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Abstract. Many recent processor architectures expose their datapaths so that the compiler can
not only schedule instructions to increase instruction-level concurrency, but can even take care
of moving values between the processing units of the processor to optimize their allocation
at compile-time. In this paper, we introduce with the Synchronous Control Asynchronous
Dataflow (SCAD) paradigm another exposed datapath architecture and discuss how code can
be generated best for SCAD architectures. While traditional compilers focus on register usage
and therefore evaluate expressions usually by a depth-first traversal, we show that compiler
techniques more adequate for SCAD should better focus on a breadth-first evaluation of expres-
sions as known from queue machines. This way, they can forward values from one processing
unit to another one without using registers at all. However, these machines sometimes have to
make use of additional swap and duplication operations that add some overhead to the actual
computation. Since a queue machine can be simulated by a universal SCAD machine, we can
derive SCAD programs from queue programs. Moreover, if the queue program does not con-
tain swap or duplication operations, the SCAD program is optimal for a single processing unit,
where ‘optimal’ refers to the minimal number of swap and duplication operations. However,
we also show that sometimes SCAD programs can avoid this overhead even if queue machines
need it, which makes SCAD code generation more difficult.

1. Introduction

Since almost a decade, all newly announced microprocessors are multicore processors for various
technical reasons. This tremendous shift in processor architecture demands for multithreaded
programming that is however not possible for sequential problems and very difficult for others
[13]. An alternative is still to increase the use of instruction-level parallelism (ILP). In particular,
code that is automatically generated in model-based design offers usually a big amount of ILP.
There are essentially two main approaches to exploit ILP in processor architectures: First, using
dynamic scheduling as introduced by the Tomasulo algorithm [21], and second by static scheduling
as preferred by very long instruction word (VLIW) architectures [5, 10] and other embedded
processors to reduce the power consumption.

Both variants of ILP face limits on their further scalability: Dynamic scheduling implies increased
chip size and power consumption since in addition to the computation also the instruction scheduling
is done by the processor at runtime. Static scheduling avoids this since the compiler handles
all scheduling decisions at compile-time. However, also VLIW processors face limits on ILP:
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Most compiler techniques like trace scheduling [9, 10] and software pipelining [12, 16] focus on
scheduling instructions across basic blocks, and find this way often enough independent instructions.
However, the number of registers is an upper bound for the number of instructions that can be
bundled in a VLIW word, since the RISC instruction format demands that all instructions finally
write their results into registers. Hence, while the introduction of registers was a good idea for
sequential processors, it imposes now limits for ILP. Adding more registers changes the instruction
set, and also the wiring of the register file becomes another bottleneck that already lead to clustered
architectures [2].

It can be observed that new ideas in processor architecture somehow all try to eliminate the
explicit use of registers in that the architectures expose not only the processing units, but also all
datapaths between them, and are therefore often called exposed datapath architectures. Examples
of exposed datapath architectures are Raw [14] with its commercial variant Tilera [3], WaveScalar
[19], TRIPS [4], Flexcore [20], explicit datapath wide SIMD [23], and the transport-triggered
architectures (TTAs) [6]. These architectures provide a large number of processing units, and the
compiler is not only responsible to schedule instructions to these processing units, but also to move
data directly from one processing unit to another one. This way, the use of a central register file can
be bypassed. While these architectures have been studied already in great detail, current compiler
technology is still based on the classic register architectures where expressions are evaluated in a
depth-first manner to reduce the need of registers [18]. However, we demonstrate that compilers
more adequate for exposed datapath architectures should rather evaluate expressions in a breadth-
first manner as known from queue machines [22, 8] which exposes more ILP and allows bypassing
of registers (and consequently memory accesses).

In this paper, we present with the Synchronous Control Asynchronous Dataflow (SCAD) archi-
tecture a new exposed datapath architecture. In SCAD, each processing unit is equipped with
queues for storing its inputs and outputs (see Figures 1 and 5). Output queues of all processing
units are connected to input queues via a data transport network (DTN). The SCAD machine is
programmed by a sequence of move instructions, whose effect is to transport a value from the
head of an output queue of a processing unit to the tail of an input queue of the same or another
processing unit. A processing unit can fire if it finds enough operands in its input queues to execute
the operation, so that the dataflow is asynchronous. The registration of move instructions at the
queues is however done synchronously to guarantee a correct execution. Similar to other exposed
datapath architectures, the main advantage of SCAD is to directly move values between processing
units and therefore to break the limit for ILP given by the number of available registers. A second
advantage is the simple extension to application-specific processing units without having the need
to change the instruction set.

We motivate a code generation technique for our SCAD architecture based on queue machines
that also do not make use of registers. We show that while a queue machine can be simulated by a
SCAD machine, the reverse simulation is not always possible. As a consequence, optimal code can
be generated this way for SCAD machines with a single processing unit if the queue program does
not require additional swap and duplication operations. However, SCAD code can avoid overhead
for data transport in cases where the queue machine needs it.

The outline of the paper is as follows: our SCAD architectures are described in Section 3. In
Section 4, we explain the code generation for queue machines followed by a comparison of queue
and SCAD machines in Section 4.3. The final section summarizes the contributions of this paper
and concludes by mentioning important future work.
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2. Related Work

There are already many different kinds of exposed datapath architectures: Transport-triggered
architectures (TTAs) [6] use registers at output and input ports of processing units unlike queues
in our SCAD machines. The output ports are connected to input ports using an interconnection
network. Similar to SCAD machines, TTAs only need move instructions that transport values
from output ports to input ports, and computation is done as side effect of the data transport. The
compiler is responsible not only to order these move instructions in a sequence, but also to pack
independent moves into parallel bundles, where each set of moves can be executed by the hardware
in one step. This is an extreme case of static scheduling, since in addition to instruction scheduling
also the allocation of processing units is done at compile time. Having move instructions only,
allows arbitrarily complex processing units both in TTA and SCAD.

The RAW machine [14] consists of processing units arranged in a 2D tiled architecture with
routers between them. It uses compiler-determined issue of operations and data transports via
inter-ALU routers, while in SCAD, operations are executed dynamically in dataflow order which
allows arbitrary latencies of processing units.

Both Wavescalar [19] and TRIPS [4] are based on the explicit dataflow graph execution (EDGE)
paradigm. Both fetch (basic) blocks of instructions (called frames in TRIPS and waves in
Wavescalar) and execute them on an array of processing units. In TRIPS, the compiler maps
operations to be executed to the processing units and execution is carried out in static dataflow
fashion (static placement dynamic issue [15]). In Wavescalar, both placement and issue of opera-
tions are performed during runtime. Unlike TRIPS, Wavescalar uses dynamic dataflow execution
using wave numbers as tags for matching operands for a function application across waves. Due
to this, Wavescalar could completely abandon the program counter inherited from von Neumann
execution, which TRIPS relies on to fetch the sequence of frames of instructions. Also in SCAD,
we use the program counter to fetch the sequence of move instructions.

In Flexcore [20], processing units are connected by a flexible network via a set of control signals.
A 91-bit native instruction set architecture (N-ISA) encodes connections enabled by the flexible
interconnect status of control signals and operations to be executed on individual processing units.
Similarly, in the explicit datapath wide single instruction multiple data (SIMD) architecture [23], a
set of processing units are arranged in a circular layout where each unit is connected to its left and
right neighbors. There is a control processor that can talk to all processing units. It is programmed
using very long instructions that encode for each execution unit the source and destination of its
operands in addition to the role of the control processor. Even though code generation for the above
architectures obviously utilize data transport of intermediate results without using registers, it is
still based on traditional compiler technology that optimizes the use of registers.

3. SCAD Architectures

The organization of processing units in a SCAD architecture is shown in Figure 1. Each processing
unit (PU) has queues (or first-in-first-out (FIFO) buffers) at its input and output ports. Input and
output buffers are connected to two interconnection networks: There is the move-instruction bus
(MIB) (given in red color) which is used to synchronously send values from the control unit to the
PUs, and the data transport network (DTN) (given in green color) which is used by the PUs to
asynchronously send values to each other whenever these are available.
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Buffers hold pairs (adrval) of en-
tries. For an input buffer, adr is the 1
address of the output buffer of the PU
that produced or that will produce the
value val. An entry (adr, L) with the
special value L is used to indicate that
the required value is not yet available
and will later be sent from the output
buffer adr. Similarly for an output
buffer, adr is the address of the input
buffer of the PU that will consume
the value val. An entry (adr, L) with
the special value L is used to indicate
that the required value is not yet avail-
able and will later be produced by the
PU and can then be sent to the input
buffer adr.

SCAD is programmed by a se-
quence of move instructions (src,tgt)
whose semantics is to move a value
from the head of output buffer src to
the tail of input buffer 7gz. Although
only two-input one-output PUs are
shown in Figure 1, a PU in SCAD Figure 1: Architecture of a SCAD Processor
architecture may implement any arbi-
trary functionality with an arbitrary number of inputs and outputs. Similarly any interconnection
network ranging from a simple set of buses and sockets to more complex parallel networks such as
Omega, Banyan, or Benes networks can be used as DTN. These properties recommend SCAD as
an interesting candidate for application-specific processors.

The execution of a move program works as follows: Using the program counter, the control unit
(CU) will fetch the next move instruction (src,zgt) from the instruction memory and will broadcast
it via the MIB to all PUs. The input buffer with address gt will add the entry (src, L) to its tail, and
the output buffer with address src will add the entry (7g7, L) to its new tail. If one of the two buffers
should be full, it will signal this via a feedback signal fullBuffer to the control unit. The other buffer
will then also not store the entry, and the control unit will resend the move instruction (src,7gt) in
the next cycle (it is stalled at this point of time). The data transport related with a move instruction
(sre,tgt) is deferred to a later point of time when the data is available. Therefore, control flow is
synchronous and dataflow is carried out asynchronously and in dataflow order. It is important to
note that all move instructions are stored in the buffers in the order in which they were issued by
the control unit, i.e., as specified by the program. To see in more detail how a move program is
executed, let us consider the behaviors of the PUs, and its input and output buffers.

If a processing unit will find entries (adry, x1),...,(adry, x,,) with x; # L at the heads of
its m input buffers and there is free space in its n output buffers, it can react and will consume
entries (adry, x1),. .. ,(adry, x,;) to produce new result values y; := f1(x1,...,Xm), ..., Yp =
fu(x1,...,xy) Where f1,..., f, are the functions associated with that PU. Each output value y; is
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then stored in that entry (7gf, L) of output buffer number i that is closest to the head of the output
buffer, i.e., that entry is replaced with (7gt,y;). 1f there should be no such entry, then a new entry
(L,y;) is placed at the tail of output buffer i, and the next target address for this output buffer will be
stored in this entry. Note that it is possible that the result value has been computed before a move
instruction has been issued by the control unit to move it to another place.

The output buffers are responsible for the final transport of data by sending messages between
PUs over the DTN. Such a message (src,tgt,val) consists of the address of the sending output buffer
src, the address of the input target buffer 7gz, and the value val that is transported by the message.
A message (src,tgt,val) is created when the output buffer with address src has a completed entry
(tgt,val) as its head. This message is then sent to input buffer 7gz via the DTN. When it will finally
reach input buffer 7gt, the input buffer will replace the entry (src, L) closest to its head with (src,val),
and this may trigger a new operation of its PU. Additionally, the output buffers snoop the MIB for
receiving new target addresses for their values. If output buffer src will see the move instruction
(src,tgt) on the MIB, it will check whether it contains an entry (L,y;). If so, it will replace the one
closest to its head with the address (zgt,y;). Otherwise, it will create a new tail (zg¢, L), if there is
still space available. Otherwise, it will signal fullBuffer to the control unit, which then has to stall
and resend the move instruction later. The input buffers also always snoop the two interconnection
networks, i.e., the MIB and the DTN. As explained above, address entries (src, L) are put in order
in the input buffer rgr whenever a move instruction (src,2gt) is seen on the MIB, and an available
entry (src, L) is completed with the value val when a message (src,tgt,val) arrives.

We must assume at least one store unit (SU) that has two input buffers, one for the memory
addresses and another one for the values to be stored at the corresponding addresses. There is no
output buffer. Instead, the SU stores the values in the order as specified by the input buffers (in the
program order) to the main memory. Clearly, there is also at least a load unit (LU) that has just one
input buffer for the addresses and an output buffer for the values loaded from memory. They will
be sent through the DTN similar to output values of other PUs, and either the SU and the LU have
to be synchronized or implement a weak memory model.

Branch instructions are handled as follows by the control unit (CU): if the target of a move
instruction is the CU itself, it is meant to be the program counter, and thus, the CU has to wait
until this value arrives at its input buffer associated with the program counter. Otherwise, it will
generate the next program counter on its own and will put it in that input buffer.

Note that we have not mentioned register files or other local storage although it is possible to use
them just like any other PU in the SCAD architecture. In the following section, we motivate a code
generation technique that does not require local memory other than the buffers. In other words, it
utilizes the capability of the SCAD architecture to move values from one PU’s output buffer to the
same or another PU’s input buffer.

4. Simulation of Queue Machines

4.1. Code generation for Queue Machines

A queue machine [22, 8] reads operands for executing an operation from the head of a queue and
adds the results to the tail of that queue. The architecture of a queue machine is shown on the left
of Figure 2, with a queue program and the contents of the queue after executing each instruction of
that program. A list of queue instructions is listed in Table 1.
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’ program queue content
load x1,1 | [x1]

load x2,1 | [x1,x2]

° 0 load x3,1 | [x1,x2,x3]

add 1 [x3,x1+x2]
load x4,1 | [x3,x1+x2,x4]

@ G @ @ load x5,1 | [x3,x1+x2,x4,x5]

mul 1 [x4,x5,x3*(x1+x2)]
div 1 [x3*(x1+x2),x4/x5]
e e sub 1 [x3*(x1+x2)-(x4/x5)]

Figure 2: Architecture of a queue machine (left), an expression with its queue program and the content of
the queue after executing each instruction.

Control Unit

Queue Instruction Description

load adr,n Load data from memory address adr and add n copies of the loaded
value to the tail of the queue.

store adr Store the value from the head of the queue to the memory address adr.

opcode n Dequeue necessary operands from the head of the queue to execute the
operation opcode and add n copies of the result to the tail of the queue.

swap Dequeue two operands from the head of the queue, swap them, and add
them to the tail of the queue.

dup n Dequeue one operand from the head of the queue, and add n copies of
it to the tail of the queue.

goto L Unconditional Branch: replace current program counter pc by pc+L.

ifGoto L Conditional Branch: replace current program counter pc by pc+L if the
head of the queue is different to zero.

Table 1: List of queue instructions

Generating a queue program to evaluate an expression without swap and dup instructions is
done by a breadth-first traversal of the expression tree [8] as shown in Figure 2. A consistent left to
right or right to left traversal ensures that operands required to execute operations at one level are
available at the head of the queue in the correct order.

Basic blocks of programs are often represented by directed acyclic graphs (DAGs). Generating
a queue program for an expression free is easy since an expression tree is by definition a level-
planar graph [17]. However, generating queue programs for general expression DAGs involves
first converting the DAG into a level-planar graph and then performing a breadth-first traversal of
the graph [17] as shown in Figure 3: The given expression DAG is first levelized, which means
that operations must only refer to operands at the same level. This can be easily achieved by
introducing dup operations which take a value from the head of the queue and add some copies
of it to the tail of the queue. Then, the graph is planarized which means that crossings of edges
are removed by inserting swap operations which take two values from the head of the queue, and
add them in exchanged order to the tail of the queue. One can sometimes avoid the introduction of
swap operations by suitable ordering of input or output nodes, but not in general. Finally, another
levelization is usually required since swap operation may be placed at new levels.
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given expression

levelized expression

planar expression

level-planar expression | queue program

X2

load x1,1
load x2,2
add 2
dup 2
dup 1
swap
dup 1

Q 0 Q mul 1
add 1

c e store yl
store y2

Figure 3: A given expression DAG with its levelized version, its planarized version, the final level-planar
expression DAG, and the corresponding queue program.

4.2. Bypassing Usage of Registers

Exposed datapath architectures try to avoid the use of
registers, and the examples of queue programs shown in
Figures 2 and 3 show how the considered expressions
are evaluated without the use of registers at all. The
advantage is that the size of the queue can be much larger
than the number of registers available in RISC instruction
sets. In contrast, traditional register machines which are
the basis of RISC instruction sets [11] expect operands
in registers and also write back the results in registers.
For expression trees, it is simple to implement optimal
code generators in the sense of minimal register usage

load x1,r1
load x2,r2
add r1,r2,rl
load x3,r2
mul r2,rl,ri
load x4,r2
load x5,r3
div r2,r3,r2
sub rl,r2,rl
store y,rl

(or minimal use of load/store operations) [18]. This is
done by a depth-first traversal that computes the Strahler
number [7] of the subtrees which is the minimal number
of required registers. Intuitively, this is the height of the
highest full binary subtree in the expression tree which is 3 in the example of Figure 2. An optimal
program using three registers for this expression is shown in Figure 4.

Traditional code generators therefore prefer a depth-first traversal which is however bad for
queue programs that would then have to introduce a lot of swap and dup instructions. Following a
breadth-first evaluation of expression trees allows one even to evaluate expression trees of arbitrary
size without any swap and dup instructions and any other memory than just the queue. The
maximal size of the queue is then the width of the widest level of the expression tree. In contrast,
the Strahler number can become the height of the tree, and since that can exceed the number of
available registers, it will require the use of load and store instructions on any RISC architecture.

Figure 4: Optimal RISC code for the ex-
pression of Figure 2.
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The same is the case for expression DAGs where code generation for RISC architectures is known
to be NP-complete [1].

We observe that registers are not required at all for queue machines if we follow a breadth-first
evaluation of the expression trees or DAGs where DAGs first have to be made level-planar as shown
in Figure 3. This operation order ensures the availability of results from one level of the expression
tree/DAG before the consuming operation at the next level is executed. It is moreover well-known
that queue machines offer an increased instruction-level parallelism in that all operations at each
level of the expression DAG can be executed in parallel.

4.3. Simulation of Queue Machines by SCAD Machines

In the following, we show that a queue machine can be
simulated by a SCAD machine, but not vice versa. Con-
sider the architecture of a universal SCAD machine shown
in Figure 5. A universal SCAD machine is a SCAD ma-
chine with a single universal processing unit. It has one
output queue out to store the result of each operation
and four input queues (Figure 5 only shows two of them):
inp1 to store the first operand, inp2 to store the second
operand, opc to store the operation to be executed, and
cps to store the number of copies of a result to be added
to the output queue. As usual in SCAD, a universal PU
fires if relevant data is available at the heads of its input
buffers to execute the operation. Note that the universal D
SCAD machine’s execution is close to the queue ma-

chine’s execution in that instead of using a single queue

for storing operands and results of computations, a uni- Figure 5: A SCAD Machine with a single
versal SCAD machine uses separate queues. In fact, each

queue instruction can be mapped to a sequence of move
instructions for the universal SCAD machine as listed in Table 2.

universal PU.

Queue Instruction Corresponding SCAD Move Instructions

load adr,n adr->inp1; load->opc; n->cps;
store adr adr->inpl; out->inp2; store->opc;

op n out->inpl; out->inp2; op->0pc; n->cps;
swap out->inpl; out->inp2; swap->opc;

dup n out->inpl; dup->opc; n->cps;
goto PC,L pc->inpl; goto->opc; L->cps;
ifGoto PC,L pc->inpl; out->inp2; ifGoto->opc; L->cps;

Table 2: Mapping Queue Machine Instructions to SCAD Move Instructions of a Universal SCAD Machine.

For the queue program of the level-planar DAG of Figure 3, the corresponding move program for a
universal SCAD machine obtained using this mapping is shown in Table 3. We can prove now the
following theorem:
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Queue Instruction Corresponding SCAD Move Instructions

load x1,1 x1->inpl; load->opc; 1->cps;
load x2,2 x2->inpl; load->opc; 2->Cps;
add 2 out->inpl; out->inp2; add->opc; 2->Cps;
dup 2 out->inpl; dup->opc; 2->Cps;
dup 1 out->inpl; dup->opc; 1->cps;
swap out->inpl; out->inp2; swap->opc;

dup 1 out->inpl; dup->opc; 1->cps;
mul 1 out->inpl; out->inp2; mul->opc; 1->cps;
add 1 out->inpl; out->inp2; add->opc; 1->cps;
store yl yl->inpl; out->inp2; store->opc;

store y2 y2->inpl; out->inp2; store->opc;

Table 3: Queue Program and SCAD Move Program for the Expression of Figure 3

Theorem 1 Queue machines can be simulated by SCAD machines with a single universal pro-
cessing element. Moreover, for any queue program without swap and dup instructions, there is a
corresponding SCAD program without swap and dup move instructions. However, there are SCAD
programs without swap and dup move instructions where the queue machine requires swap and
dup instructions.

Proof: Given any queue program and the corresponding SCAD program generated by the
mapping given in Table 2. It is not difficult to see that the contents of the queue of the queue
machine and the output queue of the universal SCAD machine will be one and the same after
execution of each queue instruction on the queue machine and the corresponding move instructions
on the universal SCAD machine. Hence, a queue machine can be simulated by a universal SCAD
machine.

expression DAG | level-planar DAG | queue program

load x1,2
‘ 0 ‘ 0 load x2,2 x1->inpl; load->opc; 2->cps;
dup 1 x2->inpl; load->opc; 2->cps;

swap out->inpl; out->inpl;

e o e dup 1 out->inp2; out->inp2;
sub 1

sub->opc; 1->cps;
div 1 div->opc; 1->cps;

e @ e @ store vyl y1->inpl; out->inp2; store->opc;
store y2

y2->inpl; out->inp2; store->o0pc;
Figure 6: A given expression DAG with its planarized version, the corresponding queue program with swap
and dup instructions, and an equivalent SCAD program without swap and dup instructions.

SCAD program

The converse is however not true. For the simple basic block y1 = x1-x2; y2 = x1/x2, we
obtain the expression DAG and its level-planar version as shown in Figure 6. As can be seen,
the expression DAG is not planar and therefore, we have to introduce additional swap and dup
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instructions for the queue machine. This is required since all operands have to be brought into
a total order in the queue machine since it has only one queue. After loading, duplicating, and
swapping, the content of the queue is then x1,x2,x1,x2 so that the two binary operations can read
their operands in the right order to compute x1-x2 and x1/x2. For the SCAD machine, we can
do without swap and dup instructions: To this end, we first load two copies of x1 and then two
copies of x2, so that the content of the output buffer is x1,x1,x2,x2 after the first two lines. We
then move the two copies of x1 to input buffer inp1 and then the two copies of x2 to input buffer
inp2 so that inp1 holds values x1,x1 and input buffer inp2 holds values x2,x2. We then move
the opcodes of sub and div to the opc buffer, and can then get the results from the output buffer
for storing. ]

Hence, the SCAD machine has more freedom to order values because of two separate input
buffers that only require total ordering of the operands that pass these buffers. It is still the case
that SCAD machines are closer to queue machines than to register machines, and therefore their
code generation should also be better done in a similar way as for queue machines.

In particular, based on the above theorem, we can say that if we generate for a given basic block
a level-planar DAG, we can then generate a SCAD program without having the need of additional
local storage or registers. The number of swap and dup operations is then exactly the number of
swap and dup nodes of the level-planar DAG.

However, as observed by the example shown in Figure 6, we can see that it is not always
necessary to generate a level-planar graph for a given expression DAG. The reason for this is that
any edge crossing in the DAG is a violation for the queue machine, but not necessarily for the SCAD
machine. In the SCAD machine, we have several queues, and we therefore only have to consider
edge crossings of the same buffers that have to be made planar. In the example of Figure 6, x1 and
x2 were put in different input buffers inp1 and inp2, respectively, and were also used as different
operands (either left or right operand) of all operations that used them. As a consequence, the edge
crossing is no problem, and we can generate SCAD code without overhead. Bytheway, the same is
the case for the example in Figure 3.

Hence, SCAD machines have less overhead due to operand ordering, but this even makes their
code generation more difficult. In particular, for SCAD machines with many processing units, the
allocation of processing units and buffers for given instructions is crucial for code generation.

5. Conclusion and Future Work

In this paper, we presented the SCAD architecture —a new exposed datapath architecture — that avoids
the use of registers, so that instruction-level parallelism is not limited by the number of registers
as it is the case for VLIW architectures. Instead, the only instructions are move instructions, and
the compiler has to generate move instructions in a way that values available in output buffers of
processing elements can be moved to input buffers of other processing elements. Once processing
elements have available inputs, they consume them and produce corresponding output values that
are then sent by the output buffers to other processing elements.

To this end, we suggested a code generation technique based on a breadth-first evaluation of
level-planar expression DAGs instead of the depth-first evaluation of traditional compilers. This
code generation is known for queue machines, and since we proved that queue machines can be
simulated by SCAD machines, it is clear by our translation that queue code programs without
swap and dup operations yield optimal programs for SCAD machines with a single universal
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processing unit. However, if the queue program contains swap and dup operations, we can still
derive an equivalent SCAD program, but as shown by the example given in Figure 6, there could
be SCAD programs with fewer (swap and dup) instructions. SCAD machines offer more freedom
for maintaining the values inside the many buffers that are not available in queue machines. We
therefore have to refine the code generation technique in that only critical crossings are made planar
in the expression DAG for SCAD code generation.

It is moreover important to analyze buffer sizes required to execute various benchmarks in
the SCAD machine. Along with performance comparisons, it is also necessary to compare the
hardware resource usage and power consumption of SCAD architectures with that of conventional
superscalar and VLIW architectures with a similar configuration.
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