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Summary

This is a dissertation about computational and statistical analyses of mechanisms in post-

transcriptional gene-expression regulation. Gene expression is the process by which the

genetic information, stored in a segment of the genome, is used to synthesise a functional

gene product; it involves complex regulation at multiple levels. Whereas regulatory control

at the DNA level usually involves an on/off mechanism, regulation at the RNA level is

more varied and allows for fast and flexible adaptation to changing environmental pressures.

Post-transcriptional regulation of RNA generally requires interactions between the RNA and

trans-encoded factors, such as other RNAs or RNA-binding proteins. Although interactions

frequently occur by chance, they are of little consequence unless the affinity between the

RNA and its interacting partner is sufficient to facilitate a binding strong enough for the

regulatory process to proceed. Two main properties of RNA affect binding affinities: the

nucleotide sequence and its structure. While a trans factor can form interactions with specific

nucleotides or sequence of nucleotides, the RNA structure can either enable better access

to—or block—the active binding site. An active binding site is called a regulatory recognition

element.

Although some of the presented work is applicable to a broader analysis of post-transcriptional,

regulatory mechanisms, most work is applied to two popular, regulatory systems in which

small RNAs interact with associated proteins to target nucleic acids and suppress their

expression. In the prokaryotic CRISPR-Cas adaptive immune system, the crRNA is processed

from CRISPR RNA and subsequently guides an associated complex of Cas proteins to target

foreign genetic material for immediate degradation. The other system involves the microRNA

in eukaryotes, which (in its mature form) is integrated into an Argonaute protein where it

binds to a target RNA and causes either its degradation or storage for later use.

Sequence and structure conservation throughout evolution is a powerful indicator of non-

coding RNA function: it is frequently used to classify RNAs into functional groups. CRISPR-

Cas systems are extremely versatile in their mechanistic processes. Current classification of

subtypes is focussed on associated sets of Cas proteins, whereas the evolution of CRISPR RNA

is disregarded. In this work, we supplement Cas-protein–based subtype classifications with a

comprehensive analysis of patterns in CRISPR-sequence and -structure conservation. We
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Chapter 0. Summary

developed a web server that automatically assigns newly-sequenced CRISPRs to predetermined

sequence families and structure motifs, and visualises CRISPR conservation in a single glance.

This is the first resource to explore CRISPR-Cas systems based on CRISPR evolution.

To perform its regulatory function, non-coding RNA must first be transcribed from the

DNA and processed into its mature form. An accepted method for the analysis of RNA

transcripts is to apply a sequencing protocol to purified RNA called RNA-seq, which we used

to characterise CRISPR RNA expression. Mapping RNA-seq reads to CRISPR loci displayed

high abundances of mature crRNAs in the cyanobacterium Synechocystis sp. PCC6803.

Furthermore, in-depth analysis of RNA-seq reads determined exact processing sites and

indicated that highly structured crRNAs could be degraded more quickly.

Research into regulatory recognition elements frequently involved the prediction of local

RNA structure. To study this aspect, we compared the performance of available structure-

prediction algorithms to detect local structure in messenger RNAs on two large, independent

datasets: assessing both the prediction of exact base pairs and general single-strandedness of

sequence regions. We determined optimal settings for locality parameters of existing tools and

developed an approach that eliminated prediction bias that arose at artificial window termini.

With this work, we give the first comprehensive guide on how to predict local structures and

fold long RNAs. In an application to CRISPR RNA, we developed a tool to identify the

regulatory structure motif that is folded with the highest predicted stability across multiple

instances. We also confirmed that the context surrounding the regulatory structure motif

in CRISPR RNA affects its stability, which subsequently influences the binding affinity and

cleavage activity of the respective Cas endoribonuclease.

Successful computational prediction of regulatory recognition elements has been an extremely

elusive task to date. To extend on the idea that context is influential, we performed a statistical

analysis of independent regions surrounding microRNA recognition elements. We identified

clear signals of increased structural accessibility and nucleotide frequencies downstream

of recognition elements in plants; similar signals were reflected in human and firefly data.

Furthermore, we developed a machine-learning framework based on a graph-kernel that

is able to capture and learn complex sequence and structure features from any class of

regulatory recognition elements. The superior performance of our approach in detecting

RNA-binding-protein recognition sites was established. Although its application to microRNA

interaction data is not yet complete, initial results were promising.

The final aspect covered in this thesis is the design of artificial RNA for the targeted

control of arbitrary gene expression on the post-transcriptional level. Here, we discovered

favourable characteristics of artificial microRNAs in a model plant (Arabidopsis thaliana).

We considerably improved the specificity of designed microRNAs by filtering results from

a state-of-the art design platform using hybridisation characteristics of the interaction. In

addition, we designed experiments to show that the context surrounding a target site of an

artificial microRNA can enhance or inhibit its repression efficiency.
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Zusammenfassung

Diese Dissertation befasst es sich mit der computergestützten und statistischen Analyse von

Mechanismen, die in der post-transkriptionellen Regulation der Genexpression aktiv sind.

Genexpression ist ein Prozess worin genetische Information, gespeichert auf einem Genom-

segment, als Anleitung benutzt wird, um ein Genprodukt herzustellen. Dabei wird dieser

Prozess auf mehreren Ebenen in komplexer Weise reguliert. Während die Regulation auf DNA

Ebene generell einem An/Aus-Mechanismus folgt, ist die Regulation auf RNA Ebene dagegen

vielfältiger und erlaubt eine schnelle und flexible Anpassung an sich stets verändernde Einflüsse

der Umgebung. Die post-transkriptionelle Regulation von RNA benötigt für gewöhnlich eine

Interaktion zwischen der RNA und einem trans-enkodierten Faktor (Transfaktor) wie zum

Beispiel einer weiteren RNA oder einem RNA-bindenden Protein. Obwohl Interaktionen

häufig zufällig stattfinden, bleiben die meisten ohne Konsequenz, da sie nicht lang genug anhal-

ten. Wenn die Affinität zwischen der RNA und ihrem Interaktionspartner stark genug ist, wird

eine stabile Bindung ermöglicht und eine Regulation kann stattfinden. Zwei Eigenschaften der

RNA beeinflussen die Bindeaffinität: ihre Nukleotidsequenz und ihre Struktur. Während ein

Transfaktor spezifisch an Nukleotiden, oder an eine Sequenz von Nukleotiden, binden kann,

wird die aktive Bindestelle von der RNA-Struktur entweder blockiert, oder sie ermöglicht

einen besseren Zugang. Eine aktive Bindestelle wird ein regulatorisches Erkennungselement

genannt.

Obgleich ein Teil dieser Arbeit allgemein für die Analyse von post-transkriptionellen, re-

gulatorischen Mechanismen anwendbar ist, befasst sie sich großteilig mit zwei spezifischen

regulatorischen Systemen. In beiden Fällen agieren kleine RNAs zusammen mit assoziierten

Proteinen und behindern die Expression von Genen indem sie gezielt regulatorische Erken-

nungselemente binden. Im prokaryotischen, adaptiven CRISPR-Cas Immunsystem werden

mehrere kleine crRNAs aus einer langen CRISPR RNA prozessiert. Diese crRNAs agieren

zusammen mit assoziierten Cas-Proteinen, um fremdes, angreifendes, genetisches Material zu

zerstören. Das zweite System umfasst microRNAs in Eukaryoten. Eine microRNA (in ihre

ausgereifte Form) wird in ein Argonaut-Protein integriert, um eine Ziel-RNA zu binden. Dies

verursacht ihre Degradation oder Speicherung für einen späteren Zeitpunkt.

Die Konserviertheit von Sequenz und Struktur, trotz evolutionsbedingte Diversität, ist ein

wichtiges Merkmal funktionsfähiger nicht-kodierender RNA: sie wird oft für die Klassifizierung
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Chapter 0. Zusammenfassung

von funktionalen Gruppen in RNA verwendet. CRISPR-Cas-Systeme sind äußerst vielfältig

in ihren zugrundeliegenden Mechanismen. Die gängige Klassifizierung von Subtypen ist auf

die assoziierten Cas-Proteine eines Systems fixiert, wobei die Evolution von CRISPR RNA

nicht berücksichtigt wird. In dieser Arbeit ergänzen wir die vorhandene Cas-Protein-basierte

Subtypklassifizierung mit einer umfassenden Auswertung der Konservierung von Sequenz und

Struktur in CRISPR RNA. Wir entwickelten einen Webserver für die automatische Zuteilung

von neu-sequenzierten CRISPR RNAs zu unseren vorbestimmen Sequenzfamilien und Struk-

turklassen, und wir veranschaulichten die Ergebnisse, so dass die CRISPR-Konservierung auf

einen Blick erfasst werden kann. Unser Webserver bietet damit den ersten Service an, mit

dem CRISPR-Cas Systeme anhand ihrer CRISPR-Evolution untersucht werden können.

Eine regulatorische Funktion kann nur erfolgen, wenn die zuständige nicht-kodierende RNA

von der DNA zuerst abgelesen (transkribiert) und anschließend zu ihrer funktionalen Form

prozessiert wird. Ein allgemein anerkannter Ansatz RNA-Transkripte zu analysieren, ist die

Verwendung eines Sequenzierungsprotokolls für aufgereinigte RNA (RNA-seq genannt). Diesen

Ansatz haben wir auch für die Bestimmung von CRISPR-RNA-Transkripten verwendet. Die

Zuordnung von sequenzierten “Reads” zu CRISPR-Genen in Synechocystis sp. PCC6803

hat eine sehr hohe Expression von prozessierten crRNAs offenbart. Desweiteren entdeckten

wir mittels einer vertieften Auswertung der RNA-seq-Daten exakte Prozessierungsstellen und

einen Hinweis darauf, dass stark-strukturierte crRNAs schneller degradiert werden.

Die Forschung von regulatorischen Erkennungselementen benötigt häufig eine Vorhersage von

RNA Struktur. Wir entschlüsselten diesen Aspekt, indem wir das Leistungspotenzial von

verfügbaren Algorithmen für die Vorhersage lokaler Struktur in “messenger RNAs” auf zwei

großen, unabhängigen Datensätzen verglichen. Die Qualität der Vorhersagen wurde sowohl für

die exakte Basenpaarung als auch für die allgemeine Zugänglichkeit der Nukleotide ermittelt.

Wir haben die optimalen Einstellungen der Lokalitätsparameter bestimmt und einen Ansatz

entwickelt, um inkorrekte Vorhersagen an artifiziellen Fensterenden zu eliminieren. Mit

dieser Arbeit liefern wir eine erste umfassende Richtlinie wie lokale Struktur vorhergesagt

werden kann und wie die Faltung von langen RNAs am besten funktioniert. Ermitteltes

Wissen wurde anschließend für die Vorhersage von lokalen Strukturmotiven in CRISPR RNA

angewendet. Hierbei entwickelten wir eine Methode, um die stabilste Struktur von mehrfach

auftretenden Strukturmotiven innerhalb eines CRISPR-Transkriptes zu bestimmen. Darüber

hinaus konnten wir bestätigen, dass die Sequenz in der Umgebung eines strukturierten,

regulatorischen Erkennungselements die Ausbildung der Struktur negativ beeinflussen und

somit die Erkennung und Spaltung mittels der zuständigen Cas-Endoribonuklease verhindern

kann.

Die akkurate computergestützte Vorhersage von regulatorischen Erkennungselementen ist ein

noch ungelöstes Problem. Um auf die Beobachtung, dass die Umgebung eines regulatorischen

Elements dessen Erkennung beeinflussen kann, aufzubauen, unternahmen wir eine statistische

Auswertung von unabhängigen Regionen im Umfeld von microRNA-Erkennungselementen.

Wir entdeckten klare Signale von erhöhter struktureller Erreichbarkeit und auffallende Nuk-

leotidfrequenzen in der Nähe von Erkennungselementen in Pflanzen; ähnliche Signale waren
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auch in Interaktionsdaten aus dem Menschen und dem Leuchtkäfer zu erkennen. Ferner

entwickelten wir zusätzlich einen Ansatz, basierend auf maschinellem Lernen und einem Ker-

nel für Graphen, welcher komplexe Sequenz- und Struktureigenschaften von regulatorischen

Erkennungselementen jeglicher Art erfassen kann. Die überragende Qualität von Vorher-

sagen auf regulatorischen Erkennungselementen von RNA-Bindeproteinen hat sich bewährt.

Obgleich die Performanz auf microRNA-Interaktionsdaten noch nicht vollständig ermittelt

wurde, waren erste Ergebnisse vielversprechend.

Der letzte in dieser Dissertation betrachtete Aspekt ist die Konstruktion künstlicher RNA, um

die Expression von frei-wählbaren Genen auf der post-transkriptionellen Ebene zu kontrollieren.

Hier haben wir vorteilhafte Eigenschaften von künstlicher microRNA im Modellorganismus

der Pflanzen Arabidopsis thaliana entdeckt. Mit einem Filteransatz von Hybridisierungsmerk-

malen der Interaktion konnten wir die Spezifizität der künstlichen microRNAs, die durch

Standardverfahren konstruiert wurden, erheblich verbessern. Zudem haben wir Experimente

aufgestellt, in denen wir zeigten, dass die Sequenzumgebung einer Zielregion der künstlichen

microRNA ihre Hemmungseffizienz entweder erhöhen oder senken kann.
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CHAPTER 1

Overview

The purpose of life is a life of purpose.—Robert Byrne

1.1 Motivation

Life would be frozen without the active regulation that is the driving force behind growth,

constant adaptation to the environment and just everyday functionality. Every molecule

in a living organism has a purpose. Through interaction with others, a molecule is guided

and induced into action and so able to fulfil its purpose. A molecule on its own is like a car

without a driver or a driver without a car—without purpose. The main principle behind this

work is to elucidate the properties of both driver and car that enable their interaction during

the act of driving: for example, the driver must be sitting in the driver’s seat, be able to

reach the steering wheel, the ignition, the pedals, all buttons and levers, and see the road

over the dashboard and in the mirrors.

In a biological cell, genetic information is stored in the genome. The process by which the

information in DNA segments (genes) is used to create a functional product is called gene

expression. During gene expression DNA is first transcribed to RNA. A subset of these RNA

transcripts are then translated into proteins and the remaining RNA transcripts are non-

coding because they do not encode for a protein but act as regulators or catalysts themselves.

All macromolecules, DNA, RNA, and proteins, in combination with various metabolites,

work together competitively and collaboratively to form a vast network of dependencies.

Thus, expression levels of each type of macromolecule are finely regulated with astounding

complexity and dexterity. Gene-expression regulation is initiated by the interaction of two

or more partners in either a lock-and-key or an induced-fit interaction: are the seat, the

3



Chapter 1. Overview

headrest and the mirrors compatible with the driver’s physical build (lock-and-key), or does

the driver first have to adjust these parts before starting to drive (induced-fit)? In addition,

there are a multitude of both cars and drivers: a car can only be driven if both are in the

same location and the driver has the corresponding key.

This dissertation introduces computational methodologies and analyses applied to multiple

aspects of post-transcriptional gene regulation with a focus on sequence and structure

properties of RNA that affect regulatory interactions. Due to the enormity of the field, one

could fill thousands of dissertations with meaningful advances, but still not have elucidated all

post-transcriptional regulatory processes. The herein presented computational methodologies

and analyses can be viewed as building blocks or guidelines for solving similar questions in

the future. In addition it provides noteworthy—largely published in peer-reviewed journals—

advances to selected biological applications.

Many people question what computer science has to do with the study of molecular biology.

Modern research relies heavily on the application of computers to solve complex problems,

predict probable outcomes that can later be tested in a laboratory, or analyse vast data sets.

Computers have enabled research to move away from single examples to look at whole systems.

In the past two decades, research of molecular biology has made monumental progress with

the development of automated processes and high-throughput, experimental techniques that

generate plentiful data every day. For example, take the progress made in the unravelling of

genetic code and its products: sequencing the human genome took about 20 years with the

last human chromosome completed in 2006 [110]. Today, the time and cost of high-throughput

or genome sequencing has dropped so dramatically that applications to personalised medicine

are being considered [221]. These second- and third-generation sequencing technologies

also allow the comparison of tissues at various time points or the detection of potentially

disease-linked genetic signatures [169]. Over 40 million protein sequences are available from

41, 263 species (status on 15.07.2014 from the National Center for Biotechnology Information

Reference Sequence Database, http://www.ncbi.nlm.nih.gov/refseq/) with exponentially

growing numbers. In one experimental run, advanced mass spectrometry techniques detect

hundreds to thousands of proteins (and metabolites) present in a sample [247]. Analysis,

annotation and storage of this large volume of information would not be possible without

(computer) scientists that develop software or specialised algorithms to perform complex

computational or statistical analyses.

1.2 General objectives

Within the genome, a gene encodes a functional gene product—either a protein or a non-

coding RNA (ncRNA). The process of generating the functional gene product is called gene

expression. Regulation of gene expression occurs first on the DNA level and subsequently on

the RNA level. Although the regulation of gene expression has been extensively explored

since the discovery of the genetic code, especially on the DNA level [177,239], this process is

so complex that our understanding is, metaphorically speaking, still in the stone ages. The

4
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Chapter 1. Overview

focus of this dissertation is on computational analyses of mechanisms in post-transcriptional

regulation, which is the control of gene expression at the RNA level between transcription and

translation. Post-transcriptional control generally involves factors encoded in trans and/or

in cis on the RNA transcript. In this work, we analyse common processes in which trans

factors, e.g. an RNA-binding proteins (RBP) or ncRNAs, bind specifically to corresponding

regulatory recognition elements with RNA transcripts to facilitate their regulatory control.

Particular focus was put on two RNA-based regulatory systems that have shown great

potential for applications in biotechnology. First, we investigated the adaptive immune

response in prokaryotes that is provided by the CRISPR-Cas system, in which a small RNA

(∼45–70 nt) performs a central regulatory role in defending the organism against foreign

genetic material. In this work, we analysed conservation, expression and processing of

the CRISPR RNA in CRISPR-Cas systems. The second regulatory system is called RNA

interference. Again, a small (∼20 nt) RNA (called miRNA) is the central factor in regulating

the expression of an endogenous target gene by binding to its mRNA. Here we explored

properties of RNA sequence and structure that determine miRNA-based regulatory function.

In addition to several individual data analysis tasks that provide biological insights into

properties of regulatory RNA, we advanced the state of the art of bioinformatics approaches

in the following areas:

• On a collection of all available CRISPRs from public databases, we performed a

comprehensive analysis of CRISPR conservation, and combined with an easy-to-use

web server, we provide the first computational tool for comparing systems based on the

central RNA element.

• We compared RNA structure prediction approaches on large, curated datasets to

demonstrate how to predict local RNA structure in mRNAs with the highest prediction

accuracy; we especially gave insights into the effects of parameters used for local

structure prediction.

• We developed an efficient machine-learning framework to flexibly capture binding

preferences of RNA regulatory recognition elements. In this work, we applied the

framework to modelling miRNA recognition elements.

Despite its computational nature, this thesis also has a strong biological focus. The general

aim was to develop and apply computational approaches to support and complement biological

research on RNA regulatory mechanisms. Numerous collaborations with wet-lab experimental

groups showcase the applicability of presented work to solving biological problems. In fact, 7

out of the 11 publications based on this work were produced in close collaboration with at

least four separate wet-lab experimental groups (a list of my publications based on this thesis

can be found after the Appendix and before the general bibliography).

5



Chapter 1. Overview

1.3 Thesis guide

The collective work presented in this dissertation touches on many aspects of post-transcript-

ional gene regulation; it is not a simple one-topic, one-answer piece of research. Therefore,

additional effort has gone into structuring the dissertation in such a way that it is not

necessary to read each and every piece of work, and one can focus on sections of interest.

For a general overview, it is possible to just read the introductions of each part and all

conclusions—both chapter-specific conclusions and the final remarks section.

To enable a better structure of presented work, the dissertation has been divided into chapters

and parts. The individual chapters describe detailed methods and applications that solve a

specific problem. To put the chapters into the context of the general topic of this thesis, they

have been divided into parts:

• Part I: aside from the current chapter, this part includes biological and computational

facts, definitions and approaches that help the reader to understand presented work.

• Part II: exploits evolutionary conservation of sequence and structure in prokaryotic

CRISPR-Cas immune systems to identify important regulatory motifs.

• Part III: deals with the expression of a non-coding RNA (the CRISPR RNA) and how

it is processed into its mature form.

• Part IV: answers the question of identifying local structure in long RNA sequences,

which is required for characterising many regulatory functions.

• Part V: focusses on characterising regulatory binding sites within such long RNAs

(e.g. mRNAs).

• Part VI: explores the design of artificial RNA that can be used for targeted post-

transcriptional regulation of specific genes.

• Part VII: concludes the entire thesis, explains general limitations and offers ideas

about future work.

In the appendix, the reader can first find a glossary of commonly used terminology, a

declaration of the authenticity of this work, a point-by-point statement of contributions and

additional material for each of the parts. Much of the work presented in this thesis was

published in peer-reviewed journals (or is currently under review). However, some of Part V

and all of Part VI has not been made publicly available previous to this dissertation. My

own publications are separated from the remaining references in the bibliography and in the

text, the difference in citation style can be used to differentiate own publications from others:

e.g., [P3] references a publication of which I am an author and [239] is the style used for

other references.
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Chapter 1. Overview

1.4 Statement of contribution

As established in my acknowledgements, high-quality research in the modern era is never

achieved by just one person. Throughout my Ph.D. years, I worked with many people from

both within the Freiburg Bioinformatics Group and various other external individuals and

groups.

I have made every effort to reduce the amount of external contributions presented. When

extracting external contribution would be detrimental to understanding the presented research,

however, it was retained. Detailed statements of contribution and sources of presented work,

when taken from my own publications are provided in Appendix C: from these statements,

my own contribution is clarified. I would like to note that I contributed substantially or solely

to the writing of all parts in this dissertation that were taken partly from publications of

which I am an author.

Finally, I come to the use of we as the chosen pronoun throughout this work. Although I

was significantly involved in the development of proposed methods and all presented analyses

(if not otherwise referenced), in acknowledgement of my collaborators, we is appropriate. For

consistency reasons, we is used even if the work was done solely by myself.
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CHAPTER 2

Biological and computational background

This chapter provides an overview of biological and computational aspects of RNA-based

post-transcriptional gene regulation. First, the major players in post-transcriptional gene

regulation are introduced. In addition, popular regulatory mechanisms, which are highly

relevant to medicine and biotechnology, are investigated throughout this dissertation and are

described in more detail herein. Second, a broad insight into state-of-the-art computational

approaches that are key to the research of regulatory RNA are presented: approaches to

determine aspects of RNA structure, conservation, regulatory RNA and interactions with

RNA are covered.

2.1 Post-transcriptional regulation of gene expression

Post-transcriptional regulation is the control of gene expression at the level of RNA, which

occurs after transcription of DNA into RNA and before translation of RNA into protein1

(Figure 2.1). This RNA-based regulation of gene expression frequently involves the binding

of trans-acting–regulatory factors (trans factors) to a longer RNA, frequently messenger

RNAs (mRNAs). There are three major factors to consider: (1) the cis-encoded regulatory

recognition element (RRE) on the RNA being regulated, (2) characteristics of the trans

factor that facilitates binding, and (3) stoichiometric effects of differential expression levels.

Computational predictions are only possible for the first two factors; the last factor requires

experimental measurements of expression levels. The ultimate goal of post-transcriptional

regulation is to control (with RNA) the processing, transport, localisation, number and

variants of gene products in a cell—of both protein-coding and non-coding genes. Key

molecules involved in post-transcriptional regulation are mRNA, regulatory non-coding RNA

(ncRNA), and RNA-binding proteins (RBPs).

1 The control of gene expression at the level of proteins is called post-translational regulation.
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Chapter 2. Biological and computational background

A B

Figure 2.1. RNA expression cycle. RNA is expressed as (A) non-coding RNA (ncRNA) or (B) coding
RNA (mRNA). The life cycle of expression and degradation is illustrated for a general eukaryotic cell; this
life cycle is controlled by a hyper-complex network of regulatory process that act on the DNA, RNA and
protein level for either large-scale or fine-tuning effects—for fast and transient reactions to the environment or
for more permanent changes. Illustration adapted with permission from Macmillan Publishers Ltd: Nature
Reviews Molecular Cell Biology [101], copyright 2013 (license no. 3363740908111).

2.1.1 Messenger RNAs

The mRNA is the carrier of the message of genetic code from the protein-coding gene on

the genome to the ribosome where the mRNA is translated into a sequence of amino acids

(polypeptide). The existence of an mRNA in a cell begins with transcription and ends in

degradation (Figure 2.1). During its life cycle, an mRNA molecule may be processed, edited,

and transported prior to translation. There are several characteristic differences between

prokaryotic and eukaryotic mRNAs; major differences are as follows: (1) eukaryotic mRNAs

usually require extensive processing and transport from the nucleus to the site of translation,

whereas, prokaryotic mRNAs are mostly translated while still being transcribed as there is

no nucleus in a prokaryotic cell; (2) the lifetime of a prokaryotic mRNA is much shorter;

and (3) prokayrotic mRNA can encode several genes at a time (called polycistronic mRNA),

whereas eukaryotes only ever encode one gene (monocistronic). After all processing steps,

the general form (for all purposes in this thesis) of a mature mRNA is monocistronic with a

5’ (left terminus in Figure 2.2) cap and a poly(A) tail, which is a sequence of consecutive

adenosine (A) nucleotides attached to the 3’ (right terminus in Figure 2.2) end, to protect

it from degradation. The coding sequence (CDS) is initiated by a start codon and ends

with a stop codon and is a multiple of three nucleotides where each triplet encodes a single

amino acid. The CDS is flanked by untranslated regions (UTRs) at the 5’ and the 3’ ends,

called the 5’UTR and 3’UTR, respectively. The UTRs, especially the 3’UTR, contain several

cis-regulatory elements (or RREs) with conserved structure motifs (Figure 2.2). A database

of cis-regulatory elements is provided by Jacobs and colleagues [149]. Other RREs are

small binding sites (∼4–25 nt) where the interaction with specific ncRNAs or RBPs occur

(Figure 2.2). Although regulatory motifs occur predominantly in the UTRs some are also

found in the CDS [250].
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Figure 2.2. Illustration of regulatory recognition elements that control mRNAs. Gene expression
is regulated on many levels. Here, the two types of regulatory elements are illustrated by examples that
control mRNA translation: (1) cis-regulatory elements, which are either structured or unstructured motifs on
the same mRNA that either act as binding sites or act directly to control its own translation and (2) trans-
regulatory elements, which are ncRNA, RNA-binding proteins, or other molecules that bind specifically—or
unspecifically—to regulate mRNA translation, degradation, or localisation. IRES (internal ribosome entry site)
elements are found in the 5’UTR and promote cap-independent translation. Complex pseudoknot structures,
located anywhere within the mRNA can affect translation initiation, frame shifting or termination. Among
many others, structured cis-regulatory elements, generally in untranslated regions (UTRs), such as CREs
(cis-acting replication elements), CITEs (cap-independent translational enhancer) and SLs (stem-loops) often
influence the mRNA via long-range RNA interactions. MicroRNAs (miRNAs) bind to their respective target
sites and via RNA-RNA interaction and together with associated proteins, they inhibit translation or degrade
target mRNA. Several regulatory mechanisms target the mRNA cap (7-methyl-guanosine—m7G), the AUG
translation initiation codon and the poly(A) tail as these are common features of mRNAs. The blue ovals
and brown rectangles are RBP and microRNA binding sites, respectively. Details were taken from [264]; The
illustration was adapted with permission from John Wiley and Sons: EMBO REPORTS [264] copyright 2009
European Molecular Biology Organization (license no. 3363740305420).

2.1.2 Non-coding RNAs

Only about 2 % of the human genome is comprised of protein-coding genes [53]; the remaining

98 % was initially considered to be “junk DNA”. Although we now know that the genome is

pervasively (>90 %) transcribed into RNA [54], we still do not understand the function of most

transcripts. Although there is some evidence that many transcripts are not functional [319].

Functional RNA transcripts that do not contain protein-coding information are termed

non-coding RNA (ncRNAs); see [104, 209] for an overview of ncRNA function. Many

important genes fall into the non-coding category, for example, transfer RNA (tRNA) carries

its respective amino acid to the site of translation [4, 40]; ribosomal RNA (rRNA) makes

up the translation machinery, the ribosomes [51, 351]; microRNAs (miRNAs) and small

interfering RNAs (siRNA) that regulate gene expression by inhibition or degradation of

mRNAs [6]; clustered regularly interspaced short palindromic repeats (CRISPR) that guide

an adaptive defence mechanism in prokaryotes [2,307,337]. Most of the presented research in

this dissertation deals with regulatory mechanisms involving miRNAs and CRISPRs, which

are discussed further in Section 2.2.

The annotation of ncRNAs remains incomplete. Bioinformatic approaches detect hundreds of

previously unknown, structured putative ncRNAs that are conserved across many species,
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which still require further characterisation [335]. Most known ncRNA species form evolu-

tionarily conserved (global) structures. In contrast to protein-coding RNA, the structure of

ncRNA is generally more conserved than the nucleotide sequence. Sequence-and-structure

conservation of ncRNAs form the basis of detection algorithms (c.f. Section 2.6). However,

not all ncRNAs form conserved global structures and these are more difficult to detect.

2.1.3 RNA-binding proteins

Most post-transcriptional regulatory processes, such as splicing, polyadenylation, processing,

stabilisation, localisation are controlled by a class of proteins that contain an RNA-binding

domain, namely RBPs (RNA-binding proteins) [106]. Recent efforts were made to identify

the magnitude of the human RBPome (i.e., all RBPs encoded in a genome) where more

than 800 RBPs were identified in humans [12,38]. In yeast it was established that at least

72 % of protein-coding genes were bound by RBPs and that RBP-target sites are highly

conserved [91]. These results point to a complex and vast network of RBP-regulated processes,

however, relatively few RBPs are well characterised. In fact, over 300 of the RBPs identified

in the first two studies [12,38] were previously unknown, let alone fully characterised.

RBPs often display highly selective binding to their target RRE sites [199, 297]. Targets

are mostly mRNAs or ncRNAs; almost all ncRNAs function together with RBPs as a

ribonucleoprotein complex. Although all RBPs bind RNA, binding strengths vary such

that some interactions are transient, whereas others last the entire lifetime of the RNA.

Determining binding affinities and target sites of RBPs is central to the research of post-

transcriptional regulation because of their ubiquitous involvement. RBPs display different

specificities for nucleotide sequences, for example an alternative splicing factor, TIA-1, binds

to U-rich regions [89, 168]; SFRS1 binds to a GA-rich pattern [302]; PTB bins CU-rich

sites [242]; and RBPs involved in the stabilisation and destabilisation of mRNAs bind to

AU-rich regions [14, 26, 241]. Many RBPs do not only display sequence-specific affinities, but

are also specific to a structural context. The most simple structural contexts are regions

on the RNA that do not form intramolecular base pairs and are thus accessible for binding

(unpaired regions). The prokaryotic global regulator, Crc, binds to an A-rich unpaired

region [220]. In addition, experimental evidence suggests that RBPs show sequence specificity

when binding to not only unpaired but also to paired regions. Lee and colleagues [185]

analysed RNA sequences that bound to the C5 protein and identified a hairpin structure

motif that together with the sequence was essential for C5 binding. Another example is

TRBP, a human protein that binds the immunodeficiency virus type 1 TAR RNA. The use of

RNA probe-shift assays showed that TRBP binds preferentially to double-stranded regions

rich in guanines and cytosines [100]. In prokaryotes, an endoribonuclease involved in the

CRISPR-Cas immune response, preferentially binds to one side of a small hairpin stem that

contains mainly cytosines [129].
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2.1.4 Transcriptomics and experimental detection

Post-transcriptional gene regulation is often analysed by looking at all RNA transcripts that

are present in the cell at a given time point (called transcriptomics). A well-established

technology for detecting expression levels of transcribed RNAs are microarrays [163,238,322].

A microarray involves a time-consuming and potentially expensive process where short

oligonucleotide probes that represent every gene in the genome (often several probes per

gene are required) have to be designed and produced. These oligonucleotide probes are

fixed to a solid substrate where they bind to their target RNA transcripts via base-pair

complementarity. Relative numbers of bound transcripts can be quantified by measuring

fluorescence intensities of bound transcripts. Once a microarray has been produced, repeated

analyses on that array are efficient and is thus well suited to industrial or standard routines.

To complement microarrays, next-generation high-throughput sequencing techniques [221]

are becoming more and more common in the application to transcriptomics. Sequencing

techniques display a pronounced adaptability, well suited to the high-paced nature of research

and varying model organisms [294]. RNA sequencing, often referred to as RNA-seq, is not

only used to detect which genes are expressed at given time points, but has a broad range

of notable applications (see [294] for a review). High-throughput sequencing methods and

transcriptome-wide applications have been a valuable source of new data on many aspects of

post-transcriptional gene regulation. These system-wide measurements have facilitated major

advances in the past few decades in the fact that they have enabled computational analyses

of regulatory interactions between trans factors and RNA transcripts (c.f. Section 2.7).

2.2 Popular, RNA-based regulatory systems

Two RNA-based regulatory systems have been of particular interest to researchers of molecular

cell biology in the last decade: RNA interference (RNAi) in eukaryotes and the CRISPR-Cas

prokaryotic immune system. Both systems integrate a short, guide ncRNA into a complex

of associated proteins to form the regulatory effector complex that targets RNA or DNA

for gene silencing or for protection against foreign genetic. This silencing mechanism allows

for powerful applications in biotechnology and medicine. Although many families of short

ncRNA can be used as a guide in RNAi (e.g. siRNAs [181]), mainly miRNAs are considered

here. A general overview of RNAi is given in [87,128,181].

2.2.1 RNA interference with microRNAs

MicroRNAs (miRNAs) are a widespread and conserved family of ncRNAs used in RNAi to

regulate gene expression at the post-transcriptional level in plants, animals and some viruses

(see [6] for a recent review). The latest release of the major miRNA databank, miRBase

(version 20, June 2013), contains nearly 25 thousand miRNA genes from more than 200

species [176], which give rise to at least 30 thousand mature miRNA products. More than half
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of all protein-coding genes in mammals have been identified to be evolutionarily conserved

targets of miRNAs [92]; a clear indication of their pervasive regulatory impact. After their

discovery in 1993 [186] and despite the many intelligent minds dedicated to miRNAs and

their functions, we are only beginning to understand the diverse mechanisms of miRNA-based

regulation [6]. One of the most elusive problems is the (computational) detection of miRNA

target genes (Section 2.7.3). Although the effect of repression on most target genes is tiny in

comparison with regulatory mechanisms prior to transcription [313], miRNAs collectively have

a significant impact on nearly all cellular pathways, from cell differentiation to oncogenesis;

and their malfunction is related to many serious diseases, especially cancer [44,81,200,212,293].

Hence, accurate miRNA target detection is highly sought after and some initial work was

performed to this end, presented in Part V of the dissertation.
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Figure 2.3. Schematic overview of miRNA biogenesis and function. The primary miRNA (pri-
miRNA) is transcribed directly from the miRNA gene locus and cropped to the characteristic stem-loop
structure, which is called the precursor miRNA (pre-miRNA). After the pre-miRNA is exported to the
cytoplasm, it is processed further to form the miRNA-miRNA* duplex. The mature miRNA is then integrated
into the Argonaute (AGO) protein and assembled into the RNA-induced silencing complex (RISC) [245].
The miRNA within the RISC guides the complex to its target and although binding to the 3’UTR has been
assumed to be the predominant action, binding to the CDS is frequent and rare binding to the 5’UTR also
occurs. A myriad of regulatory mechanisms exist and the main processes are summarised in the outlined boxes.
The presented biogenesis is typical in animals, but differences exist, especially in plants. The main difference
between animals and plants are the processing proteins and that in animals, the pre-miRNA is exported to
the cytoplasm, whereas in plants the miRNA–miRNA* duplex is exported to the cytoplasm. Illustration is
adapted with permission from Macmillan Publishers Ltd: Nature Reviews Drug Discovery [195] copyright
2013 (license no. 3363750423492).
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Functional mature miRNAs are derived from a longer transcript and have a multistep

biogenesis process, which can differ between species (c.f. [10]). Figure 2.3 illustrates the

basic steps in the biogenesis of a mammalian miRNA. To add further complications, deep

sequencing of small RNAs from a range of tissues and cell types has shown that miRNA

genes produce multiple mature isoforms, known as isomirs (see [6] for a compact review

on miRNA biogenesis and isoform generation). The following steps are common to all

systems, only involved proteins and cell locations differ: (1) the miRNA gene is transcribed

to form the primary transcript (pri-miRNA); (2) the pri-miRNA is cropped to form the

characteristic stem-loop structure; this cropped transcript is termed the precursor miRNA

(pre-miRNA); (3) the pre-miRNA is processed further by Dicer (or a Dicer-like protein) to

form a double-stranded RNA duplex of the mature miRNA and its opponent strand miRNA*;

and finally (4) an RNA-induced silencing complex (RISC) is assembled around the mature

miRNA (and in some cases the miRNA*) [245]. The fully assembled RISC is then “guided” by

the miRNA sequence to identify and bind a target RNA. Once bound to the target, the RISC

can associate with a variety of secondary proteins to initiate or perform one of the following

regulatory functions (Figure 2.3): endonucleolytic cleavage, translational repression, mRNA

turnover, and sometimes even translation activation. Endonucleolytic cleavage occurs in both

animals and plants, however, it is rare in animals and the predominant function in plants [6].

RISCs loaded with a miRNA (miRISCs) that do not lead to endonucleolytic cleavage either

inhibit translation (translational repression) or initiate decapping and deadynylation of

the target mRNA, leading to its subsequent degradation (mRNA turnover). In rare cases,

miRNA targeting has been known to cause an up-regulation of the target transcript [235,321].

Research into miRNA induced regulatory mechanisms is still ongoing, but it is clear that

their mechanism of achieving a regulatory effect is flexible and diverse.

RISCs always contain a member of the Argonaute (AGO) protein family [211]. AGOs bind

to any of the available small ncRNAs with no clear preference. Structural analyses have

revealed that it is the conformation of the RNA-binding pocket in the AGO which determines

the nucleotides that are available for RNA-RNA interaction [226,330]. Typically, the most

prominent part of the miRNA available for binding are the nucleotides between positions

2–8, which is termed the seed. The interaction between the seed and its target RNA is

well-documented in the literature [78, 166,226]. Beyond this seed interaction, different types

of hybridisation patterns between miRNA and target exist: endonucleolytic cleavage usually

requires near perfect complementarity, especially around the cleavage site between positions

10–11 of the miRNA; whereas for the other repression mechanisms, only a seed interaction can

be sufficient [6, 166]. Once bound to a target, the AGO either catalyses the endonucleolytic

cleavage with its own PIWI domain or it acts as a scaffold for secondary silencing factors,

such as the GW-repeat containing protein GW182 [6, 66]. RISCs that do not cleave the

target benefit from multiple, consecutive binding sites; such multiple binding sites lead to an

increased signal and a cooperative effect on the repression activity [30].
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2.2.2 The CRISPR-Cas defence mechanism in prokaryotes

Acquired immunity in prokaryotes is directed by Clustered Regularly Interspaced Short

Palindromic Repeats (CRISPRs) and their associated (Cas) proteins. This CRISPR-Cas

system, present in many bacteria and most archaea, recognises and subsequently degrades

exogenous genetic elements (for reviews see [2,307,337]). The adaptive immune response is

divided into three main phases (Figure 2.4): (1) Adaptation, the selection of short target

segments (protospacers) from foreign DNA and the incorporation of their reverse complement

sequence (spacers) into the organism’s active CRISPR locus between directly-repeated

sequences (repeats); (2) crRNA maturation, expression of the CRISPR RNA and subsequent

processing of the transcript into mature RNA species (crRNA); and (3) target interference,

invader DNA [97] or RNA [125,354] degradation at the respective protospacer, guided by the

crRNA and a highly specific complex of Cas proteins such as Cmr [125,354] or Cascade [154,

227]. The targeting complex differentiates real protospacers from other complementary

sequences in many systems by a short 1–3 nt protospacer adjacent motif (PAM). In addition,

the recognition of PAM motifs avoids autoimmunity, which would occur if the organism

harbouring a CRISPR-Cas system would recognise its own DNA at the CRISPR locus and

target it for degradation.

CRISPRs are associated with more than 50 genes [202] specific to CRISPR-Cas systems.

These cas genes are generally encoded in single cassettes, close to the associated CRISPR locus.

However, many exceptions to this rule exist, which can complicate subtype classifications.

CRISPR-Cas systems are commonly classified into three types I–III and over ten subtypes,

mainly by the co-occurrence of cas genes encoded in cassettes and generally disregarding the

CRISPR RNA [123,201,202]. Very recently this classification has been extended further in

archaea to include many variant subtypes1 [324].

CRISPR loci are identified by their characteristic spacer-repeat architecture; the most widely

used detection programs are CRISPRFinder [115] and CRT [23]. Identified CRISPRs are stored

in databases, such as CRISPI [269] and CRISPRdb [114]. However, automated classification

and annotation pipelines and easy-to-use characterisation of whole CRISPR-Cas systems are

not yet available.

Research into this highly adaptive and diverse immune system is fairly recent; the acronym

CRISPR was first proposed in 2002 [151]. Since then research into this field has made leaps

and bounds with applications in biotechnology that go beyond its native function [308]. The

majority of CRISPR-Cas systems are of type I or III, which are found in both bacteria and

archaea; these systems are complex with about 7–10 Cas proteins and require either the large

Cascade or Cmr complexes for successful defence reactions. In contrast, type II systems are

light-weight with only four associated Cas proteins and are only found in bacteria. The large

effector complexes required for type I and II systems are replaced in type II systems with a

single gene, Cas9. Cas9, together with a trans-encoded tracrRNA and a guide crRNA, is

1 This most recent classification by Vestergaard and colleagues was published after the work done in this
thesis and therefore it was not integrated.
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Figure 2.4. Schematic overview of the CRISPR-Cas system. In adaptation, unknown Cas proteins
find suitable protospacer targets and regulate the integration of new spacers into the CRISPR locus, usually
at the 5’ end of the array; in most cases, the history of adaptation steps can be read from left to right, with
the spacer at the 3’ end being the oldest to be captured. The CRISPR array is generally expressed as a single
transcript and subsequently processed into mature crRNA. The processing mechanism is highly specific and
many differences exist between the systems and types: Types I and II involve a Cas6-like endoribonuclease
to cleave at either a small hairpin structure motif within the repeat [32,103,129,131,227,274,298] or at an
unstructured repeat [327]. The cleavage almost always results in an 8 nt sequence tag of repeat sequence
that is at the 5’ end of the mature crRNA [32, 99, 103, 129–131, 227, 274, 326]. The 3’ ends of crRNAs are
either cut to characteristic lengths by a largely unknown ruler mechanism [129], or part of the repeat remains
at the 3’ end [155]. The crRNA is stabilised by integration into its respective Cascade or Cmr complex to
await the arrival of invader species. Type II systems are unique: processing is enabled by a trans-encoded
RNA (tracrRNA) and the double-stranded RNA is processed by the endogenous RNaseIII [60]. In the final
interference phase, the effector complex binds to the invading DNA (or RNA in some type III systems [295])
via base pairing between the crRNA and the protospacer. This interaction generally requires a seed interaction
where near-perfect complementarity must exist proximal to the PAM motif, and looser complementarity can
exist in more distal positions [145]. Illustration is adapted with permission from Macmillan Publishers Ltd:
Nature Reviews Microbiology [202] copyright 2011 (license no. 3363730101764).
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sufficient for targeting and cleaving foreign DNA. Due to its simplicity, the type II system has

been adapted as a tool for genome editing and has been applied to a multitude of eukaryotes,

including humans [308, 328]. Although the simplicity of the type II system has lead to its

application in genetic engineering, the Cmr complex presents a specific advantage: it is the

only known CRISPR complex to date that can target and degrade RNA instead of DNA.

Thus, the Cmr complex of type III-B systems could be applied to post-transcriptional gene

knock-down, similar to RNAi [308]. CRISPR loci can also be useful for differentiating between

strains: active CRISPR loci uptake new spacers and undergo large mutations such that many

strains of the same species can be differentiated by their CRISPR loci. A further application

is to follow the history of genetic invasions into the prokaryote by mapping the spacers to

sequenced invader species. This can be especially useful for tracking invading viruses into the

prokaryote population in humans [256]. Current knowledge about this versatile system is still

far from complete and the future looks bright for the rising CRISPR star.

2.3 Measuring prediction performances

One main task in bioinformatics is to develop tools that predict an outcome of a biological

experiment. First, to compare the performances of different prediction approaches, we require

training data (from which the prediction model can be learned) and test data (to which

the prediction models are applied to compare performances). In this step, it is crucial that

the training and testing data do not overlap and are independent. Now we assume that we

have binary data divided into positive and negative instances. For example, let the instance

describe an mRNA and a trans factor, then they either form a regulatory interaction (positive

instance) or they do not form a regulatory interaction (negative instance). Predictions

on a test dataset, where the nature of the instances is known beyond reasonable doubt,

can be compared using equations based on the intersections between predictions and true

observations defined in Table 2.11. Various measures of prediction performances exist that

consider different aspects. Selected measures are given in Definitions 2.1–2.5.

Table 2.1. Confusion matrix for dividing test data according to prediction outcomes.

“Truth”
Positives (Pt) Negatives (N t)

Prediction
Positives (P) True Positives (TP ) False Positives (FP )
Negatives (N ) False Negatives (FN) True Negatives (TN)

Definition 2.1. The sensitivity (also known as recall) gives the proportion of positive in-
stances that were correctly predicted as positive:

sensitivity =
TP

TP + FN
=
TP

Pt
.

1 False positives represent type I errors and false negatives represent type II errors.
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Definition 2.2. The specificity gives the proportion of negative instances that were correctly
predicted as negative:

specificity =
TN

FP + TN
=
TN

N t
.

Definition 2.3. Precision is the proportion of positive predictions that are true positives:

precision =
TP

TP + FP
=
TP

P .

Definition 2.4. The false discovery rate (FDR) describes the proportion of positive
predictions that are false:

FDR =
FP

TP + FP
=
FP

P .

Definition 2.5. The accuracy describes the proportion of all data instances that were
correctly predicted as positive or negative:

accuracy =
TP + TN

P +N .

Many standard prediction tools not only output discrete (binary) predictions that would

lead to single confusion matrix (Table 2.1), but produce probabilities, scores, or rankings. In

these cases it is difficult to select a single threshold for a binary classification and changing

the threshold would lead to different numbers of TP , FP , FN , and TN predictions. Thus,

instead of just selecting an arbitrary setting, prediction performances can be measured more

robustly by iterating over all settings and reporting the results. These can be visualised

by receiver operating characteristic (ROC) curves [82] that plot the sensitivity (x-axis) as

a function of the false discovery rate (y-axis)1. Reporting single measurements is done by

computing the area under the ROC (called AUROC). In the ROC curve, assigning random

predictions to the data instances would result in the diagonal line y = x and this equates to

an AUROC of 0.5. Any curve above the diagonal (corresponding to AUROC>0.5) points to a

prediction performance better than random assignment). In general, results with AUROC≥0.7

are recognised as convincing performances. However, ROC curves can be misleading when

the numbers of positive and negative data instances are significantly different. In addition,

sometimes the true extent of negative instances are unknown, especially in biological data.

Instead of the ROC, it is possible to plot the recall (x-axis) as a function of the precision

(y-axis) [82] and to report the area under this curve (AUPR). The AUPR concentrates only

on the prediction of positive instances and disregards the prediction of negative instances.

1 The performance of binary prediction tools can also be plotted in the ROC space, but as a single point
rather than a curve.)
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2.4 Definition and verification of RNA structure

The main purpose of DNA is to store the genetic information of an organism. The information

it contains is communicated to the rest of the cell via the medium of RNA. Once transcribed,

the RNA has multiple functions: (1) transferring protein-coding information to the ribosome,

(2) regulating gene expression, and (3) catalysing biochemical reactions. This thesis deals

with aspects of the (2) function. RNA-based regulation and interaction with binding partners

is guided not only by affinity to its sequence, but its structure also plays a pivotal role (see

Section 2.1.2 for examples). In the following, concepts, definitions and representations of

RNA structure are established and approaches for experimental structure elucidation are

briefly described.

2.4.1 Structure properties

RNA is a macromolecule comprising a chain of nucleotides that consist of three parts: a

ribose sugar, a phosphate group, and a base (Figure 2.5). RNA structure is defined by bonds

between bases and is influenced by further external conditions, such as temperature, salt

concentrations, and availability of metal ions, the most important being Mg2+ ions. External

conditions mainly influence the overall stability of an RNA structure, whereas the bases

determine possible structure configurations. Since external influences are difficult to model

computationally, prediction focusses on computing possible structure configurations.
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Figure 2.5. RNA molecules. (A) The RNA backbone is depicted with the alternating phosphate and
ribose sugar groups and the orientation 5′ → 3′, derived from the carbon-atom labelling, is visualised. (B)
The four RNA bases—adenine A, cystosine C, guanine G and uracil U—are depicted with the Watson–Crick
hydrogen bonds forming the most common base pairs: purines are on the left and pyrimidines on the right.
The third-most-common base pair, GU , is not depicted, but forms two hydrogen bonds, each between an
oxygen and an N -H group.
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Primary structure

The primary structure (Definition 2.6) of an RNA molecule is defined by the order (i.e. se-

quence) of the bases in the molecule. RNA sequences are represented by their respective

one-character symbols.

Definition 2.6. The primary structure of an RNA consisting of n nucleotides is defined

by the sequence R = (r1, . . . , rn) with ri ∈ {A,C,G,U} where A = adenosine, C = cytosine,

G = guanine and U = uracil. All nucleotides ri and ri+1, ∀i ∈ {1, . . . , n}, form the backbone

of the RNA sequence, i.e., a covalent bond between the 3’ end of ri and the 5’ end of ri+1

exists.

RNA sequences are generally written in the 5’ to 3’ orientation (Figure 2.5.A). Visualisations

of RNA should always indicate the 5’ and 3’ ends when it is unclear, since the orientation is

important for biological processes, e.g., RNA synthesis always occurs in the 5’ to 3’ direction.

Primary RNA sequences are frequently stored in the well-known FASTA format.

Secondary structure

Within an RNA molecule, two bases form hydrogen bonds between each other; a bonded pair

of bases is called a base pair (Figure 2.5.B; Definition 2.7).

Definition 2.7. A base pair in R of length n is a tuple (i, j), such that (ri, rj) ∈ {(G,C),

(C,G), (A,U), (U,A), (G,U), (U,G)} with ri, rj ∈ R.

On occasion, it is necessary to know the distance of an intramolecular base pair, which is

defined by the bp-span (Definition 2.8).

Definition 2.8. The base-pair span defines the distance between two nucleotides 1 ≤ i <
j ≤ n with respect to their position on the RNA sequence: bp-span(i, j) = j − i+ 1.

The most common definition of the secondary structure is defined by the set of non-crossing

(nested or adjacent) base pairs in an RNA sequence. The easiest way to define the RNA

secondary structure is as a graph (Definition 2.9); the last two conditions (5) and (6) below

do not have to be met, but are common assumptions in prediction algorithms and they hold

for all single-RNA secondary structures in this thesis.

Definition 2.9. The secondary structure of R of length n is an undirected graph S =

(N,B) with N = {1, ..., n} the set of nucleotides and B ⊂ N ×N the set of bonds between

nucleotides, such that

1. (i, j) ∈ B and (j, i) ∈ B (graph is undirected),

2. (i, i+ 1) ∈ B, ∀i, 1 ≤ i < n (represents RNA backbone),

3. (i, i) /∈ B, ∀i ∈ N (no self loops),
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4. ∀i ∈ N , there exists at most one j 6= i± 1 with (i, j) ∈ B (a base can be paired to at

most one other),

5. let (i, j) and (k, l) be two base pairs, then i < k < l < j (nested base pair) or

i < j < k < l (adjacent base pair) is true ∀(i, j), (k, l) ∈ B (no crossing base pairs),

6. ∀(i, j) ∈ B, bp-span ≥ 5 (at least 3 unpaired bases are required for the RNA to turn back

on itself),

7. if (i, j) ∈ B then (i− 1, j + 1) ∈ B or/and (i+ 1, j − 1) ∈ B (no lonely base pairs).

A base pair in the RNA secondary structure S = (N,B) is represented by an undirected edge

(i, j) ∈ B, such that (j, i) ∈ B (condition (1) in Definition 2.9). To reduce double entries for

a single base pair, edges are always notated as (i, j) with i < j. In text, a specific base pair

type with an unspecified direction is written as GC. Although, formally, a base pair is an

undirected edge, the direction with respect to the 5′ → 3′ orientation of the RNA sequence

(Figure 2.6.A) can be biologically relevant. In this case, the direction is indicated by C → G,

whereby C is closer to the 5’ end and G is closer to the 3’ end of the RNA sequence. Several

representation possibilities for RNA structures exist, however, for the sake of brevity, only

those representations in Figure 2.6.A–B are used in this dissertation.
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Figure 2.6. Secondary structure representations and elements. (A) The secondary structure rep-
resented in a planar graph layout for easy-to-understand visualisation. (B) The secondary structure in
dot-bracket format, saved in an extended FASTA file format. Matching parentheses correspond to base pairs
and the dots to unpaired bases. A FASTA file without structure information would not include the dot-bracket
string. The dot-bracket structure format is both human and machine readable, thus the preferred format for
bioinformatics tools. (C) Secondary structure elements visualised on an example in the graph layout: hairpin
loop, bulge loop, internal loop, multiloop, external region multiloop, and stem. The bordering base pairs
define the outer limits of the structure element, such that these elements overlap, that is two elements can
share a base pair.
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Secondary structure elements

A secondary structure can be broken down into several structure elements (Figure 2.6.C).

For computational reasons, it is easy to define the elements by their bordering base pairs,

however, in the case of loops and external regions, sometimes only the unpaired bases are

important for biological processes, for example, if a trans factor only binds to single-stranded

regions, it would only bind to the unpaired bases of a hairpin loop and not to the enclosing

base pair. The number of consecutive unpaired bases in a loop determines the loop size.

When describing the general structure characteristics at binding sites of a particular trans

factor, the terms single-stranded and double-stranded regions are frequently used. A

single-stranded (or unpaired) region is a consecutive stretch of bases that do not pair with

any other base (Definition 2.10). A double-stranded (or paired) region is the inverse, i.e., a

stretch of consecutive nucleotides for which all bases form a base pair with any other base.

Definition 2.10. Let R = (r1, . . . , rn) be an RNA sequence with its structure conformation

S = (N,B). The interval [x, y] for 1 ≤ x < y ≤ n is unpaired or single-stranded if

(i, j) /∈ B, ∀i ∈ [x, y] and ∀j ∈ {1, . . . , n}.

More detailed information about which type of structures a trans factor binds to is given by

separating structure context into the different structure elements given in the subsequent

Definition 2.11. Structures that consist of only stems and loops are often referred to as

stem-loop structures, i.e. they do not contain multiloops.

Definition 2.11. The secondary structure elements of RNA sequence R = (r1, . . . , rn) with

structure S = (N,B) are defined below.

• Hairpin loop: is enclosed by a base pair H = (i, j) ∈ B, i < j where the interval ]i, j[

is unpaired.

• Internal loop: is enclosed by two base pairs I = {(i, j), (k, l)} ⊂ B with i < k < l < j

and the intervals ]i, k[ and ]l, j[ are unpaired with k − i > 1 and j − l > 1.

• Bulge loop: is enclosed by two base pairs B = {(i, j), (k, l)} ⊂ B with i < k < l < j

and either k − i > 1, j − l = 1 and ]i, k[ is unpaired or k − i = 1, j − l > 1 and ]l, j[ is

unpaired.

• Multiloop: is enclosed by at least 3 base pairs M = {(i1, j1), (i2, j2), . . . , (im, jm)}
⊂ B and ∀(i′, j′) ∈M, i′ < j′. The first base pair (i1, j1) is termed the closing base pair

with i1 < i2 and j1 > jm. For all other base pairs (iq, jq) ∈ M, ∀q, 2 < q < m, jq−1 <

iq < jq < iq+1. All intervals ]i1, i2[, ]jm, j1[ and ]jq, iq+1[,∀q, 1 < q < m, are either

empty or unpaired. A multiloop is short for a multi-branched loop and the number of

‘branches’ is given by m− 1.

• External region: is an unpaired interval [e, f ] in R where there exists no (i, j) ∈ B
for which 1 ≤ i < e < f < j ≤ n is true and [e, f ] is maximal in the sense that e = 1

or (e′, e− 1) ∈ B, 1 ≤ e′ < e and f = n or (f + 1, f ′) ∈ B, f < f ′ ≤ n.
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• All external regions: are given by base pairs X = {(i1, j1), . . . , (ix, jx)} ⊂ B, such

that all intervals [1, i1[, ]jx, n] and ]jq, iq+1[,∀q, 1 ≤ q < x, that contain at least one

nucleotide are external regions. If no base pairs exist, then there is only one external

region, given by [1, n].

• Stacking base pairs: are two base pairs (i, j), (k, l) ∈ B with i < k < l < j such that

k − i = 1 and j − l = 1.

• Stem: is defined by at least two base pairs T = {(i1, j1), . . . , (it, jt)} ⊂ B where

∀(iq, jq), (iq+1, jq+1) ∈ T , (iq, jq) and (iq+1, jq+1) are stacking base pairs.

Tertiary structure

The tertiary structure is the one that drives the biological function and—as in proteins—is

defined by the exact position of each atom in three-dimensional space. Here, the secondary

structure elements are further stabilised by several van der Waals connections, additional

hydrogen bonds and entropic factors.

There are three extensions to the base-pairing rules of secondary structures that are allowed

in tertiary structures. The first includes base pairs that are different from the regular ones in

Definition 2.7 [188]. The second extension allows pseudoknots. A pseudoknots describes a

secondary structure where crossing base pairs (Definition 2.12) are allowed. Third, the rule

of one base pairing with at most one other can be broken [52]. On occasion these extensions

to the base-pair set are considered to also be specialised secondary structures. This happens

when specialised prediction approaches consider such extended base pairing, but still ignore

the exact positioning of the atoms in three dimensions [27,48,73,182,219,244,253,254,284].

All possible extensions to the secondary structure and the final tertiary structures are not

considered in this thesis, therefore, only a brief overview suffices at this point.

Definition 2.12. Let (i, j) ∈ B, i < j, then (k, l) ∈ B, k < l, is a crossing base pair if

i < k < j < l or k < i < l < j.

2.4.2 Experimental verification

A popular approach to elucidating RNA structure involves enzymatic or chemical probing [232].

The probe measures the reactivity of single nucleotides to a specific enzyme or chemical.

Depending on the properties of the enzyme or chemical, structure propensities of that

nucleotide can be deduced. Probes specifically cleave or chemically modify nucleotides that

are either bound or unbound and usually complementary probes are used so that a ratio of

paired vs. unpaired bases can be determined. For example, RNase T1 cleaves specifically at

unpaired guanines and RNase V1 cleaves double-stranded regions1. The chemical reagents

used the SHAPE probing technique [198,223, 301] react with the RNA backbone, probing its

1 RNase V1 is also known to cleave stacked, but not paired, nucleotides [232].
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mobility, such that all four nucleotide types can be probed in a single experiment. Combined

with high-throughput sequencing, chemical or enzymatic probing can be used to determine

structure characteristics on a transcriptome-wide scale [71,165,198,268,278,301,317,336].

The downside of the structure probing approach is that exact base pairing cannot be

determined. Thus, an extension to structure probing is to test the effect of mutations that

destroy or extend putative secondary structures. Subsequently, the structure probing is

repeated, or in functional studies, a previous observation is either prevalent or absent after

mutation, e.g. in [129,227,298]. Mutational studies cannot, however, be performed in high

throughput. Therefore, computational approaches exist that incorporate structure probing

results into secondary-structure–prediction algorithms [59,237,334].

Tertiary structures can be determined via X-ray cristallography or NMR spectroscopy [261,280].

Structures are deposited in databases, such the Protein Data Bank, which also incorporates

RNA structures [127], and RNA STRAND [7]. Tertiary-structure determination is both time

and cost expensive and currently not suited to large-scale analyses.

2.5 RNA-structure prediction approaches

A major advantage of RNA structure prediction in contrast to protein-structure prediction is

that, in general, the secondary structure contributes substantially to the free energy of the

final tertiary structure [289,312]. Thus, RNA structure can be approximated by concentrating

on the prediction of secondary structure: an observation that has been exploited by most

RNA-structure prediction algorithms.

2.5.1 The nearest-neighbour energy model

Structure prediction, based on thermodynamics, requires an energy function E : S → R to

evaluate the potential for an RNA sequence R to fold into a given structure S in aqueous

solution and ultimately in the cell. To this end, current secondary-structure prediction

approaches base their algorithms on the assumption that the change in the Gibbs free energy

∆G of a fixed structural conformation reflects its folding potential. The change in Gibbs

free energy is equal to the work exchanged between the RNA molecule with its surroundings,

depending on pressure and temperature forces, during the reversible process of RNA folding.

A ∆G < 0 indicates a favourable process in which the folded RNA is stabilised relative to

the unfolded form. The lower the ∆G value, the more stable the structure is; thus, the

lowest possible ∆G for R is assumed to be optimal. However, this assumption does not

take time into account. The biologically functional structure might not possess the optimal

(i.e. minimum) change in free energy, but could be a structure that forms more quickly (in

terms of time) and is thus more relevant for functioning in its cellular surroundings [88].

Therefore, suboptimal stable structures must also be considered.

Current secondary structure prediction approaches use the nearest-neighbour energy model to

estimate free energies. This model requires a decomposition of an RNA structure into a set
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of basic structure units that overlap with a neighbouring element by one base-pair. These

structure units are analogous to the loop elements defined in Definition 2.11 in Section 2.4.1

where the stems are further decomposed into two stacking (consecutive) base pairs. The

energy contributions of these basic elements can be measured experimentally [315]. These

measurements provide energy parameters that are applied in a structure prediction model.

Multiple sets of such energy parameters exist [207, 208, 315] and have been improved over

time; the selection of the energy parameters is a very important aspect that will change

prediction results.

The nearest-neighbour energy model assumes that the overall change in energy of an RNA

structure is equal to the sum of the energy contributions of all the basic structures in its

decomposition ∆G (Definition 2.13). It is termed such, because the energy contribution

of a base pair, for example, is only dependent on the next base pair, i.e., on its nearest

neighbour. It is possible to have dependencies that are structurally more distant, but these

are ignored for the sake of simplicity and computability. Further dependencies would require

more experimental measurements, which has not yet been feasible.

Definition 2.13. Let S = {s1, . . . , sm} be the decomposition of RNA structure S into its
basic substructures si. The energy function of the nearest-neighbour-energy model is
given by

E(S) =

m∑
i=1

e(si) ≈ ∆G(S),

where e(si) is the measured energy contribution for the substructure si and ∆G(S) is the

change in Gibbs free energy for S.

2.5.2 The optimal structure and base-pair probabilities

The structure with the lowest free energy, i.e., the minimum-free-energy (MFE) structure

(Definition 2.14), is assumed to be optimal. Although this structure is not always biologically

functional, the probability that it will form (at equilibrium over time) is high—if the energy

model is correct and the activation energy is not too high.

Definition 2.14. Let QR = {Si, . . . , Sr} represent the ensemble of all possible secondary

structure configurations of RNA sequence R. The minimum-free-energy (MFE) struc-

ture of R is Si ∈ QR where E(Si) ≤ E(Sk), ∀Sk ∈ QR.

To calculate the MFE structure, one has to evaluate the energy of all possible structure

configurations of the RNA sequence and identify the one with the lowest energy. Since

identifying the MFE structure according to the nearest-neighbour energy model satisfies

the Bellman’s principle of optimality1, the energies of possible structures can be evaluated

(according to the minimum) efficiently using a dynamic programming recursion and the

1 “An optimal policy has the property that whatever the initial state and initial decision are, the remaining
decisions must constitute an optimal policy with regard to the state resulting from the first decision”—Richard
Bellman 1957.
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MFE structure can be identified using a trace back in the dynamic programming table; this

algorithm was first introduced by Michael Zuker and Patrick Stiegler in 1981 [356] and is

referred to as the “Zuker algorithm”. The time complexity of the Zuker algorithm for an RNA

of length n is O(n4), which can be reduced to O(n3) if the loop size1 is set to a maximum

(usually 30 nt).

As previously established, the output of the Zuker algorithm may not coincide with the

biologically functional structure. There are many reasons for wanting to identify multiple

highly probable structures: (1) for every RNA sequence, more than one MFE structure might

exist, however, only one MFE structure is given as the output of the algorithms; (2) sequences

can switch between structure variants and these variants can be functionally relevant, for

example, riboswitches alternate between an on and an off structure in regulatory processes [29];

(3) the functional structure may form via a kinetic as opposed to a thermodynamic pathway

at equilibrium [88]; and (4) the energy model and energy parameters only estimate the real

∆G. Furthermore, interacting molecules are not taken into account, therefore, the calculated

MFE structure may not be the true MFE structure. Thus, it is often more informative to

consider the entire ensemble of structures and to predict structure probabilities.

In 1990, J. S. McCaskill introduced an algorithm that employs the partition function on the

Boltzmann-distributed ensemble of all possible structure configurations for a single sequence

(Definition 2.15) to calculate the probability of a given RNA structure or base pair [210].

Definition 2.15. Let QR be the ensemble of all possible secondary structure configurations
of RNA sequence R. The partition function of QR is defined as:

Z(QR) =
∑

S∈QR

e−
E(S)
RT ,

where R = 8.3146 is the gas constant in joules per degree Kelvin and T is the absolute

temperature in degrees Kelvin.

The total energy of the structure ensemble is often used as a measurement for the structuredness

of an RNA sequence (Definition 2.16): the lower the ensemble energy, the more stable the

structures, in general, that are formed by the respective RNA—considering all possible

structure configurations.

Definition 2.16. The ensemble energy of an RNA sequence R is given by:

E(QR) = −RT lnZ(QR),

where Z(QR) is the partition function over the ensemble of all structures QR. The ensemble

energy is used to measure the overall structuredness of R.

The probability of observing a certain structure S in the structure ensemble QR is given by

the Boltzmann-weighted structure energy, divided by the partition function of the structure

ensemble:

1 The loop size is determined by the number of consecutive unpaired nucleotides in a loop.
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Pr[S|R] =
e−

E(S)
RT

Z(QR)
. (2.1)

Following this calculation, a base-pair probability is simply defined as the partition function

over all structures that contain the base pair (i, j), divided by the partition function of the

entire structure ensemble:

p(i, j) =
Z(Q(i,j))

Z(QR)
, (2.2)

whereQ(i,j) ⊂ Q is the set of structures that contain the base pair (i, j). Base-pair probabilities

can be calculated similarly to the MFE structure in O(n3) time and O(n2) space1.

The Zuker and/or the McCaskill are implemented by RNAfold [138], UNAfold [206], Rfold [170]

and RNAstructure [255]. Although they are based on the same underlying algorithms, they

differ by some additional options that can aid with structure analysis. All structure predictions

performed in this work are done using the RNA Vienna Package that includes RNAfold.

2.5.3 Finding functional structures in the suboptimal space

MFE-structure and base-pair prediction algorithms are the traditional approaches to the

structure prediction of single RNA sequences. Although base-pair probabilities give a good

estimation of the whole ensemble of structures and which base pairs are more probable than

others, it does not output highly likely, exact secondary-structure configurations. Alternatively

to reporting the MFE structure, it is possible to calculate the centroid structure [68], which

is the best representative of all structures in the Boltzmann-weighted ensemble. The centroid

structure has been reported to be more accurate than the MFE structure [68], however,

it is still prone to errors and does not solve the problem of multiple biologically active

structures. One solution to gaining multiple, probable structure configurations is merely

listing all structures with sub-optimal Gibbs free energies, as is done in RNAsubopt [344].

An energy cutoff or number of top structures is given as a parameter. However, since every

base-pair change is considered a different structure, many interesting structures are very far

down that list and it is difficult to find biologically relevant structures. An alternative is

provided by RNAshapes [296]: here single base-pair changes are ignored, but structures are

categorised into groups according to their general shape. For example, you can group your

output into structures that resemble a single stem-loop structure, irrelevant of the size of

the hairpin, internal, and bulge loops, or their frequency—or all structures that resemble

the classic tRNA three-branched multiloop could be grouped together. The number and

size of shape categories are regularised by five shape extraction levels. The first level only

differentiates between stem-loops and the number of branches in multiloops; the fifth level is

1 Details of the algorithm, i.e., the dynamic programming recursions, are not required for understanding the
work presented in this thesis and are thus omitted; they can be taken from the original publications or
related literature.
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extended to differentiating between the number of internal and bulge loops. Most importantly,

the shape extraction always disregards the length of a stacking region. The structure in

each shape category with the minimimum free energy is called the shrep structure and is

reported. These shreps allow for a better overview of the structure space and perhaps an easier

identification of biologically active structures. Further approaches use statistical sampling

from the Boltzmann-probability–weighted structure ensemble to report a moderately-sized

list of viable structures [67,70].

2.5.4 Local structure prediction

The Zucker and McCaskill algorithms are considered to perform a global structure prediction:

structures are computed for the entire input RNA sequence and all possible base pairs

are allowed. These methods are well suited to predicting structures of short regulatory

non-coding RNA that form a global structure, for example miRNA precursors or tRNAs

(Section 2.1.2). In contrast to the global approach, a local structure prediction would only

compute structures that are local in the sense that base pairs only span a subsequence of the

RNA. The motivation for developing local structure prediction methods is both biological and

computational. First, RNA-based regulation is not only guided by ncRNAs that form global

structures, but often longer RNA species contain local structure motifs that are important

for trans-factor binding. Second, the cubic time and space complexity of global structure

prediction makes their application to very long RNAs (mRNAs can span many kilobases)

unfeasible.

A first algorithmic solution to the high runtime complexity was to limit the distance on the

sequence between two base pairs, i.e., the base-pair span (see Definition 2.8) and to ignore

any base pairs with spans larger than a given threshold, typically denoted by L. Let QL be

the set of structures possible for R that have a maximum base-pair span of L. Then the

probability of these more local base pairs is:

pL(i, j) =
Z(QL

(i,j))

Z(QL)
, (2.3)

where QL
(i,j) ∈ Q

L is again the set of structures that contain the base pair (i, j) and Z(Q)

is the partition function over the set of all structures in Q. As this approach still folds the

entire input sequence simultaneously and merely restricts the base-pair spans of the predicted

structures, it can be considered as semi-local. Implementations are RNALfold [139] to find

locally stable structures and Rfold [170] for base-pair probabilities.

The second algorithmic solution was to predict structures in sliding windows of a fixed length

denoted by W (Definition 2.17), in addition to the maximum base-pair span constraint L

and W ≥ L.

Definition 2.17. A window Wu of length W is defined by an intervalWu = [u, u+W−1],

where (ru, . . . , ru+W−1) is a subsequence of R.
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The probability of a base pair within the window Wu is:

pW
u,L(i, j) =

Z(QW
u,L

(i,j) )

Z(QWu,L)
,

where QWu,L is the set of all possible structures for the window Wu and bp-span(i′, j′) ≤ L
for all (i′, j′) in structures of QWu,L, then QW

u,L
(i,j) ⊂ Q

Wu,L is the subset of structures that

contain the base pair (i, j). Now, in the sliding-window approach, a base-pair probability is

averaged across all windows that it occurs in:

pL,W
avg (i, j) =

1

W − bp-span(i, j)
·

i∑
u=j−W+1

pW
u,L(i, j). (2.4)

The average base-pair calculation allows for a single score for all base pairs in the entire input

sequence R. Note that pL,Wavg (i, j) is not a probability, but represents the normalised expected

number of base-pair occurrences over all windows. This window-based approach is local in

the sense that each window is folded independently of the rest of the sequence1. Approaches

that predict true local structures, without the use of fixed windows, currently do not exist.

The window-based approach is implemented in RNAplfold [18, 19].

An RNA sequence of length n can be now be computed in O(nL2) time and O(n+L2) space,

which is basically linear for L values that deliver accurate results (see Part IV).

2.5.5 Dotplots: Visualising base-pair probabilities

Prediction results in the form of base-pair probabilities are presented as dotplots. Base-pair

probabilities are visualised as a square matrix D with cells Di,j such that ri, rj ∈ R. The RNA

sequence R is written along the sides of the matrix (in 5’→3’ orientation from top to bottom

and left to right). Dots in upper-right cells (Di,j , i < j) represent base pair probabilities,

whereas, dots lower-left cells (Di,j , i > j) represent base pairs involved in the MFE structure.

The size of a dot (in upper-right cells) is proportional to the base-pair probability. Local

structure prediction results can also be visualised as dotplots, but in this case, only the top

right triangle is depicted (rotated by −45◦) and cells where the bp-span ≥ L are omitted.

2.5.6 Accessibility

Accessibility is a term used to describe how “unpaired” a segment of RNA is to determine

whether it is “accessible” for binding by regulatory factors. It is commonly measured as

either the free energy required to reverse the formation of any base-pairs within the RNA

segment of interest so that it becomes single stranded; or as the probability of that segment

to be unpaired (i.e. single-stranded). We use probabilities to measure accessibility in this

work, which usually makes sense for short segments. Probabilities become too small for

1 Although it is possible to set L = W , we show in Chapter 6 that when L�W detrimental effects of the
artificial window borders, introduced by the sliding windows, can be avoided.
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longer RNA segments in which case energies are preferred. In many instances, it has been

shown that the target site in the RNA—to which a trans factor binds—should be accessible

for binding: some data are available that indicate that around miRNA target sites the

accessibility is significantly increased in comparison with random contexts or non-target

sites [143, 164,171]. The same is true for siRNAs [109,303]; and many RNA-binding proteins

bind to single-stranded regions [249], e.g., the splicing factor SRSF1 [329]. This means

that base-pairing within the target region would reduce the accessibility of the binding site.

Computation of accessibility is thus important and can be computed in a similar way to

base-pair probabilities. The position-wise accessibility pu(i) is the probability of base ri

in the RNA sequence R being unpaired. Hence, the accessibility of ri is the probability of

complementary event of ri being paired, which can be derived from the sum of all base-pair

probabilities involving ri:

pu(i) = 1−
n∑

j=1

p(i, j), (2.5)

where p(i, j) is the probability for the base-pair (i, j).

In regulatory mechanisms, binding of a trans factor usually requires a stretch of nucleotides

to be unpaired and not just a single nucleotide. The simplest solution is to calculate the

average unpaired probability of single nucleotides for the region of interest. However, it is also

possible to calculate the probability that the interval [v, w] is unpaired (i.e., single-stranded),

analogously to the probability of a base-pair (see Equation 2.2):

pu(v, w) =
Z(Q[v,w])

Z(QR)
, (2.6)

where Z(Q[v,w]) is the partition function (Definition 2.15) over all structures for which the

interval [v, w] is unpaired (Definition 2.10) and Z(QR) is the partition function over all possible

structures for sequence R. Since many applications of accessibility are on long sequences, such

as mRNAs, the program RNAplfold offers the calculation of the accessibility of all possible

intervals up to a maximum size, averaging pu(v, w) over all windows that include the interval

[v, w] (analogously to the average base-pair probabilities in Section 2.5.4) [18, 19]. We denote

this mean probability as pu(v, w) and it represents the normalised expected frequency that

the interval [v, w] is accessible over all windows.

As already mentioned, accessibility is also measured as the cost (the energy required) of

opening base pairs at the binding site—the interval [v, w]—written as δGopen [164] or ED [34].

The opening energy can be computed directly from the unpaired probability: δGopen(v, w) =

−RT ln pu(v, w), where R is the gas constant and T the absolute temperature, and pu(v, w)

is often approximated by puavg(v, w), which is the averaged probability as computed by the

window-based prediction approach, RNAplfold [18, 19].
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2.6 Use of conservation to detect non-coding RNA

As previously established, structure is generally paramount to RNA-based regulation. In

many regulatory RNAs, the global structure of homologs is conserved, whereas the sequence

is only conserved in small, local subregions of the RNAs (see Figure 2.7). When considering

a secondary RNA structure, mutating a G→ C base pair to first G→ U and then A→ U

means that although the sequence differs, the base pair—the overall structure and ultimately

the function—is conserved; such events are referred to as compensatory base-pair mutations.

If several compensatory base-pair mutations occur over time, the sequence divergence can be

great with comparable structure conformations (e.g. see Figure 2.7).

(((((((..((((.........)))).(((((.......))))........).....(((
A.thaliana.1 GGGGAUGUAGCUC-AUAUGGUAGAGCGCUCGCUUUGCAUGCGA--------GAGGCACAG 51
E.coli.1 CGGUGAUUGGCGCAGCCUGGUAGCGCACUUCGUUCGGGACGAA--------GGGGUCGGA 52
C.elegans.1 AGCAGCGUGGCGCAG--UGGAAGCGUGCUGGGCCCAUAACCCA--------GAGGUCGGU 50
M.musculus.1 GAGGUCUUAGCUUAAU----UAAAGCAAUUGAUUUGCAUUCAA--------UAGAU-GUA 47
H.sapiens.1 GGUAGCGUGGCCGAGCGGUCUAAGGCGCUGGAUUUAGGCUCCAGUCUCUUCGGAGGCGUG 60
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Figure 2.7. Multiple sequence-and-structure alignment of tRNAs. Selected tRNAs from various
model organisms, taken from Rfam [33,95] (RF00005), were aligned using LocARNA [291,339]. The resulting
sequence–structure alignment with columns coloured according to the number of compensatory base-pair
mutations as indicated in the legend is shown in (A); the sequence conservation per column is given by the
grey bars. The characteristic tRNA cloverleaf structure (B) is highly conserved as seen again by the colouring
as in the alignment. Only very few base-pairs are red, i.e., have identical sequences in all five organisms. With
this example, we see that a common structure configuration is more important to the tRNA function (with up
to 4 out of 5 possible compensatory base-pair types) than conserved sequence: the mean pairwise sequence
identity is 53 %, which is still fairly high for an ncRNA class.

In all areas of bioinformatics, predicted functional annotations rely heavily on the use

of conservation. If a signal is observed (or similar) in many species, especially if they

are distantly related, then the common assumption is that the signal derives from an

important function due to the constraints on random mutations that occur throughout

evolution. Thus, the conservation of RNA structure is a powerful tool for detecting ncRNA—

if the sequence similarity is too low, structure conservation provides an additional layer of

information. The first step in identifying classes of ncRNA is to accurately predict alignments

for multiple sequences that represent potential homologs of ncRNA across many species.

Algorithms for predicting such alignments should consider both sequence conservation and

detect compensatory base-pair mutations that conserve the global structure. A brief summary

of these approaches is given in the following section.

The annotation and detection of novel ncRNAs in entire genomes requires whole genome

alignments from a set of species with sufficient—but not too much—sequence homology, and

second, a process for recognising domains within the genome that show significant structure

conservation. Since ncRNA genes do not code for proteins, one can not look for characteristic
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open reading frames and signatures of codon usage. Instead, conserved structures is often

the only chance for in-silico detection. Several sliding-window–based approaches, such as

RNAz [118, 333], EvoFold [240], and REAPR [341], have been developed specifically for ncRNA

detection.

2.6.1 RNA sequence-and-structure alignment

Given a set of homologous RNA sequences, the task is to find an alignment that best reflects

evolution of the sequences: conserved nucleotides should be aligned in single columns and

conserved base pairs aligned in respective pairs of columns. Accurate alignments give rise to

a conserved structure that is essential for the function of an ncRNA family. Two popular

approaches for computing sequence-and-structure alignments exist. The first approach

requires a multiple-sequence alignment [76,160,231,311] to be precomputed and a consensus

structure is predicted by considering the columns of the precomputed alignment. The MFE

consensus structure is computed by combining the information from compensatory base-pair

mutations with a standard dynamic-programming, structure-folding algorithm (as described

in Section 2.5); various implementations of this nature are RNAalifold [17], pfold [173] and

PETFOLD [281]. This sequence-then-structure approach works well when the average pairwise

sequence identity is ≥ 60 % [96, 332]. The second main approach computes alignments where

sequence and structure conservation are considered simultaneously; it is more accurate on the

many ncRNA families with low pairwise sequence identities [96,133]. The first algorithm was

introduced by Sankoff in 1985 [273]. It compares all possible structure configurations of one

sequence with all possible structure configurations of the second sequence in a Needleman–

Wunsch-like alignment of two sequences [229]. The Sankoff algorithm is not practical for more

than two or long sequences because k sequences of length n take O(n3k) time and O(n2k)

space. Many heuristics have appeared in recent years that restrict the Sankoff algorithm to

a light-weight version and only perform pairwise structure alignments. Multiple sequences

are subsequently aligned using the Feng–Doolittle progressive, or an iterative approach,

analogous to sequence-only alignments [84]. Among the many heuristics, PMcomp [137] and

LocARNA [339] introduced the use of precomputed base-pair probability matrices for increased

computing efficiency. They are, however, still too slow for whole genome analyses with a

time complexity of O(k2n4). Throughout this thesis, no long, or large-scale sets of RNA were

aligned; therefore, due to its overall accurate performance and easy-to-use web server [291],

LocARNA was used throughout this thesis.

2.6.2 Families of non-coding RNA

RNA families are stored in the Rfam database [33, 95]: version 11.0, released in August

2012, comprises 2208 conserved families of structured regulatory RNA—including ncRNA

genes, self-splicing RNAs, and local structured cis-regulatory elements. Once an ncRNA

family has been established, and accurate multiple sequence-and-structure alignments of that

family exist, this information can be deployed for identifying further family members. The
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most basic and easiest approach for identifying family members is to use BLAST [5]—and

in many cases this works if sequence similarity is sufficient. A more advanced approach is

to include RNA secondary structure. For example, INFERNAL [228] computes probabilistic

covariance models of both RNA structure and sequence variation, capturing compensatory

base-pair mutations, from precomputed multiple sequence alignments. This information

is encoded by stochastic context-free grammars, which are extensions of hidden Markov

models used for protein families [86], that can cope with the long-range base-pair interactions.

Covariance models of established ncRNA families can be applied to scan for additional family

members [349]. LocARNA-SCAN [340] offers an alternative to INFERNAL and gives a good

comparison of sequence-only and sequence-and-structure–based approaches.

2.7 Regulatory recognition elements and RNA binding

Post-transcriptional gene-expression regulation generally involves a direct interaction between

a trans factor and the regulatory recognition element (RRE) on the RNA transcript being

regulated. Figure 2.8 illustrates four types of interactions with RNA: RNA-RNA interaction,

protein-RNA interaction, a small-molecular ligand or a peptide ligand binding to RNA. The

first two involve ncRNAs or RBPs that interact specifically with an RRE—a local RNA

sequence and/or structure motif. In contrast, molecular or peptide ligands bind to a (tertiary)

structural pocket of RNA and this usually changes or stabilises the local RNA structure, as

is the case for many riboswitches [29]. Regulatory RNA-RNA interactions usually require

that the RRE is accessible (i.e. unpaired). RBPs can bind specifically to both sequence and

structure.

A B

C D

Figure 2.8. Regulatory recognition elements on RNA. An illustration of four types of interaction with
RNA regulatory recognition elements (RREs): (A) RNA-RNA interactions, usually with trans-encoded ncRNA;
(B) protein-RNA interactions with local RNA motifs; (C) small molecular ligands or (D) peptide ligands binding
to tertiary structure pockets where such interactions usually change or stabilise local structure. Illustration
adapted with permission from Macmillan Publishers Ltd: Nature Reviews Molecular Cell Biology [101],
copyright 2013 (license no. 3363740908111).

An RNA-recognition protein domain requires about 40 amino acids to specifically recognise a

single nucleotide. Hence, eight nucleotides are recognised by a domain of about 320 amino acids,
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encoded by 960 nucleotides. In contrast to proteins, most RNA-guided regulation requires a

short seed interaction involving about 6–8 consecutive base pairs. This seed interaction can

be extended further by additional base pairs, but most RNA-RNA interactions do not exceed

25nt [257]. This large difference means that regulation based on RNA-RNA interactions

is more efficient, however, proteins remain essential in regulatory processes and protein-

RNA interactions are required as an interface for the formation of large RNA-nucleoprotein

complexes that perform elaborate functions [154,156,245,295]. In this dissertation, there is

a greater focus on RNA-RNA interactions than on protein-RNA interactions; although the

latter often coincides with the former to stabilise RNA-RNA interactions.

2.7.1 Experimental detection of interactions with RNA

The greatest resolution of both RNA-RNA and RNA-RBP interactions is given by methods

that derive the three-dimensional configuration of the molecular complex, such as nuclear

magnetic resonance or x-ray crystallography (see e.g. [326,330]). A further approach to detect

binding sites of both ncRNA and RBPs is to perform mutational experiments where both

the sequence and structure (when required) of the RRE are mutated. The effect of every

mutation is compared with the wild type. Decreased or abolished signal1 is indicative of an

interaction at the mutated site. For example, mutations were performed to detect CRISPR

processing by Cas6 in CRISPR-Cas systems [227,298]. Due to time and cost expense of the

above approaches, they can only be applied to individual cases with known or hypothesised

RRE sites and cannot be used to detect novel RREs on a transcriptome-wide scale.

Changing the expression of an RBP or ncRNA can infer their binding partners, but not

sites of RREs. For example, in the search for miRNA targets, either a specific miRNA was

overexpressed, or the dicer protein, which is essential for mature miRNA processing, is knocked

out: the affect on transcript or protein expression levels is measured and significantly increased

or decreased expression levels are considered to be evidence of miRNA regulation [276,279,285].

Changing the expression of a single gene, however, can affect many dependent processes;

therefore, not only direct effects are measured. Moreover, results are skewed due to the fact

that highly abundant molecules are more likely to find a binding partner than rare molecules.

Immunoprecipitation-based protocols have been developed for the detection of RREs bound

by a specific RBP. Immunoprecipitation (IP) requires a strong affinity between RBP and

RRE, and only whole (or longer segments of) target transcripts are identified when only a

simple IP method is applied, e.g., the RIP approach [243]. Therefore, protocols were developed

to stabilise interactions by forming covalent bonds between RBP and the RRE. The bonds are

induced by UV light or formaldehyde in a process called cross linking [316]. RNA sequence

not protected by the cross-linked RBP can be digested to gain more specific information on

the RRE location. After sequencing the bound RNA, the RNA-seq data is mapped to the

genome and profiles are compared with a control to detect significantly enriched peaks of

1 The signal that is triggered by an interaction with the RRE, e.g., the observation of an expected phenotype,
a change in expression level(s), or of a specially designed reporter system.
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overlapping reads that mark potential RRE sites. This general approach is termed CLIP-seq

and variants include PAR-CLIP [9], HITS-CLIP [58,352] and iCLIP [147,174,300]. Interactions

between ncRNAs and their target RREs are usually facilitated by an RBP (e.g., AGO in

miRNA binding, Section 2.2.1), therefore, CLIP-seq experiments can also be applied to the

detection of ncRNA binding. In the case of miRNAs, target sites are identified by CLIP-seq of

one or all of the AGO proteins [46,122,355]. However, this data does not provide the miRNA

involved in the interaction. For this purpose, a variant protocol (CLASH) was established that

ligates the miRNA sequence with the RRE [135].

CLIP-seq is considered the gold standard for detecting RBP and miRNA targets but despite

its great success there are still caveats: (1) the data may contain many false positives due

to inherent noise [55, 318]; (2) a large number of binding sites remain unidentified (a high

false-negative rate) because CLIP-seq is sensitive to expression levels and is both time and

tissue dependent [24]; (3) limited mappability [61] and mapping difficulties at splice sites

lead to further false negatives, even on highly expressed mRNAs. Consequently, CLIP-seq

experiments should be complemented with the computational discovery of missing binding

sites.

2.7.2 RNA-RNA-interaction prediction

An ncRNA regulates its target RNA by physically associating with its RRE to form an

intermolecular duplex (Figure 2.8), which follows similar rules to intramolecular RNA structure

formation (Section 2.4). The complementarity between ncRNA and RRE is a central feature

in most approaches for predicting RNA-RNA regulatory interactions. Existing prediction

methods differ in their means for measuring the degree of complementarity.

The duplex formation involves the bonding of complementary base pairs between the ncRNA

and the RRE. Hence, the degree of complementarity can be measured by an extended

secondary structure prediction model that determines the thermodynamic stability of the

RNA-RNA duplex. One of the first approaches in this direction was RNAhybrid1 [252]. It

uses the usual energy model for secondary structures [210], but considers only stacking and

internal loops in duplex formations. This simple model, however, disregards internal mRNA

structure that might block an RRE site. More advanced models exist that also include

intramolecular base pairing [35,47,146] but are too slow for predicting ncRNA targets on a

genome-wide scale.

For very short ncRNA, such as miRNA and siRNA, it is unlikely that an internal structure

affects binding efficiency due to their integration into an AGO protein [78]. For longer RNA, it

is possible to use a simplified measure of mRNA intramolecular structure, called accessibility

(see Section 2.5.6). An RRE is accessible if it is not involved in internal mRNA base pairs

and is thus free for the interaction with the ncRNA. RNAup [224] defined accessibility as the

probability that a specific region of the mRNA (in our case the RRE) is single-stranded in

the ensemble of all possible structures and this measure has been shown to be significant for

1 (also implemented in RNAduplex,Vienna RNA Package [119]), or later in targetRNA [314]
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successful binding to RREs [164,258]. Again, the computational complexity of RNAup was

too high for genome-wide scans, and thus two solutions exist with more practical run-times:

(1) IntaRNA [34] uses a full energy calculation for the accessibility, but a heuristic method

(including a seed condition) for determining the best duplex structure; (2) RNAplex [304] uses

a position-specific penalty score that depends only on a local context to approximate the

accessibility of a complete region.

In bacteria, RNA-RNA interaction is a predominant form of gene regulation [193,325] involving

a class of small ncRNAs termed sRNA. Although IntaRNA was specifically developed for

predicting such interactions [34,259], it still produces many false positive predictions [258].

Many types of sRNA are highly conserved across many prokaryote species, thus the use of

conservation can greatly reduce the number of false positive predictions. PETcofold [282,283]

uses interaction site sequence conservation, which is a very restrictive method. The better

use of conservation information is to detect pairs of sRNA–targets that are conserved across

many species, as was developed recently in CopraRNA [343]. Using conservation to filter

miRNA target predictions leads to a comparatively low sensitivity [250,251] because miRNA

can target up to hundreds of genes and many target sites are not conserved. However, the

CopraRNA approach has not yet been implemented for miRNA but is expected to lead to

better results in the future.

2.7.3 MicroRNA target prediction

A mature miRNA is incorporated into an AGO protein and guides the entire RNA-induced

silencing complex (RISC) to its target at an RRE specific to miRNA, an MRE (miRNA

recognition element). Most miRNA target prediction tools base their initial search on

thermodynamic stability between miRNA and MRE. For plant miRNAs, the application

of thermodynamic stability is almost sufficient for predicting putative MREs. To this end

RNAhybrid has been applied successfully to identifying miRNA targets in the model plant

organism, Arabidopsis thaliana [178,252]. In comparison with plants, animal duplex structures

are much less stable, therefore, assessing the degree of complementarity via duplex stability

alone leads to a vast number of candidate MRE sites and does not perform well as a sole

predictor [323].

As for any prediction approach for RNA-RNA interactions, the use of additional features can

increase the specificity of target prediction. A key determinant of miRNA target specificity is

the well-defined seed interaction of six uninterrupted base pairs between nucleotides 2–8 of

the miRNA and the MRE, and various extensions and definitions of this region [11,166,190,

191,285]. Further determinant features are conservation, MRE context information, special

characteristics of the duplex formation (e.g. compensatory 3’ binding), overrepresented

seed motifs, multiple MREs per target, cooperative RBP binding, relative MRE position,

accessibility and AU content of the MRE and the direct sequence context, and expression

levels of both miRNA and mRNA. An evaluation of the relative contributions of these

features for detecting miRNA targets were published in [132, 323]. Most tools developed
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specifically for miRNA target prediction use a unique combination of these filter features

to achieve a higher specificity. Some popular and/or more recently developed examples

are given by PITA [164], Pictar [183], MiRanda [79, 153], TargetScan [92], rna22 [216],

EIMMo [93], miRmap [323], MREdictor [148]. More recently explored features are the expression

levels of miRNAs and target mRNAs in tissue-specific cells [225,246,262]; extended context

information, e.g., sequence composition, length, and structure [113,132,171]; MRE sites in

coding sequences [94,122,250,277], and cooperative or competing factors of multiple MRE

sites per target mRNA [113,205,271,272] and protein-binding sites, e.g., AU-rich elements [21,

77,150]. Reviews of prediction performances are given in [3,148,204,205,250,251,323]. In

these comparisons it is clear that a simple seed requirement results in the most sensitive

predictions and that the use of conservation greatly increases the precision of predictions.

Most tools use a subset of features to achieve target predictions, however, to model the full

spectrum, machine learning techniques are required to select the most informative features

and to avoid overfitting of models to the data. These techniques are more suited to modelling

the complex interplay between features used and the problem of learning which features

(or combination of features) contain the most information with respect to the prediction

performance. A large number of such approaches have been developed recently, a subset

of notable examples include mirSVR [20], Targetminer [13], MTar [41], MultiMiTar [217]

DIANA-microT-CDS [250] and TargetSpy [299]. Machine learning approaches mainly differ in

which kind of features and machine learning techniques are used to score the predictions and

in the quality of the training and testing data. A variety of machine learning techniques have

been applied to miRNA target prediction, although support vector machines (SVMs) are a

preferred method. SVMs are used by Targetminer and MultiMiTar. The use of support

vector regression is able to predict the strength of miRNA-MRE interaction (as in mirSVR),

however, this requires training data on the strength of regulation.

The selection of appropriate positive and negative data is an important, but challenging

task. With respect to the positive data, mirSVM uses MiRanda predicted targets, and other

approaches usually use experimental data. These are collections of either experimentally

verified miRNA-MRE interaction sites (used by Targetminer, MTar, MultiMiTar), or from

high-throughput experiments. Besides array-based approaches [113], one common source

is CLIP-seq [46, 122], which provides genome-wide information on the binding site of the

AGO protein, used by DIANA-microT-CDS, mirSVR. In most CLIP-seq protocols the miRNA

is not measured and has to be inferred from the data. Some tools have emerged to make

predictions on miRNA binding partners for CLIP-seq data [49,166,347,348]. Furthermore,

pSILAC is a high-throughput method to directly measure changes in protein synthesis [285]

and to overcome the problem that for a verified MRE, the impact on protein level remains

unknown (used by MultiMiTar and DIANA-microT-CDS). TargetSpy used the pSILAC data

for validation instead of training.

Early approaches generated negative data by selecting randomly generated sequences, however,

this is not a good choice since they are too distant from real negative examples, i.e., false

positive predictions. Hence, it is important to carefully generate a negative data set. This
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is even more problematic than the positive examples, since no “gold standard” for negative

examples exists. TargetMiner, for example, generated an accurate set of negative examples

from a pool of predicted but experimentally not validated target interactions and Yousef and

colleagues implemented a one-class technique [350].

Extended reviews of computational miRNA target prediction are given in [213,215,305,310,

342].
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Part II: Conservation of regulatory motifs

Many roads. One goal. All roads lead to Rome.—Alain de Lille and Geoffrey Chaucer

Conservation across many species can provide a powerful tool for detecting regulatory function

of non-coding RNA (ncRNA): generally speaking, the more distant the species that harbour

a common signal, the greater the evidence of evolutionary pressure to conserve the signal.

In this part, we explore the conservation of CRISPRs to detect and characterise binding

motifs for Cas proteins. First, a clustering procedure for characterising all available CRISPRs

is presented in Chapter 3 and application scenarios are highlighted in Chapter 4. Overall,

this part exemplifies the use of conservation to characterise regulatory recognition element

(RRE) motifs. In this case, we know the approximate location of the RRE because the Cas

protein binds to the repeat of the CRISPR RNA. Hence, characterising the RRE is easier

than when its location is unknown. It would be possible to apply a procedure similar to

the one proposed here to characterise RREs that have either been experimentally verified

or predicted with high certainties. However, the techniques used here were tailored to the

specific requirements of the CRISPR-Cas system. The work presented in Chapters 3 and 4

were a part of the following publications: [P1–P3,P5,P9,P11].
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CHAPTER 3

CRISPRmap: Repeat conservation in CRISPR-Cas systems

Despite the conceptual simplicity of the underlying mechanism, a large variety of distinct

CRISPR-Cas systems exist (see Section 2.2.2). This variety leads to the necessity of categoris-

ing systems into groups for which members of a single group are functionally related. The

characterisation of CRISPR-Cas systems helps to make assumptions across related systems.

CRISPRs are associated with distinct sets of Cas proteins. In the literature, a CRISPR-Cas

system is usually characterised by the encoded Cas proteins into at least 10 widespread sub-

type annotations [123,201,202,324]. Although the Cas-centric classifications of CRISPR-Cas

systems is generally effective, an accurate Cas-protein–based classification is complicated:

Many of the cas genes belong to extremely diverse families [123,202]; CRISPR loci may include

novel, chimeric, mixed subtypes, or cas genes that are missing entirely [98, 155,202,260,287];

and it is not always obvious which cas genes are specific to a repeat-spacer array or Cas

proteins could be shared between arrays [260].

In this chapter, we present a comprehensive classification of all publicly available CRISPRs

that is based solely on the sequence and structure evolution of repeats. The repeat-spacer

array is the only element present in all CRISPR-Cas systems. Therefore, these systems

are identified first by the existence of such an array. In contrast to the annotation of cas

genes, repeat-spacer arrays are easily identified by programs such as CRISPRFinder [115]

or CRT [23]. The repeat is the central regulatory element in the CRISPR-Cas system as it

serves as a binding template for Cas proteins in all three phases of immunity: adaptation,

interference and crRNA maturation (Section 2.2.2). For these reasons, a systematic repeat-

based classification is fundamental for extending knowledge about the function, diversity, and

phylogeny of CRISPR-Cas immune systems. A phylogenetic study of these immune systems

is not trivial because entire (or elements of) CRISPR-Cas systems are frequently transferred

between unrelated species. Thus, their evolution does not always follow the evolution of the

host genomes [144,202].
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Similarities between CRISPRs are assumed to reflect conserved binding motifs and mechanisms.

The binding affinity of Cas proteins is not only affected by the repeat sequence: a small

hairpin structure is a key binding motif for Cas endoribonucleases in several systems [32,103,

129,131,227,274,298] [P7,P10]. To correctly identify these structure motifs, our clustering

is the first that is based not only on sequence—but also on structure—similarities. This

approach is well-established for the identification and characterisation of structured ncRNA

[134,240,338,339] (c.f. Section 2.6). For these ncRNAs, the conservation of structure is often

more important than sequence for the biological function [95,117]. Although CRISPRs are

partially structured ncRNAs, no structure-based clustering exists. To our knowledge, the

only CRISPR-specific classification was performed on 349 bacterial and archaeal repeats in

2007 [180]. Although structure motifs were identified, the underlying clustering was based

purely on sequence and not structure similarity. An analysis of the archaeal domain, also

based on only sequence similarities, was done more recently [98].

Since at least a third of CRISPRs do not contain structure motifs, we performed an inde-

pendent clustering of CRISPRs based solely on sequence similarities to identify conserved

sequence families. Independent sequence-and-structure and sequence-only clusters provide a

more complete overview of the conservation of both unstructured and structured CRISPRs.

We combined identified structure motifs and sequence families with a hierarchical representa-

tion of sequence and structure similarities to generate a map that directly reflects relationships

between classes and individual CRISPRs. This hierarchical CRISPRmap tree enables a fast

comparison between CRISPRs of interest and previously published systems. Automated

access to our data via an easy-to-use web server (CRISPRmap1) allows users to identify relative

positions of both published and unpublished sequences. CRISPRmap is a valuable resource to

elucidate and generalise functional mechanisms of CRISPR-Cas immunity. This chapter was

adapted from [P3].

3.1 CRISPR-Cas data collection and annotation

In addition to generating a comprehensive set of CRISPRs, we derived automated processes

for annotating cas genes and Cas subtypes; and mapped these to a CRISPR locus. Finally,

we generated Cas1 clusters to determine the link between Cas protein and CRISPR RNA

evolution.

3.1.1 CRISPR data

All available genome sequences were downloaded from the NCBI server (http://www.ncbi.-

nlm.nih.gov/) and the CRISPR databases: CRISPI [269] and CRISPRdb [114] (August 2012).

Redundant genomes were removed. We predicted CRISPRs using the two most commonly

used programs, CRISPRFinder [115] and CRT [23]. For both tools, we used parameters that

corresponded to at least three repeats within an array and the repeat and spacer lengths

1 The results presented in this chapter are from CRISPRmap version 1.0.
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Table 3.1. Summary of our REPEATS dataset including all publicly available CRISPR arrays.

Archaea Bacteria
Genomes 279 2,289
Genomes with CRISPRs (percent) 177 (63 %) 877 (38 %)
Plasmids 41 1,286
Plasmids with CRISPRs (percent) 14 (34 %) 76 (6 %)
CRISPRs 643 2,884
Repeats per array (median) 3–190 (15) 3–1371 (12)
Repeat lengths (median) 20–44 (29) 19–48 (30)
Spacer lengths (median) 20–50 (38) 19–70 (35)

were set to 18–58 nt. Although repeats within one array are largely identical, they can

contain some mutations, especially towards the 3’ end of the array. Thus, we used a single

representative repeat of a CRISPR array by calculating the consensus sequence of all repeat

occurrences. Finally, we merged the results from both programs and the CRISPR databases

to form a non-redundant set, which we refer to as REPEATS. Table 3.1 gives a summary of

our REPEATS dataset.

Using the described procedure, we obtained over 3,500 consensus repeat sequences from

predicted CRISPR arrays in ∼2,500 available genomes. 63 % of archaea and 38 % of

bacteria contained predicted CRISPR arrays, similar to previous observations [114,144,202].

Interestingly, the number of plasmids that contained CRISPR arrays is considerably lower:

34 % and 6 % in archaea and bacteria, respectively. Thus, most CRISPR arrays (94 %) are

located on chromosomes. This dataset is the most complete set of CRISPRs to date; we

compared the REPEATS dataset to previous work in Figure D.5.

The results from CRISPRFinder and CRT give no information on the correct strand orientation.

Therefore, we predict the repeat orientation within our clustering approach. To do this we

required CRISPR data with known orientations. The following two sets were gathered for

this purpose:

• Set of repeats from Kunin et al. 2007. We downloaded the dataset from the

supplementary material of [180] and refer to it as REPEATSKunin. This dataset contains

271 bacterial and 78 archaeal sequences (349 in total). The orientations were predicted

by the authors using previously published sequence features.

• Set of archaeal repeats from Shah and Garrett 2011. We received 378 archaeal

repeat sequences from Shah and Garrett that were the basis for the results in [287].

The repeat orientations were manually verified by Shah and Garrett. We refer to this

dataset as REPEATSShah.

3.1.2 Cas gene and Cas-subtype annotations

Annotations of all cas genes. Subtype independent annotation of cas genes was per-

formed on the entire chromosome or plasmid which harbours the respective CRISPR array.
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We applied the TIGRFAM models from Haft et al. [123, 124] in combination with HM-

MER [75] but used the more recent cas gene names from Makarova et al. [202]. A cas gene

was annotated when one of its respective models was found with an E-value ≤ 0.001. On our

web server site, we provide a full table of cas gene annotations for each repeat, giving the

minimum distance of that gene to the CRISPR array. For each sequence family and structure

motif, we identified single cas genes that were associated with the majority of CRISPRs in

the respective class; all cas genes on the entire chromosome or plasmid with the CRISPR

were considered. Results are given in summary in Tables D.2–D.19.

Cas subtype annotation from Makarova et al. 2011. The automatic annotation of

subtypes is tricky due to the fact that genes of multiple subtypes can be present in the

genome, subtypes are often incomplete, and it is not known if the cas genes must be within a

certain distance of the CRISPR array. However, in many published CRISPR-Cas systems,

the cas genes are located either directly upstream or downstream of the array [202]. We used

the following procedure that enabled a suitable trade-off between precision and recall of the

annotations: We first compiled a list of signature cas genes that were unique to each type and

subtype from [202]1. For each repeat, i.e., CRISPR array locus, we identified first the closest

subtype signature and then noted the distance of the respective type signature, if available.

We plotted the distance of subtype and type signatures and determined a clear peak (at 14.5

kb) in their distances to their respective CRISPR array (Figure D.1). We considered a cutoff

of 180 kb to represent a suitable distance from the CRISPR array; this cutoff corresponds to

the 70th percentile of distances of the subtype signatures. A repeat is assigned to a subtype

if both subtype and type signatures are within this distance. Note that with this approach,

not all cas genes have to be present or annotated.

Clustering of Cas1 proteins. Cas1 protein sequences were assigned to the closest

CRISPRs if they were within 180 kb of the array (see Figure D.1 for cutoff explanation).

These Cas1 proteins were clustered using Markov clustering (MCL) [80, 320] with default

parameters. The MCL method is a popular method for clustering biological sequence data and

was applied previously to CRISPRs [180,287]. Here, pairwise protein-sequence similarities

were calculated with the local Smith-Waterman alignment algorithm [292] and percent protein

identities below 40 % were set to zero to reduce noise. Only clusters with at least ten proteins

were considered.

3.2 Detecting sequence and structure conservation indepen-

dently

We performed a comprehensive search for both conserved sequence families and small

CRISPR-like hairpin motifs, using independent approaches to allow for both structured

1 Please note that the recently updated classification presented in [324] was published after this work was
performed and is not considered here.
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and unstructured repeats. First, we partitioned CRISPRs into sequence families using MCL,

as in previous studies [180,287]; in addition, we applied sequence profiles to refine the MCL

clusters (Section 3.2.1). With this procedure, we identified 40 conserved families. The

mean pairwise nucleotide-sequence identity of 82 % (68–96 % for each family) reflects a

high level of sequence conservation. Second, independent to identified sequence families,

we searched for conserved structure motifs using sequence-and-structure alignments (Sec-

tion 3.2.2). Structure motif candidates were constrained to be reminiscent of those previously

published [32,129,227,274,298] [P7,P10]. More specifically, 33 small hairpin (or stem-loop)

motifs with at least four base pairs and no bulges were identified. Their sequence conservation

was generally lower than for sequence families: mean pairwise sequence identities ranged

between 47–94 % with an average of 69 %. Sequence families and structure motifs were

numbered according to cluster size, starting with the largest clusters; the smallest cluster

contained 10 sequences. Summary tables with sequence logos for families, secondary struc-

tures for motifs, mappings between families and motifs, and annotations are available in

Section D.1; full alignments are available on the CRISPRmap web server, version 1.0.

To provide further support for our secondary structure predictions, we evaluated the motifs

using the general ncRNA predictor, RNAz [118]. Although RNAz is not specifically trained

for CRISPR elements, it classified 79 % (26 out of 33) of our motifs as structured ncRNAs

with an SVM-RNA-class probability greater than 0.6 (22 motifs even achieved over 0.9; a clear

indication that these motifs are evolutionary conserved). Compared to other ncRNA classes,

RNAz only exhibits such promising sensitivities on some of the classical ncRNAs [266,267],

for example, transfer RNAs or miRNAs, which are known for their distinct and well-defined

secondary structures [105,157].

In total, out of all CRISPRs in our REPEATS dataset, 64 % were assigned to a conserved

sequence family and 51 % were assigned to a structure motif. 26 % of repeats remained

unassigned to either a family or motif, i.e., showed no conservation with available CRISPRs.

3.2.1 Clustering of repeat sequences into conserved sequence families

Repeat sequences were clustered into related families based on global sequence similarity

using MCL [80, 320] (downloaded from http://micans.org/mcl/). First, we calculated pairwise

similarities with the Needleman-Wunsch alignment algorithm [230]. These nucleotide-sequence

similarities (i.e., percent identities) were plotted (Figure D.2) and a reasonable cutoff of

65 % nucleotide identity was chosen to represent sufficient similarity. Similarities below this

value were explicitly set to zero to reduce noise. We ran the MCL program with an inflation

parameter I = 2.5. This parameter gave a good balance between the number of sequences

assigned to a family and the conservation within a family. Only clusters with at least ten

repeat sequences were considered as a conserved sequence family.

We supplemented the MCL clustering with sequence profiles generated by CLUSTAL W [311],

version 1.83. We used these profiles to re-assign repeats to families to which they were

sufficiently similar, as follows: Let sim(F, r) be the profile score of a repeat r compared
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with the profile of the family F , where r 6∈ F . For each original family, the minimum (Fmin)

and maximum (Fmax) profile similarity was determined by removing each sequence from the

family, re-calculating the profile for the remaining sequences, and determining the similarity

score of the respective repeat to the profile. A repeat r was then assigned to a sequence

family F if sim(F, r) ≥ Fmin and the distance between sim(F, r) and Fmax is the minimum

compared to all other families. In total, 73 sequences were re-assigned by the sequence profiles.

The sequence conservation did not change significantly, but we were able to identify those

few repeats that where missed by the MCL algorithm.

For each family, we generated sequence logos (Tables D.2–D.19) using a multiple sequence

alignment computed with MAFFT [159], version 6.4. The multiple sequence alignment was

converted into a logo by WebLogo version 3 [57].

3.2.2 Identifying conserved structure motifs

Our procedure for identifying conserved, local, hairpin-structure motifs (referred to as

structure motifs) in all CRISPRs involves a complex, multi-faceted workflow.

Step 1—pool of repeats. The procedure starts with a pool, Pu, of repeats that have not

been assigned to a structure motif. Initially Pu contains our entire REPEATS dataset. The

orientation of each repeat is predicted by a graph-kernel-based machine learning model [56],

slightly modified to work on directed graphs. We trained the model on the REPEATSShah

dataset (using the 253 repeats that had less than 95 % similarity to ones in REPEATSKunin).

Each repeat sequence is given as a directed graph, i.e., the nucleotides are represented by

nodes. These are linked by directed edges indicating the particular orientation. To test the

performance of our model, we applied it to the REPEATSKunin dataset. Overall, we achieved

a performance of 0.68 AUROC when using the feature parameters radius r = 1 and distance

D = 2. Since we did not achieve a perfect orientation prediction (mostly due to insufficient

training data), we addressed this issue throughout our clustering process. Nonetheless, the

model ensures that at least the majority of sequences are in the correct orientation for the

first clustering steps.

Step 2—generating a hierarchical cluster tree reflecting sequence and structure

similarity. A hierarchical cluster tree Ti for the current iteration i is generated from all

sequences in Pu using RNAclust [339]. RNAclust employs a hierarchical clustering algorithm

(UPGMA [116]) based on similarities calculated with a sequence-and-structure alignment

program, LocARNA [338, 339]. Thus, relationships in the resulting binary tree not only reflect

sequence, but also structure similarity. For each node of the cluster tree, there exists a

sequence-structure alignment with the respective predicted consensus structure as given by

LocARNA.
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Step 3—selecting subtrees with CRISPR-like consensus structures. Starting from

the root node in Ti, each child node is traversed in hierarchical order until a CRISPR-like

hairpin consensus structure is found at a certain node t. The consensus structure is local in

the sense that it does not cover the entire repeat sequence. All repeats descending from node t

are considered to form a candidate structure motif, Motif (t, Ti), if the following requirements,

derived from published repeat structures [32,103,129,131,227,274,298], are met:

1. The consensus structure of Motif (t, Ti) is a hairpin with a stack of at least four base

pairs and no bulges or internal loops.

2. At least 10 repeat sequences fit to the consensus structure of the motif candidate;

repeats that do not fit to the consensus structure are removed from Motif (t, Ti).

3. The two direct child nodes of t must have compatible consensus structures, which we

define as having ≥75 % of the base pairs overlap with the consensus structure at t.

If the requirements for Motif (t, Ti) are met, then all descendent nodes of t are assigned

to Motif (t, Ti) and the procedure is repeated until all nodes in Ti have been checked for

belonging to a structure motif.

Step 4—supertree of only structured repeats. All repeats that have not been assigned

to a structure motif are removed from the tree and are put back into the pool of unassigned

repeats Pu. All other repeats, which form one of the consensus structures, are put into a

set Ps. From this set Ps a supertree, ST (i), is generated by repeating Steps 2 and 3. Again

repeats that do not conform to the criteria are removed and put back into the unassigned

pool Pu. This re-clustering ensures the robustness of identified motifs.

Step 5—merging supertrees. In one RNAclust run, we identify conserved structures of

repeat sequences that are neighbouring in the cluster tree Ti. To locate more distantly related

repeat sequences that can still form a common consensus structure, we repeat the clustering

with the remaining sequences in the pool Pu. Consequently, Steps 2–4 are repeated for three

iterations, resulting in three separate supertrees (ST1, ST2, and ST3) that are merged into

one supertree, ST1,2,3. Merging starts with ST1: Since it is the result of the first iteration, it

includes the largest and most well-conserved structure motifs. Each structure motif of the

supertrees ST2 and ST3 is merged with ST1, one at a time. Due to the orientation uncertainty,

we also attempt to merge the reverse complement sequences of the whole structure motif.

Merging occurs by repeating Steps 2–4 and we use the orientation that results in the fewest

number of repeat sequences being lost to Pu in the merging process.

Step 6—final cluster tree with structure motifs. We perform a last post-processing

step to produce the final cluster tree with the structure motifs. For each structure motif, we

calculate the consensus structure of the reverse complement repeat sequences. GU base pairs
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become A and C bases and cannot pair in the reverse complement orientation. Therefore, we

consider the orientation with the most stable consensus structure to be correct. We also check

whether the reverse complement of a motif can be merged with another existing motif. Two

features are common to CRISPR sequences: a conserved 3’ end of repeats, AUUGAAAC/C

and a majority of A instead of U nucleotides for archaeal sequences—as observed in the

manually verified orientations in REPEATSShah. We checked the consensus sequence of all

CRISPRs belonging to a motif in both possible orientations for the existence of one of the

above features. This information was used to derive the correct orientation of a motif. If any

changes were made in the original orientation, the orientations of the respective CRISPRs

were swapped and Steps 2–4 were repeated for all CRISPRs currently assigned to a motif.

Note that changes to the input set can lead to changes in the resulting tree, therefore, our

repeated runs of RNAclust ensure that most of the noise is removed and we only include

stable structure motifs in our final result.

Improving the orientation of repeats in our REPEATS data. The identification of

conserved structure motifs gives some evidence on the likely orientation of the repeats

involved. For repeats not assigned to structure motifs, however, we had no information to

deduce the correct orientation. Therefore, we merged all structured repeats with the original

REPEATSShah data and re-trained our prediction model; we excluded repeats ≥ 95 % similarity

with the test data. By doing this, we assume that the majority structured repeats have

correct orienations after our clustering procedure and thus we can extend the original set of

repeats with “known” orientations. Again, we tested our model on the REPEATSKunin data

and achieved a substantial improvement with an AUROC of 0.82 in comparison with 0.68

previously. We subsequently used our re-trained model to predict the correct orientation of

the repeats remaining in the unassigned pool Pu. Even if some orientations are still incorrect,

this step ensures that the repeat orientations in our REPEATS data are consistent. To add the

sequences that were previously in the incorrect orientation, we repeated Steps 1–6 with the

improved orientation predictions.

3.3 A visual map of CRISPR conservation

As a visual map of both bacterial and archaeal CRISPR domains, we combined our discrete

categorisation into conserved families and motifs with a hierarchical tree, based on sequence-

and-structure similarities (compared with a non-hierarchical, sequence-similarity-based visu-

alisation in Figure D.8). The so-called CRISPRmap tree was generated by RNAclust [339] and

visualised with iTOL [189]. The tree reflects relationships based on sequence and structure

similarity; however, when a repeat is unstructured, only the sequence similarity is considered.

At a single glance, the CRISPRmap tree details relationships between individual repeats and

whole families and motifs (Figure 3.1).

In addition to the repeat families and motifs, we annotated taxonomic phyla, Cas1 sequence

homology clusters, and Cas subtype annotations [123, 202]. Each leaf represents CRISPR
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sequence and the leaf branches are coloured according to whether the CRISPR stems from

bacteria or archaea. Figure 3.1 shows one possible view of the CRISPRmap tree with sequence-

families, structure-motifs, superclass classifications (see Section 3.3.1) and the domain. Further

views and annotation data are available in the supplementary material and on our CRISPRmap

web server: http://rna.informatik.uni-freiburg.de/CRISPRmap.

In summary, the CRISPRmap tree was designed to provide a visual overview of CRISPR

conservation and to aid in the understanding of CRISPR-Cas diversity.

3.3.1 The CRISPRmap tree is divided into six superclasses

Based on sequence-and-structure similarities and the tree topology, the REPEATS dataset

could be broadly grouped into six major superclasses (Figure 3.2). The superclasses, labelled

A–F, are ordered according to generally decreasing conservation. The following information is

quickly observed in the CRISPRmap tree (Figure 3.1): Superclass A contains highly conserved

CRISPRs on the sequence level, but only a few structure motifs without many CRISPRs

assigned to them. Superclasses B–C contain sequence families that roughly correspond

to one structure motif each; the same is true for half of superclass D. The other half of

superclass D and superclass E contain very little sequence conservation, but many conserved

motifs containing fewer CRISPRs. Archaeal CRISPRs in both superclasses A and F contain

well-conserved sequence families and we find structure motifs for about half, however, these

are less stable than the bacterial motifs in superclasses B–D (Tables D.2–D.19). The bacterial

repeats in superclass F are very divergent: We included arrays with at least three repeat

instances to ensure that our dataset was complete. Many arrays with up to five repeat

instances, however, show little conservation (Figure D.7): roughly 50 % were not assigned to

sequence families or structure motifs and most are in this diverse part of superclass F. In

addition to array size, we marked repeats or (average) spacers with unusual lengths on the

CRISPRmap tree in Figure D.7. Some of the very short arrays, especially those with unusual

repeat and/or spacer lengths are unlikely to contain functional CRISPRs.

We summarised annotations and clustering results to give a brief overview of each superclass

in Figure 3.2; more details are given in the following results. In the CRISPRmap tree views

(e.g., Figure 3.1), the superclass is always annotated in the outer-most ring. Note that missing

data points (i.e. repeats) in the CRISPRmap tree induces noise in the tree topology. Therefore,

increasing the number of repeats in the CRISPRmap database will most likely increase the

accuracy of the tree.

3.4 An in-depth analysis of clustering results

We analysed the CRISPRmap data to gain further biological insights into aspects of CRISPR-

Cas systems. In detail, we looked at motifs at cleavage sites, variations in conservation

patterns, the link between CRISPR and Cas subtype evolution, and the evolution or transfer

of CRISPR-Cas systems among different species.
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Figure 3.1. The CRISPRmap tree: a map of repeat sequence and structure conservation. The
hierarchical tree is generated with respect to repeat sequence and structure pairwise similarity and the
branches are coloured according to their occurrence in the domains bacteria (dark brown) or archaea (blue-
green). The rings annotate the conserved structure motifs (inner), sequence families (middle), and the
superclass (outer). Motifs and families are marked and highlighted with yellow circles, and grey squares,
respectively. Finally, we marked locations (a–o) of published CRISPR-Cas systems for which experimental
evidence of the processing mechanism exists [32,60,99,103,129–131,227,248,260,274,298,326] [P7,P10]. A
summary for these published systems is given in Table 3.2. Repeats that show no conservation, i.e., were not
assigned to either a sequence family or structure motif, were removed to clarify the visualisation. Figure taken
from [P3].
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Table 3.2. Published CRISPR-Cas systems with experimental evidence of the processing mech-
anism. In particular, these are systems for which the Cas endoribonuclease is characterised and/or the repeat
structure has been verified. Published results are consistent with our data. The IDs, a–o, are marked, in order,
as red lines on the CRISPRmap tree in the manuscript in Figure 3.1. Table taken from [P3].

ID Organism Family Motif Cas Subtype Summary

Superclass A

a Clostridium thermocel-
lum ATCC 27405

F1 - I-B Unstructured; 8-nt 5’ tag; biochemical ev-
idence to show Cas6b activity [260]

b Pyrococcus furiosus DSM
3638

F10 - III-B Unstructured; 8-nt 5’ tag; cleavage by
Cas6; crystal structure of repeat wrapped
around Cas6 [326]

Superclass C

c Escherichia coli K12 sub-
str. W3110

F4 M2 I-E Structure predicted, but stable; 8-nt 5’
tag; cleavage by Cas6e, biochemical ex-
periments [32]

d Thermus thermophilus
HB8

F4 M2 I-E Structured; 8-nt 5’ tag; cleavage by Cas6e;
crystal structure of repeat hairpin in Cas6e
(Cse3) [103,274]

e Pseudomonas aeruginosa
UCBPP-PA14

F5 M4 I-F Cleavage by Cas6f (Csy4); 8-nt 5’ tag; crys-
tal structure and mutational analyses of
repeat hairpin in Cas6f [130,131,298]

Superclass D

f Bacillus halodurans C-
125

F3 M3 I-C Cleavage by Cas5d; 11-nt-5’-tag muta-
tional analysis of hairpin structure [227]

g Thermus thermophilus
HB27

F37 M9 I-C Cleavage by Cas5d; 11-nt-5’-tag biochem-
ical experiments [99]

h Nanoarchaeum equitans
Kin4-M

- - I-A Biochemical evidence to show Cas6b ac-
tivity; 8-nt 5’ tag [248]

Superclass E

i Synechocystis sp.
PCC6803

- M5 I-D & III-variant Cleavage by Cas6; 8-nt 5’ tag; biochem-
ical experiments, extended structure pre-
diction of hairpin motif [P10]

j Methanosarcina marzei
Gö1

F26 M13 I-B & III-B Cleavage by Cas6b; 8-nt 5’ tag; structure
probing experiment of hairpin [P7]

k Clostridium thermocel-
lum ATCC 27405

F20 - I-B Biochemical evidence to show Cas6b ac-
tivity; 8-nt 5’ tag [260]

l Staphylococcus epider-
midis RP62A

- M28 III-A Cleavage by Cas6; 8-nt 5’ tag; hairpin
structure as in M28 verified by mutational
analysis and sequence specificity around
cleavage site [129]

m Methanococcus mari-
paludis C5

- M29 I-B Cleavage by Cas6b; 8-nt 5’ tag; biochem-
ical experiments [260]

n Synechocystis sp.
PCC6803

- M14 III-variant Biochemical analysis of Cmr2 implicate
its involvement in either cleavage, crRNA
stabilisation, or array expression regula-
tion; 13-nt 5’ tag [P10]

o Streptococcus pyogenes
SF370 (M1 serotype)

F35 - II-A Cleavage with tracrRNA, host RNase
III and Cas9, biochemical experiments;
22-nt 5’ tag [60]
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Figure 3.2. CRISPRs cluster into six major superclasses according to sequence and structure
similarity. We summarised general results of our structure motif detection (i.e., structured or unstructured),
Cas-subtype annotations [202], and taxonomic phyla beside each superclass. Figure taken from [P3].

3.4.1 Structure motifs fit to known cleavage sites

Most sequence families and structure motifs are associated with either bacterial or archaeal

CRISPRs: only four motifs (M11, M20, M29, and M31) and one family (F20) are considerably

mixed with respect to the domain (archaea or bacteria). Bacterial CRISPRs are more

structured in general than those from archaea. Although structured motifs were identified

for both domains, the longer, more thermodynamically stable hairpins—associated with Cas

subtypes I-C, I-E, and I-F—belonged almost exclusively to bacterial CRISPRs in superclasses

B–D (Figure D.11.A–C and Tables D.6–D.11). To add to the stability of such short hairpin

motifs, 65 % of base pairs are Gs paired to Cs. In a closer inspection, we observed that 94 %

of GC base pairs were orientated with the G towards the 3’ end (Tables D.2–D.19). Such

consecutive C → G base pairs form a 3’ G side to the stem, which might be important for

crRNA processing due to sequence specificity in this region [129,227,298].

In the literature, cleavage by known Cas6-like endoribonucleases (during crRNA maturation)

occurs either at the 3’ side of the bottom of the hairpin motif, or within the double-

stranded region of the hairpin stem, usually below such a C → G base pair [32, 99, 103,

129–131, 227, 248, 260, 274, 326] [P7, P10]. The product of this cleavage is an 8-nt-long

repeat tag at the 5’ end of the mature crRNA (5’ tag), which corresponds to the last eight

nucleotides from the 3’ end of the repeat sequence. Some exceptions to the 8-nt length

exist [P10] [60, 99, 227, 290]. We located potential cleavage sites on our structure motifs

according to published observations [32,129,227,274,298] [P7,P10]. Of all 33 structure motifs,

11 contain a potential cleavage site between two base pairs in the conserved stem of the motif

of which 7 are below a C → G base pair. Another 13 motifs have a potential cleavage site

at the 3’ side of the bottom of the conserved stem. In Figure 3.2, we see that both of the
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Figure 3.3. Highlighting the advantage of independent clustering approaches. (A) CRISPRs in
the largest sequence family, F1, are mostly unstructured; however, for 50 CRISPRs also a conserved structure
motif, M10, was identified. This indicates that subsets of conserved families can be structured. F1 contains the
conserved 5’ tag, marked with the magenta box. (B) Structure motif M28 shows no sequence conservation, but
a conserved structure (base pairs are highlighted in yellow). The many compensatory base pairs are marked
in the alignment with squares. This structure has been verified via mutational analyses in [129]. Potential
cleavage sites are indicated as observed in the literature [32,99,103,129–131,227,248,260,274,326] [P7,P10].
Figure taken from [P3].

Cas subtypes I-E and I-F are split across the two superclasses B and C. The splitting of

these subtypes is due to a single repeat-structure feature: The hairpin motifs are closer to

the 3’ end of the CRISPRs in superclass B, resulting in a cleavage site within the stem. In

superclass C, the cleavage site is at the bottom of the hairpin motif. In accordance with

previously mentioned literature, the cleavage sites are below a C → G base pair in both

superclasses. Aside from this difference in position, the hairpin structures associated with

either Cas subtypes I-E or I-F are very similar. See Figure D.11 for details.

3.4.2 Patterns of conservation in sequence families

When inspecting the family sequence logos, we see different patterns of sequence conservation

(Figure D.11 and Tables D.2–D.19). We highlight these differences using four selected

examples: First, CRISPRs associated with the Cas I-E subtype show a high conservation of

Gs and Cs that form the base pairs of the hairpin motif. Second, CRISPRs associated with the

I-F subtype are well-conserved across the entire repeat sequence and contain fewer consecutive

Cs and Gs (Figure D.11.A–B). Third, CRISPRs associated with the Cas I-C subtype show a

higher conservation at the bottom of the hairpin stem and in the single-stranded 5’ and 3’

ends, which suggests that the top of the stem and the hairpin loop is likely insignificant for

the binding affinity (Figure D.11.C); this conservation pattern is well-supported by mutation

experiments in the type I-C system in B. halodurans C-125 where crRNAs were still processed

with a truncated upper stem and mutated hairpin loop, but processing was sequestered by

mutations at the bottom of the stem or by the removal of the unpaired 3’ end [227]. Fourth,
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in Figure 3.3, we marked the well-conserved 8-nt-long 5’ tag, AUUGAAA(C/G). Out of our

40 sequence families, 17 (∼40 %) show a conservation of exactly this sequence tag; others

contain minor deviations. Interestingly, bacterial superclasses B and C do not show this tag,

whereas it is highly conserved throughout the other bacterial superclass D and in almost all

archaeal families (9 out of 12). We hypothesise that these patterns of conservation give a good

indication of differences in binding affinities for specific Cas proteins in various CRISPR-Cas

systems.

3.4.3 Sequence families and structure motifs provide independent infor-

mation about evolution

Structured ncRNA families cannot be identified by sequence conservation alone, since standard

alignment tools fail when the pairwise sequence identity is below 60 % [96]. We see the

same tendency for structured and unstructured repeats in our data: The CRISPRmap tree

shows different patterns of overlap between sequence families and structure motifs that we

identified by independent clustering approaches (Figure 3.1). In Figure 3.3, we highlight two

overlap patterns. First, in superclass A, the largest family, namely F1, is mainly unstructured.

For a subset of these CRISPRs, however, we identified a thermodynamically stable hairpin

motif (M10) with four, consecutive C → G base pairs; these CRISPRs are clearly structured.

Second, in superclass D, we found a conserved hairpin motif (M28), also with four, consecutive

C → G base pairs and a large 8-nt hairpin loop that was verified by mutational analyses

in a type III-A system in Staphylococcus epidermidis RP62A [129]; this motif does not

show enough sequence conservation to be detected as a sequence family. Both M10 and

M28 would not have been identified with the approach used in [180], in which consensus

structures were calculated from (entire) sequence families. In addition, we observe cases

where a structure motif corresponds almost fully to a sequence family, e.g., M1 with F2 and

M2 with F4. Nevertheless, individual members of the sequence families were not predicted to

form the associated consensus structure: this may indicate a degenerate and non-functional

CRISPR-Cas system, or one that has evolved to function with a different or no repeat

structure.

3.4.4 A subset of Cas subtypes are weakly linked to repeat and Cas1

evolution

From the literature, we know that Cas1 is strongly linked to repeat evolution [98,144]. This link

could be verified for our large-scale dataset (Figure 3.4.A). To do this, we clustered associated

Cas1-protein sequences and the results fit well with all superclasses, except superclass E1

(Figure 3.4).

1 There are two observations which indicate that superclass E contains only partial data: conserved
sequence families and structure motifs are smaller and most CRISPRs show little to no conservation, and in
Section D.10, we identified that a large number of CRISPRs from metagenomic data were assigned to this
superclass that potentially form conserved classes.
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Figure 3.4. Relative ratios of Cas1 sequence clusters and Cas-subtype annotations per super-
class. (A) Cas1 sequence clusters correspond well to the superclass and thus the CRISPRmap tree with the
exception of superclass E; superclass E is very diverse in both repeat and associated Cas1 conservation and it
probably contains only partial data. (B) Bacterial CRISPRs that are assigned to well-defined structure motifs
are associated with subtypes I-C, I-E, and I-F in superclasses B–D and are strongly linked to both repeat and
Cas1-sequence similarities (i.e., CRISPR evolution). Superclass A and F contain both bacterial and archaeal
CRISPRs (many are unstructured), which are loosely associated with the remaining type I and both type
III subtypes. These subtypes do not correspond to Cas1 and repeat evolution and are likely comprised of
interchangeable protein complexes or modules. The diversity of superclass E is also reflected by the mixture
of all subtypes. In addition, the majority of type II CRISPRs are also located in this region. Figure taken
from [P3].

From our data, we observed that the linkage between Cas subtype and repeat evolution

is not so clear: subtypes I-C, I-E, and I-F correlate well with repeat (and thus Cas1)

conservation, whereas, the remaining type I and both type II Cas subtypes are only weakly

linked (Figure 3.4). The bacterial superclasses B, C and D contain well-defined structure

motifs and sequence families (Figure 3.1 and Tables D.2–D.19), which are associated with

subtypes I-E and I-F (superclasses B and C) and I-C (half of superclass D). Superclasses A

and F contain both bacterial and archaeal CRISPRs—most of which are unstructured—and

although they also fit well to the Cas1 clusters, the annotated Cas subtypes are a diverse

mixture of the remaining type I subtypes (I-A, I-B, and I-D) and both type III subtypes

(Figure 3.4). In accordance with the diversity seen in the Cas1 analysis, superclass E also

contains all subtypes.

The following may explain why there is a co-occurrence of type I and type III subtypes.

First, these subtypes are composed of interchangeable modules as was previously suggested

for archaeal systems [98, 286]. In such cases one would expect Cas proteins from different

subtypes to be able to process similar repeat sequences. Two examples in the literature

support this theory: (1) a Cas6 (Cas6b) protein that can process both type I-B systems in

Methanococcus maripaludis C5 and Clostridium thermocellum ATCC 27405 [260]; and (2)

two CRISPRs in Methanosarcina marzei Gö1 with near-identical repeats are associated with

different subtypes I-B and III-B [P7]. Also, many sequence families and structure motifs

co-occur with multiple, or a mixture of, subtypes (see Tables D.2–D.19). The co-occurrence of
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subtypes is wide-spread in archaea and bacteria. In general, an exchange of protein modules

would require compatible repeat sequences and structures. The only similarity observed in

CRISPRs associated with mixed subtypes is the conserved 5’ tag—AUUGAAAC/G, or a

slight variation thereof. In comparison, repeats associated with the bacterial subtypes I-E

and I-F do not contain this tag. Second, additional or unknown Cas proteins are required to

achieve a sub-classification of Cas subtypes that is more compatible with repeat conservation.

Most likely, the truth lies in a combination of both explanations. Finally, we observed that

subtypes I-A, I-B, I-D, III-A, and III-B are more enriched in extremophiles, e.g., thermophiles

(Figure D.6). Perhaps organisms living in extreme conditions benefit from a mechanism that

involves a rapid transfer and a reconfiguration of CRISPR-Cas systems.

3.4.5 CRISPRs in Euryarchaeota are closer to bacterial systems than ones

in Crenarchaeota

97 % of the archaeal CRISPRs originate from two phyla: 380 from Euryarchaeota and 245

from Crenarchaeota. In the CRISPRmap tree (Figure 3.1 and Figure D.4), we observe a clear

separation of these two CRISPR groups. 60 % of CRISPRs from Euryarchaeota and 96 %

from Crenarchaeota cluster into superclasses A and F, respectively. In superclass A, the

euryarchaeal and bacterial CRISPRs are associated with Cas1 proteins that cluster into

the same Cas1-cluster-1, i.e., these Cas1 sequences are evolutionarily close (Figure 3.4). In

contrast, CRISPRs from Crenarchaeota are located almost exclusively in a sub-region of

superclass F and are associated with the separate Cas1-cluster-4 (Figure D.4).

3.4.6 Evidence of horizontal transfer

As previously mentioned, the majority of archaeal and bacterial CRISPRs are distinctly

separated in the CRISPRmap tree (Figure 3.1). This is consistent with a rare exchange of

genetic material between archaeal and bacterial systems [98, 287]. Nevertheless, we observed

a few instances where archaeal repeats are located in a bacterial-dominated region of the tree

and vice versa (see Appendix D.1.1 for more details). With one exception, it is assumed that

all cases involved a transfer of the CRISPR-Cas system from bacteria to archaea; archaea

have also been shown to uptake bacterial and eukaryotic DNA as spacers [31]. Figure D.9

gives examples of archaea that contain full bacterial CRISPR-Cas systems where a strong

conservation of the structure motif is supported by multiple compensatory base pair mutations.

In addition, the archaeal CRISPRs are associated with the complete set of proteins from the

bacterial subtypes I-C and I-E.

The transfer of genetic material between prokaryotes often occurs via plasmids, however, in

Figure D.9 all horizontally transferred systems in the archaea are located on chromosomes

and not on plasmids. In fact, overall only 7 % of over 1,300 plasmids analysed contained

a CRISPR array. Therefore, it is unlikely that the dominant mechanism of transferring

CRISPR-Cas systems between organisms is via plasmids.
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3.5 The CRISPRmap web server

The CRISPRmap web server enables easy access to our data and allows scientists to compare

the conservation of individual repeats. Repeats are entered in FASTA format and the web

server automatically assigns them to our classification system; previously unknown repeats

are assigned to existing families and/or motifs, if possible. Non-conserved input sequences

remain unassigned, but are still located according to their relative similarity in the tree.

Furthermore, if the correct orientation of the input repeats is unknown, the user can request

to predict the orientations to ensure that they are consistent with our data.

The user of our CRISPRmap web server can enter up to 300 CRISPR sequences in FASTA

format and indicate whether the correct orientation is unknown and requires prediction. We

use a multi-step procedure that has been optimised for speed to assign the given repeats to

our structure motifs and sequence families. Further details are given in Appendix D.1.1.

All data and the web server are available under http://rna.informatik.uni-freiburg.

de/CRISPRmap.

3.5.1 Comparison of published CRISPR systems

We employed the CRISPRmap web server to verify our methods by comparing results with

CRISPR-Cas systems where the crRNA maturation mechanism has been characterised by

wet-lab experiments. Published information was consistent with our identified structure

motifs, subtype annotations, and our predicted orientations (Table 3.2). The previously

mentioned co-occurrence of subtypes I-A, I-B, I-D, and type III is verified in part by the

published systems in superclass E (see Table 3.2, IDs i-n). Further comparisons are given in

Section 4.1.

3.6 Conclusion

We provide a comprehensive analysis of CRISPR structure and sequence conservation based

on the largest dataset of repeat sequences available. We show extensively that our methods

are well-suited to identifying many characteristics of CRISPR-Cas systems: e.g., cleavage

sites, patterns of RNA structure motifs and sequence conservation, the link between evolution

of CRISPRs and associated Cas subtypes, and the horizontal transfer of such systems. On

the one hand, specific conservation patterns can be combined with published data to make

assumptions about CRISPRs belonging to the same sequence families or structure motifs. On

the other hand, the CRISPRmap overview can be used to find potentially novel CRISPR-Cas

systems that are highly divergent from the rest. User-based queries on our data enable more

informed choices on future hypotheses in CRISPR-Cas research.
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CHAPTER 4

Applications and limitations of CRISPRmap

This chapter highlights possible applications of the CRISPRmap web server and data from

Chapter 3. Both applications and limitations of previous work are discussed using published

examples.

4.1 Application of CRISPRmap to single systems

About 30 % of bacteria and 70 % of archaea contain at least one CRISPR-Cas system.

When capturing similarities and exploring the diversity of these systems, it is impossible

to characterise every single system. Therefore, representatives of conserved groups are

selected for further analysis. Conserved groups can either be determined by associated Cas

proteins, given by published Cas-subtype annotations [123, 201, 202, 324] or by CRISPR

conservation. In the previous chapter, we determined that Cas subtypes are only weakly

linked to CRISPR (repeat) conservation (Section 3.4.4). Therefore, additional representatives

for further characterisation may also be chosen according to CRISPR sequence and structure

conservation.

In collaboration with the lab of Prof. Dr. Anita Marchfelder, we studied the CRISPR-Cas

systems encoded in Haloferax volcanii H119. We were particularly interested in the processing

mechanism, which involves CRISPR expression and crRNA maturation (Section 2.2.2).

During crRNA maturation, CRISPR RNA is generally processed by a Cas endoribonuclease

of the Cas6 family [32,36,103,126,129,130,155,248,260,274,326] and [P7,P10]. Assuming

that both Cas6 and CRISPR coevolve, one can simply apply the CRISPRmap web server

to compare the H. volcanii Cas6 with those previously published. Using this approach,

we observed that CRISPRs encoded in Haloferax species are on a distinct branch of the

CRISPRmap tree that is clearly distant from all previously studied systems (Figure D.12).
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Using this as evidence that the Cas6 proteins in H. volcanii may give additional insights into

Cas6-based mechanisms, members of Prof. Dr. A. Marchfelder’s lab performed experiments

to characterise Cas6 function in H. volcanii [P2].

4.2 Novel CRISPRs in metagenomic data indicate a vast spec-

trum of diversity

A valuable source of new CRISPR-Cas systems are metagenomic studies of multiple, often

novel, prokaryotes. Recently, 150 CRISPR arrays were identified in the bacterial metagenome

from different sites in the human body [256]. We applied CRISPRmap to quickly determine

the conservation of these CRISPRs: only 38 % and 29 % were assigned to our structure

motifs or sequence families, respectively. Notably, 50 % of the metagenomic CRISPRs were

assigned to the diverse superclass E where most remained unassigned to either a structure

motif or sequence family. However, in Figure D.10, many of these repeats cluster together to

potentially form new classes of motifs and families. Two CRISPRs fall into the euryarchaeal

region in superclass A, despite the fact that archaea are rarely associated with human

microbiomes [256].

A similar study was performed in [107] where the authors used CRISPRmap to classify 233

CRISPRs identified in the human gut metagenome. Similar to the previous study, these

CRISPRs belonged predominantly to the superclasses with little sequence conservation. These

results highlight the fact that even with the large-scale analysis performed in this work, we

still do not know the full extent of CRISPR-Cas diversity. Therefore, the dynamic nature of

our web server—in the fact that it allows the classification of newly sequenced CRISPRs to

be assigned to existing sequence families and structure motifs—is particularly useful.

4.3 Limitations of the CRISPRmap web server

The CRISPRmap version 0.1, as published in [P3], is limited mainly by the following two

factors: despite the attempts at orientation prediction, many CRISPRs are still in the

incorrect orientation [22] and structure motifs were limited to constitute at least three base

pairs. The first factor leads to incorrect clustering and the second to missing data in the tree.

Therefore, individual analyses of conservation can still be beneficial.

Although CRISPRmap could be automatically updated to include newly sequenced CRISPR

data, this data could considerably change results. Therefore, to limit confusion, the CRISPRmap

web server requires regular updates to capture the full diversity of sequenced CRISPR-Cas

systems, and also must adapt to potential changes in Cas protein and subtype annotations.
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4.3.1 CRISPRmap cannot detect hairpin motifs with only three base pairs

In [P5], we characterised the CRISPR-Cas systems in the thermophilic archaeon Haloferax

volcanii H119. According to CRISPRmap and previous work from Kunin and colleagues [180],

the three CRISPRs encoded in H. volcanii are unstructured as no conserved structure was

identified. We analysed the folding potential of each single repeat in all three of the CRISPR

RNAs as a function of the surrounding spacer sequences. According to these analyses, all

H. volcanii CRISPRs called C (located on the chromosome), P1 and P2 (both located on a

plasmid) share a minimal three base-pair stem loop [P5]. A comparative approach, using

CRISPR repeat sequences from other haloarchaeal genomes, corrobated the significance of

the minimal hairpin motif as it was conserved in all analysed haloarchaea (Figure 4.1). This

conserved structural motif is generally surrounded by additional base pairs within the repeat

and contains three consecutive C → G base pairs for stability.
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Halophilic.archaeon.DL1 GUUUCAGACGUACCCUCGUGGGGUUGAAGU 30
Halophilic.archaeon.DL31 GUUUCAGACGUACCCUUGUGGGGUUGAAGC 30
Har.hispanica.ATCC.33960 GUUUCAGACGAACCCUCGUGGGGUUGAAGC 30
Har.sinaiiensis.ATCC.33800 GUUUCAGACGAACCCUUGUGGGAUUGAAGC 30
Hfx.denitrificans.S1 GUUUCAGACGAACCCUUGUGGGGUUGAAGC 30
Hfx.sulfurifonitis.M6 GUUUCAGACGAACCCUUGUGGGAUUGAAGC 30
Hfx.volcanii.DS2.C GUUUCAGACGAACCCUUGUGGGGUUGAAGC 30
Hfx.volcanii.DS2.P1 GUUUCAGACGAACCCUUGUGGGAUUGAAGC 30
Hfx.volcanii.DS2.P2 GUUUCAGACGAACCCUUGUGGGUUUGAAGC 30
Hmc.katesii.DSM.19301 GUUUCAGACGGACCCUUGUGGGAUUGAAGC 30
Hmc.mukohataei.DSM.12286 GUUUCAGACGGACCCUUGUGGGAUUGAAGC 30
Hrd.tiamatea.SARL4B GUUUCAGACGGACCCUCGUGGGGUUGAAGC 30
Hrd.utahensis.DSM.12940 GUUUCAGACGGACCCUCGUGGGGUUGAAGC 30
Mmn.pharaonis.DSM.2160 GUUUCAGACGAACCCUUGUGGGGUUGAAGC 30
Nbt.gregoryi.SP2 GUUUCAGACGAACCCUCGUGGGGUUGAAGC 30
Har.californiae.BJGN-2 GUUACAGACGGACCCUCGUGGGGUUGAAGC 30
Har.marismortui.ATCC.43049 GUUACAGACGGACCCUCGUGGGGUUGAAGC 30
Hgm.borinquense.DSM.11551 GUUACAGACGAACCCUUGUGGGGUUGAAGC 30
Natrinema.sp.J7-2 GUUACAGACGGACCCUUGUGGGGUCGAAGC 30

.........10........20........3

........(.(((((.....))))).)....
Hfx.mediterranei.ATCC.33500 GUUACAGACGAACCCUAGUUGGGUU-GAAGC 30
Hfx.mucosum.PA12 GUUACAGACGAACCCUAGUUGGGUU-GAAGC 30
Hqr.walsbyi.C23 GUUUCAGAUGAACCCUUGUUGGGUU-GAAGU 30
Nab.magadii.ATCC.43099 GUUUCAGACGAACCUUUGUAGGGUU-GAAGG 30
Hrr.lacusprofundi.ATCC.49239 CUUUCAGCCGAACCCCUCGUGGGUUUGAAGC 31
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Figure 4.1. A small minimal hairpin structure motif is conserved across 22 haloarchaeal species.
(A) Part of the predicted structure for the repeat from locus C is conserved throughout the haloarchaeal
species (highlighted in yellow). The red line corresponds to the determined cleavage site just upstream of
the 5’ crRNA tag. The G nucleotide that is cyan in colour corresponds to the 23rd nucleotide, which is an A
at locus P1 and a U at locus P2. (B and C) Multiple sequence alignments generated by LocARNA; the red
columns correspond to conserved base pairs and the mustard yellow columns correspond to the presence of a
compensatory base pair that conserves the consensus structure. The conserved structural motif from (A) is
surrounded by the black box. (B) The larger group of haloarchaea with the conserved motif and a 4-nucleotide
hairpin loop. (C) The smaller group with a 5-nucleotide hairpin loop. The conserved CG stem-loop motif is
surrounded by stabilising base pairs in both groups. Figure taken from [P5].

The three-base-pair hairpin motif could not be confirmed in vitro experiments, however due
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to growth in high salt conditions, it may still be present in vivo [P5]. Furthermore, Nam and

colleagues determined that a minimum hairpin of three base pairs is sufficient for recognition

and cleavage by the Cas5d protein in Bacillus halodurans [227]. Changing the minimum

number of base pairs required for a structure motif in CRISPRmap from four to three did not

generate acceptable results. We observed a large influx in the number of structure motifs

identified with low sequence identities. Therefore, we assumed that motifs with only three

base pairs frequently occur by chance. In the case of the Haloferax CRISPRs, however,

sequence conservation is high (see Figure 4.1) and this motif might be required for recognition

by Cas6.

4.3.2 Improved prediction of CRISPR orientation

CRISPRs are transcribed and processed into mature crRNAs generally from only one strand.

The transcribed strand determines the orientation of the CRISPR sequence, which is important

to know for evolutionary analyses. From our previous work and from the literature, we

observed two factors that could be indicative of the correct CRISPR orientation. First, the 5’

and 3’ ends of CRISPRs were generally more conserved than the middle section. For example,

the 8-nt tag AUUGAAAG/C that remains at the 5’ end of the mature crRNA was conserved

in 40 % of all CRISPRmap sequence families (Section 3.4.2). Second, the CRISPR locus contains

more mutations towards the 3’ end of the repeat-spacer array, since these are usually the oldest;

adaptation generally occurs at the 5’ end, adjacent to the leader [8]. Third, archaeal CRISPRs

are rich in As in the correct orientation and are considerably depleted in poly(T) signals

(more than three T s in a row) in our REPEATS from Chapter 3; poly(T) regions are signals of

transcription termination in archaea [P9]. Therefore, we extended the initial graph model

for predicting orientations from CRISPRmap version 1.0 to include mutational and positional

information as well as just the sequence. Prediction accuracies increased by over 10 % AUROC.

Correctly predicted CRISPR orientations lead to a better clustering using the CRISPRmap

pipeline and the web server was thus updated to version 2.0 [P1]. The updated CRISPRmap web

server (version 2.0) is available at http://rna.informatik.uni-freiburg.de/CRISPRmap—

and so is the standalone orientation software (CRISPRstrand). Details of the orientation-

prediction method are described in [P1]1.

4.4 Conclusion

CRISPRmap provides a comprehensive overview of CRISPRs from published systems and it

has already been successfully applied here [P2] and in other published work [256]. Despite

some limitations, the improved prediction of CRISPR orientation has enhanced the quality

of the CRISPRmap data and it is currently the only application available that performs an

automated classification of CRISPR conservation. Regular updates of the CRISPRmap web

server are planned.

1 The majority the orientation-prediction work was performed by Omer S. Alkhnbashi and was therefore kept
to a brief summary here. I contributed to the development of the underlying methods.
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Part III: Analysis of non-coding RNA expression

Self-expression must pass into communication for its fulfilment—Pearl S. Buck

Before RNA can perform its function, it needs to be expressed from DNA. Two factors are

essential to the precise regulatory function of an ncRNA: (1) its mature form and (2) its

abundancy in the cell. Transcriptome data, e.g., as derived from RNA-seq experiments, can

provide detailed insight into ncRNA abundances and their processing.

In Chapter 5, we performed in-depth analyses of RNA-seq data to determine crRNA expression

in organisms that encode CRISPR-Cas systems and to assess how they were processed from

the transcribed CRISPR RNA. After expression, crRNAs are stabilised to prevent their

immediate degradation. Therefore, in this part, we investigated attributes that might influence

crRNA stability. The majority of this chapter was presented in [P10].
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CHAPTER 5

Expression and processing of mature crRNAs

Active CRISPR-Cas–based defence against invaders requires a stable population of crRNAs to

target and degrade foreign genetic material (Section 2.2.2 gives an introduction to CRISPR-Cas

immune systems). A CRISPR array is first transcribed and then processed into single-spacer

units, crRNAs, by endoribonucleases (usually by members of the CRISPR-associated Cas6

protein family) that cleave the RNA at each repeat instance in the array [2,307,337]. Among

other factors, expression of mature crRNAs depend on their efficient and accurate processing

and their subsequent stabilities in the cell. In Haloferax volcanii, we observed that not all

crRNAs, derived from one expressed CRISPR array, lead to a successful defence reaction [P5].

The assumption is that unsuccessful crRNAs are either not correctly processed or not stably

integrated into their effector complex. Once in the effector complex, crRNAs are protected

from degradation and enable the destruction of foreign material via base pairing to their

complementary protospacers [P2]. Hence, active CRISPR-Cas systems in any organism are

first characterised by establishing accurate crRNA expression.

In the following analyses, we inspected and processed RNA-seq data to investigate crRNA

maturation and stability in a model cyanobacterium Synechocystis sp. PCC6803. Results

were published in [P10]. Analagous investigations were performed for further organisms and

published in [P5,P8].

The chapter starts with an overview of the CRISPR systems encoded in Synechocystis. A

brief summary of associated Cas proteins gives insight into putative endoribonucleases that

are involved in the crRNA maturation process. The aim is to complement the wet-lab

investigation of associated Cas proteins with a computational, in-depth analysis of RNA-seq

data. We capture processing intermediate and mature crRNA transcripts and accentuate

similarities and differences of each CRISPR locus. To this end, after establishing the CRISPR-

Cas systems, the methods applied to the RNA-seq data analysis and the results obtained

from these data are presented. All wet-lab experiments were performed by members of

Prof. Dr. W. R. Hess’s group.
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5.1 CRISPR-Cas systems encoded in Synechocystis

The plasmid pSYSA of Synechocystis sp. 6803 is a large, extrachromosomal element that

is almost entirely devoted to three different CRISPR-Cas systems, CRISPR1–3, located on

the forward strand; no systems are encoded in the chromosome, which is rare according to

observations from our CRISPRmap data (see Section 3.1). Each repeat-spacer array is adjacent

to a distinct set of associated cas genes (see Figure D.13). Among CRISPR1 genes are

homologs to cas3 (slr7010 ) and csc3 /cas10d (slr7011 ), which serve as markers of CRISPR

subtype I-D [202]. In contrast, CRISPR2–3 resemble type III systems, indicated by the

presence of cmr2/cas10 homologs. Other subtype-specific markers such as csm2 or cmr5,

however, are missing [202].

According to the previously published plasmid sequence [158]1, CRISPR1–3 consist of 49, 56

and 38 repeat-spacer units (each with an additional final repeat), respectively. The spacer

sequences differ in length from 31–47 nt, and with the exception of a few identical spacers

within CRISPR1 and CRISPR2, they are all unique. Identical single repeat-spacer units

and pairs of two adjacent identical repeat-spacer units appear in a consecutive manner in

CRISPR1 and CRISPR2.

5.1.1 Experimental analysis to identify the processing endoribonucleases

In type I and III CRISPR-Cas systems, the large and diverse protein family, the Cas6

endoribonucleases, have been shown to cleave CRISPR arrays at repeat instances [2,307,337].

In general, a Cas6 endoribonuclease binds specifically to its associated repeat and cleaves

it such that an 8-nt repeat handle remains on the mature crRNA; for many CRISPRs, the

binding motif is a small hairpin [32,103,129,131,227,274,298], see also Chapter 3.

Three potential cas6 genes are located on pSYSA: slr7014 (cas6-1 ) at the CRISPR1 locus; and

both slr7068 (cas6-2a) and sll7075 (cas6-2b) at the CRISPR2 locus (Figure D.13). No cas6

homolog is associated with CRISPR3. The pairwise similarity between the encoded protein

sequences and their similarity to the functionally characterised Cas6 homolog of Pyrococcus

furiosus [326] is very low, ranging between 6–17 % identical amino acid residues. Knock-out

mutations of the three cas6 genes and subsequent Northern analyses showed that the knock-

out of cas6-1 and cas6-2a affect the accumulation of crRNA transcripts from CRISPR1 and

CRISPR2, respectively. This is in agreement with both their locations immediately 5’ of the

respective CRISPRs [P10]. Whereas the ∆cas6-1 knock-out mutant showed a complete loss

of CRISPR1 RNA accumulation, the ∆cas6-1 mutant accumulated CRISPR2 RNA to > 200

nt, but the smaller, mature crRNA transcripts were not observed [P10]; both mutants did not

affect RNA accumulations at the other CRISPR loci in vivo. Knocking out the expression of

cas6-2b did not affect crRNA accumulation of any of the three loci.

In [P8], it was confirmed experimentally that Cas6-1 binds and cleaves both CRISPR1 and

CRISPR2 at the positions indicated in vitro. This implies that the Cas6-1 protein is specific

1 The plasmid pSYSA sequence is available in the RefSeq databank with the accession number NC 005230.
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to the CRISPR1 locus in vivo, but is capable of binding and cleaving other CRISPR loci

in vitro. Although CRISPR3 is not associated with a Cas6 protein and is not affected by

the other encoded Cas6 proteins, we observed that a knock-out mutation of the cmr2 gene

caused a complete loss of CRISPR3 RNA transcripts. Although it has been predicted that

the Cmr2 protein contains a nuclease domain, we could not verify whether it functions as an

endoribonuclease or merely contributes to the stability of processed crRNAs. In summary,

these experimental results point to three distinct processing mechanisms for each of the three

systems encoded in Synechocystis.

5.1.2 CRISPR structure motifs

In Part IV, Chapter 7, we developed a method to predict the most stable structure motif for

a CRISPR repeat sequence by considering all repeat instances across the CRISPR array; thus

we effectively incorporate the influence of the surrounding context sequence into the prediction

of the repeat structure. We applied this approach to identify the potential binding motifs of

the Cas6 proteins in Synechocystis and present the best structure results in Figure 5.1. The

repeats of all three CRISPRs were able to form characteristic hairpin structures. The hairpin

motifs for CRISPR1–2 are very similar with identical 8-nt repeat tags. In accordance with

the in vitro results where it was observed that Cas6-1 was able to cleave both repeats, the

similar regions in CRISPR1–2 likely represent the binding site for the endoribonuclease. The

hairpin motif for CRISPR3 is distinctly different to the other two, with its larger loop size

and location closer to the 5’ end of the repeat.
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Figure 5.1. CRISPR hairpin structures in Synechocistis. Predicted CRISPR repeat structures using
our CRISPR-specific prediction approach that includes influencing context sequences (Part IV,Section 7.3).
The black wedges indicate cleavage sites derived from the RNA-seq data and the 5’ repeat sequence tag of the
mature crRNAs is highlighted in bold. The 5’ tags for CRISPR1 and CRISPR2 had the frequently published
length of 8 nt [32,99,103,129–131,227,248,260,274,326]. CRISPR3 was cleaved twice, first at the end of the
spacer and second in the middle of the repeat leaving a novel-length, 13-nt tag. Figure adapted from [P10].
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5.2 RNA-seq data preparation

CRISPR expression and processing in Synechocystis sp. PCC6803 were analysed using two

RNA-seq datasets (datasets A and B). In fact, the laboratory-specific substrain “PCC-M”

was used in all wet-lab experiments. The cDNA libraries for both datasets were prepared by

vertis Biotechnologie, Germany (http://www.vertisbiotech.com/). The exact experimental

conditions for both RNA-seq datasets A and B are described in [P10] and [218], respectively.

For generating cDNA libraries for sequencing, the RNA transcripts in dataset A were ligated

with a poly(A) tail. To understand subsequent terminology, a “read” is a single sequence,

which was produced during the sequencing process. Subsequent to sequencing, dataset A

was nearly 200 times larger than dataset B with 33,357,164 reads in contrast to only 169,360

reads in dataset B. In addition, most reads in dataset A were of length 100 nt, whereas

dataset B contained many short reads with many only 18 nt (data not shown), which look

like an accumulation of degradation products. Note that no size selection of the purified

RNA transcripts was performed prior to sequencing.

5.2.1 Mapping the RNA-seq data

The mapping of dataset B was performed by Mitschke and colleagues and is described in [218].

Here, we concentrate on mapping dataset A, which was sequenced by an Illumina HiSeq 2000

machine. Using the FASTQC analysis tool, we observed an increasingly poor sequencing quality

towards read ends in this dataset, possibly due to the poly(A) tails and subsequent adapter

sequences (see Figure D.14). Therefore, in a pre-processing step, the reads were trimmed

with respect to their sequencing quality using the fastq quality trimmer program from the

FASTX-Toolkit version 0.0.13 with the options -t 13 -Q 33. The -Q option is necessary,

because the quality scores are used with an ASCII offset of 33 according to the Sanger

format. In this way, nucleotides were trimmed if they had a quality below 13, which roughly

corresponds to an estimated probability of p≥0.5 that a base call is incorrect [50]. Subsequent

to trimming, the dataset was mapped with Segemehl [141] version 0.1.3 with the options

-polyA -prime3 ‘AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT’ for

clipping the poly(A) tail and the 3’ Illumina sequencing adapter. Following this procedure,

we could successfully map approximately 98 % of the original reads to the genome. The over

30 million reads indicated good coverage of the transcriptome.

To explore the RNA-seq results and visualise read profiles, we used the Integrative Genomics

Viewer (IGV) version 2.0.3 [265].

5.3 CRISPR RNA is highly abundant

In previous work, Mitschke and colleagues mapped all transcription start sites (TSS) in the

Synechocystis genome [218]. According to their data, the precursor RNAs for CRISPR1–3

originate from one TSS each. The locations of the TSS result in transcribed 5’ leaders of
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terminal processing
despite lack of 
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Figure 5.2. High expression levels of CRISPR-derived RNA on the pSYSA plasmid. (A) depicts
the read coverage in log-scale (grey track) across the entire plasmid and the locations of the CRISPR1–3 are
annotated as blue bars. All three CRISPRs are the most abundantly expressed loci on the plasmid. (B–D)
show the expression profiles for CRISPR1–3, respectively. The reads have been filtered to reduce noise and the
grey tracks in (B–D) depict their coverage profiles in log-scale. The numbers in the square brackets represent
the absolute read number range; CRISPR3 is clearly the most abundantly expressed in comparison with
the other two. The repeats are marked below by blue squares with their occurrence number. Due to the
consecutive duplications of repeat-spacer units in CRISPR1 and CRISPR2, a unique mapping was impossible
for these spacers so that their coverage appears identical. Moreover, CRISPR2 and CRISPR3 show a terminal
processing despite the fact that there is no downstream repeat. Figure taken from [P10].

lengths 213, 124, and 1 nt, respectively [P10]. It is unknown whether the fact that CRISPR3

is basically leaderless (with only 1 nt) could affect new spacer acquisition; however, the array

is clearly processed (Figure 5.2).

We observed an extremely high level of CRISPR-derived RNA transcripts, especially in

comparison with other loci on the pSYSA plasmid (Figure 5.2.A). CRISPR3 RNA was most

abundant with more than two million reads; almost 7-fold and 19-fold more than CRISPR2

and CRISPR1, respectively. Only very few reads (a total of 110, 60, and 1,430) mapped to

the reverse strand; the majority mapped to the forward strand of the CRISPR1–3 arrays.

This suggests only a very minor effect of technical bias introduced by the reverse transcription

and sequence analysis.

To gain a more accurate picture of the CRISPR array expression, we filtered the original

mapped RNA-seq reads (Figure 5.2.A) to reduce noise. The bulk of noise arose from short

sequence reads that cover only the repeat regions and were therefore incorrectly mapped to

all repeat instances, obscuring the coverage profiles. Thus, we selected reads that mapped

with a read quality of 1, had an edit distance ≤2, were located on the forward strand, and

had a unique match. Due to the duplications in CRISPR1–2, we also allowed reads for these

loci that mapped to two locations. Note that the performed filtering delivered a clarified
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picture, but did not considerably change the original coverage profiles. In Figure 5.2.B–D, we

present close-up profiles of the filtered read coverage for each of the CRISPR arrays. The

CRISPR loci had a greater read coverage at the 5’ end in comparison with the 3’ end, which

was also observed by Hale and colleagues [125]. Despite the generally high abundance of reads

for all three CRISPRs, we noticed a lack of coverage corresponding to the repeat-spacer units

15–47 in CRISPR1 (Figure 5.2.B). This lack is due to a deletion of 33 repeat-spacer units

in the recently sequenced substrain “PCC-M” [218] (used here) in contrast to the original

plasmid sequence [158]. Consequently, only 16 crRNAs were expressed from the CRISPR1

locus in the “PCC-M” substrain.

5.4 Inferring processing characteristics from RNA-seq data

In agreement with their characterisation as distinct types of CRISPR-Cas systems, processing

intermediates and mature crRNAs of different characteristic lengths were observed (Figures 5.3

and 5.4). We established cleavage sites and the boundaries of accumulating transcripts

by counting the total number of 5’ and 3’ read starting and ending positions, relative

to the closest direct repeat (summarised across all repeats across one array), using the

RNA-seq dataset A (Figure 5.3). Note that due to the ligated poly(A) tails in the RNA-seq

protocol, 3’ read ends were not well defined for sequences ending in A’s, leading to staggered

peaks. The repeat cleavage sites were most obvious with clear peaks of 5’ read starts giving

rise to the well-published 5’ crRNA tags [32, 103, 129–131, 248, 260, 274, 326]. The 5’ tags

of CRISPR1 and CRISPR2 were identical (ACUGAAAC) and their length of 8 nt is in

agreement with previous results. The 5’ tag of CRISPR3 is unusual by having a length of

13 nt. Its sequence AUUGAUUGGAAAC, however, exhibits similarities to tags in many

other published CRISPR repeats. In Part II, Chapter 3, we established that the 8 nt

tag AUUGAAAC/G is conserved in 40 % of the 40 sequence families identified and other

families contained minor deviations (Section 3.4.2). The similarities between this 13 nt tag

in CRISPR3 and the aforementioned conserved 8 nt motif are clear: we merely observe a

duplication of the prefix AUUG and of the G before finishing with the extremely common

GAAAC suffix.

Concerning the number of observed cleavage events, CRISPR1 and CRISPR2 displayed only

single cleavage sites within their repeats, whereas CRISPR3 was processed with a double

cleavage activity. Interestingly, the first cleavage occurred at the 5’ end of the repeats, mostly

within the spacers. This result is supported by two observations (Figure 5.3): (1) 3’ read

ends in the spacers were immediately followed by 5’ read starts, defining a clear cleavage site,

which was not the case for the cleavage site at the 13 nt tag and (2) there is no accumulating

RNA species that spans across the cleavage site in the spacer, whereas the 72 nt intermediate

spans across the 13 nt cleavage site.

Figure 5.4 shows the read lengths that were accumulated in the RNA-seq data. To identify

whether these lengths corresponded to intermediate and mature crRNAs, we calculated

(from the filtered sets Figure 5.2.B–D) the percentage of reads that mapped to the locations
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Figure 5.3. Frequency of read termini shows clear cleavage sites and distinct processing features.
The number of reads (y-axis) starting (red) or ending (black) at a position relative to the closest repeat (x-axis)
across an entire CRISPR locus illustrates the CRISPR maturation products (for RNA-seq dataset A). The
repeat sequence is indicated in the pink+red, the 5’ crRNA tag in the red, and the relative position in the
spacer in the yellow rectangles, respectively (x-axis). One repeat-spacer unit is framed by the thick cyan square
(due to different spacer lengths, the mode is illustrated). The green arrows correspond to the most abundant
reads, i.e., the processed mature crRNAs or intermediate products. Albeit spacers of different lengths, we
clearly see the ruler mechanism as the mature crRNA is trimmed to fixed lengths. We identified the location
of the accumulating reads by giving the percentage of reads in the respective read-length category that map
to the illustrated location (square brackets). For CRISPR3, the first cleavage site is in the spacer (not in the
repeat), supported by two observations (1) reads only end at the cleavage site in the spacer, not in the repeat,
(2) there is no accumulating RNA species that spans across the cleavage site in the spacer, whereas the 72 nt
intermediate spans across the 13 nt cleavage site. CRISPR1–2 display only single cleavage sites and crRNAs
are subsequently trimmed to their final length. CRISPR1 and CRISPR3 both have a second, less abundant
mature crRNA transcript, which is exactly 6 nt shorter, whereas CRISPR2 only has one accumulating product.
Note: Fluctuations of about 1–3 nt at read endings are due to the ligation of poly(A) tails in the RNA-seq

protocol; real reads ending in As cannot be determined correctly. Figure taken from [P10].
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Figure 5.4. Accumulation of CRISPR RNA indicate lengths of mature crRNAs and interme-
diates. Read frequencies (y-axis) for all CRISPR loci, computed from RNA-seq dataset A. Read lengths are
given on the x-axis, whereby it is important to note that the poly(A) tails of the RNA-seq protocol obscure
read ends such that lengths of reads ending in A’s cannot be determined exactly. The transcripts assumed to
correspond to mature crRNAs are marked by stars. Figure taken from [P10].

indicated in Figure 5.3 out of all reads with the respective characteristic lengths (percentage

in square brackets and 1–2 nt position-specific variation was allowed). The high percentages

gave convincing evidence that the indicated locations are correct. The most probable mature

crRNAs are 45 and 39 nt for CRISPR1, 37 nt for CRISPR2, and 48 and 42 nt for CRISPR3.

Notice that for CRISPR1 and CRISPR3, two accumulating species of mature crRNAs existed,

which were both 6 nt different in size, and the longer transcript was more abundant (both

observations were previously seen in Pyrococcus furiosus [125] and Staphylococcus epidermidis

RP62a [129]). Despite the common difference of 6 nt in mature crRNA lengths for CRISPR1

and CRISPR3, other distinct features existed: In all Northern hybridisations, double bands

were observed for CRISPR3 [P10], which indicated two distinct lengths (6 nt apart) for each

accumulating (intermediate) transcript species; whereas for CRISPR1 this was not observed.

Instead CRISPR1 transcripts accumulated to multiple lengths, which were all shorter than

one repeat-spacer unit (71 nt). This alludes to a final stepwise trimming of one repeat-spacer

unit subsequent to the cleavage at the 8-nt tag in both adjacent repeats.

Albeit varying lengths of the spacers, crRNAs for all loci accumulated to fixed characteristic

lengths (Figure 5.3), which further supports the ruler mechanism published for the Csm and

Cmr systems [125,129]. Moreover, although the final repeat was cleaved at the usual position

for all loci, only CRISPR2–3 displayed a notable accumulation of a 3’ terminal transcript

78



Chapter 5. Expression and processing of mature crRNAs

downstream from the last repeat (Figure 5.2.C–D). These terminal transcripts were of equal

length with their respective mature crRNAs, albeit no second 3’ repeat sequence; not even a

partial, or a mutated repeat sequence could be detected. These terminal, potential crRNAs

indicate that the 5’ repeat is the anchor of the ruler mechanism and that this measured

crRNA accumulation is independent of a subsequent cleavage in the downstream repeat. This

was not observed for CRISPR1, which further supports the previously mentioned, step-wise

3’ trimming.

In summary, while the described processing patterns shared previously published common

features, detailed evidence suggests distinctly different pathways. Most importantly, CRISPR1

displays a 6-nt step-wise trimming of the 3’ end of all accumulating RNA species, whereas,

for CRISPR1–2, intermediate RNA species display a final cleavage, measured from the 8-nt

tag at the 5’ of the intermediate RNA, to produce the mature crRNA.

5.5 Stability of crRNAs may be dependent on spacer struc-

ture

We observed vast differences in the processed crRNA abundances across the CRISPR arrays

(note that the log-scale reduces the visible differences in Figure 5.2). Given that each CRISPR

array has only one TSS and is thus transcribed as one transcript, no obvious reason for

major differences in accumulation exists. This variability could be partially explained by

the stability of the crRNA-Cas protein complexes: highly structured crRNA could obstruct

their formation, leading to crRNA degradation. To test this idea, we compared the ratio of

degraded products to full-length crRNA with different structural properties of the CRISPR

array.

5.5.1 Calculation of crRNA degradation

We estimated the degradation rate of crRNAs from the RNA-seq data by the ratio of the

number of reads that were substantially shorter than a full-length mature crRNA to the

number of reads that represent a full-length crRNA at a single repeat-spacer unit location in

the CRISPR array. Let is be the starting and es be the ending position (in the genome) of the

current spacer s, and ir be the starting and er be the ending position of the current read r.

We then considered all reads starting with ir > is−25 and er < es +10 to represent processed

full-length crRNA sequences, called read set C. Of these reads C, we selected the possibly

degraded reads (set D) with ir > is − 8 and er < es − 10 (we used er < es − 15 for dataset A,

because very many reads seemed stable between es − 10 and es − 14). It is difficult to select

this 3’ cutoff because it is unknown until which length the crRNA is still functional, i.e., can

locate its target. The 5’ cutoff is easier due to the fixed cleavage site at es−13 (for CRISPR3).

The number of potentially degraded crRNA was then normalised by the total number of

reads at that crRNA locus to obtain a degradation ratio: degradation ratio = D/C. We

compared several properties of the mature crRNA to this ratio to determine possible factors

for higher degradation rates.
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Figure 5.5. A significant relationship was measured between the ‘structuredness’ and the
assumed degradation rate of individual crRNAs. The degradation of mature crRNAs correlates with
spacer ensemble energies with a Pearson’s correlation coefficient r = 0.56 and p = 0.00025 (RNA-seq dataset
B). Depicted is the CRISPR3 locus on the pSYSA plasmid of Synechocystis sp. PCC 6803 with the following
tracks: (blue) The absolute ensemble energy of the spacer sequence as determined by RNAfold (greater values
correspond to more stable structures); (red) the normalized degradation profile of previously processed crRNA;
(grey) sequence reads corresponding to degraded or full-length mature crRNA; (green) the CRISPR-repeat
locations. Some crRNA positions remain full-length, whereas other positions are degraded (grey track). We
selected only reads that correspond to mature crRNAs. Reads that cover two spacers were excluded for this
analysis since they correspond to crRNA precursors. Figure taken from [P10].

5.5.2 The relationship between spacer ‘structuredness’ and crRNA degra-

dation

The most convincing correlation between degradation and RNA structure was seen in the

ensemble energy of the separate spacer sequences (Figure 5.5, blue track) with a Pearson’s

correlation coefficient of 0.56 (p = 0.00025) for CRISPR3. High ensemble energies correspond

to spacers that can form more stable secondary structures. This indicated a strong relationship

between the “structuredness” of the spacer and the degradation ratio of previously processed

crRNA: more stable structures could lead to a higher rate of degradation (note that we give

the absolute ensemble energy values and that in reality a negative correlation exists, due to

negative energies). More precisely, all spacers in the CRISPR3 array with an ensemble energy

below −15 kcal/mol had the highest degradation ratios. This result was also achieved for

the smaller RNA-seq dataset B. Albeit the statistically significant correlation for the larger

dataset A at r = 0.38 and p = 0.018, the correlation in this set is not as convincing, which is

likely due to the differences in the datasets: In dataset A, only about 4 % of the reads were

short enough to be considered as degradation products. It is unlikely that the signal was
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strong enough to be detected in this minor subset of reads, whereas in dataset B, the ratio of

possible degradation products in comparison with non-degraded reads was much higher (see

grey track in Figure 5.5). CRISPR1 and CRISPR2 could not be analysed for correlation to

structuredness because too few reads mapped to these loci in dataset B.

In spite of transcripts arising from a single TSS, mature crRNAs accumulated to significantly

different abundances implying differences in their stabilities. Our computational analysis of

CRISPR3-transcript accumulation indicated that spacers forming more stable structures are

linked to higher degradation rates of the crRNA sequence. A similar observation has recently

been reported for the crRNAs derived from CRISPR locus C in Sulfolobus solfataricus, where

those crRNAs with the potential to fold into the more stable structures were clearly less

abundant than those with only modest folding propensity [354]. Interestingly, the studied S.

solfataricus system is of CRISPR subtype III-B, similar to the CRISPR3 of Synechocystis

studied here. Thus, the different quantities of mature crRNAs could be due to their different

loading efficiencies into the CMR complex. A highly structured crRNA could prevent or

delay the RNP (ribonucleoprotein) complex formation and thus lead to a lack of protection

and consequently higher rates of degradation. Therefore, the more efficient spacer is likely

one that remains mostly unstructured.

5.6 Conclusion

The cyanobacterium Synechocystis sp. PCC6803 harbours three distinct CRISPR-Cas systems,

CRISPR1–3, on a single plasmid. Analysing RNA-seq data for the CRISPR1–3 loci, we found

that transcripts from all CRISPR arrays were highly abundant, especially in comparison

with other loci on the pSYSA plasmid. Notably, the individual crRNAs had profoundly

varying abundances despite single transcription start sites for each array. A more detailed

analysis determined the length and locations of accumulating intermediate and mature crRNA

species. In addition, the most frequent 5’- and 3’-read-end mapping locations gave a detailed

insight into cleavage sites and processing patterns and especially highlighted the fact that

the crRNAs from each locus must have been generated by distinct pathways. In a final

analysis, CRISPR3 spacers with stable secondary structures displayed a greater ratio of

degradation products. These structures might interfere with the loading of the crRNAs into

RNP complexes, explaining the varying abundances.

In conclusion, the analysis of RNA-seq is an appropriate method for not only establishing

general CRISPR RNA abundances but can also be used to determine detailed processing

signals and to characterise accumulating RNA species.
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Life offers us both problems and solutions. It is for us to choose what we want.

The regulatory function of RNA largely depends on its structural conformation in addition

to sequence-specific binding affinities. Most analyses of RNA structure focus on regulatory

ncRNAs as these are usually reasonably short with globally conserved structures [7, 108, 111];

notable examples are transfer RNAs, ribosomal RNAs, and miRNAs. RNA regulatory

function is not only guided by such global structures, but can be influenced by local RNA

structures that only form in a subsequence of a long RNA, e.g., mRNA, lncRNA, or precursor

ncRNA. In the literature, local mRNA structure—in particular whether the local region of the

structure is single stranded—has been considered important for the binding of trans factors,

such as RBPs and small ncRNAs [109, 143, 164, 171, 234, 258, 303]. In addition, structured

cis-regulatory elements1, frequently located within untranslated regions (UTRs) of mRNAs,

are involved in regulating the mRNA they are located within [149]. The structure of an

mRNA at a binding site of a trans factor or which forms a cis-regulatory element is local

in the sense that it only involves a small subsequence of the full mRNA sequence, and the

global structure of the entire mRNA is irrelevant to the regulatory function. In contrast to

small ncRNA structures, little research has been dedicated to the more challenging task of

elucidating the structural properties of long RNA, e.g., mRNA, lncRNA, or precursor ncRNA.

The main goal in Chapter 6 is to provide a guideline on how to best elucidate local structure

properties of long RNA molecules when this is required for the analysis of individual sequences.

Although the emphasis here is on mRNA structure, results should be applicable to other long

RNA species. In fact, the knowledge gained in Chapter 6 was applied to the prediction of

regulatory structure motifs in CRISPR arrays in Chapter 7. In addition, we used the CRISPR

array as a platform to explore the effect of surrounding sequence context on motif-structure

formation and demonstrated how unfavourable sequence contexts can abolish biological

function. Results presented in this part were published in [P4,P7,P10], or are currently under

review [P8].

1 See Figure 2.2 in Section 2.1.1 for some examples of cis-regulatory structure elements.
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CHAPTER 6

Predicting secondary structure in mRNAs

Regulatory elements are located predominantly in the 3’UTR of an mRNA. These can either be

simple binding motifs of about 6 to 20 nt or more complex structured cis-regulatory elements

that can involve up to a few hundred nucleotides [264]. Not only the stable formation of base

pairs involved in structured cis regulatory elements—but also the structural accessibility

of simple binding motifs—is generally important for the regulatory function [109,143,164,

171,234,258,303]. For computational detection and characterisation of regulatory elements

on mRNAs, we require methods for accurate structure prediction. There are two aspects

to consider when analysing mRNA structure: (1) the structure influencing the function of

regulatory elements is local, i.e. involves only a subsequence of the mRNA, and (2) mRNAs are

usually hundreds to thousands of nucleotides long. In this work, we only consider approaches

that compute binding scores for all possible base pairs, e.g. base pair probabilities. These

structure-prediction approaches are either global or local (see Section 2.5). A global structure

prediction is one where all possible base pairs for the entire input sequence are considered,

and a local structure prediction is one where base pairs with long spans (see Definition 2.8 in

Section 2.4.1) are ignored.

As most algorithms for structure prediction of RNA have been developed for ncRNAs, the

first approach to predicting structure in mRNAs (or long RNAs in general) would be to use

either UNAfold [206], RNAfold [138] or RNAstructure [255] on the entire mRNA sequence or

at least the entire 3’UTR. The cubic time and space complexity of these global approaches,

required to determine probabilities for all possible base pairs within a sequence, makes their

application to very long RNAs infeasible. The most basic solution to long runtimes would be

to extract the part of interest from the mRNA and fold this globally. However, as shown later,

this approach can lead to border effects at the artificial sequence ends and it also ignores

the influence of base pairs directly adjacent to the window1. A first algorithmic solution to

1 The consequence of ignoring the context sequence around a region of interest is explored further in Chapter 7.
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the high runtime complexity of global structure prediction was to limit the distance on the

sequence between two base pairs, i.e. the base-pair span (Definition 2.8, Part I) and to ignore

any base pairs with spans larger than a given threshold, typically denoted by L. As this

approach still folds the entire input sequence simultaneously and merely restricts the base-pair

spans of the predicted structures, we considered it to be semi-local ; implementations are

RNALfold [139] to find locally stable structures, Rfold [170] for base-pair probabilities, and

Raccess [171] for accessibilities. The second algorithmic solution was to predict structures

in sliding windows of a fixed length denoted by W , in addition to the maximum base-pair

span constraint L [18, 19]. The likelihood of a base pair occurring is now an average of

all base-pair probabilities for all windows in which it occurs. This window-based approach

is local in the sense that each window is folded independently of the rest of the sequence.

Nevertheless, a single window is folded semi-locally as before. Approaches that predict true

local structures, without the use of fixed windows, were not available. The window-based

approach is implemented in RNAplfold [18, 19]. RNA structure prediction algorithms are

introduced in more detail in Section 2.5.

Although RNAplfold is currently the most popular tool for elucidating secondary structure

in long RNAs, especially for calculating accessibility of potential target sites, e.g. [161,194,

205, 303], reliable benchmarks of the accuracy of various tools and appropriate parameter

settings have not been performed1. It has been shown that the majority of base pairs

have short spans [74, 233]; therefore, it can be assumed that local approaches give an

accurate approximation of structure. However, the impact of long-distance base pairs and

surrounding context structure—and, in fact, the performance of local in comparison with

global approaches—had not been quantified before this work.

Previous investigations of the locality parameters W and L were centred around specific

applications. For example, Tafer et al. evaluated effects of accessibility on the efficacy of small

interfering RNA interactions [303]. Folding parameters that achieved the most significant

results, a window size of W = 80 nt and a maximum base-pair span of L = 40 nt, were

subsequently used as standard values for local secondary structure predictions [161,194,205].

Similar analyses were performed in [171,288]. A window size that was equal to the maximum

base-pair span was used in [170] and it is also the default setting in RNAplfold. Our

subsequent benchmark analysis showed that these previously used parameters perform poorly.

For the first time, we showed that a local approach is not only more practical, but that it

even outperforms its global counterpart in accuracy when predicting secondary structure in

mRNAs.

6.1 LocalFold: reducing window-border effects

In the standard window-based approach, used for RNAplfold, base-pair probabilities are

computed for each window separately and then averaged over all windows that the respective

1 Initially, local approaches were applied due to their practical runtimes.
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base-pair occurs in (see Equation 2.4 in Section 2.5.4). To address potential prediction biases

at window borders, we developed a modified version of the standard window-based approach

that ignores these predictions, which we called LocalFold. For the purpose of describing the

modification for LocalFold, we rewrite the equation for RNAplfold as:

pL,W
avg (i, j) =

1

|W(i, j)| ·
∑

Wu∈W(i,j)

pW
u,L(i, j), (6.1)

where W is the window size, L the maximum base-pair span, Wu is the window beginning

at position u, and W(i, j) is the set of all windows that include the base pair (i, j). For

LocalFold, we modified the calculation, such that W(i, j) contains only windows where

either bases ri and rj were not within the first or last b positions of the window. Window

borders that coincide with the input sequence ends are exempt from the modification and are

calculated as in RNAplfold.

The LocalFold algorithm is applicable to all parameter combinations of W , L, and b satisfying

W − L ≥ 2b. The method is thus limited to a W that is sufficiently larger than L. The

b parameter does not exclude any parts of the sequence; the filtering induced by b merely

ignores the outliers in the averaging calculation (Equation 6.1). The parameters are set to

W = 200, L = 150, b = 10 by default. We recommend to use b = 10, since this achieved the

best result and clearly eliminated most of the bias at the borders (Figure 6.3). The time

and space complexity stays the same as for RNAplfold [18, 19]. LocalFold is available for

download at www.bioinf.uni-freiburg.de/Software/LocalFold/.

6.2 Evaluating the stability of local structure motifs

When comparing the performance of structure-prediction approaches, we should generally

have a set of true RNA structures for their respective sequences. Then, a comparison

of prediction results depends on the measurement of the predicted stability of these true

structures. This comparison is, however, complicated by: (1) the approaches compute either

probabilities1 or averaged probabilities2 for individual base pairs; (2) we require a measure of

stability for complete structures and not only single base pairs; and (3) to our knowledge,

a measure to compare structure stabilities computed by either global or local prediction

approaches has not been addressed in the literature prior to this work. More precisely, in the

investigation of cis-regulatory elements, we required a measurement for the stability of a local

structured element within a greater context. Therefore, we needed to determine the accuracy

of the prediction of the entire element based on individual base-pair scores. In the literature,

there was no consistent measure for this purpose, however, structure stability measures have

been applied to global structures [37, 72, 197]. We generalised the previously applied measure

of structure accuracy to local structure prediction.

1 RNAfold, Rfold, Raccess compute base-pair probabilities.
2 RNAplfoldand LocalFold compute average base pair probabilities for all windows the base pairs occur in.
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Let R be an RNA sequence, and Sl be a local structured element in R. The accuracy A is
the expected overlap of a local structure Sl and a global structure S of R:

A(Sl|R) =
∑

S∈QR

|Sl ∩ S| · Pr[S|R]

=
∑

S∈QR

∑
(i,j)∈Sl

1{(i, j) ∈ S}Pr[S|R]

=
∑

(i,j)∈Sl

∑
S∈QR

1{(i, j) ∈ S}Pr[S|R]

=
∑

(i,j)∈Sl

p(i, j). (6.2)

QR is the ensemble of all possible structures for R; 1{(i, j) ∈ S} is an indicator function that

is 1 if (i, j) ∈ S and 0 otherwise; the probability of observing a structure, Pr[S|R], is given

in Equation 2.1, Section 2.5.2. In simple terms, the accuracy of a local structure is the sum

of all its base-pair probabilities in the global structure ensemble.

For window-based approaches, the probability of observing a given base pair (or structure) in

a window is comprised of the probability for choosing the window Wu (beginning at position

u) and the probability of observing the base pair (structure) in Wu. Each window has an

equal probability and the structures within each window are Boltzmann distributed as in

global folding [210]. Thus, to gain single scores per base pair (i, j), RNAplfold averages over

all windows containing the base pair, W(i, j) (Equation 6.1).

Regarding the accuracy of a local structure element Sl, we define W(Sl) to be the set of
windows that contain the complete structure Sl, similar to the definition in the case of a base
pair (see Equation 6.1). Then we define the average accuracy as:

Aavg(Sl) =
1

|W(Sl)|
∑

Wu∈W(Sl)

A(Sl|Wu)

=
1

|W(Sl)|
∑

Wu∈W(Sl)

∑
(i,j)∈Sl

pW
u,L(i, j).

If we had the same windows for each base pair in Sl, i.e., for all (i, j) ∈ Sl,W(i, j) = W(Sl),

where W(i, j) is the set of windows that contain the base-pair (i, j), then analogously to

Equation 6.2, we could continue with

Aavg(Sl) =
∑

(i,j)∈Sl

1

|W(i, j)|
∑

Wu∈W(i,j)

pW
u,L(i, j)

=
∑

(i,j)∈Sl

pW
u,L

avg (i, j). (6.3)

Having the same set of windows for each base pair, however, could only be enforced if the

location of the element was known in advance. Since this is not the case when searching for

local structures, we used Equation 6.3 as an approximation of the average accuracy of the

local structure Sl.

For the comparison of accuracies for structure elements of different sizes, we normalised them
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by the number of base pairs within the respective local structure Sl:

bp-accuracy(Sl) =
Aavg(Sl)

|Sl|
, (6.4)

and analogously, we substituted Aavg(Sl) with A(Sl) for the non-averaged base-pair probabil-

ities.

Intuitively, the bp-accuracy is the mean base-pair probability of all base pairs within the

reference structure (i.e. cis-regulatory element); it measures the thermodynamic stability of

the structure within its global context. The bp-accuracy , however, does not consider false

positive base-pair predictions. No gold standard for negative base pairing exists and it was

unclear when a base pair that is not part of the local structure should be regarded as negative,

or incorrect. For example, one could consider all possible conflicting base pairs, i.e., all base

pairs involving one and only one base from a correct base pair, to be incorrect (in a secondary

structure, a base can only be paired to one other). This is problematic for three reasons: (1)

there are about 2L more incorrect than correct base pairs; (2) a different number of negative

base pairs would occur for different L values, hence, it is difficult to compare global and

local folding methods; and (3) it is unknown to what extent the mRNA folds into different

conformations, or refolds. Alternative structures do exist in vivo, e.g. in riboswitches [28];

some conflicting base pairs could be true variants. Kiryu et al. proposed a way to calculate

specificity by considering all base pairs predicted in random sequences to be incorrect [170].

Randomly designed RNA sequences, however, could also form stable structures [263].

In conclusion, we used the bp-accuracy to compare the stabilities of given local structure

motifs within base-pair predictions calculated by both global and local structure-prediction

approaches.

6.3 CisReg: a curated set of cis-regulatory elements

Having established general approaches to predicting mRNA structure and a measure to

compare predicted structure stabilities, we required a suitable dataset of local RNA structures.

An important benchmark of new mRNA structure discovery methods is their ability to

accurately predict known cis-regulatory elements. These known elements are characterised

in several databases, of which the largest is the RNA families database (Rfam) [95, 111].

Release 10.0 contained 1, 446 covariance models, mostly for non-coding RNA genes, but also

for structured mRNA elements [95]. Each model consists of a set of published “Seed” and

computationally extended “Full” alignments. Sequences within the structure alignments

consist of only the structured element, and usually lack the flanking sequence from the mRNA,

needed to assess structure prediction.

For this study, we curated a new benchmark set for mRNA cis-regulatory elements. We

extracted and individually re-examined a set of 95 families of cis-regulatory elements from
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Rfam that were correctly classified and adopted secondary structures without pseudoknots1.

Of these, 24 were from eukaryotic mRNAs and 71 from prokaryotic or viral genomes. The

eukaryotic mRNA elements had diverse functions (e.g., mRNA localisation, translation

efficiency or mRNA stability) and most were located within 3’UTRs. A large number of

the genomic elements were from RNA viral genomes or from bacterial mRNAs. For each

element, we extracted three different lengths of flanking regions from the mRNAs (including

coding regions and 5’UTRs), or from the genomes when these were not available: 100, 200,

and 500 nt, or otherwise to the sequence ends. Subsequently, we filtered and processed the

elements to maximise structure integrity and a small proportion of sequences were excluded

as they did not match sequences in the EMBL Nucleotide Sequence Database. The exact

data preparation process and a redundancy analysis are provided in Section D.3.

The CisReg dataset used in this study consists of 2, 500 individual elements (95 families)

with over 85, 000 base pairs, and we propose it as a reference set to test future prediction

algorithms. Furthermore, we provide a website for the data including additional information

and statistics: http://lancelot.otago.ac.nz/CisRegRNA/.

6.4 Benchmarking preliminaries

To be able to determine the best approach for predicting secondary structure in mRNAs, we

required suitable algorithms, large and high-quality datasets, and performance measures.

We made a careful selection of algorithms that reflect the current status of secondary

structure prediction with a particular emphasis on local methods. Due to their broad usage,

we concentrated on partition-function–based approaches that produce probabilities or average

probabilities for base pairs, given an RNA sequence (see Table 6.1). The rationale behind

comparing these algorithms is given in the introduction to this chapter and further details

are described in Section 2.5. Execution calls are given in Section D.3.

The performance of LocalFold and current methods available for folding mRNA sequences

was compared using two sets of data. First, the previously described CisReg data (see

Section 6.3), containing >85,000 base pairs from 2, 500 cis-regulatory elements, which were

extracted from 95 hand-selected families from the Rfam database [95,111]. Second, for the

evaluation of the accessibility predictions we used the set of in-vitro secondary structure

profiles from [165]. This set, referenced to as YeastUnpaired, consists of nucleotide-wise

measurements for 3, 196 mRNAs from Saccharomyces cervisiae. These profiles were derived

by parallel analysis of RNA structure (PARS). With PARS the single-strandedness (as well as

double-strandedness) of a set of sequences is inferred using a combination of RNase digestion

and deep sequencing [165]. Kertesz et al. report that they covered approximately 100-fold

more transcribed bases than all previously published footprints combined, making this dataset

uniquely suited for a comprehensive analysis of prediction performance.

1 Structures containing pseudoknots were ommited because these cannot be predicted by structure-prediction
approaches, which are efficient enough to be applicable to long RNA sequences.
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Table 6.1. Summary of the prediction methods and the benchmark datasets used in this work.
L is the maximum base-pair span, W is the window size and b is the border size within which to ignore base
pairs of a single window (see Sections 2.5 and 6.1). Table taken from [P4].

Method Parameters Type Output

RNAfold – Global Base-pair probabilities
Rfold L Local Base-pair probabilities
Raccess L Local Accessibilities
RNAplfold* L, W Local Average base-pair probabilities and ac-

cessibilities
LocalFold* L, W , b Local Average base-pair probabilities and ac-

cessibilities

Dataset Description

CisReg 2, 500 cis-regulatory elements in 95 Rfam families, filtered and processed in this
work

YeastUnpaired Data on the single-strandedness of single positions for 3, 196 Saccharomyces cervisiae
mRNAs from [165]

*Window-based approach

We previously defined and introduced the bp-accuracy (Equation 6.4) as a suitable measure

to compare predicted base pair probabilities (Section 6.1) for local structure elements in the

CisReg dataset. In the case of accessibility predictions, we compared the methods according

to their ability to correctly classify paired and unpaired bases. Classification performance

was measured using the AUROC (Section 2.3). This measure is independent of the types of

outputs of the different algorithms. The accessibility of a base is the complement of the sum

of all base-pairing probabilities that involve that base (see Equation 2.5), thus implicitly, the

base-pairing distribution is taken into account. Therefore, the performance comparisons of

accessibility should indicate which method produces the more accurate base-pair distributions.

Finally, we developed suitable tests that were designed to: (1) identify and elucidate the

optimal degree of locality and (2) investigate the effects of artificial window borders and sizes,

and (3) quantify the performance of each method on the two benchmark datasets. Prediction

methods and datasets are summarised in Table 6.1.

6.5 How local is local structure?

The main difference between global and local prediction is the restriction of the base-pair

span (bp-span, Definition 2.8) to a maximum of L. In this section, we explored how different

settings for L affects prediction results, and identified how local cis-regulatory structures are

(in general) so that a suitable parameter setting for L can be an informed decision, rather than

a random choice. Further analyses were performed to clarify why local structure prediction is

so accurate—even for relatively short maximum bp-span settings.

6.5.1 Best performance for a maximum bp-span between 100–150 nt

For local folding approaches, the main question was which degree of locality to use. To

address this question, we compared Rfold predictions with L between 40 and 400 nt to
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(the global) RNAfold results using the CisReg data. Local folding was represented by Rfold

because the introduction of the base-pair restriction is the only conceptual difference to

global folding; whereas the window-based approaches introduced the window size (W) as an

additional parameter. The lowest median bp-accuracy of 0.46 was achieved using Rfold with

L = 40 (Figure 6.1.A). The accuracy increased with greater L values until a maximum of

0.59 was achieved at L = 150, after which accuracies decreased slightly. Rfold outperformed

RNAfold at L ≥ 60. The difference between the bp-accuracy distributions of Rfold (L = 150)

and RNAfold was significant with p = 1.2 × 10−7 (two-sample Wilcoxon Rank Sum Test).

The cis-regulatory structures in Figure 6.1.A were situated within a context of up to 500

nt to either side, the folded RNA sequence was thus only approx. 1, 000 nt long and often

not the full-length mRNA. Therefore, we compared Rfold (L = 150) to RNAfold on the 179

available full-length mRNA sequences (Figure 6.1.B). Here the median base-pair accuracy

of both methods was reduced, but the difference between the two methods increased: 0.13

compared to 0.07 in Figure 6.1.A.

When investigating the degree of locality L suitable for the YeastUnpaired data, we observed

results similar to the CisReg data, see Figure 6.8 (the main discussion of this figure follows

later). For accessibility, Rfold outperformed RNAfold at L ≥ 50 and the performance

increased up to the optimum at L = 100. L > 100 exhibited only a minor decrease in

AUROC, thus L was robust to larger L values. Nevertheless, the quality of predictions

decreases down to the level of RNAfold for both datasets: the greater the span L, the more

global the prediction becomes until it is global when L equals the sequence length.
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Figure 6.1. Comparison of global vs. local folding using the methods RNAfold and Rfold. The
median base-pair accuracy (y-axis) is given for the CisReg dataset. (A) Comparison of RNAfold and Rfold

using different L values. (B) A subset of the CisReg dataset that comprised of 179 full-length mRNA. Figure
taken from [P4].

6.5.2 Most base-pairs have short spans

Our results on the best value for L reflected the distribution of base-pair spans within known

structures [74, 233]: we observed that 83 % of all base pairs had a bp-span less than 100
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nt (85 % ≤ 150) for all the cis-regulatory elements in the CisReg dataset (Figure 6.2.A).

Thereafter, the increase in the number of base pairs with a larger span is very slow. Although

we specifically chose local regulatory structures located on the mRNA, the distribution was

similar to previously published data: Doshi and colleagues showed the same exponential

decrease in observed base pairs with respect to increasing bp-span length in 496 16S rRNAs,

with 75 % of all base pairs with bp-span ≤ 100 nt [74]. In 151 ncRNA structures from 151

seed alignments in Rfam, 85 % of the base pairs had a bp-span ≤ 100 nt [171]. The latter

two analyses looked at global structures that form long-range base pairs. This observed

exponential decrease in observed base pairs with increasing bp-spans implies that the majority

of base pairs have short spans, i.e. are local ; therefore, smaller L values (L ≤ 100) performed

comparably well. Because of the agreement of our results with the general distribution of

base-pair spans, we suggest that local folding with restricted base-pair spans could perform

better for other classes of long RNA sequences, such as ribosomal RNA and long non-coding

RNA. Note that although long non-coding RNA may be largely unstructured, local structured

domains, or regulatory target sites could be located on these molecules making structure

prediction interesting; for example for determining the accessibility of miRNA target sites [39].
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Figure 6.2. The distribution of base-pair spans and the quality of prediction with respect to
span length. (A) The bp-span (x-axis) distribution for the CisReg dataset with the cumulative distribution
given on the y-axis. (B) The sensitivity of base pairs (y-axis) for each base-pair span interval (x-axis). The
intervals were distributed such that they contain roughly an equal number of base pairs. Figure taken from [P4].

6.5.3 Base-pair prediction accuracy decreased with span length

The choice of the locality parameter also depends on the prediction accuracy of base pairs with

respect to their span lengths. For this evaluation, we used RNAfold as it allows all base-pair

spans. The influence of the base-pair-span length on the sensitivity of the predictions is

illustrated in Figure 6.2.B. We defined sensitivity as the fraction of all true base pairs within

each bp-span interval that were predicted with probability p(i, j) > 0.5. Base pairs with a

probability greater than 0.5 are called high-frequency base pairs and are contained in the

centroid structure [37, 69, 152]. Base-pair prediction accuracy decreased with respect to span
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length; this was also published in [74, 85, 175]. The highest sensitivity of approx. 0.6 was

achieved for bp-span < 30 nt, after which it dropped to around 0.45, and at bp-span ≤ 100 nt

the sensitivity decreased further to around 0.35 (except an outlier at 0.5). The implications

of this decrease are twofold: (1) The current nearest neighbour energy model [207, 315] is

unsuited to the prediction of long-range base pairs and/or (2) the multi-loop energies are

incorrect [64, 207, 208]. Our results indicated that an L = 150 represents a good balance

between maximising the number of base pairs included in the predictions and minimising

the inaccuracy of longer base-pair spans. A larger L did not increase the performance,

probably due to the very few extra base pairs that could be predicted and the quality of

those predictions becoming increasingly poor.

6.5.4 Structures are locally stable

The success of local folding approaches is based on the assumption that, in most cases,

structures with short base-pair spans are locally stable and do not need the global influence

of long-ranging base pairs to stabilise their formation. This condition is supported by the fact

that small values for L performed only slightly worse than their more global counterparts

(see Figures 6.1 and 6.8). In the search for cis-regulatory elements, maximum base-pair spans

much smaller the real spans still predicted the local parts of the structure. The structural

stability of local substructures was also stated in [74,233]. These authors illustrated that in

predicted, sub-optimal structures, most of the rearrangement occurs in the form of long-range

connections, whereas the local substructures remain the same. Moreover, Higgs and colleagues

have shown that, due to kinetics, short-range base pairs form more quickly [222]. Finally,

the hierarchical evolution hypothesis, introduced in [25], could further support the initial

formation of locally stable structures with short base-pair spans and the subsequent addition

of longer-range connections.

6.6 Artificial window borders can be detrimental to structure

prediction

The window-based approach, RNAplfold, computes base-pairing probabilities by averaging

over subsequences, windows, of length W. On the one hand, averaging over independent

windows reduces dependencies between two local structures with a distance greater than W ;

on the other hand, each window introduces two artificial RNA ends at the window borders.

As the ends do not correspond to any real features of the RNA, these can lead to the following

errors; with the appropriate care, these errors can be avoided.

6.6.1 Window borders were biased towards higher accessibilities

To investigate a possible bias introduced by folding independent (short) subsequences, we

computed the average accessibility per position of the respective windows using RNAplfold.
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Mean accessibilities for over 500, 000 sequence windows from 400 mRNAs, selected randomly

from four species, are depicted in Figure 6.3. Nucleotides at the window borders showed

considerably higher accessibilities than nucleotides near the window centres. This effect is

preserved for the full range of observed GC-contents (Figure D.15) and is not particular

to mRNAs (Figure D.16). Our expectation that most of the bias originated from external

regions not enclosed by any base pair, as opposed to internal loops, was confirmed (data not

shown).

A

B

Figure 6.3. High accessibilities at window borders. Average accessibilities were computed per window
position for 400 randomly chosen mRNAs from four species. Computations were done with RNAplfold, L = 100
and (A) W = 100 and (B) W = 150. Positions beyond approx. 10 nt at the window borders have equivalent
average accessibilities. Figure taken from [P4].

6.6.2 The use of windows can also lead to biased base-pair predictions at

window borders

The accessibility bias towards window borders affected the probabilities of base pairs when

at least one of the two nucleotides (involved in a base pair) is situated within the border

region. Consequently, long-range base pairs with both nucleotides within the outer regions

were affected most (Figure 6.4.A). Two issues arise from window-based folding. First, the

number of windows in the calculation of a base-pair probability is dependent on its span,

i.e., probabilities of a base pair with bp-span = l occur in W − l + 1 windows. Hence, the

number of windows being averaged decreases linearly with increasing bp-span. Second, strong

secondary structures tend to form in the central part of a window, leaving the remaining

unpaired bases at the window borders available to pair with each other; crossing base pairs

with internal unpaired bases are not allowed in secondary structure prediction, so the ends

pair up (if possible), because each additional base pair minimises the overall free energy. In

combination, when L is close to W , long-range base pairs within the borders resulted in

skewed pairing probabilities, as they were not compensated by averaging over many windows.
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Figure 6.4. Illustration of folding windows. Regions affected by the border effect are shaded. (A) Same
window size and maximum span. Long-range base pairs can be affected by both window borders. The base
pair of maximal span is part of exactly one window. (B) Window is larger than the maximum span. Base
pairs can only be influenced by one window end. Base pairs of maximal span can be part of multiple windows.
Figure taken from [P4].

6.6.3 Border effects can be reduced by the appropriate choice of window

size

The negative effect of having only few windows representing long-range base pairs was

mitigated by setting a suitable window size W with respect to the maximum base-pair span

L. When W ≥ L, base-pair probabilities are averaged for at least W − L + 1 windows

(Figure 6.4.B). In Figure 6.5, the dot plots from RNAplfold of a cis-regulatory element

exemplify the border effect on long-range base pairs. For visualisation purposes, the sequences

were folded with L = 70. For W = L, many base pairs with spans near L were assigned

high probabilities while located in very short stems (Figure 6.5.A). For W = L+ 50, most

of the long-range base pairs either disappeared or were assigned much smaller probabilities

(Figure 6.5.B). The base-pair probabilities for the target structure were not influenced by

the parameter settings, due to their shorter base-pair spans. In our evaluations of different

window sizes on both the CisReg and the YeastUnpaired datasets, W had little effect

on the prediction performance as long as it was sufficiently larger than L. The current

default parameter setting of RNAplfold is W = L = 70. In general, the default settings of

computational tools are frequently used and in the case of RNAplfold the default, W = L,

was applied in e.g. [170]. Note that on the other extreme, window sizes much larger than L

diminish the positive effects of the window-based approach, namely to avoid dependencies

between distant local structures. When W is equal to the sequence length, the window-based

approach is the same as the approach for Rfold and Raccess. Varying the window sizes from

L+50 to 3L did not influence the results significantly, however, the best results for RNAplfold

were achieved using W = L+ 50 (Figures D.17 and D.18). For all further evaluations we set

the window size to W = L+ 50, which allowed each base pair to be present in at least 51

windows (when the RNA length exceeds the window size).

6.6.4 LocalFold diminished border effects

While an appropriate choice of the window size mitigated some of the adverse effects of win-

dowed approaches, the borders still affected the accessibilities up to the ten outer nucleotides

of each folding window (Figure 6.3.B). Therefore, we developed LocalFold that reduced these

border effects and we quantified the improvement of predictions performed on our datasets.
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AUUUUUAGCGUGCCGCGACAAGCGGUCCGGGCGCCCUUCGGGGGCCCGGCGGAGACGGGCGCCGGAGGUGUCCGACGCCUGCUCGUACCCAUCUUGCUCAGUGGAGGAUUUGGCUAUGAGGACCACCUAC

AUUUUUAGCGUGCCGCGACAAGCGGUCCGGGCGCCCUUCGGGGGCCCGGCGGAGACGGGCGCCGGAGGUGUCCGACGCCUGCUCGUACCCAUCUUGCUCAGUGGAGGAUUUGGCUAUGAGGACCACCUAC

W=L
border effect

W=L+50
no border effect

Scale for p(i,j)
0.8
0.6
0.4
0.2

A

B

Figure 6.5. Probability bias for long-ranged base pairs close to the window size and their
reduced effect. We see the original dot plots of the base-pairing matrices cropped for visual inspection to
the nucleotide positions 5180 to 5291 of RF00435-U55047-1 in the CisReg dataset, which is a heat shock gene
expression (ROSE) element. Base pairs of the target structure are marked in red. The size of each dot is
relative to the probability of the base pair it represents and the nucleotides can be read by following the
diagonal lines to the left and right. The incorrect long-range base pairs are much more likely when (A) W = L
instead of (B) W = L+ 50. Figure taken from [P4].

In short, the biased regions at the window borders were not considered for the computation

of accessibilities or base-pair probabilities. As the border effect was mostly independent

of window size and maximum base-pair span (not shown), in LocalFold the first and last

ten nucleotides in each artificial window (excluding real ends of the input sequence) were

removed from the calculations. Note that LocalFold only removes the bias outliers from the

window-average calculations and still produces probabilities for all positions of the nucleotide

sequence (any length).

6.7 Performance comparison of methods

We compared the performance of the following secondary structure prediction methods applied

to mRNA sequences: RNAfold (global), Rfold (restricted bp-span, base-pair probabilities),

Raccess (restricted bp-span, accessibilities), RNAplfold (window-based), and our method

LocalFold (reduced border effects). We investigated their performance on the CisReg and the

YeastUnpaired datasets, hence, we quantified their predictions of both paired and unpaired

bases, respectively. For the local folding methods, we applied the best parameter combinations

(for each dataset) according to the previous analyses.

99



Chapter 6. Predicting secondary structure in mRNAs

0.55
0.60 0.62

0.65

p=0.017

22 % 11 % 11 % 15 %

A B

Cumulative Distribution

B
a
se

-P
a
ir

 A
cc

u
ra

cy

B
a
se

-P
a
ir

 A
cc

u
ra

cy

RNAf
ol
d

RNApl
fo

ld

Lo
ca

lFo
ld

Rfo
ld

1.0

0.8

0.6

0.4

0.2

0.0

0.5

0.4

0.3

0.2

0.1

0.0

0.0 0.1 0.2 0.3 0.4 0.5

LocalFold (L150, W200)
RNAplfold (L150, W200)
Rfold (L150)
RNAfold

Figure 6.6. Comparison of structure prediction methods for the identification of cis-regulatory
elements. Computations were performed with L=150 and W=200 (when applicable) on the subset of the
CisReg data that have a max. base-pair span of 150 nt, including 2158 elements assigned to 90 Rfam families.
(A) Comparison of the achieved accuracies as boxplots. (B) Cumulative distributions of the bp-accuracy up to
0.5 (y-axis) to highlight the prediction sensitivity. Base pairs with probabilities above 0.5 are contained in
the centroid structure [37,69,152] and thus a bp-accuracy above this threshold implies a well defined target
structure. The p-value was calculated with a two-sample Wilcoxon Rank Sum test. Figure taken from [P4].

6.7.1 Predicting cis-regulatory structures in mRNA

We compared the accuracies each method achieved for the base pairs in the CisReg dataset.

For folding, we used sequences with up to 500 nt of context on either side of the elements

(e.g. see Figure 6.7.B. Although many mRNA sequences are longer than 1000 nt, we chose this

length because resource demands of RNAfold were too high for longer sequences. For the local

folding methods, we applied the optimal values determined previously: maximum base-pair

span L = 150 and window-size W = 200. To fairly compare RNAfold to the local folding

methods, we used a subset of the CisReg dataset in which the elements had a maximum

bp-span of 150 nt. This subset included most elements (2158 out of 2500) across 90 different

Rfam families. This meant L did not exclude base pairs in the dataset from being predicted.

In Figure 6.6, we summarised the bp-accuracies (Equation 6.4) resulting from each method.

When comparing the median bp-accuracy in Figure 6.6.A, it increased from 0.55 (RNAfold),

through 0.6 (RNAplfold), 0.62 (LocalFold), to a maximum of 0.65 (Rfold). These accuracies

indicate that the target structures were clearly predicted as illustrated in Figure 6.5 in which

the cis-regulatory element achieved a bp-accuracy of 0.65. Although Rfold achieved the

highest median bp-accuracy , the method—together with RNAfold—exhibited a much greater

variation in results than the window-based approaches, RNAplfold and LocalFold. While

the boxplot indicated similar distributions for the latter two approaches, the accuracies

for LocalFold were significantly higher than for RNAplfold (p = 0.017, two-sided, two-

sample Wilcoxon Rank Sum Test). Both window-based approaches produced the most robust

predictions; LocalFold and RNAplfold made fewer predictions in the lower bp-accuracy
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range, i.e., they were more sensitive (Figure 6.6.B). We considered a bp-accuracy ≤ 0.2 to

mean the structure was not predicted: Rfold and RNAfold failed to predict 15 % and 22 %,

respectively, whereas both RNAplfold and LocalFold failed in only 11 % of all instances. To

show that these results were not biased by redundancies in the dataset, we evaluated the

median accuracy per Rfam family (Figure D.19). Albeit some exceptions, the above trends

remain the same for the individual families. Only for two families with large base-pair spans

of 338 and 551 nt did global folding show a substantial improvement over the local folding

methods.

6.7.2 Rfold has a decreased prediction performance at sequence ends

In the investigation of different context lengths for the local folding methods, Rfold exhibited

a decreased performance for smaller contexts (Figure 6.7); the context length was defined by

the number of nucleotides to either side of the regulatory element (Figure 6.7.B). Although

the median bp-accuracy for Rfold was higher for the contexts of 200 and 500 nt, it performed

worst for 100 nt. This, in combination with the greater variance for all Rfold predictions

(evident from the quantiles in Figure 6.6.A), indicated that the prediction of correct structures

at sequence ends is poor. A similar trend was observed in [171], where the authors reported

decreased prediction for the ends of sequences up to four times the maximum base-pair

span, i.e., a context of 600 nt for L = 150. Most cis-regulatory elements are situated within

the UTRs of mRNAs and thus are frequently located at the sequence ends. Hence, poor

prediction performance at sequence ends is detrimental for the prediction of cis-regulatory

elements.

6.7.3 Evaluation of accessibilities in yeast data

In the previous analysis, we inspected the accuracy at which each method predicted a given

secondary structure. The extent of incorrectly predicted base pairs was not explored. Here,

we compared the performance of all methods on their ability to predict the accessibility of

individual bases. As the accessibility of a base is defined as its probability of being unpaired,

the probabilities of all possible base pairs involving this nucleotide are taken into account.

Thus, incorrectly predicted base pairs can have a detrimental effect on this measure. We first

computed accessibilities for each folding method. For the local-folding methods, we applied

maximum base-pair spans (L) between 25 and 200 nt: the window size W = L+50 was used for

the two window-based approaches. The quality of predictions for the YeastUnpaired dataset

was evaluated by computing AUROC values for discriminating high- and low-rated nucleotides

according to the PARS score [165]; these nucleotides achieved the clearest evidence for being

paired or unpaired, respectively. Figure 6.8.A shows the results for the highest-ranking 1 %

and the lowest-ranking 1 % nucleotides, comprising a set of approx. 80, 000 measurements.

In most cases, an AUROC greater than 0.8 was achieved. Folding globally with RNAfold

resulted in the third lowest performance, only the predictions of Raccess and RNAplfold

using span L = 25 performed worse. LocalFold outperformed the other methods for all Ls.
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Figure 6.7. Rfold has increased problems predicting correct structures at sequence ends. Rfold

is more sensitive to the context length and thus has increased problems predicting correct structures at
sequence ends, also reported in [171]. (A) A comparison of the median bp-accuracy (y-axis) achieved by the
local folding methods on sequences where the regulatory element is situated within contexts 100, 200 and
500 nt (CisReg dataset). (B) When the regulatory element is located at the sequence ends, a context larger
than 100 nt is often unavailable. Thus, methods performing poorly for shorter contexts are not appropriate to
identify those elements. Figure taken from [P4].

Even the worst result for LocalFold at L = 25 was significantly higher than for RNAfold

(p = 8.055 · 10−8, Wilcoxon Rank Sum test using AUROCs derived from 1, 000 bootstrap

samples). The best prediction result was attained by LocalFold using L = 100 with an

AUROC of 0.85. Larger L values resulted in comparable AUROCs, hence, the prediction of

accessibility was stable for different parameter settings. The fact that Raccess was clearly

outperformed by the window-based approaches on the YeastUnpaired data provides further

evidence that the greater variance in its base-pair prediction performance (Figure 6.6) is

detrimental.

6.7.4 Relative prediction performance was not influenced by transcript

length

Finally, we investigated the influence of transcript lengths on the performance of the algorithms.

For the analysis shown in Figure 6.8.B, we split the data into sequence length intervals and

the AUROC for L = 100 was computed for each interval separately. The intervals were

chosen to include roughly an equal number of sequences. We used the highest-ranking 10 %

and the lowest-ranking 10 % of nucleotides so that each interval contained a sufficient number

of sequences. While predictive performance fluctuated slightly for the intervals, we observed

the same ranking of methods as seen in the previous analysis: global folding scored worst,

the window-based approaches best. LocalFold scored marginally better than RNAplfold for
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Figure 6.8. Comparison of AUROC values for separating high- and low scoring nucleotides of
the YeastUnpaired dataset. (A) Effect of the parameter L was evaluated for W = L+ 50 including only the
1 % highest and 1 % lowest scoring nucleotides. (B) Using the best parameter combination (L = 100,W = 150),
we show the dependency of the transcript length on the prediction quality. Here the 10 % highest-ranking and
10 % lowest-ranking nucleotides were included. Each interval contains roughly the same number of sequences.
Figure taken from [P4].

most intervals and both consistently outperformed Raccess. Overall, performance dropped

slightly for sequences longer than 2, 000 nt. The fluctuations in performance were mirrored

by all methods, probably due to the quality or properties of the underlying data.

6.7.5 CisReg and YeastUnpaired data showed similar results

We observed similar results for both of the analysed datasets. The YeastUnpaired dataset was

generated in in-vitro conditions, whereas, the structured cis-regulatory elements in the CisReg

dataset consists of experimentally verified regulatory structures with post-transcriptional

functions in vivo. The fact that the results are comparable between two independent datasets

supports their overall quality and highlights their validity and generality.

6.8 Conclusion

To benchmark the performance of mRNA secondary structure prediction, we generated a large

curated set of cis-regulatory elements and introduced bp-accuracy to measure how accurately
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a local structure was predicted. Furthermore, we evaluated accessibility predictions using

transcript-wide structure-probing data. Prediction accuracy was affected by the following

algorithmic assumptions and parameter combinations:

1. The optimal base-pair span parameters were dataset dependent, but similar, at L = 150

for the CisReg dataset and L = 100 for the YeastUnpaired dataset. Within a range of

100–150, differences in performance were minimal. This range reflects the distribution

of base-pair spans for known structures.

2. The use of sliding windows allows for more locality than the mere restriction of base-

pairs spans. Windows, however, introduced a prediction bias at each artificial border.

Windows with W = L caused unusually high base-pairing probabilities of long-range

base pairs. This was was resolved by setting W = L+ 50.

3. Setting the larger window size (W = L+50) did not remove the bias of high accessibilities

(single-strandedness) at the window borders. Therefore, LocalFold was developed to

diminish this bias which resulted in a consistent improvement compared to the other

methods.

The greater improvement in results was observed for the CisReg data (base pairs) in compar-

ison with the YeastUnpaired data (single-strandedness).

In addition to having much faster runtimes, we present clear quantitative and qualitative

evidence that local folding methods outperformed the global approach. The advantage of

local folding is that the majority of base pairs have short base-pair spans and that local

structure can be predicted without the stabilising effects of long-range connections. Moreover,

the reduced accuracy in the prediction of long-range base pairs meant that local folding was

better than global folding at determining secondary structure in long RNAs.
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CHAPTER 7

CRISPR structure prediction: the influence of context on the formation of

local structure motifs

An RNA is frequently modified, transported, or processed by a mechanism that involves

the binding of a trans factor to a local structure motif located in the longer RNA sequence.

Examples of such local structured motifs are the cis-regulatory elements within mRNA

transcripts in the CisReg dataset that were used in Chapter 6 to benchmark the performance

of local-folding algorithms (Section 6.3). A significant part of this thesis is dedicated to the

characterisation of other such local RNA structure motifs that are found in many CRISPR-Cas

immune systems in prokaryotes (published in [P3,P5,P7,P10]).

In Part II, we used the conservation of CRISPRs to determine structure motifs and sequence

families that characterise properties of the repeat, which might influence the binding affinity

of associated Cas proteins. When the full CRISPR array is being processed into its many

mature crRNA species, each repeat instance is, however, imbedded within varying sequence

contexts (spacers). The functional structure motif within each repeat instance may thus be

stabilised or destabilised by surrounding structure formations. In this chapter, we calculate

structure stability profiles of each repeat instance in an array to measure the influence of

the surrounding sequence context. For the first time, we provide biological evidence that

the sequence context surrounding a repeat can indeed reduce structure-motif stability and

consequently inhibit crRNA processing by forming stable base pairs with the repeat that are

in conflict with the functional structure motif—despite that the repeat sequences are identical.

We assume that, in general, spacers for native CRISPR arrays are selected such that they

do not disrupt the formation of the functional structure motif in the repeat. Following this

assumption, we present a method to predict stable structure motifs of repeats across single

CRISPR arrays; we show that the most stable structure (on average) in the array may deviate

from the MFE structure of just the repeat sequence.
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A CRISPR array can contain from 3 to over 1,000 repeat instances (see Table 3.1, Section 3.1)

and can comprise many kilobases—similar to mRNA transcripts. Thus, global structure-

prediction approaches might not provide accurate results when applied to the entire array.

We used the knowledge gained in Chapter 6 to set appropriate parameter values.

7.1 Computation of structure-stability profiles in CRISPR ar-

rays

Once the characteristic stem-loop motif of a specific CRISPR has been determined, its

stability at every repeat instance in the CRISPR array can be measured by calculating its

structure accuracy, bp-accuracy (Equation 6.4, Section 6.2). Put simply, the bp-accuracy is

the average base-pair probability of all base pairs in a given structure. Stable structures,

i.e., structures that form with a high probability, have a high structure accuracy.

Structure-stability profiles (Definition 7.1) were computed by first performing a local structure

prediction on the entire array using RNAplfold [16] with the window-size and base-pair–span

parameters set as W = 150 and L = 100, respectively; no lonely base pairs (option --noLP)

were allowed. Base-pair probabilities are stored in a local dotplot (see Section 2.5.5).

Definition 7.1. Let M = (N,B) be the given repeat structure and L = (1, . . . , n) denote

the starting positions of each repeat instance in the array (with n repeats in the array).

Then Ml = (N l, Bl) is the repeat structure at position l ∈ L and the respective set of base

pairs is given by Bl = (i + l − 1, j + l − 1),∀(i, j) ∈ B (i and j are 1-based indices). The

structure-stability profile is given by P = (bp-accuracy(M1), . . . , bp-accuracy(Mn)). The

bp-accuracy(Ml) can simply be calculated by looking up the base-pair probabilities of Bl in

the dotplot and computing their average1.

As an example of CRISPR-structure stability, we looked into the two CRISPRs in Methano-

sarcina mazei Gö1 [P7]. Figure 7.1 depicts the MFE structure of the consensus repeat

sequence in part A and repeat-sequence variants at CRISPR loci 1 and 2 in part B. The

repeats at both loci are generally identical, however, some repeat instances contain point

mutations (highlighted in pink). We note that the MFE structure is conserved across the

array, i.e., none of the mutations disrupt the MFE structure. Furthermore, this structure was

verified using in-vitro structural probing in [P7]. The structure-stability profile in Figure 7.1.C

displays a huge variance in the MFE structure stability across the array at CRISPR locus

1; especially at positions 16 and 24, the MFE structure is sequestered by the neighbouring

spacer sequences2.

1 Note that since local folding was performed, the probabilities are, in fact, average base-pair probabilities
across multiple sliding windows; their square root is saved in the dotplot for improved visualisation.

2 The same variability is observed for CRISPR locus 2, but was not depicted.
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Repeat position in CRISPR-locus-1 array
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Figure 7.1. CRISPR structures in Methanosarcina mazei Gö1 and the variability in structure
stability. (A) Shows the minimum-free-energy structure of the consensus sequence of all repeat instances
in both CRISPR loci 1 and 2. The structure was verified using in-vitro structural probing in [P7]. Pink
nucleotides are positions of point mutations in the repeats of both CRISPR loci. (B) All repeat variants are
shown for both CRISPR loci in M. mazei. Colums with point mutations are highlighted in pink and the
bases involved in the base-pairing of the MFE structure are highlighted in yellow; the structure is conserved
across all repeat instances. (C) The structure-stability profile of locus 1 shows that a large range in structure
accuracies exist: some repeat positions form stable structures, whereas at other positions the MFE structure
is very unlikely to fold due to influences of the surrounding sequence context. Figure modified from [P7].

7.2 The efficiency of cleavage at repeats in a CRISPR array

In Chapter 5, we established a large variance in the stable population of crRNAs processed

from a single array. There are two factors that could explain these differences in expression:

(1) the processed crRNA is not protected by associated Cas proteins and thus quickly

degraded, and (2) the recognition and cleavage of the repeat is not either efficient or inhibited.

Using Synechocistis sp. PCC6803 as an example organism, we provided evidence that an

ill-chosen spacer could possibly lead to faster crRNA degradation (c.f. Section 5.5); now, we

provide experimental proof that the sequence context, surrounding a repeat, can sequester

the formation of the repeat structure motif and that this inhibits repeat cleavage.

7.2.1 Experimental analysis of repeat cleavage events

The genome of Synechocistis sp. PCC6803 contains three proteins that are homologous to

the Cas6 family of endoribonucleases known to cleave CRISPRs during crRNA maturation:

Cas6-1 is in the vicinity of CRISPR1, and Cas6-2a and Cas6-2b are close to CRISPR2
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(Figure D.13). In-vivo, knock-out experiments showed that Cas6-1 processed the CRISPR1

array and that Cas6-2a was involved in processing mature crRNAs from the CRISPR2

array1 [P10]. To investigate single, repeat-cleavage events, we required a soluble protein

for in-vitro experiments. No purification of the Cas6-2a protein was possible—as it was

not soluble—but purification worked for Cas6-1. Interestingly, Cas6-1 could process both

CRISPR1 and CRISPR2 arrays in vitro [P8]; an observation that was not clear from the

in-vivo experiments [P10]. In the subsequent analysis, the ability of Cas6-1 to cleave repeat

instances in the CRISPR2 array was determined.

S2 R3 S3I

R3 R4S2 S3 S4II

S2 R3 S3 R4 S4 S5R5III

S2 R3 S3 R4 S4 S5R5 R6 S6IV

S3 R4 S4 S5R5 R6 S6 R7 S7V

S2 R3 S3 R4 S4 S5R5 R6 S6 R7 S7VI

S4 S5R5 R6 S6 R7 S7VII

Fragment

VIII S5 R6 S6 R7 S7

IX S6 R7 S7

cleaved

not cleaved

Figure 7.2. Repeat cleavage in different subsequence fragments of the CRISPR2 array in
Synechocistis. In each of the nine experiments I–IX, the represented subsequence fragment of the CRISPR2
array was incubated with the purified Cas6-1 protein. The presence or absence of all possible cleavage
fragments were determined by a subsequent northern blot analysis. If an observed length could be allocated
to a cleavage product where either or both ends resulted in a cleavage within the repeat, then this repeat
(or the repeats corresponding to both ends) were cleaved (blue). If such a length was not observed, then no
cleavage occured (red). Figure modified from [P8].

Processing of repeats in the CRISPR2 locus was measured using a simple northern blotting

approach: the purified Cas6 protein was added to the CRISPR2 array sequence, in-vitro, and

the lengths of accumulated processing products were determined in northern blots. Albeit

being cheap and fast, the caveat of this approach is that when considering the entire array, it

would be difficult to map most lengths to a unique product. Therefore, smaller fragments

of the CRISPR2 array were analysed. In addition, by selecting sub-sequences of the array,

repeat cleavage could be investigated in various sequence contexts. The cleavage of repeats

R3–R7 from CRISPR2 was investigated using nine different subsequences with a varying

range of sequence contexts (see Section D.3.2 for the exact sequences). For each fragment,

a cleavage experiment and subsequent northern blot was performed: each experiment is

1 No function was found for Cas6-2b.
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denoted by a Roman numeral from I–IX1. Each fragment was decomposed into its theoretical

processed products, assuming all combinations of cleavage events in the repeat. For each

repeat in a fragment, the presence or absence of the theoretical processing product that

begins or ends at a cleavage site in that repeat, was observed: if a product was detected,

cleavage of that repeat occured, if not, the repeat was not cleaved. The fragments and the

events of repeat-cleavage per fragment is illustrated in Figure 7.2.

7.2.2 Calculation of repeat-structure stabilities

For each sequence fragment depicted in Figure 7.2, we calculated structure profiles using the

repeat structure from Figure 7.3.A as published in [P10]. The structure accuracy, i.e., the

measured stability of the given structure, for each repeat instance was taken from the structure

profiles, which were calculated as described in Section 7.1.
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Figure 7.3. Structure motifs with a low measured stability were not cleaved at the CRISPR2
locus in Synechocistis sp. PCC6803. (A) The repeat structure motif, as published in [P10]. The structure
belongs to structure class M5 in CRISPRmap (Chapter 3). The black wedge indicates the cleavage site of
Cas6-1 (or Cas6-2a) and the yellow nucleotides mark the 8-nt tag remaining on the mature crRNAs. (B)
Cleaved repeat instances (blue) form stable motifs structures and a high base-pair accuracy, bp-accuracy , is
measured (x axis); in contrast, repeats that are not cleaved (red) do not form a stable motif structures as can
seen by the low base-pair accuracies. Figure modified from [P8].

7.2.3 Repeats with a low structure stability are not processed

There was a clear-cut difference in the calculated stabilities of the structure motif of CRISPR2

that is recognised by Cas6-1 between successful and unsuccessful repeat cleavage (Figure

7.3): repeat instances that were cleaved had very high base-pair accuracies (i.e. measured

stabilities), whereas, instances that were not cleaved displayed a marked decrease in bp-

accuracy . This trend was also shown in dotplots, where the average base-pair probability

for cleaved vs. uncleaved repeat instances was compared. We also included the average

base-pair probabilities of the surrounding spacer sequences (that have variable sequences)

using the mode spacer length in CRISPR2 (see additional Figure D.20). The dotplots show

1 The exerimental details are not part of this thesis and are given in [P8].
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that repeat loci, which are not cleaved, form stable structures with their surrounding spacers

that interfere with the functional structure motif; thus, the motif appears with reduced

base-pair probabilities than in cleaved repeats.

Figure 7.4. Example of how different sequence contexts can influence repeat folding and affect
crRNA processing. In the three fragments I, II, and VI, the cleavage of R3 was analysed. In all fragments,
R3 is surrounded by the same spacers, except that in fragment VI only half the spacer is present, but the
fragment is extended further by a different number of repeat-spacer units. Each fragment is a real subsequence
of the native CRISPR2 array. From a local structure prediction performed on each fragment separately, we
extracted the base pairs with an average probability greater than 0.5 and assembled these into the three
most-likely structures for the region S2-R3-S4. We see that the respective context sequences have a clear
impact on the R3 structure: both fragments I and II form stable base pairs with the surrounding spacers
and are not cleaved; the surrounding context in fragment VI is largely unstructured such that the functional
repeat-motif structure is stable and in this case, cleavage occurs. Figure taken from [P8].

Notably, the pattern of repeat cleavage is not black and white: some repeat instances exist

that are sometimes cleaved and other times not—even though the directly neighbouring

spacer sequences are the same. This implies that long-range influences occur that either

stabilise the repeat structure or favor alternative structures that are in conflict with the

functional binding-motif structure. An example is given by repeat R3 in Figure 7.4: Despite

identical neighbouring sequence context, repeat R3 is not cleaved in fragments I and II but is

cleaved in fragment VI. Both I and II fragments are not cleaved in R3, probably because

long, stem-loop structures, forming base pairs with spacers S2 and S3, prevent the structure

binding motif from forming. In fragment VI, the first half of S2 is missing, therefore, only a

smaller stem-loop is formed here, allowing the structure motif to form. In addition, structures

further downstream make S3 unstructured and may allow the Cas6 protein better access for
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binding and cleavage.

7.3 CRISPR-specific, context-based structure prediction of

repeats

In Part II, we used evolutionary conservation to detect CRISPR structure motifs. The entire

scope of evolutionary diversity of bacteria and archaea has not yet been captured, therefore,

in individual cases, there is no convervation information available. In such instances, an

alternative structure-prediction approach is required. The fact that repeat instances with

unstable structure motifs are not always cleaved means that an efficient CRISPR locus would

be one where the functional structure motif is the most dominant formed structure. We

exploit this assumption in the following repeat-structure prediction approach.

The general practise in the search for the functional CRISPR repeat structure is to compute

the MFE structure of a single repeat sequence. The repeat is not transcribed as a single

unit, however, but is located on a transcript in the context of other spacers and repeats.

These flanking sequences can impact the structure formation such that sub-optimal repeat

structures could be preferred over the MFE structure. Although the MFE prediction is

frequently correct due to highly stable stem-loop structures with many GC base pairs [P3],

we show that this procedure may not always be accurate. Our structure-prediction approach,

tailored specifically to CRISPR features, includes the entire array sequence and determines

the most stable structure formation within that context (illustrated in Figure 7.5). The

following steps resulted in the more accurate repeat-structure prediction.

1. The most probable repeat-structure candidates can be determined by visually inspecting

the base-pair probability matrix (i.e. dotplot in Figure 7.5.B) of the repeat sequence

as calulated by RNAfold [138]; the alternative is to calculate suboptimal structure

candidates using RNAsubopt [344]1. Usually RNAsubopt produces very many suboptimal

structures (w.r.t. the Gibbs free energy), however, since CRISPR repeats are so short,

the numbers are limited.

2. To determine the influence of the context sequence on each repeat sequence location, we

predicted the structure of the entire CRISPR array. Due to the length of long CRISPR

array sequences and unknown contexts that could arise through intermediate processing

steps, we used the local folding approach RNAplfold2 [16]. The locality parameter

settings for the window size (W ) and the maximum base-pair span (L) were taken from

Chapter 6.1, published in [P4].

3. Subsequently, the submatrices for each repeat instance were averaged to form an average

dotplot for the repeat structure (see Figure 7.5.C). The dotplot visualises the average

1 The older Vienna package version 1.8.4 was used, with parameters ’-p -d2 -noLP’ for RNAfold and -s -noLP
for RNAsubopt. Omitting the option ’-p’ for RNAfold calculated the MFE structure.

2 Vienna package version 1.8.4, options ’-noLP -W 150 -L 100’.
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base-pair probabilities for the repeat sequence for all occurrences in the array and

includes the influence of the context.

4. The candidate from (1) with the highest structure accuracy in the average dotplot

from step (3) represents the most probable structure for that CRISPR array. This is

the structure that has the highest probability on average across each repeat position.

Thus, it is likely to form more frequently at repeat locations than the other candidates.

The chosen candidate with the highest accuracy can usually be easily identified in the

average dotplot, due to its greater base-pair probabilities and therefore larger dot sizes

(blue structure in Figure 7.5.A).
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Figure 7.5. Comparison of structures resulting from the commonly used MFE prediction to
our CRISPR-specific context-based approach. Folding process is exemplified for CRISPR3 from
Synechocistis sp. PCC6803 from [P10]. (A) The two most stable structure candidates; the MFE structure is
in magenta. (B) The base-pair probability matrix, as computed by RNAfold [138], for the repeat sequence
where the MFE structure is in the lower triangle and the two structures from (A) are clearly marked in the
upper triangle. (C) Our approach: repeat structure in context. To analyse the influence of the context, we
calculated the base-pair probability matrix for the complete array (R = repeat, S = spacer). The preferred
structure in the context was determined by averaging the sub-matrices associated with the repeats. When the
repeat was folded in its sequence context, the magenta structure nearly disappeared and the blue structure,
which looks more like other known CRISPR structures, was more probable. Figure taken from [P10].

With this approach, we identified a repeat structure for CRISPR3 (blue structure in Fig-

ure 7.5.A) that resembles native CRISPR structures [P3] much more closely than the MFE

structure (magenta structure in Figure 7.5.A). Whereas, for CRISPR1 and CRISPR2, the

repeat MFE structure was also the most probable within its context [P10]. Future work in
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collaboration with experimental molecular biologists would be to verify that this structure

indeed guides Cas binding.

7.4 Conclusion

Recently, CRISPR-Cas systems have been used as a basis for a new genome-editing technol-

ogy [145,203,328]. Currently unstructured CRISPRs of type II are being used in an artificial

setting using single guide RNAs. In addition, it is perceivable to use artificial CRISPR arrays

in the future that are designed to target multiple locations simultaneously. The influence of

sequence context on structure motifs becomes highly relevant when designing such artificial

CRISPR arrays, especially when multiple repeat-spacer units are involved: it is important to

assess the stability of the functional structure motif for each repeat instance in an artificial

CRISPR array. The structure is one of many factors that influences cleavage efficiency. It is

interesting to note that many crRNAs did not lead to a successful defence of the invader in

Haloferax volcanii [P5,P11]. Thus, it is evident that artificial constructs that include multiple

repeat-spacer units must first be optimised or screened first for cleavage efficiency.

The more general, computational conclusion of this chapter is that the sequence context

surrounding a structured regulatory motif can significantly contribute to structure formation:

although most repeat instances in a CRISPR array are identical, the stability of a repeat

structure motif can vary between each locus, and even alternative structures can be formed

(see Figures 7.1.C and 7.5). This is a very important observation for the application of

structure prediction algorithms to structured, regulatory RNA. A naive way to predict the

secondary structure of a local region of interest, embedded within a larger transcript, would be

to extract this region and fold it globally. Results in this chapter demonstrate that this naive

approach may not always provide the functional structure; however, it is a valid approach if

conservation of base pairs is used for a more informed structure prediction—as was done for

identifying the CRISPR structure motifs in Part II. In Chapter 6, we determined that (1)

there are border effects at artificial sequence ends and (2) the range of the influence of the

context on a local structure is generally about 100–150 nt. Thus, taking the entire transcript,

or sufficient context (see the viewpoint notion in Part V, Section 9.2.1), and folding it with a

local folding approach, such as RNAplfold can take influencing context sequence into account

while ignoring the detrimental effect of predicting long-range base pairs.
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Part V: Characterising regulatory recognition elements

There are plenty of acquaintances in the world; but very few real friends.—Chinese proverb

Regulatory non-coding RNAs (ncRNAs) and RNA-binding proteins (RBPs) are trans factors

that bind to local, regulatory recognition elements (RREs), frequently found in mRNAs to

regulate their expression (see Section 2.7). Interactions between RNA and other molecules in

the cell occur all the time by chance. It is the affinity between the trans factor and the RRE,

however, which determines the strength of the interaction. The stronger the interaction, the

more likely it is that the interaction initiates a regulatory process.

We are particularly interested in determining interactions between miRNAs and their recogni-

tion sites (MREs) on target mRNAs, whose expression is generally down-regulated subsequent

to miRNA binding (Section 2.2.1). One of the earliest approaches for a computational

detection of miRNA targets is MiRanda that was published in 2004 and basically uses a

strict seed filter for finding MRE sites. In the last decade a manifold of further prediction

approaches have been developed. Their overall accuracy, measured e.g., in precision and

recall1, is low and only marginal improvements were achieved since the first attempts. For

example, on transcriptome-wide data comprising measurements of protein-expression-level

changes in response to miRNA transfection or miRNA knock-down [285], published methods

have performed very poorly. The highest recall achieved was about 45 % by using only a

simple seed search of complementary matches to the region 2–7 nt of the mature miRNA

sequence at a very low precision [3, 250,251]. At relatively high precisions of roughly 49 %,

sensitivities of below 15 % were achieved and at even higher precisions of 60 %, sensitivities

were below 0.05 % [3,250,251]. To summarise, the accuracy of published prediction approaches

is not sufficient for a robust application for biologists searching for candidate MRE sites.

Therefore, biologists have resorted to using variants of the CLIP-seq protocol to detect MRE

sites (Section 2.7.1). Although these have delivered good results in general, experiments do

1 Recall is also referred to as sensitivity.
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not always show a high overlap in detected sites since they are constrained to measurements

of interactions that occur at the time of measurement, and detected MREs are specific to

the tissue being evaluated. Moreover, mapping difficulties increase the number of MRE sites

that remain undetected. Thus, many binding sites are still missed by these experimental

approaches; an accurate computational detection is imperative for complementing such

experiments.

In this part, we took preliminary steps to improve computational prediction of MRE sites.

First in Chapter 8, we performed an empirical analysis of the statistical importance of

sequence and structure characteristics of regions flanking MRE sites to extend our current

model of functional miRNA-MRE interactions. Second in Chapter 9, we developed a natural

and highly flexible encoding RNA that is processed by an efficient graph kernel to generate

high-order features for machine-learning approaches to model any class of RRE interaction.

In particular, we focus here on its application to modelling miRNA-MRE interactions; a

previous application to RBPs was shown to be very successful [P6].
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CHAPTER 8

The significance of sequence and structure flanking miRNA-recognition

elements

Most prediction approaches limit themselves to assessing features within the boundaries

of MRE sites [213, 215, 305, 310, 342]. To improve the detection of MREs, some studies

have searched beyond the direct MRE site to explore the flanking sequences. In particular,

structural accessibility and nucleotide composition of the flanking sequences were explored [109,

143,164,171,234,303]. A commonly assumed model of binding is that the MRE site has to

be accessible for miRNA binding and the direct context should be accessible to allow room

for the larger Argonaute (AGO) protein, which is bound to the miRNA sequence [164,323].

Therefore, the accessibility of regions of various lengths around the miRNA (and siRNA)

binding sites have been assessed for their statistical significance [109,143,164,171,234,303].

These regions mostly overlap with the MRE site and thus assume a single binding event. To

explore the possibility of additional binding factors that may influence miRNA regulation, we

measured the significance of sequence and accessibility signals in regions that do not overlap

with MREs1.

8.1 MicroRNA interaction data

To assess the significance of accessibility around the MRE sites of plants, we curated a high-

quality dataset of miRNA interactions with mRNAs in the model plant organism Arabidopsis

1 Please note that a similar analysis was performed later in 2011 in [171], but, to the extent to our knowledge,
the work presented here was done prior to any publications on non-overlapping regions with MREs in 2009.
Due to time constraints, we did not pursue publishing this work previously, however, it motivated many
subsequent ideas in this dissertation to include more context when modelling or analysing RRE motifs.
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thaliana based on experimental evidence. The set contains exact hybridisation patterns for

110 functional and 114 non-functional miRNA-MRE pairs1.

The functional set was extracted from degradome data performed by German and col-

leagues [102]. In particular, deep sequencing was performed in two A. thaliana cell lines

to identify cleavage products of miRNA-directed degradation of target mRNAs: wild type

col-0 and the mutant xrn4-/-. An overrepresented abundance of reads that start or end

at the same position indicate a cleavage site. Such cleavage sites that lie within the reverse

complement sequence of known mature miRNAs were considered as evidence for a target

site2. German and colleagues provide the miRNA and the target mRNA accession numbers,

reads from the RNA-seq experiments that show the cleavage by the miRNA-RISC complex

and contain half of the MRE sequence, the abundances of these reads in the two cell lines,

and the exact cutting position. The following steps were performed to filter and extend

these data to provide more detail on the exact hybridisation pattern of each interaction, and

subsequently, accurate boundaries of the MRE site:

1. Most miRNA genes are processed into multiple mature sequence variants; a new

interaction entry was made for each variant that fit to the data.

2. To identify the target site on the mRNA, a BLAST [5] search was performed with the

reverse complement of each miRNA sequence. The best hits that coincided with the

given cutting points were used to identify the exact MRE position and its boundaries.

3. All miRNA targets were removed that did not contain signature MRE reads for both

cell lines to maintain a high quality of the data.

4. A prediction was made of the hybridisation between miRNA and mRNA target site by

IntaRNA [34]. Due to the fact that the miRNA and its MRE share a great degree of

complementarity, these hybridisation predictions should be accurate.

It is a very difficult task to gather a set of predicted hybridisations between miRNAs and

mRNAs that are not functional in the cell, i.e. non-functional MRE sites, and no such dataset

exists that is large enough for a statistical analysis. Most non-functional sites found in the

literature are due to mutation experiments and are therefore not native. We generated a set

of non-functional interaction pairs that share similar hybridisation patterns to functional

interaction pairs based on experimental evidence that the non-functional pairs do not degrade

the target. First, the results from the Target Search prediction method, which is part of

the Web MicroRNA Designer WMD3 [236], was used to predict potential target sites and these

were filtered according to two criteria. (1) All verified mRNA targets given for each miRNA

from the ASRP [120] database were removed, and (2) the expression data given by the ASRP

database was used to delete those mRNAs from the set that showed more than 5 % knock

down in the dicer mutant dcl1-7 in comparison with the wild type col-0. In addition, all

1 This dataset was generated in October 2009 and all data were downloaded from public databases at this
time.

2 These data include only MRE sites that result in mRNA cleavage and not inhibition.
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pairs were removed that showed no expression of either the miRNA or the mRNA. For the

GEO (gene expression omnibus) accession numbers of the expression data, see Table D.21.

8.2 Signals of higher accessibility downstream of MRE sites

We compared accessibility signals between the curated functional and non-functional MRE

sites using a sliding window approach in the surrounding sequence context. In this way, not

only the MRE sites but regions independent of the miRNA binding site were assessed.

8.2.1 A sliding window approach to assess accessibilities around MREs

Because miRNAs and their MREs are of variable length, the miRNA seed sequence was used

as an anchor to align the MRE flanking sequences. We define the nucleotide opposite the

first nucleotide in the miRNA sequence as position zero. Flanking sequences 200 nt up- and

downstream of position zero were extracted from the target mRNAs for both the functional

and the non-functional set described in Section 8.1. A single sequence which includes either

a functional or a non-functional MRE site is denoted as R. Accessibilities were computed

for R using RNAplfold from the Vienna Package version 1.8.4 and the following settings for

the locality parameters: a window size (W ) of 100 nt and a maximum base-pair span (L) of

50 nt1. We set U = 10 as the RNAplfold parameter for the maximum length of accessible

regions. With this setting, RNAplfold calculates for all u ∈ {1, . . . , U} the mean probability

pu(i, j) with j− i+ 1 = u that the subsequence Ri...j is unpaired, i.e. accessible, for all folding

windows which contain Ri...j (see Section 2.5.6). pu(i, j) represents the normalised number of

times we expect to observe that the subsequence Ri...j is accessible over all windows.

Using the above setup, the accessibilities for each u-region could be assessed independently,

with increasing distance from the MRE sites. However, since the flanking mRNA sequences

are only aligned by the 3’ terminus of the MRE site (position zero) and not by sequence

conservation (which generally does not exist in the flanking sequences), assessing differences in

these small u-regions would not allow for positional variations of flanking signals. Therefore,

as illustrated in Figure 8.1.A, we applied a sliding-window approach using windows of size 20

nt, which is twice as large as U and thus larger than all u values for accessibilities calculated

by RNAplfold. We define a window W l
k as the subsequence Rk...(k+l−1) that starts at position

k in R and has the length l (we used l = 20). Then we calculate the mean accessibility in W l
k

for one u ∈ {1, . . . , U} as

1

l − u+ 1

∑
k≤i≤j<k+l,
j−i+1=u

pu(i, j),

1 Please note that this experiment was performed prior to the work done in Chapter 6 where we determined
better W and L parameter values for RNAplfold. Therefore, values for W and L parameters were optimised
for best significance results.
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the maximum accessibility as

max
k≤i≤j<k+l,
j−i+1=u

{pu(i, j)},

and the minimum accessiblity analogously to the maximum. In Figure 8.1.A, we abbreviated

these equations to mean{pu(i, j)}, max{pu(i, j)},min{pu(i, j)} for the mean, maximum

and minimum accessibility calculations per window for a fixed u, respectively. For each

window sequence W l
k, the distributions of mean, maximum, and minimum accessibilities were

calculated for all sequences in the dataset. Subsequently, sequences containing functional

MREs were compared with sequences containing non-functional MREs. A separate comparison

is performed for each u ∈ {1, . . . , U}. To assess whether the distributions per window were

significantly different, we performed both a two-sample Student’s t-test and a two-sample

Wilcoxon Rank Sum test; the latter test is non-parametric and thus independent of the type

of distribution. The results were plotted in Figure 8.1.B where the t-values are represented

by dots and if p ≤ 0.5 was achieved for the Wilcoxon test the t-value is plotted using a solid

line (otherwise the solid line is at zero). it is indicated by a solid line for t-values that is not

zero. Thus, results from both tests were combined in a single visualisation.

8.2.2 Higher accessibilities were observed 20 to 50 nt downstream of

MREs

In Figure 8.1.B, we observed a clear enrichment for windows with higher accessibilities for

functional MRE sites in comparison with the non-functional set. The region of significant

accessibilities are approximately between 20 to 50 nt downstream of the MRE sites; the

signal is robust for all mean, minimum and maximum accessibility calculations. This region

is noticeably separated from the MRE site, alluding to a potential independent recognition

motif. Moreover, there is no discernible signal for higher accessibilities overlapping with the

MRE site. In addition, disjoint regions of higher accessibilities not overlapping with MRE

sites were also observed for two independent datasets from human and firefly, despite these

being animals and harbouring distinct differences in their RNAi pathways in comparison

with plants [6]. The same results were also observed for siRNA binding sites (siRNAs are one

of the other classes of small ncRNA commonly integrated into Argonaute proteins in RISC

complexes, see Section 2.2). See the results for the independent datasets in Section D.4.

8.3 Nucleotide frequencies corroborate accessibility signals

In addition to signals of higher accessibilities around MRE sites, we performed a simple

analysis of nucleotide compositions in the same windows as in Section 8.2. Instead of

calculating mean, minimum, and maximum accessibilities per window, we calculated the

frequencies of single nucleotides, of G+ C, G+ U and C + U (other combinations are given

by the inverse of the three given), and of all dinucleotides and the significant results were
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Figure 8.1. Accessibility is significantly higher downstream of MRE sites in A. thaliana. Ex-
tended context sequences surrounding MRE sites are aligned by the position that is matching to the first
nucleotide in the miRNA by setting this to position zero. (A) In a sliding-window approach, the accessibility
of each window is measured using RNAplfold predictions for regions u = 5 and u = 7. (B) The centre position
of a window is plotted on the x-axis and the t-value of a Student’s t-test comparing the distributions of
accessibility measurements between the 110 functional and 114 non-functional MRE sites on the y-axis. When
p ≤ 0.05 was achieved for an independent non-parametric Wilcoxon Rank Sum test on the same data, the
t-value was plotted using a solid line, otherwise the solid line is at zero. No correction for multiple testing was
performed here.

plotted in Figure 8.2. The most notable result is that there is a clear enrichment of C and

U nucleotides and UC and CC dinucleotides from approximately 0 to 50 nt downstream of

MREs. Correspondingly, the nucleotides G and A and dinucleotides AG and GA are depleted

in the same region.

8.4 Conclusion

We observed an enrichment of structural accessibility and a high C and U single- and

dinucleotide compositions in a region flanking the MRE sites of A. thaliana. Of special interest

is that this signal did not occur within the MRE site, but instead 0 to 50 nt downstream. This

observation suggests a further recognition element that is not the MRE and could possibly be

indicative of Argonaute binding or the binding site of another cooperating factor. In a recent

publication, it was shown that Argonaute may bind to an independent motif with increased
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accessibility 10–20 nt upstream of the MRE seed site in humans that was A rich [192]. This

motif was not validated with the presented approach in A. thaliana. Instead we see the signal

downstream and a depletion in As. In both work, however, there is a signal independent of

the MRE site. We further support this by identifying similar independent signals if higher

accessibilities in human and firefly MRE sites, and also for siRNA data.

From the data presented in this Chapter, it is difficult to deduce, whether accessibility or

an affinity to C and U nucleotides is more important downstream of MRE sites. Therefore,

additional analyses, especially wet-lab experiments are required to fully characterise the

reason for the observed signals. Nonetheless, it is clear that the context region surround MRE

sites contain significant signals of sequence and structure. Identifying independent recognition

sites in the vicinity of MRE sites could possibly improve the computational detection of

miRNA targets.
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Figure 8.2. Significant signal of nucleotide composition downstream of MRE sites in A. thaliana.
We assessed the significance of enriched or depleted nucleotide compositions in (A) and dinucleotide frequencies
in (B) by calculating the respective values for sliding windows of 20 nt. Each time, we compared distributions
calculated from the functional and non-functional MRE sites described in Section 8.1. The centre position
of a window is plotted on the x-axis and the t-value of a Student’s t-test on the y-axis. When the p-value
for an an independent non-parametric Wilcoxon Rank Sum test was significant with , then the t-values are
indicated by a solid line; otherwise the solid line is at zero. The significance threshold was p ≤ 0.05, applying
the Bonferroni correction for multiple testing.
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CHAPTER 9

A framework for modelling regulatory recognition elements

Accurate in-silico detection of RREs from a plethora of trans factors that regulate gene

expression has remained a troublesome and elusive goal in cell regulatory research—despite

a desperate demand for efficient computational tools. Currently, very little is known about

characteristics that define interactions between trans factors and their respective RREs. In

the past, the major bottleneck has been a lack of data, i.e., large, high fidelity datasets of

functional and non-functional interaction candidates that could be used for learning interaction

models were rare or mostly unavailable. The recent application of diverse CLIP-seq protocols

to elucidate interaction sites in specific tissues or cells has produced a welcomed influx of data

(see Section 2.7.1). We developed a dynamic and flexible machine-learning framework that

exploits this new source of data to capture sequence and structure binding affinities of trans

factors and to support the computational detection of RREs. Trained models can be applied

to any other cell line or tissue to detect further trans-factor–RRE interactions. Biological

insights into characteristics of such interactions can evolve rapidly and thus computational

tools must adapt at the same speed. The special advantage of the herein presented framework

is that proposed graph encoding of interaction sites can easily and efficiently be modified and

extended to include additional knowledge or hypotheses as they become available.

The proposed machine-learning framework can be adapted to model binding preferences of any

type of trans-factor–RRE interaction. Its application to RBP-RRE interactions was already

very successful and has been published under the name GraphProt in [P6]. GraphProt was

mainly developed by Daniel Maticzka and will be part of his dissertation, therefore, to limit

overlap, the focus of this chapter is its extension and application to miRNA-MRE interactions

(in humans), which should be viewed as work in progress.
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9.1 A natural encoding of regulatory recognition elements

Conventional approaches for detecting miRNA target genes learn prediction models from a

handful of pre-calculated features about the miRNA-MRE interactions (Section 2.7.3), e.g.,

the number of base pairs within the seed interaction or the extended hybrid, accessibility of

the target mRNA within the MRE and of the surrounding sequence, and hybridisation free

energies. In this work, we propose an encoding of miRNA-MRE interactions that is more

natural. The key idea is to simply encode the interaction as a graph, which is subsequently

processed into thousands, or millions of features1 that enable a robust comparison between

functional and non-functional interactions; a process that is reminiscent of using k-mer

frequencies to compare the similarity of strings, e.g., huge molecular sequences [62].

9.1.1 General graph encoding of any regulatory recognition element

The foremost property for trans-factor binding specificity is the nucleotide sequence [249]. For

miRNAs, the first characteristic to be identified was the seed interaction [11,166,190,191,285],

and recent evidence suggests that human Argonautes bind to an A-rich motif, 10–20 nt

upstream of the seed interaction [192]. To capture sequence preferences, the primary structure

of an RRE can be represented as a simple (chain) graph, connecting the nucleotides according

to their backbone structure. This simple model has already shown high performances for

many RBPs [P6]. There are many trans factors, however, where not only sequence affinity is

important, but structural affinity is also a discerning factor. For example, the A-rich motif

for Argonaute was observed to be structurally accessible [192], and some Cas6 proteins bind

specifically to short hairpin structures (Part II). We can extend the simple sequence model

to include the structural context of RREs as illustrated in Figure 9.1. First, the RRE is

extracted from its endogenous sequence with sufficient sequence context to calculate accurate

local structures2. Second, since we require fixed structures, we generate several alternate,

probable folding hypotheses using RNAshapes [296]; in this way, we avoid the error-prone

use of only the MFE structure (Section 2.5). RNAshapes categorises the ensemble of all

possible structures into several shape-abstraction classes, called shapes: the MFE structure

within each shape class is called the shrep. We use the shrep structure for each probable

shape class for our structure encoding. Both the number of shreps/shapes chosen for the

encoding (three for this work) and the shape-abstraction level (also three) are parameters

of the encoding. Stacking base pairs are further highlighted by an additional vertex with

edges between it and the four nucleotides involved (not depicted in Figure 9.1 for clarity).

Third, we can extend the basic, secondary-structure graphs (with nucleotides and base pairing

information) to hypergraphs that annotate for each nucleotide, the secondary structure

element (Section 2.4.1) it belongs to. Hence, sequence, base pairing, and structure elements

are modelled together. Although a single graph is given as the input encoding, graphs that

1 Both the number of features determined by the model hyperparameters R and D and the weights learned
for the features are regularised so that overfitting to the training data does not become a problem.

2 According to the results in Chapter 6, about 100–150 nt on either side of the RRE would be sufficient, we
use 150 nt here.
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Figure 9.1. A natural encoding of regulatory recognition elements as graphs. First, a subsequence
is extracted from the mRNA where the RRE is embedded within its natural sequence context; the RRE
site is marked internally as a viewpoint. Second, multiple folding hypotheses are generated for the extracted
subsequence using RNAshapes; structures are represented in the graph format with vertices labelled with the
respective nucleotides. Third, each structure candidate graph is extended to a hypergraph to also encode
the abstract RNA shape in the form of secondary structure elements (see Section 2.4.1, Definition 2.11).
Nucleotides from the base level are linked to their respective element in the abstract level of the hypergraph
via hyperedges.
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encode increasing levels of information are encoded in separate, disjoint subgraphs. For

example, the sequence-only graph is combined with the full structure graph (or hypergraph)

as unconnected subgraphs. In comparison with the sequence-only model, the full structure

model delivered increased performances for selected RBPs where it is assumed that structure

plays an additional role in identifying target RREs [P6].

9.1.2 Extension to miRNA recognition elements

To avoid having to select exact features of the hybrid pattern between miRNA and MRE, e.g.,

the number of base pairs within the seed region, or the size of bulges, etc., we extended the

general RRE encoding by simply adding the mature miRNA sequence and the intermolecular

base pairs (see Figure 9.2). The pairs of subgraphs subsequently extracted by the graph

kernel capture both the overall structure of the hybrid and whether the MRE is structurally

accessible or not.
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Figure 9.2. Full encoding of miRNA-MRE interactions. The mature miRNA sequence is added to
the mRNA local structure with the intermolecular base pairs within the hybrid structure. The MRE is the
region on the mRNA that is covered by the miRNA, starting from the first and ending with the last nucleotide.
The MRE is set as the viewpoint and the added area of influence around the viewpoint due to the feature
extraction process is also indicated in yellow. Nucleotides that display at least two T to C conversions (U to
C in the RNA) in the RBP-binding profiles from [12] are extended by a further vertex (blue), linked by a
single edge.

Recently, an effort was made to catalogue all RBPs that bind to mRNAs in the human

HEK293 cells [12, 38, 214]. Instead of purifying a selected cross-linked protein as in the usual

CLIP-seq approach, these authors have modified the protocol to purify all RNA that has

been cross-linked to any RBP. In such a way, transcriptome-wide signatures of any RBP

binding event can be measured. In the literature, there is both evidence of cooperative RBPs

that can enhance miRNA regulatory effects (e.g., the additional binding of the Argonaute

protein [192] or binding of Pumilio proteins [148, 162]) or sequester miRNA binding (e.g.,

as has been observed for HuR [42]). To capture possible cooperative or competitive effects

of RBPs we have extracted the data from [12] (see Section D.4 for details) and have added
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additional vertices to U nucleotide-vertices that display at least two T to C mutations in the

RBP-binding profiles.

The full encoding of the miRNA-MRE interaction does not have to be used. We explored var-

ious encodings, starting from the most basic representation, and extending this hierarchically

to the full model. All explored models are summarised in Table 9.1.
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Figure 9.3. Feature extraction of the NSPD Kernel. (A) The hypergraph encoding abstract structure
elements is transformed into the respective incident graph by adding additional vertices for each hyperedge
relation that links the basic structure with its structure element. (B) The undirected graph is converted to a
directed graph to reflect the natural 5’ to 3’ orientation of RNA molecules; to retain all information, the graph
is duplicated with the copy containing inverted edge directions and modified labelling. (C) The graph kernel
decomposes the input graph into pairs of neighbourhood subgraphs. Each subgraph pair is determined by a
radius r ≤ R and a distance d ≤ D where R and D are parameters set by the user. The dark blue vertices are
roots from which the path lengths are determined. (D) The frequencies of each and every pair of subgraphs
are stored in a feature vector.

9.2 Feature extraction and model building

Once functional and non-functional miRNA-MRE interations have been encoded as one

of the (hyper)graphs in Table 9.1, we apply a machine-learning technique to differentiate

between the two sets. Conventional machine learning approaches require a feature vector to

describe each instance. For this purpose, we apply a graph kernel to convert the input graph

into feature vectors (see Figure 9.3). Subsequent to the conversion, any machine learning

approach can be applied to the feature vectors to build prediction models. In this work, we
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Table 9.1. Eleven encoding models to capture characteristics of miRNA-MRE interactions.
Models 1–3 can be applied to any RRE; models 3–7 are extended to encode mir-MRE sites; models 8–11 add
further experimental RBP-binding information.

No. Model Name Description

1 sequence Encodes the MRE sequence within its mRNA
sequence context

2 structure Encodes the MRE within its mRNA sequence
context as secondary structure candidates cal-
culated by RNAshapes

3
structure

&elements
Extends the basic structure model by annotat-
ing abstract structure elements

4 hybrid Encodes the miRNA and MRE sequences with
the intermolecular base pairs as predicted by
IntaRNA

5
sequence
&hybrid

Combines the hybrid graph with the extended
context sequence

6
structure
&hybrid

Extends the basic structure model with the
miRNA hybrid structure

7
structure, hybrid

&elements
Extends the structure and abstract structure
element graph with the miRNA hybrid infor-
mation

8
sequence

&protein profiles
Extends the sequence-only model with
nucleotide-wise graph extensions when there is
evidence of RBP binding (blue vertices)

9
sequence,hybrid
&protein profiles

Extends the sequence and protein profile model
with the miRNA hybrid information

10
structure

&protein profiles
Encodes the structure model with added infor-
mation when there is evidence of RBP binding

11
structure, hybrid
&protein profiles

Extends the structure and hybrid model with
added information when there is evidence of
RBP binding
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applied the Support Vector Machine (SVM) to the present classification task. However, when

affinity measures are available, any regression technique can be applied—as was done in [P6].

Prediction performances between various models were compared by the traditional ten-fold

cross validation, where a model is first trained on 90 % of the data and then tested on the

remaining 10 % of the data, and train–test iterations are performed ten times in total where

each of the test datasets do not overlap; the average performance is reported. The following

sections briefly describe the graph kernel and extensions to the input graph that are required

for extracting accurate features.

9.2.1 Graph kernel

We employed the Neighborhood Subgraph Pairwise Distance kernel (NSPD Kernel) [56] to

convert input graphs into feature vectors. The main idea of the approach is to decompose the

graph into (usually) thousands of small overlapping subgraphs and the final feature vector is

represented by sparse vector of subgraph frequencies (illustrated by Figure 9.3.C–D). Every

subgraph is assigned a numerical identifier via an efficient hash-based technique. Comparisons

on numerical identifiers is not only extremely efficient, but allows a fast (albeit approximate)

solution to handling graph isomorphisms. In this way, we can effectively process millions of

features that can correspond to large input graphs. In detail, the NSPD Kernel describes

features as a conjunction between two neighbourhood subgraphs at a small distance from

each other. Two parameters determine the characteristics of these subgraph pairs (and are

related to the complexity and size of the entire feature set): (1) the maximum size of the

neighbourhood, called the radius (R), and (2) the maximum distance between any two root

vertices, called the distance (D). Each subgraph contains a root vertex from which the

radius and distance are counted and features are extracted for all combinations of values

r ≤ R and d ≤ D (Figure 9.3.D for an illustration). Optimal values for R and D change for

different models and encodings (see [P6]). Optimising these parameters can therefore increase

prediction performances.

To handle the specific demands of comparing RREs, the original NSPD Kernel was extended

as follows: (1) simple graph encodings were upgraded to hypergraphs to handle the abstract-

structure-element annotations; (2) directed graphs were considered rather than undirected

graphs so that only features are considered that regard the 5’ to 3’ direction of nucleic acids;

and (3) to avoid an influx of uninformative features due to the increased sequence context

required for accurate structure predictions, we restrict feature extraction to only the RRE

region by labelling this region as a viewpoint. This means that the kernel extracts informative

features by considering only those vertices labelled as viewpoints for the feature extraction

process.

A kernel for hypergraphs

The hypergraph that encodes the abstract structure elements is first converted into an

incident graph (Figure 9.3). For each one-to-many relation (i.e., hyperedge) between the
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basic and the abstract structure levels in the hypergraph, a relation vertex is added, with

a single edge leading to the abstract structure element and many edges leading to each

vertex (i.e. nucleotide) involved in that element. In the NSPD Kernel, published in [56],

the graph is decomposed into features (pairs of subgraphs) with respect to the radius R

and distance D using shortest paths (see Figure 9.3.C). A problem arises when the graph

contains vertices with a large degree (i.e. many connecting edges), as is the case for the

hypedges in Figure 9.3.A. In this case, the shortest path distance notion for the feature

decomposition becomes degenerate: many vertices become immediate neighbours of each other

and the decomposition would result in uninformative features corresponding to extremely

large subgraphs. Such large subgraphs are unlikely to occur in more than one instance and

this would make effective learning or generalisation impossible. This situation occurs if

the incident graph in Figure 9.3.A is used for the hypergraphs: hyperedges (i.e., relations

between the basic and the abstract structure levels) yield vertices with a large degree, e.g., a

stem relation vertex is connected to all stacking base pairs within the stem. This effectively

removes the nucleotide order of the RNA sequence, since there exists a shortest path of length

two between any two nucleotides involved in the stem structure. In order to circumvent this

problem, the NSPD Kernel was extended to work on the incident graph by (1) considering the

relation vertices as non-traversable by paths; and (2) by creating additional pairs of subgraph

decompositions where the root vertices of the two paired neighbourhoods are on the two

endpoints of the hyperedge relation. This yields features that are aware of the nucleotide

composition of a substructure and, at the same time, of the position of that substructure

in the global abstract structure. Finally, the updated NSPD Kernel generates three sets of

features: one set only describing the basic structure level, a second set only describing the

abstract structure, and the third set of features represent relations between the basic and

abstract levels.

Directed graphs

To introduce the asymmetry imposed by the 5’ to 3’ orientation of RNA, we converted the

undirected graphs into directed graphs (Figure 9.3.B). To be able to capture all relevant

information, while still maintaining consistency with the RNA direction, we duplicated the

graph, relabelled all vertices by adding a distinguishing prefix, and reversed the direction of

all edges. The NSPD Kernel only traverses paths according to edge directions.

Selection of kernel viewpoints

The selection of kernel viewpoints limits the extraction of features to only relevant regions

of the input graph. Applying viewpoints allows the use of extended context sequences

for accurate structure predictions. Subsequently, only informative features are extracted.

Without the viewpoint notion, thousands of uninformative features would be generated,

leading to lower prediction performance. More precisely, when a viewpoint is set, at least

one of the root vertices in an extracted pair of subgraphs is required to be part of the
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viewpoint. In this work, we set the viewpoint to cover the entire MRE region (see Figures 9.1

and 9.2). Extracted features do not only include vertices and edges within the viewpoint

(i.e. the MRE), but due to the radius (R) and diameter (D) parameters, an extended area of

influence exists that reaches beyond the MRE (Figure 9.2); this area of influence extends to

a maximal distance of R +D from vertices within the viewpoint. Setting viewpoints that

were symmetrically larger than the MRE did not increase prediction performances (data not

shown). The viewpoint technique was first introduced in [90].

9.3 Application to miRNA recognition elements

To test whether the proposed models can accurately detect miRNA-MRE interactions, we

first required a large set of exact interaction data. No sufficient dataset exists in the literature,

therefore, we took careful measures to curate a suitable dataset from recent CLIP-seq

experiments. Although these experiments detect Argonaute-RRE interactions, they usually

do not give any insight into which miRNA is involved—if any is involved at all. Hence, we

applied extensive measures to procure high-quality hybrid structure predictions between the

identified Argonaute-RRE and the best-matching expressed miRNA sequence.

In this work, we focus on deriving the best model for encoding miRNA-MRE interactions. For

the first time, we generate single-miRNA models to encode specific preferences of individual

miRNAs. In addition, we determine the generalisation capabilities of trained models to

previously unseen miRNAs.

9.3.1 Acquisition of high-fidelity miRNA-MRE interaction data

Models were trained and tested on carefully curated functional and non-functional miRNA-

MRE interactions that were derived from CLIP-seq experiments [122,135,172] with cross-

linking to Argonaute proteins in HEK293 cells. Using more than 14,000 filtered AGO1–4

RRE sequences, we selected functional sets of interactions for the miRNAs with the highest

expression levels in the same HEK293 cells. Corresponding non-functional sites were selected

from transcripts that contained—but did not overlap with—cross-linked sites from all available

CLIP-seq experiments [122,135,172] (see Section D.4 for details). Both functional and non-

functional sets contained roughly the same number of—and for each miRNA, at least a

few hundred—interactions. Our extensive efforts ensured that the functional interactions

closely resembled the non-functional interactions. Both sets contained the same type of seed

interactions so that discerning the difference between the two classes was extremely difficult.

In addition, to select anchors for calculating candidate miRNA-MRE hybrids, we first scanned

potential target sequences for the locations of various seed types that have been observed to

cause a regulatory effect in experiments reported in the literature [45,65,121,196,216,306,306].

The complex filtering and processing steps that were necessary to generate the datasets are

described in Section D.4.
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9.3.2 Performance comparisons of various encoding models

We first trained and tested all encoding models from Table 9.1 on five selected miRNAs

individually. For each miRNA-model combination, the parameter settings for the graph,

maximum radius R and distance D, were optimised, testing values 1 to 4 and 1 to 6,

respectively. Performance measures were reported as the area under the receiver operating

characteristic (AUROC) in a ten-fold cross validation setting in Table 9.2.

Although all encoding models displayed a certain degree of predictive power (any AUROC

value above 0.7 is an acceptable performance), we observed variations between the different

models (Table 9.2) that were consistent for each of the tested miRNAs. The first significant

result is that in this setting, structure information did not improve prediction performance.

It is possible that the current structure encoding does not capture the relevant information

for miRNA-MRE interactions. However, the finding is consistent with results from Chapter 8,

in which we determined that the actual MRE site does not display a significant signature of

higher accessible structures. The accessible region downstream of MRE sites could be too

far away in humans to be able to capture this in current models. Extending the viewpoint

beyond the MRE did not improve performances due to the massive increase in uninformative

features, therefore, one would have to further narrow down the second area of influence to

possibly increase predictive power.

Overall, even the simple sequence model (model 1 in Table 9.2) is powerful, achieving an

average AUROC of 0.84 for the five miRNAs. Adding the miRNA hybrid structure to the

MRE sequence does increase the performance slightly; notably adding extended context

information around the MRE site performs better than just restricting the encoding to the

miRNA-MRE hybrid structure. A more marked increase in performance is achieved by adding

the RBP binding information (model 9 in Table 9.2). Whether the signal that is captured is

Argonaute binding or the binding of a different RBP remains to be seen.

In summary, the best model for detecting miRNA-MRE interactions is one that includes

the context sequence of the MRE, the hybrid structure with the miRNA and RBP-binding

profiles, if available.

9.3.3 The ability of trained models to predict interactions for miRNA not

in the training data

To test the generalisation capabilities of the two best-performing encoding models, we set up

a special ten-fold cross validation task where we test on interactions for miRNA that were

“unseen” in the training phase. In each iteration, we trained on data containing interactions

for nine miRNAs and tested on the interaction data for the one miRNA that was excluded

from the training data. This was iterated ten times where each of the ten miRNAs was used

for training once. For this experiment, the ten miRNAs with the top expression levels were

extracted from the AGO1–4 PAR-CLIP curated dataset, each with hundreds of functional
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Table 9.2. Comparison of different encoding model for interaction data comprising of single
miRNAs. Parameters R and D are optimised for each miRNA–model combination. Interaction data for the
five tested miRNAs1 are extracted from the AGO1–4 PAR-CLIP curated dataset (Section D.4); in addition,
interactions were filtered to take only the top 50 % with the highest read coverage for the RREs detected in the
PAR-CLIP experiment [122]. The performance is measured as the AUROC in a ten-fold cross validation setting.
Each dataset contained hundreds of balanced functional and non-functional interactions. Two encoding models
are selected for subsequent use that performed best and belong to different categories of information (in bold).

No. Model Name mi1 mi2 mi3 mi4 mi5 avg.

1 sequence 0.83 0.81 0.84 0.86 0.84 0.84

2 structure 0.79 0.75 0.78 0.83 0.80 0.79

3
structure

& abstract shape
0.71 0.67 0.70 0.73 0.74 0.71

4 hybrid 0.85 0.78 0.83 0.87 0.85 0.84

5
sequence
& hybrid

0.87 0.81 0.85 0.87 0.87 0.85

6
structure
& hybrid

0.84 0.76 0.82 0.86 0.84 0.82

7
structure, hybrid
& abstract shape

0.80 0.70 0.77 0.80 0.81 0.78

8
sequence

& protein profiles
0.86 0.84 0.84 0.89 0.89 0.86

9
sequence, hybrid
& protein profiles

0.88 0.85 0.86 0.90 0.91 0.88

10
structure

& protein profiles
0.82 0.81 0.80 0.86 0.85 0.83

11
structure, hybrid
& protein profiles

0.88 0.83 0.84 0.88 0.89 0.86

137



Chapter 9. A framework for modelling regulatory recognition elements

Table 9.3. Testing the generalisation capability of trained models to unseen miRNA. In a leave-
one-miRNA-out cross validation setting on the ten highest expressed miRNA in the AGO1–4 PAR-CLIP curated
dataset, we assessed the ability of models to predict miRNAs previously unseen in the training phase. The
average performance was reported for the ten iterations. The same R and D parameters were applied that
were optimal in Table 9.2 for non-overlapping interaction data.

No. Model Sensitivity Specificity Precision AUROC

5 0.68 0.69 0.69 0.75

9 0.78 0.68 0.71 0.81

and non-functional interaction sets1. It is important to note that the seed sequences for all

ten miRNAs differ enough that models are not just capturing seed-complementary regions.

The AUROC results of more than 0.75 in Table 9.3 give an indication that it is possible to

learn from interaction data including a mixed set of miRNAs and use this model to detect

MRE sites for previously unseen miRNAs, i.e., miRNAs not in the training set. However,

the performance did drop in comparison with models using only single-miRNA interaction

data. Although it is easier to learn from single miRNAs, this is not very suitable for practical

prediction approaches. First, one would have to build a model for each miRNA separately,

and there exist over 20 thousand miRNA genes in the miRBase [176]. Second, even if we

could create a model for each miRNA, it is unlikely that enough data will exist for training

for every miRNA; especially for miRNAs with very few targets. Thus, the generalisation

capability of trained models is vital to the success of the proposed method.

9.4 Conclusion and outlook

We have proposed a flexible and efficient graph kernel for RNAs that is capable of capturing

binding characteristics of any RRE and specifically MREs. The key flexibility of the approach

is that one only has to change the input graph encoding that can generally be processed by

the NSPD Kernel into feature vectors used by any machine learning approach. Comparing

instances via the frequencies of thousands of tiny subgraphs is comparable to comparing

strings using the frequencies of k-mers; this approach is robust and it is unnecessary to perform

additional feature selection as is done in conventional machine-learning approaches [43].

In this work, we determined that the best way to encode miRNA-MRE interactions (for our

data) is a graph that includes the MRE, a small area of influencing context sequence, and the

hybridisation structure between miRNA and MRE. An additional boost in performance can

be achieved by exploiting the availability of transcriptome-wide binding profiles of arbitrary

1 The miRBase [176] identifiers for the ten selected mature miRNAs were as follows: hsa-miR-30e-5p,
hsa-miR-103a-3p, hsa-miR-21-5p, hsa-miR-423-3p, hsa-miR-92a-3p, hsa-miR-19b-3p, hsa-miR-10a-5p, hsa-
miR-let-7a-5p, hsa-miR-301a-3p, hsa-miR-93-5p.
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RBPs [12]. Models that were trained on miRNA–interaction data comprising of only a

single miRNA resulted in the best performances, however, when testing on multiple-miRNA-

interaction data, acceptable performances were also achieved. Hence it should be possible to

create general models that can predict target sites for any miRNA.

We have already published results that prove the exceptional ability of the RNA graph kernel

to capture RBP binding characteristics. Although we observed a decrease in performance when

using the structure model for miRNAs, selected RBPs displayed an increased performance

in comparison with the sequence-only model [P6]. Furthermore, the RNA-sequence-and-

structure encoding described in Section 9.1.1 was successfully applied in an independent study

to the clustering of thousands of RNA sequences to detect conserved families of functional

non-coding RNA [136]. Taken together, these results are indicative of a very promising

application of the RNA graph kernel to predict MREs for any miRNA. Although to prove

its suitability, extensive benchmarks with state-of-the-art prediction approaches are still

outstanding. Comparisons are currently being processed. Such benchmarks of miRNA

prediction tools are an extremely time-consuming task: many approaches do not provide

software that is suitable for high-throughput predictions and their published results are

difficult to map to the data used in this work due to different genome assemblies and missing

or incompatible sequence identifiers. Moreover, we are planning to extend the generalisation

capability of the models and curate improved interaction data.

We are currently working on a procedure to extract information about informative features

from the trained models. Since we model the input as a graph that represents the natural

setting of a miRNA-MRE interaction, informative features can be mapped back onto the

input graph to understand what the model has learnt. A simple approach to extract sequence

and structure profiles was already implemented for GraphProt and successfully identified

information about RBP affinities [P6], however, profiles reduce the complete information

available in the full graph encodings.

A general limitation of the presented approach is that sufficient training material is required

for generating prediction models. Therefore, future effort should be put into determining the

capability of models trained on one species to predict miRNA interactions in closely-related

species. For example, if the models presented in this work, trained on human data, could

predict interactions occurring in mice, this would greatly increase the scope and applicability

of RNA graph kernels.
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Knowledge is not wisdom, unless used wisely.—J. D. Anderson

Research of natural sciences is roughly divided into two major goals: (1) learning more

about fundamental concepts, processes and mechanisms that make up what we call nature;

and (2) using the knowledge gained to ‘improve’ our lifestyle by curing diseases, developing

new technologies, creating more efficient processes, or genetically modifying organisms to

suit some requirement conceived by humans. Artificially designed, RNA-guided, regulatory

mechanisms can provide a powerful tool when striving to achieve either goal. The endogenous

CRISPR-Cas and miRNA-based regulatory systems, both frequent topics throughout this

thesis, have been successfully adapted to the task of artificially silencing the expression

of any gene of interest: either on the level of transcription by targeting DNA [328], or

post-transcriptionally by targeting RNA and inhibiting protein production [167, 236, 331].

When the expression level of a gene of interest has been altered, its effect on other processes

can be deduced to gain insight into its function in the cell. Once a favourable effect has

been observed, organisms can be permanently or transiently altered to produce that effect.

Artificially altering the genetic material of a living organism, outside of controlled laboratory

experiments, can have wide-spread effects on other living organisms or on entire ecosystems

that are almost impossible to predict or foresee. Therefore, this technology raises many

ethical questions and should be handled with great care.

In Parts II–V, we explored different aspects of post-transcriptional regulatory mechanisms

where RNA sequence and structure is a key driving force behind post-transcriptional gene

regulation. Here, in Chapter 10, we applied knowledge, previously gained from endogenous

systems, to the design of artificial regulatory constructs. In particular, we explored char-

acteristics of the interaction site that affected the repression efficacy of artificial miRNAs

(amiRNAs) in Arabidopsis thaliana, a model organism for plants.
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Artificial microRNAs that suppress gene expression in plants

Suppressing gene expression in plants for functional studies is commonly achieved by causing

nonsense mutations via T-DNA insertions into the gene of interest [179] or by targeted

transcript degradation using RNA interference (RNAi) [1, 353]. T-DNA insertions are not

available for all plant genes and they lead to a complete loss of function, which may be lethal

in some cases. The advantages of RNAi are that guide RNAs can be designed to target any

gene of interest or even multiple genes; it can lead to a finer regulation of the target gene

where the expression is decreased enough to analyse its function but is still sufficient for cell

survival; and it can be applied so that the suppression is reversible.

Central to RNAi are the guide RNAs that determine target-site specificity: generally siRNAs1

or miRNAs (see Section 2.2.1). Although siRNAs are commonly used for artificial gene

silencing, they frequently lead to the generation of secondary siRNAs that cause the unde-

sirable silencing of off-target genes [83]. In contrast to animal miRNAs, miRNAs in plants

display extensive complementarity to their target site: stable and extended base-pairing

between miRNA and MRE covering the 10–11th nucleotides of the miRNA (counting from

the 5’) leads to a cleavage and subsequent degradation of the target transcript [6]. This

extended complementarity in plants means that artificial miRNAs (amiRNAs) can be used

analogously to siRNAs for specific targeting of single genes; although amiRNAs could still

regulate off-target genes, these can be minimised in the design phase.

A mature amiRNA is processed from an endogenous, template pri-miRNA where the miRNA

and the miRNA* (the passenger strand; Section 2.2.1) have been replaced by sequences

designed specifically for a target of choice. For subsequent analyses, ath-MIR319a (MI0000544,

miRBase [112]) was used as the template. The endogenous miRNA processing pathway

1 In A. thaliana there are at least three different types of siRNAs: trans-acting siRNAs (ta-siRNAs),
repeat-associated siRNAs (ra-siRNAs), and natural antisense transcript siRNAs (nat-siRNAs) [15].
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generates the mature amiRNA that is subsequently assembled into a RISC complex1 to bind

and degrade the target mRNA transcript. An amiRNA is 21 nt long and is designed so that

most bases are complementary to its target2. The corresponding amiRNA* can be derived

from the amiRNA such that the exact bulge structure of the pri-mRNA, the stem-loop fold of

ath-MIR319a, is maintained; bulges within this region are important for correct processing.

Figure 10.1. WMD amiRNA design features. A schematic illustration of the design features of the
predicted amiRNA–target duplex structure for WMD [236,331]. The target site is shown at the top in 5′ → 3′

orientation and the amiRNA is below in the opposite orientation; numbering is according to the amiRNA
sequence. Figure taken from the WMD website (http://wmd3.weigelworld.org).

The Web MicroRNA Designer (WMD; http://wmd3.weigelworld.org) provides a popular

and easy-to-use web interface for the design of suitable amiRNA sequences for many model

plant species [236]. The ‘design’ tool of WMD proceeds in two main steps: (1) suitable

amiRNAs are chosen to reflect rules mimicking mammalian siRNAs [236], and (2) calculation

of candidate amiRNA specificity, i.e., the number of off-targets that they are predicted to

regulate. The amiRNAs are ranked by a cumulative score and assigned a colour that reflects

their predicted functionality: green is very favourable, whereas orange and red indicate

amiRNAs with potentially reduced efficiency or specificity, although all reported amiRNAs

are deemed functional by the authors. Based on intermolecular base-pairing interactions

and hybridisation energies predicted by RNAcofold [19], WMD uses the following criteria to

design efficient amiRNA [236,331]:

• A (or U for multiple targets, if required) at position 10 and a U at position 1 of the

amiRNA.

• 5’ instability of the amiRNA with a higher AU content at the 5’ than at the 3’ end.

• The following constraints were used for the duplex structure between amiRNA and

predicted target site, since it was suggested by the authors of WMD that perfect

complementarity was not as effective for siRNAs: at most one unpaired base from

positions 2–12; up to four unpaired bases, but not more than two consecutive unpaired

bases, from positions 13–21; and no unpairing is allowed at the cleavage site, position

10–11. The preference is to have no unpairing between positions 2–12, but 1–2 unpaired

1 MicroRNAs should be active in all cell types, however, the expression levels of genes involved in the
biogenesis and targeting should be verified if experiments are failing.

2 We use the term “target site” for amiRNA instead of MRE because these sites are not native recognition
elements, but artificial.
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bases between positions 17–21 (Figure 10.1). Positions are given w.r.t. the amiRNA. A

pair of unpaired bases in amiRNA and target is referred to as a ‘mismatch’.

• The hybridisation energy between amiRNA and potential target must exceed 70 % of

its optimal pairing energy (i.e., the hybridisation energy between the amiRNA and its

reverse complement sequence); in addition, the energy must exceed −30 kcal/mol−1.
Preferred relative hybridisation energies are between 80–95 % with an absolute value

between −35 to −38 kcal/mol−1.

In this chapter, we used WMD to design amiRNAs against target genes in Arabidopsis

thaliana. We investigated features of the hybridisation pattern and of the sequence context

surrounding the potential target site that could affect knock-down efficacies.

10.1 Efficiency analysis of WMD-designed amiRNAs

Within the framework of his Ph.D. thesis, Claude Becker and colleagues used the WMD2

framework to design 62 amiRNAs (coloured green by WMD) against PIN1 (Arabidopsis

information resource (TAIR) identifier AT1G73590.1 [184]). They developed a fast, flexible

experimental protocol to test the knock-down efficiency of such a large set of amiRNAs using a

vector system in protoplast cells [15]. The amiRNA screening vector consists of (1) the target

gene fused (translationally) to a fluorescent reporter, in this case the green fluorescent protein

(GFP); (2) a transformation marker, mCherry, that allows the identification of transformed

cells; and (3) the designed amiRNA gene. Protoplasts that are successfully transformed

with the vector, determined by the presence of mCherry, are analysed under a microscope to

measure GFP fluorescence. Since the target gene is fused translationally to the GFP reporter,

only a single fusion mRNA transcript is produced. If the amiRNA is active, it degrades the

fusion mRNA and a low fluorescence signal is expected; the reverse is true for amiRNAs

that are inactive. For each cell in a sample, the mean pixel intensity per cell was reported.

Although this method can be sensitive to localisation within the protoplast, PIN1 is expressed

in the cytoplasm, so measurements were expected to be acceptable. The designed amiRNAs

and corresponding amiRNA* sequences were published in Chapter II of Dr. Claude Becker’s

dissertation [15]. This thesis also provides all experimental details.

10.1.1 Generating efficacy scores from GFP fluorescence measurements

The first task was to convert the mean pixel intensities of GFP fluorescence across all

protoplasts in a sample into a single efficacy score that reflects the knock-down activity of

the amiRNA expressed in that sample. In Appendix D.5, we summarise mean fluorescence

intensities per protoplast in a single sample as a boxplot (Figure D.22). Here, the major

problem of these data is evident: very low intensities are present in all samples and intensities

increase steadily until the maximum measurement is reached (not shown). In fact, the

main discerning factor between samples is the maximum fluorescence measurement. Possible
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reasons for no discernible GFP fluorescence—besides amiRNA-induced degradation of the

mRNA—could be that the fusion GFP was not active or perhaps not easily detected in the

measured layer of focus of the microscope. The consequence of this behaviour is that the

application of standard mean or median values is not robust for summarising the data due to

high variances; also, using the maximum value would not be robust to outliers. To partially

overcome this problem, we removed 50 % of the lowest intensity values per sample. We report

the mean, median (equivalent to the 75 percentile for all data) and the standard deviation

of the top 50 % of measurements from all samples in the Appendix D.5. We chose the 75

percentile, scaled to single efficacy Q values in the interval [0,1] for all subsequent analyses:

Q(α) =
I(α)− I(PC)

I(NC)− I(PC)
, (10.1)

where α denotes the sample containing a single amiRNA; I(α) is the 75 percentile fluorescence

intensity measurement for that sample; PC is the positive control (a sample that does not

express GFP, denoted as wt); and NC is the negative control (a sample containing the

endogenous ath-MIR319a miRNA that does not target PIN1, mCherry or GFP, denoted

as mock/mir319a). The PC sample expresses no GFP so that the measurements represent

general background flourescence and result in low values. Equation 10.1 can also be referred

to the relative response ratio as it is relative to both PC and NC. A further control was

given by GFP-7, which includes a functional amiRNA against GFP, but was not used for

the normalisation (Appendix D.5). The normalised efficacy score of zero corresponds to an

amiRNA with full repression activity and one corresponds to no repression ability.

10.1.2 The efficacy of many WMD-designed amiRNA is not sufficient

In recently published work [63], Deveson and colleagues designed four amiRNAs to target

MYB33/65 in A. thaliana. The miRNAs were designed to mimic the native interactions of

ath-MIR159a with its targets; ath-MIR159a was used as the expression template for the

amiRNAs. Overall, the features of design were very similar to those used by the WMD design

tool. Results showed a large variance in amiRNA efficacy and none of the amiRNAs were

as efficient as the endogenous ath-MIR159a miRNA. Our data corroborated this variability

in efficacy for the 62 amiRNAs targeting PIN1: although all amiRNAs had been designed

according to the same criteria, their expression induced a wide range of target gene suppression

levels (see Appendix D.5 and Figure D.22). AmiRNAs were assigned identifiers from P1–P62.

If we consider an efficacy score <0.3 to represent a functional amiRNA, then only 20 amiRNAs,

approx. 30 %, were functional. A further 8 (13 %) amiRNAs showed no activity with scores

above 0.7. The remaining amiRNAs displayed partial knock-down activity. Obviously, there

is room for improving amiRNA design.

10.1.3 Additional features that describe measured amiRNA efficacies

We performed a thorough investigation of structure- and sequence-related features, chosen for

their potential to directly or indirectly influence the amiRNA-target interaction. The features
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could be classified into the following categories: accessibility of the target site, hybridisation

properties of the amiRNA-target interaction, position-specific nucleotide frequencies of the

amiRNA and the target site, intramolecular base pairing in the amiRNA precursor, GC

content of the target site, and the unfolding energy inherent to the target mRNA in the

region of amiRNA binding. The importance of features was determined by computing

correlations between feature values and repression efficiencies. Most features were found

to not be correlated with the amiRNA efficacy (data not shown). However, we identified

further features of the hybridisation pattern between amiRNA and target site that affected

amiRNA efficacy. For design by the WMD tool, RNAcofold [19] was used to predict the

hybrid. The main problem with RNAcofold is that it predicts single structures for the two

interacting RNA sequences and therefore several classes of interaction types, for example

kissing hairpin loops, cannot be detected. In contrast, we used a more recent approach

without such limitations, IntaRNA [34], which, in addition, includes the accessibility of the

target mRNA in its prediction model1. Finally, we reduced all information to four binary

features that could explain amiRNA efficacy; the first three are features of the prediction

hybridisation between amiRNA and target site and the final feature is of the PIN1 sequence

surrounding the target site. The features correspond to the following statements and when

true, the amiRNA is generally less efficient than an amiRNA for which no statement applies:

(1) more than two consecutive unpaired bases at the 3’ end of the amiRNA in the predicted

hybrid2; (2) less than 15 consecutive base pairs in the hybrid; (3) a bulge in the duplex

structure; and (4) target sites that overlap with, or are located very close to, polypyrimidine

tracts of at least eight consecutive Us and Cs (Figure 10.2). Note that for every amiRNA

binding to this UC-rich region, one of the other three unfavourable features (1)–(3) occurred,

however, these were the amiRNAs closest to being completely non-functional.

UC...U..U......UCUUC.C.CC...CC..U.CUCC..C.U...CC.UUUC.UC.CUCUCUUC.CC.UUCCUCUCCUCUCUUUCC.CUUC.UC.CC.CU..C..CCCUU.C.CC

P60

P34 & P39

P59 & P62

P57

P56

5' 120nt 3' 235nt

C.U..CUCUCUUCUCUCUCUC..C.CUCCCC..C.CUCU..UC.U.....U.CCUCUUCUC.....C.U.U

P41 & P48

5' 340nt 3' 410nt

Figure 10.2. Polypyrimidine tracts hinder amiRNA repression activity in A. thaliana. The
target sites of the amiRNAs are indicated below the sequence by the dashed boxes; multiple amiRNAs were
designed to interact with the exact same target site. The polypyrimidine tracts of at least eight Us and Cs are
highlighted in yellow, As and Gs are replaced by dots to accentuate the UC richness. The indicated amiRNAs
display some of the worst efficacy values out of the 62 amiRNAs that were tested: the yellow polypyrimidine
tracts are likely blocked by RNA-binding proteins, possibly by the polypyrimidine-tract–binding protein
(PTB) [270,275].

1 IntaRNA version 1.2.2 was used with the parameters: -w 150 -L 100 -l 25 -T 23 -o -p 10. This corre-
sponds to a window size of 150nt, a maximum base-pair span of 100 nt (as recommended in Chapter 6), a
maximum duplex length of 25 nt (no long bulges allowed), a temperature of 23◦C, and a seed interaction of
at least 10 nt (10 consecutive base-pairs).

2 Please note that IntaRNA [34] sometimes predicts a base to be unpaired at the end of the amiRNA sequence,
even though it is complementary to the target site.
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Figure 10.3. Unfavourable amiRNA target–interaction characteristics that led to reduced re-
pression efficacies. (A) Range of all amiRNA efficacies. (B) each boxplot displays amiRNA efficacies only
when the indicated unfavourable target-interaction characteristics applies. (C) All amiRNAs for which at
least one unfavourable feature applies is predicted to be non-functional, the remaining functional amiRNAs.
The distributions of both groups are significantly different (indicated by the two stars) with p = 6.23× 10−9

(Wilcoxon Rank Sum test) or p = 7.59× 10−8 (Student’s t-test).

We visualised the individual and combined effect of the four binary features on amiRNA

efficacies in Figure 10.3. Figure 10.3.A gives the range of efficacies for all amiRNA. Fig-

ure 10.3.B summarises the efficacies for amiRNAs for each binary feature individually. Finally,

in Figure 10.3.C, we separated the amiRNAs into a set of “predicted” functional and non-

functional instances by defining an instance to be non-functional when at least one of the

four features in Figure 10.3.B is true. When performing a two-sample statistical test on the

normalised GFP intensities of the functional and non-functional sets, they were considered to

belong to different distributions with highly significant p-values: p = 6.23× 10−9 with the

Wilcoxon Rank Sum test, or p = 7.59× 10−8 with the Student’s t-test (t = −6.37). Results

show that a combination of all four features removes most of the amiRNAs with low efficacies.

The first three features imply that efficient repression requires sufficient complementarity

between the amiRNA and target site to exist; amiRNAs with near-perfect complementarity

were most effective. Therefore, the assumption that a perfect complementarity leads to
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suboptimal repression efficacies is not true for this dataset of amiRNAs. Hence, near-perfect

complementarity may lead to more robust results in future amiRNA designs.

The polypyrimidine tracts (fourth feature), targeted by non-functional amiRNA, are poten-

tially motifs for an RNA-binding protein, possibly the polypyrimidine-tract–binding protein

(PTB). Since amiRNAs within these regions display the lowest efficacies, it is possible that

bound proteins prevent access to the target sites of the respective amiRNA. PTB is a ubiq-

uitous protein that was originally identified as significant for splicing, but also has diverse

roles in other cellular processes including polyadenylation, mRNA stability and translation

initiation [275]; and homologs exist in A. thaliana [270]. Ideally, one would want to search

for existing regulatory elements on the mRNA and avoid these regions when designing

amiRNAs or any other artificial regulatory mechanism. Although in Part V, we developed an

approach for finding such regulatory elements in mRNA and specifically for RBPs [P6], this

problem is still far away from being solved computationally. More importantly, large-scale

datasets are still lacking in plants. Currently we know of no CLIP-seq experiments that have

been performed for specific RBPs in plants. Recent CLIP-seq protocols designed to map

transcriptome-wide binding profiles (in human cells) have been introduced recently [12,38,214]

and this information could be integrated into design pipelines. However, also these types of

binding data are not yet available for plant cells. Therefore, for subsequent amiRNA design,

we filter candidates provided by the WMD tool by the duplex features only. These are easy

to compute and no additional data is required.

It is interesting that while accessibility has been shown to sometimes influence miRNA [164]

or siRNA [303] gene silencing, in this data, target-site accessibility did not significantly

influence repression efficacy. Also not when testing all possible sub-regions of the target site.

10.1.4 Improved amiRNA design

Ren and Dovzhenko optimised the protocol to determine amiRNA efficacy using luminescence

instead of fluorescence measurements1. In particular, efficacy was measured as the ratio

between the luminescence levels of firefly luciferase (measuring repression efficacy) and renilla

luciferase (measuring transformation efficiency); the first was translationally fused to the

targets as GFP was previously and the second was not influenced by the amiRNA and

served as a control. The underlying protoplast system remains the same, however. With

this optimised system, ten (coloured green by WMD) amiRNAs were designed using WMD

and selected to target the JMJ10 mRNA (TAIR AT1G78280). According to the protoplast

detection system, only three out of the ten amiRNAs were considered semi-functional to

functional. Hence, we again see that only 30 % of the original amiRNAs are functional. When

applying the unfavourable duplex features, determined in Section 10.1.3 (Figure 10.3), to

predict amiRNA functionality, nine out of ten predictions were correct; only the amiRNA

J10 out of the four amiRNAs that were predicted to have sufficient complementarity did not

1 See the dissertaion of Fugang Ren for experimental details, titled “Development of novel technologies for
functional characterization and regulation of genes activity in plants” and submitted in 2014 to the Biology
Department of the Albert-Ludwigs-University Freiburg. This work has not been published to date.
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Figure 10.4. Improving design of amiRNA–target interactions. A further ten amiRNAs were
designed using WMD against the JMJ10 mRNA. Interactions were predicted using IntaRNA1 and duplex
structures were predicted to be non-functional (red cross) if at least one of the three unfavourable features
(highlighted in red), determined in Section 10.1.3 , applied and functional (green tick) if it had near-perfect
complementarity. Potential regulatory elements on the target mRNA were not considered. The efficacy of the
amiRNA was determined by Fugang Ren by luminescence experiments in A. thaliana protoplasts. Again
only 30 % (3 out of 10) of the WMD-designed amiRNAs were functional, however, with the extended duplex
features, we achieved a 90 % prediction accuracy (9 out of 10 correctly predicted).

show any repression activity (see Figure 10.4). Possible reasons for the non-functionality of

J10 could be (1) regulatory binding elements situated in the vicinity of the J10 target site or

(2) the upstream amiRNA processing or loading into the RISC complex could have failed.

Figure 10.4 also illustrates that IntaRNA interaction predictions are likely to differ significantly

from RNAcofold predictions. For two out of the ten amiRNAs, IntaRNA did not predict

an interaction that satisfied the energy threshold—even though WMD interactions were

designed to have sufficient binding energies that exceed 70 % of their best potential energies.

However, IntaRNA-predicted duplex structures fitted better to the experimental data. This

strongly implies that the more advanced algorithm of IntaRNA is more accurate for predicting

amiRNA–target interactions.

10.2 The context of artificial binding sites affects repression

efficacy

In Chapter 8 (Part V), we determined that there is a significant signal of increased accessibility

downstream of MRE sites in A. thaliana. Here, we investigated whether the target site

context can affect amiRNA repression efficacy as well.
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10.2.1 Experimental setup and data processing

From the 62 amiRNA designed to target PIN1 (Section 10.1), we selected one efficient and

one inefficient amiRNA, not located near the UC-rich region: P01 with Q(P01) = 0.08 (high

repression activity) and P35 with Q(P35) = 0.62 (low repression activity). P01 is fully

complementary to its target site, with the exception of the two end nucleotides, P35 has a

mismatch at position 19 of the amiRNA, which leads to a predicted unpaired end of three

bases (Figure 10.5). To determine the influence of the sequence context of a target site,

we inserted the target sites for P01 and P35 into ten different locations in a target mRNA,

spread evenly across the coding sequence (CDS); the target site for P35 was changed such

that it had full complementarity to P35. The locations for inserting the target site were

selected for each target gene as follows:

1. The CDS of the target gene was divided into ten subsequences of equal length.

2. The target sequence for P01 and P35 was inserted into a single position in one subse-

quence at a random location.

3. Accessibility profiles were calculated using RNAplfold [18,19]1 and plotted as graphs

for the CDS with target sequence inserts from both P01 and P35 respectively.

4. Steps (2) and (3) were repeated ten times for each of the ten subsequences of the CDS.

5. A single insertion location for both P01 and P35 target sequences was selected for each

subsequence under the condition that the ten selected locations displayed a large variety

of accessibility profiles via visual inspection of the profile graphs.

The experiment was performed for four different A. thaliana genes that we have not assessed

previously: ATGR2 (AT3G54660), NSF (AT4G04910), CDC48B (AT2T03670), and ATDPB

(AT5G03415). The experimental protocol for target-site insertions and efficacy measurements

can be taken from the dissertation of Fugang Ren2. For ATGR2, three independent replicates

were produced to compare the reproducibility of measurements derived from the applied

protocol (see Figure D.23). Results showed that in general, reproducibility was good for

measurements that corresponded to efficient amiRNA repression. Measurements that involved

high luminescence ratios, however, did not correlate well. In particular, two replicates for

P01 achieved a significant Pearson’s correlation coefficient of 0.75 (p=0.01).

The raw luminescence ratios were first normalised to the positive control (PC) and the negative

control (NC)3 using the “relative response ratio” given in Section 10.1.1, Equation 10.1. For

PC and NC, we use the average ratio for the control measurements that were on the same

1 RNAplfold from Vienna Package version 1.8.4 and parameters -noLP -W 100 -L 50 -u 5.
2 The dissertaion of Fugang Ren is titled “Development of novel technologies for functional characterization

and regulation of genes activity in plants” and was submitted in 2014 to the Biology Department of the
Albert-Ludwigs-University Freiburg. This work has not been published to date.

3 The positive control contains an amiRNA that was shown to be active in repressing the firefly luminescence
gene, and the negative control contains a vector with the luminescence gene, but no amiRNA to repress it
(see dissertation of Fugang Ren for details).
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Figure 10.5. Controlled experiments for investigating varying target site contexts. The amiRNAs
P01 and P35 were selected from the 62 amiRNAs designed to target PIN1 (Section 10.1.3). The depicted
duplex structures were predicted using IntaRNA. These target sites were extracted as they were predicted for
PIN1, except that a single change from G to C at position 19 (relative to the amiRNA) was made so that the
target site is fully complementary to P35, which satisfies previously determined duplex features. These target
sites were then inserted randomly, but fairly evenly distributed, across a target gene of interest, resulting in
ten mRNAs with one inserted target site for each amiRNA. The target positions were selected to reflect a
varied accessibility profile as determined by RNAplfold. This means that the amiRNA target site remains the
same, but the surrounding sequence context is varied. These target site insertions naturally create mutations
that considerably change the protein product. Since we are using luminescence reporter genes to measure the
amiRNA repression efficacy, these measurements should not be affected significantly by the mutations in the
target gene.

plate (in general there were four) and here I(α) is a single luminescence ratio (firefly/renilla).

The relative response ratio measures the response in relation to the controls: a value of

zero indicates the same repression efficiency as the positive control, and a value of one

indicates measurements that are equal to no repression activity. Negative values correspond

to efficiencies better than the positive control. This is possible since the positive control is

an amiRNA itself and although it gives good results, it is not optimised for functionality,

therefore more efficient amiRNAs are possible. Values greater than 1 are due to the large

variation in luminescence measurements when no repression activity is measured. For the

genes ATGR2 and ATDPB, the negative and positive controls, respectively, are missing,

due to unforeseen experimental errors. Since we required not only one, but both, controls

for subsequent analyses, we derived the missing control values from all the “valid” pairs of

controls. To do this, we calculated the mean ratio of all 24 control pairs: the mean ratio was

0.28 with a variance of 0.02 and a standard deviation of 0.13. The variance of the ratios is

very low in comparison with the variance in other raw luminescence measurements, and we

thus assume stability of this ratio. According to the mean ratio for ATGR2, we generated

values for the negative control by using the original positive control that was on the plates by

NC = PC/0.28. In this way, we generated four NC values to the four available PC values.

Similarly, we computed positive controls for ATDPB by using the negative controls that were

available by PC = NC × 0.28. This time six positive control values were computed for the

six given negative control values.
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Figure 10.6. The context surrounding target sites significantly affect repression efficacies. The
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10.2.2 Results

There are three main results of this experiment: (1) the sequence context of the amiRNA

target site affects the repression efficacy to a certain degree, however, (2) despite near-perfect

complementarity and various target site locations, P35 is almost always not active or at best

only slightly active (Figure 10.6); and (3) for P01, there is a slight but steady decrease in

repression efficiencies when target sites are located further towards the 3’ end of the coding

sequence (Figure 10.7). Since P35 is generally non functional, no such trend is visible.

Repression efficiencies are affected by the context of target site locations for both P01 and P35.

Figure 10.6 compares the repression efficiencies of P01 and P35 at the ten target site locations

for each of the four genes separately; at each position, the sequence and the structure context

surrounding the amiRNA target varies. In general, P01 is still a functional amiRNA and P35

is still not active, however, fluctuations between the individual positions of the target sites in

the coding sequence of the mRNA are significant (with p-values ≤ 0.05 in a Student’s t-test

comparison between positions with minimum and maximum efficacies). For example, in the

experiment on the ATGR2 gene, although still functional, P01 shows a significant decrease in

repression efficiency at position six. In contrast, the generally inactive P35 displays some

repression activity at position five (Figure 10.6). Thus, we can conclude that the sequence

and structure context of a target site position has an effect on repression efficiencies for both

P01 and P35. Moreover, since P35 was observed to be semi-functional at some positions, its

inactivity is not due to incorrect prior processing. Although the target sites of P01 and P35

were inserted at exactly the same locations, we observe no correlation between both their

efficiencies for each gene. However, the inserted target-site sequence differs for P01 and P35

and therefore, the RNA structural constraints also change.

10.3 Conclusion

When designing amiRNAs for A. thaliana (and maybe other plant species as well), we

established that the current standard set by the WMD tool still produces many amiRNAs

(up to 70 %) with limited repression activity. The assumption, taken from observation on

siRNA, that full complementarity of the amiRNA with its target site does not generate

functional amiRNA does not hold on our data. Perfect or close-to-perfect complementarity

(with mismatches at both ends) does not negatively affect target repression. We determined

that at least 14 consecutive base pairs, not more than two consecutive unpaired bases and no

bulges were beneficial to target repression. Furthermore, we identified possible RBP binding

sites that sequester target repression almost completely. Therefore, further care must be

made to avoid endogenous regulatory elements on target genes when more accurate tools

arise in future. Currently, it might be wise to avoid low complexity regions that are rich in

only one or two nucleotides—as many RBP binding sites seem to identify such low-complexity

regions [P6].

In addition, we provide evidence that variations in the sequence context of a target site

can change the efficacy of an amiRNA. Whether these affects are due to RNA structure or
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endogenous regulatory elements in the vicinity of the target site requires further investigation;

no correlation with target site accessibility could be determined. Moreover, designed amiRNA

should preferentially target sites located close to the 5’ end of the CDS of targeted genes.

Further design factors that could affect amiRNA processing or loading into the RISC complex

require investigation, since some amiRNA sequences remain non-functional, despite perfect

complementarity to the target site and varying sequence contexts.
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Part VII: Final remarks

There is no real ending. It’s just the place where you stop the story.—Frank Herbert

The scientific contribution of this dissertation is separated into five parts, PartII–PartVI.

Each part presents data analyses and computational approaches that explore different

aspects of post-transcriptional regulatory mechanisms: sequence and structure conservation

of ncRNA, expression and processing, local structure prediction and stability, characterisation

of regulatory recognition elements, and the design of artificial regulators. In the following,

key results and their implications and possible benefit to future work are highlighted, and

further work to address current limitations is proposed.

The aim of using conservation in Part II was to group CRISPRs into classes with similar

sequence and structure properties and ultimately to identify binding motifs and patterns of

associated Cas proteins. The assumption is that identified classes are evolutionarily close.

By considering sequence-only and sequence-structure conservation separately, we allowed

independent Cas-protein binding motifs to be captured on the CRISPRs. With this sequence-

and-structure-conservation information, we comprised an evolutionary map of all available

CRISPRs and provided an easy-to-use web server, CRISPRmap, which automatically assigns

CRISPRs to one of the identified sequence families and/or structure classes, and pinpoints their

location in the overall CRISPRmap tree. This function is useful to extrapolate information from

CRISPRs with known to CRISPRs with unknown functions, and to determine rare CRISPR-

Cas systems—as we exemplified in the applications of CRISPRmap in Chapter 4. CRISPR-Cas

systems are generally classified by looking only at the associated Cas proteins, and CRISPR

sequences are not considered when assigning a subtype [123,201,202,324]. However, in initial

experiments, we found that CRISPR conservation does not always correlate with CRISPR-Cas

subtype annotations. Especially archaeal, and a subset of bacterial, CRISPR-Cas subtypes

are linked to frequently closely-related CRISPR sequences, despite being associated with

different subtypes. We would like to explore the link between CRISPRs and associated Cas

proteins more closely in future. To do this, a key problem to solve would be to accurately
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and automatically link CRISPRs to their cas genes; currently associations are only assigned

based on gene locations in the genome, which causes frequent problems. Further future plans

involve a better characterisation of type II systems. Type II systems have formed the basis

for a new and upcoming technology applied to genome editing [308,328]. However, type II

systems are rare (in comparison with the other types) and are thus overpowered in CRISPRmap

by the vast numbers of type I and III systems.

Extracting expression information from RNA-seq data worked very well for crRNAs in Part III.

Not only could we establish approximate abundances of crRNAs, processed from a single

CRISPR array, but we could also determine exact processing sites, and identify intermediate

and mature RNA species. A potential limitation of this approach can lie in the RNA-seq

protocol used for the transcriptome analysis. First, possible difficulties arise when from

the transcriptome, RNAs of only a fixed length are selected for sequencing, which does not

capture the exact length of mature crRNAs or intermediate species. Second, poly(A) tails

ligated to the 3’ ends of transcripts may result in inaccuracy when determining exact 3’ ends

of RNA species (since naturally occurring terminal As cannot be differentiated from the

poly(A) tail). Third, we identified a problem when two unknown nucleotides were ligated

to the 5’ end of transcripts to remedy sequencing bias, however, these lead to slightly offset

5’ end detection and provided problems when detecting exact processing sites. Establishing

crRNA expression and processing signals is a prerequisite for biological experiments that

investigate aspects of the interference stage of the CRISPR-cas systems. In fact, collaboration

partners are currently working on an experiment where we used RNA-seq to establish correct

processing of an artificial crRNA that includes a substituted spacer designed to target and

cleave a region of interest. An RNA-seq analysis displayed a processing of the artificial crRNA

that was similar to the wild-type crRNAs with the same repeat sequence.

The investigation of many post-transcriptional regulatory processes involves determining local

regulatory structure or structural accessibility in long RNAs. Therefore, we put considerable

effort into benchmarking available RNA-structure prediction algorithms when applied to long

RNAs, and characterising their key parameters (Chapter 6, Part IV). We determined that

100–150 nt represents a reasonable amount of locality to predict local structures accurately.

Base pairs that extend beyond this region were often predicted incorrectly and were rare. In

addition, we identified a strong bias towards high accessibilities and base-pair probabilities at

artificial sequence ends, which should be a particular concern when applying window-based

approaches or extracting sequences from a larger context. Predictions at artificial window

termini can either be ignored, or setting window sizes that are sufficiently larger than the

maximum base-pair span allowed in the local structure prediction approach mitigates biased

probabilities. In the second chapter of Part IV, we provided evidence that the surrounding

context can hinder the formation of a structured binding motif and therefore prevents its

recognition by its trans factor, which limits or aborts the expected regulatory function. In

particular, these experiments were performed on CRISPR arrays where the repeat formed a

small hairpin that was recognised by a Cas6 endoribonuclease and was subsequently cleaved—

only if the hairpin motif was predicted to be stable within its sequence context. This result is

especially important for experiments that involve artificial constructs comprising of structured
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regulatory RNA: it is imperative to first assess the stability of the structure in its sequence

context. We proposed the use of structure accuracy to measure structure stability.

In Part V, we first presented an empirical analysis of structure accessibility around miRNA-

recognition elements (MREs) in Arabidopsis thaliana. We identified a region downstream of

the MREs that was significantly more accessible in functional vs. non-functional sites. These

results were especially interesting because the measured accessibility directly at the MRE

sites was not significantly different between the two sets. This implies that MRE-prediction

approaches should be evaluating the context for a further factor binding downstream of MRE

sites, which requires an accessible region. Later, in Chapter 9, we introduced a machine-

learning technique, based on graph kernels to capture miRNA-MRE binding events. Although

first prediction performances were promising, further experiments are still required to test

how well this framework can solve the extremely difficult task of predicting MREs. However,

we know that the framework already works well when applied to RBPs. Further extensions

of the framework and thorough benchmarks comparing with state-of-the art approaches for

predicting MREs are in progress.

Finally, in Part VI, we explored the application of artificial miRNAs (amiRNAs) to inhibiting

the expression of any target gene in plants. Our data shows that amiRNAs require extensive

complementarity to their targets to function well. Although this factor alone is not sufficient

to ensure good functionality. In a second experiment, we established that the context of the

target site can influence the efficiency of an amiRNA to some degree and that best target-site

positions are towards the 5’ end of the coding sequence. Again, further experiments are

required so that we can learn more details about beneficial target-site contexts. In addition,

we need to determine what makes an amiRNA non-functional even when the target site is

beneficial and it has sufficient complementarity. But to find answers to both these questions,

we first require sufficient data to learn from.

In summary, this thesis should provide insightful and detailed knowledge about the individual

topics presented—and deliver ideas and approaches for future computational analyses of post-

regulatory mechanisms, in particular with regard to RNA-sequence and -structure properties.

The quote from Frank Herbert sums up the conclusion of this dissertation succinctly: the

presented work has no real ending; it is just time to put it—as it is—to paper.
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Terms and abbreviations

accessibility the probability of a nucleotide or a stretch of nucleotides to be

unpaired in the structure ensemble of a given sequence

Section

2.5.6

AGO a member of the Argonaute protein family, which integrates the

miRNA into the RISC complex

Section

2.2.1

amiRNA and artificial microRNA, designed to knock down the expression

of its target gene

Chapter 10

(intro)

AUROC area under the receiver operator characteristic curve Section 2.3

avg. average

base the differential part of a nucleotide denoted with a single letter:

adenosine (A), cytosine (C), guanine (G) and thymine (T) in DNA

or uracil (U) in RNA

Section 2.4

base pair hydrogen bonds forming between bases, typically between G and

C, in DNA between A and T and in RNA between A and U;

other base pairs are possible, but not as frequent and are generally

ignored in secondary structures

Section 2.4

base-pair span is the distance on the sequence between the two bases of a base pair;

the maximum base-pair span allowed in local structure prediction

is usually denoted by L

Definition

2.8

bp(s) base pair(s); the abbreviation is frequently used as a measure of

length for DNA segments or for double-stranded RNA

Section 2.4

Cas CRISPR-associated protein Section

2.2.2

cas CRISPR-associated gene Section

2.2.2

CDS coding sequence; the coding part of a messenger RNA Section

2.1.1
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cis-regulatory ele-

ment

elements that are encoded on the same molecule that is being

regulated, e.g., regulatory structures and binding sites in the UTRs

of the mRNA

Section

2.1.1

CLIP-seq crosslinking immunoprecipitation RNA sequencing; a method to

determine the RNA binding sites of a specific RNA-binding protein

Section

2.7.1

CRISPR clustered regularly interspaced palindromic repeats; involved in

prokaryotic defence of genetic material, processed to mature cr-

RNAs

Section

2.2.2

CRISPR array At a CRISPR locus, the CRISPR array starts with a leader se-

quence and then contains multiple copies of a repeat sequence,

interspaces with variable-length spacer sequences

Section

2.2.2

CRISPR-Cas sys-

tem

an adaptive prokaryotic immune system that uses a short ncRNA

(crRNA) in combination with associated proteins (Cas proteins)

to guide the destruction of invading genetic material

Section

2.2.2

crRNA CRISPR RNA processed into its mature form that guides the

destruction of invading genetic material in a prokaryotic immune

system

Section

2.2.2

DNA deoxyribonucleic acid; the molecule that stores genetic information

expression level the number of molecules present in the cell at a fixed time point

that represent a single gene product (a specific mRNA, ncRNA,

or protein)

Section 2.1

FASTA format the general format used to store DNA, RNA and protein sequences Section 2.4

Gene expression is the process by which the functional product of a gene is produced Section 2.1

GEO Gene Expression Omnibus; a database that stores mainly expres-

sion data of any kind

GFP green flourescence protein; frequently used as a reporter or marker

gene in in-vivo experiments

IP immunoprecipitation; a method used in biology for purifying a

specific protein by using antibodies

kb kilobase, i.e. 1, 000 bases (nucleotides); usually used as a measure

of length for RNA or DNA segments

lncRNA long non-coding RNA; similar to mRNA in structure, but does

not encode proteins

Section

2.1.2

microarray a solid substrate to which oligonucleotide probes representing

usually the complete set of genes of a genome (variations exist)

are attached for the detection of gene expression levels

Section

2.1.4

miRISC an RNA-induced silencing complex (RISC) loaded with a mature

microRNA

Section

2.2.1

miRNA microRNA; a small RNA that generally regulate expression levels

of mRNA via various mechanisms of inhibiting translation

Section

2.2.1

MRE microRNA recognition element; the binding site of a miRNA on

an RNA transcript

Section

2.2.1
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mRNA messenger RNA; contains a coding sequence encoding a (or part

of a) protein and regulatory tails 5’ and 3’UTRs

Section

2.1.1

NC negative control; no response expected in a biological experiment

ncRNA non-coding RNA; generally performs regulatory functions and does

not encode a protein

Section

2.1.2

nt nucleotide (see nucleotide entry); frequently used as a measure for

length for an RNA segment

Section 2.4

nucleotide a single building block of DNA or RNA (see base) that represents

one bit of information in the genetic code

Section 2.4

PARS parallel analysis of RNA structure; a technique to measure the

single- and double-strandedness of an RNA called

[165]

PC positive control; response expected and known in a biological

experiment

post-

transcriptional

regulation

is the control of gene expression on the level of RNA after tran-

scription and before translation

Section 2.1

protein made up of amino-acid polymers and performs structural, signal,

or regulatory functions

RBP RNA binding protein; generally regulate expression levels of mRNA Section

2.1.3

read A single sequence that is produced during RNA or DNA sequencing

RISC RNA-induced silencing complex; a protein complex involved in

miRNA gene-expression regulation

Section

2.2.1

RNA ribonucleic acid; the functional copy of DNA

RNA transcript is an RNA sequence that has been transcribed from its gene

segment on the genome

RNA-seq A deep sequencing protocol that sequences purified RNA and is

thus used to measure transcript abundancies in the gene expression

process

Section

2.1.4

RNP Ribonucleoprotein; a molecule in which RNA and protein are

combined to act together

RRE regulatory recognition element; the binding site of trans factors

on a RNA transcript

siRNA small-interacting RNA; involved in RNA interference, i.e., in su-

pressing gene expression

Section

2.2.1

structure accuracy a measure of stability for RNA secondary structure Section 6.2

transcription the process by which a segment DNA is copied from the genome

and stored as an RNA molecule

transcriptome the complete set of RNA transcripts in a cell and the study of the

transcriptome is called transcriptomics

Section

2.1.4
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trans factor a trans-encoded (not from the same molecule) regulatory element

that interacts with the molecule being regulated, e.g., a RBP or

an ncRNA that binds to a mRNA to regulate its expression.

translation the process by which protein molecules are produced from the

information given on the coding region of messenger RNA

TSS transcription start site

UTR untranslated region; 5’UTR and 3’UTR are at the 5’ and 3’ termi-

nus of the mRNA, respectively, and do not code for a protein, but

frequently contain regulatory signals for trans-factor binding

Section

2.1.1

window usually a subsequence of a fixed length W Definition

2.17

window-based ap-

proach

an approach that performs calculations within only a subsequence,

a window of fixed length usually denoted by W ; the window slides

along the sequence with a certain step size (this step can also

be just one nt); results can be summarised or averaged over all

windows

WMD The Web MicroRNA Designer (http://wmd3.weigelworld.org) [236]
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APPENDIX C

Detailed statement of contributions

Although I made an effort to reduce the amount of external contribution presented, modern

research is always a joint effort; collaborative research was encouraged and required during

my Ph.D. years. Therefore, when omitting external contribution would be detrimental to

understanding the presented research, it was retained. A point-by-point clarification of

personal contributions are made for Part II–VI. Unless otherwise stated, the work presented

is my own original research.

All presented work that has been recycled from my own publications was published under the

Creative Commons Attribution License, which permits unrestricted use, distribution, and

reproduction in any medium, provided the original author and source are credited.

Contributions to Part II

Chapter 3 presents work from [P3]. This work was a joint effort mainly performed by Omer

S. Alkhnbashi, Dr. Dominic Rose and myself; we are joint-first co-authors of the original

publication and each of us contributed significantly to the scientific content of the work.

In particular, the methods for CRISPRmap were mainly conceived by myself and D. Rose.

O. S. Alkhnbashi contributed more to the methods involved in collecting the CRISPR-Cas

data, Dr. Sebastian Will devised an algorithm for constrained clustering to assign single

CRISPRs to a sequence family or structure motif, and Dr. Fabrizio Costa gave advice on how

to do the first, basic orientation prediction of the CRISPR sequences. All data were acquired

and processed by O. S. Alkhnbashi; I thoroughly checked the data for consistency and integrity

during its analysis. The CRISPRmap software and the web server were implemented mainly by

O. S. Alkhnbashi and D. Rose, with most of the technical know-how coming from D. Rose. I

helped to design the functionality and layout of the web server, performed the data analyses
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(with some support from O. S. Alkhnbashi), generated all figures in Chapter 3, and performed

the required literature research. Figures D.1 to D.8 were generated by O. S. Alkhnbashi

under my guidance. Moreover, I planned and wrote the article with minor contributions from

Prof. Dr. Rolf Backofen, D. Rose and S. Will: any text passages extracted from the original

manuscript [P3] and included in this thesis were written by myself. I hereby acknowledge the

significant contribution from O. S. Alkhnbashi to CRISPRmap, and that it will likely also be a

part of his dissertation.

The Chapter 4 on applications and limitations of CRISPRmap was devised solely by myself

and I also performed all the work that was involved—aside from developing the software

and designing the improved orientation prediction of CRISPR sequences in Section 4.3.2,

and published in [P1]. My contribution to [P1] was of a minor nature: I helped to design

and conceive the research and edited the final manuscript. O. S. Alkhnbashi performed all

software development and analyses and created version 2.0 of CRISPRmap. F. Costa supervised

the project and gave input into the machine-learning and parameter optimisation aspects

of the work. The figure included in Chapter 4 was generated by myself. Currently, the web

server for CRISPRmap is maintained by O. S. Alkhnbashi and Dr. Martin Mann.

Contributions to Part III

All work and figures generated for Part III (Chapter 5) is my own work, based on the

publication [P10]. All text passages taken from this publication were written by myself.

All wet-lab experiments were devised and performed by Prof. Dr. Wolfgang R. Hess and

members of his lab (in addition to creating Figure D.13), in particular, Dr. Ingeborg Scholz

performed most of the experiments and Stefanie Hein completed experiments when I. Scholz

was on maternity leave. Prof. Dr. R. Backofen devised the idea of finding correlations in the

RNA-seq data with structural attributes, developed some of the initial software, and oversaw

the project.

Contributions to Part IV

Chapter 6 presents the work from [P4]. In this publication, I share the first-author position—

equal scientific contribution—with Daniel Maticzka. Although most ideas arose from joint

discussions and D. Maticzka and I performed the majority of the work: I put more emphasis

into producing the results for Figures 6.1, 6.2, 6.5, 6.6 and 6.7 and D. Maticzka put more

emphasis into producing the results for Figures 6.3, 6.4 and 6.8. In specific terms, my work

involved the generation and extended processing of the benchmarking dataset of structured

cis-regulatory elements and performing comparisons on this data. D. Maticzka focussed more

on displaying the detrimental effect of artificial border termini, implementing the modification

to RNAplfold that rectifies this problem, LocalFold, and performing comparisons using

accessibility data. We both wrote the bulk of the manuscript, some of which has been copied
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into this dissertation, thus possible overlap with his dissertation is duly noted. Dr. Mathias

Möhl provided expertise on partition-function algorithms and checked the validity of presented

equations. Joshua Gagnon implemented the web site for the CisReg data and Dr. Chris

Brown provided additional expertise on cis-regulatory elements in mRNAs and provided the

list of viable elements to use. Prof. Dr. R. Backofen supervised the project, and formulated

the theory of structure accuracy for local structure prediction in Section 6.2.

The work presented in Chapter 7 is based on a collection of published articles [P5,P7,P8,P10,

P11]; I am a joint first author of [P10]. For the experimental parts of this chapter, we worked

in close collaboration with members of the labs of Prof. Dr. W. R. Hess, Prof. Dr. Anita

Marchfelder, and Prof. Dr. Ruth A. Schmitz-Streit. I did not perform any biological exper-

iments, therefore, experimental details are not within the scope of this thesis and should

be taken from the original publications. All methods, figures and text were produced by

myself (except for Figures 7.3B and D.20, which were created by O. S. Alkhnbashi under my

guidance). I developed all software required for this work. Prof. Dr. R. Backofen supervised

the work and aided in the representation of Figure 7.5.

Contributions to Part V

The analysis and all methods in Chapter 8 were devised solely by myself. I also performed

most of the data analysis with two minor exceptions: the miRNA interaction data from A.

thaliana was generated by my student assistant, Peter Zeller. The extended analyses on

human and firefly miRNA and artificial siRNA in Section D.4 and presented in Figure D.21

was performed by Kyanoush S. Yahosseini during his Bachelor thesis. Both students were

supervised closely by myself; thus, all methods and approaches were developed in discussions

with me.

Work presented in Chapter 9 is the result of many collaborative participants. First the

basic encoding of structured RNA and in particular RREs was developed in equal measures

with Dr. Steffen Heyne, D. Maticzka, Dr. F. Costa and myself. In particular, the script for

converting RNAshapes output to graphs was developed by myself and S. Heyne. D. Maticzka

extended it to the viewpoint notion, and I implemented the hypergraph encoding to include

the abstract secondary structure element annotation. F. Costa is the author of the NSPD

Kernel and has developed the EDeN software package to perform feature extraction, machine

learning and performance analyses. In addition, F. Costa was the driving force behind the

idea of applying the NSPD Kernel to RNA and guided all steps of model and encoding design.

The extension of the graph encoding to miRNA-MRE interactions, the modelling of these

interactions, and the processing of all miRNA-related data was performed by Michael Uhl

during his team project, Master thesis, and as a student assistant, and was always supervised

by myself and F. Costa. The basic RNA encoding without viewpoint or hypergraph encodings

was published by S. Heyne and F. Costa in [136] and its later modification and application to

RBPs, which does not include any of the miRNA-specific encodings, was published in [P6].
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For [P6], I was a major contributor to writing and editing the manuscript. The extension to

miRNAs is currently unpublished.

Contributions to Part VI

All computational data analyses and all figures presented in Part VI, Chapter 10 were

performed and generated by myself and supervised by Prof. Dr. R. Backofen. A minor

contribution was given by Dr. Anke Busch who generated the thousands of features for the

amiRNA dataset in Section 10.1. The final results presented here were based on the the

knowledge I gained from analysing her calculated data. In addition, D. Maticzka provided

some aid in originally looking at the fluorescence data and plotting RNA structure features

of target sites. In the same way, his results are not directly presented, but his input helped

to develop the final work. The experimental aspects of this work were devised and performed

by Dr. Claude Becker, Fugang Ren, and Dr. Alexander Dovzhenko under the supervision of

Prof. Dr. Klaus Palme. All work in this part is currently unpublished.
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Supplementary material

D.1 Part II

D.1.1 Additional methods for CRISPRmap

This material was taken from the supplement of [P3] and was included here for comprehensive

purposes.

Cas subtype annotation from Haft et al. 2005.

To annotate the early Cas subtypes from Haft et al. [123], we followed the procedure given in

Kunin et al. [180]. More specifically, we downloaded the single cas gene models created by

Haft et al. from the TIGRFAM database. Using the HMMER program with the TIGRFAM models

(same as for the single cas gene annotation), we searched the 20 kb of nucleotides up- and

downstream of the array locus and annotated a cas gene if it was found with an E-value

≤ 0.001. We used a strict annotation of Cas subtypes, whereby all cas genes of a subtype

were required.

Web server input: adding new repeat sequences to the existing CRISPR clus-

tering

The user of our CRISPRmap web server can enter any CRISPR sequences and they will be

assigned to our sequence families and structure motifs, if possible, and integrated into the

hierarchical CRISPRmap tree. Thus, information on conservation is available for not only

sequences in our dataset, but also novel, yet unsequenced, CRISPRs. In the following, we

describe the procedure for one input sequence, many sequences are done simultaneously in

the same way:
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1. Is the repeat sequence in our database? If the given repeat sequence is in our database,

in either orientation, we highlight this sequence (or one if many copies exist) in our

CRISPRmap cluster tree, and automatically assign it to the corresponding structure

motif and/or sequence family and stop here.

2. What is the correct orientation? If the user is not sure about the correct repeat

orientation, i.e., the checkbox for repeat orientation has been activated, we first predict

the orientation with our model described in the methods section of the main manuscript.

The orientation should then be consistent with our data.

3. Is it structured or unstructured? The RNA structure prediction algorithm, RNAfold [140]

is used to determine whether the repeat sequence is structured or unstructured. If the

minimum free energy structure is the unstructured sequence, i.e., contains no base-pairs,

it remains unassigned to a structure motif and we continue with Step 5.

4. Does it belong to a structure motif? Albeit a structure being predicted, the repeat does

not necessarily belong to a conserved structure motif. We add the repeat sequence to

all repeats assigned to one of our structure motifs and re-run RNAclust [339] with a

modified UPGMA algorithm (see following section “Constrained Clustering”). In short,

the modification allows the generation of the cluster tree by keeping the motifs intact,

i.e. non-overlapping. If a repeat falls into or next to one of the existing structure motifs,

we assign it to the motif by the following: (1) The repeat is folded by RNAfold [140]

with the option -p to calculate a structure dotplot. (2) This dotplot is aligned with

the consensus dotplot of the structure motif using LocARNA. (3) The repeat is assigned

to be a member of the motif if it is able to fold into the consensus structure of that

respective motif with at most one base-pair missing. We ensure that the new consensus

structure contains at least four base-pairs and is at the same position as previously. A

comparison of the new and old consensus structures and alignments is given on the web

server results page.

5. Does it belong to one of our conserved sequence families? We assign the repeat to

a conserved sequence family by comparing it to the previously calculated ClustalW

sequence profiles [311], see Methods section “Clustering of repeat sequences into con-

served sequence families”. Let sim(F, r) be the profile score of a repeat r compared

with the profile of the family F , where r 6∈ F . For each family, the minimum Fmin

and maximum Fmax profile similarity was determined by removing each sequence from

the family, re-calculating the profile for the remaining sequences, and determining the

similarity score of the respective repeat to the profile. A repeat r was then assigned to

a sequence family F if (1) sim(F, r) is greater or equal to Fmin and (2) the distance

between sim(F, r) and Fmax is the minimum for all families.

6. Where is it located in the CRISPRmap cluster tree? With a final run of RNAclust on

all repeat sequences, we get the updated CRISPRmap cluster tree and we highlight the

input sequence location in this tree. Any additional annotations (outer rings), such as

Cas subtype, are not displayed for novel repeat sequences.
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Constrained Clustering

We consider the general problem to cluster a set of taxa hierarchically based on their distances.

Additionally, we constrain the clustering such that certain, e.g. a priori known, clusters are

prevented from mixing with each other.

Given is a set of taxa, indexed from 1 to n, together with all pairwise distances between the

taxa; furthermore, a set X of disjoint clusters of these taxa, i.e., X is contained in the powerset

of {1, . . . , n} and all non-identical clusters c and d in X do not intersect. Commonly, X
covers only a subset of all taxa; therefore, we distinguish constrained taxa (that are contained

in some element of X ) and the remaining unconstrained taxa.

We aim to construct a cluster tree of the taxa, i.e., a rooted binary tree T with n leaves

corresponding to the n taxa. First, this tree should reflect the given distances. Second it

has to support the clustering given by X such that clusters in X are grouped together but

unconstrained taxa can be interspersed freely. For this purpose, we require that no subtree

of T contains leaves from two different clusters in X unless both clusters are completely

contained in the subtree. We call this condition X -cluster constraint. (Formally: for each

subtree with leaves L and each pair of non-identical clusters c and d in X , c ∩ L ⊂ c implies

d ∩ L = ∅.)

Our novel constrained clustering algorithm is based on the unweighted pair group method

UPGMA. The original algorithm UPGMA starts from n singleton clusters corresponding to the n

taxa. Until all clusters are combined, it iteratively merges the two nearest clusters. For the

latter, the cluster distances are initially derived from the input distances and distances to

new clusters are computed after each merge of clusters. The sequence of merges determines

the cluster tree. The novel algorithm modifies UPGMA, such that, in each iteration, it merges

the nearest pair of clusters that can be merged without violating the X -cluster constraint.

To check this condition efficiently, we keep track for each cluster whether it contains some

elements of a cluster in X and whether it includes such a cluster completely. Merging two

clusters does violate the constraint if and only if each cluster overlaps some cluster in X but

does not cover it completely.

Horizontal gene transfer between bacteria and archaea

Although archaeal CRISPRs are generally well-separated from bacterial ones in general, we

observed a few instances where an archaeal CRISPR is located within a bacterial-dominated

region and vice versa. To investigate whether these mixed regions could arise from potential

horizontal transfer, we applied BLAST [5] to search for homologous Cas1 (or Cas2) protein

sequences (Cas1 and Cas2 are the most ubiquitous Cas proteins and exist in both bacteria and

archaea). We identified 24 archaeal and 8 bacterial repeats that were assigned to sequence

families or structure motifs dominated by the opposite domain. For 75 % (18 out of 24) of

the archaeal repeats, we identified Cas1 or Cas2 homologs in bacteria in the top five BLAST

hits (E-value ≤ 2× 10−10); the same was true for only one of the four bacterial repeats.

177



Appendix D. Supplementary material

D.1.2 Supplementary tables for CRISPRmap

Number of Cas subtype annotations

We annotated each CRISPR in our dataset according to the closest Cas subtypes as described

in the methods of the manuscript. The two major Cas subtype annotation systems were

considered [123,202]; the number of CRISPRs we annotated with each subtype is given in

Table D.1.

Subtype Archaea Bacteria Total

10 subtypes from Makarova et al. 2011 [202]

I-A 134 203 337
I-B 89 293 382
I-C 14 322 336
I-D 49 38 87
I-E 8 447 455
I-F 1 155 156
II-A 0 50 50
II-B 9 95 104
III-A 148 223 371
III-B 108 149 257

% CRISPR 87 % 68 % 72 %

8 subtypes from Haft et al. 2005 [123]

Apern 65 0 65
Dvulg 1 184 185
Ecoli 8 369 377
Hmari 15 36 51
Mtube 8 9 17
Nmeni 0 27 27
Tneap 89 254 343
Ypest 0 120 120

% CRISPR 29 % 35 % 34 %

Table D.1. The number of identified Cas subtype annotations for our REPEATS dataset. There were double
as many annotations using the more recent classification from Makarova et al., however, we did not require
that all cas genes from the respective subtype to be present; whereas the annotations performed for Haft et al.
were more strict, since we used full subtype models (see methods). In general, Dvulg, Ecoli, Hmari, Mtube,
Nmeni, and Ypest correspond to I-C, I-E, I-B, III-A, both type II, and I-F, respectively. Structured repeats
with very stable and conserved hairpin motifs, mainly found in bacteria, are written in bold. Note that the
9 subtype II-B CRISPRs in archaea are likely to be incorrect as we did not identify an RNase III in these
organisms. Automated annotation of subtype II-B was especially difficult as it contains no subtype-specific
Cas protein.

Summary tables of sequence families and structure motifs

Supplementary Tables D.2–D.19 summarise the sequence families and structure motifs, sorted

according to the superclass they belong to. The numbering of the families is according to

the number of repeats belonging to that family. The annotations in each column is done

manually with respect to the majority of repeats in that family (see other supplementary
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file for the full list). For the Cas subtype, an annotation is only given if this is more or less

clear. If there is a complete mix of subtypes, no information is given. The Cas subtypes are

summarised according to the cas genes that are found in the majority of chromosomes which

contain the CRISPRs of each family or motif. More details of the majority cas genes is given

on the web server. Archaeal families and motifs are highlighted in blue. If the CRISPRmap

web server is updated in future, then these tables supply a record for sequence families and

structure motifs that are referred to in this work. The secondary structures of the motifs and

sequence logos of the families are also provides in the tables.
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Table D.2. Summary for the bacterial sequence families in Superclass A.

# Sequence Logo Size Motifs Taxonomy Subtypes

F1

WebLogo 3.3

0.0

1.0

2.0

b
it
s

A T

A

C
G
C

G
C

T
5

TAGCTCAGTCAGTTGA
10

C

A

T
G
G

A
T

C
T

G
C
C

T
T

C

G

A
15

A

CCCT
G

T
A
G

C

A

T
20

T
A
G
T

G
A G GG

25

G
A
G

T

ATAGTAG
30

G

AAATC G
C
A

35

T

289 M10
un-
structured

Firmicutes I-B
III-A
III-B

F25

WebLogo 3.3

0.0

1.0

2.0

b
it
s

C
G
A
T
C

T
A

C
T

5

C
TAATTC
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T

G
T

G

A
CACTC

15

G

C

T
A
A
T
C

G

A
T
C

A

T

G
G

C

A

T
20

A
GG

G

T
AAT

25

G

TGAGAA
30

T
C

23 un-
structured

mixed bacte-
ria

I-A
II-B
III-A

F16

WebLogo 3.3

0.0

1.0

2.0

b
it
s

GTTT
5

CCATCA
10

CCTCA
T

15

T

AAA

GG
T
A

20

T
A
G
C
T

G
TAT

25

TGAAA
30

C C C G

40 un-
structured

Thermotogae III-A

F30

WebLogo 3.3

0.0

1.0

2.0

b
it
s

G GTT
5

GC
A

GAT
10

CCCTC
15

T
C
G
A
A
GGG

20

A
G G TAGA

25

TCGG

AGGC
30

A
G
G

C
A

A

C
T
A
C

19 M2 Actinobacteria -

F6

WebLogo 3.3

0.0

1.0

2.0

b
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s

A T

A

C
G
A

T

G
A

T
5

G

C
T
G

A

T
C

A
T
T

C

G

A
G
T

10

T

C
A
G

T
A

T
G

G

ACA
15

T

C
C

A

G

T
G

T
A
C

A
T
T

A
G

20

A
T
A

GG
T
A
G

G

T

A
25

TTAGGTAA
30

AC
G
T A

124 M8
un-
structured

Firmicutes I-A

F28

WebLogo 3.3

0.0

1.0

2.0

b
it
s

GTTT
5

TAGACTT
10

ACTTA
15

A
TTTAGTG

20

AAATG
25

TAAAT

20 un-
structured

Firmicutes I-A

F34

WebLogo 3.3

0.0

1.0

2.0

b
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s

G A
TTGT

5

AAGCCTAT
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C
T
T
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TATGGATGA
20

TGTAT
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TTAATA
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C
T A

15 M21 Firmicutes II-B
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2.0
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5
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A
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T
A

T
C
T
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TATTACTACAGT
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C

T

G
A
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T

ATC C
A A
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Table D.3. Structure motif summary for bacterial motifs in Superclass A.

# Structure Motif Size Families Taxonomy Subtypes

M10

G U U U G U A G C C U

C

C

C

C

U
U

U

G

G

G

G

A U U G A A A C

1 10

20
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50 F1 Firmicutes I-B
II-B
III-A
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G U U U U

A

U

C

U
G

A

A
C

U A
U
G

U

G
G

G

A

U

G U A A A C

1

10 20
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55 F6 Firmicutes I-A
I-B
III-A
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G U U G A A C C U U A A

C

A

U

U
A

G

A

U

G

U A U U U A A A U

1 10

20
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C

A

U

C
U

C
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U

G
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181



Appendix D. Supplementary material

Table D.4. Summary for the archaeal sequence families in Superclass A.

# Sequence Logo Size Motifs Taxonomy Subtypes

F29
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TA
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GGAACGAT
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G
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T
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T
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T
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T

T
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Table D.5. Structure motif summary for archaeal motifs in Superclass A.

# Structure Motif Size Families Taxonomy Subtypes

M15

G U U A A A A U C A G A

C

C

G

A
A

U

C

G

G

U A U G G A A A C

1 10

20
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35 F7 Euryarchaeota -
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G

U

U
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U
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G

G
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G
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1 10
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33 F7 Euryarchaeota -
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Table D.6. Sequence family summary for Superclass B.

# Sequence Logo Size Motifs Taxonomy Subtypes
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T
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C
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T
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T
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C
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T
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C

G
A
A
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T
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C
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30

A

88 M6 Proteobacteria I-F
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5
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T
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26 M18 Proteobacteria I-E

Table D.7. Structure motif summary Superclass B.

# Structure Motif Size Families Taxonomy Subtypes

M1

C G G U U U A U C C

C

C

G

C

U
G G

C

G

C

G

G

G G A A C A C

1
10

20

29

265 F2
F18

mixed bacte-
ria

I-E

M6

U U U C U A A G

C

U

G

C

C

U

G
U

G

C

G

G

C

A

G

U G A A C

1

10

20
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89 F8 Proteobacteria I-F
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C C G U C A

U

U

C

C

C

G

C

G
C A

G

G

C

G

G

G

A

A

U C

1

10

20

26

28 F22 Proteobacteria III-B
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Table D.8. Sequence family summary for Superclass C.

# Sequence Logo Size Motifs Taxonomy Subtypes

F4

WebLogo 3.3
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1.0
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G G
T
A

C

G
G

A
T

5
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C

T
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T
G
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T

C
T

C
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C
C

A
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T
C
C

A
G T TACAG
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T
C
A

G
A

G
A
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G
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A

C
G
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G
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CATCA
G
G

T
C
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T
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Table D.9. Structure motif summary for Superclass C.

# Structure Motif Size Families Taxonomy Subtypes

M2

G U G U U C

C

C

C

G

C

G
C G

C

G

C

G

G

G

G A U G A A C C G

1

10

20
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F21
F30
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C
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10

20
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unassigned
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Table D.10. Sequence family summary for Superclass D.

# Sequence Logo Size Motifs Taxonomy Subtypes

F3
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T
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T
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C
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T

C
T
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T
G
C
G
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15

T
C
C
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G C
A

G

T
C
C

A

G
A
G
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C

A
G

C
G
A

G
T

G
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T

A

CG
C

TG
A

G
35

C
A

C
T
G
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C
T
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mixed bacte-
ria

I-C
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T
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T
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T
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C
T
G

T

C
C
G
A
GG

25

C
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14 M9 Deinococcus-
Thermus
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III-B
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T
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T
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T
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A
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T
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C
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C
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18 M9 Deinococcus-
Thermus
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I-C

Table D.11. Summary for structure motifs in Superclass D with sequence conservation.

# Structure Motif Size Families Taxonomy Subtypes

M3

G U C

G

C

A

C

C

C

C

A
C

G

C

G

G

G

U

G

C

G U G G A U U G A A A C
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20

30 32
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A

C

C

C

G

C

C

C

U
A C

A

G

G

G

C

G

G

G

U

G A G G A U U G A A A C

1

10

20
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Table D.12. Summary for structure motifs in Superclass D without sequence conservation.

# Structure Motif Size Families Taxonomy Subtypes

M19

G U U U C

C

C

G

C

C

C

C

G
A A

A

G

G

G

G

C

G

G

G C C C C A U U G A A G C

1

10

20

30 36

28 unassigned mixed bacte-
ria

I-A
II-B
III-B

M25

G U U U C A A U C

C

C

C

U
U A

A

G

G

G

G A A G A A U C U U U U G C A A C

1

10

20
30 36
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A
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C

U
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G
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G

G
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U

U C A U U A A U U A G A A A C
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20
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U

U

U

A

G

U
U

G

U

U

A

G

G
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1
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20 28

10 unassigned mixed bacte-
ria

II-B
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Table D.13. Sequence family summary for Superclass E.

# Sequence Logo Size Motifs Taxonomy Subtypes

F39
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T
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T
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T
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Table D.14. Summary of bacterial structure motifs in Superclass E with sequence conservation.

# Structure Motif Size Families Taxonomy Subtypes

M5

G U U G U C A G A C C C A A A A C

C

C

C

G
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G

G
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unassigned

Cyanobacteria
mixed bacte-
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Table D.15. Summary of bacterial structure motifs in Superclass E without sequence conserva-
tion.

# Structure Motif Size Families Taxonomy Subtypes

M23

G C U U C A A U G G G G C

C

G

C

G

G

C

U

U
U

A

A

G

C

C

G

C

G

G A A G A C

1 10

20

30
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23 unassigned mixed bacte-
ria

-

M26

C C C U C A A U G A A G C U C

C

G

A

A

G
C

C
G A

G

A
C

U

U

C

G

G A G A U
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20
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M28

G U U U C A A U C A C C G C

C

C

C
G

A

U
A A

C

G

A
G

G

G

G A C U G A A A C

1 10

20

30 37

16 unassigned mixed bacte-
ria

I-C
III-A

M24

G U U U C A A U C

C

C

C
U

U

G
A C

A

U

C
G

G

G

G C A G U C G G U G C A A C

1

10

20
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ria

-
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Table D.16. Summary of archaeal structure motifs in Superclass E.

# Structure Motif Size Families Taxonomy Subtypes

M13

G U U C G A A A G C A U A

A

U

C

C
A

U

U
A

A A
A
C

A

A
G

G

A

U

U G A A A C

1 10

20
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37 F20
F26

Euryarchaeota I-A

M31

G U U U C A U U A
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C
G

U
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U

U U
U
U

U

C
G

G
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10

20
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-
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A

A
A A
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U
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C

G

G
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1 10

20
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ria

II-B
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Table D.17. Sequence family summary for Superclass F.

# Sequence Logo Size Motifs Taxonomy Subtypes
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Table D.18. Summary for archaeal structure motifs in Superclass F.

# Structure Motif Size Families Taxonomy Subtypes
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G A A A

A
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C

C

C

A
A A
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G

G
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U
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Table D.19. Final structure motif unassigned to a Superclass.

# Structure Motif Size Families Taxonomy Subtypes
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U

U
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A
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1 10 20
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D.1.3 Supplementary figures for CRISPRmap
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Figure D.1. Distance of cas genes in the annotation of subtypes from Makarova et al. 2011.
Distance of signature subtypes is in blue and the distance of signature types is in red; the cutoff is indicated
with the green line. The plot shows the distribution of the closest signature genes to the CRISPR array. A
signature gene is one that is unique to either the subtype or the type, respectively. Figure taken from [P3].

Pairwise percent identity

N
u
m

b
e
r 

o
f 

re
p
e
a
t 

p
a
ir

s 
(t

h
o
u

sa
n
d
s)

cutoff for 
MCL 
clustering

0 20 40 60 80 100

1,000

800

600

400

200

0

Figure D.2. Pairwise similarities for repeats. We plotted the distribution of pairwise percent identities
(x-axis) of Needleman-Wunsch [230] alignments for all repeats to determine a cutoff for the Markov clustering
(MCL). Here we see that 65 % is a reasonable cutoff in comparison with the background distribution. Repeats
with a similarity below 65 % are set to zero. Because of the short repeat length and conserved sequence motifs,
it is necessary to choose such a high cutoff. Figure taken from [P3].
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Figure D.3. Verifying repeat families with sequence profiles and re-assigning individual repeats.
All repeats were clustered into families using Markov clustering [80,320]. We verified these families using an
independent method of sequence profiles, see Methods section “Clustering of repeat sequences into conserved
sequence families”. After the generation of one profile per family, we calculated the profile scores for each
repeat in the REPEATS dataset. We plotted the profile scores (y-axis) for each repeat assigned to one of the
families (x-axis) as red-coloured dots. Subsequently, we used this range of profile scores to re-assign repeats to
one of the existing families as stated in the main text of the manuscript. Profile scores for re-assigned dots are
in blue (73 repeats). These profile scores are also used to assign new input repeat sequences from the web
server to one of our existing families. Figure taken from [P3].
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Taxonomy:

Bacteria ArchaeaSuperclasses: A B C D E F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Sequence 
families:

Structure 
motifs: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Chloroflexi
Crenarchaeota

Actinobacteria
Aquificae Deinococcus-Thermus

Cyanobacteria Proteobacteria
Spirochaetes

Bacteroidetes
Chlorobi

Eurarchaeota
Firmicutes

Tenericutes
Thermotogae

Domains:

CAS subtypes 2005:
Apern Dvulg Ecoli Hmari Mtube Nmeni Tneap Ypest I-A I-B I-C I-D I-F II-A II-B III-A

2011:
I-E III-B

CAS1:
1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 1713 18

10

Figure D.4. CRISPR of repeat conservation including all annotations. CRISPR repeats cluster
into 33 structure motifs and 40 sequence families. Here we show the cluster tree with all annotation rings—the
“altogether option in the webserver—colour coding starts from inside to outside, see the legend. The branches of
the tree are labelled according to the origin of the repeat: blue-green for archaea and dark brown for bacteria.
Ring 1 (inner-most) 33 structure motifs, ring 2 40 sequence families, ring 3 Haft 2005 subtype annotation,
ring 4 Makarova 2011 subtype annotation, ring 5 18 cas1 clusters, ring 6 taxonomic phyla annotation and
ring 7 (outer-most) the six superclasses for general orientation. Figure taken from [P3].
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A B C D E F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Ring 1 - motifs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Ring 2 - families

Ring 3 - Kunin clusters

Ring 5 - superclasses

1 2 3 4 5 6 7 8 9 10

Figure D.5. Comparison of our clustering with previous domain-wide repeat clusters or families
on our CRISPRmap tree. The branches of the tree are labelled according to the origin of the repeat: blue-green
for archaea and dark brown for bacteria. Ring 1 (inner-most) shows our structure motifs, ring 2 shows our
sequence families. After the white ring, we show ten of the twelve clusters from Kunin et al. [180, 287] in
Ring3; clusters 11 and 12 contain fewer than ten repeats and to be consistent with our cluster minimum
size, we have removed them here. Ring 4 contains those sequences of the Rfam [95] database that are also
contained in REPEATS (since we have all sequenced genomes to-date) and only families (16 out of 65) with at
least ten sequences. We do not mark the family names here, but just want to show the relative locations of
sequences in the CRISPRmap tree. Ring 5 (outer-most) shows the six superclasses for general orientation. In
summary, we clearly see that our data is significantly more comprehensive than previous work. Figure taken
from [P3].
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10

A B C D E F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Ring 1 - motifs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Ring 2 - families

Ring 3 - thermophiles

Ring 4 - superclasses

Figure D.6. CRISPRs found in thermophilic organisms. Ring 3 shows the number of CRISPRs that
were found in thermophilic organisms (taken from ExtremeDB, http://extrem.igib.res.in, March 2013).
At leat 17 % of our CRISPRs stem from thermophiles. Of these CRISPRs, 81 % are in superclasses A and F,
which are associated with diverse types I-A, I-B, I-D, III-A and III-B. In contrast, only 7 % of the bacterial
CRISPRs in superclasses B, C, and D—with strong Cas subtype associations—stem from thermophiles. The
same is true for bacteria only: 60 % of the CRISPRs from bacterial thermophiles are in superclass A. Figure
taken from [P3].
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Bacteria ArchaeaSuperclasses: A B C D E F Domains:

Spacer length: >=30 & <=31<=29 >=32 & <=34 >=35 & <=38 >38

Repeat length: >=24 & <=27<24 >=28 & <=34 >=35 & <=38 >38

No. of repeats <5 >=5 & <=32 >32

Inner to outer rings

Figure D.7. Analysis of array, repeat and average spacer sizes. First, we see the very small arrays
containing less than 5 repeat instances (red-brown) are mostly located in the more divergent parts of the
CRISPRmap tree; most are within the bacterial part of superclass F. Many of these arrays may not be functional
CRISPR-Cas systems, but other repetitive elements instead. Second, superclass F contains both some unusually
short and unusually long repeats, which also may not represent functional CRISPRs. In addition repeats in
superclass F and half of D are longer than those in superclasses A to the first half of D. Third, repeats in
superclasses A and F are longer than ones in B-D; this means the Cas subtypes I-C, I-E, and I-F associate
with shorter spacers than the others. Spacers in Crenarchaeota are unusually long with most longer than
38 nt. Interestingly, shorter repeats seem to pair with longer spacers. Cutoffs were chosen according to the
distribution of each array characteristic. Figure taken from [P3].
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Figure D.8. Sequence families separated on a two-dimensional plane. The 40 sequence famlies are
mapped onto a two-dimensional plane by BioLayout [309] according to their percent identity scores. We have
marked only those families that are clearly visible. The families are divided into two main groups with some
that are more separated from the rest. Figure taken from [P3].

-GGUUCAUCCCCACGUGUGUGGGGAACUCMethanosalsum zhilinae DSM4017
.........(((((....)))))......Structure motif  M1

CGGUUCAUCCCCACGCUUGUGGGGAACUCMethanosphaerula palustris E1-9c
CGGUUCAUCCCCGCGCCUGCGGGGAACACAcidiphilium cryptum JF-5
GGGCUCAUCCCCGCGUGCGCGGGGAGCACNocardia farcinica IFM10152

** ******** **   * ***** * *
-GGCUCAUCCCCGCGUGCGCGGGGAGCACNocardia farcinica IFM10152

( )

GAGUUCCCCACAAGCGUGGGGAUGAACCGMethanosphaerula palustris E1-9c
.....((((((....))))))........Structure motif  M2

GAGUUCCCCAUGCAUGUGGGGAUAAACCGMethanococcoides burtonii DSM6242

GAGUUCCCCGCAGAUGCGGGGAUGAACCGPelobacter carbinolicus DSM2380
GUGUUCCCCGCGUAUGCGGGGAUAAACCGErwinia pyrifoliae DSM12163

    ** **        ** * * *****

( )

AAAGUCCCCACAGGCGUGGGGGUGAACCGMethanocella arvoryzae MRE50
GAGUUCCCCGUGUGUAUGGGGAUGAACCGMethanospirillum hungatei JF-1
GUGUUCCCCGCGUAUGCGGGGAUAAACCGErwinia amylovora ATCC49946

GUGUUCCCCGCGUGAGCGGGGAUAAACCGErwinia pyrifoliae DSM12163

GAGGUCUCCGUAGGUACGGAGAUAAACCGXenorhabdus nematophila ATCC19061

)(( )

GUCGUGCCCCCCGUGGGCACGUGGAUUGAAAUMethanocorpusculum labreanum Z
..(((((((.....)))))))...........Structure motif  M3

GUCGCACUCCUUGUGAGUGCGUGGAUUGAAAULactobacillus helveticus H10
GUCGCACUCCUCGUGAGUGCGUGGAUUGAAAUExiguobacterium sibiricum JF-5255-15
GUCGCUCCUCUCGUAGGAGCGUGGAUUGAAAUClostridium cellulolyticum H10

****  *  *  **  *  *************
GUCGCUCCUCUCGUGGGAGCGUGGAUUGAAAUEubacterium rectale ATCC33656

( )( )(( ))

superclass B, subtype I-E

superclass C, subtype I-E

superclass D, subtype I-C

Figure D.9. Selected alignments showing evidence of horizontal transfer of structured CRISPRs
from bacterial to archaeal genomes. Archaeal CRISPRs are indicated in bold typeface. The secondary
structure from the respective motif is written above in dot-bracket format: brackets and dots corresponds
to base pairs and unpaired nucleotides, respectively. The highlighted brackets and squares show that the
secondary RNA structure has been conserved by compensatory base pair mutations. These compensatory
base pair mutations give excellent evidence for the conservation and importance of the respective structure
motifs. Figure taken from [P3].
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Figure D.10. CRISPRmap tree—a use-case study. This is the CRISPRmap cluster tree after re-clustering
150 repeats from a human metagenomic studies [256] together with our REPEATS data. The new 150 repeats
are marked by red lines. Interestingly, many repeats have been assigned to superclass E and cluster together
to potentially form new classes of motifs or families. Figure taken from [P3].
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Figure D.11. Conserved structured CRISPRs fit well to published cleavage sites and display
various patterns of sequence conservation. The sequence family logos correspond to the depicted
structure motifs. Potential cleavage sites are indicated as observed in the literature [32,99,103,129–131,227,
248,260,274,326]. (A)-(B) Superclasses B and C contain stable structure motifs of the subtypes I-E and I-F.
The difference is that the structures in superclass B are closer to the 3’ end of the repeat and that the potential
cleavage site is in the double-stranded region of the stem instead of the 3’ side of its base. (C) Superclass D
contains members of the I-C subtype with relatively long hairpin motifs. Note that the potential cleavage site
leads to an 11 nt instead of an 8 nt tag in the mature crRNA and we also see the well-conserved 3’ end of
the repeat (ATTGAAAC); this 3’ sequence is found in many CRISPRs, also in archaea. (D) Examples of
structure motifs found in archaeal repeats in superclasses A and F. These are smaller and less stable than the
bacterial motifs. Figure taken from [P3].
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Haloarchaea
Cas6 [41-44 %]

Cas6b - YP_001097292.1 [17 %]

M. maripaludis C5

Cas6 - YP_189998.1 [13 %]
S. epidermidis RP62A

Cas6b - YP_001039593.1 [16 %]
C. thermocellum ATCC 27405 #1

Cas6b - NP_635383.1 [17 %]
Cas6b - NP_632584.1 [16 %]

M. mazei Gö1

Cas6 - NP_942302.1 [18 %]
Cas6 - NP_942356.1 [15 %]

Synechocystis sp. PCC6803

Cas6 - NP_963295.1 [22 %]
N. equitans Kin4-M

Cas6f - YP_790814.1 [16 %]
P. aeruginosa UCBPPPA14

Cas6e - YP_145431.1 [15 %]
T. thermophilus HB8

Cas6e - YP_490965.1 [15 %]
E. coli K12 substr. W3110Cas6 - NP_578860.1 [18 %]

P. furiosus DSM 3638

Cas6 - YP_001038698.1 [18 %]
C. thermocellum ATCC 27405 #2

Figure D.12. The haloarchaeal CRISPR-Cas systems are different from other systems. The
haloarchaeal CRISPR-Cas systems are distinct from published systems where the Cas6 protein has been
functionally characterised. The circular hierarchical tree represents the sequence and structure similarity
of repeats from all publicly available genomes, taken from the CRISPRmap web server [P3]. The locations of
repeats associated with previously (partially) characterised Cas6 are highlighted with red lines: Clostridium
thermocellum [260], P. furiosus [36, 126, 326], E. coli [32], Thermus thermophilus [103, 155, 274], P. aerugi-
nosa [130], Nanoarchaeum equitans [248], Synechocystis [P8,P10], Methanosarcina mazei [P7], Staphylococcus
epidermidis [129] and Methanococcus maripaludis [260]. The pairwise alignment percent identities in com-
parison with the Cas6 protein in H. volcanii are given in square brackets. For the CRISPRmap tree, brown
branches represent CRISPRs from bacteria, the blue-green branches represent CRISPRs from archaea, the
inner annotation circle represents different conserved structure motifs, the middle circle represents conserved
sequence families and the outer circle represents the six superclasses. Figure and legend text taken from [P2].

D.2 Part III

Only some additional figures are provided for this part.
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Figure D.13. Illustration of the CRISPR-cas loci CRISPR1–3. The pSYSA plasmid of Synechocystis
sp. PCC6803 harbours three CRISPR-Cas systems, named CRISPR1–3. The CRISPR array and annotated
cas genes associated with these arrays are depicted. Arrows in green represent genes coding for hypothetical
proteins and arrows in orange illustrate cas-genes from the RAMP family. Experimentally mapped start sites
of transcription (TSS) are marked by thin red arrows. Direct repeats are symbolised by narrow rectangles. For
selected genes, we specify synonymous gene names. In general, however, we use the nomenclature introduced
by Makarova and colleagues in [201,202]. Figure taken from [P10].
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Figure D.14. Base-pair quality image from the FASTQC program for the RNA-seq dataset A. (A)
We see an increasingly poor sequencing quality towards read ends for the original dataset, possibly due to the
poly(A) tails and subsequent adapter sequences. (B) After quality trimming, we see that the read ends with a
poor sequencing quality have been removed. Figure taken from [P10].
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D.3 Part IV

The first half of this section is included in the supplement of [P4] and was included here for

comprehensive purposes.

Algorithms for secondary structure prediction

We used RNAfold from the Vienna Package Version 1.8.4 as a representative of the global fold-

ing approach. The options used in this study are RNAfold -d2 -p -noLP. For folding under

the constraint of the consensus structure, we used the additional option -C. RNAfold does not

compute accessibilities, but position-wise accessibilities (as measured in the YeastUnpaired

dataset and used in our evaluation) can be computed from the base-pair probabilities as

defined in Equation 2.5 Section 2.5.6.

We use Rfold [170] in our analysis to represent this approach for base-pair probabilities and

Raccess [171] for accessibilities. The commands for Rfold and Raccess were run rfold

-max pair dist=L -print prob=true and run raccess -max span=L -access len=1.

The execution call for RNAplfold is: RNAplfold -noLP -W W -L L -u 1.

Figure D.15. Average accessibilities per window position for the 400 mRNAs used for Figure 6.3,
split by GC-content of the windows. While average accessibilities decrease with increasing GC-content,
border nucleotides are distinctly more accessible for all instances.

Curated benchmark set of cis-regulatory elements

From all 222 families labelled as “Cis-reg” in the Rfam database version 10.0 [95,111], we

have selected 98 with experimental evidence, which are likely to have well defined structures.
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Figure D.16. Average accessibilities per window position for ten 15, 000 nt random sequences
ranging in GC-content from 10–100 %. Sequences were folded with L = 100 and W = 150 (lower) and
W = 100 (upper). Folding of each sequence resulted in 15, 000−W + 1 independent folding windows.

These families comprise sequences from eukaryotic, bacterial and viral genomes with diverse

cis-regulatory functions. More information about each one is available though the CisReg

website, http://lancelot.otago.ac.nz/CisRegRNA/, with links to Rfam.

We extracted the seed alignments for each family from the database and used BLAST [5] to

locate the positions of each element. Subsequently, we extracted the element sequences from

the original sequences within contexts of 100, 200, 500 nt to either side of the functional

element where possible. If there was not enough context, the sequences were extended to

the beginning and/or end of the mRNA. We further extracted full-length mRNAs up to

maximum context of 3,000 nt. Some of the original sequences are genomic from bacterial

or viral genomes, so that possibly non-mRNA sequences are within the dataset. This fact,

however, should not significantly influence the comparison of the prediction methods. We

divided the dataset into originating from mRNA or genomic context to separately test the

trends observed. To gain the exact base-pairs for each structural element in the family,

we mapped the given consensus structure to the individual sequences. Any base-pair not

consisting of GC, AU , or GU were omitted. Furthermore, any base-pairs that did not allow

for at least three unpaired bases within a hairpin loop were also omitted.

The consensus structure only includes base-pairs that are common to all elements within a

given family, although more base-pairs are likely to form in the individual element to improve

its stability. To find the most stable structure, each element was folded with RNAfold using

the consensus base-pairs as a constraint and the resulting minimum free energy structure

was used. In the process of mapping the consensus structure to the single elements, non-

conforming base-pairs were deleted. Therefore, we filtered out any elements that (1) did not

retain at least 80 % of the original base-pairs in the consensus structure and (2) did not

retain at least 80 % of the mapped base-pairs in the final constraint structure as folded by
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Figure D.17. Base-pair accuracy box-plots for the CisReg data for several window sizes W and
span L = 150, using RNAplfold. For the comparison on the CisReg data shown in Figure 6.6, the span L
was optimized using Rfold and thus independently from RNAplfold or LocalFold. Given this L, we selected the
optimal W for RNAplfold. Results for W = 200 show the highest median accuracy and the smallest variance.

RNAfold (constraint folding with RNAfold sometimes results in a constraint base-pair being

left unpaired – see RNAfold manual). This means, only sequences that were very similar to

the consensus structure in Rfam were used.

The final dataset, referred to as CisReg, consists of 2500 individual structural elements from

95 cis-regulatory elements located on the mRNA across many different species. RF00632,

RF00227, and RF00524 were not used because they did not pass the the filtering steps

described above. Possible reasons for this are as follows: RF00632 (sxy 5’ UTR element)

includes only two sequences in the seed alignment and the 16 sequences in the full alignment

from H. influenzae have 97 % identity, i.e., poor evidence for the consensus structure. RF00227

(ftz instability element 3’) is mainly unstructured with a small nine base-pair stem in the

centre. RF00524 (R2 RNA element) is a large computationally predicted structure that has

a functional ribozyme within it. Subsequent updates to CisReg and Rfam entries should

address these deficiencies. With this dataset, we evaluated over 85,000 base-pairs.

D.3.1 Dataset redundancy evaluation

During the manual curation the families were chosen to exclude similar families.

Similarity within families

To assess the sequence redundancy of our dataset, we took the sequences with 100 nt context

to either side of the element. We selected this context, because the direct context is the most

influential region for the structure prediction of the regulatory element. We subsequently
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A
U
R
O
C

Figure D.18. Comparison of W values for a fixed L value on accessibility data AUROCs for
separating high-scored and low-scored nucleotides from the YeastUnpaired data for several window sizes W
and span L = 100, using RNAplfold. The comparison of YeastUnpaired in Figure 6.8 was done for several L
(fixing W at L + 50). The best result for RNAplfold was reached using parameters L = 100 and W = 150.
This is the optimal W for this span for RNAplfold.
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Figure D.19. Comparison of structure-prediction performances for individual Rfam families. The
median bp-accuracy is shown separately for each of the 95 Rfam families within the CisReg data using sequence
contexts of 500 nt. The families are sorted by the maximum base-pair span of their elements, ranging from 15
to 551. This information is more relevant than the actual element length, because this corresponds to the
parameter L used. RNAfold only performs better than the other methods when the base-pair spans of the
structure greatly exceeds the maximum base-pair span parameter L = 150. In general, we see similar trends
across most families and no bias due to data redundancy is evident.

clustered these sequences using BlastClust [5]. This program groups sequences according to

sequence similarity. To avoid the problem of overlapping sequences as described above, we

set the coverage of both sequences to 100 %. To assess the amount of sequence similarity, we
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varied the percent identity of the pairwise alignments from 10 % to 100 % in steps of ten.

We received the following number of clusters: 2,460 (100 % identity), 1,759 (≥90 % identity),

1,671 (≥10 to ≥80 % identity). Therefore, at least 1,671 sets are different problems with

respect to structure prediction. Even a single mutation can alter the element structure at

specific locations. Modest sequence differences (e.g. >20 %) usually result in different foldings

and thus form different problem sets. As most of the redundancy is due to similar sequences

within a family, we separated the analysis into families in Supplementary Figure D.19. Here

we observe the same trends as we presented in the main paper for most of the families. In ad-

dition to the support of the YeastUnpaired results, this analysis exhibits the reproducibility

of our results. The program call for BlastClust (pI = percent identity) was: blastclust

-i

sequences context100.fasta -o blastclust.out -p F -L 1 -b T -S pI. We have

also reported the overall pairwise similarities of the seed alignments in the online database.

Similarity between families

The clustering analysis on primary sequence indicate that there are distinct sets, however to

access the redundancy in folds we have used cmcompare [142] to do pairwise comparisons of

each of the covariation models to one another and to the whole Rfam 10 set of models. For

cmcompare scores of over 20 are considered ’worthy of note’ and 7.4 % of the entire Rfam

database had such scores. However, no pairs within the CisReg set used here had scores

over 20. Although there were some notable matches to other Rfam families not in the set

analysed here. We also compared the primary sequence of the first member of each family to

all the sequences in the other families using blastn. Only 9 of 98 had matches with E < 1.0

in the other sequences. These were all short regions of identity < 13 bases long, too short to

contribute substantial common secondary structures.
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D.3.2 Sequences used to evaulate cleavage events of single repeat instances

in CRISPR2

The nine in-vitro experiments to prove or disprove cleavage at single repeat instances within

varying sequence contexts were performed using the following sequences. Structure prediction

to calculate structure accuracies was also performed on the full sequences separately. The

descriptive identifier is built up as follows: experiment number, specific spacer and repeats

and the length of the entire fragment, separated by underscores. If a spacer or repeat is not

in full length, then the number of nucleotides is given after the respective part. All sequences

begin with GG and are separated in the table by repeat instances, i.e., the rows alternate

between spacer and repeat sequence parts.

Fragment Sequence

I GGCGGGGCUUGGGGGGUUGGAGUCCCCGCCCCCGUGGUGGGAGUUCAACACCCUCUUUUCCCC-

GUCAGGGGACUGAAACUGUGAGUUGCAUAAUGCCUCCUAAUGGCUGUUGGACUCAUAA

II GGCGGGGCUUGGGGGGUUGGAGUCCCCGCCCCCGUGGUGGGAGUUCAACACCCUCUUUUCCCC-

GUCAGGGGACUGAAACUGUGAGUUGCAUAAUGCCUCCUAAUGGCUGUUGGACUCAUAAGUUCA-

ACACCCUCUUUUCCCCGUCAGGGGACUGAAACCUUGGUAUUUGUAGUUCUCGAUGAGUGUUUU-

AGGCA

III GGCGGGGCUUGGGGGGUUGGAGUCCCCGCCCCCGUGGUGGGAGUUCAACACCCUCUUUUCCCC-

GUCAGGGGACUGAAACUGUGAGUUGCAUAAUGCCUCCUAAUGGCUGUUGGACUCAUAAGUUCA-

ACACCCUCUUUUCCCCGUCAGGGGACUGAAACCUUGGUAUUUGUAGUUCUCGAUGAGUGUUUU-

AGGCAGUUCAACACCCUCUUUUCCCCGUCAGGGGACUGAAACUGAUAACGGGAUGCCAGCCCU-

AAAGGUGAUGAGCGG

IV GGCGGGGCUUGGGGGGUUGGAGUCCCCGCCCCCGUGGUGGGAGUUCAACACCCUCUUUUCCCC-

GUCAGGGGACUGAAACUGUGAGUUGCAUAAUGCCUCCUAAUGGCUGUUGGACUCAUAAGUUCA-

ACACCCUCUUUUCCCCGUCAGGGGACUGAAACCUUGGUAUUUGUAGUUCUCGAUGAGUGUUUU-

AGGCAGUUCAACACCCUCUUUUCCCCGUCAGGGGACUGAAACUGAUAACGGGAUGCCAGCCCU-

AAAGGUGAUGAGCGGGUUCAACACCCUCUUUUCCCCGUCAGGGGACUGAAACCGUUAUCCGGC-

AAAGAAACCACACUACUAAGCUCGACAA

V GGUGUGAGUUGCAUAAUGCCUCCUAAUGGCUGUUGGACUCAUAAGUUCAACACCCUCUUUUCC-

CCGUCAGGGGACUGAAACCUUGGUAUUUGUAGUUCUCGAUGAGUGUUUUAGGCAGUUCAACAC-

CCUCUUUUCCCCGUCAGGGGACUGAAACUGAUAACGGGAUGCCAGCCCUAAAGGUGAUGAGCG-

GGUUCAACACCCUCUUUUCCCCGUCAGGGGACUGAAACCGUUAUCCGGCAAAGAAACCACACU-

ACUAAGCUCGACAAGUUCAACACCCUCUUUUCCCCGUCAGGGGACUGAAACUGGGCCGGGCGC-

GAGUUGUCCUCCUGUCCGAGGCCCCAC

VI GGCCCCGCCCCCGUGGUGGGAGUUCAACACCCUCUUUUCCCCGUCAGGGGACUGAAACUGUGA-

GUUGCAUAAUGCCUCCUAAUGGCUGUUGGACUCAUAAGUUCAACACCCUCUUUUCCCCGUCAG-

GGGACUGAAACCUUGGUAUUUGUAGUUCUCGAUGAGUGUUUUAGGCAGUUCAACACCCUCUUU-

UCCCCGUCAGGGGACUGAAACUGAUAACGGGAUGCCAGCCCUAAAGGUGAUGAGCGGGUUCAA-

CACCCUCUUUUCCCCGUCAGGGGACUGAAACCGUUAUCCGGCAAAGAAACCACACUACUAAGC-

UCGACAAGUUCAACACCCUCUUUUCCCCGUCAGGGGACUGAAACUGGGCCGGGCGCGAGUUGU-

CCUCCUGUCCGAG
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VII GGCUUGGUAUUUGUAGUUCUCGAUGAGUGUUUUAGGCAGUUCAACACCCUCUUUUCCCCGUCA-

GGGGACUGAAACUGAUAACGGGAUGCCAGCCCUAAAGGUGAUGAGCGGGUUCAACACCCUCUU-

UUCCCCGUCAGGGGACUGAAACCGUUAUCCGGCAAAGAAACCACACUACUAAGCUCGACAAGU-

UCAACACCCUCUUUUCCCCGUCAGGGGACUGAAACUGGGCCGGGCGCGAGUUGUCCUCCUGUC-

CGAGGCCCCAC

VIII GGUGAUAACGGGAUGCCAGCCCUAAAGGUGAUGAGCGGGUUCAACACCCUCUUUUCCCCGUCA-

GGGGACUGAAACCGUUAUCCGGCAAAGAAACCACACUACUAAGCUCGACAAGUUCAACACCCU-

CUUUUCCCCGUCAGGGGACUGAAACUGGGCCGGGCGCGAGUUGUCCUCCUGUCCGAGGCCCCA-

C

IX GGCGUUAUCCGGCAAAGAAACCACACUACUAAGCUCGACAAGUUCAACACCCUCUUUUCCCCG-

UCAGGGGACUGAAACUGGGCCGGGCGCGAGUUGUCCUCCUGUCCGAGGCCCCAC

D.3.3 Dotplots showing the differences in base-pair probabilities between

cleaved and uncleaved repeat loci

Figure D.20. Dotplots showing the differences in base-pair probabilities between cleaved (A)
and uncleaved (B) repeat loci. Each dotplot depicts the average base-pair probability for each repeat
instance from Section 7.2 in the upper right triangle and the structure motif (base-pairs highlighed as red dots)
for CRISPR2 in Synechocistis sp. PCC6803 in the lower left triangle. Base-pairs between two nucleotides in
the repeat are within the red box; base-pairs between a nucleotide in the repeat and one in the spacer are
between the two dotted lines; and base-pairs between to nucleotides in the spacers are in the outer boxes. The
spacer sequences are variable, depending on the repeat locus and we calculated average base-pair probabilities
for the mode spacer length.
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D.4 Part V

D.4.1 Additional data and results relating to the significance of accessi-

bility around RRE sites in the RNAi pathway

We gathered five datasets containing RNAi interaction sites for siRNA and miRNA from three

different organisms, which are phylogenetically very distant: humans, firefly and Arabidopsis

thaliana.

Interaction data for endogenous miRNA

The endogenous miRNA data is divided into functional and non-functional interactions.

• 01-AtmiR: This dataset was previously described in Section 8.1. The description

is extended here by the GEO accession numbers from which the data was derived

in Table D.21. It is a high-fidelity dataset of 110 functional and 114 non-functional

miRNA-MRE interactions in A. thaliana.

• 02-Human: This dataset consists of 67 functional MRE sites in 36

mRNAs of Homo sapiens (human) taken from miRecords (extraced from

http://mirecords.biolead.org/download.php, release 5 May 2010). Entries in miRecord

were only taken if mutation experiments were performed and the target site could be

located in the given mRNA accession number [346]. Since no non-functional data was

available here, a corresponding set of random MRE sites was generated as follows: for

each functional MRE, a second, non-overlapping region was extracted from the same

target mRNA of the same length. Although by chance one could hit an “unknown” but

functional MRE, in general the random sites can be assumed to be non functional. The

final dataset contains 67 functional and 67 non-functional MREs.

Interaction data for artificial siRNA

Artificial siRNAs are designed to knock down the expression of target genes by binding to

their corresponding mRNAs, analagously to the artificial miRNAs described in Chapter 10.

For the following datasets of binding sites of artificial siRNAs, repression efficiency scores are

available. Thus, we do not have a partitioning into functional and non-functional sites, but

continuous values of repression efficiency instead. All three datasets were extracted from [303].

First, the knock-down efficiency of each siRNA on target mRNA was measured by the average

mRNA repression. Let X be the set of measurements for all siRNA-target pairs. Then, all

x ∈ X were subsequently normalised to values between [0, 1] with a linear interpolation:

f(x) =
x−min(X)

max(X)−min(X)
,

where max(X) and min(X) are the highest and lowest repression measurements for all

observations in the set X, respectively.
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• 03-Tafer02: consists of artificial siRNAs that target arbitrary regions of the coding

sequences of human mRNAs MAP2K1, GAPDH, PPIB, and LMNA. It comprises 294

interactions in total.

• 04-Tafer03: consists of an independent set of artificial siRNAs that also target

human mRNAs, in this case Cyclophilin, ALPPL2 and DBI. This set comprises 270

interaction sites.

• 05-Firefly: contains measurements of the repression efficiency of 89 artificial siRNA

interactions, targeting only the luciferase mRNA in the firefly (Photinus pyralis).

Table D.21. GEO accession numbers for expression data of A. thaliana genes from ASRP [120]

Small RNA 454 sequencing

col-0 GSM154336
dcl1-7 GSM154361

Gene expression micorarrays

col-0 GSM47011, GSM47012, GSM47013, GSM47020,
GSM47021, GSM47022, GSM47049, GSM47050,
GSM47051

dcl1-7 GSM47023, GSM47024, GSM47025, GSM47026,
GSM47027

Accessibilities in the vicinity of RNAi-regulatory recognition sites

Using a sliding-window approach as introduced in Section 8.2, we performed similar experi-

ments with all datasets described above and plotted them in Figure D.21. For the sets of

artificial siRNAs, we calculated Spearman’s ranked correlations with repression efficiency

scores, instead of performing two-sample tests to determine the differences of distributions

between functional and non-functional interactions. In all datasets, functional sites are always

close to regions of higher accessibility, usually downstream of the binding sites. Although the

organisms and the exact location of these accessible regions differ, it is remarkable that they

all show such patterns. In particular, it is of special interest that the regulatory recognition

elements (RREs) of both miRNAs and siRNAs are not accessible, despite the common belief

that these should be more accessible [213,215,305,310,342].

D.4.2 Deriving high-fidelity miRNA-MRE interaction data from CLIP-seq

experiments in humans

Scanning for seed interactions in target mRNAs

Since calculating hybrid interactions between miRNA and MRE is computationally expensive,

an efficient seed scanner was devised to locate potential sites of interactions. These sites were

subsequently used as anchors to predict the extended hybrid pattern.
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Figure D.21. Accessibility is significantly higher generally in regions downstream of target sites
in the RNAi pathway. The same analysis performed in Section 8.2 was repeated for five datasets of miRNA
and siRNA binding in A. thaliana (01-AtmiR), humans (02-Human, 03-Tafer02, 04-Tafer03) and in fireflies
(05-Firefly); see further descriptions above of the data. For each independent dataset, the centre of 20-nt
windows is indicated on the y-axis and either the t-value for Student’s two-sample t-test for binary data or the
Spearman’s ranked correlation for continuous affinity measurements are given on the x-axis. The differently
sized dots represent the p-value. Instead of the Student’s t-test p-value, we used an independent test for
calculating p-values for binary data—the Wilcoxon Rank Sum test.
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The canonical seed definition is that the target MRE is complementary to positions 2–7 of

the miRNA, excluding GU base pairs. However, in additional to the canonical seed, many

interactions with non-canonical seeds have shown a regulatory effect in the literature [45, 65,

121,196,216,306,306]. Non-canonical seed interactions within positions 2–7 of the miRNA

include GU base pairs [65,187,196,216,306], bulges in the miRNA [121,216], bulges in the

mRNA [45,306] and further mismatches between miRNA and MRE [196,306]. In addition, in

a computational study on the stability of miRNA-MRE hybrids bound by Argonaute proteins,

it was concluded that multiple GU pase pairs and bulges with single nucleotides at several

positions in both sequences do not affect the overall stability of the interaction [345]. We

have used the supplied evidence in the literature to define an extended seed interaction as

follows:

1. Contains at least six base pairs between positions 1–8 of the miRNA.

2. Contains an arbitrary number of GU base pairs.

3. Contains a single-nucleotide bulge between positions 2–8 of the miRNA in the target

MRE sequence.

4. Contains a single-nucleotide bulge between positions 3–8 of the miRNA in the miRNA

sequence.

5. Contains at most one mismatch (internal loop with single unpaired nucleotides) within

the seed region of 1–8 of the miRNA in both sequences.

The last three properties are mutually exclusive so that only one of the conditions (3)–(5)

may apply. For each of the mature miRNA sequences being analysed, the seed sequences is

extracted and complementary seed interaction sites are scanned in target RNA sequences.

Seed scanning was performed using regular expressions. The previous seed definition is

subsequently divided into the following seed types and scanning proceeds hierarchically,

starting from the most extensive and ending in the most loose seed type:

1. 8-mer seeds: contain base pairing between all eight miRNA positions 1–8 and the

MRE, including GU base pairs.

2. 7-mer seeds: contain seven consecutive base pairs between miRNA and MRE within

positions 1–8 of the miRNA, including GU base pairs.

3. 6-mer seeds: contain six consecutive base pairs between miRNA and MRE within

positions 1–8 of the miRNA, including GU base pairs.

4. Loose non-canonical seeds: contain seed interactions that remain according the

previous definition and at least six, non-consecutive base pairs between positions 1–8 of

the miRNA.
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Positions of seed interactions in target mRNA sequences are stored in BED format1. Applying

intersectBed from the software package BEDTools2, the intersection of the resulting seed

types was used to filter overlapping seed interactions; the strongest seed type was retained.

Curation of functional miRNA-MRE interactions

Functional miRNA-MRE interactions were generated in a two-step process from CLIP-seq

experiments where cross-linking with Argonaute proteins was considered evidence of miRNA

binding: (1) locating and extracting the RREs of the Argonaute proteins with sufficient

sequence context; and (2) the calculation of probable base-pairing patterns with expressed

miRNA sequences.

AGO-RRE sites were derived derived from a CLIP-seq experiment performed in human

embryonic kidney (HEK293) cells using the PAR-CLIP protocol cross-linking Argonaute

proteins 1 to 4 (AGO1–4) to bound RNA [122]. The supplementary material of the publication

provides 17,319 RREs bound by AGO1–4—according to the experiment. The PAR-CLIP

protocol ends with an RNA-seq experiment using the RNA bound to the selected protein. A

consequence of the PAR-CLIP cross-linking procedure is that the subsequent copy DNA carries

T to C mutations at the cross-linked sites. Hence, a region was considered to be an RRE

when a cluster of at least 5 overlapping reads, mapped to the human genome assembly hg18,

contained a minimum of 20 % T to C mutations. An RRE sequence of 41 nt was extracted,

centered on the position with the most frequent T to C mutations. Since we required the

context sequence of the RREs for subsequent encoding of miRNA-MRE interactions, we had

to determine the exact location of the RREs within their native mRNAs. First, the set of all

mRNA transcripts from the NCBI RefSeq database were downloaded from the UCSC genome

browser3 in April 2013. This set contained 34,038 mRNAs from the more recent human

genome assembly hg19. RRE sequences taken from [122] were aligned with a locally set-up

BLAST [5] database of the downloaded mRNA transcripts using the nucleotide–nucleotide

BLAST tool, blastn, version 2.2.25+; the E-value threshold was set to 0.0001, the DUST filter

for low-complexity sequences was turned off, and the option -task blastn-short applied

the optimised algorithm for short sequences. For each RRE, the mRNA hit with the lowest

E-value was chosen, and with multiple mRNAs with lowest E-values, the longest transcript,

was chosen. This procedure yielded 14,317 alignments with 5,843 mRNAs; only exact matches

between sequenced RRE and mRNA hit were considered and thus for the remaining RREs

only partial or no hits were identified.

For the remaining 14,317 RREs, we had to identify which of the top-expressed miRNA was

most likely integrated into the bound Argonaute (if any). The supplementary material (Table

S5) of [122] contains the expression profile of miRNAs in the same HEK293 cells that were

used for the AGO1–4-PAR-CLIP experiment. Since an old miRBase [112,176] release was used,

1 The BED format encodes genomic positions of annotations that can be viewed in tracks of genome browsers,
such as the UCSC genome browser, http://www.genome.ucsc.edu/FAQ/FAQformat.html.

2 BEDTools available from http://code.google.com/p/bedtools/
3 ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/refMrna.fa.gz
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mature miRNA IDs were updated via sequence comparisons to the miRBase release 191. To

reduce sequence redundancies when learning models of miRNA-MRE interactions, mature

miRNAs were summarised into seed families when they shared identical seed sequences

between positions 2–8. The miRNA with the highest observed expression level was chosen as

the representative of each seed family. Finally, we used IntaRNA with restrictive parameter

constraints to predict the exact MREs of the selected miRNAs within the 14,317 RREs. For

this work, an unofficial version of IntaRNA, version 1.2.6 was applied so that when calculating

miRNA-MRE interactions, there is a parameter that can restrict seed interaction within the

target RNA as well as within the miRNA (which is not possible in the current official version).

Thus, we could utilise the results from the previously described seed scanning to set the seed

interaction with the target mRNA. Only seed positions that were within positions 20–30 of

the AGO1–4-PAR-CLIP RREs were considered because this region was previously shown to

be enriched in complementary seed matches to highly expressed miRNA [122], and this adds

a further layer of precision to the data. To reflect the previous seed definitions, IntaRNA

was set to a seed interaction of at least six base pairs including a maximum of two unpaired

nucleotides. The calculation of accessibility was disabled, since it increases computational

speed and enough evidence of the interaction site is given by the RREs detected by the

AGO1–4-PAR-CLIP experiment. In the case of several IntaRNA hits, only the interaction with

the minimum free energy was selected. IntaRNA interactions were subsequently annotated

and filtered to belong to one of the four seed types defined in the beginning of this section.

Finally, the predicted IntaRNA interactions were filtered further to increase the quality of the

data according to the following criteria:

• The minimum free energy of the hybrid structure is <−4 kcal/mol.

• A maximum bulge size in the hybrid of 12 nt.

• Compensatory base pairing with at least four base pairs between positions 12–17. of

the miRNA or pairing with positions 18–19 was required when only six base pairs

existed in the seed region and at least three of these were GU base pairs; locations of

compensatory base pairing for loose seed types was were taken from [166].

Curation of non-functional miRNA-MRE interactions

Since non-functional interactions between miRNA and MRE that do not affect target reg-

ulation are not published, such data has to be carefully generated. To select endogenous

RNA sequences not targeted by miRNAs, we have assumed that those sequence regions of

mRNAs, expressed in CLIP-seq experiments but where there is no evidence of cross-linking

with Argonaute proteins, are not bound by miRNAs. Next, by masking the regions identified

by CLIP-seq experiments, we searched for assumed non-functional interactions in the rest of

the mRNA sequences.

1 Downloaded April 2013 from ftp://mirbase.org/pub/mirbase/CURRENT/mature.fa.gx
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Collection of other CLIP-seq data. To have a large coverage of experimental evidence

of miRNA-Argonaute binding, we collected all available CLIP-seq data from experiments

performed on HEK293 cells. In addition to the AGO1–4 PAR-CLIP dataset from [122], we

gathered data from three additional AGO2-CLIP-seq datasets from the Gene Expression

Omnibus (GEO accession number is GSE28865) that were published in [172]. Of the

two replicates performed, replicate A datasets were chosen due to their more consistent

results [172]: these included GEO accessions GSM714642, GSM714644, and GSM714646. The

three datasets contained 54,905, 91,362, and 44,497 40-nt-long sequences, respectively, with

supporting evidence that they were bound by AGO2. The more recently developed protocol

that ligates the miRNA sequence to the identified target sequence as well as cross-linking

with Argonaute is CLASH [135]. The Supplementary Table S1 from [135] contains 18,514

miRNA-MRE interactions, however, these sequence vary in length from 18 to 119 nt, with

the majority between 43–49 nt. As was previously done for the AGO1–4 PAR-CLIP dataset,

exact locations on mRNA transcripts were identified by applying BLAST with an E-value

cutoff of 0.0001 (and 0.001 for the CLASH dataset to capture the very short sequences). For

a greater sensitivity, partial alignments were also considered for all CLIP-seq datasets.

Calculation of non-functional interactions. The aforementioned seed scanning was

applied to all mRNAs for which an Argonaute-RRE was detected and all seed matches

overlapping with these RREs from the five CLIP-seq datasets were ignored and hybrid

interactions were calculated using IntaRNA with the same seed constraints as before. In order

to select a negative set that closely resembles functional interactions, we selected interactions

using the same filters applied to the functional interactions. To balance both datasets, the

same number of seed types were added to the non-functional set that existed in the functional

set with the same number of interactions per miRNA. A seed type was defined by the number

of base pairs, specially regarding the number of GU base pairs, within the seed interaction:

for example the seed type 6-2 would have 6 base-pairs within the seed interaction, two of

which were GU base pairs.

D.4.3 RNA-binding-protein–occupancy profiles

The data produced for [12], downloaded from the Gene Expression Omnibus (GEO GSE38355),

includes 4,740,558 nucleotide positions with evidence of cross-linking to any (unknown) RBP.

This evidence is given by at least two of the characteristic T to C mutations that occur

during the cDNA replication of cross-linked sites using the PAR-CLIP protocol [12, 122]. The

genomic coordinates are given according to the older hg18 human genome assembly, and

thus, the coordinates had to be mapped to the same mRNA transcripts used for the miRNA

interaction datasets from the more recent hg19 genome assembly. This was done using the

liftOver executable1 and the respective conversion file from UCSC2.

1 liftOver downloaded from http://hgdownload.cse.ucsc.edu/admin/exe/.
2 Downloaded conversion file hg18ToHg19.over.chain from http://hgdownload.cse.ucsc.edu/goldenPath/

hg18/liftOver/.
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D.5 Part VI

D.5.1 GFP intensities measuring amiRNA efficacies for PIN1 in A.

thaliana

GFP intensities were measured per protoplast in each sample separately. In Figure D.22,

the raw intensity values are plotted. Since in each sample, we have multiple protoplasts

where no GFP fluorescence was detected, we removed 50 % of the lowest values. The mean,

median and standard devations are given for the top 50 % in each sample in table below. The

controls are given by GFP-7 where GFP is fully expressed, a sample without any regulatory

construct (mock/319a), and the wild type (wt) using the native ath-MIR319a (miRBase

accession MI0000544). All amiRNAs P1–P62 and their complementary parts are inserted

to the MIR319a precursor to measure their repression efficiencies. The median of the top

50 % corresponds to the 75 percentile of each sample. These values are normalised to lie

between 0 (functional) to 1 (non-functional) using the wt and mock/319a samples as examples

of functional and non-functional GFP intensities. The normalised values are given in the

‘efficacy’ column and are used for all analyses of function.

amiRNA mean median standard deviation efficacy

GFP-7 4.53 4.35 1.10 0.14

mock/319a 21.38 18.27 10.74 1.00

P01 3.53 3.32 1.02 0.08

P02 5.03 4.81 1.25 0.17

P03 9.92 8.57 3.09 0.40

P04 6.89 6.23 2.23 0.26

P05 18.03 16.80 8.25 0.91

P06 14.99 14.12 4.72 0.74

P07 12.29 11.15 4.13 0.56

P08 9.91 9.16 3.27 0.44

P09 8.26 8.06 2.46 0.37

P10 5.30 4.80 2.09 0.17

P11 9.57 8.48 3.12 0.40

P12 6.69 6.27 1.83 0.26

P13 8.20 7.66 2.11 0.35

P14 11.34 9.86 3.98 0.48

P16 6.68 5.99 1.62 0.24

P17 8.39 7.88 2.10 0.36

P18 10.13 9.13 3.19 0.44

P19 5.28 5.14 1.69 0.19

P20 7.00 6.53 2.53 0.28

P21 9.74 8.88 2.73 0.42

P22 6.45 5.78 2.05 0.23

P23 8.85 8.39 2.15 0.39

P24 10.78 9.29 3.62 0.45

P25 9.45 8.68 3.31 0.41

P26 10.05 8.88 2.92 0.42

P27 7.75 7.30 2.07 0.32

P28 17.11 16.19 5.70 0.87

P29 7.46 7.26 1.84 0.32
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P30 10.19 9.12 3.83 0.44

P31 10.14 9.38 3.11 0.45

P32 7.25 6.77 1.97 0.29

P33 5.24 4.38 1.93 0.14

P34 18.90 15.54 11.31 0.83

P35 14.03 12.17 5.92 0.62

P36 12.22 10.78 4.29 0.54

P37 9.08 8.67 2.90 0.41

P38 6.11 5.75 1.56 0.23

P39 12.77 12.08 4.46 0.62

P40 10.83 9.10 6.19 0.43

P41 12.07 10.32 4.48 0.51

P42 6.59 6.59 1.41 0.28

P43 6.47 5.80 1.88 0.23

P44 7.23 6.42 2.03 0.27

P45 10.15 9.21 3.16 0.44

P46 8.00 7.38 2.43 0.33

P47 11.91 11.25 3.35 0.57

P48 12.79 11.40 3.78 0.58

P49 20.35 17.77 8.69 0.97

P50 9.40 8.39 2.84 0.39

P51 10.65 10.34 2.10 0.51

P52 4.64 4.11 1.94 0.13

P53 10.92 10.90 3.18 0.54

P54 13.93 12.30 4.51 0.63

P55 9.55 8.81 2.71 0.42

P56 17.87 15.31 7.10 0.82

P57 19.15 17.80 6.66 0.97

P58 6.52 5.64 2.11 0.22

P59 12.84 11.84 4.60 0.60

P60 10.72 10.60 3.00 0.53

P61 9.99 9.92 2.53 0.48

P62 12.72 12.59 4.13 0.65

wt 2.09 2.06 0.61 0.00
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Figure D.22. Summary of raw GFP-intensity measurements for single protoplasts in the
analysis of amiRNA efficacy. The y-axis shows different samples testing the efficacy of 62 different
amiRNAs and the controls. What we observe is that for every sample, many protoplasts exist for which zero or
very low GFP intensities were measured—irrespective of whether the amiRNA was functional (low intensities
expected) or not functional (high intensities expected).
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Figure D.23. Three independent replicate experiments for the ATGR2 gene in A. thaliana.
Target sites of selected amiRNA (P01 and P35) were introduced into ten positions (x-axis) spread throughout
the coding sequence of ATGR2 (as described in Section 10.2). Repression efficiencies are plotted on the y-axis
as the relative response ratio, defined in Section 10.1.1. Experiments II and III correlate significantly for
P01 with a Pearson’s correlation coefficient of 0.75 (p=0.01); other combinations do not display significant
correlations. For subsequent analyses, we chose the experiment with the lowest standard deviation in relative
response ratios: experiment II for P01 and III for P35.
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