
Landmark Placement for
Mobile Robot Navigation

Maximilian Beinhofer

Technische Fakultät
Albert-Ludwigs-Universität Freiburg

Dissertation zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

Betreuer: Prof. Dr. Wolfram Burgard

Landmark Placement for
Mobile Robot Navigation

Maximilian Beinhofer

Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften
Technische Fakultät, Albert-Ludwigs-Universität Freiburg

Dekan Prof. Dr. Yiannos Manoli
Erstgutachter Prof. Dr. Wolfram Burgard

Albert-Ludwigs-Universität Freiburg
Zweitgutachter Prof. Dr. Andreas Krause

Eidgenössische Technische Hochschule Zürich
Tag der Disputation 29.08.2014

Zusammenfassung

Die Fähigkeit, zuverlässig und präzise zu navigieren, ist eine der wichtigsten Grundvor-
aussetzungen für mobile Roboter, um Aufgaben wie Andockmanöver, Warentransport,
oder systematische Reinigung erfolgreich selbstständig durchzuführen. Selbstständig
navigierende Roboter weichen üblicherweise durch Ungenauigkeiten in der Bewegungs-
ausführung von ihrem vorgesehenen Bewegungspfad ab. Um diese Abweichung zu
schätzen und entsprechend gegensteuern zu können, sind Roboter in der Regel mit Senso-
ren ausgestattet, mit denen sie ihre Umgebung wahrnehmen. Typische Umgebungen, in
denen Roboter agieren, wie zum Beispiel Industriehallen, enthalten oftmals verschiedene
Bereiche, die sich stark ähneln, oder Bereiche, die sich regelmäßig verändern. Damit
sich Roboter auch in solchen Bereichen zurechtfinden können, werden in der Praxis oft
künstliche Landmarken in der Umgebung angebracht. Beispiele für künstliche Landmar-
ken sind reflektierende Markierungen, Radarbaken, oder Barcodes, die von den Sensoren
des Roboters wahrgenommen werden können. Die präzise Platzierung von künstlichen
Landmarken ist in der Regel mit hohen Kosten verbunden, und auch die Landmarken
selbst können, je nach Typ, teuer sein. Deshalb ist es vorteilhaft, so wenige Landmar-
ken wie möglich zu platzieren. Um trotzdem die gewünschte Genauigkeit im Verhalten
des Roboters zu gewährleisten, ist eine sorgfältige Auswahl der Landmarkenpositionen
entscheidend.

In dieser Arbeit behandeln wir das Problem, eindeutig identifizierbare künstliche
Landmarken so zu platzieren, dass sie für Roboter, die wiederholt gleichartige Naviga-
tionsaufgaben ausführen, optimal geeignet sind. In industriellen Anwendungen ist es
zum Beispiel üblich, dass Roboter den gleichen vorgegebenen Bewegungspfad viele
Male hintereinander abfahren. Für diese Art von Anwendung stellen wir automatische
Berechnungsverfahren vor, die eine möglichst kleine Menge von Landmarkenpositionen
finden, um die gewünschte Genauigkeit im Verhalten des Roboters zu gewährleisten. Um
die Güte einer Landmarkenplatzierung zu beschreiben, verwenden wir zwei verschiedene
Werte. Zum einen betrachten wir die Genauigkeit, mit der der Roboter seine eigene Pose
in der Umgebung schätzen kann. Falls der Roboter allerdings seine Navigationsentschei-
dungen anhand von dieser Posenschätzung nach bekannten, vorgegebenen Regeln trifft,
dann können wir auch die Navigationsgenauigkeit selbst, also die tatsächliche Nähe
des Roboters zu seinem vergegebenen Bewegungspfad, verwenden. Da die konkreten
Bewegungs- und Messfehler des Roboters und die daraus resultierenden Navigationsent-

vi

scheidungen zum Zeitpunkt der Landmarkenplatzierung noch unbekannt sind, benutzen
wir zur Landmarkenplatzierung die erwartete Lokalisierungsgenauigkeit und die erwartete
Navigationsgenauigkeit anstatt der konkreten Werte dieser Funktionen.

Diese Erwartungswerte effizient abzuschätzen, ist eine der zwei großen Herausforde-
rungen beim Platzieren von Landmarken. Die andere ist die kombinatorische Natur des
Problems, die beste Teilmenge aus der Menge aller möglichen Landmarkenpositionen
auszuwählen. In dieser Arbeit präsentieren wir Lösungen zum Umgang mit beiden Her-
ausforderungen. Um mit dem – im Allgemeinen NP-schwierigen – kombinatorischen
Landmarkenplatzierungsproblem umzugehen, verwenden wir Methoden aus dem Gebiet
der submodularen Funktionsoptimierung. Diese Methoden bestimmen auf effiziente Art
approximative Lösungen für das Platzierungsproblem und garantieren dabei eine hohe
Approximationsgenauigkeit. Um die erwartete Lokalisierungs- und Navigationsgenauig-
keit des Roboters effizient zu schätzen, verwenden wir eine Linearisierung der Modelle
des gesamten Navigationszyklus des Roboters, bestehend aus Bewegungsausführung,
Observation von Landmarken, Lokalisierung und Auswahl der nächsten gewünschten
Bewegung. Wir führen eine neue Methode ein, um in dem linearisierten Navigationszy-
klus die erwartete Navigationsgenauigkeit effizient rekursiv zu berechnen. Die aus der
Effizienz dieser Berechnung resultierende Effizienz unserer Landmarkenplatzierungs-
ansätze macht es möglich, mit unseren Ansätzen auch für sehr große Probleminstanzen,
also lange Bewegungspfade, Landmarken zu platzieren. Des Weiteren führen wir auch
ein Verfahren ein, um bei der Platzierung von Landmarken mit Situationen umgehen zu
können, in denen eine gewisse Anzahl der platzierten Landmarken auf unvorhersehbare
Weise vom Roboter aus nicht observierbar ist. Solche Situationen treten zum Beispiel für
Arten von Landmarken auf, die mit der Zeit verschlissen werden, oder wenn der Roboter
sich die Umgebung mit anderen Fahrzeugen teilt, die seine Sichtachse auf Landmarken
blockieren können.

Für Aufgaben wie zum Beispiel Retten von Vermissten in Katastrophengebieten ist
es allerdings nicht möglich, die Umgebung, in der der Roboter agieren soll, im Vorfeld
mit Landmarken zu bestücken. Zudem hat der Roboter in solchen Anwendungsszenarien
typischerweise keine genaue Karte von seiner Umgebung. Um zuverlässig navigieren zu
können, muss der Roboter also anhand der Observationen seiner Sensoren eine Karte der
Umgebung schätzen und sich gleichzeitig in dieser Karte lokalisieren. Im Zusammen-
hang mit dieser Aufgabe betrachten wir das fundamentale Problem der Datenassoziation.
Datenassoziation bezeichnet das Problem, zu entscheiden, ob zwei verschiedene Obser-
vationen von natürlichen Landmarken dieselbe Landmarke oder zwei unterschiedliche
Landmarken zeigen. Wenn der Roboter mit einem Mechanismus ausgestattet ist, mit dem
er selbstständig eindeutig unterscheidbare künstliche Landmarken in seiner Umgebung
ausbringen kann, dann kann er die Observationen dieser Landmarken später verwenden,
um die Schätzung seiner relativen Bewegung zwischen zwei solchen Observationen und

vii

damit auch die Schätzung der Datenassoziationen zwischen den natürlichen Landmarken
zu verbessern. Wir stellen eine neuartige Methode vor, mit der eine Strategie zur Ausbrin-
gung künstlicher Landmarken generiert werden kann, die das Ziel verfolgt, die Schätzung
der Datenassoziationen zu erleichtern. Unsere Methode verwendet verstärkendes Lernen
mit Monte-Carlo-Verfahren um eine optimale Strategie aus einer Reihe von Beispielepi-
soden zu lernen.

Zusammenfassend beinhaltet diese Arbeit die folgenden Beiträge:

• Nachdem in den Kapiteln 2 und 3 eine Übersicht über verwandte Arbeiten und ver-
wendete Standardmethoden gegeben wird, stellen wir in Kapitel 4 ein neuartiges
Verfahren zur Landmarkenplatzierung vor. Dieses zielt darauf ab, die erwartete
Lokalisierungsgenauigkeit eines Roboters entlang eines vorgegebenen Bewegungs-
pfades zu maximieren. Mit Hilfe von Ergebnissen aus der submodularen Funkti-
onsoptimierung leiten wir eine garantierte untere Schranke für die Approximations-
genauigkeit unseres Verfahrens her. Um die erwartete Lokalisierungsgenauigkeit
zu schätzen, verwenden wir in diesem Ansatz Monte-Carlo-Simulationen.

• In Kapitel 5 führen wir ein Verfahren zur Schätzung der erwarteten Navigati-
onsgenauigkeit ein, das signifikant effizienter ist als Monte-Carlo-Simulationen.
Dieses Verfahren linearisiert den gesamten Navigationszyklus des Roboters und
verwendet eine effiziente Methode, die erwartete Navigationsgenauigkeit anhand
der linearisierten Modelle rekursiv zu berechnen.

• In Kapitel 6 stellen wir ein Verfahren zur Landmarkenplatzierung vor, das die
erwartete Navigationsgenauigkeit des Roboters optimiert und in den auftretenden
Berechnungen die effiziente Methode aus Kapitel 5 verwendet. Die resultierende
Effizienz in der Landmarkenplatzierung erlaubt es uns, mit diesem Ansatz auch
sehr große Probleminstanzen zu behandeln.

• Dieses Verfahren modifizieren und erweitern wir in Kapitel 7, um auch mit Si-
tuationen umgehen zu können, in denen dem Roboter die Sichtachse zu einer
gewissen Anzahl von platzierten Landmarken auf unvorhersehbare Weise lang-
fristig versperrt ist. Auch hier verwenden wir Verfahren aus der submodularen
Funktionsoptimierung.

• In Kapitel 8 präsentieren wir einen Vergleich der drei oben angeführten Landmar-
kenplatzierungsmethoden.

• Zuletzt führen wir in Kapitel 9 einen Ansatz ein, mit dem eine Strategie zur
Ausbringung künstlicher Landmarken generiert werden kann, die das Ziel verfolgt,
dem Roboter die Schätzung von Datenassoziationen zu erleichtern. Wir verwenden
dabei verstärkendes Lernen, um eine optimale Strategie aus einer Reihe von
Beispielepisoden zu lernen.

Alle in dieser Arbeit vorgestellten Verfahren wurden in ausführlichen Experimenten,
sowohl in Simulation als auch mit echten Robotern, getestet. Die Ergebnisse dieser

viii

Experimente belegen, dass die von uns verwendeten Modelle echte Roboter realistisch
widerspiegeln, und dass die Landmarkenmengen, die mit unseren Methoden platziert
wurden, zu höheren Lokalisierungs-, Navigations- und Datenassoziationsgenauigkeiten
führen als Landmarkenmengen, die mit anderen Verfahren platziert wurden. Wir sind der
Ansicht, dass die in dieser Arbeit vorgestellten Methoden ein nützliches Werkzeug sind,
um die Sicherheit und die Zuverlässigkeit mobiler Roboter in der Praxis, insbesondere in
industriellen Anwendungen, zu gewährleisten.

Abstract

Being able to navigate accurately is one of the fundamental capabilities of a mobile
robot to effectively execute a variety of tasks including docking, transportation, and
manipulation. To achieve the desired navigation accuracy, mobile robots are typically
equipped with on-board sensors to observe persistent features in the environment, to
estimate their pose from these observations, and to adjust their motion accordingly. Since
real-world environments often contain changing or ambiguous areas, existing features
can be insufficient for mobile robots to establish a robust navigation behavior. A popular
approach to overcome this problem and to enable accurate localization is to use artificial
landmarks like reflective markers or barcodes. However, depending on the type of artificial
landmark, the landmarks themselves or their precise placement can be costly. Therefore,
it is desirable to place as few landmarks as possible to achieve the desired accuracy, which
makes selecting beneficial landmark positions especially important.

In industrial settings, for example, mobile robots often have to perform repetitive tasks
that include traveling along the same trajectory through a known environment. For such
scenarios, we present approaches that aim at finding a minimum set of landmark positions
in order to optimize the expected quality of the robot’s task execution. We measure
this quality either by the expected accuracy of the localization estimate of the robot or
– if the robot bases its navigation decisions directly on its localization estimate – by the
expected accuracy of the navigation behavior of the robot. In order to efficiently estimate
the expected accuracy in navigation, we introduce a novel recursive calculation scheme
for the expected distributions of the robot’s deviation from its desired trajectory. For
dealing with the generally NP-hard landmark placement problem, we use techniques
from submodular function optimization to efficiently generate near-optimal landmark
configurations. The resulting efficiency of our landmark placement approaches makes it
possible to apply them even to large-scale scenarios.

In contrast to the above-mentioned methods, landmark placement for robots traveling
through unknown and unmapped environments requires different approaches. If the robot
has a device to deploy a limited number of artificial landmarks itself, it will later be
able to use them as fixed anchors to adjust the estimate of its relative motions between
individual observations of the same landmark. We present a novel approach for learning
an optimal landmark deployment policy for this scenario.

We evaluated all presented methods in extensive experiments both in simulation and

x

with real mobile robots. The experiments demonstrate that our approaches outperform
baseline methods and work well on real robots. We believe that the presented landmark
placement methods are a useful tool for guaranteeing a safe and reliable operation of
mobile robots in practice, especially in industrial settings.

Acknowledgments

Without the support of several people, this thesis would not exist. First of all, I would like
to thank my advisor Wolfram Burgard for giving me the guidance that I needed in the
beginning of my graduate studies, and for giving me the freedom to pursue my own ideas
later on. His support, his encouragement, and the exceptional work environment that he
created in the AIS group made my research not only possible, but fun. Besides many
other of his ideas that influenced this thesis, the general idea of considering landmark
placement as an optimization problem was his.

I would also like to thank Andreas Krause for sharing his insights in intensive discus-
sions that led to the landmark placement approach presented in Chapter 7 and for acting
as a reviewer for this thesis.

Many thanks to my co-authors and collaborators Jörg Müller, Henrik Kretzschmar,
Daniel Meyer-Delius, Jürgen Hess, Daniel Kuhner, Philipp Ruchti, and Alexander Kleiner
for the great time working together. I thank Henrik Kretzschmar, Axel Rottmann, and
Jörg Müller for teaching a mathematician how to program and for being great friends.
Furthermore, I would like to thank Christoph Sprunk for discussions and help concerning
the holonomic motion model of the KARIS robot, Rainer Kümmerle for g2o support, and
Dominik Joho for sharing his experience in RFID technology with me. For proof-reading
earlier drafts of this document, I thank Nichola Abdo, Felix Endres, Barbara Frank, Jürgen
Hess, Henrik Kretzschmar, Markus Kuderer, Tayyab Naseer, Christoph Sprunk, Benjamin
Suger, and Andreas Wachaja.

For their administrative and technical support, I thank Susanne Bourjaillat, Michael
Keser, Manuela Kniss, and Dagmar Sonntag.

A special thanks goes to my parents, who lovingly raised and educated me and thereby
made it possible for me to start working on this thesis in the first place and to Gisbert
Lawitzky, who suggested applying at the AIS lab to me. My deepest gratitude and thanks
go to my family: Kathrin for her love, her patience, and for believing in me, and Paul for
the joy and happiness he has brought to my life.

This work has been partly supported by the German Research Foundation (DFG) within the Research

Training Group 1103 and under contract number SFB/TR 8.

Contents

1 Introduction 1
1.1 Key Contributions . 3
1.2 Publications . 4
1.3 Collaborations . 5
1.4 Notation . 7

2 Related Work 9
2.1 Landmark Placement for Localization and Navigation 9

2.1.1 Landmark Placement . 9
2.1.2 Expected Distributions . 11
2.1.3 Submodular Function Optimization 12

2.2 Autonomous Landmark Deployment 12

3 Background 15
3.1 Probability Theory . 15
3.2 Information Theory . 18
3.3 Recursive Bayesian State Estimation 19

3.3.1 Kalman Filter . 22
3.3.2 Landmark-Based Mobile Robot Localization 25

3.4 Submodular Function Optimization 26
3.4.1 Greedy Algorithm for Maximizing Submodular Functions . . . 26
3.4.2 Approximation Guarantees . 28

3.5 Simultaneous Localization and Mapping 30
3.5.1 Data Association in SLAM . 31
3.5.2 Graph-Based Approaches to Solve the SLAM Problem 31

3.6 Actor-Critic Monte Carlo Reinforcement Learning 32

4 Landmark Placement for Localization 35
4.1 Problem Definition . 36
4.2 Approximation Algorithm . 38

4.2.1 Submodularity of Conditional Mutual Information 38
4.2.2 Entropy Calculation for the Joint Distribution 43

xiv Contents

4.3 Control Model . 47
4.3.1 External Controls . 47
4.3.2 Autonomous Controls . 48

4.4 Experimental Evaluation . 49
4.4.1 Simulation Experiments . 49
4.4.2 Experiments with a Real Robot 52

4.5 Discussion . 53

5 Estimation of Expected Distributions for Mobile Robot Navigation 55
5.1 Robotic System . 56

5.1.1 Expected Distributions . 57
5.1.2 Linearized System . 59

5.2 Expected Distributions in Linearized Systems 60
5.2.1 Efficient Calculation Scheme 61
5.2.2 Comparison to the State of the Art 66

5.3 Experimental Evaluation . 66
5.4 Discussion . 69

6 Landmark Placement for Navigation 71
6.1 Deviation Guarantee . 72
6.2 Predicting the Deviation from the Trajectory 73

6.2.1 Evaluation of the Deviation Guarantee 73
6.2.2 Observability of Landmarks 74

6.3 Incremental Landmark Placement Algorithm 76
6.3.1 Landmark Placement for the Linearized System 76
6.3.2 Monte Carlo Validation . 77
6.3.3 Continuous Operation on Round Trips 78

6.4 Relation between Deviation Guarantee and Localization Uncertainty . . 78
6.5 Experimental Evaluation . 79

6.5.1 Experimental Setup . 79
6.5.2 Placement in Free Space . 79
6.5.3 Placement in Structured Environments 84

6.6 Discussion . 90

7 Robust Landmark Placement for Navigation 91
7.1 Problem Statement . 92
7.2 Efficient and Robust Landmark Placement 93

7.2.1 Observability Constraints . 94
7.2.2 Objective Function . 95
7.2.3 Landmark Placement Algorithm 96

Contents xv

7.2.4 Practical Considerations . 97
7.3 Approximation Bound . 97
7.4 Experimental Evaluation . 98

7.4.1 Evaluation of Robustness . 99
7.4.2 Landmark Placement for Changing Bounds 99
7.4.3 Long Term Evaluation on a Real Robot 99

7.5 Discussion . 103

8 Comparison between Landmark Placement Methods 105
8.1 Properties . 105
8.2 Experimental Evaluation . 108
8.3 Discussion . 110

9 Landmark Deployment to Foster Data Association in SLAM 113
9.1 Simultaneous Localization and Mapping with Deployed Landmarks . . 115

9.1.1 Measuring the Performance of Data Association 115
9.2 Reinforcement Learning for Improving Data Association 116

9.2.1 Action and State Representation 117
9.2.2 Statistical Convergence Test 117

9.3 Experimental Evaluation . 118
9.3.1 Data Association Using the Learned Policies 118
9.3.2 Generalization to New Environments 120
9.3.3 Adaptation to the Sensor Range 121
9.3.4 Experiments with a Real Robot 121

9.4 Discussion . 124

10 Discussion 125

Appendix On the Properties of Covariance Reduction 129

Chapter 1

Introduction

Mobile robots nowadays fulfill a broad variety of tasks. There are not only a few of them
exploring foreign planets, but mobile robots are widely used for performing repetitive
tasks in industry, and even chores like vacuum cleaning in our homes. These different
applications of mobile robots all have in common that the quality with which the robot
can autonomously fulfill its task depends strongly on the localization accuracy of the
robot. For example, a badly localized robot on a foreign planet might accidentally drive
onto dangerous terrain from which it cannot back out again, badly localized industrial
robots might not be able to perform precise docking maneuvers, and badly localized
vacuum cleaning robots might miss dirty spots on the floor or even fall down a staircase.
In order to accurately localize themselves, mobile robots are typically equipped with
on-board sensors, like cameras or laser range finders, to observe their environment. If the
environment of the robot is known beforehand and the robot has access to a map of the
observable features persistent in the environment, it can use its sensor observations to
globally localize itself in the map. But even if the robot moves through an unknown and
unmapped environment, it can use repeated observations of the same feature to locally
adjust its estimate of its relative motions between these observations.

Especially in industrial applications, a high degree of accuracy and repeatability is
usually necessary. Typical tasks for industrial mobile robots include accurately executing
the same small number of pre-defined trajectories many times. However, industrial
environments often contain ambiguous and dynamic areas, in which there might not
exist enough persistent environment features for an accurate localization of the robot.
A common way to deal with this problem is to place artificial landmarks like reflective
or color-coded markers at specific positions in the environment in order to guarantee
the desired accuracy in localization along the planned trajectory of the robot [25, 111].
However, depending on the type of artificial landmark, the landmarks themselves or the
precise placement of the landmarks in the environment can be expensive. Also, especially
active landmarks like radar or infrared beacons require a high degree of maintenance.
Therefore, it is desirable to place as few landmarks as possible, which makes selecting
beneficial landmark positions especially important.

2 Chapter 1. Introduction

In this thesis, we consider the problem of selecting the optimal positions for placing
uniquely identifiable artificial landmarks in order to improve the quality of the robot’s task
execution. For landmark placement, we consider two different quantities that influence
the quality of the task execution. The first is the accuracy of the localization estimate
of the robot. The landmark observations of the robot directly influence this criterion.
The second is the navigation accuracy of the robot, i.e., its ability to stay close to its
desired trajectory during operation. If the robot autonomously makes its navigation
decisions based on its localization estimate, then an accurate localization ultimately leads
to an accurate navigation behavior. Optimizing this quality criterion leads to landmark
positions observable for the robot in situations in which an accurate localization is
especially important for the navigation task at hand, like, for example, sharp turns. When
evaluating the quality criteria, we take into account that mobile robots in the real world
are typically faced with noise and errors in motion execution and sensor observations.
Therefore, we describe the evolution of the state of the robot during operation with a
sequence of probability distributions and do not optimize the ideal values of the quality
criteria but their expected values according to these distributions.

The two main challenges in landmark placement based on these quality criteria are
estimating the expected localization and navigation accuracy and dealing with the combi-
natorial nature of the placement problem. Landmarks are placed before the robot starts
operation, when the concrete observations and control commands are not yet known.
At that time, computing the expected localization and navigation accuracy of the robot
requires integrating over the high-dimensional space of all motion controls and sensor
observations that the robot will possibly perform during operation. In general, this in-
tegral cannot be solved in closed form. However, being able to calculate the expected
quality criteria in an efficient way is especially important in landmark placement due
to the second challenge, the combinatorial problem structure of the placement problem.
Landmark placement is the problem of selecting the minimum subset of the set of all
possible landmark locations for placement that yields the desired value of the considered
quality criterion. This combinatorial structure typically leads to NP-hard optimization
problems. Therefore, often efficient algorithms that approximate the optimal solution
are applied. Still, also these algorithms usually require to evaluate a large number of
candidate landmark sets, which is why an efficient way of evaluating the expected quality
criteria is important.

In scenarios in which the environment of the robot contains dynamic components,
e.g., other vehicles or temporarily deposited items, an additional challenge for landmark
placement occurs. The dynamic components might unpredictably obstruct some of the
placed landmarks from the field of view of the robot. Therefore, it is important that the
placed landmarks yield a robust accuracy in task execution, even if a certain number of
them is not observable.

1.1. Key Contributions 3

In contrast to the landmark placement problems, landmark placement for robots travel-
ing through unknown and unmapped environments requires different approaches. In such
situations mobile robots do not only need to localize themselves in a given map in order
to navigate accurately, they need to simultaneously construct a map of the environment
from their sensor observations and localize themselves in this very map. In this context,
we consider the fundamental problem of data association. Data association is the problem
of deciding if two observations stem from the same environment feature or from different
ones. If the robot itself can deploy a limited number of uniquely identifiable artificial
landmarks during operation, it can use these landmarks later on as fixed anchors to ease
the data association problem for the environment features. The key challenge here is to
make the decisions when to deploy the artificial landmarks based only on the information
that the robot has gathered with its own sensors. These decisions are crucial, as poor
choices might prevent the robot from establishing correct data associations.

Summing up, we have identified the following key questions occurring in landmark
placement for mobile robots:
• How to identify the optimal configuration of landmarks in the environment of a

mobile robot to guarantee a certain accuracy in localization or in navigation with a
minimum number of landmarks?

• How to deal with the combinatorial structure of the landmark placement problem?

• How to estimate the expected navigation and localization accuracy efficiently?

• How to deal with the problem that placed landmarks might unpredictably be ob-
structed from the view of the robot?

• How to decide if the robot should autonomously deploy a landmark in a given
situation based only on the imperfect information available to the robot?

In the next section, we summarize our key contributions towards answering these ques-
tions.

1.1 Key Contributions

The key contributions of this thesis are approaches to placing artificial landmarks along
the desired trajectory of a mobile robot and an approach to learning a policy for deciding
when to autonomously deploy artificial landmarks with a mobile robot. In summary:
• We present a novel landmark placement approach for minimizing the expected

localization uncertainty of a mobile robot (Chapter 4). Using the concept of sub-
modularity, we prove that this landmark placement approach produces near-optimal

4 Chapter 1. Introduction

landmark sets with high confidence. For evaluating the expected localization un-
certainty, we apply Monte Carlo simulation.

• For evaluating the expected navigation accuracy of a mobile robot, we introduce
an efficient recursive estimation scheme (Chapter 5), which is significantly faster
than the Monte Carlo simulation used in the above approach. It assumes that the
robot uses a linear-quadratic regulator for navigation and applies a linearization on
the whole navigation cycle.

• We present a novel landmark placement method for optimizing the expected
navigation accuracy of a mobile robot (Chapter 6). Our approach applies the above-
mentioned efficient estimation scheme for evaluating the expected navigation
accuracy, which makes the landmark placement highly efficient. Therefore, this
approach can be used even for large-scale scenarios.

• We introduce a second approach to landmark placement for mobile robot naviga-
tion (Chapter 7), which builds on and extends the above method. This approach
explicitly considers the fact that a certain number of the placed landmarks might
unpredictably be obstructed from the view of the robot. It applies techniques from
submodular function optimization to deal with the combinatorial structure of the
landmark placement problem.

• Finally, we introduce a novel method for learning when to deploy artificial land-
marks autonomously with a mobile robot in order to optimize its data association
performance (Chapter 9). We use Monte Carlo reinforcement learning for com-
puting an optimal policy and apply a statistical convergence test to decide if the
policy is converged and the learning process can be stopped.

1.2 Publications

Parts of this thesis have been published in the proceedings of international conferences,
in an international journal, and in the proceedings of a workshop. The publications are
stated in chronological order.

• M. Beinhofer, J. Müller, and W. Burgard. Near-optimal landmark selection for
mobile robot navigation. In Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), 2011.

• M. Beinhofer, J. Müller, and W. Burgard. Landmark placement for accurate mobile
robot navigation. In Proc. of the Europ. Conf. on Mobile Robots (ECMR), 2011.

• M. Beinhofer, H. Kretzschmar, and W. Burgard. Deploying artificial landmarks to
foster data association in simultaneous localization and mapping. In Proc. of the

1.3. Collaborations 5

IEEE Int. Conf. on Robotics & Automation (ICRA), 2013.

• M. Beinhofer, J. Müller, A. Krause, and W. Burgard. Robust landmark selection
for mobile robot navigation. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), 2013.

• M. Beinhofer, J. Müller, and W. Burgard. Effective landmark placement for ac-
curate and reliable mobile robot navigation. Robotics and Autonomous Systems
(RAS), 61(10):1060 – 1069, 2013.

• M. Beinhofer and W. Burgard. Efficient estimation of expected distributions for
mobile robot navigation. In Proc. of the Austrian Robotics Workshop (ARW), 2014.

The following publications were also written during the time as research assistant. How-
ever, material from these publications is not included in this thesis.

• D. Meyer-Delius, M. Beinhofer, A. Kleiner, and W. Burgard. Using artificial land-
marks to reduce the ambiguity in the environment of a mobile robot. In Proc. of
the IEEE Int. Conf. on Robotics & Automation (ICRA), 2011.

• D. Meyer-Delius, M. Beinhofer, and W. Burgard. Occupancy grid models for
robot mapping in changing environments. In Proc. of the AAAI Conf. on Artificial
Intelligence (AAAI), 2012.

• J. Hess, M. Beinhofer, D. Kuhner, P. Ruchti, and W. Burgard. Poisson-driven dirt
maps for efficient robot cleaning. In Proc. of the IEEE Int. Conf. on Robotics &
Automation (ICRA), 2013.

• J. Hess, M. Beinhofer, and W. Burgard. A probabilistic approach to high-confidence
cleaning guarantees for low-cost cleaning robots. In Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2014.

1.3 Collaborations

Parts of this thesis are the result of collaborations with others. The landmark placement
approaches presented in Chapters 4, 6, and 7 were developed in collaboration with Jörg
Müller, who contributed especially to the experiments with real robots presented in these
chapters. Besides other theoretical contributions, the analysis of different control modes
and the way in which we leverage conditional independence in the Bayesian network in
Chapter 4 were developed in intensive discussions with Jörg Müller.

The landmark deployment approach presented in Chapter 9 was developed in close co-

6 Chapter 1. Introduction

operation with Henrik Kretzschmar. Besides other things, Henrik Kretzschmar contributed
especially to the aspects of this approach that are related to SLAM and reinforcement
learning.

1.4. Notation 7

1.4 Notation

A note on the notation: Throughout this thesis, the distinction between random vari-
ables and their outcomes is usually clear from the context. We therefore typically
use the shorthand notations p(x) := p(X = x) to denote the value of the probabil-
ity density function of the random variable X evaluated at the specific value x and
p(x | y) := p(X = x | Y = y) to denote the value of the probability density function
of X evaluated at the specific value x conditioned on the fact that the random variable Y

takes on the specific value y. These shorthand notations are also widely used in the
standard literature (see, e.g., Definition 4.2.1 in [19] or Section 2.2 in [102]). Only
when considering information theoretic values (see, e.g., Section 3.2) we make a clear
distinction between random variables and the values that they can take on. Throughout
this thesis, we use the following notation:

Notation Meaning

x, y, . . . Scalar values
x,y, . . . Column vectors
x1:t Sequence of the vectors x1,x2, . . . ,xt
X,Y, . . . Vector-valued random variables
A,B, . . . Sets
A,B, . . . Matrices
p(x) Probability density function evaluated at the specific value x

p(x | y) Conditional probability density function at x conditioned on y

E[X] Expected value of the random variable X

Cov(X) Covariance matrix of the random variable X

N (µ,Σ) Multivariate Gaussian distribution with mean µ and covariance Σ

xT , AT Transposes of the vector x and the matrix A
|A| Determinant of the matrix A

Throughout this thesis, we use the following abbreviations:

Abbreviation Meaning

EKF Extended Kalman filter
HMM Hidden Markov model
LQR Linear-quadratic regulator
NP Nondeterministic polynomial time
RFID Radio-frequency identification
SLAM Simultaneous localization and mapping
UKF Unscented Kalman filter

Chapter 2

Related Work

In this thesis, we consider two different problems in the area of landmark placement.
The first problem is to place artificial landmarks along the desired trajectory of a mobile
robot before it starts operation. In this case, the goal is to optimize either the navigation
performance or the localization performance of the robot during operation. The second
problem is learning a policy that aids a mobile robot’s SLAM system by autonomously
deploying artificial landmarks during operation of the robot. In this chapter, we present a
survey of the literature related to these two topics.

2.1 Landmark Placement for Localization and
Navigation

The goal of our landmark placement approaches from Chapters 4, 6, and 7 is to place land-
marks at a set of locations along the desired trajectory of a mobile robot to optimize either
its localization performance (Chapter 4) or its navigation performance (Chapters 6 and 7).
For measuring the navigation performance of the robot, we introduce a novel method
for estimating the expected probability distributions of the states of the robot along its
desired trajectory even before it starts operation. In the landmark placement algorithms
from Chapters 4 and 7, we apply techniques from submodular function optimization.

In the following, we first give an overview of the literature related to landmark place-
ment, and then present a survey of the state of the art in estimating expected distributions
of dynamic systems. Finally, we discuss literature related to submodular function opti-
mization.

2.1.1 Landmark Placement

In the past, the problem of finding an optimal set of landmark positions has been addressed
from several points of view. Salas and Gordillo [92] consider it in terms of the art gallery
problem. They use simulated annealing to find a landmark set that maximizes the area in

10 Chapter 2. Related Work

which a robot has a clear line of sight to at least one landmark. Erickson and LaValle [28]
consider the same problem for colored landmarks. They add the constraint that from no
position in the map two landmarks of the same color may be visible, and give bounds
for the minimum number of colors needed to cover a polygonal region. In an extension
presented in [29], they derive bounds on the maximum number of color-coded landmarks
needed. Sala et al. [91] extend this problem to select landmark positions so that at
every position in the map, at least k landmarks are observable. Rupp and Levi [90]
select landmark positions on the walls of an indoor environment close to a given set of
localization points. They use geometrical insights to find the landmark locations. Unlike
these methods, which assume a deterministic robot behavior, our approaches explicitly
model the noise of the sensors and actuators of the robot.

Ercan et al. [27] aim at finding the optimal configuration of bearing sensors on the
boundaries of a square environment without obstacles for localizing a target inside this
environment. They assume that the sensors are subject to random errors and present an
approximate solution to the problem based on semidefinite programming. Tokekar and
Isler [103] consider a version of this problem in which the bearing sensors can be placed
anywhere inside the square environment and receive measurements with bounded errors.
They analytically derive the optimal sensor configuration for this scenario. Jourdan and
Roy [44] consider a fixed set of possible target positions. They place sensors on the walls
of buildings to minimize the average position error bound in the sensor network. Finally,
also Meyer-Delius et al. [72] present an approach that is independent of the trajectory
taken by the robot. They increase the localization accuracy of a system already equipped
with a landmark-independent sensor (e.g., a laser range finder) by placing additional
landmarks in the environment. In contrast to these methods, our approaches take into
account the full specification of the robot and its navigation task.

Like our approaches, Vitus and Tomlin [105] consider the full problem specification
to place sensors in the environment. For measuring the navigation performance of the
robot, they approximate the covariances of the expected distributions of the states of the
robot with the posterior covariances of the most likely run of the robot. Similar to our
approaches from Chapters 6 and 7, van den Berg et al. [12] evaluate sensor positions using
the exact expected distributions (which they call a priori distributions) in a linearized
system. Since they focus mainly on path planning, they restrict themselves to randomly
sampled positions of a single sensor.

While all of the approaches above place artificial landmarks or sensors before the
operation of the robot, the following approaches decide whether to utilize observed
landmarks during operation. One of the first approaches in this field was introduced
by Wünsche [110] in 1988. It selects the set of visible features for state estimation
that produces the observation equations with the lowest condition number. Thrun [101]
selects the subset of the observed landmarks for localization which minimizes the average

2.1. Landmark Placement for Localization and Navigation 11

posterior localization error. Lerner et al. [65] use semi-definite programming to select
landmarks that minimize the trace of the pose covariance of a moving camera. In contrast
to our methods, these methods base their decisions on posterior distributions, i.e., on the
information already gathered by the robot during operation.

2.1.2 Expected Distributions

There are several ways to estimate the expected distributions of the states of a dynamic
system with respect to the executed control commands and sensor observations: Possibly
the most generally applicable, but also computationally most demanding method is Monte-
Carlo simulation. Roy et al. [89], for example, use Monte-Carlo simulation to estimate
the expected entropy of the robot state in their coastal navigation framework. In Chapter 4,
we present an approach to landmark placement that uses the same simulation as Roy et al.
for estimating expected entropies. This technique, however, is orders of magnitude slower
than our novel approach to computing expected distributions (see Section 5.1), which
uses an efficient recursive calculation instead of a time-consuming simulation of sample
episodes.

Another method to estimate expected distributions is to use the posterior distributions
as an approximation. Vitus and Tomlin [105] use this method for sensor placement. For
a given desired robot trajectory, they aim at placing sensors at a set of locations in the
environment that optimizes the navigation performance of the robot. For measuring the
navigation performance of the robot, they approximate the covariances of the expected
distributions with the posterior covariances of the most likely run of the robot. Mastro-
giovanni et al. [69] also use the posterior distributions to estimate the pose uncertainty
of a robot before operation. They, however, use these distributions to find the optimal
configuration for mounting a laser scanner on a mobile robot. Prentice and Roy [84]
calculate posterior distributions to estimate the expected cost for path planning. However,
posterior distributions do not encode the true uncertainty about the deviation of the robot
from its desired state, but rather how well the localization framework of the robot can
estimate these deviations. For measuring the navigation performance of the robot, we
therefore do not apply this method.

To our knowledge, van den Berg et al. [11] were the first to introduce a recursive
calculation scheme for expected distributions of dynamic systems, which they called
a priori distributions. They used the calculated expected distributions for collision-free
path planning, and later applied their approach to needle steering for surgical robots [12].
Since then, their calculation scheme has been applied to several kinds of applications.
Vitus and Tomlin [106], for example, used it for chance constrained optimal control, and
Patil et al. [82] applied it to motion planning in deformable environments.

The method that we introduce in Section 5.1 builds on the same linearization as the
one by van den Berg et al., and calculates expected distributions considerably faster than

12 Chapter 2. Related Work

their method. Therefore, it could benefit all of the above approaches.

2.1.3 Submodular Function Optimization

On the topic of submodular function optimization, there exists a large body of literature.
Among the first authors to consider the submodularity property when optimizing set
functions were Nemhauser, Wolsey, and Fisher. In a series of papers [32, 77, 78, 109],
authored together and individually, they derived efficient approximation algorithms for
the (generally NP-hard) problem of optimizing submodular set functions and proved
tight approximation bounds for these algorithms.

Krause and Guestrin [53, 54] introduced these concepts in the field of machine learn-
ing. Together with others, they extended the concepts by Nemhauser et al. to problems
like Gaussian Process optimization [58], optimization on graphs [55, 60], and robust
optimization of a combination of objective functions [57], and applied them to temper-
ature monitoring [53], path planning for multiple robots [96], and securing large water
distribution networks [56].

Lately, submodular function optimization became increasingly popular in robotics.
Vernaza et al. [104] applied submodular optimization techniques on terrain classification
for outdoor robots, Schulman et al. [93] on selecting beneficial grasping poses for robotic
manipulators, and Hollinger et al. [41] on model fitting for ship hull inspection with an
underwater robot.

Our landmark placement approach from Chapter 7 applies the techniques introduced by
Krause et al. [57] to select a set of landmark positions that robustly bounds the deviation
of the robot from its desired trajectory, even if a certain number of landmarks are hidden
from the view of the robot. In the landmark placement approach presented in Chapter 4,
we build on the work of Krause and Guestrin [53] on optimizing information gain. We
extend it from optimizing the information gain of bounded random variables on discrete
spaces to optimizing the information gain of the states and observations of a mobile robot,
which we define as unbounded random variables on continuous spaces.

2.2 Autonomous Landmark Deployment

In Chapter 9, we present an approach to learning a policy for autonomously deploying
artificial landmarks with a mobile robot while it performs simultaneous localization and
mapping (SLAM) [102]. The goal of our approach is to optimize the data association
performance in SLAM without interfering with the SLAM system during operation.

In the past, several approaches to tackle the data association problem in SLAM have
been developed. One popular method that does not rely on artificial landmarks is the
joint compatibility branch and bound method by Neira and Tardós [76]. It explicitly

2.2. Autonomous Landmark Deployment 13

considers the correlations between landmarks by searching an interpretation tree for the
hypothesis that covers the largest number of jointly compatible pairings. Olson [79] looks
for local matches in the environment and aims to reject those matches that are not globally
consistent using single cluster graph partitioning, which relies on a pair-wise consistency
graph. In contrast to our approach, methods without the aid of artificial landmarks have
to solely rely on the landmarks present in the environment. Therefore, with increasing
ambiguity in the environment it becomes more challenging for such methods to robustly
find the correct data associations.

The majority of approaches for SLAM with the aid of deployable landmarks address
graph-like worlds and deterministically observable markers. For example, the approach
of Dudek et al. [24] localizes a robot that travels along the edges of a graph and that
can deploy and identify markers at the vertices. Bender et al. [10] present approaches
for mapping a directed graph using deterministically observable undirected markers.
Wang et al. [107] prove that the SLAM problem in an undirected graph can be solved
deterministically if the robot can drop a deterministically observable directional marker.
In contrast to these approaches, we apply a probabilistic model to deal with noisy motion
and measurements.

Batalin and Sukhatme [3] devised a coverage strategy for a robot with no knowledge
about its position. In their case, the robot can deploy active markers and use them later to
move into the direction suggested by them. In the work by Kleiner et al. [50], the robot
applies a manually designed heuristic, which takes into account the obstacle density and
the estimated tag density, to deploy RFID markers to aid a SLAM system. In contrast to
such approaches, our method learns a landmark deployment policy from simulated runs.

The problem of selecting informative environment features in SLAM is closely related
to the problem considered in our approach. For example, Strasdat et al. [99] use rein-
forcement learning to determine a policy for feature selection that minimizes the distance
between the final position of the robot and its goal. In contrast to our approach, they
consider obstacle-free worlds and therefore do not need to incorporate information about
the spatial structure of the environment into the learning method.

Chapter 3

Background

In this chapter, we give an overview of the established techniques in robotics and related
fields that we apply in this thesis. In the first section of this chapter, we briefly introduce
definitions and results from probability theory, which we apply for modeling robotic
systems. In Section 3.2, we present basic concepts in information theory, which we use
for defining the influence of landmark observations on the localization quality of a mobile
robot. In Section 3.3, we describe Bayesian state estimation and its application to mobile
robot localization. Section 3.4 covers submodular function optimization, which we use
for finding a near-optimal configuration of landmarks in the environment of a mobile
robot. Finally, in Sections 3.5 and 3.6, we briefly cover simultaneous localization and
mapping (SLAM) and Monte Carlo reinforcement learning, two techniques that we apply
to learning a policy for autonomously deploying artificial landmarks with a mobile robot.

3.1 Probability Theory

In this thesis, we use a probabilistic formulation for modeling the behavior of mobile
robots. In this section, we briefly introduce definitions and results from probability theory,
which build the foundation of the models introduced in the following chapters. For a
comprehensive introduction to probability theory, see Kallenberg [47].

For describing randomness, we use random variables. A random variable X on a
discrete space X is a variable that can take on different values x ∈ X , each with a
respective probability P (X = x). In contrast to that, the space X considered in most
of our applications is continuous. A random variable X on a continuous space can be
fully described by its probability density function p. For each value x ∈ X that X can
take on, the value p(X = x) of the probability density function describes the marginal
increase of the probability P (X ∈M) resulting from adding x to the set M . Therefore,
calculating the probability P (X ∈M) that the value of X is in the set M can be achieved
by integrating over the density function:

P (X ∈M) =

∫
x∈M

p(X = x) dx . (3.1)

16 Chapter 3. Background

Two important quantities in the context of random variables are their expected values
and their variances. The expected value (also called expectation or mean) of a random
variable X on a continuous space X is defined as

E[X] =

∫
x∈X

x p(X = x) dx . (3.2)

Similarly, the variance of X is defined as

Var(X) =

∫
x∈X

(x− E[X])2 p(X = x) dx . (3.3)

Furthermore, for a vector-valued random variable X on a continuous vector space X , its
covariance matrix is defined as

Cov(X) =

∫
x∈X

(x− E[X])(x− E[X])T p(X = x) dx . (3.4)

As can be seen from the definition, covariance matrices are always positive semidefinite.
A special type of random variables are Gaussian-distributed random variables, which

are also called normal-distributed random variables. A vector-valued Gaussian-distributed
random variable X on the space Rn is fully specified by its expectation and its covariance,
which are typically denoted as E[X] = µ and Cov(X) = Σ. Therefore, we use the
notation

X ∼ N (µ,Σ) (3.5)

to denote that a random variable X is Gaussian distributed with expectation µ and
covariance Σ. The probability density function of such a Gaussian is specified as

p(X = x) = ((2π)n|Σ|)−
1
2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (3.6)

where n is the dimensionality of the random variable and |Σ| is the determinant of its
covariance matrix. An interesting property of Gaussians is that affine transformations of
Gaussians always yield Gaussians:

X ∼ N (µ,Σ) ⇒ AX + b ∼ N (Aµ+ b, AΣAT) , (3.7)

where A ∈ Rm×n is a constant matrix and b ∈ Rm is a constant vector.
For two random variables X and Y , their joint probability distribution can be defined

by their joint probability density function

p(X = x, Y = y) . (3.8)

X and Y are called independent, if

p(X = x, Y = y) = p(X = x) p(Y = y) . (3.9)

3.1. Probability Theory 17

If X and Y are not independent, then knowing the outcome y of Y changes the probabil-
ities for the outcomes of X . Conditional probability density functions account for this
fact. Given that p(Y = y) > 0, the probability density function of X conditioned on the
outcome y of Y is defined by

p(X = x | Y = y) =
p(X = x, Y = y)

p(Y = y)
. (3.10)

The following two theorems are very useful when dealing with conditional probability
density functions:

Theorem 3.1 (Law of total probability).

p(X = x) =

∫
p(X = x | Y = y) p(Y = y) dy . (3.11)

Theorem 3.2 (Bayes rule). If p(Y = y) > 0, then it holds that

p(X = x | Y = y) =
p(Y = y | X = x)p(X = x)

p(Y = y)
. (3.12)

A fundamental theorem for comparing expected values is Jensen’s inequality:

Theorem 3.3 (Jensen’s inequality). Given a random variable X , a convex function f ,
and a concave function g, it holds that

f(E[X]) ≤ E[f(X)] (3.13)

and
g(E[X]) ≥ E[g(X)] . (3.14)

Throughout the rest of this thesis, the distinction between random variables and their
outcomes is usually clear from the context. We therefore typically use the shorthand
notations

p(x) := p(X = x) (3.15)

and
p(x | y) := p(X = x | Y = y) , (3.16)

which are in accordance with the standard literature (see, e.g., Definition 4.2.1 in [19] or
Section 2.2 in [102]). Only when considering information theoretic values, as in the next
section, we make a clear distinction between random variables and the values that they
can take on.

18 Chapter 3. Background

3.2 Information Theory

In this section, we give an overview of the basic concepts in information theory that we
apply in Chapter 4 for measuring the localization quality of a mobile robot. For a detailed
introduction to information theory, see Cover and Thomas [20].

Information theory considers the question of how to quantify information, and was
initially introduced in 1948 by Shannon [94] to analyze data compression and signal
processing techniques. Shannon defined the content of a message as a random variable
and introduced the entropy of a random variable as the expected value of information
contained in the corresponding message. Since then, the entropy of a random variable
has also often been considered as a measure for the uncertainty about the outcome of the
variable [14, 53, 98].

Concretely, the entropy H of a discrete random variable X on a set {x1, . . . , xn} is
defined as

H(X) := −
n∑
i=1

P (X = xi) logb(P (X = xi)) , (3.17)

where b the base of the logarithm, which, in this formula, is typically considered to be 2, e,
or 10.

Even though originally intended only for discrete random variables by Shannon, the
definition of the entropy can be extended to random variables on continuous spaces. This
so-called differential entropy h of a random variable X on a continuous space can be
defined as

h(X) := −
∫
p(X = x) log p(X = x) dx , (3.18)

where log is the natural logarithm to the base e. Equivalently, the differential entropy of a
set of random variables X1, . . . , Xn is defined as

h(X1, . . . , Xn) :=

−
∫
p(X1 = x1, . . . , Xn = xn) log p(X1 = x1, . . . , Xn = xn) d(x1, . . . , xn) . (3.19)

Based on these definitions, one can prove that the joint entropy h(X1, . . . , Xn) of a
set of mutually independent random variables X1, . . . , Xn is the sum of the individual
entropies [20], i.e.,

h(X1, . . . , Xn) =
n∑
i=1

h(Xi) . (3.20)

The entropy of a random variable X conditioned on the specific outcome y of another
random variable Y is defined as

h(X | Y = y) := −
∫
p(X = x | Y = y) log p(X = x | Y = y) dx . (3.21)

3.3. Recursive Bayesian State Estimation 19

In contrast to that, the entropy of the random variable X conditioned on the random
variable Y itself (see Section 2.2 in [20]) is defined as

h(X | Y) := h(X, Y)− h(Y) (3.22)

= −
∫ ∫

p(X = x | Y = y) log p(X = x | Y = y) dx p(Y = y)dy (3.23)

=

∫
h(X | Y = y) p(Y = y) dy (3.24)

where Equation (3.23) follows from applying the definition of the conditional probability
density (Equation (3.10) in the previous section) multiple times. Equation (3.24) yields
that h(X | Y) is the expected value of h(X | Y = y) with respect to the probability dis-
tribution of Y . A result of the above definition of conditional entropy is the “information
never hurts”-principle, which states that

h(X | Y) ≤ h(X) . (3.25)

It can be proven by applying Jensen’s inequality (Theorem 3.3 in the previous section)
on Equation (3.24).

Finally, the mutual information I (also called information gain) of two random vari-
ables X and Y on continuous spaces is defined as the reduction of the differential entropy
of one of the variables that results from observing the other variable:

I(X;Y) = h(X)− h(X | Y) = h(Y)− h(Y | X) . (3.26)

In Chapter 4, we use the mutual information between the states of a robot and its
landmark observations to measure the amount of information that the observations of the
landmarks contain about the states of the robot.

3.3 Recursive Bayesian State Estimation

In this section, we give an overview of the general recursive Bayesian state estimation
method [102] and its concrete implementations. Furthermore, we describe how recursive
Bayesian state estimation can be used in landmark-based mobile robot localization.

Recursive Bayesian state estimation, also known as the Bayes filter, is a probabilistic
method to recursively estimate the state of a dynamic system. In recursive Bayesian
state estimation, the evolution of the state x of the system over time is modeled by a
time-discrete sequence of states x0:T . At every time step t, the system performs two
actions:
• State transition: The system executes a control command ut, changing the

state xt−1 to the next state xt.

20 Chapter 3. Background

• Observation: The system generates an observation zt, from which the state xt can
be inferred.

The Bayes filter explicitly takes into account the uncertainties occurring in the execution
of these actions by modeling them not with deterministic functions, but with proba-
bility distributions. Concretely, it models the state transition step with the probability
distribution

p(xt | ut,xt−1) (3.27)

of the current state xt conditioned on the current control command ut and the previous
state xt−1. It describes the observation step by the distribution

p(zt | xt) (3.28)

that encodes the likelihood of making observation zt when in state xt. In accordance
with this probabilistic formulation, the Bayes filter also represents the state xt of the
system at time t not with a deterministic value, but with a complete probability distribu-
tion p(xt | u1:t, z1:t), which is conditioned on all current and previous control commands
and observations. This distribution is called the belief about the state of the system. The
Bayes filter calculates the belief at time t recursively as

p(xt | u1:t, z1:t) = ηt p(zt | xt)
∫
p(xt | ut,xt−1) p(xt−1 | u1:t−1, z1:t−1) dxt−1 (3.29)

from the previous belief using the observation and transition distributions defined in
Equations (3.27) and (3.28). In Equation (3.29), ηt is a normalizing constant that ensures
that p(xt | u1:t, z1:t) integrates up to 1 over all xt.

The recursive update scheme defined in Equation (3.29) can be derived mathematically,
if the dynamic system described above is framed as a hidden Markov model (HMM) [16].
Figure 3.1 shows the dynamic Bayesian network describing this HMM. The arrows in
the figure describe the stochastic dependencies of the variables. As can be seen from the
figure, the complete state assumption (also called Markov assumption) holds true in this
dynamic Bayesian network. The complete state assumption means that the knowledge
about the current state of the system contains all information about the future that is
available from any past or present observations or control commands.

The basic idea behind the derivation of Equation (3.29) is to apply Bayes rule and
the law of total probability on p(xt | u1:t, z1:t) and to use the conditional independence
properties that, according to the rules of d-separation [16], follow from the complete state
assumption in the HMM. For a detailed derivation, see Thrun et al. [102].

Derived from Equation (3.29), the Bayes filter algorithm (see Algorithm 1) updates the
belief about the state of the system in two steps, a prediction and a correction step. The
prediction step is shown in Line 2 of Algorithm 1. In this step, the Bayes filter algorithm
predicts the current state xt from the belief about the previous state xt−1 and the control

3.3. Recursive Bayesian State Estimation 21

xt−1 xt xt+1

zt−1 zt zt+1

ut−1 ut ut+1

.

Figure 3.1: Dynamic Bayesian network describing the evolution of the state xt of a system over
time. The control commands are denoted as ut and the observations as zt. The latent variables are
shown in white and the observable variables in gray.

Algorithm 1 Bayes filter update

Input: ut, zt, ∀xt−1: p(xt−1 | u1:t−1, z1:t−1)

Output: ∀xt: p(xt | u1:t, z1:t)

1: for all xt do
2: p(xt | u1:t, z1:t−1)←

∫
p(xt | ut,xt−1) p(xt−1 | u1:t−1, z1:t−1) dxt−1

3: p(xt | u1:t, z1:t)← ηt p(zt | xt)p(xt | u1:t, z1:t−1)

4: end for
5: return ∀xt: p(xt | u1:t, z1:t)

command ut. In the correction step (Line 3), the algorithm corrects the prediction using
the current observation zt.

Note that the for-loop in this algorithm can only be computed explicitly if the space
of all states xt is finite. However, there exist several implementations of the Bayes filter
that can also deal with infinite state spaces, either by approximation, or by assuming that
the occurring probability density functions have special characteristics that allow for a
closed form computation of the for-loop in Algorithm 1. The most common ones are
the different variants of the particle filter [102] and of the Kalman filter [2]. The key
idea behind the particle filter is to represent the belief about the state of the system by an
empirical distribution, i.e., a set of samples called particles. In the prediction step, each
particle is moved individually according to a random sample drawn from the transition
distribution (Equation (3.27)), taking into account the previous state of the particle and
the control command. In the correction step, the particle filter assigns a weight to every
particle according to the current observation. Then, a new set of particles is randomly
drawn with replacement from the current set according to the weights of the particles and
the current set is discarded.

In the following we give a more detailed description of the Kalman filter, as in this
thesis we apply mostly Kalman filter-type algorithms.

22 Chapter 3. Background

Algorithm 2 Kalman filter update
Input: ut, zt, µt−1, Σt−1

Output: µt, Σt

1: µt ← ct + Atµt−1 +Btut
2: Σt ← AtΣt−1A

T
t + VtQtV

T
t

3: Kt ← ΣtH
T
t

(
HtΣtH

T
t +WtRtW

T
t

)−1
4: µt ← µt +Kt(zt − dt −Htµt)

5: Σt ← (I −KtHt)Σt

6: return µt, Σt

3.3.1 Kalman Filter

The Kalman filter is an efficient implementation of the Bayes filter for linear system
dynamics and Gaussian distributions. Introduced in 1960 by Rudolf Kalman [48], the
Kalman filter has been used successfully in many different applications [63, 67, 81, 87,
88]. However, it makes several restrictive assumptions. Concretely, it assumes that the
transition between states follows the linear function

xt = f(xt−1,ut,vt) = ct + Atxt−1 +Btut + Vtvt , (3.30)

where the vector ct and the matrices At, Bt and Vt are constants that depend only on the
time step t, and vt is a zero-mean Gaussian-distributed random variable capturing the
noise in the transition, i.e., vt ∼ N (0, Qt). Furthermore, the Kalman filter assumes that
the observations can also be described by a linear function

zt = h(xt,wt) = dt +Htxt +Wtwt , (3.31)

where dt, Ht, and Wt are constants, and wt ∼ N (0, Rt) is a zero-mean Gaussian-
distributed random variable. Finally, the Kalman filter assumes that the initial distribution
about the state of the system p(x0) is a Gaussian with mean µ0 and covariance Σ0. Under
these assumptions, the belief about the state of the system remains a Gaussian when
propagated in the Bayes filter update. Since Gaussian distributions are fully specified
by their mean and covariance, the Kalman filter only needs to update these two values.
This makes it computationally highly efficient. Furthermore, Kalman [48] proved that if
all above assumptions are satisfied, the Kalman filter is the minimum mean square error
estimator for the state of the system. Therefore, the Kalman filter is called optimal.

Algorithm 2 states the recursive update of the Kalman filter. Lines 1 and 2 of the
algorithm implement the prediction step of the Bayes filter. They calculate the predicted
belief p(xt | u1:t, z1:t−1) ∼ N (µt,Σt) at time t from the previous belief using the control
command ut and the transition function. Then, line 3 calculates the so-called Kalman
gain matrix Kt. This matrix serves as a transformation from the state space to the

3.3. Recursive Bayesian State Estimation 23

observation space. Additionally, it weights the uncertainty in the predicted belief against
the uncertainty in the observation. Lines 4 and 5 use Kt to perform the correction step
of the Bayes filter. They update the predicted belief with the observation zt to produce
the corrected belief p(xt | u1:t, z1:t) ∼ N (µt,Σt) about the state of the system. As can
be seen from the algorithm, the computational complexity of the Kalman filter update is
in O(dim(xt)

2.373 + dim(zt)
2.373), if the Williams algorithm [108] is applied both for the

matrix multiplications and the matrix inversion.
There are several extensions and alternative versions of the Kalman filter, which aim at

circumventing its restrictive assumptions or making the computations even more efficient.
The Information filter [2], for example, updates the information matrix, which is the
inverse of the covariance matrix, instead of the covariance matrix itself. It does not
perform a matrix inversion in the correction step, which makes this part of the algorithm
computationally more efficient. However, a matrix inversion is necessary in the prediction
step of the information filter. Two extensions of the Kalman filter that alleviate its linearity
assumption are the extended Kalman filter (EKF) and the unscented Kalman filter (UKF).
Since we use both these extensions in later chapters, we briefly describe them in the
following.

The Extended Kalman Filter

The extended Kalman filter (EKF) [2] is an approximate implementation of the Bayes filter
algorithm that allows to use the Kalman filter framework even for nonlinear transition
functions and observation functions. It approximates the nonlinear functions with their
first-order Taylor expansions around the mean of the filter µt (resp. µt) and around the
control command ut. This leads to the linear approximations

xt = f(xt−1,ut,vt) (3.32)

≈ f(µt−1,ut,0) + At(xt−1 − µt−1) +Bt(ut − ut) + Vt(vt − 0) (3.33)

= f(µt−1,ut,0) + At(xt−1 − µt−1) + Vtvt , (3.34)

zt = h(xt,wt) (3.35)

≈ h(µt,0) +Ht(xt − µt) +Wtwt (3.36)

of the transition function f and the observation function h. Here, the matrices At, Bt, Vt,
Ht, and Wt are the Jacobians

At =
∂f

∂x
(µt−1,ut,0), Bt =

∂f

∂u
(µt−1,ut,0), Vt =

∂f

∂m
(µt−1,ut,0), (3.37)

Ht =
∂h

∂x
(µt,0), Wt =

∂h

∂n
(µt,0) (3.38)

24 Chapter 3. Background

Algorithm 3 EKF update
Input: ut, zt, µt−1, Σt−1

Output: µt, Σt

1: µt ← f(µt−1,ut,0)

2: Σt ← AtΣt−1A
T
t + VtQtV

T
t

3: Kt ← ΣtH
T
t

(
HtΣtH

T
t +WtRtW

T
t

)−1
4: µt ← µt +Kt(zt − h(µt,0))

5: Σt ← (I −KtHt)Σt

6: return µt, Σt

resulting from the Taylor expansion. Algorithm 3 shows the EKF update. As can be seen
from the algorithm, the EKF update with the approximated linear functions is identical to
the standard Kalman filter update shown in Algorithm 2 with two exceptions: Lines 1
and 4, in which the values of the transition function and the observation function at the
linearization points of the Taylor expansion appear. At these points, the values of the
linear approximations of the EKF coincide with the values of the real nonlinear functions.

The approximation quality of the EKF depends largely on the real, nonlinear func-
tions and on the covariances in the filter. If, for example, the real functions are linear
combinations of trigonometric functions, which can be approximated quite well with
linear functions in a small area around the linearization point, the EKF works typically
well if the covariances are small enough that µt does not deviate too far from the true
state xt. On the other hand, if the real functions are highly nonlinear, e.g., with jump
discontinuities or similar nonlinear parts, then the EKF might fail more often.

In Chapter 5, we use ideas similar to the ones in the EKF to linearize the whole
navigation cycle of a mobile robot, which consists of executing a motion command,
making an observation, localizing the robot, and selecting the next motion command
depending on the localization.

The Unscented Kalman Filter

Like the EKF, the unscented Kalman filter (UKF) is an extension of the standard Kalman
filter that allows using nonlinear transition functions and observation functions. It was
introduced in 1995 by Julier et al. [45]. Instead of using Taylor expansions to linearize
the functions, the UKF considers a deterministically selected set of points that represent
the current belief and applies the real, nonlinear functions to these points, resulting in an
updated point set. These points, called sigma points, are typically selected as the mean µt
of the belief and the vertices of the (scaled) covariance ellipsoid. In the prediction step,
the UKF applies the nonlinear transition function to the sigma points and estimates the
mean and covariance of the Gaussian for the next time step from the updated sigma

3.3. Recursive Bayesian State Estimation 25

point set using weighted averages. In the correction step, the UKF applies the nonlinear
observation function to each sigma point and calculates the differences between the
resulting point set and the observed value zt. These differences are then used in an
averaging procedure similar to the one in the prediction step to calculate the Kalman
gain Kt and finally the parameters µt and Σt of the updated belief.

In the experiments presented in Chapter 4, we use the UKF for state estimation.

3.3.2 Landmark-Based Mobile Robot Localization

In the following chapters, we apply the recursive Bayesian state estimation techniques
described above to landmark-based mobile robot localization. In landmark-based mobile
robot localization, the goal is to estimate the state of a mobile robot from its control
inputs and from its sensor observations of a set of landmarks. The state of the robot is
typically considered as its pose (i.e., its position and orientation), and the control inputs are
typically the desired velocities, accelerations, or motor currents. The sensor observations
that we consider are the observations of landmarks in the environment. In this context,
landmarks can be anything that can be observed by the sensors of the robot. Examples
of landmarks are corners, edges, and colored markers, which can be extracted from the
images of a camera, reflective materials, which can be detected by laser scanners, or radio-
frequency identification (RFID) tags. Depending on the type of sensor and landmark, the
observations typically consist of the identity of the landmark and the relative distance
and angle between the robot and the landmark. Given a map A = {`1, . . . , `N} of the
identities and positions of the finite number N of all landmarks in its environment, the
robot can infer its own pose from the landmark observations.

In real-world applications, the motion and the sensor observations of mobile robots are
typically subject to noise and errors. One way of dealing with these errors is to frame
mobile robot localization as a recursive Bayesian state estimation problem and estimate
the pose of the robot at every time step t not only as one deterministic value, but as a
complete probability distribution on the space of all possible robot poses. Framed as
a recursive Bayesian state estimation problem, the pose of the robot is considered as
the state of the dynamic system xt, which is estimated from the control inputs ut and
the sensor observations zt of the robot. In mobile robot localization, the state transition
function

xt = f(xt−1,ut,vt) , (3.39)

is called the motion model of the robot. We typically assume the motion noise variable vt
to be zero-mean Gaussian distributed, i. e., vt ∼ N (0, Qt). The observation function

zt = h(xt,wt,A) (3.40)

in landmark-based mobile robot localization is called its sensor model. It depends not only

26 Chapter 3. Background

on the pose of the robot xt and the (zero-mean Gaussian-distributed) noise variable wt,
but also on the identities and positions A of the landmarks in the environment.

The standard motion models and sensor models [102] for mobile robots are nonlinear,
but consist mostly of linear combinations of trigonometric functions. Therefore, their
linearized versions tend to have a reasonable approximation quality, and variants of the
Kalman filter such as the EKF and the UKF have often been successfully applied to
mobile robot localization [63, 69, 102, 105].

3.4 Submodular Function Optimization

In this section, we give a brief overview of existing techniques for submodular function
optimization, which we apply in later chapters when searching for the optimal subset of
the set of all possible landmark positions in the environment of a mobile robot. See Krause
and Golovin [52] for a more comprehensive survey on submodular function optimization.

The two general types of optimization problems that we consider are the constrained set
size problem and the constrained function value problem. Given a set V and a maximum
number n of elements e ∈ V that may be selected, the constrained set size problem is to
find the configuration of elements that maximizes a given objective function F :

A∗n = argmax
A⊆V;|A|≤n

F (A) . (3.41)

The constrained function value problem, on the other hand, is the problem of minimizing
the number of elements needed to reach a given threshold d on the objective function:

A?d = argmin
A⊆V;F (A)≥d

|A| . (3.42)

To efficiently select the elements in A∗n and A?d, one important issue that has to be
addressed is the combinatorial structure of the optimization problem. Many combinatorial
optimization problems, including the one that we consider in Chapter 4, are NP-hard.
Therefore, in practice, one often uses methods to efficiently find an approximate solution
to the optimization problem. For the special case in which the considered objective
function is submodular, there exist approximation algorithms with tight performance
guarantees.

3.4.1 Greedy Algorithm for Maximizing Submodular Functions

Submodularity is a property that is defined for set functions. A set function is a function
F : P(V)→ R that specifies a value F (A) for each subset A of a given set V . We define
submodularity for set functions in the following way:

3.4. Submodular Function Optimization 27

Algorithm 4 Greedy algorithm for set function maximization
Input: V , n or d (depending on the type of constraint)
Output: A
A ← ∅
repeat
e? ← argmaxe∈V F (A ∪ {e})
A ← A∪ {e?}

until constraint satisfied
return A

Definition 3.1. A set function F : P(V)→ R is called submodular if it holds that ∀A ⊆
B ⊆ V , e ∈ V \ B:

F (B ∪ {e})− F (B) ≤ F (A ∪ {e})− F (A) . (3.43)

Submodularity is a diminishing returns property that is natural for objective functions
in many applications. For example, in the context of landmark placement, it means that
the increase in the value of the objective function resulting from placing an additional
landmark is lower when more landmarks have already been placed. In the following, we
consider functions F that, in addition to being submodular, also fulfill F (∅) = 0 and are
monotonically increasing.

Definition 3.2. A set function F : P(V)→ R is called monotonically increasing if ∀A ⊆
B ⊆ V it holds that F (A) ≤ F (B).

The following two corollaries follow directly from Definition 3.1 and are useful for
building complex submodular functions out of simple parts.

Corollary 3.1. Nonnegative linear combinations of submodular functions are submodular,
i. e., if F1, . . . , Fk are submodular, then also H(A) =

∑k
i=1 aiFi(A) is submodular for

arbitrary nonnegative constants a1, . . . , ak.

Corollary 3.2. Truncations of monotonically increasing submodular functions are mono-
tonically increasing and submodular, i. e., if F is monotonically increasing and submod-
ular, then also G(A) = min(F (A), c) is monotonically increasing and submodular for
arbitrary constants c.

Corollary 3.1, for example, yields among other things that the average of submodular
functions is submodular itself.

For finding approximate solutions to the constrained set size problem and to the
constrained function value problem for monotonically increasing submodular objective

28 Chapter 3. Background

functions F , we use the iterative placement procedure defined in Algorithm 4. The
constraint that needs to be satisfied in the until-statement of the algorithm is (|A| = n)

for the constrained set size problem and (F (A) ≥ d) for the constrained function
value problem. The algorithm works iteratively. In each iteration, it greedily adds the
one element e? ∈ V to the set A of selected elements that maximizes the marginal
gain F (A ∪ {e?})− F (A). The algorithm evaluates the objective function at most |V|
times for every selected element.

3.4.2 Approximation Guarantees

Applying greedy algorithms on submodular functions is a popular choice in many appli-
cations [26, 42, 49, 59, 62], as there exist tight bounds on the approximation performance.
In this section, we state the performance guarantees for the greedy algorithms for the
constrained set size problem and for the constrained function value problem. As these
performance guarantees are the foundation on which we build in later chapters, we also
present the basic ideas behind their proofs here.

One of the most famous results in submodular function optimization is the performance
guarantee for the constrained set size problem by Nemhauser et al. [78] dating back to
1978:

Theorem 3.4 (Nemhauser et al. [78]). Given a submodular, monotonically increasing
function F with F (∅) = 0, the result An of the greedy algorithm for the constrained set
size problem satisfies the following approximation guarantee:

F (An) ≥ (1− 1/e)F (A?n) , (3.44)

where F (A?n) = max
A⊆V;|A|≤n

F (A).

As e in Equation (3.44) refers to Euler’s number, this approximation bound guarantees
that the greedy algorithm results in a set with at least (1− 1/e) ≈ 63% of the maximum
function value.

The proof of Nemhauser et al. for Theorem 3.4 starts with the inequality F (A?n) ≤
F (A?n ∪ An), which holds true due to the monotonicity of F . It then expresses the right
hand side of the inequality in terms of the marginal gains

F (An ∪ {e?})− F (An) = ∆F ({e?}) , (3.45)

where e? are the elements of A?. Since the greedy algorithm explicitly maximizes
marginal gains, the definition of submodularity yields that the marginal gains ∆F ({e?})
can be bounded by the marginal gains that the elements selected by the greedy algorithm

3.4. Submodular Function Optimization 29

actually yielded. Bounding all marginal gains by the gain F ({e1})− F (∅) = F ({e1})
of the first greedily selected element yields the desired result:

F (A?n)− F (An) ≤
(

1− 1

n

)n
F ({e1}) ≤

1

e
F (A?n) , (3.46)

where the second inequality holds true due to the fact that 1/e is an upper bound for (1−
1/n)n and the fact that F (A?n) ≥ F ({e}) for any single element e of V .

For a large class of submodular functions, it has been shown that the bound in The-
orem 3.4 is the best approximation guarantee that any polynomial time algorithm can
achieve, unless P = NP. The two main results in this direction are Theorem 4.2 of
Nemhauser and Wolsey [77] and Theorem 5.3 of Feige [31]. Nemhauser and Wolsey
showed that the bound in Theorem 3.4 is tight if the submodular function F is available
only in the form of a value oracle, i.e., a black box that takes a set A as input and outputs
the value F (A). Feige proved that the bound is tight for the special case of the maximum
coverage problem (MAX-COVER), which can be framed as a submodular optimization
problem. Given an arbitrary collection of sets and a number n, MAX-COVER is the
problem of selecting the n sets out of the collection whose union has maximum size.
Obviously, Feige’s result also holds for all problems that MAX-COVER can be reduced
to.

Nemhauser’s bound in Theorem 3.4 gives a guarantee on the approximation perfor-
mance of the greedy algorithm for the constrained set size problem. Wolsey [109] derived
its counterpart for the greedy algorithm for the constrained function value problem:

Theorem 3.5 (Wolsey [109]). Given an integer-valued, submodular, monotonically in-
creasing function F with F (∅) = 0 and a feasible threshold d, the resultAd of the greedy
algorithm for the constrained function value problem satisfies the following approximation
guarantee:

|Ad| ≤ |A?d|
(

1 + log max
e∈V

F ({e})
)
, (3.47)

where |A?d| = min
A⊆V;F (A)≥d

|A|.

Wolsey formulated this theorem only for integer-valued functions, but Krause et al. [57]
extended it to real-valued functions by approximating the function values with their
highest-order bits. For details on this, see Section 7.1 of [57].

To prove Theorem 3.5, Wolsey considers the problem defined in Equation (3.42) as
an integer programming problem. He introduces a linear programming relaxation of the
problem and finds a feasible solution to its dual problem. According to the weak duality
theorem, this solution is a lower bound for the solution of the primal linear programming
problem and hence also for the solution of the original integer programming problem.

30 Chapter 3. Background

In contrast to the bound in Theorem 3.4, the bound in Theorem 3.5 is not a constant
factor approximation guarantee but depends on the set V and the function F . In [109],
Wolsey shows that if F is available only in the form of a value oracle, then no polynomial
time algorithm can achieve a constant factor approximation guarantee for the constrained
function value problem, unless P = NP.

3.5 Simultaneous Localization and Mapping

One of the fundamental problems in mobile robot navigation is that of simultaneous
localization and mapping (SLAM) [102]. For a mobile robot that moves through a
previously unknown environment, the SLAM problem is the problem of mapping the
environment while simultaneously localizing itself in this very map.

The SLAM problem can be considered in two different ways: The first one is called
the online SLAM problem, where the goal is to estimate the posterior distribution

p(xt,m | u1:t, z1:t) (3.48)

of the robot’s momentary pose xt and the map m, given a set of robot motion com-
mands u1:t and a set of feature observations z1:t. The recursive Bayesian state estimation
techniques presented in Section 3.3 can be adapted to estimate this distribution at every
(discretized) time step t during operation of the robot (see [64, 97]).

The second SLAM problem is the so-called full SLAM problem. In contrast to online
SLAM, the goal in full SLAM is to estimate the distribution of the entire path x0:T of the
robot and the map m, instead of just the current pose xt. Concretely, full SLAM can be
defined as the problem of estimating the joint posterior distribution

p(x0:T ,m1:n, c1:T | u1:T , z1:T) . (3.49)

Here, we assume that the map m consists of n features m1:n. Furthermore, c1:T (=

c1:T (z1:T)) refers to the data associations, i. e., the identities of the map features perceived
in the observations z1:T . We explicitly take the data associations into account in our
formulation of the full SLAM problem, as estimating them correctly is crucial for the
accuracy of the estimation of the other variables x0:T and m1:n.

Methods for solving the full SLAM problem [17, 30, 38] often estimate the data
associations c1:T in a first step and then, given the estimated data associations, they
estimate the path of the robot x0:T and the map m1:n. In the following, we first describe
the problem of estimating the data associations and then give a brief introduction to
graph-based approaches to solve the full SLAM problem.

3.5. Simultaneous Localization and Mapping 31

3.5.1 Data Association in SLAM

In the context of the SLAM problem, data association refers to the problem of identifying
a map feature mi in one observation zt1 as the very same feature found in another
observation zt2 . Unless the robot is able to recognize previously visited places, its position
uncertainty increases without bound due to the accumulating odometry error. In the full
SLAM formulation, integrating out the unknown data associations c1:T in Equation (3.49)
leads to

p(x0:T ,m1:n | u1:T , z1:T) =
∑
c1

∑
c2

. . .
∑
cT

p(x0:T ,m1:n, c1:T | u1:T , z1:T) . (3.50)

Consequently, the number of possible data associations grows exponentially with the
number of observations.

Most approaches to data association are based on the innovation and its covariance,
i. e., the difference between the actual observation zt and the predicted observation ẑt
under a given data association ct(zt). If the innovation is a Gaussian, the squared
Mahalanobis distance D2

M(zt, ẑt) is distributed according to the χ2
d distribution, where

d is the dimensionality of the innovation. One of the most popular approaches to data
association is the nearest neighbor filter. It computes a set of compatible candidate
features and accepts only features whose innovation is within a certain region of the χ2

distribution. It then chooses the candidate feature that best matches the observation.
There are more sophisticated data association techniques than the nearest neighbor

filter [76, 79], which can handle significantly more challenging environments. However,
even these approaches cannot guarantee to avoid false positives, particularly in the
presence of perceptual ambiguities.

3.5.2 Graph-Based Approaches to Solve the SLAM Problem

Graph-based approaches to solve the SLAM problem model the poses of the robot and
the positions of observed landmarks as nodes in a graph. The edges of such a graph
correspond to spatial constraints between the individual nodes. These constraints arise
from odometry measurements and from landmark observations. Graph-based approaches
to the full SLAM problem are typically divided into a front end and a back end. The front
end interprets the sensor data to extract spatial constraints. To do so, the data association
problem has to be addressed. Using the solution of the data association problem, the back
end finds the configuration of the nodes that best matches the extracted spatial constraints
by applying an optimization technique [37, 46, 61]. In the back end, a key precondition
for the successful computation of the map is getting the correct data associations from the
front end.

In Chapter 9, we present an approach to improving the data association performance

32 Chapter 3. Background

in SLAM by deploying artificial landmarks. Our graph-based implementation of this
approach uses the framework by Kümmerle et al. [61] as a back end.

3.6 Actor-Critic Monte Carlo Reinforcement Learning

In reinforcement learning [100], an agent interacts with its environment to learn how
to behave so as to maximize a numerical reward. Formally, a reinforcement learning
problem is given by a set S of states, a set A of actions that the agent may perform
at discrete time steps t, transition probabilities that describe how the states change in
response to the agent’s actions, and a reward function r : S× A→ R that determines
the numerical reward that the agent receives for executing action a ∈ A in state s ∈ S.
A policy is a probability distribution π(s, a) = p(a | s) of choosing action a given the
agent is in state s. For each episode e, which is a sequence (s0, a0, . . . , sT , aT) of states
and actions, the return R(st, at) for executing action at in state st is given by the sum of
the rewards gathered after the execution of at:

R(st, at) =
T∑

t′=t+1

r(st′ , at′) , (3.51)

which is sometimes also weighted with a discount factor. The goal of reinforcement
learning is to find the policy π?(s, a) that maximizes the expected return

Qπ(s, a) = Eπ[R(st, at) | st = s, at = a] (3.52)

for all s ∈ S and a ∈ A.
One class of reinforcement learning methods is Monte Carlo reinforcement learning.

Monte Carlo reinforcement learning methods do not require prior knowledge of the
environment’s dynamics, i. e., the probability distributions of the transitions, to compute
the optimal policy. Instead, these methods estimate Qπ(s, a) using the return averaged
over a number of sample episodes e. First-visit-only Monte Carlo learning takes into
account only the first occurrence of each state-action pair (s, a) in each episode e, leading
to the estimator

Q̂π(s, a) =
1

nF

∑
e∈F(s,a)

Re
first(s, a) , (3.53)

where F(s, a) = {e | (s, a) ∈ e}, nF = |F(s, a)|, and Re
first(s, a) is the return at the first

occurrence of (s, a) in episode e. In Monte Carlo reinforcement learning, the estimator Q̂π

converges to Qπ if all state-action pairs occur with non-zero probability when following
the policy π. A common way to satisfy this condition is to use a so-called softmax policy
of the form

π(s, a) = p(a | s) =
exp(Q̂π(s, a)/τ)∑

a′∈A exp(Q̂π(s, a′)/τ)
, (3.54)

3.6. Actor-Critic Monte Carlo Reinforcement Learning 33

where τ ∈ R+ is the so-called temperature.
One way to update the estimated Q-function Q̂π in Monte Carlo reinforcement learning

is the so-called actor-critic approach. In actor-critic learning, two Q-functions are stored
separately. One works as the actor and is used for sampling the episodes. The other is the
critic and is updated according to the rewards gained in the episodes. After the critic has
observed enough episodes, it changes its role and becomes actor. At this moment, the old
actor is discarded and a new critic is initialized.

Unlike the standard on-policy learning, which adjusts the policy for episode generation
after every episode based on the updated estimate of the Q-function, actor-critic learning
does not change the policy while learning a Q-function. This is favorable because the final
estimate for the Q-function is not distorted by values generated with an outdated policy,
which is the case in on-policy learning for the values integrated early in the learning
process.

In Chapter 9, we apply first-visit-only actor-critic Monte Carlo reinforcement learning
with a softmax policy to learn in which states a mobile robot should autonomously deploy
artificial landmarks to optimize its performance in SLAM.

Chapter 4

Landmark Placement for Localization

In this chapter, we consider the problem of placing landmarks for
optimizing the localization performance of a mobile robot that
travels frequently on similar trajectories. The presented approach
maximizes the information gain of the states of the robot resulting
from its landmark observations. We prove that this maximization
problem is NP-hard and apply a greedy algorithm to approximate
its solution. Building on the concept of submodularity, we derive
a tight constant-factor bound on the approximation error of this
algorithm. For evaluating the information gain, we apply Monte
Carlo simulation, which can deal with arbitrary system dynamics
and control modes of the robot. Furthermore, we evaluate the
placed landmark sets in extensive experiments both in simulation
and with a real robot.

In this chapter, we consider landmark placement for mobile robot localization as an
optimization problem. For a given trajectory, we place a given number n of landmarks so
that the mutual information between all states of the robot along the trajectory and all
landmark observations is maximized. The goal is to arrive at a landmark configuration that
yields the highest information gain. We prove that this problem is NP-hard, and introduce
a greedy algorithm that approximates its solution. Using the concept of submodularity
introduced in the background chapter, we prove that our algorithm finds near-optimal sets
of landmarks. In order to deal with non-linear system dynamics and different types of
robot controllers, our algorithm employs Monte Carlo simulation to evaluate the objective
function. We evaluate the placed landmark sets in simulation and on a real robot. The
results of the experiments show that our algorithm significantly outperforms baseline
approaches.

This chapter is organized as follows. In the following section, we introduce the
landmark placement problem. We then present our approximation algorithm and show a
tight bound on the approximation error in Section 4.2. Afterwards, in Section 4.3, we

36 Chapter 4. Landmark Placement for Localization

discuss different models for controlling the robot and describe their influence on the
properties of the approximation. Finally we present extensive experiments in which we
evaluate our algorithm in simulation as well as with a real robot.

4.1 Problem Definition

In this section, we define the landmark placement problem that we consider in this chapter.
Since this definition builds on the information theoretic concepts described in Section 3.2,
we use the notation introduced in that section and explicitly distinguish between random
variables, which we denote with capital letters (e.g., Xt), and the values that they can take
on, for which we use their lower-case counterparts (e.g., xt).

As described above, we consider landmark placement as a trajectory dependent problem.
The evolution of the state xt at time t ∈ [0, T] of the robot executing a given trajectory
is subject to random noise, which is induced by the random errors occurring in the
execution of the control commands u1:t. To account for this randomness, we model
the states x0:T of the robot, the control commands u1:T , and the observations z1:N1:T of
the landmarks `1:N with the random variables X0:T , U1:T , and Z1:N

1:T , respectively. As
described in Section 3.3, the dependencies of these random variables can be described
by a Hidden Markov Model (HMM). For the task of placing landmarks, the HMM has
to explicitly include all possible landmark positions `1:N in the environment and the
separate observations Z1:n

t of the different landmarks at time t. Without the dashed
arrows, Figure 4.1 shows the dynamic Bayesian network that describes this HMM. In the
literature on mobile robot localization [2, 102], the control command Ut in this network
is for simplicity typically considered to be randomly chosen.

For every environment and every kind of landmark detecting sensor, there exists a
subspace of the environment in which it is possible to place landmarks. Here, we use
a discrete representation V = {`1, . . . , `N} of this subspace. On the power set of this
discrete set, we define an objective function F : P(V) → R. For every subset A ∈ V ,
F (A) describes the value of information gained by placing landmarks in all points in A.
Given a constrained number n of landmarks that the robot can use for localization, we
aim at finding

A?n = argmax
A⊆V;|A|≤n

F (A) . (4.1)

In this chapter, we consider the number n of landmarks to be placed as given (e.g., by
the constrained memory of the robot), but one could also use a threshold as in [71] to
determine n.

We aim at placing the landmarks whose observations contain the most information
about the states of the robot. Therefore, we use the mutual information between the states
of the robot and the landmark observations in the Hidden Markov Model as objective

4.1. Problem Definition 37

Xt Xt+1

Z1
t ZN

t Z1
t+1 ZN

t+1

Ut Ut+1

`1 `N. . .

.

.

.

Figure 4.1: The dynamic Bayesian network for the localization of a mobile robot. It characterizes
the dependencies between the random variables describing the controls Ut, states Xt, and
measurements Zkt of the landmarks `k. The latent variables are shown in white and the observable
variables in gray. The dashed arrows model the additional dependency for an external controller.

function F . For details on the information theoretic concept of mutual information, see
Section 3.2. In the HMM, placing landmark `k is equivalent to observing the values zk1:T
of the random variables Zk1:T . Note that Zkt can also take one special value indicating that
`k is not visible at time t (e.g., if `k is not selected for placement). Using the notation
ZA1:T := {Zi1:T | `i ∈ A}, the objective function has the following form:

F (A) = I(X0:T ;ZA1:T | U1:T , `1:N)

= h(X | U, `1:N)− h(X | U,ZA, `1:N)

= h(X | U)− h(X | U,ZA) . (4.2)

Note that the positions `k of the landmarks are deterministic and globally known for all
landmarks in V , so conditioning on them does not change the considered probability
distributions. Also, in Equation (4.2) and in the following, we omit the indices 0 : T

and 1 : T for convenience if we consider the full sequences of states, observations, and
controls, respectively. The objective function in Equation (4.2) describes how the entropy
of the joint probability distribution of all the states of the robot along the trajectory is
reduced by the placed set of landmarks (resp. their observations). Since the entropy
can be viewed as a measure of uncertainty for the underlying distribution, this objective
function is an intuitive choice to us.

38 Chapter 4. Landmark Placement for Localization

Algorithm 5 Greedy landmark placement for entropy reduction
Input: V , n
Output: An
A0 ← ∅
for i = 1 to n do
`? ← argmin

`∈V
h(X | U,ZAi−1∪{`})

Ai ← Ai−1 ∪ {`?}
end for
return An

4.2 Approximation Algorithm

As a result of Theorem 4.4 in this section, the problem defined in Equation (4.1) is
NP-hard. Assuming that P 6= NP, there exists no deterministic polynomial time
algorithm to determine the exact maximum of F . Therefore we have to be content with
an approximation algorithm. Placing the landmark subset that maximizes the mutual
information is equivalent to finding

A?n = argmin
A⊆V;|A|≤n

h(X | U,ZA) . (4.3)

This follows directly from the definition of the objective function in Equation (4.2).
Algorithm 5 approximates A?n greedily using this equivalence. The complexity of the
algorithm is in O(n|V|), which makes it applicable even for large values of |V|.

4.2.1 Submodularity of Conditional Mutual Information

To derive a constant factor approximation guarantee for Algorithm 5, we use the concept
of submodularity, which we have described in detail in Section 3.4. Theorem 3.4 in
that section gives a factor (1− 1/e) approximation guarantee for greedy algorithms for
objective functions that satisfy the following three properties:

• F (∅) = 0

• submodularity, i.e.,

∀A ⊆ B ⊆ V , ` /∈ B : F (A ∪ {`})− F (A) ≥ F (B ∪ {`})− F (B) (4.4)

• monotonicity, i.e.,

∀A ⊆ B ⊆ V : F (A) ≤ F (B) . (4.5)

4.2. Approximation Algorithm 39

In the landmark placement application, submodularity is an intuitive property. It means
that the increase in information about the state of the robot resulting from adding a new
landmark is lower or equal when more landmarks have already been placed.

All proofs in this section follow the concepts laid out by Krause and Guestrin [53].
The key difference between their approach and ours is that they consider a set of discrete
random variables and aim at selecting a subset of this set, which then can be directly
observed in a deterministic way. Our approach, on the other hand, considers random
variables on continuous spaces and therefore applies the differential entropy instead of
the discrete entropy. Furthermore, we do not select the states Xt directly for observation,
but we select landmark positions `. The observations Z{`} of our selected landmarks
do not reveal the values xt of the variables Xt deterministically, they only indirectly
measure xt and are prone to stochastic noise. Despite these differences, we can reproduce
the main results of Krause and Guestrin [53] for our approach by closely following their
techniques:

Theorem 4.1. F (A) = I(X;ZA | U) is submodular.

Proof. Applying the definition of the conditional entropy from Equation (3.22) two times
yields

I(X;ZA | U) = h(X | U)− h(X | U,ZA) (4.6)

= h(X | U)− h(X,ZA,U) + h(ZA,U) (4.7)

= h(X | U)− h(ZA | X,U)− h(X,U) + h(ZA,U) . (4.8)

In the Hidden Markov Model described above, it holds that for every A, ZA is a set of
random variables that are mutually independent conditioned on X. This Markov property
is a direct application of the rules of d-separation [16] on the dynamic Bayesian network
depicted in Figure 4.1. Since the joint entropy of mutually independent random variables
is the sum of the individual entropies, Equation (4.8) becomes

I(X;ZA | U) = h(X | U)− h(X,U) + h(ZA,U)−
∑
`∈A

h(Z{`} | X,U) . (4.9)

Here h(X | U) − h(X,U) does not depend on A and
∑

`∈A h(Z{`} | X,U) adds the
same value to both sides of the submodularity inequation stated in (4.4). So to prove
the submodularity of I(X;ZA | U), it suffices to prove the submodularity of h(ZA,U).
We do this by applying the definition of the conditional entropy in the same way as in
Equation (4.6). ∀A ⊆ B ⊆ V , ` /∈ B :

h(ZA∪{`},U)− h(ZA,U) = (4.10)

h(Z{`} | ZA,U) ≥ h(Z{`} | ZB,U) (4.11)

= h(ZB∪{`},U)− h(ZB,U) . (4.12)

40 Chapter 4. Landmark Placement for Localization

The above inequation holds because of the “information never hurts”-principle defined in
Equation (3.25).

Theorem 4.2. F (A) = I(X;ZA | U) is monotonically increasing in A.

Proof. Using the definition of the conditional entropy and the “information never hurts”-
principle as in the proof above and applying the conditional independence property of Z{`}

and U conditioned on X in the HMM, it holds that ∀A ⊆ V , ` /∈ A :

F (A ∪ {`})− F (A)
(4.2)
= h(X | U,ZA)− h(X | U,ZA∪{`}) (4.13)

(4.9)
= h(ZA∪{`},U)− h(ZA,U)− h(Z{`} | X,U) (4.14)

= h(Z{`} | ZA,U)− h(Z{`} | X,U) (4.15)

≥ h(Z{`} | X,ZA,U)− h(Z{`} | X,U) (4.16)

= h(Z{`} | X)− h(Z{`} | X) (4.17)

= 0 . (4.18)

Theorems 4.1 and 4.2 provide the properties that are required for the following bound:

Theorem 4.3. For the result An of Algorithm 5, the following approximation guarantee
holds:

F (An) ≥ (1− 1/e) max
A⊆V;|A|≤n

F (A) . (4.19)

Proof. As can be seen in Equation (4.2), F (∅) = 0 holds obviously. This fact, together
with Theorems 4.1 and 4.2 provides all preconditions to apply Theorem 3.4 on our
objective function, which directly produces the desired result.

For the objective function considered in this chapter, this bound is a tight bound:

Theorem 4.4. The optimization problem defined in Equation (4.1) is not approximable
in polynomial time within a constant factor better than (1− 1/e), unless P = NP.

Proof. We will reduce the so-called max-cover problem to our problem of maximizing
the mutual information between the (continuous) random variables X and Z{`}, which
is defined in Equation (4.1). Given a set S = {1, . . . , k} and a collection of subsets
S1, . . . , Sm of S, max-cover is the problem of selecting the n subsets whose union
contains the maximum number of elements. Feige [31] has shown that there exists no
polynomial time algorithm that approximates max-cover with a constant factor better
than (1− 1/e), unless P = NP.

For each instance of the max-cover problem, we create an instance of our optimization
problem in the following way: Consider a sequence of one-dimensional robot states X0:k

4.2. Approximation Algorithm 41

that do not depend on each other, but only on the control commands U1:k. We assume
a simplistic motion model that is defined by the equation xt = ut + vt, where vt is a
sample from a normal distribution with mean zero and variance

Qt = exp(1− log(2π)) . (4.20)

Furthermore, we assume that there exists a set V = {`1, . . . , `m} of m possible landmark
locations. We assume that the landmark `i can be observed at time t ∈ {1, . . . , k} if and
only if

(t ∈ Si) ∧ (t /∈ ∪
j<i
Sj) (4.21)

where Si is the i-th subset of S defined by the instance of the max-cover problem. If `i
can be observed at time t, then we assume that the observation z

{`i}
t directly measures the

state xt according to the sensor model z{`i}t = xt + wt, with wt being a sample from a
normal distribution with zero mean and variance

Rt =
exp(1− log(2π))

exp(2)− 1
. (4.22)

Note that the described random variables and dependencies form a (simple) instance of
the class of problems that can be described with the Bayesian network in Figure 4.1.
The motion model and the sensor model in this problem instance are linear functions.
Therefore, as described in Section 3.3, the Kalman filter is the optimal estimator for
the state of the system. The matrices required in the Kalman filter update defined in
Algorithm 2 in that section are in fact scalars with the following values:

ct = 0 , At = 0 , Bt = 1 , Vt = 1 , Ht = 1 , Wt = 1 , dt = 0 , (4.23)

and Qt and Rt as defined above. Plugging these variables into Algorithm 2 results in

Σt =

{
exp(1− log(2π)) if no landmark can be observed at time t
exp(−1− log(2π)) if one landmark can be observed at time t .

(4.24)

More than one landmark can never be observed at the same time step due to the definition
of observability in Formula (4.21). Since Σt is the variance of p(xt | u1:t, z

A
1:t) and the

differential entropy h of a one-dimensional Gaussian can be computed as 1
2

+ 1
2

log(2πΣt),
it follows that

h(Xt | U1:t = u1:t,Z
A
1:t = zA1:t)

=

{
1 if no landmark in A can be observed at time t
0 if one landmark in A can be observed at time t .

(4.25)

42 Chapter 4. Landmark Placement for Localization

Since in the system constructed in this proof, the above entropy does not depend on the
concrete values of u1:t and zA1:t, but only on the (deterministic) landmark observability
defined in Equation (4.21), it holds that∫

h(Xt | U1:t = u1:t,Z
A
1:t = zA1:t) p(u1:t, z

A
1:t) d(u1:t, z

A
1:t)

= h(Xt | U1:t = u1:t,Z
A
1:t = zA1:t) . (4.26)

Therefore, with Equation (3.24), it follows that

h(Xt | U1:t,Z
A
1:t) =

{
1 if no landmark in A can be observed at time t
0 if one landmark in A can be observed at time t .

(4.27)

In the above construction of the instance of the landmark placement problem, we
assume independence properties that yield that the random variables Xt are independent
from each other, also when conditioned on the controls and observations. Therefore, in
this instance, the differential entropy of the joint distribution of all robot states is the
sum of the individual differential entropies, which are independent of the controls and
observations at later time steps:

h(X0:k | U1:k,Z
A
1:k) =

k∑
t=0

h(Xt | U1:k,Z
A
1:k) =

k∑
t=0

h(Xt | U1:t,Z
A
1:t) . (4.28)

Applying Equation (4.27) and Formula (4.21) now yields

h(X0:k | U1:k,Z
A
1:k) = h(X0) +

k∑
t=1

(1− 1(∃i | `i ∈ A ∧ t ∈ Si)) , (4.29)

where 1 is the indicator function. With the notation B = {Si | `i ∈ A}, it follows that

min
A
h(X0:k | U1:k,Z

A
1:k) = h(X0) + min

A

k∑
t=1

(1− 1(∃i | `i ∈ A ∧ t ∈ Si)) (4.30)

= h(X0) + min
B

k∑
t=1

(1− 1(∃Si ∈ B | t ∈ Si)) (4.31)

= h(X0) + k −max
B

k∑
t=1

1(∃Si ∈ B | t ∈ Si) (4.32)

= h(X0) + k −max
B
| ∪
Si∈B

Si| , (4.33)

4.2. Approximation Algorithm 43

and therefore

max
A

I(X0:k;Z
A
1:k | U1:k) (4.34)

= h(X0:k | U1:k)−min
A
h(X0:k | U1:k,Z

A
1:k) (4.35)

= h(X0:k | U1:k)− h(X0)− k + max
B
| ∪
Si∈B

Si| (4.36)

= h(X0) +
k∑
t=1

h(Xt | U1:t)− h(X0)− k + max
B
| ∪
Si∈B

Si| (4.37)

= max
B
| ∪
Si∈B

Si| . (4.38)

Now assume that there exists a polynomial time algorithm that finds a set Aˆ of land-
marks that approximates the solution to our mutual information maximization problem
within a constant factor better than (1− 1/e). Then, according to Equation (4.38), the
set Bˆ = {Si | `i ∈ Aˆ} approximates the solution to the max-cover problem within
a constant factor better than (1 − 1/e), which is a contradiction to the hardness-of-
approximation result for the max-cover problem proven by Feige [31].

Theorem 4.4 states that for the information gain in the Bayesian network from Fig-
ure 4.1, no other polynomial time algorithm can have a better worst case approximation
guarantee than the greedy algorithm that we apply.

4.2.2 Entropy Calculation for the Joint Distribution

In our greedy landmark placement algorithm, we need to evaluate conditional differential
entropies of the form h(X | U,ZA). Applying Equations (3.23) and (3.24) on h(X |
U,ZA) results in

h(X | U,ZA) (4.39)

= −
∫ ∫

p(x | u, zA) log p(x | u, zA) dx p(u, zA) d(u, zA) (4.40)

=

∫
h(X | U = u,ZA = zA) p(u, zA) d(u, zA) , (4.41)

As can be seen from the equation, calculating h(X | U,ZA) includes solving a (T ·
(dim(ZAt) + dim(Ut)))-dimensional integral. Because ZA and U are sets of highly
correlated random variables, in general there exists no closed form solution for this
integral.

In this chapter, we deal with this problem by applying Monte Carlo simulations to obtain
an approximation ĥ of the entropy h(X | U,ZA). We calculate ĥ as the average over N
simulated runs of the robot. In each run of the simulation, we compute the differential

44 Chapter 4. Landmark Placement for Localization

entropy h(X0:T | U1:T = u1:T ,Z
A
1:T = zA1:T) of the joint posterior distribution of all robot

states X0:T . As can be seen from Equation (4.40), we need the corresponding density
p(x0:T | u1:T , z

A
1:T) to do so. To efficiently compute this density from the simulated states,

controls, and observations, we use the well-known factorization:

p(x0:T | u1:T , z
A
1:T) (4.42)

= ηT p(z
A
T | xT) p(x0:T | u1:T , z

A
1:T−1) (4.43)

= ηT p(z
A
T | xT) p(xT | xT−1,uT) p(x0:T−1 | u1:T , z

A
1:T−1) (4.44)

= ηT p(z
A
T | xT) p(xT | xT−1,uT) p(x0:T−1 | u1:T−1, z

A
1:T−1) (4.45)

= . . .

= p(x0)
T∏
t=1

ηt p(z
A
t | xt) p(xt | xt−1,ut) , (4.46)

where (4.43) is an application of Bayes’ theorem, (4.44) holds true by definition of the
conditional density, (4.45) uses a Markov property resulting from d-separation on the
Bayesian network depicted in Figure 4.1 (without the dashed arrows), and (4.46) follows
from a straightforward induction applying the above steps as induction step. See Equa-
tion (11.9) in [102] for a more detailed derivation of this factorization. In Equation (4.46),
p(zAt | xt) is the sensor model and p(xt | xt−1,ut) is the motion model of the robot. The
value ηt is a normalizing constant.

The Monte Carlo approximation ĥ of h of course increases the approximation error in
Algorithm 5. However, the approximation guarantee in Theorem 4.3 can be extended to
account for this error. To achieve this, we first introduce Lemma 4.1, which deals with
approximations with deterministic bounds, and then extend this result in Theorem 4.5 to
approximations with probabilistic bounds with specified confidence values.

Lemma 4.1. Suppose that there exists a function F̂ that approximates F with an absolute
error of at most ε

2n
for a given threshold ε. Then using F̂ , Algorithm 5 returns a set Ân

for which
F (Ân) ≥ (1− 1/e) max

A⊆V;|A|≤n
F (A) − ε . (4.47)

Proof. For i ≤ n, we define Âi as the set of landmarks placed by Algorithm 5 if F̂ is
used instead of F . When the algorithm places the i-th landmark, the worst case that can
happen is that F̂ assigns the best landmark

`? = argmax
`∈V

F (Âi−1 ∪ {`}) (4.48)

a value that is ε
2n

too small while assigning another landmark `′ a value that is ε
2n

too
high, i.e., F̂ (`?) = F (`?) − ε

2n
and F̂ (`′) = F (`′) + ε

2n
. Therefore, even in the worst

4.2. Approximation Algorithm 45

case, it holds true that

F (Âi)− F (Âi−1) ≥ max
`∈V

(F (Âi−1 ∪ {`})− F (Âi−1))−
ε

n
. (4.49)

The following steps follow the original proof of the approximation guarantee without
errors by Nemhauser et al. [78] (Theorem 3.4 in the background chapter) and relax it
according to Equation (4.49) where needed. We define

A?n = max
A⊆V;|A|≤n

F (A) (4.50)

and assume without loss of generality that A?n = {`?1, . . . , `?n}, i.e., that |A?n| = n. Same
as in the original proof of Theorem 3.4, we use the monotonicity of F , a straightforward
telescopic sum, and the definition of submodularity, which yields ∀i < n:

F (A?n) (4.51)

≤ F (A?n ∪ Âi) (4.52)

= F (Âi) +
n∑
j=1

(
F (Âi ∪ {`?1, . . . , `?j})− F (Âi ∪ {`?1, . . . , `?j−1})

)
(4.53)

≤ F (Âi) +
n∑
j=1

(
F (Âi ∪ {`?j})− F (Âi)

)
. (4.54)

In contrast to the original proof, we now apply Equation (4.49). Additionally, we
define δi = F (A?n)− F (Âi). With these two properties, it follows that

F (A?n) ≤ F (Âi) +
n∑
j=1

(
F (Âi+1)− F (Âi) +

ε

n

)
(4.55)

⇔F (A?n)− F (Âi) ≤ n
(
F (Âi+1)− F (Âi)

)
+ ε (4.56)

⇔ δi ≤ n (δi − δi+1) + ε (4.57)

⇔ δi+1 ≤ (1− 1/n)δi +
ε

n
. (4.58)

It follows by induction that

δn ≤ (1− 1/n)n δ0 +
n−1∑
j=0

(
(1− 1/n)j

ε

n

)
. (4.59)

Now applying the fact that 1− x ≤ e−x for all x ∈ R (see, e.g., 4.2.29 in Abramowitz
and Stegun [1]) yields

δn ≤
1

e
δ0 +

n−1∑
j=0

(
(1− 1/n)j

ε

n

)
≤ 1

e
δ0 + n

ε

n
=

1

e
δ0 + ε . (4.60)

46 Chapter 4. Landmark Placement for Localization

By the definition of δi, it holds that δn = F (A?n)− F (Ân) and δ0 = F (A?n)− F (∅) =

F (A?n). Finally, plugging these values in Equation (4.60) results in

(1− 1/e)F (A?n) ≤ F (Ân) + ε . (4.61)

Theorem 4.5. Suppose that a function F̂ approximates the objective function F with an
absolute error of at most ε

2n
with probability at least 1− δ

n|V| for given thresholds ε and δ.

Then using F̂ , Algorithm 5 returns a set Ân for which

F (Ân) ≥ (1− 1/e) max
A⊆V;|A|≤n

F (A) − ε (4.62)

with probability at least 1− δ.

Proof. We use the same notation as in the proof above, namely that for i ≤ n, Âi denotes
the set of landmarks placed by Algorithm 5 if F̂ is used instead of F . In contrast to the
proof above, here the values of F̂ are the results of random experiments. We denote the
set of elementary events for which the final approximation bound from Equation (4.62)
holds as S, and its complement as Sc. Furthermore, we denote the sets of elementary
events for which the worst-case bounds on the individual gains from Equation (4.49) hold
as Si, and their complements as Sci .

From the worst-case bounds on the individual gains in the deterministic scenario (Equa-
tion (4.49)) we can deduce that if the final approximation bound from Equation (4.62)
does not hold true, then there has to be at least one i ∈ {1, . . . , n} for which the individual
worst-case bound is also not satisfied, i.e.,

F (Âi)− F (Âi−1) < max
`∈V

(F (Âi−1 ∪ {`})− F (Âi−1))−
ε

n
. (4.63)

Therefore, it holds true that

P (Sc) ≤ P

(
n⋃
i=1

Sci

)
(4.64)

By definition, Sci is the set of elementary events for which Equation (4.63) holds true.
Algorithm 5 creates Âi from Âi−1 by checking all landmarks in V and adding the one for
which F̂ is maximized. Therefore, it is a necessary (but not a sufficient) precondition for
Equation (4.63) to hold true that there exists at least one landmark ` in V for which

|F̂ (Âi−1 ∪ {`})− F (Âi−1 ∪ {`})| >
ε

2n
. (4.65)

With the notation Sc`,i for the set of elementary events for which Equation (4.65) holds
true, it follows from Equation (4.64) that

P (Sc) ≤ P

(
n⋃
i=1

⋃
`∈V

Sc`,i

)
(4.66)

4.3. Control Model 47

With the union bound and the fact that by definition P (Sc`,i) ≤ δ
n|V| , it follows that

P (Sc) ≤
n∑
i=1

∑
`∈V

P (Sc`,i) ≤ n|V| δ

n|V|
= δ . (4.67)

In the Monte Carlo simulation, the absolute error ε
2n

and the confidence 1− δ
n|V| of the

approximation can be easily estimated via the standard deviation of the estimator for h.
Hence, by increasing the number N of simulated runs, ε and δ in Equation (4.62) can be
moved arbitrarily close to zero.

4.3 Control Model

In Section 4.1 we assumed the control commands u1:T to be randomly chosen. However,
in practice the robot often gets control commands by a human operator or operates
autonomously, i.e., selects control commands depending on its current belief of the state.
The control behaviors considered in this chapter can be classified into the following
modes:

• Random control, where the control commands do not depend on any other random
variable (see Figure 4.1 without dashed arrows).

• External control, where the control commands only depend on the last state of the
robot, which is assumed to be known by the controller (see Figure 4.1 with the
dased arrows).

• Autonomous control, where the control commands depend on the belief of the
robot p(xt | u1:t, z1:t), i.e., all previous control commands and observations.

Note that for approaches that only aim at localizing a robot in a given fixed environment,
the random control mode can be assumed even for external or autonomous controllers,
because it only discards the information on how the control commands are selected.
Therefore, the random control assumption applied by many state-of-the-art localization
approaches (see Thrun et al. [102] for an overview) only leads to less peaked posterior
distributions. However, in our landmark placement method, the type of control mode is
crucial for the submodularity of the mutual information. In the following we show the
effect of the non-random control modes to our landmark placement method.

4.3.1 External Controls

The external control mode is modeled by the Bayesian network in Figure 4.1 with the
dashed arrows. Theorem 4.1 still holds for this Bayesian network, because the Markov

48 Chapter 4. Landmark Placement for Localization

property for ZA conditioned on X is still applicable. Therefore, also the tight Nemhauser-
bound (i.e., Theorems 4.3 and 4.4) holds. In contrast to the random control mode, in
the external control mode the Markov property that p(xt−1 | u1:t, z1:t−1) = p(xt−1 |
u1:t−1, z1:t−1) does not hold true because of the additional dependency (dashed arrows)
in the Bayesian network. Instead, with this dependency, applying Bayes’ rule leads to

p(xt−1 | u1:t, z1:t−1) = η p(ut | xt−1) p(xt−1 | u1:t−1, z1:t−1) , (4.68)

where p(ut | xt−1) models the policy of the controller. In the derivation of the factoriza-
tion of the full posterior (Equation (4.45)), replacing the Markov property with this result
yields the following extended factorization for the external control mode:

p(x0:T | u1:T , z
A
1:T)

= p(x0)
T∏
t=1

η′t p(z
A
t | xt) p(xt | xt−1,ut) p(ut | xt−1) . (4.69)

If the control model p(ut | xt−1) is known and normally distributed, then the entropy
calculation can be easily extended to the external control mode.

4.3.2 Autonomous Controls

In the case of fully autonomous operation of the robot, each control ut depends on the
belief of the state p(xt−1 | u1:t−1, z1:t−1), i.e., all previous control commands u1:t−1 and
observations zA1:t−1. Extended by these dependencies, the Bayesian network no longer
fulfills the Markov property for ZA, i.e., it no longer holds true that the observations
of two different landmarks are independent from each other conditioned on all robot
states X. However, this Markov property is an essential building block in the proof of
the submodularity of the conditional mutual information (see Equation (4.9)). In fact,
one can easily find a counter-example that contradicts the submodularity property for the
conditional mutual information in the autonomous control mode.

Concretely, for autonomous controls the probability that landmarks further along the
trajectory become visible to the robot depends on how well the robot is already localized,
i.e., which landmarks it has observed before. So, adding a landmark to a small set of
placed landmarks can result in a lower increase of conditional mutual information than
adding the same landmark to a superset of the placed landmarks for which the probability
of reaching this last landmark is higher. Such a landmark configuration obviously breaks
the submodularity property. Since submodularity is a pre-condition for the approximation
guarantee specified in Theorem 4.3, this guarantee does not hold true for the autonomous
control mode. However, in the simulation experiments (see Section 4.4.1) the results of
our greedy algorithm are still close to the optimal results even for autonomous controls.

4.4. Experimental Evaluation 49

● possible landmark positions

autonomous greedy
autonomous optimal

external greedy
external optimal

1m

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●goal

start
● ● ● ●

● ●

● ● ●

● ●

● ● ●

●

Figure 4.2: The landmarks placed by our greedy algorithm and optimal landmark placements for
autonomous and external controls. The posterior means and 99% confidence ellipses of a sample
run are plotted in blue.

4.4 Experimental Evaluation

To evaluate our approximation algorithm, we performed extensive experiments both in
simulation and with a real robot. In the experiments, we consider a sensor that observes
range and bearing to unique landmarks and has a limited field of view. The field of
view is considered circular with radius 2 m in simulation, while for the real robot the
rectangular field of view of its camera is used. For estimating the state of the robot in
the individual runs of the Monte Carlos simulations, we use a variant of the unscented
Kalman filter (UKF), a square-root unscented Kalman filter [70], which approximates
the real probability distributions with normal distributions N (µ,Σ). This allows for a
straightforward calculation of the differential entropy as h(N) = log

√
(2πe)k|Σ|, where

k is the dimension of the state space.

4.4.1 Simulation Experiments

We performed two different kinds of simulation experiments, each withN = 10, 000 runs:
In the first experiment, we compare the solution produced by Algorithm 5 to the optimal
solution. We selected n = 5 out of |V| = 15 possible landmark positions for a trajectory
forming a pointed figure eight. This is the maximum problem size for which we were

50 Chapter 4. Landmark Placement for Localization

 800

 820

 840

 860

 880

 900

Greedy Optimal

M
u

tu
al

 i
n
fo

rm
at

io
n

Autonomous control

 160

 180

 200

 220

 240

Greedy Optimal

M
u

tu
al

 i
n
fo

rm
at

io
n

External control

Figure 4.3: The mutual information values for the four landmark sets from Figure 4.2 together
with the 95% confidence intervals of the Monte Carlo simulation.

able to determine the optimal solution via brute force. Figure 4.2 shows the landmark
set Â5 placed by the greedy approach and the optimal landmark set Â?5 = argmax F̂ (A)

both for autonomous and external controls. In both control modes, the greedy strategies
place two of the five landmarks on different positions than the brute force strategies. Two
landmarks are placed on the same positions in all four cases. The mutual information
values F̂ (A) of the four landmark sets are shown in Figure 4.3. In this scenario, the
approximation quality of the greedy algorithm is 99.1% of the value achieved by the brute
force strategy for autonomous controls and 100.3% for external controls. The percentage
higher than 100% is due to the standard deviation in the Monte Carlo simulation, which
is displayed in the figure. So even for the case of autonomous controls, for which we did
not derive a bound on the approximation error, the greedy algorithm performs well in the
experiment. The absolute values in Figure 4.3 are much lower for the external control
case, as h(X | U) already is much lower due to the additional integration of p(ut | xt−1)
into the posterior distribution.

In the second set of simulation experiments, we evaluated our approach independently
of a specific trajectory and a set of possible landmark positions V . In order to achieve
this abstraction, we randomly sampled ten trajectories and ten associated sets V , each
containing 100 landmarks, in a 10 m × 10 m environment. For each trajectory, we
evaluated the placements for five and ten landmarks, so together we got 20 landmark
placement tasks. Figure 4.4 displays the five first landmarks our algorithm placed for
two of the ten sampled tasks and the placements for two handcrafted sweeping and
fetch-and-return tasks.

In the sampled tasks, we evaluated our approach of greedily placing landmarks to max-
imize mutual information against three different approaches, namely randomly placing
landmarks, no landmarks, and the uniqueness maximization algorithm [71]. The latter
approach maximizes the average uniqueness over all possible states x ∈ X of the robot.

4.4. Experimental Evaluation 51

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●goal

start
1m

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

● ● ●
●

●

● ●
● ●

●
●

●
●

● ●●●●●●●●●●

goal

start

1m

● ● ●

●

●

●

●

●
● ●

●
●

●

●

●
●●

●●●●●●●●

●

●

●

● ●

● ●
● ● ●

● ●
●

● ●

●

●

●

●●
●

●●
●●

●

●

●

●

●

● ●
●

●
● ● ● ● ●

●

●

●

●●
●

●
●●●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●

goal

start
1m

● ● ●
● ● ● ● ●

● ● ●
● ●

●● ●
● ●

● ● ● ● ● ● ●●●●●●●●
●

●
●●

●●●●
●

●●●●
●●

●●
●●●●●●●●

goal

start

1m

Figure 4.4: Four instances in which our algorithm placed five landmarks assuming autonomous
controls. The placed landmarks are shown as big red triangles, the sets V as small red triangles,
and the means and 99% confidence ellipses of one sample execution of the desired trajectories in
blue. First row: two of the ten sampled tasks. Second row: a sweeping task and a fetch-and-return
task.

52 Chapter 4. Landmark Placement for Localization

I hT d[m] dT [m]

Our approach 1121.11 -4.32 0.191 0.126
Uniqueness 791.11 -2.64 0.285 0.254
Random 697.09 -1.70 0.348 0.409
No landmarks 0.00 2.59 1.084 1.807

Table 4.1: Quantitative results of the comparison to baseline approaches

It defines the uniqueness of a pose x given a map m as

U(x,m) =

(∫
x̃∈X

p(z[x,m] | x̃,m) dx̃

)−1
, (4.70)

where z[x,m] is the maximum likelihood observation at pose x given the map m.
To evaluate the landmark placements, we consider four different measures of quality:

the mutual information I := I(X;ZA | U), the entropy at the final state hT := h(XT |
U1:T ,Z

A
1:T), and the average and final distances d and dT , respectively, between the true

pose of the robot and the mean of the belief about the robot state. Table 4.1 summarizes the
evaluation results for autonomous controls. Our approach based on mutual information
maximization yields the best results for all four criteria. In paired sample t-tests, the
differences between the results of our approach and the results of all other approaches
were statistically significant at a 5% level. In fact, the highest p-value was 0.21%. For
external controls, the differences in the criteria of quality are similar to the ones shown in
Table 4.1. They are also all statistically significant at a 5% level.

For an experimental comparison between our approach and the other approaches
described in this thesis, see Chapter 8.

4.4.2 Experiments with a Real Robot

To further validate the simulation results, we evaluated the four quality criteria also in
experiments carried out with a real Pioneer P3-DX robot. The robot and the executed
trajectory are shown in Figure 4.5. We used a standard webcam pointing towards the
ceiling as a sensor for detecting unique ARToolkit markers [15]. The considered set V of
possible landmark locations is disconnected by areas where lamps and supporting beams

I hT d[m] dT [m]

Simulation 2278.09 -4.62 0.061 0.073
Reality 2570.94 -5.33 0.068 0.040

Table 4.2: Quantitative results in simulation and reality

4.5. Discussion 53

start

goal

1m

Figure 4.5: Eight landmarks placed by our algorithm (large red triangles). The set of all possible
landmark locations is depicted as small red triangles. One execution of the trajectory, for which
the landmarks were placed, is plotted in blue together with its 99% confidence ellipses. The
picture shows the Pioneer P3-DX robot used in the experiments. It is equipped with a SICK LMS
laser range finder (only used for reference) and a webcam pointing upwards. The markers on the
ceiling correspond to the landmarks shown in the graph.

do not allow landmark placement (see Figure 4.5). To evaluate the criteria d and dT , we
obtained reference positions from laser-based Monte Carlo localization [102].

The eight landmarks depicted in Figure 4.5 were placed by our algorithm. Using these
landmarks, the real robot executed ten autonomous runs. Table 4.2 shows the quality
criteria for this scenario evaluated in simulation together with the average values of the
ten real runs. Despite of the imperfect reference positions and remaining systematic errors
the quality values in the real world experiments corresponded to the ones obtained in
simulation.

4.5 Discussion

In this chapter, we presented a landmark placement method for mobile robot localization
along pre-planned trajectories. We formulated landmark placement as the optimization

54 Chapter 4. Landmark Placement for Localization

problem of maximizing the mutual information between the states of the robot and the
observations of the landmarks and proved that this problem is NP-hard. Using the
concept of submodularity, we derived a tight constant-factor bound on the error of our
polynomial time approximation algorithm. For estimating the required mutual information
values, our algorithm uses Monte Carlo simulations, which can deal with arbitrary system
dynamics and control modes of the robot. Extensive experiments for different types of
control modes demonstrate that our approach outperforms baseline approaches and works
well in practice.

Chapter 5

Estimation of Expected Distributions
for Mobile Robot Navigation

In the landmark placement algorithm presented in the previous
chapter, we used Monte Carlo simulation to estimate the expected
localization accuracy of a mobile robot. This method is applicable
to general robotic systems but computationally demanding. In con-
trast to that, when considering the navigation accuracy of the robot,
making assumptions about the type of robotic system allows for a
highly efficient recursive estimation of the expected distributions of
the deviation of the robot from its desired trajectory. In this chapter,
we present a novel approach to efficiently estimating these expected
distributions for a mobile robot that uses a linear-quadratic regula-
tor to travel along a pre-defined trajectory. We exploit the structure
of the stochastic dependencies in the navigation framework for
reducing the dimensionality of the matrix multiplications in the
calculation of the expected distributions by half, compared to the
state of the art. This efficient calculation scheme is the main build-
ing block for evaluating the objective functions of the landmark
placement methods presented in the next chapters.

The main challenge in landmark placement is to deal with the combinatorial nature of the
problem of selecting the optimal subset of the set of all possible landmark positions. One
way to deal with this challenge is to apply the efficient subset selection algorithms from
submodular function optimization described in the background chapter. However, when
searching for the optimal landmark configuration, even those algorithms need to evaluate
the optimization criterion for a large number of candidate configurations. Therefore, the
efficiency of the method for calculating the optimization criterion is essential for our
landmark placement approaches.

56 Chapter 5. Estimation of Expected Distributions for Mobile Robot Navigation

In this chapter, we present a novel method to efficiently estimate the expected prob-
ability distributions of the deviation of a mobile robot from its desired trajectory with
respect to its control commands and observations, assuming that the robot is controlled
with linear-quadratic regulation (LQR) control [13]. In the literature [11, 82, 106], these
expected distributions are often called a priori distributions. They are the main building
block of the objective functions that we optimize in the landmark placement approaches
presented in the following chapters.

In order to achieve the desired efficiency, our estimation method linearizes the model of
the whole navigation cycle, including control, motion, observation, and localization, and
recursively calculates the expected distributions in the linearized system. The derivation
of our method builds on the fact that before the robot starts operation, the localization
estimateµt of the robot can be considered as a random variable, which is highly correlated
with the random variable describing the state of the robot xt. We show that the structure
of this correlation allows us to decouple the calculation of the covariances of µt and xt.
This enables us to recursively update the distributions of µt and xt individually, whereas
the state of the art [11] recursively updates their joint distribution. Therefore, compared
to [11], our approach reduces the dimensionality of the occurring matrix multiplications
by half, which results in a substantial reduction of the runtime of the computations.
In extensive experiments we demonstrate that our approach significantly outperforms
state-of-the-art approaches in terms of runtime, while still producing exactly the same
results.

This chapter is organized as follows: In the next section, we formally introduce
expected distributions and present the linearization that we apply to the navigation system.
Then, in Section 5.2, we derive our efficient estimation scheme for expected distributions
and compare it to the state of the art. Finally, in Section 5.3 we present extensive
experiments that show that our approach outperforms the state of the art also in practice.

5.1 Robotic System

We consider the problem of estimating the expected distributions of the states xt of a
mobile robot traveling along a pre-defined trajectory T . Hereby, the trajectory T = (x?0:T ,
u?1:T) is a time-discrete sequence specifying the desired robot state x?t at each time step
t and the desired control command u?t that, if executed without noise, moves the robot
from one desired state to the next. The actual robot state xt changes over time according
to the stochastic motion model

xt = f(xt−1,ut,vt) , (5.1)

where ut is the actual control command executed at time t and vt ∼ N (0, Qt) is the
motion noise, which we assume to be Gaussian distributed. Due to the stochastic nature

5.1. Robotic System 57

of the motion model, the actual robot state xt differs from the desired state x?t . To reduce
this difference, the robot needs to execute a control command ut+1 that differs from the
desired control command u?t+1. We assume that the controller C that selects the control
commands is an LQR controller [13]. For each time step t, the LQR controller selects the
control ut that minimizes the expected quadratic error term

E
[t′∑
`=t

((x` − x?`)
TC(x` − x?`) + (u` − u?`)

TD(u` − u?`))
]
, (5.2)

where C and D are positive definite weight matrices and t′ is the maximum time step
for which the LQR controller minimizes the quadratic errors. Since we always consider
trajectories with fixed final time steps T , we set t′ = T .

For localization, the robot has a map of the set A of all landmark positions in its
environment and a sensor that takes noisy observations zt of these landmarks according
to a sensor model

zt = h(xt,wt,A) , (5.3)

where wt ∼ N (0, Rt) is the sensor noise.

5.1.1 Expected Distributions

As described in the background chapter, for mobile robot localization one typically applies
some kind of filter, e.g., a Kalman filter [48] or a particle filter [102], to estimate the
posterior probability distributions p(xt | u1:t, z1:t) of the states of the robot, which are
conditioned on the already executed controls and observations. In contrast to that, at the
time of landmark placement, the concrete control commands and observations of the
robot are not yet known. Therefore, for landmark placement, we are interested in the
expected distributions of the states xt of the robot with respect to the control commands
and observations. The only information about the distributions of the states xt of the
robot that we have available at the time of landmark placement stems from the desired
trajectory T of the robot, the controller C that selects the control commands ut, the motion
model f , the sensor model h, and the positions A of the landmarks in the environment.
The density p(xt | T , C, f, h,A) of the expected distribution for the time step t is the
integral over the posterior density p(xt | u1:t, z1:t) at time t:

p(xt | T , C, f, h,A)

=

∫
p(xt | u1:t, z1:t, T , C, f, h,A) p(u1:t, z1:t | T , C, f, h,A) d(u1:t, z1:t) (5.4)

=

∫
p(xt | u1:t, z1:t) p(u1:t, z1:t | T , C, f, h,A) d(u1:t, z1:t) (5.5)

58 Chapter 5. Estimation of Expected Distributions for Mobile Robot Navigation

−1 0 1 2 3 4 5 6

−
3

−
2

−
1

0
1

2
3

start goal● ● ● ● ● ● ● ● ●● ● ●

● ●

●

●
● ●

landmark

Figure 5.1: Example navigation task with one landmark. Shown are the desired trajectory (dashed
blue line) and the actually executed trajectory (dashed black line) in one simulated run of the
robot. Additionally, the figure shows the means and 99% confidence ellipses of the posterior
distributions (red) in the simulated run and of the expected distributions (blue).

Equation (5.4) is an application of the law of total probability (Theorem 3.1). Equa-
tion (5.5) uses the Markov assumption that, if the concrete observations and controls are
known, the controller and the desired trajectory do not add any additional information
about the state of the robot. The posterior distribution of course still depends on the motion
model, the sensor model, and the landmark positions, but in Chapter 3, in Equation (5.5),
and in the literature [2, 35, 102], they are typically left out for convenience.

In the following chapters, we are mostly interested in the influence of the positions A
of the landmarks on the expected distributions. Therefore, we use the shorthand notation

p(xt | A) := p(xt | T , C, f, h,A) (5.6)

for the density of the expected distribution. Note that the variables that we omit, T , C,
f , and h, are deterministically known and do not change in any step of the following
derivations. Figure 5.1 visualizes the expected distributions and the posterior distributions
of a simulated run of the robot in an example navigation task, in which the desired
trajectory of the robot describes a straight line from the left to the right. The means of
the posterior distributions are often used in mobile robot localization as estimates for
the states of the robot. Therefore, the confidence regions of the posterior distributions in
the figure can be considered a a visualization of the uncertainty in the localization of the
robot. In contrast to that, the confidence regions of the expected distributions stem from
the expectation over all possible executions of the trajectory and therefore can be seen as
a way of describing the uncertainty in navigation.

In general, the expected distribution p(xt | A) cannot be estimated in closed form.
One solution that is often applied is to approximate the high-dimensional integral defined
in Equation (5.6) via Monte-Carlo simulation. Monte-Carlo simulation [23] can deal
with arbitrary controllers, motion models, and sensor models, but is computationally
demanding.

In contrast to that, we efficiently estimate p(xt | A) by linearizing the whole navi-
gation system, consisting of observation, localization, control, and motion, resulting in

5.1. Robotic System 59

a Gaussian expected distribution that can be calculated efficiently via standard matrix
manipulations.

5.1.2 Linearized System

For linearizing the motion model (5.1) and the sensor model (5.3), it is convenient to
consider the deviations of the states, controls, and observations, from their desired or
expected values instead of the absolute values themselves. Therefore, we define

∆xt :=xt − x?t , (5.7)

∆ut :=ut − u?t , (5.8)

∆zt := zt − h(x?t ,0) . (5.9)

For the linearization procedure, we follow the approach by van den Berg et al. [11]
and use first-order Taylor expansions around the desired trajectory (x?0:T , u?1:T), leading
to the approximate identities

∆xt ≈ At∆xt−1 +Bt∆ut + Vt vt , (5.10)

∆zt ≈ Ht∆xt +Wtwt . (5.11)

with the Jacobians

At =
∂f

∂x
(x?t−1,u

?
t ,0) , (5.12)

Bt =
∂f

∂u
(x?t−1,u

?
t ,0) , (5.13)

Vt =
∂f

∂m
(x?t−1,u

?
t ,0) , (5.14)

Ht =
∂h

∂x
(x?t ,0,A) , (5.15)

Wt =
∂h

∂n
(x?t ,0,A) . (5.16)

The difference between this linearization and the one applied in the standard EKF de-
scribed in Section 3.3.1 is that here, we linearize around the desired trajectory (x?0:T , u?1:T),
which is known before the robot starts operation, and instead of that the EKF linearizes
around the filter means and control commands (µ0:T , u1:T), which are unknown before-
hand. This is the key idea by van den Berg et al. [11] that makes a recursive computation
of expected distributions possible in the first place.

As described in the background chapter, in the linearized system considered here, the
Kalman filter is the optimal estimator for the posterior distribution, leading to Gaussian
densities

p(∆xt | ∆u1:t,∆z1:t) ∼ N (∆µt,Σt) (5.17)

60 Chapter 5. Estimation of Expected Distributions for Mobile Robot Navigation

for all time steps t ∈ [0, T]. Adjusting the recursive update equations of the Kalman filter
to the linearized system yields

∆µt = At∆µt−1 +Bt∆ut (5.18)

Σt = AtΣt−1A
T
t + VtQtV

T
t (5.19)

Kt = ΣtH
T
t (HtΣtH

T
t +WtRtW

T
t)−1 (5.20)

∆µt = ∆µt +Kt(∆zt −Ht∆µt) (5.21)

Σt = (I −KtHt)Σt . (5.22)

The mean ∆µt of the posterior distribution depends via ∆ut, ∆zt, and ∆µt−1 on the
actual values of u1:t and z1:t (see Equations (5.18), and (5.21)). Hence, when calculating
the expected distributions, it is not yet available. However, the covariance Σt and the
Kalman gain Kt depend, via the Jacobians, on x?0:t and u?1:t but not on the actual values of
u1:t and z1:t (see Equations (5.19), (5.20), and (5.22)). Therefore they can be calculated
before the robot starts operation.

Applied on the mean ∆µt−1 in the Kalman filter, the LQR controller selects motion
commands ut according to

∆ut = Lt∆µt−1 , (5.23)

where Lt is the feedback matrix that minimizes the quadratic error defined in Equa-
tion (5.2). With the Jacobians defined in Equation (5.16), also the feedback matrices Lt
can be calculated before the robot starts operating via the recursive update rule resulting
from the discrete-time Riccati equation [13]

ET = C , (5.24)

∀` ∈ [t, T]: L` = −(BT
`+1E`+1B`+1 +D)−1BT

`+1E`+1A`+1 , (5.25)

E` = C + AT`+1E`+1A`+1 + AT`+1E`+1B`+1L` . (5.26)

Here, C and D are the weight matrices of the LQR controller defined in Equation (5.2)
and Et is an auxiliary variable.

Summing up, we express the whole navigation cycle, which consists of executing
a motion command, making an observation, localizing, and selecting the next motion
command depending on the localization, by linear functions.

5.2 Expected Distributions in Linearized Systems

In this section, we present our novel method to efficiently calculate expected distributions
via recursion for the above-described linearized robotic system.

5.2. Expected Distributions in Linearized Systems 61

5.2.1 Efficient Calculation Scheme

For the derivation of our efficient calculation scheme, the mean ∆µt of the posterior
distribution plays a key role. Before the robot starts operating, i.e., before making any
observations and selecting any motion commands, ∆µt can be considered as a random
variable, which deterministically depends on u0:t−1 and z1:t. An example of the random
behavior of ∆µt can be seen in Figure 5.1. To prove that the mean of the expected
distribution of ∆xt equals zero for all time steps t ∈ [0, T], we consider the dependencies
between ∆µt and ∆xt, taking into account the LQR controller.

Lemma 5.1. Assuming that ∆x0 is zero-mean Gaussian distributed, the expected distri-
butions of ∆xt and of ∆µt are Gaussians with zero mean , i.e., ∀t ∈ [0, T] :

p(∆xt | A) ∼ N (0, St) , (5.27)

p(∆µt | A) ∼ N (0,Mt) . (5.28)

Proof. We first prove that the means of ∆xt and ∆µt are zero. Plugging the equation for
the LQR control selection (5.23) into the linearized motion model (5.10) leads to

∆xt = At∆xt−1 +BtLt∆µt−1 + Vt vt . (5.29)

Since vt ∼ N (0, Qt), and the expectation is a linear operator, it follows that

E[∆xt | A] = At E[∆xt−1 | A] +BtLt E[∆µt−1 | A] . (5.30)

To derive a similar formula for the expectation of ∆µt, we plug Equation (5.18) into
Equation (5.21), which yields

∆µt = At∆µt−1 +Bt∆ut +Kt(∆zt −HtAt∆µt−1 +Bt∆ut) . (5.31)

Plugging in Equations (5.23) and (5.11) results in

∆µt = (At +BtLt −KtHtAt −KtBtLt)∆µt−1 +KtHt∆xt +KtWtwt . (5.32)

Again using the linearity of the expectation operator and the fact that wt ∼ N (0, Rt), we
get

E[∆µt | A]

= (At +BtLt −KtHtAt −KtBtLt) E[∆µt−1 | A] +KtHt E[∆xt | A] . (5.33)

Because of the assumption that E[∆x0 | A] = 0, also ∆µ0 = 0, and therefore also
E[∆µ0 | A] = 0. An induction with this as the base case and Equations (5.30) and (5.33)
as inductive step yields that E[∆xt | A] = 0 and E[∆µt | A] = 0.

A second induction with ∆x0 ∼ N (0, S0) and ∆µ0 = 0 as base case and with
Equations (5.29) and (5.32) as inductive step finally shows that the expected distributions
are Gaussians.

62 Chapter 5. Estimation of Expected Distributions for Mobile Robot Navigation

Up until here, we loosely followed the approach by van den Berg et al. [11]. How-
ever, in the following, we apply different techniques to derive a more efficient way for
computing the covariance St of the expected distribution.

Theorem 5.1. The covariance St of the expected distribution of ∆xt is the sum of the
covariance Σt of the posterior distribution of ∆xt and the covarianceMt of the mean ∆µt
in the Kalman filter, when considered as a random variable, i.e., ∀t ∈ [0, T] :

St = Σt +Mt . (5.34)

Proof. From Lemma 5.1, we know that E[∆xt | A] = 0. Therefore, the covariance
of p(∆xt | A) is

St = Cov(∆xt | A) =

∫
∆xt∆xTt p(∆xt | A) d∆xt . (5.35)

Applying the law of total probability (Theorem 3.1) on p(∆xt) yields

St =∫
∆xt∆xTt

∫
p(∆xt | ∆u1:t,∆z1:t) p(∆u1:t,∆z1:t) d(∆u1:t,∆z1:t) d∆xt . (5.36)

Fubini’s theorem [47] allows us to reorder the integrals:

St =∫ ∫
∆xt∆xTt p(∆xt | ∆u1:t,∆z1:t) d∆xt p(∆u1:t,∆z1:t) d(∆u1:t,∆z1:t) . (5.37)

In the following, we use the shorthand notations

dPx := p(∆xt | ∆u1:t,∆z1:t) d∆xt , (5.38)

dPu,z := p(∆u1:t,∆z1:t) d(∆u1:t,∆z1:t) . (5.39)

Next, we add a zero to Equation (5.37):

St =

∫ ∫ (
(∆xt −∆µt)(∆xt −∆µt)

T + ∆xt∆µ
T
t

+ ∆µt∆xTt −∆µt∆µ
T
t

)
dPx dPu,z . (5.40)

By definition of the covariance it holds that Σt =
∫

(∆xt −∆µt)(∆xt −∆µt)
T dPx,

and therefore

St =∫ (
Σt +

∫
∆xt∆µ

T
t dPx +

∫
∆µt∆xTt dPx −

∫
∆µt∆µ

T
t dPx

)
dPu,z . (5.41)

5.2. Expected Distributions in Linearized Systems 63

Since ∆µt is the expected value of the posterior distribution of ∆xt, it is by definition
∆µt =

∫
∆xt dPx, which is independent of ∆xt given the values of ∆u1:t and ∆z1:t.

Applying this definition on (5.41) and using the independence property to reorder the
integrals yields

St =

∫ (
Σt +

∫
∆xt dPx

∫
∆xTt dPx

)
dPu,z . (5.42)

Again using the definition of ∆µt and the fact that the transpose is a linear transformation,
which therefore can be moved out of the integral, yields

St =

∫
Σt + ∆µt∆µ

T
t dPu,z . (5.43)

In the linearized system that we consider, Σt is independent of the values of ∆u1:t and
∆z1:t (see Equations (5.19), (5.20), and (5.22)). Therefore, we get

St =Σt +

∫
∆µt∆µ

T
t dPu,z . (5.44)

Since the random variable ∆µt is a deterministic function of the random variables ∆u1:t

and ∆z1:t, and since its expectation is 0, this results in

St = Σt +Mt . (5.45)

This also has strong implications on the cross-covariance of ∆xt and ∆µt:

Corollary 5.1. Cov(∆xt,∆µt | A) = Cov(∆µt | A) (= Mt).

Proof. The result follows from the proof of Theorem 5.1 by considering the transforma-
tions applied to ∆xt∆µ

T
t in Equation (5.40).

The next corollary will be useful for comparing different measures for the quality of
landmark sets:

Corollary 5.2.

tr(St) ≥ tr(Σt) . (5.46)

Proof. From Theorem 5.1 it follows that tr(St) = tr(Σt) + tr(Mt). Since Mt is a
covariance matrix and therefore positive semi-definite, its trace is greater or equal than
zero, which finishes the proof.

64 Chapter 5. Estimation of Expected Distributions for Mobile Robot Navigation

For being able to use Theorem 5.1 to calculate the covariance St of the expected
distribution, we need to be able to calculate both Σt and Mt before the robot starts
operation. How to calculate Σt beforehand in the linearized system is already clear from
Equations (5.19), (5.20), and (5.22). In the following, we derive an efficient recursive
update formula for the covariance Mt of ∆µt. To do so, we first consider the covariance
of the difference between ∆xt and the mean ∆µt of the posterior distribution p(∆xt |
∆u1:t,∆z1:t−1) before the integration of the observation ∆zt.

Lemma 5.2.

Cov(∆xt −∆µt | A) = Cov(∆xt | ∆u1:t,∆z1:t−1) = Σt.

Proof. The second equation holds by definition of Σt. The first equation follows directly
from the construction of the Kalman filter as described by Kalman [48]. For linear
systems like the one defined in Section 5.1.2, Kalman has proven that the filter mean ∆µt
is the minimum mean square error estimator for ∆xt and that the posterior covariance Σt

equals the covariance of the estimation error ∆xt −∆µt of this estimator.

With this, we can now derive an efficient recursive update formula for the covarianceMt

of ∆µt.

Lemma 5.3.

M0 = 0 , (5.47)

M t = (At +BtLt−1)Mt−1(A
T
t + LTt−1B

T
t) , (5.48)

Mt = M t +KtHtΣt , (5.49)

where Mt = Cov(∆µt | A) and M t = Cov(∆µt | A).

Proof. The initial belief in the Kalman filter for calculating the posterior covariance
is deterministically given, therefore Equation (5.47) holds true. Plugging the LQR
control policy from Equation (5.23) into the recursive update scheme for ∆µt stated in
Equation (5.18) yields

∆µt = (At +BtLt−1) ∆µt−1 . (5.50)

Since the covariance is a bilinear form [47], this proves Equation (5.48). To prove
Equation (5.49), we start by plugging Equation (5.11) into Equation (5.21), resulting in

∆µt = ∆µt +KtHt(∆xt −∆µt) +KtWtwt, (5.51)

where wt ∼ N (0, Rt). Again with the bilinearity of the covariance, this yields

Mt =M t +KtHt Cov(∆xt −∆µt | A)HT
t K

T
t +KtWtRtW

T
t K

T
t . (5.52)

5.2. Expected Distributions in Linearized Systems 65

Algorithm 6 Recursive calculation of the covariances of the expected distributions

Input: S0(= Σ0), M0 = 0

Output: S0:T

1: for t = 1 to T do
2: M t ← (At +BtLt−1)Mt−1(A

T
t + LTt−1B

T
t)

3: Σt ← AtΣt−1A
T
t + VtQtV

T
t

4: Kt ← ΣtH
T
t (HtΣtH

T
t +WtRtW

T
t)−1

5: Mt ←M t +KtHtΣt

6: Σt ← (I −KtHt)Σt

7: St ← Σt +Mt

8: end for
9: return S0:T

Applying Lemma 5.2 results in

Mt =M t +KtHtΣtH
T
t K

T
t +KtWtRtW

T
t K

T
t (5.53)

=M t +Kt(HtΣtH
T
t +WtRtW

T
t)KT

t . (5.54)

Next, we replace KT
t according to its definition from Equation (5.20), leading to

Mt =M t +Kt(HtΣtH
T
t +WtRtW

T
t)(HtΣtH

T
t +WtRtW

T
t)−1HtΣt (5.55)

=M t +KtHtΣt , (5.56)

which finishes the proof.

This lemma is the last part needed to calculate the expected distribution of ∆xt (and
therefore also the one of xt) via recursion. Summing up, we know from Lemma 5.1 that
the expected distribution of ∆xt is N (0, St). With Equation (3.7) from the background
chapter, it follows that the expected distribution of xt is N (x?t , St). Hence, the mean
of the distribution is already known from the desired trajectory, and we only need to
calculate the covariance St. We calculate St using the fact that St = Σt +Mt, as shown
in Theorem 5.1. We know the recursive calculation schemes for Σt and for Mt from the
equations on Page 60 and from Lemma 5.3, respectively. Both only depend on terms that
can be computed before the robot starts operating. The complete recursive calculation
of the covariance of the expected distribution can be seen in Algorithm 6. The input to
the algorithm are the initial covariances S0, Σ0, and M0. Since in the initial state, no
previous control commands and observations are available, it holds that S0 = Σ0. From
Lemma 5.3, we know that M0 = 0.

66 Chapter 5. Estimation of Expected Distributions for Mobile Robot Navigation

5.2.2 Comparison to the State of the Art

To our knowledge, the first approach for calculating expected distributions of series of
states of dynamic systems recursively was derived by van den Berg et al. [11]. In the same
linearized system that we described above, they consider the joint expected distribution
of ∆xt and ∆µt, which is a Gaussian

p

([
∆xt
∆µt

]
| A
)
∼ N

([
0

0

]
, Jt =

[
St Cov(xt,µt | A)

Cov(xt,µt | A)T Mt

])
. (5.57)

They do not decouple the calculation of St andMt as we do through Theorem 5.1, but they
derive the following recursive update scheme for the covariance Jt of the joint expected
distribution:

J0 =

[
Σ0 0

0 0

]
, (5.58)

Jt = FtJt−1F
T
t +Gt

[
Qt 0

0 Rt

]
GT
t , (5.59)

with

Ft =

[
At BtLt−1

KtHtAt At +BtLt−1 −KtHtAt

]
, (5.60)

Gt =

[
Vt 0

KtHtVt KtWt

]
. (5.61)

They then can extract St as the upper left block of Jt. As can be seen from the equations,
they multiply matrices of dimension (2 dim(xt)× 2 dim(xt)), while our approach multi-
plies only matrices of dimension (dim(xt)×dim(xt)). Besides this, their approach needs
exactly the same calculations as ours, because they also need to calculate Σt−1 in order to
compute Kt. So all other computations being equal, the final recursive calculation of St
in our approach is 23 times faster than the one by van den Berg et al. (if the standard
matrix multiplication algorithm for n× n-matrices with runtime n3 is applied). In the
next section, we present a detailed comparison of the runtimes in practice.

5.3 Experimental Evaluation

We evaluated our approach in extensive experiments with a differential drive robot motion
model and a sensor model for measurements consisting of the distance and the relative
angle between the robot and a set of uniquely identifiable landmarks. In the experiments,
we described the state xt of the robot by its pose [xt, yt, θt] in the 2d-plane. We used a
discretization of 10 Hz for the time steps, resulting in trajectories with approximately 20

5.3. Experimental Evaluation 67

time steps per meter. We measured all runtimes using a single-threaded implementation
on an Intel R© CoreTM i7 2.8GHz with 12GB RAM.

In the experiments, we compared the runtimes of our approach, the approach by van
den Berg et al. [11] (described in Section 5.2.2), and a Monte-Carlo simulation. To
produce results that are independent of a specific scenario, we considered randomly
generated trajectories of different lengths, ten for each length in {25 m, 50 m, . . . , 300 m},
which makes 120 trajectories in all. Each trajectory connects a different set of randomly
sampled goal points in a 15 m× 15 m large environment. Furthermore, for each trajectory
we individually sampled a map consisting of 20 landmarks. Figure 5.2 shows four of

−5 0 5 10 15 20 25

−
5

0
5

10
15

20

●●●●●●●●●●●●●●
●

●
●
●

●●
●

●
●

●
●
●
●
●
●
●
●
●
●

● ● ●●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ● ●●
●
●
●

●

start

goal

1 m

−5 0 5 10 15 20 25

−
5

0
5

10
15

20

●
●

● ● ● ●
●
●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
● ● ●

●
●
●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
● ● ●

●
●
●
●
●
●

●
●

●
●

●
●
●
●

●
●●●●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●

●
●
●
●

● ● ● ● ● ● ●

start

goal

1 m

−5 0 5 10 15 20 25

−
5

0
5

10
15

20

●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●

●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●
●

●● ● ●
●

●
●

●● ● ● ● ●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●●●●

●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●

●
●

●
●
●
●
●
●

●
● ● ●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
● ● ●

●
●
●

●
●

●●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●● ● ●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●

●
●●●●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●

● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●●●

●
●

●
●

●
●

●
●

●
●

●●●●●●
●

●
●
●

●
● ● ● ● ● ● ● ● ●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ● ●
●
●
●
●

●
●●●●●●●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●

●
●
●
●

● ● ● ● ● ● ●●
●

●
●

●
●

●
●

●
●

●
●

●
● ● ●

●
●
●

start

goal

1 m

−5 0 5 10 15 20 25

−
5

0
5

10
15

20

● ● ●
●
●
●

●
●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●● ● ●
●

●
●

●
●● ●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●●●●

●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
● ● ●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●●●●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●

●
●
●
●
●

● ● ●●● ● ● ● ● ● ● ● ●

start

goal

1 m

Figure 5.2: Randomly sampled trajectories and 99% confidence ellipses of the calculated expected
distributions. The depicted trajectories have lengths of 25m, 50m, 100m, and 200m, respectively
(clockwise from upper left). The sampled landmark positions are shown as red triangles.

these trajectories together with the sampled landmark positions.
A detailed comparison of the runtimes of our approach and of the approach by van

den Berg et al. can be seen in Figure 5.3. The figure shows the runtimes needed for the
complete calculation of the covariances of the expected distributions, which includes the

68 Chapter 5. Estimation of Expected Distributions for Mobile Robot Navigation
runtimes for t=25,...,300 for our approach and van den Berg

Trajectory length in m

R
un

tim
e

in
 s

ec

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

25 50 75 100 125 150 175 200 225 250 275 300

Figure 5.3: Comparison between the runtimes (stated in sec) of our approach (blue) and the
approach by van den Berg et al. (red) on randomly sampled trajectories with lengths between
25m and 300m. Shown are the means and 95% error bars. Indicated in dark blue and dark red
are the fractions of the runtimes that were spent for the actual matrix multiplications that our
approach accelerates.

calculation of Σt and of the Jacobians defined in (5.16). Additionally, in darker colors, it
shows the fractions of the runtimes that were actually spent on the matrix multiplications
that our approach speeds up, i.e., the calculation of St via Mt as in Algorithm 6 and via Jt
as in (5.59), respectively. As can be seen from the figure, our approach significantly speeds
up the matrix multiplication part, and thereby reduces the overall runtime approximately
by half. The values of the calculated covariances resulting from the two approaches
differed by at most 3.64 · 10−12, which is within the range of machine precision.

Both our approach and the one by van den Berg et al. are orders of magnitude faster
than Monte-Carlo simulation. For example, estimating the expected distributions for
the sampled trajectories with length 100 m took 36.5 sec on average with Monte Carlo
simulation. For the same trajectories, our approach spent 0.0117 sec and van den Berg’s
approach spent 0.0249 sec on average. For the trajectories with other lengths, the results
were similar. The runtime of the Monte-Carlo simulation depends strongly on the number
of simulated episodes used. In our comparison, we used 1000 episodes, while in practical
applications, typically more episodes are needed to achieve the desired accuracy, e.g.,
in Chapter 4 we use 10, 000 episodes for simulating the states of a mobile robot.

In the following chapters, we utilize our approach to estimate expected distributions

5.4. Discussion 69

when placing landmarks for mobile robot navigation. The experimental results presented
in these chapters demonstrate the efficiency of our estimation scheme for expected
distributions when applied in the context of landmark placement. Table 8.1, for example,
shows a comparison of the overall runtimes of two of our landmark placement approaches
when using our estimation scheme and when using van den Berg’s method inside the
landmark placement algorithms. The next chapters also contain experiments with real
robots demonstrating that, if calibrated correctly, our estimated expected distributions
consistently capture the deviations of real mobile robots in practice.

5.4 Discussion

In this chapter, we presented a novel recursive calculation scheme for estimating the
expected probability distributions of the states of a mobile robot even before it starts
operation. Our approach decouples the calculation of the covariances of the states of
the robot and of its localization estimates, which reduces the runtime of the method. In
extensive experiments, we showed that our approach significantly reduces the computation
time, compared to state-of-the-art approaches. The method introduced in this chapter
is the main building block of the objective functions that we optimize in the landmark
placement approaches presented in the following chapters.

Chapter 6

Landmark Placement for Navigation

In this chapter, we consider the problem of placing a minimum
set of landmarks in the environment of a mobile robot in order
to optimize its navigation performance. Concretely, the landmark
sets placed by our method guarantee that the maximum deviation
of the robot from its desired trajectory stays below a user-defined
bound with high confidence. In contrast to the landmark place-
ment method for localization presented in Chapter 4, the approach
presented in this chapter assumes that the robot is controlled by
an LQR controller, which allows us to use the efficient method
from the previous chapter to compute the deviation guarantee. We
evaluate our approach in extensive experiments carried out both in
simulation and with real robots. The experiments demonstrate that
our method is applicable even to large-scale indoor scenarios with
trajectory lengths of more than 200 m, that it outperforms baseline
approaches, and that it is suitable for long-term operation of mobile
robots.

In this chapter, we present a novel algorithm for landmark placement, which aims at
finding a minimum landmark configuration such that the deviation of the robot from its
desired trajectory stays below a user-defined threshold dg with high confidence. Our
method works in two stages. In the first stage, it places landmarks in an incremental
fashion. Thereby, it assumes that the robot is controlled by an LQR controller and uses the
linearization and the calculation scheme from the previous chapter to efficiently evaluate
the deviation guarantee. This stage aims at placing the smallest number of landmarks for
which the deviation guarantee holds. In the second stage, our method employs a Monte
Carlo simulation for the computed landmark configuration to validate that the guarantee
also holds for the possibly non-linear models.

In contrast to the landmark placement approach for localization presented in Chapter 4,
the method from this chapter uses Monte Carlo simulation only for validation and not in

72 Chapter 6. Landmark Placement for Navigation

the landmark placement algorithm itself. The resulting efficiency of our method allows us
to deal even with large instances of the landmark placement problem (i.e., long trajecto-
ries). Another difference between the landmark placement approach for localization and
the approach from this chapter is that here, we do not apply techniques from submodular
function optimization, as the deviation guarantee exhibits a non-submodular behavior.

Our approach has several characteristics that make it especially useful for mobile robot
navigation. It can deal with arbitrary trajectories, and the maximum allowed deviation
of the robot can be defined individually for every part of the trajectories. Furthermore,
it takes into account the properties of the individual robotic system, which results in
customized landmark sets: while high-precision robots need only a few landmarks for
reaching the deviation guarantee, low-cost systems typically require more landmarks.
Note that our incremental method simultaneously determines the number and positions of
the landmarks needed to meet the desired guarantee.

This chapter is organized as follows. After formalizing the deviation guarantee that our
approach aims to satisfy in the next section, we describe the prediction of the deviation
from the trajectory in linearized systems in Section 6.2. Afterwards, in Section 6.3, we
present our incremental landmark placement algorithm. In Section 6.4, we give a theoret-
ical evaluation of our method. Finally, in Section 6.5, we provide extensive experiments
in which we evaluate the algorithm in simulations and in real-world applications.

6.1 Deviation Guarantee

When placing landmarks, we consider a mobile robot that can be described by the
navigation system previously introduced in Section 5.1. To briefly recapitulate, we
assume the time to be discretized into steps of equal duration. At each time step t, the
robot changes its state and makes observations according to stochastic motion- and sensor
models that are subject to random errors. We define a navigation task as a trajectory that
the robot should follow. A trajectory T = (x?0:T ,u

?
1:T) can be considered as a series of

states and desired controls the robot should execute to reach these states. We assume that
the trajectory will be executed using a linear-quadratic regulator (LQR) [13] feedback
controller, as described in Section 5.2.

The localization uncertainty and, as a result, also the deviation from the desired
trajectory strongly depend on the specific configuration of landmarks A = {`1, . . . , `n}
that are observed during operation. Our approach selects landmark positions `i ∈ L from
a continuous space of possible landmark locations. We evaluate the quality of a landmark
configuration based on the deviation of the (real) state xt from the desired state x?t at each
time step t (ignoring the control part u?0:T of the trajectory). In particular, we consider the
Euclidean distance between the part of the state xpt describing the position of the robot

6.2. Predicting the Deviation from the Trajectory 73

and x?pt . We focus on limiting the deviation

‖xpt − x?pt ‖2 (6.1)

of the robot from its trajectory at all time steps t ∈ [0, T]. Note that limiting the deviation
of the position of the robot implicitly limits the deviation of the other relevant parts of the
state, too. A large error in rotation, for example, would result in increasing deviations of
the positions in consecutive time steps, and is therefore restricted. Our approach aims at
finding the landmark configuration A with the fewest elements for which the deviation
guarantee

∀t ∈ [0, T] : p (‖xpt − x?pt ‖2 ≤ dg(x
?
t) | A) ≥ pg (6.2)

holds. This guarantee ensures that the probability of deviating at most dg from the desired
trajectory is at least pg. Note that dg can be either a globally constant value or depend on
the position or time.

6.2 Predicting the Deviation from the Trajectory

To validate the guarantee (6.2) for a certain landmark configurationA, we need to compute
p (‖xpt − x?pt ‖2 ≤ dg(x

?
t) | A). For this, we consider the expected probability distribution

p(xt − x?t | A) = p(∆xt | A) (6.3)

that we discussed in detail in Section 5.1.
For general nonlinear systems, expected distributions can be estimated via Monte Carlo

simulation by sampling observations and controls and averaging over numerous runs.
However, this is computationally expensive, especially for large instances of the landmark
placement problem (i.e., long trajectories). Therefore, in the main part of our landmark
placement algorithm, we locally linearize the system around the desired trajectory and
apply the efficient recursive calculation scheme for the expected distributions that we
introduced in Section 5.2.

6.2.1 Evaluation of the Deviation Guarantee

In the linearized system, we can efficiently check whether the deviation guarantee (6.2)
holds. Let Spt be the part of the covariance St of the expected distribution p(∆xt | A)

corresponding to the position of the robot. The length at(A) of the major semi-axis of
the pg-confidence ellipsoid of Spt can be calculated using

at(A) = c
√
λt,1 , (6.4)

where λt,1 is the largest eigenvalue of Spt and c is a scaling factor corresponding to pg via
the regularized Gamma function as described in [11]. If at(A) ≤ dg, then the pg-ellipsoid

74 Chapter 6. Landmark Placement for Navigation

of Spt is inside a circle with radius dg and guarantee (6.2) holds for the linearized system.
Figure 6.1 visualizes this fact in a two-dimensional example.

−4 −2 0 2 4 6 8 10

−
6

−
4

−
2

0
2

4
6

●
x?
t

at(A)

dg

Figure 6.1: Example of a desired robot state x?t and a corresponding pg-confidence ellipse (light
blue) together with a circle of radius dg. If at(A) ≤ dg, then the probability that the deviation of
the robot is less than dg is larger than pg.

Note that this test is a conservative approximation and is exact if the pg-ellipsoid is a
sphere.

6.2.2 Observability of Landmarks

In the linearized system described in Section 5.2, we linearize the sensor model of the
robot at time t around the desired robot state x?t . For sensors with a limited field of view,
this means that a landmark is considered as observable by the robot if it is observable from
within the desired state x?t of the robot. However, the landmark might not be observable
from within other states at which the robot is with a high likelihood at time t. Therefore,
when considering robots with a limited sensor range or occlusions due to objects inside
the field of view, the probability that the deviation guarantee holds might be overestimated
with this approximation. To avoid this, we approximate landmark observability in a
conservative way when placing landmarks. This conservative approximation is directly
linked to the deviation guarantee (6.2), and the general idea behind it was first introduced
by Vitus and Tomlin [105]:

We consider a landmark as observable at time t only if it is pg-observable, i.e., it
is observable from every pose inside the pg-ellipsoid of St around x?t . If a landmark
configuration satisfies the deviation guarantee (6.2) when only pg-observable landmarks
are considered, it also satisfies it when using all observable landmarks.

If the environment of the robot is a planar free space and the robot has a circular field of
view, we can test analytically if a landmark is pg-observable. For other types of scenarios,
we apply an approximative test utilizing a sigma point method.

6.2. Predicting the Deviation from the Trajectory 75

Observability in Free Space

For the two-dimensional case (i.e., xpt = [x, y]T) without occlusions or other restrictions,
and for a robot with a circular field of view with radius r, there exists a closed-form
solution to testing if a given landmark ` is pg-observable. Because of the circular field of
view, the orientation of the robot does not matter for testing the observability of landmarks.
Therefore, for testing if ` is pg-observable, it suffices to consider the pg-ellipse of Spt
instead of the pg-ellipsoid of St. Consider the pg-ellipse of Spt centered at the origin
of the coordinate system. We apply a principal axis transformation on the ellipse so
that afterwards its semi-axes lie on the axes of the coordinate system. Applying this
transformation on Spt yields a diagonal matrix Spt

′ = diag(λt,1, λt,2) with the diagonal
elements identical to the eigenvalues of the matrix. Any point x′ = [x′1, x

′
2]
T on the

transformed ellipse E can then be described as x′ = c diag(
√
λt,1,

√
λt,2)x for a point

x = [x1, x2]
T on the unit circle C and the scaling factor c from Equation (6.4). To

test if landmark ` is pg-observable, we apply the same principal axis transformation
also on the relative position (` − x?t) of the landmark, resulting in `′ = [`′1, `

′
2] =

c diag(
√
λt,1,

√
λt,2) (`− x?t). Checking if ` is pg-observable means testing if

max
x′∈E
‖x′ − `′‖2 ≤ r (6.5)

⇔max
x∈C
‖c diag

(√
λt,1,

√
λt,2

)
x− `′‖2 ≤ r (6.6)

⇔ max
x1∈[−1,1], sgn∈{−1,1}

((
c
√
λt,1x1 − `′1

)2
+

(
c
√
λt,2

√
1− x21 sgn−`′2

)2

− r2
)
≤ 0 . (6.7)

We can test analytically if this inequality holds: Applying a distinction of cases for
sgn, we set the derivative with respect to x1 of the function inside the max-operator to
zero. If the values of the function inside the max-operator at the nulls of its derivative
are all less or equal than zero, then ` is pg-observable. Reordering and squaring the
derivative removes the remaining square-root in the formula and leads to a fourth order
polynomial. We calculate the nulls of this polynomial analytically in an efficient way. For
an overview of the analytical methods for solving fourth order polynomial equations, see
Shmakov [95].

Observability in Structured Environments

For general sensor models and environments in which structures like walls restrict the
field of view of the sensor, the analytical solution to finding the pg-observable landmarks
is not applicable. In these cases, we approximate the solution by selecting a set S of
(2 dim(x?t) + 1) poses on the pg-ellipsoid of St similar to the set of sigma points used

76 Chapter 6. Landmark Placement for Navigation

in the unscented Kalman filter [45]. The set S consists of the center of the pg-ellipsoid
and the 2 dim(x?t) vertices of the ellipsoid. Knowing the setup of the environment, we
can test for a given landmark ` and a given pose s ∈ S if the sensor of the robot would
be able to observe ` when positioned at s. If this test evaluates to true for all s ∈ S, we
consider ` as pg-observable.

6.3 Incremental Landmark Placement Algorithm

With the techniques described above, we can test if the deviation guarantee holds for a
specific landmark configuration. Our landmark placement approach uses these techniques
and aims at minimizing the number of landmarks that have to be placed for the deviation
guarantee to hold. Since the dimensionality of the search space grows with the length
of the trajectory, globally searching for the optimal landmark configuration is in general
computationally intractable. However, using an incremental placement algorithm, we can
efficiently find an approximate solution to the landmark placement problem.

In contrast to our other landmark placement approaches, this incremental placement
algorithm does not apply the submodular function optimization techniques presented
in the background chapter. The reason for this is that the evaluation of the deviation
guarantee relies on highly non-submodular components. An example is the conservative
approximation of the observability of landmarks described above. At time t the pg-
observability of a certain landmark ` depends on the size of the confidence ellipsoid at
that time step, which itself depends on the landmarks that the robot could observe at
earlier time steps. So adding a landmark ` to a larger superset of a small landmark set
increases its chances of being observable and therefore might also increase the impact
that this landmark has on the deviation guarantee. This behavior is in contradiction to the
definition of submodularity (see Section 3.4.1).

6.3.1 Landmark Placement for the Linearized System

In a first stage, our algorithm employs the linearized system and the conservative approx-
imation of the landmark observability to incrementally place landmarks. Considering
linearized Gaussian models is beneficial because the expected distributions can be effi-
ciently calculated recursively as described in Section 5.2. The objective of our approach is
to minimize the number of landmarks needed for the deviation guarantee to hold over the
whole trajectory (x?0:T ,u

?
1:T). We approximate this minimum by placing each landmark

so that it maximizes the number of time steps for which the deviation guarantee (6.2)
holds. Let

tg(A) = max{t | as(A) ≤ dg ∀s ≤ t} (6.8)

6.3. Incremental Landmark Placement Algorithm 77

Algorithm 7 Incremental landmark placement for bounding the deviation guarantee
Input: T , L
Output: A
A ← ∅
τ ← 0

while τ < T do
`? ← argmax

`∈L
tg(A ∪ {`})

τ ? ← tg(A ∪ {`?})
if τ ? = τ then
`? ← argmin

`∈L
atg(A ∪ {`})

end if
A ← A∪ {`?}
τ ← τ ?

end while
return A

be the maximum time step for which the landmark set A guarantees that Equation (6.2)
holds in the linearized system for the first part of the trajectory (x?0:tg ,u

?
1:tg). The value of

tg(A) obviously depends on x?0:T and u?1:T , but for readability, we drop this dependency
in the formula. In every iteration, our algorithm adds the landmark `? that maximizes
tg(A ∪ {`?}) to the already placed set of landmarks A. In some cases, one additional
landmark is not enough to increase tg. This can happen for example if dg(x?tg+1) is chosen
considerably smaller than dg(x?tg). In these cases, the algorithm places the landmark
that minimizes atg(A) instead. Reducing atg(A) increases the likelihood that in the next
step a landmark can be found that increases tg again (see Equation (6.8)). Algorithm 7
describes the incremental landmark placement for the linearized system. As input, it takes
the considered navigation task T and the space of all possible landmark locations L. Note
that for different structures of the space L, there exist different efficient implementations
for the argmax and the argmin operators in the algorithm. See Section 6.5.1 for the
details of our implementation.

6.3.2 Monte Carlo Validation

In a second stage, we check the computed landmark configuration A for the deviation
guarantee via Monte Carlo simulation using the real (possibly nonlinear, non-Gaussian)
models. We do this to account for approximation errors due to the linearization, the
Gaussian assumption, and the conservative approximation of landmark observability. The
Monte Carlo simulation samples robot states x0:T , controls u1:T , and observations z1:T of
the landmarks in A. It counts the number of time steps t in which ‖xpt − x?pt ‖2 ≤ dg(x

?
t),

78 Chapter 6. Landmark Placement for Navigation

as required in guarantee (6.2). Averaging over numerous runs yields an estimate pMC

of pg for which the deviation guarantee in the real system holds. If pMC < pg, one can
use arbitrary heuristics to place additional landmarks. For example, one could run our
algorithm for increased values of pg or decreased values of dg.

6.3.3 Continuous Operation on Round Trips

For round-trip tasks, for which x?0 = x?T , Algorithm 7 can be used for finding a landmark
set that guarantees the error bound for multiple successive executions of the task. This can
be achieved by adjusting the part Sp0 of the covariance of the initial expected distribution
corresponding to the position of the robot. If we design Sp0 so that the pg-ellipsoid of
SpT at the final time step is inside the pg-ellipsoid of Sp0 , then, when reaching the goal,
the robot is inside the pg-ellipsoid of Sp0 with probability greater than or equal to pg.
Therefore when starting a next run of the same navigation task, the deviation guarantee is
still satisfied.

6.4 Relation between Deviation Guarantee and
Localization Uncertainty

In mobile robotics, often the trace of the posterior covariance tr(Σt) is used as a measure
for the localization uncertainty [65, 105]. In this section, we show that by enforcing the
deviation guarantee, our approach also guarantees a bound on tr(Σt).

Lemma 6.1. If the state xt consists only of the position of the robot, i.e., St = Spt , then
observing the landmarks placed by Algorithm 7 guarantees that

tr(Σt) ≤ dim(xt)

(
dg
c

)2

. (6.9)

Proof. From Section 6.2.1 we know that at(A) ≤ dg. With the definition of at in
Equation (6.4), it follows that

c
√
λt,1 ≤ dg (6.10)

⇔ c2λt,1 ≤ d2g , (6.11)

where λt,1 is the largest of the dim(xt) many eigenvalues of St (because St = Spt).
Therefore, it also holds that

∀i ∈ {1, . . . , dim(xt)} : c2λt,i ≤ d2g (6.12)

⇒ c2
dim(xt)∑
i=1

λt,i ≤ dim(xt) d
2
g . (6.13)

6.5. Experimental Evaluation 79

Since the trace of a matrix is equivalent to the sum of its eigenvalues [36], it follows that

c2 tr(St) ≤ dim(xt)d
2
g . (6.14)

From Corollary 5.2 in the previous chapter, we know that tr(St) ≥ tr(Σt). Plugged into
Equation (6.14), this finishes the proof.

6.5 Experimental Evaluation

We evaluated our landmark placement algorithm and compared it to baseline landmark
placement approaches in extensive experiments both in simulation and with real robots.

6.5.1 Experimental Setup

In our experiments we considered wheeled robots navigating on a plane. Since the
most common drive types used in industry are (non-holonomic) differential drive robots
and holonomic robots equipped with Mecanum wheels, we carried out our experiments
with robots of these types. For self-localization we considered three different types
of sensors detecting uniquely identifiable landmarks: a range-only sensor, measuring
only the distances to the landmarks, a bearing-only sensor, measuring only the relative
angles between the robot and the landmarks, and a range-and-bearing sensor, measuring
both. Hence, in the following experiments all motion models and all sensor models have
nonlinear components.

We evaluated our landmark placement approach on two different kinds of spaces of
possible landmark locations, depending on the environment the robot operates in. In the
free-space setting without any obstacles in the environment of the robot, we considered
the complete two-dimensional plane the robot was navigating on as space Lfree of possible
landmark locations. We also evaluated our approach in structured environments, which
were defined by walls. Here, we allowed landmark placement only on the surfaces
of predefined walls resulting in a one-dimensional space Lwalls of possible landmark
locations.

We implemented the argmax and argmin operators used in Algorithm 7 in a two-stage
procedure that is robust to local optima. In the first step, we discretized the relevant part
of L that is observable from the trajectory and evaluated each of these points. Around
the optimum on the discrete point set, we then performed a fine search with Powell’s
method [83] in the second step.

6.5.2 Placement in Free Space

In the first set of experiments, we considered environments without obstacles and al-
lowed landmarks to be placed in the complete two-dimensional plane Lfree. For these

80 Chapter 6. Landmark Placement for Navigation

experiments, we used the analytical method for testing landmark observability in the
placement algorithm as described in Section 6.2.2. For all types of sensors, we assumed a
circular field of view around the robot with radius 2 m. We evaluated our algorithm on
five navigation tasks T1-T5 (see Figures 6.2 and 6.3) for a differential drive robot. We
simulated every task for all three sensor models, resulting in 15 experiments. Figure 6.2
shows the landmarks our algorithm computed for the three sensor models in the first task
T1, together with expected and posterior distributions.

Figure 6.3 depicts the landmark configurations and expected distributions for the other
four tasks T2-T5 for a range-only sensor. For all trajectories, we set pg = 99% and
dg = 0.5 m. For the pick-and-place task T5, we changed dg to 0.2 m in the pick-up and
the deposit zones (gray rectangles). Because of the high accuracy necessary to fulfill this
task, we simulated a more precise robotic system than for the other tasks, i.e., we scaled
down the noise values of the motion model and the sensor model of the robot.

Influence of the Sensor Model

As can be seen in Figure 6.2, the number of landmarks our algorithm computes and
their configuration strongly depend on the chosen sensor model. For the range-only
sensor, the landmarks tend to be further away from the trajectory than for the other two
sensor models. The numbers of landmarks needed are stated in the first row of Table 6.1.
Furthermore, the results of the Monte Carlo simulations in our algorithm varied strongly
for the different sensor models. In every Monte Carlo simulation, we performed 1,000
simulated runs and calculated the proportion of time steps in which the deviation of the
robot from its trajectory exceeded dg. This proportion yields an estimate pMC of pg for
the nonlinear models. For all trajectories and all sensor models, the values of pMC for the
landmark sets our approach computed are stated in the fifth row of Table 6.1.

For the range-only sensor, pMC is considerably above the intended value of 99% in all
tasks. For the range-and-bearing sensor, pMC is slightly below 99% in the pick-and-place
task and for the bearing-only sensor, pMC is below 99% in three of the five tasks. These
results indicate that the nonlinear components of the range measurements are less critical
for landmark placement than those of the bearing measurements.

Comparison to other Landmark Placement Strategies

For comparison, we evaluated three baseline methods for placing landmarks in a way
that the deviation guarantee is satisfied. Each method starts with a minimum number of
landmarks and successively increases the number (or density) of landmarks until it finds
a set for which the guarantee in the linearized system holds.

• On trajectory places landmarks at positions that are distributed equidistantly on
the desired trajectory.

6.5. Experimental Evaluation 81

−2 0 2 4 6 8 10

0
2

4
6

8
10

eight_range

start

goal
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

1m

T1

−2 0 2 4 6 8 10

0
2

4
6

8
10

eight_bearing

start

goal
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

1m

−2 0 2 4 6 8 10

0
2

4
6

8
10

eight_range_and_bearing

start

goal
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

1m

−2 0 2 4 6 8 10

0
2

4
6

8
10

eight_range

start

goal
●

●
●

●

●
●

●

●

●
●

●
●

●

●

● ●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●
●●●

●●●
●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●●●●
●●●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

1m

−2 0 2 4 6 8 10

0
2

4
6

8
10

eight_bearing

start

goal
●

●
●

●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●●●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

1m

−2 0 2 4 6 8 10

0
2

4
6

8
10

eight_range_and_bearing

start

goal
●

●
●

●

●

●
●●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●●●●●●●●

●
●

●
●

●

●

●
●

●

●

●

●

●
●
●

●
●

●
●

●
●

●
●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●
●●●●●●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

1m

Figure 6.2: The landmark configurations (red triangles) our algorithm computed for the figure-
eight trajectory T1 for three different sensor models: range-only (left), bearing-only (middle) and
range-and-bearing (right). The blue points and ellipses in the upper row correspond to the means
and the 99% confidence ellipses of the expected distributions, and in the lower row to the posterior
distributions of simulated sample runs. The true positions of the robot in the sample runs are
depicted as black lines.

82 Chapter 6. Landmark Placement for Navigation

−2 0 2 4 6 8 10

0
2

4
6

8
10

rectangle

start

goal

● ● ● ● ● ● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ●

1m

T2

−2 0 2 4 6 8 10

0
2

4
6

8
10

star

start

goal
●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●●
●

●

●

●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●

●

●

●
●●●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1m

T3

−2 0 2 4 6 8 10

0
2

4
6

8
10

sweep

start

goal

● ●
●

●
●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

1m

T4

−2 0 2 4 6 8 10

0
2

4
6

8
10

pick_and_place

start
goal

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

1m

T5

Figure 6.3: The landmark configurations (red triangles) our algorithm computed for four sample
trajectories T2-T5 using a range-only sensor. T2 is a square, T3 a curved shape, T4 a sweeping
trajectory, and T5 a pick-and-place task. The blue points and ellipses correspond to the means and
the 99% confidence ellipses of the expected distributions. In T5, the pick-up zone and the deposit
zone are marked as gray rectangles.

6.5.
E

xperim
entalE

valuation
83

Range-only sensor Bearing-only sensor Range-and-bearing sensor
T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

Number of landmarks
Our approach 14 12 11 18 10 11 9 7 16 7 9 8 6 13 5

On trajectory − − 25 − 58 41 − 12 − 23 12 9 10 17 7

On grid 48 32 38 56 23 26 19 17 30 18 20 20 17 25 16

Random 108 63 62 138 62 75 66 51 88 31 38 29 38 37 15

pMC

Our approach 0.999 0.998 0.999 0.999 0.999 0.979 0.978 0.991 0.994 0.826 0.999 0.997 0.998 0.994 0.986

On trajectory − − 0.996 − 0.962 0.353 − 0.955 − 0.773 0.996 0.999 0.983 0.999 0.980

On grid 0.999 0.999 0.999 0.999 0.998 0.997 0.981 0.995 0.999 0.931 0.996 0.999 0.995 0.999 0.999

Random 0.999 0.999 0.999 0.999 0.998 0.996 0.996 0.999 0.999 0.999 0.999 0.999 0.996 0.999 0.999

Table 6.1: Numbers of placed landmarks and results of the Monte Carlo simulations for several types of landmark placement approaches and
landmark detection sensors

84 Chapter 6. Landmark Placement for Navigation

• On grid places a landmark in the center of each cell of a regular grid. Starting
with one cell covering the whole environment, the cell size is decreased at every
iteration until the deviation guarantee holds. For efficiency, landmark positions
that are outside the field of view of all states x?0:T on the desired trajectory are not
used.

• Random successively places landmarks at randomly chosen positions observable
from the desired trajectory, until the deviation guarantee is satisfied.

The number of placed landmarks and the values of pMC for all landmark placement
strategies are stated in Table 6.1. Dashes in the table indicate that no valid landmark
configuration could be found. For all experiments, our approach placed fewer landmarks
than the other approaches. The on trajectory method is the best method after ours for
the range-and-bearing sensor, measured by the number of placed landmarks. However,
for the other two sensor models, the on trajectory method was not always able to find
a landmark configuration that satisfied the guarantee in the linearized system. For this
method, especially the nonlinearities in the bearing-only sensor model resulted in low
values for pMC.

For a comparison between our approach and the other approaches described in this
thesis, see Chapter 8.

Experiments with a Miniature Robot

To further validate the simulation experiments for the scenarios in free space, we evaluated
one of the landmark sets our algorithm generated also on the real e-puck robot [74]
depicted in Figure 6.4. As a range-and-bearing sensor, we used a webcam pointing
upwards detecting uniquely identifiable ARToolkit markers [15] attached to the ceiling
at the positions that our algorithm computed. We considered the navigation task T1
scaled down to suit the miniature size of our robot (diameter 75 mm) and the lower
ceiling. Scaling the task by the factor 0.08 yields dg = 0.04 m. To validate the deviation
guarantee in practice, we measured the deviation ‖xpt −x?pt ‖2 of the position of the e-puck
robot from its desired trajectory during operation. For this, we obtained the reference
positions xt from a MotionAnalysis motion capture system with four digital Raptor-E
cameras. During 20 autonomous runs, ‖xpt − x?pt ‖2 was below dg in 99.7% of the time
steps.

6.5.3 Placement in Structured Environments

In the second set of experiments, we considered structured environments with walls and
other obstacles at known positions. To represent the walls and obstacles, we used sets of
lines, which are often referred to as line maps. In these experiments, we evaluated our
algorithm for both spaces of possible landmark positions, the surfaces of the walls and

6.5. Experimental Evaluation 85

Figure 6.4: The miniature e-puck robot and its experimental environment. Mounted on top of
the robot is a wireless webcam detecting the uniquely identifiable visual markers attached to the
ceiling. The reference positions of the robot are obtained by the four-camera motion capture
system.

obstacles Lwalls, and the plane Lfree. In the landmark placement algorithm, we used the
sigma point approach described in Section 6.2.2 to test the landmark observability. This
approach allows us to take into account occlusions from walls when testing the landmark
observability, and it also allows us to consider non-circular fields of view of the robot. We
simulated two navigation tasks in structured environments: T6 and T7 (see Figure 6.5).

The line maps in both tasks were manually extracted from the grid maps shown in light
gray in the figures. The map in the task T6 corresponds to the Willow Garage building
(grid map recorded by Brian Gerkey) and the map in T7 corresponds to building 079
on the Freiburg University campus. For these tasks we simulated a differential drive
robot equipped with a range-and-bearing sensor having a maximum range of 5 m and a
half-circular field of view in front of the robot. Just as in the experiments in free space,
we set pg = 99% and dg = 0.5 m.

Comparison between Placement on Walls and Placement in Free Space

We compared the runtime and the number of placed landmarks of our algorithm for the
landmark placement in Lwalls to that of the placement in Lfree on tasks T6 and T7. For
the landmark placement in Lfree, we used an insight gained from empirical evaluations to

86 Chapter 6. Landmark Placement for Navigation

start

goal

●

●

●

●

● ● ● ● ● ● ● ● ●
●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●
●

●

●

●

●
●●

●

● ●
●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●

●
● ●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●
●

●

●●●
●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●
●

● ●

●

●

●

●
●

3m

T6

●

●

●

●

●

●

●

●

●

●
● ● ● ● ● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●●

●

●

●

●

● ● ● ● ● ●
●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

● ● ● ●
●

●

●

●

● ● ● ● ●
●

●

●

●
●●●●

●

●

●

●

●

●

●

●
●●

●

●

●●
●

●

●

●

●
● ● ● ●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

start

goal

3m

T7

Figure 6.5: The landmark configurations computed by our algorithm when placing landmarks
on the walls of buildings (red triangles) and in free space (orange circles). The blue points and
ellipses correspond to the means and the 99% confidence ellipses of the expected distributions
computed using the landmarks placed on the walls. The line maps of the buildings are depicted in
dark gray, and the grid maps, from which the line maps were extracted, are shown in light gray.

6.5. Experimental Evaluation 87

Lwalls Lfree

T6
Length of Trajectory 218.5 m

Runtime 2 h 11 min 57 h 51 min

Number of Landmarks 48 37

T7
Length of Trajectory 100.8 m

Runtime 9 min 6 h 59 min

Number of Landmarks 21 16

Table 6.2: Comparison of landmark placement spaces

speed up the computation. In the experiments, our approach typically selected landmark
positions `? inside the field of view of the current state of the robot x?τ . Here, τ is the time
step that is currently in the focus of the placement algorithm (see Algorithm 7). Therefore,
we restricted the search space for the optimization to this area. For all evaluated tasks in
our experiments, Algorithm 7 with the full search space did not place fewer landmarks
than our implementation with the restricted search space. In structured environments, a
similar restriction of Lwalls was not applicable, as in our experiments the field of view of
x?τ often did not contain the best landmark position `?. In fact, at some time steps it did
not contain any possible landmark positions at all. Hence, we restricted the search space
in the optimizations to all walls that are observable from the trajectory up to time τ .

For both placement methods, in Lwalls and in Lfree, we executed our algorithm single-
threaded on an Intel R© CoreTM i7 2.8GHz with 12GB RAM. For T6 and T7, the lengths
of the trajectories, the numbers of placed landmarks and the runtime of Algorithm 7 are
listed in Table 6.2. As can be seen in the table, landmark placement on the plane Lfree

managed to fulfill guarantee (6.2) with fewer landmarks than landmark placement on the
walls Lwalls. Hence, the landmark positions on the walls appear to be suboptimal. On the
other hand, the runtime of the landmark placement in Lfree is considerably longer than the
runtime of the landmark placement in Lwalls. This is due to the fact that the search space
Lfree is considerably larger than Lwalls. Note that the space of possible landmark positions
depends on the physical properties of the utilized sensor and the landmarks. For example,
for a camera detecting landmarks attached to the ceiling of the environment, like in the
experiments with the e-puck robot, typically Lfree is considered for landmark placement.
On the other hand, for a laser range finder that observes the walls of an environment,
like in the application presented in the next section, Lwalls is the appropriate space for
landmark placement.

Long Term Experiments with a Holonomic Robot

We evaluated the continuous operation capability of our approach described in Sec-
tion 6.3.3 in a long-term experiment with a real holonomic robot. The environment and

88 Chapter 6. Landmark Placement for Navigation

start goal

1m

Figure 6.6: The landmark configuration (red triangles) our algorithm placed on the walls of the
experimental environment of the holonomic robot. The blue arrows and ellipses correspond to
the means and the 99% confidence ellipses of the expected distributions. The line map of the
experimental environment is shown in dark gray. The black cross marks the spot on which the
robot is located in Figure 6.7.

Figure 6.7: The holonomic KARIS robot operating in its experimental environment. It is equipped
with two laser range finders mounted on opposite sides of the base for a 360◦ field of view. They
detect reflective markers, which are attached to the walls, and are used as landmarks for localization.
The reference positions of the robot are obtained by a motion capture system, part of which is
shown in the back.

6.5. Experimental Evaluation 89Deviation counts in the 3 hour karis experiment

Deviation in m

F
re

qu
en

cy

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0
50

00
10

00
0

15
00

0

Figure 6.8: The histogram of the deviation of the KARIS robot from its desired trajectory during
operation on a round trip for about three hours.

the round-trip trajectory of this navigation task are shown in Figure 6.6.
As robotic system, we used the KARIS robot [51], which is depicted in Figure 6.7.

This robot is designed as a logistics robot for industrial application in storage facilities
and production sites. It is equipped with Mecanum wheels, which allow for holonomic
motion. Two SICK S300 laser range finders are mounted on opposite sides of the robot.
Together, they return range measurements and intensity values in a 360◦ field of view with
a resolution of 0.5◦. Based on the intensity values, the robot can detect landmarks made
of reflective tape mounted on walls. Experiments showed that these reflective markers
are reliably observable by the robot only if the angle between the landmark orientation
and the robot position is at least 22◦. For landmark placement, we therefore used a sensor
model with that observability constraint and with a circular field of view.

The number and positions of the landmarks placed by our algorithm highly depend on
the covariance matrices Qt and Rt of the noise in the motion model and the sensor model,
respectively. Therefore, before placing the landmarks, we did a calibration run with the
robot, in which the pose of the robot was determined precisely by a MotionAnalysis
motion capture system with nine digital Raptor-E cameras. We estimated the noise
matrices as the maximum likelihood values with respect to the reference positions and
the odometry or landmark measurements, respectively.

Taking into account the calibrated noise values, Algorithm 7 placed 11 landmarks that
can be seen in Figure 6.6. Using the observations of these landmarks for localization,
the KARIS robot performed a continuous round trip on the defined trajectory for about
three hours, corresponding to one battery charge. During this time, the robot completed
the navigation task 62 times. The deviation of the robot from its desired trajectory

90 Chapter 6. Landmark Placement for Navigation

was monitored at a 10 Hz rate by the MotionAnalysis motion capture system. The
captured deviation values of the robot never exceeded the specified bound dg = 0.5 m

for all 102, 300 recorded time steps. Figure 6.8 shows the deviations from the trajectory
in a histogram plot. As can be seen in the plot, the deviation of the robot from its
desired trajectory was typically around 0.05 m. The largest deviation value measured was
0.337 m.

These experiments demonstrate that our approach is suitable for efficient placement of
landmarks in unstructured or structured environments. The placed landmark configura-
tions were proven to allow for a reliable navigation in extensive simulation and real-world
experiments with different robot platforms and sensing technologies.

6.6 Discussion

In this chapter, we presented a landmark placement method for mobile robot navigation.
With high confidence, it guarantees a bound on the maximum deviation of the robot from
its planned trajectory. In the landmark placement phase, our approach approximates
the real motion and sensor models by their linearized versions to efficiently evaluate
the guarantee. In the subsequent validation stage, we apply a Monte Carlo simulation
using the real system dynamics to check if the placed landmark set satisfies the deviation
guarantee also for the possibly nonlinear models. Our algorithm is customizable to
specific robotic systems and navigation tasks and inherently chooses the appropriate
number of landmarks needed. In extensive experiments, we demonstrated that our method
can efficiently handle large-scale scenarios and that it outperforms baseline approaches.
Furthermore, we applied our algorithm successfully to create landmark configurations
for several simulated and real-world navigation tasks in which common robot platforms
navigated reliably, also in long-term experiments.

Chapter 7

Robust Landmark Placement for
Navigation

As described before, accurate navigation is a key capability of
autonomous mobile robots. Robots that observe the landmarks
placed by our approach from the previous chapter stay close to
their desired trajectories with high confidence. In this chapter,
we modify and extend the methods from the previous chapter in
order to handle scenarios in which the robot’s line of sight to
some of the placed landmarks is unpredictably obstructed, for
example by other vehicles operating in the same environment. In
order to achieve the desired robustness against missing landmarks,
our approach typically needs to increase the number of placed
landmarks, as unpredicted obstructions of landmarks can drastically
reduce the navigation performance of the robot. Our algorithm is
highly efficient, as it applies the linearization of the navigation cycle
from Chapter 5 and combines it with submodular optimization
techniques. In extensive experiments, also carried out with a real
robot, we demonstrate the capabilities of our method and show that
it enables robust autonomous navigation in practice.

In many robotics applications like logistics and transportation, mobile robots typically
share the environment with other vehicles or with humans. These dynamic obstacles can
block the robot’s line of sight to a landmark unpredictably. Furthermore, some types
of landmarks, like colored markers painted to walls or battery-powered active beacons,
can wear out and fail over time, leading to a reduced navigation accuracy of the robot.
Therefore, in applications in which these situations are likely, it is important to take them
into account when placing artificial landmarks.

In this chapter, we modify and extend the methods from Chapter 6 resulting in an
approach to landmark placement that robustly handles scenarios in which a certain number

92 Chapter 7. Robust Landmark Placement for Navigation

of landmarks can be missing during operation. Our approach bounds the trace of the
covariance of the robot’s deviation throughout the whole trajectory. Thereby, it effectively
bounds the deviation of the robot from its desired trajectory for all dimensions of the state
space with high confidence. Our approach aims at minimizing the number of landmarks
needed, while still satisfying the bound on the trace of the covariance even if any k of the
placed landmarks are simultaneously not observable during the execution of the whole
navigation task. By choosing k, the user can trade off the number of landmarks against
the robustness.

Our approach has several characteristics that make it especially useful in practice:
The robustness against missing landmarks allows the application of smooth fallback
procedures: If the robot does not observe a placed landmark for some time, it can send
a message to the maintenance personnel and can still travel back safely to its parking
position, leaving the workspace unobstructed for others. Similar to the approach from the
previous chapter, we assume that the robot is steered by an LQR controller and linearize
the model of the entire navigation cycle using the methods presented in Chapter 5. Due
to this linearization, our approach is highly efficient and therefore can be utilized even
in large-scale scenarios. To achieve the desired robustness in the landmark placement,
our approach extends the conservative approximation of the landmark observability
applied in the previous chapter, so that it only depends on the desired bound specified by
the user. Furthermore, considering the trace of the covariance of the deviation instead
of the maximum deviation allows us to utilize techniques from submodular function
optimization, which come with formal approximation guarantees.

This chapter is organized as follows. In the next section, we formally state the problem
definition. In Section 7.2, we introduce our landmark placement algorithm, whose
theoretical properties we analyze in Section 7.3. Finally, we provide extensive experiments
carried out both in simulation and with a real robot.

7.1 Problem Statement

We consider the problem of landmark placement for a mobile robot that repeatedly and
autonomously travels along the same discretized trajectory T =

(
x?0:T ,u

?
1:T), consisting

of the desired states x?t and the desired controls u?t at each time step t. We assume that the
navigation cycle of the robot can be described by the framework introduced in Section 5.1.
To briefly recapitulate, for localization the robot has a map of the positions and the unique
identities of the landmarks A = {`1, . . . , `n} in the area surrounding the trajectory
and is equipped with a sensor to observe them. At every time step t, the robot takes a
noisy observation zAt of the landmarks inside its actual field of view, updates its state
estimate in a localization algorithm, and executes a control command ut+1, propagating
its state xt according to a noisy motion model. It selects the control commands depending

7.2. Efficient and Robust Landmark Placement 93

on the difference between its localization estimate and its desired trajectory using a
linear-quadratic regulator (LQR) feedback controller [13]. In this closed-loop system for
autonomous navigation, we consider a discrete set of possible landmark locations V , and
aim to select the subset A ⊆ V of landmarks for placement that are most beneficial for
the navigation task.

In this chapter, we follow the idea of Bayesian A-optimal design [86], i.e., we aim
at placing landmarks so that the trace of the covariance matrix SAt of the expected
distribution p(xt − x?t | A) stays below a user-defined threshold for every time step t ∈
[0, T]. Here and in the following, we denote the covariance matrix St of the expected
distribution as SAt to make explicit its dependency on the positions of the landmarks in
the environment. By bounding the covariance of the expected distribution, we effectively
bound the deviation of the robot from its desired trajectory for all dimensions of the state
space with high confidence.

To guarantee safe operation even if up to k landmarks are missing, we aim at finding

A? = argmin
A⊆V

|A| (7.1)

subject to

max
B⊆A,|B|≤k

tr
(
S
A\B
t

)
≤ εt ∀t ∈ [0, T] . (7.2)

This is the smallest set of landmarks A? that ensures a bounded trace of the covariance of
the expected distribution. In particular, we ensure that the trace of the covariance SA

?\B
t

stays below εt for all t ∈ [0, T], even if any subset B ⊆ A? with |B| ≤ k is not observable
during operation. Here, εt is a user-defined bound that can be set for each part of the
trajectory individually. This allows the user to specify lower εt values for critical parts of
the trajectory in which a higher accuracy in navigation is required.

7.2 Efficient and Robust Landmark Placement

To efficiently place landmarks in the above-described framework, two important issues
have to be addressed: handling the combinatorial structure of the problem stated in
Equations (7.1) and (7.2) and estimating the covariance SAt of the expected distribution
of the deviation of the robot. Our efficient solution to the combinatorial optimization
problem is presented in Sections 7.2.2 and 7.2.3.

In general, SAt cannot be estimated in closed form, so one solution that is often applied
is to approximate it via Monte-Carlo simulation. Monte-Carlo simulation can deal, for
example, with non-linearities due to discontinuities in the observability of landmarks
depending on the actual state of the robot, but it is computationally demanding. In
contrast to that, we follow the approach taken in the previous chapter and introduce a

94 Chapter 7. Robust Landmark Placement for Navigation

−4 −2 0 2 4 6 8 10

−
6

−
4

−
2

0
2

4
6

●
x?
t

c
√
λt,1

c
√
λt,2

c
√
εt≥c

√
λt,1+c

√
λt,2

`

Figure 7.1: Desired robot state x?t and landmark `. The (1 − δ) confidence regions of all the
covariances of expected distributions that satisfy the bound in Equation (7.2) (one example shown
in light blue) are inside the circular region with radius c

√
εt (dark blue). The landmark ` is

εt-observable at time t if it is inside the sensor range of every pose in the dark blue circle and if
the shaded area is free of obstacles that would block the robot’s line of sight to the landmark.

conservative approximation of the landmark observability. Using this approximation,
we can estimate SAt efficiently by applying the linearization and recursive calculation
of expected distributions described in Section 5.2. In the experimental section, we
demonstrate the conservativeness of our approximation in practice and in Monte-Carlo
simulations.

7.2.1 Observability Constraints

For most types of landmark detection sensors (e.g., cameras, RFID readers, and laser
range finders), the ability to observe a landmark ` changes with the state xt of the robot
due to a limited sensor range or obstacles concealing the landmark. At the time of
landmark placement, the concrete robot state xt at time t and therefore also the actual
observability of ` at time t are not yet known. To deal with this fact, we follow the
basic idea of the approach from the previous chapter and conservatively approximate
the observability of landmarks. However, the approximate observability at time t from
the previous chapter recursively depends on the observed landmarks at all time steps
previous to t and does not take into account that those landmarks could be obstructed
from the view of the robot. Therefore, we cannot apply that approximate observability
of landmarks, but introduce a new approximation of the observability of landmarks that
depends only on the restriction of the covariance defined in Equation (7.2), which the
final landmark set shall guarantee:

We consider a landmark as εt-observable at time t only if it is observable with a
probability of at least (1 − δ) according to every expected distribution for which the
bound in Equation (7.2) holds, i.e., for which tr(SAt) ≤ εt. Figure 7.1 visualizes the

7.2. Efficient and Robust Landmark Placement 95

concept of εt-observability in an example with a two dimensional robot state xt = [xt, yt].
Note that in the experiments, we consider a three dimensional robot state [xt, yt, θt].

For evaluating the εt-observability of a landmark `, we use the following insights: As
stated in Section 5.2, all estimated expected distributions are Gaussians. The (1 − δ)-
confidence region of a Gaussian is an ellipsoid with principal axes of length c

√
λt,i.

Here, λt,i are the eigenvalues of the covariance SAt and c = c(δ, dim(xt)) is a constant
that depends only on the probability δ and the dimensionality of the state space. If the
bound in Equation (7.2) holds, it holds that tr(SAt) ≤ εt and therefore λt,i ≤ εt for all
eigenvalues λt,i of SAt . Consequently, at time t, at least (1− δ) of the probability mass
of every Gaussian that satisfies Equation (7.2) lies inside the sphere K with radius c

√
εt

and center x?t . If a landmark ` is observable from within every state inside K, we define
it to be εt-observable.

When estimating SAt for a given setA of landmarks, we consider only those landmarks
as observable that are εt-observable and apply the efficient estimation scheme for expected
distributions introduced in Section 5.2. Note that in the definition of the εt-observability
we assume that the bound in (7.2) holds for A. Hence, if the bound holds, then also the
approximation of the observability, which was applied in the evaluation of the bound, is
conservative.

7.2.2 Objective Function

Being able of evaluate Equation (7.2) for a given landmark set A makes it possible to run
a brute force search on the power set P(V) of all possible landmark positions to find the
optimal landmark set satisfying Equation (7.2). However, as P(V) grows exponentially
with the number of possible landmark locations |V|, we apply an efficient approximation
instead. Building on techniques of Krause et al. [57], we now show how the overall
problem defined in Equations (7.1) and (7.2) can be reformulated in a way that admits
highly efficient approximation algorithms, which take into account that up to k landmarks
can be hidden from the view of the robot.

As a first step, we define the reduction of the trace of the covariance of the expected
distribution induced by the observations of the landmarks in A as

Ft(A) = tr(S∅t)− tr(SAt) (7.3)

for every time step t. We truncate this function at the target value tr(S∅t)− εt, leading to
the function

Ft(εt,A) = min (Ft(A), tr(S∅t)− εt) . (7.4)

Note that this function achieves its maximum value if and only if the target condi-
tion tr(SAt) ≤ εt is satisfied. We take into account the robustness against up to k missing

96 Chapter 7. Robust Landmark Placement for Navigation

Algorithm 8 Iterative landmark placement robust to obstructions from view
Input: V , k, ε0:T
Output: A
A ← ∅
while F (k, ε0:T ,A) < c do
`? ← argmax`∈V F (k, ε0:T ,A ∪ {`})
A ← A∪ {`?}

end while
return A

landmarks in the objective function by considering the average over Ft(εt,A \ B) for all
possible subsets of missing landmarks B:

Ft(k, εt,A) =
1∑k

i=0

(|A|
i

) ∑
B⊆A,|B|≤k

Ft(εt,A \ B) . (7.5)

Similar to the function in Equation (7.4), this function achieves its maximum value
tr(S∅t) − εt if and only if the target condition under k-robustness tr(ŜA\Bt) ≤ εt is
satisfied for all B. We finally consider multiple time steps or a whole trajectory by using
the same averaging procedure, leading to

F (k, ε0:T ,A) =
1

T + 1

T∑
t=0

Ft(k, εt,A) . (7.6)

Due to its construction, this function takes on its maximum value

c =
1

T + 1

T∑
t=0

tr(S∅t)− εt (7.7)

if and only if the condition defined in Equation (7.2) is satisfied. With this, we can
re-formulate the problem definition stated in Equations (7.1) and (7.2) in terms of F as

A? = argmin
A⊆V

|A| s.t. F (k, ε0:T ,A) = c . (7.8)

7.2.3 Landmark Placement Algorithm

Since problems of the type defined in Equation (7.8) are typically NP-hard (see Sec-
tion 7.3 for details), we apply a greedy iterative landmark placement algorithm that finds
an approximate solution to (7.8). The procedure is stated in Algorithm 8. The compu-
tation of the argmax operator in the algorithm evaluates each landmark ` individually,
which makes it well-suited for parallel computing.

7.3. Approximation Bound 97

Note that due to the usage of the εt-observability in the evaluation of F , which is
a conservative approximation of the observability only if F (k, ε0:T ,A) = c, stopping
the algorithm before F (k, ε0:T ,A) reaches c leads to landmark sets that can perform
arbitrarily badly. However, for the final output set A, the observability, and therefore also
the condition in Equation (7.2), is approximated conservatively.

7.2.4 Practical Considerations

Our algorithm can be used to guarantee a collision-free trajectory execution with high
confidence. For that, we use the same insights as for the approximation of the observability.
We choose the bound εt on the trace such that the nearest static obstacle is at least c

√
εt

away from the desired state x?t for every t. To avoid collisions with moving obstacles
without breaking the bound on the trace, the robot needs to stop if its path is blocked
and wait until the moving obstacle left the corridor with width c

√
εt around the desired

trajectory. Note that this collision avoidance strategy conservatively approximates the
deviation of the robot from its desired trajectory, which is the value that the approach
from the previous chapter optimizes, with the trace of the covariance of the expected
distribution, which we optimize in this chapter.

In some applications, it is necessary for the robot to operate continuously, executing
the same trajectory repeatedly without being able to readjust its pose in between runs.
If the desired final state x?T of the robot equals the initial state x?0, our method can be
adjusted similar to the method in the previous chapter to guarantee bounded traces even
for a continuous operation of the robot. By setting εT to at most the minimum eigenvalue
of SA0 , our algorithm produces a landmark set A that guarantees that SAT is governed
by SA0 , which enables a continuous safe operation.

7.3 Approximation Bound

In this section, we provide a theoretical motivation for our approximation algorithm,
which rests on the concept of submodularity, a natural diminishing returns property,
which is presented in detail in Section 3.4 of the background chapter. For landmark
sets, submodularity states that adding a landmark to an already large set of landmarks C
results in a smaller increase in the objective function than adding the same landmark to a
subset of C. Concretely, a function F is called submodular if for all A ⊆ C ⊆ V and all
landmarks ` ∈ V \ C

F (C ∪ {`})− F (C) ≤ F (A ∪ {`})− F (A) . (7.9)

For submodular functions, problems of the type defined in Equation (7.8) are called
submodular set cover problems, and are NP-hard in general [31, 109]. However, for

98 Chapter 7. Robust Landmark Placement for Navigation

these problems, Wolsey [109] showed that for greedy solutions Agreedy, such as those
produced by Algorithm 8, it holds that

|Agreedy| ≤ |A?|
(

1 + log max
`∈V

F ({`})
)
, (7.10)

and under natural complexity-theoretic assumptions, no efficient algorithm can provide
better solutions (see Section 3.4 for details). Hence, such greedy solutions Agreedy are
near-optimal for submodular set cover problems.

Therefore, the key question is whether (or under which conditions) our objective
function F (k, ε0:T ,A) for landmark placement is monotonic and submodular. First, note
that the steps with which we build F (k, ε0:T ,A) from Ft(A) as described in Section 7.2.2
preserve monotonicity and submodularity. This is due to the fact that they only apply
nonnegative linear combinations and truncation, which are operations that preserve
these properties (see Fujito [34] and Krause et al. [57]). Therefore, if Ft(A) would be
monotonic and submodular, also F (k, ε0:T ,A) would have these properties. However,
even though Das and Kempe [21] have shown that, under conditions slightly different from
ours, variance reduction is monotonic and submodular, this result cannot be extended
to Ft(A). In Appendix 10 we present a detailed theoretical examination of the non-
submodular behavior of Ft(A). In practice, though, violations of the submodularity
property of Ft(A) appear only seldom, and when they appear, the property is only slightly
violated. This insight stems from an experiment in which we randomly sampled one
million three-dimensional robot poses and corresponding covariance matrices. For each
robot pose, we randomly sampled a set C of two to eight observable landmarks, a non-
empty strict subset A ⊂ C, and one additional observable landmark `. In this experiment,
only 0.56% of the one million samples did not satisfy the submodularity inequality stated
in Equation (7.9). In the cases in which the submodularity property was not satisfied, the
value by which the inequality was violated was 0.042% of the value of F (A) on average
and 1.4% in the maximum case.

7.4 Experimental Evaluation

We evaluated our approach in extensive experiments both with a simulated differential
drive robot and with a real holonomic drive robot. For these robots, the state xt of the
robot can be described by its pose [xt, yt, θt] in the 2d-plane. We assume that the robot is
equipped with a landmark detection sensor with a circular field of view and 5 m sensor
range. In the different experiments, the sensor can observe either landmarks placed on the
walls or landmarks placed on the ceiling of the environment, resulting in different sets V
of possible landmark locations. In all experiments, we set the allowed maximum trace εt
to 0.05 for all time steps t and the probability δ in the definition of the εt-observability
to 1%.

7.4. Experimental Evaluation 99

This section does not contain an experimental comparison between this approach and
other approaches, as we present a detailed comparison between our different approaches
in Chapter 8.

7.4.1 Evaluation of Robustness

In the first set of simulation experiments, we evaluated the robustness of our landmark
sets against obstructions of landmarks from the view of the robot. To this end, we
considered the two trajectories shown in Figure 7.2, corresponding to a sweeping pattern
in an obstacle-free environment and a surveillance task in an environment with obstacles.
For the sweeping trajectory, our approach placed 10, 15, and 19 landmarks assuming
at most zero, one, and two missing landmarks, respectively. For the surveillance task,
our approach placed 12, 20, and 27 landmarks. To evaluate the effects of the linear
approximation applied in the landmark placement method, we conducted Monte-Carlo
simulations using the real, non-linear models. In the simulations, we estimated the
traces trMC(SAt) of the expected distributions using the empirical distributions gained
from the deviations xt − x?t observed in 1,000 simulated executions of the trajectory
in each scenario. For all six landmark configurations and all possible combinations of
k missing landmarks, the Monte-Carlo simulations resulted in traces that were below
the bound εt = 0.05 for all time steps t. The maximum value 0.0439 of the traces in
simulation occurred in the surveillance scenario for k = 0.

7.4.2 Landmark Placement for Changing Bounds

In the second set of simulation experiments, we demonstrate the ability of our approach to
place landmarks for values of εt which vary along the trajectory. We applied our approach
on the pick-and-place trajectory shown in Figure 7.3. One of the shown placements
results from specifying a higher demand for accuracy in the pick-up and deposit zones
and another placement results from increasing the required robustness against missing
landmarks. As can be seen in the figure, these two requirements in this case lead to the
same number of landmarks, but to different locations.

7.4.3 Long Term Evaluation on a Real Robot

Finally, we evaluated the landmark sets placed by our approach also on the real robot
shown in Figure 7.4. The robot is equipped with Mecanum wheels for omnidirectional
motion and with two SICK S300 laser scanners mounted on opposite corners of the robot,
providing a 360◦ field of view. The lasers can detect reflective markers, whose unique
landmark IDs we calculated using a nearest neighbor heuristic. In a training run, we
calibrated the motion noise and sensor noise of this specific robot, and used the calibrated

100 Chapter 7. Robust Landmark Placement for Navigation

−10 −5 0 5 10 15

−
5

0
5

10
15

● ●
●
●
●

●
●●●●●●●●●●●●●●●●●●●●

●
●
●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●
●
●

●
●

●●●●●●●●●●●●●●●●●●●
●

●
●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●
●
●

●
●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

start
goal

1m

−2 0 2 4 6 8 10 12

−
2

0
2

4
6

8
10

●●●●●●●●●●●●●●●
●

●
●
●
●
●

●
● ●

●
●
●
●
●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

start
goal

1m

−10 −5 0 5 10 15

−
5

0
5

10
15

● ●
●
●
●

●
●●●●●●●●●●●●●●●●●●●●

●
●
●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●
●
●

●
●

●●●●●●●●●●●●●●●●●●●
●

●
●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●
●
●

●
●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

start
goal

1m

−2 0 2 4 6 8 10 12

−
2

0
2

4
6

8
10

●●●●●●●●●●●●●●●
●

●
●
●
●
●

●
● ●

●
●
●
●
●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

start
goal

1m

−10 −5 0 5 10 15

−
5

0
5

10
15

● ●
●
●
●

●
●●●●●●●●●●●●●●●●●●●●

●
●
●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●
●
●

●
●

●●●●●●●●●●●●●●●●●●●
●

●
●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●
●
●

●
●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

start
goal

1m

−2 0 2 4 6 8 10 12

−
2

0
2

4
6

8
10

●●●●●●●●●●●●●●●
●

●
●
●
●
●

●
● ●

●
●
●
●
●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

start
goal

1m

Figure 7.2: A sweeping task (left) and a surveillance task (right) with the 99% confidence ellipses
of the expected distributions (blue) when observing all landmarks (red triangles) in the sets that
our algorithm placed for at most k = 0 (top), 1 (middle), or 2 (bottom) missing landmarks. The
k-subsets of placed landmarks whose absence resulted in the highest simulated maximum trace
are shown in pink. The red dots indicate the sets of possible landmark locations V .

7.4. Experimental Evaluation 101

−10 −5 0 5 10

−
5

0
5

10

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●start

goal 1 goal 2

1m

−10 −5 0 5 10

−
5

0
5

10

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●start

goal 1 goal 2

1m

−10 −5 0 5 10

−
5

0
5

10

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●start

goal 1 goal 2

1m

Figure 7.3: Pick-and-place trajectory and landmark sets placed by our approach for a constant
εt of 0.05 for k = 0 (left) and k = 1 (right), and for k = 0 and εt = 0.03 for the time steps in
which the robot is inside the pick-up and deposit zones (gray areas) and 0.05 outside (middle).
The trajectory goes from the start to goal 1, then to goal 2, and back to the start.

Figure 7.4: The KARIS robot in the experimental environment. The three stripes of reflective
tape on the walls can be detected in the laser scans and are part of the robust landmark set placed
by our approach. As can be seen in the picture, one landmark is currently hidden by a black cloth.

102 Chapter 7. Robust Landmark Placement for Navigation

0 5 10

−
2

0
2

4
6

8
10

12

●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●●●●●●●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●

●●●●●●●
●
●
●
●
●
●
●
●
●

●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●

●●●●●●
●

●
●
●
●
●
●
●
●

●●●●●●●●●●●●●●●●●●●
●

●
●
●
●
●
●
●
●

●●

start

goal 1

goal 2

1m

0 5 10

−
2

0
2

4
6

8
10

12

start

goal 1

goal 2

1m

Figure 7.5: Landmark sets (red triangles), desired robot path (blue) and actual robot paths (red)
for k = 0 (left), and k = 1 (right). For k = 0, also the 99% confidence regions of the expected
distributions in the linearized system are shown (light blue). For k = 1, each landmark was hidden
during 10 runs of the robot. The landmark whose absence resulted in the largest deviations is
marked in pink. The trajectory goes from the start to goal 1, back to the start, then to goal 2 and
again back to the start.

parameters in the linearized models for landmark placement. Note that compared to
Section 6.5.3, in which we present experiments with the same robot, the calibrated motion
noise for this experiment is considerably smaller, as here the floor on which the robot
moves is smoother. This can be seen when comparing the images in Figures 6.7 and 7.4.
The trajectory and the landmarks that our approach placed to ensure continuous long term
operation (see Section 7.2.4) are shown in Figure 7.5. To evaluate the placed landmark
sets, the robot continuously executed the trajectory several times. Observing only the
landmarks placed for k = 0, the robot autonomously executed 20 runs of the trajectory,
continuously operating for one hour.

We estimated the traces of the expected distributions from the empirical distributions
of the deviations measured by a Motion Analysis motion capture system with ten digital
Raptor-E cameras. The leftmost frequency plot in Figure 7.6 displays the estimated
traces for k = 0. As can be seen in the figure, the estimated traces stayed considerably
below 0.05, with a maximum of 0.0087 occurring close to goal 1. The measured maximum
translational deviation of the robot from the desired trajectory was 0.36 m. For k = 1,
the robot executed 50 runs of the trajectory during 2.5 hours of continuous operation.
During operation, each landmark was hidden from the robot during ten runs. The traces

7.5. Discussion 103

Empirical traces for k=0

F
re

qu
en

cy

0.000 0.004 0.008

0
40

0
80

0

Empirical traces for k=1

F
re

qu
en

cy

0.000 0.010

0
10

0
30

0

F
re

qu
en

cy

0.00 0.02 0.04

0
40

0
10

00

Worst case empirical traces for k=1

Figure 7.6: Frequency plots of the traces of the covariances of the empirical expected distributions
calculated from long-term runs of the real robot. Displayed are the traces for k = 0 (left) and the
traces for k = 1 estimated from all runs of the robot (middle) and from only those runs in which
the worst-case landmark was hidden from the view of the robot (right).

estimated from the whole dataset and also the ones estimated from each block of ten runs
in which one landmark was hidden stayed below 0.05, as can be seen in the middle and
right plots in Figure 7.6. The maximum value, 0.0444, occurred close to the lower left
corner of the trajectory when the landmark marked in Figure 7.5 was hidden. Throughout
the whole experiment, the measured maximum translational deviation from the desired
trajectory was 0.45 m.

7.5 Discussion

In this chapter, we presented a novel method to trajectory-dependent landmark placement
for mobile robot navigation, which is robust against missing landmarks. This method
builds on and extends the method from the previous chapter. It keeps the traces of the
covariances of the expected distributions of all robot states below a user-defined threshold,
effectively bounding the uncertainty in all dimensions of the state space. The linearized
objective function in our method takes into account the full specification of the navigation
task. We evaluate this function efficiently by combining the estimation technique pre-
sented in Chapter 5 with techniques from submodular function optimization. Extensive
experiments, also with a real robot, demonstrate that the robustness against missing
landmarks resulting from our approach is guaranteed in practice, even in continuous long
term operation.

Chapter 8

Comparison between Landmark
Placement Methods

In this chapter, we give an overview of the similarities and the
differences between the three landmark placement approaches pre-
sented in the previous chapters. Furthermore, we compare the
landmark sets resulting from our approaches in extensive simula-
tion experiments.

In the previous chapters, we presented three different approaches to optimally placing
artificial landmarks for mobile robots that repeatedly execute the same trajectory. In
this chapter, we give a detailed comparison of these three approaches. The insights
gained from our comparison can be used to decide which of our approaches is best suited
for a specific task at hand. The discussion of benefits and drawbacks of the different
individual components of our approaches can also be a valuable source of information
when constructing new landmark placement methods.

8.1 Properties

In this section, we give an overview of the similarities and the differences between the
three landmark placement approaches presented in Chapters 4, 6, and 7. To distinguish
between the different approaches, we refer to them in the following with the names

• localization for the method presented in Chapter 4, which aims at optimizing the
localization performance of the robot,

• deviation for the approach from Chapter 6, which aims at optimizing the navigation
performance of the robot by bounding its deviation from the desired trajectory, and

• robust for the method presented in Chapter 7, which aims at optimizing the
navigation performance of the robot in a way that robustly handles scenarios in
which landmarks are unpredictably hidden from the view of the robot.

106 Chapter 8. Comparison between Landmark Placement Methods

All three approaches consider landmark placement as a trajectory-dependent problem.
Given a pre-defined trajectory that is intended to be executed many times by a mobile
robot, all three methods aim at finding a set of landmark positions along this trajectory
that are optimal for the robot during operation. When placing landmarks, all methods
explicitly take into account the full specification of the applied robot, consisting of its
motion model, its sensor model, and the controller that selects its control commands.
All our approaches deal with the noise and errors that occur in the motion and sensor
observations of real robots by using probabilistic formulations of the motion model and
the sensor model of the robot.

However, there are also considerable differences between the approaches. The local-
ization method aims at optimizing the expected localization performance of the robot.
In contrast to that, the other two approaches assume that the robot uses its localization
estimate to adjust its navigation behavior via a feedback controller and aim at optimizing
the navigation behavior itself. Figure 8.1 illustrates the difference between the localiza-

−1 0 1 2 3 4 5 6

−
3

−
2

−
1

0
1

2
3

● ● ●

● ●

●

landmark

x?t−1 x?t x?t+1

µt−1
µt

µt+1

Figure 8.1: Detail from a navigation task with one landmark. Shown are the desired trajectory
(dashed blue line) and the actually executed trajectory (dashed black line) in one simulated run of
the robot. Additionally, the figure shows the means and 99% confidence ellipses of the posterior
distributions (red), which capture the localization accuracy in the simulated run of the robot and
the means and 99% confidence ellipses of the expected distributions (blue), which capture its
navigation accuracy averaged over all possible runs.

tion performance and the navigation performance in terms of confidence ellipses. The
red confidence ellipses visualize the uncertainty of the localization system of the robot
during one individual execution of the trajectory. They encode the uncertainty about the
difference

xt − µt (8.1)

between the real robot state xt and the localization estimate µt at every time step t, taking
into account the concrete values of all previously executed control commands u1:t and
sensor observations z1:t. These confidence ellipses stem from the so-called posterior
distributions p(xt | u1:t, z1:t) of the states xt of the robot. When optimizing the expected
localization performance of the robot, we aim at minimizing the expected uncertainty

8.1. Properties 107

of these distributions with respect to the executed control commands and observations.
Concretely, for a function U that measures the uncertainty of the distribution, we aim at
minimizing ∫

U
(
p(xt | u1:t, z1:t)

)
p(u1:t, z1:t) d(u1:t, z1:t) . (8.2)

The equivalent of this equation in our localization approach is Equation (4.41), in which
we use the differential entropy h as a measure for the uncertainty.

The blue confidence ellipses, on the other hand, stem from the expected distributions of
the states of the robot with respect to all possible sensor observations and to all possible
resulting control commands selected by a feedback controller. In the robotic systems
that we consider in the deviation and in the robust approach, they encode the uncertainty
about the difference

xt − x?t (8.3)

between the real robot state xt and the desired state of the robot x?t at every time step t (see
Lemma 5.1) and are typically considerably larger than the red ones (see Corollary 5.2).
When optimizing the navigation performance of the robot, we aim at minimizing the
uncertainty U of these distributions, i.e.,

U

(∫
p(xt | u1:t, z1:t) p(u1:t, z1:t) d(u1:t, z1:t)

)
= U

(
p(xt | A)

)
. (8.4)

In our robust approach, for example, we use the trace of the covariance of the expected
distribution to describe the uncertainty U of the navigation performance.

Formally, the only difference between the above defined uncertainties in localization
and in navigation is the order in which the function U and the integral operator are applied
in Equations (8.2) and (8.4). Note that this order is not interchangeable, as the measures
for the uncertainty that we apply are not linear functions. In fact, they typically depend
on the covariances of the distributions, which are quadratic functions.

Another difference between the localization approach and the other two approaches is
that the localization approach applies Monte Carlo simulation to evaluate the integral in
Equation (8.2), whereas the other two approaches apply the linearization and the efficient
recursive calculation scheme from Chapter 5 to evaluate the expected distributions, i.e., the
integral in Equation (8.4). The Monte Carlo simulation does not need linearized motion
models and sensor models and can deal with arbitrary types of robot controllers, but is
computationally demanding. The recursive calculation in the linearized system is highly
efficient, which makes it possible to apply the deviation and the robust approach even in
large-scale scenarios. However, the linearized recursive calculation is only applicable if
the robot is steered with an LQR feedback controller. Therefore, also the deviation and the
robust approach can only be applied to robots steered with LQR controllers. Furthermore,
the quality of the linearized approximation depends strongly on the considered motion

108 Chapter 8. Comparison between Landmark Placement Methods

model and sensor model. To deal with the highly non-linear jump discontinuities that
occur in the sensor model at the border of the field of view of the robot, both approaches
apply conservative approximations of the observability of landmarks.

Above, we discussed the similarities and differences between the two landmark place-
ment approaches for navigation and the landmark placement approach for localization.
In the following, we discuss the similarities and differences between the two landmark
placement methods for navigation themselves:

The deviation approach bounds the deviation of the robot from its desired trajectory
with high confidence by iteratively placing landmarks along the trajectory. This iterative
placement maximizes the trajectory length between two consecutively observed landmarks
without considering the possibility that a landmark could be unpredictably obstructed
from the view of the robot. As can be seen in the experiments in the next section, the
resulting landmark sets lead to an unreliable navigation behavior in situations in which at
least one landmark is obstructed from view.

The robust approach, on the other hand, explicitly takes into account unpredictably
missing landmarks. In order to deal with missing landmarks, this approach applies a
conservative approximation that underestimates the observability of landmarks even more
than the approximation applied in the deviation approach.

Furthermore, in contrast to the deviation approach, the robust approach does not use the
deviation of the position of the robot from its desired trajectory as objective function but it
uses the trace of the covariance of the expected distribution of the state of the robot. This
trace can be considered as a conservative approximation of the deviation of the robot (see
Section 7.2.4). The deviation of the position of the robot itself is highly non-submodular
due to the strong influences that the position components and the orientation component
of the considered covariance matrices have on each other via the motion model of the
robot. Switching to the trace instead of the deviation allows us tot apply techniques from
submodular function optimization in the robust approach.

Summing up, the deviation approach cannot deal with scenarios in which it is likely that
landmarks are unpredictably obstructed from the view of the robot. The robust approach
explicitly considers this possibility, but therefore needs to make stronger approximations
than the deviation approach.

8.2 Experimental Evaluation

We compared our landmark placement approaches not only in theory, but also in experi-
ments with a simulated differential drive robot steered by an LQR controller. We describe
the state xt of the robot at time t by its pose [xt, yt, θt] in the 2d-plane, and assume that
the robot is equipped with a landmark detection sensor with a circular field of view and
5 m sensor range. For landmark placement with the robust approach, we set the allowed

8.2. Experimental Evaluation 109

maximum trace εt to 0.05 and the allowed maximum number k of simultaneously missing
landmarks to 0 and 1, respectively. In order to achieve comparable results, we adjusted
the parameters of the other approaches so that all methods placed the same numbers of
landmarks for each considered trajectory.

We compared the landmark sets placed by the deviation approach, the robust approach,
the localization approach, and by two straightforward heuristics. The grid and random
heuristics place a given number of landmarks in the area observable by the robot, grid
in a regular grid pattern and random at randomly sampled locations. To get scenario-
independent results, we considered ten randomly chosen trajectories, each connecting
six randomly sampled goal points in an area of 15 m × 15 m. For all trajectories, we
considered a set V of possible landmark locations consisting of 3600 positions on a
regular grid covering the whole environment. The sampled trajectories, together with

0 5 10 15 20 25

0
5

10
15

20

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●

●
●
●
●
●
●
●
●
●

●
●

●
●
●
●

●
● ● ● ●

●
●

●
●

●
●

●
● ● ●

●
●
●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

5m

−5 0 5 10 15 20 25

−
5

0
5

10
15

20

●
●
●
●

●
●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●● ●●
●
●
●
●

●
●

●
●●●●●●●●●●●●●●● ● ●●

●
●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●

−5 0 5 10 15

0
5

10
15

20

●●●
●

●
●
●

● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●

●
●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●

● ● ●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

−5 0 5 10 15

−
5

0
5

10
15

●
●

● ● ● ● ●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
● ● ●

●
●
●

●
●

●
●

●
●

●
●

●
●●●●●●●●

−5 0 5 10 15 20

−
5

0
5

10
15

●
●
●
●
●
●
●
●
●
●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●
●
●
●
●
●
●
●
●

●
●●●●

●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

−5 0 5 10 15 20

−
5

0
5

10
15

●●
●

●
●
●

●
● ● ●

●
● ●

●
●
●
●

●
●●●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●

●
● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

−5 0 5 10 15 20

−
5

0
5

10
15

20

● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●

● ● ● ●
●
●
●
●
●
●
●
●
●
●
●

●
●

●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

−5 0 5 10 15 20

−
5

0
5

10
15

20

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

● ● ●
●

●
●

● ●
●

●
●
●

●
●●●

●
●

●
●

●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

0 5 10 15 20

0
5

10
15

20

●
● ● ●

●
●

●
●

●
●

●
●

●
●

●
●

●●●
●

●

●
●

●
●

●
●

●
●

●
●
●

●

●
●

●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

● ● ● ●

−5 0 5 10 15 20 25

−
5

0
5

10
15

20

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●

●
●
●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●

● ● ●●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ● ●

●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

Figure 8.2: The ten randomly sampled trajectories used in the experiments and the corresponding
99% confidence ellipses of the expected distributions (blue) when the robot observes the landmarks
placed by the robust approach for k = 0 obstructed landmarks (red triangles).

the landmarks placed by the robust approach for k = 0 can be seen in Figure 8.2. For
clarity of presentation, the set V is not displayed in the figure. The placed landmark sets
had average sizes of 5.7 and 9.3 for k = 0 and k = 1, respectively. We used Monte-Carlo
simulations to evaluate the three quantities that our approaches optimize, namely the 99%
quantile of the maximum translational deviation of the robot from its desired trajectory,
the maximum of the traces of the covariances of the expected distributions of the states
of the robot, and the expected information gain of the joint posterior distribution of x0:T

induced by the landmark observations. The results can be seen in Figure 8.3.
For k = 0 missing landmarks, the deviation and the robust approach both produce

similar maximum traces of the covariances and deviations, but the deviation approach
seems to behave unreliably in the case of a missing landmark. For k = 1, when the
most influential landmark is hidden, it results in maximum traces and deviations that

110 Chapter 8. Comparison between Landmark Placement Methods

Deviation Robust
Using our calculation scheme 20:04 min 17:25 min

Using van den Berg’s method 27:22 min 28:27 min

Table 8.1: Runtime comparison of the deviation and the robust landmark placement approach when
using our efficient method for calculating expected distributions and when using the calculation
scheme by van den Berg et al. [11] instead.

are significantly higher than the ones produced by the robust approach and even the
localization approach on a 5% level. In contrast to that, the robust approach, which
explicitly takes missing landmarks into account, results in small maximum traces of the
covariances and deviations also in the case when k = 1 landmark is missing.

For the maximum traces and deviations, which both describe the navigation perfor-
mance of the robot, the localization approach resulted in worse values than the robust
approach. On the other hand, for the expected information gain, which describes the
localization performance of the robot, it yielded the best values.

The grid and random heuristics typically yielded the worst results. Only in the case in
which one landmark is missing, the deviation method resulted in worse maximum traces
and deviations than the grid heuristic.

Running multi-threaded on an Intel R© CoreTM i7 2.8GHz, the runtime of the localization
approach for computing a single landmark set was 8:10 h on average. The runtimes
for the deviation approach and the robust approach were significantly shorter due to
the application of the linearization and of our efficient calculation scheme for expected
distributions. The average runtimes for single-threaded implementations of these ap-
proaches are shown in Table 8.1. Additionally, the table shows the runtimes that the
deviation and the robust landmark placement approach needed when applying the method
by van den Berg et al. [11] for calculating expected distributions instead of our method
from Chapter 5 inside the landmark placement algorithms. As can be seen from the
table, the reduction of the runtime for calculating expected distributions resulting from
our method also yields a reduction of the overall runtime of the landmark placement
approaches.

8.3 Discussion

In this chapter, we gave a detailed comparison of the three approaches to landmark
placement presented in the previous chapters. The discussion of the benefits and the
drawbacks of the different approaches can be valuable when deciding which landmark
placement method to use for a specific task at hand. We also compared the landmark sets
resulting from our approaches in extensive simulation experiments. The results show that

8.3. Discussion 111

the placed landmark sets yield a better localization and navigation performance of the
robot than landmark sets placed by heuristics.

112 Chapter 8. Comparison between Landmark Placement Methods

Maximum trace0.
00

0.
04

0.
08

Maximum deviation0.
0

0.
2

0.
4

0.
6

0.
8

k = 0

Information gain
40

60
80

10
0

Robust Deviation Localization Grid Random

Maximum trace0.
00

0.
10

0.
20

Maximum deviation0.
0

0.
4

0.
8

1.
2

k = 1

Information gain

40
60

80
10

0
12

0

Figure 8.3: Means and 95% error bars resulting from simulations on ten randomly sampled
trajectories. For k = 1, the results for the simulations in which the one most crucial landmark was
missing are shown. The horizontal red line indicates the bound εt = 0.05 that the robust approach
guarantees with high confidence. The maximum deviation is stated in m.

Chapter 9

Landmark Deployment to Foster Data
Association in SLAM

For mobile robots operating in previously unknown and unmapped
environments, the landmark placement approaches from the pre-
vious chapters are not applicable and the robot is faced with the
problem of simultaneous localization and mapping (SLAM). In this
context, we consider the fundamental problem of data association,
i.e., deciding if two observations stem from the same environment
feature or from different ones. This problem is hard to solve cor-
rectly, especially in ambiguous environments. In this chapter, we
consider a scenario where the robot can deploy a limited num-
ber of uniquely identifiable artificial landmarks along its path and
use them afterwards as fixed anchors to ease the data association
problem. Obviously, the choice of the positions for deploying the
artificial landmarks is crucial as poor choices might prevent the
robot from establishing accurate data associations. We present
a novel approach for learning when to deploy landmarks to op-
timize the data association performance. We use Monte Carlo
reinforcement learning for computing an optimal policy and apply
a statistical convergence test to decide if the policy is converged
and the learning process can be stopped. Extensive experiments
in simulation and with a real robot demonstrate that our approach
significantly outperforms baseline strategies.

In the previous chapters, we presented approaches for optimally placing artificial land-
marks in a known environment. The goal of these methods was to improve the localization
and navigation performance of a mobile robot that is equipped with a map of these land-
marks. In this chapter, we consider a different scenario in which it is beneficial to deploy
artificial landmarks. A mobile robot that is capable of autonomously deploying artificial

114 Chapter 9. Landmark Deployment to Foster Data Association in SLAM

landmarks travels through a previously unknown and unmapped environment. During
operation, the robot builds a map of the environment while localizing itself in this very
map. This procedure is known as simultaneous localization and mapping (SLAM), and is
one of the fundamental problems in mobile robotics. One of the key challenges in SLAM
is that of data association, where the robot has to recognize previously observed places.
In general, data association failures lead to inconsistent maps that cannot be used for
navigation tasks. While highly effective methods for computing a map given the data
associations have been developed in the past [37, 61, 80], the development of methods
for robust data association is still an open research problem. In practice, data association
quickly becomes intractable, particularly in ambiguous environments, as the complexity
of the data association problem grows exponentially with the number of feature ob-
servations. One way of resolving ambiguities in the environment and supporting data
association is to deploy artificial landmarks. This idea was already implemented in the
well-known fairy tale Hansel and Gretel, in which the siblings deployed breadcrumbs to
find their way back out of the forest. Robots, on the other hand, can drop radio-frequency
identification (RFID) tags or similar uniquely identifiable landmarks [24, 50, 107]. Still
there remains the question of deciding where and when to deploy the landmarks. This
question becomes even more relevant when the robot can only carry a limited number of
landmarks.

Our approach to learning a landmark deployment policy is designed to assist the
SLAM system without interfering with the actual navigation task carried out by the
robot. Consequently, the robot does not need to perform any detours for proper landmark
deployment. Our method furthermore does not rely on information about the navigation
task of the robot, such as its current target position. To compute the optimal policy, we
apply actor-critic Monte Carlo reinforcement learning using the number of incorrectly
estimated feature correspondences as performance measure. In an offline learning phase,
we employ simulated episodes of robot navigation tasks. In order to make the resulting
policies generalize well to different environments, our approach relies on general features
like the remaining battery life time, the number of landmarks left on board, the distance
to the closest deployed landmark, and a feature capturing the abstract local structure of
the environment. To reduce the number of episodes required for learning, we employ a
statistical convergence test to decide if the learned policy is converged and the learning
process can be stopped. As a result, the robot can efficiently learn a policy for placing
artificial landmarks so that the data association errors are greatly reduced.

This chapter is organized as follows. In the next section, we show how to integrate
deployed landmarks into the SLAM posterior and how data association performance can
be measured. In Section 9.2, we introduce our approach for learning artificial landmark
deployment policies. Finally, we provide extensive experiments that demonstrate the
effectiveness of the learned policies both in simulation and on a real robot.

9.1. Simultaneous Localization and Mapping with Deployed Landmarks 115

9.1 Simultaneous Localization and Mapping with
Deployed Landmarks

As described in Section 3.5, simultaneous localization and mapping (SLAM) refers to the
problem of estimating the joint posterior distribution

p(x0:T ,m1:n, c1:T | u1:T , z1:T) (9.1)

of the robot’s poses x0:T and the map m, which consists of n features m1:n, given a set
of robot motion commands u1:T and a set of feature observations z1:T . Here, c1:T are the
estimated data associations, i. e., the estimated identities of the map features perceived
in the observations z1:T . Estimating these correspondences c1:T is an integral part of
any solution to the SLAM problem. If the estimated correspondence ct identifies the
observation zt as an observation of the map feature mi, we denote this as

ct(zt) = mi . (9.2)

For an overview of the existing estimation methods for c1:T , see Section 3.5.1.
To facilitate the data association in SLAM, we consider a robotic system that can

autonomously deploy a limited number k of uniquely identifiable landmarks. Given these
additional landmarks, the SLAM posterior turns into

p(x0:T ,m1:n, c1:T , `1:k | u1:T , z1:T , z
`
1:T , c

`
1:T) , (9.3)

where `1:k are the positions of the artificial landmarks, and c`1:T are the known identities of
these landmarks perceived in the observations z`1:T . The observations z`1:T of the deployed
artificial landmarks and, in particular, the correspondences c`1:T refine the SLAM posterior,
potentially making the data association problem more tractable by resolving ambiguities
in the environment.

9.1.1 Measuring the Performance of Data Association

When deploying artificial landmarks, we aim at maximizing the performance of data
association. To measure this performance, we count the number of incorrectly estimated
map feature correspondences. It is not obvious how to define this number, because if
the estimated feature correspondences of two observations originating from different
environment features point to the same estimated map feature, one cannot decide which of
the correspondences is wrong and which is right. To distinguish between the n estimated
features that the robot marks in its map and the n′ real features existing in the environment,
we denote the environment features as m?

1:n′ in contrast to the map features m1:n. Let c?t
be the true data association that indicates that observation zt stems from environment

116 Chapter 9. Landmark Deployment to Foster Data Association in SLAM

feature m?
i . In contrast to that, ct is the correspondence of observation zt to a map

feature mj as estimated by the data association method. For every environment feature
m?

i , we count the number N(m?
i) of map features mj that the data association method

associated at least once with m?
i . More formally, we define this number as

N(m?
i) = |{mj ∈m1:n | ∃t ∈ [1, T] : c?t (zt) = m?

i ∧ ct(zt) = mj}| . (9.4)

Since the features correspondences link the observations of every environment feature
to at least one map feature, it holds that N(m?

i) ≥ 1. If the feature correspondences are
correctly estimated, they link all observations of the same environment feature to the
same map feature, leading to N(m?

i) = 1. Accordingly, the total number of incorrectly
estimated feature correspondences is given by

E(c?1:T , c1:T) =
n′∑
i=1

(N(m?
i)− 1) . (9.5)

Our approach aims at placing the artificial landmarks such that the number of incorrectly
estimated feature correspondences E is minimized.

Note that the value E counts all errors that occur if the data association method links at
least two observations of the same environment feature to different map features. Another
type of error occurs if the data association method links every single observation of two
different environment features to the same map feature. Even though the number of
incorrectly estimated feature correspondences E does not encode this second type of
error, the experimental results in this chapter show that artificial landmarks deployed
in order to optimize E result in significantly more accurate pose estimates of the robot
compared to landmarks deployed with other approaches.

9.2 Reinforcement Learning for Improving Data
Association

Extensive experiments (see Section 9.3) revealed that heuristics for deciding when to
deploy landmarks perform badly or need to be hand-tuned for specific scenarios. There-
fore, we apply actor-critic Monte Carlo reinforcement learning with a softmax policy as
described in Section 3.6 to estimate a landmark deployment policy. We compute a policy
that allows the robot to deploy a set of artificial landmarks at the locations that minimize
the risk of wrong data associations in terms of the error E defined in Equation (9.5). To
compute this error during the learning phase, we need access to the ground truth data as-
sociations c?1:T . Therefore, we perform the learning phase in simulation. As our approach
is designed to be decoupled from the actual navigation framework of the robot, we let the
robot execute a randomly sampled navigation task in each simulated episode. The robot

9.2. Reinforcement Learning for Improving Data Association 117

thereby applies a SLAM approach and deploys its artificial landmarks according to the
currently estimated policy. In each of the episodes, the robot receives the rewards

r(st, at) =

{
0 if t < T ,

−E(c?1:T , c1:T) if t = T
(9.6)

for executing the action at when it is in the state st. In our reinforcement learning
framework, the the individual state-action pairs (st, at) are weighted with the returns
R(st, at) =

∑T
t′=t+1 r(st′ , at′), as described in Section 3.6. The rewards defined in

Equation (9.6) yield the returns

R(st, at) = −E(c?1:T , c1:T) (9.7)

for all state-action pairs (except the last) occurring during the same episode.

9.2.1 Action and State Representation

During the navigation tasks, the robot decides at every time step t according to a pol-
icy π(s, a) whether to drop one of the artificial landmarks in the current state s. Hence, the
space of the actions a in the reinforcement learning problem is given by A = {drop, keep}.

To learn policies that generalize well to different environments, we describe the state
of the robot and the environment in terms of general state features. We use the remaining
battery life time in percent, the number of artificial landmarks left on board, and the
distance to the artificial landmark that has been deployed closest to the robot. This
distance is estimated from the current posterior distribution (see Equation (9.3)) of the
robot’s SLAM system. In addition to that, we make use of a feature that captures the
abstract spatial structure of the environment based on a classification of the current
position of the robot in terms of the categories room, doorway, corridor, and junction.
There exist several robust techniques to compute this spatial feature for robots equipped
with laser scanners [33, 68] or vision systems [66, 85]. For an efficient representation of
the state-action pairs in the learning procedure, we divide the space of state-action pairs
into bins.

9.2.2 Statistical Convergence Test

As mentioned in Section 3.6, in actor-critic reinforcement learning an actor generates
episodes following the policy π resulting from its Q-function, while a critic observes
the episodes and updates its own Q-function accordingly. Critic and actor switch roles
when the critic has observed enough episodes to learn the Q-function under the policy π
followed by the current actor. To test whether the critic is already confident of its estimated
Q-function, our approach applies a statistical convergence test after each episode.

118 Chapter 9. Landmark Deployment to Foster Data Association in SLAM

As stated in Section 3.6, the estimated Q-function is defined as

Q̂π(s, a) =
1

nF

∑
e∈F(s,a)

Re
first(s, a) , (9.8)

where F(s, a) = {e | (s, a) ∈ e}, nF = |F(s, a)|, and Re
first(s, a) is the return at the

first occurrence of (s, a) in episode e. Since the policy π observed by one critic is not
changed in between the episodes, the estimated Q-function is computed using independent
and identically distributed (i.i.d.) samples from the same policy. Therefore, given the
definition of the estimator Q̂π(s, a) in Equation (9.8), its variance can be estimated as

S2 =

∑
e

(
Re

first(s, a)− Q̂π(s, a)
)2

nF − 1
. (9.9)

Student’s t-distribution has been proven to describe the mean of a number of i.i.d. samples
well in practice, even if the estimated quantity does not necessarily follow a normal
distribution (see,e. g.,[75]). Under this assumption, we know that the value Qπ(s, a) that
we estimate lies in the interval[

Q̂π(s, a)−

√
S2

nF
tnF−1,α2 , Q̂

π(s, a) +

√
S2

nF
tnF−1,α2

]
(9.10)

with confidence 1− α. Here, tnF−1,α2 is the (1− α
2
)-quantile of Student’s t-distribution

with nF − 1 degrees of freedom. Once the confidence interval of the critic’s estimate
indicates convergence for all observed state-action pairs (s, a), the critic becomes actor,
and a new critic is initialized.

9.3 Experimental Evaluation

We evaluated the performance of our approach both in simulation and on a real robot.
In the experiments, we considered a robot that is equipped with a device for deploying
five artificial landmarks, a noisy odometer, and a noisy landmark detection sensor. The
landmark detection sensor receives noisy readings of the relative positions of the (com-
pletely indistinguishable) environment features and of the deployed uniquely identifiable
landmarks. In the simulated learning phase, we initialized the robot in each episode at a
random pose and let it perform randomly sampled navigation tasks until its battery was
empty. We applied a graph-based approach to SLAM using the framework proposed in
[61] and a nearest neighbor filter to compute the data associations.

9.3.1 Data Association Using the Learned Policies

In the first set of simulation experiments, we evaluated the data association performance of
the policies learned by our approach. In this and the following experiments, we simulated

9.3. Experimental Evaluation 119

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●
●●

●●

●

●

●
●

●

● ●

Figure 9.1: Estimated landmark positions (blue circles) and robot path (gray line) for a simulated
robot traveling through a Manhattan-like world with data associations calculated without the use
of deployed markers (left) and with the uniquely identifiable markers (red triangles) deployed by
our approach (right).

the robot’s landmark detection sensor with a circular field of view with radius 2 m and
applied a deterministic spatial feature detection. We compared our learned policies
to four naive approaches, namely equidistant, which deploys the artificial landmarks
equidistantly in time, random, which deploys the markers at random time steps, always,
which deploys landmarks at every time step until all markers are deployed, and never,
which never deploys any landmarks, and to a heuristic in the sense of Kleiner et al. [50],
named density. This heuristic computes the obstacle density to the left and to the right of
the robot from a simulated laser scan by applying kernel density estimation. Likewise,
it computes the density of the already deployed landmarks. Based on these densities, it
decides whether to drop a landmark. We used scenario-specific hand tuned parameters to
optimize the performance of this heuristic.

We evaluated every approach in 100 randomly sampled simulated runs in a 6× 6-row
Manhattan-like environment with 96 non-distinguishable environment features. One
sample run of the simulated robot through this environment can be seen in Figure 9.1.
In this scenario, the simulated robot is able to discern the spatial features “corridor”
and “junction”. For evaluating the quality of the different approaches, we calculated the
data association error E introduced in Section 9.1.1 and the relative translational and
rotational errors of the pose estimates of the SLAM approach according to the framework
for evaluating SLAM described by Burgard et al. [18]. Figure 9.2 shows the errors for
the evaluated approaches. We additionally performed two-sided t-tests, which revealed
that our approach significantly outperforms all other approaches in all errors on a 95%
confidence level.

120 Chapter 9. Landmark Deployment to Foster Data Association in SLAM

Error E
0

5
10

20

Our approach Density Always Equidistant Random Never

Translational error

0
10

20
30

40

Rotational error

0.
0

0.
1

0.
2

0.
3

Figure 9.2: The incorrectly estimated feature correspondences E and the translational and rota-
tional pose estimation errors (in m and rad, respectively), averaged over 100 sample runs in a
Manhattan-like environment.

Intel A Intel B FR079 A FR079 B FR106 Average
Our approach 4.30 0.45 2.62 2.39 5.29 3.01

Density 4.95 0.53 3.03 2.74 7.99 3.85

Always 6.18 1.36 5.75 4.87 10.30 5.69

Equidistant 7.09 1.80 7.12 5.84 10.59 6.49

Random 6.65 4.93 7.68 7.34 13.07 7.93

Never 14.32 10.24 15.58 14.64 26.67 16.29

Table 9.1: Values of the error E in the cross-validation in five environments

9.3.2 Generalization to New Environments

We performed a five-fold cross validation in simulation to evaluate how well the policies
computed by our approach generalize to environments that the robot has not seen pre-
viously. To do so, we considered five environments: FR079 A and FR079 B, depicted
in Figure 9.5, and Intel A, Intel B, and FR 106, depicted in Figure 9.3. In the simulation,
we placed environment features at randomly sampled locations in the maps. In each fold
of the cross validation, we learned a policy in four of the five environments and then
evaluated its performance on the excluded one.

The resulting values of E are given in the first row of Table 9.1. In the other rows
of the table, the E values for the heuristics described in Section 9.3.1 are stated for
comparison. As can be seen in the table, the policies learned by our approach yield the
lowest error values on average and for every single environment. This suggests that the
policies computed by our approach generalize well to new environments.

9.3. Experimental Evaluation 121

Intel A
3 m

Intel B

FR106

2 m

Figure 9.3: Three of the environments used for cross-validation. Intel Research Lab (left) and
FR106 dataset (right). The deployed landmarks (red triangles) in the plots correspond to sample
executions of the learned policies. The environments are labeled with spatial features used for
learning: corridors (yellow), doorways (orange) and rooms (blue).

9.3.3 Adaptation to the Sensor Range

In this section, we evaluate how the policies computed by our learning approach adapt to
the range of the landmark detector. We learned landmark deployment policies for three
simulated robots with the sensor ranges 2 m, 1 m, and 0.5 m in the FR106 environment
also used in the previous experiments. Figure 9.4 presents intensity plots of the resulting
policies. As can be seen in the figure, the robot with sensor range 0.5 m strongly prefers
deploying landmarks in doorways, probably because landmarks deployed in narrow
passages are more likely to be observed later on, even with the small sensor range. The
figure also shows that with an increasing sensor range, the decision to deploy a landmark
is stronger influenced by the distance to the nearest landmark and less by the spatial
feature.

9.3.4 Experiments with a Real Robot

To evaluate the performance of our approach in practice, we applied a policy learned by
our approach on the robot depicted in Figure 9.5, executing randomly sampled paths in
the environment shown on the right hand side of the figure. The learning phase was done
in simulation and required 2, 800 episodes to converge, which took 37.48 minutes in our
multi-threaded implementation on an Intel R© CoreTM i7 2.8GHz.

The robot is equipped with a SICK RFI641 RFID reader with a circular field of
view with radius 0.9 m mounted at the front and a custom made device for dropping
RFID tags mounted in the back. To model the RFID sensor readings, we used a two-

122 Chapter 9. Landmark Deployment to Foster Data Association in SLAM

0
2

5
10

co
rr

id
or

do
or

w
ay

ro
om

0
2

5
10

co
rr

id
or

do
or

w
ay

ro
om

0
2

5
10

co
rr

id
or

do
or

w
ay

ro
om

Figure 9.4: The policies learned by our approach when using sensor ranges of 2m (left), 1m
(middle), and 0.5m (right), where red corresponds to p(drop | s) = 1 and white corresponds to
p(drop | s) = 0. The ordinate is the distance to the nearest deployed landmark and the abscissa is
the spatial feature. The values are averaged over the battery level and the number of remaining
landmarks. The probability in the lower right corner cell is not converged due to the seldom
occurrences of this situation.

Error E Translational error Rotational error
Our approach 19.30 0.88 m 0.09 rad

Never 23.10 3.68 m 0.24 rad

Table 9.2: Quantitative results of the real-world experiments

dimensional Gaussian distribution that we cut off at 0.9 m and whose covariance we
calibrated according to the actual measurements of the device. Additionally, the robot
is equipped with a SICK S300 laser range finder with a field of view of 270◦, which
we used for computing the spatial features. To do so, we applied a straightforward
heuristic: it considers local minima in the scans for extracting door posts and long parallel
lines for finding corridor walls. Note that applying a more sophisticated classification
technique [33, 68] or a more sophisticated sensor model [43] would possibly even further
improve our results. In the experiments, we used 70 RFID tags placed at randomly
selected positions as environment features. The uniquely identifiable IDs of these tags,
which the robot’s SLAM system did not use, make it possible to precisely evaluate the
data association error E. Furthermore, we evaluated the same relative translational and
rotational errors of the SLAM system that we considered in the first set of simulation
experiments.

Table 9.2 shows the results averaged over ten runs of the robot. It compares the
performance of the estimation of the SLAM graph considering the deployed landmarks
against considering only the environment features. As can be seen in the table, the
moderate reduction of the error E results in a large improvement of the pose estimation
errors. The results of this experiment show that our approach is applicable in practice and

9.3. Experimental Evaluation 123

FR079 A

2 m

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

FR079 B
Our approach

FR079 A

2 m

●
●●● ●

●

●

●●

●
● ●

●
●●

●

●●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

FR079 B
Never

Figure 9.5: The environment used for the experiments with the real robot and for cross-validation.
Upper left: Deployed landmarks (red triangles) after one sample execution of our policy in the
cross-validation experiment. Upper right: One of the runs of the real robot. Depicted are the
estimated path (gray lines), the estimated positions of the environment features (blue dots), and
the estimated positions of the deployed landmarks (red triangles). Lower right: Estimation for
the same run without integrating the observations of the deployed landmarks. The environment
is labeled with the spatial features used for learning: corridors (yellow), doorways (orange) and
rooms (blue). The picture shows the Pioneer P3-DX robot used in the experiments.

124 Chapter 9. Landmark Deployment to Foster Data Association in SLAM

that for the very noisy distance readings of the RFID sensor, the landmarks deployed by
our approach especially help reducing the pose estimation errors.

9.4 Discussion

In this chapter, we presented an approach to learn a policy that allows a mobile robot
to effectively deploy uniquely identifiable artificial landmarks in order to minimize
data association errors in SLAM. Our approach is based on actor-critic Monte Carlo
reinforcement learning and uses features that support transferring the learned policies
to environments not seen before. The method is designed so that it can be seamlessly
integrated into any robotic system without interfering with the actual navigation task of
the robot. Extensive experiments, both in simulation and on a real robot, demonstrate that
our deployment approach results in significantly more accurate pose estimates than those
obtained with different heuristics.

Chapter 10

Discussion

Mobile robots that can observe uniquely identifiable landmarks in their environment can
use these observations, depending on their tasks, to improve their localization estimate,
their navigation behavior, or their performance when building a map of the environment.

In this thesis, we introduced several novel approaches for placing minimum sets of
uniquely identifiable artificial landmarks in the environment of a mobile robot in order to
achieve a certain quality in the task execution of the robot.

We introduced a landmark placement approach for optimizing the expected localization
performance of a mobile robot that repeatedly travels along the same pre-defined trajectory.
In this context, we formulated landmark placement as the optimization problem of
maximizing the expected mutual information between the states of the robot and the
observations of the landmarks. We proved that this problem is NP-hard. Using the
concept of submodularity, we derived a tight constant-factor bound on the error of our
polynomial time approximation algorithm. For estimating the required mutual information
values, our algorithm uses Monte Carlo simulations, which can deal with arbitrary system
dynamics and control modes of the robot.

Furthermore, we presented a novel efficient method for estimating the expected naviga-
tion performance for a specific type of robotic system. This method is significantly faster
than the Monte Carlo simulation applied in the above-mentioned approach. Our approach
assumes that the robot selects its control commands with an LQR controller. It linearizes
the model of the whole navigation cycle, including control, motion, and observation,
which makes it possible to recursively calculate the expected distributions of the robot’s
deviation from its desired trajectory. Our method exploits the structure of the stochastic
dependencies in the navigation framework, which allows us to reduce the dimensionality
of the matrix multiplications in the calculation of the expected distributions by half,
compared to the state of the art.

We applied this efficient calculation scheme in a second approach to trajectory-
dependent landmark placement. Consequently, this approach also assumes that the
robot is steered by an LQR controller. Instead of optimizing the localization performance
of the robot, it directly optimizes the robot’s navigation performance. Concretely, this

126 Chapter 10. Discussion

method aims at placing a minimum configuration of landmarks that guarantees a bound on
the maximum deviation of the robot from its planned trajectory with high confidence. It
uses an incremental landmark placement algorithm that maximizes the distance between
two consecutively observed landmarks. The guaranteed bound on the maximum deviation
of the robot that comes with the landmark sets placed by this approach is of high practical
importance, for example, for the safety approval of mobile robots. Furthermore, the
efficiency resulting from the efficient recursive calculation of the expected navigation
performance makes it possible to compute landmark placements even for large-scale
scenarios in reasonable time.

Some types of landmarks, like colored marks painted on walls, can wear out over time,
and in many practical applications, the robot needs to share its environment with other
vehicles that can block its line of sight to a placed landmark. For robustly handling such
situations, we introduced another novel method for landmark placement, which builds
on and extends the above-mentioned approach. This method evaluates the quality of a
landmark position independently of the observability of all other placed landmarks by
conservatively approximating the landmark observability. This allows us to apply an
optimization procedure that explicitly takes into account that a given number of the placed
landmarks can be missing. In the construction of this efficient optimization procedure,
we use techniques from submodular function optimization.

In contrast to the above-described methods, which aim at preparing a known environ-
ment with artificial landmarks, landmark placement for robots traveling through unknown
and unmapped environments requires different approaches. In this situation, we consider
a mobile robot that is equipped with a device to deploy artificial landmarks itself. We
presented an approach to learning a policy that allows the robot to effectively deploy a
limited number of uniquely identifiable artificial landmarks in order to minimize data
association errors in SLAM. Our approach is based on actor-critic Monte Carlo reinforce-
ment learning and uses features that support transferring the learned policies to previously
not observed environments. The method is designed so that it can be seamlessly integrated
into any robotic system without interfering with the actual navigation task of the robot.

In summary, the key contributions of this thesis are approaches to placing artificial
landmarks along the desired trajectory of a mobile robot and an approach to learning
a policy for deciding when to autonomously deploy artificial landmarks with a mobile
robot. In the landmark placement approaches, we presented solutions for handling
the combinatorial structure of the placement problems, for efficiently evaluating the
expected probability distributions of the states of the robot, and for robustly dealing
with unpredictably missing landmarks. All our approaches are customizable to different
types of robots and explicitly take into account the specifications of the applied robots
including probabilistic models of the errors occurring in the motion execution and the
sensor observations of the robots. As a result, our landmark placements and landmark

127

deployment policies are especially suited for the considered specific robots and are
robust to the noise and errors occurring during operation of the robots. We evaluated all
presented methods in extensive experiments, both in simulation and with real robots. The
experimental results demonstrate that our approaches outperform baseline methods and
that they work well on real robots. We believe that the presented landmark placement
methods are a useful tool for guaranteeing a safe and reliable operation of mobile robots
in practice, especially in industrial settings.

Future Work

Even though the approaches presented in this thesis cover the topic of landmark placement
from several perspectives and result in a demonstrated reliable operation of mobile robots,
there are still extensions that could be addressed in future research.

For example, our approaches for landmark placement optimize the configuration of
landmarks along a given desired trajectory. However, in some applications, the trajectories
that the robot shall execute might change often or they might even be unknown at the time
of landmark placement. For these applications, it would be beneficial to have a landmark
placement method that guarantees a reliable localization of the robot at any arbitrary
position in the environment. Since the localization quality of the robot at a certain
moment depends not only on the landmarks that the robot observes in this moment, but
also on the landmarks that the robot has observed earlier, it would be necessary to make
approximations or assumptions in order to extend our methods to such an application.

In the autonomous landmark deployment method, one could use the spatial features
that the robot observes not only during the reinforcement learning process but also directly
for data association. We believe that this is quite helpful as observations made at positions
with the same spatial feature are more likely to correspond to the same landmark than
observations made at positions with different spatial features.

Our methods to landmark placement are also applicable to the related problem of
placing a sensor network in the environment of a vehicle for tracking it. For example,
the approach for improving the localization performance of a mobile robot could also
be applied to the problem of low cost surveillance of dangerous street crossings. In this
scenario, our method could be adjusted to select a minimum number of positions in the
vicinity of the street crossing at which it would be necessary to install a sensor in order to
accurately track vehicles passing the street crossing on all trajectories that are allowed by
traffic regulations.

Appendix

On the Properties of Covariance
Reduction

In this appendix, we present a theoretical evaluation of covariance reduction, a function
that we use in our robust landmark placement approach presented in Chapter 7 to describe
the quality of landmarks. Concretely, we consider the function

Ft(A) = tr(S∅t)− tr(SAt) , (A.1)

which describes the reduction of the trace of the covariance of the expected distribution
of the robot’s deviation from its desired trajectory resulting from observing the landmark
setA. Here, SAt is the covariance at time t in the linearized system considered in Chapter 7
assuming that the robot can observe the landmarks in A and S∅t is the same covariance,
but for making no landmark observations at all.

In Section 7.3, we show that our landmark placement algorithm is guaranteed to yield
near-optimal solutions if Ft is submodular, monotonically increasing, and Ft(∅) = 0.
However, the experiments presented in that section produce counter-examples disproving
the submodularity of Ft. In our experiments, Ft violated the submodularity property only
in a few examples and then only slightly. Therefore, it seems reasonable that Ft could be
close to submodular in terms of the so-called submodularity ratio introduced by Das and
Kempe [22].

Like us, Das and Kempe [21, 22] investigated covariance reduction in linear systems.
In [21], they showed that for a special kind of linear system, covariance reduction
is submodular. In [22], they considered covariance reduction for a broader class of
linear systems. They introduced the submodularity ratio, which describes how close to
submodular the behavior of a set function is. Furthermore, they relaxed the known near-
optimality bounds for submodular functions to receive weaker near-optimality bounds for
functions that are only close to submodular in terms of the submodularity ratio.

However, the proof in [22] of the weaker near-optimality bounds for functions with a
good submodularity ratio essentially relies on the monotonicity of the considered function,
and our objective function Ft is in general not monotonically increasing. Even though

130 Appendix

this means that the landmark placement algorithm from Chapter 7 lacks a theoretical
guarantee for the quality of its approximation, the experiments in Sections 7.4 and 8.2
show that it works well in practice and outperforms baseline algorithms. In the following,
we prove that Ft is in general not monotonically increasing and that there are no rea-
sonable restrictions of the landmark placement problem that would lead to a guaranteed
monotonicity of Ft. Since the following proofs apply several results from Chapter 5
concerning the linearized system, we refer the reader to that chapter for the introduction
of the general notation that we use here.

Let At−1 be a set of landmark locations observable only from poses that the robot
reaches at time t − 1 or later. Throughout the rest of this appendix, we only consider
observations of this landmark set and use the shorthand notations

St := S
At−1

t and St := S
At−1

t (A.2)

for the covariance and the predicted covariance of the expected distribution resulting
from placing landmarks in At−1. Also for the other Matrices Σt, Mt, Ht, and Kt that
depend on the set of considered landmarks, we always implicitly consider the landmark
set At−1. Only when referring to the covariance matrices resulting from making no
landmark observations at all, we use the notations S∅t , Σ∅t , and M∅

t .

Lemma A.1. For the landmark set At−1, the values of the objective function from
Equation (A.1) for the time steps t− 1 and t are

Ft−1(At−1) = 0 (A.3)

and

Ft(At−1)
= tr

(
AtKt−1Ht−1Σt−1A

T
t − (At +BtLt−1)Kt−1Ht−1Σt−1(A

T
t + LTt−1B

T
t)
)
. (A.4)

Equation (A.3) states that the landmark observations at time t− 1 do not reduce the
trace of the expected covariance St−1 of the deviation of the robot at that time step. As
can be seen from the following proof, this is due to the fact that the reduction of the
posterior covariance Σt−1 of xt−1 resulting from the landmark observations is canceled
out by the increase of the expected covariance Mt−1 of µt−1. This is an intuitive result, as
making an observation reduces the localization uncertainty of the robot, but also makes
the localization estimate µt−1 jump. This jump results in an increased uncertainty of the
expected distribution of the localization estimate µt−1, which itself can be considered as
a random variable. In the next time step, however, the robot executes a control command
based on the refined localization estimate, which effects St as shown in Equation (A.4).

131

Proof of Lemma A.1. Since t− 1 is by definition the first time step at which landmarks
from At−1 are observable, it holds that

S∅t−1 = St−1 . (A.5)

Theorem 5.1 from Chapter 5 states that St = Σt + Mt. Applying this theorem and
Equation (A.5) on the definition of Ft−1 and then replacing Σt−1 and Mt−1 according
to their recursive update rules stated in Equations (5.18) to (5.22) and Lemma 5.3,
respectively, yields

Ft−1(At−1) (A.6)

= tr
(
Σt−1 +M t−1 − (Σt−1 +Mt−1)

)
(A.7)

= tr
(
Σt−1 +M t−1 − (Σt−1 −Kt−1Ht−1Σt−1 +M t−1 +Kt−1Ht−1Σt−1)

)
(A.8)

= 0 , (A.9)

which proves Equation (A.3).
For proving Equation (A.4), we consider the two parts St and S∅t of Ft(At−1) individu-

ally. With the same argument as the one used in Equation (A.5), we know that S∅t equals
a version of St−1 that is once updated according to the motion model of the robot, leaving
out the update steps for the observations at times t− 1 and t. Using Theorem 5.1 and the
same recursive update rules for Σ∅t and M∅

t as in the above equations leads to

S∅t = Σ∅t +M∅
t (A.10)

= Σ
∅
t +M

∅
t (A.11)

= AtΣ
∅
t−1A

T
t + VtQtV

T
t + (At +BtLt−1)M

∅
t−1(A

T
t + LTt−1B

T
t) (A.12)

= AtΣt−1A
T
t + VtQtV

T
t + (At +BtLt−1)M t−1(A

T
t + LTt−1B

T
t) . (A.13)

Next, we express St in terms of the covariance matrices at time t−1, using the same update
rules as above, but this time also with the observation updates for the time steps t − 1

and t. As the steps of this derivation are similar to the equations above, we just state the
final result:

St = At(Σt−1 −Kt−1Ht−1Σt−1)A
T
t + VtQtV

T
t (A.14)

+ (At +BtLt−1)(M t−1 +Kt−1Ht−1Σt−1)(A
T
t + LTt−1B

T
t) . (A.15)

Plugging Equations (A.13) and (A.15) into the definition of Ft from Equation (A.1)
finishes the proof:

Ft(At−1) (A.16)

= tr
(
AtΣt−1A

T
t + VtQtV

T
t + (At +BtLt−1)M t−1(A

T
t + LTt−1B

T
t)
)

(A.17)

− tr
(
At(Σt−1 −Kt−1Ht−1Σt−1)A

T
t + VtQtV

T
t (A.18)

+ (At +BtLt−1)(M t−1 +Kt−1Ht−1Σt−1)(A
T
t + LTt−1B

T
t)
)

(A.19)

= tr
(
AtKt−1Ht−1Σt−1A

T
t − (At +BtLt−1)Kt−1Ht−1Σt−1(A

T
t + LTt−1B

T
t)
)
. (A.20)

132 Appendix

Using this lemma, we can show that Ft is in general not monotonically increasing. This
makes it infeasible to adapt the proof of Theorem 3.2 in [22] to prove that optimizing Ft
greedily results in near-optimal landmark sets.

Remark A.1. In general, Ft is not monotonically increasing. There are no reason-
able restrictions of the landmark placement problem that would lead to a guaranteed
monotonicity of Ft.

Derivation of Remark A.1. From the definition of Ft in Equation (A.1) we know that

Ft(∅) = 0 . (A.21)

In the following, we show that in general, Ft(At−1) � 0, and discuss the restrictions of the
structure of the occurring matrices that would be necessary to guarantee that Ft(At−1) ≥ 0.
Because of Equation (A.21), this is equivalent to the statement in Remark A.1.

For the simplest instance of an LQR controller with look-ahead 1 (t′ = t in Equa-
tion (5.2)), the feedback matrix Lt−1 can be computed via Equation (5.26) as

Lt−1 = −(BT
t CBt +D)−1BT

t CAt , (A.22)

where C andD are the constant weight matrices of the LQR controller. With this equation,
we have

At +BtLt−1 (A.23)

= At −Bt(B
T
t CBt +D)−1BT

t CAt (A.24)

=
(
I −Bt(B

T
t CBt +D)−1BT

t C︸ ︷︷ ︸
=:X

)
At (A.25)

=
(
I −X

)
At , (A.26)

where I is the identity matrix. Plugging this into Equation A.4 yields

Ft(At−1) (A.27)

= tr(AtKt−1Ht−1Σt−1A
T
t︸ ︷︷ ︸

=:Y

−(I −X)AtKt−1Ht−1Σt−1A
T
t︸ ︷︷ ︸

=:Y

(I −XT)) (A.28)

= tr(Y − (I −X)Y (I −XT)) . (A.29)

As discussed in the beginning of this proof, Ft(At−1) ≥ 0 would be a necessary (but not
a sufficient) precondition for Ft to be monotonically increasing. In the following, we
discuss the restrictions on the matrices in Equation (A.29) that would be necessary to
guarantee that Ft(At−1) ≥ 0.

133

Depending on the initial covariance Σ0 and the other matrices from which Y is recur-
sively created, Y can be any symmetric positive definite matrix. In particular, Y does not
need to be diagonally dominant. Therefore, the only possibility to guarantee that for all
possible Y , the trace of (I −X)Y (I −XT) is smaller than the trace of Y itself would be
to guarantee that X is a diagonal matrix whose diagonal elements are all greater or equal
zero. Now consider the simplest case, in which C and D are diagonal matrices whose
diagonal entries are all the same (which allows for them to commute with every other
matrix) and Bt is an invertible square matrix. Even in this case, for X to be diagonal, it
would be necessary that BtB

T
t or BT

t Bt is a diagonal matrix, which is not true for almost
all reasonable motion models. The other possibility to ensure that X is diagonal would
be to choose C and D differently for every time step, to cancel out the different kinds of
non-diagonal Bt matrices. This is obviously also not a reasonable restriction.

In Chapter 4, we showed that the objective function considered in that chapter is not
submodular in the case of autonomous controls. Note that the argument from Chapter 4 is
not valid for the objective function from Chapter 7, which we discussed in this appendix.
For the objective function from Chapter 4, the submodularity property in the autonomous
control case does not hold due to the dependency of the observability of a landmark
on the observations of other landmarks. We give a detailed description of this fact
in Section 4.3.2. In contrast to that, in the above discussion and in Chapter 7, the
observability of landmarks poses no problem due to the conservative approximation
presented in Section 7.2.1. Still, the reason that Ft is not generally monotonically
increasing lies in the structure of the autonomous control mode. As described in the
above derivation, the reason is the structure of the Jacobian Bt of the motion model that
appears in the definition of the feedback matrix Lt−1 of the autonomous LQR controller
(Equation (A.22)).

List of Figures

3.1 Dynamic Bayesian network . 21

4.1 Extended Bayesian network for landmark placement 37
4.2 Comparison between greedy and optimal landmark placement 49
4.3 Mutual information values for the four landmark sets from Figure 4.2 . 50
4.4 Four landmark placements for autonomous controls 51
4.5 Real-world experiment: landmark placement and picture 53

5.1 Visualization of the difference between expected and posterior distributions 58
5.2 Trajectories used in the runtime comparison 67
5.3 Results of the runtime comparison . 68

6.1 Visualization of the conservative approximation of the deviation guarantee 74
6.2 Landmark placements for different sensor models 81
6.3 Landmark placements for four sample trajectories 82
6.4 Picture of the setup for the experiments with the e-puck robot 85
6.5 Landmark placements for large-scale indoor environments 86
6.6 Landmark placement for the KARIS robot 88
6.7 Picture of the KARIS robot operating in its experimental environment . 88
6.8 Histogram of the deviation of the KARIS robot 89

7.1 Visualization of the conservative approximation of landmark observability 94
7.2 Landmark placements for different robustness requirements 100
7.3 Example for the trade-off between robustness and accuracy 101
7.4 Picture of the experimental setup in the real-world experiment 101
7.5 Landmarks for different robustness requirements for the real robot . . . 102
7.6 Traces of the empirical expected distributions for the real robot 103

8.1 Visualization of the localization and the navigation accuracy 106
8.2 Trajectories used for the comparison of our approaches 109
8.3 Results of the comparison of our approaches 112

9.1 Estimated landmark positions in a Manhattan-like world 119
9.2 Results of the experiments in the Manhattan-like world 120

136 List of Figures

9.3 Environments used for cross-validation 121
9.4 Learned policies for different sensor ranges 122
9.5 Real-world experiment: estimated landmark positions and picture . . . 123

List of Tables

4.1 Quantitative results of the comparison to baseline approaches 52
4.2 Quantitative results in simulation and reality 52

6.1 Numbers of placed landmarks and results of the Monte Carlo simulations 83
6.2 Comparison of landmark placement spaces 87

8.1 Runtime comparison for landmark placement 110

9.1 Values of the error E in the cross-validation in five environments . . . 120
9.2 Quantitative results of the real-world experiments 122

List of Algorithms

1 Bayes filter update . 21
2 Kalman filter update . 22
3 EKF update . 24
4 Greedy algorithm for set function maximization 27

5 Greedy landmark placement for entropy reduction 38

6 Recursive calculation of the covariances of the expected distributions . . 65

7 Incremental landmark placement for bounding the deviation guarantee . 77

8 Iterative landmark placement robust to obstructions from view 96

Bibliography

[1] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions with Formu-
las, Graphs, and Mathematical Tables. Dover, 1964.

[2] Y. Bar-Shalom, T. Kirubarajan, and X. Li. Estimation with Applications to Tracking
and Navigation. John Wiley & Sons, Inc., 2002.

[3] M. Batalin and G. Sukhatme. Efficient exploration without localization. In Proc. of
the IEEE Int. Conf. on Robotics & Automation (ICRA), 2003.

[4] M. Beinhofer and W. Burgard. Efficient estimation of expected distributions for
mobile robot navigation. In Proc. of the Austrian Robotics Workshop (ARW), 2014.

[5] M. Beinhofer, J. Müller, and W. Burgard. Landmark placement for accurate mobile
robot navigation. In Proc. of the Europ. Conf. on Mobile Robots (ECMR), 2011.

[6] M. Beinhofer, J. Müller, and W. Burgard. Near-optimal landmark selection for
mobile robot navigation. In Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), 2011.

[7] M. Beinhofer, H. Kretzschmar, and W. Burgard. Deploying artificial landmarks to
foster data association in simultaneous localization and mapping. In Proc. of the
IEEE Int. Conf. on Robotics & Automation (ICRA), 2013.

[8] M. Beinhofer, J. Müller, and W. Burgard. Effective landmark placement for
accurate and reliable mobile robot navigation. Robotics and Autonomous Systems
(RAS), 61(10):1060 – 1069, 2013.

[9] M. Beinhofer, J. Müller, A. Krause, and W. Burgard. Robust landmark selection
for mobile robot navigation. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), 2013.

[10] M. Bender, A. Fernãdez, D. Ron, A. Sahai, and S. Vadhan. The power of a pebble:
Exploring and mapping directed graphs. Information and Computation, 176(1):
1–21, 2002.

142 Bibliography

[11] J. van den Berg, P. Abbeel, and K. Goldberg. LQG-MP: Optimized path planning
for robots with motion uncertainty and imperfect state information. In Proc. of
Robotics: Science and Systems (RSS), 2010.

[12] J. van den Berg, S. Patil, R. Alterovitz, P. Abbeel, and K. Goldberg. LQG-based
planning, sensing, and control of steerable needles. In Proc. of the Int. Workshop
on the Algorithmic Foundations of Robotics (WAFR), 2010.

[13] D. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, 3rd
edition, 2005.

[14] I. Białynicki-Birula and J. Mycielski. Uncertainty relations for information entropy
in wave mechanics. Communications in Mathematical Physics, 44(2):129–132,
1975.

[15] M. Billinghurst and H. Kato. Collaborative augmented reality. Communications of
the ACM, 45(7):64–70, 2002.

[16] C. Bishop. Pattern recognition and machine learning. Springer, 2007.

[17] M. Bosse, P. Newman, J. Leonard, M. Soika, W. Feiten, and S. Teller. An Atlas
framework for scalable mapping. In Proc. of the IEEE Int. Conf. on Robotics &
Automation (ICRA), 2003.

[18] W. Burgard, C. Stachniss, G. Grisetti, B. Steder, R. Kümmerle, C. Dornhege,
M. Ruhnke, A. Kleiner, and J. Tardós. A comparison of SLAM algorithms based
on a graph of relations. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), 2009.

[19] G. Casella and R. Berger. Statistical Inference. Duxbury Resource Center, 2001.

[20] T. Cover and J. Thomas. Elements of Information Theory. Wiley Interscience,
1991.

[21] A. Das and D. Kempe. Algorithms for subset selection in linear regression. In
Proc. of the ACM Symposium on Theory of Computing (STOC), 2008.

[22] A. Das and D. Kempe. Submodular meets spectral: Greedy algorithms for subset se-
lection, sparse approximation and dictionary selection. In Proc. of the Int. Conf. on
Machine Learning (ICML), 2011.

[23] A. Doucet, N. de Freitas, and N. Gordan. Sequential Monte-Carlo Methods in
Practice. Springer Verlag, 2001.

Bibliography 143

[24] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. Map validation and robot self-
location in a graph-like world. Robotics and Autonomous Systems, 22(2):159–178,
1997.

[25] H. Durrant-Whyte, D. Pagac, B. Rogers, M. Stevens, and G. Nelmes. Field and
service applications – an autonomous straddle carrier for movement of shipping
containers. IEEE Robotics & Automation Magazine, 14:14–23, 2007.

[26] W. Emara and M. Kantardzic. Efficient approximate semi-supervised support
vector machines through submodular optimization. In Proc. of the Int. Conf. on
Machine Learning and Applications (ICMLA), 2011.

[27] A. Ercan, D. Yang, A. El Gamal, and L. Guibas. Optimal placement and selection
of camera network nodes for target localization. In Proc. of the Int. Conf. on
Distributed Computing in Sensor Systems (DCSS), 2006.

[28] L. Erickson and S. LaValle. An art gallery approach to ensuring that landmarks
are distinguishable. In Proc. of Robotics: Science and Systems (RSS), 2011.

[29] L. Erickson and S. LaValle. Navigation among visually connected sets of par-
tially distinguishable landmarks. In Proc. of the IEEE Int. Conf. on Robotics &
Automation (ICRA), 2012.

[30] C. Estrada, J. Neira, and J. Tardos. Hierarchical SLAM: Real-time accurate
mapping of large environments. IEEE Trans. on Robotics, 21(4):588–596, 2005.

[31] U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM
(JACM), 45(4):634–652, 1998.

[32] M. Fisher, G. Nemhauser, and L. Wolsey. An analysis of approximations for
maximizing submodular set functions – II. In Polyhedral combinatorics, pages
73–87. Springer Verlag, 1978.

[33] S. Friedman, H. Pasula, and D. Fox. Voronoi random fields: Extracting topological
structure of indoor environments via place labeling. In Proc. of the Int. Conf. on
Artificial Intelligence (IJCAI), 2007.

[34] T. Fujito. Approximation algorithms for submodular set cover with applications.
IEICE Trans. on Information & Systems, 83(3):480–487, 2000.

[35] A. Gelb. Applied optimal estimation. MIT Press, 1974.

[36] G. Golub and C. van Loan. Matrix computations. Johns Hopkins University Press,
1996.

144 Bibliography

[37] G. Grisetti, D. Rizzini, C. Stachniss, E. Olson, and W. Burgard. Online constraint
network optimization for efficient maximum likelihood map learning. In Proc. of
the IEEE Int. Conf. on Robotics & Automation (ICRA), 2008.

[38] G. Grisetti, C. Stachniss, and W. Burgard. Non-linear constraint network optimiza-
tion for efficient map learning. IEEE Trans. on Intelligent Transportation Systems,
10(3):428–439, 2009.

[39] J. Hess, M. Beinhofer, D. Kuhner, P. Ruchti, and W. Burgard. Poisson-driven dirt
maps for efficient robot cleaning. In Proc. of the IEEE Int. Conf. on Robotics &
Automation (ICRA), 2013.

[40] J. Hess, M. Beinhofer, and W. Burgard. A probabilistic approach to high-confidence
cleaning guarantees for low-cost cleaning robots. In Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2014.

[41] G. Hollinger, B. Englot, F. Hover, U. Mitra, and G. Sukhatme. Uncertainty-driven
view planning for underwater inspection. In Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2012.

[42] Z. Jiang, G. Zhang, and Larry S. Davis. Submodular dictionary learning for sparse
coding. In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2012.

[43] D. Joho, C. Plagemann, and W. Burgard. Modeling RFID signal strength and tag
detection for localization and mapping. In Proc. of the IEEE Int. Conf. on Robotics
& Automation (ICRA), 2009.

[44] D. Jourdan and N. Roy. Optimal sensor placement for agent localization. ACM
Trans. on Sensor Networks, 4(3):1–40, 2008.

[45] S. Julier, J. Uhlmann, and H. Durrant-Whyte. A new approach for filtering
nonlinear systems. In Proc. of the American Control Conference, 1995.

[46] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Incremental smoothing and
mapping. IEEE Trans. on Robotics, 24(6):1365–1378, 2008.

[47] O. Kallenberg. Foundations of modern probability. Springer Verlag, 2002.

[48] R. Kalman. A new approach to linear filtering and prediction problems. Trans. of
the ASME - Journal of Basic Engineering, (82 (Series D)):35–45, 1960.

[49] G. Kim, E. Xing, L. Fei-Fei, and T. Kanade. Distributed cosegmentation via
submodular optimization on anisotropic diffusion. In Proc. of the Int. Conf. on
Computer Vision (ICCV), 2011.

Bibliography 145

[50] A. Kleiner, J. Prediger, and B. Nebel. RFID technology-based exploration and
SLAM for search and rescue. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), 2006.

[51] A. Kleiner, D. Sun, and D. Meyer-Delius. ARMO – adaptive road map optimization
for large robot teams. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), 2011.

[52] A. Krause and D. Golovin. Submodular function maximization. In Tractability:
Practical Approaches to Hard Problems. Cambridge University Press, 2014.

[53] A. Krause and C. Guestrin. Near-optimal nonmyopic value of information in
graphical models. In Proc. of the Conf. on Uncertainty in Artificial Intelligence
(UAI), 2005.

[54] A. Krause and C. Guestrin. Optimal nonmyopic value of information in graphical
models – efficient algorithms and theoretical limits. In Proc. of the Int. Conf. on
Artificial Intelligence (IJCAI), 2005.

[55] A. Krause and C. Guestrin. Optimal value of information in graphical models.
Journal of Artificial Intelligence Research (JAIR), 35:557–591, 2009.

[56] A. Krause, J. Leskovec, C. Guestrin, J. VanBriesen, and C. Faloutsos. Efficient
sensor placement optimization for securing large water distribution networks.
Journal of Water Resources Planning and Management, 134(6):516–526, 2008.

[57] A. Krause, B. McMahan, C. Guestrin, and A. Gupta. Robust submodular obser-
vation selection. Journal of Machine Learning Research (JMLR), 9:2761–2801,
2008.

[58] A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor placements in gaussian
processes: Theory, efficient algorithms and empirical studies. Journal of Machine
Learning Research (JMLR), 9:235–284, 2008.

[59] A. Krause, R. Rajagopal, A. Gupta, and C. Guestrin. Simultaneous placement
and scheduling of sensors. In Proc. of the ACM/IEEE Int. Conf. on Information
Processing in Sensor Networks (IPSN), 2009.

[60] A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg. Robust sensor placements
at informative and communication-efficient locations. ACM Trans. on Sensor
Networks (TOSN), 7(4):31:1–31:33, 2011.

[61] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. g2o: A
general framework for graph optimization. In Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2011.

146 Bibliography

[62] Qiao L., R. Negi, and M. Ilić. Phasor measurement units placement for power
system state estimation: A greedy approach. In Proc. of the IEEE Power and
Energy Society General Meeting, 2011.

[63] J. Leonard and H. Durrant-Whyte. Mobile robot localization by tracking geometric
beacons. IEEE Trans. on Robotics and Automation, 7(3):376–382, 1991.

[64] J. Leonard and H. Durrant-Whyte. Simultaneous map building and localization for
an autonomous mobile robot. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), 1991.

[65] R. Lerner, E. Rivlin, and I. Shimshoni. Landmark selection for task-oriented
navigation. IEEE Trans. on Robotics, 23(3):494–505, 2007.

[66] J. Luo, A. Pronobis, B. Caputo, and P. Jensfelt. Incremental learning for place
recognition in dynamic environments. In Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2007.

[67] Ning M., M. Bouchard, and R. Goubran. Speech enhancement using a masking
threshold constrained kalman filter and its heuristic implementations. IEEE Trans.
on Audio, Speech, and Language Processing, 14(1):19–32, 2006.

[68] O. Martinez-Mozos, R. Triebel, P. Jensfelt, A. Rottmann, and W. Burgard. Super-
vised semantic labeling of places using information extracted from sensor data.
Robotics and Autonomous Systems, 55(5):391–402, 2007.

[69] F. Mastrogiovanni, A. Sgorbissa, and R. Zaccaria. How the location of the range
sensor affects EKF-based localization. Journal of Intelligent & Robotic Systems,
68(2):121–145, 2012.

[70] R. van der Merwe. Sigma-Point Kalman Filters for Probabilistic Inference in
Dynamic State-Space Models. PhD thesis, OGI School of Science & Engineering,
Oregon Health & Science University, 2004.

[71] D. Meyer-Delius, M. Beinhofer, A. Kleiner, and W. Burgard. Using artificial
landmarks to reduce the ambiguity in the environment of a mobile robot. In
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2011.

[72] D. Meyer-Delius, M. Beinhofer, A. Kleiner, and W. Burgard. Using artificial
landmarks to reduce the ambiguity in the environment of a mobile robot. In
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2011.

[73] D. Meyer-Delius, M. Beinhofer, and W. Burgard. Occupancy grid models for
robot mapping in changing environments. In Proc. of the AAAI Conf. on Artificial
Intelligence (AAAI), 2012.

Bibliography 147

[74] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Magnenat,
J. Zufferey, D. Floreano, and A. Martinoli. The e-puck, a robot designed for
education in engineering. In Proc. of the Conf. on Autonomous Robot Systems and
Competitions, 2009.

[75] W. Navidi. Statistics for Engineers And Scientists. McGraw-Hill Higher Education,
2007.

[76] J. Neira and J. Tardós. Data association in stochastic mapping using the joint
compatibility test. IEEE Trans. on Robotics and Automation, 17(6):890–897,
2001.

[77] G. Nemhauser and L. Wolsey. Best algorithms for approximating the maximum of
a submodular set function. Mathematics of Operations Research, 3(3):177–188,
1978.

[78] G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of the approximations
for maximizing submodular set functions – I. Mathematical Programming, 14:
265–294, 1978.

[79] E. Olson. Recognizing places using spectrally clustered local matches. Robotics
and Autonomous Systems (RAS), 57(12):1157–1172, 2009.

[80] E. Olson, J. Leonard, and S. Teller. Fast iterative optimization of pose graphs with
poor initial estimates. In Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), 2006.

[81] R. Parker, F. Doyle, and N. Peppas. A model-based algorithm for blood glucose
control in type I diabetic patients. IEEE Trans. on Biomedical Engineering, 46(2):
148–157, 1999.

[82] S. Patil, J. van den Berg, and R. Alterovitz. Motion planning under uncertainty in
highly deformable environments. In Proc. of Robotics: Science and Systems (RSS),
2011.

[83] M. Powell. An efficient method for finding the minimum of a function of several
variables without calculating derivatives. The Computer Journal, 7(2):155–162,
1964.

[84] S. Prentice and N. Roy. The belief roadmap: Efficient planning in belief space by
factoring the covariance. Int. Journal of Robotics Research, 28(11-12):1448–1465,
2009.

148 Bibliography

[85] A. Pronobis, B. Caputo, P. Jensfelt, and H. Christensen. A discriminative approach
to robust visual place recognition. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), 2006.

[86] F. Pukelsheim. Optimal Design of Experiments. Classics in Applied Mathematics.
Society for Industrial and Applied Mathematics, 2006.

[87] R. Qian, M. Sezan, and K. Matthews. A robust real-time face tracking algorithm.
In Proc. of the IEEE Int. Conf. on Image Processing (ICIP), 1998.

[88] D. Reid. An algorithm for tracking multiple targets. IEEE Trans. on Automatic
Control, 24(6):843–854, 1979.

[89] N. Roy, W. Burgard, D. Fox, and S. Thrun. Coastal navigation: Mobile robot
navigation with uncertainty in dynamic environments. In Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), 1999.

[90] T. Rupp and P. Levi. Optimized landmark arrangement for absolute localization –
a practical approach. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), 2000.

[91] P. Sala, R. Sim, A. Shokoufandeh, and S. Dickinson. Landmark selection for
vision-based navigation. IEEE Trans. on Robotics and Automation, 22(2):334–349,
2006.

[92] J. Salas and J. Gordillo. Placing artificial visual landmarks in a mobile robot
workspace. In Proc. of the Ibero-American Conf. on Artificial Intelligence (IB-
ERAMIA), 1998.

[93] J. Schulman, A. Lee, J. Ho, and P. Abbeel. Grasping and fixturing as submodular
coverage problems. In Proc. of the Int. Symposium of Robotics Research (ISRR),
2011.

[94] C. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27:379–423, 623–656, 1948.

[95] S. Shmakov. A universal method of solving quartic equations. Int. Journal of Pure
and Applied Mathematics (IJPAM), 71(2):251–259, 2011.

[96] A. Singh, A. Krause, C. Guestrin, W. Kaiser, and M. Batalin. Efficient planning
of informative paths for multiple robots. In Proc. of the Int. Conf. on Artificial
Intelligence (IJCAI), 2007.

[97] R. Smith and P. Cheeseman. On the representation and estimation of spatial
uncertainty. Int. Journal of Robotics Research, 5(4):56–68, 1986.

Bibliography 149

[98] C. Stachniss, G. Grisetti, and W. Burgard. Information gain-based exploration
using rao-blackwellized particle filters. In Proc. of Robotics: Science and Systems
(RSS), 2005.

[99] H. Strasdat, C. Stachniss, and W. Burgard. Which landmark is useful? Learning
selection policies for navigation in unknown environments. In Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), 2009.

[100] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. The MIT Press,
1998.

[101] S. Thrun. Finding landmarks for mobile robot navigation. In Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), 1998.

[102] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2006.

[103] P. Tokekar and V. Isler. Sensor placement and selection for bearing sensors with
bounded uncertainty. In Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), 2013.

[104] P. Vernaza, B. Taskar, and D. Lee. Online, self-supervised terrain classification via
discriminatively trained submodular markov random fields. In Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), 2008.

[105] M. Vitus and C. Tomlin. Sensor placement for improved robotic navigation. In
Proc. of Robotics: Science and Systems (RSS), 2010.

[106] M. Vitus and C. Tomlin. Closed-loop belief space planning for linear, gaussian
systems. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2011.

[107] H. Wang, M. Jenkin, and P. Dymond. The relative power of immovable markers in
topological mapping. In Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), 2011.

[108] V. Williams. Multiplying matrices faster than Coppersmith-Winograd. In Proc. of
the ACM Symposium on Theory of Computing (STOC), 2012.

[109] L. Wolsey. An analysis of the greedy algorithm for the submodular set covering
problem. Combinatorica, 2:385–393, 1982.

[110] H. Wünsche. Bewegungssteuerung durch Rechnersehen: Ein Verfahren zur Er-
fassung und Steuerung räumlicher Bewegungsvorgänge in Echtzeit. Fachberichte
Messen, Steuern, Regeln. Springer Verlag, 1988.

[111] P. Wurman, R. D’Andrea, and M. Mountz. Coordinating hundreds of cooperative,
autonomous vehicles in warehouses. AI Magazine, 29(1):9–19, 2008.

	Table of Contents
	Introduction
	Key Contributions
	Publications
	Collaborations
	Notation

	Related Work
	Landmark Placement for Localization and Navigation
	Landmark Placement
	Expected Distributions
	Submodular Function Optimization

	Autonomous Landmark Deployment

	Background
	Probability Theory
	Information Theory
	Recursive Bayesian State Estimation
	Kalman Filter
	Landmark-Based Mobile Robot Localization

	Submodular Function Optimization
	Greedy Algorithm for Maximizing Submodular Functions
	Approximation Guarantees

	Simultaneous Localization and Mapping
	Data Association in SLAM
	Graph-Based Approaches to Solve the SLAM Problem

	Actor-Critic Monte Carlo Reinforcement Learning

	Landmark Placement for Localization
	Problem Definition
	Approximation Algorithm
	Submodularity of Conditional Mutual Information
	Entropy Calculation for the Joint Distribution

	Control Model
	External Controls
	Autonomous Controls

	Experimental Evaluation
	Simulation Experiments
	Experiments with a Real Robot

	Discussion

	Estimation of Expected Distributions for Mobile Robot Navigation
	Robotic System
	Expected Distributions
	Linearized System

	Expected Distributions in Linearized Systems
	Efficient Calculation Scheme
	Comparison to the State of the Art

	Experimental Evaluation
	Discussion

	Landmark Placement for Navigation
	Deviation Guarantee
	Predicting the Deviation from the Trajectory
	Evaluation of the Deviation Guarantee
	Observability of Landmarks

	Incremental Landmark Placement Algorithm
	Landmark Placement for the Linearized System
	Monte Carlo Validation
	Continuous Operation on Round Trips

	Relation between Deviation Guarantee and Localization Uncertainty
	Experimental Evaluation
	Experimental Setup
	Placement in Free Space
	Placement in Structured Environments

	Discussion

	Robust Landmark Placement for Navigation
	Problem Statement
	Efficient and Robust Landmark Placement
	Observability Constraints
	Objective Function
	Landmark Placement Algorithm
	Practical Considerations

	Approximation Bound
	Experimental Evaluation
	Evaluation of Robustness
	Landmark Placement for Changing Bounds
	Long Term Evaluation on a Real Robot

	Discussion

	Comparison between Landmark Placement Methods
	Properties
	Experimental Evaluation
	Discussion

	Landmark Deployment to Foster Data Association in SLAM
	Simultaneous Localization and Mapping with Deployed Landmarks
	Measuring the Performance of Data Association

	Reinforcement Learning for Improving Data Association
	Action and State Representation
	Statistical Convergence Test

	Experimental Evaluation
	Data Association Using the Learned Policies
	Generalization to New Environments
	Adaptation to the Sensor Range
	Experiments with a Real Robot

	Discussion

	Discussion
	Appendix On the Properties of Covariance Reduction

