Einfluss der Gravidität und Laktation auf die Aβ-Aggregation und die adulte Neurogenese in einem Tiermodell für Morbus Alzheimer

INAUGURAL-DISSERTATION

Zur Erlangung des Medizinischen Doktorgrades der Medizinischen Fakultät der Albert-Ludwigs-Universität Freiburg i.Br.

vorgelegt 2014
von Lea Neudel
geboren in Heidelberg
Dekan Prof. Dr. Kerstin Krieglstein
1. Gutachter Prof. Dr. Melanie Meyer-Lühmann
2. Gutachter Prof. Dr. Michael Hüll

Jahr der Promotion 2017
Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst und ausschließlich die angegebenen Hilfsmittel verwendet habe. Die aus anderen Quellen indirekt oder direkt übernommenen Daten sind unter Angabe der Quelle gekennzeichnet. Die Arbeit wurde bisher in gleicher oder ähnlicher Form weder im In- noch im Ausland einer anderen Prüfungsbehörde vorgelegt.

Freiburg, den 27.03.14
Für meine Eltern
Inhaltsverzeichnis

Erklärung .. 3

1. Einleitung .. 1
 1.1. Morbus Alzheimer ... 1
 1.1.1. Epidemiologie ... 1
 1.1.2. Familiäre und sporadische Form ... 1
 1.1.3. Klinisches Bild und Verlauf .. 3
 1.1.4. Histopathologie ... 4
 1.2. Adul te Neurogenese .. 9
 1.2.1. Phasen der adulten Neurogenese im Hippokampus 10
 1.2.2. Funktion der adulten Neurogenese ... 12
 1.2.3. Beeinflussung der adulten Neurogenese .. 13
 1.3. Kognitive Veränderungen während und nach der Gravidität 16
 1.3.1. Einfluss der Gravidität auf die kognitive Leistung bei Nagern 16
 1.3.2. Einfluss der Schwangerschaft auf die Kognition bei Frauen 17
 1.4. Zusammenhang zwischen reproduktiver Aktivität und Morbus Alzheimer .. 18

2. Material und Methoden .. 21
 2.1. Material ... 21
 2.1.1. Geräte .. 21
 2.1.2. Verbrauchsmaterial .. 22
 2.1.3. Antikörper ... 22
 2.1.4. Reagenzien und Chemikalien ... 23
 2.1.5. Primer für die Genotypisierung .. 23
 2.1.6. Puffer und Lösungen .. 24
 2.1.7. Software ... 24
2.1.8. Maushaltung ... 25
2.1.9. Mauslinien ... 25
2.2. Methoden .. 26
 2.2.1. Genotypisierung ... 26
 2.2.2. Polymerase Kettenreaktion (PCR) 26
 2.2.3. Gelelektrophorese .. 26
 2.2.4. Immunhistologie ... 27
 2.2.5. Quantitative Auswertung ... 28
 2.2.6. Statistik ... 28

3. Ergebnisse ... 29
 3.1. Einfluss der Gravidität auf die Aβ-Pathologie und die adulte
 hippokampale Neurogenese .. 29
 3.1.1. Quantifizierung der Amyloid-β-Plaques bei
 nicht-trächtigen und
 trächtigen 5xFAD-Weibchen .. 30
 3.1.2. Quantifizierung der Zellproliferation bei
 nicht-trächtigen und
 trächtigen 5xFAD- und Wildtyp-Weibchen 32
 3.1.3. Quantifizierung der Neurogenese bei
 nicht-trächtigen und
 trächtigen 5xFAD- und Wildtyp-Weibchen 34
 3.2. Einfluss der Laktation auf die Aβ-Pathologie und die adulte
 hippokampale Neurogenese .. 38
 3.2.1. Quantifizierung der Amyloid-β-Plaques bei
 nicht-laktierenden und
 laktierenden 5xFAD-Weibchen... 39
 3.2.2. Quantifizierung der Zellproliferation bei
 nicht-laktierenden und
 laktierenden 5xFAD- und Wildtyp-Weibchen 41
 3.2.3. Quantifizierung der adulten Neurogenese bei
 nicht-laktierenden
 und laktierenden 5xFAD- und Wildtyp-Weibchen 44
4. Diskussion .. 48

4.1. Einfluss der Gravidität und Laktation auf die Amyloid-β Aggregation bei 5xFAD-Weibchen .. 48

4.2. Einfluss der Gravidität und Laktation auf die Proliferation und adulte Neurogenese .. 53

4.3. Einfluss der 5xFAD-Mutationen auf die Proliferation und adulte Neurogenese .. 57

5. Zusammenfassung .. 60

Abkürzungsverzeichnis ... 61

Abbildungsverzeichnis ... 63

Tabellenverzeichnis ... 64

Literaturverzeichnis ... 65

Danksagung .. 76
1. Einleitung

1.1. Morbus Alzheimer
Vor über 100 Jahren beschrieb Dr. Alois Alzheimer die später nach ihm benannte Demenzerkrankung, die er an seiner Patientin Auguste Deter erforschte. Er brachte erstmals ihre kognitiven Einbußen und Verhaltensauffälligkeiten mit seinen histopathologischen Ergebnissen in Verbindung. Nach dem Tod der 55-jährigen Patientin stellte er „über die ganze Rinde zerstreut […] miliare Herdchen“ in ihrem Gehirn fest, von denen er vermutete, dass sie „durch Einlagerung eines eigenartigen Stoffes in die Hirnrinde bedingt sind“ (Alzheimer et al., 1995; Holtzman et al., 2011).

1.1.1. Epidemiologie

1.1.2. Familiäre und sporadische Form
Man unterscheidet zwei Formen von Morbus Alzheimer: die familiäre Form (FAD), die gemäß den Mendelschen Regeln vererbt wird, und die sporadische Form (SAD). Nur ca. 5% aller Alzheimer-Patienten leiden unter der erblichen Form dieser Demenzerkrankung, allerdings erkranken sie in der Regel früher,
Einleitung
d.h. vor dem 60. Lebensjahr (Bertram et al., 2010). Ausschlaggebend für die familiäre Form sind nach heutiger Kenntnis Mutationen in den Genen, die für das membranständige Amyloid Vorläuferprotein (Amyloid Precursor Protein, APP), das Präsenilin 1 (PS1) und das Präsenilin 2 (PS2) kodieren. Das für die charakteristischen Plaques im Gehirn von Morbus Alzheimer Patienten verantwortliche neurotoxische Amyloid-β-Peptid (Aβ) wird aus seinem Vorläufer, dem APP-Protein, geschnitten. Durch Mutationen in APP, PS1 oder PS2-Genen kann die APP-Prozessierung dahingehend beeinflusst werden, dass es zu einer verstärkten Produktion des unlöschlichen Aβ kommt, welches sich im Gehirn ansammelt und nicht mehr abgebaut werden kann. PS1 und PS2 kodieren für das katalytische Zentrum der γ-Sekretase, die entscheidend an der APP-Prozessierung beteiligt ist (Mu and Gage, 2011). Die durch die Mutationen in PS1 veränderte Funktion der γ-Sekretase hat eine Verschiebung zu einem verhältnismäßig größeren Anteil von Aβ₄₂ an den Spaltprodukten zur Folge. Die Aβ₄₂ Spezies neigt in besonderem Maße zur Aggregation (De Strooper, 2007). Bertram et al. (2010) nehmen an, dass möglicherweise noch weitere Gene existieren, die für die familiäre Form von Morbus Alzheimer verantwortlich sind.

2
Selbsthilfe Demenz,” n.d.). Im Gegensatz hierzu werden dem Vorhandensein des ε2-Allels protektive Effekte zugeschrieben (Bertram et al., 2010).

1.1.3. Klinisches Bild und Verlauf
Kennzeichnend für die Erkrankung ist eine fortschreitende Verschlechterung der kognitiven Leistungsfähigkeit, die nicht selten auch mit Persönlichkeitsveränderungen, sprachlichen oder sensomotorischen Auffälligkeiten einhergeht (Castellani et al., 2010). Zu Beginn fallen die Patienten meist durch Defizite des episodischen Gedächtnisses auf, d.h. sie haben Probleme dabei, neue Informationen zu erfassen und sich zu erinnern. Ebenso sind depressive Symptome nicht selten. Im frühen Stadium sind die Patienten jedoch meist noch in der Lage, ihren Alltag alleine zu meistern (Förstl and Kurz, 1999). Im weiteren Verlauf werden oft auch Beeinträchtigungen der visuospatialen, sprachlichen und exekutiven Fähigkeiten sichtbar (Holtzman et al., 2011). Diese äußern sich in Schwierigkeiten der Objekt- und Formerkennung, aber auch bei der Einordnung räumlicher Relationen. Durch die Abnahme der exekutiven Fähigkeiten werden planmäßige und zielgerichtete Handlungen zunehmend erschwert (Weintraub et al., 2012). In diesem Stadium, wenn neben weiterer kognitiver und funktioneller Verschlechterung auch Verhaltensauffälligkeiten auftreten, sind die Betroffenen in der Regel auf Unterstützung angewiesen. Morbus Alzheimer Patienten im fortgeschrittenen Stadium sind meist vollkommen pflegebedürftig und nicht mehr in der Lage zu schlucken oder Blasen- und Darmfunktionen zu steuern (Förstl and Kurz, 1999; Holtzman et al., 2011). Nichtsdestotrotz lässt sich die endgültige Diagnose nur post mortem nach histologischer Untersuchung des Gehirns stellen, da kein zuverlässiger peripherer biochemischer Marker existiert. Leider ist Morbus Alzheimer trotz therapeutischer Fortschritte auch heute noch unheilbar (Castellani et al., 2010). Die Krankheit schreitet unweigerlich bis zum Tode fort, der letztlich oft durch eine Lungenentzündung oder einen Herzinfarkt bedingt ist (Brunnström and Englund, 2009).
1.1.4. Histopathologie

Abbildung 1 Pathologie von Morbus Alzheimer

β-Amyloid

Aβ-Peptide sind natürliche metabolische Produkte, die aus 36 bis 43 Aminosäuren bestehen. Monomere von Aβ₄₀ sind sehr viel häufiger als die schädigenden Aβ₄₂ Spezies, die zur Aggregation neigen. Physiologische Level von synaptischem Amyloid-β schützen möglicherweise vor neuronaler Hyperaktivität (Querfurth and LaFerla, 2010).

Unter physiologischen Bedingungen wird der größte Teil des APPs entlang des „nicht-amyloiden“ Wegs prozessiert. Die Spaltung in der Aβ-Domäne des APPs durch die α-Sekretase leitet diesen Weg ein. Daraus entstehen das lösliche APP-Fragment (sAPPα) und das membrangebundene Carboxyl-terminale Fragment C83, das anschließend von einer γ-Sekretase prozessiert wird. Der „nicht-amyloide“ Weg, d.h. die Spaltung des APPs durch α – und γ-Sekretasen, führt nicht zur Bildung von Aβ und hat somit keine Neurodegeneration zur Folge (Kögel et al., 2012; Mu and Gage, 2011; Querfurth and LaFerla, 2010). Es wurde außerdem gezeigt, dass sAPPα Neurone schützt und die Neurogene se begünstigt (Han et al., 2005). Im Gegensatz zum „nicht-amyloiden“ steht der „amyloide“ Weg, bei dem APP von der β-Sekretase BACE-1 (beta-site amyloid precursor protein-cleaving enzyme 1) am N-terminalen Ende gespalten wird. Es entsteht das lösliche sAPPβ und das membranständige C99, welches wiederum von einer γ-Sekretase prozessiert wird. Durch diesen Schritt wird letztlich AICD
(amyloid intracellular domain) und das toxische Aβ freigesetzt (Mu and Gage, 2011; Querfurth and LaFerla, 2010).

Da die β- und γ-Sekretasen nicht immer an der exakt gleichen Aminosäuresequenz schneiden, entstehen verschieden lange Aβ-Peptide, wie Aβ₃₈, Aβ₄₀ und Aβ₄₂. Aβ₄₂ weist jedoch die höchste Aggregationsaffinität auf. Aβ-Monomere ordnen sich spontan und zufällig zu verschiedenen Formen an (siehe Abb. 3), wie z.B. zu Dimeren, die dann zu Oligomeren und Fibrillen aggregieren können. Die durch ihre β-Faltblattstruktur unlöslich gewordenen Fibrillen sind wiederum das Ausgangsprodukt für die charakteristischen Plaques (Lee et al., 2011).
Einleitung

Abbildung 3: Amyloider Proteinaggregationsprozess

Die durch die APP-Prozessierung entstandenen Aβ-Peptid Monomere können sich spontan zu Oligomeren und im weiteren Verlauf zu Fibrillen organisieren, aus denen schließlich die amyloiden Plaques entstehen. Entnommen aus (Lee et al., 2011)

Tau

negativ auf die Kognition aus (Khlistunova et al., 2006; Santacruz et al., 2005). Experimentelle Ergebnisse legen nahe, dass die Amyloid-β-Akkumulation der Tau-Aggregation vorangeht und letztere fördert (Saul et al., 2013).

Weitere pathologische Veränderungen

1.2. **Adulte Neurogenese**

1.2.1. Phasen der adulten Neurogenese im Hippokampus

Abbildung 4 Phasen der adulten Neurogenese im Hippokampus

Einleitung

In diesem Stadium werden sie als Neuroblasten bezeichnet. Es folgt die Migrationsphase, in der die neugebildeten Neurone in die Körnerzellschicht des Gyrus dentatus wandern und dort ihre endgültige Position einnehmen. Aus den Neuroblasten werden so unreife Neurone. Auch mit Beginn der postmitotischen Phase, d.h. nach Austritt aus dem Zellzyklus, sind die Zellen noch DCX-positiv. In diesem Stadium beginnt nun auch die Bildung des neuronalen Markers NeuN (*neuron-specific nuclear protein*) und Calretinin. Die unreifen Neurone senden axonale Projektionen zur CA3 (*cornu ammonis*) - Pyramidenzellschicht und dendritische Fortsätze in die Molekularzellschicht des Hippokampus. Im weiteren Reifungsprozess wird die Expression von Calretinin durch Calbindin abgelöst. In dieser Phase der synaptischen Integration stellen die Nervenzellen nun Verknüpfungen zu den vorhandenen Interneuronen her. Auf diese Weise erhalten sie über ihre dendritischen Fortsätzen Informationen aus dem entorhinalen Kortex und können in die CA3- und Hilus-Region projizieren (siehe Abb.5) Die Expression von DCX endet vor der vollständigen Reifung und der kompletten synaptischen Integration, wohingegen auch die reifen Neurone noch NeuN exprimieren. Durch die Korrelation der Entwicklungsstadien mit der Expression spezifischer Proteine, die somit als Marker dienen, lassen sich die adulte Neurogenese und ihre mögliche Beeinflussung genau untersuchen (Avila...
et al., 2010; Ehninger and Kempermann, 2008; Kempermann et al., 2004; Mu and Gage, 2011; von Bohlen Und Halbach, 2007).

Abbildung 5 Schematische Darstellung der adulten Neurogenese im Hippokampus

Aus den neuronalen Stammzellen (Typ-1) gehen die aktiv proliferierenden Vorläuferzellen hervor. Die neu generierten Neuroblasten migrieren in die Körnerzellschicht (granule cell layer, GCL) und differenzieren sich zu hippokampalen Körnerzellen (dentate granule cells, DGC). Die neuen Granularzellen erhalten über ihre dendritischen Bäume in der Molekularzellschicht (Mol) Informationen aus dem entorhinalen Kortex und projizieren sowohl in die CA3-Pyramidenzellschicht als auch zu den Interneuronen im Hilus. Entnommen aus (Mu and Gage, 2011)

1.2.2. Funktion der adulten Neurogenese

Die Beobachtung, dass auch pathologische Prozesse, wie Epilepsie oder ischämische Schlaganfälle, die Neurogenese stimulieren können, legt die Vermutung nahe, dass sie unter anderem zur Regeneration von Hirnläsionen dient (Picard-Riera et al., 2004). Funktionell betrachtet spielt die adulte Neurogenese im zentralen Nervensystem (ZNS) - und hier vor allem im Hippokampus - eine wichtige Rolle bei der strukturellen Plastizität und der Erhaltung des Netzwerks. Auf diese Weise trägt sie zur Informationsarchivierung sowie zu Lern- und Gedächtnisprozessen bei
Einleitung

(Rodríguez and Verkhratsky, 2011). Es wurde gezeigt, dass Mäuse, deren hippokampale Neurogenese stimuliert wurde, ein verbessertes räumliches Gedächtnis aufwiesen und bei der Aufgabe, Muster auseinander zu halten, besser abschnitten (Sahay et al., 2011; Stone et al., 2011). Im Gegensatz hierzu liegt der kognitiven Einschränkung, wie sie im fortgeschrittenen Alter oder bei Morbus Alzheimer auftritt, wahrscheinlich eine Abnahme der Neurogenese zu Grunde (Clelland et al., 2009; Lazarov et al., 2010).

1.2.3. Beeinflussung der adulten Neurogenese

der Vorläuferzellen zurückführen (Kuhn et al., 1996). Weitere Gründe könnten ein verlängerter Zellzyklus oder durch das Alter bedingte erhöhte Glukokortikoid-Level sein (Nichols et al., 2001; Pawluski et al., 2009).

Einleitung

1.3. Kognitive Veränderungen während und nach der Gravidität

Frauen erleben während verschiedenen Abschnitten ihrer reproduktiven Lebensphase tiefgreifende Veränderungen der Hormonlevel, Stimmung und Kognition. Dies betrifft insbesondere die Zeit der Gravidität und Entbindung (Cui et al., 2013).

1.3.1. Einfluss der Gravidität auf die kognitive Leistung bei Nagern

Bei trächtigen Nagern konnte man eine Abnahme des hippocampalen Volumens messen (Galea et al., 2000). Eine Zunahme des Markers PSA-NCAM (Polysialic Acid Neural Cell Adhesion Molecule) bei trächtigen Ratten und der apikalen Dornenfortsatzdichte in der CA1 Region des Hippokampus von Ratten in der späten Gravidität und Laktation sprechen für eine verstärkte Plastizität im mütterlichen Gehirn (Banasr et al., 2001; Kinsley et al., 2006). Interessanterweise belegen mehrere Studien an Nagern eine Verbesserung der Lern- und Gedächtnisleistung während bzw. nach der Trächtigkeit. Galea et al. konnten zeigen, dass trächtige Ratten im ersten und zweiten Trimester bei einem Verhaltensexperiment, dass das räumliche Lernen untersucht, besser abschnitten als ihre nicht-trächtigen Altersgenossen. Im dritten Trimester hingegen zeigte sich ein umgekehrtes Bild. Sie sahen sich hierdurch in ihrer Hypothese bestätigt, dass die stark erhöhten Estradiollevel gegen Ende der Gravidität das räumliche Lernen und Gedächtnis bei Nagern hemmen (Galea et al., 2000). Auch andere Forschungsgruppen kamen zu dem Ergebnis, dass Gravidität das Hippokampus-abhängige Lernen und Gedächtnis verbessert (Gatewood et al., 2005; Kinsley et al., 1999; Pawluski et al., 2006b). Je nach Studie wiesen aber entweder die Ratten mit einer oder die mit mehreren Trächtigkeiten in der Vergangenheit die bessere räumliche Merkfähigkeit auf. Gatewood et al. ermittelten außerdem geringere Konzentrationen des Amyloid-Vorläuferproteins (APP) in Hippokampi von Ratten mit Nachwuchs. Da die APP-Level negativ mit dem Abschneiden ihrer Gedächtnistests korrelierten, zogen sie den Schluss, dass Reproduktion langfristig Lernleistungen fördert und einen verzögerten Gedächtnisverlust im Alter bewirkt (Gatewood et al., 2005; Kinsley et al., 1999; Pawluski et al., 2006b). Dass die kurzfristigen Hormonschwankungen dennoch lebenslange morphologische und funktionelle
Einleitung

Effekte zeigen, konnte von zahlreichen Studien belegt werden (Li et al., 2013a). Die Forschung zeigte aber auch, dass nicht nur die Trächtigkeit, sondern auch die mütterliche Fürsorge um den Nachwuchs für diese Lern- und Gedächtnissteigerung verantwortlich ist (Pawluski et al., 2006a). Eine wichtige Rolle könnte hierbei Oxytocin spielen, ein Hormon, das essenziell für die Wehen, das Säugen und mütterliches Verhalten ist. Zusätzlich soll es während der Gravidität auch plastische Veränderungen der hippocampalen Synapsen bewirken, indem es die Langzeitpotenzierung induziert (Tomizawa et al., 2003).

1.3.2. Einfluss der Schwangerschaft auf die Kognition bei Frauen

Einleitung

1.4. Zusammenhang zwischen reproductiver Aktivität und Morbus Alzheimer

Interessanterweise werden natürliche Hormonschwankungen und Gravidität auch mit tatsächlichen Demenzformen, wie Morbus Alzheimer, in Verbindung gebracht.

Es ist generell bekannt, dass die Prävalenz von Morbus Alzheimer bei Frauen höher ist. Sicherlich spielt hierbei auch die längere Lebenserwartung eine Rolle, doch auch wenn man das Alter und den Bildungsstand mit einbezieht, tritt die Krankheit bei Frauen häufiger auf als bei Männern (Letenneur et al., 1999). Man vermutet, dass das Estrogendefizit in der postmenopausalen Periode für diese geschlechtsabhängigen Unterschiede in der Prävalenz verantwortlich sein könnte (Colucci et al., 2006). Hierfür würde sprechen, dass eine frühe künstlich herbeigeführte Menopause mit einem höheren Risiko für kognitive Einschränkungen assoziiert ist (Hogervorst, 2013). Außerdem bestätigen
Einleitung

Es ist jedoch zu beachten, dass man Schwangerschaft nicht auf eine alleinige Erhöhung der Estrogenkonzentration reduzieren darf. Reproduktive Erfahrungen sind durch Beeinflussung zahlreicher physiologischer und endokrinologischer Systeme gekennzeichnet (Li et al., 2013a). Auch heute sind noch nicht alle Effekte der erheblichen Schwankungen verschiedenster Hormone und Peptide geklärt.

Einleitung

2. Material und Methoden

2.1. Material

2.1.1. Geräte

Tabelle 1 Verwendete Geräte

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Modell</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geldokumentationssystem</td>
<td>ChemiDoc XRS+</td>
<td>BioRad®</td>
</tr>
<tr>
<td>Gelelektrophoresekammer</td>
<td>-</td>
<td>MWG-Biotech®</td>
</tr>
<tr>
<td>Heizblock</td>
<td>Thermomixer compact</td>
<td>Eppendorf®</td>
</tr>
<tr>
<td></td>
<td>RCT basic</td>
<td>IKA Werke®</td>
</tr>
<tr>
<td>Mikroskop</td>
<td>Axio Imager M2M</td>
<td>Zeiss®</td>
</tr>
<tr>
<td>Schüttler</td>
<td>Titramax 1000</td>
<td>Heidolph®</td>
</tr>
<tr>
<td>Spannungsquelle</td>
<td>Power Station 300</td>
<td>Labnet®</td>
</tr>
<tr>
<td>ThermoCycler</td>
<td>Mastercycler gradient</td>
<td>Eppendorf®</td>
</tr>
<tr>
<td>Vibratom</td>
<td>SM 2100 R</td>
<td>Leica®</td>
</tr>
<tr>
<td>Waage</td>
<td>LP 6200 S</td>
<td>Sartorius®</td>
</tr>
<tr>
<td>Zentrifugen</td>
<td>Multifuge1 S-R</td>
<td>Heraeus®</td>
</tr>
<tr>
<td></td>
<td>Mini Microcentrifuge</td>
<td>Corning®</td>
</tr>
<tr>
<td>Vortex-Schüttler</td>
<td>Vortex Genius 3</td>
<td>IKA®</td>
</tr>
</tbody>
</table>
2.1.2. Verbrauchsmaterial

Tabelle 2 Verwendete Materialien

<table>
<thead>
<tr>
<th>Material</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,5 ml Reaktionsgefäße</td>
<td>Carl Roth®</td>
</tr>
<tr>
<td>10 ml Pipetten</td>
<td>Costar®</td>
</tr>
<tr>
<td>12-Well-Platte</td>
<td>Becton Dickinson Labware®</td>
</tr>
<tr>
<td>15 ml Polypropylen Röhrchen</td>
<td>Greiner bio-one®</td>
</tr>
<tr>
<td>8er PCR-Tubes</td>
<td>Sarstedt®</td>
</tr>
<tr>
<td>Deckgläschen</td>
<td>R. Langenbrick®</td>
</tr>
<tr>
<td>Einbettmedium</td>
<td>Jung®</td>
</tr>
<tr>
<td>Eindeckmedium</td>
<td>Dako®</td>
</tr>
<tr>
<td>Objekträger</td>
<td>R. Langenbrick®</td>
</tr>
<tr>
<td>Spitzen</td>
<td>Star Lab®</td>
</tr>
<tr>
<td>Verschlussfolie</td>
<td>Bemis®</td>
</tr>
</tbody>
</table>

2.1.3. Antikörper

Tabelle 3 Verwendete Antikörper

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Quelle</th>
<th>Reaktivität</th>
<th>Iso</th>
<th>IF</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexa Fluor® 555</td>
<td>Esel</td>
<td>Maus</td>
<td>IgG</td>
<td>1:1.000</td>
<td>Life technologies®</td>
</tr>
<tr>
<td>Anti-Doublecortin</td>
<td>Hase</td>
<td>Maus, Ratte, Huhn, Katze, Mensch, Quail, Rhesus Affe</td>
<td>IgG</td>
<td>1:5.000</td>
<td>abcam®</td>
</tr>
<tr>
<td>Anti-Ki 67</td>
<td>Hase</td>
<td>Maus, Ratte, Pferd, Kuh, Hund, Mensch, Schwein, Affe, Chinesischer Hamster, Syrischer Hamster, Indischer Muntjak, Marmosette</td>
<td>IgG</td>
<td>1:500</td>
<td>abcam®</td>
</tr>
<tr>
<td>Anti-Aβ 3552</td>
<td>Hase</td>
<td>Maus, Mensch</td>
<td>IgG</td>
<td>1:3.000</td>
<td>bereit gestellt von Harald Steiner</td>
</tr>
</tbody>
</table>
2.1.4. Reagenzien und Chemikalien

Tabelle 4 Verwendete Reagenzien und Chemikalien

<table>
<thead>
<tr>
<th>Reagenzien und Chemikalien</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAPI</td>
<td>Roche®</td>
</tr>
<tr>
<td>DNTPs</td>
<td>Roche®</td>
</tr>
<tr>
<td>EDTA</td>
<td>Serva Electrophoresis GmbH®</td>
</tr>
<tr>
<td>Ethanol, vergällt mit MEK</td>
<td>Reagenzienzentrale Uniklinik Freiburg</td>
</tr>
<tr>
<td>GelRed</td>
<td>Biotium®</td>
</tr>
<tr>
<td>Gene Ruler 1 kp</td>
<td>Thermo Fisher®</td>
</tr>
<tr>
<td>Glycerol</td>
<td>AppliChem®</td>
</tr>
<tr>
<td>GoTaq</td>
<td>Promega®</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>Sigma Aldrich®</td>
</tr>
<tr>
<td>KCl</td>
<td>Carl Roth®</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>Carl Roth®</td>
</tr>
<tr>
<td>Na₂HPO₄</td>
<td>Carl Roth®</td>
</tr>
<tr>
<td>NaCl</td>
<td>Carl Roth®</td>
</tr>
<tr>
<td>Primer</td>
<td>Eurofins MWG Operon®</td>
</tr>
<tr>
<td>Proteinase K</td>
<td>Roche®</td>
</tr>
<tr>
<td>SDS</td>
<td>Carl Roth®</td>
</tr>
<tr>
<td>Triton X 100</td>
<td>Sigma Aldrich®</td>
</tr>
<tr>
<td>Universal-Agarose</td>
<td>peqLab®</td>
</tr>
</tbody>
</table>

2.1.5. Primer für die Genotypisierung

Tabelle 5 Primer für die Genotypisierung

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>APP forward</td>
<td>5´-AGG ACT GAC CAC TCG ACC AG-3´</td>
</tr>
<tr>
<td>APP reverse</td>
<td>5´-GGG TCT AGT TCT GCA T-3´</td>
</tr>
</tbody>
</table>
2.1.6. Puffer und Lösungen

Tabelle 6 Verwendete Puffer und Lösungen

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Zusammensetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blockierlösung</td>
<td>5% Ziegen-Serum in 1xPBS (evtl. mit 0,5% Triton-X 100)</td>
</tr>
<tr>
<td>10x PBS</td>
<td>80g NaCl</td>
</tr>
<tr>
<td></td>
<td>2g KCl</td>
</tr>
<tr>
<td></td>
<td>14,4g Na₂HPO₄</td>
</tr>
<tr>
<td></td>
<td>2,4g KH₂PO₄</td>
</tr>
<tr>
<td></td>
<td>Mit H₂Odd auf 1 Liter auffüllen</td>
</tr>
<tr>
<td>50x TAE-Puffer</td>
<td>242 g Tris (1 M)</td>
</tr>
<tr>
<td></td>
<td>57,1 ml Eisessig</td>
</tr>
<tr>
<td></td>
<td>100 ml (0,5M) EDTA (0,025M)</td>
</tr>
<tr>
<td></td>
<td>Auf 1 l auffüllen</td>
</tr>
<tr>
<td>Lysepuffer</td>
<td>100mM TRIS-HCL pH 8,5</td>
</tr>
<tr>
<td></td>
<td>5mM EDTA</td>
</tr>
<tr>
<td></td>
<td>0,2% SDS</td>
</tr>
<tr>
<td></td>
<td>200 mM NaCl</td>
</tr>
</tbody>
</table>

2.1.7. Software

Tabelle 7 Verwendete Software

<table>
<thead>
<tr>
<th>Software</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adobe Photoshop CS5</td>
<td>Adobe Systems Software, Ireland Ltd.</td>
</tr>
<tr>
<td>Excel 2010</td>
<td>Microsoft Corporation</td>
</tr>
<tr>
<td>GraphPad Prism 5</td>
<td>GraphPad Software, Inc.</td>
</tr>
<tr>
<td>ImageJ</td>
<td>Wayne Rasband, Paket National Institutes of Health, USA</td>
</tr>
<tr>
<td>Word 2010</td>
<td>Microsoft Corporation</td>
</tr>
<tr>
<td>Zen 2012</td>
<td>Zeiss</td>
</tr>
<tr>
<td>Zotero</td>
<td>Zotero.org</td>
</tr>
</tbody>
</table>
2.1.8. Maushaltung

Die Mäuse wurden im Tierstall der Universitätsklinik Freiburg gehalten. Sowohl die Experimente mit Mäusen als auch deren Zucht und Haltung erfolgten streng nach den Bestimmungen des Tierschutzgesetzes der Bundesrepublik Deutschland und wurden von dem zuständigen Regierungspräsidium genehmigt. Die Mäuse wurden unter Standardbedingungen bei einem 12h-Tag/12h-Nacht Zyklus in einem Temperatur-kontrollierten Raum (ca. 22 °C) gehalten. Futter und Wasser waren während der gesamten Studie zur freien Verfügung vorhanden.

2.1.9. Mauslinien

Zur Erforschung der Alzheimer-Erkrankung verwendeten wir ein transgenes Mausmodell, in dem fünf familiäre Alzheimer Mutationen koexprimiert werden [APP K670N/M671L (Swedish) + I716V (Florida) + V717I (London) und PS1 M146L + L286V]. Diese 5XFAD Mäuse beginnen schon im Alter von zwei Monaten cerebrale Amyloid-β-Plaques zu entwickeln, die in erster Linie aus Aβ₄₂ bestehen (Oakley et al., 2006). Für unsere Versuche verwendeten wir 16 und 20 Wochen alte Weibchen (Jackson Laboratory), die einen C57BLI6N Hintergrund hatten. Um eine maximale genetische Übereinstimmung zu erreichen, wurde darauf geachtet, dass möglichst beide Genotypen, d.h. die transgenen Tiere und die Kontrollen ohne Mutationen, aus denselben Würfen stammten. Die Mäuse aus diesen Verpaarungen, die keine Mutationen trugen, wurden in dieser Arbeit als „Wildtyp-Mäuse“ bezeichnet, die transgenen Tiere als „5xFAD-Mäuse“.

2.2. Methoden

2.2.1. Genotypisierung
Um den Genotyp der Mäuse zu bestimmen, wurde aus ihrem Schwanzgewebe genomische DNA gewonnen. Das ca. 0,5 cm lange Schwanzstück wurde mit 500 µl Lyse-Puffer und 10 µl Proteinase K – Stammlösung bei 55 °C über Nacht auf dem Schüttler verdaut. Im Anschluss erfolgte die DNA-Aufreinigung mit Isopropanolfällung. Hierbei wurde die DNA mehrfach bei 4 °C zentrifugiert, zur Fällung mit 400µl Isopropanol gemischt, mit 70% Ethanol gewaschen und das DNA-Pellet schließlich luftgetrocknet. Anschließend wurde die DNA in 100 µl doppelt destilliertem Wasser aufgenommen, gemischt, zentrifugiert und eine Stunde bei 55 °C auf dem Schüttler gelöst.

2.2.2. Polymerase Kettenreaktion (PCR)
Zur Vervielfältigung der Gensequenzen kam die PCR zum Einsatz. Der Ansatz von 21 µl für die Reaktion setzte sich zusammen aus 2 µl der Schwanz-DNA, 12,3 µl Millipore Quality Wasser, 4 µl 5x Puffer GoTaq grün, 0,5 µl der 10 mM dNTPs, jeweils 1 µl der beiden 10µM Primer (forward, reverse) und 0,2 µl der Taq-Polymerase.
Zur Durchführung der Amplifikation wurde die DNA bei 94 °C für 30 Sekunden denaturiert, bei 58 °C lagerten sich die Primer an, um dann bei 72 °C von der Taq-Polymerase verlängert zu werden. Die letzten beiden Schritte nahmen jeweils eine Minute in Anspruch. Insgesamt wurde die Abfolge 40mal wiederholt. Die zur Genotypisierung verwendeten Primer sind in Tabelle 5 aufgeführt.

2.2.3. Gelelektrophorese
Bei dieser Arbeit wurden 1,5%-ige Agarosegele verwendet. Um die DNA anschließend sichtbar zu machen, setzte man der Agarose GelRed hinzu. In die Taschen des Agarosegels wurden jeweils 25 µl der DNA geladen. Anschließend wurde zur Auftrennung der DNA-Stränge für ca. 1 Stunde eine Spannung von 100 Volt angelegt. Zur Anregung des GelRed mit UV-Licht wurde ein Geldokumentationssystem von Bio-Rad® verwendet.

2.2.4. Immunhistologie
Die in dieser Arbeit verwendeten Gewebeproben wurden Mäusen entnommen, welche zuvor mit 4% PFA (Paraformaldehyd) transkardial perfundiert wurden. Die Gehirne wurden für 24 Stunden in 4% PFA fixiert, 48 Stunden lang in 30% Sucrose entwässert und anschließend eingefroren. Die Lagerung erfolgte bis zur weiteren Verwendung bei -20 °C.

Für die Immunfluoreszenzfärbung wurde jeder zehnte Schnitt verwendet. Die Färbung erfolgte an frei-flottierenden Schnitten. Nach dem Auftauen wurden die Schnitte in einer 12-Well-Platte dreimal jeweils 10 Minuten mit 1xPBS (phosphate buffered saline) gewaschen. Anschließend behandelte man sie für 20 Minuten mit 0,5% Triton X in PBS, um die Zellmembranen zu permeabilisieren. Um unspezifische Antikörperbindungen zu verhindern, wurden die Schnitte für eine Stunde bei Raumtemperatur mit 5% Normal-Ziegen-Serum in PBS mit 0,5% Triton-X blockiert. Anschließend wurden die Schnitte über Nacht bei 4 °C mit dem primären Antikörper inkubiert, der in seiner jeweiligen Verdünnung in Blockierlösung gelöst war. Bei der DCX-Färbung betrug die Inkubationszeit 48 Stunden. Im weiteren Verlauf wurden die Schnitte drei Mal für jeweils 10 min in 1xPBS gewaschen und im Anschluss eine Stunde mit dem sekundären Antikörper dunkel inkubiert. Da es sich hierbei um eine fluoreszierende Substanz handelte, mussten die Gehirnschnitte von

2.2.5. Quantitative Auswertung

2.2.6. Statistik
Alle Daten wurden mit Microsoft Excel 2010 und GraphPad Prism 5 ausgewertet. Zur Ermittlung des Standardfehlers, der Standardabweichung und der Signifikanz beim Vergleich der beiden 5xFAD-Gruppen mit der Amyloid-β-Färbung wurde der ungepaarte zweiseitige t-Test angewandt. Um mögliche Unterschiede zwischen den vier Gruppen bezüglich der Färbung mit Neurogenese- und Proliferationsmarkern festzustellen, erfolgte eine einfaktorielle Varianzanalyse (Kruskal-Wallis Test) gefolgt vom Dunn’s Multiple Comparison Test. Als Signifikanzniveaus wurden vorausgesetzt:

* p ≤ 0,05, ** p ≤ 0,01, *** p ≤ 0,001
3. Ergebnisse

Eine Vielzahl von Daten weist darauf hin, dass Gravidität und Laktation weitreichende und bleibende Veränderungen am mütterlichen Gehirn zur Folge haben. Auch der Hippokampus, eine Gehirnregion, die nicht klassischerweise mit dem mütterlichen Verhalten in Verbindung gebracht wird, reагiert auf Hormonexposition und neue Erfahrungen mit außerordentlicher Plastizität (Galea et al., 2013). So konnte man unter anderem Einflüsse auf die adulte Neurogenese im Gyrus dentatus während der Gravidität und Laktation beobachten (Darnaudéry et al., 2007; Kim et al., 2010; Pawluski and Galea, 2007). Doch reproduktive Erfahrungen zeigen neben morphologischen Veränderungen auch Auswirkungen auf kognitive Funktionen (Galen Buckwalter et al., 1999; Kinsley et al., 1999; Li et al., 2013a; Pawluski et al., 2006b). Des Weiteren wird der Einfluss von Gravidität auf Demenzerkrankungen, wie Morbus Alzheimer, diskutiert. Einige Studien geben Hinweise darauf, dass das Risiko, an Morbus Alzheimer zu erkranken, bei Frauen mit reproduktiver Erfahrung erhöht sein könnte (Colucci et al., 2006; Corbo et al., 2007).

3.1. Einfluss der Gravidität auf die Aβ-Pathologie und die adulte hippocampale Neurogenese

Um diese graviditätsassozierten Veränderungen im Detail zu untersuchen, wurden 5xFAD-Mäuse, welche drei Mutationen im APP-Gen und zwei Mutationen im PS1-Gen koexprimieren, verwendet. Anhand dieser Mauslinie sollten mögliche Zusammenhänge zwischen reproduktiven Erfahrungen, der Aβ-Aggregation und der Proliferation und Neurogenese im Hippokampus untersucht werden. Für diese Studie wurden ausschließlich weibliche Mäuse verwendet. Es wurde darauf geachtet, dass sowohl die transgenen Weibchen als auch die Wildtyp-Weibchen aus denselben Würfen stammten, um eine größtmögliche genetische Übereinstimmung zu gewährleisten. In den
Versuchen wurden jeweils nicht-trächtige und trächtige Mäuse von beiden Genotypen untersucht. Auf diese Weise ließen sich sowohl die Effekte der 5xFAD-Mutationen als auch die der reproduktiven Erfahrung getrennt voneinander und in Kombination betrachten.

3.1.1. Quantifizierung der Amyloid-β-Plaques bei nicht-trächtigen und trächtigen 5xFAD-Weibchen

Um mögliche Einflüsse einer Gravidität auf die Plaquebildung genauer zu untersuchen, wurden Immunfluoreszenzfärbungen von Gehirnschnitten erstellt. Die Gehirnschnitte wurden hierfür mit dem 3552 Antikörper, der gegen Amyloid-β gerichtet ist, gefärbt und die Anzahl der Plaques im Hippokampus bestimmt. Da sich die Plaques nicht gleichmäßig auf den gesamten Hippokampus verteilen, wurde auf eine einheitliche Verteilung der Schnitte aus den verschiedenen Ebenen geachtet. Bei der Betrachtung der immunfluoreszenzgefärbten Gehirnschnitte konnte man erkennen, dass die transgenen Weibchen im Alter von 16 Wochen schon deutliche Aβ-Plaques im Gehirn abgelagert hatten (siehe (A) und (B), Abb.6). In den rostralen Schnitten traten nur vereinzelte Plaques im Hippokampus auf. Doch auch im angrenzenden Kortex und im Corpus mamillare war eine beginnende Aβ-Aggregation zu beobachten, die in den trächtigen 5xFAD-Weibchen stärker ausgeprägt zu sein schien. Die Plaquedichte nahm auf den Schnitten aus dem dorsalen Hippokampus und vor allem dem Subiculum stark zu. Die verblindete Auswertung ergab, dass die Wildtyp-Mäuse, sowohl trächtig als auch nicht, erwartungsgemäß keine Amyloid-β-Plaques zeigten. Aus diesem Grund wurden sie in diese Analyse nicht weiter mit einbezogen. Beim Vergleich der Anzahl der Plaques zwischen trächtigen und nicht-trächtigen 5xFAD Mäusen (n=5) konnte eine signifikant höhere Plaquezahl pro mm² Hippokampusfläche bei den trächtigen 5xFAD Mäusen festgestellt werden (p=0.0392, siehe (C), Abb.6). Sowohl im Subiculum als auch im restlichen Hippokampus ist eine gesteigerte Amyloid-β-Aggregation zu erkennen. Die trächtigen 5xFAD-Weibchen lagerten im Schnitt 20 Plaques pro mm² ab, wohingegen bei den nicht-trächtigen 5xFAD-Tieren nur die Hälfte, 10 Plaques, gezählt wurden (siehe (C) Abb.6, 5xFAD nicht-trächtig 20.24 ± 3.077; 5xFAD trächtig 10.38 ± 2.566).
Ergebnisse

Abbildung 6 Immunfluoreszenzmarkierung und quantitative Analyse von Aβ-Plaques im Hippokampus von trächtigen und nicht-trächtigen 5xFAD-Mäusen

Die repräsentativen Abbildungen zeigen Immunfluoreszenzfärbungen des Hippokampus von 16 Wochen alten nicht-trächtigen (A) und trächtigen 5xFAD-Weibchen (B). Zur Markierung der Plaques wurde ein Antikörper gegen Amyloid-β verwendet (3552, rot). Das trächtige 5xFAD-Weibchen zeigt deutlich mehr Aβ-Plaques im Hippokampus im Vergleich zum nicht-trächtigen 5xFAD-Weibchen. Die Quantifizierung der Anzahl an Amyloid-β-Plaques (C) ergibt, dass die trächtigen 5xFAD-Mäuse signifikant mehr Plaques pro mm² Hippokampusfläche aufweisen (p = 0,0392, t-Test) als die nicht-trächtigen 5xFAD-Weibchen. (Maßstabsbalken = 200 µm, die Daten in (C) zeigen die Mittelwerte ± SEM, n=5 pro Gruppe)
3.1.2. Quantifizierung der Zellproliferation bei nicht-trächtigen und trächtigen 5xFAD- und Wildtyp-Weibchen

In dieser Studie wurde mit Hilfe der Ki67-Immunfluoreszenzfärbung die Rate der Zellteilung im Hippokampus in einem frühen Stadium der Neurogenese quantifiziert. Die Immunfluoreszenzfärbung zeigt, dass bei allen untersuchten Tieren proliferierende Zellen in der subgranulären Zone des Gyrus dentatus zu finden sind (siehe Abb. 7). Der Großteil der positiv gefärbten Zellen findet sich in diesem Band zwischen dem Hilus und der granulären Zellschicht und nur diese wurden in der Zählung berücksichtigt. Oftmals traten die Ki67-positiven Zellen in kleinen Gruppen gehäuft an einer Stelle auf (siehe (C), Abb.7). Auf den repräsentativen Abbildungen (siehe Abb.7) ist zu erkennen, dass sowohl die nicht-trächtigen (A) als auch die trächtigen (B) Wildtyp-Mäuse, ebenso wie die nicht-trächtigen (C) und trächtigen (D) transgenen Mäuse ähnlich viele proliferierende Zellen aufzeigen. Zur Quantifizierung der Proliferation wurden die positiven Zellen im Gyrus dentatus verblindet ausgezählt. Die statistische Auswertung ergab keinen signifikanten Unterschied zwischen den vier Gruppen (siehe (E) Abb.7, WT nicht-trächtig 53,31± 13,46; WT trächtig 38,71± 9,354; 5xFAD nicht-trächtig 36,05± 10,17; 5xFAD trächtig 44,30± 10,31; p=0,7957; n=5). Ein Vergleich der beiden trächtigen Gruppen, Wildtyp- und 5xFAD-Weibchen, ergab sehr ähnliche Anzahlen an proliferierenden Zellen pro mm² Hippokampusfläche. Zwischen den nicht-trächtigen Genotypen ließ sich kein signifikanter Unterschied erkennen, wenn auch ein Trend zu einer stärkeren Proliferation bei den nicht-trächtigen Wildtyp-Mäusen im Vergleich zu den 5xFAD-Mäusen festzustellen war. Die trächtigen und nicht-trächtigen transgenen Mäuse unterschieden sich nicht signifikant in der Zellproliferation im
Ergebnisse

Gyrus dentatus. Es lässt sich jedoch erkennen, dass bei den trächtigen Wildtyp-Weibchen ein Trend dazu besteht, weniger proliferierende Zellen im Gyrus dentatus aufzuweisen als die nicht-trächtigen Wildtyp-Weibchen.

<table>
<thead>
<tr>
<th></th>
<th>Nicht trächtig</th>
<th>Trächtig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wildtyp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5xFAD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 7 Immunfluoreszenzmarkierung und Quantifizierung proliferierender Zellen im Hippokampus von trächtigen und nicht-trächtigen 5xFAD- und Wildtyp-Mäusen

Die repräsentativen Abbildungen zeigen proliferierende Ki67-positiv gefärbte Zellen (rot) im Gyrus dentatus von 16 Wochen alten weiblichen 5xFAD- und Wildtyp-Mäusen. Die proliferierenden Zellen sind bei allen Gruppen in der subgranulären Zone des Gyrus dentatus lokalisiert (siehe weiße Pfeile). (A) nicht-trächtiges Wildtyp-Weibchen, (B) trächtiges Wildtyp-Weibchen, (C) nicht-trächtiges 5xFAD-Weibchen, (D) trächtiges 5xFAD-Weibchen. Die quantitative Analyse der Anzahl an Ki67 markierten Zellen (E) zeigt keine signifikanten Unterschiede zwischen den vier Gruppen. Es ist jedoch ein Trend zu einer stärkeren Proliferation bei nicht-trächtigen im Vergleich zu den trächtigen Wildtyp-Weibchen erkennbar. (p=0.7957, Kruskal-Wallis Test, Maßstabsbalken = 100 µm, die Daten in (E) zeigen die Mittelwerte ± SEM, n=5 pro Gruppe)
3.1.3. Quantifizierung der Neurogenese bei nicht-trächtigen und trächtigen 5xFAD- und Wildtyp-Weibchen

Abbildung 8 Immunfluoreszenzmarkierung und Quantifizierung der adulten Neurogenese im Hippokampus von trächtigen und nicht-trächtigen 5xFAD- und Wildtyp-Mäusen

In den repräsentativen Abbildungen sind die Immunfluoreszenzfärbungen von DCX-exprimierenden Zellen im Gyrus dentatus des Hippokampus von 16 Wochen alten 5xFAD- und Wildtyp-Mäusen zu sehen. Die angefärbten Neuroblasten und unreifen Neurone sind bei allen Gruppen in der Subgranularzone und der daran angrenzenden Körnerzellschicht lokalisiert. (A) nicht-trächtiges Wildtyp-Weibchen, (B) trächtiges Wildtyp-Weibchen, (C) nicht-trächtige 5xFAD-Maus, (D) trächtige 5xFAD-Maus. Die Quantifizierung der DCX-positiven Zellen im Gyrus dentatus (E) zeigte keinen signifikanten Unterschied in ihrer Anzahl zwischen den Gruppen und somit keine veränderte Neurogenese. (p=0.6633, Kruskal-Wallis Test, Maßstabsbalken = 100 µm, die Daten in (E) zeigen die Mittelwerte ± SEM, n=5 pro Gruppe, DCX = Doublecortin)

WT trächtig 338,7± 45,76; 5xFAD nicht-trächtig 269,9± 36,93; 5xFAD trächtig 314,8± 46,62; p=0,6633; n=5). Die trächtigen Wildtyp- und 5xFAD-Weibchen wiesen annähernd gleich viele DCX-positiven Zellen pro mm² auf. Auch
Ergebnisse

zwischen den beiden nicht-trächtigen Genotypen ließ sich nur ein geringer, aber kein signifikanter Unterschied feststellen. Beim Vergleich der beiden 5xFAD-transgenen Gruppen zeigten sich sehr ähnliche Anzahlen DCX-positiv gefärbter Zellen pro Fläche bei trächtigen und nicht-trächtigen Tieren. Bei den nicht-trächtigen Kontrolltieren war kein signifikanter Unterschied im Vergleich zu den trächtigen Kontrollweibchen zu erkennen.

Um eine differenziertere Aussage über einen möglichen Einfluss der Gravidität auf die Neurogenese machen zu können, wurde eine morphologische Unterscheidung der DCX-positiven Zellen in Neuroblasten und unreife Nervenzellen getroffen. Diese beiden Zelldtionen verschiedener Stadien der Neurogenese im Hippokampus lassen sich in erster Linie durch das Vorhandensein eines Fortsatzes voneinander unterscheiden (siehe (B) und (D) Abb.9). Die Neuroblasten (Typ-3 Zellen) waren hauptsächlich in der subgranulären Zone lokalisiert, wohingegen die unreifen Neurone mit Fortsätzen zum Teil schon in die darüber liegende Körnerzellschicht des Gyrus dentatus migriert waren. Ihre Fortsätze erstreckten sich weg von der Subgranularzone in Richtung der Molekularzellschicht des Hippokampus. Die Neuroblasten ohne Fortsätze waren ca. 2 bis 3fach so häufig wie die unreifen Neurone im Gyrus dentatus des Hippokampus zu finden. Die Auszählung der Neuroblasten zeigte eine nahezu identische Verteilung wie bei der Gesamtzahl der DCX-positiven Zellen (vgl. (E) Abb.8 und (A) Abb.9). Die quantitative Analyse ergab keinen signifikanten Unterschied zwischen den vier Gruppen (siehe (A) Abb.9, WT nicht-trächtig 244,7± 24,70; WT trächtig 263,2± 25,38; 5xFAD nicht-trächtig 203,5± 17,42; 5xFAD trächtig 223,3± 33,30; p=0,3234; n=5). Sowohl die nicht-trächtigen Wildtyp- und 5xFAD-Weibchen als auch die trächtigen Wildtyp- und 5xFAD-Mäuse zeigten sehr ähnliche Anzahlen von Neuroblasten im Gyrus dentatus. Auch zwischen den trächtigen und nicht-trächtigen Gruppen der jeweiligen Genotypen waren keine signifikanten Unterschiede zu verzeichnen. Bei der Betrachtung des späteren Stadiums, den unreifen Neuronen mit Fortsätzen, die aus den Neuroblasten hervorgehen, zeigte sich ein ähnliches Bild. Die statistische Auswertung ergab keine signifikanten Abweichungen zwischen den vier Gruppen (siehe (C) Abb.9, WT
Die quantitative Analyse der Anzahl an DCX-markierten Neuroblasten (A) ergab keine signifikanten Unterschiede zwischen den vier Gruppen (p=0,3234, Kruskal-Wallis Test). Die repräsentative Abbildung zeigt die Immunfluoreszenzfärbungen eines Neuroblasten ohne Fortsatz (B) in der subgranulären Zone des Gyrus dentatus im Hippokampus von 16 Wochen alten trächtigen 5xFAD-Weibchen. Die statistische Auswertung der Anzahl an unreifen Neuronen im Gyrus dentatus (C) ergibt keinen signifikanten Unterschied in ihrer Anzahl zwischen den vier Gruppen (p=0,7709, Kruskal-Wallis Test). In der repräsentativen Abbildung ist eine unreife Nervenzelle mit Fortsatz zu sehen (D). (Maßstabsbalken = 12,5 μm, die Daten in (A) und (C) zeigen die Mittelwerte ± SEM, n=5 pro Gruppe, DCX = Doublecortin)
Ergebnisse

nicht-trächtig 86,75± 26,98; WT trächtig 75,77± 23,33; 5xFAD nicht-trächtig 69,75± 22,38; 5xFAD trächtig 91,49± 15,30; p=0,7709; n=5). Beim Vergleich der 5xFAD-transgenen Mäuse und den Wildtyp-Mäusen wurden ähnlich viele unreife Neurone im Gyrus dentatus gezählt. Um den Einfluss der Gravidität auf die Bildung der unreifen Neurone zu untersuchen, wurden die trächtigen und nicht-trächtigen Wildtyp-Mäuse und die trächtigen und nicht-trächtigen 5xFAD-Mäuse miteinander verglichen. Bei beiden Analysen ergaben sich keine signifikanten Unterschiede.

3.2. Einfluss der Laktation auf die Aβ-Pathologie und die adulte hippokampale Neurogenese

3.2.1. Quantifizierung der Amyloid-β-Plaques bei nicht-laktierenden und laktierenden 5xFAD-Weibchen

Nachdem die Ergebnisse aus der histopathologischen Untersuchung der trächtigen 5xFAD-Mäuse eine signifikante Erhöhung der Aβ-Aggregation ergab im Vergleich zu den nicht-trächtigen Tieren, richtete sich der Blick auf die vier Wochen älteren 5xFAD-Weibchen, die sich am Ende der Laktationsphase befanden. Um zu überprüfen, welchen Einfluss die Laktation auf die Alzheimer-Pathologie hat, wurden Immunfluoreszenzfärbungen von Gehirnschnitten säugender und nicht-säugender 5xFAD- und Wildtyp-Mäuse (n=3) angefertigt. Sie wurden mit dem 3552 Antikörper, der gegen Aβ gerichtet ist, angefärbt.

Ergebnisse

Abbildung 10 Immunfluoreszenzmarkierung und Quantifizierung von Aβ-Plaques im Hippokampus von laktierenden und nicht-laktierenden 5xFAD-Mäusen

In den repräsentativen Abbildungen sind Immunfluoreszenzfärbungen des Hippokampus von 20 Wochen alten nicht-laktierenden (A) und laktierenden 5xFAD Weibchen (B) zu sehen. Zur Detektion der Plaques wurde ein Antikörper gegen Amyloid-β verwendet (3552, rot). Die quantitative Analyse der Immunfluoreszenzfärbung gegen Amyloid-β (C) ergibt eine signifikant größere Anzahl von Plaques pro mm² Hippokampusfläche in der Gruppe der laktierenden 5xFAD-Mäuse (p≤0,0001, t-Test) als in der Gruppe der nicht-laktierenden 5xFAD-Mäuse. (Maßstabsbalken = 200 µm, die Daten in (C) zeigen die Mittelwerte ± SEM, n=3 pro Gruppe)
den Abbildungen (siehe Abb.10) zu erkennen ist, lagerten die nicht-säugenden 5xFAD-Weibchen (A) deutlich weniger Plaques im Hippokampus ab als jene, die sich in der Laktationsphase befanden (B). Dieser Unterschied lässt sich sowohl im Subiculum als auch im restlichen Hippokampus erkennen. Bei der quantitativen Analyse der Plaqueanzahl stellte sich der Unterschied zwischen laktierenden und nicht-laktierenden 5xFAD-Weibchen als signifikant heraus (p-Wert ≤ 0,0001, siehe (C) Abb.10). Bei den säugenden 5xFAD-Mäusen ließen sich im Schnitt 19,9 Plaques pro mm² zählen, bei den Nicht-säugenden waren es hingegen nur 9,9 pro mm² (siehe (C) Abb.10 5xFAD nicht-lakt. 9.905 ± 0.3784; 5xFAD lakt. 19.91 ± 0.8829).

3.2.2. Quantifizierung der Zellproliferation bei nicht-laktierenden und laktierenden 5xFAD- und Wildtyp-Weibchen

Um zu überprüfen, welchen Einfluss reproduktive Erfahrungen und Mutationen in den APP- und PS1-Genen auf die Zellproliferation im Hippokampus haben, wurden zunächst trächtige 5xFAD- und Wildtyp-Mäuse untersucht. Im folgenden Experiment richtete sich der Fokus nun auf 5xFAD-Mäuse und Kontrollweibchen nach dem Absetzen ihrer Jungtiere.

Ergebnisse

anschließende statistische Auswertung ergab keinen signifikanten Unterschied zwischen den vier Gruppen (siehe (E) Abb.11, WT nicht-lakt. 65,88± 7,836; WT lakt. 33,69± 11,07; 5xFAD nicht-lakt. 52,66± 14,23; 5xFAD lakt. 33,53± 5,410; p=0,1104; n=3). Bei der Analyse, welchen Effekt die Mutationen auf die Proliferation hatten, fiel auf, dass die säugenden Wildtyp- und 5xFAD-Weibchen annähernd gleich viele Ki67-positive Zellen pro mm² aufwiesen. Bei den Tieren ohne reproduktive Erfahrung zeigte sich jedoch ein Trend zu weniger proliferierenden Zellen bei den 5xFAD-Tieren im Vergleich zu den Kontrollweibchen. Dieselbe Tendenz war auch in der Untersuchungsgruppe mit den trächtigen Tieren und den entsprechenden Wildtyp-Mäusen aufgefallen und scheint sich bis in die Laktationsphase fortgesetzt zu haben. Die Analyse ergab, dass die Zellproliferation bei beiden Genotypen vergleichbar beeinflusst wurde, da sowohl innerhalb der Gruppe der Wildtyp-Mäuse als auch der 5xFAD-Weibchen ein Trend zu vermindelter Zellteilung bei den laktierenden Mäusen erkennbar war. Eine geringere Anzahl Ki67-positiver Zellen war auch im ersten Experiment bei den trächtigen Wildtyp-Mäusen im Vergleich zu den Nicht-trächtigen aufgefallen.
Ergebnisse

Abbildung 11 Immunfluoreszenzmarkierung und Quantifizierung proliferierender Zellen im Hippokampus von laktierenden und nicht-laktierenden 5xFAD- und Wildtyp-Mäusen

Die repräsentativen Abbildungen zeigen die mit Ki67 markierten proliferierenden Neurone (rot) im Gyrus dentatus von 20 Wochen alten weiblichen 5xFAD- und Wildtyp-Mäusen. Die proliferierenden Zellen sind bei allen Gruppen in der subgranulären Zone des Gyrus dentatus lokalisiert (siehe weiße Pfeile). (A) nicht-laktierendes Wildtyp-Weibchen, (B) laktierendes Wildtyp-Weibchen, (C) nicht-laktierendes 5xFAD-Weibchen, (D) laktierendes 5xFAD-Weibchen. Die quantitative Analyse der Ki67-Immunfluoreszenzfärbung zeigt keine signifikanten Unterschiede zwischen den vier Gruppen. Es ist jedoch ein Trend zu einer verringerten Proliferation bei den laktierenden Mäusen beider Genotypen zu erkennen. (p=0,1104, Kruskal-Wallis Test Maßstabsbalken = 100 µm, die Daten in (E) zeigen die Mittelwerte ± SEM, n=3 pro Gruppe)
3.2.3. Quantifizierung der adulten Neurogenese bei nicht-laktierenden und laktierenden 5xFAD- und Wildtyp-Weibchen

Aufgrund der Beobachtung, dass Trächtigkeit keinen signifikanten Effekt auf die adulte Neurogenese im Hippokampus bei transgenen 5xFAD-Mäusen und Wildtyp-Weibchen hat, stellte sich nun die Frage nach den Auswirkungen der Laktation. Um mögliche geschlechtspezifische Einflüsse auszuschließen, wurden auch hier ausschließlich Weibchen verwendet.

Entsprechend den vorangegangenen Experimenten wurde mittels Immunfluoreszenzfärbung die Neurogenese von 20 Wochen alten 5xFAD-Weibchen und Wildtyp-Weibchen bestimmt. Als Marker für die adulte Neurogenese diente DCX. Unabhängig vom Genotyp der Mäuse und der reproduktiven Erfahrung ließen sich in allen Tieren DCX-positive Zellen im Gyrus dentatus des Hippokampus nachweisen. Die Menge und das Verteilungsmuster der Neuroblasten und unreifen Nervenzellen zeigten kaum Abweichungen zwischen nicht-laktierenden (A) und laktierenden Kontrollmäusen (B), nicht-laktierenden (C) und laktierenden 5xFAD-Weibchen (siehe (D), Abb.12). Die quantitative Analyse ergab keinen signifikanten Unterschied in der Anzahl der DCX-positiv gefärbten Zellen zwischen den vier Gruppen (siehe (E) Abb.12, WT nicht-lakt. 305,9± 28,16; WT lakt. 293,3± 36,14; 5xFAD nicht-lakt. 343,3± 36,12; 5xFAD lakt. 312,5± 37,13; p=0,7395; n=3). Wie auch in den vorangegangenen Experimenten unterschieden sich sowohl die laktierenden als auch die nicht-laktierenden Wildtyp-Mäuse in der Anzahl der DCX-positiven Zellen nicht signifikant von den jeweiligen 5xFAD-Mäusen. Somit ließ sich der Trend zu vermindelter Zellproliferation bei den 5xFAD-Weibchen ohne reproductive Erfahrung im Vergleich zu den entsprechenden Wildtyp-Weibchen bei der Neurogenese nicht belegen. Innerhalb der Gruppe der 5xFAD-Mäuse war kein signifikanter Unterschied in der Gesamtzahl der DCX-positiven Zellen zwischen den säugenden und nicht-säugenden Weibchen festzustellen. Ebenso ließen sich bei den Kontrolltieren keine Differenzen in der Neurogenese ausmachen, da beide Gruppen fast identisch viele DCX-positive Zellen pro mm² aufwiesen. Auch hier scheint sich die in der Ki67-Färbung
Ergebnisse

vorhandene Tendenz zu einer geringeren Zellproliferation in Mäusen ohne reproduktive Erfahrung für die Neurogenese nicht zu bestätigen.

Abbildung 12 Immunfluoreszenzmarkierung und Quantifizierung der adulten Neurogenese im Hippokampus von laktierenden und nicht-laktierenden 5xFAD- und Wildtyp-Mäusen

Die repräsentativen Abbildungen zeigen Immunfluoreszenzfärbungen des Gyrus dentatus von 20 Wochen alten 5xFAD- und Wildtyp-Mäusen, bei denen DCX-positiv gefärbte Zellen (rot) dargestellt sind. Die angefärbten Neuroblasten und unreifen Neurone sind bei allen Gruppen in der Subgranularzone und der daran angrenzenden Schicht lokalisiert. (A) nicht-laktierende Wildtyp-Maus, (B) laktierende Wildtyp-Maus, (C) nicht-laktierende 5xFAD-Maus, (D) laktierende 5xFAD-Maus. Die Quantifizierung der DCX-positiven Zellen im Gyrus dentatus (E) zeigte keinen signifikanten Unterschied in ihrer Anzahl zwischen den Gruppen und somit keine veränderte Neurogenese. (p=0,7395, Kruskal-Wallis Test, Maßstabsbalken = 100 µm, die Daten in (E) zeigen die Mittelwerte ± SEM, n=3 pro Gruppe)
Im Folgenden sind die Ergebnisse der DCX-Färbung nach Differenzierung in Neuroblasten und unreife Neurone dargestellt. Die unreifen Neurone ließen sich auf Grund des Vorhandenseins eines Fortsatzes von den Neuroblasten (Typ-3 Zellen) unterscheiden. Außerdem waren die Neuroblasten in erster Linie in der subgranulären Zone lokализiert, wohingegen die jungen Neurone schon zum Teil in angrenzende Schichten des Gyrus dentatus migriert sind. Die quantitative Analyse der Neuroblastenanzahl pro Fläche spiegelt in etwa die Verteilung an DCX-positiven Zellen der vier Gruppen wider (vgl. (E) Abb.12 und (A) Abb.13). Da die Neuroblasten (siehe (B) Abb.13) die Mehrheit der DCX-angefärbten Zellen bilden, war dieses Resultat zu erwarten. Die statistische Auswertung ergab keinen signifikanten Unterschied der Neuroblastenmenge pro Fläche zwischen den vier Gruppen (siehe (A) Abb.13, WT nicht-lakt. 209,5± 15,34; WT lakt. 237,2± 31,10; 5xFAD nicht-lakt. 223,4± 20,82; 5xFAD lakt. 233,3± 25,23; p=0,6676, n=3). Weder zwischen den säugenden noch zwischen den nicht-säugenden Tieren der zwei Genotypen ließen sich signifikante Abweichungen detektieren. Ebenso verhielt es sich bei der Analyse eines möglichen Effekts der Laktation, da sich zum einen bei den Wildtyp-Weibchen und zum anderen bei den 5xFAD-Weibchen die säugenden Mäuse nicht signifikant von den Nicht-säugenden unterschieden. Die unreifen Neurone mit Fortsätzen (siehe (D) Abb.13) lagen insgesamt in einer geringeren Anzahl als die Neuroblasten im Gyrus dentatus vor. Es ergab sich zwar auch hier kein signifikanter Unterschied zwischen den vier Gruppen (siehe (C) Abb.13, WT nicht-lakt. 96,34± 13,60; WT lakt. 55,33± 5,521; 5xFAD nicht-lakt. 119,9± 15,57; 5xFAD lakt. 78,77± 18,63; p=0,0703; n=3), dennoch zeigte sich bei der quantitativen Analyse eine weniger ausgeglichene Verteilung als bei den Neuroblasten. Sowohl zwischen den beiden laktierenden Genotypen als auch zwischen den nicht-laktierenden Wildtyp- und 5xFAD-Mäusen ließen sich keine signifikanten Unterschiede in der Anzahl der unreifen Neurone pro mm² feststellen. Beim Vergleich der säugenden mit den nicht-säugenden Weibchen fiel bei beiden Genotypen der gleiche Trend auf. Sowohl die Wildtyp- als auch die 5xFAD-Weibchen in der Laktationsphase wiesen weniger unreife Neurone mit Fortsätzen pro Fläche auf als jene Weibchen ohne reproduktive Erfahrung.
Die quantitative Analyse der Anzahl an Neuroblasten (A) ergibt keine signifikanten Abweichungen zwischen den vier Gruppen (p=0,6676, Kruskal-Wallis Test). Die repräsentativen Abbildungen zeigen DCX-positiv gefärbte Zellen in der subgranulären Schicht des Gyrus dentatus im Hippokampus von 20 Wochen alten schwangeren 5xFAD-Weibchen. In (B) ist ein Neuroblast ohne Fortsatz dargestellt. Die statistische Auswertung der DCX-markierten Zellen mit Fortsätzen (C) zeigt keine signifikanten Unterschiede zwischen den vier Gruppen (p=0,0703, Kruskal-Wallis Test), allerdings lässt sich ein Trend zu einer verringerten Bildung von unreifen Neuronen sowohl bei den laktierenden Wildtyp-Tieren als auch bei den laktierenden 5xFAD-Tieren im Vergleich zu den jeweils nicht-laktierenden Genotypen erkennen. In (D) ist die repräsentative Abbildung einer unreifen Nervenzelle mit Fortsatz zu sehen. (Maßstabsbalken = 12,5 µm, die Daten in (A) und (C) zeigen die Mittelwerte ± SEM, n=3 pro Gruppe, DCX = Doublecortin)
4. Diskussion

In der vorliegenden Arbeit sollte der Einfluss reproduktiver Erfahrungen auf die Zellproliferation, adulte Neurogenese und Amyloid-β-Aggregation bei einem transgenen Mausmodell für Morbus Alzheimer untersucht werden. Die Mäuse exprimieren fünf humane Mutationen, die im Zusammenhang mit der familiären Form von Morbus Alzheimer stehen.

4.1. Einfluss der Gravidität und Laktation auf die Amyloid-β Aggregation bei 5xFAD-Weibchen

Die durchgeführten Experimente zeigten, dass die trächtigen 5xFAD-Weibchen eine signifikant erhöhte Anzahl von Plaques im Hippokampus im Vergleich zu den nicht-trächtigen transgenen Mäusen aufwiesen. Dasselbe Ergebnis wurde beim Vergleich der Aβ-Aggregation zwischen laktierenden und nicht-laktierenden 5xFAD-Mäusen erzielt. Die Weibchen aus dem zweiten Experiment wiesen im Schnitt dieselbe Plaqueanzahl pro Hippokampusfläche auf, obwohl sie vier Wochen älter als die Mäuse aus der ersten Untersuchung waren. Ein möglicher Grund hierfür wäre, dass in der zweiten Gruppe weniger Versuchstiere (n=3) verwendet wurden. Eine Erhöhung der Anzahl an Versuchstieren auf fünf pro Gruppe wie im ersten Experiment könnte zeigen, ob die Beobachtungen tatsächlich auf die Anzahl an Mäusen zurückzuführen ist. Die geringeren Standardabweichungen und somit größere Signifikanz im Versuch mit den laktierenden 5xFAD-Mäusen sprechen aber eher dagegen. Die Annahme, dass die unveränderte Anzahl an Aβ-Plaques bei trächtigen und laktierenden 5xFAD-Weibchen nicht auf zufällige oder systematische Fehler in den Experimenten zurückzuführen ist, hat weitere Hypothesen zur Folge. So stellt sich die Frage, ob die vermehrte Aβ-Plaquebildung in den 5xFAD-Mäusen mit reproduktiver Erfahrung alleine durch den Einfluss der Gravidität begründet ist und ob die Laktationsphase die Aggregation nicht weiter fördert. Theoretisch denkbar wäre auch, dass die Laktationsphase sogar einen inhibitorischen Effekt hat und somit die trotz höherem Alter gleich bleibende Anzahl an Plaques nach
Diskussion

Die Studie von Cui et al. liefert auch Hinweise, über welche Mechanismen die durch reproduktive Erfahrungen verstärkte Alzheimer-Pathologie Einfluss auf die kognitiven Funktionen nehmen könnte. So detektierte man bei den Wildtyp-Mäusen, die in der Vergangenheit trächtig gewesen waren, eine Hochregulierung von Synaptophysin, dem wichtigsten präsynaptischen Vesikelprotein, im Vergleich zu den Wildtyp-Mäusen ohne Nachwuchs. Bei APP23-Weibchen mit reproduktiver Erfahrung war die Synaptophysin
Expression hingegen herunterreguliert (Cui et al., 2013). Die hierdurch veränderte synaptische Plastizität könnte ursächlich für die Unterschiede im räumlichen Gedächtnis bei den trächtigen und nicht-trächtigen Tieren sein. Es bleibt jedoch offen, ob und wie die Alzheimer-Pathologie die graviditätsinduzierte Hochregulierung von synaptischen Proteinen verhindert oder sogar umkehrt.

Bis heute ist unklar, welche Mechanismen die verstärkte Neuropathologie bei trächtigen transgenen Mäusen auslösen. Nach aktuellem Wissensstand können über diese Gründe nur Vermutungen angestellt werden. Da die Zeit der Trächtigkeit mit drastischen Hormonschwankungen einhergeht, liegt die Vermutung nahe, dass diese endokrinologischen Fluktuationen Einfluss auf die Alzheimer-Pathologie haben. Des Weiteren steht Estrogen im Verdacht, für die erhöhte Prävalenz von Morbus Alzheimer bei Frauen verantwortlich zu sein (Colucci et al., 2006). Nichtsdestotrotz belegen zahlreiche Studien die neuroprotektiven Eigenschaften von Estrogen (Bryant et al., 2006). So schützt es beispielsweise vor Amyloid-β induzierter Neurotoxizität (Du et al., 2004; Marin et al., 2003; Zhang et al., 2004) durch verstärkte Aβ-Phagozytose (Tang et al., 2004) und anti-apoptotische Mechanismen (Pike, 1999). Estrogendefizite in APP23-Mäusen wiederum wurden mit einer Zunahme der Aβ-Produktion und einem verminderten Abbau der Amyloid-β-Plaques in Verbindung gebracht (Yue et al., 2005), wohingegen eine frühzeitige Behandlung mit 17β-Estradiol, einem Hormon aus der Gruppe der Estrogene, die Amyloid-β-Plaqueaggregation in diesen Mäusen reduzieren konnte (Li et al., 2013b). Die eben erwähnten Daten, die auf eine neuroprotektive Funktion des Estrogen hinweisen und die Tatsache, dass die Estrogenkonzentrationen in der Trächtigkeit bis auf das 50fache der maximalen Level während des normalen Zyklus ansteigen können (Li et al., 2013a), scheinen im Widerspruch mit den Ergebnissen der vorliegenden Arbeit zu stehen. Es gibt jedoch einige Belege dafür, dass die Estrogenkonzentrationen nach der Gravidität auf niedrigere Level als zuvor abfallen können. Frauen mit Kindern weisen insgesamt geringere Konzentrationen an zirkulierendem Estrogen auf als jene ohne Schwangerschaften (Bernstein et al., 1985; Hankinson et al., 1995). Auf Grund
Dieser graviditätsassoziierten Estrogenreduktion ist also ein Zusammenhang zwischen reproduktiven Erfahrungen und der Alzheimer-Pathologie denkbar. Nichtsdestotrotz sind die Interaktionen zwischen dem Gehirn und dem reproduktiven endokrinen System zu komplex, um die beschriebenen Auswirkungen einzig und alleine den Estrogenen zuzuschreiben (Webber et al., 2007). In der Literatur lassen sich einige Belege dafür finden, dass auch die Hypothalamische-Hypophysäre Achse und hier in erster Linie das Luteinisierende Hormon (LH) eine Rolle in der Morbus Alzheimer Pathologie spielen kann (Kate M Webber et al., 2005; Kate M. Webber et al., 2005; Webber et al., 2007). LH regt die Produktion der Geschlechtshormone in den Gonaden an, die wiederum über einen negativen Feedback-Mechanismus die Sekretion von LH hemmen (Lindholm and Nielsen, 2009). Alzheimer-Patienten wiesen in zwei Studien doppelt so viele zirkulierende Gonadotropine wie die nicht demenzerkrankte Kontrollgruppe auf (Bowen et al., 2000; Short et al., 2001). Zudem beeinflusst LH die APP-Prozessierung dahingehend, dass ein größerer Anteil des APPs entlang des „amyloiden Wegs“ prozessiert wird (Bowen et al., 2004). In Anbetracht dieser Erkenntnisse wäre es für weiterführende Untersuchungen der in dieser Arbeit vorgestellten Daten von großem Interesse, die verschiedenen Hormonkonzentrationen zu messen. Dabei ist jedoch zu beachten, dass Estrogene auch lokal im Gehirn synthetisiert werden können und die Level von Estrogenen im Gehirn und im Serum daher differenziert betrachtet werden müssen (Li et al., n.d.). Eine Studie von Yue et al. stellte post mortem in Gehirnen von weiblichen Morbus Alzheimer Patientinnen signifikant weniger Estrogen fest. Die Estrogenkonzentrationen im Serum unterschieden sich hingegen nicht (Yue et al., 2005).

Trotz umfangreicher Literatur zum möglichen Effekt von weiblichen Geschlechtshormonen auf Morbus Alzheimer liegen zum jetzigen Zeitpunkt keine endgültigen Beweise vor, ob und wie durch sie die Alzheimer-Pathologie durch reproduktive Erfahrungen beeinflusst werden kann. Unsere Beobachtung, dass Trächtigkeit bei Mäusen negative Auswirkungen auf den Krankheitsverlauf von Morbus Alzheimer hat, wird jedoch auch von humanen Studien bestätigt. Beeri et al. zeigten, dass die Anzahl der geborenen Kinder mit dem Grad der
neuropathologischen Läsionen korrelierte (Beeri et al., 2009). Mehrere Studien kamen zu dem Ergebnis, dass eine höhere Anzahl an Schwangerschaften mit einem früheren Auftreten der Krankheit bzw. mit einem größeren Erkrankungsrisiko einhergeht (Colucci et al., 2006; Corbo et al., 2007; McLay et al., 2003). Abgesehen von den grundlegenden hormonellen Schwankungen während einer Schwangerschaft sind jedoch auch tiefgreifende metabolische Veränderungen nicht zu vernachlässigen (Beeri et al., 2009). Auswirkungen auf die Struktur und Funktion kardiovaskulärer Systeme (Clapp and Capeless, 1997), die Blutlipoproteinlevel (Fåhraeus et al., 1985) und erhöhte Insulinkonzentrationen (Kritz-Silverstein et al., 1994) sind nur einige Beispiele zahlreicher metabolischer Effekte. Des Weiteren steigt mit der Anzahl an Schwangerschaften auch das Risiko für andere Erkrankungen. Hierzu zählen z.B. Diabetes (Nicholson et al., 2006), Schlaganfälle (Qureshi et al., 1997), koronare Herzerkrankungen (Lawlor et al., 2003; Ness et al., 1993) oder die Entwicklung eines metabolischen Syndroms (Beeri et al., 2009). Sowohl Diabetes (Ott et al., 1999; Vignini et al., 2013) als auch kardiovaskuläre Erkrankungen (Beeri et al., 2006; Liu et al., 2014) wurden mit Demenzen, wie Morbus Alzheimer, assoziiert. Ein erhöhtes Risiko für diese Krankheiten stellt also eine weitere Erklärung für den Zusammenhang von reproduktiven Erfahrungen und Morbus Alzheimer dar.

Es ist nicht außer Acht zu lassen, dass das 5xFAD-Mausmodell nicht die gesamte humane Alzheimer-Pathologie widerspiegelt und auch in der sonstigen Physiologie große Unterschiede zwischen Nagern und Menschen bestehen. Dennoch zeigen sowohl Untersuchungen an Mäusen als auch an Menschen ein durch reproduktive Erfahrungen erhöhtes Risiko, an Morbus Alzheimer zu erkranken bzw. vermehrt neuropathologische Läsionen aufzuweisen (Beeri et al., 2009; Colucci et al., 2006; Cui et al., 2013). Die hier vorgestellte Studie kommt zu demselben Ergebnis. In dieser Arbeit wurde zum ersten Mal gezeigt, dass Gravidität und Laktation zu einer signifikant gesteigerten Amyloid-β-Aggregation bei 5xFAD-Mäusen führen. Da jedoch über die dafür verantwortlichen Mechanismen bislang nur spekuliert werden kann, sind weiterführende Untersuchungen unabdingbar. Messungen von verschiedenen
Hormonkonzentrationen in weiblichen transgenen Mäusen während der Trächtigkeit und bis ins höhere Alter wären interessant, um mögliche endokrinologische Veränderungen und Auswirkungen zu testen, vor allem auch bei Weibchen, die schon mehrmals geworfen haben. Ebenso wäre es denkbar, den Einfluss von metabolischen Veränderungen, die durch die Trächtigkeit entstanden sind, zu ermitteln. Um zu untersuchen, ob die verstärkte Aβ-Aggregation auch direkten Einfluss auf die kognitiven Funktionen der 5xFAD-Weibchen hat, wäre es sinnvoll, Verhaltenstests, die das Hippokampus-abhängige Lernen und Gedächtnis prüfen, durchzuführen. Da für das 5xFAD-Mausmodell eine Abnahme des synaptischen Markers Synaptophysin beschrieben wurde (Oakley et al., 2006) und auch bei trächtigen APP23-Mäusen eine Runterregulierung der Genexpression bekannt ist (Cui et al., 2013), würde es sich anbieten, die Synaptophysinlevel zwischen trächtigen und nicht-trächtigen 5xFAD-Weibchen zu vergleichen. Sollten sich die Hinweise erhärten, dass reprodutive Erfahrungen mit dem Risiko an Morbus Alzheimer zu erkranken korrelieren, ist zu bedenken, dass dies Konsequenzen für Frauen haben könnte, bei denen der Verdacht besteht, von der dominant vererbten Form von Morbus Alzheimer betroffen zu sein. Es bleibt auch abzuwarten, ob diese Erkenntnis neue Ansatzpunkte für therapeutische Interventionen bietet.

4.2. Einfluss der Gravidität und Laktation auf die Proliferation und adulte Neurogenese

Ein weiterer Fokus in der hier beschriebenen Studie lag auf der Proliferation und adulten Neurogenese im Gyrus dentatus des Hippokampus. Auch hier sollte der Einfluss von Gravidität, Laktation und der Alzheimer-Pathologie getrennt und in Kombination untersucht werden. Weder die Analyse anhand eines Proliferationsmarkers (Ki67) noch mit einem Marker für die Neurogenese (DCX) ergab einen signifikanten Unterschied zwischen den vier Gruppen, die aus trächtigen bzw. laktierenden 5xFAD- und Wildtyp-Weibchen und aus nicht-trächtigen bzw. nicht-laktierenden 5xFAD- und Wildtyp-Mäusen bestanden. Dieses Ergebnis bestätigen auch andere Studien, die ebenfalls keine

Auch für Unterschiede in der Proliferation und adulten Neurogeneese während der Gravidität werden immer wieder Hormonveränderungen als Erklärungsversuche herangezogen. Den Estrogenen konnten in zahlreichen Studien stimulierende Einflüsse auf die Zellproliferation nachgewiesen werden, auch wenn diese zum Teil nur kurzfristig waren (Banasr et al., 2001; Barha et al., 2009; Tanapat et al., 2005). Der rapide Abfall der Estrogenkonzentration nach der Geburt und die steigenden Glukokortikoidkonzentrationen in den Muttertieren werden daher als Ursache für die verminderte Zellproliferation im Gyrus dentatus von Ratten während der Laktationsphase angenommen (Darnaudéry et al., 2007; Leuner et al., 2007; Pawluski and Galea, 2007). Möglicherweise sind auch diese großen Hormonschwankungen während der Umstellung von der Trächtigkeit auf die Laktationsphase eine denkbare Erklärung für die Unterschiede zwischen Neuroblasten und unreifen Neuronen in der zweiten Untersuchungsgruppe. Während die nicht-laktierenden Tiere einen Trend zu mehr unreifen Nervenzellen im Vergleich zu den säugenden Weibchen zeigten, waren bei der Analyse der Neuroblasten keine Unterschiede

Interessanterweise zeigen mehrere Studien, dass das Hippokampus-abhängige Lernen und Gedächtnis bei Nagern während der Trächtigkeit und Laktation verbessert ist (Gatewood et al., 2005; Kinsley et al., 1999; Pawluski et al., 2006b). Allerdings kann ein verbessertes Abschneiden in Aufgaben, die z.B. das räumliche Gedächtnis testen, nicht zwangsläufig mit einer erhöhten Neurogeneserate gleichgesetzt werden. Shors et al. bewiesen, dass die adulte Neurogenese zwar mit einigen, aber nicht allen Hippokampus-abhängigen kognitiven Funktionen assoziiert ist (Shors et al., 2002).

Zusammenfassend lässt sich sagen, dass die hier vorgestellte Studie keinen signifikanten Einfluss der Gravidität und Laktation auf die Proliferation und adulte Neurogenese im Gyrus dentatus feststellen konnte. Auch in Kombination mit den 5xFAD-Mutationen ergaben sich keine signifikanten Unterschiede. Es lässt sich allerdings ein Trend zu einer verminderten Zellproliferation im Gyrus dentatus bei Mäusen mit reproduktiver Erfahrung erkennen. Die Studienlage zu diesem Thema ist nicht eindeutig. In der Literatur lassen sich sowohl Studien finden, die keine Veränderung der Neurogenese und Proliferation im Hippokampus während und nach der Trächtigkeit feststellten (Banasr et al.,
2001; Furuta and Bridges, 2005; Shingo et al., 2003), als auch solche, die einen inhibitorischen Effekt beschrieben (Kim et al., 2010; Leuner et al., 2007). Aus diesem Grund sind weiterführende Untersuchungen von großer Bedeutung.

4.3. Einfluss der 5xFAD-Mutationen auf die Proliferation und adulte Neurogenese

5. Zusammenfassung

Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Prozent</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>Aβ</td>
<td>Amyloid-β-Peptid</td>
</tr>
<tr>
<td>AICD</td>
<td>Amyloid intracellular domain</td>
</tr>
<tr>
<td>ApoE</td>
<td>Apolipoprotein E</td>
</tr>
<tr>
<td>APP</td>
<td>Amyloid Precursor Protein</td>
</tr>
<tr>
<td>BACE-1</td>
<td>beta-site amyloid precursor protein</td>
</tr>
<tr>
<td>BDNF</td>
<td>brain-derived neurotrophic factor</td>
</tr>
<tr>
<td>BrdU</td>
<td>Bromdesoxyuridin</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>ca.</td>
<td>circa</td>
</tr>
<tr>
<td>CA</td>
<td>cornu ammonis</td>
</tr>
<tr>
<td>cm</td>
<td>Zentimeter</td>
</tr>
<tr>
<td>CREB</td>
<td>cAMP-responsive element-binding protein</td>
</tr>
<tr>
<td>DAPI</td>
<td>4´,6-Diamidino-2-phenylindole</td>
</tr>
<tr>
<td>DCX</td>
<td>Doublecortin</td>
</tr>
<tr>
<td>d.h.</td>
<td>das heißt</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxyribonukleotide</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylen-diamin-tetraacetat</td>
</tr>
<tr>
<td>et al.</td>
<td>et altera (und andere)</td>
</tr>
<tr>
<td>FAD</td>
<td>familial Alzheimer’s disease</td>
</tr>
<tr>
<td>GFAP</td>
<td>glial fibrillary acidic protein</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunglobulin G</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Bedeutung</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>lakt.</td>
<td>laktierend</td>
</tr>
<tr>
<td>mg</td>
<td>Milligramm</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>mind.</td>
<td>mindestens</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>mm²</td>
<td>Quadratmillimeter</td>
</tr>
<tr>
<td>µl</td>
<td>Mikroliter</td>
</tr>
<tr>
<td>n</td>
<td>Anzahl</td>
</tr>
<tr>
<td>NeuN</td>
<td>neuron-specific nuclear protein</td>
</tr>
<tr>
<td>NGF</td>
<td>nerve growth factor</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PFA</td>
<td>Paraformaldehyd</td>
</tr>
<tr>
<td>PS1</td>
<td>Präsenilin 1</td>
</tr>
<tr>
<td>PS2</td>
<td>Präsenilin 2</td>
</tr>
<tr>
<td>PSA-NCAM</td>
<td>Polysialic Acid Neural Cell Adhesion Molecule</td>
</tr>
<tr>
<td>SAD</td>
<td>sporadic Alzheimer’s disease</td>
</tr>
<tr>
<td>sAPP</td>
<td>soluble fragment of APP</td>
</tr>
<tr>
<td>SGZ</td>
<td>subgranuläre Zone</td>
</tr>
<tr>
<td>SVZ</td>
<td>subventrikuläre Zone</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-Acetat-Puffer</td>
</tr>
<tr>
<td>vgl.</td>
<td>vergleiche</td>
</tr>
<tr>
<td>WT</td>
<td>Wildtyp</td>
</tr>
<tr>
<td>z.B.</td>
<td>zum Beispiel</td>
</tr>
<tr>
<td>ZNS</td>
<td>zentrales Nervensystem</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

Abbildung 1 Pathologie von Morbus Alzheimer ... 4
Abbildung 2 Schematische Darstellung der APP-Prozessierung ... 6
Abbildung 3 Amyloider Proteinaggregationsprozess .. 7
Abbildung 4 Phasen der adulten Neurogenese im Hippokampus 10
Abbildung 5 Schematische Darstellung der adulten Neurogenese im Hippokampus 12
Abbildung 6 Immunfluoreszenzmarkierung und quantitative Analyse von Aβ-Plaques im Hippokampus von trächtigen und nicht-trächtigen 5xFAD-Mäusen 31
Abbildung 7 Immunfluoreszenzmarkierung und Quantifizierung proliferierender Zellen im Hippokampus von trächtigen und nicht-trächtigen 5xFAD- und Wildtyp-Mäusen .. 33
Abbildung 8 Immunfluoreszenzmarkierung und Quantifizierung der adulten Neurogenese im Hippokampus von trächtigen und nicht-trächtigen 5xFAD- und Wildtyp-Mäusen .. 35
Abbildung 9 Quantitative Analyse der Neuroblasten und unreifen Neurone im Gyrus dentatus von trächtigen und nicht-trächtigen 5xFAD- und Wildtyp-Mäusen .. 37
Abbildung 10 Immunfluoreszenzmarkierung und Quantifizierung von Aβ-Plaques im Hippokampus von laktierenden und nicht-laktierenden 5xFAD-Mäusen .. 40
Abbildung 11 Immunfluoreszenzmarkierung und Quantifizierung proliferierender Zellen im Hippokampus von laktierenden und nicht-laktierenden 5xFAD- und Wildtyp-Mäusen .. 43
Abbildung 12 Immunfluoreszenzmarkierung und Quantifizierung der adulten Neurogenese im Hippokampus von laktierenden und nicht-laktierenden 5xFAD- und Wildtyp-Mäusen .. 45
Abbildung 13 Quantitative Analyse der Neuroblasten und unreifen Neurone im Gyrus dentatus von laktierenden und nicht-laktierenden 5xFAD- und Wildtyp-Mäusen .. 47
Tabellenverzeichnis

Tabelle 1 Verwendete Geräte .. 21
Tabelle 2 Verwendete Materialien .. 22
Tabelle 3 Verwendete Antikörper ... 22
Tabelle 4 Verwendete Reagenzien und Chemikalien 23
Tabelle 5 Primer für die Genotypisierung .. 23
Tabelle 6 Verwendete Puffer und Lösungen 24
Tabelle 7 Verwendete Software ... 24
Literaturverzeichnis

Subjective experiences and objective assessment of implicit, explicit and
working memory in primigravid and primiparous women. J. Psychosom.

Jellinger, K.A., 2006. Clinicopathological analysis of dementia disorders in the
elderly--an update. J. Alzheimers Dis. JAD 9, 61–70.

proliferation and dispersion of doublecortin-positive hippocampal
doi:10.1016/j.expneurol.2005.08.010

Jin, K., Galvan, V., Xie, L., Mao, X.O., Gorostiza, O.F., Bredesen, D.E.,
13363–13367. doi:10.1073/pnas.0403678101

Jin, K., Peel, A.L., Mao, X.O., Xie, L., Cottrell, B.A., Henshall, D.C., Greenberg,
D.A., 2004b. Increased hippocampal neurogenesis in Alzheimer’s
doi:10.1073/pnas.2634794100

737.

of neuronal development in the adult hippocampus. Trends Neurosci. 27,
von Elsevier

Kempermann, G., Kuhn, H.G., Gage, F.H., 1997. More hippocampal neurons in
doi:10.1038/386493a0

Khlistunova, I., Biernat, J., Wang, Y., Pickhardt, M., von Bergen, M., Gazova,
Z., Mandelkow, E., Mandelkow, E.-M., 2006. Inducible expression of Tau
repeat domain in cell models of tauopathy: aggregation is toxic to cells
but can be reversed by inhibitor drugs. J. Biol. Chem. 281, 1205–1214.
doi:10.1074/jbc.M507753200

doi:10.1016/j.neuron.2009.06.026

Kim, S.K., Hwang, I.K., Yoo, K.-Y., Yoo, D.Y., Bae, E., Lee, C.H., Choi, J.H.,
inhibits cell proliferation and neuroblast differentiation without neuronal
damage in the hippocampal dentate gyrus in C57BL/6N mice. Brain Res.

Kinsley, C.H., Madonia, L., Gifford, G.W., Tureski, K., Griffin, G.R., Lowry, C.,
doi:10.1038/45957

the postpartum period through elevations in adrenal steroids.
Hippocampus 17, 434–442. doi:10.1002/hipo.20278

Mu, Y., Gage, F.H., 2011. Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol. Neurodegener. 6, 85. doi:10.1186/1750-1326-6-85 Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0)

Pawluski, J.L., Vanderbyl, B.L., Ragan, K., Galea, L.A.M., 2006a. First reproductive experience persistently affects spatial reference and working memory in the mother and these effects are not due to pregnancy or “mothering” alone. Behav. Brain Res. 175, 157–165. doi:10.1016/j.bbr.2006.08.017

Danksagung

An dieser Stelle möchte ich mich bei allen bedanken, die zum Gelingen dieser Arbeit beigetragen haben. Ich danke Frau Prof. Dr. Melanie Meyer-Luehmann, für die Möglichkeit, meine Doktorarbeit in ihrer Arbeitsgruppe durchführen zu können, für die Ideenfindung und die tolle Betreuung. Vielen Dank an Prof. Dr. Michael Hüll für die freundliche Übernahme des Zweitgutachtens.

Mein besonderer Dank gilt Stephanie Waldkirch, die mich in die Welt der Forschung und des wissenschaftlichen Schreibens eingeführt hat und die für alle Fragen und Probleme ein offenes Ohr hatte. Ihre Betreuung und Unterstützung haben maßgeblich zum Gelingen dieser Arbeit beigetragen. Außerdem möchte ich Natalie Katzmarski und Desirée Loreth danken, die mir jederzeit mit Tipps und Ratschlägen zur Seite standen und mir als Medizinerin die Biologie näher brachten. Für die tolle Arbeitsatmosphäre danke ich dem gesamten Team, das mir nicht nur eine sehr lehrreiche, sondern auch eine sehr angenehme Zeit in der Forschung ermöglicht hat.

Ein ganz besonderer Dank geht auch an meine Eltern, die mich nicht nur in dieser Zeit, sondern schon mein ganzes Leben lang, auf verschiedenste Art und Weise unterstützen und auf deren Rückhalt und Hilfe ich sowohl bei Kleinigkeiten als auch bei größeren Schwierigkeiten immer zählen kann.

Abschließend möchte ich mich noch bei Max bedanken, der immer für mich da ist, mich aufbaut und zum Lachen bringt.