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Introduction

The main goal of the present work is to endow the smooth affine homogeneous algebraic
variety HPn = Sp2n+2 / Sp2×Sp2n with an explicit unstable motivic cell structure. We
use methods that are likely to work also analogously for OP1 = Spin9 / Spin8, the Cayley
plane OP2 = F4 / Spin9 and other isotropic Grassmannians. As a side-product, we see
how these methods work for CPn = PGLn+1 /GLn as well.

The interest in these spaces is five-fold:

1. The complex analytifications are of an interesting homotopy type:

CPn(C)an ' CPn, HPn(C)an ' HPn, OPn(C)an ' OPn.

The gluing maps for the second nontrivial cell onto the first nontrivial cell are exactly
the famous Hopf invariant one Hopf maps, which are much studied in classical algebraic
topology. A motivic cell structure on the variety which is compatible with this structure
therefore provides a lift of these Hopf maps, indeed motivic Hopf invariant one elements.
In Chapter 1 we will go into more detail about this classical story. The projective lines
over split composition algebras have been used already by Hasebe to define such Hopf
maps [Has10], and Dugger and Isaksen use a more homotopical construction [DI13] to
define motivic Hopf elements.

2. The spaces CPn, HPn, OP1, OP2 are rank one homogeneous spherical varieties.
In the classification theory of spherical varieties (normal algebraic varieties with a re-
ductive group action such that a Borel group has a dense orbit), one has the rank
invariant. The rank of a homogeneous spherical variety (while definable for arbitrary
G-varieties) can be seen as the number of irreducible components of a boundary divisor
of a wonderful completion, cf. , if one exists (compare [Tim11] for general definitions
and [Pez10, Proposition 3.3.1, p.48] for a proof that this agrees with the usual definition of
rank). It is easy to see that every spherical variety admits a stable motivic cell structure,
cf. Fact 2.3.15. To explicitly describe (unstable) motivic cell structures, it is sensible
to proceed from the easy to the more difficult cases. Rank 0 spherical varieties are
complete, and we already have methods to endow these generalized flag varieties with
motivic cell structures [Wen10], using an algebraic variant of Morse theory developed
by Białynicki-Birula [BB73]. The rank 1 primitive spherical varieties are classified into
seven infinite families and nine exceptional cases, in characteristic 0 by Ahiezer [Ahi83]
(see also [CF03]) and in characteristic p by Knop [Kno14]. Surprisingly, the completion
of a rank 1 primitive spherical variety is again a homogeneous space, although under a
different group. We devote Remark 2.2.6 to a computation of the motive of some rank 1
spherical varieties by interpreting the relationship between these two reductive groups
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2 INTRODUCTION

as a relation of the Dynkin diagrams. This is intended to explain why the motivic cell
structure is more complicated than the topological one.

3. We have an algebraic vector bundle classification theory by work of Morel [Mor12],
generalized by Asok, Hoyois and Wendt in a series of papers [AHW16, AHW15] to more
general G-torsors. Information on the homotopy type of homogeneous spaces can be used
to infer information on algebraic G-torsors on any space using obstruction theory. We
briefly discuss the topological component of this application in Section 5.2.

4. Hermitian K-theory is representable in the stable A1-homotopy category by
a spectrum constructed from quaternionic Grassmannians HGr(m,n + m) of which
HGr(1, n + 1) = HPn is a special case. A motivic cell structure similar to the one de-
scribed in the present work endows the hermitian K-theory spectrum with a cell structure
as well. We also describe a stable cell structure on HGr(m,n +m). This has applica-
tions in work of Hornbostel [Hor15] (where Spitzweck’s proof of a stable cell structure is
employed).

5. A motivic cell structure on HPn has implications on the values of oriented coho-
mology theories. This was described without the language of motivic cell structures in
a preprint of Panin and Walter [PW10b]. We do not discuss this in the present article,
although it has been an important influence.

Main Result.
Theorem (Theorem 4.4.8). The split quaternionic projective space HPn over a field k
has an unstable motivic cell structure built as mapping cone over HPn−1. In particular,
HP1 is a motivic sphere S4,2.

Idea of the Proof. We use a hermitian matrix model for the projective space DPn

over a split composition algebra D. By the choice of a Lagrangian of the norm form, we
define a vector bundle V � DPn−1 with total space V ↪→p DPn and open complement X.
By homotopy purity, the homotopy quotient DPn /X is weakly equivalent to the Thom
space over the normal bundle of V ↪→p DPn, for which we can find explicit cells. By the
canonical projection p : DSn � DPn, we find an affine space X̃ ′ such that p maps it to
X. For C and H we prove that this restricted projection is an affine bundle, hence X is
A1-contractible.

We review briefly the table of contents:
Chapter 1 is an introductory text, in which we recall the cell structure for the smooth

manifold DPn built from a division algebra D and the corresponding Hopf elements and
their relevance. We explain the hermitian matrix model of projective space and why
octonions do not allow projective spaces of dimension higher than two. Some classical
applications of cell structures to bundle theory are discussed. The chapter closes with
two constructions of cell structures on CPn.

The second chapter briefly recalls the motivic homotopy theory of Morel and Voevodsky
and its relation to motives. It is by no means intended as an introduction and serves
mostly to fix our notation. In the last section (Section 2.3), we discuss the concept
of motivic cell structures of Dugger and Isaksen, which is central to this work. We
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also prove a crucial theorem on obtaining unstable cell structures for Thom spaces, see
Theorem 2.3.20.

In the third chapter we discuss composition algebras over rings, the Cayley–Dickson
construction and Zorn vector matrix notation for split composition algebras D. While
this is classical material over a field, we see that the theory works flawlessly over a ring
as well. Section 3.2 contains some computations that are used in the following chapter.

The fourth chapter introduces the main object of study, the projective space DPn over
a split composition algebra D. In Section 4.1 we introduce the relevant Jordan algebra of
hermitian matrices over D, the projective space DPn, the corresponding sphere DSn and
the canonical projection p : DSn � DPn. Section 4.2 constructs the candidate Xn for the
“big cell” of DPn. In subsequent sections, we compute examples and prove theorems in
the specific situations D = C,H,O (complex, quaternionic, octonionic).

The last chapter (Chapter 5) discusses some applications.

To the best knowledge of the author, the existence and description of the unstable motivic
cell structure of HPn in Theorem 4.4.8 was not available in the literature before, although
the 2010 preprint of Panin and Walter almost obtains a similar motivic cell structure by
different means. The work of Panin and Walter clearly was an important predecessor of
the present work. The main difference of the present proof to that one is that we intended
to find a common proof for all split composition algebras, methods that work for other
Jordan algebras and all characteristics to obtain explicit unstable cell structures. Other
new results in this work include the method of obtaining unstable cell structures for
certain Thom spaces, Theorem 2.3.20. It is likely that it was well-known to the experts
that the Cayley-Dickson process and the theory of D-projective spaces works over any
commutative ring, but this was not available in the literature. We prove this in Chapter 3
and Section 4.1. The Observation 2.2.5 on the structure of rank 1 spherical varieties
was discovered by the author, and used to compute the motives of rank 1 spherical
varieties. The author discovered later that Landsberg and Manivel had independently
made the same observation [LM01, Section 4.2]. Two technical results not due to the
author were not easily available in the literature, which is why we provide a proof here:
the folklore Lemma 2.1.3 that affine Zariski bundles are A1-equivalences and Wendt’s
result Lemma 2.1.14 that vector bundle projections are sharp maps.

This work leaves open many questions which might be settled soon, for example a more
explicit description of the cell structure and a generalization to the Cayley plane. We
intend to publish a more detailed account of Remark 2.2.6 together with an investigation
of the corresponding Jordan algebras separately later.

The original approach was to obtain unstable motivic cell structures via Białynicki-
Birula decompositions, which seems to be difficult, compare Remark 2.3.28.

We advise the reader to think about HPn over a field of characteristic 0 on the first
reading to get an overview over the main argument.

Assumption. We assume the reader to have some familiarity with homotopy theory,
algebraic geometry and the theory of reductive groups and their representations. Some
knowledge of motivic homotopy theory is required, and we only repeat some definitions
to fix notation. We use the theory of motives as a black box to motivate our construction,
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but we do not use motives in the main argument. Both the theory of spherical varieties
and of Jordan algebras are not prerequisites for reading this thesis, and all necessary parts
are explained or referenced in the corresponding sections. References for the prerequisites
and for further research are given in the corresponding sections.
Convention 0.0.1. Unless explicitly stated otherwise, we will deal with separated finite
type schemes, not necessarily projective, defined over the integers. We call a separated
finite type scheme over SpecZ a variety. In some theorems, we work over a field k, which
is explicitly mentioned then. All varieties that appear explicitly in this work are smooth
over the base scheme, which we mention explicitly when appropriate. The algebraic
groups which appear are linear groups, either additive groups or reductive linear groups
split over the base. We use the notation Z ↪→p X for a closed immersion of Z into X and
U ↪→◦ X for an open immersion of U into X throughout.
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group, in particular my office-mate Helene Sigloch, with whom I also had many fruitful
conversations on mathematics. Besides the research training group, I also want to thank
the Studienstiftung not only for the generous funding but also for facilitating many
intellectual encounters that keep enriching my life far beyond any particular seminar.
Special thanks go to Aravind Asok, who took ample time to discuss some aspects of this
work with me and pointed out several misconceptions I had. I want to thank Jean Fasel
for prompting me to think harder on unstable homotopy theory. I want to thank Markus
Spitzweck for sharing a draft of his work. Their encouragement meant a lot to me.
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CHAPTER 1

The Topological Story

We introduce the reader to one of the main proponents of this thesis by briefly recalling
the well-known analogue in classical topology, which we aim to generalize in following
chapters. The entire chapter is meant to be an introduction to this work.

For everything related to projective spaces over the classical division algebras, we can
only recommend the textbook by Dray and Manogue [DM15]. The well-known survey on
the octonion division algebra [Bae02] of Baez has to be praised for its many references
and may provide an easy introduction, as it does not contain too many proofs.
Fact. Let D be a division algebra over R (i.e. D ∈ {R,C,H,O}) and DPn the projective
space over it (with n ≤ 2 iff D = O). Then, fixing inclusions DPn−1 ↪→ DPn determines
the structure of a CW complex on DPn, with attaching maps isomorphic to the Hopf
fibrations Dn \ {0}� DPn−1.

Proof idea. The complement of the inclusion DPn−1 ↪→ DPn is Dn, which is contractible.
We can view Dn ↪→ DPn as the (mapping) cone over Dn \ {0} → DPn−1. �

In Example 1.5.3 we give a more detailed proof of this fact for the case of CPn.

1.1. Hopf Elements

A cell structure for projective spaces over division algebras gives rise to interesting elements
in the stable homotopy groups of spheres, the Hopf elements.
Remark 1.1.1. The attaching maps for DPn−1 ↪→ DPn in the case n = 1 are maps

fD : D2 \ {0}� DP1

and we have
R2 \ {0} ' S1, RP1 ' S1,

C2 \ {0} ' S3, CP1 ' S2,

H2 \ {0} ' S7, HP1 ' S4,

O2 \ {0} ' S15, OP1 ' S8 .

The CW complex structure is not trivial, i.e. DP2 is not a bouquet of spheres, the
homotopy class of the attaching map is nontrivial. These attaching maps yield nonzero
elements in the homotopy groups of spheres, commonly denoted

ε := [fR] ∈ π1(S1),
η := [fC] ∈ π3(S2),
ν := [fH] ∈ π7(S4),

5



6 1. THE TOPOLOGICAL STORY

σ := [fO] ∈ π15(S8).
Non-triviality can be shown by the Hopf invariant (see the following remark), which is a
cohomological, hence stable invariant. The fact that the Hopf invariant of these elements
is 1 is closely related to the property of projective planes that each two distinct lines
intersect in precisely one common point, as the Hopf invariant can be shown to coincide
with the linking number of the pre-image of two distinct points on DP2. This shows that
the stable homotopy type of DP2 is also not split as a wedge sum of spheres, which has
trivial attaching maps, hence Hopf invariants 0. One calls the images in stable homotopy
groups Hopf elements and also writes

ε ∈ πs0(S), η ∈ πs1(S), ν ∈ πs3(S), σ ∈ πs7(S).
Remark 1.1.2. To a homotopy class of a map ϕ : S2n−1 → Sn (such as the ε, η, ν, σ just
mentioned) one can assign the Hopf invariant by looking at the cup product in Hn

sing(Cϕ),
the integral cohomology of the mapping cone over ϕ. As Hn

sing(Cϕ) is generated by a
single class α coming from Sn and H2n

sing(Cϕ) is generated by a single class β coming
from the cone over S2n−1, the cup product α ∪ α can be expressed as h(ϕ)β where h(ϕ)
is an integer, called the Hopf invariant. For ε, η, ν, σ, the Hopf invariant is 1. One can
show that the existence of a division algebra structure on R2n implies the existence of a
Hopf invariant 1 element fR2n , and Adams famously proved [Ada60] that the only Hopf
invariant 1 elements in the stable homotopy groups of spheres are in degrees 0, 1, 3, 7,
thereby proving that R2n admits a division algebra structure only for n ∈ {1, 2, 4, 8}. This
remarkable connection explains part of the importance of cell structures on projective
spaces over division algebras.

1.2. Hermitian Matrices and Octonions

We describe the hermitian matrix model for projective spaces over division algebras.

One can model DPn by understanding its points not as lines in Dn+1 (which is not
straightforward for the quaternions, and troubling for the octonions), but as projectors
onto these lines. To avoid having multiple representatives for a single line, one can stick
to hermitian matrices (which form a Jordan algebra in characteristic 0, hence the letter J
will be used). A vector v ∈ Dn+1 \ {0} determines a matrix vv† ∈ Matn+1(D) (writing
v† for the conjugate-transpose) which, up to a scalar, projects every vector w ∈ Dn+1

onto the v-line in Dn+1, as vv†w = v〈v, w〉. As soon as we take a normed vector v, with
|v| = 1 = 〈v, v〉 = v∗v, the matrix vv∗ is precisely the projector onto v. The space of
hermitian projectors of rank one

JDPn := {A ∈ Matn+1(D) | A = A∗, A2 = A, rk(A) = 1}
is a homogeneous space, isomorphic to DPn:

JRPn ←−∼ SO(n+ 1)/S(O(1)×O(n)) −→∼ RPn

JCPn ←−∼ SU(n+ 1)/S(U(1)×U(n)) −→∼ CPn

JHPn ←−∼ Sp(n+ 1)/ Sp(1)× Sp(n) −→∼ HPn

JOP2 =: OP2 ←−∼ F4 /B4
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where, as usual, we just define the octonionic plane via the hermitian matrix model. The
idea of using idempotents in hermitian matrices to construct an octonionic projective plane
seems to go back to Jordan [Jor49]. The homogeneous space structure was investigated
first by Borel [Bor50].

One can define Un(D) in a way such that SUn(R) = SO(n), SUn(C) = SU(n), Un(H) =
Sp(n), then DPn = SUn+1(D)/S(U1(D)×Un(D)).

Observe that the fibration D Sn := {v ∈ Dn | |v| = 1} � DPn sending a nonzero
vector v to the line it spans (or, in the Jordan model, to the projector vv† onto that line),
is the quotient map after a U1(D)-action, and D Sn = Un+1(D)/Un(D).

This story breaks down for D = O, as we have U1(R) = SO(1) = S0, U1(C) =
SU(1) = S1, U1(H) = Sp(2) = S3, but S7 does not admit a Lie group structure (see the
next section for an explanation).

1.3. Why Octonions are Bad

We will now discuss why there is no octonionic projective space beyond dimension two.

The classical reason is that the theorem of Desargues holds for any projective incidence
geometry of dimension greater than two by an elementary argument, and it implies that
the incidence geometry can be coordinatized by an associative coordinate algebra. This
must clearly fail for the non-associative octonions, so we know that there can be no such
incidence geometry.

The naive definition of OPn as vectors in On+1 \ {0} modulo left scalar multiplication
has the problem that the equality up to left scalar multiplication fails to be an equivalence
relation. If one takes the generated equivalence relation, the quotient space becomes
contractible.

If we just try to use a definition of OPn via hermitian matrices as above, it turns out
that the set Jn+1(O) of hermitian matrices over the octonions is no longer a J-algebra (or
Jordan algebra) for n > 2, in particular it is not power-associative, so that the projector
condition does not behave correctly. This prevents us from extending this definition to
higher dimensions.

Another reason is of homotopical nature: if we require any serious candidate for an
octonionic projective space of dimension 3 to contain OP2 and an additional cell, such
that the cohomology is Z[x]/x4 with deg(x) = 8, then there is no such space. This can
be shown using Steenrod operations [Hat02, Corollary 4L.10, p. 498].

Another homotopical oddity appears with the octonions: The fiber of a Hopf fibration
coming from a division algebra (or split composition algebra) consists of the units in the
algebra, which is a Lie group (resp. algebraic group) structure on a sphere (resp. affine
quadric) for R, C and H (resp. C and H, to be introduced in Chapter 3), but for the
octonions O it is an H-space structure on S7, which does not admit a Lie group structure
at all. This can be shown by a cohomological argument: for any non-abelian Lie group G,

H3
sing(G;R) −→∼ H3

dR(G;R) −→∼ H3(Lie(G);R).
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The (bi-invariant, hence closed) non-vanishing Cartan 3-form (x, y, z) 7→ 〈[x, y], z〉 shows
that H3(Lie(G)) 6= 0. Since H3

sing(S
7;R) = 0, the 7-sphere is not a Lie group.

After this discussion, we may rightly ask: Why are there a projective line and plane
over the octonions? This question was answered by Stasheff, who showed the equivalence
of the existence of a projective space over an algebra of a given dimension n to an
associativity condition An [Sta63, Section 5]. The octonions are an alternative algebra,
which implies that any sub-algebra generated by 2 elements is associative. This is enough
to define a projective plane.

Stasheff’s theorem relies on the following observation: The infinite projective space
P∞ is the classifying space of the multiplicative group Gm, denoted BGm = P∞. We can
regard other classifying spaces as generalizations of the infinite projective space and may
also filter it by a flag of finite-dimensional subspaces like Pn. If we use the unit group of
a division algebra, we get the corresponding projective spaces over the division algebra.
Here the fact that S7 is just an H-group with the A2-property, explains why there is no
BS7, but only the first and second stage of approximation.

For the octonionic projective line OP1, the non-associativity has very little consequences,
as p : OS1 � OP1, v 7→ vv† involves only multiplications of two elements of O each and
the same holds for the property (vv†)

2
= vv†.

The latter fails for OP2, where for v ∈ O3 with |v| = 1, in general (vv†)2 6= vv†.
This problem can be ameliorated by looking at the subspace OS2,a := {v ∈ O3 | |v| =
1, assoc(v) = 0}, where assoc(v) is the 3-dimensional vector consisting of the associators
{vi, v∗j , vjv∗k} for (i, j, k) ∈ ((2, 0, 1), (0, 1, 2), (1, 2, 0)). Since OS2,a is no longer a sphere,
this introduces other problems.

1.4. Vector Bundles

Let G be a Lie group, e.g. GL(n,C).
Definition 1.4.1. A classifying space BG of G is a homotopy quotient BG := ∗ � G
(defined up to weak equivalence).

Given any contractible free G-space EG, the ordinary quotient EG/G is a classifying
space BG for G.
Theorem 1.4.2 (Pontryagin–Steenrod). Let X be a paracompact Hausdorff space and G
a Lie group. We have a natural isomorphism between homotopy classes and isomorphism
classes:

[X,BG] −→∼ {V → X a principal G-bundle}/'.
This was proved by Steenrod [Ste51, 19.3].

Remark 1.4.3. Given a monomorphism of connected Lie groups H → G, we have an
induced fibration of classifying spaces BH → BG with homotopy fiber G/H. Applying
the Hom-functor [X,−] in the homotopy category to this fiber sequence, we get an exact
sequence (for connected X)

[X,G/H]→ [X,BH]→ [X,BG],

where exactness is taken in the sense of pointed sets, with the distinguished point given
by the constant map to the basepoint of BH, BG or G/H, each of which is induced by
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the identity element of G. Applying Steenrod’s theorem, we see that obstructions for a
principal H-bundle to be trivial as a G-bundle live in [X,G/H].

In obstruction theory, one can define obstruction classes in the π∗(G/H)-valued
cohomology of X, whose vanishing answers the question whether a given G-bundle admits
reduction of the structure group to H, i.e. whether it is induced from an H-bundle.
Remark 1.4.4. If X admits a cell structure with no cells above dimension n (e.g. if X is a
≤ n-dimensional smooth manifold), and G/H is connected and admits a cell structure
with no cells in dimensions 1 to n+1, then by cellular approximation all continuous maps
X → G/H are homotopic to cellular ones, which map d-cells to d-cells or lower, hence all
of X to 0-cells in G/H. In that case, [X,G/H] = 1.
Example 1.4.5. Knowledge on the homotopy type of a homogeneous space G/H implies
statements on principal bundles:

(1) For U(n,C) ↪→ GL(n,C), we have GL(n,C)/U(n,C) contractible by polar
decomposition of matrices (Iwasawa decomposition), hence every complex vector
bundle admits a unitary structure, unique up to isomorphism.

(2) For O(n,R) ↪→ GL(n,R), we have GL(n,R)/O(n,R) contractible by polar
decomposition of matrices again, hence every real vector bundle admits a metric,
unique up to isomorphism.

(3) For SO(n,R) ↪→ O(n,R), we have O(n,R)/SO(n,R) −→∼ Z/2Z, the obstruc-
tion for reduction of the structure group from O(n,R) to SO(n,R) is precisely
orientability, with Z/2Z corresponding to the two possible orientations of an
orientable bundle with a metric.

Remark 1.4.6. The obstructions for G-bundles on a space X to admit reduction of the
structure group to H are in Hn+1(X,πn(G/H)) (as one can construct a Moore-Postnikov-
tower for X → BG). If G/H admits a cell structure with lowest cell of dimension n+1 (so
G/H is n-connected), and X is a smooth manifold of dimension n (so that all cohomology
in degrees above n vanishes), these obstruction classes are always vanishing, so that every
G-bundle on X is induced from an H-bundle on X.
Example 1.4.7. A concrete application is given by rank r vector bundles on dimension
d smooth manifolds: if r > d, then every rank r vector bundle splits as direct sum of
a rank d vector bundle with a trivial rank r − d vector bundle. This can be seen by
associating an O(r)-bundle to a rank r vector bundle (by choice of a metric) and observing
that O(r)/O(r − 1) = Sr−1 is (r − 2)-connected, so that by the previous remark, all
obstructions vanish.

1.5. Cell Structures on Projective Spaces

We will briefly introduce the two main ways of constructing CW complex structures on
projective spaces in topology.
Definition 1.5.1. We compare two concepts of cellularity for Hausdorff spaces:

(1) Call a discrete space 0-cellular. Inductively a space X is n-cellular for n ∈ N if it
is homotopy equivalent to the mapping cone of a continuous map

∨
i∈I S

ni → Y
for a set of non-negative numbers {ni}i∈I and an n− 1-cellular space Y . We call
a space X CW complex if it is the direct limit over an increasing filtration of X
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by n-cellular spaces, with increasing n. The topology on such a direct limit is
the closure-finite weak topology, hence the name CW for such spaces. Any fixed
filtration by n-cellular spaces is called a CW structure.

(2) Let C be the smallest class of spaces, closed under weak homotopy equivalence
and homotopy colimits that contains all discrete spaces and all spheres. We call
X ∈ C cellular and any explicit diagram D consisting of Di weakly equivalent
to a sphere or a discrete space such that X = hocolim(D) a cell structure. If we
replace “closed under weak homotopy equivalence” by “closed under homotopy
equivalence” we speak of strictly cellular and strict cell structures. If the diagram
D of a cell structure is finite, the cell structure is called finite.

Remark 1.5.2. Inductively, every n-cellular space is cellular. Given a CW complex X, the
filtration by n-cellular spaces consists of cofibrations, hence the direct limit presentation
is in fact a homotopy colimit, so X is cellular. One may more brutally also apply CW
approximation, which gives a CW model Y and a weak equivalence Y → X. In the
other direction, cellular spaces are a more general concept, as by CW approximation,
every Hausdorff space is cellular in this weak sense. For strictly cellular spaces, it is not
immediately clear whether the class of cellular spaces might be larger. However, given
a strict cell structure for a cellular space, one may easily construct a filtration on the
diagram and therefore a CW structure.

Example 1.5.3. We take two inclusions

ι0 : CPn−1 ↪→ CPn, [x1 : · · · : xn] 7→ [0 :x1 : · · · :xn]
ιn,0 : CP0 ↪→ CPn, [1] 7→ [1 : 0 : · · · : 0 ]

We may cover CPn by the two open complements

U := CPn \ ι0CPn−1, V := CPn \ ιn,0CP0.

We may identify U with Cn by the map [1 : x1 : · · · : xn] 7→ (x1, . . . , xn) with obvious
inverse. There is a retraction V � CPn−1 by the map [x0 : · · · : xn] 7→ [x1 : · · · : xn].
Inside U , there is a subset isomorphic to Cn \ {0}, which admits a surjection onto CPn−1

by quotient after the C×-action (which we take as the definition of CPn−1), commonly
called Hopf map. We subsume these constructions in a diagram:

Cn \ {0}

Cn CPn \ ι0CPn−1

CPn−1 CPn \ ιn,0CP0

CPn

∼

The horizontal arrows are weak homotopy equivalences, the arrow Cn \ {0} ↪→ Cn is
a cofibration, Cn is contractible, hence the diagram is a homotopy cofiber diagram. In



1.5. CELL STRUCTURES ON PROJECTIVE SPACES 11

other words
Cn \ {0}� CPn−1 ↪→ CPn

is a homotopy cofiber sequence that endows CPn with an explicit inductive cell structure
by attaching a cell onto CPn−1 as cone over the Hopf map.

If we analyze this construction closely, we see that there was a choice of filtration
for CPn, which corresponds to the choice of a full flag of sub-vector spaces in Cn+1, and
an application of the Weyl group Sn, namely in using an opposite CP0 ↪→ CPn than the
one from the chosen filtration. It is also interesting that one uses the 0-cell to attach the
n-cell.
Example 1.5.4. As we noted in the previous example, the subset CPn \ CPn−1 is
contractible. Let N � CPn−1 be the normal bundle of the embedding of the complement
CPn−1 ↪→p CPn. There is a homotopy cofiber sequence

CPn \ CPn−1 ↪→◦ CPn → Th(N)

which shows that CPn → Th(N) is a weak equivalence. As Thom spaces over cellular
spaces are cellular, this shows that CPn is cellular. Furthermore, it exhibits CPn as
iterated Thom space.

This explains why one would use the 0-cell to attach the n-cell, if one were to write
down an explicit cell structure for CPn, as we will see in the next example.

The iterated Thom space structure is a more canonical cell structure than the previous
one, as we did not use the Weyl group. On the other hand, we do not immediately see
attaching maps for the cells, which is a drawback for applications.
Example 1.5.5. We now look at an iterated Thom space over trivial bundles, which is
locally (but not globally) the situation for CPn. Let M0 := {1} a one-point space and M i

a series of smooth manifolds with M i−1 ↪→p M i a closed embedding, N i �M i−1 a series
of trivial rank ni bundles where each N i is the normal bundle of M i−1 ↪→p M i. We know
that

M i ' Th(N i) ' Σni
+M

i−1 ' Sni ∧
(
M i−1 ∨ S0

)
.

By recurrence and distributing ∧ over ∨, applying Sn ∧Sm ' Sn+m, we get

M i '
i∨

j=0

S

(∑j
k=0 nk

)
.

We see that the top-dimensional cell of M i arises from the top-dimensional cell of M i−1,
and all other cells are made larger. If we remove the 0-cell from M i, the remaining cells
are suspensions of the cells of M i−1 with one point removed, which retracts onto M i−1.

The difference between this situation and the space CPn is that the attaching maps
for CPn are not homotopy-trivial, so the smash products are twisted, i.e. nontrivial Thom
spaces instead. However, away from a single point, the Hopf map is a globally trivializable
bundle, which is why we still get a cell structure.





CHAPTER 2

Motivic Homotopy Theory

In this chapter, we motivate A1-homotopy theory (also known as motivic homotopy
theory) and the philosophy of motives and give the basic definitions (originally due to
Morel and Voevodsky). The focus lies on the concept of a cell structure, an analogue of
the structure of a CW complex in algebraic geometry.

2.1. Motivic Spaces

One can give two main motivations for the subject of motivic homotopy theory: Gro-
thendieck proposed the theory of motives, a universal cohomology theory with a very
strong connection to the theory of algebraic cycles, hence K-theory and several important
and hard questions in number theory and algebraic geometry. Just as ordinary singular
cohomology is representable in the classical homotopy category, one may expect the same
for this universal cohomology theory. As far as our current understanding of categories
and functors of motives has advanced, a similar representability holds in the algebraic
setting. The second reason, as given by Voevodsky, was to use more methods from
algebraic topology in the realm of algebraic varieties, without restricting attention to the
complex or real points and the analytic topology.

On a more technical level, the motivation for the specific construction of Morel and Vo-
evodsky [MV99] can be described as the wish for a homotopy purity theorem Theorem 2.3.8
and representability of algebraic K-theory by Z times the infinite Grassmannian [MV99,
Proposition 4.3.9] as well as representability of motivic cohomology and with it a way
towards the solution of the Bloch–Kato conjecture (e.g. [Voe03]).
Fact 2.1.1. At the heart of motivic homotopy theory lies a canonical construction that
one can define on any Grothendieck site with an interval object, in our case the site of
smooth schemes SmS over a base scheme S equipped with the Nisnevich topology and
the interval object A1. We presume the base scheme S to be separated and Noetherian of
finite Krull dimension. We define the Nisnevich topology on SmS to be generated by finite
families of étale maps Ui → X which admit for any x ∈ X a u ∈ Ui for some i such that
the induced morphism of residue fields at u and x is an isomorphism. The construction
proceeds by first enlarging the category SmS to its universal cocompletion, the category
of presheaves PShv(SmS), and taking simplicial objects in this category. Equivalently,
we take presheaves with values in simplicial sets, so-called simplicial presheaves. This
category is equipped with a class of weak equivalences , and a compatible model category
structure (i.e. a class of fibrations and cofibrations satisfying the axioms for a simplicial
monoidal model structure). The resulting (A1-local) model category of motivic spaces

13



14 2. MOTIVIC HOMOTOPY THEORY

Spc(S) can be constructed in several stages (changing only the weak equivalences and
the model structure, not the category itself):

• The global model structure is defined as injective functor model category, i.e.
cofibrations and weak equivalences are defined on sections of simplicial presheaves,
as in the Kan model structure on simplicial sets (where cofibrations are just
monomorphisms and weak equivalences are maps that induce isomorphisms on
the homotopy groups of a geometric realization). Fibrations in the global model
structure are defined by the right lifting property along acyclic cofibations (in
contrast to pointwise fibrations).
• The local model structure incorporates the structure of the site by a homotopy

localization (left Bousfield localization of the model structure) at hypercovers.
• The A1-local model structure incorporates the interval object A1 by a homotopy

localization (left Bousfield localization) at projection maps X × A1 → X.
The general approach was first described by Morel and Voevodsky [MV99], building
on work of Jardine. It is well described by Dugger [Dug01] and Dugger–Hollander–
Isaksen [DHI04].

The most important source of A1-weak equivalences are the projections from the total
space of an affine bundle to the base:
Definition 2.1.2. A locally trivial (with respect to some Grothendieck topology τ) fiber
bundle p : E � B with fibers p−1(b) isomorphic to An is called an affine bundle on B (in
the τ topology).
Lemma 2.1.3. Let p : E � B be an affine bundle of rank n in the Zariski topology with
B smooth. Then p is an A1-weak equivalence.

Proof. By definition of a bundle, B admits a Zariski cover U = {Ui ↪→◦ B}i∈I and there
are isomorphisms ϕi over Ui from Ui×An to p−1 ∗Ui. Choose (for convenience of stating
the proof) a well-order on I. For every word α = (i1, . . . , ik) of length k over I we let ϕα

be the restriction of ϕi to Uα := Ui1 ×B · · · ×B Uik for i = min(α). As the Čech nerve of
a cover is defined as Čk(U) =

∐
|α|=k Uα, we get an isomorphism between p∗Čk(U) and

Čk(U)× An over Čk(U), by disjoint union of the ϕα.
By definition of the A1-weak equivalences, the projections Čk(U)× An � Čk(U) are

A1-weak equivalences, and so is the morphism p∗Čk(U) � Čk(U). As any degree-wise
weak equivalence of simplicial objects is a weak equivalence, p∗Č•(U) � Č•(U) is an
A1-weak equivalence. By definition, p∗Č•(U) = Č•(p∗U), where p∗U := {p∗Ui ↪→◦ E}i∈I is
the induced Zariski cover of E. As the homotopy colimit of a Čech nerve is the space
covered [DHI04, Theorem 1.2], we get a commutative diagram in which we know that all
morphisms except possibly p are A1-weak equivalences:
hocolim(p∗Č•(U)) hocolim(Č•(U))

E B
p

From the diagram we see that p is also an A1-weak equivalence. �

Definition 2.1.4. A space X ∈ Spc(S) such that the structure map X → S is an
A1-equivalence is called A1-contractible.
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Corollary 2.1.5. Let p : E → B be an affine bundle with E an A1-contractible space
(e.g. An). Then B is A1-contractible.
Remark 2.1.6. Homotopy theory comes in unpointed and pointed versions. While the
definition of motivic spaces we mentioned earlier did not include basepoints, we will
always use basepoints in the following. In particular, by Spc(S) we intend to mean the
pointed version from now on. In pointed motivic spaces, there are the operations wedge
sum ∨ and smash product ∧ which distribute over each other.

One way to go from the unpointed setting to the pointed setting is to adjoin an
extra basepoint, which is written X 7→ X+ := X t {∗} and provides a left adjoint to
the forgetful functor from pointed to unpointed. If the space X in question was already
pointed, X+ = X ∨ S0.

The spaces appearing in this work will be mostly naturally pointed: any group is
pointed by its identity element, and so is any homogeneous space.
Remark 2.1.7. There are also stable versions of motivic homotopy theory, i.e. categories of
motivic spectra. We work with P1-spectra, which are constructed by homotopy localization
of the functor P1 ∧− on pointed spaces. Spaces are mapped to spectra by the construction
of a suspension spectrum, X 7→ Σ∞X. If a space is not already pointed, it is often written
X 7→ X+ 7→ Σ∞X+ = Σ∞

+X. For more details we refer to Jardine [Jar00].

The relation between classical homotopy theory and motivic homotopy theory over the
base scheme S = Spec(C) is given mostly by two functors (and versions thereof): the
interpretation of a simplicial set as constant simplicial presheaf

c : sSet→ Spc(S)

and the complex geometric realization functor [MV99, page 120],[DI04]

| · |C : Spc(C)→ sSet

which takes an algebraic variety to a simplicial approximation of its analytification. For
any simplicial set M we have |c(M)|C = M and geometric realization is a left Quillen
functor.

One can extend these functors to stable homotopy theory, i.e.

c : Spectra→ Spectra(S),

| · |C : Spectra(C)→ Spectra .

This can be used to relate the stable homotopy groups of the sphere spectrum to the
motivic stable homotopy groups of a motivic spectrum called the motivic sphere spectrum
(the unit for the monoidal structure on motivic spectra), as done by Levine [Lev14].
Definition 2.1.8. For p, q ∈ Z with p ≥ q, the motivic space

Sp,q :=
(
Gm,S

)∧q ∧ c (Sp−q
)
∈ Spc(S)

is called a motivic sphere. Here Sp−q :=
(
S1
)∧p−q ∈ sSet is a simplicial sphere, where

S1 := ∆1/∂∆1 (pointed by ∂∆1) and Gm,S := Gm×ZS is the multiplicative group scheme
over S (pointed by the unit), where Gm(R) = R× for any ring R.
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Example 2.1.9. There is an A1-homotopy equivalence

(P1, 0) −→∼ S2,1,

that is, an isomorphism in the homotopy category of Spc(S) [MV99, Example 3.2.18]. One
can see this directly by writing P1 = X ∪ Y with X = P1 \{0} and Y = P1 \{∞} −→∼ X,
so that X ×P1 Y = A1 \{0} ' S1,1 and X and Y are both A1-contractible (isomorphic to
0 in the homotopy category of Spc(S)). This shows that (P1, 0) is the suspension of S1,1.
Example 2.1.10. Affine space with removed origin is a motivic sphere [MV99, Example
3.2.20]:

An \ {0} ' S2n−1,n

For odd-dimensional split quadrics, there is a well-known elementary argument to see
that they are motivic spheres:
Lemma 2.1.11. Let AQ2n−1 := {(x, y) ∈ An×An |

∑n
i=1 xiyi = 1} (considered as

affine algebraic variety over Z), then π : AQ2n−1 � An \{0} given by (x, y) 7→ y is a rank
n− 1 affine bundle and over any base scheme S there is an isomorphism

AQ2n−1 −→∼ S2n−1,n .

Proof. We can cover An \{0} by the varieties Ui := {yi 6= 0}, over which π−1(Ui) =
{(x, y) ∈ An×An | yi 6= 0,

∑n
j=1 xjyj = 1} can be rewritten as

π−1(Ui) =

(x, y) ∈ An×An
∣∣∣ yi 6= 0, xi = y−1

i

1−
n∑

j=1, j 6=i

xjyj


so there are isomorphisms

π−1(Ui) −→∼ An−1×Ui, (x, y) 7→ ((x1, . . . , x̂i, . . . , xn), y).

For fixed y ∈ An \{0}, the equation for xi is linear in x with xi removed, which guarantees
that the inverse map is linear in the An−1-component.

Now apply Lemma 2.1.3 and Example 2.1.10. �

With a vastly more complicated proof, one can see that even-dimensional split quadrics
are also smooth models of motivic spheres [ADF16, Theorem 2.2.5].
Theorem 2.1.12 (Asok–Doran–Fasel, 2015). For any base scheme S, there is a pointed
weak equivalence of the 2n-dimensional smooth split affine quadric with a motivic sphere:

AQ2n −→∼ S2n,n .

Example 2.1.13. A space X which is A1-contractible need not be an affine space itself.
An ample supply of quasi-affine non-affine varieties which are A1-contractible is given by
Asok and Doran [AD07], [AD08]. Dubulouz and Fasel gave examples of smooth affine
threefolds over fields of characteristic 0 which happen to be A1-contractible but are not
isomorphic to affine spaces [DF15].

We now state an important technical ingredient for using vector bundles in motivic
homotopy theory:
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Lemma 2.1.14 (Wendt). Let R be a ring which is smooth over a Dedekind ring with
perfect residue fields (e.g. Z). For E and B two R-varieties and p : E → B a rank
n vector bundle projection, the underived pullback p∗ preserves homotopy colimits (for
A1-local weak equivalences). For a diagram D ∈ Spc(R)/B we can compute

hocolim p∗D ' p∗ hocolimD.

Proof. First, we can modify the proof of Wendt [Wen11, Theorem 4.6] in the case of
G = GLn to get rid of the assumption on the base being an infinite field: By [AHW16,
Theorem 5.1.3 and the proof of Theorem 5.2.3], under the stated assumptions on R, the
space B SingA

1

• GLn is A1-local, hence as in the original proof [Wen11, Theorem 4.6],
there is an A1-local fiber sequence GLn → E → B, with E the GLn-principal bundle
associated to E (the frame bundle). It is a general theorem of Rezk that maps which
induce simplicial fiber sequences are sharp [Rez98, Theorem 4.1., (1) ⇔ (3)]. In any
right proper model category, sharp maps are those whose (underived) pullback preserves
homotopy colimits [Rez98, Proposition 2.7]. �

This proof was suggested by Wendt.

2.2. Motives

We quickly explain a definition of mixed motives we will use and point out some references
to the literature. This section serves only motivational purpose and may be skipped on
first reading.

The conjectural picture of a category of motives over a field k is a Tannakian category
MM whose extension groups are isomorphic to higher Chow groups, also called motivic
cohomology. There is a candidate for such a Tannakian categoryMMNori due to sketches
of Nori, for which the extensions are not known yet. There is a candidate for the derived
category D(MM) due to Voevodsky, called DMgm(k), which has a very close relation to
motivic homotopy theory. Déglise and Cisinski developed the theory of derived motives
over a general base scheme S [CD15].

We will not use motives for the main result of this article, but intend to give a
supporting argument (over a perfect field k) why the main construction is slightly more
complicated than one might first expect. For this purpose, we use the category of geometric
motives, localization triangles and the functor which assigns every compact object in
motivic spaces its motive. There are various constructions one might use to get such a
functor and category, and the reader may choose one she is familiar with (see the work of
Déglise [Dég12] for a detailed review on functoriality of localization triangles).
Fact 2.2.1. For k a perfect field, there is a tensor triangulated category of derived mixed
motives DMgm(k) and a tensor triangulated functor M : Spectra(k)cpct → DMgm(k) (for
the smash product on P1-spectra as monoidal product). The suspension spectrum of a
smooth scheme is a compact object in motivic spectra and we write M(X) :=M(Σ∞

+X)

and M̃(Y, y0) :=M(Σ∞(Y, y0)) for a space X and a pointed space (Y, y0). Motivic spheres
are also compact objects in motivic spaces and spectra. There are localization exact
triangles (also known as Gysin triangles), i.e. for each codimension n closed immersion
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Z ↪→p X of smooth schemes with open complement U ↪→◦ X, there exists a distinguished
triangle

· · · →M(U)→M(X)→M(Z)(n)[2n]→ [1] · · ·

Example 2.2.2. The simplicial suspension on spectra is usually denoted by X[n] :=
ΣnX := Sn,0 ∧X and the reduced motive of the spectrum S0,1 = Σ−1Σ∞(Gm, 1) is written
as 1(1) := M̃(S0,1), called a Tate twist. The unreduced motive is

M(S0,1) = M̃(S0,1+ ) = M̃(S0,1 ∨S0,0) = M̃(S0,1)⊕ M̃(S0,0) = 1(1)⊕ 1

Consequently for motivic spheres

M̃(Sp,q) = 1(q)[p]

and more generally

M̃(Sp,q ∧X) = M̃(X)(q)[p].

Definition 2.2.3. A motive M ∈ DMgm(S) which is in the triangulated subcategory
generated by tensor powers of 1(1) is called a mixed Tate motive.

2.2.1. A Localization Triangle from Diagram Folding.

Fact 2.2.4. Given a 2-orbit completion, that is a reductive group G, an affine homoge-
neous G-space G/H, a proper homogeneous G-space G/P , a proper G-space X and an
equivariant embedding G/H ↪→◦ X with closed complement G/P , the space X is itself a
homogeneous space under a different group G′, so that X = G′/P ′.

This can be seen from the classification of Ahiezer [Ahi83] in a case-by-case analysis.
It is remarkable that this fact is not yet proved without using the classification, so there
is no obvious intrinsic reason for this to happen in the 2-orbit case.
Observation 2.2.5. In several cases, one can understand the relation between the reductive
groups G′ and G in Fact 2.2.4 as Dynkin diagram folding, where the group G′ and the
parabolic P ′ give rise to G and P by taking invariants under an outer automorphism that
is induced by an automorphism of the Dynkin diagram. These cases are the diagram
foldings A2n−1  Cn, E6  F4, Dn  Bn−1, D4  G2. In other cases, the relation is a
Dynkin diagram inclusion, such as Bn ↪→ Dn. Roughly the same observation was made
independently by Landsberg and Manivel [LM01, Section 4.2].
Remark 2.2.6. From the Hasse diagrams described by Semenov [Sem06] one can read off
the decomposition of a motive M(G/P ) directly from the combinatorics of the Dynkin
diagram. If G/P ↪→p G′/P ′ is given by a diagram folding or diagram inclusion, one can
compute the map of the corresponding Hasse diagrams and therefore on the motives.
That means, one can compute the morphism

M(G′/P ′)→M(G/P )(1)[2]

that appears in the localization triangle of G/P ↪→p G′/P ′. From this data, one can compute
the third vertex of the triangle, that is M(G/H).



2.2. MOTIVES 19

Conjecture 1. Some expected results following from Observation 2.2.5 are

M(Bn+1/Dn) = 1⊕ 1(n)[2n]

M(Dn/Bn) = 1⊕ 1(n)[2n− 1]

M(An+1/A1 ×An) = 1⊕ 1(1)[2]⊕ 1(2)[4]⊕ · · · ⊕ 1(n)[2n]

M(Cn+1/C1 × Cn) = 1⊕ 1(2)[4]⊕ 1(4)[8]⊕ · · · ⊕ 1(2n)[4n]

M(F4 /B4) = 1⊕ 1(4)[8]⊕ 1(8)[16].

These computations give restrictions on possible motivic cell structures on these spaces,
as we discuss in Remark 2.3.11. Furthermore, given a motivic cell structure, one can
deduce that the attaching maps become trivial in the category of mixed motives, as these
computations show that the motives split.
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2.3. Motivic Cell Structures

We introduce the concept of motivic cell structures, which is the A1-homotopy analogue
of CW complexes, originally due to Dugger and Isaksen. We explain the main tool to
obtain unstable motivic cell structures, Morel–Voevodsky’s homotopy purity theorem,
and how we intend to use it.

2.3.1. Cell Structures.
We recall the definition of motivic cell structures.
Definition 2.3.1. LetM be a pointed model category and A ⊂ ObM a set of objects.
The class of A-cellular objects in M is defined as the smallest class of objects containing
A that is closed under weak equivalence and contains all homotopy colimits over diagrams
whose objects are all A-cellular.

This was defined by Dugger and Isaksen [DI05, Definition 2.1].
Definition 2.3.2. For the pointed model category of pointed motivic spaces Spc(S) let
A := {Sp,q | p, q ∈ N, p ≥ q} be the set of motivic spheres. The A-cellular objects in
Spc(S) are called motivically cellular. For motivic spectra with As := {Sp,q | p, q ∈ Z},
we call As-cellular objects stably motivically cellular. A motivic space X ∈ Spc(S) with
Σ∞
+X stably motivically cellular is also called stably motivically cellular.

Example 2.3.3. Projective space Pn carries a motivic cell structure, as there exists a
homotopy cofiber sequence (compare [DI05, Proposition 2.13])

An \ {0} → Pn−1 → Pn

and An \ {0} is a motivic sphere S2n−1,n (up to A1-homotopy equivalence [DI05, Example
2.11] for a proof of this claim first made by Morel and Voevodsky [MV99, Example 3.2.20]).
This homotopy cofiber sequence yields a distinguished triangle in the derived category of
motives

M(Pn−1)→M(Pn)→ 1(n)[2n]→
and one can show that the attaching map An \ {0} → Pn−1 is 0 the level of motives,hence
there is a decomposition

M(Pn) =
n⊕

i=0

1(i)[2i].

However, even on the level of spectra, in the stable motivic homotopy category, the
attaching map is non-trivial and

∨n
i=0 S

2i,i is a different motivic space with the same
motivic decomposition as Pn.
Remark 2.3.4. If a motivic space X admits a stable motivic cell structure, its motive
is of mixed Tate type. This follows directly from the fact that motivic spheres are of
mixed Tate type and the homotopy colimits defining the cell structure can be written as
homotopy coequalizer and homotopy coproduct, which translates directly to distinguished
triangles of mixed motives.

Since “few” varieties have a motive of mixed Tate type (e.g. positive-dimensional
Abelian varieties are not of that type), only few varieties can admit a motivic cell structure.
This is in strong contrast to the topological situation, where every space admits a weakly
equivalent cellular approximation.
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Definition 2.3.5. Let X be a motivically cellular space, f : Sp−1,q → X a morphism.
We say that Y := hocofib(f) has a (p, q)-cell with attaching map f .
Remark 2.3.6. Given a motivic space X with mixed Tate motive, a description of the
motive already puts strong restrictions on possible finite cell structures: suppose M(X) =
1⊕ 1(1)[2]⊕ 1(2)[4], then there can be no (nontrivial) S3,2-cell, as M(X) would then have
to be an extension of some motive with 1(2)[3].

2.3.2. Homotopy Purity.
The following is the direct analogue of the Pontryagin–Thom construction in algebraic
geometry.
Definition 2.3.7. Given a morphism f : X → Y of motivic spaces, we define the homo-
topy cofiber as the homotopy colimit of the solid-lines diagram:

X

∗

Y

hocofib(f)

f

Theorem 2.3.8 (Morel and Voevodsky [MV99, Theorem 3.2.23]). For a closed immersion
ι : Z ↪→ X with open complement U ↪→ X, there is a natural homotopy cofiber sequence
of pointed motivic spaces

U → X → Th(Nι)

where Th(Nι) denotes the Thom space of the normal bundle Nι of ι, which is defined
using the zero section Z ↪→ Nι as Th(Nι) := Nι/(Nι \ Z) := hocofib(Nι \ Z ↪→ Nι).
Example 2.3.9. We explain how useful such a statement is with a topological analogue:
Suppose ι : N ↪→ M is a closed immersion of an n-dimensional manifold into an m-
dimensional manifold, and both N and M \ N are cellular (CW complexes). Then
M \N →M → Th(Nι) is a homotopy cofiber sequence. As Thom spaces over cellular
spaces (in particular suspensions) are again cellular (in classical topology), the following
is a homotopy cofiber sequence

Th(Nι)→ Σ(M \N)→ ΣM

which expresses ΣM as homotopy cofiber of cellular spaces. This shows that ΣM is
cellular, and that M is stably cellular.

If M \N is contractible, then M is weakly equivalent to Th(Nι).
Remark 2.3.10. It is not necessarily true that a Thom space over a motivically cellular
base is again motivically cellular (it is not known to the author whether counterexamples
exist or whether we simply lack a proof). For this reason, and also to be able to describe a
cell structure explicitly, it is highly desirable to trivialize normal bundles (locally). Thom
spaces over trivial bundles are just suspensions ([MV99, Proposition 3.2.17]):

Th(An ×B → B) = B+ ∧ S2n,n .
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Remark 2.3.11. From Fact 2.2.1 on the functor which associates to a motivic space its
motive, we can use the previous remark to see that any codimension c closed immersion
B ↪→ Y with trivial normal bundle N � B and contractible complement Y \B results in

M(Y ) =M (Th (N � B)) =M
((
B ∧ S2c,c

)
∨ S2c,c

)
=M(B)(c)[2c]⊕ 1(c)[2c].

This insight, together with the computations in Remark 2.2.6, gives a guideline on why
Section 4.2.1 is necessary.

An important tool to trivialize a bundle is the Quillen–Suslin theorem
Theorem 2.3.12 (Quillen–Suslin). Let R be a smooth finite type algebra over a Dedekind
ring. Then all algebraic vector bundles on An

R are extended from Spec(R).
This is beautifully explained in Lam’s book [Lam06, Theorem III.1.8].
It has been used to obtain a generalization, which one may see as a corollary to the

vector bundle classification of Asok–Hoyois–Wendt:
Lemma 2.3.13. There are no non-trivial vector bundles on a smooth affine finite type
A1-contractible variety X over a Dedekind ring.

Proof. Let f : Spec(k) −→∼ X be the isomorphism in the homotopy category of motivic
spaces Ho Spc(k) given by contractibility. From [AHW16, Theorem 5.2.3], we know

{rank r vector bundles on X}/' −→∼ [X,Grr]A1 −→∼
f∗

[∗, Grr]A1 = 1. �

This fails already for smooth non-affine quasi-affine varieties that are A1-contractible,
where one can give infinitely many counterexamples [ADF16, Corollary 4.3.9].
Corollary 2.3.14. If V ↪→M is a codimension c closed immersion of smooth varieties
over a smooth finite type Z-algebra R, and the complement M \ V is an A1-contractible
smooth affine R-variety, and V is the total space of a vector bundle V �M ′ with M ′ an
A1-contractible R-variety, M is a motivic sphere S2c,c.

Proof. Assume that M ′ is smooth affine as well. Using Lemma 2.3.13, the vector bundle
V � M ′ is trivial, so the total space V is also smooth affine A1-contractible. Using
Lemma 2.3.13 again, the normal bundle Nι � V is trivial. The Thom space of a trivial
bundle of rank r over a base B is A1-homotopy equivalent to (P1)

∧r ∧B+. We conclude
by using Theorem 2.3.8, which hands us a homotopy cofiber sequence

M \ V →M → Th(Nι).

Contractibility of M \ V implies that M → Th(Nι) is a weak equivalence, so M '
(P1)

∧c ∧ S0 ' S2c,c.
Now if M ′ is not smooth affine, Nι � V may be non-trivial. Since V �M ′ is still a

weak equivalence, V is still A1-contractible, hence Th(Nι) ' (P1)
∧c ∧ S0, as Thom spaces

are invariant under A1-equivalence. �

Fact 2.3.15. Every spherical variety, that is a variety with an action of a reductive
group G such that a Borel B ⊂ G has an open orbit, admits stable motivic cell structures.
This follows from the fact that spherical varieties are linear varieties as follows: A linear
variety in the sense of Totaro [Tot14, page 8, section 3] is a variety that admits a filtration
F i such that the strata F i \ F i−1 are finite disjoint unions of products of affine spaces
with split tori An ×Gm

l. Joshua gives a slightly more general definition by a 2-out-of-3
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property, namely that for every closed immersion Z ↪→p X with open complement U ↪→◦ X,
if Z and either X or U are (n − 1)-linear, then Z,U,X are n-linear. Furthermore, the
empty set and every affine space are 0-linear and a variety is linear if it is n-linear for
some n. The existence of a stable motivic cell structure now follows by an easy 2-out-of-3
argument, using homotopy purity and the Quillen–Suslin theorem as well as Lam’s
extension of Quillen–Suslin to tori (compare Gubeladze’s more general theorem [Lam06,
VIII.4, Theorem 4.1]). Carlsson and Joshua give a slightly more general statement in
an equivariant setting [CJ11, Proposition 4.7]. Spherical varieties are linear by the fact
that they consist of only finitely many B-orbits and a result of Rosenlicht that describes
the B-orbits (compare [Tot14, page 8, Addendum]), as was observed by Totaro around
1996, published much later [Tot14, Introduction]. Special cases of spherical varieties are
spherical homogeneous spaces such as affine quadrics, flag varieties G/P and the spaces
DPn that are discussed in this article. We also discuss how wonderful completions yield
cell structures in Section 2.3.3.
Definition 2.3.16. For a variety N , a Zariski covering U = (Ui ↪→◦ N)i∈I (with N =⋃

i∈I Ui) is called totally cellular if the Čech nerve Č•(U) is a simplicial object in cellular
varieties. It is called totally contractible if the Uα =

⋂
j∈J Uj for each J ⊂ I are A1-

contractible. It is called totally affinely contractible if there are affine bundles Ũα → Uα

with affine total spaces Ũα
∼= Amα , compatible with the simplicial structure on Č•(U)

(assembling to an affine bundle Č•(Ũ)→ Č•(U)).
The definition of total cellularity was made in the stable context by Dugger and

Isaksen [DI05, Definition 3.7], see also [DI05, Lemma 3.8].
Remark 2.3.17. While smash products of unstably cellular spaces are again unstably
cellular, Dugger and Isaksen already noticed [DI05, Example 3.5] that it is in general hard
to show whether a cartesian product of cellular spaces is unstably cellular. Since it is easy
to show that cartesian products of stably cellular spaces are stably cellular, they only
prove that Thom spaces of bundles over a totally cellular base are stably cellular [DI05,
Corollary 3.10]. As we’re interested in unstable cell structures on spaces which are iterated
Thom spaces, we need a stronger statement in the sequel. While the proof is very similar
to the one of Dugger and Isaksen, we chose a different exposition.
Lemma 2.3.18. Let p : E � B be a vector bundle and B′ → B an A1-weak equivalence.
Then there exists a weak equivalence of Thom spaces

Th(p) −→∼ Th(p′).

Proof. Since vector bundle projections are sharp (Lemma 2.1.14), the morphism E×BB
′ →

E is a weak equivalence. Let s be the zero section of p and s′ the zero section of the
base change p′ : E ×B B′ → B′. By construction of s′, we get a weak equivalence of
E ×B B

′ \ s′(B′) with E \ s(B). We proved that the diagrams whose homotopy colimits
are Th(p) respectively Th(p′) are weakly equivalent. �

Corollary 2.3.19. Let p : E � B be a rank n vector bundle and B′ → B an affine bundle
with B′ ∼= Am (as varieties). Then Th(p) −→∼ B+ ∧ S2n,n ' S2n,n.

Proof. We use Lemma 2.1.3 to apply Lemma 2.3.18 and then Remark 2.3.10. �
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Theorem 2.3.20. Let p : E → B be an algebraic vector bundle of rank r and U =
(Ui ↪→◦ B)i∈I a totally affinely contractible Zariski cover of B, all defined over a ring R
which is smooth and finite type over a Dedekind ring (e.g. Z). Then Th(p) is unstably
cellular.

Proof. We use the morphism l : Č•(U)→ B which induces a weak equivalence on homotopy
colimits, i.e. hocolim

(
Č•(U)

)
' B. The bundle q : E \B → B obtained as sub-bundle of

p is a fiber bundle with fiber Ar \ {0}. The following diagram commutes:

E \B E Th(p)
i

q∗Č•(U) p∗Č•(U) hocofib(l∗i)
l∗i

q∗l p∗l

The rows are homotopy cofiber sequences. The middle column is a weak equivalence
by Lemma 2.1.14. The left column is also a weak equivalence, as it is the restriction of
the middle column and the model structure is proper. (alternatively one could argue
that spherical bundle projections are as sharp as vector bundle projections). We inspect
the first row more closely. While the bundle E might not trivialize over Ui, its pullback
to an affine space Ũi (given by the property of Ui being totally affinely contractible) is
trivial, by Theorem 2.3.12. The same holds for each Uα with obvious definition of Ũα.
By Lemma 2.3.18 the Thom space of E|Ui is weakly equivalent to the Thom space of the
pulled back bundles E|Ũi

. Now we can form a diagram, commutative up to homotopy

q∗Uα p∗Uα hocofib(i|Uα)
i|Uα

An \ {0} × Ũα An × Ũα Σs (An \ {0})

l∗i p∗l

whose rows are homotopy cofiber sequences and the leftmost two columns are weak
equivalences. Consequently, the last column is a weak equivalence. This exhibits both
E \B and Th(p) as homotopy colimit over cellular spaces.

We can view E\B → B obtained by composing E\B → E with the bundle projection
p : E → B as an explicit gluing map, as its homotopy colimit is again Th(p). �

Corollary 2.3.21. Given a sequence Mi of smooth varieties over a ring R which is
smooth and finite type over a Dedekind ring (e.g. Z)

Mn ⊃Mn−1 ⊃ · · · ⊃M0 = ∗ ⊃M−1 = ∅

such that each Mi admits totally affinely contractible covers and rank ri vector bundles
Vi �Mi−1 together with a closed immersion of the total space Vi ↪→p Mi of codimension ci,
and each complement Xi :=Mi \ Vi is A1-contractible, there exists an unstable motivic
cell structure on each Mi.
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Proof. We use induction on i, with the base case M0 being trivially cellular. Let Ni � Vi
be the normal bundle of the closed immersion Vi ↪→p Mi. As the complement Xi is A1-
contractible, by Theorem 2.3.8, applied as in the proof of Corollary 2.3.14, we get a
weak equivalence Mi → Th(Ni). From our assumptions, Th(Ni) carries an unstable cell
structure. �

Remark 2.3.22. If the ranks ri in Corollary 2.3.21 are all 0, this resembles Wendt’s unstable
cell structure on generalized flag varieties using the Bruhat cells [Wen10, Proposition 3.7].

2.3.3. Cell Structures After a Single Suspension.
We now discuss how to obtain cell structures for spherical varieties which admit wonderful
completions. For the spaces DPn discussed in more detail in other chapters, we get an
unstable cell structure after a single suspension.

Let G be a split reductive group. We will use the theory of spherical varieties, as
detailed in the comprehensive book by Timashev [Tim11]. A spherical variety is a normal
algebraic variety with an algebraic G-action such that a Borel B ⊂ G acts with a dense
orbit. As a consequence it has only finitely many B-orbits.
Remark 2.3.23. Let X be a homogeneous spherical G-variety which admits a wonderful
equivariant completion X with boundary Z, i.e. X is smooth,

G/H = X ↪→◦ X←↩p Z,

the boundary Z has r irreducible components, where r is the rank of X, and there is
a unique closed orbit in Z, which is the intersection of all irreducible components of Z.
Furthermore, all open orbits of Z are of lower dimension than X [Tim11, Chapter 5,
Definition 30.1].

As X is a complete G-variety, we can apply the algebraic Morse theory of Białynicky-
Birula [BB73], as Wendt proved [Wen10, Corollary 3.5], to obtain a stable motivic cell
structure on X. The same applies to Z, so by a 2-out-of-3-argument, as in Fact 2.3.15,
the variety X is stably motivically cellular.
Remark 2.3.24. As already mentioned in Fact 2.2.4, the rank 1 (two-orbit) wonderful
completions are classified and have a particularly rich structure:

G/H = X ↪→◦ X = G′/P ′←↩p Z = G/P.

We apply Wendt’s unstable motivic cell structure [Wen10, Theorem 3.6] arising from
the Bruhat decomposition of a flag variety to each G′/P ′ and G/P . Homotopy purity
(Theorem 2.3.8) hands us a homotopy cofiber sequence

X → X → Th
(
NZ↪→X

)
that we extend to the right by the next term → ΣX. As one can locally trivialize the
normal bundle NZ over the Bruhat cells, which are affine spaces, by the Quillen–Suslin
theorem, Theorem 2.3.12, the Thom space is motivically cellular. By the arguments of
Theorem 2.3.20 the Thom space is even unstably cellular. Putting everything together,
the homotopy cofiber sequence

X → Th
(
NZ↪→X

)
→ ΣX

endows ΣX with an unstable motivic cell structure.
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Example 2.3.25. For split quaternionic projective space HPn, the completion is a
Grassmannian Gr(2, 2n+2), with complement the symplectic Grassmannian SpGr(2, 2n+
2) classifying symplectic planes in a 2n+ 2-dimensional vector space with the standard
symplectic form (compare Section 4.4). Proceeding as in Remark 2.3.24, we get an
unstable motivic cell structure

Gr(2, 2n+ 2)→ Th
(
NSpGr(2,2n+2)↪→Gr(2,2n+2)

)
→ ΣHPn .

Example 2.3.26. For the split octonionic projective plane OP2, the completion is the
complex Cayley plane E6 /P1, with complement an F4 /P1. Proceeding as in Remark 2.3.24,
we get an unstable motivic cell structure

E6 /P1 → Th
(
NF4 /P1

)
→ ΣOP2 .

Remark 2.3.27. It would be desirable to have more explicit knowledge on the cells of
ΣOP2, as one could use that for first applications in obstruction theory of F4-bundles.
Remark 2.3.28. In Remark 2.3.24, we may use as torus of G one induced from G′ under the
diagram relation explained in Observation 2.2.5. This tells us that the map G/P ↪→ G′/P ′

is compatible with the resulting cellular filtrations from these tori. This means that
we have Gm-operations on G/P and G′/P ′ such that the map is equivariant and maps
fixed points to fixed points. Consequently, the corresponding Białynicki-Birula filtrations
Xn and X ′

n are mapped to each other. These stratifications yield unstable motivic cell
structures by [Wen10, Proposition 3.7]. We can define a stratification of the complement
of G/P ↪→ G′/P ′ by taking the complements in each filtration step, but the strata are not
necessarily affine spaces. The strata are complements of affine spaces in affine spaces, and
it is not clear whether the map from one to the other is linear. If the Abhyankar–Sathaye
conjecture holds (see Kraft’s Bourbaki talk [Kra96] for an overview), or if one can show
the linearity by a concrete computation, one can indeed extract an unstable cell structure
on the complement of G/P ↪→ G′/P ′ by this strategy.

It becomes more complicated in the higher rank cases, where one does not have
an unstable cell structure for the completion, and also the complement-strata are just
complements of hyperplane arrangements, not necessarily linear ones.

It seems therefore unlikely to obtain explicit unstable motivic cell structures by these
methods, which was the original goal of the thesis.
Remark 2.3.29. The bulk of this work may be read as improving upon the two examples
just given by “removing the suspension”.



CHAPTER 3

Split Forms of Division Algebras

The classical projective spaces over real, complex, quaternion and octonion numbers are
smooth manifolds, defined in terms of real division algebras R, C, H, O. Given that these
composition algebras with anisotropic norm forms arise from R by the Cayley–Dickson
doubling process, their natural analogues in algebraic geometry are projective spaces over
composition algebras with split norm forms, obtained by the Cayley–Dickson process
from a ring R. The split complex numbers CR, the split quaternion numbers HR and the
split octonion numbers OR are the only such composition algebras. In this chapter we
review this theory and make some preliminary computations involving Lagrangians for
the Norm forms to be used in the following chapter.

3.1. Composition Algebras and the Cayley–Dickson Construction

We give a pragmatic definition of composition algebras and recall the Cayley–Dickson
process, to put our discussion in context and to fix the notation. We introduce Conven-
tion 3.1.12 which is heavily used in Chapter 4.
Definition 3.1.1. A composition algebra C over a unital ring R is a unital R-algebra C,
free as an R-module, together with a non-singular quadratic form N : C → R called norm
that satisfies the composition law N(xy) = N(x)N(y) and an involution x 7→ x∗ such
that x∗x = N(x) · 1C and x+ x∗ ∈ R · 1C . Here, N non-singular means ∀a : N(a+ x) =
N(x) =⇒ x = 0.
Example 3.1.2. A field can be seen as composition algebra over itself, with norm form
x 7→ x2 and the identity as involution.

Petersson generalized this definition from rings to ringed spaces [Pet93].
Lemma 3.1.3. For any composition algebra C over a ring R, and any elements x, y, z ∈ C,
with 〈x, y〉 := x∗y + y∗x, we have the following rules for computations:

(1) N(x) = N(−x).
(2) 〈x, 1〉 = x+ x∗.
(3) x2 − 〈x, 1〉x+N(x) = 0. (minimum equation)
(4) N(x∗) = N(x).
(5) N(xy) = N(yx).
(6) 〈x, y〉 = 〈y, x〉.
(7) 〈x, y〉∗ = 〈x, y〉.
(8) xy + yx− 〈x, 1〉y − 〈y, 1〉x+ 〈x, y〉 = 0.
(9) N(x+ y) = N(x) +N(y) + 〈x, y〉

27
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(10) 〈x∗, y∗〉 = 〈x, y〉.
(11) 〈xy, z〉 = 〈y, x∗z〉.
(12) 〈xy, z〉 = 〈x, zy∗〉.
(13) 〈xy, z〉 = 〈yz∗, x∗〉.
(14) 〈xy, xz〉 = N(x)〈y, z〉.
(15) (∀z ∈ C : 〈x, z〉 = 0 ∧N(x) = 0)⇔ x = 0.
(16) x(x∗y) = (xx∗)y.

For a, b, c, d ∈ C, we also have 〈ac, db∗〉 = 〈d, acb〉 as well as 〈ac, d∗b〉 = 〈da, bc∗〉.

Proof.
(1) N(x) = x∗x = (−x∗)(−x) = N(−x).
(2) 〈x, 1〉 = x∗1 + 1∗x = x∗ + x.
(3) x2 − (x∗ + x)x+ x∗x = 0.
(4) N(x∗) = xx∗ = (x+ x∗)x∗ − (x∗)2 = N(x)∗ = N(x).
(5) N(xy) = N(x)N(y) = N(y)N(x) = N(yx).
(6) x∗y + y∗x = y∗x+ x∗y.
(7) (x∗y + y∗x)∗ = x∗y + y∗x.
(8) xy + yx− (x+ x∗)y − (y + y∗)x+ x∗y + y∗x = 0.
(9) N(x+ y) = (x+ y)∗(x+ y) = x∗x+ x∗y + y∗x+ y∗y.

(10) Apply the involution ∗ to the previous equation.
(11) (xy)∗z + z∗xy = y∗x∗z + (x∗z)∗y.
(12) 〈x, zy∗〉 = 〈x∗, yz∗〉 = 〈y∗x∗, z∗〉 = 〈xy, z〉.
(13) 〈yz∗, x∗〉 = 〈zy∗, x〉 = 〈y∗, z∗x〉 = 〈y∗x∗, z∗〉 = 〈xy, z〉.
(14) N(xy + xz) = N(x)N(y + z) = N(x) (N(y) +N(z) + 〈y, z〉)

= N(xy) +N(xz) +N(x)〈y, z〉.
(15) N(x+ z)− (N(x) +N(z)) = 〈x, z〉, so we can use non-degeneracy of N .
(16) 〈x(x∗y), z〉 = 〈x∗y, x∗z〉 = N(x)〈y, z〉 = 〈N(x)y, z〉.

For the last statement, compute

〈ac, d∗b〉 = 〈a, d∗bc∗〉 = 〈da, bc∗〉. �

We will use these computations without mention.
Lemma 3.1.4. For any composition algebra C over a ring R, any x ∈ C is invertible if
and only if N(x) ∈ R×. In that case, it has the two-sided inverse N(x)−1x∗

Proof. This is a computation:

xN(x)−1x∗ = N(x)−1(xx∗) = N(x)−1N(x) = 1

N(x)−1x∗x = N(x)−1N(x) = 1.

From the composition property, if y is a right-inverse, 1 = N(1) = N(xy) = N(x)N(y),
so N(y) = N(x)−1. �

Definition 3.1.5. Given an associative composition algebra C over a ring R, and a unit
γ ∈ R×, we define on the R-module D := C ⊕ C a ring structure by

(a, b)(a′, b′) := (aa′ + γb′b∗, a∗b′ + a′b)
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so that the identity is (1, 0), and we define a quadratic form N : D → R by

N(a, b) := N(a)− γN(b)

and an involution by
(a, b)∗ := (a∗,−b).

The resulting composition algebra D is called the Cayley–Dickson algebra over C with
parameter γ.

The properties N(a, b) = (a, b)∗(a, b) and the composition property for N are straight-
forward computations:

(a, b)∗(a, b) = (a∗,−b)(a, b) = (a∗a− γbb∗, ab− ab) = (N(a)− γN(b), 0)

N
(
(a, b)(a′, b′)

)
=N

(
(aa′ + γb′b∗, a∗b′ + a′b)

)
=N(aa′ + γb′b∗)− γN(a∗b′ + a′b)

=N(aa′) + γ2N(bb′)− γN(ab′)− γN(a′b)

+ γ(aa′)
∗
(b′b∗) + γ(b′b∗)

∗
(aa′)− γ(a∗b′)∗(a′b)− γ(a′b)∗(a∗b′)

=N(a, b) N(a′, b′)

+ γ
((
(aa′)

∗
(b′b∗) + (b′b∗)

∗
(aa′)

∗)− (
b′
∗
(aa′)b+ b∗(aa′)

∗
b′
))

=N(a, b) N(a′, b′)

+ γ
(
〈aa′, b′b∗〉 − 〈b′, aa′b〉

)
=N(a, b) N(a′, b′)

The formula for multiplication that we use is taken from the book of involutions [KMRT98,
33.C, p.452]. Springer and Veldkamp [SV00, Prop. 1.5.3, p.13], use a slightly different
formula. The same computations with 〈 , 〉 from Lemma 3.1.3 prove the formula of
Springer and Veldkamp correct and they define isomorphic composition algebras. We
included a proof here because both books make the claim of the composition property of
the norm only for R a field and they both do not give a proof.
Example 3.1.6. With parameter γ = −1, this construction gives for C = R the complex
numbers D = C as Cayley–Dickson algebra, and for C = C it constructs the quaternions
H, out of which the octonions O result. As is well known, these are the only division
algebras over R (that follows from the solution of the Hopf invariant one problem [Ada60]).

Because of a condition on the characteristic, we will not use the following:
Lemma 3.1.7. For D = C⊕C a Cayley-Dickson construction over a composition algebra
C, over a ring R in which 2 is invertible, the set of ∗-invariant elements in D can be
identified with those of C:

{x ∈ D | x∗ = x} → {y ∈ C | y∗ = y}

where the map is projection to the first C-component, with the inclusion as inverse.

Proof. We can write x = (a, b) with a, b ∈ C. By definition, x∗ = (a∗,−b), so x∗ = x
implies a = a∗ and 2b = 0. �



30 3. SPLIT FORMS OF DIVISION ALGEBRAS

We will from now on use the symbol C only for one particular composition algebra
(defined below), and denote by DR any composition algebra that arises by the Cayley–
Dickson construction with parameter γ = 1, i.e. a Cayley–Dickson construction with split
norm form. This means we will study exclusively DR = CR, HR, OR. Note that on R,
N(x) = x2 is not a split form.
Definition 3.1.8. Let CR := R⊕R with component-wise multiplication

(x1, x2)(y1, y2) := (x1y1, x2y2),

transposition involution (x1, x2)
∗ := (x2, x1) and norm form N(x1, x2) := x1x2. We call

CR the split complex numbers over R.
Definition 3.1.9. Let HR := Mat2×2(R) with matrix-multiplication, involution given by
the adjugate (

a b
c d

)∗
:=

(
d −b
−c a

)
and norm form the determinant N := det. We call HR the split quaternions over R.
Definition 3.1.10. Let OR := HR⊕HR be the Cayley–Dickson construction over HR

with parameter γ := 1, with norm form N(h1, h2) = N(h1) − N(h2). We call OR the
split octonions.

The split complex numbers CR are isomorphic to the Cayley–Dickson construction
over R with parameter γ = 1 by the map (x, y) 7→ (x+ y, x− y).

The split quaternions HR are isomorphic to the Cayley–Dickson construction over CR

with parameter γ = 1 by the map ((a, d), (b, c)) 7→
(
a b
−c d

)
.

It is well known that CR is commutative, while HR and OR are not, CR and HR

are associative, while OR is not. The only quality of OR which is worth mentioning at
this point is that it is alternative, which implies that every sub-algebra generated by 2
elements is associative.

A convenient way to write down octonionic computations are Zorn vector matrices,

where OR 3 x =

(
α a
b β

)
with α, β ∈ R and a, b ∈ R3, multiplication given by the usual

rule of matrix multiplication, where one employs the euclidean scalar product in R3 when
appropriate: (

α a
b β

)(
α′ a′

b′ β′

)
=

(
αα′ + a · b′ αa′ + β′a
α′b+ βb′ b · a′ + ββ′

)
with norm being the generalized determinant αβ − a · b.

For concrete computations, one can always use Zorn vector matrices, which reduces to
ordinary matrices for the quaternions embedded in the octonions, and it further reduces
to pairs with component-wise multiplication for the complex numbers embedded in the
quaternions (as diagonal matrices).
Definition 3.1.11. An n-fold Cayley–Dickson construction DR over a ring R consists of
R2n with extra structure (product, involution, norm), so we call d := 2n the dimension
of DR (observing that d ∈ {2, 4, 8}) and e := d/2 − 1 the excess dimension. We note
e(CR) = 0, e(HR) = 1 and e(OR) = 3.
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Convention 3.1.12. Using Zorn vector matrix notation, for x ∈ DR with

x =

(
x11 x21

−x22 x12

)
the entries x21 and x22 are elements of Re (for D = C, we have e = 0 and x21 = 0 = x22).
The sign at the entry x22 is a convention we will use throughout, so we will have

N(x) = x11x12 + x21 · x22.
Lemma 3.1.13. Octonions with entries on the diagonal associate with all other entries,
i.e. for any α, β ∈ R, for

χ :=

(
α 0
0 β

)
∈ OR

we have ∀x, y ∈ OR:

(xy)χ = x (yχ) .(1)
(xχ) y = x (χy) .(2)

(xχ) (yχ)∗ = (xy)N(χ).(3)
(4)

Proof. Right-multiplication with the diagonal matrix multiplies the first column by α and
the second column by β. Left-multiplication with an element x operates on y column-wise.
This (or a direct computation) shows the first equation. The second equation is also
just a computation. The third equation follows from the second (or by another direct
computation). �

3.2. Computations with a Lagrangian

In this section, we make some computations that will be used in the following chapter.
We remind the reader that we denote by DR any of the three split composition

algebras CR, HR, OR.
Definition 3.2.1. Define halfR : R2n → Rn to be the projection to the first n coor-
dinates, and ohalfR : R2n → Rn the projection to the last n coordinates, such that
halfR⊕ ohalfR = idR2n .

For x ∈ DR we order the coordinates of DR = Rd as tuple (x11)⊕ x21 ⊕ (x12)⊕ x22
to define halfD : DR → Rd/2 and ohalfD : DR → Rd/2. Note that we did not put a minus
sign in front of x22, but we still have that halfD ⊕ ohalfD = idDR

with the ordering we
chose, because of our choice of sign convention. We will always write half := halfD and
ohalf := ohalfD. We define the map half : Dn

R → Rnd/2 as the n-fold direct sum of half
on DR (and do the same for ohalf).
Remark 3.2.2. Our definition of half and ohalf on DR ensures

N(x) = half(x) · ohalf(x).

One could have chosen a different set of coordinates for half : DR → Rd/2, as long as
half(x) = 0 implies N(x) = 0. In other words, we made a choice of Lagrangian for the
norm form, given by {half = 0}.
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Lemma 3.2.3. For any x, y ∈ DR

half(x) = 0 =⇒ half(xy) = 0

and therefore half(xy) 6= 0 =⇒ half(x) 6= 0.

Proof. We compute:

half(x) = 0⇔ x =

(
0 0
−x22 x12

)
, so

xy =

(
0 0

−(y11x22 + x12y22) x12y12 − x22 · y21
)
. �

Example 3.2.4. Let y ∈ D with N(y) ∈ R×, then there exists x ∈ D with N(x) = 1
such that half(yx) = e1. If N(y) is invertible then y is invertible with two-sided inverse
y∗N(y)−1, since yy∗ = y∗y = N(y). With x := y∗N(y)−1, we compute half(yx) =
half(1) = e1. There could, however, be more ways to achieve the goal half(yx) = e1, i.e.
the set {x ∈ D | N(x) = 1, half(yx) = e1} might be larger than just {y∗N(y)−1}.

For any such x we can compute

yx =

(
1 0
∗ N(y)

)
and therefore

y = y(xx∗) = (yx)x∗ =

(
x12 −x21
∗ ∗

)
consequently

x =

(
∗ −y21
∗ y11

)
Definition 3.2.5. We call y ∈ D half-invertible if there exists an x ∈ D of unit norm
N(x) = 1 with half(yx) = e1. We call Ey := {x ∈ D | N(x) = 1, half(yx) = e1} the set
of half-inverters of y.
Lemma 3.2.6. Any y ∈ D with the property ∃i : half(y)i ∈ R× is half-invertible.

More generally, if γ : Z → D is any morphism of R-varieties with half(γ(z))i ∈ R×

for fixed i, then there exists a morphism χi : Z×G×e
a → D such that χi(z) is a half-inverter

of γ(z). Here, we write G×e
a = Ga× · · · ×Ga for the e-fold product of additive groups.

Proof. We construct explicit half-inverters x, for a given free parameter κ ∈ Re. We
distinguish two cases:

(1) Assume that half(y)0 = y11 ∈ R×, define

x0(κ) :=

(
(y11)

−1 − y21 · κ −y21
y11κ y11

)
(2) Assume that half(y)i = y21i ∈ R× (where we index half(y) from 0 on and y21

from 1 on), define

xi(κ) :=

(
−y21 · κ −y21

y11κ+ (y21i )
−1
ei y11

)
The properties N(xi(κ)) = 1 and half(yxi(κ)) = e1 are fulfilled by construction. �
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Lemma 3.2.7. For any y ∈ D the set of half-inverters Ey admits a nontrivial G×e
a -action.

Proof. The G×e
a -action is given by right multiplication in D along

G×e
a ↪→ D, α 7→

(
1 0
α 1

)
and we check for y ∈ D and x with half(yx) = e1 that for all α, β ∈ G×e

a

half(y(x.α)) = e1, half(y((x.α).β)) = half(y(x.(α+ β))) = e1

which is a computation that can be done economically by two observations:

x.α =

(
∗ −y21
∗ y11

)(
1 0
α 1

)
=

(
∗ −y21
∗ y11

)
.

This already tells us that (x.α).β and x.(α+ β) are also of this shape.

y(x.α) = y

(
∗ −y21
∗ y11

)
=

(
∗ 0
∗ N(y)

)
.

By N(y(x.α)) = N(y)N(x.α) = N(y) we now see that half(y(x.α)) = e1. Note also that
(x.α).β = x.(α+ β) even if D is non-associative. �

Remark 3.2.8. On the xi from Lemma 3.2.6 the G×e
a -action is easy to compute:

xi(κ).α = xi(κ+ α).

Lemma 3.2.9. If D is associative, i.e. D = C and e = 0 or D = H and e = 1, then for
any y ∈ D, the G×e

a -action on Ey is free and transitive.
If D is non-associative, i.e. D = O and e = 3, then for y ∈ D with y11 = 0, the

G×e
a -action on Ey is not transitive. For y ∈ D with y11 invertible, the G×e

a -action on Ey

is free and transitive.

Proof. First, let D = H. We show that every x ∈ Ey is of the form xi(κ) for some i and κ
(and of course we could have proved Lemma 3.2.7 that way, too). If there exists x ∈ Ey,
then we see that ∃i : half(y)i ∈ R×. We distinguish two cases:

(1) Assume that half(y)0 = y11 ∈ R×, then x11 = (1 + y21x22)(y11)
−1 and with

κ := −x22(y11)−1 we get x = x0(κ).
(2) Assume that half(y)1 = y21 ∈ R×, then x22 = (y11x11 − 1)(y21)

−1 and with
κ := −x11(y21)−1 we get x = x1(κ).

We can extract a proof that for D = C the Ga
0-action on Ey is free and transitive, i.e.

Ey consists of a single element, by putting C ↪→ H as diagonal, as usual.
Now for D = O and y11 = 0, but y211 , y212 ∈ R×, let us assume there is α ∈ Ga

3 with
x1(0).α = x2(0):

x1(0).α =

(
−y21 · α −y21

(y211 )
−1
e1

)
=

(
0 −y21

(y212 )
−1
e2 0

)
As e1 and e2 are linearly independent, we get a contradiction.

For y11 ∈ R×, we can for i, j > 0 always find a unique α such that xi(κ).α = xj(κ
′),

by the expression α := −κ+ (y11)
−1

(
(y21j )

−1
ej − (y21i )

−1
ei

)
+ κ′.

Furthermore, x0(κ).α = xi(κ
′) is uniquely solved by α := κ+ (y11y21i )

−1
ei + κ′. �





CHAPTER 4

Projective Spaces over Split Composition Algebras

In this section we study the geometry of projective spaces with coordinates in a split
composition algebra, defined via rank 1 projectors in the Jordan algebras of hermitian
matrices over the composition algebra. This provides the geometric input to motivic
homotopy considerations. We also prove surjectivity of the map from the sphere to
projective space in this setup, which might be of independent interest.

4.1. Algebraic Geometry of D-Projective Spaces

We define D-projective space over a split composition algebra D over a ring (in any
characteristic) via hermitian matrices.
Remark 4.1.1. We apologize to the reader for not using group-theoretic methods more
heavily. The reasons are twofold: the octonions do not admit a group structure on
the norm 1 elements because groups are usually required to be associative. On the
other hand, for general affine quadrics group-theoretic methods seem to be more difficult
in characteristic 2, and we wanted to pursue an approach that would work for many
D-geometries in any characteristics.
Convention 4.1.2. For the remainder of this chapter, let D be a split composition
algebra of dimension d over a commutative unital ring R, i.e. D is either CR, HR or OR.
Let n ∈ N be a number.

4.1.1. Jordan Algebras.
Good notions of Jordan algebras which behave correctly in any characteristic are the
concepts of quadratic Jordan algebra or J-algebra, which need not be algebras at all. We
decided against the description of arbitrary Jordan algebras here, and focus instead on
the family of Jordan algebras which is relevant to this work: hermitian matrices over a
split composition algebra.
Definition 4.1.3. We define † : Matm×n(D) → Matn×m(D) by †(A)ij = A∗

ji. We will
write A† := †(A).

The special case of † : Dn → Mat1×n(D) which converts column vectors to row vectors
while applying the involution ∗ to components is particularly important.
Definition 4.1.4. We call

Jn(D) := {A ∈ Matn×n(D) | A = A†, ∀i : Aii ∈ R}

the set of hermitian matrices.

35
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The diagonal entries Aii of a hermitian matrix A satisfy Aii = A∗
ii, so if 2 is invertible in

R, we automatically have Aii ∈ R, due to Lemma 3.1.7.
We remark that Jn(D) is not a Jordan algebra for D of dimension 8 over R and n > 3.

We will exclude these pathological cases from our study from now on (compare Section 1.3
for more reasons).
Lemma 4.1.5. For D of dimension less than 8 or n ≤ 2, the set Jn(D) with matrix
multiplication and addition forms a ring.

Proof. If D is of dimension less than 8, it is associative, hence Jn(D) is. If n ≤ 2, each
matrix multiplication in J2(D) involves only a subalgebra of D generated by 2 elements,
which is always associative. �

A proof of the Jordan algebra property of Jn(D) can be found in the book of Springer
and Veldkamp [SV00, Chapter 5, p.117] and the references provided therein for the case
of characteristics 2 and 3. For characteristic 2, one has to use the concept of quadratic
Jordan algebras (or J-algebras) instead of Jordan algebras, if one wants to consider
anything beyond hermitian matrices. We will not use the Jordan algebra property in the
sequel and we will not have to use the theory in this generality.

For a more Jordan-theoretic approach towards algebraic geometry over split composi-
tion algebras, we refer to Chaput’s work [Cha06].
Remark 4.1.6. In the classification theory of Jordan algebras one can see the spin factors,
and in fact J2(D) is a spin factor Jordan algebra. Given the connection between J2(D)
and affine quadrics to be explored in Lemma 4.1.12, it seems promising to relate these
spin factors to higher dimensional quadrics. While we do not pursue these ideas in this
work, it is likely that some techniques carry over.

4.1.2. Geometric Constructions: Projective Spaces.
We define projective space over a split composition algebra D over a unital ring R by a
naive generalization of a classical definition of projective space over R or C.
Definition 4.1.7. Inside the hermitian matrices, we define

DPn := {A ∈ Jn+1(D) | A2 = A, tr(A) = 1}

to be the n-dimensional projective space over D. The square A2 denotes the usual matrix
product in Matn+1(D), the trace tr(A) the usual matrix trace given by the sum of diagonal
entries.
Remark 4.1.8. Given the projector condition A2 = A (which we could as well call
idempotent condition), the rank (which we define as dimension of the image) is given by
the trace: rk(A) = tr(A), hence the trace condition is geometrically reasonable in the
division algebra case. To see this, one has to show that any projector can be transformed
by an appropriate Spin group, without changing rank or trace, to a diagonal matrix with
entries 0 or 1.
Convention 4.1.9. We defined an affine algebraic variety over R:

DPn ↪→ A(d(n+1))2

R .
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It is tempting to call DPn an affine projective space, but we will instead refer to it as
D-projective space. We call OP1 the split octonionic projective line or just octonionic
projective line and OP2 the (split) octonionic projective plane or split Cayley plane or
affine Cayley plane. Some authors call OP2 the real Cayley plane (where “real” stands
for the real numbers). We call HPn (split) quaternionic projective space and CPn split
complex projective space.
Remark 4.1.10. It is obvious how one can define other Grassmannians using higher
rank/trace projectors in hermitian matrices as well. We do not pursue it in this work, but
it is likely that large, if not all, parts of this work generalize to these other Grassmannians
as well. Of course, some restrictions in working with octonions apply.
Lemma 4.1.11. The dimension of DPn is dn.

Proof. Over a field, this is an easy computation from the definition of DPn. We can also
use the homogeneous space structure of CPn, HPn and OP1, OP2, which allows for a
different and more convenient way of computation. To get the dimension over arbitrary
rings, it suffices to see that DPn over Z is flat. Torsion-freeness of O(DPn) can be seen
from looking at the quadratic terms in the ideal defining DPn as subset of affine space. �

Lemma 4.1.12. The spaces CP1, HP1 and OP1 are affine split quadrics of even dimen-
sions. More precisely, writing

AQ2n := {(x, y, z) ∈ An×An×A1 |
n∑

i=1

xiyi = z(1− z)}

for an even-dimensional split quadric (smooth over Spec(Z)),
CP1 −→∼ AQ2(5)

HP1 −→∼ AQ4(6)

OP1 −→∼ AQ8(7)

Proof. By definition,

DP1 = {A ∈ Mat2×2(D) | A† = A, A2 = A, tr(A) = 1}.
We will write

A =

(
z ψ∗

ψ 1− z

)
then A2 = A is equivalent to z2 + ψ∗ψ = z. Using our knowledge of ψ∗ψ = N(ψ) being a
split quadratic form, we conclude

DP1 =

(z, ψ) ∈ R⊕Rd

∣∣∣∣∣∣
d/2∑
i=1

ψiψd/2+i = z(1− z)

 . �

Remark 4.1.13. While Asok–Doran–Fasel proved that even-dimensional split affine quadrics
are motivic spheres with an inductive argument, they provide more elementary proofs
for AQ2 and AQ4 [ADF16, Subsection 2.1]. We also work out the theory developed here
for these examples more explicitly, see Example 4.3.2 and Example 4.4.5. The reader is
advised to take a look at Section 4.3 and Section 4.4 for more background information on
CPn and HPn.
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4.1.3. Geometric Constructions: Spheres.
We define a map from a D-sphere to D-projective space, and prove that this map is
surjective on R-points.
Definition 4.1.14. We define the n-th D-sphere to be

DSn :=
{
v ∈ Dn+1

∣∣∣ N(v) := v†v = 1
}

For D = O we also define the associative second D-sphere

OS2,ass :=
{
v ∈ OS2

∣∣ assoc(v) = 0
}

where the associator of v ∈ O3 is defined as

assoc(v) :=

{v2, v∗0, v0v∗1}{v0, v∗1, v1v∗2}
{v1, v∗2, v2v∗0}

 =

N(v0)v2v
∗
1 − (v2v

∗
0)(v0v

∗
1)

N(v1)v0v
∗
2 − (v0v

∗
1)(v1v

∗
2)

N(v2)v1v
∗
0 − (v1v

∗
2)(v2v

∗
0)

 ∈ O3 .

In all other cases let DSn,ass := DSn.
Example 4.1.15. As an algebraic variety, DSn ' AQd(n+1)−1, an odd -dimensional split
affine quadric. We know that DSn is d(n + 1) − 1-dimensional and in particular DS0

is d − 1-dimensional. We remark that CS0 ' AQ1 = Gm and HS0 ' AQ3 ' SL2 have
a group structure, while OS0 ' AQ7 does not inherit a group structure from O, since
groups are required to be associative. For D = O and n = 1, it makes sense to define
OS1,ass := OS1 since every subalgebra of O generated by two elements is associative.
Definition 4.1.16. There is a canonical projection map

p : DSn,ass → DPn

obtained as restriction of the map

p : Dn+1 → Jn+1(D), v 7→ vv†.

The dimension drops by d− 1 = dimDS0 except for OS2,ass. The map p on O3 restricted
to OS2 does not map to OP2, as A := p(v) = vv† does not satisfy A2 = A in general. It
is precisely at this point where one needs the associator condition.
Lemma 4.1.17. Over a local ring R, the subspace OS2,ass ↪→ OS2 is of codimension at
most 8.

Proof. Every element v ∈ OS2 satisfies N(vi) ∈ R× for some i ∈ {0, 1, 2}, as 1 = N(v) =
N(v0) +N(v1) +N(v2). Without loss of generality, let i = 0 be this index. We apply the
involution to assoc(v)0 = 0 and get

v1v
∗
2 = N(v0)

−1(v0v
∗
1)

∗(v2v
∗
0)

∗.

Plugging this equation into either assoc(v)1 or assoc(v)2 shows that they vanish. As
assoc(v)i = 0 is an equation of elements in O = R8, it cuts out a codimension at most 8
subspace. �

Convention 4.1.18. We will write an element of Jn+1(D) as a 2× 2-matrix with upper
left corner an element of R, lower right corner a matrix in Matn×n(D), upper right
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corner a tuple in Dn (written horizontally) and lower left corner a vector in Dn (written
vertically):

Jn+1(D) 3 A =

(
z ψ†

ψ a

)
with z ∈ R, ψ ∈ Dn, a ∈ Jn(D)

The projector condition A2 = A becomes a2+ψψ† = a, aψ = (1−z)ψ and ψ†ψ = z(1−z).
The trace condition implies tr(a) = 1− z. In this notation, for v = v0 ⊕ ϕ ∈ DSn:

p(v) = p(v0 ⊕ ϕ) =
(
v0v

∗
0 v0ϕ

†

ϕv∗0 ϕϕ†

)
.

Definition 4.1.19. We introduce open subvarieties of DPn and DSn,ass:

Zi := {A ∈ DPn | Aii 6= 0} ⊂ DPn,

Z◦
i := {A ∈ DPn | Aii invertible} ⊂ Zi,

Z̃i := {v ∈ DSn,ass | N(vi) 6= 0} ⊂ DSn, Z̃◦
i := {v ∈ DSn,ass | N(vi) invertible} ⊂ Z̃i.

Theorem 4.1.20. The morphism p is dominant and surjective on R-points.
The open subvarieties Zi (respectively for R a local ring Z◦

i ) cover DPn and the
projection p restricted to Z̃i (respectively for R a local ring Z̃◦

i ) has image in Zi (respectively
Z◦
i ).

For R a local ring, there are sections si : Z◦
i → Z̃◦

i to p with the property sj = τ̃ij◦si◦τji
for τji : Zi → Zj conjugation with a permutation matrix switching rows and columns (i, j)

and τ̃ij : Z̃j → Z̃i a transposition switching the ith and jth entry.
For R a field, Zi = Z◦

i and Z̃i = Z̃◦
i .

As warm-up, we collect some innocent observations about rank 1 projector matrices
A before we give the proof. These can be subsumed under “ za = ψψ†”.
Proposition 4.1.21. If z = 1, then a = ψψ†.

Proof. We show that a− ψψ† is a projector of rank 0:

(a− ψψ†)
2
= a2 − aψψ† − ψψ†a+ (ψψ†)(ψψ†)

= a− ψψ† − 2(1− z)ψψ† + (ψ†ψ)ψψ†

= a− ψψ†

tr(a− ψψ†) = tr(a)− ψ†ψ = 0− 0 = 0. �

Proposition 4.1.22. If z = 0, then a+ ψψ† is a rank 1 projector.

Proof. We compute:

(a+ ψψ†)
2
= a2 + aψψ† + ψψ†a+ (ψψ†)(ψψ†)

= a− ψψ† + 2(1− z)ψψ† + (ψ†ψ)ψψ†

= a+ ψψ†

tr(a+ ψψ†) = tr(a) + ψ†ψ = 1 + 0 = 1. �
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Proposition 4.1.23. If z = 0 and there is ϕ ∈ Dn such that ϕ†ϕ = 1 and ϕϕ† = a+ψψ†,
then ϕϕ†ψ = ψ, ψψ† = 0 and a = ϕϕ†.

Proof. We first compute

ϕϕ†ψ = aψ + ψψ†ψ = 1ψ + 0ψ = ψ

so with v0 := ψ†ϕ we obtain ψ = ϕv∗0. As we already know ψ†ψ = z(1− z) = 0,

0 = ψ†ψ = (v0ϕ
†)(ϕv∗0) = (ϕ†ϕ)v0v

∗
0 = v0v

∗
0.

This shows v∗0v0 = 0 as well, so we also have

ψψ† = ϕv∗0v0ϕ
† = 0. �

Proposition 4.1.24. If z 6= 0, 1, then rk(a) = 1 and za = ψψ†.

Proof. As a is a submatrix of A, we have rk(a) ≤ rk(A) = 1. Note that z 6= 0, 1 implies
ψ†ψ 6= 0. From aψ = (1− z)ψ and (ψψ†)ψ = z(1− z)ψ, we get that the images of a and
ψψ† are of dimension at least 1, so rk(a) = 1. On the image of a, both za and ψψ† act as
multiplication with the scalar z(1− z), so they are equal on this subspace:

(za− ψψ†)a = 0.

Using a = a2 + ψψ† and ψ†a = (1− z)ψ† we get

0 = za2 − ψψ†a = za− zψψ† − ψψ† + zψψ† = za− ψψ†. �

Remark 4.1.25. In the special cases z = 0 and z = 1, we can now prove that A has
a preimage under p, assuming we proved the general theorem in one dimension lower
already:

If z = 1, we can pick v0 := 1 and ϕ := ψ, then by Proposition 4.1.21 we have a = ϕϕ†,
and with v := v0 ⊕ ϕ we get p(v) = vv† = A.

If z = 0, we know that a + ψψ† is a rank 1 projector by Proposition 4.1.22 so by
induction on the size of the matrix A (i.e. on n) there is ϕ such that ϕϕ† = a+ ψψ†. By
Proposition 4.1.23, we can conclude that ψψ† = 0. Define v0 := ψ†ϕ and v := v0 ⊕ ϕ,
then p(v) = vv† = A.

Proof of Theorem 4.1.20. Assume that z is a unit, for then we can pick any v0 with
v∗0v0 = z, and there is w0 := v0z

−1 with the property

v∗0w0 = 1.

Let ϕ := ψw0, then v := v0 ⊕ ϕ satisfies p(v) = A.
This shows that there is a section to p on the Zariski open where z is a unit. To fix

an explicit section, we pick

v0 :=

(
1 0
0 z

)
,

which is a morphism Zi → D. This shows p is dominant.
If R is a local ring, the sum of diagonal elements is a unit, hence one of its terms is a

unit. Without loss of generality, this diagonal entry is z = A00, which we use to define s0.
The other si are defined via τij and τ̃ij as in the statement of the theorem.
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The equation 1 = trA =
∑

iAii yields a Zariski cover of R by local rings, which,
pulled back to DPn, gives a Zariski cover, such that over each open set, p is surjective on
R-points. �

One can also prove the surjectivity on R-points in the split octonion case over a field
by a reduction to the quaternion case, but both are hard to find in the literature. Harvey
gave a proof for the division algebra octonions [Har90], together with a claim that only
minor modifications give a proof for the split case.

4.2. Stratification

We study the geometry of embeddings DPn−1 ↪→ DPn, and construct a vector bundle Vn
of rank d/2 over DPn−1 with total space inside DPn. We study the complement Xn of
Vn, which is our candidate for the cell of a cell structure.
Definition 4.2.1. We choose to embed Jn(D) ↪→ Jn+1(D) with i, given by

i : Jn(D) 3 a 7→
(
0 0
0 a

)
∈ Jn+1(D)

and observe that there is a retraction r to the embedding i, given by

r : Jn+1(D) 3
(
z ψ†

ψ a

)
7→ a ∈ Jn(D).

The embedding i restricts to a closed immersion i : DPn−1 ↪→p DPn.
The retraction r does not map DPn to DPn−1, as already the trace condition shows.

Lemma 4.2.2. There is a retraction to i over an open subvariety of DPn:

t↓ : Yn := {A ∈ DPn | 1− z invertible}� DPn−1, A 7→ (1− z)−1a.

Proof. The map is well-defined as a is hermitian and we use za = ψψ† (established before
the proof of Theorem 4.1.20) to compute(

(1− z)−1a
)2

= (1− z)−2
(
a− ψψ†

)
= (1− z)−2 (a− za) = (1− z)−1a.

We see immediately that t↓ ◦ i = idDPn−1 . �

4.2.1. Correcting the Codimension.
Motivated by the considerations of Remark 2.3.11, we construct a vector bundle V �
DPn−1 with total space V ↪→p DPn of “correct” codimension d/2.

We remind the reader that codim
(
DPn−1 ↪→p DPn

)
= d.

Definition 4.2.3. We write Wn := r−1(DPn−1) ∩DPn ⊂ Jn+1(D) and obtain r : Wn �
DPn−1.

For an element A ∈ Wn by definition a ∈ DPn−1, so by the trace condition z = 0.
As Wn = {A ∈ DPn | z = 0}, it is a codimension 1 subspace. The condition A2 = A is
equivalent to z = ψ†ψ = tr(ψψ†), 0 = ψψ† and aψ = ψ, so that we can write

Wn =

{(
0 ψ†

ψ a

)
∈ Jn+1(D)

∣∣∣∣ a ∈ DPn−1, ψ ∈ Ker(a− Id), ψψ† = 0

}
We lift this space along the projection map p to DSn,ass.
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Proposition 4.2.4. The preimage p−1(Wn) can be described as

W̃n :=
{
v0 ⊕ ϕ ∈ D ⊕Dn

∣∣∣ v∗0v0 = 0, ϕ†ϕ = 1
}
∩DSn,ass = p−1(Wn).

Proof. We show that v = v0 ⊕ ϕ ∈ W̃n satisfies p(v) ∈Wn, as v /∈ W̃n implies p(v) /∈Wn.
The conditions z = v∗0v0 = 0 and tr(a) = tr(ϕϕ†) = ϕ†ϕ = 1 are immediate. To see
that ψ = ϕv∗0 satisfies aψ = ψ, just compute aψ = (ϕϕ†)(ϕv∗0) = ϕ(ϕ†ϕ)v∗0 = ϕv∗0 = ψ,
using associativity in any subalgebra of D generated by two elements and the associator
condition for OS2,ass. �

The notation v = v0 ⊕ ϕ for an element v ∈ Dn+1 = D ⊕Dn will be used from now
on without further explanation.

We now want to choose a useful subspace of Wn.
Definition 4.2.5. Using the map half introduced in Definition 3.2.1, let

Ṽn :=
{
v0 ⊕ ϕ ∈ W̃n

∣∣∣ half(v0) = 0
}

Vn :=
{
A ∈ DPn

∣∣∣ a ∈ DPn−1, z = 0, half(ψ†) = 0
}

It is by definition that Vn ⊂Wn. The reader may now safely forget the affine variety Wn,
as we will only use Vn in the remainder. While Wn appears naturally, Vn depends on
the chosen Lagrangian. We also want to remark that for D = O, in Ṽ2 we still need the
associator condition, which boils down to the equations(

v211 · v222
) (
v212 · v220

)
=

(
v212 · v222

) (
v211 · v220

)
,

0 =
(
v220 · v212

) (
v121 v

22
2 − v122 v221

)
+
(
v221 · v212

) (
v122 v

22
0 − v120 v222

)
+
(
v222 · v212

) (
v120 v

22
1 − v121 v220

)
.

Proposition 4.2.6. In fact, Vn = {A ∈ DPn | z = 0, half(ψ†) = 0}.

Proof. We know by Theorem 4.1.20 that there exists v0 ⊕ ϕ ∈ DSn such that v0v∗0 = z,
ϕv∗0 = ψ and ϕϕ† = a. We have ψψ† = ϕv∗0v0ϕ

† = zϕϕ†, so that z = 0 implies ψψ† = 0.
Caution: This does not imply ψ = 0, as the case n = 1 already shows.

The projector condition A = A2 implies a−a2 = ψψ†, so that ψψ† = 0 implies a = a2.
As 1 = tr(A) = z + tr(a), z = 0 implies tr(a) = 1. We have seen that z = 0 implies
a ∈ DPn−1. This shows {A ∈ DPn | z = 0, half(ψ†) = 0} ⊂ Vn, and the other inclusion
is given by definition. �

Definition 4.2.7. Denote X̃n := DSn,ass \Ṽn and Xn := DPn \Vn the complements.

Lemma 4.2.8. The restriction of p to Ṽn has image in Vn and is surjective on R-points:

p|
Ṽn

: Ṽn � Vn.
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Proof. For v ⊕ ϕ ∈ Ṽn, with half(v0) = 0, also half(v0ϕ
†) = 0, so p(Ṽn) ⊂ Vn. Given any

A ∈ Vn, we find a preimage v0⊕ϕ ∈ p−1({A}). While not necessarily half(v0) = 0, we can
still define ṽ0 with half(ṽ0) := 0 and ohalf(ṽ0) := ohalf(v0). Now ṽ0

∗ṽ0 = 0 = z = v∗0v0
and ṽ0ϕ† = v0ϕ

†, since the modification ṽ0 of v0 only affects half(v0ϕ
†), which vanishes

anyway. �

Corollary 4.2.9. We have p−1(Xn) ⊂ X̃n.

Proof. For any A ∈ DPn, any v = v0 ⊕ ϕ ∈ p−1(A) with half(v0) = 0 also satisfies
v0v

∗
0 = 0 and half(v0ϕ

†) = 0, so A /∈ Xn. �

Lemma 4.2.10. We can describe X̃n as

X̃n = {v0 ⊕ ϕ ∈ DSn,ass | half(v0) 6= 0}

Proof. By definition, X̃n is the union of the right hand side of the equation and the space
{N(ϕ) 6= 1}. If we have N(ϕ) 6= 1 and 1 = N(v0 ⊕ ϕ) = N(v0) + N(ϕ), we also have
N(v0) 6= 0, hence half(v0) 6= 0. �

Lemma 4.2.11. The restriction of the map r to Vn is a rank d/2 vector bundle

r : Vn � DPn−1, A 7→ a

The codimension of the closed immersion Vn ↪→p DPn is d/2.

Proof. The fiber of r over a point a ∈ DPn−1 consists of matrices

A =

(
0 ψ†

ψ a

)
∈ DPn

with the only conditions on ψ that half(ψ†) = 0 and aψ = ψ, which are linear conditions
on an nd-dimensional vector space, that cut out a locus of dimension d/2. �

For n = 2 we would like to call the bundle V2 � DP1 a Hopf bundle.
We can put these objects in a diagram as in Fig. 1.

Figure 1. Stratification, thickening V and lift to the sphere.

Vn DPn

DPn−1

i
r

DSn,assṼn

pp

X̃n

Xn

p

We generalize the definition of Vn slightly:
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Definition 4.2.12. For k,m non-negative integers, let Vk,m be spaces given by Vn−1,n :=
Vn ↪→p DPn as defined before and

Vn−k,n := Vn−k−1,n−1 ×DPn−1 Vn−k,n.

We think of Vk,n ↪→ DPn as an avatar of DPk ↪→p DPn.
Lemma 4.2.13. Each Vk,n ↪→ DPn is a closed immersion and the induced maps Vk,n →
DPk have a vector bundle structure. In particular, V0,n is isomorphic to an affine space
Ad/2.

Proof. Closed immersions and vector bundles are stable under base change. The pullback
of a vector bundle along a closed immersion is merely a restriction, and V0,n is the
restriction of Vn−1,n � DPn−1 to a point DP0, hence a single fiber of the vector bundle.
The dimension follows from the rank in Lemma 4.2.11. �

The notation Vk,n is easily confused for Stiefel varieties, so we will stop this digression.

4.2.2. Fibration from an Affine Space to the Cell.
An appropriate restriction of the map p : DSn,ass → DPn will be exhibited as a map from
an affine space to the “cell” Xn, the complement of Vn.
Definition 4.2.14. Define a map DSn → Ad/2 by v = v0⊕ϕ 7→ half(v0). The restriction
of this map to X̃na

n := {v0 ⊕ ϕ ∈ DSn | half(v0) 6= 0} has, by definition, image in
Ad/2 \{0}, and we denote this map by

π : X̃na
n � Ad/2 \{0}.

The pullback of π along the inclusion of the point e1 := (1, 0, . . . , 0) ∈ Ad/2 into Ad/2 \{0}
shall be named

π′ : X̃1,na
n � {e1}.

For the associative version, we write

X̃ ′
n := X̃1,na

n ∩ X̃n.

Proposition 4.2.15. The map π is a rank dn + e affine bundle (Zariski bundle with
affine space fibers) and X̃1,na

n is isomorphic to affine space Adn+e. For n 6= 2 or D 6= O,
X̃ ′

n = X̃1,na
n −→∼ Adn+e.

Proof. The dimension of DSn is d(n+ 1)− 1, so the fiber of any affine bundle to a base
of dimension d/2 is an affine space of dimension dn+ e. If π is an affine bundle, X̃1,na

n is
such a fiber.

We know that DSn −→∼ AQd(n+1)−1 and we use the commutative diagram

DSn

X̃1,na
n

AQd(n+1)−1 =

{
(x, y) ∈

(
A(n+1)d/2

)2
∣∣∣∣ ∑nd/2

i=0 xiyi = 1

}

{
(x, y) ∈ AQd(n+1)−1

∣∣ y0 = · · · = yd/2 = 0
}
.

∼

∼
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Now π : X̃na
n → Ad/2+1 \{0} is isomorphic to the map AQd(n+1)−1 → Ad/2+1 \{0}

given by (x, y) 7→ (y0, . . . , yd/2). After covering Ad/2+1 \{0} by charts of the form {yi 6= 0},
we see that the preimage of a chart is just an affine space of dimension d(n+ 1)− 1, and
compatibly so, i.e., π is indeed an affine bundle.

The associator condition only makes a difference between OS2 and OS2,ass. �

Remark 4.2.16. For D = O we can describe X̃ ′
2 as subspace of X̃1,na

2 explicitly as zero
locus of the four functions (

v211 · v222
)
v212 −

(
v212 · v222

)
v211 ,(

v212 · v221
)
v211 −

(
v211 · v221

)
v212 ,(

v220 · v212
) (
v121 v

22
2 − v122 v221

)
+
(
v221 · v212

) (
v122 v

22
0 − v120 v222

)
+
(
v222 · v212

) (
v120 v

22
1 − v121 v220

)
,(

v220 · v211
) (
v122 v

22
1 − v121 v222

)
+
(
v222 · v211

) (
v121 v

22
0 − v120 v221

)
+
(
v221 · v211

) (
v120 v

22
2 − v122 v220

)
.

Proposition 4.2.17. We have p(X̃ ′
n) ⊂ Xn.

Proof. Given v0⊕ϕ with 1 = N(v0⊕ϕ) and half(v0) = e1, we show that either v0v∗0 6= 0 or
half(v0ϕ

†) 6= 0. First, half(v0ϕ†) = half(ϕ†) because of half(v0) = e1. Suppose v0v∗0 = 0,
then 1 = N(v0 ⊕ ϕ) = v∗0v0 + ϕ†ϕ implies 1 = ϕ†ϕ, so that 0 6= half(ϕ†) = half(v0ϕ

†)
which proves the claim. �

Remark 4.2.18. Our strategy to prove that Xn is A1-contractible is to exhibit the structure
of an affine bundle on p|

X̃′
n
: X̃ ′

n → Xn by explicitly constructing local sections and
fiberwise free and transitive G×e

a -actions. As affine bundles are A1-weak equivalences and
affine spaces are A1-contractible, this suffices as soon as X̃ ′

n is isomorphic to affine space.
One way to prove the affine bundle structure is to use the local sections to p we already
have from Theorem 4.1.20 and modify them (e.g. by right multiplication with a norm 1
element), for then right multiplication with suitable norm 1 elements would already give
the transitive G×e

a -action. This is what we will do for split complex numbers and split
quaternions.

For the octonions, this strategy does not seem to work: both X̃ ′
2 fails to be an affine

space, and the right multiplication with norm 1 elements does not preserve p-fibers.
Luckily, OP1 requires so little associativity that the strategy still works, as X̃ ′

1 is an affine
space and we can prove the affine bundle structure.

In Fig. 2 we show a diagram including the constructions just made.
Before we treat the different composition algebras separately, we explain how to

cover DPn with subvarieties isomorphic to Xn. We use the morphisms τij and τ̃ij from
Theorem 4.1.20.
Lemma 4.2.19. Let X(j)

n := τ0jXn and X̃(j)
n := τ̃0jX̃

1,na
n . Then
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Figure 2. The desired section s to the restriction of p.

X̃n

Xn

Ad/2+1 \{0}
X̃ ′

n

{e1}

π

π′

p

(1) This is a Zariski covering: DPn =
⋃n

j=0X
(j)
n .

(2) For any subset J ⊂ {0, . . . , n}, the intersections X̃J
n :=

⋂
j∈J X̃

(j)
n are affine

spaces.
(3) The morphism p|

X̃J
n

is an affine bundle if and only if p|
X̃1,na

n
is one.

Proof. The complement of the union of the X(j)
n is the intersection of the complements,

hence contained in {A ∈ DPn | ∀i = 0, . . . , n : Aii = 0} = ∅, which proves the first claim.
The intersections of the X̃(j)

n can be computed explicitly,

X̃({0,1})
n = X̃(0)

n ∩ X̃(1)
n = {v ∈ DSn | half(v0) = e1, half(v1) = e1} .

The statement on p is true by construction. �

This already hands us our proof scheme:
Proposition 4.2.20. If p|

X̃′
n

is an affine bundle, then DPn carries an unstable motivic
cell structure, except for the case of OP2, which is not settled by this method.

Proof. By Lemma 4.2.19, the assumptions of Corollary 2.3.21 are fulfilled. �
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4.3. Split Complex Projective Spaces

We apply the previous constructions to D := C, the split complex numbers, where d = 2,
hence e = 0. This section finishes the proof that CPn has a motivic cell structure.

As defined in Definition 3.1.8, we write x ∈ C as a pair x = (x1, x2) such that
x∗ = (x2, x1), hence N(x) = x1x2 and half(x) = x1.
Lemma 4.3.1. We collect several well-known facts on CPn:

(1) Split complex projective space CPn can be identified with the affine variety Un of
rank 1 idempotent matrices in Matn+1(R).

(2) The map π : Un → Pn that maps a rank 1 idempotent matrix to its image is an
affine bundle. The bundle π is usually called Jouanolou torsor.

(3) The map π factors as ι : Un ↪→ Pn × Pn∨ followed by the projection onto the first
factor, with ι given by A 7→ (Im(A),Ker(At)).

(4) The complement to ι in Pn × Pn∨ is the incidence variety I := {(`,H) | ` ⊂ H}.
(5) There is an involution σ on Pn × Pn∨ which leaves I invariant.
(6) Both CPn and I are PGLn+1-homogeneous spaces, and Pn × Pn∨ is a complete

PGLn+1×PGLn+1-homogeneous space.
(7) CPn ↪→◦ Pn×Pn∨ is a PGLn+1-equivariant open embedding (with PGLn+1 acting

on Pn × Pn∨ diagonally).
(8) The involution σ is induced by an involution on PGLn+1×PGLn+1, given by

switching the factors and inverse-transpose. The σ-fixed points of the parabolic
P1 × P1 that stabilizes a point of Pn × Pn∨ form the parabolic P1,n that stabilizes
a point of I.

(9) The involution σ is given by a diagram automorphism of the Dynkin diagram
An tAn.

(10) The motive of CPn is

M(CPn) =
n⊕

i=0

1(i)[2i].

We summarize the situation with a diagram in Fig. 3

Figure 3. Summary of the situation for CPn.

CPn Pn × Pn∨ I

PGLn+1

GLn

PGLn+1 ×PGLn+1

P1×P1

PGLn+1

P1,n

Pn

proj1
π

∼ ∼ ∼

◦

◦

|

|
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Proof. (1) We decompose A ∈ Jn+1(C) as A = (A1, A2) with Ai ∈ Matn+1(R) along
C = R⊕R with component-wise multiplication. With this definition, A2 = At

1

(from A† = A) and tr(Ai) = 1 as well as A2
i = Ai. The map A 7→ A1 is therefore

an isomorphism CPn −→∼ Un.
(2) For A a rank 1 projector, also At is a rank 1 projector, as (At)

2
= (A2)

t and the
diagonal elements are invariant under transposition. The datum of a projector
A ∈ Un induces a choice of direct sum complement Ker(A) to Im(A). Conversely,
a direct sum decomposition `⊕H = Rn+1 induces projection operators A, 1−A
onto ` resp. H. Now π−1(`) can be identified with the set of hyperplanes
complementing `, that is the set of hyperplanes not containing `, which is an
affine space.

Furthermore, let Xi := {` = [x0 : · · · : xn] ∈ Pn | xi 6= 0}, then π−1(Xi) can
be identified with the set of hyperplanes not containing any vector x with xi = 0,
i.e. the hyperplanes H which are not orthogonal to the standard basis vector
ei ∈ Rn+1. We can identify ϕi : π

−1(Xi) −→∼ Xi × An via A 7→ (π(A),Ker(At)),
where we consider Ker(At) ∈ Pn∨ and notice that it is in the complement
of Pn−1∨ ⊂ Pn∨ given by orthogonality to ei. An inverse map is given by
reconstructing A from π(A)⊕Ker(At) = Rn+1. The map ϕi ◦ϕ−1

j is the identity
in the first component, and a change of charts of Pn∨ in the second component,
hence π is an affine bundle.

(3) We only have to check that ι is well-defined: The kernel of At is of rank n− 1,
so it defines a hyperplane.

(4) For any pair (`,H) with `⊕H = Rn+1 we may find a preimage A under ι, and
every pair (`,H) in the image of ι satisfies `⊕H = Rn+1. The latter condition
is equivalent to ¬(` ⊂ H).

(5) The involution is given by σ(`,H) := (H⊥, `⊥). For any pair (`,H) ∈ I, we have
` ⊂ H, hence H⊥ ⊂ `⊥, so that I is a σ-invariant subset.

(6-8) The PGLn+1-action on CPn is given in terms of an action on Un, by conjugation
(change of basis). The PGLn+1-action on I is given from the diagonal action
on Pn × Pn∨, where PGLn+1×PGLn+1 acts with the product action of the
standard action of PGLn+1 on Pn with stabilizer a parabolic P1. The stabilizer
of PGLn+1×PGLn+1 acting on Pn×Pn∨ is the parabolic P1×P1. The stabilizer
of I is given by the diagonal P1,n ⊂ (P1 × P1)×PGLn+1 ×PGLn+1 PGLn+1, which
is invariant under σ again.

(9) Numbering the simple roots in An by {1, . . . , n} and furthermore writing {αi} ∪
{βi} for the simple roots in An tAn, σ is given by αi 7→ βn−i and βi 7→ αn−i.

(10) This was explained in Remark 2.2.6. Alternatively, one may use M(CPn) =
M(Pn).

�

We now look at the special case of CP1 over a field, where we want to describe
everything explicitly in coordinates.

Example 4.3.2. Let R be a field. We show that the morphism p|
X̃′

1
introduced in

Definition 4.1.16 and Definition 4.2.14 is an isomorphism.
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We already know that X̃ ′
1 −→∼ A2, explicitly

X̃ ′
1 =

{(
(1, v20)
(v11, v

2
1)

) ∣∣∣∣ v20 = 1− v11v21
}

It is also easy to see that the base X1 is 2-dimensional:

X1 =

{(
z (ψ2, ψ1)

(ψ1, ψ2) 1− z

) ∣∣∣∣ ψ1ψ2 = z(1− z), (z 6= 0 ∨ ψ2 6= 0)

}
With the definition

Z11 := {A ∈ CP1 | z 6= 1, ψ2 6= 0}
we see that X1 = Z0 ∪ Z11, using the varieties Zi, Z̃i from Theorem 4.1.20:

Zi =

{
A =

(
z ψ∗

ψ 1− z

)
∈ CP1

∣∣∣∣ z 6= i

}
for i ∈ {0, 1}

Z̃i =
{
v = v0 ⊕ v1 ∈ CS1

∣∣ N(vi) 6= 0
}

for i ∈ {0, 1}
Now we define

Z̃11 = {v ∈ CS1 | v11 = 1, v21 6= 0, v10 6= 0} ⊂ Z̃1

Z̃ ′
11 = {v ∈ CS1 | v10 = 1, v21 6= 0, v11 6= 0} ⊂ Z̃1 ∩ X̃ ′

1

and the next step is to define a morphism λ11 : Z̃11 → Z̃ ′
11 such that the morphisms

s0 : Z0 → Z̃0 and s′11 := λ11◦s1 : Z11 → Z̃ ′
11 are sections to p|

X̃′
1
. Note that X̃ ′

1 = Z̃0∪Z̃ ′
11.

The morphism λ11 can be defined by right multiplication as v 7→ vx(v), with x(v) :=
(v10, (v

1
0)

−1
) ∈ CS0. As right multiplication with a norm 1 element does not change the

image under p and s1 was already a p-section, s′11 is still a p-section. We write down the
sections s0 and s′11 explicitly:

s0 : Z0 → Z̃0, A 7→
(

(1, z)
(ψ1z−1, ψ2)

)

s′11 : Z11 → Z̃ ′
11 A 7→

(
(1, ψ1ψ2(1− z)−1)

((ψ2)
−1

(1− z), ψ2)

)
Over Z0∩Z11, where we have ψ1z−1 = (ψ2)

−1
(1−z) and ψ2ψ2(1− z)−1 = z, the sections

s0 and s′11 coincide. This shows that they patch together to a section s : X1 → X̃ ′
1 to p.

One may now compute s(p(v)) = v or, what amounts to the same, observe that every
fiber

p−1(A) ∩ X̃ ′
1 =

{(
(1, z)

(v11, ψ
2)

) ∣∣∣∣ v11ψ2 = 1− z, v11z = ψ1

}
consists of a single element (the image of s). This concludes the (admittedly lengthy)
proof that p|

X̃′
1

is an isomorphism, and we conclude that X1 itself is isomorphic to A2.

Recall from Theorem 4.1.20 that we have a Zariski cover of CPn

CPn =

n⋃
i=0

Z◦
i , Z◦

i = {A ∈ CPn | zi a unit},

where we write zi := Aii as shorthand for the i-th diagonal element.
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Lemma 4.3.3. For A ∈ CPn, for any two v, w ∈ p−1(A), there exists a unique x =
x(v, w) ∈ CS0 with v = wx.

Proof. For some i, we have A ∈ Z◦
i , so that viv∗i = zi = wiw

∗
i is invertible. From

p(v) = p(w) we get by looking at the i-th column that ∀j : vjv
∗
i = wjw

∗
i . With

1 = v∗i viz
−1
i this implies

∀j : vj = vjv
∗
i viz

−1
i = wjw

∗
i viz

−1
i .

The x in question is x(v, w) := w∗
i viz

−1
i , which is of norm 1 and easily seen to not depend

on i. �

Remark 4.3.4. Identifying the spaces CSn and CPn as homogeneous varieties by iso-
morphisms PGLn+1 /PGLn −→∼ CSn and PGLn+1 /GLn −→∼ CPn, the map p : CSn �
CPn is the Gm-principal bundle PGLn+1 /PGLn � PGLn+1 /GLn. One can use An-
thony Bak’s theory of quadratic modules [Bak69] to define Un(C) in general, of which
U1(C) = CS0 = Gm is a special case.
Proposition 4.3.5. The morphism p|

X̃′
n
: X̃ ′

n → Xn is an isomorphism for R a local
ring.

Proof. We define a Zariski cover Xn = Z◦
0 ∪

⋃n
i=1

⋃n
j=1 Z

◦
ij by

Z◦
ij :=

{
A ∈ CPn

∣∣ zi unit, half(ψ∗
j ) unit

}
⊂ Z◦

i

Over Z◦
0 , the section s0 from Theorem 4.1.20 has image in Z̃◦

0 ⊂ X̃ ′
n already. We now

define s′0 := s0 and for i > 0

s′ij : Z
◦
ij → Z̃ ′

ij := {v ∈ Z̃i ∩ X̃ ′
n | half(vi) unit}

by right multiplication of si with xij : Z
◦
ij → CS0 defined by Lemma 3.2.6. From the

previous Lemma 4.3.3 we can conclude for any v ∈ X̃ ′
n with A := p(v) ∈ Zτ , where τ = ij

or τ = 0, that there exists a unique x such that vx = s′τ (v). As already v0 = (1, z0) and
(s′τ (v))0 = (1, z0), we see that x = 1. This shows at once that the s′τ glue to a section of
p over Xn and that this section is an inverse to p|

X̃′
n
. �

As a corollary, we obtain now
Theorem 4.3.6. Over any field, split complex projective space CPn carries an unstable
motivic cell structure obtained from gluing cells to CPn−1.

Proof. By Proposition 4.3.5, the assumptions of Proposition 4.2.20 are fulfilled. �

This gives another (much more involved) proof of the commonly used unstable motivic
cell structure of Pn.
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4.4. Split Quaternionic Projective Spaces

We apply the previous constructions to D := H, the split quaternions, where d = 4. This
section finishes the proof that HPn has a motivic cell structure.

As in Definition 3.1.9, we write x ∈ H as a matrix x =

(
x11 x21

−x22 x12

)
such that

x∗ =

(
x12 −x21
x22 x11

)
and N(x) = x∗x = det(x) = x11x12 + x21x22 as well as

half(x) = (x11, x21).

Lemma 4.4.1. We collect well-known facts on HPn:
(1) Split quaternionic projective space HPn embeds as open subvariety of Gr(2n+2, 2),

the Grassmannian of 2-dimensional linear subspaces of a 2n+ 2-dimensional
vector space. The closed complement of HPn ↪→◦ Gr(2n+ 2, 2) is the symplectic
Grassmannian SpGr(2n+2, 2) of 2-dimensional symplectic subspaces of a 2n+ 2-
dimensional vector space. Equivalently, HPn is the space of 2-dimensional
isotropic subspaces of a (2n+ 2)-dimensional vector space.

(2) There is an involution σ on Gr(2n+ 2, 2) which leaves both HPn and SpGr(2n+
2, 2) invariant.

(3) Both HPn and SpGr(2n + 2, 2) are homogeneous under Sp2n+2. The variety
Gr(2n+ 2, 2) is a complete homogeneous space under SL2n+2 with stabilizer a
parabolic P2.

(4) HPn ↪→◦ Gr(2n+ 2, 2) is an Sp2n+2-equivariant embedding, with Sp2n+2 acting
via Sp2n+2 ↪→ SL2n+2 on Gr(2n+ 2, 2).

(5) The involution σ is induced from an involution on SL2n+2 with invariants Sp2n+2,
namely the inverse-transpose of a matrix.

(6) The involution σ is given by a diagram automorphism of the Dynkin diagram
A2n+2.

(7) The motive of HPn is

M(HPn) =
n⊕

i=0

1(2i)[4i].

Summarizing, we have the diagram in Fig. 4

Figure 4. Summary of the situation for HPn.
HPn Gr(2n+ 2, 2) SpGr(2n+ 2, 2)

Sp2n+2

Sp2 ×Sp2n

SL2n+2

P2

Sp2n+2

P2

∼ ∼ ∼

◦

◦

|

|
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Proof. First we fix a 2n+ 2-dimensional free R-module V and a symplectic form on it, as
well as a Lagrangian in V . For our purposes it is fine to think of R2n+2 with the standard
symplectic form and the standard symplectic basis. Of course, one may easily write up
these arguments coordinate-free.

(1) Given a point A ∈ HPn, we may consider the H-right line Im(A) = {Av | v ∈
Hn+1} and project onto the Lagrangian R2n+2 ⊂ Hn+1 by the map half. Then
half(Im(A)) ⊂ R2n+2 is an isotropic 2-dimensional linear subspace. The comple-
ment in Gr(2n+ 2, 2) is given by non-isotropic, that is symplectic 2-dimensional
subspaces, which is a closed condition on the set of all 2-dimensional linear
subspaces.

(2) We may decompose V into a sum of two Lagrangians, and let σ the symplecto-
morphism exchanging the two. To be more precise, in a symplectic basis xi, yi
on R2n+2 we let σ(xi) := yi and σ(yi) := xi. This gives rise to σ on Gr(2n+2, 2).
Since σ is a symplectomorphism, it preserves symplectic as well as isotropic
subspaces.

(3) As Sp2n+2 acts on V via symplectomorphisms, it acts on the space of isotropic
2-planes as well as on the space of symplectic 2-planes in V . Transitivity follows
as well. The SL2n+2-action on V also descends to an action on the space of
2-planes, and the parabolic which stabilizes a given 2-plane is the maximal
parabolic P2, as one may check by computation on R2n+2 with the standard
basis for example.

(4) This is clear from the construction of the embedding.
(5) An element on SL2n+2 is invariant under inverse-transpose iff it preserves the sym-

plectic form. The inverse-transpose induces on Gr(2n+2, 2) the involution which
maps a 2-dimensional symplectic linear subspace to itself and a 2-dimensional
isotropic linear subspace to another 2-dimensional isotropic subspace in the
complement with the property that the spanned 4-dimensional linear subspace
is symplectic again.

(6) Labeling simple roots of A2n+1 with αi with i ∈ {1, . . . , 2n+ 1}, the involution
σ is given by αi 7→ α2n+2−i for i ≤ n+ 1 and α2n−i 7→ αi for i ≤ n+ 1.

(7) This was explained in Remark 2.2.6. �

We study the projection p introduced in Definition 4.1.16 in the quaternionic case.

Lemma 4.4.2. The norm 1 elements HS0 ⊂ H act on HSn freely by right multiplication.
This action preserves p-fibers and the restriction to any p-fiber is transitive.

Proof. The action HS0×HSn → HSn, (x, v) 7→ vx is p-fiberwise, as

p(vx) = (vx)(vx)† = (vx)(x∗v†) = v(xx∗)v† = vv† = p(v).

For each A ∈ HPn and each two v, w ∈ p−1(A), we have A ∈ Z◦
i for some i. From

p(v) = A = p(w) follows (in the ith row and column) that N(vi) = zi = N(wi) is
invertible, and from the i-th column we also obtain ∀j : vjv

∗
i = wjw

∗
i so that from

1 = v∗i viz
−1
i we get

∀j : vj = vjv
∗
i viz

−1
i = wjw

∗
i viz

−1
i .
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Now we let xi(v, w) := w∗
i viz

−1
i and observe that this is unique (in particular it does not

depend on i): for x ∈ HS0 another element with v = wx, we have

1 = z−1
i v∗i vi = z−1

i v∗iwix = xi(w, v)x

but xi(w, v)−1 = xi(v, w) by construction. �

Remark 4.4.3. Under the isomorphisms

Sp2n+2 /Sp2n −→∼ HSn and

Sp2n+2 /Sp2n×Sp2 −→∼ HPn,

the map p : HSn � HPn is the Sp2-principal bundle Sp2n+2 /Sp2n � Sp2n+2 / Sp2n×Sp2.
One may also use Anthony Bak’s theory of quadratic modules [Bak69] to define Un(H) in
general, of which U1(H) = HS0 = Sp2 is a special case.
Lemma 4.4.4. Via the right multiplication action of HS0 on HSn and the inclusion

Ga ↪→ HS0, y 7→ x(y) :=

(
1 0
−y 1

)
the additive group Ga acts p-fiberwise on HSn and restricts to a free, fiberwise transitive,
action on the subspace X̃ ′

n introduced in Definition 4.2.14.

Proof. We see that Ga stabilizes X̃ ′
n by computing

half(v0.y) = half(v0x(y)) = (v110 , v
21
0 ) = half(v0) = e1.

It remains to see that this action is still transitive on each fiber, i.e. that for A ∈ Zi and
v, w ∈ p−1(A) ∩ X̃ ′

n the unique element x(v, w) ∈ HS0 with v = wx satisfies half(x) = e1,
which is again a direct computation from half(v) = half(wx), compare Lemma 3.2.9. �

To illustrate the differences between C and H we give the example of HP1 now
(compare Example 4.3.2).
Example 4.4.5. Let R be a field. We cover X1 by the subvarieties

Z0 =

{
A =

(
z ψ∗

ψ 1− z

) ∣∣∣∣ z 6= 0

}
Z11 =

{
A =

(
z ψ∗

ψ 1− z

) ∣∣∣∣ z 6= 1, half(ψ∗)1 6= 0

}
⊂ Z1

Z12 =

{
A =

(
z ψ∗

ψ 1− z

) ∣∣∣∣ z 6= 1, half(ψ∗)2 6= 0

}
⊂ Z1

so that X1 = Z0 ∪ Z11 ∪ Z12. Note that half(ψ∗) = (ψ12,−ψ21). We now proceed to
construct sections s′τ to p|

X̃′
1

over each over these Zτ , by modifying the sections si from
Theorem 4.1.20 with right multiplication by HS0:

s′τ := µ ◦ (sτ × xτ ) ◦∆: Zτ → Z̃ ′
τ ,

where ∆ is the diagonal, µ the pointwise quaternion multiplication and xτ : Zτ → HS0 a
morphism with the property

half(sτ (A)xτ (A)) = e1.

Here, we write Z̃ ′
0 := Z̃0 and Z̃ ′

ij := Z̃i ∩ X̃ ′
1.
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The existence of xτ is proved in Lemma 3.2.6, but we will construct xτ explicitly here:

x11 : Z11 → HS0, A 7→
(
z1(ψ

12)
−1

ψ21

0 z−1
1 ψ12

)
,

x12 : Z12 → HS0, A 7→
(

0 ψ21

−(ψ21)
−1

z−1
1 ψ12

)
.

With our previous definitions, we have

s0 : Z0 → Z̃0, A 7→ v, v0 =

(
1 0
0 z0

)
, v1 =

(
z−1
0 ψ11 ψ21

−z−1
0 ψ22 ψ12

)
,

s1 : Z1 → Z̃1, A 7→ v, v1 =

(
1 0
0 z1

)
, v0 =

(
z−1
1 ψ12 −ψ21

z−1
1 ψ22 ψ11

)
.

The resulting sections are s′0 := s0 and

s′11 : Z11 → Z̃ ′
11, A 7→ v, v0 =

(
1 0

ψ22(ψ12)
−1

z0

)
,

v1 =

(
z1(ψ

12)
−1

ψ21

0 ψ12

)
,

s′12 : Z12 → Z̃ ′
12, A 7→ v, v0 =

(
1 0

−ψ11(ψ21)
−1

z0

)
,

v1 =

(
0 ψ21

−z1(ψ21)
−1

ψ12

)
.

On each intersection, each sτ1 and sτ2 are sections to p|
X̃′

1
, so by Lemma 4.4.4 there is a

unique στ1,τ2 : Zτ1 ∩ Zτ2 → Ga which gives a cocycle. We can compute it explicitly, e.g.
for τ1 = 0 and τ2 = 11, we have

σ0,11 := A 7→
(

1 0

z−1
0 ψ22(ψ12)

−1

)
with the property s0(A)σ0,11(A) = s′11(A) for A ∈ Z0 ∩ Z11.

If we denote the Ga-action on X̃ ′
1 by ρ, we have commutative diagrams

Z̃τ

Zτ

Zτ ×Ga

proj1
p

ρ ◦ (s′τ × id)

that give p|
X̃′

1
, together with the cocycle σ, the structure of a Ga-bundle.

In particular, we have just proved
Theorem 4.4.6. The split quaternionic projective line HP1 over a field is a motivic
sphere S4,2.

Proof. We just saw that X1 is A1-contractible, by applying Corollary 2.1.5, hence HP1

carries a motivic cell structure by Corollary 2.3.14. The Thom space is ΣsA4 \ {0}. �
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Theorem 4.4.7. Let R be a local ring. The morphism p|
X̃′

n
: X̃ ′

n → Xn is a rank 1 affine
bundle.

This was essentially already proved by Panin and Walter [PW10a].

Proof. We cover Xn by the subvarieties Z◦
0 and

Zijk =
{
A ∈ Z◦

i

∣∣∣ half(ψ∗
j )k invertible

}
.

With the notation Zτ = Z◦
0 for τ = 0 and then for τ = ijk

Z̃ ′
ijk := Z̃◦

i ∩ X̃ ′
n.

we will construct p-sections

s′τ := µ ◦ (sτ × xτ ) ◦∆: Zτ → Z̃ ′
τ ,

where we write sijk := si and xτ is defined by the requirement

half(sτ (A)xτ (A)) = e1.

Existence of xτ is proved in Lemma 3.2.6 (we make some arbitrary choice of xτ ). From
Lemma 4.4.4 we see that any such xτ differ by the Ga-action ρ on X̃ ′

n, so that we have
an affine bundle trivialization

Z̃τ

Zτ

Zτ ×Ga

proj1
p

ρ ◦ (s′τ × id)

�

As a corollary, we obtain now
Theorem 4.4.8. Over any field, split quaternionic projective space HPn carries an
unstable motivic cell structure obtained from gluing cells to HPn−1.

Proof. By Theorem 4.4.7, the assumptions of Proposition 4.2.20 are fulfilled. �
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4.5. Split Octonionic Projective Spaces

We apply the previous constructions to D := O, the split octonions, where d = 8 and
e = 3. We only look at the cases n = 1 and n = 2. In this section, we give a proof
that OP1 is a motivic sphere. This section does not prove that OP2 has a motivic cell
structure, but we discuss a motivic cell structure for ΣOP2.

4.5.1. The Octonionic Projective Line.
To use the morphism p introduced in Definition 4.1.16, we need some explicit computations
of associators.

Here we use Zorn vector matrix notation as introduced in Convention 3.1.12.
Computation 4.5.1. If v ∈ DSn and x ∈ DS0, then p(vx) = (vx)(vx)† differs from
v(xx∗)v† = vv† = p(v) by the associators {vi, x, (vjx)

∗}. If D = C or D = H, all
associators vanish, but for D = O, this is a crucial difficulty. We make some computations:

vix =

(
v11i x

11 − v21i · x22 v11i x
21 + v21i x

12

−(v22i x11 + v12i x
22) v12i x

12 − v22i · x21
)

(vjx)
∗ =

(
v12j x

12 − v22j · x21 −(v11j x21 + v21j x
12)

v22j x
11 + v12j x

22 v11j x
11 − v21j · x22

)
viv

∗
j =

(
v11i v

12
j + v21i · v22j v21i v

11
j − v11i v21j

v12i v
22
j − v22i v12j v22i · v21j + v12i v

11
j

)
We will use that x ∈ DS0 means 1 = N(x) = x11x12 + x21 · x22. Writing

{vi, x, (vjx)∗} =
(
a b
c d

)
,

we can now compute as in Fig. 5 the elements a, b, c, d:

a = (v21i · x22)(v22j · x21)− (v21i · v22j )(x21 · x22),
b = ((v11j v

21
i − v11i v21j ) · x22)x21 − (v11j v

21
i − v11i v21j )(x22 · x21)

+v21j (v21i · x12x22)− v21i (v21j · x12x22),
c = ((v12i v

22
j − v12j v22i ) · x21)x22 − (v12i v

22
j − v12j v22i )(x21 · x22)

+v22i (v22j · x11x21)− v22j (v22i · x11x21),
d = (v22i · x21)(v21j · x22)− (v22i · v21j )(x21 · x22).

Lemma 4.5.2. Let v ∈ OS1 and x ∈ OS0. If half(x) = e1 and either half(v0) = e1
or half(v1) = e1, or if we make no restriction on x but insist that v0 = diag(1, z0)
or v1 = diag(1, z1) for some zi ∈ R, then the associators {vi, x, (vjx)

∗} vanish for
i, j ∈ {0, 1}.

Proof. For the first case, we use Computation 4.5.1. Given half(x) = e1, from N(x) = 1
we conclude x11 = 1, x21 = 0 and x12 = 1. The only non-vanishing part of the associator
is

b = v21j (v21i · x22)− v21i (v21j · x22).
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For i = j, the associator vanishes, as we also see directly in this case. The only interesting
case up to sign is (i, j) = (0, 1). We assume half(v1) = e1 (the case half(v0) = e1 is
completely analogous). This entails v211 = 0, so that b = 0.

For the second case, where no restriction on x is made, we assume v1 = diag(1, z1)
(again, the case of v0 = diag(1, z0) is analogous). Instead of a more monstrous computation,
we make use of Lemma 3.1.13:

(v0x)(x
∗v∗1) = ((v0x)x

∗) diag(z1, 1) = (v0N(x)) diag(z1, 1) = v0v
∗
1. �

Lemma 4.5.3. For OP1, one can construct sections s′1j to p|
X̃′

1
over Z1j with j ∈ {1, 2, 3}

and p|
X̃′

1
: X̃ ′

1 � X1 is an affine bundle.

Proof. As for HP1 in Example 4.4.5 or Theorem 4.4.7, we modify the sections sτ of
Zτ defined in Theorem 4.1.20 with a right multiplication by an element of norm 1,
via Lemma 3.2.6. The resulting maps s′τ are again p-sections over the same fiber by
the vanishing of associators from Lemma 4.5.2, since the sections si can be made to
satisfy vi = diag(1, zi) by construction in the proof of Theorem 4.1.20. The condition for
transitivity studied in Lemma 3.2.9 for the octonion-case is fulfilled on X̃ ′

n, as the y in
Lemma 3.2.9 is the v0 = (s′τ (A))0 here, which has v110 = 1 by the half-inverting procedure.
This tells us that the G×3

a -action on each Z̃τ = p∗(Zτ ) is free and transitive on the fibers.
The transition maps are affine, so we obtain an affine bundle trivialization. �

Theorem 4.5.4. Over a field k, the octonionic projective line OP1 is a motivic sphere:

OP1 ' S8,4 .

Proof. As before, using that X1 was proved to be A1-contractible by Corollary 2.1.5 and
Lemma 4.5.3 to apply Corollary 2.3.14. �

As OP1 = AQ8, this is a new proof of a special case of [ADF16, Theorem 2.2.5].
Remark 4.5.5. By [ADF16, Corollary 3.2.3], in OP1 = AQ8, the subset X1 (called X8 in
the article by Asok–Doran–Fasel) may not be realized as a unipotent quotient. This is
the reason why we aimed to construct the Xn as quotients of vector bundle action from
the beginning on (although for HP1 one could define a global Ga-action on X̃ ′

1 which has
X1 as quotient).
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Figure 5. Details of Computation 4.5.1
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12
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22
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x
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)
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4.5.2. The Cayley Plane.
We discuss all that we can say about motivic cell structures on the Cayley plane OP2.
Lemma 4.5.6. We collect some known facts on OP2:

(1) The split Cayley plane OP2 embeds as open subvariety of the complete Cayley
plane E6 /P1 (also known as “complex” Cayley plane OCP

2, in analogy to the
“real” Cayley plane), with closed complement F4 /P1 (a nice discussion of the
Hasse diagrams was written up by Iliev and Manivel [IM05]).

(2) The Cayley plane OP2 is an F4-homogeneous space and the completion
OP2 ↪→◦ E6 /P1 is F4-equivariant.

(3) There exists an involution on the Dynkin diagram E6 whose invariants on the
level of root systems are of type F4; This involution descends to E6 /P1 and leaves
F4 /P1 as well as the split Cayley plane invariant.

Summarizing, we have Fig. 6.

Figure 6. Homogeneous space structure and completion of OP2

OP2

F4
B4

E6
P1

F4
P1

∼

◦ |

The proof of the homogeneous structure as an algebraic variety is established by
Springer and Veldkamp [SV00, Chapter 7] for a field k with char(k) 6= 2, 3. The completion
is explained in the division algebra case by Pazourek, Tuek and Franek [PTF11]. A
comprehensive guide to octonion planes which also touches the split case was written by
Faulkner [Fau70]. �
Remark 4.5.7. The compactification E6 /P1 of OP2 also shows up in the classification of
so-called Severi varieties in the work of Zak on a conjecture of Hartshorne about complete
intersections. Here, E6 /P1 is the last Severi variety. An introduction to Severi varieties
and the results of Zak is given by Lazarsfeld and Van de Ven [LV84]. Most strikingly, the
dimension of a Severi variety is in 2, 4, 8, 16 ([LV84, Thm 3.1]), which has prompted several
authors (e.g. Atiyah and Berndt [AB03, Appendix] who also studied OP2 as algebraic
variety) to ask for an analogy or even a precise mathematical relationship between
Zak’s theorem and the Hopf invariant one theorem. Manivel and his coauthors have
studied the Severi varieties in several interesting papers. Landsberg and Manivel [LM01]
managed to construct a Freudenthal magic square relating the complexifications of the
split composition algebras (or, which amounts to the same, the complexifications of the
division algebras) to the Severi varieties. In this work however, we do not study E6 /P1

except to understand the open F4-orbit OP2.
Remark 4.5.8. There is a different approach to OP2 than using the hermitian matrices
(in fact, also for the other DPn), namely pseudo-homogeneous coordinates. These were
originally invented by Aslaksen in a way that did not work for OP2 and then Allcock [All97]
gave an improved account and showed that the definition (for division algebras) is
equivalent to the hermitian-matrix based one that we use. Held, Stavrov and van Koten
have proved that one can modify the pseudo-homogeneous coordinates to an analogous
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construction for split octonions [HSV09], where they write O′P2 for what we denote as
OP2.
Remark 4.5.9. On the topological space OP2(C)an ' OP2, there is a cell structure
consisting of a 0-cell, an 8-dimensional cell and a 16-dimensional cell. The algebraic
K-theory of the Cayley plane OP2 over a field k is K∗(OP2) = K∗(k)⊕K∗(k)⊕K∗(k), a
computation of Ananyevskiy [Ana12, 9.5.]. This strongly suggests that any motivic cell
structure would also consist of three cells, a 0-cell and two cells that realize to S8 and S16.
The twist one would expect for the cells can be read off from the motive, see Remark 2.2.6
where we mention that one can compute M(OP2) =M(F4 /B4) = 1⊕ 1(4)[8]⊕ 1(8)[16].
This shows that the expected motivic cell structure of OP2 has a 0-cell, an S8,4 and an
S16,8.

With similar arguments, also looking at the topological cell structure, the K-theory
as computed by Ananyevskiy (or earlier authors) and the computations of Remark 2.2.6
we see that OP1 = AQ8 is expected to admit a motivic cell structure with a 0-cell and an
S8,4. As mentioned before, Asok, Doran and Fasel proved that AQ8 is A1-equivalent to
S8,4 [ADF16].

Conjecture 2. There exists a subspace A ⊂ X̃ ′
2 which is isomorphic to an affine space

and the morphism p|A : A→ X2 ⊂ OP2 is an affine bundle.
By the same proof strategy as for CPn and HPn, i.e. an invocation of Proposition 4.2.20,

we would get an unstable motivic cell structure for OP2.

The missing step to prove this conjecture is that we do not have a good candidate for A
right now. It is also no longer possible to modify sections with any right multiplication,
since the associator condition fails in general. One may not always have p(vx) = p(v)
for an x which half-inverts v0. It is conceivable that a good choice of κ in Lemma 3.2.6
could supply a half-inverter which associates. The sections si from Theorem 4.1.20 map
to OS2,ass already (due to the computations in Lemma 3.2.6), and a good half-inverter
would stay in the p-fiber, so that the G×e

a -orbits of the sections s′τ would be subsets of
X̃ ′

2 ∩OS2,ass. It is not clear whether the union of these G×e
a -orbits (= p-fibers) would be

an affine space or A1-contractible for any other reason.
Remark 4.5.10. We conclude this section by a reference to Example 2.3.26 where we
constructed an unstable motivic cell structure on ΣOP2 by using the F4-equivariant
completion to E6 /P1:

E6 /P1 → Th
(
NF4 /P1

)
→ ΣOP2 .

It would be interesting to analyze how the embedding OP1 → OP2 behaves with respect
to this cell structure. For OP1 = AQ8 we can use the equivariant completion as well,
which is AQ8 ↪→◦ PQ8←↩p PQ7, so that we obtain a motivic cell structure:

PQ8 → Th (NPQ7)→ ΣOP1

As homogeneous varieties, PQ8 ←−∼ Spin(5, 5)/P1 and PQ7 ←−∼ Spin(4, 5)/P1. An em-
bedding OP1 ↪→p OP2 can be identified as an orbit under the group Spin(4, 5) acting
on OP2 ←−∼ F4 /Spin(4, 5) on the left via Spin(4, 5) ↪→ F4. The stabilizer of such a
Spin(4, 5) is Spin(4, 4), and OP1 ←−∼ Spin(4, 5)/Spin(4, 4). It seems likely that the
morphism Spin(4, 5) ↪→ F4 is compatible with a morphism Spin(5, 5) ↪→ E6, so that we
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obtain a morphism of equivariant completions extending OP1 → OP2. In turn, we obtain
a morphism of unstable motivic cell structures extending ΣOP1 → ΣOP2. Connectivity
of the morphism ΣOP1 → ΣOP2 can be inferred from connectivity of the morphism
PQ8 → E6 /P1 and the morphism of Thom spaces of the normal bundles of the boundary
components.

From the theory of Albert algebras (that is, algebras of hermitian 3 × 3-matrices
over an 8-dimensional composition algebra), one can see the morphism Spin(5, 5) ↪→ E6

directly: decomposing as before

A =

(
z ψ†

ψ a

)
∈ J3(O)

we obtain a decomposition of J3(O) (as a vector space) into R ⊕ O2⊕J2(O). By the
analogous decomposition, the component J2(O) is a 10-dimensional affine space, equipped
with a split form given by the trace. The linear action of Spin(5, 5) can be seen in this
decomposition, as it acts on J2(O) preserving the trace and on O2 via the 16-dimensional
half-spin representation of Spin(5, 5). Since E6 are the linear automorphisms of J2(O),
this hands us a morphism Spin(5, 5) ↪→ E6. We can also see that this morphism is
compatible with the morphism Spin(4, 5) ↪→ F4, as F4 is the automorphism group of the
traceless part of J3(O) and likewise Spin(4, 5) is the automorphism group of the traceless
part of J2(O).

We leave it up to the reader to draw conclusions on the motivic connectivity of the
space ΣOP2 and its consequences for motivic homotopy sheaves and obstruction theory.
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4.6. Explicit Cell Structures

We describe a conjectural method to construct inductive cell structures for the DPn by
attaching a single cell along a map with domain a motivic sphere in each step. This
is analogous to the topological construction described in Example 1.5.3. We assume
contractibility of Xn and an additional conjecture.
Conjecture 3. There is a space Yn which acts as avatar of DPn \ι0DP0 in the sense
that Yn ↪→ DPn \ι0DP0 and DPn−1 ↪→ Yn is a section to the composition of an A1-weak
equivalence t↓ : Yn → Vn with Vn � DPn−1.

We remind that ι0 : DP0 ↪→p DPn is the embedding as upper left block. A candidate for
such a Yn would be Wn from Definition 4.2.3 or {z− 1 invertible}, compare Lemma 4.2.2.
We also conjecture that the obvious truncation map Wn � Vn is a vector bundle, hence
Wn � DPn−1 an A1-weak equivalence.
Lemma 4.6.1. There is a closed immersion t̃↑ : DSn−1 ↪→p X̃ ′

n given by

ϕ 7→
(
1 0
0 0

)
⊕ ϕ.

Proof. The image is an explicitly described closed subvariety, with fixed v0. �

Given Conjecture 3, we have a diagram:

Ṽn

X̃ ′
n Xn

Vn Yn

DPn

t↓

t̃↑

analogous to Example 1.5.3. We would get a homotopy cofiber sequence

Ṽn � Vn → DPn

which is weakly equivalent to

DSn−1 � DPn−1 → DPn

exhibiting DPn as DPn−1 with a cell DSn−1 attached along the Hopf map

p : DSn−1 � DPn−1 .



CHAPTER 5

Applications

5.1. Hermitian K-Theory

Panin and Walter constructed a spectrum representing hermitian K-Theory using the
quaternionic Grassmannians. We discuss cellularity of this spectrum, prompted by results
of Spitzweck and Hornbostel.

As explained by Hornbostel [Hor15], cellularity of the hermitian K-theory spectrum
has interesting consequences.

In unpublished work of Spitzweck ([Spi10], private communication) stable motivic
cellularity of the hermitian K-theory spectrum is proved, starting from a proof of stable
cellularity of HPn and the quaternionic Grassmannians HGr(n,m+ n) along the lines of
Panin–Walter’s cohomological cell structure [PW10b].

By repeating the proof of the main theorem for the spaces HGr(m,n+m) instead of
HPn = HGr(1, n+ 1), working with trace m projectors in hermitian matrices, one may
obtain the same results. In particular, we can state the obvious:

Conjecture 4. Let k be a field, then the motivic spaces HGr(n, 2n) have a finite motivic
cell structure. Furthermore, HGr = colimnHGr(n, 2n) and K H := Z×HGr have a stable
cell structure.

Panin and Walter showed [PW10a, Theorem 8.2] that the space K H is A1-weakly
equivalent to K Sp, the infinite loop space representing Schlichting’s hermitian K-theory.

As we mentioned in Fact 2.3.15, stable cellularity of K H is rather easy to prove, so
that an easy consequence is the second part of the conjecture just made.

Theorem 5.1.1. The hermitian K-theory spectrum K Sp is stably motivically cellular
(over any field).

Proof. The variety HGr(n, 2n) is homogeneous under Sp2n. It is spherical (as it has only
finitely many orbits under a Borel subgroup), and the wonderful completion is given
by Gr(n, 2n). We use the direct construction of a stable motivic cell structure from
Remark 2.3.23 or just the general theorem of Fact 2.3.15 to see that HGr(n, 2n) is stably
cellular. The colimit HGr is then also stably cellular (as it is a homotopy colimit) and the
product with a discrete space Z is obviously again stably cellular. We then apply [PW10a,
Theorem 8.2] for K H ' K Sp. �

By this argument, one can drop the assumption on the characteristic made by
Spitzweck [Spi10] and Hornbostel [Hor15, Proposition 3.3]. This does not improve the
main result [Hor15, Theorem 3.2], as it applies only to characteristic 0.

63



64 5. APPLICATIONS

5.2. Algebraic Geometry: Symplectic Bundles

We explain in an example how the connectivity of HPn given by the motivic cell structure
can be used to obtain information on algebraic principal bundles under symplectic groups,
analogous to the topological story in Section 1.4. For this, we need to recall some unstable
motivic connectivity theory.
Convention 5.2.1. For this section, let k be a field. We work with smooth k-varieties
and motivic spaces Spc(k) over k.
Definition 5.2.2. Let X be a motivic space and (p, q) a pair of non-negative integers.
We say X is A1-connected if πA1

0 (X) −→∼ 1. We say X is (p,q)-connected if πA1

p,q(X) =
[Sp,q, X]A1 −→∼ 1.

For a comparison of different connectedness assumptions including the one made here,
see Asok’s article [Aso16].
Theorem 5.2.3 (Morel). Let (n, q′) and (m, q) be pairs of non-negative integers. If
n < m or both n = m and q′ > 0 = q, in the pointed A1-homotopy category

[Sn+q′,q′ , Sm+q,q]A1 = 0.

For p = m + q, the motivic sphere Sp,q is (p − 1, q)-connected and more generally
(p′ − 1− q + q′, q′)-connected for any p′ ≤ p and any q′.

This result is part of Morel’s A1-connectivity theorem [Mor12, Corollary 6.43].
Lemma 5.2.4. If X and Y are motivic spaces with motivic cell structures of the form
that there are diagrams D(X) and D(Y ) indexed by sets I and J respectively with
hocolim(D(X)) = X and hocolim(D(Y )) such that for each i ∈ I and each j ∈ J

D(X)i ' Spi,qi and D(Y )j ' Spj ,qj with pi − qi < pj − qj

then [X,Y ]A1 = 0.

Proof. Any morphism X → Y can be decomposed into morphisms D(X)i → D(Y )j ,
which are all A1-nullhomotopic due to Theorem 5.2.3. �

Definition 5.2.5. In the situation of the previous lemma, we say that X has cells in
bidegrees (pi, qi).
Lemma 5.2.6. If X is a smooth affine variety with motivic cell structure which has cells
in bidegrees (pi, qi) such that (pi, qi) ≤ (4, 1), then every symplectic bundle which becomes
trivial upon adding a trivial line bundle is already trivial.

Proof. From the assumptions, [X,HPn] = 0. We remember that

HPn ←−∼ Sp2n+2 / Sp2×Sp2n .

Apply the covariant functor [X,−] to the fiber sequence

Sp2n+2 / Sp2×Sp2n → B (Sp2×Sp2n)→ B Sp2n+2

and then the Sp2n-torsor classification in A1-homotopy theory [AHW15, Theorem 4.1.2].
�
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Remark 5.2.7. A motivic cell structure for OP2 = F4 / Spin9 which consists of a cell
OP1 and higher-degree cells would have similar implications for Spin9 resp. F4-torsors
on smooth affine varieties. Our cell structure for ΣOP2 from Example 2.3.26, further
discussed in Remark 4.5.10, can be used to get connectivity results on ΣOP2 from
ΣOP1 ' S9,4. This might be useful to obtain results in motivic obstruction theory,
compare Remark 1.4.6. The blueprint for such results are the topological computations of
Mimura [Mim67], where πn(OP2) is computed for small n, which is also used to compute
πn(F4) for small n.

5.3. Motivic Homotopy Theory: Stable Stems

It is desirable to lift the motivic Hopf elements η, ν, σ ∈ π∗(S) to the motivic sphere
spectrum. If one had an explicit cell structure as conjectured in Section 4.6, this would
follow. We mention the related construction of Dugger and Isaksen.
Remark 5.3.1. Given a homotopy cofiber sequence

DSn−1 → DPn−1 → DPn

for n = 2 for one D, we have as attaching map (the first map) fD : DS1 � DP1, which is
isomorphic to fD : AQ2d−1 � AQd. This is weakly equivalent to fD : S2d−1,d → Sd,d/2.
It sits in a fiber sequence Sd−1,d/2 → S2d−1,d fD−−→ Sd,d/2. We have [fD] ∈ πs(d−1,d/2)(S

0,0).
This means, up to the existence of the conjectured homotopy cofiber sequence from
Section 4.6, there are elements

η =[fC ] ∈π(1,1)(S)(8)
ν =[fH ] ∈π(3,2)(S)(9)
σ =[fO] ∈π(7,4)(S).(10)

Remark 5.3.2. The constructions in Chapter 4 are made such that the complex points of
the motivic cell structure have the homotopy type (as diagram) of the classical topological
cell structure, so that the [fD] would be motivic lifts of the classical Hopf elements.
Remark 5.3.3. Dugger and Isaksen constructed motivic Hopf elements [DI13] with a
homotopical construction (that they call geometric) which also lift the classical Hopf
elements. It is not yet known whether the elements described here coincide with these,
but the author conjectures so (at least up to sign).
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