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Zusammenfassung

Bereits Jahre bevor selbstfahrende Autos ein aktives Forschungsgebiet wurden,
haben sich Roboter von statischen Maschinen, welche repetitiven Aufgaben an
Fließbändern erledigen, hin zu mobilen Robotern entwickelt, welche in für Men-
schen gemachten Umgebungen vielfältige Aufgaben erledigen. Eine wichtige Fä-
higkeit eines mobilen Roboters ist es sich in seiner Umgebung zu lokalisieren.
Bewegt sich der Roboter im Freien, kann er mittels des Global Positioning System
(GPS) lokalisiert werden. Befindet sich der Roboter jedoch in engen städtischen
Umgebungen oder in Gebäuden, so muss der Roboter relativ zu einer Karte der
Umgebung lokalisiert werden. In dieser Arbeit werden verschiedene Methoden zur
Lokalisierung und Kartierung mittels mobiler Roboter vorgestellt.

Zuerst präsentieren wir eine Methode, um einen Roboter auf einer Graph-
basierten Karte, wie sie beispielsweise von OpenStreetMap kommt, zu lokalisieren.
Hierzu ist der Roboter mit einer Radodometrie sowie einem 3D Laserscanner
ausgestattet. Zur Lokalisierung verwenden wir einen Partikelfilter, welcher die Ra-
dodometrie nutzt um die Bewegung des Roboters zwischen zwei Scans zu schätzen
und die Partikel zu verschieben. Die 3D Scans werden in eine 2D Repräsentation
überführt und anschließend verwendet um Straßen in der Umgebung zu erkennen.
Diese Repräentation wird mittels eines Feature-basierten Boostings in Bereiche,
welche Straße repräsentieren und solche, die andere Umgebung zeigen, eingeteilt.
In unseren Experimenten zeigen wir, dass dieses Verfahren anderen modernen
Methoden zur Lokalisierung auf OpenStreetMap-Karten überlegen ist, da es nicht
notwendig ist, dass der Roboter auf den Straßen fährt. Die Lokalisierung auf öffent-
lich zugänglichen OpenStreetMap-Karten erlaubt es dem Roboter zuvor ungesehene
Bereiche zu besuchen und sich dort zu lokalisieren – ohne dass vorher eine Karte
erzeugt werden muss.

Nicht immer ist es ausreichend sich auf einer Graph-basierten Repräsentation
des Straßennetzwerkes zu lokalisieren, da dieses nur den groben Verlauf der Stra-
ßen abbildet und üblicherweise keine Information über die Bereiche zwischen
diesen bereitstellt. Daher befassen wir uns im weiteren Verlauf dieser Arbeit mit der
Erzeugung von dreidimensionalen Rasterkarten. Wenn Karten in dynamischen, bei-
spielsweise städtischen, Umgebungen erzeugt werden sollen, müssen sich ändernde
Bereiche erkannt und speziell behandelt werden. Im zweiten Teil unserer Arbeit
stellen wir daher zwei Verfahren vor, um dynamische von statischen Messungen
in einzelnen 3D Scans zu unterscheiden. Zuerst präsentieren wir eine Methode
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welche mittels eines Random Decision Forests und auf benachbarten Punkten be-
rechneten Features Wahrscheinlichkeiten bestimmt, dass eine Messung von einem
dynamischen Objekt, wie einem Auto oder Fußgänger, erzeugt wurde. Anschlie-
ßend stellen wir eine Methode für die Dynamikerkennung vor, welche ohne das
Design und die explizite Berechnung von Features auskommt. Diese verwendet hier-
zu einen Deep Learning Ansatz, welcher direkt auf der Tiefenbild-Repräsentation
eines 3D Scans die Wahrscheinlichkeit, dass ein Punkt ein dynamisches Objekt
repräsentiert, errechnet. Diese Methode benötigt zum Lernen mehr Trainingsdaten,
ist aber schneller und präziser in der Erkennung dynamischer Objekte. In unseren
Experimenten vergleichen wir beide Methoden und zeigen, dass beide Methoden
sowohl sich bewegende Objekte, wie fahrende Autos, als auch Objekte, welche sich
bewegen können, beispielsweise stehende Fußgänger oder geparkte Fahrzeuge,
verlässlich erkennen.

Anschließend an die Erkennung dynamischer Bereiche in 3D Scans präsentieren
wir ein Verfahren, welches mit Hilfe dieser berechneten Wahrscheinlichkeiten ei-
ne 3D Rasterkarte erstellt, welche lediglich die statischen Teile einer Umgebung
repräsentiert. Eine solche Karte ist Hilfreich zur Lokalisierung eines mobilen Robo-
ters, da die Karte über einen längeren Zeitraum den Bereich korrekt darstellt. In
der Auswertung unseres Kartierungsansatzes zeigen wir, dass dynamische Objek-
te wie Fahrzeuge, welche möglicherweise beim nächsten Besuch der Umgebung
ihren Standort gewechselt haben oder verschwunden sind, nicht in unserer Karte
repräsentiert werden.

Im letzten Teil unserer Arbeit zeigen wir wie die Dynamikerkennung und der
Kartierungsansatz erweitert werden können, um, zusätzlich zur Belegtheit einer
Zelle der Karte, auch den Zustand eines darin repräsentierten Objektes zu schätzen.
Hierzu modifizieren wir den Deep Learing Ansatz zur Dynamikerkennung insofern,
dass wir statische, stehende und sich bewegende Objekte unterscheiden können.
Da sich dynamische Objekte während der Kartierung bewegen können, kann sich
unsere Karte während der Erstellung ändern. Um immer den neusten Zustand der
Umgebung zu repräsentieren, müssen wir solche Änderungen detektieren. Wir eva-
luieren hierzu Methoden zur Erkennung eines Zustandswechsels in einer Folge von
Messungen. Anschließend zeigen wir, dass die so erzeugten Karten zuverlässlich
den neusten Zustand der Umgebung abbilden.

Zusammenfassend stellen wir in dieser Arbeit Verfahren im Bereich der Lokali-
sierung, Dynamikerkennung und Kartierung vor. Wir präsentieren zunächst eine
Methode, um einen mobilen Roboter auf einer OpenStreetMap-Karte zu lokalisieren.
Anschließend stellen wir Algorithmen vor, um dynamische von statischen Messun-
gen zu unterscheiden und hiermit Karten der statischen Teile einer Umgebung zu
erstellen. Des Weiteren zeigen wir, wie diese Methoden erweitert werden können,
um neben der Belegtheit auch den dynamischen Zustand von Objekten in der Karte
zu schätzen.
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Abstract

Years before autonomous cars became an active research area, robots found their
way from doing repetitive tasks on factory floors into becoming mobile robots
deployed to environments made for humans. One key-functionality of a mobile
robot is the ability to localize itself. In this thesis, we propose different methods for
localization and mapping in dynamic environments using mobile robots.

In the first part of this thesis, we propose a particle filter to localize a robot
equipped with a LiDAR sensor on a graph-based road map provided by Open-
StreetMap. We present a road classification of 3D scans as well as a novel sensor
model to be used in the particle filter. In contrast to other OpenStreetMap-based
localization methods, our approach does not require the robot to travel on the
roads.

Localization on a graph-based representation of the road network is not always
sufficient, as the network only represents the coarse course of the roads and usually
does not provide any information about the areas in between roads. Therefor, we
proceed by presenting methods to build 3D grid maps. In dynamic environments,
parts of the map can change due to moving objects. To detect such changes, we
present in the second part of this thesis two methods to predict the probability
that measurements were caused by dynamic objects. The first method uses local
features while the second method employs a Deep Learning approach.

In the third part of this thesis, we show how these dynamic object probabilities
can be used to generate 3D grid maps representing the static aspects of a dynamic
environment.

In the last part of this thesis, we show how the dynamic detection and the
mapping algorithm can be extended to estimate a map representing, in addition to
the reflectance probability, a distribution of dynamic objects in the environment.
This allows path planning or scan matching algorithms to treat dynamic areas
differently. By representing dynamic objects in the map, we need to detect which
parts of the environment change due to dynamics. Therefor, we present methods
to detect such changing map parts.

We trained and evaluated our proposed methods on real-world data collected by
our own robots and from the KITTI dataset. In extensive experiments, we show that,
we can robustly localize a mobile robot on a graph-based road network and that
our proposed mapping methods are well suited to learn robust maps in dynamic
environments.

v





Acknowledgements

At this point I would like to thank all individuals who made this thesis possible.
First, I would like to thank Prof. Dr. Wolfram Burgard for the opportunity to do

my Ph.D. at his great group. I am grateful for the freedom to choose my way of
research and for the enjoyable work environment provided.

I would like to thank Bastian Steder and Michael Ruhnke from which I received a
lot of helpful advice on how to solve my problems and answers to seemingly stupid
questions saving me a lot of time.

I also thank my colleagues for their opinions, discussions and advices.
In particular:

• Johan Vertens for its help with the neural network for estimation of dynamic
object probabilities and answers to Deep Learning related questions.

• Lukas Luft for his help developing a break point detection method to detect
changing map parts.

• Ayush Dewan for LiDAR data which did not made it into this thesis and his
answers on LiDAR related questions.

• My office colleagues Andreas and Daniel Kuhner for discussion on problems
related to mathematics, LaTeX, C++, methods and general questions.

Last but not least I would like to thank my wife and kids for believing in me and
this thesis. Especially during the writing part they were of vital support and bought
me a lot of valuable time without which this thesis would not have succeeded in
time.

vii





Contents

1 Introduction 1

1.1 Contribution of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Collaborations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Fundamentals 5

2.1 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Mathematical Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Bayes Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Learning Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5.2 Random Decision Forest . . . . . . . . . . . . . . . . . . . . . . 11
2.5.3 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.4 Intersection over Union (IoU) . . . . . . . . . . . . . . . . . . . 12

2.6 Point Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 OpenStreetMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.8 Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.8.1 Obelix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.8.2 Viona . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Localization on OpenStreetMap Data using a 3D Laser Scanner 19

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 MCL-based Localization on Road Networks . . . . . . . . . . . . . . . 22

3.3.1 Monte Carlo Localization . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Our Implementation of the Monte Carlo Filter . . . . . . . . . 22
3.3.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.4 Weighting / Sensor Model . . . . . . . . . . . . . . . . . . . . . 24

3.4 Planning Paths on the Road Network . . . . . . . . . . . . . . . . . . . 26

ix



Contents

3.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.1 Distance to Road . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.2 Chamfer Distance . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.3 Initialization and Parameters . . . . . . . . . . . . . . . . . . . 28
3.5.4 Simulation Experiments . . . . . . . . . . . . . . . . . . . . . . 28
3.5.5 Simulated Offroad Data . . . . . . . . . . . . . . . . . . . . . . 31
3.5.6 Robot Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Feature-based Approach for the Detection of Dynamic Objects in 3D

Range Data 39

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Feature-based Detection of Dynamic Objects . . . . . . . . . . . . . . 42

4.3.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.2 Learning Method . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.1 Training Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.2 University Parking Lot . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.3 City Center of Freiburg . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.4 KITTI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.5 Model Generalization . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.6 Feature Extraction and Learning Methods . . . . . . . . . . . 51

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Deep Learning Approach for the Detection of Dynamic Objects in 3D

Range Data 55

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 Detection of Dynamic Objects . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.1 Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4.1 Training Data from the KITTI Object Dataset . . . . . . . . . . 60
5.4.2 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4.3 Training the Neural Network . . . . . . . . . . . . . . . . . . . 61
5.4.4 IoU Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4.5 Comparison with Feature-based Dynamic Detection . . . . . 63

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Mapping with Dynamic Probabilities 67

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3 Mapping with Dynamic Probabilities . . . . . . . . . . . . . . . . . . . 69
6.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 70

x



Contents

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7 Multi-Class Mapping 75

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.3 Multi-Class Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.3.1 Three-Class Dynamic Object Probability Estimation . . . . . . 78
7.3.2 Break Point Detection . . . . . . . . . . . . . . . . . . . . . . . . 79
7.3.3 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.4.1 Using the KITTI Tracking Dataset . . . . . . . . . . . . . . . . 85
7.4.2 Dynamic Detection . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.4.3 Break Point Detection . . . . . . . . . . . . . . . . . . . . . . . . 88
7.4.4 Combining Measurements . . . . . . . . . . . . . . . . . . . . . 92
7.4.5 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8 Conclusion 107

8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Bibliography 111

List of Figures 119

List of Tables 123

xi





1

C
H

A
P

T
E

R

Introduction

In recent years autonomous cars became a field of utmost importance and help to
make traffic safer and more efficient. Intelligent cars can help a tired or unobservant
driver to avoid fatal crashes by detecting dangerous situations and warn the
driver or even solve the situation themselves. With a rising number of fully
autonomous cars traffic can become more efficient. For example, stop-and-go
traffic can transform into slow but moving traffic if cars communicate with each
other. Fully autonomous cars would also allow drivers to work, relax or even sleep
during their ride.

While highly autonomous cars are just recently emerge in large numbers, mobile
robots found their way already into other fields. Today, many exhausting tasks are
already carried out by mobile robots. Autonomous forklifts are moving goods in
warehouses [15, 42] while cleaning robots with different levels of intelligence are
cleaning personal homes [20] or business rooms [34]. Mobile robots can also go
where humans can not – including catacombs that are in danger of collapsing [92].
Autonomous underwater vehicle can dive deep in the oceans [49] or for days under
the arctic ice [32]. There are even mobile robots deployed on mars [40].

Depending on their environment and application, mobile robots need to solve
different tasks including localization, mapping, path and action planning, percep-
tion, reasoning and much more. In this thesis, we focus on the tasks of localization,
mapping and dynamic detection. Mobile robots moving outside are often equipped
with global positioning system (GPS) (or similar global navigation satellite systems
such as GLONASS) receivers allowing for a global localization up to sub-meter ac-
curacy. GPS works by triangulation of the time of flight of position signals received
from at least four satellites. However, if the robot drives indoors or when large
obstacles, for example buildings or close by mountains, limit the view to the sky,
GPS does not work reliably. Another approach is to localize the robot relative to a

1



1. Introduction

map. In this thesis, we propose methods for localization and mapping in dynamic
environments using a mobile robot.

There are various types of maps. On the one hand, there are maps representing
the full 3D geometry of an environment, on the other hand maps representing high
level informations such as the road network. A popular example of the later are
road maps printed on paper which humans used for years to navigate. In Chapter 3,
we propose a method to localize a mobile robot equipped with a 3D LiDAR sensor
and wheel-odometry on a graph-based road map provided by OpenStreetMap. We
use boosting to classify 3D scans into road and non-road cells. Building on this
classification, we propose a novel sensor model to be used in the particle filter to
weight particles on how well they are aligned with the road network. In contrast
to other OpenStreetMap-based localization methods, our method do not force the
robot to travel on the roads.

While localization on road networks is helpful to navigate towards a distant
target, especially in previously unvisited locations, the localization accuracy is
limited by the road network. If the task at hand requires a finer localization
or if information about free and occupied parts of the environment is required,
volumetric maps are a common choice. We therefor present in the second part
of this thesis methods to build 3D grid maps which capture the geometry of the
environment. To generate consistent maps in dynamic environments, we detect
measurements caused by dynamic objects and treated these different than such
created by static parts of the environment. In Chapter 4 and 5, we propose two
methods to estimate probabilities that measurements were created by dynamic
objects. The first method uses features computed on local point neighborhoods
and a random decision forest to estimate probabilities for each point in a single
3D scan that this measurement was caused by a dynamic object, such as a car or a
pedestrian. The second method uses a Deep Learning approach to predict these
probabilities end-to-end without the design and explicit computation of features.
While this method needs a large training set it is faster during prediction and
estimates the probabilities with higher accuracy.

Dynamic objects, such as parked cars, might disappear or change their position if
a robot revisits an environment after some time causing localization uncertainty.
For this reason dynamic objects should not be present in a map or marked as
such. In Chapter 6 we apply our probabilities that measurements were caused
by dynamic objects to generate 3D grid maps representing the static aspects of
dynamic environments. The maps represent per cell the probability that a beam
hitting a cell is reflected by a static object.

In Chapter 7, we show how the dynamic detection and the mapping algorithm
can be extended to estimate a map representing, in addition to the reflectance
probability, a distribution about dynamic objects in the map. This allows path
planning or scan matching algorithms to treat areas were dynamics occur differently.
By representing dynamic objects in the map, we need to keep track of changing map
parts. We therefor present methods to detect changes in a stream of measurements.
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1.1. Contribution of this Thesis

The methods presented in this thesis allow mobile robots to localize themselves
in previously unseen environments and build maps in highly dynamic environments,
such as urban traffic or pedestrian areas.

1.1 Contribution of this Thesis

In this thesis, we present methods for localization, dynamic detection and mapping
in dynamic environments.

• In Chapter 3, we present a method to localize a mobile robot on a graph-based
representation of the road network. We propose a classification of the robot’s
LiDAR scans into road and non-road cells. This classification is used in a
novel sensor model to relate the scans to the road graph in our proposed
particle filter. Other than related work this method does not require the robot
to travel on the roads but allows it to leave the road network.

• To estimate in single 3D scans the probability that measurements were caused
by dynamic objects, we propose in Chapter 4 a method based on a random
decision forest. It uses manual designed features on local point neighbors.
The method distinguishes measurements generated by static objects from
dynamic ones while also detecting objects that can move such as parked cars.

• In Chapter 5, we propose a Deep Learning approach for the same task in
an end-to-end fashion. This approach is faster and more accurate than the
feature-based method.

• Using the proposed probabilities that measurements were created by dynamic
objects, we introduce in Chapter 6 a mapping approach to build 3D grid maps
representing only the static aspects of a dynamic environment.

• In Chapter 7, we show how these methods can be extended to build 3D grid
maps representing, in addition to the reflectance probability, a distribution of
dynamics objects represented in the map. As the environment might change
during mapping, we propose methods to detect those changes for robust
mapping.

3



1. Introduction

1.2 Publications

Parts of this thesis are based on work published in the following papers.

• Philipp Ruchti, Bastian Steder, Michael Ruhnke, and Wolfram Burgard. „Lo-
calization on OpenStreetMap Data using a 3D Laser Scanner.“ In: Proc. of the
IEEE Int. Conf. on Robotics & Automation (ICRA). Seattle, Washington, USA,
May 2015

• Philipp Ruchti and Wolfram Burgard. „Mapping with Dynamic-Object Prob-
abilities Calculated from Single 3D Range Scans.“ In: Proc. of the IEEE Int.
Conf. on Robotics & Automation (ICRA). Brisbane, Australia, May 2018

1.3 Collaborations

The work used in this thesis was developed under the supervision of Wolfram
Burgard at the Autonomous Intelligent Systems Lab (AIS).

The publication „Localization on OpenStreetMap Data using a 3D Laser Scan-
ner“ [63] as well as Chapter 4 was developed under additional supervision and
with help of Bastian Steder and Michael Ruhnke.
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Fundamentals

In this chapter, we present the basic concepts used in this thesis. After the in-
troduction of abbreviations and mathematical notations, we discuss the topic of
localization and the particle filter as one implementation of the Bayes filter to solve
this task. Afterward, we shortly introduce the topic of mapping. We then present
different learning methods used in this thesis. The chapter ends with a description
of point clouds, the map data from OpenStreetMap and the employed robots.

2.1 Abbreviations

There are some abbreviations which are frequently used throughout this thesis
which we define in Table 2.1.

Short Meaning Description

GPS Global Positioning System Satellite-based global localization
system

IMU Inertial measurement unit A sensor to measure accelerations and
rotations

osm OpenStreetMap An open license, user-generated world
map

MCL Monte Carlo Localization A sample-based localization method
LiDAR Light Detection And Ranging A method to generate laser scans
IoU Intersection over Union A quality measure for labeling
KITTI KITTI dataset [22] A public dataset including LiDAR scans

Table 2.1: Abbreviations used in this thesis
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2. Fundamentals

2.2 Mathematical Notations

In this section, we introduce the most relevant mathematical notations. Our used
notations are listed in Table 2.2 ordered by their first occurrence.

Symbol Meaning

x robot pose
z measurement
t time index
bel(○) belief about ○
p(○) probability of an event ○
p(○ ∣ ●) probability of an event ○ conditioned on the event ●
µ,σ2 mean and variance
w particle weight
⟨xi,wi⟩ particle
m,m⋆ map and most likely map
n map cell
(x, y), (x′, y′) pixel positions in a range image
I intensity
Zt, Zt

i histogram measurement and histogram value
Zt merged histograms
Ẑt merged histograms estimate
H(⋅) entropy
b break point in a stream of measurements
H hits during mapping
M misses during mapping

Table 2.2: Mathematical notation, used in this thesis.

2.3 Localization

In the context of robotics, localization is the task to determine the pose of a robot,
either globally or relative to the environment. If the robot navigates outdoors often
the Global Positioning System (GPS) is used to globally localize a robot within a
radius of a few meters. GPS works by triangulating satellite position messages
by the time of flight of the signal. The accuracy of the estimate depends on the
amount of satellites visible. In cases in which the clear view of the sky is occluded
by buildings or trees, the accuracy drops heavily. Other than the global localization
provided by GPS, a robot can also be localized relative to a map of the environment.
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2.3. Localization

For this task two types of sensor informations are usually employed. First, a sensor
to perceive the environment and second, a sensor to estimate the motion of the
robot between two environment measurements. Based on the environment type
and application of the robot, different sensors might be applied to perceive the
environment. Such sensors include color or 3D cameras, LiDAR or radar sensors.
To estimate the motion of the robot, the odometry of the robot can be estimated by
counting wheel revolution, integrating IMU measurements or by matching sensor
readings against each other to estimate the displacement of the robot.

2.3.1 Bayes Filter

No sensor is perfect [21], such that methods for localization need to deal with the
resulting uncertainty. The Bayes Filter is a recursive filter to estimate the state of a
dynamic system where only noisy measurements are available. In the context of
localization, this state would be the pose of the robot and the measurements would
be observations of the environment, such as laser scans. The Bayes filter estimates
the belief bel (x) over a random variable x as a probability distribution. The belief
at a time t is estimated using all measurements seen up to this point:

bel (xt) = p (xt ∣ z1, . . . , zt) . (2.1)

This estimation gets exponential more complex with new measurements. The
Markov assumption [5] states in this case, that given the state xt−1 is known, we
no longer gain any information from the old measurements or states. We can use
this to recursively compute the belief bel (xt) using only the old belief bel (xt−1) and
the new measurement zt. The Bayes filter updates the belief whenever it receives a
new measurement by a prediction and a correction step. In the prediction step, we
predict how the bel (xt) changes given the old belief bel (xt−1) as follows:

bel (xt) = ∫ p (xt ∣ xt−1) bel (xt−1)dxt−1 (2.2)

In the correction step we use the new measurement zt to correct this prediction:

bel (xt) = ηp (zt ∣ xt) bel (xt) , (2.3)

where η is a normalization factor. In the case of robot localization, we do not
only have sensor measurements zt but also odometry readings or actions ut. This
changes our belief estimation as follows: bel (xt) = p (xt ∣ z1, . . . , zt, u1, . . . , ut) . The
actions are considered in the prediction step of the filter as they give a hint on how
the state xt evolves from the old state xt−1. This results in the updated prediction
step:

bel (xt) = ∫ p (xt ∣ ut, xt−1) bel (xt−1)dxt−1 (2.4)

An implementation of the Bayes filter is the Kalman filter (see [73] and [31]). The
belief is represented by a Gaussian distribution: bel (x) ∼ N (µ,σ2). If the state can
be estimated linearly from the measurements and the underlying noise is Gaussian
the Kalman filter is an optimal filter.
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2.3.2 Particle Filter

In some cases the estimation of a single Gaussian distribution is not sufficient. For
example in the case of localization, the belief about the robot’s pose might become
non Gaussian or even multi-modal. To cope with this problem, we use a particle
filter [75] to localize the robot. The particle filter is a Monte Carlo approximation
of the Bayes filter. The belief is not represented by a closed form distribution, as in
the Kalman filter, but is estimated by maintaining a set of samples. Each sample
keeps a hypothesis about the belief and is weighted by how well it explains the
seen measurements. In the particle filter the belief is represented by a finite set of
weighted hypotheses called particles:

{⟨xi,wi⟩ ∣ i = 1, . . . ,N} , (2.5)

where xi represents the state hypothesis and wi the weight of the i-th particle. Each
particle represents a single hypothesis. The belief about the state can be estimated
as:

bel(x) =
N

∑
i=1
wiδ(x − xi), (2.6)

where δ(x) is the Dirac delta function which is 1 at a value of x = 0 and 0 elsewhere.
In the prediction step, for each particle the hypothesis xt is modified by sampling

from the distribution p (xt ∣ xt−1) or p (xt ∣ xt−1, ut) if actions are given. In the
correction step, the importance weight of each particle is computed based on how
well the measurement zt is explained by the state hypothesis xt:

w = ηp (zt ∣ xt) . (2.7)

where η = (∑Ni=1wi)
−1

is a normalization factor, such that all weights sum up to one.
As a particle filter can only maintain a finite set of particles, we need to keep the

particles in areas of the distribution with a high probability density. This introduces
a third step to our algorithm: the resampling. In this step a new set of particles is
sampled, where the chance of survival for each particle is proportional to its weight
in the old particle set. It replaces less likely particles with copies of such with high
probability.

There are different methods for resampling. By sampling N -times a value v
from the interval [0,1] and taking the first particle ⟨xj,wj⟩ where v ≤ ∑ji=1wi, we
receive particles were the survival is proportional to each particles weight. This
sampling process is called roulette wheel sampling and is depicted in Figure 2.1a.
The shaded area visualizes the sum of weights denoted above. The green particle
w9 is chosen. The process is repeated N times independently. This independent
sampling can lead to the case where particles with high weights are not represented
in the new particle set. Another method to sample a new set of particles is the
stochastic universal sampling depicted in Figure 2.1b. In contrast to the roulette
wheel sampling, all N particles are sampled at a time. First, a value v is sampled
from the interval [0,N−1]. As in the first sampling process the particle where
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(b) Stochastic universal sampling

Figure 2.1: Two different sampling methods which can be used for the resampling
process in the particle filter. In the roulette wheel sampling, each particle is sampled
individually. The stochastic universal sampling samples a set of N particles at once.

v ≤ ∑ji=1wi is added to the particle set. After this, v is increased by N−1 and the
next particle is chosen. This process is repeated N times. The stochastic universal
sampling ensures that each particle with a weight of N−1 or higher is added to the
new particle set. In both methods all particles receive a weight of N−1 after the
sampling process.

Depending on the application, the copying of particles can be a costly process
and even with the stochastic universal sampling the resampling process bears the
risk of dropping particles around the true state. For this reason, the number of
resampling operations should be kept as low as possible.

With an increasing number of particles, the estimate of the belief gets more
robust and precise. On the other hand, more particles increase the computational
load. As a result, the number of particles used is a tradeoff between computational
performance and quality of the approximation.

2.4 Mapping

The task of mapping with known poses is to determine the most likely map from a
set of measurements zt were the corresponding sensor pose xt is given:

m⋆ = argmax
m

p (m ∣ z1, . . . , zN , x1, . . . , xN) . (2.8)

The process of estimating the map heavily depends on the type of map generated.
Feature maps store the positions of features such as trees, corners or beacons.
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The mapping estimates the distributions over the position of single features. For
example, each feature position can be estimated using a Kalman filter. This map
representation is compact and suited for localization but does not represent the
structure of the environment. On the other hand, grid maps estimate a volumetric
representation of the environment. The environment is subdivided into discrete
cells. These cells can either be regular or dependent on the environment as in
octrees [50]. Each cell stores information about the environment in the defined
space such as if a cell is free or occupied. To keep the generation of grid maps
trackable the estimation of a cell is assumed to be independent of its neighbors.
Using this independence assumption, we obtain:

p(m ∣ z1, . . . , zN , x1, . . . , xN) = ∏
n∈m

p (n ∣ z1, . . . , zN , x1, . . . , xN) , (2.9)

where n represents a single map cell. The estimate for a map cell is computed
with all measurements falling into this cell. Additional information, such as laser
beams which cross a cell but does not ends in it, can be used. Depending on
the application, the map represents different features of the environment. These
include if a cell is free or occupied and the reflectance or color of the environment.

2.5 Learning Methods

In this section, we explain two methods we use during this thesis to learn which
parts of a 3D scan belong to dynamic objects. First, we introduce the random
decision forest, a feature-based machine learning method and the decision tree,
the basic building block of the random decision forest. Both methods are based on
the computation of features from the data. Instead of designing features, it is also
possible to learn directly on the input, for example using a deep learning approach
as presented afterward. We finalize this section by introducing the Intersection over
Union (IoU) measure which we use to evaluate the result of our learned models.

The field of machine learning can be divided into two main tasks. On the
one hand, the task of classification searches discrete labels for each input. An
example of classification is the assignment of images of handwritten letters to the
corresponding letters. On the other hand, regression searches to learn a function
on the data to predict continues variables, like predicting the sale price of a car
based on its age, manufacturer and color.

2.5.1 Decision Tree

A decision tree is a special tree used in machine learning either for the task of
classification or regression. The tree structure used is usually a binary tree [8, 18,
35]. Each node divides the input space along an axis into two sub-regions which
are then recursively represented as the left and right subtree. Each node represents
a feature and a corresponding split value. If during prediction the feature value
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Figure 2.2: An example of a decision tree for the task of classification. Each node
represents a feature which is computed on the input. Based on the result v the tree is
traversed towards the left or right subtree. The leaves represent class labels.

computed on an input is smaller than the stored split value the right subtree is
traversed, if it is larger the next feature is computed in the left subtree. In the
case of classification each leaf stores a class label, during regression the leaves
return real-valued function values. An example of a decision tree for the task of
classification is shown in Figure 2.2. During learning the order of features and their
corresponding split values are determined using the training data.

2.5.2 Random Decision Forest

A random decision forest [7, 28] is a set of decision trees, each trained with a
randomized feature order. The random decision forest returns the combined result
of the individual decision trees during prediction. By using a set of randomized
decision trees the random decision forest becomes more robust to noise and reduces
the problem of overfitting, which usually occurs in decision trees. During training,
the randomization of the individual decision trees can be achieved by training each
tree individually on a subset of the training data and features.

2.5.3 Deep Learning

Deep Learning [66] is a subfield of machine learning which is motivated by infor-
mation processing occurring in the human brain. In the human brain, billions of
neurons are connected by synapses to process information. Sensory input, such as
the light perceived by the eye, activates neurons which then send out signals over
the synapses to other neurons. An artificial neural networks, which is used in Deep
Learning, consists of layers of artificial neurons. The term Deep Learning refers to
the idea of learning neural networks with many inner or hidden layers. Each neuron
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2. Fundamentals

of a hidden layer is connected to neurons of the predecessor and successor layer.
The individual layers execute simple functions based on weights. By connecting
the layers, the network is able to solve complex tasks. During training the weights
of all layers are optimized to minimize a loss function on the training data. In each
iteration, the computed error is back propagated through the network to update
the weights. The neurons of the first or input layer are feed with the input data.

Neural networks are the method of choice for many end-to-end learning ap-
proaches on camera data in the fields of computer vision and robotic. Decision
trees or random decision forests require an abstracted representation of the input,
so called features. These features are usually designed manually which requires
expert knowledge of both feature design and the task which one tries to solve and
needs to be repeated every time the task changes. The quality of the prediction
of a feature-based method depends heavily on the used features. On the other
hand, neural networks allow to process raw data as input such as camera images.
The network implicitly learns a hierarchical feature representation which is then
directly used to solve the given task. On the one hand, end-to-end neural networks
require no design of features, but on the other hand, require a huge amount of
training data and computational power for training. Deep Learning became popular
with the emerge of large datasets and powerful graphics processing units (GPU)
which allow for fast and massively parallel training of large neural networks.

Deep Learning can be done on a variety of different network types depending on
the application. In this thesis, we employ a Convolutional Neural Network (CNN)
for the distinction of different dynamic classes in images generated from 3D scans.
Convolutional neural networks consist of two parts. The encoder part generates a
high dimensional feature vector by recursively breaking the input down to multiple
layers of smaller sizes through convolution or pooling operations. The decoder
part generates a result image by decoding the computed feature vectors recursively
using deconvolutions or unpooling to obtain a single output layer. As a result of
the convolutional structure of the network, the input size is not fixed allowing us
to train the network on a different size of images than our images we want to
annotate.

2.5.4 Intersection over Union (IoU)

The Jaccard index or intersection over union score is a measure to compare two
sets. The measure returns a vale of 0 if no two elements of the sets are the same
and 1 if the sets are identical. The score is computed as follows:

J(A,B) = ∣A ∩B∣
∣A ∪B∣

. (2.10)

The intuition of this Jaccard index is explained in Figure 2.3. By dividing the
intersection by the union of the two sets we receive the above measure.

In the context of object detection, the Jaccard index is used under the name
of intersection over union (IoU) to compare predicted bounding-boxes with their
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Figure 2.3: The motivation behind the Jaccard index. The intersection of both sets is
divided by the union over the sets. The score represents the similarity of two sets.

ground truth. The more these boxes overlap the better the score. The measure also
penalizes wrong sized bounding-boxes.

In our experiments, we compare pixel-wise predictions with pixel-wise ground
truth labels. For a prediction A = (a1, . . . , aN) and a corresponding ground truth
B = (b1, . . . , bN) we use the following equivalent notation to compute the IoU score
for a class c:

IoUc =
∑Ni=1 I(c, ai, bi)

∑Ni=1 I(c, ai) +∑Ni=1 I(c, bi) −∑Ni=1 I(c, ai, bi)
, (2.11)

where I(a, b, . . .) is the indicator function which is 1 iff all elements are the same
and ai,bi are the predicted and ground truth value for the same pixel.

2.6 Point Cloud

A data structure used throughout this thesis is the point cloud. It is a collection of
3D points. A 3D point cloud P = (p1, . . . , pN) is a collection of points p = (x, y, z, I),
where (x, y, z) ∈ R3 defines the 3D coordinate of a point and I the returned intensity
value. The point clouds used in this thesis are generated by either a Velodyne
HDL-64E or Velodyne HDL-32E 3D laser scanner (see Figure 2.4). These scanners
consist of 64 or 32 individual lasers arranged one above the other. By rotating the
sensor head around its vertical axis, these sensors generate 3D point clouds. Each
point cloud consists of all points of a full 360○ rotation. The scanners generate data
with 5 to 20Hz by adjusting the rotation speed. The speed of rotation defines the
point count per point cloud as the laser fire rate does not change. The distance of
the next obstacle is determined by the time of flight of the light pulse. Additionally,
the intensity of the returned light is measured, which is determined by the surface
reflectance. In the context of urban measurements, pavement returns almost no
light while street signs and license plates return a high amount of light. An example
of a point cloud from the KITTI dataset, generated with a Velodyne HDL-64E sensor
mounted on the roof of a car, is shown in Figure 2.5. The sensor is located in the
center of the concentric circles. The scene shows a crossing with multiple cars. The
color represents the measured intensity.
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(a) Velodyne HDL-32E (b) Velodyne HDL-64E

Figure 2.4: Velodyne LiDAR sensors. The laser scanners generate 360○ point clouds
by rotating their sensor heads equipped with 32 respective 64 individual lasers.

Figure 2.5: A point cloud generated by a Velodyne HDL-64E LiDAR sensor. It shows
a street crossing with cars and trees. The sensor is located in the center and mounted
on a car roof. Each of the concentric rings is generated by an individual laser. The
color visualizes the intensity from high reflectance (blue) on license plates or the
traffic sign to low reflectance (red) on the pavement and trees.
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2.7. OpenStreetMap

(a) OpenStreetMap (b) Street network

Figure 2.6: A cutout of an OpenStreetMap around our campus. The left image shows
all information, while the right image depicts only the road network.

2.7 OpenStreetMap

OpenStreetMap [57] is an open license, user-generated map of the world. Everyone
with a GPS-enabled device, such as a smartphone, can record data and modify
the map using this data. The map consists of streets, building outlines, regions,
such as forests or parks, and much more. The map type is comparable to a
classic street map printed on paper. An example of an OpenStreetMap is shown
in Figure 2.6a, it shows an area around the Faculty of Engineering campus of the
University of Freiburg. The data we are most interested in are the streets and their
connections as shown in Figure 2.6b. Streets are represented by a list of nodes and
information about its type. Each node stores a global coordinate computed from
GPS information. This results in a graph structure which represents the connection
and course of streets. It neither represents a street width nor the shape of crossings.
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2.8 Robots

In this section, we present the two mobile robots used in this thesis. The robots are
build for navigation in different environments.

2.8.1 Obelix

The robot used to carry out experiments in the chapter about osm localization
(Chapter 3) is Obelix which is depicted in Figure 2.7a. This robot was developed
by our lab, the Autonomous Intelligent Systems lab in Freiburg. It was part of the
projects EUROPA [68] (EUropean RObotic Pedestrian Assistant) and EUROPA2 [70]
which were funded by the European Commission. Obelix is designed to drive in
urban environments on the sidewalk. He achieved to navigate like a pedestrian
from our Faculty of Engineering campus to the city center of Freiburg (for more
details see Kümmerle et al. [36]). The robot moves with a differential drive with
two additional caster wheels. Its main sensors are a set of laser scanners. Two
SICK LMS 151 are mounted horizontal in the front and back of the robot. A third
scanner is tilted such that it is able to perceive the ground in front of the robot.
The sensor we are mostly interested in is a Velodyne HDL-32E LiDAR sensor (see
Section 2.6) mounted on the robots head. The motion of the robot is estimated by
wheel encoders, a XSens IMU and a GPS module. The robot is also equipped with a
pair of stereo cameras for object detection.

2.8.2 Viona

The second robot used in this thesis is Viona (Vehicle for Intelligent Outdoor
NAvigation) which is shown in Figure 2.7b. The robot was developed for the
LifeNav project [76] (Reliable Lifelong Navigation for Mobile Robots). The robot
is powered by four electric motors and was built by Robot Makers. The front and
back axis can be steered independently which allows to operate the robot in car
like Ackermann, double Ackermann or crab steering. The later enables the robot to
move sideways. We equipped the robot with a sensor tower and a set of sensors. A
SICK LMS 511 LiDAR sensor is mounted on the front and back of the robot for 2D
mapping and localization. The Velodyne HDL-64E 3D LiDAR described above is
mounted on the top end of the sensor tower to be able to look over small obstacles.
As a side effect of the high mounting of this sensor, it has a blind spot around the
robot of approximately two meter radius which is reduced by a Velodyne VLP-16
LiDAR puck mounted at each side of the robot between the wheels. Below the
Velodyne HDL-64E four Bumblebee2 stereo cameras are mounted. The robots is
equipped with a differential GPS, an Applanix PosLV IMU and wheel encoders.
Viona is designed for outdoor navigation and allows to traverse rough offroad
terrain.
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(a) Obelix (b) Viona

Figure 2.7: The robots Obelix and Viona. Both robots are equipped with multiple 2D
LiDAR sensors, stereo cameras, wheel encoders, GPS and IMU sensors. The sensor
on top of Obelix is a Velodyne HDL-32E 3D LiDAR. On the tower of Viona a Velodyne
HDL-64E 3D LiDAR is mounted.
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Localization on OpenStreetMap Data using a

3D Laser Scanner

To determine the pose of a vehicle is a fundamental problem in mobile robotics.
Most approaches relate the current sensor observations to a map generated with
previously acquired data of the same system or by another system with a similar
sensor setup. Unfortunately, previously acquired data is not always available. In
outdoor settings, GPS is a very useful tool to determine a global estimate of the
vehicles pose. Unfortunately, GPS tends to be unreliable in situations in which a
clear view to the sky is restricted. Yet, one can make use of publicly available map
material as prior information. In this chapter, we describe an approach to localize
a robot equipped with a 3D range scanner with respect to a road network created
from OpenStreetMap data. To successfully localize a mobile robot, we propose a
road classification scheme for 3D range data together with a novel sensor model,
which relates the classification results to the road network. Compared to other
approaches, our system does not require the robot to actually travel on the road
network. We evaluate our approach in extensive experiments on simulated and
real data and compare favorably to two state-of-the-art methods on those data.

3.1 Introduction

One essential prerequisite for autonomous navigation for cars or mobile robots is to
know the pose of the vehicle in the world. For example, without this information a
mobile robot would not be able to plan a path to a desired goal. The most common
localization method in outdoor settings is the global positioning system (GPS).
While GPS provides a global position, the accuracy of the pose estimate depends
on the number and distribution of visible satellites. Especially in cities with high
buildings or under tree canopies, GPS can suffer from severe outages. The goal of
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Figure 3.1: Our system localizes a mobile robot equipped with a 3D range scanner
in a publicly available OpenStreeMap. The image shows a classified scan projected
onto the OpenStreetMap as well as the robot Obelix.

the work presented in this chapter is to enable mobile robots to perform robust
navigation even under such circumstances.

To overcome this problem, many autonomous mobile robots or self-driving cars
localize themselves within highly accurate maps of the environment, built with
range or vision sensors [36, 77]. While this approach yields highly accurate results,
it requires a substantial effort to obtain such maps from the sensor data of the
mobile robot in advance and to maintain them afterward.

In this chapter, we propose an alternative solution and present an approach to
localize a mobile robot given publicly available maps, like OpenStreetMap [57],
which provide a dense description of the public road network around the planet.
To achieve this, our approach performs a classification of the observations obtained
with a 3D laser scanner. In addition, it contains a dedicated sensor model for a
probabilistic approach based on a particle filter. Compared to other approaches
that perform localization on publicly available maps [9, 19], we do not make the
assumption that the robot has to drive on the road network. It only has to be in
a reasonable proximity to be able to observe the road network from time to time.
Figure 3.1 illustrates the basic principle of our approach.

The rest of this chapter is organized as follows. First we give an overview about
related work on the topic of localization on road networks. The next section
presents our Monte Carlo Localization on OpenStreetMap data. We discuss our
classification of scans into road and non-road cells and the sensor model to weight
particles based on the classification result. After shortly discussing our method for
path planning, we present our experiments on simulated and data collected with
our robot to validate our approach.
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3.2 Related Work

Localization in road networks has received quite some attention in the context of
autonomous navigation with cars. For example during the DARPA urban challenge
all teams had to localize their vehicle on a road network [33, 52, 78]. Most of the
systems in this context used a fused localization estimate based on GPS, odometry,
and a very accurate inertial measurement unit (IMU). Such methods typically
provide locally very accurate motion estimates and can determine the global pose
within a few meters but rely on very expensive, specialized hardware to do so.

One of the first methods using a Monte Carlo filter to localize a robot was
proposed by Dellaert et al. [13]. In their experiments, they used sonar readings or
laser scans to localize a robot in an occupancy grid map. Since then, many different
approaches employed Monte Carlo Localization (MCL) to localize a robot [30,
61, 87]. Floros et al. [19] localize a robot on an OpenStreetMaps road network
using visual odometry. They use a history of odometry poses to match against
the road network using fast oriented chamfer matching. The authors assume
that the shape of this odometry path resembles the shape of the road. While
this approach enables fast and robust localization it is restricted to robots driving
on roads. Brubaker et al. [9] provide a method for graph-based localization on
OpenStreetMaps using visual odometry. They represent the robot’s pose explicit on
the edges of the road graph. The authors provide a probabilistic transition model to
move the particles on the graph. Hentschel et al. [27] use OpenStreetMap data for
localization, to perform path planning and autonomous vehicle control in an urban
environment. In contrast to our approach, they mostly use the shape of buildings
to localize the robot using 2D laser scans. This approach allows the robot to leave
the road but needs an urban environment with known shapes of the buildings.
Kümmerle et al. [37] present an approach to localize a mobile robot equipped with
a 3D range scanner in an aerial image, using Monte Carlo Localization. Compared
to our approach, aerial images contain richer information of the environment, e.g.,
buildings or trees, compared to just a road network.

In this chapter, we propose a system to localize a robot, equipped with a 3D
laser scanner, with respect to a road network from OpenStreetMap. We apply
a supervised classification approach to classify laser scans into road and non-
road. This classification is then used in a corresponding sensor model to weight
the particles of a Monte Carlo Localization. In contrast to the above-mentioned
methods, which localize a robot on a road network using only odometry, our
method does not require that the robot actually travels on the road network.

In the remainder of this section, we give an overview about related work on
localization on OpenStreetMap which was presented after this work was published.
Vysotska et al. [81, 82] integrate the building outlines from OpenStreetMap into a
graph-based SLAM. This allows the algorithm to reduce the drift in the localization
and improves the created maps. The error term which includes the OpenStreetMap
data into the SLAM system enables the authors to guide an active exploration
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to reduce the uncertainty in the map. In a similar fashion Ballardini et al. [2]
detect building facades in stereo images. By matching these detections against the
building outlines from OpenStreetMap the authors can localize the robot with a
lane-level accuracy. Landsiedel et al. [38] build hybrid maps from local 3D LiDAR
scans combined with the data from OpenStreetMap. While the street map provides
higher level information, such as street connections, the LiDAR measurements allow
to detect local features such as street surface types or road width. Building on top
of this work, Landsiedel et al. [39] use hybrid maps to localize a robot equipped
with a 3D LiDAR based on building outlines using champfer matching. To counter
inaccuracies in the OpenStreetMap data, Suger et al. [71] propose a method to
associate tracks detected using a 3D LiDAR with streets in the street map. The
method allows the robot to stay on the tracks while keeping a corresponding pose
on the street graph.

3.3 MCL-based Localization on Road Networks

The goal of our system is to find the pose of a robot relative to a given road network,
based on a sequence of 3D laser scans, odometry measurements, and a rough initial
position of the robot (within a few hundred meters).

In the following, we will describe our Monte Carlo Localization approach, includ-
ing a novel sensor model, as well as the classifier we use to distinguish road from
non-road in the robot’s measurements.

3.3.1 Monte Carlo Localization

In this work, we use a particle filter (see Section 2.3.2) to perform Monte Carlo
Localization. A particle filter in the context of robot localization represents the
probability distribution over the pose xt of the robot. To maintain a believe about
the pose of the system, our particle filter performs two steps. The first step is
the prediction step, which modifies the pose hypothesis of each particle using the
action ut, the map m and the previous state xt−1 by sampling xt from our motion
model p(xt ∣ ut, xt−1,m). It describes how the robot moved based on the old pose,
the odometry measurement and the map. In the correction step, we relate the
measurements to the map according to our sensor model. More precisely, we weight
the particles using the measurement zt according to our sensor model p(zt ∣ xt,m).
Afterward, we resample a new set of particles from the old ones, where the chance
of survival for each particle is proportional to its weight in the old particle set.

3.3.2 Our Implementation of the Monte Carlo Filter

One general problem of approximating a probability distribution with a finite set of
particles is that good hypotheses might not survive the resampling step. Therefore,
we use the number of effective particles to measure the quality of the particle set
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and resample only when this number is below a given threshold. The number of
effective particles [24, 43] is computed as

Neff = 1/
N

∑
i=1

(wi)2. (3.1)

Resampling is only performed if Neff < N/2, where N is the number of particles.
The Neff measures the variance in the particle weights. If all particles share a similar
weight the Neff is high and no resampling is needed. For the motion update, we
use odometry readings from the wheel encoders or equivalent simulated data. The
measurement model uses a classified scan and a road network from OpenStreetMap
to weight the particles. This model is described below.

3.3.3 Classi�cation

Since our map encodes only road information we first need to retrieve this informa-
tion from the 3D range readings. Therefor, we have to decide whether regions in
range scans observe road or non-road surfaces. Throughout our experiments, we
perform road classification on single scans from a Velodyne HDL-32E LiDAR, but any
kind of 3D laser scanner (e.g., tilting/rotating 2D scanners) can be used with the
proposed method. The method expects 3D scans that include additional reflectance
values. Our classification is defined as a function mapping from discretized cells zi
to the classes road or non-road

c ∶ zi ↦ {road,¬road} . (3.2)

To calculate this classification, we project the scan into a two-dimensional grid
and classify the single cells independently. From all points falling into one cell, we
calculate the following features:

• mean and standard deviation of the height values

• mean of the squared intensity values

• standard deviation of the intensities

• distance to a fitted plane

• normal vector of the fitted plane

• maximum difference in height values

Based on those local features we learn a classifier using boosting [4] in a supervised
fashion. Cells with no or too few points to calculate features are neglected.

To train the classifier, we first collected a dataset (different from the one used
in the experiments) with a robot and manually labeled the regions in the scans as
being road and non-road. This leads to a classified set of features which we use to
train our classifier.
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3.3.4 Weighting / Sensor Model

The task of the sensor model is to determine the likelihood p(z ∣ x,m) of a measure-
ment z, given the robot is at pose x in the map m. In our approach, the input to
our sensor model is the road classification in form of a 2D grid map in which each
cell is either unobserved, road or non-road. In the following, we explain how we
relate the road classification to the provided road network.

Under the assumption that the grid cells from our sensor measurement are
independent, the likelihood of a measurement z, composed of the classified grid
cells z1, . . . , zN , can be calculated as

p(z ∣ x,m)∝
N

∏
i=1
f(zi,m), (3.3)

where f(zi,m) is the likelihood of one cell in the measurement given the map. We
model the likelihood for each observed point as a Gaussian

f(zi,m) = N (ε(zi,m),0, σzi), (3.4)

with mean 0 and a user defined standard deviation that is individually defined
for road and non-road measurements. The term ε(zi,m) is an error based on the
distance to the next road in the map, which can be efficiently determined using
pre-computed distance transform maps.

3.3.4.1 Cost for Road Cells

The calculation of εr(zi,m) for road cells is supposed to penalize measured road
cells that do not correspond to the roads appearing in the map. Such regions lead
to a higher distance to the road and thereby increase the error for this match.
The error εr(zi,m) for cells classified as road is calculated for all cells zi with
c(zi) = road as follows

εr(zi,m) =min (d, ∣zi − l∣) , (3.5)

where l is the closest location on the road network and d is the maximum allowed
distance to a road. The term εr(zi,m) therefore describes the distance between
the observed cell and the closest road in the road network. Cells with a higher
distance to the closest road than d will not be penalized further. The usage of the
error εr(zi,m) in the particle filter leads to a situation in which particles are kept in
regions where most of the cells that are classified as road are close to a road in the
map. The effect of this error can be seen in Figure 3.2a. Removing the dotted side
road results in higher errors for all cells, classified as road (green) which are in the
blue ellipse. The closest road in the map is now further away, which will increase
the error for this match.

On the other hand, particles tend to stick in regions with several nearby-roads or
multi-lane crossings, because many roads in the vicinity tend to decreases the error
for false classifications and side roads in contrast to single lanes.
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(a) Cost for road cells (b) Cost for non-road cells

Figure 3.2: Classified example scans. Red cells are classified as non-road, green cells
are classified as road, and black lines show the road network. Removing the dotted
road in Figure (a) increases the errors εr(zi,m) as the next road in the map for the
cells in the blue ellipse is now further away. Adding the dotted road in Figure (b)
increases the error εn(zi,m) as the next road in the map for the cells in the blue
ellipse is now closer.

3.3.4.2 Cost for Non-Road Cells

For non-road cells the calculation of εn(zi,m) is supposed to penalize situations in
which there are more roads in the map than can be explained by the scan, such as
a side road that does not appear in the scan. Equivalently to the case for road cells
we define

εn(zi,m) = d −min (d, ∣zi − l∣) . (3.6)

This term is small for non-road cells that are far away from the closest road in the
road network and large for cells that are close to roads. If we have a scan with
only a straight road segment as shown in Figure 3.2b, we increase the error for
this match whenever we try to match it against a region of the map including an
additional side road (dotted line). This is due to the fact, that non-road cells inside
the blue ellipse now have a smaller distance to the next road and thereby a higher
value of εn(zi,m).

3.3.4.3 Computing the Likelihoods

Formula 3.3 can be efficiently computed using log-likelihoods as follows

p(z ∣ x,m)∝ exp
⎛
⎝
− ∑
i,road

(εri )2
σ2
1

− ∑
i,¬road

(εni )2
σ2
2

⎞
⎠
, (3.7)

whereas εri = εr(zi,m), εni = εn(zi,m), σ1 being the assumed standard deviation for
road cells, and σ2 being the assumed standard deviation for non-road cells. Larger
values of σ1 or σ2 lead to more peaked, thereby stricter distributions.
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3.4 Planning Paths on the Road Network

The localization relative to the road network allows us to plan paths to a goal using
the road-graph representation. We therefor, implemented an A* planner for this
task. The first step in our path planning procedure is the projection of the estimate
about the robot’s pose, reported by the particle filter, onto the road network. For
this, we search the closest point on the street segments close to the robot. We
also search for the closest point on the road network for the goal position in the
same fashion. To find a path on the road network an A* search between the two
projected points is executed. In the end, we connect the found path to the position
of the robot and the goal. A screenshot of our path planner is shown in Figure 3.3.

A* Path Planning

Given a start and goal position on the road graph, we employ an A* search to find
the shortest path. The A* algorithm is a graph search method proposed by Hart et
al. [26]. The algorithm expands the next node n by choosing the one with the
lowest expected cost:

f(n) = g(n) + h(n), (3.8)

where g(n) is the path length from the start to node n and h(n) is a heuristic
estimating the minimal cost from n to the goal. In our implementation, we use the
length of the road segments to compute g(n). For h(n) we employ the straight-line
distance as heuristic. The resulting search finds the optimal path between two
points on the road network.

3.5 Experimental Evaluation

To evaluate our localization method, we performed extensive experiments on three
different datasets. In the first experimental setting, we decided to evaluate our
method in simulation since this provides us with ground truth, which is hard to
obtain for real-world experiments. In a second experimental setting, we evaluated
our method on a real-world dataset providing evidence that both the classification
scheme and the sensor model are robust to the typical noise introduced by real
3D range scanners. Furthermore, we compared our method against two other
state-of-the-art approaches on three different datasets. In the following, we briefly
explain these methods.

3.5.1 Distance to Road

The first method we compare against calculates the weight for a particle involving
its distance to the next road in the map. More precise, we define the weight as
w = exp (∣x − l∣/σ) , where x is the position of the particle and l is the next point on
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Figure 3.3: A screenshot of the GUI of our A* path planner on the road network.
The GUI shows the planed path in gray from the robot on the top right to a goal on
the bottom left. Both positions are not on the road network and are therefore first
projected onto it (red and green squares).
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a road. As in our approach, σ defines the shape of the weighting distribution. This
method favors regions of the map with a lot of roads close to each other. We refer
to this method as Dist2Street in the graphs.

3.5.2 Chamfer Distance

The second method is based on chamfer matching and is comparable to the method
by Flores et al. [19]. For this method, the particle filter stores the path calculated
from the odometry readings over a fixed time or distance window. To weight
a particle, we calculate the distance from each point on this path ending at the
particle pose to the road map. This is comparable to the chamfer matching score
of the path (template image) to the road map (query image) at the position and
orientation given by the pose of the particle. This method is named OpenSlamLike
in the graphs.

3.5.3 Initialization and Parameters

For our tracking experiments, we initialize the particle filter by sampling 2,000
particles from a Gaussian with a standard deviation of 20m around the true or GPS
position. We then sample the orientation from a Gaussian with a standard deviation
of 0.15 rad around the true orientation or the measurement from the compass of
the robot. For the global localization we use 20,000 particles which we distribute
evenly in a circle with a radius of 250m around the true position and sample the
orientation randomly. For each experiment, we execute ten runs per method using
the same parameters. To discretize the scans, we use a cell size of 1m. We choose
1/σ = 1/σ1 = 0.0003 and 1/σ2 = 0.00015. For the maximum distance to the road we
use d = 10m.

3.5.4 Simulation Experiments

In the simulation experiments, we want to investigate the performance of the
weighting given a perfect classification. We therefor, create scans by copying the
roads of an OpenStreetMap in a radius of 15 m around the requested pose. We then
generate an odometry path with additional white noise and ground truth poses
which we use for evaluation. In these simulation-based experiments, we want
to demonstrate that a classified scan can increase the localization performance
in contrast to methods using odometry only. This increase is due to the fact that
we are able to observe roads that we did not (yet) drive on. These experiments
are carried out on the OpenStreetMap for Manhattan. We evaluated how the
methods perform on the task of tracking the position of the robot on the map. The
paths created by the different methods are shown in Figure 3.4a. The trajectory
estimated by our method (red) generates paths that closely resemble the ground
truth path. Our method can take advantage of observations of crossings, especially
with the diagonal road (running horizontal in the center of this map area), whereas
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Our approach OpenSlamLike Dist2Street
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(b) Global localization paths

Figure 3.4: Resulting paths for the first simulated experiments. Ten runs were
executed for each of the three methods. Figure (a) shows the paths for the ten
runs created at the task of tracking while, Figure (b) shows the same for the global
localization task.
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Our approach OpenSlamLike Dist2Street

(a) Tracking errors

(b) Global localization errors

Figure 3.5: Errors of the first simulated experiments. Ten runs were executed for
each of the three methods. Figure (a) shows the errors with their standard deviation
over the ten runs created for the tracking task, Figure (b) shows the same for the task
of global localization. The errors are the differences between the weighted mean of
all particles and the ground truth. The scale of the y-axis is logarithmic.
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the other two methods suffer from the long straight paths and the ambiguities.
Figure 3.5a shows the distance between the weighted mean of all particles to the
true pose over time.

We also performed global localization on the same dataset. Figure 3.4b shows
the paths, while Figure 3.5b shows the corresponding errors. In the error plot, we
can see that after around 30 iterations our approach is able to find the correct road,
whereas the other methods are not able to resolve the ambiguities.

In this chapter, we use a very basic classifier to distinguish between road and
non-road in the scans. To see how much our method suffers from classification
errors, we randomly flipped a defined amount of cells of the perfect classification
and repeated the previous experiment. A plot of the resulting difference of the
weighted mean of all particles to the ground truth is shown in Figure 3.6. We can
see that our method performs well even if 20% of the cells are falsely classified.
Since the Particle filter only relies on the classification result and the odometry of
the robot, any classification method using arbitrary sensors could be used, even if
the classification is sub-optimal.

3.5.5 Simulated O�road Data

Using observations of the environment, we are able to localize the robot even if
it does not drive on the road network. In this experiment, we simulated a run on
a map of Freiburg. As before, we copy a local surrounding of 15m from a road
network to simulate perfect classified scans. We compare our method against two
other approaches that use only odometry and assume that the robot drives on the
road. This assumption is violated during this experiment. On the tracking task our
method outperforms the other two methods, as shown in Figure 3.7a. As expected,
the other methods are able to follow the shape of the path but are always drawn
towards the next roads, which leads to a higher error (see Figure 3.8a). The global
localization (see Figures 3.7b and 3.8b) also performs as expected. Our method is
able to converge to the correct position after roughly half of the trajectory, whereas
the other two methods diverge.

3.5.6 Robot Experiments

Furthermore, we evaluated our approach on data from one of our robots. We use
the robot Obelix which is shown in Figure 3.1 and explained in Section 2.8. This
robot provides odometry from wheel encoders and 3D scans with intensities from a
Velodyne HDL-32E. We collected data in an urban environment. The classification
was trained on a separate data set collected with the same robot. Since no ground
truth is available for this real-world experiment, we use the result of a graph-based
SLAM system that also incorporates GPS measurements instead.

As in the simulated setting we perform two experiments using the same data set.
The first experiment evaluates the tracking performance while the second one tests
the global localization. Please note that the odometry of the robot is not properly
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(b) Global localization errors

Figure 3.6: Position error for the weighted mean of all particles for tracking (a)
and global localization (b) shown for different rates of the classification error. Our
method allows up to 22% classification error (legend above) without a substantial
decrease in the localization accuracy.
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Our approach OpenSlamLike Dist2Street
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Figure 3.7: Resulting paths for the simulated offroad experiments. We evaluated
each of the three methods using ten runs. Figure (a) shows the paths for the ten
runs created for the tracking task while, Figure (b) shows the same for the global
localization task.
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Our approach OpenSlamLike Dist2Street

(a) Tracking errors

(b) Global localization errors

Figure 3.8: Errors of the simulated offroad experiments. We evaluated each of
the three methods using ten runs. Figure (a) shows the errors with their standard
deviation over the ten runs created for the tracking task, Figure (b) shows the same
for the task of global localization. The errors are the differences between the weighted
mean of all particles and the ground truth. The scale of the y-axis is logarithmic.
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calibrated and suffers from deterministic rotational errors. Figures 3.9a and 3.10a
show the result for all three methods for tracking. We see that our approach is able
to keep the correct track. The other methods suffer from the rotational errors of
the odometry and some of the particles incorrectly turn right early in the trajectory.
Our method is able to recover from this situations.

Figures 3.9b and 3.10b show the results for global localization. In this dataset,
the robot first drives on a small straight pedestrian path. On this path, the robot
is able to perceive two junctions. These junctions allows our method to improve
the filter belief with respect to the correct position. After the first turn, the filter is
able to converge. The other methods just see the two turns, which is insufficient to
localize the robot.

The runtime of our approach was 95 seconds on a standard i7 desktop machine.
Note that the robot traveled for about 13 minutes to collect the dataset. Therefore,
our system is applicable for online operation.

3.6 Conclusion

In this chapter, we presented an approach to localize a mobile robot using 3D range
scans with respect to a road network such as the one provided by OpenStreetMap.
In our approach, we employ a classifier to distinguish road from non-road in the
scans and use the classified scans as the sensory input for a Monte Carlo Localization
approach. In practical experiments, both in simulation and on real-world data, we
showed that our method can reliably perform global localization as well as pose
tracking even in challenging situations in which other state-of-the-art approaches
fail. The presented method has the advantage that it does not require the robot to
actually travel on a road.
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Our approach OpenSlamLike Dist2Street
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Figure 3.9: Resulting paths for the real robot experiments. We evaluated each of the
three methods using ten runs. Figure (a) shows paths of ten runs created for the
tracking task while, Figure (b) shows the same for the global localization task.
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Our approach OpenSlamLike Dist2Street

(a) Tracking errors

(b) Global localization errors

Figure 3.10: Errors of the real robot experiments. We evaluated each of the three
methods using ten runs. Figure (a) shows errors with their standard deviation over
ten runs created for the tracking task, Figure (b) shows the same for the task of
global localization. The errors are the differences between the weighted mean of all
particles and our SLAM result including GPS measurements. The scale of the y-axis
is logarithmic.
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Feature-based Approach for the Detection of

Dynamic Objects in 3D Range Data

Information about dynamic objects in sensor data is highly relevant for many
perception and state estimation problems in the area of mobile robotics. Particu-
larly when robots are employed in dynamic environments, accurate knowledge
about which components of the robot’s perception belong to dynamic and static
aspects of the environment can greatly improve navigation functions. For example,
localization and scan matching performance can be improved if only static parts
are matched against each other. Furthermore, during path planning, dynamic
objects should be treated differently than static ones. In this chapter, we estimate
as to whether surfaces belong to dynamic objects in 3D scans. Our method is
based on local surface features and is learned from real 3D laser data, either
using manually labeled scans, an automatic classifier based on scan differencing or
publicly available datasets such as KITTI. The advantage of the proposed method is
that it can detect dynamic obstacles in single scans, even when they are currently
not moving, like parked cars or standing pedestrians. There is no implicit need
to model specific object types. We also show that our approach can be used in
combination with typical differencing methods to improve recognition results.

4.1 Introduction

Besides localization one fundamental prerequisite for autonomous navigation in
dynamic real-world environments is to model the changes that can occur. This
is especially important to plan smooth and collision free trajectories for a mobile
robot in the presence of high numbers of moving objects, like one expects in densely
populated city centers or shopping malls. Since the appearance of dynamics in an
environment is typically unknown beforehand, it has to be estimated online from the
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Range Image

Proposed Dynamic Probability

Figure 4.1: The top image shows part of a range image representation of a scan
including a car (left) and a pedestrian (right). The range is encoded from black
(close) to white (far). The bottom image shows the estimated dynamic probability,
where red represents high dynamic probabilities.

sensor data perceived by the robot. The majority of related work using depth sensors
phrases the problem of estimating dynamic objects as a segmentation task [53,
74, 91]. Vision-based approaches on the other hand tend to use feature-based
recognition [3, 29, 85] and often rely on detecting object classes trained for different
scales. In contrast, most laser-based methods first segment the highly accurate
geometry for classifying dynamics. Object segmentation is either performed by
removing the ground plane and clustering the remaining points or by computing
the difference between two range scans in a small time window. Both methods
might fail in cases in which dynamic objects are very close to each other or are not
moving, e.g., people holding hands or standing still. Since they might start to move
at any time, the autonomous robot should be aware of them being dynamic.

In this chapter, we present a novel probabilistic approach to estimate which
surfaces belong to dynamic objects in 3D scans. This prediction, which is based
on local surface features, provides a probability of being caused by a dynamic
object for every point. It thus facilitates solutions to various problems. It can guide
detection algorithms or make scan matching procedures more robust by weighting
dynamic objects differently. Furthermore, in the context of life-long mapping, it
allows the robot to update the map according to the probability that measurements
are caused by dynamic objects. See Figure 4.1 for an example of a scan with the
calculated probability. In the remainder of this thesis we refer to the probability
that measurements were caused by dynamic objects by dynamic probability.

We learn the probabilities that surfaces belong to dynamic objects using a classi-
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fier based on a set of local features in a supervised fashion. Given sets of surface
features and ground truth labels for each point in the training dataset, we train a
random decision forest (see Section 2.5.2) to predict the dynamic probability for
a given point. The main contribution of this work is that our method computes a
point-based probability without requiring a segmentation or matching a template
with a sliding window. This makes our method highly robust in cases in which seg-
mentation becomes difficult or only small parts of objects are visible, for example
due to occlusions.

This chapter is structured as follows. First we give an overview about related
work on feature-based detection of dynamic objects in camera images or laser
scans. After this we describe our method using local features for the detection of
dynamic objects. We introduce our features as well as the learning methods used in
the experiments. After this, we present the experimental evaluation including the
datasets and a comparison of different learning methods to predict the probability
that surfaces belong to dynamic objects.

4.2 Related Work

The development of self-driving cars led to an increasing interest in the detection
and tracking of pedestrians and cars with 3D laser scanners. For example, Teich-
man et al. [74] classify cars, cyclists, pedestrians and background from 3D range
scans with additional intensity information. They first segment the scan into objects,
which they then track over time. Their method uses features for the segments
which include velocity, acceleration, bounding-box, spin images, and Histogram
of Oriented Gradients (HOG) descriptors. In a similar context Zhao et al. [91]
first build a map from laser scans and segment the fused model into individual ob-
jects. They classify the segmented objects into object classes based on features that
capture the geometrical appearance and smoothness. The map building process
reduces the noise in the data but prevents a scan-wise classification. Moosmann et
al. [53] propose a joined tracking and localization approach that segments a 3D
range scan and uses the parts of the scan labeled as background to compute a dis-
placement between consecutive scans to track the vehicle. This demonstrates that
prior information about dynamic obstacles improves the pose estimates, especially
in highly crowded scenes. Wang et al. [84] propose a method to segment a 3D laser
scan into parts that could move and parts that cannot. They use a graph-based
clustering approach to divide a scan into the classes car, pedestrian, bicyclists or
background. In contrast to our approach, these methods highly depend on the
quality of the segmentation and suffer from poor performance in cases with false
segmentations, e.g., false merges of close-by objects.

In the context of social interaction of pedestrians Spinello et al. [67] propose to
classify segmented object candidates based on boosted spatial features and track
valid objects over time. In our work, we use a different set of features, do not
require pre-segmentation and apply random decision forests instead of boosting.
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We provide a comparison of boosting and random decision forests using our features
in the experimental section (see Section 4.4.6).

Vision-based approaches often rely on a sliding window that matches an object
template with the image. Since the scale of the objects in the scene is unknown,
sliding windows of different scales are applied. Benenson et al. [3] present an
approach that uses a variant of the HOG descriptor for template matching. In
a similar context, Jafari et al. [29] present a combination of a sliding-window-
based upper body detection in range images for close range detections fused with
a HOG-based template matching approach for detecting pedestrians at further
range. In contrast to our method, the presented method focuses on pedestrians
and one would need to apply a separate detector for every additional object class.
Furthermore, our method needs no sliding window and we do not match a specific
object template. Instead, we compute 3D surface features and apply a random
decision forest classifier.

González et al. [23] fuse data from a laser scanner with camera images to get
a dense depth map with color information. Similar to the approach presented
here, the authors train a random decision forest. However, in contrast to our work,
they train each decision tree individually to predict the presence of a single object
part. They use multiple views of pedestrians to train a random decision forest
for classification. This method is only suitable in the presence of high resolution
texture. Xu et al. [89] use a joint 2D/3D scheme to detect objects like cars or
pedestrians in images and assign a segment from a 3D laser scan to the detection.
An additional validation step on the 3D data reduces the number of false positives.
Again, this requires a good segmentation of the 3D scene and heavily relies on the
robustness of the detections in the 2D imagery.

Compared to existing work described in the literature our method has several
advantages. First, it does not rely on a segmentation approach. Second, we estimate
a probability for each individual point, which reduces the probability of missing an
entire dynamic object because of occlusions or noise in the data. Third, our method
can also identify dynamic objects that are not moving.

4.3 Feature-based Detection of Dynamic Objects

The goal of our method is to estimate the probability of being caused by a dynamic
object for every point in a range image. To achieve this, we first compute a set of
features for every point and then apply a learned random decision forest on every
feature descriptor. The random decision forest provides a voting score between
0 and 1 which we interpret as the probability that the corresponding point was
caused by a dynamic object or short the dynamic probability. In the remainder of
this section, we will explain the feature extraction step in detail and describe how
we train the decision forest for dynamic objects.
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4.3.1 Feature Extraction

To learn a classifier from a labeled dataset, we compute local features for each point
P = {xP , IP} in the scans, where xP is the 3D position and IP its measured intensity.
The features are based on the distribution of the neighboring points nj = {xj, Ij}.
To get fast access to these neighbors we can either use a range image computed
from the 3D scan or in case of organized scans we can omit the calculation of
range images and just rely on the scan structure. First, we collect all neighboring
points N = {n1, . . . , nm} within a defined 3D distance. For faster computation of the
features we subsample the input cloud by only taking every i-th pixel of the range
image, whereas we choose i according to the maximum allowed neighborhood size
in the range image. We then compute the covariance matrix:

C = 1

m − 1

m

∑
j=1

(xP − xj) (xP − xj)⊺ (4.1)

of all these neighboring points, from which we compute the eigenvalue decomposi-
tion Cv = λv. The feature vector F = {f1, . . . , f12} is built up as follows. We first
use the eigenvalues normalized such that they sum up to one:

f1 = λ1/c, (4.2)
f2 = λ2/c, (4.3)
f3 = λ3/c, (4.4)

where c = λ1 + λ2 + λ3. The eigenvalues describe the extend of the point neigh-
borhood in the directions of the eigenvectors. These values describe the relative
surface curvature, independent of the scale. The material of an object provides an
additional cue whether a surface is dynamic or not. Therefor, we use the mean and
variance of the intensity values averaged over the point neighborhood as feature
values:

f4 =
1

m

m

∑
i=1
Ii, (4.5)

f5 =
1

m − 1

m

∑
i=1

(Ii − f4)2. (4.6)

The mean distance of all neighboring points to the point P and the variance of these
distances describe how the points are distributed within the point neighborhood:

f6 =
1

m

m

∑
j=1

∥xP − xj∥ , (4.7)

f7 =
1

m − 1

m

∑
j=1

(∥xP − xj∥ − f6)2 . (4.8)

We also use the number of points outside the neighborhood radius, but inside the
search window in the range image as a feature (f8). This value is low for planar
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surfaces and high for small objects located in open space. Furthermore, it provides
a measure for how cluttered a neighborhood is. To allow the learning method to
compensate for potential range dependencies, we use the range measurement of
point P as an additional feature value:

f9 = ∥xP ∥ . (4.9)

The eigenvector v1 corresponding to the smallest eigenvalue describes how the
point neighborhood is oriented in the world. We therefore use the components of
v1 as feature values: (f10, f11, f12)⊺.

The dynamic objects we usually encounter, such as pedestrians, cars or bikes
have very different dimensions. As we will demonstrate in Section 4.4.6, using
a single scale for the feature extraction to cover these different types of dynamic
objects is challenging. To improve robustness, we calculate the feature vector F
hierarchically for different neighborhood sizes r0, r1, r2. The hierarchical feature
vector F ′ is then built as follows:

F ′ = {f r01−9, f
r1
1−9, f

r2
1−9, f

r1
10−12}. (4.10)

In addition to these features, which are calculated on the point neighborhood
within a Euclidean distance, we also use the neighboring pixels in the range image
dj = {xj, Ij} to calculate a second part of our feature vector. We first compute the
eigenvalue decomposition of the covariance C ′ of the points dj as above: C ′v′ = λ′v′.
From this we derive another feature vector as follows. We use the z-value of the
smallest eigenvector v′1 as g1. This value describes how accurately the points can
be described as a horizontal plane. The range normalized eigenvalues can be
interpreted as the shape of the neighborhood independent of its size. We use

g2 = λ′1/c′, (4.11)
g3 = λ′2/c′, (4.12)
g4 = λ′3/c′, (4.13)

as feature values, where c′ = ∥xP ∥⋅(λ′1+λ′2+λ′3). The range dependent normalization
is necessary as the point density decreases with the distance from the origin of the
scanner.

By combining the point neighborhood features with the features computed on
the pixel neighborhood we have a final feature vector with an absolute size of 34
elements.

4.3.2 Learning Method

After we computed the features for all points we use them together with the
provided labels to train a random decision forest to estimate the dynamic probability
for each point. For comparison, we additionally train an SVM to estimate the
probability and a boosting method to predict the classification into dynamic and
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static. We used the implementations available in OpenCV [6]. A comparison of these
methods is shown at the end of the experimental section (see Section 4.4.6). As the
random decision forest performs best in runtime, generalization and reproduction
of our training data we use this learning method throughout the rest of this work.

To predict the dynamic probability for a given feature we average the individual
classifications of the different decision trees in the random decision forest to get
a real-valued prediction which we interpret as the probability of the point being
caused by a dynamic object.

4.4 Experimental Evaluation

In this section, we present experiments to evaluate the quality of the proposed
method. We performed our experiments on a set of different real-world datasets
collected with one of our robots, equipped with a Velodyne HDL-32E LiDAR (see
Section 2.6) as well as on the KITTI dataset [22]. Our datasets include different
dynamic objects such as cars, pedestrians and cyclists while the KITTI dataset
additionally includes trucks, trams, trailers, etc.

As baseline for our comparison, we use a dynamics detection method that
performs differencing between range scans over multiple time windows. In this
way, dynamic objects that are moving are detected but movable objects like standing
pedestrians or non moving cars are treated as static. We will refer to this approach
as difference-based segmentation and denote it as diffSeq in our plots.

To learn a random decision forest based on the labels and the features extracted
per point we choose a subset of the labeled ground truth scans as the training set.
To test our method, we classify a point as dynamic if its probability of representing
a dynamic object is higher than a threshold. We validate this classification against
the ground truth for varying thresholds and provide the resulting precision-recall
curves. Additionally, we show how the dynamic probability can be used to improve
the result of the difference-based segmentation method. For this we compute the
mean of both methods as a joint estimate.

4.4.1 Training Dataset

To capture a training dataset, we placed our robot in two different locations on
a sidewalk close to a crosswalk and a bus stop and collected data for about 20
minutes. We encountered pedestrians, cyclists, cars and a bus. For both locations
we selected a background scan without any dynamic objects and labeled the dataset
by differencing the individual scans against this reference scan. To avoid a bias
in the training data regarding observing specific objects only at a certain range,
we extended our training dataset with additional data recorded while traversing
the same urban environment close to our campus. To generate ground truth, we
first applied the difference-based segmentation method and afterward manually
corrected the labeling. We restrict the maximum range of the used measurements
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Range Image

Difference-based Segmentation

Our Method

Figure 4.2: The top image shows a range image of a parking lot scene with cars and
pedestrians. Black represents small, while white represents large ranges. The center
image shows the result of the difference-based segmentation method. The bottom
image shows the dynamic probability estimated with our method. Obviously, the
difference-based segmentation method cannot infer that the parked cars are dynamic,
while our method is able to classify them correctly.

to 30m because of the rapidly decreasing point density. In our training dataset
which consists of 130 scans, we labeled 4,455,574 points as static and 638,634 as
dynamic. We trained a random decision forest on this dataset and used it during
our experiments.

For the hierarchical feature computation we choose r0 = 0.2m, r1 = 0.35m and
r2 = 0.5m as radii through all our experiments.

4.4.2 University Parking Lot

To test the learned random forest, we recorded a validation dataset on our university
parking lot by steering the robot over the entire space. We encountered a large
number of parked cars as well as some cyclists and pedestrians. For this dataset we
manually annotated the scans.

Figure 4.2 visualizes the estimated probability in an exemplary scan. As we
expect parked cars to be dynamic, the difference-based segmentation method is not
able to produce reasonable results. Our method, on the other hand, estimates high
probability of belonging to a dynamic object to the measurements on the parked
cars. Figure 4.3a shows the precision-recall curves of this experiment. At the equal
error rate point our method achieves more than 75%. By combining our estimated
probabilities with the result of the difference-based segmentation method, which
has an equal error rate of around 53%, we are able to further improve the estimate
to more than 78%.
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(a) Parking lot dataset
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(b) Freiburg city center dataset

Figure 4.3: Precision-recall curves for two different datasets. Figure (a) shows that
for the parking lot data our method outperforms the difference-based segmentation
baseline, since parked cars are dynamic objects according to our definition. Figure
(b) demonstrates that at the same time our method achieves a comparable result in a
very dynamic pedestrian zone environment.
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4.4.3 City Center of Freiburg

To highlight the fact that our method does not require any pre-segmentation, we
recorded a dataset in the pedestrian area in the city center of Freiburg. In this
challenging dataset, we captured dense crowds of pedestrians and a few cyclists.
Due to the high amount of occlusions, we had to label these scans manually. While
we trained our dynamic detection on data that mostly shows gardens and smaller
houses, this dataset includes larger buildings with arcades. The corresponding
pillars can easily be confused with pedestrians. Figure 4.3b shows the precision-
recall curve of the estimated probabilities on this dataset.

4.4.4 KITTI

Furthermore, we evaluated our approach on the publicly available KITTI object
dataset created by Geiger et al. [22]. This dataset contains camera images with
labeled object bounding-boxes and 3D LiDAR scans. To apply this data to our
framework, we projected the laser scans into the camera frame and transferred
the labels that fell into a bounding-box to the 3D points. Unlabeled points were
treated as static. Unfortunately, the provided ground truth labels are limited to the
field-of-view of the camera. Therefore, we only use the parts of the 3D scans that
overlap with the camera. Due to slightly different perspectives of the LiDAR and
the camera (even after transforming the scans into the camera coordinate system),
we encountered frequent false negatives, especially close to boundaries of the label
boxes. For some objects the ground truth labels are even missing (see Figure 4.4
for some examples).

To reduce the impact of the projective inaccuracies of the bounding-boxes, we
increased the box sizes automatically in both horizontal directions (not vertically)
for the entire dataset. To evaluate the impact of this parameter, we varied it between
0m and 2m for both training and testing phase of our method. The resulting
precision-recall curves are shown in Figure 4.5. For a small increase in bounding-
box size the results improve (see values 0.1m to 0.4m). Once the bounding-boxes
get to large, the amount of false positives increases and the performance drops.
Based on these results we chose a value of 0.4m for our experiments. An exemplary
result of our method is shown in Figure 4.6. Note that we do not use camera
images and the ground truth labeling is only provided for the area covered by the
camera view.

4.4.5 Model Generalization

One interesting question is, how well our learned random decision forest can be
transferred to another dataset. This provides an insight on how well the learned
dynamic detection handles unknown or novel data and also how a training set
should be designed. Our datasets were recorded using a Velodyne HDL-32E LiDAR
with a robot traveling in urban environments and on the sidewalk. The KITTI
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Figure 4.4: Two scans (top) and the corresponding color images (bottom) with
incorrect labels. The blue dots in the scan are the labeled dynamic points. The
marked car in the left is completely missing, while for the truck on the right only
the points of the front side have been labeled. Brown dots correspond to points not
present in the camera image.

Figure 4.5: Precision-recall curves for the spatial label expanding on the KITTI
dataset. We trained and tested our method with different increased region sizes. The
legend shows the size of the increase in meters. On the left side a magnification of
the equal error rate region is shown.
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Camera Image

Range Image

Ground Truth Labels

Estimated Dynamic Probability

Figure 4.6: This figure shows a scene from the KITTI dataset. The top image shows
the camera image, the second shows the range image where ranges are encoded from
close to far by black to white respectively. The third image shows the provided labels,
which are only available within the field of view of the camera. The bottom row
shows the estimated probability. You can see that even the cars on the right behind
the hedge are detected by the learned method.

dataset however was recorded with a Velodyne HDL-64E LiDAR mounted on a car,
driving on streets. Besides the obvious difference in sensor resolution, a vehicle
driving on a road observes pedestrians typically at a higher range and more cars in
close proximity.

For this experiment we added the scans from the test data used in the first two
experiments to our training set and learned a random decision forest. First we
applied the learned model to the KITTI test set used in the previous experiment
with a growth of the labels by 0.4m. The result is shown in Figure 4.7 (green).
We then trained a model on the KITTI dataset and applied this model to our city
center test set. The result is shown in Figure 4.7 (pink). We note that the model
learned on the KITTI dataset applied to our data results in an equal error rate of
around 75%. By applying our augmented model to the KITTI dataset we receive an
equal error rate of around 38%. The reduced performance for this setting is to be
expected, since the KITTI dataset is much larger and therefore better suited to learn
a more general classifier. Our data only includes cars, pedestrians and bicyclists,
while the KITTI dataset additionally includes classes like trucks, trams, trailers and
a larger variety of background elements and viewpoints than our training data.

In summary, given a large enough dataset, our algorithm generalizes well to
other datasets, even for different environments and laser scanners.
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Figure 4.7: Test of the generalization of our proposed method. The pink line shows
the performance of the model learned on the KITTI dataset applied to our test data.
The green line shows the precision-recall curve for the model learned on our datasets
applied to the KITTI dataset.

4.4.6 Feature Extraction and Learning Methods

We further investigate the performance gain in computing the feature statistics at
different scales compared to one fixed scale. To do so, we compare the classifier
learned on the KITTI dataset with a classifier learned on the same training set
but using a feature vector that captures only one neighborhood size of 0.5m. The
results are shown in Figure 4.8. As expected, the dynamic probability estimated
using the hierarchical feature (solid line) represent the ground truth more precise
than the fixed-size version (dashed line). This highlights the fact that dynamic
objects can have very different extends and computing the features on different
scales helps to deal with the varying sizes.

Furthermore, we compared the performance of the random decision forest with
a SVM and a classification using AdaBoost trained on our training dataset. The
random decision forest was one order of magnitude faster in training, faster in
classification, and provided better classification results, as can be seen in Figure 4.9.

The mean time for computing our hierarchical features on a laser scan with
around 55,600 points is approximately 0.46 seconds. The mean classification time of
the learned random decision forest is approximately 0.23 seconds per scan. These
timings were measured on an Intel i7-4930K and on the city center experiment
described in Section 4.4.3.
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Figure 4.8: This plot highlights the usefulness of the hierarchical feature. In this
experiment different sized dynamic objects occur, such as cars, cyclist, pedestrians,
trucks, trams, etc. By use of the hierarchical feature (solid line) we are able to get a
reasonable result. Without a hierarchical feature (dashed line) you can see that the
performance drops.
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Figure 4.9: Comparing three different learning methods to predict the probability
that surfaces belong to dynamic objects. While the boosting method computes a
classification, the SVM and the random decision forest predict a probability. Applied
to the parking lot dataset the random decision forest produces better and faster
results than the other two methods.
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4.5 Conclusion

In this chapter, we presented a novel approach to learn a method which allows
to annotate each point in a 3D scan with a probability of being caused by a
dynamic object. In contrast to other methods, which compare two scans to predict
which parts of a scan belong to dynamic objects, the proposed probabilities can
be estimated on single scans. The method does not take consecutive scans into
account nor does it require a segmentation step. We train a random decision forest
on local point features in a supervised fashion. The method allows us to even
detect parts of dynamic objects that are stationary in a scan such as parked cars
or pedestrians waiting for the bus. In extensive experiments we evaluated the
classification performance of the presented approach and favorably compared it
to two alternative learning methods. We also demonstrated that our estimated
probabilities can be used to improve the recognition results of a difference-based
segmentation method.
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Deep Learning Approach for the Detection of

Dynamic Objects in 3D Range Data

The detection of dynamic parts of the environment is fundamental for many
mobile robotic tasks. It makes scan matching and localization more robust, allows
to avoid dynamic obstacles during navigation and helps to generate maps which
are valid over an extended time period by including only the static parts of the
environment. In recent years, a growing number of perception tasks are being
solved by deep learning techniques. They are fast during prediction and do not
need features, whose design often requires expert knowledge. In this chapter,
we present a method based on a neural network to detect dynamic aspects in
3D LiDAR scans. The presented approach uses a convolutional neural network
to estimate for each point the probability of belonging to a dynamic object in an
end-to-end fashion. To train and evaluate the performance of our network, we
use the KITTI object dataset. Finally, we compare the presented neural network
approach against the feature-based method presented in the previous chapter.

5.1 Introduction

In this chapter, we propose a deep learning approach to detect dynamics in single
3D range scans similar to the method presented in the previous chapter. The
method presented here uses a neural network to predict point-wise the probability
of 3D laser points being reflected by dynamic objects. We denote this estimated
probability, as in the previous chapter, by dynamic probability. In contrast to
many other approaches and as the method presented in the previous chapter, this
probability is determined using a single 3D laser scan and does not rely on previous
scans or camera images.

Our approach has several features that improve the detection of dynamic objects
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for mobile robots in highly dynamic environment. First, as the dynamic probability
is calculated from individual scans, it does not require a comparison of pairs or
multiple scans to detect moving objects. Rather, it can identify also dynamic objects
that are currently not moving like a standing pedestrian or a parked car. In the
remainder of this chapter, we refer to moving and movable objects as dynamic
objects. Second, as the prediction of the dynamic objects is based on single 3D
scans, our approach can also be applied to robots with bad or no IMU or odometry.
Finally, our method is highly efficient and can operate online at 20Hz. Thus, there
is a potential to utilize it to avoid dynamic objects while navigating in dynamic
environments. Figure 5.1 shows an example of our proposed probability that
measurements were caused by dynamic parts of the environment together with the
corresponding range image. Please note, that we do not use camera images in our
approach.

The remainder of this chapter is organized as follows. After presenting related
work, we introduce our approach to predict the dynamic probabilities which is
based on a modified ResNet proposed by Valada et al. [79]. The network was
presented to be used with camera images. We thus show how the 3D scans can be
transformed into 2D images to be suitable for the network. This section is followed
by the experimental evaluation.

5.2 Related Work

There has been a tremendous amount of work regarding the detection of dynamic
objects in either camera data [10, 17, 79] or laser scans [14, 16, 41]. To detect
dynamic objects in camera data Fan et al. [17] as well as Reddy et al. [59] feed
images into a neural network to segment the scene into different object classes while
also estimating which segments move. In a similar context, Vertens et al. [80] apply
a neural network to jointly detect cars and predict if these are moving. The network
gets consecutive camera images as well as optical flow as input. Chabot et al. [10]
propose a convolutional network to detect cars in color images. They employ a
coarse to fine approach to predict bounding-boxes for cars and additionally fit 3D
shape templates to the detection to even predict object parts that are occluded.
Chen et al. [12] use camera images as well as different views of 3D scans to predict
3D bounding-boxes for different object classes.

Other than these methods, our algorithm does not use camera images. We
convert the individual 3D laser scans to two 2D images, one for range and one for
intensity. These images have a smaller resolution than a camera image and hold
less information.

Instead of images previous, work also employed 3D range scans together with
neural networks for object detection. Similar to our work, Li et al. [41] convert
3D scans into range images before applying a neural network for object detection.
Engelcke et al. [16, 83] propose a fast network based on a sliding window to
detect objects directly in 3D scans. In contrast to these works, which generate
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Range Image

Dynamic Probability

Image of the Corresponding Scene (not used)

Figure 5.1: An example of a range image (blue to red depicts near to far) together
with its computed probability of the point being caused by a dynamic object (orange
shows a high dynamic probability). Note that the camera image is not used by our
algorithm.
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bounding-boxes around detected objects, we predict a point-wise probability of
belonging to a dynamic object.

Dewan et al. [14] propose a method to detect and distinguish moving and
movable points in 3D laser scans. While this approach first computes motion flow
between two consecutive scans and seeks to identify entire objects, our method
uses a single 3D scan as input.

Compared to other approaches about detecting dynamics, our method has several
advantages. While the majority of the previously developed methods for laser range
data take more than one scan to determine the measurements caused by dynamic
objects, our method uses a single 3D scan to predict a per point dynamic probability
and does not need to take previous measurements into account. Thus, it does not
require scan matching or tracking methods. Second, our method does not use
camera images and thus is not limited to proper lightning conditions. Third, our
method can also identify movable objects that are not moving in the current scan.

5.3 Detection of Dynamic Objects

In this chapter, we propose a method using a neural network to predict the prob-
ability that points in single 3D range scans are caused by a dynamic object. Our
approach does not only consider moving objects as dynamic objects but also mov-
able objects as they might move in future.

In this work, we apply the neural expert network proposed by Valada et al. [79]
to 3D laser scans. It is a network for semantic segmentation of images and builds
upon a modified ResNet50 network. The network follows the general principle
of an encoder-decoder network. In the first half, it aggregates the image features
while in the second half it upscales the feature maps to the original image size to
get the segmentation. Compared to ResNet50, the network uses multi-scale blocks
to detect objects of different sizes. By applying dilation instead of down-sampling
the network allows for a segmentation of higher resolution. For a more detailed
network description please refer to Valada et al. [79].

The employed network was proposed to be used with RGB-color camera images.
To apply the neural network to a 3D laser scan, we first have to transform the
scan to a 2D image. We investigate different modalities to fill the image channels,
including range and intensity generated from the 3D laser scan (see Section 5.3.1).

For a more robust learning process, we compute the mean for each channel over
the whole training dataset and use this to generate zero mean training data. The
original network predicts binary class labels only. In this work, however, we are
interested in obtaining a probability that a point is caused by a dynamic object. To
achieve this, we remove the final argmax-layer of the network and interpret the
output of the softmax-layer as an approximation of the desired dynamic probability.
After applying the trained network to our 2D representation of the 3D scans, we
need to project the prediction back into the 3D scan. To do so, we project each 3D
scan point into the range image and assign the corresponding estimated dynamic
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probability to it. The result of applying the trained network on a scan from the
KITTI object dataset is shown in Figure 5.1.

5.3.1 Modalities

To apply the neural network, which works on 2D images, to 3D laser scans, we
first transform the data into 2D modalities such as range or intensity obtained
from the 3D scan. In our experiments, we test different modalities and evaluate
combinations of them (see Section 5.4.4). In the following, we explain how to
compute the modalities used in this chapter.

When recording 3D scans with a moving robot one has to compensate for the
motion of the robot based on IMU or odometry data. Accordingly, the back-
projection of the 3D points into the range image is approximate and multiple or no
points might fall into a single pixel of the generated range image.

To generate the different modalities we first collect all 3D points that are projected
into the pixel at position (x, y):

{xj, Ij} ,
where xj ∈ R3 is the 3D position and Ij is the measured intensity of the 3D point.
Using these we then generate multiple modalities: First, we calculate the minimum
distance of all 3D points falling into a cell

r(x,y) =min
j

∥xj∥, (5.1)

which we denote as range. Furthermore, we calculate the mean intensity of all
points falling into a pixel

I(x,y) = Ij. (5.2)

For the height we compute the mean z-value (up) over all points xj falling into the
pixel (x, y). To get rid of the absolute distance value, we compute the rangeDiff
modality given by the deviation from the range of the pixel (x, y). More precisely,
using all eight neighboring 2D-pixels (x′, y′) of a pixel (x, y) we calculate

d(x,y) =
1

8 − 1
∑
(x′,y′)

(r(x,y) − r(x′,y′))
2
. (5.3)

A comparison of the performance of these modalities for the task of estimating
dynamic probabilities can be found in the experimental evaluation.

5.4 Experimental Evaluation

In this section, we provide experiments carried out with the KITTI object dataset to
test the performance of the dynamic detection. We also present how our approach
is able to segment moving and movable objects using our dynamic probability. We
furthermore compare the performance of the proposed method based on a neural
network with the feature-based approach presented in the previous chapter.
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5.4.1 Training Data from the KITTI Object Dataset

To train and evaluate our neural network to predict the probability that surfaces
belong to dynamic objects, we use the publicly available KITTI object dataset
recorded by Geiger et al. [22]. The dataset consists of camera images and 3D range
scans with labeled bounding-boxes. Our method assigns to each point in a scan
the probability that these were created by dynamic objects. For training, we need
a 3D point-wise labeling of the training data into dynamic and static points. For
this, we project the bounding-boxes into the frame of the 3D LiDAR scans and label
all points inside a bounding-box. Each of the provided bounding-boxes encloses
an object that can move such as cars, vans, trucks, pedestrians, cyclists, or trams.
We treat points falling into the corresponding bounding-boxes as dynamic and all
others as static. The bounding-boxes are provided in the camera image and are
limited to the camera view. We therefore label only the parts of a 3D scans that
overlap with the camera view and set all other labels to unseen.

As we found out during our experiments in the previous chapter, the dataset
contains a substantial amount of errors. Several bounding-boxes are missing and
others are either displaced or too small. Two examples are shown in Figure 4.4.
To reduce the impact of the inaccuracies of the bounding-boxes in this dataset,
we increase the box sizes in both horizontal directions (not up and down) for the
entire dataset by 0.4m (see Section 4.4.4 and Figure 4.5). For our experiments
we split the labeled training data into a test and a validation dataset, each with
roughly 3,700 scans, as proposed by Chen et al. [11].

5.4.2 Data Augmentation

To increase the diversity of our training set we use data augmentation. When
creating a range image from a given 3D laser scan one has to provide the sensor
origin, which usually is (0,0,0). We create augmented scans by moving the origin in
a radius of 1m in the horizontal plane while generating the range image. This pro-
duces range images from a slightly different perspective. We then further augment
the resulting images by applying augmentations on image level. More precisely, for
each image and augmentation, we select the corresponding augmentation with a
given pre-defined probability. Thereby, we enforce that at least one augmentation
is chosen. Thus, we apply between one and all six augmentations to each image. In
our current system, we use the following augmentations with parameters sampled
from the denoted intervals (probability of choosing that augmentation in brackets):

• Rotate the image by [-2,2] degrees (p = 0.4).
• Scale the image by a factor of [0.8,1) (p = 0.4).
• Translate the image by [(-50, -5) , (50,5)] pixels (p = 0.2).
• Flip the image horizontally (p = 0.3).
• Crop the image by a factor of [0.8,0.9] (p = 0.4).
• Skew the image by [0.025,0.05] (p = 0.3).
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For each scan, we generate three range images by shifting the origin. We then four
times augment each of these images plus the original range image by applying the
augmentations described above. Together with the non-augmented images this
yields 20 images per scan. For the training, we generate a multi-channel image
where the different channels are filled with all tested modalities.

5.4.3 Training the Neural Network

To train the neural network, we use the labels 0 = static, 1 = dynamic and the ignore
label 2 for unseen/unlabeled points. The scans in the KITTI dataset were recorded
using a laser scanner with 64 individual laser beams. By back-projecting the scans,
we receive images with a size of 2,000× 24 pixels. We pad the 2D images with zeros
such that width and height are a power of two. We also crop the images from a
size of 2,048× 64 pixels to the field of view of the camera (512× 64 pixels). We then
trained the network for 100,000 iterations.

5.4.4 IoU Results

We train our network based on different modalities and compare the results with
and without augmentation. We use the validation dataset to compute the per-
class intersection over union score (IoU, see Section 2.5.4) for our learned neural
networks. We use the KITTI object dataset to generate a binary labeling of the
data into static and dynamic 3D points. To compute the IoU score, we trans-
form our estimated dynamic probabilities into a classification by thresholding the
probabilities.

In our first experiment, we demonstrate how well different modalities perform
individually and how they can be combined to improve the prediction result.
Table 5.1 shows the intersection over union score on the KITTI object dataset for
different modalities trained using augmented data. As one can see, range and
rangeDiff perform well as standalone modalities. By combining modalities, the
result further improves. The combination of rangeDiff, intensity and height yields
the best results. It performs better than the same combination using range instead
of rangeDiff. This is due to the fact that rangeDiff shows more contrast as image
which seems to help the network.

We also evaluate how much the augmentation boosts the performance of the
network. Table 5.2 shows that the result improves for all modalities and their
combinations. This result shows that adding more training data would further
improve the learned prediction method.

5.4.4.1 Runtime

In this experiment, we demonstrate how much time is spent on the individual
components of our approach. For this experiment, carried out on the KITTI object
dataset, we used a computer equipped with an i7-2700K and a GeForce GTX 980
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intersection over union
modalities static dynamic mean

range 0.956 0.632 0.794
rangeDiff 0.958 0.633 0.795
intensity 0.945 0.526 0.735
height 0.943 0.477 0.710
range, intensity 0.961 0.664 0.813
rangeDiff, intensity 0.964 0.688 0.826
range, intensity, height 0.961 0.667 0.814
rangeDiff, intensity, height 0.965 0.695 0.830

Table 5.1: Prediction quality of our learned network trained on augmented data
using different modalities. The highlighted values show how the combination of
modalities increases the performance.

intersection over union mean IoU
modalities static dynamic mean increase

range 0.945 0.573 0.759 0.035
rangeDiff 0.949 0.592 0.771 0.024
intensity 0.939 0.509 0.724 0.011
range, intensity, height 0.949 0.599 0.774 0.040
rangeDiff, intensity, height 0.957 0.647 0.802 0.028

Table 5.2: Prediction quality of our learned network trained without augmented data
using different modalities. The last column shows the increase of the mean IoU when
using augmentation. The augmentation increases the performance of all modalities
and their combinations.

62



5.4. Experimental Evaluation

Range Image

13ms

Modalities

5.5ms

Forward Pass

28.7ms

Figure 5.2: Visualization of the time spend on different parts of the estimation of
dynamic object probabilities.

and ran the detection in a single thread. A graphical representation of the timing is
shown in Figure 5.2. To transform the laser scans into a range image, we use the
PCL implementation [64] which requires 13.4ms per scan. Generating the different
modalities takes between 0.3ms (height) and 5.2ms (rangeDiff). Finally, predicting
the dynamic probability given the modalities takes 28.7ms. Our approach allows
to perform the detection of movable objectes at a rate of 20Hz so that every scan
can be processed. The majority of the time required to create the range image
can be reduced to less than 1ms by using ordered laser scans, which are normally
provided by Velodyne laser scanners. Unfortunately this ordering is not preserved
in the KITTI dataset.

5.4.5 Comparison with Feature-based Dynamic Detection

In the previous chapter, we proposed a method for feature-based estimation of the
dynamic probabilities. The following experiment compares this method against the
method based on a neural network proposed here. We compare the methods using
the intersection over union score and discuss the training and prediction time of
both approaches. For this comparison, we train the feature-based method using
the same KITTI training data used to train the neural network. The training of
the random decision forest is sensitive to large differences in the size of training
examples for different classes. We counter this by sampling the same amount of
training data for each class. We then estimate the dynamic probabilities for each
scan in the validation dataset. For the computation of the IoU score, a classification
into dynamic and static scan regions is needed which we receive by thresholding
the estimated dynamic probabilities.

Table 5.3 shows the IoU score computed on the predictions of the the feature-
based method as well as the IoU score for the network prediction using the modali-
ties rangeDiff, intensity and height as denoted in Table 5.1 and 5.2.

As presented in the previous section, our proposed neural network method takes
47.3ms per scan, therefore running at 20Hz on the KITTI object dataset. The
feature-based method takes 230ms for feature computation and classification only
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intersection over union
method static dynamic mean

neural network (augmented) 0.965 0.695 0.830
neural network (not augmented) 0.957 0.647 0.802
feature-based method 0.945 0.445 0.695

Table 5.3: Comparison of the proposed neural network and the feature-based method
presented in the previous chapter. The table shows the prediction quality of our
learned network using the combination of rangeDiff, intensity and height trained on
augmented and non-augmented data compared to the feature-based results.

allowing 4Hz. Note that we are comparing a prediction running large parts on the
GPU with a prediction solely implemented on the CPU. The training of the neural
network for 100,000 iterations takes 10hours while the training of the random
decision forest takes 4.7hours on all scans provided in the training data.

As a result of this experiment, we note that while the training time for the neural
network method is larger the estimation of the dynamic probabilities benefits from
the GPU implementation and is faster during prediction. The quality of the neural
network prediction is also notably higher. Another advantage of the neural network
method is that we do not need to design features which is a tedious work.

Figures 5.3 to 5.6 show a comparison of the feature-based and deep learning
approach for dynamic probability estimation. The figures show an intensity image
with the estimated dynamic probabilities of the feature-based and neural network
approach on different scenarios from the KITTI object dataset. Cars and pedestrians
are reliably detected by both methods. The feature-based method tends to confuse
pillar-like objects as tree trunks or street lights with dynamic objects.

5.5 Conclusion

In this chapter, we presented a method to detect dynamic objects in 3D scans. We
train a neural network to predict the probability that points are caused by dynamic
objects for range images generated from single 3D laser scans. Despite only using
single scans, we are capable of detecting moving objects as well as parked cars and
other movable objects. We demonstrated the performance of our approach using
the publicly available KITTI object dataset. We compared the proposed method
against the feature-based dynamic detection presented in the previous chapter. Our
proposed neural network method is able to run at 20Hz and achieves more precise
dynamic probabilities which results in higher IoU scores than those estimated by
the feature-based method.
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(a) Intensity image (red: low reflectance, blue: high reflectance)

(b) Feature-based predition (purple: dynamic, red: static)

(c) Neural network prediction (purple: dynamic, red: static)

Figure 5.3: Comparison of the dynamic probability estimation methods on a road
lined by trees. The car in the center, which is barley notable in the intensity image, is
detected by both methods. The feature-based method confuses a tree on the right
side for a dynamic object.

(a) Intensity image (red: low reflectance, blue: high reflectance)

(b) Feature-based predition (purple: dynamic, red: static)

(c) Neural network prediction (purple: dynamic, red: static)

Figure 5.4: Comparison of the dynamic probability estimation methods on a road
with parked cars. Both methods detect the cars, while the feature-based method
additionally is able to detect the person on the right side of the road.
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(a) Intensity image (red: low reflectance, blue: high reflectance)

(b) Feature-based predition (purple: dynamic, red: static)

(c) Neural network prediction (purple: dynamic, red: static)

Figure 5.5: Comparison of the dynamic probability estimation methods on a inner city
road without dynamic objects. While the neural network predicts dynamic objects
mostly on image parts which are not covered by the scan, the feature-based method
falsely reports large regions as dynamic.

(a) Intensity image (red: low reflectance, blue: high reflectance)

(b) Feature-based predition (purple: dynamic, red: static)

(c) Neural network prediction (purple: dynamic, red: static)

Figure 5.6: Comparison of the dynamic probability estimation methods on a road
with multiple pedestrians. There are at least eight pedestrians on the right side of the
image detected by both methods. The feature-based method predicts dynamics for
the truck on the left side but confuses the building on the left with a dynamic object.
The neural network detects the flat building surface as dynamic object.
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Localization on publicly available road networks is well suited for the navigation
in previously unseen outdoor environments. However the precision provided by
this method is limited by how accurate the road network represents the streets.
It also does not represent information about the surrounding which is crucial
for many robotic tasks. In this chapter, we propose a novel method for building
3D grid maps using laser range data in dynamic environments. Our approach
feeds the estimated dynamic probabilities proposed in the previous chapters into
the mapping module to build 3D grid maps containing only the static parts
of the environment. We present experimental results evaluating our mapping
process using a parking lot dataset created using one of our robots. In extensive
experiments, we show that maps generated using the proposed method and our
probability about dynamic objects increases the accuracy of the resulting maps.

6.1 Introduction

Building maps is a fundamental requirement in many robotic tasks. There are nu-
merous types of maps, ranging from graph-based representation of road networks
to maps representing the geometry of surfaces in the environment. In this chapter,
we present a method to learn 3D grid maps. These volumetric maps subdivide the
environment into discrete cells. For each cell the mapping algorithm estimates prop-
erties of the represented part of the environment such as occupancy probabilities,
color or reflectance. These maps enable different robotic tasks including collision
checking, path and task planning. More general maps are used to support all kinds
of navigation and localization tasks. However, the presence of dynamic objects in
the map increases the difficulty of such tasks. For this reason, localization is usually
done using a map that only represents the static aspects of the environment. The
generation of such maps, however, requires a robust detection of dynamic objects
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or measurements caused by such objects. Generating maps without dynamics is
usually either done by filtering out measurements caused by dynamic objects before
giving the data to the mapping process or by removing dynamic objects by matching
scan against each other while building the map.

In this chapter, we propose a novel mapping approach to learn three-dimensional
maps from 3D laser data. Our approach uses the probability of 3D laser points being
reflected by dynamic objects (which we denote as before by dynamic probability)
to build a map of the static components only. In our approach, we first apply the
neural network proposed in the previous chapter to predict the probability that
a measurement is reflected by a dynamic object. During mapping, our approach
integrates data proportional to this estimated dynamic probability into the map.
Generating maps without dynamic objects typically yields maps that remain valid
for extended time periods. The maps we generate are 3D grid maps in which cells
store the probability that a scan beam is reflected by a static object.

The remainder of this chapter is organized as follows. After presenting related
work, we present the mapping process which is a modified version of the map-
ping approach presented by Hähnel et al. [25]. This section is followed by the
experimental evaluation.

6.2 Related Work

Many mobile robot systems rely on volumetric maps for localization. Moravec et
al. [54] introduced occupancy grid maps in the 1980s. Using sonar measurements
the authors estimate 2D grid maps where each cell is either occupied or free.
Stachniss et al. [69] introduced an alternative map representation called coverage
maps. In contrast to the binary cell occupancy these maps estimate how much
of a cell is occupied by an obstacle. Both mapping approaches assume a static
environment. Building maps in dynamic environments requires to cope with
measurements caused by moving, appearing or disappearing objects. Within a
SLAM framework Wolf et al. [86] present a mapping algorithm which estimates
separate maps for dynamic and static objects to improve the performance of the
system in dynamic environments. Meyer-Delius et al. [51] introduced a variant
of occupancy grids in which they utilize a Hidden Markov Model for every cell to
keep track of the potential changes in the occupancy of each cell. Hähnel et al. [25]
introduced a probabilistic approach based on the expectation maximization (EM)
algorithm to estimate the beams reflected by moving objects from entire laser scans
and to build a map of the static aspects of the scans. In this chapter we build upon
this mapping approach but instead of the EM-based estimation of static objects, we
employ a prior of movable objects and thus we are able to remove measurements
caused by dynamic objects that are not moving during the data collection process
such as parked cars or standing pedestrians.

68



6.3. Mapping with Dynamic Probabilities

6.3 Mapping with Dynamic Probabilities

The goal of our method is to create a 3D grid map which only contains those
components of the environment that are static over an extended time period. To
achieve this, we first use the neural network proposed in the previous chapter to
compute a per-point probability of being caused by a dynamic object on all input
LiDAR scans. We utilize this dynamic probability to build a grid map of the static
environment parts. In the remainder of this section, we describe how we build a
3D grid map from the labeled scans.

To compute a 3D grid map from the set of scans we adapt the map building
method proposed by Hähnel et al. [25]. This approach employs an expectation
maximization (EM) framework to decide which beams of a range scan are reflected
by static objects. These beams are then used to compute α- and β-values for each
cell of the map. Here, α corresponds to the number of beams which end in this cell
and β counts the beams that pass through a cell without ending in it. These values
are then employed to compute the reflectance probability of a grid cell according to

m = α

α + β
. (6.1)

In contrast to their work we do not need EM as we predict a dynamic probability
with our trained neural network. Instead we directly incorporate our continuous
probability that measurements were caused by dynamic parts of the environment
into the calculation of α and β. As we are only interested in the static aspects of
the environment we treat measurements that hit a dynamic object as miss in the
mapping process.

Let p be the probability that measurements were caused by dynamic parts of
the environment, calculated by our network for a beam that is not a maximum
range measurement. For the cell, in which that beam ends, we add the probability
that the measurement was caused by a static object: 1 − p to the α-value. In
addition, we add the dynamic probability p to the β-value of that cell. If the beam
was a maximum-range measurement, we update neither the α- nor the β-value.
Independent of maximum range measurements, we increment the β-value of every
cell traversed by the beam by one. More formally, for a beam that has a estimated
dynamic probability p and passes through the cells j = 1, . . . , k − 1 and ends in cell k
we calculate

βj ← βj + 1. (6.2)

If the beam is not a maximum range measurement, we calculate

αk ← αk + (1 − p) (6.3)
βk ← βk + p. (6.4)

If we would employ binary estimates for the dynamic probabilities p the mapping
algorithm would be equal to the reflectance mapping approach by Hähnel et al.
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where each dynamic measurement would be assumed a max-range reading. The
resulting map estimates high reflectance probabilities for parts of the environment
which are static. Volumes with dynamic objects are represented by low probabilities
that these cells reflect a beam by a static object.

An overview of our mapping algorithm is depicted in Figure 6.1. First we
transform the 3D scans into 2D modalities such as range or intensity images. These
images are then fed into our learned neural network. The network predicts for each
pixel in the 2D image a probability that the corresponding 3D point was caused
by a dynamic object. This dynamic probability is then projected back into the 3D
scan. In the mapping step we employ the estimated probabilities to incorporate the
measurements into the 3D grid map. The first part of this pipeline is described in
Chapter 5.

6.4 Experimental Evaluation

In this section, we show how dynamic probabilities, as proposed in the previous
chapters, can be used to generate a 3D grid map that represents only the static
parts of the environment. We also show that our proposed mapping algorithm is
able to remove moving objects as well as movable objects. In this evaluation we use
the neural network proposed in the previous chapter for the detection of dynamic
probabilities but any method predicting the probability that a measurement was
caused by a dynamic object can be employed. Our network was trained using the
KITTI object dataset.

We used our robot Viona (see Section 2.8) equipped with a Velodyne HDL-64E
LiDAR and an Applanix PosLV (IMU and GPS) to record datasets on our campus
parking lot. We applied a SLAM system to correct the scan poses reported by the
Applanix system. Following the results of the previous chapter we use our neural
network together with the modality combination of rangeDiff, intensity, height to
estimate the dynamic probabilities in the rest of this chapter as it performs best.

To apply the neural network trained on the KITTI object dataset to our data
we had to correct the intensities that are different on both datasets. To generate
data for training and testing we compute the per channel mean of the training
dataset and subtract it channel-wise to get zero mean data. This mean value per
channel stays the same for training and testing. To compensate for the different
intensity values in both datasets we recomputed the mean for the intensity modality
on one of our parking lot dataset and used this value during prediction. For this
experiment we use one of our recorded campus parking lot datasets to build a map
as proposed above. The mean of the estimated dynamic probabilities per cell on the
parking lot dataset is shown in Figure 6.2.

We generate two different maps from the same dataset. The first map incor-
porates points given their dynamic probability as well as a second map were we
assume all points are static. We choose a cell size of 0.25m for the mapping.

To show that our mapping process successfully removes dynamic objects we
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Figure 6.1: Overview of our proposed system. We first convert the 3D scan into
2D images, which we then feed into the network. We utilize the resulting dynamic
probability with the scan poses to generate the 3D grid map of the static aspects of
the environment.
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Figure 6.2: Mean estimated dynamic probabilities on the parking lot dataset. Dynamic
objects are shown in blue (parked cars, walking pedestrians) while static objects are
red.

manually generated a ground truth labeling of static and dynamic objects for the
dataset. Then, we determined if a dynamic object is represented in the map by
a cell with a reflectance value of at least 0.5. The ground truth labeling as well
as the two maps annotated with the not included (green) and included dynamic
cells (red) are shown in Figure 6.3. We can see that objects like the moving person
recording the dataset are not included in either map. On the other hand the parked
cars are only removed by our mapping process using the dynamic probabilities. Our
mapping method using the dynamic probability is able to remove 95.66% of all
dynamic cells while the map generated assuming all points are static is able to
remove the moving objects such as the pedestrians and cyclists but not the cars,
thus removing 78.25% of all dynamic cells.

6.5 Conclusion

In this chapter, we presented a method to generate a 3D grid map of the static
aspects of the environment of a mobile robot. We employ the neural network
proposed in the previous chapter to predict a pixel-wise dynamic probability that
a point was caused by a dynamic object for range images generated from single
3D laser scans. By incorporating measurements proportional to the predicted
probability we generate maps containing the static aspects of the environment. In
the experiments we demonstrated that our method generates accurate maps of the
static parts of the environment while excluding the dynamic aspects.
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(a) Ground truth

(b) Map assuming everything is static

(c) Map of our proposed algorithm

Figure 6.3: Our approach robustly removes dynamic objects from the generated
maps. The top image shows the manually labeled dynamic objects in green. The
second image shows the map built under the assumption that everything is static.
While the moving pedestrians as well as the cyclists are not included in the map
(green), the parking cars at least partially are (red). The bottom image demonstrates
how effectively our approach also removes parked cars.
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A map representing the static aspects of the environment is well suited for local-
ization, as the map is not affected by changes caused by dynamic objects. For
other tasks, such as safe navigation or local path planning, the information about
appearance of dynamics in the environment is crucial. In this chapter, we present
a method to learn 3D grid maps that represent the reflection probability of an
object in the environment as well as an estimate about the dynamics of objects
present in the map. We therefore extend our mapping approach presented in
the previous chapter to include dynamic objects in the map and to keep track of
the distribution of dynamic objects occupying cells. To learn a map representing
the most recent consistent state of the environment, we detect changes in the
environment during mapping. We evaluate our algorithm using the KITTI tracking
dataset and show that the proposed method generates maps that represent the
most recent state of the environment.

7.1 Introduction

A key requirement for mobile robots is their ability to localize themselves in the
environment. For this task a map representing the static parts of the environment
is sufficient and allows to be used over an extended time span, as it is not disturbed
by dynamic objects. However, to treat dynamic objects as free space during path
planning or navigation can lead to unforeseen encounters with dynamic objects.
One solution to overcome this problem is to plan paths on a map representing
the static environment and detect dynamic obstacles in the sensor data during
navigation to avoid them. However, this approach can lead to suboptimal paths if a
planned trajectory is blocked by obstacles not present in the static map. By planning
paths on or navigating using maps representing also the temporary, dynamic objects
the performance for these tasks can be increased.
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In this chapter, we propose a method to learn maps that include static as well
as dynamic parts of the environment. The maps proposed in the previous chapter
estimate for each cell the probability that a beam hitting this cell is reflected by
a static object. In this section, we extend our mapping algorithm to estimate the
reflectance probability together with the distribution of dynamic objects which
occupy the cells. To build maps of static environments, most mapping algorithms
assume that the environment does not change during mapping. However, this
assumption is violated in dynamic environments. A robot driving by a closed door
multiple times, estimating a map of its environment using the original occupancy
grid mapping algorithm [54], takes a long time to adjust its map to the new
situation when this door is opened. By detecting such changes in the environment
we can adjust the map right after we detected the change. To build a map including
the dynamic parts of the environment we therefor need to keep track of the map
parts which change due to moving objects or such that change their dynamic
object type. An example of the later is a car that parks, as it changes its type from
moving to movable. The method proposed in this chapter detects whenever a cell
changes and only uses data after such a break point, as measurements before this
change are not created by the same environment. The map does not only store the
reflectance probability but also estimates a distribution of dynamic objects present
in each cell. We use a neural network to estimate for each pixel the probability that
measurements are caused by objects of one of multiple dynamic object types. For a
stream of 3D LiDAR scans we estimate whenever the state of a cell changes. This
information together with the probabilities that points were created by dynamic
objects is then used to build a 3D grid map. To train and test our neural network
and to evaluate our mapping approach we use the KITTI tracking dataset.

The remaining chapter is structured as follows. The next section outlines related
work on the topics of mapping in dynamic environments and semantic segmentation.
After this, we present our algorithm for multi-class mapping. The method consists
of three parts. The first part is the estimation of dynamic probabilities on the
scans. On this data we detect whenever the environment changes by computing
break points in the stream of measurements. The last part of our algorithm is
the generation of a 3D grid map representing the reflectance probability and the
distribution of the objects represented in the cells. This section is followed by the
evaluation of our dynamics and break point detection methods as well as the grid
mapping algorithm.

7.2 Related Work

There are numerous approaches to map in dynamic environments. In an expectation
maximization fashion Hähnel et al. [25] alternate the prediction which parts of the
environment are dynamic with the creation of a map using only the static parts of
the environment. In contrast to our work, they treat dynamic measurements as
outliers and discard them. Arbuckle et al. [1] introduced temporal occupancy grids.
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Instead of storing a single occupancy value per cell, the authors propose to estimate
multiple values computed over data from different time intervals. This allows then
to distinguish static from dynamic regions but does not provide the time when the
change occurs. Luber et al. [44] build maps in which they estimate the probability
of human occurrence using poison processes. Meyer-Delius et al. [51] model the
dynamics of a scene by the state transition probabilities of a Hidden Markov Model
that they fit to the observed data. In the previous chapter, we proposed an approach
to learn maps that represent the static parts of the environment. We used a method
to estimate the probability that individual points of a 3D laser scan are created
by dynamic objects. We then incorporated beams proportional to this probability
into a grid map to predict the probability that a beam hitting a cell is reflected by
a static object. Other than these methods, which build a map of either the static
environment or store where dynamics occur, we estimate in this chapter a map that
represents the most recent environment state including static as well as dynamic
parts in the map while accounting for map changes.

Luft et al. [46] propose the idea of break point detection on occupancy grid maps.
These break points mark whenever the environment changes in a given cell. In their
work, the authors estimate the break points in a stream of binary hits and misses.
Using only data after the latest break point they build a map of only the most recent
consistent measurements. In contrast to their work, we extend the break point
detection to a stream of histograms representing real-valued probabilities.

The map generated by our proposed method is a semantic map in which labels
correspond to the dynamic object type of the maximum of the estimated dynamic
probabilities. Nüchter et al. [55] build semantic indoor maps. They classify planes
into different semantic classes based on their orientation. These maps are then filled
with objects labels from learned single class object detectors. Oliveira et al. [56]
combine a dense SLAM system, a convolutional neural network and ElasticFusion
to generate dense semantic 3D maps. Sünderhauf et al. [72] build 2D grid maps
which they annotate per room with a room type. They then use this map to boost
object classification results based on the room type the object is found in. Xiang et
al. [88] jointly build a 3D scene together with a semantic labeling. The result of
their method is a surface map in which learned objects are semantically annotated.
While the above mentioned methods generate semantic maps of the environment,
none of them accounts for change detection in the mapped area. In our approach,
we detect for each cell whenever the state changed and use this information during
mapping.

In this chapter, we extend our neural network approach for dynamic probability
prediction to distinguish between measurements of moving and movable objects.
In a similar context Dewan et al. [14] proposed a neural network to estimate an
objectness score on consecutive 3D scans. Simultaneously, the authors estimate
the motion of the scene using Rigidflow and use the result to filter the dynamic
estimation over the whole sequence of scans by clustering objects. While Dewan et
al. estimate motion for cars only, we do not distinguish between different types of
objects and do not filter the resulting predictions.
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7.3 Multi-Class Mapping

In this chapter, we present an extension to the 3D grid mapping method presented
in the previous chapter. The method presented before estimates for each cell
the probability that a beam hitting a cell is reflected by a static object. This
section explains the extension of our mapping algorithm to estimate the reflectance
probability as well as the distribution of dynamic objects types of the objects the cell
is occupied by. We train a neural network to predict point-wise probabilities that 3D
points were caused by one of multiple dynamic object types. In our implementation,
we distinguish three types of dynamic objects: static, movable and moving. Parked
cars or standing pedestrians are movable objects, while everything that changes
its position is a moving object. Movable objects can start moving at any time and
become movable and vice versa. In the mapping algorithm presented before, the
reflectance probability is estimated using all measurements ending in or traversing
a cell. This was possible as we treated all non-static measurements as a miss. If,
however, a cell is occupied by an object and this object is moved or an object
appears in a free cell, a standard grid mapping approach, which uses all data, needs
multiple measurements to adjust the occupancy estimate to the new situation.
Detecting such changing cells and resetting these allows for immediate change
of the reflectance probability estimate, as all measurements seen until now are
generated by a different state of the environment. For the detection of such break
points, we propose two methods: an entropy-based method and a probabilistic
approach. We then show how the estimated probabilities can be used, together
with the detected break points, to build a 3D grid map in which each cell estimates
the reflectance probability as well as a distribution of dynamic object types.

7.3.1 Three-Class Dynamic Object Probability Estimation

In the previous chapter we estimated dynamic probabilities that measurements
were caused by dynamic objects. In this chapter we estimate similar probabilities
for three dynamic object types: static, movable and moving. We denote these
probabilities that surfaces belong to one of those dynamic object types by dynamic
object probabilities. The first step of our algorithm is to assign to each point of a 3D
laser scan the dynamic object probabilities. To predict these, we employ a neural
network. As in the previous chapter, we use the AdapNet by Valada et al. [79].
To be suitable for the network our algorithm first generates range and intensity
images from the 3D scans. To get rid of the absolute distance value in the range
image it uses the rangeDiff modality (see Equation (5.3)). To differentiate between
moving objects like cars on the road and movable objects such as parked cars,
we additionally use an image with precomputed motion estimates. This image is
joined with the rangeDiff and intensity (see Equation (5.2)) modalities into a three
channel image and feed into the network. The network usually gives a single best
label as a result. As we are interested in probabilities of each point belonging to
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Figure 7.1: Histogram visualization of the probabilities that a measurement was
created by an object of one of three dynamic object types. The red bar shows the
probability for the point being static, while green and blue show movable and moving.

one of the three dynamic object types, we remove the last argmax-layer from the
network and interpret the three resulting class responses as probabilities. To reduce
overfitting and to train a more robust network, we augment our training data. This
happens in two steps. During the generation of a range image from a 3D scan one
needs to provide the sensor pose in the scan. By adding an offset to this pose, we
generate range images with a small perspective change. We then apply additional
augmentation on image basis to the resulting modality images.

By applying our trained network, we receive for each pixel in the input image a
distribution that this measurement was caused by one of the three dynamic object
types. Therefore we define our measurements as follows:

z = (p (static ∣ z) , p (movable ∣ z) , p (moving ∣ z)) (7.1)

In the remainder of this chapter, we represent these dynamic object probabilities
as a histogram and denote it for a scan at time t as zt. A visual representation
is shown in Figure 7.1. The red bar shows the probability that the measurement
was caused by a static object: p (static ∣ z), the green bar marks the probability for
movable objects: p (movable ∣ z) and blue visualizes the moving object probability:
p (moving ∣ z).

7.3.2 Break Point Detection

In our mapping algorithm proposed in the previous chapter the reflection probability
of a cell is determined using all data falling into a cell. This is possible, as these
maps represent only static parts of the environment. However, if the state of the
cell changes during mapping, this is not taken into account. In a map representing
also dynamic objects such cases might for example occur if a car drives by or a
door is opened or closed. Luft et al. [46] propose a method to detect such changes
for occupancy mapping and to estimate the time when this happened: the break
point. To estimate the break point for a binary stream of hits and misses the
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authors propose methods based on entropy, the Bayesian Information Criterion and
a probabilistic approach. A detailed explanation can be found in their paper [46].
Building on this work, we propose two methods to detect break points in a stream
of histograms of multiple real-valued probabilities that measurements were caused
by objects of different dynamic object types.

As the order in which points in a single scan are recorded result from the rotating
sensor and does not represent a meaningful change in time, we only consider break
points between scans. All measurements z1, . . . , zN a cell receives from a single scan
at time t are therefore merged into one measurement: Zt. For the combination of
measurements we compare two methods. The first method takes the mean of all
measurements zi:

Zt = 1

N

N

∑
1

zi. (7.2)

The second method combines the individual measurements by element-wise multi-
plication with an additional normalization, such that the result sums up to 1:

Ẑt = z1 ⊙ . . .⊙ zN , (7.3)

Zt = 1

∥Ẑt∥
Ẑt, (7.4)

where ⊙ denotes the element-wise multiplication. A comparison of both methods
can be found in the experimental evaluation section (Section 7.4.3).

To compute the most likely break point b given a stream of N observations we
implemented and tested an entropy-based and a probabilistic approach which are
presented below.

7.3.2.1 Entropy Splitting

The first method to find the point in time where the underlying distribution of
dynamic object types changes is based on the entropy of all data after the potential
break point b. As long as adding a measurement to our stream does not increase the
entropy, this measurement was caused by an object of the same dynamic object type.
To find the break point b we minimize the entropy of the distribution of dynamic
object types in our stream of histogram data:

argmin
b

H (b) , (7.5)

where we compute the entropy given a break point b as the mean of the individual
histogram measurement entropies after time b:

H (b) = 1

N − b

N

∑
t=b
H (zt) . (7.6)
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The entropy of a single measurement of the distribution of discrete dynamic object
types represented as a histogram of dynamic object probabilities is defined as follows:

H (z) = −∑
i=1
zi log zi, (7.7)

where zi are the individual dynamic object probabilities (see Equation (7.1)). The
method returns a break at the start of the sequence if there is no state change
present.

7.3.2.2 Probabilistic Splitting

The second method, we propose to determine a break point in a stream of histogram
measurements, is based on the probability that these are generated by an object of
the same dynamic object type. The minimum of these probabilities over all potential
break points is the most likely break point. We first assume that the distribution
before and after our potential break point b is each generated by objects of the same
dynamic object type. We therefore take the mean of all measurements before and
after b and compute the probability that these come from the same distribution:

argmin
b

Pb (
1

b

b

∑
t=1
zt ,

1

N − b

N

∑
t=b+1

zt) . (7.8)

The first argument of Pb is the mean of the histogram before and the second the
mean after the break point candidate b. For two combined measurements Z and Z′

the probability that these represent the same dynamic object type is given by:

Pb (Z,Z′) = ∥Z⊙Z′∥. (7.9)

We defined a minimum probability P0 that must be exceeded to be assumed a valid
break point. This value is dependent on the data and needs to be learned (see
Section 7.4.3).

7.3.3 Mapping

During mapping, we learn a 3D grid map which estimates for each cell the proba-
bility that a beam send into this cell is reflected. Additionally, the map estimate a
histogram of probabilities that the cell is occupied by an object with the respective
dynamic object type. For the mapping, we introduce a fourth dynamic object type
representing that the measurement went through the cell without ending in it.
We integrate such misses as a measurement to the seen measurements created
by beam endpoints. During the mapping more than one measurement might
fall into a cell. These measurements are combined either by taking the mean or
by element-wise multiplication (see Equations (7.2) and (7.4)). Especially for
the multiplication method no value should be zero. We ensure this by integrat-
ing hits as z = η1 (p (static ∣ z) , p (movable ∣ z) , p (moving ∣ z) , εm) and misses as
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z = η2 (εh, εh, εh,1), where η1, η2 are normalization factors such that the dynamic
object probabilities sum up to one and εm, εh > 0.

The input to our mapping algorithm is a stream of 3D scans with known poses.
We first predict the dynamic object probabilities for each scan. Then, the individual
3D points are integrate as measurements into our 3D grid by tracing rays from
the sensor pose to the beam endpoint using our custom ray tracing algorithm (see
Section 7.3.3.1). Each cell collects hits, misses, the distance rays travel through
the cell, as well as the dynamic object probability histograms. The data is stored
separated for each scan. After integrating N scans, we are interested in the map
estimated using all observations of the same unchanged environment. We therefor
split the stream of measurements in each cell as long as a break occurs. Each
time our algorithm finds a break point b, it discards all data before this break and
searches in the data Zb, . . . ,ZN for the next break point. If no further break point can
be found, we estimate the reflection probability as well as the histogram of dynamic
object probabilities using all remaining data. To run the mapping algorithm online,
each cell can be split whenever a new scan is integrated and data before a detected
break points can be discarded. To estimate the reflectance probability, we employ
reflectance mapping, as used in our mapping approach presented in the previous
chapter, as well as decay rate mapping [45], which uses the distance a beams travel
through a cell. We also present an estimate of the reflectance probability based on
the histograms of dynamic object probabilities. In the remaining section we describe
all components of the mapping approach in more detail.

7.3.3.1 Ray Tracing Algorithm

During the mapping process, we need to find all grid cells a beam traversed before
it hits an object. Additionally, the decay rate mapping requires the length the ray is
running through each cell. We therefor propose a new algorithm for tracing rays
through a 3D grid map, which casts rays from the sensor pose to the measurement
endpoint. Given a start and end position in 3D our algorithm first computes the
grid cell the ray starts in as well as the direction the ray travels. We repetitively
check the intersection of the line representing the ray with the next three planes
in ray direction representing the cell borders. The calculation of the intersection
between the line and the planes is carried out using barycentric parametrization
of the line with a normalized direction vector. This allows, to use the barycentric
parameter γ as distance between the line start point and the next border. We then
take each plane with minimal distance on the line and in- or decrease the cell index
in this dimension. Multiple planes with minimal distance are possible if the line
runs through a cell edge or corner. Additionally to the indices of all traversed cells
the algorithm stores the minimal distance as the distance the ray travels through
a cell. The sum of this values per cell is employed as radius R in the decay rate
mapping. The ray tracing algorithm is shown in Algorithm 1 in more detail.
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Algorithm 1 Our Ray Tracing Algorithm

1: procedure TRACERAY(Start ∈ R3, End ∈ R3, cellSize ∈ R)
2: cells← {} // (cell ∈ N3, radius ∈ R)
3: line← End − Start
4: totalLength← norm(line)
5: direction← normalized(line)
6: (x,y, z)← Start
7: cellIndex← getIndex(Start) // cell index from coordinates in meter
8: nextBorder.x← cellSize ⋅ (cellIndex.x + ((sign(direction.x) == 1)?1 ∶ 0))
9: nextBorder.y← cellSize ⋅ (cellIndex.y + ((sign(direction.y) == 1)?1 ∶ 0))

10: nextBorder.z← cellSize ⋅ (cellIndex.z + ((sign(direction.z) == 1)?1 ∶ 0))
11: lengthRunning← 0
12: do

// calculate the distance to the intersections with the cell borders
13: γx ← (nextBorder.x − x)/direction.x
14: γy ← (nextBorder.y − y)/direction.y
15: γz ← (nextBorder.z − z)/direction.z
16: minima←min(γx, γy, γz) // find minima
17: cells.insert(cellIndex, minima.value)
18: for m ∈ {x, y, z} in minima do
19: nextBorder.m← nextBorder.m + cellSize ⋅ sign(direction.m)
20: cellIndex.m← cellIndex.m + 1 ⋅ sign(direction.m)
21: (x,y, z)← (x,y, z) +minima.value ⋅ direction
22: lengthRunning← lengthRunning +minima.value
23: while (lengthRunning < totalLength)
24: return cells
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7.3.3.2 Dynamic Object Type

To estimate the distribution of dynamic object types in the part of the environment
represented by a cell, we employ the histogram measurements. After splitting the
stream of measurements, using the computed break points, we assume that all
measurements are created by the same, unchanged environment. We compute the
dynamic object typ histogram given the last break point b by taking the mean of all
measurements:

Z = 1

N − b + 1

N

∑
t=b
zt (7.10)

7.3.3.3 Re�ectance Probability Estimation

We employ three different methods to estimate the reflectance probability of a cell.
A comparison of the resulting estimations can be found in the experimental evalua-
tion in Section 7.4.5.3. The three reflectance estimation methods are described in
the following section.

Re�ectance Mapping

The reflectance mapping counts the hits and misses per cell using two variables α
and β. To estimate the reflectance probability the method uses the ratio:

m = α

α + β
. (7.11)

The reflectance mapping is described in more detail in Section 6.3.

Decay Rate Mapping

The decay rate model was proposed by Luft et al. [45]. For this model the number
of hits H is used as in the reflectance mapping. Instead of the number of misses
the sum of distances which beams traveled through a cell without ending in it is
computed: R. The longer the distance a ray travels through a cell, the higher the
probability that this cell is free. Using these values the decay rate is defined as:

λ = H
R
. (7.12)

To estimate an reflectance value for a cell the decay rate is transformed using the
exponential function:

m = 1 − e−λ/c, (7.13)

where c is the cell size in meter.

Histogram-based

We also employ the distribution of dynamic object types to estimate the reflectance
probability. We estimate in the fourth histogram value the probability p(miss ∣ z)
that the measurements collected in a cell represent a miss. The reflectance proba-
bility is then estimated using the combined measurements after the last break point
as follows:

m = 1 − p(miss ∣ z). (7.14)
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7.4 Experimental Evaluation

The proposed mapping approach consists of three steps. The first step in our
algorithm is the estimation of dynamic object probabilities for each point in the
input scans. Afterward, we detect break points in the data to account for changes
of the environment due to dynamic objects. The last step is the generation of a
3D grid map using the detected dynamic object probabilities and break points. In
our experiments, we evaluate all three parts of the mapping algorithm. The first
experiment evaluates the estimation of the dynamic object probabilities using our
neural network. After this we test the detection of break points in a stream of scans
and compare our two break point detection methods. We then compare the two
methods to combine measurements. The last experiment evaluates the resulting
maps. Throughout these experiments we employ the KITTI tracking dataset.

7.4.1 Using the KITTI Tracking Dataset

The KITTI tracking dataset, created by Geiger et al. [22], provides Velodyne scans,
recorded in urban areas, with a bounding-box-based labeling of dynamic objects.
Other than the KITTI object dataset (see Section 5.4.1), were only single scans
are provided, this dataset consists of sequences of scans and their poses which
allows to distinguish moving and movable objects. In our work we learn a method
to predict point-wise the probabilities that measurements were caused by objects
of one of multiple dynamic object types. To use the KITTI dataset in our work,
we first transfer the labels of the bounding-boxes onto the respective 3D scan
points by projecting all point into the bounding-box frame. For each point inside a
bounding-box, we transfer the label, while everything outside the bounding-boxes
is assumed to be static. As only the view of the color camera is labeled, we mask
everything outside this view as unknown. To evaluate our network we cannot use
the test set provided by the KITTI tracking dataset, as there are no ground truth
bounding-boxes provided, which we need for a point-wise labeling. Instead, we
split the KITTI training dataset into a test and training set. The KITTI tracking
training dataset consists of 21 sequences with 78 to 1059 scans each. We used the
first 11 sequences for training and the rest for testing. To generate training data
for our network we need ground truth labels which distinguish between movable
and moving objects. Dewan et al. [14] manually divided the bounding-boxes
provided for the KITTI tracking dataset into moving and movable boxes. We use
this distinction to generate a point-wise labeling of the dataset into static, movable
and moving 3D points.

7.4.2 Dynamic Detection

The first experiment evaluates the estimation of our dynamic object probabilities. We
use a neural network to predict for each 3D point in a laser scan the probabilities
that it belongs to our dynamic object types. In this work three dynamic object types
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3D Scan

rangeDiff (blue: flat, red: changing depth)

intensity (blue: low, red: high reflectance)

precompMotion (blue: static, red: motion)

Figure 7.2: The first image shows a 3D scan where the colors visualize the ground
truth label, green for two movable cars, blue shows moving pedestrians and a bike
and red all static points. Grey points are outside the labeled camera view. The next
three images show the computed modalities (scaled by three in height for better
visualization). A van can be found left of the center in the images. The precompMotion
shows high values for the cyclist on the road (center of the image).
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are used: static, movable and moving. To distinguish movable and moving points we
use precomputed motion estimates. We apply the difference-based segmentation
method, used as baseline in Chapter 4, to estimate a prior for moving scan parts.
The method takes a stream of 3D scans with known poses as input and compares
the most recent scan with the last scan and keyframes selected from previous scans
in the sequence. By comparing these scans on a range image basis, it estimates
motion priors depending on which points are present in the scans. The result is a
motion estimate for each point in the most recent scan where moving objects are
marked as dynamic. Additionally small objects often generate a perceived motion,
due to the unsuccessful matching. Whenever objects move slow or to far away from
the sensor the method is not able to detect motion. We project the motion prior
from this method into an image and use it as precompMotion modality. For all scans
in our training dataset, we generate training data by combining this modality with
the modalities rangeDiff and intensity as described in Section 5.3.1. An example 3D
scan together with the three computed modalities is shown in Figure 7.2.

To reduce overfitting and to increase our training set, we augment the data in
two steps. The first step generates for each scan one image without and three
with augmentation by adding an offset to the sensor pose during the range image
generation. This offset generates small perspective changes. The second step
augments each resulting image multiple times by sampling image augmentations
and their parameters. We employ two image augmentations. The first augmen-
tation samples whether or not the image gets flipped horizontally. The second
augmentation translate the image horizontally by an offset between 1 and the
image width thereby computing the new horizontal index for each pixel modulo
the image width. This leads to the fact, that everything that falls out one side of
the image is added on the other side. An example of our augmentation is shown
in Figure 7.3. This augmentation simulates a rotation of the robot and eliminates
potential place dependent priors during training such as that cars appear mostly in
front of the robot.

We train our network as in Chapter 5 based on a neural network but instead
of three, we use four classes: 0 = static, 1 = movable, 2 = moving, 3 = ignore. The
resulting prediction of the network is a pixel-wise histogram of three dynamic object
probabilities on the 2D representation of the scan. This prediction is then projected
onto the 3D points of the laser scan. An example of the estimated probabilities is
shown in Figure 7.4.

The KITTI scans predominantly consist of static areas. To counter this miss-
balance in the training data, we evaluate the weighting of the loss of the network
with the reciprocal class frequency during training.

To test the quality of our prediction, we classify all our test data by taking for each
pixel the class of the maximum estimated probability as classification and compare
it against the ground truth. We compute a class-wise IoU score (see Section 2.5.4)
which is shown in Table 7.1. The estimated probabilities work best for the class
static as the majority of all labeled points is generated by static objects such as roads
and buildings. The augmentation therefore mainly boosts the performance of the
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(a) Before augmentation

(b) After augmentation

Figure 7.3: An example of the used augmentations on a rangeDiff image. The image
gets shifted to the right while each index is computed modulo the image width. The
image is also horizontally flipped. For better visualization the height is scaled by
three. The image is wider than the content as the image size is fixed to 2k pixels.

intersection over union
training data static movable moving mean

without augmentation 0.962 0.532 0.413 0.636
with augmentation 0.967 0.623 0.479 0.690
with augmentation and weighting 0.967 0.636 0.492 0.698

Table 7.1: Prediction quality of our estimated dynamic object probabilities with and
without augmentation of the training data. We also show the result for the weighting
of the loss function.

two dynamic classes. The weighting of the loss function increases the result further.
We also computed a confusion matrix of the classification on the KITTI sequence
0011 which is shown in Figure 7.5. While the prediction works well for static points
movable and moving points are sometimes confused for static objects, mostly on
borders of objects. The moving objects are additionally sometimes confused for
movable objects especially when the motion on slow moving or distant objects is
not properly detected. Throughout the rest of this chapter, we employ the network
trained using augmented training data and weighting of the loss function, as this
combination results in the highest IoU score.

7.4.3 Break Point Detection

The mapping algorithm presented in the previous chapter builds maps consisting
of the static parts of the environment while treating dynamic measurements as a
miss. In this chapter, we include dynamic objects into the map. We are interested
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intensity modality

p (static ∣ z)

p (movable ∣ z)

p (moving ∣ z)

Figure 7.4: Dynamic object probability estimation result together with the correspond-
ing intensity image. The cars as well as the pedestrian can be spotted in the images.
Black values represent low while colors show high probabilities.
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Figure 7.5: Confusion matrix of the dynamic object probabilities estimated on KITTI
sequence 0011. The confusion happens mostly on borders and when the motion of
slow moving objects is not correctly represented in the precompMotion modality.
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Figure 7.6: Mean and standard deviation of our three sets of measurements used
for break point detection. The first three bars represent measurements with a static
ground truth label, the second and third movable and moving. Each color represents
the estimated dynamic object probability for one of the three dynamic object types.

in the most recent map created from consistent measurements. Therefor our
approach needs to detect changes in the environment and take these into account
while mapping. The following experiment evaluates our two proposed methods
to detect such break points in a stream of measurements annotated with the
estimated dynamic object probabilities. The second part of this section shows how
the parameter P0 of the probabilistic method can be learned.

To evaluate the break point detection, we first sample measurements from our
annotated KITTI scans from sequence 0011 and divide them into three sets each
with 10,000 measurements depending on their ground truth label L. Each measure-
ment consists of three estimated dynamic object probabilities which sum up to 1:
p (static ∣ z), p (movable ∣ z) and p (moving ∣ z).

Figure 7.6 shows the mean and standard deviation of the three dynamic object
probabilities for the three sets of measurements used in this experiment. The first
three bars visualize the mean of all measurements with a ground truth label L of
static. The colored bars show the probability that a beam was created by a static
(red), movable (green) or moving (blue) object. We can see that for each label L
the mean of the probability p (L ∣ z) is the highest. Using this data, we build an
artificial measurement stream by sampling a random order of those measurements.

Both break point detection methods aim to generate a sequence of break points
b1, . . . , bM such that for each i = 1, . . . ,M all measurements zbi−1 , . . . , zbi share the
same ground truth label L. After we predicted all break points on the stream of
data, we count how many of the true changes of L the methods detected, as well as
the number of times they predicted a break point while the label L stayed the same.

Table 7.2a shows the result for the entropy-based method. The rows show
the ground truth label L before the break point while the columns show the
ground truth label L′ after. The off-diagonal cells denote the ratio of correctly
identified break points where the environment switches from L to L′. The main
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label after:
static movable moving

static 0.526 0.637 0.663
label before: movable 0.956 0.653 0.761

moving 0.975 0.881 0.740

(a) All data

label after:
static movable moving

static 0.490 0.885 0.847
label before: movable 0.994 0.474 0.935

moving 0.999 0.990 0.505

(b) Filtered data

Table 7.2: Break point detection result for the entropy-based method. The columns
represent the ground truth label L before, the rows after the break point. The off-
diagonal cells represent the correctly detected break point ratio. The main diagonal
shows the ratio of falsely detected break points where there are none present.

diagonal shows the ratio of falsely detected break points where no change in
the environment occurred. A perfect result would have a diagonal of value 0
(white) while all off-diagonal elements have a value of 1 (black). To evaluate the
break point detection methods independent of false classifications we repeated
this experiment and only sampled correctly classified measurements where the
maximum of all three dynamic object probabilities is equal to the ground truth label:
L = argmax (p (static ∣ z) , p (movable ∣ z) , p (moving ∣ z)). The result is shown in
Table 7.2b. We note that the result improves but the values on the main diagonal
show that we still predict a number of false break points.

7.4.3.1 Learning the Minimum Break Point Probability P0

The entropy-based method is a parameter-free approach, which returns a break
point at the start of the stream if no break point is found. The probabilistic method
on the other hand, uses the value P0 to decide if a detected break point was valid.
This value depends on the underlying data and must be estimated on the training
data. To estimate P0 we employ a gradient-based optimization technique. We first
create an artificial measurement stream from a set of around 40,000 measurements
of each dynamic object type using the same method as above but scans sampled
from the training set. The gradient-based method first samples a starting value for
P0 ∈ [0,1]. Using this value, we predict all break points in the stream and compute
the result table R as shown in Table 7.2 for the entropy method. This table R is
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then used to evaluate a score s for this value of P0:

s = 1

9
∑
i,j

ri,j, (7.15)

ri,j =
⎧⎪⎪⎨⎪⎪⎩

Ri,j, i ≠ j
1 −Ri,j, i = j,

(7.16)

where ri,j are the values in the result table and ri,i are the diagonal elements
representing the ratio of falsely detected break points. We then evaluate the
gradient of the score function at P0 by sampling a value below and above our
current P0 and compute the score values as above. Based on this gradient a new
value of P0 is selected. If both scores are lower than the score for P0 we reduce
the distance of the gradient evaluation points and repeat the process. If for 25
iterations the value of P0 does not change this value is returned as the optimal
value. The process was repeated 100 times with different starting values while
keeping the value P0 with the highest score. The search leading to the final value of
P0 as well as a linear evaluation of P0 values is shown in Figure 7.7a. The score of
the entropy-based method is visualized by a horizontal blue line. We found the best
value P0 = 0.565 with a score of 0.825. With increasing value of P0 the score rises
as the break point method rejects possible break points between measurements of
the same class. Towards the end the score decreases as we reject almost all found
break points. We additionally repeat this experiment filtering out falsely classified
measurements. The resulting optimization is shown in Figure 7.7b. The best value
found is P0 = 0.494 with a score of 0.998. We note that the score for the filtered
optimization is more peaked and results in higher values.

Using the learned values of P0 we compute the result table using the same artifi-
cial measurement stream from sequence 0011 as for the gradient-based method:
Table 7.3b. Applying the P0 value we learned on the filtered training data to the
filtered measurements from sequence 0011 we receive an almost optimal result. In
the unfiltered case the method struggles to detect break points between movable
measurements (see lower right cell of Table 7.3a). This is due to fact, that misclas-
sified movable measurements lead to the situation where the measurement before
and after the detected break point look different even though they share the same
ground truth label.

The probabilistic break point detection method employs a parameter which needs
to be estimated on the training data. By employing a learned value, the resulting
break point detection is superior to the result of the entropy-based method.

7.4.4 Combining Measurements

During the mapping process, we assume that all measurements coming from one
scan occur at the same time. Therefore the break point methods only search for
break points between scans. While building the map more than one measurement
coming from one scan might fall into a cell. Due to the spacial extent of cells, these
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Figure 7.7: Gradient-based search for the optimal P0 value. The red line visualizes
the gradient-based search leading to the final value of P0. The best found value
and score is marked with a magenta colored cross. The green line shows a linear
evaluation of P0 scores and the horizontal blue line depicts the score for the entropy-
based method. The upper plot shows the search sampling from all measurements
while the lower shows the same with filtering of falsely classified measurements.
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label after:
static movable moving

static 0.058 0.740 0.793
label before: movable 0.735 0.485 0.807

moving 0.792 0.802 0.725

(a) All data, P0 = 0.565

label after:
static movable moving

static 0.001 0.997 0.999
label before: movable 0.997 0.012 1.000

moving 1.000 1.000 0.094

(b) Filtered data, P0 = 0.494

Table 7.3: Break point detection result for the probabilistic method using the learned
values for P0. The columns represent the ground truth label L before, the rows after
the break point. The off-diagonal cells represent the correctly detected break point
ratio. The main diagonal shows the ratio of falsely detected break points where there
are none present.
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Figure 7.8: Evaluation of two methods to combine measurements and two break
point detection methods. By adding an increasing number of measurements from
different dynamic object types we can test the robustness of the combination methods.

measurements do not need to be created by an object of the same dynamic object
type. In the following, we evaluate two methods to combine multiple measurements.
To test how much measurements coming from an object of a different dynamic
object type can be added to still get a stable break point detection, we use the
score explained above (see Equation (7.15)). Instead of single measurements the
measurements used here are a combination of multiple individual measurements.
We compare two methods for measurement combination: the mean over the
individual measurements as well as the element-wise product normalized to sum up
to one (see Equation (7.4)). To test the robustness of the measurement combination
methods we create a stream of combined measurements. Each of these consists
of 10 individual measurements combined together. We start by sampling all
measurements from the same ground truth class and replace more and more
measurements with measurements from a different dynamic object type. The
resulting scores are shown in Figure 7.8. As expected, the score for all methods
drops the more measurements from different classes are added. This is due to the
fact that the combined measurements look almost identical for all three classes
for 70% of scans from other dynamic object types (see Figure 7.9b). In this case we
sample almost uniformly from each dynamic object type. By adding more samples
from other dynamic object type the measurements become discriminable again
(see Figure 7.9c). As a result of this experiment we note that the mean over
the measurement suffers less from noisy data than the normalized element-wise
multiplication.
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Figure 7.9: Mean of the class probabilities for 0%, 70% and 100% measurements
sampled from the two other dynamic object types. While the histograms in (a) and (c)
look different for each class and allow the detection of break points, the histograms
in (b) look almost identical and do not allow a reliable break point detection.

7.4.5 Mapping

In this chapter, we propose a mapping algorithm which learns maps in dynamic
environments representing static as well as dynamic parts of the environment.
Each cell of the map estimates the reflectance probability as well as a histogram of
probabilities that the objects represented by the cells are of one of three dynamic
object types. The goal of our proposed method is to generate 3D grid maps which
represent the most recent environment. To evaluate this, we compare in our first
mapping experiment the most recent observation with the maps generated by
our methods. As a simple solution to this task is to discard all data whenever a
new scan arises we also evaluate how well our maps represents maps of all static
observations.

We generate maps using a grid resolution of 20 cm and a max-range of 80m. We
use a value of P0 = 0.477. This value was learned by our gradient-based method
proposed in Section 7.4.3.1 but including the miss class (see Section 7.3.3) and
considering the values of εh, εm. For mapping we use the scan poses as provided
by the KITTI dataset. In our experiments, we show how our algorithm deals with
changing environments. We therefore removed the ground floor as it is not relevant
for dynamics estimation.

An example of a map generated from sequence 0014 of the KITTI tracking dataset
including ground measurements is shown in Figure 7.10. Each cell is colored by
its most likely dynamic object type. The map represents a street with cars parked
at both sides (green). On the opposite lane a moving car (blue) is driving by. The
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Figure 7.10: An example of a map generated by our proposed mapping algorithm on
the KITTI tracking dataset sequence 0014. The map shows a road with cars parked
on the sides which are detected as movable objects (green) and a moving car (blue).

static environment is shown in red. We note that due to the break point detection
the space behind the car is as intended not occupied.

Figure 7.11 visualizes the break points detected by our probabilistic break point
detection method. The image shows a top down view of a map where a car is
standing still on the right side while another moves from the left towards the
sensor. The color shows the last detected break point, where blue refers to the
last scan added to the map. Whenever the car moves for the cells behind it our
algorithm detects a change from occupied to free and reports a break point. There
are relatively few break points between scan index 3 and 8 (orange and yellow
points) on the car as while the car moves through a cell no changes of the object
type in the cell occur, thus our algorithm correctly detects no break points. Note
that the image shows all cells with a reflectance value above 0 meaning that also
cells with a low reflectance probability are shown to visualize the break points.

The method proposed in this chapter computes in each cell break points to decide
which data consistently represents the same environment. In this experiment
we compare our method against three other methods to decide which data to
include during map estimation. We describe the methods we compare against in
the following section.
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Figure 7.11: Top down view on a map showing the last detected break point by scan
index where blue is the last added scan. The color gradient is the result of a moving
car. The map shows all cells with a reflectance probability above zero.

All Data

The first method uses all data seen in a cell to estimate the reflectance and dynamic
object probabilities independent of the consistency. The method thereby ignores
that the environment changes during mapping due to dynamic objects.

Last Scan

We also compare against a method which only uses data which was created by
the last integrated scan. This method is well suited to estimate the most recent
observation but is limited to the sensor range.

Last Three Scans

By using the last three scans we might estimate the map values from inconsistent
observations as dynamic objects are able to move in between these scans. On the
other hand, more scans allow for a more robust estimate and a map larger than the
sensor range.

7.4.5.1 Actuality of the Map

In this experiment, we evaluate to what extend the maps learned by our mapping
approach agree with the most recent observations. To be able to compare not
only occupied cells but also free space, we generate maps from the most recent
observation. First we use our proposed mapping algorithm to generate maps MN

using the first N = 1, . . . ,374 scans of the KITTI tracking sequence 0015 and store
the resulting 374 maps. We then define ground truth maps MN using only the N th
scan of the sequence and a standard occupancy grid mapping approach. We then
project the single scan maps MN into the corresponding maps MN which used all
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data up to scan N . For each cell of MN we check if it is represented in MN by a
cell of the same binary occupancy by thresholding our map MN at an reflectance
probability of 0.5. Figure 7.12a shows the fraction of correctly represented occupied
cells, while Figure 7.12b shows the same for the free cells. These figures show
results using the mean to combine multiple observations from one scan as well as
the histogram-based method for reflectance probability estimation as those perform
the best.

Thresholding a reflectance grid map at 0.5 leads to an occupancy grid map.
Therefore our ground truth map is equal to the last scan method resulting in a
perfect match. Our proposed methods probabilistic and entropy split whenever
the measurements coming from a new scan disagree with the current estimate.
This leads to a high agreement between the ground truth occupancy map and our
maps. Especially the probabilistic splitting method with its parameter trained on
the KITTI dataset reaches an almost perfect match. We further note that splitting
the data at detected break points greatly reduces the amount of falsely classified
cells in contrast to using all data seen during mapping. The sensor moves from
the beginning of the recording up to scan 86, which is marked by a gray vertical
line. After this stop the sensor stays static while cars, cyclists and pedestrians move
by or cross the street. At around scan 160 the poses provided by the KITTI dataset
report a movement of about half a meter while the static parts in the scans do not
move. This leads to the fact that the map does not agree with old data. While
our methods detect break points and reset inconsistent cells the map using all data
needs multiple measurements to adjust. This highlights the usefulness of the break
point detection. A comparison of the scans with and without the reported motion is
shown in Figure 7.13. We note that the scans overlay by using the same pose, not
the reported movement. This indicates that the reported motion was a mistake.

7.4.5.2 Representing the Static Environment

In the first mapping experiment, we evaluate to what extend the maps represent
the most recent observation of the environment. In this experiment, we compare
our maps against maps of the static measurements to test how well the maps
estimate the environment over an extended time period. For this experiment, we
employ the same sequence as in the above experiment, but only use the labeled
measurements in the camera view. First, we generate 374 maps MN for this
sequence using our mapping algorithm as described above. Then, we compute
occupancy grid maps using the same N = 1, . . . ,374 scans of the sequence but
neglecting all measurements with dynamic ground truth labels. By projecting these
maps of the static environment into our estimated maps MN , we count the correctly
represented occupied cells. Comparing the free cells is does not provide any insight
as correctly represented dynamic objects would count as falsely estimated free
cells. The result is shown for the histogram-based reflectance probability estimation
and the mean measurement combination method in Figure 7.14. As expected the
lastScan and last3Scans methods can only estimate the map of the area seen by
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(a) Fraction of correctly represented occupied cells
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(b) Fraction of correctly represented free cells

Figure 7.12: Fraction of correctly classified cells for different break point detection
methods. The sensor moves from the start of the sequence and stops after scan 86
while cars and pedestrians move by. The gray vertical line marks the time where the
car with the sensor stops. In (a) the start is enlarged at the bottom left to show the
probabilistic performance curve. Not the range of the y-axis in Figure (b).
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(a) Scans overlayed with the same pose

(b) Scans overlayed with the reported poses

Figure 7.13: Overlay of scans before (red), during (green) and after (blue) the
falsely reported motion of about half a meter. Figure (a) shows three scans overlaid
using the same pose for all three scans. The scans are each shown in one color. We
can clearly recognize pedestrians moving in the front and a moving car in the back.
Figure (b) displays the scans with the pose reported by the KITTI dataset. We note
that now additionally static and movable parts are displaced.
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Figure 7.14: The fraction of correctly classified occupied cells for different break
point detection methods. We compare our maps against maps representing only the
static observations. The sensor moves from the start of the sequence and stops at
scan 86 while cars and pedestrians move by. The methods using only a fixed number
of scans cannot represent the whole environment.

the last one or three scans thus resulting in low scores. The method using all data
produces almost no difference as it uses the same data as the occupancy grid map,
but with the histogram-based reflectance probability estimation. Our methods
perform well as they use all consistent measurements after the last break point.

The two presented mapping experiments demonstrate that our proposed algo-
rithm is well suited to build maps in dynamic environments. By detecting break
points in the measurement stream of each cell, the map is estimated from all
consistent observations after the last break point. Whenever measurements do
not agree with the current estimate, either through changing environment our
due to an erroneous scan poses, our method resets the corresponding cells. The
resulting maps represent the most recent environment by estimating the map from
all consistent measurements after the last break point.

7.4.5.3 Re�ectance Probability Methods

In the experiments above we only showed results for the histogram-based re-
flectance estimation method. The following experiment compares the three differ-
ent methods proposed to estimate the reflectance probability of a cell. We therefor
show Figure 7.12a again but only for the probabilistic break point detection method
now showing the result of all three reflectance estimation methods: Figure 7.15.
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Figure 7.15: The fraction of correctly classified occupied cells for different reflection
probability estimation methods. The plot shows the result of the probabilistic break
point detection and the mean combination method. Not the range of the y-axis.

We note, that all three methods show a similar curve but with slightly different
values. The reflection and probabilistic method are closer to the occupancy grid map-
ping as they likewise use hits and misses for the reflectance probability estimation.
The decay rate model employs the length a beam travels through a cell to weight
how important an observation is for the estimation. Therefore the reflectance
value estimated by this method does not coincide this close with the occupancy
grid mapping method. The decay rate model is not suited to reproduce an binary
occupancy grid but performs well on other mapping tasks (see Schaefer et al. [65]).

The result of our mapping approach on the KITTI tracking sequence 0015 is
shown in Figure 7.16. The map cells are colored by the histogram-based estimation
that these cells represent static observations. The resulting map of the probabilistic
splitting shows in red (not static) the paths of the moving objects as we show
all estimated cells with an occupancy probability above zero. While the entropy
splitting method map only estimates the static probability for occupied cells, the
probabilistic splitting method map also keeps this information for free cells.
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(a) Entropy-based splitting

(b) Probablistic splitting

Figure 7.16: Top down view on the resulting maps using the entropy-based (a) and
the probabilistic (b) break point detection method. The color encodes the estimated
probability that this cell represents a static object. The objects which moved trough
the scans can still be seen as red cells, especially in (b).
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7.5 Conclusion

In this chapter, we presented a method to build 3D grid maps in dynamic envi-
ronments. The map represents static as well as dynamic objects. Each map cell
estimates the reflectance probability as well as a distribution of dynamic object
types of objects which occupy the cell. In our implementation, we distinguish
three dynamic object types: static, movable and moving, but these can be easily
and arbitrarily extended. To learn our maps, we first feed range and intensity
images as well as precomputed motion estimates into a neural network to predict
for each pixel a histogram of dynamic object probabilities. These are then used to
compute in each cell the reflectance probability and the distribution of dynamic
objects types. During the mapping process, we keep track of changes of the dynamic
environment and reset cells whenever the occupancy or the dynamic object type of
a cell changes. In extensive experiments, we evaluated all parts of our mapping
pipeline and showed that the resulting maps reliably represents the most recent
state of the dynamic environment.

105





8

C
H

A
P

T
E

R

Conclusion

In this thesis, we presented several methods for localization and mapping in
dynamic environments. Furthermore, we introduced approaches for the detection
of dynamic observations in 3D laser scans.

Many tasks carried out by mobile robots require that the robot knows its pose in
the environment. The ability to plan paths towards a goal becomes useless if the
robot’s pose is not known. Also manipulation can not carried out if the robot is
not able to find the object it should handle. In Chapter 3, we presented a method
to localize a robot with respect to a graph-based road network as provided by
OpenStreetMap. We first classified the 3D LiDAR scans into road and non-road
cells. By comparing this classification with the road network, we guided a Monte
Carlo Localization. The proposed approach allowed the robot to localize itself in
previously unseen outdoor environments. By detecting roads in the LiDAR scans
we allowed the robot to leave the road network and to drive even off road. In
extensive experiments, we demonstrated that we are able to localize the robot
in urban and suburban environments using simulated as well as real-world data.
Additionally, we showed that, by localizing the robot relative to a graph-based road
network, we were able to plan paths on the graph which can be used by the robot’s
local planer for navigation.

Mobile robots in dynamic environments, such as urban streets or pedestrian
areas, need to be aware of which parts of their observations are generated by
dynamic objects like pedestrians or cars. The detection of dynamics allows the
robot to avoid obstacles during navigation and enables to build reliable maps of
their environment. To detect dynamics in a single 3D LiDAR scan, we proposed two
different methods. The first method (Chapter 4) trains a random decision forest
using handcrafted features computed on the local point neighborhood. The second
method (Chapter 5) is an end-to-end deep learning approach which takes range
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image-based representations of the scans as input. Both methods estimate the
probability that 3D scan points are caused by dynamic objects. We demonstrated
that both methods were able to detect moving objects such as moving cars or
walking pedestrians as well as movable objects like parked cars. During comparison
of the dynamic detection methods, we found that the deep learning approach is
superior in detection quality and runtime during prediction.

Localization on a publicly available graph-based road network allows the robot
to localize itself in outdoor environments. However the map only represent the
road network. Volumetric maps on the other hand allow reasoning about free and
occupied parts of the environment. Using the probability that measurements were
caused by dynamic objects we proposed in Chapter 6 a method to learn a map of
the static parts of a dynamic environment. As these maps only represent static
observations the map is not disturbed by dynamic objects and is valid for extended
time periods. In our experiments, we showed that our mapping algorithm is able
to build maps excluding dynamic objects, moving as well as movable.

Using a map which represents dynamic objects as misses is well suited for lo-
calization but leads to suboptimal paths during path planning due to unforeseen
dynamic obstacles. By representing dynamic objects in the map these can be taken
into account. In Chapter 7, we presented an extension of the mapping algorithm
above to include dynamic observations in our map. We extended our dynamic
detection to distinguish static, movable and moving objects. By including dynamic
objects into the map, we need to keep track which parts of the environment change.
We detected these changes and integrated this knowledge into the mapping algo-
rithm. During the evaluation, we showed that the maps learned by our mapping
approach are well suited to represent the most recent environment.

The key contributions of this thesis are:

• a localization algorithm on OpenStreetMap data

• methods to predict the probability that 3D LiDAR measurements are caused
by dynamic objects

• a gird mapping approach to learn maps of the static parts of a dynamic
environment

• a method to estimate probabilities that 3D LiDAR points are caused by objects
of one of multiple dynamic object types (e.g. static, movable, moving)

• a mapping approach which learns the distribution of dynamic object types.

In summary the work presented in this thesis enables autonomous cars or other
mobile robots to localize themselves in dynamic environments. The detection of
dynamics in the surrounding allows to build maps of either the static parts of the
environment or to include the information about dynamics into the map accounting
for changes.
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8.1 Future Work

There are several parts of this thesis that could be extended or exchanged.
To predict the probability that parts of a 3D LiDAR scan are generated by dynamic

objects we used in Chapter 5 a network which was designed to be used with color
images. We therefore transformed our 3D scans into 2D modalities. However
recently people try to solve segmentation or classification of 3D data without a
projection to 2D (see for example VoxNet [48], PointNet [58] or OctNet [60]).
Theses approaches could possibly applied to our dynamic detection.

In Chapter 7, we used precomputed motion as input to our estimation of the
dynamic object probabilities. The motion was thereby estimated by comparing the
most recent scan with previous scans. By using these motion as precomputed input
the network is able to distinguish movable and moving objects. The estimated
motion is however inaccurate if objects move slow or are far away. For the task
of depth estimation from color images so called siamese networks can be applied
(see for example [47, 90]). These networks take two images as input to estimate
the depth of the scene. A siamese approach could possibly applied to estimate the
motion within our network using two or more range images as input.

In our last chapter, we learned maps which represent not only the reflectance
probability but also a distribution of dynamic object types. This estimation could be
used during localization to detect localization errors. Static objects for example
should not appear unexpected in free space while for movable or moving objects
this behavior is not as unexpected.
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