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Chapter 1

Introduction

Graded Parabolic Induction Let g ⊃ b ⊃ h be a complex reductive
Lie algebra with a Borel and Cartan subalgebra. Fix a parabolic subalgebra
g ⊃ p ⊃ b and denote its reductive Levi factor by p � l. Denote by Wg ⊃ Wl

the Weyl groups of g and l.

The goal of this thesis is to construct a graded and geometric version of
parabolic induction for modules in the BGG-category O:

Indg
p : O(l)→ O(g), M 7→ U(g)⊗U(p) Respl M.

We will, amongst other things, prove:

Theorem (Theorem 4.2.2.1). Let λ ∈ h∗ be a dominant integral weight and

w a shortest coset representative in Wl\Wg. There is a functor Îndg
p making

the following diagram commute (up to natural isomorphism)

OZ
w·λ(l) OZ

λ(g)

Ow·λ(l) Oλ(g)

Îndg
p

v v

Indg
p

and fulfilling Îndg
p〈n〉 ∼= 〈n〉Îndg

p, where 〈−〉 is the shift of grading.

Here v : OZ → O denotes the graded category O , as constructed in [Soe90]
and [BGS96]. In the words of [Str03], where similar questions for translation
functors are discussed, this means that parabolic induction (at least for integral

blocks) is gradable. We construct Îndg
p with geometric methods, which we will

explain now.
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Geometric Parabolic Induction As envisioned in [BG86], the grading
of category O is deeply related to the mixed geometry of flag varieties: There
should be a derived equivalence between each block of OZ and a category
of mixed sheaves on an associated flag variety. This vision was realized in
[Soe90], [BGS96] and finally [SW16], where an equivalence of categories (up
to adding a root of the Tate twist)

MTDer(B)(G/Q)
∼→ Derb(OZ

λ(g))

between stratified mixed Tate motives on a (partial) flag variety G/Q for the
Langlands dual algebraic group G/C and a derived (singular) block OZ

λ(g)
was constructed. This equivalence is indeed a form of Koszul duality : the
perverse t-structure on the left hand side corresponds to the Koszul dual
t-structure on the right, and vice versa.

Stratified mixed Tate motives are certain constructible motivic sheaves.
They behave similarly to mixed `-adic sheaves and mixed Hodge modules
(with the advantage that they have no extensions between Tate motives C(n)).
In particular, they are equipped with a full six functor formalism, which we
can use to construct a geometric version of parabolic induction as follows.

Theorem (Theorem 4.2.1.1 and 4.2.2.1). Let λ ∈ h∗ be a regular dominant
integral weight and w be a shortest coset representative in Wl\Wg. Then the
following diagram commutes up to natural isomorphism

MTDer(B)(P/B) MTDer(B)(G/B)

Derb(OZ
w·λ(l)) Derb(OZ

λ(g))

Derb(Ow·λ(l)) Derb(Oλ(g))

hw,∗ pr!w

GIndw

v v

v v

Indg
p

Here G ⊃ P ⊃ B corresponds to g ⊃ p ⊃ b and the functor GIndw = hw,∗ pr!
w,

which we call geometric parabolic induction, is defined via maps

P/B PwB/B G/B.
prw hw

We actually show a stronger statement which also holds for singular weights
λ ∈ h∗ and allows us to prove that parabolic induction is also gradable in this
case.



3

Soergel modules In order to prove these theorems, we use the combina-
torial description of derived blocks of category O and stratified mixed Tate
motives on flag varieties in terms of the homotopy category of Soergel modules.
Let C = H∗(G/B,C) → C ′ = H∗(P/B,C) be the cohomology rings of the
flag varieties G/B ⊃ P/B. Then for a reduced expression w = sn . . . s1 ∈ Wg

define the following complex of Soergel bimodules (it is in fact an instance of
a Rouquier complex ) over C

Rw

def
= Rs1 ⊗C · · · ⊗C Rsn ,where

Rs
def
= · · · → 0→ C → C ⊗Cs C〈2〉 → 0→ . . . .

With this notation we show:

Theorem (Theorem 2.3.4.1, 3.3.3.1 and 4.2.1.1). Let λ ∈ h∗ be a dominant
integral regular weight and w a shortest coset representative in Wl\Wg. Then
the following diagram of functors commutes (up to natural isomorphism)

MTDer(B)(P/B) MTDer(B)(G/B)

Hotb(MTDer(B)(P/B)w=0) Hotb(MTDer(B)(G/B)w=0)

Hotb(C ′ -SmodZ,ev) Hotb(C -SmodZ,ev)

Hotb(C ′ -Smod) Hotb(C -Smod)

Hotb(ProjOw·λ(l)) Hotb(ProjOλ(g))

Derb(Ow·λ(l)) Derb(Oλ(g)).

GIndw

v

o∆ o ∆

v

oH o H

SIndw

v v

SIndw

oVw·λl

o

o Vλg

o

Indg
p

Here by SMod(Z) we denote the categories of (graded) Soergel modules and

SIndw : C ′ -SmodZ,ev → C -SmodZ,ev,M 7→ Rw ⊗C ResCC′M.

Again, we prove a more general version which also applies to singular
weights λ ∈ h∗. Our proof strategy is the following: Firstly, we show the
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statement for w = e, which is the easiest case, since then Indg
p maps projec-

tives to projectives and GInde is weight exact. We then carefully analyse
how (geometric) parabolic induction interacts with (geometric) wall crossing
functors. Comparing the results, we are able to prove the general case by an
induction on the length of w.

Structure In the second chapter we treat the representation theoretic side.
After introducing the necessary notation, we first discuss basic functorial
properties of parabolic induction. We then analyse the interaction of parabolic
induction and translation functors. This constitutes the main part of this
chapter. Using these results we are then able to explicitly describe the effect
of parabolic induction on Soergel modules.

The third chapter is concerned with geometry. We start by recalling several
results about motivic sheaves and their six functor formalism (following
[Ayo07] and [CD12]) and about mixed stratified Tate motives as introduced
in [SW16]. We then proceed to describe the P -orbits on a partial flag variety
G/Q in terms of affine bundles over smaller partial flag varieties P/Qw. We use
this description to define the geometric parabolic induction functors GIndw.
As in the second chapter, we then analyse the interaction of geometric wall
crossing functors π!π! with geometric parabolic induction. This allows us to
ultimately describe the effect of GIndw on the level of Soergel modules.

In the fourth and last chapter we compare our results from representa-
tion theory and geometry in order to prove the theorems presented in the
introduction.

Conventions By a C-algebra A we always mean a (not necessarily com-
mutative) C-algebra with unit. By A -mod we denote the category of finitely
generated A-modules. If A =

⊕
n∈ZAn is additionally Z-graded, we denote by

A -modZ the category of graded A-modules and by A -modZ,ev the category
of evenly graded modules, i.e. those modules which are concentrated in even
degrees.

For an abelian categoryA, we denote by Der(A) and Derb(A) its (bounded)
derived category and by ProjA the full additive subcategory of projective
objects in A. For an additive category A, we denote by Hot(A) and Hotb(A)
its (bounded) homotopy category of chain complexes.
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Chapter 2

Parabolic Induction

2.1 Setup

2.1.1 Lie algebras and root systems

Let g ⊃ b ⊃ h be a reductive complex Lie algebra together with a Borel and
Cartan subalgebra. Denote by

h∗ ⊃ Φg ⊃ Φ+
g ⊃ ∆g

the space of weights, set of roots, positive and simple roots corresponding to
g ⊃ b. By a superscript minus as in Φ−g = Φg\Φ+

g or b− we always denote the
corresponding negative or opposite. For a root α ∈ Φ denote by α∨ ∈ h its
coroot and by sα the corresponding reflection. Let

Wg = 〈 sα |α ∈ ∆g 〉
Sg = { sα |α ∈ ∆g }

be the Weyl group and set of simple reflections. Denote by 〈−,−〉 the natural
evaluation pairing on h∗ ⊗ h and by

Λg = {λ ∈ h∗ | 〈λ, α∨〉 ∈ Z for all α ∈ ∆g }
Λ+

g = {λ ∈ h∗ | 〈λ, α∨〉 ∈ Z≥0 for all α ∈ ∆g }

the integral weight lattice and the set positive integral weights. For an integral
weight λ ∈ Λg denote the unique weight in Wgλ ∩ Λ+

g by λg.
Let ρ ∈ h∗ be the half-sum of positive roots and denote by

w · λ = w(λ+ ρ)− ρ

the dot-action of Wg on h∗. We denote the stabilizer of a weight λ ∈ h∗ with
respect to the dot-action by Wg,λ.

7
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There is a partial ordering on the set of weights given by

λ ≥ µ
def⇔ λ− µ ∈ Λ+

g .

A weight λ ∈ h∗ is called dominant (for Φ+
g ) if 〈λ + ρ, α∨〉 /∈ Z<0 for all

α ∈ Φ+
g . The set of integral dominant weights is hence Λ+

g − ρ.

Now let g ⊃ p � l be a parabolic and Levi factor of g such that p ⊃ b,
for simplicity we choose a splitting l ⊂ p. We denote by np ⊂ p the nilpotent
radical of p and by zl ⊂ l the center of l. Then we have decompositions of p
and g into

p = l⊕ np = h⊕
⊕
α∈Φl

gα ⊕
⊕

α∈Φ+
g \Φ+

l

gα

g = n−p ⊕ p = n−p ⊕ l⊕ np

For α ∈ ∆, let $α ∈ h∗, respectively $∨α ∈ h, be the fundamental weights; they
form a dual basis to ∆∨, respectively ∆, and are well-defined if we additionally
require $α(zg) = {0} and $∨α ∈ [g, g]. Then

zl = {H ∈ h |α(H) = 0 for all α ∈ ∆g\∆l} = 〈$∨α |α ∈ ∆g\∆l〉C ⊕ zg

and there is also a partial ordering on the set of zl-weights, namely

ν ≥ ν ′
def⇔ ν − ν ′ ∈ Z≥0{α|zl |α ∈ ∆g\∆l} for ν, ν ′ ∈ zl.

A priori there are two different dot-actions of Wl on h∗. They coincide since

w(λ+ ρ)− ρ = w(λ+ ρl)− ρl

for all w ∈ Wl, where we use that

w(ρ− ρl) =
∑

α∈∆g\∆l

w($α) =
∑

α∈∆g\∆l

$α = ρ− ρl.

Lemma 2.1.1.1. The weights in Λg which are dominant for Φ+
l are precisely

the weights of the form w · λ for λ ∈ Λ+
g dominant integral and w ∈ W a

shortest coset representative for Wl\Wg.

See also Figure 2.1.3 for an example.



2.1. SETUP 9

2.1.2 Category O
The BGG-category O (see [BGG71]) associated to a complex reductive Lie
algebra with chosen Borel and Cartan subalgebra g ⊃ b ⊃ h is the full
subcategory of the category of g-modules, g -mod, given by

O(g)
def
=

{
M ∈ g -mod

∣∣∣∣∣ h acts semisimply on M ,
b acts locally finitely on M ,
M is finitely generated under g

}

For a complex Lie algebra n, denote its universal enveloping algebra by U(n).
For λ ∈ h∗ let

Mg(λ)
def
= U(g)⊗U(b) Cλ

be the Verma module with highest weight λ and

Pg(λ) Mg(λ) Lg(λ)

its projective cover and unique simple quotient in O(g). For λ dominant,
denote by

Oλ(g) = 〈Mg(w · λ) |w ∈ Wg,[λ]〉Serre ⊂ O(g)

the full Serre subcategory of O(g) generated by the Verma modules Mg(w ·λ),
where by Wg,[λ] ⊂ Wg we denote the integral Weyl group of λ. Then O(g)
decomposes into blocks

O(g) =
⊕
λ∈h∗

dominant

Oλ(g)

and we denote the functor projecting on a block Oλ(g) by prλ.

2.1.3 Generalities on parabolic induction

In the notation of Section 2.1.1, let g ⊃ p � l be a reductive complex
Lie algebra with parabolic subalgebra and Levi factor. Then the parabolic
induction functor is given by

Indg
p

def
= U(g)⊗U(p) Respl (−) : O(l)→ O(g).

We often drop the Respl from the notation. Since Indg
p is exact and Indg

pMl(µ) =
Mg(µ) for all µ ∈ h∗ (see below) it respects the block decomposition of category
O(g), namely restricts to

Indg
p : Ow·λ(l)→ Oλ(g),
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t · λ

s · λ

st · λ

sts · λ ts · λ

e · λ

Ot·λ(l)

Oλ(l)

Ots·λ(l)

Figure 2.1: The case sl2 ⊂ sl3: Here Sg = {s, t}, Sl = {s} and λ ∈ h∗ denotes
an some regular integral weight. The shortest coset representatives {e, s, ts}
of Wl\Wg parameterize the blocks of O(l) which map into Oλ(g).

for λ ∈ h∗ dominant integral and w ∈ W a shortest coset representative for
Wl\Wg/Wg,λ or in other words

(Indg
p)
−1(Og(λ)) =

⊕
w∈Wl\Wg/Wg,λ

Ow·λ(l),

by Lemma 2.1.1.1. This is visualized in the example sl3 in Figure 2.1.3. We
now state some general functorial properties of parabolic induction.

Lemma 2.1.3.1. The adjoint action of zl (the center of l) on U(np), respec-
tively U(n−p ), is semisimple with finite dimensional weight spaces of positive,
respectively negative, weight. Furthermore

U(np)
ad(zl) = U(n−p )ad(zl) = 〈 1 〉C.

Proof. By the PBW theorem U(np) is generated by monomials in Xα for
α ∈ Φ+

g \Φ+
l , and Xα a generator of gα. Furthermore zl contains $∨α for

α ∈ Φ+
g \Φ+

l and
[$∨α , Xβ] = δα,βXβ

for α, β ∈ Φ+
g \Φ+

l . The statement follows.

Let λ ∈ h∗ be dominant for Φ+
l . We define the parabolic restriction functor

for category O by

Resλ(−) : Oλ(g)→ Oλ(l),M 7→ prλ(M
np
λ|zl

),
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where by definition

M
np
λ|zl

= {m ∈M | npm = 0 and Zm = λ(Z)m for all Z ∈ zl},

and prλ : O(l)→ Oλ(l) is the projection. This is indeed well-defined by the
next theorem, where we list important properties of parabolic induction.

Theorem 2.1.3.2. Let λ ∈ h∗ be an integral weight which is dominant for
Φ+

l . Then the following statements hold.

1. The functor Resλ(−) is well-defined and

Indg
p : Oλ(l) � Oλ(g) : Resλ(−)

are adjoint.

2. Indg
p is exact and Resλ(−) is left exact.

3. Moreover Resλ(Indg
pM) ∼= M for all M in Oλ(l).

4. For all µ ∈ Wl · λ we have

Indg
pMl(µ) = Mg(µ) and Resλ(Mg(µ)) = Ml(µ).

5. The functor Resλ(−) is exact and Indg
p sends (indecomposable) projective

modules in Oλ(l) to (indecomposable) projectives in Oλ(g), if and only
if λ is dominant for Φ+

g .

Proof. (1) Let us first show that Resλ(−) is well-defined. For this we need to
show that for M ∈ Oλ(g), M

np
λ|zl

is really in O(l) . Firstly, M
np
λ|zl
⊂ M is an

l-submodule of M , hence clearly h acts semisimply and bl acts locally finitely
on it. We need to show that M

np
λ|zl

is finitely generated as an l-module. For

this we show that already N = Mλ|zl ⊃ M
np
λ|zl

is finitely generated. Choose

a finite set {xi} of g-generators of M . Without loss of generality, we can
assume that each xi is an highest weight vector and hence {xi} is even a set
of b−-generators, where b− denotes the opposite Borel. We decompose

b− = b−l ⊕ n−p

where and n−p and b−l are the opposites of np and bl. Now

U(n−p ){xi} ∩N

is finite dimensional, since the zl weight spaces of U(n−p ) are finite dimensional
(Lemma 2.1.3.1). By the PBW theorem a basis of this space provides a finite
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set of l-generators of N . Since U(l) is Noetherian, also M
np
λ|zl
⊂ N will be

finitely generated and hence in category O(l). That Resλ(M) ∈ Oλ(l) follows
from (4). Hence the first statement follows. Generally, there are natural
isomorphisms

Homg

(
Indg

p(−),−
) ∼= Homp (−,−) ∼= Homl (−,−np)

of functors on l -modopp×g -mod and hence an adjunction

Indg
p : l -mod � g -mod : −np .

One easily sees that this induces the stated adjuntion (Indg
p,Resλ(−)).

(2) Indg
p is exact by the PBW theorem and Resλ(−) is left exact since it

is right adjoint.
(3) See also [SS15, Lemma 5.10]. Let M ∈ Oλ(l). We want to show

Resλ(Indg
p(M)) ∼= M.

By the PBW theorem as a vector space (and even as a zl-module)

Indg
p(M) = U(g)⊗U(p) M ∼= U(n−p )⊗C M

Lemma 2.1.3.1 shows that U(n−p )ad(zl) = 〈 1 〉C and hence

Resλ(Indg
p(M)) ⊆ 1⊗M ∼= M.

But every vector in 1 ⊗M is np-invariant and the inclusion is actually an
equality. The second statement follows.

(4) The first statement is trivial and the second follows from the first and
point (3).

(5) See also [SS15, Lemma 5.11]. As right adjoint functor Resλ(−) is
certainly left exact as explained in (2). Let

M → N

be a surjection in Oλ(g). We have to show that

Resλ(M)→ Resλ(N)

is also surjective. So let n ∈ Resλ(N) ⊂ N and m be a preimage in M .
It suffices to show that m is np-invariant. But this is easy to see: Applying
element of np to m increases its weight λ|zl (Lemma 2.1.3.1), but since λ is also
dominant for W , this is already maximal, and hence m is np-invariant. Hence
Resλ(−) is also right exact. Now functors left adjoint to exact functors send
projectives to projectives and the first implication follows. If on the other hand
λ is not dominant for Φ+

g , then Ml(λ) is projective but Indg
pMl(λ) = Mg(λ)

is not. The statement about the indecomposablity follows from (3).
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2.2 Parabolic induction and translation func-

tors

Let λ and µ be some dominant integral weights for Wg or Wl and ν
def
= µ− λ.

Then the corresponding translation functors are given by

Tµ
λ : Oλ(l)→ Oµ(l), M 7→ prµ(M ⊗C Ll(ν l)) and

Tµ
λ : Oλ(g)→ Oµ(g), M 7→ prµ(M ⊗C Lg(νg)),

where prµ denotes the projection to the corresponding block in O.
In this section we want to understand how translation functors and

parabolic induction interact. There are two different cases. Either a transla-
tion functor maps into a more singular block, i.e. Wg,λ ⊂ Wg,µ. In this case
parabolic induction and the translation functor commute. Or the translation
functor maps out of a more singular block and the situation is more com-
plicated. Most results are a direct generalization of character formulas for
translation functors as in [Jan79, Kapitel 2].

2.2.1 Tensor identity

The most important tool for this section is the tensor identity, which describes
in its most general formulation how tensor products and induction for modules
over a Hopf algebra and a subalgebra interact. For us, the following formulation
suffices.

Lemma 2.2.1.1 (Tensor identity). Let n ⊂ m be finite dimensional complex
Lie algebras and M be an m-module. Then there is a natural equivalence of
functors

Indm
n (−⊗C ResnmM) ∼= (Indm

n −)⊗C M : n -mod→ m -mod,

such that for X ∈ m and m ∈M

X ⊗ (−⊗m) 7→ (X ⊗−)⊗m+ (1⊗−)⊗Xm

Proof. There are the following natural isomorphisms of functors

Homm ((Indm
n −)⊗C M,−) ∼= Homm (Indm

n (−),HomC (M,−))
∼= Homn (−,Resnm HomC (M,−))
∼= Homn (−,HomC (ResnmM,−))
∼= Homn (−⊗C ResnmM,−)
∼= Homm (Indm

n (−⊗C ResnmM) ,−) .
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In third equality we used that n is a subalgebra of m. Now one shows that
the induced isomorphism

Indm
n (−⊗C ResnmM) ∼= (Indm

n −)⊗C M

is indeed given by the stated formula.

In our specific case of parabolic induction this implies the existence of a
filtration on tensor products with induced modules.

Lemma 2.2.1.2. Let M be a l-module and E a finite dimensional g-module.
Denote by ν1, . . . , νn the weights of zl on E, ordered in a way that νi ≤ νj
implies i ≤ j. Then

(
Indg

pM
)
⊗ E has a filtration, natural in M ,

{0} = Nn+1 ⊂ Nn ⊂ · · · ⊂ N1 =
(
Indg

pM
)
⊗ E

with subquotients Ni/Ni+1
∼= Indg

p (M ⊗ Eνi), where np act trivially on Eνi.

Proof. The tensor identity yields(
Indg

pM
)
⊗ E ∼= Indg

p

(
M ⊗C RespgE

)
.

Now set Mi :=
∑n

j=iM ⊗ Eνj ; this is clearly a l-submodule of M ⊗ E. Since
furthermore the weights νi are ordered in an ascending way, Mi is also stable
under np and hence a p-submodule. The modules Mi give a filtration of M⊗E
as a p-module with subquotients

Mi/Mi+1
∼= M ⊗ Eνi .

Since non-zero elements of np have non-zero weights with respect to zl, they
indeed act trivially on Eνi . Let Ni := U(g) ⊗U(p) Mi. Using the exactness
of parabolic induction and the tensor identity we see that the Ni define a
filtration with the desired property. That this is indeed natural follows directly
from the explicit description of the Mi.

2.2.2 Restriction of finite dimensional modules

Since translation functors are built from tensor products with finite dimen-
sional modules, we need to understand how they split when restricted to a
Levi subalgebra. Although this is generally a hard question, certain extremal
direct summands are easy to identify.

Lemma 2.2.2.1. Let ν ∈ h∗ be some integral weight and ν ′
def
= ν|zl. Then, as

l-module, Ll(ν l) appears with multiplicity one as direct summand of Lg(νg)ν′.
Recall that νg and ν l denote the unique elements in Wgν ∩ Λ+

g and Wlν ∩ Λ+
l .
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0 α

β

−α

−ρ −β

ρ

zl

Ll(α)

Ll(λ)

Ll(−β)

Ll(0) = triv

Figure 2.2: Splitting of the adjoint representation in the case sl2 ⊂ sl3:
Here ∆g = {α, β}, ∆l = {α}. Dots indicate the weight spaces and the boxes
surround the direct summands of the restriction to l.

Proof. Let w ∈ W such that νg = w(ν). Write w = xy with x ∈ wWl a short-
est coset representative and y ∈ Wl. Since x is a shortest coset representative,
it maps positive roots for l to positive roots for g, and since νg is dominant
we get

〈y(ν), α∨〉 = 〈xy(ν), x(α)∨〉 = 〈νg, x(α)∨〉 ≥ 0 for all α ∈ Φ+
l .

Therefore
y(ν) = ν l and xy(ν) = νg.

Now choose some non-zero v+ ∈ L(νg)y(ν). Then v+ is a highest weight vector
for l since for α ∈ Φ+

l

dimC Lg(νg)y(ν)+α = dimC Lg(νg)νg+x(α) = 0

because x(α) ∈ Φ+ and all weights of L(νg) are in νg − Z≥0Φ
+. So indeed

v+ generates Ll(ν l) as l-module and zl acts on it via ν ′ = ν|zl = y(ν)|zl . The
multiplicity one statement follows from dimC Lg(νg)y(ν) = 1.

2.2.3 Translation into a more singular block

Theorem 2.2.3.1. Let µ and λ be integral dominant weights, such that
Wg,λ ⊂ Wg,µ. Let w be a shortest representative of a coset in Wl\Wg. Let
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M ∈ Ow·λ(l). Then there exists a natural isomorphism

Tµ
λ Indg

pM
∼= Indg

p Tw·µ
w·λM.

Proof. Firstly, the statement is correct for Verma modules Ml(xw · λ), for
x ∈ Wl, since

Tµ
λ Indg

pMl(xw · λ) ∼= Tµ
λMg(xw · λ) ∼= Mg(xw · µ)

Indg
p Tw·µ

w·λMl(xw · λ) ∼= Indg
pMl(xw · µ) ∼= Mg(xw · µ)

by Theorem 2.1.3.2 and [Hum08, Theorem 7.6]. By the exactness of the
involved functors the statement is hence true on the level of characters. Let
ν
def
= µ− λ. Then the tensor identity gives a natural isomorphism

Tµ
λ Indg

p = prµ(Indg
p(−)⊗ Lg(νg)) ∼= prµ(Indg

p(−⊗ Respg Lg(νg))).

By Lemma 2.2.1.2 we see that, for suitable νi ∈ z∗l , the right hand side has a
natural filtration with subquotients

prµ(Indg
p(−⊗ Lg(νg)νi)).

We will show that this functor is zero except in the case

νi = w(ν)|zl .

Again by exactness, we can test this on Verma modules Ml(xw ·λ), for x ∈ Wl.
In this case

Indg
p(Ml(xw · λ)⊗ Lg(νg))

has a Verma flag with subquotients of the form

Mg(xw · λ+ ξ)

for weights ξ of Lg(νg). By [Jan79, Satz 2.10] or [Hum08, Lemma 7.5 and
Theorem 7.6] and using the hypothesis Wg,λ ⊂ Wg,µ, the only Verma module
of this form which is contained in the block Oµ(g) is

Mg(xw · λ+ ξ) = M(xw · µ).

To not be killed by prµ hence ξ has to be

ξ = xw · µ− xw · λ = xw(ν) and therefore

ξ|zl = (xw · µ− xw · λ)|zl = xw(ν)|zl = w(ν)|zl .
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We hence have a natural isomorphism

prµ(Indg
p(−⊗ Lg(νg)|p)) ∼= prµ(Indg

p(−⊗ Lg(νg)w(ν)|zl )).

Lemma 2.2.2.1 now ensures that, as l-module, Ll(w(ν)l) appears as a direct
summand of Lg(νg)w(ν)|zl . This induces inclusions

Tµ
λ Indg

p
∼= prµ(Indg

p(−⊗ Lg(νg)w(ν)|zl ))

⊃ prµ Indg
p

(
−⊗ Ll(w(ν)l)

)
⊃ prµ Indg

p prw·µ

(
−⊗ Ll(w(ν)l)

)
= prµ Indg

p Tw·µ
w·λ(−)

= Indg
p Tw·µ

w·λ(−)

The inclusions are equalities for Verma modules, and the statement follows
by the exactness of all involved functors.

2.2.4 Translation out of a more singular block

Theorem 2.2.4.1. Let µ and λ be integral weights, dominant for Φ+
l , with

Wg,µ ⊂ Wg,λ and z−1 ∈ Wl\Wg a shortest coset representative such that both
z · λ and z · µ are dominant for Φ+

g . Let M ∈ Oλ(l). Then

Tz·µ
z·λ Indg

pM

has a filtration, natural in M , whose successive quotients are

Indg
p Tw·µ

λ M

parametrized by shortest representatives w (with respect to zSgz−1, see the
following Remark 2.2.4.2) of the double cosets

Wl,λ\Wg,λ/Wg,µ

and ordered by the length of w: In particular Indg
p Tµ

λM is a submodule and

Indg
p Tw̃·µ

λ M a quotient of Tz·µ
z·λ Indg

pM , for w̃ the shortest representative of
the longest word in Wg,λ.

Proof. We proceed as in the proof of Theorem 2.2.3.1. Let x ∈ Wl. Then by
[Jan79, Satz 2.17] or [Hum08, Theorem 7.12] we have the following equalities
of characters:
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On the one hand

ch(Tz·µ
z·λ Indg

pMl(x · λ)) = ch(Tz·µ
z·λMg(x · λ))

=
∑

w∈Wg,λ/Wg,µ

chMg(xw · µ)

and on the other hand

ch(Tw·µ
λ Ml(x · λ)) =

∑
y∈Wl,λ/Wl,w·µ

chMl(xyw · µ)

and hence ∑
w∈Wl,λ\Wg,λ/Wg,µ

ch(Indg
p Tw·µ

λ Ml(x · λ)) =
∑

w∈Wl,λ\Wg,λ/Wg,µ

y∈Wl,λ/Wl,w·µ

chMg(xyw · µ)

=
∑

w∈Wg,λ/Wg,µ

chMg(xw · µ).

In the last equality we used that the stabilizer in Wl,λ of a coset wWg,µ ∈
Wg,λ/Wg,µ is exactly wWg,µw

−1 ∩Wl,λ =Wl,w·µ.
Putting everything together, we obtain

ch(Tz·µ
z·λ Indg

pMl(x.λ)) =
∑

w∈Wl,λ\Wg,λ/Wg,µ

ch(Indg
p Tw·µ

λ Ml(x.λ)).

By the exactness of all involved functors, this shows that our theorem is at
least true on the level of characters.

Now we have to take a more refined look. Let ν
def
= µ− λ. Then the tensor

identity gives a natural isomorphism

Tz·µ
z·λ Indg

p = prz·µ(Indg
p(−)⊗ Lg(νg)) ∼= prz·µ(Indg

p(−⊗ Respg Lg(νg))).

By Lemma 2.2.1.2 we see that, for suitable νi ∈ z∗l , the right hand side has a
natural filtration with subquotients

prz·µ(Indg
p(−⊗ Lg(νg)νi)).

Let us analyse which of them are non-zero. By exactness, this can be tested
on Verma modules Ml(x · λ), for x ∈ Wl. In this case

Indg
p(Ml(x · λ)⊗ Lg(νg))
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has a Verma flag with subquotients of the form

Mg(x · λ+ ξ)

for weights ξ of Lg(νg). The only Verma modules of this form which are
contained in the block Oµ(g) are of the form

Mg(x · λ+ ξ) = Mg(xw · µ)

for w ∈ Wg,λ/Wg,µ. Hence

ξ = xw · µ− x · λ = x(w · µ− λ) and therefore

ξ|zl = (xw · µ− x · λ)|zl = x(w · µ− λ)|zl = (w · µ− λ)|zl .

Notice that the last term does not depend on x. By the above,(
prz·µ(Indg

p(−⊗ Lg(νg)νi)) 6= 0
)
⇒

(νi = (w · µ− λ)|zl for some w ∈ Wg,λ/Wg,µ).

Choose such i and w. Without loss of generality we can assume that w is a
shortest representative of a double coset inWl,λ\Wg,λ/Wg,µ, since for ŵ ∈ Wl,λ

(ŵw · µ− λ)|zl = (ŵw · µ− ŵλ)|zl = ŵ(w · µ− λ)|zl = (w · µ− λ)|zl .

Now [Jan79, Satz 2.9] implies that

w · µ− λ ∈ Wg,λν

and by Lemma 2.2.2.1, as l-module,Ll(w · µ− λl) appears as a direct summand
of Lg(νg)νi . We hence have a natural inclusion

prz·µ(Indg
p(−⊗ Lg(νg)νi)) ⊃ prz·µ(Indg

p(−⊗ Ll(w · µ− λl)))
⊃ prz·µ(Indg

p prw·µ(−⊗ Ll(w · µ− λl)))
⊃ prz·µ(Indg

p Tw·µ
λ (−))

= Indg
p Tw·µ

λ (−)

Again, by the character computation in the beginning, these are all actually
equalities and the statement follows.

Remark 2.2.4.2. In the notation of the preceding Theorem 2.2.4.1 it makes
sense to speak about shortest coset representatives with respect to zSgz−1 in
the double quotient Wl,λ\Wg,λ/Wg,µ, since all involved groups are generated
by their respective intersection with zSgz−1. By [Hum90, Theorem 1.12 (c)]
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this holds for Wg,λ and Wg,µ since λ and µ are dominant with respect to
z−1Sgz. Since z−1 is a shortest coset representative in Wl\Wg one can easily
see that z−1 · λ is dominant for Sl and hence again by [Hum90, Theorem 1.12
(c)] Wl,z−1λ = z−1Wl,λz is generated by its intersection with Sl. But this just
means that Wl,λ is generated by its intersection with zSlz−1 ⊂ Sgz−1

Example 2.2.4.3. (1) In the case λ = −ρ, l = h, this recovers the well-known
fact that the antidominant projective

Pg(w0 · µ) = Tµ
−ρMg(−ρ)

has a Verma flag with quotients Mg(w · µ) of multiplicity one, where w ∈ Wg

is a shortest coset representative in Wg/Wg,µ.
(2) The case sl2 ⊂ sl3 = g: Denote by {s, t} the simple reflections in Wg

and let l be the Levi subalgebra with Wl = {1, s}. Set furthermore λ = −$αs

such that Wg,λ = {1, t}. We are interested in the interaction of Indg
p and T0

λ.
There are two different cases (A) for modules in Oλ(l) and (B) for modules in
Ots·λ(l). In the illustration we indicated the effect of T0

λ on Verma modules
Mg(w · λ) by dotted lines and labeled the dominant weights for l with bold
case letters.

e · λs · λ

ts · λ

t · 0

s · 0

st · 0

sts · 0 ts · 0

e · 0

(A)

(B)

(A) For modules in M ∈ Oλ(l) parabolic induction and translation out of the
wall do not commute, sinceWl,λ 6=Wg,λ. We rather get a short exact sequence

0 Indg
p T0

λM T0
λ Indg

pM Indg
p Tt·0

λ M 0

(B) For modules in M ∈ Ots·λ(l) parabolic induction and translation out of
the wall do commute, since Wl,ts·λ =Wg,ts·λ:

T0
λ Indg

pM = Indg
p Tts·0

ts·λM.
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The case (B) from the preceding example can be generalized to the
following statement.

Corollary 2.2.4.4. In the notation of Theorem 2.2.4.1 assume additionally
that Wl,λ =Wg,λ. Let M ∈ Oλ(l). Then there is a natural equivalence

Tz·µ
z·λ Indg

pM
∼= Indg

p Tµ
λM.

2.2.5 Wall crossing functors

Composing translation functors into and out of a wall, i.e. a block of category
Oλ with |Wλ| = 2, yield so called wall crossing functors, whose interaction
with parabolic induction is described in the following. This will be an essential
ingredient in the induction step of our proof that parabolic induction and
geometric parabolic induction correspond to each other.

Theorem 2.2.5.1. Let λ ∈ h∗ be a dominant regular weight. Let w ∈ Wl\Wg

a shortest coset representative and s ∈ Wg a simple reflection with ws > w
such that ws is also a shortest coset representative for Wl\W. Denote by θs
a wall-crossing functor through the s-wall. Namely, choose some dominant
weight µ with stabilizer Wg,µ = {1, s} and put θs = Tλ

µ Tµ
λ. Then for all

M ∈ Ow·λ(l) with a Verma flag there is a short exact sequence, natural in M ,

0 Indg
pM θs Indg

pM Indg
p Tws·λ

w·λ M 0

where the first morphism is the unit of the adjunction between Tλ
µ and Tµ

λ.

Proof. By Theorem, 2.2.3.1 we have

θs Indg
pM

def
= Tλ

µ Tµ
λ Indg

pM
∼= Tλ

µ Indg
p Tw·µ

w·λM.

By Theorem 2.2.4.1, there is a short exact sequence

0 Indg
p Tw·λ

w·µ Tw·µ
w·λM Tλ

µ Indg
p Tw·µ

w·λM Indg
p Tws·λ

w·µ Tw·µ
w·λM 0

Now w · µ is also dominant for Φ+
l : We have

Wl,w·µ = wWg,µw
−1 ∩Wl = {id}

since wsw−1 ∈ Wl would imply that ws and w are in the same coset in
Wl\W which is a contradiction to the assumption that both are shortest
representatives and ws > w.
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Hence we have

Tw·λ
w·µ Tw·µ

w·λ
∼= id and Tws·λ

w·µ Tw·µ
w·λ
∼= Tws·λ

w·λ .

That we can indeed choose the first morphism as the unit of the adjunction,
say κs, follows as in [Hum98, Theorem 12.2(b)] (be aware that his notation is
different, since he parametrizes blocks and translation/wall crossing functors
by antidominant weights, hence everything is conjugated/multiplied by the
longest element w0). By induction on the Verma flag of M we see that the
adjunction morphism is indeed injective, and then we use that Indg

pM is
unique as submodule of θs Indg

pM . Let us spell this out in more detail. Let

0 = M0 ⊂M1 ⊂ · · · ⊂Mn = M

be a filtration of M such that the successive quotients are Verma modules. If
n = 0 the statement is trivial. Else, we have the following diagram of short
exact sequences

0 θs Indg
pMn−1 θs Indg

pMn θs Indg
pMl(xw · λ) 0

0 Indg
pMn−1 Indg

pMn Indg
pMl(xw · λ) 0

κs κs κs

for some x ∈ Wl. We can assume that the left vertical arrow is injective by
induction. Now

Homg

(
Indg

pMl(xw · λ), θs Indg
pMl(xw · λ)

)
=

Homg (Tµ
λMg(xw · λ),Tµ

λMg(xw · λ)) =

Homg (Mg(xw · µ),Mg(xw · µ)) = C

Hence κs is (up to scalar) the unique non-zero morphism Indg
pMl(xw · λ)→

θs Indg
pMl(xw · λ). Since we also know that Indg

pMl(xw · λ) appears as (even
unique) submodule in θs Indg

pMl(xw · λ), κs has to be injective. Hence also
the right vertical arrow of our diagram is injective and we get that

κs : Indg
pM → θs Indg

pM

is injective. That Indg
pM is indeed unique as a submodule of θs Indg

pM can
also be seen by an inductive argument. Let Ml(xw · λ) ⊆ M such that no
weight in M is bigger than xw · λ. The assumption ws > w guarantees that
also in θs Indg

pM no weight bigger than xw · λ. Hence we have

U(g)(θs Indg
pM)xw·λ = Mg(xw · λ)⊕(M :Ml(xw·λ)) ⊆ θs Indg

pM.
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This is clearly the unique submodule of this form. Now we can pass to
the quotient and apply the same argument again. The statement follows by
induction.

Corollary 2.2.5.2. There is a natural equivalence of functors

Indg
p Tws·λ

w·λ
∼= coker(Indg

p → θs Indg
p) : ProjOw·λ(l)→ ProjOλ(g).

Remark 2.2.5.3. The functor coker(id→ θs) is also known as shuffling functor.
In general, it maps Verma modules to so called shuffled or twisted Verma
modules, i.e. modules which have the same character as a Verma module,
but a different (shuffled) composition series. See for example [Irv93], [AL03]
and [Hum08, Chapter 12.1]. Since we only apply the functor in the particular
situation ws > w, no shuffling occurs.

Lemma 2.2.5.4. Let λ ∈ h∗ be a dominant regular weight and s ∈ Wl a
simple reflection. Let M ∈ Oλ(l). Then there is a natural isomorphism

θs Indg
pM = Indg

p θsM.

Proof. Directly follows from Theorem 2.2.3.1 and Corollary 2.2.4.4.

2.2.6 From the singular case to the regular case

At least up to taking it to some n-fold direct sum, parabolic induction for
singular blocks of category O can be expressed in terms of parabolic induction
for regular blocks, by translating out, then inducing, and translating into the
singular block again.

Theorem 2.2.6.1. Let λ, µ be integral dominant weights where µ is further-
more regular. Let w be a shortest representative of a coset in Wl\Wg/Wg,λ

and n = |Wl,λ|. Then there is a natural equivalence of functors

Tλ
µ Indg

p Tw·µ
w·λ
∼= (Indg

p)
⊕n : Ow·λ(l)→ Oλ(g).

Proof. By Theorem 2.2.3.1 we have

Tλ
µ Indg

p Tw·µ
w·λ
∼= Indg

p Tw·λ
w·µ Tw·µ

w·λ
∼= Indg

p id⊕n,

where the last isomorphism follows by using

Tw·λ
w·µ Tw·µ

w·λMl(w · λ) = Ml(w · λ)⊕n

and the classification of projective functors from [BG80], i.e. that projec-
tive functors (and natural transformations between them) are completely
determined by their effect on a dominant Verma module (in fact any Verma
module).
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2.3 Soergel modules

In [Soe90] Soergel gives a completely combinatorial description of the bounded
derived category of a block of category O in terms of the bounded homotopy
category of Soergel modules over the endomorphism ring of its antidominant
projective module. In this section we aim to give a description of parabolic
induction on the level of Soergel modules, i.e. fill out the question mark in
the diagram

Hotb(Cw·λ
l -Smod) Hotb(Cλ

g -Smod)

Derb(Ow·λ(l)) Derb(Oλ(g)).

?

Indg
p

o o

2.3.1 Soergel’s functor V
Let λ ∈ h∗ be a dominant integral weight and w a shortest representative in
Wl\Wg/Wg,λ. Denote by

P λ
g and Pw·λ

l

the antidominant (self-dual) projective in Oλ(g), respectively Ow·λ(l), and by

Cλ
g = Endg(P

λ
g ) and Cw·λ

l = Endl(P
w·λ
l )

their endomorphism rings. Then Soergel’s functor V (see [Soe90]) is defined
by

Vλ
g

def
= Homg

(
P λ
g ,−

)
: Oλ(g)→ mod-Cλ

g = Cλ
g -mod and

Vw·λ
l

def
= Homl

(
Pw·λ
l ,−

)
: Ow·λ(l)→ mod-Cw·λ

l = Cw·λ
l -mod .

Theorem 2.3.1.1 (Struktursatz [Soe90]). Soergel’s functor V is fully faithful
on projective modules.

Definition 2.3.1.2. The modules in the essential image of the restriction
of V to projective modules are called Soergel modules, so that V induces an
equivalence of categories:

Vλ
g : ProjOλ(g)

∼→ Cλ
g -Smod

Vw·λ
l : ProjOw·λ(l)

∼→ Cw·λ
l -Smod

between projectives in O and the category of Soergel modules over Cλ
g , respec-

tively Cw·λ
l , denoted Cλ

g -Smod, respectively Cw·λ
l -Smod.
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Remark 2.3.1.3. Abbreviate C = Cλ
g . Then the category C -Smod is generated

by modules of the form

C ⊗Csn . . . C ⊗Cs1 C

for simple reflections si (see Theorem 2.3.3 for the action of Wg on C), with
respect to finite direct sums, taking direct summands and isomorphism. This
corresponds to the fact that for regular λ all projectives in Oλ(g) appear as
direct summands in the projective modules

θsn · · · θs1Mg(λ)

and the following Lemma.

Lemma 2.3.1.4 ([Soe90] Theorem 10). Let λ, µ ∈ h∗ be dominant integral
weights such that Wg,λ ⊆ Wg,µ. Then there are natural isomorphisms of
functors

Vλ
g Tλ

µ
∼= Cλ

g ⊗Cµg Vµ
g and

Vµ
g Tµ

λ
∼= Res

Cµg
Cλg

Vλ
g .

Corollary 2.3.1.5. There are equivalences of categories

Derb(Oλ(g))
∼← Hotb(ProjOλ(g))

∼→ Hotb(Cλ
g -Smod),

Derb(Ow·λ(l))
∼← Hotb(ProjOw·λ(l))

∼→ Hotb(Cw·λ
l -Smod).

2.3.2 Harish-Chandra morphism and parabolic restric-
tion

In this section we will discuss how the relative Harish-Chandra morphism

HCp
g : Z(g)→ Z(l)

between the center of U(g) and U(l) and the parabolic restriction functor

Resλ(−) : Oλ(g)→ Oλ(l),M 7→ prλ(M
np
λ|zl

)

interact. The results are a straightforward generalization of the fact that
the action of z ∈ Z(g) on a Verma module is completely determined by the
action on the highest weight vector, which is completely described by its
image HCb

g(z) ∈ S(h) under the Harish-Chandra morphism.
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Definition 2.3.2.1. Denote by np and n−p the nilradical of p and its opposite
p−. The relative Harish-Chandra homomorphism

HCp
g : U(g)→ U(l)

is obtained by the projection on the first factor in the PBW-decomposition

U(g) = U(l)⊕ n−p U(p−)⊕ U(g)np.

It restricts to a homomorphism of algebras

HCp
g : Z(g)→ Z(l).

Remark 2.3.2.2. This version of the Harish-Chandra morphism depends not
only on the Levi but also on the parabolic subalgebra, hence the decoration
HCp

g.

Lemma 2.3.2.3. In the above notation let M be a g-module, u ∈ Z(g) and
m ∈Mnp. Then we have

um = HCp
g(u)m.

Proof. Let u = u1 + u2 + u3 in the above PBW decomposition and z ⊂ l be
the center of l. Since

n−p U(p−) ∩ U(g)ad(z) = {0}

it follows that u2 = 0. Hence

u− HCp
g(u) ∈ U(g)np

and (u− HCp
g(u))m = 0 for all m ∈Mnp . See also [How00].

Corollary 2.3.2.4. Let M ∈ Og(λ). Then the following diagram commutes.

Z(g) Z(l)

Endg(M) Endl(M
np)

HCp
g

(−)np

We will also need this statement about antidominant projectives and
parabolic restriction.

Lemma 2.3.2.5. Let λ ∈ h∗ be a dominant integral weight. Then

P λ
l
∼= Resλ(P

λ
g ).
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Proof. We have the following equalities:

P λ
g
∼= Tλ

−ρMg(−ρ) ∼= Tλ
−ρ Indg

pMl(−ρ).

By Theorem 2.2.4.1 we know that the right hand side has a filtration {Ni}
with successive quotients

Indg
p Tw·λ
−ρ Ml(−ρ),

for w shortest representatives of the double cosets Wl\Wg/Wg,λ. But for all
w 6= id we certainly have

Resλ(Indg
p Tw·λ
−ρ Ml(−ρ)) = 0

since zl acts on them via (w · λ)|zl 6= λ|zl . Our filtration provides us with short
exact sequences of the form

0 Ni+1 Ni Indg
p Tw·λ
−ρ Ml(−ρ) 0

and since Resλ(−) is left exact we get exact sequences

0 Resλ(Ni+1) Resλ(Ni) Resλ(Indg
p Tw·λ
−ρ Ml(−ρ)).

As long as w 6= id the right term vanishes and hence

Resλ(Ni+1) = Resλ(Ni).

By induction we get

Resλ(P
λ
g ) = Resλ(Indg

p Tλ
−ρMl(−ρ)) = Resλ(Indg

p P
λ
l ).

But for modules in M ∈ Oλ(l) we know that Resλ(Indg
p(M)) = M by Theorem

2.1.3.2 and the statement follows.

2.3.3 Endomorphismensatz

Soergel’s Endomorphismensatz gives a completely explicit description of the
endomorphism rings of antidominant projectives in categoryO. His description
is compatible with parabolic restriction in the following way.

Theorem 2.3.3.1 (Endomorphismensatz [Soe90]). The following diagram
commutes:



28 CHAPTER 2. PARABOLIC INDUCTION

(S(h)/(S(h)Wl
+ ))Wl,λ (S(h)/(S(h)

Wg

+ ))Wg,λ

S(h)(Wl·) S(h)(Wg·)

Z(l) Z(g)

Cλ
l

def
= Endl(P

λ
l ) Endg(P

λ
g )

def
= Cλ

g

p◦(+λ)] p◦(+λ)]

act

HC
bl
l
o

HCp
g

act

HCb
go

Resλ(−)

where (+λ)] denotes translation of a function in S(h) = O(h∗) by λ and p the
projection. Furthermore, the upward arrows p◦(+λ)]◦HCbl

l and p◦(+λ)]◦HCb
g

are surjective and have the same kernel as the downward arrows act, which
are also surjective.

Proof. For the horizontal morphism on the bottom we use Lemma 2.3.2.5
which provides an isomorphism P λ

l
∼= Resλ(P

λ
g ). Lemma 2.3.2.3 shows that

the lower square commutes. The middle square commutes since (relative)
Harish-Chandra homomorphisms are compatible, see [How00, Equation 1.12].
The upper one commutes by definition. The other statements are [Soe90,
Endomorphismensatz].

Corollary 2.3.3.2. The following diagram commutes:

(S(h)/(S(h)Wl
+ ))Wl,λ (S(h)/(S(h)

Wg

+ ))Wg,λ

Cλ
l = Endl(P

λ
l ) Endg(P

λ
g ) = Cλ

g

o o

Resλ(−)

Here the vertical arrows are defined as in the preceding Theorem.

2.3.4 Parabolic induction and Soergel bimodules

The regular case

Assume that λ ∈ h∗ is some regular integral dominant weight (for example
λ = 0), and abbreviate

C
def
= Cλ

g
∼= S(h)/(S(h)

Wg

+ ).
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For a simple reflection s, denote by Cs the s-invariants. Then Cs ⊂ C is a
Frobenius extension, and we denote by

Rs
def
= · · · → 0→ C → C ⊗Cs C → 0→ · · ·

the complex of Soergel bimodules over C known as Rouquier complex. Here
C ⊗Cs C lives in cohomological degree 0, and the map is the unit of the
adjunction between ResC

s

C and C⊗Cs . For a reduced expression w = sn · · · s1

for w ∈ Wg we define a complex of Soergel bimodules by

Rw
def
= Rs1 ⊗C · · · ⊗C Rsn .

In fact, up to homotopy, this complex does not depend on the choice of shortest
expression, but this is not important for us. Also denote by

Res
def
= Res

Cλg
Cλl

the morphism discussed in Section 2.3.2. Furthermore identify

Cw·λ
l = S(h)/(S(h)Wl

+ ) = Cλ
l

In the rest of this Chapter we will—among other things—prove that on the
level of Soergel modules, parabolic induction for regular blocks

Indg
p : Derb(Ow·λ(l))→ Derb(Oλ(g))

is given by the functor

SIndλw
def
= Rw⊗C Res(−)

Theorem 2.3.4.1. Let λ ∈ h∗ be a regular integral dominant weight. Let
w be a shortest coset representative in Wl\Wg and w = sn · · · s1 a reduced
expression. Then the following diagram of functors commutes up to natural
isomorphism

Hotb(Cw·λ
l -Smod) Hotb(Cλ

g -Smod)

Hotb(ProjOw·λ(l)) Hotb(ProjOλ(g))

Derb(Ow·λ(l)) Derb(Oλ(g)).

SIndλw

o Vw·λl oVλg

Indg
p

o o

Proof. Postponed.
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The singular case

Now let µ ∈ h∗ be a possibly singular integral dominant weight and let w be
a shortest coset representative in Wl\Wg/Wg,λ, let m = |Wl,w·µ|. Then there
are natural maps

Cµ
g → C = Cλ

g ← Cλ
l = Cw·λ

l ← Cw·µ
l

On the level of Soergel modules, parabolic induction for singular blocks (or
rather an m-fold direct sum of it)

(Indg
p)
⊕m : Derb(Ow·µ(l))→ Derb(Oλ(g))

is given by the functor

SInd
µ

w

def
= Res

Cw·µg

C Rw⊗CCλ
l ⊗Cw·µl

(−)

Theorem 2.3.4.2. Let µ, λ ∈ h∗ be integral dominant weights, where λ is
furthermore regular. Let w be a shortest coset representative in Wl\Wg/Wg,µ.
Then the following diagram of functors commutes up to natural isomorphism

Hotb(Cw·µ
l -Smod) Hotb(Cµ

g -Smod)

Derb(Ow·µ(l)) Derb(Oµ(g)).

SInd
µ
w

(Indg
p)⊕m

o o

Proof. Follows from Theorem 2.3.4.1 and Theorem 2.2.6.1 using that under

Soergel’s functor V, Tλ
µ corresponds to Res

Cµg
C and Tµ

λ to C⊗Cw·µg
, see [Soe90,

Theorem 10].

Unfortunately, up until this point, we do not know how to get rid of the
m-fold direct sum. In the case w = e though, the following theorem gives a
complete answer:

Theorem 2.3.4.3. Let w = e. Then the following diagram commutes up to
natural isomorphism.

Cµ
l -mod Cµ

g -mod

Oµ(l) Oµ(g)

Res

Indg
p

Vµl Vµg
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Proof. Since Indg
p is left adjoint, we have to use a different definition of

Soergel’s functor V. By [Soe90, Lemma 9], there are equivalences of functors:

Vµ
g = Homg

(
P µ
g ,−

) ∼= dHomg

(
−, P µ

g

)
Vµ

l = Homl (P
µ
l ,−) ∼= dHoml (−, P µ

l ) ,

where d denotes the duality. There are the following equivalences of functors
Oµ(l)→ C -mod:

Homg

(
Indg

p−, P µ
g

)
Homl

(
−,Resµ(P µ

g )
)

= Homl (−, P µ
l )

Resµ(−)

∼

For the first equivalence we use the adjunction and Resµ(Indg
p−) ∼= id (Theo-

rem 2.1.3.2). For the equality on the right we identify P µ
l = Resµ(P µ

g ) which
we are allowed to do by Lemma 2.3.2.5.

By Theorem 2.3.3.1 and Corollary 2.3.3.2 this promotes to an equivalence

Homg

(
Indg

p−, P µ
g

)
Res

Cµg
Cµl

Homl (−, P µ
l )∼

of functors Oµ(l)→ Cµ
g -mod. Now we dualize on both sides and obtain the

statement.

Corollary 2.3.4.4. Let w = e. The following diagram commutes up to natural
isomorphism.

Hotb(Cµ
l -Smod) Hotb(Cµ

g -Smod)

Hotb(ProjOµ(l)) Hotb(ProjOµ(g))

Derb(Oµ(l)) Derb(Oµ(g)).

Res

o Vµl oVµg

Indg
p

o o

Proof. Follows from Theorem 2.3.4.3, using that here Indg
p maps projectives to

projectives by Theorem 2.1.3.2 (5) and hence acts on the homotopy categories
of projectives by pointwise application.

Proof of the regular case

The proof mainly relies on Theorem 2.2.5.1 and Corollary 2.2.5.2 and an
induction on l(w).
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Proof of Theorem 2.3.4.1. First assume that l(w) = 0, then w = e and the
statement is Corollary 2.3.4.4.

Now let ws > w with both ws and w shortest representatives in Wl\Wg.
Assuming that the statement holds for w, we show that it holds for ws.

Denote by ∆ the equivalence between a derived category and the homotopy
category of projectives. Let M ∈ Derb(Ows·λ(l)). Denote M = Tw·λ

ws·λM . We
have the following diagram of distinguished triangles:

Vλ
g∆ Indg

pM Vλ
g∆θs Indg

pM Vλ
g∆ Indg

pM

Vλ
g∆ Indg

pM C ⊗Cs Vλ
g∆ Indg

pM Vλ
g∆ Indg

pM

SIndλw Vw·λ
l ∆M C ⊗Cs SIndλw Vw·λ

l ∆M Vλ
g∆ Indg

pM

SIndλw Vws·λ
l ∆M C ⊗Cs SIndλw Vws·λ

l ∆M Vλ
g∆ Indg

pM

o(1)

+1

(∗)

o(2) o(2)

+1

(3) (3)

+1

+1

The first triangle is given by Theorem 2.2.5.1.
(1) Since θs is exact and maps projectives to projectives, it commutes with

∆. On Soergel modules θs is given by C⊗Cs , see [Soe90, Korollar 1].
(2) This is the induction hypothesis.
(3) Recall that we identified Cws·λ

l = S(h)/(S(h)Wl
+ ) = Cw·λ

l . The functor
Tw·λ
ws·λ is an equivalence of categories and we have Vws·λ

l = Vw·λ
l Tw·λ

ws·λ.
(∗) This is given by the adjunction homomorphism by Theorem 2.2.5.1.
We hence have the following isomorphism

Vλ
g∆ Indg

pM
∼= Cone(SIndλw Vws·λ

l ∆M → C ⊗Cs SIndλw Vws·λ
l ∆M)

= Rs⊗C SIndλw Vws·λ
l M

= SIndλwsVws·λ
l M

where by Cone we denote the mapping cone. In order to show that this is
indeed a natural isomorphism, we want to apply the following Lemma 2.3.4.5.
We have to show that for M,N ∈ Derb(Ows·λ(l))

HomDerb(Oλ(g))

(
Indg

p Tw·λ
ws·λN, Indg

pM
)

= 0.

But this follows from

Exti(Mg(xw · λ),Mg(yws · λ)) = 0

for all x, y ∈ Wl, i ∈ Z, see [Hum98, Theorem 6.11].
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Lemma 2.3.4.5. Let F,G : T → T ′ be triangulated functors between trian-
gulated categories T and T ′, and let φ : F ⇒ G be a morphism of functors.

For X ∈ T abbreviate C(X)
def
= Cone(φX : F (X)→ G(X)). Assume that for

X, Y ∈ T we have
HomT ′ (F (X)[1], C(Y )) = 0.

Then there exists (up to natural isomorphism) a unique functor H : T → T ′
and morphisms G→ H → F [1] which induce distinguished triangles

F (X) G(X) H(X)
φX +1

for all X ∈ T . In particular H(X) ∼= C(X).

Proof. Let f : X → Y be a morphism in T . We claim that there is a unique
morphism C(f) making the following diagram commute:

F (X) G(X) C(X)

F (Y ) G(Y ) C(Y )

φX

F (f)

ψX

G(f)

+1

∃!C(f)

φY ψY +1

To see this, consider the long exact sequence:

. . . 0 = HomT ′ (F (X)[1], C(Y )) HomT ′ (C(X), C(Y ))

HomT ′ (G(X), C(Y )) HomT ′ (F (X), C(Y )) . . .
ψ∗X φ∗X

Then φ∗X(ψYG(f)) = ψYG(f)φX = ψY φY F (f) = 0. Hence C(f) exists and is
uniquely determined by the equation C(f)ψX = ψ∗X(C(f)) = ψYG(f).

Moreover if g : Y → Z is a second morphism in T , the uniqueness
immediately implies C(g)C(f) = C(gf). Hence C defines a functor with the
required properties. The same uniqueness arguments show that C is uniquely
determined with these properties (up to natural isomorphism).
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Chapter 3

Geometric Parabolic Induction

3.1 Setup

3.1.1 Motivic sheaves and six functors

In this section we recall some of the notations and constructions regarding
motivic sheaves used in [SW16]. We denote by T the system of triangulated
categories of motives constructed from the spectrum representing the semisim-
plification of de Rahm cohomology, see [SW16, Section 2.4]. This is defined in
[Dre15] and a motivic triangulated category in the sense of Cisinski–Déglise,
[CD12].
T associates to every complex variety X ∈ Var(C) a triangulated C-linear

monoidal category T (X) and to every morphism f : X→Y a symmetric
triangulated functor f ∗ : T (Y )→T (X). Denote the tensor unit in T (X) by
1X , we will also refer to this as constant motive or constant sheaf.

Since this system of categories is a motivic triangulated category it comes
with a full six functor formalism, whose most important properties we subsume
in the following list, see [CD12].

1. For every morphism f : Y → X in Var(k) the functor f ∗ has a right
adjoint the direct image functor f∗

f ∗ : T (X) � T (Y ) : f∗.

2. For any morphism f : Y → X in Var(C), one can construct a further
pair of adjoint functors, the exceptional functors

f! : T (Y ) � T (X) : f !

which fit together to form a covariant (respectively contravariant) 2-
functor f 7→ f! (resp. f 7→ f !).

35
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3. For each X ∈ Var(k), the tensor structure on T (X) is closed in the
sense that for every E ∈ T (X), the functor −⊗ E has a right adjoint

−⊗ E : T (X) � T (X) : HomX(E,−),

the internal Hom functor.

4. (Stability) For every X ∈ Var(C), let p : A1
X → X be the canonical

projection with zero section s. Then the endofunctor

s!p∗ : T (X)→ T (X)

is invertible. For E ∈ T (X) and n ∈ Z we denote

E(n) := (s!p∗)n(E)[−2n]

the n-th Tate twist of E.

5. With X and p as above, T satisfies A1-homotopy invariance in the
sense that the unit of the adjunction (p∗, p∗) is an isomorphism.

id
∼→ p∗p

∗.

6. For any f : Y → X in Var(C) there exists a natural transformation

f! → f∗

which is an isomorphism when f is proper.

7. (Relative purity) For any smooth morphism f : Y → X in Var(k) of
relative dimension d there is a canonical isomorphism

f ∗ → f !(−d)[−2d].

8. (Base change) For any Cartesian square

X ′
g′ //

f ′

��

X

f
��

Y ′ g
// Y

there exist natural isomorphisms of functors

g∗f!
∼−→ f ′! g

′∗, g′∗f
′! ∼−→ f !g∗,
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9. (Localization) For i : Z → X a closed immersion with open comple-
ment j : U → X, there are distinguished triangles

j!j
! → 1→ i∗i

∗ → j!j
![1]

i!i
! → 1→ j∗j

∗ → i!i
![1]

where the first and second maps are the counits and units of the respec-
tive adjunctions.

10. (Projection formulae, Verdier duality) For any morphism f : Y →
X in Var(C), there exist natural isomorphisms

(f!E)⊗X F
∼−→ f!(E ⊗Y f ∗F ),

HomX(E, f∗F )
∼−→ f∗HomY (f ∗E,F ),

HomX(f!E,F )
∼−→ f∗HomY (E, f !F ),

f !HomX(E,F )
∼−→ HomY (f ∗E, f !F ).

11. Define the subcategory of constructible objects T c(S) ⊂ T (S) to be
the subcategory of compact objects. This subcategory coincides with the
thick full subcategory generated by f!f

!
1(n) for n ∈ Z and f : X → S

smooth. The six functors f!, f
!, f ∗, f∗,⊗,Hom preserve compact objects.

12. Let f : X → Spec(C) in Var(C). For E ∈ T (X) we denote by

DX(E) := HomX(E, f !(1))

the Verdier dual of E. For all E,F ∈ T c(X), there is a canonical
duality isomorphism

DX(E ⊗ DX(F ))
∼→ HomX(E,F ).

Furthermore, for any morphism f : Y → X in Var(C) and any E ∈
T c(X) there are natural isomorphisms

DX(DX(E)) ∼= E,

DY (f ∗(E)) ∼= f !(DX(E)),

DX(f!(E)) ∼= f∗(DY (E)).

Furthermore, due to the particular construction of the categories T (X), we
have the following additional properties.
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13. (Grading condition) There are no extensions between the Tate mo-
tives on An, or in formulas

HomT (An) (1,1(n)[m]) =

{
C, for n = m = 0

0, else.

14. (Realization functor) For every X ∈ Var(C) there is a realization
functor

Real : T (X)→ Derb(X(C);C)

into the bounded derived category of sheaves on X(C) equipped with
the metric topology. The realization functor is triangulated, monoidal
and compatible with the six functors.

3.1.2 Stratified mixed Tate motives

The categories T (X), similarly to the derived category of sheaves on X(C), are
gigantic. We will restrict ourselves to the analogue to constructible sheaves in
our setting, namely to stratified mixed Tate motives as introduced in [SW16].
We will recall all important definitions and properties in this section.

Definitions

Let (X,S) be a an affinely stratified variety over C, i.e. a variety X with a
finite partition into locally closed subvarieties (called the strata of X)

X =
⋃
s∈S

Xs,

such that each stratum Xs is isomorphic to An for some n, and the closure
Xs is a union of strata. The embeddings are denoted by js : Xs ↪→ X. The
prime example we always have in mind here is the flag variety of a reductive
group with its Bruhat stratification. Starting from this datum, [SW16] defines
the category of stratified mixed Tate motives on X, which we recall in this
paragraph. We start with the basic case of just one stratum.

Definition 3.1.2.1 ([SW16] 3.1). For X ∼= An, denote by MTDer(X) the
full triangulated subcategory of T (X) generated by motives isomorphic to
1X(p) for p ∈ Z. Recall that by 1X we denote the tensor unit in T (X).

By the grading property we get the following.



3.1. SETUP 39

Proposition 3.1.2.2. For X ∼= An, we have the following equivalence of
monoidal C-linear categories:

MTDer(X) ∼= C -modZ×Z ∼= Derb(C -modZ).

We can now proceed to the general case. Since our category should be
closed under taking Verdier duals and other reasonable combinations of the
six functors, we have to assume that (X,S) fulfills an additional condition:

Definition 3.1.2.3 ([SW16] 4.5). (X,S) is called Whitney-Tate if for all
s, t ∈ S and M ∈ MTDer(Xs) we have j∗t js∗M ∈ MTDer(Xt).

From now on we always assume that (X,S) is Whitney-Tate. In [SW16] it
is shown that (partial) flag varieties and other examples are indeed Whitney-
Tate.

Definition 3.1.2.4 ([SW16] 4.7). The category of stratified mixed Tate mo-
tives on X, denoted by MTDerS(X), is the full subcategory of T (X) consisting
of objects M such that j∗sM ∈ MTDer(Xs) for all s ∈ S.

The right definition of a map between affinely stratified varieties is different
to the usual definition of a stratified map, as defined for example in [GM88].

Definition 3.1.2.5. Let (X,S) and (Y, S ′) be affinely stratified varieties. We
call f : X → Y an affinely stratified map if

1. for all s ∈ S ′ the inverse image f−1(Ys) is a union of strata;

2. for each Xs mapping into Ys′, the induced map f : Xs → Ys′ is a
projection An × Am → Am.

Stratified mixed Tate motives are compatible with functors induced from
affinely stratified maps.

Lemma 3.1.2.6. Let X ∈ Var(C). Consider

s : X � An
X : p

where p denotes the projection and s the zero section. Then

p∗(1AnX ) = 1X

p∗(1X) = 1AnX

s∗(1AnX ) = 1X

p!(1AnX ) = 1X(−n)[−2n]

p!(1X) = 1AnX (n)[2n]

s!(1AnX ) = 1X(−n)[−2n]

Furthermore DX(1X(m)[2m]) = 1X(dimX−m)[2 dimX−2m] if X is smooth.
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Proposition 3.1.2.7. Let (X,S) and (Y, S ′) be affinely Whitney-Tate strat-
ified varieties and f : X → Y an affinely stratified map. Then the induced
functors restrict to stratified mixed Tate motives on X and Y . In formulas

f∗, f! : MTDerS(X) � MTDerS′(Y ) : f ∗, f !

Also the internal Hom, duality and tensor product restrict.

Proof. [EK16, Proposition 3.8]

Weight structure

Weight structures—as first considered in [Bon10]—provide a very concise
framework for the powerful yoga of weights, as applied, for example, in the
proof of the Weil conjectures or the decomposition theorem for perverse
sheaves.

Definition 3.1.2.8. Let C be a triangulated category. A weight structure on C
is a pair (Cw≤0, Cw≥0) of full subcategories of C such that with Cw≤n := Cw≤0[n]
and Cw≥n := Cw≤0[n] the following conditions are satisfied:

1. Cw≤0 and Cw≥0 are closed under direct summands;

2. Cw≤0 ⊆ Cw≤1 and Cw≥1 ⊆ Cw≥0;

3. for all X ∈ Cw≤0 and Y ∈ Cw≥1, we have HomC (X, Y ) = 0

4. for any X ∈ C there is a distinguished triangle A X B
+1

with A ∈ Cw≤0 and B ∈ Cw≥1

The full subcategory Cw=0 = Cw≤0 ∩ Cw≥0 is called the heart of the weight
struture.

A weight structure on stratified mixed Tate motives on an affinely stratified
variety can be obtained by gluing of weight structures on the strata. The
motive 1An(p)[q] is defined to have weight q − 2p.

Definition 3.1.2.9. Let MTDer(An)w≤0 (resp. MTDer(An)w≥0) be the full
subcategory of MTDer(An) consisting of objects isomorphic to finite direct
sums of 1An(p)[q] for q ≤ 2p (q ≥ 2p). This defines a weight structure on
MTDer(An).

Proof. We use Proposition 3.1.2.2 to identify MTDer(An) with the derived
category of graded vector spaces. Here the axioms of a weight structure are
easily checked.
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Definition 3.1.2.10 ([SW16] 5.1). Let (X,S) be an affinely Whitney-Tate
stratified variety. Then we obtain a weight structure on MTDerS(X) by setting

MTDerS(X)w≤0 := {M | j∗sM ∈ MTDer(Xs)w≤0 for all s ∈ S}
MTDerS(X)w≥0 :=

{
M | j!

sM ∈ MTDer(Xs)w≥0 for all s ∈ S
}

With this definition we have the following compatibilities with the six
functors.

Proposition 3.1.2.11 ([EK16] 3.12). Let (X,S) and (Y, S ′) be affinely
Whitney-Tate stratified varieties and f : X → Y an affinely stratified map.
Then

1. the functors f ∗, f! are weight left exact, i.e. they preserve w ≤ 0;

2. the functors f !, f∗ are weight right exact, i.e. they preserve w ≥ 0;

3. the tensor product is weight left exact, i.e. restricts to

MTDerS(X)w≤n ×MTDerS(X)w≤m → MTDerS(X)w≤n+m

4. Verdier duality reverses weights, i.e. restricts to

DX : MTDerS(X)op
w≤n → MTDerS(X)w≥−n

5. the internal Hom functor HomX is weight right exact, i.e. restricts to

MTDerS(X)op
w≤n ×MTDerS(X)w≥m → MTDerS(X)w≥m−n

6. For f smooth f ! and f ∗ are weight exact;

7. For f proper f! and f∗ are weight exact;

8. If X is smooth 1X(n)[2n] is of weight zero for all n ∈ Z.

Tilting

We will now recall the formalism of tilting for derived (dg)-categories, as
introduced in [Ric89], [Kel93] and [Kel94].

Definition 3.1.2.12. Let A be an abelian category. A complex I ∈ Hot(A)
is called homotopy-injective if the natural map

HomHot(A) (A, I)
∼→ HomDer(A) (A, I)
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is an isomorphism for all A ∈ Hot(A). A complex P ∈ Hot(A) is called
homotopy-projective if the natural map

HomHot(A) (P,A)
∼→ HomDer(A) (P,A)

is an isomorphism for all A ∈ Hot(A).

Definition 3.1.2.13. Let A be an abelian category. A collection {Ti} of
complexes Ti ∈ Hot(A) is called tilting if for all i, j and n ∈ Z the natural
map

HomHot(A) (Ti, Tj[n])
∼→ HomDer(A) (Ti, Tj[n])

is an isomorphism and

HomDer(A) (Ti, Tj[n]) = 0

for all n 6= 0.

For complexes M,N ∈ Hot(P) in some additive category P, we denote
by HomP (M,N) ∈ Hot(P) their Hom-complex.

Theorem 3.1.2.14 (Tilting [Kel93]). Let A be an abelian category and {Ti}
a tilting collection. Then there is an equivalence of triangulated categories

∆ : Hotb(〈{Ti}〉Der(A)
⊕ )

∼→ 〈{Ti}〉Der(A)
∆ ⊂ Der(A)

called tilting. Here by 〈−〉B⊕ we denote closure under finite direct sums in an
additive category B and by 〈−〉B∆ closure under distinguished triangles in a
triangulated category B.

Proof. This is copied almost word by word from [SW16, Appendix B]. We
just sketch a proof for {Ti} = {T}. Since by assumption

HomHot(A) (T, T [n])
∼→ HomDer(A) (T, T [n])

we have by dévissage

〈T 〉Der
⊕
∼= 〈T 〉Hot

⊕ and 〈T 〉Der
∆
∼= 〈T 〉Hot

∆ .

So it suffices to proof that there is an equivalence

∆ : Hotb(〈T 〉Hot(A)
⊕ )

∼→ 〈T 〉Hot(A)
∆ .

Let E
def
= HomA (T, T ) be the endomorphism complex of T . This is a differ-

ential graded algebra (dg-algebra). Let Z
def
= Z0(E)⊕ E≤0 be the truncation
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of E and H
def
= H0(E) be the 0-th cohomology of E. By the tilting property

the cohomology of E is concentrated in degree zero and hence the natural
morphisms

E ←↩ Z � H

are quasi-isomorphisms of dg-algebras and furthermore

H = HomHot(A) (T, T ) ∼= HomDer(A) (T, T ) .

For a dg-algebra R we denote by

dgHot-R ⊃ dgFree-R

the homotopy category of right R-dg-modules and the triangulated subcate-
gory generated by the free module R. Then there is the following chain of
equivalences of triangulated categories

Hotb(〈T 〉Hot(A)
⊕ ) dgFree-H dgFree-Z dgFree-E 〈T 〉Hot(A)

∆
∼
(1)

∼
(2)

∼
(3)

∼
(4)

1. The following functor induces an equivalence of categories

HomHot(A) (T,−) : 〈T 〉Hot(A)
⊕

∼→ 〈H〉mod-H
⊕ .

Since H is a dg-algebra concentrated in degree 0, dg-modules over H
are just complexes of H-modules and we have an equivalence

Hotb(〈T 〉Hot(A)
⊕ )

∼→ Hotb(〈H〉mod-H
⊕ ) = dgFree-H.

2. This is − ⊗Z H, which is an equivalence since Z � H is a quasi-
isomorphism.

3. This is − ⊗Z E, which is an equivalence since Z ↪→ E is a quasi-
isomorphism.

4. This is given by the functor

HomA (T,−) : 〈T 〉Hot(A)
∆

∼→ dgFree-E.

Our tilting functor ∆ is defined as the composition of those equivalences (or
their inverse functors).

Remark 3.1.2.15. We could have also used the functors HomHotA (−, T ) and
HomA (−, T ). Then our tilting equivalence would be of the form
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Hotb(〈T 〉Hot(A)
⊕ ) (H -dgFree)op

(Z -dgFree)op (E -dgFree)op 〈T 〉Hot(A)
∆

∼

∼

∼

∼

But we rather avoid opposite categories.

Proposition 3.1.2.16 (Tilting and functors). Let A,B be abelian categories.
Let {Ti} ⊂ Hot(A) and {Ui} ⊂ Hot(B) be tilting collections. Assume further-
more that all Ui are homotopy-projective.

Let F : A → B be an exact functor. Assume that for all Ti there exists
a Uj and a quasi-isomorphism ci : Uj → F (Ti). Then the following diagram
commutes up to natural isomorphism

Hotb(〈{Ti}〉Der(A)
⊕ ) 〈{Ti}〉Der(A)

∆ Der(A)

Hotb(〈{Ui}〉Der(B)
⊕ ) 〈{Ui}〉Der(B)

∆ Der(B)

∆
∼

F F F

∆
∼

where on the left side F acts by pointwise application or in other words, it is
induced by an sequence of functors

〈{Ti}〉Der(A)
⊕

∼← 〈{Ti}〉Hot(A)
⊕

F→ 〈{F (Ti)}〉Hot(B)
⊕ → 〈{F (Ti)}〉Der(B)

⊕ ↪→ 〈{Ui}〉Der(B)
⊕

Proof. This is copied almost word by word from [SVW, Appendix]. Again,
we restrict ourselves to the case {Ti} = {T} and {Ui} = {U} and a quasi-
isomorphism c : U → F (T ). We abbreviate S = F (T ) and ET = HomA (T, T ),
ES = HomB (S, S), EU = HomB (U,U). Let ZT , ZS, ZU and HT , HS, HU their
degree 0 truncation and 0-th cohomology, respectively.

We consider a diagram where the top and bottom row are defining the
tilting equivalences ∆ as in Theorem 3.1.2.14 and fill it up with natural
isomorphisms.
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Hotb(〈T 〉Hot(A)
⊕ ) dgFree-HT dgFree-ZT dgFree-ET 〈T 〉Hot(A)

∆

Hotb(〈S〉Hot(A)
⊕ ) dgFree-HS dgFree-ZS dgFree-ES 〈S〉Hot(B)

∆

Hotb(〈U〉Der(B)
⊕ ) dgFreeDer-HU dgFreeDer-ZU dgFreeDer-EU 〈U〉Der(B)

∆

Hotb(〈U〉Hot(B)
⊕ ) dgFree-HU dgFree-ZU dgFree-EU 〈U〉Hot(B)

∆

∼
HomHot(A)(T,−)

F (1) −⊗HTHS (2)

∼
−⊗ZTHT −⊗ZT ET

∼

(3)−⊗ZT ZS (4)−⊗ET ES

∼
HomA(T,−)

F

∼
HomHot(B)(S,−)

(5) −⊗HSHX (6)

−⊗ZSHS −⊗ZSES

(7)−⊗ZSZX (8)−⊗ESX

∼
HomB(S,−)

∼
HomDer(B)(U,−)

∼
Res

ZU
HU

∼
Res

ZU
EU

∼
HomB(U,−)

∼
HomHot(B)(U,−)

o o

∼
−⊗ZUHU −⊗ZUEU

∼

o o

∼
HomB(U,−)

o

1. Here we use the map

F : HT = HomHot(A) (T, T )→ HomHot(B) (F (T ), F (T )) = HS.

The natural transformation is given by

HomHot(A) (T,−)⊗HT HS
comp(F⊗id)→ HomHot(B) (F (T ), F (−))

where by comp be denote composition. This is clearly an isomorphism
when applied to T and hence restricts to a natural isomorphism by
devissage.

2. The morphism ZT → ZS is induced by

F : ET = HomA (T, T )→ HomB (F (T ), F (T )) = ES.

The following diagram commutes.

ZT HT

ZS HS

F F

We hence get a natural isomorphism

−⊗ZT HT ⊗HT HS
∼= −⊗ZT ZS ⊗ZS HS.
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3. As in the last point.

4. The natural transformation is given by

HomA (T,−)⊗ET ES
comp(F⊗id)→ HomB (F (T ), F (−)) .

Again this restricts to a natural isomorphism by devissage.

For a dg-algebra R we denote by dgFreeDer-R the full triangulated subcate-
gory of dgDer-R generated by the free module R. Localization induces an
equivalence of categories

dgFree-R
∼→ dgFreeDer-R.

We denote X = HomB (U, S). This is a ES-EU -dg-bimodule. We denote by ZX
and HX its degree 0 trunctation and 0-th cohomology, respectively. Since U
is homotopy-projective by assumption, the cohomology of X is concentrated
in degree 0 and

HX = HomHotB (U, S) = HomDerB (U, S)
c∗←
∼

HomDerB (U,U) = HU

is freely generated by [c] as right (dg-)module over HU . Furthermore, the
maps

HX � ZX ↪→ X

are quasi-isomorphisms of ZS-ZU -dg-bimodules.

5. The left vertical arrow is defined via

〈S〉Hot(B)
⊕ → 〈S〉Der(B)

⊕ = 〈U〉Der(B)
⊕ .

The right vertical arrow restricts to dgFreeDer-HU since HX is free. The
natural isomorphism is defined similarly as in (1) by

HomHot(B) (S,−)⊗HS HX
comp→ HomHot(B) (U,−)

= HomDer(B) (U,−) .

6. The right vertical and bottom horizontal arrow restrict to dgFreeDer-ZU ,
since HU and ZX are quasi-isomorphic to ZU as ZU -dg-modules. It is easy
to see that the following diagram commutes up to natural isomorphism.
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dgFree-HS dgFree-ZS

〈HX〉dgHot-HU
∆ 〈ZX〉dgHot-ZU

∆

dgFreeDer-HU dgFreeDer-ZU

−⊗HSHX

−⊗ZSHS

−⊗ZSZX

o

−⊗ZSHS

o

Res
HU
ZU

Here we use ResHUZU , which goes in the wrong direction, to avoid using
its inverse functor, which is the derived functor −⊗L

ZU
HU .

7. As in the last point.

8. Similar to (5).

The squares in the bottom are easily filled with natural isomorphisms and we
are finished with this proof.

Remark 3.1.2.17. The completely dual statements hold when we instead
require homotopy-injective resolutions c : F (T ) → U and use the tilting
equivalence discussed in Remark 3.1.2.15.

Tilting and motives

We apply the tilting formalism to stratified mixed Tate motives. Under an
additional pointwise purity condition this allows us to identity the category
of stratified mixed Tate motives with the homotopy category of its weight
zero objects.

Definition 3.1.2.18 ([SW16] 6.1). Let (X,S) be an affinely Whitney-Tate
stratified variety and ? ∈ {∗, !}. A motive M ∈ MTDerS(X) is called pointwise
?-pure if for all s ∈ S

i?sM ∈ MTDer(Xs)w=0.

If both conditions are satisfied, the motive is called pointwise pure.

Proposition 3.1.2.19 ([SW16] 6.3). Let (X,S) be an affinely Whitney-Tate
stratified variety and M,N ∈ MTDerS(X) such that M is pointwise ∗-pure
and N is pointwise !-pure. Then HomT (X) (M,N [a]) = 0 for all a > 0.
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Theorem 3.1.2.20 (Tilting for motives, [SW16] 9.2). Let (X,S) be an affinely
Whitney-Tate stratified variety, such that all objects of MTDerS(X)w=0 are
additionally pointwise pure. Then there is an equivalence of categories, called
tilting,

∆ : MTDerS(X)
∼→ Hotb(MTDerS(X)w=0).

Proof. The category T (X) can be embedded in a derived category of a
Grothendieck abelian category. We can hence take a system of homotopy
injective resolutions of representatives of the isomorphism classes of inde-
composable objects in MTDerS(X)w=0. This forms a tilting collection by
Proposition 3.1.2.19 and the pointwise purity assumption. We can hence
apply Theorem 3.1.2.14 and the statement follows.

Remark 3.1.2.21. The last theorem can also be stated differently. Namely, let
{Ls}s∈S ⊆ MTPerS(X)w=0 ⊆ MTDerS(X)w=0 be a set of representative of
indecomposable weight zero perverse stratified mixed Tate motives on X. Then
{Ls(i)[2i]}s∈S,i∈Z generates MTDerS(X)w=0 as an additive subcategory by
[SW16, Corollary 11.11]. Assume without loss of generality that the Ls(i)[2i]
are homotopy projective. They hence form a tilting collection as considered
in the proof. Now let L =

⊕
s∈S Ls and

H =
⊕
n∈Z

HomT (X) (L,L(n)[2n]) .

Then we have

Derb(modZ-H) ∼= Hotb(〈{Ls(i)[2i]}s∈S,i∈Z〉T (X)
⊕ )

= Hotb(MTDerS(X)w=0) ∼= MTDerS(X)

where by modZ-H we denote the category of finitely generated graded H
right modules. See Theorem 3.1.2.14 and [RSW14, Proposition 5.4.2.] for the
first equivalence.

Theorem 3.1.2.22 (Tilting for motives and functors). Let (X,S), (Y, S ′) be
affinely Whitney-Tate stratified varieties, such that all objects of MTDerS(X)w=0

and MTDerS′(Y )w=0 are additionally pointwise pure. Let f : X → Y be an
affinely stratified morphism. Assume that either f is smooth and proper or
that f a closed immersion with X and Y smooth. Then tilting commutes with
f ∗ = f !(d)[2d] and f∗ = f!. So for example the diagram

Hotb(MTDerS(X)w=0) MTDerS(X)

Hotb(MTDerS′(Y )w=0) MTDerS′(Y )

∆
∼

f∗ f∗

∆
∼
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commutes up to natural isomorphism, where on the left side f∗ acts by pointwise
application. Furthermore tilting commutes with shifts of the form (n)[2n] for
n ∈ Z.

Proof. First of all, the functors f ∗ = f !(d)[2d] and f∗ = f! are weight exact,
hence really restrict to weight zero motives by Proposition 3.1.2.11. It suffices
to show the statement for one of the functors, since the other functors are
adjoints (or shifts of it).

Asumme that f is smooth and proper. The tilting equivalence was con-
structed by embedding T (X) and T (Y ) in a derived category of a Grothendieck
abelian category, say AX , AY . The functor f ∗ : T (Y ) → T (X) is actually
just pointwise application of an exact functor f ∗ : AY → AX , since f is
smooth (see [CD12, 5.1.16]). We can furthermore assume that our tilting
collections for {Ti} ⊂ MTDerS(X)w=0 and {Ui} ⊂ MTDerS′(Y )w=0 are given
by homotopy-injective complexes and chosen in a way, that for every Ti there
is a Uj and a quasi-isomorphism f ∗(Ti) → Uj. We are hence exactly in the
setting of Proposition 3.1.2.16 (see also Remark 3.1.2.17) which shows that
f ∗ commutes with tilting. By adjunction also f∗ = f! have to commute.

The exact same argument works for f! = f∗ when f is a closed immersion.
Denote by π : P1

X → X the projection. For every M ∈ T (X) we have a
canonical splitting π∗π

∗M = M ⊕M(−1)[−2], hence also shifts of the form
(n)[2n] commute with tilting.

3.1.3 Flag varieties

In this section we introduce a lot of notation for reductive algebraic groups
and partial flag varieties. We also introduce the maps we will later use to
construct a geometric version of parabolic induction.

Generalities

Let G ⊃ B ⊃ T be a reductive algebraic group over the complex numbers
together with a Borel subgroup and maximal torus. Denote by

X(T ) ⊃ Φ ⊃ Φ+ ⊃ ∆

the character lattice of T , the root system, set of positive and simple roots
associated to the choice of B. Denote by

W = NG(T )/T ⊃ S

the Weyl group and the set of simple reflections. By abuse of notation, we will
let elements of W act on cosets, subgroups, etc. whenever the action does not
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depend on a choice of representative mod T . For α ∈ Φ we denote the root
subgroup of G on which the conjugation action by T is described by α by

Ga
∼= Uα ⊂ G.

Denote by U and U− the unipotent radical of B and B−, where by B− we
denote the opposite Borel. For x ∈ W we define

Ux
def
= U ∩ xU−x−1 = 〈Uα |α ∈ x(Φ−) ∩ Φ+〉 ⊂ B.

By a standard parabolic subgroup we mean a subgroup G ⊃ Q ⊃ B. We
denote its Weyl group and simple reflections by

SQ = S ∩WQ ⊂ WQ ⊂ W .

From here on out, we always fix one particular standard parabolic subgroup

B ⊂ P ⊂ G.

We denote its Levi factor by

P � P/Radu(P )
def
= L

and for convenience choose a splitting of this map to interpret L as a subgroup
of P . We denote by

A = B/Radu(P ) ⊂ L

its Borel subgroup. In this chapter we will be interested in (partial) flag
varieties associated to G and L. But for convenience, we will always prefer to
work with quotients of P instead of quotients of L using

L/A ∼= P/B.

Partial flag varieties associated to G or P are always affinely Whitney-Tate
stratified varieties with respect to their stratification by Bruhat cells (these are
precisely the B-orbits) [SW16, 4.10] and we can hence look at the associated
categories of stratified mixed Tate motives

MTDer(B)(G/B),MTDer(B)(G/P ),MTDer(B)(P/B) . . .
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Maps for geometric parabolic induction

We will now introduce all necessary notations and maps we will later use
to define a geometric version of parabolic induction. If B ⊂ Q ⊂ G is a
standard parabolic subgroup, then there is a well known generalized Bruhat
decomposition of G into P ×Q orbits, given by

G =
⊎

w̄∈WP \W/WQ

Pw̄Q

and an associated stratification of the partial flag variety

G/Q =
⊎

w̄∈WP \W/WQ

Pw̄Q/Q.

As it turns out, those strata Pw̄Q/Q are affine bundles over partial flag
varieties associated to P , let say P/Qw, for P ⊃ Qw ⊃ B a standard parabolic
depending on Q and w. Geometric parabolic induction will be constructed by
passing between sheaves on P/Qw and G/Q, using the maps and notation
from the following Theorem.

Theorem 3.1.3.1. Let w ∈ W be a shortest coset representative inWP\W/WQ

and set

WQ,w
def
= WP ∩ wWQw

−1 ⊂ WP ,

Qw
def
= BWQ,wB ⊂ P and

Aw
def
= L ∩Qw

Let x be a shortest representative in WP/WQ,w (it makes sense to talk about
shortest representatives here, since WQ,w is generated by simple reflections,see
(1)). Consider the diagram

L/Qw ∩ L P/Qw P ×Qw BwQ/Q PwQ/Q G/Q

AxAw/Aw BxQw/Qw BxQw ×Qw BwQ/Q BxwQ/Q

Uxẋ Uxẋ× Uwẇ Uxwẋẇ

∼ ∼
multprw hw

∼ ∼
multprw

o

pr1

o

∼
mult

o

where by ẏ ∈ NG(T ) we denote a representative in y = ẏT . Then the following
statements hold.
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1. WQ,w is generated by simple reflections,

2. Qw acts on BwQ by left multiplication and

3. Qw contains the stabilizer of the action of P on wQ/Q

Qw ⊃ P ∩ wQw−1.

4. The diagram is well defined and all squares are commutative and Carte-
sian.

5. The arrows marked by ∼ are isomorphisms.

Proof. (1) Since Q is a standard parabolic subgroup,WQ is the isotropy group
of some dominant weight λ. Since w is a shortest coset representative w · λ is
still dominant for SP . Now WQ,w is the isotropy group of λ in WP and hence
generated by simple reflections, see [Hum90, Theorem 1.12 (c)].

(2) Let s ∈ WQ,w be a simple reflection. Write s = wqw−1 for q ∈ WQ.
Let y ∈ WQ, then

BsBwByB ⊂ BswyB ∪BwyB = BwqyB ∪BwyB ⊂ BwQ.

The statement follows since WQ,w is generated by simple reflections.
(3) We show that in fact B(P ∩ wQw−1)B ⊂ Qw. We have

B(P ∩ wQw−1)B = BWPB ∩BwBWQBw
−1B

= BWPB ∩BwWQBw
−1B

⊂
⋃
I

B(WP ∩ wWQw
−1
I )B

where the second equality holds since w is reduced with respect to WQ and
the wI denote subexpressions of w (see [Bou02, IV.2.1 Lemma 1]). But now
assume that there are p ∈ WP , q ∈ WQ such that p = wqw−1

I . Then pwI = wq
and both represent the same coset in WP\W/WQ. Since l(wI) ≤ l(w) and w
is the shortest representative, we have w = wI and hence

B(P ∩ wQw−1)B ⊂ B(WP ∩ wWQw
−1)B = Qw.

(4) Follows from (2).
(5) The multiplication map in the first row is an isomorphism by (3).

The maps from the bottom to the middle row are isomorphisms since x,w
and xw are shortest coset representatives in WP/WQ,w,W/WQ and W/WQ,
respectively. Here we use that for x ∈ WP , xw is a shortest representative in
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W/WQ if and only if x is a shortest representative in WP/(WP ∩ wWQw
−1)

(see [He07, 1.2]). The multiplication map in the bottom row is an isomorphism
since l(xw) = l(x)+ l(w) (see [Bou02, IV Exercise §1.3]). All other statements
follow.

See also Chapter 3 in [BT72] for a good reference on BN-pairs and parabolic
subgroups.

Remark 3.1.3.2. In the regular case Q = B the notation dramatically simplifies
to

L/A P/B P ×B BwB/B PwB/B G/B

AxA/A BxB/B BxB ×B BwB/B BxwB/B

Uxẋ Uxẋ× Uwẇ Uxwẋẇ

∼ ∼
multprw hw

∼ ∼
multprw

o

pr1

o

∼
mult

o

for x ∈ WP .

Example 3.1.3.3. Since admittedly the notation and all the involved maps
can be quite confusing, we illustrate everything in the case G = GL3. Let s, t
be the simple reflections in G.

(1) The case of disjoint parabolic subgroups. Let P = B ∪ BsB,
Q = B ∪ BtB be minimal parabolic subgroups. Then G/Q = P2 has two
P -orbits corresponding to the decomposition P2 = P1 ∪ A2.

BtsQ/QPtsQ/Q =

PQ/Q =
BsQ/QQ/Q

pre

prts P/Qts

BsQe/QeQe/Qe

P/Qts =

P/Qe =

Here pre : PQ/Q ∼= P1 ∼→ P1 ∼= P/Qe and prts : PtsQ/Q ∼= A2 → pt ∼=
P/Qts.

(2) The case of meeting parabolic subgroups. Let P = Q = B ∪BsB.
Then G/Q = P2 has two P -orbits corresponding to the decomposition P2 =
pt ∪ O(1).
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BstQ/QPtQ/Q =

PQ/Q =

BtQ/Q

Q/Q

pre

prt

Qt/Qt BsQt/Qt

Qe/Qe

P/Qt =

P/Qe =

Here pre : Q/Q ∼= pt
∼→ pt ∼= P/Qe and prt : PtQ/Q ∼= O(1) → P1

∼= P/Qt,
where O(1) is the hyperplane bundle or Serre’s twisting sheaf on P1.

Compatibilities

All maps constructed in the preceding section are well-behaved with respect
to passing between different standard parabolic subgroups, as described in
the following.

Lemma 3.1.3.4. In the notation of Theorem 3.1.3.1 let Q ⊂ Q′ be another
standard parabolic containing Q and denote all objects associated to Q′ by −′.
Let w ∈ W be a shortest coset representative in WP\W/WQ′ and x ∈ WQ′

be a shortest coset representative in

w−1WQ′,ww\WQ′/WQ = (w−1WPw ∩WQ′)\WQ′/WQ.

Then Qwx ⊂ Q′w and the following diagram commutes

PwxQ/Q P ×Qwx BwxQ/Q P/Qwx

PwQ′/Q′ P ×Q′w BwQ′/Q′ P/Q′w

π

mult
∼ prwx

π π

mult
∼ pr′w

If x = e, the diagram is moreover Cartesian.

Lemma 3.1.3.5. In the notation of Lemma 3.1.3.4, denote by Z the pullback
of the diagram

Z G/Q

PwQ′/Q′ G/Q′

π π

h′w
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Then
Z =

⊎
x

PwxQ/Q ⊂ G/Q

where x runs over the shortest representatives of the double cosets

w−1WQ′,ww\WQ′/WQ = (w−1WPw ∩WQ′)\WQ′/WQ.

Corollary 3.1.3.6. In the notation of Lemma 3.1.3.5 assume additionally
that WQ′ ⊂ w−1WPw, then the following diagram is Cartesian.

PwQ/Q G/Q

PwQ′/Q′ G/Q′

π

hw

π

h′w

3.2 Geometric parabolic induction and trans-

lation functors

In this section we will introduce geometric parabolic induction and then study
its interaction with the geometric versions of translation functors, i.e. the
functors

π! : MTDer(B)(G/Q) MTDer(B)(G/Q
′) : π!

associated to the projections G/Q→ G/Q′ for Q ⊂ Q′.
There will be two different cases. Passing into a smaller flag variety, i.e.

applying the functors π!, will commute with geometric parabolic induction.
However, the case of passing out of a smaller flag variety, i.e. applying π!,
will be more complicated.

3.2.1 Geometric parabolic induction

Definition 3.2.1.1. Let B ⊂ Q ⊂ G be a standard parabolic subgroup and
let w ∈ W be a shortest coset representative in WP\W/WQ. We then call the
functor

MTDer(B)(P/Qw) MTDer(B)(G/Q)
GIndw

hw,∗ pr!w

geometric parabolic induction and denote it by GIndw. The maps

P/Qw PwQ/Q G/Q
prw hw
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are defined as in Theorem 3.1.3.1.

Lemma 3.2.1.2. 1. GIndw is well defined, i.e. it restricts to stratified
mixed Tate motives.

2. If w = e, then GInde = he,∗ is weight-exact.

3. Denote by ix : BxQw/Qw → P/Qw and i′xw : BxwQ/Q → G/Q the
inclusions, then

GIndw ix,∗1 = i′xw,∗1(l(w))[2l(w)]

where by 1 we denote the constant motive on BxQw/Qw and BxwQ/Q,
respectively.

Proof. (1) By Theorem 3.1.3.1 both prw and hw are affinely stratified maps,
compatible with the Bruhat stratification of P/Qw and G/Q. The statement
follows using Lemma 3.1.2.7.

(2) In this case P/Qw = P/P ∩Q ∼= PQ/Q. Hence pre is an isomorphism
and furthermore he is a closed embedding and hence weight exact.

(3) By Theorem 3.1.3.1, the diagram

BxwQ/Q PxwQ/Q G/Q

BxQw/Qw P/Qw

prw

i′′xw

prw

hw

ix

is Cartesian. Hence by base change and Lemma 3.1.2.6

GIndw ix,∗1 = hw,∗ pr!
w ix,∗1 = hw,∗ i

′′
xw,∗ pr!

w 1 = i′xw,∗1(l(w))[2l(w)].

3.2.2 Into a smaller flag variety

Theorem 3.2.2.1. Let B ⊂ Q ⊂ Q′ be standard parabolic subgroups. Denote
all objects associated to Q′ by −′. Let w be a shortest coset representative
of WQ′\W/WP . Then the following diagram of functors commutes (up to
natural isomorphism).

MTDer(B)(P/Qw) MTDer(B)(G/Q)

MTDer(B)(P/Q
′
w) MTDer(B)(G/Q

′)

GIndw

π∗ π∗

GInd′w

Proof. Follows immediately from Lemma 3.1.3.4 and base change.
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3.2.3 Out of a smaller flag variety

Theorem 3.2.3.1. Let B ⊂ Q ⊂ Q′ be standard parabolic subgroups. Denote
all objects associated to Q′ by −′. Consider the composition

MTDer(B)(P/Q
′
w) MTDer(B)(G/Q

′) MTDer(B)(G/Q)
GInd′w π!

Choose an ordering by length {xk}1≤k≤n on the set of shortest coset represen-
tatives in

w−1WQ′,ww\WQ′/WQ = (w−1WPw ∩WQ′)\WQ′/WQ.

Then for all M ∈ MTDer(B)(P/Qw), there exists a family of distinguished
triangles

Mk−1 Mk GIndwxk π
!
kM

+1

in MTDer(B)(G/Q) where

Mn = π! GInd′wM and M0 = 0

and the right hand side is given by

MTDer(B)(P/Q
′
w) MTDer(B)(P/Qwxk) MTDer(B)(G/Q)

π!
k

GIndwxk

and the map πk is induced by the inclusion Qwxk ⊂ Q′w.

Proof. By Lemma 3.1.3.5 there is a Cartesian square

Z G/Q

PwQ′/Q′ G/Q′

π

h

π

hw

with
Z =

⊎
k

PwxkQ/Q ⊂ G/Q.

Denote by

ik :PwxkQ/Q ↪→ Z

i≤k :
⋃
l≤k

PwxlQ/Q ↪→ Z

the inclusions. For N ∈ MTDer(B)(Z) define Nk
def
= i≤k,!i

∗
≤kN . Then there

exists a family of distinguished triangles
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Nk−1 Nk ik,∗i
!
kN

+1

with N0 = 0 and Nn = N , using the localisation sequence and induction on

n. We apply this to N
def
= π! pr!

wM and set Mk
def
= h∗Nk. We hence obtain

distinguished triangles

Mk−1 = h∗Nk−1 Mk = h∗Nk h∗ik,∗i
!
kπ

! pr′!wM
+1

We furthermore have

Mn = h∗N = h∗π
! pr!

wM = π! hw,∗ pr!
wM = π! GIndwM

and for all k by Lemma 3.1.3.4

h∗ik,∗i
!
kπ

! pr′!wM = hwxk,∗ pr!
wxk

π!
kM = GIndwxk π

!
kM

and the statement follows.

Example 3.2.3.2. Keep the notation from the last Theorem.
(1) Assume that the set {xk} = {1} has just one element. Then there is

an isomorphism of functors

π! GInd′w
∼= GIndw π

!

(2) Assume that the set {xn} = {1, s} has just two elements. Then the
theorem yields a distinguished triangle

GIndw π
!M π! GInd′wM GIndws π

!
sM

+1

3.2.4 Geometric wall crossing

We discuss the interaction of the geometric version of the wall crossing functors
θs for category O and geometric parabolic induction. As in the Category O
case, this will be an essential ingredient in the induction step of our proof
that parabolic induction and geometric parabolic induction correspond to
each other.

Theorem 3.2.4.1. Let Q = (B ∪ BsB). Let w ∈ WP\W a shortest coset
representative and s ∈ W a simple reflection with ws > w such that ws is
also a shortest coset representative for WP\W. Let π : G/B → G/Q. Then
there is a distinguished triangle of functors

GIndw π!π! GIndw GIndws
+1
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from MTDer(B)(P/B) to MTDer(B)(G/B). The map on the left hand side is
the unit of the adjunction (π!, π

!).

Proof. This is more or less Theorem 3.2.2.1 and 3.2.3.1 combined. Consider
the Cartesian diagram

PwB/B ] PwsB/B Z G/B

PwQ/Q G/Q

i]j

π

h

π

h′w

Then there are the following natural isomorphisms of functors

π!π! GIndw = π!π! hw,∗ pr!
w
∼= π!π!h∗i∗ pr!

w
∼= π! h′w,∗ π!i! pr!

w
∼= h∗π

!π!i! pr!
w

We apply the localization triangle associated to (i, j) to the term on the right
hand side and obtain

h∗i!i
!π!π!i! pr!

w h∗π
!π!i! pr!

w h∗j∗j
!π!π!i! pr!

w
+1

Since ws > w the map πi : PwB/B → PwQ/Q is an isomorphism. Hence

h∗i!i
!π!π!i! pr!

w = h∗i! pr!
w = GIndw .

Furthermore ws > w implies that Qw = B, since

WP ∩ wWQw
−1 =WP ∩ w{1, s}w−1 = {1}.

By Lemma 3.1.3.4 the diagrams

PwB/B P/B

PwQ/Q P/Qw = P/B

prw

πio π′

pr′w

PwsB/B P/B

PwQ/Q P/Qw = P/B

prws

πj π′

pr′w

commute, and the left hand diagram is cartesian. Hence

h∗j∗j
!π!π!i! pr!

w
∼= h∗j∗j

!π! pr′!w π
′
!
∼= h∗j∗ pr!

ws π
′!π′!
∼= hws,∗ pr!

ws = GIndws .

Putting everything together, our distinguished triangle reads

GIndw π!π! GIndw GIndws
+1

But a priori the first map is induced by the counit of the adjunction (i!, i
!).

That this coincides with the unit of the adjunction (π!, π
!) follows from the

following general Lemma.
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Lemma 3.2.4.2. Let i : Z ↔ X : π be two morphisms in Var(C), such that
i is a closed embedding and πi = idZ . Then the following diagram of functors
T (Z)→ T (X) commutes

i! π!π!i!

i! π!

i!i
!π! π!

where the top row is the unit of the adjunction (π!, π
!) and the bottom row the

counit of (i!, i
!).

Proof. The two base change morphisms (called exchange morphisms in [CD12])
i! id∗ → π! id∗ associated to the diagram

Z X

Z Z

i

id π

id

coincide.

The theorem implies that for every M ∈ MTDer(B)(P/B) there is an
isomorphism

GIndwsM ∼= Cone(GIndwM → π!π! GIndwM)

in MTDer(B)(G/B), where by Cone we denote the mapping cone. In general
however, mapping cones are not functorial. But as in the proof of Theorem
2.3.4.1, in our particular situation Lemma 2.3.4.5 applies and the mapping
cone is indeed functorial.

Lemma 3.2.4.3. For all M,N ∈ MTDer(B)(P/B) we have

HomT (G/B) (GIndw(M),GIndws(N)) = 0.

Proof. This is simply a matter of their support. Let

U
def
= PwsB/B Z

def
= U ∪W W

def
= PwB/B

j i
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and denote by k the inclusion of Z in X. Notice that U is open in Z.

HomT (G/B) (GIndwM,GIndwsN)

= HomT (G/B) (hws,! pr∗wsN, hw,! pr∗wM) (duality)

= HomT (Z) (k∗ hws,! pr∗wsN, k
∗ hw,! pr∗wM) (support ⊆ Z)

= HomT (Z) (j!j
∗k∗ hws,! pr∗wsN, i!i

∗k∗ hw,! pr∗wM) (support ⊆ W , resp. U)

= HomT (Z) (j∗k∗ hws,! pr∗wsN, j
∗i!i
∗k∗ hw,! pr∗wM) (adjunction and j∗ = j!)

= 0 (since j∗i! = 0)

and the claim follows.

Corollary 3.2.4.4. There is a natural equivalence of functors

GIndws ∼= Cone(GIndw → π!π! GIndw).

Proof. Follows from Theorem 3.2.4.1, Lemma 3.2.4.3 and Lemma 2.3.4.5.

3.2.5 From the singular case to the regular case

Up to direct sums and shifts, geometric parabolic induction for partial flag
varieties G/Q can be expressed in terms of geometric parabolic induction for
the regular flag variety G/B and geometric translation functors.

Theorem 3.2.5.1. Let B ⊂ Q ⊂ G and w be a shortest representative of
a coset in WP\W/WQ. Let π : G/B → G/Q and π′ : P/B → P/Qw be the
projections. Then there is a natural equivalence of functors

π∗GIndw π
′! ∼=

⊕
x∈WQ,w

GInd′w(l(x))[2l(x)] :

MTDer(B)(P/Qw)→ MTDer(B)(G/Q)

Proof. By Theorem 3.2.2.1 we have

π∗GIndw π
′! = GIndw π

′
∗π
′!.

Now we argue as in [BGS96, Lemma 3.5.4]. The decomposition theorem yields

π′∗1P/B
∼=

⊕
x∈WQ,w

1P/Qw(−l(x))[−2l(x)]
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and using Verdier duality we get

π′∗π
′! ∼= π′∗HomP/B(1, π′!(−)) ∼= HomP/Qw(π′∗1,−)

∼=
⊕

x∈WQ,w

HomP/Qw(1P/Qw(−l(x))[−2l(x)],−)

∼=
⊕

x∈WQ,w

id(l(x))[2l(x)].

The statement follows.

Remark 3.2.5.2. Let us explain why we were allowed to use the decomposition
theorem for perverse sheaves here. After all, the decomposition theorem is a
statement about constructible sheaves and not motives.

By [Dre15], for all X ∈ Var(C), there is a Hodge realization functor

RealH : T (X)→ Der(X(C),C)

from motives on X into the derived category of sheaves on X(C) (equipped
with its metric topology). This is compatible with the six operations.

For an affinely Whitney-Tate stratified variety (X,S), RealH restricts to
a functor

RealH : MTDerS(X)→ DerbS(X,C).

By [SW16, Theorem 11.3] it induces isomorphisms⊕
i∈Z

HomMTDerS(X) (M,N(i))
∼→ HomDerbS(X,C) (RealH(M),RealH(N))

which are compatible with composition. In the notation of the last proof, the
decomposition theorem yields

π′∗CP/B
∼=

⊕
x∈WQ,w

CP/Qw [−2l(x)] ∈ Derb(B)(P/Qw,C).

Actually, the decomposition theorem in its full strength is not needed here.
We can also use that π is a fibration with typical fibre Qw/B, and apply
the Leray-Serre spectral sequence, which degenerates on page two by parity
vanishing: The cohomology of both Qw/B and P/B is concentrated in even
degrees. This implies

π′∗CP/B =
⊕
i∈Z

H i(Qw/B,C)⊗ CP/Qw [−i].
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Combined with the equality

H i(Qw/B,C) =
⊕

x∈WQ,w

2l(x)=i

C

we obtain our statement. By [SW16, Lemma 6.6.], π′∗1P/B and 1P/Qw are
pointwise pure of weight zero. This implies

HomMTDerS(X)

(
π′∗1P/B,1P/Qw(n)[2n](i)

)
= 0 and

HomMTDerS(X)

(
1P/Qw(n)[2n](i), π′∗1P/B

)
= 0

for all i 6= 0, n ∈ Z, using [SW16, Corollary 6.3]. Hence there are isomorphisms

HomMTDerS(X)

(
π′∗1P/B,1P/Qw(n)[2n]

)
∼= HomDerb(B)(P/Qw,C)

(
π′∗CP/B,CP/Qw(n)[2n]

)
and

HomMTDerS(X)

(
1P/Qw(n)[2n], π′∗1P/B

)
∼= HomDerb(B)(P/Qw,C)

(
CP/Qw(n)[2n], π′∗CP/B

)
.

So we can transport the projections and embeddings from the direct sum
decomposition of π′∗CP/B to π′∗1P/B and obtain

π′∗1P/B
∼=

⊕
x∈WQ,w

1P/Qw(−l(x))[−2l(x)].

Admittedly, this argument is awkward, and there should be a much more
direct proof using a motivic version of the Leray-Serre spectral sequence.

3.3 Soergel modules

The category of stratified mixed Tate motives on a flag variety has a completely
combinatorial description as the bounded homotopy category of Soergel
modules. In this section we aim to give a description of geometric parabolic
induction on the level of Soergel modules, i.e. fill out the question mark in
the diagram

MTDer(B)(P/Qw) MTDer(B)(G/Q)

Hotb(H(P/Qw) -SmodZ,ev) Hotb(H(G/Q) -SmodZ,ev)

GIndw

o o

?
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3.3.1 Erweiterungssatz, Tilting and Soergel modules

Let (X,S) be an affinely Whitney-Tate stratified variety. Then the hyperco-
homology functor is defined by

H : MTDerS(X)→ H(X) -modZ×Z,M 7→
⊕
i,j∈Z

HomT (X) (1X ,M(i)[j]) ,

where H(X)
def
= H(1X).

Theorem 3.3.1.1 (Erweiterungssatz). Let X ∈ Var(C) be a partial flag
variety. Then the hypercohomology functor

H : MTDer(B)(X)w=0 H(X) -modZ

is fully faithful on weight zero stratified mixed Tate motives.

Proof. See [Gin91] for a proof using mixed Hodge modules. All the proof
really relies on is a six functor formalism and a theory of weights. It hence
also holds in our setting as spelled out in [SW16, Theorem 8.4].

Definition 3.3.1.2. The modules in the essential image of H are called
(graded) Soergel modules, so that H induces an equivalence of categories:

H : MTDer(B)(X)w=0 H(X) -SmodZ,ev∼

between weight zero stratified mixed Tate motives and the category of evenly
graded Soergel modules over H(X) denoted H(X) -SmodZ,ev.

Remark 3.3.1.3. Let X = G/Q. Abbreviate C = H(G/Q). Then the category
C -SmodZ is generated by modules of the form

C ⊗Csn . . . C ⊗Cs1 C

for simple reflections si, with respect to finite direct sums, taking direct sum-
mands, shifts and isomorphism. This corresponds to the next Lemma and the
fact that for regular X = G/B all simple perverse motives in MTDer(B)(G/B)
can appear as (shifts of) direct summands in the motives modules

π!
nπn,! · · · π!

1π1,!ipt,!1

where πi : G/B → G/(B ∪BsiB) is the projection and ipt : B/B → G/B the
inclusion of the point.
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Lemma 3.3.1.4 ([Soe90] Theorem 14). Let B ⊂ Q′ ⊂ Q ⊂ G be parabolic
subgroups and let π : G/Q′ → G/Q be the projection. Then there are natural
isomorphisms of functors

Hπ∗ ∼= H(G/Q′)⊗H(G/Q) H and

Hπ∗ ∼= Res
H(G/Q)
H(G/Q′) H.

Corollary 3.3.1.5 (Corollary 9.4 [SW16]). Let X = G/Q be a flag variety.
There are equivalences of triangulated categories

MTDer(B)(X) Hotb(MTDer(B)(X)w=0) Hotb(H(X) -SmodZ,ev)∼
∆

∼
H

where ∆ denotes the tilting equivalence, see Theorem 3.1.2.20.

Proof. The proof uses that for partial flag varieties all objects in MTDer(B)(X)w=0

are additionally pointwise pure.

3.3.2 Cohomology rings of flag varieties

There is a completely explicit description of the cohomology ring of flag
varieties, due to Borel. In this section we describe how this is compatible with
respect to the inclusion P/Qe ↪→ G/Q.

Lemma 3.3.2.1. Denote by X(T ) the character lattice of the torus T ⊂ G
and by

S = S(X(T )⊗Z C)

the symmetric algebra of its complexification. Then the following diagram of
short exact sequences commutes

0 0

S(SW+ ) S(SWP
+ )

S S

H(G/B) H(P/B)

0 0

c1 c1

h∗e
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where c1 denotes the map induced by the first Chern class of a line bundle
induced by a character of T .

Proof. H(G/B) and H(P/B) are the de Rham cohomology groups of G/B
and P/B and this is the classical Borel image. The diagram commutes since
pullback of line bundles and taking Chern classes commutes.

Lemma 3.3.2.2. Let Q ⊂ G be a standard parabolic. Then the following
diagram commutes

CQ
G

def
= (S/S(SW+ ))WQ (S/S(SWP

+ ))WQ,e
def
= CP

Qe

H(G/Q) H(P/Qe)

o o

h∗e

Proof. The isomorphism CQ
G
∼= H(G/Q) is established by identifying the

image of the injection

π∗ : H(G/Q) ↪→ H(G/B)

with the WQ-invariants in S/S(SW+ ), where π : G/B → G/Q denotes the
projection, see [BGG73]. The same holds for H(P/Qe) and the statement
follows by he π = π he and Lemma 3.3.2.1.

3.3.3 Geometric parabolic induction and Soergel bi-
modules

The regular case

Recall that B ⊂ P ⊂ G was a parabolic subgroup. Abbreviate

C = CB
G = H(G/B) ∼= S(X(T )⊗Z C)/(S(X(T )⊗Z C)W+ ).

This is a graded ring, living in even and positive degrees. Denote for a graded
module M its n-th shift by M〈n〉, such that

(M〈n〉)i = M i+n.

For a simple reflection s, denote by Cs the s-invariants. Then Cs ⊂ C is a
Frobenius extension, and we denote by

Rs
def
= · · · → 0→ C → C ⊗Cs C〈2〉 → 0→ . . .
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the complex of graded Soergel bimodules over C known as Rouquier complex.
Here C⊗CsC〈2〉 lives in cohomological degree 0, and the map is the unit of the
adjunction between ResC

s

C (−〈1〉) and C ⊗Cs −〈1〉. For a reduced expression
w = sn · · · s1 of w ∈ W , we define a complex of graded Soergel bimodules by

Rw

def
= Rs1 ⊗C · · · ⊗C Rsn .

Denote by

Res
def
= ResCCBP

the functor associated to the morphism C → CB
P discussed in Section 3.3.2.

In the rest of this Chapter we will—among other things—prove that on the
level of graded Soergel modules, geometric parabolic induction for regular flag
variety

GIndw : MTDer(B)(P/B)→ MTDer(B)(G/B)

is given by the functor

SIndw
def
= Rw⊗C Res(−).

Theorem 3.3.3.1. Let w be a shortest coset representative in WP\W and
w = sn · · · s1 a reduced expression. Then the following diagram of functors
commutes up to natural isomorphism

MTDer(B)(P/B) MTDer(B)(G/B)

Hotb(MTDer(B)(P/B)w=0) Hotb(MTDer(B)(G/B)w=0)

Hotb(CB
P -SmodZ,ev) Hotb(C -SmodZ,ev).

GIndw

o∆ o ∆

oH o H

SIndw

Proof. Postponed.

The singular case

Now let B ⊂ Q ⊂ G be another parabolic subgroup. Let w be a shortest coset
representative in WP\W/WQ. Recall that WQ,w = WP ∩ wWQw

−1 and let
m = |WP,w|. Then there are natural maps

CQ
G → C = CB

G ← CB
P ← CQw

P
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On the level of graded Soergel modules, geometric parabolic induction for
partial flag varieties (or better an m-fold direct sum of shifted copies of it)⊕
x∈WP,w

GIndw(−)(−l(x))[−2l(x)] : MTDer(B)(P/Qw)→ MTDer(B)(G/Q)

is given by the functor

SInd
Q

w

def
= Res

CQG
C Rw⊗CCB

P ⊗CQwP (−)

Theorem 3.3.3.2. let B ⊂ Q ⊂ G be another parabolic subgroup. Let w be
a shortest coset representative in WP\W/WQ. Let w = sn · · · s1 a reduced
expression. Abbreviate

GIndw =
⊕

x∈WQ,w

GIndw(−)(−l(x))[−2l(x)]

Then the following diagram of functors commutes up to natural isomorphism

MTDer(B)(P/Qw) MTDer(B)(G/Q)

Hotb(MTDer(B)(P/Qw)w=0) Hotb(MTDer(B)(G/Q)w=0)

Hotb(CQw
P -SmodZ,ev) Hotb(CQ

G -SmodZ,ev).

GIndw

o∆ o ∆

oH o H

SInd
Q
w

Proof. Denote by π : G/B → G/Q and π′ : P/B → P/Qw the projections.
Then on the one hand we have

π! GIndw π
′! ∼= GIndw π

′
!π
′! ∼= GIndw =

⊕
x∈WQ,w

GIndw(−)(l(x))[2l(x)]

by Theorem 3.2.5.1. On the other hand

H∆π∗GIndw π
′∗ ∼= Res

CQG
C H∆ GIndw π

′∗

∼= Res
CQG
C Rw⊗CH∆π′∗

∼= Res
CQG
C Rw⊗CCB

P ⊗CQwP H∆

= SInd
Q

wH∆
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where we use that π∗ and π′∗ commute with tilting, since π′ is proper and
smooth (Theorem 3.1.2.22), and that under the hypercohomology functor

H, π∗ corresponds to Res
CQG
C and π∗ to C⊗CQG , see [Soe90, Theorem 14]. Now

π! = π∗ since π is proper and π′∗ = π′!(−d)[−2d] since π′ is smooth, where d
denotes the relative dimension of π′. But d is exactly the length of the longest
word in WQ,w, hence

π∗GIndw π
′∗ ∼=

⊕
x∈WQ,w

GIndw(−)(l(x)− d)[2l(x)− 2d]

=
⊕

x∈WQ,w

GIndw(−)(−l(x))[−2l(x)]

and the statement follows.

Unfortunately, up until this point, we do not know how to get rid of the
m-fold direct sum. In the case w = e though, the following theorem gives a
complete answer:

Theorem 3.3.3.3. Let w = e. The following diagram of functors commutes
up to natural isomorphism

MTDer(B)(P/Qe) MTDer(B)(G/Q)

CQe
P -mod CQ

G -mod

GInde=he,∗

H H

Res

Proof. Let M ∈ MTDer(B)(P/Qe). By definition we have

H(he,∗M) =
⊕
i,j∈Z

HomT (G/Q)

(
1G/Q, he,∗M(i)[j]

)
=
⊕
i,j∈Z

HomT (P/Qe)

(
h∗e1G/Q,M(i)[j]

)
=
⊕
i,j∈Z

HomT (P/Qe)

(
1P/Qe ,M(i)[j]

)
= H(M)

and the statement follows from Lemma 3.3.2.2.

Corollary 3.3.3.4. The following diagram of functors commutes up to natural
isomorphism
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MTDer(B)(P/Qe) MTDer(B)(G/Q)

Hotb(MTDer(B)(P/Qw)w=0) Hotb(MTDer(B)(G/Q)w=0)

Hotb(CQe
P -SmodZ) Hotb(CQ

G -SmodZ)

GInde=he,∗

o∆ ∆ o

oH o H

Res

Proof. Follows from Theorem 3.3.3.3. We use that he is a closed embedding,
and hence he,∗ = he,! acts on the homotopy categories of weight zero motives
by pointwise application, see Theorem 3.1.2.22.

Proof of the regular case

The proof mainly relies on Theorem 3.2.4.1 and an induction on l(w).

Proof of Theorem 3.3.3.1. First assume that l(w) = 0, then w = e and the
statement is Corollary 3.3.3.4.

Now let ws > w with both ws and w shortest representatives in WP\W .
Assuming that the statement holds for w, we show that it holds for ws.

Denote by ∆ the tilting equivalence. Let π : G/B → G/(B ∪ BsB) be
the projection. Let M ∈ MTDer(B)(P/B). We have the following diagram of
distinguished triangles:

H∆ GIndwM H∆π!π! GIndwM H∆ GIndwsM

H∆ GIndwM C ⊗Cs H∆ GIndwM〈2〉 H∆ GIndwsM

SIndwH∆M C ⊗Cs SIndwH∆M〈2〉 H∆ GIndwsM

o(1)

+1

(∗)

o(2) o(2)

+1

+1

The first triangle is given by Theorem 3.2.4.1.
(1) Since π!π! commutes with ∆ by 3.1.2.22. On Soergel modules π!π! is

given by C ⊗Cs 〈2〉, see [Soe90, Korollar 2].
(2) This is the induction hypothesis.
(∗) This is given by the adjunction homomorphism by Theorem 3.2.4.1.
We hence have the following isomorphism

H∆ GIndwM ∼= Cone(SIndwH∆M → C ⊗Cs SIndwH∆M〈2〉)
= Rs⊗C SIndwH∆M

= SIndwsH∆M
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where by Cone we denote the mapping cone. This is indeed a natural isomor-
phism by the discussion in Section 3.2.4 and Lemma 2.3.4.5.
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Chapter 4

Main Results

4.1 Setup

4.1.1 Lie algebras and groups

We recall and compare some of the notations of Chapter 2 and 3. Let g ⊃ b ⊃ h
be a reductive Lie algebra with Borel and Cartan subalgebra. Denote by
G ⊃ B ⊃ T a Langlands dual algebraic group over C, i.e a group such that
the root system with simple roots associated to Lie(G) ⊃ Lie(B) ⊃ Lie(T )
is dual to the one of g ⊃ b ⊃ h. The Weyl group W and simple roots S
corresponding to g ⊃ b and G ⊃ B are hence identified. Now let

b ⊂ p � l

B ⊂ P � L

be corresponding parabolic subgroups/algebras with their Levi factor, i.e.
WP =Wl. Let λ ∈ h∗ be a dominant integral weight. Then the stabilizer of
λ with respect to the dot action Wg,λ is generated by simple roots. Hence λ
corresponds to a standard parabolic subgroup

B ⊂ Q ⊂ G

with Wg,λ =WQ. We also have equalities WQ,w =WP ∩ wWQw
−1 =Wl,w·λ,

for w ∈ W shortest coset representatives of WP\W/WQ.
We can naturally identify

H(P/Qw) = CQw
P = (S(X(T )⊗Z C)/(S(X(T )⊗Z C)WP

+ ))WQ,w

= (S(h)/(S(h)Wl
+ ))Wl,w·λ

= Cw·λ
l = Endl(P

w·λ
l )

73
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and similarly

H(G/Q) = CQ
G = (S(X(T )⊗Z C)/(S(X(T )⊗Z C)W+ ))WQ

= (S(h)/(S(h)
Wg

+ ))Wg,λ

= Cλ
g = Endg(P

w·λ
g )

where we use the natural identification X(T )⊗Z C = (h∨)∗ = h.

Furthermore, their categories of (graded) Soergel modules, which we had
defined as the essential image of projective modules and weight zero stratified
mixed Tate motives under Soergel’s functor V and the hypercohomology
functor H, respectively, coincide. By this we mean, that functor v, forgetting
the grading, restricts to a functor

v : H(P/Qw) -SmodZ,ev → Endl(P
w·λ
l ) -Smod

and every module on the right hand side can be lifted, i.e. has a preimage
under v. The same statement holds for G/Q and g.

4.2 Results

4.2.1 Geometric Parabolic Induction and Parabolic In-
duction

Combining the results from Chapter 2 and 3, we obtain our main theorem.

Theorem 4.2.1.1. Let λ ∈ h∗ be a dominant integral weight and Q ⊂ G the
corresponding standard parabolic subgroup. Let w ∈ W be a shortest coset
representative in WP\W/WQ =Wl\Wg/Wg,λ. Let n = |Wl,w·λ| and

GIndw =
⊕

x∈WQ,w

GIndw(−)(−l(x))[−2l(x)]

Then the following diagram commutes up to natural isomorphism
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MTDer(B)(P/Qw) MTDer(B)(G/Q)

Hotb(MTDer(B)(P/Qw)w=0) Hotb(MTDer(B)(G/Q)w=0)

Hotb(CQw
P -SmodZ,ev) Hotb(CQ

G -SmodZ,ev)

Hotb(Cw·λ
l -Smod) Hotb(Cλ

g -Smod)

Hotb(ProjOw·λ(l)) Hotb(ProjOλ(g))

Derb(Ow·λ(l)) Derb(Oλ(g))

GIndw

v

o∆ o ∆

v

oH o H

SInd
Q
w

v v

SInd
λ
w

oVw·λl o Vλg

(Indg
p)⊕n

o o

Proof. The upper and lower rectangles are Theorem 3.3.3.2 and 2.3.4.2. By

definition vSInd
Q

w = SInd
λ

wv and the statement follows.

Remark 4.2.1.2. Unfortunately, we will not prove that the corresponding
diagram with just Indg

p and GIndw and without the direct sum commutes.
But let us sketch a possible approach. In the next Section 4.2.2 we will show
how a Krull-Remak-Schmidt argument allows to get rid of the direct sum for
the restrictions of the (geometric) parabolic to the heart of a t-structure on
the categories and show that the following diagram of functors commutes (up
to natural isomorphism):

MTDer(B)(P/Qw)♥ MTDer(B)(G/Q)♥

Ow·λ(l) Oλ(g).

GIndw

v v

Indg
p

Now it would suffice to show that the following diagram of functors commutes

Derb(MTDer(B)(P/Qw)♥) Derb(MTDer(B)(G/Q)♥)

MTDer(B)(P/Qw) MTDer(B)(G/Q)

GIndw

realo realo

GIndw
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where the upper horizontal arrow is given by pointwise application of the
(t-exact) functor GIndw. This is true by using for example [Bei87, Lemma A
7.1] or [Lur, Theorem 1.3.3.2]. Both results require the existence of a lift of
GIndw to some upgraded category of motives; an f -category in the former
and a stable∞-category in the latter. Since GIndw = hw,∗ pr!

w is defined using
the six functors, this lift exists. Introducing the necessary notation would go
beyond the scope of this thesis. We hence omit a formal proof.

For regular weights everything just works fine.

Corollary 4.2.1.3. Let λ ∈ h∗ be a regular integral dominant weight and
w ∈ W be a shortest coset representative inWl\Wg then the following diagram
commutes up to natural isomorphism.

MTDer(B)(P/B) MTDer(B)(G/B)

Derb(Ow·λ(l)) Derb(Oλ(g))

GIndw

v v

Indg
p

4.2.2 Graded Parabolic Induction

The main goal of this section is to use our results to show that parabolic
induction for integral blocks of category O is gradable (see [Str03, Definition

3.3]), which means that there is a functor Îndg
p making the following diagram

commute up to natural isomorphism

OZ
w·λ(l) OZ

λ(g)

Ow·λ(l) Oλ(g)

Îndg
p

v v

Indg
p

and fulfilling Îndg
p〈n〉 = 〈n〉Îndg

p, where OZ denotes the graded category O as
defined in [BGS96] and 〈−〉 denotes the shift of grading.

Graded category O (for a fixed block) is constructed by establishing a
grading on the ring

A = EndO(P )

where P denotes a (minimal) projective generator of the given block and
then defining graded category O as the category of finitely generated graded
modules over A.
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OZ
λ modZ -A

Oλ mod-A

def

v v

HomO(P,−)

∼

This grading on A is established by realizing it as Ext-ring of a certain complex
of sheaves on the Langlands dual flag variety.

Let us explain what this concretely means in our setting. See [SW16, Sec-
tion 11] for a reference. Fix a dominant integral weight λ and the corresponding
standard parabolic Q. Denote by

P =
⊕

x∈Wg/Wg,λ

Pg(x · λ) ∈ Oλ(g) and

L =
⊕

x∈W/WQ

ICx ∈ MTPer(B)(G/Q)w=0

the sum of the indecomposable projectives and the sum of simple weight zero
perverse stratified mixed Tate motives ICx supported on BxQ/Q, respectively.
Denote by

A = Endg(P ) and

A′ =
⊕
i∈Z

HomT (G/Q) (L,L(i)[2i]) .

By showing V(Pg(x · λ)) ∼= H(ICx) as CQ
G = Cλ

g -modules and using Soergel’s
Erweiterungssatz and Struktursatz, one sees that in fact A ∼= A′. This puts a
grading on A. To be compatible with [BGS96], we redefine this grading to
be even, i.e. we want the shift (i)[2i] to correspond to 〈2i〉, or in other words
A′2i = HomT (G/Q) (L,L(i)[2i]) and A′2i+1 = 0. Then the graded category O is
defined by

OZ
λ(g)

def
= modZ-A′

Denote by B ∼= B′ the algebras analogously defined for P/Qw and Ow·λ(l).
The tilting equivalence from Theorem 3.1.2.20 can also be stated as an

equivalence

∆ : MTDer(B)(G/Q)
∼→ Derb(modZ,ev-A′)

as discussed in Remark 3.1.2.21. This equivalence equips MTDer(B)(G/Q)
with a t-structure, which is the Koszul dual of the perverse t-structure, see
[SW16, Section 1.4]. We denote its heart by MTDer(B)(G/Q)♥. Hence mixed
stratified Tate motives on the flag variety provide a geometric realization of
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the evenly graded category O

MTDer(B)(G/Q)♥ ∼= modZ,ev-A′ ∼= OZ,ev
λ (g)

MTDer(B)(P/Qw)♥ ∼= modZ,ev-B′ ∼= OZ,ev
w·λ (l)

and we can use our geometric construction to show that parabolic induction
is gradable.

Theorem 4.2.2.1. Let λ be a dominant integral weight. Then there is a
functor Îndg

p compatible with the shift of grading 〈n〉, making the following
diagram commute

OZ
w·λ(l) OZ

λ(g)

Ow·λ(l) Oλ(g)

Îndg
p

v v

Indg
p

Proof. In the notation of Theorem 4.2.1.1 consider the following diagram.

MTDer(B)(P/Qw) MTDer(B)(G/Q)

Derb(modZ,ev-B′) Derb(modZ,ev-A′)

Derb(mod-B) Derb(mod-A)

Derb(Ow·λ(l)) Derb(Oλ(g))

GIndw

∆
∼

v

∆
∼

vv

F

v

∼

G

∼
(Indg

p)⊕n

The functors v on the very left and right are defined as in Theorem 4.2.1.1
and the functors v in the middle are forgetting the grading and using the
isomorphisms A ∼= A′ and B ∼= B′. In fact, the trapezia on the left and
the right commute (up to natural isomorphism). See Remark 4.2.2.2 for
an expanded version. Both F and G denote the functors induced by the
equivalences. Then by definition

F = F 〈i1〉 ⊕ · · · ⊕ F 〈in〉

G = G
⊕n
.

split into direct summands. G is clearly t-exact since Indg
p is, hence we are pre-

cisely in the setting of Proposition 4.2.2.3, which gives us a natural equivalence
of functors vF 0

∼= G0v and thereby a commutative diagram
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MTDer(B)(P/Qw)♥ MTDer(B)(G/Q)♥

OZ,ev
w·λ (l) = modZ,ev-B′ modZ,ev-A′ = OZ,ev

λ (g)

mod-B mod-A

Ow·λ(l) Oλ(g).

∆
∼

GIndw

v v

∆
∼

v

F 0

v

∼

G0

∼
Indg

p

Clearly F 0 commutes with the shift of grading, since it is induced by GIndw =
hw,∗ pr!

w, which commutes with (i)[2i]. So F 0 is a grading of parabolic induction
for the evenly graded category O. This can be easily extended to the whole
graded category O since OZ = OZ,ev ⊕OZ,ev〈1〉.

Remark 4.2.2.2. The following diagram commutes (up to natural isomorphism)

Hotb(MTDer(B)(G/Q)w=0) MTDer(B)(G/Q)

Hotb(〈ICx |x ∈ W〉T (G/Q)
⊕,(1)[2] ) Derb(modZ-A′)

Hotb(〈H(ICx) |x ∈ W〉
CQG -modZ

⊕,〈2〉 ) Derb(modZ-H(A′))

Hotb(〈vH(ICx) |x ∈ W〉
CQG -mod
⊕ ) Derb(mod- vH(A′))

Hotb(〈VPg(x · λ) |x ∈ W〉C
λ
g -mod
⊕ ) Derb(mod-V(A))

Hotb(〈Pg(x · λ) |x ∈ W〉Oλ(g)
⊕ ) Derb(mod-A)

Hotb(ProjOλ(g)) Derb(Oλ(g))

o ∆

∼
∆

∼

H o o

∼

v v

∼

o o

∼

∼

Vo o

∼

o
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where the horizontal arrows are the obvious equivalences and we denote

H(A′)
def
=
⊕
i∈Z

HomCQG -modZ (HL,HL〈2i〉) ,

vH(A′)
def
=
⊕
i∈Z

HomCQG -mod (vHL, vHL〈2i〉)

= EndCQG -mod(vHL) and

V(A)
def
= EndCλg -mod(VP ).

Proposition 4.2.2.3. Let A and B be finite dimensional graded C-algebras
and

v : A -modZ → A -mod and B -modZ → B -mod

be the functors forgetting the grading. Assume that there is a diagram

Derb(B -modZ) Derb(A -modZ)

Derb(B -mod) Derb(A -mod)

F

v v

G

commuting up to natural isomorphism, and that F commutes with the shift of
grading. Then the following statements hold.

1. F is exact with respect to the standard t-structure if and only if G is.

2. Assume that F splits into a direct sum

F = F 〈i1〉 ⊕ · · · ⊕ F 〈in〉.

of shifted versions of a functor F . Then F is exact if and only if F is
exact.

3. Assume that F and G are exact and that there are functors F , G such
that

F = F 〈i1〉 ⊕ · · · ⊕ F 〈in〉

G = G
⊕n
.

Denote the induced functors on the heart of the t-structure by F0, G0, F 0,
G0. Then the following diagram commutes up to natural isomorphism
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B -modZ A -modZ

B -mod A -mod

F 0

v v

G0

.

Proof. (1) Denote by Hi(C) the i-th cohomology of a complex C. Then
clearly Hi(vC) = vHi(C) for all C ∈ Derb(A -modZ),Derb(B -modZ). Since
the standard t-structure is defined by vanishing conditions on cohomology,
the statement follows.

(2) As in (1).
(3) Since by assumption and points (1) and (2) F and G are exact, they

restrict to the hearts of the t-structure, which are naturally isomorphic to
A -modZ, B -modZ, A -mod and B -mod, respectively. So the diagram makes
sense. Now clearly G0, G0, F 0 and F0 are exact functors. By a graded version
of the Eilenberg-Watts Theorem [Wat60], this implies that there are natural
isomorphisms

F 0
∼= M ⊗B − and

G0
∼= N ⊗B −

for the (graded) B-A-bimodules M = F0(B), N = G0(B) and hence

F0
∼=
⊕
j

M〈ij〉 ⊗B − and

G0
∼= N⊕n ⊗B −.

By assumption, there is a natural equivalence G0v ∼= vF0 and hence

v(M)⊕n ∼= v(
⊕
j

M〈ij〉) ∼= N⊕n.

Now decomposing both v(M) and N into a finite direct sum of indecompos-
ables and applying the Krull–Remak–Schmidt theorem implies that there is
an isomorphism

v(M) ∼= N

and hence a natural isomorphism

G0v ∼= vF0.

The statement follows.
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Appendix A

Deutsche Zusammenfassung

Graduierte Parabolische Induktion Sei g ⊃ b ⊃ h eine reduktive Lie-
Algebra mit einer Borelschen and Cartanschen Unteralgebra. Fixiere eine
parabolische Unteralgebra g ⊃ p ⊃ b und nenne ihren reduktive Levi-Faktor
p � l. Bezeichne mit Wg ⊃ Wl die Weyl-Gruppen von g und l.

Das Ziel dieser Arbeit ist die Konstruktion einer graduierten und ge-
ometrischen Version von parabolischer Induktion für Moduln in der BGG-
Kategorie O:

Indg
p : O(l)→ O(g), M 7→ U(g)⊗U(p) Respl M.

Wir werden unter anderem beweisen:

Theorem (Theorem 4.2.2.1). Sei λ ∈ h∗ ein dominantes integrales Gewicht
und w der kürzester Repräsentant einer Nebenklasse in Wl\Wg. Dann ex-

istiert ein Funktor Îndg
p, sodass das folgende Diagramm (bis auf natürlichen

Isomorphismus) kommutiert

OZ
w·λ(l) OZ

λ(g)

Ow·λ(l) Oλ(g)

Îndg
p

v v

Indg
p

und sodass Îndg
p〈n〉 ∼= 〈n〉Îndg

p, wobei 〈−〉 die Graduierung verschiebt.

Hier bezeichnet v : OZ → O die graduierte Kategorie O, (siehe [Soe90] und
[BGS96]). In den Worten von [Str03], wo ähnliche Fragen für Verschiebungs-
funktoren diskutiert werden, impliziert dieses Theorem, dass parabolische
Induktion (zumindest für integrale Blöcke) graduierbar ist. Wir konstruieren

Îndg
p mit geometrischen Methoden, die wir nun beschreiben.

83
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Geometrische Parabolische Induktion Beilinson und Ginzburg erklären
in [BG86], wie die gemischte Geometrie von Fahnenvarietäten eine Graduierung
von Kategorie O induzieren sollte: Sie vermuten eine derivierte Äquivalenz
zwischen jedem einzelnen Block von Kategorie OZ und einer Kategorie von
gemischten Garben auf einer assoziierten Fahnenvarietät. Diese Vision wurde
in [Soe90], [BGS96] und schlussendlich [SW16] realisiert, wo eine Äquivalenz
von Kategorien (bis auf das Hinzufügen einer Wurzel des Tate-Twists)

MTDer(B)(G/Q)
∼→ Derb(OZ

λ(g))

zwischen stratifizierten gemischten Tate-Motiven auf einer (partiellen) Fah-
nenvarietät G/Q für die Langlands-duale algebraische Gruppe G/C und einem
(singulären) Block OZ

λ(g) konstruiert wird. Diese Äquivalenz ist in der Tat
eine Form von Koszul-Dualität : die perverse t-Struktur auf der linken Seite
korrespondiert zu der Koszul-dualen t-Struktur auf der rechten Seite, und
umgekehrt.

Stratifizierte gemischte Tate-Motive sind bestimmte konstruierbare mo-
tivische Garben. Sie verhalten sich ähnlich wie gemischte `-adische Garben
und gemischte Hodge-Moduln (mit dem Vorteil, dass die Tate-Motive C(n)
nicht erweitern). Sie sind insbesondere mit einem Sechs-Funktor-Formalismus
ausgestattet, den wir für die Konstruktion einer geometrischen Version von
parabolischer Induktion benutzen können.

Theorem (Theorem 4.2.1.1 and 4.2.2.1). Sei λ ∈ h∗ ein reguläres integrales
Gewicht und w der kürzeste Repräsentant einer Nebenklasse in Wl\Wg. Dann
kommutiert das folgende Diagram (bis auf natürlichen Isomorphismus)

MTDer(B)(P/B) MTDer(B)(G/B)

Derb(OZ
w·λ(l)) Derb(OZ

λ(g))

Derb(Ow·λ(l)) Derb(Oλ(g))

hw,∗ pr!w

GIndw

v v

v v

Indg
p

Hier korrespondiert G ⊃ P ⊃ B zu g ⊃ p ⊃ b und der Funktor GIndw =
hw,∗ pr!

w, den wir geometrische parabolische Induktion nennen, ist definiert
durch

P/B PwB/B G/B.
prw hw

Tatsächlich beweisen wir eine allgemeinere Aussage, die auch singuläre
Gewichte λ ∈ h∗ beinhaltet. Mit ihr können wir beweisen, dass parabolische
Induktion auch in diesem Fall graduierbar ist.
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Soergelsche Moduln Zum Beweis dieser Theoreme benutzen wir die kom-
binatorische Beschreibung von derivierten Blöcken der Kategorie O und strati-
fizierten gemischten Tate-Motiven auf Fahnenvarietäten durch die Homotopie-
Kategorie von Soergelschen Moduln.

Seien C = H∗(G/B,C) → C ′ = H∗(P/B,C) die Kohomologieringe von
G/B ⊃ P/B. Für einen reduzierten Ausdruck w = sn . . . s1 ∈ Wg, definiere
den folgenden Komplex von Soergelschen Bimoduln über C

Rw

def
= Rs1 ⊗C · · · ⊗C Rsn , wobei

Rs
def
= · · · → 0→ C → C ⊗Cs C〈2〉 → 0→ . . . .

Wir werden zeigen:

Theorem (Theorem 2.3.4.1, 3.3.3.1 und 4.2.1.1). Sei λ ∈ h∗ ein dominantes
reguläres Gewicht und w der kürzeste Repräsentant einer Nebenklasse in
Wl\Wg. Dann kommutiert das folgende Diagramm (bis auf natürlichen Iso-
morphismus)

MTDer(B)(P/B) MTDer(B)(G/B)

Hotb(MTDer(B)(P/B)w=0) Hotb(MTDer(B)(G/B)w=0)

Hotb(C ′ -SmodZ,ev) Hotb(C -SmodZ,ev)

Hotb(C ′ -Smod) Hotb(C -Smod)

Hotb(ProjOw·λ(l)) Hotb(ProjOλ(g))

Derb(Ow·λ(l)) Derb(Oλ(g)).

GIndw

v

o∆ o ∆

v

oH o H

SIndw

v v

SIndw

oVw·λl o Vλg

Indg
p

o o

Hier bezeichnet SMod(Z) die Kategorie der (graduierten) Soergelschen Moduln
und

SIndw : C ′ -SmodZ,ev → C -SmodZ,ev,M 7→ Rw ⊗C ResCC′M.
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Auch hier beweisen wir eine allgemeinere Aussage, die auch singuläre
Gewichte λ ∈ h∗ beinhaltet. Unsere Beweisstrategie ist die folgende: Zuerst
zeigen wir die Aussage für w = e. Das ist der einfachste Fall, da hier Indg

p

projektive Moduln auf ebensolche abbildet und GInde exakt bezüglich der
Gewichtsstruktur ist. Dann analysieren wir die Interaktion von (geometrischer)
parabolischer Induktion und der (geometrischen) Verschiebung durch die
Wand. Ein Vergleich der Resultate beweist dann den allgemeinen Fall mit
einer Induktion über die Länge von w.
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