
Power Optimization Methodologies
for Digital FIR Decimation Filters

Dissertation zur Erlangung des Doktorgrades
der Technischen Fakultät

der Albert-Ludwigs-Universität Freiburg

Ahmed Shahein

2014

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doktor-Ingenieur
in
Microsystems Engineering

according to the examination regulations at the University
of Freiburg for the Ph.D. in Microsystems Engineering of
10.05.2000.

Department of Microsystems Engineering – IMTEK
Fritz Huettinger Chair of Microelectronics
University of Freiburg
Freiburg im Breisgau, Germany

Dean: Prof. Dr.-Ing Yiannos Manoli

Referees: Prof. Dr.-Ing. Yiannos Manoli
Fritz Huettinger Chair of Microelectronics
Prof. Dr. Leonhard Reindl
Laboratory for Electrical Instrumentation

Declaration according to §5(2f) of the examination regulations

I hereby confirm to have written the following dissertation
on my own, not having used any other sources or resources
than those listed.

Freiburg, July 10, 2014

Ahmed Shahein

To my beloved parents - my father and best friend
Prof. Dr.-Eng. Hussein Shahein and my mother

Eng. Magda Farouk. Who gave me all the support and
motivation I need.

Contents

Abstract 1

Zusammenfassung 3

List of Abbreviations 5

List of Symbols 7

1. Overview 9
1.1. Motivation . 9
1.2. Outline . 10
1.3. Contributions . 10
1.4. Deliverables . 11

2. Sigma Delta ADCs 13
2.1. Introduction . 13
2.2. Need of Data Converters . 13
2.3. Survey of Analog-to-Digital Converters 13
2.4. Sigma Delta ADC . 14

2.4.1. Sigma Delta Modulator Classifications 15
2.4.2. Sigma Delta Decimation Filter 17

2.5. Decimation Filter Design Parameters 22
2.6. Summary . 23

3. Low Power Design Aspects 25
3.1. Introduction . 25
3.2. Sources of Power Dissipation . 26
3.3. Power Optimization Approaches . 28
3.4. Power Analysis . 29
3.5. Summary . 30

4. Algorithmic System Level Terminology 33
4.1. Introduction . 33
4.2. FIR Filter Conventions . 33

4.2.1. Coefficient Quantization . 34
4.2.2. Coefficient Scaling . 35
4.2.3. Coefficient Representation 37

4.3. Bounded Search Space . 39

i

Contents

4.4. Coefficient Deviation . 39
4.5. Allocation Schemes . 46

4.5.1. Deviation . 46
4.5.2. Cost . 48
4.5.3. Hybrid . 48

5. Algorithmic System Level Power Optimization 51
5.1. Introduction . 51
5.2. Problem Statement . 52
5.3. State-of-the-Art . 54
5.4. Polynomial Programing . 56
5.5. Mixed Integer Linear Programming 58

5.5.1. Problem Formulation . 59
5.5.2. Evolution . 60
5.5.3. Proposed POTx Algorithm 61
5.5.4. Example . 64
5.5.5. Performance Evaluation and Results 67

5.6. Common Sub-expression Elimination 79
5.7. Summary . 87

6. Architectural System Level Power Optimization 89
6.1. Introduction . 89
6.2. Combined DF and TF Architectures 89

6.2.1. Analysis of Power Consumption 90
6.2.2. TF|DF Selection Criterion 91
6.2.3. Performance Evaluation and Results 95

6.3. Implementing Mb using Sb Decimation Filter 95
6.4. Summary . 96

7. Design and Implementation Procedure 99
7.1. Introduction . 99
7.2. Multi-Stage Decimation Toolbox . 99

7.2.1. k and M Calculations . 102
7.2.2. δpb and δsb Calculations . 102
7.2.3. hk and Q Calculations . 103
7.2.4. Coefficient Optimization . 110
7.2.5. Cost Estimation . 110

7.3. Troubleshooting and Verification 112
7.4. Design Example . 113
7.5. MSD-toolbox Evaluation . 119
7.6. VHDL IPs . 121

7.6.1. Tools Chain . 121
7.6.2. Polyphase Decimation Filter 123
7.6.3. Cascaded Integrator Comb Filter 132

7.7. Summary . 136

ii

Contents

8. RTL Power Optimization 137
8.1. Introduction . 137
8.2. Problem Notations . 137
8.3. Discrepancy . 139
8.4. Proposed Nested Constant Multiplier 139

8.4.1. Theory . 139
8.4.2. Implementation . 140
8.4.3. Nested Multiplication Driven by CSE 145

8.5. RTL Modeling . 146
8.6. Summary . 146

9. Digital Front End 149
9.1. Introduction . 149
9.2. Design Specifications . 149
9.3. Proposed DFE . 150
9.4. Digital Down Converter . 152
9.5. Numerical Controlled Oscillator . 153

9.5.1. Sinusoidal Symmetry NCO Topologies 154
9.5.2. Performance Enhancement Criteria 157
9.5.3. Modeling and Analysis . 158
9.5.4. Proposed Design Scheme . 163
9.5.5. Power Analysis . 165

9.6. Decimation Filters . 165
9.6.1. CIC Decimation Filter . 166
9.6.2. FIR Polyphase Decimation Filter 167

9.7. Power Simulation and Analysis . 168
9.8. Summary . 170

10.Conclusion and Outlook 171

Bibliography 175

List of Figures 187

List of Tables 191

Appendix 193

A. Polynomial Programming 193

B. Downsampling 195

Index 199

Acknowledgements 201

iii

Abstract

There is a trend to replace analog by digital components, resulting in digital filters
to become ubiquitous in signal processing applications. Especially for digital finite
impulse response (FIR) filters, the power consumption though can be considerable
and become a limiting factor in numerous scenarios, e.g., mobile and automotive
applications. One major focus of this research work therefore is the optimization
of power consumption in digital FIR filters, both on system and register transfer
level (RTL).

The practical design tools implemented within the framework of this thesis in-
clude a consolidated toolbox for design, optimization and RTL implementation of
digital FIR decimation filters, and a set of RTL-based soft IPs for several digital
FIR filter topologies. The power optimization in this tool-chain is based on an
optimization of filter coefficients, a beneficial combination of filter topologies and
an improved multiplier architecture.

The complexity and therewith power consumption of hardwired multipliers in FIR
filters is directly related to the number of ones in the binary representation of
the filter coefficients. The optimization of filter coefficients is achieved by reduc-
ing the number of ones. A heuristic algorithm to minimize this coefficient cost is
presented. The proposed algorithm achieves a remarkable reduction in the com-
putation time compared to the state-of-the-art algorithms due to an extensive
preprocessing analysis on the filter coefficients and a novel allocation scheme. A
reduction in the run-time by a factor of 400 is achieved by the presented algorithm
compared to the state-of-the-art algorithms.

The improved filter topologies are accomplished through a power aware combi-
nation criterion for different FIR digital filter topologies. A reduction in power
dissipation up to 15% is achieved by the proposed criterion compared to the con-
ventional filter architecture.

An improved multiplier architecture is proposed implementing a novel encoding
scheme for shift-and-add multiplier-less architectures. A reduction in hardware
cost by 25% is achieved compared to the state-of-the-art scheme.

The second main focus of this work is the power optimization of digital receivers,
which incorporate complex FIR filters as discussed above, but furthermore require

1

Abstract

numerically controlled oscillators (NCOs) and a careful topological design. A com-
prehensive study for ROM-based NCOs is carried out. The study employs various
state-of-the-art methodologies for performance enhancement such as symmetry,
dithering and linear approximation. The result is a design scheme for calculating
the implementation parameters for a low complexity ROM-based NCO architec-
ture.

Finally, a power optimized digital front end for a tunable narrow band FM digital
receiver is designed and synthesized in a 130 nm CMOS technology. A power re-
duction by 60% is achieved by the proposed design compared to the conventional
architecture.

2

Zusammenfassung

Es ist der Trend zu beobachten, dass analoge Komponenten zunehmend durch dig-
itale ersetzt werden. Digitale Filter für die Signalverarbeitung in unterschiedlichen
Anwendungsfeldern sind dadurch allgegenwärtig geworden. Insbesondere die Leis-
tungsaufnahme von digitalen FIR (finite impulse response)-Filtern kann allerdings
erheblich sein, was die Anwendbarkeit in vielen Fällen einschränken kann, z.B.
in mobilen Anwendungen und in der Automobiltechnik. Ein Schwerpunkt dieser
Forschungsarbeit ist daher die Optimierung der Leistungsaufnahme in digitalen
FIR-Filtern, sowohl auf der System-, wie auch auf der Register-Transfer-Ebene
(register transfer level, RTL).

Die hierfür realisierten Entwurfswerkzeuge beinhalten einen umfassenden Satz an
Werkzeugen für das Design, die Optimierung und RTL-Implementierung von dig-
italen FIR Dezimationsfiltern, und einen Satz von RTL-basierten soft-IPs für un-
terschiedliche, digitale FIR-Filter-Topologien. Die Optimierung der Leistungsauf-
nahme in diesen Werkzeugen erfolgt mittels einer Optimierung der Filterkoeffizien-
ten, einer vorteilhaften Kombination von Filtertopologien und einer verbesserten
Architektur für die verwendeten Multiplizierer.

Die Komplexität und damit auch Leistungsaufnahme der festverdrahteten Mul-
tiplizierer in FIR Filtern steht in direktem Bezug zu der Anzahl an Einsen in
der Binärdarstellung der Filterkoeffizienten. Die Optimierung der Filterkoeffizien-
ten erfolgt durch eine Reduzierung der Anzahl an Einsen. Es wird ein heuristis-
cher Algorithmus zur Minimierung dieses Koeffizienten-Kostenfaktors vorgestellt.
Der vorgeschlagene Algorithmus erreicht eine bemerkenswerte Verringerung der
Rechenzeit verglichen mit anderen State-of-the-Art Algorithmen, was durch eine
eingehende Analyse der Filterkoeffizienten vor der eigentlichen Berechnung und
einen neuartigen Ablauf der Koeffizientenzuordnung erreicht wird. Die erzielte
Verbesserung der Laufzeit im Vergleich zu anderen State-of-the-Art Algorithmen
liegt bei einem Faktor 400.

Eine Verbesserung der Filterstruktur wird durch ein Auswahlverfahren für un-
terschiedliche digitale FIR Filtertopologien erzielt, das speziell im Hinblick auf
die Leistungsaufnahme entwickelt wurde. Die Leistungsaufnahme kann durch das
vorgeschlagene Verfahren im Vergleich zu einer konventionellen Filterstruktur um
bis zu 15% reduziert werden.

3

Zusammenfassung

Es wird eine verbesserte Architektur für Multiplizierer vorgestellt, die einen neuar-
tigen Kodierungsansatz für multipliziererlose Shift-and-Add Architekturen verwen-
det. Hierdurch wird eine Reduktion des Hardwareaufwands um 25% im Vergleich
zu bestehenden State-of-the-Art Ansätzen erzielt.

Der zweite Schwerpunkt dieser Arbeit liegt bei der Optimierung der Leistungsauf-
nahme von digitalen Receivern, die komplexe FIR Filter beinhalten und damit
ein Anwendungsfall für die bereits diskutieren Verfahren darstellen, darüber hin-
aus aber auch numerisch kontrollierte Oszillatoren (numerically controlled oscilla-
tors, NCOs) benötigen und eine wohlüberlegte topologische Auslegung erfordern.
Es erfolgt eine umfassende Betrachtung von ROM-basierten NCOs, welche un-
terschiedliche State-of-the-Art Ansätze zur Verbesserung der Leistungsfähigkeit
beinhaltet, insbesondere die Ausnutzung von Symmetrien, Dithering und lineare
Approximation. Als Ergebnis ergibt sich ein Designansatz, der eine Berechnung
der Parameter für einen ROM-basierten NCO mit möglichst geringer Komplexität
erlaubt.

Abschließend wird ein leistungsoptimiertes digitales Front-End für einen schmal-
bandigen, abstimmbaren digitalen FM Receiver in einer 130 nm CMOS Technolo-
gie entworfen und synthetisiert. Verglichen mit der konventionellen Architektur
wird dabei eine Verbesserung der Leistungsaufnahme um 60% erzielt.

4

List of Abbreviations

AAF Anti-Aliasing Filter
AD ADder cell
ADC Analog-to-Digital Converter
ASIC Application Specific Integrated Circuits
BW Band Width
CIC Cascaded Integrator Comb
CMOS Complementary Metal-Oxide-Semiconductor
CT Continuous Time
DAC Digital-to-Analog Converter
DDC Digital Down Converter
DDS Direct Digital Synthesizer
DF Direct-Form
DFE Digital Front End
DFF Delay Flip Flop
DL DeLay cell
DSP Digital Signal Processing
DT Discrete Time
EDA Electronic Design Automation
FA Full-Adder
FB Feed-back
FCW Frequency Control Word
FF Feed-forward
FIR Finite Impulse Response
FPGA Field Programmable Gate Array
HB Half-Band
HVL Hardware Verification Language
IBN In-Band Noise
IF Intermediate Frequency
IIR Infinite Impulse Response
IP Intellectual Property
LAP Linear APproximation
LPF LowPass Filter
LSB Least Significant Bit
LUT Look-Up-Table
MA Multiplier Adder
MB Multi-Band
Mb Multi-bit

5

Nomenclature

MILP Mixed Integer Linear Programming
MOA Multi-Operand Adder
MSB Most Significant Bit
MU MUltiplier cell
NB Narrow-band
NCO Numerically Controlled Oscillator
OSR OverSampling Ratio
P-M-E Parks-McClellan Equiripple
POT Power-Of-Two
PP Polynomial Programming
PPD PolyPhase Decomposition
PSD Power Spectral Density
RCA Ripple Carry Adder
RF Radio Frequency
ROM Read Only Memory
RTL Register Transfer Level
SA Structural Adder
Sb Single-bit
SDC Synopsys Design Constraints
SDF Standard Delay Format
SFDR Spurious-Free Dynamic Ratio
SNR Signal-to-Noise Ratio
TF Transposed-Form
Tcl Tool command language
VCD Value Change Dump
VHDL VHSIC Hardware Description Language
ΣΔM Sigma Delta Modulator

6

List of Symbols

fs Sampling frequency in Hz
fpb Passband frequency in Hz
fsb Stopband frequency in Hz
Δf Transition bandwidth in Hz
fc Center frequency
fB Base-band frequency
fsignal Signal frequency
δf Channel band-width
ωs Sampling frequency in rad/s
ωpb Passband frequency in rad/s
ωsb Stopband frequency in rad/s
Δω Transition bandwidth in rad/s
δpb Passband ripples
δsb Stopband ripples
Asb Stopband attenuation
N Filter order
Q Quantization bit-width
k Number of decimation stages
M Decimation factor
Wi/o Input/Output bit-width
RT Computation effort
hk Filter coefficients
ĥk Scaled filter coefficients
Sn Coefficient sensitivity
Δhk

Coefficient deviation
Ub Upper bound
Lb Lower bound
Ei Elements function with i non-zero term
m ROM address bit-width
k ROM word-length
n Phase bit-width
r Approximation bit-width
p Phase dithering bit-width
a Amplitude dithering bit-width
l Approximation dithering bit-width

7

1. Overview

The ongoing need for portable and hand-held personal communication systems
has encouraged the development of low power, small size, and high performance
devices. Therefore, a reliable, flexible, and efficient signal processing is required.
Furthermore, due to the rapid scaling and progress of silicon CMOS technology,
analog signal processing systems are replaced with their digital counterparts. Fi-
nite Impulse Response (FIR) filters are widely used in digital signal processing
applications due to their stability and linear phase characteristics. Therefore, the
optimized implementation of FIR filters in hardware has gained significant atten-
tion in the research community. One crucial optimization aspect is the low power
design of the FIR filters, which also is the main interest of this thesis.

1.1. Motivation

‘The world at your fingertip’

‘The world is becoming more digital’

These phrases interpret speed and mobility of data and information. What people
considered as luxury a couple of decades ago becomes a necessity of life nowadays.
Hand-held devices, portable communication, voice over internet protocol (VOIP),
medical devices, etc., imply the rapidly growing demand for a wide range of con-
sumer applications and medical devices with higher battery life time. Therefore
low power design is an essential trend in research nowadays.
The reduction of power dissipation can be achieved on system level, register trans-
fer level (RTL), and gate level. On the one hand, the effort for reducing power
dissipation is increased going from system level to gate level. On the other hand,
the effect of power reduction is maximized at the system level compared to the
gate level, at least regarding dynamic power consumption. Dynamic power is the
most dominant component of power consumption in digital filters. Hence, this
work concentrates on power optimization methodologies on system and RTL lev-
els.

9

1. Overview

1.2. Outline

• Chapter 2 reviews Sigma Delta Modulator fundamentals, classifications, and
architectures.

• Chapter 3 reviews the different sources of power dissipation and the power
optimization paradigm.

• Chapter 4 highlights the algorithmic system level nomenclature and the prob-
lem notation. Then the description of the proposed novel allocation scheme
is given.

• Chapter 5 presents the proposed algorithmic optimization methodology for
digital filters. The chapter starts with a graphical explanation of the problem
statement. Then a detailed explanation for the proposed algorithm is given
and results from the performance evaluation for a set of benchmark filters
are presented.

• Chapter 6 shows two methodologies for architectural power optimization.
First, a power aware criterion for combining direct-form and transposed-
form digital filters to achieve further power reduction is presented. Then,
constructing multi-bit decimation filters using single bit filters is given.

• Chapter 7 outlines the backbone assets for this work which are the design
procedure and implementation models. This chapter gives a detailed expla-
nation of the deliverables of this work which are a Matlab toolbox and a
set of RTL-based soft IPs.

• Chapter 8 describes the proposed encoding scheme for shift-and-add multi-
pliers to reduce the internal bit-width, consequently reducing the number of
full-adders employed by the multiplier.

• Chapter 9 presents the power optimized digital front end for tunable narrow-
band digital FM receivers.

• Chapter 10 presents the conclusion and dissertation outlook.

1.3. Contributions

This work proposes a novel allocation scheme entitled coefficient deviation (Δhk
).

The proposed allocation scheme is used in the pre-processing stage to assure faster
computation time for optimization problems such as polynomial programming and
mixed integer linear programming. The preliminary idea was published in 2008 [1].
Moreover, a remarkable savings in the computation time of the FIR filter optimiza-
tion problem has been achieved throughout extensive pre-processing analysis. A
reduction by more than a factor of 400 was achieved by the proposed algorithm
with the developed heuristic solver, published in 2012 [2].

10

1.4. Deliverables

On the system architectural level, a power aware combination criterion to com-
bine direct-form and transposed-form FIR digital decimation filters which deliver
a reduction in power consumption up to 15% compared to the conventional archi-
tecture was introduced and published in 2009 [3]. Further, a novel encoding scheme
for shift-and-add multiplierless architectures entitled by nested multiplication was
presented. The proposed scheme delivers a reduction in the number of full-adders
of up to 25% compared to the state-of-the-art encoding schemes employing binary
and canonic signed digit (CSD) representations.
On the application level, a power optimized digital front end architecture for
narrow-band tunable FM digital receivers was proposed and synthesized. The
proposed architecture achieved a reduction in power by more than 60% compared
to the conventional architecture and was published in 2010 [4]. A comprehensive
study has been carried out on ROM-based numerical controlled oscillators (NCO)
which led to developing a design methodology for power optimized NCOs. Further,
a numerical controlled oscillator was implemented1 and a power reduction of 25%
compared to the state-of-the-art architectures and 70% reduction compared to the
conventional architecture.

1.4. Deliverables

• MSD-toolbox: a consolidate design framework for digital decimation filters
based on Matlab functions and scripts. The developed toolbox supports the
design, optimization and implementation2 of generic multi-stage decimation
filters. The MSD-toolbox employs state-of-the-art design methodologies to
assure efficient and reliable implementation of the decimation filter. Further,
the toolbox integrates a wide set of attributes to enhance the optimization
of the decimation filter.

• VHDL IPs: a set of RTL-based soft intellectual properties (IPs) have been
developed and synthesized for ASIC and FPGA to facilitate the verification
of the proposed power optimization methodologies. The delivered IPs are:

– PPD - a Polyphase Decimation filter employing direct-form and transposed-
form structures.

– CIC - a Cascaded Integrator Comb filter employing non-pipelined and
pipelined architectures.

– NCO - a Numerical Controlled Oscillator employing π/2 or π/4 sinu-
soidal symmetry and piecewise linear approximation.

1RTL synthesis + FPGA prototype
2RTL synthesis + place-and-route

11

1. Overview

– DFE - a Digital Front End module employing a quadrature mixer, com-
plex mixer, decimation stage, numerical controlled oscillator, and a dig-
ital control word.

12

2. Sigma Delta ADCs

2.1. Introduction

This chapter gives a brief review of decimation filtering fundamentals. Primar-
ily, survey summarizing the state-of-the-art analog-to-digital converters (ADCs) is
given. The predominance of sigma delta (ΣΔ) analog-to-digital converter for high
conversion accuracy and low power applications is stated afterwards. Detailed ex-
planations on the fundamentals for ΣΔ modulation is given in [5], [6], [7]. Next,
several classifications of Sigma Delta modulators is presented. Further, a review
of the decimation fundamentals and classifications is exhibited.

2.2. Need of Data Converters

The aggressive scaling of integrated circuit technology, has enabled binary compu-
tations to be performed by very complex data applications with low energy levels
and higher speed [8], [9]. Digital circuits are robust and every year the speed
and density of digital circuits are increased, leading to the dominance of digital
integrated circuits in a wide range of applications [5]. Recently, digital signal
processing and computing are the main drivers in modern electronic systems [9].
Though, analog circuits can benefit from technology scaling, analog circuits suf-
fer from several limitations. Those limitations are defined by the analog design
octagon [10]. Therefore, designers lean toward a system with minimum analog
components. Since, real life signals remain analog, data converters are needed to
interface with digital signal processing cores [5], [9].

2.3. Survey of Analog-to-Digital Converters

The analog to digital converters (ADCs) have progressed greatly in the last two
decades [8]. ADCs can be classified into two main categories: Nyquist-rate and
oversampled converters. Nyquist-rate ADCs individually convert each analog input
word into a digital output sample, without reference to earlier inputs. Nyquist-rate
ADCs can be classified based on the conversion algorithm used into Flash (paral-
lel), successive approximation (Serial), Interpolating (Counting) and Pipeline [11].
Oversampling converters use a sample frequency much higher than the Nyquist

13

2. Sigma Delta ADCs

8 10 12 14 16 18 20 22 24
10

0

10
2

10
4

10
6

10
8

10
10

ΣΔ

SAR

Pipeline

Number of bits [n]

C
on

ve
rs

io
n

ra
te

[H
z]

Figure 2.1.: Resolution and conversion frequency for more than 500 commercial ADC [8].

frequency of the signal being converted [6].
A learning methodology for ADCs was presented in [8], towards understanding the
ADCs functionality and working fundamentals. Furthermore, a quantitative study
for the state-of-art ADCs was presented in [12], which examines where ADCs are
and where they are headed in terms of enabling performance. This study has ex-
amined several performance characteristics for data converters and examined their
effect on system performance. The study concluded that, "However, it is clear that
despite a general lag behind advances in digital processing, ADCs are nonetheless
rapidly improving in all areas of figures-of-merit and will continue to do so, at least
in the foreseeable future" [12]. Moreover, a quantitative survey for ADCs is posted
on [13], considering various figures-of-merit and design parameters.
Figure 2.1 [8] presents the region of operation for the state-of-the-art ADCs in
terms of conversion rate. It shows that, Sigma Delta (ΣΔ) ADCs provides the
highest resolution while still achieving high speed [8]. Figure 2.2 shows power
consumption in the state-of-the-art ADCs in terms of conversion rate. The power
results in the figure are for Nyquist (SAR, Flash and Pipeline) and oversampling
(ΣΔ) ADCs. The power consumption for decimation is not included for ΣΔ ADCs.
The figure reveals the contribution of ΣΔ ADCs for low power and moderate to
high speed applications [13].

2.4. Sigma Delta ADC

Oversampling converters have become very popular during the last decade. Fig-
ure 2.3 shows the block diagram of an oversampling ΣΔ ADC that includes anti-
aliasing filter (AAF), sigma delta modulator (ΣΔM), and decimation filter (digital

14

2.4. Sigma Delta ADC

10
6

10
7

10
8

10
9

10
10

10
11

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2006
2007
2008
2009
2010

ΣΔ

Conversion rate [Hz]

Po
we

r
[W

]

Figure 2.2.: Power consumption and conversion frequency for state-of-the-art ADCs, survey
2006-2010 [13].

filter+downsample), where fs is the sampling frequency, fB is the maximum sig-
nal frequency, OSR is the oversampling ratio defined by fB = fs/2OSR, and M is
the decimation factor for downsampling. The AAF prior the ΣΔM is used to re-
move the out-of-band noise to prevent it from aliasing back by oversampling. The
ΣΔM, known also as the noise shaping modulator, shapes the quantization noise
by having a small fraction of the quantization noise within the band of interest
and spreading most of it to the out-of-band range. The modulator consists of a
loop filter H(z), a quantizer (single or multi-bit), and a feedback digital-to-analog
converter (DAC).

2.4.1. Sigma Delta Modulator Classifications

Sigma Delta modulators (ΣΔMs) are classified according to different criteria such
as topology, implementation, structure, and architecture. The choice of the mod-

AAF ΣΔM Decimator

DAC

fs/2
H(z)

fB/2
Digital filter Downsample

M

Figure 2.3.: Sigma Delta ADC block diagram.

15

2. Sigma Delta ADCs

Table 2.1.: Summary of Sigma Delta topologies advantages and drawbacks [6], [7], [18]
ΣΔMs

Single loop MASH Multi-bit
Low order FB High order FF

Advantages • Simple circuitry
• High DR
• Stability
• Better

anti-aliasing

• Large SNR for
low OSR

• Smaller
noise pattern

• Large SNR for
low OSR

• High DR
• Guaranteed

stability

• Large SNR for
low OSR

• Better stability
• Smaller noise

pattern

Drawbacks • High OSR
• Presence of

noise patterns

• Conditional sta-
bility

• Need low gain
integrator

• Complex digital
circuitry

• Sensitivity to
circuit
imperfections

• Complex
analog and
digital circuitry

• Sensitivity to
DAC
non-linearity

Remarks • Preferred for
low power
design

• Preferred for
bandwidth
demanding
applications

• Preferred for
bandwidth
demanding
applications

ulator depends on the performance requirements and the application. Some ap-
plications require high speed and high resolution converters. Other applications
require low power with moderate resolution.
ΣΔMs have several topologies known as single loop feedback, single loop feed-
forward, and cascaded or Multi-Stage Noise Shaping (MASH). On the one hand,
single loop, low order ΣΔMs with feedback topology exhibits a stable modulator
with simple circuitry suitable for low power applications but with low signal-to-
noise ratio (SNR). On the other hand, high order, single loop ΣΔMs with feed-
forward topology exhibits higher SNR but suffers from conditional stability. Al-
though, single bit quantizer affords simple circuitry, multi-bit quantizer provides
large SNR with associated complex circuitry. However, a modulator with a multi-
bit quantizer with a single bit in feedback combines the advantages of single bit
and multi-bit quantizers [14]. A detailed study for ΣΔM topologies can be found
in [15]. A detailed study for state-of-the-art MASH ΣΔMs is given in [16]. While,
a brief comparative study has been carried out in [17].
ΣΔMs are implemented by continuous-time (CT) or discrete-time (DT) circuitry.

16

2.4. Sigma Delta ADC

Lowpass Bandpass
NB/WB NB/WB/Tunable

CT DT

Single-bit Multi-bitMulti-bit with
single-bit feedback

Single Loop Cascaded/MASH
FB/FFFB/FF

Figure 2.4.: Sigma Delta modulator classifications, where NB for narrow band architecture,
WB for wide band architecture, FB for feedback topology, FF for feed-forward
topology, CT for continuous-time, and DT for discrete-time.

CT ΣΔMs have smaller area than their DT counterparts. Contrary to a CT mod-
ulator, and they can operate at high clock speed with less power consumption [18].
On the other hand, DT ΣΔMs achieve excellent matching of the time constants
in the modulator [18]. Major advantages of the CT over the DT are the AAF
effect and the low power. Discrete-time system can be mapped into continuous-
time system by the inverse transformation. Moreover, a DT simulation for the CT
ΣΔMs is efficiently done by using the DISCO Matlab toolbox [19]. A detailed
analysis for CT ΣΔMs can be found in [20]. A full study for CT ΣΔMs can be
found in [16], [21]. The ΣΔM is suitable for baseband applications (lowpass) as
well as RF or IF applications (bandpass). Figure 2.4 summarizes the ΣΔM clas-
sifications. Table 2.1 summarizes the advantages and drawbacks for the different
ΣΔM topologies.
A concise overview for ΣΔ ADCs can be found in [22]. Moreover, a detailed expla-
nations on the fundamentals of ΣΔ ADCs are given in [5], [6], [7]. Furthermore,
a quantitative analysis for ΣΔ ADCs can be looked at [23]. Following, the digital
filtering and downsampling stage, known as the decimation filter are discussed.

2.4.2. Sigma Delta Decimation Filter

The ΣΔ modulator output consists of the input signal together with noise compo-
nents. However, there are different noise components within the modulator output.
These noise components are the out-of-band noise, the modulation noise, the in-
band noise, and the quantization noise. The designers put a lot of effort to assure
that the quantization noise is the dominant noise component, since the modulator
react as a noise shaper for this particular noise component [5], [6], [7].
The noise shaper (ΣΔM) shapes the noise in a way, so that a small fraction of
the quantization noise lies within the in-band range (low frequencies) and it grows
rapidly with increasing frequencies, as shown in Fig. 2.5 by the solid line. As
shown in Fig. 2.5 the in-band range is defined as [0 − fB].

17

2. Sigma Delta ADCs

in-band out-of-band

Frequency

M
ag

ni
tu

de
Si

gn
al

fB fM 2fM 3fM 4fM fs/2

Filter response
Noise density

Aliased noise

Figure 2.5.: Desired decimation response.

A filter stage is needed after the modulator to remove the out-of-band noise and
to attenuate the folded noise. The folded noise is represented by the dotted lines
in Fig. 2.5. This aliasing effect causes a noise penalty in the in-band range. There-
fore, critical filtering is done in the digital domain where it is more robust against
circuit imperfections [6].
A single filtering stage with such a steep response is not practically favorable.
Consequently, filtering is performed by multiple filtering stages [24]. Oversam-
pling converters relax the requirements of the analog circuitry, at the expense of
faster, more complex digital circuitry [6]. After each filtering stage a downsam-
pling stage exists, to decrease the sampling rate through removing the redundant
part of the information due to the oversampling. Thus, a decimation stage con-
sists of filtering stage in addition to downsampling stage. The decimation process
is known in the literature as sampling rate conversion as well. The downsample
process fundamentals are given in Appendix A.
The decimation filter is categorized by architecture, implementation, topology, and
structure. In accordance with ΣΔM architecture the decimation filter must be the
same, whether lowpass or bandpass architecture. However, for a particular ap-
plication a bandpass decimation filter is implemented using a downmixing stage
followed by a lowpass decimation stage.
Figure 2.6 shows the spectral explanation of the decimation process. The ΣΔM
output signal x(n) is first filtered to isolate the band of interest. Afterwards, the
resulting signal is directly reduced in sampling rate by M . Bandpass and lowpass
decimation filters are identical, with the exception of using bandpass filter (hBP)
rather than lowpass filter (hLP), as shown in Fig. 2.6. Sampling rate conversion

18

2.4. Sigma Delta ADC

Table 2.2.: Decimation filter classifications
Frequency Response

Lowpass Bandpass
Impulse Response

FIR IIR
Topology

Direct-form Transposed-form
Structure

PPD CIC
Implementation

HB MB

process (decimation) can be regarded as a modulation process, as the spectrum of
the signal x(n) is located at harmonics of the sampling frequency, which is trans-
lated back to the baseband [25], [26], [27]. Hence, the downsampling process is an
implicit down mixing process [25], as shown in Fig. 2.6 by the translation of the
bandpass signal XBP to baseband signal Y after downsampling.
The state-of-the-art decimation structures are the polyphase decomposition (PPD)
filter, the half-band (HB) filter, and the cascaded integrator comb (CIC) filter.
The transposed-form topology is often used for multiple constant multiplication
(multiplier block) optimization, hence the filter coefficients form a common space.
Hence, FIR filters have a flat group delay response [24], as commonly used in audio
applications. On the other hand, IIR filters are preferable in sensor applications
such as in gyroscopes. Table 2.2 summarizes the decimation filter classifications.
It should be noted that only the topologies and structures for the FIR filters are
presented. The advantages and drawbacks of each FIR structure are discussed in
more details in chapter 7.
Decimation filter efficiency is directly related to the decimation filter type, order
and the architecture used in the implementation [7]. The cascade of two or more
decimation stages is described for reduction in filter arithmetic [24]. Whereas, the
sampling rate is reduced gradually resulting in much less filtering requirements
on the lowpass filters at each stage [28]. A procedure for the proper choice for
decimation factor of the stages was presented in [24] and [28]. Detailed analysis
for multistage decimation filtering is given in [25], [26], [28]. Numerical examples
for multistage decimation are given in [7], [25]. Figure 2.7 shows the multi-stage
decimation network and the frequency specifications for i-stage, where x(n) is
the ΣΔM output, y(d) is the decimation filter output. Illustratively, the first
lowpass filter stage (LPF) has an input sampling rate fs0, output sampling rate
fs1 = fs0/M1, passband frequency fpd remains the same, and stopband frequency
fsb = fs1 − fsb which is very relaxed in comparison to fsb. Consequently, this
relaxed filter specifications leads to less filter order.

19

2. Sigma Delta ADCs

ω

π

x(n)
x(n)

f
s

f
s

h
L

P
(n)

x
L

P (n)
M

M
y(m

)
y(m

)
f

M
f

M

h
B

P
(n)

x
B

P (n)

0 0

0
0 0

0 0 0

π
/M

2π
/M

2π
/M

2π
/M

2π
/M

2π
/M

2π
/M

3π
/M

3π
/M

4π
/M

4π
/M

4π
/M

4π
/M

6π
/M

6π
/M

6π
/M

6π
/M

ω ω ω

ωω ω ω

k=
0

k=
0

k=
0

k=
0

k=
1

k=
1

k=
1

k=
1

k=
2

k=
2

k=
2

k=
2

k=
3

k=
3

k=
3

k=
3

H
L

P
H

B
P

X
L

P
X

B
P

Y
Y

π π

ω
′

ω
′

Figure 2.6.: Decimation spectral.

20

2.4. Sigma Delta ADC

The overall decimation factor M is given as

M =
k∏

i=1
Mi

= fs0/fsk

(2.1)

The intermediate sampling frequencies are given by

fsi =
fs(i−1)

Mi
, i = 1, 2, · · · (2.2)

fpb

fpb

fpb

fsb

fsb

fsb

LPF Stage 1

LPF Stage 2

LPF Stage k

Stage 1 Stage 2 Stage k
M1 M2 Mk

x(n) y(m)

fs0

fs0

fs1

fs1

fs1

fs2

fs2

fs2 fs(k−1)

fsk

fsk

fs2/2(fs1 − fsb)

(fs2 − fsb)

M
ag

M
ag

M
ag

Figure 2.7.: Typical spectra for multi-stage decimation filter, where Mi is the decimation factor
for stage i, fpd is the passband frequency, fsb is the stopband frequency, fs0 is the
initial sampling frequency, fsk is the final sampling frequency with intermediate
sampling frequencies fs1, fs2, · · · , fs(i−1).

21

2. Sigma Delta ADCs

Table 2.3.: FIR vs. IIR digital filters
FIR IIR

Linear phase No exact linear phase
Always stable Critically stable

Good quantization properties Poor quantization properties
High order filters Low order efficient filters

Very efficient for decimation Less efficient for decimation

Table 2.4.: Digital filter design and implementation parameters
Design Parameter Symbol
Passband frequency fpb

Stopband frequency fsb

Passband ripples δpb

Stopband ripples δsb

Stopband attenuation Asb

Sampling frequency fs

Filter order N
Filter coefficients hk

Quantization bit-width Q
number of decimation stages k
decimation factor M

2.5. Decimation Filter Design Parameters

Sampling rate converters involve classical filters, whether lowpass or bandpass,
for band selection and noise filtering [29]. The tendency towards digital signal
processing (DSP) is increasing and extending simultaneously with the continuous
advances in silicon technology [5]. Therefore, digital filters are the main concern
for this work. Digital filters can be implemented either as a finite impulse re-
sponse (FIR) or infinite impulse response (IIR) filter. Table 2.3 summarizes the
advantages and disadvantages for both FIR and IIR digital filters [29]. This work
considers only FIR decimation filter. Digital FIR filters can be designed using sev-
eral techniques such as windowing and equiripple techniques. This work considers
the Parks-McClellan equiripple algorithm for designing an optimal FIR filter. The
filter design process imports the design specifications and exports the implementa-
tion parameters. The filter design specifications and implementation parameters
are given in Table 2.4. The resultant filter coefficients are with infinite precision.
Consequently, the filter coefficients are presented in fixed precision format for prac-
tical hardware implementation. Subsequently, the precise number of bits required
for representing the filter coefficients in fixed precision has to be determined, which
is defined by Q.

22

2.6. Summary

2.6. Summary

The primary purpose of the decimation filter is filtering the noise aliased back into
the in-band range due to oversampling. Furthermore, the secondary purpose is
to transform a high rate narrow bit-width data stream of the ΣΔM to low rate
wide bit-width data stream (high resolution). Decimation is performed by multiple
cascaded decimation stages.

23

3. Low Power Design Aspects

3.1. Introduction

This chapter addresses concisely the components of power consumption in VLSI cir-
cuits, power optimization at multiple design levels, power optimization approaches
at each individual design level, and power analysis employing modern electronic
design automation tools (EDAs).

Delay

Power/Area

Area optimized designs

Balanced optimized designs
Compromises & trades-off

Speed optimized designs

Figure 3.1.: VLSI design trades-off.

Low power design has become a major concern in VLSI circuit design, due to the
continuous advances in silicon technology. The aggressive shrinking in the silicon
technology has increased the gate density and the clock frequency [9]. But power
dissipation rises simultaneously with increasing clock frequencies. Persistently, a
power speed trades-off or power area trades-off is a crucial issue in modern VLSI
design. On the one hand, small area designs suffer from drastic latency [30], [31],
as shown in Fig. 3.1. On the other hand, fastest designs suffer from drastic power
and area overhead [30], [31], as shown in Fig. 3.1. Therefore, the major trend for

25

3. Low Power Design Aspects

Power

DynamicStatic

Short Circuit Substrate Switching Internal Misc.

Figure 3.2.: Components of power consumption in VLSI circuits.

designers is to balance the trade-off while meeting the performance requirements.
The power dissipation can be scaled from one CMOS technology node to the
next based on dedicated scaling algorithms. Power dissipation is scaled according
to constant voltage scaling by α [32], where α is the ratio between the CMOS
technology nodes. On the other hand, power dissipation is scaled by 1/α2 according
to constant field scaling [32].

3.2. Sources of Power Dissipation

Power consumption is a process specific criterion, since each technology has dif-
ferent power profile characteristics. Therefore, at first, the components of power
consumption in VLSI circuit are defined. The major components of power dissipa-
tion in VLSI circuit are briefly summarized in Fig. 3.2, mathematically analyzed
by (3.1–3.6), and modeled as shown in Fig. 3.3. The total power (PT otal) con-
sumption of a cell is defined by (3.1).

PT otal = PStatic + PDynamic (3.1)

The dynamic power (PDynamic) is the power dissipated when the circuit is active.
In other words, when the voltage of a net is changing or switching between high
and low [33], [34]. The dynamic power components of the total power are depicted
in (3.2).

PDynamic = PSwitching + PInternal + PMisc (3.2)

where the switching power (PSwitching) is the power dissipated by charging and
discharging a load capacitance (CL) [33], [34]. The load capacitance is defined at
the output node of the cell by the sum of wire (CW) and gate capacitances (Cg).
The process of charging and discharging the output load capacitance of a cell is
emulated by the switching current (ISW) shown in Fig. 3.3.a. The switching power
is proportional to the supply voltage (Vdd), the load capacitance (CL), the net
toggle rate (TR), and the clock frequency (f), as depicted in (3.3). Equation 3.3

26

3.2. Sources of Power Dissipation

Vdd

Vss

ISC ISW

Cg

CW

CL

(a)

Vdd

Vss

ISC

ILK

ILK

(b)

Figure 3.3.: Modeling of power consumption components (a) dynamic (b) static.

reveals the dominance of the supply voltage Vdd and the clock frequency f in
reducing dynamic power dissipation by reducing either of them or both.

PSwitching ∝ TR × CL × Vdd
2 × fs (3.3)

The internal power (PInternal) is the power dissipated within a cell itself by charg-
ing and discharging internal capacitance. Moreover, the momentary short circuit
between the P and N transistors dissipates an amount of power considered also
as internal power, emulated by the short circuit current (ISC) shown in Fig. 3.3.a.
The internal capacitance is a function of the input transition time (tT) and the
output capacitance (Co) [33], [34].

PInternal ∝ F (tT , Co) (3.4)

Moreover, there are the power dissipated by the clock tree and the internal glitches.
This is modeled as miscellaneous components of power dissipation. The miscella-
neous power consumption can be defined by

PMisc = PClock + PGlitch (3.5)

Whereas, the static power (PStatic) is the power dissipated by the circuit when it
is inactive [33], [34]. The static power components of the total power consumption
is depicted by

PStatic = PShortCircuit + PSubstrate (3.6)
The short circuit power (PShortCircuit) is the power dissipated by the source-to-
drain sub-threshold leakage [33], [34]. The source-to-drain short circuit leakage
is emulated by the short circuit current (ISC) shown in Fig. 3.3.b. The substrate
power (PSubstrate) is the power dissipated in the diffusion layer and the substrate.
The power dissipated by the bulk leakage is emulated by the bulk leakage current
(ILK) shown in Fig. 3.3.b.

27

3. Low Power Design Aspects

System Level
Algorithmic & Architectural

RTL Level

Gate Level In
cr

ea
sin

g
eff

or
t t

o
sa

ve
po

we
r

Increasing
effect

on
power

saving

Figure 3.4.: Design levels.

3.3. Power Optimization Approaches

A reduction of the power dissipation can be achieved at several levels in the design
process, as shown in Fig. 3.4. The design process is categorized into three major
levels: the system level, the register transfer level (RTL), and the gate level (also
known as physical level). The system level is the highest design level, where one
can model or define the design abstractly, algorithmically, or architecturally. On
the RTL level (front-end) the designer has to have a full awareness of the design
details. The physical or the gate level (back-end) is the lowest level in the design
hierarchy and the most sophisticated level. Each level of design has different power
optimization approaches with certain impact on the reduction of power consump-
tion, whether static or dynamic power dissipation. Not all optimization techniques
may be suitable for the design, so that the designer has to assess the different tech-
niques for complexity, risk, and cost [30]. Excessive effort is spent on the power
optimization at the gate level for slight reduction in the power consumption (if the
leakage power is not important), as shown in Fig. 3.4. Table 3.1 exhibits several
power optimization approaches at the individual design levels and their impact on
power reduction. Apprehensively, the gate level power optimization approaches
have a direct dominant effect on the leakage power consumption reduction. Thus,
the back-end power optimization approaches is used after exhausting all the ap-
proaches for dynamic power reduction [30]. Otherwise, where the reduction of
the leakage power dissipation is of importance. For significant power saving, a
combination of two or more optimization approaches is preferable. As an example,
combining clock gating and power gating proposed in [35] for optimizing both
dynamic and leakage power. Moreover, controlling Vdd and VT H simultaneously as
proposed in [36] for optimizing both dynamic and leakage power.
Since, the physical level optimization methodologies are beyond the scope of this

28

3.4. Power Analysis

Table 3.1.: Power optimization approaches at several design levels and their impact on power
optimization

Level Approach Impact

System

Frequency scaling Dynamic
Multi-Vdd

1 Dynamic
Power efficient IPs Dynamic

Power optimization algorithms Dynamic

RTL

Pipelining Dynamic
Clock gating Dynamic
Power gating1 Leakage
Multi-VT H

1 Leakage

Gate

High-K Leakage
Copper/Gold interconnects Leakage

Body bias Leakage
SOI Leakage

SiGe substrate Leakage
1 at gate level as well.

work, the major focus of this work is on the reduction of the dynamic power
through system and RTL levels. However, detailed analysis for gate level power
optimization methodologies can be found in [37] and [38].

3.4. Power Analysis

The continuous development on silicon technology increases the design complexity
implying increase in the power dissipation. An efficient power budget analysis at
different design phases can lead to a successful power management for power re-
duction. Thus, power analysis is integrated into the design flow at the individual
design level to address power dissipation and power distribution problems. Power
analysis is performed with the aid of electronic design automation (EDA) tools to
estimate and analyze the power consumption in circuit designs by building a de-
tailed power profile based on circuit connectivity and switching activity [33], [39].
Table 3.2 shows the different types of power analysis using state-of-the-art EDA.
Rough estimate of the power consumption can be obtained from the power spread-
sheets. However, accurate power analysis is performed on the RTL and gate level
by using a netlist and simulation activity files. A netlist describes the connectivity
of a design and it is exported from a logic synthesis tool (front-end) or place-and-
route (PAR) tool (back-end). Switching activity files are generated from simulation
tools and contain the design nets probability and toggle rate. The switching ac-
tivity can be exported as a SAIF (Switching Activity Interchange Format) file or
as a VCD (Value Change Dump) file. The SAIF or VCD files are used for average
and peak power analysis, respectively. The VCD captures the activity and time of

29

3. Low Power Design Aspects

Table 3.2.: Types of power analysis in modern EDA
Power Analysis

Type Statistical activity based Event-based
Level RTL or Gate RTL or Gate
Simulation activity SAIF VCD
Accuracy Fair Very accurate
Analysis type Average Peak

every event on each net [39]. The VCD-based analysis is extremely accurate since
all the factors contributing to power consumption are supported in an accurate
form [39].
Modern EDA tools export a detailed result of the power analysis, as shown in
Fig. 3.5. Figure 3.5 presents the power analysis results for an empirical example
of a FIR filter. As exhibited, the total power consumption is distributed over all
the filter components such as multipliers, adders, registers, and other components
(clock buffers, IOs ... etc). The power consumed in each individual block is then
divided to its dynamic and static components.

3.5. Summary

On one hand, power optimization approaches at the system and RTL levels have
a remarkable impact on the reduction of the dynamic power consumption. On the
other hand, the power optimization approaches at the gate level have a remarkable
impact on the reduction of the static leakage power consumption. Accurate power
analysis is carried out by modern EDA tools using event-based analysis with VCD
simulation activity files.

30

3.5. Summary

Registers

Adders

Multipliers

Others

Internal

Switching Glitch

Leakage

Cell A

Cell B

Cell C

Cell D

Cell E

Cell F

Cell G

Figure 3.5.: Power analysis breakdown.

31

4. Algorithmic System Level
Terminology

4.1. Introduction

This chapter highlights the nomenclature and terminology used in algorithmic
optimization for digital FIR filters. Further, the proposed allocation schemes enti-
tled by deviation, cost and hybrid are given in this chapter. This is a foundation
chapter for chapter 5 on algorithmic system level power optimization.

4.2. FIR Filter Conventions

The frequency response of a symmetric linear phase FIR filter, as shown in Fig. 4.1,
can be separated into a real valued function HR(ωT) and a real valued phase
function Θ(ωT) as depicted in (4.1) [40], [41]

H(ejωT) = HR(ωT)ejωT (4.1)

where HR(ωT) is the zero phase frequency response. For an N th length linear
phase FIR filter the zero phase frequency response can be written as depicted
in (4.2) [40]

HR(ωT) =
M∑

k=1
hkc(k, ωT) (4.2)

where hk is the filter coefficients. For a symmetric impulse response and odd filter
length N [40]

c(k, ωT) =xk cos(ωT [k − 1])

xk =
{

1, k = 1
2, k = 2, 3, · · · , M

M =N/2 + 1

33

4. Algorithmic System Level Terminology

while for symmetric impulse response and even filter length N [40]

c(k, ωT) =2 cos(ωT [k − 1])
k =1, 2, 3, · · · , M

M =(N + 1)/2

The lowpass filter specifications are expected to be given in a form as in (4.3)

1 − δpb ≤HR(ωT) ≤ 1 + δpb, ωT ∈ [0, ωpb] (4.3)
−δsb ≤HR(ωT) ≤ δsb, ωT ∈ [ωsb, π]

where [0, ωpb] and [ωsb, π] are the passband and stopband, respectively. The filter
design parameters are defined in Table 4.1. The FIR filter problem is formulated in
a mathematical model. In addition to the formulated mathematical model, the dis-
tinct formation of the object and subject determines the problem and solver types.
The feasible region is depicted between the Gray shaded regions for passband and
stopband, as shown in Fig. 4.1.

1+δpb

1
1-δpb

δsb

0
-δsb

Δω

Ideal Filter

Designed Filter

ωpb ωsb

ω

Normalized Frequency

H(ω)

Figure 4.1.: Lowpass filter response.

4.2.1. Coefficient Quantization

An initial set of FIR coefficients satisfying the required specifications is designed
using the Remez exchange or the Parks McClellan algorithms, which are minimax

34

4.2. FIR Filter Conventions

Table 4.1.: FIR Filter Design Parameters
Symbol Abbreviation

fs Sampling frequency
fpb Passband frequency in Hertz or normalized
fsb Stopband frequency in Hertz or normalized
ωpb Passband frequency in rad/s
ωsb Stopband frequency in rad/s
δpb Passband ripple
δsb Stopband ripple
Asb Stopband attenuation
Δω Transition band
N Filter length

algorithms. The resulting filter coefficients are given as floating point with infinite
precision. In practice, filter coefficients have to be constrained to a finite number
of bits in a fixed-point notation. Therefore, the filter coefficients are quantized to
finite precision. The difference between the quantized output and input is referred
to as the quantization error as given by (4.4).

ε = Q[x] − x (4.4)

where Q[x] is the quantized output, x is the input and ε is the quantization error.
For example, consider the number 0.46484375, which needs at least 8-bits to be rep-
resented in binary format 0.011101112. If the quantization bit-width is 7-bits then
the binary representation would be 0.01110112 which corresponds to 0.4609375.
The quantization error would be ε = 0.46484375 − 0.4609375 = 3.9 × 10−3 for this
single coefficient.
A detailed analysis concerning the effect of finite word length is given in [42]. The
major effect of reducing the quantization bit-width is observed in the stop and tran-
sition bands [42]. The choice of the quantization bit-width is governed by many
design parameters such as required speed, power consumption, cost and signal-to-
noise ratio (SNR). The quantization process is characterized by two parameters,
the binary point position relative to its least significant bit and its quantization
mode being either truncation (floor) or round-off (round). A detailed quantization
analysis is given in [43]. Although in [42] the appropriate quantization bit-width
is estimated according to a heuristic analysis preserving the δpb and δsb, the work
in [44] proposes a closed form expression preserving the normalized peak ripple .

4.2.2. Coefficient Scaling

After quantization to a finite bit-width the rational coefficients can be presented
as given by (4.5).

hk = Sk

Q−1∑
i=1

bk,i2−i, bk,i ∈ {0, 1} (4.5)

35

4. Algorithmic System Level Terminology

where hk are the quantized filter coefficients, Q is the quantization bit-width, and

Sk =
{

1, hk ≥ 0
−1, hk < 0

Subsequently, the coefficients have to be scaled to be usable in practical hard-
ware implementations. There are two methods of operating on fixed point data:
integer and fractional [45]. The integer method interprets the data as integers
and performs integer arithmetic [45]. The fractional method assumes the data to
be fixed-point rationales bound between -1 and +1 [45]. In this work, the inte-
ger fixed-point method is utilized, as integer representation is preferred for RTL
modeling, e.g. VHDL or Verilog. Further, it can be easily transformed to other
representations, i.e. binary or signed-digit.
Equation (4.6) is used for filter coefficients scaling [40], [45].

SF = 2S−1 − 1

ĥk =
⌊

hk

max |hk| × SF

⌉
(4.6)

hk = ĥk

SF

/∑ ĥk

SF

where SF is the scaling factor and S is the scaling bit-width, S ≤ Q (S = Q is
the default setting in this work).
The advantage of using this scaling method is that it normalizes the coefficients
with high dynamic range. However, it has a drawback in the rescaling process and
the number of non-zero terms compared to the quantized one [45]. The number of
non-zero terms is defined as the number of power-of-two (POT) terms within each
coefficient. Consider, for example, the coefficient hk ≈ 0.2795, as the maximum
coefficient, with its corresponding binary representation hk = 0.0100011110001102,
which has 7-POT terms. Scaling of hk using (4.6) results in ĥk = 32767 with its
corresponding binary representation ĥk = 01111111111111112 which has 15-POT
terms. Consider using the scaling criterion given by (4.7),

SF = 2S−1

ĥk = �hk × SF � (4.7)
hk = ĥk/SF

and ĥk = 9158 with its corresponding binary representation ĥk = 00100011110001102,
which has 7-POT terms exactly as hk. The scaling bit-width (S) should be smaller
than or equal Q to avoid an overflow of the coefficient largest magnitude. To en-
sure a constant number of POT terms before and after the scaling process, the
scaling criterion given by (4.7) is used in most of this work. Figure 4.2 shows the
difference in cost according to scaling (4.6) and (4.7), for the benchmarks defined
at chapter 7, section 7.6. The cost indicates the number of non-zero terms. There
is about 30% overhead in the number of POT when scaling the filter coefficients
as in (4.6).

36

4.2. FIR Filter Conventions

4.2.3. Coefficient Representation

An adequate representation for the filter coefficients is required for efficient hard-
ware implementation. After limiting the infinite precision coefficient through quan-
tization process and scaling it to fixed integer, the representation for hardware
implementation needs to be covered. Two common representations of discrete
fixed point coefficients are used: binary and signed-digit. Binary representation
uses only addition, such as 1510 = 011112 or −1510 = 100012, is represented
by (+) non-zero terms only. While, signed-digit representation uses addition
and subtraction as well, such as 1510 = 1610 − 110 = 100012 (where 1=−1), is
represented by (+/−) non-zero terms. Thus the discrete filter coefficients are
represented as sums of either power-of-two (POT) or signed-power-of-two (SPT)
terms. Binary representation includes one’s complement, two’s complement and
sign-magnitude representations with the coefficient bits ∈ {0, 1}. SPT represen-
tation, also called signed-digit (SD) representation, on the other hand includes
canonic signed digit (CSD) and minimal signed digit (MSD) representations with
the coefficient bits ∈ {−1, 0, 1}. Often, the SPT representation is considered, be-
cause it results in fewer non-zero bits in each multiplier compared to the binary
representation [40], [46], [47], [48]. By using the CSD representation, there is a
trade-off between the gain of reduced number of non-zero terms in the coefficient
and the reduction of further optimization possibilities when combined with ap-
proaches like CSE (common sub-expression elimination) [49], [50], [51]. The work
in [52] showed that using the binary coefficient representation leads to a great re-
duction in the complexity of the multipliers compared to using the CSD coefficient
representation. As well, the work on [53] revealed the superiority of binary rep-
resentation over the CSD representation. Although, the results presented by [53]
were discussed and criticized in [54], it is agreed that binary CSE has slight advan-

0

200

400

600

800

1000

1200

A B C L2 S2
Benchmark Filters

C
os

t

38%
34%

44%

35% 45%

(4.7)
(4.6)

Figure 4.2.: Scaling effect on number of non-zero terms using (4.6) and (4.7).

37

4. Algorithmic System Level Terminology

Table 4.2.: Two’s complement to CSD conversion
a′

i+1 a′
i ci ai ci+1

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 0 0
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1

tage over CSD CSE in terms of logic operations (LO) but CSD is recommended
for lower logic depth (LD). LD has a direct influence on the filter critical path
delay and indirect effect on the power consumption, whereas, LO has a direct
impact on power consumption [55]. The multiplier LD is restricted by the num-
ber of non-zero bits of a coefficient [55]. Moreover, a qualitative and quantitative
analysis were carried out in [50] and [51] to compare between the different number
representations for minimum number of required operations for implementation.
These analyses revealed that binary representation has more non-zero bits which
makes more redundant common patterns [51]. Binary representation is preferred
when the number of constants is increased [50]. CSD representation is preferable
for minimum number of non-zero terms, whereas binary representation is desirable
for CSE. The conversion can be done according to Table 4.2 [56], where a′

i are the
2’s complement bits to be converted to CSD, ai are the CSD bits after conversion,
and ci+1 is a generated carry bit. The ci is initially zero, then it is updated from
ci+1. Instead, the algorithm described by the following Pseudocode [57] can be
used for conversion:

a′
−1 = 0;

γ−1 = 0;
a′

w = a′
w−1;

for(i = 0 to w − 1)
{

θi = a′
i ⊕ a′

i−1;
γi = γi−1.θi;
ai = (1 − 2a′

i+1)γi;
}

where a′
w−1.a

′
w−2...a

′
1.a′

0 is the 2’s complement number and its CSD representation
is aw−1.aw−2...a1.a0. Further, an efficient implementation of the binary-to-CSD
conversion is found in [58]. It should be noted that, binary-to-CSD conversion
can be used for the reduction of number of non-zero terms as well [55]. Further-
more, conversion algorithms to convert from 2’s complement to minimal signed
digit (MSD) can be found in [59]. The advantage of CSD over MSD, is that
CSD has a unique representation for each coefficient. Whereas, MSD has multiple

38

4.3. Bounded Search Space

representations with the same number of non-zero terms as CSD [59].

4.3. Bounded Search Space

In order to speed up the computation time by reducing the search space candidates
for each coefficient, upper bound (Ub) and lower bound (Lb) are used to limit the
search space between these two values. The zero value is considered before it is
assumed that at least a single POT is required to represent a coefficient. Modeling
the bounds is given in (4.8)

Lb(ĥk) =

⎧⎪⎨
⎪⎩

2L, L = �log2(|ĥk|)
, ĥk > 0
−2L, L = �log2(|ĥk|)
, ĥk < 0

0, hk = 0

Ub(ĥk) =

⎧⎪⎨
⎪⎩

2U , U = �log2(|ĥk|)�, ĥk > 0
−2U , U = �log2(|ĥk|)�, ĥk < 0

0, hk = 0

(4.8)

A similar approach for bounding the search space was presented in [40], [60], [61],
and [62]. In [40] and [60] the upper and lower bounds were determined while
finding the value for each coefficient which meets the filter specifications. Thus,
these bounding criteria require long computation time.

4.4. Coefficient Deviation

Only one allocation scheme based on coefficient sensitivity (described later in sec-
tion 4.5.) is conventionally used in literature. The allocation scheme is used to
presort the coefficients for optimization instead of a systematic ascending/descend-
ing allocation. The motivation behind this section is to propose and investigate a
new allocation scheme.
The coefficient deviation (Δhk

) presents the distance between the coefficient and
the nearest N-POT integer, where N-POT is the number of non-zero terms. The
Δhk

is calculated as given in (4.9) and illustrated in Fig. 4.3.a.

Δhk
= min(Ub − ĥk, ĥk − Lb) (4.9)

where Ub and Lb are the scaled upper and lower bounds, respectively as defined
by 4.8 and ĥk is the scaled coefficient. The initial idea of coefficient deviation was
driven only for 1-POT and 2-POT terms, which is published in [1]. The motivation
behind considering only 1 and 2 POT terms is to achieve aggressive reduction in
number of non-zero terms. Since for 1-POT coefficients there is a zero adder and
for 2-POT there is 1 adder required. This idea is illustrated by numerical example

39

4. Algorithmic System Level Terminology

Ub

Lb

hk

Ub − hk

hk − Lb

(a)

535353

6464

32

48

56

52

Δhk
= 11 Δhk

= 11

Δhk
= 21

Δhk
= 5

Δhk
= 3

Δhk
= 1

1-POT 2-POT 3-POT
(b)

Figure 4.3.: Proposed allocation scheme Δhk
= min(Ub − ĥk, ĥk − Lb) (a) definition (b) Illus-

trative example.

in Fig. 4.3.b. The coefficient deviation parameter is equivalent to the minimum
distance (discrepancy) between the coefficient and its Ub and Lb. The Ub and Lb can
be set by (4.8), which is equivalent to 1-POT bounds only. Moreover, the bounds
can include N-POT where N = Q, where Q is the quantization bit-width. At
N-POT there are multiple integers having the same cost. Therefore, the proposed
criterion considers the integer with the minimum distance. Illustratively, consider
the coefficient 53. Its 2-POT lower bound is:

2-POT(53) = [33, 34, 36, 40, 48]

These 5 integers have the same cost of 2 non-zero terms, however, 48 is the nearest
lower bound to 53. Similarly, for 3-POT bound is:

3-POT(53) = [35, 37, 38, 41, 42, 44, 49, 50, 52, 56]

There are 10 integers having the same cost of 3 non-zero terms, however, 52 is the
nearest lower bound and 56 is the nearest upper bound for 53. The Δhk

depends
on the coefficient, the designated upper and lower bounds, and the quantization
bit-width. In order to illustrate the influence of each parameter on the coefficient
deviation criterion, the following numerical examples are presented for individual
coefficients. Then a simple illustrative example is considered to verify the concept.
In order to perform an efficient preprocessing for the problem search space, it is
desired to perform quantitative analysis on the coefficients. Therefore, a function
is developed to generate a table consisting of three columns. The first column holds
the number of POT terms. The second column holds the coefficient deviation value.

40

4.4. Coefficient Deviation

The third column holds the integer corresponds to the dedicated cost. Consider
53 and 766, the generated tables are given in Table 4.3 and Table 4.4, respectively.

Table 4.3.: Deviation table for 53
N-POT Δhk

ĥk

1 11 64
2 5 48
3 1 52
4 0 53
5 6 47
6 10 63

Table 4.4.: Deviation table 766
N-POT Δhk

ĥk

1 254 512
2 2 768
3 3 769
4 30 736
5 14 752
6 6 760
7 2 764
8 0 766
9 1 767
10 257 1023

A linear-phase low-pass FIR filter with normalized passband and stopband edge
frequencies at fpb = 0.05 and fsb = 0.25, respectively, is considered as a case
study. The desired ripple in the passband and the stopband are δpb = 0.0575 and
Asb = 30 dB, respectively. The quantization bit-width Q = 10 and the filter length
N = 12. Due to symmetry the optimization is processed on half of the coefficients.
The quantized filter coefficients (hk) are:

hk = [0.13935, 0.12651, 0.10363, 0.075543, 0.047644, 0.029569]

The corresponding scaled coefficients (ĥk) are:

ĥk = [143, 130, 106, 77, 49, 30]

Figure 4.4 shows the generated deviation tables using the developed function for
1-POT, 2-POT, and (m−1)-POT, respectively, where m is the number of non-zero
terms for each coefficient. Figure 4.5 shows the frequency response for an optimized
coefficients without considering the allocation scheme, i.e. with a systematic order
on one hand. On the other hand, for 1-POT, 2-POT and (m-1)-POT, the corre-
sponding tables for each coefficient is given in Fig. 4.4. Rounding to the nearest
integer with minimum Δhk

is done according to the second column. The optimiza-
tion procedure is a straight forward process. It is achieved by going through the
coefficient (with their systematic order), then rounding the coefficient to its near-
est integer with minimum deviation. At 1-POT there are only two candidates for
rounding the coefficients, 130 and 30. Since they have the minimum Δhk

= 2. The
frequency response after rounding 130 to 128 and its corresponding mean error
(ME) and cost are shown in Fig 4.6.a. Then comes the frequency response after
rounding 30 to 32 and its corresponding mean error (ME) and cost are shown in
Fig 4.6.b. Finally, the frequency response after rounding 77 to 64 and its corre-
sponding mean error (ME) and cost are shown in Fig 4.6.c. It is obvious that the

41

4. Algorithmic System Level Terminology

143 130 106 77 49 30

N-POT

N-POT

N-POT

N-POT

N-POT

N-POT

Δhk

Δhk

Δhk

Δhk

Δhk

Δhk

ĥk

ĥk

ĥk

ĥk

ĥk

ĥk

1

1

1

1

1

1

22

128

128

128 64

64 3213

1515 22

(a)

143 130 106 77 49 30

N-POT

N-POT

N-POT

N-POT

N-POT

N-POT

Δhk

Δhk

Δhk

Δhk

Δhk

Δhk

ĥk

ĥk

ĥk

ĥk

ĥk

ĥk

1

1

1

2

2

2

2

2

2

3128

96 48

246

10

80

144

(b)

143 130 106 77 49 30

N-POT

N-POT

N-POT

N-POT

N-POT

N-POT

Δhk

Δhk

Δhk

Δhk

Δhk

Δhk

ĥk

ĥk

ĥk

ĥk

ĥk

ĥk

1

1
1

1
1

1

1

1
1

1

2
2

2

2

2

2
2

2

2
2

3
3

3

33
4

128

128

128 64

64 32

96 48

24
13

1515 22

6

10

80

144

2876

104145
142

(c)

Figure 4.4.: Generated deviation tables for (a) 1-POT (b) 2-POT (c) (m − 1)-POT for ĥk =
[143, 130, 106, 77, 49, 30].

42

4.4. Coefficient Deviation

0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

10

-10

-20

-30

-40

-50

-60

-70

-80

Normalized Frequency

M
ag

ni
tu

de
[d

B
]

ME = 3.6 × 10−3

Cost = 32

Figure 4.5.: Frequency response for N-POT without presorted allocation scheme (143→144,
130→128, 106→104, 77→76) for ĥk = [143, 130, 106, 77, 49, 30].

third coefficient is excluded since it violets the filter response. It should be noted
that, such optimization process requires two optimization iterations, i.e. to loop
through the coefficients set two times. At the first loop, the coefficients 130 and 30
are optimized. Afterwards, in the second loop the coefficient 77 is optimized. At
each coefficient, the response is checked in order to preserve the filter specifications.
It shows that, for 1-POT the number of non-zero terms is reduced from 44 to 36
non-zero terms which is about 18% for an acceptable error range.
In contrast, at 2-POT there are four candidates for optimization the coefficients:
143, 49, 130, and 77 (according to minimum deviation) compared to 1-POT scheme.
The coefficient 143 is rounded to 144 and the corresponding frequency response
with its ME and cost are shown in Fig. 4.7.a. Then 49 is rounded to 48 and the
corresponding frequency response with its ME and cost are shown in Fig. 4.7.b.
Then comes 130 to be rounded to 128, and 77 is rounded to 80 with the relative
responses shown in Fig. 4.7.c and Fig. 4.7.d. Last but not least, comes 30 which
is rounded to 32, but it violets the filter response specifications with larger mean
error, as depicted in Fig. 4.7.e. The optimization process, therefore, should stop at
this step and consider only the previous coefficients. However, a further attempt
was introduced by considering 1-POT and 2-POT deviation schemes for the co-
efficient 30. The response corresponds to employing multiple iterations and the
corresponding mean error and cost is shown in Fig. 4.7.f. It takes more compu-
tation time, whereas, it achieved about 50% reduction in the number of non-zero
terms.
Two important observations at this step: consider multiple optimization iterations
instead of a single optimization run. Do not bound the deviation to individual
POT value, i.e., 1-POT or 2-POT. However, make it a range from 1-POT to

43

4. Algorithmic System Level Terminology

0

0 0.1 0.2 0.3 0.4 0.5

10

-10

-20

-30

-40

-50

-60

-70

-80
Normalized Frequency

M
ag

ni
tu

de
[d

B
]

ME = 2.4 × 10−3

Cost = 42

(a)

0

0 0.1 0.2 0.3 0.4 0.5

10

-10

-20

-30

-40

-50

-60

-70

-80
Normalized Frequency

M
ag

ni
tu

de
[d

B
]

ME = 3.1 × 10−3

Cost = 36

(b)

0

0 0.1 0.2 0.3 0.4 0.5

10

-10

-20

-30

-40

-50

-60

-70

-80
Normalized Frequency

M
ag

ni
tu

de
[d

B
]

ME = 16.5 × 10−3

Cost = 30

(c)

Figure 4.6.: Frequency response for 1-POT coefficient deviation (a) 130→128 (b) 30→32 (c)
77→64 for ĥk = [143, 130, 106, 77, 49, 30].

44

4.4. Coefficient Deviation

0

0 0.1 0.2 0.3 0.4 0.5

10

-10

-20

-30

-40

-50

-60

-70

-80

ME = 1.2 × 10−3
Cost = 38

Normalized Frequency

M
ag

ni
tu

de
[d

B
]

(a)

0

0 0.1 0.2 0.3 0.4 0.5

10

-10

-20

-30

-40

-50

-60

-70

-80

ME = 1.5 × 10−3
Cost = 36

Normalized Frequency

M
ag

ni
tu

de
[d

B
]

(b)

0

0 0.1 0.2 0.3 0.4 0.5

10

-10

-20

-30

-40

-50

-60

-70

-80

ME = 2.6 × 10−3
Cost = 34

Normalized Frequency

M
ag

ni
tu

de
[d

B
]

(c)

0

0 0.1 0.2 0.3 0.4 0.5

10

-10

-20

-30

-40

-50

-60

-70

-80

ME = 4.1 × 10−3
Cost = 30

Normalized Frequency

M
ag

ni
tu

de
[d

B
]

(d)

0

0 0.1 0.2 0.3 0.4 0.5

10

-10

-20

-30

-40

-50

-60

-70

-80

ME = 8.1 × 10−3
Cost = 26

Normalized Frequency

M
ag

ni
tu

de
[d

B
]

(e)

0

0 0.1 0.2 0.3 0.4 0.5

10

-10

-20

-30

-40

-50

-60

-70

-80

ME = 5.1 × 10−3
Cost = 24

Normalized Frequency

M
ag

ni
tu

de
[d

B
]

(f)

Figure 4.7.: Frequency response for 2-POT coefficient deviation (a) 143→144 (b) 49→48 (c)
130→128 (d) 77→76 (e) 30→24 (f) 30→32 for ĥk = [143, 130, 106, 77, 49, 30].

45

4. Algorithmic System Level Terminology

(m − 1)-POT, where m is the number of non-zero terms of the coefficient.
Considering those observations, the final form of the deviation criterion is pre-
sented. The modified criterion is illustrated in Fig. 4.4.c.

4.5. Allocation Schemes

Instead of a tree sequence, a presorted allocation scheme is used to allow faster
computing time compared to the conventional criteria. The presorted search space
is represented by the allocation scheme as given in (4.10)

Aloc[ĥk] = {ĥk1 , ĥk2, . . . ĥkM
} (4.10)

Conventionally, coefficient sensitivity (Sn) [47], [63] is the only available criterion
in literature as an allocation scheme. The allocation scheme based on Sensitivity
is given by (4.11)

Sn = 1
NF F T

√
NF F T∑

i=1
[An(ωi) − A′

n(ωi)]2

Sn(ĥk1) ≤ Sn(ĥk2) ≤ . . . ≤ Sn(ĥkM
)

(4.11)

where An(ω) and A′
n(ω) are the frequency responses of the real and the quan-

tized filters, respectively and NF F T is the number of discrete sampling points over
the entire frequency response. Sn presents the effect of each coefficient in the
filter response. Coefficients with low sensitivity have less influence on the filter
response compared to coefficients with higher sensitivity. Therefore, least sensi-
tive coefficients are good candidates for reducing their number of non-zero terms
with minimum change in the filter response. The present work presents two allo-
cation schemes, and a hybrid allocation scheme. The hybrid scheme combines the
resultant effect for presorting the coefficients. The proposed allocation schemes
are presented and discussed in the following subsections.

4.5.1. Deviation

The deviation criterion presented previously in section 4.4 is adopted as an allo-
cation scheme for coefficients presorting. For the same filter, different allocation
scheme patterns can be generated according to the reference N-POT chosen for
the deviation criterion. For N-POT the allocation scheme presents the deviation
between each coefficient and the nearest upper or lower N-POT bound. Figure 4.8
shows the different allocation scheme patterns for the same filter (filter given in
section 4.4).

Δhk
= min(Ub − ĥk, ĥk − Lb)

Δhk
(ĥk1) ≤ Δhk

(ĥk2) ≤ · · · ≤ Δhk
(ĥkM

)
(4.12)

where Ub and Lb are the scaled upper and lower bounds, respectively, as depicted
by 4.8 and ĥk is the scaled coefficient.

46

4.5. Allocation Schemes

2 4 6 8 12

5

10

10

15

20

0

Coefficients

Δ
h

k

(a)

2 4 6 8 12

5

10

10

15

20

0

Coefficients

Δ
h

k

(b)

2 4 6 8 12

5

10

10

15

20

0

Coefficients

Δ
h

k

(c)

2 4 6 8 12

5

10

10

15

20

0

Coefficients

Δ
h

k

(d)

2 4 6 8 12

5

10

10

15

20

0

Coefficients

Δ
h

k

(e)

Figure 4.8.: Allocation schemes based on multiple N-POT (a) 1-POT (b) 2-POT (c) 3-POT
(d) 4-POT (e) 5-POT for benchmark filters given in Table 5.2.

47

4. Algorithmic System Level Terminology

4.5.2. Cost

Another allocation scheme is proposed based on the cost of the filter coefficients.
The cost is equivalent to the number of non-zero terms per coefficient. The cost
function is used as allocation scheme as given by (4.13).

Cost(ĥk) =
Q∑

i=1
ĥk,i

Cost(ĥk1) ≥ Cost(ĥk2) ≥ . . . ≥ Cost(ĥkM
)

(4.13)

where Q is the quantization bit-width, ĥk is the scaled filter coefficient, Cost(ĥk)
is the number of none zero terms in the scaled coefficient ĥk, and ĥk,i is the ith bit
of the binary representation of ĥk.

4.5.3. Hybrid

Further, a hybrid allocation scheme has been developed to consider more than
a single criterion for the allocation scheme. However, the coefficients are sorted
according to their Sn or Δhk

in ascending order, or according to their Cost in
descending order. Figure 4.9 shows the different allocation schemes for a single
filter. The schemes generated by the resultant of Sn × Δhk

and Sn × Cost−1 are
shown in Fig. 4.9 c and d, respectively. If more than one coefficient has the same
cost or sensitivity, the first coefficient comes first in the coefficients sequence.
Figure 4.10 summarizes the allocation schemes.

48

4.5. Allocation Schemes

Coefficients
2 4 6 8 10 120

0.2

0.4

0.6

0.8

1.0

1.2

S
n

(a)

Coefficients
2 4 6 8 10 120

0.2

0.4

0.6

0.8

1.0

1.2

Δ
h

k

(b)
Coefficients

2 4 6 8 10 120

0.2

0.4

0.6

0.8

1.0

1.2
C

o
st

(c)

Coefficients
2 4 6 8 10 120

0.2

0.4

0.6

0.8

1.0

1.2

S
n

×
C

o
st

−
1

(d)
Coefficients

2 4 6 8 10 120

0.2

0.4

0.6

0.8

1.0

1.2

S
n

×
Δ

h
k

(e)

Figure 4.9.: Allocation schemes patterns for the same filter according to (a) sensitivity (b)
1-POT deviation (c) cost (d) Sn × Cost−1 (e) Sn × Δhk

.

49

4. Algorithmic System Level Terminology

ĥk

SN

Cost

Δhk

Figure 4.10.: Allocation schemes.

50

5. Algorithmic System Level Power
Optimization

5.1. Introduction

The purpose of this chapter is to present the formulation of the FIR filter problem
in a mathematical form which can be solved and optimized by an adequate solver.
The formulation of the FIR problem mathematically is well covered in the liter-
ature. However, the present work proposes: a) the saving in computation time
by using the developed allocation scheme by coefficient deviation (as presented
in the previous chapter) through polynomial programming and b) a local search
algorithm for optimizing (local minimum) a mixed integer linear problem using a
heuristic method.
The problem of minimizing the number of non-zero terms in a FIR coefficient set is
mathematically modeled in the form of an object and a subject. The object is the
problem to be solved, i.e., minimize the number of non-zero terms (min(POT)),
where POT is the Power-of-Two terms in a binary representation. The subject
is the constraints which should be preserved while solving the problem object,
i.e., the problem is subject to the passband and stopband ripple (δpb, δsb). The
subject inequalities determine the feasible region to solutions that satisfy all the
constraints [64]. The modeled problem is thus optimized using either linear or non-
linear programming methods. Various optimization methods have been proposed
in the literature such as linear programming, polynomial programming, convex pro-
gramming, and semidefinite programming. The choice of the optimization method
needs to be in accordance with the problem modeling. The linear optimization
methods, such as linear programming (LP), are employed, if and only if the object
and the subject are linear functions. For the special case where the object and
the subject variables are integers, the problem is called integer linear program-
ming (ILP). However, if only some of the object or subject variables are required
to be integers, the problem is solved using a mixed integer linear programming
(MILP) method. The nonlinear optimization methods, such as polynomial pro-
gramming (PP), convex programming and semidefinite programming (SDF), are
utilized when the object and/or the subject are nonlinear function.

51

5. Algorithmic System Level Power Optimization

5.2. Problem Statement

Power reduction in constant multiplier, known as shift-and-add or multiplierless
structures as well, is achieved through the reduction of the number of multiplier
adder (MA) and the number of full-adder (NFA) as well. The reduction of MA
can be achieved by reducing the number of non-zero terms and eliminating the
redundant patterns within the filter coefficients. The number of non-zero terms
is reduced through mathematical optimization or CSD representation of the coef-
ficient instead of the binary representation. On the other hand, eliminating the
redundant patterns is achieved by considering common sub-expression elimination
(CSE) criterion. This chapter presents the proposed methods for reducing the
number of non-zero terms through optimization and common sub-expression elim-
ination as well. Then, the following chapter presents the proposed criterion for
reducing the number of full-adders.
The FIR optimization problem is well covered in literature. It is commonly de-
scribed analytically in mathematical models. The author describes the problem
graphically as a 2-dimensional (2D) model, in order to have a clear and simple
illustration of the problem and make it easier to derive a reliable solution in ef-
ficient time. For an FIR filter with N taps and Q quantization bit-width, the
optimization procedure goes through M coefficients out of N , due to symmetry
where M is half the filter length, and 2Q times for each coefficient. This can be
shown in Fig. 5.1.a, where the x-axis shows the filter coefficients {h1 · · · hM−1, hM},
and the y-axis shows the candidates for each coefficient. This matrix construction
represents the search space for the defined optimization problem. In order to
find the global optimum of the optimization problem, a systematic solver has to
consider all the possibilities (candidates) in the search space. This requires an
expensive and massive computation time. This is illustrated by the Gray shaded
circles in Fig. 5.1.a. This work aims to reduce the work space candidates, based on
qualitative and quantitative analysis in a preprocessing step. If a distribution of
candidates as seen in Fig. 5.1.b, where the gray shaded circles have been reduced
compared to those in Fig. 5.1.a, the goal is achieved. The upper bound is the
nearest highest integer with single non-zero term. The lower bound is the nearest
lowest integer with single non-zero term. The problem can be expressed as a 2D
problem. The first dimension is expressed by sorting the filter coefficients. This
issue is solved by using an allocation scheme. Conventionally, there is only a single
known allocation scheme based on coefficient sensitivity. This work proposes two
novel allocation schemes. Moreover, it combines the different allocation schemes
in a hybrid allocation scheme, which is better than a single allocation scheme.
The second dimension of the problem is expressed by the number of candidates
for each single coefficient. For a local optimum, this issue can be processed in
infinite number of ways by preprocessing, such as; a) bounding the candidates
between upper and lower bounds, b) calculating the candidates that can replace
the coefficient without violating the constraints. However, in this chapter a novel
algorithm is proposed and evaluated to improve the computation time remarkably.

52

5.2. Problem Statement

The FIR filter conventions are presented in section 5.3, and a review about the
state-of-the-art algorithms is given in section 5.4.

h1 h2 · · · hM−1 hM

00000

11111

L1 L2 L··· LM−1 LM

U1 U2 U··· UM−1 UM

R1 R2 R··· RM−1 RM

ĥ

Candidates

(a)

h1 h2 · · · hM−1 hM

00000

L1 L2 L··· LM−1 LM

U1 U2 U··· UM−1 UM

R1 R2 R··· RM−1 RM

ĥ

Candidates

(b)

Figure 5.1.: Graphical illustration for the problem statement, where L is the lower bound, U
is the upper bound, R is a random candidate, h is the filter coefficient, and ĥk is
the scaled filter coefficients.

53

5. Algorithmic System Level Power Optimization

5.3. State-of-the-Art

Methods proposed in the literature consider different optimization aspects, as
shown in Table 5.1. The proposed methods aiming for the reduction of the
hardware cost have different methodologies such as minimizing the number of
SPT/POT terms, normalized peak ripple, ripple optimization, and quantization
error minimization, but they are all comparable to each other.
Methods for finding the optimal solution include mixed integer linear programming
(MILP) [40], [46], [48], [65], [63], [66], [67], polynomial programming (PP) [68] and
semidefinite programming (SDP) [69]. The conventional MILP algorithm has the
advantage that it guarantees producing the optimum design (global minimum),
but it requires excessive computing resources if the filter length is long. MILP has
been used for optimization with different objects and different subjects. Table 5.1
presents several trends for filter optimization using MILP by means of different ob-
jects and subjects. Furthermore, several approaches have combined minimizing the
number of non-zero terms and the common subexpression elimination [70], [71], [61]
in order to achieve effective reduction in the hardware complexity.

Table 5.1.: State-of-the-art MILP Optimization Trends
Object Subject Ref. Remarks
min(δs) δp, δs [67] Variable Q & N
min(ε) SPT [62] Local, bound
min(ε) SPT & ε [48] Preprocessing
min(NPR) SPT [46] Local, global
min(NPR) ε [66] Bound NPR
min(NPR) δp, δs [70] CSE, bound
min(NPR) SPT [71] CSE
min(NPR) SPT & δp, δs [61] CSE, bound
min(SPT) NPR [47] Local, tree
min(SPT) ε [65] bound
min(SPT) N, Q [40] Preprocessing, bound
min(SPT,Q) δp, δs & NPR [60] CSE, bound
min(POT) δp, δs Proposed Local, bound

δpb is the passband ripple, δsb is the stopband ripple, N is the filter order,
Q is the coefficient quantization bit-width, ε is the quantization error,

NPR is the normalized peak ripple, and
SPT|POT is the number of none zero terms.

Several former works propose methods for finding the optimal solution that is lim-
ited to smaller filter orders due to their excessive run-time. Therefore, local search
methods (also known as sub-optimal methods) are presented in [47], [72], [73], [74].
Furthermore, heuristic algorithms are presented in [60] and [62]. They offer fast
run-time (RT) providing most of the time sub-optimal (local optimum) results.
A least mean square (LMS) discrete space optimization procedure was developed

54

5.3. State-of-the-Art

in [73], which is suitable for filter orders up to 90. The run-time for the LMS
problem is N3 [73]. A number of these local search methodologies have been devel-
oped with an object to minimize the SPT terms subject to normalized peak ripple
(NPR) [72], [47].
Approaches presented in [60], [70], [71], and [61] integrate the CSE into the problem
formulation. The preprocessing is involved to reduce the number of subproblems
to limit the feasible region in advance, as proposed in [40] and [48]. The approaches
given in [46], [47], [62] and this work proposes a local search method.
The FIR filter optimization problem has also been formulated as a non-integer op-
timization problem and solved using polynomial programming (PP) [68], semidef-
inite programming (SDP) [69], and convex relaxation [75]. Polynomial program-
ming (PP) deals with a class of optimization problems where both the object func-
tion and the subject functions are multivariate polynomials [68]. The non-integer
problem in [68], [69], and [75] is formulated with an object to minimize the error
in the frequency response subject to SPT terms of the discrete filter coefficients.
PP reaches globally optimal results up to a filter order of 30 in acceptable time,
but the solution for larger filter orders are sub-optimal [68].
In [40] the optimization problem is modeled as mixed integer problem with the
object to minimize the number of SPT terms (min(SPT)) subject to the hard-
ware specifications (filter order N and word-length Q). In [66] the objective was to
minimize the ripple (min(δp, δs)) subject to the number of SPT terms, and in [67]
subject to hardware specifications. When the object is to minimize the relative
attenuation between the pass and stop bands (NPR), this gives some flexibility
in the optimization problem [66]. The optimization algorithm proposed in [60]
is performed in two steps. First, find all filter coefficient values (which sustain
the filter specification) with an infinite precision. Then, bound each coefficient by
the largest and smallest values and scale them to limited bit-width, in order to
speed the computing time by limiting the search space. Second, perform common
sub-expression elimination. This algorithm is relatively fast but has a drawback
for high order filters.
Several non-commercial and commercial solvers are available for solving such op-
timization problems. YALMIP, 1 a free non-commercial Matlab toolbox given
in [76] offers a modeling language for several optimization problems relying on
various external solvers. Other alternative non-commercial Matlab toolboxes
are SeDuMi 2 [77], and GLPK 3. GloptiPoly 5 [78] is a non-commercial Matlab

toolbox for polynomial programming, and it invokes SeDuMi [77]. CVX 6 is a
Matlab-based modeling system for convex optimization. Further, SCIP 7 is a
recent non-commercial solver, though, not compatible with Matlab. CPLEX 4

1[Online] http://yalmip.org/
2[Online] http://sedumi.ie.lehigh.edu/
3[Online] http://gnu.org/software/glpk/glpk.html
5[Online] http://homepages.laas.fr/henrion/software/gloptipoly3/
6[Online] http://cvxr.com/cvx/
7[Online] http://scip.zib.de/
4[Online] http://www-01.ibm.com/software/websphere/products/optimization/

55

5. Algorithmic System Level Power Optimization

is a commercial solver. Benchmark filters have been adopted from FIRsuite 8 [79]
to ease the comparison of different fixed coefficient FIR filter implementations.

5.4. Polynomial Programing

The FIR optimization problem can be defined as a quadratic subject by minimizing
the error in frequency response. Hence, it is optimized by polynomial programming
(PP) solvers. The detailed mathematical derivation is given in Appendix A.
In order to validate the performance of the proposed coefficient deviation scheme,
a comparison with PP systematic solvers was carried out. The formulation of
PP problem was published in [68] and solved using the toolboxes presented in [77]
and [78]. The following simulations were carried out for an FIR filter with passband
frequency of 0.2, stopband frequency of 0.25 and filter orders between [11 − 31]
with a step of 4. The passband and stopband frequencies are normalized. The
2-POT and 4-POT search spaces were considered by the simulation.
The results depicted for run-time and gain on Figs. 5.2 and 5.3, respectively. In
the one hand, the proposed allocation scheme outperforms the PP solver, as shown
in Fig. 5.2.a. On the other hand, the PP solver achieves higher gain as given in
Fig. 5.3.
Hence, the coefficient deviation scheme shows a considerable saving in computation
time compared to other systematic solver. However, it has much lower gain in
reducing the total number of non-zero elements. Therefore, the following sections
will illustrate the proposed criteria to enhance this drawback.

10 15 20 25 30
0

10

20

30

40

50

60

70

N

R
un

ti
m

e
[m

in
.]

PP
Δhk

(a)

10 15 20 25 30
0

10

20

30

40

50

60

70

N

R
un

ti
m

e
[m

in
.]

PP
Δhk

(b)

Figure 5.2.: Optimization run-time using PP versus Δhk
at (a) 2-POT and (b) 4-POT (filter

specs fpb = 0.2, fsb = 0.25 and N = [11 : +4 : 31]).

8[Online] http://firsuite.net/

56

5.4. Polynomial Programing

10 15 20 25 30

N

G
ai

n%

PP
Δhk

80

70

60

50

40

30

20

10

0

(a)

10 15 20 25 30

N

G
ai

n%
PP
Δhk

80

70

60

50

40

30

20

10

0

(b)

Figure 5.3.: Optimization gain using PP versus Δhk
at (a) 2-POT and (b) 4-POT (filter specs

fpb = 0.2, fsb = 0.25 and N = [11 : +4 : 31]).

57

5. Algorithmic System Level Power Optimization

5.5. Mixed Integer Linear Programming

The conventional mixed integer linear programming (MILP) finds the global min-
imum for the FIR filter problem, but requires excessive computation time. For
each single discrete filter coefficient, there are [0 : 2m+1] candidates, where m is
the number of POT terms in the discrete coefficient. Consequently, this generates
a dense searching space formed in a nested tree structure searching space, as shown
in Fig. 5.4. It checks all possibilities in the tree to guarantee the globally optimal
solution. Therefore, an excessive run time is required during the optimization
process. Figure 5.5 shows the run-time of the MILP algorithm compared to other
algorithms [72].

{0} {0}{0}

{0} {Lb(h1)} {Ub(h1)}

{Ub(h2)}{Ub(h2)}{Ub(h2)}

{Lb(hi−2)}

{0} {Lb(hi−1)} {Ub(hi−1)}

{0} {Ub(hi)} {0} {Ub(hi)}{Ub(hi)}{0}

h1

h2

hi−1

hi

Figure 5.4.: Search tree for conventional MILP, where L is the lower bound, U is the upper
bound, and h is the filter coefficient.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Samueli [74]
Li [80]
Trellis [72]
MILP [72]

Filter Order

R
un

T
im

e
[s

]

30 40 50 60 70 80 90

Figure 5.5.: MILP runtime using Samueli, Li, Trellis, and MILP algorithms [72].

58

5.5. Mixed Integer Linear Programming

5.5.1. Problem Formulation

The FIR optimization problem is modeled with an integer linear object and a non-
integer linear subject; for a given set of filter specifications, such as passband edge
ωpb, stopband edge ωsb, passband ripple δpb, stopband ripple δsb and the filter length
N. The problem is formulated as a mixed integer linear problem. On one hand,
it can be solved by employing a MILP solver as a systematic criterion. On the
other hand, it can be solved using a heuristic criterion. The optimization problem
object function is shown in (5.1) and the subject function in (5.2). Even though,
the problem is modeled for lowpass filters, it could be extended to bandpass filters
as well.

minimize
M∑

k=1
Cost(ĥk) (5.1)

subject to:

M∑
k=1

ĥkc(k, ωT) ≤ 2Q−1 × (1 + δpb), ωT ∈ [0, ωpb]

−
M∑

k=1
ĥkc(k, ωT) ≤ 2Q−1 × (δpb − 1), ωT ∈ [0, ωpb]

M∑
k=1

ĥkc(k, ωT) ≤ 2Q−1 × δsb, ωT ∈ [ωsb, π]

−
M∑

k=1
ĥkc(k, ωT) ≤ 2Q−1 × δsb, ωT ∈ [ωsb, π]

(5.2)

where ĥk is the scaled filter coefficients from the quantized filter coefficients hk,
and is defined by

ĥk =

⎧⎪⎪⎨
⎪⎪⎩

⌊
hk × 2Q−1 + 0.5

⌋
, hk ≥ 0

⌈
hk × 2Q−1 − 0.5

⌉
, hk < 0

and for symmetric impulse response and odd filter length N [40]

c(k, ωT) =xk cos(ωT [k − 1])

xk =
{

1, k = 1
2, k = 2, 3, · · · , M

M =N/2 + 1

59

5. Algorithmic System Level Power Optimization

Calculated

Ideal

Non-convergent

Convergent

Figure 5.6.: Filter ripples converge from calculated (quantized) toward ideal, or nonconverge
at calculated.

while for symmetric impulse response and even filter length N [40]

c(k, ωT) =2 cos(ωT [k − 1])
k =1, 2, 3, · · · , M

M =(N + 1)/2

where the filter length is equivalent to the filter order plus one.
An independent heuristic solver using Matlab, named POTMILP, has been de-
veloped for manipulating the formulated problem and the proposed algorithm.
The number of POT terms is minimized subject to the filter specifications. The
subject is formulated for discrete values of ωT by selecting a number of values
in [0,ωpb] and [ωsb,π] to obtain a grid of values at each constraint. As the spec-
ifications are checked only at these points, it is necessary to verify the resulting
frequency response with a much finer grid to ensure that a valid coefficient set
is obtained [40]. The solution to this optimization problem yields a coefficient
set with minimal POT terms for which the ripple in the passband and stopband
remain within the allowed bounds. The bounds of the ripple are defined by the
user as a hard constraint. If there is a discrepancy between the user defined con-
straints and the calculated constraints, the developed solver converges towards the
minimum ripple as shown in Fig. 5.6. However, the nonconvergent criterion offers
more flexibility in the subject constraints, which accordingly results in a higher
reduction in non-zero terms.

5.5.2. Evolution

The function element (Ei) is used to create a set of candidate integers for each
scaled coefficient in ascending order constrained by the lower and upper bounds
for each scaled coefficient for the evolution (Evli) space in monotonic steps, with
maximum cost=m − 1, where m is the cost for a discrete coefficient represented in

60

5.5. Mixed Integer Linear Programming

Q-bits. Hence, Ei is a set of values with i POT terms. The Ei, is given by (5.3)

Ei(ĥk) = {n × bk |n <
∣∣∣Lb(ĥk)

∣∣∣ , Cost(n) = i} (5.3)

where bk = 1 if hk ≥ 0 and bk = −1 if hk < 0. As,

E0(ĥk) = {0}
E1(ĥk) = {20, . . . , 2L−1; L =

⌊
log2(

∣∣∣ĥk

∣∣∣)⌋
}

are defined as the set of elements with N-POT terms, where N = m − 1 and m is
the maximum cost for a discrete coefficient represented in Q-bits. Thus, for coef-
ficient ĥ = 13 with m = 3 and Q = 4, there is E0(13) = {0}, E1(13) = {1, 2, 4, 8},
and E2(13) = {(1 + 2), (1 + 4), (1 + 8), (2 + 4), (2 + 8), (4 + 8)}.
However, the evolution (Evli) space, as depicted in (5.4)

Evl(ĥki
) =

{
Evl0(ĥki

), Evl1(ĥki
), · · · , Evlm−1(ĥki

)
}

(5.4)

where

m = Cost(ĥki
)

Evl0(ĥki
) = {0}

Evl1(ĥki
) = {Lb(ĥki

), Ub(ĥki
)}

Evli(ĥki
) = {Lb(ĥki

) + Ei−1(ĥki
)}

holds the candidates with equal cost for each discrete coefficient. Thus, for coeffi-
cient ĥ = 13 with m = 3 and Q = 4, there is Evl0(13) = {0}, Evl1(13) = {8, 16},
Evl2(13) = {Lb(13) + E1(13)} = {(8 + 1), (8 + 2), (8 + 4) · · · }.

5.5.3. Proposed POTx Algorithm

The proposed POTx algorithm as published in [2] is illustrated in the flowchart
shown in Fig. 5.7. The basic flow of the algorithm is as follows:

• Inputs to the POTx algorithm are the floating point precision filter coeffi-
cients hk, and the quantization bit-width Q.

• The input floating point coefficients are quantized. Subsequently, coefficients
are scaled. Later on, a sorted search space is created following the concept
in section 4.5.

• The algorithm checks all the coefficient sets by

– defining the maximum cost m

– create a set of Ei and Evli candidates as explained in section 5.5.2

– optimize/round preserving the ripple constraints

61

5. Algorithmic System Level Power Optimization

N

N

N

Start

Stop

hk

Q

Quantize
Scale

Aloc

Aloc

Y

Y

Y

Flag_IT=1

i ≤ M

j = 0
Flag_BO=1

m = Cost(ĥki
)

Flag_BO=1
j < m

Ej , Evlj

if Evlj(hkj
) satisfy constraints

if min(ε)
Evlj (ĥk)

Flag_BO=0

else

else
j + +

i + +

Iteration

Optimized ĥk

if Cost(ĥk)=Cost(Optimized(hk))
Flag_IT=0

i = 1

m = Cost(optimized(hk))
Flag_IT=1

P-I

P-II

Figure 5.7.: POTx algorithm flowchart.

{0}

{0}

{0}

{0}

{0}

{0}

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Lo
op

ĥk1

ĥk2

ĥkM

{Lb(ĥk1), Ub(ĥk1)}

{Lb(ĥk2), Ub(ĥk2)}

{Lb(ĥkM
), Ub(ĥkM

)}

{Lb(ĥk1) + Em(ĥk1)}

{Lb(ĥk2) + Em(ĥk2)}

{Lb(ĥkM
) + Em(ĥkM

)}

ĥok1

ĥok2

ĥokM

{Lb(ĥok1), Ub(ĥok1)}

{Lb(ĥok2), Ub(ĥok2)}

{Lb(ĥokM
), Ub(ĥokM

)}

{Lb(ĥok1) + Em(ĥok1)}

{Lb(ĥok2) + Em(ĥok2)}

{Lb(ĥokM
) + Em(ĥokM

)}

NC!|BO!

NC!|BO!

NC!|BO!

Figure 5.8.: Proposed POTx algorithm searching space structure, where L is the lower bound,
U is the upper bound, ĥk is the scaled filter coefficients, Em is the element function,
NC! is the break-off state, and BO! is the break-off state.

62

5.5. Mixed Integer Linear Programming

• Loop through the optimized coefficients if permitted (subject is not violated)

The algorithm consists of two processes. The P-I process, inspects the elements
of the evolution sequence Evlj for a particular coefficient until approaching the
break-off (BO!) state or the no-change (NC!) state. The BO! state implies abort at
this candidate and does not go through the rest of the Evlj candidates. While the
NC! state implies keeping the coefficient without replacing it. In this process, P-I,
the filter constraints in the passband and stopband are probed for each inspected
Evlj vector elements. The Evlj vector holds the candidates for each coefficient
in ascending order, from lowest cost to a cost which is less than the coefficient
cost. So, if the optimized coefficient cost is m=5, the maximum cost for the can-
didates in the Evlj vector is m=4. If the subject constraints are preserved for
the optimized coefficient the algorithm will reach the break-off (BO!) state. Con-
trary, the algorithm will reach a no-change (NC!) state. Introducing the BO! state,
accelerates the algorithm compared to the conventional MILP algorithm because
of its iteration criterion in monotonic steps as shown in Fig. 5.8. Moreover, it
offers minimum cost candidate for the optimized coefficient, since it prevents the
algorithm from inspecting candidates which have higher cost from the Evlj vector.
The P-II process, resets the internal variables and flags to start a new iteration
through the pre-optimized coefficients with a new allocation scheme (Aloc) and
new maximum cost (m). Process P-II, guarantees efficient optimization process
with minimum cost candidates for each coefficient by multiple loops through the
optimized coefficients as shown in Fig. 5.8 by the feedback arrow designated by
‘Loop’. Figure 5.8 shows the equivalent searching structure for the POTx algo-
rithm. A detailed illustrative example is presented in section 5.8.5. The POTx
algorithm is executed as follows:
Quantize and scale coefficients
Create the presorted allocation scheme
Iterate or not

No: Export optimized coefficients
Yes: cont.

Inspected all coefficients
No: Go to P-I
Yes: Go to P-II

By using the nonconvergent (NCV) criterion, as shown in Fig. 5.6, more flexibility
is introduced in the constraints so that further reduction in the number of non-zero
terms is achieved.
There is a set of control attributes which can be used to optimize the algorithm in
terms of allocation scheme, optimization iterations and constraints. To clarify the
applied options, the nomenclature POTx.y.z is used in the following. The ‘x’ repre-
sents the allocation scheme for presorting the filter coefficients. The ‘y’ represents
the solver thread. The ‘z’ represents the constraints. As an example, C.LP.NCV
uses the allocation scheme based on Cost, with multiple optimization iterations
and nonconvergent constraints. SD uses the hybrid allocation scheme Sn × Δhk

.

63

5. Algorithmic System Level Power Optimization

5.5.4. Example

This section presents an example to illustrate the proposed algorithm employing
the developed solver. A linear-phase low-pass FIR filter with normalized passband
and stopband edge frequencies at fpb = 0.05 and fsb = 0.25, respectively, is con-
sidered as a case study. The desired ripple in the passband and the stopband are
δpb = 0.0575 and Asb = 30 dB, respectively. The quantization bit-width Q = 11
and the filter length N = 12. Due to symmetry the optimization is processed on
half of the coefficients. The quantized filter coefficients (hk) are:

hk = [0.13935, 0.12651, 0.10363, 0.075543, 0.047644, 0.029569]

The scaled coefficients (ĥk), coefficients cost (Cost[ĥk]), and generated allocation
scheme according to cost (Aloc[ĥk]) are

ĥk = [143, 130, 106, 77, 49, 30]
Cost[ĥk] = [5, 2, 4, 4, 3, 4]
Aloc[ĥk] = [143, 106, 77, 30, 49, 130]

Consider the coefficient 143. It has 5-POT terms so the solver will generate the
Ei and Evli functions up to a maximum of 4-POT terms in monotonic sequence,
as follow
E0(143) = {0}
E1(143) = {1, 2, 4, 8, 16, 32, 64}
E2(143) = {(1 + 2), (1 + 4) · · · (2 + 4), (2 + 8) · · · }
E3(143) = {(1 + 2 + 4), (1 + 2 + 8) · · · (1 + 4 + 8), (1 + 4 + 16) · · · }

Evl0(143) = {0}
Evl1(143) = {128, 256}
Evl2(143) = {128 + E1(143)}

= {(128 + 1), (128 + 2), (128 + 4) · · · }
Evl3(143) = {128 + E2(143)}

= {(128 + 1 + 2), (128 + 1 + 4) · · · (128 + 2 + 4) · · · }
Evl4(143) = {128 + E3(143)}

= {(128 + 1 + 2 + 4), (128 + 1 + 2 + 4) · · · (128 + 1 + 4 + 8) · · · }

The monotonicity in coefficient cost is preserved in one evolution step as
Evl2(143) = {(128 + 1), (128 + 2), (128 + 4) · · · }

129 = 10000001
130 = 10000010
132 = 10000100

...
192 = 11000000

64

5.5. Mixed Integer Linear Programming

as described above As an example, if within Evl2 for coefficient 143, both 136
and 144 do not violate the filter constraints, | 143−144 |= 1 while | 143−136 |= 7
so 144 is chosen.
The Ei and Evli functions are generated for each coefficient. The coefficients are
arranged vertically according to the cost given by the allocation space, as shown
in Fig. 5.9 by arrow 2. The solver starts in horizontal direction as depicted by
arrow 1 in Fig. 5.9 for all coefficients. Then the POTMILP solver proceeds as
illustrated in Fig. 5.9. The POTMILP solver then checks for each coefficient the
candidates, within the evolutions, starting with Evl0, until it reaches a Break-Off
(BO!) or No-Change (NC!) state. Considering the first coefficient, ĥk = 143, the
solver substitutes {0} instead, as an example, then examines the filter response
including the new coefficient value. If the filter constraints are not violated, the
coefficient is replaced, and the Break-Off (BO!) state is reached. If the constraints
are violated, the POTMILP iterates and continue with the next evolution vector
{128, 256}. The solver has to check a complete Evli sequence in one run. If in
a Evli sequence more than one candidate satisfies the constraints, the value with
the minimum difference from the original value is chosen. If none of the coefficient
candidates satisfies the constraints, the coefficient is left unchanged, implying the
NC! state. If one of the evolutions satisfies the constraints, the tool will abort
because there is no need to continue, since the following evolution sequences will
have more POT terms which means higher cost. In the complete coefficient set,
the first optimization loop results in the ĥkopti1 coefficients with a cost reduction
from 22-POTs to 13-POTs. This is the cost for just half the coefficients.

ĥkopti1 = [144, 128, 104, 80, 48, 28]
Cost[ĥkopti1] = [2, 1, 3, 2, 2, 3]
Aloc[ĥkopti1] = [104, 28, 144, 80, 48, 128]

The second optimization iteration is marked in Gray as shown in Fig. 5.9. The sec-
ond optimization iteration has the presorted allocation scheme defined by Aloc[ĥkopti1].
The final result of the optimization process is depicted by the ĥkopti2 vector with
an overall cost of 12-POTs.

ĥkopti2 = [144, 128, 104, 80, 48, 24]
Cost[ĥkopti2] = [2, 1, 3, 2, 2, 2]

Through using the iterating loops, presented by P-II in Fig. 5.7, the proposed
algorithm offers adequate saving in the cost. Figure 5.10 shows the frequency
responses of the quantized filter, the intermediate optimized filter, and the final
optimized filter. The intermediate optimized filter (ĥkopti1) experience a mean
square error of 40 × 10−6 in its response. Whereas, the final optimized filter
(ĥkopti2) experience a mean square error of 100 × 10−6. Thus, an overall saving by
about 50% in the cost is achieved within a run-time of few seconds, for a tolerable
penalty in the filter response.

65

5. Algorithmic System Level Power Optimization

1

2 3

143

106

77

30

49

130

104

28

144

80

48

128

Lo
op

BO!

BO!

BO!

BO!

BO!

BO!

BO!

NC!

NC!

NC!

NC!

NC!

{0}

{0}
{0}

{0}
{0}

{0}

{0}

{0}

{0}

{0}

{0}

{0}

{128, 256}

{128, 256}

{64, 128}

{64, 128}

{64, 128}

{64, 128}

{64, 128}

{16, 32}

{16, 32}

{32, 64}

{32, 64}

{128, 256}

{129, 130, 132, 136, 144, 160, 192}

{65, 66, 68 · · · }

{65, 66, 68, 72, 80, 96}

{17, 18 · · · }

{33, 34, 36, 40, 48}

{· · · 104, 112}

{· · · 25, 26, 28}

{17, 18, 20, 24}

. . .

. . .

. . .

. . .

. . .

Figure 5.9.: Execution of proposed algorithm with multiple optimization iterations.

Normalized Frequency

M
ag

ni
tu

de
[d

B
]

ĥk
ĥkopti1
ĥkopti2

0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-10

-20

-30

-40

-50

-60

Figure 5.10.: Frequency response of filter shown in section 5.5.4.

66

5.5. Mixed Integer Linear Programming

5.5.5. Performance Evaluation and Results

There are two main factors that determine the performance of the proposed POTx
algorithm: run-time (RT) and gain (Gain %). The gain represents the percent-
age of reduction in the number of non-zero terms in the optimized coefficient set
compared to the scaled coefficient set. Therefore, higher gain is equivalent to less
non-zero terms. Several benchmark filters are optimized using the POTx algorithm
and the POTMILP solver. The specifications of the benchmark filters are given
in Table 5.2 where all the frequencies are normalized. The implemented algorithm
and the developed solver are executed on a 1.6-GHz Pentium processor and 1-GB
RAM. The number of POT terms per coefficient was not constrained. Inspired
by the method in [42], the filter is designed using the Remez algorithm with the
constraints for the stopband attenuation tightened by 3-dB. The value of 3-dB
was chosen according to quantitative preliminary simulations. The approach of
designing the filter with tighter constraints in the stopband and then optimizing
the same filter with the given specifications results in extended flexibility for the
optimization. As an example, if the desired stopband attenuation (Asb) is -50 dB,
the filter is designed for Asb = −53 dB. Nonetheless, it is optimized for Asb = −50
dB.

Table 5.2.: Benchmark filters FIR filters
Filter δpb fpb δsb fsb N

A 0.0100 0.0625 0.0010 0.1125 59
B 0.0100 0.1 0.0100 0.12 105
C 0.0050 0.0625 0.0050 0.07 325
L2 0.0288 0.1 0.0010 0.14 63
S2 0.0115 0.021 0.0010 0.07 60

LP1 0.1000 0.3 0.0100 0.35 50
N1 0.0005 0.2 0.0001 0.3 67

The results for the evaluation of the POTx algorithm are shown in Table 5.3. The
coefficient deviation allocation scheme results in a lowest reduction in the non-
zero terms and minimum run-time for sub-optimal algorithms (single run without
iteration) compared to the other POTx settings. The hybrid allocation schemes,
on the other hand, achieve the highest reductions in non-zero terms. Adopting
the nonconvergent approach generally results in the highest reductions in non-zero
terms, because it offers more flexibility in the subject. Figure 5.11 summarizes
the results presented in Table 5.3. The ratio of the minimum gain (Gain−) to the
maximum gain (Gain+) varies from a factor of 1.7 to a factor of 3.12, as shown
in Fig. 5.11. POTSC.LP.NCV using a hybrid allocation scheme, in the majority
of the benchmark filters exhibits one of the highest reductions in POT terms and
can therefore be considered the best parameter set. However, POTD.NL.CV offers
the lowest run-time at acceptable optimization results because it has no iterating
optimization loops, and can thus be considered a good trade-off between run-time

67

5. Algorithmic System Level Power Optimization

0

10

15

20

25

30

35

40

Filters

G
ai

n
%

Gain−

Gain+

A B C L2 S2

5

Figure 5.11.: Summary of results given in Table 5.3, where Gain− is the minimum gain and
Gain+ is the maximum gain.

and optimization quality. The results reveal that, further reduction in the number
of non-zero terms attained by employing multiple optimization iterations with the
nonconvergent criterion by the proposed algorithm.
The coefficient set derived using the proposed algorithm is compared to the results
of the Remez algorithm (RMZ), Aktan’s algorithm [65] (FIRGAM), the Trellis al-
gorithm [72] (TRE), Lim’s algorithm [73] (LIM), Samueli’s algorithm [74] (SAM),
the Li’s algorithm [80] (LI), Yao’s algorithm (PMILP), Shi’s algorithm [81] (SHI),
and the MILP. For the Remez algorithm, the Matlab Remez function is used
to satisfy the filter specifications, followed by a quantization which allows fulfill-
ing the required specifications. It is used as reference point to quantify the gain
achieved using various algorithms. The results for the rest of the algorithms are
taken directly from [65]. Table 5.4 summarizes the performance of the proposed
algorithm compared to state-of-the-art algorithms. It has to be noted that, the
results using the NCV attribute is given in Table 5.4. The number of SPT terms
presented in Table 5.4 is obtained by converting the generated filter coefficients
from the POTx algorithm using the conversion algorithm described previously.
Afterwards, common sub-expression elimination (CSE) is employed to reduce the
number of multiplier adders (MA). The CSE algorithm is described in more detail
in the following section. The results of associating the CSE with the optimized
filter coefficient set obtained from the convergent POTx algorithm is given in
Table 5.11. Alone, the results from the CV attributes are presented to assure con-
sistent comparison with literature algorithm.

68

5.5. Mixed Integer Linear Programming

T
ab

le
5.

3.
:

P
ro

po
se

d
al

go
rit

hm
ev

al
ua

tio
n

PO
Tx

SP
T

T
im

e
(s

)
A

llo
ca

tio
n

It
er

at
io

n
C

on
st

ra
in

ts
A

B
C

L2
S2

A
B

C
L2

S2
C

N
L

C
V

17
0

18
0

67
0

17
1

15
7

2.
64

5.
30

35
.4

0.
72

10
.3

C
LP

C
V

17
0

18
0

67
0

17
1

15
7

4.
41

5.
30

14
0

1.
21

10
.3

C
LP

N
C

V
17

0
18

0
67

0
17

1
15

7
5.

28
6.

83
13

6
1.

40
9.

37
S

N
L

C
V

16
8

19
8

70
3

16
9

16
1

1.
72

1.
40

37
0.

83
3.

36
S

LP
C

V
16

8
18

2
65

7
16

9
15

7
3.

48
5.

16
12

9
1.

64
8.

78
S

LP
N

C
V

16
8

18
2

65
7

16
9

15
7

3.
51

5.
90

11
9

1.
63

8.
89

D
N

L
C

V
18

2
20

9
70

3
17

3
18

7
0.

4
0.

08
1.

12
0.

14
0.

03
D

LP
C

V
14

4
20

7
57

7
17

3
15

7
10

.7
5.

01
19

3
3.

37
9.

11
D

LP
N

C
V

14
0

19
5

57
7

17
3

15
7

10
.7

6.
08

19
0

3.
42

9.
10

SC
N

L
C

V
17

2
19

8
70

3
17

7
16

3
2.

43
1.

69
33

.0
1.

19
3.

68
SC

LP
C

V
16

8
19

4
51

3
14

7
14

6
16

.8
4.

01
15

7
1.

70
11

.6
1

SC
LP

N
C

V
16

8
19

4
51

3
14

7
14

6
17

.1
3.

03
16

4
2.

50
11

.7
SD

N
L

C
V

16
4

17
0

70
3

17
1

16
6

2.
40

2.
01

40
.3

1.
22

3.
97

SD
LP

C
V

16
0

16
8

51
3

17
1

15
7

4.
19

7.
27

17
6

1.
73

9.
43

SD
LP

N
C

V
16

0
15

4
51

3
17

1
15

7
4.

18
9.

13
17

6
1.

66
9.

48
C

:C
os

t,
S:

Se
ns

iti
vi

ty
,D

:D
ev

ia
tio

n,
SD

:S
en

sit
iv

ity
.D

ev
ia

tio
n,

SC
:S

en
sit

iv
ity

.C
os

t,
N

L:
N

o
Lo

op
in

g,
LP

:L
oo

pi
ng

,C
V

:C
on

ve
rg

en
t,

N
C

V
:N

on
-c

on
ve

rg
en

t.

69

5. Algorithmic System Level Power Optimization

Table 5.4.: POTx algorithm vs. State-of-the-art algorithms
Filter Algorithm N Q SPT Gain (%)

A

RMZ 59 15 200 -
TRE 59 13 160 20
LI 59 13 151 24.5
MILP 59 13 145 27.5
FIRGAM 59 13 145 27.5
POTx 58 13 140 30

B

RMZ 105 13 232 -
TRE 105 12 199 14.2
LI 105 12 212 8.6
MILP - - - -
FIRGAM 105 11 169 27.2
POTx 105 11 156 32.7

C

RMZ 325 15 820 -
TRE 325 14 743 9.4
LI 325 14 740 9.8
MILP - - - -
FIRGAM 325 13 549 33.0
POTx 325 13 513 29.6

L2

RMZ 63 15 197 -
LIM 63 13 159 19.3
PMILP 63 - 163 17.3
FIRGAM 63 13 140 28.9
POTx 61 13 147 25.3

S2

RMZ 60 16 204 -
SAM 60 - 174 14.7
PMILP 60 - 174 14.7
FIRGAM 60 15 160 21.6
POTx 60 15 146 28.4

The time invested by POTx (Gray columns) to find the filter coefficients is given
in Table 5.5. The remarkable reduction in computation time compared to the
FIRGAM can be perceived from Table 5.5. The run time corresponds to the time
spent by all the POTx settings, the 15 altered settings for allocation, iteration,
and constraints (presented by the first three columns in Table III). Whereas, the
best solution time is the time spent by POTx to achieve the filter coefficient set
with the minimum number of non-zero terms.
The generated filter coefficients and the corresponding frequency response for fil-
ters A, B, S2, LP1, N1, using the NCV attribute, are given in Fig. 5.12, Fig. 5.13,
Fig. 5.14, Fig. 5.15, and Fig. 5.16, respectively. Further, the generated filter coeffi-
cients and the corresponding frequency response for filters A, B, employing the CV
attribute, are given in Fig. 5.17, Fig. 5.18, respectively. The presented coefficients

70

5.5. Mixed Integer Linear Programming

Table 5.5.: Computation times for FIRGAM vs. POTx

Filter Best Solution Time Run Time
FIRGAM POTx FIRGAM POTx

A 3h 2m 0.28m 4h 14m 1.49m
B 9m 0.05m 24h 1.13m
C 13h 47m 1.98m 24h 28.7m
L2 26m 0.03m 54m 0.40m
S2 23m 0.15m 27m 1.98m

are for half the filter due to symmetry.

71

5. Algorithmic System Level Power Optimization

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−120

−100

−80

−60

−40

−20

0

Normalized Frequency

M
ag

ni
tu

de
[d

B
]

h(0)= 2 h(6)= -32 h(12)= 64 h(18)= -146 h(24)= 400
h(1)= 4 h(7)= -40 h(13)= 92 h(19)= -218 h(25)= 704
h(2)= 2 h(8)= -40 h(14)= 100 h(20)= -246 h(26)= 988
h(3)= -2 h(9)= -29 h(15)= 78 h(21)= -206 h(27)= 1212
h(4)= -10 h(10)= -5 h(16)= 24 h(22)= -80 h(28)= 1334
h(5)= -20 h(11)= 29 h(17)= -56 h(23)= 128

Figure 5.12.: Filter A optimized coefficient set and its corresponding frequency response.

72

5.5. Mixed Integer Linear Programming

0 0.1 0.2 0.3 0.4 0.5
−120

−100

−80

−60

−40

−20

0

Normalized Frequency

M
ag

ni
tu

de
[d

B
]

h(0)= -4 h(11)= 0 h(22)= 12 h(33)= 16 h(44)= -56
h(1)= 0 h(12)= 4 h(23)= 14 h(34)= -4 h(45)= -88
h(2)= 2 h(13)= 8 h(24)= 8 h(35)= -24 h(46)= -90
h(3)= 4 h(14)= 8 h(25)= -4 h(36)= -36 h(47)= -40
h(4)= 4 h(15)= 4 h(26)= -14 h(37)= -32 h(48)= 60
h(5)= 4 h(16)= -2 h(27)= -20 h(38)= -8 h(49)= 190
h(6)= 2 h(17)= -8 h(28)= -16 h(39)= 20 h(50)= 320
h(7)= 0 h(18)= -12 h(29)= -4 h(40)= 46 h(51)= 416
h(8)= -4 h(19)= -8 h(30)= 12 h(41)= 52 h(52)= 448
h(9)= -4 h(20)= 0 h(31)= 24 h(42)= 36
h(10)= -4 h(21)= 8 h(32)= 24 h(43)= -4

Figure 5.13.: Filter B optimized coefficient set and its corresponding frequency response.

73

5. Algorithmic System Level Power Optimization

0 0.1 0.2 0.3 0.4 0.5
−120

−100

−80

−60

−40

−20

0

Normalized Frequency

M
ag

ni
tu

de
[d

B
]

h(0)= 4 h(6)= -32 h(12)= -136 h(18)= 80 h(24)= 872
h(1)= 2 h(7)= -48 h(13)= -140 h(19)= 184 h(25)= 1008
h(2)= 0 h(8)= -68 h(14)= -132 h(20)= 304 h(26)= 1124
h(3)= -4 h(9)= -88 h(15)= -106 h(21)= 436 h(27)= 1220
h(4)= -10 h(10)= -108 h(16)= -64 h(22)= 580 h(28)= 1284
h(5)= -20 h(11)= -124 h(17)= -2 h(23)= 728 h(29)= 1320

Figure 5.14.: Filter S2 optimized coefficient set and its corresponding frequency response.

74

5.5. Mixed Integer Linear Programming

0 0.1 0.2 0.3 0.4 0.5
−120

−100

−80

−60

−40

−20

0

Normalized Frequency

M
ag

ni
tu

de
[d

B
]

b(0)= 0 b(5)= 1 b(10)= -2 b(15)= -21 b(20)= -64
b(1)= 0 b(6)= 4 b(11)= 8 b(16)= 2 b(21)= -58
b(2)= -1 b(7)= 2 b(12)= 12 b(17)= 32 b(22)= 48
b(3)= -2 b(8)= -4 b(13)= 1 b(18)= 32 b(23)= 212
b(4)= -1 b(9)= -8 b(14)= -17 b(19)= -16 b(24)= 336

Figure 5.15.: Filter LP1 optimized coefficient set and its corresponding frequency response.

75

5. Algorithmic System Level Power Optimization

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−120

−100

−80

−60

−40

−20

0

Normalized Frequency

M
ag

ni
tu

de
[d

B
]

h(0)= -1 h(7)= 20 h(14)= -168 h(21)= -326 h(28)= 3706
h(1)= -2 h(8)= 22 h(15)= 142 h(22)= -1055 h(29)= -562
h(2)= 0 h(9)= -38 h(16)= 282 h(23)= 394 h(30)= -6664
h(3)= 4 h(10)= -48 h(17)= -197 h(24)= 1572 h(31)= 592
h(4)= 2 h(11)= 64 h(18)= -453 h(25)= -460 h(32)= 20762
h(5)= -11 h(12)= 93 h(19)= 258 h(26)= -2361 h(33)= 32166
h(6)= -9 h(13)= -99 h(20)= 700 h(27)= 516

Figure 5.16.: Filter N1 optimized coefficient set and its corresponding frequency response.

76

5.5. Mixed Integer Linear Programming

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency

M
ag

ni
tu

de
[d

B
]

h(0)= 2 h(6)= -32 h(12)= 64 h(18)= -146 h(24)= 400
h(1)= 3 h(7)= -40 h(13)= 92 h(19)= -218 h(25)= 704
h(2)= 2 h(8)= -40 h(14)= 100 h(20)= -246 h(26)= 988
h(3)= -2 h(9)= -29 h(15)= 78 h(21)= -206 h(27)= 1212
h(4)= -10 h(10)= -5 h(16)= 24 h(22)= -80 h(28)= 1334
h(5)= -20 h(11)= 29 h(17)= -57 h(23)= 128

Figure 5.17.: Filter A optimized coefficient set using CV and its corresponding frequency
response.

77

5. Algorithmic System Level Power Optimization

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency

M
ag

ni
tu

de
[d

B
]

h(0)= -4 h(11)= 0 h(22)= 13 h(33)= 16 h(44)= -56
h(1)= 0 h(12)= 4 h(23)= 14 h(34)= -4 h(45)= -90
h(2)= 2 h(13)= 8 h(24)= 8 h(35)= -24 h(46)= -90
h(3)= 4 h(14)= 8 h(25)= -4 h(36)= -36 h(47)= -40
h(4)= 4 h(15)= 4 h(26)= -14 h(37)= -32 h(48)= 60
h(5)= 4 h(16)= -2 h(27)= -20 h(38)= -10 h(49)= 190
h(6)= 2 h(17)= -8 h(28)= -16 h(39)= 20 h(50)= 320
h(7)= -1 h(18)= -10 h(29)= -4 h(40)= 46 h(51)= 416
h(8)= -4 h(19)= -8 h(30)= 12 h(41)= 52 h(52)= 448
h(9)= -6 h(20)= 0 h(31)= 24 h(42)= 36
h(10)= -4 h(21)= 8 h(32)= 25 h(43)= -4

Figure 5.18.: Filter B optimized coefficient set using CV and its corresponding frequency
response.

78

5.6. Common Sub-expression Elimination

5.6. Common Sub-expression Elimination

Common sub-expression elimination (CSE) aims to allocate and eliminate the
redundant computations consisting of two non-zero terms [82]. CSE leads to about
50% reduction in the multiplier adders (MA) [83]. Whereas, considering only the
most common sub-expression leads to 33% reduction in the MAs [83]. The two
frequent common sub-expressions are the 3-bit common sub-expression (3CS) 101
and 101 [83]. Then comes the 4-bit common sub-expression (4CS) the 1001 and
1001 [84]. Several CSE approaches [82], [83], [85], [86], [87] have been proposed in
literature which consider the pattern search criterion. The CSE algorithms given
in [82], [83] and [85] depend on the frequency of the most occurring CS. The work
given in [83] considers super sub-expression (SS), e.g. searching for various CS
patterns such as 101 and 1001 within the same coefficient set. However, SS is
recommended for coefficients with large bit-width [85]. A recent comparison for
the different CSE algorithms can be found in [86]. The major trade-off in CSE
is between computation time and allocating the CS with the maximum number
of occurrence. The choice of the CS is a substantial process in order to achieve
the maximum reduction in the MA, which depends on the frequency of occurrence
and the estimated reduction in MA [83]. Throughout CSE each individual bit is
not allowed to occur in more than one pair to assure overlapping is not counted
twice [83].
The author developed a CSE algorithm which combines several approaches in order
to achieve a fair balance between computation time and reliable reduction in the
number of operations. The CSE is used later on, in the following chapter, to
steer the constant multiplier construction on the RTL level. The proposed CSE
algorithm can be explained as follow:

• CSE Pre-processing

– Calculate the number of occurrences for 3CS and 4CSs in overall ‘over-
lapped’

– Calculate the number of occurrence of each individual CS

• CSE Overlapping

– Exclude overlapping between CS patterns according to the most fre-
quent occurred CS and in order to maximize the overall number of CS
as well

On the one hand, the purpose of the pre-processing step is to process the statistics
of CS patterns within the filter coefficients to use it later to steer the process of
eliminating the overlapping between CSs. On the other hand, excluding overlap-
ping between CSs has a critical impact on the reduction of number of operations.
As an example, consider the following coefficients:

79

5. Algorithmic System Level Power Optimization

hk(1) = 10100101
hk(2) = 101001
hk(3) = 10010101

The coefficient hk(1) has three CSs, 101 occurred two times and 1001 occurred
one time. The choice between 3CS or 4CS pattern will consequently influence
the number of reduction in MAs. However, the coefficient hk(3) has three CSs as
well, the allocation of which 3CS, 101 or 101, will affect the number of MAs, i.e.
if 101 is chosen instead of 101 consequently 1001 will not be considered. While
hk(2) has only two CSs, the choice should be for the most frequently occurring CS,
3CS or 4CS, which will be determined from the pre-processing step. The detailed
pseudocode of the proposed algorithm is given in Fig. 5.19, where the symbols and
their d are given in Table 5.6. The CS patterns are defined as

r1 = 101 ∼ 20 + 2−2

r2 = 101 ∼ 20 − 2−2

r3 = 1001 ∼ 20 + 2−3

r4 = 1001 ∼ 20 − 2−3

It should be noted that, before CSE a reduction redundancy step is performed.
The redundancy reduction removes zeros, ones, power-of-two terms, tailing shifts,
and redundant terms (explained later numerically). The ones, the power-of-two
terms, and the tailing shifts are excluded before CSE as they are hard-wire routes
without hardware overhead for implementation. The CS pairs, and their negated
versions, used in this work are the 3CS and 4CS. The algorithm is applicable for
binary and CSD coefficients, however the presented results consider CSD only for
consistent comparison with the literature.

Illustratively, CSE detailed analysis is performed and presented for benchmark fil-
ter S2. The unique coefficient set is
ûk = [3, 5, 11, 17, 23, 27, 33, 35, 63, 65, 91, 109, 145, 151, 165, 281, 305, 321]. The out-
put from the pre-processing step is given in Table 5.7 and Table 5.8, which shows
the statistics and distribution of 3CS and 4CS within the filter coefficients. The
CSD representation of the unique filter coefficient set, i.e. after excluding redun-
dancy, is shown in Table 5.9. In order to verify the consistency of both tables, as
an example for 3CS, the r1 and r2 columns of Table 5.8 is added together which
should be equal to the summation of the multiplying cnt_3cs and cnt_r_3cs
columns of Table 5.7. Table 5.9 shows the final output after excluding the over-
lapping between CSs. Table 5.12 shows the number of multiplier adders (MA) for
the benchmark filters using the proposed algorithm compared to the Spiral and
the FIRGAM algorithms. The result shows that, there are 17 CS, non-overlapped,
which leads to (17+4) MAs as shown in Table 5.10. Comparing Fig. 5.14 and Ta-
ble 5.10 for filter S2, it can be observed that there are four absent coefficients (after
excluding the zeros and power-of-two coefficients) which are: 80, 136, 1008, and 872.
They are implicitly implemented through other coefficients as follows: 80 = 24 ×5,

80

5.6. Common Sub-expression Elimination

1: procedure CSE Pre-processing(ĥk)
2: hk ← Binary ∨ CSD convert ĥk

3: for i → 1, M do
4: for j → 1, Q do
5: tmp_rx ← rx find hk(i, j) 	 overlapped patterns
6: if not empty tmp_rx then
7: cnt_rx + +
8: k + +
9: end if

10: end for
11: end for
12: cnt_3cs = ΣM

i=1Σk
j=1r1(i, j) + r2(i, j)

13: cnt_4cs = ΣM
i=1Σk

j=1r3(i, j) + r4(i, j)
14: cnt_r1 = ΣM

i=1Σk
j=1r1(i, j)

15: cnt_r2 = ΣM
i=1Σk

j=1r2(i, j)
16: cnt_r3 = ΣM

i=1Σk
j=1r3(i, j)

17: cnt_r4 = ΣM
i=1Σk

j=1r4(i, j)
18: end procedure
19: Form analysis tables for total and individual CS patterns
20: procedure CSE Overlapping(ĥk)
21: for i = 1 → M do
22: if cnt_3cs > cnt_4cs then
23: flag ← 3cs
24: else
25: flag ← 4cs
26: end if
27: if cnt_cs = cnt_rcs ∧ cnt_cs = 1 then
28: cnt(i) ← cnt_r
29: else if cnt_cs < cnt_rcs ∧ cnt_cs = 1 then
30: cnt(i) ← cnt_r
31: else if cnt_cs > cnt_rcs ∧ cnt_cs > 1 then
32: if OL then 	 flag
33: cnt(i) + +
34: if OL then 	 not flag
35: pattern ← pattern not overlapped
36: end if
37: else
38: cnt(i) = cnt_r
39: pattern
40: end if
41: else
42: end if
43: end for
44: end procedure

Figure 5.19.: Pseudocode for CSE algorithm.

81

5. Algorithmic System Level Power Optimization

Table 5.6.: Symbol definition for CSE algorithm given in Figure 5.19
Symbol Abbreviation
ĥk Scaled filter coefficients
hk Binary or CSD representation of the filter coefficients
M Half the filter length
Q Quantization bit-width
cnt_3cs Total number of occurrence for 3CS patterns

‘overlapping is not excluded’
cnt_4cs Total number of occurrence for 4CS patterns

‘overlapping is not excluded’
cnt_r1 Number of occurrence for the CS pattern r1
cnt_r2 Number of occurrence for the CS pattern r2
cnt_r3 Number of occurrence for the CS pattern r3
cnt_r4 Number of occurrence for the CS pattern r4
k Number of occurrence of the an individual CS pattern

within the same coefficient
cnt Total number of occurrence of CS (3CS and 4CS)

considering excluded overlapping
pattern Variable holds the identity of the CS pattern

within each coefficient after excluding overlapping
OL Overlapping
rx CS pattern where x ∈ {1, 2, 3, 4}

136 = 23 × 17, 1008 = 24 × 126, and 872 = 23 × 436. Consequently, redundant
terms have been eliminated from the filter coefficient set by preserving the odd
fundamentals only [55]. It has to be noted, that the number of MAs is calculated
according to the number of non-zero terms in each coefficient and the number of
CS patterns within the coefficient. The number of MA for the optimized bench-
mark filters is given in Table 5.11.
Further, the proposed algorithm was compared to the Hcub algorithm [87] using
the online Spiral generator [88], as shown in Table 5.12.

82

5.6. Common Sub-expression Elimination

Table 5.7.: CSE pre-processing results for 3CS and 4CS
ĥk 3CS 4CS

cnt_3cs cnt_r_3cs cnt_4cs cnt_r_4cs
1 1 1 0 0
2 1 1 0 0
3 2 1 0 0
4 0 0 0 0
5 1 1 1 1
6 1 1 1 1
7 0 0 0 0
8 1 1 1 1
9 0 0 0 0
10 0 0 0 0
11 2 1 1 1
12 2 1 1 1
13 0 0 1 1
14 2 1 1 1
15 1 2 1 1
16 1 1 2 1
17 2 1 0 0
18 1 1 0 0

Table 5.8.: CSE pre-processing results for r1, r2, r3, r4

Filter 3CS 4CS
r1 r2 r3 r4

S2 10 9 7 3

83

5. Algorithmic System Level Power Optimization

Table 5.9.: CSE optimized results due to the proposed algorithm
ûk cnt pattern CSD
3 1 r2 0 0 0 0 0 0 0 0 1 0 -1
5 1 r1 0 0 0 0 0 0 0 0 1 0 1
11 1 −r1 0 0 0 0 0 0 1 0 -1 0 -1
17 0 0 0 0 0 0 0 0 1 0 0 0 1
23 1 r2 0 0 0 0 0 1 0 -1 0 0 -1
27 1 −r1 0 0 0 0 0 1 0 0 -1 0 -1
33 0 0 0 0 0 0 0 1 0 0 0 0 1
35 1 r2 0 0 0 0 0 1 0 0 1 0 -1
63 0 0 0 0 0 0 1 0 0 0 0 0 -1
65 0 0 0 0 0 0 1 0 0 0 0 0 1
91 2 −r1, r2 0 0 0 1 0 -1 0 0 -1 0 -1
109 2 −r2, r4 0 0 0 1 0 0 -1 0 -1 0 1
145 1 r3 0 0 0 1 0 0 1 0 0 0 1
151 2 r1, −r3 0 0 0 1 0 1 0 -1 0 0 -1
165 2 r1 0 0 0 1 0 1 0 0 1 0 1
281 2 r3, −r4 0 0 1 0 0 1 0 -1 0 0 1
305 1 r1 0 0 1 0 1 0 -1 0 0 0 1
321 1 r1 0 0 1 0 1 0 0 0 0 0 1

Table 5.10.: Filter S2 CSE
ĥk ûk PFP+CSE MA
20 22 × 5 2−7(r1) 0
33 20 × 33 2−6(20 + 2−5) 1
48 24 × 3 2−5(r2) 0
68 22 × 17 2−5(20 + 2−4) 1
88 23 × 11 2−4(r2 − 2−4) 1
126 21 × 63 2−4(20 − 2−6) 1
140 22 × 35 2−4(20 + 2−3.r2) 1
130 21 × 65 2−4(20 + 2−6) 1
108 22 × 27 2−4(20 − 2−3.r1) 1
184 23 × 23 2−3(r2 − 2−5) 1
302 21 × 151 2−3(r1 − 2−4.r3) 1
436 22 × 109 2−2(r4 − 2−5.r2) 1
580 22 × 145 2−2(r3 + 2−7) 1
728 23 × 91 2−1(r2 − 2−5.r1) 1
1124 22 × 281 2−1(r3 − 2−5.r4) 1
1220 22 × 305 2−1(r1 − 2−4 + 2−8) 2
1284 22 × 321 2−1(r1 + 2−8) 1
1320 23 × 165 2−1(r1 + 2−5.r1) 1
Sum 17

84

5.6. Common Sub-expression Elimination

T
ab

le
5.

11
.:

P
O

Tx
al

go
rit

hm
pe

rf
or

m
an

ce
ev

al
ua

tio
n

Fi
lte

r
A

lg
or

ith
m

N
Q

SP
T

G
ai

n
(%

)
M

A
SA

To
ta

l
B

es
t

So
lu

tio
n

T
im

e
R

un
T

im
e

A
R

M
Z

59
15

20
0

-
29

58
87

-
-

-
-

FI
R

G
A

M
59

13
14

5
27

.5
18

58
76

3h
2m

4h
14

m
SH

I
59

10
13

7
31

.5
14

54
68

-
-

50
h

34
m

PO
Tx

59
13

14
4

28
.0

16
58

74
-

0.
28

m
-

1.
49

m

B
R

M
Z

10
5

13
23

2
-

24
10

2
12

6
-

-
-

FI
R

G
A

M
10

5
11

16
9

27
.2

11
10

0
11

1
-

9m
24

h
PO

Tx
10

5
11

16
8

27
.5

10
99

10
9

-
0.

05
m

1.
13

m

C
R

M
Z

32
5

15
82

0
-

57
32

2
37

9
-

-
-

FI
R

G
A

M
32

5
13

54
9

33
.0

22
30

6
32

8
13

h
47

m
24

h
-

PO
Tx

32
5

13
51

3
37

.4
24

30
1

32
5

-
1.

98
m

-
28

.7
m

L2
R

M
Z

63
15

19
7

-
30

62
92

-
-

-
FI

R
G

A
M

63
13

14
0

28
.9

18
62

80
-

26
m

-
54

m
SH

I
63

10
14

8
24

.8
17

56
73

-
-

16
h

28
m

PO
Tx

61
13

14
7

25
.3

17
59

76
-

0.
03

m
-

0.
40

m

S2
R

M
Z

60
16

20
4

-
32

59
91

-
-

-
FI

R
G

A
M

60
15

16
0

21
.6

27
59

86
-

23
m

-
27

m
SH

I
60

10
16

8
17

.6
17

59
76

-
-

16
h

42
m

PO
Tx

60
15

14
6

28
.4

19
58

77
-

0.
15

m
-

1.
98

m

85

5. Algorithmic System Level Power Optimization

Table 5.12.: Number of multiplier adders using the proposed CSE algorithm compared to Spi-

ral and FIRGAM
Filter Spiral [88] FIRGAM [65] Proposed

A 16 18 18
B 10 11 10
L2 17 18 19
S2 18 27 21

86

5.7. Summary

5.7. Summary

Novel allocation schemes have been presented in this chapter. The proposed
schemes, namely: coefficient deviation, cost, and hybrid showed an adequate per-
formance for coefficients presorting compared to the sensitivity based scheme. How-
ever, employing the sensitivity based scheme within the hybrid scheme resulted in
an efficient allocation scheme.
Further, a heuristic algorithm named POTx was developed for reducing the number
of non-zero terms in filter coefficients. The POTx showed on one hand remarkable
savings in the computation time due to: a) a bounded search space for candidates
by upper and lower bounds, b) being monotonic, and c) employing break-off and
no-change states for terminating the searching process. On the other hand, the
considerable gain in reducing the number of non-zero terms is achieved due to: a)
presorted coefficients using dedicated allocation schemes, b) multiple optimization
iterations, c) unconstrained number of non-zero terms, and d) designing the filter
with 3-dB tighter constraints.
The proposed schemes and algorithm were verified using seven benchmark filters.
The results revealed a remarkable reduction in the computation time for all the
filters. At the same time, a considerable reduction in the number of non-zero terms
for five filters out of seven (more than 70%) is achieved.
A straight forward common sub-expression elimination algorithm was developed
in order to reduce the number of multiplier adders. The algorithm is based on pat-
tern search and excludes pattern overlapping based on the frequency of occurrence.
Employing common sub-expression elimination introduces around 40% reduction
in the number of multiplier adders.

87

6. Architectural System Level
Power Optimization

6.1. Introduction

Power optimization can be achieved on the system level through the manipulation
and re-arrangement of blocks or sub-blocks while preserving the same functionality.
This is achieved by combining, mixing, or constructing hybrid architectures for
reducing power dissipation. This work has been published in [3].

6.2. Combined DF and TF Architectures

Polyphase FIR filters are implemented either in direct-form (DF 1) or transposed-
form (TF 2). Each of these two forms has some drawbacks. From an implemen-
tation point of view both structures contain the same number of multipliers and
adders, whereas TF has fewer delays. However, the width of the delays for the TF
is generally larger, depending on the coefficient quantization bit-width (Q) and
decimator input bit-width (Wi). Furthermore, the fan-out of the input node is
high as a single node drives several multipliers. On the other hand, the critical
path for the TF FIR filter is only one multiplier and one multi-operand adder
compared with one multiplier and �N/M� multi-operand adders for the DF [89],
where N and M are the filter order and decimation factor, respectively. Further-
more, TF allows multiplier optimization because of the shared multiplier structure.
The work presented in [90] has chosen the DF since the polyphase decomposition
highly reduces the operating frequency of the filter, so the critical path is no longer
a problem. On the other hand, [91], [92], [93] have chosen the TF to allow shared
multipliers for optimization. In [93] the author has chosen a hybrid structure to
combine both the TF and DF structures within the same decimation filter.
An in-depth comparison of both structures for polyphase decimators in terms of
power consumption is still missing and it is the topic of this chapter. This is
accomplished by an analysis of a typical decimator, which is implemented using
different structures and both TF and DF topologies. The results of this analysis
are then used to develop a more universal criterion for choosing between TF and

1Detailed topology is given in 7.6.2
2Detailed topology is given in 7.6.2

89

6. Architectural System Level Power Optimization

Table 6.1.: Design specifications

Parameter Value
Sampling frequency fs 960 kHz

Oversampling ratio OSR 24
Signal frequency fsignal 5 kHz

IBN of modulator output -83.39 dB
IBN of decimator output -80.67 dB

DF in polyphase decimators.

6.2.1. Analysis of Power Consumption

A decimator for a low-pass ΣΔ modulator with an oversampling ratio of 24 is used
as a case study to investigate the effect of different numbers of decimation stages
and the use of TF and DF filter structures on power consumption. It is more effi-
cient to implement the sampling rate reduction in a series of decimation filters [29],
though different topologies for the multi-stage decimation filters have been devel-
oped for high accuracy analysis using the MSD-toolbox. The investigated 2-stage,
3-stage, and 4-stage topologies are shown in Fig. 6.1, all of which have been im-
plemented using TF and DF polyphase filters. The M ’s are presented inside each
block by the downward arrow. The design parameters for the case study is pre-
sented in Table 6.1 for a 3rd order low-pass ΣΔ modulator. Figure 6.2 shows the
total power consumption for the multi-stage decimators (2, 3, and 4 stages) which
are presented in Fig. 6.1. The TF appears to be the more efficient filter architec-
ture considering the power consumption. The bar chart in Fig. 6.3 indicates the
total power consumption in each decimation stage, while the pie chart presents the
power consumption distribution over the multipliers (MUs), multi-operand adders
(MOAs), and delays (DLs) in each decimation stage. Analyzing the power distri-
bution of the various decimator topologies reveals that the power consumption in
the MOAs and MUs is almost identical in the corresponding DF and TF filters, as
given in Tables 6.2 and 6.3. Figure 6.2 and Table 6.4 show the power dissipation
distribution over the stages for the different topologies. Analyzing the results pre-
sented in this graph and this table reveals: a) The last decimation stage consumes
around 50% of the total power in the whole decimator filter, b) MOAs are the
dominant source of power consumption in each decimation stage. Analyzing the
results presented in Table 6.4 reveals that the DF filters in the first stage actu-
ally consume less power than the transposed form. This observation is confirmed
analytically in section 6.2.2.

90

6.2. Combined DF and TF Architectures

3 3

3

3

14

14

14

N = 79

N = 57

N = 57

N = 57

N = 27 N = 13

N = 10 N = 6 N = 11

Q = 13 Q = 9

Q = 14

Q = 12

Q = 12

Q = 8

Q = 8

Q = 10Q = 10

12

222

22

2

6

Figure 6.1.: A case study for various multi-stage decimator topologies for power consumption of
FIR polyphase structures, where N denotes the filter length, Q is the quantization
bit-width for filter coefficients, and M is the decimation factor..

Table 6.2.: Power consumption [μW] distribution for 3-stages of the decimation

DF TF
1st 2nd 3rd 1st 2nd 3rd

MUs 4.35 2.31 2.43 4.54 2.32 2.74
MOAs 4.85 3.31 7.67 4.90 3.29 7.21
DLs 1.15 2.68 14.0 0.70 1.19 7.34
Sum 10.3 8.85 24.1 10.1 6.80 17.3

6.2.2. TF|DF Selection Criterion

As shown in section 6.2.2, there are filters where it is more advantageous to use
a DF implementation and others where the TF shows lower power consumption.
To avoid time consuming power simulations, an analytic criterion to predict which
structure is more advantageous is desirable. In [93] a study of the FIR filter
complexity according to the number of DLs and MUs for both TF and DF FIR
filters was carried out but a selection criterion was not considered. Further, the
quantization bit-width Q and decimator input bit-width Wi was not included for
calculating the number of internal DLs bit-width.
As observable in Tables 6.2 and 6.3 and also in the power distribution of the deci-
mator topologies as given in Fig. 6.3, the differentiation between both structures
can be obtained by solely regarding DLs. The major difference between DF and
TF structures is the number of DLs and the internal bit-width of the DLs. The
author has modeled the overall bit-width of all DLs in the filter for the TF and

91

6. Architectural System Level Power Optimization

30

32

34

36

38

40

42

44

46

48

50

DF
TF

Stages

P
ow

er
[μ

W
]

Two Three Four

Figure 6.2.: Total power consumption in two, three, and four multistage decimation topologies,
where DF is Direct-form and TF is Transposed-form.

Table 6.3.: Power consumption [μW] distribution for 4-stages of the decimation

DF TF
1st 2nd 3rd 4th 1st 2nd 3rd 4th

MUs 0.98 0.29 2.01 3.06 1.0 0.29 2.02 3.32
MOAs 1.87 1.31 2.55 7.68 1.8 1.27 2.55 7.25
DLs 0.54 0.92 2.00 14.0 0.83 0.73 1.56 7.35
Sum 3.39 2.52 6.56 24.74 3.63 2.29 6.13 17.92

Table 6.4.: Power consumption [μW] distribution in multistage decimation topologies
1st 2nd 3rd 4th

2-Stages DF 22.0 23.3 - -
TF 21.3 19.6 - -

3-Stages DF 11.2 9.32 25.3 -
TF 11.6 8.73 18.9 -

4-Stages DF 4.04 3.69 7.49 25.9
TF 4.35 3.48 7.12 19.6

92

6.2. Combined DF and TF Architectures

0

0.2

0.4

0.6

0.8

1

1.2

1

Total Power Adders Delays Multipliers

0

5

10

15

20

25

30

First Stage Second Stage Third Stage

47%

11%

42%

40%

32%

28% 10%

58%
32%

P
ow

er
[μ

W
]

(a)

Total Power Adders Delays Multipliers

0

5

10

15

20

25

30

First Stage Second Stage Third Stage

45%

7%

48%

42%

43%

15%

42%

16%

42%

P
ow

er
[μ

W
]

(b)

0

0.2

0.4

0.6

0.8

1

1.2

1

Total Power Adders Delays Multipliers

0

5

10

15

20

25

30

First Stage Second Stage Third Stage Fourth Stage

55%

16% 29% 12%

51%

37%

39%

30%

31%

31%57%

12%

P
ow

er
[μ

W
]

(c)

Total Power Adders Delays Multipliers

0

5

10

15

20

25

30

First Stage Second Stage Third Stage Fourth Stage

27%

50%

23% 13%

55%

32% 33%
25%

42%

41%

19%

40%

P
ow

er
[μ

W
]

(d)

Figure 6.3.: Power dissipation distribution in multistage decimation topologies.

DF structures analytically by (6.1) and (6.2), respectively, with decimation factor
M, filter order N, quantization bit-width Q, and decimator input bit-width Wi.

DLDF = (N − M)Wi (6.1)

DLT F = (Wi + Q)
(

� N

M
− 1�

)
(6.2)

In Fig. 6.4 these dependencies are shown for different decimation factors M at
N = 27 and N = 77 with Wi = 1, and at Wi = 1 and Wi = 3 with N = 77
(at Q = 16). Illustratively, for a filter length (N = 27) and input bit-width (Wi =
1), it is beneficial to use DF structure with decimation factor up to (M = 27) as
shown in Fig. 6.4.a. If the filter length increased to (N = 77), it is beneficial to
use TF structure with decimation factor up from (M = 19) as shown in Fig. 6.4.a.
However, for larger input bit-width (Wi = 3) it is advantageous to employ DF
up to decimation factor (M = 7) only, as given in Fig. 6.4.b. This graph reveals
that the DF is advantageous at low input bit-width, condition typically found at
the first decimation stage of a multi-stage decimator (as the filter input bit-width
increases at each stage). Furthermore, the graph shows that the DF is especially
advantageous for decimation filters with single-bit inputs.
Figure 6.5, illustrates the situation for different filter lengths N at two decimation

93

6. Architectural System Level Power Optimization

5 10 15 20 25 300

100

200

300

400

500

Decimation Factor (M)

D
Ls

In
te

rn
al

B
it

-w
id

th

TF N = 27
DF N = 27
TF N = 77
DF N = 77

M = 19 M = 27

(a)

5 10 15 20 25 300

100

200

300

400

500

Decimation Factor (M)

D
Ls

In
te

rn
al

B
it

-w
id

th

TF Wi = 1
DF Wi = 1
TF Wi = 3
DF Wi = 3

M = 7 M = 19

(b)

Figure 6.4.: Delays width estimation for DF and TF with respect to M at Q = 16 for (a)
N = 27, 77 at Wi = 1 (b) Wi = 1, 3 at N = 77.

10 20 30 40 50 60 70 80
0

100

200

300

400

500

600

700

800

Filter Length (N)

D
Ls

In
te

rn
al

B
it

-w
id

th

N = 23

TF M = 2
DF M = 2
TF M = 16
DF M = 16

(a)

10 20 30 40

50

50 60 70 80

0

100

200

-50

150

Filter Length (N)

D
Ls

In
te

rn
al

B
it

-w
id

th

N = 23

TF Wi = 1
DF Wi = 1
TF Wi = 3
DF Wi = 3

(b)

Figure 6.5.: Delays width estimation for DF and TF with respect to N at Q = 16 (a) M = 2, 16
at Wi = 3 (b) Wi = 1, 3 at M = 16.

factors M = 2 and M = 16 with Wi = 3, and with Wi = 1 and Wi = 3 at M = 16
(at Q = 16). It is beneficial to use DF structure (despite the filter length) for filter
with Wi = 3 and M = 2 as shown in Fig. 6.5.a. Whereas, if the decimation factor
increased to (M = 16) it is advantageous to use TF structure for filter length larger
than (N = 23) as shown in Fig. 6.5.a. However, if the input bit-width reduced
to (Wi = 1) it is recommended to employ DF as shown in Fig. 6.5.b. For low
decimation factors the DF is advantageous independent of filter order, in other
cases the situation occurs that the DF is only advantageous at low filter orders
due to the step characteristic in the number of DLs for the TF structure.

94

6.3. Implementing Mb using Sb Decimation Filter

Table 6.5.: Power consumption simulated vs. calculated for DLs in the first decimation stage
for the case study topologies

Simulated Calculated Ratio
μW #DLs (DF/TF%)

TF DF TF DF Sim. Calc.
2-stages 1.30 2.80 96 201 215% 210%
3-stages 0.70 0.63 69 63 90% 92%
4-stages 0.83 0.54 270 162 65% 60%

6.2.3. Performance Evaluation and Results

To validate the proposed criterion, it has been applied to the case study described
in section 6.2.1 to compare the simulated power results to the values given by (6.1)
and (6.2). Table 6.5 shows the simulated power consumption of the delays of
the first stage for the 2-stage, 3-stage, and 4-stage topologies, along with the
number of DLs according to (6.1) and (6.2). The third column gives the ratio
between the power consumption for the TF and DF and the number of DLs for
TF and DF, respectively. These ratios show a good fit with an error well below
5% in all cases, thus showing the applicability of the proposed criterion. Using
this criterion, it is thus possible to define an optimum mixed architecture for the
different topologies. The criterion has been applied on the case study. Table 6.5
shows how the developed criterion can be used for designing a decimator in mixed
architectures. For the 2-stages topology, the TF is recommended in the first stage
as it exhibits around 50% less DLs bit-width than DF. For the 4-stages topology
on the other hand, it is advantageous to use DF in the first stage and TF in all
other stages, as shown by Table 6.5.

6.3. Implementing Mb using Sb Decimation Filter

Single-bit (Sb) decimation filters are the most preferred power efficient decimation
architecture since they avoid the usage of large and power-consuming multi-bit mul-
tipliers [91]. On the other hand, multi-bit (Mb) decimation architectures widely
exit for multi-bit ΣΔMs as they have better SNR and better stability. Therefore,
implementing an Mb decimation filter using a Sb decimation filter was investigated
in this section in order to take over the Sb advantage on to the Mb architecture.
The proposed architecture is given in Fig. 6.6. The proposed architecture was
investigated using the case study given in section 6.2.1. Only 2-stage topology was
investigated with multiple input bit-widths Wi = 2, 3, 4, 5. On the one hand, the
maximum reduction in power consumption is around 10% for 2-bit input width,
as shown in Fig. 6.7. On the other hand, the power consumption for 4-bit and

95

6. Architectural System Level Power Optimization

Decimation Filter

LPΣΔM Mb-PPDMb-PPD
Wi-bit Wo-bit

First decimation stage Second decimation stage

(a)

M
SB

LSB

Decimation Filter

LPΣΔM Mb-PPD
Wi-bit Wo-bit

Sb-PPD

Sb-PPD

Sb-PPD

First decimation stage Second decimation stage

Wi

Wi − 1

1

2Wi−2

2Wi−1

20

Σ

(b)

Figure 6.6.: Multi-bit (Mb) ΣΔM implementation using single-bit (Sb) architecture.

5-bit input has increased due to the increase in the number of commutators. It
should be noted that, the commutator is the only sub-block within the polyphase
decimation filter that operates at fs compared to remain sub-blocks that operates
at fs/M .

6.4. Summary

This work provides a set of design guidelines for FIR structures (transposed-form
(TF) or direct-form (DF)) for a given set of decimation factor M and filter order N.
A selection criterion has been developed to choose between TF and DF for power
efficient architectures, the results of which show less than 5% tolerance compared
to gate-level simulations. DF shows a power efficient structure for single-bit deci-
mation filters. The analysis results reveal that DF structures should be preferred
at filter stages with single-bit or small multi-bit inputs and/or low decimation fac-
tors, whereas TF is advantageous in most other cases.
As the preferred architecture is a single-bit decimation filter, whereas the multi-bit
architecture is commonly used as well. Implementing multi-bit decimation filters
using single-bit has been proposed, which exhibit up to 10% reduction in power
consumption compared to the conventional multi-bit implementation.

96

6.4. Summary

0

2

4

6

8

10

-2

-4

-6

-8

-10

Bit-width (Wi)

Po
w

er
R

ed
uc

tio
n

%

2 3 4 5

Figure 6.7.: Percentage in power reduction in Mb decimation filters employing Sb architecture.

97

7. Design and Implementation
Procedure

7.1. Introduction

This chapter presents the developed Matlab toolbox and the proposed design pro-
cedure for multi-stage FIR decimation filter. The toolbox combines and involves
novel methodologies developed in this work as well as several state-of-the-art re-
search efforts. Moreover, this chapter describes the detailed generic VHDL RTL-
based soft IP models developed in this work. Several VHDL IP models have been
developed to verify the proposed power optimization methodologies. This work
considers only the state-of-the-art structures and topologies such as; polyphase
decomposition (PPD) and cascaded integrator comb (CIC).
The purpose in developing a consolidate toolbox is to: i) speed up the process of
designing a multi-stage decimation filter, ii) consider as much as possible design
parameters, and specifications, and iv) provide extended optimization potential.
Similar approaches were presented in literature, proposing toolboxes [94] and
IPs [95], [96], [97]. The work in [94] presented a Matlab toolbox for decima-
tion filters for wireless communication applications only. However, the proposed
toolbox is suitable for communication and control applications as well. While
the work in [95] presented filter VHDL IP for FPGAs, the developed filter IPs
in this work has been tested for FPGAs and ASICs as well. The VHDL models
given in [96] has employed common sub-expression elimination algorithm (CSE)
for canonic signed digit (CSD) coefficients. The developed VHDL models in this
work employ CSE as well for binary and CSD representations.

7.2. Multi-Stage Decimation Toolbox

Several publications deal only with the design and optimization issues of decima-
tion filters, whereas, few publications consider the development of toolboxes or
automatic design tools for that purpose, such as [94], [98], [99].
The design procedure of a decimation filter involves translating the design speci-
fications to implementation parameters. Furthermore, an extensive analysis and
calculations are considered for optimizing the implementation parameters [94].
The aspiration for developing a consolidated design procedure for FIR decimation

99

7. Design and Implementation Procedure

Start

Stop

SpecsDISCO

DelSig

fs, fpb, OSR
IBN,SNR,Stimuli

Stimuli

RT (k, M)

k, M

IBN(δpb, δsb)

δpb, δsb

Type

SA,MB,CIC

P-M-E

N, Q, ĥk

Optimization

MILP

PP

Δhk

Cost

#FAs

Implementation
Parameters

k, M, Q, ĥk

VHDL IP

ĥk min(POT)

Troubleshooting

Figure 7.1.: MSD-toolbox flowchart.

100

7.2. Multi-Stage Decimation Toolbox

filters, is to reduce the system design effort and speed up the optimization and the
implementation process. This goal is achieved through involving considerable de-
sign specifications, bounded design constraints, definite performance metrics, and
accurate simulations. These achievments were published in [1].
The Multi-Stage Decimation toolbox (MSD-toolbox) is developed in Matlab lan-
guage. The proposed dataflow is given by the flowchart given in Fig. 7.1.
The decimation filter system design starts with definite specifications such as
the sampling frequency (fs), oversampling ratio (OSR), passband frequency (fpb),
signal-to-noise ratio (SNR, regarded also as ADC resolution), in-band noise (IBN),
and a stimuli bit-stream from sigma delta modulator. It should be noted that,
the transition band-width (Δf = (fsb − fpb)/fsb) could be provided at the input
specifications instead of the passband frequency. Compared to the previously de-
veloped toolboxes in [94], [98], [99], the IBN and the stimuli bit-stream patterns
are the novel constraints considered in the MSD-toolbox, as shown in Fig. 7.1. The
stimuli bit-stream permits accurate analysis for the intra decimation stages. More-
over, involving the stimuli affords performing spectral analysis in addition to the
frequency domain analysis for the decimation filter. In addition, involving the ac-
ceptable tolerance in the IBN maintains additional flexibility for filter coefficient
optimization. The stimuli bit-stream can be imported from DelSig-toolbox [5],
DISCO-toolbox [19], stored data from practical measurements [100], and SimuLink
models [101]. The MSD-toolbox has several routines and sub-programs for calcu-
lating implementation parameters and performance evaluation. The sub-programs
and routines are based on state-of-the-art algorithms. The essential routines are:

• Calculating k and M (RT (k, M))

• Calculating δpb and δsb (IBN(δpb, δsb))

• Calculating hk and Q (P-M-E)

• Coefficient optimization (Optimization)

• Cost estimation (Cost)

The following subsections discuss each routine separately. An illustrative example
is presented in section 4.4 for the proposed design procedure and the developed
toolbox. Finally, an evaluation for the MSD-toolbox through a consistent compar-
ison with the state-of-the-art toolbox [94] is given in section 6.5.
Figure 7.2 shows the lowpass filter (LPF) frequency response. The FIR filter
transfer function is depicted in (7.1) [25].

H(z) =
N−1∑
i=0

hki
z−i (7.1)

where N is the filter length, and hki
is the filter coefficient set.

101

7. Design and Implementation Procedure

fpb fsb

Δf
δsb

Asb

1 + δpb

1 − δpb

1

0

|H(f)|

f

Figure 7.2.: Lowpass filter frequency response, where fpb is the passband frequency, fsb is the
stopband frequency, Δf is the transition bandwidth, δpb is the passband ripples,
and δsb is the stopband ripple

7.2.1. k and M Calculations

The optimal number of decimation stages and the decimation factor at each stage is
calculated for minimum computational effort (RT), as given in (7.2). The problem
is constrained for k ∈ {2, 3, 4} [28] and Mk = 2 [28] for even M ’s.

RT = D∞fs

k∑
i=1

Mi(
i∏

j=1
Mj

) (
1 − fsb+fpb

fs

i∏
j=1

Mj

) (7.2)

where M is the overall decimation factor (equivalent to OSR), fs is the sampling
frequency, fpb is the passband frequency, fsb is the stopband frequency, and D∞ is
a function in passband (δpb) and stopband (δsb) ripples, as depicted in (7.3) [28].
k is calculated for minimum RT at distinct values of M .

D∞ = log10δsb[0.005309(log10δpb)2 + 0.07114log10δpb − 0.4761] (7.3)
−[0.00266(log10δpb)2 + 0.5941log10δpb + 0.4278]

Detailed analysis for optimizing the number of decimation stages and the decima-
tion factor for each stage is given in [28], [102], [103].

7.2.2. δpb and δsb Calculations

The passband ripples (δpb) and stopband ripple (δsb) are calculated using iterative
simulations preserving a predefined acceptable tolerance in the in-band noise (IBN).
This is done by designing a single stage filter and tuning the δpb and δsb, by defining

102

7.2. Multi-Stage Decimation Toolbox

a certain range or a set of discrete values. The δsb remains the same for all the
k-stages. While, the δpbi

= δpb/k for stage i [28].

7.2.3. hk and Q Calculations

The exact number of decimation stages and the dedicated decimation factor for
each stage were calculated in addition to the given design specifications, which
sustain all the necessary parameters required for calculating the filter coefficients
(hk) for each decimation filter stage employing the Parks-McClellan Equiripple.
Following the filter coefficient (hk) calculation comes the quantization bit-width
(Q) calculation step in order to compute the scaled filter coefficient set (ĥk).
Initially, a set of parameters is calculated for each stage, such as baseband fre-
quency (fB), passband frequency (fpb), and stopband frequency (fsb). The fB is
calculated by (7.4).

fB = fs

2OSR
(7.4)

where OSR is the oversampling ratio and fs is the sampling frequency. The fpb

and the fsb are calculated by Eqs (7.5) and (7.6), respectively. However, the
intermediate stopband frequency (fsbi

) is calculated by (7.7) [28].

fpb = fB(1 − Δf) (7.5)

fsb = fB (7.6)

fsbi
=

fs

k∏
i=1

Mi

− fB (7.7)

FIR filter has distinct implementation types, such as standard FIR (FIR), half-
band (HB), and multi-band (MB) types. The FIR filter implementation type
affects the filter response and coefficients. The Parks-McClellan Equiripple (P-M-
E) algorithm is used to obtain the FIR filter coefficients (hk) for the predefined
filter types except the CIC filter type. Subsequently, the required quantization
bit-width (Q) is calculated iteratively preserving minimum mean error (ME) or
minimum increase in the in-band noise (IBN). The FIR equiripple filter analysis
can be found in [104].

7.2.3.1. Half-band Filter

Half-band filter is a special class of filter which has been efficiently used for deci-
mation stage [7]. Half-band (HB) filter is characterized such that its passband and
stopband ripples are equivalent [7], as depicted in (7.8). Moreover, its passband
and stopband frequencies are symmetrical around a quarter of the sampling fre-
quency [7], as given in (7.9). Half-band filters have to have odd filter order [29]. HB

103

7. Design and Implementation Procedure

filters are recommended to be used at the last decimation stage and for decimation
factors of 2 [28].

δpb = δsb (7.8)

fpb + fsb = fs/4 (7.9)

7.2.3.2. Multi-band Filter

Aliasing is a sampling effect, as shown in Fig. 2.5. The bands of aliasing are well
defined. As shown in Fig. 7.3.b, the spectrum of a decimated signal by M has don’t
care regions (φ) and aliased bands at 2πi/M , where i = 1, 2 · · · M . These alter-
nating bands are defined by (7.10) which as well are considered as constraints for
Equiripple filter design. The φ bands have influence on the filter design, through
unconstrained bands [29]. Detailed analysis can be found in [29]. The reduction in
filter order increases significantly with increasing the decimation factor, as given
in Fig. 7.4. This can be explained from the decrease of the frequency span of the
stopbands compared to the frequency span of the don’t care bands [29]. Exploiting
wider φ bands leads to a filter having cascaded integrator comb filter character-
istic [29]. Moreover, the amplitude response at the φ bands has to be below a
certain level to avoid noise amplification [29]. Figure 7.3.a and Fig. 7.3.d shows
that band of interest before and after decimation, respectively. Figure 7.3.b shows
the aliased bands into the in-band range. Additionally, the desired filter response
with a consecutive doesn’t care and stopbands is given in Fig. 7.3.c.

fsb = [0, fpb,
ifs

Mi
± fpb · · · fs/2], i ∈ {1 → k}} (7.10)

where i, j ∈ N.

7.2.3.3. CIC

One of the most efficient implementations of multi-rate change filter is the cascaded
integrator comb (CIC) filters [29] with the transfer function given in (7.11).

H(z) = (1 − z−α)N

(1 − z−1)N
(7.11)

where N is the filter order (number of stages), and α is the product of decimation
factor M and differential delay D.
CIC filters are mostly used for large decimation factors [29]. There are three
main design parameters for adjusting CIC filter response. On the one hand, the
decimation factor (M) together with the differential delay (D) controls the CIC
filter zeros, as shown in Figs. 7.5.a and 7.5.b, respectively. Practically, D ∈ {1, 2}.
On the other hand, the filter order (N) affects the depth and the width of the
stopband attenuation Asb, as given in Fig. 7.5.c. Unluckily, increasing N increases

104

7.2. Multi-Stage Decimation Toolbox

|X(ω)|

ωn π
ω

(a)

π
ω′

|W (ω′)|

wn/Mπ/M 2π/M 4π/M

(2π − ωn)/M

(2π + ωn)/M

(4π − ωn)/M

(4π + ωn)/M

(b)

π
ω′

wn/M 2π/M 4π/M

(2π − ωn)/M

(2π + ωn)/M

(4π − ωn)/M

(4π + ωn)/M

M

φφφ

StopStop
bandband

H(ω′)

(c)

ωn π
ω

1
|P (ω)|

(d)

Figure 7.3.: Multiple stopband and don’t care bands specifications within decimated signal
spectral.

the drop in the passband, as exhibited in Fig. 7.5.d. However, the associated drop
is compensated by using a compensation FIR filter stage. The amplitude response
of an CIC filter is governed by (7.12) [105].

P (f) =
(

sin πDf

sin πf
M

)2N

(7.12)

where f is the low sampling rate fs/M , D is the differential delay, M is the decima-
tion factor, and N is the filter order. According to the practical recommendation
declared in [105], N ∈ {1 → 7} and D ∈ {1, 2}. Since, M and f are fixed values

105

7. Design and Implementation Procedure

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

R
ed

uc
ti

on
N

[%
]

M

Figure 7.4.: Increase reduction percentage in filter order by using multi-band design as a func-
tion of M (axis are normalized).

Table 7.1.: Compensation filters typical design parameters
N b

1 2
2 1
3 0
4 0
5 0
6 -1
7 -2

in (7.12), the same equation has been used to tune N for minimum drop in ampli-
tude response within the passband [105].
The compensation filter transfer function is given by (7.13) [106].

G(zM) = B[1 + Az−M + z−2M] (7.13)

where
B = −2−(b+2)

A = −[2(b+2) + 2] (7.14)

where b is an integer value, and its corresponding value for a defined N is given in
Table 7.1. Figure 7.6.a and b shows the CIC filter response (black solid line), the
compensation filter response (dashed line), and the cascaded CIC and compensa-
tion filter response (solid Gray line). Further, a few LSBs are truncated at each
stage to overcome the aggressive internal bit growth. The number of truncated

106

7.2. Multi-Stage Decimation Toolbox

 0

0

-50

-100

-150

-200 0.2 0.4 0.6 0.8 1.0 1.2

M
ag

ni
tu

de
[d

B
]

M = 4
M = 8
M = 16
M = 32

f [MHz]

(a)

 0

0

-50

-100

-150

-200
0.2 0.4 0.6 0.8 1.0 1.2

M
ag

ni
tu

de
[d

B
] D = 1

D = 2

f [MHz]

(b)

 0

0

-50

-100

-150

-200
0.2 0.4 0.6 0.8 1.0 1.2

M
ag

ni
tu

de
[d

B
]

N = 3
N = 5
N = 7

f [MHz]

(c)

M
ag

ni
tu

de
[d

B
]

0

0 2 4 6 8 10

-0.05

-0.1

-0.15

-0.2

N = 3
N = 5
N = 7

f [kHz]

(d)

Figure 7.5.: CIC design parameters (a) M (b) D (c) N (d) drop on passband for fs = 2.4 MHz,
N = 6, and D = 2, where N is the filter order, D is the differential delay, and M
is the decimation factor.

bits is derived from (7.15) [105].

Bj = �−log2(Fj) + log2(σT2N+1) + 1
2

log2(6
N

)
 (7.15)

for j = 1, 2, 3 · · · , 2N , where Fj is the variance error gain, σT2N+1 is the total
variance, N is the filter order. The variance error gain is given by (7.16) [105].

Fj
2 =

⎧⎨
⎩

∑
k

h2
j (k), j = 1, 2, · · · , 2N

1, j = 2N + 1
(7.16)

where k = 0, 1, 2 · · ·2N + 1 − j (j represents the stage number), and hj(k) is
the impulse response coefficients shown by (7.17), its derivation can be found

107

7. Design and Implementation Procedure

CIC
Compensation
Cascaded

f [MHz]

M
ag

ni
tu

de
[d

B
]

0

0

-50

-100

-150

-200
0.2 0.4 0.6 0.8 1.0 1.2

(a)

CIC
Compensation
Cascaded

M
ag

ni
tu

de
[d

B
]

0

0 2 4 6 8 10

0.05

0.1

0.15

0.2

-0.05

-0.1

-0.15

-0.2
f [kHz]

(b)

Figure 7.6.: CIC compensation filter (a) response (b) zoom-in, for fs = 2.4 MHz, N = 7, D = 2,
and M = 6, where N is the filter order, D is the differential delay, and M is the
decimation factor.

in [105].

hj(k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�k/MD�∑
i=0

(−1)i

(
N
i

) (
N − j + k − MDi

k − MDi

)
, j = 1, 2, · · · , N

(−1)i

(
2N + 1 − j

k

)
, j = N + 1, · · · , 2N

(7.17)
where N is the filter order, D is the differential delay, and M is the decimation
factor. While, the total variance is calculated as given by (7.18) and (7.19).

σTj

2 = σj
2Fj

2 (7.18)

σj
2 =

1
12

Ej
2 (7.19)

where Ej is a uniform distribution error at stage j, as stated by (7.20).

Ej =
{

0, if no truncation
2Bj

(7.20)

where Bj is the number of truncated LSB’s at stage j.

7.2.3.4. IBN Calculation

The in-band noise (IBN) is calculated analytically as depicted by (7.21) [16], or
calculated from the spectral density as shown in Fig. 7.7. The analytical calculation
of the IBN is an ideal estimation for the expected IBN for a certain ΣΔM, and
it can not be used for a decimation filter. However, the calculated IBN from the
spectral density is more accurate since it considers more practical and simulation

108

7.2. Multi-Stage Decimation Toolbox

10
1

10
2

10
3

10
4

10
5

10
6

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

-140

-120

-100

-80

-60

-40

-20

f [Hz]

P
SD

[d
B

FS
/b

in
]

Noise
In-band
Signal

Figure 7.7.: IBN calculation from stimuli bit-stream for fs = 2.4 MHz, OSR= 48, and fsignal =
25 kHz.

effects. This criterion allows the calculation of the IBN for the intra decimation
stages in addition to the overall IBN after decimation. Therefore, it is the default
setting for the MSD-toolbox.

IBN =
(

Δ
2

)2 1
3π(2N + 1)

(
π

OSR

)2N+1
(

kq

N∏
i=1

ki

)−2

(7.21)

N is the ΣΔM order, OSR is the oversampling ratio, ki is the ΣΔM scaling coef-
ficients, kq is the quantizer gain (used within the ΣΔM), and Δ is the quantizer
LSB which calculated as given in (7.22).

Δ = FS
2B − 1

(7.22)

where B is the quantizer bit-width, and FS is the quantizer full-scale. Moreover,
the IBN can be calculated from the spectral density as shown in Fig. 7.7. The
criterion for calculating the IBN from the spectral density was proposed in [101]
and verified in [16] and [19]. The calculation of the IBN is performed by removing
the signal peak from the spectral and then suming all the noise in the in-band
range [0 → fB], as shown in Fig. 7.7 by the zoom-in. If the ki and kq are not
available in the input specifications, the last term in (7.21) is set to one.

109

7. Design and Implementation Procedure

7.2.4. Coefficient Optimization

FIR filter coefficients are calculated using the Parks-McClellan Equiripple algo-
rithm in an infinite floating point format from Matlab. The coefficients are then
quantized and scaled in order to be represented in finite discrete fixed point repre-
sentation. Practically, each discrete coefficient is translated to a set of binary bits;
zeros and ones. The number of none-zero bits in each coefficient exhibits a bur-
den in the hardware implementation, which consequently, consumes more power.
Therefore, coefficient optimization tends to reduce the number of none-zero bits at
each filter coefficient (if possible). Several methodologies and algorithms have been
developed and used for this purpose in literature [40], [45], [49], [65], [63], [69], [70], [72].

7.2.5. Cost Estimation

The MSD-toolbox provides a complete flow for the decimation filter design, opti-
mization, and implementation. Since, the toolbox delivers the VHDL description
of the designed decimation filter, it has broad awareness of the design hierarchy and
bit-level details. The number of full-adders (FAs) involved in the multipliers and
multi-operand adders is estimated and plotted in bar charts for rough estimation
of the power consumption. The number of FAs is calculated from the output bit-
width (Wo) of a multiplier or a multi-operand adder. The number of FA depends
on the topology of implementation. The multi-operand adder is implemented in
balanced tree structure, as depicted in Fig. 7.8.a with a ripple carry adder (RCA)
structure for the adder cells. It should be noted that, the RCA is the adequate
approach for low power implementation [107]. The constant multiplier is imple-
mented in shift-add structure, as depicted in Fig. 7.8.b with a ripple carry adder
(RCA) structure for the adder cells. A detailed discussion on the implementation
of constant multiplier and multi-operand adder is given later in this chapter on
VHDL IPs sections 8.2.2 and 8.2.4, respectively.
The number of FAs in multi-operand adder tree is determined from the number of
adder cells and the output bit-width of each adder cell. As an example, consider a
7-input multi-operand adder, as shown in Fig. 7.8.a on the left. It requires 6 adder
cells on 3 hierarchical levels. Conventionally, all adder cells have the same output
bit-width (Wo), which is equivalent to the maximum bit-width. Nevertheless, for
an efficient power optimized implementation the developed VHDL IP models sup-
port a variable bit-width for each internal adder cell, within a multi-operand adder
or a multiplier block. The number of full-adders (#FAs) is calculated by (7.23).

#FAs =
n∑

i=1
Woi

(7.23)

where n is the number of adder cells, Woi
is the output bit-width for adder cell i.

The #FAs involved in a constant multiplier is calculated by

#FAs =
m∑

j=1
(Wi + max(«Sj , «Sj+1) + 1) +

n∑
i=m+1

(Woi
) (7.24)

110

7.2. Multi-Stage Decimation Toolbox

FA FA FAFA

1 2 3

4 5

6

Wo1 Wo2 Wo3 Wi

Wo4 Wo5

Wo6

(a)

FA FA FAFA

1 2

3

Wo1 Wo2

Wo3

«S4 «S3 «S2 «S1Wi

Q

(b)

Figure 7.8.: Architectural cost estimation for (a) multi-operand adder (b) multiplier, where FA
is full-adder, Wi is the input bit-width, Wo is the output bit-width, «Sj is the
number of shift left bits.

where m is the number of input adder cells (half number of none-zero bits), n is
the number of adder cells, Wi is the multiplier input bit-width, «Sj is the number
of shift left bits bit j, Woi

is the output bit-width for adder cell i, and the 1 is
added to avoid overflow. Illustratively, consider a numerical example for adding 7
values using a multi-operand adder. The internal tree arrangement of the adder
cells is depicted in Fig. 7.8.a (middle), where each adder cell is implemented in
RCA as shown in Fig. 7.8.a (right). The input values are given in the first column
of Table 7.2. The output bit-widths for each adder cell at the 3 levels are given
in the last three rows of Table 7.2. The expected #FAs is 45. However, for a
conventional implementation a 54 FA is needed for the same multi-operand adder.
This reveals that about 20% saving in the number of FA for variable bit-width
adder cells. It should be noted that, an extra 1-bit is added to avoid addition
overflow. Consider a numerical coefficient of 240 for the constant multiplier for
illustration, as well. The internal architecture of the shift-and-add multiplier is
given in Fig. 7.8.b (middle), with the number of shift left bits (Sj) depicted at each

111

7. Design and Implementation Procedure

Table 7.2.: Multi-operand adder cost estimation
Value Binary Wo 1st Level Wo 2nd Level Wo 3rd Level
64 1000000 8

8

9

56 111000
13 1101 796 1100000
25 11001 5 82 10
240 11110000

input by S1, S2, S3, S4, respectively. Equation (7.25) gives the binary representa-
tion of the constant coefficient 240, where 2′s power represents the shift weights
and the 2′s multiplicands corresponds the binary representation.

240 = 27 × 1 + 26 × 1 + 25 × 1 + 24 × 1 + 23 × 0 + 22 × 0 + 21 × 0 + 20 × 0 (7.25)

Equation (7.25) reveals to S4 = 7, S3 = 6, S2 = 5, and S1 = 4. For a 3-bit input
multiplier (Wi = 3), the calculated number of full-adders is 32 FA by using (7.24),
with 11 FA for the first adder cell, 10 FAs for the second adder cell, and 11 FA for
the third adder cell. A complete procedure is illustrated through a detailed design
example in section 6.4, which demonstrates the advantages of precise estimation
for the number of gates involved in multi-operand adder and multiplier implemen-
tation.
The dynamic power is correlated to the load driven by a gate, as given in chap-
ter 3. Moreover, the static power is proportional to the area consumed by a gate.
Therefore, the estimated number of full-adder gates is used to model the power
consumption in FIR filters [107].

7.3. Troubleshooting and Verification

Verification has become necessary with the increase of the design complexity. How-
ever, defining the source of an error, or debugging a code for a design is becoming
as complex as verification with the increase of design integrity and complexity.
Therefore, a form of problem identification and problem solving is necessary for
the design procedure, which is known as troubleshooting. Troubleshooting defines
the source of a problem, while, verification assures the functionality of a design.
Recently, hardware verification languages (HVL) are booming in the market of
VLSI design. The developed toolbox and the proposed design procedure do not
utilize HVL, nevertheless, they provide a bit-level manipulation for the designs in
both Matlab and VHDL. Assertion statement is used in VHDL codes and struc-
ture data type is used within the Matlab functions. Troubleshooting is a form of
problem identification and problem solving. The proposed design procedure and
the developed toolbox provide a troubleshooting criterion correlating Matlab

112

7.4. Design Example

and VHDL together. An illustrative demonstration for the proposed criterion, a
straightforward example for a CIC filter with order of 3, decimation ratio of 1 (no
downsampling), and differential delay of 1 is shown in Fig. 7.9. Figure 7.9.a drives
the analytical intra bit-level activity of the designed CIC filter. Symbol (Ii) is the
input for integrator i, (IDi) is the delayed integrator output. The same is for comb
(Ci) and comb delay (CDi). Each row represents the bit activity during one clock
cycle. On the other hand, each column represents the activity during consecutive
clock cycles. The consecutive clock cycles are denoted by column t. The arrows
depicted in the Fig. 7.9.a represents the delayed outputs. The input bit-stream
stimulus is depicted by the second column (I1). The MSD-toolbox supplies the
intra bit-level activity of the CIC filter in a tabular format exported in a text file
as given in Fig. 7.9.b. This is the reference pattern for the filter activity. The
simulated VHDL model output is given in Fig. 7.9.c. By correlating the Matlab

bit-level activity with the VHDL simulation, it became easier to allocate the source
of the error when it occurs.

7.4. Design Example

An illustrative design example is given in this section. The design specification is
given in Table 7.3 for a 2nd order ΣΔM with 1-bit quantizer simulated in Simulink

model from [101] for storing a stimuli file. The whole script took 66.2 seconds on
1-GB RAM and 1.6 GHz processor PC. The result of each of the five routines is
depicted by a figure or a table in sequel.

Table 7.3.: Design parameters
Parameter Value
fs 2.4 MHz
OSR 48
fsignal 5 kHz
Stimuli �

The result from calculating k and M (RT (k, M)) routine is displayed in Fig. 7.10.
The bar chart shows the computational effort for the two, three, and four cascaded
decimation stages. For three stages, there two alternatives for the arrangement of
the decimation filters, either [12 2 2] or [6 4 2]. The [6 4 2] arrangement exhibits the
minimum computational effort. The results of this step is k = 3 and M = [6, 4, 2].
Calculating δpb and δsb (IBN(δpb, δsb)) the routine exports the results in a form of
a table as given in Table 7.4. The last column represents the penalty in the IBN.
The last row is chosen manually for defining the filter specifications according to
certain acceptable penalty in the IBN.
The multi-band filter architecture has been chosen for Parks-McClellan Equiripple
algorithm. Further, the last stage is set to be half-band filter for decimation factor
of two. Calculating hk and Q (P-M-E) exports the filter coefficients (hk1, hk2 , hk3)

113

7. Design and Implementation Procedure

t I1 ID I2 ID I3 ID C CD C CD C CD O

z−1z−1z−1 z−Dz−Dz−D

M

0

000000

00000000

000000

0000
0000

000000
00

000000
000000000000000

111111111
111111

1111

11
111111

111111

1111

11111111

111111111

111

22
2222

22
22

22
22

222

222

33
3333

33

33
33

33
33333

33

333

4444
44

44
444

44
44

555555
55555555
555555
5555555555
555555555555

5555555

6666

6

66
66

7

88

888
88

9

(a)

(b)

Cursor-Baseline = 21,500,000,000fs

Baseline = 0

Cursor = 21,500,000,000fs

CIC_Filter_CLR

CIC_Filter_CLK

IntegratorIn

CIC_Delay_Q

IntegratorIn

CIC_Delay_Q

IntegratorIn

CIC_Delay_Q

Comb_PL_NPL_In

CIC_Delay_Q

Comb_PL_NPL_In

CIC_Delay_Q

Comb_PL_NPL_In

CIC_Delay_Q

0

0

'd1

'd5

'd6

'd35

'd41

'd145

'd186

'd145

'd41

'd35

'd6

'd5

0 1 0 1

0 1 2 3 4 5

0 1 2 3 4 5 5 6

0 1 3 6 10 15 20 25 30 35

0 1 3 6 10 15 20 25 30 35 41

0 1 4 10 20 35 55 80 110 145

0 1 4 10 20 35 55 80 110 145 186

0 1 4 10 20 35 55 80 110 145

0 1 3 6 10 15 20 25 30 35 41

0 1 3 6 10 15 20 25 30 35

0 1 2 3 4 5 5 6

0 1 2 3 4 5

00,000fs 12,000,000,000fs 14,000,000,000fs 16,000,000,000fs 18,000,000,000fs 20, 000, 000, 00

TimeA = 21,500,000,000fs

(c)

Figure 7.9.: Troubleshooting and verification (a) analytical (b) Matlab (c) VHDL for a CIC
filter with N = 3, M = 1, and D = 1, where I for integrator, ID for integrator
delay, C for comb, and CD for comb delay

114

7.4. Design Example

0

2

4

6

8

10

12

14

16

18
x 10

6

2 Stages
3 Stages
4 Stages

R
T

[M
A

D
S]

[24,2] [12,2,2] [6,4,2] [4,3,2,2]

Stages

Figure 7.10.: Estimated computation effort (RT (k, M)) using various multistage decimation
filter.

Table 7.4.: Tuning ripples
rp rc IBN ±%

0.00005 0.00010 -1.9753
0.00005 0.00001 -2.0042
0.00005 0.00010 -1.1514
0.00001 0.00010 -2.0042
0.00001 0.00005 -1.3065
0.00001 0.00010 -2.0662
0.00010 0.00010 -1.1514
0.00010 0.00001 -2.0662
0.00050 0.00001 -1.1514

and their responses as shown in Fig. 7.11 for the three cascaded stages, with fil-
ter orders of N1 = 36, N2 = 39, and N3 = 19, respectively. Moreover, the IBN
after and before decimation is plotted and calculated from the graph, as given in
Fig. 7.12. There is less than 2 dB increase in the IBN after using the designed
decimation filter. Defining a suitable quantization bit-width (Q) for each stage is
done iteratively, through defining a certain set of Q’s. Table 7.5 shows the results
for the examined Q’s and the corresponding effect on in-band noise (IBN), mean
error (ME), and mean square error (MSE) in filter response. The second row is
chosen for the implementation parameters.
Cost estimation (Cost) involves the estimation of the number of full-adders (#FAs)
in multiplier and multi-operand adder blocks within the decimation filter. Fig-
ure 7.13 shows the estimated #FAs in multipliers and multi-operand adders, re-

115

7. Design and Implementation Procedure

0 0.2 0.4 0.6 0.8 1 1.2
−200

−150

−100

−50

0

f [MHz]

Filter Response for Stage − 1

0 0.05 0.1 0.15 0.2
−200

−150

−100

−50

0

f [MHz]

Filter Response for Stage − 2

0 0.01 0.02 0.03 0.04 0.05
−200

−150

−100

−50

0

f [MHz]

Filter Response for Stage − 3

M
ag

ni
tu

de
[d

B
]

M
ag

ni
tu

de
[d

B
]

M
ag

ni
tu

de
[d

B
]

Figure 7.11.: Filter responses.

Table 7.5.: Quantization bit-width tuning
Q1 Q2 Q3 IBN ME MSE
18 12 10 -0.2598 0.6e-6 0.9e-12
16 12 10 -0.2592 3.2e-6 16e-12
16 10 5 -0.6380 3.2e-6 16e-12
14 10 5 -0.6912 15e-6 320e-12
12 9 5 -1.9123 45e-6 3.4e-9

spectively. The number of FAs in multiplier is related to the implementation and
the output bit-width. The estimation of the #FAs considers shift-and-add imple-
mentation for the constant multipliers. The estimated #FAs per decimation stage
is given in Fig 7.13.a to 7.13.c. The number of FAs for multi-operand adder is
related to the output bit-width per internal adder (two input adder). So, for a
multi-operand adder with 6 inputs, there are 5 internal adders. Figure 7.13.e to
Fig. 7.13.g shows the estimated #FAs per decimation stage, where the x-axis rep-
resents the number of multi-operand adders per stage. As an example, the second

116

7.4. Design Example

10
2

10
3

10
4

10
5

10
6

−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

P
SD

[d
B

]

f [Hz]

Figure 7.12.: PSD before and after decimation.

stage has N1 = 39 and M1 = 4 leads to �N/M� = 10 multi-operand adder. Fig-
ure 7.13.h reveals the estimated power consumption in the decimation stages, i.e.
the second stage is estimated to consumes about 50% of the complete decimation
stage compared to 30% by the first stage and 20% by the third stage.

117

7. Design and Implementation Procedure

00 5

10

10 15 20 25 30 35

2

4

6

8

12

14

16

18

Filter Coefficients

#
FA

s

(a)

00

5

5

10

10

15

15

20

20

25

25

30

30 35 40
Filter Coefficinets

#
FA

s

(b)

00

5

10

10

15

20

20

25

30

35

40

2 4 6 8 12 14 16 18

Filter Coefficinets

#
FA

s

(c)

0

100

200

300

400

500

600
700

800

900

1000

1st 2nd 3rd

Stage

#
FA

s

(d)

10 5

20

40

60

80

100

120

2 4 63 7

#
FA

s

�N1/M1�
(e)

1 90 5 10

20

40

60

80

100

120

140

2 4 6 83 7

#
FA

s

�N2/M2�
(f)

1 90 5

10

10

20

30

40

50

60

70

80

90

2 4 6 83 7

#
FA

s

�N3/M3�
(g)

0

200

400

600

800

1000

1200

1st 2nd 3rd

Stage

#
FA

s

(h)

Figure 7.13.: Estimated number of FAs for multipliers in (a) 1st stage (b) 2nd stage (c) 3rd stage
(d) total, estimated number of FAs for multi-operand adders in (e) 1st stage (f)
2nd stage (g) 3rd stage (h) total.

118

7.5. MSD-toolbox Evaluation

7.5. MSD-toolbox Evaluation

The MSD-toolbox was compared to the state-of-the-art decimation toolbox pro-
posed in [94]. Multi-standard wireless communication specifications have been
considered for evaluating the proposed toolbox and to have consistent compari-
son with the toolbox from [94]. The multi-standard decimation filter specification
is given in Table 7.6. Table 7.7 shows the decimation filter implementation pa-
rameters generated from MSD-toolbox and the state-of-the-art toolbox [94]. The
implementation considers several filter architectures such as: cascaded integrator
comb (CIC), multi-band (MB), half-band (HB), and standard FIR filter. It has
to be noted that, the compensation filter for CIC is employed as FIR filter and its
length is denoted in the table by the plus sign, e.g. in the last row in Table 7.7. The
results presented in Table 7.7 reveal the considerable saving in the filter lengths
using the developed toolbox for some of the cases. The discrepancy between the
filter lengths between the developed and the state-of-the-art toolbox even though
employing the same architecture is due to considering the IBN during the analysis
for the MSD-toolbox. The penalty in the IBN was limited to half bit, i.e., 3 dB,
during the design process. On the one hand, the decimation filter for the WCDMA
and WiMAX designed by the state-of-the-art toolbox guaranties better IBN com-
pared to the filter designed by MSD2 with larger filter length. On the other hand,
the decimation filter for GSM and WLAN designed by the MSD-toolbox guar-
anties the same IBN with smaller filter lengths compared to the toolbox presented
in [94]. The MSD-toolbox is suitable for generic decimation filters, however, the
state-of-the-art toolbox is limited to the wireless communication standards only.

Table 7.6.: Decimation filter design parameters for multi-standard specifications
Standard OSR fs MHz fpb MHz fsb MHz δpb Asb dB
GSM 128 34.667 0.08 0.1 0.0058 65
WCDMA 16 61.44 2 2.5 0.028 55
WLANa 8 96 8 10 0.028 44
WiMAX 8 133.632 8 10 0.028 39

119

7. Design and Implementation Procedure

Table 7.7.: Decimation filter implementation for multi-standard specifications
Standard Filter Structure Decimation Factor Filter Length

[94] MSD1 MSD2 [94] MSD1 MSD2 [94] MSD1 MSD2

GSM
CIC MB CIC 32 16 16 3 60 3
HB MB MB 2 4 4 11 24 23
FIR HB HB 2 2 2 101 19 19+7

Total 115 103 52

WCDMA
CIC MB CIC 4 8 8 4 55 3
HB HB FIR 2 2 2 19 19 35+7
FIR - - 2 - - 48 -

Total 71 74 45

WLANa
CIC MB CIC 4 4 4 9 25 3
FIR HB FIR 2 2 2 32 19 24+7

Total 41 44 34

WiMAX
CIC MB CIC 4 4 4 4 45 3
FIR HB FIR 2 2 2 36 19 31+7

Total 41 44 41
MSD1: without CIC
MSD2: forcing CIC

120

7.6. VHDL IPs

7.6. VHDL IPs

In addition to the system level analysis carried out using the developed Mat-

lab MSD-toolbox, several VHDL IPs have been developed, synthesized, verified,
and implemented through this work. The developed IPs are generic, structurally
modeled, and accessible at all hierarchical levels.

7.6.1. Tools Chain

Figure 7.14.a shows the tools chain used in this research work including the ma-
nipulated files and parameters during each step in the design procedure, as shown
in Fig. 7.14.b.
The system design of the decimation filter design exploits Matlab for calculat-
ing the implementation parameters from the design specifications preserving the
design constraints. The decimation filter design specifications are correlated with
the ΣΔ modulator specifications. The necessary design specifications are the sam-
pling frequency (fs), the oversampling ratio (OSR), the resolution (SNR), and
the in-band noise (IBN). From the preliminary design specifications the Matlab

MSD-toolbox exports the decimation filter implementation parameters, such as;
number of decimation stages (k), decimation factor at each stage (Mi), filter order
(N), coefficient quantization bit-width (Q), scaled discrete filter coefficients (ĥk).
Next, comes the RTL modeling for the FIR decimation filter. A generic VHDL
model has been developed using Cadence RTL design EDA tools. The models
developed in this dissertation are all modeled structurally to assure efficient and
hierarchical implementation. Cadence NClaunch is used for RTL design, model-
ing, and elaboration.
Afterwards, the modeled design is verified employing stimuli bit-stream and test-
bench using Cadence SimVision. The verification process is an iterative feedback
process. Often, the VHDL model might need slight modifications after few simula-
tion runs to achieve the desired functionality. This first verification step is known
by functional verification. It is an ideal simulation without considering gate or
wire delays.
The developed VHDL models are then synthesized to certain CMOS ASIC tech-
nology or certain FPGA. This work involves the 130nm ASIC CMOS technology
offered by UMC Farady incorporation and Spartan-3E Xilinx FPGA. This work
uses Synopsys synthesizer DesignCompiler for ASIC synthesis and Xilinx ISE
for FPGA synthesis. The design has to be constrained in time, area, and load
during synthesis. A Tcl scripts is used for design constraints by defining the clock
frequency, input and output delays, wireload mode and model, and clock skew.
The synthesizer exports a mapped VHDL netlist, SDF file including all the gate
delays, and SDC file including all the time constraints.
A conclusive verification is required after synthesis to verify the functionality of the
design after considering the gate and wire delays by importing the (netlist+SDF+SDC).

121

7. Design and Implementation Procedure

Start

Stop

Matlab

NcVhdl

SimVision

SimVision

DesignCompiler

PrimeTimePX

(a)

Start

Design
Specs

fpb, fsb, fs
OSR, IBN

System Design

N, Q, ĥk
k, Mi

RTL Design

VHDL

Verification

Verification

VHDL+Constraints

Synthesis

VHDL netlist

VHDL netlist
SDC, SDF

VCD

Power Analysis

Stop

(b)

Figure 7.14.: Tools (a) chain (b) procedure.

122

7.6. VHDL IPs

This is known as the timing verification. This verification step is also iterative feed-
back process. Cadence SimVision is used for verification and it exports a VCD
file which is used for precise power analysis later on.
An accurate power analysis is performed using Synopsys PrimeTime-PX by im-
porting (netlist+VCD).
A set of mathematical functions have been developed by VHDL via packages and
procedures to perform certain functions which are not available in VHDL default
packages. Those functions are: ceiling (� �), floor (�
), sum of elements (∑),
product of elements (∏), maximum value of a vector (max), minimum value of
a vector (min), binary logarithmic of a value (log2), flip vector elements in left-
/right direction (fliplr), read a row from matrix (readRow), read a column from
matrix (readColumn), convert 2D matrix to 1D vector (2D-to-1D), get index
of a specified object in an array or matrix (getIndex), determine whether the
integer is a power-of-two or not (PoT).
The mathematical operations are performed employing 2’s complement represen-
tation. The mathematical operations imply natural and integer numbers to avoid
using the VHDL “math_real” package, since not all synthesizers can synthesize
it.
The “textio” package is integrated with the testbenches for efficient manipulation
of the stimuli and exported data for precise analysis. The developed codes imply
assertion statements for debugging and verification. A standard VHDL modeling
for several FIR decimation filters can be found in [108].

7.6.2. Polyphase Decimation Filter

The polyphase decomposition is a fundamental structure for multirate signal pro-
cessing applications [25], [26], [109]. It exhibits an efficient implementation of dec-
imation filters because it reduces the computational load by factor of M [25], [26],
where M is the decimation factor. Polyphase decomposition is very efficient for
parallel processing realization [110]. Practically the polyphase structure is modeled
using the commutator model [26], [91]. There are two major polyphase structures
known as Type-I and Type-II structures. Type-I uses a counterclockwise commu-
tator and it is conventionally used as analysis filter [25]. Type-II uses a clockwise
commutator and it is conventionally used as synthesis filter [25]. Decimation filters
are implemented in Type-I structures. A detailed analysis on polyphase fundamen-
tals is given in [25], [26], [109]. Therefore, a polyphase structure has been chosen
as a basic filter for this work.
Polyphase filters are implemented in direct-form topology (DF) and transposed-
form topology (TF), as shown in Fig. 7.15.a and Fig. 7.15.b, respectively. The
critical path in a DF topology has (1 multiplier + �N/M� multi-operand adder).
On the other hand, the critical path for a TF has (1 multiplier + 1 multi-operand
adder). Therefore, the TF topology has less latency compared to DF topology [111].
Moreover, the TF topology offers a common space for all the filter coefficients mul-
tipliers, leading to an inter and intra multiplier optimization, such as common

123

7. Design and Implementation Procedure

x

y

ĥ0

ĥ1 ĥn−2

ĥn−1

z−1z−1

(a)

x

y

ĥ0

ĥ1ĥn−2

ĥn−1

z−1z−1

(b)

Figure 7.15.: Polyphase decimation filters in (a) direct-form topology (PPD-DF) and (b)
transposed-form topology (PPD-TF).

sub-expression elimination [111].
A generic VHDL IP is developed for a PPD filter for both DF and TF topologies.
The individual filter components are described in the following sub sections. The
main PPD filter components are a constant multiplier, a delay register, and a
multi-operand adder. The polyphase decimation filter transfer function is given
by (7.26) [26].

H(z) =
M−1∑
j=0

Ej(zM)z−j (7.26)

where
Ej(z) =

−∞∑
i=∞

h[Mi + j]z−i

where N is the filter order, M is the decimation factor, and E is the polyphase
decomposition.

124

7.6. VHDL IPs

CLR

CLK

n
i

SCLK

o1
o2

od

(a)

i

o1

o2

od

(b)

Figure 7.16.: Commutator (a) schematic (b) symbol.

CLK

SCLK

rotation

C
lk

1

C
lk

2

C
lk

3

C
lk

M
/

2

C
lk

M
−

2

C
lk

M
−

1

C
lk

M

0000 0 01

S

R

Figure 7.17.: Commutator clock generator.

7.6.2.1. Commutator

The commutator is the block responsible for distributing the input data to the
polyphase decimator filter branches. The input to the commutator, which is at the
same time the output from the ΣΔM or output from a previous decimation stage,
is at high sampling rate fs and the output rate at fs/M , where M is the decimation
factor and the number of polyphase decimator branches as well. The commutator
schematic and symbol are shown in Fig. 7.16.a and Fig. 7.16.b, respectively. The
commutator consists of two main blocks [91], [100] the clock generator and the
double clocked flip-flop as given in Fig. 7.17 and Fig. 7.18.b, respectively. The
clock generator generates M + 1 clocks. A slow clock (SCLK) equivalent to fs/M ,
and M clocks (CLKi), as exhibited in Fig. 7.18.a. The clocks are, input clock,
which is generated from a clock generator block and responsible for storing the
data in each flip-flop for each equivalent branch in the polyphase decimator. The
output clock is the slow clock (SCLK) generated from the clock generator block,
too. It is equivalent to fs/M where M is the decimation factor for the current
decimation stage. In the case of cascaded decimation structures this output clock
will be used as the input sampling clock for the following stage. This previous clock
will be used to output the stored data from each flip-flop. The double clocked flip-
flop is a delay flip-flop, stores the data referred to the input clock positive edge,
and transfer data to output referred to output clock (SCLK) positive edge. The
commutator input (i) has a bit-width (Wi), as shown in Fig. 7.18.b.

125

7. Design and Implementation Procedure

t

t

t

t

t

SCLK

Wi

Clk1

ClkM

i

ClkM−1

D

D

D

D

D

D

Q

Q

Q

Q

Q

Q

fs

fs/M

branch 1

branch M − 1

branch M

(a) (b)

Figure 7.18.: Commutator (a) timing diagram (b) double clocked flip-flop.

7.6.2.2. Signed Constant Multiplier

A constant multiplier is implemented behaviorally by using the (*) symbol, to
assess the synthesizer smart datapath optimization. Further, it is implemented
in shift-and-add topology employing the encoding scheme proposed in this work
which is presented in chapter 8. The multiplier schematic, symbol, abbreviation,
and parameters are depicted in Fig. 7.19.a to Fig. 7.19.d. Where, the SU parameter
is used to identify whether the input data is a signed or unsigned bit stream data.
If it is unsigned this reveals to a data range {0, 2Wi −1}. On the other hand, if it is
signed, the data ranges {−2Wi−1, 2Wi−1 − 1}. The Wi represents the ΣΔM output
or a previous filter output (in case of cascaded decimation filters). The Wh is
equivalent to the quantization bit-width (Q). The output bit-width is calculated
from the input and coefficient bit-width Wo = Wi + Wh. Conventionally, the
multiplier design parameters are fixed through the whole filter.

7.6.2.3. Delay Register

A straight forward implementation for a positive edge trigger delay flip-flop (DFF)
with active high clear signal (CLR) is developed as shown in Fig. 7.20.a. The
delay schematic, symbol, abbreviation, and parameters are given in Fig. 7.20.a to
Fig. 7.20.d. The DFF has a single design parameter define that the input and
output bit-width of the delay register elements. Conventionally, the delay register
design parameter is fixed through the whole filter, i.e., all the delay registers have
the same W . However, the developed IP provides arbitrary register bit-widths
within the same filter according to the preceding multi-operand adder.

126

7.6. VHDL IPs

Wi

Wh

Wo

hk

(a)

hk

(b)

MU

(c)

Wi input bit-width
Wh coefficient bit-width
Wo output bit-width
ĥk scaled coefficient
SU Signed | Unsigned

(d)

Figure 7.19.: Multiplier element - (a) schematic, (b) symbol, (c) abbreviation, (d) parameters.

WW

CLK

CLR

D Q

(a)

z−1

(b)

DL

(c)

W input and output bit-width

(d)

Figure 7.20.: Delay element - (a) schematic, (b) symbol, (c) abbreviation, (d) parameters.

7.6.2.4. Multi-operand Adder

Multi-operand adder is an arithmetic component used for multi-input adders. The
standard adder component which is known as the full-adder (FA) (also known as
3-2 compressor) can only add two inputs, despite the carry input. Therefore, an
adder cell element is developed with certain design parameters to afford further
flexibility in multi-operand adder tree structures later on. The developed adder cell
(AD) schematic, symbol, abbreviation, and parameters are shown in Fig. 7.21.a to
Fig. 7.21.d. Conventionally, for a multi-bit parallel adder both adder inputs have
the same bit-width (Wa = Wb) and the output bit-width Ws = Wa +1. Each adder
cell has certain input bit-width for both inputs (Wa, Wb) as shown in Fig. 7.21.a.
The developed adder cell employs signed addition. The adder is implemented in

127

7. Design and Implementation Procedure

ripple carry adder (RCA) topology for assuring low power implementation [107].
A multi-operand adder can be implemented with unbalanced or balanced tree

Wa Wb

Ws

(a)

(b)

AD

(c)

Wa input A bit-width
Wb input B bit-width
Ws output S bit-width

(d)

Figure 7.21.: Adder element - (a) schematic, (b) symbol, (c) abbreviation, (d) parameters.

structures [107], as shown in Fig. 7.22. The total number of adders used in both
structures is the same but the balanced tree structure has less latency [107]. The
multi-operand adder schematic, symbol, abbreviation, and parameters are given
in Fig. 7.23.a to Fig. 7.23.d. The number of multi-operand adder inputs is derived
from the decimation factor (Mi). The balanced multi-operand adder tree is the
only structure involved in this work. For an optimized implementation of a bal-
anced multi-operand adder structure, it has been modeled structurally. For the
internal implementation a set of parameters are calculated in advance, such as; to-
tal number of adders (TNoA), number of depth Levels (Levels), number of adders
per level (NoA), levels being subsequent to skipped levels (SL), and levels provide
internal structural connection for skipped levels (LoSL). Those set of design pa-
rameters are calculated from the number of inputs for the MA. The NoA and SL

(a) (b)

Figure 7.22.: Multi-operand adder structures for 8 inputs (a) balanced and (b) unbalanced.

128

7.6. VHDL IPs

W1 W2 W3 Wd

Ws

(a)

(b)

MOA

(c)

W1 input 1 bit-width
W2 input 2 bit-width
Wd input d bit-width
Ws output S bit-width

d number of inputs
(d)

Figure 7.23.: Multi-operand adder (a) schematic, (b) symbol, (c) abbreviation, (d) parameters.

are calculated according to the flowcharts given in Figs 7.24 and 7.25, respectively.
The proposed algorithm for calculating the NoA, as shown in Fig.7.24, has three
routines (R-I,R-II,R-III) and a single loop. R-I, determines whether the number
of adders at the depicted level is odd or even and set or reset the skipped level
flag, respectively. R-II, increments the skipped level flag or maintains it according
to odd or even number of adders at the depicted level, respectively. R-III, used
only at the first level (input level) of the multi-operand adder, and it sets or resets
a flag for odd or even number of inputs, respectively. The number of inputs is
defined by (d). A flag (Extra) is reset (Extra=0) for even number of inputs and
is set (Extra=1) for odd number of inputs. Y and N represent the decision yes or
no respectively. E and O represent the decision for even or odd respectively. An
illustrative example is presented in Fig. 7.26. For an eleven input MA, a total of
10 adders are needed at four levels. The number of adders per level is depicted
by NoA in Fig. 7.26. There are two levels imply skipped level, the second and
the last levels, as given by SL in Fig. 7.26. The first skipped level has an internal
structural connection from the multi-operand adder direct inputs, so that it has
(−1) flag in the LoSL matrix.

total number of adders (TNoA) = m − 1
number of depth levels (Levels) = �log2(m)�
number of adders per level (NoA) = [5, 3, 1, 1]
subsequent levels for skipped levels (SL) = [0, 1, 0, 1]
levels provide internal connection of skipped levels (LoSL) = [(0, 0), (−1, 2), (0, 0), (3, 4)]

129

7. Design and Implementation Procedure

Start

Stop

R-I

R-I

R-I

R-II

R-II

R-III

N

N

N

N

N

N

Y

Y

Y

Y

E

E

E

E

O

O

O

O

d

i ≤ d

i = 1

NoA(i-1)

E(OF)

Extra=1Extra=1 Extra=0

Extra=0

Extra=1

OF=0

OF=1

NoA(i)

NoA(i)

dOF

OF++ � NoA(i-1)
2 �

d
2

i + +

� NoA(i-1)
2 �

� NoA(i-1)
2 �

� NoA(i-1)
2 �

NoA

Figure 7.24.: Determine the number of adders per level.

130

7.6. VHDL IPs

Start

Stop

R-I
N

N

N

Y

Y

Y

E

E

O

O

d

i ≤ d

i = 1

NoA(i)

SL

SL(i)=0

SL(i)=0

SL(i)=0

SL(i)=1
j=0

j=0

j=1

d

i + +

j=2

NoA

j++

Figure 7.25.: Determine the internal skipped levels.

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11Level 1

Level 2

Level 3

Level 4

S

NoA SL LoSL

5

3

1

1

1

1 0

0

(0, 0)

(0, 0)

(−1, 2)

(3, 4)

Figure 7.26.: Balanced multi-operand adder structure for 11 inputs.

131

7. Design and Implementation Procedure

x y

z−1

(a)

x y
z−1

(b)

Figure 7.27.: Integrator stage (a) basic (b) pipeline.

x y

z−α

(a)

z−α

z−1

(b)

Figure 7.28.: Comb stage (a) basic (b) pipeline.

7.6.3. Cascaded Integrator Comb Filter

Decimation filters have to offer strong stopband attenuation factor to prevent
aliasing and imaging into the in-band, as shown in Fig. 2.5. Cascaded Integrator
Comb (CIC) filter, is a class of linear phase FIR digital filters that provides deep
stopband attenuation at the aliased signal bands [105]. Furthermore, CIC filters
are power and area efficient filters because they require no multiplier and require no
storage [105]. The CIC filter consists of two basic building blocks, an integrator and
a comb [29]. It should be noted, that CIC filter needs a correction or compensation
stage to compensate for the drop in the magnitude within the passband.
The integrator difference equation is given by (7.27). Equation (7.28) [105] shows
the transfer function of that integrator by taking the z-transform of (7.27). An
integrator stage is implemented as exhibited in Fig. 7.27.

y[n] = x[n] + y[n − 1] (7.27)

H(z) =
1

1 − z−1 (7.28)

The comb difference equation is given by (7.29). Equation (7.30) [105] shows the
transfer function of a comb by the z-transformation of (7.29). A comb stage is
implemented as exhibited in Fig. 7.28.

y[n] = x[n] − x[n − α] (7.29)

H(z) = 1 − z−α (7.30)

where α = D × M .
The integrator is unstable itself [29], it has infinite dc gain. The comb is the

132

7.6. VHDL IPs

inverse of the integrator [29]. The cascade of integrator and comb stages forms
a FIR filter, named CIC. The CIC transfer function is given by (7.11). This
is a recursive implementation of the CIC filter. Hence, (7.11) can be modified
as shown by (7.31) for non-recursive implementation [112]. Several alternative
implementation of CIC filter is given in [112]. However, this work considers the
recursive implementation only, because of its efficiency with high over sampling
ratios [110]. Moreover, the recursive CIC filters can be implemented in different
topologies, such as conventional (standard), pipe-lined, pipe-lined integrator, and
pipe-lined comb as given in Fig. 7.29.a to Fig. 7.29.d, respectively. The developed
IP provides the advantage of setting each individual stage, rather integrator or
comb, to pipe-lined or not. Thus, a hybrid CIC architecture is proposed in this
work for low power implementation [113], as shown in Fig. 7.29.e.

H(z) =
(

α−1∑
i=0

z−i

)N

(7.31)

7.6.3.1. Integrator

The integrator stage is implemented structurally using the predefined DL and
AD elements, shown in Figs. 7.20 and 7.21, respectively, to construct the basic
and the pipelined integrator architecture, shown in Fig. 7.27.a and Fig. 7.27.b
respectively. The pipeline integrator has no additional pipeline registers [114],
which increases the clock rate for the CIC filter [114]. The integrator schematic,
symbol, abbreviation, and design parameters are given in Fig. 7.30.a to Fig. 7.30.d.

7.6.3.2. Comb

The comb stage is implemented structurally using the predefined DL and AD
elements, shown in Figs. 7.20 and 7.21, respectively, to construct the basic and
the pipelined comb architectures, shown in Fig. 7.28.a and Fig. 7.28.b respectively.
The subtraction process is implemented by the inversion of one of the inputs of the
AD and setting the carry-in to one. The pipeline comb has one additional pipeline
register [114], in contrary with its counter part the integrator stage. However,
it increases the clock rate for the CIC filter [114]. The comb schematic, symbol,
abbreviation, and design parameters are given in Fig. 7.31.a to Fig. 7.31.d.

133

7. Design and Implementation Procedure

z−1z−1 z−αz−α

(a)

z−1z−1

z−α

(b)

z−1z−1

z−αz−α

(c)

z−1

z−1 z−α

(d)

z−1

z−1z−1

z−αz−α

(e)

Figure 7.29.: Cascaded integrator comb configurations (a) conventional (b) pipelined (c) with
pipelined integrator (d) with pipelined comb (e) hybrid.

134

7.6. VHDL IPs

Wi Wo

CLK

CLR

i o

(a)

INT

(b)

INT

(c)

Wi input bit-width
Wo output bit-width
PL pipeline

(d)

Figure 7.30.: Integrator stage - (a) schematic, (b) symbol, (c) abbreviation, (d) parameters.

Wi Wo

CLK

CLR

i o

(a)

COMB

(b)

COMB

(c)

Wi input bit-width
Wo output bit-width
PL pipeline
D differential delay

(d)

Figure 7.31.: Comb stage - (a) schematic, (b) symbol, (c) abbreviation, (d) parameters.

135

7. Design and Implementation Procedure

7.7. Summary

A consolidated design procedure and single design platform for multi-stage deci-
mation filters were developed in this work. The MSD-toolbox involves the method-
ologies developed through this work besides the state-of-the-art research method-
ologies. The toolbox provides a fast design process for FIR decimation filters.
The MSD calculates the optimal number of decimation stages and the decimation
factor at each stage sustaining minimum filter computational effort. Further, it
calculates the frequency specifications for the various decimation stages, such as
passband and stopband frequencies, passband ripples and stopband attenuation.
Moreover, the MSD acquires the filter coefficients using Parks-McClellan Equirip-
ple algorithm for standard, or halfband, or multi-band filters. Afterwards, the
appropriate quantization bit-width is calculated for each decimation stage sustain-
ing minimum mean error in the filter response and minimum penalty in the in-band
noise. Finally, the MSD-toolbox integrates several optimization methodologies for
optimizing the fixed point filter coefficients, such as mixed integer linear program-
ming, polynomial programming, and iterative optimization.
The MSD-toolbox brings a VHDL model for the designed and optimized filter
coefficients in polyphase as well as cascaded integer comb filters. Generic VHDL
models were developed for polyphase and cascaded integrator comb decimation
filters as RTL-based soft IPs. The developed IPs have structural hierarchy. The
developed VHDL IPs have the advantage of flexible accessibility for each imple-
mentation parameter of each individual block.
The toolbox supplies a concrete bit-level activity files for troubleshooting and ver-
ification.

136

8. RTL Power Optimization

8.1. Introduction

This chapter emphasizes on power optimization criteria on the RTL for constant
multipliers and consequently on the multiple constant multiplications (MCM) prob-
lem for digital filters. Constant multipliers are conventionally known as shift-and-
add or multiplierless architectures. In order to reduce the power dissipation in
constant multiplier, this can be done on three different perspectives, which are:
1) reduce the number of FAs used within the constant multiplier according to re-
ducing the internal bit-width, 2) reduce the number of logic operations (LO), i.e.
the overall number of adders used in the constant multiplier through CSE, and
3) reduce the logic depth (LD) due to employing balanced tree architectures and
CSD representation. This work proposes a novel criterion to reduce the internal
bit-width within the constant multiplier, consequently the number of FAs. Fur-
ther, the author combines several approaches to achieve efficient CSE. Moreover,
the CSE is used to drive or steer the construction of a constant multiplier.

8.2. Problem Notations

The common notations used within this chapter are defined in this section to offer
a consistent representation throughout the work.
Consider the integer coefficient in decimal representation
ĥk = 4998410
with its binary representation
ĥk = 11000011010000002 [MSB . . . LSB]
where its binary-to-decimal representation is
ĥk = 26 + 28 + 29 + 214 + 215

Multiplication is a shift left operation. Therefore, from the previous format, the
coefficient can be represented in a format of shifts, as shown
ĥk = x � 6 + x � 8 + x � 9 + x � 14 + x � 15
where � is logical shift left logical operation, i.e. the number of zeros added to
the right of the input of a multiplier x. There is a simplified notation used to
represent the shifts, as follow
S{1 : m} = 6 + 8 + 9 + 14 + 15
where m is the number of non-zero terms in the binary representation of the

137

8. RTL Power Optimization

coefficient. The set S represents the number of shifts at each non-zero term in the
binary representation. The power of two factors represents the shift left (number
of zeros added to the right of the input). Figure 8.1 shows the construction of a
shift-and-add constant multiplier and the used notations is depicted on the figure,
where

• Ax Adder number x

• [Wx] Number of full-adders (NFAs), which is equivalent to the output bit-
width of adder Ax

• Sx Shift left bits

• Lx Level x

The number of full-adders (NFAs) is calculated at the first level as given in (8.1)
and at the internal levels as in (8.2) follow

NFAs = max(Si, Si + 1) + Wi + 1 (8.1)

NFAs = max(Wi, Wi+1) + 1 (8.2)

where Wi is the constant multiplier input bit-width, and the extra one to avoid
an overflow problem. It has to be noted that, in case of signed multiplication the
MSB adder will have an extra bit for sign. Further, the depth of the multiplier is
calculated by (8.3)

d = �log2(m)� (8.3)

where m = Cost(ĥk), and the total number of adders #A= m − 1.

A1A2

Ai

Am − 1

[W2] [W1]

[Wi]

[Wm − 1]

S1S2S3S4SiSjSm

MSB LSB

L1

Li

Ld

Figure 8.1.: Problem notations.

138

8.3. Discrepancy

8.3. Discrepancy

Before presenting the proposed criterion, a quantitative study has been carried out
which ended with a useful observation which can be used for efficient construction
for the constant multiplier. Does constructing the shift-and-add from LSB → MSB
or MSB → LSB influence the internal bit-width? Figure 8.2 shows the effect of the
direction of constructing the shift-and-add multiplier on the number of FAs. The
shift-and-add multiplier constructed using the all LSB → MSB criterion exhibits
the lowest NFAs, as shown in Fig. 8.2.a. However, the shift-and-add multiplier
constructed using the all MSB → LSB criterion exhibits the highest NFAs, as
shown in Fig. 8.2.c. On the other hand, when combining both LSB → MSB and
MSB → LSB, or vice versa as well, the NFAs differ according to the direction of
construction, as shown in Fig. 8.2.b and Fig. 8.2.d. Therefore, the author defined
parameters called LSB discrepancy (∂L) and MSB discrepancy (∂M) to identify
the direction of constructing the shift-and-add. The ∂L is calculated according to
the last two LSBs and the ∂M is calculated according to the last two MSBs, as
depicted in (8.4)

∂L = S2 − S1 (8.4)
∂M = Sm − Sm−1

Therefore, the shift-and-add multiplier construction starts from the least discrep-
ancy, i.e. if ∂L < ∂M the construction take place from LSB → MSB and vice verse.

8.4. Proposed Nested Constant Multiplier

8.4.1. Theory

Nested multiplication, also known as Horner’s rule, is an efficient mathematical
method for rounding and chopping polynomials [115]. The nested multiplication
is defined as follow [115], [116]:

p(x) = a0 + a1x + a2x2 + · · · + an−1xn−1 + anxn

p(x) = a0 + x(a1 + x(a2 + · · · + x(an−1 + x(an)) · · ·))
(8.5)

It can be expressed by the pseudo code [115], [116]:

px=a(n)
for k = n-1 downto 0

139

8. RTL Power Optimization

10 9 6 3

A1A2

A3

A4

24

15

15

19

[10][14]

[15]

[19]

(a)

15 10 9 6 3

A1A2

A3

A4

24

19

20

[10][14]

[20]

[19]

(b)

15 10 9 6 3

A1A2

A3

A4

32

20

21

[13][19]

[20]

[21]

(c)

15 10 9 6 3

A1A2

A3

A4

32

14

20

[19] [13]

[20]

[14]

(d)

Figure 8.2.: Effect of (LSB → MSB) and (MSB → LSB) on constructing a constant multiplier
with Wi = 3 (a) all LSB→MSB [58 FA] (b) LSB→MSB+MSB→MSB [63 FA] (c)
all MSB→MSB [73 FA] (d) MSB→MSB+LSB→MSB [66 FA].

px = a(k)+px × x
end

8.4.2. Implementation

The author was inspired by the nested multiplication criterion to implement it in
hardware for within the shift-and-add constant multipliers. The advantage behind
the nested multiplication is reducing the bit-width at adder inputs, consequently
the NFAs.
The nested multiplication can be transferred to hardware form as shown in Fig. 8.3.
The criterion is applicable only for nodes which share the same adder cell. The
first step is to relocate the least number of shift bits at the output of the adder
cell. Then reduce the input shifts at both of the adder cell. Numerically, this can

140

8.4. Proposed Nested Constant Multiplier

1

2

Si

SiSi + 1

Wi

Si+1 - Si 0

Figure 8.3.: Illustrating the proposed nested multiplier.

be expressed as follow for the integer coefficient 49984
ĥk = 4998410
ĥk = 11000011010000002 [MSB . . . LSB]
ĥk = 26 + 28 + 29 + 214 + 215

S{1 : m} = 6 + 8 + 9 + 14 + 15

SL1 = 6 + 8(0 + 1) + 14(0 + 1) AL1 = {(0 + 1), (0 + 1)}
SL2 = 6(0 + 2) + 14 AL2 = {(0 + 2)}
SL3 = 6(0 + 8) AL3 = {(0 + 8)}

The numbers between the brackets () represents the number of shift bits at each
adder cell input, i.e. each () is equivalent to a single adder cell. The number
outside the brackets, e.g., 8() represents the shift bits at the output of the adder
cell. The SL vectors represents the nested multiplication criterion at each level of
the shift-and-add multiplier. The AL vectors hold the adder cell at each level. The
advantage of the proposed criterion can be observed at each adder cell, e.g. for
the adder cell (8+9) the NFAs is 9+Wi+1, while for 8(0+1) the NFAs is 1+Wi+1,
which offers a reduction in the NFAs by 100 × 8/(9 + Wi + 1), which is inversely
proportional with input bit-width.
A level-by-level illustrative example for the coefficient 34376 with input bit-width
Wi 3-bits is given in Fig. 8.4. ĥk = 3437610
ĥk = 10000110010010002 [MSB . . . LSB]
ĥk = 23 + 26 + 29 + 210 + 215

S{1 : m} = 3 + 6 + 9 + 10 + 15

The proposed criterion is compared to the conventional and the state-of-the-art
methods as shown in Fig. 8.5. The proposed criterion shows reduction in the
NFAs by 32.75% compared to the conventional architecture, and reduction by
17% compared to the pseudo floating point (PFP) method [82].

In order to evaluate the performance of the NMU criterion, a set of simulation sce-

141

8. RTL Power Optimization

A1A2

15

1

3

3

3

9

9

10 6

[5] [7]

(a)

A1A2

A3

15 1

3

3

9

9

6

[5] [7]

[10]

(b)

A1A2

A3

A4

1

3

3

3

96

6

[5] [7]

[10]

[17]

(c)

Figure 8.4.: Proposed nested multiplier construction at (a) Level-1 (b) Level-2 (c) Level-3.

A1A2

A3

A4

10 9 6 3

24

15

15

19

[10][14]

[15]

[19]

(a)

18

17

A1A2

A3

A4

12

12 7 6

3

3

[7][11]

[12]

[17]

(b)

A1A2

A3

A4

6

6 1

3

3

12

10

17

[7][5]

[10]

[17]

(c)

Figure 8.5.: Number of multiplier adders using (a) conventional [58 FA] (b) PFP [47 FA] (c)
proposed [39 FA].

narios were carried out for various input bit-widths (Wi) and various quantization
bit-widths (Q) considering binary and CSD representations. Figure 8.6 shows the
total number of full-adders (NFAs) used to implement coefficient from 9 to 1024
using the PFP and the NMU criteria for binary and CSD as well. The result shows
a considerable reduction in NFAs due to using the proposed criterion compared to
the state-of-the-art algorithm. The percent of reduction in CSD constant multi-
pliers is less than their binary counterparts, as exhibited in Fig. 8.6.b, due to the
fact that CSD has less number of non-zero terms.
On the one hand, the NFAs increase rapidly with the increase of input bit-width,
as can be seen from the slope of the lines given in Fig. 8.7.a. On the other hand,
the NFAs increase in constant rate with the increase of the quantization bit-width,
as can be seen at the vertical values for the same Wi as shown in Fig. 8.7.a. How-
ever, for CSD multipliers the increase in NFAs is not as excessive as in binary
multipliers, as can be seen in Fig. 8.7.b.
The percent of reduction in the NFAs is reduced with the increase of Wi, however,
it is increased with the increase of Q, as depicted in Fig. 8.8.a and Fig. 8.8.b.

142

8.4. Proposed Nested Constant Multiplier

100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

Coefficients

N
FA

s
PFP

Proposed

(a)

100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

Coefficients

N
FA

s

PFP
Proposed

(b)

Figure 8.6.: NFAs using PFP versus proposed NMU for (a) binary (b) CSD coefficients.

5 10 15 20 25 30 35 40 45
0

50

100

150

200

250

300

350

400

450

500

Wi

N
FA

s

Q = 8
Q = 12
Q = 16
Q = 20

(a)

5 10 15 20 25 30 35 40 45
0

50

100

150

200

250

300

350

400

450

500

Wi

N
FA

s

Q = 8
Q = 12
Q = 16
Q = 20

(b)

Figure 8.7.: NFAs employing the NMU criterion for (a) binary and (b) CSD representations.

Figure 8.9 shows the difference between the binary and CSD employing NMU.

143

8. RTL Power Optimization

5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

Q = 8
Q = 12
Q = 16

Wi

R
ed

uc
ti

on
in

N
FA

s
%

(a)

8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

45

Wi = 1
Wi = 3
Wi = 6
Wi = 10

Q

R
ed

uc
ti

on
in

N
FA

s
%

(b)

Figure 8.8.: Percent of reduction in NFAs using the proposed criterion according to variable
(a) input bit-width (b) quantization bit-width.

5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

Binary
CSD

Wi

R
ed

uc
ti

on
in

N
FA

s
%

(a)

5 10 15 20 25 30 35 40 45
0

50

100

150

200

250

300

350

400

CSD
Binary

Q

N
FA

s

(b)

Figure 8.9.: Binary versus CSD employing proposed criterion for Q = 16 (a) percent of reduc-
tion in NFAs (b) NFAs.

144

8.4. Proposed Nested Constant Multiplier

SiSi Si + 1Si + 1 SjSj Sj + 1Sj + 1SkSk + 1

CSE

Sk

Figure 8.10.: CSE effect on multiplier adders.

A1A2A3

A4A5

A6

12

3

34

18

18

15

[5][6][7]

[10][8]

[15]

6

(a)

A1A2A3

A4A5

A6

1 11 3

15

17

16

[5] [5] [5]

[7][10]

[16]

4

5

(b)

4
A1

A4A5

A6

13

17

16

[5]

[7][10]

[16]

5

5

(c)

Figure 8.11.: NFAs in (a) NMU [51 FAs] (b) NMU guided by CSE [48 FAs] (c) after CSE [38
FAs].

8.4.3. Nested Multiplication Driven by CSE

The common sub-expression elimination given in section 5.9 is integrated within
the construction of shift-and-add multipliers to guide the construction process.
CSE is effective at first level only, since the internal adders are uncorrelated (do
not have the same input). The basic idea of CSE is given in Fig. 8.10. The effect
of employing CSE to steer the construction of shift-and-add multipliers is shown
in Fig. 8.11.

145

8. RTL Power Optimization

8.5. RTL Modeling

The shift-and-add implies two basic components: hardwired shifts and adder
blocks. To facilitate the manipulation of the shift-and-add components, each com-
ponent has been modeled as record with several variables in order to manipulate
each detail within the constant multiplier. This modeling criterion supports in-
tegrating the proposed NMU algorithm for constructing shift-and-add multipliers.
The hardwired shift is entitled as ‘NodeCell’ and the adder block is entitled as
‘AdderCell’. The attributes of each cell is given in Fig. 8.12 and described in the
following in detail.

The ‘NodeCell’:
‘Level’- record defines the level of the node within the multiplier construction, e.g.
for binary coefficient with cost of 5 non-zero terms, there are 3 levels of adders in
the MA tree.
‘Flag’- assert a feedback between nonconsecutive levels.
When ‘Flag’ record is set to 1, the ‘Index’ defines the index of the previous node
used for feedback for odd number of nodes.
‘InWidth’ - multiplier input bit-width.
‘FillerRight’ - hard wired shifts corresponds to multiplication.
‘Sign’ - defines whether the left filler ‘FillerLeft’ are 1’s (2’s complement binary)
or 0’s (binary).

The ‘AdderCell’:
‘Flag’ and ‘Index’ - records are used for CSE, where ‘Flag’ indicates that there
is a CSE at this adder and ‘Index’ defines the index of the adder used to feed
through the CSE.
‘Type’ - record set the adder type used in implementing the constant multiplier
tree, whether RCA or CSKA.
‘PosNeg’ - record defines whether the constant coefficient is positive or negative,
i.e. to deal with binary or 2’s complement binary.
‘SignedIn’ - defines the sign of the input bit stream whether positive or negative.
‘InWidthA’, ‘InWidthB’, and ‘OutWidth’ - defines the input bit-widths for
both adder inputs and the adder output as well, respectively.

8.6. Summary

A novel encoding criterion for the reduction of the number of full-adders was
presented in this chapter entitled as nested multiplication. The proposed criterion
is valid for binary and CSD representations. The nested multiplication achieved
around 25% reduction in the number of full-adders compared to the state-of-the-
art criterion, the pseudo floating point. The percent of reduction in the NFAs
decreases with the increase of the input bit-width. On the other hand, it increases

146

8.6. Summary

Level
InWidth

FillerRight
FillerLeft

Sign

InWidthA
InWidthB
OutWidth

OutWidth
ZerosRightA
ZerosRightB
ZerosLeftA
ZerosLeftB

SignedIn
PosNeg

Flag

Flag

Index

Index

Type

A B
AdderCellNodeCell

Figure 8.12.: RTL coding scheme for proposed NMU.

with the increase of the quantization bit-width. Further, an efficient RTL coding
and implementation was delivered for the proposed criterion.

147

9. Digital Front End

9.1. Introduction

This chapter presents a novel power optimized implementation of a digital-front-
end (DFE) for FM radio receivers. In order to epitomize the methodologies and
algorithms proposed and developed in this work, a booming practical application
for all-digital receivers has been chosen for implementation. The replacement of
signal processing analog components with their digital counterparts has been mo-
tivated by their improved flexibility, reliability, and robustness. Therefore, digital-
front-ends have been introduced in the radio receivers. This chapter presents a
power efficient implementation of a narrow-band tunable digital-front-end for FM
radio receivers. This work has been published in [4].

9.2. Design Specifications

Table 9.1 displays the FM radio receiver specifications. The sampling frequency
is 390 MHz with a bandwidth of 20.8 MHz centered on a quarter of the sampling
frequency 97.5 MHz. Each radio channel is 200 kHz. The receiver is implemented
using 130nm silicon CMOS technology. A bit-stream stimuli of a 220 length were
integrated in the design procedure. The power spectral density (PSD) of the
bandpass sigma delta modulator output is plotted, as shown in Fig. 9.1.

Table 9.1.: Receiver specifications.
Parameter Value

fs 390 MHz
fc 97.5±10.4 MHz

OSR 975
CMOS 130nm Faraday UMC

δf 200 kHz
BW 20.8 MHz

Stimuli �

149

9. Digital Front End

10
2

−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

f [MHz]

P
SD

[d
B

FS
/b

in
]

87.1 107.9

10.4 MHz

Figure 9.1.: PSD of a 4th order tunable BPΣΔM.

9.3. Proposed DFE

The FM radio receiver design considers a narrow-band tunable bandpass sigma
delta modulator (BPΣΔM) placed early in the signal path, using a DFE for down
conversion, channel selection, and sample-rate conversion.
A tunable 4th order BPΣΔM with a sampling frequency (fs) of 390 MHz and
a bandwidth (BW) of 20.8 MHz ranging from 87.1 MHz to 107.9 MHz centered
around center frequency (fc) 97.5 MHz for a channel width of (δf) 200 kHz. The
modulator is implemented by continuous-time (CT) topology using CMOS 130nm
technology. It provides an output resolution of more than 12-bit involving a single
bit quantizer.
The BPΣΔM center frequency is tuned in integer steps by a control signal from
the digital control word (DCW) through the local feedback coefficient g, as de-
picted in Fig. 9.2.a. The resonator local feedback coefficient g controls the poles
of the modulator transfer function and thus the modulator center frequency fc.
Further details about CT BPΣΔM are given in [117]. The modulator is followed
by a digital-front-end (DFE) stage to translate the signal to baseband, reduce its
sampling rate, and suppress the quantization and folded noise besides unwanted
channels [118]. The conventional DFE and the proposed architecture are described
in the following in detail.
The conventional DFE architecture shown in Fig. 9.2.a, consists of a digital nu-
merically controlled oscillator (NCO) tuned to the channel of interest by a control
signal from a digital control word (DCW), driving a digital mixer. The sample
rate at the output of the mixer is equal to the high sample rate used within the
ADC. The DCW determines the center frequency of the modulator as well as the
digital-front-end through g and δP , respectively. It translates g to its correspond-

150

9.3. Proposed DFE

g=(2πfc/fs)2

δP=2nfc/fs

Decimator

NCODCW

e−jωc

(a)

g=(2πfc/fs)2

δP=2n(fc-f4)/(fs/Mi)

e−jω4 e−jsnδω

fs/Mi

[QM] [CM]
Decimator

NCODCW

CIC

(b)

Figure 9.2.: DFE architectures (a) conventional (b) proposed, where g is the BPΣΔM local
feedback coefficient and δP is the NCO frequency controlled word.

ing δP so that the fc is identical for both, the BPΣΔM and the DFE. Thus, g is
the BPΣΔM local feedback coefficient. While, δP represents the frequency con-
trolled word (FCW) for the NCO. Detailed explanation for the FCW comes later
in the section 5. fc is determined by fc=f4±snδf. f4 is a quarter of the sampling
frequency, δf is the 200 kHz frequency resolution and sn is an integer number for
frequency selection (sn ∈ [-52:52]).
The conventional implementation consists of power hungry components running at
high sampling rate. So, it is possible to tradeoff between an increased design com-
plexity and a reduced sample rate for some blocks (and therefore reduced energy
consumption), leading to the proposed architecture depicted in Fig. 9.2.b. The
proposed down conversion is implemented using two mixers, a quadrature and a
complex mixer. The quadrature mixer has a fixed oscillation frequency at a quar-
ter of the sampling frequency (f4=fs/4). It translates the ΣΔM’s output down to a
complex intermediate frequency (IF). The complex mixer has a tunable oscillation
frequency set by a NCO for channel selection, with a frequency resolution δf of 200
kHz chosen in accordance with the used BPΣΔM. The complex mixer translates
the complex IF signal band to the complex baseband for decimation (the double
arrow in Fig. 9.2 represents the complex I/Q signals). However, it is not sufficient
to split the digital mixer to a quadrature mixer [QM] and a complex mixer [CM],
and retain both of them running at the same high fs. Therefore, a reallocation
of one of the decimation stages in between the two mixers is proposed in order to
trade-off CM complexity with lower fs.
The decimation stage is designed using the MSD-toolbox given in chapter 7, opti-

151

9. Digital Front End

mized by the algorithm given in chapter 5, and implemented using the VHDL IPs
presented in chapter 7. The proposed design and implementation given in chapter 7
have been elaborated through this application. The decimation is achieved by a
four-stage topology. The first stage, a cascaded integrator comb (CIC) decimator,
is placed between the two down mixers. This allows the sampling frequency for the
complex mixer and the NCO to be reduced to fs/Mi, where Mi is the decimation
factor of the CIC stage. The Gray shaded area in Fig. 9.2.b is thus running at
fs/Mi instead of fs. All blocks are explained individually in more detail in the
following sections in correlation with the previous chapters.

9.4. Digital Down Converter

The Digital Down Converter (DDC) is used to transform the RF signal into base-
band signal. The conventional structure of a down mixer with tunable center
frequency fc is shown in Fig. 9.3.a. Mixing the input signal cosωc by the local fre-
quency ejωc, translates the input signal to the baseband (exactly around dc) since
they are identical. The NCO generating the local mixing frequency (ejωc) is usu-
ally implemented using ROM look-up tables (LUT), and a high access frequency
to this structure is costly in terms of energy. Therefore, the approach followed
here is to split fc (which is the center frequency and the local mixing frequency at
the same time) into two components, a fixed and a tunable one according to

fc = f4 ± snδf (9.1)

where fc is the local center frequency, f4 is quarter the sampling frequency, δf is the
oscillator tuning step size, and sn is an integer representing the channel number ∈
{−52 : 52}. Consequently, mixing the input signal cosωc by f4, translates the input
signal to an IF location at ωc−ω4, as depicted in Fig. 9.3.b. Subsequently, complex
mixing with the same tuning range but at a baseband instated of RF is proposed.
In other words, the NCO needs to generate frequencies ranging from 200 kHz up
to 10.4 MHz. While on the other hand, the conventional implementation needs a
tuning range from 97.5 MHz up to 107.9 MHz. The conventional implementation
requires a bulky ROM size for the NCO, more details and analysis for NCO is
presented later on in section 9.5.
The corresponding mixer architecture for the proposed DDC is shown in Fig. 9.3.b.
The sine and cosine sequences for an oscillation frequency of f4 have a very simple
structure: each term is either 0 or ±1. The multiplicands are thus 0 or ±1,
which can be implemented using simple boolean operations, as shown in Fig 9.4.
Therefore, it has a very power efficient implementation [119], [120]. A quadrature
mixer is followed by a complex mixer as shown in more detail in Fig. 9.5.a and
Fig. 9.5.b. The quadrature mixer is fed with an input signal oscillating at a quarter
of the sampling frequency f4 and runs at fs = 390 MHz. The complex mixer is fed
by the NCO which has a tunable oscillation frequency and runs at fs/Mi, where
Mi is the decimation factor of the decimation stage between the two mixers.

152

9.5. Numerical Controlled Oscillator

cos ωc

ejωc

(a)

cos (ωc-ω4)
cos ωc

ejω4 ejsnδω

(b)

Figure 9.3.: Digital down conversion (a) conventional (b) proposed.

4×2

4×2

f

2-bit
Counter

COS

SIN

ROM

ROM

Mapper I

Q

ΣΔM

Figure 9.4.: Power efficient quadrature mixer for f4.

cos ω

sin ω

I

Q

(a)

cos ω

cos ω

sin ω

Ii

Qi

Io

Qo

(b)

Figure 9.5.: Mixer architecture for (a) Quadrature and (b) Complex.

Between the two mixers a CIC decimation filter is placed which is explained in
more detail in section 9.6.1.

9.5. Numerical Controlled Oscillator

Frequency translation is a common process in signal processing. Since signal pro-
cessing is done in baseband, a translation between different frequency bands is of

153

9. Digital Front End

great demand in communication systems for translation from very high frequen-
cies to much lower frequencies. Frequency translation can be achieved in analog
domain by phase locked loop (PLL) or in digital domain by numerically controlled
oscillator (NCO). A direct digital synthesizer (DDS) consists of a NCO with digital-
to-analog converter (DAC) and anti-aliasing filter (AAF). The DDS is out of the
scope of this work. ROM-based NCO dissipates more power compared to the PLL
but it has a very high tuning resolution, is extremely fast with continuous phase,
and matched quadrature signals (for quadrature synthesizers) [121].
A detailed review for the NCO fundamentals can be found in [122], [123]. Besides,
elementary definitions of performance quantities can be found in [124]. Moreover,
a concise review is published in [122].
NCOs are categorized to ROM-based and ROM-less architectures [125]. Fig-
ure 9.6 summarizes the NCO categories. The ROM-less architecture is classified to
CORDIC and polynomial approximation (high order ≥ 4). The ROM-based NCO
architecture can be classified according to their phase to single (SIN or COS) or
quadrature (SIN and COS) phase. Practically, a quadrature phase NCO is more
beneficial. Furthermore, a ROM-based NCO architecture can be classified accord-
ing to the ROM complexity to symmetry (employing half, quarter and one eighth
symmetry property of the sine or cosine), angular decomposition, sine amplitude
compression and low order polynomial approximation. A recent related review is
published in [125].
ROM is used for phase-to-amplitude conversion. ROM-less NCO architectures has
an advantage of high performance and low power consumption, although, it deteri-
orates the tuning latency [125]. Therefore, ROM-less approach is not suitable for
high frequency applications. Hence, this work considers ROM-based NCO.

9.5.1. Sinusoidal Symmetry NCO Topologies

An NCO is used to generate sinusoidal waveforms which are multiplied by the
input complex data to implement the frequency mixing function [126]. The NCO
tuning equation is given by (9.2).

fc = FCW fs

2n
= FCW × fmin, (9.2)

where fc is the desired frequency, FCW is the frequency control word, fs is the
reference sampling frequency, n is the PA bit-width, and fmin = fs/2n is the
frequency resolution of the NCO. The maximum generated frequency from a NCO
is defined by the Nyquist criterion constraint as depicted in (9.3).

fmax = fs

2
(9.3)

In the following two sub-sections two ROM-based NCOs using quarter and one
eighth symmetry are presented and analyzed in detail.

154

9.5. Numerical Controlled Oscillator

NCO

ROM ROM-less

Complexity

Phase

Symmetry2

Angular Decomposition

Sine Amplitude Compression

Polynomial Approximation1

Polynomial Approximation3

Single
Quadrature CORDIC

1 High order ≥ 4
2 π, π/2, π/4
3 Low order < 4

Figure 9.6.: NCO classifications.

9.5.1.1. π/2 Symmetry

A straight forward implementation of NCO with reduced ROM size can be achieved
by employing the quarter symmetry (π/2) of the sinusoidal waveform. A π/2 NCO
consists of phase accumulator (PA), single phase-to-amplitude converters (π/2 SIN
ROM), and two complementer blocks, as shown in Fig. 9.7. The size of the ROM
is 2k × m. A π/2 NCO is outlined in [122] and implemented in VHDL [127] as

PA Comple-

2nd MSB

MSB

ROM
π/2 SineNOT mentor

n k mm − 1

Figure 9.7.: Block diagram of the NCO implementation employing π/2 symmetry, where n is
the number of phase accumulator bits, k is the ROM address bit-width and m is
the word-length of the ROM.

displayed in Fig. 9.7. This architecture has been used in both the conventional
and the proposed DFE architectures for the preliminary implementation. The

155

9. Digital Front End

Convert
PA

kn k

3MSBs

CTRL

NOT

π/4 SIN

ROM

ROM

π/4 COS

m − 1

m − 1

Signal

m

m

Figure 9.8.: Block diagram of the NCO implementation employing π/4 symmetry.

proposed DFE has achieved about 50% saving in power consumption using pi/2
NCO as given shown later in section 9.5.5. Nevertheless, more emphasis on NCO
block in particular has been put on minimizing its power dissipation, which inspires
the proposed work and given in the following sub-section.

9.5.1.2. π/4 Symmetry

A typical implementation for quadrature NCO would be by employing the one-
eighth symmetry (π/4) because it stores samples for both the sine and cosine
waveforms. The block diagram of the quadrature NCO is given in Fig. 9.8, where
n is the number of phase accumulator bits, k is the ROM address bit-width and
m is the wordlength of the ROM. The size of the ROM is 2k × m. This architec-
ture was proposed in [128]. The quadrature NCO consists of phase accumulator
(PA), complementer (NOT), two phase-to-amplitude converters (π/4 SIN ROM
and π/4 COS ROM), signal converter and control unit (CTRL). The signal con-
verter consists of two multiplexers and two complementer circuits. The control
unit uses the three MSBs (from PA output) to reconstruct the complete sine and
cosine sampled waveforms from their one-eighth waveforms by detecting the sign,
the quadrant and whether the amplitude is increasing or decreasing. The phase-to-
amplitude converter is a ROM storing fixed samples for one-eighth sine and cosine
waveforms. The waveform is accomplished by feeding the PA output to a phase-
to-amplitude converter ROM. Consequently, the ROM provides the corresponding
waveform amplitude value.
Since, the sine and cosine samples are stored with limited bit-width besides the
big phase step for generating large frequencies, the enhancement is required to
improve the system performance. Otherwise, a bulk ROM is used leading to a
power hungry NCO architecture.

156

9.5. Numerical Controlled Oscillator

9.5.2. Performance Enhancement Criteria

ROM-based NCOs offer a very fine tuning resolution and are extremely fast while
providing continuous phase, as opposed to ROM-less architectures and matched
quadrature signals (for quadrature synthesizers) [121], [129]. On the other hand,
they also consume more power and may exhibit large spurious tones [129]. The
latter may arise due to a truncation in the phase accumulator, a compression of
the ROM and a finite precision of the sinusoidal samples [129]. Therefore, the
design of a high performance and power optimized NCO for a personal communi-
cation system poses a challenging task. Several methodologies for improving the
performance of ROM-based NCOs were presented in literature, e.g., amplitude
dithering [123], phase dithering [129], [130], [131] and piece-wise linear approxi-
mation [121], [132]. Other criteria target reducing the ROM size, e.g., sinusoidal
symmetry [125], [133] and ROM compression [129].

9.5.2.1. Dithering

Dithering is the process of distributing or randomizing the noise content over
the signal spectrum by multiplying the noisy signal by a random noise as Linear
Feedback Shift Register (LFSR). It could be performed on phase, amplitude and
approximation.

9.5.2.2. Linear Approximation

A linear approximation (LAP) methodology was proposed in [121], [134] for reduc-
ing spurious signal content for π/2 reduced size ROM NCO. Linear approximation
enhances the performance by 12 dBc per address bit-width k [121]. Hence, SFDR
= 12 × (k + s). The linear approximation function is given by (9.4) and is imple-
mented as shown in Fig. 9.9. Linear approximation provides 12 dB per bit [121],
instead of 6 dB for conventional architectures employing symmetry only. The
proposed NCO architecture is shown in Fig. 9.10 employing π/4 symmetry and
piece-wise linear approximation.

f(x) = f1 + f2 − f1

x2 − x1
(x − x1) (9.4)

157

9. Digital Front End

NOT
m

m
mm

m

f1

f2

f

r

m + r

SR
x − x1

Figure 9.9.: Piecewise linear approximation implementation.

ConvertPA
n k

r

3MSBs

CTRL

NOT

π/4 SIN

ROM

ROM

π/4 COS

Signal

LAP

LAP

(x − x1)

(x − x1)

(x − x1)

f1sin

f1cos

f2sin

f2cos

f ′
1sin

f ′
1cos

f ′
2cos

f ′
2sin

Figure 9.10.: Proposed quadrature NCO employing π/4 symmetry and linear approximation.

where
f1 : exact (current) ROM value
f2 : adjacent (next) ROM value
x : actual phase value (between x1 and x2)
x1 : phase value corresponding to f1
x2 : phase value corresponding to f2
x2 − x1: the difference in the x-component of the two points ((x1, f1) and

(x2, f2)) (constant value = 2(n−k−3))
x − x1 : difference of the actual phase value to the phase value of the point

(x1, f1)

9.5.3. Modeling and Analysis

ROM-based NCOs are already well addressed in literature. However, deriving the
optimal parameter settings is not. Although performance enhancement criteria
do exist, their combination and the evaluation of the overall performance do not.
Hence the abstract high-level model for ROM-based NCOs shown in Fig. 9.11 was
developed to speed up the design process, boost the design flexibility, evaluate op-
timal design parameters and improve the verification process by means of serving
as a reference model. Symmetry improves the performance of an NCO by 6 dBc
per s symmetry bit, which is uncorrelated to either dithering or approximation.

158

9.5. Numerical Controlled Oscillator

FCW

PA

CTRL

OC ROM ReC LAP

PD ADLD

n

s

n-s k
m-1

m
m

m

p a

r r

l

Figure 9.11.: ROM-based generic reference model.

Thus, it is not further considered. A comprehensive analysis for dithering and
approximation was performed and will be presented in the following. Although
the SystemC model was developed as a time loosely model, i.e., no inherent gate
delays are defined, the model was implemented as a synchronous system, i.e., the
clock is used as a reference for updating and/or transferring the data among model
components. Consequently, the run-time of the simulation process is considerably
fast while the results are quite accurate. Furthermore, being able to modify the
design parameters at the top-level improves the design flexibility in that multiple
design aspects can be handled.
The model merges various performance enhancement criteria, e.g., symmetry, dither-
ing and linear approximation. It is used to evaluate the possible performance boost
of NCOs using linear approximation which is not yet considered in literature.
The generic reference model for a quadrature ROM-based NCO shown in Fig. 9.11
was developed using Matlab and SystemC. The corresponding parameters are
summarized in Table 9.2. The model employs state-of-the-art methodologies for
improving the performance of an NCO, i.e., sinusoidal symmetry, phase dithering
(PD), approximation dithering (LD), amplitude dithering (AD) and piece-wise lin-
ear approximation (LAP). An NCO employing π/4 symmetry, i.e., s = 3, serves
as an illustrative example in the following analysis. Generally, symmetry improves
the performance of an NCO by 6 dBc per symmetry bit s, independent of whether
linear approximation or any dithering technique is applied. Moreover, the NCO
provides a quadrature output, thus improving the performance by 6 dBc for the
same parameter settings (excluding any other performance enhancement criteria).
Simulations were performed using a reference clock frequency fs = 390 MHz and
generated center frequencies within the range fc ∈ [1 − 48] MHz in steps of 3
MHz. These design specifications were chosen in accordance with the proposed
DFE. The performance is evaluated by means of the spurious-free dynamic range
(SFDR) [125].
Based on the derived model, the performance boost of NCOs using a LAP is
analyzed in the following which is not yet addressed in the literature. Subse-
quently, dithering techniques are applied in order to evaluate whether a further

159

9. Digital Front End

Table 9.2.: Design parameters
Parameter bit-width

a amplitude dithering
k ROM address
l approximation dithering

m ROM word-length
n phase accumulator
p phase dithering
r approximation

s

No symmetry 0
π symmetry 1
π/2 symmetry 2
π/4 symmetry 3

2 4 6 8 10 12 14 16
50

60

70

80

90

100

110
Symmetry
LAP

p [bits]

SF
D

R
[d

B
c]

(a)

2 4 6 8 10 12 14 16 18
20

20

30

40

50

60

70

80

90

100

110

r = 23
r = 9
r = 2

l [bits]

SF
D

R
[d

B
c]

(b)

Figure 9.12.: Effect of (a) phase dithering r = n − (k + s) (b) approximation dithering on
performance of the NCO at fs = 390 MHz, n = 32, s = 3, k = 6, m = 16, and
NFFT = 4096.

performance boost becomes possible. However, the model may also be used for
evaluating optimum parameter sets for classical architectures, i.e., without LAP
while applying any dither techniques. Since such results are readily made available
in the literature, the focus is on LAP architectures.

9.5.3.1. Dithering

Phase dithering whitens the spectrum of the synthesized signal while increasing
the noise floor [129], [131]. Thus, it improves the SFDR by 12 dBc while the
recommended PD bit-width is calculated by

p = (n − s) − k (9.5)

160

9.5. Numerical Controlled Oscillator

5 6 7 8

P
SD

[d
B

F
S/

bi
n]

f [Hz]

0

-50

-100

-150

-200
10101010

(a)

5 6 7 8

P
SD

[d
B

F
S/

bi
n]

f [Hz]

0

-50

-100

-150

-200
10101010

(b)

Figure 9.13.: Effect of (a) linear approximation (r = 9) without dithering (b) linear approxi-
mation with approximation dithering (r = 9, l = 1) at fs = 390 MHz, n = 32,
s = 3, k = 6, m = 16 and NFFT= 4096.

Increasing the PD bit-width, considering LAP, deteriorate the NCO performance,
as shown in Fig. 9.12.a. In other words, using LAP exclusively outperforms the
NCO performance without and/or with PD. Hence PD is not required with LAP.
Although the least significant phase bits are used within the approximation, dither-
ing does not reveal any improvement in the performance. Figure 9.12.b shows the
effect of the approximation dithering at different r bits. Reducing r and increasing
l deteriorate the performance. The effect of approximation dithering (LD) on the
performance of the NCO can be seen in Fig. 9.13.b. It is obvious that dithering
spreads the noise but increases the noise floor, consequently, reduces the SFDR.
The ROM word-length is increased to m + a instead of m when using amplitude
dithering (AD). This in consequence increases the hardware complexity and con-
sumes more power. Thus AD was not considered in the following system analysis.
In conclusion, using piece-wise linear approximation excludes the usage of dithering
(phase, approximation and amplitude). Further, the excessive increase of approxi-
mation bit-width increases the complexity versus insignificant improvement in the
performance.

9.5.3.2. Linear Approximation

Linear approximation enhances the performance by 12 dBc per address bit-width
k [121]. Hence, SFDR = 12 × (k + s). Although this formula is true, it is not
absolute valid for any range of k. The proceeding simulations and analysis reveal
bounding constraints to achieve the desired SFDR performance.
Figure 9.14.a shows a linear improvement in the performance with respect to the
address bit-width k up to a certain address bit-width value, as marked by the circle.
The approximation bit-width was set to r = n − (k + s) which is the maximum
allowed r, i.e., the remaining bits after truncating the s and k bits. Figure 9.14.c

161

9. Digital Front End

50

60

70

80

90

100

110

120

130

140

2 4 6 8 10 12 14 16 18 20

m=10
m=12
m=16

SF
D

R
[d

B
c]

k [bits]

�

�

�

(a)

1

50

60

70

80

90

100

110

120

130

140

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.1 1.2 1.3

m=10
m=12
m=16

SF
D

R
[d

B
c]

(k + s)/m

(b)

50

60

70

80

90

100

110

120

130

140

2 4 6 8 10 12 14 16 18 20

k=4
k=6
k=8

SF
D

R
[d

B
c]

m [bits]

�

�

�

(c)

1

50

60

70

80

90

100

110

120

130

140

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.1 1.2 1.3

k=4
k=6
k=8

SF
D

R
[d

B
c]

(k + s)/m

(d)

50

60

70

80

90

100

110

120

130

140

2 4 6 8 10 12 14 16 18 20

k=4
k=6
k=8

SF
D

R
[d

B
c]

r [bits]

�

�

(e)

1

50

60

70

80

90

100

110

120

130

140

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.1 1.2 1.3

k=4
k=6
k=8

SF
D

R
[d

B
c]

r/(k + s)

(f)

Figure 9.14.: System performance relative to (a) ROM address bit-width k (b) (k + s)/m
sweeping k (c) resolution (d) (k + s)/m sweeping m (e) approximation bit-width
(f) r/(k + s) at fs = 390 MHz, n = 32, s = 3, and NFFT = 4096.

162

9.5. Numerical Controlled Oscillator

shows an improvement in the performance with respect to the ROM word-length
m up to a certain resolution bit-width, with the approximation bit-width again set
to r = n − (k + s). Figure 9.14.e shows an improvement in the performance with
respect to the approximation bit-width r up to a certain approximation bit-width
value (at m = 16). It should be noted that at k = 8, rmin does not follow the
same criterion as for k = 4 or k = 6. The preceding simulation results show that
increasing the design parameters does not enhance the performance necessarily.
Thus, the design parameters should be within a certain range to accomplish the
expected performance improvement.
Figure 9.14.b (at k = 4, 6) show that SFDR= 6 (k + s) + 6r since r < (k + s).
Hence, the performance depends on k, s, and r. Further, SFDR= 12 (k + s) pro-
vided that (k + s) /m ≤ 0.6 and r ≥ (k + s). In order to correlate the design
parameters and evaluate their effect on the NCO performance in more detail, the
SFDR was plotted relative to the ratios (k + s)/m and r/(k + s) as shown in
Fig. 9.14.(b,d,f), respectively.
The derived simulations reveal that no further performance boost of the SFDR is
to be expected while increasing k, m or r randomly. Nonetheless, the proposed
bounds should be considered for high performance and low complexity NCOs.

SFDR ≈ 12 (k + s) ⇐⇒⇐⇒⇐⇒ k + s

m
≤ 0.6 ∧∧∧ r ≥ k + s, (9.6)

SFDR ≈ 6 (k + s) + 6r ⇐⇒⇐⇒⇐⇒ k + s

m
≤ 0.6 ∧∧∧ r < k + s. (9.7)

9.5.4. Proposed Design Scheme

The SFDR characteristic is illustrated in Fig. 9.15.a for various values of m and k.
It should be noted that, these SFDR curves represent the cross sections indicated
by the dashed lines in Fig. 9.15.b.
The major outcome of the simulation results is, however, that the values of k, m
and r can be minimized according to 9.9- 9.10

kmin = �SFDR
12

� − s, (9.8)

mmin = �kmin + s

0.6
�, (9.9)

rmin = kmin + s, (9.10)

if-and-only-if

k + s

m
≤ 0.6, (9.11)

r ≥ k + s. (9.12)

163

9. Digital Front End

m [bits]

k
[b

its
]

2

4

4

6

6

8

8

10

10

12

12

14

14

16

16

18

18

20

20
40

50

60

70

80

90

100

110

120

130

140

(a)

0
5

10
15

20

0

5

10

15

20
0

50

100

150

m [bits]k [bits]

SF
D

R
[d

B
c]

(b)

Figure 9.15.: Mean value of the SFDR (a) surface plot (b) contour plot (simulation settings:
n = 32, s = 3,fs = 390 MHz, fc swept from 1 MHz to 48 MHz in steps of 3
MHz).

164

9.6. Decimation Filters

Table 9.3.: NCO design specifications.
Parameter Value

fs 390 MHz
fc 87.1 MHz

SFDR 80 dB
SNR 72 dB

Table 9.4.: NCO Design parameters.
π/2 π/4 π/4+LAP

n 20 16 16
k 10 10 4
m 12 12 12
r – – 6

9.5.5. Power Analysis

Precise power simulation and analysis were carried out for three NCO architectures.
The first architecture is employing quarter symmetry and denoted by π/2 NCO.
The second architecture is employing the one-eighth symmetry and denoted by
π/4 NCO. The third and last architecture is employing the one-eighth symmetry
as well as linear approximation, as shown in Fig. 9.10, and denoted by π/4+LAP.
The power simulations have been accomplished using Synopsys PrimeTime PX
as a power compiler and Cadence SimVision as an event driven simulator. The
bit-level switching activity has been dumped into VCD file for accurate power
simulation. The π/4 and π/4+LAP NCO architectures were modeled in a generic
structural VHDL. Whereas, the π/2 NCO was imported from [127]. The NCO de-
sign specification is given in Table 9.3. The NCO implementation parameters are
given in Table 9.4 for the three architectures. The π/2 NCO requires larger phase
accumulator bit-width to sustain the same signal quality defined by the design
specifications for the signal-to-noise ratio (SNR) and the spurious-free dynamic
range (SFDR). The power analysis reveals a 60% reduction in power consump-
tion by the proposed π/4+LAP NCO architecture compared to the conventional
π/4 NCO. In addition to 50% reduction in power consumption compared to the
conventional π/2 NCO, as exhibited in Fig. 9.16.

9.6. Decimation Filters

The decimator has to downsample the signal by an overall factor of 975. It is
more efficient to implement the sample rate reduction in a series of decimation
filter stages than using a single decimation stage [120]. The decimation filter stage
topology has been designed and optimized using the MSD-toolbox, presented in
chapter 7. The MSD-toolbox optimizes the number of decimation stages, the
decimation factor at each stage, and the filter coefficients. The resulting filter uses
a 4-stage topology with decimation factors of [15, 13, 5, 2] respectively. A minimum
number of coefficients are used and the coefficients are represented in power-of-two
format where possible. In the BPΣΔM the decimation is achieved by a combined
factor of 2×OSR because of both real and imaginary (complex) channels [119].
Therefore, the decimation factor is defined by 1950 (2×OSR). Due to the high

165

9. Digital Front End

0

5

10

15

20

25

P
ow

er
[m

W
]

π/2 π/2+LAP π/4 π/4+LAP

Figure 9.16.: Total power consumption in NCO architectures for fs = 390 MHz, fc = 78.1
MHz, m = 12, k = 10, n = 20 for π/2 NCO and n = 16 for π/4 NCO.

input sampling frequency, a CIC filter stage is used for the first decimation stage
whereas the following stages are realized as polyphase decimators.

9.6.1. CIC Decimation Filter

Cascaded integrator-comb (CIC) filters have been used as a power efficient dec-
imation filter especially for high sampling frequencies because of the absence of
multipliers and the high stop band attenuation [105]. Detailed analysis of CIC
filter and its compensation filter is given in subsections 7.2.3.3 and 7.7.3.
The decimation factor of the CIC filter needs to be chosen carefully to keep the
effort (signal attenuation and compensation) for this filter reasonable. As the pass
band edge gets closer to the null, the CIC filter attenuates more and the compen-
sation filter needs to provide more correction. Since the passband (fpb) has to be
at 10.4 MHz (52×200 kHz) and the nulls of the CIC filter are located at multiples
of f =1/M, with M the decimation factor. Therefore, the decimation factor has to
be small in order to have a low order correction filter. With a decimation factor
of 5, the first null is located at fs/5 = 78 MHz. Therefore, the specifications for
the sine-based correction filter are relaxed with an order of 11-taps. However, for
a decimation factor of 15 the first CIC null will be located at fs/15 = 26 MHz.
It would require a sine-based correction filter with an order of 31-taps. Despite
the higher order correction (3 times higher), there is still a 4-dB loss in the signal
peak power, shown between the arrows in Fig. 9.17. The design choice was thus to
implement a 5-stage CIC filter with a decimation factor of 5 and an 11-taps FIR
correction filter for this stage.

166

9.6. Decimation Filters

0 1 2 3 4 5 6 7

x 10
7

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

CIC M = 5
PSD M = 5
CIC M = 15
PSD M = 15

f [Hz]

P
SD

[d
B

]

Figure 9.17.: CIC filter and decimation factor effect on intermediate response.

9.6.2. FIR Polyphase Decimation Filter

The remaining three filter stages are implemented as polyphase filters [91]. The
polyphase decomposition offers significant savings in the computation and hard-
ware effort compared to conventional structures. This is because of the fact that
the (implicit) decimation takes place before the low-pass filtering in polyphase
structures [91]. The design details are presented in Fig. 9.18, where N is the filter
order, Q is the quantization bit-width of the filter coefficients, and M is the dec-
imation factor. PPD refers to polyphase decimation and HB refers to half-band.
As usual, the correction filter is placed at the end of the signal path as shown in

CIC

CIC

PPDPPD

PPDPPD

HB-PPD

HB-PPD
N=5

N=5

N=66

N=66

N=31

N=31

N=17

N=17

N=11

N=11

Q=12

Q=12

Q=10

Q=10

Q=8

Q=8

Q=8

Q=8

M=5

M=5

M=15

M=15

M=13

M=13

M=2

M=2

Correc-

Correc-

tion

tion

390 MHz 78 MHz 5.2 MHz 0.4 MHz 0.2 MHz

1

1

1

1

2

2

2

10

12

12

12

14

16

16

(a)

(b)

Figure 9.18.: Detailed design (a) proposed (b) conventional.

Fig. 9.18.b by the conventional DFE. However, this is not possible for the proposed
DFE as the signal of interest is at the IF range before mixing to the baseband.
So, the correction filter is placed just after the CIC filter as shown in Fig. 9.18.a.

167

9. Digital Front End

0 50 100 150

−100

−50

0

0 10 20 30

−100

−50

0

0 1000 2000
−80

−60

−40

−20

0

0 50 100 150 200
−80

−60

−40

−20

0

CIC Stage 1st PPD Stage

2nd PPD Stage 3rd PPD Stage

M
ag

ni
tu

de
[d

B
]

M
ag

ni
tu

de
[d

B
]

M
ag

ni
tu

de
[d

B
]

M
ag

ni
tu

de
[d

B
]

f [MHz]f [MHz]

f [kHz]f [kHz]

CIC

Corr.

CIC+Corr.

Figure 9.19.: Decimation filters frequency responses.

The individual frequency responses of the four stage decimation filters are shown
in Fig. 9.19.

9.7. Power Simulation and Analysis

The conventional as well as the proposed DFE architectures have been imple-
mented using the VHDL IPs described in chapter 4 using the design procedure
and toolchain presented in the same chapter as well. The design specifications
are shown in Table 9.5. Table 9.6 summarizes the total power consumption and
the power consumption distribution in the conventional and the proposed archi-
tectures involving both the π/2 as well as π/4+LAP. A remarkable reduction in
power consumption of about 50% has been achieved by the proposed architecture
employing the π/2 NCO and about 60% employing the π/4+LAP NCO compared
to the conventional architecture.
It has to be noted that, part of this work were published in [4] involving the
π/2 NCO architecture. Therefore, the following discussion compares the proposed
DFE employing the π/4+LAP NCO implementation.
The proposed architecture shows 95% savings in the power consumption in the

168

9.7. Power Simulation and Analysis

Table 9.5.: Design Specifications

Parameter Value
Sampling frequency fs 390 MHz

Oversampling ratio OSR 1950
Bandwidth fB 100 kHz

Decimation stages K 4
Decimation factors M [5 15 13 2]

Decimation filter orders N [5 66 31 17]
Quantization bit-width Q [- 12 10 8]

NCO LUT size 24×12
Output resolution 16-bit

Table 9.6.: Power Simulation Results

Conventional - mW Proposed (π/2) - mW Proposed (π/4) - mW
NCO 15.9 2.69 0.89
Mixer 0.19 2.5[CM]+0.02[QM] 2.5[CM]+0.02[QM]
CIC 2.77 2.15 2.14
Correction 0.705 0.008 0.007
PPD 0.62 1.96 1.97
Total 19.52 10.12 8.32

NCO which is due to the fact that the NCO runs at 78 MHz in the proposed design
rather than 390 MHz. In addition, the reduction in the NCO ROM size by employ-
ing the linear approximation. Furthermore, the phase accumulator wordlength n is
14-bit rather than 24-bit. This is due to the fact that practical limitations restrict
the maximum NCO output frequency to about 0.33 of the clock frequency [123]
whereas Tierney has considered frequencies up to 0.25 of the clock frequency [135].
The longer word length of the phase accumulator n within the conventional ar-
chitecture is necessary because the phase ratio 0.278 fc/fs = 107.9/390 is higher
than 0.25, since otherwise a lot of spurs are caused in the signal spectrum [135].
The power consumption of some blocks in the proposed architecture is increased
compared to the conventional one, especially for the PPD and the mixer. This is
due to the considerably larger word length as depicted in Fig. 9.18. The complex
mixer output word length is truncated to 14-bit as shown in Fig. 9.18.a, though
preserving the same in-band noise (IBN) level. Nonetheless, the proposed architec-
ture offers a reduction in the total power consumption of about 60%, as the NCO
is the dominant source of power consumption in both designs.

169

9. Digital Front End

9.8. Summary

An advantageous implementation of a power efficient narrow-band tunable digital-
front-end for digital FM radio receivers employing continuous time bandpass sigma
delta modulators was presented in this chapter. About 60% reduction in power
dissipation has been achieved by the proposed architecture.
The proposed digital-front-end considers splitting the digital mixer up to two mix-
ers, a quadrature and a complex mixer. Moreover, one of the decimation stages is
transposed between the two mixers with an appropriate decimation factor. Con-
sequently, the reference clock of the numerically controlled oscillator is reduced in
addition to the phase accumulator bit-width. Furthermore, a linear approxima-
tion criterion was integrated into a quadrature numerically controlled oscillator
employing π/4 symmetry was proposed. The proposed numerically controlled os-
cillator achieved more than 50% reduction in power consumption compared to the
conventional architecture.

170

10. Conclusion and Outlook

This dissertation has presented novel power optimization methodologies for digi-
tal FIR filters at the system level (algorithmic and architectural) and RTL level.
Contributions of this dissertation can be seen in the three different aspects (a)
computation time, (b) encoding scheme (c) block rearrangement.

Computation time - The computation time consumed by systematic/heuristic
solvers for the filter optimization problem has been reduced remarkably, up to a
factor of 400, compared to the state-of-the-art algorithm, by an extensive reliable
pre-processing analysis on filter coefficients. The proposed algorithm together with
the developed heuristic solver contributes to both the speed and the efficiency of
the optimization process. The improvement of the computation time is due to:

• Bounding the search space for candidates for each coefficient by upper and
lower bound.

• Introducing two states during computation, the No-Change and the Break-
Off states, in order to terminate the computation at a certain condition.

• Monotonous incremental steps for candidates for each coefficient.

• Presorted coefficient sets according to several allocation schemes.

In addition, the improvement of the optimization results is due to:

• Multiple optimization iterations which mimic the backward and forward be-
havior of the tree structure of the conventional approach.

• Increasing the stopband attenuation by 3-dB in the initial (unoptimized)
filter provides further flexibility in the optimization constraints.

• Unconstrained number of non-zero terms for candidates.

Encoding scheme - The number of full-adders used within the constant multi-
plier has been reduced considerably compared to the state-of-the-art scheme for
binary and CSD representations. This reduction is due to an efficient encoding
scheme for the internal shift-and-add operations within the constant multiplier
which employs nested multiplication.

171

10. Conclusion and Outlook

Block rearrangement - A power aware scheme has been developed to facilitate
the combination of direct-form and transposed-form filter topologies within a multi-
stage decimation filter according to the decimation factor, filter order, and input
bit-width in a specific stage. It revealed that direct-form is recommended for
small input bit-width stages. The combination of different topologies reduces the
power dissipation in the decimation filter by approximately 15% compared to the
conventional architecture.

Application - The proposed and developed power optimization methodologies
in this dissertation have been combined to emphasize their contribution in the
reduction of dissipated power for an FM digital radio receiver. A remarkable
reduction in power dissipation by 60% compared to the conventional architecture
for the digital front end has been achieved due to splitting the mixing stage to
quadrature and complex mixers, in addition to placing a decimation stage between
the two mixers. Further, a power optimized numerical controlled oscillator was
designed and implemented for this application employing one-eighth symmetry
and piecewise linear approximation.

172

Figure 10.1.: I2MR decimation filter die-photo.

Outlook

The power optimization methodologies proposed and developed in this work will
be of a distinct value for taping-out an ASIC for a Sigma Delta ADC. A magnetic
field sensor combing a feedback gyroscope Sigma Delta is one of many applications
which integrates a digital FIR decimation filter. An initial attempt for taping-out
a gyroscope sensor is carrying on. The design specification is given in Table 10.1.
The design is fabricated using the CMOS XFab 0.35μm high density and low
threshold technology node. The die-photo is shown in Fig.10.1. The implementa-
tion parameters determined using the MSD toolbox are presented in Table 10.2.
The preliminary results without inserting IO PADs is shown in Table 10.3.

Table 10.1.: Design Specs.
Parameter Value
fs 2 MHz
OSR 50
Wi 5-bit

173

10. Conclusion and Outlook

Table 10.2.: Design Parameters Evaluated using MSD-toolbox.
Parameter Value
k 3
M [5,5,2]
Wo 16-bit
N [38,57,19]
Q [16,16,10]
Topology TF PPD

Table 10.3.: Place-and-route Implementation Results.
Conventional Proposed

Power [mW] 5 0.9
Area [mm2] 4.0 2.5
SNR [dB] 78 78

174

Bibliography

[1] A. Shahein, M. Becker, N. Lotze, M. Ortmanns, and Y. Manoli, “Optimized
Scheme for Power-of-two Coefficient Approximation for Low Power Decima-
tion Filters in Sigma Delta ADCs,” in Proc. IEEE Midwest Symposium on
Circuits and Systems (MWSCAS’08), Aug. 2008, pp. 787–790.

[2] A. Shahein, Q. Zhang, N. Lotze, and Y. Manoli, “A Novel Hybrid Monotonic
Local Search Algorithm for FIR Filter Coefficients Optimization,” IEEE
Transactions on Circuits and Systems—Part I: Regular Papers, vol. 59, no. 3,
pp. 616–627, Mar. 2012.

[3] A. Shahein, M. Becker, N. Lotze, and Y. Manoli, “Power Aware Combination
of Transposed-form and Direct-form FIR Ppolyphase Decimators for Sigma-
Delta ADCs,” in Proc. IEEE International Midwest Symposium on Circuits
and Systems (MWSCAS’09), Aug. 2009, pp. 607–610.

[4] A. Shahein, M. Afifi, M. Becker, N. Lotze, and Y. Manoli, “A Power-Efficient
Tunable Narrow-Band Digital Front End for Bandpass Sigma-Delta ADCs
in Digital FM Receivers,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 57, no. 11, pp. 883–887, Nov. 2010.

[5] R. Schreier and G. Temes, Understanding Delta-Sigma Data Converters.
IEEE press Piscataway, NJ, 2005.

[6] F. Medeiro, A. Pérez-Verdú, and A. Rodríguez-Vázquez, Top-down Design of
High-Performance Sigma-Delta Modulators. Kluwer Academic Pub, 1999.

[7] S. Norsworthy, R. Schreier, G. Temes et al., Delta-Sigma Data Converters:
Theory, Design, and Simulation. IEEE press New York, 1997.

[8] C. Quintans, A. Colmenar, M. Castro, M. Moure, and E. Mandado, “A
Methodology to Teach Advanced A/D Converters, Combining Digital Sig-
nal Processing and Microelectronics Perspectives,” IEEE Transactions on
Education, vol. 53, no. 3, pp. 471–483, 2010.

[9] B. Murmann and B. Boser, Digitally Assisted Pipeline ADCs: Theory and
Implementation. Springer Netherlands, 2004.

[10] B. Razavi and R. Behzad, RF Microelectronics. Prentice Hall Upper Saddle
River, NJ, 1998.

175

Bibliography

[11] G. Temes, “Micropower Data Converters: a Tutorial,” IEEE Transactions on
Circuits and Systems—Part II: Analog and Digital Signal Processing, vol. 57,
no. 6, pp. 405–410, 2010.

[12] B. Brannon, “Understanding State of the Art in ADCs,” RF design magazine,
pp. 30–34, May 2008.

[13] B. Murmann. ADC Performance Survey 1997-2010. [Online]. Available:
http://www.stanford.edu/~murmann/adcsurvey.htm

[14] T. Leslie and B. Singh, “An Improved Sigma-Delta Modulator Architec-
ture,” in Proc. IEEE International Symposium on Circuits and Systems (IS-
CAS’90), 1990, pp. 372–375.

[15] A. Marques, V. Peluso, M. Steyaert, and W. Sansen, “Optimal Parame-
ters for ΔΣ Modulator Topologies,” IEEE Transactions on Circuits and
Systems—Part II: Express Briefs, vol. 45, no. 9, pp. 1232–1241, 2002.

[16] M. Keller, “Systematic Approach to the Synthesis of Continuous-Time Multi-
stage Noise-Shaping Delta-Sigma Modulators,” Ph.D. dissertation, Univ. of
Freiburg, Freiburg, Feb. 2010.

[17] T. Xu and M. Condon, “Comparative study of the MASH digital delta-sigma
modulators,” in Research in Microelectronics and Electronics (PRIME’09),
Jul. 2009, pp. 196–199.

[18] J. Jarvinen and K. Halonen, “A 1.2 V Dual-Mode GSM/WCDMA ΣΔ Mod-
ulator in 65nm CMOS,” in Proc. IEEE International Solid-State Circuits
Conference (ISSCC’2006), 2006, pp. 1972–1981.

[19] A. Buhmann, M. Keller, M. Maurer, M. Ortmanns, and Y. Manoli, “DISCO -
A Toolbox for the Discrete-time Simulation of Continuous-Time Sigma-Delta
Modulators using MATLAB,” in Proc. Midwest Symposium on Circuits and
Systems (MWSCAS’07), Aug. 2007, pp. 1082–1085.

[20] L. Breems and J. Huijsing, Continuous-Time Sigma-Delta Modulation for
A/D Conversion in Radio Receivers. Springer Netherlands, 2001.

[21] L. Samid, “The Design of Low Power and Low Voltage Continuous Time
ΣΔ Modulators with Single Bit and Multibit Quantizer,” Ph.D. dissertation,
Univ. of Freiburg, Freiburg, Jan. 2004.

[22] P. Aziz, H. Sorensen, and J. Van Der Spiegel, “An Overview of Sigma-Delta
Converters,” IEEE Signal Processing Magazine, vol. 13, no. 1, pp. 61–84,
1996.

[23] Y. Le Guillou, “Analyzing Sigma-Delta ADCs in Deep-submicron CMOS
Technologies,” RF Design Magazine, pp. 18–26, 2005.

176

http://www.stanford.edu/~murmann/adcsurvey.htm

Bibliography

[24] R. Shively, “On Multistage Finite Impulse Response (FIR) Filters with Dec-
imation,” IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 23, no. 4, pp. 353–357, Aug. 1975.

[25] J. S. Lim and A. V. Oppenheim, Advanced Topics in Signal Processing. Up-
per Saddle River, NJ, USA: Prentice-Hall, Inc., 1988.

[26] P. Vaidyanathan, Multirate Systems and Filter Banks. Englewood Cliffs,
NJ, USA: Prentice-Hall, 1993.

[27] M. José, B. Pérez-Verdú, and A. Rodríguez-Vázquez, Systematic Design of
CMOS Switched-current Bandpass Sigma-Delta Modulators for Digital Com-
munication Chips. Springer Netherlands, 2002.

[28] R. Crochiere and L. Rabiner, “Optimum FIR Digital Filter Implementations
for Decimation, Interpolation, and Narrow-band Filtering,” IEEE Transac-
tions on Acoustics, Speech, and Signal Processing, vol. 23, no. 5, pp. 444–456,
1975.

[29] Crochiere, R.E. and Rabiner, L.R., Multirate Digital Signal Processing.
Prentice-Hall Englewood Cliffs, NJ, 1983.

[30] M. Willmott, “Advanced Digital Physical Implementation Flow,” Workshop,
iDESA, Saloniki, Greece, Feb. 2008.

[31] “System-level Design and Chip Architecture for Low-Power ICs,” Techtorial
& Workshop, Cadence, Feldkirchen, Germany, Oct. 2009.

[32] S. Henzler, Power Management of Digital Circuits in Deep sub-micron
CMOS Technologies. Springer Verlag, 2007.

[33] PrimePower Manual, Synopsys, Inc., 2006, version Y-2006.06.

[34] Low Power in Encounter RTL Compiler, Cadence, Inc., 2006, version 6.1.2.

[35] E. Macii, L. Bolzani, A. Calimera, A. Macii, and M. Poncino, “Integrating
Clock Gating and Power Gating for Combined Dynamic and Leakage Power
Optimization in Digital CMOS Circuits,” in Proc. Conference on Digital
System Design Architectures, Methods and Tools (DSD’08), Sept. 2008, pp.
298–303.

[36] T. Kuroda, “Optimization and Control of VDD and VTH for Low-power,
High-speed CMOS Design,” in Proc. IEEE International Conference on
Computer Aided Design (ICCAD’02), Nov. 2002, pp. 28–34.

[37] A. Chandrakasan and R. Brodersen, Low-power CMOS Design. IEEE press,
1998.

[38] S. Jayapal, “Robust Energy Efficient Design for Ultra-Low Voltage CMOS
VLSI,” Ph.D. dissertation, Univ. of Freiburg, Freiburg, Jul. 2009.

177

Bibliography

[39] “Expanding the Synopsys PrimeTime Solution with Power Analysis,” White
Paper, Synopsys, Inc., 2006.

[40] O. Gustafsson, H. Johansson, and L. Wanhammar, “An MILP Approach for
the Design of Linear-phase FIR Filters with Minimum Number of Signed-
power-of-two Terms,” in Proc. European Conf. Circuit Theory Design, Espoo,
Finland, 28-31 2001.

[41] H. Baher, Analog and Digital Signal Processing. Chichester, England: John
Wiley and Sons Ltd., 2001.

[42] R. Mehboob, S. Khan, and R. Qamar, “FIR Filter Design Methodology
for Hardware Optimized Implementation,” IEEE Transactions on Consumer
Electronics, vol. 55, no. 3, pp. 1669 –1673, august 2009.

[43] B. Widrow and I. Kollár, Quantization Noise: Roundoff Error in Digi-
tal Computation, Signal Processing, Control, and Communications . Cam-
bridge, UK: Cambridge University Press, 2008. [Online]. Available: http://
www.mit.bme.hu/books/quantization/

[44] T. Ciloglu, “Normalized Peak Ripple Magnitude as an Objective Function in
Discrete Coefficient FIR Filter Design,” in Proc. IEEE Midwest Symposium
on Circuits and Systems (MWSCAS’01), vol. 1, 2001, pp. 122 –125.

[45] R. Yates. (2007) Practical Considerations in Fixed-point FIR Filter Imple-
mentations. Internet draft. [Online]. Available: http://www.digitalsignallabs.
com/fir.pdf

[46] Z. G. Feng and K. L. Teo, “A Discrete Filled Function Method for the Design
of FIR Filters With Signed-Powers-of-Two Coefficients,” IEEE Transactions
on Signal Processing, vol. 56, no. 1, pp. 134–139, Jan. 2008.

[47] Z. Ye and C.-H. Chang, “Local Search Method for FIR Filter Coefficients
Synthesis,” in Proc. IEEE International Workshop on Electronic Design,
Test and Applications (DELTA’04), 28-30 2004, pp. 255 – 260.

[48] N. Takahashi and K. Suyama, “Design of CSD coefficient FIR Filters based
on Branch and Bound Method,” in Proc. International Symposium on Com-
munications and Information Technologies (ISCIT’10), Oct. 2010, pp. 575–
578.

[49] L. Aksoy, E. da Costa, P. Flores, and J. Monteiro, “Exact and Approxi-
mate Algorithms for the Optimization of Area and Delay in Multiple Con-
stant Multiplications,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 27, no. 6, pp. 1013–1026, Jun 2008.

[50] L. Aksoy, E. O. Gunes, E. Costa, P. Flores, and J. Monteiro, “Effect of Num-
ber Representation on the Achievable Minimum Number of Operations in
Multiple Constant Multiplications,” in IEEE Workshop on Signal Process-
ing Systems, Oct. 2007, pp. 424–429.

178

http://www.mit.bme.hu/books/quantization/
http://www.mit.bme.hu/books/quantization/
http://www.digitalsignallabs.com/fir.pdf
http://www.digitalsignallabs.com/fir.pdf

Bibliography

[51] M. Imran, K. Khursheed, M. O’Nils, and O. Gustafsson, “On the Number
Representation in Sub-expression Sharing,” in International Conference on
Signals and Electronic Systems (ICSES’10), Sept. 2010, pp. 17–20.

[52] V. Rosa, E. Costa, and S. Bampi, “A VHDL Generation Tool for Optimized
Parallel FIR Filters,” in Proc. International Conference on Very Large Scale
Integration (IFIP’06), Oct. 2006, pp. 134–139.

[53] R. Mahesh and A. Vinod, “A New Common Subexpression Elimination Al-
gorithm for Realizing Low-Complexity Higher Order Digital Filters,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 27, no. 2, pp. 217–229, Feb. 2008.

[54] C.-H. Chang and M. Faust, “On "A New Common Subexpression Elimina-
tion Algorithm for Realizing Low-Complexity Higher Order Digital Filters",”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 29, no. 5, pp. 844–848, May 2010.

[55] M. Faust and C.-H. Chang, “Minimal Logic Depth Adder Tree Optimization
for Multiple Constant Multiplication,” in Proc. IEEE International Sympo-
sium on Circuits and Systems (ISCAS’10), June 2010, pp. 457–460.

[56] C. Koc and S. Johnson, “Multiplication of Signed-digit Numbers,” Electron-
ics Letters, vol. 30, no. 11, pp. 840–841, May 1994.

[57] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implemen-
tation. John Wiley and Sons Ltd., 1999.

[58] M. Faust, O. Gustafsson, and C.-H. Chang, “Fast and VLSI Efficient Binary-
to-CSD Encoder using Bypass Signal,” Electronics Letters, vol. 47, no. 1, pp.
18–20, Jun. 2011.

[59] I.-C. Park and H.-J. Kang, “Digital Filter Synthesis based on Minimal Signed
Digit Representation,” in Proc. Design Automation Conference, 2001, pp.
468–473.

[60] J. Yli-Kaakinen and T. Saramaki, “A Systematic Algorithm for the Design
of Multiplierless FIR Filters,” in Proc. IEEE International Symposium on
Circuits and Systems (ISCAS’01), vol. 2, May 2001, pp. 185–188.

[61] C.-Y. Yao and C.-L. Sha, “Fixed-point FIR Filter Design and Implementa-
tion in the Expanding Subexpression Space,” in Proc. IEEE International
Symposium on Circuits and Systems (ISCAS’10), Jun. 2010, pp. 185–188.

[62] T. Fujie, R. Ito, K. Suyama, and R. Hirabayashi, “A New Heuristic Signed-
power of two term Allocation Approach for Designing of FIR Filters,” in
Proc. IEEE International Symposium on Circuits and Systems (ISCAS’03),
vol. 4, May 2003, pp. IV–285–IV–288.

179

Bibliography

[63] Y.-C. Lim, R. Yang, D. Li, and J. Song, “Signed Power-of-two (SPT) term
Allocation Scheme for the Design of Digital Filters,” in Proc. IEEE Inter-
national Symposium on Circuits and Systems (ISCAS’98), vol. 5, 1998, pp.
359–362.

[64] S. Takriti, “AMPL: A Modeling Language for Mathematical Programming,”
pp. 144–146, 1994.

[65] M. Aktan, A. Yurdakul, and G. Dundar, “An Algorithm for the Design of
Low-Power Hardware-Efficient FIR Filters,” IEEE Transactions on Circuits
and Systems—Part I: Regular Papers, vol. 55, no. 6, pp. 1536–1545, Jul.
2008.

[66] Y. Lim, “Design of Discrete-coefficient-value Linear Phase FIR Filters with
Optimum Normalized Peak Ripple Magnitude,” IEEE Transactions on Cir-
cuits and Systems, vol. 37, no. 12, pp. 1480–1486, Dec. 1990.

[67] H. Q. Ta and T. Le-Nhat, “Design of FIR Filter with Discrete Coefficients
based on Mixed Integer Linear Programming,” in Proc. International Con-
ference on Signal Processing (9th ICSP’08), 26-29 2008, pp. 9 –12.

[68] W.-S. Lu and T. Hinamoto, “Design of FIR Filters with Discrete Coefficients
via Polynomial Programming: Towards the Global Solution,” in Proc. IEEE
International Symposium on Circuits and Systems (ISCAS’07), 27-30 2007,
pp. 2048 –2051.

[69] W.-S. Lu, “Design of FIR Filters with Discrete Coefficients: a Semidefinite
Programming Relaxation Approach,” in Proc. IEEE International Sympo-
sium on Circuits and Systems (ISCAS’01), vol. 2, 6-9 2001, pp. 297–300.

[70] Y. J. Yu and Y. C. Lim, “Design of Linear Phase FIR Filters in Subexpression
Space Using Mixed Integer Linear Programming,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 54, no. 10, pp. 2330–2338, Oct.
2007.

[71] F. Xu, C. H. Chang, and C. C. Jong, “Design of Low-Complexity FIR Filters
Based on Signed-Powers-of-Two Coefficients With Reusable Common Subex-
pressions,” IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 26, no. 10, pp. 1898–1907, Oct. 2007.

[72] C.-L. Chen and J. Willson, A.N., “A Trellis Search Algorithm for the De-
sign of FIR Filters with Signed-powers-of-two Coefficients,” IEEE Transac-
tions on Circuits and Systems—Part II: Analog and Digital Signal Processing,
vol. 46, no. 1, pp. 29–39, Jan. 1999.

[73] Y. Lim and S. Parker, “Discrete Coefficient FIR Digital Filter Design based
upon an LMS Criteria,” IEEE Transactions on Circuits and Systems, vol. 30,
no. 10, pp. 723–739, Oct 1983.

180

Bibliography

[74] H. Samueli, “An Improved Search Algorithm for the Design of Multiplierless
FIR Filters with Powers-of-two Coefficients,” Circuits and Systems, IEEE
Transactions on, vol. 36, no. 7, pp. 1044–1047, Jul 1989.

[75] W. S. Lu, “Design of FIR Digital Filters with Discrete Coefficients via Con-
vex Relaxation,” in Proc. IEEE International Symposium on Circuits and
Systems (ISCAS’05), vol. 2, 23-26 2005, pp. 1831 – 1834.

[76] J. Löfberg, “ YALMIP : A Toolbox for Modeling and Optimization in
MATLAB ,” in Proceedings of the CACSD Conference, Taipei, Taiwan,
2004. [Online]. Available: http://users.isy.liu.se/johanl/yalmip

[77] Y. Labit, D. Peaucelle, and D. Henrion, “SeDuMi interface 1.02: a tool for
solving LMI problems with SeDuMi,” in Proc. IEEE International Sympo-
sium on Computer Aided Control System Design, 2002, pp. 272–277.

[78] D. Henrion and J. Lasserre, “GloptiPoly: Global optimization over polyno-
mials with Matlab and SeDuMi,” in Proc. IEEE Conference on Decision and
Control, vol. 1, 2001, pp. 747–752.

[79] FIRsuite, “Suite of constant coefficient FIR filters,” 2010. [Online]. Available:
http://www.firsuite.net

[80] D. Li, J. Song, and Y. C. Lim, “A Polynomial-time Algorithm For Designing
Digital Filters With Power-of-two Coefficients,” in Proc. IEEE International
Symposium on Circuits and Systems (ISCAS’93), 1993, pp. 84–87.

[81] D. Shi and Y. J. Yu, “Design of Linear Phase FIR Filters With High Prob-
ability of Achieving Minimum Number of Adders,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 58, no. 1, pp. 126–136, Jan.
2011.

[82] A. Vinod and E.-K. Lai, “An Efficient Coefficient-partitioning Algorithm for
Realizing Low-complexity Digital Filters,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 24, no. 12, pp. 1936–
1946, Dec. 2005.

[83] R. Hartley, “Subexpression Sharing in Filters using Canonic Signed Digit
Multipliers,” IEEE Transactions on Circuits and Systems II: Analog and
Digital Signal Processing, vol. 43, no. 10, pp. 677–688, Oct. 1996.

[84] K. Kato, Y. Takahashi, and T. Sekine, “A New Horizontal and Vertical
Common Subexpression Elimination Method for Multiple Constant MMulti-
plication,” in Proc. IEEE International Conference on Electronics, Circuits,
and Systems (ICECS’09), Dec. 2009, pp. 124–127.

[85] A. Yurdakul and G. Dundar, “Fast and Efficient Algorithm for the Multi-
plierless Realisation of Linear DSP Transforms,” IEE Proceedings - Circuits,
Devices and Systems, vol. 149, no. 4, pp. 205–211, Aug. 2002.

181

http://users.isy.liu.se/johanl/yalmip
http://www.firsuite.net

Bibliography

[86] M. Martinez-Peiro, E. Boemo, and L. Wanhammar, “Design of High-speed
Multiplierless Filters using a Nonrecursive Signed Common Subexpression
Algorithm,” IEEE Transactions on Circuits and Systems II: Analog and Dig-
ital Signal Processing, vol. 49, no. 3, pp. 196 –203, Mar. 2002.

[87] Y. Voronenko and M. Püschel, “Multiplierless Multiple Constant Multiplica-
tion,” ACM Transactions on Algorithms, vol. 3, no. 2, 2007.

[88] Spiral, “Software/Hardware generation for DSP Algorithms.” [Online].
Available: http://spiral.ece.cmu.edu/mcm/gen.html

[89] O. Gustafsson and A. Dempster, “On the use of Multiple Constant Multipli-
cation in Polyphase FIR Filters and Filter Banks,” in Proc. Nordic Signal
Processing Symposium (NORSIG’04), 2004, pp. 53 – 56.

[90] H. Aboushady, Y. Dumonteix, M.-M. Louerat, and H. Mehrez, “Efficient
Polyphase Decomposition of Comb Decimation Filters in Sigma Delta
Analog-to-Digital Converters,” IEEE Transactions on Circuits and Systems
II: Analog and Digital Signal Processing,, vol. 48, no. 10, pp. 898 –903, Oct.
2001.

[91] M. Becker, N. Lotze, M. Ortmanns, and Y. Manoli, “Implementation and
Analysis of Power Consumption for a Power Optimized Decimator Designed
for Cascaded Sigma-Delta A/D Converters,” in Proc. IEEE International
Midwest Symposium onCircuits and Systems (MWSCAS’06), vol. 2, Aug.
2006, pp. 654–658.

[92] V. Rosa, E. Costa, J. Monteiro, and S. Bampi, “Performance Evaluation
of Parallel FIR Filter Optimizations in ASICs and FPGA,” in Proc. IEEE
Midwest Symposium on Circuits and Systems (MWSCAS’05), Aug. 2005, pp.
1481–1484.

[93] O. Gustafsson, J. Coleman, A. Dempster, and M. Macleod, “Low-complexity
Hybrid form FIR Filters using Matrix Multiple Constant Multiplication,”
in Proc. Conference Record of the Thirty-Eighth Asilomar Conference on
Signals, Systems and Computers, vol. 1, Nov. 2004, pp. 77–80.

[94] T. Shahana, B. Jose, K. Jacob, and S. Sasi, “Decimation Filter Design
Toolbox for Multi-Standard Wireless Transceivers using MATLAB,” Inter-
national Journal of Signal Processing, vol. 5, p. 2, 2009.

[95] L. Fujcik, A. Kuncheva, T. Mougel, and R. Vrba, “New VHDL design of
decimation filter for sigma-delta modulator,” in Proc. IEEE Asian Confer-
ence on Sensors and the International Conference on new Techniques in
Pharmaceutical and Biomedical Research, 2005, pp. 204–207.

[96] V. Rosa, E. Costa, and S. Bampi, “A VHDL Generation Tool for Optimized
Parallel FIR Filters,” in Proc. IEEE International Conference on Very Large
Scale Integration (IFIP’06), 2006, pp. 134–139.

182

http://spiral.ece.cmu.edu/mcm/gen.html

Bibliography

[97] F. Daitx, V. Rosa, E. Costa, P. Flores, and S. Bampi, “VHDL Generation of
Optimized FIR Filters,” in Proc. IEEE International Conference on Signals,
Circuits and Systems (SCS’08), 2008, pp. 1–5.

[98] V. Verma and C. Chien, “A VHDL based Functional Compiler for Optimum
Architecture Generation of FIR Filters,” in Proc. IEEE International Sym-
posium on Circuits and Systems (ISCAS’96), vol. 4, May 1996, pp. 564–567.

[99] K.-Y. Jheng, S.-J. Jou, and A.-Y. Wu, “A Design Flow for Multiplierless
Linear-phase FIR Filters: from System Specification to Verilog Code,” in
Proc. IEEE International Symposium on Circuits and Systems (ISCAS’04),
vol. 5, May 2004, pp. V–293–V–296.

[100] N. Lotze, “Ein Generisches Modell fuer die Effizienzermittlg und Implemen-
tierung von Digitalen Polyphasenfiltern in VHDL,” Master’s thesis, Univ. of
Freiburg, Freiburg, 2004.

[101] M. Ortmanns, “Error Compensation in Continuous-Time Sigma-Delta A/D
Converters,” Ph.D. dissertation, Univ. of Freiburg, Freiburg, Dec. 2003.

[102] M. Coffey, “Optimizing Multistage Decimation and Interpolation Process-
ing,” IEEE Signal Processing Letters, vol. 10, no. 4, pp. 107–110, Apr. 2003.

[103] M. Coffey, “Optimizing Multistage Decimation and Interpolation Processing:
Part II,” IEEE Signal Processing Letters, vol. 14, no. 1, pp. 24–26, Jan. 2007.

[104] D. Schlichthärle, Digital filters: basics and design. Springer Verlag, 2000.

[105] E. Hogenauer, “An Economical Class of Digital Filters for Decimation and
Interpolation,” IEEE Transactions on Acoustics, Speech and Signal Process-
ing, vol. 29, no. 2, pp. 155–162, 1981.

[106] G. Dolecek and F. Harris, “Design of CIC Compensator Filter in a Digital
IF Receiver,” in Proc. International Symposium on Communications and
Information Technologies (ISCIT’08), 2008, pp. 638–643.

[107] R. Zimmermann, “Binary Adder Architectures for Cell-Based VLSI and their
Synthesis,” Ph.D. dissertation, Swiss Federal Institute of Technology (ETH),
Zurich, 1998.

[108] U. Meyer-Baese, Digital Signal Processing with Field Programmable Gate
Arrays. Springer Verlag, 2007.

[109] P. Vaidyanathan, “Multirate Digital Filters, Filter Banks, Polyphase Net-
works, and Applications: A tutorial,” Proceedings of the IEEE, vol. 78, no. 1,
pp. 56–93, 1990.

[110] T. Shahana, R. James, B. Jose, K. Poulose Jacob, and S. Sasi, “Polyphase
Implementation of Non-recursive Comb Decimators for Sigma-Delta A/D
Converters,” in Proc. IEEE Conference on Electron Devices and Solid-State
Circuits (EDSSC’07), Dec. 2007, pp. 825–828.

183

Bibliography

[111] O. Gustafsson, K. Johansson, H. Johansson, and L. Wanhammar, “Imple-
mentation of Polyphase Decomposed FIR Filters for Interpolation and Deci-
mation Using Multiple Constant Multiplication Techniques,” in Proc. IEEE
Asia Pacific Conference on Circuits and Systems (APCCAS’06), Dec. 2006,
pp. 924–927.

[112] H. Zhu, X. Wu, and X. Yan, “Low-Power and Hardware Efficient Decima-
tion Filters in Sigma-Delta A/D Converters,” in Proc. IEEE Conference on
Electron Devices and Solid-State Circuits, Dec. 2005, pp. 665–668.

[113] K. Khoo, Z. Yu, and A. Willson Jr, “Design of Optimal Hybrid form FIR
Filter,” in Proc. IEEE International Symposium on Circuits and Systems
(ISCAS’01), vol. 2, 2001, pp. 621–624.

[114] R. Teymourzadeh and B. Othman, “An Enhancement of Decimation Pro-
cess using Fast Cascaded Integrator Comb (CIC) Filter,” in Proc. IEEE In-
ternational Conference on Semiconductor Electronics (ICSE’06), 2006, pp.
811–815.

[115] E. Cheney and D. Kincaid, Numerical Mathematics and Computing. Brook-
s/Cole Pub Co, 2007.

[116] J. Epperson, An Introduction to Numerical Methods and Analysis. Wiley-
Blackwell, 2007.

[117] M. Afifi, M. Ortmanns, and Y. Manoli, “Design Study of a Tunable Bandpass
Continous Time Sigma Delta Modulator for FM Digital Reciver,” in Proc.
International Conference on Mixed Design of Integrated Circuits and Systems
(MIXDES’08), June 2008, pp. 219–224.

[118] A. Abidi, “The Path to the Software-Defined Radio Receiver,” IEEE Journal
of Solid-State Circuits, vol. 42, no. 5, pp. 954–966, May 2007.

[119] R. Schreier and W. Snelgrove, “Decimation for Bandpass Sigma-Delta
Analog-to-Digital Conversion,” in Proc. IEEE International Symposium on
Circuits and Systems (ISCAS’90), vol. 3, May 1990, pp. 1801–1804.

[120] B. White and M. Elmasry, “Low-power Design of Decimation Filters for a
Digital IF Receiver,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 8, no. 3, pp. 339–345, Jun. 2000.

[121] H.-J. Pfleiderer and S. Lachowicz, “Numerically Controlled Oscillators us-
ing Linear Approximation,” in Proc. International Conference on Field Pro-
grammable Logic and Applications (FPL’09), Sep. 2009, pp. 695–698.

[122] J. Vankka, “Methods of Mapping from Phase to Sine Amplitude in Direct
Digital Synthesis,” IEEE Transactions on Ultrasonics, Ferroelectrics, and
Frequency Control, vol. 44, no. 2, pp. 526–534, Mar. 1997.

184

Bibliography

[123] Analog Devices, “Fundamentals of Direct Digital Synthesis (DDS),”
Tutorial: MT-085, 2009. [Online]. Available: http://www.analog.com/
static/imported-files/tutorials/MT-085.pdf

[124] Analog Devices, “Understand SINAD, ENOB, SNR, THD, THDN, and
SFDR so you Don’t Get Lost in the Noise Floor,” Tutorial: MT-003, 2009.
[Online]. Available: http://www.analog.com/static/imported-files/tutorials/
MT-003.pdf

[125] J. Langlois and D. Al-Khalili, “Phase to Sinusoid Amplitude Conversion
Techniques for Direct Digital Frequency Synthesis,” Proc. IEE - Circuits,
Devices and Systems, vol. 151, no. 6, pp. 519–528, Dec. 2004.

[126] H. Samueli, T.-j. Lin, R. Hawley, and S. Olafson, “VLSI Architectures for a
High-Speed Tunable Digital Modulator/Demodulator/Bandpass-filter Chip
Set,” in Proc. IEEE International Symposium on Circuits and Systems (IS-
CAS’92), vol. 3, May 1992, pp. 1065–1068.

[127] M. Kumm, “FPGA Realization of a Offset Local Oscillator based on PLL
and DDS Technologies,” Diploma thesis, Technical University of Darmstadt,
Darmstadt, Jul. 2007. [Online]. Available: http://www.martin-kumm.de/
Diplomarbeit_Martin_Kumm_TUD_2007.pdf

[128] L. K. Tan and H. Samueli, “A 200 MHz Quadrature Digital Synthesiz-
er/Mixer in 0.8μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 30,
no. 3, pp. 193–200, Mar. 1995.

[129] S. Khilar, K. Parmar, S. Saumi, and K. Dasgupta, “Design and Analy-
sis of Direct Digital Frequency Synthesizer,” in Proc. of the First Inter-
national Conference on Emerging Trends in Engineering and Technology
(ICETET’08). IEEE, 2008, pp. 1302–1306.

[130] G. Zimmerman and M. Flanagan, “Spur-reduced Numerically-Controlled Os-
cillator for Digital Receivers,” in Proc. Conference Record of The Twenty-
Sixth Asilomar Conference on Signals, Systems and Computers. IEEE, 1992,
pp. 517–520.

[131] Y. Yang, J. Cai, and L. Liu, “A Novel DDS Array Structure with Low Phase
Noise and Spurs,” Channels, vol. 1, p. 2, 2011.

[132] D.-U. Lee, R. Cheung, W. Luk, and J. Villasenor, “Hardware Implementa-
tion Trade-Offs of Polynomial Approximations and Interpolations,” IEEE
Transactions on Computers, vol. 57, no. 5, pp. 686–701, May 2008.

[133] E. Lopelli, J. van der Tang, and A. van Roermund, “Minimum Power-
Consumption Estimation in ROM-Based DDFS for Frequency-Hopping Ul-
tra low-Power Transmitters,” IEEE Transactions on Circuits and Systems—
Part I: Regular Papers, vol. 56, no. 1, pp. 256–267, Jan. 2009.

185

http://www.analog.com/static/imported-files/tutorials/MT-085.pdf
http://www.analog.com/static/imported-files/tutorials/MT-085.pdf
http://www.analog.com/static/imported-files/tutorials/MT-003.pdf
http://www.analog.com/static/imported-files/tutorials/MT-003.pdf
http://www.martin-kumm.de/Diplomarbeit_Martin_Kumm_TUD_2007.pdf
http://www.martin-kumm.de/Diplomarbeit_Martin_Kumm_TUD_2007.pdf

Bibliography

[134] A. Mohieldin, A. Emira, and E. Sanchez-Sinencio, “A 100-MHz 8-mW ROM-
less Quadrature Direct Digital Frequency Synthesizer,” IEEE Journal of
Solid-State Circuits, vol. 37, no. 10, pp. 1235–1243, Oct. 2002.

[135] J. Tierney, C. Rader, and B. Gold, “A Digital Frequency Synthesizer,” IEEE
Transactions on Audio and Electroacoustics, vol. 19, no. 1, pp. 48–57, Mar.
1971.

[136] R. Lyons, Understanding Digital Signal Processing. Prentice Hall, 2011.

186

List of Figures

2.1. Resolution and conversion frequency for commercial ADCs. 14
2.2. Power consumption and conversion frequency for ADCs. 15
2.3. Sigma Delta ADC block diagram. 15
2.4. Sigma Delta modulator classifications. 17
2.5. Desired decimation response. 18
2.6. Decimation spectral. 20
2.7. Typical spectra for multi-stage decimation filter. 21

3.1. VLSI design trades-off. 25
3.2. Components of power consumption in VLSI circuits. 26
3.3. Modeling of power consumption components (a) dynamic (b) static. 27
3.4. Design levels. 28
3.5. Power analysis breakdown. 31

4.1. Lowpass filter response. 34
4.2. Scaling effect on number of non-zero terms. 37
4.3. Proposed allocation scheme Δhk

. 40
4.4. Generated deviation tables. 42
4.5. Frequency response for N-POT without presorted allocation scheme. 43
4.6. Frequency response for 1-POT coefficient deviation. 44
4.7. Frequency response for 2-POT coefficient deviation. 45
4.8. Allocation schemes based on multiple N-POT. 47
4.9. Allocation schemes patterns. 49
4.10. Allocation schemes. 50

5.1. Graphical illustration for the problem statement. 53
5.2. Optimization run-time using PP and Δhk

. 56
5.3. Optimization gain using PP and Δhk

. 57
5.4. Search tree for conventional MILP. 58
5.5. MILP runtime. 58
5.6. Converge versus nonconverge subject. 60
5.7. POTx algorithm flowchart. 62
5.8. Proposed POTx algorithm searching space structure. 62
5.9. Execution of proposed algorithm. 66
5.10. Frequency response of filter shown in section 5.5.4. 66
5.11. Summary of results given in Table 5.3. 68
5.12. Filter A. 72

187

List of Figures

5.13. Filter B. 73
5.14. Filter S2. 74
5.15. Filter LP1. 75
5.16. Filter N1. 76
5.17. Filter A. 77
5.18. Filter B. 78
5.19. Pseudocode for CSE algorithm. 81

6.1. A case study for multi-stage decimator topologies. 91
6.2. Total power consumption in various multistage decimation topologies. 92
6.3. Power dissipation distribution multistage decimation topologies. . . 93
6.4. Delays width estimation for DF and TF with respect to M. 94
6.5. Delays width estimation for DF and TF with respect to N. 94
6.6. Proposed implementation. 96
6.7. Percentage in power reduction. 97

7.1. MSD-toolbox flowchart. 100
7.2. Lowpass filter frequency response. 102
7.3. Multiple stopband and don’t care bands specifications. 105
7.4. Reduction percentage in filter order by using multi-band design. . . 106
7.5. CIC design parameters. 107
7.6. CIC compensation filter. 108
7.7. IBN calculation from stimuli bit-stream. 109
7.8. Architectural cost estimation. 111
7.9. Troubleshooting and verification. 114
7.10. Estimated computation effort. 115
7.11. Filter responses. 116
7.12. PSD before and after decimation. 117
7.13. Estimated number of FAs for multipliers and multi-operand adders. 118
7.14. Tools (a) chain (b) procedure. 122
7.15. Polyphase decimation filters topologies. 124
7.16. Commutator (a) schematic (b) symbol. 125
7.17. Commutator clock generator. 125
7.18. Commutator (a) timing diagram (b) double clocked flip-flop. 126
7.19. Multiplier element. 127
7.20. Delay element. 127
7.21. Adder element. 128
7.22. Multi-operand adder structures for 8 inputs. 128
7.23. Multi-operand adder element. 129
7.24. Determine the number of adders per level. 130
7.25. Determine the internal skipped levels. 131
7.26. Balanced multi-operand adder structure for 11 inputs. 131
7.27. Integrator stage (a) basic (b) pipeline. 132
7.28. Comb stage (a) basic (b) pipeline. 132
7.29. Cascaded integrator comb configurations. 134

188

List of Figures

7.30. Integrator stage. 135
7.31. Comb stage. 135

8.1. Problem notations. 138
8.2. Effects on constant multiplier construction. 140
8.3. Illustrating the proposed nested multiplier. 141
8.4. Proposed nested multiplier construction. 142
8.5. Number of multiplier adders. 142
8.6. NFAs using PFP versus proposed NMU for (a) binary (b) CSD. . . 143
8.7. NFAs employing the NMU criterion for (a) binary and (b) CSD. . . 143
8.8. Percent of reduction in NFAs. 144
8.9. Binary versus CSD. 144
8.10. CSE effect on multiplier adders. 145
8.11. NFAs employing NMU and CSE. 145
8.12. RTL coding scheme for proposed NMU. 147

9.1. PSD of a 4th order tunable BPΣΔM. 150
9.2. DFE architectures (a) conventional (b) proposed. 151
9.3. Digital down conversion (a) conventional (b) proposed. 153
9.4. Power efficient quadrature mixer for f4. 153
9.5. Mixer architecture for (a) Quadrature and (b) Complex. 153
9.6. NCO classifications. 155
9.7. Block diagram of the NCO employing π/2 symmetry. 155
9.8. Block diagram of the NCO employing π/4 symmetry. 156
9.9. Piecewise linear approximation implementation. 158
9.10. Proposed quadrature NCO. 158
9.11. ROM-based generic reference model. 159
9.12. Effect of phase dithering and approximation dithering. 160
9.13. Effect of linear approximation with and without dithering. 161
9.14. System performance. 162
9.15. Mean value of the SFDR (a) surface plot (b) contour plot. 164
9.16. Total power consumption in NCO architectures. 166
9.17. CIC filter and decimation factor effect on intermediate response. . . 167
9.18. Detailed design (a) proposed (b) conventional. 167
9.19. Decimation filters frequency responses. 168

10.1. I2MR decimation filter die-photo. 173

B.1. Sample rate conversion for downsampled by 3. 195
B.2. Spectra of downsampling by 3. 196
B.3. Spectra of interpolating by 3. 197

189

List of Tables

2.1. Summary of Sigma Delta topologies. 16
2.2. Decimation filter classifications . 19
2.3. FIR vs. IIR digital filters . 22
2.4. Digital filter design and implementation parameters 22

3.1. Power optimization approaches. 29
3.2. Types of power analysis in modern EDA 30

4.1. FIR Filter Design Parameters . 35
4.2. Two’s complement to CSD conversion 38
4.3. Deviation table for 53 . 41
4.4. Deviation table 766 . 41

5.1. State-of-the-art MILP Optimization Trends 54
5.2. Benchmark filters FIR filters . 67
5.3. Proposed algorithm evaluation . 69
5.4. POTx algorithm vs. State-of-the-art algorithms 70
5.5. Computation times for FIRGAM vs. POTx 71
5.6. Symbol definition for CSE algorithm given in Figure 5.19 82
5.7. CSE pre-processing results for 3CS and 4CS 83
5.8. CSE pre-processing results for r1, r2, r3, r4 83
5.9. CSE optimized results due to the proposed algorithm 84
5.10. Filter S2 CSE . 84
5.11. POTx algorithm performance evaluation 85
5.12. Number of MA using the proposed CSE algorithm 86

6.1. Design specifications . 90
6.2. Power consumption [μW] distribution for 3-stages of the decimation 91
6.3. Power consumption [μW] distribution for 4-stages of the decimation 92
6.4. Power consumption distribution . 92
6.5. Power consumption simulated vs. calculated 95

7.1. Compensation filters typical design parameters 106
7.2. Multi-operand adder cost estimation 112
7.3. Design parameters . 113
7.4. Tuning ripples . 115
7.5. Quantization bit-width tuning . 116
7.6. Decimation filter design parameters for multi-standard specifications 119

191

List of Tables

7.7. Decimation filter implementation for multi-standard specifications . 120

9.1. Receiver specifications. 149
9.2. Design parameters . 160
9.3. NCO design specifications. 165
9.4. NCO Design parameters. 165
9.5. Design Specifications . 169
9.6. Power Simulation Results . 169

10.1. Design Specs. 173
10.2. Design Parameters Evaluated using MSD-toolbox. 174
10.3. Place-and-route Implementation Results. 174

192

A. Polynomial Programming

The regular FIR filter response is described by

H(z) =
N−1∑
k=0

hkz−k, (A.1)

where hk is the filter coefficients and N is the filter length. Assume odd filter order,
then

n = N + 1
2

. (A.2)

Equation (A.1) can be written as follow using the previous assumption:

A(w) =
n∑

k=0
ak cos kw. (A.3)

The error function, or the quadratic problem to be minimzed is:

e2(w) = [A(w) − Ad(w)]2 (A.4)

Let’s defiene the following paramters:

amk =ak + ak

2
,

δk =
ak − ak

2
,

xk ∈{−1, 1},

ak =amk + xkδk,

where ak and ak is the smallest SPT upper bound and largest SPT lower bound
of ak,respectively, and Ad(w) is the desired frequency response. Hence (A.3) can
be written as:

A(w) =
n∑

k=0
ak cos kw,

=
n∑

k=0
(amk + xkδk) cos kw,

=
n∑

k=0
amk cos kw + xkδk cos kw.

193

A. Polynomial Programming

Consequently, (A.3) can be rewritten as follow:

A(w) = Am(w) + xT C(w), (A.7)

where:

Am(w) =
n∑

k=0
amk cos kw,

C(w) =xkdk cos kw,

xk =[x0x1 · · · xn]T .

Substitute in (A.4)

e2 =[A(w) − Ad(w)]2 (A.9a)
=[Am(w) + xT C(w) − Ad(w)]2 (A.9b)
=(Am(w) − Ad(w))2 + 2(A(w) − Ad(w))xT C(w) + xT C(w)xCT (w) (A.9c)
=2(Am(w) − Ad(w))xT C(w) + xT C(w)xCT (w) (A.9d)

The first term in (A.9c) can be neglected because it is constant with respect to x
which leads to

P (x) = xT Qx + qT x, (A.10)

where:

Q =
π∫

−π

W (w)C(w)CT (w)dw,

q =2
π∫

−π

W (w)[A(w) − Ad(w)]C(w)dw,

and W (w) is a weighting function.

194

B. Downsampling

A sampled signal sequence is shown in Fig. B.1. To downsample the signal by a
downsample factor M = 3, sample x(0) is preserved and the following two samples
are discarded, then sample x(3) is preserved and the following two samples are
discared, and so on, as shown in Fig. B.1 [136]. It should be noted that, the
decrease in the sampling rate is preserved by increasing the output word-length.

x(n)

w(n)

y(m)

n

n

n

0

0 1

1

2

2

3

3
4

4 5

Figure B.1.: Sample rate conversion for downsampled by 3.

195

B. Downsampling

The spectral of a sampled signal is centered around zero shown by the solid line
in Fig. B.2. The spectral replications is located at integer multiples of 2π rad/s,
as shown by dashed lines in Fig. B.2. An M − 1 copies of the primary spectral
(which centered around zero) are inserted between the spectral replications at
equally spaced spectral of 2π/M , as shown by gray dashed lines in Fig. B.2. The
frequency axis is scaled by factor of M , yielding to the new axis ωnew, as shown in
Fig. B.2. Afterwards, the magnitude axis is scaled by factor of 1/M , as shown by
P/3 in Fig. B.2 [136].

|X(ω)|

|X(ω)|

0

0

0

π

π

2π

2π

2π

ωold

ωold

−π

−π

−2π

−2π

−2π

2π/3 4π/3−2π/3−4π/3

|Y (ω)|

3π 4π 6π−3π−4π−6π

P

P/3

ωnew

Figure B.2.: Spectra of downsampling by 3.

196

The spectral of a sampled signal is centered around zero shown by the solid line
in Fig. B.3. The spectral replications is located at integer multiples of 2π rad/s,
as shown by dashed lines in Fig. B.3. Insert L images of the primary spectral,
where L is the interpolation factor. The inserted images will be attenuated by the
subsequent lowpass filter [136].

|X(ω)|

|Y (ω)|

π

π

2π

2π

3π

3π

4π

4π

−π

−π

−2π

−2π

−3π

−3π

−4π

−4π

4π/32π/3−2π/3−4π/3

ωold

ωnew0

0

Figure B.3.: Spectra of interpolating by 3.

197

Index

„ 225
2’s complement, 136, 165

ADCs
Nyquist, 14
Oversampling, 14
State-of-the-Art, 14

ASIC, 12, 109, 134

Back-end, 30, 32

Canonic Signed Digit, 41, 58, 160
Conversion, 41
CSE, 92

Cascaded Integrator Comb, 20, 115,
148

Architectures, 149
Bit-growth, 118
Comb, 151
Compensation, 117
Digital Front End, 185
Integrator, 149
Transfer function, 115, 149

Coefficient deviation, 43, 51
Coefficient quantization, 37
Coefficient scaling, 38
Coefficient sensitivity, 50, 54, 59
Common sub-expression elimination,

41, 58, 89, 138, 165
Complex mixer, 169–171
Convergent, 68

Decimation
Classifications, 20
Multi-bit, 107
Sample rate conversion, 20
Single-bit, 106

Structures, 20
Half-band, 20, 114
Multi-band, 115

Topologies
Direct-form, 99, 138
Selection criterion, 101
Transposed-form, 20, 99, 138

Design procedure, 111, 134
Digital Front End, 169
Dithering, 178

Amplitude dithering, 179, 181
Approximation dithering, 179–181
Phase dithering, 179

Dithering 176

FPGA, 12, 109, 134
Front-end, 30, 32

Hybrid allocation scheme, 54

In-band noise, 111, 113, 120, 188

Linear approximation, 177, 179, 184

MILP, 59, 65
MSD-toolbox, 111, 134, 153, 185

flowchart, 111

Nested multiplication, 158–160
Non-convergent, 68, 72
Normalized peak ripple, 38, 59
Numerical Controlled Oscillator, 172

OSR, 14, 111, 113, 134

Polyphase Decimation, 20, 136
Commutator, 138
Constant Multiplier, 139

199

Index

Delay, 140
Digital Front End, 186
Multi-operand Adder

flowchart, 142
Multi-operand adder, 141
Transfer function, 138

POT, 40
POTMILP solver, 68, 74
POTx Algorithm, 70
Power analysis

SAIF, 32
VCD, 33

Power dissipation
Dynamic, 29

Glitch, 30
Internal power, 29
Short circuit, 29
Switching, 29

Static, 30
Short circuit, 30
Substrate leakage, 30

Total, 28
Pseudo floating point, 160

Quadrature mixer, 169, 171

Receiver, 167
Ripple carry adder, 122, 141, 142, 165

Sigma Delta Modulator
Classifications, 16, 18
CT, 17
Decimation, 20
DT, 17
Fundamentals, 18
MASH, 16
Noise shaping, 16, 19

SNR, 111, 134, 184
SPT, 40, 59

Tools chain, 134

VHDL IP, 122, 134, 153, 169

200

Acknowledgements

I owe sincere thankfulness and gratitude to my mentor and supervisor “mein Dok-
torvater” Prof. Dr.-Ing. Yiannos Manoli for his valuable guidance and extensive
support. I am so grateful for the opportunity being part of his team in Microelec-
tronics. Working at his group under his supervision has been invaluable experience
for me. I learned a lot from him and I am keen to learn more from him.

I am sincerely grateful to Didier Henrion, Michael Grant, Stephen Boyd, Johan
Löfberg, and Oscar Gustafsson for there valuable assistance to apprehend their
toolboxes.

I am extremely grateful to Niklas Lotze for his extensive and comprehensive valu-
able discussions and constructive feedback.

I am indebted to Micheal Maurer and Mohamed Afifi for their extensive valuable
discussions which have been very helpful during my research.

Many thanks to my students Markus Kocum, Qiang Zhang and Tobias Meinert.

Special thanks to all members of the Microelectronics group in particular Elisabeth-
Theresia Maurer, Claudia Jahn, Anna Zimmermann, Zahra Dandani, Mirjam
Hedinger and Rolf Schlecker. Warm thanks to my colleagues Markus Becker, Mau-
rits Ortmanns, Matthias Keller, Stains Trendelenburg, Thorsten Hehn, Senthil
Jayapal, Khald Aljasem, Sherif Mohamed, Armin Taschwer and Hussam Kloub.

I would like to express my sincere gratitude to the International Graduate Acadamey
(IGA) for affording various valuable workshops and courses in soft skills during my
studies.

I am extremely grateful to Christian Panis and Evert-Jan Paul my colleges at
Catena Radio Design B.V. for their valuable remarks and discussions.

Beyond engineering, I am indebted to my beloved parents, brothers and sisters,
and my wife for supporting me throughout all my studies.

201

	Abstract
	Zusammenfassung
	List of Abbreviations
	List of Symbols
	Overview
	Motivation
	Outline
	Contributions
	Deliverables

	Sigma Delta ADCs
	Introduction
	Need of Data Converters
	Survey of Analog-to-Digital Converters
	Sigma Delta ADC
	Sigma Delta Modulator Classifications
	Sigma Delta Decimation Filter

	Decimation Filter Design Parameters
	Summary

	Low Power Design Aspects
	Introduction
	Sources of Power Dissipation
	Power Optimization Approaches
	Power Analysis
	Summary

	Algorithmic System Level Terminology
	Introduction
	FIR Filter Conventions
	Coefficient Quantization
	Coefficient Scaling
	Coefficient Representation

	Bounded Search Space
	Coefficient Deviation
	Allocation Schemes
	Deviation
	Cost
	Hybrid

	Algorithmic System Level Power Optimization
	Introduction
	Problem Statement
	State-of-the-Art
	Polynomial Programing
	Mixed Integer Linear Programming
	Problem Formulation
	Evolution
	Proposed POTx Algorithm
	Example
	Performance Evaluation and Results

	Common Sub-expression Elimination
	Summary

	Architectural System Level Power Optimization
	Introduction
	Combined DF and TF Architectures
	Analysis of Power Consumption
	TF|DF Selection Criterion
	Performance Evaluation and Results

	Implementing Mb using Sb Decimation Filter
	Summary

	Design and Implementation Procedure
	Introduction
	Multi-Stage Decimation Toolbox
	k and M Calculations
	pb and sb Calculations
	hk and Q Calculations
	Coefficient Optimization
	Cost Estimation

	Troubleshooting and Verification
	Design Example
	MSD-toolbox Evaluation
	VHDL IPs
	Tools Chain
	Polyphase Decimation Filter
	Cascaded Integrator Comb Filter

	Summary

	RTL Power Optimization
	Introduction
	Problem Notations
	Discrepancy
	Proposed Nested Constant Multiplier
	Theory
	Implementation
	Nested Multiplication Driven by CSE

	RTL Modeling
	Summary

	Digital Front End
	Introduction
	Design Specifications
	Proposed DFE
	Digital Down Converter
	Numerical Controlled Oscillator
	Sinusoidal Symmetry NCO Topologies
	Performance Enhancement Criteria
	Modeling and Analysis
	Proposed Design Scheme
	Power Analysis

	Decimation Filters
	CIC Decimation Filter
	FIR Polyphase Decimation Filter

	Power Simulation and Analysis
	Summary

	Conclusion and Outlook
	Bibliography
	List of Figures
	List of Tables
	Appendix
	Polynomial Programming
	Downsampling
	Index
	Acknowledgements

