semantic
segmentation of 3D scenes represented as point clouds. We propose a new construct
- tangent convolution - which operates directly on surfaces and can be used to build
efficient CNNs. We apply networks that use tangent convolutions to large-scale se-
mantic segmentation of real-world indoor and outdoor datasets. For synthesis, we
propose a novel convolutional decoder for generating 3D shapes represented as oc-
trees. Our approach is significantly more efficient than CNNs based on dense voxel
grids, both in memory consumption and in computation time. This enables the gen-
eration of high-resolution 3D shapes. We validate the proposed method on three
different tasks, including shape auto-encoding, generating shapes from high-level
information, and single-view 3D reconstruction.

The second part of the thesis is devoted to the problem of single-view 3D re-
construction; in particular, to a realistic analysis of its current state. Many recent
CNN-based methods for solving this task focus on developing dedicated decoders
for different 3D representations. We systematically analyze these methods compar-
ing them with two custom baselines which internally rely on image classification
and retrieval, i.e. which solve a recognition problem. The results of these simple
decoder-less baselines are statistically indistinguishable from more sophisticated
state-of-the-art networks, indicating that the latter also rely mostly on recognition.
We formulate the problems in the widely adopted experimental setup that lead
to such behavior and outline possible solutions. Finally, we extensively study how
well existing single-view 3D reconstruction methods which are trained on synthetic
data, generalize to real-world images. For this, we collected a new dataset of objects
of various shapes with fine-grained control over their appearance. We observe that,
despite being trained on realistic renderings and a multitude of objects, state-of-
the-art methods still struggle to generalize to real-world images. Our analysis also
indicates the benefit of introducing more structure into the computational pipeline
via making an intermediate geometric representation part of its design.
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Z U S A M M E N FA S S U N G

In den letzten Jahren haben die Deep Convolutional Neural Networks (CNNs) groß-
artige Ergebnisse in den meisten 2D Bildverarbeitungsaufgaben erzielt. Bei vielen
Anwendungen ist es wichtig direkt auf 3D Daten zu arbeiten und nicht auf ihren
2D Projektionen. Die einfachsten Erweiterungen von 2D CNNs in den 3D Raum ba-
sieren auf Voxel Grids, die wegen ihrer kubischer Komplexität sehr ineffizient sind
und daher nur geringe Auflösungen unterstützen. Es ist demzufolge sehr wichtig
spezielle 3D Deep Learning Algorithmen zu entwickeln, die auf effizienten 3D Re-
präsentationen funktionieren, wie zum Beispiel auf Punktwolken und Octrees. Das
Design von diesen Algorithmen ist vom Aufgabentyp abhängig: Methoden für die
3D Analyse erhalten die 3D Daten als Eingabe und müssen sie effizient bearbei-
ten; im Fall von 3D Synthese geht es darum, ein 3D Modell von einer abstrakten
Repräsentation zu erzeugen.

Im ersten Teil dieser Arbeit stellen wir neu entwickelte CNN-basierte Methoden
für eine effiziente 3D Analyse und 3D Synthese vor. Bei der Analyse ist unsere Auf-
gabe die semantische Segmentierung von Punktwolken. Wir schlagen Tangent Con-
volutions vor, eine neue Operation, die auf der Oberfläche vom Objekten definiert
ist und als Baustein für effiziente CNNs verwendet werden kann. Wir verwenden
Netzwerke, die Tangent Convolutions nutzen für die semantische Segmentierung
von weiträumigen 3D Szenen, die im Innenbereich und in der freien Umgebung
aufgenommen wurden. Für die Synthese entwickeln wir einen neuen convolutio-
nal Decoder. Dieser übersetzt eine abstrakte Repräsentation in eine vom Menschen
leicht zu verstehende Darstellung, in unserem Fall ein Octree. Unsere Methode ist
wesentlich effizienter in der Rechenzeit und im Speicherverbrauch als Netzwerke,
die intern Voxel Grids als Datenstruktur verwenden. Das ermöglicht die Generie-
rung von hochauflösenden 3D Modellen. Wir stellen Experimente für drei verschie-
dene Aufgabenbereiche vor: Auto-Encoding von 3D Modellen, Modellerzeugung
aus einer abstrakten Repräsentation und die 3D Rekonstruktion aus einem einzel-
nen Bild.

Im zweiten Teil der Arbeit evaluieren wir aktuellste Methoden, die sich mit der
3D Rekonstruktion von Objekten aus einzelnen Bildern befassen. Viele moderne
Verfahren legen den Schwerpunkt auf die Entwicklung von speziellen Decodern
für verschiedene 3D Repräsentationen. Wir führen eine systematische Analyse die-
ser bestehenden Methoden durch, indem wir sie mit zwei Referenzmethoden ver-
gleichen, die die Aufgabe mit Hilfe von Bildklassifizierung und Retrieval lösen. Die
Ergebnisse dieser Baselines, die ausschließlich auf Wiedererkennung bekannter Ob-
jekte basieren, sind von den Ergebnissen der viel komplexeren Encoder-Decoder
Netzwerken statistisch ununterscheidbar. Das deutet darauf hin, dass die letztge-
nannten Netzwerke das Problem intern auch als Erkennung angehen. Wir formu-
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lieren die Probleme im konventionellen Versuchsaufbau, die zu solchem Verhalten
führen, und schlagen mögliche Lösungen vor.

Als Letztes beschäftigen wir uns mit der Frage, wie gut die existierenden Me-
thoden, die auf synthetischen Daten trainiert wurden, auf echten Bildern generali-
sieren. Dafür haben wir einen neuen Datensatz gesammelt, der aus einer Vielzahl
von 3D Modellen und deren realistischen Renderings besteht. Trotz realistischen
Aussehens und der Vielfalt an Daten generalisieren die auf unserem Datensatz trai-
nierten state-of-the-art Methoden immer noch nicht auf echten Daten. Unsere Ana-
lyse deutet darauf hin, dass die Einführung von zwischenliegenden geometrischen
Repräsentationen als Teil der Pipeline, eine positive Wirkung auf die Ergebnisse
haben kann.
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1
I N T R O D U C T I O N

Figure 1.1: "Ascending and De-
scending" by M. C.
Escher depicting an
infinite ladder which
looks plausible in 2D but
is actually impossible in
3D.

We live in three-dimensional space which we
perceive primarily visually. Therefore, robust
processing of this visual information is crucially
important for making decisions and performing
actions - both for humans and for AI agents.
Computer vision algorithms developed during
the last decades have achieved remarkable suc-
cess in visual understanding. However, most of
them operate on 2D images which result from
projecting the original 3D information onto a
plane. This projection step leads to an inevitable
information loss exemplified in Figure 1.1: Es-
cher depicted an infinite ladder which is obvi-
ously not possible in 3D but looks plausible in
2D, thanks to the carefully chosen projection an-
gle.

Incorporating knowledge about the structure
of the 3D world into machine learning systems
is important in various situations. 3D data can
be used explicitly by autonomous robots to ob-
serve the surrounding environment. It can be se-
mantically analyzed to understand the structure
of a scene and act in it. A more subtle use of
3D data stems from the human ability to build
implicit cognitive representations (i.e. priors) of
the 3D structure of the world. These priors can be used later, even without hav-
ing access to explicit 3D observations. For example, having seen many cars during
the course of their lives, most humans would be able to estimate the most likely
side-view of a car given a picture taken from its back. Incorporating a similar kind
of prior 3D knowledge into machine learning systems could provide them with
deeper understanding of the world and make solving higher-level tasks possible.
Naturally, exploiting 3D information in machine learning systems requires the de-
velopment of dedicated tools that operate on 3D data.

In recent years, the landscape of computer vision has been changed by algorithms
based on Convolutional Neural Networks (CNNs). CNNs are particularly capable
in two aspects: automatically extracting features useful for solving the task at hand
and learning strong high-level priors from data. They have set a new performance
bar on classical computer vision tasks including image classification [55, 86, 155],

1



2 introduction

(a) (b)

(c) (d)

Figure 1.2: Different 3D representations of the same shape: dense voxel grid (a), octree (b),
mesh (c), and point cloud (d).

semantic segmentation [102, 143], and optical flow [29, 65]. They have also enabled
exciting new applications, such as image and video generation [28, 134], monocular
depth estimation [31, 100], and visual question answering [205].

These two properties (automatic feature extraction and data-based priors), as
well as the overall success of 2D networks, make CNNs a method of choice for 3D
tasks. Technically, the most straightforward way to extend 2D networks to 3D is to
extend the internal data representation from a 2D image to a 3D image (a.k.a. voxel
grid) and substitute all 2D operations with the corresponding 3D ones. Networks of
this kind, while applicable in certain situations [20, 183], turn out to be suboptimal
for general-purpose 3D deep learning. A key contributing factor to the success of
2D CNNs is efficient local processing based on the convolution operation. Naively
replacing 2D grids with 3D grids and 2D convolutions with 3D convolutions in the
processing pipeline changes its scaling from quadratic to cubic, both in computation
time and in memory consumption. This makes the resulting networks applicable
only to low-resolution voxel grids (approximately up to 643) on modern hardware,
which is not sufficient for many tasks that require a larger context.
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Such a naive technical design, however, does not use a fundamental property
of 3D data: its sparsity. Typical 3D sensors (LiDAR, RGB-D camera1) measure the
distance to an object’s surface2. This effectively means that only a 2D submanifold
of the 3D space needs to be encoded. There are multiple 3D representations that
exploit this sparsity: octrees, point clouds, and meshes.

An octree is effectively a voxel grid with locally adaptive resolution. It automat-
ically maintains the appropriate resolution depending on the amount of geomet-
ric information in a particular space region: areas close to the surface are usually
encoded in high resolution, while large empty spaces are represented in low reso-
lution. A point cloud represents a 3D shape as a collection of points, situated on
the object surface. Meshes encode surfaces represented as point sets interconnected
with polygons, usually triangles. An example 3D shape represented in four differ-
ent ways is shown in Figure 1.2.

While all these representations are significantly more efficient than vanilla voxel
grids, they are defined on irregular domains. Therefore, developing CNNs that op-
erate on them requires re-designing all the basic computational building blocks:
convolution, up-convolution, pooling, etc. In practice there is no single universal
representation which would outperform the others – all three have their use in dif-
ferent situations depending on the application. Therefore, designing a CNN for a
particular efficient 3D representation requires taking into account both the proper-
ties of this representation and of the particular type of task.

All tasks in deep learning, both 2D and 3D, can be broadly subdivided into
analysis and synthesis. In case of analysis, a visual input is converted into a class
label, a per-pixel segmentation mask, an optical flow field, etc. In case of synthesis,
the process is reversed. Given some input representation, the task of the network is
to reconstruct the original visual data. When working with 2D images, there is no
fundamental technical difference between these two tasks. Networks for semantic
segmentation – an analysis task – can be implemented using the same encoder-
decoder architecture as networks for image synthesis, because both inputs and
outputs of such networks are represented as 2D grids.

There is, however, an important difference between these two types of tasks in
3D, when using one of the previously described efficient representations. In case of
analysis, the 3D geometry is given as input, which effectively defines the structure
of the domain. The essence of the algorithm design is therefore to enable efficient
operations in this domain. One of the most practically relevant classes of analysis
tasks is that of processing data from 3D sensors which usually comes in form of
point clouds. In Chapter 2, we present an efficient method for dense prediction
on unstructured point clouds and other noisy real-world data. The core of our ap-
proach is a new convolution operation for 3D data - tangent convolution. Unlike

1 Strictly speaking, RGB-D cameras are 2.5D sensors. However, we assume that, given the known cam-
era poses, multiple RGB-D images can be fused into a complete 3D scene in a fairly straightforward
manner.

2 One counterexample includes bio-medical imaging, where samples are often recorded layer-by-layer
and encode dense volumetric information.
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volumetric approaches relying on voxel grids, ours operates on the surface, i.e. pre-
cisely where the information from typical 3D sensors is located. Evaluating tangent
convolutions is efficient even for point clouds with millions of points. We design
a deep fully-convolutional network for semantic segmentation of 3D point clouds
using tangent convolution as the main building block. This network is evaluated
on three large-scale real-world dataset comprised of indoor and outdoor scenes. Ex-
periments confirm that our method outperforms all prior CNN-based approaches
for semantic segmentation in 3D.

Synthesis, on the other hand, requires generating a 3D geometry from a low-
dimensional representation. The task of the network is therefore to not only make
some predictions about a signal (e.g. occupancy or color) defined in a certain do-
main, but also to estimate the structure of the domain itself. Octrees are particularly
suitable for this class of problems because of their hierarchical design which nat-
urally enables a hierarchical structure of the computational pipeline. In Chapter 3,
we introduce a convolutional decoder architecture for generating 3D shapes rep-
resented as octrees. The network predicts both the structure of the octree and the
signal - in this case occupancy - for individual cells. Our network is compute- and
memory-efficient; it enjoys approximately quadratic scaling compared to the cubic
scaling of approaches internally operating on dense voxel grids. This allows to gen-
erate shapes of significantly higher resolution. Our decoder can be combined with
a suitable task-specific encoder. We demonstrate its performance on several tasks:
shape auto-encoding, generating objects from high-level information, and single-
view 3D reconstruction.

The goal of single-view 3D reconstruction, one of the classical [142] tasks in 3D
computer vision, is to predict the 3D shape of an object given its single image.
This problem formulation can be useful to learn an implicit representation which
contains 3D information. It can also be used to explicitly reason about the 3D ge-
ometry, when only little information (i.e. a single camera image) is available. The
problem of single-view 3D reconstruction is inherently ill-posed: it is impossible
to reliably reconstruct parts of objects which are completely occluded in the in-
put image. The overall task boils down to interpreting the information about the
3D structure present in the input image (lighting, textures, perspective effects, etc.)
and complementing it by employing some form of data prior. We refer to solutions
using these two sources of information as reconstruction and recognition respec-
tively. A reconstruction-type solution is based on interpreting the local low-level
image observations, while a recognition-type solution relies on classifying the ob-
ject in the input and retrieving the appropriate prior shape. Classical algorithms
mostly rely on hand-designed shape priors, which limits their applicability to a
narrow range of simplistic objects [61, 142]. CNNs, with their ability to automati-
cally extract priors from data, enable a novel class of learning approaches.

Research in the field has mostly concentrated on developing methods that predict
different output representations [20, 33, 48, 138]. All existing techniques, including
our method presented in Chapter 3, are united by the idea of having an encoder-
decoder network that performs non-trivial reasoning about the 3D structure of the



introduction 5

output space. The ability of 3D CNNs to reliably combine local input observations
with the data priors has been assumed by default. In Chapter 4, we challenge this
assumption and perform extensive analysis of existing CNN-based methods for
single-view 3D reconstruction. To this end, we design two alternative approaches
for solving the task which rely on image classification and retrieval respectively.
Though only relying on object recognition, these simple baselines perform on par
with the state-of-the-art methods both qualitatively and quantitatively. The results
of our baselines are statistically indistinguishable from those of encoder-decoder
CNNs which explicitly reason about the structure of the 3D space. This indicates
that state-of-the-art methods largely rely on object recognition. We discuss which
flaws of the conventional experimental setup lead to such behavior and outline
possible remedies.

In Chapter 5, we continue to analyze the performance of methods for single-
view 3D reconstruction, assessing their generalization to real-world data. One of
the big issues in machine learning in general – and in single-view 3D reconstruc-
tion in particular – is the domain shift which emerges when training methods on
synthetic data and testing on real data. Solving this is crucial for making these
methods applicable in the real world. We collect a large-scale synthetic dataset and
use it to systematically analyze the aforementioned domain shift. Our dataset fea-
tures shapes of diverse types from three different collections: the most relevant
ShapeNet models, lego shapes, and sculptures. We produce high-quality realistic
renderings of all shapes while carefully controlling the appearance of objects. In
our experiments, we observe that methods which generate shapes directly from
RGB images barely generalize to real-world data, even despite being trained on
realistically looking objects and diverse shapes. The situation improves when using
an intermediate geometric representation, i.e. a depth map, in the pipeline, which
indicates the potential general importance of such design choice.

Chapter 6 concludes the thesis and provides an outline of potential future re-
search directions.
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contributions

The contributions of this thesis are based on the following papers. A detailed de-
scription of how exactly the papers were used, as well as an account of other peo-
ple’s contributions, are provided at the beginning of the corresponding chapters.

• Chapter 2: Maxim Tatarchenko*, Jaesik Park*, Vladlen Koltun, and Qian-Yi
Zhou (*indicates equal contribution). "Tangent Convolutions for Dense Pre-
diction in 3D." In: CVPR, 2018.

In this work we focus on semantic analysis of 3D scenes with convolutional
networks. We propose a novel convolution operation suitable for processing
unstructured 3D data - tangent convolution. Tangent convolution operates di-
rectly on the object surface and only requires being able to estimate surface
normals from the input data. CNNs based on tangent convolutions can be
used to solve dense prediction tasks on large-scale point clouds with millions
of points. We validate the proposed approach on the task of semantic segmen-
tation of indoor and outdoor scenes from three real-world datasets.

• Chapter 3: Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. "Oc-
tree Generating Networks: Efficient Convolutional Architectures for High-
resolution 3D Outputs." In: ICCV, 2017.

In this work we propose a novel convolutional decoder for generating 3D
shapes represented as octrees. Compared to CNNs based on dense voxel
grids, our method has much better scaling properties, which allows to pro-
duce shapes of significantly higher resolution. Combined with a suitable en-
coder, our decoder can be used to solve any task which requires generat-
ing a 3D shape. We showcase its performance in three settings: shape auto-
encoding, generating shapes from high-level information, and singe-view 3D
reconstruction.

• Chapter 4: Maxim Tatarchenko*, Stephan R. Richter*, René Ranftl, Zhuwen Li,
Vladlen Koltun, and Thomas Brox (*indicates equal contribution). "What Do
Single-view 3D Reconstruction Networks Learn?" In: CVPR, 2019.

In this work we perform extensive analysis of modern encoder-decoder CNNs
for single-view 3D reconstruction in order to better understand their mode of
operation. We develop two alternative baselines which perform image clas-
sification and retrieval respectively. Though both these baselines exclusively
rely on recognition and do not include any explicit 3D reasoning, their results
turn out to be statistically indistinguishable from those produced by encoder-
decoder CNNs. This provides a strong indication that state-of-the-art methods
primarily approach the task of single-view shape estimation in the recognition
mode. We also formulate a set of problems which cause such behavior and
discuss their possible solutions.
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• Chapter 5: Maxim Tatarchenko, Stephan R. Richter, Jaesik Park, Vladlen Koltun,
and Thomas Brox. "Do Single-view 3D Reconstruction Networks Generalize
to Real Data?" In preparation for submission.

In this work we further analyze the functioning of single-view 3D reconstruc-
tion methods focusing on their ability to generalize to real-world input data.
We systematically study the domain shift experienced by CNNs trained on
synthetic data and tested on real images. For this purpose, we collected a
large-scale dataset featuring objects of different shapes and produced their
high-quality realistic renderings. We conclude that, despite realistic appear-
ance and diverse training data, existing methods still struggle with general-
ization to real data. We provide an indication that this effect can be alleviated
by using intermediate geometric representations in the pipeline.





2
3 D A N A LY S I S : TA N G E N T C O N V O L U T I O N S

The text of this chapter was largely copied from the following paper.

Maxim Tatarchenko*, Jaesik Park*, Vladlen Koltun, and Qian-Yi Zhou (*indi-
cates equal contribution). "Tangent Convolutions for Dense Prediction in 3D."
In: CVPR, 2018.

Jaesik Park contributed by implementing the low-level geometric processing oper-
ations in the Open3D framework. He also performed the training of the baseline
methods: ScanNet, OctNet, PointNet and SnapNet. All co-authors contributed to
the project discussions as well as the final paper text editing.

∗ ∗ ∗

2.1 introduction

Methods that utilize convolutional networks on 2D images dominate modern com-
puter vision. A key contributing factor to their success is efficient local processing
based on the convolution operation. 2D convolution is defined on a regular grid,
a domain that supports extremely efficient implementation. This in turn enables
using powerful deep architectures for processing large datasets at high resolution.

When it comes to analysis of large-scale 3D scenes, a straightforward extension
of this idea is volumetric convolution on a voxel grid [25, 115, 188]. However, voxel-
based methods have limitations, including a cubic growth rate of memory con-
sumption and computation time. For this reason, voxel-based ConvNets operate
on low-resolution voxel grids that limit their prediction accuracy. The problem can
be alleviated by octree-based techniques that define a ConvNet on an octree and
enable processing somewhat higher-resolution volumes (e.g., up to 2563 voxels) [53,
140, 141, 177]. Yet even this may be insufficient for detailed analysis of large-scale
scenes.

On a deeper level, both efficient and inefficient voxel-based methods treat 3D
data as volumetric by exploiting 3D convolutions that integrate over volumes. In
reality, data captured by 3D sensors such as RGB-D cameras and LiDAR typically
represent surfaces: 2D structures embedded in 3D space. (This is in contrast to truly
volumetric 3D data, as encountered for example in medical imaging.) Classic fea-
tures that are used for the analysis of such data are defined in terms that acknowl-
edge the latent surface structure, and do not treat the data as a volume [36, 70,
144].

The drawbacks of voxel-based methods are known in the research community. A
number of recent works argue that volumetric data structures are not the natural

9
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Figure 2.1: Convolutional networks based on tangent convolutions can be applied to se-
mantic analysis of large-scale scenes, such as urban environments. Left: point
cloud from the Semantic3D dataset. Right: semantic segmentation produced by
the presented approach.

substrate for 3D ConvNets, and propose alternative designs based on unordered
point sets [132], graphs [154], and sphere-type surfaces [110].

We develop an alternative construction for convolutional networks on surfaces,
based on the notion of tangent convolution. This construction assumes that the data
is sampled from locally Euclidean surfaces. The latent surfaces need not be known,
and the data can be in any form that supports approximate normal vector estima-
tion, including point clouds, meshes, and even polygon soup. (The same assump-
tion concerning normal vector estimation is made by both classic and contemporary
geometric feature descriptors [36, 70, 78, 144, 146, 167].) The tangent convolution is
based on projecting local surface geometry on a tangent plane around every point.
This yields a set of tangent images. Every tangent image is treated as a regular 2D
grid that supports planar convolution. The content of all tangent images can be
precomputed from the surface geometry, which enables efficient implementation
that scales to large datasets, such as urban environments.

Using tangent convolution as the main building block, we design a U-type net-
work for dense semantic segmentation of point clouds. Our proposed architecture
is general and can be applied to analysis of large-scale scenes. We demonstrate its
performance on three diverse real-world datasets containing indoor and outdoor
environments. A semantic segmentation produced by a tangent convolutional net-
work is shown in Figure 2.1.

2.2 related work

Dense prediction in 3D, including semantic point cloud segmentation, has a long
history in computer vision. Pioneering methods work on aerial LiDAR data and are
based on hand-crafted features with complex classifiers on top [12, 13, 44]. Such ap-
proaches can also be combined with high-level architectural rules [111]. A popular
line of work exploits graphical models, including conditional random fields [2, 35,
57, 88, 120, 174, 182]. Related formulations have also been proposed for interactive
3D segmentation [119, 172].

More recently, the deep learning revolution in computer vision has spread to
consume 3D data analysis. A variety of methods that tackle 3D data using deep
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learning techniques have been proposed. They can be considered in terms of the
underlying data representation.

A common representation of 3D data for deep learning is a voxel grid. Deep
networks that operate on voxelized data have been applied to shape classifica-
tion [115, 130, 188], semantic segmentation of indoor scenes [25], and biomedical
recordings [15, 22]. Due to the cubic complexity of voxel grids, these methods can
only operate at low resolution – typically not more than 643 – and have limited
accuracy. Attempting to overcome this limitation, researchers have proposed rep-
resentations based on hierarchical spatial data structures such as octrees and kd-
trees [80, 90, 140, 177], which are more memory- and computation-efficient, and
can therefore handle higher resolutions. A related family of approaches operates
on sparse quantizations of input data [21, 45, 161]. These methods are based on
storing and processing information only in relevant spatial regions, that is around
object surfaces. An alternative way of increasing the accuracy of voxel-based tech-
niques is to add differentiable post-processing, modeled upon the dense CRF [85,
164].

Several other constructs for convolving point clouds were proposed in the recent
years. Hua et al. [63] and Li et al. [96] rely on the underlying grid for neighborhood
computation required to define a convolutional kernel. Xu et al. [190] parametrize
convolutional filters as a product of a step function for capturing local geodesic
information and a Taylor polynomial for representing geometric variations. Groh
et al. [47] and Wang et al. [178] represent convolutional kernels as parametric func-
tions of neighborhood points. Hermozilla et al. [58] treat convolution as a Monte
Carlo integration problem. Wu et al. [186] introduce PointConv where they repre-
sent kernel weights as functions of the local point coordinates and point densities
parametrized by MLPs. Thomas et al. [165] and Atzmon et al. [4] associate kernel
weights with points and use a correlation function. Zhang et al. [199] propose rota-
tion invariant convolutions on point clouds based on low-level geometric features.
Mao et al. [109] define convolutions on a regular grid and interpolate point fea-
tures to neighboring kernel weights. Zhang et al. [198] use statistics from concentric
shells to extract point cloud features and process those with regular convolutions.
A similar idea with ring-shaped structures was proposed by Komarichev et al. [83].

Qi et al. [132] propose a network for analyzing unordered point sets, which is
based on independent point processing combined with global context aggregation
through max-pooling. In a subsequent work [131] they extend their approach to
support local hierarchical processing which makes it more suitable for segmenting
large-scale scenes. Rethage et al. [136] combine a PointNet-based feature extrac-
tor with a regular 3D convolutional network for semantic segmentation. Zhao et
al. [200] extend the idea of capsule networks [145] to the 3D case and apply the
resulting construct to multiple tasks including semantic segmentation. Huang et
al. [64] process textured meshes parametrized with a consistent 4-way rotationally
symmetric field. Hanocka et al. [54] implement mesh convolutions by using edges
for neighborhood computation. Several approaches adapt graph networks to point
cloud analysis tasks [69, 175, 179].
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Other applications of CNNs consider RGB-D images, which can be treated with
fully-convolutional networks [49, 97, 116] and graph neural networks [133]. These
approaches support the use of powerful pre-trained 2D networks, but are not gener-
ally applicable to unstructured point clouds with unknown sensor poses. Attempt-
ing to address this issue, Boulch et al. [8] train a ConvNet on images rendered from
point clouds using randomly placed virtual cameras. In a more controlled setting
with fixed camera poses, multi-view methods are successfully used for shape seg-
mentation [73] and shape recognition [130, 162]. Chiang et al. [18] and Dai et al.
[24] combine multiple sources of information for segmentation including 2D image
features, 3D features and global context features. Our approach can be viewed as
an extreme multi-view approach in which a virtual camera is associated with each
point in the point cloud. A critical problem that we address is the efficient and scal-
able implementation of this approach, which enables its application to dense point
clouds of large-scale indoor and outdoor environments.

There is a variety of more exotic deep learning formulations for 3D analysis that
do not address large-scale semantic segmentation of whole scenes but provide in-
teresting ideas. Yi et al. [193] consider shape segmentation in the spectral domain by
synchronizing eigenvectors across models. Masci et al. [112] and Boscaini et al. [7]
design ConvNets for Riemannian manifolds and use them to learn shape correspon-
dences. Sinha et al. [157] perform shape analysis on geometry images. Simonovsky
et al. [154] extend the convolution operator from regular grids to arbitrary graphs
and use it to design shape classification networks. Li et al. [95] introduce Field
Probing Neural Networks which respect the underlying sparsity of 3D data and
are used for efficient feature extraction. Maron et al. [110] design ConvNets on sur-
faces for sphere-type shapes. Haim et al. [51] propose warping an image around a
surface and applying regular CNN architectures on this representation.

2.3 approach

In this section we formally introduce tangent convolutions. All derivations are pro-
vided for point clouds, but they can easily be applied to any type of 3D data that
supports surface normal estimation, such as meshes.

Convolution with a continuous kernel. Let P = {p} be a point cloud, and let
F(p) be a discrete scalar function that represents a signal defined over P . F(p) can
encode color, geometry, or abstract features from intermediate network layers. In
order to convolve F, we need to extend it to a continuous function. Conceptually,
we introduce a virtual orthogonal camera for p. It is configured to observe p along
the normal np. The image plane of this virtual camera is the tangent plane πp of
p. It parameterizes a virtual image that can be represented as a continuous signal
S(u), where u ∈ R2 is a point in πp. We call S a tangent image.

The tangent convolution at p is defined as

X(p) =
∫

πp
c(u)S(u) du, (2.1)
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Figure 2.2: Points q (blue) from the local neighborhood of a point p (red) are projected onto
the tangent image.

where c(u) is the convolution kernel. We now describe how S is computed from F.

Tangent plane estimation. For each point p we estimate the orientation of its cam-
era image using local covariance analysis. This is a standard procedure [146] but
we summarize it here for completeness. Consider a set of points q from a spherical
neighborhood of p, such that ‖p − q‖ < R. The orientation of the tangent plane
is determined by the eigenvectors of the covariance matrix C = ∑q rr>, where
r = q− p. The eigenvector of the smallest eigenvalue defines the estimated surface
normal np, and the other two eigenvectors i and j define the 2D image axes that
parameterize the tangent image.

Signal interpolation. Now our goal is to estimate image signals S(u) from point
signals F(q). We begin by projecting the neighbors q of p onto the tangent image,
which yields a set of projected points v = (r>i, r>j). This is illustrated in Figure 2.2.
We define

S(v) = F(q). (2.2)

As shown in Figure 2.2 and Figure 2.3(a), points v are scattered on the image plane.
We thus need to interpolate their signals in order to estimate the full function S(u)
over the tangent image:

S(u) = ∑
v

(
w(u, v) · S(v)

)
, (2.3)

where w(u, v) is a kernel weight that satisfies

∑
v

w = 1. (2.4)
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We consider two schemes for signal interpolation: nearest neighbor and Gaussian
kernel mixture. These schemes are illustrated in Figure 2.3.

(a) (b) (c) (d)

Figure 2.3: Signals from projected points (a) can be interpolated using one of the following
schemes: nearest neighbor (b), full Gaussian mixture (c), and Gaussian mixture
with top-3 neighbors (d).

In the nearest neighbor (NN) case,

w(u, v) =

1 if v is u’s NN,

0 otherwise.
(2.5)

In the Gaussian kernel mixture case,

w(u, v) =
1
A

exp
(
−‖u− v‖2

σ2

)
, (2.6)

where A normalizes the weights such that ∑v w = 1. More sophisticated signal
interpolation schemes can be considered, but we have not observed a significant
effect of the interpolation scheme on empirical performance and will mostly use
simple nearest-neighbor estimation.

Finally, if we rewrite Equation (2.1) using the definitions from Equations (2.2)
and (2.3), we get the formula for the tangent convolution:

X(p) =
∫

πp
c(u) ·∑

v

(
w(u, v) · F(q)

)
du. (2.7)

Note that the role of the tangent image is increasingly implicit: it provides the
domain for u and figures in the evaluation of the weights w, but otherwise it need
not be explicitly maintained. We will build on this observation in the next section
to show that tangent convolutions can be evaluated efficiently at scale, and can
support the construction of deep networks on point clouds with millions of points.

2.4 efficiency

In this section we describe how the tangent convolution defined in Section 2.3
can be computed efficiently. In practice, the tangent image is treated as a discrete
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function on a regular l×l grid. Elements u are pixels in this virtual image. The con-
volution kernel c is a discrete kernel applied onto this image. Let us first consider
the nearest-neighbor signal interpolation scheme introduced in Equation (2.5). We
can rewrite Equation (2.7) as

X(p) = ∑
u

(
c(u) · F

(
g(u)

))
, (2.8)

where g(u) is a selection function that returns a point which projects to the nearest
neighbor of u on the image plane. Note that g only depends on the point cloud
geometry and does not depend on the signal F. This allows us to precompute g for
all points.

From here on, we employ standard ConvNet terminology and proceed to show
how to implement a convolutional layer using tangent convolutions. Our goal is to
convolve an input feature map Fin of size N×Cin with a set of weights W to produce
an output feature map Fout of size N×Cout, where N is the number of points in the
point cloud, while Cin and Cout denote the number of input and output channels
respectively. For implementation, we unroll 2D tangent images and convolutional
filters of size l×l into 1D vectors of size 1×L, where L = l2. From then on, we com-
pute 1D convolutions. Note that such representation of a 2D tangent convolution
as a 1D convolution is not an approximation: the results of the two operations are
identical.

We start by precomputing the function g, which is represented as an N×L in-
dex matrix I. Elements of I are indices of the corresponding tangent-plane nearest-
neighbors in the point cloud. Using I, we gather input signals (features) into an
intermediate tensor M of size N×L×Cin. This tensor is convolved with a flattened
set of kernels W of size 1×L, which yields the output feature map Fout. This process
is illustrated in Figure 2.4.

Consider now the case of signal interpolation using Gaussian kernel mixtures.
For efficiency, we only consider the set of top-k neighbors for each point, denoted
NNk. An example image produced using the Gaussian kernel mixture scheme with
top-3 neighbors is shown in Figure 2.3(d). Equation (2.6) turns into

w(u, v) =

 1
A exp

(
− ‖u−v‖2

σ2

)
if v ∈ NNk

0 otherwise,
(2.9)

where A normalizes weights such that ∑v w = 1. With this approximation, each
pixel u has at most k non-zero weights, denoted by w1..k(u). Their corresponding
selection functions are denoted by g1..k(u). Both the weights and the selection func-
tions are independent of the signal F, and are thus precomputed. Equation (2.7)
becomes

X(p) = ∑
u

(
c(u) ·

k

∑
i=1

(
wi(u) · F(gi(u))

))
(2.10)

=
k

∑
i=1

∑
u

(
wi(u) · c(u) · F(gi(u))

)
. (2.11)



16 3d analysis : tangent convolutions

As with the nearest-neighbor signal interpolation scheme, we represent the pre-
computed selection functions gi as k index matrices Ii of size N×L. These index
matrices are used to assemble k intermediate signal tensors Mi of size N×L×Cin.
Additionally, we collate the precomputed weights into k weight matrices Hi of size
N×L. They are used to compute the weighted sum M = ∑i Hi �Mi, which is fi-
nally convolved with the kernel W.

We implemented the presented construction in TensorFlow [1]. It consists entirely
of differentiable atomic operations, thus backpropagation is done seamlessly using
the automatic differentiation functionality of the framework.

N N N

Cin
Cin CoutLL

Fin I M Fout

g(u) F(g(u)) conv

Figure 2.4: Efficient evaluation of a convolutional layer built on tangent convolutions.

2.5 additional ingredients

In this section we introduce additional ingredients that are required to construct a
convolutional network for point cloud analysis.

2.5.1 Multi-scale analysis

Pooling. Convolutional networks commonly use pooling to aggregate signals over
larger spatial regions. We implement pooling in our framework via hashing onto a
regular 3D grid. Points that are hashed onto the same grid point pool their signals.
The spacing of the grid determines the pooling resolution. Consider points P =
{p} and corresponding signal values {F(p)}. Let g be a grid point and let Vg be
the set of points in P that hash to g. (The hash function can be assumed to be
simple quantization onto the grid in each dimension.) Assume that Vg is not empty
and consider average pooling. All points in Vg and their signals are pooled onto a
single point:

p′g =
1
|Vg| ∑

p∈Vg

p and F′(p′g) =
1
|Vg| ∑

p∈Vg

F(p). (2.12)

In a convolutional network based on tangent convolutions, we pool using progres-
sively coarser grids. Starting with some initial grid resolution (5cm in each dimen-
sion, say), each successive pooling layer increases the step of the grid by a factor
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of two (to 10cm, then 20cm, etc.). Such hashing also alleviates the problem of non-
uniform point density. As a result, we can select the neighborhood radius for the
convolution operation globally for the entire dataset.

After each pooling layer, the radius r that is used to estimate the tangent plane
and the pixel size of the virtual tangent image are doubled accordingly. Thus the
resolution of all tangent images decreases in step with the resolution of the point
cloud. Note that the downsampled point clouds produced by pooling layers are
independent of the signals defined over them. The downsampled point clouds, the
associated tangent planes, and the corresponding index and weight functions can
thus all be precomputed for all layers in the convolutional network: they need only
be computed once per pooling layer.

The implementation of a pooling layer is similar in spirit to that of a convolu-
tional layer described in Section 2.4. Consider an input feature map Fin of size
Nin×C. Using grid hashing, we assemble an index matrix I of size Nout×8, which
contains indices of points that hash to the same grid point. Assuming that we de-
crease the grid resolution by a factor of 2 in each dimension in each pooling layer,
the number of points that hash to the same grid point will be at most 8 in general.
(For initialization, we quantize the points to some base resolution.) Using I, we
assemble an intermediate tensor of size Nout×8×C. We pool this tensor along the
second dimension according to the pooling operator (max, average, etc.), and thus
obtain an output feature map Fout of size Nout×C.

Note that all stages in this process have linear complexity in the number of points.
Although points are hashed onto regular grids, the grids themselves are never con-
structed or represented. Hashing is performed via modular arithmetic on individ-
ual point coordinates, and all data structures have linear complexity in the number
of points, independent of the extent of the point set or the resolution of the grid.

Unpooling has an opposite effect to pooling: it distributes signals from points in a
low-resolution feature map Fin onto points in a higher-resolution feature map Fout.
Unpooling reuses the index matrix from the corresponding pooling operation. We
copy features from a single point in a low-resolution point cloud to multiple points
from which the information was aggregated during pooling.

2.5.2 Local distance feature

So far, we have considered signals that could be expressed in terms of a scalar func-
tion F(q) with a well-defined value for each point q. This holds for color, intensity,
and abstract ConvNet features. There is, however, a signal that cannot be expressed
in such terms and needs special treatment. This signal is distance to the tangent
plane πp. This local signal is calculated by taking the distance from each neighbor
q to the tangent plane of p: d = (q− p)>np.

This signal is defined in relation to the point p, therefore it cannot be directly
plugged into the pipeline shown in Figure 2.4. Instead, we precompute the distance
images for every point. Scattered signal interpolation is done in the same way as
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for scalar signals (Equation (2.3)). After assembling the intermediate tensor M for
the first convolutional layer, we simply concatenate these distance images as an
additional channel in M. The first convolutional layer generates a set of abstract
features Fout that can be treated as scalar signals from here on.

All precomputations are implemented using Open3D [202].

2.6 architecture

Using the ingredients introduced in the previous sections, we design an encoder-
decoder network inspired by the U-net [143]. The network architecture is illustrated
in Figure 2.5. It is a fully-convolutional network over a point cloud, where the
convolutions are tangent convolutions. The encoder contains two pooling layers.
The decoder contains two corresponding unpooling layers. Encoder features are
propagated to corresponding decoder blocks via skip-connections. All layers except
the last one use 3×3 filters and are followed by Leaky ReLU with negative slope
0.2 [106]. The last layer uses 1×1 convolutions to produce final class predictions.
The network is trained by optimizing the cross-entropy objective using the Adam
optimizer with initial learning rate 10−4 [79].

m 32 32

32 64 64

64 128 64

128 64 32

32 32 64 n

pool

unpool

skip

Figure 2.5: We use a fully-convolutional U-shaped network with skip connections. The net-
work receives m-dimensional features as input and produces prediction scores
for n classes.
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Receptive field. The receptive field size of one convolutional layer is determined
by the pixel size r of the tangent image and the radius R that is used to collect the
neighbors of each point p. We set R = 2r, therefore the receptive field size of one
layer is R. After each pooling layer, r is doubled. The receptive field of an element
in the network can be calculated by tracing the receptive fields of preceding layers.
With initial r = 5cm, the receptive field size of elements in the final layer of the
presented architecture is 4 · 10 + 4 · 20 + 2 · 40 = 200cm.

2.7 experiments

We evaluate the performance of the presented approach on the task of semantic 3D
scene segmentation. Our approach is compared to several deep networks for 3D
data on three different datasets.

2.7.1 Datasets and measures

We conduct experiments on three large-scale datasets that contain real-world 3D
scans of indoor and outdoor environments.

Semantic3D [50] is a dataset of scanned outdoor scenes with over 3 billion points.
It contains 15 training and 15 test scenes annotated with 8 class labels. Being unable
to evaluate the baseline results on the official test server, we use our own train/test
split: Bildstein 1-3-5 are used for testing, the rest for training.

Stanford Large-Scale 3D Indoor Spaces Dataset (S3DIS) [3] contains 6 large-scale
indoor areas from 3 different buildings, with 13 object classes. We use Area 5 for
testing and the rest for training.

ScanNet [25] is a dataset with more than 1,500 scans of indoor scenes with 20 object
classes collected using an RGB-D capture system. We follow the standard train/test
split provided by the authors.

Measures. We report three measures: mean accuracy over classes (mA), mean in-
tersection over union (mIoU), and overall accuracy (oA). We build a full confusion
matrix based on the entire test set, and derive the final scores from it. Measures
are evaluated over the original point clouds. For approaches that produce labels
over downsampled or voxelized representations, we map these predictions to the
original point clouds via nearest-neighbor assignment.

Although we report oA for completeness, it is not a good measure for semantic
segmentation. If there are dominant classes in the data (e.g., walls, floor, and ceiling
in indoor scenes), making correct predictions for these but poor predictions over
the other classes will yield misleadingly high oA scores. Therefore, we do not rec-
ommend using this metric in the future for assessing the performance of semantic
segmentation methods. Instead, IoU should be used as a more suitable quantitative
metric for the task.
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2.7.2 Baselines

We compare our approach to three recent deep learning methods that operate on
different underlying representations. We have chosen reasonably general methods
that have the potential to be applied to general scene analysis and have open-source
implementations. Our baselines are PointNet [132], which operates on points, Scan-
Net [25], which operates on low-resolution voxel grids, and OctNet [140], which
operates on higher-resolution octrees. We used the source code provided by the
authors. Due to the design of these methods, the data preparation routines and
the input signals are different for each dataset, and sometimes deviate from the
guidelines provided in the papers.

PointNet. For indoor datasets, we used the data sampling strategy suggested in
the original paper with global xyz, locally normalized xyz, and RGB as inputs. For
Semantic3D, we observed global xyz to be harmful, thus we only use local xyz
and color. Training data is generated by randomly sampling (3m)3 cubes from the
training scenes. Evaluation is performed by applying a sliding window over the
entire scan.

ScanNet. The original network used 2 input channels: occupancy and a visibility
mask computed using known camera trajectories. Since scenes in general are not
accompanied by known camera trajectories, we only use occupancy in the input
signal. Following the original setup, we use 1.5×1.5×3m volumes voxelized into
31×31×62 grids and augmented by 8 rotations. Each such cube yields a prediction
for one 1×1×62 column. (I.e., the ScanNet network outputs a prediction for the
central column only.) We use random sampling for training, and exhaustive sliding
window for testing.

OctNet. We use an architecture that operates on 2563 octrees. Inputs to the network
are color, occupancy, and a height-based feature that assigns each point to the top
or bottom part of the scan. Based on correspondence with the authors regarding
the best way to set up OctNet on different datasets, we used (45m)3 volumes for
Semantic3D and (11m)3 volumes for the indoor datasets.

2.7.3 Setup of the presented approach

The architecture described in Section 2.6 is used in all experiments. We evaluate
four variants that use different input signals: distance from tangent plane (D),
height above ground (H), normals (N), and color (RGB). All input signals are nor-
malized between 0 and 1. The initial resolution r of the tangent image is 5cm for
the indoor datasets and 10cm for Semantic3D. It is doubled after each pooling layer.
In addition to providing the distance from tangent plane as input to the first convo-
lutional layer, we concatenate the local distance features from all scales of the point
cloud to the feature maps of the corresponding resolution produced by pooling
layers.
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For ScanNet and S3DIS, we used whole rooms as individual training batches.
For Semantic3D, each batch was a random sphere with a radius of 6m. For indoor
scans, we augment each scan by 8 rotations around the vertical axis. To correct for
imbalance between different classes, we weigh the loss with the negative log of the
training data histogram.

2.7.4 Signal interpolation

We compare the effectiveness of two different signal interpolation schemes: nearest
neighbor and Gaussian mixture. Both networks were trained on S3DIS with D and
H as the input signals; see Table. 2.1. The two networks produce similar results. We
conclude that the nearest neighbor signal estimation scheme is sufficient, and use
it in all other experiments.

Signal mIoU mA oA

NN 50.0 60.0 81.2
Gaussian 50.7 59.6 81.3

Table 2.1: Signal interpolation using the nearest neighbor scheme and the Gaussian mixture
scheme produce similar results.

2.7.5 Main results

Quantitative results for all methods are summarized in Table 2.2. Overall, our
method produces high scores on all datasets and consistently outperforms the base-
lines. Qualitative comparisons are shown in Figure 2.6.

Semantic3D [50] ScanNet [25] S3DIS [3]

mIoU mA oA mIoU mA oA mIoU mA oA

PointNet [132] 3.76 16.9 16.3 12.2 17.9 68.1 41.3 49.5 78.8
OctNet [140] 50.7 71.3 80.7 18.1 26.4 76.6 26.3 39.0 68.9
ScanNet [25] n/a n/a n/a 13.5 19.2 (50.8) 69.4 (73.0) 24.6 35.0 64.2

Ours (D) 58.1 78.9 84.8 40.9 52.5 80.9 49.8 60.3 80.2
Ours (DH) 58.0 75.8 83.3 40.3 52.2 80.6 50.0 60.0 81.2
Ours (DHN) 52.5 79.3 79.5 40.7 55.3 80.3 51.7 61.0 82.2
Ours (DHNRGB) 66.4 80.7 89.3 40.9 55.1 80.1 52.8 62.2 82.5

Table 2.2: Semantic segmentation accuracy for all methods across the three datasets. We re-
port mean intersection over union (mIoU), mean class accuracy (mA), and overall
accuracy (oA). Note that oA is a bad measure and we recommend against using
it in the future. We tested different configurations of our method by combining
four types of input signals: depth (D), height (H), normals (N), and color (RGB).
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Color PointNet [132] ScanNet [25]

OctNet [140] Ours (DHNRGB) Ground truth

l Ceiling l Floor l Walls l Column l Door l Table l Chair l Sofa l Bookcase l Board l Clutter

Color OctNet [140]

Ours (DHNRGB) Ground truth

l Man made terrain l Natural terrain l High vegetation l Low vegetation l Building l Hardscape l Scanning artifacts l Cars

Figure 2.6: Qualitative comparisons on S3DIS [3] (top) and Semantic3D [50] (bottom). La-
bels are coded by color.
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Comparing the configurations of our networks that use different input signals,
we can see that geometry is much more important than color on the indoor datasets.
Adding RGB information only slightly improves the scores on S3DIS and is actually
harmful for mean and overall accuracy on the ScanNet dataset. The situation is
different for the Semantic3D dataset: the network trained with color significantly
outperforms all other configurations. Due to the fact that H is normalized between
0 and 1 for every scan separately, this information turns out to be harmful when
the global height of different scans is significantly different. Therefore, the network
trained only with the distance signal performs better than the other two geometric
configurations.

In setting up and operating the baseline methods, we found that all of them are
quite hard to apply across datasets: some non-trivial decisions had to be made for
each new dataset during the data preparation stage. None of the baselines showed
consistent performance across the different types of scenes.

PointNet reaches high oA scores on both indoor datasets. However, the oA mea-
sure is strongly dominated by large classes such as walls, floor, and ceiling. S3DIS
has a fairly regular layout because of the global room alignment procedure, which
is very beneficial for PointNet and allows it to reach reasonable mA and mIoU
scores on this dataset. However, PointNet performs poorly on the ScanNet dataset,
which has more classes and noisy data. All but the most prominent classes (i.e.,
walls and floor) are misclassified. PointNet completely fails to produce meaningful
predictions on the even more challenging Semantic3D dataset.

Our configuration of the ScanNet method produces reasonable oA scores on both
indoor datasets, but does much worse in the other two measures. For reference, on
the ScanNet dataset we additionally report the number from the original paper
where a binary visibility-from-camera mask was used as an additional input chan-
nel. This number is much higher than our occupancy-only results, which do not
assume a known camera trajectory. Due to the fact that the network only outputs
predictions for the central column of the voxel grid, evaluation is extremely time-
consuming for the large scenes in the Semantic3D dataset. Because of this scalability
issue, we did not succeed in evaluating ScanNet on this dataset.

OctNet reaches good performance on the Semantic3D dataset. However, the same
network configuration yields bad results when applied to the indoor datasets. A
possible explanation for this may be poor generalization due to overfitting to the
structure of training octrees. Another reason for such performance decrease may
be sensitivity to the hyperparameter setting.

Additional qualitative results showcasing the performance of our method on dif-
ferent datasets are shown in Figure 2.7 (S3DIS), Figure 2.8 (ScanNet) and Figure 2.9
(Semantic3D).

2.7.6 Efficiency

We compared the efficiency of different methods on a scan from S3DIS containing
125K points after grid hashing. The results are reported in Table 2.3. Since ScanNet
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Color Prediction Ground truth

l Ceiling l Floor l Walls l Column l Window l Door l Table l Chair l Sofa l Bookcase l Board l Clutter

Figure 2.7: Qualitative results on S3DIS [3].

Color Prediction Ground truth

l Wall l Floor l Cabinet l Bed l Chair l Sofa l Table l Door l Window l Bookshelf l Desk l Other furniture

Figure 2.8: Qualitative results on ScanNet [25].
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Color Prediction Ground truth

l Man made terrain l Natural terrain l High vegetation l Low vegetation l Building l Hardscape l Scanning artifacts l Cars

Figure 2.9: Qualitative results on Semantic3D [50].

and PointNet require multiple iterations for labeling a single scan, we report both
the time of a single forward pass and the time for processing a full scan. OctNet
and our method process a full scan in one forward pass, which also explains their
higher memory consumption compared to ScanNet and PointNet. ScanNet does
not provide code for data preprocessing, so we report the runtime of our Python
implementation needed for generating 38K sliding windows during inference. Our
method exhibits the best runtime for both precomputation and inference. The im-
plementation of our approach is publicly available1.

Prep (s) FP (s) Full (s) Mem (GB)

PointNet 16.5 0.01 0.65 0.39

OctNet 15.5 0.61 0.61 3.33

ScanNet 867.8 0.002 6.34 0.97

Ours 1.59 0.52 0.52 2.35

Table 2.3: Efficiency of different methods. We report preprocessing time (Prep), time for
a single forward pass (FP), time for processing a full scan (Full), and memory
consumption (Mem).

1 https://github.com/tatarchm/tangent_conv

https://github.com/tatarchm/tangent_conv
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2.7.7 Robustness to noise

We evaluated the robustness of our approach to noise. Several instances of our
network were trained on the S3DIS dataset perturbed with different amounts of
additive Gaussian noise with standard deviation σ. The results are reported in
Table 2.4. We selected small subsets of the data for training and testing (Area 1 for
training and Area 5 for testing), which is why the final performance numbers are
not compatible with those reported in Table 2.2.

Tr
ai

ni
ng

da
ta

σ, m 0.00 0.02 0.04 0.08 0.16

OA 0.59 0.63 0.63 0.68 0.17

Table 2.4: Performance evaluation with different levels of noise.

Interestingly, reasonable amounts of noise improve overall accuracy. We hypoth-
esize that this observation can be explained by the regularizing effect of adding
noise to the original point cloud geometry. The method only suffers if the noise
severely damages semantic structure in the point cloud (σ = 0.16 in Table 2.4). We
did not tune any parameters in the pipeline for these experiments.

2.7.8 Comparison with SnapNet

We also compared our approach with the SnapNet by Boulch et al. [8]. Their method
is based on projecting a 3D scene onto a set of 2D images. Those images are then
segmented with a regular 2D ConvNet. The main strength of this approach is the
possibility to combine it with transfer learning and use the weights of a network
pre-trained on ImageNet for initialization. Applying this strategy yields the mIoU
score of 67.7 on the Semantic3D dataset, compared to 66.4 produced by our ap-
proach. However, the limitation of their approach is the need to sample camera
poses for training and testing. The original sampling scheme provided by the au-
thors was optimized for an outdoor dataset. Modifying it to support indoor data
was not trivial, therefore we could not obtain results there.

2.8 conclusion

We have presented tangent convolutions – a new construction for convolutional
networks on 3D data. The key idea is to evaluate convolutions on virtual tangent



2.8 conclusion 27

planes at every point. Crucially, tangent planes can be precomputed and deep con-
volutional networks based on tangent convolutions can be evaluated efficiently on
large point clouds. We have applied tangent convolutions to semantic segmentation
of large indoor and outdoor scenes. The presented ideas may also be applicable to
other problems in analysis of 3D data.
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ing Networks: Efficient Convolutional Architectures for High-resolution 3D
Outputs." In: ICCV, 2017.
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∗ ∗ ∗

3.1 introduction

Up-convolutional1 architectures have become a standard tool for image synthesis
tasks [71, 134]. They consist of a series of convolutional and up-convolutional (up-
sampling+convolution) layers operating on regular grids, with resolution gradually
increasing towards the output of the network. The architecture is trivially general-
ized to volumetric data. However, similar to the case of 3D data analysis discussed
in Chapter 2, because of cubic scaling of computational and memory requirements,
training up-convolutional decoders becomes infeasible for high-resolution three-
dimensional outputs.

dense
Octree
level 1

Octree
level 2

Octree
level 3

323 643 1283

Figure 3.1: The proposed OGN represents its volumetric output as an octree. Initially es-
timated rough low-resolution structure is gradually refined to a desired high
resolution. At each level only a sparse set of spatial locations is predicted. This
representation is significantly more efficient than a dense voxel grid and allows
generating volumes as large as 5123 voxels on a modern GPU in a single forward
pass.

1 Also known as deconvolutional

29
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Poor scaling can be resolved by exploiting structure in the data. In many learning
tasks, neighboring voxels on a voxel grid share the same state — for instance, if the
voxel grid represents a binary occupancy map or a multi-class labeling of a three-
dimensional object or a scene. In this case, data can be efficiently represented with
octrees — data structures with adaptive cell size. Large regions of space sharing
the same value can be represented with a single large cell of an octree, resulting in
savings in computation and memory compared to a fine regular grid. At the same
time, fine details are not lost and can still be represented by small cells of the octree.

We present an octree generating network (OGN) - a convolutional decoder op-
erating on octrees. The coarse structure of the network is illustrated in Figure 3.1.
Similar to a usual up-convolutional decoder, the representation is gradually con-
volved with learned filters and up-sampled. The difference is that, starting from
a certain layer in the network, dense regular grids are replaced by octrees. There-
fore, the OGN predicts large uniform regions of the output space already at early
decoding stages, saving the computation for the subsequent high-resolution layers.
Only regions containing fine details are processed by these more computationally
demanding layers.

Here we focus on generating shapes represented as binary occupancy maps. We
thoroughly compare OGNs to standard dense nets on three tasks: auto-encoding
shapes, generating shapes from a high-level description, and reconstructing 3D
objects from single images. OGNs yield the same accuracy as conventional dense
decoders while consuming significantly less memory and being much faster at high
resolutions. For the first time, we can generate shapes of resolution as large as 5123

voxels in a single forward pass. Our OGN implementation is publicly available2.

3.2 related work

The majority of deep learning approaches generate volumetric data based on con-
volutional networks with feature maps and outputs represented as voxel grids. Ap-
plications include single- and multi-view 3D object reconstruction trained in super-
vised [20, 27, 42, 46] and unsupervised [38, 137, 191] ways, probabilistic generative
modeling of 3D shapes [150, 183, 188], and shape deformation [194]. A fundamen-
tal limitation of these approaches is the low resolution of the output. Memory and
computational requirements of approaches based on the voxel grid representation
scale cubically with the output size. Thus, training networks with resolutions higher
than 643 comes with memory issues on the GPU or requires other measures to save
memory, such as reducing the batch size or generating the volume part-by-part.
Moreover, with growing resolution, training times become prohibitively slow.

Computational limitations of the voxel grid representation led to research on
alternative representations of volumetric data in deep learning. Sinha et al. [157]
convert shapes into two-dimensional geometry images and process those with con-
ventional CNNs – an approach only applicable to certain classes of topologies. Net-

2 https://github.com/lmb-freiburg/ogn

https://github.com/lmb-freiburg/ogn
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works producing point clouds have been applied to object generation [33, 108].
Multiple approaches [41, 91, 121, 125, 169] aimed for structural 3D understand-
ing, approximating 3D shapes with a pre-defined set of primitives. Gao et al. [39]
and Wu et al. [187] make the next step in this direction and propose systems for
shape reconstruction based on recombining parts of existing objects. Several con-
current works [53, 140] performed hierarchical partitioning of the output space
to achieve computational and memory efficiency, which allows predicting higher-
resolution 3D shapes. Johnston et al. [72] reconstructed high-resolution 3D shapes
with an inverse discrete cosine transform decoder. Wang et al. [176] and Wen et al.
[180] generated meshes by deforming a sphere into a desired shape, assuming a
fixed distance between camera and objects. A similar idea based on interpolating
between multiple deformed meshes was proposed by Pontes et al. [128]. Groueix
et al. [48] assembled surfaces from small patches. Multiple methods [92, 99, 105,
158] produced multi-view depth maps that are fused together into an output point
cloud. Richter et al. [138] extended this with nested shapes fused into a single voxel
grid. Wu et al. [184] learned the mapping from input images to 2.5D sketches in
a fully-supervised fashion, and then trained a network to map these intermediate
representations to the final 3D shapes. Kong et al. [84] use 2D landmark locations
together with silhouettes to retrieve and deform CAD models. Pontes et al. [129] im-
proved upon this work by using a free-form deformation parametrization to model
shape variation. Several works proposed using implicit surface methods [17, 118,
124].

3.3 octrees

An octree [117] is a 3D grid structure with adaptive cell size, which allows for loss-
less reduction of memory consumption compared to a regular voxel grid. Octrees
have a long history in classical 3D reconstruction and depth map fusion [9, 23, 37,
77, 159, 171]. A function defined on a voxel grid can be converted into a function
defined on an octree. This can be done by starting from a single cell representing
the entire space and recursively partitioning cells into eight octants. If every voxel
within a cell has the same function value, this cell is not subdivided and becomes
a leaf of the tree. The set of cells at a certain resolution is referred to as an octree
level. The recursive subdivision process can also be started not from the whole
volume, but from some initial coarse resolution. Then the maximal octree cell size
is given by this initial resolution. The most straightforward way of implementing
an octree is to store in each cell pointers to its children. In this case, the time to
access an element scales linearly with the tree’s depth, which can become costly at
high resolutions. We use a more efficient implementation that exploits hash tables.
An octree cell with spatial coordinates x = (x, y, z) at level l is represented as an
index-value pair (m, v), where v can be any kind of discrete or continuous signal.
m is calculated from (x, l) using Z-order curves [40]

m = Z(x, l), (3.1)
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which is a computationally cheap transformation implemented using bit shifts. An
octree O is, hence, a set of all pairs

O = {(m, v)}. (3.2)

Storing this set as a hash table allows for constant-time element access.
When training networks, we will need to compare two different octrees O1 and

O2, i.e. for each cell (x, l) from O1, query the corresponding signal value v in O2.
Since different octrees have different structure, two situations are possible. If Z(x, k)
is stored at a level k in O2, which is the same or lower than l, the signal value of this
cell can be uniquely determined. If Z(x, k) is stored at one of the later levels, the
cell is subdivided in O2, and the value of the whole cell is not defined. To formalize
this, we introduce a function f for querying the signal value of an arbitrary cell
with index m = Z(x, l) from octree O:

f (m, O) =

{
v, if ∃k ≤ l : (Z(x, k), v) ∈ O
∅, otherwise

, (3.3)

where ∅ denotes an unavailable value.

3.4 octree generating networks

An Octree Generating Network (OGN) is a convolutional decoder that yields an
octree as output: both the structure, i.e. which cells should be subdivided, and the
signal value of each cell. In this work we concentrate on binary occupancy values
v ∈ {0, 1}, but the proposed framework can be easily extended to support arbitrary
signals. As shown in Figure 3.1, an OGN consists of a block operating on dense
regular grids, followed by an arbitrary number of hash-table-based octree blocks.

The dense block is a set of conventional 3D convolutional and up-convolutional
layers producing a feature map of size d1 × d2 × d3 × c as output, where {di} are
the spatial dimension and c is the number of channels.

From here on, the representation is processed by our custom layers operating
on octrees. The regular-grid-based feature map produced by the dense block is
converted to a set of index-value pairs stored as a hash table (with values being
feature vectors), and is further processed in this format. We organize octree-based
layers in blocks, each responsible for predicting the structure and the content of a
single level of the generated octree.

Figure 3.2 illustrates the functioning of a single such block that predicts level l
of an octree. For the sake of illustration, we replaced three-dimensional octrees by
two-dimensional quadtrees. Feature maps in Figure 3.2 are shown as dense arrays
only for simplicity; in fact the green cells are stored in hash maps, and the white
cells are not stored at all. We now give a high-level overview of the block and then
describe its components in more detail.

Input to the block is a sparse hash-table-based convolutional feature map Fl−1
of resolution (d1 · 2l−1, d2 · 2l−1, d3 · 2l−1) produced by the previous block. First this
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... ...OGNConv

(one or
more)

...

c
d2

d1

OGNProp

OGNLoss

propagated features

empty

filled

mixed

Fl−1 F̄l Fl

Ground truth Prediction

13

conv

Figure 3.2: Single block of an OGN illustrated as 2D quadtree for simplicity. After convolv-
ing features Fl−1 of the previous block with weight filters, we directly predict the
occupancy values of cells at level l using 13 convolutions. Features correspond-
ing to "filled" and "empty" cells are no longer needed and thus not propagated,
which yields Fl as the final output of this block.

feature map is processed with a series of custom convolutional layers and one up-
convolutional layer with stride 2, all followed by non-linearities.

This yields a new feature map F̄l of resolution (d1 · 2l, d2 · 2l, d3 · 2l). Based on
this feature map, we directly predict the content of level l. For each cell, there is a
two-fold decision to be made: should it be kept at level l, and if yes, what should be
the signal value in this cell? In our case making this decision can be formulated as
classifying the cell as being in one of three states: "empty", "filled" or "mixed". These
states correspond to the outputs of state-querying function f from Equation (3.3),
with "empty" and "filled" being the signal values v, and "mixed" being the state
where the value is not determined. We make this prediction using a convolutional
layer with 13 filters followed by a three-way softmax. This classifier is trained in a
supervised manner with targets provided by the ground truth octree.

Finally, in case the output resolution has not been reached, features from F̄l that
correspond to "mixed" cells are propagated to the next layer3 and serve as an input
feature map Fl to the next block.

In the following subsections, we describe the components of a single octree block
in more detail: the octree-based convolution, the loss function, and the feature prop-
agation mechanism.

3 Additional neighboring cells may have to be propagated if needed by subsequent convolutional
layers. This is described in section 3.4.3.
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3.4.1 Convolution

We implemented a custom convolutional layer OGNConv, which operates on fea-
ture maps represented as hash tables instead of usual dense arrays. Our implemen-
tation supports strided convolutions and up-convolutions with arbitrary filter sizes.
It is based on representing convolution as a single matrix multiplication, similar to
standard Caffe [68] code for dense convolutions.

In the dense case, the feature tensor is converted to a matrix with the im2col opera-
tion, then multiplied with the weight matrix of the layer, and the result is converted
back into a dense feature tensor using the col2im operation. In OGN, instead of stor-
ing full dense feature tensors, only a sparse set of relevant features is stored at each
layer. These features are stored in a hash table, and we implemented custom opera-
tions to convert a hash table to a feature matrix and back. The resulting matrices are
much smaller than those in the dense case. Convolution then amounts to multiply-
ing the feature matrix by the weight matrix. Matrix multiplication is executed on
GPU with standard optimized functions, and our conversion routines currently run
on CPU. Even with this suboptimal CPU implementation, computation times are
comparable to those of usual dense convolutions at 323 voxel resolution. At higher
resolutions, OGNConv is much faster than dense convolutions (see Section 3.5.2).

The convolution operation on a voxel grid is perfectly shift invariant by design.
This is no longer true for convolutions on octrees: a shift by a single pixel in the
original voxel grid can change the structure of the octree significantly. We study the
effect of this in the Experiments section.

3.4.2 Loss

The classifier at level l of the octree outputs the probabilities of each cell from this
level being "empty", "filled" or "mixed", that is, a three-component prediction vector
pm = (p0

m, p1
m, p2

m) for cell with index m. We minimize the cross-entropy between
the network predictions and the cell states of the ground truth octree OGT, averaged
over the set Ml of cells predicted at layer l:

Ll =
1
|Ml| ∑

m∈Ml

[
2

∑
i=0

hi( f (m, OGT)) log pi
m

]
, (3.4)

where function h yields a one-hot encoding (h0, h1, h2) of the cell state value re-
turned by f from Equation (3.3). Loss computations are encapsulated in our custom
OGNLoss layer.

The final OGN objective is calculated as a sum of loss values from all octree levels

L =
L

∑
l=1
Ll. (3.5)
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3.4.3 Feature propagation

At the end of each octree block there is an OGNProp layer that propagates to the
next octree block features from cells in the "mixed" state, as well as from neighbor-
ing cells if needed to compute subsequent convolutions. Information about the cell
state can either be taken from the ground truth octree, or from the network predic-
tion. This spawns two possible propagation modes: using the known tree structure
(Prop-known) and using the predicted tree structure (Prop-pred). Section 3.4.4 de-
scribes use cases for these two modes.

The set of features to be propagated depends on the kernel size in subsequent
OGNConv layers and is computed based on the network architecture, before the
training starts. The example in Figure 3.2 only holds for 23 up-convolutions which
do not require any neighboring elements to be computed. This situation is illus-
trated in Figure 3.3-A in a one-dimensional case. Circles correspond to cells of an
octree. The green cell in the input is the only one for which the value was predicted
to be "mixed". Links between the circles indicate which features of the input are
required to compute the result of the operation (convolution or up-convolution) for
the corresponding output cell. In this case, we can see that the output cells in the
next level are only affected by their parent cell from the previous level.

To use larger convolutional filters or multiple convolutional layers, we must prop-
agate not only the features of the "mixed" cells, but also the features of the neigh-
boring cells required for computing the convolution at the locations of the "mixed"
cells. This more general situation is shown in Figure 3.3-B. The input is processed
with an up-convolutional layer with 43 filters and stride 2, which is followed by
a convolutional layer with 33 filters and stride 1. Again, only one cell was pre-
dicted to be "mixed", but in order to perform convolutions and up-convolutions in
subsequent layers, we additionally must propagate some of its neighbors (marked
red). Therefore, with this particular filter configuration, two cells in the output are
affected by four cells in the input.

Generally, the number of features that should be propagated by each OGNProp
layer is automatically calculated based on the network architecture before starting
the training.

3.4.4 Training and testing

The OGN decoder is end-to-end trainable using standard backpropagation. The
only subtlety is in selecting the feature propagation modes during training and test-
ing. At training time the octree structure of the training samples is always available,
and therefore the Prop-known mode can be used. At test time, the octree structure
may or may not be available. We have developed two training regimes for these
two cases.

If the tree structure is available at test time, we simply train the network with
Prop-known and test it the same way. This regime is applicable for tasks like seman-
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Figure 3.3: The OGNProp layer propagates the features of "mixed" cells together with the
features of the neighboring cells required for computations in subsequent layers.
We show the number of neighbors that need to be propagated in two cases: 23

up-convolutions (A), and 43 up-convolutions followed by 33 convolutions (B).
Visualized in 1D for simplicity.
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tic segmentation, or, more generally, per-voxel prediction tasks, where the structure
of the output is exactly the same as the structure of the input.

If the tree structure is not available at test time, we start by training the network
with Prop-known, and then fine-tune it with Prop-pred. This regime is applicable to
any task with volumetric output.

We have also tested other regimes of combining Prop-pred and Prop-known and
found those to perform worse than the two described variants. This is discussed in
more detail in the Experiments section.

3.5 experiments

In our experiments we verified that the OGN architecture performs on par with the
standard dense voxel grid representation, while requiring significantly less memory
and computation, particularly at high resolutions. The focus of the experiments is
on showcasing the capabilities of the proposed architecture. How to fully exploit
the new architecture in practical applications is a separate problem that is left to
future work.

3.5.1 Experimental setup

For all OGN decoders used in our evaluations, we followed the same design pattern:
1 or 2 up-convolutional layers interleaved with a convolutional layer in the dense
block, followed by multiple octree blocks depending on the output resolution. In
the octree blocks we used 23 up-convolutions. We also evaluated two other architec-
ture variants, presented in section 3.5.3.1. ReLU non-linearities were applied after
each (up-)convolutional layer. The number of channels in the up-convolutional lay-
ers of the octree blocks was set to 32 in the outermost layer, and was increased by 16

in each preceding octree block. The exact network architectures used in individual
experiments are shown in Tables 3.1, 3.2 and 3.3.

The networks were trained using ADAM [79] with initial learning rate 0.001,
β1 = 0.9, β2 = 0.999. The learning rate was decreased by a factor of 10 after 30K
and 70K iterations. We did not apply any additional regularization.

For quantitative evaluations, we converted the resulting octrees back to regular
voxel grids, and computed the Intersection over Union (IoU) measure between the
ground truth model and the predicted model. To quantify the importance of high-
resolution representations, in some experiments we upsampled low-resolution net-
work predictions to high-resolution ground truth using trilinear interpolation, and
later binarization with a threshold of 0.5. We explicitly specify the ground truth
resolution in all experiments where this was done.

If not indicated otherwise, the results were obtained in the Prop-pred mode.

3.5.1.1 Datasets

In our evaluations we used three datasets:
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ShapeNet-all
Approximately 50.000 CAD models from 13 main categories of the ShapeNet

dataset [11], used by Choy et al. [20]. We also used the renderings provided by
Choy et al. [20].

ShapeNet-cars
A subset of ShapeNet-all consisting of 7497 car models.
BlendSwap
A dataset of 4 scenes we manually collected from blendswap.com, a website con-

taining a large collection of Blender models.
All datasets were voxelized in multiple resolutions from 323 to 5123 using the

binvox4 tool, and were converted into octrees. We set the interior parts of individual
objects to be filled, and the exterior to be empty. However, the method also works
for data where both interior and exterior voxels are empty, and only voxels on the
object surface are filled.

3.5.1.2 Network architectures

In this section, we provide the exact network architectures used in the experimental
evaluations.

Autoencoders
The architectures of OGN autoencoders are summarized in Table 3.1. For the

dense baselines, we used the same layer configurations with usual convolutions
instead of OGNConv, and predictions being made only after the last layer of the
network. All networks were trained with batch size 16.
3D shape from high-level information
OGN decoders used on the Shapenet-cars dataset are shown in Table 3.2. En-

coders consisted of three fully-connected layers, with output size of the last encoder
layer being identical to the input size of the corresponding decoder.

For FAUST and BlendSwap the 2563 output octrees had four levels, not five
like those in Table 3.2. Thus, the dense block had an additional deconvolution-
convolution layer pair instead of one octree block. The 5123 decoder on BlendSwap
had one extra octree block with 32 output channels.

All 643 and 1283 networks were trained with batch size 16, 2563 — with batch
size 4, 5123 — with batch size 1.

Single-image 3D reconstruction
In this experiment we again used decoder architectures shown in Table 3.2. The

architecture of the convolutional encoder is shown in Table 3.3. The number of
channels in the last encoder layer was set identical to the number of input channels
of the corresponding decoder.

4 http://www.patrickmin.com/binvox

blendswap.com
http://www.patrickmin.com/binvox
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323 643 (23 filters) 643 (43 filters) 643 (InvConv)

[643 × 1]

Conv (33)

[323 × 1] [323 × 32]

Conv (33) Conv (33)

[163 × 32] [163 × 48]

Conv (33) Conv (33)

[83 × 48] [83 × 64]

Conv (33) Conv (33)

[43 × 64] [43 × 80]

FC FC

[1024] [1024]

FC FC

[1024] [1024]

FC FC

[43 × 80] [43 × 96]

Deconv (23) Deconv (23)

[83 × 64] [83 × 80]

Conv (33)→ l1 Conv (33)

[83 × 64] [83 × 80]

OGNProp

OGNConv(23)→ l2 Deconv (23)

[163 × 48] [163 × 64]

OGNProp

OGNConv(23)→ l3 Conv (33)→ l1

[323 × 32] [163 × 64]

OGNProp OGNProp OGNProp

OGNConv(23)→ l2 OGNConv(43)→ l2 OGNConv(23)

[323 × 48] [323 × 48] [323 × 48]

OGNConv*(33)→ l2

[323 × 48]

OGNProp OGNProp OGNProp

OGNConv(23)→ l3 OGNConv(43)→ l3 OGNConv(23)

[643 × 32] [643 × 32] [643 × 32]

OGNConv*(33)→ l3

[643 × 32]

Table 3.1: OGN architectures used in our experiments with autoencoders. OGNConv de-
notes up-convolution, OGNConv* — convolution. Layer name followed by ’→ lk’
indicates that level k of an octree is predicted by a classifier attached to this layer.
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323 643 1283 2563

[43 × 80] [43 × 96] [43 × 112] [43 × 112]

Deconv (23) Deconv (23) Deconv (23) Deconv (23)

[83 × 64] [83 × 80] [83 × 96] [83 × 96]

Conv (33)→ l1 Conv (33) Conv (33) Conv (33)

[83 × 64] [83 × 80] [83 × 96] [83 × 96]

OGNProp

OGNConv (23)→ l2 Deconv (23) Deconv (23) Deconv (23)

[163 × 48] [163 × 64] [163 × 80] [163 × 80]

OGNProp

OGNConv (23)→ l3 Conv (33)→ l1 Conv (33)→ l1 Conv (33)→ l1

[323 × 32] [163 × 64] [163 × 80] [163 × 80]

OGNProp OGNProp OGNProp

OGNConv (23)→ l2 OGNConv (23)→ l2 OGNConv (23)→ l2

[323 × 48] [323 × 64] [323 × 64]

OGNProp OGNProp OGNProp

OGNConv (23)→ l3 OGNConv (23)→ l3 OGNConv (23)→ l3

[643 × 32] [643 × 48] [643 × 48]

OGNProp OGNProp

OGNConv (23)→ l4 OGNConv (23)→ l4

[1283 × 32] [1283 × 32]

OGNProp

OGNConv (23)→ l5

[2563 × 32]

Table 3.2: OGN decoder architectures used in shape from ID, and single-image 3D recon-
struction experiments.
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[137× 137× 3]

Conv (7× 7)

[69× 69× 32]

Conv (3× 3)

[35× 35× 32]

Conv (3× 3)

[18× 18× 64]

Conv (3× 3)

[9× 9× 64]

Conv (3× 3)

[5× 5× 128]

FC

[1024]

FC

[1024]

FC

[43 × c]

Table 3.3: Convolutional encoder used in the single-image 3D reconstruction experiment.

3.5.2 Computational efficiency

We start by empirically demonstrating that OGNs can be used at high resolutions
when the voxel grid representation becomes impractical both because of the mem-
ory requirements and the runtime.

The number of elements in a voxel grid is uniquely determined by its resolution,
and scales cubically as the latter increases. The number of elements in an octree de-
pends on the data, leading to variable scaling rates: from constant for cubic objects
aligned with the grid, to cubic for pathological shapes such as a three-dimensional
checkerboard. In practice, octrees corresponding to real-world objects and scenes
scale approximately quadratically, since they represent smooth two-dimensional
surfaces in a three-dimensional space.

We empirically compare the runtime and memory consumption values for a
dense network and OGN, for varying output resolution. Architectures of the net-
works are the same as used in Section 3.5.4 – three fully connected layers followed
by an up-convolutional decoder. We performed the measurements on an NVidia
TitanX Maxwell GPU, with 12Gb of memory. To provide actual measurements for
dense networks at the largest possible resolution, we performed the comparison
with batch size 1. The 5123 dense network does not fit into memory even with
batch size 1, so we extrapolated the numbers by fitting cubic curves.

Figure 3.4 and Table 3.4 show the results of the comparison. The OGN is roughly
as efficient as its dense counterpart for low resolutions, but as the resolution grows,
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it gets drastically faster and consumes far less memory. At 5123 voxel resolution, the
OGN consumes almost two orders of magnitude less memory and runs 20 times
faster.

Memory, GB Iteration time, s

Resolution Dense OGN Dense OGN

323
0.33 0.29 0.015 0.016

643
0.50 0.36 0.19 0.06

1283
1.62 0.43 0.56 0.18

2563
9.98 0.54 3.89 0.64

5123
74.28 0.88 41.3 2.06

Table 3.4: Memory consumption and iteration time of OGN and a dense network at differ-
ent output resolutions. Batch size 1.

In order to further study this matter, we have designed a set of slim decoder
networks that fit on a GPU in every resolution, including 5123, both with an OGN
and a dense representation. The architectures of those networks are similar to those
from Table 3.2, but with only 1 channel in every convolutional layer, and a single
fully-connected layer with 64 units in the encoder. The resulting measurements are
shown in Figure 3.5 for memory consumption and runtime. To precisely quantify
the scaling, we subtracted the constant amount of memory reserved on a GPU by
Caffe (190 MB) from all numbers.

Both plots are displayed in the log-log scale, i.e., functions from the family y =
axk are straight lines. The slope of this line is determined by the exponent k, and
the vertical shift by the coefficient a. In this experiment we are mainly interested in
the slope, that is, how do the approaches scale with increasing output resolution.
As a reference, we show dashed lines corresponding to perfect cubic and perfect
quadratic scaling.

Starting from 643 voxel resolution both the runtime and the memory consump-
tion scale almost cubically in case of dense networks. For this particular example,
OGN scales even better than quadratically, but in general scaling of the octree-based
representation depends on the specific data it is applied to.

To put these numbers into perspective, training OGN at 2563 voxel output reso-
lution takes approximately 5 days. Estimated training time of its dense counterpart
would be almost a month. Even if the 5123 voxel dense network would fit into
memory, it would take many months to train.



3.5 experiments 43

32 128 256 512

0

10

20

30

40

50

60

70

80

Resolution

M
em

or
y,

G
B

OGN
Dense

32 128 256 512

0

5

10

15

20

25

30

35

40

45

Resolution

It
er

at
io

n
ti

m
e,

s

OGN
Dense

Figure 3.4: Memory consumption (left) and iteration time (right) of OGN and a dense net-
work at different output resolutions. Forward and backward pass, batch size
1.



44 3d synthesis : octree generating networks

32 64 128 256 512

0.01

0.1

1

10

Resolution

Pe
ak

m
em

or
y

us
ag

e,
G

B

OGN
Quadratic

Dense
Cubic

32 64 128 256 512

0.01

0.1

1

10

Resolution

It
er

at
io

n
ti

m
e,

s

OGN
Quadratic

Dense
Cubic

Figure 3.5: Memory consumption and iteration time for very slim networks, forward and
backward pass, batch size 1. Shown in log-log scale - lines with smaller slope
correspond to better scaling.
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3.5.3 Autoencoders

Autoencoders and their variants are commonly used for representation learning
from volumetric data [42, 150]. Therefore, we start by comparing the represen-
tational power of the OGN to that of dense voxel grid networks on the task of
auto-encoding volumetric shapes.

We used the decoder architecture described in section 3.5.1 both for the OGN
and the dense baseline. The architecture of the encoder is symmetric to the decoder.
Both encoders operate on a dense voxel grid representation5.

We trained the autoencoders on the ShapeNet-cars dataset in two resolutions: 323

and 643. We used 80% of the data for training, and 20% for testing. Quantitative
results are summarized in Table 3.5. With predicted octree structure, there is no
significant difference in performance between the OGN and the dense baseline.

Network 323 643

Dense 0.924 0.890

OGN+Prop-known 0.939 0.904

OGN+Prop-pred 0.924 0.884

Table 3.5: Quantitative results for OGN and dense autoencoders. Predictions were com-
pared with the ground truth at the corresponding resolution, without upsam-
pling.

3.5.3.1 Flexibility of architecture choice

To show that OGNs are not limited to up-convolutional layers with 23 filters, we
evaluated two alternative 643 OGN auto-encoders: one with 43 up-convolutions and
one with 23 up-convolutions interleaved with 33 convolutions. The results are sum-
marized in Table 3.13. There is no significant difference between the architectures
for this task. With larger filters, the network is roughly twice slower in our current
implementation, so we used 23 filters in all further experiments.

Mode 2x2 filters 4x4 filters IntConv

OGN+Prop-known 0.904 0.907 0.907

OGN+Prop-pred 0.884 0.885 0.885

Table 3.6: Using more complex architectures in 643 OGN autoencoders does not lead to
significant performance improvements.

5 Here, we focus on generating 3D shapes. Thus, we have not implemented an octree-based convolu-
tional encoder. This could be done along the lines of Riegler et al. [141]
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3.5.3.2 Using known structure

Interestingly, OGN with known tree structure outperforms the network based on a
dense voxel grid, both qualitatively and quantitatively. An example of this effect can
be seen in Figure 3.6: the dense autoencoder and our autoencoder with predicted
propagation struggle with properly reconstructing the spoiler of the car. Intuitively,
the known tree structure provides additional shape information to the decoder,
thus simplifying the learning problem. In the autoencoder scenario, however, this
may be undesirable if one aims to encode all information about a shape in a latent
vector. In tasks like semantic segmentation, the input octree structure could help
introduce shape features implicitly in the learning task.

Dense OGN+Prop-pred OGN+Prop-known GT

Figure 3.6: Using the known tree structure at test time leads to improved performance.

3.5.4 3D shape from high-level information

We trained multiple OGNs for generating shapes from high-level parameters sim-
ilar to Dosovitskiy et al. [28]. In all cases the input of the network is a one-hot
encoded object ID, and the output is an octree with the object shape.

64 128 256 512

ShapeNet-cars 0.856 0.901 0.865 -
BlendSwap 0.535 0.649 0.880 0.969

Table 3.7: Evaluation of 3D shapes generated from high-level information. Lower-resolution
predictions from ShapeNet-cars were upsampled to 2563 ground truth, scenes
from BlendSwap – to 5123.

3.5.4.1 ShapeNet-cars

First, we trained on the whole ShapeNet-cars dataset in three resolutions: 643, 1283

and 2563. Example outputs are shown in Figure 3.7 and quantitative results are
presented in Table 3.7. Similar to the two-dimensional case [28], the outputs are
accurate in the overall shape, but lack some fine details. This is not due to the miss-
ing resolution, but due to general limitations of the training data and the learning
task. Table 3.7 reveals that a resolution of 1283 allows the reconstruction of a more
accurate shape with more details than a resolution of 643. At an even higher res-
olution of 2563, the overall performance decreased again. Even though the higher-
resolution network is architecturally capable of performing better, it is not guaran-
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teed to train better. Noisy gradients from outer high-resolution layers may hamper
learning of deeper layers, resulting in an overall decline in performance. This prob-
lem is orthogonal to the issue of designing computationally efficient architectures,
which we aim to solve here. More results for this experiment are shown in Section
3.5.4.4.

643 1283 2563 GT 2563

Figure 3.7: Training samples from the ShapeNet-cars dataset generated by our networks.
Cells at different octree levels vary in size and are displayed in different shades
of gray.

643

1283

2563

Figure 3.8: Our networks can generate previously unseen cars by interpolating between the
dataset points, which demonstrates their generalization capabilities.

Notably, the network does not only learn to generate objects from the training
dataset, but it can also generalize to unseen models. We demonstrate this by inter-
polating between pairs of one-hot input ID vectors. Figure 3.8 shows that for all
intermediate input values the network produces consistent output cars, with the
style being smoothly changed between the two training points.
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3.5.4.2 BlendSwap

To additionally showcase the benefit of using higher resolutions, we trained OGNs
to fit the BlendSwap dataset containing 4 whole scenes. In contrast to the ShapeNet-
cars dataset, such amount of training data does not allow for any generalization.
The experiment aims to show that OGNs provide sufficient resolution to represent
such high-fidelity shape data.

Figure 3.9 shows the generated scenes. In both examples, 643 and 1283 resolu-
tions are inadequate for representing the details. For the bottom scene, even the
2563 resolution still struggles with fine-grained details. This example demonstrates
that tasks like end-to-end learning of scene reconstruction requires high-resolution
representations, and the OGN is an architecture that can provide such resolutions.

643 1283 2563 5123 GT 5123

Figure 3.9: OGN is used to reproduce large-scale scenes from the dataset, where high reso-
lution is crucial to generate fine-grained structures.

These qualitative observations are confirmed quantitatively in Table 3.7. Higher
output resolutions allow for more accurate reconstruction of the samples in the
dataset.

3.5.4.3 MPI-FAUST

To additionally showcase the benefit of using higher resolutions, we trained OGNs
to fit the MPI-FAUST dataset [6]. It contains 300 high-resolution scans of human
bodies of 10 different people in 30 different poses. Same as with the BlendSwap,
the trained networks cannot generalize to new samples due to the low amount of
training data.

64 128 256

0.890 0.933 0.969

Table 3.8: 3D shape from high-level information on the FAUST dataset. Lower-resolution
predictions were upsampled to 2563 ground truth.

Figure 3.10 and Table 3.8 demonstrate qualitative and quantitative results re-
spectively. Human models from MPI-FAUST include finer details than cars from
ShapeNet, and therefore benefit from the higher resolution.
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643 1283 2563 GT 2563

Figure 3.10: Training samples from the FAUST dataset reconstructed by OGN.

Dataset 1283 2563

Shapenet-cars (full) 0.901 0.865

Shapenet-cars (subset) 0.922 0.931

Table 3.9: There is no drop in performance in higher resolution, when training on a subset
of the Shapenet-cars dataset.

3.5.4.4 Fitting reduced ShapeNet-cars

To better understand the performance drop at 2563 resolution observed in Table
3.7, we performed an additional experiment on the ShapeNet-Cars dataset. We
trained an OGN for generating car shapes from their IDs on a reduced version
of ShapeNet-Cars, including just 500 first models from the dataset. Quantitative
results for different resolutions, along with the results for the full dataset, are shown
in Table 3.9. Interestingly, when training on the reduced dataset, high resolution is
beneficial. This is further supported by examples shown in Figure 3.11 – when
training on the reduced dataset, the higher-resolution model contain more fine
details. Overall, these results support our hypothesis that the performance drop at
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higher resolution is not due to the OGN architecture, but due to the difficulty of
fitting a large dataset at high resolution.

2563

1283

1283

2563

Full Subset GT 2563

Figure 3.11: When training on a subset of the Shapenet-cars datset, higher resolution mod-
els contain more details.

3.5.5 Single-image 3D reconstruction

In this experiment we trained networks with our OGN decoder on the task of
single-view 3D reconstruction. To demonstrate that our dense voxel grid baseline,
as already used in the autoencoder experiment, is a strong baseline, we compare to
the approach by Choy et al. [20]. This approach operates on 323 voxel grids, and we
adopt this resolution for our first experiment.

To ensure a fair comparison, we trained networks on ShapeNet-all, the exact
dataset used by Choy et al. [20]. Following the same dataset splitting strategy, we
used 80% of the data for training, and 20% for testing. As a baseline, we trained
a network with a dense decoder which had the same configuration as our OGN
decoder. Table 3.10 shows that compared to single-view reconstructions from [20],
both the OGN and the baseline dense network compare favorably for most of the
classes. In conclusion, the OGN is competitive with voxel-grid-based networks on
the complex task of single-image class-specific 3D reconstruction.

We also evaluated the effect of resolution on the ShapeNet-cars dataset. Fig-
ure 3.12 shows that OGNs learned to infer the 3D shapes of cars in all cases, and
that high-resolution predictions are clearly better than the 323 models commonly
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used so far. This is backed up by quantitative results shown in Table 3.11: 323 re-
sults are significantly worse than the rest. At 2563 performance drops again for the
same reasons as in the decoder experiment in section 3.5.4.1.

Category R2N2 [20] OGN Dense

Plane 0.513 0.587 0.570

Bench 0.421 0.481 0.481

Cabinet 0.716 0.729 0.747
Car 0.798 0.816 0.828

Chair 0.466 0.483 0.481

Monitor 0.468 0.502 0.509
Lamp 0.381 0.398 0.371

Speaker 0.662 0.637 0.650

Firearm 0.544 0.593 0.576

Couch 0.628 0.646 0.668
Table 0.513 0.536 0.545

Cellphone 0.661 0.702 0.698

Watercraft 0.513 0.632 0.550

Mean 0.560 0.596 0.590

Table 3.10: Single-view 3D reconstruction results on the 323 version of ShapeNet-all from
Choy et al. [20] compared to OGN and a dense baseline. OGN is competitive
with voxel-grid-based networks.

Input 323 643 1283 2563 GT 2563

Figure 3.12: Single-image 3D reconstruction on the ShapeNet-cars dataset using OGN in
different resolutions.
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Resolution 32 64 128 256

Single-view 3D 0.641 0.771 0.782 0.766

Table 3.11: Single-image 3D reconstruction results on ShapeNet-cars. Low-resolution pre-
dictions are upsampled to 2563. Commonly used 323 models are significantly
worse than the rest.

3.5.6 Shift invariance

To study the effect of shifts, we trained two fully convolutional autoencoders - one
with an OGN decoder, and one with a dense decoder - on 643 models, with lowest
feature map resolution 43 (so the networks should be perfectly invariant to shifts
of 16 voxels). Both were trained on non-shifted Shapenet-Cars, and tested in the
Prop-pred mode on models shifted by a different number of voxels along the z-axis.
The results are summarized in Table 3.12.

Shift (voxels) OGN Dense

0 0.935 0.932

1 0.933 0.93

2 0.929 0.925

4 0.917 0.915

8 0.906 0.904

Table 3.12: Fully-convolutional networks tested on shifted data. Even though not shift in-
variant by design, OGN shows robust performance.

There is no significant difference between OGN and the dense network. A likely
reason is that different training models have different octree structures, which acts
as an implicit regularizer. The network learns the shape, but remains robust to the
exact octree structure.

3.5.7 Train/test modes

In section 3.4.4, we described how we use the two propagation modes (Prop-known
and Prop-pred) during training and testing. Here we motivate the proposed regimes,
and show additional results with other combinations of propagation modes.

When the structure of the output tree is not known at test time, we train the
networks until convergence with Prop-known, and then additionally fine-tune with
Prop-pred - line 4 in Table 3.6. Without this fine-tuning step (line 2), there is a de-
crease in performance, which is more significant when using larger convolutional
filters. Intuitively, this happens because the network has never seen erroneous prop-
agations during training, and does not now how to deal with them at test time.
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When the structure of the output is known at test time, the best strategy is to
simply train in Prop-known, and test the same way (line 1). Additional fine-tuning
in the Prop-pred mode slightly hurts performance in this case (line 3). The overall
conclusion is not surprising: the best results are obtained when training networks
in the same propagation modes, in which they are later tested.

Training Testing 23 filters 43 filters IntConv

Known Known 0.904 0.907 0.907

Known Pred 0.862 0.804 0.823

Pred Known 0.898 0.896 0.897

Pred Pred 0.884 0.885 0.885

Table 3.13: Reconstruction quality for autoencoders with different decoder architectures: 23

up-convolutions, 43 up-convolutions, and 23 up-convolutions interleaved with 33

convolutions, using different configurations of Prop-known and Prop-pred propa-
gation modes.

3.6 conclusions

We presented a convolutional decoder architecture for generating high-resolution
3D outputs represented as octrees. We have demonstrated that this architecture is
flexible in terms of the exact layer configuration, and that it provides the same
accuracy as dense voxel grids in low resolution. At the same time, it scales much
better to higher resolutions, both in terms of memory and runtime.

This architecture enables end-to-end deep learning to be applied to tasks that
appeared unfeasible before. In particular, learning tasks that involve 3D shapes,
such as 3D object and scene reconstruction, are likely to benefit from it.
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W H AT D O S I N G L E - V I E W 3 D R E C O N S T R U C T I O N N E T W O R K S
L E A R N ?

The text of this chapter was largely copied from the following paper.

Maxim Tatarchenko*, Stephan R. Richter*, René Ranftl, Zhuwen Li, Vladlen
Koltun, and Thomas Brox (*indicates equal contribution). "What Do Single-
view 3D Reconstruction Networks Learn?" In: CVPR, 2019.

Stephan R. Richter contributed by training the Matryoshka Networks and the At-
lasNet baselines. He also implemented and trained the retrieval approach and ren-
dered the qualitative reconstruction examples. Zhuwen Li contributed by evaluat-
ing the Pixel2Mesh baseline. All co-authors contributed to the project discussions
as well as the final paper text editing.

∗ ∗ ∗

4.1 introduction

Object-based single-view 3D reconstruction calls for generating the 3D model of an
object given a single image. Consider the motorcycle in Figure 4.1. Inferring its 3D
structure requires a complex process that combines low-level image cues, knowl-
edge about structural arrangement of parts, and high-level semantic information.
We refer to the extremes of this spectrum as reconstruction and recognition. Recon-
struction implies reasoning about the 3D structure of the input image using cues
such as texture, shading, and perspective effects. Recognition amounts to classifying
the input image and retrieving the most suitable 3D model from a database, in our
example finding a pre-existing 3D model of a motorcycle based on the input image.

While various architectures and 3D representations have been proposed in the
literature, existing methods for single-view 3D understanding all use an encoder-
decoder structure, where the encoder maps the input image to a latent represen-
tation and the decoder is supposed to perform non-trivial reasoning about the 3D
structure of the output space. To solve the task, the overall network is expected to
incorporate low-level as well as high-level information.

In this work, we analyze the results of state-of-the-art encoder-decoder methods
(AtlasNet [48], Matryoshka Networks [138], Octree Generating Networks described
in Chapter 3) and find that they rely primarily on recognition to address the single-
view 3D reconstruction task, while showing only limited reconstruction abilities. To
support this claim, we design two pure recognition baselines: one that combines 3D
shape clustering and image classification and one that performs image-based 3D
shape retrieval. Based on these, we demonstrate that the performance of modern

55
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Figure 4.1: We provide evidence that state-of-the-art single-view 3D reconstruction meth-
ods (AtlasNet (light green, 0.38 IoU) [48], OGN (green, 0.46 IoU), Matryoshka
Networks (dark green, 0.47 IoU) [138]) do not actually perform reconstruction
but image classification. We explicitly design pure recognition baselines (Clus-
tering (light blue, 0.46 IoU) and Retrieval (dark blue, 0.57 IoU)) and show that
they produce similar or better results both qualitatively and quantitatively. For
reference, we show the ground truth (white) and a nearest neighbor from the
training set (red, 0.76 IoU). The inset shows the input image.

convolutional networks for single-view 3D reconstruction can be surpassed even
without explicitly inferring the 3D structure of objects. In many cases the predic-
tions of the recognition baselines are not only better quantitatively, but also appear
visually more appealing, as demonstrated in Figure 4.1.

We argue that the dominance of recognition in convolutional networks for single-
view 3D reconstruction is a consequence of certain aspects of popular experimental
procedures, including dataset composition and evaluation protocols. These allow
the network to find a shortcut solution, which happens to be image recognition.

4.2 related work

Historically, single-image 3D reconstruction has been approached via shape-from-
shading [30, 62, 195]. More exotic cues for reconstruction are texture [101] and
defocus [34]. These techniques only reason about visible parts of a surface using
a single depth cue. More general approaches for depth estimation from a single
monocular image use multiple cues as well as structural knowledge to infer an
estimate of the depth of visible surfaces. Saxena et al. [148] estimated depth from a
single image by training an MRF on local and global image features. Oswald et al.
[122] solved the same problem with interactive user input. Hoiem et al. [61] used
recognition together with simple geometric assumptions to construct 3D models
from a single image. Karsch et al. [75] proposed a non-parametric framework that
uses part- and object-level recognition to assemble an estimate from a database of
images and corresponding depth maps. More recently, significant advances have
been made in monocular depth estimation by employing convolutional networks
[16, 32, 43, 98, 189].

This chapter focuses on methods that not only reason about the 3D structure of
object parts visible in the input image, but also hallucinate the invisible parts using
priors learned from data. Tulsiani et al. [168] approached this task with deformable
models for specific object categories. Most of the recent methods trained convo-
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lutional networks that map 2D images to 3D shapes using direct 3D supervision.
These methods were covered in the Related Work section of Chapter 3.

Recently, there has been a trend towards using weaker forms of supervision for
single-view 3D shape prediction with convolutional networks. Multiple approaches
[66, 76, 137, 169, 191, 204] trained shape regressors by comparing projections of
ground-truth and predicted shapes. Kanazawa et al. [74] predicted deformations
from mean shapes trained from multiple learning signals.

4.3 reconstruction vs . recognition

Single-view 3D understanding is a complex task that requires interpreting visual
data both geometrically and semantically. In fact, these two modes are not disjoint,
but span a spectrum from pure geometric reconstruction to pure semantic recogni-
tion.

Reconstruction implies per-pixel reasoning about the 3D structure of the object
shown in the input image, which can be achieved by using low-level image cues
such as color, texture, shading, perspective, shadows, and defocus. This mode does
not require semantic understanding of the image content.

Recognition is an extreme case of using semantic priors: it operates on the level
of whole objects and amounts to classifying the object in the input image and
retrieving a corresponding 3D shape from a database. While it provides a robust
prior for reasoning about the invisible parts of objects, this kind of purely semantic
solution is only valid if the new object can be explained by an object in the database.

As reconstruction and recognition represent opposing ends of a spectrum, resort-
ing exclusively to either is unlikely to produce the most accurate 3D shapes, since
both ignore valuable information present in the input image. It is thus commonly
hypothesized that a successful approach to single-view 3D reconstruction needs to
combine low-level image cues, structural knowledge, and high-level object under-
standing [149].

In the following sections, we argue that current methods tackle the problem pre-
dominantly using recognition.

4.4 conventional setup

In this section, we analyze current methods for single-view 3D reconstruction and
their relation to reconstruction and recognition. We employ a standard setup for
single-view 3D shape estimation. We use the ShapeNet dataset [11]. Unlike sev-
eral recent approaches, which evaluated only on the 13 largest classes, we delib-
erately use all 55 classes, as was done in [192]. This allows us to investigate how
the number of samples within a class influences shape estimation performance.
Within each class, the shapes are randomly split into training, validation, and
test sets, containing 70%, 10%, and 20% of the samples respectively. Every shape
was rendered using the ShapeNet-Viewer from five uniformly sampled viewpoints
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(θazimuth ∈ [0◦, 360◦), θelevation ∈ [0◦, 50◦)). The distance to the camera was set such
that each rendered shape roughly fits the frame. We rendered RGB images of size
224 × 224, which were downsampled to the input resolution that is required by
each method.

All 3D shapes have a consistent canonical orientation and are represented as 1283

voxel grids. Using high-resolution ground truth (compared to the often used 323

voxel grids) is crucial for evaluating a method’s ability to reconstruct fine detail.
Evaluating on a higher resolution than 1283 does not offer additional benefits, since
the performance of state-of-the-art methods saturates at this level [138], while train-
ing and evaluation become much more costly. We follow standard procedure and
measure shape similarity with the mean Intersection over Union (mIoU) metric,
aggregating predictions within semantic classes [20, 33, 53, 138, 152, 191].

4.4.1 Existing approaches

We base our experiments on modern convolutional networks that predict high-
resolution 3D models from a single image. A taxonomy of approaches arises by
categorizing them based on their output representation: voxel grids, meshes, point
clouds, and depth maps. To this end, we chose state-of-the-art methods that cover
the dominant output representations or have clearly shown to outperform other
related representations for our evaluation.

We use Octree Generating Networks (OGN) introduced in Chapter 3 as the rep-
resentative method that predicts the output directly on an (efficient) voxel grid.
Compared to earlier works [20] that operate on this output representation, OGN
allows predicting higher-resolution shapes by using octrees to represent the occu-
pied space efficiently. We evaluate AtlasNet [48] as the representative approach for
surface-based methods. AtlasNet predicts a collection of parametric surfaces and
constitutes the state-of-the-art among methods that operate on this output repre-
sentation. It was shown to outperform the only approach that directly produces
point clouds as output [33], as well as another octree-based approach [53]. Finally,
we evaluate the current state-of-the-art among depth-based methods, Matryoshka
Networks [138]. Matryoshka Networks use a shape representation that is composed
of multiple, nested depth maps, which are fused into a single output object.

For IoU-based evaluation of the surface predictions from AtlasNet, we project
them to depth maps, which we further fuse to a volumetric representation. In our
experiments, this approach reliably closed holes in the reconstructed surfaces while
retaining fine details. For surface-based evaluation metrics, we use the marching
cubes algorithm [104] to extract meshes from volumetric representations.
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4.4.2 Recognition baselines

We implemented two straightforward baselines that approach the problem purely
in terms of recognition. The first is based on clustering of the training shapes in
conjunction with an image classifier; the second performs database retrieval.
Clustering. In this baseline, we cluster the training shapes into K sub-categories
using the K-means algorithm [107]. Since using 1283 voxelizations as feature vectors
for clustering is too costly, we run the algorithm on 323 voxelizations flattened into
a vector. Once the cluster assignments are determined, we switch back to working
with high-resolution models.

Within each of the K clusters, we calculate the mean shape as

m̂k =
1

Nk

Nk

∑
n=0

vn, (4.1)

where vn is one of the Nk shapes belonging to the k-th cluster. We threshold the
mean shapes at τk, where the optimal τk value is determined by maximizing the
average IoU over the models belonging to the k-th cluster:

τk = arg max
τ

1
Nk

Nk

∑
n=0

IoU(m̂k > τ, vn), (4.2)

where the thresholding operation is applied per voxel. We enumerate τ in the inter-
val [0.05, 0.5] with a step size of 0.05 to find the optimal threshold. We set K = 500.

Since correspondences between images and 3D shapes are known for the training
set, images can be readily matched with the respective cluster k. Subsequently, we
train a 1-of-K classifier that assigns images to cluster labels. At test time, we set the
mean shape of the predicted cluster as the inferred solution. For classification, we
use the ResNet-50 architecture [55], pre-trained on the ImageNet dataset [26], and
fine-tuned for 30 epochs on our data.
Retrieval. Our retrieval baseline is inspired by the work of Li et al. [94], which learns
to embed images and shapes in a joint space. The embedding space is constructed
from the pairwise similarity matrix of all 3D shapes in the training set by compress-
ing each row of the matrix to a low-dimensional descriptor via Multi-Dimensional
Scaling [87] with Sammon mapping [147]. To compute the similarity of two arbi-
trary shapes, Li et al. employ the lightfield descriptor [14]. To embed images in the
space spanned by the shape descriptors, a convolutional network [86] is trained to
map images to the descriptor given by the corresponding shape in the training set.
During training, the network optimizes the Euclidean distance between predicted
and ground-truth descriptors.

We adapt the work of Li et al. in several ways. As with our clustering baseline,
we determine the similarity between two shapes via the IoU of their 323 voxel grid
representation. We then compute a low-dimensional descriptor via principal com-
ponent analysis. We further use a larger descriptor (512 vs. 128) and a network with
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Figure 4.2: Comparison by mean IoU over the dataset. The box corresponds to the second
and third quartile. The solid line in the box depicts the median; the dashed line
the mean. Whiskers mark the minimum and maximum values, respectively.

larger capacity (ResNet-50 [55], pre-trained on ImageNet [26], without fixing any
layers during fine-tuning). Finally, instead of minimizing the Euclidean distance,
we maximize the cosine similarity between descriptors during training.

Oracle nearest neighbor. To gain more insight into the characteristics of the dataset,
we evaluate an Oracle Nearest Neighbor (Oracle NN) baseline. For each of the test
3D shapes, we find the closest shape from the training set in terms of IoU. This
method cannot be applied in practice, but gives an upper bound on how well a
retrieval method can solve the task.

4.4.3 Analysis

We start by conducting a standard comparison of all methods in terms of their mean
IoU scores. The results are summarized in Figure 4.2. We find that state-of-the-art
methods, despite being backed by different architectures, perform at a remarkably
similar level. Interestingly, the retrieval baseline, a pure recognition method, out-
performs all other approaches both in terms of mean and median IoU. The simple
clustering baseline is competitive and outperforms both AtlasNet and OGN. We
further observe that a perfect retrieval method (Oracle NN) performs significantly
better than all other methods. Strikingly, the variance in the results is extremely
high (between 35% and 50%) for all methods. This implies that quantitative com-
parisons that rely solely on the mean IoU do not provide a full picture at this level
of performance. To shed more light on the behavior of the methods, we proceed
with a more detailed analysis.

Per-class analysis. The similarity in average accuracy cannot be attributed to meth-
ods specializing in different subsets of classes. In Figure 4.3 we observe consistent
relative performance between methods across different classes. The retrieval base-
line achieves the best results for 30 out of 55 classes. The classes are sorted from left
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Figure 4.3: Comparison by mIoU per class. Overall, the methods exhibit consistent relative
performance across different classes. The retrieval baseline produces the best
reconstructions for the majority of classes. The variance is high for all classes
and methods.
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Figure 4.4: mIoU versus number of training samples per class. We find no correlation be-
tween the number of samples within a class and the mIoU score for this class.
The correlation coefficient c is close to zero for all methods.

to right in ascending order according to the performance of the retrieval baseline.
The variance is high for all classes and all methods.

One might assume that the per-class performance depends on the number of
training samples that are available for a class. However, we find no correlation be-
tween the number of samples in a class and its mean IoU score; see Figure 4.4. The
correlation coefficient between the two quantities is close to zero for all methods.
This implies that there is no justification for only using 13 out of the 55 classes, as
was done in many prior works [20, 33, 48, 138, 191].

The quantitative results are backed by qualitative results shown in Figure 4.5.
For most classes, there is no significant visual difference between the predictions of
the decoder-based methods and our clustering baseline. Clustering fails when the
sample is far from the mean shape of the cluster, or when the cluster itself cannot be
described well by the mean shape (this is often the case for chairs or tables because
of thin structures that get averaged out in the mean shape). The predictions of the
retrieval baseline look more appealing in most cases due to the presence of fine
details, even though these details are not necessarily correct.
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Input Ground truth AtlasNet OGN Matryoshka Clustering Retrieval Oracle NN

0.69 0.78 0.77 0.73 0.75 0.93

0.15 0.59 0.71 0.58 0.68 0.72

0.62 0.77 0.67 0.81 0.92 0.98

0.26 0.42 0.69 0.44 0.39 0.47

Figure 4.5: Qualitative results. Our clustering baseline produces shapes at a quality compa-
rable to state-of-the-art approaches. Our retrieval baseline returns high-fidelity
shapes by design, although details may not be correct. Numbers in the bottom
right corner of each sample indicate the IoU.

Statistical evaluation. To further investigate the hypothesis that convolutional net-
works bypass reconstruction via image recognition, we visualize the histograms
of IoU scores for all object classes in Figure 4.6. Although the distributions dif-
fer between classes, the within-class distributions of decoder-based methods and
recognition baselines are surprisingly similar. For reference, we also plot the re-
sults of the Oracle NN baseline, which, for many classes, differs substantially. To
verify this observation rigorously, we perform the Kolmogorov-Smirnov statistical
test [113] on the 50-binned versions of the histograms for all classes and all pairs of
methods. The null hypothesis assumes that two distributions exhibit no statistically
significant difference. We visualize the results of the test in Figure 4.7. Each cell in
the displayed table represents the p-value for a specific object class and a specific
pair of methods. Green cells correspond to classes for which the statistical test does
not allow to reject the null hypothesis, i.e., where the p-value is larger than 0.05.
All other cells are colored orange. We find that for decoder-based methods and
recognition baselines the null hypothesis cannot be rejected for the vast majority of
classes.
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Figure 4.6: Distribution of within-class reconstruction performance for all ShapeNet classes,
measured by IoU.
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Figure 4.6: Distribution of within-class reconstruction performance for all ShapeNet classes,
measured by IoU (continued).
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Figure 4.6: Distribution of within-class reconstruction performance for all ShapeNet classes,
measured by IoU (continued).
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Figure 4.7: P-values of the pairwise Kolmogorov-Smirnov test on per-class IoU perfor-
mance histograms. The null-hypotheses of two distributions being the same can
be rejected for p < 0.05 (orange) and cannot be rejected for p > 0.05 (green).
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4.5 problems

In the preceding section we provided evidence that current methods for single-
view 3D object reconstruction predominantly rely on recognition. Here we discuss
aspects of popular experimental procedures that may need to be reconsidered to
elicit more detailed reconstruction behavior from the models.

4.5.1 Choice of coordinate system

The vast majority of existing methods predict output shapes in an object-centered
coordinate system, which aligns objects of the same semantic category to a common
orientation. Aligning objects this way makes it particularly easy to find spatial reg-
ularities. It encourages learning-based approaches to recognize the object category
first, and refine the shape later if at all.

Shin et al. [152] studied how the choice of coordinate frames affects reconstruction
performance and generalization abilities of learning-based methods, comparing
object-centered and viewer-centered coordinate frames. They found that a viewer-
centered frame leads to significantly better generalization to object classes that were
not seen during training, a result that can only be achieved when a method operates
in a geometric reconstruction regime.

AtlasNet OGN Matryoshka Retrieval Oracle NN
0

0.2

0.4

0.6

0.8

1

m
Io

U

Figure 4.8: Mean IoU in viewer-centered mode. The retrieval baseline does not perform as
well in this mode.

To validate these conclusions, we repeated the experimental evaluation (Sec-
tion 4.4) in a viewer-centered coordinate frame. We attempted to extend the cluster-
ing baseline with a viewpoint prediction network which would regress the azimuth
and elevation angles of the camera w.r.t. the canonical frame. This naive approach
failed because the canonical frame has a different meaning for each object class, im-
plying that the viewpoint network needs to use class information in order to solve
the task. For the retrieval baseline, we retrained the method, treating each train-
ing view as a separate sample. To avoid artifacts from rotating voxelized shapes,
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we synthesized ground-truth shapes by rotating and then voxelizing the original
meshes, resulting in a distinct target shape for each view of each object. Results are
shown in Figure 4.8, where we observe a mild decrease in performance for OGN
and Matryoshka networks, and a larger drop for the retrieval baseline. For the re-
trieval setting, the viewer-centered setup is computationally more demanding, as
different views of the same object now refer to different shapes to be retrieved.
Consequently, less learning capacity is available for each individual object.

4.5.2 Evaluation metric

Intersection over union. The mean IoU is commonly used as the primary quanti-
tative measure for benchmarking single-view reconstruction approaches. The IoU
between two shapes G and R, represented as binary occupancy maps, is commonly
defined as

IoU(G,R) = |G ∩ R||G ∪R| . (4.3)

In our evaluation protocol, we compare shapes A, B at a resolution of 1283 binary
cells (voxels). This can be problematic if it is used as the sole metric to argue for the
merits of an approach, since it is only indicative of the quality of a predicted shape
if it reaches sufficiently high values. Low to mid-range scores indicate a significant
discrepancy between two shapes.

An example is shown in Figure 4.9, which compares a car model to different
shapes in the dataset and illustrates their similarity in terms of IoU scores. As
shown in the figure, even an IoU of 0.59 allows for considerable deviation from
the ground-truth shape. For reference, note that 75% of the predictions by the best
performing approach, our retrieval baseline, have an IoU below 0.66; 50% are below
0.43 (c.f . Figure 4.2).

All information about an object’s shape is situated on its surface. However, for
voxel-based representations with a solid interior, the IoU is dominated by the inte-
rior parts of objects. As a consequence, even seemingly high IoU values may poorly
reflect the actual surface similarity.

Moreover, while IoU can easily be evaluated for a volumetric representation,
there is no easy way to evaluate it for point clouds. A good measure should al-
low comparing different 3D representations within the same unified framework.
Point-based measures are most suitable for this, because a point cloud can be ob-
tained from any other 3D representation via (a) surface point sampling for meshes,
(b) per-pixel reprojection for depth maps, or (c) running the marching cubes algo-
rithm followed by point sampling for voxel grids.
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Source 0.20 0.40

0.59 0.81 0.91

Figure 4.9: IoU between a source shape and various target shapes. Low to mid-range IoU
values are a poor indicator of shape similarity.

Chamfer distance. Some recent methods use the Chamfer Distance (CD) for eval-
uation [33, 48, 163]. CD between the ground truth shape G and the reconstructed
shape R (both represented as point clouds) is defined as

CD(G,R) = 1
|R| ∑

r∈R
min
g∈G
‖r− g‖2 +

1
|G| ∑

g∈G
min
r∈R
‖g− r‖2 . (4.4)

Although it is defined on point clouds and by design satisfies the requirement of be-
ing applicable (after conversion) to different 3D representations, it is a problematic
measure because of its sensitivity to outliers. Consider the example in Figure 4.10.
Both target chairs perfectly match the source chair in the lower part and are com-
pletely wrong in the upper part. However, according to the CD score, the second
target is much better than the first. As this example shows, the CD measure can be
significantly perturbed by the geometric layout of outliers. It is affected by how far
the outliers are from the reference shape. We argue that in order to reliably reflect
real reconstruction performance, a good quantitative measure should be robust to
the detailed geometry of outliers.
F-score. Motivated by the insight that both IoU and CD can be misleading, we pro-
pose to use the F-score [81], an established and easily interpretable metric that is
actively used in the multi-view 3D reconstruction community. The F-score explic-
itly evaluates the distance between object surfaces and is defined as the harmonic
mean between precision and recall. Here we provide a full definition of the F-score
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Source CD = 0.21 CD = 0.15

Figure 4.10: The Chamfer distance is sensitive to outliers. Compared to the source, both
target shapes exhibit non-matching parts that are equally wrong. While the
F@1% is 0.56 for both shapes, the Chamfer distance differs significantly.

measure. Consider a ground truth shape G and a reconstructed shape R both rep-
resented as point clouds. For every point r ∈ R its distance to G is calculated as

er = min
g∈G
‖r− g‖2 .

Subsequently, we calculate the percentage of points reconstructed better than a
certain threshold d which results in the precision value

P(d) =
100
|R| ∑

r∈R
[er < d].

The same procedure is repeated in the opposite direction to produce the recall value

eg = min
r∈R
‖g− r‖2 , R(d) =

100
|G| ∑

g∈G
[eg < d].

The final F-score is given by the harmonic mean of the precision and recall values

F(d) =
2P(d)R(d)

P(d) + R(d)
. (4.5)

In practice, we set d as a fraction of the side length of the reconstructed volume
(e.g., 1%). The metric has an intuitive interpretation: the percentage of points (or
surface area) that was reconstructed correctly.

We plot the F-score of viewer-centered reconstructions for different distance
thresholds d in Figure 4.11 (left). At d = 2% of the side length of the reconstructed
volume, the absolute F-score values are in the same range as the current mIoU
scores, which, as we argued before, is not indicative of the prediction quality. We
therefore suggest evaluating the F-score at distance thresholds of 1% and below. In
Tab. 4.1 we provide the exact F-score values at 1% threshold in the viewer-centered
mode.
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Figure 4.11: F-score statistics in viewer-centered mode. Left: F-score for varying distance
thresholds. Right: percentage of reconstructions with F-score above a value
specified on the horizontal axis, with a distance threshold d = 1%.
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Figure 4.12: Percentage of samples with precision (left) and recall (right) of 0.5 or higher.
Existing CNN-based methods show good precision but miss parts of objects,
which results in lower recall.

In Figure 4.11 (bottom), we show the percentage of models with an F-score of 0.5
or higher at a threshold d = 1%. Only a small number of shapes is reconstructed
accurately, indicating that the task is still far from solved. Our retrieval baseline
is no longer a clear winner, further showing that a reasonable solution in viewer-
centered mode is harder to get using a pure recognition method.

We observe that AtlasNet often produces qualitatively good surfaces. It even out-
performs the Oracle NN baseline on more liberal (above 2%) thresholds, as shown
in Figure 4.11 (top). Perceptually, humans tend to judge quality by global and semi-
global features and tolerate if parts are slightly wrong in position or shape. We ob-
serve that AtlasNet, which was trained to optimize surface correspondence, rarely
completely misses parts of the model, but tends to produce poorly localized parts.
This is reflected in the high-performance range analysis, shown in Figure 4.11 (bot-
tom), where AtlasNet trails all other approaches.

Analyzing precision and recall separately provides additional insights into each
method’s behavior. In Figure 4.12 we see that OGN and Matryoshka Networks
outperform Oracle NN in terms of precision. However, both Oracle NN and the
retrieval baseline show higher recall. This is supported by qualitative observations
that OGN and Matryoshka Networks tend to produce incomplete models.

Both recall and precision can be easily visualized to gain further insights, as
illustrated in Figure 4.13.

4.5.3 Dataset

The problem of networks finding a semantic shortcut solution is closely related
to the choice of training data. The ShapeNet dataset has been used extensively
because of its size. However, its particular composition – single objects of represen-
tative types, aligned to a canonical reference frame – enables recognition models to
masquerade as reconstruction. In Figure 4.2, we demonstrate that a retrieval solu-
tion (Oracle NN) outperforms all other methods on this dataset, i.e., the test data
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Figure 4.13: Exemplary predictions of different methods compared by visual quality, pre-
cision and recall. Colors encode the point-to-surface distance between shapes,
normalized by the side length of the reconstructed volume.
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AtlasNet OGN Matryoshka Retrieval Oracle NN

airplane 0.39 0.26 0.33 0.37 0.45

ashcan 0.18 0.23 0.26 0.21 0.24

bag 0.16 0.14 0.18 0.13 0.15

basket 0.19 0.16 0.21 0.15 0.15

bathtub 0.25 0.13 0.26 0.22 0.26

bed 0.19 0.12 0.18 0.15 0.17

bench 0.34 0.09 0.32 0.3 0.34

birdhouse 0.17 0.13 0.18 0.15 0.15

bookshelf 0.24 0.18 0.25 0.2 0.2
bottle 0.34 0.54 0.45 0.46 0.55

bowl 0.22 0.18 0.24 0.2 0.25

bus 0.35 0.38 0.41 0.36 0.44

cabinet 0.25 0.29 0.33 0.23 0.27

camera 0.13 0.08 0.12 0.11 0.12

can 0.23 0.46 0.44 0.36 0.44

cap 0.18 0.02 0.15 0.19 0.25

car 0.3 0.37 0.38 0.33 0.39

cellular 0.34 0.45 0.47 0.41 0.5
chair 0.25 0.15 0.27 0.2 0.23

clock 0.24 0.21 0.25 0.22 0.27

dishwasher 0.2 0.29 0.31 0.22 0.26

display 0.22 0.15 0.23 0.19 0.24

earphone 0.14 0.07 0.11 0.11 0.13

faucet 0.19 0.06 0.13 0.14 0.2
file 0.22 0.33 0.36 0.24 0.25

guitar 0.45 0.35 0.36 0.41 0.58

helmet 0.1 0.06 0.09 0.08 0.12

jar 0.21 0.22 0.25 0.19 0.22

keyboard 0.36 0.25 0.37 0.35 0.49

knife 0.46 0.26 0.21 0.37 0.54

lamp 0.26 0.13 0.2 0.21 0.27

laptop 0.29 0.21 0.33 0.26 0.33

loudspeaker 0.2 0.26 0.27 0.19 0.23

Table 4.1: F-score evaluation (@1%) in the viewer-centered mode.
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AtlasNet OGN Matryoshka Retrieval Oracle NN

mailbox 0.21 0.2 0.23 0.2 0.19

microphone 0.23 0.22 0.19 0.18 0.21

microwave 0.23 0.36 0.35 0.22 0.25

motorcycle 0.27 0.12 0.22 0.24 0.28

mug 0.13 0.11 0.15 0.11 0.17

piano 0.17 0.11 0.16 0.14 0.17

pillow 0.19 0.14 0.17 0.18 0.3
pistol 0.29 0.22 0.23 0.25 0.3
pot 0.19 0.15 0.19 0.14 0.16

printer 0.13 0.11 0.13 0.11 0.14

remote 0.3 0.33 0.31 0.31 0.37

rifle 0.43 0.28 0.3 0.36 0.48

rocket 0.34 0.2 0.23 0.26 0.32

skateboard 0.39 0.11 0.39 0.35 0.47

sofa 0.24 0.23 0.27 0.21 0.27

stove 0.2 0.19 0.24 0.18 0.19

table 0.31 0.24 0.34 0.26 0.34

telephone 0.33 0.42 0.45 0.4 0.5
tower 0.24 0.2 0.25 0.25 0.25

train 0.34 0.29 0.3 0.32 0.38

vessel 0.28 0.19 0.22 0.23 0.29

washer 0.2 0.31 0.31 0.21 0.25

Table 4.1: F-score evaluation (@1%) in the viewer-centered mode (continued).

can be explained by simply retrieving models from the training set. This indicates
a critical problem in using ShapeNet to evaluate 3D reconstruction: for a typical
shape in the test set, there is a very similar shape in the training set. In effect, the
train/test split is contaminated, because so many shapes within a class are similar.
A reconstruction model evaluated on ShapeNet does not need to actually perform
reconstruction: it merely needs to retrieve a similar shape from the training set.

4.6 conclusion

In this chapter, we reasoned about the spectrum of approaches to single-view
3D reconstruction, spanned by reconstruction and recognition. We introduced two
baselines, classification and retrieval, which leverage only recognition. We showed
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that the simple retrieval baseline outperforms recent state-of-the-art methods. Our
analysis indicates that state-of-the-art approaches to single-view 3D reconstruction
primarily perform recognition rather than reconstruction. We identify aspects of
common experimental procedures that elicit this behavior and make a number of
recommendations, including the use of a viewer-centered coordinate frame and a
robust and informative evaluation measure (the F-score). Another critical problem,
the dataset composition, is deeper studied in the next chapter.
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D O S I N G L E - V I E W 3 D R E C O N S T R U C T I O N N E T W O R K S
G E N E R A L I Z E T O R E A L D ATA ?

The text of this chapter was largely copied from the following paper.

Maxim Tatarchenko, Stephan R. Richter, Jaesik Park, Vladlen Koltun, and
Thomas Brox. "Do Single-view 3D Reconstruction Networks Generalize to
Real Data?" In preparation for submission.

Stephan R. Richter contributed by providing the initial scene sampling code for
dataset rendering. He also provided the code for collecting and converting Lego
shapes. Jaesik Park contributed by implementing the voxel grid processing opera-
tions in the Open3D framework. All co-authors contributed to the project discus-
sions as well as the final paper text editing.

∗ ∗ ∗

5.1 introduction

The ultimate benchmark for many tasks in computer vision is the deployment
on real-world data. To perform well in this challenging setup, learning-based ap-
proaches are commonly trained on large-scale datasets, preferably collected under
similar conditions as the evaluation set. In the case of single-view 3D reconstruction,
this collection is prohibitively expensive as it requires time-consuming scanning of
thousands of diverse 3D objects [163]. To mitigate the lack of real-world training
data, it is common to train instead on large-scale synthetic datasets [20, 33, 48, 118,
124, 138]. This introduces the problem of domain shift, i.e., a decrease in performance
due to the different characteristics of synthetic training data and real testing data.
The domain shift poses a considerable challenge to the application of single-view
3D reconstruction methods in the real world: following the commonly employed
setup to train on synthetic images and to evaluate on real images, we find that
recent approaches hardly generalize at all. To investigate why networks fail to gen-
eralize, we decompose the domain shift into two factors: a discrepancy in the 2D
appearance and a discrepancy in the shape distribution. The discrepancy in the 2D
appearance stems from the different modalities of recording images: rendering an
image vs. taking a picture with a camera. The discrepancy in the shape distributions
stems from collecting CAD models that are different from real-world objects.

For studying the two components of domain shift and their effect on generaliza-
tion in isolation, we collected a new synthetic dataset, which allows explicit control
over the two factors. The dataset consists of three data sources with successively de-
creasing shape regularity: a practically relevant subset of ShapeNet shapes (Figure

77
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(a) RGB (b) Ground truth (c) Approximate rendering

(d) Physics-based rendering (e) Diverse training shapes (f) Oracle depth

Figure 5.1: We study how training data affects methods’ real-world generalization. The fig-
ure shows reconstructions of a Pix3D object (b) from a single image (a) produced
with ONet [118] trained under different circumstances: on low-quality approxi-
mate ShapeNet renderings (c), on high-quality realistic ShapeNet renderings (d),
on realistic renderings of a larger collection of diverse shapes (e) and on oracle
depth maps of the same shapes (f).

5.4), high-quality scans of 3D art objects (Figure 5.2), and a collection of diversely
arranged Lego blocks (Figure 5.3). We produced realistic renderings of these shapes
using a physics-based renderer with careful randomization of different aspects of
object appearance.

Equipped with the new dataset, we tested the generalization performance of
single-view 3D reconstruction methods aiming to answer the following questions:
Does rendering quality affect generalization properties? Is physics-based rendering
sufficient to alleviate the appearance domain gap? How important is it to have
more diverse shapes in the training set?

Surprisingly, we find that neither high-quality rendering nor its combination with
lots of diverse shapes are sufficient for reasonable generalization to real-world data
— methods trained under these conditions still strongly overfit to synthetic training
samples; see Figure 5.1.

We further investigated the issue by looking into the effect of using different in-
put data modalities. For a number of computer vision tasks, it has been observed
that depth maps as input representation can reduce the discrepancy between syn-
thetic and real data [127, 151, 153]. It has also been hypothesized that depth maps
as an intermediate representation could be beneficial to the reconstruction of com-
plete 3D shapes [184, 185, 196].

Our analysis of using an oracle depth map as input provides a more systematic
view on this hypothesis. It indicates that a decomposition of the single-view 3D
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reconstruction task into monocular depth estimation and shape completion given
a depth map is a promising direction for generalization to real-world scenarios.

5.2 related work

Generalization from synthetic visual data. The question of how to make synthet-
ically generated data maximally useful for real-world applications has been ad-
dressed in many works. Su et al. [160] discuss important rendering techniques for
generating synthetic training data. Zhang et al. [197] produce physically-based ren-
derings of synthetic indoor scenes, use them for solving multiple computer vision
tasks (semantic segmentation, normal estimation, object boundary prediction) and
conclude that realistic appearance is important for generalization. Richter et al. [139]
show that supplementing real-world data with photo-realistic synthetic images en-
hances the performance of segmentation networks. Hoffman et al. [60] use GANs
to make synthetic images look more realistic. Tobin et al. [166] propose domain
randomization for sim2real transfer.

Using synthetic depth maps to better address the domain shift was proposed for
multiple tasks. Systems for human pose estimation and hand pose estimation using
the Kinect camera are famous success stories [151, 153]. Other examples include se-
mantic segmentation [52], object recognition [127], pose estimation [123] and grasp
planning [114].

Datasets. Datasets for object-based single-view 3D reconstruction are scarce. Choi et
al. [19] scanned real-world objects with commodity sensors. Wiles & Zisserman col-
lected scans from sculptures [181]. Sun et al. aligned CAD models to real-world
images [163]. Several datasets for robotics tasks were collected in controlled envi-
ronments [10, 59, 156]. However, since the collection of real-world scans is labo-
rious, the number of images and objects in these real-world datasets is too small
for training high-capacity deep networks. Hence, training is usually performed on
synthetic datasets, which comprise CAD models from various sources; ShapeNet
contains CAD models of everyday objects and furniture [11], Thingi10K [203] and
ABC [82] contain models for 3D printing, Blobby Objects features procedurally gen-
erated blobs [181].

5.3 dataset

Reconstructing 3D shapes from a single image is a challenging and ill-posed prob-
lem. In order to examine a broad variety of cues and priors and their effect on
generalization, we specifically designed a new dataset for analysis. There are two
major components of the domain shift: object appearance and the distribution of
shapes. The design is motivated by these two factors. The appearance shift is ad-
dressed through different modes of rendering while the shape shift is addressed
through distinct subsets featuring unique distributions of shapes.
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5.3.1 Data sources

ShapeNetR2. To cover shapes with highly regular structure, we include a subset
of the ShapeNet [11] dataset which is the dominant dataset actively used in the
community at the moment. We selected classes that are most likely to appear in
everyday natural images and are thus most useful for analyzing the real-world
generalization of trained models. These include chairs, tables, cars, motorcycles,
sofas, beds, bookshelves, lamps, and airplanes. We refer to this as ShapeNetR2

(ShapeNet Realistically Rendered). Most object instances in this subset are regular
in the sense that they have a standard spatial arrangement of parts (e.g. a typical
chair has four legs, a seat and a back). We used 29,227 shapes, each rendered from
10 different viewpoints, resulting in a total of 292,270 samples.

Sculptures. Our second subset includes shapes that are less regular and more di-
verse than ShapeNetR2 samples. It is comprised of 9,129 art objects initially in-
tended for 3D printing, collected from myminifactory.com. The collection consists
of high-quality 3D scans captured in art galleries around the world and represented
as triangular meshes. Most of the objects are organic statues (humans, animals),
which implies that they have specific structural priors. However, the immense va-
riety of poses and object combinations make resulting object part arrangements
less uniform than in the case of ShapeNetR2. Each shape was rendered from 10

different viewpoints resulting in a total of 91,290 samples.

Lego. This subset was designed to cover highly irregular shapes with no notion of
typical object structure. We achieved this by extracting random bundles of blocks
out of lego shapes. We used a collection of 83 full Lego Technic shapes. For each
shape, we centered a bounding box at a random block and extracted out all blocks
fully or partially falling within it. This results in shapes consisting of approximately
5 to 20 blocks (see Figure 5.3). We collected 8,300 such shapes, each rendered from
5 different viewpoints, resulting in a total of 41,500 samples.

5.3.2 Rendering

One of the core aspects influencing the appearance domain shift between synthetic
and real data is rendering quality. To minimize the discrepancy between rendered
images in our dataset and real-world images, we rendered all shapes realistically
with a physics-based renderer [67]. Based on the insights about generating synthetic
data for training CNNs [160], we randomized most parameters of the rendering
procedure. While this does not ensure that synthetic images are indistinguishable
from real ones, it alleviates the possibility of CNNs not generalizing to real data
because of overfitting to specific unrealistic appearance cues.

myminifactory.com
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Figure 5.2: Qualitative examples of our high-quality realistic renderings of shapes from
Sculptures.
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Figure 5.3: Qualitative examples of our high-quality realistic renderings of shapes from
Lego.
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Figure 5.4: Qualitative examples of our high-quality realistic renderings of shapes from
ShapeNetR2.
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Materials and textures. For Sculptures, we randomly sampled object materials pro-
vided in Mitsuba [67]. For Lego, we used a polycarbonate material and the original
colors from the shape specifications. For ShapeNetR2, we used the original ma-
terials and textures from the dataset. We discuss the importance of textures for
generalization in Section 5.4.2.1.
Lighting. To avoid unrealistic light source patterns, we used complex environment
maps to specify the lighting conditions123. For every sample, we randomly picked
one out of 597 environment maps and randomly rotated it around the vertical axis.

5.3.3 Evaluation

5.3.3.1 Real-world datasets

In order to test generalization of single-view 3D reconstruction methods to the real
world, we evaluate on three real-world datasets: Pix3D [163], YCB [10] and T-LESS
[59].
Pix3D comprises 10,068 real-world images of indoor objects from 9 classes accu-
rately aligned with their corresponding 3D CAD models. The classes of shapes in
Pix3D mostly match those in the ShapeNetR2 dataset.
YCB is a dataset of household objects captured in a lab setup and initially intended
for robotics manipulation. We curated the dataset by manually removing objects
with low-quality segmentation masks. Since the viewpoints for every object are
sampled densely in the original dataset, many images are similar to each other.
Thus, we sub-sampled the set of available views keeping four input image orienta-
tions per shape. This resulted in a total of 272 evaluation samples.
T-LESS consists of 30 industry-relevant objects for 6-DoF pose estimation captured
in a controlled environment. With the same motivation as in the YCB case, we sub-
sampled the original set of available images keeping 6-12 views per object, which
results in a total of 348 samples. The objects are effectively textureless, making the
setup similar to the Sculptures and Lego training sets. Example images from all of
these test sets can be found in Figure 5.5.

5.3.3.2 Synthetic train/test splits

To investigate the influence of shape priors, we also define test sets for the Sculp-
tures and Lego subsets of our dataset. To ensure that the training and test sets are
not too similar, we clustered all shapes into 100 clusters and performed a random
search over the cluster subsets, such that the nearest neighbor distance between the
test and training set is maximized. We used the agglomerative clustering algorithm
with an F-score-based pairwise similarity matrix. We do not include ShapeNetR2

as a test dataset because the same shape priors are already represented in Pix3D.

1 http://www.hdrlabs.com/sibl/archive.html
2 https://hdrihaven.com
3 https://www.openfootage.net

http://www.hdrlabs.com/sibl/archive.html
https://hdrihaven.com
https://www.openfootage.net
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Figure 5.5: Examples from the three real-world test sets we used: YCB (top row), T-LESS
(middle row), Pix3D (bottom row).

5.3.3.3 Metric

For each predicted shape, we sample 10K points from the surface to generate a
point cloud. We then run ICP with scaling [5, 170] to better align predictions with
the ground truth and evaluate the F-score with a 1%, same as in Chapter 4. The
resulting F-score values range between 0 and 100%.

5.3.4 Efficient toolbox

With ∼400K images and ∼50K shapes, processing and evaluation on our dataset
becomes challenging, as high-quality assets require much storage, methods require
pre- and postprocessing of data and conversions between different 3D represen-
tations. Thus, we developed an efficient toolkit based on Open3D [202], which
supports seamless on-the-fly conversion between different 3D representations. This
simplifies the interaction with the data. For example, a standard procedure for train-
ing voxel-based networks includes converting meshes into voxel grids and storing
them on the disk. Our on-the-fly conversion works orders of magnitude faster and
does not require storing redundant data.

5.4 experiments

5.4.1 Methods

For our experiments, we selected two state-of-the-art methods that are representa-
tive of different output shape representations commonly used in single-view 3D re-
construction; AtlasNet [48] predicts meshes and Occupancy Networks (ONet) [118]
predicts implicit surfaces. We further included a diagnostic method (Oracle Nearest
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Neighbor – Oracle NN) that uses privileged information to analyze the properties
of the dataset.
AtlasNet. We picked AtlasNet based on the experiments presented in Chapter
4, where it yielded the best results among the compared methods in the viewer-
centered mode. It predicts a set of parametric surface patches and arranges those
to provide the best coverage of the ground truth shape.
Occupancy Networks. This method represents a modern family of approaches [118,
124] based on implicit functions. The basic idea of the approach is to perform con-
ditional prediction of per-point occupancy given the 3D coordinates and the input
RGB image. Sampling many points within the volume of interest and estimating
occupancy for each of them allows reconstructing full 3D shapes. The network is
a combination of a regular 2D convolutional encoder and a set of fully-connected
layers for occupancy prediction.
Oracle NN. This method defines the upper bound of retrieval approaches. Using
the privileged information of knowing the ground-truth test shape, it selects the
training shape which is closest to the ground truth. It measures how well every
test shape can be explained by one of the training shapes. Performing exhaustive
search over all views of all shapes is prohibitively expensive. Instead, for every
shape represented as a point cloud, we run the PCA decomposition in the point
space. We then rotate the shapes to align the resulting principal components with
the coordinate axes. Since this manipulation gives the same result for all views of
one shape, we do not need to treat every view of the shape as a separate sample in
the nearest neighbor search.

5.4.2 Analysis

5.4.2.1 Does realistic appearance matter?

Realistic rendering. We started by testing the hypothesis that training on high-
quality renderings is important for model generalization. Most methods in the lit-
erature are trained on renderings used in Choy et al. [20]. We reproduced these
by generating images using the ShapeNet Viewer4, a tool for approximate render-
ing of ShapeNet shapes. We compared the network trained on these low-quality
renderings with the model trained on our realistic images.

The results shown in Table 5.1 clearly illustrate that networks trained on low-
quality renderings fail to generalize to real-world images, whereas the ones trained
on high-quality renderings perform considerably better. This suggests that training
on high-quality renderings should be the default mode of operation for single-view
3D reconstruction methods.
Meaningful textures. Another aspect influencing the appearance of objects is the
set of textures used. In this experiment, we study how important it is for gener-
alization performance to have semantically meaningful textures. We rendered two

4 https://github.com/ShapeNet/shapenet-viewer

https://github.com/ShapeNet/shapenet-viewer
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ShapeNet ShapeNetR2

Pix3D 4.6 15.5

Table 5.1: Using high-quality renderings for training significantly increases performance on
real data (Results using AtlasNet, reported as F-Score@1%).

diagnostic versions of the ShapeNetR2 dataset: one where all textures are removed
and the object appearance is instead modulated by sampling random materials
(same as for rendering the Sculptures); in the other one we replaced the original
semantically meaningful textures with randomly sampled ornaments.

The results are summarized in Table 5.2. Since the textures in ShapeNetR2 to
a large extent reflect the real-world object appearance, training with the original
ShapeNetR2 textures has a positive influence on Pix3D test performance. This is
different for other real-world test sets: ShapeNetR2 textures are useless for YCB
and T-LESS, and replacing them with either random textures or random materials
does not affect performance in a significant way.

Texture Pix3D YCB T-LESS

Original 15.5 4.4 5.7
None 12.9 4.5 5.8
Random 12.9 4.4 5.9

Table 5.2: Training on ShapeNetR2 shapes with semantically meaningful textures increases
performance on Pix3D but is irrelevant for other datasets.

Oracle NN AtlasNet ONet

Pix3D 34.8 15.5 10.6

Table 5.3: Realistic rendering is not enough to ensure generalization, ConvNets trained on
ShapeNetR2 still perform much worse than picking the closest training sample.

5.4.2.2 Is realistic rendering sufficient?

While realistic rendering provides substantial improvement over more simplistic
approximate rendering, it is still not sufficient to ensure generalization to real data.
In Table 5.3 we can see a comparison of all three baselines evaluated on Pix3D when
using ShapeNetR2 for training. Even though ShapeNetR2 and Pix3D consist of the
same shape types, reconstruction networks do not come even remotely close to the
performance of the Oracle NN method. This demonstrates that realistic rendering
is not the ultimate solution for the problem of domain shift. In the following section
we analyze how the training shape distribution influences the situation.
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Sculptures Pix3D Lego YCB T-LESS

AtlasNet (Sculptures) 18.8 7.4 4.4 3.8 5.3
ONet (Sculptures) 13.7 4.9 2.8 7.2 6.8

AtlasNet (ShapeNetR2) 12.5 15.5 5.2 4.4 5.7
ONet (ShapeNetR2) 5.0 10.6 1.7 5.9 6.7

AtlasNet (Lego) 8.9 7.1 5.3 4.0 5.2
ONet (Lego) 7.0 5.5 3.8 5.1 5.6

AtlasNet (Combined) 15.1 12.1 5.5 4.5 6.1
ONet (Combined) 13.0 8.3 2.6 6.7 6.9

Table 5.4: Shape prior analysis results. When training end-to-end based on RGB input im-
ages, generalization can be mostly attributed to reusing the priors from the train-
ing set. Performance is poor when the priors in the test shapes do not match
those of the training shapes.

5.4.2.3 Do diverse shapes help?

Our dataset is designed to evaluate how well a method generalizes with respect to
the difference between the types of shapes in the training and test sets. Pix3D by
design contains shapes of the same classes as ShapeNetR2. YCB and T-LESS, on the
other hand, do not have a counterpart with suitable shape priors in the training set.

We started off by evaluating all possible combinations of training and testing
sets; see Table 5.4. The results clearly show that the best performance is achieved
when the priors in the training set match those in the test set. The best performance
on Pix3D is obtained with AtlasNet trained on ShapeNetR2. AtlasNet trained and
tested on sculptures also demonstrates consistent results. However, when there is
effectively no prior to learn – like in the in-distribution case of Lego – the methods’
performance is drastically reduced. ONet shows the same trend with lower absolute
numbers, as the predictions are often significantly misplaced w.r.t. the ground truth
shapes. Both AtlasNet and ONet perform poorly on YCB and T-LESS because there
are no suitable shape priors in any of the training sets.

Training set Oracle NN AtlasNet # samples

Full 34.8 15.5 293K
Cars 17.2 6.9 34K
Chairs 27.1 11.3 67K

Table 5.5: Effect of using different ShapeNetR2 subsets for training. Matching shape priors
are crucial for achieving reasonable performance on Pix3D.
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To further investigate the effect of shape distribution on generalization, we gen-
erated diagnostic subsets of ShapeNetR2 and checked how the baselines trained on
those modified datasets score on Pix3D. We consider subsets which only contain
samples from the chair and the car class respectively. Table 5.5 shows that the Ora-
cle NN method using chairs for NN search – the class with the highest population
in Pix3D – retains a large portion of the performance of the full ShapeNetR2 train-
ing set. Using cars, on the other hand, decreases the performance by a factor of two.
The same trend appears in the AtlasNet results.

Method Sculptures Pix3D Lego YCB T-LESS

AtlasNet (ShapeNetR2) 17.6 21.3 8.5 13.6 11.6
Oracle NN (Sculptures) 20.9 21 15.1 18.7 14.1
AtlasNet (Sculptures) 26.2 13.8 6.9 15.2 10.9
AtlasNet (Lego) 16 14.7 9.7 11.4 10.5
AtlasNet (Combined) 24.2 25.4 9.3 17.1 13.0
ONet (Combined) 22.3 21.9 6.7 16.1 12.3

Table 5.6: Results when using depth maps as input. The methods’ performance significantly
improves over RGB as input. Adding more training data leads to models that
generalize better.

Finally, we tested the assumption that generalization can be improved by simply
training on a larger dataset with more diverse shapes in it, and found that this
is not true. Models trained on a combined version of our dataset (ShapeNetR2 +
Lego + Sculptures) and evaluated on Pix3D are inferior to the ones trained only on
ShapeNetR2.

All these results confirm that the methods still heavily overfit to the particular
priors present in the synthetic training data. In the next section we look deeper into
this overfitting by switching the modality of the input images given to the network
and analyzing the resulting performance.

5.4.2.4 Input modality

Wu et al. [184, 185] and Zhang et al. [196] proposed a line of single-view 3D recon-
struction methods based on estimating intermediate geometric representations. The
core idea is to split the single-view 3D reconstruction task into two modules. The
first estimates a depth map (and potentially other modalities like surface normals
and silhouettes) from the input image. The second performs 3D shape completion
based on the outputs of the first module. The underlying hypothesis is that the
domain shift between synthetic and real depth maps is less severe than the one for
RGB images, hence the shape completion module may generalize better.

We could not directly use the full framework of Zhang et al. [196] due to their
assumption of having a fixed camera-to-object distance and fixed internal camera
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parameters. Instead, we set up a controlled experiment for evaluating the upper
bound on the generalization of depth-based shape completion. For all our training
and testing datasets, we rendered orthographic depth maps from uniformly scaled
objects. We used these oracle depth maps both for training and testing AtlasNet and
ONet. In the case of AtlasNet, we started from the same pre-trained autoencoder as
in the corresponding RGB experiment, thus ensuring that only the input modality
and the weights of the encoder change. This allows to perfectly distill the influence
of the input representation, which was not possible in the experiments of Zhang et
al. [196].

Pix3D T-LESS YCB

RGB

Depth

GT

AtlasNet
(RGB)

AtlasNet
(Depth)

ONet
(RGB)

ONet
(Depth)

Figure 5.6: Qualitative results on real-world test sets when training on the combined ver-
sion of our dataset (ShapeNetR2 + Lego + Sculptures). Depth-based predictions
are significantly better than the RGB-based counterparts both for AtlasNet and
ONet. When using depth as input, the methods generalize much better to shapes
which are completely different from the ones seen during training.

The results are summarized in Table 5.6. The performance on all test sets has
significantly improved compared to the RGB experiments. For the first time, the
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in-distribution test, where the network was both trained and tested on Sculptures,
shows better results than the Oracle NN baseline. Results on Pix3D when training
on depth maps from Lego and Sculptures, which have entirely different shape
priors, are nearly the same as when training on RGB images from ShapeNetR2,
which has very similar shape priors.

Networks starting from input depth maps can also better exploit large amounts
of diverse data. Unlike in the RGB experiments, training on a combination of dif-
ferent data sources improves the results. Figure 5.6 shows the results produced by
networks trained on the combined version of our dataset (ShapeNetR2 + Lego +
Sculptures). Depth-based predictions are substantially better than their RGB-based
counterparts.

Note that the decoder weights stayed fixed in all of the AtlasNet experiments.
This indicates that the decoder is capable of producing a more comprehensive
range of shapes than those it has seen during training. Another experiment fur-
ther confirms this point: we keep a fixed decoder trained on Lego and Sculptures
respectively and train the encoder on ShapeNetR2, see Table 5.7. Despite the fixed
decoder, both networks trained on ShapeNetR2 perform better on Pix3D than the
counterparts trained on Lego and Sculptures.

Decoder Matching encoder ShapeNetR2 encoder

ShapeNetR2 15.5 15.5
Lego 7.1 12.6
Sculptures 7.4 11.2

Table 5.7: AtlasNet with decoder weights fixed and the encoder weights trained on different
subsets of our dataset. Training the encoder on a set of images which is more
similar to the test set always increases performance, even if the decoder was
trained to produce a different set of shapes.

This observation also explains the seeming discrepancy between the fact that
single-view 3D reconstruction networks mostly perform recognition formulated in
Chapter 4 and that linear interpolation between the latent codes of different shapes
results in the smooth morphing of shapes in the output space [183]. It is the encoder
that only maps to a small subset of the hidden space. When a more substantial
subset is explored by interpolating between the latent codes, a more extensive set
of 3D shapes can be produced.

The conclusion from the above experiment is similar to the one from Zhou et al.
[201]: explicit intermediate representations help solve the final task, in our case 3D
reconstruction.

5.5 conclusion

The analysis presented in this chapter explicitly demonstrates that the problem of
synthetic-to-real generalization in the case of single-view 3D reconstruction can-
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not be trivially solved by carefully designing the training dataset. Highly diverse
shapes and realistic rendering are necessary, but not sufficient for developing mod-
els that work reliably on real images. What turns out to be helpful is introducing
more structure into the model design and using depth as an intermediate repre-
sentation in the pipeline. This is not a particularly novel observation – the positive
influence of making depth-based predictions has been actively exploited in other
fields like segmentation [52] or robotics [114]. However, in modern single-view 3D
reconstruction, this design choice was only made in one line of work [184, 185, 196],
and so far, it was not apparent that this should be the default mode of operation.

Our results show that single-view 3D reconstruction networks generalize much
better when provided with oracle depth maps. This bridges the gap to existing
monocular depth estimation works and suggests that single-view 3D reconstruction
would benefit from improved single-view depth estimation.
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C O N C L U S I O N

In the first part of the thesis, we presented deep learning methods for analyzing and
synthesizing 3D geometry. Our main focus was on the scalability of approaches, i.e.
their ability to efficiently work with high-resolution data. For geometry analysis
we proposed tangent convolution - a novel operation for convolving point clouds.
Convolutional networks based on tangent convolutions are suitable for processing
large-scale indoor and outdoor scenes with millions of points. For synthesis, we pre-
sented Octree Generating Networks, which enable the reconstruction of 3D shapes
in high resolution given arbitrary inputs. Together, these two approaches form a
solid toolkit for solving the most common tasks in 3D deep learning.

In the second part of the thesis, we focused on the problem of single-view 3D
reconstruction. We performed a detailed analysis of a group of state-of-the-art
methods comparing them with two approaches explicitly solving the task in the
recognition mode. The fact that the results of these two groups of approaches
were statistically indistinguishable led us to the conclusion that current methods
for single-view 3D reconstruction largely solve the task through recognition. It is
important to note that this observation does not undermine the technical contribu-
tions of existing methods. It rather reveals some poorly planned design choices in
the conventional experimental setup which led to such behavior. Fixing those is a
necessary but not sufficient step on the way to developing methods that perform
fine-grained single-view 3D reconstruction based on local image cues. Furthermore,
a method approaching 3D prediction as a recognition task is not a bad thing per
se - it may actually be desirable in many situations. However, the decision to work
with such a method should be made consciously and not come as a byproduct of a
misconception.

Finally, we analyzed modern single-view 3D reconstruction approaches in terms
of their generalization to real-world images. For this, we gathered a large collection
of diverse shapes and produced their realistic renderings. We concluded that, at
the moment, neither increasing the amount and diversity of synthetic training data
nor making its appearance more realistic is sufficient to ensure generalization of
current approaches to real data. In other words, data is not the ultimate solution,
and more work has to go into the algorithm design. This conclusion is, of course,
limited by the quality of our generated data. Even though we put considerable
effort into carefully designing the dataset, renderings from it can still be distin-
guished from real-world images. There is a chance that training on synthetic data
of even better quality will be sufficient to generally solve the task. Nevertheless,
our findings indicate that at the moment one important design choice is to have
intermediate geometric representations in the processing pipeline. Though not pro-
viding any formal information gain, such pipeline structure can simplify the task.

93
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For example, in case of single-view 3D reconstruction, the first part of the pipeline
(the one estimating depth) still operates in the image space. It thus can rely on
the input image structure when predicting partial 3D information. The task of the
second part is only to complement the prediction of the first part, this can be much
easier than a completely unguided RGB-to-3D transition. A similar observation was
formulated in Zhang et al. [196]. Note that this is an indication, not a proof: we can
only hypothesize, why such a method design makes the task easier. An explicit
evaluation of modern mono-depth estimation methods as part of a single-view 3D
reconstruction pipeline is required in order to draw stronger conclusions.

future work

Despite the recent rapid progress in 3D deep learning, many challenges still remain
open. We provide an outline of what we believe to be the most important directions
of future research.

Standardized implementations. Many methods for 3D deep learning developed
in the recent years are shipped as independent incompatible frameworks. While
sufficient for initial proof-of-concept experiments, this strategy is barely suitable
for using these methods as parts of larger computational pipelines. Standardized
and highly optimized implementations [1, 68, 126] proved to be critically important
for scaling up 2D deep learning algorithms. Similar 3D frameworks [135, 173] are
starting to emerge. However, they still lack universal support of important data
structures and algorithms; therefore, more engineering effort is required on this
side.

Differentiable rendering for single-view 3D reconstruction. The best-performing
deep learning methods for 3D synthesis rely on full 3D supervision during training.
This requires collecting large amounts of 3D data, either synthetic or real. While
working with synthetic data, one needs to address the domain shift when applying
the trained models to real-world data - an issue thoroughly discussed in Chapter
5. Training directly on real data, on the other hand, requires expensive and compli-
cated data collection. An alternative solution is to use a weaker form of supervision
during training, namely 2D projections. Some first steps have been made in this di-
rection [66, 76, 137, 169, 191, 204], but the current methods are still mostly using
silhouette images which provide a limited amount of information. Existing differ-
entiable rendering algorithms [56, 93, 103] have not been widely adopted for 3D
prediction tasks with natural images used for supervision during training. We be-
lieve that such design choice may be important to develop data-efficient single-view
3D reconstruction algorithms which generalize to real-world images.

Intermediate geometric representations. In Chapter 5 we have shown that single-
view 3D reconstruction algorithms enjoy much better generalization when applied
to depth inputs instead of RGB inputs. This indicates the potential importance of
making monocular depth estimation an explicit part of the computation pipeline,
thus bridging the gap to existing works in this field [32, 89]. At the same time, many
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questions remain unanswered. How accurate does a depth estimate need to be in
order to be useful for shape completion? Do separate modules (e.g. mono-depth
estimation and shape completion) need to be trained together? Is the problem of
estimating depth from a single image practically easier than that of estimating a
full 3D shape from an RGB image directly? All these questions span exciting new
research possibilities.
Single-view 3D reconstruction beyond individual objects. Current single-view 3D
reconstruction methods almost exclusively solve the task for individual segmented
objects. A variant of the task which involves explaining full scenes observed from a
single viewpoint is no less attractive, although more challenging, both in terms of
method design and available data.
Compositional reasoning. Most objects can be naturally decomposed into mean-
ingful parts. Combinatorially, the number of unique parts is significantly smaller
than the number of combinations. Therefore, compositional reasoning about the
object structure, that is, identifying the constituting parts and arranging them the
right way, could be an attractive approach to the problem of 3D reconstruction. Ini-
tial steps in this direction, when using existing object parts to reconstruct a new
object, were made in several recent works [39, 187]. However, they still require a
database of annotated object parts in order to be trained. A more interesting vari-
ant is the one which can be trained without ground truth part annotations, and
even, preferably, without the assumption that individual parts have fixed semantic
meaning. The Lego dataset introduced in Chapter 5 could provide suitable data for
developing this sort of algorithms.
Real applications of single-view 3D reconstruction. Another underexplored as-
pect of single-view 3D reconstruction is its use in practical tasks. There are two
modes for this: explicit and implicit. In the explicit mode, generated shapes can be
used for 3D reasoning, e.g. for solving robotics tasks. In the implicit mode, learned
compact representations containing 3D information can be combined with other
useful features to solve the tasks at hand. We believe, there are many promising
applications for both of these modes.
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