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Abstract

Simulating incompressible flow using Particle-based techniques have been gaining
interest of researchers for more than a decade. Smoothed Particle Hydrodynamics
(SPH) is a common technique for simulating fluids solely using pairwise forces
between particles. SPH has important potential benefits, such as the ability
to handle complex boundaries and small-scale phenomena. This dissertation
explains some techniques that employ those potential benefits of SPH.

The dissertation starts by reviewing the basic SPH technique and the recent
advances in SPH. Secondly, a versatile technique for handling boundaries with
two-way rigid-fluid coupling is explained. The technique has several impor-
tant properties, such as; support for arbitrary rigid objects with large density
ratios, support for thin shells including non-manifold geometries, momentum
conservation, ability to handle multiphase flow, and allowing large time-steps.
Furthermore, the technique addresses particle deficiency related issues of SPH
near solid boundaries, which prevents spatial and temporal discontinuities of
the physical properties of the fluid. Those benefits are illustrated through a
variety of simulation scenarios. Afterwards, in the next chapter, the rigid-fluid
coupling technique is extended to support elastic solids with arbitrarily large
expansions in SPH, while retaining all of its useful properties. It is shown that
this extension produces stable and realistic interactions of SPH fluids with both
slowly and rapidly deforming solids.

The next contribution explained in the thesis addresses both fluid-air and
fluid-solid interfaces in SPH for more realistic fluid behavior by employing
a new surface tension force and a new adhesion force. The surface tension
force can handle large surface tensions in a realistic way, which lets it handle
challenging real scenarios, such as: water crown formation, various types of
fluid-solid interactions, and even droplet simulations. Furthermore, it prevents
particle clustering at the fluid-air interface where inter-particle pressure forces
are incorrect. Our adhesion force allows plausible two-way attraction of fluids
and solids and can be used to model different wetting conditions. It is also shown
that the combination of two forces allows simulating a variety of interesting
effects in a plausible way.

Lastly, the thesis focuses on the efficient simulation and visualization of
fluid-air mixtures, namely, foam to enhance detail. For the foam simulation,
physically motivated rules are employed to generate, advect and dissipate foam
on an existing SPH simulation as a post processing step. The main contribution
explained in detail in that part is a technique for the efficient rendering of
large-scale foam data in screen space using a GPU based rendering pipeline. The
explained approach employs a multi-pass rendering technique to imitate some
of the effects that are commonly accomplished by using expensive ray-tracing
based methods. It is demonstrated through different scenarios that the presented
pipeline is able to produce convincing foam renderings for large-scale scenarios.







Zusammenfassung

Die Simulation inkompressibler Fluide durch partikelbasierte Techniken weckt
bereits seit iiber einem Jahrzehnt das Interesse der Wissenschaft. Eine verbreitete
Technik zur Simulation von Fluiden ist Smoothed Particle Hydrodynamics
(SPH). Diese basiert ausschliefllich auf Partikeln und zwischen diesen definierten
paarweisen Kréften. Dadurch ergeben sich einige wichtige potentielle Vorteile,
darunter die Moglichkeit, komplexe Grenzfélle und besonders kleine Phdnomene
zu behandeln. Diese Dissertation befasst sich mit einigen Techniken, die diese
potentiellen Vorteile nutzen.

Die Dissertation beginnt damit, die Grundlagen von SPH und die jiingeren
Fortschritte bei der Entwicklung der Technik vorzustellen. Weiterhin wird eine
niitzliche Technik erklirt, mit der sich die Behandlung von Grenzfillen mit einer
zwei-Wege-Kopplung zwischen Starrkérpern und Fluiden realisieren lésst. Diese
bietet einige Vorteile, darunter die Erhaltung der Bewegungsenergie und die
Moglichkeit, grofle Zeitschritte zuzulassen und Starrkérper mit beliebigen Dich-
teverteilungen, diinne Hiillen, einschliefllich nicht-mannigfaltiger Geometrien,
und mehrphasige Stréomungen zu behandeln. Weiterhin befasst sich der Ansatz
mit dem Problem fehlender SPH-Partikel in der Néhe fester Grenzschichten,
um rdumlichen und zeitlichen Diskontinuitdten der physikalischen Eigenschaften
des Fluides vorzubeugen. Die genannten Vorteile werden anhand verschiedener
Simulationsszenarien illustriert. Im darauffolgenden Kapitel wird die behandelte
Starrkorper-Fluid-Technik erweitert, so dass sie auch elastische Korper belie-
bigen Ausmafles in SPH behandeln kann, ohne ihre niitzlichen Eigenschaften
einzubiiflen. Es wird gezeigt, dass die erlauterte Erweiterung weiterhin stabile
und realistische Interaktionen von SPH-Fluiden sowohl mit sich langsam als
auch mit sich schnell verformenden Koérpern zulésst.

Der néchste in dieser Arbeit erlauterte Beitrag befasst sich sowohl mit den
Grenzschichten zwischen Fluiden und Luft als auch zwischen Fluiden und Fest-
korpern in SPH. Dabei kommt jeweils eine neue Kraft zur Modellierung der
Oberflachenspannung und der Adhésion zur Anwendung. Diese Oberflachenspan-
nungskraft ist in der Lage, grofie Oberflachenspannungen auf realistische Weise zu
behandeln, wodurch auch schwierige reale Szenarien wie Wasserkronen, verschie-
dene Arten von Fluid-Festkorper-Interaktionen und sogar Tropfchensimulationen
moglich werden. Weiterhin beugt sie dem Zusammenklumpen von Partikeln an
der Fluid-Luft-Grenzschicht, wo die Druckkréafte zwischen Partikeln inkorrekt
sind, vor. Unsere Adhésionskréfte erlauben eine plausible zwei-Wege-Anziehung
zwischen Fluiden und Festkérpern, womit verschiedene Benetzungsituationen
modelliert werden kénnen. Es wird aulerdem gezeigt, dass die Kombination
zweier Kréfte die plausible Simulation verschiedener interessanter Effekte zulésst.

Zuletzt konzentriert sich diese Doktorarbeit auf die effiziente Simulation
und Visualisierung von Fluid-Luft-Gemischen, insbesondere Schaum, um den
Detailreichtum der Darstellung zu erhéhen. Fiir die Simulation von Schaum
werden physikalisch motivierte Regeln angewandt, mit denen Schaum durch einen
Nachbearbeitungsschritt innerhalb einer existierenden SPH-Simulation generiert,
advektiert und aufgelést werden kann. Der wesentliche Beitrag hierzu ist eine
Screen-Space-Technik zum effizienten Rendern von Schaum in grofformatigen
Szenen unter Ausnutzung einer GPU-basierten Rendering-Pipeline. Der erléduterte
Ansatz nutzt eine mehrstufige Rendertechnik, durch die einige Effekte erzielt
werden, fiir die iiblicherweise aufwéndige Raytracingmethoden eingesetzt werden.
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Anhand verschiedener Szenarien wird gezeigt, dass die vorgestellte Pipeline in der
Lage ist, eine iiberzeugende Darstellung von Schaum fiir grofiformatige Szenen
ZUu erzeugen.
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Introduction

Generating animations involving physical phenomena without employing a simu-
lation model can be a daunting task. While animating plausible looking fluids
by hand or combined with procedural techniques can be notoriously difficult,
mimicking even the relatively simple looking interaction of a cube with a table
can take considerable amount of effort. In the last two decades, advances in
computing hardware have opened doors to employing physically-based simula-
tion models for animating even the most complex phenomena. Nowadays, such
models are routinely being used in films, commercials and even in real-time
applications such as various types of virtual reality simulators and video games.
The most obvious difference between simulating the interaction of several solid
bodies compared to fluids is the huge difference in the numbers of degrees of
freedom, which makes simulating fluids much more expensive. Furthermore, as
fluid flow is only roughly predictable, it is usually required to repeat a simulation
several times until the desired results are achieved. Therefore, fluid simulations
can become one of the most time consuming parts of an animation production
process. The choice of the employed simulation techniques also play a vital role
in the rapid convergence to the desired fluid motion, which are summarized in
the next section.

1.1 Liquid Animation in Computer Graphics

In the early days of liquid animation, most of the research focused on generating
simplified equations that mimic the fluid flow, instead of numerically solving the
Navier-Stokes equations. Examples include the procedural techniques of Max
[Max81] and Peachy [Pea86]. Kass and Miller [KM90] proposed an approximation
to the shallow water equations by solving a wave equation on a heightfield. The
approach is improved in the work of Chen and Lobo [CL95] by solving 2D Navier-
Stokes equations where the third fluid dimension is modeled with a heightfield.
The obvious limitation of these works is the fact that, interesting phenomena
such as breaking waves, sprays, and splashes cannot be directly captured. Foster
and Metaxas [FM96] were the first to solve the full 3D Navier-Stokes equations
to animate fluids on a stationary grid. Those works which solve the Navier-
Stokes equations at fixed locations on a stationary grid are usually referred
to as Eulerian (or grid based) techniques. Later, Stam [Sta99] improved the
technique by introducing semi-Lagrangian method for the convection term and
implicit solver for both the viscosity and pressure terms, that allowed achieving
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unconditional stability. The improvements introduced by Stam forms the basis
for most of the subsequent Eulerian techniques. Foster and Fedkiw [FF01]
proposed the particle level set scheme, which allows tracking liquid interfaces,
thereby allowing plausible looking animations of liquids. Other notable works
that improve Eulerian techniques include; the Fluid Implicit Particle method
employed in the work of Zhu and Bridson [ZB05], adaptive techniques that allow
efficient simulations in very large domains [LGF04, ZLC713, EQYF13, ATW13],
techniques that allow large time steps [KSGF09, LCPF12] and techniques that
allow tracking detailed fluid features [TWGT10, ATT12, KTT13], and fluid-solid
coupling techniques [BBB07, RMSG™08].

Another popular way to animate liquids is by using Lagrangian approaches.
Smoothed Particle Hydrodynamics (SPH) is a commonly used Lagrangian fluid
simulation method, which was popularized by the work of Mueller et al. [MCGO03],
based on the work of Monaghan [Mon94]. The main difference of SPH to Eulerian
techniques is that fluid equations of motion are directly solved on the particles.
This results in several important benefits over Eulerian techniques. First of
all, its purely particle-based nature allows simulating small-scale phenomena
e.g. splashes and droplets, and handling complex boundaries. Secondly, since
each particle represents a macroscopic portion of the fluid, mass conservation
is always guaranteed and momentum conservation is less of a problem since
advection is handled by the moving particles. However, there exist inherent
challenges in Lagrangian approaches. Firstly, neighborhood search is necessary
for the computation of fluid quantities at particle positions, which is a costly
operation and commonly considered as one of the main drawbacks of SPH. For
a thorough discussion of neighborhood search techniques that are commonly
employed in SPH along with a space and memory efficient scheme, we refer the
interested reader to the work of Thmsen et al. [TABT11]. Another challenge of
SPH is that satisfying incompressibility requires smaller time steps, when an
equation of state is used when computing fluid pressure at particle positions.
However, recent works have significantly improved the small time-step limitation
of SPH; by using a prediction correction for better approximation of correct
pressure forces [SP09], by employing a grid based formulation for computing the
pressures [RWT11], by satisfying holonomic kinematic constraints on the fluid
density [BLS12], more recently by using an implicit formulation when solving
for pressure [ICST13] and by using an iterative scheme to compute particle
density [MM13]. Another common approach for improving the performance of
particle-based methods is using adaptive particle radius [APKGO07, SG11, HS13].

Besides the performance related aspects, many works have addressed boundary-
handling (e.g.[DKO01, MST*04, HKK07, Mon05, LD08, MK09, TAGT10]), two-
way fluid-solid coupling (e.g. [CBP05, MST*04, SSP07, LD08, BTT09, OKR09Db,
YLHQ12, DTM*12]), fluid surface tension (e.g. [Mor99, MCG03, TM05, CBPO05,
BT07, YWTY12, MM13]) and fluid-solid adhesion (e.g. [CBP05, SB12, HLW+12]).
This thesis discusses the issues with the mentioned previous work and explains
some versatile techniques that address many of those limitations in the context
of handling fluid-solid and fluid-air interfaces in SPH.

10



1.2. Contributions

Figure 1.1 — Some scenarios that illustrate the versatility of the explained boundary-
handling and rigid-fluid coupling technique. The explained technique is totally based
on hydrodynamic forces and can handle the interaction of arbitrary rigid bodies with
SPH fluids. Several articulated bodies interact with water (left). Several rigid objects,
including lower dimensional objects interact with water (center). Three frigates sailing
on wavy water (right). Images are taken from [ATAT12].

Figure 1.2 — Some scenarios that show the flexibility of the explained elastic-fluid
coupling technique. The approach extends the explained two-way rigid-fluid method
to make it handle arbitrarily large deformations in an efficient way. An elastic cloth
and several rigid objects interact with water (left). Several 3D elastic objects and a
cloth interact with water (center). Splash caused by the rapid impact of an elastic
bowl filled with water onto the ground (right). Images are taken from [ACAT13].

1.2 Contributions

Rigid-Fluid Two-Way Coupling

The first explained contribution is a momentum-conserving two-way coupling
method for SPH fluids and arbitrary rigid objects that is completely based on
hydrodynamic forces. The approach samples the surface of rigid bodies with
boundary particles that interact with the fluid, preventing deficiency issues
and both spatial and temporal discontinuities. The problem of inhomogeneous
boundary sampling is addressed by considering the relative contribution of a
boundary particle to a physical quantity. This facilitates not only the initializa-
tion process but also allows the simulation of multiple dynamic objects. Thin
structures consisting of only one layer or one line of boundary particles, and also
non-manifold geometries can be handled without any additional treatment. The
presented approach is integrated both into different SPH solvers, and its stability
and flexibility is demonstrated with several scenarios including multiphase flow.
Some examples about this contribution can be seen in Figure 1.1

11
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| %

v
Figure 1.3 — Some experiments that illustrate the possible scenarios that can be
created by using the explained surface tension and fluid-solid adhesion techniques. A
water-crown emerges as a result of the impact of a water droplet onto a filled water
container (left). A water stream realistically flows over a sphere (center). A water

droplet (together with a ragdoll stuck onto it) rolls on an inclined plane. Images are
taken from [AAT13].

Deformable-Fluid Two-Way Coupling

Building upon the foundation of the mentioned rigid-fluid coupling technique,
the next explained contribution is a simple and elegant method for handling
elastic solids in SPH fluids. Similarly, the approach samples triangulated surfaces
of solids using boundary particles. However, to prevent fluid particle tunneling in
case of large expansions, additional boundary particles are adaptively generated
to prevent gaps and undesired leakage. Furthermore, as an object compresses,
particles are adaptively removed to avoid unnecessary computations. It is
demonstrated that the explained approach produces plausible interactions of
SPH fluids with both slowly and rapidly deforming solids (see Figure 1.2).

Surface Tension and Two-Way Coupled Fluid-Solid Adhe-
sion

Realistic handling of fluid-air and fluid-solid interfaces in SPH is a challenging
problem. The main reason is that some important physical phenomena such
as surface tension and adhesion emerge because of inter-molecular forces in a
microscopic scale. This is different from scalar fields such as fluid pressure, which
can be plausibly evaluated on a macroscopic scale using particles. Although there
exist techniques to address this problem for some specific simulation scenarios,
there does not yet exist a general approach to reproduce the variety of effects
that emerge in reality from fluid-air and fluid-solid interactions. In order to
address this problem, a new surface tension force, and a new adhesion force
is presented. Different from the existing work, the surface tension force can
handle large surface tensions in a realistic way. This property lets the approach
handle challenging real scenarios, such as water crown formation, various types
of fluid-solid interactions, and even droplet simulations. Furthermore, it prevents
particle clustering at the free surface where inter-particle pressure forces are
incorrect. The adhesion force allows plausible two-way attraction of fluids and
solids and can be used to model different wetting conditions. By using the
explained forces, modeling surface tension and adhesion effects do not require
involved techniques such as generating a ghost air phase or surface tracking.
The forces are applied to the neighboring fluid-fluid and fluid-boundary particle
pairs in a symmetric way, which satisfies momentum conservation. Furthermore,

12
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Figure 1.4 — A city is flooded with seawater. The foam is generated by post-processing
the SPH particle data, and the generated foam is efficiently rendered using the explained
multi-pass technique on the GPU. The foam rendering per frame took approximately
1 second in 1K resolution, where around 29 million foam particles were rendered on
average.

it is demonstrated that combining both forces allows simulating a variety of
interesting effects in a plausible way (see Figure 1.3).

Efficient Foam Simulation and Rendering

After a brief discussion of foam generation techniques that is tailored to particle
based fluid data, a method for the efficient rendering of large scale particle-based
foam data in screen space using a GPU based rendering pipeline is presented.
The approach employs a multi-pass rendering technique to imitate some of the
effects that are commonly accomplished by using expensive ray-tracing based
methods. It is demonstrated through different scenarios that the explained
pipeline is able to produce convincing foam renderings for large-scale scenarios
and it has a significant performance advantage compared to using ray-casting
techniques for rendering such particle data.

1.3 Publications

This thesis focuses on the following publications that were published in peer-
reviewed journals:

[ATAT12] N. Akinci, M. Thmsen, G. Akinci, B. Solenthaler, M. Teschner. “VER-
SATILE RIGID-FLUID COUPLING FOR INCOMPRESSIBLE SPH”, ACM
Transactions on Graphics (Proc. SIGGRAPH 2012), vol. 31, no. 4,
pp. 62:1-62:8, July 2012.

[ACAT12] N. Akinci, J. Cornelis, G. Akinci, M. Teschner. “COUPLING ELAS-
TiIC SOLIDS WITH SPH FLUIDS”, Journal of Computer Anima-
tion and Virtual Worlds (Proc. CASA 2013), 24: 195-203. doi:
10.1002/cav.1499

[AAT13] N. Akinci, G. Akinci, M. Teschner. “VERSATILE SURFACE TENSION
AND ADHESION FOR SPH FLuIDs”, ACM Transactions on Graphics
(Proc. SIGGRAPH Asia 2013), vol. 32, no. 6, pp. 182:1-182:8,
November 2013.

13
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[ADAT13] N. Akinci, A. Dippel, G. Akinci, M. Teschner. “SCREEN SPACE
FoAM RENDERING”, Journal of WSCG, Vol.21, No.03, pp.173-182,
2013

The author also contributed to the following publications, where some of these
works are also briefly covered in this thesis:

[TAAT12] M. Ihmsen, N. Akinci, G. Akinci, M. Teschner. “UNIFIED SPRAY,
FoaM AND BUBBLES FOR PARTICLE-BASED FLUIDS”, The Visual
Computer (Proc. CGI 2012), Volume 28, Issue 6-8, pp 669-677, 2012,
doi: 10.1007/s00371-012-0697-9

[ATAT12] G. Akinci, M. Thmsen, N. Akinci, M. Teschner. “PARALLEL SURFACE
RECONSTRUCTION FOR PARTICLE-BASED FLUIDS”, Computer Graph-
ics Forum, vol. 31, no. 6, pp. 1797-1809, 2012, doi: 10.1111/j.1467-
8659.2012.02096.x. (Presented at Eurographics 2013)

[IABT11] M. Ihmsen, N. Akinci, M. Becker, M. Teschner. “A PARALLEL SPH
IMPLEMENTATION ON MULTI-CORE CPUS”, Computer Graphics
Forum, vol. 30, no. 1, pp. 99-112, 2011, doi: 10.1111/j.1467-
8659.2010.01832.

[AAIT12] G. Akinci, N. Akinci, M. Ihmsen, M. Teschner. “AN EFFICIENT
SURFACE RECONSTRUCTION PIPELINE FOR PARTICLE-BASED FLU-
IDS”, Proc. VRIPHYS, Darmstadt, Germany, pp. 61-68, Dec. 6-7,
2012.

[AAIT13] G. Akinci, N. Akinci, E. Oswald, M. Teschner. “ ADAPTIVE SURFACE
RECONSTRUCTION FOR SPH USING 3-LEVEL UNIFORM GRIDS”,
WSCG proceedings, pp.195-204, 2013

[IAGT10] M. Ihmsen, N. Akinci, M. Gissler, M. Teschner. “BOUNDARY HAN-
DLING AND ADAPTIVE TIME-STEPPING FOR PCISPH”, Proc. VRI-
PHYS, Copenhagen, Denmark, pp. 79-88, Nov 11-12, 2010.

1.4 Overview

This thesis is organized as follows: Chapter 2 provides an introduction to the
basic SPH technique and provides brief discussions about the recent advances in
simulating fluids using SPH. Afterwards, each of the four subsequent chapters
firstly thoroughly discuss the related work, then provide detailed explanation
of the concept, and present results, discussion and finally gives directions for
future work. Chapter 3 thoroughly discusses the versatile boundary-handling
and rigid-fluid coupling technique explained in the paper [AIA*12]. Chapter 4
explains the follow-up work [ACAT13], which extends the rigid-fluid coupling
approach to elastic-fluid coupling. Chapter 5 discusses the novel surface tension
and fluid-solid adhesion technique, which was explained in the paper [AAT13].
Afterwards, Chapter 6 briefly discusses how fluid-air mixtures (i.e. foam) can be
efficiently simulated and provides a thorough discussion about how the simulated
foam data can be efficiently rendered using the technique explained in [ADAT13].
Finally, Chapter 7 again summarizes the contributions and concludes the thesis.




Smoothed Particle Hydrodynamics

This chapter briefly discusses the basic SPH technique applied to solving incom-
pressible flow of Newtonian fluids. The topics covered in this chapter include;
particle neighborhood search strategies, computation of basic SPH field variables
that are required when solving the equation of motion of fluids (i.e., density,
pressure, pressure force, and viscosity force), vorticity confinement techniques,
multi-resolution fluid simulation approaches, and finally surface generation strate-
gies. Discussions about; boundary-handling and fluid-solid and fluid-deformable
coupling, handling fluid-air interfaces, modeling surface tension and fluid-solid
adhesion are deferred to the later chapters; as those topics are covered by the
main contributions of this thesis.

2.1 Basic Concept

SPH was originally designed for solving astrophysical problems by Gingold and
Monaghan [GM77], and Lucy [Luc77], which is a mesh-free Lagrangian fluid
simulation technique. Mesh-free means that it does not require a stationary grid
when solving fluid equations of motion, which is in contrast to Eulerian techniques
(see Figure 2.1). SPH works by obtaining approximate numerical solutions of
the equations of fluid dynamics by representing the fluid with particles, where
the physical properties and equations of motion of these particles are based
on the continuum equations of fluid dynamics. Further, physical quantities
are estimated by interpolating existing fluid quantities using the neighboring
particles. In SPH, the integral representation of a field variable A at location x;

Ox

Figure 2.1 — In Eulerian techniques, fluid quantities such as pressure and velocity
are measured at fixed locations (left). In Lagrangian approaches such as SPH, those
quantities are carried by the moving particles. In the above figures, colors represent
pressures and arrows represent velocities for the marked locations.
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Chapter 2. Smoothed Particle Hydrodynamics

in domain € is defined as
A(XZ) :/ A(Xj)W(Xiij‘,h) de, (21)
Q

where W is a kernel (or weighting) function with influence radius (or smoothing
length) h. W basically acts as the weighting factor for the contributions from
the neighborhood interpolation points denoted by x;, where dx; denotes the
differential volumes represented at each x;. So as to make (2.1) numerically
solvable, the integral in (2.1) can be written by using a finite set of interpolation
points by replacing the integral by a summation, and the differential volume
element dx; by the volume V; (which is mass m; divided by density p;) as

.y
A =) ViAW, =Y L AW (2.2)
- —~ p;
J J
In the remainder of this thesis, we will use the shorthand W;; for W (x; — x;, h)
and, e.g., A; for A(x;) to make the equations easier to read. When required,
the derivative of a field quantity can also be easy computed by simply taking
the derivative of the kernel function, e.g.:

s
VA = Z p—jJAjvwij. (2.3)
J

The SPH approximation is illustrated in Figure 2.2. For a detailed explanation
and derivation of the above basic SPH equations, we refer the interested reader

to the comprehensive annual review of Monaghan [Mon05].

2.2 Smoothing Kernels

Early works in SPH (e.g. [GM77]) used the Gaussian function as the kernel
function, which is defined as

2

Wz (2.4)

Waauss (Ta h) = Ugausse_
where r is the distance to a neighboring interpolation point and &, . (the
dimensionality factor) is 1/(7%/2h%) in 3D. Although 2.4 might be a good choice
for SPH approximations, the exponentiation makes it very expensive to compute.
Therefore, more efficient functions that mimic the behavior of Gaussian have
been created for SPH simulations. Undoubtedly, the most famous of those
functions is the ubiquitous cubic B-spline, which was presented by Monaghan
and Lattanzio in [ML85]. The kernel can be written as:
3 2
woGmtl 0sr<g
D
Wespline (75 h) = 0Gspline § 2 (1 — %) b<r<h (2.5)

0 otherwise

where crg Spline 18 a dimensional factor to normalize the kernel for different spatial

dimensions and is defined as 3/27h3 in 3D. Other Gaussian-like kernels include
the Quintic kernel [Wen95], which is defined as

(1-2)'(+1) 0<r<h

D
WQuintiC (T7 h) = UQuintic {0 otherwise
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Particle of interest

Figure 2.2 — Illustration of SPH approximation for a field variable for the red particle,
where W denotes a Gaussian-like interpolation function (a.k.a. SPH kernel), A is the
influence radius (a.k.a. smoothing length). Such an SPH kernel is usually used for
computing particle density, where contributions from neighboring particles decrease
with increasing distance.

where Ugumtic = 7/ (87h?) in 3D; and the 6th degree polynomial used in
[MCGO03], which is defined as

0<r<h

h2 —r2)°
Weotgs (1, 1) = 0y |
Poly6 (r,h) Poly6 {O otherwise

where o5, olys = 315 /647h? in 3D. How well the kernels approximate the Gaussian
kernel is shown in Figure 2.3.

Furthermore, different kernel functions were also used for different applica-
tions. For instance, Johnson et al. [JSB96] used a quadratic kernel function
to study the high velocity impact problem to prevent particle clustering in
compressing areas. Mueller et al. [MCGO03] used different kernel functions (that
are quite efficient to compute) when computing fluid density, pressure force and
viscosity force for real-time applications.

Unless stated otherwise, the cubic spline kernel function and its gradient is
used to compute the basic SPH field variables in the presented experiments.
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Figure 2.3 — Commonly used SPH kernels functions (top), and their gradients
(bottom).

2.3 Neighborhood Search

SPH requires neighboring sample points to evaluate the approximations of
field variables. As those sample points are moving with the fluid, they may
change their positions in each simulation step. The most basic neighborhood
determination strategy in SPH is using a regular voxel grid with the cell size
equivalent to the smoothing length / of the SPH simulation. The grid is usually
resized to enclose all the particles in the simulation domain for a given simulation
step. In a 3D simulation, up to 27 cells are queried for neighborhood. However,
such a strategy has several issues. First of all, memory consumption scales with
the AABB (axis aligned bounding box) of the scene, as number of voxels increase
proportionally. Although such a data structure seems efficient in computation
time at a first glance (e.g. has O (1) access time), for large simulations the
memory coherence of the simulated data significantly reduces (therefore the
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cache-hit rates), which causes the simulation data to be repeatedly transferred
between memory and CPU cache. Because of these important reasons, more
sophisticated data structures are commonly preferred for SPH.

2.3.1 More Sophisticated Data Structures

Adams et al. [APKGOT7] used a kd-tree to search the neighbors in a multi-
resolution fluid simulator. In [HKKO07], an SPH implementation that runs
entirely on the GPU is presented. The method maps a 3D uniform grid onto
a 2D texture, where particle indices are stored in RGBA channels. In [ODO08§],
a scheme called index sorting is used to improve the memory coherence of the
simulated data. Index sorting first sorts the particles with respect to their cell
indices, then indices of the sorted array are stored in each cell. Each cell stores
only one reference to the first particle with the corresponding cell index. The
same approach is also used in NVIDIA’s GPU based SPH solver [Gre08]. Another
popular technique to find neighboring SPH particles is the Verlet list method
[Ver67, Hie07]. In this approach, a list of potentially neighboring particles is
stored for each particle. Potential neighbors are determined based on a threshold
distance s, which is commonly chosen much larger than the smoothing length
h. The list of potential neighbors is updated only if a particle has moved more
than s — h. In [KWO06], particles are sorted in multiple staggered grids that are
created for each simulation dimension. Therefore, the approach does not need
to query spatially close cells, but processes each dimension one after another.
However, the approach does not scale well for increasing particle numbers.

Compact Hashing Technique

Another more recent strategy to search neighboring particles in shared memory
parallel SPH implementations is introduced in [TABT11]. In that work, the
authors propose an efficient spatial neighborhood query structure. The approach
maps the spatial locality of the particles onto memory by using a Z-curve similar
to [WS95]. The work also analyzes and compares basic voxel grids, spatial
hashing, and index sorting. The proposed data structures have also been used
in GPU-based simulators in [MM13, OK12]. The approach improves upon
the spatial hashing procedure explained in [THM'03]. In that approach, the
simulation domain is mapped to a finite list, where a hash function that maps a
position x = (z,y, 2) to a hash table of size m has the form

H(z,y,2) = K% 'p1> b (% -pz) S (2 -pgﬂ modM,

where pl, p2, p3 are large prime numbers which are chosen as 73856093, 19349663
and 83492791 respectively in [THM*03]. In [TABT11], spatial hashing is further
improved by keeping a compact list of non-empty cells, where the hash cells just
store an index to their related used cell. Consequently, the approach has constant
memory footprint for the hash table and extra memory only for the used cells.
Therefore, the memory consumption scales with the number of particles, but not
with the number of cells; which was the case in the basic voxel grid data structure.
As another optimization, the complete list of particles is inserted to the data
structure only once. In the later simulation steps, only the particles whose cell
coordinates change get re-inserted. As insertions cannot be done in parallel
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because of race conditions, such an optimization saves significant amount of time,
as the amount of particles that change their cell coordinates remains around 2%
on average. After the insertion, the particles can be queried in parallel, where
only the list of used cells is processed. The overhead caused by hash collisions
(where two cells with different coordinates are mapped to the same cell in the
hash table) is also low in the approach, as a hash-collision flag is stored in each
cell where the hash indices do not need to be computed for cells without hash
collisions. As the memory consumption of the data structure scales proportional
to the number of particles, but not with the hash table size, the hash table can be
set to a large size to enforce a low number of hash collisions. The authors show
that having a hash table size that is two times large than the number of particles
is sufficient to keep the hash collisions around 2%. As the hash function in the
original spatial hashing scheme is designed to map an arbitrarily large simulation
domain to a small array, the data is always scattered and spatial locality is lost.
This results in low cache hit rates and increased memory transfers. The authors
address this issue by sorting the particles according to a Z-curve once in several
simulation steps, and then rebuild the compact used-cell list.

For the experiments presented in this thesis, we used the compact hashing
scheme, as the approach allows handling arbitrarily large simulation domains in
an efficient way, both in terms of computation time and memory consumption.

2.4 Approximating Fluid Equations of Motion with
SPH

Navier-Stokes equations are a set of partial differential equations that describe
the motion of fluids, which are named after Claude-Louis Navier and George
Gabriel Stokes. They are used to model the behavior of various types phenomena
whose motion resembles fluids, including: Liquid and gas flow around different
objects like cars, ships and aircrafts; motion of ocean currents, weather and even
galaxies. When considering the incompressible flow of a Newtonian' fluid, the
equation can be written in vector form as

Dv
p—— = —Vp+ uViv +f. (2.6)
Dt
where v is the flow velocity, 2¥ = 2 + v . Vv, is called convective derivative? p

is the fluid density, p is the pressure, p is the viscosity coefficient and f represents
body forces acting on the fluid per unit volume. When looking from Lagrangian

viewpoint, where the quantities move with the fluid, the convective term in the
convective derivative vanishes, which means % = ‘fi—‘t’, where Cﬁ%‘ = v. Finally,

for incompressible fluids from Lagrangian perspective, (2.6) becomes

dv

P =—Vp uV3v + f. (2.7)

LA fluid is referred to as Newtonian if its viscosity does not change depending on the applied
stress or flow velocity. Water is usually considered Newtonian.
2Also known as, e.g., “advective derivative” and “Stokes derivative”.




2.5. Density

Multiplying both sides of (2.7) with volume V of an infinitesimal fluid particle
where the equation is expected to hold, the equation becomes

Fpressure Fuiscosity Fegterna
dv  —— — P
m— = —VVp +VuVv+4+ VI | (2.8)

dt

where m is the mass of an infinitesimal fluid particle inside the fluid. SPH
allows the forces on the right hand side to be evaluated, which makes (2.8) easily
solvable by using simple numerical ordinary differential equation integration
schemes, such as; Euler-Cromer, Verlet or Leap-Frog.

For incompressible flow, the volume conservation equation V -v = 0 is
satisfied using the pressure forces in (2.8).

2.5 Density

Fluid density is undoubtedly the most important field variable of SPH simulations,
since the pressure force arises as a result of the changes in the fluid density.
A well-known way to compute fluid density in SPH is using the summation
density approach [Mon05]. It can be easily derived from the basic SPH scheme
by substituting fluid density p as the field variable A into (2.2), which results in

pPi = ijWij. (29)
J

The most important issue with the summation density technique is that it results
in underestimated density values near fluid interfaces. As will be seen in the
incoming sections, reconstruction the density field as correctly as possible is very
crucial in SPH, since pressure force that is to satisfy incompressibility solely
relies on the density field.
Another way to update density is to use the mass continuity equation:

Dp

— +p(V-v)=0 2.10

L p(V V) (2.10)
as basis. Expanding the convective derivative and leaving the time rate of change
of density alone results in

o _

7 =-V-(pv)+v-Vp.

Finally, approximating % using SPH yields

CZ;Z =Y my(vi—v;)- VWi, (2.11)
J
where the rate of change of density is computed based on the relative motion of
the particles [Mon92]. (2.11) has computational advantage over (2.9), as all field
variables that are necessary to solve fluid equations of motion can be computed in
a single loop over the particles. Although (2.11) looks as if it is unaffected by the
underestimated densities near fluid interfaces, it has different issues. First of all,
the accumulation of numerical errors, and the errors caused by time integration
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schemes cause stability issues. The common practice to alleviate these problems
is to reinitialize the particles’ densities time to time using (2.9), and using a
density correction strategy. One of the most common correction strategy is to
use Shepard filter [She68] as done in [Pan04]. Another strategy is to use Moving
Least Squares (MLS) technique as used in [CL03, Pan04].

Independent of the chosen density computation approach, density underesti-
mation at fluid interfaces is still an important issue, which gives rise to unphysical
negative pressures and subsequent particle clustering. The clumping of SPH
particles is unphysical, as the repulsive forces between real fluid molecules do not
allow such a behavior. One commonly used way to prevent tensile instability in
SPH fluids is using artificial pressure forces [Mon00], which are used in [MM13].
Even using the artificial pressure forces, the pressure gradient of the fluid that
is in contact with a solid still cannot be reconstructed correctly. To alleviate
those issues, [DK01, KAGT05, SSP07, TAGT10, ATAT12, SB12] use particles to
represent boundaries, where these particles also contribute when computing fluid
density and other field variables.

In this thesis, the summation density approach (2.9) is used, as it conserves
mass exactly. Furthermore, the underestimated densities near fluid interfaces and
tensile instability issues are handled by using different strategies for fluid-solid
and fluid-air interfaces, which are covered in Chapters 3 and 5 respectively.

2.6 Pressure Force

Since the introduction of SPH, many ways to compute pressure of incompressible
fluids have been proposed. This section will go through some of those works.

2.6.1 State-Equation-Based SPH

One of the most common and easiest to implement way to compute the pressure
of a fluid particle is to use an equation of state to directly relate pressure to
density in each simulation step. The most commonly used equation of state has
been popularized in [Mon92|, which is defined as

=2 (2) )

where ¢, is the stiffness constant that determines the speed of the caustic waves
that are responsible for the numerical propagation of pressure, pg is the rest
density of the fluid and ~ is called the polytropic constant which is chosen
as v > 1. Higher ¢; and « values result in faster numerical propagation, and
consequently less compressible fluids. However, lower compressibility always
means higher computation time when using an equation of state, as smaller time
steps have to be used for the simulations to remain stable. In [MCGO03], ideal
gas equation is used to compute fluid pressure for real-time applications, where
some degree of visible compressibility is allowed in favor of higher performance.
Ideal gas equation can be easily derived by substituting v = 1 into (2.12).
After computing per-particle pressures, the pressure force acting on a particle
can be computed using SPH. Approximating the pressure term —Vp in 2.7 yields

j J




2.6. Pressure Force

Assuming non-viscous fluids and excluding external forces, (2.7) simplifies to

Euler equation
dv Vp

g , 2.13
o P (2.13)
which can be used to write the pressure force on particle i caused by the

neighboring particles as

Fp = —mllZmefJVWu (214)
Pi P

An important issue with (2.14) is that it does not conserve momentum, since

the pairwise forces between the particles can be asymmetric (i.e. the force from

particle ¢ to j is not necessarily equivalent in magnitude to the force from j to 7).

Fortunately, a symmetrized form can be easily derived by expanding (2.13) as

S bQe e

and applying SPH approximation to (2.15) yields a symmetrized version of (2.14)

as
F? = —m; ij p% + % VWi;. (2.16)
; p; Py

Another way to symmetrize the pressure force is explained in [MCGO03], where
the arithmetic mean of the pressures of the neighboring particles is used as

j J

The state-equation-based SPH (SESPH) algorithm is presented in 2.1. In this
thesis, (2.16) is used to compute pressure forces. However, to compute particle
pressures, different techniques are used, which are explained next.

2.6.2 Incompressible SPH

For the complete elimination of acoustic waves and compressibility artifacts,
some authors proposed to satisfy complete fluid incompressibility. In the works of
Cummins and Rudman [CR99], and Premoze et al. [PTBT03] , incompressibility
is achieved by computing a divergence-free velocity field. Although these ap-
proaches allow larger time steps, a pressure Poisson equation needs to be solved
in each simulation step, which makes the performance of the simulations scale
inferior than SESPH for increasing number of particles. More recently, some
authors proposed to avoid the pressure Poisson solve by using an auxiliary grid
to compute pressures [LKO05, LTKF08, RWT11] as in the Eulerian techniques.
Afterwards, the pressure values on the grid are projected to the particles, which
significantly improves the convergence rate to incompressibility, when compared
to SESPH techniques.

Another commonly used way to compute pressure is by using predictor-
corrector schemes. In the work of Solenthaler and Pajarola [SP09], density
fluctuations are propagated through the fluid and pressure values are updated
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Algorithmus 2.1 State-Equation-Based SPH

1: while animating do

2 foreach fluid-particle ¢ do
3 find neighbors

4:  end foreach

5 foreach fluid-particle ¢ do
6

compute density p; (t) = >_,; m;Wi;

7 compute pressure p; (t) = pOTCi ((%)7 — 1)
8: end foreach

9:  foreach fluid-particle ¢ do

10: compute and add up all forces

11:  end foreach

12:  foreach fluid-particle i do

13: compute new velocity v; (t + At)

14: compute new position x; (¢ + At)

15:  end foreach

16: end while

until the desired compression rate is satisfied. The method uses a convergence
loop that is executed in each simulation step, which consists of a prediction
and correction. The technique is named Predictive-Corrective Incompressible
SPH (PCISPH). More recently, an approach that relies on a similar prediction-
correction scheme is presented in the work of He et al. [HLL™12] named Local
Poisson SPH (LPSPH). The basic concept of the approach is converting the
pressure Poisson equation into an integral form, and then applying the SPH
technique to convert the integral into a summation over neighboring fluid particles.
The authors show that LPSPH has better convergence than PCISPH.

Another way to satisfy incompressibility in SPH is to derive the incompress-
ibility condition from constraint dynamics. In the work of Ellero et al. [ESE07],
a kinematic constraint is used, which enforces that the volumes of the fluid
particles remain constant. The authors use Lagrangian multipliers to enforce the
constraints. A similar approach is followed in the work of Bodin et al. [BLS12].
In the work of Macklin and Mueller [MM13], an approach with similar types of
constraints is demonstrated for real-time scenarios, where the solver is running
completely on the GPU.

More recently, Thmsen et al. [[CS*13] proposed a technique that uses an SPH
approximation of the continuity equation to obtain a discretized form of pressure
Poisson equation. The authors call the technique Implicit Incompressible SPH
(IISPH). Different from the previous projection-based techniques, IISPH also
considers the actual computation of the pressure force, which improves the
convergence rate of the solver. Additionally, the density deviation in IISPH is
computed based on particle velocities instead of positions, which improves the
robustness of the solver.

In most of the experiments presented in this thesis, the pressures of fluid
particles are computed using PCISPH. A brief discussion of PCISPH is presented
in Section 2.6.2.1. Furthermore, a brief discussion of IISPH is also included in
the thesis in Section 2.6.2.2, as the presented techniques are also confirmed to
work with that pressure solver.
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Algorithmus 2.2 PCISPH

1: while animating do

2 foreach fluid-particle i do

3 find neighbors

4:  end foreach

5.  foreach fluid-particle i do

6 compute and add up forces other than the pressure force
7 set pressure p; (t) = 0 and pressure force F? () = 0

8 end foreach

9

k=0
10:  while pf_. (t + At) > n or k > minlterations do
11: foreach fluid-particle ¢ do
12: predict velocity v} (¢ + At)
13: predict position x} (¢ + At)
14: end foreach
15: foreach fluid-particle ¢ do
16: update distances to neighbors
17: predict density pf (t + At)
18: predict density variation p,... (&4 At)
19: update pressure p;(t)+ = dp},.,. (t + At)
20: end foreach
21: foreach fluid-particle ¢ do
22: compute pressure force F? (t)
23: end foreach
24: E+=1;

25:  end while
26:  foreach fluid-particle i do

27: compute new velocity v; (t + At)
28: compute new position x; (t + At)
29:  end foreach

30: end while

2.6.2.1 Predictive-Corrective Incompressible SPH

In PCISPH, density fluctuations are predicted and corrected using pressure forces.
The algorithm iteratively computes the pressure p; (t) for each particle such that
the predicted density fluctuation pf,.,. (¢4 At) is lower than a predefined value.
In each convergence iteration, the predicted position x} (t + At) and velocity
vi (t 4+ At) of each particle are estimated based on x (¢), v (t) and predicted
acceleration. Using the predicted positions, the predicted densities pf (t + At)
are computed as

P (t+At) = mWy,
J

where W =W (x; (t + At) — X3 (t + At) , h). Afterwards, the density change
(compression) pf,.,.. (t 4+ At) = pj (t + At)—pg is computed to update the pressure
that corrects that density error as

Di (t) + = 5/):7“%; (t + At) )

[\)
t
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where ¢ is a constant computed for a prototype particle with complete neighbor-
hood and defined as

~1
B [— > VWi 32 VWij =32, (VWi - VWU)}

5:

and
B = At*m?
Po
Finally, to recompute the predicted positions and velocities for all particles, the
pressure force

FUO = mi (fé:(f 2 ?Z*(f)z) W

j J

is used. The procedure is repeated until a user-defined compression threshold
value 7 is met. The steps of PCISPH is given in Algorithm 2.2.

2.6.2.2 TImplicit Incompressible SPH

IISPH uses a semi-implicit form of the density prediction using the time rate of
change of fluid density. The approach is derived by approximating the continuity
equation given in (2.10) at time t + At using a backward difference for the time
derivative of the density, and the divergence of the velocity using SPH as:

( +At> - pz
At

= m[vi(t+At) — v (t+ A VIV (). (2.18)

J

(2.18) introduces unknown velocities that depend on unknown pressure forces,
which naturally depend on unknown pressure values at time t. By using the Euler-
Cromer integration scheme, one can write v (t + At) = v (t) + Atw,
where F? (t) denotes pressure forces and F° (¢) denotes all forces other than
pressure. Assuming all other forces are known, the predicted velocities can
be approximated as v* (t + At) = v (t) + At%. Therefore, similar to (2.18),
predicted density can be written as

pr(t+ At) = p; (£) + At Z my [vi(t+ At) =V (t+ AL VW5 (1) (2.19)

Substituting pj (¢ + At) as p; (t), and pg as p; (t + 1) into (2.18) and simplifying
yields

t2Z (F F;()>VWW<>—po—pz<t+At>. (2.20)

Substituting the symmetric pressure force in (2.16) into (2.20) results in a linear
system with n equations and n unknown pressure values in the form

Y aip; = po — pi (t+ At). (2.21)
J
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The authors show that (2.21) can be solved either using relaxed Jacobi or
conjugate gradient. In the relaxed Jacobi implementation, the individual pressure
values p; can be solved as

—pf(t+ A = aiph
pi+1 (1—w)p£+wp0 pz( ) Z];éz ZJpj7

2.22
. (2.22)

where [ is the index of iteration and w is the relaxation factor. To compute (2.22),
a;jand ) i aijpé should be computed first. To extract a;;, the displacement
caused by pressure force can be reformulated as

Atz = —MZ% ( 'J pfpzt)> VW, (t)

_ t2z mﬂ)vww pz—l—Z( t2 i VW”()>2123)

di; di;

where d;;p; is the displacement of particlei caused by the pressure p; and d;;p;
is the motion caused by the pressure p; of a neighboring particle j. Substituting
(2.23) into (2.20) and representing the neighboring particles j in (2.23) as k
results in

po — p; (t+At) ng diipi + Y dijp; — djjp; — > djepr | VWi (1)
j k
(2.24)
Since ¢ and j are neighboring particles, the term ), d;xps, also includes pressure
values p;. To separate p;, one can write Zk djrpr = Zk# d;rpr +dj;p;. Hence,
the right-hand side of (2.24) can be separated into two parts: one containing p;;
and another containing p; and pj, as

po— pi (t+ At) =p; > my(dis — dji) VIV (¢)
j

+ij Zdijpj dj;p; — Zdjkpk VWi; (t).
J J

k#i

Therefore, the coefficients a;; can be computed as
Qi = ij (d” — d]l) VWZJ (t) 5
J

and finally, the pressure can be iteratively computed as

1
Pt =(1—-w)pl + w—(po = pj (t + At) = D) (2.25)
where
D = Z m; Z dijpé‘ - djjp-lj - Z djkpi VWZJ (t) . (226)
J J k#i
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Algorithmus 2.3 IISPH using relaxed Jacobi iterative solver

1: while animating do

2 foreach fluid-particle ¢ do
3 find neighbors

4:  end foreach

5. foreach fluid-particle ¢ do
6 compute density p; (t) = >_,; m;Wi;

7 compute and add up forces other than the pressure force
8 compute velocity vi = v; (¢) + At%(f)
9 compute displacement d;; = At? > j —%VWH (t)

10:  end foreach

11:  1=0

12 while pl, —po> ¢ orl<2do

13: foreach fluid-particle i do

14: Zj dijpé‘ = At? Zj 7%pévww (t)
15: foreach fluid-particle ¢ do

16: compute pi“

17: Di (t) = piJrl

18: l=1+1

19:  end while
20:  foreach fluid-particle i do

21: compute new velocity v; (t + At)
22: compute new position x; (t + At)
23:  end foreach

24: end while

The authors propose to continue the Jacobi iteration until the difference between
the average fluid density and the fluid rest density is no longer greater than
the threshold £. Additionally, the minimum number of iterations is chosen as 2.
Algorithm 2.3 summarizes how IISPH using relaxed Jacobi works.

2.7 Viscosity Force

The viscosity term in the Navier-Stokes momentum equation (2.7) is another
fundamental term that governs the motion of fluids. In SPH, viscosity forces are
commonly employed to be able to model variety of fluids. Viscosity also has an
important positive effect on the simulation stability, as it damps relative motion
of the particles. For real liquids, viscosity force converts the fluid kinetic energy
into heat. Applying SPH to the viscosity term pV2v in (2.7) yields

r =Yg () v, (2.27)
J

Pj

which again produces an asymmetric formulation similar to directly applying
SPH to solve for the pressure force. In the work of Mueller et al. [MCGO3],
(2.27) is symmetrized using the fact that the viscosity forces only depend on
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relative velocities as

Vi

— ) VAW, (2.28)
Pj

F; :uij (Vj
j

However, one issue with (2.28) is that it relies on the second derivative of the
kernel function, which is very sensitive to particle disorder.

Another way to compute viscosity is by using the artificial viscosity formula-
tion explained in the work of Monaghan and Gingold [MG83], where the viscosity
force on a particle is written as

F;} = —m; Z ijijVWij, (2.29)
J

where

M, = —v (mm(vij “Xij, O)) 7 (2.30)

|Xij |2 + €h2

with the viscous factor

2acheg
V=
pi+ pj
In (2.30), vij = v; — v, X;; = X; — X; and € = 0.01 is commonly used to avoid
singularities for |x;;| = 0. In (2.31), « is the viscosity constant and ¢, denotes
the speed of the numerical propagation.
Another popular technique to introduce relative motion damping in SPH is to
perform velocity smoothing of the neighboring fluid particles before integration.

This technique is called XSPH and has been introduced in the work of Monaghan
[Mon89]. XSPH is defined as

(2.31)

dx; m;
Fe=vite Yy Wi,
dt = Pij

where pap = % (pa + ) and € is a constant in the interval (0, 1) that determines
how fast the velocities are smoothed. In the works of [SB12, MM13], XSPH is
used as the sole method to generate viscosity-like damping in SPH simulations.

For the presented experiments in this thesis, the artificial viscosity formulation
of Monaghan and Gingold[MG83] (2.29) has been used.

2.8 Vorticity Confinement

Numerical dissipation has the effect of causing additional damping on SPH parti-
cles, which results in the generated vortices to rapidly disappear. To counteract
this undesired effect, vorticity confinement techniques [SU94] are commonly used.
Based on the heuristic representation of the vorticity confinement in [FSJ01];
in the work of Hong et al. [HLYKO08], the vorticity at the mass center of two
SPH particles is measured and vorticity confinement forces are applied to fluid
particles. In the work of Zhu et al. [ZYF10], a high-resolution grid is coupled
with each solid object, inside which the turbulence formation is modeled by
resolving the local flow by employing a hybrid SPH-Eulerian solver. The method
is aimed towards generating enhanced turbulent patterns around solid objects.
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In the work of [JBiRBN11], SPH is coupled with multi-level Eulerian grids to
combine vortices at different scales. More recently, in the work of Macklin and
Mueller [MM13], the vorticity is computed at a particle’s position using the
vorticity estimator explained in [Mon92], where the vorticity forces are only
added to particles, that already has some vorticity present, as in the work of
Fedkiw et al. [FSJO1].

The experiments presented in this thesis do not employ any form of vorticity
confinement. However, we believe that using a vorticity confinement technique
could have a positive influence on flow realism for turbulent scenarios.

2.9 Multi-Resolution Techniques

Multi-resolution techniques in SPH gained popularity with the work of Adams et
al. [APKGO07]. In that work, a sampling condition based on geometric local fea-
ture size is used, which allows using smaller particles for focusing computational
resources in geometrically complex regions, while using larger particles deep
inside the fluid or near thick flat regions. The transition between different reso-
lution particle sets is performed using split/merge operations. Similar adaptive
techniques are later presented in the works of Zhang et al. [ZSP08] and Yan et
al. [YWH'09]. More recently, in the work of Solenthaler and Gross. [SG11], a
scheme to couple two-resolutions SPH fluids is explained. In their work, frequent
particle splitting and merging processes are avoided, which alleviates stability
problems of the previous multi-resolution techniques. In the work of Horvath
and Solenthaler [HS13], the previous two-scale technique is extended to multiple
resolutions. Their approach also supports fine resolution particle generation near
fluid surface and close to observer, and can handle complex boundary conditions.
Furthermore, the technique improves upon the mass-conservation and stability
aspects of the previous multi-resolution techniques.

2.10 Surface Generation

Among all phases in SPH fluid animations, the surface reconstruction is one of
the most challenging parts. The main research in this area focuses on obtaining
smooth surfaces within reasonable time by reducing memory footprint. Although
there are various approaches in the literature, probably the most widely used
technique is polygonizing the fluid surface with the Marching Cubes (MC)
method of Lorensen and Cline [LC87], which is performed over a proper scalar
field on uniform grids.

Within the context of scalar field computation, Blinn initially introduced
blobbies method [Bli82], which is efficient to compute, however, produces very
bumpy surfaces. Later, Zhu and Bridson proposed to use the signed distance field
of the particles [ZB05]. In this approach, each particle contributes to the scalar
field along its smoothing radius. This approach alleviates the bumpiness issue;
however, it suffers from artifacts in concave regions. Adams et al. [APKGOT]
addressed these issues by introducing a distance-based surface tracking technique.
This technique is able to achieve smoother surfaces; however, its computational
complexity makes it less suitable for the surface reconstruction phase. Solenthaler
et al. improved the method of Zhu and Bridson in [SSP07], where they correct
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the artifacts by considering the movement of the contributing particles’ center
of mass at a certain query point. This problem is also addressed in the work
of Onderik et al. [OCD11]. Recently, in order to obtain smooth surfaces,
Yu and Turk [YT10] proposed to use anisotropic kernels to further improve
surface smoothness. However, the approach is significantly more expensive when
compared to the previous work. Later, Bhattacharya et al. [BGB11] proposed a
level set method, where the fluid surface that lies between inner and outer surface
approximations is processed by Laplacian smoothing. However, the approach
causes most of the surface details to get smoothed out.

To reduce the computational complexity and memory consumption, various
narrow band techniques have been proposed, e.g. sparse block grids [Bri03],
RLE sparse level sets [HWBO04] and dynamic tubular grids [NMO06]. Out-of-core
techniques, e.g. [NNSMO07] and parallel algorithms, e.g. [ATAT12], also gained
interest in the recent years to handle large particle counts.

Recent advances in GPU architectures pioneer researchers to investigate
interactive fluid rendering techniques. In this context, surface splatting is one of
the most popular surface visualization approaches [ZPvBGO01, ALD06, vdLGS09,
MM13]. The splatting method is quite useful for fast getting fast results. However,
generated surfaces only consist of smoothly blended splats, which are not able
to produce high quality results. There are also other screen space approaches
that can generate a triangle mesh, e.g. [MSD07, FAW10, GSSP10]. The surface
reconstruction of SPH fluids invites many researchers for further improvement,
e. g. improving surface quality with post-processing [AAIT12] or application
of adaptive spatial data structures for memory consumption improvements
[ZGHG11, AAET13].

For the presented works in this thesis, the method of Akinci [ATAT12] has
been used to construct triangle meshes from particles.







Rigid-Fluid Coupling

3.1 Introduction

In fluid animations, the interesting fluid behavior usually emerges when rigid
objects are added to a simulation (see Figure 3.1). While the two-way coupling
of particle-based fluids and solids seems to be straightforward, there is no general
agreement how this should be handled. On one hand, the coupling has to
cope with particle deficiency issues at the boundary in order to prevent spatial
and temporal discontinuities of physical properties of the particles and sticking
artifacts [IAGT10] (see Figure 3.2). On the other hand, lower dimensional
geometries, e.g. thin structures and non-manifold surfaces, as well as constrained
rigid bodies should be supported. This chapter provides a versatile way to
address these issues. In the remainder of this section, we first discuss existing
methods for treating boundaries in SPH (Section 3.1.1) as well as for rigid-fluid
coupling (Section 3.1.2), and then highlight our contribution (Section 3.1.3).

3.1.1 Boundary-Handling in SPH

For SPH boundary-handling, distance-based penalty methods with boundary
particles have been commonly used [MST*04, Mon05, HKK07, MK09]. These
approaches, however, require large penalty forces that restrict the time step.
Furthermore, particles tend to stick to the boundary due to the lack of fluid
neighbors. In [HKKO7], this problem is alleviated by employing a wall weight
function for approximating density contributions for planar boundaries.

Figure 3.1 — Fluid-rigid interaction in a large-scale setting. A boat with ragdolls
passes a bridge (left). A second boat with ragdolls collides with the bridge due to an
increased flow rate and the bridge is released (middle and right). Images are taken
from [ATAT12].
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Figure 3.2 — Pressure profile of a box filled with particles where the front side is
clipped for illustration purposes. The fluid particle pressures are color-coded and
proportional to their red saturation. Black particles denote boundary particles. While
[BTTO09] leads to pressure noise and sticking artifacts (left), our method avoids these
problems (right). Images are taken from [ATA112].

The sticking of particles is avoided with frozen and ghost particles based
models, e.g. [LP91, HA06, SB12]. Frozen particles are fluid particles that are
constrained to static positions, whereas ghost particles are mirrored across the
boundary on the fly. Figure 3.3 provides an illustration to the sticking problem
in SPH. In order to guarantee non-penetration, either more than one layer of
frozen particles should be used [DKO01], or the positions of penetrating particles
should be corrected [TAGT10]. Since this class of methods samples the boundary
with fluid particles, the relevant field variables can be well approximated with
SPH. This results in continuous pressure gradients, which consequently prevents
sticking of fluid particles to the boundaries. However, handling the interaction
of the fluid with thin shells is problematic in these approaches since the elevated
density on one side of a boundary particle affects potential fluid particles on
the other side. The interaction of fluids with deformable thin shells has been
demonstrated in [LD08] with additional distance-based non-symmetric forces to
prevent the penetration of fluid particles.

Alternative to particles, boundaries can also be efficiently represented with
triangles. In this case, however, it is challenging to handle discontinuous surface
normals and non-manifold structures that cause spatial and temporal disconti-
nuities of the fluid properties.

3.1.2 Two-Way Fluid-Rigid Coupling in SPH

For the two-way coupling of SPH fluids and rigid bodies, only few approaches
have been proposed so far. In [CBPO05], the fluid is considered as a collection of
rigid spheres exchanging impulses with surrounding rigid bodies. In [ODAF06,
KAD™06], the pressure at the boundary is taken into account for two-way coupled
fluid-rigid interaction. In those models, however, dynamic forces, e.g. viscosity,
are neglected. More recently, an impulse-based approach for simulating the two-
way coupling of SPH fluids with particle-based rigid bodies has been proposed
in [OKR09a]. This approach, however, is not purely based on hydrodynamic
forces, relies on normal information for rigid bodies, and does not guarantee
non-penetration for thin shells.

In [BTT09], direct forcing has been employed for both one- and two-way
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Figure 3.3 — Illustration of the boundary deficiency problem. Since particle ¢ has
forces on itself from all directions, it is able to move to any direction based on the
pressure change of the neighboring fluid particles. Particle j, however, does not have
a full neighborhood that surround it, which restricts its motion to the boundaries.

Resuming from these steady states would result in the configurations illustrated in the
right of the figure.
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fluid-rigid coupling. This method uses a predictor-corrector scheme to compute
forces that constrain particle positions and velocities to specific values. Non-
penetration is guaranteed by using position correction. Different slip conditions
are realized by including a non-symmetric friction model. The position correction
and the non-symmetric friction forces are, however, not momentum-conserving.
Another issue is that timestep-dependent operations are used that require careful
parameter evaluation for each setup. Finally, it requires two additional neighbor
queries for two-way coupling, which is rather expensive. This method has not
yet been extended to handle the interaction of a particular fluid particle with
multiple rigid bodies or the simultaneous contact among the bodies.

There exist impressive two-way coupling approaches for Eulerian and semi-
Lagrangian schemes (e.g. [CMT04, GSLF05, CGFO06, BBB07, RMSG*08]), as
well as for 2D heightfield models (e.g. [CM10]). A thorough discussion of these
methods is, however, beyond the scope of this chapter.

3.1.3 Contributions

We present a novel, versatile method for the two-way coupling of SPH fluids and
rigid bodies. We use boundary particles to sample the surface of rigid objects,
which has several benefits. First, the use of particles allows us to derive a model
that can cope with different shapes, including lower-dimensional rigid bodies
consisting of one layer (referred to as thin shells) or one line of boundary particles
(referred to as rods), as well as non-manifold geometries. Second, the inclusion of
boundary particles successfully alleviates the particle deficiency problem of SPH
near boundaries, preventing density (and consequently pressure) discontinuities
at the boundary and particle sticking artifacts.

Our model addresses the problem of inhomogeneous particle sampling at
the boundary by deriving new equations that consider the relative contribution
of a boundary particle to a physical quantity. This does not only facilitate
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the particle initialization at complex boundaries, but also enables the use of
multiple dynamic objects where the boundary sampling in the neighborhood may
change due to contacts. A friction model is additionally included to simulate
various slip conditions and drag effects. All pressure and viscous forces that are
applied between fluid and boundary particles are symmetric, conserving linear
and angular momentum. The approach is designed such that even very large
density ratios between fluids and rigid bodies can be handled.

3.2 Formalism

This section firstly explains our corrected density computation concept at the
rigid-fluid interface in Section 3.2.1. Afterwards, Sections 3.2.2 and 3.2.3 describe
novel pressure and friction forces for pairs of boundary and fluid particles, while
Section 3.2.4 discusses the overall forces and the symmetry of these forces.

3.2.1 Corrected Density Computation

The density summation approach (2.9) approximates the density of a fluid
particle correctly only if a particle is spherically surrounded by particles with the
same initial density. Therefore, densities of fluid particles near the boundaries are
underestimated. In order to alleviate this underestimation, we set the densities of
such particles to the rest density of the fluid. Even though this simple correction
scheme significantly improves the situation, the density gradient still remains
discontinuous near the boundaries. Additionally, since the particles near the
boundaries do not have neighbors that spherically surround them, forces on such
particles constrain their movements to the boundaries, which causes sticking
artifacts. To avoid this problem, we take the neighboring boundary particles
into account when computing densities and forces for fluid particles, similar
to [TAGT10].

Since we focus on the interaction of fluids with non-deformable rigid bodies
without melting effects, particles do not necessarily need to be generated inside
a rigid. Therefore, we generate particles as a single layer at the surface similar
to [BYMO5, BIT09, TAGT10]. This approach saves memory and improves
performance. The particle representations of rigid bodies in the framework are
computed either directly (e.g. for analytical shapes) or from mesh representations.
Particle representations of triangle meshes are generated based on [BYMO05],
which permits placing particles at an arbitrary offset to the surface mesh and
yields a quite homogenous sampling. However, at regions with high-curvature,
the particle distribution usually remains non-homogenous, resulting in a denser
sampling in such areas (e.g., see Figure 3.4). We observed similar issues using
the remeshing algorithm of [BK04] and placing particles at the vertex positions.
Fortunately, neither of the algorithms results in under-sampled regions. Now,
we can say that each boundary particle b; represents a volume V4, at the surface
of a rigid:

mbi mbi
Yo, Pb 2 M, Wik
where k denotes boundary particle neighbors. In [SP0S8], it has been shown
that the density summation approach in (2.9) causes stability issues for large
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Figure 3.4 — A frigate is sailing on wavy sea. The right image shows the irregular
sampling of boundary particles.

density ratios due to erroneous density estimations for particles at the interface.
Therefore, the density of a fluid particle can be written as

pro=myp Y Wij+mg y Wi, (3.1)
j k

where j denotes fluid particle neighbors. Applying this idea to the volume of a
boundary particle results in
mp, 1
Vp, = ——t— = —
my, > Wik Op,

i

(3.2)

with 05, = >, Wix. Finally, (3.2) implies that the volume of a boundary particle
gets smaller for densely sampled areas and larger for sparsely sampled areas. We
now derive the fluid density computation based on the boundary particle volume
Vi,
Even though (3.1) addresses discontinuities for uniformly sampled particles,
it does not account for a variable sampling of particles. Therefore, since the
homogeneity of rigid sampling is not guaranteed, (3.1) causes fluid particles
to get large contributions from overly sampled regions. Those overestimated
densities cause large pressure forces and therefore stability issues. This is due to
the fact that the contribution of boundary particles in (3.1) does not consider
the volume of a particle. This contradicts with the SPH concept, where the
contribution of a particle in the approximation of any field variable should be
governed by its volume (see (2.2)). Therefore, we write the contribution of
a boundary particle to a fluid particle by taking the volume of the boundary
particle into account as
Uy, (PO) = poVh,, (33)

where pg denotes the rest density of the fluid that the rigid is interacting with.
Finally, the corrected density of a fluid particle can be written in the form

pf, =my, Z Wi + Z Uy, (pOi)Wika (34)
J %

which computes the densities correctly regardless of the boundary particle
sampling. Note that ¥, increases the contributions of boundary particles by
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Figure 3.5 — Color-coded contributions of boundary particles for two ragdolls with
different poses. Black and white particles represent large and small contributions,
respectively. The contribution is defined by the particular sampling density. Please
note, e.g., the smaller contribution of rigid parts in contact. Image is taken from
[ATIAT12].

the amount of the volume ratio of boundary and fluid particles in a uniformly
sampled case (by a factor of ~ 1.4). Since Gaussian like kernels are commonly
used for SPH simulations, the weight of the next layer of particles is significantly
lower compared to the closer layer. Therefore, using a single layer of boundary
particles with (3.4) and taking the missing particles into account in (3.3) is
a decent approximation in practice. See Figure 3.5 for an illustration of the
particle contributions. Our approach updates the contributions of boundary
particles for changing boundary configurations with a minimal influence on the
fluid particles that are in contact with the boundary. We experimentally verified
that even dynamically moving and overlapping boundaries can be handled, which
is illustrated in Figure 3.6.

Even though boundary particles are precomputed, a boundary particle is
included in the simulation only if it is in the neighborhood of a fluid particle,
similar to [TAGT10]. For moving boundary particles and all neighboring boundary
particles, the represented particle volumes are recomputed for handling the case
of overlapping object parts or objects in close proximity (e.g. for dynamic or
kinematic rigid bodies).

3.2.2 Boundary-Fluid Pressure Force
In SPH, the pressure force between two particles can be directly derived as
Fﬁj:—mmw<?4>vwb7 (3.5)
Pipj

where p denotes pressure of a particle [Mon05]. For purely incompressible flow
one can say that,

lim (p; —p;) =0 and lim (p;, —p;) =0
n—0

n—0
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Figure 3.6 — Handling of overlapping boundaries. Pressures on particles are pro-
portional to their red saturation and black particles denote boundary particles Front
side of the box has been clipped to make the fluid visible. For boundary particles,
whiteness denotes smaller contributions. Fluid gets very small amount of disturbance
even in such challenging scenarios. Tmage is taken from [ATA112].

where n denotes the density fluctuation of the fluid. Therefore, for weakly
compressible fluids, we can assume that p; ~ p; and p; ~ p;. Consequently, (3.5)
can be approximated as

xr
where = can be either 7 or j. A similar assumption has been also used in the
derivation of PCISPH [SP09)].

In practice, the applied pressure from fluid to some region of the rigid does
not have any kinematic influence on the nearby fluid particles. Based on this
fact, we write the pressure force applied from a boundary particle b; to a fluid
particle f; as

Py
Fh . =—mp W, (po,) (%) VWi, (3.7)
by substituting m; with Wy (po,) as done in (3.4), and using the fluid particle’s
density and pressure only. The symmetric pressure force from a fluid particle to
a boundary particle is

FP

bifi

F%Hbj. (3.8)

In (3.7) and (3.8), the idea is making use of a fluid particle’s own pressure when
computing the boundary force. Magnitudes of the boundary forces are based
on the pressure of the fluid particle, which increase as the particle gets closer
to a boundary. Since the pressure of a fluid particle near a boundary would
result in a pressure force to the boundary, that force can be counteracted by
a force that is proportional to the pressure of the fluid particle. Therefore,
this formulation eliminates sticking artifacts and prevents penetration of fluid
particles to the boundaries without using extra forces or position correction.
It also eliminates the need for normal information for our boundary particles.
Additionally, densities and pressures for boundary particles are not required.
Figure 3.7 illustrates how our boundary model works.

3.2.3 Boundary-Fluid Friction Force

Inspired by the viscosity-based friction model proposed in [MSTT04], friction
between interacting fluid and boundary particles is generated by employing
the laminar artificial viscosity model explained in the work of Monaghan and
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Figure 3.7 — Step-by-step illustration of how our approach prevents sticking artifacts.
Yellow arrows denote movement directions for selected particles. (a) As the pressure
of a fluid particle near the boundary increases, the boundary force acting on it also
increases. (b) The particle is pushed away from the boundary. (c) It moves to the
next layer of fluid particles. (d) High density region is resolved.

Gingold [MG83]. Therefore, based on (2.29), we define the viscosity force from
a boundary particle to a fluid particle as

F’;ﬁ_bj = _mfi\I/bj (pOz')HijVWij’ (3.9)

with the reformulated viscous factor

oheg
V= , 3.10
2p5, ( )

where o is the viscosity coefficient between fluid and rigid. From (3.10), pp, is
eliminated based on the same assumption that was used when deriving (3.7).
When computing the viscosity force, the velocity of a boundary particle can be
easily computed based on the kinematic properties of the rigid body it belongs
to.

The symmetric friction force from a fluid particle to a boundary particle can
be written as

Fy ;o= -F} . (3.11)

(3.11) results in drag effects on the rigid (see Figure 3.8). This idea was also
presented in [BTT09]. However, in their work, friction forces are not momentum-
conserving.

3.2.4 Total Force and Force Symmetry

Our boundary particles are transformed based on the position and orientation
returned by the rigid solver before computing all relevant forces. Based on the
derived forces, the total boundary force acting on a fluid particle and the total
force acting on a boundary particle from its fluid neighbors can be written as

otal v
F?it = Z (F]}iebj + Ffi<_bj> )

J

J

Since the pairwise forces between particles are symmetric (i.e. Fl;iebj _’_ngefj _
Oand FYy _, +Fy = 0), the total boundary and viscosity forces are symmetric
as well, i.e. Y, Figtal = 37 Fiotal,
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Figure 3.8 — Two spheres with different fluid viscosities (o = 0 for yellow and o = 8
for red) are dragged differently by the vortex. Fluid particles are colored according to
speed where blue denotes slow particles. The curves visualize the trajectories of the
spheres. Images are taken from [AIAT12].

Afterwards, for each boundary particle ¢ which belongs to a dynamic rigid
and has a fluid neighborhood, F};O,t“l is converted to total force and torque for
the rigid body as

total
F'r‘igid = E Fb? “ ’
i

total
Trigid = E (Xi - Xcm) X Fb(: @ ;

i
where x™ is the center of mass of the rigid body, and x; is the position of a
boundary particle. Finally, F,;4:q and 7,44 are applied to the rigid body.

3.3 Implementation Details

For the presented experiments in this chapter; in order to compute the pressure
from the density, we employ either PCISPH [SP09] or SESPH [Mon05, BT07].
The employed pressure and viscosity forces are based on [Mon05]. For generating
surface tension effects, we rely on [BT07]. Finally, for simulating multiphase
fluids, we use [SP08]. For the SPH interpolations, we employ the cubic spline
kernel [Mon05]. We use the Euler-Cromer scheme for time integration. We
further employ the adaptive time-stepping schemes explained in [MK99] for
SESPH, and [TAGT10] for PCISPH, where the shock handling criteria in the
latter is also added to the former. We also included the velocities of boundary
particles inside the time step estimation criteria so as to prevent fluid particles
from passing through (i.e. tunneling). Even though we presented all underlying
equations based on Monaghan’s pressure and viscosity terms [Mon05], the
same assumptions that we used in our derivations can be applied to different
formulations as well, e.g. the force terms in [MCGO3].

We used Bullet [Coull] for simulating rigid bodies. However, because of
the clear fluid-rigid solver decoupling, any rigid solver might be used as well.
For finding neighboring particles, we employed compact hashing as proposed
in [IABT11]. The application of our two-way coupling approach to SPH is
presented in Algorithm 3.1.
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Algorithmus 3.1 Simulation update with our boundary-handling model

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

while animating do

foreach moving-rigid-body 7 do
synchronize boundary particles with rigid body state
end foreach
foreach fluid-particle ¢ do
find fluid and boundary neighbors
activate neighboring boundary particles
end foreach
foreach fluid-particle ¢ do
compute density p;(t)
compute pressure p;(t) (e.g. SESPH, PCISPH, IISPH)
end foreach
foreach fluid-particle i do
add fluid forces FY'"°*(¢)
add forces exerted by boundary particles F?‘i’ml
end foreach
foreach active-boundary-particle ¢ do
add forces exerted by fluid particles Fjor!
end foreach
foreach rigid-body i do
compute the total force exerted by fluids Fyigiq,
compute the total torque exerted by fluids 7,444,
end foreach
foreach fluid-particle ¢ do
update x;,v;
end foreach
update rigid bodies (e.g. Bullet)

28: end while

Integration into IISPH

As summarized in the previous chapter, IISPH is a recent promising technique
to efficiently compute particle pressures. Therefore, we found it worthwhile to
explain how our approach can be also used with IISPH. First of all, the density
estimation 2.18 in IISPH should be extended by also including the contributions
of the boundary particles as

pi (t+ AL =S m;Wij + > Wy (po,) Wi
J b
+ At Z m;Vi; (t + Af,) VW”
J

+ ALY Wy (po,) (Vi (t+ AL) — v (t+ AL)) VIV,
b

where pg, is the density of the fluid particle 4 that the boundary particle b
interacts with. Assuming constant rigid velocity v, throughout the pressure
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iterations of IISPH, the density without pressure forces can be predicted as
*(t+ At) ZmJWU + Z\Ifb 00.)
+AthJ “(t+ AL) — Vi (t+ AL)) VIV,

+ At Z ‘I/b P0; (V;< (t + At) —Vp (t + At)) VWip.
b

Therefore, analogous to 2.20, pressure forces are expected to correct the density
field based on:

F? FZ (¢
pi (t+ At) = pf (t+ At)+ ) m; (At2 OBV ’()>VWU

, m; m
J ! J

+ Z T, (p (At2 fn( )) VWi,

?

Accordingly, particle displacement due to pressure is computed as

F? m;
254 2%

AL = Z—At i VWi;p; +
j .

dij

m; 1
= —At2 Z p—ﬁVWm - Atz Z \I/b (poi) EVWZ‘Z, Di,
j K3 b K3

d;;

Finally, the pressure update with relaxed Jacobi solver can be written as

1
A = (L= w)ph +w— (pg = pf (¢ + At) = D — B)

(%3

where D is given in (2.26) and B is defined as

B= Z Uy, (po, ) Z dijpé‘vwib
b

J

3.4 Results

In this section, we demonstrate the versatility of our approach in various simula-
tion settings. If not stated otherwise, we used PCISPH [SP09] as the basic fluid
simulation model, where the maximum permissible degree of compression was
kept at 1%. In our simulations, we used different particle radii r for different
scenarios. The SPH smoothing length was always chosen as 4r. All simulated
fluids had low laminar viscosity (o = 0.01) and surface tension (k = 0.05),
which were determined experimentally to approach the behavior of water. The
employed adaptive time-stepping schemes produced time steps roughly between
1072 and 10~*. For all scenes, the computation overhead of the rigid-fluid
coupling was mainly between 5-10%. The overhead varied based on the number

13



Chapter 3. Rigid-Fluid Coupling

Figure 3.9 — Frame by frame comparison of our approach (top) to [BTT09] (bottom).
This figure illustrates that our boundary-handling method does not introduce non-
physical energy to the simulation. In the approach of Becker et al., the cube starts
spinning in the water. Whereas in our approach, the cube stays in a balanced state.
Images are taken from [AIAT12].

of fluid-boundary particle pairs. The overhead of the rigid body simulation was
usually below 1%. Fluid surfaces were generated using a parallelized implementa-
tion [AIAT12] of the method proposed in [SSP07]. Renderings were done using
mental ray v3.9.4 [NVI11]. The simulations and renderings were run on an Intel
Xeon X5690 with 12 GB RAM. Average computation time per frame (note that
for one frame several simulation steps are computed) was 1 second to 2 minutes
depending on the complexity of the presented scene. These timings exclude
surface reconstruction and rendering.

We firstly compare our approach to [BTT09] in a simple setting where a cube
with density 400% was dropped into a container with 200K fluid particles that
have a rest density of 1000%. We used SESPH in this example. In contrast
to [BTT09], our pairwise forces are symmetric. One frame could be computed in
6 seconds on average with our model, compared to 36 seconds with [BTT09]. The
reasons are twofold; our boundary-handling allows to use larger time steps (in
this experiment three times larger on average), and it does not require additional
neighbor queries. This experiment is shown in Figure 3.9.

Our viscosity model can simulate drag effects. This is shown in Figure 3.8
where two spheres with different fluid viscosities were dropped into a whirlpool.
The sphere with zero viscosity moved faster to the center of the vortex, while
the sphere with high viscosity was dragged by the velocity field of the fluid. In
Figure 3.10, we further show in a simple setting that the symmetric force can be
used to generate friction on the fluid particles.

One main advantage of our method is that the interaction with lower dimen-
sional rigid bodies can be simulated. Figure 3.11 shows an example where rods
and planes, sampled by a single layer of boundary particles, were dropped into
a fluid with 300K particles. Further, we dropped ragdolls that are modeled by
multiple capsules connected with different constraints. Even in such challenging
scenarios, our two-way coupling approach produces plausible results. Related
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Figure 3.10 — Different slip conditions can be realized by using different viscosity
constants for the rigid. Left image illustrates o = 0 and right image illustrates o = 4.
Note that fluid particles do not penetrate to the plane that is sampled using a single
layer of boundary particles. Also, note that fluid particles are able to slide over
the plane smoothly without getting any disturbance from the underlying boundary
particles. Images are taken from [AIAT12].

Figure 3.11 — Handling of lower dimensional objects. The right image shows the
underlying particles. Note that planes and rods are modeled with single particle layers.
Images are taken from [AIAT12].

Figure 3.12 — Thin shells of different densities, each of them represented by a single
particle layer. Tmages are taken from [ATAT12].
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Figure 3.13 — Six balls with different densities are behaving differently in a multiphase
setting. Images are taken from [ATAT12].

to the previous example, Figure 3.12; bottom-right, shows that our approach is
able to interact with shell-like structures without interpenetration. In this scene,
three cylindrical shells with different densities (which were represented with one
layer of boundary particles) interacted with 200K fluid particles.

In order to show that our approach works with multiphase fluids, we simulated
two fluids with a density ratio of 1:3 and several spheres with different densities
(see Figure 3.13).

Our approach can handle large density ratios between fluid and rigid bodies.
A scene is illustrated in Figure 3.14, where a sphere with variable density
interacted with 90K fluid particles. The density of the sphere was changed from
1%% to 107%%, 100% and 500"%%. Note that at this point of the sequence, exactly
half of the sphere was below the water surface. Finally, the sphere density was
changed to 50000%.

A more complex ragdoll example is shown in Figure 3.15 where 2M fluid
particles were used. Due to the dynamics of the individual rigid parts of
the ragdoll, the boundary particle sampling can dynamically change in the
neighborhood of a fluid particle. The sampling density is, however, considered in
our equations so that discontinuities and large forces are prevented. Furthermore,
we show a non-uniformly sampled frigate traveling on wavy sea that was simulated
using 4M particles (see Figure 3.4). We also extended the experiment by placing
three frigates behind a dam. After the dam broke, the frigates were hit by
turbulent waves and the cuboid pieces of the dam. 20M fluid particles were used
for this experiment (see Figure 3.16).
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Figure 3.14 — From left to right, the density of a sphere was slowly increased from
1% to 50000%. Images are taken from [ATAT12].

Figure 3.15 — Dynamically moving rigid bodies in close proximity can change the
sampling density in neighborhood of a fluid particle. Since our method takes variable

boundary sampling into account, discontinuous forces are prevented. Images are taken
from [AIAT12].

In another example, two towers were modeled using cubes and cylinders.
Each cylinder and cube had a density of 600%% and 15007%%, respectively. Due
to their different densities, primitives interacted differently with the flow that
was simulated with up to 2.5M particles (see Figure 3.17). Finally we show a
complex scenario with various rigid objects (see Figure 3.1). In this scene, two
boats filled with ragdolls were dropped into a river like flow. While the second
boat was floating, we collapsed the bridge by removing the constraints on both
sides of the bridge. Up to 6M fluid particles were used in that simulation.

3.5 Discussion and Future Work

In our simulations, we generated boundary particles for all rigid bodies including
static planar objects (e.g. water containers). For such regions, it would be
more efficient to use a wall weight function to approximate the density and
force contributions, as done in [HKKO07]. For complex boundaries with varying
triangle size or in non-manifold regions, however, defining a wall weight function
is difficult. In those cases, the triangle mesh should be re-meshed to get a nearly
isotropic triangle distribution. Our boundary particles can be related to such an
isotropic triangle mesh, without topology and normal information.
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Figure 3.16 — Three frigates are exposed to a dam brake scenario.

Figure 3.17 — The approaching water collapses two towers that were modeled by
individual cylinders and cubes of different densities. Images are taken from [ATAT12].
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Figure 3.18 — The negligible interaction of fluid particles on opposite sides of a thin
shell. Pressures on particles are proportional to their red saturation, black particles
denote boundary particles, front side of the box has been clipped to make the fluid
visible. Images are taken from [ATAT12].

Our approach computes boundary forces based on the pressure of fluid
particles. While the boundary forces are appropriate for incompressible and
weakly compressible fluids, the forces might not be sufficient to prevent inter-
penetrations when used with compressible fluids. This is particularly the case,
if the computed pressure based on a certain density is much smaller for a
compressible fluid compared to an incompressible fluid. Further, our approach is
limited in terms of a minimal object size that can be handled. The diameter
of rods and the thickness of shells cannot be smaller than the diameter of a
fluid particle. Thus, the minimum possible object size is defined by the fluid
particle resolution. Another issue of our approach is the interaction of fluid
particles on opposite sides of thin boundaries. However, due to the coupling
of minimal thickness of boundaries and particle resolution, these interactions
hardly influence the behavior of the fluid as demonstrated in Figure 3.18. For
improperly large time steps (that are larger than what is estimated by the
employed adaptive time-stepping schemes), fluid particle tunneling may occur.
However, this is a general problem that also exists for fluid-fluid interaction.

We generated the boundary particles such that they are completely enclosed
by the rigid. Generating boundary particles exactly at the surface would cause
stability issues when fluid particles stuck between two layers of overlapping
boundary particles. These issues could be prevented by detecting such fluid
particles and treating them differently. In our approach, fluid particles are not
immediately updated after the collisions in the final rigid update of Algorithm
3.1. However, in the next iteration, based on the updated position of the rigid,
forces are generated, and the fluid particles are updated. Although our approach
outperforms the global approach in [BTT09], we believe that the investigation of
alternative global approaches for a simultaneous coupling similar to [CGFO06]
is a very promising direction for future research in particle-based fluids.

Our method could also be integrated into previously presented SPH frame-
works. One way to employ our approach in [SG11] would be using two bound-
ary samplings, one for the low-resolution simulation and another for the high-
resolution simulation. Existing unified SPH models such as [SSP07, LD08] could
be used in combination with our model to simulate the interaction of fluid, rigid,
and deformable models, including thin shells such as cloth.
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4.1 Introduction

As explained previously for the case of rigid objects, the basic SPH interpolation
works well, only if the neighboring particles have similar properties. For all
other cases, boundary-handling techniques that are specific to the problem of
interest need to be applied. The boundary-handling and two-way rigid-fluid
coupling method explained in the previous chapter offers several important useful
features. First of all, the approach is completely based on hydrodynamic forces
and conserves momentum. Secondly, it addresses the inhomogeneous boundary
sampling by governing particle contributions based on the represented volumes
of the boundary particles. The approach also supports fluid interaction with
thin structures and non-manifold geometry. However, deformable objects are not
addressed in that work, as the boundary particle configurations are precomputed
and remain unchanged for the whole simulation. This chapter extends the
boundary-handling and two-way rigid-fluid coupling method explained in the
previous chapter to deformable-fluid coupling. For handling the interaction
of SPH fluids and deformable solids, only few works exist [MST04, LDOS,
DTM'12, YLHQ12]. When handling deformable boundaries, some important
problems arise. On one hand, particle deficiency issues at the boundary need to
be handled so as to prevent spatial and temporal discontinuities of the physical
properties (e.g. density, pressure and velocity) of the fluid particles. On the other
hand, in the case of large deformations, leakage through the boundaries must
be prevented. Additionally, pairwise forces need to be symmetric for avoiding
temporal artifacts. Our work addresses these open issues by adapting the rigid
boundary-handling method in explained in Chapter 3 for deformation handling.
In the remainder of this section, we discuss the existing works about deformable
boundary-handling in SPH (Section 4.1.1), and then summarize our contribution
(Section 1.2).

4.1.1 Handling Deformable Boundaries in SPH

Triangles are one of the most practical mesh representation primitives for defining
solids in computer graphics. In SPH simulations, directly coupling triangle
meshes with fluid particles poses some challenges. First of all, density estimation
of fluid particles near boundaries is only possible for simpler boundaries [HKKO07],
but is difficult for arbitrarily complex ones. Furthermore, for meshes with
ambiguous surface orientation (e.g. non-manifold meshes), computing fluid-
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solid forces correctly is a challenging problem. These issues cause spatial and
temporal discontinuities of the physical properties of fluid particles, which in
turn introduce falsified forces to the solids in the case of two-way coupling. For
a detailed discussion about these issues, we refer the reader to Chapter 3.

Interaction of SPH fluids with deformable objects is firstly presented in
[MST*04], where the employed boundary forces are based on the Lennard-Jones
potential. In this approach, boundary particles are automatically generated per
triangle according to Gaussian quadrature rules. Boundary particles generated
in this fashion, however, are not optimal for computing field variables (e.g.
density and forces) for the nearby SPH particles, since the boundary particles
are distributed non-homogeneously for different triangles with different sizes
and aspect ratios. In [LDO08], two way coupling of SPH with thin deformable
shells is realized. In this work, deformable objects are also simulated using
SPH, based on [SSP07]. This approach combines SPH forces with the explicit
collision handling scheme of [BYMO05] and position correction to prevent leakage
in the case of deformations where the boundary particle spacing only changes
marginally. The authors also state that for thin shells with low Young’s moduli,
their approach causes leaks. Recently, an SPH and cloth coupling method using
continuous collision detection to prevent tunneling [DTM*12], and an SPH
and Finite Element Method coupling method have been proposed [YLHQ12].
However, both techniques use penalty forces for the coupling, and do not handle
the fluid densities correctly near the boundary. Therefore, they are prone to the
problems we have described in the beginning of this section. An image based
fluid-deformable interaction model has been briefly discussed in [ACF11]. In the
context of Eulerian fluids, two-way fluid-shell coupling have been demonstrated
in [RMSGT08].

4.2 Formalism

As mentioned in the previous section, the approach explained in [ATA'12] works
well for fluid-rigid coupling. However, a static setup of boundary particles
is not sufficient for deformable objects, since large deformations may cause
gaps between boundary particles, which may cause undesired fluid leakage. In
order to avoid this problem, dynamic boundary particle generation is necessary.
Our algorithm takes the triangle mesh of the deformable object as input and
generates boundary particles for the mesh based on its vertices, edges, and
triangles, respectively. This section explains the main parts of our two-way
fluid-elastic coupling algorithm.

4.2.1 Boundary Forces

As a quick reminder, this section will first summarize how the boundary forces
explained in Chapter 3 works. In [ATA'12], the contribution of a boundary
particle is related to its volume, which is estimated by using the inverse of
the number density of a boundary particle b; based on its boundary particle
neighbors as
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Figure 4.1 — An elastic cloth stretches as it is filled with water. Our approach prevents
leakage even in the case of large expansions. Images are taken from [ACAT13].

where 5, denotes number density of the particle, k denotes boundary neighbors,
W is a kernel function with smoothing length h. Hereby, the contribution of a
boundary particle in an SPH interpolation of a nearby fluid particle is given as
Uy, (po) = poVh,, where pg is the rest density of the fluid the boundary particle
is interacting with. Using this volume based contribution concept, the density
of a fluid particle is given as py, = 3>, my, Wi + pf, s, where j denotes fluid
particle neighbors, and the density contributed by boundary neighbors is given
as pfb = ) Yo, (po,)Wik. Using py,, the resultant pressure is computed by
either using [BT07], [SP09] or [ICST13]. Afterwards, pressure and viscosity
forces are applied to both types of particles. We refer the reader to Chapter 3
for those force computations.

4.2.2 Force Transfer

For rigid bodies, the net force and torque terms can be easily computed by
accumulating the forces on all boundary particles of the rigid. For deformable
objects, however, deformations result in many more degrees of freedom than just
position, orientation, linear and angular momentum. Here, we will assume a
mass-point-based deformable solver, where the vertices represent mass points
and edges represent constraints (e.g. as in [Jak01]) . When generating the
boundary particles per triangle as described in Sections 4.2.4 and 4.2.5, the
barycentric coordinates describing the position of a particle with respect to the
positions of the corresponding triangle’s vertices are stored with the particle.
As the mesh deforms, the particles are synchronized with the mesh according
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to these barycentric coordinates similar to [MST*04]. When distributing the
forces from boundary particles to the mass points, barycentric coordinates are
again used for force weighting.

4.2.3 Boundary Requirements

The above density and force approximations are valid only if the contribution of
boundary particles to a fluid particle pf, is defined uniformly on the surface of
the solid, since this term or its derivative is used in all force terms. We determined
that, for a 2D simple cubic boundary particle alignment with a spacing equivalent
to fluid particle spacing, pf,«s ~ 0.35p9 when a fluid particle’s normal distance
to a boundary is less than h/2. When py, . is considerably smaller than this
value at some point on the surface, fluid particles can leak through the solid
at that point. We will refer to such boundary particle alignments as under-
sampled. Such alignments can frequently occur when simulating expanding
deformable objects, as the distances between neighboring boundary particles
get larger. The inverse situation, i.e. over-sampling, occurs when there are
too many boundary particles that do not further improve the approximation
of pf,p. Although [ATAT12] can handle over-sampling by adapting boundary
particle to fluid particle contributions according to (4.1), over-sampling causes
performance overhead since the number of neighboring particles increases. It
should be noted that, since py, essentially depends on the boundary particle
number density J,, we can use J, at boundary particle positions as a metric to
decide if the resampling of a region is necessary. We experimentally determined
that 3.6 T'(h) and 10 T'(h) are appropriate thresholds for detecting under-sampling
and over-sampling respectively, where I'(h) is SPH kernel function dimensional
factor and defined as I'(h) = % and d denotes the simulation dimension. Our
algorithm starting with Section 4.2.4 deals with creating such a sampling without
causing any under-sampling, and with minimal over-sampling. The analysis of
our approach in terms of field variable approximation is given in Section 4.2.6.

4.2.4 Initial Boundary Particle Generation

As the boundary forces explained in Section 4.2.1 are SPH based, we aim to
generate an initial boundary sampling, where we keep the sampling density
of the boundary close to fluid particle sampling density. We observed that
in incompressible SPH simulations, spacing between fluid particles remains
around half of the SPH smoothing length. This implies that for SPH based
fluid-boundary interaction, the sampling spacing of the boundary particles should
be as close to fluid sampling spacing as possible to achieve the same sampling
density. This motivated us to create a geometric boundary particle generation
scheme, where the spacing between boundary particles is close to fluid particle
spacing. Our algorithm not only satisfies the under/over-sampling requirements
given in the previous section (i.e. py,p ~ 0.35p9 and 3.6I'(h) < 6 < 10T'(h)),
but it is also very efficient and suitable for locally adaptive resampling (see
Figures 4.3 and 4.4).

For the initial boundary particle sampling, our algorithm generates particles
in three steps: Placing particles at vertices, particle generation for edges and
sampling triangle interiors with particles.
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Figure 4.2 — Two adjacent triangles sampled with scan-lines in the direction of their
longest edges (left). Same triangles sampled in the direction of their shortest edges
(right), which results in better particle distribution, with less over-sampling. Blue,
gray and red particles denote vertex, edge and interior boundary particles respectively.
Images are taken from [ACAT13].

The first step in edge sampling is determining the number of particles n, to
generate, which is simply done by dividing the edge length |e| = |v, — v}| by

the particle diameter d = % as Ne = {%J . The displacement vector p. between

the particles is computed as p. = n% Afterwards, particles can be placed along
the direction of the edge starting from any of its vertices with p. displacements.

After sampling triangle edges, the next step is sampling the triangle interiors.
The approach we employ is similar to scanline algorithms known from rendering.
In our algorithm, firstly the shortest edge e, is determined, and its normal
direction § in the direction of the triangle interior is computed as 8§ = %,
where e; is the longest edge. Afterwards, the number of required sweeping steps
n¢ for the triangle is computed as ny = |% |, where h; is the height of the
triangle in the sweeping direction 8, which is computed by projecting e; onto the
sweeping direction S as h; = S - €;. For each sweeping step, the line intersection
positions i and iy with the other two edges are computed as explained in [Hil94].

Finally, particles are placed between the edge intersections with a displacement
vector ps = ﬂn;:Z where ng = “%l .

According to our experiments, choosing the shortest edge as the scan direc-
tion results in a better boundary particle distribution with less over-sampling
(see Figure 4.2). The employed step sizes in the particle generation result in a
boundary sampling that is sufficiently dense according to the criterion introduced
in Section 4.2.3. Furthermore, separate handling of triangle vertices and edges
from triangle interiors allows robust handling of arbitrary mesh configurations
without any under-sampling. On the other hand, the approach generates some
over-sampling, especially between the edges of skinny triangles. However, due to
the employed boundary-handling scheme that can handle over-sampled bound-
aries (despite some performance overhead), intersections between particles can
be handled when computing boundary forces.

4.2.5 Resampling of Deformed Regions

One way to completely avoid the under-sampling problem is to regenerate all
boundary particles in each simulation step using the algorithm explained in

55



Chapter 4. Deformable-Fluid Coupling

Section 4.2.4. However, in stable solid simulations, deformations are temporally
coherent. We utilize this information by introducing measures for determining
whether a triangle needs to be resampled, or if the existing sampling is sufficient.
Therefore, we avoid complete boundary sampling of a deformable object in each
simulation step by using samplings from previous simulation steps as possible.

As discussed in Section 4.2.3, when under- or over-sampling is detected (i.e.
3.6T(h) <0 < 10T'(h)) , the triangle enclosing the boundary particle, and all
its edges can be resampled. Even though the resampling criterion based on
dp is closely related to the SPH concept, it has some important disadvantages.
First of all, since it relies on §, values, lazy updating of J, is not possible (i.e.
updating only when a boundary particle is in the neighborhood of the fluid).
Furthermore, it needs an additional evaluation of the d;, values, which requires
an additional neighborhood search among boundary particles. So as to avoid
these performance issues, we derived a heuristic for resampling detection that
is purely based on geometric measures, which aims to generate a full boundary
neighborhood for fluid particles. In our geometric approach, triangle edges
and interiors are handled and resampled separately. For detecting whether
edge resampling is necessary, the number of required boundary particles n, is
computed (see Section 4.2.4). Afterwards, the edges where n. changes between
two consecutive simulation steps are resampled. For detecting whether triangle
interior resampling is necessary, we employ additional rules. In each simulation
step, firstly the shortest edge es of a triangle is determined. When e, becomes
another edge between two simulation steps, the triangle is resampled. If not, the
number of necessary scanline steps n; is computed. By multiplying the number of
particles sampled onto the smallest edge n., of the triangle with n;, the number
of particles np, that are necessary to sample the considered parallelogram is
computed. When np, for a triangle changes between two consecutive simulation
steps, the triangle’s interior is resampled. A comparison of the two resampling
strategies (i.e. the 0, based and the geometric heuristic based) is shown in Figures
4.3 and 4.4. Note that our geometric approach results in similar samplings when
compared to §; based sampling, where 3.6 '(h) < § < 10T'(h) for any point in a
triangle is always satisfied.

4.2.6 Comparison to Other Boundary Sampling Strategies
and Analysis

In [TAGT10] and [ATAT12], the remeshing algorithm explained in [BK04] is used
for improving isotropy of triangle meshes. After the remeshing step, boundary
particles are placed at vertex positions of the resultant mesh. Even though this
approach might generate better samplings compared to our method, especially
in low-curvature regions (see Figure 4.5), the performance cost of the approach
makes it unsuitable for the application to deformable objects, which might
require boundary particle generation in each simulation step. Poisson disk
sampling has also been used for boundary particle generation in [SB12], which
however requires relaxation iterations and neighborhood search when placing
particles. Furthermore, similar to the remeshing based method, it is designed for
producing a global boundary particle distribution, which makes it inappropriate
for deformable objects, where local particle insertions and deletions are usually
sufficient and very efficient.
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No resampling Miiller et al. 2004 Our ¢ based criteria

Figure 4.3 — The initial sampling of two adjacent triangles with boundary particles
based on four different boundary particle resampling schemes are shown in the top row.
After the triangles are deformed, the resultant samplings are shown in the bottom row.
The left most column shows the outcome when no new particles are generated. The
seven point rule used in [MSTT04] tends to generate non-uniform sampling patterns.
Note that our geometric resampling criterion is in good agreement with our ¢ based
criterion and both produce good sampling patterns without under-sampling and with
minimal over-sampling. (The plotted particle diameter is equivalent to %) Image is
taken from [ACAT13].
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Figure 4.4 — The number density ¢ is used as a metric to evaluate under- and over-
sampling. The § value for h = 1 is computed at each point inside the triangles in Figure
4.3, where § denote arithmetic mean and o standard deviation. 8 < 3.6 denotes under-
sampling and may result in fluid particle tunneling through the boundary. Whereas,
0 Z 10 denotes over-sampling and causes unnecessary computational overhead. Note
that the underlying formulation of [AIAT12] results in smooth boundary forces as long
as the under-sampled regions are avoided. Using [MST'04] results in a non-uniform &
field, with variable § and o as the triangles deform. Such large variances can cause
disturbance to the nearby fluid particles. Both of our approaches result in a uniform
8 field, with minimal temporal variance of § and o as the triangles deform. These
properties make our approach a good match for generating boundary particles in
[ATAT12]. Tmages are taken from [ACAT13].
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Figure 4.5 — A duck model composed of 2160 triangles (left), sampled with boundary
particles by remeshing the model using [BK04] and placing particles at vertex positions
in 1.4 s (as done in [TAGT10, ATAT12]) (center). The same mesh is sampled using our
algorithm in 15 ms (right). Image is taken from [ACAT13].

[MST*04] proposes a seven-point rule to generate boundary particles. Based
on a user defined threshold, which is chosen relative to the smoothing length i
of the fluid particles, a triangle is subdivided into four smaller triangles, which
are again sampled with seven boundary particles recursively. Because of the
employed subdivision technique, the number of particles sampled per triangle is
4% % 7, where d is the recursion depth of the triangle subdivisions. Therefore, for
small deformations, the approach cannot generate only few particles per triangle,
but it generates four times more particles in each subdivision. If the sampling
threshold is chosen small, it may result in severe over-sampling of the triangles,
while a large threshold may cause gaps between the boundary particles. Whereas,
our approach only adds or removes small number of particles in case of small
deformations. The difference between both methods applied to two neighboring
triangles in both the initial pose and after a deformation are depicted in Figure
4.3. As can be seen, our method results in more homogenous boundary particle
sampling. In contrast, [MST04] results in under-sampling and over-sampling
for different parts of the triangles. Even though smaller sampling thresholds
might be used to prevent under-sampling, it might cause further over-sampling
for already over-sampled triangles. One important disadvantage of over-sampling
is that the required time for both neighborhood search and force computations
increases significantly. Furthermore, for approximating field variables of fluid
particles near the boundary, our method provides better boundary particle
distributions without under-sampling and with much less over-sampling. To
quantify the difference, in Figure 4.4, we computed the number density ¢ at
each point inside the triangles based on the generated boundary particles for the
boundary configurations given in Figure 4.3. Note that our strategy results in a
more homogenous distribution of §. Whereas, if [MST104] is used, the deviation
is considerably larger. These properties make our approach a good match for
using with [ATA"12] for boundary particle generation.

Another triangle sampling strategy that can be applied to local triangle
sampling has been briefly explained in [Cor05] in the context of point-based level
sets. However, the case of deforming triangles is not explained in that work.
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Figure 4.6 — Underlying boundary particles of the stretching cloth in Figure 4.1. The
red regions denote the additional particles added to the initial boundary sampling.
Image is taken from [ACAT13].

4.3 Implementation Details

The simulation loop in our approach is similar to the one used in [ATAT12] (Al-
gorithm 3.1), with some differences that are related to the deformable-boundary
interface as discussed in Section 4.2.2. For simulating rigid and deformable bod-
ies, we use Bullet Physics [Coull]. For SPH simulations, we use the predictive-
corrective formulation presented in [SP09] for computing fluid pressures. For
time step selection, we use the scheme presented in [IAGT10], where the veloci-
ties of boundary particles are also included in the time step estimation criteria.
Finally, fluid surfaces are reconstructed using [ATAT12], and final renderings are
done using mental ray [NVI11].

4.4 Results

In this section, we demonstrate the versatility of our method using different
scenarios. For all experiments, we used the geometric approach for resampling
detection because of its performance benefits. Several simulation steps were
computed for each frame. For each animation sequence, the average computation
time per frame was 10 to 30 seconds, excluding surface reconstruction and
rendering, depending on the frame complexity. The employed adaptive time-
stepping scheme produced time steps roughly between 5x 1073 and 10~* seconds.
In our simulations, we used different particle radii r for different scenarios, where
the SPH smoothing length h was always chosen as 4r. Fluid-boundary adhesion
constant § was chosen as 0.05. The additional overhead of our approach over
[ATAT12] was below 5% in all scenes, excluding deformable simulation. The
simulations were run on an Intel Xeon X5690 with 12 GB RAM.

In the scene corresponding to Figure 4.1, an elastic cloth with density
1200% consisting of 90K uniform triangles was stretched above a box using
point constraints at its corners. Afterwards, several rigid objects with different
densities were dropped onto the cloth, which was later exposed to a steady
fluid flow from its top, consisting of up to 1M fluid particles. The weight of
the rigid objects and the fluid caused the cloth to slowly stretch, which was
handled by updating the boundary particles in order to prevent the leakage of
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Figure 4.7 — A thin bowl is filled with water and dropped onto the ground. Our
approach can handle rapid deformations. Images are taken from [ACAT13].

fluid particles through the cloth (see Figure 4.6). Afterwards, when the cloth was
released and shrunk back to its original size, all additional boundary particles
were automatically removed. Our method ensures a sufficient boundary particle
sampling that prevents leakage. Because of the regular structure of the cloth,
our algorithm generated one boundary particle for each vertex for the initial
sampling of the surface, which resulted in 46K boundary particles in 22 ms.
Whereas, the number of boundary particles for the cloth’s maximum stretched
state was 62K. The average computation time for the resampling was 9 ms per
simulation step.

The presented method is also applicable to fast deformations (see Figure
4.7). In this scene, a thin bowl with density 10007%% consisting of 6754 triangles
was constrained and filled with 110K fluid particles. The initial sampling of the
bowl took 14 ms that generated 42K boundary particles. When the bowl was
filled with fluid, the constraints were released and the bowl was dropped onto
the ground. The impact caused a sudden deformation, and consequently a rapid
change in the number of boundary particles up to 44K. In this example, the
average computation time for resampling was 2.5 ms per simulation step.

In order to show that our boundary particle sampling also works with
volumetric deformable objects, we created another scenario (see Figure 4.8).
Several volumetric deformable objects and a thin shell cloth with density 300%
interacted with a fluid that was represented by 1.2M fluid particles. The
application of our geometric resampling approach to a volumetric deformable
object took under 1 ms on average.
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Figure 4.8 — Interaction of fluid with a cloth and several deformable solids. Images
are taken from [ACAT13].

4.5 Discussion and Future Work

Since our method always places particles at vertex positions, it can cause over-
sampling when the average edge length of a triangle mesh is less than the particle
diameter. So as to prevent such over-sampled areas from affecting the simulation
performance negatively, such meshes can be remeshed before the simulation.

Besides the deformation model employed in the chapter, we believe that our
approach can work with different deformation models, as long as the deformations
can be mapped to a triangle mesh and the forces can be transferred to the
deformation model through the mesh vertices.

Our approach is also applicable for the boundary particle sampling of static
and dynamic rigid objects with significant performance benefits over existing
methods, as discussed in Section 4.2.6.

Because of the local nature of our boundary particle generation approach,
it might be possible to extend it such that boundary particles are adaptively
generated only for the triangles that are in the smoothing length h of the
fluid particles. This can allow SPH simulations in very large solid domains (e.g.
terrains, whole cities), where the boundary particle sampling of the whole domain
might be infeasible because of large memory and computational requirements.
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5.1 Introduction

Surface tension is a ubiquitous effect in daily life. For instance, when pouring
water into a glass, the force that keeps liquid molecules together is the surface
tension force. It is caused by cohesive forces among neighboring fluid molecules.
Inside the fluid, each molecule is pulled equally by its neighbors, resulting in
a zero net force. However, as the free surface does not have neighbors on all
sides, the molecules in such regions are pulled inwards. Furthermore, surface
tension minimizes surface area according to Laplace’s law, which causes droplets
of water to form a sphere when external forces are excluded. Another effect that
is again caused by molecular interaction is adhesion. Adhesion allows fluids to
get attracted by other materials. For instance, the unique appearance of dew
on plants and the ability of water striders to stay atop water are caused by the
interplay of surface tension and adhesion forces. In this chapter, we focus on
simulating those two molecular interaction related phenomena in the context of
computer animation, more specifically for SPH fluids.

One important issue that arises at fluid-air and fluid-solid interfaces in SPH
is density underestimation, where densities of the particles are erroneously
computed as less than the rest density when the density summation approach
is used. Those wrong density values result in negative pressures and cause
the particles to cluster, which is known as tensile instability in SPH. This
phenomenon can be alleviated by using artificial pressure forces [Mon00, MM13],
which, however, result in spurious surface tensions. For this reason, either a
density correction technique [She68], or simply not allowing negative pressures
are other common practices for avoiding tensile instability. However, this still
does not solve the problem of sticking particles at the fluid interface, since the
pressure field is still not reconstructed in a physically sensible way. [ATAT12]
addresses this issue for fluid-solid interface by pre-computing a single layer of
boundary particles for the solid boundaries, which also extends to two-way
fluid-solid coupling. In [SB12], ghost SPH particles are dynamically generated
at both fluid-solid and fluid-air interfaces.

For modeling surface tension in SPH, additional techniques are generally
preferred. These can be listed as: curvature based external forces on particles
(e.g. [MCGO3]), pairwise forces based on cohesion (e.g. [BT07]), a modified SPH
formulation [CBP05], and more recently forces based on surface mesh curvature
[YWTY12]. However, there is no single approach, which can handle very large
surface tensions, avoids particle clustering at the free surface, minimizes surface
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Figure 5.1 — A water crown emerges as a result of the impact of a water droplet into
a filled container. Our surface tension force allows realistic simulation of such natural
phenomena. Images are taken from [AAT13].

curvature, and conserves momentum at the same time. Adhesion of fluids to
solids is modeled in SPH by using a distance based attraction force [CBP05]
and by using the combination of ghost solid particles and XSPH [SB12] between
the fluid and the solid boundary. However, neither of the methods is capable of
simulating some important real world scenarios such as different wetting effects.
Furthermore, the effect of adhesion forces on the solids is neglected in both
works. Our surface tension and adhesion schemes are the first to meet all these
requirements, and allow plausible simulations of variety of effects that emerge
in reality. Additionally, our surface tension force avoids particle clustering at
the free surface without generating ghost air particles using [SB12] or artificial
pressure forces [Mon00]. In the remainder of this section, we first discuss existing
works that model surface tension and adhesion effects in fluid animation with
an emphasis on SPH fluids, and then we highlight the benefits of our techniques
in comparison to the existing work.

5.1.1 Surface Tension in Fluid Simulation

As surface tension has a quite significant role in the appearance of liquids, many
researchers have investigated techniques for incorporating surface tension to
fluid simulations. In the context of SPH, the early surface tension techniques
focus on applying forces to minimize surface curvature [Mor99, MCGO03]. Those
approaches compute normals for each particle, which determine the direction of
the force and can be computed using the gradient of the smoothed color field.
The magnitude of the force is based on the curvature at a particle position,
which can be computed by taking the second derivative of the smoothed color
field, or the divergence of the normal field. However, there exist important issues
with such techniques. First of all, for the particles that are inside of the fluid,
normalizing the smoothed color gradient can result in arbitrary normals for inner
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particles. This problem has been avoided by applying the surface tension force
to the particles whose smoothed color gradient has a magnitude larger than a
threshold value (which however results in discontinuous forces). The second
problem is that curvature estimation is very sensitive to particle disorder in
SPH because of requiring the second derivative. The third problem with those
techniques is that the forces are applied to the fluid particles as external forces
in a non-symmetric way, which invalidates momentum conservation.

Because of the important limitations of the approaches that are based on
surface curvature and normal information, researchers proposed new techniques to
address the surface tension problem on a molecular level by using cohesion forces
between neighboring fluid particles [TM05, BT07]. Therefore, these techniques
avoid both normal computation and the erroneous curvature estimation. Another
benefit of these techniques is that they trivially conserve momentum as the applied
forces are pairwise symmetric. However, only using cohesion forces between
fluid particles does not guarantee surface area minimization as the forces can
trivially balance each other in a form that does not necessarily correspond to the
smallest surface area. As we will show later in the chapter, large cohesion forces
between particles can also result in unrealistic fluid patterns, such as cobweb-like
elongating fluid structures. For large surface tensions, such structures do not
easily break as using attraction forces alone does not minimize surface area of
the fluid, but strengthens the already existing structures. Another approach
that applies attraction forces between neighboring fluid particles to generate
surface tension is [CBP05]. In this work, the basic SPH scheme is reformulated
by using double density relaxation, where the surface tension force is computed
based on the negative pressures that arise at the free surface similar to [Mon00].
However, as the surface tension arises as a side effect, different surface tension
behaviors cannot be modeled with this work. Furthermore, this work also does
not take surface area minimization into account.

More recently, [YWTY12] proposed another solution to the surface tension
problem in SPH. In this work, the curvature is estimated on the fluid surface
mesh, but the generated surface tension forces are applied to the adjacent
fluid particles enclosed by the mesh. They show that when the surface mesh
has more samples than the fluid (i.e. more vertices than the particles); the
curvature computation is not as error prone as it is when computing curvature
from the particles. Furthermore, a nice comparison of the method to [BT07] is
given for the experiment where a cubic droplet deforms to a sphere. However,
there exist some limitations of the technique. First of all, the employed surface
tracking scheme may fail to detect isolated fluid pieces in regions where the mesh
resolution remains coarse; this prevents generating surface tension for such areas.
Furthermore, the quality of the surface tension depends on the tracked mesh
resolution. Finally, requiring an explicit representation of the fluid surface in
each simulation step is an overhead for the cases where an explicit surface is
not required (e.g., for interactive scenarios such as [MM13], or when an efficient
view dependent surface reconstruction scheme is preferred [FAW10]).

In the context of grid based fluids, there exist many different techniques
for incorporating surface tension: e.g., from a level set function [KFLO0O], by
employing an octree structure for more accurate force evaluation [LGF04], by
treating surface tension as discontinuous boundary conditions [HK05], based on
surface energy [MBE'10, BUAG12], and based on the surface mesh [BBB10,
TWGT10]. As we focus on fully Lagrangian flow, a detailed discussion of these
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works is beyond the scope of this chapter.

5.1.2 Solid Adhesion in Fluid Simulation

[SCEDO04] proposed a fully Lagrangian approach for the simulation of viscous
liquids, including adhesion to solids. They define adhesion properties of different
types of materials using distance-dependent forces. However, the employed linear
density kernel and strict anti-penetration constraints limit their approach to
highly viscous liquids. Later in [CBP05], adhesion of viscoelastic SPH fluids
to solids is modeled by using a distance based attractive force term, which is
added as an impulse to the fluid particles. The authors demonstrated interesting
scenarios such as droplet formation and sticking of fluids to solids. More recently
in [SB12], fluid to solid adhesion is accomplished by computing a ghost velocity
at each solid particle by combining solid’s own velocity and the tangential
component of the nearest fluid particle’s velocity. After this step, fluid to
solid adhesion is generated using an XSPH based artificial viscosity term. In
[HLWT12], sticking of fluid particles to solids arises as a side effect of the
employed velocity constraints to realize different slip conditions, which makes it
difficult to model different adhesion related effects.

In the context of Eulerian approaches, adhesion of fluids to solids can be
accomplished by adjusting the velocity or pressure constraints enforced along
the boundaries (e.g. [GBOO04]). In addition to the general techniques, adhesion
of fluids is modeled to animate variety of interesting scenarios such as sticking
of viscous threads [BAV*T10] and sheets [BUAG12] to solids, wetting of hair
[RKN12], animating droplets on a glass surface [CCW12] and sintering of snow
[TF12].

5.1.3 Contributions

We present a surface tension force and a fluid-solid adhesion force for the
improved treatment of fluid-air and fluid-solid interfaces in SPH fluids. Our
surface tension approach can handle large surface tensions by minimizing surface
area in all scales while conserving momentum. Furthermore, our surface tension
force also generates repulsion forces for close distances, which prevents the
particle-clustering problem at the free surface without requiring additional
treatment such as generating ghost air particles or artificial pressure forces. Our
adhesion force allows physically plausible solid-fluid adhesion effects without
requiring additional handling such as ghost SPH. Furthermore, our approach
allows simulating interesting phenomena such as different wetting effects and
two-way adhesion. Both of our forces can be easily added to an existing SPH
solver as additional force terms without any extra effort. By combining our
surface tension and adhesion forces, we are able to simulate a variety of effects
that can be observed in nature.

5.2 Formalism

5.2.1 Surface Tension Model

Surface tension in liquids arises as a result of molecular cohesion. However,
as SPH simulates fluids on a macroscopic level with a finite support radius h,
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(b) [Becker and Teschner 2007]

(c) Our surface tension model.

Figure 5.2 — A fluid droplet in the shape of a cube is left to transform to a sphere and
then dropped on the ground. Particle clustering and non-uniform particle alignment
is visible in both (a) and (b), which is addressed with our surface tension model (c).
Furthermore, neither of the cohesion-only models is able to simulate the large surface
tension possible with our model, but they result in cobweb-like elongating structures,
no matter how large the cohesion forces are. Particles are colored according to pressure.
Images are taken from [AAT13].

cohesion forces between SPH particles do not reproduce the surface tension that
we observe in reality. When only cohesion forces are applied between particles,
the neighboring particles just attract each other which can result in any arbitrary
configuration depending on the initial configuration of the particles (see e.g.
Figures 5.2a, 5.2b). Therefore, surface area minimization is not guaranteed.
Additionally, we also experienced that only using curvature minimization terms
[Mor99, MCGO3] results in more severe particle clustering for the experiment
depicted in Figure 5.2, causing the droplet to break into many smaller droplets.
To address these issues, we propose a new surface tension force that takes
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Figure 5.3 — Comparison of the shape of our cohesion force (blue) to [TMO05] (red)
and [BT07] (green) inside the SPH support radius h = 1. Graphs taken from [AAT13].

both molecular cohesion and surface area minimization into account and allows
handling large surface tensions properly (see Figure 5.2¢).

5.2.1.1 Cohesion Term

[TMO5] is the first work to employ molecular cohesion forces to generate surface
tension in SPH. They adjusted the cosine function to generate attraction for
distant particles, and repulsion for close particles. However, we observed that
the function used in [TMO05] results in clustering throughout the fluid (see Figure
5.2a). Later in [BT07], instead of the cosine function, the SPH kernel function is
used. However, since the method lacks a repulsion term, it also results in severe
clustering; especially in regions with underestimated pressures (see Figure 5.2b-
right). Both methods are applied through the displacement vector between the
neighboring particles. This causes the forces to vanish for very close neighbors,
which is another reason why clustering occurs with these methods. The forces
applied by those two methods for a support radius h = 1 can be seen in Figure
5.3.

Because of the issues with the existing cohesion forces, we propose an alter-
native cohesion force defined as:

) X — X
Fg?_hjeswn = — miij (‘XZ - Xj‘) ﬁ,
i J

(5.1)

where i and j are neighboring fluid particles, m denotes mass and x denotes
position of the respective particle, v is the surface tension coefficient and C is a
spline function that we created for a 3D SPH simulation as:

9 (h —7r)3r3 2r>hAr<h
C(r)=—5 2h —r)3rd — 0 > 0A2r<h. (5.2)
otherwise

The term h° in the denominator of (5.2) is a normalization factor to make the
force result in the same acceleration for different support radii (e.g. like the
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SPH pressure force). The constant term in the beginning of (5.2) is basically
used to shift the practical « values close to 1. Similar to [TMO05], our cohesion
force also has both a positive and a negative part to result in repulsion (see
Figure 5.3). For the attraction term, we chose a maximum around the particle
rest distance h/2, where the attraction smoothly vanishes to 0 until the support
radius h. For fluid neighbors closer than the rest distance, the force smoothly
decreases to a negative value, which results in repulsion forces for the particles
that are too close to each other. Furthermore, both the attraction and repulsion
forces behave like a Gaussian to avoid clustering, which is in contrast to [TMO05].
Additionally, our repulsion force does not vanish to 0 for close neighbors, which
prevents particle clustering in regions with underestimated pressures (see Figure
5.2¢). Our cohesion term also has similarities to the Lennard-Jones potential
[Jon24], which is a commonly used model to approximate the interaction between
a pair of molecules. However, the main difference of our cohesion term to the
Lennard-Jones potential is that our term stops increasing as the particles move
closer, which helps to avoid too stiff forces and resultant stability issues.

5.2.1.2 Surface Area Minimization Term

Although our cohesion force solves some important issues of previous cohesion
models, it is still not sufficient for minimizing the fluid surface area because of
the reasons we discussed previously. Therefore, we use an additional force term
to counteract surface curvature to minimize the surface area. Since computing
curvature from particles is error-prone in SPH, different from the previous models,
we avoid computing surface curvature explicitly. We firstly compute normal
information by applying the SPH approximation to the gradient of the smoothed
color field as:

ms
n;, = hz p—JJVW(|xZ —Xj|),
J

where W is the SPH kernel function and p; is neighboring particle density.
Different from [Mor99] and [MCGO3], we have the factor h to make the computed
normal scale independent. At this point, we use the fact that the magnitude of
n; is proportional to the curvature, where its value is close to zero for the inner
parts of the fluid, but large at the free surface proportional to the curvature. We
utilize this information and finally create a symmetric force as:

Fggjpature = —ym; (ni — l’l]‘) . (53)
One can easily confirm that (5.3) is zero in flat regions (as n; — n; = 0) and
inside the fluid (as n; = 0 and n; = 0), but it gets larger as the curvature
increases. Therefore, our surface area minimization force avoids two important
issues of previous techniques: Normalization of n; (that is erroneous inside the
fluid), and explicit curvature computation (that is very sensitive to particle
disorder).

5.2.1.3 Combined Surface Tension Force

Before discussing the combined surface tension force, we will discuss another
important particle deficiency related issue in SPH. For the fluids in reality,
attractions between fluid molecules occur at a microscopic scale, where each
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molecule interacts with many other molecules. In SPH, however, particles
represent macroscopic volumes of the fluid. If we consider the simple example of
two neighboring particles, the net attraction force that affects each particle is
smaller than in a configuration of three neighboring particles, which makes the
two particles separate easier than the three particles in the case of external forces.
If those macroscopic particles would have been sampled with real water molecules,
there would not be such a difference. This error in SPH manifests itself as too
many isolated particles, since particles with smaller neighborhood get isolated
easier than the rest of the fluid. There exist techniques to address this issue,
such as corrected SPH (e.g. [BKDG98]) and adaptive SPH [SMVO096]. However,
these works add too much computational overhead to basic SPH. Although
[Mon00] (also used in [MM13]) implicitly addresses this issue by generating a
spurious surface tension, such an approach is not desirable for our purposes since
it would interfere with our refined surface tension model. We provide an explicit
solution to this problem by creating the following symmetrized correction factor:

2
K = Po

- ) 54
Pi + pj (5:4)

where pg is the rest density of the fluid, and p; and p; are the densities of the
neighboring fluid particles. As we do not correct the fluid particle densities, a
fluid particle with less than full neighborhood has K;; > 1, and a fluid particle
with full neighborhood has K;; =~ 1. Therefore, K;; amplifies forces for the
particles with neighborhood deficiency, while the forces remain the same for the
particles with appropriate neighborhood. The final surface tension force can be
written as:

FiL, = Ky (Ri2lsion 4 Fouvature) (55)
Note that the terms in (5.5) are fully symmetrized, and the total force is applied
to the particle pairs. This is, however, not the case in previous surface area
minimization techniques (e.g. [Mor99, MCG03, YWTY12]), as they apply the
forces to the particles as external forces. The effect of combining both terms
can be seen in Figure 5.2c. Note the large surface tension possible with our
approach. Although we used larger cohesion forces for both [TM05] and [BT07],
they failed to generate the large surface tension that we wanted to achieve. We
also observed that using larger surface tension forces with the cohesion-only
models does not further improve the quality of the generated surface tension
behavior, but only results in stiffer fluids with similar spurious structures.

5.2.2 Adhesion Model

Different from cohesion, adhesion occurs as a result of molecular interaction of
dissimilar materials. In our work, we focus on two-way fluid-solid adhesion in
SPH simulations.

For boundary-handling and two-way fluid-solid coupling, again we use [ATAT12]
(explained in Chapter 3.1), where solid surfaces are sampled using boundary
particles. As a quick summary, in this approach, the volume of a boundary
particle is approximated as V;, = i, where Jp, is the number density of a
boundary particle computed accordirfg to the neighboring boundary particles.
The contribution of a boundary particle to a fluid particle (and vice versa) is
based on the volume of a boundary particle and written as ¥y, (po) = poVs,,

=
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Figure 5.4 — The shape of our adhesion function inside the SPH support radius h = 1.
Graph is taken from [AAT13].

where Uy, is used in place of the mass of a boundary particle when computing
fluid density, pressure forces and viscosity forces. Therefore, the approach ad-
dresses the sticking problem of SPH near solid boundaries, and allows two-way
fluid-solid coupling with different slip conditions. Adhesion effects, however, are
not addressed in [ATAT12].In our work, we compute adhesion forces between the
fluid and the boundary particles as:

Xi — Xk

Flc_bilzesion = —ﬁ mi\I/bkA (|Xl — Xk|) m,
1

(5.6)
where k denotes boundary particles, x denotes position of the respective particle,
B is the adhesion coefficient and A is a spline function that we created for a 3D
SPH simulation as:

af _ar2 - <
A(r)o.om{,/ Pobr—2h 2r>hAT<h 57

h3-25 0 otherwise

Similar to our cohesion force, the term h*25 in the denominator of (5.7) is a

normalization factor to make the force result in the same acceleration for different
support radii. The scalar term in front of (5.7) is used to be able to select S values
in the similar range of v values, where 5 =~ v models a moderate hydrophilic
behavior. Since the boundary forces used in [ATAT12] already prevent clustering
near the solid boundaries, we designed our adhesion force to only attract particles
with distances between h/2 and h. Furthermore, we tried to make our attraction
force large in this interval, while keeping the force continuous (see Figure 5.4).
Initially, we started with a Gaussian-like shape for the adhesion force. However,
such a force was causing most of the fluid (except the closest fluid layer) to
unrealistically detach from the solid, regardless of the magnitude of the adhesion
force. Finally, we came up with such a steep parabolic function, which generates
strong attractions for most of the neighboring fluid particles.

Note that similar to our surface tension force, our adhesion force is also fully
symmetric, where Fzﬁf”o” = fF?ihkeSi‘m. Our adhesion force allows simulating
interesting scenarios, such as different wetting conditions and two-way adhesion.

71



Chapter 5. Surface Tension and Fluid-Solid Adhesion

5.3 Implementation Details

We use [SP09] for computing SPH pressures. However, our surface tension
and adhesion forces can be integrated into any SPH solver (e.g. [BT07, BLS12,
MM13, ICST13]) since the forces are computed from the particles and are directly
applied to the neighboring pairs. Furthermore, we do not apply pressure forces
that arise from negative pressures. For time-step selection, we use the adaptive
scheme in [IAGT10]. For boundary-handling and two-way solid-fluid coupling,
we employ [ATA'12] and simulate dynamic objects using Bullet [Coull]. We
use the artificial viscosity model described in [Mon05] both for fluid-fluid and
fluid-solid interactions as done in [ATAT12]. Because of the particle deficiency
related reason highlighted in Section 5.2.1.3, we also multiply viscosity forces with
(5.4). We use the cubic spline kernel function [Mon05] for our SPH simulations.
For SPH neighborhood search, we use the compact hashing technique explained
in [TABT11].

If not stated otherwise, we used v = 1 for all experiments to mimic the surface
tension of water. Furthermore, we used 5 = v to model moderate hydrophilic
interactions. In all of our simulations, we kept fluid compressibility below 0.1%.
Depending on the scale of the simulated setting, we used different particle radii
r, where the particle spacings and support radii were 2r and 4r respectively. We
used very low artificial viscosity for the simulated fluids (~ 0.01) to mimic the
viscosity of water. If not stated otherwise, all solids in our experiments also have
the same viscosity to model a moderate slip condition when interacting with the
fluids. We reconstructed the fluid surfaces using the efficient implementation
explained in [ATAT12]. The renderings were performed using mental ray [NVI11].
All simulations and renderings were run on an Intel Xeon X5690 with 16 GB
RAM. For the presented scenes, the average simulation time per frame was
between 0.1 to 15 seconds, depending on the complexity of the scene, where
several simulations steps were computed for each frame.

5.4 Results

In this section, we demonstrate the versatility of our surface tension and adhesion
models in different simulation scenarios. Our experiments show plausible fluid-
fluid and fluid-solid interactions, even at the scale of a single droplet.

To show that our approach can handle realistic fluid-fluid interactions, we
dropped a 6.5 cm?® fluid droplet into a 15 x 4 x 15 cm? container filled with 1M
fluid particles (Figure 5.1). After the fluid droplet hits the main fluid body in
the container, a realistic water crown emerged. Also, note how the splashes form
spherical droplets with various sizes, which is a phenomenon observed in reality.
Note both the thin features around the crown and the smooth fingerings that
emerge at its top. Later in the simulation, a vertical finger occurred, which is
an effect that occurs after a water crown collapses. With the previous surface
tension models that are only based on cohesion, the experiment reveals many
spurious fluid structures (see Figure 5.5).

Our next experiment shows that, by using our surface tension and adhesion
models, it is possible to simulate the impact of a large fluid droplet on a solid
object in a realistic way. A 0.5 m® water volume consisting of 100K fluid particles
was dropped on a 1.5 x 0.12 x 1.5 m? solid (Figure 5.6). The adhesion of solid
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Figure 5.5 — Comparison of a selected frame from the water crown experiment using
[BT07] (left) and our surface tension model (right). Note the spurious surface tension
and bumpy fluid surface on the left image. Such effects are avoided with our approach
as the fluid surface area is properly minimized. Images are taken from [AAT13].

was chosen as 8 = 0.6 to model a reduced hydrophilic behavior. Because of the
surface tension, sheets of fluid broke into fingers, which then transformed into
spherical droplets (Figure 5.6 middle-left). The adhesion of the table resulted
in sliding droplets dripping from the side of the table (Figure 5.6 middle-right).
Furthermore, the adhesion prevented the fluid to completely merge to a single
water body at the end (Figure 5.6 right).

In the next experiment, we show how the combination of our surface tension
and adhesion forces can be used to simulate a scenario where a vertical water
stream realistically flows over a sphere with diameter 5 cm (Figure 5.7). There
were up to 50K fluid particles in the scene. We are able to simulate such vertical
flows with solid adhesion realistically without requiring ghost SPH.

In another experiment we show that by using different adhesion and surface
tension constants (where 1 > v, 3 > 0.001) , we were able to simulate different
wetting conditions in the same simulation scale between no wetting up to perfect
wetting for a 1 cm?® fluid droplet consisting of 750 particles (see Figure 5.8).

We created our next experiment to demonstrate how fluids react differently
to two solid objects with different adhesion in the same environment (Figure
5.9). In this scene, a 1 cm?® water droplet consisting of 4K particles was resting
in a highly hydrophilic box with 8 = 2. Afterwards, another object with zero
adhesion split the droplet into two parts. Note how the droplet sticks to the box,
while its contact area with the splitting object remains small.

In our final experiment, we show how two-way adhesion force can be used to
create interesting scenarios (Figure 5.10). In this scene, we dropped a 27 cm?
fluid droplet consisting of 14K particles with v = 3, on an inclined plane. The
plane had 8 = 1.2 to make the droplet create a large contact angle with the plane.
Additionally, we set the viscosity of the inclined plane to 1 (which was 0.01 in the
other experiments). Such a large viscosity makes the droplet roll on the surface,
instead of slide. In this experiment, we also dropped ragdolls on the fluid droplet
with a density two times larger than the fluid density. This experiment also
shows that large surface tension forces prevent the solid to penetrate into the
fluid, which is a phenomenon observed in nature. Furthermore, pink ragdolls
(with 8 = 1) stick to the droplet, whereas the green ragdolls (with 5 = 0) bounce
and slip from the droplet.
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Figure 5.6 — A spherical water volume collides with a planar solid object. The
interplay of our surface tension and adhesion forces allows realistic interactions in such
scenarios. Images are taken from [AAT13].

5.5 Discussion and Future Work

In the presented experiments, when the surface tension is the dominant force
acting on a particle, time steps are limited by the surface tension. This was the
case for some of our experiments that were performed in droplet scales. However,
for most of the larger scale experiments, the pressure force was the dominant
force. However, as we used the adaptive time stepping scheme explained in
[IAGT10] that also takes the total force on a particle into account, we did not
run into stability issues when performing our experiments.

In reality, surface tension arises because of cohesion forces between fluid
molecules of the same fluid phase, independent of what is beyond the free surface
(e.g. air, another liquid or vacuum). Therefore, modeling surface tension does
not require an explicit second fluid phase. One ubiquitous effect that arises in
reality because of multi-phase interactions is air bubbles inside fluids. Since
simulating density ratios in the order of pyater/pair Would require considerably
more computational effort, there exist alternative air bubble generation tech-
niques to avoid multi-phase simulations (e.g. [HLYKO08, IBAT11, BDWR12)).
We believe that the realism of our results can be further improved by using such
a method.

Recently, [YWTY12] demonstrated that sub-particle scale capillary waves
that are directly simulated on the fluid surface mesh can add a significant amount
of detail to an existing simulation. We believe that our results would further
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Figure 5.7 — Pouring water on a sphere. Our forces allow simulating a realistic stream
flowing over a sphere without using ghost SPH. Images are taken from [AAT13].

Figure 5.8 — Combination of our surface tension and adhesion forces allows simulating
different wetting effects. Images are taken from [AAT13].
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Figure 5.9 — A droplet in an adhesive box is split into two with an object with zero
adhesion. Note how the fluid sticks to the box but maintains a much smaller contact
area with the splitting object because of the wetting difference. Images are taken from

[AAT13].

improve by using their surface tracking and capillary wave simulation approach.
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Figure 5.10 — Using the right balance of surface tension, adhesion, and fluid-solid
viscosity forces allows us to simulate rolling water droplets. In this scene, ragdolls
with different adhesion properties interact differently with the droplet. Images are
taken from [AAT13].
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Handling of Fluid-Air Mixtures

6.1 Introduction

Foam is a complex phenomenon whose behavior and appearance is challenging
to simulate in computer graphics. When viewed from a close distance, foam
is composed of many air bubbles sticking to each other. It can occur inside
most fluids as a result of trapped air. One can observe milky white foam caused
by dashing waves on seashores. For most semi-transparent materials, it is an
interesting observation that, even though the underlying material may have a
color, the foam usually looks whitish to the viewer. The reason for this behavior
is that the foam is composed of thin films of fluid containing air. As the number
of such thin films increase per unit volume, all incoming light is reflected without
allowing any light to penetrate beneath it. This optical phenomenon makes the
foam look brighter than the material itself, to the point that it looks almost
white. This chapter focuses on the efficient rendering of such white foam by
approximating some important effects in screen space, that are otherwise time
consuming to compute in a physically correct way. Our technique is specifically
useful for complex large-scale scenarios, where large amount of foam data need
to be rendered. In the remainder of this section, we first summarize the existing
works about GPU accelerated rendering of fluid data (Section 6.1.1), foam
simulation and rendering (Section 6.1.2) and then highlight our contribution
(Section 6.1.3).

6.1.1 GPU Rendering of Fluids

For non-interactive applications, fluid surfaces are generally visualized by tri-
angulating the isosurface of the particle data (e.g. [ZB05, YT10, ATAT12]) and
then rendering the resultant mesh using ray-tracing based techniques to produce
convincing results. For real-time applications, the computational overhead of
those approaches remains too high. Therefore, for the efficient GPU acceler-
ated visualization of fluid surfaces, several methods have been proposed in the
recent years, e.g., using screen space surface construction [MSD07, FAW10],
height field techniques [CM10] and methods that are based on particle splatting
[vdLGS09, BSW10]. Even though foam is actually composed of the molecules of
the underlying fluid, its characteristic appearance requires it to be handled using
different rendering approaches, which will be explained in the next section.
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Figure 6.1 — A flood scenario. Foam is rendered using our technique and composited
with the rest of the scene (left and middle). Picture of real sea foam caused by a
whirlpool (right) (©@Reuters). Images are taken from [ADAT13].

6.1.2 Foam Simulation and Rendering

In computer graphics, foam generation techniques are used to enhance the
realism of existing fluid simulations. High quality foam simulation and render-
ing techniques are commonly encountered in movies [GLR*06, BSK*07] and
in commercial fluid simulation and visualization packages [hybl1l]. In those
works, however, the underlying foam generation and rendering stages are usually
described briefly. Although foam is composed of fluid and air mixture, some
of the existing research also focuses on generating foam particles, usually in
a scale smaller than the fluid particles to be able to enhance the flow detail
[TFK*03, GLRT06, LTKF08, MMS09, IAAT12]. For foam generation, we em-
ploy [TAAT12]. The approach generates and processes three types of diffuse
material, i.e. air bubbles, surface foam and spray. All types of diffuse material
are represented with particles that are generated, advected and dissipated ac-
cording to physically-motivated rules. The approach adds diffuse material to
particle-based fluid simulations in a post-processing step. For the details of the
technique, we refer the interested reader to [TAAT12].

For high quality foam renderings, ray-tracing methods are commonly preferred
for both the fluid and the foam [GLR'06]. Although the fluid surface can
be rendered efficiently using ray-tracing, non-homogenous phenomena such as
foam require expensive volume rendering techniques. In [IAAT12], the authors
employed a volume ray-casting method, which accounts for absorption and
emission of radiance but neglecting light scattering effects. In that method,
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each traced ray is sampled using equally spaced intervals; and according to
the measured foam density at each sample point, the computed radiance is
attenuated. The employed ray-casting approach, however, is time consuming
to compute, especially for scenes with many millions of foam particles. The
performance of volume ray-casting can be significantly improved by using the
GPU-based method explained in [FAW10].

In [vdLGS09, BSW10], alternative to generating new particles, selected fluid
particles are visualized as foam particles using GPU-based techniques for real-
time applications. In [BSW10], Weber number thresholding is used to separate
fluid and foam. Furthermore, the method also takes volumetric effects into
account by rendering foam and fluid layers from back to front order. Therefore,
it can visualize effects such as foam inside the fluid. Furthermore, based on the
thickness of the foam, it generates foam color between two user defined colors.
The approach, however, neglects information such as occlusion and irradiance
from the environment when rendering foam, which limits its applicability to
non-photorealistic real-time renderings.

There also exist methods for the modeling of larger scale foam effects by using
air bubbles (e.g. see [KVG02, KLL*07, HLYK08, IBAT11, BDWR12]). In these
works, air phase is either visualized by rendering spheres [KVG02, BDWR12],
or by reconstructing the surface of the modeled air phase [KLL107, HLYKOS,
IBAT11]. Since we are focusing on large-scale scenarios, where the single air
bubbles inside the foam are not clearly noticeable, such methods are beyond the
scope of this chapter.

6.1.3 Contribution

We present an efficient method for large-scale foam rendering. In our approach,
foam is rendered using a novel multi-pass rendering algorithm and finally com-
posited with the pre-rendered images of the scene without foam. In comparison
to volume ray-casting methods that compute only absorption and emission of
radiance (e.g. [FAW10, TAAT12]), our approach is significantly faster as the
foam particles are directly rendered. Furthermore, when compared to [BSW10],
our pipeline takes the scene occlusion and lighting into account and therefore
produces more convincing results that can be composited with realistic render-
ings. Results show that our new pipeline generates convincing large scale foam
renderings (e.g. see Figure 6.1) using modern GPU-based rendering architectures.

6.2 Formalism and Implementation

As more air bubble layers implies more light scattering, we relate the foam
thickness to the foam intensity as usually done in volume ray-casting. Later, we
determine the regions on screen space, which should receive, and therefore scatter
less light using ambient occlusion and attenuate the foam intensity according
to the occlusion factor. Afterwards, we approximate per-pixel foam irradiance
to colorize the foam color according to the environment. Finally, the generated
results are composited with the rest of the scene. We realized our approach using
a seven pass rendering algorithm. The technical steps of our pipeline (illustrated
in Figure 6.2 and 6.3) can be summarized as:
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Compute eye space
rigid depth

Composite the
input buffers to
generate the final
result

Compute eye space
fluid depth

Compute foam
shadows

ompute spherica
eye space depth for
foam fragment

Collect incoming
radiance from the
environment

Compute foam
fragment search
radius

Compute foam
fragment normal

Compute foam
thickness using
additive blending

Compute foam

intensi
ty Texture transfer

Geometry/Attribute
transfer

Figure 6.2 — Diagram of our foam composition pipeline. Orange boxes denote the render passes and the arrows in between denote data flow and
dependencies. For each frame, the render passes from #1 to #7 are executed. Each pass produces data explained in the enclosed rounded rectangles,
which is then transferred through arrows to the subsequent passes. All of the generated textures have the same resolution as the final output. Diagram
taken from [ADAT13].
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(a) Foam thickness (red denotes thickest, blue (b) Foam intensity
denotes thinnest parts)

(c) Foam shadow (inverted) (d) Foam irradiance

(e) Pre-rendered image (f) Image composited with foam

Figure 6.3 — Some of the intermediate textures from our foam composition pipeline
(a-e) and the final composited result (f). Images are taken from [ADAT13].

e PASS #1 and #2: Storing eye space depth images of solid and fluid meshes
in two textures, which are used to compute occlusion of foam fragments
by those primitives in the later stages.

e PASS #3: Storing an eye space depth image of the foam particles in a
texture, which is used in different parts of our pipeline. This pass also
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stores a search radius for each foam fragment, in whose range neighboring
fragments are later considered for screen space ambient occlusion and final
composition (Section 6.2.1). Additionally, this pass computes a normal for
each foam fragment, which is used when approximating irradiance at the
fragment location.

e PASS #4: Accumulating foam particles via additive blending to approx-
imate per-pixel foam thickness. This pass also discards foam fragments
that are occluded by solids and attenuates foam fragments that are inside
of the fluid based on the fluid transparency (Section 6.2.2).

e PASS #b5: Conversion of per-pixel foam thickness to per-pixel foam inten-
sity (Section 6.2.3).

e PASS #6: Determination of foam fragments that should receive and
scatter less light using screen space ambient occlusion (SSAO) and shadow
generation for such regions (Section 6.2.4.1). This pass also approximates
the irradiance at each foam fragment from an environment texture if the
scene is illuminated using image based lighting (Section 6.2.4.2).

e PASS #7: Post processing of the foam and final composition with a
pre-rendered image of the scene (Section 6.2.5).

Since the first step of the pipeline is relatively straightforward, we will focus on
the remaining steps throughout this section. The following render passes are
implemented using OpenGL Shading Language (GLSL).

6.2.1 Smoothed Depth and Search Radius Computation

We use point sprites instead of spheres for rendering foam particles. A regular
point sprite has the same depth values for all of its fragments. However, to
produce convincing results in the later steps of our pipeline, we modify the
fragment depth values similar to [vdLGS09, BSW10], such that the spherical
shapes of the particles are regained.

To create the initial depth information, foam particles with ids 7 and radii
r; in world space are rendered with depth testing and depth masking enabled.
In [TAAT12], foam particles are separated to three different types, namely: spray,
surface-foam and bubble particles. For bubble particles, we use half of r; to make
them less visible. Furthermore, particle radii are randomized as r; = m
to make the particles look irregular between the scales 7i/5 and r;.

The vertex shader computes eye space and projection space coordinates of
the sprites and passes the resultant data to the fragment shader for further
processing. In the fragment shader, the distance of the fragment position to the
point sprite center is calculated using the sprite’s texture coordinates to discard
fragments that are outside of the circle. Afterwards, the flat depth values of the
point sprite are transformed to spherical depth values. In this context, the first
step is solving for the w coordinate of a unit sphere for the fragment’s texture
coordinates in uvw space as w = v'1 — u2 — v2, where v and v denote texture
coordinates of the fragment. Subsequently, the eye space z coordinate of the
fragment is simply modified as

frag __ _frag el
efoamz - efoam,z +w -
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In contrast to [vdLGS09, BSW10], we do not apply filtering to the generated
depth values since it would reduce the effect of ambient occlusion.
In the same render pass, the vertex shader also projects the search radius h;

for each particle as
ri
h; =

tan (5) |55z,

where « is the field of view of the camera and e“ff)fl%z denotes z coordinate of

the eye position of the point sprite (i.e., distance of the sprite to the camera).
Afterwards, the search radius is passed to the fragment shader as R to be
written to a texture. The depth information and the search radius are essential
when rendering the SSAO pass and when doing the final composition.

This pass also computes a world space normal for each fragment ng¢,., by
transforming (u, v, w) using the transpose of the normal matrix, and stores the
normals in a texture. Per fragment normals will be required when estimating
irradiance in Section 6.2.4.2.

6.2.2 Thickness Estimation

Before estimating the intensity of foam at a given pixel position, we estimate
the foam thickness for each pixel. In this step, foam particles are rendered again
as point sprites with the spherical depth modification as in the previous render
pass. Similar to [vdLGS09, BSW10], the foam fragments are blended additively
to estimate thickness. Different from [vdL.GS09, BSW10], however, depth buffer
read and write is disabled as we do not require the frontmost particles to be
visible.

As foam particles are separated to spray, surface-foam and bubble particles,
we also employ this knowledge to render foam fragments differently by using
a falloff function with different arguments, where the falloff is based on the
fragment’s distance to the particle center in texture coordinates. The falloff
function f is defined as

[1-(H"" $<1

. (6.1)
0 otherwise

f(z, b, n,m) = {

where x is the distance to the center, b is the maximum allowed distance, and
n > 0 and m > 0 are exponents which determine the shape of the function (e.g.,
n =1 and m = 1 result in linear falloff). When rendering spray, surface-foam
and bubble fragments, we used fopray = f(x, 1, 1.5, 1), fsfoam = f(z, 1, 2.25, 1)
and foupbie = 1 — f(z, 1, 2, 1) respectively. These different falloff functions are
illustrated in Figure 6.4 and the corresponding particle intensities are shown in
Figure 6.5. We preferred a larger overall intensity for surface foam particles to
increase their visibility. Whereas, we preferred a comparatively smaller intensity
value for the spray particles to make them relatively less visible. Furthermore,
we used hollow circle like structures for the bubble particles to make their
appearance more convincing under water.

In this step, the intensities of the foam particles are further modulated based
on two additional factors. The first of these factors is the lifetime of the particle.
For this purpose, we use fi;fetime = f(l;, 1, 2, 0.4), where 0 < [; < 1 denotes
the normalized lifetime of a particle. Such a function allows a foam particle to
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Figure 6.4 — Different forms of the falloff function given in (6.1) that are used in our
experiments. Graph is taken from [ADAT13].

Figure 6.5 — Intensity distributions of different types of foam particles, namely: spray
particles (left), surface foam particles (middle) and air bubble particles (right). Images
are taken from [ADAT13].

remain visible for a sufficiently long time and fade smoothly near the end of its
lifetime. Furthermore, when a particle lies in the back of the closest fluid surface
(ie. 0< eﬁjfdz < eﬁgfnz, where e%ﬁfdz is the eye space z coordinate of the

fluid surface), we apply an additional falloff to its intensity, which is defined as

fn,tt = f(eﬁgfnz - e;;;:l{qdz7 Tmaxy Tin, ’r’”l)a

with the limiting distance 7,4, where the foam fragment completely fades to
invisible, and 7, and 7,, are the exponents for shaping the attenuation curve.

At the end of this render pass, the final foam thickness values are stored in a
texture (see Figure 6.3a). In the next pass, the computed thickness values are
processed and converted to normalized intensity values to lie between 0 and 1.
For all subsequent passes, a screen-filling quad is rendered to further process the
relevant information that are saved in the textures.
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Figure 6.6 — Different forms of the sigmoid function that can be applied to the
accumulated foam densities. The function can be used to create different distributions
as well. For instance, to reduce the intensities below some threshold, pezp > 2, can be
used. We use the ¢(p, 3, 1.25) form in our experiments. Graph is taken from [ADAT13].

6.2.3 Intensity Estimation

As foam is composed of more bubble layers, it scatters more of the incoming
light. We use this knowledge to relate the foam intensity proportional to foam
thickness. A texel from the previous render pass may have any value between
[0,00). In this render pass, we scale the values taken from that texture to the
interval [0, 1]. However, scaling the values linearly to the target interval would
make sparse areas invisible. We expect the foam to become completely opaque
after some thickness threshold. Therefore, to increase the effective range of the
thinner regions, to reduce the range of thicker regions and to normalize the
intensities, we define the following sigmoid function ¢ to non-linearly scale a
pixel thickness value p as

ppezp
L(pv Pmod; pezp) =

Pmod + ppwp ’
where proq > 0 and pezp > 0 control how fast the function grows. Note that
if p> 0 and pegp > 0, 0 < ¢ < 1. ¢ is illustrated in Figure 6.6 for different
parameters. Furthermore, Figure 6.7-top shows the effect of using different p,04
values.

At the end of this step, the normalized intensities are saved in a texture,
which will be used in the following steps (see Figure 6.3b).

6.2.4 Foam Radiance Estimation

Since foam is composed of many transparent layers of air bubbles, light can
travel through it and then scatter. Until the current stage of our pipeline, we
assume that foam scatters light uniformly, where the intensity of the light was
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Figure 6.7 — Application of different parameters for the setting presented in Figure
6.1-middle. top-left: pmoda = 1; top-right: pmeda = 5; bottom-left: AOshscare =0.1;
bottom-right: AOshscale = 2. Images are taken from [ADAT13].

only related to the foam thickness. In this section, we determine the regions
which should receive, and therefore scatter less light using ambient occlusion
(AO), and generate shadows for these regions (Section 6.2.4.1). Furthermore,
the intensities that are computed in the previous section do not employ any
knowledge about the actual illumination that comes from the scene. In this
render pass, we will also use a very rough screen space approximation of the
irradiance from the surrounding environment, which is used to colorize the foam
fragments (Section 6.2.4.2).

This render pass again gets the textures that have been computed in the
previous step as input and computes two additional textures, one for the shadow
and another for the illumination of the foam (see Figure 6.3).

6.2.4.1 Shadow Generation

As object space AO methods (e.g. [ZIK98, Bun05, RWS'06]) are very expensive
to compute, especially for complex dynamical phenomena such as foam, we
investigated SSAO techniques [TCMO06, Mit07, SA07, RGS09, BS09, HL10].
Finally, we decided to build our SSAO approach upon the basic concept explained
in [Mit07] because of its efficiency and simplicity. One important difference
of our method in comparison to [Mit07] is that we apply multiple sample
collection iterations to capture both small scale and large-scale occlusions. Instead
of increasing search radii, [HL10] used multiple depth maps with decreasing
resolution to achieve the same effect. The search radii and total number of passes
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are controlled by three parameters: the initial search radius factor AOr,itSRFac,
which is a factor for h/7% to capture small scale occlusions; the search radius
increment factor AOgRrincrac, Which is another factor for h/"*9 to determine
how much the search radius increases in each sample collection step; and finally
AO4passes, which limits the total number of SSAO passes. For each fragment,
3d samples are generated within the fragment search radius:

hg;gsg = hfrag (AOInitSRFac + AOSRIncFac . AOPass) 5

where AO,qss increases by 1 in each sample collection pass and AOpqss <
AO4pgsses- In our experiments we used: AOrnitsrFac = 1, AOsRincFac = 7
and AO4pgsses = 3.

The total number of samples v in each sample collection pass is controlled
by a user defined sampling density parameter AOgpens as

3 3
v = Clamp (47Th;$£e:n AOSDens; AO#MinSampa

AO#Z\/IazSamp) )

where hyc"S" is the search radius projected to fragment coordinates. Since
h17%9 can be very small for distant fragments, a minimum value AOx4rinSamp
is used for v. An upper limit AO%rraz5amp is also introduced to prevent too
many samples from being generated for fragments that are very close to the
viewer. In our experiments, we used AOgpensity = 0.5, AOgrrinSamp = 16
and AOgyrawSamp = 512. The samples are created inside a cube in the range
[—1,1] on all axes using the Halton sampling algorithm with a constant seed
[Hal64], which produces low-discrepancy sequences. Subsequently, the samples
are mapped to a sphere by simply neglecting the samples that lie outside of the
sphere in the range [—1,1].

Additionally, the occlusion contribution A of a sample s depends on its
distance to the fragment and we compute it using a quadratic falloff as

A= (1—s|)’.

Furthermore, if a sample is occluded by a fragment with a distance larger than
the user defined AOp1qz0cclDist, the sample does not contribute to the visibility
of the fragment. This effect is necessary to prevent occlusion by distant fragments
and is controlled using a quadratic falloff function as

frag 2

efoamz

— 5,
6 = Imax 1-—
AOMamOcchist

where AOpjaz0ceiDist = D is used in our experiments. The sample s is used to
look up the occlusion in eye space by other fragments (e.g. foam, fluid and solid
fragments) in the scene. Based on the knowledge collected so far, the occlusion
k of a sample is defined as

1 [(s2 > el Vs > efii v
k= s.>ell Y <s<1)]
0 otherwise
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which basically states that; if a sample is occluded by any other fragment in the
scene and if the occlusion distance is not larger than AOp;qz0cciDist, the sample
is occluded.

Afterwards, we compute the occlusion factor w of a fragment as

AO4Passes )
AOpass=1 (Zizl A+ 0i ki ai)

AO#Passes '(/)
AOpqss=1 <Zi:1 Ai

w =

where for the pass AOpqss, @ iterates over all generated samples that are inside the
render area (denoted as 1), and a; is the transparency of the sampled fragment,
which is equivalent to ¢; for foam fragments. For rigid and fluid fragments, a;
is equivalent to the fragment’s transparency. Additionally, if there are multiple
overlapping transparent fragments at a sample position, a; is computed by adding
all of the transparency values.

Finally, so as to be more flexible about the appearance of the generated
shadows, we compute the final shadow value ¢ clamped into [0, 1] as

¢ = clamp | (w - AOsngeare) 755" + AOshoffsets 0, 1}

which is controlled by three self-explanatory user defined parameters. In the
presented scenarios, we used: AOgpscate = 1, AOghEzp = 1.5 and AOgnoftset =
—0.05. The ambient occlusion step especially improves the regions that have
similar intensities, which would look totally flat otherwise (e.g., see Figure
6.8, top-middle). Furthermore, Figure 6.7-bottom shows the effect of different
AOghscale values. The computed ¢ values are written to a texture to be further
used by the final composition step (see Figure 6.3c).

6.2.4.2 Irradiance

If the scene is illuminated using image based lighting, we approximate the direct
illumination of each foam fragment by looking up the environment map that has
been used as the light source. Using the fragment normal n/™®9, we create a
hemisphere around the normal and use the already generated samples from the
SSAO step to create direction vectors n;""" ' that are used for looking up the
intensity P = (r,¢,b) at an environment map position. Finally, the irradiance
that is coming from the environment to a fragment location is simply computed
in a cosine weighted fashion as

SEP (s )

I=
w b

where i iterates only over the samples that are generated for the first sample
collection pass. The sole purpose of this step is to reflect the hue of the
environment onto the foam fragments to make the foam not look too distinct
from the rest of the scene. Finally, the computed I values are written to another
texture to be used by the next and the final render pass (see Figure 6.3d). The
performance of this step can be improved by using an irradiance environment
map and making color look-up once for every nf79,
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Figure 6.8 — Comparisons of our method (left) to volume ray-casting that computes
emission and absorption only (right). As our method approximates shadows in concave
regions, the foam looks more volumetric and detailed. The scenes are named from top
to bottom as: Wave, Lighthouse and Ship. Images are taken from [ADAT13].

Average foam rendering time per frame
Scene # Foam particles | Resolution Ours
[TAAT12] | [FAWI10] ,

Intensity Total
‘Wave up to 820K 800 x 600 2 min 10 s 235 ms 8 ms 52 ms
Ship up to 9M 800 x 600 4 min 20 s 760 ms 16 ms 102 ms
Lighthouse up to 15M 800 x 600 7 min 3 s 1s 21 ms 150 ms
Flood up to 29M 1280 x 960 | 16 min 19 s 1.7s 33 ms 235 ms

Table 6.1 — Performance analysis of the example scenes.
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6.2.5 Composition

In this render pass, the information that has been created in the previous
steps and the pre-rendered images of the scene without foam are composited to
generate a final image of the scene with foam (see Figure 6.2).

Depending on the user defined AO4nrazSamples, the shadow and radiance
values computed in the previous section can include high frequency noise. In
order to alleviate this problem, we apply Gaussian blur with a filter radius of
%hf,fl’;ie" to both textures to generate per-pixel (fiitered and Itijtereq before doing
the composition.

Afterwards, to compute a final shadow color (finq for a pixel, the filtered
shadow values are modulated with a user defined color Cgspadowcolor and clamped
into [0, 1] as

Cfinal = Clamp [Cfiltered . (thite - CShadowC’olor) ) 07 1] )

where Cynite = (1, 1, 1). We select Csnadowcolor Similar to the visible color of
the fluid that the foam is generated on, and it was chosen in our experiments as
(0, 0, 0.2) because of the dark blue appearance of the fluids in our renderings.
Since ¢ finar Will be subtracted when doing the composition, the Csnadowcotor
term is subtracted from white to invert it. From our experiences, colorizing
shadows makes the foam blend better with the underlying fluid.

As foam is composed of many air-liquid interfaces, it has a very large scattering
albedo, which causes it to scatter most of the incoming light, but absorb only a
small amount of it. Therefore, it is usually observed very bright. We control
this phenomenon by linearly scaling the irradiance values I using a user defined
parameter Cr,rscale, Whose value depends on the desired foam brightness and
the color range of the environment map used. Afterwards, we clamp the resulting
color into the [0, 1] interval to compute

Ifinal == Clamp (CIM‘Scale * Ifiltered7 07 1) .
Finally, the composited pixel color C is computed as
C= (1 - [’) Cbg +¢ (Ifinal - Cfinal)

where Cy, is the color at the corresponding pixel position of the background
image on which the foam is composited (see Figure 6.3f).

6.3 Results

In this section, we demonstrate the versatility of our approach in different
animation sequences. For all presented scenes, the underlying fluid has been
simulated using the methods referred in [TAAT12], and the fluid surfaces have
been reconstructed based on [SSP07, AIAT12, AAIT12]. The scenes were ren-
dered using mental ray [NVI11] on an Intel Xeon X5690 CPU with 12 GB RAM,
and the foam composition pipeline was implemented using GLSL and ran on
an NVIDIA 480 GTX GPU with 1.5 GB RAM. The ray-casting code used in
[TAAT12] was implemented as a mental ray shader and ran on the CPU, and an
optimized version based on [FAW10] was implemented on the GPU. All scenes
were illuminated using image based lighting with a clear sky environment map.
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For all scenes, foam was simulated using [[AAT12] and the same foam data
were used for the rendering comparisons to [TAAT12]. For the comparisons
shown in Figure 6.8, the ray-casting technique explained in [TAAT12] took 9 s
to 20 min depending on the complexity of the frame, excluding the other scene
geometry and loading of the foam data. Using the optimized volume ray-casting
scheme, the computation time has been reduced down to 90 ms to 2.5 s. Using
our pipeline, the foam rendering of a frame took 30 ms to 270 ms depending
on the complexity of the foam in the scene being rendered, excluding the time
spent for loading of the foam data from secondary storage to the GPU memory.
The results produced by using a basic volume ray-casting scheme that only
accounts for absorption and emission of radiance is similar to the results we
achieve excluding the additional effects that are described in Section 6.2.4 (see
also Figure 6.3b). Excluding those additional effects, our pipeline took between 5
ms to 39 ms per frame. See Table 6.1 for additional information about each scene.
As our pipeline also takes additional effects into account (i.e. ambient occlusion
and irradiance estimation), our presented foam renderings look volumetric and
blend with the rest of the scene (see Figure 6.8). Note that in [TAAT12], the
fluid surface has been constructed only for the fluid particles that have more
than five neighbors. For our comparisons to [TAAT12], however, we used the
whole fluid surface for our renderings to better estimate the SSAO of the foam
by the fluid surface. Therefore, differences between the two fluid surfaces can be
noticeable.

For all of our scenes, most of the rendering time has been spent on the
foam radiance estimation pass (between 50-80%). Whereas, the computational
overheads of the rest of the render passes were significantly lower.

6.4 Discussion and Future Work

Taking a closer look at sea foam from a distance less than a few meters, one
may observe the underlying air bubbles at varying sizes that form the foam.
Rendering of such scenarios is not handled by our approach. However, using an
air bubble generation technique like [BDWR12] for such close-ups might be an
interesting direction for future research.

For scenes where most of the light is coming from a specific direction at
shallow angles (e.g. sunset scenarios), the currently employed SSAO based
shadow generation technique can fail to capture the resultant potentially large
shadows cast by distant objects. For such cases, an explicit shadow generation
algorithm which can handle image based lighting such as the one explained
in [CK09], or explicit shadow source selection as discussed in [Bjo04] can be
employed. Since we assume that foam scatters most of the incident light randomly,
we omitted Fresnel effect. However, it might be desirable to make the foam
reflect the environment, when it is viewed from a shallow angle.

Our algorithm neglects many physical effects that could be otherwise simu-
lated by using modern ray-tracing techniques. Those effects include; scattering of
light inside the foam, influence of the foam on the appearance of the surrounding
objects and vice versa. However, for large scale scenarios (e.g. as in Figure 6.1),
those effects have less significance on the appearance of the foam, and our ap-
proximations can efficiently generate convincing results. However, for close-ups,
the effects that we have omitted have more significance on the final outcome. For
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those cases, using a volume ray-casting method that simulates light scattering
can definitely yield more convincing results (e.g. [RNGF03, GLR™06]).

Although we demonstrated our rendering scheme only for the particle data
generated by the method explained in [TAAT12], we believe that our pipeline
is mostly applicable to the rendering of other particle based foam simulation
techniques.
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Conclusions

This thesis has presented a set of versatile techniques that allow improved
interface handling in SPH simulations. First of all, we have presented a novel
boundary-handling method for incompressible SPH fluids that is applicable to
both one-way and two-way fluid-rigid coupling. While particle-based solvers
offer the benefit that complex boundaries can be handled in a simple way, there
had been no general agreement about how solid-fluid interaction should be
handled. Compared to existing techniques like frozen or ghost particles, direct
mesh interaction, or penalty forces, our method offers several benefits: Sampling
the solids with our proposed boundary particles allows including thin and non-
manifold geometries into simulations, since normal information is not needed.
Our method does not require a uniform boundary sampling, which facilitates
the particle initialization, especially when dealing with complex geometries.
Our solution does not only account for the inhomogeneous sampling, but also
considers density (and consequently pressure) discontinuities at the boundary as
well as symmetry of the forces. Overall, our method adheres to the concept of
SPH, is efficient to compute, and allows versatile fluid-rigid coupling.

Afterwards, we have extended our two-way rigid-fluid coupling method
described to elastic-fluid coupling. Our approach firstly generates initial boundary
particle setups on solids with appropriate sampling. As the simulated objects
deform, our approach efficiently evaluates the boundary sampling and efficiently
resamples only the necessary primitives to prevent both undesired fluid leakage in
the case of under-sampling, and performance issues in the case of over-sampling.
Since our approach adjusts boundary particle contributions, adding new boundary
particles does not result in discontinuous forces. Our approach offers several
benefits over existing works. First of all, it can handle large deformations. Since
our approach generates a more uniform boundary particle sampling compared
to the previous efficient sampling strategies, field variables near the boundary
can be better approximated. Furthermore, it does not use additional distance
based force terms. As have been shown in the experiments, our approach allows
versatile two-way interaction of fluids with both slowly and rapidly deforming
solids.

Next, we have presented a new surface tension force and a new fluid-solid
adhesion force to improve the handling of fluid-air and fluid-solid interfaces
in SPH simulations. Our surface tension force allows simulating large surface
tension, minimizes surface curvature, addresses the particle-clustering problem in
SPH, and conserves momentum, all at the same time. Our adhesion force allows
physically plausible fluid-solid adhesion effects, including symmetric adhesion,
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and can be used to model different surface wettings. Furthermore, our forces
can be easily added to an existing SPH solver. Combining both forces allowed
us to simulate a variety of interesting scenarios that have not been shown in the
graphics literature yet.

Finally, we have presented an efficient screen-space foam rendering pipeline
that can render large particle-based foam data sets on the GPU. Our approach
uses a multi-pass rendering scheme, where different effects are added to the
foam rendering incrementally, and the final foam rendering is composited with
a pre-rendered image of the scene. The presented method can be used as an
efficient alternative to ray-casting techniques for the rendering of large-scale
particle-based foam data.
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