
Highly Accurate Lidar-Based

Mapping and Localization

for Mobile Robots

Alexander Schaefer

Technische Fakultät

Albert-Ludwigs-Universität Freiburg

Dissertation zur Erlangung des akademische Grades

Doktor der Naturwissenschaften

Betreuer: Prof. Dr. Wolfram Burgard

Highly Accurate Lidar-Based

Mapping and Localization

for Mobile Robots

Alexander Schaefer

Dissertation zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften

Technische Fakultät, Albert-Ludwigs-Universität Freiburg

Dekan Prof. Dr. Rolf Backofen

Erstgutachter Prof. Dr. Wolfram Burgard

Zweitgutachter Prof. Dr. Bernhard Nebel

Tag der Disputation 13. März 2020

Zusammenfassung

Die vorliegende Dissertation stellt neuartige Konzepte, Methoden und Algo-
rithmen vor, um eine Karte der Umgebung eines mobilen Roboters zu erstel-
len und seine Position anhand dieser Karte zu bestimmen. Sie beschäftigt sich
also mit den grundlegenden Fähigkeiten eines jeden mobilen Roboters. Ohne
Kartierung und Positionsschätzung kann er sich nicht in der Welt zurecht-
finden. Dabei spielen die Daten, die die Sensoren des Roboters liefern, eine
wichtige Rolle. Im Folgenden gehen wir immer davon aus, dass der Roboter
mit einem Lidarsensor ausgestattet ist. Lidar steht für „light detection and
ranging“, was bereits auf die Funktionsweise dieser Art von Sensoren hin-
deutet: Typischerweise sendet ein Lidarsensor kontinuierlich Lichtpulse aus.
Nach jedem Puls wartet er eine gewisse Zeit darauf, dass das Licht von einem
Objekt in der Umgebung reflektiert wird. Wird der Puls reflektiert, misst der
Sensor die Zeit, die zwischen Aussenden des Pulses und Detektion der Refle-
xion vergangen ist, und berechnet daraus den Abstand zum reflektierenden
Objekt.

Im ersten Teil dieser Arbeit stellen wir ein neuartiges mathematisches
Sensormodell für Lidarsensoren vor. Es beschreibt die Interaktion zwischen
Sensor und Umgebung formal und ist deshalb Herzstück eines jeden Kartie-
rungs- oder Positionsbestimmungsalgorithmus. Im Gegensatz zu bisherigen
Arbeiten auf diesem Gebiet modelliert es die Wahrscheinlichkeit, dass ein
vom Sensor emittierter Lichtstrahl reflektiert wird, als exponentiellen Zer-
fallsprozess. Daraus ergeben sich einige Vorteile. Beispielsweise verarbeitet
unsere Methode nicht nur einen Teil, sondern die vollständige Information
über den Strahlengang der Lichtpulse, was zu einer höheren Genauigkeit bei
der Positionsschätzung führt. Weiterhin ist unser Sensormodell das erste, das
zwar den Strahlengang berücksichtigt, dabei aber nicht darauf angewiesen ist,
dass der Raum zuvor gerastert, sprich in Zellen eingeteilt wird. Das macht
es zum ersten Sensormodell, das sowohl Kartierung als auch Positionsschät-
zung mit kontinuierlichen Karten ermöglicht – eine Tatsache, auf die wir im
dritten Teil dieser Arbeit genauer eingehen.

Im zweiten Teil der vorliegenden Dissertation präsentieren wir eine Me-

V

VI

thode, um den Informationsgehalt von Rasterkarten aus Lidardaten wesent-
lich zu erhöhen. Während jede Zelle einer herkömmlichen Rasterkarte meist
den wahrscheinlichsten Kartenwert enthält, zeigen wir, wie man dort die
komplette Wahrscheinlichkeitsverteilung über alle möglichen Kartenwerte in
kompakter Form speichert, ohne die Berechnungskomplexität zu erhöhen.
Die mathematische Herleitung erfolgt in geschlossener Form und kommt ohne
Näherungen aus. Unsere Experimente zeigen, dass die resultierenden Karten
die Güte der Positionsschätzung gegenüber herkömmlichen Karten signifi-
kant verbessern.

Im dritten Teil geht es nicht mehr um Rasterkarten, sondern um eine
neuartige kontinuierliche Kartenrepräsentation, die auf der diskreten Kosi-
nustransformation beruht. Der wesentliche Vorteil dieser Methode gegenüber
bestehenden kontinuierlichen Lidarkarten liegt darin, dass sie sowohl zur Kar-
tierung als auch zur Positionsbestimmung eingesetzt werden kann. Bestehen-
de Ansätze erlauben es zwar, kontinuierliche Karten zu erstellen. Um bei der
Positionsschätzung die Wahrscheinlichkeit einer gegebenen Lidarmessung auf
Basis einer solchen Karte zu bestimmen, musste die Karte aber bisher wie-
der gerastert werden. Ein weiterer Vorteil des neu vorgestellten Kartentyps
gegenüber vergleichbaren Arbeiten ist seine hohe Speichereffizienz.

In den verbleibenden Teilen der Arbeit wenden wir uns einem weiteren
wichtigen Aspekt der Kartierung und Positionsschätzung zu: der Erkennung
von Features. Unter Features verstehen wir abstrakte Merkmale in Sensor-
daten, zum Beispiel Linien in einem Kamerabild oder ebene Flächen in einer
Punktwolke. Nutzt man Features statt Sensorrohdaten zur Kartierung, er-
hält man eine Featurekarte. Featurekarten unterscheiden sich dadurch von
den oben beschriebenen dichten Kartentypen, sprich kontinuierlichen und
Rasterkarten, dass sie die Welt als eine Sammlung von Objekten in ansons-
ten leerem Raum modellieren. Dieser Ansatz spart Speicherplatz, vereinfacht
die Integration von Daten aus unterschiedlichen Sensormodalitäten, er kann
die Robustheit des Gesamtsystems erhöhen und ermöglicht es, semantische
Informationen in die Karten aufzunehmen.

Unsere erste Arbeit zum Thema Featureerkennung beschäftigt sich mit
der Detektion von zusammenhängenden linienförmigen Konturen in planaren
Lidardaten. Die Erkennung solcher Konturen ist beispielsweise nützlich, um
den Grundriss eines Gebäudes in den Daten zu erkennen, die ein horizontal
am Roboter angebrachter Lidar liefert. Der entwickelte Ansatz beruht auf
dem Prinzip, die kombinierte Wahrscheinlichkeit aller Messungen zu maxi-
mieren. Dabei nutzt er die in den Sensordaten enthaltene Information über
den Strahlengang der vom Sensor ausgesendeten Lichtpulse vollständig aus.
Im Rahmen ausführlicher Experimente mit echten und simulierten Daten
zeigen wir, dass die entwickelte Methode eine signifikant höhere Genauigkeit

VII

erreicht als vergleichbare Ansätze.
Aufbauend auf dieser Arbeit beschreibt der nächste Teil der Dissertation

einen analogen Ansatz zur Erkennung finiter Ebenen in 3-D-Lidardaten. Da
der Datensatz, der normalerweise zum Vergleich solcher Ebenenerkennungs-
algorithmen herangezogen wird, in die Jahre gekommen ist und zahlreiche
Nachteile aufweist, stellen wir weiterhin einen Nachfolger vor, der synthe-
tisch generierte Lidardaten enthält.

Der letzte Teil der Dissertation dreht sich um Pfosten-Features in 3-D-
Lidardaten, also Objekte, die einem stehenden Zylinder gleichen, zum Bei-
spiel Poller, Baumstämme, Masten von Straßenschildern und Lampen. Wir
stellen ein komplettes System zur Positionsbestimmung basierend auf diesen
Features vor, bestehend aus einem Modul zur Featuredetektion, einem Kar-
tierungsmodul und einem Positionsschätzer. Vergleichsexperimente mit ähn-
lichen Methoden zeigen, dass der vorgeschlagene Ansatz die Roboterposition
genauer schätzt. Während andere Ansätze meist nur auf einem wenige Minu-
ten langen, nichtöffentlichen Datensatz ausgewertet werden, demonstrieren
wir zusätzlich die Leistungsfähigkeit und Robustheit unseres Ansatzes über
lange Zeiträume hinweg. Dazu evaluieren wir ihn auf einem frei verfügbaren
Langzeitdatensatz, der 35 Stunden Daten enthält, die über einen Zeitraum
von 15 Monaten aufgenommen wurden.

VIII

Abstract

This thesis contributes novel concepts, methods, and algorithms to the topic
of mapping and localization for mobile robots. Mapping is the process of
building a model of the robot’s environment based on a collection of sensor
measurements, while localization refers to the process of using the resulting
map and incoming sensor measurements to estimate the current location of
the robot. Together, mapping and localization enable the robot to navigate
the world – a prerequisite for any meaningful application of a mobile robot.

All of our contributions assume that the mobile robot is equipped with
a lidar sensor. Lidar is an acronym of “light detection and ranging”, hinting
at the operating principle of a lidar sensor: Typically, it continuously emits
light pulses, waits for each pulse to be reflected by a nearby object, measures
the time of flight, and uses this measurement to compute the distance to the
object.

Our first contribution is a novel mathematical model for lidar sensors.
By describing the interaction between the sensor and its environment math-
ematically, it constitutes the theoretical centerpiece of any mapping and lo-
calization algorithm. In contrast to related approaches, the proposed model
formulates the reflection probability of a light ray emitted by the lidar as an
exponential decay process, hence the name decay-rate model. This formu-
lation yields several advantages compared to existing approaches, the most
important being that the model makes use of the full ray-path information
contained in the measurements. In this way, it achieves higher localization
accuracy than comparable methods, which process only part of this infor-
mation. To the best of our knowledge, it is also the first beam-based lidar
sensor model that is not bound to the notion of voxels. Consequently, the
decay-rate model is the first model to truly enable continuous mapping, a
fact we make use of in our third contribution.

The second contribution advances the way in which grid maps produced
by the reflection model or the decay-rate model represent the world. Conven-
tionally, these models are used to create maximum-likelihood grid maps of
the robot’s environment. Maximum-likelihood maps encode for each cell the

IX

X

mode of the underlying probability distribution over all possible map values.
In this thesis, we show that it is possible to represent the full posterior prob-
ability distribution of each cell using only two variables – without increasing
the computational complexity required to create the map. Our mathemati-
cal proof is carried out in closed form and without any simplifications. We
also demonstrate that keeping track of the full posterior significantly im-
proves localization performance compared to working with the mode of the
distribution only.

The third contribution introduces another innovation to the way the map
represents the environment. Instead of tessellating the space and assign-
ing a value to each cell, it proposes a novel continuous representation that
is based on the discrete cosine transform. The resulting maps are hence
called DCT maps. Built upon the decay-rate model, the major advantage of
DCT maps over related continuous lidar-based mapping approaches lies in
their consistent nature, which allows to use them not only for mapping, but
also for localization: While other continuous maps require re-tessellation to
compute the probability of a given lidar measurement, DCT maps naturally
support this operation. Furthermore, our experiments show that DCT maps
outperform other map types in terms of memory efficiency.

The remainder of this thesis addresses another highly relevant aspect
of mapping and localization: feature extraction. In contrast to dense map
representations like grid maps or continuous maps, feature-based maps model
the environment as a collection of objects in empty space, yielding memory-
efficient maps that abstract from the modality of the sensors in use, that
improve system robustness, and that can encode semantics.

First, we focus on polylines extracted from 2-D lidar scans. The poly-
line detection method proposed within the scope of our fourth contribution
follows a maximum-likelihood approach that considers the full ray-path in-
formation contained in the lidar measurements. Extensive real-world and
simulated experiments show that this probabilistic approach outperforms the
rich collection of state-of-the-art methods in terms of accuracy.

Building upon this method, our fifth contribution suggests an analogous
approach to extract finite planes from 3-D lidar scans. Due to the deficiencies
of the most popular benchmarking dataset for plane extraction algorithms
based on lidar data, we also present a novel synthetic dataset in the scope of
this work.

Our last contribution does not only present a novel approach to detect
pole features in 3-D lidar scans, but a complete mapping and localization
framework based on poles. The comparative experiments conducted in the
scope of this work already demonstrate the proposed method’s superior lo-
calization accuracy. In addition, while related methods are often tested on

XI

proprietary datasets with durations of only a few minutes, we showcase the
performance and robustness of our approach by evaluating it on a public
long-term dataset that contains 35 hours of data recorded over the course of
15 months.

XII

Alexander Schaefer
University of Freiburg
Georges-Köhler-Allee 080
79110 Freiburg
Germany

Phone: +49 761/203-8176
Email: aschaef@cs.uni-freiburg.de
Web: www.informatik.uni-

freiburg.de/~aschaef/

Alexander Schaefer, Georges-Köhler-Allee 080, 79110 Freiburg, Germany

PhD Board of the Technical Faculty
University of Freiburg
Georges-Köhler-Allee 101
79110 Freiburg
Germany

)HEUXDU\���������

Addendum to application for submitting a cumulative dissertation

Dear PhD Board of the Technical Faculty,

In May 2019, I applied for submitting a cumulative dissertation. In
this application, I listed five scientific papers which, in accordance
with section 8, subsection 3 of the new doctoral regulations
(Promotionsordnung) of the Technical Faculty as of October 1, 2016,

1) target the same overarching scientific problem,
2) were published in internationally renowned conferences,
3) and were in essential parts authored by me.

For all of these papers, I stated the corresponding paper title, the
conference or journal the paper was published in, and the
contributions of the individual authors.

At the time of application submission, a sixth paper that also fulfilled
all three of the criteria above was still under review. After it was
accepted for publication on June 21, 2019, I included it in my
cumulative dissertation.

In order to avoid confusion, I would like to extend the list of papers
contained in my original application as follows, mentioning the paper
title, the conference, and describing the contributions of the individual
authors.

Listing of works included in the cumulative dissertation
(continued)

6) Alexander Schaefer, Daniel Büscher, Johan Vertens,
Lukas Luft, Wolfram Burgard:
Long-Term Urban Vehicle Localization using Pole
Landmarks Extracted from 3-D Lidar Scans.
Proceedings of the European Conference on Mobile Robots
(ECMR), Prague, Czech Republic, September 2019.

I am the main author of the paper. I developed the idea for the
paper, conceived the presented algorithms, implemented the
software used in the experiments, designed and conducted the
experiments, and wrote the paper. Daniel Büscher developed
and implemented the refined registration of the NCLT lidar
scans. He also helped analyze the datasets, provided
consultation regarding the design of the experiments, and
helped with conceptual and implementation problems during
development. Johan Vertens, Lukas Luft, and Wolfram
Burgard provided consultation regarding the overall concept of
the work, the implementation, and experiments.

XX

Acknowledgements

First and foremost, this dissertation would not have been possible without
the support of my supervisor Wolfram Burgard. Wolfram, thank you for your
supervision, for the opportunity to work on exciting research projects in an
international team, for providing your students with modern equipment, for
giving us the opportunity to present our research at top conferences, and for
connecting us to researchers all over the world.

Second, I thank all my coauthors, especially Lukas Luft, Daniel Büscher,
Johan Vertens, and Tobias Schubert. Thank you for your friendly and com-
petent collaboration and for creating a constructive, creative, and motivating
atmosphere.

I also thank all my colleagues who make our group a great place to work
at and spend time in, in particular Daniel Büscher, Johan Vertens, Lukas
Luft, Marina Kollmitz, Michael Krawez, and Tim Caselitz.

Last but not least, I cordially thank all researchers who supported this
work by providing access to their own research: Maani Ghaffari Jadidi for
providing his implementation of Gaussian process occupancy mapping [1], so
it could be compared to DCT maps in the corresponding paper [2], Michael
Veeck for providing his line extraction implementation [3] for evaluation in
our article on polyline extraction [4], and Arash Ushani for his assistance with
the NCLT dataset [5], featured in our work on pole-based localization [6].

XXI

XXII

Contents

I Introduction 1

II Discussion of the Individual Contributions 9

1 An Analytical Lidar Sensor Model Based on Ray Path In-
formation 13
1.1 Research Context . 13
1.2 Contribution . 18
1.3 Critical Discussion . 18

2 Closed-Form Full Map Posteriors for Robot Localization
with Lidar Sensors 23
2.1 Research Context . 23
2.2 Contribution . 25
2.3 Critical Discussion . 25

3 DCT Maps: Compact Differentiable Lidar Maps Based on
the Cosine Transform 27
3.1 Research Context . 27
3.2 Contribution . 29
3.3 Critical Discussion . 30

4 A Maximum-Likelihood Approach to Extract Polylines from
2-D Laser Range Scans 33
4.1 Research Context . 34
4.2 Contribution . 35
4.3 Critical Discussion . 36

5 A Maximum-Likelihood Approach to Extract Finite Planes
from 3-D Laser Scans 37
5.1 Research Context . 37

XXIII

XXIV Contents

5.2 Contribution . 39
5.3 Critical Discussion . 39

6 Long-Term Urban Vehicle Localization Using Pole Land-
marks Extracted from 3-D Lidar Scans 43
6.1 Research Context . 43
6.2 Contribution . 47
6.3 Critical Discussion . 48

III Publications 53

7 An Analytical Lidar Sensor Model Based on Ray Path In-
formation 57
7.1 Abstract . 57
7.2 Introduction . 58
7.3 Related Work . 61

7.3.1 Map Representations 61
7.3.2 Sensor Models . 62

7.4 Approach . 63
7.4.1 The Basic Idea of the Decay-Rate Model 63
7.4.2 Mapping . 65
7.4.3 Localization . 65
7.4.4 Integrating Out-of-Range Measurements 66

7.5 Mathematical Details . 67
7.5.1 Decay-Rate Maps Maximize the Data Likelihood . . . 67
7.5.2 The Decay-Rate Model Generalizes the Reflection Model 68

7.6 Experiments . 70
7.6.1 Monte-Carlo Localization 70
7.6.2 Evaluation of the Pose Likelihood 73
7.6.3 Discussion of Results 75

7.7 Conclusion and Future Work 76

8 Closed-Form Full Map Posteriors for Robot Localization
with Lidar Sensors 77
8.1 Abstract . 77
8.2 Introduction . 78
8.3 Related Work . 79
8.4 Approach . 80

8.4.1 Factorizing Forward Sensor Models 82
8.4.2 Recursive Map Update 82

Contents XXV

8.4.3 Closed-Form Map Posteriors 84
8.4.4 Localization with Map Posteriors 86
8.4.5 Closed-Form Measurement Likelihoods 86

8.5 Experiments . 88
8.5.1 Localization in Simulation 89
8.5.2 Real-World Localization 90

8.6 Conclusion and Future Work 93

9 DCT Maps: Compact Differentiable Lidar Maps Based on
the Cosine Transform 97
9.1 Abstract . 97
9.2 Introduction . 98
9.3 Related Work . 101
9.4 Approach . 103

9.4.1 The Decay-Rate Model 103
9.4.2 Transforming the Spectral Map Representation to the

Spatial Domain . 105
9.4.3 Computing the Measurement Likelihood 106
9.4.4 Building the Decay-Rate Map 107

9.5 Experiments . 109
9.5.1 Map Value Comparison 110
9.5.2 Measurement Probability Comparison 111
9.5.3 Execution Times . 113

9.6 Conclusion and Future Work 117

10 A Maximum-Likelihood Method to Extract Polylines from
2-D Laser Range Scans 119
10.1 Abstract . 119
10.2 Introduction . 120
10.3 Related Work . 120
10.4 Approach . 123

10.4.1 Probabilistic Sensor Model 124
10.4.2 Polyline Extraction . 125
10.4.3 Polyline Optimization 130

10.5 Experiments . 130
10.6 Conclusion and Future Work 138

11 A Maximum-Likelihood Approach to Extract Finite Planes
from 3-D Laser Scans 141
11.1 Abstract . 141
11.2 Introduction . 142

XXVI Contents

11.3 Related Work . 142
11.4 Approach . 145

11.4.1 Probabilistic Sensor Model 146
11.4.2 Maximum-Likelihood Estimation 147
11.4.3 Agglomerative Hierarchical Clustering 148
11.4.4 Probabilistic Plane Extraction 150

11.5 Experiments . 152
11.6 Conclusion and Future Work 157

12 Long-Term Urban Vehicle Localization Using Pole Land-
marks Extracted from 3-D Lidar Scans 159
12.1 Abstract . 159
12.2 Introduction . 160
12.3 Related Work . 162
12.4 Approach . 163

12.4.1 Pole Extraction . 164
12.4.2 Mapping . 166
12.4.3 Localization . 167

12.5 Experiments . 168
12.5.1 Localization on the NCLT Dataset 168
12.5.2 Localization on the KITTI Dataset 173

12.6 Conclusion and Future Work 174
12.7 Acknowledgements . 174

IV Conclusion and Outlook 177

Bibliography 181

Part I

Introduction

1

3

The present dissertation contributes to the area of lidar-based mapping
and localization for mobile robots. It is structured as follows. This first
part introduces the reader to the topic. The second part discusses the con-
tributions at the base of this dissertation, before the third part replicates
the corresponding publications. In the fourth part, we summarize the most
important insights gained from this work.

In order to introduce the reader to the topic of this thesis, the next
sections provide an intuitive understanding of the task of mapping and local-
ization in the context of mobile robotics, then explain the working principle
of lidar sensors, and finally explore alternative sensor types that can be used
to support this task.

Mapping and Localization for Mobile Robots
Mobile robots are becoming a more and more important aspect of every-
day life. Vacuum robots autonomously clean our homes while we are out,
lawn mower robots silently take care of our greens, inspection robots watch
for dangerous cracks in sewers, bridges, and wind turbine blades, and the
prototypes of autonomous cars collect millions of test miles each year.

In order to perform any meaningful task, each of these mobile robots
must be able to navigate its environment. Technically, navigation is the
combination of three essential abilities that almost every mobile robot must
possess: mapping, localization, and path planning. Mapping is the process
of creating a model of the environment based on sensor readings. During
localization, the robot makes use of this map and incoming sensor readings to
estimate its pose. Path planning refers to the task of generating a trajectory
to a given goal location based on the map and the location estimate. This
dissertation focuses on the first two competencies, mapping and localization.

Of course, there are mobile robots that get along without mapping and
localization software. The first generations of the iRobot Roomba vacuum
cleaning robot for example, shown in figure 1, are not aware of their po-
sition within a room, but follow a set of simple reactive navigation rules,
for example going in spirals, following walls, and “bouncing off” walls [7].
Such an approach, however, is limited to executing simple tasks, and would
never solve the complex challenges a mobile robot like an autonomous car
is facing. In general, more complicated applications require more powerful
mapping and localization software. Tellingly, newer and improved Roomba
generations feature an infrared sensor and mapping and localization capabil-
ities. They build a floor plan-like map of the rooms they operate in, which
allows them to cover the area to clean more systematically and hence faster,

4

Figure 1: First-generation iRobot Roomba of 2002. Source: eBay product
picture, www.ebay.com, 2019.

to interrupt their work in order to drive back to the recharging station, and
to continue cleaning at the same spot where they had stopped before.

Navigation Sensors for Mobile Robots
Over the past years, lidar has become an essential sensing modality for mobile
robots navigating complex environments, like autonomous fork lift trucks,
rescue and inspection drones, or autonomous cars. In order to provide three-
dimensional geometric measurements of its environment, a lidar sensor, short
for light detection and ranging, constantly emits laser pulses. If a surface in
the environment of the robot reflects such a pulse back to the sensor, the
device measures the time of flight of the photons and estimates the distance
to the object via the known speed of light. Usually, the emitter constantly
changes its orientation to cover a certain area of interest. At the same time,
its angular encoders record the direction of the emitter for each light pulse.
Based on the computed length and the recorded direction of the ray, the
sensor then outputs the corresponding measurement in polar coordinates. If
no reflection within the sensor range occurred, the sensor usually sets the ray
length to undefined.

This principle of operation entails some important advantages in compar-
ison to other types of depth sensors like stereo cameras or projection-based
sensors. First of all, lidars are very precise. The accuracy of the returned
data points usually lies within the millimeter range. Furthermore, due to
the measurement principle of lidars, this accuracy is invariant under the dis-

www.ebay.com

5

tance between the sensor and the reflection. In contrast to stereo cameras,
the measurements are readily available, too: no need to solve difficult data
association problems and no need to triangulate. Moreover, since lidars are
active sensors with a narrow bandwidth, illumination changes have hardly
any effect on the quality of the measurements. Consequently, a lidar can
operate both in bright sunlight and in complete darkness.

Despite the fact that these advantages make lidar a popular sensor modal-
ity in mobile robotics, the technology is still afflicted with several draw-
backs. For example, even though modern high-performance lidars like the
ones shown in figure 2 are able to produce millions of points per second,
their output rate is still sparse compared to camera data. And although
their active sensing technology makes them very robust to changes in illumi-
nation, direct sunlight and the emissions of neighboring lidars can produce
false measurements. Furthermore, all of today’s commercially available high-
performance lidar sensors rely on a spinning array of emitters and receivers,
which comes at high cost, high weight, high maintenance effort, and high
energy consumption.

Solid-state lidar devices are expected to alleviate the disadvantages of
their electromechanical counterparts. The technology relies on a phased ar-
ray of light emitters that are all part of the same silicon chip and together
steer the direction of the outbound laser ray. But although solid-state li-
dars have been announced repeatedly during the past years, hardly any such
product is commercially available to date. Given that today’s popularity of
electromechanical lidar sensors in mobile robotics already justifies dedicated
research, the advent of solid-state technology is expected to make this re-
search even more relevant, as sensors would find their way into applications
where the costs, the weight, and the energy consumption of electromechanical
devices is prohibitive.

Of course, there exist plenty of other sensing modalities apart from lidar
that, depending on the application, may be well suited for mobile robot nav-
igation. Cameras, for example, provide rich visual information about their
surroundings. Here, the term camera does not necessarily refer to the stan-
dard RGB sensor operating in the visible electromagnetic spectrum: Thermal
cameras provide high-resolution images of the infrared spectrum, while hy-
perspectral cameras can measure radiation intensity in up to dozens of narrow
electromagnetic bands, possibly far beyond the visible range. Recently, event
cameras have proven to be powerful navigation sensors [8], too. Instead of
capturing whole images at a fixed rate like conventional cameras, an event
camera registers and reports brightness changes per pixel, in this way creat-
ing a stream of relative changes in the image. Since the temporal resolution
of an event camera is orders of magnitude higher than that of a conventional

6

(a) Velodyne HDL-64E. (b) Ouster OS2.

(c) Sick MRS6000. (d) Quanergy M8.

(e) Luminar Iris.

Figure 2: Different state-of-the-art electromechanical high-performance lidar
sensors that provide up to several million measurements per second. Sources:
manufacturer websites, 2019: www.velodynelidar.com, www.ouster.com,
www.sick.com, www.quanergy.com, www.luminartech.com.

www.velodynelidar.com
www.ouster.com
www.sick.com
www.quanergy.com
www.luminartech.com

7

camera, this type of sensor is well suited for high-speed applications, where
conventional cameras would only provide a stream of blurred images.

The above-mentioned camera types provide a projection of the three-
dimensional scene onto the image plane. Additional depth data, however,
often simplifies the mapping and localization process and improves accu-
racy. Apart from stereo cameras, which estimate the depth of the scene
via triangulation, there are two kinds of camera-based sensors which output
3-D data points: projection-based depth sensors and time-of-flight cameras.
Projection-based depth sensors project a known infrared pattern onto the
scene. By observing the distortion of the pattern, they estimate the depth.
Time-of-flight cameras, on the other hand, work like lidars in the visible
spectrum: For each pixel, they measure the time it takes the corresponding
light ray to travel to a reflective surface and back. Based on this information,
time-of-flight cameras estimate the distance of the corresponding object in
the scene.

Cameras use only a fraction of the electromagnetic spectrum, more specif-
ically wavelengths in the nanometer to micrometer range. Radio technology
makes it possible to exploit the millimeter to centimeter range for robot
navigation, too. Radars, for example, are popular sensors in the context
of autonomous driving. Their working principle is similar to that of lidar
sensors, but the waves they emit interact differently with their environment:
Radars can see through many objects that reflect light, for example living
organisms or walls.

Radio sensors do not necessarily have to be active, though. They can also
receive the waves emitted by other sources without emitting signals on their
own. By measuring the signal strength of nearby senders, every Wi-Fi card,
Bluetooth receiver, and Near-Field Communication device can be turned into
an inexpensive radio sensor suitable for robot navigation.

Not only electromagnetic waves lend themselves to sense the geometric
properties of the environment, but also sound waves. Sonar systems have
been successfully applied to mapping and localization since the early days of
mobile robots [9]. Analogously to lidar and radar sensors, they emit sound
waves and estimate the distance of nearby objects based on the waves’ time
of flight.

The listing above is by no means exhaustive. There are many other
modalities that are well suited for robot navigation, for example force sensors
or bumpers. However, the listing may be comprehensive enough to convey
an intuition of the breadth of possible sensors and sensing modalities.

8

Part II

Discussion of the Individual
Contributions

9

11

The following six chapters describe the individual contributions of this
work to the topic of highly accurate lidar-based mapping and localization
for mobile robots. Each chapter places the respective contribution into its
research context, briefly describes the proposed approach, summarizes the
experimental findings, and closes with a critical discussion of the contribu-
tion.

This part is intended to serve as an introduction to each developed
method, and to provide additional information that is not part of the corre-
sponding research article. It does not go into the theoretic and experimental
details of each contribution. For these details, please see the original publi-
cations in part III.

12

Chapter 1

An Analytical Lidar Sensor
Model Based on Ray Path
Information

The contribution described in the following is a novel consistent probabilis-
tic beam-based lidar sensor model, which we named the decay-rate model.
This chapter starts by introducing the reader to sensor models in general,
then details the specifics of the proposed approach, and finally discusses the
advantages and drawbacks of the method presented.

1.1 Research Context
Before going into detail about the decay-rate model, we first need to clarify
what a consistent probabilistic beam-based lidar sensor model is. A sensor
model is a mathematical model required for mapping and localization. It
describes the relation between the measurements returned by the sensor and
the true state of the world. In the context of mapping and localization, the
true state of the world is usually represented by two variables: the robot pose
and the map. The robot pose can be a homogeneous 4 × 4 transformation
matrix, for example, and the map might be a three-dimensional matrix whose
every cell represents the value of a three-dimensional grid map.

Such a sensor model should not be formulated in a deterministic way:
Measurement noise, model inaccuracies, and unmodeled effects like unfore-
seen dynamics in the scene necessitate a probabilistic approach [10]. Follow-
ing this rationale, the decay-rate model represents the relation between lidar
measurements, robot pose, and map in a probabilistic fashion. It assigns a
probability to each combination of these variables.

13

14 Chapter 1. Analytical Lidar Sensor Model

That explains the meaning of a probabilistic sensor model, but what is
a consistent sensor model? There are two sorts of sensor models: forward
models and inverse models. Forward models describe the physical process
of the sensor measuring the environment. They are given the causes, i.e.
the robot pose and the map, and predict the probability of a certain effect,
i.e. the probability of a set of lidar measurements. Thus, forward models
can be used to localize the robot by finding the pose that maximizes the
probability of a given measurement in a given map. Inverse sensor models
work the opposite way. Given the effects, namely the sensor measurements,
and the robot pose, an inverse model reasons about the causes, which in our
case translate to the map. Inverse sensor models are hence a vital tool for
mapping. A consistent sensor model is now defined as a sensor model that
can be used both as forward and as inverse model.

“Beam-based” means that the model makes use of information about the
trajectory of the laser beams emitted by the lidar sensor, as opposed to
models that only consider the endpoints of the rays. In general, beam-based
models come with greater computational complexity due to ray tracing, but
they also achieve higher accuracy than endpoint-based models, because they
leverage more of the information provided by the sensor.

To illustrate the differences between the types of sensor models discussed
above, and in order to provide an overview over the most popular models, we
will now contrast the likelihood field model with the reflection model, discuss
their advantages and disadvantages, and point out how the decay-rate model
provides an improved solution to the underlying problems.

The likelihood field model [10], illustrated in figure 1.1, is based on a
heuristic, which means that it does not model a physical process. Instead,
it approximates the probability of a lidar measurement by evaluating a zero-
centered Gaussian probability distribution at the distance between the end-
point of a given lidar measurement and the nearest object in the map. Using
a suitable tree-based data structure to store the objects, this approach can
achieve logarithmic computational complexity in the number of mapped ob-
jects.

Since the likelihood field model obtains the measurement likelihood di-
rectly from the object map without the need for ray tracing, it is classed
with correlation-based sensor models, as opposed to beam-based models. As
such, it is computationally efficient, but it cannot avoid the disadvantages
associated with all correlation-based models. First, it is not able to achieve
the accuracy of beam-based models, because it discards valuable informa-
tion returned by the sensor: As a consequence of not considering the ray
path, the model overlooks the fact that rays cannot travel through objects
like walls, and it is unable to assign probabilities to measurements that are

1.1. Research Context 15

(a) Object map. (b) Likelihood field.

Figure 1.1: Object map and corresponding likelihood field. The circle rep-
resents the robot, the dashed line illustrates an exemplary laser ray, and
the gray areas in the object map on the left-hand side represent objects.
The brightness of the likelihood field on the right encodes the probability of
measuring a reflection: black means low probability, white stands for high
probability. Source: website for “Probabilistic Robotics” by Thrun et al. [10],
http://probabilistic-robotics.informatik.uni-freiburg.de, 2019.

http://probabilistic-robotics.informatik.uni-freiburg.de

16 Chapter 1. Analytical Lidar Sensor Model

not reflected. Second, the likelihood field model is inconsistent, because it
assigns probabilities to sensor measurements given a map, but it offers no
mechanism to derive an object map from lidar data.

For complex problem settings, the likelihood field model is often overly
simplistic. In these cases, the more realistic, beam-based and consistent
reflection model [11], also known as hit-counting model, might be more ad-
equate. It represents the robot’s environment as a grid composed of homo-
geneous cells. Every grid cell encodes the probability that an incident ray
is reflected. During mapping, this reflection probability is computed as the
quotient of all reflections within the cell and the total number of rays that
enter the cell. Both the numbers of reflections and the number of rays that
enter the cell are determined via ray tracing. Ray tracing also plays an im-
portant role in the forward pass, because in order to assign a probability
to a measurement given a map, the cells visited by the corresponding ray
need to be identified. After this has been done, the measurement probability
is calculated as the probability of the ray penetrating all but the last cell,
multiplied by the probability of the ray being reflected in the last cell.

As a beam-based model, the reflection model makes use of more sensor
information than the likelihood field model. Tracing the individual rays
through the grid ensures that obstacles in the ray path have an impact on the
probability of reflections behind these objects. However, the reflection model
still discards some information. For an illustrative example, see figure 1.2. It
shows two cells that are assigned the same reflection probability, because the
numbers of reflected and transmitted rays are equal. The distances which
the individual rays travel within the cells, however, vary greatly from left to
right. On the left-hand side, the rays cover large distances, while on the right-
hand side, they barely touch the cell. Intuitively, the longer the distance a
ray travels within a cell, the more information it collects about the interior
of the cell. In discarding the ray lengths per cell, the reflection model does
not account for this information.

This is not the only drawback of the reflection model, though. Since the
tessellation of space is an integral part of its definition, it is incompatible
with continuous maps. Furthermore, the reflection probability only changes
at the cell boundaries, as shown in figure 1.3a. This behavior results in a zero
derivative, which does not allow the application of optimization techniques
to mapping and localization.

1.1. Research Context 17

d1

d2

d3

d1

d2

d3

Figure 1.2: Two cells with the same numbers of lidar reflections and trans-
missions, but with different distances di that the rays travel inside the cells.
The blue boxes represent the cells, the red arrows represent the lidar rays.

µ

d

d

p(d)

(a) Reflection model.

λ

p(d)

d

d

(b) Decay-rate model.

Figure 1.3: Measurement probability density functions of different sensor
models. The blue boxes represent the cell, the red arrows represent the lidar
rays. The variable µ means reflection probability of the cell, λ is the decay
rate of the cell, d stands for the distance that the ray travels inside the cell,
and p(z) is the probability that the ray is reflected. While the measurement
probability of the reflection model only changes at the cell boundaries, the
measurement probability returned by the decay-rate model changes within
the cells, resulting in a non-zero gradient.

18 Chapter 1. Analytical Lidar Sensor Model

1.2 Contribution
The decay-rate model improves on the reflection model and mitigates its
afore-mentioned disadvantages. The key idea behind it is modeling the in-
teraction between the laser ray and the environment as an exponential decay
process, hence the name. To understand this approach intuitively, one can
imagine the space to be filled with tiny particles, whose concentration may
vary locally. The higher this concentration, the higher the probability that
an incident laser ray is reflected. The particle concentration can be expressed
as a decay rate that governs how far, on average, a ray emitted by the sensor
travels before it is reflected. Consequently, instead of modeling the distri-
bution of the reflection rate, as is the case for the maps produced by the
reflection model, the decay-rate model produces decay-rate maps, which tell
for each location the corresponding decay rate.

We do not repeat the detailed mathematical derivation of the model that
can be found in our article introducing decay-rate maps in part III, chapter 7.
But we want to point out that the decay-rate model results in mapping and
localization algorithms that are similar to those of the reflection model, and
that do not increase computational complexity. In the context of grid-based
mapping, for example, the decay rate of a cell is computed as the quotient of
the number of reflections in the cell and the total distance that all rays travel
within the cell, as opposed to the number of reflections and the number of
rays that enter the cell.

1.3 Critical Discussion
By modeling the interaction between the lidar ray and the world as an ex-
ponential decay process, the decay-rate model generalizes and improves the
reflection model. During mapping, it measures the lengths that the indi-
vidual rays travel within the cells and incorporates this information in the
map. Consequently, the map is a more accurate representation of the sur-
roundings of the robot. During localization, the measurement probability
is no longer constant within a cell, as is the case for the reflection model,
but it decreases over the distance the ray travels within the cell. The result
is a piecewise continuously differentiable measurement probability as shown
in figure 1.3b, which enables optimization-based localization methods. Fur-
thermore, accounting for the ray lengths per cell during both mapping and
localization results in higher localization accuracy, as demonstrated in the
experiments described our paper in part III. In terms of computational ef-
fort, these improvements come for free, because the decay-rate model has the

1.3. Critical Discussion 19

same computational complexity as the reflection model. This is due to the
fact that the ray lengths per cell must be computed during ray tracing, no
matter whether they are made use of or not.

As mentioned above, the reflection model always requires tessellation of
the space. It cannot be applied to a continuous space, because by defini-
tion, all changes in measurement probability occur at the cell boundaries.
Without cells, however, there are no cell boundaries. The decay-rate model,
on the other hand, does not depend on the discretization of space, although
our article derives the mapping and localization algorithms for grid-based
maps. In fact, to the best of our knowledge, the decay-rate model is the
first lidar sensor model that allows true continuous mapping and localization
without intermediate rasterization. In chapter 3, we make use of this fact,
and we present a corresponding mapping and localization framework based
on continuous maps.

The decay-rate model eliminates many problems of the reflection model,
but it is still afflicted with the general drawbacks of beam-based lidar models.
For example, despite the fact that it does not introduce any additional com-
putational complexity compared to the reflection model, it is significantly
more computation-intensive than the likelihood field model, for example.
The reason for this behavior lies in the ray tracing process, which can hardly
be simplified.

Like the reflection model, the decay-rate model also suffers from model
simplifications that may negatively affect mapping and localization accuracy.
One of these simplifications is the assumption that the laser ray is a straight
line without volume. However, figure 1.4 illustrates that in reality, every
laser ray has a finite cross sectional area. Since we always have to deal
with beam divergence, too, the geometric shape of a ray resembles a frustum
rather than a line. This situation introduces additional uncertainties to the
measurement process. If a ray travels close to the border of an object, for
example, its optical axis might not hit the object, but a significant portion
of the ray’s cross sectional area might, which can lead to measurements that
contradict the simplified ray-line model.

As another conceptual simplification, neither the reflection model nor
the decay-rate model account for uncertainty in the sensor measurements.
And yet, the sensor pose, the laser ray length, and the laser ray direction
are affected by noise. Similarly, the map does not encode any confidence
information. Both models estimate maximum-likelihood maps during map-
ping, which they interpret as true representations of the environment during
localization.

The next work underlying this thesis focuses on the latter issue. It devel-
ops a framework that allows to capture the map uncertainty and in this way

20 Chapter 1. Analytical Lidar Sensor Model

Figure 1.4: Cross section of a laser ray emitted by a Velodyne VLP-32C,
photographed at the sensor’s ring lens. The spot is 9.5 mm tall by 12.7 mm
wide. While shooting off the sensor, the spot size increases according to the
beam divergence. For this sensor, the horizontal beam divergence is 3.0 mrad,
while the vertical beam divergence amounts to 1.5 mrad. Source: VLP-32C
User Manual, 63-9325, Revision B, Velodyne LiDAR Inc., 2018.

1.3. Critical Discussion 21

improves both mapping and localization accuracy.

22 Chapter 1. Analytical Lidar Sensor Model

Chapter 2

Closed-Form Full Map
Posteriors for Robot
Localization with Lidar Sensors

As mentioned in the previous chapter, lidar-based grid maps often just rep-
resent the most probable map values. This representation ignores the fact
that for each cell, all map values are possible, and that every map value has
a certain probability attached to it. The present work addresses this issue.

2.1 Research Context
The individual cells of grid-based reflection maps and decay-rate maps con-
tain maximum-likelihood values. This is due to the fact that the derivation of
the inverse model is based on maximum-likelihood estimation, which for each
cell seeks to find the map value that maximizes the probability of all given
measurements. Consequently, each cell of the resulting map tells only the
mode of the underlying probability distribution, not the distribution itself,
as illustrated in figure 2.1. That means that downstream modules obtain no
information about the confidence of the map estimate, a situation that leads
to decreased localization accuracy and that renders a probabilistic correla-
tion of multiple maps impossible. These disadvantages motivate the present
contribution. The proposed approach does not represent each map cell by its
most likely value, but instead describes the posterior probability distribution
over all possible map values in closed form via a parametric distribution.

Occupancy grid maps, proposed by Moravec [12] and Elfes [13], serve as a
kind of prototype of our full posterior map representation. Their world model
relies on the assumption that space is binary: Each point in space can either

23

24 Chapter 2. Closed-Form Full Map Posteriors

p(m)

p(m)

m

m

Figure 2.1: Comparison of the probability density functions correspond-
ing to the maximum-likelihood representation (upper graph) and the full-
posterior representation (lower graph) of the same distribution. While the
full-posterior representation captures the original distribution, the density
function of the maximum-likelihood representation is a Dirac delta function
at the mode of the full-posterior distribution, as indicated by the red arrow.

2.2. Contribution 25

be free or occupied. Based on this assumption, they tessellate the space to
form a uniform grid and assign an occupancy probability between 0 and 1
to each cell. Consequently, each map cell holds a posterior distribution over
a binary random variable. This parametric distribution in one parameter is
also known as Bernoulli distribution. Since the map cells are assumed to be
independent, the occupancy map represents a probability distribution over
all possible occupancy maps. The corresponding probability density function
results from computing the joint probability of all individual cells.

2.2 Contribution
The contribution of this part of the dissertation is a representation of the
full posterior of reflection maps and decay-rate maps that is equivalent to
the representation of occupancy grid maps. That means that instead of
storing the most probable map value per cell, this work shows how to assign
a parametric distribution to each cell that exactly, without approximations,
represents the full posterior probability distribution over all possible map
values. It also shows that this representation can not only be applied to the
reflection model and the decay-rate model, but in fact to all factorizing sensor
models. In this context, we define a factorizing sensor model as a beam-based
sensor model that computes the measurement probability as a product over
functions of the map values of the cells traversed by the corresponding ray.
For the detailed mathematical derivation, please see the original article in
chapter 8.

Table 2.1 illustrates the most important findings of the present work by
taking the example of the reflection model: Transitioning from the maximum-
likelihood representation of a map to the full posterior distribution requires
only a slight change in formulas. The effect on the resulting localization
accuracy, however, is significant, as shown in the experiments in section 8.5.
Fortunately, this transition does not affect the computational complexity
of the forward or inverse pass, because the full-posterior formulation takes
the same parameters as the maximum-likelihood representation as input and
does not introduce any additional computations.

2.3 Critical Discussion
Maintaining the full posteriors of the map cells instead of their maximum-
likelihood values entails a number of advantages. For example, full posteriors
enable probabilistic map correlations. But most importantly, knowing the

26 Chapter 2. Closed-Form Full Map Posteriors

Model Maximum likelihood Full posterior

Inverse µ∗ = nh

nh+nm
p(µ | Z) ∝ Beta(µ;nh + α, nm + β)

Forward p(R | µ∗) = µ∗ = nh

nh+nm
p(R | Z) = nh+α

nh+α+nm+β

µ reflection rate
µ∗ most likely reflection rate
nh number of reflections in the cell
nm number of rays traversing the cell without reflection
Z set of sensor measurements
α, β parameters of the prior beta or gamma distribution
R event of a reflection

Table 2.1: Comparison of the maximum-likelihood formulation and the full-
posterior formulation of the forward and inverse reflection model. As the
table shows, transitioning from one to the other only requires a slight change
in formulas.

confidence of the map significantly improves localization performance. This
is not only true in theory: The extensive experiments performed in the scope
of this work in section 8.5 prove that both in simulation and in the real
world, full-posterior mapping results in a higher measurement probability
assigned to the ground-truth pose of the robot and to increased localization
accuracy compared to the maximum-likelihood approach. These advantages
come for free: Full-posterior maps have the same computational and memory
complexity as maximum-likelihood maps. Since transitioning from maximum
likelihood to full posterior only requires small changes to the mapping and
localization algorithms, as demonstrated in table 2.1, there is no reason to
use the maximum-likelihood representation any longer.

Chapter 3

DCT Maps: Compact
Differentiable Lidar Maps
Based on the Cosine Transform

As explained in chapter 1, to the best of our knowledge, the decay-rate model
is the first lidar sensor model that genuinely supports continuous mapping.
The work discussed in the following builds upon that. It proposes an ap-
proach that makes use of the cosine transform to create continuous decay-rate
maps, and it derives the corresponding closed-form measurement probability
computation algorithm.

3.1 Research Context
The most popular lidar sensor models like occupancy grid mapping or the re-
flection model rely on the assumption that the space surrounding the robot
is tessellated. Tessellation, however, entails important disadvantages. For
example, grid maps are not differentiable and can thus not be used for
optimization-based localization techniques. In addition, grid maps exhibit
aliasing effects. As illustrated in figure 9.1b on page 99, staircase patterns
emerge whenever the structures of the world are not aligned with the map,
or when the map values exhibit smooth transitions. In order to avoid these
disadvantages, more flexible, continuous map representations are required.

Continuous lidar maps are still an active field of research. In order to
explore the state of the art, in the following, we will investigate three pop-
ular continuous map representation, namely the normal distributions trans-
form [14], Gaussian process occupancy maps [15], and Hilbert maps [16].

The normal distributions transform (NDT) is a technique primarily de-

27

28 Chapter 3. DCT Maps

veloped for scan matching. It creates a continuous map by first tessellating
the space around the robot. Next, it assigns to each grid cell a Gaussian
distribution that represents the distribution of the laser endpoints inside the
cell. This Gaussian is cropped at the boundaries of the respective cell, so
that there is no overlap between neighboring distributions. The result is
a piecewise continuously differentiable map that enables the computation of
spatial gradients. In the forward pass, the model computes the probability of
measuring an endpoint at the query position by evaluating the correspond-
ing Gaussian at that point. In order to use the model for scan matching,
as intended, one creates an NDT map from one scan and then changes the
relative pose of the other scan so as to maximize the sum of the measurement
probabilities assigned to the scan endpoints.

Although NDT has been successfully applied to scan matching problems,
there are a couple of reasons why it is not suitable for lidar-based mapping
and localization. First and foremost, NDT is a heuristic that does not pro-
duce true measurement probabilities. This is due to the fact that it sums
the probabilities of the individual rays, rather than computing the true joint
probability. Second, NDT it is a correlation-based model that does not ac-
count for the ray paths. As such, it is regarded as a method to smooth a
point cloud rather than as a genuine sensor model.

Gaussian process occupancy maps (GPOMs) are a continuous extension
of occupancy grid maps. As the name suggests, they model the posterior of
the occupancy value, which is equivalent to the reflection value in the con-
text of the reflection model, as a Gaussian process [17]. During mapping,
in the inverse pass, they employ supervised machine learning: They train a
Gaussian process on laser scan endpoints and on free points sampled along
the rays to produce a continuous occupancy map. This approach achieves a
number of advantages compared to occupancy grid maps or reflection maps.
For example, the produced maps are continuously differentiable. Moreover,
GPOMs overcome the independence assumption between neighboring cells,
an assumption that enables conventional occupancy grid mapping and reflec-
tion mapping in the first place. Another important improvement is the fact
that GPOM are able to propagate sensor pose uncertainty and measurement
noise into the map.

However, GPOMs suffer from an essential limitation: They are built upon
a model that is intrinsically incompatible with continuous mapping and lo-
calization. Despite the fact that it is possible to build continuous occupancy
maps, i.e. to perform the inverse pass, it is impossible to compute probabili-
ties based on continuous occupancy maps, i.e. to perform the forward pass,
because as explained in section 1.1, the forward model presupposes the tes-
sellation of space. The measurement probability only changes at the borders

3.2. Contribution 29

of the cells, but if there are no cells, there is no way to compute this probabil-
ity. Consequently, in order to compute measurement probabilities, GPOMs
would have to be tessellated again.

Another problem with GPOMs is the fact that the underlying sensor
model is not a true beam-based model. In order to account for free space,
free-space points have to be sampled along the rays. This process makes
it impossible to incorporate the complete ray path information, because it
comprises infinitely many points. Furthermore, GPOMs do not formulate a
recursive map update. That entails high computational costs, especially be-
cause map building is a large-scale and thus expensive optimization problem.

Hilbert maps are similar to Gaussian process occupancy maps in the
sense that they, too, use supervised machine learning to create a continuous
occupancy map of the robot’s environment. Instead of relying on Gaussian
regression, however, they learn a logistic regression classifier in a Hilbert
space. This classifier is then used to discern between occupied and free
regions in the space surrounding the robot.

Like GPOMs, Hilbert maps overcome tessellation and the independence
assumption between cells, and they handle outliers in a robust manner. But
they suffer from the same disadvantages as GPOMs: They do not formulate
a forward model, the underlying sensor model is not beam-based, the maps
cannot be recursively updated, and Hilbert maps come at high computational
cost, since map building is a large-scale optimization problem.

To sum up, the presented state-of-the-art continuous mapping approaches
all come with substantial problems. NDT is a heuristic that is not suitable
for probabilistic mapping and localization, while GPOMs and Hilbert maps
are based on a sensor model that is in its core incompatible with localization
based on continuous maps. The contribution of the present work, DCT maps,
aims at overcoming these disadvantages by combining the decay-rate model
with the continuous extension of the discrete cosine transform.

3.2 Contribution
The original research article on DCT maps, replicated in chapter 9, presents
a consistent beam-based lidar sensor model based on continuous maps. It
extends the decay-rate model, presented in chapter 7. In contrast to GPOMs
and Hilbert maps, it cannot only produce continuous maps, but also assign
measurement probabilities to sensor readings based on a continuous map –
in short, it formulates a forward model. Furthermore, it does not sample free
points along the laser rays, but it leverages the full ray path information.

Just like grid-based decay-rate maps, DCT maps represent the spatial

30 Chapter 3. DCT Maps

distribution of the lidar decay rate. But while grid-based maps store the map
parameters in the spatial domain, DCT maps store them in the frequency
domain. Both types of maps are usually stored in memory as matrices. In
the case of grid maps, the elements of the matrix directly represent the decay
rates at the corresponding locations. In the case of DCT maps, however, the
elements of the matrix determine the amplitudes of cosine waves of different
directions and frequencies. To render a DCT map based on this indirect
representation, or to look up the value of the DCT map at a given position,
one superimposes all cosine waves.

The technique we use in the present contribution to transition from the
frequency-based map representation to the spatial domain is called CEIDCT:
continuous extension of the inverse discrete cosine transform. The CEIDCT
is a Fourier-related transform based on cosine waves, which transforms a
discrete signal in the frequency domain to a continuous signal in the spatial
domain.

There are multiple reasons for choosing the CEIDCT over the many other
Fourier-related transforms. First, it is mathematically proven that with the
CEIDCT, the reconstruction of a signal from the frequency domain to the
original domain converges to the original signal for an increasing number of
parameters [18]. Although it might be desired in most cases, many other
Fourier-related transforms do not exhibit this behavior: They diverge. Sec-
ond, the CEIDCT parameters are real, not complex values, which saves mem-
ory.

Based on the CEIDCT, the DCT maps framework formulates a consis-
tent forward and inverse sensor model. The forward model determines the
measurement probability of a given ray by iterating over all map parame-
ters, implicitly performing ray tracing. During mapping, the inverse model
follows a maximum-likelihood estimation approach and finds the map that
explains the collected sensor measurements best. To that end, it maximizes
the joint probability of all measurements over the spectral map parameters
in a single nonlinear multivariate optimization problem. In order to compute
the derivatives of the measurement likelihood with respect to the map pa-
rameters, is makes use of analytical derivatives. For a detailed derivation of
the DCT maps framework, see chapter 9.

3.3 Critical Discussion
Analogously to the last chapters, we will highlight how the suggested ap-
proach advances the state of the art, but we will also discuss the problems
associated with it. Since this work opens up a new field of continuous map-

3.3. Critical Discussion 31

ping approaches, we will furthermore provide an overview over possible future
research directions at the end of this section.

DCT maps improve on grid-based decay-rate maps in several respects.
For example, they enable robot localization and scan matching using gradient-
based optimization techniques. Furthermore, our experimental evaluation in
section 9.5 demonstrates that in comparison to grid maps with the same
memory footprint, DCT maps reconstruct a given ground-truth map with
higher accuracy, and they assign higher probabilities to given measurements.
We attribute these effects, which lead to a higher overall localization ac-
curacy, to the fact that DCT maps are able to more precisely reconstruct
contours that are not aligned with the main axes of the map: In contrast to
grid maps, DCT maps do not exhibit staircase patterns, independent of the
alignment of the contours in the map.

The memory efficiency of DCT maps is superior not only to grid maps,
but also to other continuous map representations. Given the same amount
of memory, they outperform GPOMs and Hilbert maps in terms of map
reconstruction quality and in terms of the probability assigned to a ground-
truth measurement. In addition, DCT maps are the only continuous maps
to incorporate the full ray path information.

The substantial improvement with respect to GPOMs and Hilbert maps,
however, lies in the fact that DCT maps formulate a forward model. GPOMs
and Hilbert do not support the forward pass, because they are based on
occupancy grid mapping, which requires the space to be tessellated. The
decay-rate model which DCT maps are based on, however, naturally supports
continuous maps. As such, it is the appropriate foundation for any lidar-
based continuous mapping approach.

While innovative, DCT maps do have their limitations. One of their
major problems is the computational effort required during mapping. Solving
a nonlinear optimization problem in the number of map parameters may
not be an issue for small maps, but since the number of map parameters
grows quadratically or cubically with the edge length of 2-D or 3-D maps,
respectively, DCT maps quickly reach their limits with increasing map size.

Furthermore, like GPOMs and Hilbert maps, they do not formulate an
incremental map update. That means that in order to incorporate new mea-
surements into the map, the optimization problem must be solved again. Of
course, using the previous map as initial guess reduces the computational
effort, but it is still significantly larger than for grid maps, for example.

Another disadvantage with respect to grid maps is the fact that looking
up the value of the map at a single location requires iterating over all map
parameters. This issue is a direct consequence of storing the map parameters
in the frequency domain, not in the spatial domain.

32 Chapter 3. DCT Maps

GPOMs, Hilbert maps, and DCT maps all have the disadvantage that
they do not distinguish between explored and unexplored map areas. Areas
far away from explored regions are assigned random values, which may change
from optimization run to optimization run.

And of course, DCT maps are maximum-likelihood maps. As such, they
do not contain any information about the confidence of the respective map
parameters.

DCT maps open the field for a range of possible extensions. Hybrid
grid-based and continuous approaches could remedy the problems of high
computational effort and limited scalability, for example. Such a hybrid map
could consist of a grid-based tree data structure like a quadtree or an octree,
whose every cell holds a DCT map. This representation would simplify the
map update, and by efficiently representing unexplored regions, it would keep
memory requirements low.

Another possible solution to deal with memory limitations is the investi-
gation of compression techniques. Frequency-based data representation lend
themselves to compression, for example by discarding high-frequency or low-
amplitude parameters.

DCT maps open the way for concurrent mapping and localization, too.
To that end, the optimization problem described in the present work would
need to be extended to comprise the robot trajectory.

At last, another interesting direction of research would be to compare
DCT maps with continuous decay-rate maps based on Gaussian processes
and Hilbert regression.

Chapter 4

A Maximum-Likelihood
Approach to Extract Polylines
from 2-D Laser Range Scans

After having treated grid-based and continuous maps in the previous chap-
ters, we will now focus on feature-based maps. While the former are dense
representations that assign a map value to each location in space, the latter
take a different approach: They proceed on the assumption that in general,
the space around the robot is empty, and store a set of objects that popu-
late the space. A feature map can be as simple as a set of coordinates of
undistinguishable landmarks, and as complex as a set composed of features
of different classes, represented by feature vectors of different lengths.

There are multiple reasons why feature-based maps are particularly inter-
esting for mapping and localization for mobile robots. First, feature-based
maps are very memory-efficient. Take the example of a robot equipped with a
2-D or 3-D lidar navigating an office environment that is composed of planar
walls. A naïve approach to mapping would be to agglomerate all measured
points, in this way forming a large point cloud. This representation, however,
would introduce a high degree of redundancy, since endpoints are highly cor-
related. Creating a map of line features, on the other hand, would regress
the highly redundant information to the most compact representation possi-
ble. But not only would this representation save memory: The regressed line
segments would also reproduce the real walls more closely, since they average
out sensor noise.

The second reason for choosing feature-based maps over dense maps is
the fact that they can encode semantics. Semantics are important for many
modules downstream the mapping module. The path planner, for example,
needs to know whether the object in front of the robot is a solid wall or a

33

34 Chapter 4. Polyline Extraction

permeable cloud of smoke. A feature map encodes semantics whenever it is
created using a semantic feature detector.

Third, feature maps abstract from sensor modality. That means that
feature maps can be generated based on the input of any suitable sensor
or combination of sensors. In general, that is not true for dense maps: One
would have a hard time integrating radar measurement into a decay-rate map,
because the map is specifically designed to model the optical properties of
the space around the robot, which a radar cannot measure directly.

Fourth, feature-based maps improve map robustness. Imagine two occu-
pancy grid maps of a scene in a park environment created from lidar data,
one generated in summer, one in winter. The changes in foliage density alone
would lead to significantly different looks of the two maps. Now imagine a
map of the same scene based on tree features. Instead of integrating probably
irrelevant information about tree foliage, it would encode the coordinates of
the tree trunks, thereby rendering the map invariant under seasonal changes.

In this and the following chapters, we will investigate how to extract
different kinds of features from lidar data. We will start with the extraction
of polyline features from planar lidar scans. As mentioned above, this task
is highly relevant for mobile robots navigating man-made environments like
offices and warehouses.

4.1 Research Context
Man-made environments are often composed of linear structures and hence
well suited to be represented by polyline maps. In order to extract polylines
from laser scans, many authors resort to heuristic approaches originally de-
veloped in the context of cartography [19], like Visvalingam’s algorithm [20],
iterative endpoint fit [21], or split-and-merge [22].

Visvalingam’s algorithm is a greedy top-down line simplification method
that starts with the original, fine-grained polyline resulting from connecting
all neighboring endpoints of a single planar laser scan. It then iteratively
discards the vertex whose removal leads to the least perceptible change in
the appearance of the polyline. This change is usually computed as the
area of the triangle formed by the point that is to be removed and its two
neighbors.

Iterative endpoint fit differs from Visvalingam’s algorithm in that it works
bottom up, not top down. It connects the first and the last point of the
original polyline and then iteratively inserts the vertex with the greatest
normal distance from the simplified polyline.

Split-and-merge is based on iterative endpoint fit, but in addition, it

4.2. Contribution 35

moves the vertices in order to minimize the squared normal distance between
the vertices and the line.

Due to their simple concepts, Visvalingam’s algorithm, iterative endpoint
fit, and split-and-merge appeal not only cartographers, but also to roboticists.
However, they all suffer from an important disadvantage: They are heuristics.
Consequently, they do neither consider information about the paths of the
laser rays, nor about the measurement noise of the sensor. This simplification
leads to a loss in accuracy of the extracted polylines.

There are only few probabilistic approaches that try to cure this problem,
for example the one developed by Veeck and Burgard [3]. This method gen-
erates initial line estimates on the basis of an occupancy grid map, minimizes
the normal distances between the scan endpoints and the nearest line, be-
fore repeatedly applying a set of eight operations like merging and splitting
lines, adding and removing vertices, etc. In contrast to the afore-mentioned
heuristic concepts, this method is rather complex. Not only does it require
to build an occupancy grid map, its performance is also highly dependent on
the many tuning parameters.

4.2 Contribution
In this work, we suggest a novel probabilistic approach to extract polylines
from a single planar lidar scan. To the best of our knowledge, it is the
only method that considers ray path information and sensor noise, more
specifically Gaussian distributed radial noise. The algorithm consists of two
steps, both of which strive to maximize measurement probability: polyline
extraction and polyline optimization.

During polyline extraction, neighboring endpoints are connected to form
a polyline. Then, the algorithm iteratively removes the polyline vertex that
decreases the measurement probability of the overall scan the least until a
stopping criterion is met.

The second step, polyline optimization, takes account of the fact that the
vertices of the true polyline, which correspond to corners formed by two walls,
will never exactly coincide with a laser endpoint. So in order to find the true
polyline vertices, the vertices of the simplified polyline have to be moved.
Assuming that moving the vertices to their true positions increases the joint
probability of all measurements, we formulate and solve an optimization
problem that maximizes the measurement probability of the scan over the
vertex locations. For a detailed description of the method, please see the
original paper in chapter 10.

In this part of the present dissertation, we do not only propose a novel

36 Chapter 4. Polyline Extraction

polyline extraction algorithm, but we also present extensive real-world ex-
periments that show the superior performance of our method compared to
conventional approaches under different metrics. In addition, we provide a
free public open-source Matlab implementation of the method.

4.3 Critical Discussion
Despite the fact that extracting polylines from planar laser scans has been
studied intensively, the suggested method still outperforms all of the surveyed
state-of-the-art algorithms in terms of reconstruction accuracy, as demon-
strated in our experiment series. This is due to the fact that in contrast
to previous approaches, the novel method, termed PLE for probabilistic line
extraction, takes into account ray path information and radial sensor noise.

To the best of our knowledge, PLE is not only the most accurate, but
also the fastest polyline extraction algorithm to date, because its asymptotic
computational complexity amounts to O(k log(n)), where n is the number of
scan endpoints and k is the number of removed vertices.

Despite its merits, the approach still leaves room for improvements, most
of which also apply to the surveyed related methods. For example, like
every greedy algorithm, PLE is not guaranteed to find the optimal solution.
Moreover, like all polyline extraction algorithms it was compared against, it
does not model map uncertainty, i.e. it does not assign a confidence score to
the individual lines.

Chapter 5

A Maximum-Likelihood
Approach to Extract Finite
Planes from 3-D Laser Scans

This part of the present thesis discusses an extension of the polyline ex-
traction method presented in the previous chapter. Instead of extracting
polylines from 2-D lidar scans, we are now interested in detecting planes in
3-D scans.

5.1 Research Context
Since plane extraction is an important task in both robotics and computer
vision, this problem has been studied intensively in the past. The corre-
sponding approaches can be divided into four classes: methods based on re-
gion growing, on clustering, on random sample consensus, and on the Hough
transform.

Region growing algorithms need to be given seed points, building upon
which they grow a plane by iteratively adding adjacent points. Adjacent
points are only added to the plane if they fulfill certain planarity criteria, for
example if their normal distance from the plane does not exceed a defined
threshold.

Clustering, on the other hand, is an unsupervised machine learning tech-
nique that detects planes without requiring seed points. However, clustering
techniques often require the number of planes to detect as input.

Random sample consensus, in contrast, selects multiple points at random,
fits a plane to them, decides which other points belong to this plane based
on a given distance threshold, and returns the planes that contain most of

37

38 Chapter 5. Plane Extraction

the points of the lidar scan.

The Hough transform solves the problem of detecting planes by rasteriz-
ing the solution space, which is the space of parameters of all feasible planes.
Using a heuristic metric that assigns a score to every point in the solution
space, it identifies the most plausible plane hypotheses. While this works
well for infinite planes, it is hard to employ the Hough transform to detect
finite planes. This is due to the fact that the definition of finite planes re-
quires a large number of parameters, which translates to high computational
complexity of the detection algorithm. To overcome this problem, the Hough
transform is often used to detect infinite planes, whose boundaries are then
identified via region growing.

Before we started working on the present scientific contribution, we iden-
tified two major problems with all state-of-the-art approaches, no matter
which class of approach they belonged to. The first problem concerns the
fact that most plane-extraction techniques lack a probabilistic underpinning.
Instead of employing a probabilistic sensor model, they rely on heuristics like
orthogonal point-to-plane distance. In fact, while surveying the state-of-the-
art literature, we were not able to find a single approach that considers the
ray path information in the process of detecting planes. This is a problem
because discarding this information necessarily diminishes plane detection
accuracy.

The second problem relates to the way plane extraction algorithms are
currently benchmarked. The most popular dataset for benchmarking plane
extraction algorithms is SegComp, created in 1996. It contains lidar mea-
surements of a tabletop scene featuring polyhedral objects. Although the
scene seems suitable for evaluating the performance of all kinds of plane ex-
traction algorithms, there are issues that, from our point of view, render the
dataset unsuitable. As illustrated in our paper, replicated in chapter 11, the
Perceptron laser sensor that was used in 1996 exhibits massive artifacts. Flat
surfaces bulge and points near the edges of object are scattered radially. Un-
less one intends to tailor one’s plane extractor to this specific sensor and its
artifacts, they impede the development of novel plane extraction methods.
Many algorithms evaluated on SegComp overcome this problem by introduc-
ing hand-tuned parameters that allow them to overfit to the particularities
of the Perceptron laser. The plane extraction approach by Hoover et al. [23],
for example, requires ten parameters to be set manually.

5.2. Contribution 39

5.2 Contribution
With the present contribution, we attempt to solve the problems identified
in the previous section. To address the first problem, which consists in the
fact that state-of-the-art methods do not make use of any probabilistic sensor
models, we propose a new probabilistic approach to the extraction of finite
planes that considers ray path information, dubbed PPE for probabilistic
plane extraction. PPE is the prototype of an unsimplified greedy algorithm.
Similarly to the probabilistic line extraction approach presented in the previ-
ous chapter, which starts with the most detailed line possible and iteratively
removes vertices until it arrives at a simplified version, PPE starts with an
array of so-called atomic planes generated from an organized point cloud.
An atomic plane is a plane that represents one lidar endpoint only. Then, by
repeatedly creating regular planes from four adjacent atomic planes, extend-
ing the regular planes by atomic planes, and merging the regular planes, the
algorithm arrives at the final set of detected planes. A maximum-likelihood
estimation technique, PPE chooses in each iteration the option that decreases
the joint probability of the underlying lidar measurements. The implemen-
tation of this algorithm is available free and open-source.

Additionally, in order to overcome the afore-mentioned problems with the
SegComp dataset, we propose a novel dataset, called SynPEB for synthetic
plane extraction benchmark. It contains synthetic lidar scans of different
noise levels sampled in a room filled with diverse polyhedral objects, as il-
lustrated in figure 5.1. Just like the implementation of the PPE algorithm,
this dataset is free and publicly available. For more information about both
the proposed method and the dataset, please see the original research paper
in chapter 11.

5.3 Critical Discussion
The results of the extensive experiments conducted in the scope of this part
of the thesis are twofold. On the one hand, PPE outperforms all other
compared methods on the new SynPEB dataset in terms of accuracy. The
reason for that lies in the probabilistic formulation of the approach. No other
method is based on a probabilistic sensor model and uses the underlying ray
path information.

On the other hand, PPE shows an average level of performance on Seg-
Comp. This does not come as a surprise given the sensor artifacts in the
dataset. When looking at the point clouds provided by the lidar sensor, for
example, the tabletop looks slightly kinked. In reality, it is perfectly flat, and

40 Chapter 5. Plane Extraction

Figure 5.1: Rendered image of the virtual room from which the SynPEB
lidar scans are sampled.

hence labeled as a single plane. But without additional information about
the systematic errors in the lidar measurements, it is not possible for any
plane extraction method to infer whether the sensor is correctly measuring
a kinked tabletop or whether it is incorrectly measuring a flat tabletop. In
order to mathematically prove that the given labels are not optimal, in the
paper, we show that the plane segmentation result provided by PPE actu-
ally achieves a higher measurement likelihood than the original ground-truth
segmentation. This experiment once again shows that many of the surveyed
plane extraction results overfit to SegComp, and it justifies the creation of
SynPEB, which, as a synthetic dataset, does not suffer from such inconsis-
tencies.

Despite its merits, the proposed method has its problems. First, it re-
quires the input to be an organized point cloud. An organized point cloud is a
point cloud that in addition to providing the point coordinates describes the
neighborhood relationships between the individual points. The most com-
mon form of neighborhood relationships are matrix-like point arrangements,
for example 120 × 120 or 640 × 480. This requirement means that multi-
ple scans or scans captured by a moving laser scanner must be preprocessed
before they can be fed to PPE.

5.3. Critical Discussion 41

Second, PPE is not yet suitable for real-time plane extraction onboard
a robotic system. That is due to its high computational complexity. In
our experiments, it took us 1.6 h to detect planes in an organized 500× 500
point cloud, which is far from any practical requirements. For that reason, we
present PPE as a benchmarking method that returns the most accurate plane
segmentation result available to date rather than as a method that is ready for
use in production code. In order to transform the method accordingly, the
algorithm must be simplified, for example by using a superpixel approach
or by performing multiple operations like plane creation, plane extension,
and plane merging without updating the measurement likelihood after each
operation.

42 Chapter 5. Plane Extraction

Chapter 6

Long-Term Urban Vehicle
Localization Using Pole
Landmarks Extracted from 3-D
Lidar Scans

In the previous chapters, we have addressed different aspects of mapping
and localization based on lidar data: We have proposed a novel lidar sensor
model, investigated advanced map representations like full posteriors and
continuous maps, and we have presented methods for feature extraction.
Now, in this chapter, we describe a complete system for localization based
on pole features, composed of a novel feature extractor, a mapping module,
and an online localization module.

6.1 Research Context
This portion of the thesis addresses the area of autonomous driving, more
specifically the problem of localizing a mobile robot in an urban area over long
periods of time. Currently, many research institutions and companies are
investigating this direction of research. Modern approaches to the problem
are often based on features because of the advantages that are connected to
them – see chapter 4: Features abstract from the modality of sensor, they
improve the robustness of the system, they can encode semantic information,
and they lead to memory-efficient maps.

Every feature-based approach must answer the question of what features
to use. For mapping and localization in urban environments, pole features
are definitely a reasonable choice, because they are ubiquitous, as illustrated

43

44 Chapter 6. Localization Using Pole Landmarks

Figure 6.1: Pole-like objects are ubiquitous in a city street. They appear in
the form of sign posts, lamp posts, and tree trunks, for example. Source:
San Francisco Chronicle website, www.sfchronicle.com, 2019.

in figure 6.1. Street lamp poles, sign posts, traffic light poles, or tree trunks –
the geometry of all those objects can be approximated by a standing cylinder
or by a tall cuboid with square footprint. In comparison to artificial features,
which are computed using an abstract metric based on local lidar endpoint
density or on occupancy, they have the advantage of transporting semantic
information and of being human-readable.

The present work is not the first approach to pole-based urban vehicle
localization based on lidar data. It is, however, the first one that overcomes
the problems of comparable state-of-the-art methods. These problems are
mainly related to the experiments used to evaluate these approaches: The
experiments are often inexpressive, the underlying datasets are small and
inaccessible to the public, and the fact that the software used to conduct the
experiments is very rarely publicly available makes it impossible to verify
the reported performance. For example, the dataset Weng et al. [24] use
to evaluate their method is not only proprietary, but it also contains only
3.5 km of trajectory data. Although Sefati et al. [25] test their approach on
a session of the publicly available KITTI dataset [26], they use just 46 s of
sensor readings. Datasets like those are clearly not suited to demonstrate

www.sfchronicle.com

6.1. Research Context 45

the robustness of the proposed methods.
In addition to these issues, the experiments of Wang et al. and Sefati et al.

exhibit methodical problems. The authors use the same data for both map-
ping and localization, although it is obvious that this approach biases the
results in their favor.

Problems like these with state-of-the-art methods justify further research.
In order to develop a new approach to feature-based mapping and localiza-
tion, one needs to answer the following design questions. How to design the
feature extractor? How to associate landmarks detected in incoming sen-
sor measurements with the correct landmarks in the map and how to deal
with multiple detections of the same landmark? What framework to use
for localization and how to compute the measurement probability? In or-
der to explore the solution space and to identify the research context, we
will present feasible answers to each question in the following, and we will
subsequently describe the approach chosen by this work.

There exist many approaches that are suited for extracting pole features
from lidar measurements, for example region growing, clustering, RANSAC,
the Hough transform, and heuristics. Region growing could be used to seg-
ment a point cloud. Given a seed point, the pole segment would iteratively
be augmented by all adjacent points that fulfill certain criteria, for example
local point density or distance from the nearest segmented point. Clustering
is a machine learning technique that returns a segmentation without the need
for seed points, while RANSAC would find the parameters of individual poles
by randomly taking a small number of points and fitting a pole to them. The
Hough transform would produce a map in a rasterized feature space: It would
assign a score to each possible pole and would identify probable poles as the
modes of this distribution. Heuristics, on the other hand, are handcrafted
algorithms that would use a custom set of operations to detect poles.

As mentioned above, the most important questions during mapping are
data association and merging multiple detections of the same landmark. Data
association refers to the problem of identifying which pole in one measure-
ment corresponds to which pole in another measurement. This process allows
us to track poles and to find out whether a new pole needs to be inserted into
the map or whether we are looking at a pole that has already been mapped.
There are different approaches to data association for distinguishable and
indistinguishable landmarks. In the case of pole features, distinguishable
landmarks are pole landmarks that are not only characterized by their po-
sition, but by their diameter, height, or color, to name just a few possible
characteristics. Given a pair of distinguishable poles, we can use a statisti-
cal metric in the feature space to determine the statistical distance between
these poles, i.e. the probability that the poles are identical, and incorporate

46 Chapter 6. Localization Using Pole Landmarks

this probability into the posterior map. In case the pole landmarks are indis-
tinguishable, we need to resort to geometric strategies like nearest-neighbor
matching or pattern matching.

Merging multiple landmarks refers to the problem of being provided with
multiple measurements of the same landmark and having to represent the
landmark as a single landmark, for example when creating the map. This
problem is often solved by arithmetic averaging, but if in addition to the
landmark feature vectors, we are also given a confidence score, we can use
the score to compute a weighted average.

In order to localize a robot based on landmarks, we first need to opt for a
specific framework. Parametric filters like the Extended Kalman Filter or the
Unscented Kalman Filter [10] have the advantage of computational efficiency
and of yielding the mathematically optimal location estimate. However, they
only support linearized models and Gaussian probability distributions, and
their estimate is unimodal. Nonparametric approaches like the particle filter
are based on a set of distinct hypotheses: the particles. During the motion
update, every particle is propagated according to the motion of the vehicle,
and during the measurement update, every particle is weighted by its mea-
surement likelihood. As a consequence, contrarily to parametric filters, the
particle filter and its relatives provide multimodal distributions, and they
naturally accommodate nonlinear motion models and measurement models.
Of course, these benefits come at a cost. The curse of dimensionality tells
that the computational complexity of nonparametric filtering increases expo-
nentially with the number of dimensions. Furthermore, since even the largest
set of particles can only approximate the underlying probability distribution,
the particle filter requires mechanisms to cope with the limited number of
hypotheses, for example resampling and smoothing of measurement models
that are so accurate that they would otherwise lead to particle deprivation.

In addition to the differences between parametric and nonparametric lo-
calization mentioned above, the choice of framework influences how data
association decisions are processed. When relying on Kalman filter-based
approaches, for example, one needs to choose a certain solution to the data
association problem, a decision which cannot be reverted later on. If using
a particle filter, however, each particle can integrate a different data associ-
ation, and the goodness of the individual data association will influence the
future particle weight. In this way, the particle filter is able to assess the
quality of a data association in retrospective and to build upon the particles
that have chosen the correct associations.

To implement localization, we do not only have to decide which framework
to use, but also how to compute the measurement probability during the
measurement update step. There are basically two ways: to compute the

6.2. Contribution 47

measurement probability in the measurement space or in the feature space.
If we opt for the computation in the measurement space, we project the map
features into the sensor space and use the sensor model to compare the true
measurements predicted by the projections with the online measurements.
This method is expedient if we do not have to deal with dynamic objects,
which contradict our latent static-world assumption. If dynamic objects are
present, they can occlude the projected objects and distort the measurement
probability computation.

In order to compute the measurement probability in feature space, we
apply feature extraction to the online measurements and in this way project
them from the measurement space to the feature space. After performing
data association, we use a specified statistical distance metric to compute
the distance between corresponding map features and online features, and
interpret this distance as measurement probability.

After having pointed up alternatives to build a pole-based mapping and
localization framework, we describe the design at the base of the proposed
method in the following.

6.2 Contribution
In this part of the thesis, we present a complete mapping and localization
framework, composed of a pole feature extractor, a mapping module, and a
localization module.

Speaking in terms of the approaches to feature extraction outlined above,
the proposed feature extractor is a heuristic, which follows the steps below.
First, it creates a 3-D full-posterior reflection map based on a given set of
lidar measurements, which it then transforms into an occupancy grid map.
Subsequently, it assigns a pole score to each cell of this grid map. The
pole score is based on a geometric pole model: A pole is a vertical stack of
voxels with quadratic footprint, laterally surrounded by empty space. After
projecting the resulting 3-D pole score map to the ground and applying the
mean-shift algorithm to the projection, the algorithm returns the continuous
2-D coordinates of the projection’s modes, i.e. the positions where poles are
most likely to be found. Like the technical details of any step sketched in
the following, the details of feature extraction can be found in the paper in
chapter 12.

With this pole extractor, we address the problem of mapping. In a naïve
approach to create a global map using the feature detector, we would first
try to build a reflection map based on all the data collected during the
mapping run. Although possible in theory, memory restrictions will most

48 Chapter 6. Localization Using Pole Landmarks

often render this method impossible. Consequently, we divide the trajectory
into multiple short segments and build corresponding local reflection maps.
Extracting pole features from these maps yields a set of partly identical,
indistinguishable pole landmarks. In order to merge the identical landmarks,
we take a simple geometric approach to data association: Two landmarks
are the same if their footprints in the global map overlap. To merge them,
we compute a weighted average of their positions based on their scores as
provided by the feature detector.

After having created a global map, localization starts. We opt for a par-
ticle filter-based approach in order to accommodate the nonlinearity of the
model and the multimodal distribution that describes the vehicle’s proba-
bility of presence. Data association between features extracted online and
the map is performed via nearest-neighbor search with a maximum thresh-
old. As mentioned above, in this way, we cover many different possible data
associations, which improves the robustness of the filter.

The measurement probability is computed in feature space, because this
procedure is robust with respect to dynamic objects and computationally
efficient.

A new mapping and localization method is worthless without experimen-
tal data that demonstrate its usefulness. To evaluate the proposed approach,
we perform two experiment series. The first series replicates the experiment
conducted by Sefati et al. [25] on the KITTI dataset [26]. After creating a
map based on a very short session, we use the same data again to localize
the robot. As mentioned above, the resulting accuracy measures are biased,
but the experiment serves the purpose of demonstrating superior accuracy
compared to the approach by Sefati et al.

The second experiment series, based on the NCLT dataset [5], demon-
strates the long-term performance of our method. In 27 sessions distributed
over the course of 15 months, the approach consistently achieves robust and
accurate localization results. For a detailed discussion of the experiments
and the corresponding results, please see the original paper in chapter 12.

In addition to the complete mapping and localization framework delin-
eated above, this portion of the dissertation is accompanied by a free and
open-source Python implementation of both the method and the experi-
ments [27].

6.3 Critical Discussion
The present work pushes the boundary of the state of the art in several re-
spects. First, to the best of our knowledge, our method provides the highest

6.3. Critical Discussion 49

accuracy compared to other approaches to pole-based mapping and local-
ization. Second, it is the only approach that is evaluated on a long-term
dataset. While other works are tested using datasets with durations from
below one minute to half an hour, the performance of the presented method
was assessed based on 35 hours of data spread over 15 months. Although the
corresponding dataset was collected in a dynamic and continuously evolv-
ing campus environment, localization results show a high level of robustness
against changes. Third, while we could not find an open implementation
for any of the related works, we provide free and open-source software im-
plementing our method. The software contains all required modules and all
experiment scripts.

There are several directions for further development of the presented
method. As described, the pole extractor is based on a heuristic. From
our experience, heuristics can achieve astonishing levels of performance, but
are most often outperformed by probabilistic approaches. Consequently, the
feature extractor would probably benefit from an adaptation to a probabilis-
tic foundation.

Furthermore, poles are currently represented by their planar coordinates
only. Incorporating additional features like pole height or diameter would
certainly facilitate data association and improve mapping as well as localiza-
tion performance.

As seen in the experiments in section 12.5, the localization module can
diverge if the model assumptions are heavily violated. One of the most
important model assumptions is the static-world assumption. It states that
mapped features do not move. Small violations of this assumption usually
do not have a significant effect: Since the robot uses a number of poles most
of the time, it does not matter if one pole is moved as long as the other poles
remain steady, because the localizer attributes the same importance to each
pole. If multiple poles are moved at the same time by the same amount into
the same direction, however, things look different: The localizer “corrects”
its estimate to account for the movement, hence the pose estimate diverges.
At the same time, the localizer maintains high confidence, because the poles
detected online are locally consistent with the poles in the map. Only when
the vehicle leaves the problematic area, the detected poles and poles in the
map become inconsistent, the particle cloud spreads, and the localization
module re-localizes. At the end of our long-term experiment series, exactly
that happened: Construction workers had moved a chain of construction
barrels to the side, each by the same amount, as shown in figure 6.2.

There are a few ways to enable the system to handle cases like this. One
could augment the feature vectors of the poles. By encoding the type of
pole and by associating the type “construction barrel” with a higher mobil-

50 Chapter 6. Localization Using Pole Landmarks

(a) Session 2012-12-01.

(b) Session 2013-02-23.

Figure 6.2: Each image shows a section of the point cloud accumulated over
the session of the NCLT dataset indicated in the image caption. Both images
depict the same scene, composed of – from left to right – a construction area,
a footpath, a road, and a grassy area. In December 2012, the construction
barrels are positioned on the left side of the footpath. A few months later,
the construction barrels have been moved to the right onto the parking spots.
The green lines represent the trajectory of the robot.

6.3. Critical Discussion 51

ity probability than a tree or a street lamp, the localizer could be helped to
attribute more weight to poles that remain steady. Change detection algo-
rithms like the one proposed by Luft et al. [28] would also help improve the
localization estimate in presence of dynamics.

In addition to the above-mentioned extensions, incorporation of other
types of features like road markings, facades, or curbs is expected to boost
localization accuracy and reliability significantly. These features do not nec-
essarily have to be static. If their dynamics can be modeled and if the corre-
sponding parameters are incorporated into the feature vector, even pedestri-
ans or cars can serve as valuable sources of information. Although a car, for
example, can vary its longitudinal velocity within certain limits, it is unlikely
to go sideways, and can hence provide a sort of one-dimensional information.

While all the features described above correspond to real objects and are
thus human-readable, which is an advantage during debugging, there is no
guarantee that these semantic features are maximally descriptive. Machine
learning techniques could be used to investigate novel, maximally descriptive,
not necessarily object-based features, for example by the use of an autoen-
coder architecture.

52 Chapter 6. Localization Using Pole Landmarks

Part III

Publications

53

55

This part replicates the publications that describe the research conducted
within the scope of this thesis. As in the previous part, each chapter is
given over to one publication. The publications are displayed unchanged,
except for adapted formatting, globally consistent reference numbers, and
two additional figures in chapter 11.

Copyright Notice
In reference to IEEE copyrighted material which is used with permission in
this part of the thesis, the IEEE does not endorse any of the products or
services of the University of Freiburg. Internal or personal use of this mate-
rial is permitted. If interested in reprinting/republishing IEEE copyrighted
material for advertising or promotional purposes or for creating new collec-
tive works for resale or redistribution, please go to http://www.ieee.org/
publications_standards/publications/rights/rights_link.html to
learn how to obtain a License from RightsLink. If applicable, University
Microfilms and/or ProQuest Library, or the Archives of Canada may supply
single copies of the dissertation.

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

56

Chapter 7

An Analytical Lidar Sensor
Model Based on Ray Path
Information

The following paper [29] was written by Alexander Schaefer, Lukas Luft, and
Wolfram Burgard. Alexander Schaefer and Lukas Luft contributed equal
parts to this work. The article was published in the journal IEEE Robotics
and Automation Letters, Volume 2, Issue 3, in July 2017. In addition, the
work was presented at the IEEE/RSJ International Conference on Robotics
and Automation 2017, which was held in Singapore from May 29 to June 3,
2017. The IEEE holds the copyright on the article: c© 2017 IEEE. Reprinted,
with permission, from “An Analytical Lidar Sensor Model Based on Ray Path
Information”.

7.1 Abstract
Two core competencies of a mobile robot are to build a map of the environ-
ment and to estimate its own pose on the basis of this map and incoming
sensor readings. To account for the uncertainties in this process, one typically
employs probabilistic state estimation approaches combined with a model of
the specific sensor. Over the past years, lidar sensors have become a popular
choice for mapping and localization. However, many common lidar mod-
els perform poorly in unstructured, unpredictable environments, they lack
a consistent physical model for both mapping and localization, and they do
not exploit all the information the sensor provides, e.g. out-of-range measure-
ments. In this paper, we introduce a consistent physical model that can be
applied to mapping as well as to localization. It naturally deals with unstruc-

57

58 Chapter 7. Analytical Lidar Sensor Model

tured environments and makes use of both out-of-range measurements and
information about the ray path. The approach can be seen as a generaliza-
tion of the well-established reflection model, but in addition to counting ray
reflections and traversals in a specific map cell, it considers the distances that
all rays travel inside this cell. We prove that the resulting map maximizes the
data likelihood and demonstrate that our model outperforms state-of-the-art
sensor models in extensive real-world experiments.

7.2 Introduction
In the context of localization and mapping for mobile robots, sensor models
serve two purposes: First, the robot uses them to generate a map from
recorded measurements; second, they enable the robot to estimate its pose
by relating subsequent sensor information to that map.

In practice, lidar sensors are widely used. They send out laser rays and
report how far they travel before they are reflected by an object. Ideally,
the output distance reveals the closest object in a particular direction. How-
ever, especially in unstructured outdoor environments with vegetation, two
consecutive laser scans taken from the same point of view might return sig-
nificantly different values. The reason lies in the unpredictable interaction
between the laser ray and unstructured objects, for example a tree canopy.
Ignorance about the thickness of single leafs, their poses, etc., makes reflec-
tion a probabilistic process.

For lidar sensors, only a few probabilistic approaches formulate a consis-
tent model for both mapping and localization with grid maps, e.g. the re-
flection model [11] and related ray-tracing based approaches [30, 31, 32, 33].
They tesselate the environment and assign to each voxel the probability that
it reflects an incident laser ray.

In this paper, we introduce a novel probabilistic model for lidar sensors,
which is a generalization of the aforementioned reflection model. In contrast
to the latter, it relies upon a physical model of the interaction between the
laser ray and the environment. We model the probability that a ray traverses
a specific region as an exponential decay process. Based on the measurements
collected during the mapping process, our sensor model assigns a decay rate
to each point in space. During the localization phase, we use this decay-rate
map to determine the likelihood of incoming measurements.

This paper is structured as follows: Section 7.3 provides an overview over
related work on lidar models. Section 7.4 describes how to build a decay-
rate map from lidar measurements and how to compute the measurement
likelihood for a given scan. In section 7.5, we prove that decay-rate maps

7.2. Introduction 59

Figure 7.1: Our mobile robot VIONA while recording the forest dataset.

60 Chapter 7. Analytical Lidar Sensor Model

0 10 20 30 40 50
r [m]

0

0.2

0.4

0.6

0.8

 p
(r

)

decay-rate model

reflection model

endpoint model

Figure 7.2: The upper part of the image shows a section of the campus
environment represented by a point cloud. The dashed line represents a hy-
pothetical laser beam traversing the scene from left to right. It penetrates
two treetops and a building. The lower plot shows the corresponding mea-
surement probabilities p(r) obtained by the different sensor models. The
endpoint model attributes high probabilities to reflections at the right edge
of the building (r ≈ 50m) because it ignores the ray trajectory and hence
the wall at r ≈ 40m. In contrast, the two ray-casting based approaches
attribute low probabilities to reflections behind the first wall. The reflection
model overestimates the probabilities in the treetops, as it does not account
for the distances the rays traveled within the treetop voxels during the map-
ping process. The overestimations of the endpoint model and the reflection
model lead to lower relative probabilities at the left wall of the building.

7.3. Related Work 61

maximize the likelihood of the underlying data and that our approach gen-
eralizes the reflection model. Finally, section 7.6 compares the performance
of the proposed approach to state-of-the-art sensor models.

7.3 Related Work
In contrast to our concept, many other approaches address either mapping
or localization. Consequently, in the following section, we consider these two
categories separately.

7.3.1 Map Representations
Occupancy grid maps, as introduced by Elfes [34], are widely used throughout
the robotics community. They divide the environment into cells and assign
to each of those a binary random variable that indicates whether the cell
contains an object. A binary Bayes filter updates the distribution over these
independent variables. As opposed to our model, this approach assumes that
the interaction between ray and map is deterministic: The ray is reflected
by the first occupied cell on its path.

Point clouds are a direct representation of the reflections measured by the
lidar device. However, they neglect out-of-range measurements and valuable
information about the ray path.

Likelihood fields [35] heuristically assign to each point in space the like-
lihood that a ray is reflected. Usually, this likelihood is derived from the
distance to the nearest reflection observed during the mapping process. This
representation has the advantage that the likelihoods are functions of the
space, which can be calculated in advance and stored in a distance map. On
the downside, it neglects the ray path information. As a consequence, the
likelihood only depends on the endpoint and not on the objects along the
ray.

Another popular map representation are reflection maps like used in [11]
and [30]. They assign to each cell a reflection probability, which is determined
by counting the rays that traverse the cell without reflection – so-called misses
– and the rays that are reflected in the cell – so-called hits. Similar to our
approach, reflection maps model the interaction between the beam and the
map in a probabilistic way. However, in addition to counting hits and misses,
our approach considers the distances traveled within each cell. The reflection
model discards this information.

Instead of partitioning the map into a set of cubic voxels, Ferri et al. [36]
use spherical voxels. Bennewitz et al. [37] explicitly handle erroneous mea-

62 Chapter 7. Analytical Lidar Sensor Model

surements caused by the specific reflection properties of objects. Ahtiainen
et al. [38] use the reflection probability of a cell to decide whether it is
traversable or not.

In contrast to grid-based approaches, feature-based maps describe the
environment by a set of semantic objects. The random finite set formulation
as used in [31] and [32] is a way to describe object detections.

There exist lots of other map representations that target specific applica-
tions. For example, Limosani et al. [39] use lidar in a long-term mapping run
in an office setting to model where dynamic objects like humans are likely to
be found.

7.3.2 Sensor Models

Sensor models can be divided into three categories: correlation-based, fea-
ture-based, and beam-based models [40]. Correlation-based models relate
sensor readings to a given global map. The popular endpoint model [35], for
example, evaluates a likelihood field at the ray endpoints. In this way, the
endpoint model ignores information about the ray trajectory. If both the
global map and the local measurements are represented by point clouds, the
iterative closest point method [41] or the normal distributions transform [14]
can be used to determine the correlation without the need for an explicit
forward sensor model. Feature-based approaches extract features from the
sensor readings and compare them to the map.

Our model belongs to the class of beam-based approaches, which explic-
itly calculate the probability density of the distance measurement along the
ray. As further instances of this class, [11] reasons about dynamic objects,
and [30] accounts for Gaussian sensor noise and false detections. Thrun
et al. [10] derive a basic beam-based model, which De Laet et al. [42] aug-
ment by explicitly modeling and marginalizing dynamic objects. Yguel et
al. [33] address the problem that beam-based approaches are computationally
expensive. They present a GPU-accelerated mapping algorithm for several
range sensors with different resolutions. Mullane et al. [43] estimate the grid
occupancy probabilities and the corresponding detection likelihoods simul-
taneously rather than assuming a known measurement model. In this way,
their method accounts for false detections.

For a detailed survey on measurement models, see Chapter 12 in [44].

7.4. Approach 63

i voxel index
j ray index

k(j) index of voxel that reflects ray j
vi ith voxel
I set of all voxels

di(j) distance that ray j travels inside vi
Hi total number of reflections in vi
λi decay rate in vi
τi mean ray length in vi
qi reflection probability in vi
s sensor pose in map frame
m map

λ(x) decay-rate map
r measured ray length

p(r) probability that ray is reflected at distance r
N(r) probability that ray travels at least distance r
x(r) trajectory of ray for a fixed sensor pose

Table 7.1: Notation.

7.4 Approach

This section describes how to build a decay-rate map from lidar sensor read-
ings and how to calculate the likelihood of a measurement using that map.
Table 7.1 provides an overview over the notation used throughout the paper.

7.4.1 The Basic Idea of the Decay-Rate Model

The essence of our approach is to model the probability that a ray traverses
a specific region as an exponential decay process. The decay rate of each
point in the physical space is stored in a so-called decay-rate map.

To formalize this idea, we define s as the sensor pose, which includes the
origin and the direction of the ray, and r as the distance between the sensor
and the point of reflection. For ease of notation, we write the measurement

64 Chapter 7. Analytical Lidar Sensor Model

probability as

p(r) := p(r | s,m). (7.1)

In the present paper, we assume that the returned value r is the actual
distance traveled by the beam, and model the relation between this distance
and the map in a probabilistic fashion. Measurement errors like Gaussian
noise and false alarms are not in the scope of the proposed approach. For
approaches that account for these uncertainties, please see [44].

Under this assumption, the cumulative probability for a beam to travel
at least distance r is

N(r) := 1−
∫ r

0
p(r′) dr′. (7.2)

For the measurement probability, it follows

p(r) (7.2)= −dN(r)
dr

. (7.3)

Now, we introduce our essential idea: Locally, N(r) obeys an exponential
decay process:

dN(r)
dr

= −λ (r)N (r) . (7.4)

This model is inspired by the following notion. The physical space is filled
with particles, and the probability that a laser ray traverses a region in this
space is proportional to the corresponding particle density. Low densities
correspond to permeable objects like bushes, while high densities correspond
to solid objects like walls. For a ray that penetrates a region of constant
particle density, N(r) decreases exponentially over the traveled distance r.

In our model, the decay rate λ(x) is a property of the physical space. We
obtain λ(r) = λ(x(r, s)) by evaluating the decay rate along the trajectory of
the ray.

Solving differential equation (7.4) for constant decay rate λ yields

N(r) (7.4)= e−λr (7.5)

p(r) (7.3)+(7.5)= λe−λr, (7.6)

assumingN(0) = 1. This solution is the basis of the mapping and localization
algorithms derived in the following section.

7.4. Approach 65

7.4.2 Mapping
For a given model, a map has to fully determine the interaction between a
sensor and the environment. According to equation (7.4), the decay rate λ
meets this requirement. Thus, we choose λ(x) as map. In order to relate the
abstract parameter λ to quantities which the sensor can observe, we introduce
τ – the mean length which a ray travels in a hypothetical, infinitely large
medium with constant λ, before it is reflected:

τ := E[r] =
∫ ∞

0
r · p(r) dr (7.6)= λ−1. (7.7)

On the basis of a finite number of measurements, the integral can be approx-
imated as

τ = λ−1 (7.7)
≈ H−1 ∑

j∈J
d(j), (7.8)

where H is the number of recorded reflections, J is the set of measured rays,
and d(j) is the distance that ray j travels before it is reflected. To determine
d(j), one uses ray tracing between sensor position and reflection point.

To build a map of the environment, we tesselate the physical space using
voxels {vi}i∈I of constant decay rates λi, so that the decay-rate becomes a
function of physical space:

λ(x ∈ vi) = λi. (7.9)

Inspired by (7.8), we define

λi:=
Hi∑

j∈J di(j)
, (7.10)

where Hi is the number of recorded reflections within vi, and di(j) is the
distance that ray j traveled within vi. With (7.10), we can now determine
our map – the set {λi}i∈I – from sensor measurements. In practice, we have
to account for finite memory. Therefore, we compute λi for all voxels inside
a region of interest and assign a single prior to all points outside.

In section 7.5.1, we prove that the computation of the map parameters
λi according to (7.10) indeed maximizes the data likelihood.

7.4.3 Localization
During the localization phase, the robot uses the map to assign probabilities
to measurements. For a ray starting and ending in the same voxel vi, (7.6)

66 Chapter 7. Analytical Lidar Sensor Model

readily provides us with this probability. Almost every ray, however, will tra-
verse multiple voxels. In order to determine the corresponding measurement
probability, we plug the piecewise constant decay rate as defined in (7.10)
into the differential equation (7.4) and solve for N(r):

N(r) =
∏
i∈I

e−λidi . (7.11)

To verify that (7.11) satisfies the differential equation (7.4), we need to dif-
ferentiate N(r) with respect to r. Doing so, we need to keep in mind that
for a particular r, all but the last di are constants obtained by ray tracing.
Only the distance dk within the last voxel vk explicitly depends on r:

dk = r −
∑

i∈I\{k}
di. (7.12)

With these prerequisites, the measurement likelihood becomes

p(r) (7.3)= −dN(r)
dr

(7.11)+(7.12)= λk
∏
i∈I

e−λidi . (7.13)

As described above, the values computed during mapping (7.10) and lo-
calization (7.13) are mainly linear combinations of values obtained by ray
tracing. Thus, the complexity of our method is determined by the complex-
ity of the used ray tracing algorithm. In particular, our approach has the
same complexity as the reflection model, while it makes use of more mea-
surement information.

7.4.4 Integrating Out-of-Range Measurements
Until now, we have implicitly assumed that the sensor always returns a real
value r. In practice, however, lidar sensors have a limited range [rmin; rmax].
They return

z :=

sub for reflections below rmin

r for reflections in [rmin; rmax]
sup for reflections above rmax

(7.14)

Consequently, the measurement probability of a scan that contains J rays
becomes a mixture of probability densities and absolute probabilities:

p(z1, . . . , zJ | s1, . . . , sJ ,m)
∼

∏
j∈Jsub

P (sub | sj,m) ·
∏
j∈JR

p(rj | sj,m) ·
∏

j∈Jsup

P (sup | sj,m), (7.15)

7.5. Mathematical Details 67

where Jsub, JR, and Jsup are the sets of ray indices that correspond to
zj = sub, zj = rj, and zj = sup, respectively.

To compute the probabilities of out-of-range measurements, we integrate
over all real values which they represent:

P (sub | sj,m) =
∫ rmin

0
p(r | sj,m) dr (7.16)

P (sup | sj,m) =
∫ ∞
rmax

p(r | sj,m) dr,

with p(r | sj,m) as in (7.13).
In the context of localization, the fact that (7.15) represents a mixture of

probability densities and absolute probabilities does not bother us, as we are
typically interested in the relative probabilities between pose hypotheses. To
obtain absolute probabilities, the measurement likelihood provided by (7.15)
has to be normalized.

7.5 Mathematical Details

This section proves that the proposed mapping algorithm maximizes the data
likelihood and derives the reflection model from our more general approach.

7.5.1 Decay-Rate Maps Maximize the Data Likelihood

We prove that the map parameters λi according to (7.10) maximize the like-
lihood of the underlying data by solving the following optimization problem:

m∗ = argmax
m={λi}i∈I

p (r1, . . . , rJ | s1, . . . , sJ ,m) (7.17)

= argmax
m

∏
j∈J

p (rj | sj,m)

= argmax
m

∑
j∈J

log p (rj | sj,m)

(7.13)= argmax
m

∑
j∈J

log
(
λk(j)

∏
i∈I

e−λidi(j)
)

= argmax
m

∑
j∈J

(
log

(
λk(j)

)
−
∑
i∈I

λidi(j)
)

︸ ︷︷ ︸
=:f(m)

.

68 Chapter 7. Analytical Lidar Sensor Model

With

∂ log
(
λk(j)

)
∂λi

=

1
λi

if k(j) = i

0 otherwise
(7.18)

we obtain the partial derivatives of f :

∂f(m)
∂λi

= Hi

λi
−
∑
j∈J

di(j). (7.19)

Equation (7.10) satisfies both the necessary condition for m∗

∂f(m)
∂λi

= 0 ∀ i ∈ I (7.20)

and the sufficient condition

∂2f(λ)
∂λi

2 = −Hi

λi
2 < 0. (7.21)

Hence, the decay-rate map computed according to (7.10) is the most probable
map given the sensor data.

7.5.2 The Decay-Rate Model Generalizes the Reflec-
tion Model

In order to show that the decay-rate model is a generalization of the reflection
model, we derive the latter from our approach with additional restrictive
assumptions. Reflection maps assign to each cell of the physical space a
reflection probability

qi = Hi

Hi +Mi

, (7.22)

where Hi is the number of reflections in vi recorded during mapping, and
where Mi is the number of rays that penetrated vi. The model states that
the probability of a ray ending in vk is

P (x(r) ∈ vk | s,m) = qk
∏

i∈B(k)
(1− qi) , (7.23)

where B(k) denotes the indices of the voxels through which the ray travels.

7.5. Mathematical Details 69

The first assumption inherent to the reflection model is that every ray
travels the same distance in every voxel it traverses:

di =
{
d if i ∈ B
0 if i /∈ B

(7.24)

Applying this assumption to the decay-rate model, we obtain

λi
(7.10)= Hi∑

j∈J di(j)
(7.22)+(7.24)= qi

d
. (7.25)

With this simplified version of λi, we derive the reflection probability (7.23)
from our model:

P (x(r) ∈ vk | s,m) =
∫

x(r)∈vk

p(r | s,m)dr (7.26)

(7.13)=
∫

x(r)∈vk

λk
∏
i∈I

e−λididr

(7.25)=
∫

x(r)∈vk

qk
d

∏
i∈B

e−qidr

(7.24)= qk
∏
i∈B

e−qi

≈ qk
∏
i∈B

(1− qi) .

The second simplification implicitly made by the reflection model expresses
itself in the transition between the last two lines: The model aborts the
Taylor series of the exponential after the first derivative.

We just argued that the standard reflection model can be seen as a special
case of the decay-rate model. Another way of looking at the relation between
the two models is that the decay-rate approach is formally equivalent to the
standard approach in a grid where each cell is partitioned into subvoxels
with constant qi within the original grid cell vi. This can be seen as follows.
The length of a ray that travels through the grid can be expressed by the
number of traveled subvoxels n and the subvoxel size l as r = n l. We get
the cumulative distribution

N(r) = (1− qi)n l = elog(1−qi)n l, (7.27)

which obeys an exponential decay and has the same form as the decay-rate
model (7.5). Thus, one can formally switch from the decay-rate model to a
fine-grained version of the reflection model by choosing the values {qi} such
that log(1− qi) = −λi.

70 Chapter 7. Analytical Lidar Sensor Model

7.6 Experiments
In order to evaluate the proposed approach, we conduct extensive real-world
experiments. The data processed in these experiments were collected with the
mobile off-road robot VIONA by Robot Makers, equipped with a Velodyne
HDL-64E lidar sensor and an Applanix POS LV localization system. We use
the Applanix system, which fuses information coming from multiple GPS
receivers, an IMU, and odometry sensors, as highly accurate pose ground
truth. The datasets were recorded in three different environments: on the
campus of the University of Freiburg, on a small trail in the middle of a
forest, and in a park. All scenarios contain pedestrians. The length of the
recorded trajectories varied between 50m and 400m. Figure 7.1 shows the
robot while recording the forest dataset. Figure 7.3 shows the point clouds
of the three datasets.

In the experiments, we compare the decay-rate model to two well-es-
tablished, state-of-the-art sensor models: the reflection model [11] and the
endpoint model [35]. For an illustration of the differences between these
models, see figure 7.2.

The set of measurements for mapping and the set for localization are
disjoint. We use the pose ground truth to perform mapping with known
poses for the different environments. While our approach is applicable to
any tesselation, in our experiments, we build maps consisting of cubic axis-
aligned voxels with an edge length of 0.5m. This way, the campus maps
contain 444× 406× 43 voxels, the park maps contain 515× 561× 41 voxels,
and the forest maps contain 393× 403× 86 voxels.

7.6.1 Monte-Carlo Localization
One of the main applications for sensor models is mobile robot localization.
In order to compare the different models with respect to localization accuracy
in six dimensions, we run separate, identically parameterized particle filters
for the three environments. The filters only differ in the measurement models
used to weight the particles in the correction step: The first filter employs the
decay-rate model proposed in this paper, the second employs the reflectivity
model, and the third employs the endpoint model.

We use 300 particles sampled from a Gaussian distribution with a variance
of 1m in the horizontal plane, 0.2m vertically, and 0.1 rad in every rotational
dimension. The offset between the mean particle pose in the initialization
step and the ground-truth start pose is sampled from this distribution, too.

To compare the robustness of the models, we also simulated sensor failures
in the campus dataset by setting 10% of the measurements to the minimum

7.6. Experiments 71

(a) A section of the point cloud built from the campus dataset. The point heights
are color-coded; the colorbar on the right tells which color denotes which height
above the start position of the robot in [m].

72 Chapter 7. Analytical Lidar Sensor Model

(b) A section of the decay-rate map built from the campus dataset. This projection
of the 3D decay-rate map onto the x-y plane is computed by summing up the decay
rates in z-direction. The colorbar on the right shows which color denotes which
decay rate in [1/m]. Note that tree trunks are assigned a high decay rate, whereas
the canopies have lower decay rates, e.g. at (20,−10).

Figure 7.3: Bird’s eye view of a section of the campus dataset. The blue
curve shows the robot trajectory ground truth as recorded by the Applanix
localization system. The robot travels along a footpath that is framed by a
small lawn with trees and bushes on the left and by a building on the right.

7.6. Experiments 73

Decay-rate model Reflection model Endpoint model
Campus 0.230 0.284 0.280
Campus* 0.252 0.284 0.366
Forest 0.331 0.352 0.417
Park 0.088 0.089 0.124

Table 7.2: Particle filter estimation errors as Euclidean distances between
ground truth and estimated position in [m], averaged over time. The scenario
campus* includes simulated sensor failures.

sensor range.
Table 7.2 shows the resulting averaged Euclidean distances between esti-

mated and true poses for all recorded datasets and for the campus dataset
with simulated sensor failures.

7.6.2 Evaluation of the Pose Likelihood
To evaluate the measurement models independently of filter design, we em-
ploy two metrics that assess how well the pose likelihood derived from the
output of the models matches ground truth. First, we use the Kullback-
Leibler divergence D (g‖h) to relate the pose likelihood h to the ground truth
g, which we approximate as a Dirac distribution. With z = {z1, . . . , zJ} and
s = {s1, . . . , sJ}, we state:

D (g‖h) =
∫
g(s′) log

(
g(s′)
h(s′)

)
ds′ (7.28)

=
∫
δ(s′ − s) log

(
δ(s′ − s)
p(s′ | m, z)

)
ds′

= − log [p(s | z,m)] + η

= − log [p(z | s,m)] + η′

= −
J∑
j=1

log (p(zj | sj,m)) + η′

=: D′ (g‖h) + η′.

In the evaluation, we omit the constant factor η′, as it is independent of the
sensor model. D′ (g‖h) rewards high likelihoods at the real robot position,
but it does not punish high likelihoods far from the real position. To ac-
count for these false positives, we also employ the inverse Kullback-Leibler

74 Chapter 7. Analytical Lidar Sensor Model

Decay-rate model Reflection model Endpoint model
Campus 6.07 · 104 6.99 · 104 1.01 · 105

Forest 2.70 · 104 3.33 · 104 5.02 · 104

Park 1.11 · 108 1.14 · 109 1.16 · 109

(a) Divergence D′ (g‖h) between Dirac-distributed ground truth and pose likeli-
hood as defined in (7.28). Low values indicate high pose likelihoods at the true
position. The values are computed over all measurements in the dataset.

Decay-rate model Reflection model Endpoint model
Campus 1.87 4.44 2.09
Forest 0.96 1.41 1.14
Park 3.56 4.64 4.17

(b) Inverse Kullback-Leibler divergence D (h‖g) between Gauss-distributed ground
truth and pose likelihood as in (7.29), averaged over all scans. Low values indicate
low pose likelihood far away from the true pose. We used M=50 samples from a
uniform distribution within a circular area with radius 2.5m centered at the true
robot pose.

Table 7.3: Kullback-Leibler divergence between ground truth distribution
and pose likelihood for different sensor models. For both metrics, smaller
numbers correspond to higher similarity to ground truth.

divergence

D (h‖g) =
∫
p(s′ | m, z) log

(
p(s′ | m, z)
N (s′; s,Σ)

)
ds′ (7.29)

≈
M∑
i=1

p(si | m, z) log
(
p(si | m, z)
N (si; s,Σ)

)
.

To approximate the integral, we sum overM poses si sampled from a uniform
distribution in a circular area centered at the true pose s. We then obtain
p(si | m, z) by normalizing p(z | si,m) over all si and assume the real position
to be distributed according to N (s′; s,Σ). Plagemann et al. [40] use a similar
metric. Table 7.3 shows the corresponding results.

Note that it is impossible to directly compare the output of the three
models, as one model returns absolute probabilities, the other probability
densities, and yet another heuristic values. To account for that, we always
convert the output for real-valued measurements to probability densities and
the output for out-of-range measurements to absolute probabilities, as de-
scribed in the following.

7.6. Experiments 75

The reflection model yields absolute probabilities for both real-valued and
out-of-range measurements. For the former, we assume an underlying density
that is implicitly integrated over the voxel that reflects the ray:

P (x(r) ∈ vk) =
∫
r|x(r′)∈vi

p(r′ | s,m)dr′. (7.30)

As all rays ending in one voxel have the same probability, we conclude

P (x(r) ∈ vk) = p(r | s,m)
∫
r′|x(r′)∈vi

dr′. (7.31)

Now we can identify the underlying probability density

p(r | s,m) = P (x(r) ∈ vk)
(∫

r′|x(r′)∈vi

dr′
)−1

. (7.32)

The endpoint model assumes an absolute probability P as prior for out-of-
range measurements. For measurements within the sensor range, it outputs
heuristic values. To obtain the corresponding probability density, for each
ray, we normalize the integral over all values within the sensor range to 1−P .

As the decay-rate model already expresses the probabilities as required,
all models are now comparable to one another.

7.6.3 Discussion of Results
The results of the localization experiments are listed in table 7.2. The pro-
posed decay-rate model outperforms the two standard approaches on all
datasets. This is due to the fact that the decay-rate model leverages more of
the information the sensor provides.

In the campus environment, the endpoint model performs better than
the reflection model. In the other, less structured environments, and in the
scenario with sensor failures, the reflection model outperforms the endpoint
model. We attribute this to the fact that especially in unstructured environ-
ments, the ray path information is more informative than the distance to the
nearest point.

A comparison of the results of the campus dataset with campus*, which
contains simulated sensor failures, indicates that the two beam-based ap-
proaches are more robust against outliers than the endpoint model.

Although we chose a poor initial estimate, the particle filter converges
to the true position for all datasets and all models. The park dataset is
recorded over the longest period of time. Therefore, the bad initialization
has less impact in this scenario than in the other three.

76 Chapter 7. Analytical Lidar Sensor Model

The evaluation of the pose likelihoods are listed in table 7.3. These results
are more informative than the particle filtering results, as the latter are
influenced by parameters and design choices. The proposed decay-rate model
outperforms the two baseline approaches in all scenarios: In contrast to the
endpoint model, it leverages ray-path information, and in contrast to the
reflection model, it considers the distances the rays traveled within the cells.

7.7 Conclusion and Future Work
In this paper, we introduce a physics-inspired, probabilistic lidar sensor
model. As a generalization of the reflection model, it can consistently be
applied to both mapping and localization. We prove that the resulting maps
maximize the data likelihood. In extensive experiments, our model outper-
forms state-of-the-art measurement models in terms of accuracy.

Our approach models the uncertainty in the interaction between a ray
and the environment. In the future, we will extend it to account for addi-
tional measurement uncertainties like Gaussian noise and false detections.
Currently, we are working on a GPU-accelerated, real-time capable imple-
mentation on our off-road robot and plan to build a SLAM framework based
on the proposed approach. We will evaluate the lidar calibration performance
using ground-truth data obtained by SLAM, and we will also investigate dif-
ferent front-ends and methods for data association. In this context, we plan
to benchmark the localization accuracy and the computational requirements
of all three sensor models. We are also working on a differentiable extension
of our model.

Chapter 8

Closed-Form Full Map
Posteriors for Robot
Localization with Lidar Sensors

This contribution [45] was authored by Lukas Luft, Alexander Schaefer, To-
bias Schubert, and Wolfram Burgard. Lukas Luft and Alexander Schaefer
contributed equal parts to the work. It was accepted for and presented at
the IEEE/RSJ International Conference on Intelligent Robots and Systems
2017, held in Vancouver, British Columbia, Canada, from September 24 to
28, 2017. The IEEE holds the copyright on the article: c© 2017 IEEE.
Reprinted, with permission, from “Closed-Form Full Map Posteriors”.

8.1 Abstract
A popular class of lidar-based grid mapping algorithms computes for each
map cell the probability that it reflects an incident laser beam. These algo-
rithms typically determine the map as the set of reflection probabilities that
maximizes the likelihood of the underlying laser data and do not compute
the full posterior distribution over all possible maps. Thereby, they discard
crucial information about the confidence of the estimate. The approach pre-
sented in this paper preserves this information by determining the full map
posterior. In general, this problem is hard because distributions over real-
valued quantities can possess infinitely many dimensions. However, for two
state-of-the-art beam-based lidar models, our approach yields closed-form
map posteriors that possess only two parameters per cell. Even better, these
posteriors come for free, in the sense that they use the same parameters as
the traditional approaches, without the need for additional computations.

77

78 Chapter 8. Closed-Form Full Map Posteriors

An important use case for grid maps is robot localization, which we for-
mulate as Bayesian filtering based on the closed-form map posterior rather
than based on a single map. The resulting measurement likelihoods can
also be expressed in closed form. In simulations and extensive real-world
experiments, we show that leveraging the full map posterior improves the
localization accuracy compared to approaches that use the most likely map.

8.2 Introduction
Robot mapping and localization are probabilistic processes. Therefore, it is
desirable to determine the posterior probability distribution over all possible
maps given all observations rather than to determine a particular map. For
some types of grid maps, it is well-known how to compute this distribution.

Grid maps are a popular representation of the environment of a robot.
In their basic formulation, each voxel of the map holds a binary value which
expresses whether the voxel is occupied or not. For these so-called occupancy
grids, the posterior distribution over each occupancy state is characterized
by one real-valued parameter. Moravec [12] and Elfes [13, 34] show how to
compute this parameter.

In real-world scenarios, however, map voxels are not always completely
free or completely occupied. They often contain structures smaller than the
grid resolution. As occupancy grids are not capable of representing these
structures, it makes sense to use real-valued maps.

A popular example of real-valued maps are so-called reflection maps [11].
Another method which also characterizes cells by real values builds so-called
decay-rate maps [29]. In contrast to posteriors over discrete map values, pos-
teriors over real-valued maps, like reflection maps and decay-rate maps, can
contain infinitely many parameters. Therefore, one typically only computes
the mode of the map posterior and uses it as map – with few exceptions [46].

In this paper, we present a method to derive the full posterior over real-
valued grid maps based on data provided by lidar sensors. Our approach,
which is applicable to a broad class of forward sensor models, relies on a
rigorous Bayesian formulation of the mapping process. For the reflection
model and the decay-rate model in particular, the proposed approach leads
to closed-form map posteriors. These posteriors come for free: The most
likely map already contains the required parameters.

In addition, we leverage the full map posterior for robot localization, the
process of estimating the belief over the robot pose. Just like approaches
that use a single given map, we can express the recursive Bayesian update
in closed-form. Although our approach possesses the same computational

8.3. Related Work 79

Figure 8.1: Perspective view of a section of the reflection map built from the
forest dataset. The map encodes the reflection probability of each voxel by
the voxel color: Bright yellow corresponds to low reflection probability, dark
red corresponds to high reflection probability. Although the map is highly
cluttered, one can clearly recognize a large number of tree trunks.

complexity as the former ones, we demonstrate that it yields higher accuracies
in extensive localization experiments.

8.3 Related Work
The proposed approach computes the posterior over real-valued grid maps.
Therefore, we structure our overview of the related work as follows: We start
with grid-based mapping approaches that compute the full posterior, move
on to approaches which compute the most likely real-valued grid map, and
close with posteriors over feature-based maps.

In robotics, occupancy grid maps are widely used. To derive the pos-
terior over their binary values, most approaches assume that the individual
voxels are independent. Then, the binary Bayes filter allows to recursively
update the map posterior based upon the inverse sensor model, as shown
by Moravec [12] and Elfes [13], [34]. To obtain a full posterior over a dis-
crete map in the context of SLAM, Doucet et al. [47] and Tipaldi et al. [48]
employ a Rao-Blackwellized particle filter [49]. Each of the particles repre-
sents not only a pose hypothesis, but also holds a distribution over a discrete

80 Chapter 8. Closed-Form Full Map Posteriors

map. Thrun [30] uses a forward sensor model to compute posteriors over
grid maps. He drops the assumption of voxel independence by accounting
for measurement noise. Marks et al. [46] present an approach to compute
posterior distributions over real-valued grid maps; in their case, each map
voxel represents the height variance of the surface.

Other than Marks et al. [46], most approaches for real-valued grid maps
compute the most likely map only: Hähnel et al. [11], for example, extend
the reflection model by introducing a binary variable that expresses whether
a reflection is caused by a dynamic object or a static object. The recently
introduced decay-rate model [29] also produces real-valued grid maps. These
maps represent decay rates of the laser ray instead of reflection probabilities.
All approaches in this paragraph have in common that they consistently
leverage the forward sensor model for both mapping and localization.

Instead of using voxels, maps can also be represented by a finite set of
landmarks. Extended Kalman Filtering techniques assume the robot pose
and the positions of these landmarks to be normally distributed and com-
pute the full posterior over the robot pose and the map in closed form. For
one example among a wide range of publications in this context, see [50].
Extended Kalman Filtering is also a popular choice for collaborative local-
ization, where robots use their teammates as moving landmarks. The belief
of the joint pose state can then be interpreted as posterior over a dynamic
landmark map, see for example [51].

8.4 Approach

This section describes how to calculate the full posterior over a real-valued
grid map and how to use it for localization. Our approach is applicable to
a broad class of beam-based sensor models, which we define in section 8.4.1.
We call them factorizing models. In this section, we also recall the formu-
las for two examples of this class: the reflection model and the decay-rate
model. In section 8.4.2, we derive a recursive update equation to compute
the posteriors over grid maps based on factorizing models. We leverage this
equation in section 8.4.3 to derive closed-form posteriors over reflection maps
and decay-rate maps. Once the posteriors are established, we move on to per-
form robot localization: Section 8.4.4 establishes a general recursive Bayesian
update equation for localization based on map posteriors rather than based
on a single given map. For the reflection model and the decay-rate model,
this update equation possesses closed form, as presented in section 8.4.5.
Table 8.1 provides an overview over the notation used throughout the paper.

8.4. Approach 81

i voxel index
vi ith voxel
Hi total number of hits in vi during mapping
Mi total number of misses in vi during mapping
λi decay rate in vi
µi reflection probability in vi
x sensor pose with respect to map frame
m map
mi map value in voxel vi
r radius of a laser ray
ri distance that a ray travels inside vi
Ri total distance that all rays travel in vi during mapping
I set of all voxels

N = |I| number of all voxels
I(r, x) set of voxels entered by a beam with r and x

Xm sensor poses during mapping
Z sensor measurements recorded during localization
Zm sensor measurements recorded during mapping
z most recent measurement

Table 8.1: Notation

82 Chapter 8. Closed-Form Full Map Posteriors

8.4.1 Factorizing Forward Sensor Models
The present paper deals with mapping and localizing based on lidar data.
The formalism presented later on is valid for a broad class of sensor models
which we call factorizing models. They are characterized by the following
property:

p(r | x,m) =
∏

i∈I(r,x)
f(ri,mi, δi), (8.1)

where r is the length of the measured laser ray, x denotes the sensor pose,
and m is a fixed map, I(r, x) is the set of indices of all voxels which the beam
enters, ri is the radius that the beam travels within voxel vi, mi denotes the
map value of voxel i, and δi(r, x) tells whether or not voxel i reflects the ray:

δi = δi(r, x) =

1 if vi reflects the ray
0 else

(8.2)

The reflection model [11] defines f(ri,mi, δi) as a binomial distribution
over the event δi:

f(ri, µi, δi) = µδi
i (1− µi)1−δi = f(µi, δi). (8.3)

It disregards the information about how far the ray travels inside each voxel:
(8.3) does not depend on ri.

In contrast, the decay-rate model [29] incorporates this information, as it
computes f as follows:

f(ri, λi, δi) = λδi
i e
−λiri . (8.4)

Here, λi is the decay rate within voxel i. If we fix the value of ri, equation
(8.4) yields a binary Poisson distribution over δi. Conversely, for δi = 1, it
yields an exponential distribution over ri.

8.4.2 Recursive Map Update
This section addresses the core of our approach. We show how to calculate
a posterior distribution over all maps. This distribution is called the be-
lief bel(m) := p(m | Zm, Xm), where Zm denotes the set of all measurements
recorded during the mapping process, and where Xm denotes the set of cor-
responding sensor poses. In order to calculate the full map posterior, we first

8.4. Approach 83

need to introduce the following definitions.

bel(m) = p(m | Zm, Xm) (8.5)
bel(m) = p(m | Zm, Xm) (8.6)
bel(mi) = p(mi | Zm, Xm) (8.7)
bel(mi) = p(mi | Zm, Xm) (8.8)

Here, Zm = Zm \ {z} represents the set of mapping measurements without
the most recent measurement z. Note that when referring to general sensor
models, we call the sensor output z; only in the context of factorizing models,
we write r for radius. Proposition 1 now shows how to recursively compute
the full map posterior from the latest belief and the latest measurement.

Proposition 1. Assuming a factorizing sensor model

p(r | x,m) =
∏

i∈I(r,x)
f(ri,mi, δi), (8.9)

and mutual independence of the individual voxels

bel(m) =
N∏
i=1

bel(mi), (8.10)

the belief over each map value is recursively updated according to

bel(mi) = ηi bel(mi) f(ri,mi, δi), (8.11)

where ηi is a normalizing constant independent of mi.

Proof. To prove the above proposition, we define the following notation:

mI\i := m \ {mi} (8.12)

and ∫
mI\i

(·) dmI\i :=

∫
m1

· · ·
∫

mi−1

∫
mi+1

· · ·
∫
mN

(·) dmN . . . dmi+1dmi−1 . . . dm1.

84 Chapter 8. Closed-Form Full Map Posteriors

Using this notation, we derive proposition 1 as follows:

bel(mi) = p(mi | Zm, Xm)
(8.8)= η p(z | mi, Zm, Xm) bel(mi)

= η bel(mi)
∫

mI\i

p(z,mI\i | mi, Zm, Xm) dmI\i

(8.12)= η bel(mi)
∫

mI\i

p(z | m,Zm, Xm)

p(mI\i | mi, Zm, Xm) dmI\i
= η bel(mi)

∫
mI\i

∏
j∈I(r,x)

f(rj,mj, δj)

∏
k∈I\{i}

bel(mk) dmI\i (8.13)

= ηi bel(mi) f(ri,mi, δi).

η and ηi are normalizing constants independent of mi. To obtain (8.13), we
make use of both (8.9) and (8.10). To transition from (8.13) to the last line,
we pull f(ri,mi, δi) out of the integral and merge the remaining integral,
which is independent of mi, with the normalizer.

The update equation (8.11) in proposition 1 might look familiar: It is a
generalization of the well-known map update bel(m) = η bel(m) p(z | x,m),
which can be derived from Bayes rule in a straight-forward manner, see equa-
tion (7) in [52]. Another update equation which is related to (8.11) is the
voxel-wise update for binary occupancy maps, see (18) in [52]. In contrast to
the proposed update equation, the latter employs the inverse sensor model.

8.4.3 Closed-Form Map Posteriors
In this section, we leverage proposition 1 to derive the closed-form map poste-
riors for the reflection model and for the decay-rate model. For the reflection
model, update equation (8.11) yields the following posterior over µi:

bel(µi) ∝
∏
Zm

f(µi, δi) p(µi)

(8.3)
∝ µHi

i (1− µi)Mi p(µi)
∝ Beta(Hi + 1,Mi + 1) p(µi). (8.14)

8.4. Approach 85

Here, p(µi) denotes the prior distribution over the map, Hi tells how many
rays are reflected in vi, andMi is the number of rays that penetrate vi without
reflection. Beta(·) denotes a beta distribution.

If the prior is a beta distribution p(µi) = Beta(α, β), which is the conju-
gate prior for the binomial distribution f(µi, δi), equation (8.14) yields

bel(µi) = Beta(Hi + α,Mi + β). (8.15)

The most likely reflection map can easily be derived from (8.15): Assum-
ing a uniform prior distribution p(µi) = Beta(1, 1) = 1 and computing the
mode of the resulting beta posterior distribution yields the same result as
formulated by Hähnel et al. [11] for maximum-likelihood reflection maps:

µ∗i = Hi

Hi +Mi

. (8.16)

For the decay-rate model, the update equation (8.11) becomes

bel(λi) ∝
∏
Zm

f(ri, λi, δi) p(λi)

(8.4)
∝ λHi

i e
−λiRi p(λi)

∝ Gamma(Hi + 1, Ri) p(λi).

Gamma(·) denotes a gamma distribution, p(λi) is the prior map distribution,
and Ri is the sum of the distances all rays travel within vi.

If p(λi) is a gamma distribution Gamma(α, β), which is the conjugate
prior for the Poisson distribution and for the exponential distribution, we
obtain the gamma-distributed belief 1

bel(λi) = Gamma (Hi + α,Ri + β) . (8.17)

Setting α = 1 and β = 0 leads to the so-called uninformative prior.
Plugging this prior into (8.17) and computing the mode of the resulting
posterior leads to the decay rates of the maximum-likelihood approach as
given in [29]:

λ∗i = Hi

Ri

. (8.18)

For both the reflection model and the decay-rate model, the parameters
α and β of the prior distribution need to be estimated during mapping. In
section 8.5, we explain how we obtain the prior parameters used throughout
the experiments.

1In the context of height maps, Marks et al. [46] also obtain gamma-shaped posteriors
over grid values.

86 Chapter 8. Closed-Form Full Map Posteriors

8.4.4 Localization with Map Posteriors

In this section, we formulate robot localization on the basis of the full pos-
terior over the map rather than on the basis of a fixed map. In contrast to
the well-known approach [10] which computes the belief over the robot pose
on the basis of the given map m as

belm(x) = η bel(x) p(z | x,m), (8.19)

we leverage the full posterior bel(m) = p(m | Xm, Zm) instead of m. Conse-
quently, we derive the pose belief as follows:

bel(x) = p(x | Z,Zm, Xm)
= η p(z | x, Z, Zm, Xm) p(x | Z,Zm, Xm)︸ ︷︷ ︸

=:bel(x)

= η bel(x)
∫
p(z | x,m) p(m | Z,Zm, Xm) dm

= η bel(x)
∫
p(z | x,m) bel(m) dm︸ ︷︷ ︸

=:L(z,x)

. (8.20)

Here, Xm and Zm are the poses and measurements recorded during the map-
ping process, respectively, Z denotes the measurements recorded during lo-
calization, and Z = Z\{z} is the set of all measurements but the most recent
one.

Equations (8.19) and (8.20) differ only in the last term, which, in (8.19),
is called the measurement likelihood. Analogously, we call L(z, x) in (8.20)
the measurement likelihood based on the map posterior. The next section
presents closed-form solutions of L(z, x) for the reflection model and the
decay-rate model.

8.4.5 Closed-Form Measurement Likelihoods

For two particular factorizing sensor models, the reflection model and the
decay-rate model, the solution of the integral contained in the measurement
likelihood L(z, x) leads to closed-form expressions. To compute those, we

8.4. Approach 87

need to factorize L(z, x) first:

L(z, x) =
∫
m

p(z | x,m) bel(m) dm

=
∫
m

∏
i∈I(r,x)

f(ri,mi, δi)
N∏
j=1

bel(mj) dm

=
∫

mI(r,x)

∏
i∈I(r,x)

f(ri,mi, δi)
∏

j∈I(r,x)
bel(mj) dmI(r,x)

=
∏

i∈I(r,x)
l(ri, δi)

with

l(ri, δi) :=
∫
f(ri,mi, δi) bel(mi) dmi. (8.21)

Now, we evaluate this integral for both sensor models. For the reflection
model with beta-shaped prior p(µi) = Beta(α, β), we take the distribution
f(µi, δi) from (8.3) and the posterior from (8.15), plug them into (8.21), and
solve the integral:

lref(ri, δi) = lref(δi) = (Hi + α)δi (Mi + β)1−δi

Hi + α +Mi + β
. (8.22)

If the posterior bel(µi) is set to a Dirac delta distribution Delta(µi − µ∗i),
equation (8.21) reproduces the measurement likelihood based on the most
likely map, as derived in [11]:

lref(δi) = f (δi) = Hδi
i M

1−δi
i

Hi +Mi

. (8.23)

Equation (8.23) is only valid for Hi +Mi > 0. If no ray has visited the voxel
during mapping, the maximum-likelihood approach has to assign some initial
value. In contrast, (8.22) is also valid for voxels that have not been visited
by any ray during mapping.

Note that in the special case of α = β, equation (8.23) can be transformed
into (8.22) using Laplace smoothing – see for example equation (13) in [53].

In order to obtain closed-form solutions for the decay-rate model, we as-
sume a gamma-shaped prior p(λi) = Gamma(α, β) and plug (8.4) and (8.17)
into (8.21). This leads to

ldec(ri, δi) =
(

Ri + β

Ri + β + ri

)Hi+α (Hi + α

Ri + β + ri

)δi

.

88 Chapter 8. Closed-Form Full Map Posteriors

Analogously to the reflection model, the measurement likelihood based
on the most likely map as derived in [29] can be reproduced from (8.21) by
setting bel(λi) = Delta(λi − λ∗i):

ldec(ri, δi) = f (ri, δi) = e
−Hi

Ri
ri

(
Hi

Ri

)δi

.

Until now, we have assumed that the lidar sensor reports a reflection for
each emitted beam. In practice, however, the sensor range is always limited
by a lower bound rmin and an upper bound rmax. The following equations
show for both measurement models how to attribute probabilities to these
out-of-range measurements:

P (r < rmin | x, Zm, Xm) = 1−
∏

i∈I(rmin,x)
l(ri, δi = 0),

P (r > rmax | x, Zm, Xm) =
∏

i∈I(rmax,x)
l(ri, δi = 0).

8.5 Experiments
In the previous section, we have derived all the necessary equations to com-
pute the posterior over a grid map and to leverage this posterior for local-
ization. Now, to demonstrate that localization benefits from employing the
full map posterior instead of the most likely map, we perform a simulation
and extensive real-world experiments.

As shown in section 8.4.3, the computation of the map posterior for the
reflection model and for the decay-rate model requires the specification of
the two parameters α and β of the prior distribution. In our experiments,
we determine them as follows. First, we compute the empirical mean and
variance of the map value over all voxels. Then, we choose α and β such
that the mean and variance of the parameterized distributions equal these
empirical values. To that end, we solve the known equations for the mean
and the variance of the beta and gamma distribution for α and β. For the
reflection model, we obtain

α = −
E [µ]

(
E [µ]2 − E [µ] + var [µ]

)
var [µ] ,

β = E [µ]− var [µ] + E [µ] var [µ]− 2 E [µ]2 + E [µ]3

var [µ] .

8.5. Experiments 89

For the decay-rate model, the parameters are

α = E [λ]2

var [λ] ,

β = E [λ]
var [λ] .

To strictly avoid the repeated use of the same information, one has to es-
timate these parameters for each voxel separately, computing the empirical
mean and variance over all voxels but the considered one. However, the sheer
number of observations in our datasets render this effect negligible. Hence,
it is sufficient to compute α and β only once.

Throughout the experiments section, MLM denotes the maximum-likeli-
hood approach, while FMP refers to the proposed approach, which leverages
the full map posterior. REF and DEC denote the reflection model and the
decay-rate model, respectively.

8.5.1 Localization in Simulation
We simulate the following scenario to evaluate the localization performance
with both maximum-likelihood maps and full posteriors: A mobile robot is
located in a corridor that is modeled by a row of N = 100 consecutive voxels.
Each experiment run consists of two phases: During the mapping phase, the
robot visits every voxel n times and for each voxel collects the measurements
Hi, Mi, and Ri, which it uses to build both a reflection map and a decay-
rate map. In the localization phase, which consists of 100 iterations, the
robot traverses the corridor from start to end knowing its motor commands.
In each iteration, the robot moves to the next voxel, fires its sensor once,
and updates the belief over its pose. Therefor, with the maximum-likelihood
approach it uses (8.19), with the proposed approach it uses (8.20). After the
robot has arrived at the last voxel of the corridor, we evaluate the pose belief
at the true pose averaged over each iteration:

ρ := E (bel (xtrue)) .

We perform 10, 000 such localization runs for each n ∈ {1, 2, 3, 4, 5, 10, 20,
50, 100, 200}. In each run, we synthesize a new map m by drawing samples
from a uniform distribution for the reflection model or from a gamma dis-
tribution Gamma (1, 1) for the decay-rate model. This map is hidden from
the localization algorithms. We use m to simulate the measurements the
robot records during mapping and localization by sampling from the distri-
bution described in equation (8.3) for the reflection model or from (8.4) for

90 Chapter 8. Closed-Form Full Map Posteriors

the decay-rate model. The belief over the robot pose is initialized with a
uniform distribution over x.

For both measurement models, we compare three algorithms: MLM, FMP
with uniform prior, and FMP with conjugate prior. The results in figure 8.2
indicate that the proposed method – FMP with conjugate prior – yields
higher localization accuracy than the compared methods for both measure-
ment models. Moreover, we observe that the benefit of the proposed method
is greater for the reflection model than for the decay-rate model. We per-
form a one-tailed, paired-sample t-test, which validates these observations:
For the reflection model, the proposed method outperforms the other two
approaches for n ≤ 100 with a probability greater than 0.9999. For the
decay-rate model, we obtain the same significance level for n ≤ 4.

8.5.2 Real-World Localization
In order to validate the findings of the simulation in the real world, we test
our approach on three datasets in which our mobile off-road robot navigates
different kinds of environments: In the campus dataset, the robot drives
around on the campus of the University of Freiburg. The forest dataset, a
section of which is shown in figure 8.1, was recorded on a small trail in the
middle of a forest, while the park dataset contains a long trajectory along a
broad road through an open forest. We tesselate the environment into cubic
axis-aligned voxels with edge length 0.5m. Consequently, the campus maps
contain 444× 406× 43 voxels, the park maps contain 515× 561× 41 voxels,
and the forest maps contain 393× 403× 86 voxels.

We use the following hardware: The off-road robot VIONA by Robot
Makers carries a Velodyne HDL-64E lidar sensor and an Applanix POS LV
localization system, which provides a centimeter-accurate estimate of the
robot pose by fusing the data from multiple GPS sensors, an IMU, and
odometry. Due to its accuracy, we use the Applanix data as pose ground
truth during mapping and in the evaluation of all localization estimates.

To assess the localization performance using full posteriors versus maxi-
mum-likelihood maps, we employ different measures:

Measurement Likelihood

We employ the logarithm of the measurement likelihood at the true pose as a
measure of how well the approaches predict the measurements given the true
pose. For MLM, the measurement likelihood is defined as p(z | x,m). For
FMP, it is defined by L(z, x) in (8.20). We sum up the likelihood values of all
measurements in a dataset and divide the result for MLM by the result for

8.5. Experiments 91

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.2

0.4

0.6

0.8

ln (n)

ρ

FMP with beta prior
FMP with uniform prior
MLM

(a) Reflection model.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.2

0.4

0.6

0.8

ln (n)

ρ

FMP with gamma prior
FMP with uninformative prior
MLM

(b) Decay-rate model.

Figure 8.2: Localization accuracy in a simulated environment. n is the num-
ber of observations per voxel during the mapping process. The data points
correspond to n ∈ {1, 2, 3, 4, 5, 10, 20, 50, 100, 200}. The accuracy measure ρ
shows the average probability which the algorithm assigns to the ground
truth position. The error bars represent the variances over 10 000 runs.

92 Chapter 8. Closed-Form Full Map Posteriors

REF DEC
Campus 1.21 1.16
Forest 1.22 1.31
Park 1.25 1.27

Table 8.2: Log-likelihood ratios of the measurements given the ground-truth
pose. For each dataset, we show the ratio of the cumulated measurement
log-likelihoods for MLM to the ones for FMP. Values greater than one mean
that FMP attributes higher likelihoods to measurements given the true robot
pose.

FMP. The ratios are presented in table 8.2. For both measurement models
and all three datasets, these values are greater than one, which means that
FMP achieves better prediction of the measurements than MLM.

Kullback-Leibler Divergence

As a measure of dissimilarity, we employ the Kullback-Leibler (KL) diver-
gence from the estimated position distribution p to the ground-truth pose
distribution pgt:

DKL (pgt(x) ‖ p(x)) =
∫
pgt(x) log

(
pgt(x)
p(x)

)
dx. (8.24)

We assume that pgt is a bivariate normal distribution with standard devia-
tion σx = σy = 0.05m, chosen according to the specifications of the Applanix
localization system. The formula for the pose likelihood p depends on the
approach:

p =

p(x | z,m) ∝ p(z | x,m) for MLM
p(x | z,Xm, Zm) ∝ L(z, x) for FMP

(8.25)

To evaluate equation (8.24), we perform a Monte-Carlo integration over
x:

DKL(pgt ‖ p) ≈
∑

log
(
pgt
p

)
,

where pgt and p are normalized over the samples. We compute the results
shown in table 8.3 by summing up the approximated DKL values for all mea-
surements in one dataset and dividing the result for MLM by the result of

8.6. Conclusion and Future Work 93

REF DEC
Campus 1.24 1.25
Forest 1.27 1.82
Park 1.37 1.59

Table 8.3: Ratios of the Kullback-Leibler divergence from the position dis-
tribution estimated by MLM and FMP to the ground truth distribution. For
each dataset, we show the ratio of the cumulated KL divergences for the
MLM approach to the corresponding value for the FMP approach. Ratios
greater than one indicate that the distribution estimated by FMP is closer
to the ground-truth than the one estimated by MLM.

FMP. All ratios are greater than one, which implies that the distribution esti-
mated by FMP is closer to the ground truth than the distribution estimated
by MLM. Moreover, all ratios are higher than the corresponding ratios of the
measurement likelihoods in table 8.2.

Monte-Carlo Localization

The results of the two aforementioned measures are entirely reproducible,
in the sense that they are independent of localization algorithm design. In
the corresponding experiments, the proposed approach always yields better
results than the maximum likely approach. To demonstrate the consequences
of this behavior in a real application, we evaluate the localization accuracy of
two particle filters. Each filter employs 3000 particles to localize the off-road
robot in six dimensions in the park scenario with the decay-rate model. The
initial variance is 0.1m in the translational dimensions and 0.1 rad in the
rotational dimensions. The filters only differ in the method used to weight
the particles: One uses the likelihood derived from the most likely map, the
other uses the likelihood derived from the full map posterior. Figure 8.3
shows the corresponding localization errors averaged over ten runs.

8.6 Conclusion and Future Work
In this paper, we present an approach to compute posterior distributions over
real-valued grid maps from lidar observations. We demonstrate that for the
well-established reflection sensor model and the recently introduced decay-
rate sensor model, the posterior distributions can be represented in closed
form. Our approach requires the same measurement information and has

94 Chapter 8. Closed-Form Full Map Posteriors

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

Trajectory length [m]

T
ra
ns
la
ti
on

al
off

se
t
[m

]

0 20 40 60 80 100 120 140
0

1

2

3

Trajectory length [m]

R
ot
at
io
na

l
off

se
t
[d
eg
]

MLM
FMP

Figure 8.3: Localization accuracy with the decay-rate model on the park
dataset averaged over ten runs.

8.6. Conclusion and Future Work 95

the same computational demands as approaches which only determine the
mode of the distribution. Simulations and extensive real-world experiments
show that taking into account the full map posterior improves the accuracy
of robot localization.

In the future, we plan to relax the assumption that all map cells are
independent by accounting for measurement noise. Moreover, we will embed
the presented approach into a SLAM framework, which we will then use to
localize our off-road robot during operation.

96 Chapter 8. Closed-Form Full Map Posteriors

Chapter 9

DCT Maps: Compact
Differentiable Lidar Maps
Based on the Cosine Transform

The original research article presenting DCT maps [2] was authored by
Alexander Schaefer, Lukas Luft, and Wolfram Burgard and published in
the journal IEEE Robotics and Automation Letters, Volume 3, Issue 2, April
2018. We presented this work during the IEEE/RSJ International Conference
on Robotics and Automation 2018, which took place in Brisbane, Queens-
land, Australia, from May 21 to May 25, 2018. The IEEE holds the copyright
on the article: c© 2018 IEEE. Reprinted, with permission, from “DCT Maps:
Compact Differentiable Lidar Maps Based on the Cosine Transform”.

9.1 Abstract
Most robot mapping techniques for lidar sensors tessellate the environment
into pixels or voxels and assume uniformity of the environment within them.
Although intuitive, this representation entails disadvantages: The resulting
grid maps exhibit aliasing effects and are not differentiable. In the present
paper, we address these drawbacks by introducing a novel mapping technique
that does neither rely on tessellation nor on the assumption of piecewise uni-
formity of the space, without increasing memory requirements. Instead of
representing the map in the position domain, we store the map parameters in
the discrete frequency domain and leverage the continuous extension of the
inverse discrete cosine transform to convert them to a continuously differen-
tiable scalar field in the position domain, which we call DCT map. A DCT
map assigns to each point in space a lidar decay rate, which models the local

97

98 Chapter 9. DCT Maps

permeability of the space for laser rays. In this way, the map can describe ob-
jects of different laser permeabilities, from completely opaque to completely
transparent. DCT maps represent lidar measurements significantly more ac-
curate than grid maps, Gaussian process occupancy maps, and Hilbert maps,
all with the same memory requirements, as demonstrated in our real-world
experiments.

9.2 Introduction
Mapping and localization are at the heart of almost every mobile robotic
system. In this context, lidar is a popular sensor modality, as lidar sen-
sors produce relatively accurate, low-noise signals. Using these signals for
mapping and localization requires an inverse and a forward sensor model.
The inverse sensor model converts recorded measurements to a map. The
forward model uses this map to assess the probability of incoming sensor
readings given the robot pose. The maps produced by the inverse pass are
often grid maps: They tessellate the physical space into square pixels or cubic
voxels. Each pixel or voxel contains a value that is assumed to be constant
within it. This value characterizes the statistical optical properties of the
corresponding portion of space. Fig. 9.1b shows an example of such a grid
map built from 2-D lidar scans recorded in an office environment.

Although tessellation is intuitive, grid maps bring with them several draw-
backs. First, they can only coarsely approximate the true spatial distribution
of the optical properties of interest. Aliasing effects occur whenever the opti-
cal characteristics of the environment change, as these transitions are never
perfectly aligned with the raster of the grid. The grid map in fig. 9.1b exhibits
the resulting characteristic staircase patterns. Although increasing the map
resolution can theoretically alleviate this problem (see fig. 9.1c), quadratic
or cubic memory complexity quickly renders this approach prohibitive. De-
pending on the use case, non-cubic voxels may mitigate the errors induced
by tessellation [55]. Second, grid maps are not continuously differentiable,
although this is a desirable property of any map. Continuous differentiability
would allow to localize the robot by maximizing the measurement likelihood
over the robot poses, and even to perform SLAM by maximizing the mea-
surement likelihood over the robot poses and the map parameters.

In the present paper, we choose a different approach to avoid the afore-
mentioned detrimental effects without increasing the memory demands. In-
spired by well-established digital image compression algorithms like JPEG,
we store the map parameters in the discrete frequency domain and use the
so-called continuous extension of the inverse discrete cosine transform [18] to

9.2. Introduction 99

(a) DCT map with 40× 40 parameters.

(b) Grid map composed of 40×40 pixels with edge length
25 cm.

100 Chapter 9. DCT Maps

(c) Grid map composed of 200 × 200 pixels with edge
length 5 cm.

Figure 9.1: Decay-rate maps of the same 10 m× 10 m patch of the Intel Re-
search Lab dataset [54] generated from the identical set of planar lidar mea-
surements. The colors encode the reflection probability pref := 1− exp(−λ),
where λ denotes the local laser decay rate.

9.3. Related Work 101

obtain a continuously differentiable scalar field in the position domain. In
addition to the regular inverse discrete cosine transform, its continuous ex-
tension not only computes the function values at discrete grid points in the
spatial domain, but also closely approximates them in between. We com-
bine this map representation with the recently developed decay-rate model
for lidar sensors [29]. The resulting DCT maps model the local permeabil-
ity of the space for laser rays. Fig. 9.1a depicts such a DCT map. It was
built from the identical information as the grid map in fig. 9.1b and has the
same memory footprint, but it does not exhibit staircase patterns and better
preserves the map contours. Indeed, our experiments show that DCT maps
represent lidar data with higher accuracy than other approaches. Moreover,
the continuous derivatives of DCT maps can be calculated in closed form, a
fact that enables optimization-based SLAM.

In the following, we first survey different map representations. Then, we
describe the mathematics behind DCT maps in detail. Finally, the findings of
experiments conducted with publicly available real-world 2-D lidar datasets
are presented.

9.3 Related Work
Occupancy grid maps [56] were among the first probabilistic map represen-
tations used in robotics and are still widely used today. They tessellate the
space into independent cells and assign each cell the posterior probability
of being occupied. Occupancy grid maps cannot model semi-transparent
objects; they assume that each cell is either completely free or completely
occupied. In contrast, the decay-rate model, which we employ to formulate
DCT maps, explicitly models the permeability of each cell for a laser ray.
If used in conjunction with grid maps, it even allows to calculate posterior
distributions over the decay-rate values without additional computational
effort [45].

While 2-D occupancy maps are able to model large areas, even modera-
tely-sized 3-D occupancy grids quickly outgrow the memory limitations of
modern computers. For this reason, several research projects target com-
pressed map representations. Elevation maps [57] assume that the environ-
ment can be represented by a 2-D grid map whose cells contain not only
occupancy values, but also one height coordinate per cell. To relax the as-
sumption that the world is a single surface, [58] extends elevation maps to
multi-level surface maps. Multi-volume occupancy grids [59] manage volu-
metric data as 2-D arrays, too, but in contrast to multi-level surface maps,
each cell contains a list of occupied height regions and one of free height

102 Chapter 9. DCT Maps

regions. Octrees [60] approach the memory limitation problem by hierarchi-
cally partitioning the space using an octal tree data structure. They have
found broad application in robotics to model the spatial distribution of the
occupancy value [61, 62, 63]. The authors of [64] present an octree-based
data structure that is efficient to update and to copy, so it can be used in
particle filter-based SLAM, where hundreds of maps must be maintained in
parallel. To model the dynamics of the environment, [65] assumes that the
occupancy values in an octree are subject to periodic changes. For each cell,
the authors record the occupancy value over time and transform the resulting
function to the frequency domain to predict the occupancy value at a later
point in time. In this way, they achieve high compression ratios compared to
storing one occupancy map per time step. Multi-resolution occupied voxel
lists [66] differ from traditional occupancy mapping in that they store only
the positions of the voxels that have been observed more frequently as occu-
pied than as free. They are neither able to differentiate between unoccupied
and unknown volumes, nor to account for semi-transparent voxels.

The normal distributions transform [14] was initially conceived in the
context of scan matching. Based on this work, [67] introduces the so-called
normal distributions transform occupancy map. Basically, this map is a grid
map, but instead of a single scalar, every cell contains a normally distributed
occupancy probability density function, which is cropped at the voxel bounds.
In this way, it drops the assumption that the space is uniform within each
voxel. As opposed to DCT maps, however, normal distributions occupancy
maps achieve higher accuracy at the cost of increased memory consump-
tion. Like all other occupancy-based approaches, they are not able to model
semi-permeable objects, either. Normal distributions occupancy maps are
extended and advanced in [68, 69, 70].

Other approaches completely abandon the notion of voxels. For exam-
ple, [71] uses Haar wavelets to represent 3-D occupancy data. The authors
of [72] drop the restriction that the elementary volumes of a map shall fill the
space without gaps. Instead, they model the environment by non-overlapping
spheres of equal sizes. In this way, they are able to more closely represent
curved surfaces.

Point clouds are a simple and convenient way to represent lidar sensor
data. However, in contrast to occupancy maps or decay-rate maps, they
are lossy in the sense that they store only the endpoints of the rays. They
discard the ray path information of both reflected rays and rays that are
not reflected. When point clouds are used for mapping, they accumulate
memory for every incoming measurement, which limits their suitability for
long-term navigation. Despite their drawbacks, many SLAM systems [73, 74,
75] represent lidar data in the form of point clouds.

9.4. Approach 103

In object reconstruction in computer graphics, objects are modeled as line
segments in 2-D [76] or as polygon meshes in 3-D [77]. The resulting models
can achieve an astonishing level of detail [78]. However, similar to mapping
approaches based on implicit shape potentials like KinectFusion [79], they
are not perfectly suited for lidar-based robot localization due to their sheer
memory footprint and their inability to deal with semi-transparent materials.

Recently, machine learning techniques have completely relaxed the inde-
pendence assumption between grid cells and produce continuous occupancy
maps. Gaussian process occupancy maps (GPOM), for example, learn the
environment of a robot and predict future states [80, 15]. Building on the
latter, the authors of [1] present an incremental GPOM formulation that en-
ables online mapping. Gaussian processes have also been applied to other
map representations like implicit shape potentials [81]. Hilbert maps [82] are
continuous occupancy maps built by projecting the lidar measurements in
a Hilbert space, learning a logistic regression classifier, and then classifying
each point in space as free or occupied.

9.4 Approach
In this section, we shortly revisit how the decay-rate model computes mea-
surement probabilities conditioned on any kind of map, then we define the
map using the continuous extension of the inverse discrete cosine transform.
With these prerequisites, we derive the forward model, which computes the
probability of a lidar measurement given the spectral parameters of the DCT
map. In the last step, we formulate the inverse model as an optimization
problem: We estimate the map parameters by maximizing the joint likeli-
hood of all measurements collected during mapping.

For brevity and without loss of generality, the following derivation is
performed for 2-D space. The derivation of the forward and inverse sensor
model in 3-D exactly parallels the 2-D case.

9.4.1 The Decay-Rate Model
The decay-rate model [29] models the probability that a lidar ray traverses
a uniform medium as exponential decay process. The corresponding map
assigns a decay rate to each point in space. This decay rate is a non-negative
real number that describes the interaction between the laser ray and the
environment completely.

To formulate the forward model mathematically, we introduce the fol-
lowing definitions. A lidar measurement z := {s, v, r} describes a ray that

104 Chapter 9. DCT Maps

originates at the sensor position s, travels in direction v, and ends after hav-
ing traveled distance r. Assuming that the sensor provides its true position
s, the true ray direction v, and that we are given a specific mapM, we model
the non-deterministic interaction between the ray and the environment by
the measurement probability density with respect to the radius

p(r) := p(r | s, v,M). (9.1)

Consequently, the absolute probability that the ray covers at least distance r
is

N (r) := 1−
∫ r

0
p(r′) dr′. (9.2)

Alternatively, we can express equation (9.2) in form of the differential equa-
tion

p(r) = −dN (r)
dr

. (9.3)

The essential idea of the decay-rate model consists in the assumption that
N (r) obeys an exponential decay process

dN (r)
dr

= −λ (r) N (r) , (9.4)

where λ(r) denotes the decay rate at a specific radius r along the ray. By
combining this model assumption with differential equation (9.3), we obtain
the measurement probability density

p(r) = λ(r)N (r). (9.5)

In (9.4) and (9.5), λ(r) is obtained by evaluating the map λ(x, y) along the
trajectory of the ray.

The above formulation of the decay-rate model is independent of any
specific map representation. To use it as forward model in combination with
DCT maps, we need to define the map function λ(r) and solve the differential
equation. In order to do so, we describe the spatial representation of DCT
maps in the next section in detail. After that, we have all prerequisites at
hand to solve the differential equation. The solution enables us to express
the measurement probability of a lidar measurement given the map in closed
form.

9.4. Approach 105

9.4.2 Transforming the Spectral Map Representation
to the Spatial Domain

To avoid the disadvantages related to tessellation, DCT maps represent the
map parameters in the discrete frequency domain instead of the position
domain. Calculating the measurement likelihood from such a representation
requires the definition of the transformation from the frequency domain to the
spatial domain. We employ the continuous extension of the inverse discrete
cosine transform (CEIDCT) [18]. Like other continuous extensions of Fourier-
related transforms, it converts a discrete signal in the frequency domain to a
continuous signal in the spatial domain. However, it differs from its relatives
in that the continuous signal converges to the continuous function from which
it was sampled for an increasing number of parameters (see [18], pp. 11–12).
Moreover, its parameters are purely real-valued. For these reasons, it is
particularly suited for our use case.

If we assume the spectral map parameters to be given by a matrix A
with L rows and M columns, and if we denote the elements of A by alm with
l ∈ {0, 1, . . . , L − 1} and m ∈ {0, 1, . . . ,M − 1}, the CEIDCT transforms
them to a continuously differentiable decay-rate map defined for each point
(x, y) in the spatial domain

λ(x, y) =
(
L−1∑
l=0

M−1∑
m=0

alm cos (lx̃) cos (mỹ)
)2

(9.6)

=
(
I−1∑
i=0

ai cos(lix̃) cos(miỹ)
)2

=
I−1∑
i=0

I−1∑
j=0

ai cos (lix̃) cos (miỹ) aj cos (ljx̃) cos (mj ỹ)

= 1
8

I−1∑
i=0

I−1∑
j=0

ai aj
∑
α∈Q

∑
β∈Q

∑
γ∈Q

(
(li + αlj)x̃+ β(mi + γmj)ỹ

)
(9.7)

with I := LM and Q := {−1,+1}. The tildes denote the π-normalization of
the map coordinates: x̃ := πx

X
, ỹ := πy

Y
, where X and Y indicate the extent

of the map. The variables li and mi are the row and column indices into the
matrix A that correspond to its i-th element ai.

The original formulation of the CEIDCT does not square the double sum
in (9.6). We employ this variant, however, because it ensures that the decay-
rate is non-negative for every point in the map. Negative decay rates would
cause problems, as we cannot interpret the negative measurement probabili-
ties in which they might result.

106 Chapter 9. DCT Maps

To solve equation (9.4), we still need to transition from λ(x, y) to λ(r) :=
λ(r, s, v). To that end, we apply the ray equation [x, y]ᵀ = s + v r to (9.7)
and obtain

λ(r) = 1
8

I−1∑
i=0

I−1∑
j=0

ai aj
∑
α∈Q

∑
β∈Q

∑
γ∈Q

cos
(

(li + αlj) [s̃x + ṽxr] + β(mi + γmj) [s̃y + ṽyr]
)
.

(9.8)

9.4.3 Computing the Measurement Likelihood
Now we express the measurement probability of a lidar ray as a function of
the measurement z and the spectral representation of the map A by solving
the differential equation (9.4). The solution is

N (r) = exp
{
− S (s, v, r)

}
(9.9)

with

S (s, v, r) =
∫ r

0
λ(r′) dr′ = 1

8

I−1∑
i=0

I−1∑
j=0

ai aj
∑
α∈Q

∑
β∈Q

∑
γ∈Q

Aij

where

Aij:=A(i, j, α, β, γ) =

[sin((li+αlj)[s̃x+ṽxr′]+β(mi+γmj)[s̃y+ṽyr′])]r0
(li+αlj)ṽx+β(mi+γmj)ṽy

,

if (li + αlj)ṽx + β(mi + γmj)ṽy 6= 0

r cos ((li + αlj) s̃x + β (mi + γmj) s̃y) ,
if (li + αlj)ṽx + β(mi + γmj)ṽy = 0

(9.10)

Note that out of the infinite number of solutions to (9.4), we chose the one
that satisfies the boundary condition N (0) != 1.

By plugging equations (9.8) and (9.9) in (9.5), we finally obtain the closed-
form solution of the measurement likelihood p(r) for rays with real-valued
radius r.

Not all lidar measurements are real-valued, though. In practice, the
range of every lidar scanner is limited to a finite interval [rmin, rmax]. We
call the rays reflected outside this interval no-return rays. In the follow-
ing, we assume that the sensor identifies rays falling below rmin by the
tag sub and rays that exceed rmax by the tag super. Consequently, the

9.4. Approach 107

space of all possible measurements r is the mixed discrete-continuous set
D := {sub, super, r′ : r′ ∈ [rmin, rmax]}.

Fortunately, the decay-rate model easily accommodates both sorts of no-
return rays:

P (sub) =
∫ rmin

0
p(r) dr = 1−N (rmin), (9.11)

P (super) =
∫ ∞
rmax

p(r) dr = N (rmax). (9.12)

Supporting no-return rays is an important feature of the model. In a typical
outdoor setting, no-return rays represent a considerable fraction of all mea-
surements. If the model is unable to incorporate the information they convey,
which is the case for the endpoint model, for example, it will inevitably loose
accuracy.

During mapping and localization, one does not need to evaluate the mea-
surement probability of a single ray, but of a whole laser scan Z := {zk}
consisting of K rays, both with real-valued radius and without detected re-
flection. To obtain this probability, we first formulate the probability density
function for each ray over the mixed space D by combining equations (9.5),
(9.11), and (9.12) to

p (z | M) :=

P (sub), if r = sub
p(r), if r ∈ [rmin, rmax]
P (super), if r = super

The above result, which we call a mixed probability density, is positive,
real, and integrates to unity. Using the independence assumption, we then
compute the joint probability density of all rays as the product

p (Z | M) =
K−1∏
k=0

p (zk | M) .

9.4.4 Building the Decay-Rate Map
During the inverse pass, we want to determine the map parameters A that
best explain the lidar measurements collected in the mapping run:

A = argmaxA p(Z | A) = argmaxA log
{
p(Z | A)

}
.

This non-linear multivariate optimization problem can be solved by iterative
computational optimization techniques like stochastic gradient descent or

108 Chapter 9. DCT Maps

trust-region methods. These methods work considerably more reliable and
faster when provided with first-order and second-order analytical logarithmic
derivatives with respect to the spectral map parameters. To calculate the
derivatives, we introduce the following shortcut notation:

∂λ(x, y)
∂ai

=:
I−1∑
j=0

aj Bij =: Bi,

with

Bij := 2 cos(lix̃) cos(miỹ) cos(ljx̃) cos(mj ỹ)

and
∂N
∂ai

= −N ∂S (s, v, r)
∂ai

=: −N Ci

where

Ci = 1
8

I−1∑
j=0

aj
∑
α∈Q

∑
β∈Q

∑
γ∈Q

Aij + Aji =:
I−1∑
j=0

aj Cij

with Aij as defined in (9.10). Using this notation, we can express the first-
order logarithmic derivative of the absolute probability P (z | A) of a single
measurement in a compact way:

∂ log {p(z | A)}
∂ai

=

NCi

1−N , if r = sub
Bi

λ
− Ci, if r ∈ [rmin, rmax]

−Ci, if r = super

The derivative of the joint absolute measurement probability is then simply
the sum of the derivatives of the individual measurement likelihoods

∂ log {p(Z | A)}
∂ai

=
K−1∑
k=0

∂ log {p(z | A)}
∂ai

.

The second-order derivatives of the measurement likelihood with respect
to the map parameters are given by

∂2 log {p(z | A)}
∂aj∂ai

=

N(Cij−CiCj)

1−N + N2CiCj

(1−N)2 , if r = sub
Bij

λ
− BiBj

λ2 − Cij, if r ∈ [rmin, rmax]
−Cij, if r = super

As before, the second-order derivative of the joint measurement log-
likelihood is the sum of the second-order derivatives of all measurements.

9.5. Experiments 109

Acapulco Convention Center
University of Texas, ACES3
Belgioioso Castle
Massachusetts Institute of Technology, CSAIL
Edmonton Convention Centre
FHW museum
University of Washington, Seattle
University of Freiburg, 079
University of Freiburg, 101
Infinite corridors
Intel Research Lab
Örebro University

Table 9.1: The 12 datasets taken from the Robotics Data Set Repository [54]
and used in all three experiment series.

9.5 Experiments

To assess how well DCT maps represent lidar data in comparison to existing
mapping approaches, we conduct three series of experiments. In the first
series, we compare the spatial map values of DCT maps and grid maps with
identical memory requirements to a ground truth map and use the resulting
error as a measure of map accuracy. In the second series, we evaluate the
likelihoods that DCT maps, grid maps, Gaussian process occupancy maps,
and Hilbert maps assign to measurements that were used to build them. The
higher this likelihood, the better the respective map explains the underlying
data. We conclude this section with a comparison of the empirical execution
times of the different approaches.

The data at the basis of our experiments stems from rich planar lidar
datasets recorded in spacious indoor environments. Each set contains the
corresponding robot poses computed by SLAM, which we use as ground truth
poses to build all maps. The data is publicly available from the Robotics
Data Set Repository [54]. Table 9.1 shows which datasets were used in our
experiments.

110 Chapter 9. DCT Maps

9.5.1 Map Value Comparison

In this experiment series, we compare the map values of DCT maps and
decay-rate grid maps of different resolutions to the values of a decay-rate
ground truth grid map. All grid maps are computed according to the al-
gorithm described in [29]. At the beginning, for each dataset, we create a
fine-grained ground truth grid map that covers a 10 m× 10 m patch densely
filled with 104 lidar measurements. It consists of 200 × 200 pixels with an
edge length of 0.05 m. Then, we use the same sets of measurements to build
pairs of one DCT map and one grid map, respectively, for each dataset and
each resolution. The maps in these pairs possess the same number of param-
eters and require the identical amount of memory. We use five different map
resolutions: 10× 10, 13× 13, 20× 20, 29× 29, and 40× 40. For grid maps,
they correspond to pixel edge lengths of 1.00 m, 0.75 m, 0.50 m, 0.35 m, and
0.25 m. To give an intuition of what these maps look like, fig. 9.1 exem-
plarily shows the 40 × 40 DCT map of the Intel Research Lab dataset, the
corresponding grid map, and the ground truth grid map.

Having created the maps, we sample the ground truth map at the mid-
points of all cells that were observed at least once and look up the corre-
sponding values in the DCT map and in the grid map. The resulting map
values are hard to compare: As the decay rate λ is defined over the half-
open interval [0,∞), the map values might be infinite. In order to make
them comparable, we employ the strictly increasing monotonic transforma-
tion function pref = 1− exp(−λ), which maps every decay value to a finite
value pref ∈ [0, 1]. The value pref can be interpreted as the absolute proba-
bility that a ray is reflected before having traveled a distance of 1 m in a
hypothetical homogeneous medium of decay rate λ. Please note that the
distance 1 m is an arbitrarily chosen parameter. However, while surveying
different distance values, we found out that varying this parameter has little
effect on the quality of the results. We compute the root mean squared er-
ror (RMSE) in pref between the DCT maps and the ground truth map and
between the grid maps and the ground truth map. Table 9.2 condenses the
corresponding results by determining the mean and the standard deviation
of the RMSE values. Additionally, it indicates the p-values of the one-sided
paired-sample t-test. Small p-values indicate that the null hypothesis is un-
likely and that the alternative hypothesis – the mean RMSE of DCT maps
is smaller than the one of grid maps – becomes likely.

While at a resolution of 10×10, both map modalities hardly differ in terms
of accuracy, for all finer resolutions, DCT maps outperform grid maps at a
confidence level of at least 99 %. Note that the maximum gain in accuracy is
located at a resolution of 29× 29; at 40× 40, DCT maps are still significantly

9.5. Experiments 111

DCT GM
l [m] µ σ µ σ p [%] ∆µ [%]
1.00 0.3314 0.0679 0.3330 0.0708 39.36 0.48
0.75 0.3146 0.0675 0.3319 0.0752 1.01 0.52
0.50 0.2932 0.0645 0.3093 0.0690 0.03 5.21
0.35 0.2571 0.0611 0.2822 0.0672 0.05 8.89
0.25 0.2370 0.0563 0.2543 0.0583 0.07 6.80

Table 9.2: Mean and standard deviation of the absolute RMSE values of DCT
maps and grid maps with respect to the ground truth map, computed over all
datasets. GM denotes grid maps, l is the pixel edge length, µ and σ denote
the mean and the standard deviation of the RMSE, respectively, and p is the
p-value of the one-sided paired-sample t-test. The variable ∆µ := 1 − µDCT

µGM
indicates the improvement in RMSE of DCT maps relative to grid maps.

more accurate than grid maps, but the gain is not as large as for 29× 29. We
attribute this to the fact that with increasing resolution, grid maps converge
to the ground truth map, which itself is a grid map.

9.5.2 Measurement Probability Comparison
The maps computed in the first experiment series are maximum-likelihood
maps. Maximum-likelihood maps shall maximize the measurement proba-
bility of the data that was used to create them. The higher this likelihood,
the better the map represents the underlying data. Consequently, in the
second experiment series, we interpret the likelihood a map assigns to its
underlying data as a measure of its quality. We compare four different ap-
proaches: DCT maps, decay-rate grid maps, Gaussian process occupancy
maps (GPOM), and Hilbert maps, which also model the spatial occupancy
probability as a continuous scalar field. More specifically, we use GPOMs
with Matérn kernel functions as described in [1] and Hilbert maps with Nys-
tröm features, which, according to [82], give the most accurate map results.
All hyperparameters are set as described in [1] and [82], respectively. The
data at the basis of the experiments is the same as in the previous experiment
series, but the number of lidar measurements is reduced to 500.

The comparison is designed to guarantee that all maps have the same
memory requirements in terms of numbers of real-valued parameters. For
grid maps and DCT maps, we can ensure that by comparing maps with the
same number of pixels and spectral parameters, respectively. For GPOM, we

112 Chapter 9. DCT Maps

lpDCT − lpGM lpDCT − lpGPOM lpDCT − lpHM
l [m] µ σ µ [104] σ [104] µ [104] σ [104]
1.00 88.5 74.1 4.21 3.00 4.30 3.42
0.75 150.6 146.5 3.89 2.81 4.19 3.46
0.50 135.7 63.9 3.53 2.60 4.06 3.42
0.35 196.1 101.5 2.97 2.15 4.12 3.32
0.25 96.8 132.0 2.68 1.90 4.12 3.31

Table 9.3: Mean and standard deviation of the log-likelihood differences be-
tween DCT maps and the other mapping approaches, computed over all
datasets. The variable lp denotes the cumulated log-likelihood of all mea-
surements in one dataset, GM denotes grid maps, HM means Hilbert maps, l
is the pixel edge length, and µ and σ are the mean and the standard deviation
of the log-likelihood differences, respectively.

randomly downsample the design matrix and the target vector so that the
length of the Gaussian process parameter vector matches the number of grid
pixels and spectral parameters, respectively. For Hilbert maps, we set the
number of components of the Nyström features to the number of parameters
corresponding to the specific resolution.

Now, we compute the joint measurement likelihood of all lidar measure-
ments for each map modality. For grid maps, we calculate the measurement
likelihood according to [29]. For DCT maps, we follow the equations given in
section 9.4.3. For GPOMs and Hilbert maps, we rasterize their continuous
occupancy fields with a pixel edge length of 0.05 m, perform ray tracing, and
cumulate the occupancy probabilities along the rays.

Table 9.3 displays the resulting findings: the mean and standard devia-
tion of the log-likelihood differences between DCT maps and the other ap-
proaches over all datasets. After having performed Anderson-Darling tests to
ensure that the measurement probability quotients are indeed log-normally
distributed, we perform one-sided paired-sample t-tests. For all resolutions,
they indicate that DCT maps yield significantly higher measurement log-
likelihoods at a confidence level of at least 98.56 %.

The results show that the log-differences between DCT maps and grid
maps are two magnitudes smaller than those between DCT maps and GPOM
or Hilbert maps, respectively. The level of the difference is influenced by the
raster size chosen when computing the measurement likelihood for GPOMs
and Hilbert maps. But the main reason for these large differences is the
fact that both GPOMs and Hilbert maps have comparatively high memory

9.5. Experiments 113

l [m] tDCT [s] tGM [s] tGPOM [s] tHM [s]
1.00 3.52 0.0917 1.12 22.8
0.75 4.69 0.0915 1.98 40.6
0.50 3.70 0.0923 3.25 108.4
0.35 18.25 0.0926 6.45 328.3
0.25 39.84 0.0942 14.04 949.3

Table 9.4: Empirical execution time measurements collected during map
creation. The variable t denotes the median of the mapping times over all
datasets.

requirements. GPOMs store the map information in the parameter vector.
The number of training points processed is proportional to the length of
the parameter vector. As we restricted this length, only a limited number of
training points could be processed; as a consequence, the classification results
of GPOMs remain rather vague. As far as Hilbert maps are concerned, in [82],
the authors recommend to use 1000 components for mapping with Nyström
features. In our experiments, we use numbers as small as 100 parameters.
Additionally, both GPOMs and Hilbert maps suffer from the fact that they
need to sample a limited number of free and occupied training points along
the laser rays, whereas DCT maps and decay-rate grid maps incorporate the
full path information of an arbitrary number of rays. Fig. 9.2 illustrates
the resulting differences in accuracy between the maps produced by the four
approaches for 13× 13 parameters.

9.5.3 Execution Times

To give an intuition of the empirical runtime requirements of each of the
methods used in the previous section, we average over ten mapping runs
performed per method, dataset, and resolution. Table 9.4 lists the medi-
ans of these averages over all datasets. The measurements are collected on
an Intel i7-2600K CPU running at 3.40 GHz. Grid maps, DCT maps, and
GPOM are implemented in MATLAB R2017b. The GPOM implementation
is based on the publicly available GPML toolbox [83]. To time Hilbert maps,
we customized the Python implementation provided by [82]. The DCT op-
timization process is stopped once the relative change in the measurement
log-likelihood is smaller than 1 · 10−3.

Table 9.4 indicates that grid maps are by far the fastest mapping tech-
nique. DCT maps and GPOMs are approximately two orders of magnitude

114 Chapter 9. DCT Maps

(a) DCT map.

(b) Grid map.

9.5. Experiments 115

(c) Gaussian process occupancy map.

(d) Hilbert map.

116 Chapter 9. DCT Maps

(e) Ground truth grid map.

Figure 9.2: Maps of different modalities created in the experiment series
described in section 9.5.2 for the University of Washington dataset. The
four maps to the left all have the same memory requirements of a mere 169
real-valued parameters. The grid map (e) is given as ground truth with a
resolution of 40× 40. The decay-rate maps (a), (b), (e) show pref values
as described in section 9.5.1, the other maps show occupancy probabilities.
Blue means 0, green means 0.5, yellow means 1.

9.6. Conclusion and Future Work 117

slower. This is due to the fact that during the optimization phase, DCT
maps and GPOMs need to consider all parameters, which leads to quadratic
computational complexity in the number of parameters. The most expensive
operation in grid mapping, however, is ray casting, resulting in approximately
linear computational complexity in the map resolution. Hilbert maps are
three to four magnitudes slower than grid maps, the reason for this probably
being the non-differentiable nature of the objective function, which needs to
be approximated using finite differences.

9.6 Conclusion and Future Work
We presented a novel map representation based on the recently introduced
decay-rate model for lidar sensors [29]. In contrast to most conventional
maps, our so-called DCT maps store the map parameters in the discrete
frequency domain. We applied the continuous extension of the inverse dis-
crete cosine transform to the spectral parameters to obtain a continuously
differentiable scalar field in the position domain.

Compared to other mapping approaches like decay-rate grid maps, Gaus-
sian process occupancy maps (GPOM), and Hilbert maps, the proposed
approach results in significantly improved map accuracy, as demonstrated
in extensive real-world experiments. Moreover, DCT maps provide a ray
tracing-based forward sensor model that allows to infer measurement proba-
bilities directly from the spectral map representation in closed form, whereas
the computation of ray tracing-based measurement probabilities based on
continuous occupancy maps like GPOM and Hilbert maps necessitates the
rasterization of the map and hence the introduction of a rasterization param-
eter. As opposed to GPOM and Hilbert maps, DCT maps use the full ray
path information when building the map instead of sampling points along
the ray.

Due to the promising experimental results, we plan improvements and
extensions of DCT maps. First, we will address the issue that the compu-
tational complexity of DCT maps is higher than the one of grid maps, and
that incremental updates require the repeated optimization of the map pa-
rameters. More specifically, we will develop a hybrid approach that locally
optimizes the map and that makes use of massive parallelization. Second,
we will extend the method by explicitly representing unexplored areas in the
map. Currently, DCT maps are not able to distinguish between observed and
unobserved map regions. Third, we will investigate how well DCT maps are
suited for lossy compression. Finally, we plan to present a complete SLAM
system based on DCT maps in the near future.

118 Chapter 9. DCT Maps

Acknowledgments
We thank Maani Ghaffari Jadidi for kindly supporting us with his GPOM im-
plementation, Lionel Ott for releasing his Python implementation of Hilbert
maps, and Patrick Beeson, Mike Bosse et al., Dieter Fox, Dirk Hähnel, Nick
Roy, and Cyrill Stachniss for providing the datasets.

Chapter 10

A Maximum-Likelihood
Method to Extract Polylines
from 2-D Laser Range Scans

This scientific publication [4], written by Alexander Schaefer, Daniel Büscher,
Lukas Luft, and Wolfram Burgard, was accepted for and presented at the
IEEE/RSJ International Conference on Intelligent Robots and Systems 2018,
held in Madrid, Spain, from October 1 to 5, 2018. The IEEE holds the
copyright on the article: c© 2018 IEEE. Reprinted, with permission, from “A
Maximum-Likelihood Method to Extract Polylines from 2-D Laser Range
Scans”.

10.1 Abstract

Man-made environments such as households, offices, or factory floors are
typically composed of linear structures. Accordingly, polylines are a nat-
ural way to accurately represent their geometry. In this paper, we pro-
pose a novel probabilistic method to extract polylines from raw 2-D laser
range scans. The key idea of our approach is to determine a set of poly-
lines that maximizes the likelihood of a given scan. In extensive experi-
ments carried out on publicly available real-world datasets and on simulated
laser scans, we demonstrate that our method substantially outperforms ex-
isting state-of-the-art approaches in terms of accuracy, while showing com-
parable computational requirements. Our implementation is available under
https://github.com/acschaefer/ple.

119

https://github.com/acschaefer/ple

120 Chapter 10. Polyline Extraction

10.2 Introduction
In order to navigate planar, structured environments like offices, households,
or factory work floors, mobile robots often rely on horizontally mounted 2-D
laser scanners. These sensors allow them to create floor plan-like maps, which
they in turn use to localize themselves. Mapping and localization based on
raw laser data, however, demand large amounts of computation power and
memory, both of which tend to be restricted on a mobile platform.

A popular solution to this problem is feature extraction. Encoding all
the data of a scan in a few polyline features, for example, can drastically
reduce computation time and memory footprint. This is due to the ability of
polylines to exploit the high redundancy of scans recorded in approximately
line-shaped environments. Consider figure 10.1, which depicts a typical laser
scan captured in an office. The scan spends hundreds of rays to describe
straight walls, while a set of polylines with a total of ten vertices is sufficient
to accurately represent these linear structures.

Polyline features like the ones in figure 10.1 have been shown to be useful
for different tasks in mapping and localization, for example for feature-based
SLAM [50, 84, 85, 86, 87] or for tracking line segments in consecutive 2-D
scans recorded by a moving sensor to estimate 3-D planes in the environ-
ment [88].

In this paper, we present a novel method to extract polylines from 2-D
laser scans. What sets our approach apart from most others is its probabilis-
tic motivation. The derived algorithm does not rely on a geometric heuristic,
but strives to find the set of polylines that maximizes the measurement like-
lihood of the scan. Furthermore, while most other approaches operate on
the scan endpoints only and thereby discard valuable information encoded in
the ray paths, our algorithm leverages this data to yield as accurate polyline
estimates as possible. As demonstrated in our experimental evaluation, this
results in superior accuracy both on real-world and on simulated data.

10.3 Related Work
In this section, we provide an overview over existing work on feature extrac-
tion techniques for 2-D lidar scans and related sensor modalities.

Early approaches to extract line features from 2-D laser scans produce
so-called line maps [89]. As opposed to the chains of line segments that
are polylines, line maps model the environment by infinite lines, and thus
suffer from two major drawbacks: They can only represent convex maps,
and they do not store any topology information, i.e. the connections between

10.3. Related Work 121

-5 0 5 10 15
x [m]

-20

-15

-10

-5

y
[m

]

Figure 10.1: Exemplary result of our polyline extraction method applied to
a scan captured in an office. The original scan consists of 361 rays, of which
every second is displayed as a red line. Gray lines indicate maximum-range
readings. The extracted polyline map, drawn as blue lines, consists of only
ten vertices, reducing memory requirements to less than 3 %. On average, the
distance between the measured endpoints of the rays and their hypothetical
intersections with the map is as low as 5.4 mm, with a maximum absolute
value of 23.0 mm.

122 Chapter 10. Polyline Extraction

the lines. This is why infinite line representations have largely been replaced
by polylines. For a survey on different methods to build infinite line maps,
see Sack and Burgard [89].

Nguyen et al. [19] present an overview of various techniques to extract
line segments from 2-D lidar data and evaluate the performance of six popu-
lar algorithms experimentally. They conclude that split-and-merge [22] and
iterative endpoint fit [21] perform most favorably in terms of accuracy and
speed.

Each of the following approaches tackles the line extraction problem from
planar scans from a different perspective. Borges and Aldon [90] use a fuzzy
clustering algorithm, which does not require prior knowledge of the number
of lines. Latecki and Lakaemper [91] combine perceptual grouping techniques
with the expectation maximization algorithm to determine polylines. Pfister
and Burdick [92] extract both line and point features from scan endpoints us-
ing a multi-scale Hough transform. Similarly, Berrio et al. [93] determine line
segments via the Hough transform in combination with a so-called successive
edge following algorithm. Harati and Siegwart [94] build a wavelet frame-
work to extract initial estimates of line segments. They do not, however,
provide the corresponding line fitting algorithm.

In cartography, the Visvalingam line simplification algorithm [20] is a
popular method to reduce the numbers of vertices of a polyline by iteratively
removing the vertex that incurs the least perceptible change. Although to
our knowledge, the algorithm has not reportedly put to use for line extraction
from laser scans, it is well suited for this task.

All methods discussed thus far have in common that they are built upon
some kind of heuristic and lack a probabilistic foundation. In contrast to
those, Pfister et al. [95] present a take on line extraction from multiple scans
that follows an elaborate maximum-likelihood formalism. First, they gener-
ate a set of infinite line estimates using the Hough transform. Then, taking
into account the pose uncertainty of the robot and the measurement uncer-
tainty of the sensor, they numerically maximize the measurement likelihood
over the line parameters. In order to obtain line segments, they finally project
the scan points onto the infinite lines and crop them accordingly. As opposed
to this method, our method leverages probabilistics not only to optimize a
given initial line estimate, but also to generate the estimate itself.

In another probabilistic approach, Veeck and Burgard [3] formulate an al-
gorithm to extract polylines from multiple 2-D laser scans captured at known
poses. In the first step, they create an occupancy grid map, which they then
use to estimate the line contours of the environment. Second, they repeat-
edly apply a set of eight operations to these initial lines, including merging,
splitting, adding vertices, removing vertices, moving vertex locations on a

10.4. Approach 123

raster grid, and removing the resulting zig-zag patterns. In this way, they
strive to optimize the Euclidean distances between the laser scan endpoints
and the nearest polyline. Our approach is different from Veeck and Burgard’s
in various aspects. For example, it is less complicated both conceptually and
in terms of implementation. Moreover, their approach does not incorporate
any ray path information in the result.

Polylines are useful features not only in the context of lidar. For an ap-
proach to extract line segments from sonar data using the Hough transform,
see Tardós et al. [96]. Navarro et al. present methods to localize a robot us-
ing lines extracted from a rotating ultrasound sensor [97] and from infrared
distance sensors [98].

For 2-D laser scans, there is only little research investigating features
other than lines. Tipaldi and Arras’ multi-scale FLIRT descriptors [99] are
among these few. Bosse and Zlot convert a whole laser scan into a single
feature [100] and extract features from quadratic areas formed by a set of
scans [101].

10.4 Approach

In this work, we present a method to extract a set of polyline features from
a 2-D lidar scan. In contrast to prevalent line extraction techniques like
split-and-merge or iterative endpoint fit, our approach does not rely on a
geometric heuristic, but maximizes the measurement probability of the scan
to accurately determine polylines.

The method consists of two steps: polyline extraction and polyline op-
timization. Polyline extraction starts by connecting all neighboring scan
endpoints to form a set of initial polylines. It then iteratively removes the
vertex that incurs the least error in terms of measurement probability until
it reaches a given threshold. The result is a set of polylines whose vertex
locations coincide with the locations of a subset of the scan endpoints. To do
away with this limitation, we formulate an optimization problem that moves
the vertices to the positions that maximize the measurement probability of
the scan. We call this latter process polyline optimization.

In the following, we first define the probabilistic sensor model. Then, we
explain the polyline extraction step, before going into the details of polyline
optimization.

124 Chapter 10. Polyline Extraction

10.4.1 Probabilistic Sensor Model
Both polyline extraction and polyline optimization strive to maximize the
measurement probability. By measurement probability, we refer to the prob-
ability of a laser scan conditioned on a specific set of polylines. In order to
describe this quantity mathematically, we need to define all necessary vari-
ables. We denote the scan by Z := {zk}, where k ∈ {1, 2, . . . , K} represents
the index of the laser ray. A single laser measurement z := {a, b} is composed
of two two-element column vectors: the starting point of the ray a and the
endpoint b. The set of polylines L consists of a total of I individual poly-
lines. These polylines are ordered sets l := {vj}, composed of at least two
pairwise distinct vertices v. The vertices v, just like the ray starting points
and endpoints a and b, are specified with respect to the coordinate system of
the polyline map L. Note that no vertex can be part of multiple polylines:

I⋂
i=1

li = ∅.

Most lidar sensors exhibit approximately normally distributed noise in
radial direction and relatively small angular noise. Consequently, we neglect
angular noise and model the distribution of the measured ray radius given
the polyline map as a Gaussian probability density function centered at the
true radius. With the above definitions, we formulate the sensor model for a
single ray as

p(z | L) = N (r(z); r̂(z, L),Σ), (10.1)

with the measured ray radius r(z) := ‖b− a‖. The function r̂(z, L) ∈ R+

computes the distance between the starting point of the ray and the first in-
tersection between its axis and the polyline map. The variance of the radial
noise Σ is usually a function of multiple parameters such as the sensor device,
the ray radius, the optical properties of the reflecting surface, and temper-
ature. It can either be read off the datasheet of the sensor or determined
experimentally.

By assuming independence between the individual laser rays of a scan,
we extend equation (10.1) to compute the measurement probability of the
whole scan as

p(Z | L) =
K∏
k=1

p(zk | L).

This formula represents the measurement probability that both steps of our
algorithm strive to maximize.

10.4. Approach 125

10.4.2 Polyline Extraction

Line extraction is always a compromise between memory requirements and
accuracy of the produced lines. This compromise needs to be quantified. Em-
bedded applications, for example, might focus on minimal memory footprint,
while offline mapping systems might favor high accuracy at the expense of
polylines that consist of hundreds or thousands of vertices. For this reason,
every line extraction algorithm requires some kind of parameter. In the fol-
lowing, we choose this parameter to be the maximum number of vertices
Jmax of the polyline set, because it allows direct control over the memory
footprint of the result. Note, however, that our approach makes it easy to
use arbitrary parameters, for example the maximum root mean squared error
of the ray radii, the Akaike Information Criterion, the maximum difference
in area between the extracted polylines and the polygon of the original scan
endpoints, etc., as described further below.

Given a specific maximum number of vertices Jmax, the goal of the poly-
line extraction step is to find the set of polylines L∗ with at most Jmax vertices
that, among all other polyline maps with at most Jmax vertices, yields the
highest measurement probability. Formally, we are confronted with the op-
timization problem

L∗ = argmaxL p(Z | L)
∣∣∣∣ J(L) = Jmax, (10.2)

where J(L) denotes the number of vertices in L.
Solving (10.2) is primarily a combinatorial problem. Even if we knew the

locations of the Jmax vertices, we still do not know the data associations, i.e.
which vertices make up which polyline. Exhaustively searching the space of
all data associations for the combination that maximizes the measurement
probability quickly leads to combinatorial explosion even for small Jmax. For
that reason, we use a greedy algorithm to solve the combinatorial part of
(10.2).

In a nutshell, the algorithm first creates a polygon by connecting all
neighboring scan endpoints. Starting from this initial map, it iteratively
removes the vertex that reduces the measurement probability of the scan
given the map by the least amount, until it reaches the desired number of
vertices, or until another stopping criterion like one of those mentioned above
is fulfilled.

Given the initial or any intermediate polyline map L, the problem of
finding the vertex vj∗ that reduces the measurement probability the least

126 Chapter 10. Polyline Extraction

can be formulated as

j∗ = argmaxj p(Z | L \ vj)
= argmaxj log{p(Z | L \ vj)}

= argminj
K∑
k=1

d2(zk, L \ vj)
Σk

= argminj

K∑
k=1

d2(zk, L \ vj)
Σk

−
K∑
k=1

d2(zk, L)
Σk

= argminj

K∑
k=1

d2(zk, L \ vj)− d2(zk, L)
Σk

= argminj
∑

k∈X(L,vj)

d2(zk, L \ vj)− d2(zk, L)
Σk︸ ︷︷ ︸

=:ej

= argminj{ej}, (10.3)

where we define L \ vj := {li \ vj} | i = 1, 2, . . . , I. Accordingly, p(Z | L \ vj)
represents the probability density function of the measurements conditioned
on the set of polylines with the vertex vj removed. The function d(z, L) ∈ R
determines the distance between the endpoint of a ray and its intersection
with the map

d(z, L) := r(z)− r̂(z, L).

Please note that the transition from the third to the fourth line of equa-
tion (10.3) is valid because the second sum ∑K

k=1 d
2(zk, L) Σ−1

k is constant
with respect to j. The function X(L, vj) ⊆ {1, 2, . . . , K} in the sixth line re-
turns the indices of the rays that intersect any of the line segments that start
or end at vj. The variable ej can be thought of as a measurement probability
error term corresponding to the removal of the j-th vertex. Consequently,
removing the vertex that decreases the measurement probability the least is
equivalent to removing the vertex whose removal incurs the smallest error.
For an illustration of the quantities that need to be determined in order to
compute the errors, see figure 10.2.

Computing the error terms according to equation (10.3) is valid if the ver-
tex in question has two neighbors. If the vertex marks the start or the end
of the polyline, however, removing it means removing the corresponding line
segment. In this case, it is not possible to compute the term d(zk, L \ vj).
Consequently, we resort to a heuristic: We introduce a constant parame-
ter drm, which acts as a placeholder for d(zk, L \ vj) in case the latter term

10.4. Approach 127

v1
v2

v3

d2

d1

Figure 10.2: Illustration of the different terms in equation (10.3). The black
circle represents the lidar sensor. It shoots laser rays in different directions,
drawn as red lines with dots marking their measured endpoints. The blue
polyline is the map L, its vertices are denoted v1, v2, v3. The green dashed
line depicts L \ v2, the polyline L with its middle vertex v2 removed. When
computing the error e2 corresponding to the removal of v2, we need to de-
termine two quantities for each ray zk. The first one is the distance d(zk, L)
between the measured endpoint and the intersection between the ray and
the given polyline L, exemplarily shown for one ray and denoted d1 in the
graphic. The second one is the distance d(zk, L \ v2) between the endpoint
and the polyline with the vertex v2 removed, denoted d2 in the graphic.

128 Chapter 10. Polyline Extraction

is impossible to determine. The magnitude of drm controls how easily the
algorithm crops lines. If chosen large, the algorithm rather keeps the line
segments and prefers to remove the vertices in the middle of the polylines.
If chosen small, it tends to crop lines and reluctantly removes two-neighbor
vertices.

The pseudocode in listing 1 shows the workings of the algorithm in detail
and delineates an efficient implementation. In lines 1 to 10, the algorithm
forms the initial map. To that end, it connects all neighboring scan end-
points that satisfy two conditions. First, neither of the points in the pair
that is to be connected is a maximum range reading (line 3). Maximum-
range readings emerge when there is no object within the range of the lidar
sensor, so removing the corresponding line segments is consequential. Sec-
ond, the length of the connection between the points does not exceed a given
maximum lmax (line 4). This step prevents the generation of long lines that
are not sufficiently backed up by lidar data, for example connections between
a short-range endpoint and a long-range endpoint, or connections between
neighboring endpoints at large radii, far away from the sensor. After the
resulting set of line segments have been merged (lines 9 to 10), L is either
a polygon, if all endpoint pairs meet both conditions, or a set of polylines
otherwise.

To reduce the number of vertices, the map L is then subjected to the
greedy part of the algorithm, represented by lines 11 to 21. Lines 11 to
15 initially compute the error values corresponding to the removal of the
individual vertices vj in L. The loop spanning lines 16 to 21 then iteratively
removes the vertex corresponding to the smallest change in measurement
probability and updates the errors, until the desired number of vertices is
reached. Note that in line 20, it is not necessary to recompute all errors in
E. Only the errors corresponding to the immediate neighbors of vj∗ change.
After the removal of vertex vj∗ , those are indexed by j∗ − 1 and j∗.

If a stopping criterion other than the number of vertices is given, for
example a maximum RMSE value, the condition in line 16 simply needs to
be changed accordingly.

Algorithm 1 solves the combinatorial part of the optimization problem
(10.2). It tells both which scan endpoints create which vertices, and which
vertices form which polyline. It does not, however, alter the positions of
the vertices in order to maximize the measurement probability. In poly-
line extraction, the vertex locations are limited to the locations of the scan
endpoints. The next step, polyline optimization, relaxes this restriction.

10.4. Approach 129

Algorithm 1: Polyline Extraction
Data: Z, rmax, lmax, Jmax

Result: L
1 L← {}
2 for all zk in Z do
3 if

(
max(rk, rk+1) ≤ rmax

)
4 ∧

(
‖bk+1 − bk‖ ≤ lmax

)
then

5 l← {bk, bk+1}
6 add l to L
7 end

8 end
9 merge all line segments l ∈ L to polylines so that

10
I⋂
i=1

li = ∅

11 E ← {}
12 for all vj in L do
13 compute error ej corresponding to removal of vj
14 add ej to E
15 end
16 while J(L) > Jmax do
17 find index j∗ of smallest element in E
18 remove vj∗ from L

19 remove ej∗ from E

20 recompute errors ej∗−1 and ej∗ in E
21 end

130 Chapter 10. Polyline Extraction

10.4.3 Polyline Optimization
Having solved the combinatorial part of the optimization problem (10.2), we
now turn to its numerical part: We take the vertex locations produced by
the polyline extraction step and move them to the positions that maximize
the measurement probability of the scan conditioned on the map p(Z | L).

More formally, we want to solve

L∗ = argmaxL p(Z | L) = argminL
K∑
k=1

d2(zk, L)
Σk

, (10.4)

which is a nonlinear, discontinuous, multivariate optimization problem in the
coordinates of the polyline vertices. Its discontinuous nature, which results
from the polylines’ kinks in the vertices, requires appropriate direct search
solvers, for example the Nelder-Mead Simplex Method [102].

Before starting to optimize, it is important to closely consider the search
space of the problem formulated in equation (10.4). In the case of a closed
polygon, this space simply becomes R2J , where J is the number of vertices
in L. A corresponding candidate solution consists of the coordinates of all
polygon vertices. In the case of a set of polylines, however, allowing all
vertices to freely move around might lead to undesired effects: Vertices at
the start or end of a polyline might drift off into unobserved regions. Consider
vertices v1 and v3 in figure 10.2, for example. As long as they stay on the
axis of the respective line segment, they can move indefinitely away from the
observed region without affecting the measurement probability of the scan.
To avoid this effect and to keep the search space as small as possible, we
constrain the movement of vertices at the start or end of a polyline to the
axis of the corresponding ray. Given a map consisting of I polylines, the
dimensionality of the search space hence becomes 2(J − I).

10.5 Experiments
In order to assess the quality of the polyline maps produced by the pre-
sented method and to compare the results with those returned by existing
approaches, we conduct two series of experiments. In the first, we evaluate
the performance of every method on real-world 2-D lidar data. The data is
composed of 13 datasets taken from Radish, the publicly available Robotics
Data Set repository [54]. From each of those datasets, listed in table 10.1,
we randomly choose 20 scans, leading to a total of 260 scans to evaluate.
On average, each of the selected scans contains 264 rays. The second exper-
iment series is based on the same number of simulated scans with 360 rays

10.5. Experiments 131

Acapulco Convention Center
University of Texas, ACES3
Belgioioso Castle
Massachusetts Institute of Technology, CSAIL
Edmonton Convention Centre
FHW museum
University of Freiburg, 079
University of Freiburg, 101
University of Freiburg, campus
Infinite corridors
Intel Research Lab
Örebro University
University of Washington, Seattle

Table 10.1: Datasets taken from the Robotics Data Set Repository [54].

each. Simulation allows us to measure the accuracy of the obtained polyline
maps not only with respect to the scan data, but also with respect to the
underlying ground-truth map. To simulate a scan, we first create a random
polygon with 3, 4, 5, 6, 12, 36, or 180 vertices. We then sample a noisy
full-revolution, 360-ray scan from it by first applying normally distributed
noise to the ray angles, then computing the true intersection points of scan
and polygon, and by finally adding normally distributed noise to the corre-
sponding ray radii. The standard deviations of angular and radial noise are
0.2◦ and 0.03 m, respectively.

In both experiment series, we compare six different takes on polyline
extraction, starting with Visvalingam line simplification (VVL) [20]. The
method requires initial polylines, so we first connect the endpoints of the
scan using the exact same procedure as described in algorithm 1, line 1 to
10, with lmax set to 1 m. Visvalingam’s algorithm then simplifies the resulting
initial polygon or set of polylines by iteratively removing the vertex whose
removal is linked to the least perceptible change in the polyline. The popular
iterative endpoint fit algorithm (IEF) [21] comes second in our comparison.
As opposed to the top-down approach of VVL, which starts with the most
detailed line and iteratively simplifies it, IEF builds polylines from bottom
up. In short, IEF takes a set of range measurements, connects the first and
the last point by a straight line, and then inserts the scan endpoint with the
largest distance from the line as a vertex into the line. It repeats this process

132 Chapter 10. Polyline Extraction

until it reaches the specified number of vertices. Split-and-merge (SAM) [22]
is an extension of IEF. The only difference between the two algorithms is
that in each iteration, SAM first fits the line estimate to the scan points
by minimizing the squared distances between the points and the line. Both
algorithms do not account for maximum-range readings, which is why we
removed them from the laser scans before passing the scans to IEF or SAM.
VB, the fourth method in our comparison, denotes the polyline learning algo-
rithm proposed by Veeck and Burgard [3]. We call our approach probabilistic
line extraction (PLE). If the vertices provided by PLE are optimized using
the procedure described in section 10.4.3, we denote it by PLE+. Through-
out all experimental runs, we set lmax = 1 m and drm = 0.5 m. Furthermore,
we assume that the radial variance Σ of all rays is the same. As a conse-
quence, we do not have to specify any variance at all, because if constant,
the term Σk vanishes from equations (10.3) and (10.4).

Figure 10.3 exemplarily illustrates the results obtained by applying the
described methods to the same scan. Although the desired number of ver-
tices was set to J = 10 for all methods, the returned polyline maps differ
considerably.

Figure 10.4 summarizes our findings pertaining to the accuracy of the
investigated methods. It displays the evolution of the results over increasing
memory footprint, encoded by the number of vertices J . For each method
and each dataset, we evaluate the following values of J : 10, 20, 30, 40, 50.
We employ three different metrics to look at the results from different per-
spectives. The root mean squared error (RMSE) of the ray radii assesses
how closely the extracted polylines represent a scan. The E in RMSE is the
distance between the measured endpoint of a lidar ray and its hypothetical
intersection with the polyline, measured along the ray axis. For each scan, we
determine one RMSE value by iterating over all rays. For every algorithm,
we then average the RMSE over all scans to obtain the values shown in fig-
ure 10.4. The second metric, denoted by f , quantifies the match between the
polyline map and the original scan in a different way. For each scan, f is the
ratio of the number of rays hypothetically intersected by the polylines and
the number of rays actually reflected in the measured scan. The f -values
presented in figure 10.4 are again averaged over all scans. For the simulated
experimental runs, we introduce the third metric a. It measures how well
an extracted polyline map recovers the ground truth map. To determine
the a-value, we transform the coordinates of the estimated polyline vertices
to polar coordinates with respect to the sensor pose, order them counter-
clockwise, and build a polygon out of them. We then compare how well the
resulting polygon matches the one that represents the ground-truth. More

10.5. Experiments 133

5 10 15
x [m]

5

10

15

20

y
[m

]

(a) Visvalingam’s algorithm.

5 10 15
x [m]

5

10

15

20

y
[m

]

(b) Iterative endpoint fit.

5 10 15
x [m]

5

10

15

20

y
[m

]

(c) Split-and-merge.

5 10 15
x [m]

5

10

15

20

y
[m

]

(d) Veeck and Burgard’s method.

134 Chapter 10. Polyline Extraction

5 10 15
x [m]

5

10

15

20

y
[m

]

(e) Ours without optimization.

11.5 12 12.5 13 13.5
x [m]

14.5

15

15.5

16

16.5

17

y
[m

]

(f) Zoom into (e).

5 10 15
x [m]

5

10

15

20

y
[m

]

(g) Ours with optimization.

11.5 12 12.5 13 13.5
x [m]

14.5

15

15.5

16

16.5

17

y
[m

]

(h) Zoom into (g).

Figure 10.3: Exemplary results of the various polyline extraction methods
applied to the same scan captured in an office. All methods respect the
requirement of at most 10 vertices, except for VB, which produces 17 vertices.

10.5. Experiments 135

specifically, we compute the ratio of areas

a := (aGT ∪ aE)− (aGT ∩ aE)
aE

,

where aGT denotes the area of the ground-truth polygon, while aE stands for
the area of the estimated polygon.

Figure 10.4 reveals that although very popular, the split-and-merge al-
gorithm performs poorly relative to the other line extraction methods we
selected. Even more surprisingly, its less elaborate predecessor, iterative
endpoint fit, outperforms SAM with respect to every metric we evaluated.
We tracked the reason for this behavior down to the line fitting process: Es-
pecially in the first iterations, when the number of polyline segments is by far
too small to represent the structure of the environment, fitting often leads to
a degradation of the line estimate. During the later iterations, when refining
the polylines, the algorithm is not able to compensate this inaccurate prior.
The described behavior is not only apparent in the RMSE, but also in the
f -value. While IEF explains all measurements, SAM does not account for
a significant amount of rays. So in contrast to the conclusion that Nguyen
et al. [19] drew after experimentally comparing SAM and IEF on a dataset
of 100 scans, we find that split-and-merge performs significantly poorer than
iterative endpoint fit.

The results of the method developed by Veeck and Burgard are only
given for J ≈ 20. This is due to the fact that their approach does not
allow to set the memory limits of the resulting polyline directly. Instead, one
has to provide a target value for the Bayesian Information Criterion (BIC),
which they use to balance the compromise between memory requirements
and accuracy. Unfortunately, even large variations in the BIC value lead
to similar vertex counts. For that reason, we are not able to evaluate VB
over the whole range of J . The results demonstrate that VB achieves good
accuracy, but only for the limited set of laser rays it explains. At 0.71, the
f -value turns out comparatively low both on real data and in simulation. The
reason is the grid map-based initialization of the polylines, which discards
grid cells with low occupancy values. Figure 10.3d illustrates this behavior.
In contrast to all other methods, VB is not able to extract the line that runs
approximately through coordinate (10, 13). The occupancy probability along
this line is simply too small to qualify as an initial polyline. As a consequence
of this behavior, VB returns the most inaccurate polygons in simulation.

Although to our knowledge never evaluated in a robotics context, Vis-
valingam’s algorithm returns comparatively low RMSE values in both exper-
imental settings. The characteristic it suffers from most is its small f -value
– a consequence of the fact that the removal of straight lines comes at no

136 Chapter 10. Polyline Extraction

10 20 30 40 50
J

0

0.5

1

1.5

2

R
M
SE

[m
]

VVL

PLE
PLE+

IEF
SAM
VB

10 20 30 40 50
J

0.5

0.6

0.7

0.8

0.9

1

f
[1
]

VVL

PLE
PLE+

IEF
SAM
VB

(a) Mean accuracy of extracted polylines on real-world lidar
data.

10 20 30 40 50
J

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
M
SE

[m
]

VVL

PLE
PLE+

IEF
SAM
VB

10 20 30 40 50
J

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

a
[1
]

VVL

PLE
PLE+

IEF
SAM
VB

0.12

(b) Mean accuracy of extracted polylines on simulated lidar
data.

Figure 10.4: Experimentally determined accuracies of the investigated poly-
line extraction methods. RMSE denotes the root mean squared error between
the measured laser ray endpoints and the hypothetical intersection with the
extracted set of polylines, averaged over all scans. The variable f indicates
the fraction of rays explained by the polyline map, whereas a denotes the
relative area error between the polygon extracted from simulated data and
the underlying ground-truth polygon. The error bars in the plots visualize
the standard errors. The dashed line on the left side of plot (b) marks the
standard deviation of the radial noise for the simulated laser scans.

10.5. Experiments 137

cost. Hence, the algorithm discards any solitary line segment in order to de-
crease the vertex count. The exemplary output of the Visvalingam method
in figure 10.3a shows exactly this behavior. The solitary line segments rep-
resenting the long walls at the top and on the right side of the image had to
make way for the nine vertices in the blue polyline. Some of them are hardly
recognizable because the corresponding kinks in the line are so small. In
simulation, where the scan represents a closed polygon, the described effect
does not appear, resulting in an f -value of 1.

The line extractors proposed in this paper, PLE and PLE+, outperform
all other methods on real data and in simulation. As shown in figure 10.4,
both algorithms result in significantly smaller RMSE values than the other
methods, except for VB, which exhibits a slightly lower RMSE on simulated
data. However, VB is unable to accurately recover the simulated polygons,
achieving an f -value of only 0.71, while PLE and PLE+ attain 1. PLE+
always exhibits smaller RMSE values than PLE, because the optimization
minimizes exactly this metric. The superior a-values in figure 10.4b demon-
strate that minimizing the RMSE also leads to an improved representation
of the underlying ground-truth map. Note that in figure 10.4a, the f -values
of PLE and PLE+ are exactly the same, because PLE+ does neither change
the topology of the polylines extracted by PLE, nor does the optimization
allow boundary rays to interfere with rays that account for measurements
outside the polyline.

As expected, the RMSEs of all algorithms in figure 10.4b approach the
standard deviation of the simulated radial sensor noise for large J . PLE+
even falls below this value, an effect that is due to the algorithm overfitting
highly articulated polygons to the noise in the scans. Correspondingly, the
area error increases slightly for large J .

Lastly, we report on the computational costs for all methods in table 10.2.
Each algorithm ran in a single thread on an Intel Xeon CPU with 2.50 GHz.
The bottom-up line simplification algorithms IEF and SAM exhibit slightly
decreasing computation times for increasing J , because higher J-values mean
less simplification steps. The repeated fitting steps in SAM turn out to be
costly: In the worst case, SAM is 100 times slower than IEF. The reason for
the constant timing of Visvalingam’s algorithm lies in our implementation:
At first, for every polyline in the map, we compute the incremental errors
until the line has vanished. We then order the errors globally, i.e. over all
polyline segments, and remove as many vertices as required to meet the
specified vertex count. Despite this simplified implementation, VVL is at
least ten times faster as the popular IEF. Our algorithms PLE and PLE+
are in the mid-range among the investigated methods. As a result of the
optimization via direct search, we find that the complexity of PLE+ grows

138 Chapter 10. Polyline Extraction

J VVL IEF SAM VB PLE PLE+

Real 20 0.056 0.27 28 0.28∗ 1.4 2.3
50 0.050 1.12 27 – 1.3 6.9

Simulated 20 0.037 0.38 103 0.48∗∗ 2.3 11
50 0.037 1.59 102 – 2.2 72

∗ J = 18.5 ∗∗ J = 20.7

Table 10.2: Mean computation times in seconds.

approximately quadratically in J . At the same time, the advantage gained
by the optimization process decreases for high numbers of vertices, as can be
read off figure 10.4. Therefore, we recommend to use PLE+ to extract only
few, but highly accurate vertices. If memory requirements are less strict and
timing becomes an issue, PLE is the right choice.

Both our MATLAB implementation of the presented line extraction ap-
proach and the scripts used to conduct and evaluate the experiments are
publicly available under https://github.com/acschaefer/ple.

10.6 Conclusion and Future Work
In order to extract polylines from a 2-D laser scan, one has to answer two
questions: Which polyline reflects which scan endpoints? And where are the
optimal locations of the polyline vertices? In the present paper, we answer
the first question using a greedy algorithm that minimizes the decrease in
measurement probability caused by representing individual scan endpoints
by line segments. The answer to the second question is given by a direct
search optimizer that moves the vertices in order to maximize the measure-
ment probability. Extensive experiments on publicly available datasets and
simulated data demonstrate that our approach clearly outperforms all four
reference approaches.

Due to the promising results, we will build upon the presented approach
in the future and extend the line extractor to three dimensions, resulting in a
maximum-likelihood approach to extract planes from 3-D laser range scans.

Acknowledgments
We thank Michael Veeck for kindly supporting us with the implementation
of his line extraction method, and Patrick Beeson, Mike Bosse, Dieter Fox,

https://github.com/acschaefer/ple

10.6. Conclusion and Future Work 139

Giorgio Grisetti, Dirk Hähnel, Nick Roy, and Cyrill Stachniss for providing
the datasets.

140 Chapter 10. Polyline Extraction

Chapter 11

A Maximum-Likelihood
Approach to Extract Finite
Planes from 3-D Laser Scans

This contribution [103], authored by Alexander Schaefer, Johan Vertens,
Daniel Büscher, and Wolfram Burgard, was accepted for and presented at
the IEEE/RSJ International Conference on Robotics and Automation 2019,
which took place in Montreal, Quebec, Canada, from May 20 to 24, 2019.
The IEEE holds the copyright on the article: c© 2019 IEEE. Reprinted,
with permission, from “A Maximum-Likelihood Approach to Extract Finite
Planes from 3-D Laser Scans”.

11.1 Abstract

Whether it is object detection, model reconstruction, laser odometry, or point
cloud registration: Plane extraction is a vital component of many robotic
systems. In this paper, we propose a strictly probabilistic method to detect
finite planes in organized 3-D laser range scans. An agglomerative hierarchi-
cal clustering technique, our algorithm builds planes from bottom up, always
extending a plane by the point that decreases the measurement likelihood
of the scan the least. In contrast to most related methods, which rely on
heuristics like orthogonal point-to-plane distance, we leverage the ray path
information to compute the measurement likelihood. We evaluate our ap-
proach not only on the popular SegComp benchmark, but also provide a
challenging synthetic dataset that overcomes SegComp’s deficiencies. Both
our implementation and the suggested dataset are available at [104].

141

142 Chapter 11. Plane Extraction

11.2 Introduction
The geometry of many man-made environments like factory floors, offices,
and households can be described by a set of finite planes. Robots navigating
these types of environments often rely on 3-D laser range finders, which
capture up to millions of reflections per second. Plane extraction methods
take these highly redundant raw sensor measurements and reduce them to the
parameters of the underlying planes, thus reducing the computational effort
and the memory footprint required for processing the sensor data. Plane
extraction may also increase accuracy in tasks like scan matching and sensor
calibration, and it enables applications like model reconstruction and object
detection in the first place.

The presented method, dubbed probabilistic plane extraction (PPE), ex-
tends our recent work on polyline extraction from 2-D laser range scans [2]
to three dimensions. Essentially, PPE is a maximum-likelihood approach
based on agglomerative hierarchical clustering. In the beginning, PPE rep-
resents the scan by a large set of planes – one plane for every reflection – and
then iteratively merges them, in each step choosing the subset whose merger
maximizes the measurement likelihood of the whole scan, until a specified
stopping criterion is met. Figure 11.1b shows an exemplary segmentation
result.

Our approach distinguishes itself from the large body of related work in
two respects. First, all methods surveyed in the following resort to heuristics
like orthogonal distance between ray endpoint and plane when estimating
the measurement likelihood of a scan conditioned on a set of planes. Instead,
PPE accounts for the true ray path from start to end. This more accurate
sensor model leads to more accurate results, as demonstrated by our ex-
periments. Second, due to its probabilistic formulation, PPE requires only
one robust parameter to control the granularity of the extracted planes. In
contrast, some of the surveyed methods need up to a dozen carefully tuned
parameters in order to obtain reasonable results.

11.3 Related Work
This section provides an overview over the state of the art considering plane
extraction from 3-D lidar scans. We distinguish four classes of approaches:
region growing, clustering, random sample consensus (RANSAC), and the
Hough transform.

In a nutshell, region growing first selects some seed points from the in-
put point cloud, which are then grown into regions by iteratively adding all

11.3. Related Work 143

(a) Ground-truth segmentation.

(b) PPE segmentation.

Figure 11.1: Ground-truth segmentation of an organized 500× 500 point
cloud taken from the suggested SynPEB dataset and segmentation result of
PPE, the proposed method.

144 Chapter 11. Plane Extraction

neighboring points that pass a set of criteria. Hoover et al. [23], for instance,
select the points with the highest local planarity score as seeds. During the
growing process, they add all adjacent points to the regions that do not
exceed a specified maximum difference of normals, Euclidean distance, and
orthogonal distance. In contrast, Hähnel et al. [11] choose seeds at random
and grow planar polygons by including all neighboring points that do not
push the mean squared error of the resulting plane over a given limit.

Deschaud et al. [105] propose an adaption of region growing to large noisy
datasets. They compensate for noise by introducing a filter that improves
the estimation of endpoint normals, select seeds based on local planarity, and
employ a voxel-based variant of region growing. Nurunnabi et al. [106], in
turn, address noise by computing endpoint features like normals and curva-
ture via a robust variant of principal component analysis (PCA). In another
take on plane extraction from noisy point clouds, Dong et al. [107] combine
region growing with energy optimization, where the energy is defined as the
sum of geometric errors, spatial coherence, and the total number of planes.

Holz et al. [108] focus on plane extraction for time-sensitive applications.
Their method computes normal and curvature estimates not directly based
on the point cloud, but based on an approximate mesh. CAPE, an algo-
rithm developed by Proença et al. [109], achieves even higher plane extraction
rates at the expense of reduced accuracy. First, the algorithm creates a low-
resolution grid, pools the points in each cell, and applies PCA to each cell.
CAPE then grows regions composed of cells based on their PCA features.

Inspired by the observation that every line-shaped sequence of points in a
laser scan is caused by a planar surface, Jiang et al. [110], Hoover et al. [23],
and Cabo et al. [111] apply region growing to line segments instead of points.

As opposed to region growing, clustering extracts planes without the need
to find suitable seed points. Trevor et al. [112], for example, assign the
same label to adjacent points of an organized range scan if the difference
of their normals and their orthogonal distance falls below a given threshold,
and subsequently extract planes by clustering points with the same labels.
Feng et al. [113] present a clustering algorithm that extracts planes from
an organized point cloud with minimal latency. It divides the point cloud
uniformly into rectangular point groups, discards all non-planar groups, and
subjects the remaining groups to agglomerative hierarchical clustering, using
the mean squared orthogonal point-to-plane fitting error as clustering metric.
Eventually, it refines the extracted coarse planes by region growing. Marriott
et al. [114] also cluster groups of coplanar points based on mean squared error,
but instead of using a regular grid to define initial point groups, they propose
an expectation-minimization algorithm that fits a Gaussian mixture model
to the points.

11.4. Approach 145

Pham et al. [115] combine clustering and region growing. They use region
growing to oversegment the point cloud and then merge the resulting plane
hypotheses via clustering, in each step minimizing an energy function that
favors mutually parallel or orthogonal plane pairs.

RANSAC, initially developed by Fischler et al. [116], is a versatile iter-
ative model fitting algorithm. When applied to plane extraction, it selects
three laser endpoints at random, fits a plane to them, searches for all points
within a certain orthogonal distance, and determines the plane’s fitness based
on the corresponding point-to-plane distances. This process is repeated until
the algorithm finds a plane that satisfies a given minimal fitness. Several
works improve on standard RANSAC to overcome its deficiencies. The ro-
bust estimator formulated by Gotardo et al. [117] counteracts RANSAC’s
tendency to disregard small regions. Gallo et al. [118] address the problem
of RANSAC often connecting nearby patches that are actually unconnected,
for example at steps and curbs. By combining RANSAC with conformal ge-
ometric algebra, Sveier et al. [119] perform the least squares fitting necessary
to assess the fitness of a plane hypothesis analytically instead of numerically.
Alehdaghi et al. [120] present a highly parallelized GPU implementation of
RANSAC for plane extraction.

Another general model fitting method, the Hough transform computes
for each point in the discretized space of model parameters the fitness of the
associated model instance given the data. Vosselman et al. [121] describe
how to apply this method to the problem of plane extraction from 3-D point
clouds. Oehler et al. [122] present a multi-resolution approach based on
both the Hough transform and RANSAC. For a review of further flavors of
Hough transform-based plane extraction, the reader is referred to the review
composed by Borrmann et al. [123].

11.4 Approach
In this work, we present probabilistic plane extraction (PPE), an approach
to extract finite planes from organized 3-D lidar scans. PPE is a maximum-
likelihood estimation technique based on agglomerative hierarchical cluster-
ing. As a maximum-likelihood estimation technique, it searches for the set
of planes that maximize the measurement probability of the given laser scan.
As an agglomerative clustering method, it attempts to find this set by cre-
ating a plane for each reflection first. This plane explains the corresponding
reflection perfectly. PPE then reduces the number of planes by iteratively
merging the set of adjacent planes whose merger maintains the highest mea-
surement likelihood of the scan. Clustering ends as soon as a given stopping

146 Chapter 11. Plane Extraction

criterion is met.
In the following, we first introduce the probabilistic sensor model, on the

basis of which we then formulate plane extraction as a maximum-likelihood
estimation problem. We describe in detail how our agglomerative hierarchical
clustering algorithm solves this optimization problem, and finally explain the
pseudocode.

11.4.1 Probabilistic Sensor Model
The sensor model tells the measurement probability of a 3-D lidar scan given
a set of planes. We denote the scan Z := {zk}, where k ∈ {1, 2, . . . , K} rep-
resents the index of a laser ray. A single laser measurement z := {s, v, r} is
composed of two three-element Cartesian vectors and a scalar: the starting
point s of the ray, the normalized direction vector v, and the ray length r.
The set of finite planes L := {lj} extracted from the scan consists of a total
of J elements. Each plane is represented by a three-element Cartesian sup-
port vector x, a three-element Cartesian normal vector n, and a set Q of ray
indices: l := {x, n,Q}. While x and n define the location and orientation of
the plane, Q determines its extent. This representation can not only handle
convex planes, but also concave planes or planes with holes.

Most lidar sensors exhibit approximately normally distributed noise in
radial direction and relatively small angular noise. Consequently, we neglect
angular noise and model the distribution of the measured length of a single
ray conditioned on a set of planes as a Gaussian probability density function
centered at the true ray length:

p(z | L) = N (r; r̂(s, v, L), σ2). (11.1)

Here, the function r̂(s, v, L) ∈ R+ computes the distance between the starting
point of the ray and the first intersection of its axis and all planes in L. The
standard deviation σ of the radial noise is a function of multiple parameters
such as sensor device, reflecting surface, and temperature, but usually not
range.

By assuming independence between the individual laser rays, we can de-
rive the measurement probability of the whole scan from equation (11.1)
as

p(Z | L) =
K∏
k=1

p(zk | L).

To our knowledge, we are the first to apply the above sensor model to
plane extraction. Most surveyed works model the measurement probability

11.4. Approach 147

of a ray as a zero-centered normal distribution over the shortest distance
between the measured ray endpoint and the nearest plane. This heuristic
does not account for the ray path, which leads to two undesired effects.
First, the nearest plane is not always the one that intersects the ray. Second,
the accuracy of the computed distance strongly depends on the incidence
angle of the ray.

11.4.2 Maximum-Likelihood Estimation
With the above sensor model, we formulate plane extraction as the follow-
ing maximum-likelihood estimation problem: Find the set of planes L∗ that
maximizes the measurement probability of the whole scan p(Z | L). The so-
lution is trivial: For each reflection in the laser scan, create a tiny plane that
is not parallel to the ray and that intersects the ray at the measured ray
length r. This solution, however, is merely a different representation of the
raw lidar data. In order to extract meaningful planes from the scan, we need
to reduce the number of planes by constraining the optimization problem.
For the following derivation, we choose the maximum number of planes Jmax
as constraint parameter. Note, however, that our approach allows us just as
well to use arbitrary metrics like the maximum mean squared error of the ray
radii or the Akaike Information Criterion [124]. Formally, we are confronted
with the constrained least squares optimization problem

L∗ = argmaxL p(Z | L)
∣∣∣∣
J(L)≤Jmax

= argminL− log
(
p(Z | L)

)∣∣∣∣
J(L)≤Jmax

(11.2)

= argminL
K∑
k=1

(
rk − r̂(sk, vk, L)

)2∣∣∣∣
J(L)≤Jmax

=: argminLE(Z,L)
∣∣∣∣
J(L)≤Jmax

where J(L) is a function that determines the number of planes in L. The
transition from the second to the third line implies our assumption that all
rays exhibit the same radial noise. Hereafter, we will refer to E simply as
the error of the set of planes L.

Solving (11.2) is primarily a combinatorial problem. Even if we knew
the parameters {xj} and {nj} of the planes, we would still not know the
data associations {Qj}, i.e. which rays belong to which plane. Exhaustively
searching the space of all data associations for the combination that maxi-
mizes the measurement probability quickly leads to combinatorial explosion

148 Chapter 11. Plane Extraction

even for small Jmax. PPE solves this problem via agglomerative hierarchical
clustering.

11.4.3 Agglomerative Hierarchical Clustering
In its generic form, agglomerative hierarchical clustering builds clusters from
bottom up: The algorithm first assigns each observation its own cluster and
then iteratively merges adjacent pairs of clusters. In each iteration, it decides
which pair to merge based on a greedy strategy, always optimizing a specific
metric.

Transferred to our case, observations correspond to reflected laser rays,
clusters correspond to planes, and the metric the algorithm strives to max-
imize is the measurement probability p(Z | L), which is equivalent to mini-
mizing the error E(Z,L). Consequently, in the first step, which assigns each
observation its own cluster, we assign each laser reflection its own plane. As
mentioned above, this plane is not parallel to the ray and intersects the ray
at its measured length r. In the following, we call such a plane atomic. We
define the support vector of an atomic plane as the endpoint s+ rv of the
corresponding ray and the normal vector as the ray direction vector v. As
opposed to atomic planes, regular planes represent not one, but three or more
rays. Therefore, their parameters need to be fitted to the data.

Starting from this trivial maximum-likelihood solution, PPE iteratively
reduces the number of planes to Jmax by merging adjacent planes. With each
merger, the measurement likelihood of the whole scan p(Z | L) decreases,
whereas the error E(Z,L) increases by

e := E(Z,L′′)− E(Z,L′) ≥ 0, (11.3)

where L′ and L′′ denote the set of planes before and after the merger. Greedy
as it is, PPE always opts for the merger that incurs the least error increment,
which is equivalent to maintaining maximum measurement likelihood.

Due to ambiguities in the decision process, the formulation above will not
yield the desired result yet: The error increment corresponding to merging
two or three atomic planes is always zero, because every pair or triple of
reflections can be perfectly explained by a single plane. Therefore, given
multiple atomic planes, PPE cannot decide which pair or triple to merge.
Creating a regular plane out of four atomic planes, however, leads to an
overdetermined system of equations, hence a regular plane must be fitted to
the four reflections, and the corresponding fitting error constitutes the error
increment

ecrt(Z,Q) := min
x,n

E({zq}, {x, n,Q}), (11.4)

11.4. Approach 149

Figure 11.2: All 17 valid tetrominoes that can form a regular plane composed
of four atomic planes. The tetrominoes are represented by the red fields. The
white fields are neighboring rays that are not assigned to any plane.

where Q denotes the set of ray indices, and where q ∈ Q.
In order to find the combination of four atomic planes that yields the

minimum error increment, PPE needs to assess the fitting errors correspond-
ing to all possible combinations. For an atomic plane that resides somewhere
in the middle of the grid of laser rays, there are 17 valid ways to combine it
with three of its 4-connected neighbors, forming so-called tetrominoes: one
O-shaped, four T-shaped, four Z-shaped, and eight L-shaped tetrominoes.
Figure 11.2 depicts them all. The I-shaped tetromino is invalid, because
fitting a plane to four endpoints in a straight line again yields ambiguous
results.

Once the first regular planes emerge, we can identify two more classes
of clustering actions apart from merging tetrominoes: extending a regular
plane by an atomic plane, and merging two regular planes. Figure 11.3
illustrates all three classes. In each clustering step, PPE must determine the
error increment of every possible action, find the one that incurs the least
error increment, and merge the respective planes. The error increment of
extending a regular plane by an atomic plane amounts to the difference

eext(Z,Q, k) := ecrt(Z,Q ∪ k)− ecrt(Z,Q),

where Q denotes the indices of the rays of the regular plane, and where k is
the index of the ray corresponding to the atomic plane. Merging two regular

150 Chapter 11. Plane Extraction

(a) Creating a regular plane from four atomic planes.

(b) Extending a regular plane by an atomic plane.

(c) Merging two regular planes.

Figure 11.3: Exemplary instances of all three classes of actions PPE can take
during clustering in order to reduce the number of planes. White fields stand
for atomic planes, fields of the same color except white denote regular planes.

planes indexed i and j adds

emrg := ecrt(Z,Qi ∪Qj)− ecrt(Z,Qi)− ecrt(Z,Qj)

to the total error E(Z,L).

11.4.4 Probabilistic Plane Extraction
Algorithm 2 provides the PPE pseudocode. Line 1 initializes the set of atomic
planes. The function crt(Z,L) in line 2 loops over all valid tetrominoes of
atomic planes and returns the minimum error ecrt along with the associated
indices Qcrt. As there are no regular planes which could be extended or
merged at this point, line 3 sets the corresponding error increments eext and
emrg to infinity. After these initializations, the algorithm starts iteratively

11.4. Approach 151

Algorithm 2: Probabilistic Plane Extraction
Data: Z, Jmax

Result: L
1 L← {sk + rkvk, vk, k}, k ∈ {1, 2, . . . , K}
2 (ecrt, Qcrt)← crt(Z,L)
3 eext ← emrg ←∞
4 while J(L) > Jmax do
5 if ecrt = min(ecrt, eext, emrg) then
6 L← L ∪ fit(Z,Qcrt)
7 L← rma(L,Qcrt)
8 else if eext = min(ecrt, eext, emrg) then
9 Lj ← fit(Z,Qj ∪ k)

10 L← rma(L, {k})
11 else
12 Lj ← fit(Z,Qi ∪Qj)
13 L← L \ Li
14 end

15 end

16 end
17 (ecrt, Qcrt)← crt(Z,L)
18 (eext, j, k)← ext(Z,L)
19 (emrg, i, j)← mrg(Z,L)
20 end

152 Chapter 11. Plane Extraction

reducing the number of planes. In the first iteration, it always creates a
regular plane out of four atomic ones. This means it first adds the new plane
to the map (line 6) and then removes the merged atomic planes (line 7).
Here, the function fit(Z,Q) fits a plane l∗ to the rays indexed by Q:

l∗ := fit(Z,Q) :=
{

argminx,nE({zq}, {x, n,Q}), Q
}
,

whereas rma(L,Q) removes the atomic planes indexed by Q from L and
returns the updated plane set. After every manipulation of the plane map,
lines 17 to 19 recompute the error increments of all merging options. To that
end, ext(Z,L) iterates over all possible extensions of all regular planes in L
and finds the minimum error increment eext associated with extending plane j
by ray k. Similarly, mrg evaluates for all pairs of neighboring regular planes
the hypothetical error increments incurred by merging them and returns the
minimum emrg, which corresponds to merging planes i and j. Lines 9 and 10
update the map during an extension step, while lines 12 and 13 come into
play when two regular planes are merged.

For the sake of clarity, algorithm 2 is not optimized. For an optimized
version of PPE, please refer to our MATLAB implementation [104], which
features several algorithmic optimizations, optional GPU acceleration, mul-
tiple stopping criteria, and a geometric outlier filter.

11.5 Experiments
In order to compare PPE with the state of the art, we conduct two series of
experiments. In the first series, we evaluate PPE using the popular SegComp
plane extraction benchmark [23]. The deficiencies of this dataset motivated
us to create SynPEB, the first publicly available synthetic plane extraction
benchmarking dataset, on which we base the second experiment series.

SegComp comprises two collections of organized point clouds, which de-
pict compositions of polyhedral objects on a tabletop. They were recorded
by an ABW structured light sensor and by a Perceptron laser scanner, re-
spectively. Due to the fact that our measurement model, defined in equa-
tion (11.1), is specifically designed for laser sensors, we evaluate our method
on the Perceptron collection only. This dataset is divided into 10 training
scans and 30 testing scans. We use the former to determine the optimum
values of e and d, the two parameters of the specific PPE version we use in
both experiment series. The parameter e, defined in equation (11.3), denotes
the maximum admissible error increment in a clustering step and serves as
stopping criterion. In order to compensate for the high level of noise present

11.5. Experiments 153

in all Perceptron scans, we incorporate a geometric outlier filter in PPE,
which prevents clustering neighboring points if their Cartesian distance ex-
ceeds a certain threshold d. To find suitable values for both parameters, we
maximize the fraction of correctly segmented planes over a regular grid in e
and d.

The upper part of table 11.1 shows the corresponding experimental results
for PPE and compares them to all previous works evaluated on the Percep-
tron dataset using the performance metrics defined by Hoover et al. [23].
In order to increase the relevance of the results, we suggest two additional
metrics: the k-value and the RMSE. The k-value is defined as

k :=
∑J(L)
j=1 K̂(lj)
K

, (11.5)

where K̂(l) is a function that takes an extracted plane l as input, checks if this
plane is correctly segmented using the 80 % threshold proposed by Hoover
et al., and returns the number of points of the corresponding ground truth
plane. If the input plane is not correctly segmented, the function returns
zero. In this way, k indicates the portion of the point cloud that the algorithm
correctly segments into planes. The root mean squared error RMSE, defined
as

RMSE :=

√√√√E(Z,L)
J(L) , (11.6)

complements k by providing an estimate of how accurately the extracted
planes represent the point cloud.

In addition to quoting the numbers of previous works and stating our re-
sults for PPE, we evaluate MSAC and PEAC. MSAC is a baseline approach
based on the RANSAC variant proposed by Torr et al. [125]. Beginning with
the input point cloud, this method iteratively detects a plane and removes the
inlier points from the cloud until a specified fraction of the original number
of points remains. PEAC – plane extraction using agglomerative clustering
– refers to the open-source implementation [126] Feng et al. provide to com-
plement their paper [113]. We are not able to exactly replicate the SegComp
results they quote in their paper. Nevertheless, we state our findings for Seg-
Comp in order to establish comparability between our PEAC results across
both experiment series. Analogously to PPE, we determine the optimum
parameters for MSAC and PEAC via grid search. The exact parameter sets
for all methods can be found at [104]. Even with these parameters, both
MSAC and PEAC return a single false plane detection when processing all

154 Chapter 11. Plane Extraction

testing scans of SegComp, which leads to exploding RMSE-values. To miti-
gate this effect, the RMSE-values in table 11.1 are based on all planes with
RMSE ≤ 10 m each.

Although PPE is designed for maximum accuracy, our method achieves
only average results on SegComp. The reasons lie in the peculiarities of the
dataset. Figure 11.4a reveals that the rays that hit an object face at an obtuse
angle are much more strongly affected by noise than rays with acute incidence
angles, creating the impression that faces with obtuse incidence angles extend
in a curved fashion beyond their borders. Another issue becomes apparent
when closely inspecting the ground plane: Labeling is based on the geometry
of the underlying objects, not on the output of the miscalibrated sensor. The
khaki tabletop plane and the purple topside of the octagon in the point cloud
in figure 11.4a, for example, exhibit kinks due to systematic errors in the lidar
calibration. The labelers, knowing that these planes were flat, labeled both
as contiguous planes. PPE, without knowledge about the real scene, splits
each plane into two. Although desirable, this behavior results in the highest
oversegmentation rate among all methods and decreases both the percentage
of correctly segmented planes and the k-value.

In order to prove that the ground-truth labeling of SegComp is indeed not
optimal, we compare the RMSE-values of the ground-truth segmentation to
those of PPE. This time, PPE is configured to extract as many planes from
a scan as there are present in the ground truth. On average, the resulting
RMSE-values are 3.2 % lower than those corresponding to ground truth. A t-
test over all scans yields a p-value of 12.9 %, which means that the probability
of PPE returning a more accurate segmentation than ground truth is as high
as 87.1 %.

Similarly to the ground-truth segmentation, the ground-truth angles be-
tween adjacent planes were presumably determined based on the underlying
data, too: They are provided as integers rather than as floating-point num-
bers.

As the aforementioned problems with SegComp bias the evaluation and
because there is no publicly available alternative, we created a synthetic
plane extraction benchmarking dataset, in short SynPEB, which we use as
the basis of the second experiment series. Like PPE and the implementation
of all our experiments, the SynPEB scans and the corresponding sampling
engine can be downloaded at [104]. The SynPEB world consists of a room
of approximately 6 m× 7 m× 3 m populated with various polyhedral objects,
resulting in 42.6 planes of different shapes and sizes per scan. Analogously to
SegComp, we divide the dataset into 10 training scans and 30 testing scans,
provided as organized point clouds of 500× 500 measurements. These scans
are affected by normally distributed angular noise with standard deviation

11.5. Experiments 155

Method f [%] k [%] RMSE
[mm] α [◦] no nu nm ns

SegComp Perceptron dataset
USF [23] 60.9 – – 2.7 0.4 0.0 5.3 3.6
WSU [23] 40.4 – – 3.3 0.5 0.6 6.7 4.8
UB [23] 65.7 – – 3.1 0.6 0.1 4.2 2.8
UE [23] 68.4 – – 2.6 0.2 0.3 3.8 2.1
UFPR [117] 75.3 – – 2.5 0.3 0.1 3.0 2.5
Oehler et al. [122] 50.1 – – 5.2 0.3 0.4 6.2 3.9
Holz et al. [108] 75.3 – – 2.6 0.4 0.2 2.7 0.3
RPL-GMR [114] 72.4 – – 2.5 0.3 0.3 3.0 2.0
Feng et al. [113] 60.9 – – 2.4 0.2 0.2 5.1 2.1
PEAC [126] 48.6 91.3 2.6 2.6 0.0 0.1 7.1 2.0
MSAC [125] 18.5 76.7 3.4 3.9 0.1 0.2 11.3 3.4
PPE (proposed) 60.7 61.2 2.9 2.8 1.4 1.1 1.5 2.3

SynPEB dataset
PEAC [126] 29.1 60.4 28.6 – 0.7 1.0 26.7 7.4
MSAC [125] 7.3 35.6 34.3 – 0.3 1.0 36.3 10.9
PPE (proposed) 73.6 77.9 14.5 – 1.5 1.1 7.1 16.5

Table 11.1: Results of both experiment series. The header variables f and
α denote the fraction of correctly segmented planes and the mean angular
deviation, averaged over all testing scans, while no, nu, nm, and ns represent
the absolute numbers of oversegmented, undersegmented, missing, and spu-
rious planes compared to the ground-truth segmentation. The metrics k and
RMSE are defined in equation (11.5) and (11.6), respectively. On average,
each scan of the SegComp dataset contains 14.6 ground-truth planes, while
each scan of the SynPEB dataset is composed of 42.6 planes.

156 Chapter 11. Plane Extraction

(a) 3-D point cloud colored according to ground-truth segmentation.

(b) Ground-truth segmentation. (c) PPE segmentation.

Figure 11.4: Point cloud and segmentation images of scan perc.test.23 of
the SegComp dataset. Outliers are colored black.

11.6. Conclusion and Future Work 157

σang = 1 mdeg and by normally distributed radial noise with σrad = 20 mm.
Figure 11.1 conveys an intuition of what a SynPEB scan looks like.

The lower part of table 11.1 shows the plane extraction results for PEAC,
MSAC, and PPE on SynPEB. For the other approaches, there is no work-
ing implementation publicly available. When comparing the results across
datasets, we observe that the fraction of planes detected by both PEAC and
MSAC is considerably lower on SynPEB than on SegComp. The high num-
bers of missed planes indicate that the most likely cause is the challenging
nature of SynPEB: At almost identical resolutions, SynPEB contains almost
three times as many planes per scan as SegComp. Nevertheless, both the
percentage of correctly identified planes and the k-value of the PPE results
have increased significantly. The RMSE-value for PPE is 28 % lower than
the radial sensor noise, demonstrating that the method is able to leverage
the high number of data points per plane to accurately reconstruct the un-
derlying data.

PPE’s high accuracy comes at a price: On average, processing a 500×500
scan using our open-source implementation takes 1.6 h on a single core of
an Intel Xeon CPU with 2.6 GHz, while our MATLAB implementation of
MSAC needs 1.1 s. As a method specifically developed to enable real-time
plane extraction, PEAC runs at approximately 30 Hz on an Intel i7-7700K
processor.

11.6 Conclusion and Future Work
Many authors have investigated the problem of extracting planes from 3-D
laser scans and proposed solutions. The present paper sets itself apart in
two ways. First, it proposes PPE, an approach to plane extraction that
builds upon an accurate probabilistic sensor model instead of the conven-
tional point-to-plane distance heuristic. Our experiments demonstrate that
the accuracy of the sensor model translates to superior plane reconstruction
results. Second, motivated by the deficiencies of the popular plane extraction
benchmark SegComp, we suggest an alternative benchmark, dubbed Syn-
PEB. Both the implementation of the proposed algorithm and the suggested
dataset are available online [104].

Due to the promising results, we plan several extensions of PPE. First
of all, we will decrease the runtime to enable online plane extraction. In
addition, we will relax the requirement that the point cloud is organized,
and investigate whether leveraging laser remission intensity information can
further improve the results.

158 Chapter 11. Plane Extraction

Chapter 12

Long-Term Urban Vehicle
Localization Using Pole
Landmarks Extracted from 3-D
Lidar Scans

The work replicated below, written by Alexander Schaefer, Daniel Büscher,
Johan Vertens, Lukas Luft, and Wolfram Burgard was accepted for the Eu-
ropean Conference on Mobile Robotics 2019, and presented during the con-
ference, which took place in Prague, Czech Republic, from September 4 to 6,
2019. The IEEE holds the copyright on the article: c© 2019 IEEE. Reprinted,
with permission, from “Long-Term Urban Vehicle Localization Using Pole
Landmarks Extracted from 3-D Lidar Scans”.

12.1 Abstract
Due to their ubiquity and long-term stability, pole-like objects are well suited
to serve as landmarks for vehicle localization in urban environments. In
this work, we present a complete mapping and long-term localization system
based on pole landmarks extracted from 3-D lidar data. Our approach fea-
tures a novel pole detector, a mapping module, and an online localization
module, each of which are described in detail, and for which we provide an
open-source implementation [27]. In extensive experiments, we demonstrate
that our method improves on the state of the art with respect to long-term
reliability and accuracy: First, we prove reliability by tasking the system
with localizing a mobile robot over the course of 15 months in an urban area
based on an initial map, confronting it with constantly varying routes, differ-

159

160 Chapter 12. Localization Using Pole Landmarks

ing weather conditions, seasonal changes, and construction sites. Second, we
show that the proposed approach clearly outperforms a recently published
method in terms of accuracy.

12.2 Introduction
Intelligent vehicles require accurate and reliable self-localization systems. Ac-
curate, because an exact pose estimate enables complex functionalities such
as automatic lane following or collision avoidance in the first place. Reliable,
because the quality of the pose estimate must be maintained independently
of environmental factors in order to ensure safety.

Satellite-based localization systems like RTK-GPS or DGPS seem to be
an efficient solution, since they achieve centimeter-level accuracy out of the
box. However, they lack reliability. Especially in urban areas, buildings
that obstruct the line of sight between the vehicle and the satellites can
decrease accuracy to several meters [127, 5]. Localization on the basis of
dense maps like grid maps, point clouds, or polygon meshes represents a more
reliable alternative [128]. On the downside, dense approaches require massive
amounts of memory that quickly become prohibitive for maps on larger scales.
This is where landmark maps come into play: By condensing billions of raw
sensor data points into a comparably small number of salient features, they
can decrease the memory footprint by several orders of magnitude [129].

In this work, we present an approach to long-term 2-D vehicle localization
in urban environments that relies on pole landmarks extracted from mobile
lidar data. Poles occur as parts of street lamps, traffic signs, as bollards
and tree trunks. They are ubiquitous in urban areas, long-term stable and
invariant under seasonal and weather changes. Since their geometric shape
is well-defined, too, poles are well suited to serve as landmarks that enable
accurate and reliable localization.

Our localization process is subdivided into a mapping and a localization
phase. During mapping, we use the pole detector presented below to extract
pole landmarks from lidar scans and register them with a global map via
a given ground-truth vehicle trajectory. During localization, we employ a
particle filter to estimate the vehicle pose by aligning the pole detections
from live sensor data with those in the map. Figure 12.1 shows an exemplary
localization result.

We are not the first ones to propose this kind of localization technique:
The next section provides an overview over the numerous related works.
However, to the best of our knowledge, we are the first ones to present a pole
detector that does not only consider the laser ray endpoints, but also the

12.2. Introduction 161

−600 −400 −200 0
x [m]

−300

−200

−100

0

100

y
[m

]

Figure 12.1: Pole landmark map created from the NCLT dataset [5] and
trajectory of an experimental run 15 months after map creation. The blue
dots represent the landmarks. The gray line corresponds to the ground-truth
trajectory. Most of it is covered by the red line, which represents the estimate
produced by the presented method. The mean position difference between
both trajectories, formally defined in section 12.5.1, amounts to 0.31 m.

162 Chapter 12. Localization Using Pole Landmarks

free space in between the laser sensor and the endpoints, and to demonstrate
reliable and accurate vehicle localization based on a map of pole landmarks
on large time scales. While related works usually evaluate localization per-
formance on a short sample trajectory of at most a few minutes length, we
successfully put our approach to the test on a publicly available long-term
dataset that contains 35 hours of data recorded over the course of 15 months
– including varying routes, construction zones, seasonal and weather changes,
and lots of dynamic objects. Additional control experiments show that the
presented method is not only reliable, but significantly outperforms a recently
published state-of-the-art approach in terms of accuracy, too.

12.3 Related Work
In recent years, a number of authors have addressed the specific question
of vehicle localization via pole landmarks extracted from lidar scans. Any
solution to this question consists of at least two parts: a pole detector and a
landmark-based pose estimator. The detector developed by Weng et al. [24],
for example, tessellates the space around the lidar sensor and counts the
number of laser reflections per voxel. Poles are then assumed to be located
inside contiguous vertical stacks of voxels that all exceed a reflection count
threshold. In order to extract the pole parameters from these clusters, the
detector fits a cylinder to all points in a stack via RANSAC [116]. For 2-D
pose estimation, the authors employ on a particle filter with nearest-neighbor
data association. Sefati et al. [25] present a pole detector that removes the
ground plane from a given point cloud, projects the remaining points onto
a horizontal regular grid, clusters neighboring cells based on occupancy and
height, and fits a cylinder to each cluster. Like Weng et al., Sefati et al.
obtain their 2-D localization estimate from a particle filter that performs
nearest-neighbor data association. Kümmerle et al. [129] make use of Sefati
et al.’s pole detector, but to further refine the localization estimate, they also
fit planes to building façades in the laser scans and lines to lane markings
in stereo camera images. Like the above works, their pose estimator relies
on a Monte Carlo method to solve the data association problem, but uses
optimization to compute the most likely pose. More specifically, in the data
association stage, it builds a local map by accumulating the landmarks de-
tected over the past timesteps based on odometry. It then samples multiple
poses around the current GPS position, uses these pose hypotheses to project
the local map into the global map, and identifies the most probable hypoth-
esis via a handcrafted landmark matching metric. Given the resulting data
associations, it refines the current vehicle pose estimate via nonlinear least

12.4. Approach 163

squares optimization over a graph of past vehicle poses and landmarks.
Spangenberg et al. [130] extract pole landmarks not from lidar scans, but

from stereo camera images. In order to estimate the vehicle pose, they feed
wheel odometry, GPS data, and online pole detections to a particle filter.

While the approaches above all provide a complete localization system
consisting of a pole extractor and a landmark-based localization module,
there exist a variety of research papers that focus solely on pole extraction.
Extracting poles from lidar data is a common problem in road infrastruc-
ture maintenance and urban planning. In this domain, researchers are not
only interested in fitting geometric primitives to the data and determining
pole coordinates, but also in precise point-wise segmentation. Brenner [131],
Cabo et al. [132], Tombari et al. [133], and Rodriguez et al. [134] present
different methods to extract pole-like objects from point clouds, i.e. without
accounting for free space information. The approaches of Yu et al. [135] and
Wu et al. [136] specifically target street lamp poles, while Zheng et al. [137]
provide a solution to detect poles that are partially covered by vegetation.
Yokoyama et al. [138] not only extract poles, but they classify them as lamp
posts, utility poles, and street signs. Ordóñez et al. [139] build upon the
pole detector proposed by Cabo et al. [132] and classify the results into six
categories, including trees, lamp posts, traffic signs, and traffic lights. Li
et al. [140] take classification one step further by decomposing multifunc-
tional structures, for example a light post carrying traffic signs, into individ-
ual elements.

Poles are not the only landmarks suitable for vehicle localization. Qin
et al. [141] investigate Monte Carlo vehicle localization in urban environments
based on curb and intersection features. As demonstrated by the works of
Schindler [142] and Schreiber et al. [143], road markings as landmarks can
also yield high localization accuracy. Hata and Wolf [144] feed both curb
features and road markings to their particle filter. Welzel et al. [145] explore
the idea of using traffic signs as landmarks. Although traffic signs occur
less frequently in urban scenarios compared to other types of road furniture
like road markings or street lamp poles, they offer the advantage of not only
encoding a position, but also an unambiguous ID. Finally, Im et al. [146]
explore urban localization based on vertical corner features, which appear at
the corners of buildings, in monocular camera images and lidar scans.

12.4 Approach
The proposed 2-D vehicle localization system consists of three modules: the
pole extractor, the mapping module, and the localization module. During

164 Chapter 12. Localization Using Pole Landmarks

the initial mapping phase, the pole extractor reduces a given set of lidar
scans to pole landmarks. The mapping module then uses the ground-truth
sensor poses to build a global reference map of these landmarks. During the
subsequent localization phase, the pole extractor processes live lidar data
and passes the resulting landmarks to the localization module, which in turn
generates a pose estimate relative to the global map. In the following, we
detail each of these modules and their interactions.

12.4.1 Pole Extraction
The pole extraction module takes a set of registered 3-D lidar scans as input
and outputs the 2-D coordinates of the centers of the detected poles with
respect to the ground plane, along with the estimated pole widths. To that
end, it builds a 3-D occupancy map of the scanned space, applies a pole
feature detector to every voxel, and regresses the resulting pole map to a set
of pole position and width estimates.

To describe these three steps mathematically, we denote a single laser
measurement – a ray – by z := {u, v}, where u and v represent its Cartesian
starting point and endpoint, respectively. All measurements Z := {zi} are
assumed to be registered with respect to the map coordinate frame, whose
x-y plane is aligned with the ground plane. The measurements can be taken
at different points in time, but the timespan between the first and the last
measurement needs to be sufficienctly small in order not to violate our as-
sumption that the world is static. Now, we tessellate the map space, trace
the laser rays, and model the posterior probability that the j-th voxel reflects
an incident laser ray according to Luft et al. [45] by

p(µj | Z) = Beta(hj + α,mj + β).

Here, hj and mj denote the numbers of laser reflections and transmissions
in the j-th cell, whereas α and β are the parameters of the prior reflection
probability p(µj) = Beta(α, β), which we determine in accord with [45] by

α = −γ(γ2 − γ + δ)
δ

,

β = γ − δ + γδ − 2γ2 + γ3

δ
,

whereM := {hj(hj +mj)−1} denotes the maximum-likelihood reflection map,
and where γ := E[M], δ := varM represent its mean and variance, respec-
tively. Please note that {p(µj | Z)} is a full posterior map: In contrast to
M , which assigns each voxel the most probable reflection rate, it yields a
posterior distribution over every reflection rate possible.

12.4. Approach 165

Since we want to extract poles based on occupancy probability, not on
reflection rate, we convert {p(µj | Z)} to an occupancy map O := {oj}. As-
suming that a cell is occupied if its reflection rate exceeds a threshold µo, we
formulate the occupancy probability by integration:

oj :=
∫ 1

µo

p(µj | Z) dµj.

Next, a pole feature detector transforms O to a 2-D map of pole scores S
in the ground plane. Each pixel of S encodes the probability that a pole
is present at the corresponding location. The transformation from O to S
follows a set of heuristics that are based on the definition of a pole as a vertical
stack of occupied voxels with quadratic footprint, laterally surrounded by a
hull of free voxels. First, we create a set of intermediate 3-D score maps of
the same size as O, each denoted by Qa := {qa,j}. Every cell qa,j tells how
probable it is that this portion of space is part of a pole with edge length a,
where a ∈ N+ is measured in units of grid spacing:

qa,j := max
k∈inside(j,a)

∑

l∈inside(k,a)
ol

a2 − max
l∈outside(k,a,f)

ol

.
Here, inside(j, a) and outside(j, a, f) are functions that, given a map index j
and a pole width a, return a set of indices into voxels in the same horizontal
map slice as j. While the former outputs the indices of all voxels inside the
pole, the latter returns the indices corresponding to the supposedly free region
around the pole with thickness f ∈ N+. Both functions assume that the lower
left lateral walls of the pole are aligned with the lower left lateral sides of the
j-th voxel. With these definitions, the argument of the enclosing maximum
operator amounts to the difference between the mean occupancy value inside
the pole and the maximum occupancy value of the volume of free space
around the pole. The resulting score lies in the interval [−1, 1]: the higher
the score, the greater the probability that the corresponding partition of
space is part of a pole. Second, we regress from the resulting 3-D maps {Qa}
to 2-D by merging them into a single map Q := {qj} := {maxa qa,j} and by
determining for each horizontal position in Q the contiguous vertical stack of
voxels that all surpass a given score threshold qmin. After discarding all stacks
that fall below a certain height threshold hmin and computing the mean score
for each of the remaining stacks, we obtain the desired 2-D score map S.

Finally, we convert this discrete score map to a set of continuous pole
position and width estimates. We identify the pole positions as the modes
of S, which we determine via mean shift [147] with a Gaussian kernel and
with the local maxima of S as seed points. The width estimate of each pole

166 Chapter 12. Localization Using Pole Landmarks

is computed as the weighted average over all pole widths a, where for every
a, the weight is the mean of all cells in Qa that touch the pole.

The presented algorithm differs from other pole extractors in the fact
that it is based on ray tracing. By considering not only the scan endpoints,
but also the starting points, it explicitly models occupied and free space. In
contrast, most other methods assume the space around the sensor to be free
as long as it does not register any reflections. The absence of reflections,
however, can have two reasons: The respective region is in fact free, or the
lidar sensor did not cover region due to objects blocking its line of sight or
its limited range.

12.4.2 Mapping

In theory, the global reference map could be built by simply applying the pole
extractor to a set of registered laser scans that cover the area of interest. In
practice, the high memory complexity of grid maps and laser scans often ren-
ders this naïve approach infeasible. To create an arbitrarily large landmark
map with limited memory resources, we partition the mapping trajectory
into shorter segments of equal length and feed the lidar measurements taken
along each segment to the pole extractor one by one. For the sake of con-
sistency, we take care that the intermediate local grid maps are aligned with
the axes of the global map and that all of them have the same raster spacing.
The intermediate maps, whose sizes are constant and depend on the sensor
range, usually fit into memory easily. Processing all segments provides us
with a set of pole landmarks. If the length of a trajectory segment is smaller
than the size of a local map, the local maps overlap, a fact that can lead
to multiple landmarks representing a single pole. In order to merge these
ambiguous landmarks, we project all poles onto the ground plane, yielding
a set of axis-aligned squares. If multiple squares overlap, we reduce them
to a single pole estimate by computing a weighted average over their center
coordinates and widths. Each weight equals the mean pole score, which we
determine by averaging over the scores of all voxels that touch the pole in all
score maps Qa. If there is no overlap, we integrate the corresponding pole
into the global reference map without further ado.

As a side benefit, this mapping method allows us to filter out dynamic
objects at the landmark level using a sliding-window approach: A local land-
mark is integrated into the reference map only if it was seen at least c times
in the past w local maps, where c ≤ w; c, w ∈ N+. Correspondences between
landmarks are again determined via checking for overlapping projections in
the ground plane.

12.4. Approach 167

12.4.3 Localization
During online localization, we continuously update the vehicle pose based on
the collected odometry measurements and periodically correct the estimate
by matching online pole landmarks, which we extract from the most recent
local map, against the reference map. We build the local map by accumu-
lating laser scans along a segment of the trajectory and by registering them
via odometry. To filter out dynamic objects, we apply the sliding-window
approach described in the previous section.

A particle filter is well suited for the localization task [10], because it
can not only maintain multiple pose hypotheses in parallel, but also handle
global localization. At time t, each particle corresponds to a 2-D vehicle pose
hypothesis, represented by the 3× 3 homogeneous transformation matrix Xt.
To perform the motion update, we assume Gaussian motion noise Σ and
sample from a trivariate normal distribution in χ:

Xt = transform(ξ) Xt−1

∣∣∣ ξ ∼ N (χ,Σ),

where χ := [x, y, φ]ᵀ denotes the latest relative odometry measurement, with
x, y, and φ representing the translation and the heading of the vehicle, re-
spectively. The function transform([x, y, φ]ᵀ) converts the input vector to the
corresponding 3× 3 transformation matrix. In each measurement update, we
determine the data associations between the online landmarks Λ := {λk} and
the landmarks in the reference map L := {ln} via nearest-neighbor search in
a k-D tree, assume independence between the elements of Λ, and update the
particle weights according to the measurement probability

p(Λ | X,L) =
∏
k

p(λk | X, ln(k)),

where n(k) is the data association function that tells the index of the reference
landmark associated with the k-th online landmark. To evaluate the above
equation, we need to define a measurement model

p(λk | X, ln(k)) := N (
∥∥∥Xλk − ln(k)

∥∥∥ , σ) + ε,

with the reference and online landmarks represented by homogeneous 2-D po-
sition vectors [x, y, 1]ᵀ, and where we assume isotropic position uncertainty σ
of the reference landmarks. The constant addend ε ∈ R+ accounts for the
probability of discovering a pole that is not part of the map. This probability
can be estimated by generating a global map from one run, generating a set
of local maps from data recorded on the same trajectory in a second run,
and computing the numbers of matched and unmatched landmarks.

168 Chapter 12. Localization Using Pole Landmarks

12.5 Experiments
In order to evaluate the proposed localization system, we perform two series
of experiments. The complete implementation is publicly available [27]. In
the first series, we assess the system’s long-term localization reliability and
accuracy on the NCLT dataset [5]. While these experiments provide pro-
found insights into the performance of the developed method, the results are
absolute and do not allow direct comparisons with other methods, because
to the best of our knowledge, we are the first to test landmark-based local-
ization on NCLT. For this reason, we base the second experiment series on
the KITTI dataset [26]. That allows us to repeat the experiments performed
by the authors of another state-of-the-art localization method, only that this
time, we use the system presented above.

12.5.1 Localization on the NCLT Dataset
The NCLT (North Campus Long-Term) dataset [5] was acquired with a two-
wheeled Segway robot on one of the campuses of the University of Michigan,
USA. The data is perfectly suited for testing the capabilities of any system
that targets long-term localization in urban environments: Equipped with
a Velodyne HDL-32E lidar, GPS, IMU, wheel encoders, and a gyroscope,
among others, the robot recorded 27 trajectories with an average length
of 5.5 km and an average duration of 1.3 h over the course of 15 months.
The recordings include different times of day, different weather conditions,
seasonal changes, indoor and outdoor environments, lots of dynamic objects
like people and moving furniture, and two large construction projects that
evolve constantly. Although the routes differ significantly between sessions,
the trajectories have a large overlap.

The main difference between NCLT and the data used to evaluate all other
pole-based localization methods we surveyed lies in its extent: While related
works briefly demonstrate the plausibility of their approaches by evaluating
localization performance on datasets with durations between 46 s and 30 min,
we focus on long-term reliability and accuracy and process 35 h of data spread
over more than one year.

Before localizing, we build a reference map of the poles on the campus.
To that end, we feed the laser scans and the ground-truth robot poses of
the very first session to our mapping module. Unfortunately, the ground
truth provided by NCLT is not perfect. It consists of optimized poses spaced
in intervals of 8 m, interpolated by odometry. Consequently, point clouds
accumulated over a few meters exhibit considerable noise, as illustrated in
figure 12.2. For that reason, we set the distance of the trajectory segments to

12.5. Experiments 169

build local maps to 1.5 m, the raster spacing of the grid maps to 0.2 m, and
the occupancy threshold to µo = 0.2. During mapping and localization, the
pole extractor discards all poles below a minimum pole height of hmin = 1 m
and below a minimum pole score of qmin = 0.6. The extent of the local maps
is chosen 30 m × 30 m × 5 m in x, y, and z of the map frame, respectively.
Figure 12.3 illustrates the corresponding results.

Although the first session covers most of the campus, the robot occasion-
ally roams into unseen regions during later sessions. For that reason, we
iterate over all subsequent sessions, too, but add landmarks to the global
map only if the corresponding laser scans are recorded at a minimum dis-
tance of 10 m from all previously visited poses. Table 12.1 shows that after
the second session, the fractions of scans per session that contribute to the
map drop to fmap ≤ 5.5 %.

During localization, odometry mean and covariance estimates are gen-
erated by fusing wheel encoder readings, gyroscope, and IMU data in an
extended Kalman filter. The particle filter contains 5000 particles, which
we initialize by uniformly sampling positions in a circle with radius 2.5 m
around the earliest ground-truth pose. The headings are uniformly sampled
in [−5◦, 5◦]. To maximize reliability, we inflate the motion noise by a factor
of four, which corresponds to doubled standard deviation, define the position
uncertainty of the poles in the global map as σ = 1 m2, and set the addend
in the measurement probability density to ε = 0.1. We resample particles
whenever the number of effective particles neff := (∑iw

2
i)−1 < 0.5, where wi

is the weight of the i-th particle, via low-variance resampling as described
by Thrun et al. [10]. In order to obtain the pose estimate, we select the best
10 % of the particles and compute the weighted average of their poses.

Table 12.1 presents for each of the 27 sessions the corresponding position
and heading errors. To generate these values, we run the localization module
ten times per session, evaluate the deviation of our estimate from ground
truth every 1 m along the ground-truth trajectory, compute the means and
RMSEs, and average these metrics over the ten sessions. The results demon-
strate that the proposed method achieves both high reliability and accuracy,
even if the data used for mapping and for localization lie 15 months apart:
The particle filter never even partially diverges, except for one late session dis-
cussed below. Furthermore, despite the inaccuracies in ground truth, which
affect both the global map and the evaluation, it achieves a mean positioning
accuracy over all sessions of 0.284 m. Looking at the evolution of the errors
over time, we observe slightly increasing magnitudes. This is due to changes
in campus infrastructure accumulating over time and rendering the initial
map more and more outdated.

In session 2012-02-23, these changes eventually cause the localization

170 Chapter 12. Localization Using Pole Landmarks

(a) Registration via the original NCLT ground truth.

(b) Refined registration.

Figure 12.2: The same set of point clouds taken from a short sequence of an
NCLT session, registered using different ground-truth robot poses. The col-
ors encode the point height above ground: Blue represents the ground plane,
whereas green, yellow, and red indicate increasing height. The upper image
shows the result of the registration based on the original NCLT ground truth
poses, which we use throughout our experiments. To illustrate the inaccuracy
of the original ground truth, the lower image presents a refined registration
that we generated via pose-graph optimization. While the original ground
truth leads to a blurry point cloud, the refined version significantly improves
point alignment and results in crisp details. The mean positional error be-
tween both ground truth versions is approximately 0.25 m on average, which
leads us to believe that the original NCLT ground truth is off by a similar
amount. This fact impedes the generation of an accurate reference pole map
and negatively affects our localization results.

12.5. Experiments 171

Figure 12.3: Exemplary pole extraction result for a point cloud from the
NCLT dataset. The gray values of the points correlate with the intensity
values returned by the lidar sensor. The orange wireframe represents the
boundaries of the local map, while the blue wireframes represent the ex-
tracted poles. The pole extractor is triggered by different kinds of pole-
shaped objects like traffic signs, street lamps, and tree trunks.

172 Chapter 12. Localization Using Pole Landmarks

Session date fmap ∆pos RMSEpos ∆ang RMSEang

[%] [m] [m] [◦] [◦]

2012-01-08 100.0 0.130 0.178 0.663 0.857
2012-01-15 8.5 0.156 0.225 0.760 0.999
2012-01-22 5.1 0.172 0.222 0.939 1.291
2012-02-02 0.4 0.155 0.205 0.720 0.975
2012-02-04 0.1 0.144 0.195 0.684 0.903
2012-02-05 0.5 0.148 0.210 0.691 0.947
2012-02-12 0.8 0.269 1.005 0.802 1.040
2012-02-18 0.8 0.149 0.221 0.699 0.938
2012-02-19 0.0 0.148 0.194 0.704 0.944
2012-03-17 0.0 0.149 0.191 0.830 1.062
2012-03-25 0.0 0.200 0.262 1.418 1.836
2012-03-31 0.0 0.143 0.184 0.746 0.973
2012-04-29 0.0 0.170 0.251 0.829 1.079
2012-05-11 5.5 0.161 0.225 0.773 0.998
2012-05-26 0.4 0.158 0.217 0.690 0.889
2012-06-15 0.4 0.180 0.238 0.659 0.879
2012-08-04 0.3 0.210 0.340 0.884 1.143
2012-08-20 3.8 0.189 0.264 0.711 0.941
2012-09-28 0.3 0.206 0.311 0.731 0.952
2012-10-28 1.4 0.217 0.338 0.693 0.919
2012-11-04 2.5 0.257 0.456 0.746 0.996
2012-11-16 2.7 0.403 0.722 1.467 2.031
2012-11-17 0.4 0.243 0.377 0.686 0.959
2012-12-01 0.0 0.266 0.492 0.674 0.930
2013-01-10 0.0 0.217 0.278 0.689 0.911
2013-02-23 0.0 2.470 5.480 1.083 1.769
2013-04-05 0.0 0.365 0.920 0.654 1.028

Table 12.1: Results of our experiments with the NCLT dataset, averaged
over ten localization runs per session. The variables ∆pos and ∆ang denote
the mean absolute errors in position and heading, respectively, RMSEpos and
RMSEang represent the corresponding root mean squared errors, while fmap
denotes the fraction of lidar scans per session used to build the reference
map.

12.5. Experiments 173

module to temporarily lose track of the exact robot position. The diverging
behavior reproducibly occurs when the robot drives along a row of construc-
tion barrels that fence a large construction site. When the global map was
built, these barrels were located on the footpath. Just before the session in
question, however, the barrels were moved laterally by a few meters, while
maintaining their longitudinal positions. Since the barrels are the only land-
marks in the corresponding region, the localizer “corrects” the robot position
so that the incoming pole measurements match the map. Having passed the
construction site, the localizer is confident about its wrong position estimate,
which is why it takes some time until the particle cloud diverges and the robot
relocalizes. The positioning error over all sessions except 2012-02-23 amounts
to 0.200 m.

Lastly, we describe the runtime requirements of our method stochastically.
On a 2011 quad-core PC with dedicated GPU, we measure an average 1.33 s
for pole extraction with our open-source Python implementation [27], which
corresponds to processing 0.5 million laser data points per seconds. The
measurement step with data association requires a mean computation time
of 0.09 s. These two steps pose by far the highest computational requirements
and make others, like the measurement update, negligible.

12.5.2 Localization on the KITTI Dataset
As delineated in section 12.3, Kümmerle et al. [129], Weng et al. [24], and
Sefati et al. [25] present methods for vehicle localization with pole landmarks
extracted from 3-D lidar data. While the former two use small proprietary
datasets – a fact that makes a direct comparison infeasible – Sefati et al.
evaluate their method on sequence number 9 of the publicly available KITTI
dataset [26]. This sequence is a short recording of 46 s along a simple L-
shaped trajectory. Trajectories in KITTI have hardly any overlap, which is
why Sefati et al. use the sequence data for both mapping and localization.
Consequently, their results have limited significance as to real localization
performance: They could theoretically localize the vehicle based on dynamic
landmarks only, and they would still obtain accurate results with respect
to their map, although it is extremely unlikely that they will encounter the
same constellation of dynamic objects ever again. The same is true for Weng
et al., who also use a single trajectory of 3.5 km for mapping and localization.
Nevertheless, we repeat Sefati et al.’s experiment with the localization system
proposed in this paper and compare accuracies in table 12.2. This time, we
set the grid spacing for the pole extractor to 0.1 m, because the quality of the
ground-truth robot poses is higher than in NCLT. Furthermore, we adjust
the parameters of our localizer to match the values Sefati et al. apparently

174 Chapter 12. Localization Using Pole Landmarks

used – 2000 particles, 3 m initial positioning variation, ±5◦ heading variation
– and average our results over 50 experimental runs. As shown in table 12.2,
our localization system outperforms the reference method by reducing the
RMSEs in position and heading by 54 % and 69 %, respectively. For qualita-
tive analysis, table 12.2 also includes the results Kümmerle et al. and Weng
et al. obtained after processing their respective proprietary datasets.

12.6 Conclusion and Future Work
We presented a complete landmark-based 2-D localization system that relies
on poles extracted from 3-D lidar data, that is able to perform long-term lo-
calization reliably, and that outperforms current state-of-the-art approaches
in terms of accuracy. The implementation is publicly available [27].

For the future, we have two major extensions in mind. First, we plan
to fuse the separated mapping and localization modules into a single SLAM
module. Second, we would like to explore pole-based localization in different
sensor modalities.

12.7 Acknowledgements
We thank Arash Ushani for his kind support with the NCLT dataset.

12.7. Acknowledgements 175

A
pp

ro
ac
h

∆
po

s
R

M
SE

po
s

∆
la
t

σ
la
t

∆
lo
n

σ
lo
n

∆
an

g
σ
an

g
R

M
SE

an
g

[m
]

[m
]

[m
]

[m
]

[m
]

[m
]

[◦]
[◦]

[◦]

K
üm

m
er
le

et
al
.[
12
9]

0.
12

–
0.

07
–

0.
08

–
0.

33
–

–
W
en
g
et

al
.[
24
]

–
–

–
0.

08
2

–
0.

16
4

–
0.

32
9

–
Se
fa
ti
et

al
.[
25
]

–
0.

24
–

–
–

–
–

–
0.

68
O
ur
s

0.
09

6
0.

11
1

0.
06

1
0.

07
5

0.
06

0
0.

06
7

0.
13

3
0.

18
8

0.
21

4

Ta
bl
e
12
.2
:
C
om

pa
ris

on
of

th
e
ac
cu
ra
ci
es

of
Se
fa
ti

et
al
.’s

m
et
ho

d
an

d
th
e
pr
op

os
ed

lo
ca
liz
at
io
n
ap

pr
oa
ch

on
th
e

K
IT

T
I
da

ta
se
t.

T
he

re
su
lts

of
W
en
g
et

al
.a

nd
K
üm

m
er
le

et
al
.a

re
no

t
di
re
ct
ly

co
m
pa

ra
bl
e
an

d
ar
e
st
at
ed

fo
r

qu
al
ita

tiv
e
an

al
ys
is

on
ly
.

176 Chapter 12. Localization Using Pole Landmarks

Part IV

Conclusion and Outlook

177

179

This dissertation explored different aspects of mapping and localization
for mobile robots using lidar data: sensor models, map representations, fea-
ture extraction, and feature-based mapping and localization. In the follow-
ing, we summarize the key insights gained in the scope of these works.

The first important finding in all our works is as simple as that: Leverag-
ing all tangible information always improves performance compared to using
only part of the information at hand. The decay-rate model, for example,
outperforms related approaches like the reflection model in terms of localiza-
tion accuracy because it does not only account for whether or not a ray hits
a particular voxel, but also what distance the ray covers within that voxel.
Full-posterior maps outperform maximum-likelihood maps because for each
map cell, they maintain full probability distributions over all possible map
values instead of condensing them to their modes. Our polyline and plane
extraction approaches outperform related methods in terms of accuracy be-
cause in contrast to the latter, they account for the ray path information
contained in the sensor data.

The second key insight refers to the theoretical basis of an algorithm:
the stronger its probabilistic foundation, the higher the accuracy of the
corresponding results. Our works on polyline and plane feature extraction
demonstrate this finding when being compared to related heuristic methods.
Moreover, it is because of this observation that we are convinced our ap-
proach to pole extraction could be further refined by basing it on a more
probability-theoretic formulation.

In order to apply these insights to future research in lidar-based mapping
and localization, we derive a set of guiding principles from them. First,
use as little algorithmic simplifications as possible. As can be seen in the
comparison of full-posterior maps versus maximum-likelihood maps, avoiding
simplifications can lead to significant improvements in accuracy.

Second, always make use of the full ray path information. Although
popular, correlation-based lidar models, which only take lidar endpoints as
input, ignore a significant portion of the measurement information output by
the sensor. Without knowing the location of the sensor, they cannot process
any information about the free space. This clearly leads to poor performance
compared to methods that leverage all of this information.

Third, do not discard no-return measurements. Correlation-based models
may not be able to process them, but they carry valuable information about
where the space around the robot is free.

The above recommendations target maximum accuracy, not computa-
tional efficiency. When these two goals conflict with each other, it may not
be possible to fully comply with our advice due to computational require-
ments. But often, they do not conflict, as demonstrated in our works intro-

180

ducing decay-rate maps and closed-form full-posterior maps: Both decay-rate
maps and full-posterior maps achieve higher accuracy than previous methods
without increasing computational complexity at all.

When analyzing the state of the art, one realizes that these recommenda-
tions are often violated. For example, there are only few approaches to grid
mapping that do without the independence assumption between the cells
of the map, although this assumption clearly discards a possibly significant
portion of the original information provided by the sensor. Similarly, most
approaches to robot localization make use of the Markov assumption, which
also simplifies the information at hand. For us, gradually overcoming these
simplifications has great potential to improve system performance, to push
the boundary of the state of the art in robot mapping and localization fur-
ther, and eventually to render robots capable of navigating even the most
challenging environments.

Bibliography

[1] M. G. Jadidi, J. V. Miro, and G. Dissanayake, “Gaussian processes
autonomous mapping and exploration for range-sensing mobile robots,”
Autonomous Robots, vol. 42, no. 2, pp. 273–290, 2018.

[2] A. Schaefer, L. Luft, and W. Burgard, “DCT maps: compact differen-
tiable lidar maps based on the cosine transform,” IEEE Robotics and
Automation Letters, vol. 3, no. 2, pp. 1002–1009, April 2018.

[3] M. Veeck and W. Burgard, “Learning polyline maps from range scan
data acquired with mobile robots,” in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, vol. 2, September 2004, pp.
1065–1070.

[4] A. Schaefer, D. Büscher, L. Luft, and W. Burgard, “A maximum like-
lihood approach to extract polylines from 2-D laser range scans,” in
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, October 2018, pp. 4766–4773.

[5] N. Carlevaris-Bianco, A. K. Ushani, and R. M. Eustice, “University
of Michigan north campus long-term vision and lidar dataset,” Inter-
national Journal of Robotics Research, vol. 35, no. 9, pp. 1023–1035,
2015.

[6] A. Schaefer, D. Büscher, J. Vertens, L. Luft, and W. Burgard, “Long-
term urban vehicle localization using pole landmarks extracted from
3-D lidar scans,” in European Conference on Mobile Robots, September
2019.

[7] United States of America Patent 6 809 490, 2001.

[8] G. Gallego, T. Delbruck, G. Orchard, C. Bartolozzi, B. Taba, A. Censi,
S. Leutenegger, A. Davison, J. Conradt, K. Daniilidis et al., “Event-
based vision: a survey,” arXiv preprint arXiv:1904.08405, 2019.

181

http://robots.engin.umich.edu/nclt/nclt.pdf
http://robots.engin.umich.edu/nclt/nclt.pdf

182 Bibliography

[9] W. Burgard, D. Fox, H. Jans, C. Matenar, and S. Thrun, “Sonar-
based mapping of large-scale mobile robot environments using EM,”
in Sixteenth International Conference on Machine Learning, 1999, pp.
67–76.

[10] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press,
2005.

[11] D. Hähnel, R. Triebel, W. Burgard, and S. Thrun, “Map building with
mobile robots in dynamic environments,” in IEEE International Con-
ference on Robotics and Automation, vol. 2, September 2003, pp. 1557–
1563.

[12] H. Moravec, “Sensor fusion in certainty grids for mobile robots,” AI
Magazine, vol. 9, no. 2, pp. 61–74, July 1988.

[13] A. Elfes, “Occupancy grids: a probabilistic framework for robot percep-
tion and navigation,” Ph.D. dissertation, Carnegie Mellon University,
1989.

[14] P. Biber and W. Strasser, “The normal distributions transform: a new
approach to laser scan matching,” in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, vol. 3, October 2003, pp.
2743–2748.

[15] S. T. O’Callaghan and F. T. Ramos, “Gaussian process occupancy
maps,” The International Journal of Robotics Research, vol. 31, no. 1,
pp. 42–62, 2012.

[16] F. T. Ramos and L. Ott, “Hilbert maps: scalable continuous occupancy
mapping with stochastic gradient descent,” in Robotics: Science and
Systems, July 2015.

[17] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Ma-
chine Learning. The MIT Press, 2006.

[18] A. Atoyan and J. Patera, “Properties of continuous Fourier extension of
the discrete cosine transform and its multidimensional generalization,”
Journal of Mathematical Physics, vol. 45, no. 6, pp. 2468–2491, 2004.

[19] V. Nguyen, A. Martinelli, N. Tomatis, and R. Siegwart, “A compari-
son of line extraction algorithms using 2D laser rangefinder for indoor
mobile robotics,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, August 2005, pp. 1929–1934.

Bibliography 183

[20] M. Visvalingam and J. D. Whyatt, “Line generalisation by repeated
elimination of points,” The Cartographic Journal, vol. 30, no. 1, pp.
46–51, 1993.

[21] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature,”
Cartographica: The International Journal for Geographic Information
and Geovisualization, vol. 10, pp. 112–122, October 1973.

[22] T. Pavlidis and S. L. Horowitz, “Segmentation of plane curves,” IEEE
Transactions on Computers, vol. C-23, no. 8, pp. 860–870, August 1974.

[23] A. Hoover, G. Jean-Baptiste, X. Jiang, P. J. Flynn, H. Bunke,
D. B. Goldgof, K. Bowyer, D. W. Eggert, A. Fitzgibbon, and R. B.
Fisher, “An experimental comparison of range image segmentation al-
gorithms,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 18, no. 7, pp. 673–689, July 1996.

[24] L. Weng, M. Yang, L. Guo, B. Wang, and C. Wang, “Pole-based real-
time localization for autonomous driving in congested urban scenar-
ios,” in IEEE International Conference on Real-time Computing and
Robotics, August 2018, pp. 96–101.

[25] M. Sefati, M. Daum, B. Sondermann, K. D. Kreisköther, and A. Kamp-
ker, “Improving vehicle localization using semantic and pole-like land-
marks,” in IEEE Intelligent Vehicles Symposium, June 2017, pp. 13–19.

[26] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
the kitti dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[27] A. Schaefer and D. Büscher. Long-term urban vehicle localization
using pole landmarks extracted from 3-D lidar scans. [Online].
Available: https://github.com/acschaefer/polex

[28] L. Luft, A. Schaefer, T. Schubert, and W. Burgard, “Detecting changes
in the environment based on full posterior distributions over real-valued
grid maps,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp.
1299–1305, April 2018.

[29] A. Schaefer*, L. Luft*, and W. Burgard, “An analytical lidar sensor
model based on ray path information,” IEEE Robotics and Automation
Letters, vol. 2, no. 3, pp. 1405–1412, July 2017.

https://homepages.inf.ed.ac.uk/rbf/PAPERS/hoover.pdf
https://homepages.inf.ed.ac.uk/rbf/PAPERS/hoover.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8621688
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8621688
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8621688
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7995692
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7995692
https://github.com/acschaefer/polex
https://github.com/acschaefer/polex
https://github.com/acschaefer/polex

184 Bibliography

[30] S. Thrun, “Learning occupancy grid maps with forward sensor models,”
Autonomous Robots, vol. 15, no. 2, pp. 111–127, September 2003.

[31] N. Atanasov, M. Zhu, K. Daniilidis, and G. J. Pappas, “Semantic local-
ization via the matrix permanent,” in Robotics: Science and Systems,
vol. 2, July 2014.

[32] K. Y. K. Leung, F. Inostroza, and M. Adams, “Generalizing random-
vector SLAM with random finite sets,” in IEEE International Confer-
ence on Robotics and Automation, May 2015, pp. 4583–4588.

[33] M. Yguel, O. Aycard, and C. Laugier, “Efficient GPU-based construc-
tion of occupancy grids using several laser range-finders,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, May 2006,
pp. 105–110.

[34] A. Elfes, “Using occupancy grids for mobile robot perception and nav-
igation,” Computer, vol. 22, no. 6, pp. 46–57, June 1989.

[35] S. Thrun, “A probabilistic on-line mapping algorithm for teams of mo-
bile robots,” The International Journal of Robotics Research, vol. 20,
no. 5, pp. 335–363, 2001.

[36] F. Ferri, M. Gianni, M. Menna, and F. Pirri, “Dynamic obstacles de-
tection and 3D map updating,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, September 2015, pp. 5694–5699.

[37] M. Bennewitz, C. Stachniss, S. Behnke, and W. Burgard, “Utilizing
reflection properties of surfaces to improve mobile robot localization,”
in IEEE International Conference on Robotics and Automation, May
2009, pp. 63–68.

[38] J. Ahtiainen, T. Stoyanov, and J. Saarinen, “Normal distributions
transform traversability maps: LIDAR-only approach for traversability
mapping in outdoor environments,” Journal of Field Robotics, vol. 34,
no. 3, pp. 600–621, 2017.

[39] R. Limosani, L. Y. Morales, J. Even, F. Ferreri, A. Watanabe, F. Cav-
allo, P. Dario, and N. Hagita, “Long-term human affordance maps,”
in IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, September 2015, pp. 5748–5754.

[40] C. Plagemann, K. Kersting, P. Pfaff, and W. Burgard, “Gaussian beam
processes: a nonparametric Bayesian measurement model for range
finders,” in Robotics: Science and Systems, June 2007.

Bibliography 185

[41] P. J. Besl and N. D. McKay, “A method for registration of 3-D
shapes,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 14, no. 2, pp. 239–256, February 1992.

[42] T. De Laet, J. De Schutter, and H. Bruyninckx, “Rigorously Bayesian
range finder sensor model for dynamic environments,” in IEEE In-
ternational Conference on Robotics and Automation, May 2008, pp.
2994–3001.

[43] J. Mullane, M. D. Adams, and W. S. Wijesoma, “Robotic mapping
using measurement likelihood filtering,” The International Journal of
Robotics Research, vol. 28, no. 2, pp. 172–190, 2009.

[44] R. P. Mahler, Statistical multisource-multitarget information fusion.
Artech House Norwood, MA, USA, 2007, vol. 685.

[45] L. Luft*, A. Schaefer*, T. Schubert, and W. Burgard, “Closed-form full
map posteriors for robot localization with lidar sensors,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, September
2017, pp. 6678–6684.

[46] T. K. Marks, A. Howard, M. Bajracharya, G. W. Cottrell, and
L. Matthies, “Gamma-SLAM: using stereo vision and variance grid
maps for SLAM in unstructured environments,” in IEEE International
Conference on Robotics and Automation, May 2008, pp. 3717–3724.

[47] A. Doucet, N. d. Freitas, K. P. Murphy, and S. J. Russell, “Rao-
Blackwellised particle filtering for dynamic Bayesian networks,” in 16th
Conference on Uncertainty in Artificial Intelligence, 2000, pp. 176–183.

[48] G. D. Tipaldi, D. Meyer-Delius, and W. Burgard, “Lifelong localization
in changing environments,” in The International Journal of Robotics
Research, vol. 32, no. 14, December 2013, pp. 1662–1678.

[49] K. P. Murphy, “Bayesian map learning in dynamic environments,” in
Advances in Neural Information Processing Systems. MIT Press, 2000,
pp. 1015–1021.

[50] J. A. Castellanos, J. M. M. Montiel, J. Neira, and J. D. Tardos,
“The SPmap: a probabilistic framework for simultaneous localization
and map building,” IEEE Transactions on Robotics and Automation,
vol. 15, no. 5, pp. 948–952, October 1999.

186 Bibliography

[51] L. Luft, T. Schubert, S. I. Roumeliotis, and W. Burgard, “Recur-
sive decentralized collaborative localization for sparsely communicating
robots,” in Robotics: Science and Systems, June 2016.

[52] S. Thrun, “Robotic mapping: a survey,” in Exploring Artificial Intelli-
gence in the New Millenium. Morgan Kaufmann, 2002.

[53] D. Valcarce, J. Parapar, and A. Barreiro, “Additive smoothing for
relevance-based language modelling of recommender systems,” in 4th
Spanish Conference on Information Retrieval, New York, NY, USA,
2016, pp. 9:1–9:8.

[54] A. Howard and N. Roy, “The robotics data set repository (Radish),”
2003. [Online]. Available: http://radish.sourceforge.net/

[55] J. Ryde and M. Brünig, “Non-cubic occupied voxel lists for robot
maps,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, October 2009, pp. 4771–4776.

[56] H. Moravec and A. Elfes, “High resolution maps from wide angle
sonar,” in IEEE International Conference on Robotics and Automa-
tion, vol. 2, March 1985, pp. 116–121.

[57] M. Herbert, C. Caillas, E. Krotkov, I. S. Kweon, and T. Kanade, “Ter-
rain mapping for a roving planetary explorer,” in IEEE International
Conference on Robotics and Automation, vol. 2, May 1989, pp. 997–
1002.

[58] R. Triebel, P. Pfaff, and W. Burgard, “Multi-level surface maps for
outdoor terrain mapping and loop closing,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, October 2006, pp. 2276–
2282.

[59] I. Dryanovski, W. Morris, and J. Xiao, “Multi-volume occupancy grids:
an efficient probabilistic 3D mapping model for micro aerial vehicles,”
in IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, October 2010, pp. 1553–1559.

[60] D. Meagher, “Geometric modeling using octree encoding,” Computer
Graphics and Image Processing, vol. 19, no. 2, pp. 129–147, 1982.

[61] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: a probabilistic, flexible, and compact 3D map repre-
sentation for robotic systems,” in ICRA 2010 workshop on best practice
in 3D perception and modeling for mobile manipulation, vol. 2, 2010.

http://radish.sourceforge.net/

Bibliography 187

[62] P. Payeur, P. Hebert, D. Laurendeau, and C. M. Gosselin, “Probabilis-
tic octree modeling of a 3D dynamic environment,” in IEEE Interna-
tional Conference on Robotics and Automation, vol. 2, April 1997, pp.
1289–1296.

[63] K. Pathak, A. Birk, J. Poppinga, and S. Schwertfeger, “3D forward sen-
sor modeling and application to occupancy grid based sensor fusion,”
in IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, October 2007, pp. 2059–2064.

[64] N. Fairfield, G. Kantor, and D. Wettergreen, “Real-time SLAM with
octree evidence grids for exploration in underwater tunnels,” Journal
of Field Robotics, vol. 24, no. 1-2, pp. 3–21, 2007.

[65] T. Krajnik, J. P. Fentanes, G. Cielniak, C. Dondrup, and T. Duckett,
“Spectral analysis for long-term robotic mapping,” in IEEE Interna-
tional Conference on Robotics and Automation, May 2014, pp. 3706–
3711.

[66] J. Ryde and H. Hu, “3D mapping with multi-resolution occupied voxel
lists,” Autonomous Robots, vol. 28, no. 2, p. 169, September 2009.

[67] J. Saarinen, H. Andreasson, T. Stoyanov, J. Ala-Luhtala, and A. J.
Lilienthal, “Normal distributions transform occupancy maps: applica-
tion to large-scale online 3D mapping,” in IEEE International Confer-
ence on Robotics and Automation, May 2013, pp. 2233–2238.

[68] J. Saarinen, H. Andreasson, T. Stoyanov, and A. J. Lilienthal, “Nor-
mal distributions transform Monte-Carlo localization (NDT-MCL),”
in IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, November 2013, pp. 382–389.

[69] T. Stoyanov, J. Saarinen, H. Andreasson, and A. J. Lilienthal, “Normal
distributions transform occupancy map fusion: simultaneous mapping
and tracking in large scale dynamic environments,” in IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, November
2013, pp. 4702–4708.

[70] R. Valencia, J. Saarinen, H. Andreasson, J. Vallvé, J. Andrade-Cetto,
and A. J. Lilienthal, “Localization in highly dynamic environments
using dual-timescale NDT-MCL,” in IEEE International Conference
on Robotics and Automation, May 2014, pp. 3956–3962.

188 Bibliography

[71] M. Yguel, C. T. M. Keat, C. Braillon, C. Laugier, and O. Aycard,
“Dense mapping for range sensors: efficient algorithms and sparse rep-
resentations,” in Robotics: Science and Systems, June 2007.

[72] D. Fridovich-Keil, E. Nelson, and A. Zakhor, “AtomMap: a probabilis-
tic amorphous 3D map representation for robotics and surface recon-
struction,” in IEEE International Conference on Robotics and Automa-
tion, May 2017, pp. 3110–3117.

[73] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann, “6D SLAM
– 3D mapping outdoor environments,” Journal of Field Robotics,
vol. 24, no. 8–9, pp. 699–722, 2007.

[74] H. Surmann, A. Nüchter, and J. Hertzberg, “An autonomous mobile
robot with a 3D laser range finder for 3D exploration and digitalization
of indoor environments,” Robotics and Autonomous Systems, vol. 45,
no. 3, pp. 181–198, 2003.

[75] D. M. Cole and P. M. Newman, “Using laser range data for 3D SLAM in
outdoor environments,” in IEEE International Conference on Robotics
and Automation, May 2006, pp. 1556–1563.

[76] R. Chatila and J. Laumond, “Position referencing and consistent world
modeling for mobile robots,” in IEEE International Conference on
Robotics and Automation, vol. 2, March 1985, pp. 138–145.

[77] M. Montemerlo, D. Hähnel, D. Ferguson, R. Triebel, W. Burgard,
S. Thayer, W. Whittaker, and S. Thrun, “A system for three-
dimensional robotic mapping of underground mines,” Carnegie-Mellon
University Pittsburgh, PA, School of Computer Science, Tech. Rep.,
2002.

[78] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira,
M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk,
“The Digital Michelangelo Project: 3D scanning of large statues,” in
27th Annual Conference on Computer Graphics and Interactive Tech-
niques, New York, NY, USA, 2000, pp. 131–144.

[79] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J.
Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon, “Kinect-
Fusion: real-time dense surface mapping and tracking,” in 10th IEEE
International Symposium on Mixed and Augmented Reality, October
2011, pp. 127–136.

Bibliography 189

[80] S. O’Callaghan, F. T. Ramos, and H. Durrant-Whyte, “Contextual oc-
cupancy maps using Gaussian processes,” in IEEE International Con-
ference on Robotics and Automation, May 2009, pp. 1054–1060.

[81] S. Dragiev, M. Toussaint, and M. Gienger, “Gaussian process implicit
surfaces for shape estimation and grasping,” in IEEE International
Conference on Robotics and Automation, May 2011, pp. 2845–2850.

[82] F. T. Ramos and L. Ott, “Hilbert maps: Scalable continuous occupancy
mapping with stochastic gradient descent,” The International Journal
of Robotics Research, vol. 35, no. 14, pp. 1717–1730, 2016.

[83] C. E. Rasmussen and H. Nickisch, “Gaussian processes for machine
learning (GPML) toolbox,” Journal of Machine Learning Research,
vol. 11, pp. 3011–3015, December 2010.

[84] A. Garulli, A. Giannitrapani, A. Rossi, and A. Vicino, “Mobile robot
SLAM for line-based environment representation,” in 44th IEEE Con-
ference on Decision and Control, December 2005, pp. 2041–2046.

[85] D. Rodriguez-Losada, F. Matia, and R. Galan, “Building geometric fea-
ture based maps for indoor service robots,” Robotics and Autonomous
Systems, vol. 54, no. 7, pp. 546–558, 2006.

[86] Y.-H. Choi, T.-K. Lee, and S.-Y. Oh, “A line feature based SLAM
with low grade range sensors using geometric constraints and active
exploration for mobile robot,” Autonomous Robots, vol. 24, no. 1, pp.
13–27, January 2008.

[87] J. Lv, Y. Kobayashi, A. A. Ravankar, and T. Emaru, “Straight line
segments extraction and EKF-SLAM in indoor environment,” Journal
of Automation and Control Engineering, vol. 2, no. 3, 2014.

[88] C. Berger, “Toward rich geometric map for SLAM: online detection
of planes in 2D lidar,” Journal of Automation Mobile Robotics and
Intelligent Systems, vol. 7, 2013.

[89] D. Sack and W. Burgard, “A comparison of methods for line extraction
from range data,” in 5th IFAC Symposium on Intelligent Autonomous
Vehicles (IAV), vol. 33, 2004.

[90] G. A. Borges and M. J. Aldon, “A split-and-merge segmentation al-
gorithm for line extraction in 2D range images,” in 15th International
Conference on Pattern Recognition, vol. 1, 2000, pp. 441–444.

190 Bibliography

[91] L. J. Latecki and R. Lakaemper, “Polygonal approximation of laser
range data based on perceptual grouping and EM,” in IEEE Interna-
tional Conference on Robotics and Automation, May 2006, pp. 790–796.

[92] S. T. Pfister and J. W. Burdick, “Multi-scale point and line range
data algorithms for mapping and localization,” in IEEE International
Conference on Robotics and Automation, May 2006, pp. 1159–1166.

[93] J. S. Berrio, S. O. Ordoñez, and E. C. Bravo, “Lines extraction in laser
scans through the integration of the Hough transform and SEF,” in
Workshop on Engineering Applications, May 2012, pp. 1–6.

[94] A. Harati and R. Siegwart, “A new approach to segmentation of 2D
range scans into linear regions,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, October 2007, pp. 2083–2088.

[95] S. T. Pfister, S. I. Roumeliotis, and J. W. Burdick, “Weighted line
fitting algorithms for mobile robot map building and efficient data rep-
resentation,” in IEEE International Conference on Robotics and Au-
tomation, vol. 1, September 2003, pp. 1304–1311.

[96] J. D. Tardós, J. Neira, P. M. Newman, and J. J. Leonard, “Robust
mapping and localization in indoor environments using sonar data,”
The International Journal of Robotics Research, vol. 21, no. 4, pp.
311–330, 2002.

[97] D. Navarro, G. Benet, and M. Martinez, “Line based robot localization
using a rotary sonar,” in IEEE Conference on Emerging Technologies
and Factory Automation, September 2007, pp. 896–899.

[98] D. Navarro, G. Benet, and F. Blanes, “Line-based incremental map
building using infrared sensor ring,” in IEEE International Conference
on Emerging Technologies and Factory Automation, September 2008,
pp. 833–838.

[99] G. D. Tipaldi and K. O. Arras, “FLIRT – interest regions for 2D range
data,” in IEEE International Conference on Robotics and Automation,
May 2010, pp. 3616–3622.

[100] M. Bosse and R. Zlot, “Map matching and data association for
large-scale two-dimensional laser scan-based SLAM,” The International
Journal of Robotics Research, vol. 27, no. 6, pp. 667–691, 2008.

Bibliography 191

[101] ——, “Keypoint design and evaluation for place recognition in 2D lidar
maps,” Robotics and Autonomous Systems, vol. 57, no. 12, pp. 1211–
1224, 2009.

[102] J. Lagarias, J. A. Reeds, M. H. Wright, and P. Wright, “Convergence
properties of the Nelder–Mead Simplex Method in low dimensions,”
SIAM Journal on Optimization, vol. 9, pp. 112–147, 12 1998.

[103] A. Schaefer, J. Vertens, D. Büscher, and W. Burgard, “A maximum
likelihood approach to extract finite planes from 3-D laser scans,”
in IEEE International Conference on Robotics and Automation, May
2019, pp. 72–78.

[104] A. Schaefer, J. Vertens, and D. Büscher. (2019) Probabilistic Plane
Extraction. [Online]. Available: https://github.com/acschaefer/ppe

[105] J.-E. Deschaud and F. Goulette, “A fast and accurate plane detection
algorithm for large noisy point clouds using filtered normals and voxel
growing,” in 5th International Symposium on 3D Data Processing, Vi-
sualization and Transmission, 2010.

[106] A. Nurunnabi, D. Belton, and G. West, “Robust segmentation in laser
scanning 3D point cloud data,” in International Conference on Digital
Image Computing Techniques and Applications, December 2012, pp.
1–8.

[107] Z. Dong, B. Yang, P. Hu, and S. Scherer, “An efficient global energy op-
timization approach for robust 3D plane segmentation of point clouds,”
ISPRS Journal of Photogrammetry and Remote Sensing, vol. 137, pp.
112–133, 2018.

[108] D. Holz and S. Behnke, “Fast range image segmentation and smooth-
ing using approximate surface reconstruction and region growing,” in
Intelligent Autonomous Systems 12. Springer, 2013, pp. 61–73.

[109] P. F. Proença and Y. Gao, “Fast cylinder and plane extraction from
depth cameras for visual odometry,” Computing Research Repository,
vol. abs/1803.02380, 2018.

[110] X. Jiang and H. Bunke, “Fast segmentation of range images into planar
regions by scan line grouping,”Machine Vision and Applications, vol. 7,
no. 2, pp. 115–122, June 1994.

https://github.com/acschaefer/ppe
https://github.com/acschaefer/ppe
https://github.com/acschaefer/ppe
https://hal-mines-paristech.archives-ouvertes.fr/hal-01097361/document
https://hal-mines-paristech.archives-ouvertes.fr/hal-01097361/document
https://hal-mines-paristech.archives-ouvertes.fr/hal-01097361/document
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6411672
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6411672
https://www.ri.cmu.edu/wp-content/uploads/2018/01/1-s2.0-S0924271618300133-main.pdf
https://www.ri.cmu.edu/wp-content/uploads/2018/01/1-s2.0-S0924271618300133-main.pdf
http://www.ais.uni-bonn.de/papers/IAS_2012_Holz.pdf
http://www.ais.uni-bonn.de/papers/IAS_2012_Holz.pdf
https://arxiv.org/pdf/1803.02380.pdf
https://arxiv.org/pdf/1803.02380.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.35.6197&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.35.6197&rep=rep1&type=pdf

192 Bibliography

[111] C. Cabo, S. G. Cortés, and C. Ordoñez, “Mobile laser scanner data for
automatic surface detection based on line arrangement,” Automation
in Construction, vol. 58, pp. 28–37, 2015.

[112] A. J. Trevor, S. Gedikli, R. B. Rusu, and H. I. Christensen, “Efficient
organized point cloud segmentation with connected components,” Se-
mantic Perception Mapping and Exploration, 2013.

[113] C. Feng, Y. Taguchi, and V. R. Kamat, “Fast plane extraction in
organized point clouds using agglomerative hierarchical clustering,”
in IEEE International Conference on Robotics and Automation, May
2014, pp. 6218–6225.

[114] R. T. Marriott, A. Pashevich, and R. Horaud, “Plane-extraction from
depth-data using a Gaussian mixture regression model,” Computing
Research Repository, vol. abs/1710.01925, 2017.

[115] T. T. Pham, M. Eich, I. Reid, and G. Wyeth, “Geometrically con-
sistent plane extraction for dense indoor 3D maps segmentation,” in
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, October 2016, pp. 4199–4204.

[116] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, June 1981.

[117] P. F. U. Gotardo, O. R. P. Bellon, and L. Silva, “Range image segmen-
tation by surface extraction using an improved robust estimator,” in
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 2, June 2003, pp. II–33.

[118] O. Gallo, R. Manduchi, and A. Rafii, “CC-RANSAC: fitting planes in
the presence of multiple surfaces in range data,” Pattern Recognition
Letters, vol. 32, no. 3, pp. 403–410, 2011.

[119] A. Sveier, A. L. Kleppe, L. Tingelstad, and O. Egeland, “Object de-
tection in point clouds using conformal geometric algebra,” Advances
in Applied Clifford Algebras, vol. 27, no. 3, pp. 1961–1976, September
2017.

[120] M. Alehdaghi, M. A. Esfahani, and A. Harati, “Parallel RANSAC:
speeding up plane extraction in RGBD image sequences using GPU,”

https://ac.els-cdn.com/S092658051500148X/1-s2.0-S092658051500148X-main.pdf?_tid=5f9760d8-e49c-474d-9769-887bd15193a6&acdnat=1533575790_a2be54f53e5914afd2a126059f26d92b
https://ac.els-cdn.com/S092658051500148X/1-s2.0-S092658051500148X-main.pdf?_tid=5f9760d8-e49c-474d-9769-887bd15193a6&acdnat=1533575790_a2be54f53e5914afd2a126059f26d92b
https://cs.gmu.edu/~kosecka/ICRA2013/spme13_trevor.pdf
https://cs.gmu.edu/~kosecka/ICRA2013/spme13_trevor.pdf
https://www.merl.com/publications/docs/TR2014-066.pdf
https://www.merl.com/publications/docs/TR2014-066.pdf
https://arxiv.org/pdf/1710.01925.pdf
https://arxiv.org/pdf/1710.01925.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7759618
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7759618
http://delivery.acm.org/10.1145/360000/358692/p381-fischler.pdf?ip=132.230.195.117&id=358692&acc=ACTIVE%20SERVICE&key=2BA2C432AB83DA15%2E4191B95BD496D1F1%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1553624015_a6047b4d05dab65bc1f7991805d80d19
http://delivery.acm.org/10.1145/360000/358692/p381-fischler.pdf?ip=132.230.195.117&id=358692&acc=ACTIVE%20SERVICE&key=2BA2C432AB83DA15%2E4191B95BD496D1F1%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1553624015_a6047b4d05dab65bc1f7991805d80d19
http://delivery.acm.org/10.1145/360000/358692/p381-fischler.pdf?ip=132.230.195.117&id=358692&acc=ACTIVE%20SERVICE&key=2BA2C432AB83DA15%2E4191B95BD496D1F1%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1553624015_a6047b4d05dab65bc1f7991805d80d19
https://pdfs.semanticscholar.org/368f/89138f12c39ee29c753ca864ffdb36da3651.pdf
https://pdfs.semanticscholar.org/368f/89138f12c39ee29c753ca864ffdb36da3651.pdf
http://www.sciencedirect.com/science/article/pii/S0167865510003557
http://www.sciencedirect.com/science/article/pii/S0167865510003557
https://link.springer.com/content/pdf/10.1007/s00006-017-0759-1.pdf
https://link.springer.com/content/pdf/10.1007/s00006-017-0759-1.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7365845
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7365845

Bibliography 193

in International Conference on Computer and Knowledge Engineering,
October 2015, pp. 295–300.

[121] G. Vosselman, B. Gorte, G. Sithole, and T. Rabbani, “Recognising
structure in laser scanning point clouds,” in Proceedings of the IS-
PRS working group VIII/2: laser scanning for forest and landscape
assessment, M. Thies, B. Koch, H. Spiecker, and H. Weinacher, Eds.
University of Freiburg, October 2004, pp. 33–38.

[122] B. Oehler, J. Stueckler, J. Welle, D. Schulz, and S. Behnke, “Efficient
multi-resolution plane segmentation of 3D point clouds,” in Interna-
tional Conference on Intelligent Robotics and Applications. Springer,
2011, pp. 145–156.

[123] D. Borrmann, J. Elseberg, K. Lingemann, and A. Nüchter, “The 3D
Hough transform for plane detection in point clouds: a review and a
new accumulator design,” 3D Research, vol. 2, no. 2, p. 3, November
2011.

[124] H. Akaike, “Information theory and an extension of the maximum like-
lihood principle,” in Selected papers of Hirotugu Akaike. Springer,
1998, pp. 199–213.

[125] P. H. Torr and A. Zisserman, “MLESAC: a new robust estimator with
application to estimating image geometry,” Computer vision and image
understanding, vol. 78, no. 1, pp. 138–156, 2000.

[126] Mitsubishi Electric Research Laboratories. (2018) PEAC.
[Online]. Available: http://www.merl.com/research/?research=
license-request&sw=PEAC

[127] M. Modsching, R. Kramer, and K. ten Hagen, “Field trial on GPS accu-
racy in a medium size city: the influence of built-up,” in 3rd Workshop
on Positioning, Navigation and Communication, 2006, pp. 209–218.

[128] J. Levinson and S. Thrun, “Robust vehicle localization in urban envi-
ronments using probabilistic maps,” in IEEE International Conference
on Robotics and Automation, May 2010, pp. 4372–4378.

[129] J. Kümmerle, M. Sons, F. Poggenhans, T. Kühner, M. Lauer, and
C. Stiller, “Accurate and efficient self-localization on roads using basic
geometric primitives,” in IEEE International Conference on Robotics
and Automation, May 2019, pp. 5965–5971.

https://www.ais.uni-bonn.de/papers/ICIRA_2011_Oehler_Stueckler.pdf
https://www.ais.uni-bonn.de/papers/ICIRA_2011_Oehler_Stueckler.pdf
https://robotik.informatik.uni-wuerzburg.de/telematics/download/3dresearch2011.pdf
https://robotik.informatik.uni-wuerzburg.de/telematics/download/3dresearch2011.pdf
https://robotik.informatik.uni-wuerzburg.de/telematics/download/3dresearch2011.pdf
https://www.robots.ox.ac.uk/~vgg/publications/2000/Torr00/torr00.pdf
https://www.robots.ox.ac.uk/~vgg/publications/2000/Torr00/torr00.pdf
http://www.merl.com/research/?research=license-request&sw=PEAC
http://www.merl.com/research/?research=license-request&sw=PEAC
http://www.merl.com/research/?research=license-request&sw=PEAC
http://wpnc.net/fileadmin/WPNC06/Proceedings/30_Field_trial_on_GPS_Accuracy_in_a_medium_size_city_The_influence_of_builtup.pdf
http://wpnc.net/fileadmin/WPNC06/Proceedings/30_Field_trial_on_GPS_Accuracy_in_a_medium_size_city_The_influence_of_builtup.pdf
http://driving.stanford.edu/papers/ICRA2010.pdf
http://driving.stanford.edu/papers/ICRA2010.pdf

194 Bibliography

[130] R. Spangenberg, D. Goehring, and R. Rojas, “Pole-based localization
for autonomous vehicles in urban scenarios,” in IEEE International
Conference on Intelligent Robots and Systems, October 2016, pp. 2161–
2166.

[131] C. Brenner, “Global localization of vehicles using local pole patterns,”
in Pattern Recognition, J. Denzler, G. Notni, and H. Süße, Eds.
Springer Berlin Heidelberg, 2009, pp. 61–70.

[132] C. Cabo, C. Ordóñez, S. Garcia-Cortes, and J. Martínez-Sánchez, “An
algorithm for automatic detection of pole-like street furniture objects
from mobile laser scanner point clouds,” ISPRS Journal of Photogram-
metry and Remote Sensing, vol. 87, pp. 47–56, 01 2014.

[133] F. Tombari, N. Fioraio, T. Cavallari, S. Salti, A. Petrelli, and L. D. Ste-
fano, “Automatic detection of pole-like structures in 3D urban environ-
ments,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, September 2014, pp. 4922–4929.

[134] B. Rodríguez-Cuenca, S. García-Cortés, C. Ordóñez, and M. C. Alonso,
“Automatic detection and classification of pole-like objects in urban
point cloud data using an anomaly detection algorithm,” Remote Sens-
ing, vol. 7, no. 10, pp. 12 680–12 703, 2015.

[135] Y. Yu, J. Li, H. Guan, C. Wang, and J. Yu, “Semiautomated extraction
of street light poles from mobile LiDAR point-clouds,” IEEE Transac-
tions on Geoscience and Remote Sensing, vol. 53, no. 3, pp. 1374–1386,
2015.

[136] F. Wu, C. Wen, Y. Guo, J. Wang, Y. Yu, C. Wang, and J. Li, “Rapid
localization and extraction of street light poles in mobile lidar point
clouds: a supervoxel-based approach,” IEEE Transactions on Intel-
ligent Transportation Systems, vol. 18, no. 2, pp. 292–305, February
2017.

[137] H. Zheng, F. Tan, and R. Wang, “Pole-like object extraction from
mobile lidar data,” The International Archives of the Photogrammetry,
Remote Sensing & Spatial Information Sciences, vol. 41, 2016.

[138] H. Yokoyama, H. Date, S. Kanai, and H. Takeda, “Detection and clas-
sification of pole-like objects from mobile laser scanning data of urban
environments,” International Journal of CAD/CAM, vol. 13, no. 2, pp.
31–40, 2013.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7759339
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7759339
https://link.springer.com/content/pdf/10.1007%2F978-3-642-03798-6.pdf
https://www.researchgate.net/publication/259135508_An_algorithm_for_automatic_detection_of_pole-like_street_furniture_objects_from_Mobile_Laser_Scanner_point_clouds/download
https://www.researchgate.net/publication/259135508_An_algorithm_for_automatic_detection_of_pole-like_street_furniture_objects_from_Mobile_Laser_Scanner_point_clouds/download
https://www.researchgate.net/publication/259135508_An_algorithm_for_automatic_detection_of_pole-like_street_furniture_objects_from_Mobile_Laser_Scanner_point_clouds/download
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6943262
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6943262
https://www.researchgate.net/publication/282313644_Automatic_Detection_and_Classification_of_Pole-Like_Objects_in_Urban_Point_Cloud_Data_Using_an_Anomaly_Detection_Algorithm/download
https://www.researchgate.net/publication/282313644_Automatic_Detection_and_Classification_of_Pole-Like_Objects_in_Urban_Point_Cloud_Data_Using_an_Anomaly_Detection_Algorithm/download
https://www.researchgate.net/publication/265911327_Semiautomated_Extraction_of_Street_Light_Poles_From_Mobile_LiDAR_Point-Clouds/download
https://www.researchgate.net/publication/265911327_Semiautomated_Extraction_of_Street_Light_Poles_From_Mobile_LiDAR_Point-Clouds/download
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7497465
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7497465
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7497465
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-B1/729/2016/isprs-archives-XLI-B1-729-2016.pdf
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-B1/729/2016/isprs-archives-XLI-B1-729-2016.pdf
https://pdfs.semanticscholar.org/0818/6d729d1c79558c813893c66cdf62e9241e5a.pdf
https://pdfs.semanticscholar.org/0818/6d729d1c79558c813893c66cdf62e9241e5a.pdf
https://pdfs.semanticscholar.org/0818/6d729d1c79558c813893c66cdf62e9241e5a.pdf

Bibliography 195

[139] C. Ordóñez, C. Cabo, and E. Sanz-Ablanedo, “Automatic detection
and classification of pole-like objects for urban cartography using mo-
bile laser scanning data,” Sensors, vol. 17, no. 7, p. 1465, 2017.

[140] F. Li, S. Oude Elberink, and G. Vosselman, “Pole-like road furniture
detection and decomposition in mobile laser scanning data based on
spatial relations,” Remote Sensing, vol. 10, no. 4, 2018.

[141] B. Qin, Z. Chong, T. Bandyopadhyay, M. H. Ang, E. Frazzoli, and
D. Rus, “Curb-intersection feature based Monte Carlo localization on
urban roads,” in IEEE International Conference on Robotics and Au-
tomation, May 2012, pp. 2640–2646.

[142] A. Schindler, “Vehicle self-localization with high-precision digital
maps,” in IEEE Intelligent Vehicles Symposium, June 2013, pp. 141–
146.

[143] M. Schreiber, C. Knöppel, and U. Franke, “LaneLoc: lane marking
based localization using highly accurate maps,” in IEEE Intelligent
Vehicles Symposium, June 2013, pp. 449–454.

[144] A. Y. Hata and D. F. Wolf, “Feature detection for vehicle localization
in urban environments using a multilayer lidar,” IEEE Transactions on
Intelligent Transportation Systems, vol. 17, no. 2, pp. 420–429, Febru-
ary 2016.

[145] A. Welzel, P. Reisdorf, and G. Wanielik, “Improving urban vehicle lo-
calization with traffic sign recognition,” in IEEE International Confer-
ence on Intelligent Transportation Systems, September 2015, pp. 2728–
2732.

[146] J.-H. Im, S.-H. Im, and G.-I. Jee, “Vertical corner feature based precise
vehicle localization using 3D lidar in urban area,” Sensors, vol. 16,
no. 8, p. 1268, 2016.

[147] K. Fukunaga and L. Hostetler, “The estimation of the gradient of a den-
sity function, with applications in pattern recognition,” IEEE Transac-
tions on Information Theory, vol. 21, no. 1, pp. 32–40, January 1975.

https://www.mdpi.com/1424-8220/17/7/1465/pdf
https://www.mdpi.com/1424-8220/17/7/1465/pdf
https://www.mdpi.com/1424-8220/17/7/1465/pdf
https://www.mdpi.com/2072-4292/10/4/531/pdf
https://www.mdpi.com/2072-4292/10/4/531/pdf
https://www.mdpi.com/2072-4292/10/4/531/pdf
http://ares.lids.mit.edu/fm/documents/curb-inter.pdf
http://ares.lids.mit.edu/fm/documents/curb-inter.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6629461
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6629461
http://www.cvlibs.net/projects/autonomous_vision_survey/literature/Schreiber2013IV.pdf
http://www.cvlibs.net/projects/autonomous_vision_survey/literature/Schreiber2013IV.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7279128
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7279128
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7313530
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7313530
https://www.mdpi.com/1424-8220/16/8/1268/pdf
https://www.mdpi.com/1424-8220/16/8/1268/pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1055330
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1055330

196 Bibliography

	I Introduction
	II Discussion of the Individual Contributions
	1 An Analytical Lidar Sensor Model Based on Ray Path Information
	1.1 Research Context
	1.2 Contribution
	1.3 Critical Discussion

	2 Closed-Form Full Map Posteriors for Robot Localization with Lidar Sensors
	2.1 Research Context
	2.2 Contribution
	2.3 Critical Discussion

	3 DCT Maps: Compact Differentiable Lidar Maps Based on the Cosine Transform
	3.1 Research Context
	3.2 Contribution
	3.3 Critical Discussion

	4 A Maximum-Likelihood Approach to Extract Polylines from 2-D Laser Range Scans
	4.1 Research Context
	4.2 Contribution
	4.3 Critical Discussion

	5 A Maximum-Likelihood Approach to Extract Finite Planes from 3-D Laser Scans
	5.1 Research Context
	5.2 Contribution
	5.3 Critical Discussion

	6 Long-Term Urban Vehicle Localization Using Pole Landmarks Extracted from 3-D Lidar Scans
	6.1 Research Context
	6.2 Contribution
	6.3 Critical Discussion

	III Publications
	7 An Analytical Lidar Sensor Model Based on Ray Path Information
	7.1 Abstract
	7.2 Introduction
	7.3 Related Work
	7.3.1 Map Representations
	7.3.2 Sensor Models

	7.4 Approach
	7.4.1 The Basic Idea of the Decay-Rate Model
	7.4.2 Mapping
	7.4.3 Localization
	7.4.4 Integrating Out-of-Range Measurements

	7.5 Mathematical Details
	7.5.1 Decay-Rate Maps Maximize the Data Likelihood
	7.5.2 The Decay-Rate Model Generalizes the Reflection Model

	7.6 Experiments
	7.6.1 Monte-Carlo Localization
	7.6.2 Evaluation of the Pose Likelihood
	7.6.3 Discussion of Results

	7.7 Conclusion and Future Work

	8 Closed-Form Full Map Posteriors for Robot Localization with Lidar Sensors
	8.1 Abstract
	8.2 Introduction
	8.3 Related Work
	8.4 Approach
	8.4.1 Factorizing Forward Sensor Models
	8.4.2 Recursive Map Update
	8.4.3 Closed-Form Map Posteriors
	8.4.4 Localization with Map Posteriors
	8.4.5 Closed-Form Measurement Likelihoods

	8.5 Experiments
	8.5.1 Localization in Simulation
	8.5.2 Real-World Localization

	8.6 Conclusion and Future Work

	9 DCT Maps: Compact Differentiable Lidar Maps Based on the Cosine Transform
	9.1 Abstract
	9.2 Introduction
	9.3 Related Work
	9.4 Approach
	9.4.1 The Decay-Rate Model
	9.4.2 Transforming the Spectral Map Representation to the Spatial Domain
	9.4.3 Computing the Measurement Likelihood
	9.4.4 Building the Decay-Rate Map

	9.5 Experiments
	9.5.1 Map Value Comparison
	9.5.2 Measurement Probability Comparison
	9.5.3 Execution Times

	9.6 Conclusion and Future Work

	10 A Maximum-Likelihood Method to Extract Polylines from 2-D Laser Range Scans
	10.1 Abstract
	10.2 Introduction
	10.3 Related Work
	10.4 Approach
	10.4.1 Probabilistic Sensor Model
	10.4.2 Polyline Extraction
	10.4.3 Polyline Optimization

	10.5 Experiments
	10.6 Conclusion and Future Work

	11 A Maximum-Likelihood Approach to Extract Finite Planes from 3-D Laser Scans
	11.1 Abstract
	11.2 Introduction
	11.3 Related Work
	11.4 Approach
	11.4.1 Probabilistic Sensor Model
	11.4.2 Maximum-Likelihood Estimation
	11.4.3 Agglomerative Hierarchical Clustering
	11.4.4 Probabilistic Plane Extraction

	11.5 Experiments
	11.6 Conclusion and Future Work

	12 Long-Term Urban Vehicle Localization Using Pole Landmarks Extracted from 3-D Lidar Scans
	12.1 Abstract
	12.2 Introduction
	12.3 Related Work
	12.4 Approach
	12.4.1 Pole Extraction
	12.4.2 Mapping
	12.4.3 Localization

	12.5 Experiments
	12.5.1 Localization on the NCLT Dataset
	12.5.2 Localization on the KITTI Dataset

	12.6 Conclusion and Future Work
	12.7 Acknowledgements

	IV Conclusion and Outlook
	Bibliography

