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Abstract

In dieser Arbeit wurden zwei neue Methoden zur Segmentierung von biomedizin-
schen Bildern implementiert. Hierbei wurde sich vorallem auf das Herz konzentriert,
die Methoden können aber natürlich auch auf andere Daten angewandt werden. The
erste Technik basiert auf ’Normalized Cuts’ und präsentiert einen neuen Weg Vor-
wissen einzubringen. Das Vorwissen wird direkt in die Kostenfunktion integriert und
bevorzugt Segmentierungen, die möglichst ähnlich zu einer groben Vorsegmentierung
sind. Es können auf diese Art auch komplexere Formmodelle eingebracht werden.
Getestet wurde diese Methode auf sowohl biomedizinischen Daten, als auch auf Fo-
tographien natürlicher Szenen. Es konnte gezeigt werden, dass auch bei sehr unge-
nauem Vorwissen die Methode vielversprechende Ergebnisse erzielen kann. In einem
zweiten Ansatz wurden sogennante ’Level Sets’ durch nicht-Euklidsche Basis Funk-
tionen erweitert. Das Vorwissen wurde mittels probabilistischer Karten repräsentiert.
Die Experimente zeigen einige Vorteile dieser Methode, allerdings auch Probleme, die
durch die Kombination beider Methoden entstehen können.
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Chapter 1

Introduction

Biomedical image segmentation is becoming one of the most fundamental roles in di-

agnosis and treatment of diseases as the new medical imaging technologies progress.

Segmented images are nowadays used routinely in a wide range of applications, in-

cluding localization of pathology, diagnosis, treatment planning, computer-integrated

surgery, study of anatomical structure among others. However, medical segmentation

is still challenging due to limited image contrast, presence of noise and variations in

anatomy and pathology. To alleviate these issues prior knowledge is usually inte-

grated into the segmentation method giving more robust results. In general, due to

the specificity of the prior, numerous methods have been developed to solve specific

cases. We will review some of the methods used in medical segmentation including

model-free segmentation techniques, deformable models, graph cuts, atlas-based seg-

mentation and convex optimization and explain the pros and cons of every approach.

The main objective of this work, is to segment the myocardium in short axis

cardiac MR images. Segmentation of the myocardium provides valuable information

for diagnosis and treatment in cardiac pathologies. From the segmentation, we can

measure the ventricular volume, ejection fraction, wall thickening, wall motion and

myocardium mass whose information can help in the diagnosis of myocardial hyper-

trophy, myocardial infarction and ventricular arrhythmias among others. But the

detection of the myocardium is very challenging because of the signal loss, the pres-

ence of papillary muscles and that the borders are in contact with other organs that
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have similar intensities. Therefore, a lot of algorithms have been implemented to

solve these issues but the problem still remains open. For this purpose, we have pre-

sented two novel methods for cardiac segmentation. Although, these novel techniques

were successfully applied to the cardiac data, they can be used to segment other type

of biomedical images and natural images as it will be shown in the experimental

validation.

The first technique proposed is based on normalized cuts which is an efficient

graph theoretic segmentation method. Due to the difficulty and limitation to add

prior knowledge to normalized cuts, it has not been widely used in medical seg-

mentation. However, there are some techniques to incorporate prior knowledge into

normalized cuts but they are still limited. We present a novel method to integrate

shape prior knowledge into normalized cuts where the prior is included into the cost

function without the inclusion of hard constraints and it can be extended easily to

deal with multiple priors applying Principal Component Analysis (PCA). We conduct

experiments using phantom data and MRI cardiac images as well as natural images

for people segmentation from a public database and compare it with other normalized

cut based segmentation algorithms. We demonstrate that our method gives promising

results and can still give a good segmentation even when the prior is not accurate.

The second technique introduced is a new framework for image segmentation

with statistical shape model enhanced level sets represented as a linear combination

of non-Euclidean radial basis functions (RBFs). The shape prior for the level set

is represented as a probabilistic map created from the training data and registered

with the target image. The new framework has the following advantages: 1) the

explicit RBF representation of the level set allows the level set evolution to be repre-

sented as ordinary differential equations and reinitialization is no longer required. 2)

The non-Euclidean distance RBFs makes it possible to incorporate image informa-

tion into the basis functions, which results in more accurate and topologically more

flexible solutions. Experimental results are presented to demonstrate the advantages

of the method, as well as critical analysis of level sets versus the combination of both

methods.
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1.1 Thesis Outline

The organization of this thesis is defined as follows: In the following chapter, we

review the state-of-the-art on segmentation algorithms widely used in biomedical

images. In Chapter 3, shape model techniques are described including methods for

data alignment and for obtaining the shape variations such as Principal Component

Analysis (PCA) among others. In Chapter 4, a novel technique is proposed using

Normalized cuts with priors. In Chapter 5, we present a new framework using Level

Sets based on Non-Euclidean Basis Functions with Statistical Shape Prior. Finally

we end up with a conclusion.

1.2 Description of Short-axis MR Images

The heart is the organ that supplies blood and oxygen to all parts of the body. It is

located in the chest cavity just posterior to the breastbone, between the lungs and

above the diaphragm [1]. It is surrounded by a double-layered membrane called the

pericardium. The wall of the heart consists of three distinct layers (Figure 1-1) [2]:

1. Epicardium (outer layer): It is the thin, transparent outer layer of the heart

wall and is composed of delicate connective tissue. It is also considered the

inner layer of the pericardium also known as the visceral layer.

2. Myocardium (middle layer): The myocardium, which is composed of cardiac

muscle tissue, makes up the majority of the heart wall and is responsible for its

pumping action.

3. Endocardium (inner layer): It is a thin layer of endothelium overlying a thin

layer of connective tissue. It provides a smooth lining for the chambers of the

heart and covers the valves.

The short axis view of the heart is the plane oriented perpendicular to the long

(apex-base) axis which aligns the apex and the base of the heart. The short axis

view shows an excellent cross sectional view of the right and left ventricles. The data
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Figure 1-1: The heart wall is divided into three layers: epicardium, myocardium, and
endocardium.

provided to run our experiments was performed on a Siemens Sonata 1.5T scanner

(Siemens Medical Solutions, Erlangen, Germany) and three slices (8 mm thickness) in

short axis view (basal, mid-ventricular, and apical) were acquired in all measurements

(Figure 1-2) throughout the cardiac cycle. The pixel size was 1.3 x 1.3 mm (96 x 256

matrix interpolated to 192 x 256).

Figure 1-2: Three slices in short axis view were acquired: basal, mid-ventricular, and
apical. (Author: Bernd Jung)
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1.3 Issues in Cardiac MR Image Segmentation

Segmentation of the heart for short-axis MR images consists in delineating the outer

wall, also called epicardium and the inner wall, known as endocardium. An example

of the data is shown in Figure 1-3.

Figure 1-3: Cardiac MR image: the Region Of Interest (ROI) is obtained to get the
segmentation of the myocardium (white) located between the epicardium and the
endocardium. (Author: Bernd Jung)

As we can observe in Figure 1-3, each contour to be delineated presents specific

segmentation difficulties [3]:

1. Epicardium: The epicardial wall is at the boundary between the myocardium

and surrounding tissues, which show poor contrast with the myocardium. Seg-

mentation of the epicardial wall is thus challenging, especially for the reduced

thickness of the right ventricle.

2. Myocardium: Endocardium surrounds the left ventricle cavity. MRI provides

quite good contrast between myocardium and the blood pool. But still segmen-

tation difficulties exist, mostly originated from gray level inhomogeneities in the

blood pool, and particularly because of the presence of papillary muscles and

trabeculations (wall irregularities) inside the heart chambers, which have similar

brightness levels to the myocardium. According to clinical standards, papillary

muscles and trabeculae structures should be excluded from the endocardial wall

segmentation.

3. Position along the apex-base axis: Segmentation complexity also depends on

the slice level of the image. Mid-ventricular images are easier to segment than
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apical and basal slice images (Figure 1-4). Indeed, MRI resolution is not high

enough to resolve the size of small structures at the apex axis. In addition,

ventricle shapes are strongly modified close to the base of the heart, because of

the vicinity of the atria.

Figure 1-4: Cardiac images corresponding to 12 short-axis slices from apex to base.
(Author: Petitjean)
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Chapter 2

Review of Segmentation Methods

2.1 Introduction

In this chapter, we will review the state of the art of medical image segmentation

including model-free segmentation techniques, deformable models, graph cuts, atlas-

based segmentation and convex optimization. Model-free segmentation methods are

traditional methods which rely on the intensity values of the image. Deformable

models describe a group of computer algorithms that provide an abstract model of

an object class by modelling the variability in shape, texture or imaging conditions

in a certain class of objects [4]. This group includes snakes, level sets and active

shape model approaches. Graph cuts is a general graph-based image segmentation

which represents the image as a graph and seeks the minimum partition of that

graph resulting in the segmentation of the image. Atlas based approach describes

the anatomical structures in an atlas and the segmentation is given by a sort of

alignment of that atlas to the target image. Convex optimization techniques allow to

cast computer vision problems in terms of convex functionals. As a consequence, one

can compute globally optimal solutions (or solutions with bounded optimality) that

are independent of the initialization [5].
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2.2 Model-free Segmentation

Model-free segmentation techniques are traditional methods of segmentation such as

thresholding, region growing, and watershed. The segmentation is given according

to the pixel intensities that reflect distinct tissue groups. These techniques are algo-

rithmically motivated and there is not an energy model that leads to an optimization

problem. The main methods of this group are the following [6]:

Thresholding: The most common one in this group is thresholding based on the

idea that the image is constituted in dark and bright regions which represent the

background and foreground. Then, pixels above certain threshold are considered as a

foreground and pixels below or equal to that threshold are considered as a background.

The key point of this approach is to find that threshold. It can be generalized to N

regions by introducing N −1 thresholds. Thresholding algorithms can be categorized

into global or local thresholding. If the threshold is applied to the entire image, the

algorithm is a global thresholding algorithm. Otherwise, if the threshold depends

on local properties of some regions, it is a local thresholding algorithm. The main

problems of this method are that objects are often not separable using a threshold

and the spatial context is ignored.

Region Growing: Region growing is a procedure that groups pixels or subregions

into larger regions based on predefined similarity criteria such as intensity, texture

and color properties. Region growing algorithm starts with a set of seed points.

From these seed points, region growing algorithm grows regions by appending to

each seed its neighboring pixels that have similar properties as the seed, according

to the predefined similarity criteria. Similarity criteria may be difficult to define

especially for medical images with low contrast. Moreover, if the similarity criterion

is not properly defined, the regions may leak out and merge with other regions that

belong to different anatomical parts. Region growing can also be sensitive to noise,

causing extracted regions to have holes or even become disconnected, resulting in

over-segmentation.

Watershed: It visualizes an image in three dimensions where the height of each
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point represents its gradient value. The gradient value is interpreted as the altitude

of a topographic relief. Then, morphological operations are applied just like pouring

water into punctures of the topographic relief. When water from different punctures

is starting to mix, a dam is built to stop the mixing. These dams are the boundaries

of objects in the image. This approach is sensitive to noise. It may also cause

over-segmentation. Therefore, the watershed algorithm is usually followed by a post-

processing step to merge the separated regions that belong to the same anatomical

part. Moreover, it is poor at detecting thin structures and structures with low signal-

to-noise ratio [7].

2.3 Snakes

A snake or active contour [8], introduced by Kass et al. (1988), is an elastic band

placed on an image which evolves by means of energy minimization to delineate an

object of interest. To do so, the snake is first initialized near the object boundary.

Then, the snake evolves towards the salient contour. When the snake has reached the

object boundary, we say that the snake evolution has converged and hence it ceases

the evolution. An example is shown in Fig. 2-1.

Figure 2-1: Segmentation of the left ventricle using snakes. The initial contour is
plotted in grey and the final converged result is plotted in white. (Author: Chenyang
Xu et al.)

Mathematically, this framework attempts to minimize an energy composed by the
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sum of an internal and external energy:

• The external energy guides the snake towards the features of the image. Some

of the common external terms are: EI = ±γI(C(s)) which attracts the curve to

high (or low) intensity points, EG = −δ|∇(G(C(s)) ∗ I(C(s)))| which attracts

the curve to points with a large gradient and EE = −ζe−d(C(s))2
which makes

the contour to move near points in the edge map. C(s) = (x(s), y(s)) is a

parametric contour or the contour of the snake and s is the parameter of the

curve. In the last expression, d(C(s)) is the distance to the closest boundary

point and G(C(s)) ∗ I(C(s)) denotes the image convolved with a Gaussian

smoothing filter [9].

• The internal energy tries to preserve the smoothness in the shape of the curve.

The stretching and the bending energies are called internal energies which are

proportional to the first and second derivative of the curve respectively. The

stretching term penalizes the length of the contour whereas the bending term

penalizes the total curvature of the contour. The total internal energy of the

snake can be defined as Eint = Estretch + Ebending.

The external and internal energies combined together prefer a compromise of a

short contour which captures as much image gradient as possible. The final solution

given by the snake is the one which minimizes the sum of the external and internal

energies as follows:

E(C(s)) =

∫ 1

0

Eext(C(s))ds︸ ︷︷ ︸
External Energy

+α

∫ 1

0

|Cs(s))|2ds︸ ︷︷ ︸
Estretch

+ β

∫ 1

0

|Css(s))|2ds︸ ︷︷ ︸
Ebending︸ ︷︷ ︸

Internal Energy

(2.1)

where C : [0, 1] → Ω is a parametric contour, α and β control the smoothness of

the curve and Cs and Css are the first and second derivative of the contour respectively.

To minimize the energy functional, we apply an optimization tool known as cal-

culus of variations [10] to take a derivative with respect to a function. After taking
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the functional derivative equate the derivative to zero to find the minimum. The

resulting Euler-Lagrange equation is:

dE

dC
=
dL

dC
− d

ds

dL

dCs
+

d2

(ds)2

dL

dCss
= −∇Eext − αCss + βCssss = 0 (2.2)

There are several numerical techniques to solve the Euler equation using opti-

mization techniques such as gradient descent or dynamic programming [11] and dis-

cretization methods such as finite differences [8] or finite elements [12]. We apply

first gradient descent to solve the equation. To do so, the parametric contour C is

converted into a function of time and equated to the partial derivative of C to time

instead of 0. The reason for this can be seen if one assumes that, after a long time

when the snake has converged to a minimum, its derivative to time will be zero, and

hence the Equation 2.2 is satisfied. For simplicity, we call the external force ∇Eext
as Fext and the gradient descent rule becomes:

∂C(s)

∂τ
= −dE

dC
= Fext + αCss(s, τ)− βCssss(s, τ) = 0 (2.3)

This equation can be interpreted as force balance that drives the snake. The

internal force (the stretching and the bending terms) and the external force (terms

involving image gradients) are trying to balance each other. When the net result

force is zero, the snake stops evolving, and we obtain a local minimum [13].

To represent the snake, we need a polygonal representation of the continuous

contour. This is performed by separating C into its two components X and Y and

Fext into fx and fy and then by representing the continuous parameter s ∈ [0, 1] with

indices i ∈ {0, 1, , n−1}, with n being the total number of points. The finite difference

approximation is used to approximate the spatial derivatives: xss = Xτ
i+1−2Xτ

i +Xτ
i−1

and xssss = Xτ
i+2−4Xτ

i+1 +6Xτ
i −4Xτ

i−1 +Xτ
i−2. The resulting discrete equations are:

Xτ+1
i −Xτ

i

ζ
= α(Xτ

i+1−2Xτ
i +Xτ

i−1)−β(Xτ
i+2−4Xτ

i+1+6Xτ
i −4Xτ

i−1+Xτ
i−2)+fx(X

τ
i , Y

τ
i )

(2.4)
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Y τ+1
i − Y τ

i

ζ
= α(Y τ

i+1−2Y τ
i +Y τ

i−1)−β(Y τ
i+2−4Y τ

i+1+6Y τ
i −4Y τ

i−1+Y τ
i−2)+fy(X

τ
i , , Y

τ
i )

(2.5)

where τ represents an instant time and ζ the step length [13]. In matrix form Equa-

tions 2.4 and 2.5 become:

Xτ+1 −Xτ

ζ
= −Aτx + f τx (2.6)

Y τ+1 − Y τ

ζ
= −Aτy + f τy (2.7)

where fx = ∂Fext
∂x

, fy = ∂Fext
∂y

, A is a pentadiagonal banded matrix (cyclic if curve

is closed) and X and Y are the components of C which are a vector with x-values

and y-values respectively of coordinates of points along the curve.

The matrix A is a pentadiagonal banded matrix with size n× n with n being the

number of vertices:

A =



c b a a b

b c b a a

a b c b a
. . . . . . . . . . . . . . .

a b c b a

a a b c b

b a a b c


where a = β, b = −(4β + α) and c = 6β + 2α.

The numerical stability of Equations 2.6 and 2.7 depends on the time step ζ.

For practical time step values, they may be unstable [13]. Instead, a semi-implicit

procedure [14] is followed by rewriting them as:

Xτ+1 −Xτ

δτ
= −Aτ+1

x + f τx (2.8)
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Y τ+1 − Y τ

δτ
= −Aτ+1

y + f τy (2.9)

Then, the final solution becomes [13]:

xτ+1 = (In − ζA)−1(xτ + ζf τx ) (2.10)

yτ+1 = (In − ζA)−1(yτ + ζf τy ) (2.11)

where In is the n× n identity matrix.

The most interesting feature of snakes is their closed shape even if there is noise.

The limitations of the method are high sensitivity to initialization, fixed topology,

local minima and the difficulty to work with noisy images or with lack of contrast

data. Moreover, it has also difficulties in progressing into boundary concavities. Other

implementations have been proposed in order to improve the performance of the

standard snakes. For example, Cohen et al. suggested a balloon based pressure force

to enlarge the capture range of snakes [12]. The balloon model allows to pass over

weak borders and stop on salient edges. It also reduces the sensitivity to initialization.

However, this model may not move into boundary concavities or may overwhelm weak

boundaries. Xu et al. proposed a Gradient Vector Flow snake (GVF) [15] where

instead of directly using image gradients as an external force, they use a spatial

diffusion of the gradient of an edge map of the image. It was proposed to deal with

the sensitivity to initialization and inability to move into boundary concavities. In

spite of its numerous advantages, this method is still susceptible to local minima

in some images since it is based on local measurements such as image gradients,

it is sensitive to parameters and the calculation of the gradient vector field can be

computationally expensive.

Moreover, some works were suggested to deal with the difficulty of the topological

adaptation such as splitting or merging model parts, a useful property for recovering

multiple objects or objects with unknown topology [16], however they require sophis-

ticated schemes [17, 18, 19]. Novel geometric models of active contours were proposed
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by Caselles et al. [20]. These models are based on the theory of curve evolution and

geometric flows where the curve is propagating by means of velocity which contains a

term to regulate the curve and another to shrink or expand it towards the boundary.

The model is given by a curve evolution approach and not an energy minimization.

It allows automatic changes in topology when this model is implemented with level

sets-based numerical algorithms whose technique is described in detail in Section 2.4.

Thereby, several objects can be detected simultaneously without adding complexity

or prior knowledge.

2.4 Level Sets

Snakes also referred as active contours [8] control the deformation of an initial con-

tour curve C(p), p ∈ [0, 1] according to internal and external forces achieving a

minimum energy configuration at high-gradient regions of the image as described in

Section 2.3. This model is usually implemented with a parametric framework in which

the deformable model is explicitly represented in its parametric form and defined on

a regular spatial grid, tracking its point positions in a Lagrangian formulation [16]. A

limitation of parametric active contours is that is challenging to change the topology

of the evolving contour. An alternative representation for such closed contours is

to use a level set representation. The level set technique, introduced by Osher and

Sethian [21] in 1988, is based on an evolving surface in a higher dimensional space

represented as a signed distance function φ as shown in Fig. 2-2.

A boundary C is thus represented as the zero level set of higher dimension φ,

satisfying: 
φ(x, y, t) > 0, for(x, y) ∈ Ωin(t),

φ(x, y, t) < 0, for(x, y) ∈ Ωout(t),

φ(x, y, t) = 0, for(x, y) ∈ ∂Ωin(t) = C(t)

where Ωin is the region bounded by C and Ωout is defined as Ωout = Ω\Ωin.

In order to derive an equation of motion for this level set function φ, we assume

that an initial curve C is embedded as the zero level set of a higher dimension function:
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Figure 2-2: Level set methodology and curve propagation. The left column shows the
evolving level set function, while, on the right, the corresponding curve that is the
zero level set values of the surface is illustrated. (Author: Nikos Paragios et al.)

C0 = {(x, y)\φ(x, y, 0) = 0}. At any time t, the front is given by the zero level set of

the time-dependent level set function φ:

φ(x, y, t) = 0 (2.12)

where φ(x, y, t) is the height of the surface at the position (x, y) and time t. This zero

level set can represent the set of evolving contours which are able to split and merge

to delineate certain object boundaries.

To obtain the evolution equation, we differentiate φ(x, y, t) with respect to time

using the chain rule [13]:

dφ(x, y, t)

dt
=
∂φ(x, y, t)

∂t
+∇φ(x, y, t) · (xt, yt) (2.13)

where (xt, yt) is the velocity at point (x, y) on the geometric contour. We take this

partial derivative and set it to zero to achieve an Euler-Lagrange equation:

∂φ(x, y, t)

∂t
+∇φ(x, y, t) · (xt, yt) = 0 (2.14)

Assuming that the surface moves in the normal direction to the surface, we take

the velocity (xt, yt) and constrain motion in the normal direction. Thereby, we can
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define the speed of the surface as:

F = (xt, yt) · n (2.15)

for unit normal n with n = ∇φ(x,y,t)
|∇φ(x,y,t)| on the surface φ(x, y, t). Combining the unit

normal n with Equation 2.15, and Equation 2.14, we obtain the classical level set

equation introduced by Osher and Sethian [21]:

φt + F |∇φ(x, y, t)| = 0, (2.16)

where φt = ∂φ(x,y,t)
∂t

and the function F initially was expressed by Osher as F =

div
(
∇φ
|∇φ|

)
but since then, many other forces were suggested.

Typically, after an initialization we can evolve φ(x, y, t) by updating each φ(x, y, t)

for each (x, y) position at time t. Alternatively, we can use a narrow band technique

[22] to update just a band around the zero level set contour [13].

Since its introduction, the concept of deformable models for image segmentation

defined in a level set framework has motivated the development of several families of

methods such as: geometric active contours based on mean curvature flow, gradient-

based implicit active contours and geodesic active contours [16]. Geometric active

contours were introduced by Caselles et al. [20] by adding a constant inflation force

term and multiplying the force by a term inversely proportional to the smooth gradient

of the image. In this context the model is forced to inflate on smooth areas and to

stop at high gradient locations [16]. Malladi, Sethian and Vemuri [23] presented a

gradient-based speed function for the general Hamilton-Jacobi equation of motion

in Equation 2.16. The authors decompose the speed term into two components Va

and VG which are the advection term independent of the geometry and a remainder

term which depends on the front geometry, respectively. The front propagation stops

at high-gradient location depending on the value VG [16]. Geodesic active contours,

introduced simultaneously by Kichenassamy et al. [24] and Caselles et al. [25],

connect classical snakes based on energy minimization and geometric active contours

based on the theory of the curve evolution. The model is derived from energy-based
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snakes and performs the extraction of the contour via the calculation of geodesics.

The major problem of boundary-based level set segmentation methods is related to

boundary leakage through weak or missing boundary parts. The second issue is that

the segmentation process is very sensitive to the initialization of the level set function

as the model is prone to converge to false edges that correspond to local minima

of the energy functional. Medical images generally suffer from insufficient and false

edges caused by acquisition artifacts and machine noise from different modalities.

Two approaches can be followed to address these limitations [16]. The first approach

is to fuse regularizer terms based on clustering, bayes, shape and couple-surfaces in

the speed function [26]. A second approach is to reformulate the problem in terms

of region-based segmentation techniques derived from the Mumford-Shah functional

implemented with level sets-based numerical algorithms.

Region-based active contours were derived from the Mumford-Shah segmentation

framework, which was initially proposed in [27]. The authors presented a new segmen-

tation framework by minimizing an energy functional involving a piecewise smooth

representation of an image as follows:

E(S, f) = α

∫
Ω

(f − I)2dx+ β

∫
Ω\S
|∇f |dx+Hn−1(S) (2.17)

where Hn−1 is the (n − 1) dimensional Hausdorff measure and (α, β) are positive

real parameters. In this energy functional, the first term ensures that is a good

approximation of the original image I, the second term ensures the smoothness of f

and the last term penalizes the length of the set of contours. This type of region-

based segmentation method relies on the homogeneity of the object to segment. Based

on the Mumford-Shah segmentation framework, Chan and Vese [28] introduced the

following homogeneity-based functional which aims at partitioning an image into

regions with piecewise constant intensity:

E(C) = λ0

∫
insideC

|I−µin|2dΩ +λ1

∫
outsideC

|I−µout|2dΩ +γ1length(C) + ν2Area(C)

(2.18)
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where I is the original image, µin and µout are the average values of pixels inside and

outside the curve C respectively, and the last two terms are regularizer terms that

put constraints on the length and the area of the curve. In a level set framework,

Equation 2.18 becomes:

E(C) = λ0

∫
insideC

|I−µin|2H(φ)dΩ+λ1

∫
outsideC

|I−µout|2(1−H(φ))dΩ+γ1length(C)+ν2Area(C)

(2.19)

where H is the Heaviside function. Advantages of this method include the possibility

of segmenting objects with weak edges and robustness to initialization, avoiding the

problem of local minima at spurious edge locations or leakage of the model at missing

boundary parts [16].

In parallel effort, Tsai, Yezzi et al. [29] presented a reformulation of the Mumford-

Shah energy functional using a gradient flow formulation and a level set framework

from a curve evolution perspective [16].

2.5 Active Shape Models

Active Shape Models (ASM) is a statistical shape model built up from a hand seg-

mented training data. Let a contour be represented as a set of ordered sequence of

points, i.e., x = [X0, Y0, X1, Y1, ..., Xn−1, Yn−1]. Thus, when we refer to a distribution

of shapes, essentially, we are referring to the distributions of random vectors x. ASM

assumes that the distribution of x is a multivariate Gaussian [13]:

x ∼ 1√
(2π)2n|Σ|

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(2.20)

where µ and Σ are, respectively, the mean vector and the 2n× 2n covariance matrix

for the shape x, n is the number of shape points and | | denotes a determinant.

In principle, one can estimate the mean vector and the covariance matrix from the

training samples. Once these parameters are estimated, we can proceed to perform

the Bayesian inference for an unknown test image. But there is a potential problem
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with this approach. The estimation of the covariance can be adversely affected when

there is a small number of training examples compared to the number of shape points

such that the covariance matrix becomes singular, making the inference extremely

difficult.

To deal with this problem, ASM represents the multivariate joint Gaussian dis-

tribution in Equation 2.20 into a product of 2n univariate Gaussians. As Σ is real,

symmetric and positive definite by singular value decomposition can be written as

Σ = UDUT where U is a 2n×2n orthogonal matrix and D is a 2n×2n diagonal matrix

such as D = diag(σ2
1, σ

2
2, ..., σ

2
2n). The determinant of the covariance matrix is now

|Σ| = |U ||D||UT | =
∏2n

i=1 σ
2
i . Moreover, ASM ignores the Gaussian distributions with

small variances by retaining m larger variances because a univariate Gaussian with a

small variance can affect adversely the entire joint multivariate Gaussian distribution.

Taking into account these algebraic facts the Equation 2.20 becomes [13]:

1√
(2π)m|Σ|

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
=

m∏
i=1

1√
2πσi

exp

(
−(uTi (x− µ))2

2σ2
i

)
(2.21)

with Σ = [u1...um]diag(σ2
1, ..., σ

2
m)[u1...um]T .

Now, to sample a random shape we only need m random numbers v1, v2, ..., vm

from zero-mean univariate Gaussians with variances σ2
1, σ

2
2, ..., σ

2
m. The other 2n−m

random numbers are all zeros. Then, we would obtain the shape x by solving the

following sets of linear equations:

uTi (x− µ) = vi, i = 1, 2, ....,m

uTi (x− µ) = 0, i = m+ 1, ...., 2n

The solution is given by:

x = µ+ U [v1, v2...vm0...0]T = µ+
m∑
i=1

viui (2.22)

To train the ASM, first the N training shapes must be aligned with each other.
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After the alignment, the next step is to compute the mean and the covariance of the

training data [30]:

µ = 1
N

∑N
j=1 xj

Σ = 1
N

∑N
j=1(xj − µ)(xj − µ)T

Finally, the eigenvectors u and eigenvalues λ of the covariance matrix Σ are com-

puted and a value for m is chosen, i.e., how many eigenvectors need to be kept for

describing ASM [13]. The following formulation can then approximate any of the

training set x:

x ∼ µ+ Uv

v = UT (x− µ)

where U = (u1|u2|...|ut) contains the m eigenvectors of the covariance matrix

and v defines a set of parameters of a deformable model. By varying the elements

of v we can vary the shape x. Therefore, a new shape is described by the average

shape vector and a linear combination of eigenvectors of the variations around the

average shape as shown in Fig. 2-3. The eigenvectors define a rotated coordinate

frame and the vector v defines points in this rotated frame. Suitable limits for the

shape parameters may be established to ensure that the shape generated is similar to

those in the original training set, for example −3
√
λk ≤ vk ≤ 3

√
λk where λk is the

corresponding eigenvalue.

Figure 2-3: Effect of varying the first shape parameter around the average shape.
(Author: T. F. Cootes)
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ASM can also be formulated as a minimization of a cost function described in

detail in [13] or using affine transformations to fit the shape model to new data sets by

Cootes et al. [30]. The latter work may be more suitable where large transformations

such scaling or rotations are desired.

The ASM performance can be significantly improved using a multi-resolution im-

plementation, in which the search is guided by a coarse level of a gaussian image

pyramid, and is progressively refined [30]. This leads to much faster, more accurate

and more robust search.

Active Appearance models (AAM) are an extension of active shape models whose

main difference is that in addition to the shape variability, the texture variation is also

incorporated to the model. A novel multistage hybrid appearance model methodology

is presented in [31] which combines the strengths of ASM that finds local structures

fairly well to the strengths of AAM which is optimized on global appearance but it is

less sensitive to local structures and boundary information. The main issues of these

two methods are that the creation of a training set is a tedious and time-consuming

task and that the accuracy of the segmentation relies in the variability of the training

data set.

2.6 Graph Cuts

It is a graph based image segmentation which represents the image as a graph and

the final segmentation is the result of finding the minimum cut of that graph. Graph

cuts proved to be an useful multidimensional optimization tool which can enforce

piecewise smoothness while preserving relevant sharp discontinuities [32].

First, we will introduce the basic terminology [32]. A graph G = 〈V, ε〉 is defined

as a set of nodes V and a set of edges ε connecting neighbour nodes. The nodes set

V = P ∪{s, t} contains non-terminal nodes P which represent the pixels of the image

and two additional special nodes known as terminal nodes which are called the source

s, and the sink t. Each graph edge is assigned some nonnegative weight w(p, q). An

edge is called a t-link if it connects a non-terminal node in P with a terminal. An
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edge is called a n-link if it connects two non-terminal nodes. The goal is to find the

minimum cut through the graph that separates source and sink which is equivalent

to assign the pixels to either source or sink. Any cut corresponds to some binary

partitioning of an underlying image into object and background segments.

Figure 2-4: Example of graph-based image segmentation.

The optimal bipartitioning of a graph is the one that minimizes this cut value

which corresponds to the optimal variable assignment for the nodes (Fig. 2-4):

cut(A,B) =
∑

u∈A,v∈B

w(u, v) (2.23)

where A and B are the partitions for background and foreground. Although there

are an exponential number of such partitions, there exist efficient algorithms to solve

this problem including max flow algorithms which have been successfully used for a

wide variety of vision problems.

A standard form of the energy function for a binary pixel labeling problem is:

E(u1, ..., un) =
∑
i

D(ui) +
∑
i,j∈N

wijδ(ui 6= uj) (2.24)

where u1, ..., uN are binary pixels to be determined with ui ∈ {0, 1}, N is the total

number of pixels in the image, D(ui) is the penalty to assign to a pixel u an intensity

{0, 1}, for example Di(0) = (Ii− µ1)2 and Di(1) = (Ii− µ2)2 with µ being the mean,

and δ is the identity function which is 1 if its argument is true and 0 otherwise.

Typically this function δ imposes smoothness in the solution, for example it will
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penalize if two neighboring pixels have different labels, and is weighted by a parameter

wij to control the level of smoothness. Globally, the first term says that the variable

assignment u should agree with the observed data, and the second term states that

most nearby pixels should have the same intensity label [32].

Figure 2-5: An example of the Ford-Fulkerson method.

According to the Ford-Fulkerson theorem, we can re-write the minimum cut prob-

lem as a maximum flow problem. Ford and Fulkerson also proposed a technique

called the Ford-Fulkerson method which computes the maximum flow in a flow net-

work. The idea behind the algorithm is simple. As long as there is a path from the

source (start node) to the sink (end node), with available capacity on all edges in the

path, we increase flow with the minimum residual capacity along this path. Then, we

find another path until all paths have at least one edge with no available capacity.

The edges with no residual capacity represent the cut through the graph. An

example is shown in Fig. 2-5. Efficient code is provided by Vladimir Kolmogorov with

linear running time [33] in the average case. The global optima solution is guaranteed

if the considered energy has only two labels (source and sink), the regional models

are fixed i.e., the means of the two regions are known a priori, and the edges are
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non-negative.

Some extensions to multilabel problems have been implemented including α-

Expansion and α − β Swap whose idea is to try to break the multilabel task into

a sequence of binary tasks [34]. The solution of those two approaches may not ensure

global optimum.

2.7 Atlas-based Segmentation

In general, an atlas incorporates the locations and shapes of anatomical structures,

and the spatial relationships between them [35]. It can be generated by manually seg-

menting an individual image or by integrating information from multiple segmented

images, for example from different individual subjects. Given an atlas, an image can

be segmented by mapping its coordinate space to that of the atlas according to some

image quality criterion, a process commonly referred to as registration. Labeling an

image by mapping it to an atlas is consequently known as atlas-based segmentation,

or registration-based segmentation [35]. The idea behind is to align an atlas image to

a target image to be segmented by some spatial transformation which maps the atlas

image space onto the target image space. A coordinate transformation is estimated

which maximizes the similarity of the target image and the deformed atlas. Once

aligned, the label for each image voxel can be given by looking up the structure at

the corresponding location in the atlas under the resulting coordinate mapping. The

Fig. 2-6 illustrates an example of the basic process.

The correctness of a given transformation is typically quantified by a so-called

similarity measure. A similarity measure that has been empirically found to be par-

ticularly well-suited for many registration applications is mutual information (MI)

based on the information-theoretic entropy concept [35, 36]. Studholme et al. pro-

posed normalized mutual information which has been found to be slightly more robust

[37]. The are many implementations of both methods to estimate the image entropies

including Parzen windowing [38] or the use of discrete 2d histograms [39].

Maximizing only the similarity criterion provides under-constrained equations,
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Figure 2-6: Registration of a cardiac atlas in form of a labelled image to a MR image
of the heart. (Author: M. Lorenzo-Valdes)

that makes image registration an ill-posed problem and thus requires the use of addi-

tional constraints [3]. One way to deal with this issue, is to restrict the transformation

space to parametric transformations [3], such as cubic splines [40] or the basis of eigen-

shapes, obtained with a PCA on the database of shapes [41]. Another way is to add

a regularization term to the similarity criterion [3], such as a classical viscous fluid

model [42], or a statistical model [41]. In this latter work, the shape variability is

modeled with probabilistic shape models, including a probabilistic atlas, that provides

the probability that a structure appears at each pixel.

2.8 Convex Optimization

Both parametric contours and implicit level set representations generally only find

locally optimal solutions where the optimality is not guaranteed whereas recently

developed convex relaxation schemes provide solutions which are either optimal or

within a bound of the optimum [43].

The idea behind convex relaxation is that starting with a nonconvex problem,

we first find an approximate, but convex, formulation of the problem. By solving

this approximate problem, the exact solution to the approximate convex problem is

obtained. This solution is then projected back to the original nonconvex problem

[44]. An example is shown in Fig. 2-7.
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Figure 2-7: Approximation of a non-convex function in a convex one. (Author:
Thomas Brox)

Many methods for global optimization require a cheaply computable lower bound

on the optimal value of the nonconvex problem. Two standard methods for doing

this are based on convex optimization [44]. In relaxation, each nonconvex constraint

is replaced with a looser convex constraint. In Lagrangian relaxation, the Lagrangian

dual problem is solved, which is complex. The solution to the dual problem provides

a lower bound on the optimal value of the original nonconvex problem.

The backprojected solution may not be optimal as shown in Fig. 2-8 where u is

the solution of the original problem and the relaxed problem results in w which is the

global optima of the convex problem but when it is projected π(w) to the original

problem, the solution is not global optima anymore. The optimality bound is defined

by E(w) <= E(u) <= E(π(w)).

We can use the following general equation to compute a segmentation of an image

[43, 45]:

minΩi

{
1

2

k∑
i=0

Per(Ωi; Ω) +
k∑
i=0

∫
Ωi

fi(x)dx

}
(2.25)

such that
⋃k
i=0 Ωi = Ω,Ωs

⋂
Ωt = ∅ ∀s 6= t with domain Ω ⊂ Rd. The minimization of

Equation 2.25 will partitionate the domain Ω into k+1 pairwise disjoint sets Ωi. The

first term is the regularizer term which measures the perimeter of the set Ωi which

leads to smooth segmentation boundaries. The second term is the data term based
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Figure 2-8: Process of convex optimization. u is the solution of the original problem
and w the solution to the relaxed problem. The projected solution π(w) to the original
problem is not the global optimal solution of the original problem. (Author: Bastian
Goldlucke)

on the features of the images. One example of data term is the piecewise constant

Mumford-Shah functional where fi(x) = (I(x)− ci)2 which is the squared difference

of the input image I to some mean intensity ci as described in Section 2.4.

(a) (b)

Figure 2-9: (a) The two-label case: A binary function θ is used to partition the image
domain Ω into two regions. (b) The three-label case: Two binary functions θ1 ≥ θ2

are used to partition the image domain Ω into three regions. (Author: Cremers)

Firstly, we will review the functional convex representation for the binary problem

case and extend it for the multi-label case [43, 45]. A binary function θ : Ω→ {0, 1}

is used to model the partition of the image domain into two regions such as θ(x) =

0 if x ∈ Ω0 and θ(x) = 1 if x ∈ Ω1. Fig. 2-9.a shows an example of partitioning the
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image domain Ω into two regions with one binary function θ. The goal is to rewrite

the Equation 2.25 in terms of the binary function θ. Starting for the two label case,

the perimeter of the set Ω1 is given by the weighted total variation of θ [43]:

Per(Ω1; Ω) =

∫
|Dθ| (2.26)

where
∫
|Dθ| denotes the Total Variation of θ. For binary functions θ, it is equal to

the total interface area. Dθ is the distributional derivative of θ. For differentiable

functions θ it is simply given by Dθ = ∇θdx. To make the problem convex, θ is

relaxed by allowing to vary smoothly in the interval [0, 1].

There exists a more general formulation of the Total Variation [46, 47, 48]:

∫
Ω

|Dθ| = sup
ξ:|ξ(x)|≤1

{
−
∫

Ω

θ div ξ dx

}
(2.27)

where ξ = (ξ1, ..., ξk)T : Ω→ Rd is the dual variable and |.| denotes the Euclidean

vector norm. This formulation is also called the dual formulation of the Total Vari-

ation. The main advantage of the dual formulation over the original formulation is,

that it is valid for any L1 integrable function, but it comes along with inequality

constraints on the dual variable ξ which brings some additional complexity to the

formulation [45].

For the multiple label case, the k + 1 regions Ωi in Equation 2.25 are represented

by a labeling function u : Ω → {0, ..., k} where u(x) = l if and only if x ∈ Ωi.

One can equivalently represent this multilabel function by k binary functions θ(x) =

(θ1(x), ..., θk(x)) defined by:

θi(x) =

 1 if u(x) ≥ l

0 otherwise
(2.28)

representing its upper level sets [43]. In turn, the labeling function u can be recovered

from these functions via the relation:
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u(x) =
k∑
i=1

θi(x) (2.29)

An example is shown in Figure 2-9.b for k = 2 where two functions θ1 and θ2 are

used to partition the image domain Ω into three regions. A one-to-one correspondence

between multilabel functions u(x) and vectors θ = (θ1, ..., θk) of binary functions is

guaranteed by constraining θ to the ordered set [45]:

B = {θ : Ω→ {0, 1}k, 1 ≥ θ1(x) ≥ ... ≥ θk(x) ≥ 0,∀x ∈ Ω} (2.30)

From the Equation 2.28, the following relation can be established:

θi(x)− θi+1(x) =

 1 if u(x) = l

0 otherwise
(2.31)

with θ0(x) = 1 and θk+1 = 0 for simplification. Making use of the Equation 2.31, the

data term of Equation 2.25 can be written in terms of θ as:

k∑
i=0

∫
Ωi

fi(x)dx =
k∑
i=0

∫
Ω

(θi(x)− θi+1(x))fi(x)dx (2.32)

Rewriting the regularizer term in terms of θ is not so straightforward. Simply

summing the total variations of each function θi would imply that certain boundaries

are counted more than once. An example is shown in Figure 2-9.b, the boundary

between Ω0 and Ω2 would be counted twice. The dual formulation allows to suppress

a multiple counting of boundaries when combined with an additional constraint on

the dual variables [45]. The final formulation of Equation 2.25 in terms of θ becomes:

min
θ∈B

max
ξ∈K

{
k∑
i=0

−
∫

Ω

θi div ξi dx+

∫
Ω

(θi(x)− θi+1(x))fi(x)dx

}
(2.33)

with a set of ξ = (ξ0, ..., ξk) of dual vectors fields ξi : Ω→ R2, constrained to the set
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K = {ξ : Ω→ Rdxk, |
∑

i1≤i≤i2

ξi(x)| ≤ 1, ∀x ∈ Ω, 1 ≤ i1 ≤ i2 ≤ k} (2.34)

For a proof refer to [49]. The overall optimization problem in Equation 2.33 is non-

convex because the set B defined in Equation 2.30 is not convex. But the same

convexification as in the two-label case can be applied by relaxing the set of binary

solutions to the set of functions which can take all values in [0; 1]. To this end the

set B in the optimization problem 2.33 is replaced by the convex set:

R = {θ : Ω→ [0, 1]k, 1 ≥ θ1(x) ≥ ... ≥ θk(x) ≥ 0,∀x ∈ Ω} (2.35)

For k = 1 this formulation turns out to be equivalent to the two-region problem

considered for which we have optimality guarantee [50]. But for general problems

of more than one region k > 1, the global optimality cannot be guaranteed but the

optimilality bound can be found.

2.9 Conclusion

These techniques have been widely used in medical image segmentation and con-

tinuously improved to try to overcome their limitations. Model-free segmentation

methods usually require user interaction and they are usually not robust to noisy

or non-contrast data. In addition, they offer limited framework to incorporate prior

knowledge. Deformable models are more flexible in this sense. However, the paramet-

ric deformable model also known as snakes has fixed topology or a complex scheme

must be implemented to deal with topology changes. This issue can be alliviated

using the level sets framework. Both snakes and level sets can get trapped into local

minima because of many artifacts in medical images such as limited image contrast,

the presence of noise as well as variations in anatomy and pathology. Graph cuts

have recently become very popular due to its efficient global optimization, despite

the difficulty to include high level information in the formulation of the graph cut
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and the limitation to a set of energy functions. Active shape models seem robust to

recognizing and locating known rigid objects in the presence of noise, clutter, and

occlusion. But the creation of a training set is a tedious and time-consuming task

and the accuracy of the segmentation relies in the variability of the training data

set. The same occurs with atlas-based techniques whose main issue is that there is

no anatomical constraint incorporated, making the atlas have little influence in the

segmentation. Nowadays, convex optimization is getting much attention in research

in the computer vision field due to the robust tools available to solve convex problems.

But finding the equivalent convex problem to the original one is often not trivial and

the solution of the convex problem may not be the optimum in the original one.

As reviewed, all methods have their pros and cons and the choice of one or another

depends more on the application itself and the expertise of the person who chooses

it. Petitjean et al. [3] wrote a very interesting review of these methods applied to

short-axis cardiac MR images. They also included an assessment of segmentation

accuracy based on MICCAI 2009 challenge studies. According to the results in the

MICCAI challenge 2009, the authors draw some conclusions. The methods with better

results were model-free techniques [51, 52]. However these techniques required user

interaction and could not asses the ventricular surface in all phases. Other works

based on ASM [53] or model-free-based methods using registration and minimum

surfaces [54] offered a good compromise between performance and ambiguity. Other

approaches were interesting too such as the one of Constantinides using snakes [55]

but they were left ventricle specific and not applicable to the right ventricle. Whereas,

there were other approaches with more generic methodologies such as the O’Brien’s

work with a couple ASM [53]. For a more detailed comparison of the methods, please

refer to [3] and to [13] for additional information of segmentation methods including

deformable models and graph-based image segmentation approaches.
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Chapter 3

Shape Model Techniques

Shape modelling is an important aspect of computer graphics as well as computer

vision research. The goal of shape modelling is to find a few features which describe as

many shape details as possible. Shape models have been widely used successfully for

tasks of object representation, shape reconstruction and recognition among others. In

this Chapter, we will describe the main techniques for modelling data including data

alignment and shape variations as well as how to incorporate shape model information

in our work.

3.1 Shape and Landmarks

Shape can be defined as all geometrical information that remains when location,

scale and rotational effects are filtered out from an object [56]. In other words, the

objects’ shape is invariant to Euclidean transformations such as translation, rotation

and scaling. One way to describe a shape is by a finite number of points on the

outline called landmarks. A landmark is a point of correspondence on each object

that matches between and within populations and can be categorized into [57, 58]:

1. Anatomical landmarks: Points are assigned by an expert that corresponds be-

tween objects of study in a meaningful disciplinary context.

2. Mathematical landmarks: Landmark points are located on an object according
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to some mathematical or geometrical property of the figure, i.e. high curvature

or an extremum point.

The representation for an n-point shape consists of a k× p matrix of coordinates,

where p is the number of landmark points and k is the dimensionality of the physical

space. The order is arbitrary x = [x1, y1, x2, y2, ..., xp, yp].

3.2 Procrustes for Shape Alignment

To compare two shapes, the location, scale and rotational transformations need to

be filtered out. This is carried out by establishing a coordinate reference commonly

known as pose to which all shapes are aligned [58]. A common method for this purpose

is known as Procrustes analysis [57, 59, 60, 61]. The objective is to obtain a similar

placement and size to a target shape, by minimizing a measure of shape difference

called the Procrustes distance between the objects. The Procrustes distance to align

two shapes x1 and x2 is computed as follows [58]:

1. The centroid of all objects are calculated by averaging the components x and y

of the landmarks: (x, y) =
(

1
n

∑n
j=1 xj,

1
n

∑n
j=1 yj

)
.

2. Center all the shapes on the origin so that their means become zero by sub-

tracting the respective centroid from all landmarks.

3. Re-scale each shape to have equal size (usually unit size or size = 1.0). To do

so, each object is divided by its centroid size S. The centroid size is defined

as the square root of the summed squared distances of each landmark to the

centroid S(x) =
√∑n

j=1[(xj − x)2 + (yj − y)2]. Centroid size can be thought

as the standard deviation of the landmarks around the mean.

4. Rotate a shape to align it to the other around the origin until the sum of squared

distances between them is minimized:

(a) Arrange the size and position aligned of the two shapes x1 and x2 as n× k

matrices.
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(b) Calculate the singular value decomposition UDV T of xT1 x2 in order to

maximize the correlation between the two sets of landmarks.

(c) The rotation matrix needed to optimally superimpose x1 upon x2 is then

V UT :

V UT =

 cos(θ) −sin(θ)

sin(θ) cos(θ)


(d) Minimize the sum of the squared point distances which is also known as

squared Procrustes distance P 2
d =

∑n
j=1[(xj1 − xj2)2 + (yj1 − yj2)2].

An example of Procrustes algorithm between two shapes is shown in Figure 3-1.

Figure 3-1: Procrustes example between two shapes showing intermediate results
after translation, scaling and rotation. (Author: Alex Townsend)

In case we have more than two shapes to align, a simple iterative approach can

be used to obtain the generalized procrustes analysis [30, 58, 62]:

1. Choose the first shape as an estimate of the mean shape.

2. Align all the remaining shapes to the mean shape.

3. Re-calculate the estimate of the mean from the aligned shapes using x =

1
N

∑N
i=1 xi where N denotes the number of shapes.

4. If the mean estimate has changed return to step 2.
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3.3 Modelling Shape Variations

Principal Component Analysis (PCA) introduced by Pearson [63] in 1901 and Harold

Hotelling in 1933 [64] has been widely used to describe the main directions of shape

variations in a training set. In general, PCA looks for linear combinations of the

original features which can be used to represent the data, losing in the process as little

information as possible. Since this process reduces the dimensionality of the dataset,

and hence makes the interpretation easier, it is an useful tool in shape analysis. The

PCA process is achieved by transforming a data set consisting of a large number of

interrelated variables into a new set of variables, the principal components, which are

uncorrelated and ordered so that the first few retain most of the variation present in

all of the original variables [65].

Figure 3-2: PCA example in 2D: The principal components of a data set are its major
axes. (Author: Swan and Sandilands)

Conceptually the PCA performs a variance maximizing rotation of the original

variable space and provides the new axes ordered according to their variance [58]. An

example is shown in Figure 3-2, where the two principal axes of a two dimensional

data set are plotted and scaled according to the amount of variation explained by

each axis. Hence, the PCA can be used for dimensionality reduction by projecting a

set of multivariate samples into a subspace constrained to explain a certain amount of
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the variation in the original samples. In connection to the example in Figure 3-2, one

could choose to visualize the samples by providing an orthogonal projection of the

points upon the first (and largest) axis while the second principal axis is discarded.

In addition to dimension reduction, PCA can be used to determine any underlying

variables or to identify intra-class clustering or outliers [58].

Principal components are the linear combination of the centered original variables.

Given a data matrix with p variables and n samples, the data are first centered on

the means of each variable. This will ensure that the cloud of data is centered on the

origin of the principal components. The first principal component (y1) is given by the

linear combination of the variables x1, x2, ..., xp [66]:

y1 = m11x1 +m12x2 + ...+m1pxp (3.1)

or in matrix notation:

y1 = mT
1X (3.2)

The first principal component is calculated such that it accounts for the highest

possible variance in the data set. Obviously, the variance of y1 could be made as large

as possible by choosing large values for the weights m. To prevent this issue, weights

are calculated with the constraint that their sum of squares is 1.

m2
11 +m2

12 + ...+m2
1p = 1 (3.3)

The second principal component is computed in the same way, with the condition

that it is uncorrelated with (i.e., orthogonal to) the first principal component and

that it accounts for the second largest amount of variance.

y2 = m21x1 +m22x2 + ...+m2pxp (3.4)

This continues until a total of p principal components have been calculated, equal

to the original number of variables [66].
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Collectively, all these transformations of the original variables to the principal

components are defined as:

Y = MX (3.5)

where the matrix M contains the eigenvectors of the covariance matrix of the original

data and the elements of an eigenvector are the weights mij. Eigenvectors provide

the weights to compute the uncorrelated principal components.

To seek the linear transformation of the data, first we consider the mean shape

x = 1
N

∑N
i=1 xi and the shape covariance matrix [58]:

Σx =
1

N

N∑
i=1

(xi − x)(xi − x)T (3.6)

The mean of the y-variables can then be expressed as:

y =
1

N

N∑
i=1

yi =
1

N

N∑
i=1

Mxi = Mx (3.7)

And consequently the covariance of the y’s:

Σy = 1
N

∑N
i=1(yi − y)(yi − y)T

= 1
N

∑N
i=1(Mxi −Mx)(Mxi −Mx)T

= 1
N

∑N
i=1 M(xi − x)(M(xi − x))T

= 1
N

∑N
i=1 M(xi − x)(xi − x)TMT

= M
(

1
N

∑N
i=1(xi − x)(xi − x)T

)
MT

= MΣxM
T

Then, we limit to orthogonal transformation by left-multiplying by MT :

MTΣy = ΣxM
T (3.8)

Substitution of MT by φ yields:

Σxφ = φΣy (3.9)
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The covariance matrix of the principal components, is known as the eigenvalues

with the elements in the diagonal of matrix. Eigenvalues are the variance explained

by each principal component, and are constrained to decrease monotonically from the

first principal component to the last [66]. From Equation 3.9 it is seen that if φ is

chosen as the (column) eigenvectors of the symmetric matrix Σx, then the covariance

of the transformed shapes Σy becomes a diagonal matrix of eigenvalues [58]. In the

case of correlated points the smallest eigenvalues will be zero or close to zero and the

corresponding eigenvectors can be discarded from φ thus reducing the length of y.

In order to back transform from the new set of variables, y, one can invert Equa-

tion 3.5, considering that M is orthogonal:

x = M−1y = MTy = φy (3.10)

Generally, PCA is applied on variables with zero mean (notice that the φ is un-

changed) [58]:

y = M(x− x) , x = x+ φx

Given the mathematical explanation of PCA, we define the PCA procedure as

follows:

1. Subtract mean from each shape. This produces a data set whose mean is zero.

2. Calculate covariance matrix to estimate variance and covariance among the

original variables.

3. Calculate eigenvalues and eigenvectors of covariance matrix and find the major

axes of the data and the variation among them.

4. Rotate the original data onto the major axes and give the coordinates for their

new position.

Graphically, the PCA process is shown in Figure. 3-3.
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Figure 3-3: PCA procedure: Rotates data to its major axes preserving original dis-
tances between data points and removing correlations between variables.

Independent Component Analysis (ICA) [67] is an alternative method for the con-

struction of the modes of shape variation which does not assume a normal distribution

of the input data in contrast to PCA which supposes that the training data is from

a Gaussian distribution, which often is not the case. One of the main differences be-

tween these two methods is that in PCA the objective is to find the modes of shape

variation that explain maximal amount of the variance in the training set, whereas

in ICA, the independency of the modes of shape variation is maximized. Further-

more, in PCA the objective is to find global shape variations, whereas in ICA the

objective is to show localized shape variations [68]. In the context of statistical shape

models, ICA was recently introduced by Üzumcü et al. who used ICA to construct

a statistical shape model from a 2-D cardiac data set [69], and used it in 2-D cardiac

segmentation [70]. Several different methods for calculating ICA exist, such as the

FastICA [71], the InfoMax [72] and the JADE [73] algorithm. These methods differ

in the optimized contrast function to achieve decorrelation [74].

In classical PCA, one is able to define a natural ordering of the eigenvectors

according to the associated eigenvalues (variances). Therefore, it is possible to obtain

a compact description of the shape set by discarding the eigenvectors describing the

least variance [75]. In Independent Component Analysis however, the directions are

known to be descriptive of independent factors but the method itself does not provide

any order or ranking of components. This makes it difficult to achieve dimensionality

reduction unless, as customarily, one first performs PCA [74, 75, 76].
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When the shape space is nonlinear, as in the case when large pose variations

are allowed, linear transformation methods such as ICA or PCA can still address

the shape model problem to some extend by approximations using a combination of

linear components [30, 77, 78]. However, the use of linear components increases the

dimensionality of the model and also allows for non-valid shapes [79, 80]. Although

nonlinear shape variation can be captured by a set of structured linear models using

hierarchical principal components [81], this requires a very large database for learning

the distribution of the linear subspaces [80]. Kernel Principal Component Analysis

(KPCA) is a nonlinear PCA method. In general, PCA can only be efficiently used

on a set of observed data that vary linearly. When the variations are nonlinear, they

can always be mapped into a higher dimensional space which is again linear. If this

higher dimensional linear space is referred to as the feature space (F ), Kernel PCA

utilizes a kernel function which intrinsically constructs a nonlinear mapping from the

input space to F [80]. As a result, KPCA performs a nonlinear PCA in the input

space.

Like PCA, ICA is based on a linear model, so it is inadequate for ICA to describe

complex nonlinear variations due to illumination changes, viewpoint changes and

noise [82]. One approach to solve this problem is again to use kernel-based methods

as they are effective for such non-linearity. Kernel methods allow for the development

of a non-linear extension of some linear algorithms, such as PCA and ICA. Recently,

Kernel ICA (KICA) [83] was proposed as a nonlinear extension of ICA, which com-

bines a nonlinear kernel with ICA by mapping the input image data into an implicit

feature space F , and then ICA is performed in F to produce nonlinear independent

components of input data.

3.4 Statistical Shape Models

Statistical shape models such as Active Shape Models (ASM) or Active Appearance

Models (AAM) have shown great potential in image recognition and segmentation

tasks. Such models generally use Principal Component Analysis to describe the main
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directions of shape variation in a training set of example shapes. These models de-

scribe statistical variations in a set of training images, in which corresponding land-

mark points are annotated. First, the shapes, which are spanned by the landmarks,

are aligned, e.g., using Procrustes analysis. Then, the mean shape of this set of

aligned shapes is computed, and modes of shape variation are calculated using PCA.

Each shape sample can then be expressed by means of a set of shape coefficients v as

follows [74]:
x ∼ µ+ Uv

where x is a shape sample, µ the mean shape, U contains the eigenvectors describ-

ing the modes of shape variation in the training set and v is the vector containing

the coefficients weighting those eigenvectors. Refer to Chapter 2.5 for more details.

3.5 Shape Model for Prior Computation

The structure of shape spaces and statistical shape analysis have been examined

in different applications range from the computation of priors for segmentation and

shape classification to the construction of standardized anatomical atlases.

Figure 3-4: Example of the proposed PCA which gives as a first component the
average shape and the shape variation for the rest of components.

The focus of our research has been the application of shape analysis for computa-

tion of priors. In particular, we use principal component analysis in the technique of

normalized cuts with shape prior. We are interested in obtaining as the first compo-
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nent the average shape and for the rest of components the shape variation. For this

purpose, we change the PCA method as follows:

1. A matrix of priors P is given where the priors are kept in columns.

2. Calculate the eigenvectors of P>P .

3. Multiply the matrix P with the eigenvectors.

4. Normalize the result.

An example of using the proposed PCA shape model is shown in Fig. 3-4. Given

a training data with translations and rotations, the projection of the training data

over the eigenvectors give as a first component an average shape and the others show

the shape variation of that average shape.
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Chapter 4

Normalized Cuts with Shape

Priors

4.1 Introduction

Normalized cuts [84] is an efficient graph theoretic segmentation method robust to

noise and outliers, and is thus a good candidate for medical imaging segmentation.

Previously, it has been used for segmentation of the spinal vertebrae [85] and cluster-

ing of white matter fiber tracts [86] among others. Although normalized cuts has not

become as popular in the medical segmentation field as other methods such as level

sets [21] or graph cuts [32] due to the difficulty and limitation to add prior knowledge,

it has been widely used for natural images giving promising results.

The prior can provide valuable information combined with low level cues (e.g.,

similarity of pixel brightness, color, texture and motion) to guide the segmentation

to extract an object of interest from an image. There are some techniques to incor-

porate prior knowledge into normalized cuts but they are still limited. In [87], Yu et

al. model the prior as a linear constraint on a partial grouping solution indicating

which pixels should belong to one partition. They also impose a uniformity condition

on the constraints by propagating grouping information from labeled nodes to their

neighbors to obtain smooth solutions. In their later work, the authors reformulate

the normalized cut method to seek among the segmentations determined by partial
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constraints the one that optimizes the goodness of grouping and enforces grouping

smoothness for effective propagation [88]. In addition, the authors argue that the

main differences with other works of clustering incorporating constraints are that in-

stead of instantiating the labels or the constraints on labeled data points, they use the

labels to regulate the form of the segmentation, and that unlike most of the works,

they can guarantee local near-global optima.

Eriksson et al. propose a reformulation of the relaxation of normalized cuts

through a Lagrangian dual formulation to handle all types of linear equality con-

straints for any number of partitions [89]. However, Maji et al. show that this

method is not robust when the constraints are noisy and propose a new formulation

which in addition requires the solution to have sufficient overlap with the ”prior guess”

[90]. This formulation allows seeking solutions sufficiently correlated with the prior

with a small amount of additional time. Tolliver et al. argue that spectral relaxation

approximations suffer from spurious structures introduced by the constraints on the

eigenvectors that may produce poor solutions [91]. They propose to introduce shape

constraints by iteratively aligning the eigenvector space with the current estimation

of the shape and then updating the shape estimate by fitting regions that are likely

to contain the cut. Cai’s work [92] is inspired by Tolliver’s method [91] and modifies

all the relationships between nodes using shape constraints to make more flexible the

adjustment of the algorithm at the level of pairwise pixels.

We present a novel method to integrate shape prior knowledge into normalized

cuts. The proposed method seeks the normalized cut while maximizing the associ-

ation of the prior within a group and the disassociation with the other. Our main

contribution is that the prior is included into the cost function without the inclusion

of hard constraints avoiding the issues described above [91]. Furthermore, depending

on the application, the method does not require the inclusion of spatial relationships,

because they are already in the prior term and it can be extended easily to deal

with multiple priors applying Principal Component Analysis (PCA). The Spectral

Relaxation of the problem provides an efficient solution, although the resulting eigen-

problem is not sparse. The results of our method are very promising even when the
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image is noisy with limited contrast or the prior is inaccurate whereas most of the

previous methods require a reliable prior. We also adapt the proposed method on

natural images and compare it with the latest methods in normalized cuts with prior.

4.2 Theory

Graph-based segmentation algorithms are based on the representation of an image

as an undirected weighted graph where the pixels of the image are the nodes and

the edges have weights that represent the similarity between nodes. A measure of

similarity can be established considering pairwise pixel features like intensity, color,

texture and distance. Each edge is represented in the affinity matrixW that represents

the connections between nodes. The graph can be partitioned into two disjoint sets

by using the normalized cuts criterion, where the similarity among the nodes in the

same set is high and across different sets is low.

Let Ω be the set of all nodes and wij = (W)ij the affinity matrix. The cut is

defined as the degree of dissimilarity between two partitions computed as the total

weight of the edges that separates the graph into two disjoint sets:

cut(A,B) =
∑

i∈A,j∈B

wij

As this minimum cut criterion tends to cut small sets of isolated nodes in the graph,

Shi and Malik [84] proposed the normalized cut criterion obtained by computing the

cut cost as a fraction of the total edge connections to all the nodes in the graph and

the partition selected is the one that minimizes this cost:

Ncut(A,B) =
cut(A,B)

bal(A,B)

where the balance of the two sets is defined by bal(A,B) =
(

1
V (A)

+ 1
V (B)

)−1

and V is

the total edge connections to all the nodes in the graph: V (A) =
∑

i∈A,j∈Ω wij. Note

that V (A) = cut(A,Ω) and the normalized cut solutions will favor minimum cuts
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with higher balance values. To minimize the normalized cut, the authors developed

an algorithm, which is based on the solution of a generalized eigenvalue problem. Let

(x)i = xi be an indicator vector where xi = 1 for i ∈ A and xi = −1 for i ∈ B.

Let di =
∑

j wij = (D)ii, be the diagonal matrix that defines the connection of every

node to all other nodes. By setting: y = (1 + x)− b(1− x), Shi and Malik deduced

the following minimization criterion:

min
y

y>(D−W)y

y>Dy

with conditions yi ∈ {1,−b} and y>D1 = 0 where b is a constant less than 1. The

problem of minimizing the normalized cut is NP hard. However, the authors have

demonstrated that the minimization of this criterion can be approximated by relaxing

y to take all real values and solving the eigenvector problem of D−1/2(D−W)D−1/2

where the eigenvector with the second smallest eigenvalue approximates the optimal

normalized cut solution.

4.2.1 Introducing the Prior

We want to incorporate the prior information, a set of points belonging to the same

group, into the normalized cut formulation by minimizing the normalized cut criterion

and at the same time, maximizing the association of the prior to one partition and

disassociation to the other.

Let C be a set of points that make up the prior and that should be contained either

in the partition A or B. We know a-priori that Ω = A ∪ (Ω \A) where B = (Ω \A).

Therefore, we would like the solution such that either the intersection of A and C

or the intersection of B and C is large. To be more precise we want the relative

overlap respectively, to be large. The volume of the absolute intersection V (A∩C) is

obviously not a good choice, as Ω would already maximize the objective. Therefore,

we use the relative overlap which is defined as follows:

PC(A) =
V (A ∩ C)

V (A)
or PC(B) =

V (B ∩ C)

V (B)
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The above defined relative overlap PC(A) is maximized for PC(A = C) = 1 (the

same idea with B), which is our intention. Now, we have to formulate that we are

interested in exclusively having PC(A) or PC(B) large, and not mutually. One way

is to require that the squared difference (PC(A) − PC(B))2 is large, which requires

one of them to be large and the other to be small. We combine this with the original

Ncut objective as follows:

PcutC,γ(A,B) =
Ncut(A,B)

1 + γ2 bal(A,B) · (PC(A)− PC(B))2

where γ is the parameter which controls the influence of the prior. The additional

multiplicative dependence on bal(A,B) controls that, if the solution is far off from

the normalized cut, the influence of the prior is reduced.

This formulation also allows to be extended to fuzzy sets in a straightforward way

as well as express the prior as a linear combination of overlaps. Suppose there are

several priors, i.e. several Ck with k = 1, . . . , N . Then, we can generalize the above

objective to:

PcutC,γ(A,B) =

Ncut(A,B)

1 + bal(A,B) ·
∑N

k=1 γ
2
k(PCk(A)− PCk(B))2

where we have a sum of squared distances of the relative overlap with groups A and

B for every prior Ck. Furthermore, let ci with i ∈ Ω be a set of positive weights

expressing the ’amount’ of membership of pixel i to C and di =
∑

j∈Ω wij. Then we

can define P fuzzy
C (A) =

∑
i∈Ω ci di
V (A)

as the ’fuzzy’ relative overlap. Also note, that there

is no necessity for the weights ci of being positive. In fact, it is possible to use the

principal components of a PCA shape model as priors, i.e. PCk(A) =
∑
i∈Ω c

k
i di

V (A)
, where

(ck)i = cki are the k-th principal components of the shape model.

We want to compute PCA and get the average shape as the first principal com-

ponent and the shape variations for the rest of components. For that, we need to

change slightly the traditional PCA described in Section 3 following these steps:
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1. A matrix of priors P is given where the priors are kept in columns.

2. Calculate the eigenvectors of P>P .

3. Multiply the matrix P with the eigenvectors.

4. Normalize the result.

An example of using the principal components of a PCA shape model as a shape

prior is shown in Fig. 4-1. Given a training data with translations and rotations, the

proposed PCA gives as a first component an average shape and the others show the

shape variation around that average shape. The principal components can be used

as a prior ck.

Figure 4-1: Example of using the principal components as a shape prior.

4.2.2 Spectral Relaxation

Once we have introduced the prior to the normalized cut criterion, the solution is

approximated by spectral relaxation. Let (x)i = xi be an indicator vector for the

set membership, i.e. xi = 1 for i ∈ A and xi = −1 for i ∈ B. For short we write

xA = (1 + x)/2 and xB = (1− x)/2. Let di =
∑

j wij = (D)ii be the diagonal matrix

with the row sum on the diagonal. Suppose a set of priors (ck)i = cki is given. We

want to minimize:

min
A∩B=∅,A∪B=Ω

PcutC,γ(A,B)
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By setting y = xA
V (A)
− xB

V (B)
we can show that the above problem is equivalent to:

min
1>y=0, yi∈I

y>(D−W)y

y>Dy +
∑

k γ
2
k(y

>Dck)2

where (y)i = yi are allowed to take values in I = {−V (B)−1, V (A)−1}. Relaxing

this constraint to yi ∈ R we arrive, similarly to the ordinary Ncut, at the generalized

Eigenproblem:

(D−W)y = λ(D +
N∑
k=1

γ2
kDckc

>
k D)y

To get an ordinary eigenvalue problem (which is computationally preferred) one usu-

ally sets y′ = D−1/2y and multiplies the above equation by D−1/2:

(I−D−1/2WD−1/2)y′ = λ(I +
N∑
k=1

γ2
kD

1/2ckc
>
k D1/2)y′

which is, in our case, still a generalized eigenproblem. Using the substitution pk =

γkD
1/2ck and Q = I +

∑
k pkp

>
k the problem becomes:

(I−D−1/2WD−1/2)y′ = λQy′

We can then use the same trick from above, that is, setting y′′ = Q−1/2y′ =

Q−1/2D−1/2y which leads to the final eigenequation:

Q−1/2(I−D−1/2WD−1/2)Q−1/2y′′ = λy′′

The questions remains how to compute Q−1/2. Therefore, let P be the matrix where

the prior vectors are stacked together as columns P = [p1, ...,pN ]. Then, let P0

be the matrix P0 = P(P>P)−1/2, which is the orthogonal projection onto the space

spanned by the prior vectors pk. Then, Q−1/2 is given by:

Q−1/2 = I + P0

(
(IN + P>P)−1/2 − IN

)
P>0
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which is still efficient to apply, because P0 is a rank-N matrix, with the number of

priors N in a moderate range.

4.3 Implementation

Efficient eigenvalue solvers (like Lanczos [84]) solely require the computation of the

system matrix A = Q−1/2(I − D−1/2WD−1/2)Q−1/2. In our case, the computation

of A is split into three parts: applying Q−1/2, then the ordinary graph-laplacian

and once again Q−1/2. As already stated above, the application of Q−1/2 can be

implemented efficiently as it consists of multiplications with the low-rank matrix P0.

4.4 Experimental Evaluation

The proposed method is tested on three different kinds of datasets, two biomedi-

cal segmentation tasks and one set of natural images from the person category of

the PASCAL VOC 2011 [93]. Our method is compared with the latest techniques in

constrained normalized cuts for prior incorporation such as partial grouping with nor-

malized cuts by Yu and Shi [88] and biased normalized cuts by Maji, et al. [90]. The

biased normalized cuts and the partial grouping approaches use the feature similarity

term as a similarity measure and the spatial proximity term weighted probabilistically

with the high dimensional Gaussian distribution as follows:

wij = e
−||F(i)−F(j)||22

σ2
I ∗

e
−||X(i)−X(j)||22

σ2
X , if ||X(i)−X(j)||2 is <R

0, otherwise

where wij reflects the similarity between two pixels, X(i) is the spatial location

of node i, R is the neighbourhood radius considered, σ is the standard deviation

and F (i) is a feature vector. Our approach only uses the feature similarity term,

and the spatial proximity term may be omitted as this information is contained in

the prior information. Additionally, we also compare with the implementation of

biased normalized cuts with intervening contour cue also used in the authors’ work
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to compute the weight matrix. The code for computing biased normalized cuts on

images is available at the authors website [94]. All parameters are optimized manually

for all approaches.

4.4.1 Segmentation of Biomedical Data

We first test our method with T1-weighted MR-images of the left ventricle in the

human brain. The ventricular system is a set of structures containing cerebrospinal

fluid in the brain and we are interested in the lateral ventricle to test our algorithm.

The region of interest is manually chosen such that the ventricle is approximately

centered in the image with size 87x45 pixels and resolution 1x1 mm. The ground

truth is created by using a data set of 10 manually segmented frames and replicated

ten times by applying small affine distortions. From the ground truth labeling, a PCA

shape model is built and used as a prior as described above. For testing purposes, we

use 100 test images created in the same way as the ground truth.

Our approach, the intensity-based biased normalized cuts and the partial grouping

approaches use the brightness feature as a feature vector based on intensity with

F(i)=I(i).

Visual results are shown in Fig. 4-2. In the first and second rows, we observe

similar results. In the third and fourth rows, we show a case where the shape prior

is far away from the true segmentation. While our method is still able to cope with

the ’bad’ prior, all other methods have severe problems. In spite of that, we can also

observe that when the prior is not accurate Maji’s approach improves the performance

of the partial grouping algorithm giving a better segmentation.

We also tested our algorithm to segment the myocardium. The detection of the

myocardium is very challenging because of signal loss, the presence of papillary mus-

cles and that the borders are in contact with other organs that have similar intensities.

In our approach, a segmented cardiac data set of 26 frames is used to build the shape

model. The other approaches use a circular Hough transform [95] to detect roughly

two circular contours, which are used as a prior. To reduce the Hough transform com-

plexity and increase its efficency, we scale the images to 32x32 pixels. All algorithms
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(a) (b) (c) (d) (e)

Figure 4-2: Segmentation of the left ventricle. (a) Original image. (b) Our method
with its corresponding ncut-vector. (c) Partial grouping. (d) Intensity based-Bias
Ncut. (e) Intervening contour based-Bias Ncut.

have been tested for twenty data sets of different patients between 26 frames and 57

frames in each sequence showing the contraction and expansion of the heart. The

spatial resolution of every frame is 1.3 mm x 1.3 mm and the temporal resolution is

64 ms [96]. As we can see in Fig. 4-3 the results are more accurate with our method

with less outliers giving a more compact segmentation. With respect to the other

techniques we are comparing with, we found partial grouping more sensitive to the

prior. In spite of that, in cases where the prior was sufficiently accurate the results

could outperform the performance of biased normalized cuts as shown in Fig. 4-3.c.

Left Ventricle
New PG BNCi BNCic

Distance (voxel) 1.01 2.33 2.71 2.04
Overlap 0.88 0.66 0.68 0.77
Sensitivity 0.93 0.81 0.92 0.93
Specificity 0.98 0.92 0.86 0.92
Similarity 0.93 0.78 0.80 0.87

Table 4.1: Average performance measures for the left ventricle, for the proposed ap-
proach (New), (PG) Partial Grouping, (BNCi) Intensity based-Biased Ncut, (BNCic)
Intervening contour based-Bias Ncut.

To quantify the segmentation quality assessment for every method we compute
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(a) (b) (c) (d) (e)

Figure 4-3: Segmentation of the heart. (a) Original image with single prior. (b) Our
method and its normalized cut. (c) Partial grouping by Yu’s method. (d) Intensity
based-Bias Ncut. (e) Intervening contour based-Bias Ncut.

Myocardium
New PG BNCi BNCic

Distance (voxel) 0.70 1.59 1.62 1.55
Overlap 0.78 0.65 0.62 0.60
Sensitivity 0.88 0.88 0.94 0.85
Specificity 0.92 0.76 0.69 0.74
Similarity 0.87 0.78 0.75 0.74

Table 4.2: Average performance measures for cardiac sequences, for the proposed ap-
proach (New), (PG) Partial Grouping, (BNCi) Intensity based-Biased Ncut, (BNCic)
Intervening contour based-Bias Ncut.

different performance measures: point to mesh distance [97] and overlap, sensitivity,

specificity and similarity 1 [98]. The parameter setting for all techniques is σI = 0.4

and σI = 0.6 for the left ventricle and the myocardium respectively. The methods

using spatial location term are set to σX = 5.0 and R is equal to the maximum

number of neighbours. The number of eigenvectors of the PCA shape model used as

a prior for our approach is six with γ = 10 for the left ventricle and γ = 100 for the

1The performance measures are defined as: Overlap = TP
TP+FN+FP , Sensitivity = TP

TP+FN ,

Specificity = TN
TN+FP and Similarity = 2TP

2TP+FN+FP where TP and FP stand for true positive
and false positive and TN and FN for true negative and false negative.
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(a)

(b)

Figure 4-4: Segmentation of the myocardium with our method. (a) Original images.
(b) Segmentation in white.

heart where γ is the weight for the prior.

Table 4.1 and Table 4.2 summarize the average performance for the left ventricle

and the myocardium respectively where we can observe an improvement in all metrics

tested for the ventricle and also for the myocardium except for some cases where

either sensitivity (fraction of pixels belonging to the myocardium correctly detected)

or specificity (fraction of pixels not belonging to the myocardium correctly detected)

is higher but as the rest of the metrics are lower, they do not outperform the results

of our method. The main reason for these promising results is that our algorithm

includes shape variations into the formulation making it more robust to noise. In
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addition, the proposed method does not only rely on a set of grouping points that

may be noisy, something common in medical segmentation. We also found that

partial grouping is more sensitive to the prior; although when the prior is adequate,

it can slightly improve the biased normalized cut results in some cases. Moreover,

biased normalized cuts based on intervening contour seems more accurate when the

segmentation follows the edges like the left ventricle case whereas the intensity-based

approach can improve the performance when the edges information cannot guide the

segmentation propertly as shown in Fig. 4-3.e.

Another example for the myocardium segmentation using our method is shown in

Fig. 4-4 for two different patients giving satisfactory results.

4.4.2 Segmentation of People

To demonstrate the performance of our idea on natural images we employed a cate-

gory of the PASCAL VOC 2011 [93] where a ground truth segmentation is available

and an automated method exists to get a prior that can be used during segmen-

tation. We found the person category of the PASCAL VOC 2011 dataset as an

ideal playground and used so called poselets [99] for detection and generation of the

prior. Poselets capture parts of a pose and the key idea is to find which poselets

are tightly clustered in both appearance of image patches and configuration space

of keypoints. The implementation of the poselets and annotations for training are

kindly provided by the authors [100]. One output of the poselet approach is a prob-

ability map for the presence of person in the scene, we will directly use this map as

the prior in our approach. The region of interest is automatically defined around the

output of the poselet object detector. We use 186 images of people where a ground

truth segmentation is available. As the images are coloured we use HSV values for

computing the affinity matrix. Specifically, we use the feature vector as follows [84]:

F (i) = [v, v ·s·sin(h), v ·s·cos(h)] and the usual Gaussian function as affinity function

with σI = 0.6 for all methods and σX = 5.0 and R equal to the maximum number of

neighbours for the ones using the spatial location term.

In Fig. 4-5, we can see some selected results of people segmentation. Our approach
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Figure 4-5: Segmentation of colour images using the poselet object detector output
as a prior for the proposed approach (New) with its corresponding normalized cut
(Ncut), (BNCic) Intervening contour based-Bias Ncut and (PG) Partial Grouping.

gives a closer segmentation and a more precise foreground / background partition

although the prior is not accurate. Moreover, we can observe that although Maji’s

technique may result in sharper segmentations following more the edges and the

borders in some cases as shown in the last two rows of Fig. 4-5, this technique may

not give you a precise bi-partition background / foreground. The same problem
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occurs with the partial grouping which in addition suffers from high prior sensitivity

causing a degradation of the segmentation due to the inaccuracy of the prior. This

results in high sensitivities, as the prior usually includes the person to segment, but

also low specificities, as the prior includes several points not belonging to the person.

Moreover, this problem is also discussed in [88] where the authors argue that their

formulation can neither spot nor correct mistakes in priors and that the extent of this

detrimental effect depends on the connections of the constrained nodes, since partial

grouping information is propagated to neighboring nodes that they have large affinity

with.

The segmentation quality assessment is given in Table 4.3. The difference of the

quantitative results between the biased normalized cut compared with our approach

is not as high as the biomedical experiments because of the additional colour image

information and the lack of the shape variation information as we use only a single

prior, but still our technique can improve the others results.

Colour images
New PG BNCi BNCic

Distance (voxel) 4.63 8.59 5.07 4.75
Overlap 0.57 0.57 0.53 0.54
Sensitivity 0.67 0.90 0.65 0.65
Specificity 0.77 0.43 0.76 0.76
Similarity 0.71 0.71 0.68 0.69

Table 4.3: Average performance measures for colour images, for the proposed ap-
proach (New), (PG) Partial Grouping, (BNCi) Intensity based-Biased Ncut, (BNCic)
Intervening contour based-Bias Ncut.

4.5 Conclusions

We presented a new algorithm to add shape prior knowledge into the normalized cut

formulation to improve the performance and make it a robust candidate for clinical

purposes. The prior is integrated into the cost function without the inclusion of hard

constraints. Multiple priors are easily incorporated into the framework. Hence, shape

models can be directly included into the framework to model the typical variations
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of the prior. Experiments suggest that our method is robust and accurate for dif-

ferent medical imaging modalities even when the image is noisy or has low contrast.

Moreover, we show that the proposed method outperforms the state-of-the art of

normalized cuts with prior knowledge.
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Chapter 5

Non-Euclidean Basis-based Level

Sets with Shape Prior

5.1 Introduction

The radial basis functions (RBFs) were originally used as a primary tool for interpo-

lation of multivariate scattered data because it does not require any underlying mesh

for interpolation. The ability of these methods to allow arbitrary scattered data, ease

of generalization to several space dimensions, and spectral accuracy has made RBFs

particularly popular in different types of applications including surface reconstruc-

tion, terrain modeling, fluid-structure interaction, the numerical solution of partial

differential equations, kernel learning, and parameter estimation. Furthermore, these

applications come from such different fields as applied mathematics, computer science,

biology, geology, engineering, and even business studies [101].

In 1990, RBFs were extended by Kansa to approximate parabolic, hyperbolic

and elliptic Partial Differential Equation (PDE) systems in the field of computa-

tional fluid dynamics [102]. Recently, RBFs have received much attention for solving

PDE systems [103, 104] as well as for image segmentation in combination with level

sets. With this approach, instead of partial differential equations, surface evolution

is governed by a set of ordinary differential equations, which is much easier to solve,

reinitialization is no longer necessary, and more complex topological changes are read-
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ily achievable [105]. In conventional level set methods, active contours or surfaces are

not able to create topological changes away from the zero level set where the de-

formable contours or surfaces are embedded [104, 106, 107]. Thus, the level sets, for

example, could miss holes inside objects. In order to solve accurately the associated

PDEs using finite difference methods, the implicit function is required to be smooth

and remain so during the evolution of the interface [106]. Therefore, reinitialization

is usually needed in order to achieve numerical stability. Alternative methods with-

out reinitialization have been proposed, but they often require dedicated extension

of the speed function defined on the contour [106]. Summing up, the main potential

interests of using the RBF in the framework of level-sets are [108]:

1. the RBF scheme allows an overall control of the level set (i.e., over the whole

computational domain of the level set) with a reasonable computational cost in

contrast to the conventional finite difference narrow band implementations.

2. Since the RBF representation of the level set is parametric, it is relatively easy to

constrain the propagation via constraints on the parameters. Such constraints

may be used to avoid the usual reinitialization step of the level set. As a

consequence, the solution is topologically more flexible, since it may develop

new contours which are difficult to obtain when the narrow-band/reinitialization

strategy is used.

3. The smoothness of the solution is implicitly enforced, through the intrinsic

smoothness of the underlying RBF representation. The RBF formulation, thus,

does not need to include the usual curvature term in the propagation equation.

4. The obtained solution is continuous, the degree of continuity being imposed by

the type of RBF chosen for the application.

Several methods combining level sets with RBFs have recently been published in

the image segmentation field. For example, Wimmer et al. used RBFs to reconstruct a

surface to initialize a level set algorithm [109]. Turk et al. [110] introduced constraint

points to model the implicit level set surface using RBFs, which were applied to
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implicit active contour modeling by Morse et al. [111]. Gelas et al. [112] applied

compactly supported RBFs to image segmentation and introduced prior knowledge of

shape by placing the RBF centers quasi-uniformly over an uncertainty area. Bernard

et al. [113] formulated the segmentation problem in a Maximum Likelihood framework

using the Generalized Gaussian as a priori distribution and minimizing the resulting

functional using a multiphase level set and RBF model. Slabaugh et al. [114] proposed

to use anisotropic Gaussian kernels and optimized their orientation as well as their

weight, position and scales. Mory et al. [115] proposed to build RBFs according to

image features using non-Euclidean distance and incorporated prior information by

casting inside/outside labels as linear inequality constraints.

In spite of the potential advantages, the combination of RBFs and level sets is rel-

atively new in image segmentation. Implementation of the approach can be complex

and it is still unclear what benefit and drawback this combination can potentially

bring for an application. In this Chapter, we detail a new framework for biomedical

image segmentation by combining the level set method with shape prior and non-

Euclidean RBFs to arrive at an accurate and efficient image segmentation method.

Existing approaches to integrating shape prior into RBFs include RBFs center place-

ment approaches which have been tested on synthetic data [112]. We propose a new

approach to integrating shape prior to RBFs using a statistical shape prior and intro-

duce the non-Euclidean RBF within the optimization framework of Gelas et al. [112].

Additionally, we report experimental results applied on real data as well as critical

analysis of the combination.

5.2 Radial Basis Functions

A RBF is a circularly-symmetric function centered in a particular point. The sum of

RBFs is typically used to approximate functions. A function f can be approximated

by a linear combination of translated and scaled RBFs centered around N points xi

traditionally called collocation points:
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f(x) =
N∑
i=1

λiϕ (||x− xi||) (5.1)

where ϕ is the radially-symmetric non-negative kernel, xi is the position of the known

values hi in the interpolation and λi is the weight of the RBF positioned at that point.

The norm || || is usually the Euclidean distance although other distance functions are

also possible. The coefficients λ are computed by solving:

H · [λ] = [h] (5.2)

where h is the column vector whose elements are {hi} and H is a square matrix of

size N :

H =



ϕ (||x1 − x1||) ϕ (||x1 − x2||) ϕ (||x1 − x3||) . . . ϕ (||x1 − xN ||)

ϕ (||x2 − x1||) ϕ (||x2 − x2||) ϕ (||x2 − x3||) . . . ϕ (||x2 − xN ||)

ϕ (||x3 − x1||) ϕ (||x3 − x2||) ϕ (||x3 − x3||) . . . ϕ (||x3 − xN ||)
...

...
...

...
...

ϕ (||xN − x1||) ϕ (||xN − x2||) ϕ (||xN − x3||) . . . ϕ (||xN − xN ||)


Thereby, the coefficients are obtained by solving the system of N linear equations

given by:



ϕ (||x1 − x1||) ϕ (||x1 − x2||) ϕ (||x1 − x3||) . . . ϕ (||x1 − xN ||)

ϕ (||x2 − x1||) ϕ (||x2 − x2||) ϕ (||x2 − x3||) . . . ϕ (||x2 − xN ||)

ϕ (||x3 − x1||) ϕ (||x3 − x2||) ϕ (||x3 − x3||) . . . ϕ (||x3 − xN ||)
...

...
...

...
...

ϕ (||xN − x1||) ϕ (||xN − x2||) ϕ (||xN − x3||) . . . ϕ (||xN − xN ||)





λ1

λ2

λ3

...

λN


=



h1

h2

h3

...

hN


Given the coefficients, the unknown points are approximated by Equation 5.1. The

typical radially-symmetric non-negative kernels ϕ include: Gaussian ϕ(r) = er
2σ2

,

and Compactly Support Wendland ϕ(r) = (1 − r4) + (4r + 1) where r = ||x − xi||.
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By using other kernels, it may be necessary to add a first-degree polynomial P into

Equation 5.1 to ensure positive definiteness of the radial basis functions.

5.3 Level Set with Radial Basis Functions

The problem of segmentation of one object is typically handled by the evolution of

a level set whose steady state partitions the image into two regions delimiting the

object boundaries [108]. The level set propagation can be achieved by considering

the front evolving along the normal direction according to a localized speed function.

It can be expressed as follows:

∂f(x, t)

∂t
= V (x, t) · δε(f(x, t)) (5.3)

where V is a velocity function and δε is a regularized version of the Dirac function

given as δε(x) = 1
πε·(1+(x

ε
)2)

where ε is a real positive constant. Some authors modified

the evolution equation Equation 5.3 by substituting δ by ∇. This operation does not

affect the steady state solution and remove stiffness near the zero level set [112]. For

more details refer to Chapter 2.4.

The evaluation of f for any point x can be expressed as the product of one line

vector ϕ(x) and a column vector λ:

f(x) = ϕ(x) · λ (5.4)

Then, RBF formulation follows straightforwardly from the application of the RBF

decomposition to the implicit function f in Equation 5.4, by assuming that space

and time are separable [112]. In such case, this naturally leads to the following

decomposition:

f(x, t) = ϕ(x) · λ(t) (5.5)

Replacing the Function 5.5 into Equation 5.3, we get the following expression:
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H · ∂λ(t)

∂t
= B(λ(t), t) (5.6)

where Hij = ϕ(||xi − xj||), B = V (xi, t) · δ(ϕ(xi) · λ(t)) and λ are the scalar weights.

To solve the ordinary differential equation, Gelas et al. [112] apply a first order

forward Euler method to Equation 5.6 which lead them to:

λn+1 = λn − τ ·H−1 ·Bn(λn) (5.7)

In case of using positive definite functions such as gaussian RBFs or Compact

Wendland RBFs , the associated matrix H is also positive definite. Thereby, H can

be decomposed by Cholesky decomposition H = L ·LT where L is a lower triangular

matrix and the evolution equation of the level set becomes:


L · un = Bn(λ̃n)

LT · vn = un

λn+1 = λn − τ · vn

where u, v are the unknowns obtained by solving the corresponding equations, n

indicates the iteration and τ is the time step. In order to avoid RBF coefficients

keeping growing when the implicit interface reaches a stable solution, the implicit

function is bounded by applying a normalization on RBF coefficients which bounds

||λn||1. The evolution equation becomes:



H = L · L>

L · un = Bn(λ̃n−1)

L> · vn = un

λn = λ̃n−1 − τ · vn

λ̃n = α
||λn||1 · λ

n

(5.8)

where H is decomposed by Cholesky decomposition, n indicates the iteration, α is a

positive constant and τ is the time step. For the proposed method, we use τ = 5 and

α = 10. The parameters were chosen empirically.
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5.4 Non-Euclidean Radial Basis

The Euclidean distance is commonly used in RBFs. As a consequence RBF kernels

are of spherical shape, resulting over-smoothed shape representation. In order to

improve the segmentation, Mory et al. [115] proposed to use an image-dependent

non-Euclidean distance to build the RBF kernel. In so doing, the RBFs are no longer

spherical but determined by the image features. The new formulation is as follows:

ϕi(x) = ϕ

(
||x− xi||gi

σi

)
(5.9)

where σi are the scales and gi is the metric function chosen.

(a) (b)

(c)

Figure 5-1: The effect of the non-Euclidean distance metric. (a) Original Image with
a RBF center in the middle. (b) Spherical-shaped RBF with β = 0. (c) Increasing
the non-Euclidean part of the metric from left to right with β > 0.

The authors define the non-Euclidean distance from a physical interpretation of

fronts propagating from the center points xi with the image-dependent speed function

1/gi. In case of gi = 1, the Euclidean case is re-obtained. In the simple case of

piecewise constant images, gi(x) = 1 + β(I(x)− I(xi))
2 can be chosen. The metric gi

recommended for general cases is the local image intensity distribution Pxi , estimated

in the neighborhood of xi: gi(x) = 1 − βlogPxi(I(x)) where β > 0 controls the non-
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Euclidean part of the metric. The effect of the metric is illustrated in Fig. 5-1 where we

show that bigger β is the better the basis function will adapt to the image features. A

fast marching method is used to calculate the geodesic distances between collocation

points xi with speed function 1/gi (Section 5.5).

(a) (b) (c) (d) (e)

Figure 5-2: Comparison of Non-Euclidean RBFs versus Euclidean RBFs. (a) Orig-
inal image. (b) Initial level set using Euclidean Distance. (c) Segmentation using
Euclidean RBFs. (d) Initial level set using Non-Euclidean Distance. (e) Segmenta-
tion using Non-Euclidean RBFs.

A comparison between Euclidean RBFs and Non-Euclidean basis functions is

shown in Fig. 5-2. We observe that the initial level set using non-radial basis captures

the image features of the image giving a more accurate segmentation than the Eu-
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clidean RBFs. The metric used for the comparison is gi(x) = abs(1+β(I(x)−I(xi))).

By construction, such non-Euclidean distances are meaningful only in a local

neighborhood of the control point xi. As a consequence, the function ϕ must not

only be nonnegative as in the Euclidean case but also monotonically decreasing, to

discard meaningless high distance values [115] . The localization of each basis function

ϕi in Equation 5.9 can then be controlled by its scale parameter σi. A Gaussian kernel

would be a valid choice, but Mory et al. use for complexity reasons the C2 compactly-

supported Wendland function [101].

∀a ∈ R, ϕ(a) =

 (a− 1)4(4a+ 1) if a ≤ 1

0 otherwise
(5.10)

5.5 Fast Marching

Fast Marching Method (FMM) introduced by Sethian [116], is an efficient algorithm to

compute geodesic distances by solving an eikonal equation in discrete domain, where

4-neighbors of a voxel are used to estimate actual distances. The general expression

of the eikonal equation in 2D is as follows:

|∇T (x, y)| = F (x, y) (5.11)

where T (x, y) is the arrival time of the curve at grid point (x, y) and F is the speed

function. If F is constant over the whole domain, the solution of the eikonal equation

is exactly the Euclidean distance [117].

For an upwind scheme, the approximation to the gradient |∇T (x, y)| is written

as:

max(D−xij T,−D+x
ij T, 0)2 +max(D−yij T,−D

+y
ij T, 0)2 =

1

F 2
ij

(5.12)

where Fij ≡ F (i4x, j4y), D−xij T ≡
Tij−T i−1j

h
and D+x

ij T ≡
Ti+1j−T1j

h
are the standard

backward and forward derivative approximation with h representing the grid spacing;

equivalently for D+y
ij and D−yij [118].
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The solution of Equation 5.12 can be efficiently computed with the fast marching

method. Each grid point can be classified as known where the arrival time at x will

not be changed, narrow band when the arrival time may be changed later and far

where the arrival time at x is not yet computed. Given these definitions, the simple

fast method is computed by:

• Mark an initial set of grid points as known. Mark as narrow band, all points

neighbouring known points. Mark all other grid points as far.

• LOOP: Among all narrow band points, extract the point with minimum arrival

time and tag it to known.

• Find its nearest neighbours that are either far or narrow band and label them

as narrow band if they are not known.

• Update their arrival times of all neighbours by solving Equation 5.12.

• Go back to LOOP.

Although the FMM gives a stable and consistent solution to the eikonal equation,

it still has two limitations [119]. First, the computational complexity of the method

is high because it stores the solutions in a narrow band that is implemented using

a sorted heap data structure. The complexity of maintaining the heap is O(log n),

where n is the total number of grid points. Therefore, the total complexity of the

method is O(n log n). Second, the method uses only the information of the four

adjacent neighbors at each grid point, thus ignoring the information provided by

diagonal points. As a consequence, the FMM suffers from a large numerical error

along diagonal directions [119]. Several methods have been developed to improve

the FMM in terms of computational efficiency [120, 121] or accuracy [122, 123]. In

our implementation, we use multi-stencils fast marching (MSFM) which covers the

8-neighbors of a point [119] but any other implementation is suitable for the problem.
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5.6 Region and Shape Prior Definition

Having defined the methods for explicitly representing the level set surface using

RBFs, we need to incorporate it into the level set evolution to guide the segmentation

towards the object of interest. The Chan-Vese active contour model [124] is a popular

method for region-based level set segmentation which aims at partitioning an image

into regions with piecewise constant intensity. As shown in Section 2.4, the energy

functional of the Chan Vese model is:

E(C) = λ0

∫
insideC

|I−µin|2dΩ +λ1

∫
outsideC

|I−µout|2dΩ +γ1length(C) + ν2Area(C)

(5.13)

where I is the original image, µin and µout are the average values of pixels inside and

outside the curve C respectively, and the last two terms are regularizers terms that

put constraints on the length and the area of the curve.

In a level set framework, C is the zero level set of a Lipschitz function φ(x).

Therefore, the unknown variable C can be replaced by the unknown variable φ(x),

and the energy function in Equation 5.13 becomes:

E(φ) = λ0

∫
insideC

|I−µin|2H(φ)dΩ+λ1

∫
outsideC

|I−µout|2(1−H(φ))dΩ+γ1length(φ)+ν2Area(φ)

(5.14)

where H is the heaviside function. Keeping µin and µout fixed at the same time, the

Chan-Vese energy functional can be minimized with respect to φ(x), and deduced the

associated Euler-Lagrange equation for φ(x). Parameterizing the descent direction by

an artificial time t, we can obtain the corresponding variational level set formulation

as follows:

∂φ

∂t
= δε[γ1 · κ− ν2 − (I − µin)2 + (I − µout)2] (5.15)

where I is the original image and κ is the curvature term which makes the curve
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smooth weighted by γ. Due to the intrinsic smoothness of the RBF formulation,

the smoothing term is omitted, and the velocity term referred in the Equation 5.6 is

simplified as follows:

V (x, t) = −(I(x)− c1)2 + (I(x)− c2)2 (5.16)

The Chan Vese method is suitable for piecewise-constant images but for more general

cases, it can be replaced by a maximum-likelihood criterion: V (x, t) = r1 − r2 where

ri(I(x)) = −logPi(I(x)) and P1 and P2 are the intensity distributions [115].

In addition to the region term, we require prior information to guide the evolution

of the level set surface to a certain shape. To do so, we compute the average shape of

a training set and then align it using registration to the target image [125] as shown

in Fig. 5-3. As a result, we obtain a spatial prior giving a probabilistic map for the

foreground Pin and background Pout. The energy functional for the spatial prior is

given by:

Eshape = −
∫

Ω

H(φ)logPin(x)dx−
∫

Ω

(1−H(φ))logPout(x)dx (5.17)

The shape energy functional can be minimized with respect to φ(x) and results

in the following velocity:

Vshape(x) = −
(
log

Pin(x)

Pout(x)

)
(5.18)

Combining region and shape information, the velocity term becomes:

V (x) = µ1(−(I(x)− c1)2 + (I(x)− c2)2)− µ2

(
log

Pin(x)

Pout(x)

)
(5.19)

where the first term is the Chan-Vese model that can be replaced by any other

suitable model according to the image features [115, 126] and the second term is

the shape prior term where Pin and Pout are the probability of the foreground and

background respectively, obtained from the probabilistic map. µ1 and µ2 are the

weights for the region and prior terms respectively and are chosen empirically.
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Figure 5-3: Example of spatial shape prior. Given N training images an average
image is computed as a spatial prior which is aligned to the target image and used
as a probabilistic map for the level set segmentation.

5.7 Validation

We test our method for segmentation of the myocardium using fifteen datasets of

different patients. Each dataset contains among 26 to 57 frames. The ground truth

is manually segmented by an expert. Experimental results with our method are

compared with the common level set technique and that obtained using Euclidean

RBFs. All methods use the same energy terms and a single circle as an initial contour.

In order to make the level set more flexible topologically, we did not implement the

narrow band, the computation of a band around the front instead of the whole image,

to cope not only with the endocardium but also the epicardium. This causes an

increase of the computational complexity of the algorithm, whereas the radial basis

representation allows more flexible topologies without adding additional cost. The

parameter setting for the Non-Euclid and Euclid RBFs are: τ = 5 and α = 10 from the

evolution Equation 5.8 of the weights, σi = 6.98 from Equation 5.9 with a compactly-

supported Wendland kernel and the center points are equally distributed, e.g., one

point every three points. For the level set function, τ = 1.5. All parameters have

been empirically chosen for all techniques. According to the experiments, the level
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set method produced more outliers due to image noise. The level set re-initialization

also caused problems in some cases misplacing the final segmentation. On the other

hand, the level set gave sharper segmentations than the Euclidean RBFs in some

images. However, this trend is reversed when more RBFs are added, or when non-

Euclidean RBFs are used. Non-Euclidean RBFs follow the image features better,

allowing closer initialization and therefore better convergence. Some examples using

the non-Euclidean basis function with shape prior are shown in Fig. 5-4. Moreover,

some of the artifacts described above are shown in Fig. 5-5.

(a) (b)

Figure 5-4: Segmentation of the myocardium using our approach with two different
patients: a) Original data sets. b) Segmentation in white.

To quantify the segmentation quality assessment, we compute different perfor-

mance measures: point to mesh distance which indicates the distance between the

segmentation and the ground truth and overlap, sensitivity, specificity and similarity

1.

Table 5.1 summarizes the average performance for all methods showing a better

performance with our approach. The distance between the ground truth and the

1The performance measures are defined as [127]: Overlap = TP
TP+FN+FP , Sensitivity = TP

TP+FN ,

Specificity = TN
TN+FP and Similarity = 2TP

2TP+FN+FP where TP and FP stand for true positive
and false positive and TN and FN for true negative and false negative.
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Figure 5-5: Comparison of methods: Non-Euclidean Basis Functions, Euclidean RBFs
and the ordinary Level Sets.

segmentation is smaller and the metric values for similarity, overlap and sensitivity

(fraction of pixels belonging to the myocardium correctly detected) are higher. And

for specificity (fraction of pixels not belonging to the myocardium correctly detected),

according to our experiments, the results remain the same for all methods.

Myocardium
New Euclid. RBFs Level Sets

Distance (voxel) 0.76 0.77 0.79
Overlap 0.76 0.74 0.72
Sensitivity 0.80 0.77 0.75
Specificity 0.98 0.98 0.98
Similarity 0.87 0.85 0.84

Table 5.1: Average performance measures for cardiac sequences, for the proposed
approach (New), the Euclidean radial basis approach, and the level set method.

5.8 Conclusion

We have implemented a new framework for medical image segmentation using a sta-

tistical shape-based level set method represented as a combination of non-Euclidean

RBFs. The use of RBFs avoids using reinizialitation which reshapes the level set
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as the interface signed distance function to avoid developing of steep regions in the

implicit function. The reinitialization scheme increases the computational cost and

reduces the topological flexibility of the method since it prevents the level set from

creating new zero level components far away from the initial interface. Using radial

basis, reinizialization is no longer required and allows more topological flexibility. By

using non-Euclidean distance, basis functions can incorporate image features giving

more accurate results. Non-Euclidean RBFs follow the image features better, allow-

ing closer initialization and therefore better convergence. To guide the segmentation

to the object of interest, we use a probabilistic map obtained as an average shape

of training data and incorporate it into the level set function as a prior information.

Combining the probabilistic map with a region data term, we obtain the final seg-

mentation. The experiments suggest that our method is robust and accurate even for

noisy and low contrast images.
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Chapter 6

Conclusions

The goal of this work is to develop novel segmentation techniques for myocardial

segmentation in cardiac MRI. But they can be used for any other type of biomedical

images or natural images as shown in the experimental validation of the corresponding

approaches.

The first approach presented is based on normalized cuts using prior. The pro-

posed method seeks the normalized cut while maximizing the association of the prior

within a group and the disassociation between the other. Our main contribution

is that the prior is included in the cost function without the inclusion of hard con-

straints. Furthermore, depending on the application, the method does not require

the inclusion of spatial relationships, because they are already in the prior term and

it can be extended easily to deal with multiple priors applying principal component

analysis. The method has been validated on biomedical and natural images giving

satisfactory results as well as compared with the state-of-the-art of normalized cut

approaches with prior giving a more robust and accurate segmentation.

The second method proposed uses a statistical shape-based level set method rep-

resented as a combination of non-Euclidean RBFs. The explicit RBF representation

of the level set allows the level set evolution to be represented as ordinary differ-

ential equations and reinitialization is no longer required. Furthermore, by using

non-Euclidean distance, basis functions can incorporate image features giving more

accurate results. To guide the segmentation to the object of interest, we use a proba-
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bilistic map obtained as an average shape of training data. Experimental results and a

comparison with the traditional level sets and the RBFs-based level sets are reported

obtaining a more sharpen and accurate segmentation with the proposed approach.

Our future work includes an extension to 3D of the techniques presented in this

work.
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