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Preface

Roughly speaking this work starts with the scope to find new strategies of summary information
appraisal, allowing for implementation of non-standard meta-analytic models. For instance, in or-
der to perform general event-history meta-analysis we should recover time-dependent information
about all cause-specific cumulative events counts across studies, that is typically a non-standard
summary data input in classic meta-analysis. We also face the additional problem to retrieve sum-
mary information on all relevant study factors and confounders as well as to be able to flexibly
model it. Hence a meta-analyzer only working with summary data would actually like to have as
much original Individual Person Data (IPD) information as possible instead. This is because there
seems to be no good work-around to gain relevant insight into original IPD information except
actually having the IPD.

Here we try to argue for the opposite: there is an IPD compression that can retain and yield
much of the original information if sensibly decompressed. Although counter-intuitive, it turns out
such criterion is well founded in statistical physics and mechanics where entropy, the chaos or in-
certitude in a system, plays a key role. This and further connections to copula and inference theory
slowly and strenuously helped to identify, and better clarify, a comprehensive method of IPD and
IPD inference reconstruction when only certain compressed IPD items are available. This method
could naturally fits into applications such as statistical disclosure control, research reproduction or
syntheses.

For this work I shall be extremely thankful to the Institute of Medical Biometry and Statis-
tics (IMBI) of the University Medical Center Freiburg, University of Freiburg (Germany), that
hosted the project, and to the adjoining European Commission grant, MEDIASRES, that provided
the starting means for it. Especially thanked shall be Dr. Nadine Binder who put the initial in-
dispensable stimulus to outset this project. To ease the exposition I first present main concepts
and results and put the rest into Appendix. I strove for simple notation and clear as possible no-
tions. Despite the effort to address typos, lapses, and notation inconsistencies, something might
still gone unchecked and I apologize for this in such case. In Chapter 2 and 3, which deal with the-
ory/methods and results, each main section is followed by a summary that should help the reader
speeding through the text. Most of the produced code used for the experiments is currently not
freely available. The scope was not production of an open software package. While most of the
proposed algorithms and data should not be difficult to reproduce, I’m available for possible code
sharing upon personal request (bono@imbi.uni-freiburg.de).
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Briefly, and in its most concrete form, the object of statistical methods is the reduction of data.
A quantity of data, which usually by its mere bulk is incapable of entering the mind, is to be
replaced by relatively few quantities which shall adequately represent the whole, or which, in
other words, shall contain as much as possible, ideally the whole, of the relevant information
contained in the original data.

Fisher (1922); Section 2, page 278.
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Abbreviations

IPD Individual Person Data, a collection of p-dimensional dependent records,
independently observed over n statistical units.

SDC Statistical Disclosure Control.

rv random variable

pm probability measure

e.d. empirical distribution

MaxEnt Maximum Entropy

NORTA NORmal To Anything (transformation)

NORTAmax MaxEnt NORTA transformation (typically used to denote IPD simulation)

MaxEntBoot Maximum Entropy Bootstrap (typically used to denote IPD inference simulation)

MLE Maximum Likelihood Estimate

r.f.i.d. reciprocal Fisher Information diagonal

c.h.e. cumulative hazard estimate

MC Monte Carlo

s.p.d. semi positive definite

CIs Confidence Intervals (typically 95% wide)

GLM Generalized Linear Model

HR Hazard Ratio

PH Proportional Hazards

OR Odds Ratio

p.s.s. partially sufficient statistic (log-likelihood numerator);
here the log-likelihood denominator is not reducible.
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Notation

`(·) log-likelihood function

θ a parameter, or a quantity of inferential interest

x an observed n × p matrix, or IPD, with row xi·, and column x· j, i = 1, . . . , n; j = 1, . . . , p

m̄k
j empirically observed moment of degree k = 1, 2, . . .

R̄x empirically observed correlation matrix

C̄x abbreviation to denote both empirical moments and correlation matrix

X random equivalent of x, with row Xi· and marginal X· j

Xi· a p-dimensional vector with dependent elemnts (Xi1, Xi2, . . . , Xip) ∼ Q, ∀i = 1, . . . n

X· j a n-dimensional vector with i.i.d. elements, X1 j, X2 j, . . . , Xn j, X1 j ∼ Q j, ∀ j = 1, . . . p

EP expectation relative to a distribution P, also written as E(·)

Fn p-dimensional empirical distribution with marginal Fn, j j = 1, . . . p

D(P||Q) Kullback-Leibler divergence between P and Q

P∗ the p-dimensional MaxEnt distribution with marginal P∗j j = 1, . . . p

K(·) a copula function

Np the p-dimensional Normal distribution, also written as the function Φ(·)

M (·) a generic inferential function

I∗n the MaxEnt bootstrap estimator for the distribution of M (X), given plug-in P∗

θ∗ alternative notation for M (X∗)
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Abstract

Individual Person Data (IPD) typically consists of repeated independent observations of a multi-
dimensional dependent record. Imagine collection of a multi-variate medical record (age, height,
health-status, etc ...) on several unrelated patients. IPD sharing is crucial for scientific advance-
ment, that is, for experimental validation, evidence pooling, and reliable statistical inferences.
While IPD disclosure is feasible it is sometimes difficult or impossible.

If IPD is not available researchers still try to recover original information from disclosed IPD
syntheses. For instance in meta-analysis we often focus on appraisal and combination of disclosed
regression slopes. This is sometimes equivalent to perform the original pooled IPD regression but
generally it is not. The implicit question is how much information about the original IPD, and IPD
inference, the IPD syntheses do convey. The general opinion is that non negligible information loss
should occur.

Here we propose a new paradigm by which appraisal of certain IPD summaries, that is IPD
marginal moments and correlation matrix, seems to generally entail small information loss at both
the data and inferential level. The idea is to reconstruct original IPD from the above summaries
only, and to recover an original IPD inference from such reconstructed IPD. We argue this ap-
proach is well founded in an information theoretic sense which seems not fully acknowledged in
the literature so far.

The reconstruction method is based on maximum entropy (MaxEnt ) resampling where the
basic MaxEnt formalism is extended to include record dependence by the aide of copula theory.
We argue the Gaussian copula with given moment-based MaxEnt marginals and correlation matrix
equals the multi-variate MaxEnt distribution from which stochastic simulations of the original IPD
are drawn. By an extension of the renowned Gibbs conditioning principle there are strong hints
the used Gaussian copula is asymptotically equal to the true IPD generating mechanism, given
summaries on its empirical distribution. We verify such claims experimentally. So far this seems
one of the strongest arguments for an objective method of IPD reconstruction from IPD summaries
only.

Next we build a MaxEnt bootstrap estimator by using the proposed MaxEnt joint distribution
as plug-in approximation for the IPD generating process, under conditions on its empirical sum-
maries. We give hints of MaxEnt bootstrap consistency and argue for good predictive properties
of a bootstrap average. Experimental assessments suggests the MaxEnt bootstrap does recover key
features of an IPD inference distribution, or ensemble. We practically show this for commonly per-
formed IPD inferences like Generalized Linear Models and proportional hazards Cox regression
parameters, or Breslow/Nelson-Aalen type cumulative hazard, estimates.

The proposed method could find natural applications in IPD anonymization, distributed net-
work computing, research reproduction and synthesis (meta-analysis), where no original IPD but
only key IPD summaries can be made available. This work seems to suggest a new standard for
IPD summary reporting and general IPD inference recovery, by which an important limitation of
IPD information loss is possible.
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Chapter 1

Introduction

1.1 Background and overview

Individual Person Data (IPD) consists of original information recorded at the study source. Here,
we begin with considering non-longitudinal records. Each person, or statistical unit, contributes
with several measurements at one single point in time. For example, we record medical mea-
surements like age, height, clinical status, etc, once on a cohort of independent patients. The
independence condition is usually enforced by design, or it is generally assumed as we do here.

While IPD is the empirical basis for scientific research, due to privacy, legal, or technical
issues it is not always publicly available. Instead, critical IPD findings are usually only disclosed
via journal publications, in form of a limited set of summaries. These summaries are typically
the object of an intense recovering activity, and of further analytic processing. IPD summaries are
priced proxy for original IPD information. Typically the focus is on some IPD inferential quantity,
like the effect of a drug on some clinical outcome. For instance, in meta-analysis the focus is on
collection and pooling of IPD regression slope estimates. This practice is not void of logic. It is
the natural consequence of certain model parameter estimates being preferentially more highlighted
and reported, thus, more easily recoverable, than other syntheses. However, when considering such
summaries, the implicit attention in the literature is often framed in respect to IPD information, or
individual level data.

Olkin and Sampson (1998) shows that pooling of linear regression slopes for a single cate-
gorical effect is in fact equivalent to the corresponding regression on the original IPD. Lin and
Zeng (2010) extends this argument to vector-valued linear regression slopes, provided the slopes
covariance matrix is available. Liu et al. (2015) further extend the claim by accounting for study
heterogeneity. In modeling frameworks yet more general than those considered above it is typically
accepted that some IPD information loss occurs via compression, further biasing inference (Debray
et al., 2013a,b; Crowther et al., 2012; Stewart et al., 2012; Abo-Zaid et al., 2012; Cai et al., 2011;
Jackson et al., 2011; Bowden et al., 2011; Riley and Steyerberg, 2010; Riley et al., 2010; Jones
et al., 2009; Katsahian et al., 2008; Moodie et al., 2004; Stewart and Tierney, 2002). Analogous

1



2 CHAPTER 1. INTRODUCTION

issues are also relevant in fields like research synthesis, distributed computing and Statistical Dis-
closure Control (SDC).

Here we propose another paradigm with a procedure to recover original IPD from its empirical
marginal moments and correlation matrix only. We argue this approach is well founded in an
information theoretic sense. The Maximum Entropy Principle (Jaynes, 1957, 1996; Grünwald and
Dawid, 2004) is a rational approach to decompress empirical moments into the associated raw
variable. Such basic formalism is necessary but not sufficient for our goal of IPD reconstruction,
because dependence information must also be factored in. The standard approach would be to
impose empirical correlation knowledge via constrained optimization. This can be technical and
we note a key connection between maximum entropy and copula theory seems to yield a more
automatic solution. To the best of our knowledge this machinery was never used with the explicit
goal to reconstruct original IPD. In fact the idea of IPD reconstruction is itself rather novel with
only some historic application in SDC.

Using the above IPD summaries, our method can reproduce IPD emulations that convey quite
generic inferential content. That is, we reconstruct original IPD inferences from the reconstructed
IPD. We show this approach can be seen as a type of bootstrap, evocatively called the MaxEnt
bootstrap (MaxEntBoot ), that roughly retains key characteristics of the original IPD inference dis-
tribution, but where empirical IPD marginal moments and correlation structure is the only input
data. We experimentally validate this via reproduction of commonly used IPD multi-variate para-
metric, semi-parametric, and non-parametric statistical models. Hence we give a broader answer
to the question of Olkin and Sampson (1998) considering a wider class of multi-variate inferential
problems (not only linear regressions).

The method can depend on some recovery assumptions about the required IPD empirical sum-
maries. Marginal variable moments, at least to a certain degree, can be typically recovered through
basic descriptive IPD summaries, often reported. Reporting of a correlation matrix may be less
frequent, although is recently recognized as a relevant feature for generic recovery of inferential
information (Lin and Zeng, 2010; Becker and Wu, 2007; Yoneoka and Henmi, 2016). Our work
seems to further motivate and justify usage of such summaries for information reporting and re-
trieval. This could find further application in SDC, research reproduction or synthesis, and related
disciplines.

Hence one main message for the practice is the following: there seems to be a rational and
standardizing method to summarily report IPD information without incurring in both IPD and IPD
inference serious information loss. Hopefully this might also help making reporting a bit more fit
for purpose (Altman, 2015).
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1.2 Further motivations

A speedy and easy access to IPD is ideal in the scientific practice. Claims must be quickly
corroborated, empirical evidence must be rapidly appraised, pooled, and flexibly processed to
confirm information or gain new insights. IPD access is perceived as a gold standard in meta-
analysis (Chalmers, 1993), and it is particularly relevant when it comes to transparency issues or
mere results reproduction (Peng, 2015; Stodden, 2015; Chan et al., 2014, 2013; Hrynaszkiewicz
et al., 2010; Vickers, 2006). Recently, special editorials are regularly issued on the importance of
IPD availability, and results reproducibility (Nature, 2017).

While IPD access may be feasible, it is not always possible, especially across different data
sources. The most economic and efficient alternative may be IPD proxies collection, in the typi-
cal form of high level inferences made on IPD, like regression parameter or probability estimates.
While such IPD proxies are typically highly valued, they may only carry indirect and limited in-
formation about the original IPD. Nevertheless, disclosed IPD proxies are becoming the object
of intense exploitation, in order to recover as much IPD information as possible. For instance,
Guyot et al. (2012); Liu et al. (2014) recently attempted to reconstruct survival IPD from published
survival probability curves.

Standard meta-analytic procedures for survival data (Parmar et al., 1998) have evolved into
more articulated methods (Williamson et al., 2002; Moodie et al., 2004; Arends et al., 2008; Fiocco
et al., 2009, 2012; Commenges and Hejblum, 2013; Dias et al., 2013; Bonofiglio et al., 2015; Cafri
et al., 2015), reflecting the desire to perform more flexible and realistic analyses, that depends on
less restrictive and more comprehensive summary reporting. A richer and more reliable summary
reporting can help recover various and more detailed aspects of IPD allowing for broader scope
inferences. Equally, we see the attempt to shift from basic meta-analytic methods (DerSimonian
and Laird, 1986) to less standard pooling procedures (Goodman, 1989; Eddy et al., 1990; Raftery
et al., 1995; Schweder and Hjort, 1996; Higgins and Whitehead, 1996; Efron, 1996; ORourke
et al., 2001; ORourke, 2001; O’Rourke and Altman, 2005; Baker and Kramer, 2005; Ades and
Sutton, 2006; O’Rourke, 2007; Guolo, 2012, 2013; Madan et al., 2014), which often requires more
adequate summaries as input data.

Distributed computing (Dean and Ghemawat, 2008; Gaye et al., 2014; Chamandy et al., 2015)
is a similar field heavily relying on IPD proxies. Here due to privacy restrictions IPD cannot be
shared across a network, but the goal is to pool anonymous IPD syntheses between web-connected
hubs to gain as much as possible pooled IPD knowledge. Here the advantage is that the IPD
summary format can be standardized across the network, allowing information consistency. For
instance commonly used IPD pooled analyses can be performed by sharing anonymous regression
scores and their covariance matrix, similar to Lin and Zeng (2010), across the network. However
such approach does yet not extend to inclusion of random effects, which could be important to ac-
count for network heterogeneity. Similarly, most IPD inferential procedures cannot be reproduced
via such pooling approach.

In Statistical Disclosure Control (SDC) we try to limit access to sensible IPD information
when we make IPD publicly available. This is done by producing aggregated, altered, or entirely
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simulated proxies of the original IPD, such to mask original sensible records (Hundepool et al.,
2012; Templ, 2017). Attention is paid on the utility of the anonymized IPD, that is, its capacity to
still yield inferential content similar to the original IPD. Some authors show that entirely simulated
IPD (microdata in their jargon) can increase utility. Under the requirement to access original IPD
census information, they propose IPD reconstruction schemes based on multiple imputation via
Bayesian posterior distribution prediction (Raghunathan et al., 2003; Drechsler and Reiter, 2010),
or random forests techniques (Reiter, 2005). Their IPD generation implementation has some vague
conceptual resemblance to the approach we propose here, and that we broadly sketch in Figure 2.1,
page 28. However, in more detail our approach is entirely different and does also eliminate the need
to access original (census) IPD. The modes of IPD inference recovery are also different. While we
focus on estimation of the IPD inference distribution in a broad sense, they focus on construction of
point and variance estimators and, via combination, obtain interval estimators for certain statistics.
Beaulieu-Jones et al. (2017); Huang et al. (2017) propose generative adversary neural networks to
simulate anonymous raw IPD proxies, but their focus is not on IPD inference recovery, and the
simulations’ utility is not entirely clear.

Duchi et al. (2018) more formally study the trade-off between privacy preservation and util-
ity optimization, working on conditional IPD generative models and on a number of information
theoretic bounds. Their set-up requires access to original raw IPD. They assess utility on GLM
and density estimation, similar to us. They conclude the cost of increased anonymization could be
decreased utility, or the need to adjust IPD inferential procedures on privacy constraints, especially
in high dimensional settings. They do not exclude the possibility of better trade-offs.

For p < n, IPDn×p first dimension compression is equivalent to masking individual records
information. By considering this type of aggregation, it is easy to think to classic statistical suffi-
ciency. For p = 1 the log-likelihood with exponential form

`(θ) = θs − ψ(θ) + c, (1.1)

allows for information compression s =
∑n

i yi, θ ∈ R, ψ a function, and c constant. Here vector yn

is the IPD and its scalar proxy, s, suffers no information loss. In this ideal uni-parametric example
by only reporting and recovering s it would allow relatively ample model flexibility (in the sense
of disposing of a wide family of distribution), guaranteeing full IPD information appraisal.

Inclusion of a covariate, x, is important. If x is categorical, the sufficiency principle still holds,
and one only needs reporting/recovery of additional 2(m − 1) summary features, where m is a
contained number of categories, θ ∈ Rm, and n is given. Interestingly, even this latter trivial
example shows that pooled IPD GLMs, based on (1.1), could be used for popular fixed-effects
meta-analyses of treatment-control effects, if all sufficient summaries were recoverable. These
trivial situations are conform to classic notions of evidential equivalence between an aggregate-
based and an original IPD inference (Birnbaum, 1962, 1964, 1972; Kalbfleisch, 1975; Basu, 1975;
Berger et al., 1988).

Another widely used model, the Cox regression, has partial log-likelihood similar to (1.1),
where ψ(θ) is a risk-set denominator also depending on x, and θ is an Hazard Ratio vector. Here,
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imagine survival data had only few events and x was a binary treatment-control covariate. Then, it
is instructive to see we could in principle perform a model of the type

`(θ) = θs −
∑

t

log {n1tψ(θ) + n0t} , t = 1, 2, . . .T , (1.2)

by only using the summaries s, n1t, and n0t, where T is a contained number of event-times, and n1t,
and n0t are exact counts of at risk units in each arm, at time t. If T grows, exact reporting/recovery
of (n1t, n0t), ∀t, becomes prohibitive, and (1.2) unrealistic (see Appendix B.5.1, page 95, for further
development on this topic).

In general, if x is continuous, or multi-dimensional by inclusion of confounders and interac-
tions, the log-likelihood denominator, ψ(θ, x), is irreducible and classical principles of inferential
equivalence no longer hold. Here if raw x is not available we face a problem of missing informa-
tion. One idea could be to simulate ψ(θ, x) by mimicking the unavailable x. Borgan and Keogh
(2015); Keogh et al. (2018) do something similar in the context of case-control studies where some
covariates value must be imputed. In Appendix B.5.2 we propose a similar approach when the log-
likelihood compressed numerator is known. Otherwise, the main theme of this work is to simulate
the entire IPD to also account for situations where no numerator compression is available.

Broadly speaking, if researchers can only access limited IPD information, and for the various
application purposes introduced above, it emerges the importance of

• reliable and generic IPD proxies, that holds most of original IPD information.

• freedom and flexibility to model IPD proxies, in order to pool, reproduce, or de novo produce
generic IPD inferences.

These two aspects are surely inter-related and here we confront both of them. For the first point
we see that an intuitive and compact IPD proxy is the set of its empirical distributional descriptors,
such as k-degree marginal moments and correlation matrix. It turns out these empirical IPD com-
pressions have justification by unifying formal aspects of entropy maximization and copula theory.
This leads to a decompressed IPD proxy that tend to satisfy the second point. That is, the generated
IPD can be processed with the same analytic procedure we would use on the original IPD. This
tends to show good utility by yielding IPD inferences quite similar to the original ones.

This process can be naturally seen through a classic information flow scheme (encoder-channel-
decoder). We encode original IPD into a transportable anonymous summary and channel it through
a certain MaxEnt distribution, whose samples are decoded IPD reconstructions. This transmission
can be quite reliable. Moreover, from the inferential point of view, it is maybe easier to look at this
compression-decompression program as a bootstrap procedure with a certain plug-in approxima-
tion for the IPD generating mechanism, given IPD empirical summaries. Here inferential recovery
is understood as a form of IPD inference distribution estimation.
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1.3 Outline

Figure 1.3, page 8, shows the main connection among the following Sections, with an emphasis
on topic and goal. Section 2.1.2 to 2.1.5 have a rather theoretical tone, however, the scope re-
mains quite practical. Section 2.1.2 deals with the theoretical reconstruction of a marginal IPD
variable, by usage of basic MaxEnt formalism. Here, inter-marginals dependence is disregarded.
Section 2.1.3 provides new contributions, extending the basic MaxEnt formalism, with the goal
to reconstruct all IPD marginals jointly, also accounting for their inter-dependence structure. In
Section 2.1.4 we argue that the MaxEnt IPD reconstruction is close to a realization from the joint
IPD generating mechanism, under empirical IPD constraints. Section 2.1.5 studies connections to
the bootstrap. We show MaxEnt resampling is akin to bootstrapping the IPD inference, leading
to a good IPD inference reconstruction in some distributional sense. From Section 2.2 to 2.3 we
implement all formalism into a practical methodology of IPD and IPD inference reconstruction.
Section 3.1 to 3.3 empirically show that we can produce satisfactory IPD and IPD inference re-
constructions, if enough prior IPD summary data is available. It follows a discussion, and some
conclusions.

1.4 Extended outline

Section 2.1 introduces the mathematical notions to develop a method of IPD and IPD inference
reconstruction. The starting point is a body of well established information theoretical results.
Section 2.1.2 reviews basic definitions, and results, about the distribution with maximum entropy.
Here, the Conditional Limit Theorem and Concentration Theorem seem to justify IPD marginal
reconstruction, by sampling from a distribution with high entropy. That is, an IPD marginal vari-
able, given its first k moments, converges to the maximum entropy distribution (Conditional Limit
Theorem), or to a distribution of approximately equally high entropy (Concentration Theorem),
that comply to such moment constraints. Here the limitation is that, typically, IPD must be handled
jointly, and dependence between IPD marginals is important. We denote with P∗ the multi-variate
MaxEnt distribution, with arbitrary marginals, and dependence structure. To the best of our knowl-
edge, two aspects yet lack enough attention in the literature:

to conveniently sample from P∗.

to verify that P∗ is conditional limit of a IPD generating mechanism.

In Section 2.1.3 we first propose a solution to sample from a multi-variate MaxEnt distribution,
based on Gaussian copulas, that avoids variational calculus altogether. Our resampling proposal is
based on two relatively trivial premises. First, the NORmal To Anything (NORTA) transformation
(Definition 2.1.3, page 17), is a Gaussian copula inversion allowing to sample from arbitrary multi-
variate distribution, with known marginals, and correlation matrix. Second, a Gaussian copula
has maximum entropy among all joint distributions with given marginals and correlation structure
(Proposition 2.1.9, page 2.1.9). It follows a NORTA transform with MaxEnt marginals must be a
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draw from the multi-variate MaxEnt distribution with fixed correlation structure (Theorem 2.1.1
and Corollary 2.1.1.1, page 18 and 18). We conveniently denote such operation as NORTAmax.
In Section 2.1.4 we argue NORTAmax resampling is asymptotically equal to draw from the IPD
generating mechanism, given IPD empirical distributional summaries are available. The claim is
based on a mode of convergence in information (Theorem 2.1.2 and Conjecture 2.1.1, page 19
and 20), that is our key justification for reconstruction of original IPD. Similarly, NORTAmax can
be seen as a tool for IPD anonymization.

In Section 2.1.5, we acknowledge NORTAmax resampling is akin to IPD bootstrapping where
the MaxEnt distribution is used as plug-in approximation for the IPD generating mechanism, under
empirical IPD features constraints. We then define a MaxEnt bootstrap estimator for the distri-
bution of an original IPD inference that is our key tool for IPD inference reconstruction, given
empirical IPD summaries as only input data. We crudely assess MaxEnt bootstrap consistency
(Conjecture 2.1.2 and Proposition 2.1.10, page 22), and conjecture the MaxEnt bootstrap average
is a good predictor for the original IPD inference (Conjecture 2.1.3, page 23).

In Section 2.1.6, Algorithms 2.1.1 and 2.1.2 (page 25) give simple instructions to implement
IPD and IPD inferences reconstruction, from the given IPD summaries. Sections 2.2–2.4 give
further methodological implementations. In particular, we want to assess the reconstruction method
under different amount of the input IPD summary data, especially, under varying completeness
of the empirical IPD dependence structure. We further assess the method robustness, by using a
MaxEnt surrogate for a continuous IPD marginal, that is given by the Johnson distributions system.
We also assess the method on real IPD examples and design four IPD batches by different amount
and type of included covariates. For simplicity, and without loss of generality, we decide to work
with mostly four variables per IPD. To assess IPD inference reconstruction, we select commonly
used inferential procedures among General Linear and survival models. We focus on GLMs with
Gaussian, Binomial, and Poisson family, in addition to Cox regression followed by Breslow, or
Nelson-Aalen estimation, depending on the number and type of covariates involved.

In Section 3.1 and 3.2 we give results on IPD and IPD inference reconstruction that generally
confirm our arguments and conjectures. We show NORTAmax resampling produces honest sim-
ulations of the original IPD. From those IPD reconstructions we show we can well recover IPD
MLEs, their 95% empirical intervals, as well as cumulative hazard estimates, by taking appropriate
syntheses of the MaxEnt bootstrap sample for these IPD inferences. A good IPD inference re-
construction is generally due more to complete IPD dependence information, and less to marginal
moments of degree greater than two. In Section 3.3 we give further practical examples on IPD
inference reconstruction, when, for instance, the original IPD inference has no interpretation. In
particular, in Section 3.3.2 we graphically show the MaxEnt bootstrap of the cumulative hazard
estimate can typically result in a close approximation of the original IPD curve.

These results suggest the method could be meaningfully applied in disciplines like research
reproduction and synthesis, given empirical IPD marginal moments and correlation matrix as only
input data. In particular, the method seems readily suited for distributed network computing, upon
compliance of the network to the above proposed IPD summaries. Chapter 4 is devoted to inter-
pretations and discussions of the produced methodological and empirical materials.
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Preliminaries and basic information theoretic notions

2.1.3

2.1.4

2.1.5

IPD resampling (Theorem 2.1.1)

IPD distribution convergence (Theorem 2.1.2)
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4.1 – 4.5 Discussions and Conclusions 

2.1.1 –2

Figure 1.1: Flowchart displaying a graphical outline of the remaining parts of the manuscript.
Boxes represent Sections with a short description of their content. In parentheses are some of the
main statements. Ovals represent the goals.



Chapter 2

Theory and Methods

2.1 Mathematics

Consider an IPD, defined as n independent observations of a p-dimensional dependent record. For
example, we collect a multi-variate medical record (age, height, health-status, etc ...) on several
unrelated patients. Imagine a situation where we have no IPD, nor IPD inference, but only key
summaries of the original IPD, namely its empirical marginal moments and correlation matrix.
Here we propose a formal argument for a method of IPD and IPD inference reconstruction, when
only such empirical IPD summaries are available. Further applications are discussed later. In the
sequel x denotes a n × p matrix, xi· a p-dimensional vector, x j· a n-dimensional vector, xi j a scalar,
and capital letters are used to denote random counterparts. Throughout the text convergence is
understood for n→ ∞. I provide a summary of all relevant notions of this Section on page 27.

2.1.1 Preliminaries

Consider an observed numerical n × p matrix, otherwise referred to as IPD,

x =



x1·
...

xi·
...

xn·


=

[
x·1 . . . x· j . . . x·p

]
, (2.1)

with row record xi· = (xi1, xi2, . . . , xip), i = 1, 2, . . . n, and column vector x· j = (x1 j, x2 j, . . . , xn j)>,
j = 1, 2, . . . p. Let stress that p < n. The sign > indicates transpose. There is nothing special about
matrix (2.1): it arises after collection of p (dependent) variables, independently observed across n
statistical units. Trivially, we allow y ≥ 1 variables to represent an outcome, whose relation with
the remnant p−y covariates is the scope of further statistical investigation. For instance, (2.1) could
arise after observation of y clinical outcomes along, or after, collection of p− y medical records, on

9
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n unrelated individuals. We stress again observations on the individual statistical unit are typically
dependent. Generic examples in other social and scientific disciplines are licit.

For the time being, we focus on the situation where IPD (2.1) is not available. Instead, assume
only a certain compression of IPD (2.1), denote it the IPD signature, Cn(x) = C̄x, is available. Let

C̄x B m̄k
j ∧ R̄x; j = 1, . . . , p; k = 1, 2, . . . , (2.2)

where m̄k
j and R̄x denote empirical marginal moment of degree k and correlation matrix of IPD (2.1).

Symbol ∧ denotes logical conjunction. Our goal is to reconstruct the unavailable IPD (2.1), when
only its signature (2.2) is available. We justify this idea more formally.

Let assume IPD (2.1) is the realization of a random matrix

X =



X1·
...

Xi·
...

Xn·


=

[
X·1 . . . X· j . . . X·p

]
, (2.3)

where Xi· = (Xi1, Xi2, . . . , Xip) is a p-dimensional random vector with Cov(Xi j, Xik) not necessarily
zero, ∀ j , k, and X· j = (X1 j, X2 j, . . . , Xn j)> is a n-dimensional random vector with Xi j ⊥⊥ X` j, ∀i ,
`. Let fix an arbitrary measurable space (X j,B j) and let (X,B) be its p-product, j = 1, . . . , p. We
consider X· j as a n-series of X j-valued i.i.d. rv’s with common fixed distribution Q j in some some
sample space (X j,B j)n. We consider Xi· as a p-dimensional X-valued rv with fixed distribution
Q, and we regard X as a n-series of p-dimensional rv’s, i.i.d. according to Q from some sample
space (X,B)n. Denote with P j and P the set of all pm’s on (X j,B j) and (X,B) respectively. The
series Fn, j(X· j) ∈ F j ⊂ P j and Fn(X) ∈ F ⊂ P is the empirical distribution (e.d.) of X· j and X,
respectively.

In the next section we review known stochastic properties of the n-series X· j when Fn, j is
in some convex subset C j ⊂ P j. Additional to convexity set C j can be made to satisfy certain
moment conditions of the form mk

n, j =
∑n

i Xk
i j, k = 1, 2, . . .. This seems particularly useful in

the framework we operate. Results we first present are well known in the information theoretic
community, and often find application in the financial, physical, and engineering sciences, but
not so much in the broader statistical community, especially in the bio-sciences. I show these
information theoretic results suggest a sound approach to reconstruct a marginal IPD variable,
x· j, if only some of its first empirical k-moments are observed. Here, the joint structure of x is
ignored, and a good reconstruction of the joint IPD is not possible, unless all IPD marginals are
independent. As a further and main contribution we consider the non zero dependence structure
of the joint IPD (Section 2.1.3), and address the stochastic properties of the latter (Section 2.1.4).
This leads to a practical approach for reconstruction of the joint IPD, as described in Section 2.1.7.
As a further contribution we investigate the connections of this reconstruction procedure to the
bootstrap in Section 2.1.5, which leads to a method of IPD inference reconstruction (Section 2.1.6)
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with application to some empirical statistical disciplines, such as SDC, research reproduction, and
synthesis .

2.1.2 Marginal IPD distribution given IPD moments

Let the n-series X· j be i.i.d. according to Q j. The main known result from information theory is
that

Pr
(
Xi j ∈ B j | X· j ∈ A j

)
→ P∗j , B j ⊂ X j, (2.4)

the probability distribution of Xi j, given X· j is inA j =
{
X· j : Fn, j ∈ C j

}
,A j ∈ Bn

j , converges to the
Gibbs measure P∗ in information. Since probability (2.4) must satisfy conditions of set C j, let us
focus on all pm’s in such set F j ∈ C j.

A result like (2.4), sometimes known as Conditional Limit Theorem, or Gibbs Conditioning
Principle, is the formal basis for our proposed approach to reconstruct IPD (2.1). In the sequel, we
shall further elaborate on (2.4).

For a pm P j ∈ P j and Q j (fixed) with density dP j and dQ j we need the following.

Definition 2.1.1. (Information divergence). The Kullback-Leibler (KL) divergence of P j relative
to fixed Q j, P j << Q j is

D(P j||Q j) = EP j log(dP j/dQ j). (2.5)

Equation (2.5) is a convex function in P j, always positive, zero iff P j = Q j, where E denotes
expectation. Minus (2.5) is also known as relative entropy, or information. Let C j ⊂ P j be a convex
set of pm’s intersecting a “neighbourhood” of Q j of possibly infinite radius,

{
P j : D(P j||Q j) ≤ ∞

}
.

Definition 2.1.2. (D-projection of Q j on C j). By strict convexity of (2.5)

P∗j = arg min
C j

D(P j||Q j), (2.6)

is the closest pm to Q j and is unique. It follows D(P∗j ||Q j) = minC j D(P j||Q j).

Remark. A sufficient condition for existence of P∗j is that subset C j is closed to the variational
distance; see Csiszár (1975), Theorem 2.1, page 148 (there the term I-projection is used analo-
gously). We shall more precisely refer to a generalized D-projection (Csiszár, 1984) below, but for
the technical level adopted here we hereinafter neglect this detail.

Divergence (2.1.1) is not a metric but it plays the role of squared Euclidean distance between
P j and Q j.

Proposition 2.1.1. (Csiszár (1975)). If D(P∗j ||Q j) and D(P j||P∗j) are both finite, we have

D(P j||Q j) ≥ D(P j||P∗j) + D(P∗j ||Q j), (2.7)

where P j ∈ C j ∩
{
P j : D(P j||Q j) < ∞

}
.
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Proof. See proofs of Lemma 2.1, Theorem 2.2, and Theorem 2.3 of Csiszár (1975). A simple proof
is given in Cover and Thomas (2006), Theorem 11.6.1, page 367. �

Remark. The usage of Proposition 2.1.1 is the following. If it can be found a series D(Pn, j||Q j)→
D(P∗j ||Q j), then 2.7 holds with equality and D(Pn, j||P∗j)→ 0.

The next important notion relates the probability of observing a series in C j to the distance of
the closest element to Q j.

Proposition 2.1.2. (Sanov Theorem).

(1/n) log Pr(Fn, j ∈ C j)→ −D(P∗j ||Q j), (2.8)

where probability is measured relative to Q j.

Proof. See for instance Sanov (1958), or Csiszár (2006), or Theorem 11.4.1, page 362 (Cover and
Thomas, 2006) for a simplified proof. �

Remark. The meaning of Proposition 2.1.2 is that pm’s far from P∗j seem highly unlikely in C j.

In the sequel let adopt the following specification

C j =

F j :
∫
X j

xkdF j ≥ ak
j, k = 1, 2, . . .

 . (2.9)

Hence we make set C j to have specific moment features. AccordinglyA j =
{
X· j : 1

n
∑n

i Xk
i j ≥ ak

j

}
.

Remark 2.1.1. For specification (2.9) the D-projection (2.6) of Q j has form

dP∗j/dQ j = exp

∑
k

λ jkxk
j

 c, k = 1, 2, . . . , (2.10)

where c is a normalizing constant. For Q j equal the Uniform measure, density (2.10) is the general
form of a maximum entropy (MaxEnt ) distribution, where parameter vector λ must be chosen
according to EP∗j X

k
j = ak

j on domain X j. We shall hereinafter assume a solution for λ j exists,
implying existence of (2.10).

Vasicek (1980) first proves convergence in probability for a simplified version of (2.4). His
result can be read as “the empirical frequencies of a finite support rv Xi j ∼ Q j converge to the
MaxEnt frequencies having form (2.10), for a given mean value of the n-series X· j”. The author
calls this result a conditional law of large numbers as compared to the more famous unconditional
version, as another mode of interpreting limiting frequencies as probabilities. This result is in some
respect simple but clear. Van Campenhout and Cover (1981) are apparently the first to prove (2.4)
in probability, for both discrete and continuous rv’s, under a condition comparable to (2.9). In
the words of the authors the given empirical mean is a sufficient statistic for the n-series X· j. The
conditional limit argument is greatly generalized by Csiszár (1975, 1984). Here, we mainly use his
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results. Particularly easy proofs of these results are later formulated via the so called method of
types (Csiszár, 1998) under the more restrictive premise of finite alphabets. Dembo and Zeitouni
(1996, 1998) recast the conditional limit phenomenon under rigorous measure theoretic arguments,
and under the name of Gibbs conditioning principle. A later proof of (2.4) in less general settings
is given by Grünwald (2001).

We shall now restate (2.4) as the following simplified statement from Csiszár (1984).

Proposition 2.1.3. (Conditional Limit Theorem). Let the n-series X· j be drawn i.i.d. ∼ Q j < C j,
with e.d. Fn, j ∈ C j. Let P∗j be as in Definition 2.1.2. Then

D(F j||P∗j)→ 0, (2.11)

All pm’s F j ∈ C j converge to the Gibbs distribution in information. Otherwise said, a sample Xi j

with e.d. in C j has quasi-independent elements with common limit distribution P∗j .

Remark. With C j as in 2.9 Proposition 2.1.3 means all pm’s with given moment features con-
verge to the MaxEnt distribution P∗j having density (2.10) and with Q j being the Uniform distri-
bution. Interestingly, the effect of conditioning seems to be negligible on the limit (see comments
of Van Campenhout and Cover (1981) in proof of their Theorem 1, page 484), since (2.4) converges
to the unconditional density form (2.10).

Proof. It shall mainly follow from Proposition 2.1.1 and 2.1.2. See Csiszár (1984) (in particu-
lar Theorem 1 and 4 with corresponding proofs). An accessible and intuitive proof is given in
Cover and Thomas (2006) (Theorem 11.6.2, page 371), although on simplified premises, namely
countable finite support for the rv. �

Remark. KL convergence is convergence in information, and implies convergence in total variation
(DasGupta (2008), Chapter 2).

Remark 2.1.2. (IPD marginal reconstruction) Usage of Proposition 2.1.3 is the following. We want
to retrieve an inaccessible IPD marginal variable, x· j, knowing only some empirical moments of it,
m̄k

j = ak
j, k = 1, 2, . . ., ∀ j. To do so we can sample from the MaxEnt distribution, P∗j , that is the limit

of the IPD marginal distribution, given its empirical moments. The input data for this program is
the observed constraint ak

j only. For a marginal IPD variable putting non negligible information at
k > 1, knowledge of higher order moments should improve reconstruction of x· j. For a continuous
not normally shaped series, knowledge of moments up to the fourth degree should be sufficient.
This approach would reconstruct each IPD marginal variable, with no regard to inter-variables
dependence. This is unsatisfactory in most cases.

The so called concentration phenomenon is an intuitive and useful result, although weaker than
Proposition 2.1.3. The premise for the following is the rv having finite support, and notation below
is to be understood in such context.
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Proposition 2.1.4. (Concentration Theorem). In the set C j, for n > n0, such that m̄k
n0, j

� k̂ j, the
following holds

Pr
(
Fn, j ∈H (P∗j)

)
= 1 − e−nc, (2.12)

where H (F∗j ) is an open neighbourhood of P∗j , and c is some constant. That is, with high proba-
bility, a realization of the e.d. is very close to the MaxEnt distribution, for increasing n.

Remark. Differently said, there are exponentially more ways for empirical frequencies to resemble
those of the MaxEnt distribution, for growing n.

Proof. A first version of Proposition 2.1.4 is given and proved by Jaynes (1982) (see Rosenkrantz
(2012) for archived material). Grünwald (2001) strengthens the Proposition by proving it for arbi-
trarily large |X j|, provided its ratio to n goes to 0. Another proof is given by Robert (1990). �

Remark. Proposition 2.1.4 mainly borrows notation from Robert (1990). Oikonomou and Grünwald
(2016) give a stronger assertion about the concentration phenomenon, by providing explicit non-
asymptotic bounds, while allowing for sample error in the linear constraint, and, in some instances,
independence from |X j|.

Remark. The usage of Proposition 2.1.4 is the following. In order to reconstruct a marginal IPD
series as described in Remark 2.1.2, one does not need to use the MaxEnt solution (2.10), but,
instead, any other distribution of approximately equal entropy, for the same given constraints. We
might use this statement if the rv’s domain can be approximated to a finite one.

Both the Concentration and Conditional Limit Theorem seem to provide an eminent justifica-
tion for usage of the marginal MaxEnt distribution for reconstruction of each IPD column, given
corresponding IPD column summary only. However this does not allow for a joint IPD reconstruc-
tion that also accounts for between columns dependence. This latter aspect is addressed in the next
Section.

2.1.3 Joint IPD reconstruction given IPD moments and correlation

In the previous Section, we see how basic information theoretic results justify usage of the MaxEnt
marginal distribution to recover each marginal column of IPD (2.1). However, to obtain a reason-
able joint IPD reconstruction we must account for between IPD marginals dependence. In this
Section we offer one such joint IPD reconstruction, and in Section 2.1.4 we assess its stochastic
properties.

Basic definitions of Section 2.1.2 extend to joint pm’s. Denote the KL-divergence of any joint
pm P ∈ P from a fixed joint Q as D(P||Q), strictly convex in P, and zero iff P = Q. The closest dis-
tribution to Q must be the p-dimensional D-projection P∗ that is unique by convexity of D(·||·). If Q
is the Uniform measure, P∗ must be the p-dimensional MaxEnt distribution. We shall extend (2.9)
and consider the intersection

C =
(
∩

p
jC j

)
∩D, (2.13)
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C ⊂ P, where

D =

F :
∫
X j

∫
X`

x jx`dF ∝ r jl, ∀ j , `
 . (2.14)

is a convex set made to satisfy specific pairwise dependence conditions. Accordingly we might
consider all series X with correlation at least R. We consider the following probability

Pr (Xi· ∈ B | X ∈ A) , B ⊂ X, i = 1, . . . n, (2.15)

where A = {X : Fn ∈ C}, A ∈ Bn. Accordingly let us focus on all p-dimensional pm’s F ∈ C
(with given marginal and dependence features). One first challenge here is to identify a convenient
form for P∗. Second we stress that a result analogous to (2.4) is not available for (2.15).

To first determine the form of P∗ one could try KL-minimization by variational calculus (Hiai
and Petz, 1998; Ebrahimi et al., 2008; Mansoury and Pasha, 2008; Larralde, 2012). Here we can
by-pass this step by adopting an alternative mode of dependence modeling. The idea is to use
a copula (Nelsen, 2006) to link the MaxEnt marginals into a joint distribution. If the copula is
Gaussian, we show this mode of construction must yield the MaxEnt joint distribution, which
seems not fully recognized in the literature. We first need the following.

Let Vi j ∼ U(0, 1) be independent of Xi j ∼ G j, with one-dimensional distribution function G j

and generalized inverse

G−1
j = inf

{
xi j : G j(xi j) > ui j

}
, ui j ∈ (0, 1). (2.16)

Using notation from Oertel (2015), define the modified distribution function as

G j(x, λ) B (1 − λ)G j(Xi j < xi j) + λG j(Xi j = xi j), (2.17)

for λ ∈ [0, 1]. Define the distributional transform of Xi j as

Ui j B G j(Xi j,Vi j). (2.18)

Proposition 2.1.5. (Rüschendorf transform). Consider the transform (2.18), we have

Ui j
d
= U(0, 1), Xi j = G−1

j (Ui j) a.s. (2.19)

Proof. See Rüschendorf (2009). See Oertel (2015) for a more detailed approach. �

Remark. From a probabilistic point of view, the usage of Proposition 2.1.5 seems that of producing
a “smoothing” of an arbitrary rv Xi j. In particular we have useful results on the distribution of the
transformed G j and its inverse. Sometimes (2.18) is called the copula representer.

The fundamental copula identity is due to Sklar, see for instance Schweizer (1991) (page 17).
We shall put emphasis on the distributional and probabilistic aspect of Sklar statement, that is
sometimes given as a separate Lemma (see for instance de Amo et al. (2012), page 105).
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Proposition 2.1.6. (Sklar identity). Let Xi· be a p-dimensional random vector with marginal and
common joint distribution respectively G j, j = 1, . . . , p, and G. Then for a p-dimensional copula
K,

G(xi1, . . . , xip) = K(G1(xi1), . . . ,Gp(xip)) (2.20)

is a p-dimensional joint distribution function with marginal G j, ∀ j.

That is, a copula K : [0, 1]p 7→ [0, 1] can be written as

K(ui1, . . . , uip) = G(G−1
1 (ui1), . . . ,G−1

p (uip)), (2.21)

or as a Uniform p-dimensional vector Ui· = G(Xi·) for which it holds Xi· = G−1(Ui·), that is
relevant for random variate generation. From the latter we see (2.21) cannot be a copula if G is
non-continuous (Genest and Nešlehová, 2007).

Remark. If G j, ∀ j, is continuous then K is unique, otherwise it is unique only on
∏p

j Ran(G j), that
is on the product image grid induced by the discrete support. Outside the range there are many K
satisfying (2.20).

The importance of Proposition 2.1.5 is to extend the copula identity to non-continuous rv’s,
such that (2.21) holds for arbitrary rv’s. The following is a convenient property of (2.20).

Proposition 2.1.7. (Copula density factorization). If marginal G j has density g j, it holds

g(xi1, . . . , xip) = k(G1(xi1), . . . ,Gp(xip)) ·
p∏
j

g j(xi j), (2.22)

where g is the joint density and k is the first derivative of copula K.

Proof. Compute dK(G1(xi1), . . . ,Gp(xip))/dxi1 · · · dxip, applying chain rule. See also Kotz and
Seeger (1991) (section 4, page 120). �

Remark. Also see Fang et al. (2002) for copulas admitting (2.22).

In (2.22) g j is defined only iff dG j(xi j)/dxi j, ∀ j, is defined. This raises an issue if G j is non-
continuous. For the relevant role Proposition 2.1.7 later plays, we shall introduce two other contin-
uation statements which might further help generalize identity (2.21). To ease exposition we shall
omit unnecessary detail. Consider a smoothing transformation G̃m of an otherwise arbitrary joint
distribution G, m ∈ N. In other words G̃m consists of a convolution after application of a kernel
(mollifier) on G. We refer to Durante et al. (2012) for more details. It can be shown that both G̃m

and its marginals are continuous, and admit derivatives of any order. Moreover for m → ∞ G̃m

tends to G. Thus, a non-continuous G can be approximated by a continuous version G̃m. Through
identity (2.20), the copula associated with G̃m is also continuous which can be convenient especially
in respect to Proposition 2.1.7. In essence, we are interested in the following aspect from Durante
et al. (2012).
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Proposition 2.1.8. (Copula smoothing). Let G̃m be a continuous approximation of an arbitrary G,
as described above. Then an associated copula identity of the form (2.20) holds.

Proof. See proof to Theorem 4.7 of Durante et al. (2012). �

Remark. We have in mind the following use of Proposition 2.1.8. For some non-continuous G,
apply a smoothing transformation making the associated copula continuous and invariant to the
original one. Then exploit properties of a continuous copula.

Remark 2.1.3. A similar continuation technique is given in a probabilistic setting by Faugeras
(2013), who considers the smoothed random vector Ym = Y + hmT , with Y , T arbitrary and con-
tinuous random vectors respectively, and hm ∈ R tending to zero. Such setting amount to fix an
arbitrary kernel in Durante et al. (2012), hence shall need less assumptions. From Ym Faugeras
(2013) shows the associated copula rapresenter Um → U in distribution, with U non necessary
continuous. In fact, using a specific construction (2.18) with randomizer Vi j ⊥⊥ Vik, ∀ j , k, the
author can resolve indeterminacy issues related to a discrete copula (see Faugeras (2017), section
2.3, page 124, and Faugeras (2015)).

Our main focus is on to generate a random IPD, X, by resampling i.i.d. rows from a common
multivariate distribution with certain marginal and dependence structure – see Tiit (2002); Iman
and Conover (1982); Cuadras (1992); Rüschendorf (1985) for a sparse selection of theoretical and
applied related works. An easy method to sample from an arbitrary joint distribution is to use the
copula inversion identity, Xi· = G−1(Ui·) when the linker is Gaussian. This procedure is also known
as NOrmal To Anything (NORTA) transformation (Li and Hammond, 1975; Cario and Nelson,
1997). Assume a p-variate model Xi· ∼ G, with marginal Xi j ∼ G j, ∀ j, and CorG (Xi·) = Rx ∈ Rx.
Let Zi· be a p-variate standard normal (s.n.) vector, with marginal Zi j, and Cor (Zi·) = Rz ∈ Rz.
Define marginal Xi j = Ψ(Zi j), where Ψ = G−1

j (Φ(·)), and Φ is the cumulative s.n. distribution.
This is similar to inverse probability weighting (i.p.w.), since Φ(Zi j) ∼ U(0, 1).

Definition 2.1.3. (NORTA transformation). If G−1
j is defined, we have that

E(X j, X`) =

∫ ∞

−∞

∫ ∞

−∞

Ψ j(z1)Ψ`(z2)φ(z1, z2|ρ j`)dz1dz2, (2.23)

is proportional to the j`-th off-diagonal entry of Rx, where φ(z1, z2) is the bivariate s.n. density with
correlation ρ j`, the off-diagonal element of Rz, ∀ j , `. Given marginal G j, ∀ j, and matrix Rx, do:

1) map Rx to Rz by solving (2.23) for ρ j`, ∀ j , `. Obtain Rz.

2) draw Zi· ∼ Np(0,Rz), where Np is the p-variate 0 - Rz Normal distribution.

3) obtain Xi· =
(
Ψ1(Zi1), . . . ,Ψ j(Zi j), . . . ,Ψp(Zip)

)
.

Row vector Xi· is drawn ∼ G, with marginal, G j, ∀ j, and correlation Rx. Independently repeat step
2) to 3) for n trials.
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Remark. The NORTA transformation is a quantile inversion technique based on a Normal cop-
ula with parameter Rz. It is a straightforward method to sample from an arbitrary multi-variate
distribution with given marginals and correlation structure.

Remark 2.1.4. If G j, ∀ j, is continuous we have analytic solution ρ j` ≡ 2 sin πr j`/6. If any G j

is discrete, an analytic solution is no longer available and (2.23) must be solved numerically. In
this latter case a solution for ρ j` is unique, because there is only one Gaussian copula taking value
ρ̇ j` at fixed point ṙ j`. That is, we can constrain the Gaussian copula to be unique by fixing the
dependence structure. In this latter case it is not assured Rz is semi-positive definite (Ghosh and
Henderson, 2002, 2003), that seems related to instances of model impossibility raised by Faugeras
(2015) (section 3.3, page 126). We shall further elaborate on this issue in later methodological
sections.

The following is a relevant fact for our exposition.

Proposition 2.1.9. (Jansen, 1997) Let Xi· ∼ G, for some G ∈ G, with continuous invertible
marginal G j, ∀ j, and correlation Rz(x) = Rz. Then, the transformation Ψ

(
Np(0,Rz(x))

)
has maximal

entropy among all p-dimensional distributions with marginal G j, ∀ j, and correlation Rz(x).

Proof. See Jansen (1997), which is basically a consequence of Cover and Thomas (2006) (Theorem
8.6.5, page 254). �

Remark. The importance of Proposition 2.1.9 is to recognize the Gaussian copula is a joint dis-
tribution of maximum entropy among those with same marginals and correlation structure (just
invert the quantile identity). This is relevant because it suggests we could define a joint MaxEnt
distribution with dependence constraint with no need of variational calculus altogether.

To the best of our knowledge, the following is yet not fully acknowledged.

Theorem 2.1.1. (Joint MaxEnt distribution, with dependence constraint). Let u∗i j = P∗j(xi j) the
marginal distribution defined on (2.10) with Q j Uniform, ∀ j. Then,

ΦRz

(
Φ−1(u∗i1), . . . ,Φ−1(u∗ip)

)
= P∗(xi1, . . . , xip), (2.24)

the Gaussian copula ΦRz with dependence parameter Rz is the p-dimensional joint MaxEnt distri-
bution P∗.

Proof. It shall follow from Proposition 2.1.5, 2.1.6, 2.1.9, and Definition 2.1.3. The Rüschendorf
transform applied to P∗ here ensures extension of Proposition 2.1.5 to discrete marginals. By Sklar
identity and Proposition (2.1.9), the Gaussian copula linking MaxEnt marginals must define the
joint distribution of maximum entropy.

�

Corollary 2.1.1.1. (Multi-variate MaxEnt resampling: NORTAmax) Let X∗i j = P∗j
−1

(
Φ(Zi j)

)
and

CorQ (Xi·) = R̄x be given. Apply steps 1) to 3) of Definition 2.1.3, where the map is R̄x 7→ Rz.
Then, X∗i· is drawn from P∗, the p-variate MaxEnt distribution with marginal P∗j and correlation R̄x,
∀ j = 1, . . . , p.
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Proof. Just consider the probabilistic version of (2.21) and the following quantile inversion iden-
tity. �

Remark. Alternatively said, the NORTA transformation of Definition 2.1.3 with MaxEnt marginal
P∗j and correlation R̄x yields a sample X∗i· from the p-variate MaxEnt distribution. We denote this
transformation as NORTAmax.

Remark. See Clemen and Reilly (1999) for more advanced usages of the Gaussian copula ΦRz .

In the next Section we shall assess stochastic properties of (2.24). The goal is to reach a
statement analogous to (2.4) in the joint non-independent case (2.15). If this occurs, it would
suggest a NORTAmax n-draw X∗ should tend to recover most information about an unobserved
IPD x (plus-minus a resampling error) under an empirical condition of form (2.2).

2.1.4 Joint IPD distribution given IPD moments and correlation

We shall be here concerned with stochastic properties of the joint MaxEnt distribution (2.24), hence
of the NORTAmax quantile inverse of Corollary 2.1.1.1. We shall first consider the case of con-
tinuous marginals. Let first identify (2.15) with all pm’s F in set (2.13), that is all p-dimensional
distributions of Xi· with given marginal and dependence features. The main idea is to represent all
such pm’s via their corresponding Gaussian copula.

Theorem 2.1.2. (Limit of (2.15) with continuous marginals). Consider the joint D-projection
P∗ = K(P∗1, . . . , P

∗
p) as in (2.24), with K(·) Gaussian and P∗j as in (2.6), continuous, with density

p∗j , and Q j fixed Uniform. Similarly consider F = K(F1, . . . , Fp), F ∈ C, F j ∈ C j, assumed
continuous with density f j, ∀ j = 1, . . . p. Then we have

D(F||P∗)→ 0. (2.25)

All p-dimensional pm’s F ∈ C (with given marginal and dependence features) converge to the joint
p-dimensional MaxEnt distribution (2.24) in information.

Proof. By continuity of all marginals, F and P∗ are uniquely identified by the respective Gaus-
sian copula K. We further consider first order derivable marginal distributions. Then by Proposi-
tion 2.1.7 we have

D(F||P∗) = D(Φ||Φ∗) +

p∑
j

D(F j||P∗j), (i)

where Φ = K(F1, . . . , Fp) and Φ∗ = K(P∗1, . . . , P
∗
p). The right summand in (i) goes to zero by

Proposition 2.1.3, ∀ j. The Gaussian copula K has maximum entropy by Proposition 2.1.9, and,
since F j → P∗j , ∀ j, we have Φ→ Φ∗, thus D(Φ||Φ∗)→ 0, which makes (i) equal zero. �

Remark. Let X be i.i.d. according to unknown joint pm Q. An approximation of the latter is given
by P∗ via copula (2.24) under condition Fn ∈ C.
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Corollary 2.1.2.1. (limit to NORTAmax sample). We have X → X∗, where X∗ is a NORTAmax
n-draw according to Corollary 2.1.1.1.

Proof. Again, this follows by the copula quantile inversion identity. �

Remark. The message of Corollary 2.1.2.1 is quite strong. A data matrix X with a certain descrip-
tion (2.13) converges to a NORTAmax draw in information.

Remark 2.1.5. (Joint IPD reconstruction). The usage of Theorem 2.1.2 is the following. We can
recover most of unobserved IPD information, x, (plus-minus a white error) via NORTAmax re-
sampling, using the observed IPD marginal moments and correlation matrix only. That is, we can
reconstruct the IPD by resampling from the limit IPD joint distribution under the above summary
constraint. Similar considerations to Remark 2.1.2, page 13, are here holds as well. Convergence
is proved when all marginals are continuous but there are strong hints this should hold generally
for any marginal.

Remark 2.1.6. (Extension to mixed discrete-continuous marginals). Since there are issues with
discrete copulas (Section 2.1.4), a natural question is if Theorem 2.1.2 holds when some marginals
are not continuous. This question maybe requires a careful and extensive answer that cannot be the
scope here. However, using Proposition 2.1.8 a possible solution could be based on approximating
a discrete copula with a smoothed version.

Conjecture 2.1.1. (Extension of Theorem 2.1.2 to non-continuous marginals). Relation (2.25)
holds if not all marginals are continuous.

Following from Proposition 2.1.8, this Conjecture could be formally proved by application of
a smoothing transformation upon arbitrary F and P∗.

Remark. For the time being we shall adopt Conjecture 2.1.1 as a statement of reasonably approxi-
mate validity. Empirical validation of this statement follows in later Sections.

MacKenzie (1994); Dempster et al. (2007); Zhao and Lin (2011); Chu (2011); Piantadosi et al.
(2012); Bedford and Wilson (2014); Butucea et al. (2018) variably study maximization of copulas
via classic constrained optimization, seemingly not considering the role of the Gaussian copula as
we do here. Manomaiphiboon et al. (2008); Singer (2010) focus on non copula based joint density
estimation. While not explicitly considering IPD reconstruction, Ponomareva et al. (2015) and
Miller and Liu (2002) focus on data simulation but respectively use a sort of deterministic method
and an information theoretic approach different than ours. None of the mentioned authors seem to
focus on limiting properties of the MaxEnt distribution, and some of them use factorization (2.22)
for other purposes. Singh and Zhang (2018) seem one of the few to recognize a link between
MaxEnt copulas and a concentration phenomenon, but do not consider this aspect thoroughly, and
not in respect to the conditioning limit principle. Thus, Theorem 2.1.2 seems one of the first to
acknowledge the possibility to prove a Conditional Limit Theorem in the multivariate dependent
case, by using copulas and property (2.22) which is of independent interest here.

In this Section we tried to give a probabilistic and information theoretic justification for usage
of a MaxEnt based resampler to retrieve an unobserved IPD, given a summary description of it is
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available. In the next Section we see how the MaxEnt representation of an unobserved IPD can be
used to retrieve statistical inferences from that IPD.

2.1.5 Connections to the bootstrap

NORTAmax resampling is akin to permuting with repetition from the MaxEnt distribution (2.24).
Hence, MaxEnt quantile inversion of Corollary 2.1.1.1 can be seen as the basis for a bootstrap
procedure. Here we build a bootstrap estimator for the distribution of an unavailable IPD inference
based on P∗ as defined in (2.24), given IPD empirical signature (2.2) as only input data, and we try
to assess its consistency. First, we briefly review some key bootstrap ideas.

Consider the sampling distribution of a functional M on the random n-series X, i.i.d. according
to a fixed unknown Q,

In = Pr (M (X) ≤ t|Q) , (2.26)

that can be otherwise seen as the distribution of a random quantity Mn(X,Q). Distribution (2.26)
is unknown because Q is not known. A typical way to approximate (2.26) is by asymptotic theory.
For instance, In might be approximated using the Central Limit Theorem for a certain choice of
M . A more general approach is to estimate (2.26) with

I∗n = Pr∗
(
M (X∗) ≤ t|Qn

)
, (2.27)

that is the ordinary, or classic, bootstrap estimator of In, where Qn is the e.d. estimate of Q and
X∗ is a resample from Qn. Estimate (2.27) is based on the principle of substitution, where Qn is
the plug-in substitute of Q. The idea behind (2.27) is that the generating triplet (Q, X,M (X)) is
well mimicked by the (observable) substitute (Qn, X∗,M (X∗)). In fact, any sensible substitute of
Q builds a bootstrap estimator for (2.26), but deserves attribute ’ordinary’ only when the plug-
in substitute is Qn. To compute (2.27) would require generating all possible nn resamples, with
replacement, from Qn and then count the relative frequencies of transform M (X∗). For n large this
program is replaced by the Monte Carlo (MC) approximation

I∗B =
1
B
1

{
M (X∗1, . . . , X

∗
B) ≤ t|Qn

}
, (2.28)

for some B and indicator function 1. Hence, (2.28) is subject to two estimation errors, the first
is due to the choice of a plug-in substitute for Q, and the second is a MC error. The latter is
typically negligible since is controllable for B → ∞. Thus, the major source of error in (2.28) is
due to approximation of Q. The better we approximate Q, the closer a bootstrap estimate should
be to (2.26). As customary we study bootstrap probabilities using form (2.27), not (2.28).

Performance of a bootstrap estimator is generally measured by the distance, δ(I∗n,In), between
In and I∗n, for some metric δ. A bootstrap estimator is said to be respectively strongly or weakly
consistent, if δ → 0 respectively almost surely or in probability. These ways of convergence have
been extensively studied and proved for (2.27) – for a compendium see Shao and Tu (1995), chapter
3, or DasGupta (2008), chapter 29.
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We now want to consider the bootstrap estimator

I∗n = Pr∗
(
M (X∗) ≤ t|P∗

)
, (2.29)

where P∗ is the Gaussian copula (2.24) and X∗ is a NORTAmax n-draw upon inversion of P∗. We
shall naturally denote (2.29) as the MaxEnt bootstrap estimator. In some sense (2.29) looks as a
parametric estimator, since the data model P∗ is defined by the exponential model (2.10). On the
other side P∗ is not arbitrary and Theorem 2.1.1–2.1.2 suggest it as a reasonable substitute for Q,
given empirical IPD summaries as only input data.

An extensive assessment of the consistency of (2.29) is out of scope here. We should focus
on bootstrap consistency for the mean to get a clue of the performance of (2.29) in simple cases.
Suppose X1·, . . . , Xn·

i.i.d.
∼ Q and E(X2

1·) < ∞. Let Mn(X,Q) =
√

n(X̄ − µ) define distribution (2.26),
and let Mn(X∗, P∗) =

√
n(X̄∗i − X̄∗) define MaxEnt bootstrap I∗n given in (2.29). Since IPD is

unavailable we use bootstrap average X̄∗ as an estimator for µ.
Consistency in uniform metric intuitively equals showing both the bootstrap estimator and its

estimand statistic converge to the same distribution. For the standardized sample mean this a stan-
dard Normal distribution, but we can work with the centered sample mean as just introduced.

Proposition 2.1.10. (Strong consistency of (2.29) in L∞ – Kolmogorov – metric).

L∞(I∗n,In)
a.s.
→ 0.

Proof. Consider the last summand of the Kolmogorov distance given in DasGupta (2008), page
465. Adapting notation, we shall replace the term EQn |X

∗
1 − X̄|3 with EP∗ |X∗1 − X̄∗|3, where X̄∗ =∑n

i X∗i , under P∗, since the original average, X̄, is not available under our setting. We only need
to show that X̄∗ ≈ X̄, which indeed is, since by definition we have EP∗(X∗1) = X̄. Hence the proof
proceeds as for the ordinary bootstrap. �

A popular alternative is considering consistency in L2 metric. This requires some considera-
tions on the plug-in estimator that can be more difficult under our setting.

Conjecture 2.1.2. (Approximate consistency of (2.29) in L2 – Mallow-Wasserstein – metric).

L2(I∗n,In) ≈ 0.

A proof of the above could be based on the following. By Theorem2.1.2, the MaxEnt cop-
ula (2.24) is the limit of the distribution of X1· under condition C. That is, sample X1·, . . . , Xn·

given C has quasi-independent elements with common distribution P∗. Considering condition C is
negligible on the limit, we have sample frequencies P∗ ≈ Qn in some sense, where Qn is the e.d.
estimate of Q. From that point a proof would proceed as for the ordinary bootstrap.

Remark. One needs a quantification of the approximation P∗ ≈ Qn to make the argument rigorous.
This effort cannot be the scope here. Conjecture 2.1.2 stands on ground of a reasonable similarity
between P∗ and Qn.
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Remark. Bootstrap consistency generally implies consistency of the bootstrap CI at a pre-specified
level (van der Vaart (2007), Lemma 23.3, page 329). If the bootstrap percentile is not studentized,
symmetry of the bootstrap estimator is typically required.

Proposition 2.1.10 does not imply consistency of the bootstrap variance, which we shall de-
duce from Conjecture 2.1.2, if true. Hints on how to assess variance consistency in the former
case might be found in Shao and Tu (1995), section 3.3.3, page 86, following the same mimick-
ing approach used above. It is known the ordinary bootstrap (2.27) tends to underestimate the
variance of Mn(X,Q). Intuitively, this occurs because all available permutations with repetition
are constrained by the given observed data. In some respect, the MaxEnt bootstrap (2.29) should
shrink the variance even further, because each resampled data-set must obey the same constraint
on marginal moments and correlation matrix, which does not need to occur in (2.27).

The Delta method in conjunction with consistency of moment statistics is typically used to
prove ordinary bootstrap consistency of other moment-based statistics, like the sample correlation.
Functional versions of the above are exploited similarly. It is commonly accepted that, as a rule of
thumb, consistency of a generic statistic should hold if the latter accepts a Central Limit Theorem.
In our setting we have the additional difficulty that the original IPD inference is not available,
and even arguing for the above rule seems difficult. Relevant for us is to show that our bootstrap
average is generally close enough to the original IPD inference, in order for the former to substitute
the latter. This also serves the more practical reconstruction purpose but it seems not trivial.

Remark 2.1.7. (IPD inference reconstruction). We see NORTAmax resampling as a form of boot-
strapping procedure, by which we can reconstruct an unavailable IPD inference from the recon-
structed unavailable IPD. We stress, again, the whole procedure takes simple IPD summaries as
input data only. Proposition 2.1.10 and Conjecture 2.1.2 provide hints of MaxEnt bootstrap con-
sistency in simple cases. Consistency might hold practically in more general situations, but this
needs experimental verification. The use of (2.29) is that to estimate the distribution of an IPD
inference from a generated ensemble of IPDs. In particular some central distributional measures
seem important to recover an original IPD inference when the latter is not available. Imagine (2.29)
is reconstructing the distribution of some unavailable IPD estimate of a Cox regression parameter.
The role of the bootstrap distribution average is to predict the original IPD estimate. We shall
further elaborate on this aspect below.

One of our main goals is to recover some original IPD inference value using the generated
MaxEnt bootstrap distribution (2.29). Computation of the bootstrap average in a spirit similar
to Breiman (1996) seems relevant.

Conjecture 2.1.3. (MaxEnt bootstrap average) Consider a specific IPD inference M (x) with IPD
signature Cn(x) = C̄x, and the MaxEnt bootstrap (2.29). We have

E(M (X∗1·, . . . , X
∗
n·)|P

∗)
n→∞
≈ M (x), (2.30)

the MaxEnt bootstrap average is roughly equal to the IPD inference.
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Proof. (Sketch). Under condition C, defined by a constraint of type (2.2), X∗1·, . . . , X
∗
n· are quasi-

independent with common limit distribution P∗. Let x be a realized value of X∗i·. By exchangeabil-
ity, E(M (X∗)|P∗) ≈ M (x) as n grows, since any X∗i· accumulates toward a common MaxEnt set,
and x is a value from such set. Conversely one can see that x given Cn(x) = C̄x tends to be a real-
ized value from the MaxEnt accumulation set by means of Proposition 2.1.3, or more intuitively,
but under more restricting setting, by Proposition 2.1.4. �

Remark 2.1.8. Using information theoretic arguments, X∗ ∼ P∗ tends to be a configuration almost
indistinguishable from x under constraint Cn(x). On the long run this amounts to (2.30). An
exception to this argument could be when x is on the boundary of the MaxEnt accumulation set.
For instance, an original IPD displays an unusual relative risk between a treatment and control
group variable disproportionally larger in favor of the former. Then an average Hazard Ratio of
the form (2.30) would represent a more stable, predictive, value relative to the ill-behaving original
IPD estimate.

In practice, one uses the bootstrap approximation (2.28) and all arguments made so far apply
to such estimate, since the MC error is controllable. In virtue of the constrained nature of (2.29)
we might guess that a choice for B does not need to be large here. Intuitively this is because
one resampled data-set cannot differ by much from the next one under (2.29), although any two
realizations are “independent”. In the next Section we give practical instructions to reconstruct IPD
and IPD inferences.

2.1.6 IPD inference reconstruction: the MaxEnt bootstrap

In the following let refer to empirical matrix (2.1) as the observed IPD x with compressed signature
Cn(x) = C̄x as in (2.2). Hereinafter it helps to think at the IPD x as not (always) available. We
assume only its signature C̄x is available. In the following we use θ to denote a point or point-wise
inference. A full MaxEnt bootstrap procedure would practically work as follows. As a first step
we bootstrap the data, with the premise that the marginal MaxEnt distribution family P∗j(λ j) is
identified via constrained entropy maximization. Identification is always possible and the unique
KL-solution has form (2.10), page 12, ∀ j = 1, . . . , p.

Algorithm 2.1.1. (Bootstrap the data, or IPD reconstruction – NORTAmax)

1) Solve EP∗j(λ j)X
k
j = m̄k

j, for unknown vector λ j, and fix P∗j , ∀ j.

By Proposition 2.1.3 P∗j , is the limit distribution of a marginal IPD given m̄k
j.

2) Invert copula rapresenter (2.24) to get IPD simulation X∗b, ∀b = 1, . . . , B.

By Theorem 2.1.1, (2.24) is the joint MaxEnt distribution P∗ with marginal P∗j , and
correlation R.

By Theorem 2.1.2 and Conjecture 2.1.1 X∗b is a n-draw from the limit IPD p-distribution
given constraint C̄x.
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As a second step we bootstrap the IPD statistic by transformation of the bootstrapped IPD.

Algorithm 2.1.2. (Bootstrap the inference, or IPD inference reconstruction)

1) Transform the NORTAmax sample to obtain a statistic M (X∗b) = θ∗b, ∀b = 1, . . . , B.

θ∗1, . . . , θ
∗
B is a MaxEnt bootstrap MC sample from (2.29) for statistic θ.

2) Compute a distributional index on MC sample θ∗1, . . . , θ
∗
B.

Proposition 2.1.10 and Conjecture 2.1.2 suggest 95% θ∗-CIs should be roughly compa-
rable to those of a classic IPD bootstrap (2.27).

By Conjecture 2.1.3 θ̄∗ ≈ M (x) where θ̄∗ = 1
B
∑B

b θ
∗
b and M (x) is the (unavailable)

IPD inference value.

For the time being let conveniently refer to the MaxEnt bootstrap procedure of Algorithm 2.1.1
and 2.1.2 as the MaxEntBoot . Similarly to classic bootstrap MaxEntBoot is also collectively
defined by two steps: first sample the data, second obtain samples of a statistic computed on the
sampled data. A few differences, though, are in order.

• MaxEntBoot does not permute the original IPD.

• Instead each permutation is a draw from the limit conditional IPD distribution.

Based on MaxEnt convergence arguments the method should be relatively stable if n ≥ 100. Per-
muting via the limit IPD distribution we expect MaxEntBoot to display less variation relative to
classic bootstrap. Then 100 ≤ B ≤ 300 could suffice, but this argument is informal.

2.1.7 MaxEnt bootstrap: possible applications

Now I cast the MaxEntBoot algorithm in light of the statistical practice. Figure 2.1, page 28, shows
the general MaxEntBoot rationale.

Full IPD recovery and IPD analysis (re)production

The basic application of Algorithms 2.1.1 and 2.1.2 is when original IPD access is not possible
but IPD summary disclosure is allowed. IPD summaries can be shared – for instance through a
journal-report or its supplementary material – while protecting privacy. Here we purposely underlie
the connection between evidence reproduction and SDC. The procedure of Figure 2.1 enables a
summary data holder to recover full IPD information with good utility. Statistical results can be
replicated and validated, new models and hypotheses can be formulated.
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Meta-analysis, research synthesis, distributed computing

To generalize the scheme of Figure 2.1 from a single IPD to several ones is trivial, provided the
IPD sources are mutually independent. This is the typical case when we consider unrelated study-
reports or study-centers. Then application of Algorithms 2.1.1 for each study source seems po-
tentially relevant for meta-analysis, research synthesis, and analysis across a distributed network.
Here random or source-specific effects can be easily modeled after tagging the reconstructed IPD
by source provenance. The data is then pooled and analyzed in one block. This procedure implic-
itly requires that each source has information on the same set of variables. But this requirement is
hardly met if the study-sources do not follow a common protocol, that is typical if the study pur-
poses are unrelated. In this case one collects only IPD information commonly shared across sources
or try to impute missing variables under certain assumptions, and maybe borrowing strength from
the available variables.

Missing data imputation

Imagine IPD is available, but it has Missing At Random (MAR) records. Denote with n0 the
original records size of the data. and with n << n0 the actual records size after standard deletion of
the missing units. To fill in missing data we apply Algorithms 2.1.1 substituting n with n0. Then,
missing values are directly imputed by the limit joint IPD distribution with given marginals and
correlation structure.

2.1.8 Experimental goals

Via implement of Algorithm 2.1.1 and 2.1.2, page 24, our main practical goals are to

A. reproduce IPD from its marginal moments and correlation matrix,

B. reproduce IPD inferences from the reproduced IPD.

We want to assess how good our reproductions are relative to the original IPD information. That
is, we assess the utility of our IPD reconstructions similar in spirit to Joshua et al. (2018).
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SUMMARY. We argue for a method of IPD and IPD inference recovery, when only IPD marginal
moments and correlation matrix is available (IPD summary constraints). Theorem 2.1.1 defines
a method of IPD reconstruction (NORTAmax), which uses the joint MaxEnt distribution as key
resampling mechanism. The latter is based on a Gaussian copula representation (2.24) that directly
draws from the limit joint IPD distribution with given IPD summary constraints (Theorem 2.1.2
and Conjecture 2.1.1). NORTAmax resampling operates akin to bootstrapping the IPD. We intro-
duce a MaxEnt bootstrap estimator (2.29) and give hints of its consistency (Proposition 2.1.10 and
Conjecture 2.1.2). The average MaxEnt bootstrap works as an expected IPD inference value and it
is close to the original IPD inference under certain conditions (Conjecture 2.1.3). Algorithm 2.1.1
and 2.1.2 implement these formal arguments and conjectures into instructions for IPD and IPD
inference reconstruction. We give an immediate practical example of this procedure and briefly
consider some of its possible applications.
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Figure 2.1: MaxEntBoot (general situation): on the left someone has the original raw IPD and
discloses only some IPD summaries, like marginal moments and a correlation matrix. On the right
someone has only access to the IPD summaries. At step i) the raw data is simulated (’*’) into a b-th
copy b = 1, . . . , B. At step ii) a statistical analysis performable on the original IPD is performed
on each IPD simulation to get a corresponding IPD inference simulation. At step iii) some sort
of synthesis is taken on the IPD inference simulations, say an average. Bottom: the average IPD
inference simulation is well comparable to the original IPD inference.
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2.1.9 Example: IPD and IPD inference recovery from IPD summaries only.

To get a better understanding of the arguments so far introduced, we now give a practical example.
We further elaborate on this example in Section 3.3 (page 59). Following Figure 2.1, page 28,
a so called raw data holder has full access to some otherwise undisclosed IPD. An excerpt of the
undisclosed IPD is showed in Table 2.1. This IPD is a selection of 4 variables from data diabetes,
that records time to retinopathy in either eye of a diabetic patient. For each patient, treatment is
randomly assigned to only one eye while the other eye is kept as control. Under such design we
make the approximation that each patient eyes is an independent observation. The study cohort is
composed of 197 patients and thus the data has 394 records.

Table 2.1: First and last six records of original IPD diab.2, a subset of four variables (time and sta-
tus outcomes with two binary/continuous covariates) of data diabetes (see Section 2.4, page 44).
This information is ideally not disclosed.

True IPD

Record Nr. Time Status Treatment Age

1 46.250 0 1 28
2 46.276 0 0 28
3 42.507 0 1 12
4 31.341 1 0 12
5 42.301 0 1 9
6 42.274 0 0 9

389 50.010 0 1 33
390 2.911 1 0 33
391 45.957 0 1 3
392 1.488 1 0 3
393 41.973 0 1 32
394 41.986 0 0 32

Ideally the raw data holder discloses only a reduced version of the IPD of Table 2.1, in the
form of IPD marginal moments (Table 2.2) and correlation matrix (Table 2.3). Through this com-
pression phase all original 1576 IPD points are shrunk to only 22 points which makes the original
information anonymous. We call someone having access to the summaries of Table 2.2 and 2.3
the summary data holder. The disclosed summaries convey some coarse distributional informa-
tion on the observed joint IPD distribution. From Table 2.2 we see time to retinopathy is slightly
shifted to higher values (negatively skewed, see 3rd moment) with a rather flat-shaped distribution
(platykurtic, see 4th moment), while the condition is observed in about 40% of the cases. Treatment
assignment is balanced while patients age is shifted to lower values (positively skewed, see 3rd mo-
ment) with a rather normal kurtosis. From Table 2.3 we see the condition is developed relatively
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earlier in time (moderately strong negative correlation between status and time), whereas treated
eyes seem to be less prone to develop the condition (moderate negative correlation beetween status
and treatment).

Table 2.2: Known IPD constraints: Marginal empirical moments of the original data diab.2. This
information is ideally disclosed.

Given IPD Moments

Moment’s degree Time Status Treatment Age

1st 35.610 0.393 0.500 20.782
2nd 21.357 0.489 0.501 14.812
3rd -0.113 0.436 0.000 0.808
4th 1.749 1.190 1.000 2.538

Table 2.3: Known IPD constraints: Empirical correlation lower triangular of original data diab.2.
This information is ideally disclosed.

Given IPD Correlation

Time Status Treat. Age
Time
Status -0.638
Treat. 0.154 -0.244
Age -0.002 0.036 0.000

The starting step for IPD recovery is access to summaries of Table 2.2 and 2.3. These sum-
maries play the role of initial empirical constraints on the definition of a joint probability distribu-
tion for the IPD. The method of distribution reconstruction uses the principle of maximum entropy,
that is a generalization of the Laplacian principle of indifference. In a sense, then, we follow a
minimally presumptive path to information recovery.

Corollary 2.1.1.1 establishes an identity between NORTAmax resampling and drawing from
the joint MaxEnt distribution. We use near maximum entropy densities (see Section 2.2.1, page 35,
and Section 3.3.2, page 61 ) to describe the generating marginal law of variable ’Time’ and ’Age’,
constrained on four moments. This yields the approximations of Figure 2.2, page 31, where we
see the MaxEnt principle guides toward a good description of the data marginal distributions (see
Proposition 2.1.4 and 2.1.3). All remnant binary variables (’Status’ and ’Treatment’) are appropri-
ately described by a Bernoulli law with given mean that is the analytic MaxEnt solution here.

From Theorem 2.1.2 it follows that a NORTAmax sample asymptotically looks like a draw
from the joint IPD distribution for given moments and correlations constraints. In order to explore
enough data sample space, Algorithm 2.1.1 draws 1, . . . , B IPD realizations from the joint MaxEnt
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Figure 2.2: Agreement of the diab.2 IPD continuous marginal, ’Time’ and ’Age’ (Table 2.1), to
its respective near maximum entropy density (red line) constrained on four moments

distribution. To say we draw IPD from a distribution can be slightly confusing. The performed
operation is more precisely akin to bootstraping the IPD.

We resample B = 300 IPD realizations with replacement. In our experiments, a simple diag-
nostic to verify if this bootstrap sample does well capture the original IPD features is to compare
the original IPD summaries to the simulated ones. Here, we practically use MaxEnt bootstrap to
estimate the distribution of the IPD first four sample moments and of each pairwise correlation.
We compare the expectation estimate of each distributions to the respective original IPD summary
value as shown in Table 2.4 and 2.5. We see good agreement everywhere that shows NORTAmax
resampling can recover all original IPD distributional features on average (MC mean). This fact
alone seems to support Proposition 2.1.10 and Conjecture 2.1.2. Later we further experimentally
verify these arguments more systematically.

We can try to exploit the B bootstrap realizations not only to gain insights on simple statistics,
like the IPD marginal moments and correlation, but in principle on any IPD inference. Here the
next statistic of interest is the IPD log HR as estimated via a Proportional Hazards Cox model.
The MaxEnt bootstrap tries to mimick the distribution of the log HR and other relevant log HR
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Table 2.4: Moments for each marginal variable of data diab.2 as estimated on true IPD or as an
average (MC mean) across 300 simulated IPDs. The method of IPD simulation is that of Algo-
rithm 2.1.1, page 24, that implements NORTAmax resampling.

Variables Moments

Moment’s degree Estimate Time Status Treatment Age

1st
IPD 35.610 0.393 0.500 20.782

MC mean 35.613 0.393 0.502 20.831

2nd
IPD 21.357 0.489 0.501 14.812

MC mean 21.313 0.489 0.500 14.846

3rd
IPD -0.113 0.436 0.000 0.808

MC mean -0.099 0.439 -0.007 0.807

4th
IPD 1.749 1.190 1.000 2.538

MC mean 1.736 1.203 1.009 2.538

Table 2.5: Lower triangular of diab.2 correlation matrix as estimated on true IPD or as an average
(MC mean) across 300 simulated IPDs. The method of IPD simulation is that of Algorithm 2.1.1,
page 24, that implements NORTAmax resampling.

Variables Correlations

Estimate Time / Status Time / Treat. Time / Age Status / Treat. Status / Age Treat. / Age

IPD -0.638 0.154 -0.002 -0.244 0.036 0.000
MC mean -0.649 0.152 -0.007 -0.242 0.029 -0.000

functions like the log HR variance. In Table 2.6 we compare the expectation estimate of these log
HR functions against their original IPD value.

The MaxEnt bootstrap average (MC mean) for the log HR of ’Treatment’ and ’Age’ well re-
covers the original IPD value. Here variable ’Treatment’ is highly protective aginst the onset of
retinopathy while ’Age’ seems to play no role. Taking the square of the MC log HR standard de-
viation (MC sd) approximately recovers the original IPD log HR variance, indicating the the log
HR MaxEnt bootstrap estimate might be approximately normally distributed. The IPD log HR
variance is also accurately recovered on average indicating good preservation of likelihood infor-
mation on the long run. Other recovered point estimates are the normally approximated 95% CIs,
the log-likelihood maximum, and the AIC, all showing a good correspondence with the original
IPD value. Here this seems to generally confirm Conjecture 2.1.3. In Table 2.7 we compare the
2.5th and 97.5th quantile of the log HR MaxEnt bootstrap estimate against different types of orid-
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Table 2.6: Proportional Hazards Cox regression for the MLE of the log HR of ’Treatment’ (β1) and
’Age’ (β2), as estimated on the true diab.2 IPD or as an average (MC mean) across 300 simulated
MLEs. The method of MLE simulation from the simulated IPDs is that of Algorithm 2.1.2, page 25,
based on NORTAmax resampling. HR: Hazard Ratio; Info. proxy: inverse of Fisher Information

diagonal. Lower/Upper CI: β̂ ± 1.964
√

Var(β̂); Log Lik.: `(β̂). MC sd: standard deviation across
all simulated MLEs

Point Estimate

log HR Info. proxy Lower CI Upper CI

Estimate β̂1 β̂2 Var(β̂1) Var(β̂2) Log Lik. AIC

IPD -0.782 0.004 0.029 0.00003 -1.113 -0.007 -0.451 0.015 -856.5 1717.0
MC mean -0.768 0.003 0.029 0.00003 -1.100 -0.008 -0.435 0.013 -857.7 1719.4

MC sd 0.174 0.006 0.002 0.00000 0.182 0.006 0.166 0.005 50.3 100.6

inary bootstrap 95% CIs. The latter are computed on a 10000 repetitions of the original IPD. We
see a tolerable agreement everywhere. To sum up we show NORTAmax resampling can recover
IPD and IPD inferential information from disclosed key IPD summaries only. One key question is
how complete the IPD summary information must be in order to yield good recovery performance,
which we investgate in later sections.



34 CHAPTER 2. THEORY AND METHODS

Table 2.7: Empirical quantiles for the log HR of Table 2.6. MC denotes the HRs generated from
the 300 simulated IPDs. The method of HR simulation from the simulated IPDs is that of Algo-
rithm 2.1.2, page 25, based on NORTAmax resampling. Results compare the empirical quantiles
of the MaxEnt bootstrap of size 300 against several types of non-parametric bootstrap CIs, as com-
puted each on a 10000 sample of the original IPD. B: bootstrap sample size.

Empirical Quantile

2.5th 97.5th
Estimate B Bootstrap β̂1 β̂2 β̂1 β̂2

MC 300 MaxEnt -1.121 -0.008 -0.454 0.013

IPD 10000

normal -1.115 -0.007 -0.433 0.015
basic -1.107 -0.007 -0.427 0.015

percent -1.138 -0.007 -0.457 0.015
Bca -1.123 -0.007 -0.443 0.015
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2.2 Methods: IPD reconstruction

We give here methodological implementation of point A of Section 2.1.8, page 26, that is IPD re-
construction. We focus on implementation of Algorithm 2.1.1, page 24, while introducing different
IPD reconstruction scenarios, based on the amount and completeness of the given IPD summaries.
On page 39 I summary all relevant notions of this section.

Marginal binary information is always assumed fully recoverable (first moment is always
given). Marginal continuous information can vary in amount by varying the empirical moment
degree. Correlation information can vary in completeness. Two opposite scenarios are:

near-optimal: moments up to fourth degree and complete correlation.

sub-optimal: moments up to second degree and incomplete correlation.

While complete correlation knowledge allows an implementation of Algorithm 2.1.1 (NORTA-
max), incomplete correlation knowledge forces us to devise an alternative reconstruction proce-
dure. We derive some additional intermediate scenarios by combinations of the two above.

2.2.1 Near-optimal implementation of NORTAmax scheme

I give implementation details about NORTAmax resampling (Definition 2.1.3, page 17), especially
about point 3) of Algorithm 2.1.1. Here the main challenge is to draw from each marginal MaxEnt
distribution, ∼ P∗j , j = 1, . . . , p, and to convert the empirical matrix into s.n. space.

NORTAmax: surrogates for MaxEnt marginals

In order to draw from the MaxEnt marginal distribution one has to first solve the general expres-
sion (2.10), page 12, for all IPD marginals involved. For k < 2 moment constraints (Tagliani (1993)
claims for k < 3) the solution is analytic and otherwise must be numerical. In the latter case a solu-
tion for (2.10) should be guaranteed and at most be ε-achievable (Cover and Thomas (2006), page
415) with error margin ε & 0. A number of optimization schemes are proposed in Basu and Tem-
pleman (1984); Zellner and Highfield (1988); Ormoneit and White (1999); Rockinger and Jondeau
(2002); Wu (2003); Holly et al. (2011).

Interestingly, by the phenomenon of empirical entropy accumulation (Proposition 2.1.4) us-
age of (2.10) does not have to be mandatory in practice. We resort to an alternative moment-
based sampler, the Johnson distribution (Johnson, 1949), for practical generation of real-valued
IPD marginals. The Johnson distribution is defined as a transformation from a standard Normal
variate (see Appendix A.1.1, page 79) to a variable with the wished moment features. Since the
standard Normal variate is the MaxEnt distribution in the real line, the Jonson transform should in-
tuitively retain relatively high entropy. Denote the Johnson distribution with ∼ J(α1, α2, α3, α4, α5),
where the first four parameters must be solved for given empirical moments constraints up to de-
gree four (Hill et al., 1976; Hill, 1976), and α5 specify the variable domain (log, unbounded, or
bounded). Both Johnson density and the general MaxEnt solution (2.10) share an exponential
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form related to a certain type of Pearson family distributions. Members of such family practically
show very similar behaviours (Johnson, 1949; Siddall and Diab, 1975; Zellner and Highfield, 1988;
Rockinger and Jondeau, 2002) that agrees with Proposition 2.1.4. See also Zografos (1999) for a
more focused work on Pearson distributions entropy.

Under compliance to a common set of moment constraints, and for n large, a sample from the
Johnson distribution should hardly be distinguishable from one from (2.10). Hence,

Stipulation 2.2.1. (Marginal MaxEnt distribution surrogate) By Proposition 2.1.4, page 14, we
hereinafter use ∼ J j as near surrogate for the MaxEnt distribution, ∼ P∗j , for all j = 1, . . . , p0
continuous marginal variables, with p0 ≤ p.

We stress all remnant non continuous variables (always binary) are drawn∼ B(π j), the Bernoulli
distribution with proportion π j that is the analytic MaxEnt solution here, ∀ = j = 1, . . . , (p − p0).
The entropy of J j shall only be at most near-maximal and often sub-maximal. Then usage of a
Johnson marginal serves to assess the robustness of NORTAmax when some marginals might have
less than maximal entropy.

NORTA: implementation of correlation conversion in s.n. space

The NORTA transformation is based on conversion of the IPD empirical correlation matrix R̄x

into s.n. space. Since the copula is Gaussian we let R̄x be moment-based, which seems to im-
prove numerical stability. We shall adopt this convention hereinafter but with no loss of generality.
Clemen and Reilly (1999) describe one-to-one conversions from common correlation indexes to
the product-moments one.

Xiao (2014) gives analytic correlation conversion in s.n. space when all marginals are John-
son. However since we mostly use mixed binary-continuous variables we must pursue a numerical
solution based on (2.23), page 17, for each entry ρl of the s.n. correlation matrix lower triangular,
l = 1, . . . , p(p−1)

2 . A Newton-Raphson scheme is enough to solve (2.23) as also suggested in Li and
Hammond (1975); Emrich and Piedmonte (1991). In Appendix A.1.2, page 80, we give details
about this procedure.

If the marginal inverses in (2.23) are defined a solution for ρl is unique. However the resulting
s.n. matrix is not guaranteed to be semi positive definite (s.p.d.). In order to guarantee a s.p.d. result
some authors suggest non-linear optimization routines, or semi-definite programming (Ghosh and
Henderson, 2002). We decide to resort to a simpler approach, since non s.p.d. results seem not too
common, and often require only minimal tweaking in order to be corrected. A description of the
steps taken to avoid non s.p.d. results is in Appendix A.1.3, page 83.

Occasionally numerical integration of (2.23) may fail. As a stable alternative we can always
resort to stochastic Monte-Carlo integration which is easy here since (2.23) has form

Eφ

[
Ψ j(zi j),Ψ`(zi`)

]
,

that is the double expectation of the transforms Ψ j and Ψ` relative to the bivariate Normal density
φ. This operation is described in more detail in Appendix A.1.2.
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2.2.2 Sub-optimal and non NORTA resampling schemes

Imagine we have for a continuous marginals only limited empirical moments information. If only
marginal mean and variance are available we use the Gamma distribution Γ j(a j, b j). The latter can
be showed to be the closed-form MaxEnt solution in the positive real line given k = 2. Using
moment estimation we set a j = (m̄ j)2/σ̄2

j and b j = m̄ j/σ̄
2
j where m̄ j and σ̄2

j are the empirical mean
and variance respectively. We can always use the Gamma marginal in the NORTAmax routine.

Furthermore imagine we can recover only few IPD empirical correlation pairs but not all of
them. An incomplete correlation matrix forces us to impute missing correlation entries, or to
implement a procedure different than NORTAmax. We adopt the latter strategy to assess IPD
reconstruction robustness under incomplete IPD dependence information. To this end denote first-
order correlation ς′ that is the first row of the p − 1 off-diagonal elements of correlation matrix R̄x

lower triangular. Let introduce the transformation

Rς′ : X∗·1, . . . , X
∗
· j, . . . , X

∗
·p 7→ X∗−

where Rς′ is a function parametrized in ς′ taking uncorrelated MaxEnt marginals X∗
·1, . . . , X

∗
·p and

returning an incompletely correlated n × p matrix X∗−. Here we can impose at most first-order
correlations, letting other entries freely vary. Hence for growing p the p-variate sample X∗− it is
more incompletely correlated.

We stress the map Rς′ is not a NORTAmax transformation and the generated dependency
structure does not need to give maximal entropy configuration to X∗−. Next introduce the n × 2
matrix (Z)b =

(
X∗`

(0), X∗j
(0)

)
b

of completely uncorrelated elements, that is such that Cor(Z)b ≈ 0
where (X∗`

(0))b is a fixed reference variable, for ` , j fixed, j = 1, . . . , (p − 1), and b = 1, . . . , B .
Accordingly introduce the n×2 matrix (U)b =

(
X∗`

(max), X∗j
(max)

)
b

of maximally correlated elements.
We construct (U)h by sorting both variables in ascending order if sign(r̄x j x`) > 0 and by sorting
them in opposite order otherwise. We denote such extremal correlation as Cor(U)b ≈ R

(b)
j` .

We design a choice for Rς′ resulting in the n × 2 matrix

(X∗−, j`)b =
(
Iαb ◦ Z

)
b +

(
I1−αb ◦ U

)
b j , ` , (2.31)

where ◦ denotes row-wise Schur (element-wise) multiplication, Iαb is a n × 1 vectors of elements
drawn i.i.d. ∼ B(αb), the Bernoulli distribution with parameter αb = 1 − (r̄x j x`/R

(b)
j` ), and I1−αb =

1 − Iαb , ∀b. In (2.31) matrix (X∗
−,` j)b =

(
X∗
−,`, X

∗
−, j

)
b

is the pair of re-ordered marginal columns
such that their correlation is on average roughly equal to r̄x j x` . Next, column X∗

−, j is appropriately
re-merged with the remnant transformed p−1 columns and along with the fixed `-reference, ` , j.
A more detailed description of this procedure is given in Appendix A.2.2, page 86, while derivation
of (2.31) is described in Appendix A.2.1, page 85. We mention that in (2.31) we construct (Z)b via
a brute-force search of zero correlation, ∀b. Hence we may refer to this method as a permutation
search of an incomplete correlation structure.
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2.2.3 IPD reconstruction: all simulation options

We can control the following simulation factors.

• Marginal distribution (continuous variable): Gamma (k = 2 moments) or Johnson (k = 4
moments).

• Type of correlation index: Pearson moment-based or Spearman rank-based.

• Type of correlation matrix: complete (NORTAmax transformation) or incomplete (based on
permutation search (2.31)).

A binary variable is always drawn from a Bernoulli distribution with corresponding first moment
(k = 1).

We will only focus on the following four simulation options:

1. Incomplete correlation matrix, Gamma marginal, rank correlation.

2. Incomplete correlation matrix, Johnson marginal, rank correlation.

3. Complete correlation matrix, Gamma marginal, moment correlation.

4. Complete correlation matrix, Johnson marginal, moment correlation.

Only the last two options define a NORTAmax transformation. In point 1-2 we use rank correlations
for an easier solution of (2.31). Differently in point 3-4 we use moment-based correlations, the
natural choice for the bivariate standard Normal distribution used in (2.23).

2.2.4 Comparison with IPD: bias definition

We want to assess how well the IPD simulation X∗b, for b = 1, . . . , B, overall retrieves information
on the original IPD x. To this end we can check how the simulated IPD summaries compare to the
original IPD constraint on average. We refer to the constraint (2.2), page 10.

Denote with m j = a j/a2
j and m̄∗j = ā∗j/ā

2
j
∗ the normalized original and average first moment

respectively, where āk∗
j is the average marginal moment simulation and ak

j is the original moment,
k = 1, 2, . . .. Denote with r̄∗l the average correlation simulation relative to original IPD correlation,
rl, l = 1, . . . , p(p−1)

2 . We adopt the following convention ∀ j. An IPD sample is a good overall
approximation of the original IPD if all the following criteria are met:

1. ||m̄∗j − m j|| ≤ 0.7,

2. ||(1/m̄∗j) − (1/m j)|| ≤ 0.5,

3. ||ā3
j
∗ − a3

j || ≤ 1,

4. ||ā4
j
∗ − a4

j || ≤ 1,
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5. ||r̄∗l − rl|| ≤ 0.05, and sign(r̄∗l ) = sign(rl), ∀l.

In our experiments we practically use sample standard deviation, skewness, and kurtosis for sec-
ond, third, and fourth moment. Hence point 1 and 2 consider the coefficient of variation and its
reciprocal. As an alternative approach we can also graphically inspect how well the used MaxEnt
marginal density describes the original IPD marginal empirical frequencies.

SUMMARY. In this section we give practical methods to implement IPD reconstruction from its
summaries only. We define four different reconstruction scenarios based on the amount and com-
pleteness of given IPD summaries. Best and worst scenarios are respectively:

moments up to fourth degree and complete correlation knowledge.

moments up to second degree and incomplete correlation knowledge.

In the first point we use a so-called Johnson distribution that we use as surrogate for the Max-
Ent distribution based on four moments. In the second point we use the Gamma distribution with
given mean and variance. While complete correlation knowledge allows NORTA implementation,
incomplete knowledge does not and we propose an alternative permutation-based procedure that
does not guarantee maximum entropy configuration. We define criteria to assess if the IPD recon-
struction well approximates the original IPD.
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2.3 Methods: IPD inference reconstruction

Here we give methodological implementation of point B of Section 2.1.8, page 26, especially on
point 1) and 2) of Algorithm 2.1.2, page 25, that is IPD inference reconstruction from reconstructed
IPD. To avoid confusion we sometimes use a dot cap to distinguish between an IPD inference, or
variable, and its simulation. For the reader who wish to skip the following material we provide a
summary of this Section on page 43.

We should generally denote with X∗b, b = 1, . . . , B, an IPD simulation from Algorithm 2.1.1,
page 24, or Algorithm A.2.1, page 86, as reflecting simulation options Section 2.2.3, page 38.
Where needed we stress the distinction. Here we compute a generic statistic θb = M (X∗b) on each
IPD simulation. The main scope of this section is the overall comparison between IPD inference
simulation M (X∗b), ∀b, and the original IPD value M (x). As explained in Section 2.3.2 and 2.3.3
we can exploit a partial sufficiency property for a specific definition of M .

2.3.1 Inferences considered in our experiments

We now specify the type of IPD statistical inference M (·). We consider the following Maximum
Likelihood Estimate (MLE).

GLM (family): linear regression slope (Gaussian), risk ratio (Poisson), Odds Ratio (OR,
Binomial).

Cox model: Hazard Ratio (HR).

Time adjustment in Poisson regression can occur by introduction of a log-time offset. We also focus
on the MLE variance, which we use as a proxy for the Fisher Information. The MLE variance is the
diagonal of minus the inverse of the Hessian, as simply Fisher Information. See Efron and Hinkley
(1978) for usage of minus the Hessian as a working Fisher Information. Translation from MLE
variance to Fisher Information is one-to-one when the MLE is scalar. Otherwise, we clearly imply
a simplification of the Fisher Information appraisal, by considering only its diagonal.
Remark. Fisher Information or its proxy can inform on the amount of IPD information retained by
the log-likelihood. See Barron (1986); Mukherjee and Ratnaparkhi (1986); DasGupta (2008) for
more connections to entropy.

For what concerns interval estimation of the MLE, a primary focus is on the 2.5th and 97.5th
quantile of the MLE simulation as compared to an ordinary bootstrap for it. For what concerns
Nelson-Aalen or Breslow estimates the primary endpoint remains acquisition of the cumulative
hazard graph, or of key summaries of it, like inter-quartile indexes of each axis.

We also consider Nelson-Aalen or Breslow estimates for the cumulative hazard accompanying
the Cox HR. If there are competing time-events outcomes, the reconstruction focus remains on the
cause-specific cumulative hazard that entirely specify other functionals of interest, like transition
probabilities. For all chosen models except Nelson-Aalen estimation data-reduction properties
enable us to devise different resampling schemes, based on the amount of knowledge about the
log-likelihood numerator.
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2.3.2 Model-induced partial sufficiency

All statistical models introduced in Section 2.3.1 except Nelson-Aalen estimation allow some forms
of data compression in the log-likelihood

`(β|X) = β>s −F (X, β), (2.32)

where s = Z>y is vector-valued reduced data, Z is a n × (p − 1) sub-set of covariates, y is an n × 1
outcome, X = (Z, y) is the full data, and F (X, β) is a normalizing term allowing none or little
reduction. The general agreement is that most of statistical information lies in numerator s which
we denote as a partially sufficient statistic (p.s.s.). We can exploit this reduction phenomenon to use
alternative resampling schemes as shown below. A method that tries to incompletely reconstruct
Nelson-Aalen as well as Cox risk-sets is described in Appendix B.5.1, page 95.

2.3.3 Inference reconstruction: simulation options

We distinguish between a log-likelihood evaluated on the original IPD x or on the IPD simu-
lation X∗b, ∀b. Denote the former and latter as `(β|x) and `∗b = `(β|X∗b). Accordingly denote
outcome/covariate separation as x = (Z, y) and X∗b = (Z∗b, y

∗
b). In our experiments the IPD log-

likelihood `(β|x) does not exploit form (2.32). On the contrary we can exploit property (2.32)
to handle `∗b. Letting M (X∗b) ≡ maxβ `(β|X∗b) we may choose between the following options to
execute step 1) of Algorithm 2.1.2.

1. Ordinary resampling: let s∗b = (Z∗b)>y∗b, ∀b.

2-3. Resampling with stochastic or deterministic adjustment: let s̄∗ =
∑B

b s∗b, or ṡ = Ż>ẏ, ∀b.

By “ordinary” in point 1 we intend the p.s.s. varies from an IPD realization to another. Instead in
points 2-3 we compute an expected p.s.s. estimate or use an original IPD p.s.s., if available, and
fix them constant throughout all B repetitions. In point 2 and 3 the merit of introducing some sort
of resampling adjustment is the following. For n small, or for a sub-optimal data simulation, the
data sample X∗b can be far from an IPD conditional distribution draw, introducing bias. Then we
can try to reduce information loss by using a less noisy likelihood numerator. Under near-optimal
resampling conditions (Section 2.2.1, page 35) we should expect s̄∗ → ṡ and point 2 may differ
little from 3. To which extent such adjustment might improve on point 1 remains to be verified
empirically.

2.3.4 Reconstruction: point estimates

Let β̇ = maxβ `(β|x) be the original IPD MLE inference, and β∗b = maxβ `(β|X∗b) be the simulated
one, b = 1, . . . B according to options of Section 2.3.3. We further consider functions of the MLE
ı(β). The focus is in acquisition of the MLE simulated sample and on basic descriptions of it.
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Here we consider the simulated sample average. If all the conditions satisfying Conjecture 2.1.3,
page 23, are in place we should observe

1
B

B∑
b

ı(β∗b) ≈ ı(β̇). (2.33)

If X∗b is obtained via Algorithm A.2.1 some columns may be missing and appropriate adjust-
ments on the pair (s∗b,Z

∗
b) might be needed (see Appendix A.2.2, page 86). We shall generally ac-

cept occasional instability of maxβ `∗b due to random variability from one IPD simulation to another
one. Especially if variability is non-white noise and X∗b is a sub-optimal simulation, then maxβ `∗b
could yield singular or unrepresentative values for β∗b. In this case as part of a post-processing
of the statistic simulation we could need to discard outlying values for ı(β∗b) (see Appendix B.2,
page 93). Similarly Fisher Information may not be available because the Hessian in not invertible,
and these outputs are discarded. Because `(β|x) is evaluated in a standard fashion we can use stan-
dard routines like glm or coxph when computing the MLE on original IPD x. Instead a specific
implementation of (2.32) is needed (see Appendix B.1.1, and B.1.2, page 89).

2.3.5 Reconstruction: 95% empirical CIs quantiles

We extract the 2.5th and 97.5th quantile (95% empirical CIs) of the MLE simulated sample. This
is similar to Efron percentile method where no statistic studentization and pivoting for quantile
retrieval is used. This is motivated by MLE approximate Normality that yields similar results
for both Efron and studentized quantiles. Next we compare our quantiles to a number of classic
IPD bootstrap CIs (normal, basic, percent, or Bca). By Proposition 2.1.10 and Conjecture 2.1.2
we expect rough resemblance bethween the ordinary and MaxEnt bootstrap quantile, β̇q and β∗q,
q = 0.25, 0.975. To compute ordinary quantiles we use module bootstrap and bootci from R
package boot. We use 10000 and 100 (or 300, see Convention 2.4.1, page 45) resamples for the
ordinary and MaxEnt bootstrap respectively.

2.3.6 Reconstruction: Nelson-Aalen / Breslow type estimates

In order estimate the cumulative hazard we generally employ the Breslow estimator (see for in-
stance equation 4.17, page 141 of Aalen et al. (2008)). See Appendix B.3, page 93 for more
computational details. The Nelson-Aalen estimator is obtained as special case.In the following
we shall refer to both types of estimate as simply the cumulative hazard estimate (c.h.e.). The
appropriate distinctions are made where needed. Denote with Ȧ(t) and A∗b(t) the original IPD and
simulated c.h.e. respectively, for b = 1, . . . , B. We see the generated c.h.e. simulations as ap-
proximating the ensamble of a cumulative hazard process with expectation estimate of the form
Ā∗(t̄∗), where Ā∗ and t̄∗ denote average cumulative event-counts and event-times respectively. For
more computational details see Appendix B.4, page 94. By Conjecture 2.1.3 we expect to see
Ā∗(t̄∗) ≈ Ȧ(t).
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2.3.7 Comparison with IPD estimates: bias definition

To evaluate reconstruction bias we take a simple difference between original and reconstructed
IPD inference. We measure point estimate bias with the difference between the left and right term
of (2.33). Similarly we assess empirical 95% CI bias with the difference beetween the IPD ordinary
bootstrap quantile and our corresponding simulation. We assess c.h.e. reconstruciton bias by the
difference between and IPD and simulated compound summary. In the latter case the summary is
computed directly on the expected c.h.e.. The compound summary includes axis-specific first four
quartiles, the range, and the mean. Here quartiles have a natural time-ordinal interpretation for
each axis, given the cadlag property of the c.h.e..

SUMMARY. In this section we give practical methods to implement IPD inference reconstruction
from reconstructed IPD. We focus on reproduction of MLE from a

linear, Poisson, and Logistic regression model.

proportional, or constant, hazards Cox model.

We focus on 95% empirical CIs of the simulated MLE and compare them to classic IPD bootstrap
CIs. We further focus on reproduction of Nelson-Aalen or Breslow estimates. We propose three
MLE simulation strategies based on how the compressed likelihood numerator is handled:

Random numerator.

Average numerator.

Original IPD numerator.

In order to compare the reconstructed point MLE to its IPD reference we use the average MLE sim-
ulation. Similarly we propose a procedure to recover an average cumulative hazard simulation. We
define bias measures to assess the difference between the original and reconstructed IPD inference.
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2.4 Methods: Data examples

In our experiments for IPD and IPD inference reproduction we use original IPD examples. We also
review all main simulation options.

2.4.1 original IPD examples

We use IPD examples from a number of R packages or from Royston and Sauerbrei (2008) and
from kind concession in one case. A list of 20 data-sets with their respective origin can be found
in Table B.1 (Appendix B.6.1, page 96. The sample sizes from this data list ranges between 23 and
17260 with a median of 415 records.

Below we introduce some re-arrangements we make on the IPD in order to simplify our exper-
iments.

2.4.2 IPD usage and re-arrangement

We define the original IPD format used in our experiments.

Stipulation 2.4.1. (Original IPD format) The IPD (2.1) is a numerical matrix derived from the
transformation D(ẋ) = x where D maps to the standard design matrix. That is, all categorical
variables with category l are converted into (L−1) binary contrasts relative to reference level l = l′,
for l = 1, 2, . . . , L.

We adopt the above stipulation for convenience and without loss of generalization. To see this
consider the Multinomial distribution is the analytic MaxEnt solution for a categorical variable
with L categories, that would replace all L − 1 binary marginals above.

The number of data variables in our original IPDs bank ranges from few to many dozens, but
we want to work with fewer variables for mere convenience. Then in our experiments we use IPD
with mostly two, three, or four variables. For each IPD of Table B.1 we select only a reduced
number of available variables by combinatorial means. This procedure yields several smaller IPDs
from a wider single one.

Batches of different IPD typologies

For each of the 20 IPDs of Table B.1 (page 97) we apply a combinatorial procedure to generate
many smaller sub IPDs with fewer variables. We design four main IPD typologies by number
and type of covariates included. Figure 2.3, page 47 schematizes the characteristics of these data
batches.

I. IPD with three variables (only one binary covariate):

– All combinations of one binary treatment covariate by keeping one time and one time-
event outcome fixed. Application to Cox regression and Nelson-Aalen estimation.
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II. IPD with two variables (only one continuous covariate):

– All combinations of one continuous variable from the available ones. If application is
Gaussian GLM one time covariate is kept fixed while all combinations on one contin-
uous outcome are used. If application is Binomial or Poisson (without offset) GLM a
binary outcome is kept fixed, and all combinations of a contiguous covariate are used.

III. IPD with three variables (one/two continuous covariates):

– All combinations of one continuous covariate from the available ones. The remnant
two variables are kept fixed. If application is Gaussian GLM one time covariate and a
real-valued outcome are kept fixed, while the second covariate varies. If application is
Binomial, Poisson (with offset) GLM, Cox regression, or Breslow estimation, then one
time and one time-event outcome are kept fixed while one covariate varies.

IV. IPD with three or four variables (two/three binary/continuous covariates).

– All combinations of one binary or continuous covariate from those available, by keep-
ing one time, one time-event, and one additional binary/continuous variable fixed, with
applications to all models of the previous point.

Thus IPD type I has only one binary/categorical covariate. IPD type II has only one continuous
covariate, while type III has between one and two continuous covariates, depending if time is used
as an offset or as a time outcome in a Poisson or Cox model respectively. Similarly IPD type IV
has between two and three mixed binary/continuous covariates depending on how time is modeled.
IPD with competing events outcomes are split by competing outcome. Further detail on how data
is handled is found in Appendix B.6.2, page 96.

Analysis automatization on data

We produce a number of routines to automatize simulation of each IPD set. For a program extract
see Appendix D, page 143. For each IPD type and for each simulation option (Section 2.2.3) we
simulate B copies of the original IPD following Algorithm 2.1.1 or its variant Algorithm A.2.1. We
use the following

Convention 2.4.1. (IPD simulation size) If the IPD sample size is less than 500 we set B = 300,
and B = 100 otherwise.

For each simulated IPD the bias relative to the original IPD (Section 2.2.4) is computed. We
derive B inference simulations (see Section 2.3.4, 2.3.5, and 2.3.6) from the respective simulated
IPD following Algorithm 2.1.2, for each model type (Section 2.3.1) and for each simulation option
of Section 2.3.3. For each simulated inference we compute the bias relative to the original IPD
inference (Section 2.3.7).
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2.4.3 Global simulation options

We combine the four data simulation options of Section 2.2.3, page 38, with the three statistic sim-
ulation options of Section 2.3.3, page 41. Figure 2.4, page 48, schematizes the data and inference
simulation options. We obtain the global option combinations of Table 2.8, page 46. We roughly
classify these global options by simulation performance:

Sub-optimal options: (1-1), (1-2), (2-1), (2-2).

Mildly optimal options: (3-1), (1-3), (2-3), (3-2),

Near-optimal options: (3-3), (2-4), (3-4), (1-4).

The number left to ’-’ refers to the IPD statistic simulation option while that right to ’-’ refers to
the IPD simulation option.

Table 2.8: Global reconstruction options for the IPD inference and its underlying IPD. Methods of
IPD reconstruction are broadly divided into Permutation-based that uses only incomplete correla-
tion knowledge, and NORTAmax that uses complete correlation knowledge. Method 1-3 and 1-4
employ ordinary NORTAmax resampling (no likelihood numerator adjustment). See Figure 2.4,
page 48 for further information. Log-lik.: Log-likelihood.

Reconstruction option

Code IPD inference IPD IPD marginal Known moments Correlation Log-lik. nominator

Pe
rm

ut
at

io
n

1-1 1 1 Gamma 2 incomplete random

2-1 2 1 Gamma 2 incomplete average

3-1 3 1 Gamma 2 incomplete original IPD

1-2 1 2 Johnson 4 incomplete random

2-2 2 2 Johnson 4 incomplete average

3-2 3 2 Johnson 4 incomplete original IPD

N
O

R
TA

m
ax

1-3 1 3 Gamma 2 complete random

2-3 2 3 Gamma 2 complete average

3-3 3 3 Gamma 2 complete original IPD

1-4 1 4 Johnson 4 complete random

2-4 2 4 Johnson 4 complete average

3-4 3 4 Johnson 4 complete original IPD
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Batch I Batch IIBatch I Batch III Batch IV

IPD of three variables 
(one binary covariate), 
designed for Cox 
regression and Nelson-
Aalen estimation

IPD of two variables (one 
continuous covariate), 
designed for Gaussian, 
Binomial and Poisson 
GLM.

IPD of three variables 
(one/two continuous 
covariates), designed for 
GLMs, Cox regression, 
and Breslow estimation.

IPD of four variables 
(two/three 
binary/continuous 
covariates), designed for 
GLMs, Cox regression, 
and Breslow estimation.

Figure 2.3: Experiments on IPD and IPD inference reconstruction are performed on IPD of different
typologies, that is batches. The schema gives a brief description of each IPD batch. Each data batch
has two goals. The first is to assess IPD simulation methods for increasing variables number and
complexity. The second is to assess simulations of a specific IPD inference from the simulated IPD
(see Section 2.3, page 40). The method of IPD and IPD inference simulation is be that of Figure 2.1
(page 28).
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Method 1 Method 2 Method 3 Method 4

IPD simulation

- Two moments
- Incomplete correlation

- Four moments
- Incomplete correlation

- Two moments
- Complete correlation

- Four moments
- Complete correlation

Random likelihood 
numerator

Method 1 Method 2 Method 3

IPD Inference simulation

Average likelihood 
numerator

Original IPD  likelihood 
numerator

i)

ii)

Figure 2.4: Schema for the global simulation options. i) The IPD is simulated under four differ-
ent scenarios depending on the amount and completeness of empirical summary IPD information.
All methods use Gamma and Johnson continuous marginals in the two or four moments case re-
spectively, while a binary marginal is Bernoulli distributed with given mean. Method 1 and 2 use
a permutation-based procedure (see Appendix A.2.2, page 86) to re-order the sampled marginals
and induce incomplete correlation structure. Method 3 and 4 use NORTAmax resampling (see
Algorithm 2.1.1, page 24) and recover complete correlation structure. ii) The simulated IPD is
converted into an IPD inference. If the inference is likelihood-based (all models in Section 2.3.1,
page 40 except Nelson-Aalen estimation), then the likelihood numerator can be handled according
to three different strategies. Method 1 let the numerator vary with the corresponding IPD simula-
tion. Method 2 set the numerator to the fixed average value across all IPD simulations. Method
3 set the numerator to a fixed deterministic value, ideally disclosed from the original IPD. For ex-
ample, the likelihood numerator from a Cox model with a single binary covariate is the number of
events in treatment group, which can either randomly vary or be fixed to an expectation estimate
or to its true IPD value. The global simulation is performed according to all possible combinations
between the data and inference simulation option (see Table 2.8, page 46).
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Experimental results

3.1 Similarity between reconstructed and original IPD

We give results on experimental evaluations on point A of Section 2.1.8. That is we empirically as-
sess IPD reconstruction according to methodological implementations of Section 2.2. Of the orig-
inal IPD sources (Table B.1, page 97) about 10% includes hundred records, 31% between hundred
and four-hundred, 35% between four-hundred and thousand, and 24% over thousand records. We
re-organize the original IPD sources into batches of different typology accordingly to Section 2.4.2.
For each data batch the original IPD source is reproduced from its summaries only according to
methods of Section 2.2.3 and 2.4.2. By Convention 2.4.1, page 45, and with an approximate me-
dian of 400 records per IPD we have roughly balanced proportions of IPD simulations with size
B = 300 or B = 100. For each data batch and simulation option we count the number of recon-
structed IPDs satisfying all or some similarity conditions (point 1 to 5, Section 2.2.4) relative to the
total number of reconstructions. A comprehensive summary of this section and related Appendix
material is given on page 52.

Table 3.1 reports the overall percentage of reconstructed IPDs similar to the original IPD refer-
ence. The percentage of similar marginal moments or correlations is also reported.

Generally we see the percentage of reconstructed IPDs that is overall similar to its original
reference increases from method 1 to 4, that is with increasing knowledge and completeness of
IPD moments and correlations information. Typically, the best IPD reconstruction is given when
four marginal moments and a complete correlation matrix are both known. Recovery rates of first
and second moments are always close to 100% regardless of data batch and simulation method.
Recovery rates for higher moments varies with simulation method and data batch.

As expected Johnson-drawn continuous marginals (method 2 and 4) improve third and fourth
moments recovery. This performance decreases with increasing batch order, and batch III and IV
display (overall) lower recovery rates. Correlation recovery rates mostly varies with simulation
method. Generally NORTAmax resampling (method 3 and 4) never displays correlation recovery
rates lower than 79%. As expected incomplete correlations knowledge (method 1 and 2) yields

49
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Table 3.1: Percentage of reconstructed IPDs satisfying overall similarity conditions of Section 2.2.4
(page 38) relative to original IPD reference. Marginal moments and correlations similarity is also
assessed. Batch size is the number of distinct data-sets in each batch (Section 2.4.2, page 44). IPD
simulation in each batch occurs according to method 1 to 4 of Section 2.2.3 (page 38).

Similar (%)

Moments
Data batch Batch size Method Overall 1st and 2nd 3rd and 4th Correlation

I 111

1 0.90 100.00 12.61 25.23
2 26.13 100.00 92.79 27.93
3 12.61 99.10 12.61 89.19
4 88.29 100.00 91.89 94.59

II 241

1 16.60 99.17 16.60 100.00
2 76.76 100.00 76.76 100.00
3 15.77 98.76 16.60 95.02
4 73.44 98.76 78.84 93.36

III 198

1 0.51 99.49 2.02 30.30
2 17.17 99.49 63.64 28.79
3 2.02 99.49 2.02 92.93
4 56.57 97.98 65.66 86.87

IV 195

1 0.00 99.49 7.18 4.10
2 1.54 99.49 48.72 4.10
3 6.15 99.49 7.18 81.54
4 41.54 98.97 51.79 79.49

lower recovery rates especially as the number of data variables increases (batch I, III, and IV). Be-
low we give more details by data batch and we report results by IPD sample size in Appendix C.1.1,
page 99.

Batch I includes 111 IPDs composed of three variables, one time and one time-event outcome,
plus one binary/categorical covariate. Here we generally see that recovery performances are always
very good when either higher moments (method 2 and 4) or a complete correlation matrix (method
3 and 4) or both are known.

Batch II includes 241 IPDs composed of two variables, one binary or continuous outcome,
and one continuous covariate. In particular 106 data-sets have a continuous outcome and 135 a
binary one. This latter sub-batch lends itself for an assessment of Johnson distribution third and
fourth moments recovery ability. Table 3.2 shows the percentage of well recovered third and fourth
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moments on average and for increasing IPD sample size. We see an overall good though not always
perfect reproduction performance. The Johnson distribution incurs into a 15.56% reproduction
error on average, which makes overall higher moments recovery in batch II a bit worst than batch
I. Correlation recovery (here scalar) seems best under Algorithm A.2.1 (method 1 and 2).

Table 3.2: Johnson distribution recovery performance of higher moment features under simulation
method 2 (Section 2.2.3, page 38), for increasing sample size. Johnson distribution performance:
percentage of well recovered third and fourth moments (point 3 and 4 of Section 2.2.4, page 38)
under simulation method 2 (Section 2.2.3, page 38) and for increasing sample size. The assessment
is made on a sub-set of Batch II including IPD with only one continuous variable. Bottom row:
unstratified overall averages.

Similar (%)

Subset batch (size) Sample size 3th Moment 4th Moment

II.(135)

< 100 100.00 80.00

(100,400] 91.11 88.89

(400,1000] 95.00 80.00

> 1000 100.00 86.67

95.56 84.44

Batch III includes all 198 composed of three variables, one time and one binary (or continuous)
outcome, and one continuous covariate. In particular 113 data-sets have a binary outcome and 85
a continuous one. As compared to batch I and II, here the overall recovery rate diminishes due to a
lower third and fourth moment recovery performance. This is due to yet one more Johnson drawn
marginal in the data.

Batch VI includes 195 IPDs composed of three to four variables. That is one time and one bi-
nary (or continuous) outcome, and between two to three continuous/binary covariates. Here over-
all performance is yet lower due to inclusion of more continuous Jonson-drawn marginals. Since
NORTA-based correlation reproduction (method 3 and 4) depends on the continuous marginal (see
Appendix A.1.2, page 80), a lower 3rd/4th moment recovery rate seems to negatively affect corre-
lation recovery, ans seen under method 3 and 4.

Table C.2 and C.3 (pages 101 and 102) show further results on data batch III and IV. In batch IV
a lower reproduction performance under method 4 is explained by worst fourth moment recovery.
However the reproduction error is relatively tolerable in at least half of the reconstructed IPDs,
indicating the overall IPD information recovery could still be relatively good here.
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SUMMARY. We give results on IPD reconstruction from IPD summaries only, under four different
simulation scenarios and IPD typologies (batches). We can always reconstruct IPD and often with
high similarity to the original IPD, on average, based on our similarity criteria. Generally overall
IPD reconstruction is best when higher moment features and a complete correlation matrix are
both known (NORTAmax). Overall reconstruction accuracy diminishes when more continuous
marginals are included (batch III and IV), because the Johnson distribution occasionally fails to
well reproduce fourth moment features. This may also badly affect NORTA correlation recovery
in batch IV. However in batch IV the magnitude of fourth moment simulation imprecision is often
tolerable, indicating that the quality of the recovered IPD information may be practically better
than what portraied by our relatively strict similarity criteria.
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3.2 Similarity between reconstructed and original IPD inference

We give results on experimental evaluations on point B of Section 2.1.8. That is we perform all
inferences of Section 2.3.1 on simulated and original IPDs by batch typology (Section 2.4.2) and
simulation options (Section 2.4.3). The MC sample size reflects Convention 2.4.1. On page 58
we give a summary of this Section and of Appendix C.2 (page 103) where we give more detailed
tabular results. Figure 3.1, page 53 is a graphical guide on how to read Figure 3.2 to 3.4. Results
for each data batch are stratified by similarity of reconstructed IPD to the original reference, and by
simulation method. In the boxplots below we mark purely NORTAmax approaches – no likelihood
numerator adjustment (method 1-3 and 1-4) – with an asterisk.

Figure 3.1: Guide to read Figure 3.2 to Figure 3.4 (pages 55 – 3.4). The figure shows a) bias
distribution, the difference between a reconstructed and original IPD inference for each b) data
batch (see Figure 2.3, page 47). Each panel is stratified by c) similarity (TRUE or FALSE) of the
reconstructed IPD to its original reference and d) the global simulation method. This consist of
a method to simulate the inference and a method to simulate the IPD on which the inference is
computed (see Figure 2.4, page 48 and Section 2.2.4, page 38). For each batch on top of each
boxplot is reported e) the percentage of points exceeding ±0.5. Outliers – points exceeding 1.5
times the inter-quartile-range on both directions – are not plotted for graphical clarity.
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Figure 3.2, page 55, shows boxplots for the bias distribution of the average MLE and r.f.i.d.
simulation, relative to original IPD value. Generally the bias distribution is well centered on zero
regardless of method or data-similarity. We typically see that from panel 1-3 to 3-4 – NORTAmax
methods – the MLE bias is tightly centered on zero. The r.f.i.d. bias is even more tightly centered
on zero. Complete correlation information seems important to reduce bias (methods 1-3 to 3-4).
Knowledge of four (methods 1-4 to 3-4, using Johnson continuous marginals) or two (methods 1-3
to 3-3, using Gamma continuous marginals) moments does not seem to yield very different bias
distributions. We generally see that likelihood numerator adjustment might reduce bias only under
incomplete correlation knowledge (panels FALSE-3-1 and FALSE-3-2). Outliers are not plotted
for graphical clarity and we generally see the percentage of bias values exceeding ±0.5 is lower
when reconstructed IPD is similar to its original reference. In particular methods 1-3 and 1-4 –
ordinary NORTAmax resampling – typically yield lower outliers percentages, hence thinner bias
distribution tails.

Figure 3.3, page 56, shows boxplots for the bias distribution of the 2.5th and 97.5th empirical
quantile of the MLE simulation relative to any of the reference IPD basic, percent, Bca, or normal
bootstrap quantiles. In general the bias distribution is wide and not always centered on zero, except
under NORTAmax sampling (method 1-3 and 1-4) where bias is more tightly centered on zero.
NORTAmax sampling with four (panel TRUE,1-4) or two (panel FALSE,1-3) moments seems to
yield the least bias, if reconstructed IPD is similar and not similar to its reference respectively. In
these two circumstances the bias distribution has also relatively thinner tails (see percentages of
values exceeding ±0.5).

Figure 3.4, page 57, shows boxplots of the bias distribution of an aggregate index of the ex-
pected c.h.e., relative to the original IPD estimate. For each c.h.e. marginal axis, this index includes
the first three quartiles, the mean, and the range values. Generally we see the bias distribution of the
marginal cumulative events-count (y-axis) is very close to zero regardless of method and IPD sim-
ilarity. Nevertheless ordinary NORTAmax resampling with four (panel TRUE,1-4) or two (panel
FALSE,1-3) moments seems to yield the least bias in the case IPD is similar or dissimilar to refer-
ence respectively. The bias distribution of the marginal events-time line (x-axis) is drastically wider
but more contained under the two conditions just mentioned. As a result of the nearly zero y-axis
reconstruction bias, the expected c.h.e better approximates the original IPD graph the smaller the
events-time reproduction error gets (also see Section 3.2). By the optimization scope, the events-
time line reproduction error is bounded by a nearly one-to-one linear correlation between simulated
and original variables (result not shown).
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Figure 3.2: Bias distribution of average point estimate simulation versus IPD reference value,
for different types of data batches (see Section 2.4.2, page 44). Outlying points are excluded for
graphical clarity. The number on top of each boxplot pair is the overall percentage of bias instances
exceeding ±0.5 across estimate types. Results are stratified by the Boolean for data similarity (see
Table 3.1, page 50) and by simulation method (see Section 2.4.3, page 46). Find further information
in Table C.4 (page 107), Table C.7 (page 110), Table C.9 (page 112), Table C.12 (page 115).
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Figure 3.3: Bias distribution of 95% empirical CIs of the MLE simulation versus IPD (basic,
normal, Bca, or percent) bootstrap reference quantiles, for different types of data batches (see
Section 2.4.2, page 44). Outlying points are excluded for graphical clarity. The number on top
of each boxplot pair is the overall percentage of bias instances exceeding ±0.5 across quantiles.
Results are stratified by the boolean for data similarity (see Table 3.1, page 50) and by simulation
method (see Section 2.4.3, page 46). Find further information in Table C.5 (page 108), Table C.8
(page 111), Table C.10 (page 113), Table C.13 (page 116).
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Figure 3.4: Bias distribution of an aggregate index of each marginal axis (cumulative events-count
and log event-times) of the average cumulative hazard simulation versus IPD reference (Nelson-
Aalen in batch I, or Breslow otherwise), in three data batches (see Section 2.4.2, page 44). The
aggregate index is the axis first three quartiles, mean, and range. Outlying points are excluded for
graphical clarity. On top of each boxplot pair: overall percentage of bias instances exceeding ±0.5
across axes. Results are stratified by the Boolean for data similarity (see Table 3.1, page 50) and by
simulation method (see Section 2.4.3, page 46). Find further information in Table C.6 (page 109),
Table C.11 (page 114), Table C.14 (page 117).
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SUMMARY. We give results on IPD inference reconstruction from reconstructed IPD. We employ
twelve simulation options on four different IPD typologies (batches). In particular we introduce the
option to fix a constant (original) IPD log-likelihood numerator versus letting it vary with each sim-
ulation, that is the default. We can reconstruct MLEs from IPD GLM and Cox regressions under
different GLM families and (baseline) hazards assumptions, as well as Nelson-Aalen or Breslow
estimates. We also recover 95% empirical quantiles of the MLE simulation alongside original IPD
bootstrap intervals. We show that under certain circumstances the IPD inference reconstruction
is highly comparable to the original IPD inference. Generally MLE reconstruction is better when
the original IPD complete correlation is known (NORTAmax). Usage of a constant likelihood nu-
merator could be beneficial if no complete IPD correlation is available (see batch I). Recovery of
bootstrap-like 95% intervals is generally best under ordinary NORTAmax resampling (method 1-3
and 1-4). Here any type of likelihood-numerator adjustment is typically detrimental. Reconstruc-
tion of marginal cumulative events-counts of the cumulative hazard graph is generally remarkably
good irrespective of the amount of original IPD correlation or moments knowledge, although NOR-
TAmax resampling typically yields slightly better results. On the other side reconstruction of the
marginal events-time line is generally less accurate, but NORTAmax resampling typically yields
the least reconstruction error. To sum up a good IPD inference reconstruction is generally possi-
ble even if the underlying IPD reconstruction is only approximate (w.r.t. higher degree marginal
moments features), but so far as the original IPD correlation structure is well recovered.
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3.3 Practical Examples: data and statistic reconstruction

We further elaborate on the example of Section 2.1.9, page 29. IPD diab.2 is an example from
data batch IV (see Section 2.4.2, page 44), and is a variables’ sub-selection of data-set diabetes
(see Appendix B.6.1, page 96). Table 2.1, page 29, shows an excerpt of diab.2 along with its
marginal moments (Table 2.2, page 30) and correlations (Table 2.3, page 30). We generate B = 300
realizations of diab.2 under differently optimal resampling strategies. Then we check fidelity
of the data simulations by graphical and descriptive means. Ultimately we compute inferences
of interest on each data realization and obtain respective samples for that inference. Here we
reconstruct a Cox model MLE and its corresponding Breslow or Nelson-Aalen estimate.

3.3.1 Example: sampling under sub-optimal settings

Suppose we can only recover an incomplete IPD correlation matrix. In our case we assume only
first order empirical correlations are available. Also we can only recover mean and variance for
each IPD real-valued marginal variable, but not higher moments information. The mean of each
binary variable is always given. Since the correlation is incomplete NORTAmax resampling cannot
be used. Instead we use Algorithm A.2.1, page 86, to recover the first degree correlation structure
as following.

Table 3.3: Proportional Hazards Cox regression for the MLE of the log HR of ’Treatment’ (β1) and
’Age’ (β2) as estimated on the original diab.2 IPD or as an average (MC mean) across 300 simu-
lated MLEs. The method of MLE recover is based on an incomplete IPD correlation reconstruction
(Algorithm A.2.1, page 86). HR: Hazard Ratio; Info. proxy: inverse of Fisher Information diag-

onal. Lower/Upper CI: β̂ ± 1.964
√

Var(β̂); Log Lik.: `(β̂). MC sd: standard deviation across all
simulated MLEs

Point Estimate

log HR Info. proxy Lower CI Upper CI

Estimate β̂1 β̂2 Var(β̂1) Var(β̂2) Log Lik. AIC

IPD -0.782 0.004 0.029 0.00003 -1.113 -0.007 -0.451 0.015 -856.5 1717.0
MC mean -0.403 -0.001 0.027 0.00003 -0.723 -0.012 -0.082 0.010 -855.5 1714.9

MC sd 0.119 0.004 0.002 0.00000 0.120 0.004 0.119 0.004 59.5 118.9

We first sample the real-valued marginals, time and agedx, from a Gamma distribution with
corresponding mean and variance. Alongside we sample the binary marginals, status and treat,
from a Bernoulli distribution with corresponding mean. Next we merge the simulated marginals by
reconstructing their incomplete inter-dependence structure with a permutation-based heuristic. An
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excerpt of this code is in Appendix D.2, page 144. Output from the comparison between the recon-
structed and the original IPD is given in Appendix C.3.1, page 132. We see good agreement up to
the second moment for all marginals. However, third an fourth moments of the Gamma-sampled
continuous marginals (time and agedx) are not well recovered. By design the correlation matrix
is not fully recovered. The bool message confirms that under our criteria the simulated data does
not well reflect the observed distributional properties. In Figure 3.5 (page 60) we check agreement
of the two continuous variables to the limiting Gamma density. Binary variables converge to a
Bernoulli distribution by default, and we do not check that. The Gamma marginal seems to not

Figure 3.5: Agreement of IPD marginal histograms to its respective limiting Gamma density (red
line), k = 2.

so adequately describe the limiting distribution for variable time. Differently given only the first
two moment constraints, variable agedx is fairly well described by its limiting Gamma density at
n = 394.

Next we compute the log Hazard Ratio (HR) vector and Breslow estimation on each data re-
alization. Excerpt for this program is in Appendix D.2. A comparison between the reconstructed
log HR and it original IPD value is given in Table 3.3, page 59 We see enough difference, except
for the reciprocal Fisher Information diagonals that is well recovered. This indicates some key IPD
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likelihood information is conserved that is reasonable with MaxEnt marginals, although under lim-
ited prior information. In Figure 3.6 (page 64) we display the generated log HR and r.f.i.d. samples
with the original IPD and recovered point value. We also show an average Breslow estimate (see
Section 2.3.6, page 42) over all generated simulations and stratified by treatment. This Breslow
estimate recovery displays some deviation from its IPD counterpart especially for the treatment
group.

In Table 3.4, page 61, we show a comparison between generated 95% quantiles for the log
HR vector. MC indicates our generated sample versus ordinary bootstrap intervals computed on
original IPD.

Table 3.4: Empirical quantiles for the log HR of Table 3.3. MC denotes the HRs generated from
the 300 simulated IPDs. The method of HR simulation is based on an incomplete IPD correlation
reconstruction (Algorithm A.2.1, page 86). Results compare the empirical quantiles of the MaxEnt
bootstrap of size 300 against several types of non-parametric bootstrap CIs, as computed each on a
10000 sample of the original IPD. B: bootstrap sample size.

Empirical Quantile

2.5th 97.5th
Estimate B Bootstrap β̂1 β̂2 β̂1 β̂2

MC 300 -0.627 -0.010 -0.154 0.007

IPD 10000

normal -1.111 -0.007 -0.445 0.015
basic -1.098 -0.007 -0.438 0.015

percent -1.126 -0.007 -0.466 0.015
Bca -1.120 -0.007 -0.463 0.015

The result remains unsatisfactory at least for beta.1 quantiles recovery.

3.3.2 Example: sampling under near-optimal settings

Here we suppose a complete empirical correlation matrix from IPD diab.2 is available, that allows
to perform NORTAmax resampling. We also suppose to have moments up to degree four for
all continuous marginals, time and agedx. The latter are drawn from the respective Johnson
distribution. We generate B = 300 bootstrap repetitions of data diab.2 and a code excerpt is in
Appendix D.2, page 144 Table 2.4 and 2.5, page 32, show all main IPD distributional summaries are
well recovered on average. In Figure 2.2 (page 31) we see the Johnson marginal well approximates
the original IPD marginal empirical frequencies for time and agedx at n = 394. Figure 3.7,
page 65, shows approximately Normal shaped MaxEnt bootstrap distributions for the log HR of
’Treatment’ and ’Age’ – see Table 2.6, page 33, for more details. The expected Breslow curve
is here remarkably close to its IPD counterpart. Table 2.7, page 34, shows 95% MaxEntBoot
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quantiles for the log HR vector versus ordinary bootstrap intervals computed on IPD. We see here
good agreement especially with type percent or Bca.

3.4 Practical Examples: long-run prediction

We show the MaxEnt bootstrap distribution can be a predictive alternative to a defect original IPD
inference (see Remark 2.1.8, page 24). In Appendix C.3.3, page 136, we give a similar example
and in Appendix C.3.4, page 137, we show careful constraints imposition can be important for
accurate reconstruction. In Appendix C.3.5, page 138, we show MaxEnt bootstrap 95% quantiles
can be more stable alternative t to the ordinary IPD counterparts.

3.4.1 Example: predictive use of MaxEntBoot sample

We consider IPD wh.4 (batch I) that is a variables’ sub-selection from the whiteall1 data-
set (Royston and Sauerbrei, 2008). Survival time, time-event status, and a binary treatment in-
dicator are recorded for each patient. An IPD excerpt along with its empirical moment correla-
tion matrix is given in Appendix C.3.2, page 133. There we see individuals in group all10 = 1
strongly correlate with shorter survival times while modestly correlating with event occurrence.

The constant hazard in group all10 = 0 as given by the classic MLE estimate on page 405
of Andersen et al. (1993), is 0.005, while that in group all10 = 1 is 0.073, and their ratio is
14.280, showing an extremely greater hazard in treatment group relative to control. Exploding
estimates may be a warning on a possible sparse data bias (Greenland et al., 2016) in the original
IPD. Indeed we see here disproportionally less individual at risk in group all10 = 0 than in group
all10 = 1.

Table 3.5: Proportional Hazards Cox regression for the MLE of the log HR of ’Treatment’ (β1)
as estimated on the true wh.4 IPD or as an average (MC mean) across 300 simulated MLEs. The
method of MLE simulation from the simulated IPDs is that of Algorithm 2.1.2, page 25, based on

NORTAmax resampling. HR: Hazard Ratio. Lower/Upper CI: β̂ ± 1.964
√

Var(β̂); Log Lik.: `(β̂).
MC sd: standard deviation across all simulated MLEs

Point Estimate

Estimate β̂1 Var(β̂1) Lower CI Upper CI Log Lik. AIC

IPD 23.077 185007.70713 -819.968 866.122 -22122.1 44246.2
MC mean 4.328 0.00574 4.179 4.476 -22592.7 45187.3

MC sd 0.066 0.00025 0.064 0.069 393.9 787.8

An inspection of the Nelson-Aalen estimates in each group reveals a strong departure from the
hazard ratio proportionality assumption. The original IPD Cox regression here yields a singular
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MLE (see Appendix C.3.2). The IPD HR estimate and relative r.f.i.d. are nearly infinite and these
original IPD inferences are little informative.

Next we generate B = 100 NORTAmax repetitions of IPD wh.4 from the given empirical
IPD summary constraints. The comparison between reconstructed and original IPD is in Ap-
pendix C.3.2 showing an overall good agreement. Table 3.5, page 62, compares the average Max-
Ent bootstrap log HR or its r.f.i.d.m against their respective original IPD values. We see the original
IPD estimates tend to explode, but the MaxEntBoot expectations retain enough numerical stability
and interpretable. Here the expected HR estimate is exp(4.3) ≈ 73.7, 95% CI: (66-7 – 90.0).

In Figure 3.8 we plot the expected Nelson-Aalen estimate against its IPD counterpart. In both
treatment groups the curves well agree. Table 3.6, page 63, compares MaxEntBoot and ordinary
IPD bootstrap 95% confidence intervals. MaxEntBoot intervals well agree with the normal approx-

Table 3.6: Empirical quantiles for the log HR of Table 3.5. MC denotes the HRs generated from
the 300 simulated IPDs. The method of HR simulation from the simulated IPDs is that of Algo-
rithm 2.1.2, page 25, based on NORTAmax resampling. Results compare the empirical quantiles
of the MaxEnt bootstrap of size 300 against several types of non-parametric bootstrap CIs, as com-
puted each on a 10000 sample of the original IPD. B: bootstrap sample size.

Empirical Quantile

Estimate B Bootstrap 2.5th 97.5th

MC 300 MaxEnt 4.200 4.449

IPD 10000

normal 22.811 24.188
basic 22.884 24.200

percent 21.954 23.270
Bca

imation given in Table 3.5. Here ordinary IPD bootstrap intervals suffers the same instability of the
original IPD point estimate. All Bca computations also fail in this IPD example.
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Figure 3.6: Generated samples for the log HR (beta.), and respective reciprocal Fisher Informa-
tion diagonal (vbeta.), using non NORTAmax algorithms, alongside Breslow estimates in group
treatment and control. MC = Monte Carlo average. IPD = reference estimate
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Figure 3.7: MaxEntBoot samples for the log HR (beta.), and respective reciprocal Fisher Infor-
mation diagonal (vbeta.) alongside Breslow estimates in group treatment and control. MC =

Monte Carlo average. IPD = reference estimate.
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Figure 3.8: The wh.4 data: MaxEntBoot samples for the log HR (beta.) and respective reciprocal
Fisher Information diagonal (vbeta.) alongside Nelson-Aalen estimates in group treatment and
control. MC = Monte Carlo average. IPD = reference estimate. Note the IPD point estimate is
outside the plotting range because singular.



Chapter 4

Discussion

4.1 General

Today we see an increase in the digitization and storage of personal data, that is IPD. However
due to privacy, legislative, or technical issues original IPD cannot always be publicly disclosed nor
shared and must remain anonymous. Personal health data is an example. Researchers, companies,
and institutions still typically need to perform IPD inferences even if original IPD is not available
that is a typical challenge in fields like statistical disclosure control, meta-analysis, distributed
computing, research synthesis and reproduction.

Here we offer a principled method to reconstruct original IPD and IPD inferences from knowl-
edge of empirical IPD marginal moments and correlation matrix only. We argue such summary
format entails limited IPD information loss while maintaining privacy. To unlock IPD information
we apply a decompression procedure that reconstructs a stochastic, anonymous, representation of
the IPD raw format. Such IPD reconstruction is performed by what we call NORTAmax resam-
pling (Corollary 2.1.1.1, page 18) that draws from a multi-variate maximum entropy distribution
based on a Gaussian copula given the above empirical IPD summaries. We argue NORTAmax
resampling is asymptotically (n → ∞) equal to draw from the IPD generating mechanism given
empirical IPD marginal moments and correlation matrix.

Key to IPD inference reconstruction is to see NORTAmax resampling as a form of bootstrap-
ping procedure – we call it MaxEnt bootstrap – taking the above empirical IPD summaries as only
input data. The MaxEnt bootstrap can be relevant for the following.

Confirmation of reported IPD inferences.

Production of new IPD inferences.

IPD hypothesis testing (confirmatory and new).

IPD pooled estimation and hypothesis testing (confirmatory and new).

67
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The premise “as if the original IPD was available” is understood implicit above. Such applications
suggest MaxEnt bootstrap could be useful in SDC, meta-analysis, distributed computing, research
synthesis and reproduction, when no original IPD is available.

Something similar to the term ’MaxEnt bootstrap’ is already used in the time-series litera-
ture (Vinod, 2004, 2006). We think our method is general enough to include reconstruction of
time-series inferences, although we do not provide empirical support for this claim. A next step
should be to replicate Vinod’s results with our method. Below we review and discuss formal and
methodological aspects in more detail. A discussion of the generated empirical evidence follows.
We proceed by discussing limitations, future directions, and connections to other work. We finish
with some concluding remarks.

4.1.1 Formal issues

While this work is born applied we make an effort to give a formal argument behind the idea of IPD
and IPD inference reconstruction, given that only certain empirical IPD summaries are available.
The proposed explanation is obligingly limited and sometimes only includes conjecturing. Many
intuitions are simply left to stand empirical validation later.

Our basic idea is to use information theory for the purpose of IPD reconstruction. Here known
results such as the Conditional Limit Theorem provide a necessary basis, but are not alone sufficient
to accomplish the purpose except when IPD marginals are independent. Our main contribution is
to extend the basic formalism to cover the case of between IPD marginals dependence that is
practically more relevant. We do this by seeing a connection between maximum entropy and
copula theory.

We argue that a Gaussian copula with given MaxEnt marginals and fixed dependence structure
identifies the joint MaxEnt distribution (Theorem 2.1.1). We show such Gaussian copula is the
limit distribution of the generating IPD mechanism given empirical IPD marginal moments and
correlation structure (Theorem 2.1.2). This argument uses a convenient copula factorization un-
der continuous and differentiable marginals. This suggests that extending the Conditional Limit
Theorem to the multi-dimensional dependent situation – a seemingly unavailable result – could be
pursued that way, via copula theory, that is of independent interest.

If some marginals are discrete there could be several configurations of the Gaussian copula
yielding the same joint distribution, intuitively of equal maximum entropy that shall not be an issue
in practice. However under discrete marginals the used copula factorization is not longer possible
and a generalization of Theorem 2.1.2 seems challenging. We suggest that continuation techniques
proposed by Durante et al. (2012) or Faugeras (2013) could be here used to extend Theorem 2.1.2
to include discrete marginals (Conjecture 2.1.1). To avoid confusion we stress this continuation
step must not find practical application. In our experiments we reconstruct discrete IPD marginals
with no such continuation step and obtain reassuring results.

For what concerns IPD inference reconstruction we contribute with the main idea that MaxEnt
Gaussian copula inversion defines a bootstrap estimator, where the MaxEnt distribution is the plug-
in approximation for the data-generating mechanism given IPD empirical summary constraints.
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We call this the MaxEnt bootstrap estimator, that as far as we know it is yet not proposed in the
literature. Mimicking consistency proofs for the ordinary bootstrap we give intuitive consistency
arguments for our MaxEnt bootstrap estimator in very simple cases (consistency of the mean,
Proposition 2.1.10 and Conjecture 2.1.2). Here further work to strengthen this argument needs a
more rigorous assessment of the distance between empirical MaxEnt frequencies and the classic
e.d. estimate.

We conjecture the MaxEnt bootstrap average should be close to the original IPD inference
that is practically relevant for IPD inference reconstruction (Conjecture 2.1.3). Intuitively this
claim follows from the distributional constraints imposed on the plug-in distribution, by which
resampling tends to more systematically occur around an IPD configuration similar to the original
IPD on average. An extensive consistency assessment for the MaxEnt bootstrap estimator was out
of scope here but empirical validation later support our intuitions, suggesting more theoretical work
could be worth.

4.1.2 Methodological issues

IPD reconstruction is based on possession of empirical IPD marginal moments and Pearson corre-
lation matrix as the only input data. IPD is reconstructed via a Gaussian copula (NORTAmax) iden-
tifying a joint MaxEnt distribution. NORTAmax optimization has typical cost O (pk + p(p − 1)/2)
where k is the highest moment degree. If an analytic solution for the MaxEnt marginal is available
we have k = 0.

There is only one Gaussian copula defined by the given IPD correlation matrix. However
the Gaussian copula correlation structure is not assured to be semi-positive definite (see Ap-
pendix A.1.3, page 83). In our experiments Gaussian correlation optimization based on a product-
moment estimate seems more stable, which is intuitive here. This is not a restriction on the format
of the IPD empirical matrix and Clemen and Reilly (1999) give analytic transformations from
common correlation indexes to the product-moment one. We confirm a simple Newton-Raphson
routine suffices to find an IPD Pearson correlation projection into standard Normal space. Here
optimization is conveniently broken down into separate two-dimensional tasks. However we need
modifications to ensure semi-positive definiteness of the copula dependence structure.

We modify the NR-search with Algorithm A.1.1, page 82, that marks out-of-range s.n. corre-
lation entries for later adjustment. Next Algorithm A.1.4 (page 84) finely tweak (marked) matrix
entries deterministically or stochastically until the s.p.d. condition is fulfilled. This approach seems
to work well without strongly altering the copula correlation structure, but this should be further
tested under higher data dimension (p big).

We assess IPD reconstructions under different implementation strategies reflecting the amount
and completeness of the input empirical IPD marginal moments and correlation matrix. By con-
vention we replace the continuous MaxEnt marginal with the Johnson distribution. This choice is
well grounded in Proposition 2.1.4, page 14, and inherently assess robustness of the method when
some marginals only crudely approximate the MaxEnt distribution. We observe minor inconsis-
tencies during Johnson resampling where negative quantiles are sometimes drawn from a positive
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Johnson type (see Appendix A.1.1, page 79). This is most probably a software-related problem,
but variable domain in the Johnson system is extrapolated by the optimization routine which could
be prone to errors.

The next step should be to replace the Johnson approximation with the canonical MaxEnt
solution – see Equation (2.10), page 12. At the time of writing there seems to be no readily
avaialble software to optimize (2.10). A number of optimization approaches are available and that
of Rockinger and Jondeau (2002) or Holly et al. (2011) seem promising. Optimization routines
accomodating for more than four moments seem difficult and more work in this direction seems
yet needed. It also remains to show how well a (approximate) MaxEnt marginal may generalize to
irregular, non unimodal, IPD marginals such as, for instance, genetic sequencing data. In practice
Pearsonian family distributions can flexibly reproduce non strictly unimodal features (Johnson,
1949). Also the general MaxEnt solution covers in principle a rahter large domain (Holly et al.,
2011). Our empirical observation (not shown) suggests that as far as the IPD marginal variance
(hence entropy) is contained, good information recovery is possible quite regardless of the exact
density shape.

Our alternative to NORTAmax resampling is a routine that only processes incomplete correla-
tion information while maintaining the same approximate MaxEnt marginals. In cases where only
first-order IPD correlations are available, Algorithm A.2.1, page 86, reconstructs such incomplete
dependence based on the mixture (A.17) and on a permutation procedure to find null correlated pair
combinations. While this approach is never superior to NORTAmax, Algorithm A.2.1 could still be
a simple alternative if the goal is a two-dimensional IPD reconstruction. A typical situation would
be where marginal moments of only two variables, one outcome and a covariate along with their
raw correlation index, are reported. Studies on such small IPD are infrequent but if the reported
covariate is a compound index simultaneously accounting for several confounders, or risk-factors,
then such small IPD is sometimes employed.

In a similarly incomplete summary reporting scenario of a two-arms survival IPD we might
only recover arm-specific total number at-risk and events-count, but not the correlation between
event-counts and treatment. Here an attempt to reconstruct the IPD Hazard Ratio for treatment
could be via maximization of (1.2), page 5. Appendix B.5.1, page 95, proposes a simple approach
to reconstruct the IPD at-risk set vector to insert in (1.2). We empirically see that such approxima-
tion can often well recover the HR (not shown). This may be particularly true if only administrative
or low rate censoring occurs. In all other cases this simple at-risk sets reconstruction considers ei-
ther a scenario where censored units remain infinitely at risk (sub-distribution hazard case) or one
where they all leave the at-risk set before study end. In presence of right, non-administrative, cen-
soring both these scenario may bias HR reproduction. If it is known that generic right censoring
occurs one way to mitigate bias could be to average between the stay-in and stay-out cases, hoping
this roughly approximates the original censoring process.

IPD reconstruction experiments were performed by re-arranging about 20 original IPDs into
four data batches by different number and type of covariates. We kept the overall dimension quite
low and never exceeding four variables per original IPD. Such choice was motivated by conve-
nience and extension to higher dimension seems possible. The original IPD examples are mostly



4.1. GENERAL 71

chosen open source and reflect the complexity and variety or real data. For instance a number of ex-
amples from Royston and Sauerbrei (2008) purposely include original survival data where neither
the baseline hazards are constant nor the PH assumption is met. To asses overall similarity between
simulated and original IPD we define a number of marginal and dependence similarity criteria to
be simultaneously fulfilled (Section 2.2.4, page 38). That is we simply check the distance between
expected IPD distributional features against their original value. If only one marginal moment or
correlation entry fails to match on average the original IPD value, the IPD simulation is deemed
overall not similar to the IPD reference. As discussed later this rather conservative diagnostic ap-
proach may tend to inflate false negative outcomes relative to the actual quality of the recovered
IPD information content.

To study NORTAmax ability to recover original IPD inferential content we consider a number
of statistical procedures to be applied on reconstructed IPD.

Parametric: GLMs with Gaussian, Binomial, or Poisson family.

Semi-parametric: PH Cox modeling, and Breslow estimation.

Non-parametric: Nelson-Aalen estimation.

IPD inference recovery is assessed in a general multi-variate case but also in non trivial univariate
ones. It is well known (Olkin and Sampson, 1998) that certain IPD GLM reconstructions from
summary data allows only contained information loss, if only a single categorical covariate is used.
In this respect it is interesting to evaluate parametric GLM reconstruction if the single covariate
is continuous and we do so. Similarly we assess PH Cox regression reconstruction starting with
inclusion of a single binary covariate. Next the number and types of covariates is increased. In
the parametric and semi-parametric cases the mode of inference estimation slightly differs from
the original IPD application because we also specially handle information entering the GLM or
Cox likelihood numerator. We rewrite likelihood routines to allow explicit numerator control (Ap-
pendix B.1, page 89). Also, to speed up partial Cox likelihood and c.h.e. calculations we use
a slightly different at-risk set computation (Equation (B.7) and Appendix B.3, page 91 and 93).
Where possible, we use log-likelihood gradient and Hessian linearization to speed up optimiza-
tion (Appendix B.1.2, page 91). We use a simple averaging procedure for the reconstructed c.h.e.
(Appendix B.4, page 94) to make comparisons with the original IPD estimates possible.

We use a simple difference between reconstructed and original IPD inference to assess bias.
While this choice is straightforward it could also be too conservative. In our experiments it is
not unusual to see Gaussian intercept estimates with a value of two order of magnitude. Say the
original IPD intercept estimate is 281 and the reconstructed one is 282. Here a distance of 1 is
maybe big relative to zero but seems quite irrelevant in practical terms.
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4.2 Empirical results

We could satisfactorily reconstruct IPD from its marginal moments and correlation matrix only,
and, as a second step, reconstruct original IPD inferences from the reconstructed IPD. Generally
the results seem to empirically support our formal arguments. First, NORTAmax resampling well
reproduces key features of the empirical IPD distribution. This practically agrees with NORTA-
max resampling being asymptotically equal to draw from the IPD joint distribution given IPD
empirical distributional summaries (Theorem 2.1.2). In particular, we can empirically confirm this
limiting result well extends to mixed binary-continuous data (Conjecture 2.1.1). Second, statistical
transformation of a NORTAmax sample, the MaxEnt bootstrap, well recovers important features
of the IPD inference distribution. This seems to confirm claims of MaxEnt bootstrap consistency
(Proposition 2.1.10 and Conjecture 2.1.2) in even more general situations. Results also confirm ap-
proximate equality of the MaxEnt bootstrap average to the reference original IPD inference value
(Conjecture 2.1.2). Below we discuss results in more detail.

4.2.1 IPD reconstruction

We could stochastically reconstruct (undisclosed) IPD from (ideally disclosed) IPD marginal mo-
ments and correlation matrix via NORTAmax resampling. The degree of reconstruction honesty
seems to reasonably depend on the amount and completeness of the available IPD summaries. Re-
construction performance seems better when moments up to fourth degree and a complete (lower
triangular) correlation matrix are both available. However the strength of this result varies depend-
ing on number and type of IPD marginal variables. We did not practically see copula indeterminacy
issues related to usage of discrete variables. Occasional non semi-definite positive Gaussian copula
correlation matrix could be satisfactorily repaired with our proposed heuristic. Ultimately most is-
sues were posed by continuous marginals which we attribute to Johnson resampling and/or related
software implementation.

We observe an excessive poor Johnson performance in about 10% of reconstructed IPD con-
tinuous marginals that mostly affects experiments in batch III and IV. Especially in batch IV the
fourth moment is badly recovered, that suggests Johnson resampling could be currently problem-
atic in higher dimensional cases. Good fourth moment recovery might not always be necessary
but it could negatively impact IPD correlation recovery that is more important for IPD inference
reconstruction. Nevertheless for growing n the fourth moment recovery is relatively tolerable in at
least half the cases.

Even with Johnson resampling issues we think the obtained IPD emulation is overall good, sug-
gesting method amelioration is possible and worth pursuing, for instance by usage of the canonical
MaxEnt solution (Equation (2.10)). Such level of IPD emulation from simple IPD summaries is
rather unexpected and sort of defies common sense. To the best of our knowledge NORTAmax re-
sampling seems one of the first procedures to generally reconstruct dependent multi-variate original
IPD from simple IPD summaries only.



4.2. EMPIRICAL RESULTS 73

4.2.2 IPD inference reconstruction

We could reconstruct a variety of commonly used IPD inferences from generated IPD emula-
tions. The results bares practical benefits for disciplines like statistical results reproduction and
distributed network computing, where no original IPD but only key IPD summaries can be dis-
closed. Meta-analysis and research synthesis could also greatly benefit from the method, provided
the IPD summary format we suggest becomes more standardized. Hence via MaxEnt bootstrapping
(MaxEntBoot ) we could well recover information on:

a) (multi-variate) MLEs from Gaussian, Binomial, and Poisson GLMs, as well as PH Cox
regression HRs.

b) Breslow or Nelson-Aalen cumulative hazard estimates.

c) Bootstrap-like 95% empirical CIs for estimates of point a).

The MaxEnt bootstrap average is generally well centred on the original IPD inference value and
95% interval quantiles are quite comparable to the IPD ordinary bootstrap. Similarly average
cumulative hazard estimates well approximates the original IPD graph. All these observations
seem to empirically support a more general notion of MaxEntBoot consistency that extends simpler
claims made in Proposition 2.1.10 and Conjecture 2.1.2.

Standard MLE recovery methods mostly focus on a scalar value – typically a group effect –
and are based on appraisal of (highly transformed) IPD summaries from different study sources.
Our results imply that, for each study source, one can reconstruct study-specific IPDs and pool
them to reproduce a fixed or random effect multi-variable IPD regression, that can be relevant
for meta-analysis and research synthesis. For example one can Cox regress the pooled recon-
structed IPD, introducing a study-specific baseline hazards or a frailty effect. Similarly one can
apply a random-effects GLM regression. We yet need empirical confirmation for such random
effect estimate recovery, but we think this task is feasible as far as the study-specific IPD is well
reconstructed.

Standard cumulative hazard estimates recovery methods typically focus on a manual, time-
consuming, extrapolation of published Kaplan-Meier or Nelson-Aalen graphs (Parmar et al., 1998).
Our results imply a general (pooled) cumulative hazard estimation recovery is possible based on
reported empirical IPD summary only. In such regard we are not aware of comparable method-
ologies in the literature. Our method can rather accurately recover IPD Breslow or Nelson-Aalen
cumulative events-counts that we think is kind of surprising. Recovery of IPD events-time lines is
more difficult because MaxEntBoot must well predict the time value at which an event-jump oc-
curs. However, our experiments suggest time-line recovery is acceptable on average which results
in an overall good c.h.e. reconstruction (see Figure 3.7 and 3.8, page 65 and 66, and Figure C.1
to C.3, page 139 to 141) that seems a rough interpolation. Our c.h.e. reconstructions lack appro-
priate confidence bounds estimates. Here we could plot all the c.h.e. bootstrap realizations under
the expectation estimate to give an assessment of its range of variability.
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Recovery of 95% bootstrap CIs requires original IPD and our method seems one of the first
to reconstruct bootstrap-like 95% intervals from IPD summaries only. The MLE MaxEntBoot
variance also typically agrees with the IPD point estimate based on Fisher Information. Here
empirical results seem to suggest MaxEnt bootstrap consistency is holding quite generally, begging
the question if a Central Limit Theorem rule of thumb similar to the ordinary bootstrap’s holds here
too. We confirm our MaxEnt intervals can be on average slightly tighter than their ordinary IPD
counterparts (not shown). This seems to reflect the preference of the MaxEnt bootstrap to resample
more closely around the expected inference, given its more constrained nature.

IPD inference reconstruction is generally better under NORTAmax approaches (Algorithm 2.1.1–
2.1.2) with no likelihood numerator adjustment (methods 1-3 and 1-4). Here the difference between
reconstructed and original IPD inference is generally well centered on zero. Difference dispersion
is also generally acceptable relative to mean and s.d. of the original IPD inference. Likelihood-
numerator adjustment could be beneficial, if no complete IPD correlation is available. Based on our
similarity criteria third and fourth moment knowledge seems relevant for good IPD reconstruction,
but results on IPD inference reconstruction show another picture.

Generally essential for good IPD inference reconstruction seems accurate and complete IPD
correlation matrix recovery. Higher moments information often only refines IPD inference recon-
struction performance. Our experiments show that knowledge of IPD marginal mean and variance
only, along a complete correlation matrix, is often enough to roughly well recover an IPD inference.
In this respect sub-optimal IPD reconstructions in batch IV could be an artifact of low specificity
of point 1 to 5 of Section 2.2.4, suggesting the quality of recovered IPD information might be often
better than what we diagnose.

We give direct examples of IPD inference reconstruction (see Section 3.3 and 3.4, page 59
and 62, and Appendix C.3.3 to C.3.5, page 136 to 138). We show the MaxEnt bootstrap is not only
useful when original IPD is unavailable but also when the original IPD inference is of little use.
For example a singular original IPD inference can be often caused by a sparse data bias (Greenland
et al., 2016). Here the MaxEntBoot prediction is a long-run alternative for the original IPD infer-
ence that can dilute the original bias. We do not compare our method with the penalized estimation
described in (Greenland et al., 2016) and simply acknowledge our results are also reasonable here.

In the example of Appendix C.3.3 we model the original discrete, tied, IPD time variable on a
continuous scale. This produces a slightly positive significant MaxEntBoot group effect against a
slightly negative non significant original IPD one. The difference is not big but appreciable. Also
the reconstructed Nelson-Aalen curve under treatment grows somehow faster than the original
estimate beginning from time point 20. The MaxEntBoot Fisher information is remarkably close
to the IPD value on average. These discrepancies shall be understood as the attempt to smooth the
original IPD time variable. Here reproduction of the original time tied structure needs more care
and maybe introduction of non-standard constraints.

Overall our experiments show the MaxEnt bootstrap allows qualitatively good IPD inferences
reconstructions from simple IPD summaries only. Such result would not be typically expected a
priori and the MaxEnt the bootstrap seems one of the first procedures that accomplish doing so.
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4.3 Limitations and further directions

NORTAmax resampling can reconstruct IPD and IPD inferences if only IPD marginal moments and
correlation matrix are available, that could be useful in meta-analysis, research reproduction, and
synthesis. In practice it is realistic to assume we might more easily recover mean and variance of
some (not all) IPD marginals. However higher moments and, most crucially, pairwise correlations
are today not often reported, that is a limitation of our proposed method. One way to mitigate the
problem may be suggested by Yoneoka and Henmi (2016) who indirectly recover some variables
correlations from easily recoverable summaries.

We do not show experiments on a practical meta-analytic example. Here one issue to address is
missing IPD marginals for some study sources that would make IPD pooling problematic. Kohnen
and Reiter (2009) could provide some ideas in the merit. We also do not show IPD regression
reproduction with effects interactions. We believe such task should be feasible as far as overall IPD
reconstruction is good.

It remains yet to assess NORTAmax robustness if the original IPD has a longitudinal structure.
In theory NORTAmax does not apply here but we could try the following. Assume a categorical
variable encodes the IPD clustering structure, with each category level having enough observa-
tions. Let the correlation between the categorical variable and any other IPD marginal be included
in the given IPD correlation matrix. A MaxEnt analytic solution for the IPD categorical marginal
is the Multinomial distribution and we apply NORTAmax resampling accordingly. This is similar
to handle survival IPD with multiple events in one single block where the categorical variable is
the event-specific indicator. In our experiments we recover IPD HRs and c.h.e.’s for each event
or transition separately. This is sufficient for a complete competing risks or event-history analy-
sis (Latouche et al., 2013)

Copula marginal smoothing discussed in Section 4.1.1 suggests NORTAmax could be based
on a discrete MaxEnt marginal’s continuous approximation. Beta and Gamma distributions re-
spectively approximate Binomial or Poisson marginals after careful re-scaling of moment-based
parameter estimates. These approximations are then rounded up and discretized which shall con-
serve marginal features and maybe most of inter-dependence structure. This would save compu-
tation time drastically since Gaussian copula correlation has analytic solution here. Preliminary
observation (not shown) suggests such approach needs care and could be sub-optimal. For in-
stance approximation of a Multinomial MaxEnt marginal with a Dirichlet distribution seems not
straightforward here.

In Section 2.1.7 we propose to use NORTAmax for missing data imputation under MAR as-
sumption. Here missing records are asymptotically drawn from the IPD generating mechanism
under constraints on its empirical summaries, but the MAR condition seems difficult to assess from
empirical IPD summaries only and more IPD information could be needed. If NORTAmax re-
sampling poorly matches the given constraints it is a more or less biased limit description of the
observed IPD and careful results interpretation is warranted. Also we implicitly assume empiri-
cal marginal moments and correlation matrix capture all relevant constraints on the current IPD.
However this must not be the case and a more specific constrained optimization could be needed.
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4.4 Connection to other topics

MaxEnt bootstrap is a relatively straightforward type of autoencoder where data is reduced on
its first rather than second dimension. We use maybe one of the simplest encoding operation
by compressing raw IPD into its marginal moments and correlation matrix C̄x. The joint MaxEnt
distribution is the decoder. As any autoencoder the MaxEnt bootstrap is a generative model drawing
samples from the IPD distribution satisfying constraint C̄x, that is the only input data needed for
loss minimization (point 2 and 3 of Algorithm 2.1.1) based on a simple distance between C̄x and
its theoretical model values.

Salakhutdinov and Larochelle (2010); Fisher et al. (2018) propose Neural Networks (NNs) that
among other useful properties could generally approximate the p-dimensional generating law of
the input data. This is direct consequence of the Hammersley-Clifford theorem (Grimmett, 1973)
that justifies representation of a generic probability distribution via a Markov network (field). This
probability law has the form of a Gibbs or Boltzmann distribution that is the MaxEnt solution
satisfying given network constraints (Robert, 1990).

Hence both these NNs and the MaxEnt bootstrap are energy-based generative models based
on a MaxEnt principle, but the NNs need a relatively sophisticated implementation. Here MaxEnt
bootstrap could be a simpler but more precise alternative to sample from the data generating distri-
bution, although under the clause p << n. We could force a p ≥ n condition by artificially inflating
n to promote simulation stability. Optimization costs should be lower than in NNs (see discussion
in Section 4.1.2) where at least the number of layers and of layer-specific units must also be fac-
tored in the total expense. Also MaxEnt bootstrap is a generative model for the inference associated
with the input data, that seems an advantage relative to the NNs especially in respect to hypothesis
testing and predictive inference.

It is maybe interesting to read some of our results in connections to generic notions of evidential
equivalence. The weak conditionality principle (C’) (Birnbaum, 1962; Berger et al., 1988) is some-
times interpreted as the irrelevance of hypothetical evidence on the meaning of actually observed
evidence (Cox, 1958). Here evidence means some type of inference or inferential content (Basu,
1975). A strengthened derivation of (C’), denoted (C), is sometimes seen as a directive for explicit
conditional inference (Kalbfleisch, 1975; Fraser et al., 2004) and an argument against use of purely
frequentist inference. In Conjecture 2.1.3, page 23, M (x) is actual evidence from observed data x,
and the left term of (2.30) is expectation over hypothetical evidence. Then we can read (2.30) as
an operative (C’), denote it (C*), where we introduce an averaging step over hypothetical evidence.
Hence (C*) suggests rough equivalence between actual inference and expectation over hypothetical
inferences that seems to generalize and help explain the non-directionality notion behind (C’) and
(C), as discussed in Kalbfleisch (1975), page 263, and Dawid (2014). Here (C*) seems to connect
seemingly antithetic inferential notions similar to Efron (2012).

A related reading of (2.30) is that of random perturbation of the original IPD inference in the
sense of (Yu et al., 2013). This seems also related to a generic idea of white noise irrelevance
similar to Birnbaum (1964). That is, all essential inferential content, or signal, is locked in the
constrain summary C̄x and everything else being noise. The joint MaxEnt distribution is the tool to
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re-propagate this noise or incertitude around the signal. A worrisome consequence of such view is
that any data instance roughly described by C̄x may yield approximately equal statistical evidence.
Then one could deceitfully forge statistical evidence by fine tuning of C̄x.

4.5 Conclusions

We present a maximum entropy based resampling method (MaxEnt bootstrap) to reproduce reliable
multi-variate IPD simulations from the following IPD summary data only:

marginal moments up to degree two (or at best four),

a complete correlation matrix lower (upper) triangular.

We show it is possible to roughly recover original IPD inferences from these IPD simulations by
rather well reconstructing

multi-variable MLEs from GLM and Cox regression with bootstrap-like 95% CIs.

Nelson-Aalen or Breslow cumulative hazard estimates.

The method has potential application in a number of statistical disciplines where only summary
IPD can be used but original IPD inferences are sought. This includes statistical disclosure con-
trol, meta-analysis, research reproduction and synthesis, as well as distributed network computing
to name few. Our method is readily applicable in data anonymization and distributed network
computing upon compliance to the above IPD summaries. Instead the remnant disciplines would
greatly benefit from the method if the above IPD summaries would become more standardly re-
ported. Many authoritative sources call for more reporting standardization (Liberati et al., 2009;
Altman, 2015; Nature, 2017) and adoption of the above IPD summary format could comply to such
purpose.

To the best of our knowledge our seems one of the first methods accomplishing generic IPD
and IPD inference reconstruction from usage of the above IPD summaries only.
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Appendix A

Method details: IPD reconstruction

A.1 NORTAmax scheme: details

We give further details about NORTAmax resampling (Section 2.2.1, page 35). Refer to Sec-
tion D.1, page 143 for all mentioned R packages.

A.1.1 Johnson system distributions

The Johnson system is defined by the following general transformation of x,

z = γ + δ f (y), (A.1)

where z ∼ N(0, 1), and

y =
x − ξ
λ

, (A.2)

with δ > 0, λ > 0, γ ∈ R, and f (·) defining one of the following transforms: 1) log-normal (SL),
2) unbounded (SU), 3) bounded (SB), 4) normal (N). The parameters γ, δ, λ, ξ and the transform f
must be determined from a set of first four moment constraints of x, m(x), m(x2), m(x3), m(x4). The
Hill algorithm (Hill et al., 1976; Hill, 1976) implemented in the JohnsonDistribution package
provides the numerical tool to determine these unknowns. Once a solution for the unknown is
found sampling from a Johnson distribution needs inversion of (A.1) as a function of a s.n. variate
z. Below I describe in more detail each system.

SL system

Here f (y) = log(y), y > 0 where y is given by (A.2) and the density function is

p(y) = δ exp
(
−

z2

2

)
c, (A.3)
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with c = 1/(y
√

2π), and z as (A.1) after proper specification of f with ξ < x. To sample a quantile
x from this distribution draw a s.n. variate and transform with

x = ξ + exp
(z − γ

δ

)
. (A.4)

SU system

Here f (y) = log(x +
√

1 + y2) with y as (A.2) and density (A.3) but with

c =
1

√
2π

√
1 + y2

. (A.5)

We can sample x using transform

x = ξ + λ sinh
(z − γ

δ

)
. (A.6)

SB system

Here f (y) = log(y/1 − y), 0 < y < 1, with y as (A.2) and density (A.3) for ξ < x < ξ + λ with

c =
1

√
2πy(1 − y)λ

. (A.7)

We can sample x using transform

x = ξ + λ sinh
(z − γ

δ

)
. (A.8)

All Johnson resampling is performed using package moments and JohnsonDistribution.
The latter occasionally yields few negative values under bounded transformation (A.6). As a possi-
ble explanation for this the package author privately confirmed minor errors in the FORTRAN code.
Nevertheless, these minor inconsistencies are never serious enough to compromise the module’s
functionality and can be easily handled by uniformly setting all negative values, if any, between
zero and the minimum non-zero value of the resampled series.

A.1.2 Matrix correlation conversion: optimization

We give more details about optimization mapping IPD empirical correlation matrix R̄x into a s.n.
counterpart Rz with off-diagonal entry ρ j` satisfying Equation (2.23), page 17, ∀ j , `.



A.1. NORTAMAX SCHEME: DETAILS 81

Double integration techniques

We need to compute double integral (2.23). We substitute the Ψ-transform in (2.23) with

Ψ∗j =

G−1
j (z) if G j ≡ J j

G−1
j (Φ(z)) otherwise

(A.9)

where z is a s.n. variate, ∼ J j is the Johnson distribution, and Φ is the cumulative s.n. distribution.
We need Equation (A.9) to accommodate for the Johnson variate (see Appendix A.1.1). (2.23)
may be solved for ρ j`, j , ` using adaptive multivariate integration over hypercubes (package
cubature). Here it is better to set a finite z × z range, say (−5, 5) × (−5, 5).

Occasionally adaptive integration may be unstable or fail. Monte Carlo integration it is an easy
alternative here

EG(X j, X`) ≈
1
K

K∑
i

Ψ∗j(Zi1)Ψ∗`(Zi2), (A.10)

for j , `, with Ψ∗j as (A.9) and (Zi1,Zi2) ∼ N2(0, ρ j`) is a draw from the 0-mean bivariate Normal
distribution with correlation ρ j`, for i = 1, 2, . . .K and ∀ j , `. Here K = 10000 or smaller can be
enough.

Minimization: objective function

We wnat to minimize the distance between an empirical correlation r̄x j x` and

Corφ
(
Ψ∗j(z1),Ψ∗`(z2)

)
, (A.11)

relative to the bivariate s.n. density φ = φ(z1, z2|ρ j`) with parameter ρ j` with Ψ∗j as (A.9) ∀ j , `.
To obtain (A.11) subtract the right term of (2.23) by EG j(X j)EF`(X`), the product of theoretical

first moments, and divide all by σx jσx` , the product of theoretical standard deviations, where σx j =

EG j(X
2
j ) − EG j(X j)2, ∀ j , `. If these theoretical moments are unknown replace them with sample

estimates. Our objective function is

O(ρ j`) = Corφ
(
Ψ∗j(z1),Ψ∗`(z2)

)
− r̄x j x` , (A.12)

where we must find the s.n. correlation ρ j` such that (A.12) is zero. The first derivative of O(ρ j`)
relative to ρ j` is

O ′(ρ j`) =
1

σx jσx`

∫ ∞

−∞

∫ ∞

−∞

Ψ∗j(z1)Ψ∗`(z2)φ′dz1dz2, (A.13)

where φ′ = dφ(z1, z2|ρ j`)/dρ j` equals

φ′ =
Q(ρ j`)φ(z1, z2|ρ j`)

2π
√

1 − ρ2
j`

, (A.14)
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with

Q(ρ j`) =


c(ρ j`)

(
2π

√
1 − ρ2

j`

)
(
2(1 − ρ2

j`)
)2

 −
 −2πρ j`√

1 − ρ2
j`

 ,
where

c(ρ j`) =
[
4z1z2

(
1 − ρ2

j`

)]
−

[
4ρ j`

(
z2

1 + 2ρ j`z1z2 − z2
2

)]
,

All integrals can be numerically solved using adaptive integration as mentioned above. Alterna-
tively, to evaluate (A.11) by MC integration we similarly subtract then divide (A.10) by theoretical
or sample first moments and standard deviations product respectively. An approximate objective
function is obtained with appropriate substitution in (A.12). Then an MC approximation of (A.13)
is

σx jσx`O
′(ρ j`) ≈

1
K

K∑
i

Ψ∗j(Zi1)Ψ∗`(Zi2)
Q(ρ j`)

2π
√

1 − ρ2
j`

, (A.15)

where Q(ρ j`) is as above after appropriate substitution with draw (Zi2,Zi2) ∼ N2(0, ρ j`) for i =

1, 2, . . . ,K. Again K = 10000 or smaller should suffice.

Newton-Raphson optimization

To find an approximate zero of (A.12) we implement a Newton-Raphson (NR) scheme. A good
starting value for ρ j` is the empirical observation r̄x j x` . At iteration i NR optimization is defined by
the updating step

ρ(i+1)
j` = ρ(i)

j` −
O(ρ(i)

j` )

O ′(ρ(i)
j` )
, (A.16)

where on the right term ratio we have (A.12) at the numerator and (A.13) at the denominator with
the requirement that 0 ≤ ||ρ(i+1)

j` || < 1 where || · || denotes absolute value. In particular exclusion of
the unity upper bound is required to avoid an infinite solution of (A.11).

Occasionally the NR search might get stuck around a flat slope that is not a minimum. For
instance, this seems to occur more often when marginal models G j and G` are strongly misspecified
w.r.t. the empirically observed correlation. Then we might obtain illegal solution values. We take
some simple precautions to mitigate this issue if occurs, by either forcing the search to re-start from
legal values, or by stopping the search around a flat slope.

Algorithm A.1.1. (Safe-check snippet embedded in NR optimization).

If ||ρ(i+1)
j` || ≥ 1

1) Repair value ρ(i+1)
j` and flag:

if ||ρ(i+1)
j` || = 1, set ρ(i+1)

j` = sign(ρ(i+1)
j` ) · 0.99,
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else

1.1) produce coarse sequence r′z with range sign(ρ(i+1)
j` ) · [.74, .99].

1.2) set ρ(i+1)
j` = r̃z = minr′z O(r′z).

2) Go to next NR iteration

if O ′
(
sign(ρ(i+1)

j` ) · 0.9
)
< 0.01 stop NR search and return value ρ(i+1)

j` .

O(·) and O ′(·) are defined in Appendix 7.1 of the main document.

The middle step at point 2 kills the search if around a solution’s extremal value the slope gets
already flat. Such aborted solutions are flagged in the s.n. matrix and checked in a second phase
(section below) especially w.r.t. to satisfaction of the semi-positive definite condition.

A.1.3 Matrix correlation conversion: insurance of semi positive definite condition

We observe that s.n. matrix non semi-positive definiteness is often associated with aborted solutions
returned from Algorithm A.1.1. The s.p.d. condition can also be not simply met when all NR
searches hit a true minimum. We adopt a simple approach to fix a non s.p.d. matrix, distinguishing
between a non s.p.d. matrix having also aborted (flagged) solutions or not.

Flagged matrix

Since the s.p.d. condition might be not met due to matrix values resulting from aborted NR
searches, we target only flagged matrix entries and tweak their values until the s.p.d. condition
is met.

Algorithm A.1.2. (Targeted tweaking).
Take matrix lower, or upper, triangular:

1) Select flagged element ρ̀ j, j = 1, . . . , p0 with 1 ≤ p0 ≤
(

p(p−1)
2

)
.

2) Substitute ρ̀ j with ρ j = ρ̀ j −
[
sign(ρ̀ j) · 0.005

]
, for all j = 1, . . . , p0.

3) Repeat point 2) until resulting matrix is s.p.d., or exit Algorithm after 200 iterations.

We typically observe a result within 200 iterations. This means we down-scale initial value ρ̀i

by at most one unit. This agrees with aborted solutions from Algorithm A.1.1 having typically too
high values.
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Not flagged matrix

Non s.p.d. solutions can simply result from all NR searches correctly converging. Here the goal
is also to down-scale extremal matrix values, selected according to a rank-based priority. The
approach is more diffuse and includes randomness.

Algorithm A.1.3. (Sequential tweaking)
Take matrix lower, or upper, triangular:

Denote with k =
p(p−1)

2 the rank of the most extremal element.

1) Sort elements from most to least extremal value, ρ(k), ρ(k−1), ρ(k−2), . . . , ρ(1).

2) Set i = 0.

2.1) Substitute ρ(k−i) with ρ̃(k−i) = ρ(k−i) −
[
sign(ρ(k−i)) · u

]
, where u ∼ U(0, 0.01).

2.2) Check if resulting matrix is s.p.d.:

if yes, stop Algorithm and return s.p.d. matrix,
else set i = i + 1 and return to point 2.1). If i = k return to point 2).

3) Repeat point 2) until resulting matrix is s.p.d. or exit Algorithm after 200 iterations.

∼ U(0, 0.01) is the Uniform distribution between 0 and 0.01.

From our observations the wished result is typically obtained within 200 iterations and a warn-
ing is issued otherwise. An additional warning is issued if some sign in Rz changes during the
process. As an alternative approach we can implement step 2.1) of Algorithm A.1.3 simultane-
ously for all not necessarily ranked elements.

General approach

As a general approach to insure the s.p.d. condition we have the following three options

Algorithm A.1.4. (Make matrix s.p.d.)
If s.n. matrix is not s.p.d.

if any matrix elements is flagged apply Algorithm A.1.2 (targeted),

else apply Algorithm A.1.3 (sequential).

– If both above fail apply step 2.1 of Algorithm A.1.3 simultaneously not sequentially.

Typically such fuzzy approach finds a s.p.d. s.n. solution that roughly agrees with the empiri-
cally observed correlation constraints.
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A.2 Incomplete correlation imposition

We elaborate on material of Section 2.2.2, page 37.

A.2.1 First-order correlation imposition: mathematical derivation

We first derive1 relation (2.31), page 37. Consider a pair of unrelated variables X1 and X2 arranged
in the matrix X = (X2, X2). We want to induce Cor(X1, X2) = ρ12. To this end arrange X such to
have minimal correlation. Denote such arrangement with Z = (Z1,Z2) where Cor(Z) ≈ 0. Similarly
arrange X such to have extremal correlation. Denote such arrangement with U = (U1,U2) where
Cor(U) = R12 is the extremal correlation between X1 and X2. We require sign(ρ12) = sign(R12)
and ||ρ12|| ≤ ||R12||. Next define the mixture

αZ + (1 − α)U, (A.17)

for 0 ≤ α ≤ 1. Let σ1 =
√

Var(X1) accordingly σ2 =
√

Var(X2). For simplicity set E(X1) =

E(X2) = 0. Set the equality

σ1σ2ρ12 = Var [αZ + (1 − α)U]

= αE(Z1Z2) + (1 − α)E(U1U2)

= αCov(Z) + (1 − α)Cov(U), (A.18)

that by dividing for (σ1σ2) on both sides becomes

ρ12 = αCor(Z) + (1 − α)Cor(U)

= 0 + (1 − α)R12

= (1 − α)R12. (A.19)

Thus
α = 1 −

ρ12

R12
, (A.20)

and mixture (A.17) has correlation ρ12.
A sample version of (A.17) for a n × 2 matrix X∗` j =

(
X∗` , X

∗
j

)
is given by (2.31), where on the

right of (A.20) we set ρ12 = r̄x j x` and repeat Bernoulli experiment ∼ B(α) for n independent trials,
∀ j , `. Consider a n× p data matrix X∗, p ≥ 2. For a fixed reference variable X∗` (say the first data
column), j , `, we can reiterate (2.31) for all remnant p − 1 columns. This ensures we can easily
reproduce all (p − 1) first-order correlations of X∗ relative to X∗` . Reproduction of higher order
correlations that simultaneously satisfies all previous correlations needs a computationally unfeasi-
ble multi-nested implementation of (2.31). Hence we implement (2.31) for first-order correlations
only. We describe such procedure below with details on how to construct Z and U.

1I must thank Prof. Ludger Rüschendorf, Department of Stochastic, Institute of Mathematics, Albert-Ludwigs-
University of Freiburg, for suggesting these computations.
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A.2.2 Permutation-based algorithm for incomplete correlation imposition

We modify Algorithm 2.1.1, page 24, to allow for incomplete correlation imposition in the follow-
ing way. Keep step 1) and 2) of Algorithm 2.1.1 while adding new steps:

For b = 1, . . . , B

3) Draw (X∗j )b ∼ F∗j , for all j = 1, . . . , p.

Obtain the uncorrelated n × p realization X∗b.

Next we impose incomplete correlation on X∗b. To this end fix the reference empirical correlation
matrix R̄x with entry r̄x j x` and fix a reference column X∗` , ` , j, say ` = 1, for all j = 2, . . . , p.
Fix a reference correlation function Cor(·) consistent with R̄x (see Appendix A.2.3). Use notation
(X` j)b = (X`, X j)b (here sorting/permuting is dimension invariant). Introduce new step

Algorithm A.2.1. (Step 4: incomplete correlation imposition)

For b = 1, . . . , B

4.1) Apply random permutation (X∗` j)b 7→ Zb such that Cor(Zb) ≈ 0,

Iteratively apply 4.1) until Cor(Zb) ≈ 0. Save each intermediate result Z′b.

If after n cycles Cor(Zb) , 0 return Z′′b = minCor(Z′b) Z′b.

4.2) Sort (X∗`l)b 7→ Ub according to sign(r̄x j x`) = sign(Rb), under constraint ||r̄x j x` || ≤ ||Rb||

4.3) Compute extremal correlation Rb = Cor(Ub).

4.4) Compute n × 1 vector I(αb) of n i.i.d. items drawn ∼ B(αb), αb = 1 − (r̄x j x`/Rb).

4.5) Compute (X∗
−, j`)b = [I(αb) ◦ Zb] + [1 − I(αb) ◦ Ub].

Sort n × 2 matrix (X∗
−, j`)b by reference (X∗

−,`)b. Return (X∗
−, j)b only.

Repeat step 4.1 to 4.5 for all j = 2, . . . , p columns. Then merge to obtain n × p realization

(X∗−)b = (U`, X∗−,2, . . . , X
∗
−, j, . . . , X

∗
−,p)b.

Due to random fluctuations constraints in point 4.2 need not being always satisfied. Then αb > 1,
I(αb) cannot be computed, and vector (X∗

−, j)b is void. Here letting R̄x be rank-based aims at miti-
gating this aspect. Additionally we could replace the faulty Rb, ∀h, with an expectation estimate
R̄ = 1

B
∑B

b Rb (median or maximum could do it as well). While such replacement seems reasonable
we practically observe that entirely discarding realizations with a missing column, or similarly set-
ting (X∗

−, j)b = 0 if αb > 1, is the least biasing approach and we employ the latter. In order to reduce
computation run-time step 4.1 of Algorithm A.2.1 is programmed in C++ and then imported into
an R function that implements the rest of the Algorithm.



A.2. INCOMPLETE CORRELATION IMPOSITION 87

A.2.3 Rank correlation index

In order to insure the most stability in step 4.3) of Algorithm A.2.1 we employ a rank-correlation
index instead of a moment-based one. Our rank index is similar to Spearman’s. However to stress
the influence of potential ties our ranking function uses the minimum ranking value between ties
contrary to classic Spearman that uses the average.
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Appendix B

Method details: IPD inference
reconstruction

We give further details about Section 2.3, page 40.

B.1 Maximization objective functions

We consider log-likelihoods of Section 2.3.1, page 40. We give expressions for the log-likelihood (2.32)
that uses a p.s.s. term (see Section 2.3.2) under different plug-in options (Section 2.3.3, page 41).
These expressions are written in C++ to avoid excessive computation time during optimization. We
perform all likelihood maximization using package maxLik (see Appendix D.1, page 143), and ob-
tain MLE β̂. We tested the expressions output for consistency with standard modules. In particular
MLE output was compared with that of glm or coxph. Optimization of our expressions did not
yield materially different outputs from that of the standard modules (results not shown).

B.1.1 Log-likelihood expressions

Let data X = (t, y,Z) include a n × 1 time variable, t ∈ R+ , a binary or continuous outcome, yn×1,
and a n × (p − 2) set of covariates Z. When clear from context Z is understood as (1,Z) after
inclusion of an intercept unity vector-column. Approximately Normal 95% CIs are computed as
β̂ ± 1.96σ̂ where σ̂ is the variance estimate for β̂. If not otherwise specified we compute AIC as
2k − 2`(β̂) where k is the length of the MLE vector and `(β̂) is the value of the log-likelihood at its
maximum.

Linear model

Here we simply write X = (y,Z) where y is a n × 1 continuous outcome and the time variable is
incorporated in the n× k covariate-set Z, k = (p− 1). Reduced data is s = Z>y and s′ = y>y. In the

89
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linear case we directly use the OLS close form solution,

β̂ =
(
Z>Z

)−1
s. (B.1)

The error term is
ê = (s′ − Zβ̂)>(s′ − Zβ̂) (B.2)

An estimate for the covariance matrix is

Σ = ê
(
Z>Z

)−1
. (B.3)

The variance is σ̂2 = diag(Σ). An estimate for the log-likelihood maximum is

`max =
ê

2
√

ê/(n − k)
. (B.4)

An AIC estimate is 2k − 2`max.

Poisson model

Here outcome y is an event indicator taking value 0 (no event or censored) or 1 (event). Covariate
set Z is modeled alongside time offset-variable t. The used log-likelihood in compact form is

`(β) = β>s − 1>p(β,Z), (B.5)

where s = Z>y and p(β,Z) = exp(Zβ + log(t)) where 1> denotes the 1 × n unity vector and t the
n × 1 time vector. The exp(·) operator is applied element-wise. Gradient and Hessian of (B.5) are
given in Section B.1.2.

Logistic model

Here y is a binary outcome and the time variable is incorporated in the covariate-set Z. The used
log-likelihood has the same form of (B.5) where p(β,Z) = log

(
1 + exp(Zβ)

)
, and exp(·) is applied

element-wise. Gradient and Hessian are given in Section B.1.2.

Cox model

Here, outcome y is an event indicator taking value 0 (no event, or censored), or 1 (event). Denote
with X(t) = sortt(X) the data X sorted by ascending order of time variable t, where sorta(v) is the
function sorting v by ascending order of a. If a = v we simply write sort(v) to denote sorting by
ascending order of v. Accordingly denote with y(t) and Z(t) the event-indicator and covariate-set
sorted by time. Denote the sub-set of times where an event occurs with t′1, . . . , t

′
j, . . . , t

′
T where



B.1. MAXIMIZATION OBJECTIVE FUNCTIONS 91

T ≤ n. Let β be a k × 1 parameter vector. To reduce computation time we use an approximate
definition for the risk set. Let the extended, or sub-distribution, risk set be n × 1 vector

Rβ(t) = sort

∑
ti<t

rev
(
exp(Z(ti)β)

) , (B.6)

where
∑

ti<t denotes cumulative summation over censored and uncensored event-times, Z(ti)β is a
dot product, and rev(·) denotes the inverse of sort(·) function. Function exp(·) is applied element-
wise. Next, compute the canonical risk set by discarding the subset of elements with no event,

Rβ(t′) ≈
{
Rβ(ti) : y(ti) = 1, i = 1, . . . , n

}
(B.7)

where Rβ(t′) is a T × 1 vector and Rβ(ti) is the i-th element of (B.6). The approximation in (B.7)
is typically very good and computationally faster. The Cox log-likelihood denominator is

F (Z, β) =

T∑
j

Rβ(t′j), (B.8)

where Rβ(t′j) is the j-th element of (B.7).
If a stratification variable is modeled (B.8) is computed for each stratum. Then a stratified

denominator is obtained after summation over the stratum-specific denominators. This may be
typically useful in meta-analysis when each stratum denotes an independent data source and a
stratum models one source-specific baseline cumulative hazard. The Cox partial log-likelihood is

`(β) = β>s −F (Z, β), (B.9)

where s = Z>y, and F (Z, β) is as in (B.8). Gradient and Hessian of (B.9) are given in Section B.1.2,
below.

B.1.2 Linearized gradients and Hessians

To speed up computations we employ a linearized version of the gradients and Hessians that is
approximately equal to the original respective expressions.

Poisson model

The gradient of (B.5) is computed as the 1 × k vector

∇`(β) = s> − g, (B.10)

where g = 1>A with A = Z ◦ p(β,Z) and ◦ denotes column-wise Schur (element-wise) multiplica-
tion, with p(β,Z) = exp(Zβ + log(t)) as above. An approximate Hessian is given by the linearized
operation

∇2`(β) ≈ (−1)>B, (B.11)
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where B = A>Z and A is defined as above. As usual (Efron and Hinkley, 1978) minus (B.11) is
used as working Fisher Information1 for normal approximations of the MLE.

Logistic model

The gradient here is computed as in (B.10), with

p(β,Z) =
exp(Zβ)

1 + exp(Zβ)
.

An approximate minus log-likelihood Hessian is computed as in (B.11) where

A = Z ◦ p(β,Z) ◦ 1 − p(β,Z),

and p(β,Z) is defined exactly as above.

Cox model

Consider the n × k matrix

A = sort

∑
ti<t

rev
(
exp(Z(ti) ◦ Z(ti)β)

) , (B.12)

where ◦ here denotes column-wise Schur (element-wise) multiplication. Let A′ = A ◦ (1/B) where
multiplication is column-wise and B = Rβ(t) denotes the n× 1 vector of extended at-risk counts as
in (B.6). Let the T × k weight matrix of event-labeled rows be

C =
{
A′(ti) : y(ti) = 1, i = 1, . . . , n

}
, (B.13)

where A′(ti) is the i-th row of (B.12) labeled by the event indicator y(ti) = {0, 1}. Let C′ = 1>C be
a 1 × k weights vector where 1> is a 1 × T unity vector. The gradient of (B.9) is computed as the
1 × k vector

∇`(β) ≈ s> −C′. (B.14)

With a stratification variable all computations up to (B.13), included marginal summation after-
ward, are repeated for each stratum. An overall gradient is given by element-wise summation of
stratum-specific gradients.

An approximate Hessian is computed as follows. Denote with A the n × k matrix with row

A(ti) = sort

∑
ti<t

rev (w(ti))

 , (B.15)

1With an abuse of notation we often refer to the diagonal of the inverse of (B.11) as simply Fisher Information. For
k > 1 this approach clearly simplifies the appraisal of the whole information by only restricting to the diagonal (see
Section 2.3.1, page 40).
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and
w(ti) = cz(ti)>z(ti),

where c = exp
[
z(ti)β

]
and z(ti) is the 1 × k row-vector of time-ordered covariate matrix Z(t). Let

A′ = A ◦ (1/B) as above. From A′ compute the matrix C of only event-labeled rows, as in (B.13),
and marginally sum up to get the 1 × k vector C′. Next row-stack C′ onto itself k times to get the
k × k matrix C′′. Define the n × k matrix

B′ = sort

∑
ti<t

rev
(
Z(t) ◦ exp(Z(t)β)

) , (B.16)

Similar to above let B′′ be the shrunk T × k matrix after keeping only the event-labeled rows of
B′ Define the n × k matrix D = B′ ◦ (1/B2) where B is defined as above. Define the shrunk T × k
matrix D′ after keeping only the event-labeled rows of D. Define the k × k matrix D′′ = (D′)>B′′.
An approximate Hessian is

∇2`(β) ≈ (−1)
[
C′′ − D′′

]
. (B.17)

With a stratification variable computations up to (B.17) are repeated for each stratum. An overall
Hessian is given by element-wise summation of stratum-specific Hessians.

B.2 Post-simulation trimming of outliers

Likelihood maximization on a simulated IPD may be occasionally unstable, due to random varia-
tion or bias in the IPD realization. The resulting MLE might be singular or an outlier and needs
to be discarded. To do so we assess the range of the generated MLE distribution in the follow-
ing. Compute the median of the generated MLE distribution and the median absolute deviation
(m.a.d.). The latter is defined as the median of the difference between each sample point and the
median, in absolute value. If the maximum (minimum) distribution value exceeds the median ±
m.a.d. times 3.5, then keep only the distribution elements ranging between the median ± m.a.d.
times 2.5. The latter is a conservative choice to avoid unrepresentative heavy tails values. We do
not discard outliers during cumulative hazard estimation.

B.3 Expressions for the cumulative hazard estimate

We use a general Breslow expression to compute a cumulative hazard estimate, and derive a
Nelson-Aalen estimate as special case. The cumulative risk set is∑

t′j<t

1
Rβ̂(t

′
j)
, (B.18)

where Rβ̂(t
′
j) is as (B.7) except replacement of β with its MLE β̂. Let the Breslow nominator be

exp(β̂>z̃), (B.19)
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where z̃ is a (p − 2) × 1 vector of predictive covariate values. The Breslow estimate is given by

A(t′|β̂, z̃) =
∑
t′j<t

exp(β̂>z̃)
Rβ̂(t

′
j)
. (B.20)

If z̃ contains a binary treatment/control covariate we stratify computations accordingly. A
Nelson-Aalen estimator is derived if we have a single and binary covariate g as

A(t′g) =
∑
t′g j<t

1
R(t′g j)

, g = 0, 1.

Because these c.h.e. expressions are based on a slightly different risk-set computation than
usual, we checked their output for consistency with those of standard reference tools like survfit.
Our expression did not lead to major differences in output compared to survfit (results not
shown).

B.4 Computation of an “expected” cumulative hazard curve

In Section 2.3.6, page 42 we consider an expected cumulative hazard estimate, as the average across
all c.h.e. simulations. To this end denote with A∗b and t∗b the marginal y and x axis of A∗b(t), that
is the cumulative event-count and event-time T × 1 vectors ∀b = 1, . . . B. Denote with A∗ib and t∗ib
the element of A∗b and t∗b respectively for i = 1, . . .T event-time points. The time-events count T
should vary from sample to sample but for simplicity let keep it fixed for the moment.

To obtain a single overall graph we separately average each axis of the c.h.e. simulation to
obtain Ā∗(t̄∗), where

Ā∗ =
(
Ā∗1, . . . , Ā

∗
i , . . . , Ā

∗
T

)
, (B.21)

is the overall y-axis with

Ā∗i =
1
B

B∑
b

A∗ib, ∀i = 1, . . . ,T, (B.22)

being the average cumulative events-count value at event-time point i, and where

t̄∗ =
(
t̄∗1, . . . , t̄

∗
i , . . . , t̄

∗
T

)
, (B.23)

is the overall x-axis with

t̄∗i =
1
B

B∑
b

t∗ib, ∀i = 1, . . . ,T, (B.24)

being the average event-time value at point i.
We now account for different time-event lengths between simulations. We consider Tmax =

maxT (T1, . . . ,Tb, . . . ,TB) where Tb is the number of time-events in realization A∗b(t). If the c.h.e.
is Nelson-Aalen we intend Tb = T0b ∧ T1b and Tmax = T0,max ∧ T1,max. Let T ∗, accordingly
T ∗ = T ∗0 ∧ T ∗1 if c.h.e. is Nelson-Aalen, be the reference IPD count of time-events.
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Algorithm B.4.1. (Average c.h.e. Ā∗(t̄∗))

1) For all b = 1, . . . , B, increment A∗b by Tmax − Tb points.

Accordingly, increment t∗b by Tmax − Tb points.

2) Compute average marginal dimension according to (B.21)-(B.22) and (B.23)-(B.24), page 94
(where T = Tmax).

3) For each marginal dimension, discard all points with index greater greater than T ∗, T ∗ ≤
Tmax.

If T ∗ is not available, use T̄ = 1
B
∑

b Tb.

Denote with
∆t∗b = (t∗2 − t∗1, . . . , t

∗
i − t∗i−1, . . . , t

∗
Tb
− t∗Tb−1)b (B.25)

the vector of time jumps for simulation b = 1, . . . , B. Denote with d̄t∗b the average of (B.25). Point
1) of Algorithm B.4.1 is implemented as follows.

Algorithm B.4.2. (Points augmentation)

1) Extend y-axis by repeating its last time-point value, A∗Tbb, Tmax − Tb times.

2) Extend x-axis by evenly sequencing Tmax−Tb points between t∗Tb
+d̄t∗b and t∗Tb

+
[
(Tmax − Tb) d̄t∗b

]
.

Repeat for all b = 1, . . . , B under the approximation of constant average time-jump increment.

B.5 One covariate: sub-optimal reconstructions

We introduce reconstruction alternatives especially useful when exact information on data correla-
tion is missing.

B.5.1 Survival models: incomplete at-risk denominators

Imagine we want to implement (1.2) given T large and baseline counts (n11, n01), that is the total
number at risk in each arm at study start t = 1. We assume numerator s is given and time events can
be right-censored. Because the exact count of at-risk units for t > 1 is missing we need a procedure
to recover them. The probability that an event occurs in arm x = 1, at any time, is p1 = s/T . We run
T − 1 independent Bernoulli experiment with parameter p1 that is yt ∼ Bern(p1), for t = 2, . . . ,T .
Denote with Yt =

∑
t<T yt the simulated cumulative sum of at-risk units at time index t = 2, . . . ,T .

The simulated counts of at-risk units in arm 1 is n∗1 = (n11, n11 − Y2, . . . , n11 − Yt, . . . , n11 − YT ).
To simulate risk-sets in x = 0 we take 1 − yt, t = 2, . . . ,T . Denote with Y−t =

∑
t<T (1 − yt)

the cumulative sum of at-risk units in arm 0. The simulated counts of at-risk units in arm 0 is
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n∗0 = (n01, n01−Y−2 , . . . , n01−Y−t , . . . , n01−Y−T ). For both n∗1 and n∗0 we set to zero possible negative
values at the end of the respective series. This method would only work when the covariate x
is categorical. For more than two categories the above procedure can be generalized through a
Multinomial sampling scheme.

The described simulation method does not account for right censoring. That is all censored
units never leave the risk-set (1.2) that defines to a Fine-Gray sub-distribution log HR with all
censoring events coded as a competing event. Hence we need to incorporate censoring information
in the above procedure. A different approach is to now assume all censored units leave the risk
set in each arm. Then we may replace p1 with p̄1 = (s/T ) + [(n11 − s)/(n − T )], that is p1 plus
the probability that one censoring occurs in arm 1 at any time; n = n11 + n01. Here we sample
yt ∼ Binom(ν, p̄1) where ν = 1 + [(n11 − s)/T ] is an adjusted size parameter that is an unit added
to an average count of censoring events, which we always round to be integer-valued. To define
the risk-sets in group x = 0 we use the term (ν − yt), t = 2, . . . ,T . Cumulative at-risk sums are
computed as above. This describes a model in which the censoring process is exhaustive at a sort
of constant rate. We could find a compromising approach by averaging between leave-all-in and
leave-all-out outputs. Alternatively we could average directly on the two types of risk-sets and
proceed with a single estimation step. The single advantage of reproducing risk-sets in this way is
that all input summaries are, typically, more easily recovered since no correlation is needed. The
proposed risk sets can also be used to compute an approximation of the Nelson-Aalen estimate.

B.5.2 Knowledge of likelihood numerator

Imagine IPD consists of one outcome and only one continuous covariate. The type of application
here may be GLM. If a p.s.s. from reference IPD is available (see point 3. from Section 2.3.3,
page 41) to be plugged in the numerator of (2.32) then the dependence structure between outcome
and covariate does not need to be known. Here IPD reconstruction needs only execution up to step
2) of Algorithm 2.1.2, page 25.

B.6 Data examples

B.6.1 Data list

We give the list IPD examples we use in our experiments. Data from IST Genova is kindly allowed
for methodological purposes only and it is otherwise protected. A number of IPD examples are
taken as real data excerpts from well known R packages.

B.6.2 Data re-organization

IPD of Table B.1 is re-organized in different batches as explained in Section 2.4.3, page 46. To
automatize this re-organization we adopt a convention on the order of IPD marginal variables. For
each data-set we put the time variable as first column and the event outcome as second column. If
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Data name Source

aml package survival
mgus package survival
mgus1 package survival
lung package survival
rats package survival
aidssi package mstate
abortion package etm
sir.cont package etm
bc package flexsurv
diabetes package timereg
cirrhosis University of Oslo
oncocard IST Genova
prost Prostate cancer (Royston and Sauerbrei, 2008)
gbsg GBSG breast cancer (Royston and Sauerbrei, 2008)
glio Glioma (Royston and Sauerbrei, 2008)
kidney Kidney cancer (Royston and Sauerbrei, 2008)
myel Myeloma (Royston and Sauerbrei, 2008)
pbc PBC (Royston and Sauerbrei, 2008)
rott Rotterdam breast cancer (Royston and Sauerbrei, 2008)
wh Whiteall1 (Royston and Sauerbrei, 2008)

Table B.1: List of employed data-sets with source origin. All examples from (Roys-
ton and Sauerbrei, 2008) can be found at “portal.uni-freiburg.de/imbi/Royston-
Sauerbrei-book/index.htmldatasets”. Data from University of Oslo can be found at
“http://www.uio.no/studier/emner/matnat/math/STK4080/h12/r-trial-project.html”. Data from IST
Genova is kindly allowed by Dr P Bruzzi, but masked due to privacy issues.

any, we put a continuous variable as third column. Similarly, we put a treatment outcome as fourth
column. All other variables, if any, have no specific order. Appropriate instructions are given to
mark the third column as the outcome variable to use, if the model is a linear regression.
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Appendix C

Further results

C.1 IPD reconstruction

We report further results on IPD reconstruction from Section 3.1, page 49.

C.1.1 Similarity by increasing data sample size

In Table C.1 we give results similar to Table 3.1 but stratified by IPD sample size. In batch III
and IV similarity percentages under method 4 increase until stratum (400, 1000] and decrease af-
terward. In batch IV the decrease is even stronger. Performance decline in batch III and IV is due
to Johnson distribution failure to well recover third and fourth moments features of some continu-
ous variables as shown in Table 3.1. In Table C.2 we see that the fraction of wrongly reproduced
continuous variables seems to occur more frequently in data-sets with more than thousand records
in batch III and IV. The issue is more evident in data batch IV where the similarity percentage
for the third and fourth moments is only 31.43 and 28.57 for data-sets with more than thousand
records, under method 2 and 4 respectively. In Table C.3 we count the total number of continuous
variables in each data-set from batch III and IV and for each sample size stratum. Similarly we
count all correct solutions for the unknown Johnson parameter vector. Code 0 means no error while
a code greater than zero means issues during parameters optimization, that indicates the Johnson
solution might not comply to all moments constraints. Hence we count the number of continuous
variables having a faulty Johnson solution, stratified by sample size. For method 4 we also compute
the percentage of IPD reconstructions with dissimilar third and fourth moments relative to original
IPD value by sample size. Accordingly we compute the median difference between simulated and
original third or fourth degree moment. The number of included continuous variables and faulty
Johnson solutions increase from batch III to IV. In particular from batch III to IV the overall count
of continuous variables increases from 49 to 156 in IPDs with more than thousand records. Sim-
ilarly from batch III to IV the overall count of faulty Johnson solutions increases from 6 to 58
in IPDs with more than thousand records. The percentage of IPD reconstructions with dissimilar
fourth moment relative to IPD reference jumps from 15.38 %, in batch III, to 71.43 %, in batch

99
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Table C.1: Percentage of IPD reconstructions satisfying overall similarity conditions defined in
Section 2.2.4 (page 38) relative to original IPD reference, for increasing IPD sample size. Batch:
see Section 2.4.2 (page 44). For batch see Table 3.1.

Overall similar (%)

Sample size Method Batch I. Batch II. Batch III. Batch IV.

< 100

1 0.00 18.92 3.03 0.00
2 0.00 64.86 18.18 0.00
3 0.00 21.62 9.09 0.00
4 42.86 59.46 51.52 31.82

(100,400]

1 0.00 19.75 0.00 0.00
2 9.52 77.78 6.85 0.00
3 0.00 17.28 0.00 0.00
4 100.00 76.54 49.32 36.36

(400,1000]

1 3.12 17.14 0.00 0.00
2 25.00 75.71 19.15 2.08
3 43.75 15.71 2.13 25.00
4 87.50 75.71 70.21 77.08

> 1000

1 0.00 9.43 0.00 0.00
2 37.25 84.91 31.11 2.86
3 0.00 9.43 0.00 0.00
4 90.20 75.47 57.78 24.29

IV, in the last sample size stratum. Interestingly half of the dissimilar simulated fourth moments
in batch IV shows only a mild discrepancy value of 1.96 from its IPD reference in sample sizes
greater than thousand.
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Table C.2: IPD batch III and IV: percentage of IPD reconstructions satisfying similarity conditions
defined in point 3 and 4 of Section 2.2.4 (page 38) – difference between simulated and IPD original
third (fourth) moment – by sample size. Correlation similarity is also reported (see point 5 of
Section 2.2.4).

Similar (%)

Batch III. Batch IV.

Sample size Method Moment 3rd and 4th Correlation Moment 3rd and 4th Correlation

< 100

1 9.09 27.27 0.00 4.55
2 63.64 21.21 50.00 0.00
3 9.09 78.79 0.00 59.09
4 63.64 75.76 59.09 59.09

(100,400]

1 0.00 21.92 0.00 0.00
2 52.05 20.55 40.00 0.00
3 0.00 98.63 0.00 80.00
4 56.16 91.78 49.09 74.55

(400,1000]

1 2.13 25.53 29.17 2.08
2 74.47 27.66 83.33 2.08
3 2.13 97.87 29.17 91.67
4 76.60 91.49 85.42 87.50

> 1000

1 0.00 51.11 0.00 8.57
2 71.11 48.89 31.43 10.00
3 0.00 88.89 0.00 82.86
4 71.11 82.22 28.57 84.29
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C.2 IPD inference reconstruction

We report results on IPD inference simulation from Section 3.2, page 53.

C.2.1 Inferences reconstruction in data batch I

This data batch is explicitly designed to perform Cox regression with one binary/categorical co-
variate, and respective stratified Nelson-Aalen estimation. In all but one case the covariate is a
binary treatment/control indicator. Results are presented by simulation method and IPD simulation
similarity to its reference. For additional results stratified by estimate’s rank, or IPD bootstrap type
see Appendix C.2.5, page 118 (Table C.15, page 118, and Table C.22, page 125). Additional results
for the x-axis, the event-time line, of the Nelson Aalen graph can be found in Appendix C.2.6.

Table C.4, page 107, shows results on the average HR and r.f.i.d. simulation. In all but one case
the log-likelihood Hessian is scalar and the r.f.i.d. is one-to-one with the Fisher Information. Re-
sults from data wh.4 are discarded since bias there is clearly outlying (see Section 3.4.1, page 62).
Mean and dispersion of the difference between simulated and original HR are always acceptable
relative to mean and s.d. of original IPD HR, quite regardless of method and IPD similarity to
reference. The difference dispersion seems however lower if IPD is similar to original reference or
under NORTAmax resampling (methods 1-3 to 3-4). Difference dispersion is also low if the orig-
inal IPD Cox likelihood numerator is known (methods 3-1, 3-2, 3-3, 3-4). Here the benefit seems
stronger if IPD is dissimilar to reference. The mean difference between simulated and original
r.f.i.d. is generally tightly close to zero quite regardless of simulation method and IPD similarity to
reference. Overall performance under ordinary NORTAmax resampling (method 1-3 against 1-4)
is rather comparable.

Table C.5, page 108, shows results on empirical 95% quantiles of the HR simulation versus any
of the normal, basic, Bca, and percent original IPD bootstrap CIs. Additional to results from data
wh.4 also results from data rats.2 are discarded (see Section 3.4.1, page 62, and Appendix C.3.5,
page 138). Overall difference between reconstructed and IPD quantiles is comparable with that
observed for the HR in Table C.4. The difference is tighter around zero under ordinary NORTAmax
resampling (method 1-3 and 1-4) quite irrespective of moment degree and of IPD similarity to
reference. Under non NORTAmax resampling, knowledge of the IPD Cox likelihood nominator or
its average estimate (method 3-1, 3-2, 2-3 and 3-3) helps mitigating bias.

Table C.6, page 109, shows results on the cumulative events-count (y-axis) of the average
Nelson-Aalen simulation stratified by one treatment covariate. We consider y-axis quartile values,
or an aggregate index, also including y-axis range and mean value. Focus is on the difference be-
tween the simulated and IPD original y-axis quartile or its aggregate index. The average quartile
difference is remarkably close to zero almost everywhere. Column ’Biased’ reports two types of
percentages. On the left it reports the percentage of the aggregate index differences exceeding ±0.1.
On the right it reports the same percentage after excluding the difference at the y-axis maximum,
that by the cadlag property of the Nelson-Aalen estimate corresponds to the difference at the last
event-time point. These percentages roughly decrease from method 1 to 4 and by excluding values
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at the last event-time point it reduces the percentage of differences greater than ±0.1 even further,
indicating that most bias accumulates toward the end of the event-time line. Table C.26, page C.26,
reports the difference between the simulated and IPD original event-time line (log scale). In gen-
eral mean and s.d. difference are lower under NORTAmax resampling (methods 3 and 4) in both
treatment groups and quite regardless of IPD similarity to reference.

C.2.2 Inferences reconstruction in data batch II

This data batch is explicitly designed to perform GLM regression of Gaussian, Poisson and Bi-
nomial family with one continuous covariate. The batch is divided into IPDs with continuous or
binary outcome, depending if regression is Gaussian or not respectively. We consider the average
MLE, and r.f.i.d. vector simulation relative to original IPD value. Here intercept and slope esti-
mates are pooled together. We consider 95% empirical quantiles of the MLE simulation, relative
to classic IPD bootstrap intervals. Results are presented by simulation method and IPD similarity
to its reference. For additional results stratified by estimate rank, model, or IPD bootstrap type see
Appendix C.2.5, page 118 (Table C.16, page 119, Table C.19, 122, and Table C.23, page 126).

Table C.7, page 110, shows results on the average MLE and r.f.i.d. vector simulation. Few
points of the difference between simulated and original r.f.i.d. (1% of the total) exceeding ±100 are
discarded. The simulated r.f.i.d. may explode in an isolated run due to random log-likelihood fluc-
tuations especially if the original IPD r.f.i.d. estimate is also unstable (for instance see occasional
explosion of original IPD r.f.i.d. dispersion in the top right half of the table). Typically such outliers
should be automatically trimmed away but few unrepresentative points may remain in the sample.
Most of the discarded points are linked to intercept estimation in the Binomial or Gaussian regres-
sion (result not shown). The remaining reported values exceeding ±1000 are set to Infinity (Inf)
for conciseness. Overall difference between simulated and original MLE is typically lower if IPD
is similar to reference. Here the difference mean and dispersion are always acceptable relative to
mean and s.d. of original IPD MLE under NORTAmax resampling (methods 1-3 to 3-4). Ordinary
NORTAmax resampling (method 1-3, or 1-4) performs quite comparably irrespective of marginal
moment maximal degree and only roughly irrespective of IPD similarity to reference. Although
non NORTAmax IPD re-ordering performs very well – see method 1 and 2 in Table 3.1, page 50 –
we cannot observe a corresponding good IPD inferential reconstruction as shown by typically high
difference dispersion’s under method 1-1 and 2-2 quite irrespective of IPD similarity to reference.
This may actually indicate that Algorithm A.2.1 introduces unnecessary distorting noise even if
correlation is scalar. Here knowledge of the original IPD likelihood numerator (method 3-2) seems
to mitigate bias if IPD seems at least similar to reference. Similar patterns are observed for the
r.f.i.d..

Table C.8, page 111, shows results on empirical 95% quantiles of the HR simulation versus any
of the normal, basic, Bca, and percent original IPD bootstrap CIs. Analogously to above we discard
few instances of bias exceeding ±100 (1% of the total sample). Generally the overall difference
between reconstructed and IPD quantiles seem quite large except under NORTAmax resampling
(method 1-3 and 1-4) where the quantiles difference mean and dispersion is acceptable, relative to
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mean and s.d. of the original IPD value. This outcome roughly holds irrespective of IPD similarity
to reference.

C.2.3 Inferences reconstruction in data batch III

This data batch is explicitly designed to perform GLM and Cox regression with two continuous
covariates. Used GLM families are the Gaussian, Poisson and Binomial. Breslow estimation is
also performed. This batch is divided into IPDs with continuous or binary outcome, depending if
the performed regression is or it is not Gaussian. We model a log time offset in the GLM Poisson
regression which amounts to perform a Cox regression under a parametric assumption of constant
baseline hazards. For additional results stratified by estimate rank, model, or reference bootstrap
type see Appendix C.2.5, page 118 (Table C.17, page 120, Table C.20, page 123, and Table C.24,
page 127). Additional results for the x-axis, the time line, of the average Breslow simulation can
be found in the Appendix C.2.6.

Table C.9, page 112, shows results on the average MLE and r.f.i.d. vector simulation. We dis-
card difference points exceeding ±100 for a total of 1% of the entire sample. The overall difference
between simulated and original MLE is comparably lower under ordinary NORTAmax resampling
(method 1-3 and 1-4) quite regardless of moment degree and of IPD similarity to reference. Here
the difference mean and dispersion are always acceptable relative to mean and s.d. of original IPD
MLE. The reconstruction performance is also generally better if IPD is similar to reference. A
similar pattern is observed for the r.f.i.d..

Table C.10, page 113, shows results on empirical 95% quantiles of the HR simulation versus
any of the normal, basic, Bca, and percent original IPD bootstrap CIs. We discard bias exceeding
±100 (2% of the total sample). Generally the overall difference between reconstructed and IPD
quantiles seem quite large except under NORTAmax resampling (method 1-3 and 1-4) where the
quantiles difference mean and dispersion is acceptable, relative to mean and s.d. of the original IPD
value. This outcome roughly holds irrespective of IPD similarity to reference. If IPD is not similar
to reference non ordinary NORTAmax resampling (method 1-1 and 1-2) perform also relatively
well.

Table C.11, page 114, shows results on the cumulative events-count (y-axis) of the average
Breslow simulation for a single continuous covariate. Here we have fewer IPD examples available
for Cox and Breslow modelling. We consider y-axis quartile values or an aggregate index also
including y-axis range and mean value. Focus is on the difference between the simulated and
IPD original y-axis quartile or its aggregate index. The average 1st or 2nd quartile difference is
remarkably close to zero almost everywhere. Several approaches yield unacceptable mean bias at
the third quartile if IPD is not similar to reference. As seen in Table C.6, page 109, bias generally
accumulates toward the end of the time-line (first column of ’Biased’). Excluding bias at the last
time point, bias remains always below ±0.1 (second column of ’Biased’) under most methods
especially if IPD is similar to its reference. Overall difference seems slightly lower under ordinary
NORTAmax sampling (method 1-3 and 1-4), irrespective of IPD similarity reference. Table C.27,
page 130, reports the difference between the simulated and IPD original event-time line (log scale).
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Mean and s.d. difference are generally lower under NORTAmax sampling (methods 1-3 to 3-4)
regardless of IPD similarity to reference.

C.2.4 Inferences reconstruction in data batch IV

This data batch is designed to perform the same regression models of batch III but using mixed
binary and continuous covariates instead. Overall we model at most three covariates. For addi-
tional results stratified by estimate rank, model, or reference bootstrap type see Appendix C.2.5,
page 118 (Table C.18, page 121, Table C.21, page 124, Table C.25, page 128, and Table C.28,
page 131). Additional results for the x-axis, the event-time line, of the Breslow graph can be found
in Appendix C.2.6. Table C.12, page 115, shows results on the average MLE and r.f.i.d. vector
simulation. Difference points exceeding ±100 are discarded for a total of 2% of the entire sample.
Similar to batch III the overall difference between simulated and original MLE is here comparably
lower under ordinary NORTAmax resampling (method 1-3 and 1-4), quite regardless of moment
degree and of IPD similarity to reference. Difference mean and dispersion are always acceptable
relative to mean and s.d. of original IPD MLE. NORTAmax performance is particularly remarkable
if IPD is dissimilar to reference, which comprises the majority of IPD examples here. NORTA-
max IPD reconstruction was relatively worst mainly due to Johnson marginal inaccuracies at fourth
moment reconstruction (see Table 3.1, page 50, or Table C.2 and C.3, pages 101 and 102). How-
ever those fourth moment inaccuracies seem to not excessively affect IPD inference reconstruction
which remains good here. Similar bias patterns are observed for the r.f.i.d..

Table C.13, page 116, shows results on simulated empirical 95% interval percentiles for the
MLE vector elements. Reference percentiles are any of the type normal, basic, percent, and Bca
bootstrap CIs, computed on original IPD. We discard bias exceeding 100 in absolute value, which
amounts to 2% of the total sample. Overall ordinary sampling (methods 1-1, 1-2, 1-3, and 1-
4) display lower bias patterns for both percentiles quite regardless of IPD similarity to reference.
Difference dispersion is yet lower under ordinary NORTAmax resampling (method 1-3 and 1-4), if
IPD is similar to reference.

Table C.14, page 117, shows results on the cumulative events-count (y-axis) of the average
Breslow simulation stratified by one treatment covariate. Similar to previous results we often see
a remarkable performance with widespread near zero average bias at the first two quartiles of the
y-axis. Method 1-1 to 3-1 yield unacceptable mean bias (over 1000 indicated with Inf) if IPD is not
similar to reference, especially in treatment group. This is likely due to few exploding MLE cases
under treatment. Exploding bias often occurs at the third quartile for some methods confirming
the notion that errors accumulates toward the end of the event-time line. After excluding points at
the last event-time point only few bias instances exceed ±0.1 under most methods and especially
if IPD is similar to reference. In general, however, ordinary resampling approaches (methods 1-2,
1-3, 1-4, but 1-1 excluded) interestingly yield comparable and overall low bias, quite regardless of
IPD similarity to reference. Table C.28, page 131, reports the difference between the simulated and
IPD original event-time line (log scale). As seen in batch III mean and s.d. difference are generally
lower under NORTAmax sampling (methods 1-3 to 3-4) regardless of IPD similarity to reference.
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Table C.4: IPD batch I ( 110 data-sets). Results for the average HR (from Cox regression with
one binary covariate) and reciprocal Fisher Information diagonal simulation. Mean and standard
deviation (± s.d.) of original IPD estimate and of difference between simulated and original IPD
inference (Bias). Biased (%): percentage of differences exceeding ±0.1, ±0.3 and ±0.5. Similar
data: Boolean for similarity of IPD simulation relative to original IPD (see Table 3.1, page 50).
Method: see Table 2.8, page 46. Size: number of IPD examples relative to total batch size (%).

Maximum Likelihood Estimate 1 / Fisher Information diagonal
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1-1
99

73 39 17 0.14 0.65 -0.00 0.45 1 1 0 0.03 0.06 -0.00 0.04
2-1 74 39 17 0.14 0.65 -0.02 0.47 1 1 0 0.03 0.06 -0.00 0.04
3-1 17 2 1 0.14 0.65 -0.03 0.12 0 0 0 0.03 0.06 -0.00 0.00
1-2

74
88 52 22 0.12 0.69 -0.01 0.52 1 1 0 0.04 0.07 -0.01 0.05

2-2 89 52 23 0.12 0.69 -0.03 0.54 1 1 0 0.04 0.07 -0.01 0.05
3-2 21 2 2 0.12 0.69 -0.03 0.14 0 0 0 0.04 0.07 -0.00 0.00
1-3

87
9 2 2 0.16 0.67 0.02 0.09 0 0 0 0.03 0.07 0.00 0.01

2-3 10 2 2 0.16 0.67 0.02 0.09 0 0 0 0.03 0.07 0.00 0.00
3-3 5 2 2 0.16 0.67 0.02 0.09 0 0 0 0.03 0.07 0.00 0.00
1-4

12
23 0 0 -0.01 0.47 0.03 0.07 0 0 0 0.08 0.08 0.00 0.01

2-4 23 0 0 -0.01 0.47 0.04 0.07 0 0 0 0.08 0.08 0.00 0.01
3-4 15 0 0 -0.01 0.47 0.00 0.07 0 0 0 0.08 0.08 0.00 0.00

T
R

U
E

1-1
1

0 0 0 0.47 0.04 0 0 0 0.02 0.00
2-1 0 0 0 0.47 0.04 0 0 0 0.02 0.00
3-1 0 0 0 0.47 0.07 0 0 0 0.02 0.00
1-2

26
31 0 0 0.23 0.49 0.03 0.10 0 0 0 0.01 0.01 -0.00 0.00

2-2 31 0 0 0.23 0.49 0.03 0.10 0 0 0 0.01 0.01 -0.00 0.00
3-2 10 0 0 0.23 0.49 -0.01 0.07 0 0 0 0.01 0.01 0.00 0.00
1-3

13
0 0 0 0.02 0.49 0.01 0.04 0 0 0 0.02 0.01 0.00 0.00

2-3 0 0 0 0.02 0.49 0.01 0.04 0 0 0 0.02 0.01 0.00 0.00
3-3 0 0 0 0.02 0.49 0.01 0.04 0 0 0 0.02 0.01 0.00 0.00
1-4

88
7 1 0 0.17 0.67 0.02 0.07 0 0 0 0.03 0.06 0.00 0.01

2-4 8 1 0 0.17 0.67 0.02 0.07 0 0 0 0.03 0.06 0.00 0.00
3-4 3 1 1 0.17 0.67 0.02 0.06 0 0 0 0.03 0.06 0.00 0.00
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Table C.5: IPD batch I ( 109 data-sets). Results for 95% empirical CIs of the HR simulation. Mean
and standard deviation (± s.d.) of original IPD CIs (any of the type percent, normal Bca and basic
IPD bootstrap quantiles) and of difference between reconstructed and IPD quantile (Bias). Biased
(%): percentage of differences exceeding ±0.1, ±0.3 and ±0.5. Similar data: Boolean for similarity
of IPD simulation relative to original IPD (see Table 3.1, page 50). Method: see Table 2.8, page 46.
Size: number of IPD examples relative to total batch size (%).

2.5th Percentile 97.5th Percentile

Biased (%) IPD Value Bias Biased (%) IPD Value Bias
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1-1
99

73 38 17 -0.13 0.61 0.04 0.36 68 32 17 0.49 0.65 -0.10 0.36
2-1 76 38 20 -0.13 0.62 -0.06 0.39 72 36 19 0.49 0.65 -0.01 0.42
3-1 20 8 4 -0.13 0.61 -0.04 0.17 43 13 5 0.49 0.65 0.02 0.26
1-2

73
83 50 23 -0.18 0.64 0.03 0.42 84 42 22 0.51 0.70 -0.14 0.41

2-2 85 49 28 -0.18 0.64 -0.09 0.43 83 44 23 0.51 0.70 -0.02 0.48
3-2 25 10 7 -0.18 0.64 -0.05 0.20 44 16 8 0.51 0.70 0.04 0.31
1-3

87
15 5 4 -0.10 0.63 0.05 0.14 17 4 2 0.53 0.67 -0.00 0.13

2-3 33 10 3 -0.10 0.63 0.02 0.20 40 10 6 0.53 0.67 0.06 0.24
3-3 34 8 3 -0.10 0.62 0.02 0.19 36 11 6 0.53 0.67 0.05 0.24
1-4

12
35 20 10 -0.55 0.57 0.12 0.28 22 10 4 0.55 0.69 -0.06 0.24

2-4 55 31 22 -0.55 0.57 0.08 0.40 61 22 16 0.55 0.69 0.03 0.39
3-4 63 29 20 -0.56 0.58 0.05 0.41 47 22 12 0.55 0.70 -0.02 0.38

T
R

U
E

1-1
1

0 0 0 0.23 0.01 0.09 0.01 0 0 0 0.70 0.01 0.02 0.01
2-1 0 0 0 0.22 0.01 -0.08 0.01 100 0 0 0.71 0.01 0.16 0.01
3-1 0 0 0 0.22 0.01 -0.05 0.01 100 0 0 0.71 0.01 0.19 0.01
1-2

27
32 0 0 0.04 0.49 0.06 0.09 35 0 0 0.45 0.49 -0.01 0.10

2-2 36 3 2 0.04 0.49 0.04 0.14 41 0 0 0.45 0.49 0.02 0.10
3-2 11 0 0 0.04 0.49 0.01 0.06 33 3 2 0.46 0.48 -0.02 0.14
1-3

13
11 0 0 -0.27 0.49 0.02 0.06 5 0 0 0.31 0.47 -0.02 0.05

2-3 32 0 0 -0.27 0.49 -0.08 0.07 48 5 0 0.30 0.47 0.11 0.10
3-3 41 0 0 -0.27 0.49 -0.08 0.07 45 4 0 0.30 0.47 0.10 0.09
1-4

88
10 2 1 -0.06 0.59 0.03 0.09 10 1 0 0.49 0.64 -0.00 0.07

2-4 28 5 1 -0.06 0.59 0.00 0.13 32 8 3 0.49 0.64 0.07 0.17
3-4 26 3 0 -0.06 0.59 0.00 0.12 35 8 3 0.49 0.64 0.07 0.20
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Table C.6: IPD batch I ( 111 data-sets). Results on the marginal y-axis (cumulative events-count)
of the average Nelson-Aalen simulation in control and treatment group. Average bias (difference)
between 1st, 2nd, 3rd y-axis quartile and original IPD value. Biased: percentage of quartile differ-
ences, including that at y-axis range and average, exceeding ±0.1 (first column). Same computation
after excluding difference at y-axis maximum (second column 2). Similar data: Boolean for simi-
larity of IPD simulation relative to original IPD (see Table 3.1, page 50). Method: see Section 2.2.3,
page 38. Size: number of IPD examples relative to total batch size (%).

Control Treatment

Mean bias quartile Mean bias quartile
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1 99 17 6 -0.00 0.00 0.01 19 8 -0.00 -0.01 -0.01
2 74 19 9 -0.00 0.00 0.02 22 11 -0.01 -0.01 -0.01
3 87 12 1 0.00 0.00 0.01 13 2 0.00 0.00 0.01
4 12 15 3 0.01 0.01 0.01 15 4 0.01 0.02 0.03

T
R

U
E

1 1 39 27 -0.01 -0.01 0.09 17 0 0.00 0.00 0.01
2 26 11 1 -0.00 -0.00 0.00 11 1 -0.00 -0.00 0.01
3 13 15 2 -0.00 -0.01 -0.00 13 0 -0.01 -0.03 -0.04
4 88 12 1 -0.00 -0.00 0.01 12 2 -0.00 -0.00 0.01
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Table C.7: IPD batch II ( 241 data-sets). Results for the average MLE (from GLM and Cox
regression with one continuous covariate) and reciprocal Fisher Information diagonal simulation.
Mean and standard deviation (± s.d.) of original IPD estimate and of difference between simulated
and original IPD inference (Bias). Biased (%): percentage of differences exceeding ±0.1, ±0.3 and
±0.5. Similar data: Boolean for similarity of IPD simulation relative to original IPD (see Table 3.1,
page 50). Method: see Table 2.8, page 46. Size: number of IPD examples relative to total batch
size (%).

Maximum Likelihood Estimate 1 / Fisher Information diagonal

Biased (%) IPD Value Bias Biased (%) IPD Value Bias
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1-1
83

35 19 14 12.8 76.1 0.70 28.64 11 7 5 14.8 167.8 -0.05 4.96
2-1 36 20 15 12.8 76.1 2.61 48.07 10 6 5 25.7 314.0 0.21 6.39
3-1 26 13 10 12.8 76.1 Inf Inf 10 5 4 134.6 Inf -0.07 6.53
1-2

23
39 27 22 9.2 41.0 -0.33 6.27 20 13 10 9.3 56.0 -0.13 2.68

2-2 42 30 25 9.2 41.0 9.52 87.47 17 9 8 9.0 56.7 0.24 7.82
3-2 28 16 13 9.2 41.0 10.30 98.95 15 9 7 26.9 236.8 0.45 5.66
1-3

84
26 13 9 12.4 75.4 0.06 1.60 11 7 6 14.5 165.9 -0.09 4.49

2-3 29 13 10 12.4 75.4 2.53 43.12 11 5 4 30.2 333.8 0.03 5.47
3-3 26 13 9 12.4 75.4 5.04 67.81 9 5 4 132.1 Inf -0.19 4.80
1-4

27
29 19 12 7.7 37.6 0.33 5.18 18 12 12 7.1 51.0 0.13 2.72

2-4 31 23 15 7.7 37.6 9.50 94.32 12 8 7 6.6 52.3 -0.04 1.37
3-4 24 15 13 7.7 37.6 9.32 97.53 12 6 5 22.2 221.3 0.05 0.83

T
R

U
E

1-1
17

34 12 4 0.8 7.7 -0.00 0.27 5 1 1 0.3 0.7 0.01 0.18
2-1 32 12 3 0.8 7.7 0.02 0.26 6 2 1 0.3 0.7 -0.00 0.08
3-1 14 4 1 0.8 7.7 0.02 0.20 10 3 1 0.3 0.7 0.01 0.10
1-2

77
30 12 6 10.7 74.7 0.87 27.13 4 2 2 23.9 317.0 -0.13 1.87

2-2 29 12 6 10.7 74.7 0.89 27.29 4 2 2 23.9 317.0 0.02 1.39
3-2 12 5 3 10.7 74.7 0.00 0.35 4 2 1 23.9 317.0 -0.09 2.37
1-3

16
17 5 1 1.5 9.8 -0.01 0.13 8 1 1 0.3 0.7 -0.00 0.08

2-3 20 8 4 1.5 9.8 -0.02 0.18 9 1 1 0.3 0.7 -0.00 0.08
3-3 20 6 2 1.5 9.8 -0.01 0.17 8 1 1 0.3 0.7 -0.00 0.08
1-4

73
10 5 3 11.3 76.5 0.00 0.60 3 2 2 25.3 323.9 -0.32 5.66

2-4 13 5 4 11.3 76.5 -0.03 0.81 5 2 2 25.3 323.9 -0.11 3.48
3-4 11 5 3 11.3 76.5 -0.01 0.80 5 2 1 25.3 323.9 -0.20 3.11
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Table C.8: IPD batch II ( 241 data-sets). Results for 95% empirical CIs of the HR simulation. Mean
and standard deviation (± s.d.) of original IPD CIs (any of the type percent, normal Bca and basic
IPD bootstrap quantiles) and of difference between reconstructed and IPD quantile (Bias). Biased
(%): percentage of differences exceeding ±0.1, ±0.3 and ±0.5. Similar data: Boolean for similarity
of IPD simulation relative to original IPD (see Table 3.1, page 50). Method: see Table 2.8, page 46.
Size: number of IPD examples relative to total batch size (%).

2.5th Percentile 97.5th Percentile

Biased (%) IPD Value Bias Biased (%) IPD Value Bias
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1-1
83

38 23 18 8.5 44.3 -0.32 6.32 38 23 17 12.2 58.2 -0.23 5.24
2-1 47 32 27 7.3 30.4 -1.04 7.96 51 33 25 11.4 51.2 0.46 7.56
3-1 49 33 26 9.1 49.6 -0.58 6.92 50 32 26 14.6 92.1 0.14 8.16
1-2

23
46 33 28 6.2 36.0 0.34 7.70 44 30 22 12.0 47.7 -0.64 7.89

2-2 60 42 36 6.7 36.3 -1.45 8.66 60 44 36 12.3 50.3 0.38 8.87
3-2 57 39 35 7.1 36.7 -0.65 9.60 57 42 35 12.0 49.2 0.72 9.68
1-3

84
32 16 12 9.7 58.1 0.08 3.50 31 17 13 15.4 96.8 -0.11 3.54

2-3 49 32 26 10.0 58.5 -0.60 6.70 51 32 26 15.3 97.4 0.64 7.50
3-3 49 32 26 8.7 48.7 -0.53 6.96 50 32 26 15.4 97.6 0.25 8.05
1-4

27
38 24 19 5.6 33.0 0.06 3.11 40 25 20 10.6 45.6 -0.26 4.82

2-4 57 40 35 6.0 33.7 -0.90 9.00 60 41 33 9.8 44.6 0.66 8.28
3-4 56 37 32 6.0 33.7 -0.77 9.08 55 38 32 9.8 44.6 0.73 8.08

T
R

U
E

1-1
17

51 28 16 0.2 7.7 0.25 1.03 48 27 16 1.6 8.1 -0.26 1.25
2-1 58 33 23 0.2 7.6 -0.62 2.13 57 39 23 1.5 8.1 0.59 1.93
3-1 54 35 25 0.2 7.7 -0.59 2.19 54 33 21 1.6 8.2 0.54 2.08
1-2

77
36 19 12 7.0 41.1 -0.13 4.89 37 19 13 9.3 53.5 -0.09 3.46

2-2 44 29 21 7.0 41.1 -0.82 6.32 45 28 20 9.3 53.4 0.58 5.54
3-2 43 25 19 6.8 41.8 -0.30 4.99 43 27 20 13.1 96.4 0.38 6.37
1-3

16
29 8 4 1.0 9.6 0.03 0.23 27 11 5 2.3 10.2 -0.04 0.25

2-3 55 34 25 1.0 9.6 -0.78 2.69 56 31 22 2.3 10.2 0.63 1.98
3-3 55 33 25 1.0 9.6 -0.76 2.62 54 31 21 2.3 10.2 0.65 2.10
1-4

73
18 8 5 9.1 58.4 0.05 1.57 18 7 4 13.9 98.6 -0.04 2.10

2-4 44 26 20 9.1 58.2 -0.46 6.42 45 26 20 11.1 79.2 0.44 5.83
3-4 43 26 20 8.7 55.8 -0.40 6.61 44 26 20 12.0 89.2 0.41 5.69
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Table C.9: IPD batch III ( 191 data-sets). Results for the average MLE (from GLM and Cox re-
gression with two covariates) and reciprocal Fisher Information diagonal simulation. Mean and
standard deviation (± s.d.) of original IPD estimate and of difference between simulated and orig-
inal IPD inference (Bias). Biased (%): percentage of differences exceeding ±0.1, ±0.3 and ±0.5.
Similar data: Boolean for similarity of IPD simulation relative to original IPD (see Table 3.1,
page 50). Method: see Table 2.8, page 46. Size: number of IPD examples relative to total batch
size (%).

Maximum Likelihood Estimate 1 / Fisher Information diagonal

Biased (%) IPD Value Bias Biased (%) IPD Value Bias
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1-1
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47 33 24 4.5 32.7 0.14 5.33 13 8 6 11.3 124.3 -0.24 4.02
2-1 48 34 26 4.6 32.8 0.00 6.02 16 10 8 8.1 79.2 -0.52 4.88
3-1 36 20 14 6.4 48.0 0.33 4.62 13 9 6 8.0 79.6 -0.15 4.28
1-2

83
48 34 25 4.1 20.2 0.07 4.98 14 9 6 227.4 Inf -0.19 5.27

2-2 47 36 29 4.1 20.3 -0.05 5.90 16 11 8 71.4 Inf -0.43 6.79
3-2 30 18 13 7.5 52.8 0.80 7.45 12 8 6 13.6 139.0 0.03 3.98
1-3

98
28 13 10 6.4 48.1 -0.05 1.84 11 7 5 12.6 128.0 -0.11 3.97

2-3 33 16 11 6.4 48.3 -0.06 2.85 13 8 6 7.9 80.1 0.00 3.40
3-3 32 17 12 6.4 48.3 0.10 3.35 13 8 6 11.2 125.6 0.02 3.71
1-4

45
29 18 15 8.5 57.6 -0.08 3.37 17 11 8 12.4 103.2 0.01 4.94

2-4 34 22 19 8.6 58.0 0.31 8.26 15 8 6 331.3 Inf 0.19 5.46
3-4 28 16 14 8.6 58.0 0.35 9.23 13 7 5 132.0 Inf -0.15 3.43

T
R

U
E

1-1
1

0 0 0 0.5 0.9 -0.00 0.02 0 0 0 0.0 0.0 -0.00 0.00
2-1 0 0 0 0.5 0.9 -0.02 0.03 0 0 0 0.0 0.0 -0.02 0.02
3-1 33 0 0 0.5 0.9 -0.01 0.09 0 0 0 0.0 0.0 -0.02 0.02
1-2

17
36 21 15 1.7 10.6 0.00 0.54 12 5 2 0.9 5.7 -0.06 0.47

2-2 37 21 15 1.7 10.6 -0.08 0.63 14 8 6 0.9 5.7 -0.30 2.37
3-2 24 16 14 1.7 10.6 -0.04 0.45 15 8 6 0.9 5.7 -0.28 2.47
1-3

2
13 7 7 5.2 15.5 0.03 0.18 13 7 7 7.0 18.2 -0.09 0.28

2-3 27 27 27 5.2 15.5 -0.13 0.40 27 13 13 7.0 18.2 -2.55 6.62
3-3 47 27 27 5.2 15.5 -0.16 1.65 27 13 13 7.0 18.2 -2.67 6.92
1-4

55
17 6 4 4.9 39.5 0.00 1.04 7 3 2 10.6 136.5 -0.08 1.36

2-4 21 11 7 4.9 39.5 0.01 1.32 10 7 5 304.5 Inf -0.01 2.96
3-4 21 10 7 4.9 39.5 -0.02 1.04 11 7 5 10.6 136.9 -0.16 1.50
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Table C.10: IPD batch III ( 191 data-sets). Results for 95% empirical CIs of the MLE simulation.
Mean and standard deviation (± s.d.) of original IPD CIs (any of the type percent, normal Bca and
basic IPD bootstrap quantiles) and of difference between reconstructed and IPD quantile (Bias).
Biased (%): percentage of differences exceeding ±0.1, ±0.3 and ±0.5. Similar data: Boolean
for similarity of IPD simulation relative to original IPD (see Table 3.1, page 50). Method: see
Table 2.8, page 46. Size: number of IPD examples relative to total batch size (%).

2.5th Percentile 97.5th Percentile

Biased (%) IPD Value Bias Biased (%) IPD Value Bias
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1-1
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48 34 26 1.8 17.1 0.23 7.18 47 33 26 6.7 47.3 -0.07 6.50
2-1 54 41 35 1.7 17.1 -1.33 9.89 53 40 33 5.3 22.8 1.52 11.38
3-1 52 36 29 2.0 20.1 -1.99 10.01 52 37 30 7.3 51.6 2.20 10.30
1-2

83
48 35 28 1.9 18.2 0.35 7.66 48 35 26 7.6 52.0 -0.01 7.59

2-2 54 43 36 1.8 18.1 -0.93 9.22 53 42 34 5.9 24.5 1.16 10.93
3-2 47 33 26 2.0 18.3 -1.67 8.63 48 35 28 7.6 51.7 2.02 9.78
1-3

98
36 19 13 2.7 24.7 0.37 5.30 35 19 14 10.6 80.0 -0.41 5.27

2-3 50 33 27 2.0 17.1 -1.49 8.84 50 34 26 6.9 51.5 1.29 7.08
3-3 50 35 28 1.9 16.8 -1.31 8.00 50 33 27 6.9 51.4 1.33 7.22
1-4

45
39 24 18 3.0 26.7 0.73 7.66 38 23 18 10.4 66.3 -0.77 6.52

2-4 49 36 30 2.6 18.6 -1.94 9.86 52 37 31 10.4 75.6 1.89 8.58
3-4 48 34 30 2.6 18.8 -1.76 9.06 51 36 30 10.4 75.2 1.73 8.23

T
R

U
E

1-1
1

33 0 0 0.2 0.6 0.06 0.05 25 0 0 0.9 0.9 -0.06 0.05
2-1 67 67 67 0.2 0.6 -1.40 1.04 67 67 67 0.9 0.9 1.29 0.96
3-1 67 67 67 0.2 0.6 -1.38 1.03 67 67 67 0.9 0.9 1.29 0.96
1-2

17
38 24 18 1.0 10.2 0.00 0.60 38 25 18 2.5 11.5 0.07 0.73

2-2 53 32 28 1.0 10.2 -1.89 8.66 44 34 29 2.5 11.5 1.94 8.17
3-2 48 29 27 1.0 10.2 -1.99 8.69 43 30 25 2.5 11.5 2.25 8.71
1-3

2
18 12 10 2.9 12.6 0.18 0.57 20 10 8 7.5 18.5 -0.08 0.38

2-3 53 47 42 2.9 12.6 -12.57 25.13 53 47 45 7.5 18.5 12.07 23.36
3-3 53 45 40 2.9 12.6 -12.61 25.40 53 47 47 7.5 18.5 12.14 23.60
1-4

55
25 12 8 1.5 32.2 0.01 3.76 26 12 8 7.9 63.3 -0.07 3.95

2-4 43 29 23 1.6 15.6 -1.74 9.73 43 29 22 4.4 22.2 1.97 9.95
3-4 42 29 23 1.6 15.6 -1.77 9.90 43 30 22 4.4 22.1 1.95 9.84
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Table C.11: IPD batch III ( 106 data-sets). Results on the marginal y-axis (cumulative events-
count) of the average Breslow simulation in control and treatment group. Average bias (difference)
between 1st, 2nd, 3rd y-axis quartile and original IPD value. Biased: percentage of quartile differ-
ences, including that at y-axis range and average, exceeding ±0.1 (first column). Same computation
after excluding difference at y-axis maximum (second column 2). Similar data: Boolean for simi-
larity of IPD simulation relative to original IPD (see Table 3.1, page 50). Method: see Table 2.8,
page 46. Size: number of IPD examples relative to total batch size (%).

Mean bias quartile
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1-1
100

19 7 -0.01 -0.02 -0.04
2-1 24 12 -0.03 -0.07 Inf
3-1 22 10 -0.01 -0.03 Inf
1-2

79
21 9 -0.01 -0.02 -0.05

2-2 27 16 -0.03 -0.08 Inf
3-2 26 15 -0.02 -0.04 Inf
1-3

99
13 0 -0.00 -0.00 -0.01

2-3 16 4 -0.01 -0.02 Inf
3-3 15 3 -0.01 -0.01 Inf
1-4

35
13 0 -0.00 -0.00 -0.00

2-4 18 5 -0.01 -0.02 Inf
3-4 17 5 -0.01 -0.02 Inf

T
R

U
E

1-2
21

13 0 -0.00 -0.00 -0.01
2-2 18 4 -0.01 -0.02 -0.03
3-2 17 2 -0.00 -0.01 -0.03
1-3

1
17 0 -0.01 -0.03 -0.07

2-3 17 0 -0.01 -0.03 -0.08
3-3 17 0 -0.01 -0.03 -0.08
1-4

65
13 0 -0.00 0.00 -0.00

2-4 15 3 -0.01 -0.01 -0.03
3-4 14 2 -0.00 -0.01 -0.02
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Table C.12: IPD batch IV ( 194 data-sets). Results for the average MLE (from GLM and Cox
regression with mixed continuous/binary covariates) and reciprocal Fisher Information diagonal
simulation. Mean and standard deviation (± s.d.) of original IPD estimate and of difference be-
tween simulated and original IPD inference (Bias). Biased (%): percentage of differences exceed-
ing ±0.1, ±0.3 and ±0.5. Similar data: Boolean for similarity of IPD simulation relative to original
IPD (see Table 3.1, page 50). Method: see Table 2.8, page 46. Size: number of IPD examples
relative to total batch size (%).

Maximum Likelihood Estimate 1 / Fisher Information diagonal

Biased (%) IPD Value Bias Biased (%) IPD Value Bias
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1-1
100

54 39 29 4.2 30.6 -0.33 7.40 14 9 6 25.2 457.5 -0.31 5.65
2-1 54 40 32 4.3 30.6 -0.33 7.53 18 13 9 17.0 133.0 -0.81 6.90
3-1 39 23 18 5.1 37.0 0.05 5.76 17 12 9 17.4 140.8 -0.98 8.58
1-2

98
52 39 30 4.4 31.2 -0.33 7.73 15 8 6 15.3 118.4 0.15 5.08

2-2 53 40 32 4.4 31.3 -0.33 8.00 19 12 9 24.2 456.0 -0.34 5.93
3-2 36 21 16 4.9 35.9 0.14 5.32 16 10 8 16.6 124.5 -0.47 7.48
1-3

94
31 17 12 5.2 38.7 0.00 1.67 13 8 6 26.6 202.4 -0.17 4.81

2-3 33 18 14 5.1 38.8 0.12 3.63 15 10 8 26.5 203.4 -0.49 4.70
3-3 30 17 13 5.2 38.8 -0.05 3.73 15 10 8 26.2 202.9 -0.50 5.04
1-4

59
28 16 13 4.2 37.7 0.00 2.88 13 7 7 24.4 169.2 -0.12 6.25

2-4 29 18 13 4.2 37.8 0.25 6.03 14 8 6 39.6 596.9 -0.28 5.00
3-4 25 14 11 4.5 39.7 0.31 6.63 13 8 6 24.4 170.3 -0.20 5.40

T
R

U
E

1-2
2

44 22 16 4.3 22.6 0.21 1.14 6 3 0 1.0 3.3 -0.02 0.07
2-2 44 25 22 4.3 22.6 0.21 1.25 12 12 12 1.0 3.3 -0.34 1.22
3-2 19 12 9 4.3 22.6 0.03 1.03 12 9 9 1.0 3.3 -0.34 1.24
1-3

6
22 1 0 5.9 20.2 -0.01 0.09 0 0 0 0.8 1.3 0.00 0.01

2-3 26 12 6 5.9 20.2 0.03 0.24 28 21 5 0.8 1.3 -0.12 0.23
3-3 30 18 10 5.9 20.2 0.03 0.33 28 21 6 0.8 1.3 -0.12 0.23
1-4

41
22 12 8 6.6 37.8 -0.03 1.26 11 5 4 34.6 465.3 -0.02 4.74

2-4 28 17 11 6.6 37.8 0.02 1.36 19 13 9 21.0 181.0 -0.30 4.15
3-4 29 18 14 6.6 37.9 -0.04 2.51 19 14 9 21.1 181.3 -0.60 4.09
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Table C.13: IPD batch IV ( 194 data-sets). Results for 95% empirical CIs of the MLE simulation.
Mean and standard deviation (± s.d.) of original IPD CIs (any of the type percent, normal Bca and
basic IPD bootstrap quantiles) and of difference between reconstructed and IPD quantile (Bias).
Biased (%): percentage of differences exceeding ±0.1, ±0.3 and ±0.5. Similar data: Boolean
for similarity of IPD simulation relative to original IPD (see Table 3.1, page 50). Method: see
Table 2.8, page 46. Size: number of IPD examples relative to total batch size (%).

2.5th Percentile 97.5th Percentile

Biased (%) IPD Value Bias Biased (%) IPD Value Bias
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1-1
100

54 40 30 2.2 26.6 -0.10 8.27 53 39 30 7.0 39.6 -0.61 8.58
2-1 60 46 40 2.0 26.7 -2.15 12.50 60 45 38 6.2 39.0 1.98 11.79
3-1 55 37 31 1.7 27.3 -2.94 12.29 55 36 30 7.3 45.5 3.02 12.53
1-2

98
53 40 30 2.3 27.0 -0.09 8.29 53 38 30 7.0 39.8 -0.60 8.87

2-2 59 47 40 1.9 26.2 -2.10 12.28 58 46 37 5.2 30.5 2.04 11.63
3-2 52 34 29 1.4 25.3 -2.82 11.53 51 36 30 6.6 42.6 3.10 12.49
1-3

94
37 21 15 2.5 32.4 0.30 4.04 36 21 15 8.6 51.3 -0.33 4.42

2-3 52 34 28 2.2 31.9 -2.18 10.02 52 33 27 7.7 45.3 2.25 10.04
3-3 53 34 28 2.2 31.6 -2.23 10.18 52 33 27 7.6 44.8 2.22 10.16
1-4

59
35 20 15 1.5 31.7 0.39 5.35 34 20 15 7.8 51.2 -0.46 5.67

2-4 50 32 25 1.5 30.9 -1.06 8.21 50 30 23 6.9 46.1 1.29 8.62
3-4 51 31 24 1.3 32.1 -1.12 8.03 49 31 24 6.6 42.7 1.17 7.92

T
R

U
E

1-2
2

47 21 17 3.8 22.1 0.19 1.08 40 27 18 5.7 24.9 0.20 1.12
2-2 54 30 29 3.8 22.1 -6.49 20.52 60 32 29 5.7 24.9 7.11 20.71
3-2 48 23 23 3.8 22.1 -6.66 20.27 43 23 21 5.7 24.9 6.96 21.19
1-3

6
31 13 3 4.8 19.6 0.01 0.20 31 10 4 7.0 20.8 0.01 0.21

2-3 52 37 33 4.8 19.5 -3.66 5.62 59 41 36 7.0 20.8 3.83 5.87
3-3 52 37 34 4.8 19.6 -3.66 5.64 61 40 37 7.0 20.8 3.84 5.85
1-4

41
29 15 12 4.4 31.7 0.06 2.44 29 16 12 9.4 48.1 -0.10 2.34

2-4 49 35 31 4.2 31.3 -3.78 11.34 50 36 31 8.4 42.3 3.82 10.85
3-4 50 35 30 4.2 31.4 -3.84 11.61 51 36 31 8.5 43.1 4.02 11.38
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Table C.14: IPD batch IV ( 195 data-sets). Results on the marginal y-axis (cumulative events-
count) of the average Breslow simulation in control and treatment group. Average bias (difference)
between 1st, 2nd, 3rd y-axis quartile and original IPD value. Biased: percentage of quartile differ-
ences, including that at y-axis range and average, exceeding ±0.1 (first column). Same computation
after excluding difference at y-axis maximum (second column 2). Similar data: Boolean for simi-
larity of IPD simulation relative to original IPD (see Table 3.1, page 50). Method: see Table 2.8,
page 46. Size: number of IPD examples relative to total batch size (%).

Control Treatment

Mean bias quartile Mean bias quartile
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Biased (%) 1st 2nd 3rd Biased (%) 1st 2nd 3rd
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1-1
100

18 7 -0.00 -0.01 -0.02 20 8 Inf Inf Inf
2-1 19 8 -0.00 -0.00 -0.01 25 14 Inf Inf Inf
3-1 17 6 Inf Inf Inf 23 13 Inf Inf Inf
1-2

98
18 8 -0.00 -0.01 -0.02 21 8 -0.01 -0.01 -0.03

2-2 18 7 -0.00 -0.01 -0.03 26 15 Inf Inf Inf
3-2 18 6 -0.00 -0.00 Inf 24 13 Inf Inf Inf
1-3

94
14 2 0.00 -0.00 -0.00 13 2 -0.00 0.00 0.01

2-3 15 3 0.00 -0.00 Inf 18 7 -0.01 Inf Inf
3-3 15 3 0.00 0.00 Inf 18 7 -0.01 Inf Inf
1-4

58
12 2 -0.00 -0.00 -0.00 12 2 0.00 0.00 0.00

2-4 13 3 -0.00 -0.00 Inf 19 9 -0.01 -0.02 Inf
3-4 12 3 0.00 0.00 0.45 19 8 -0.01 -0.02 Inf

T
R

U
E

1-2
2

11 0 -0.00 -0.01 -0.00 6 0 0.00 0.01 0.01
2-2 11 0 -0.00 -0.00 -0.00 11 0 0.00 0.00 0.01
3-2 11 0 -0.00 -0.00 -0.01 11 0 -0.00 -0.01 0.00
1-3

6
24 8 -0.01 -0.04 -0.09 18 2 -0.00 -0.03 -0.06

2-3 25 10 -0.01 -0.04 -0.10 18 2 -0.00 -0.03 -0.07
3-3 25 10 -0.01 -0.04 -0.10 18 2 -0.00 -0.02 -0.06
1-4

42
16 4 -0.00 -0.01 -0.01 15 2 -0.01 -0.01 -0.01

2-4 18 5 -0.00 -0.00 0.00 17 5 -0.01 Inf Inf
3-4 16 4 0.00 0.00 0.02 16 4 -0.01 Inf Inf
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C.2.5 More on MLE and 95% empirical CIs reconstruction

We give further results from Appendix C.2, page 103 on point and interval estimates. For sake of
clearness we report results for a reduced selection of used sampling methods. Such selection may
vary from batch to batch mainly depending on the experiment size there and on method relevance.
Also, we only report results on the MLE (Table C.15 to C.21, page 118 to 124), because in most
istances the bias dimension of the simulated r.f.i.d. is small.If the MLE is vector-valued we rank
each vector element in ascending order. For instance a MLE intercept (if any) has rank 1 while the
first covariate effect has rank 2, and so on. If no intercept is modeled rank 1 is assigned to the first
covariate effect. Here we stratify MLE results by parameter rank and then by employed statistical
model. Tables C.22 – C.25 (pages 125 – 128) show further results on 95% empirical intervals
stratified by type of IPD reference bootstrap CI.

Table C.15: IPD batch I ( 109 data-sets). Results for the average HR (from Cox regression with
one binary covariate) and reciprocal Fisher Information diagonal simulation. Mean and standard
deviation (± s.d.) of original IPD estimate and of difference between simulated and original IPD
inference (Bias). Biased (%): percentage of differences exceeding ±0.1, ±0.3 and ±0.5. Similar
data: Boolean for similarity of IPD simulation relative to original IPD (see Table 3.1, page 50).
Method: see Table 2.8, page 46. Rank: MLE vector element (1: intercept, 2: first covariate, and so
on). Size: number of IPD examples relative to total batch size (%).

Maximum Likelihood Estimate

Biased (%) IPD Value Bias
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1-1

1

99 72 39 17 0.13 0.64 0.00 0.45
3-1 99 17 1 1 0.13 0.64 -0.02 0.11
1-3 87 8 2 2 0.15 0.65 0.02 0.09

T
R

U
E 1-2 26 31 0 0 0.23 0.49 0.03 0.10

1-3 13 0 0 0 0.02 0.49 0.01 0.04
1-4 88 7 1 0 0.15 0.65 0.02 0.06

C.2.6 Expected marginal event-time of the cumulative hazard estimate

Here we report tabular results on the marginal x-axis (event-time line) of the expected c.h.e. (Ta-
ble C.26 to C.28, pages 129–131). The format is slightly different from tabular results on the y-axis
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Table C.16: IPD batch II ( 241 data-sets). Results for the average MLE (from GLM and Cox
regression with one continuous covariate) and reciprocal Fisher Information diagonal simulation.
Mean and standard deviation (± s.d.) of original IPD estimate and of difference between simulated
and original IPD inference (Bias). Biased (%): percentage of differences exceeding ±0.1, ±0.3 and
±0.5. Similar data: Boolean for similarity of IPD simulation relative to original IPD (see Table 3.1,
page 50). Method: see Table 2.8, page 46. Rank: MLE vector element (1: intercept, 2: first
covariate, and so on). Size: number of IPD examples relative to total batch size (%).

Maximum Likelihood Estimate

Biased (%) IPD Value Bias
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1-1 1 83 55 30 21 24.70 105.88 1.63 39.85
1-1 2 83 15 8 7 0.87 11.01 -0.22 7.30
1-3 1 84 38 19 15 23.90 104.89 0.14 2.24
1-3 2 84 14 6 4 0.86 10.90 -0.01 0.33

T
R

U
E

1-2 1 77 52 20 11 20.59 104.27 2.07 37.71
1-2 2 77 8 4 2 0.90 11.18 -0.32 7.05
1-4 1 73 17 8 5 21.73 106.68 0.01 0.73
1-4 2 73 4 1 1 0.93 11.44 -0.01 0.42

(see Section 3.2, page 53). For sake of conciseness we just focus on the average difference between
the simulated and IPD original mean time-line.
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Table C.17: IPD batch III ( 191 data-sets). Results for the average MLE (from GLM and Cox
regression with two continuous covariates) and reciprocal Fisher Information diagonal simulation.
Mean and standard deviation (± s.d.) of original IPD estimate and of difference between simulated
and original IPD inference (Bias). Biased (%): percentage of differences exceeding ±0.1, ±0.3 and
±0.5. Similar data: Boolean for similarity of IPD simulation relative to original IPD (see Table 3.1,
page 50). Method: see Table 2.8, page 46. Rank: MLE vector element (1: intercept, 2: first
covariate, and so on). Size: number of IPD examples relative to total batch size (%).

Maximum Likelihood Estimate

Biased (%) IPD Value Bias
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1-1 1 98 70 52 40 9.55 47.65 0.41 6.93
1-1 2 99 20 11 6 0.44 8.55 0.17 2.21
1-1 3 99 42 27 19 0.42 4.55 -0.49 4.86
1-3 1 98 42 23 17 13.39 70.29 -0.09 2.68
1-3 2 98 14 2 2 0.86 11.11 -0.04 0.16
1-3 3 98 17 8 7 0.41 4.59 0.01 0.75

T
R

U
E

1-2 1 17 60 35 26 3.61 15.38 0.03 0.77
1-2 2 17 13 7 2 -0.06 0.43 -0.04 0.12
1-2 3 17 18 12 9 0.02 0.28 -0.00 0.29
1-4 1 55 28 11 7 9.80 56.83 0.04 1.10
1-4 2 55 3 1 1 0.70 11.05 0.01 0.25
1-4 3 55 16 5 3 0.50 5.08 -0.12 1.57
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Table C.18: IPD batch IV ( 194 data-sets). Results for the average MLE (from GLM and Cox
regression with mixed continuous/binary covariates) and reciprocal Fisher Information diagonal
simulation. Mean and standard deviation (± s.d.) of original IPD estimate and of difference be-
tween simulated and original IPD inference (Bias). Biased (%): percentage of differences exceed-
ing ±0.1, ±0.3 and ±0.5. Similar data: Boolean for similarity of IPD simulation relative to original
IPD (see Table 3.1, page 50). Method: see Table 2.8, page 46. Rank: MLE vector element (1:
intercept, 2: first covariate, and so on). Size: number of IPD examples relative to total batch size
(%).

Maximum Likelihood Estimate

Biased (%) IPD Value Bias
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1-1 1 100 70 54 44 12.59 52.88 -0.33 7.71
1-1 2 100 32 20 11 -0.06 1.53 0.09 0.88
1-1 3 100 53 37 28 1.44 10.55 -0.98 10.11
1-1 4 97 65 50 40 0.27 8.93 -0.21 9.16
1-3 1 94 46 29 23 15.44 65.47 -0.14 2.33
1-3 2 94 19 6 3 -0.09 1.56 -0.02 0.19
1-3 3 94 28 17 11 1.44 11.95 0.13 1.68
1-3 4 91 32 16 10 0.36 23.53 0.14 1.73

T
R

U
E

1-3 1 6 25 0 0 19.68 32.29 0.04 0.09
1-3 2 6 27 0 0 0.39 0.86 -0.04 0.09
1-3 3 6 11 0 0 -1.71 2.53 -0.01 0.06
1-3 4 6 25 8 0 0.78 5.46 -0.02 0.12
1-4 1 41 37 21 17 19.56 61.98 -0.13 1.34
1-4 2 41 10 4 1 -0.12 1.73 0.00 0.17
1-4 3 41 20 11 7 0.48 11.95 0.16 1.69
1-4 4 39 18 9 6 2.67 28.00 -0.15 1.51
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Table C.19: IPD batch II ( 241 data-sets). Results for the average MLE (from GLM and Cox
regression with one continuous covariate) and reciprocal Fisher Information diagonal simulation.
Mean and standard deviation (± s.d.) of original IPD estimate and of difference between simulated
and original IPD inference (Bias). Biased (%): percentage of differences exceeding ±0.1, ±0.3 and
±0.5. Similar data: Boolean for similarity of IPD simulation relative to original IPD (see Table 3.1,
page 50). Method: see Table 2.8, page 46. Size: number of IPD examples relative to total batch
size (%).

Maximum Likelihood Estimate
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1-1 gaussian 42 39 27 21 37.66 127.10 2.27 49.11
1-1 poisson 41 21 8 5 -0.44 1.03 0.04 0.34
1-1 binomial 41 45 21 16 0.38 3.45 -0.25 2.00
1-3 gaussian 41 16 8 6 38.02 128.28 0.03 1.07
1-3 poisson 43 20 7 4 -0.44 1.02 0.05 0.41
1-3 binomial 43 40 23 18 0.32 3.39 0.10 2.52

T
R

U
E

1-2 gaussian 34 34 19 12 37.74 135.51 3.04 50.49
1-2 poisson 42 18 2 0 -0.46 1.11 -0.00 0.11
1-2 binomial 42 38 15 7 -0.02 1.96 -0.02 0.32
1-4 gaussian 33 15 9 8 39.72 138.99 0.02 1.10
1-4 poisson 41 4 1 1 -0.45 1.13 -0.00 0.06
1-4 binomial 41 13 5 2 0.23 2.82 -0.00 0.14
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Table C.20: IPD batch III ( 191 data-sets). Results for the average MLE (from GLM and Cox
regression with two continuous covariates) and reciprocal Fisher Information diagonal simulation.
Mean and standard deviation (± s.d.) of original IPD estimate and of difference between simulated
and original IPD inference (Bias). Biased (%): percentage of differences exceeding ±0.1, ±0.3 and
±0.5. Similar data: Boolean for similarity of IPD simulation relative to original IPD (see Table 3.1,
page 50). Method: see Table 2.8, page 46. Size: number of IPD examples relative to total batch
size (%).

Maximum Likelihood Estimate

Biased (%) IPD Value Bias
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1-1 gaussian 44 51 38 32 17.39 59.70 0.78 9.39
1-1 poisson 55 53 31 18 -2.53 3.43 0.03 0.62
1-1 binomial 55 49 38 29 0.73 3.44 -0.23 3.12
1-1 cox 55 23 12 3 0.03 0.49 -0.02 0.22
1-3 gaussian 43 18 10 9 24.13 88.33 -0.14 2.81
1-3 poisson 55 25 7 4 -2.56 3.43 0.01 0.29
1-3 binomial 55 43 22 17 0.73 3.46 -0.04 1.79
1-3 cox 55 9 2 1 0.03 0.49 -0.00 0.08

T
R

U
E

1-2 gaussian 6 30 21 9 8.84 21.64 0.01 0.28
1-2 poisson 12 45 18 14 -2.13 3.42 -0.01 0.50
1-2 binomial 12 39 29 21 1.11 3.17 0.02 0.73
1-2 cox 12 14 5 5 0.17 0.42 -0.03 0.16
1-4 gaussian 19 27 10 7 25.18 82.83 -0.03 2.18
1-4 poisson 36 14 4 2 -2.55 3.49 0.00 0.14
1-4 binomial 36 19 8 5 0.55 2.56 0.02 0.43
1-4 cox 36 3 1 0 0.01 0.44 0.00 0.06
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Table C.21: Data batch IV ( 194 data-sets). Results for the average MLE (from GLM and Cox
regression with mixed continuous/binary covariates) and reciprocal Fisher Information diagonal
simulation. Mean and standard deviation (± s.d.) of original IPD estimate and of difference be-
tween simulated and original IPD inference (Bias). Biased (%): percentage of differences exceed-
ing ±0.1, ±0.3 and ±0.5. Similar data: Boolean for similarity of IPD simulation relative to original
IPD (see Table 3.1, page 50). Method: see Table 2.8, page 46. Size: number of IPD examples
relative to total batch size (%).
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1-3 gaussian 87 32 21 15 18.31 69.57 0.07 2.43
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1-4 cox 41 13 6 1 0.08 0.70 -0.01 0.11
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Table C.26: IPD batch I ( 111 data-sets). Results on the marginal x-axis (event-time line on log
scale) of the average Nelson-Aalen simulation in control and treatment group. Mean and standard
deviation (± s.d.) of the difference between simulated and IPD original mean x-axis (Bias). Similar
data: Boolean for similarity of IPD simulation relative to original IPD (see Table 3.1, page 50).
Method: see Section 2.2.3, page 38. Size: number of IPD examples relative to total batch size (%).

Bias

Control Treatment

Si
m

ila
r d

at
a

M
et

ho
d

Si
ze

(%
)

M
ea

n

±
s.

d.

M
ea

n

±
s.

d.

FA
L

SE

1 99 0.18 0.18 0.20 0.26
2 74 0.18 0.28 0.26 0.51
3 87 0.08 0.13 0.11 0.16
4 12 0.10 0.11 0.15 0.20

T
R

U
E

1 1 0.13 0.03 0.10 0.02
2 26 0.11 0.09 0.16 0.21
3 13 0.07 0.06 0.03 0.03
4 88 0.06 0.05 0.08 0.12
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Table C.27: IPD batch III ( 106 data-sets). Results on the marginal x-axis (event-time line on
log scale) of the average Breslow simulation in control and treatment group. Mean and standard
deviation (± s.d.) of the difference between simulated and IPD original mean x-axis (Bias). Similar
data: Boolean for similarity of IPD simulation relative to original IPD (see Table 3.1, page 50).
Method: Table 2.8, page 46. Size: number of IPD examples relative to total batch size (%).

Bias

Si
m

ila
r d

at
a

M
et

ho
d

Si
ze

(%
)

M
ea

n

±
s.

d.

FA
L

SE

1-1 100 0.09 0.11
2-1 99 0.11 0.17
3-1 100 0.09 0.11
1-2 79 0.09 0.13
2-2 78 0.11 0.23
3-2 79 0.09 0.12
1-3 99 0.02 0.02
2-3 99 0.02 0.02
3-3 99 0.02 0.02
1-4 35 0.03 0.05
2-4 35 0.03 0.05
3-4 35 0.03 0.06

T
R

U
E

1-2 21 0.07 0.07
2-2 21 0.07 0.07
3-2 21 0.06 0.07
1-3 1 0.02
2-3 1 0.02
3-3 1 0.03
1-4 65 0.01 0.01
2-4 65 0.01 0.01
3-4 65 0.01 0.01
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Table C.28: IPD batch IV ( 195 data-sets). Results on the marginal x-axis (event-time line on
log scale) of the average Breslow simulation in control and treatment group. Mean and standard
deviation (± s.d.) of the difference between simulated and IPD original mean x-axis (Bias). Similar
data: Boolean for similarity of IPD simulation relative to original IPD (see Table 3.1, page 50).
Method: Table 2.8, page 46. Size: number of IPD examples relative to total batch size (%).

Bias

Control Treatment

Si
m

ila
r d

at
a

M
et

ho
d

Si
ze

(%
)

M
ea

n

±
s.

d.

M
ea

n

±
s.

d.

FA
L

SE

1-1 100 0.11 0.15 0.10 0.11
2-1 99 0.11 0.15 0.11 0.18
3-1 100 0.11 0.12 0.11 0.14
1-2 98 0.08 0.08 0.09 0.15
2-2 98 0.08 0.12 0.13 0.34
3-2 98 0.12 0.40 0.09 0.11
1-3 94 0.04 0.12 0.03 0.09
2-3 94 0.04 0.12 0.03 0.09
3-3 94 0.05 0.12 0.04 0.09
1-4 58 0.03 0.02 0.02 0.02
2-4 58 0.03 0.02 0.02 0.02
3-4 58 0.03 0.03 0.02 0.02

T
R

U
E

1-2 2 0.07 0.06 0.28 0.40
2-2 2 0.07 0.06 0.28 0.40
3-2 2 0.10 0.10 0.31 0.46
1-3 6 0.01 0.00 0.01 0.00
2-3 6 0.01 0.00 0.01 0.00
3-3 6 0.02 0.01 0.02 0.01
1-4 42 0.02 0.04 0.02 0.04
2-4 42 0.02 0.04 0.02 0.04
3-4 42 0.02 0.04 0.02 0.05
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C.3 Practical examples

Below we give details related to Section 3.3, page 59.

C.3.1 Sampling under sub-optimal settings

We give further details from the example of Section 3.3.1, page 59. Below we compare the orig-
inal IPD sample moments and correlation entries against their corresponding simulated averages
(column mc.mean)

> Xspacelist[[1]]$is.data.similar

$first.moment

ipd mc.mean

time 35.610457 35.6313057

status 0.393401 0.3929442

treat 0.500000 0.5023942

agedx 20.781726 20.7291342

$second.moment

ipd mc.mean

time 21.3574963 21.3630638

status 0.4891256 0.4881107

treat 0.5006357 0.4999266

agedx 14.8120737 14.7634833

$third.moment

ipd mc.mean

time -0.1127469 1.168552162

status 0.4364299 0.440889975

treat 0.0000000 -0.009620705

agedx 0.8081132 1.393291449

$fourth.moment

ipd mc.mean

time 1.748925 4.941795

status 1.190471 1.210235

treat 1.000000 1.011398

agedx 2.538233 5.811978

$lower.triangular.Rx

ipd mc.mean
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1 -0.62474958 -0.622961692

2 0.15274712 0.153134265

3 0.01945774 0.019078008

4 -0.24419291 -0.105002862

5 0.03286381 -0.011180187

6 0.00000000 -0.001342778

$bool

[1] FALSE

C.3.2 Predictive meaning of MaxEntBoot sample

We give furhter output excerpts from example of Section 3.4.1, page 62. We print the IPD excerpt
below

> head(datalist$wh.4$ipd.raw.data)

X_t X_d all10

1 24.665 1 0

2 17.832 1 0

3 27.157 0 0

4 11.135 0 0

5 26.344 0 0

6 27.121 0 0

and

> tail(datalist$wh.4$ipd.raw.data)

X_t X_d all10

17255 25.774 0 0

17256 27.168 0 0

17257 19.611 0 0

17258 19.822 1 0

17259 10.029 0 0

17260 12.156 0 0

where from left to right we have the survival time, the time-event, and the binary treatment variable
respectively. The original IPD moment correlation matrix is

> cor(datalist$wh.4$ipd.raw.data)

X_t X_d all10

X_t 1.0000000 -0.4103116 -0.7654625

X_d -0.4103116 1.0000000 0.2517678

all10 -0.7654625 0.2517678 1.0000000
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Below we report output of the comparison between simulated and original IPD distributional fea-
tures.

> datalist$wh.4$is.data.similar

$first.moment

ipd mc.mean

X_t 21.8067821 21.80938443

X_d 0.1492468 0.14935400

all10 0.0967555 0.09656199

$second.moment

ipd mc.mean

X_t 6.8373173 6.8362970

X_d 0.3563419 0.3564295

all10 0.2956331 0.2953475

$third.moment

ipd mc.mean

X_t -1.419183 -1.420870

X_d 1.968690 1.967801

all10 2.728085 2.732431

$fourth.moment

ipd mc.mean

X_t 3.878021 3.884749

X_d 4.875740 4.873031

all10 8.442449 8.467847

$lower.triangular.Rx

ipd mc.mean

1 -0.4103116 -0.4096435

2 -0.7654625 -0.7632126

3 0.2517678 0.2505669

$bool

[1] TRUE

We see a remarkable agreement indicating the reconstructed IPD is overall similar to the original
IPD.

Below the output extract of the original IPD Cox analysis,

> coxph(Surv(X_t, X_d)˜all10,
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data = datalist$wh.4$ipd.raw.data)

coef exp(coef) se(coef) z p

all10 2.31e+01 1.05e+10 4.30e+02 0.05 0.96

Likelihood ratio test=4619 on 1 df, p=0

n= 17260, number of events= 2576

Warning message:

In fitter(X, Y, strats, offset, init,

control, weights = weights, :

Loglik converged before variable 1 ;

beta may be infinite.

showing problems during partial likelihood maximization. The IPD MLE is singular here.
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C.3.3 Replacement of singular IPD statistic

IPD wh.11 from batch IV is an extension of data wh.4 (see Section 3.4.1, page 62), allowing for
inclusion of an additional variable, chol, cholesterol level. Inclusion of this confounder does not
resolve the sparse data bias (Greenland et al., 2016) in the original IPD. We generate B = 100
NORTAmax repetitions of IPD wh.11 and obtain MaxEnt bootstrap estimates for Cox parame-
ters and Breslow curves. Below we print the expected log HR vector simulation (row mc.mean)
against the original IPD value (row ipd.true). Column beta.1 (vbeta.1) respectively beta.2
(vbeta.2) refer to the log HR (r.f.i.d.) for cholesterol level and treatment effect.

> inf11$raw.results$wh.11$summary$model.summary

beta.1 beta.2 vbeta.1 vbeta.2 low.1

ipd.true 0.16119223 23.0502300 2.282666e-04 1.664779e+05 0.13157958

mc.mean 0.15490236 4.3016970 2.352515e-04 5.674528e-03 0.12488521

mc.error 0.01741187 0.0667925 8.025577e-06 2.545140e-04 0.01741871

mc.range 0.07529235 0.3599100 3.507468e-05 1.292625e-03 0.07695093

low.2 up.1 up.2 max aic

ipd.true -776.66322066 0.19080488 822.76368076 -22068.3111 44140.6222

mc.mean 4.15408806 0.18491951 4.44930588 -22544.4912 45092.9824

mc.error 0.06452077 0.01742805 0.06914852 456.3728 912.7456

mc.range 0.35112331 0.07376655 0.36869676 2500.3129 5000.6259

The average log HR (r.f.i.d.) for cholesterol level well agrees with the original IPD estimate. As
already seen in Section 3.4.1 the original IPD log HR (r.f.i.d.) is singular but the corresponding
MaxEnt bootstrap average is interpretable. Figure C.1 shows the expected Breslow estimate versus
its original IPD counterpart in group treatment and control. In group treatment the original IPD
estimate is exploding at time 10 while the expected Breslow curve remains interpretable. Next we
compare MaxEntBoot 95% empirical quantiles (type maxent) against various types of ordinary
IPD bootstrap intervals. Intervals for the log HR of cholesterol levels are comparable between
MaxEntBoot and IPD reference. IPD bootstrap intervals for the treatment effect are all exploding.
Conversely MaxEntBoot intervals are interpretable and comparable to the Normally approximated
ones printed above. Original IPD Bca intervals always fail for each effect.

> inf11$raw.results$wh.11$summary$model.boot

2.5th.perc/maxent 97.5th.perc/maxent 2.5th.perc/normal

beta.1 0.123311 0.181509 0.1311305

beta.2 4.156431 4.412071 22.1605762

97.5th.perc/normal 2.5th.perc/basic 97.5th.perc/basic 2.5th.perc/percent

beta.1 0.1910264 0.1307171 0.1912057 0.1311787

beta.2 23.9925159 22.0626289 23.8825513 22.2179088

97.5th.perc/percent 2.5th.perc/bca 97.5th.perc/bca
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beta.1 0.1916674 NA NA

beta.2 24.0378312 NA NA

C.3.4 Long run alternative to IPD statistic

Here we consider IPD abo2 (batch I) that is a variables’ sub-selection of data abortion (see
Appendix B.6.1, page 96). The effect variable of interest is group. We draw B = 100 highly honest
data samples using NORTAmax resampling with Johnson continuous marginals. The original IPD
time variable is tied since visits are scheduled at fixed weekly intervals. However we model this tied
time as a continuous variable which amounts to artificially smooth the weekly visit pace. We can
argue this choice as an attempt to interpolate the original discrete time approximation. Below we
compare outputs between the MaxEnt bootstrap log HR average for group effect and the original
IPD estimate.

> inf2$raw.results$abo2$summary$model.summary

beta vbeta low up max aic

ipd.true -0.17607822 0.011972323 -0.39053771 0.03838128 -6024.68405 12051.3681

mc.mean 0.31962787 0.012405002 0.09993491 0.54151492 -6030.10231 12062.2046

mc.error 0.08050089 0.001170603 0.08233410 0.07708943 79.02521 158.0504

mc.range 0.37964282 0.006760082 0.39142467 0.36262502 421.93378 843.8676

We see an appreciable difference between the MaxEntBoot average and the original IPD log HR.
This is the single instance of a difference greater than 0.3 in absolute value in our experiments on
batch I under method 1-4 (NORTAmax with four moments) when the simulated IPD is similar to
reference (see Table C.4, page 107). The MaxEntBoot average log HR indicates the group effect is
slightly significantly positive on the long-run. The expected r.f.i.d. estimate (one-to-one to Fisher
Information here) well agrees to the IPD original value indicating a good degree of log-likelihood
information conservation here. Figure C.2 compares the expected Nelson-Aalen estimate to the
original IPD estimate, for each group. In group treatment the MaxEntBoot curve grows slightly
faster than the IPD reference. Below we compare MaxEntBoot 95% quantiles versus their IPD
ordinary bootstrap counterparts. The former too detect a positive effect (more skewed than the
above Normal approximation) as opposed to the latter where no effect is detected.

> inf2$raw.results$abo2$summary$model.boot

2.5th.perc/maxent 97.5th.perc/maxent 2.5th.perc/normal 97.5th.perc/normal

beta 0.154057 0.455637 -0.3706267 0.01158204

2.5th.perc/basic 97.5th.perc/basic 2.5th.perc/percent 97.5th.perc/percent

beta -0.3723502 0.01064885 -0.3628053 0.02019379

2.5th.perc/bca 97.5th.perc/bca

beta -0.3759239 0.00637373
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C.3.5 Replacement of singular IPD bootstrap 95% CIs

Here original IPD rats.2 (batch I) produces singular ordinary bootstrap 95% intervals while Max-
EntBoot intervals give an interpretable alternative. This IPD is a variables’ sub-selection of data
rats (see Appendix B.6.1, page 96) and has three-hundreds records with only about 2 observed
events among males, as opposed to about 40/42 events among females. This could be a warning
on possible sparse data bias (Greenland et al., 2016). We focus on the MLE for rat gender, sex.
We produce B = 300 highly honest IPD simulations via NORTAmax resampling with Johnson
marginlas. Below we report the expected MaxEnt bootstrap log HR (r.f.i.d.) estimate versus its
original IPD value. We see high agreement everywhere.

> inf2$raw.results$rats.2$summary$model.summary

beta vbeta low up max aic

ipd.true -3.0378788 0.5252662 -4.458394 -1.6173638 -203.45262 408.90524

mc.mean -3.0341921 0.6114286 -4.516205 -1.5564342 -195.93343 393.86686

mc.error 0.6238479 0.3100391 1.002998 0.2728784 29.42033 58.84066

mc.range 2.7713927 0.8701178 3.876740 1.5507519 164.72598 329.45196

However, the extremely small number of events among male rats is problematic as shown in Fig-
ure C.3, where the IPD cumulative hazard among males (treatment group) is nearly singular. There
is good agreement between the MaxEntBoot average Nelson-Alen curve and its IPD counterpart
in control group. Below we compare MaxEntBoot 95% CIs with various IPD ordinary bootstrap
counterparts. Original IPD intervals comes from 10000 bootstrap realizations. (results with 50000
realizations were materially equal and are not shown).

> inf2$raw.results$rats.2$summary$model.boot

2.5th.perc/maxent 97.5th.perc/maxent 2.5th.perc/normal 97.5th.perc/normal

beta -3.979393 -1.753119 -12.29472 10.78592

2.5th.perc/basic 97.5th.perc/basic 2.5th.perc/percent 97.5th.perc/percent

beta -4.081935 14.29264 -20.36839 -1.993823

2.5th.perc/bca 97.5th.perc/bca

beta -20.24085 -1.662684

All IPD intervals are exploding while MaxEntBoot intervals are quite reasonable, also if compared
with the above Normal approximation.
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Figure C.1: The wh.11 data: MaxEntBoot samples for the log HR (beta.) and respective recip-
rocal Fisher Information diagonal (vbeta.) alongside Breslow estimates in group treatment and
control. MC = Monte Carlo average. IPD = reference estimate. Note some IPD point estimate are
outside the plotting range because singular.
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Figure C.2: The abo2 data: MaxEntBoot samples for the log HR (beta.) and respective reciprocal
Fisher Information diagonal (vbeta.) alongside Nelson-Aalen estimates in group treatment and
control. MC = Monte Carlo average. IPD = reference estimate.
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Figure C.3: The rats.2 data: MaxEntBoot samples for the log HR (beta.), and respective recip-
rocal Fisher Information diagonal (vbeta.) alongside Nelson-Aalen estimates in group treatment
and control. Note group treatment has originally only two events. MC = Monte Carlo average.
IPD = reference estimate.
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Appendix D

Programming details

All calculations are performed in R (R Core Team, 2017) and C++. Extensive coding was needed
to implement the whole methodology. C++ routines were imported and ran into R via Rcpp and
RcppArmadillo packages.

D.1 List of R dependencies

In order to develop our routines we make use of the following R packages:

mvtnormRpack (Genz et al., 2014)

JohnsonDistribution (McLeod and King, 2012)

moments (Komsta and Novomestky, 2015)

doParallel (Analytics and Weston, 2014)

doRNG (Gaujoux, 2014)

Rcpp (Eddelbuettel and François, 2011)

RcppArmadillo (Eddelbuettel and Sanderson, 2014)

maxLik (Henningsen and Toomet, 2011)

microbenchmark (Mersmann, 2015)

cubature (Johnson and Narasimhan, 2013)

boot (Canty and Ripley, 2016)

plyr (Wickham, 2011)

ggplot2 (Wickham, 2009)

143
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D.2 Code extracts

Code excerpt of example from Section 3.3.1, 59. The code generates IPD copies using an incom-
plete lower triangular (with rank correlation entries) and Gamma real-valued marginals.

> m <- 1

> setting.comb.matrix()[, m]

[1] "incomplete" "gamma" "rank.corr"

> Xspacelist <- Simulate.many.datasets(

+ datalist[2], H = NULL, method = m,

+ SBjohn.correction = T, checkdata = TRUE,

+ tabulate.similar.data = TRUE )

The routine Simulate.many.datasets performs the simulating procedure for several differ-
ent data-sets. Here it acts upon a single data-set (number 2 in the data list). Index m defines the
re-construction main settings, printed out for clarity. Argument H denotes the number B of re-
samplings. When set to NULL it takes value 300 if the data has fewer than 400 records, and value
100 otherwise. The argument SBjohn.correction is needed to fix minor issues in the package
JohnsonDistribution, as mentioned in Appendix A.1.1, page 79. An extract of the routine
output looks like

Number of data-set(s): 1

simulated with following settings

MC REPLICATES: check by data-set source

CORRELATION GENERATION: incomplete

CORRELATION FUNCTION: rank.corr

MARGINAL DISTRIBUTION: gamma (and bernoulli for binary variables)

Warning messages:

1: In is.data.similar(Xlist, correlation.matrix, moments, corrtype, :

some MC third moments differ from reference on average

2: In is.data.similar(Xlist, correlation.matrix, moments, corrtype, :

some MC fourth moments differ from reference on average

3: In is.data.similar(Xlist, correlation.matrix, moments, corrtype, :

some correlation entries differ from reference on average

where MC is generic for Monte Carlo. The routine warns that some simulated moments and cor-
relation entries differ on average from the respective IPD references (see Section 2.2.4, page 38).
We should expect such warning because we operate under sub-optimal conditions.
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Code excerpt generating HR reconstructions from simulated IPDs from the same example
above. Setting fsm = 1 indicates the first option, ordinary re-sampling, among those described
in Section 2.3.3, page 41.

> modtype <- c("gaussian", "poisson", "binomial", "cox")

> im <- 4

> fsm <- 1

> fixed.stat.meth.matrix()[ ,fsm]

set.fixed.stat.2.null expected.fixed.stat

TRUE FALSE

> RES <- Return.MC.Evidence.and.IPD.estimates(

+ Xspacelist[[1]], fsm, modtype[im], compute.bias = T,

+ ipd.bootstrap = T)

The routine Return.MC.Evidence.and.IPD.estimates performs Cox and Breslow estimation
for all MC replicates and compare results with those ran on the diab.2 reference. With the option
ipd.bootstrap = T we also indicate we want to compare simulated percentiles with those of
a IPD bootstrap. All reference IPD bootstraps have size equal to 10000 versus B = 300 in our
simulation. Once concluded the program outputs the message

MC replicates: 300

Model performed: cox regression (and cumul. hazard estimation)

outcome: status

covariates: time treat agedx

Handling of fixed stat:

set.fixed.stat.2.null = TRUE

expected.fixed.stat = FALSE

Below we print code excerpt to reconstruct IPD under the near-optimal settings of Section 3.3.2,
61.

> m <- 4

> setting.comb.matrix()[, m]

[1] "norta" "johnson" "moment.corr"

The NORTA method use moment correlations. An output message of the routine looks like

Number of data-set(s): 1

simulated with following settings
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MC REPLICATES: check by data-set source

CORRELATION GENERATION: norta

CORRELATION FUNCTION: moment.corr

MARGINAL DISTRIBUTION: johnson (and bernoulli for binary variables)

Stochastic integration for corr. matrix: FALSE

Warning message:

In is.data.similar(Xlist, correlation.matrix, moments, corrtype, :

some correlation entries differ from reference on average

Here the warning message is caused by the NORTA routine failing to detect a sign of the zero.

D.3 Computations run-time

NORTAmax implementation (Algorithm 2.1.1) bares most computational cost on marginal and
dependence structure optimization. For these two steps routines are written in R and run time can
vary between few to several seconds. Translation of those routines into a more speedy language is
recommended.
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Rüschendorf, L. (1985). Construction of multivariate distributions with given marginals. Annals
of the Institute of Statistical Mathematics, 37(1):225–233.
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