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A B S T R A C T

Within the present thesis, we investigate, analytically and numerically,
the expansion of initially strongly confined wave packets in one-dimen-
sional, correlated random potentials.

In the first part, we focus on single-particle wave packets, i. e. with-
out considering interactions between particles. At long times, the expan-
sion of the wave packet comes to a halt due to destructive interferences
leading to Anderson localization. The resulting stationary density pro-
file has been measured in experiments on Bose-Einstein condensates in
one-dimensional random potentials, but existing theories are unable to
explain the behaviour of the density profile at the center. To improve
this situation, we develop an analytical description for the disorder-
averaged localized density profile. For this purpose, we employ the di-
agrammatic method of Berezinskii, which we generalize to the case of
wave packets, present an analytical expression of the localization length
which is valid for small as well as for high energies and finally, develop
a self-consistent Born approximation in order to analytically calculate
the energy distribution of our wave packet. By comparison with numer-
ical simulations, we show that our theory describes well the complete
localized density profile, not only in the tails but also in the center.

In the second part, we discuss the influence of interactions on the spa-
tial expansion of Bose-Einstein condesates in one-dimensional random
potentials. We show, by comparison with numerical data, that the quasi-
stationary state reached at intermediate times can be well described
within the theory developed for the non-interacting case, provided that
the interactions are taken into account through the choice of an effective
initial state.
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Z U S A M M E N FA S S U N G

Die vorliegende Arbeit enthält analytische und numerische Studien zur
Ausbreitung von anfangs räumlich stark begrenzten Wellenpaketen in
eindimensionalen zufälligen Potentialen.

Im ersten Teil konzentrieren wir uns auf Wellenpakete einzelner Teil-
chen, d.h. ohne Berüchsichtigung von Wechselwirkungen zwischen Teil-
chen. Im Limes langer Zeiten kommt die Ausbreitung des Wellenpakets
aufgrund destruktiver Interferenzen, die zur Anderson Lokalisierung füh-
ren, zum Stillstand. Das sich daraus ergebende stationäre Dichteprofil
wurde mit Bose-Einstein-Kondensaten in eindimensionalen zufälligen
Potentialen experimentell nachgewiesen. Bisher veröffentlichte Theo-
rien sind jedoch nicht in der Lage, das Verhalten dieses Dichteprofils
für kleine Abstände zu erklären. Um diese Situation zu verbessern, en-
twickeln wir eine analytische Beschreibung des Ensemble-gemittelten
lokalisierten Dichteprofils. Zu diesem Zweck verwenden wir die dia-
grammatische Methode von Berezinskii, welche wir für Wellenpakete
verallgemeinern, leiten einen analytischen Ausdruck der Lokalisierungs-
länge her, welcher sowohl für kleine als auch große Energien gültig ist,
und entwickeln schließlich eine selbstkonsistente Bornsche Näherung,
um die Energieverteilung unseres Wellenpakets analytisch zu berech-
nen. Durch den Vergleich mit numerischen Simulationen zeigen wir,
dass unsere Theorie das gesamte lokalisierte Dichteprofil sowohl für
kleine als auch für große Abstände gut beschreibt.

Im zweiten Teil untersuchen wir den Einfluss von Wechselwirkun-
gen auf die räumliche Ausbreitung von Bose-Einstein-Kondensaten in
eindimensionalen zufälligen Potentialen. Durch den Vergleich mit nu-
merischen Daten zeigen wir, dass der quasi-stationäre Zustand, welcher
in einem Regime mittlerer Zeiten erreicht wird, gut durch die für den
nicht wechselwirkenden Fall entwickelte Theorie beschreiben wird, sofern
die Wechselwirkungen durch die Wahl eines effektiven Anlangszustands
berücksichtigt werden.
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1
I N T R O D U C T I O N

Starting from the Drude model (for classical particles)1 and the Bloch
theorem (for waves)2, research on electron transport has always been a
hot topic in physics and other areas of science. For almost three decades,
the Bloch theorem with its delocalized states established the basis for
describing, e. g., the electronic band structure in solid state physics of
regular crystals, whereas electronic transport and conductivity in disor-
dered metals has been described with the classical Drude model, which
neglects interferences due to the quantum-mechanical wave nature. In
1958, P. W. Anderson studied electron diffusion in uncorrelated disor-
dered potentials, i. e., non-regular crystal lattice structures, predicting
that the electronic energy eigenstates are localized. In the limit of long
times, the particle then remains localized in a finite region surrounding
its initial position [4]. This phenomenon is known as Anderson local-
ization (AL) and arises due to destructive interferences between multi-
ply reflected wave amplitudes. In other words, the electron eigenstates
neither satisfy the conditions of the Bloch theorem nor of the classical
Drude model. Thereby, the main characteristics of AL is the exponen-
tial decay of the spatial probability density of eigenstates in the random
potential, where their corresponding exponent is characterized by the
localization length Lloc,3 which depends on the corresponding electron
energy [5]. From the exponential decay of the probability density of
eigenstates in the Anderson model, many physical properties which
were found using the Bloch model or the Drude model in older works,
e. g. concerning the conductivity, had to be revisited

Some important research on the absence of conductivity in electron systems

One of the most important consequence of Anderson’s works was to es-
tablisch the existence of a transition between extended and localized

1 In the Drude model, the electron transport through a metal atom lattice is described by
the kinetic theory, which assumes a classical behavior of the electrons in a solid, and
thereby visualizes the electron dynamics as bouncing and re-bouncing of electrons
with themselves and the immobile atoms [1], [2].

2 The Bloch model introduces the quantum mechanical wave nature of the particles,
and asserts that the particles with a given fixed energy, have the same probability to
be situated anywhere within the potential. Therefore, the eigenstates of the particles
which travel in periodic lattices are delocalized, which implies that the wave state is
spread over the whole periodic potential [3].

3 The inverse of the localization length defines the Lyapunov exponent γE. See Sec. 2.2.1.

1



2 introduction

states driven by the amount of disorder in the underlying three di-
mensional potential landscape. This metal-insulator transition is called
the Anderson transition [6]. Soon after, N. F. Mott and W. D. Twose
demonstrated that the energy eigenstates in one and two-dimensional
disordered potentials are always localized and, therefore, the Anderson
transition only occurs in three-dimensional disordered potentials [7]. In
1979, E. Abrahams et. al. found an expression for the dependence of the
conductivity in terms of the dimensionless conductance gc

4, and the
size of the disordered potential L [9]. According to this work, in three-
dimensional potentials, the energy eigenstates are localized if gc < 1,
while in one and two-dimensional potentials, they are localized for all
values of gc, or quasi-extended if the system size is smaller than the
localization length. In the 90’s, D. Dunlap et. al. found an interesting
result related to the Anderson theorem: if the disordered potential ex-
hibits correlations between the atoms that constitute it,5 then the elec-
tronic states may become delocalized for specific values of the energy,
regardless the dimensionality of the potential [10]. In principle, the ef-
fects of specific long-range correlations also led to the possibility of
a delocalization-localization transition even in one-dimensional disor-
dered potentials [11]. This illustrates the importance of correlations in
the disordered systems and that the Anderson theorem is only valid for
uncorrelated potentials.

Although at first, Anderson localization was a phenomenon linked
to disordered electron systems, experimentally, one-dimensional An-
derson localization has also been observed in other disordered sys-
tems, including, e. g., light waves in photonic waveguide lattices [12],
microwaves [13] or sound waves [14]. From these experimental results,
we may conclude that the physics mechanism behind Anderson local-
ization must be a wave interference phenomenon [15]. In order to show
it, researchers focused first to systems where the interactions or non-
linearities are negligible, e. g., light waves in disordered media [16], [17]
or ultracold atoms plus optical potentials [18], [19], where the parame-
ter related to the interaction can be easily controlled.

4 gc was defined as the ratio between two time scales: i) the time it takes a conducting
electron in a zigzag motion to arrive at the boundary of the potential, and ii) the
longest time that an electron wavepacket can travel inside a finite potential without
visiting the same region twice [8].

5 Given two types atoms a and b, an uncorrelated one-dimensional potentials is ob-
tained, if their positions are statistically independent: aaababa, while atoms in the
correlated potential always occur in pairs, e. g. aabaabbbaa.
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On single state localization

The problem to describe the localization of single eigenstates with given
energy E is already well studied, and the description successfully a-
chieved. Based on diagrammatic methods, a well-done deduction of the
average probability density of one single energy eigenstate, which con-
nects the initial point i and the final point j, was reported by Berezinskii
[20]. Later, Gogolin et. al. extended the technique to the case of short-
range correlated potentials [21], [22]. The basic idea behind [20]–[22]
is to get an analytic expression of the density-density autocorrelation
function, which provides information about the dependence of the par-
ticle density in one point f at time t, on that in some other point i at
time t0 < t. For non-interacting fermions (e. g. electrons) at zero tem-
perature, this correlation is mediated only by those eigenstates the en-
ergy of which is equal to the Fermi energy. The analytic result found
by Berezinskii and Gogolin exhibits an (approximately) exponential de-
cay of the density-density correlation function with increasing distance
between the points i and j, which reflects the above-mentioned expo-
nential localization of energy eigenstates.

In [23], D. J. Thoules found an expression of the Lyapunov exponent,
for a general 1D potential, related to the cumulative density of states
via the Kramers–Kronig relations [24]. For a free particle in a box, the
dispersion relation between energy E and wave vector k is parabolic,
i. e. E = h̄2k2/(2m), and, as a result of this relation, it is easy to find
the density of states. This situation changes drastically if the particle
is subject to random, disordered potentials. For every single realization
of a random potential, the energy spectrum changes and the relation
between the energy and wave vector is no longer parabolic, especially
for small values of energy, which are related to confined states in differ-
ents quantum wells produced in every single realization. Here enters
B. I. Halperin’s contribution [25], where he found the spectral function
as the average relation between the energies and the wave vectors for
uncorrelated random potentials. In [25], the author also found an ana-
lytical expression for the cumulative density of states. Thereby, we may
say that the localization of single energy eigenstates for a particle in
an uncorrelated one-dimensional disordered potential is a well studied
and solved problem, which has an elegant and successful description.

The story of interactions

The interaction between the particles introduces another important as-
pect in the Anderson localization phenomenon. Interesting results on
the destruction of Anderson localization in one-dimensional systems
via particle interactions have been found as a consequence of non-lineari-
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ties in the non-linear Schrödinger equation or the Gross-Pitaevskii equa-
tion. As an example, A. S. Pikovsky and D. L. Shepelyansky developed
a numerical study of the spreading of an initially localized wave packet
in a one-dimensional discrete nonlinear Schrödinger disordered lattice,
finding that the Anderson localization is destroyed by a certain criti-
cal strength of nonlinearity [26]. Nevertheless, how the interactions at
transient times can affect the long time state of an initially strongly con-
fined wave packet, and the question if there exists or not an average
asymptotic state assumed at long times in the presence of interactions,
is an interesting problem to solve. Thereby, the analytic description of
the particle density at long times remains as non-trivial task to explore
and to do.

1.1 from localization of eigenstates to localization of

wave packets

On the other side, the description of the dynamics of wave packets de-
scribed as a superposition of many energy eigenstates with different en-
ergies is also a well-studied problem, but not in total achieved [27], [28].
Several experiments on Anderson localization of Bose-Einstein conden-
sates (BEC) in one-dimensional random potentials have been performed
in the last decade [29]–[34]. These experiments have been interpreted in
terms of Anderson localization of non-interacting particles, although
the interactions between the particles forming the condensate do affect
the shape of the initial state reached during a short expansion period
following the release of the initially trapped condensate, after which the
interactions are assumed to be negligibly small. The appearance of the
disorder potential then localizes the condensate’s density distribution.
The dynamics of wave packets in a one-dimensional random potential,
is a much more complex phenomenon that the localization of eigen-
states, due to the superposition of many eigenstates with different ener-
gies [27], [28]. In general, this superposition leads to a non-exponential
decay of the asymptotic density profile reached at long times.

1.2 the aim of this thesis

For an initially strongly confined wave packet, theoretical descriptions
have been developed which explain well the exponential or algebraic
decay of the localized density profile in the far tails (i. e. for large dis-
tances) [27], [28], but, so far, no theory has been able to reproduce the
behaviour at the center close to the initial position, where the maximum
of the density profile remains. To fill this gap is the first purpose of the
present thesis. We will give a theoretical description of the complete
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density profile (including the center and the tails) which agrees well
with the results of numerical calculations. To capture the correct behav-
ior at the center, it is essential to treat, in particular, the regime of small
energies in an adequate way. We achieve this aim by developing a self-
consistent Born approximation to calculate the spectral function, as well
as by making use of an exact analytical expression of the Lyapunov ex-
ponent for uncorrelated potentials [35], which is valid for large as well
as for small energies.

The second purpose of the present thesis is to understand how the
interactions can affect the expansion of the BEC, and in consequence,
the long-time state of initially strongly confined wave packets. Our aim
is also to describe analytically the dependence of the long time disorder-
averaged localized density profile on the interaction parameter.

1.3 outline of this thesis

The thesis is organized as follows:

• In Chapter 2, we start by discussing experiments on localization
of Bose-Einstein condensates in one-dimensional disordered po-
tentials in order to lay the motivation for the present thesis. We
introduce first the phenomenon of classical reflection at high po-
tential barriers, and distinguish it from Anderson localization in
random potentials. Once we addressed these issues, we make a
review of some important concepts, e. g., the localization length
and the spectral function, in previous theoretical works attempt-
ing to describe the average asymptotic density profile. At the end,
we show a comparison of the numerical results with the theoreti-
cal predictions, where we conclude that the existing theory is able
to explain the behaviour of the asymptotic density profile in its
wings (i. e. for large distances from the initial position), whereas
significant deviations between theory and numerics are observed
in the center of the profile (i. e. in the vicinity of the initial posi-
tion).

• The model and general concepts of multiple scattering theory
used in this thesis are explained in Chapter 3. First, we introduce
the Hamiltonian and the initial state that we use throughout this
thesis. Immediately after, we show how the asymptotic density
profile can be expressed in terms of solutions of the stationary
Schrödinger equation. Here, we will also focus our attention on
the description and the characterization of a set of random po-
tentials in a statistical sense, and introduce the Gaussian disorder
model. To finish, we will introduce the concept of Green functions,
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which will turn out to be useful in order to derive the Dyson equa-
tion as an average over the disorder.

• In Chapter 4, we introduce a diagrammatic method for describing
scattering processes in one-dimensional random potentials, and
with this, make it possible to review Berezinskii’s analytical de-
scription of the density-density autocorrelation function at a given
energy. Then, we develop a generalization of Berezinskii’s method
to the case of wave packets, which finally allows us to derive a
general equation for the localized, asymptotic density profile of
an initially strongly confined wave packet, taking into account the
energy distribution of the latter. This equation, Eq. (9), expresses
the density profile in terms of the Lyapunov exponent and the
spectral function, which are treated in the following two chapters.

• In Chapter 5, we define the concept of the Lyapunov exponent
and derive a matrix formalism for the one-dimensional disordered
system. Using this matrix formalism, we calculate numerically the
Lyapunov exponent for a one-dimensional Gaussian disordered
correlated potential. On the one hand, in order to get an analyti-
cal expression of the Lyapunov exponent, we introduce the phase
formalism and the Born approximation, which leads us to a per-
turbative expression in terms of the potential second-order corre-
lation function. On the other hand, we disscus Thouless’ relation
between Lyapunov exponent and density of states, and Halperin’s
expression for the average density of states for uncorrelated poten-
tials. These two relations leads us to an exact analytical expression
for the Lyapunov exponent for uncorrelated potentials. At the end
of the chapter, we interpolate between both analytical expressions
(one valid for high energies or short wave lengths, the other one
small energies or long wave lengths) to find an analytical equa-
tion that describes the Lyapunov exponent for one-dimensional
disordered correlated potentials in the entire range of energies.

• The spectral funtion as a main quantity to describe the BEC asymp-
totic density profile is the subject of Chapter 6. We define first the
spectral function, and then, we derive the spectral function for the
free particle. We then employ the Born approximation in order
to derive the spectral function in the presence of a weak random
potential for long energies. After this, we develop a self-consistent
Born approximation to get an analytical expression for the spectral
density which is approximately valid also for small energies.

• Chapter 7 is devoted to do a comparison of the theoretical de-
scription developed in the previous chapters (Chapters 4 - 6) with
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numerical results. For the latter, we consider periodic boundary
conditions. First, we compare the analytical energy distribution
function with the numerics, and after that, we show the result of
the analytic asymptotic average density and compare with the nu-
merics. Im both cases, we find a good agrement between theory
and numerics. As explained at the end of this chapter, small devi-
ations can be explained by the finite size of the numerical system
in connection with the periodic boundary conditions, whereas the
theory has been developed for an infinite system.

• In the previous chapter, one of the main aims of the present thesis
was achieved, i. e., to improve the existing theoretical description
of Anderson localization in one-dimensional random potentials,
in such a way, that we are able to describe the complete den-
sity profile of the asymptotic state. Nevertheless, the description
in Chapters 3 - 7 does not consider the interactions between the
bosons. In order to consider them, we must introduce a new exper-
imental scenario, as we shortly mentioned in Sec. 2.3, where the
BEC is drived by its interactions at transient times. This chapter is
devoted to including the interactions between the particles in the
description of the asymptotic average BEC density in our model.
We set up a theoretical model according to which the interactions
are taken into account through the choice of an appropiate effec-
tive initial state.

• In Chapter 9, we present the numerical results for the quasi-station-
ary density, ng(x), of a BEC in a one-dimensional disordered po-
tential, which is driven by interations at transient times. Then, we
compare it with the theoretical description developed in Chap-
ter 8. Again, we find good agreement between the theory and the
numerics.

• In Chapter 10, we first summarize the main results of this thesis.
Secondly, we discuss some open questions which arise on the basis
of the results of this thesis.





2
M O T I VAT I O N A N D S TAT E O F T H E A RT

An important motivation for the present thesis originates from exper-
imental works on Anderson localization of Bose-Einstein condensates
(BECs) in random potentials. These experiments are described in Sec. 2.1.
We consider the following, experimentally observed scenario: a spatially
trapped condensate starts to expand in a one-dimensional random po-
tential as soon as the trap is released. After a certain time, however,
the expansion of the condensate comes to a halt, and a quasi-stationary
density profile is observed. We will discuss below whether the suppres-
sion of the expansion can be regarded as a manifestation of Anderson
localization in a one-dimensional random potential. In the following,
we will be interested in analyzing the shape of the resulting asymptotic
long-time averaged density profile.

We will review previous attempts to describe this asymptotic density
profile theoretically in Sec. 2.2. For this purpose, we will briefly intro-
duce and motivate a number of important theoretical concepts (e. g. the
localization length and the spectral function) which will be treated in
much more detail later in this thesis. As we will see in Sec. 2.3, the
present theory is able to explain the behaviour of the asymptotic den-
sity profile in its wings (i. e. for large distances from the initial posi-
tion), whereas significant deviations between theory and numerics are
observed in the center of the profile (i. e. in the vicinity of the initial
position). Therefore, one of the main aims of the present thesis will be
to improve the existing theoretical description of Anderson localization
in one-dimensional random potentials, in such a way, that we are able
to describe the complete density profile of the asymptotic state.

2.1 experiments on 1d localization of bose-einstein con-
densates

2.1.1 Classical reflection at high potential barriers

Within the context of random potentials, the works [30] and [31] have
reported strong reduction of mobility of atoms in an elongated (i. e.
effectively one-dimensional) BEC. D. Clément et. al. in the Letter [30]
started with a 87Rb BEC in a 3D harmonic trap with radial frequency
ω⊥/2π = 660(4) Hz and axial frequency ωz/2π = 670(7) Hz. The BEC
has approximately 3.5 × 105 atoms, Thomas-Fermi half-length LTF =
150 µm, radius RTF = 1.5 µm, and chemical potential µ/2πh̄ ∼ 5 kHz.

9
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Additionally, there exists an axial 1D random speckle potential. The am-
plitude of the random fluctuations of the latter is characterized by V0.
The ratio of the correlation length σV and the chemical potential µ is
γ = σV/µ. Then, the experimentalists turn off the axial trapping po-
tential while the strong transverse confinement continues to exist. Due
to the repulsive interactions, the BEC experiences an axial expansion in
the random potential. In Fig. (1), it is possible to observes that the root
mean square (rms) size L of the BEC reaches a saturation value as a
function of time, which decreases with increasing strength γ of the dis-
order, while the rms size L grows linearly in time in the absence of the
random potential (γ = 0), at a velocity ∼ 2.47(3) mm s−1. In the inset,
we observe an analogous behaviour of the BEC’s longitudinal center of
mass motion.

Fig. (1) Time evolution of the BEC axial rms size L for different values of ran-
dom potential aplitudes V0 = µγ for a fixed chemical potential µ.
(taken from [30]). All V0 values are smaller than the chemical poten-
tial µ [γ = 0 (♦), 0.2 (•) and 0.7 (�)]. Every point is the result of an
average over three measurements. The solid and the dashed lines are
fits to the data and guides to the eye respectively. The inset shows the
motion of the BEC center of mass during the axial expansion for the
same values of γ. The saturation of L shows a strong suppression of
transport due to the disorder.

Nevertheless, the autors in [30] wondered whether their observations
can be interpreted in terms of Anderson localization, since the suppres-
sion of transport can also be explained by a classical mechanism: If
the kinetic energy of the quantum particle is smaller than the highest
potential barrier occurring in a typical realization of the random poten-
tial, the localization can be understood as a classical reflection process,
see Fig. (2). The autors of [30] estimated the probability for the occur-
rence of high potential barriers using the statistical properties of the
random speckle potential (see also Subs. 3.2.3), and concluded that this
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is indeed the case. A similar conclusion was also reached in a different
experiment performed by C. Fort et. al. [31].

x

V(
x) E

Fig. (2) Classical reflection at high potential barriers. In a given realization of
the random potential (red line) in the strong disorder regime, the ki-
netic energy (E) of the quantum particle (represented by the blue line
in the black line packet) can be smaller than the highest potential bar-
rier. In this case, the suppression of transport on a BEC in a 1D random
disordered potential experiments can be interpreted in terms of classi-
cal reflection at high potential barriers (dotted curve).

2.1.2 Experimental observation of Anderson localization

Whereas the above classical localization experiments have been per-
formed in the regime of strong disorder, subsequent theoretical works
predicted that it is possible to observe localization of matter waves in
optical speckle potentials also for weak disorder [27], [34]. Since, in this
regime, the kinetic energy of the quantum particle is larger than the
highest potential barrier occurring in a typical realization of the ran-
dom potential, localization can only be understood as a consequence
of the quantum-mechanical wave nature. This is the regime of Ander-
son localization arising from destructive interference between multiply
reflected wave amplitudes [4].

Indeed, in 2008, J. Billy et. al. have observed Anderson localization of
matter waves in a weak disordered optical speckle potential [29]. In par-
ticular, the experiment measured – for the first time with matter waves
– the formation of a stationary, exponentially localized wavefunction
as a direct signature of Anderson localization. The experiment is per-
formed with a BEC of Rubidium-87 atoms in a one-dimensional optical
waveguide which restricts the propagation of the BEC to the z-direction.
Furthermore, a controlled disorder potential is created by laser speckle.
The detuning of the latter from the atomic frequency is large enough,
and the intensity low enough, to ensure that any spontaneous photon
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(a) (b)

Fig. (3) Sketch of the BEC localization scenario (taken from [29]). (a) A small
BEC is trapped in a magnetic trap (gray paraboloid) in the presence
of a disordered potential (diffusive blue-black layer), which has ampli-
tude V0 much smaller than the chemical potential µ of the condensate
(V0/µ = 0.12). The red cylinder represents a horizontal optical waveg-
uide, which ensures the one-dimensional propagation of the BEC. (b)
Once the magnetic trap is switched off, the BEC spreads along the
disordered potential until reaching an asymptotic state at t = 1 s.

scattering on the atoms is negligible during the expansion, and thereby,
the disorder potential is purely conservative.

Initially, the condensate is trapped in the longitudinal z-direction
by an additional magnetic trap. In Fig. (3a), the waveguide and the
longitudinal magnetic trap are sketched as a red cylinder and a gray
paraboloid, respectively, whereas the disordered speckle potential is
drawn in Fig. (3a) as a blue-black layer. The BEC has transverse and
longitudinal radii of 3 µm and 35 µm, respectively, whereas the disor-
dered potential length is 4 mm along the z direction.

At time t = 0, the longitudinal confinement is switched off, and the
BEC expands due to the repulsive interactions between the particles.
However, the particle density of the condensate is chosen small enough
such that interactions become negligible after a short time of expansion,
during which all the interaction energy is converted into kinetic energy.
At t = 1 s, the BEC reaches the asymptotic state shown in Fig. (3b).
The atomic density in Fig. (3b) is observed by direct imaging of the
fluorescence of the rubidium atoms irradiated by a resonant probe.

The fact that the density profile n(z) shown in Fig. (3b) indeed cor-
responds to a stationary state is demonstrated in Fig. (4a), where the
profile is shown (as a function of z) at three different times 0.8, 1.0 and
2.0 seconds. We see that the three profiles are almost the same. In par-
ticular, in the wings (i. e. for large z), all three curves can be fitted by an
exponential function:

n(z) ∝ exp [−2|z|/Lloc] (for large z), (1)
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(a) (b)

Fig. (4) BEC asymptotic atomic density profile (taken from [29]). (a) Three
atomic density profiles (in units of atoms µm−1) as a function of dis-
tance (in units of nm) at 0.8, 1.0 and 2.0 seconds. The profile is almost
constant as a function of time. The wings are fitted by an exponential
function (dotted line) defining the localization length. (b) Localization
length (in units of nm) as a function of time (in units of s). A stationary
state is reached after t ' 0.5 s.

where Lloc is the localization length extracted from the fitting. As shown
in Fig. (4b), the localization length assumes a stationary value after t '
0.5 s.

In summary, the above experiment demonstrates that a weak, one-
dimensional disorder potential can stop the expansion of an initially
trapped BEC and lead to the formation of a stationary, exponentially lo-
calized wavefunction [29]. Note, however, that the experimentally mea-
sured density profiles in Fig. (4a) still exhibit time-dependent fluctua-
tions around the exponential fit. Strictly speaking, the wave function is
not truly stationary since it is not an eigenfunction of the Hamiltonian.
Instead of speaking of a stationary state, we will therefore introduce an
asymptotic density profile, defined in Chapter 3 in terms of a long-time
average, see Eq. (21). Moreover, even the time-averaged profile still ex-
hibits fluctuations determined by the given realization of the disorder
potential. To get rid of these fluctuations, we will employ an additional
ensemble average over the realizations of the disorder potential, see
Chapter 3.
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2.2 attempts to theoretically describe the average asymp-
totic density profile

2.2.1 Localization length

The fact that an exponentially localized wave functions can be realized
with BECs and optical speckle potentials has been predicted by the the-
oretical works [27] and [34]. Indeed, it has been known for a long time
that eigenfunctions of the Schrödinger equation in a one-dimensional
disorder potential are expontially localized in the generic case [4] (un-
less the correlations of the random potential are designed in a specific
way [11]). A detailed discussion of this result will be presented in Chap-
ter 5 below.

Using a perturbative method (i. e. the Born approximation discussed
in Subs. 5.3.2 below) for calculating the localization length at a given
energy E, [27] and [34] derived the following result for the localization
length as a function of the energy in an optical speckle potential with
strength V0 and correlation length σc (see Subs. 3.2.3):

Lloc(E) =


8p2

E
πV2

0 σc(1−pEσc)
, if pEσc < 1.

∞, if pEσc ≥ 1,
(2)

where pE =
√

E is the free particle momentum in units where h̄ = 2m =
1.

The fact that the localization length diverges for pEσc ≥ 1 can be
traced back to a specific property of the correlation function of optical
speckle potentials (i. e. the finite support of the Fourier transform of its
correlation function), which we will discuss in Subs. 3.2.3 below. In fact,
only the perturbative result diverges. The exact value of the localization
length (including higher orders of perturbation theory [36]) remains
finite, but assumes very large values (larger than the size of the exper-
imental system) for pEσc > 1. The validity of the Born approximation
leading to Eq. (2) will be further discussed in Subs. 5.3.2 below.

Eq. (2) describes the localization length as a function of energy. As al-
ready mentioned, the BEC in the above experiment does not correspond
to an energy eigenfunction, but rather consists of a superposition of
eigenfunctions with different energies. The stationary density profile is
therefore expected to be given as a superposition of exponentials with
different localization lengths. In principle, this may lead, in total, to a
non-exponential decay. If, however, the initial momentum distribution
of the condensate (after a short period of expansion driven by the inter-
actions, as discussed above) is bounded, with a maximum momentum
pmax < σ−1

c , the behaviour at large z is dominated by the exponent
associated to the corresponding energy Emax = p2

max [27], [34]. This
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condition is indeed fulfilled in the experimental runs corresponding to
Figs. (3) and (4) above, where pmaxσc ' 0.65 was measured by observ-
ing the free expansion of the BEC in the waveguide in the absence of
disorder. The corresponding localization length Lloc(Emax) is in good
agreement with the above experimental data (see Fig. (3) in [29]).

On the other hand, if pmaxσc > 1, a certain fraction of atoms (i. e. those
with momenta p > σ−1

c ) are not localized (on the length scale of the
experimental setup) according to Eq. (2). As shown in [27] and [34], the
remaining localized part of the BEC then exhibits an algebraic (∝ z−2)
instead of an exponential decay. Also this prediction has been confirmed
experimentally, by repeating the above experiment with larger number
of atoms leading to pmaxσc ' 1.17 [29]. In this case, the wings of the
localized density profile can be fitted by a power-law decay of the form
1/|z|β with β ' 2, in agreement with the theoretical prediction.

Thereby, a quantitative agreement between theory and experiment
has been achieved at least for the wings of the asymptotic density pro-
file. In order to describe the complete shape of the density profile, how-
ever, it is necessary to take into account two additional aspects: first,
the energy eigenfunctions in a one-dimensional random potential are
not purely exponential functions, but exhibit corrections to an exponen-
tial decay which become relevant, in particular, for small distances |z|,
see Subs. 2.2.2. Second, a suitable way of averaging over the energy dis-
tribution of the BEC wave packet must be established, see Subs. 2.2.3.

2.2.2 Corrections to pure exponential decay

In order to quantify the corrections to pure exponential decay, we define
the density-density autocorrelation function for eigenstates with energy
E (see also Subs. 4.1.1):

nE(x− x′) =
∞

∑
n=0
|φn(x)|2|φn(x′)|2δ(En − E)/ρE, (3)

where {|φn〉} represents a complete set of energy eigenfunction in the
one-dimensional random potential with corresponding energies {En}.
The overline describes the average over all realizations of the random
potential (see Sec. 3.2). The average density of states:

ρE = ∑
n
|〈φn|x′〉|2δ(En − E), (4)

is introduced to ensure normalization, i. e.,
∫

dx nE(x) = 1. The statisti-
cal properties of the random potential are assumed to be translationally
invariant, such that the quantity defined in Eq. (3) depends only on the
difference x− x′, and Eq. (4) is independent of x′.
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Physically, the function introduced in Eq. (3) describes transport of
a quantum particle from an initial position x′ to a final position x me-
diated by eigenfunctions with fixed energy E. For a one-dimensional
random potential, this function has been calculated by Berezinskii and
Gogolin [20]–[22], using a diagrammatic method, which we will review
in Chapter 4. The result is:

nE(x− x′) =
π2γ(E)

8

∫ ∞

0
du u sinh (πu)

[
1 + u2

1 + cosh (πu)

]2

× exp{−(1 + u2)γ(E)|x− x′|/2}. (5)

where the Lyapunov exponent

γ(E) =
1

Lloc(E)
(6)

defines the inverse of the localization length.

0 2 4 6 8
xγ(E)

0.0001

0.001

0.01

0.1

n 
(x

)/γ
(E

)
E

 2 (1-2𝛾(E)|x| ) / 3

exp(-𝛾(E)|x|/2)
-3/2

[x𝛾(E)]

Fig. (5) Density-density autocorrelation function nE(x) at fixed energy E, see
Eq. (3), in units of γ−1(E), as a function of dimensionless distance
xγ(E). For small values of the product xγ(E), the asymptotic density
behaves as 2(1 − 2γ(E)|x|)/3, while for higher values it approaches
an exponential decay [xγ(E)]−3/2e−γ(E)|x|/2 corrected by an algebraic
prefactor.

The function nE(x− x′) as given by Eq. (5) is plotted in Fig. (5). For
large x, it decays exponentially:

nE(x) −→
x→∞

x−3/2e−γ(E)|x|/2, (7)

(with correction due to an additional algebraic prefactor). Note that the
localization length defined by Eqs. (6,7) differs by a factor 4 from the
one defined in Eq. (1). We will come back to this point in Chapter 5. On
the other hand, the behaviour at small x is given by:

nE(x) −→
x→0

2γ(E)
3

(
1− 2γ(E)|x|

)
, (8)

which clearly deviates from the behaviour at large x described by Eq. (7).
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2.2.3 Energy distribution

In order to average over the initial position and momentum uncertainty
of the condensate wave function, the following ansatz was introduced
in [27], [28] and [34]:

n(x) =
∫ ∞

−∞
dE

∫ ∞

−∞
dpdq W(q, p)A(p, E)nE(x− q), (9)

where nE(x− q) denotes the density-density autocorrelation function at
fixed energy introduced in the previous subsection, and

W(q, p) =
∫ ∞

−∞
dx

eipx

2π

〈
q− x

2

∣∣∣ψ0

〉 〈
ψ0

∣∣∣q + x
2

〉
, (10)

is the Wigner function of the initial state |ψ0〉. As already mentioned
above, the initial state |ψ0〉 is evaluated after a short expansion period
driven by the interactions, which can be expressed in terms of the so-
lution of the nonlinear Gross-Pitaevskii equation in the absence of dis-
order (see Chapter 8). After this period, interactions are assumed to
be negligible, and the remaining propagation is described by the lin-
ear single-particle Schrödinger equation in the presence of the disorder
potential, see Eq. (16).

The spectral function A(p, E) in Eq. (9) converts the momentum un-
certainty into an energy uncertainty. In other words, it gives the prob-
ability that a state with momentum p has energy E in the random po-
tential. A precise definition in terms of the average Green function will
be given in Chapter 6. For large momentum p, where the kinetic energy
E = p2 (remember that h̄ = 2m = 1) dominates over the potential en-
ergy, A(p, E) ' A0(p, E) can be approximated by the spectral function

A0(p, E) = δ(E− p2) (11)

of a free particle. Moreover, for the case of an initially strongly confined
wave packet, one can neglect the small initial position uncertainty q in
the function nE(x− q). These two approximations lead to [27]:

n(x) =
∫ ∞

−∞
dp |ψ̃0(p)|2 np2(x) (12)

where |ψ̃0(p)|2 denotes the momentum distribution of the initial wave
packet. The latter exhibits a high-momentum cutoff at

pmax =
√

2µ (13)

where µ is the chemical potential of the initially trapped condensate.
Using Eq. (12), the authors of [27] succeeded in predicting the exponen-
tial or algebraic decay of the asymptotic density profile discussed in
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Subs. 2.2.1. In the exponentially localized regime, i. e., for pmaxσc < 1,
they obtained the following algebraic correction to Eq. (1):

n(z) ∝ |z|−7/2 exp[−2|z|/Lloc(Emax)], (for large z). (14)

However, Eq. (12) does not yield an accurate description of the density
profile for small z (see Sec. 2.3 below). A more refined approximation
was therefore developed in [28]. Here, the position uncertainty in Eq. (9)
is fully taken into account and, in addition, the influence of the random
potential on the spectral function A(p, E) is evaluated in lowest non-
vanishing order of perturbation theory (using the Born approximation
discussed in Sec. 6.2). In both theoretical approaches ([27] and [28]),
the Lyapunov exponent γ(E) entering in Eq. (5) for the density-density
autocorrelation function at fixed energy was determined by the inverse
of the localization length Lloc(E) in Born approximation, see Eqs. (2)
and (6).

2.3 comparison with numerical results

Fig. (6) Density profile of a localized BEC in a speckle potential at time t =

150/ω (taken from [27]). The probability density times the constant
LTF =

√
4µ/ω2 (dimensionless) is shown as a function of the position

z (in units of LTF). In the wings of the probability density, the numerical
data (black lines) agrees well with the theoretical prediction given by
Eq. (12) with a multiplying constant as only fit parameter (red line),
and also with the asymptotic formula Eq. (14) (blue dotted line). At
the origin, the theoretical prediction strongly overestimates the density
obtained from the numerical data. The parameters are: V0 = 0.2µ, ξ =

h̄/
√

4mµ = 3σR/2 and σR = 0.27 µm.

In order to test their theoretical approaches outlined in Subs. 2.2.3,
the authors of [27] and [28] performed a comparison with numerical
simulations. Fig. (6) shows the result in the regime

√
2µ < σ−1

c of ex-
ponential localization. We see that Eq. (12) gives a good account of the
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wings of the density profile. However, to achieve this agreement, the
authors had to multiply their result with a constant fitting parameter.
This is due to the fact that Eq. (12) strongly overestimates the density
in the center of the density profile. The center is determined by the con-
tribution originating from small momenta with correspondingly short
localization length, where the Born approximation, see Eq. (2), breaks
down. Moreover, the replacement of the spectral function A(p, E) by
the free-particle expression A0(p, E), see Eq. (11), is not valid for small
momenta. This difference becomes even more apparent if the profile
is plotted on a linear scale instead of the exponential scale shown in
Fig. (6), which emphasizes the wings of the density profile.

Fig. (7) Time evolution of the probability density of an initially strongly con-
fined matter wave expanding in an one-dimensional random potential
for µ = 0.22σ−2

c (left panel) and µ = 0.72σ−2
c (right panel) (taken from

[28]). The blue and red lines are runing averages of numerical data for
the asymptotic density for three realizations of speckle potentials. The
black lines represent the theoretical prediction given by Eq. (9) (with a
multiplying constant as fit parameter) taking into account the spectral
broadening A(p, E) evaluated in Born approximation. The dotted black
lines represent the result obtained by neglecting the spectral broaden-
ing (A(p, E) → δ(E − p2)). The green dashed line in (a3) shows a fit
of ln[n(z)] = A − 2γ(2µ)|z| (with A as fitting parameter), which de-
scribes the behaviour for small |z| (except very close to the center), see
Eq. (8). The green dashed line in (b3) is a fit of n(z) = A/|z|β, with A
and β as fitting parameters. The values of V0 and ω are ±0.0325Ec and
2× 10−2µ/h̄ respectively, where Ec = h̄2/(2mσ2

c ).
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Fig. (7), extracted from [28], shows another comparison, using the
more refined theoretical approach which takes into account the spectral
broadening described by the function A(p, E). The numerical simula-
tion scheme slightly differs from the one used in Fig. (6): the disorder
is switched on, and the interactions switched off, after a certain time
ti = 10/ω (ω = 2× 10−2µ/h̄), whereas, both, disorder and interactions
are present all the time in the numerical data shown in Fig. (6). Two dif-
ferent values of the chemical potential, corresponding to the previously
discussed regimes of exponential (left) and algebraic localization (right)
are chosen. As evident from Fig. (7) (a3), the spectral broadening leads
to a non-exponential decay also in the first case, since the broadening
may lift the energy above the critical value σ−2

c where the localization
length diverges (in Born approximation), see Eq. (2). Good agreement
between theory and numerics is, again, only achieved after multiplica-
tion with a constant fitting factor. For small |z| (close to the center),
the theory predicts the occurrence of a non-physical dip, which is not
present in the numerical data. Again, the reason for this discrepancy
can be traced back to the fact that the Born approximation (both, for
the Lyapunov exponent and for the spectral function) is inadequate for
small momenta.

In summary, we state that the existing theories for Anderson local-
ization of wave packets in one-dimensional random potentials are un-
able to describe the behaviour of the localized density profile close to
its maximum. In contrast, the wings of the density profile are well de-
scribed after multiplication with a constant fitting factor. Moreover, the
ansatz, Eq. (9), on which these theories are based, is lacking a rigorous
theoretical foundation. In the present thesis, we will show how these
shortcomings can be cured: first, we will give a derivation of the basic
ansatz, Eq. (9), using diagrammatic theory. Second, we will derive new
analytical approximations for the Lyapunov exponent and the spectral
function which can be used also in the regime of small (in particular
also negative) energies. Finally, this will allow us to describe the com-
plete, localized density profile without fitting parameters.
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M O D E L A N D G E N E R A L C O N C E P T S

From the previous chapter, the general structure of this thesis becomes
apparent: we are interested in describing the asymptotic density profile
of a single particle propagating in a one-dimensional disorder poten-
tial. A theoretical ansatz for calculating this density profile is given by
Eq. (9) above. In Chapter 4, we will provide a justification of this ansatz
by using diagrammatic theory. In order to apply this ansatz, we need
accurate, analytical estimations of the localization length and the spec-
tral function, which we will derive in Chapters 5 and 6, respectively.
We compare our approach with numerical data in Chapter 7, and fi-
nally consider the influence of interactions between particles in Chap-
ter 8, comparing later our analytical approach with numerical data in
the presence of interactions in Chapter 9 .

In the present chapter, we set the stage for this work by defining the
model under consideration and introducing general concepts of multi-
ple scattering theory which will be needed in the following chapters. In
Sec. 3.1, we will introduce the Schrödinger equation and the initial state
that we will use in this thesis, and show how the asymptotic density pro-
file can be expressed in terms of solutions of the stationary Schrödinger
equation. In Sec. 3.2, we will discuss how to characterize the properties
of the random potential in a statistical sense, and introduce the Gaus-
sian disorder model that we will use throughout this thesis. In Sec. 3.3,
we will introduce the concept of Green functions, which will turn out
to be useful in order to perform the average over the disorder.

3.1 model

3.1.1 Schrödinger equation

To describe the propagation of N non-interacting bosons in a 1D ran-
dom correlated potential, we will use the single particle Hamiltonian:1

H = p2 + V(x), (15)

where p is the momentum operator and V(x) is the random correlated
potential, with correlation length σc. Note that, throughout this thesis,

1 If there is no interaction between the bosons, the wavefunction for N particles is a
product of identical single-particle wavefunctions and its evolution is given by the
single-particle Schrödinger equation.

21
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we use units such that h̄ = 2m = 1. Then, we consider the Schrödinger
equation

i
∂ψ

∂t
= Hψ =

(
p2 + V(x)

)
ψ. (16)

Eq. (16) exhibits solutions with constant energy E:

ψ(x, t) = ψE(x)e−iEt, (17)

and using this in Eq. (16), we obtain the stationary Schrödinger equation
[37], [38]:(

∂2
x + E−V(x)

)
ψE(x) = 0. (18)

3.1.2 Initial state

As an initial trapped BEC state, we consider a Gaussian wave packet:

ψ0(x) = 〈x|ψ0〉 =
(

1
πa2

)1/4

e−x2/(2a2), (19)

where a is the initial width of the wave packet, which we assume to be
much smaller than the localization length (see Chapter 5) in the relevant
range of energies (see Chapter 6). For the numerical solution of the
Gaussian wave packet propagation induced by Eq. (16), we use periodic
bounday conditions, i. e., ψ(x + L, t) = ψ(x, t) with system size L �
a, σc.

Note that the works [27] and [28] discussed in Chapter 2 use a dif-
ferent initial state, where the interaction between the particles inside
the harmonic trap, where the initial BEC is trapped, were considered.
According to the Thomas-Fermi approximation (valid for large interac-
tions), they considered a truncated inverted parabola as an initial den-
sity:

|ψTF(x)|2 =

(
µ

g

)
[1− (x/LTF)

2], (20)

where LTF =
√

2µ/mω2 denotes the Thomas-Fermi length, ω the har-
monic trap frequency, m the atomic mass, g the strength of the interac-
tions and µ the chemical potential. See Chapter 8 for a more detailed
discussion.

As we already mentioned, our initial state, Eq. (19), that we will
use throughout this thesis, does not include the interaction between
the particles. For this reason, we may consider that all atoms from the
non-interacting gas of bosons are described by the same Gaussian wave
packet, which as an initial state is simpler than the inverted parabola
and better suited for a rigorous theoretical analysis.
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3.1.3 Asymptotic density profile

The BEC asymptotic state, assumed at long times t, is defined by:

n(x) = lim
T→∞

1
T

∫ T

0
dt n(x, t), (21)

where

n(x, t) = |〈x|e−iHt|ψ0〉|2, (22)

denotes the density at position x and time t.
It is useful to write n(x) in terms of the eigenfunctions {|φn〉} of

Eq. (15). To do this, we use the relation ∑∞
n=0 |φn〉〈φn| = 1 in Eq. (22),

leaving as a result:

n(x, t) =
∞

∑
n,m=0

〈x|φn〉〈φn|ψ0〉〈ψ0|φm〉〈φm|x〉e−i(Em−En)t. (23)

Under the assumption of a non-degenerate energy spectrum {En}, the
definition Eq. (21) applied to Eq. (23) is not zero only under the condi-
tion m = n. Thereby, we can conclude:

n(x) =
∞

∑
n=0
|〈x|φn〉〈φn|ψ0〉|2. (24)

3.2 random potentials

It remains to characterize the random potential V(x) in Eq. (15). In
principle V(x) could be also a random function of time, but along this
thesis, we will consider only quenched or time independent disordered
potentials.

The random nature of V(x) induces us to work with realizations,
which are defined as different sets of particular outcomes of the various
values of V(x) for every position x [39]. Even though we do not know
anything about one single potential realization, we can get a statistical
characterization of the whole set of realizations, and thereby, obtain a
probability function P[V] to perform the statistical average for the rel-
evant quantities, e. g., conductivity σ, probability density for a particle
with a single energy state nE(x), probability density for a wave packet
n(x), etc. In general, for a quantity A, we define its average

A =
∫

dV A P[V], (25)

where the overline in Eq. (25) represents the average over all realizations
of the random potential.
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3.2.1 Correlation functions and cumulants

Instead of finding P[V] for Eq. (25), we can characterize the set of differ-
ent realization of V(x) through all the moments or correlation functions
and cumulants [40]–[43]. This equivalent way of characerizing the disor-
der will be useful in the context of the diagrammatic multiple scattter-
ing series discussed below.

The moments or correlation functions are defined as:

Cn(x1, x2, ..., xn) = V(x1)V(x2)...V(xn), (26)

where we assume that the moments exist. Assuming V(x) = constant,
we can set through this thesis V(x) = 0 by redefining the point of zero
energy.

This assumption implies that the potential statistical properties do
not depend on the position in the average potential realizations, and
in this sense, the average potential is homogeneous. The potential ho-
mogeneity implies translational invariance. Mathematically, this means
that the n-point correlator of Eq. (26) depends only on n− 1 points, or:

Cn(x1, x2, ..., xn) = Cn(x1 + x0, x2 + x0, ..., xn + x0), (27)

for all x0 ∈ R.
If the potential value at position x1 depends on the potential value at

position x2, then the potential is correlated. Otherwise, the potential is
un-correlated and the second moment can be factorized like:

C2(x1, x2) = V(x1)×V(x2). (28)

This allows us to introduce the concept of cumulants, Kn(x1, x2, ..., xn),
as the difference:

K2(x1, x2) = C2(x1, x2)−V(x1)×V(x2),
K3(x1, x2, x3) = C3(x1, x2, x3)−V(x1)V(x2)×V(x3)−

V(x1)V(x3)×V(x2)−V(x2)V(x3)×V(x1)

K4(x1, x2, x3, x4) = C4(x1, x2, x3, x4)− [14 diferent terms]
... = ..., (29)

where the 14 different terms can be written as:

(x1x2x3)(x4), (x1x2x4)(x3), (x1x3x4)(x2), (x2x3x4)(x1), (x1x2)(x3x4),
(x1x3)(x2x4), (x1x4)(x2x3), (x1x2)(x3)(x4), (x1x3)(x2)(x4), (x1x4)(x2)(x3),
(x2x3)(x1)(x4), (x2x4)(x1)(x3), (x3x4)(x1)(x2) and (x1)(x2)(x3)(x4),

where (x1x2x3)(x4) = V(x1)V(x2)V(x3)×V(x4), etc.
Due to the choice V(x) = 0, the cumulants K2 and K3 concide with

the moments C2 and C3, respectively.
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3.2.2 Gaussian disorder

The Gaussian disorder is defined as a stochastic process where all the
cumulants Kn of order n > 2 vanish. Together with V(x) = 0, this
implies that all correlations Cn of odd n-order also vanish.

On the other side, by expanding all correlation functions with even
order into products of C2-functions, a Gaussian stochastic process is
completely characterized by V(x) = 0 and C2(x1, x2). Using translational
invariance, see Eq. (27), we will write C2(x1, x2) = C2(x1 − x2) in the
following. As examples of two Gaussian disorder models, we have:

i) The Gaussian correlated disorder, which considers a Gaussian dis-
tribution as the two-point correlation function:

C2(x) = V2
0 e−|x|

2/(2σ2
c ), (30)

where V0 is the strength of the random potential, and σc is the cor-
relation length. Figs. (8a) and (8b) show an example of a numerically
generated realization of a random potential with this correlation func-
tion.

The numerical implementation to create a potential with a Gaussian
correlation function – Eq. (30) – requires to create a set of random num-
bers {ai}, where i = 0, 1, 2, ..., NL and NL is the number of lattice points,
for every lattice point i. The set of random numbers follows a Gaussian
probability distribution:

P(ai) =
1

V0
√

2π
e−a2

i /(2V2
0 ), (31)

independently for each i.
Once we have the set of random numbers, we convolute it with a

Gaussian envelope:

V(x) =
∫

dx′
v(x′)

Nx
e−|x−x′|2/σ2

c , (32)

where

v(x) =
NL

∑
i=0

aiδ(x− i∆x), (33)

the normalization factor

Nx = σ
√

2π/(2∆x), (34)

and ∆x is the lattice spacing in x direction.
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Fig. (8) (a) An example of a one-dimensional Gaussian correlated potential
with correlation function as defined by Eq. (30), with strength V0 and
correlation length σc. The potential (in units of σ−2

c ) is plotted as a
function of the position (in units of σc) in the interval [−400, 400]σc.
The inset illustrates the scale of the correlation length σc (between the
blue arrows) in comparison with the total potential length in the in-
terval [−50, 50]σc. (b) Comparison between the numerical (red points)
and analytical (black line) one-dimensional Gaussian correlation func-
tions. The numerical correlation function was obtained by averaging
over 2000 disordered potential realizations. The dimensionless quan-
tity V(x)V(x′)/V2

0 is shown as a function of the distance |x − x′| (in
units of σc).

ii) The white noise disorder, which considers a delta distribution as
the two-point correlation function [44]–[46]:2

C2(x) = Dδ(x), (35)

2 This model can be used as a mathematical idealization under the assumption that the
correlation length is smaller than the wavelength γE = 2π/kE of the quantum particle.
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where D =
∫

dx C2(x) parametrizes the potential strength. According
to Eq. (35), the correlation length between two different positions is
zero.

3.2.3 Speckle potentials

The Gaussian disorder model is analytically easier to treat than the
speckle potentials, but its experimental implementation is more diffi-
cult. This fact is not unknown for the experimentalists, and for this rea-
son, speckle potentials were used in the experimental setups discussed
in Sec. 2.1. Although we will rely on the Gaussian model in this the-
sis, it is therefore convenient to introduce some important features of
the mathematical description of the speckle potentials in the present
section.

The experimental advantage of the speckle potential is its simple opti-
cal implementation to produce a random landscape [47]–[51]. The phys-
ical mechanism behind a speckle pattern is the superposition of differ-
ent waves with random phases. The setup to achieve this experimental
superposition consists basically of a plane wave or laser beam which
passes trough a diffusive lens. The Huygens principle then asserts that
the lens behaves as a source of Ni independent partial waves, with am-
plitudes Ej and phases φj, which has as total amplitude:

E =
1√
Ni

Ni

∑
j=1
|Ei|eiφj . (36)

The partial waves thus create a random interference pattern, see Fig. (9).
Due the irregular form of the lens, we can assume that the ampli-

tudes Ej and phases φj are uncorrelated, and the phases are uniformly
distributed in the interval [0, 2π]. Under this conditions, in the limit
Ni → ∞, the central limit theorem ensures that the real and imaginary
part of E in Eq. (36) have Gaussian statistics. Nevertheless, the interfer-
ence pattern depends on the absolute square I = |E|2 of Eq. (36), and
the absolute square of a Gaussian field does not fulfill the Gaussian
properties.

Notwithstanding that the speckle potential is different from the Gaus-
sian model that we will use in our analytic model, in the theories pre-
sented in Chapter. 2, the non-Gaussian character of the speckle is not
relevant, since they use the Born approximation (i. e. higher moments
than second order do not appear). One of our goals in this thesis is
to go beyond the Born approximation. For this purpose, it is useful to
study first the case of Gaussian potentials since this is more practical
for developing an exact theory.
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Fig. (9) Experimental one-dimensional speckle pattern. A laser beam illu-
minates a diffusive plate producing different electromagnetic fields.
Therefore, the superposition of the various fields produces an inter-
ference pattern (blue: minimum and red: maximum) known as speckle
potential. Image from [52].

The last point to illustrate is the second order correlation function of
a one-dimensional speckle potential, which is given by [52]:

C2(z) = V2
0

sin2 (z/σc)

(z/σc)2 . (37)

Moreover, its Fourier transform is:

C2(pE) =

 V2
0

√
π
2 σc (1− pEσc) , if pEσc < 1,

0, if pEσc ≥ 1.
(38)

Note the finite support of the Fourier transform, which we already men-
tioned in Subs. 2.2.1.

3.3 green function

For any initial state |ψ0〉 = |ψ(t = 0)〉 which evolves in a closed system,
the time evolution is described by the unitary evolution operator U(t):

U(t) = e−iHt, (39)

where H is given by Eq. (15). Thereby, the state |ψ(t)〉 at time t is:

|ψ(t)〉 = U(t)|ψ0〉 = e−iHt|ψ0〉, (40)

and in the spatial representation:

ψ(x, t) = 〈x|ψ(t)〉 =
∫

dx′ 〈x|e−iHt|x′〉ψ0(x′). (41)
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The kernel of Eq. (41) is defined as the Green function [53]:

G(x, x′, t) = 〈x|e−iHt|x′〉, (42)

or the Green operator:

G(t) = e−iHt. (43)

If {En} and {φn} are respectively the eigenenergies and the eigenstates
of H, then Eq. (42) can be expressed as:

G(x, x′, t) = 〈x|e−iHt|x′〉 = ∑
n

φn(x)φ∗n(x′)e−iEnt. (44)

The variable t in Eqs. (43) and (44) is not positive or negative defined.
Therefore, the evolution between t = 0 and t > 0, will be related with
the Green funtion G(+)

0 (x, x′, t); while the evolution to t < 0, will be

related with the Green funtion G(−)
0 (x, x′, t):

G(+)(x, x′, t) = −iθ(t)〈x|e−iHt|x′〉 = −iθ(t)∑
n

φn(x)φ∗n(x′)e−iEnt,

G(−)(x, x′, t) = iθ(−t)〈x|e−iHt|x′〉 = iθ(−t)∑
n

φn(x)φ∗n(x′)e−iEnt.

(45)

With the goal to get the Green functions G(+)
0 (x, x′, t) and G(−)

0 (x, x′, t)
in terms of the energy E instead of time t, we perform its Fourier trans-
form:

G(±)(x, x′, E) =
∫ ∞

−∞
dt G(±)(x, x′, t)e−iEt, (46)

which leaves as a result:

G(±)(x, x′, E) = ∑
n

φn(x)φ∗n(x′)
E− En ± iη

, (47)

and in operator form [54]:

G(±)(E) =
1

E− H ± iη
, (48)

with infinitesimal positive quantity η in Eqs. (47) and (48), which as-
sures the convergence of the integrals in Eq. (46). For the free particle
(H0 = p2

E) the Green function as operator is [54]:

G(±)
0 (E) =

1
E− H0 ± iη

. (49)
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Using Eqs. (48) and (49), we can construct the next derivation:

[G(±)(E)]−1G(±)(E) = 1,

(E− H0 −V)G(±)(E) = 1,

G(±)
0 (E)([G(±)

0 (E)]−1 −V)G(±)(E) = G(±)
0 (E),

G(±)(E)− G(±)
0 (E)VG(±)(E) = G(±)

0 (E), (50)

or

G(±)(E) = G(±)
0 (E) + G(±)

0 (E)VG(±)(E), (51)

which is the Lippmann-Schwinger equation, yielding an iterative expan-
sion to get the Green function related to the full Hamiltonian H =
H0 + V(x). See Sec. 3.3.2.

The tools developed in this section will be used in this thesis in the
following two powerful applications of the Green functions formalism:
The Berezinskii method [20] to get the density-density autocorrelation
function at fixed energy and to prove the ansatz Eq. (9) in Chapter 4,
and Thouless’ relation between localization length and density of states
[23] in Chapter 5. But first, in the next subsections, we will deduce the
Green function as function of the space variable x.

3.3.1 Free particle Green function

For the free particle in a one-dimensional box with length L, the eigenen-
ergies and eigenstates of H0 are respectively {En = p2

n} and {φn(x) =
e−ipnx/

√
L}, where pn = 2πn/L, with n = ±1,±2, .... If L → ∞, then

the sum in Eq. (47) becomes an integral over n [55]:

G(±)
0 (x, x′, E) =

1
L

∫
dn ρ(n)

e−ipn(x−x′)

E− p2
n ± iη

=
1

2π

∫ ∞

−∞
dp

e−ip(x−x′)

E− p2 ± iη
,

(52)

where we have used the relation between pn and En, and based on the
same relation, the density is ρ(n) = dp/dn = 2π/L. From the rela-
tion Eq. (52) we can conclude that the Green functions G(±)

0 (x, x′, E)
depend on the difference x − x′, therefore, henceforth, we may also
write G(±)

0 (x − x′, E). Based on this property, the Fourier transform of

G(+)
0 (x− x′, E) is:

G̃(+)
0 (p, p′, E) =

1
2π

∫
dxdx′ e−ipx+ip′x′G(+)

0 (x− x′, E),

=
1

2π

∫
dx′dx′′ e−ip(x′+x′′)+ip′x′G(+)

0 (x′′, E),

= G̃(+)
0 (p, E)δ(p− p′), (53)
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where we defined:

G̃(+)
0 (p, E) =

∫ ∞

−∞
dx eipxG(+)

0 (x, E),

=
1

E− p2 + iη
. (54)

The delta function in Eq. (53) is an evidence of momentum conservation.
In order to perform the integral in Eq. (52), and thereby to get an ex-
pression for the Green functions in position space, we use the following
relation:

1
A− B2 =

1
2
√

A

[
1√

A + B
+

1√
A− B

]
, (55)

where A = E± iη and B = p, then:

G(±)
0 (x− x′, E) =

1
4π
√

E± iη

∫ ∞

−∞
dp

[
e−ip(x−x′)√
E± iη + p

+
e−ip(x−x′)√
E± iη − p

]
.

(56)

The difference between x− x′ can be positive or negative. If we choose
x− x′ > 0 (x− x′ < 0), then, using the calculus of residues and Cauchy’s
integral theorem, the integral is:

G(±)
0 (x, x′, E) = ∓ i

2pE
e±ipE|x−x′|, (57)

where pE =
√

E± iη [53].
The question is now how to get the average Green function associated

to a set of Hamiltonians given by Eq. (15). The solution of the Dyson
equation will answer this question, but first, we will come back to the
Lippmann-Schwinger equation [56].

3.3.2 Lippmann-Schwinger equation and Born series

Eq. (51) reads in position space:

G(+)(x, x′, E) = G(+)
0 (x, x′, E)

+
∫

dx′′ G(+)
0 (x, x′′, E)V(x′′)G(+)(x′′, x′, E). (58)

Introducing the following symbols:

G(+)(x, x′, E) : G(+)
0 (x, x′, E) : V(x) :
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Eq. (58) reads:

= + , (59)

where the last term includes an integral over the intermediate variables
that connect, via the potential, two different Green functions. The itera-
tive solution of Eq. (59) lead us to the Born series for any potential:

= + + + · · · , (60)

or

G(+)(x, x′, E) = G(+)
0 (x, x′, E)

+
∫

dx′′ G(+)
0 (x, x′′, E)V(x′′)G(+)

0 (x′′, x′, E)

+
∫

dx′′dx′′′ G(+)
0 (x, x′′, E)V(x′′)G(+)

0 (x′′, x′′′, E)V(x′′′)G(+)
0 (x′′′, x′, E)

+ ...
(61)

The Born series expresses the Green function associated to the po-
tential V(x) as a sum over scattering paths. The latter consist of free
propagations G0 interrupted by scattering events V. Due to the free
propagation, see Eq. (57), each scattering path carries a phase factor
eipE|x−x1|eipE|x2−x1| ...eipE|xn−x′| depending on the positions x1, x2, ..., xn
of the scattering events.

3.3.3 Average Green function: Dyson equation

Averaging the Lippmann-Schwinger equation for Gaussian disorder

As we introduced earlier, see Sec. 2.2, a disorder potential which fol-
lows Gaussian statistics is completely characterized by the first and the
second moment, i. e., all the even statistical moments can be expressed
in terms of:

V(x) = 0, and C2(x− x′) = V(x)V(x′), (62)

while all the odd moments are zero, since V(x) = 0. As an example, the
fourth moment V(x1)V(x2)V(x3)V(x4), can be factorized to a sum of
the product of two point correlators:

V(x1)V(x2)V(x3)V(x4) = C2(x1 − x2)C2(x3 − x4) + C2(x1 − x3)×
C2(x2 − x4) + C2(x1 − x4)C2(x2 − x3), (63)

or in diagrammatic notation:
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〈 〉 = +

+ , (64)

where 〈· · · 〉 is equivalent to · · ·, i. e., both notations represent an aver-
age over the disordered potentials of the stochastic process. The dashed
lines represent the correlation function C2(x− x′). Therefore, taking the
average of Eq. (58), or diagrammatically Eq. (60), we must in the follow-
ing introduce the Dyson equation.

We now perform the disorder average of Eq. (60), and to do this,
let us define the self energy Σ(+)(x, x′, E), as a function that represents
the disorder-averaged sum of all the irreducible diagrams, which are
those non-factorizable in more than one term, if we cut one of its Green
functions. The second and third term on the right-hand side of Eq. (64)
are examples of non-factorizable terms, whereas the first one can be
factorized by cutting the Green function connecting x2 and x3. The first
few diagrams for the self-energy are [56]:

Σ = = +

+ + + · · · ,
(65)

where the equation for the first two terms reads:

Σ(+)(x, x′, E) =C2(x− x′)G(+)
0 (x, x′, E)+∫

dx1dx2 C2(x− x2)C2(x1 − x′)×

G(+)
0 (x, x1, E)G(+)

0 (x1, x2, E)G(+)
0 (x2, x′, E) + · · ·

(66)

The self-energy is a complex function, and in general, its imaginary
part must be negative, since the negative imaginary part of the Green
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function is proportional to the density of states, which is a positive
quantity, see Eq. (178). With the self-energy and the disorder average,
we obtain an equation that describes how a wave propagates on average
in a Gaussian random potential. The propagation on average is given
by an average Green function, which fulfills the Dyson equation:

G(+)(x, x′, E) = G(+)
0 (x, x′, E)+∫

dx′′dx′′′ G(+)
0 (x, x′′, E)Σ(+)(x′′, x′′′)G(+)(x′′′, x′, E), (67)

or in diagrammatic notation:

= + , (68)

where the thick line represents the average Green function.

The average Green function

The solution of Eq. (67) yields the average Green function, and to find
it easily, we transform the Dyson equation into momentum represen-
tation. As we already commented in Sec. 2.2, under the assumption
that the statistical properties of the potential are translationally invari-
ant, Eq. (27), we assume also that the self-energy depends only on the
difference x− x′:

Σ(x, x′) = Σ(x− x′), (69)

therefore, as well as the free particle Green function, the self-energy
conserves momentum:

Σ̃(p, p′) =
1

2π

∫
dxdx′ e−ipx+ip′x′Σ(x− x′),

=
1

2π

∫
dx′dx′′ e−ip(x′+x′′)+ip′x′Σ(x′′),

= Σ̃(p)δ(p− p′), (70)

where we used
∫

dx eipx = 2πδ(p). The delta function in Eq. (70) is an
evidence of momentum conservation.

Considering the double Fourier transform on both sides of Eq. (67),
and using Eqs. (53) and (70), we get the Dyson equation in momentum
representation:

G̃(+)(p, p′, E) = G̃(+)
0 (p, E)δ(p− p′)+ G̃(+)

0 (p, E)Σ̃(p, E)G̃(+)(p, p′, E).
(71)
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Due to the property of momentum conservation, from Eq. (71) we may
deduce:

G̃(+)(p, p′, E) = G̃(+)(p, E)δ(p− p′), (72)

thereby, the average Green function also fulfils the momentum conser-
vation and the Dyson equation in momentum space, Eq. (71), simplifies
to:

G̃(+)(p, E) = G̃(+)
0 (p, E) + G̃(+)

0 (p, E)Σ̃(p, E)G̃(+)(p, E). (73)

The solution of Eq. (73) is:

G̃(+)(p, E) =
1

E− p2 − Σ̃(+)(p, E)
. (74)

Assuming a weak random potential (and, correspondingly, small Σ), we
see that the main contribution to G̃(+)(p, E) originates from momenta
p ' pE =

√
E, where the term E− p2 in the denominator of Eq. (65) van-

ishes. We hence neglect the momentum dependence of the self-energy,
i. e., we replace Eq. (74) by:

G̃(+)(p, E) =
1

E− p2 − Σ(+)(E)
, (75)

where:

Σ(+)(E) = Σ̃(+)(pE, E). (76)

The average Green function then takes the following form in position
space:

G(+)(x1 − x2, E) = − i
p̃E

ei p̃E|x1−x2|, (77)

which is similar to the free-particle Green function where pE =
√

E,
Eq. (57), but with complex effective wave vector

p̃E =
√

E− Σ(+)(E) (78)

instead of pE.
If we define p̃E = <{ p̃E}+ i={ p̃E}, then, taking |G(+)(x1 − x2, E)|2,

we find:

|G(+)(x1 − x2, E)|2 =
e−2={ p̃E}|x1−x2|

<{ p̃E}2 +={ p̃E}2 . (79)
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These results can be interpreted as follows: the random medium forms
an average effective medium, which has refractive index:

nE =
p̃E

pE
, (80)

where its imaginary part defines the scattering mean free path:

` =
1

2pE={nE}
. (81)

as the average distance between two subsequent scattering events. Com-
bining Eqs. (79–81) we can conclude:

|G(+)(x1 − x2, E)|2 =
e−|x1−x2|/`

<{ p̃E}2 +={ p̃E}2 , (82)

implying that the propagation of the average amplitude decays expo-
nentially. The average Green function will be used in Chapter 6 in order
to determine the spectral function.

Mean free path in Born approximation

In the Born approximation, the self-energy is approximated by the first
term of the Eq. (75), i. e.

Σ(+)
Born(x, x′, E) = C2(x− x′)G(+)

0 (x, x′, E),

= − i
pE

C2(x− x′)eipE|x−x′|, (83)

(84)

where we used Eq. (57). The Fourier transform yields:

Σ(+)
Born(E) = Σ̃(+)

Born(pE, E) = − i
pE

∫ ∞

−∞
dx C2(x)eipE(x+|x|). (85)

According to Eq. (78), we get (for |Σ(+)(E)| � E):

={ p̃E} ≈ −
={Σ(+)(E)}

2pE
, (86)

which finally yields, see Eqs. (80,81), the inverse of the scattering mean
free path in Born approximation:

1
`Born

=
1
p2

E

∫ ∞

0
dx C2(x)

[
1 + cos(2pEx)

]
. (87)



4
D I A G R A M M AT I C C A L C U L AT I O N O F T H E
A S Y M P T O T I C D E N S I T Y P R O F I L E

In Subs. 3.3.3, we have seen that, under the assumption of a weak ran-
dom potential, the average Green function decays exponentially in po-
sition space, see Eq. (82), where the rate of this decay defines the scat-
tering mean free path `, see Eq. (81). In order to calculate our quan-
tity of interest, the average asymptotic density profile n(x) defined in
Subs. 3.1.3, see Eq. (24), the knowledge of the average Green function
is, however, not sufficient, since, as shown below, this quantity involves
the average of a product of two Green functions. We will therefore intro-
duce in this chapter a diagrammatic method for performing this average
that will finally lead us to Eq. (9) – the same equation that, as discussed
in Subs. 2.2.3, has already been introduced as a heuristic ansatz in pre-
vious works [27], [28], [34].

The diagrammatic method that we will use to calculate n(x) has been
invented by Berezinskii in 1974 [20]. He developed this method in order
to determine the density-density autocorrelation function nE(x) at fixed
energy E introduced in Eq. (3). As explained in Subs. 2.2.2, this function
does not only describe the exponential decay of energy eigenfunctions
at large distances, but also corrections to this exponential decay relevant
for small distances.

We will review Berezinskii’s calculation of nE(x) in Sec. 4.1. Then,
we will modify his method in order to determine n(x) in Sec. 4.2. As
we will see, this involves an integration of nE(x) over the energy E,
weighted with a suitably defined energy distribution depending on the
intial state ψ0(x) of the wavepacket at time t = 0.

4.1 density-density autocorrelation function at fixed en-
ergy : method of berezinskii

We give in this section a short introduction into the diagrammatic method
of Berezinskii. The technique was originally developed in [20] for a one-
dimensional white noise potential, and later extended by Gogolin to
the case of correlated random potentials with short correlation length
[21], [22]. As in these original works, we consider an infinitely extended
system (without periodic boundary conditions).

37
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4.1.1 Average intensity propagator

To start with, we recall the definition of the density-density autocor-
relation function nE(x) at fixed energy, see Eq. (3). Let us define the
following quantity, which is almost the same as Eq. (3), but without
ensemble average in the numerator:

nE(x, x′) =
∞

∑
n=0
|φn(x)|2|φn(x′)|2δ(En − E)/ρE. (88)

Eq. (88) describes the product of the densities |ψ(x)|2 and |ψ(x′)|2 at
points x and x′, respectively, for an eigenstate |φn〉 with energy En = E.

As explained in Subs. 2.2.2, the average density of states ρE appear-
ing in the denominator serves as a normalization factor. It will be de-
termined at the end of the calculation by the condition that the state
nE(x− x′) be normalized on average. The ensemble average product
of densities nE(x− x′) (which due to statistical translational invariance,
depends only on the difference x− x′) describes the (normalized) density-
density autocorrelation function.

The diagrammatic method relies on the fact that Eq. (88) can be ex-
pressed as follows:

nE(x, x′) = lim
ω→0

ω

2πiρE
G(+)(x, x′, E + ω)

×
(

G(−)(x′, x, E)− G(+)(x′, x, E)
)

, (89)

in terms of retarded and advanced Green functions:

G(±)(x, x′, E) = 〈x|[E− H ± iη]−1|x′〉, (90)

introduced in Sec. 3.3, see Eq. (48). The equivalence of Eqs. (88) and (89)
is proven in Appendix A.

Taking the disorder average of Eq. (89), the product of two retarded
Green functions can be assumed to vanish due to the random phase of
G(+)(x, x′, E), see the discussion after Eq. (61). In contrast, the product
of a retarded and an advanced Green function survives the disorder
average since the phases of G(+)(x, x′, E + ω) and G(−)(x′, x, E) com-
pensate each other (in the limit ω → 0) in each single realization of the
random potential. This leads to:

nE(x− x′) = lim
ω→0

ω

2πiρE
G(+)(x, x′, E + ω)G(−)(x′, x, E). (91)

We therefore introduce the average intensity propagator:

Φ(x, x′, E, ω) = G(+)(x, x′, E + ω)G(−)(x′, x, E), (92)
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in terms of which the density-density autocorrelation function at fixed
energy reads:

nE(x− x′) = lim
ω→0

ω

2πiρE
Φ(x, x′, E, ω). (93)

4.1.2 Essential diagrams

a)

x1 x2 x0 x3 x4 x x5

b)

x1 x2 x00 x0 x000 x3 x4 x x5

1

Fig. (10) Example of a diagram which contributes to the average intensity prop-
agator Φ(x, x′, E, ω) = G(+)(x, x′, E + ω)G(−)(x′, x, E) in Berezinskii’s
approach. The solid (or dashed) lines represent free-particle Green
functions G(+)

0 (E + ω) (or G(−)
0 (E)), respectively. The dots connected

by vertical wavy lines denote the two-point correlation function of the
random potential.

In order to represent the average intensity propagator in terms of
diagrams, the Green functions are expanded in powers of the random
potential V:

G(±)(E) = G(±)
0 (E) + G(±)

0 (E)VG(±)
0 (E) + . . . , (94)

with free-particle Green functions G(±)
0 (E), see Eq. (51). This expansion

results from the iterative solution of the Lippmann-Schwinger equation,
Eq. (58).

Thus, the Green functions G(+)(E) and G(−)(E) are written as a sum
of infinitely many terms, each of which can be represented as a dia-
gram, where retarded (advanced) Green functions are represented, e. g.,
by solid (dashed) lines, and the random potential V by a dot. Perform-
ing the disorder average of the product G(+)(E + ω)G(−)(E), dots be-
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come connected by wavy lines indicating two-point correlation func-
tions of the random potential (also called ‘vertices’ in the following).
An example of such a diagram contributing to the average product
G(+)(E + ω)G(−)(E) is given in Fig. (10).

To clarify the diagrammatic notation, we first give the explicit expres-
sion of the diagram shown in Fig. (10):

Φ(F10)(x, x′, E, ω) =∫ x′

−∞
dx1

∫ x′

−∞
dx′1

∫ x′

x1

dx2

∫ x′

x′1
dx′2

∫ x

x′
dx3

∫ x

x′
dx′3

∫ x

x3

dx4

∫ x

x′3
dx′4×∫ ∞

x
dx5

∫ ∞

x
dx′5 G(+)

0 (x3 − x′, E + ω) G(+)
0 (x2 − x3, E + ω)×

G(+)
0 (x1 − x2, E + ω) G(+)

0 (x2 − x1, E + ω) G(+)
0 (x4 − x2, E + ω)×

G(+)
0 (x3 − x4, E + ω) G(+)

0 (x5 − x3, E + ω) G(+)
0 (x − x5, E + ω)×

G(−)
0 (x′4 − x′, E) G(−)

0 (x′1 − x′4, E) G(−)
0 (x′5 − x′1, E) G(−)

0 (x− x′5, E)×
C2(x1 − x′1) C2(x2 − x′2) C2(x3 − x′3) C2(x4 − x′4) C2(x5 − x′5). (95)

The superscript ‘(F10)’ reminds us that this term corresponds to the
diagram shown in Fig. (10). Similarly to Eq. (95), we can express each
diagram contributing to the average product Φ of Green functions in
terms of free-particle Green functions G(±)

0 , see Eq. (57), and two-point
correlation functions C2 of the random potential, see Subs. 3.2.1. Note
that, for simplicity, the points x′1, . . . , x′5 are not indicated in Fig. (10).
For the case of short-range correlations (i. e. small correlation length σc),
which we will assume in the following, these points are very close to
the points x1, . . . , x5, with which they are correlated.

We now break up each Green function into two factors associated
with the respective points connected by the Green function, e. g.

G(−)
0 (x′4 − x′, E) =

(
i

2pE

)1/2

e−ipEx′4 ×
(

i
2pE

)1/2

eipEx′ (96)

for x′4 > x′. We then perform the integrals over x′1, . . . , x′5. Assuming a
small correlation length σc, we may extend the limits of these integra-
tions to ±∞. For small ω, Eq. (95) then turns into:

Φ(F10)(x, x′, E, ω) =
e−iω x+x′

2pE

4p2
E

∫ x′

−∞
dx1

∫ x′

x1

dx2

∫ x

x′
dx3

∫ x

x3

dx4

∫ ∞

x
dx5

× e−iωx1/pE

`−

(
− 1
`+

)(
− 1
`−

)
eiωx4/pE

`−
eiωx5/pE

`−
, (97)
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where the mean free paths `+ (for forward scattering) and `− (for back-
ward scattering) are introduced as follows:

1
`+

=
1

2p2
E

∫ ∞

0
dx C2(x) (98a)

1
`−
± i

`0
=

1
2p2

E

∫ ∞

0
dx C2(x)e±2ipEx (98b)

Note that the sum of the inverse mean free paths 1/`± yields the
inverse of the scattering mean free path in Born approximation, see
Eq. (87) in Subs. 3.3.3:

1
`Born

=
1
`+

+
1
`−

. (99)

Moreover, as we will see later, the inverse of the backscattering mean
free path

1
`−

= 2γBorn(E), (100)

yields two times the Lyapunov exponent in Born approximation, see
Eq. (143).

The next important approximation consists of assuming that – simi-
lar to the neglect of G(+)(E + ω)G(+)(E) discussed above – only those
diagrams survive the disorder average where the phase factors asso-
ciated with the free-particle Green functions exactly compensate each
other in the limit ω → 0. This is the case if each space interval between
neighbouring vertices contains the same number of retarded and ad-
vanced Green functions. In Fig. (10), for example, there are two solid
and two dashed lines between the points x2 and x′, whereas there are
three solid and three dashed lines between x′ and x3, etc. In the corre-
sponding equation, see Eq. (97), we see that all phases appearing in the
exponents vanish in the limit ω → 0. We will call a diagram of this type
‘essential diagram’.

4.1.3 Summation of essential diagrams

After these introductory steps, the main part of Berezinskii’s paper is
concerned with performing the sum over all these diagrams, which
yields the desired analytical expression for nE(x− x′). For this purpose,
we first note that all essential diagrams contributing to the average in-
tensity propagator Φ can be systematically constructed in terms of cer-
tain elementary vertices displayed in Fig. (11). In the above example,
Fig. (10), a vertex of type f) is present at x1, b) at x2, c) at x3 and e) at x4
and x5. In the second line of Eq. (97), we recognize the terms accociated
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a(a’) b(b’) c(c’) d e f

1

Fig. (11) Types of vertices entering in the essential diagrams for the average in-
tensity propagator [21]. Solid (dashed) lines represent G(±)

0 , whereas
two dots connected by a wavy line denote the two-point correlation
function C2. Diagrams (a’,b’,c’) are the same as (a,b,c), but with solid
lines replaced by dashed lines. The vertices correspond to the follow-
ing factors: a) −1/2`− − 1/2`+ − i/2`0, a’) −1/2`− − 1/2`+ + i/2`0

b,b’) −1/`+, c,c’) −1/`−, d) 1/`+, e) eiωy/pE /`−, f) e−iωy/pE /`−.

to each of these vertices. Additionally, Eq. (97), also contains the factors
associated to the initial and final points x′ and x.

Let us now assume x > x′. In each essential diagram, we then dis-
tinguish the following three parts: the left-hand part lying to the left
of x′, the right-hand part lying to the right of x, and the central part
between x′ and x. Note that the left and right parts always contain an
even number of solid (and of dashed) lines, and the central part an
odd number. We define R̃m(x) (L̃m′(x)) as the sum of all right-hand
(left-hand) diagrams containing 2m (2m′) solid and dashed lines at the
boundary with the central part. Similarly, Zm′,m(x′, x) denotes the sum
of all central parts with 2m + 1 (2m′ + 1) solid and dashed lines at the
boundary with the right-hand (left-hand) part. The factors correspond-
ing to the points x and x′ are treated separately and not included in R̃,
Z, or L̃. With this convention (which is slightly different from the one
in Berezinskii’s paper, where these factors are partly included in Z), the
average product of Green functions results as follows:

Φ(x, x′, E, ω) = ΦR(x, x′, E, ω) + ΦL(x, x′, E, ω), (101)

where

ΦR(x, x′, E, ω) =
e−

iωx′
2pE

4p2
E

∞

∑
m,m′=0

L̃m′(x′)Zm′,m(x′, x)×(
e

iωx
2pE R̃m(x) + e−

iωx
2pE R̃m+1(x)

)
(102)
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and

ΦL(x, x′, E, ω) =
e

iωx′
2pE

4p2
E

∞

∑
m,m′=0

L̃m′+1(x′)Zm′,m(x′, x)×(
e

iωx
2pE R̃m(x) + e−

iωx
2pE R̃m+1(x)

)
(103)

The two contributions, Eqs. (102,103), correspond to the cases where
the particle leaves the initial point x′ towards the right-hand or left-
hand side, respectively. Each of these contributions, in turn, is a sum
of two terms corresponding to the particle arriving at the final point x
from the left-hand or right-hand side, respectively. Fig. (10), for exam-
ple, contributes to the second term L̃1(x′)Z10(x′, x)R̃1(x) in Eq. (102) (i. e.
m = 1 and m′ = 0). As shown in [20], the two contributions, Eqs. (102,
103), are identical in the limit ω → 0 (which is associated with the limit
m, m′ → ∞, where the difference between L̃m′(x′) and L̃m′+1(x′) can be
neglected).

Differential equations for R̃, L̃ and Z can be obtained by considering
infinitesimal shifts of the initial and final points x′ and x, and counting
all possibilities of inserting one of the vertices displayed in Fig. (11) in
the corresponding infinitesimal interval. It is easy to verify that all terms
associated with 1/`+ and 1/`0 counterbalance each other: let us denote
the number of solid and dashed lines by k (where k = 2m in the case
of R̃ and L̃, whereas k = 2m + 1 in the case of Z). We then may attach
the vertex a to any of the k solid lines, and the vertex a’ to any of the
k dashed lines. Similarly, vertex b [or b’] may be attached to k(k− 1)/2
different pairs of two solid (or two dashed) lines, and vertex d to k2

different pairs of one solid and one dashed line. In total, this amounts
to k(−1/2`−− 1/2`+− i/2`0− 1/2`−− 1/2`++ i/2`0)− k(k− 1)/`++
k2/`+ = −k/`−, i. e., all terms with `+ and `0 vanish. We are left with
vertices c, c’, e and f. Fig. (12 a) shows an insertion of vertex f in the
interval [x − dx, x], which amounts to a change of the index m from
R̃m+1(x) to R̃m(x− dx) (where m = 2 in this example). As explained in
Fig. (12 b), there are in total m2 different ways of introducing the vertex
f. Repeating the same analysis for the other vertices and for Z instead
of R̃, we arrive at the following set of differential equations:

−dR̃m

dx
=

1
`−

(
m2R̃m−1eiωx/pE + m2R̃m+1e−iωx/pE − 2m2R̃m

)
(104a)

dZm′,m

dx
=

1
`−

(
m2Zm′,m−1e−iωx/pE + (m + 1)2Zm′,m+1×

eiωx/pE −
(

m2 + (m + 1)2
)

Zm′,m

)
(104b)
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a) m = 2 m + 1 = 3

x � dx x

b)

6
5
4
3
2
1

1
2
3
4
5
6

x

1

Fig. (12) (a) The vertex displayed in Fig. (11 f) is inserted between x and x−dx
and thus changes the number of solid and dashed lines from 2(m +

1) = 6 at x to 2m = 4 at x − dx (where m = 2). All other vertices
(outside this interval) are not displayed in the figure. (b) Following
the solid and the dashed line in the direction of the arrows indicated
in (a) (i. e. from the initial to the final point), we count the order in
which the lines pass through the point x from 1 to 6. The dotted lines
indicate the places where vertex Fig. (11 f) can be inserted, such that
the given order is respected. The example shown in a) results if the
vertex is inserted between 2 and 3 for the solid lines and between 4
and 5 for the dashed lines, respectively. In total, there are m2 = 4
different possibilities for inserting vertex Fig. (11 f).

The left-hand part follows through the symmetry relation L̃m(x) =
R̃m(−x). Furthermore, due to translational symmetry, R̃m(x) can be
shown to fulfill R̃m(x) = eiωmx/pE Rm with position-independent coef-
ficients Rm, which are given by

iω`−Rm + m (Rm+1 + Rm−1 − 2Rm) = 0 (105)

for m ≥ 1 and R0 = 1 (trivial multiplication with 1 if no vertices are
present in the right-hand part). Eq. (104b) is supplemented with the
boundary condition Zm′,m(x′, x) = δm′,m for x = x′. Eqs. (104a) and
(104b) can now be solved by treating m as a continous variable p =
−imω`− (which is justified in the limit ω → 0 where m tends to infinity)
and then solving differential equations in p [20]–[22]. The final result for
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the asymptotic density nE(x− x′) following from Eqs. (93, 101-103) then
reads [22]:

nE(x− x′) =
π2γBorn(E)

8

∫ ∞

0
du u sinh (πu)

[
1 + u2

1 + cosh (πu)

]2

× exp{−(1 + u2)γBorn(E)|x− x′|/2}, (106)

where we used Eq. (100). The normalization constant turns out as ρE =
1/(2πpE), i. e., the density of states for a free particle.

4.1.4 Discussion

A crucial element of Berezinskii’s derivation is the ability to introduce
a spatial ordering between the positions of vertices, i. e., x1 < x2 < x′ <
x3 < x4 < x < x5 in Fig. (10). For this reason, the method of Berezinskii
is restricted to one-dimensional systems and cannot be generalized to
higher dimensions.

Furthermore, even for one-dimensional systems, the method is not ex-
act, since it considers only a certain class of diagrams, which we called
the ‘essential diagrams’. The approximate character of this method man-
ifests itself in the fact that the Born approximation γBorn(E) of the Lya-
punov exponent appears in the final result, Eq. (106). As we will see
in Subs. 5.3.2, however, the Born approximation is only valid for high
energies.

We therefore expect that a much more accurate expression of nE(x) is
obtained if γBorn(E) in Eq. (106) is replaced by the exact value γ(E) of
the Lyapunov exponent. This leads to Eq. (5), as already anticipated in
Subs. 2.2.2. This procedure is consistent with the one-parameter theory
of localization [9], according to which the behaviour of physical quan-
tities should be governed by a single parameter, e. g. by the Lyapunov
exponent γ(E). Although we are not aware of a rigorous proof, we ex-
pect that this one-parameter scaling hypothesis is valid, in our case, at
least for distances larger than the correlation length σc of the random
potential. This expectation will be confirmed by numerical simulations
in Chapter 7.

4.2 generalization of berezinskii’s method to wave pack-
ets

We now turn towards the generalization of Berezinskii’s method to the
case of wave packets.
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4.2.1 Average intensity propagator with two different source points

Similarly to Eq. (91), we can express the asymptotic average particle
density in terms of Green functions as follows:

n(x) = lim
ω→0

ω

2πi

∫ ∞

−∞
dE

∫ ∞

−∞
dx′′dx′′′〈x′′|ψ0〉〈ψ0|x′′′〉

×G(+)(x, x′′, E + ω)G(−)(x′′′, x, E). (107)

The equivalence of Eq. (107) with our original definition of n(x) in-
troduced in Subs. 3.1.3, see Eq. (24), is demonstrated in Appendix A.
As compared to Eq. (91) for nE(x), this expression exhibits additional
integrals over the energy E and the two source points x′′ and x′′′. More-
over, the average product of Green functions now contains two different
source points x′′ and x′′′ instead of a single source point x′ in Eq. (89).
We therefore generalize Berezinskii’s intensity propagator, see Eq. (92)
as follows:

Φ̃(x, x′′, x′′′, E, ω) = G(+)(x, x′′, E + ω)G(−)(x′′′, x, E) (108)

such that

n(x) = lim
ω→0

ω

2πi

∫ ∞

−∞
dE

∫ ∞

−∞
dx′′dx′′′〈x′′|ψ0〉〈ψ0|x′′′〉

×Φ̃(x, x′′, x′′′, E, ω) (109)

In the following, our aim is to establish a relation between Φ̃(x, x′′, x′′′, E, ω)
and Φ(x, x′, E, ω) = Φ̃(x, x′, x′, E, ω), which will allow us to generalize
Berezinskii’s technique to the case of wave packets.

4.2.2 Neglect of disorder in the vicinity of the source points

An example of a diagram contributing to Φ̃(x, x′′, x′′′, E, ω) is shown
in Fig. (13). Let us first assume, for simplicity, that no vertices (i. e. no
scattering events by the random potential) occur in the region between
the two source points x′′ and x′′′. Obviously, it is almost identical to the
corresponding Berezinskii diagram in Fig. (10). However, the free prop-
agators G(+)

0 (x′ − x3, E + ω) and G(−)
0 (x′ − x4, E) describing the initial

propagation from the source x′ to the first scattering event at x3 (for the
solid line) or x4 (for the dashed line) in Fig. (10), must now be replaced
by G(+)

0 (x′′ − x3, E + ω) and G(−)
0 (x′′′ − x4, E) in Fig. (13), respectively.

Taking into account the explicit form of the free-particle Green func-
tions, Eq. (57) with pE =

√
E, the shifts of the initial positions from x′

to x′′ and from x′ to x′′′, respectively, lead, in total, to an exponential
factor:

eipE(x′′′−x′′) =
G(+)

0 (x′′ − x3, E)G(−)
0 (x′′′ − x4, E)

G(+)
0 (x′ − x3, E)G(−)

0 (x′ − x4, E)
, (110)
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a)

x1 x2 x0 x3 x4 x x5

b)

x1 x2 x00 x0 x000 x3 x4 x x5

1

Fig. (13) Diagram contributing to the intensity propagator Φ̃(x, x′′, x′′′, E, ω) =

G(+)(x, x′′, E + ω)G(−)(x′′′, x, E) with two source points x′′ and x′′′, as
it appears in the case of wave packets. The diagram is almost identical
to the one shown in Fig. (10), except for the fact that the source point
x′ of Fig. (10) is replaced by two different source points x′′ and x′′′. As
compared to Fig. (10), this introduces an additional factor eipE(x′′′−x′′).

for x′′ < x′ < x′′′ < x3,4 (where the limit ω → 0 was taken). In other
words, the contribution of diagram Fig. (13) is given by the contribution
of diagram Fig. (10) times the above factor, Eq. (110). The same factor
applies if x′′ and x′′′ are exchanged, i.e. for diagrams in which x′′′ <
x′ < x′′ < x3,4, whereas the complex conjugate factor e−ipE(x′′′−x′′) is
obtained in the cases where the particle initially propagates to the left-
hand side, i.e. x3,4 < x′′ < x′ < x′′′ or x3,4 < x′′′ < x′ < x′′.

Hence, if we decompose, similarly as in Eq. (101) the propagator into
two parts:

Φ̃(x, x′′, x′′′, E, ω) = Φ̃R(x, x′′, x′′′, E, ω) + Φ̃L(x, x′′, x′′′, E, ω), (111)

corresponding to initially right- or left-propagating particles, we obtain:

Φ̃R(x, x′′, x′′′, E, ω) = eipE(x′′′−x′′)ΦR(x, x′, E, ω), (112)

Φ̃L(x, x′′, x′′′, E, ω) = e−ipE(x′′′−x′′)ΦL(x, x′, E, ω) (113)
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Inserting these relations into Eq. (109) and using Eq. (93), we see that:

n(x) =
∫ ∞

−∞
dE

∫ ∞

−∞
dx′′dx′′′nE

(
x− x′′ + x′′′

2

)
×〈x′′|ψ0〉〈ψ0|x′′′〉

eipE(x′′′−x′′) + e−ipE(x′′′−x′′)

4πpE︸ ︷︷ ︸
=−=

{
G(+)

0 (x′′′−x′′,E)
}

/π

, (114)

where a factor 1/(2πpE) results from the normalization factor ρE =
1/(2πpE) (resulting as the density of states for a free particle in 1D,
as mentioned above) in Eq. (93), and another factor 1/2 from the dis-
tinction between diagrams where the particle initially propagates to
the left or to the right-hand side, respectively, which, as discussed in
the paragraph after Eq. (103) above, give exactly the same contribution
nE(x− x′)/2 to the total density, if the initial point x′ is chosen in a
symmetric way, i.e. x′ = x′′+x′′′

2 .
We recognize the last term of Eq. (114) as the negative imaginary part

of the free-particle Green function, Eq. (57), dividided by π, which, in
turn, is related to the spectral function:

A0(p, E) = − 1
π

∫ ∞

−∞
dx′′ e−ip(x′′−x′′′)={G(±)

0 (x′′ − x′′′, E)},

= δ(E− p2), (115)

of a free particle, see also Eq. (11) Together with the definition of the
initial state’s Wigner function, see Eq. (10), Eq. (114) turns into:

n(x) =
∫ ∞

−∞
dE

∫ ∞

−∞
dpdq W(q, p)A0(p, E)nE(x− q). (116)

This reproduces Eq. (9) – apart from the fact that the average spectral
function A(p, E) in the presence of the random potential is approxi-
mated by the spectral function A0(p, E) of the free particle.

4.2.3 Including disorder in the vicinity of the source points

Remember, however, that our above derivation neglects the presence
of the random potential in the vicinity of the source! The remaining
diagrams, i. e., those which also contain vertices between x′′ and x′′′ are
treated in Appendix B. As shown there – under the assumption of a
spatially confined initial wave packet (with width a much smaller than
the localization length) – the above relations Eqs. (112,113) are replaced
by:

Φ̃R(x, x′′, x′′′, E, ω) = ei p̃E(x′′′−x′′)ΦR(x, x′, E, ω), (117)

Φ̃L(x, x′′, x′′′, E, ω) = e−i p̃∗E(x′′′−x′′)ΦL(x, x′, E, ω) (118)
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where p̃E denotes the complex effective wave vector, which determines
the average Green function according to Eq. (77). Correspondingly (as
discussed in Appendix B), the free particle Green function G(±)

0 (x′′ −
x′′′, E) is replaced by the average Green function G(±)(x′′ − x′′′, E) in
Eq. (114), and A0(p, E) by A(p, E) in Eq. (116) (see Chapter 6). This
concludes the derivation of our final result, Eq. (9).

According to this result, two ingredients are required in order to eval-
uate the average asymptotic density n(x): first, the Lyapunov exponent
γ(E) determines the shape of the density profile nE(x) at fixed energy,
see the discussion in Subs. 4.1.4 above. Second, the spectral function
A(p, E) is needed in order to calculate the energy distribution of the
initial wavepacket ψ0(x). The following Chapters 5 and 6 will be con-
cerned with finding accurate analytical expressions for these two quan-
tities.





5
LYA P U N O V E X P O N E N T

The Lyapunov exponent defines the inverse of the localization length,
and thus represents a crucial quantity describing exponential localiza-
tion of wave functions. In one-dimensional uncorrelated random po-
tentials, all energy eigenfunctions are exponentially localized, and thus
exhibit a non-zero Lyapunov exponent, which, in general, depends on
the corresponding energy of the eigenfunction. In this chapter, we will
derive an analytical expression of the Lyapunov exponent valid in good
approximation for random potentials which exhibit either weak fluc-
tuations or a short correlation length (or both). As explained in the
previous chapter (see the discussion in Subs. 4.1.4), this expression will
be used to obtain the shape of the asymptotic density profile at fixed
energy, see Eq. (5).

First, we will define the Lyapunov exponent in Sec. 5.1, and state
Oseledets’ theorem [57],1 which guarantuees that, in the presence of a
random potential without correlations, all eigenfunctions are exponen-
tially localized. We present a numerical method for determining the Lya-
punov exponent in a one-dimensional correlated potential in Sec. 5.2,
which we then compare with a perturbative analytical expression ob-
tained from the Born approximation in Sec. 5.3. This expression, how-
ever, fails for small energies, where it exhibits a divergence, whereas
the numerically determined Lyapunov exponent remains finite for all
energies. We therefore review works of Thouless [23] and Halperin [25],
who found an exact expression for the Lyapunov exponent, valid for all
energy ranges in the case of a white noise potential, see Sec. 5.4. This ex-
pression is also valid, with good approximation, for random potentials
with a finite correlation length σc in the regime of small energies, where
the wave length of the particle is much larger than σc. On the basis of
this result, we finally construct an interpolation between the exact white
noise result (valid at low energies) and the Born approximation (valid at
large energies) in Sec. 5.5. By comparison with numerical data, we show
that this interpolation well describes the Lyapunov exponent in the en-
tire range of energies, for random correlated potentials which satisfy
the condition V0σ2

c � 1. This condition implies that the kinetic energy
of a particle with wavelength comparable to the correlation length σc is
much larger than the typical size V0 of the potential’s fluctuations.

1 With previous work on random multiplication of matrices by Furstenberg [58] and
Furstenberg-Kesten [59].

51
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5.1 definition

For a one-dimensional uncorrelated random potential V(x), all eigen-
functions ψE(x) are exponentially localized [4]. The rate of exponential
decay defines the Lyapunov exponent

γ(E) = − lim
x→∞

ln (||ψE(x)||)/|x|. (119)

In this definition, ||.|| describes a norm, which is chosen as the ab-
solute value |.| if the wave function is complex, whereas ||ψE(x)|| =√

ψE(x)2 + [∂xψE(x)]2/E, see Eq. (129) below, if ψE(x) is required to be
real [52]. Note that the definition given by Eq. (119) is based on the aver-
age of the logarithm of ||ψE(x)||. The average intesity ||ψE(x)||2 decays
with a different exponent, which can be shown to be given by γ(E)/2
[60], see also Eq. (7). For this reason, as we already mentioned after
Eq. (7), the definition of the localization length based on the decay of the
average intensity, see Eq. (1), differs from definition Lloc(E) = 1/γ(E)
based on the decay of the average logarithm, see Eq. (119), which we
will use in the following.

The Lyapunov exponent is also very well known in the context of
chaotic, dynamical system, where it quantifies the sensitivity with re-
spect to small changes of the initial conditions. These deviations are
also obtained from the multiplication of matrices which, for a chaotic
system, are similar to random matrices [61]. With the purpose of un-
derstanding the meaning of the Lyapunov exponent, we first review
Oseledets’ [57] and Furstenberg’s [58] multiplicative ergodic theorem
(MET). After that, we will apply it to the one-dimensional Schödinger
equation, as it has already been done in many previous works on one-
dimensional disordered systems [62]–[66].

Oseledets’ and Furstenberg’s multiplicative ergodic theorem (MET)

The Oseledets’ and Furstenberg’s MET affirms that, for a sequence {Pn}
of independently and identically distributed random d × d matrices,
there exists a matrix Γ defined as:

Γ ≡ lim
N→∞

(
PT

NPN

) 1
2N ≥ 0 (120)

where PN = PNPN−1 · · · P1. According to Eq. (120), each sequence PN
converges with probability 1 to the same matrix Γ. If {U1, ..., Ud} and
{γ1, ..., γd} are the eigenvectors and eigenvalues of Γ respectively, then,
for every vector x on the d-dimensional space, the quantity γ defined
as:

γ(x) ≡ lim
N→∞

1
N

log ‖PNx‖, (121)
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fulfills γ(x) = max(γi, ..., γj), where {Ui, ..., Uj} is the subset of the
eigenvector spaces on which x has a non-zero projection.

The main point established by Oseledec’s and Furstenberg’s MET is
the fact that the norm of any vector x diverges exponentially fast under
repeated action of the matrix PN. The rate of the asymptotic exponen-
tial divergence is determined by the set {γi, ..., γj} consisting of the Lya-
punov characteristic exponents of PN. More precisely, the divergence is
dominated by the component of x on {Ui, ..., Uj} which has the fastest
growing rate [67].

5.2 numerical determination

To apply Oseledets’ and Furstenberg’s MET to the one-dimensional
Schödinger equation, we transform the continuous time-independent
Eq. (18), which describes non-interacting particles with energy E = p2

E
in a one-dimensional disordered potential, to a discrete equation with
a spatial stepsize ∆x � σc, E−1/2:

ψn+1
E = [(Vn − E)(∆x)2 + 2]ψn

E − ψn−1
E ,

where ψn
E = ψE(n∆x) and Vn = V(n∆x) represent the complex state ψE

and the real potential V at the point n ·∆x, respectively. Therefore, their
matrix representation is:(

ψn+1
E

ψn
E

)
=

(
[(Vn − E)(∆x)2 + 2] −1

1 0

)(
ψn

E

ψn−1
E

)
= Pn

2×2

(
ψn

E

ψn−1
E

)
.

(122)

The matrix Pn
2×2 in Eq. (122) is symplectic, therefore the condition:

det PNL = 1, where PNL = PNL
2×2...P1

2×2, (123)

is fulfilled for all total numbers of sites NL. Hence, the determinant of
Γ equals 1, see Eq. (120), and with this, in the limit NL → ∞, the eigen-
values of PNL converge to {γ1, γ2} = {e−γNL , e+γNL} with Lyapunov
exponent γ.

Alternatively, the Lyapunov exponent can also be extracted from de-
termining the transmission of an incident plane wave through a random
potential with length L = NL∆x. For this purpose, we solve Eq. (122)
with boundary conditions: ψ

(0)
E = 1 + r and ψ

(1)
E = eipE∆x + re−ipE∆x

(where r denotes the reflection amplitude), and ψ
(NL)
E = t and ψ

(NL+1)
E =

teipE∆x (where t denotes the transmission amplitude). The transmision
probability T = |t|2 then results from the matrix PNL as follows [5]:

T(E) =
4 sin2 (

√
E · ∆x)

|P21 −P12 + P22e−i
√

E·∆x −P11ei
√

E·∆x|2
. (124)
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Finally, the Lyapunov exponent is obtained as [68]:

γ(E) = − lim
NL→∞

1
2NL

ln T(E). (125)

As already mentioned above, the localization length is defined as the
inverse of the Lyapunov exponent, i. e., Lloc(E) =

(
γ(E)

)−1.
Numerically, we choose ∆x = 0.1σc and NL = 8000, and then deter-

mine the Lyapunov exponent

γ(E) = − 1
2NL

ln
[
T(E)

]
.

We take realizations of disordered potentials with finite length (i. e.
L = 8000∆x), and then average γ(E) over 2000 different realizations.
The averaging is needed to obtain a more accurate numerical value,
since γ(E) is independent of the realization of the potential only in the
limit NL → ∞. For V0σ2

c = 0.0165 and V0σ2
c = 0.0325, the numerical

results for γ(E) are shown in Fig. (15) below.

5.3 perturbation theory

5.3.1 Phase formalism

Eqs. (124,125) are useful for numerical computations of the Lyapunov
exponent. An analytical expression of the Lyapunov exponent can be
obtained in the frame of perturbation theory [52]. For this purpose, let
us consider the polar representation of the real-valued solution ψE(x)
of the stationary Schrödinger equation Eq. (18), which introduces am-
plitude and phase coordinates (r, θ) as follows:

ψE(x) = r(x) sin[θ(x)], (126)

∂xψE(x) =
√

E r(x) cos[θ(x)]. (127)

for E > 0. Fig. (14) shows an example of a real-valued function ψE(x),
which exhibits oscillations between positive and negative values (black
line), and the corresponding amplitude (red line), which is strictly pos-
itive, and can be used to describe the localization of the wave packet.

We now consider a solution of the Schrödinger Eq. (18) for a given
initial condition r0 = r(0) and θ0 = θ(0). The corresponding Lyapunov
exponent describes the exponential decay of the amplitude r(x):

γ(E) = − lim
|x|→∞

ln[r(x)/r0]

|x| . (128)
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Fig. (14) Real-valued wave function ψE(x) (black line), and its amplitude r(x)
(red line) defined by Eqs. (126,127) in the phase formalism.

With the purpose of finding an analytic expression of ln[r(x)/r0], we
first solve Eqs. (126,127) for the amplitude r(x):

r(x) =

√
ψ2

E(x) +
(∂xψE(x))2

E
, (129)

and then calculate its partial logarithmic derivative:

∂x ln[r(x)] =
∂xr(x)
r(x)

=
∂xψE(x)

r2(x)

[
ψE(x) +

∂2
xψE(x)

E

]
. (130)

Inserting Eqs. (18) and (126,127) in Eq. (130), we conclude:

ln[r(x)/r0] =
1

2
√

E

∫ x

0
dx′V(x′) sin[2θ(x′)], (131)

which is a function of the phase variable θ(x).
The latter is obtained after dividing Eq. (127) by Eq. (126):

∂xψE(x)
ψE(x)

=
√

E cot[θ(x)]. (132)

To deduce an equation for θ(x), we take the derivative of both sides
of the last expression with respect to x and, after that, we use Eq. (18)
to obtain:

−
√

E∂xθ(x)
sin2[θ(x)]

= V(x)− E(1 + cot2[θ(x)]). (133)

Thereby, we conclude a differential equation for θ(x):

∂xθ(x) =
√

E− V(x)√
E

sin2 [θ(x)], (134)

with formal solution:

θ(x) = θ0 +
√

Ex− 1√
E

∫ x

0
dx′V(x′) sin2 [θ(x′)], (135)

where θ0 = θ(0) is an initial condition. This phase angle was introduced
by H. Prüfer in [69].
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5.3.2 Born approximation

For weak random potentials, Eq. (135) can be solved iteratively, which
yields an expansion of its solution in powers of V(x). Choosing θ0 = 0,
we get for the lowest two orders:

θ(0)(x) =
√

E x, (136)

θ(1)(x) = − 1√
E

∫ x

0
dx′V(x′) sin2 [θ(0)(x′)], (137)

Expanding the expression sin [2θ(x)], with θ(x) ' θ(0)(x) + θ(1)(x), in
Eq. (131) up to first order in θ(1)(x), i.e. sin [2θ(x)] ' sin [2θ(0)(x)] +
2 cos [2θ(0)(x)]θ(1)(x), we conclude the two first orders of ln [r(x)/r0] as:

ln(1)[r(x)/r0] =
1

2
√

E

∫ x

0
dx′V(x′) sin2 [2

√
Ex′], (138)

ln(2)[r(x)/r0] = −
1
E

∫ x

0
dx′

∫ x′

0
dx′′V(x′)V(x′′)×

cos [2
√

Ex′] sin2 [
√

Ex′′]. (139)

Performing the disorder average according to the definition from Eq. (128)
and assuming V(x) = 0, the average over Eq. (138) is zero, while the
result of Eq. (139) is:

ln(2)[r(x)/r0] = −
1
E

∫ x

0
dx′

∫ 0

−x′
dx1C2(x1) cos [2

√
Ex′] sin2 [

√
E(x′ + x1)].

(140)

We now exchange the order of integration, i.e.
∫ x

0 dx′
∫ 0
−x′ dx1 · · · =∫ 0

−x dx1
∫ x
−x1

dx′ . . . , and perform the integral over x′. Since C2(x1) de-
cays to zero for large values of x1, we may, in the limit of large x, change
the limits for the integral over x1 from (−x, 0) to (−∞, 0). Then, we use
Eq. (128) together with:

lim
x→∞

1
x

∫ x

−x1

dx′ cos [2
√

Ex′] sin2 [
√

E(x′ + x1)] = −
1
4

cos[2
√

Ex1] (141)

and, finally, the fact that C2(x1) and cos [
√

Ex1] are even functions of x1,
to arrive at our final result for the Lyapunov exponent in Born approxi-
mation:

γBorn(E) =
1

8E

∫ ∞

−∞
dx1C2(x1) cos (2

√
Ex1). (142)
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Fig. (15) Lyapunov exponent (in units of σ−1
c ) for a Gaussian correlated po-

tential, see Eq. (30), as a function of energy (in units of σ−2
c ) for two

different strengths of the random potential, V0σ2
c = 0.0165 (black) and

V0σ2
c = 0.0325 (red), both of which fulfill the condition V0σ2

c � 1 of
a weak random potential. For both values of the potential, the Born
approximation, Eq. (142) (dashed lines), agrees well with the result
of numerical transfer matrix calculations (dots) in the range of high
energies, but exhibits a divergence at E→ 0. In order to demonstrate
the range of validity

√
E� γ(E), we plot

√
E as a blue curve.

For the case of the speckle potential, Eq. (38), the result of Eq. (142) is
given by Eq. (2), as already announced in Chapter 2.

For the case of a random potential with Gaussian correlation function,
see Eq. (30), we obtain:

γBorn(E) =
√

π

2
σcV2

0
4E

e−2σ2
c E, (143)

This expression is compared with numerical data, obtained by the trans-
fer matrix method as explained in Sec. 5.2 for 2000 disordered potentials
of length L = 800σc, in Fig. (15). We see that the Born approximation
gives a good prediction for the Lyapunov exponent for large energies.
More precisely, we estimate that the Born approximation is valid for√

E � γ(E), see the blue line in Fig. (15). For weak random potentials,
i. e., if V0σ2

c � 1, Eq. (143) is therefore valid if E� (σcV2
0 )

2/3. For small
energies, however, we observe huge deviations between the Born ap-
proximation and the numerics. First, the Born approximation is defined
only for positive energies, see Eq. (127). Second, it exhibits a divergence
for E → 0, which is not present in the numerial data. As already men-
tioned in Chapter 2, these shortcomings of the Born approximation are
one reason for the fact that previous theoretical attempts fail to describe
the center of the localized density profile, which is determined by small
(and negative) energies.
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5.4 exact expression for uncorrelated potentials

In order to cure the shortcomings of the Born approximation discussed
above, we are now looking for an analytical expression of the Lyapunov
exponent which is valid, in particular, also in the regime of small ener-
gies. For this purpose, we will rely on the fact that an exact, analytical
theory exists for one-dimensional white-noise potentials. This theory
will turn out to be useful also for correlated potentials in the regime
of small energies, where the wavelength of the particle is so long that
it effectively cannot distinguish a correlated potential (with correlation
length much smaller than the wavelength) from a white-noise potential.

5.4.1 Thouless’ relation between Lyapunov exponent and density of states

The Thouless relation, see Eq. (152) below, which plays a major role in
this thesis, can be easily derived from the Green function formalism
presented in Chapter 3. Using the notation of Thouless’ paper [23], we
consider a particle on a one-dimensional lattice with lattice sites n =
1, . . . , N. The Schrödinger equation reads:

Enψα
n −Vn,n+1ψα

n+1 −Vn−1,nψα
n−1 = Eαψα

n, (144)

where En is the energy of the n-site, Vn,n+1 or Vn−1,n the coupling be-
tween the sites (n) and (n + 1), or (n − 1) and (n), respectively, and
ψn−1, ψn, and ψn+1 are the real amplitudes for the eigenstate with eigen-
value Eα.

As discussed in Sec. 5.2 above, also our continuous Schrödinger Eq. (18)
can be brought into this form by discretization on a sufficiently fine lat-
tice. In this case, we obtain Vn,n±1 = 1/(∆x)2 and En = V(n∆x) −
2/(∆x)2.

The Green function for Eq. (144) reads:

(E− En)Gnm(E) + Vn,n+1Gn+1m(E) + Vn−1,nGn−1m(E) = δnm. (145)

In the following, we will be interested in the element G1N(E) describing
propagation from one side of the chain to the other side. From Eq. (145)
we can deduce that G1N(E) are elements of the inverse of the N × N-
matrix EI−H, where I is the unit matrix and H is the Hamiltonian of
the whole system. Since the cofactor of the matrix element (EI−H)1N
is ∏N−1

i=1 Vi,i+1, we obtain:

G1N(E) =
∏N−1

i=1 Vi,i+1

det (EI−H)
=

∏N−1
i=1 Vi,i+1

∏N
α=1(E− Eα)

=

(
1

(∆x)2

)N−1

(
∏N

α=1(E− Eα)

)
∆x

.
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(146)

On the other hand, we can also express G1N(E) in terms of the eigen-
states {|ψα〉} and eigenenergies {Eα} of the Hamiltonian H:

G1N(E) = 〈1|G(E)|N〉 =
N

∑
α=1
〈1|ψα〉〈ψα|G(E)|ψα〉〈ψα|N〉 (147)

If c1(Eα) = 〈1|ψα〉 and cN(Eα) = 〈N|ψα〉 denote the overlap of |ψα〉
with sites 1 and N, respectively, and using Eq. (48), we can conclude:

G1N(E) =
N

∑
α=1

c1(Eα)c∗N(Eα)

E− Eα
. (148)

According to Eq. (148), G1N has a pole of residue c1(Eβ)c∗N(Eβ) at
E = Eβ (for each β = 1, ..., N.) On the other hand, the same residue can
also be extracted from Eq. (146). This yields:

c1(Eβ)c∗N(Eβ) =
1(

∏N
α 6=β(Eβ − Eα)

)
(∆x)2

. (149)

Following the Anderson theorem [4], the wave function amplitudes
for one single energy state in a one-dimensional disordered potential
decay exponentially, with the Lyapunov exponent as decay rate. Let us
assume that the eigenstate |ψβ〉 is localized around site N0. Then, the
decay between the sites 1 and N0, and between N0 and N, respectively,
are given by c1(Eβ) ∝ e−(N0−1)γ(Eβ)∆x and cN(Eβ) ∝ e−(N−N0)γ(Eβ)∆x.
Taking the logarithm of the absolute value of Eq. (149), and neglecting
terms which vanish for N → ∞, yields:

γ(Eβ) =
1

(N − 1)∆x ∑
α 6=β

ln |Eβ − Eα|. (150)

In order to perform the continuum limit, we replace the sum over all
eigenstates by an integral over the density of states ρ(E):

1
(N − 1)∆x ∑

α

→
∫

dE ρ(E).

Moreover, we consider the difference between γ(Eβ) for a disordered
potential and γ0(Eβ) for a free particle:

γ(Eβ)− γ0(Eβ) =
∫ ∞

−∞
dEα [ρ(Eα)− ρ0(Eα)] ln |Eβ − Eα|, (151)

in order to avoid a divergence of γ(Eβ) for high energies, where ρ(Eα) ≈
ρ0(Eα). From the Green function of a free particle, see Eq. (57), we know
that γ0(E) = 0 for E ≥ 0, whereas γ0(E) =

√
−E for E < 0.
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Integration by parts finally yields [23]:

γ(E)− γ0(E) = P
∫ ∞

−∞
dE′

N(E′)− N0(E′)
E′ − E

, (152)

where P denotes the Cauchy principal value, N(E) =
∫ E
−∞ dE′ ρ(E′) the

cumulative density of states, and and N0(E) = <{
√

E}/π the cumula-
tive density of states of a free particle.

Eq. (152) can be read as a Kramers-Kronig relation between the quan-
tities N(E) and πγ(E). In other words, if there exists a complex function
F(z) which is analytic in the upper half of the complex plane and tends
to i
√

z/π as |z| → ∞, and if the imaginary part of this function coin-
cides with the cumulative density of states, i. e., N(E) = ={F(E)}, then
the Lyapunov exponent is given by π times the real part of this function,
i. e., γ(E) = π<{F(E)} [24].

5.4.2 Average density of states for uncorrelated potentials: Halperin’s method

In the previous subsection, we have derived the general relation Eq. (152)
between the Lyapunov exponent and the cumulative density of states,
which is valid for an arbitrary, one-dimensional disordered system. In a
second step, we will now present an exact result for the average cumu-
lative density of states for the case C2(x) = Dδ(x)/2 of a white-noise
potential with strength D/2. This result has been derived by Halperin
in [25].

Halperin’s strategy is based on the fact that the cumulative density
of states:

N(E) =
∫ E

−∞
dE′ ρ(E′), (153)

is equal to the density of zeros of any real solution ψE(x) of the Schrö-
dinger equation, Eq. (18) [70]–[72]. Let us therefore consider a solution
ψE(x) of Eq. (18) with arbitrary boundary condition ψE(0) = ξ0 and
ψ′E(0) = η0 in the interval 0 ≤ x ≤ L. We define

z(x; E) =
ψ′E(x)
ψE(x)

. (154)

Since ψE(x) is a random function (depending on the realization of the
potential V(x) in the Schrödinger equation), we can define the probabil-
ity density of z(x; E):

P0(z, x) = δ(z− z(x; E)). (155)
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As shown in [25], P0(z, x) fulfills the following differential equation
in the case of white noise C2(x) = Dδ(x)/2:

∂P0

∂x
=

[
D

∂2

∂z2 +
∂

∂z
(z2 + 2E)

]
P0, (156)

with initial value:

P0(z, 0) = δ(z− η0/ξ0). (157)

For large x, the solution of Eq. (156) assumes a stationary distribution
p0(z) (independent of x and the boundary conditions ξ0, η0) given by
[25]: [

D
∂2

∂z2 +
∂

∂z
(z2 + 2E)

]
p0(z) = 0, (158)

with normalization condition:∫ ∞

−∞
dz p0(z) = 1, (159)

and boundary condition:

lim
z→∞

z2p0(z) = lim
z→−∞

z2p0(z). (160)

Finally, the cumulative average density of states is obtained as [70]:

N(E) = lim
z→∞

z2p0(z). (161)

This relation can be understood as follows. Acording to Eq. (154), large
values of z(x; E) are reached if x is close to a point xi where ψE(xi) = 0.
In this case

z(x; E) =
ψ′E(x)
ψE(x)

≈ 1
x− xi

. (162)

On the other hand, as stated above, the cumulative density of states
is equal to the density of zeros of ψE(x). In other words, the probability
to find a zero of ψE(x) in an interval [x, x + dx] is given by N(E)dx.
Thereby, the expectation value in Eq. (155) can be evaluated as follows:

P0(z, x) = N(E)
∫ x

x−∆x
dxiδ

(
z− 1

x− xi

)
=

N(E)
z2 , if z > 1/∆x. (163)

which finally yields Eq. (161).
In [25], an analytic solution for Eqs. (158-160) is derived, from which

N(E) follows as:

N(E) =
(D/4)1/3

π2
{

Ai2
[
−E

(
16
D2

)1/3
]
+ Bi2

[
−E

(
16
D2

)1/3
]} , (164)
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where Ai and Bi denote Airy functions of the first and second kind,
respectively.

This result can be written as the imaginary part of the following com-
plex function:

F(E) =
D1/3

41/3π

Ai′
[
−E

(
16
D2

)1/3
]
+ iBi′

[
−E

(
16
D2

)1/3
]

Ai
[
−E

(
16
D2

)1/3
]
+ iBi

[
−E

(
16
D2

)1/3
] , (165)

which fulfills all the conditions discussed in the paragraph after Eq. (152)
above. Therefore, the Lyapunov exponent results from the real part of
this function as follows:

γ(E) =
(

D
4

)1/3 M′
[
−E

(
16
D2

)1/3
]

M
[
−E

(
16
D2

)1/3
] , (166)

where M(y) =
√

Ai2(y) + Bi2(y).

5.5 interpolation method for correlated potentials

Eq. (166) is exact for the white noise potential. Our idea is now to choose
the strength D of the white noise in such a way that, for a given energy
E, the Lyapunov exponent of the white noise potential agrees with the
one of our correlated potential. For this purpose, we first look at the
asymptotic bevaviour of γ(E), given by Eq. (166), for large energies:

γ(E) −→
E→∞

D
16E

. (167)

In order to reproduce the result of the Born approximation, we there-
fore choose D = 16EγBorn(E), or, taking into account Eqs. (142,143):

D = 2
∫ ∞
−∞ dx C2(x) cos

(
2
√

Ex
)
,

= 2
√

2πσcV2
0 e−2σ2

c E. (168)

As already mentioned above, the Born approximation is valid for
large energies E � E(1)

min, where E(1)
min = (σcV2

0 )
2/3. On the other hand,

we can also define a regime of low energies E � E(2)
max where E(2)

max =
σ−2

c . This corresponds to the condition that the wave length λE = 2π/pE
is much larger than the correlation length σc. In this regime, the wave
is not able to resolve the correlations of the potential, which can there-
fore be approximated by a white noise potential C2(x) = Dδ(x)/2, with
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D/2 =
∫ ∞
−∞ dx C2(x) = 2

√
2πσcV2

0 . This again agrees with Eq. (168) for
Eσ2

c � 1. Thus, Eq. (168) together with Eq. (166) yields a good approxi-
mation for the Lyapunov exponent, both, for high and for low energies.
Moreover, remember that we assumed V0σ2

c � 1, which is equivalent
to E(1)

min � E(2)
max. Since this implies that the two above regimes overlap,

our approximation is expected to hold in the entire range of energies.
This expectation is confirmed by numerical calculations of the Lya-

punov exponent using the transfer matrix method [5], see Fig. (16).
We see that our above analytical expression, Eq. (166) together with
Eq. (168) (solid lines), agrees well with the numerical results (dots) in
the entire range of energies, in particular also for negative energies. In
contrast, the Born approximation (dashed lines) exhibits a divergence
at low energies.
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Fig. (16) Lyapunov exponent (in units of σ−1
c ) as a function of energy (in

units of σ−2
c ) for two different strengths of the random potential,

V0σ2
c = 0.0165 (black) and V0σ2

c = 0.0325 (red – light gray), both
of which fulfill the condition V0σ2

c � 1 of a weak random potential.
Our analytical prediction (solid lines), based on the exact expression
for a white noise potential, Eq. (166), with noise strength D chosen ac-
cording to Eq. (168), agrees well with the result of numerical transfer
matrix calculations (dots) in the entire range of energies, and for both
values of the potential. In contrast, the Born approximation, Eq. (143)
(dashed lines) exhibits a divergence at E→ 0.





6
S P E C T R A L F U N C T I O N

The discussion in Sec. 2.2 made clear that previous attempts [27], [28] to
describe the average asymptotic density profile of a wavepacket expand-
ing in a one-dimensional disordered potential, using the ansatz given
by Eq. (9), fail in the center of the distribution. This failure has its origin
in the divergence, at small values of the energy, of the expressions for
the Lyapunov coefficient and the spectral function used in [28] and [27].
In the previous chapter, we discussed the importance of the Lyapunov
exponent as a quantity that characterizes the exponentially decaying
eigenstates of the Hamiltonian, Eq. (15), for a particle in a disordered
potential. Moreover, we found an analytical expression, see Eqs. (166

– 168), for a one-dimensional Gaussian random potential fulfilling the
condition V0σ2

c � 1, that agrees well with the numerics for all energies.
In the present chapter, we will consider the spectral function A(p, E)

describing the relation between energy and momentum in the presence
of a random potential, which is another ingredient needed to deter-
mine the asymptotic density profile according to Eq. (9). In order to
accomplish this task, we first present the general definition of the spec-
tral function and introduce, as an example, the spectral function for the
free particle and the corresponding energy probability distribution P(E)
with respect to a given initial state in Sec. 6.1. Afterwards, we calculate
the average spectral function in the presence of a random potential us-
ing the Born approximation (as also proposed in [28]), and show that
this expression diverges in the low energy regime, and vanishes for
negative energies. However, we expect that the existence of negative en-
ergies – originating from cases where the particle is trapped inside a
deep well of the random potential – will play an important role for cor-
rectly describing the center of the asymptotic density profile. To treat
this problem, we will develop a version of the self-consistent Born ap-
proximation in Sec. 6.3. In contrast to the standard self-consistent Born
approximation [73], [74], our version, where only the diverging part
1/
√

E of the self-energy is treated in a self-consistent way, allows us to
finally derive an analytical expression for the spectral function, which
does not diverge for low energies.

6.1 definition

The average spectral function A(p, E) describes the relation between en-
ergy and momentum in the presence of the random potential. In order

65
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to motivate this function, let us start with the following definition of the
average energy distribution with respect to a given initial state |ψ0〉:

P(E) = 〈ψ0|δ(E− H)|ψ0〉 = ∑
n
|〈ψ0|φn〉|2 δ(E− En) (169)

describing the ensemble-averaged overlap of the initial state with en-
ergy eigenstates of a given energy E. Due to energy conservation, this
distribution remains constant as a function of time, i.e. the same func-
tion P(E) also describes the energy distribution with respect to the state
|ψ(t)〉 = exp (−itH) |ψ0〉 at time t. Using the representation

δ(E− En) = − lim
η→0

1
2πi

(
1

E− En + iη
− 1

E− En − iη

)
(170)

of the δ-function, and

1
E− En + iη

= 〈φn|G(±)(E)|φn〉, (171)

see Eq. (48), we can reformulate Eq. (169) in terms of average Green
functions:

P(E) = − 1
2πi

〈
ψ0

∣∣∣∣G(+)
E − G(−)

E

∣∣∣∣ψ0

〉
, (172)

see Eq. (48). Now, we make use of the fact that, due to translational in-
variance induced by the average, the average Green function is diagonal
in momentum space, see Eq. (72), in order to arrive at:

P(E) = − 1
2πi

∫ ∞

−∞
dp |ψ̃0(p)|2

(
G̃(+)(p, E)− G̃(−)(p, E)

)
=

∫ ∞

−∞
dp |ψ̃0(p)|2 A(p, E) (173)

where we defined the spectral function:

A(p, E) = − 1
π
={G̃(+)(p, E)}. (174)

Since, as explained in Sec. 3.3.3, the average Green function can be
expressed in terms of the self-energy Σ(+)(p, E), see Eq. (67), we can
rewrite the spectral function as:

A(p, E) = − 1
π

={Σ̃(+)(p, E)}
[E− p2

E −<{Σ̃(+)(p, E)}]2 +={Σ̃(+)(p, E)}2
, (175)

where <{Σ̃(+)(p, E)} and ={Σ̃(+)(p, E)} are the real and imaginary part
of the self-energy.
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From Eq. (173), we see that the spectral function can be used to
transform the momentum distribution |ψ̃0(p)|2 into an energy distribu-
tion. In other words, the function A(p, E) denotes the probability that
a state with momentum p has energy E. Indeed, A(p, E) fulfills all re-
quirements of a probability distribution (for E): first, it is positive, i.e.
A(p, E) ≥ 0, and second, it is normalized:∫ ∞

−∞
dE A(p, E) = 1. (176)

The normalization, Eq. (176), follows from Eq. (173), since, according
to Eq. (169), also P(E) is normalized for every normalized initial state
|ψ0〉.

After integration over the momentum p, the spectral function A(p, E)
yields the average density of states ρE, see Eq. (4):

ρE =
∫ ∞

−∞

dp
2π

A(p, E). (177)

This follows from Eqs. (173) when choosing the initial state |ψ0〉 = |x〉 as
a position eigenstate, which exhibits a constant momentum distribution
|ψ̃0(p)|2 = 1/(2π). Then, the energy distribution P(E), see Eq. (169),
reduces to the average density of states ρE, see Eq. (4).

Spectral function of a free particle

Following the definition for the spectral density given in Eq. (174), but
applying it to the free particle Green function or Eq. (54), we obtain:

A0(p, E) = − 1
π
={G̃(+)

0 (p, E)} = 1
π

η

(E− p)2 − η2 = δ(E− p2), (178)

where the Dirac δ-function is obtained via Eq. (170) in the limit η → 0.
Thereby, we have reproduced Eq. (11).

In [27], the spectral density is approximated by the free particle de-
scription, see Eq. (11). The corresponding approximation for the energy
distribution, Eq. (173), when we use the Fourier transform of Eq. (19) as
initial momentum distribution, is:

P0(E) =

{
a√

2πE
e−a2E/2, for E > 0.

0, for E < 0,
(179)

where a is the width of the initial wavepacket in position space.
The spectral density of a free particle results as:

ρ0(E) =
∫ ∞

−∞

dp
2π

A0(p, E) =

{
1

2π
√

E
, for E > 0.

0, for E < 0,
(180)
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Note that, both, the energy distribution P0(E), see Eq. (179), and the
density of states ρ0(E), see Eq. (180), for a free particle in one dimension
diverge like 1/

√
E as the energy E tends to zero, and vanish for E < 0.

6.2 born approximation

The Born approximation is the simplest method in order to evaluate the
effect of the random potential on the average spectral function. Above,
we have seen that the spectral function can be expressed in terms of
the self-energy, see Eq. (175). As explained in Sec. 3.3.3, the self-energy,
in turn, results from a sum over all irreducible diagrams, see Eq. (65).
The Born approximation consists of taking only the first term, which
amounts to an expansion of the self-energy up to second order in the

potential V, i. e., Σ(+)
Born(E) = VG(+)

0 (E)V. Moreover, we use the approxi-
mation, already introduced in Sec. 3.3.3, according to which the depen-
dence of the self-energy on the momentum p is neglected by setting
p = pE =

√
E. Thereby, we obtain:

Σ(+)
Born(E) =

∫ ∞

−∞
dx C2(x) eipExG(+)

0 (x, E), (181)

=
d(E)
i
√

E
, (182)

where:

d(E) =
πσcV2

0
4

[
1 + e−2Eσ2

c
(

1 + i erfi
(√

2Eσc

))]
, (183)

with imaginary error function erfi(z). Similarly as in the case of the
Lyapunov exponent, Eq. (143), the Born approximation is valid only for
high energies, and a divergence proportional to 1/

√
E is observed for

E→ 0, see Eq. (182).
Fig. (17) shows a plot of the real and the imaginary part of d(E).

For large E, the function d(E) converges to a constant value πσcV2
0 /4.

According to Eq. (182), this gives rise to a self-energy with negative
imaginary part and vanishing real part. For E < 0, the function d(E)
assumes real, positive values, see Fig. (17). Since i

√
E = −

√
|E| for

E < 0, also the imaginary part of the self-energy vanishes in this case.
Therefore, in the Born approximation, the spectral function A(p, E), as
well as the average density of states ρE, vanish for negative energies
E < 0.

6.3 self-consistent born approximation

A more precise estimation, which yields a non-vanishing density of
states also for negative energies, is obtained by the self-consistent Born
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Fig. (17) d(E) (in units of σcV2
0 ) as a function of energy (in units of σ−2

c ). The
red curve is the real part of d(E), while the blue curve is the imaginary
part of d(E).

approximation, where the free-particle Green function G(+)
0 (E) in Eq. (181)

is replaced by the average Green function G(+)(E), Eq. (77), which,
in turn, depends on the self energy, see Eq. (78). The resulting self-
consistent equation for Σ(E), however, cannot be analytically solved.

Since, as pointed out above, the divergence of the Born approximation
at low energies arises from the denominator 1/pE = 1/

√
E in Eq. (182),

our approach in order to obtain an analytical result is to treat only
this denominator in a self-consistent way. We therefore replace 1/pE →
1/ p̃E, i.e. 1/

√
E → 1/

√
E− Σ(+)(E), see Eq. (78), in the denominator

of Eq. (182), and obtain the following self-consistent equation for Σ:

Σ(+)(E) =
d(E)

i
√

E− Σ(+)(E)
. (184)

This equation has the following unique solution with negative imagi-
nary part:

Σ(+)(E) = [d(E)]2/3

(
ε

3
+

(−1)2/3ε2

3
(

ε3 + 3
2

(
9 +
√

81 + 12ε3
))1/3

− 1
3
(−1)1/3(ε3 +

3
2

(
9 +

√
81 + 12ε3

)1/3
)

, (185)

where:

ε =
E

[d(E)]2/3 . (186)
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Together with Eq. (175), this concludes our analytic calculation of the
spectral function. For large E, the result of the self-consistent Born ap-
proximation converges to the one of the ordinary Born approximation,
see also Fig. (18) in the subsequent chapter. For E < 0, the imaginary
part of Σ(+) as given by Eq. (185) vanishes for E < Emin, where Emin is
determined by the condition:

− 3
22/3 =

Emin

[d(Emin)]
2/3 (187)

For V0σ2
c � 1, we may replace d(Emin) ' d(0) = πσcV2

0 /2 in Eq. (187),
and obtain:

Eminσ2
c ' −3

(π

4

)2/3 (
V0σ2

c

)4/3
(188)

Finally, the energy distribution P(E) of our wave packet is extracted
from the spectral function according to Eq. (173). Using the Fourier
transform of our initial state, Eq. (19), the integral over p can be per-
formed analytically:

P(E) =
a√
π
=


ea2(Σ(+)(E)−E)erfc

(
a
√

Σ(+)(E)− E
)

√
Σ(+)(E)− E

 , (189)

with complementary error function erfc(z). As we have checked, this
expression, with Σ(+)(E) given by Eq. (185), yields a normalized dis-
tribution [25], i. e.,

∫ ∞
−∞ dE P(E) = 1, which underlines the consistency

of our approach. Its quality in terms of agreement with numerical data
will be discussed in Subs. 7.3.1.
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C O M PA R I S O N B E T W E E N T H E O RY A N D N U M E R I C S

In this chapter, we present the numerical results for the average asymp-
totic density n(x) of a wave packet in a one-dimensional disordered po-
tential, starting from a spatially strongly confined Gaussian wave packet
as initial state, and we compare it with the theoretical description devel-
oped in the previous Chapters 4-6.

First, we give a short summary of the theoretical description in Sec. 7.1,
where, for the sake of clarity, we collect all relevant equations needed
for the theoretical calculation of the average density profile in a single
subchapter.

The algorithm used for the numerical calculations is briefly discussed
in Sec. 7.2. Finally, the numerical and theoretical results are presented
and compared with each other in Sec. 7.3, first for the energy distribu-
tion P(E) (Subs. 7.3.1), and then for the asymptotic density profile n(x)
(Subs. 7.3.2). We will see that, for the range of parameters for which
the theory has been developed (i.e. initial size a of the wavepacket
much smaller than the localization length, a � Lloc, and a random po-
tential with small standard deviation and/or short correlation length,
V0σ2

c � 1), a good overall agreement between theory and numerics
is achieved without any fitting parameter. Small deviations resulting
from the finite size of the numerical system are explained in Subs. 7.3.3,
where we present a comparion between theory and numerics in differ-
ent energy intervals.

7.1 summary of theoretical results

As explained in the previous chapters, we consider a particle in a one-
dimensional random potential, described by the Hamiltonian

H = p2 + V(x),

(h̄ = 2m = 1), see Eq. (15). The initial state is a Gaussian wave packet
with width a:

ψ0(x) = 〈x|ψ0〉 =
(

1
πa2

)1/4

e−x2/(2a2),

see Eq. (19). The random potential V(x) is modelled as a Gaussian
stochastic process, see Subs. 3.2.2, with mean value V(x) = 0 and Gaus-
sian two-point correlation function:

V(x)V(x′) = V2
0 e−|x−x′|2/(2σ2

c ),

71
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(standard deviation V0 and correlation length σc), see Eq. (30).
Our purpose is to describe the average density profile in the limit of

long times:

n(x) = lim
T→∞

1
T

∫
dt |〈x |e−iHt|ψ0〉|2

see Eqs. (21,22). Using the diagrammatic method of Berezinskii in Chap-
ter 5, we arrived at Eq. (9) as one of the central results of this thesis. For
the case of an initially strongly confined wave packet, we can neglect the
dependence of nE(x− q) on the initial position q. The integral over q in
Eq. (9) then yields the momentum distribution |ψ̃(p)|2 =

∫
dq W(q, p),

and the integral over p the energy distribution P(E), see Eq. (173). Fur-
thermore, in order to compare with numerical results (see below), we
take into account periodic boundary conditions (with period L) and
modify Eq. (9) as follows:

n(x) =
∫ ∞

−∞
dE P(E)

∞

∑
j=−∞

nE(x + jL), −L
2
� x � L

2
. (190)

where P(E) denotes the energy distribution of our wave packet, and
nE(x) the density-density autocorrelation function at fixed energy. The
latter is given by:

nE(x) =
π2γ(E)

8

∫ ∞

0
du u sinh (πu)

[
1 + u2

1 + cosh (πu)

]2

× exp{−(1 + u2)γ(E)|x|/2}
see Eq. (5). The Lyapunov exponent γ(E) = 1/Lloc(E) was obtained in
Chapter 5 by an interpolation between the Born approximation and the
exact result for white noise (valid in the entire range of energies under
the condition V0σ2

c � 1):

γ(E) =
(

D(E)
4

)1/3 M′
[
−E

(
16

D(E)2

)1/3
]

M
[
−E

(
16

D(E)2

)1/3
] ,

where M(y) =
√

Ai2(y) + Bi2(y), see Eq. (166), and

D(E) = 2
√

2πσcV2
0 e−2σ2

c E

see Eq. (168). Finally, the energy distribution was obtained using a mod-
ified version of the self-consistent Born approximation in Chapter 6:

P(E) =
a√
π
=


ea2(Σ(+)(E)−E)erfc

(
a
√

Σ(+)(E)− E
)

√
Σ(+)(E)− E
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see Eq. (189), where the self-energy is given by:

Σ(+)(E) = [d(E)]2/3

(
ε

3
+

(−1)2/3ε2

3
(

ε3 + 3
2

(
9 +
√

81 + 12ε3
))1/3

− 1
3
(−1)1/3(ε3 +

3
2

(
9 +

√
81 + 12ε3

)1/3
)

,

see Eq. (185), with:

ε =
E

[d(E)]2/3

and

d(E) =
πσcV2

0
4

[
1 + e−2Eσ2

c
(

1 + i erfi
(√

2Eσc

))]
,

see Eq. (183) and Eq. (186).
Except for Eq. (5) and Eq. (190), all results are given in an explicit and

analytical form. The former two equations correspond to one-dimensional
integrations, which can easily be performed numerically. Moreover, the
function nE(x) defined by Eq. (5) is scale-invariant. Therefore, it is suf-
ficient to evaluate this function, the shape of which is shown in Fig. (5),
one single time for a given energy E0. Then, nE(x) for arbitrary E can
be obtained as nE(x) = γE

γE0
nE0

(
γE
γE0

x
)

. In summary, our theory thus
allows us to reduce the computation of the average asymptotic density
profile to a single, one-dimensional integral given by Eq. (190).

7.2 numerical algorithm

Below, we will test the validity of our theory presented above by com-
parison with numerical results obtained from exact diagonalization of
the Hamiltonian, Eq. (15), for individual realizations of the random po-
tential V(x). The numerical algorithm for producing Gaussian random
potentials with the correlation function given above has already been
explained in Subs. 3.2.2. We then calculate the spectrum {En} and cor-
responding eigenfunctions {|φn〉} for many different realizations of the
random potential V(x). From these, the desired quantities are extracted
as follows:

P(E) =
M

∑
n=1
|〈ψ0|φn〉|2 δ(E− En)

for the energy distribution, see Eq. (169), and

n(x) =
M

∑
n=1
|〈x|φn〉〈φn|ψ0〉|2
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see Eq. (24) for the asymptotic density profile. (The latter depends only
on the eigenfunctions, and not on the energies.) To compute the ensem-
ble average, the diagonalization must be repeated for a large ensemble
(typically, several hundreds or thousands) of random Hamiltonians.

For the diagonalization, we use a finite-element discrete variable rep-
resentation (FEDVR) [75]–[77]. Our system of length L = 800σc (i. e.
much larger than the correlation length σc) is divided into 104 finite
elements of size 0.08σc (i. e. much smaller than σc). Each element, in
turn, is discretized using 5 basis functions (among them 2 bridge func-
tions which connect this element to the neighbouring ones) [76], [77].
Thereby, the Hamiltonian is represented as a matrix of dimension M =
4× 104, which can be diagonalized numerically. As already mentioned
in Subs. 3.1.2, we use periodic boundary conditions, i. e., the point
x = −L/2 is identical to the point x = L/2. More details concerning
the basis functions in the finite-element discrete variable representation
are explained in Appendix C.

7.3 results

7.3.1 Energy distribution

Let us start with the energy distribution P(E) discussed in Chapter. 6.
Fig. (18) shows the numerical result (dotted lines) together with our

analytical prediction, Eq. (189) (solid lines), for initial width a =
√

2σc
and two different values of the potential V0 = 0.0165σ−2

c (black) and
V0 = 0.0325σ−2

c (red). In addition, we also show the energy distribu-
tion of a free particle, Eq. (115) (blue dashed line). As expected, all
curves agree well for energies larger than V0. For smaller energies, the
free-particle distribution exhibits a divergence if E → 0. In contrast,
our version of the self-consistent Born approximation reproduces well
the numerical distribution in the entire range of positive energies. For
negative energies, the agreement is less precise, due to the fact that, as
discussed in Sec. 6.3, our analytical result exhibits a sharp cutoff at a
certain minimum energy Eminσ2

c ' −3
(

π
4

)2/3 (V0σ2
c
)4/3, see Eq. (188),

whereas the numerical distribution decays smoothly with decreasing
energy. We note that a more accurate description in the range of neg-
ative energies can be achieved by a recently developed semiclassical
approach [78]. This difference, however, does not significantly affect the
shape of the asymptotic state, which, according to our theory, depends
on P(E) only through the energy dependence of the Lyapunov exponent
γ(E), which is not very pronounced in the relevant regime of negative
energies, see Fig. (16).
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Fig. (18) Energy probability distribution, P(E) (in units of σ2
c ), as a function of

energy (in units of σ−2
c ) for width a =

√
2 σc of the initial wave packet

and two different strengths of the random potential, V0 = 0.0165σ−2
c

(black) and V0 = 0.0325σ−2
c (red). The results of the numerical di-

agonalization (dotted lines), averaged over 2000 realizations of the
random potential and, in addition, smoothed by an exponentially
moving average with smoothing constant 0.007, agree well with our
analytical prediction (solid lines) based on the self-consistent Born ap-
proximation, Eq. (189), for positive energies. For negative energies, the
theory exhibits a sharp cutoff which is not present in the numerical
data. For large energies (E > V0), all curves converge to the distribu-
tion P0(E) of a free particle (blue dashed line).

7.3.2 Asymptotic average density

We now turn towards the main result of this thesis concerning the
asymptotic average density n(x) defined in Sec. 2.1. Fig. (19) shows
a comparison of our theoretical prediction based on Eq. (190) with the
result extracted from numerically determined eigenfunctions according
to Eq. (24). In addition, we also show the result of a simplified the-
ory (used in [27]), where the energy distribution P(E) in Eq. (190) is
replaced by the free-particle distribution P0(E), see Eq. (115), and the
Lyapunov exponent γ(E) entering in Eq. (5) is replaced by its Born ap-
proximation γBorn(E), see Eq. (143).

Overall, we see that our theory (solid lines) gives a good description
of the numerical data (squares), both, in the wings of the spatial profile
and, remarkably, also close to the center of the wave packet (inset). Due
to Eq. (8), our theory predicts a linear decay of the profile at small x,
which can be evaluated by integrating Eq. (8) over E, see Eq. (190). (Note
that only the term j = 0 gives a significant contribution in the center.) In
contrast, the simplified theory agrees with our improved theory in the
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Fig. (19) Numerical and analytical results for the asymptotic average density,
n(x) (in units of σ−1

c ), as a function of position (in units of σc) for
width a =

√
2 σc of the initial wave packet and two different strengths

of the random potential, V0 = 0.0165σ−2
c (blue) and V0 = 0.0325σ−2

c
(red). The numerical result given by Eq. (24) (solid lines), averaged
over 2000 realizations of the random potential, agrees well with our
theoretical description, Eq. (190) (squares), in particular also close to
the center of the wave packet, without any fitting parameter. In con-
trast, a simplified version of the theory (black dashed lines) using the
spectral distribution P0(E) of a free particle instead of P(E), and the
Born approximation γBorn(E) instead of the Lyapunov exponent γ(E),
predicts an unphysical divergence of the density at x = 0 (see inset).

wings, but fails in the center where it predicts an unphysical divergence
as x → 0.

Upon closer inspection, however, we note a small deviation between
theory and numerics in the wings of the profile. Furthermore, the nu-
merical data exhibit an interference feature at x ' L/2 and x ' −L/2,
which is absent in our theory.

Before explaining the reason for these deviations, however, let us
shortly comment on the behaviour of density fluctuations around the
mean value depicted in Fig. (19). In the numerical data, we have av-
eraged over 2000 realizations of the random potential. Such a large
ensemble is necessary to obtain a precise estimate (with an accuracy
of about two percent) of the average profile n(x) in the center, i. e. for
x ' 0. The center of the profile is subject to large fluctuations, since it
sensitively depends on the shape of the random potential at x ' 0. On
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the other hand, the fluctuations become smaller for larger x, which is
consistent with the fact that the localization length (which determines
the exponential decay of the energy eigenfunctions at large distances)
is a self-averaging quantity [60].

7.3.3 Agreement theory vs. numerics in different energy intervals

To explain the reason for the small differences between theory and nu-
merics in Fig. (19), we split the average asymptotic density into different
energy intervals, i. e., we define:

n(i)(x) =
∞

∑
n=1
|〈x|φn〉〈φn|ψ0〉|2θ(En − Ei)θ(Ei+1 − En), (191)

with Heaviside function θ(E).
Eq. (191) is similar to Eq. (24), except for the fact that the sum is

restricted to eigenstates with energies En ∈ [Ei, Ei+1] inside a certain
energy interval. We choose E1 = −∞, E2 = 0, E3 = 0.103, E4 = 0.178
and E5 = 0.278, E6 = 0.403 and E7 = ∞ (all in units of σ−2

c ), such
that n(x) = ∑6

i=1 n(i)(x). The corresponding theoretical expression is
constructed in a similar way from Eq. (190):

n(i)(x) =
∫ Ei+1

Ei

dE P(E)
∞

∑
j=−∞

nE(x + jL). (192)

Fig. 20(a-f) shows the corresponding comparison between theory and
numerics in these six intervals. We observe very good agreement for
negative energies, see Fig. (20 a), where the asymptotic density is strongly
localized due to the presence of bound states in the random potential.
This result is remarkable for two reasons: first, it shows that the devi-
ations between the theoretical and the numerical energy distribution
P(E), see Subs. 7.3.1, have no significant impact on the spatial density
profile. Second, remember that our theoretical approach is based on a
diagrammatic method which takes into account only a certain class of
diagrams (called ‘essential diagrams’ in Appendix A). As explained in
the original article of Berezinskii [20], this restriction is, a priori, justi-
fied only for large energies. As our results show, however, the resulting
expression for the spatial density profile nE(x), Eq. (5), is valid also for
low (and even negative) energies – provided that an accurate value of
the Lyapunov exponent γ(E) is used in Eq. (5). As mentioned in the dis-
cussion at the end of Subs. 4.1.4, this confirms the hypothesis of the one-
parameter theory of localization [9], according to which the behaviour
of physical quantities (e.g., the asymptotic density profile) should be
governed by a single parameter (e.g. by the Lyapunov exponent γ(E)).
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A similar reasoning applies to the interval of small positive energies,
see Fig. 20(b). Deviations between theory and numerics become appar-
ent, however, for larger energies, see Fig. 20(c-f). These can be traced
back to the finite system size. Indeed, our simple way of taking into ac-
count the periodic boundary conditions, see the sum over j in Eq. (190),
after first having calculated the density according to a theory which
is valid for an infinite system, neglects the occurrence of interferences
in the finite, periodic system, e. g., interference between amplitudes of
paths which propagate to the right-hand side (x = L/2) or to the left-
hand side (x = −L/2) respectively, or between paths which perform
several ‘loops’ inside the periodic system. Such processes become rele-
vant at high energies where the influence of the random potential be-
comes less important, and the particle behaves approximately like a free
particle. To confirm this explanation, we also show the asymptotic den-
sity of a free particle within the corresponding energy intervals, where
these interferences are clearly visible.

We note that our approach of taking into account the boundary con-
ditions only at the end of the calculation (after having applied a the-
ory valid for an infinite system) is only justified for the case of peri-
odic boundary conditions, since the latter most closely resemble the
behaviour of an infinite system (apart from the interferences discussed
above). In case of different boundary conditions, which are not consid-
ered in this thesis (e. g. Neumann or Dirichlet), the diagrammatic calcu-
lation of nE(x) would have to be modified such as to include these con-
ditions already from the start. Of course, the boundary conditions will
affect the wings of the density profile close to the boundaries, whereas
its center, which is determined by energy components with localization
lengths much smaller than the system size, will essentially remain unaf-
fected. Moreover, the fact that a rather good agreement between theory
and numerics is observed in the entire range of energies in Fig. (20),
proves that the localized density profile is not sensitive to the precise
form of the initial state – provided that the initial state is strongly con-
fined in position space, as assumed in the derivation of Eq. (9), and
restricted to an energy range where the finite-size interference effects
(see above) remain small.
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Fig. (20) Comparison between numerical (black) and theoretical (red line with
dots) density profiles, n(i)(x) (in units of σ−1

c ), as a function of position
(in units of σc), see Eqs. (191,192), respectively, in different energy
windows a) (E1, E2) = (−∞, 0), b) (E2, E3) = (0, 0.103), c) (E3, E4) =

(0.103, 0.178), d) (E4, E5) = (0.178, 0.278), e) (E5, E6) = (0.278, 0.403),
and f) (E6, E7) = (0.403, ∞) (energies in units of σ−2

c ), for width
a =
√

2σc of the initial wave packet and strength V0σ−2
c = 0.0325 of

the random potential. The numerical values have been extracted from
the same data as the one used in Fig. (19) (red lines). Whereas good
agreement is observed for low energies (a,b), differences are visible
at larger energies (c-f), where the numerical data exhibits oscillations
close to x ' 0 and x ' ±L/2, which are not present in our theory.
These oscillations can be traced back to interferences occurring due
to the finite size of our system (L = 800σc) and the periodic boundary
conditions, as can be deduced by comparion with the corresponding
density of a free particle in the same energy windows (blue line).
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I N F L U E N C E O F I N T E R A C T I O N S

As we already discussed in Sec. 2.1, the experiments that motivate this
thesis were performed with an initially spatially trapped Bose-Einstein
condensate (BEC), which starts to expand in a one-dimensional random
potential as soon as the trap is released. After a certain time, the expan-
sion of the condensate comes to a halt and a quasi-stationary density
profile is observed. In Subs. 2.1.2 we discussed that, since the 1D ran-
dom potential is in the weak disorder regime, the BEC quasi-stationary
density profile can be understood as originating from destructive inter-
ference between multiply reflected wave amplitudes. In this regime, the
supression of transport is therefore a consequence of Anderson local-
ization [4], and cannot be understood in terms of classical reflection at
high potential barriers. In the previous chapters, one of the main aims of
the present thesis was achieved, i. e., to improve the existing theoretical
description of Anderson localization in one-dimensional random poten-
tials, in such a way, that we are able to describe the complete density
profile of the asymptotic state. However, remember that the description
in Chapters 3-7 is based on the linear Schrödinger equation for a single
particle, see Eq. (16), and therefore does not consider the interactions
between the bosons.

In this chapter, we will discuss the influence of interactions on the
density profile of the BEC. We will treat these interactions on a mean-
field level by including a nonlinear term into the Schrödinger equa-
tion, which is thereby transformed into the Gross-Pitaevskii equation
(GPE) [79], [80], see Sec. 8.1. An important and fundamental question is
whether the effect of Anderson localization still persists in the presence
of nonlinearity. In other words, will there still exist a long-time asymp-
totic state as defined in Eq. (21), or will the condensate continue to
expand even at long times? In Sec. 8.2, we will shortly summarize the
result of previous works based on a discretized version of the Gross-
Piatevskii equation. As we will see there, a sufficiently strong nonlin-
earity is indeed able to destroy the effect of Anderson localization, and
induce a slow sub-diffusive spreading of the wave packet. For our case
of a continous and correlated one-dimensional random potential, we
would, in principle, expect a similar behaviour. Finding the answer to
this question, however, would require to propagate the Gross-Pitaevskii
equation for extremely long times (which is more difficult for a conti-
nous, disorderd system than for a discrete system).

81
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In the present thesis, we will therefore restrict ourselves to a regime
of intermediate time scales, which are, on the one hand, longer than
the time scale needed to reach the stationay state for the linear system,
but, on the other hand, shorter than the time scale of the sub-diffusive
spreading mentioned above. Indeed, from an intuitive point of view, the
strongest impact of the nonlinearity is expected at short times, where
the density of the condensate is highest. In previous works [27], [28]
(see also the corresponding discussion in Chapter 2), it was therefore
suggested to describe the expansion of the condensate in two phases,
see Sec. 8.3: at short times, the expansion is driven by the repulsive
interaction between the atoms, and the influence of the disorder is ne-
glected during this phase. At a certain time ti, almost the entire interac-
tion energy has been converted into kinetic energy. In the second stage,
the interactions are therefore neglected, whereas the disorder becomes
important. Our approach to calculate the density profile at intermediate
times is to use the linear theory developed in the previous chapter – but
using a suitably defined energy distribution Pg(E), see Sec. 8.5, which
is now a function of the interaction parameter g, in contrast to the old
P(E) introduced in Sec. 6.3.

8.1 gross-pitaevskii equation

The general Hamiltonian for a system of N identical, interacting bosons
is

H =
N

∑
i=1

(
p2

i + Vext(ri)

)
+

1
2

N

∑
i=1

N

∑
j 6=i

V(|ri − rj|), (193)

where p2
i is the kinetic energy of the i-th particle, Vext represent the

external potential and V(|ri − rj|) is the interaction potential between
i-th and j-th particles.

In order to reduce the N-particle description to an equation involving
only single-particle wave functions, the mean-field ansatz is applied,
according to which the N-particle state |Ψ(t)〉 at time t is approximated
by a product of identical single-particle states |ψ(t)〉

|Ψ(t)〉 ≈ |ψ(t)〉 ⊗ |ψ(t)〉 ⊗ |ψ(t)〉 · · · ⊗ |ψ(t)〉. (194)

Furthermore, we assume that the interaction V in Eq. (193) is a short-
range interaction, which can be treated as a point-like interaction poten-
tial. Under these assumptions, the time evolution of the single-particle
state follows the Gross-Pitaevskii equation [79], [81], [82]

i∂tψ(r, t) =
(
−∇2 + Vext(r) + g̃|ψ(r, t)|2

)
ψ(r, t), (195)
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where g̃ quantifies the strength of the interaction.
The corresponding time-independent equation, which can be used to

determine the ground state of N interacting bosons in a trap reads [80],
[81], [83]:(

−∇2 + Vext(r) + g̃|ψ(r)|2
)

ψ(r) = µψ(r), (196)

with chemical potential µ. In this case, the mean-field description, see
Eq. (194), is valid in the limit N → ∞ and g̃ → 0 such that Ng̃ =
constant, see [80] for a rigorous derivation.

In the time-dependent case, the same limit ensures the validity of the
time-dependent GPE Eq. (195), at finite times t [79]. It is important to
note, however, that the limits N → ∞ and t → ∞ do not commute, i. e.,
for a given (large but finite) number N of particles, the GPE Eq. (195)
may loose its validity in the limit t → ∞, since collisions between par-
ticles may produce an increasing number of non-condensed particles
[84]–[86].

Finally, we note that, in case of narrow transverse confinement (see
Sec. 2.1), the GPE Eq. (195) can be reduced to the one-dimensional equa-
tion:

i∂tψ(x, t) =
(
− ∂2

x + Vext(x) + g|ψ(x, t)|2
)

ψ(x, t), (197)

with effective interaction strength g (which depends on g̃ and the fre-
quency ω⊥ of the transverse confining potential). We assume repulsive
interactions g > 0 in the following.

This equation fulfills the properties of norm and energy conservation,
i. e.

∂tN[ψ(t)] = 0 (198a)

and

∂tE[ψ(t)] = 0, (198b)

where the norm is defined as:

N[ψ(t)] =
∫

dx |ψ(x, t)|2, (199)

and the energy by the following Gross-Pitaevskii energy functional:

E[ψ(t)] =
∫

dx ψ∗(x)
[

∂2
x + Vext(x) +

g
2
|ψ(x, t)|2

]
ψ(x, t). (200)

Usually, the state ψ is normalized to the total number N of parti-
cles, i. e. N[ψ] = N. In order to compare with the non-interacting case,
however, we will, in the following, use wavefunctions with norm 1, i. e.
N[ψ] = 1, and rescale the strength of interactions, i. e. g→ Ng, in order
to account for the number of particles.
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8.2 long-time behaviour : sub-diffusive spreading

Although, as discussed above, the Gross-Pitaevskii equation is, in prin-
ciple, valid only for finite times, it is interesting, from a fundamental
point of view, to investigate the behaviour of its solution in the limit of
long times. This question has been addressed in [26] for a non-linear
Schrödinger equation based on the discrete Anderson model (DANSE):

i
∂ψn

∂t
= Enψn + g|ψn|2 + V(ψn+1 + ψn−1), (201)

where g characterizes the non-linearity, V is the hopping element be-
tween two lattice neighbors, and (as in the Anderson model [4]), the
onsite-energies En are uniformly randomly distributed in the interval
[−E0/2, E0/2].

Eq. (201) is a discrete version of the above Gross-Pitaevskii equation
for a particle in a continuous potential, see Eq. (197). The problem stud-
ied in [26] with Eq. (201) is the spreading of a field initially localized
at site 0 (i. e. |ψn(0)|2 = δn,0), where, in all the numerical experiment,
the total probability is normalized to unity, i. e., ∑n |ψn(t)|2 = 1. In [26],
the authors compute the second moment in order to characterize the
spreading of the wave packet over the lattice:

σ(t) = (∆n)2 = ∑
n
(n− ∆n)2|ψn(t)|2, (202)

where ∆n = ∑n n|ψn(t)|2.
Figs. (21) and (22) show the dependence of log10 σ on time t for dif-

ferent values of the nonlinearity g and the strength E0 of the disorder.
In Fig. (21), the logarithm of σ was averaged over 8 realizations of the
disorder, whereas the simulation was performed for a single disorder
realization in Fig. (22).

In Fig. (21), the values of g are 0 (dots) and 1 (lines), while the values
of E0 are 2 (red) and 4 (blue). In the linear case (g = 0), the second
moment σ reaches a stationary value at t ' 96/E2

0. Before this time, the
linear (dots) and the non-linear spreading (lines with g = 1) behave
in a similar way, as was already predicted in [87]. From t = 96/E2

0
on, the continuos lines (g = 1) exhibit no saturation of σ, and the wave
packet continues to expand until t = 108 (the longest time considered in
the simulation). This result is interpreted as a destruction of Anderson
localization by the nonlinearity. The dashed lines show numerical fits
log10 σ(t) = α log10 t + η, where α = 0.344 ± 0.003, η = 1.76 ± 0.02
were obtained for log10 t ∈ [3, 8] and E0 = 2, while α = 0.306± 0.002,
η = 0.94± 0.01 were obtained for log10 t ∈ [2, 8] and E0 = 4. The black
line shows the theoretical slope α = 0.4 characterizing the exponent of
subdiffusive spreading as predicted by [88].
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Fig. (21) Second moment σ characterizing the spreading of the wave packet,
see Eq. (202), as a function of time t (taken from [26]). For E0 = 2
(red curves) and E0 = 4 (blue curves), the plot shows log10 σ(t) for
g = 0 (dots) and g = 1 (continuos lines). The values of log10 σ(t) are
averaged over 8 disorder realizations.

Fig. (22) shows analogous results for E0 = 4 and g = 1, 0.1, 0.03 and
0 (blue, red, green curves and black dots respectively). In the linear
case g = 0 (black curve), and also for the smallest value g = 0.03 of
the nonlinearity (curve), the suppression of transport due to Anderson
localization manifests itself in the saturation of the value of log10 σ(t) at
log10 t ≈ 3. Starting from g = 0.1 there is a slow increase of σ with time,
and a faster increase at g = 1. Evidently, no saturation of σ(t) at g = 1
is observed. These results suggest that there is a certain critical value of
the nonlinearity (for the parameters in the Fig. (22) the critical g value
is around 0.1), above which the nonlinearity leads to a destruction of
Anderson localization. In a later work [89], however, it was found that,
also for small values of g, a subdiffusive spreading will eventually be
observed at very long times, i. e., even longer than the ones plotted in
Fig. (22). Physically, the destruction of Anderson localization due to
nonlinearity is associated with the appearance of chaos caused by the
nonlinear term in the equation of motion [89].

The main difference of the discrete Anderson model used in Eq. (201)
with respect to our scenario of wave packet dynamics in a continous ran-
dom potential can be summarized by the different dispersion relations:
Ek = 2V cos(ka) (with lattice spacing a) for the lattice, whereas Ek = k2

for the continous system (in the absence of disorder and nonlinearity).
In particular, the kinetic energy is bounded from above in the lattice,
whereas no such bound exists in the continuous system. A similar con-
clusion applies to the localization length in the presence of disorder
(bounded in the lattice, but not in the continuum case). Since, however,
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Fig. (22) (Taken from [26]) Dependence of the spreading σ on time t for E0 = 4
and for different values of the nonlinearity strength g = 1, 0.1, 0.03
and 0 (blue, red, green solid lines and black dots, respectively). The
simulations were performed only for a one disorder realization.

in the continous case, the energy range is also restricted to a certain
extent by the choice of the initial state, we do not expect that these dif-
ferences fundamentally affect the mechanism of sub-diffusive spreading
discussed above. Nevertheless, we will not pursue this question further
in this thesis, for the following two reasons: First, from a numerical
point of view, it is difficult to propagate the Gross-Pitaevskii equation
for sufficiently long times, where the subdiffusive spreading is expected
to become relevant. Second, as discussed above, the description of the
many-particle quantum system in terms of the Gross-Pitaevskii equa-
tion looses its validity in the regime of long times.

8.3 intermediate times : quasi-stationary state

In the following, we will hence restrict ourselves to times which are, on
the one hand, longer than the time needed to reach the stationay state
in the linear case, but, on the other hand, shorter than the time scale
of the sub-diffusive spreading mentioned above. As we will verify by
numerical simulation in Chapter 9, the density profile of the condensate
for such intermediate times assumes a quasi-stationary state which is
almost constant as a function of time.

Two stages of expansion

In order to describe the influence of the nonlinearity on this quasi-
stationary density profile, we will use an idea proposed in [27], [28],
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according to which the expansion of the condensate can be split into
two stages:

i) In the first stage, the expansion of the condensate is driven by the
repulsive (for g > 0) interactions between the particles. During
this time, the disorder potential is neglected.

ii) At a certain time ti (which will be discussed below), almost all of
the interaction energy is converted into kinetic energy. After that
time, the dynamics of the condensate is described by the linear
Schrödinger equation of the disordered potential.

The evolution during stage ii) can be treated by the techniques which
we developed in Chapters 3-7. The role of the interactions in stage i)
is to modify the form of the initial state assumed at the beginning of
stage ii). The calculation of this initial state requires the solution of the
Gross-Pitaevskii equation in the absence of disorder.

Inverted parabola as an initial state

As an example, we first discuss the scenario treated in [28]. The time
evolution of the condensate wave function is determined by the follow-
ing Gross-Pitaevskii equation:

i∂tψ(x) =
(

p2 + Vho(x) + V(x) + g|ψ|2 − µ

)
ψ(x), (203)

where p2 is the kinetic term, Vho(x) = ω2x2/4 is the trapping poten-
tial, V(x) is the disordered potential, g is the coupling parameter or
interaction term and µ is the chemical potential. The wave function is
normalized to the total number of atoms (

∫
dx |ψ|2 = N). The dynamics

is governed by Eq. (203) in the weakly interacting regime, i. e., g/2� n,
where n is the 1D density of atoms.

An interacting BEC is first produced in the harmonic trap Vho(x),
and in the absence of disorder. Assuming the Tomas-Fermi regime, i. e.
n� ω/g, the phase of the wavefunction in Eq. (203) is uniform and the
BEC density at time t = 0 is a truncated inverted parabola:

n0(x) = |ψ(x)|2 =

(
µ

g

)[
1−

(
x

LTF

)2]
⊕, (204)

where LTF =
√

4µ/ω2 and [ f (x)]⊕ = f (x) for f (x) > 0 and 0 otherwise
(see also Subs. 3.1.2.)

At time t = 0, the trapping potential Vho(x) is switched off. The ex-
pansion stage i) is driven by the interactions, still in absence of the
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disorder potential. Due to the fact that the initial state is given as a
stationary solution of Eq. (203) in the presence of a harmonic trapping
potential, the evolution of the condensate at later times (without the
trapping potential) can be obtained by using the scaling approach [90],
[91], according to which the expanding BEC acquires a dynamical phase
and the wave function is rescaled as

ψ(x, t) =
ψ(x/b(t), 0)√

b(t)
exp

(
ix2ḃ(t)
4b(t)

)
, (205)

where the scaling parameter b(t) fulfills b(0) = 1 and b(t) ≈
√

2ωt for
t� 1/ω [30].

For the second expansion stage (t > ti) the disordered potential is
suddenly switched on and the interactions off. The disorder-averaged
asymptotic density profile is described by Eq. (9), where the Wigner
function of the initial state is extracted from Eq. (205) at time ti. For
ti � 1/ω, the Wigner function is given by:

Wi(q, p) ≈ Di(p)δ
(

q− 2b(ti)

ḃ(ti)

)
. (206)

where Di(p) = (3N/4pm(ti))[1− (p/pm(ti))
2]⊕ is the momentum dis-

tribution, with pm(ti) = (1/ξ)[ḃ(ti)/
√

2ω] and ξ = 1/
√

2µ [28].

8.4 effective gaussian initial state

As discussed in Subs. 3.1.2, we consider in the present thesis a Gaussian
state ψ0(x) as initial state at time t = 0, see Eq. (19). According to the
expansion stage i) described above, we first have to solve the Gross-
Pitaevskii equation for this initial state in the absence of disorder. Since
the Gaussian state is not a stationary solution of the Gross-Pitaevskii
equation for a harmonic trapping potential, the scaling approach [90],
[91] cannot be applied to obtain the required solution.

Instead, we obtain an approximate analytical solution by assuming
that the wave function remains Gaussian at all times during the first ex-
pansion stage. Furthermore, we use the property of energy conservation
discussed in Sec. 8.1 above. In the absence of disorder during stage i),
the Gross-Pitaevskii energy functional with respect to a Gaussian state
with width a, see Eq. (19), reads:

E[ψ0] =
1

2a2 +
g

a
√

π
, (207)

where 1/(2a2) gives the average kinetic energy, whereas g/(a
√

π) is
associated with the interaction energy. During the expansion stage i),
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the interaction energy is converted into kinetic energy, but the sum of
both remains conserved, see Eq. (198b).

Our idea is now to approximate the solution of the Gross-Pitaevskii
equation by the solution of the linear Schrödinger equation, using as
initial state a Gaussian state with width ae f f given by:

1
2a2

e f f
=

1
2a2 +

g
a
√

π
, (208)

The effective Gaussian initial state is given by Eq. (19) with a replaced by
ae f f .

The Fourier transform of the Gaussian effective initial state is:

ψ̃
e f f
0 (k) =

√√√√√ a2
e f f

2π
e−a2

e f f k2/4. (209)

Therefore, its temporal evolution is [92]:

ψe f f (x, t) =
∫ ∞

−∞
dk ψ̃

e f f
0 (k) exp

{
i(kx− k2t)

}
,

=

√√√√√ a2
e f f

2π

∫ ∞

−∞
dk exp

{
− a2

e f f k2/4 + i(kx− k2t)
}

,

=

√√√√√2a2
e f f

π

exp
{
− x2/(a2

e f f + 4it)
}√

a2
e f f + 4it

, (210)

with probability distribution:

|ψe f f (x, t)|2 =

√
2
π

ae f f exp
{
− 2a2

e f f x2/(a4
e f f + 16t2)

}√
a4

e f f + 16t2
. (211)

In the next chapter, see Sec. 9.3, we will find numerically the evolu-
tion of an initial Gaussian wave packet described by the Gross-Pitaevski
equation and compare it with Eqs. (209-211).

8.5 energy probability distribution Pg (E)

To close this chapter, the energy distribution Pg (E) of our effective
Gaussian initial state is again extracted from the spectral function ac-
cording to Sec. 6.3. This time, we use the Wigner function W (q , p) of
the effective Gaussian initial state, i. e., we replace a by a e f f in Eq. (19),
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where a e f f fulfils Eq. (208). Like in Sec. 6.3, the integral over q and p
can be performed analytically:

Pg (E) =
a e f f√

π
=


e (a e f f )

2(Σ(+) (E)−E)erfc
(

a e f f

√
Σ (+) (E) − E

)
√

Σ (+) (E) − E

 ,

(212)

with complementary error function erfc(z). We have checked again that
this expression, with Σ(+)(E) given by Eq. (185), yields a normalized
distribution [25], i. e.,

∫ ∞
−∞ dE Pg(E) = 1, which underlines the consis-

tency of our approach.
Fig. (23) shows the energy probability distribution for different in-

teraction parameters g = 0, 0.25, 0.75, 1.25, 1.75 and 2.0 (in units of
σ−1

c ). The value of the disordered potential is V0 = 0.0325 σ−2
c and the

width of the initial state is given by ae f f , Eq. (208), where a =
√

2σc.
The function Pg(E), given by Eq. (212), is plotted with continuos lines,
while, for comparison, the symbols represent the energy probability dis-
tribution for the free particle. The black lines and symbols are related
to g = 0, and the light blue ones with g = 2.0. As already discussed
in Chapter 2, the wave packet can be represented as a superposition
of energy eigenstates, where the eigenstates associated to the smaller
energy modes are confined classically in deep quantum wells for each
realization of the disordered potential. On the other hand, states with
higher values of the energy are subject to Anderson localization due to
destructive interference after multiple reflections. As the strength g of
interactions increases, Pg(E) decreases in the regime of small energies
(see Fig. (23a)), but, in order to ensure its normalization, it must increase
(as a function of g) for large energies (see Fig. (23b)). In the next chapter,
we will investigate how this dependence of the energy distribution on
g affects the density profile of the quasi-stationary state, and we will
verify the validity of our Gaussian effective state ansatz by comparison
with numerical data.
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Fig. (23) Energy probability distribution Pg(E) (in units of σ2
c ), for different

interaction parameters g = 0, 0.25, 0.75, 1.25, 1.75 and 2.0 (in units
of σ−1

c ), as a function of the energy (in units of σ−2
c ). The value of

the disordered potential is V0 = 0.0325 σ−2
c and the width of the

Gaussian effective initial state is given by ae f f , Eq. (208), with a =√
2σc. Pg(E) is plotted with continuos line curves. For comparison,

the energy probability distribution for a free particle is marked by
symbols. The black curve and symbols are related to g = 0 and the
light blue ones to g = 2.0. Fig. (23a) shows the range of small energies,
while Fig. (23a) refers to the large energy range.
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N U M E R I C A L R E S U LT S W I T H I N T E R A C T I O N S

In this chapter, we present the numerical results for the quasi-stationary
density profile, ng(x), of an interacting BEC in a one-dimensional dis-
ordered potential. After a short description of the numerical algorithms
used for this purpose in Sec. 9.1, we first test in Sec. 9.2 the basic hypoth-
esis put forward in the previous chapter: that there exists a regime of in-
termediate times, where the density profile assumes an almost constant,
i. e. quasi-stationary state. As explained in Sec. 8.2, we expect that, at ex-
tremely long times after this intermediate regime, the density exhibits
subdiffusive spreading. In the present thesis, however, we do not con-
sider sufficiently long times in order to observe this effect, and restrict
ourselves to the quasi-stationary regime. For the theoretical description
of this quasi-stationary regime, we assume that the interactions can be
neglected at large times, where, due to the spatial expansion, the den-
sity of the condensate has dropped to very small values. We test this
assumption numerically by setting the interaction strength g to zero af-
ter a certain time ti, and verifying that the resulting stationary density
profile well agrees with the quasi-stationary one obtained for constant
g.

In Chapter 8, we furthermore proposed that the quasi-stationary state
can be described in the framework of the linear theory developed in
Chapters 3-7, provided that the energy distribution associated to the
initial state is suitably modified in order to account for the interaction
energy. More precisely, our claim is that the solution of the nonlinear
Gross-Pitaevskii equation with a Gaussian state as initial state resem-
bles the solution of the linear Schrödinger equation with a different
Gaussian state as initial state, the width of which is determined such
that the expectation value of the energy is the same in both cases. In
Sec. 9.3, we will test the validity of this ansatz in the absence of the
disorder potential. First, we study, by numerically solving the Gross-
Pitaevskii equation, how the interaction energy is progressively con-
verted into kinetic energy, until it becomes negligibly small at time ti.
Then, we compare the linear time evolution of the wave function pre-
dicted by our Gaussian effective initial state ansatz with the solution
of the Gross-Pitaevskii equation, both in position and in momentum
space.

In Sec. 9.4, we finally compare the numerically obtained quasi station-
ary density profiles in the presence of the disorder potential with our
theoretical prediction.

93
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9.1 numerical algorithms for solving the gross-pitaevskii

equation

In this chapter, we use two different algorithms for calculating solutions
of the nonlinear Gross-Pitaevskii equation Eq. (203): a fast and simple
one that can be used at short times, and a more accurate one valid also
at longer times.

The first one is the Fourier propagation scheme. It uses the fact that the
kinetic energy is diagonal in momentum space, whereas the potential
energy and the interaction energy are diagonal in position space (see
Appendix C for more details). We divide our system of length L =
800σc into 215 small elements of length dx = 0.024σc (i. e. much smaller
than the correlation length σc). In the momentum representation, the
small elements are dk = 2π/L = 0.0079 1/σc. The time propagation is
discretized into small steps of length ∆t = 0.001σ2

c . The advantage of
the Fourier propagation scheme is that it is very fast. However, for long
times (of the order of 1500σ2

c ), it becomes inaccurate, as evident from
the fact that its solutions start to violate the conditions of norm and
energy conservation, see Sec. 8.1.

For longer times, we therefore use the second order differential scheme
(SOD), which turns out to be more accurate. In particular, the conser-
vation of norm and energy are well fulfilled up to the largest time
Tmax = 10000σ2

c that we consider in this thesis. For this scheme, we
use the finite-element discrete variable representation (FEDVR) already
explained in Sec. 7.2: the system of length L = 800σc is divided into 104

finite elements of size 0.08σc (i. e. much smaller than σc). Each element,
in turn, is discretized using 4 basis functions. In this basis of dimen-
sion M = 4 × 104, the Gross-Pitaevskii equation Eq. (203) is solved
using a propagation scheme which is accurate up to second order in
∆t = 0.001σ2

c , see Appendix C for more details.

9.2 time-dependent expansion of the wave packet

In Fig. (24), we show, for a =
√

2σc and V0 = 0.0325σ−2
c , the time evo-

lution of the spatial density profile without interactions, i. e., g = 0. To
propagate the initial state Eq. (19) until times as long as Tmax = 10000σ2

c ,
we used the SOD algorithm (see the above section). The main figure in
Fig. (24) shows the spatial density profile for t = 0 (black), 200σ2

c (blue),
400σ2

c (green), 600σ2
c (orange), 800σ2

c (purple), 1000σ2
c (red) and 10000σ2

c
(cyan). The left inset in Fig. (24) shows the first four times, i. e., t = 0
(black), 200σ2

c (blue), 400σ2
c (green), 600σ2

c (orange), while the right inset
shows the last three times, i. e., 800σ2

c (purple), 1000σ2
c (red) and 10000σ2

c
(cyan). We average over 2000 samples. In the main figure and the right
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Fig. (24) Numerically obtained time dependent density profiles (in units of
σ−1

c ) as function of position (in units of σc) for interaction strength
g = 0. We perform an ensemble-averaging over 2000 realization of
the random potential. The remaining parameters are: a =

√
2 σc and

V0 = 0.0325 σ−2
c . The times are t: 0 (black), 200σ2

c (blue), 400σ2
c (green),

600σ2
c (orange), 800σ2

c (purple), 1000σ2
c (red) and 10000σ2

c (cyan). The
left inset shows the first four times, and the right inset the last three
times. In the main figure and the right inset, the black dashed line is
related with the stationary average spatial density profile.

inset, the black dashed line is related with the stationary average spa-
tial density profile, which was obtained using the definition given by
Eq. (21), where we performed the numeric integral between the times
T1 = 5000σ2

c and T2 = 10000σ2
c ,

n(x) =
1

T2 − T1

∫ T2

T1

dt n(x, t). (213)

We can see how the non-interacting spatial density profile for longer
times tends to the stationary average spatial density profile. The sta-
tionary profile is reached at about t ≈ 600σ2

c (orange curve).

In Fig. (25), we show the same plot as in Fig. (24), but now in the pres-
ence of interactions (g = 2σ−1

c ). Again, we see that a quasi-stationary
density profile is reached, at about the time t ≈ 400σ−1

c .
Finally, Fig. (26) shows that the influence of interactions is indeed

negligible in the regime of intermediate times where, as we have seen
above, the density profile is quasi-stationary. To show this, we evaluate
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Fig. (25) Numerically obtained time dependent density profiles (in units of
σ−1

c ) as function of position (in units of σc) for interaction strength
g = 2σ−1

c . The times are t: 0 (black), 200σ2
c (blue), 400σ2

c (green), 600σ2
c

(orange), 800σ2
c (purple), 1000σ2

c (red) and 10000σ2
c (cyan). The left

inset shows the first four times, and the right inset the last three
times. In the main figure and the right inset, the black dashed line
is related with the quasi-stationary average spatial density profile,
which is evaluated by time-averaging n(x, t) between T1 = 5000σ2

c
and T2 = 10000σ2

c , see Eq. (213), and aditionally ensemble-averaging
over 2000 realization of the random potential.

the time-average density profile according to Eq. (213) with T1 = 5000σ2
c

and T2 = 10000σ2
c for two different scenarios: one where the interaction

is switched on all the time (black line), and one where we set the in-
teraction to zero for times t > 10σ2

c (red line). We observe very good
agreement between these two scenarios.

9.3 validity of the effective gaussian initial state ansatz

In this section, we test the validity of our effective Gaussian initial state
ansatz in the absence of the disorder potential. Remember that this
ansatz involves two assumptions: first, that the solution of the Gross-
Pitaevskii equation resembles the solution of the Schrödinger equation
with a different initial state, and, second, that this different initial state
is also a Gaussian state.

Before that, it is useful to examine the time scale on which the in-
teraction energy is converted into kinetic energy when following the
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Fig. (26) Numerically obtained average quasi-stationary density profiles (in
units of σ−1

c ) as function of position (in units of σc) for interaction
strength g = 2σ−1

c . The same values of a and V0 as Fig. (24). The
quasi-stationary state is evaluated by time-averaging n(x, t) between
T1 = 5000σ2

c and T2 = 10000σ2
c , see Eq. (213), and additionally

ensemble-averaging over 2000 realization of the random potential.
The black dashed line is related with a scenario where the interac-
tions are present in all time of the wave packet evolution, while the
red line is related with a scenario where we switched off the interac-
tions at ti = 10σ2

c . Good agreement is observed, which proves that,
the interactions can indeed be neglected for t > ti (and t < T2).

Gross-Pitaevskii equation. For this purpose, we study the expectation
values of the kinetic energy and of the interaction energy.

〈Ekin(t)〉 =
∫ L

0
dx ψ(x, t)

(
− ∂2

x
)
ψ∗(x, t) (214a)

and

〈Eint(t)〉 =
∫ L

0
dx

g
2
|ψ(x, t)|4, (214b)

in the absence of disorder. The sum of both values gives the Gross-
Pitaevskii energy functional, i. e.

〈Ekin(t)〉+ 〈Eint(t)〉 = E[ψ(t)] = constant, (215)

which is conserved, see Sec. 8.1. Fig. (27) shows these values, which
monotonously increase (kinetic energy) or decrease (interaction energy),
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respectively, as a function of time, for different values of g: 0.75σ−1
c in

Fig. (27a) and 1.25σ−1
c in Fig. (27b). The dots are obtained with the

Fourier propagation technique, and the lines with the SOD technique.
The fact that they agree very well with each other underlines the accu-
racy of both approaches. At time ti = 10σ2

c , almost all of the interaction
energy has been converted into kinetic energy. This explains why the ef-
fect of interactions becomes negligible at larger times, see also Sec. 9.2.
Correspondingly, we observe only a very small difference if g is set to
zero at time ti in the SOD curve (red lines), whereas the Fourier propa-
gation continues with constant g.
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Fig. (27) Expectation values of the kinetic (upper curve) and the interaction
(lower curve) energy (in units of σ−2

c ) for the Hamiltonian in Eq. (203)
(without potential V(x)) as a function of time (in units of σ2

c ). The dots
and lines are related to the Fourier and SOD propagation scheme,
respectively. The values of g are 0.75σ−1

c (Fig. (27a)) and 1.25σ−1
c

(Fig. (27b)). At time, t = 10σ2
c , the interaction term in the SOD scheme

is suddenly turned off. The width of the initial state, see Eq. (19), is
a =
√

2σc.
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In Fig. (28), we show, for the same parameters as in Fig. (27), the
time evolution of the spatial density profile. For times smaller than ti =
10σ2

c , again perfect agreement between the Fourier and SOD solutions
is observed (as expected), see Figs. (28a) and (28c). For larger times, the
interaction is again set to zero in the SOD scheme (but not in the Fourier
scheme), and almost no difference between these two cases can be seen,
see Figs. (28b) and (28d).
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Fig. (28) Probability distributions n(x, t) = |ψ(x, t)|2 (in units of σ−1
c ) as a func-

tion of position (in units of σc). The symbols (dots, squares, rhom-
buses, pluses, asterisks and circles) denote the solutions of the Gross-
Pitaevskii equation obtained with the SOD (where the interaction is
switched off at time ti = 10σ2

c ), and the lines those obtained with the
Fourier propagation scheme (where the interaction is present all the
time). The plots in Figs. (28a) and (28b) are calculated for g = 0.75σ−1

c
and in Figs. (28c) and (28d) are for g = 1.25σ−1

c . The times are t: 4σ2
c

(dots), 6σ2
c (squares), 8σ2

c (rhombuses) in Figs. (28a) and (28c), and
12σ2

c (pluses), 19σ2
c (asterisks) and 23σ2

c (circles) in Figs. (28b) and
(28d). The width of the initial state, see Eq. (19), is a =

√
2σc. The

disorder potential is switched off.

In Fig. (29), we compare the numerical results for the spatial density
profile (lines obtained with the Fourier scheme, where g is switched
on at all time) with our theoretical ansatz using the Gaussian effective
initial state, i. e., Eq. (211) (symbols). This comparison is carried out at
times 4σ2

c (circles) and 23σ2
c (squares), i. e., for the first (0 < t 6 ti)
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and second (t > ti) stages respectively. Figs. (29a) and (29b) refer to
g = 0.75σ−1

c and 1.25σ−1
c , respectively. In Fig. (29) we can see small

deviations between our ansatz and the numerical results in the center
of the distribution, while for long times these deviations are smaller.
This behavior is expected, since, for long times, the interaction energy
is transformed into kinetic energy, and we expect that the evolution of
the Gaussian state, see Eq. (19), via Eq. (203) is similar to the evolution
of a free particle, see Eq. (211).
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Fig. (29) Probability distributions n(x, t) = |ψ(x, t)|2 (in units of σ−1
c ) as a func-

tion of position (in units of σc). Numerical results (lines obtained with
the Fourier scheme, where g is switched on at all time) and theoreti-
cal ansatz (symbols) for times t: 4σ2

c (circles) and 23σ2
c (squares). The

width of the initial initial state, Eq. (19), is a =
√

2σc. Figs. (29a) and
(29b) refer to g = 0.75σ−1

c and 1.25σ−1
c , respectively. The disorder po-

tential is switched off. The Gaussian effective state ansatz (symbols)
agrees very well with the exact numerical result (lines), especially at
larger times.

The Fourier technique allows us to obtain also the momentum prob-
ability distribution. Therefore, Fig. (30a) shows the numerical momen-
tum distribution for three different times: t = 4σ2

c (red), t = 12σ2
c (blue)

and t = 200σ2
c (black), and for g = 0.75σ−1

c . The curve at t = 200σ2
c cor-

responds to a stationary state of the momentum distribution, since the
interaction energy is indeed negligibly small at that time (which is more
than twenty times longer than ti = 10σ2

c , see also Fig. (27)). (Remem-
ber that the disorder potential is still switched off!). Fig. (30b) shows
the numerical results for this asymptotic momentum distribution and
our Gaussian initial state ansatz given by the Eq. (209), which yields
a strictly time-independent momentum distribution in the absence of
disorder, for two different interaction parameters g: 0.75σ−1

c (red) and
1.25σ−1

c (blue). Again, we observe in Fig. (30b) very good agreement
between the numerical calculation and our ansatz.
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Fig. (30) (a) Numerical momentum distributions |ψ(k, t)|2 for three different
times: t = 4σ2

c (red), t = 12σ2
c (blue) and ti = 200σ2

c (black), and
for g = 0.75σ−1

c . (b) Momentum probability distributions (in units
of σc) for two different strengths of the interaction g = 0.75σ−1

c (red)
and g = 1.25σ−1

c (blue). The numerically determined asymptotic long-
time distribution (ti = 200σ2

c , red and blue lines) agree very well
with our Gaussian initial state ansatz, see Eq. (209) (symbols). In (a)
and (b), the lines are obtained with the Fourier scheme (where g is
switched on at all time) and the width of the initial state, see Eq. (19),
is a =

√
2σc.

9.4 quasi-stationary density profile

After having established the accuracy of our Gaussian initial state ansatz
in the absence of disorder, we now investigate the quasi-stationary state
reached in presence of the disorder potential. According to our ansatz,
this state is obtained by the same method that we employed in the lin-
ear case, see Sec. 7.1, where the width a of the initial state is replaced
by the width ae f f , see Eq. (208), which, as discussed above, effectively
takes into account the influence of the interactions at short times.

9.4.1 Discussion of numerical results

As already discussed in Secs. 9.1-9.2, the numerical quasi-stationary av-
erage density profile is obtained by solving the Gross-Pitaevskii equa-
tion, using the SOD algorithm, and then averaging the density n(x, t)
between T1 = 5000σ2

c and T2 = 10000σ2
c , see Eq. (213).

Furthermore, we distinguish two different cases, where the disorder
potential is switched off or not switched off during the initial propaga-
tion stage until time ti. These two cases are compared to each other in
Figs. (31)-(34), which show the results for the case where the interac-
tions are switched off at time ti = 10σ2

c . As shown in Sec. 9.2, the same
profile is obtained if the interactions are present all the time.
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In every figure, the left inset plot exhibits the tails, while the right
inset plot shows the center of the asymptotic average density profile.
The continuous line, present in all the figures, is the asymptotic average
density for g = 0. The width of the initial state, Eq. (19), is a =

√
2σc,

the strength of the disordered potential V0 = 0.0325σ−2
c , and the aver-

age was performed for 2000 different disordered potential realizations.
In every one of the left inset plots, we see that the numerical results for
the two mentioned scenarios agree very well with each other. This is not
suprising, since the tails of the profile are determined by large energies,
for which the disorder potential has almost no effect at short times. On
the contrary, the right inset plots show a small deviation between the
numerical ng(x) for the two different scenarios. This can be understood
as follows: if the disorder is present already at time t = 0, the energy
distribution is very sensitive to the values of the disorder potential at
the initial position x ' 0 of the Gaussian wave packet. In particular,
if the random potential happens to exhibit a deep minimum at x = 0,
a large part of the wave function will be trapped in this minimum. If,
on the other hand, the disorder is switched on only at time ti, where
the size of the wave packet is already much larger than the correlation
length σc of the random potential, see Fig. (28), the fluctuations of the
potential energy are much smaller, and it is less likely that the conden-
sate is trapped in a minimum. This decreases the density at the center,
as compared with the first case.

Furthermore, the numerical data exhibit interferences at x ' L/2 and
x ' −L/2, which we already discussed in the linear case, see Fig. (19).
Additionally, another small interference feature now arises in the center
of the wave packet. In Fig. (31), it is hardly visible, but it becomes more
pronounced at larger values of the interaction strength, see Figs. (31)-
(34). The physical origin of this interference is the same as the one at x '
L/2 and x ' −L/2. As explained in Subs. 7.3.3, it is related to the finite
size of the system in connection with periodic boundary conditions. In
order to explicitly check this explanation, we performed simulations for
different length of the disordered potential (L = 600σc, 400σc, 200σc and
100σc). Fig. (35) confirms that, indeed, these interferences become more
pronounced for smaller system sizes.

Finally, Fig. (36) collects the data shown in Figs. (31)-(34) (with dis-
order potential switched on all the time) for different strength g of the
interaction, such that the effect of changing g can be viewed in a single
plot. Obviously, the density is reduced at the center (and, correspond-
ingly, increased in the tails), as a consequence of stronger repulsive in-
teractions.
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Fig. (31) Numerically obtained quasi-stationary density profiles (in units of
σ−1

c ) as function of position (in units of σc) for interaction strength g =

0.25σ−1
c . The dashed line refers to the scenario where the disordered

potential is switched off during the first stage until time ti = 10σ2
c . The

red line represents the other scenario, where the disorder potential is
present all the time. The left inset shows the tail, and the right the
center of the density profile. The black solid line is related with the
case g = 0. The remaining parameters are: a =

√
2 σc and V0 = 0.0325

σ−2
c . Average over 2000 disorder realizations.

9.4.2 Comparison with theory

We now compare the numerical results with our theoretical model. As
already mentioned above, the theoretical description is the same already
applied in the linear case, see Sec. 7.1, but with a different initial state,
which effectively takes into account the influence of interactions.

Before presenting this comparison, let us first discuss the question
to what extent the theoretical model takes into account the disorder
at short times. As explained in Sec. 8.3, the effective initial state was
determined under the assumption that the disorder can be neglected
during the first stage of expansion. In particular, we showed in Sec. 9.3
that, in the absence of disorder, the linear evolution starting from the
modified initial state closely resembles the nonlinear evolution starting
from original initial state. Nevertheless, we stress that our modified
initial state refers to a state at time t = 0, and that the linear theory
summarized in Sec. 7.1 takes into account the presence of disorder at all
times. Therefore, our theoretical ansatz should correspond to the second
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Fig. (32) Same as Fig. (31), for g = 0.75σ−1
c .
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Fig. (33) Same as Fig. (31), for g = 1.25σ−1
c .

scenario described above, where the disorder is present at all times. In
order to describe the first scenario (disorder switched off until time ti),
we would have to take as initial state the effective state, see Eq. (210) at
time t = ti instead of t = 0. In this case, however, the validity of Eq. (9)
is questionable, since it was derived under the assumption of an initially
strongly confined wave packet (see Chapter 4). We will therefore restrict
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Fig. (34) Same as Fig. (31), for g = 1.75σ−1
c .
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Fig. (35) Numerically obtained quasi-stationary density profiles (in units of
σ−1

c ) as a function of position (in units of σc) for different system
sizes L, 100σc (circles), 200σc (squares), 400σc (triangles), 600σc (dashed
lines) and 800σc (continuos line), g = 2σ−1

c , a =
√

2σc and V0 =

0.0325σ−2
c . Average over 2000 realizations of the random potential.

The oscillations in the center become more pronounced for smaller
system sizes.
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Fig. (36) Numerically obtained quasi-stationary density profiles (in units of
σ−1

c ) as a function of position (in units of σc), for g = 0 (black), 0.25
(red), 0.75 (orange), 1.25 (green) and 1.75 (purple) (in units of σ−1

c ).
The disorder potential is present all the time. This plot shows the
same data as in Figs. (31)-(34) (dashed lines), such that the effect of
varying the interaction strength can be viewed in a single plot. The
density is reduced at the center (and, correspondingly, increased in
the tails), as a consequence of stronger repulsive interactions.

ourselves to comparing our theory with the numerical scenario where
the disorder is present all the time.

In Figs. (37) and (38), we see that our theory (dashed and dashed-
dotted lines), given by Eq. (9), but using the expressions Eqs. (166) and
(168) for the Lyapunov exponent, and the Eq. (212) for the spectral func-
tion, i. e., based on the effective Gaussian initial state, give us a good
description of the numerical data (color), both, in the wings of the spa-
tial profile and, remarkably, also close to the center of the wave packet
(insets), for different g values (0 black, 0.25 red, 0.75 orange, 1.25 green
and 1.75 purple. All in units of σ−1

c ). The scenario in our numerical
calculus is the one already discussed in Sec. 8.3, which considers the
disordered potential present for all the time.

As we already discussed, the oscillations close to x = ±L/2 and, less
pronounced, also close to x ≈ 0, result from interferences due to the
periodic boundary conditions, which are not included in our theoretical
model.
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Fig. (37) Numerical quasistationary density profiles (in units of σ−1
c and with

the disorder potential present all the time) for interaction strength
g = 0.25σ−1

c (red) and 0.75σ−1
c (orange), in comparison with our

theoretical description (black dashed lines for g = 0.25σ−1
c , and dot-

dashed lines for g = 0.75σ−1
c .) Our theory is given by Eq. (9), using

the expressions Eqs. (166) and (168) for the Lyapunov exponent, and
Eq. (212) for the spectral function, i. e., based on the Gaussian effec-
tive initial state. Remaining parameters a =

√
2σc and V0 = 0.0325

σ−2
c . We observe good agreement between theory and numerics, both

in the tails and in the center (see left and right inset for g: 0.25σ−1
c and

0.75σ−1
c , respectively). Average over 2000 realizations of the random

potential.
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Fig. (38) Same as Fig. (37), for g = 1.25σ−1
c (green solid and black dashed lines)

and 1.75σ−1
c (purple solid and black dot-dashed lines).
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S U M M A RY & O U T L O O K

In the present chapter, we first present a summary of the results de-
veloped throughout this thesis in Sec. 10.1. After that, in Sec. 10.2, we
discuss perspectives and futures goals of our work.

10.1 summary

The motivation of the present thesis originates from the need of ob-
taining an improved analytical description of the long-time localized
density profile measured in experiments on Bose-Einstein condensates
(BECs) in one-dimensional random potentials. In Chapter. 2, we de-
scribed which are the conditions to guarantee that the main physical
mechanims behind the localization processes in these experiments are
multiple reflections of non-interacting waves, i. e., that the suppression
of transport is due to Anderson localization.

We derived our improved analytical description of the long-time local-
ized density profile for experimental BECs by considering the following
scenario:

i) For times 0 ≤ t ≤ ti, the first stage, an initially spatially confined
condensate starts to expand in a one-dimensional random poten-
tial. During this stage, almost all of the energy associated with the
interactions between particles is transformed into kinetic energy.
This expansion is driven by the interactions between the particles.

ii) For times t > ti, the second stage, the expansion of the condensate
comes to a halt, and a quasi-stationary localized density profile is
observed. During this stage, the interactions can be neglected.

Similar works on discrete lattices [26], [93] suggest that, in contrast to
the latter assumption, interactions lead to a subdiffusive spreading at
very long times which, however, we did not investigate in this thesis.

We reviewed in Chapter 2 previous attempts to describe the localized
asymptotic density profile theoretically [27], [28]. In these works, the
theoretical description for the spatial expansion of the wave packet is
based on a simple relation, Eq. (9), between the long-time asymptotic
density of the wave packet and the density autocorrelation function
of energy eigenstates, see Eq. (3), which takes into account the posi-
tion and momentum uncertainty of the initial wave packet through its
Wigner function, as well as its energy distribution through the spectral
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function A(p, E). These works are able to explain the behaviour of the
asymptotic density profile in its wings (i. e. for large distances from the
initial position), whereas significant deviations between theory and nu-
merics are observed in the center of the profile (i. e. in the vicinity of the
initial position) [27], [28]. This failure has its origin in the divergence, at
small values of the energy, of the expressions for the Lyapunov coeffi-
cient and the spectral function used in [28] and [27].

In contrast to previous works [27], [28], our theory, which we im-
proved with respect to a more accurate description of the Lyapunov
exponent (see Chapter 5) and of the spectral function (see Chapter 6),
is able to explain, for the non-interacting (and further ahead also for
the interacting) case, not only the wings of the spatial density profile
at large distances, but also its center in the vicinity of the initial state’s
position without adjustable parameters.

In order to understand the improvement in our derivation of the Lya-
punov exponent in Chapter 5, we first review its definition: The Lya-
punov exponent defines the inverse of the localization length, which
represents an important quantity to describe the exponential localiza-
tion of wave functions. Previous works on Anderson localization estab-
lish that, in one-dimensional random potentials, all energy eigenfunc-
tions are exponentially localized under very general conditions, and
thus exhibit a non-zero Lyapunov exponent, which, in general, depends
on the corresponding energy of the eigenfunction. In [27] and [28], the
analytical expression of the Lyapunov exponent in a one-dimensional
correlated potential was obtained from the Born approximation (see
Sec. 5.3). This expression, however, fails for energies close to zero and
for negative energies, where it differs from the numerical Lyapunov
exponent that we obtained in Sec. 5.2. In contrast, we derived an analyt-
ical expression of the Lyapunov exponent on the basis of the works of
Thouless [23] and Halperin [25], who found an exact expression for the
Lyapunov exponent, valid for all energy ranges in the case of a white
noise potential (see Sec. 5.4). This expression is also valid, with good
approximation, for random potentials with a finite correlation length σc
in the regime of small energies, where the wave length of the particle is
much larger than σc. Using this result, we finally constructed an interpo-
lation between the exact white noise result (valid at low energies) and
the Born approximation (valid at large energies) in Sec. 5.5. By compari-
son with numerical data, we show that this interpolation well describes
the Lyapunov exponent in the entire range of energies, for random cor-
related potentials which satisfy the condition V0σ2

c � 1. This condition
implies that the kinetic energy of a particle with wavelength compara-
ble to the correlation length σc is much larger than the typical size V0 of
the potential’s fluctuations.
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Concerning the theoretical description of the spectral function A(p, E),
we first calculated the average spectral function in the presence of a ran-
dom potential using the Born approximation (as also proposed in [28]),
which diverges in the low energy regime and vanishes for negative en-
ergies. However, from cases where the particle is trapped inside a deep
well of the random potential, we expected the existence of states with
negative energies, and we suspected that in our model based on Eq. (9),
they also play an important role for correctly describing the center of
the asymptotic density profile. To treat this problem, we developed a
version of the self-consistent Born approximation (see Sec. 6.3). In con-
trast to the standard self-consistent Born approximation, our version,
where only the diverging part 1/

√
E of the self-energy is treated in a

self-consistent way, allowed us to finally derive an analytical expression
for the spectral function which does not vanish at negative energies.

In Chapter 7, we presented numerical results for the average asymp-
totic state of a BEC in a one-dimensional disordered potential, n(x),
and showed that they are well reproduced by our theoretical descrip-
tion, thereby confirming the validity of the latter.

In Chapter 8, we discussed the influence of interactions on the spa-
tial expansion of an initially strongly confined wave packet in a one-
dimensional correlated random potential. In Sec. 8.2, we discussed first
the numerically observed spreading of an initially localized and inter-
actig wave packet in a one-dimensional discrete lattice with uncorre-
lated disorder [26], [93]. According to these works, the interacting wave
packet exhibits sub-diffusive spreading at very long times, but a quasi-
stationary state is reached (for small interactions) at intermediate times.
In the present thesis, we focused on the second regime.

In Chapter 9, we showed, by comparison with numerical data, that
this quasi-stationary state can be well described within the theory de-
veloped for the non-interacting case, provided that the interactions are
taken into account through the choice of an effective initial state.

On the analytic proof of Eq. (9)

Besides our improvements in the analytical descriptions of the Lya-
punov exponent and of the spectral density, we presented in this thesis
an analytic proof of Eq. (9), which is a fundamental element of our the-
ory, since it allows us to express the asymptotic density profile n(x) of
a wave packet in terms of the density autocorrelation function nE(x) of
energy eigenstates at fixed energy E.

The diagrammatic method that we used to calculate n(x) has been
invented by Berezinskii in 1974 [20]. He developed this method in or-
der to determine the density autocorrelation function nE(x) at fixed en-
ergy E introduced in Eq. (3). As explained in Subs. 2.2.2, this function
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does not only describe the exponential decay of energy eigenfunctions
at large distances, but also corrections to this exponential decay rele-
vant for small distances. We first reviewed Berezinskii’s calculation of
nE(x) in Sec. 4.1. Then, we modified his method in order to determine
n(x) in Sec. 4.2. As we have seen, this involves an integration of nE(x)
over the energy E, weighted with a suitably defined energy distribution
depending on the initial state ψ0(x) of the wavepacket at time t = 0.
Whereas a relation similar to Eq. (9) has already been postulated in [28],
the present thesis presents a diagrammatic derivation which puts its
use on firm theoretical grounds. Our derivation uses the assumption of
an initially strongly confined wave packet. Therefore, its applicability
to more extended initial states is still an open issue. We note that the
opposite extreme case of a wave packet initially strongly confined in
momentum space has been treated in [94]. As shown by numerical sim-
ulations, the asymptotic momentum distribution exhibits, in this case,
two distinct peaks (a coherent backscattering and a coherent forward
scattering peak [95]), and can also be described in terms of the autocor-
relation function mentioned above.

10.2 outlook

The theory developed in this thesis will not only be useful for com-
parison with experiments on Anderson localization in one-dimensional
disordered systems, but the improved theoretical insight based on the
extension of Berezinskii’s diagrammatic technique to the case of wave
packets may also serve as a new starting point to explain the spread-
ing of waves in nonlinear disordered systems [87], [93], and thereby to
clarify the impact of nonlinearity on the phenomenon of Anderson local-
ization. Given a precise, microscopic understanding of the underlying
scattering processes in terms of diagrams, it appears to be promising
to include nonlinearities in a similar way as it has been accomplished
in order to describe the impact of nonlinearity [96], [97] or interactions
between bosons [86], [98] on coherent backscattering.
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S O M E I M P O RTA N T E Q U I VA L E N C E S

Equivalence of Eqs. (88) and (89)

In Subs. 4.1.1 we mentioned the equivalence of Eqs. (88) and (89). In
order to prove this equivalence, let us introduce the following useful
property:

G(−)(E)− G(+)(E) =
1

E− H − iη
− 1

E− H + iη
,

=
∞

∑
n=0

(
1

E− En − iη
− 1

E− En + iη

)
|φn〉〈φn|,

= 2πi
∞

∑
n=0

δ(En − E)|φn〉〈φn|, (216)

where we used the definition of the Green operator given by Eq. (48),
expressed in the basis of eigenstates {|φn〉} and eigenvalues {En} from
Eq. (15), and also, the following representation of Dirac’s δ-function:

δ(En − E) =
1
π

lim
η→0

η

(En − E)2 − η2 , (217)

in the limit η → 0.
The difference between the Green propagators in Eq. (216) from posi-

tions x to x′ is:

G(−)(x′, x, E)−G(+)(x′, x, E) = 2πi
∞

∑
n=0

δ(En− E)〈x′|φn〉〈φn|x〉, (218)

as well as

G(+)(x, x′, E + ω) =
∞

∑
q=0

〈x|φq〉〈φq|x′〉
E− Eq + ω

, (219)

from the position x′ to x.
Using Eqs. (218) and (219), we obtain:

lim
ω→0

ω

2πiρE
G(+)(x, x′, E + ω)×

(
G(−)(x′, x, E)− G(+)(x′, x, E)

)
= lim

ω→0

ω

ρE

∞

∑
n=0

∞

∑
q=0

δ(En − E)
〈x′|φn〉〈φn|x〉〈x|φq〉〈φq|x′〉

En − Eq + ω
, (220)
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where we replaced in the denominator E by En due to the δ-function
δ(E− En). The limit ω → 0 now asserts:

lim
ω→0

ω

En − Eq −ω
= δnq. (221)

thereby, we can recover the expression Eq. (88) for nE(x, x′):

lim
ω→0

ω

2πiρE
G(+)(x, x′, E + ω)×

(
G(−)(x′, x, E)− G(+)(x′, x, E)

)
=

∞

∑
n=0
|〈x|φn〉〈φn|x′〉|2δ(En − E)/ρE

= nE(x, x′). (222)

as stated in Eq. (89).

Equivalence between the average Eq. (24) and (107)

Taking the average of Eq. (24), we may write:

n(x) =
∞

∑
n=0
|〈x|φn〉〈φn|ψ0〉|2,

=
∫ ∞

−∞
dE

∞

∑
n=0
|〈x|φn〉〈φn|ψ0〉|2δ(En − E). (223)

Introducing the spatial coordinate clausure relation, i. e.,
∫ ∞
−∞ dx|x〉〈x| =

1, in Eq. (223), we obtain:

n(x) =
∫ ∞

−∞
dE

∫ ∞

−∞
dx′′dx′′′ 〈x′′|ψ0〉〈ψ0|x′′′〉×

∞

∑
n=0
〈x|φn〉〈φn|x〉〈x′′|φn〉〈φn|x′′′〉δ(En − E). (224)

In order to demostrate the equivalence between Eqs. (107) and (224),
we use Eqs. (218) and (219), where we replace x′ by x′′ or x′′, respec-
tively:

G(−)(x′′′, x, E)− G(+)(x′′′, x, E) = 2πi×
∞

∑
n=0

δ(En − E)〈x′′′|φn〉〈φn|x〉, (225)

and:

G(+)(x, x′′, E + ω) =
∞

∑
q=0

〈x|φq〉〈φq|x′′〉
E− Eq + ω

. (226)

Using the ensemble average of the product of the Eqs. (225) and (226) in
Eq. (107), where we neglect the products G(+)(x, x′′, E + ω)G(+)(x′′′, x, E)
due to its random phases, we recover the expression given by Eq. (224).
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B E R E Z I N S K I I ’ S M E T H O D F O R WAV E PA C K E T S

In this appendix, we generalize the diagrammatic method of Berezinskii
(see Chapter 4) to the case of a wave packet. As we already explained in
Subs. 4.2.1, we must, for this purpose, consider the intensity propagator
Φ̃(x, x′′, x′′′, E, ω) with two different source points x′′ and x′′′:

Φ̃(x, x′′, x′′′, E, ω) = G(+)(x, x′′, E + ω)G(−)(x′′′, x, E),

see Eq. (108).
In Subs. 4.2.2, we neglected the disorder in the vicinity of the source

points. In this case, we obtain the final result, Eq. (9), but with the spec-
tral function A0(p, E) of a free particle instead of the spectral function
A(p, E) in the presence of disorder.

In this appendix, we show that A(p, E) is recovered if the disorder
in the vicinity of the source points is taken into account. Let us first
assume x′′ < x′′′ < x and a particle initially propagating towards the
right-hand side, as in the example shown in Fig. (13). Obviously, the
difference with respect to the original Berezinskii diagram shown in
Fig. (10) only concerns the part between the source points x′′ and x′′′.
Here, the number of solid lines (2m + 1) and dashed lines (2m) is not
identical. We thus introduce the quantity Am(x) describing this addi-
tional part. The differential equation for Am(x) can be obtained in a
similar way as described above:

dAm

dx
=
[
− 1

2`−
− 1

2`+
− i

2`0
−
(

m2 + (m− 1)m
) 1
`−

]
Am

+
1
`−

(
m2Am−1e−iωx/pE + m(m + 1)Am+1eiωx/pE

)
. (227)

As boundary condition, we impose Am(x′′) = L̃m(x′′), since the ad-
ditional part A must be connected to the left-hand part L̃ at x = x′′.
Similarly to Eq. (101), we obtain:

Φ̃(x, x′′, x′′′, E, ω) = Φ̃R(x, x′′, x′′′, E, ω) + Φ̃L(x, x′′, x′′′, E, ω), (228)

where

Φ̃R(x, x′′, x′′′, E, ω) = eipE(x′′′−x′′) e−
iωx′′
2pE

4p2
E

∞

∑
m,m′=0

Am′(x′′′)×

Zm′,m(x′′′, x)
(

e
iωx
2pE R̃m(x) + e−

iωx
2pE R̃m+1(x)

)
(229)

117



118 berezinskii’s method for wave packets

and similarly for Φ̃L(x, x′′, x′′′, E, ω) (see below). Let us now compare
Eqs. (102,229).

The essential difference consists of the term L̃m′(x′)Zm′,m(x′, x) occur-
ring in Eq. (102) instead of Am′(x′′′)Zm′,m(x′′′, x) in Eq. (229). Expanding
the solution of Eq. (227) in first order of x′′′ − x′′, we obtain:

Am′(x′′′) = L̃m′(x′′)+

(x′′′− x′′)

{[
− 1

2`−
− 1

2`+
− i

2`0
−
(
(m′)2 + (m′ − 1)m′

) 1
`−

]
L̃m′(x′′)+

1
`−

(
(m′)2 L̃m′−1(x′′)e−iωx′′/pE + m′(m′ + 1)L̃m′+1(x′′)eiωx′′/pE

)}
.

(230)

Similarly, we have:

L̃m′(x′′) = L̃m′(x′)−
x′ − x′′

`−

(
(m′)2 L̃m′−1(x′)e−iωx′/pE + (m′)2 L̃m′+1(x′)eiωx′/pE

− 2(m′)2 L̃m′(x′)
)

(231)

and

Zm′,m(x′′′, x) = Zm′,m(x′, x)−
x′′′ − x′

`−

(
(m′)2Zm′−1,m(x′, x)eiωx′/pE + (m′ + 1)2Zm′+1,m(x′, x)e−iωx′/pE

−
(
(m′)2 + (m′ + 1)2

)
Zm′,m(x′, x)

)
(232)

where Eq. (231) results from Eq. (105) together with L̃m(x) = R̃m(−x),
and Eq. (232) from Eq. (104b) together with Zm′,m(x, x′) = Zm,m′(−x′,−x).
Summing over m′ and keeping again only terms linear in the difference
x′′′ − x′′ = 2(x′ − x′′) = 2(x′′′ − x′) (since x′ = x′′+x′′′

2 ), we obtain:

∑
m′

Am′(x′′′)Zm′,m(x′′′, x) = ∑
m′

L̃m′(x′)Zm′,m(x′, x)

+ (x′′′ − x′′)
(
− 1

2`−
− 1

2`+
− i

2`0

)
∑
m′

L̃m′(x′)Zm′,m(x′, x)

+ ∑
m′
(x′′′ − x′′)e−iωmx′/pE

Rm′+1 − Rm′

2
Zm′,m(x′, x). (233)

The term Rm′+1 − Rm′ can be neglected in the limit m′ → ∞ corre-
sponding to ω → 0 [20]. Defining the effective complex wavevector

p̃E = pE +
i

2`−
+

i
2`+
− 1

2`0
(234)
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describing average propagation in the random potential, Eq. (117) fol-
lows from Eqs. (102, 229, 232):

Φ̃R(x, x′′, x′′′, E, ω) = ei p̃E(x′′′−x′′)ΦR(x, x′, E, ω) (235)

for small ω and small x′′′ − x′′.
The corresponding relation for Φ̃L(x, x′′, x′′′, E, ω) can immediately

be deduced from Eq. (235), since an initially left-propagating diagram
can be mapped to a right-propagating one by exchanging solid with
dashed lines and inverting the coordinates, i. e.,

Φ̃L(x, x′′, x′′′, E, ω) = Φ̃∗R(−x,−x′′′,−x′′, E + ω,−ω) (236)

and

ΦL(x, x′, E, ω) = Φ∗R(−x,−x′, E + ω,−ω). (237)

From this, we obtain Eq. (118)

Φ̃L(x, x′′, x′′′, E, ω) = e−i p̃∗E(x′′′−x′′)ΦL(x, x′, E, ω).

Taking into account that for small ω, ΦR(x, x′, E, ω) = ΦL(x, x′, E, ω),
the sum of Eqs. (117, 118) yields:

ρEG(+)(x, x′′, E + ω)G(+)
E (x′′′, x, E) =

ei p̃E|x′′′−x′′| + e−i p̃∗E|x′′′−x′′|

4πpE
× G(+)(x, x′, E + ω)G(+)

E (x′, x, E) (238)

where we included the normalization factor ρE = 1/(2πpE) on both
sides of the equation. This expression is valid also for x′′′ < x′′ (as can
be proven by inverting the sign of all spatial arguments and exchanging
L↔ R). Our aim is to show, that the prefactor on the right-hand side of
Eq. (238) reproduces the imaginary part of the average Green function.
According to the Dyson equation (see Sec. 3.3.3) the latter is related as
follows

G(+)(x′′ − x′′′, E) = G(+)
0 (x′′ − x′′′, E)

+
∫ ∞

−∞
dx̃ G(+)

0 (x′′ − x̃, E)Σ(E)G(+)(x̃− x′′′, E) (239)

to the self-energy Σ(E), which, using the Born approximation, Eq. (182),
is given by Σ(E) = p2

E − p̃2
E ' −2pE( p̃E − pE), with p̃E as defined in

Eq. (234). Diagrammatically, this self energy corresponds to vertex a dis-
played in Fig. (11). The solution of Eq. (239) is given by Eq. (77), which
has the same form as the free-particle Green function, see Eq. (57), but
with the wave number pE replaced by the effective wave number p̃E.
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c)

x00 x000

d)

x00 x000

1

a

b

Fig. (39) (a) Inserting the vertex Fig. (11 a) on the line between x′′ and x′′′ yields
the first-order expansion (in x′′′ − x′′) of the term exp[i p̃E(x′′′ − x′′)].
(b) The denominator 1/ p̃E present in the average Green function, see
Eq. (77) is recovered by diagrams where the vertex occurs outside the
interval [x′′, x′′′].

As compared to the prefactor in Eq. (238), however, the denominator
1/pE is replaced by 1/ p̃E. Although this difference is small in the va-
lidity regime of the diagrammatic approach (pE`− � 1), we will show
in the following how the factor 1/ p̃E can be recovered by considering
additional diagrams.

In our above derivation, we have restricted ourselves to diagrams
where vertex a is inserted only in the interval between x′′ and x′′′, as
indicated in Fig. (12). Here, we focus on the initial stage of propagation,
i. e., we consider the solid line originating from the source point x′′

until it passes the second source point x′′′. Up to first order in x′′′ − x′′,
the contribution from these diagrams to the average Green function,
G(+)(x′′ − x′′′, E), reads:

G(+)
0 (x′′ − x′′′, E) +

∫ x′′′

x′′
dx̃ G(+)

0 (x′′ − x̃, E)Σ(E)G(+)
0 (x̃− x′′′, E) =

G(+)
0 (x′′ − x′′′, E)

(
1 + i( p̃E − pE)(x′′′ − x′′)

)
'

− i
pE

ei p̃E(x′′′−x′′), (240)

which exhibits pE instead of p̃E in the denominator, as in Eq. (238).
According to Eq. (239) – where the integration over x̃ is not restricted to
[x′′, x′′′] –and its solution, Eq. (77), the denominator 1/ p̃E is recovered
if the vertex a is inserted outside the interval [x′′, x′′′], as in the diagram
depicted in Fig. (39).
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This finally yields:

n(x) =
∫ ∞

−∞
dE

∫ ∞

−∞
dx′′dx′′′nE

(
x− x′′ + x′′′

2

)
〈x′′|ψ0〉〈ψ0|x′′′〉×(

−=
{

G(+)(x′′ − x′′′, E)
})

(241)

where, as compared to Eq. (114), the free-particle Green function is re-
placed by the average Green function. Since the imaginary part of the
Green function defines the spectral function A(p, E), see Eq. (174), we
obtain our final result, Eq. (9); which is the same as Eq. (116), but with
A0(p, E) replaced by A(p, E). This result is valid under the assump-
tion of a strongly confined initial wave packet (σ � `−), where the
first-order expansion in the difference x′′′ − x′′ between the two source
points, which we applied several times in our above derivation, is justi-
fied.





C
N U M E R I C A L I N T E G R AT I O N S C H E M E S

Finite element discrete varible representation (FEDVR)

The name FEDVR arises from finite element (FE) and discrete vari-
able representation (DVR). The numerical integration scheme consists
of splitting an interval [x0, xne ] into ne finite elements [xi, xi+1] (where
i = 0, ..., ne − 1). In each finite element i, there are n− 1 Gauss-Lobatto
points, xi

m (with weights wi
m), m = 1, ..., n− 1, defined in terms of sta-

tionary points xm of the Legendre polynomial, Pn(x). Then, every FE
has its local n element basis, which will be used to expand the wave
functions and relevant operators in a problem to study [75], [77], [99].
See Fig. (40).
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Fig. (40) FEDVR representation. The interval [x0, xne ] is divided in ne finite
elements [xi

0, xi+1
0 ].

We construct the DVR local basis using the translated Gauss-Lobatto
points xi

m with weights wi
m. First, the Gauss-Lobatto points (xm) are

defined as the roots of the first derivative of the Legendre polynomial
Pn(x):

dPn(xm)

dx
= 0 m = 1, ..., n− 1, (242)

whereas x0 = −1 and xn = +1. The associated weights are defined by:

wm =
2

n(n + 1)[Pn(xm)]2
, (243)

where m = 0, ..., n. Secondly, since the zeros of P′n(x) are between −1
and 1, we must move the Gauss-Lobatto points xm (and weights wm) to
the i-th finite element using the following rule for positions:

xi
m =

1
2
[(xi+1 − xi)xm + (xi+1 + xi)], (244)

and for the weights:

wi
m =

wm

2
(xi+1 − xi), (245)

123



124 numerical integration schemes

where xi
m and wi

m (with m = 0, 1, ..., n) are the Gauss-Lobatto and their
weights in the i-th finite element, respectively. Note that the points xi

m
are between xi and xi+1.

The advantage of using Gauss-Lobatto on the DVR is the possibil-
ity to approximate integrals as sums using Gauss-Lobatto quadrature: For
every FE the integral of a function g(x) in the interval [x1

0, xi
n] is approx-

imated as:∫ xi
n

xi
0

dx g(x) ≈
n

∑
m=0

g(xi
m)w

i
m, (246)

which is exact for a polynomial of degree ≤ 2n + 1. To construct a
DVR based on the Gauss-Lobatto quadrature, we use the Lobatto shape
functions for the intervals xi

j ≤ x ≤ xi
j+1:

f i
m(x) = ∏

j 6=i

(x− xi
j)

(xi
m − xi

j)
, (247)

where f i
m(x) = 0 for x < xi

j or x > xi
j+1. Thereby, the basis functions are

defined in terms of f i
m(x):

χi
m(x) =


f i−1
n (x)+ f i

0(x)√
wi−1

n +wi
0

, m = 0,

f i
m(x)√

wi
m

, m = 1, 2, ..., n− 1.
(248)

Due to Eq. (247), note that the functions χi
m in Eq. (248) fulfill:

χi
m(xi′

m′) =


δii′√

wi−1
m +wi

0

, m = 0,

δii′δmm′√
wi

m
, m = 1, 2, ..., n− 1.

(249)

Fig. (41) shows the basis functions for n = 4.

Initial state and Hamiltonian in DRV

Once having defined the basis functions, we may expand the initial state
ψ(x) as:

ψ(x) = ∑
i,m

ci
mχi

m(x), (250)

where

ci
m = ψ(xi

m)×


√

wi−1
n + wi

0, m = 0,√
wi

m, m = 1, 2, ..., n− 1.
(251)
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Fig. (41) Basis functions {χi
m(x)} for m = 0, 1, 2, 3 and χi+1

0 (x). The function
χi

0(x) represents a bridge-function between the two FE intervals i− 1
and i. For m = 1, 2, 3 the functions χi

m(x) are not zero only in the i-th
FE interval.

follows from Eq. (249). We may also expand the kinetic and potential
operators of the Hamiltonian Eq. (15). We expand first the kinetic energy
as ti1,i2

m1,m2 :

ti1,i2
m1,m2 = −

1
2

∫ xne

x0
dx χi1

m1(x)∇2χi2
m2(x)

=



δi1i2 t̃
i1
m1m2

2
√

w
i1
m1 w

i1
m2

, m1 > 0, m2 > 0, (×)

(δi1i2 t̃
i1
n−1m2

+δi1i2−1 t̃i2
0m2

)√
w

i1
n−1+w

i1+1
0

, m1 = 0, m2 > 0, (◦)

(δi1i2 t̃
i1
m1n−1+δi1i2+1 t̃

i1
m10)√

w
i1
m1 (w

i1
n−1+wi2+1

0 )
, m1 > 0, m2 = 0, (⊗)

δi1i2 (t̃
i1
n−1n−1+t̃

i1+1
00 )+δi1i2−1 t̃i2

0n−1+δi1i2+1 t̃
i1
n−10

2
√
(w

i1
n−1+w

i1+1
0 )(wi2

n−1+wi2+1
0 )

, m1 = m2 = 0, (∗)

(252)

where t̃i
m1,m2

is defined via:

t̃i
m1,m2

= ∑
m

d f i
m1
(xi

m)

dx
d f i

m2
(xi

m)

dx
wi

m. (253)

And after, we expand the potential as vi1i2
m1m2 :

vi1i2
m1m2 =

∫ xne

x0
dx χi1

m1(x)V(x)χi2
m2(x) = δi1i2δm1m2vi1

m1 , (254)
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with

vi
m =


V(xi

n−1)w
i
n−1+V(xi+1

0 )wi+1
0

wi
n−1+w0

i+1
, m = 0

V(xi
m), m = 1, 2, ..., n− 1

(255)

The matrix representation of p2, Eq. (252), used for the diagonaliza-
tion of the Hamiltonian Eq. (15), has the following form:



∗ ◦ ◦ ◦ ∗ ∗ ◦ ◦ ◦⊗ × × × ⊗
⊗ × × × ⊗
⊗ × × × ⊗∗ ◦ ◦ ◦ ∗ ◦ ◦ ◦ ∗⊗ × × × ⊗

⊗ × × × ⊗
⊗ × × × ⊗∗ ◦ ◦ ◦ ∗ · · ·∗ ∗ ◦ ◦ ◦⊗ ⊗ × × ×

⊗ ⊗ × × ×
⊗ ⊗ × × ×


, (256)

where the symbols denote non-zero elements and the elements at the
corners (up right and down left) are due to the periodical boundary
conditions. Every one of the blocks in the matrix representation is re-
lated with the i-th FE. The matrix representation of V(x), Eq. (255), is
purely diagonal.

The second-order differencing scheme (SOD)

For closed systems, the unitary propagation can be calculated numer-
ically by the expansion of the evolution operator into a Taylor series
[100]:

U(t) = 1− iH∆t + · · · . (257)

After truncation of the series at certain order of ∆t, however, the oper-
ator U(t) is not unitary any more, and thus violates energy and momen-
tum conservation. To avoid this problem, the second order differencing
scheme (SOD) is used as follows

|ψ(t + ∆t)〉 − |ψ(t− ∆t)〉 = (e−iH∆t − eiH∆t)|ψ(t)〉,
|ψ(t + ∆t)〉 ≈ |ψ(t− ∆t)〉 − 2i∆tH|ψ(t)〉. (258)

To prove the unitary and energy-conserving property of the SOD scheme,
we can multiply Eq. (258) by 〈ψ(t)|:

〈ψ(t)|ψ(t + ∆t)〉 = 〈ψ(t)|ψ(t− ∆t)〉 − 2i∆t〈ψ(t)|H|ψ(t)〉. (259)

Conjugating Eq. (259), adding Eq. (259) and integrating over all space,
we get:∫ ∞

−∞
dx ψ(x, t−∆t)ψ∗(x, t) =

∫ ∞

−∞
dx ψ(x, t)ψ∗(x, t+∆t) = const. (260)
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Since, for small ∆t (∆t � Emax, where Emax is the eigenvalue with
largest absolute value of the discrete Hamiltonian) the state |ψ(t + ∆t)〉
is very close to |ψ(t)〉, Eq. (260) ensures the conservation of the to-
tal norm 〈ψ(t)|ψ(t)〉. Following the same steps, but with the function
H|ψ(t)〉, the energy conservation for different time steps (t and t + ∆t)
is demonstrated as follows:∫ ∞

−∞
dx ψ(x, t− ∆t)Hψ∗(x, t) = const. (261)

SOD recurrence

Using Eq. (258) for t = 0 and t = ∆t/2, we may get |ψ(∆t)〉 in terms of
|ψ(t = 0)〉 and |ψ(∆t/2)〉 [100]:

|ψ(∆t)〉 ≈ |ψ(t = 0)〉 − i∆tH|ψ(∆t/2)〉. (262)

In order to get |ψ(∆t/2)〉 as a function of |ψ(t = 0)〉, we use the
first-order scheme:

|ψ(∆t/2)〉 ≈ |ψ(t = 0)〉 − i(∆t/2)H|ψ(t = 0)〉. (263)

Then, with help of Eq. (263), we can propagate the state |ψ(t = 0)〉 in
time using the following recurrence for the SOD scheme:

|ψ(n∆t)〉 ≈ |ψ((n− 2)∆t)〉 − 2i∆tH|ψ((n− 1)∆t)〉, (264)

for n = 2, 3, ....
In case of a time dependent Hamiltonian H(t), see Eq. (197), the

SOD scheme is applied as follows: we replace H by H(t) in Eq. (258),
H(∆t/2) in Eq. (262), H(0) in Eq. (263), and H((n− 1)∆t) in Eq. (264).

Fourier Propagation

To check the results obtained with the SOD scheme in Chapter 9, we
compare then with an alternative method: the Fourier propagation scheme.
This scheme relies on the fact that in

H(t) = p2 + V, (265)

the kinetic energy p2 is diagonal in momentum space, whereas V is
diagonal in position space.

For small ∆t, we approximate:

|φ(t + ∆)〉 = e−iV∆t/2e−ip2∆te−iV∆t/2|φ(t)〉. (266)
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If |φ(t)〉 is represented in position space, the first term, i. e. e−iV∆t/2,
amounts to a multiplication with a complex phase factor:

〈x|e−iV∆t/2|φ(t)〉 = e−iV(x)∆t/2〈x|φ(t)〉. (267)

To evaluate the second term, i. e. e−ip2∆t, we apply the Fourier trans-
form:

φ̃(k, t) = Fφ(x, t) =
1
L

∫ L

0
dx e−ikxφ(x, t) (268a)

with L the length of the 1D potential (remember that we impose period-
ic boundary conditions with period L), and the back transform

φ(x, t) = F−1φ(k, t) = ∑
k

eikxφ(k, t), (268b)

where k = 2nπ/L, n ∈ Z. Thereby, we write the propagator

φ(x, t + ∆) = e−iV(x)∆t/2e−ip2∆te−iV(x)∆t/2φ(x, t), (269)

in terms of Fourier transforms and multiplication with complex num-
bers:

φ(x, t + ∆) = e−iV(x)∆t/2F−1e−ik2∆tF e−iV(x)∆t/2φ(x, t). (270)

In case of the Gross-Pitaevskii equation, see Chapter 8, we replace
V(x) by V(x) + g|ψ(x, t)|2 in Eq. (270).
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[85] I. Březinová, A. U. J. Lode, A. I. Streltsov, O. E. Alon, L. S. Ceder-
baum, and J. Burgdörfer, “Wave chaos as signature for depletion
of a Bose-Einstein condensate,” Phys. Rev. A, vol. 86, p. 013 630,
1 2012.

[86] T. Geiger, T. Wellens, and A. Buchleitner, “Inelastic multiple scat-
tering of interacting bosons in weak random potentials,” Phys.
Rev. Lett., vol. 109, p. 030 601, 3 2012.

[87] B. Shapiro, “Expansion of a Bose-Einstein condensate in the pres-
ence of disorder,” Phys. Rev. Lett., vol. 99, p. 060 602, 6 2007.

[88] D. L. Shepelyansky, “Delocalization of quantum chaos by weak
nonlinearity,” Phys. Rev. Lett., vol. 70, pp. 1787–1790, 12 1993.

[89] C. Skokos, D. O. Krimer, S. Komineas, and S. Flach, “Delocaliza-
tion of wave packets in disordered nonlinear chains,” Phys. Rev.
E, vol. 79, p. 056 211, 5 2009.

[90] Y. Kagan, E. L. Surkov, and G. V. Shlyapnikov, “Evolution of a
Bose-condensed gas under variations of the confining potential,”
Phys. Rev. A, vol. 54, R1753–R1756, 3 1996.

[91] Y. Castin and R. Dum, “Bose-Einstein condensates in time de-
pendent traps,” Phys. Rev. Lett., vol. 77, pp. 5315–5319, 27 1996.

[92] C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics,
Hermann Publishers, Paris, 1977.

[93] S. Flach, D. O. Krimer, and C. Skokos, “Universal spreading of
wave packets in disordered nonlinear systems,” Phys. Rev. Lett.,
vol. 102, p. 024 101, 2 2009.

[94] K. L. Lee, B. Grémaud, and C. Miniatura, “Dynamics of localized
waves in one-dimensional random potentials: Statistical theory
of the coherent forward scattering peak,” Phys. Rev. A, vol. 90,
p. 043 605, 4 2014.

[95] T. Karpiuk, N. Cherroret, K. L. Lee, B. Grémaud, C. A. Müller,
and C. Miniatura, “Coherent forward scattering peak induced
by Anderson localization,” Phys. Rev. Lett., vol. 109, p. 190 601,
19 2012.

[96] T. Wellens and B. Grémaud, “Nonlinear coherent transport of
waves in disordered media,” Phys. Rev. Lett., vol. 100, p. 033 902,
3 2008.

[97] ——, “Coherent propagation of waves in dilute random media
with weak nonlinearity,” Phys. Rev. A, vol. 80, p. 063 827, 6 2009.

[98] T. Geiger, A. Buchleitner, and T. Wellens, “Microscopic scattering
theory for interacting bosons in weak random potentials,” New
J. Phys., vol. 15, no. 11, p. 115 015, 2013.



136 Bibliography

[99] K. Balzer, S. Bauch, and M. Bonitz, “Efficient grid-based method
in nonequilibrium Green’s function calculations: Application to
model atoms and molecules,” Phys. Rev. A, vol. 81, p. 022 510, 2

2010.

[100] C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Fries-
ner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.
D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A compar-
ison of different propagation schemes for the time dependent
Schrödinger equation,” Journal of Computational Physics, vol. 94,
no. 1, pp. 59 –80, 1991.



A ver, el mundo no es sólo como lo vemos sino también como lo
entendemos, ¿no? Y al entender una cosa, le añadimos algo, ¿no?

¿Eso no convierte a la vida en un cuento?

— Yann Martel
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