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Zusammenfassung

In der hier vorliegenden Dissertation werden metallische Verunreinigungen in polykris-
tallinem Photovoltaik-Silizium mit quantenmechanischen First-Principles-Methoden stu-
diert. Dafür werden Eisen und Natrium als unterschiedliche Vertreter-Elemente ausge-
wählt und untersucht.

Heutzutage werden siliziumbasierte Solarzellen vorwiegend aus kostengünstigem poly-
kristallinem Silizium hergestellt, welches sowohl eine hohe Konzentration von Fremd-
atomen als auch eine große Dichte von ausgedehnten Defekten, beispielsweise Korn-
grenzen oder Versetzungen, beinhaltet. Seit langer Zeit ist bekannt, dass vor allem Ei-
senverunreinigungen zu hohen Effizienzverlusten in siliziumbasierten Solarzellen füh-
ren. Eisenatome wechselwirken mit ausgedehnten Defekten im Silizium, was zur Ein-
lagerung von Eisenatomen führen kann. Diese Einlagerung ändert die elektronischen
Eigenschaften der ausgedehnten Defekte. Ziel des ersten Teils der Arbeit ist es, diese
Wechselwirkungen in drei unterschiedlichen Szenarien besser zu verstehen. Dazu wer-
den mithilfe atomistischer Simulationen die Wirkung von Großwinkelkorngrenzen, me-
chanischen Spannungs- bzw. Dehnungsfeldern und Versetzungen mit Eisenverunreini-
gungen untersucht. Dabei stellt sich heraus, dass mechanische Dehnungsfelder nicht zu
einer Anhäufung von Eisenatomen in bestimmten Bereichen führen, jedoch deren Diffu-
sion maßgeblich beeinflussen. Im Gegensatz dazu zeigt sich, dass nur in manchen Groß-
winkelkorngrenzen eine Einlagerung von Eisenatomen möglich ist. Bei allen in dieser
Arbeit betrachteten Versetzungskernen kommt es zu einer Einlagerung von Eisen. Es
zeigt sich insgesamt, dass eingelagertes Eisen die elektrischen Eigenschaften der ausge-
dehnten Defekte stark beeinflusst.

Der zweite Teil der Arbeit befasst sich mit der kürzlich entdeckten Potential-induzierten
Degradation von Solarzellen und den in diesem Zusammenhang auftretenden Natrium-
dekorierten Stapelfehlern im Silizium. Experimentelle Studien kamen zur Annahme,
dass neuartigen Defekte den pn-Übergang im Silizium lokal kurzschließen und somit
die Effizienz der Solarzelle drastisch verringern. In der hier vorliegenden Arbeit wird
ein atomistisches Modell eines Natrium-dekorierten Stapelfehlers entwickelt und dessen
elektrische und thermodynamische Eigenschaften untersucht. Dabei stellt sich heraus,
dass die Einlagerung von Natrium zu einer starken Aufweitung des Stapelfehlers führt.
Die dabei verlängerten Silizium-Bindungen führen zu elektrisch aktiven Defektzustän-
den in der Bandlücke des Siliziums, was ein Kurzschließen des pn-Übergangs ermög-
licht. Darüber hinaus wird die thermodynamische Stabilität des Defekts – insbesondere
im Hinblick auf die für die Potential-induzierte Degradation relevanten Materialsysteme
(Antireflexionsschicht, Siliziumoxidschicht, etc.) – untersucht.
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Abstract

In this thesis, metallic impurities in polycrystalline photovoltaic silicon are studied using
first-principles methods. To this end iron and sodium have been chosen and investigated
as distinct representative elements.

Nowadays, most silicon-based solar cells are produced from polycrystalline silicon which
contains both large concentrations of impurity atoms and large densities of extended de-
fects such as grain boundaries and dislocations. The detrimental influence of iron impu-
rities on the efficiency of silicon-based solar cells is known for long time. In addition,
iron atoms interact with extended defects. The electrical properties of those extended
defects can be influenced by the segregated iron impurities. The goal of the first part
of this work is to extend the knowledge of this interaction in three different scenarios.
With the help of atomistic simulations, the influence of large-angle grain boundaries,
mechanical stress and strain fields, and dislocations on iron impurities is studied. It turns
out, that mechanical strain fields which are caused for instance by extended defects do
not lead to an accumulation of iron atoms in specific regions but instead alter their diffu-
sion properties significantly. In contrast, the segregation of iron impurities is possible in
some large-angle grain boundaries and in the cores of all considered dislocations. In all
cases the segregation of iron strongly influences the electronic properties of the extended
defects.

The second part of the current work is dedicated to the recently discovered potential-
induced degradation of solar cells and to sodium-decorated stacking faults which are
suspected to play an important role in this context. From experimental studies it is as-
sumed that such novel stacking faults lead to a local short-circuit of the pn-junction of
the silicon and thus lower drastically the efficiency of the solar cell. In this work, an
atomistic model of a sodium-decorated stacking fault is created and its electronic and
thermodynamic properties are studied. The decoration of sodium leads to a large widen-
ing of the stacking fault. The elongated silicon bonds induce electrically active defect
states in the band gap which can cause the short-circuiting of the pn-junctions. In addi-
tion, the thermodynamic stability of the sodium-decorated stacking fault is studied with
special care of the material systems (anti-reflection coating, silicon oxide layer, etc.) that
are relevant to the problem of potential-induced degradation.
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1 Introduction

The energy transition from fossil fuel to renewable energy sources is one of the key chal-
lenges for mankind to stop climate change and environmental degradation. Photovoltaics
plays a crucial role in this context, since it is predicted to outperform fossil fuel energy
generation through cost leadership within the next 10 years [6]. Also Swanson’s law
that states a reduction of the price of solar cells by 20% for every doubling of industrial
capacity hints to a further price reduction of photovoltaics [7, 8]. Industrial capacities
are currently growing fast since the demand for photovoltaics installations remains high
and is even expected to grow by 25% in 2015 [9]. Moreover, companies are making
investments to build large facilities with production capacities of up to 500 MW per year
[10]. The importance of power production by solar cells is already well recognized for
example in Germany where a total capacity of 38.5 GW power production by solar cells
has been installed over the last few years. This can already cover up to 50% of the total
electric power consumption in Germany on a sunny day of the weekend [11].

Despite the large research interest and a variety in new materials which can be used for
photovoltaic applications such as organic [12–15] or perovskite [16–18] compounds, the
solar cell production is dominated by silicon wafer based solar cells with up to 90% of
the total solar cell production [11]. With a market share of about 55% polycrystalline
silicon is still the most used feedstock material for solar cells. Scaling effects and opti-
mization of the silicon value chain by the solar cell producers drive down the total costs
and make it difficult for other technologies to challenge the silicon technology for large
market shares. Therefore, silicon will remain the most important material in solar cell
production for the foreseeable future. Since one third of the costs of a solar cell is the cost
of the feedstock [19], companies have started to explore the possibility of using cheaper
materials such as metallurgical silicon [20]. However, these materials come with the dis-
advantage of containing larger amounts of metallic impurities, and these cause efficiency
losses due to their action as recombination centers [21–25] or due to the formation of
electrically conducting precipitates [26].
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1 Introduction

While in recent years a lot of work has been dedicated in the refinement of manufactur-
ing techniques and fast analysis methods to control the impurity contamination during
the production of solar cells, only little effort has been invested to understand the fun-
damental behaviour of metal impurities in the microstructure of polycrystalline Si. In
this work two different types of metal impurities are considered. Based on macroscopic
experimental studies, atomistic model systems are identified and investigated using state-
of-the-art quantum-mechanical first-principles methods. The first part of this thesis fo-
cuses on iron impurities which have been known for long time to have a most detrimental
effect on the efficiency of a solar cell [21, 22, 27]. The second part treats a rather novel
phenomenon: the potential-induced degradation [28–30]. This degradation effect was
recently discovered in large-scale solar cell plants and was related to sodium-decorated
stacking faults but their detailed electrical behaviour is still unclear. In the following, the
two parts of the work are concisely summarized.

Iron impurities in photovoltaic silicon In order to improve the solar cell efficiency,
different processing techniques are applied for the passivation of iron contaminants
in order to reduce their recombination activity. For instance, attractive interactions
between extended defects in polycrystalline silicon, namely grain boundaries and
dislocations and the diffusing iron atoms are exploited to reduce the recombina-
tion activity [31–35]. We consider three differently distorted environments of iron
impurities in silicon: grain boundaries, mechanical strain fields and cores of dislo-
cations.

• The first aspect concerns the most natural class of extended defects in a poly-
crystalline material: grain boundaries. Experimental studies observed iron
segregation at some specific grain boundaries [24, 36–38] which indicates
that the segregation behavior of iron depends on the misorientation of the
two grains. However, recent investigations found that the characterization
of the attraction of an iron atom by a grain boundary solely by the misori-
entation of the grains is not sufficient. The interaction also depends on the
inclination of the grain boundary plane [36, 39, 40]. In this work, we there-
fore address the question how iron atoms segregate at grain boundaries in
silicon in section 3.2. For this purpose the energetic stability of iron impuri-
ties at various interstitial sites is investigated at a set of symmetrical tilt and
twist grain boundaries.

• Another important influence on the behaviour of metallic impurities in a poly-
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crystalline material are mechanical strain fields. Mechanical strain can affect
impurities in various ways. It may lead to an accumulation of the impurities
or to a change of the diffusivity of impurities. Indeed many studies indicate
that interstitial iron is affected by strain [41–46]. So far, most conclusions
have been drawn from interpretations of macroscopic experiments but direct
observations at the atomic scale have not been made yet. Theoretical first-
principles calculations allow us to investigate the influence of mechanical
strain on iron impurities. The formation energies of various defect configu-
rations of iron in silicon are calculated at finite temperatures and subject to
various states of strain. Moreover, the influence of strain on the diffusion of
interstitial iron is studied by means of transition state theory combined with
kinetic Monte-Carlo simulations. This part of the work is reported in section
3.3.

• The third part on iron impurities in silicon focuses on their interaction with
the cores of dislocations. Like grain boundaries, dislocations are known to
play an important role for the efficiency of silicon-based solar cells [34, 47–
49] but they occur already in single-crystalline silicon which is used for other
semi-conductor devices as well [50, 51]. The segregation of metallic impuri-
ties at dislocations is of particular interest because the local electronic struc-
ture of dislocations is changed by decoration with metal impurities [34, 47,
52, 53]. For iron, various studies indicate an attractive interaction between a
dislocation core and an interstitial iron [54, 55] but no clear proof for this be-
havior exists yet. The complication for experiments to study one dimensional
objects like isolated dislocations and the great interest in the electronic struc-
ture of dislocations make first-principles methods to a rather ideally suitable
tool to study iron impurities at the cores of dislocations. We chose the most
important types of dislocation cores, calculated segregation energies of inter-
stitial iron impurities at these cores, and analyzed their electronic densities of
states, cf. section 3.4.

Sodium-decorated stacking faults in photovoltaic silicon The second part of the the-
sis focuses on the atomistic defects which cause the potential-induced degradation
of solar cells. While interstitial iron impurities just lower the efficiency of solar
cells, other defects affect their reliability and lifetime. Potential-induced degra-
dation is caused by the drift of ions, namely sodium, from the protective glass to
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1 Introduction

the silicon surface. This drift is caused by an electric potential gradient between
the solar cell and the frame of the module [28]. It is build up due to the serial
connection of the individual solar cells in a photovoltaic module and can amount
to a voltage difference of up to 1000 V. Once the ions have migrated to the surface
of the Si wafer they may diffuse into the silicon or stay at the interface between
the silicon surface and the anti-reflection coating which is often made of silicon
nitride [30]. Experimental observation found that sodium diffuses into stacking
faults and covers them completely [56]. Such sodium-decorated stacking faults
were identified as the primary reason for potential-induced degradation in silicon
solar cells because they lead to local electrical short-circuits of the p-n junctions
[28–30, 56, 57]. However, information on their structural, thermodynamic, or
electronic properties is limited or even completely lacking. In the second part of
the thesis, in section 4, we construct, calculate, and analyze a model system of
a sodium-decorated stacking fault in order to answer these open questions rather
consistently.
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2 Methods

2.1 Density functional theory

The theoretical study of metal impurities in polycrystalline silicon at the atomic scale
requires an accurate and predictive as well as sufficiently fast computation method. The
latter is required since relatively big atomistic model systems for grain boundaries or
dislocations have to be studied which can only be represented by relatively large num-
bers of atoms. The quantum-mechanical description of a system of many atoms is given
theoretically by the Schrödinger equation, but practically for realistic systems such as
crystalline solids with structural defects the Schödinger equation cannot be solved even
by most powerful computational means. The density functional theory (DFT) has proven
to provide a versatile computational framework to study quantum-mechanical properties
of many-body problems and it has been successfully applied to virtually countless prob-
lems of material science, for instance the charging behavior of electrodes of Li ion bat-
teries [5, 58], the diffusion of H in polycrystalline Ni [59], the prediction of novel crystal
structures [60], etc. DFT provides an accurate description of relevant quantities such as
total energies and atomic forces which can be used to derive quantities such as formation
energies of defects or diffusion constant of impurity atoms. These are highly important
quantities to describe the structural and electronic properties of metal impurities in poly-
crystalline Si. In the following we will compile the key features of DFT. An extensive
review of this theory is not in the scope of this thesis. This can be found for instance in
[61].

The starting point of our brief introduction to DFT is the Hamiltonian for a system of
nuclei and electrons in the Born-Oppenheimer approximation in which the electronic
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2 Methods

degrees of freedom have been decoupled from the ionic degrees of freedom,

Ĥ = −1

2

∑
i

∇2
i +

∑
i

Vext(ri) +
1

2

∑
i 6=j

1

|ri − rj|
(2.1.1)

where

Vext(ri) =
1

2

∑
i,I

ZI
|ri −RI |

(2.1.2)

is the external potential of a static distributions of nuclei I with a nuclear charge of
ZI . ri and Ri denote the positions of electrons and nuclei, respectively. Note that we
have adopted atomic Hartree units, i.e. ~ = me = e = 1/4πε0 = 1. In principle, the
corresponding Schrödinger equation can be solved to obtain energies and other physical
observables of the many-particle system of dynamic (light and fast) electrons in the field
of static (heavy and slow) nuclei. In practice, the electron-electron interaction (given by
the third sum of Eq. 2.1.1) makes this task impossible for realistic system.

Hohenberg and Kohn have recognized in their first theorem that the ground-state electron

density n of any interacting system under the influence of an external potential Vext de-

termines this external potential Vext uniquely (up to a constant) [62]. From this theorem
it follows that – in principle – all properties of the whole physical system are determined
from the ground-state electron density because the Hamiltonian of the system is deter-
mined by the external potential. In their second theorem, Hohenberg and Kohn have
proven the existence of a universal functional of the density E[n] whose global minimum

is the ground-state energy of the system and the density which minimizesE is the ground-

state density [62]. There are two key points in this theorem. First, the functional E[n] is
universal, i.e. it does not depend on a specific system and, hence, it has the same math-
ematical form for different chemical bindings such as metallic bonds or covalent bonds.
Second, the ground-state energy and the ground-state electron density can be obtained
by a minimization of the energy functional. Compared to solving the Schrödinger equa-
tion, this is a relatively simple task because the electron density (n : R3 → R) is a much
simpler object than the multidimensional many-electron wavefunction (ψ : R3N → C)
of a system with N electrons.
At this stage there is no practical applicability of the theory since the universal energy
functional is not known. This shortcoming has been overcome by the approach of Kohn
and Sham which is based on the assumption that the ground state-electron density of the
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2.1 Density functional theory

system of interacting electrons is also the ground state-electron density of an auxiliary
system of independent quasiparticles [63]. The Schrödinger equation of this auxiliary
system reads

ĤKS ψi = (−1

2
∇2 + VKS(r)) ψi = εi ψi (2.1.3)

with an effective potential VKS(r). For such a Hamiltonian of a system of independent
quasiparticles (conveniently called “electrons” again in the following), the many-body
wavefunction is a Slater determinant that is constructed by the one-particles orbitals,
ψi(r), with the lowest energies. From these orbitals, it is straightforward to obtain the
electron density by

n(r) =

Nparticles∑
i=1

|ψi(r)|2. (2.1.4)

For this system, the kinetic energy T [n] of the electrons, the classical electrostatic Hartree
energy EHartree[n] and the external potential energy Eext can be directly expressed in
terms of one-particle orbitals, but the explicit form of the contribution for the so-called
exchange-correlation energy Exc, which takes Pauli’s principle and all further many-
electron interactions into account, remains unknown. The energy functional E[n] be-
comes

E[n] = T [n] + EHartree + Eext + Exc + EII (2.1.5)

with

T [n] =
N∑
i=1

∫
dr|∇ψi(r)|2 (2.1.6)

EHartree =
1

2

∫
drdr′

n(r)n(r′)

|r− r′|
(2.1.7)

Eext =

∫
drVext(r)n(r) (2.1.8)

and the energy contribution from the interaction EII of the nuclei. By variation of the
total energy expression, one obtains the expression of the effective potential

VKS = Vext(r) + VHartree(r) + Vxc (2.1.9)
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2 Methods

and

VHartree(r) =

∫
n(r′)

|r− r′|
dr′ (2.1.10)

Vxc =
δExc[n]

δn[r]
(2.1.11)

The four equations 2.1.3, 2.1.10, 2.1.11, and 2.1.4 are known as the Kohn-Sham equa-
tions. They need to be solved in a self-consistent way. The exchange-correlation energy
has to be approximated and a lot of efforts has been made to construct improved approx-
imations for its description [64–66]. Throughout this thesis, the generalized gradient ap-
proximation is used in the parameterization by Perdew, Burke, and Ernzerhof [65] which
is widely used in material science. Forces on ions can be calculated from Eq. 2.1.5 using
the Hellmann-Feynman theorem according to [67]

FI = − ∂E
∂RI

= −
∫
dr n(r)

∂Vext(r)

∂RI
− ∂EII

∂RI
. (2.1.12)

With the help of DFT it is now possible for us to calculate intrinsic properties of an
atomic system such as the total energy or atomic forces. The computational details are
given in the Appendix. In the following we will describe how these quantities can be
used to describe the diffusion of impurities by means of transition state theory combined
with kinetic Monte-Carlo simulations.

2.2 Diffusion

The movement of particles from regions of high concentrations to those of low concen-
trations at a continuum scale is described by Fick’s first law as a linear response between
a gradient of concentration∇C and a flux of particles J [68, 69].

J = −D∇C (2.2.1)

where D is the diffusion coefficient. In the following subsections, we will explain how
atomistic simulation can be used to obtain diffusion coefficients. Einstein and Smolu-
chowski first recognized the link between the diffusion coefficient and motion of the
individual particles. They showed that the diffusion coefficient D is proportional to the
mean square displacement of the individual particles at the atomic scale [70, 71]. This
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2.2 Diffusion

relation allows us to obtain the diffusion coefficient of impurities in silicon once we are
able to describe their individual movement.

In crystalline solids, diffusion of atomic defects occurs by their migration between sites
of the crystal structure either via interstitial- or vacancy-mediated jump processes. Since
a single jump of the defect happens much faster than the overall motion of the defects that
causes the macroscopic diffusion, one can separate the problem into two different tasks:
first, the calculation of the rate of an individual jump which is approached by transition
state theory in our study, and second, the calculation of multiple jumps to obtain the
diffusion constant which is done by kinetic Monte Carlo simulations in our case.

2.2.1 Transition state theory and the nudged elastic band
method

In the following we will limit ourselves to the case of interstitial diffusion in which a
defect atom is located at an interstitial site in the crystal structure. At finite temperature,
these interstitial atoms vibrate around their equilibrium positions but their vibrations are
usually not large enough to overcome the barrier to a neighbouring site. In rare occasions,
the interstitial atom has sufficiently large thermal energy to overcome the barrier and to
move to a new interstitial site. There it looses its energy to its surrounding and stays
there until another rare jump event takes place. The important quantity to describe a
series of such rare jump events is the rate at which these occur. Vineyard showed that in
the harmonic approximation [72, 73], one can describe this rate Γ by

Γ = νe−∆E/kBT (2.2.2)

in which ν is the frequency factor, ∆E is the energy barrier along the path, kB is the
Boltzmann constant and T is the absolute temperature.

Before we can obtain the energy barrier from DFT calculations, we have to identify the
minimum energy path (MEP) that connects two neighbouring stable sites with the lowest
energy barrier. One computational technique to determine the MEP is the nudged elastic
band (NEB) method [74, 75]. The general idea of the NEB method is to sample the
MEP path with a finite number of images. The initial images are often obtained from a
linear interpolation between the start and end sites of the MEP. The MEP is determined
when the forces orthogonal to the tangent of the path are minimized. In addition, spring
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forces between the images are introduced to keep the images equidistant. In some cases,
the number of images is too small to resolve the precise saddle-point location of the
transition state. One way to overcome this problem is to introduce more images along
the path. But since NEB calculations which are based on DFT calculations are very
costly, it is sometimes too expensive to increase the number of images. In such a case, an
additional force parallel to the tangent of the path is given to the image with the largest
energy such that it climbs up-hill in the energy landscape until it reaches its maximum
along the MEP. This method is called the climbing image nudged elastic band (CI-NEB)
method [74]. Once the MEP has been determined, it is straight forward to obtain the
energy barrier ∆E as the energy difference between the start position and the transition-
state position.

Following Vineyard [72], the frequency factor ν depends on the phonon modes of the
system in the stable-site and transition-site configuration. For a given q-point of the
phonon Brillouin zone (BZ), it can be obtained from products of phonon frequencies at
the stable-site configuration ν0 and the transition-site configuration ν† as following,

νq =

3Natoms∏
i=0

ν0
i (q)

3Natoms−1∏
j=0

ν†j (q)

. (2.2.3)

In a system of Natoms atoms, for each q-point of the BZ, there are 3Natoms phonon fre-
quencies. In the transition-site configuration, the frequency associated with the unstable
mode along the MEP is imaginary and is excluded from the product in Eq. 2.2.3. The
overall frequency factor ν is obtained from an average of a sample set of νq’s evaluated
on a Monkhorst-Pack mesh of Nq q-points in the BZ [76]:

ν =
1

Nq

Nq∑
i=0

νq . (2.2.4)

It has to be pointed out, that for the calculation of diffusion constants the energy barrier is
much more important than the frequency factor since the former enters in the exponent,
the latter only as a prefactor in Eq. 2.2.2.
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2.2 Diffusion

2.2.2 Kinetic Monte Carlo

We now have a description for the rate of individual atomic jumps but our goal is to de-
scribe the diffusion coefficient. Diffusion coefficients can be calculated analytically for
perfect crystals with only one relevant migration pathway for the diffusing species. How-
ever, alloying elements, the presence of structural defects, and the application of external
stresses give rise to non-uniform deformations that make the migration pathways in a
crystal nonequivalent and multiple. In these cases, more sophisticated approaches such
as kinetic Monte Carlo (kMC) simulations [77–81] are needed to extract the diffusion
behavior.

Within the kMC approach, the actual crystal system is mapped on a lattice and the trajec-
tory of the diffusing particle is evolved by stochastic events with known jump rates. For
the case of interstitial diffusion, the interstitial sites form the kMC lattice on which the
migrating atoms can jump according to the jump rates obtained by TST. To evolve such
a system for a given configuration, the sum of the rates of all accessible jump events,
Γtotal, is calculated. Subsequently, a random number r, which is taken from a uniform
distribution of real numbers between 0 and 1, is generated and the p-th jump event is
chosen according to

p−1∑
i=0

Γi < rΓtotal ≤
p∑
i=0

Γi . (2.2.5)

Since the jump rates are constant and independent of the system’s history, the process
is a Poisson process [82] and, hence, the evolution for the n-th kMC step in real time is
given by

tn = tn−1 − Γtotal ln r′ , (2.2.6)

where r′ is another random number, which is again taken from a uniform distribution
of real numbers between 0 and 1. From the final trajectory, one can obtain observables
such as the diffusivity or the probability to find a particle at a given site. The observ-
ables are acquired from averages of an ensemble of trajectories to ensure their statistical
significance.

Diffusion constants are obtained from mean square displacements, ∆r2
i , of all the diffus-
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ing particles by

D =

Nparticles∑
i=0

∆r2
i

2Nttotal
, (2.2.7)

where Nparticles is the number of diffusing particles in the system and ttotal is the total time
of the trajectory.
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3 Interaction of iron impurities with
extended defects in silicon

3.1 Introduction

In the following we will briefly summarize what is known for iron impurities in poly-
crystalline silicon. The parts which will be covered are sketch in Fig. 3.1.

3.1.1 Iron impurities in silicon

Polycrystalline silicon is the most economical feed-stock material for Si-based solar
cells. Due to the very challenging market situation for solar cell production, companies
are forced to reduce the costs of their solar modules by using cheaper feed-stock ma-
terials like metallurgical silicon [20]. This saving usually comes with the disadvantage
of larger amounts of metallic impurities in the material that cause electrical efficiency
losses due to their action as recombination centers [21–25] or due to the formation of
precipitates [26]. Among these metallic impurities iron (Fe) is known to have a strong
detrimental effect on the efficiency of the solar cell [27]. This can be readily seen from
Fig. 3.2 that shows the minority carrier diffusion length as a function of the concentration
of different transition metals and FeB pairs in bulk-like regions. The shaded area rep-
resents the usual minority diffusion length found in common polycrystalline solar cells
which can contain interstitial Fe up to a concentration of about 2×1012cm3 while much
larger bulk concentrations of nickel and copper can be tolerated. The strong detrimental
effect of Fe impurities makes it essential to be able to control its bulk concentration.
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3 Interaction of iron impurities with extended defects in silicon

Figure 3.1: The microstructure of polycrystalline silicon includes various different kinds
of extended defect structures such as grain boundaries, dislocations and strain
fields. Iron impurities are considered in these three different environments in
this chapter.

3.1.2 Iron impurities in crystalline bulk silicon

The behavior of impurity Fe atoms in Si bulk crystals has already been studied exten-
sively by both theoretical and experimental means. The Fe impurities in bulk Si are
occupying the tetrahedral interstitial sites of the diamond structure of crystalline Si. In
p-type doped Si the Fe is positively charged (Fe+) but usually paired with boron (FeB) or
other shallow acceptors. In n-typed or non-doped Si the Fe remains uncharged (Fe0) [21,
83]. Interstitial Fe creates a deep donor level at 0.4 eV above the valence band edge of
bulk Si which causes the photo-induced charge carriers (electrons and holes) to recom-
bine easily [21]. The electronic behavior of Fe in bulk Si was successfully explained by
Ludwig and Woodbury who showed that the two 4s electrons of the bcc Fe atom are both
transferred into the 3d orbitals when the Fe atom is embedded in the Si crystal [84]. This
simple model is in very good agreement with electron-paramagnetic-resonance measure-
ments and first-principles electronic-structure calculations [83, 85].
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3.1 Introduction

Figure 3.2: Impact of transition metals on minority charge carrier diffusion length in Si.
Typical minority carrier diffusion lengths of polycrystalline Si solar cells are
highlighted by the shaded area. Picture taken from Ref. [27].

3.1.3 Iron at extended defects in silicon

Importance of extended defects in silicon for iron impurities

Different processing techniques are applied for the passivation of Fe contaminants in
order to improve the solar cell efficiency. The gettering of unwanted impurities is one
possibilities in which they are removed by providing them an alternative location where
they prefer to stay. This can be accomplished by various means. In contrast to extrin-
sic gettering techniques such as phosphorus gettering [86, 87] or aluminium gettering
[86, 88], internal gettering exploits the attractive interaction between extended defects,
namely grain boundaries (GBs) and dislocations, and the diffusing Fe atoms [31–35].
Only about 0.1–10% of Fe is interstitially dissolved in the Si matrix due to its limited
solid solubility [21, 34] and most of the Fe is present in precipitates, e.g. iron silicides
like β-FeSi2 [89, 90]. It is known that iron silicides also act as recombination centers
[26, 91]. Even though the Fe concentration in the Fe precipitates is high, the density
of these precipitates is much lower than that of the interstitial Fe and thus the overall
negative effect of Fe precipitates on the charge carrier life time is limited [34]. Hence, it
is beneficial to condense as much interstitial Fe as possible into precipitates. However,
in some rare cases an Fe precipitate can also short-circuit the pn-junction, which results
in a failure of the solar cell [26]. Another important issue is connected with the electrical
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activity of extended defects upon decoration by Fe. It has been noted that some defects
such as large-angle GBs [92–94] and dislocations [52] are usually electrically inactive in
pure Si, but in Fe contaminated Si the Fe atoms segregate to these GBs and dislocations
and make these defects electrically active. Also the role of mechanical stress and strain
fields which are induced by GB junctions and in particular by dislocations on interstitial
Fe is still unclear and requires further studies [42, 91]. In the following we discuss the
specific properties of grain boundaries, dislocations and strain fields in more detail.

Grain boundaries

One of the keys to improve the efficiency of polycrystalline Si solar cells is to understand
the electronic activity of GBs. Several studies show that GBs can act as recombination
centers for charge carriers [31–35] and also lead to large residual strains [44]. GBs can
be classified into random GBs, large-angle GBs and small-angle GBs. In very pure Si,
the first two classes of GBs apparently do not lead to any electrical activity [36]. This is
most likely due to an effective reconstruction of Si-Si bonds at the GB interface. Unlike
the strongly reconstructed GB interface of random and large-angle GBs, small-angle
GBs are composed of an array of GB dislocations and therefore may act differently from
large-angle GBs and random GBs. Indeed it has been shown that small-angle GBs are
electrically active and emit luminescence even in very pure Si [95]. In the case of Fe
contaminated Si, however, the large-angle GBs and the random GB exhibit a significant
electrical activity [92–94]. In our study, we will focus on highly symmetric large-angle
GBs since their electrical activity is mostly determined by their Fe contamination, and
their interface structures are better defined than those of random GBs.

The segregation of Fe atoms and the precipitation of Fe silicide particles at large-angle
GBs (in the following denoted simply as GBs) have been examined by various experi-
mental studies using methods like photoluminisence (PL) spectroscopy [37, 38, 97] and
electron beam induced current (EBIC) measurements [39, 95] in combination with trans-
mission electron microscopy (TEM) [36, 98, 99], scanning electron microscopy (SEM)
[36, 39, 94] and electron back scatter diffraction (EBSD) [36, 39, 94]. All these studies
indicate that the segregation of Fe at GBs in Si strongly depends both on the misorien-
tation of grains, often denoted by the Σ-value of the coincidence-site-lattice [100]. This
can be readily seen in Fig. 3.3, where the metal contamination of the GBs as a function
of its Σ value is shown. Despite the clear trend of the average metal content with respect
to the Σ-value, the individual data points, however, are strongly scattered. This indicates
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Figure 3.3: Dependence of metal content at grain boundaries (measured by x-ray fluores-
cence microscopy (XRF)) for different grain boundary characters as obtained
from electron backscatter diffraction (EBSD). The open diamonds represent
the 25th and 75th percentiles and the median. The mean is represented by the
open boxes. Picture taken from Ref. [96].

that a characterization of the gettering efficiency of the GB by its Σ-value only is not
sufficient. Another important feature of a GB is its interface inclination which is usually
characterized by the interface plane which is labeled by Miller indices (hkl). Its impor-
tance can be seen for example in Fig. 3.4. There, it was observed that the Σ 3 (111) GB
is not gettering Fe whereas Σ 3 (112) and Σ 3 (110) GBs contain large amounts of seg-
regated Fe [36, 39, 40] once the Si wafer is contaminated with Fe. In order to elucidate
this behavior, a systematic investigation of the atomistic mechanisms of Fe segregation
at such GBs is required.

Dislocations

Among the predominant extended defects in photovoltaic silicon are dislocations. In
particular in scaled-down semiconducting devices at dimensions of less than a few tens
of nanometers, dislocations may be generated by high local strains due to lattices mis-
fits between functional thin-film materials like Ge, SiGe or III-V compounds and the
Si substrate [50, 51]. On the other hand, the utilization of individual dislocations as
active components of semiconductor devices are discussed since they resemble native
nanowire-like structures embedded in a Si matrix [101, 102]. Another important aspect
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Figure 3.4: Scanning electron microscopy (SEM) and electron beam induced current
(EBIC) images of different Σ 3 grain boundaries in clean (as grown) and
contaminated (Fe contaminated) Si. Regions with high recombination activ-
ity show a black contrast in the EBIC picture. Picture taken from Ref. [36].

are dislocations in the context of Si-based polycrystalline solar cells as they represent
one of the principal performance-limiting defects. They are also known to form dif-
ferent kinds of dislocation clusters with dislocation densities up to 106-107cm−2 [52].
Some kinds of such clusters act as seeds for the precipitation of silicides [48, 49]. In
Fig. 3.5, photoluminisence images have been correlated with interstitial Fe concentra-
tion and dislocation density. The recombination activity measured by photoluminisence
spectroscopy is strongly increased at regions of high interstitial Fe concentration. While
in most of the regions an increased interstitial Fe concentration is correlated with a large
dislocation density, there exists also regions which have large dislocation densities but
low Fe concentrations. For instance, the dislocation densities in region A and B are both
high, but only region A shows a reduction of the charge carrier lifetime correlated with
a higher concentration of interstitial Fe. This hints to the hypothesis that charge carrier
recombination is governed by the decoration of the dislocations by Fe impurities [34].
In some cases, dislocations show a strong recombination activity even without the con-
tamination by metal impurities. However, it was shown that this activity is related to
the existence of intrinsic defects (e.g. dangling bonds) which can be healed by adjusting
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processing parameters for the Si material [52]. Moreover, it has been shown that metallic
impurities in combination with Al or P gettering can be exploited to reduce the disloca-
tion density significantly at moderate temperatures [103, 104]. It is therefore essential
to extend the knowledge of the interaction between metallic impurities and individual
dislocations.

Compared to grain boundaries, dislocations can interact with impurities on two different
length scales: the short-range interaction is dominated by the dislocation core which is
characterized by an atomic structure that is quite different from that in the bulk material,
and the long-range interaction which is governed by a long-ranged stress field which
results in a finite strain of the bulk-like region in the surrounding of the dislocation core
[105]. In particular, transition metals are considered to segregate in the stress field of
dislocations [106], to decorate the dislocation cores [47, 52, 107] and, hence, to alter the
deep level spectrum of dislocations [52, 106]. It has also been observed that dislocations
act as nucleation sites for metal precipitates such as Fe or Ni silicides [106].

Figure 3.5: Photoluminescence image of the charge carrier lifetime [µs] (left), intersti-
tial Fe concentration [cm−3] (middle) and dislocation density map [cm−3]
(right). Dislocation densities have been obtained from etch pit counting. Pic-
ture taken from Ref. [34].

While most computational studies of dislocations in Si focus on the atomic arrangement
[108–110] and thermodynamics of the dislocation cores [108, 111] as well as their ki-
netics [108, 112, 113], there also exists a limited number of studies on segregation of
impurities at dislocations, e.g. the segregation of hydrogen [114, 115], arsenic [116,
117] and copper [107]. The first two elements are not transition metals and thus cannot
be expected to behave similar to Fe. While Cu is a transition metal, the study of Fujita
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et al. is limited to substitional Cu only. To the knowledge of the author, no atomistic
study on the interaction between interstitial transition metals and dislocation cores exists
in spite of its apparent importance.

Strain fields

Most extended defects such as dislocations [43], grain boundaries [44] and other ex-
tended defects [41] induce a stress field to their surrounding. In particular dislocations
show a very long-ranged stress field which slowly decays as ∝ 1/r [105]. The influence
of the stress field onto the segregation of metallic impurities is under frequent discussion
and is still an open issue. While some studies do not find any correlation between Fe
segregation and stress [36], others observe a strong agglomeration of Fe impurities to
regions of high stresses [42]. The influence of stress on the diffusion properties of Fe
has been investigated recently by Suzuki et al. [45, 46] using Mössbauer spectroscopy.
In their first study [45], they reported that the energy barrier for interstitial Fe0 diffusion
was decreased from 0.68 eV to 0.33 eV at an applied stress of about 19 MPa stress. Such
large change of the energy barrier of interstitial Fe0 diffusion will result in diffusion con-
stants which are different by several orders of magnitude even at room temperature. This
would allow Fe0 to diffuse throughout a solar cell within a few hours and therefore might
alter the way Fe silicide precipitation takes place.

To understand the behaviour of Fe in Si adequately, a systematic study of the influence of
strain on the thermodynamics and kinetics of interstitial Fe impurities in Si is necessary
and may allow a better interpretation of experimental observations.

3.2 Interstitial iron impurities at grain boundaries

in silicon

Our first part of the investigation of interstitial Fe impurities in Si is dedicated to the
influence of grain boundaries (GBs). With about 55% market share, polycrystalline Si is
the most used feedstock material for commercial solar cells [11]. In such materials, GBs
are very abundant and it is confirmed that they are important for the efficiency of solar
cells [31–35].
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Each GB can be described by its macroscopic degrees of freedom: the orientation of
the two grains and the inclination of the GB plane. But many more degrees of freedom
exist at the atomic scale. Si atoms prefer to be four-fold coordinated which leads to the
rearrangement of atoms at the GB interface and to the reconstruction of Si-Si bonds.
This results in a variety of different realizations of reconstruction patterns with various
possible interstitial sites which are different from the interstitial sites in the perfect bulk
crystal. The different geometries of these interstitial sites may lead to preferred occupa-
tions by impurities like interstitial Fe. Such a process is called segregation. Moreover,
segregated Fe atoms may change the local electronic structure of the grain boundary and
thus affects the recombination activity of the GB which alters the efficiency of the solar
cell.

The modeling of GBs by DFT simulations is challenging since we have to restrict our-
selves to system sizes of a few hundred atoms. Moreover, most DFT codes require
supercells with periodic boundary conditions. To obey these conditions, always two GBs
have to be included into the supercell. These limitations require us to restrict ourselves
to rather simple and symmetric GBs. Also the reconstruction pattern of the GB plane is
difficult to determine and to find the most stable reconstruction pattern is by itself a chal-
lenging task. In this study, we rely on reported GB structures found in literature which
have been determined using either experimental high resolution transmission electron
microscopy or computational atomistic simulation. Although the choice of GBs with
high symmetry seems to be too narrow, GBs with low symmetry often reconstruct into
segments which can also be found in the highly symmetric GBs. We therefore expect
that our results can also be extrapolated to other GBs.

In the following we report our results on the electronic structure and the segregation
behavior of interstitial Fe atoms at GBs in Si. We have chosen a set of symmetrical tilt
or twist GBs in Si which provides a variety of interface orientations and structures at the
atomic scale. The content of this section has been published in [2] (Ziebarth et al., Phys.
Rev. B 91, 035309).

3.2.1 Models of grain boundaries in silicon
([1], Sec. III)

Models for a set of coincidence-site-lattice GBs of types Σ 3, Σ 5 and Σ 9 were created.
These GBs differ by the inclination of their GB plane, and their local atomic configura-
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Figure 3.6: Supercell models of a symmetric tilt GB Σ 3 (111) and a symmetric twist
GB Σ 3 (110). Due to periodic boundary conditions, there are two equivalent
GBs in the supercells but for clarity only half of the supercells is shown with
blue atoms highlighting the GB. Tripods indicate crystallographic directions
of the cubic diamond structure.

tions. The GBs models were selected from low-energy structures of various computa-
tional studies and according to experimental observations. Details for the specific GBs
are given in the following and in the discussion.

Figure 3.7: Supercell models of two variants of symmetric tilt Σ 3 (112) GBs.

Fig. 3.6 shows two Σ 3 GBs which differ in their interface planes. The supercells contain
96 and 72 Si atoms for the Σ 3 (111) and the Σ 3 (110), respectively. The Σ 3 (111) GB
is a symmetric tilt GB with its [112] tilt axis lying in the GB plane. The Σ 3 (110) GB is
a symmetric twist GB because the twist [112] axis is perpendicular to the GB plane. All
Si atoms in these two GB models are 4-fold coordinated. The Σ 3 (111) GB has been
observed in many experiments, see e.g. Ref. [36].

Fig. 3.7 shows the supercell models of another type of the Σ 3 GB, namely Σ 3 (112).
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HRTEM investigations[99] showed that this GB can exist in at least two variants termed
as mirror-symmetric and nonsymmetric model

The two structures differ in reconstructions of the Si bonds along the [112] direction as
indicated by the red bond in Fig. 3.7. 5-fold coordinated Si atoms exist in the mirror-
symmetric model whereas all Si atoms are 4-fold coordinated in the nonsymmetric mo-
del. The supercells contain 136 and 144 Si atoms for the nonsymmetric and mirror-
symmetric model, respectively. The reconstructed GB consists of a series of 5-, 7- and
6-fold Si-rings which are indicated by yellow polygons in Fig. 3.7.

Figure 3.8: Supercell models of three symmetric tilt GBs: Σ 5 (120), Σ 5 (130) and Σ 9
(221).

Finally, Fig. 3.8 shows the supercell models of three GBs with higher Σ values: Σ 5 (120),
Σ 5 (130) and Σ 9 (221). All Si atoms are 4-fold coordinated in these GB models. While
the Σ 5 (120) and Σ 9 (221) GB interfaces are following a nonsymmetric pattern, the
interface of the Σ 5 (130) GB is planar. While the interface structures of the Σ 5 GBs
are build from 3-, 4- and 5-fold Si rings, the interface structure of the Σ 9 (221) consists
only of 5- and 7-fold Si rings. The supercells contain 80, 40 and 136 Si atoms for the
Σ 5 (120), Σ 5 (130) and Σ 9 (221) models, respectively. The structures of the chosen
Σ 5 GBs have been reported in the literature to be low in energy [118–123]. To our
knowledge, no theoretical first-principles study of the Σ 9 (221) GB has been reported so
far, but our results for its interface structure is in agreement with experimental HRTEM
observations [98].
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Grain boundary GB energy [J/m2] GB energy [meV/Å2]
Σ 3 (111) 0.01 0.6
Σ 3 (112) sym. 0.67 41.8
Σ 3 (112) nonsym. 0.47 29.3
Σ 3 (110) 0.76 47.4
Σ 5 (120) 0.39 24.3
Σ 5 (130) 0.35 21.8
Σ 9 (221) 0.16 10.0

Table 3.1: Calculated GB energies.

3.2.2 Interface energies of grain boundaries
([2], Sec. IV. A)

Interface energies, γGB, for all GBs are defined as

γGB =
EGB −NSi · µSi

2AGB

where EGB is the total energy of the GB supercell, NSi is the number of Si atoms, µSi is
the chemical potential of Si, i.e. the total energy of a Si atom in the equilibrium diamond
structure and AGB is the interface area of the GB. The factor of two in the denominator
takes into account that there are always two grain boundaries in the supercells due to
periodic boundary conditions.

The results for GB energies are listed in Table 3.1. As expected the Σ 3 (111) GB
has a very low energy of 0.01 J/m2. The results also indicate that the nonsymmetric
reconstruction of the Σ 3 (112) GB leads to a reduction of the GB energy from 0.67 to
0.47 J/m2.

Both Σ 5 GBs are similar in energy in spite of their clearly different geometric arrange-
ments. The Σ 3 (110) GB has the highest energy of 0.76 J/m2. The second lowest energy
of all investigated structures, about 0.16 J/m2, is found for the Σ 9 (221) GB.

3.2.3 Segregation of interstitial iron
([2], Sec. IV. B)

After optimization of the GB supercells for pure Si, a single Fe impurity has been inserted
into various interstitial sites both in the vicinity of the GBs and in the bulk-like regions
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of the models. Always one of the two Si GBs in the supercell was populated with Fe.
In order to keep the number of calculations feasible we considered only charge-neutral
Fe(0) interstitials. Segregation energies of the interstitial Fe atoms at GBs were calculated
according to

Eseg
Fe = E tot − γGB · 2AGB −NFeµFei (3.2.1)

where E tot is the total energy of a Si GB supercell with an Fe impurity, NFe is the number
of Fe atoms in the supercell, and µFei is the chemical potential, which is set to the total
energy of interstitial Fe in bulk Si, calculated with a cubic supercell containing 64 Si
atoms and a single interstitial Fe atom. In addition, we validated that our results are well
consistent by comparing the segregation energy of Fe in the bulk-like regions of the GB
supercell models with that of Fe in the 64 atom bulk-Si supercell.

Figure 3.9: Segregation energies for various interstitial Fe within a 4-8 Å broad region
around the GB. For the labeled structures more details are shown in Fig. 3.11.

We investigated more than 50 interstitial sites in the considered GBs. The segregation
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energies of unique configurations are shown in Fig. 3.9. Negative segregation-energy
values correspond to an attraction between the GB and Fe, positive values indicate that
segregation is not favorable. Sites for which Fe segregation is favorable are labeled by
(a1) to (f3) where the superscript marks the type of the GB: 1 for Σ 3 (110), 2 for mirror-
symmetric Σ 3 (112) and 3 for nonsymmetric Σ 3 (112). These sites will be studied in
detail in the following. All sites with segregation energies larger than −0.1 eV are not
considered to attract Fe atoms significantly.

Figure 3.10: Geometric features of interstitial sites with respect to their segregation en-
ergy for all considered grain boundary sites. Nearest neighbors are neigh-
boring atoms within a radius of 4 Å.

We attempted to correlate several geometric features of the segregation sites (e.g. coordi-
nation number, mean bond length, bond angle distribution and more) with the segregation
energy. The results are shown in Fig. 3.10 which makes it clear that there is no sim-
ple correlation between the individual geometric features of the interstitial sites and the
segregation energies of Fe to these sites.

From Fig. 3.9, it is evident that only three of the investigated GBs show a significant
attractive behavior for interstitial Fe, namely the two Σ 3 (112) GBs and the Σ 3 (110)
GB.
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In Fig. 3.11, the local atomic arrangement of interstitial sites are displayed. The local
structures of the (a1) and (b1) sites in the Σ 3 (110) GB are very similar. They differ
only in two Si atoms which are nearby in (a1) but are separated in (b1). In the case of the
symmetric model of the Σ 3 (112) GB the (c2) and (e2) sites differ only by their location
in the reconstructed GB structure: while one site is located at the reconstructed Si-Si
bond, the other site is in the more open environment. The site (d2) resembles closely
the tetrahedral position in bulk Si but with one additional Si neighbor giving it a 5-fold
coordination. The site (f3) of the reconstructed Σ 3 (112) GB is formed by a slightly
disturbed 6-fold Si ring.

Figure 3.11: Low energy configurations of segregated Fe at GBs, cf. Fig. 3.9. The left
column of pictures show the site along the

[
110
]

direction, while the pic-
tures in 2nd column is along the

[
111
]

direction. The left column shows the
interstitial Fe with its surrounding only. Red spheres are Fe atoms and blue
spheres indicate Si atoms with five Si neighbors.

Fig. 3.12 shows the site-projected densities of electronic states (PDOS) for all intersti-
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tial configurations depicted in Fig. 3.11. The PDOS of interstitial Fe in bulk Si has
been added as a reference. In bulk Si, interstitial Fe atoms occupy the tetrahedral sites
formed by the nearest-neighbor shell of Si atoms. The second-nearest-neighbor shell of
Si atoms provide an octahedral coordination. In this bulk interstitial configuration, the
Fe-4s states are shifted to higher energies above the Fermi energy and, hence, the two
4s electrons are transferred into the lower lying Fe-3d states which are thus filled with
eight instead of six 4d electrons, cf. uppermost left panel in Fig. 3.12. It turns out that
the high-spin configuration is favored in bulk Si, i.e. the spin-up d states are completely
filled by 5 electrons and the spin-down d states are occupied by 3 electrons. Due to the
cubic crystal field symmetry, the 3d impurity level splits into t2g and eg levels. However,
the crystal field contribution from the first nearest neighbors (tetrahedral coordination),
which would result in more stable eg bands, is apparently less effective than the crystal
field contribution from the second nearest neighbors (octahedral coordination). In accor-
dance with previous investigations, we find that the t2g levels lie lower in energy than the
eg levels [84].

The spin-polarized state of the interstitial Fe in bulk Si remains stable for all GB struc-
tures shown in Fig. 3.9 except for (c2) and (e2). These two special cases will be analyzed
further in the following.

At the GBs, the bulk-specific coordination pattern of nearest neighbor tetrahedral coordi-
nation and second nearest neighbor octahedral coordination is usually no longer present
and, hence, the electronic structure of the Fe impurity and its environment changes. The
investigated structures can be classified into two different groups.

The first group, (a1), (b1), (d2) and (f3), still favors the high-spin configuration like the
interstitial Fe in bulk Si. However, the crystal-field-splitting of the d-levels is distorted:
the d-levels split sometimes in more than two peaks and the peaks are no longer build
up by either eg or t2g levels but by a mixture of the two. Interestingly, the resulting
electronic structure of the d-levels (gray shaded area in Fig. 3.12) is still similar to that
of the interstitial Fe at bulk.

The second group of structures, (d2) and (f3), favors the non-spin-polarized configura-
tion. The peaks of the Fe d-levels overlap with peaks (turquoise) of a Si atom which is
located in the nearest neighbor shell of Fe. This specific Si atom is coordinated by five
Si atoms and marked by blue spheres in Fig. 3.11. The overlapping electronic states of
neighboring atoms indicate the formation of a chemical bond. It is very likely that this
effect causes the spin configuration of Fe to change.
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3.2 Interstitial iron impurities at grain boundaries in silicon

Figure 3.12: Total and local (site- and orbital-projected) densities of states for the various
important segregation sites of interstitial Fe impurities at Si GBs depicted
in Fig. 3.9 and 3.11. The energy is given with respect to the Fermi energy.

From the analysis above, we conclude that the change of the local electronic structure –
in particular of the d-states – of interstitial Fe atoms at GBs in Si is mainly due to the
different local environment. If only 4-fold coordinated Si atoms exist in this environment,
the largest effect is due to the presence of the crystal field. 5-fold coordinated Si can
perfectly lead to the formation of Fe-Si bonds that can alter the spin configuration of the
interstitial Fe atoms.
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3 Interaction of iron impurities with extended defects in silicon

3.2.4 Discussion
([2], Sec. V)

In order to study the behavior of Fe impurities in polycrystalline Si, atomistic models for
seven symmetric GBs in Si were constructed and structurally relaxed, and their interface
energies were calculated. The obtained structures for the two Σ 3 (112) GB models are
in agreement with reported HRTEM observation by Watanabe et al. [99]. Experimen-
tally, the mirror-symmetric arrangement of the GB was apparently found mainly in the
vicinity of triple lines of GBs whereas the nonsymmetric arrangement was observed in
GB segments which were free from any other structural distortion. Watanabe et al. also
reported GB energies for the two Σ 3 (112) GB models from their first-principles calcu-
lations, namely 0.56 J/m2 for the nonsymmetric and 0.75 J/m2 for the mirror-symmetric
model which are in good agreement to our values of about 0.47 J/m2 and 0.67 J/m2,
respectively.

The results of recent first-principles studies for the Σ 5 (130) GB [120, 122] also agree
well with our data. Our GB energy of 0.35 J/m2 for the Σ 3 (112) GB is close to the values
reported by Huang et al. (0.38 J/m2) [120], Shi et al. (0.37 J/m2) [119] and Lazebnykh
and Mysovsky (0.29 J/m2)[122]. We are not aware of any reports on atomistic studies
for the Σ 5 (120) and Σ 3 (110) GBs. Our proposed models of the latter two GBs have
similar GB energies as the other investigated GBs and hence we believe that such a GB
configuration can exist in Si. We are confident that the chosen set of seven GB models is
realistic, representative and useful to study the GB segregation of Fe impurities.

The Fe atoms were introduced at interstitial sites of the GBs. Among the seven GB
models, for only three an attraction of Fe atoms is found, namely for both models of the
Σ 3 (112) and the Σ 3 (110). This is in agreement with experimental SEM, HRTEM and
EBIC observations. Chen et al. showed that in terms of Fe gettering the Σ 3 (111) GB
behaves differently from the Σ 3 (112) and Σ 3 (110) GBs [36]. While latter two GBs
strongly attract Fe, the Σ 3 (111) GB does not show Fe segregation at all. The different
behaviors of a symmetric Σ 3 (111) and Σ 3 (110) GB was recently confirmed by Nacke
et al. [44]. Chen et al. also reported that individual Fe atoms could be seen at the Σ 3
(112) GB in HRTEM [36]. This is also reflected by our results since only some but not all
of the interstitial sites are apparently attractive. At variance to our present results, Chen
et al. reported that the Σ 9 GBs also tend to attract Fe atoms. However, the interface
plane orientation was not given for this Σ 9 GB. We therefore cannot be certain whether
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3.2 Interstitial iron impurities at grain boundaries in silicon

the Σ 9 GBs which were investigated by Chen et al. have the (221) interface plane or a
different one.

Two first-principles studies of Fe segregation at individual Si GBs have been reported in
the literature: the Σ 3 (111) GB was studied by Suvitha et al. [124], and the Σ 5 (130)
GB was investigated by Shi et al.[119]. The results of both studies for the segregation
energies are in agreement within 0.1 eV with our results. Shi et al. also tried to correlate
the local geometric arrangement of the Si atoms at the segregation sites with the segre-
gation energy of Fe. Similarly to us, they concluded that it was not possible to identify
any clear trend.

Our results indicate that in particular the symmetric Σ 3 (112) GB is a very favorable
interface for Fe segregation. This may partially be attributed to an existence of 5-fold
coordinated Si atoms at the GB. The segregated Fe atoms create a chemical bond with
such Si atoms and thereby lower the energy. Such local bonding was indicated in the
PDOS curves (cf. Fig. 3.12). Therefore, it is likely that intrinsic defects at GBs, such as
Si atoms, that are not 4-fold coordinated, may trap Fe and even create chemical bonds
between the Si and Fe atoms. It is known that Fe forms Fe silicide precipitates at GBs in
Si and, hence, such an initial bond may act as a seed for precipitation of Fe-Si particles.

Another observation follows from the calculated DOS in Fig. 3.12: the electronic struc-
ture of interstitial Fe at GBs may differ significantly from that of interstitial Fe in bulk
Si. For instance, the Fe atoms at the GB become non spin-polarized or the Fe d-states
split into more than two levels. This is of particular relevance for experimental detection
methods of interstitial Fe which rely on the energy position of the deep defect levels of
Fe in the band gap, for instance µ-PL [97]. This position may vary for different GBs in
Si and therefore segregated interstitial Fe may not be detected properly by such methods.
In all cases a deep level from a Fe impurity remains in the band gap of Si and, hence, a
previously inactive Fe-free GB in Si can become electrical active upon Fe segregation. If
segregated Fe atoms accumulate and form Fe-Si precipitates at the GB, a band-like elec-
tronic state can develop instead of a single deep level. This is relevant for experimental
methods such as deep level transient spectroscopy [52].

Our study was performed under the assumption that Fe atoms occupy interstitial positions
at GBs. It cannot be excluded that Fe also substitute Si atoms at the GB. In bulk Si,
interstitial Fe atoms occupy Si vacancies and become substitutional defects [125] but
Si vacancies are very unlikely in bulk Si because they have large formation energies.
However, this formation energy of Si vacancies is smaller at GBs, i.e. Si vacancies are
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3 Interaction of iron impurities with extended defects in silicon

attracted by GBs [122, 126, 127]. The possibility for Fe to occupy Si vacancies at the
GB sites may therefore be more likely than in bulk Si. GBs also attract other impurity
elements[126, 128–131] that can modify the segregation behavior of Fe at the GB.

In addition to the considered low-Σ or large-angle GBs, there are random GBs and high-
Σ or small-angle GBs as well, which all show a very strong attraction for the Fe atoms
[95, 132]. The strong segregation can be explained by the interaction of Fe atoms with Si
atoms which are not fourfold coordinated at the GBs, similarly as it was observed here
for the symmetric Σ 3 (112) GB. The situation is different for small angle GBs. This
type of GBs is composed of periodic interfacial Read-Shockley dislocation arrangements
with not overlapping dislocation cores [133]. It is known that dislocations tend to recon-
struct along their dislocation lines [108] and thereby avoid over- or undercoordinated Si
sites. However, both bulk and GB dislocations have elastic strain fields surrounding them
which may affect the segregation behavior of Fe atoms [44, 45, 95]. An elastic strain field
is also observed around GBs which contain Fe precipitates [36, 44, 95]. However, in this
case it is not evident whether the strain field is induced by the growth of the precipitate
at the GB or it is present beforehand. The question how strain fields affect Fe impurities
in bulk Si crystals is subject of the next section.

3.3 Diffusion of iron impurities in strained silicon

crystals

In the previous section, we have studied the segregation of interstitial Fe impurities at
a set of symmetrical tilt or twist GBs in Si. We were able to show that the segregation
energies of Fe atoms at Si GBs are determined by rather subtle features of the local co-
ordination and bonding. In addition to GBs, there also exist other extended defects such
as dislocations. Dislocations are one-dimensional defects which consist of a dislocation
core and long-ranged elastic stress and strain fields. But in a polycrystalline material,
elastic strain can also originate from other sources such as precipitates, triple junctions
of GBs, etc. Strain may influence the energy of interstitial Fe impurities and thus change
their distribution in the polycrystalline material. Moreover, the diffusion properties of
interstitial Fe may be affected due to a change of their migration barriers. To investigate
these possibilities we study the influence of different states of elastic strain on interstitial
Fe impurities in the following section.
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The modeling of strain is achieved by the geometric deformation of the super cell. Var-
ious modes of strain have been applied such as shear or uniaxial strain. In order to de-
scribe the diffusion of Fe impurities, jump rates of Fe atoms are calculated from energy
barriers along the minimum energy paths (MEPs), and from frequency factors that are
obtained from phonon spectra. The jump rates are then transferred into a kinetic Monte
Carlo simulation from which diffusion coefficients are extracted. In addition, also the
temperature dependence of the formation energies for the different configurations are
obtained by considering the vibrational entropy. The content of this section has been
published in [1] (Ziebarth et al., Phys. Rev. B 92, 115309).

3.3.1 Structural models
([1], Sec. II. B)

In all DFT calculations, a cubic diamond supercell with 64 Si atoms was used. Validation
calculations for several structures with a larger supercell containing 96 Si atoms yielded
identical results. The calculated equilibrium value of the cubic lattice constant is 5.467
Å which is in agreement with experimental (5.431 Å [134]) and other calculated data
(5.469 Å [135]). Calculated values of the cubic elastic constants also agree reasonably
well with experimental data (cf. Tab. 3.2; the deviations are typical for DFT results
within the generalized gradient approximation).

Figure 3.13: Four different configurations of Fe impurities (red spheres) in the diamond
structure of Si (blue spheres) are shown. The local coordination shell is
depicted as a red polyhedron. The pictures show a projection along the
[110] direction.
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3 Interaction of iron impurities with extended defects in silicon

3.3.2 Temperature dependence of defect formation energies
for iron impurities
([1], Sec. III. A)

Figure 3.14: Temperature dependencies of the free energies of defect formation for the
four different Fe defect configurations.

Previous studies [21, 83, 125] have shown that Fe impurities in bulk Si can be located
in three different configurations. The Fe atom can occupy either interstitial sites with
tetrahedral Td or trigonal D3d symmetries [137] (the trigonal site is commonly called
’hexagonal’ due to its six Si neighbors) or Fe can substitute Si on regular sites. These
three configurations are displayed in Fig. 3.13 together with a configuration of the transi-
tion state (marked as TRA in the following) between the tetrahedral and hexagonal sites

[GPa] Calc. Exp.[136]
C11 149 165.6
C12 59 63.9
C44 99 79.5
B 89 97.8

Table 3.2: Cubic elastic constants and bulk modulus of bulk Si (in GPa).
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3.3 Diffusion of iron impurities in strained silicon crystals

(see discussion bellow).

In a perfect Si single crystal, the tetrahedral (TET) site is known to be energetically
more favorable for the interstitial Fe than the hexagonal (HEX) site [83]. Our calculated
energy difference between the TET and HEX configurations of 0.60 eV agrees well with
the value of 0.57 eV obtained in previous DFT calculations [83]. It has also been reported
that interstitial Fe atoms will preferentially occupy Si vacancies (forming substitutional
(SUB) Fe defects) rather than forming a defect complex with the Si vacancy [125].

The formation energy Ef of a defect configuration can be calculated as

Ef = E total −NSiµSi −NFeµFe , (3.3.1)

where E total is the total (internal) energy of the supercell with the Fe impurity, NSi and
NFe are the numbers of Si and Fe atoms in the supercell, and µSi and µFe are the chemical
potentials for Si and Fe, respectively. In our calculations, µSi has been chosen to be
equal to the chemical potential of Si in the crystalline equilibrium diamond structure,
and µFe such that the formation energy of an interstitial Fe atom at a tetrahedral site in a
Si single crystal is zero. This corresponds to the Si-rich limit of the binary Si-Fe system.
In unstrained Si, we obtained formation energies of 0.0, 0.70, 0.56, and 0.76 eV for all
the TET, TRA, HEX, and SUB defects, respectively. The calculated values for excess
volumes for these defects turned out to be negligibly small. The formation energy of a
SUB defect includes the formation energy of the Si vacancy.

In order to take into account finite temperature effects, we also investigated the phonon
contributions to the defect formation energies[138]. The phonon densities of states for
the different defect configurations and for the perfect Si crystal were calculated, using the
Phonopy software package [139], from the dynamical matrix obtained from finite atomic
displacements in the harmonic approximation[138, 140]. Atomic displacements from
equilibrium positions were set to 0.05Å. From the phonon density of states, it is straight-
forward to calculate the free energy of defect formation for a given temperature [141].
The calculated temperature dependencies of the free energies for the four defect config-
urations are shown in Fig. 3.14. Since all four curves look very similarly, the relative
energy differences between the defect configurations are almost independent of temper-
ature. Hence, it is reasonable to assume that temperature does not affect significantly
the hierarchy of defect formation energies for Fe impurities in bulk Si, and therefore the
temperature dependence is not further taken into account.
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3 Interaction of iron impurities with extended defects in silicon

Figure 3.15: Formation energies of the different Fe defects and the Si vacancy in Si for
different strain states. The energy scale for the Fe impurities is on the left
side and the energy scale for the Si vacancy is on the right side. Negative
strain corresponds to compression and positive strain corresponds to expan-
sion.
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3.3 Diffusion of iron impurities in strained silicon crystals

3.3.3 The effect of strain on the defect-formation energy of
iron impurities
([1], Sec. III. B)

In order to investigate the effect of elastic strain ε on the defect formation energies,
different uniform strain states with strain magnitudes ranging between −5% and +5%

were applied. The considered strain modes were: hydrostatic strain εHyd, uniaxial strains
ε[100], ε[110], ε[111] , ε[112], and shear strains τ[010],[001], τ[112],[111], τ[110],[112], τ[111],[110]. Strain
is applied by the deformation of the conventional cubic fcc unit cell with a lattice constant
of a0 and cell vectors [142]

a =

a1

a2

a3

 =

a0 0 0

0 a0 0

0 0 a0

 (3.3.2)

by applying a deformation matrix D such that new cell vectors a′ are

a′ = (I + D) · a , (3.3.3)

where I is the identity matrix. The deformation matrices are given in the Appendix. In
addition to the formation energies of interstitial Fe defects, the formation energies of
substitutional Fe defects and Si vacancies were also calculated. As mentioned above,
the Si-vacancy + Fe-interstitial complex is not as stable as a Fe-substitutional unstrained
Si, but this relative stability may be altered by applied strains. For the calculations of
the formation energies under external strain, we always set the chemical potential of Si
(µSi in Eq. 3.3.1) at the same strain state as for the perfect Si crystal containing the Fe

Figure 3.16: The interstitial tetrahedral site (red sphere) in Si is connected via hexag-
onal sites (small black spheres) in 〈111〉 directions with four neighboring
tetrahedral sites.
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3 Interaction of iron impurities with extended defects in silicon

impurity. The defect formation energies for all applied strain modes are displayed in
Fig. 3.15. Note that the energy scales for the Fe impurities are different from that for the
Si vacancy.

Due to the lattice symmetry, the tetrahedral interstitial sites in bulk Si remain equivalent
for arbitrary homogeneous strain. In contrast, the hexagonal interstitial sites become
nonequivalent depending on the strain state of the system. The four differently oriented
hexagonal sites in the rectangular supercell system differ by the orientation of their large
facet, which is orthogonal to one of the following four directions: [111], [111], [111] and
[111] (see Fig. 3.16). These four hexagonal sites are therefore labeled in the following
by their directions from the tetrahedral site.

As displayed in Fig. 3.15, the formation energy for the TET configurations remains al-
most constant for all investigated strain states. The strain dependencies for the HEX
configurations follow linear relations in the cases of hydrostatic and uniaxial strains.
The largest change in the interstitial formation energies is for the hydrostatic strain, for
Fe at the HEX site it changes by almost 1.2 eV over the range of ±5% strain. In the case
of uniaxial strains, the changes are only by about 0.5 eV for the same strain range. For
shear strains, the HEX formation energies depend non-linearly on the strain with max-
imum variations reaching also about 0.5 eV (e.g., for the τ[010],[001]). In all cases, there
is at least one hexagonal site which shows a reduction in the formation energy during
shear.

The formation energies for the Fe substitutional and the Si vacancy follow similar para-
bolic trends, but the variations are more pronounced for the latter. In all investigated
cases, the transformation of a Fe-substitutional into an Si-vacancy + Fe-interstitial defect
complex is unlikely because the formation energy for substitutional (SUB) Fe remains
smaller than the sum of the formation energies of the interstitial TET Fe and the Si
vacancy.

The formation energies for charged Fe+ defects in Si have not been calculated because
Fe+ is mainly present in p-doped Si and forms defect clusters with shallow acceptors
such as boron [21, 83]. In order to accurately describe the energetics and kinetics of
charged Fe+, it would therefore be necessary to consider such defect clusters of Fe with
B. This is not in the scope of the present work.
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3.3.4 Diffusion of iron in strained silicon
([1], Sec. IV. B)

To analyze the migration of Fe impurities in Si, we first determined the frequency factors
for the TET→ HEX and HEX→ TET jumps from phonons according to Eq. 2.2.3 and
Eq. 2.2.4. For the unstrained Si crystal, we obtained frequency factors of νTET→ HEX =

30 THz and νHEX→ TET = 18 THz. For simplicity, the frequency factors for Fe are taken
to be the same as well for the strained cases in the following.

The MEPs and associated migration barriers for Fe jumps between the interstitial TET
and HEX sites were calculated using the CI-NEB method for all investigated strain states
but only for the three strain magnitudes of −5%, 0 and +5%. For illustration, the MEPs
for different uniaxial [100] strains are shown in Fig. 3.18. The migration barrier decreases
for tension and increases for compression. The HEX site corresponds to a local energy
minimum and its relative stability with respect to the TET site depends strongly on the
applied strain.

All computed energy barriers are compiled in Fig. 3.17. The reference energy barrier
for Fe diffusion from a TET to a HEX site in unstrained bulk Si amounts to 0.74 eV
while the barrier height for the reverse jump (HEX to TET) is only 0.19 eV. The largest
changes in the energy barriers are observed for the hydrostatic strain. The energy barrier
between the TET and HEX sites decreases to about 0.3 eV for +5% strain while the
energy barrier for the reverse direction increases to about 0.25 eV. For negative strain of
−5%, the energy barrier between the TET and HEX sites increases to about 1.20 eV, for
the reverse direction the energy barrier almost vanishes. A similar but less pronounced
change is found for uniaxial strain. Some of the deformations, e.g. uniaxial strain along
the [111] direction, do not conserve the equivalence of the hexagonal sites, and thus,
different energy barriers for different directions are obtained. For all shear strains, the
migration barriers are reduced for both directions. Again, the magnitude of the reduction
depends specifically on both the elastic shear direction and the geometric jump direction.
This is of particular interest because it is not reflected in the formation energies shown
in Fig. 3.15, i.e., the formation energy for the HEX site increases with strain whereas the
energy barrier decreases for both jump directions.

To investigate the influence of the migration barrier changes on the diffusion of Fe,
lattice-based numerical kMC simulations were employed. A rate table for the differ-
ent migration directions was set up using Eq. 2.2.2 with the calculated energy barriers
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Figure 3.17: Energy barriers for forward and backward jumps between the TET and HEX
sites obtained using CI-NEB calculations. The dashed line corresponds to
the energy barrier for migration of Fe interstitials in unstrained bulk Si. The
solid blue and green lines indicate to the effective energy barriers obtained
from the kMC simulations.
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Figure 3.18: Minimum energy paths for interstitial Fe migration between two tetrahedral
sites for different uniaxial [100] strains.
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Figure 3.19: Temperature dependencies of relative diffusion coefficients (w.r.t. Fe dif-
fusion in unstrained bulk Si) for all investigated strain states obtained from
kMC simulations. The shaded areas emphasize data with quantitatively sim-
ilar behaviors.

from Fig. 3.17 and the frequency factors given above for the unstrained supercell. The
diffusion constants (with a standard deviation lower than 1%) for different strain states
were obtained by averaging one hundred kMC runs (each having one million kMC steps)
according to Eqs. 2.2.5-2.2.7.

Fig. 3.19 displays the temperature dependencies of the diffusion coefficient (with respect
to the diffusion coefficients of interstitial Fe in unstrained bulk Si) for all investigated
strain types. Despite the consideration of different migration directions and the strain-
induced change of the crystal structure (symmetry), the Fe diffusion always follows an
Arrhenius behavior. The effective energy barriers are included in Fig. 3.17 as green and
blue solid lines. They only deviate slightly from the lowest energy barriers found for
the TET→HEX migration. The reverse migration direction has no significant influence
on the effective energy barriers. Beware that due to our simplification of setting the
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frequency factors to those of the unstrained crystal, the intercepts may be inaccurate and,
hence, they are not considered here. The results for D/Dbulk can be sorted into four
quantitatively similar groups. The two extreme cases, i.e., strongly reduced and strongly
enhanced diffusion, occur for +5% and −5% hydrostatic strain, respectively. The third
group, consisting of compressive uniaxial strains, leads to a slightly lower diffusivity.
The majority of the strain states, including all types of shear strain, form a fourth group
that causes a moderately higher diffusivity.

3.3.5 Discussion
([1], Sec. VI)

The results of our DFT calculations show that the behavior of Fe atoms in a bulk Si
crystal is not significantly affected by temperature. The temperature neither changes
the stability hierarchy of the Fe defect configurations nor does it influence the predom-
inant migration mechanism, i.e., the MEP and its energy barrier for migration of a Fe
interstitial between the neighboring tetrahedral sites. This finding is consistent with ex-
perimental observations of only one operating mechanism for diffusion of Fe in Si over
a wide range of temperatures [143].

It is still a matter of debate why Fe impurities are attracted by regions of large elastic
strains [41–43, 45]. The stability of the most favorable configuration for Fe atoms oc-
cupying the interstitial tetrahedral sites in Si remains almost unaltered in the presence
of realistic strain fields ranging within ±5% (cf. Fig. 3.15). Therefore, there is no ther-
modynamic driving force for the accumulation of Fe impurities in regions of large strain
associated with high concentrations of dislocations or other extended crystal defects.
This result is consistent with the experimental observation of Lu et al. that the gettering
of interstitial Fe by the strain field of dislocations is very inefficient [55].

Nonetheless, the formation energies of other interstitial and substitutional Fe defects are
affected by strain. Even though these configurations are not thermodynamically stable,
they play a role in the diffusion of Fe impurities. We carried out extensive MEP calcula-
tions to study the effect of various homogeneous strains on the migration of Fe atoms in
Si. The results for the energy barriers were then used for the parametrization of a meso-
scopic kMC simulation model to obtain effective diffusion coefficients under various
strain states and temperatures. The effects of different strain states could be classified
into four groups (cf. Fig. 3.19). For all considered cases, the diffusion of Fe follows
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an Arrhenius behavior with effective energy barriers close to that of the lowest energy
barrier for the TET→HEX migration direction. Hydrostatic strains lead to the largest
changes of Fe diffusion. For 5% hydrostatic expansion of the lattice the diffusion at
room temperature becomes seven orders of magnitude faster than the diffusion in un-
strained Si. An analogous reduction of the Fe diffusivity by eight orders of magnitude
occurs for hydrostatic compression of the same magnitude (cf. Fig. 3.19). Similarly, all
the uniaxial compressive and tensile strains also lead to a decrease and an increase of
the Fe diffusion, respectively, albeit not to such dramatic ones. Rather surprising is our
finding that a shearing of the crystal structure results always in an enhancement of the Fe
diffusion, which is similar to that found for uniaxial tension. In summary, we observe an
increase of Fe diffusion for all types of strain except for compressive strain.

The diffusion of Fe in n-doped Si under external uniaxial stress along [110] has been
studied by Suzuki et al. [45, 46] using Mössbauer spectroscopy. The activation energy
barrier for interstitial Fe diffusion was found to decrease from 0.68 eV to 0.33 eV for
a stress of about 19 MPa at room temperature. Since the lattice strain corresponding
to this stress is much lower than 1%, the expected change for the migration barrier is
very small. According to our calculations, the reduction of the migration barrier to 0.35
eV requires an application of external hydrostatic stress of about 4.4 GPa (cf. Tab. 3.2),
which is much higher that the reported stress value. A possible explanation of the ex-
perimental observations of Suzuki et al. may be related to large local stress associated
with dislocation entanglements and their changes under external loading; unfortunately,
no information about the dislocation distribution and arrangement was given.

44



3.4 Iron impurities in strain fields and at cores of dislocations in silicon

3.4 Iron impurities in strain fields and at cores of

dislocations in silicon

In the previous section, we have studied the influence of elastic strain on interstitial Fe
impurities. Surprisingly, elastic strain only affects their diffusion but does not lead to
their segregation. In the following section, we want to study the influence of dislocations
on interstitial Fe atoms. Dislocations are line defects and consist of a long-ranged strain
field and a short-ranged core region.

The long-range behavior of a dislocation can be described by an elastic strain field which
decays with the distance from the core of the dislocation. In the previous section, the
influence of strain on the migration of interstitial Fe was already thoroughly investigated.
These results are now used to parameterize the strain-dependence of the migration barrier
of an interstitial Fe atom. This parameterization is then used to examine the migration
of Fe interstitials in the strain field caused by a dislocation which is obtained from the
theory of linear elasticity.

The study of the core region of a dislocation, at which the atomic structure is heavily
distorted from that of the perfect crystal, requires atomistic models. The core of the
dislocation is a one dimensional defect and Si atoms rearrange and reconstruct as well at
dislocation cores like they do at GB interfaces. For some types of dislocations, there are
several reconstruction patterns which may be formed. Indications exist that a perfectly
reconstructed dislocation, i.e. all Si atoms are four-fold coordinated at the dislocation
core, is electrically inactive [52] and, hence, does not affect the efficiency of the solar
cell. But dislocations can be decorated by metallic impurities and such a decoration
makes the dislocation electrically active [34, 52]. This is of course important for the
production of solar cells because electrically active defects reduce the efficiency of solar
cells but dislocations also exist in other semiconducting devices which are made from
monocrystalline Si. Electrically active defects may lead to complete malfunction of such
devices.

The modeling of dislocations is even more difficult than the modeling of highly sym-
metric grain boundaries due to the long-ranged elastic stress and strain fields inherent
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to dislocations. The elastic field of an individual dislocation cannot be represented re-
alistically using supercells of treatable sizes with periodic boundary conditions. In our
study, we adopted an arrangement of a dislocation quadrupole which cancels most of the
elastic field at the boundaries of the supercell so that periodic boundary conditions can
be applied. But we still have to use rather large supercells with more than 500 atoms.
The large size of the supercell limits us to study only the few most stable configurations
of interstitial Fe at the dislocation core.

In the following section, we report our results on the segregation of interstitial Fe and its
local electronic structure at cores of dislocations. The first part of this section, in which
the influence of the strain field of dislocations on Fe interstitials is investigated, has been
published in [1] (Ziebarth et al., Phys. Rev. B 92, 115309). The second part about
the segregation of interstitial Fe impurities at cores of dislocations is in preparation for
publication.

3.4.1 Dislocations in silicon

Dislocations are line defects accompanied by long-ranged stress and strain fields which,
according to the continuum theory of linear elasticity, diverge at the dislocation centers
[105]. In the region around the dislocation center, usually referred to as the dislocation
core, linear elasticity ceases to be valid and non-linear elasticity [144] or the discrete
atomic structure needs to be taken into account.

Figure 3.20: Stacking of the atomic {111} layers in the diamond structure of Si. Blue
and purple spheres mark the Si atoms of the two fcc sublattices.

In the diamond structure of Si, perfect dislocations have Burgers vectors, b, equal to
a/2 〈110〉, where a = 5.47 Å is the cubic lattice constant of Si. Experimental observa-
tions have revealed that there are only two types of perfect dislocations in Si – a pure
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Figure 3.21: Orientation for the screw and 60◦ mixed dislocations and the 90◦ and 30◦

partial dislocations. The stacking fault associated with the partial disloca-
tion is not shown here.

screw dislocation and a 60◦ mixed dislocation [108]. Both dislocations glide on the
close-packed {111} planes. Since the diamond structure is build from two face-centered
cubic (fcc) sublattices, there is an alternating stacking ...AaBbCcAaBbCc... of the {111}
planes, where the layers labeled by uppercase letters belong to one sublattice and the
lowercase letters denote layers of the other sublattice (see Fig. 3.20). These two sets of
{111} planes have also two distinct interplanar spacings. The narrowly spaced planes
(aA, bB, cC) are called glide planes while the widely spaced planes (Ab, Bc, Ca) are
called shuffle planes. The dislocation core can be, in principle, located between either of
the planes [105, 145]. If the core is centered between the glide set of planes, it can disso-
ciate into partial dislocations with Burgers vectors a/6 〈211〉 according to [105, 108]

a

2
[110]→ a

6
[211] +

a

6
[121], (3.4.1)

where the dissociated partial dislocations are connected by an intrinsic stacking fault of
very low energy. The perfect screw dislocation dissociates into two 30◦ partial disloca-
tions, while the 60◦ dislocation dissociates into one 30◦ and one 90◦ partial dislocation
[108]. The dissociated dislocations are energetically favorable and have been confirmed
by high-resolution transmission electron microscopy [108, 146]. These two partial dis-
location cores ( 30◦ and 90◦ ) were therefore chosen for our study of the interaction with
the Fe impurities.

In the first part of this section, we focus on the interactions between the interstitial Fe
impurities and the long-ranged strain fields of dislocations in Si. Core effects of partial
dislocations are investigated in the second part of this section.
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3 Interaction of iron impurities with extended defects in silicon

3.4.2 Iron in strain fields of perfect and partial dislocations
([1], Sec. V)

In this subsection, the interaction between the strain fields of dislocations and interstitial
Fe impurities are studied. For simplicity, we treat the partial dislocations as individual
objects since the strain field of the stacking fault is negligibly small relative to the strain
fields of the cores. The crystallographic orientations for the dislocations are sketched in
Fig. 3.21. The strain field of the screw dislocation has an axial symmetry and can be
decomposed into shear strains τxz τyz along the dislocation line only [105]. The strain
fields of the 60◦ mixed and the 30◦ partial dislocations have more complex symmetries
as they consist of strain components with both screw and edge characters. The latter
includes dilatational strains εx and εy and shear strain τxy perpendicular to the dislocation
line [105]. The 90◦ partial dislocation is a pure edge dislocation with a corresponding
strain field. Note that decompositions of dislocation strain fields into individual strain
components are not unique but depend on the choice of the geometrical reference frame
(for the orientations used here see Fig. 3.21).

In order to analyze the diffusion of Fe in the strain fields of the four dislocations, we
first parametrized the changes of the migration barriers as functions of the relevant strain
components. This was done by interpolating the barrier changes calculated for strains
ranging between −5% and +5% (cf. Fig. 3.17) with a polynomial function. Results
of these interpolations, showing the barrier change es(ε) = ∆E(ε)/∆Ebulk for the two
dilatational and four shear strains needed for the dislocation strain fields, are presented
in Fig. 3.22. The different colors in each graph correspond to migration pathways in the
different 〈111〉 directions.

In linear elasticity, the total strain field at an arbitrary location in the field of the disloca-
tion (outside of the dislocation core) is given by superposition of all strain components.
The corresponding migration barrier at this location can be then written as

∆E(ε) = ∆Ebulk ·
Nstrain∏
i=1

e(εi) , (3.4.2)

where Nstrain is the number of strain components.

Fig. 3.23 shows the variations of migration barriers for Fe jumps along different 〈111〉
directions in the strain fields of all four considered dislocations. As expected, the most
pronounced barrier changes are close to the dislocation cores, where the amplitude of
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3.4 Iron impurities in strain fields and at cores of dislocations in silicon

Figure 3.22: Parameterizations of the change of the migration barrier es(ε) for strain
component s and strain value ε by a polynomial function. Only strain com-
ponents necessary for the dislocation strain fields are shown. The different
colors represent the different 〈111〉 migration directions (of Fig. 3.21).

the strain field is largest. In case of the screw dislocation, the influence of the elastic
field is rather short-ranged and the migration barrier differs less than 0.01 eV from the
bulk value at a distance of 40 Å away from the dislocation core. For the 60◦ mixed
dislocation, the influence of the strain field on the migration barrier is much more pro-
nounced and its difference from the bulk value falls below 0.01 eV at a distance of about
150 Å away from the dislocation core (not shown here). The shear strain field of the
screw dislocation leads only to a decrease of the migration barrier, whereas for the 60◦

mixed dislocation the migration barrier is increased in the compressive region (positive
y-values) and decreased in the tensile region (negative y-values). The strain fields of both
partial dislocations influence the migration barrier similarly as that of the 60◦ mixed dis-
location, predominantly due to the edge components of their strain fields. The influence
is more pronounced for the 90◦ partial dislocation than for the 30◦ partial dislocation due
to the larger edge character.

For all dislocations, the migration barrier depends also on the migration direction which
leads to direction-dependent shapes of the contour plots. Cross sections along the green
dashed lines are shown in the right-most panels. For the 60◦ mixed dislocation and the
two partial dislocations, different 〈111〉 migration directions have almost the same mi-
gration barriers in the tensile region, while in the compressive region the [111] migration
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3 Interaction of iron impurities with extended defects in silicon

direction has a slightly larger migration barrier then the other three directions. However,
in both cases the deviations between the different directions are hardly significant.

In order to estimate the influence of the strain field on the diffusion of interstitial Fe,
we compare the ratio λ between the migration rate Γlocal,direction(r), in different migration
directions at a position r and the migration rate in bulk Γbulk. This ratio is given by

λ(r) =
1

4

∑
direction

Γlocal,direction(r)

Γbulk
=

1

4

∑
direction

e−∆Elocal,direction(r)/kBT

e−∆Ebulk/kBT
, (3.4.3)

where λ = 1 corresponds to a bulk-like migration while Fe migration is enhanced or
decreased for λ > 1 or λ < 1, respectively. From λ angle-averaged rates are calculated.
Since for all cases but the screw dislocation the migration behaviors are different in the
two halfspaces above (a) and below (b) the glide plane of the dislocation (i.e. a: y > 0

and b: y < 0 in Fig. 3.23), separate λa(r) and λb(r) are calculated for these two regions.
The angle-averaged λa(r) and λb(r) around the dislocation center are calculated from the
ratio λ(r) in Eq. 3.4.3 according to:

λa(r) =

π∫
0

λ(r, θ)dθ (3.4.4)

and

λb(r) =

0∫
−π

λ(r, θ)dθ (3.4.5)

where r and θ are the polar coordinates of r in a plane perpendicular to the dislocation
line, and the half spaces above and below the glide plane are denoted by the subscripts a
and b.

In Fig. 3.24, we show the results of λa(r) and λb(r) for the different dislocations at
T = 100 and 300 K. In the lower half space (left panels) the migration of Fe is enhanced
in all cases. The 60◦ dislocation has the largest influence on the migration. In the upper
half space (right panels) only the screw dislocation leads to an increase of the diffusion
which is the same for the upper halfspace. The compressive strain fields of the other tree
dislocations lead to a decrease of the diffusion.

The influence of the screw dislocation has the shortest range. This is reflected in the
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3.4 Iron impurities in strain fields and at cores of dislocations in silicon

Figure 3.23: Migration barrier for interstitial Fe impurities in the strain field of a 60◦

mixed dislocation, screw dislocation, 90◦ partial dislocation, and 30◦ partial
dislocation for different migration directions. The yellow circles indicate
the core region of the dislocation (radius chosen to be 5 Å) where our model
is not applicable due to core effects. The panels on the right show cross
sections along the dashed green lines marked in the contour plots. The
dotted horizontal black line indicate the migration barrier for Fe in bulk Si.
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3 Interaction of iron impurities with extended defects in silicon

Figure 3.24: Angle-averaged distance-dependent ratios between migration rates of in-
terstitial Fe around dislocations and in the perfect crystal of Si in the two
halfspace above (a) and below (b) the glide plane of the dislocation for the
two temperatures T = 100 K and T = 300 K.

decay of λa(r) and λb(r) as a function of r. For the screw dislocation it approaches the
bulk value faster than for the 90◦ and 30◦ dislocation. The influence of the 60◦ dislocation
has the longest range.

With increasing temperature, the influence of the strain field on the diffusion is less
pronounced. While λa is about 2.5 at a radius r = 15 Å for the 60◦ dislocation at T =

100 K, it is only 1.35 for T = 300 K.

3.4.3 Atomistic models of dislocations

To study the interaction of interstitial Fe impurities with the cores of dislocations, atom-
istic models have to be constructed which are small enough so that they can be treated
within the DFT approach. Since dislocations require supercells with a large number of
atoms, we limit ourselves to the most important types of dislocations, namely the partial
30◦ and the partial 90◦ dislocation, because most perfect dislocations are dissociated.
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3.4 Iron impurities in strain fields and at cores of dislocations in silicon

The long-range elastic stress and strain fields of dislocations make it challenging to sim-
ulate dislocations using small periodic supercells, which are treatable by electronic struc-
ture calculations. In our previous study [1], we investigated the interaction of Fe impuri-
ties with the long-range elastic fields of dislocations using a combined atomistic/kinetic
Monte Carlo approach. In the present work we can focus on the core region and study the
segregation of Fe only close to the dislocation cores. We therefore employ a common
supercell geometry with a quadrupole arrangement of dislocations (see Fig. 3.25). In
this periodic arrangement of dislocations, most of the long-range stress and strain fields
of the individual partial dislocations are cancelled in the region between the dislocation
cores [147–151]. A nonrectangular supercell with two dislocations of opposite Burgers
vectors is a suitable atomic representation for such a dislocation arrangement. We used
supercells containing 512 Si atoms, which were found to be sufficiently large to obtain
correct core configurations without any spurious interactions. The thickness of the super-
cell along the dislocation line amounted to 4a[11̄0] to enable the investigation of different
Fe concentrations (see below).

Figure 3.25: Schematic view of the periodic arrangement of dislocations. The supercell
contains a dislocation dipole of partial dislocations which forms a lattice
of dislocation quadrupoles when the supercell is periodically repeated. The
dashed lines correspond to the stacking faults connecting the partial dislo-
cations.

It is known that both cores can undergo reconstructions along the dislocation line [108].
The unreconstructed and reconstructed configurations of the 30◦ partial core are shown
in Fig. 3.26). The unreconstructed core of the 30◦ partial dislocation is not stable and
reconstucts spontaneously during relaxation of the supercell [152]. For the partial 90◦

dislocation, there exist at least two different core configurations, termed as the single
period (SP) and the double period (DP) reconstruction, shown in Fig. 3.27 [111, 153].
Both the SP and DP reconstructed cores of the 90◦ partial dislocation are metastable. We
found the SP core to be about 0.08 eV/Å more stable than the DP core, in agreement with
other DFT studies of Benneto et al. (0.10 eV/Å) [153] and Valladares et al. (0.04 eV/Å)
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3 Interaction of iron impurities with extended defects in silicon

Figure 3.26: Supercell models of the 30◦ partial dislocations with different core struc-
tures. The upper panels show the dislocations oriented along the dislocation
line, the bottom panels show the reconstruction patterns of the dislocations.
Blue spheres indicate Si atoms; light blue spheres indicate Si atoms which
form the core of the dislocation. The dashed lines are guides to the eyes.

[111].

3.4.4 Segregation of iron impurities at dislocation cores

Atomic structure and energetics

In the following, we focus on the interaction between the interstitial Fe impurities and the
two partial dislocation cores. As mentioned in Sec. 3.4.3, we employed a large supercell
with a period of 4a[110] = 4ξ along the direction of the dislocation line, ξ̂ = ξ/ξ, in
order to be able to examine to which extent the segregation as well as the core structure
are influenced by Fe concentration. Our setup allows to vary the Fe concentration from
1 to 4 Fe atoms per core in the supercell. The investigated impurity concentrations then
correspond to 0.25, 0.5 and 1.0 Fe atom/ξ.

To investigate the energy landscape of Fe inside the dislocation core, we first inserted
a single Fe atom at different positions along the dislocation line. Initially, only the po-
sition of the Fe atom was relaxed while the positions of the Si atoms were kept fixed.
Then the low-energy configurations were selected and full structure optimizations were
carried out using the BFGS algorithm [154]. The relaxed Fe positions were then used
for the construction of initial supercells containing 2 or 4 Fe atoms in the core. These
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3.4 Iron impurities in strain fields and at cores of dislocations in silicon

Figure 3.27: Supercell models of the 90◦ partial dislocations with different core struc-
tures, displayed in the same way as in Fig. 3.26.

supercells were then also fully relaxed. The most stable configurations of Fe impurities
at all investigated dislocation cores are shown in Fig. 3.28.

For all configurations, segregation energies were obtained according to

Eseg
Fe =

Ewith Fe − Ewithout Fe −NFeµFe

NFe
(3.4.6)

where Ewith Fe/Ewithout Fe is the total energy of the Si dislocation supercell with/without an
Fe atom,NFe is the number of Fe atoms in the supercell, and µFe is the chemical potential,
which is set to the total energy of an interstitial Fe atom in a perfect bulk Si crystal. Note
that within this definition a negative segregation-energy value favors segregation while
no segregation is expected for a positive value.

The absolute value of the segregation energy (cf. Fig. 3.28) is largest for the SP and DP
reconstructions of the 90◦ partials and smallest for the reconstructed 30◦ partial. For all
dislocation cores, the segregation energies for impurity concentrations of 0.25 and 0.5
Fe atom/ξ are very similar. This indicates that the interaction energy between the Fe
atoms is negligible for these concentrations. In contrast, for the largest concentration
of 1 Fe atom/ξ, we observe that the segregation energies decrease significantly, i.e., the
segregation becomes more favorable for the weakly attractive DP reconstruction and the
30◦ partial.
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Figure 3.28: Atomic structures of the most stable configurations of segregated Fe impu-
rities (red spheres) at investigated cores. The left column shows the location
of the Fe atom viewed along the dislocation line for a concentration of 0.25
Fe atom/ξ. The other columns show the location of the Fe atoms from a top
view for increasing Fe concentrations. Blue spheres indicate Si atoms, light
blue atoms indicate Si atoms that correspond to the dislocation cores.

Electronic structure analysis

The electronic densities of states (DOS) of the three considered dislocation cores (cf.
Fig 3.28) without and with segregated Fe atoms are displayed in Fig. 3.29. For com-
parison, also the DOS for the perfect Si crystal without and with interstitial Fe at a
tetrahedral interstitial position is shown. For the d-states of Fe, projected DOS have been
calculated. In Fig. 3.29, they are displayed as gray-shaded areas. A decomposition of the
d-states into cubic t2g and eg contributions is included (red and blue lines, respectively)
in Fig. 3.29. For the interstitial sites at the dislocation cores this decomposition is only
approximate since the Si atoms surrounding the Fe interstitial do not have a perfect cu-
bic (octahedral or tetrahedral) symmetry. The orbital directions for the projection were
chosen to be same as those for the perfect Si crystal.

In agreement with previous studies [2, 21, 83], our calculations yield for interstitial Fe
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Figure 3.29: Total and projected electronic densities of states for the bulk crystal and the
30◦ DP, 90◦ SP, and 90◦ DP dislocation cores without and with segregated
interstitial Fe for different impurity concentrations. For clarity, the projected
densities of states of the states of Fe are scaled.

in bulk Si that two electrons are transferred from 4s to 3d states. This leads to a filling of
the d-states of Fe by eight instead of six electrons per Fe atom. Moreover, the high-spin
configuration for the Fe atom is favored such that the spin-up d-states are completely
filled and the spin-down d-states are partially filled by three electrons. The tetrahedral
crystal field of the surrounding Si atoms splits the spin-down states into t2g and eg states.
The t2g states are located above the edge of the valence band and correspond to the deep
defect states known from several studies [2, 21, 83]. The eg states are shifted to the
conduction band and remain unoccupied.

In the case of a clean 30◦ partial dislocation, the band gap is narrowed but still open. For
Fe concentrations of 0.25 and 0.5 Fe atom/ξ, the segregated Fe creates several gap states
that cannot be clearly discriminated as t2g and eg states. While the first peak is still at the
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same position as the t2g states of Fe in bulk Si, an additional peak appears in the band
gap about 0.4 eV higher in energy.

For the clean 90◦ partial dislocation with SP core, the band gap is closed while with DP
core it remains almost the same as in bulk Si. This feature of chemical bonding is likely
reflected by the higher energy of the SP core compared to the DP core. The partial d-
DOS of segregated Fe for the SP core at the two lower concentrations are similar to that
of interstitial Fe in bulk Si, but one of the t2g states is shifted to a lower energy. The local
electronic structure of the DP core is similar to that of the 30◦ partial.

For all three dislocation cores, the highest concentration of 1 Fe atom/ξ induces much
more significant changes in the electronic structure as the atom-like d-states start to
broaden to a crystal-like d-band. For the case of the DP core of the 90◦ dislocation, the
system even becomes spin-unpolarized and thus qualitatively very different from those
with the lower impurity concentrations.

3.4.5 Discussion
([1], Sec. VI)

The obtained dependencies for the migration barriers on the applied strain were utilized
to analyze the diffusional behavior of Fe interstitial in the strain fields of the perfect screw
and 60◦ mixed dislocations as well as of the partial 90◦ and 30◦ dislocations in Si. Due
to the shear character of its strain field, the perfect screw dislocation always enhances
the Fe diffusion in its vicinity. However, the effect is rather short-ranged, within a radius
of less than 4 nm. In contrast, the perfect 60◦ mixed dislocation enhances Fe diffusion
on one side and impedes it on the other side, since the migration barriers are increased in
the compressive and reduced in the tensile regions of the dislocation (cf. Fig. 3.23). The
barriers are systematically influenced by strain even beyond 15 nm from the dislocation
center, i.e., within a significantly larger region than around the screw dislocation.

Both partial dislocations behave qualitatively similarly as the 60◦ mixed dislocation al-
though the barriers are affected within a smaller range (smaller for the 30◦ than for the
90◦ partial dislocation). A superposition of the effects of the two partials can be used
to determine whether dissociated dislocations alter the migration barrier differently than
the perfect dislocations. Since the dissociated 60◦ mixed dislocation is composed of the
30◦ and the 90◦ partials separated by less than 5 nm, its overall effect on the migration
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barrier is qualitatively same as that of the perfect dislocation. In contrast, the dissoci-
ated screw dislocation will influence the migration barrier of Fe markedly differently
than the perfect dislocation, since two 30◦ partials have both screw and edge characters.
The dissociation in this case therefore gives rise to regions of inhibited and enhanced
Fe diffusivity around the screw dislocation. For all dislocations the most pronounced
changes of the migration barriers occur close to the dislocation cores where the stresses
and strains are largest.

We investigated the segregation of interstitial Fe atoms at three most relevant core struc-
tures of partial dislocations in Si. In all considered configurations, the Fe interstitials are
attracted to the dislocation cores. The segregation energies do not depend on the impu-
rity concentration if it remains lower than 0.5 Fe atom/ξ, i.e. the Fe atoms are separated
by at least 2ξ and are uniformly distributed along the dislocation line. For these concen-
trations, the system can be considered to be in the dilute limit. This is supported by the
calculations of the electronic densities of states which look almost identical for the impu-
rity concentration of 0.25 and 0.5 atom/ξ (cf. Fig. 3.29). In the dilute limit a rather small
segregation energy of about −0.10 eV is found for the 30◦ partial dislocation. For the
90◦ partial dislocation, a much lower (higher in the absolute value) segregation energy is
found for the SP core (−0.62 eV) than for the DP core (−0.22 eV). For higher concentra-
tions of 1 Fe atom/ξ, one can see that the segregation energy is significantly different for
the 30◦ and 90◦ DP cores. For the SP core of the 90◦ dislocation, the segregation energy
almost does not change.

In order to analyze how the thermodynamic stability of dislocation is affected by the
segregation of impurity atoms, we computed the relative line energies for both clean
and Fe-containing dislocations. For the clean dislocations, the relative line energy η0 is
calculated as

2η0 =
Ewithout Fe − Eref

4ξ
(3.4.7)

where the factor 2 accounts for the presence of two dislocations in our supercells. Eref

is an arbitrarily chosen reference energy. For the 30◦ dislocation, the natural reference
is the energy of the clean dislocation so that η0 = 0. For the 90◦ dislocations we chose
the SP core energy as the reference so that the line energy of the more stable LP core is
lower and negative. We can then determine the relative line energies of the Fe-decorated
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Figure 3.30: Relative dislocation line energy as a function of Fe impurity concentrations
along the dislocation line.

dislocation cores as:

η =
Ewith Fe −NFeµFe − Eref

4ξ
− η0 (3.4.8)

This formula corrects for a double-counting contribution since in our supercells only one
of the two dislocations is decorated with Fe atoms.

The results are summarized in Fig. 3.30 for both cores types. For the 30◦ core, the relative
dislocation line energy is only weakly dependent on the concentration, with a marginal
decrease at high concentration. For the 90◦ dislocations the concentration dependence is
much more pronounced. It is close to linear in both cases and the relative line energies
of both cores decrease significantly with increasing Fe concentration. Nevertheless, the
relative thermodynamic stability of the reconstructed SP and DP cores remains unaltered,
with the DP core being more stable at all Fe concentrations.
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The electronic densities of states for an impurity concentration of 1 Fe atom/ξ reveal a
formation of broader d-bands that indicate chemical interaction between the Fe impu-
rities. For the DP core of the 90◦ dislocation, the system becomes non-spin-polarized.
This behavior has already been observed in previous studies of segregated Fe impurities
at large-angle grain boundaries, and it may indicate an initial stage of formation of iron
silicide [2]. Our results show that large concentrations of Fe impurities at the disloca-
tions are favored which implies that local clustering of Fe impurities at the dislocation
line is possible even at low total Fe concentrations. Such clustering would again favor an
iron-silicide nucleation.

Our findings for the Fe segregation at dislocation cores in Si are in accordance with
experimental reports [54, 55]. However, the segregation mechanism at the atomic scale
is different than that expected by some of the experimental studies. For instance, Lauer
et al. [54] assumed that the Fe interstitial binds to a dangling bond present in the core of
a 60◦ dislocation, but this core structure is not energetically favorable [108]. Moreover,
it is likely that dislocations in Si dissociate under normal conditions as it was observed
using HRTEM by Reiche et al. [146]. Our results clearly show that Fe segregation at the
dissociated dislocations is not only possible but also energetically favorable.

The electronic structure of Fe atoms segregated at dislocation cores is different from
that of interstitial Fe impurities in bulk Si. For an individual Fe impurity at each of the
considered dislocation cores, we can identify a Fe-related deep electronic defect level at
about EV + 0.40 eV (EV stands for the highest energy of the valence band). This peak is
located in the same energy range as the deep level for interstitial Fe in bulk Si [83, 155–
158]). Moreover, a second peak appears for all stable cores (90◦ DP and 30◦ dislocation
core) which originates from the Fe d-states and is located 0.42 eV higher in energy , i.e.
at EV + 0.82 eV. This peak may explain the metal-related deep level observed by deep-
level transient spectroscopy (DLTS) atEV +(0.77±0.03) eV [52, 159, 160]. However, in
these studies, the first deep level at EV + 0.40 eV does not appear in the measured DLTS
data. Another DLTS study by Lu et al. reported a deep level only at EV + 0.42 eV but
the deep level at EV + (0.77± 0.03) eV was not observed [55]. Our calculations suggest
that indeed both deep levels should be present. However, the electronic structure of Fe
impurities at dislocation cores may be influenced by other conditions such as additional
impurity elements, intrinsic defects at the dislocation line, etc.

Hence, a possible extension of this study is to consider also the interaction of interstitial
Fe impurities with other point defects at the dislocation cores. For instance, Matsubara et
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al. showed that the local concentration of H at dislocations can be significantly increased
and thus the formation of FeH pairs in the dislocations may become possible [114] and
can affect the local electronic structure of the decorated dislocation.

Our findings show that diffusion around dislocations is enhanced. Therefore, Fe atoms
can be transported easily to regions of higher dislocation densities. However, the prefer-
ential segregation of Fe has to occur within the core region. The segregation of interstitial
Fe impurities is possible at all the considered cores of partial dislocations in Si, but the
segregation energy of Fe depends strongly on the type of dislocation. The segregation
energies for Fe atoms are largest for the SP core of the 90◦ dislocation, but the 90◦ dislo-
cation still favors the DP reconstructed core even with segregated Fe. In all stable cases,
an additional peak of Fe d-states is observed in the density of states.

For completing the study of Fe atoms at cores of dislocations it will be necessary to take
the kinetics of Fe atoms at the dislocation cores into account. However, this will require
calculations of MEPs in the dislocation-core region using the atomistic models which
were addressed in this section. But the computational resources necessary for this would
have been too extensive for this work. In the future such a computation may become
doable and its results may be useful to extend our kMC simulation to obtain the Fe
distribution around the whole dislocation including its core. Moreover, these calculations
will also help clarifying whether if the dislocation core acts as a pipe-diffusion channel
along the dislocation line for Fe in Si, as observed for instance for Si in Al [161].
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4 Potential-induced degradation in
solar cells

4.1 Sodium in stacking faults of silicon

In this section, sodium decorated stacking faults (SFs) are investigated. These were
recently identified as the primary cause of potential-induced degradation in Si solar cells
due to local electrical short-circuiting of the p-n junctions. In this section, we investigate
these defects by first-principles calculations based on density functional theory in order
to elucidate their structural, thermodynamic, and electronic properties. The content of
this chapter has been published in [3] (Ziebarth et al., J. Appl. Phys. 116, 093510
(2014)).

4.1.1 Introduction
([3], Sec. I)

In recent years, silicon-based photovoltaic devices have become exceedingly important
as an alternative way of generating electricity without using fossil fuels, and a lot of ef-
fort has been spent to improve the efficiency of the Si-based solar cells. For instance,
techniques have evolved in order to lower the concentrations of impurities (e.g. iron
impurities, cf. last chapter) that reduce the lifetime of photo-induced charge carriers.
But efficiency is not the only quantity which is required for the successful application
of photovoltaic devices as large-scale power generators. A long lifetime and high relia-
bility of photovoltaic power plants is at least as important as the efficiency of the solar
cells. To ensure this, it is particularly important to understand in detail possible failure
mechanisms occurring during device operation.
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One class of failure mechanisms is the so-called potential-induced degradation (PID)
[28–30], which leads to a significant efficiency loss of Si-wafer-based photovoltaic cells
at high operating voltages. An important sub-class of PID is associated with the for-
mation of so-called shunts [57, 162] that reduce the parallel resistance Rp [29]. The
shunts occur in both polycrystalline Si and single-crystalline Si modules composed of
soda lime glass, ethylene vinyl acetate and an anti-reflective coating (SiNx) [29, 163].
Recent experiments using time-of-flight secondary-ion-mass spectroscopy and scanning
electron microscopy [164, 165] revealed that the shunted areas are associated with stack-
ing faults (SF) inside Si and sodium precipitates at the SiNx/SiOx/Si interface. Very
recently, Na decorated stacking faults terminating at Si surfaces have been observed
by high-resolution transmission electron microscopy (HRTEM), cf. Fig 4.1 [56]. The
amount of Na in the stacking fault was estimated to be about one monolayer, decorating
completely the SF plane. Since the formation energy of the (111) stacking fault in Si is
very low, these defects can extend throughout the p-n junction of a solar cell. However, it
is unclear how Na affects the SF properties. In the light of the experimental evidence, it
is speculated that Na-decorated SFs may become electrically conductive and thus present
the key agents of PID via short-circuiting of the Si p-n junction [56].

Figure 4.1: Transmission electron microscopy and energy-dispersive X-ray spectroscopy
observation of a Na-decorated SF in Si. Picture taken from [56].

In the present study, we investigate the structure and energetics of Na-decorated stacking
faults in Si by calculations based on density functional theory (DFT) [62, 63]. We address
the questions of how Na diffuses into the SF of Si and what is the mechanism responsible
for the short-circuiting of the p-n junction.
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Figure 4.2: Atomic structure of the intrinsic stacking fault in Si (a); the normal order-
ing ABCABC is disrupted due to a missing C plane into ABABC. Relaxed
atomic structure of the Na-decorated SF projected along the [112] direction
(b) and along the [111] direction (c). The extended Si-Si bonds (length of
about 1.96 Å) across the SF are marked by green lines in panel (b). The
yellow box in panel (c) indicates the supercell used in the calculations.

4.1.2 Atomistic models of sodium-decorated stacking faults
([3], Sec. II. B)

In order to obtain reference configurations, we first computed properties of ideal (111)
SF in Si with and without Na, using bulk supercell models with periodic boundary con-
ditions applied in all directions (see Figs. 1 and 2). Based on the experimental evidence,
the amount of Na atoms in the SF was set to one monolayer.

For calculations of Na diffusion into the SF, additional supercell models containing a
single (111) SF terminating at free (100) surfaces were created. The surfaces were sepa-
rated by at least 14 Å of a vacuum region in order to avoid spurious interactions between
the surfaces. To simplify the calculations, SiOx or SiNx reaction phases at the Si surfaces
were not taken into account. Instead, all bare Si surface atoms were passivated with hy-
drogen atoms in order to saturate the Si dangling bonds, or one of the surfaces was fully
covered by a thick layer of Na (cf. Fig. 4.8).

Sodium at the stacking fault
([3], Sec. III. A)

Structure and energetics A model of an intrinsic (111) stacking fault in Si is ob-
tained simply by removing a pair of adjacent atomic (111) planes. The supercell used
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in our calculations is shown in Fig. 4.2. It contains 20 Si atoms and was tested to be
sufficiently large for a reliable description of SF properties. We found the length of the
Si-Si bond across the SF to be only 0.02 Å larger than that of the equilibrium Si-Si bond
(2.37 Å). The computed SF energy of 3 meV / Å2 (discussed later in this section) agrees
well with other theoretical calculations and experimental measurements [166–168].

Figure 4.3: Three possible interstitial sites for Na in Si bulk and SF. The tetrahedral in-
terstitial position is the most stable configuration in bulk Si. The open and
closed structures with 16 and 12 surrounding Si atoms, respectively, exist at
SF and the Σ3 (111) GB.

In order to investigate the energetics of Na-decorated SFs, interstitial Na atoms were
subsequently added to the SF. Fig. 4.3 shows three types of interstitial sites that exist in
bulk Si and in the intrinsic SF. The 12-fold and 8-fold coordinated interstitial sites at the
SF, termed as “open” and “closed”, differ clearly from the tetrahedral site in bulk Si.

For our choice of the supercell dimensions, it was possible to study two configurations:
(i) with one Na atom per SF area, which corresponds to a half-filled SF, and (ii) with two
Na atoms per SF area, which completely fill all available sites in the SF (cf. Fig. 4.2).
For both configurations the atomic positions as well as the cell dimensions were relaxed.
We also tested different initial positions of interstitial Na atoms, but the final configura-
tion was found to be always the same, namely, with Na atoms occupying the open sites
at the SF. In contrast, the atomic structure of the SF depends sensitively on the Na con-
centration. In the case of the half-filled SF, the presence of Na atoms leads to only a
very small extension (0.08 Å) of the Si-Si bonds across the SF. The situation is markedly
different for the fully-filled SF where the bond length across the SF (cf. green bonds in
Fig. 4.2 (b)) is extended by 1.96 Å with respect to the bulk bond length. This expansion
of the Si lattice is confined to the Si-Si bonds across the SF while the length of the more
remote Si-Si bonds in the supercell remains almost unaltered.

In addition to the SF, we also investigated Na segregation at the Σ3(111) symmetric tilt
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grain boundary (GB) in Si, which is closely related to the SF, and at the (111) plane
in bulk Si with the same Na concentration as in the fully-filled SF. In both cases, the
presence of Na causes similar local stretching ( 1.9 Å) of the Si-Si bonds as for the SF.

In order to compare the energetics of the investigated planar defects, we computed the
interface energies as

Einterface =
E tot

defect −NSi µSi

A
, (4.1.1)

where E tot
defect is the total energy of the supercell containing the defect, NSi is the number

of Si atoms in the system, µSi is the chemical potential of Si in its most stable crystal
structure (diamond structure), and A is the area of the planar defect.

The obtained interface energies of 3 and 2 meV/Å2 for the SF and the Σ3 grain boundary,
respectively, are similar and very small, as already reported in literature [166, 167]. Such
small values can be explained by negligible changes in the bond lengths and bond angles
in both defects compared to the perfect crystal structure.

The normalized formation energies of interstitial Na atoms were calculated as

Eform =
E tot

with Na − E tot
without Na −NNa µNa

NNa
, (4.1.2)

where NNa is the number of Na atoms in the system, µNa is the chemical potential of
Na, and E tot

with Na and E tot
without Na are the calculated total energies for the systems with and

without Na, respectively.

Fig. 4.4 shows the calculated formation energies of Na in Si bulk and SFs as a function
of Na chemical potential. The chemical potentials of Na in different systems relevant
to the present study are marked by arrows, cf. Fig. 4.5. All values were calculated
using DFT with the reference zero value corresponding to Na in its equilibrium body-
centered cubic (bcc) structure. As the surfaces of the Si wafers are usually parallel to the
(100) planes, one of the configurations is a single Na atom on a free (100) 1x1 surface
of Si. The chemical potential of this system is almost 1 eV lower than that of bulk
bcc Na. Since the Na atoms arrange as a layer at the Si surfaces, we also consider a
free monolayer of Na atoms arranged in a triangular and square lattices. The chemical
potential of both these lattices is almost the same and not very different from that of
the reference state. In reality, the Si surfaces of the solar cells are oxidized and hence
covered by a thin amorphous layer of silicon oxide. Since first-principles calculations of
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Figure 4.4: Na formation energy as a function of the chemical potential of Na. The Na
chemical potentials for relevant configurations are marked by arrows.

amorphous structures are computationally too demanding, the energy of interstitial Na
in two different crystalline silicon oxide structures (α-quarz and β-cristobalite) has been
calculated instead. Finally, the solar cells also contain an anti-reflection coating made of
amorphous silicon nitride. Again, as amorphous silicon nitride is out of the scope of this
study, we used crystalline β-silicon nitride as a representative phase for determination of
the Na chemical potential in this layer. The calculated Na chemical potentials in both
oxide phases and especially in the nitride phase exceed significantly that of the bulk
Na.

The results in Fig. 4.4 clearly show that it is thermodynamically more favorable for Na to
segregate at a SF than to remain in bulk Si. The energy needed for a Na atom to segregate
into a half-filled SF is about 0.34 eV lower than that in bulk Si. The formation energy then
further decreases by about 0.88 eV when Na fills completely the SF or the (111) plane.
Based on these thermodynamical arguments, it can be expected that Na will prefer to
form a continuous atomic layer rather than a dispersed distribution of independent atoms.
We observed that there is no significant difference between Na at the SF, Σ3 (111) GB,
and the bulk (111) plane. However, as will be discussed below, the Na diffusion behavior
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Figure 4.5: Relevant environments for Na in the context of PID as obtained from Fig. 4.1
.

at these defects is different.

Electronic properties Fig. 4.6 shows the electronic total density of states (DOS)
and atomic site-projected density of states (PDOS) for the SF fully occupied with Na.
We also calculated the DOS of an empty SF (not shown), but it does not significantly
differ from that of the perfect Si crystal. Once the Na monolayer is embedded into the
shuffle plane of the stacking fault, two peaks appear in the DOS. One peak (marked as
Peak I in Fig. 4.6) is located about 1 eV below the Fermi level, while the other peak
(marked as Peak II in Fig. 4.6) coincides exactly with the Fermi energy.

The origin of these two peaks can be analyzed using the PDOS curves (a)-(c) in Fig. 4.6.
The PDOS of the Si atom located far away from the stacking fault (green line corre-
sponding to atom (c) in the inset) has an almost bulk-like DOS with some finite density
left at the Fermi energy. The PDOS of the Si atom located at the stacking fault (orange
line corresponding to atom (a) in the inset) contains two peaks that coincide exactly with
the new peaks in the total DOS. These peaks are also discernible in the PDOS of the
second Si layer below the SF (red line corresponding to atom (b) in the inset), but are
less pronounced. Additional DOS calculations carried out for a larger supercell with Si
atoms separated by at least 8 Si-layers from the SF showed a perfect agreement with the
DOS of c-Si.

A local charge analysis around the Na atoms within their ionic radius of 0.99 Å [169]
revealed that no significant remaining charge is present at the Na atoms. Hence, the 3s
valence electrons of the Na atoms are completely delocallized and transferred to the Si
environment.
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Figure 4.6: Total DOS (top panel) and PDOS (panels (a)-(c)) of the SF filled with Na.
The PDOS are scaled by a factor of 3 in order to make their features better
discernible. The PDOS are colored and labeled in the same way as the as-
sociated atoms in the inset. The total DOS of the perfect Si crystal (c-Si) is
shown for comparison (dashed black line in bottom panel). The Fermi energy
coincides with the solid vertical line at E = 0 eV.

Diffusion of Sodium
([3], Sec. III. B)

Perfect stacking fault As a first step for understanding Na diffusion, we computed
the mobility of Na inside the fully-filled, half-filled, and empty SF using NEB calcula-
tions. In order to remove spurious finite size effects, an extended supercell consisting of
eighty atoms was used in these calculations. For the fully-filled SF, it was necessary to
remove one Na atom from the supercell in order to create a vacant interstitial site into
which the neighboring Na atom can jump. In the half-filled SF, this step was not nec-
essary as the neighboring interstitial sites are already unoccupied. In the empty SF, a
single Na atom was added into the open interstitial site within the SF. The atomic po-
sitions in both the initial and final NEB configurations were relaxed while the supercell
dimensions were kept fixed. As a reference, we performed also an NEB calculation for
the Na diffusion between two neighboring tetrahedral interstitial sites in bulk Si using a
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cubic supercell containing 64 Si atoms.

The results of the NEB calculations are displayed in Fig. 4.7. All Na diffusion pathways
within the SFs are equivalent (see the top panels in Fig. 4.7). The distance between the
open interstitial sites in the SFs is double of that between two neighboring tetrahedral
interstitial sites in bulk Si (therefore two jumps are plotted in Fig. 4.7). We found that
the energy barriers for Na diffusion are 2.0, 2.3, and 0.3 eV in the empty, half-filled, and
fully-filled SF, respectively, and about 1.3 eV in bulk Si. The large energy barriers for
the empty and half-filled SF can be attributed to the very unfavorable closed interstitial
configuration, which the diffusing Na has to pass through. This configuration is slightly
metastable for the empty SF, most likely due to missing Na-Na interactions. The tran-
sition state in bulk Si corresponds to the hexagonal interstitial site with a significantly
lower energy than that of the closed configuration. The migration barrier is therefore
correspondingly smaller. By far the smallest migration barrier is observed for the filled
SF, in which the Si-Si bonds across the SF are markedly elongated as discussed above. It
is this expansion of the SF which contributes mostly to the lowering of the diffusion bar-
rier. It should be noted that for the half-filled SF, the initial and final configurations are
not equivalent. Since the final configuration is composed of Na clusters, it is by about 0.1

eV more stable than the initial one (composed of Na rows). The formation of Na clusters
leads also to a local elongation of the Si-Si bonds, but this elongation is only about 0.3 Å
(compared to 1.96 Å in the fully-filled SF), which is probably not sufficient to influence
the diffusion barrier.

Surface model with hydrogen passivation Based on the experimental evidence
[30], it is assumed that Na first accumulates in the interface region between Si covered
by a thin layer of SiOx and the SiNx anti-reflection coating before diffusing into the
SFs intersecting the Si surface. We considered first a simplified computational setup
using a thin Si slab terminated with two (100) surfaces that contains a (111) stacking
fault penetrating the whole slab thickness (see Fig. 4.8). The dangling bonds at the Si
surfaces were saturated by hydrogen in order to obtain a stable configuration without
any structural and/or electronic artifacts. The atomic positions as well as the dimensions
of the supercell perpendicular to the stacking fault were relaxed. Subsequently, the SF
was gradually filled with Na atoms and relaxed after each addition. For our supercell
model, it was possible to place four Na atoms into the SF so that the final, fully-filled
configuration consisted of 40 Si, 17 H and 4 Na atoms.
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Figure 4.7: Minimum energy paths for Na diffusion along a fully-filled, half-filled, and
empty SF as well as for Na diffusion between tetrahedral sites in bulk Si. The
diffusion pathways in the crystal are shown schematically in the top panels
(the projection is along the [111] direction).

For all four configurations, relative energies were calculated as

E(NNa) = E tot −NNa µNacristobalite ,

where NNa is the number of Na atoms in the system, E tot is the total energy of the super-
cell, and µNacristobalite is the chemical potential of Na in the β-cristobalite. The β-cristobalite
was chosen as the representative silicon oxide phase for the oxidized Si surface. We in-
cluded in the Fig. 4.9 also results from the half-filled and filled SF calculations from the
bulk supercells determined as

E(NNa) = NNa · Eseg

with the formation energies corresponding to the chemical potential of the β-cristobalite

72



4.1 Sodium in stacking faults of silicon

Figure 4.8: Supercells containing a Si slab terminated by (100) surfaces. In model (a),
both Si surfaces are passivated by hydrogen (white) atoms. In model (b), the
left surface is covered by a thin Na layer (purple atoms). The SF penetrating
the slab is marked by orange atoms. The dashed frame shows the segment
displayed in Fig. 4.11.

(cf. Eq. 4.1.2 and Fig. 4.4).

Fig. 4.9 shows the relative energy for the four slab configurations (marked as a-d) as
a function of Na filling. The energy decreases with increasing number of Na atoms at
the SF in a similar way as for the fully-filled SF from the periodic supercell calculation.
The small difference between the slab and bulk supercell calculations is likely caused
by finite size effects and should become negligible for a thicker slab (the results for the
two systems converge as the Na concentration increases). For the choice of the chemical
potential, the energy of the half-filled SF increases as it is filled with Na. In addition, we
investigated also a configuration where two Na atoms are not immediately neighboring
each other but are placed at a larger distance from each other to minimize their mutual
interaction. This configuration, marked as (b’) in Fig. 4.9, has about 0.74 eV higher
energy than the equivalent configuration with neighboring Na atoms, marked as (b). The
energy of the (b’) configuration nearly agrees with that of the half-filled SF. This result
again indicates that the energetics of Na atoms in the SF depends sensitively on the
continuity of the Na monolayer.

Apart from the energy analysis, we also investigated the change of the Si-Si bond lengths
across the SF upon filling the SF with Na (see Fig. 4.10). For the slab configurations
with a continuous Na layer, i.e. (a), (b), (c), and (d), the extension of the bonds at the
SF is fully consistent with the gradual Na filling. The Na layer causes the SF to open
up and the Si-Si bonds across the SF stretch by 1.7 Å to 2.2 Å. These values are very
close to the expansion of 1.96 Å obtained for the fully-filled bulk SF configuration (cf.
Sec. 4.1.2). Interestingly, the (b’) configuration containing independent Na atoms shows
no expansion of the SF, similarly as in the half-filled SF.

The results obtained for the slab model are therefore fully consistent with those obtained
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Figure 4.9: The relative energy of Na-decorated SFs as a function of Na concetration for
different configurations. The investigated slab configurations are shown on
the smaller panels (cf. Fig. 4.8(a)).

for the bulk SF models and the calculated differences due to finite size effects are appar-
ently very small.

Model of Si surface covered with Na In order to mimic the presence of Na on the
Si surface, we used the same slab model as described in the previous section, but removed
the hydrogen atoms on one side of the slab and covered this surface with 18 randomly
placed Na atoms as shown in Fig. 4.8 (b). Upon relaxation (the supercell dimensions
were kept fixed), this Na surface layer spontaneously transforms into the equilibrium bcc
structure with a (110) plane oriented parallel to the (100) Si surface. Due to a lattice
mismatch between the two crystal structures, the Na surface contains a small step at the
stacking fault.

To model the process of Na decorating the SF, a series of NEB calculations was carried
out as shown in Fig. 4.11. The intermediate NEB configurations were prepared in the
following way. First, the Na atom lying closest to the SF (red) was pulled into the
stacking fault, thereby creating an empty Na site at the interface. During subsequent
structural relaxation, a next Na atom (yellow) from the Na layer filled this space and
created a vacancy in the metal. The calculated energy barrier for this process is 1.25 eV,
while for the reverse direction only 0.27 eV is needed. In the second step, the red Na
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Figure 4.10: Extensions of the Si-Si bond lengths across the SF for different Na-
decorated SF configurations. The markings correspond to structures shown
in Fig. 4.9.

atom was pulled further into the SF. During relaxation of this configuration no changes
of the Na surface layer took place. The corresponding energy barrier amounts to about
1.9 eV. In the third step, the yellow Na atom from the interface layer was pulled into the
SF. This jump is again accompanied by a movement of another Na atom (blue) into the
emptied site. The energetics for this process is comparable to the first step.

The calculated energy profile in Fig. 4.11 shows that the energy of the subsequent config-
urations increases, and the process of Na diffusion into the SF is therefore energetically
unfavorable. However, it has to be kept in mind that because of the complexity of the
NEB calculations, the volume of the system was not allowed to change so that only min-
imal expansion of the lattice perpendicular to the SF was possible. The presented results
therefore effectively correspond to a rather artificial situation of Na diffusion under high
compressive stresses.

In order to approach more realistic conditions, we relaxed the intermediate configura-
tions with additional expansion of 1.9 Å perpendicular to the SF, which is the extension
observed for the equilibrium SF configuration fully-filled with Na. The energies of these
configurations are marked by orange diamonds in Fig. 4.11. The energy of the first con-
figuration increases since there is no Na inside the SF and the whole supercell is under
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elastic tension. The energy of the second configuration becomes now almost the same
as that of the first configuration since it is favorable for Na to occupy the expanded SF.
The third configuration has again a significantly larger energy. The reason for this large
increase in energy can be traced back to the situation presented in Fig. 4.9: the energy
of an independent Na atom inside the SF is significantly larger than that of a continuous
Na layer. Finally, for the fourth configuration containing connected Na atoms the energy
again decreases and is comparable to the first two configurations. These results support
further our previous analysis that the segregation process will rather involve a continuous
Na monolayer than independently diffusing atoms.

Figure 4.11: The energy profile associated with a three-step process of Na entering the
SF computed using the NEB method (black circles and the interpolation
curve). The orange squares are obtained by relaxing the intermediate min-
imum energy configurations using a supercell which is stretched by 2 Å
along the [111] direction.

Apart from placing Na atoms in the SF, we also investigated the migration of surface Na
atoms into the tetrahedral interstitial site in bulk Si. This configuration turned out to be
unstable with the displaced Na atom always moving back to its initial position in the Na
layer during relaxation.
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4.1.3 Discussion
([3], Sec. IV)

Based on the results of our calculations, we can analyze the behavior of Na atoms in Si
stacking faults and provide some explanations of existing experimental observations.

Our computational results confirm the experimental findings that it is energetically favor-
able for Na to segregate at SFs in Si. The formation energy as well as the local structure
of the Na-decorated SF depend sensitively on the amount of segregated Na atoms. The
most favorable configuration is a SF fully-filled with Na atoms which form a continuous
two-dimensional metallic layer. In order to accommodate such high Na concentration,
the interatomic Si-Si bonds across the SF have to extend by about 2 Å compared to their
equilibrium distance. This theoretical prediction agrees well with the HRTEM measure-
ments of Naumann et al. [30] who observed a widening of the Na-decorated SF by about
2.6 Å.

The large local dilation of the SF is associated with an appearance of two distinct peaks
in the density of states that can be attributed to the Si atoms at the SF. The two peaks
correspond to localized bonding and anti-bonding states originating predominantly from
the stretching of the Si-Si bond across the SF. According to our analysis, the 3s electron
of the Na is completely transferred into the Si-Si anti-bonding state at the SF. Since
exactly one electron is transferred per anti-bonding state, this state remains half-filled.
In addition both, the anti-bonding and bonding states are shifted down in energy by an
electrostatic interaction due to the Na ion. Since the half-filled anti-bonding state can
contribute to the electronic conduction along the SF, this offers an explanation for the
short-circuiting of the p-n junction in the solar cell due to PID.

In order to understand the diffusion of Na atom into and along the Si SFs, we performed
extensive NEB calculations. The results in Fig. 4.7 indicate that the Na diffusion barriers
in the half-filled and empty SFs (2.3 eV and 2.0 eV, respectively) are significantly higher
than the barrier for Na diffusion in bulk Si (1.3 eV), despite a lower Na formation energy
in the SF. However, when the SF is fully filled with Na, the diffusion barrier decreases to
only 0.3 eV. This large reduction of the barrier height is primarily caused by expansion
of the Si-Si bonds across the SF. Further NEB calculations with the slab geometry fully
confirm these results.

Additional NEB calculations were carried out to mimic the presence of Na layer on the Si
substrate. These simulations are however biased in two aspects. Firstly, the calculations
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were done with fixed supercell dimensions so that the system is in equilibrium in the
initial configuration but large compressive stresses build up as the Na atoms are placed
inside the SF. The potential energy landscape shown in Fig. 4.11 is therefore tilted due
to increasing elastic energy in the system, and the energy barriers for filling the SF with
Na are overestimated. Secondly, the chemical potential of bcc Na is lower than that
of a Na inside the SF making the Na segregation into the SF energetically unfavorable.
In order to overcome this limitation, it would be necessary to simulate a more realistic
configuration of Si substrate covered by amorphous SiNx and SiOx layers. Unfortunately,
such configurations are too complex to calculate using DFT.

Figure 4.12: Mobile ions including Na diffuse from the glass towards the surface of the
silicon solar cell due to a large electric field between the surface of the solar
cell and the grounded module frame. Picture taken from [170].

It has been shown that the use of soda-lime glass enhances PID [171]. It is still debated
whether the soda-lime glass is the actual source of Na or whether it only enhances the
electrical field in the SiNx anti-reflection coating, which already contains abundant Na
impurities [172]. In any case, the mobile Na cations from the overlayers diffuse towards
Si due to the external electrical field in the module as shown in Fig. 4.12, and accumulate
at the SiNx/SiOx/Si interface [30]. The calculated chemical potentials of Na in crystalline
SiNx and SiOx indicate that Na will tend to leave these phases and most likely also their
amorphous variants. As shown in Fig. 4.9, for Na chemical potential corresponding to
the β-cristobalite the SF fully filled with Na is the thermodynamically stable configura-
tion while the formation of a half-filled is not favored. Whether this range of chemical
potentials exists in real conditions still needs to be determined.

Since our diffusion study is based on the experimental observation that the SFs are filled
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from a reservoir of Na atoms segregated at the SiNx/SiOx/Si interface, only diffusion of
neutral Na atoms was considered in our calculations. It is also posible that Na+ impurities
in bulk Si [173] can diffuse into the SF. However, we believe that this mechanism is of
secondary importance since the diffusion barrier for Na in bulk Si is rather large (cf. Fig.
4.7), and no zones of Na depletion around the SFs were observed [56]. In addition, the
segregation of Na cations into the SF would be hindered by large repulsive Coulombic
interactions which would destabilize any coalescence of charged species.

Finally, a question arises why Na has been found only at SFs but not at the closely related
Σ3 (111) twin GBs. From the energy arguments there is no reason why this should be
the case. It is possible that Na is indeed decorating twin boundaries but they have not
been observed yet. Another reason might be crystallographic, since the intrinsic SFs can
terminate at flat (100) surfaces of Si (cf. Fig. 4.8) while this is not possible for the Σ3
(111) GB. (For a flat surface only one of the bicrystals can have te (100) orientation.)
Na segregation at other GBs terminating at (100) Si surfaces has also not been observed
which may be related to less favorable diffusion mechanisms than those operating at the
SFs.

In conclusion, our results suggest that a large electrical potential is required to transport
Na atoms from the Na source (either the soda-lime glass or the SiNx anti-reflection coat-
ing) into the SiNx/SiOx/Si interface. Providing Na atoms accumulate at the interface,
they would then spontaneously diffuse into the SF, and create an electrically conductive
2D layer. The electrical active SFs cause the short-circuiting of the pn-junction in the
solar cell and contribute to the potential induced degradation.

79



4 Potential-induced degradation in solar cells

80



5 Summary

In this thesis, metallic impurities in polycrystalline silicon were studied because they
play a major role in the performance of solar cells [21–25, 28–30]. In order to reduce
their negative effects, one needs to understand their behavior in the microstructure of
silicon polycrystals. Here, we have focused on two important metallic impurities which
act very differently, namely iron and sodium. Iron is known to cause the recombination
of electrons and holes generated by photons and thus to reduce the efficiency of the solar
cell [21–25]. Sodium has been identified recently to be involved in the potential-induced
degradation of solar cells [28–30]. For both cases, various atomistic model systems have
been studied by first-principles calculations based on density functional theory.

In Chapter 3, we have investigated three different aspects of the interaction of interstitial
Fe impurities with extended defects and distortions in the microstructure of polycrys-
talline silicon. In the following, we summarize our main results for the three different
scenarios.

Grain boundaries are two-dimensional extended planar defects in polycrystalline sili-
con. In Section 3.2, various atomistic models of high-angle grain boundaries have
been constructed and the segregation of Fe atoms at their grain boundary plane has
been studied. For the most stable configurations, the electronic structure has been
calculated and analyzed. We found that the segregation of interstitial iron depends
strongly on the orientation of the grain boundary plane rather than only on the
Σ-value characterizing the misorientation of the grains. For example, segregation
of interstitial Fe is observed at the Σ 3 (112) and Σ 3 (110) grain boundaries but
not at Σ 3 (111) grain boundaries. Our results emphasize the necessity to describe
the segregation behavior of Fe to a specific grain boundary not only by its Σ-value
value but also by the inclination of the grain boundary plane [36, 39, 94, 96].

Mechanical strain fields can be caused by various extended defects such as triple junc-
tions of grain boundaries, dislocations, or precipitates, and they may influence the
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formation energy of Fe impurities. This can result in the agglomeration of Fe im-
purities in spatial regions of sufficiently large strain [41, 43, 44, 52]. To see how
interstitial Fe is affected by mechanical strain, we have applied various modes of
mechanical strain to a supercell of the bulk Si crystal containing an Fe impurity
in Section 3.3. Three different defect configurations under the influence of strain
have been considered. While the interstitial Fe at hexagonal sites and substitutional
Fe are affected by hydrostatic, uniaxial and shear strain, the most stable configu-
ration, an Fe interstitial at a tetrahedral site, is not affected by strain. This implies
that there is no thermodynamic driving force for Fe impurities to segregate in re-
gions of high strain. Nevertheless, mechanical strain influences the diffusion of Fe
impurities. The diffusivity of interstitial Fe which has been obtained from kinetic
Monte Carlo simulations is strongly lowered by compressive strain while dilative
stain increases the diffusivity.

Dislocations are one-dimensionally extended linear defects which consist of a short-
ranged atomistic core region surrounded by a long-ranged elastic strain field [105].
In Section 3.4, the two different regions have been both studied.

In a first step, the results of Section 3.3 for strained bulk crystals were extrapolated
to describe the influence of the dislocation far away from the core region on the
migration of an Fe atom by considering only its elastic strain field. The two types
of perfect dislocations in silicon, namely the screw and 60◦ mixed dislocation, be-
have quite differently. While the screw dislocation always enhances the diffusion
of Fe impurities in its vicinity, the 60◦ mixed dislocation can both enhance and
impede the Fe diffusion in the tensile region and the compressive region around
the dislocation core, respectively. Under normal conditions, these two types of
perfect dislocations are split into partial dislocations. For a 60◦ mixed dislocation
split into a 90◦ and a 30◦ partial dislocation we found no qualitatively different
behavior. However, when a perfect screw dislocation is split into two 30◦ partial
dislocations, its behavior changes because the influence of the 30◦ partial disloca-
tion on the iron migration is more like that of the perfect 60◦ mixed dislocation, it
is just weaker.

In a second step, atomistic core models of partial 30◦ and 90◦ dislocations have
been constructed and the segregation of interstitial Fe to those has been studied.
For all considered atomistic core models, segregation of interstitial Fe is favored.
In the electronic structure of the dislocation the segregated Fe induces an additional
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gap state from the Fe d-states. This additional gap state may explain observations
from deep level transient spectroscopy measurements on dislocations which were
decorated by metallic impurities [52, 83, 157, 159, 160].

The combined results of the two different regimes indicate how segregation of
interstitial Fe at dislocation cores happens: the tensile region of the long-ranged
elastic strain field enhances the diffusion around dislocations by which Fe atoms
can be transported preferably to regions of higher dislocation densities where they
finally segregate at cores of the partial 30◦ and 90◦ dislocation. Once interstitial
Fe is segregated, the dislocation becomes electrically active and thus alters the
performance of the device.

In Chapter 4, we have investigated one aspect of sodium in silicon in the context of
potential-induced degradation. In the following, we summarize our main results on the
sodium-decorated stacking faults in crystalline bulk silicon.

Sodium-decorated stacking faults have been recently identified as the key reason for
potential-induced degradation, but until now only speculations on the physical
mechanism exist [28–30, 56]. In literature it is proposed that sodium drifts from
the protection glass of the solar module to the silicon surface of the solar cell
because of an electric potential difference that is build up between the grounded
frame of the solar module and the surface silicon of the chip. The sodium which
is enriched at the silicon surface diffuses into stacking faults reaching to the sur-
face and covers these completely. In this chapter the structural, thermodynamic
and electronic properties of these planar defects have been investigated. Our re-
sults reveal that the presence of sodium atoms leads to a substantial elongation of
the silicon-silicon bonds across the stacking fault. This elongation gives rise to
partially occupied defect levels within the silicon band gap that lead to electrical
conduction along the stacking fault. Our thermodynamic analysis of the sodium-
decorated stacking faults takes all relevant chemical environments of the system
into account, namely the anti-reflection coating (SiNx), the silicon surface, the na-
tive oxide film (SiOx) which forms at the silicon surface during the production
of the solar cell, and stacking faults which form during the growth of the sili-
con wafer. The analysis of the formation energy of the sodium-decorated stacking
fault reveals that sodium prefers to stay in the silica at the silicon surface and enters
the silicon only if a stacking fault is present. This interpretation is in agreement
with experimental observations. Furthermore, the degree of planar coverage of the
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5 Summary

stacking fault and continuously connectivity of the sodium layer strongly affects
the diffusion behavior of sodium within the stacking fault such that configurations
are favored in which the sodium monolayer is not disconnected.

84
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The work on the behavior of iron impurities in the microstructure of polycrystalline Si in
Chapter 3 can be extended in several ways. In the following we discuss some suggestions
of how this study can be continued to answer questions which require large system sizes,
or questions that concerns defect complexes of iron, charge states of iron, and other
elements.

Larger systems: So far only rather symmetric high-angle grain boundaries with low
Σ-value and short planar periodicity have been studied since such grain bound-
ary segments are most abundant in silicon. However, also other classes of grain
boundaries in particular more asymmetric and small-angle grain boundaries are
important for photovoltaic applications [95]. Unfortunately, these kind of grain
boundaries usually require large supercells of several hundreds to thousands of
atoms.

In order to describe dislocations by first-principles calculations, these were always
represented as a perfect one-dimensional line defect. In reality kinks, jogs and
other intrinsic structural defects occur along dislocation lines [105]. Again, such
kinds of defects cannot be studied with first-principles calculations due to the re-
quired too large sizes of the supercells.

These two example indicate the size limitation of first-principles calculations and
the need for simplified atomic interaction models for the binary Si-Fe system
which can treat problems such as interstitial iron atoms at small-angle grain bound-
aries or at intrinsic imperfections of dislocation cores. Such simplified models
for the Si-Fe system still do not exit but one promising way of development for
such a model may be a tight-binding total-energy model in which the quantum-
mechanical description of the chemical bonds is still included but the Hamiltonian
of the system is systematically simplified [174]. Within such an approach several
thousand atoms can be described which will allow to study the thermodynamics
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and kinetics of Fe impurities at small-angle grain boundaries, and non-straight dis-
locations.

Defect complexes: Another important aspect of interstitial iron in silicon is its property
to interact with shallow dopants and hydrogen impurities that are present in the
silicon matrix [21, 83]. This interaction leads to the formation of defect complexes
such as FeB or FeH pairs in silicon. For simplification these interactions were not
taken into account throughout this thesis. But they have to be considered for a
more realistic description. While it is known that the bulk electronic structure of
these defect complexes is different, it is still unclear if the segregation behavior
of iron at extended planar or linear defects is also affected by the formation of
such complexes. In the case of dislocations, it was already shown that hydrogen
segregates at the dislocation cores [114, 115]. Since in this thesis the same was
shown for interstitial iron, it will be very likely that iron and hydrogen do interact
at the cores of dislocations. Further studies will be necessary to investigate this
interaction not only at the dislocation cores but also at the grain boundaries.

Charge states of iron: Throughout this thesis only neutral interstitial iron in silicon
was considered. In p-type silicon, also positively charged Fe+ is observed [21,
83]. The investigation of Fe+ requires calculations for charged supercells. Since
first-principles calculations of solids are usually carried out using periodic bound-
ary conditions, for calculations of charged defects it is necessary to introduce a
compensating homogenous background charge density to ensure that that the total
energy remains finite. Moreover, the charged defect in a supercell interacts elec-
trostatically with its mirror images and thus one has to correct for this long-range
interaction by either increasing the size of the supercell drastically or by applying
more sophisticated correction schemata [175]. Thus, the extension of the current
work to charged iron defects in silicon will require a careful electrostatic treatment
of each supercell but will lead to more insight into the behavior of iron impurities
in silicon materials.

Other impurity elements: The first part of our study has been focused on interstitial
iron only. Other transition metals are important as well for the performance of
solar cells. In particular, interstitial chromium has been identified as a very impor-
tant metallic impurity for solar cells with n-based emitters [176]. To carry out a
corresponding study for interstitial chromium is a straightforward extension of this
work since the same atomistic simulation models and analysis procedures can be
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employed.

In the Chapter 2. of this work, sodium-decorated stacking faults and their role in the
potential-induced degradation have been studied and can be extended in several ways:

Stacking faults decorated by other elements: So far only sodium-decorated stacking
faults have been investigated because the study was motivated by their direct ex-
perimental observation by high resolution transmission electron microscopy [56].
However, also other alkali metals such as potassium or even alkaline earth metals
such as magnesium may decorate stacking faults in silicon if the elements enter
the SF from appropriate reservoirs. The study of these elements at stacking faults
can be carried out by adopting the same steps as for the sodium-decorated stacking
faults. Moreover, thermodynamic calculations of formation energies may guide
experimentalists in avoiding (or enhancing) stacking faults by other malign (or
benign) elements.

The process of decoration: Also the dynamics of the decoration process of the stacking
fault is not yet completely clarified. While our work provides first insight on how
this process takes place, more investigations are needed. For instance, so far no
electric field along the stacking fault has been considered. It may be that such
an electric field is required to drive the kinetics of the decoration process. The
incorporation of an electric field into a first-principles calculation is possible at
least for atomic slab models [177].

Sodium as a cause for stacking faults in silicon: Another open question is whether the
stacking faults exist before the sodium decorates these or they can also be created
or further extended by the sodium. It may be that the sodium reservoir which
forms at the silicon surface leads to large mechanical stresses which are released
by the formation of stacking faults that are then decorated by sodium, or that the
decoration process leads to the extension of the stacking fault by further propagat-
ing the partial dislocation that terminates the stacking fault, from the surface into
the interior of the crystal. Such a process cannot be studied using first-principles
simulations. Simpler models such as tight-binding total-energy models which can
handle much larger systems are needed as already discussed for the case of the
Fe-Si system.
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Appendix

Computational setup

In Chapter 3, all the reported DFT calculations have been carried out by means of the
Quantum Espresso PWscf code [178] which uses a plane-wave basis to represent
the wavefunctions of the valence electrons. Interactions of ionic cores and va-
lence electrons are described by ultrasoft pseudopotentials. The PBE generalized
gradient approximation was used for exchange-correlation [65, 179]. For all calcu-
lations in which Fe was involved spin-polarization was taken into account. Energy
cutoffs of 48 eV and 480 eV for the plane-wave basis and the Fourier representa-
tion of the electron density, respectively, were found to yield sufficiently converged
results. The Brillouin-zone integrals were sampled by Monkhorst-Pack k-point
grids [76]. The specific grids differ for the various supercells but the results were
checked for equally good convergence in all cases. Positions of the atoms were
relaxed until the residual forces acting on the atoms were less than 10−4 eV/Å. The
volume was relaxed for each GB supercell of Si without Fe and then kept fixed
when Fe was inserted at interstitial sites.

The minimum energy paths (MEPs) for jumps of Fe atoms between neighboring
sites were calculated using the nudged elastic band (NEB) method [74]. In addi-
tion, the climbing image NEB (CI-NEB) method was applied to ensure accurate
locations of activation barriers [74]. The threshold for the total forces, which are
acting on the NEB images of an interpolated reaction path, was set to 0.05 eV/Å.

In Chapter 4, all DFT calculations have been performed using the Siesta [180], which
uses a local orbital basis to expand the wave-functions of the valence electrons.
In order to obtain converged results, polarized double-zeta basis sets of numer-
ical orbitals were employed for all elements [180]. Interactions between ionic
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cores and valence electrons were described using norm-conserving pseudopoten-
tials in Troullier-Martins form [181]. For exchange-correlation the PBE general-
ized gradient approximation was used [65]. The charge density was projected on
a real-space grid; an equivalent plane-wave-energy cutoff of 270 eV for the fast
Fourier transformation has been found to yield well converged total energies. For
Brillioun-zone integration, grids of 8× 4× 8 k-points were used for the SF-model
and 1× 2× 12 k-points were used for the surface-slab model. Geometry optimiza-
tion was carried out using the BFGS algorithm [154] until forces acting on the ions
were less than 0.01 eV/ Å. Energy barriers associated with atomic migration pro-
cess were calculated using the nudged elastic band method (NEB) [74, 75]. The
force convergence criterion in the NEB calculations was set to be less than 0.05
eV/Å.

Management of calculations Throughout the thesis, DFT calculations have been set
up, analyzed and managed with the help of the atomic simulation environment
[182].

Deformation matrices for the calculation of

formation energy under strain

In the following, we list the deformation matrices D which are used according to Eq. 3.3.2
to apply an elastic strain to the cubic 64 atom supercell of the diamond structure of Si.
For hydrostatic strain εHyd(ε), the deformation matrix isε 0 0

0 ε 0

0 0 ε

 . (6.0.1)

For uniaxial strains ε[100], ε[110], ε[111] , ε[112], the deformation matrices areε 0 0

0 0 0

0 0 0

 ,


ε
2
− ε

2
0

− ε
2

ε
2

0

0 0 0

 ,
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respectively. For the shear strains, τ[010],[001], τ[112],[111], τ[110],[112], τ[111],[110], the deforma-
tion matrices are0 ε 0
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respectively.

Description of the kMC simulation code

In Chapter 3.3 diffusion constants of interstitial Fe impurities in strained Si crystals have
been calculated using a lattice kMC approach. As a part of the thesis work, a code was
written to carry out these kMC calculations. In the following the structure of this code is
described.

The general algorithm was already discussed in Sec. 2.2.2. The usage of large simulation
boxes such as the one used in Sec. 3.3 requires a software code which is feasible to run
such simulations in a reasonable amount of time. In order to achieve an easy handling
of the code by other users and a good readability of the source code, the program was
written using the scripting language Python (see, e.g. Ref. [183]). Time critical parts of
the code were translated into Cython (see, e.g. Ref. [184]).

The main structure of the code can be divided in three different classes: the kMC class,
the atomlist class and the lattice class as depicted in Fig. 6.1.

The lattice class stores all information of the lattice such as positions of the sites, occu-
pation of the sites and connections between sites. A lattice can be defined in two or three

91



Appendix

Figure 6.1: Structure of the kMC simulation code.

dimensions with open or periodic boundary conditions. In addition, helper functions are
included to plot the lattice, to build up connections between sites by a nearest-neighbor
analysis, and more.

The atomlist class tracks all information of the particles which migrate/diffuse through a
lattice. It contains all data which define the current configuration of the system. Option-
ally, the atomlist also saves the current positions of the particles on a given lattice object.
Moreover, possible reaction events and the corresponding reaction rates are stored in this
object.

The kMC class carries out the actual simulation. It requires an atomlist and a lattice ob-
ject. The kMC class incorporates all methods for the actual kMC simulation, i.e. carrying
out a single kMC step, calculating kMC trajectories and obtaining observables such as
diffusion constants. It also saves the information of the rates for possible reactions. There
are two different ways how to set up the reaction rates for the simulations: the first way is
the definition of a function called ratefunction which describes the rates as a function of
the current position of the diffusing particle and the direction of the jump process. Since
its definition can be sometimes rather tedious, the second possibility is to label each site
of a lattice and define a table of rates for the diffusion between different types of sites,
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i.e. the diffusion from a site of type X to a site of type Y , X → Y , requires the input of
the rate ΓX→Y .

Figure 6.2: Benchmark of the kMC simulation. The computational time is shown for
different number of particles, different number of lattice sites and different
number of kMC steps.

The calculation of observables in a kMC simulation requires a large amount of long kMC
trajectories and hence an efficient performance of a kMC step is crucial. Fig. 6.2 shows
a benchmark of a diffusion through a crystal with the diamond structure. Each value is
obtained from an average of ten independent calculations.

The graph on the left in Fig. 6.2 shows the computation times which are required to
perform 10 million kMC steps for different numbers of particles. The graph shows an
almost linear behavior. It turns out that the time limiting step is the calculation of the
cumulative sum which increases linearly with the number of possible events, i.e. the
number of rates of possible reactions in the kMC simulation. The number of events is
proportional to the number of diffusing particles in the dilute limit because every particle
has the same number of possible events in our test case. For large particle numbers, some
of the particles block each others and less reactions are possible. This leads to the slight
bending of the blue curve in Fig. 6.2.

The middle graph in Fig. 6.2 shows the computation times for different numbers of lattice
sites. Apparently the computational time for 10 million kMC steps does not depend on
the number of lattice sites in the system.

The graph on the right Fig. 6.2 reveals that after about 100 kMC steps the computation
time grows linearly with the number of steps . For fewer steps, the required time is mostly
influenced by the overhead of function calls and allocation of memory which lead to an
almost constant time value.
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The present code can be easily adapted for the use in other problems of materials science.
In particular, the high performance efficiency of the code allows to treat large system
sizes. This benchmark shows that the code performance is independent from the number
of lattices sites even up to 107 and its linear scaling with the number of particles is nearly
perfect. The kinetic Monte-Carlo approach is one of the most promising ways to carry
atomistic insight over to macroscopic behavior of materials. In the future, this code
can be used for instance to study the precipitation of second phases, to obtain effective
diffusion constant for grain boundaries and dislocations, and much more.
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