
Techniques for Robot Navigation
in Dynamic Real-World Environments

Boris Lau

Dissertation zur Erlangung des Doktorgrades der Technischen
Fakultät der Albert-Ludwigs-Universität Freiburg im Breisgau

Betreuer: Prof. Dr. Wolfram Burgard

Dezember 2013

Techniques for Robot Navigation
in Dynamic Real-World Environments

Boris Lau

Dissertation zur Erlangung des Doktorgrades der Technischen Fakultät
der Albert-Ludwigs-Universität Freiburg im Breisgau

Dekan: Prof. Dr. Yiannos Manoli
Erstgutachter: Prof. Dr. Wolfram Burgard
Zweitgutachter: Prof. Dr. Maren Bennewitz
Tag der Disputation: 09.12.2013

Abstract

Many real-world applications in mobile robotics require the operation of robots in dynamic envi-
ronments that contain unmapped obstacles, such as moving people. In three independent parts,
this thesis studies robotic problems that have often been addressed by approaches not geared
towards such environments. For example, they might assume simplified or static environments,
or have computational requirements that prevent an online application.

The first part of this thesis deals with a number of grid-based spatial representations derived
from occupancy grid maps, namely distance maps, Voronoi diagrams, and configuration space
maps. While previous approaches to compute and update these representations mostly assume
static environments, this thesis presents algorithms for updating them incrementally. Since these
algorithms only process cells affected by changes in the environment, they can be applied online
even on large maps. The proposed update method for distance maps and Voronoi diagrams is
based on a dynamic variant of the brushfire algorithm, which propagates changes in wavefronts
starting at newly occupied or freed grid cells.
The computation of collision maps in the configuration space of mobile robots usually requires
the convolution of a map with the footprint of the robot. The proposed approach updates the
summands of the convolution that correspond to newly occupied or emptied cells in the map.
By combining the dynamic brushfire method with the incremental configuration space update,
this thesis further proposes distance maps and Voronoi diagrams in the configuration space of
mobile robots, and provides suitable update algorithms. Experiments on real-world data sets
demonstrate the effectiveness of the proposed methods in 2D and 3D environments.

In the second part, this thesis addresses the problem of kinodynamic motion planning. Smooth
and precise trajectory execution on a real robot requires the generation of curvature continu-
ous trajectories that obey the dynamic constraints of the hardware platform. This thesis dis-
cusses suitable path representations and proposes a novel path model that represents curvature
continuous paths with a small number of parameters. The model is based on quintic Bézier
splines, which provide additional degrees of freedom in comparison to the more common cubic
splines. This facilitates curvature continuous junctures of individual path segments as found
in B-Splines, but without losing the property that the curve passes through its waypoints. By
using heuristics to set the orientation of tangents and part of the second derivatives of the spline,
the number of free parameters is kept small. Based on this model, this thesis further presents

5

a method to compute a feasible velocity profile for a given initial path, and to optimize the re-
sulting trajectory with respect to the required time of travel. The system can alter the planned
trajectory while moving, and is therefore able to avoid unmapped obstacles, such as moving
people. Several experiments tested and evaluated the proposed motion planning system on real
robots in different complex and populated environments. The results show that the generated
trajectories can be executed with high precision, and that the system can evade unexpected ob-
stacles with smooth trajectory changes.

The third part of this thesis deals with tracking groups of people with the onboard sensors of
a mobile robot. In crowded environments, people often move in dense groups. Due to occlu-
sions and ambiguous data association, tracking individuals can become infeasible in such cases.
Tracking a joint group state rather than individuals reduces the complexity of the data association
problem. This requires suitable detection methods and a mechanism to model and track group
splits and merges. This thesis introduces the concept of a group track that estimates not only the
position and velocity of the group centroid, but also the number of people in the group and the
shape of the group as perceived by the sensor. Using the minimum average Hausdorff distance,
the shape information is also accounted for when calculating association probabilities. Based
on the group track representation, this thesis proposes an extended Multi-hypothesis tracking
framework that considers group formation models and hypothesizes over continuation, splits,
and merges of group tracks. The experiments on a moving robot with up to 20 people demon-
strate that the system is able to robustly track groups of people in complex group formation
processes and can estimate the number of people in groups with high accuracy.

6

Zusammenfassung

Viele praktische Anwendungen in der mobilen Robotik erfordern den Einsatz von Robotern in
dynamischen Umgebungen, die nicht kartierte Hindernisse wie zum Beispiel Personen enthalten
können. In drei unabhängigen Teilen betrachtet diese Arbeit verschiedene Probleme der mobilen
Robotik, die oft mit Ansätzen angegangen wurden, die nur bedingt für den Einsatz in derartigen
Umgebungen geeignet sind. Manche Lösungen nehmen vereinfachte oder statische Umgebun-
gen an, oder sind durch ihren Rechenaufwand nicht für Online-Anwendungen geeignet.

Der erste Teil dieser Arbeit behandelt verschiedene räumliche Repräsentationen, die auf Git-
terkarten basieren, nämlich Distanzkarten, Voronoi Diagramme und Hinderniskarten im Kon-
figurationsraum mobiler Roboter. Im Unterschied zu existierenden Ansätzen, die größtenteils
statische Umgebungen annehmen, stellt diese Arbeit Algorithmen vor, welche die genannten
Repräsentationen auf inkrementelle Weise aktualisieren. Da die Algorithmen nur Gitterzellen
bearbeiten, die von Änderungen in der Umgebung betroffen sind, können sie auch auf großen
Karten online arbeiten. Die Aktualisierung von Distanzkarten und Voronoidiagrammen wird mit
einer neuen dynamischen Variante des Brushfire-Algorithmus realisiert. Die vorgestellte Meth-
ode propagiert Aktualisierungen wellenförmig, ausgehend von neu eingefügten oder entfernten
Hindernissen.
Die Berechnung einer Hinderniskarte im Konfigurationsraum eines mobilen Roboters erfordert
in herkömmlichen Verfahren die mathematische Faltung der Umgebungskarte mit einer Reprä-
sentation der Grundfläche des Roboters. Das vorgestellte Verfahren aktualisiert gezielt die Sum-
manden der Faltung, die zu neu besetzten oder freigewordenen Zellen der Umgebungskarte
gehören. Durch die Kombination der dynamischen Brushfire-Methode mit der Aktualisierung
von Hinderniskarten im Konfigurationsraum mobiler Roboter führt diese Arbeit außerdem Dis-
tanzkarten und Voronoi Diagramme im Konfigurationsraum ein und liefert entsprechende inkre-
mentelle Aktualisierungsalgorithmen. Experimente mit mehreren Datensätzen unterschiedlicher
Sensoren zeigen die Effektivität der vorgestellten Methoden in 2D und 3D Umgebungen.

Im zweiten Teil behandelt diese Arbeit das Problem der kinodynamischen Pfadplanung. Um
geplante Trajektorien mit einem Roboter sanft und präzise abfahren zu können, müssen sie
krümmungskontinuierlich sein und die dynamischen Beschränkungen der Hardware berück-
sichtigen. Diese Arbeit diskutiert geeignete Pfadrepräsentationen und stellt ein neues Pfad-
modell vor, das krümmungskontinuierliche Pfade mit einer geringen Anzahl an Parametern

7

repräsentiert. Die vorgestellte Pfadrepräsentation basiert auf quintischen Bézier Splines, die im
Gegensatz zu den häufig verwendeten kubischen Splines zusätzliche Freiheitsgrade zur Verfü-
gung stellen. Dadurch lässt sich die Krümmung der Kurve wie bei B-Splines auch an Segment-
grenzen kontinuierlich fortführen, ohne jedoch die Eigenschaft zu verlieren, dass die Kurve ihre
Wegpunkte durchläuft. Durch Heuristiken die z.B. das Verhalten der Tangenten und der zweiten
Ableitung des Splines kontrollieren, wird die Anzahl der freien Parameter klein gehalten. Weit-
erhin wird eine Methode vorgestellt um für einen gegebenen Pfad ein Geschwindigkeitsprofil zu
bestimmen, und die dadurch definierte Trajektorie mit Hinblick auf die erforderliche Fahrzeit
zu optimieren. Das System kann die geplante Trajektorie während der Fahrt ändern, und ist
dadurch in der Lage unerwarteten Hindernissen auszuweichen. Mehrere Experimente testen
und evaluieren das vorgestellte Pfadplanungssystem in verschiedenen komplexen und belebten
Umgebungen. Die Ergebnisse zeigen, dass die erzeugten Trajektorien mit hoher Genauigkeit
abgefahren werden können, und dass das System unkartierten Hindernissen durch sanfte Tra-
jektorienänderungen ausweichen kann.

Der dritte Teil dieser Arbeit behandelt die Spurverfolgung (das Tracken) von Menschengrup-
pen mit den Bordsensoren eines mobilen Roboters. In belebten Umgebungen bewegen sich
Menschen oft in Gruppen. In solchen Fällen kann die Datenassoziation durch Verdeckun-
gen und Mehrdeutigkeiten zu einem sehr aufwändigen oder sogar unlösbaren Problem wer-
den. Das Tracken von kompletten Gruppen im Gegensatz zu Individuen reduziert die Kom-
plexität der Datenassoziation. Dies erfordert jedoch entsprechende Detektionsmechanismen
und die Möglichkeit das Aufteilen oder Vereinigen von Gruppentracks zu modellieren. Diese
Arbeit führt das Konzept des Gruppentracks ein, der die Position und Geschwindigkeit des Mit-
telpunkts einer Gruppe schätzt, sowie die Anzahl der Personen in der Gruppe und die durch Sen-
soren wahrgenommene Form der Gruppe. Durch Benutzung der Minimum-Average-Hausdorff-
Distanz wird die Forminformation auch in die Berechnung von Assoziationswahrscheinlich-
keiten einbezogen. Basierend auf den Gruppentracks stellt diese Arbeit ein erweitertes Multi-
Hypothesen Trackingsystem vor, das Modelle der Gruppenformation verwendet, und dadurch
über die Fortführung, Aufteilung oder Verbindung von Gruppentracks hypothetisieren kann.
Die Experimente mit bis zu 20 Personen in der Umgebung eines fahrenden Roboters zeigen,
dass das System Personengruppen in komplexen Formierungsprozessen robust tracken und die
Gruppengröße akkurat schätzen kann.

8

Acknowledgements

During my time in the Autonomous Intelligent Systems lab at the University of Freiburg, I was
accompanied and supported by many wonderful people, to whom I want to express my gratitude.
Especially, I want to thank my advisor Wolfram Burgard. He always provided great ideas, new
points of view, and exciting challenges. I enjoyed the way he cares for his people, helping them
to set and reach high expectations, while giving them the freedom to pursue their own ideas. He
was the best teacher in diplomatic writing I ever had – thank you!

Christoph Sprunk was with me through all highs and lows – as a student, colleague, co-author
and friend. His structured way of thinking, strong commitment to everything he does, and his
pedantic perfectionism are properties that I really appreciate. And it was fun! Especially before
deadlines, my office turned into my second home, shared with my long-term office mates Axel
Rottmann and Kai Wurm, followed later by Markus Kuderer and Christoph. They were always
up for inspiring discussions and helped when things did not work as planned. Thanks for the
good times!

The post-docs were always there to answer all sorts of scientific, technical, or procedural ques-
tions. Kai Arras, Giorgio Grisetti, Cyrill Stachniss, Luciano Spinello, and Gian Diego Tipaldi,
thank you for your time and support. I also associate pretty much everyone in the lab with some-
thing they really helped me out with – software, math, tools, ideas, whatever. Thank you all!
During the work on the INDIGO and the RADHAR project, I also shared quite some time with
researchers from other labs. Thank you for working with me all over Europe! Kristine Haberer,
Bettina Schug, Susanne Bourjaillat, and Michael Keser always assisted with administrative or
infrastructural issues. Thank you very much!

I really want to thank the developers of LaTeX and BibTeX for making the typesetting of scien-
tific documents such a pleasure. Thanks also go to Christian Plagemann for providing his nice
TOC formatting. And a big thank you to all proofreaders, critics, and commentators!

Well, there were also things in life besides research, and they helped keeping me sane and happy.
Thanks to all my fellow musicians, thanks to my friends, and thanks to my family, Ursel, Richard
and Hannes. During my time in Freiburg, Inga became my wife and our sweet Naima was born.
It is hard to express my gratefulness, you make my day, again and again!

9

Last but not least: this work has partly been supported by the European Commission under
grant agreement numbers FP6-IST-045388 (INDIGO) and FP7-248873-RADHAR, and by the
German Research Foundation (DFG) through the Gottfried Wilhelm Leibniz Program. Their
support is gratefully acknowledged.

10

Contents

1 Introduction 15

1.1 Scientific Contributions . 16

1.2 Publications . 17

1.3 Software Releases . 18

1.4 Collaborations . 19

1.5 Notation . 20

1.6 Outline . 21

Part I Efficient Grid-Based Spatial Representations

2 Introduction 25

3 Related Work 29

3.1 Distance Maps . 29

3.2 Voronoi Diagrams . 30

3.3 Configuration Space Maps . 31

4 Dynamic Euclidean Distance Maps 35

4.1 Static Brushfire Algorithm . 35

4.2 Dynamic Brushfire Algorithm . 36

4.3 Implementation Details . 39

4.4 Extension to Higher Dimensions . 40

5 Dynamic 2D Voronoi Diagrams 43

5.1 Incremental Update of Voronoi Diagrams . 44

5.2 Pruning . 45

5.3 Path Planning on Voronoi Diagrams . 46

6 Dynamic C-Space Representations 49

6.1 Dynamic C-Space Collision Maps . 49

6.2 Incremental Update of the C-Space Map . 50

6.3 Discretization of Orientations . 51

6.4 Adaptation to Other Obstacle and Robot Models 52

11

Contents

6.5 C-Space Distance Maps and Voronoi Diagrams 53

6.6 C-Space Voronoi Path Planning . 54

7 Experiments 55

7.1 2D DMs and GVDs in Dynamic Environments 55

7.2 2D DMs and GVDs during SLAM . 58

7.3 Three-dimensional DMs . 59

7.4 C-Space Obstacle Maps and Collision Checks 62

7.5 Path Planning using C-Space Voronoi Maps 64

8 Conclusion 67

Part II Kinodynamic Motion Planning

9 Introduction 71

10 Related Work 75

11 Basic Path Representations 77

11.1 Linear Path Segments and Circular Arcs . 77

11.2 Clothoid Paths . 78

11.3 Polynomial Splines . 81

12 Path Model with Heuristics 83

12.1 Quintic Bézier Curves . 83

12.2 Bézier Splines with Continuous Curvature . 84

12.3 Heuristics for First and Second Derivatives 85

12.4 Arc Length Parametrization . 87

13 Trajectories and Velocity Profiles 89

13.1 Direct Velocity Constraints . 90

13.2 Accelerational Constraints . 92

13.3 Computing Compliant Profiles . 93

14 Trajectory Generation and Execution 95

14.1 Global Planning and Creation of Initial Trajectories 95

14.2 Optimization . 96

14.3 Error-feedback Controller . 98

12

Contents

14.4 Replanning Procedure . 99

15 Experiments 101

15.1 Evaluation in Simulation . 101

15.2 Motion Planning in Obstacle Courses . 103

15.3 Navigation in Populated Environments . 105

16 Extensions and Applications 109

16.1 Trajectory Generation for Omni-Directional Robots 109

16.2 Teaching Paths to Mobile Robots . 110

17 Conclusion 113

Part III Laser-Based Tracking of People in Groups

18 Introduction and Related Work 117

19 Group Detection and Group Tracks 121

19.1 Group Detection in Range Data . 121

19.2 Representation and Initialization of Group Tracks 123

19.3 Motion Model for Group Tracks . 124

19.4 Group-to-Observation Assignment Probability 125

19.5 Group-to-Group Assignment Probability . 126

20 Multi-Model MHT 129

20.1 Model Generation and Model Probability . 129

20.2 Tracking Cycle . 130

20.3 Data Association . 132

20.4 Probability of Assignment Sets and Hypotheses 134

20.5 Hypothesis Pruning . 135

21 Experiments 137

21.1 Clustering Error . 138

21.2 Tracking Efficiency . 140

21.3 Group Size Estimation . 141

22 Conclusion 143

13

Contents

Part IV Discussion and Outlook

23 Discussion 147

23.1 Efficient Grid-Based Spatial Representations 147

23.2 Kinodynamic Motion Planning . 148

23.3 Laser-Based Tracking of People in Groups . 149

24 Outlook 151

Appendix

List of Figures 153

List of Algorithms 155

List of Tables 157

Bibliography 159

14

1 Introduction

Stationary robots have become a common tool in industrial settings, especially when tasks are
highly repetitive or potentially dangerous for humans to execute. The advent of mobile robots
opened up an even wider field of potential robotic applications such as transportation, building
maintenance, household tasks, or entertainment.

For several decades now, mobile robotics is an active field of research and development. In this
context, many research problems are related to perception and autonomous navigation under
uncertainty: mobile robots often have to estimate their own position and orientation with on-
board sensors, handle limited and noisy sensor data, and deal with inaccurate or incomplete
representations of the environment. In many real-world applications, an additional complexity
originates from dynamic obstacles like moving people. They are often unexpected and hardly
predictable for the robot, and thus add to the unknown part of the environment.

Today, a variety of mobile robots is available for applications in private, commercial, and public
domains. For some tasks like lawn mowing, floor cleaning, or surveillance of empty buildings,
the navigation system of a robot can assume its operational area to be static, i.e., free of moving
objects. Other systems like transportation platforms, however, are often deployed in environ-
ments such as libraries, hospitals, warehouses, or factory floors. Here, a robot has to deal with
moving obstacles like other robots or people in its vicinity. Robotic applications that involve
direct interaction with human users naturally require a special focus on the dynamic parts of the
environment. For example, besides the interaction with actual users, tour guide or entertainment
robots in exhibitions or trade shows can be challenged by crowded environments or people that
purposely interfere with their plans of action.

Several fundamental approaches and solutions that have been proposed in the field of mobile
robotics are not ideal for application in such scenarios. For example, they might assume all
obstacles to be known and static, rely on simplified environments, or have computational re-
quirements that prevent their online application on a moving robot. This thesis focuses on a set
of well-studied problems in mobile robotics that have mainly been addressed by approaches that
are subject to such restrictions. By proposing novel techniques that can be applied online and in
real environments, it contributes to the topics described below.

15

1 Introduction

Grid-based spatial representations derived from occupancy grid maps are important
building blocks for many different robotic applications. Distance maps, Voronoi diagrams, and
configuration space maps are for example used to speed up techniques for path planning, col-
lision avoidance, and localization. Among moving obstacles, these representations need to be
updated frequently to reflect changes in the environment. Most of the existing approaches com-
pute such representations for complete maps and do not support incremental changes, which
often prevents updating them at frame rates required for a moving robot.

Kinodynamic motion planning refers to the generation of trajectories that specify the
position and velocity of a robot as a function of time. To allow smooth and precise execution
by a real robot, such trajectories should be curvature continuous and obey the kinematic and
dynamic constraints of the hardware platform. For application in dynamic environments it is also
crucial to be able to modify a trajectory while moving, for example, to recover after temporary
localization errors or to avoid unexpected obstacles. Existing approaches often disregard these
aspects and are therefore not directly applicable under real-world conditions.

People tracking is an enabling technology for most applications that involve human-robot
interaction. It comprises estimating the position and velocity of people moving around the robot
based on sensor data, and storing these estimates in individual tracks. A major challenge in peo-
ple tracking is to determine the correct associations between sensor readings and existing tracks,
especially if people are walking close to another or occlude each other. Since the number of
possible combinatorial associations grows quickly with the number of tracked people, the com-
putational requirements per frame can prevent tracking in real-time if many people are present
at the same time, e.g., when moving in groups.

1.1 Scientific Contributions

With this thesis, we contribute novel approaches to the aforementioned problems. To perform
efficient updates of Euclidean distance maps and Voronoi diagrams, we propose a dynamic
variant of the brushfire algorithm that visits only the map cells that have been affected by changes
in the environment. Additionally, we propose an incremental update algorithm for configuration
space maps that can be applied to two- and three-dimensional robot and obstacle models. By
combining the dynamic brushfire algorithm with the incremental configuration space maps, we
obtain distance maps and Voronoi diagrams in the configuration space of mobile robots, and we
demonstrate their use for efficient path planning.

16

1.2 Publications

An essential aspect of trajectory-based motion planning systems is the representation used to
model trajectories. We discuss a variety of parametric curve types and their applicability to
motion planning, before proposing a novel path model based on curvature-continuous quintic
Bézier splines. We further present a method to efficiently compute velocity profiles for given
paths that obey constraints of the hardware platform. From a given set of waypoints, we con-
struct feasible initial trajectories, which are subsequently optimized to reduce the time required
to reach the goal. The proposed motion planning system operates in an anytime fashion and
allows for replanning trajectories while the robot moves.

Our contribution to people tracking in populated environments is an approach to track groups of
people rather than individuals. We introduce the concept of group tracks represented by a joint
group state, and present a method to estimate the number of people in each group. To track the
group formation process over time, we propose models that account for the continuation, split-
ting, or merging of existing group tracks. Our multi-model multi-hypothesis tracker integrates
group tracks and group formation models into a probabilistic tracking framework. Since the
computational complexity scales with the number of groups rather than the number of people,
our system is more efficient than previous approaches. Additionally, it provides information
about the social relation of the tracked people.

For all presented approaches, we conduct experiments using real robots in real-world environ-
ments, and evaluate the computational requirements to ensure their online applicability.

1.2 Publications

Parts of the work presented in this thesis have been published in the form of peer-reviewed
conference proceedings, journal articles, or book chapters. The following list presents them in
chronological order, grouped by main topic.

Efficient Grid-Based Spatial Representations

B. Lau, C. Sprunk, and W. Burgard. Improved updating of Euclidean distance maps and Voronoi diagrams. In
Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), Taipei, Taiwan, 2010.

B. Lau, C. Sprunk, and W. Burgard. Incremental updates of configuration space representations for non-circular
mobile robots with 2D, 2.5D, or 3D obstacle models. In Proc. of the European Conference on Mobile Robots
(ECMR), Örebro, Sweden, 2011.

17

1 Introduction

B. Lau, C. Sprunk, and W. Burgard. Efficient grid-based spatial representations for Robot Navigation in Dynamic
Environments. In Robotics and Autonomous Systems, 2013, in press.

Kinodynamic Motion Planning

B. Lau, C. Sprunk, and W. Burgard. Kinodynamic motion planning for mobile robots using splines. In Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), St. Louis, USA, 2009.

C. Sprunk, B. Lau, P. Pfaff, and W. Burgard. Online generation of kinodynamic trajectories for non-circular om-
nidirectional robots. In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), Shanghai, China,
2011.

C. Sprunk, B. Lau, and W. Burgard. Improved non-linear spline fitting for teaching trajectories to mobile robots.
In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), St. Paul, MN, USA, 2012.

Laser-Based Tracking of People in Groups

B. Lau, K. O. Arras, and W. Burgard. Tracking groups of people with a multi-model hypothesis tracker. In Proc. of
the IEEE Intl. Conf. on Robotics & Automation (ICRA), Kobe, Japan, 2009.

B. Lau, K. O. Arras, and W. Burgard. Multi-model hypothesis group tracking and group size estimation. Interna-
tional Journal of Social Robotics, Springer Netherlands, 2(1):19–30, 2010.

K. O. Arras, B. Lau, S. Grzonka, M. Luber, O. Martinez Mozos, D. Meyer-Delius and W. Burgard. Range-based
people detection and tracking for socially enabled service robots. In Towards Service Robots for Everyday in
Environments, Springer Tracts in Advanced Robotics (STAR), 76:235–280, 2012.

Further appearances of the work contained in this thesis comprise workshop contributions and
public demonstrations.

1.3 Software Releases

The following parts of the source code developed in the context of this thesis have been released
to the public or to commercial users:

• Our incremental implementations of distance maps, Voronoi diagrams, and configuration
space maps have been released as self-contained open-source library under
http://www.informatik.uni-freiburg.de/~lau/dynamicvoronoi

• The two-dimensional incremental distance maps and Voronoi diagrams are also available
as a package for the open source Robot Operating System (ROS) under
http://www.ros.org/wiki/dynamicvoronoi

18

1.4 Collaborations

• The three-dimensional version of our incremental distance maps has been integrated into
the OctoMap software package developed by Wurm et al. [2010], available as open source
under http://octomap.github.io

• The software for the proposed motion planning system has been integrated into a library
used to control mobile platforms built by KUKA Laboratories GmbH.

1.4 Collaborations

Parts of the work presented in this thesis have been done in collaboration with other researchers
as stated in this section.

The spatial representations in Part I contain joint work with Christoph Sprunk. Besides giving
fruitful advice and ideas, he implemented previous approaches and realized a benchmarking
suite for evaluation and comparison. He is also responsible for the realization and release of the
open source incremental 3D distance maps.

The motion planning system in Part II also contains joint work with Christoph Sprunk. He real-
ized the heuristics of our path model, the parameter optimization, and the replanning routines as
part of his student project under supervision of the author. Parts that he conceived independently
are summarized in this thesis and properly cited.

The group tracking work in Part III has been done in collaboration with Kai O. Arras. Matthias
Luber and Slawomir Grzonka provided their experience and source code for tracking individual
people with an MHT framework.

As supervisor, Wolfram Burgard contributed thoughts and ideas to all parts of this thesis.

19

1 Introduction

1.5 Notation

This table summarizes the standard notation of mathematical and algorithmic symbols used
throughout this work.

Symbol Meaning

a, b, x, . . . scalar values
A, H, Q, . . . matrices
u, x, z, . . . column vectors
C, L, P sets

(. . .) row vector or matrix composed of the given values
〈. . . 〉 tuple composed of the given entities
{. . . } set composed of the given elements

|a| absolute value of a scalar
‖x‖ Euclidean norm (length) of a vector
|A| determinant of a matrix
|P| number of elements in a set
∅ empty set or empty queue
xT , AT transpose of a vector or matrix
N (µ,Σ) Gaussian distribution with mean µ and covariance Σ

M(x, y), M(s) grid map, cell value for coordinates x, y or tuple s
C(x, y, θ) 3D c-space map, cell value for given robot pose x, y, θ
Cθ(x, y) 2D layer of C(x, y, θ) for orientation θ

Q(u), Qx(u), Qy(u) Parametric curve (column vector) and its components
Q′(u), Q′′(u), Q(k)(u) First, second, and k-th derivative of Q(u)

Pi, Wi, Ti, Ai, J control points (column vectors)

x(k|k) track state vector in time step k for evidence of time step k
x(k+1|k) state prediction in time step k+1 for evidence of time step k
{0}, {0−0}, {0−1} label of a group and its two subgroups after a split

s,D(s), obst(s) variables in pseudo-code and text
insert(.), pop(.) function calls in pseudo-code
insert(.), pop(.) function names in text

20

1.6 Outline

1.6 Outline

This thesis is divided into the main parts I–III that deal with incremental updates of spatial
representations, kinodynamic motion planning, and laser-based tracking of people in groups,
respectively. Each part is organized as a self-contained document and has its individual intro-
duction, discussion of related work, technical chapters, experiments, and a conclusion. The
individual parts are structured as described in the following.

Part I introduces the examined spatial representations and discusses the problem of updating
them incrementally in Chapter 2. After reviewing the related work in Chapter 3, we present our
update algorithms for distance maps and Voronoi diagrams in Chapter 4 and Chapter 5, respec-
tively. Chapter 6 proposes incrementally updatable collision maps in the configuration space
of mobile robots, combines them with our methods for dynamic distance maps and Voronoi
diagrams, and presents a path planning approach on the resulting configuration space Voronoi
diagrams. Chapter 7 shows experiments, before Chapter 8 concludes the first part of the thesis.

Part II discusses the problem of kinodynamic motion planning in Chapter 9 and reviews related
work in Chapter 10. After analyzing different path representations in Chapter 11, we propose a
novel path model in Chapter 12 and corresponding velocity profiles in Chapter 13. In Chapter 14
we describe an approach to generate, optimize, and execute trajectories using our path model,
and present experiments in Chapter 15. After discussing extensions and applications of our
approach in Chapter 16, we conclude the second part in Chapter 17.

Part III proposes the idea of tracking groups of people rather than individuals in Chapter 18 and
discusses related work. We propose the concept of group tracks in Chapter 19 and discuss their
definition, detection, and representation. In Chapter 20, we introduce group formation models
and discuss our multi-model multi-hypothesis group tracker, which is evaluated in Chapter 21.

Part IV closes the thesis with a final discussion and outlook. Lists of figures, tables, and algo-
rithms as well as the bibliography for all parts are located at the end of the document.

21

Part I

Efficient Grid-Based

Spatial Representations

23

2 Introduction

Many approaches in robot navigation rely on occupancy grid maps to encode the obstacles of the
area surrounding a robot. These maps can be learned from sensor data, they are well suited to be
used in path planning, collision avoidance, or localization, and they can easily be updated upon
sensory input. In the past, several spatial representations have been developed that can be derived
from occupancy grid maps, e.g., distance maps, Voronoi diagrams, and configuration space
maps. These representations are appealing building blocks for robot navigation systems, since
they can be used to speed-up algorithms that solve the aforementioned problems. In this thesis,
we propose incremental update algorithms to facilitate the online use of these representations in
dynamic environments.

The Generalized Voronoi diagram (GVD) is defined as the set of points in free space to which
the two closest obstacles have the same distance [Choset and Burdick, 2000]. It is a discrete
form of the Voronoi graph, which has been widely used in various fields [Aurenhammer, 1991].
In the context of robotics, Voronoi graphs are a popular cell decomposition method for solving
navigation tasks. Their application as roadmaps is an appealing technique for path planning,
since they are “sparse” in the sense that different paths on the graph correspond to topologically
different routes with respect to obstacles. This significantly reduces the search problem and can
be used for example to generate the n-best paths for offering route alternatives to a user [Mandel
and Frese, 2007]. Also, moving along the edges of a Voronoi graph ensures the greatest possible
clearance when passing between obstacles. When Voronoi graphs are discretized and stored as
a map, they can lose their sparseness property due to erroneous interconnections between neigh-
boring Voronoi lines. Our method to compute GVDs overcomes this problem with additional
pruning and conditions that ensure the sparseness of the generated GVDs.

The cells in a distance map (DM) encode the distance to the closest cell that is occupied ac-
cording to the corresponding occupancy map. Since a cell lookup only requires constant time,
DMs provide efficient means for collision checks, to compute traversal costs for path planning,
and for robot localization with likelihood fields [Thrun, 2001]. Since the computation of this
transform is carried out without considering the shape of the robot, the direct application of plain
DMs is restricted to circular approximations of the robot’s footprint.

For non-circular robots in passages narrower than their circumcircle, however, circularity is too
crude an assumption, and collisions have to be checked for in the three-dimensional configura-

25

2 Introduction

(a) 2D robot model (b) 2.5D robot model (c) 3D robot model

Figure 2.1: For some applications, representing obstacles and robots by their 2D footprints can
be sufficient (a). For overhanging parts of robots, their load, or obstacles, 2.5D
representations are needed (b), whereas interaction tasks can also require actual
3D obstacle and robot models (c). Robot shape approximations as used in our
experiments are depicted in blue.

tion space (c-space) of robot poses. Also, even for robots moving on a plane as considered in this
thesis, 3D obstacles and collisions can be important: applications such as robotic transporters,
wheelchairs, or mobile manipulators can require the robot to partially move underneath or above
obstacles as shown in Figure 2.1. In these cases, collision checks easily become a dominant part
of the computational effort in path planning. However, by convolving a map with the discretized
shape of the robot, one can precompute a collision map that marks all colliding poses. With such
a map, a collision check requires just a single lookup, even for 3D obstacle representations.

In changing environments, precomputed GVDs, DMs, and c-space maps have to be updated
regularly to always reflect the current state of the corresponding occupancy map. These changes
can be caused by moving people or vehicles, newly explored areas during mapping, or when
correcting a map after closing a loop in SLAM. In this thesis, we present efficient methods
to compute and update these representations. Since our algorithms perform all updates in an
incremental way, i.e., recomputing only parts affected by changes, they can be applied online
even on large maps or with more than two dimensions. In comparison to previous approaches,
our methods require less computational effort, are easy to implement, and work in both indoor
and outdoor environments.

Additionally, we combine DMs and GVDs with c-space collision maps, and propose distance
maps and Voronoi diagrams in the configuration space of non-circular mobile robots. Using
our algorithms, these representations can be updated in an incremental way as well, and thus
be used to speed-up path planning or collision avoidance in dynamic environments. This work
extends our previous publications on these topics [Lau et al., 2010; 2011] and includes additional
experiments for 3D distance maps and for incremental updates of distance maps and Voronoi

26

diagrams in the context of simultaneous localization and mapping (SLAM).

After discussing related work in Chapter 3, we present our dynamic DM and GVD algorithms in
Chapters 4 and 5. In Chapter 6 we propose dynamic c-space collision maps, which we combine
with our dynamic DM and GVD algorithms to obtain c-space DM and c-space GVD represen-
tations. Our experiments are presented in Section 7.

27

3 Related Work

In the past, many different approaches have been proposed to compute DMs, GVDs, and c-space
collision maps. With the goal of applying them online in dynamic environments, a lot of effort
has been spent on developing more efficient algorithms. However, unlike ours, most of these
approaches do not exploit the potential of incremental updates. The remainder of this chapter
presents related work and discusses the contribution of our methods.

3.1 Distance Maps

Many different approaches have been proposed to compute static two-dimensional DMs, e.g.,
linear image traversal [Borgefors, 1986], dimensional decomposition [Fabbri et al., 2008], and
distance propagation with the brushfire algorithm [Verwer et al., 1989], which is discussed in
Section 4.1. For a comparative survey, please refer to [Fabbri et al., 2008].

Whenever a cell in a grid map is newly occupied or vacated, the corresponding DM has to be
updated to reflect this change. A trivial method is to recompute distances for patches within
d̂ around all changed cells, where d̂ is an upper bound on the minimum obstacle distance in
the environment. However, this method usually updates substantially more cells than necessary,
e.g., if d̂ is high due to large open spaces or if the changed cells cover a wide area.

Kalra et al. proposed a dynamic brushfire algorithm that incrementally updates DMs and GVDs
by propagating wavefronts starting at newly occupied or vacated cells [2009]. While their
method is based on the incremental path planning algorithm D∗ by Stentz [2004], the algo-
rithm proposed here is directly derived from the brushfire algorithm and requires substantially
less computational time for the same task due to a reduced number of cell visits.

The wavefronts of Kalra et al. accumulate 8-connected grid steps to approximate obstacle dis-
tances [2009]. This overestimates the true Euclidean distances by up to 8.0% [Danielsson, 1980],
which for a robot implies either a collision risk or overly conservative movements. Scherer et al.

adopted and corrected Kalra’s algorithm for their DM update method [2009]. They propagate
obstacle locations rather than grid step counts to determine Euclidean distances, which reduces
the absolute overestimation error below an upper bound of 0.09 pixel units [Danielsson, 1980].

29

3 Related Work

Kalra et al. Our approach

Figure 3.1: GVD of an indoor map, computed by the approach of Kalra et al. and our method.
The ellipses mark missing Voronoi lines, see Section 3.2. Our approach generates
thin Voronoi lines, such that different paths on the GVD correspond to topologically
different routes.

According to Cuisenaire and Macq, the shortest distance at which this propagation error can
occur is 13 pixels [1999], which yields a maximum relative error of 0.69%. Our approach fol-
lows the same principle, but requires substantially shorter computation times for the same task
due to a reduced number of cell visits. By propagating obstacle references, our representation
can provide the location of the closest obstacle rather than just the distance to it, which can be
appealing for collision avoidance methods. In a recent publication, Scherer et al. build on our
original method for DM updates and combine it with their approach to map scrolling [2012].

This work extends our DMs presented in [Lau et al., 2010] to 3D by adding the possibility to
limit the propagated distances to maintain online feasibility in large open spaces and outdoors as
proposed by Scherer et al. [2009]. Additionally, we describe how to further reduce the number
of visited neighbor cells, which increases the efficiency for 3D DMs, and we present additional
experiments.

3.2 Voronoi Diagrams

Traditional Voronoi algorithms compute parametric lines or curves that separate singular obsta-
cle points or line segments represented in continuous space. There are approaches to update
such Voronoi graphs, e.g., for newly discovered obstacles during exploration [Tao et al., 2011;
Rao et al., 1991], moving input points [Gold et al., 1997], or points that have been inserted or
deleted [Lee and Gahegan, 2002]. However, these analytic methods are not directly applicable
to Voronoi algorithms working on grids.

30

3.3 Configuration Space Maps

Several approaches exist to incrementally construct grid-based Voronoi diagrams, for example,
the approaches by Guibas et al. [1992] and Choset et al. [2000]. However, most of them are not
suitable for dynamic environments or incremental mapping with SLAM, since they do not sup-
port clearing previously occupied map cells, which is necessary to handle dynamic environments
and map corrections caused by loop-closures in SLAM.

Tao et al. propose line fitting to overcome this problem for a SLAM application [2011]. Their
algorithm can incrementally construct analytic Voronoi graphs during exploration, which com-
prises the addition of obstacles, but not their removal. Furthermore, one would have to update
the line fitting as well, which can cause sudden changes in the Voronoi graph.

The approach for updating GVDs proposed by Kalra et al. directly operates on grid maps, but
introduces obstacle identifiers that are uniquely assigned to a compound of connected obstacle
cells [Kalra et al., 2009]. If two adjacent cells have different closest obstacles according to
their identifier, both cells are added to the GVD. This condition however generates two-cell-
wide lines that violate the sparseness property of the GVD. Additionally, it does not generate
Voronoi lines in the interior of concave obstacle compounds like rooms or corridors as shown
in Figure 3.1 (left). This destroys the connectivity of the GVD and is problematic for path
planning, especially in indoor environments. Furthermore, since Kalra et al. use 8-connected
step distances for the distance maps, the Voronoi lines also follow this metric and thereby only
approximate the GVD.

In this thesis we describe our condition-based approach to incrementally update GVDs, first
published in [Lau et al., 2010]. It considers actual Euclidean distances and uses a new crite-
rion that determines if a cell is part of the GVD or not, without requiring obstacle identifiers
as the approach by Kalra et al. [2009]. Furthermore, our approach correctly handles indoor
environments and generates thin Voronoi lines that can be used for the n-best computation of
topologically different paths as shown in Figure 3.1. Additionally, it benefits from the speed-up
of our dynamic brushfire algorithm described above.

3.3 Configuration Space Maps

Configuration space (c-space) maps encode if a given robot pose leads to a collision with the
environment or not. Algorithms for efficient collision checking between three-dimensional ob-
jects continue to be an active area of research. Being in an overlap area between motion planning

31

3 Related Work

and computer graphics, most approaches represent the environment and the obstacles with poly-
gon meshes. For example, Tang et al. recently proposed a connection collision query algorithm
that detects collisions of triangle meshes moving between given states [2011]. Hence, it can be
used for sampling-based path planning. For online feasibility, Pan and Manocha use multi-core
GPUs for collision queries [2011]. Still, the cost per collision check depends on the number of
polygons used to represent the tested objects.

For a collision avoidance system, Schlegel proposed to precompute collision distances for cir-
cular arc trajectories as a function of relative obstacle location and curvature [1998]. Thus, the
kinematic analysis is done offline and collision distances can be obtained with one lookup per
obstacle. Instead, precomputing c-space representations further reduces the online effort for
collision checks to a single lookup. Since the publication of the seminal paper by Lozano-Perez
on c-space planning among static polyhedric obstacles [1983], many approaches were proposed
to reduce the cost for computing c-space obstacles, see for example the survey by Wise and
Bowyer [2000]. Linan and Zhenmin for example proposed a method to incrementally grow
polygonal c-space obstacles for multiple robots, but did not consider changes other than on-
going exploration [2005]. Because of the relevance of this problem in dynamic environments,
researchers are still working on improving the efficiency [Behar and Lien, 2010].

Convolving a grid map of a robot’s environment with an image of its footprint yields a dis-
crete c-space map. In order to reflect the current state of previously unknown or moving ob-
stacles at all times, these maps need to be updated regularly. Kavraki proposed to use the fast
Fourier transform (FFT) to reduce the computational cost of the convolution [Kavraki, 1995],
and Therón et al. added parallelization for an additional speed-up [2003]. Later, the same
group proposed a multi-resolution approach to reduce memory and computational load in large
workspaces [Blanco et al., 2005]. To speed up path planning for an autonomous car, Ziegler and
Stiller decompose the shape of the vehicle into circular discs [2010].

As a first dynamic approach for changing environments, Wu et al. proposed to precompute
colliding robot poses for each potentially occupied cell in the work space of a manipulator [Wu
et al., 2006]: taking the union of the colliding poses for a given set of occupied cells yields
the c-space collision map without further recomputation. For mobile robots, however, the size
of the operational area can render the database storage or the online computation of the union
infeasible. In contrast, our method for updating c-space collision maps is truly incremental:
it executes an initial map convolution in an offline phase, and during online application only
updates the cells affected by changes in the environment [Lau et al., 2011].

32

3.3 Configuration Space Maps

For path planning with circular robots, 2D Voronoi diagrams are appealing roadmaps since they
cover all topologically different paths in a map with a small number of cells. For rectangular
robots however, 2D Voronoi planning loses its completeness property, which requires repairing
paths in narrow areas where following the Voronoi diagram leads to collisions, e.g., by using
rapidly-exploring random trees (RRTs) as proposed by Foskey et al. [2001]. In this thesis we
combine dynamic distance maps and Voronoi diagrams with our novel incrementally updatable
c-space collision maps. In this way, we overcome the aforementioned problem and can perform
complete Voronoi planning in the configuration space of non-circular robots. Due to the abil-
ity to perform incremental updates, the resulting systems are suitable for online application in
dynamic environments.

Although we use A∗ planning as an example application, our approach could be combined with
other planners, e.g., D∗ Lite [Koenig and Likhachev, 2002], or RRTs with Voronoi-biased sam-
pling [Lindemann and LaValle, 2004; Zhang and Manocha, 2008].

33

4 Dynamic Euclidean Distance Maps

This chapter presents our approach to incrementally update Euclidean distance maps for applica-
tion in dynamic environments. To only update cells affected by changes, it uses a novel dynamic
variant of the brushfire algorithm. This method propagates information in wavefronts on a grid,
and is therefore also known as wavefront algorithm. In the following, we first review the static
brushfire algorithm and then present our modifications to facilitate incremental changes.

4.1 Static Brushfire Algorithm

The brushfire algorithm, as described by Verwer et al., computes static distance maps with a
shortest path search similar to Dijkstra’s algorithm with multiple sources [Verwer et al., 1989].
By using a priority queue that orders the expansion of cells by the distance to their closest
obstacle, the propagation spreads in wavefronts that start at the location of obstacles as shown
in Figure 4.1.

The pseudo-code of the static brushfire method is given in Algorithm 4.1. As discussed in
Section 3.1, we have modified it to store the location of the closest obstacle of each visited cell
in the obstacle reference map obst(s). Given a map M(s), it initializes each free cell s of the
distance map D(s) with infinite distance (line 6). The occupied cells are initialized with zero
distances and then inserted into the priority queue open: the function insert(open, s, d) inserts
s into the queue with distance d, or updates the priority if s is already enqueued (line 5).

As long as this queue contains cells, the algorithm iteratively calls pop(open), which returns the
cell s with the lowest enqueued distance and removes it from the queue (line 8). It then updates
the cells in the 8-connected neighborhood Adj8(s) of s: if the distance d from a neighbor n to
the closest obstacle of s as specified by obst(s) is smaller than the current value D(n) (line 13),
the distance value and closest obstacle of n are updated with the obstacle of s (lines 14–15).
Furthermore, each updated neighbor cell n is inserted into the priority queue with its new dis-
tance value to continue the propagation (line 16). Thus, each obstacle induces a propagation

35

4 Dynamic Euclidean Distance Maps

A B C D

Figure 4.1: Computing a distance map with the static brushfire algorithm. The distance values
are initialized with 0 (black) for occupied and infinity (white) for empty cells (A). The
occupied cells initiate wavefronts that propagate the increasing distances, denoted by
increasing brightness in (B) and (C). A wavefront stops if no further distance values
can be lowered. After all wavefronts have stopped, the distance map is complete (D).

Algorithm 4.1 Static Brushfire algorithm for computing Euclidean distance maps

computeDistanceMap()
1: for all s do
2: if M(s) = 1 then
3: D(s)← 0
4: obst(s)← s
5: insert(open, s, 0)
6: else D(s)←∞
7: while open 6= ∅ do
8: s← pop(open)
9: lower(s)

10: return D

lower(s)
11: for all n ∈ Adj8(s) do
12: d← ‖obst(s)−n‖
13: if d<D(n) then
14: D(n)← d
15: obst(n)← obst(s)
16: insert(open, n, d)

wavefront that expands in circles, and updates the distance values of the visited cells to the Eu-
clidean distance to the obstacle. Since this update can only reduce the distance value associated
with a cell, we call this type of propagation a “lower” wavefront.1

If a wavefront cannot lower the distance of any neighbor of the visited cells, no further cells
are enqueued. After all wavefronts came to a halt this way, the priority queue is empty and the
algorithm returns the distance map.

4.2 Dynamic Brushfire Algorithm

Movement, insertion, or deletion of objects causes individual cells in a binary occupancy grid
map M to flip their state from free (0) to occupied (1) or vice versa. This section presents an
approach to update Euclidean distance maps to reflect such changes using a dynamic variant of
the brushfire method. After registering an arbitrary set of newly occupied and newly freed cells,

1This corresponds to the nomenclature used by Kalra et al. [2009].

36

4.2 Dynamic Brushfire Algorithm

A

raise lower

B

lower
lower

C D

Figure 4.2: The dynamic brushfire algorithm is used to update the distance map (A). To propa-
gate the changes (B), a raise wavefront starts to delete the invalid values for a removed
obstacle (marked red), and a lower wavefront propagates the new distances for an
inserted obstacle (blue). Where the raise wavefront hits cells with a different (valid)
closest obstacle, it halts and initiates a new lower wavefront to restore the invalidated
distance values (C). After all wavefronts came to a halt, the update is completed (D).

the algorithm performs the update in an incremental way, i.e., exploiting its previous results.
As discussed before in Chapter 3, our approach is directly derived from the brushfire algorithm
presented above, unlike the method by Kalra et al., which is derived from D∗ [2009].

The example in Figure 4.2 shows how the DM from Figure 4.1 is updated after removing an
obstacle and inserting a different one. Frame (A) shows the initial state, which is equivalent to
the final state (D) of Figure 4.1.

When performing the update, newly occupied cells (blue outline) initiate “lower” wavefronts
(B) that update the closest obstacle distance of affected cells similarly to the static variant of the
algorithm. These wavefronts are propagated up to the point where a different obstacle is closer
(C). In addition, “raise” wavefronts start at newly freed cells (red outline) and clear the distance
entries of all cells whose closest obstacle was the deleted one (B). When they come to a halt at
cells with a different closest obstacle, they initiate new “lower” wavefronts that recompute the
distances for the cleared cells on the basis of the remaining obstacles (C).

Both the raise and lower wavefronts propagate themselves by enqueueing the neighbors of a
processed cell into the same priority queue. Since the queue sorts its elements by distance, the
processing of raise and lower wavefronts is interwoven. After all wavefronts have stopped, the
queue is empty and the update is completed (D).

The pseudo-code of the dynamic brushfire algorithm is given in Algorithm 4.2. The algorithm
is initialized with a given distance map D(s) and an obstacle reference map obst(s) for a corre-
sponding occupancy grid map M(s). If a cell s is occupied according to M(s), it has a distance
of D(s) = 0 and refers to itself as the closest obstacle location, i.e., obst(s) = s. Otherwise,
D(s) is the distance value to the closest occupied cell, whose location is stored in obst(s). A
change in the occupancy of a cell s is registered by calling the function setObstacle(s) or

37

4 Dynamic Euclidean Distance Maps

Algorithm 4.2 Dynamic Brushfire algorithm to incrementally update distance maps

setObstacle(s)
17: obst(s)← s
18: D(s)← 0
19: insert(open, s, 0)

removeObstacle(s)
20: clearCell(s)
21: toRaise(s)← true

22: insert(open, s, 0)

updateDistanceMap()
23: while open 6= ∅ do
24: s← pop(open)
25: if toRaise(s) then
26: raise(s)
27: else if isOcc(obst(s)) then
28: voro(s)← false

29: lower(s)
30: return D

raise(s)
31: for all n ∈ Adj8(s) do
32: if (obst(n) 6=cleared

∧¬toRaise(n)) then
33: insert(open, n,D(n))
34: if ¬isOcc(obst(n)) then
35: clearCell(n)
36: toRaise(n)← true

37: toRaise(s)← false

lower(s)
38: for all n ∈ Adj8(s) do
39: if ¬toRaise(n) then
40: d← ‖obst(s)−n‖
41: if d<D(n) then
42: D(n)← d
43: obst(n)← obst(s)
44: insert(open, n, d)
45: else checkVoro(s, n)

removeObstacle(s), which updates s and inserts it into a priority queue. Thereby, the func-
tion clearCell(s) resets s to D(s) =∞ and obst(s) = cleared.2 An additional flag toRaise is
used to ensure proper processing of cells in the wavefronts, in particular where raise and lower
wavefronts meet. It indicates for each cell, whether it has to process its neighbors with a raise
wavefront (true) or not (false).

After registering a set of changes using setObstacle(s) and removeObstacle(s), the priority
queue open contains the updated cells. Calling updateDistanceMap() performs the actual
update by propagating the changes to all affected cells. While the priority queue is not empty, it
repeatedly retrieves the next unprocessed cell s (lines 23–24). If s has still to propagate a raise
wavefront, the function raise(s) is called (lines 25–26). If this is not the case and if s has a valid
closest obstacle, the function lower(s) is called to propagate the lower wavefront (lines 27–29).
The function isOcc(s) tests if a cell s is occupied by checking if obst(s)=s.

The function raise(s) processes each cell n in the 8-connected neighborhood Adj8(s) of s that
has not been raised and still refers to a closest obstacle obst(n) (lines 31–32).

2Without a precomputed distance map, e.g., when mapping a new area, the algorithm can also be
initialized by clearing all cells and registering occupied cells with setObstacle(s).

38

4.3 Implementation Details

The cell n is inserted into the priority queue with its old distance value (line 33). If the cell
referenced by obst(n) is no longer occupied, n is cleared and marked to propagate the raise
wavefront (lines 34–36). Otherwise, the raise wavefront comes to a halt at n, leaves n un-
changed, and propagates a lower wavefront, as shown in Figure 4.2 (C). After processing the
neighbors, the raise update of s is completed and toRaise(s) is set to false (line 37).

The function lower(s) considers each cell n in the 8-connected neighborhood Adj8(s) of s. If
a cell n is not marked to be part of a raise wavefront (lines 38–39), it is updated as in the static
version of the algorithm: the Euclidean distance from n to the closest obstacle of s is compared
to the current closest obstacle distance of n (lines 40–41). If it is smaller, the values for distance
and closest obstacle of n are updated to reflect that obst(s) is now the closest obstacle of n as
well. Also, n is inserted into the priority queue to propagate the lower wavefront (lines 42–
44). To avoid superfluous raise wavefronts where they would overlap with lower wavefronts,
the condition in line 41 can be extended to also overwrite cells with equal distance that refer to
a deleted obstacle. With this modification the line reads

if d<D(n) ∨ (d=D(n) ∧ ¬isOcc(obst(n))) then.

The lines 28 and 45 are hooks to incrementally update a Voronoi diagram on the fly during the
update of the distance map (see Chapter 5). If only distance maps are required, these lines can
be omitted.

4.3 Implementation Details

The distance map algorithm described above computes and compares real-valued Euclidean
distances stored in D(s). As previously done by Scherer et al. and others, we resort to integer
squared distances in practice which saves the computational expenses for the square-root. Due
to the strict monotony of the square root function for positive inputs, this does not change the
behavior of the algorithm.

A central data structure in our algorithm is the sorted priority queue open. Such queues are often
implemented using search on a binary tree, which yields a complexity of O(log n) for the insert
operation where n is the number of enqueued elements. Since the processing of cells is ordered
by distances and cells only enqueue their direct neighbors, many elements in the priority queue
have identical distance values. We exploit this by implementing the queue using the bucketing

39

4 Dynamic Euclidean Distance Maps

Algorithm 4.3 Improved expansion of lower wavefronts in 3D,
replaces line 38 in Algorithm 4.2
46: w ← (s− obst(s))
47: for all n ∈ Adj26(s) do
48: ∆← (n− s)
49: if ∃c ∈ {x, y, z} : wc ·∆c < 0 then continue

technique presented by Cuisenaire and Macq [1999], where cells with the same distance are
grouped in unsorted lists.

To implement priority queues with unique entries and increasable priorities, we actually insert
the elements whenever they are updated, and carry a Boolean flag toProcess for each cell s. It is
set to true by insert(open, s, d) and reverted to false by pop(open). The function pop(open)

iteratively dequeues elements until it reached an element s with toProcess(s) = true, and thus
discards duplicated entries.

4.4 Extension to Higher Dimensions

In the context of mobile robot navigation, distance transforms have mostly been applied to two-
dimensional maps. However, for flying robots or manipulators, 3D distance maps are also very
appealing. Our dynamic brushfire algorithm can directly be extended to 3D. Obviously, the
obstacle locations, the obstacle reference map, and the distance map itself have to be 3D vectors
and arrays in this case. Each cell on a three-dimensional grid has 26 neighbors, so Adj8 is
replaced by Adj26.

Depending on the map size and the amount of changes in the environment, maintaining a com-
plete 3D distance map may not be feasible even with an incremental update algorithm. As
proposed by Scherer et al. [2009] we introduce an upper bound dmax on the distances that we
propagate. Whenever the increasing distances in a lower wavefront reach this threshold, the
propagation is stopped. The appropriate value for dmax depends on the application and the avail-
able computational resources. Our experiment in Section 7.3 demonstrates on real data how the
choice of dmax influences the required computation time of our algorithm. To implement the
distance bound in our algorithm, the condition d<dmax has to be added as an additional require-
ment in line 41. During initialization, the distance values in the empty cells are set to dmax rather
than infinity.

40

4.4 Extension to Higher Dimensions

The efficiency of the lower wavefront can be improved by reducing the size of the neighborhood
that is expanded for each cell s: the neighbors that lie in the inverse direction of the wavefront’s
propagation can be skipped. The pseudo-code for this modification is shown in Algorithm 4.3.
The direction of the wavefront at s can be determined from s−obst(s) (line 46), and the direction
of the potential expansion to neighbor n by n−s (line 48). If these vectors have opposing signs in
any component x, y, z, the expansion of n can be skipped (line 49). In theory, this modification
could be applied in 2D as well. In this case, however, the computational overhead exceeds the
benefit of the reduced cell visits.

41

5 Dynamic 2D Voronoi Diagrams

In continuous space, a point is part of the Voronoi graph if the distances to its two closest
obstacles are identical. For discrete GVDs, this condition cannot directly be applied to the
discretized cell coordinates. Instead, the GVD is the set of cells that would contain continuous
Voronoi lines in their associated area. Furthermore, the implicit grouping of occupied cells to
obstacles plays an important role: treating each occupied cell as a single obstacle would cause
the GVD to be cluttered, since a line would be inserted between each pair of adjacent occupied
cells. In contrast, treating all connected occupied cells as a single obstacle causes missing
Voronoi lines in indoor environments as shown in Figure 3.1 (left).

Voronoi graphs in continuous spaces consist of infinitely thin lines and curves. Since GVDs
are represented on discretized grids, artifacts in the form of erroneous connections can occur.
Firstly, a pair of nearby Voronoi lines that pass through adjacent cells becomes connected and
thus creates erroneous circles and interconnections in the graph. Secondly, a single Voronoi line
that lies between two discrete cell locations in continuous space causes double lines in the GVD.
In both cases, the GVD loses the sparseness property of the Voronoi graph, i.e., the paths in the
GVD no longer correspond to topologically different routes with respect to obstacles. When
using an 8-connected grid model, the GVD appears to be thinner by visual inspection. However,
the additional connections often create additional path variations in adjacent cells. Thus, 8-
connected GVDs often violate the sparseness condition, which is not the case for 4-connected
ones (see Figure 5.1 for an example).

(a) 4-connected (b) 8-connected

Figure 5.1: Voronoi diagrams on 4- and 8-connected grids. In the 4-connected GVD, different
paths correspond to topologically different routes with respect to obstacles. The
8-connected Voronoi lines might appear thinner on visual inspection, but create in-
terconnections (encircled) with multiple paths.

43

5 Dynamic 2D Voronoi Diagrams

Algorithm 5.1 Evaluation of the Voronoi condition

checkVoro(s, n)
50: if (D(s)>1 ∨ D(n)>1) ∧ obst(n) 6=cleared

∧ obst(n) 6=obst(s) ∧ obst(s) 6∈ Adj8(obst(n)) then
51: if ‖s−obst(n)‖ ≤ ‖n−obst(s)‖ then voro(s)← true

52: if ‖n−obst(s)‖ ≤ ‖s−obst(n)‖ then voro(n)← true

We present a set of conditions to generate GVDs that are fully connected, and at the same time
have no neighboring Voronoi lines that touch each other, as shown in Figure 3.1 (right). Al-
though we focus on 4-connected GVDs, our method can generate 8-connected ones as well. An
additional pruning step deals with artifacts due to discretization, i.e., double lines and erroneous
connections, and thus ensures the sparseness of the GVD. The algorithm is directly integrated
with our method for updating distance maps and is easy to implement.

5.1 Incremental Update of Voronoi Diagrams

We represent the GVD by a binary map voro(s), which specifies for each cell s if it is part of the
GVD (voro(s) = true) or not (voro(s) = false). The update of the GVD directly integrates with
the update of DMs given by Algorithm 4.2 in Chapter 4: lower wavefronts remove all visited
cells from the GVD (line 28), and potentially add the cells where they come to a halt. If the lower
wavefront propagated by a cell s finds an adjacent cell n whose distance cannot be lowered by
adopting obst(s) as closest obstacle, both cells are candidates for the GVD (line 45), and are
potentially added after checking our additional conditions in checkVoro(s, n) according to
Algorithm 5.1. This function tests if at least one of the candidate cells s and n is not adjacent
to its closest obstacle (line 50). Furthermore, the neighbor n has to have a valid closest obstacle
that is different and not adjacent to the closest obstacle of s. If these conditions are fulfilled, a
Voronoi line passes between the cell centers in sufficient distance to the next one, and both cells
are candidates for the discrete GVD.

To avoid double lines, the function only adds the cell c ∈ {s, n} that violates the continuous
Voronoi condition to the lesser degree, i.e., the one with the smaller distance increase when
switching from its own closest obstacle to the one of the competing neighbor. If both have the
same increase, both cells are inserted (lines 51–52). To obtain 8-connected GVDs, the “≤” in
these lines are replaced by “<” for diagonal neighbors s and n, since then no cells need to be
inserted in the case of equal increase.

44

5.2 Pruning

0 1
1 s

P 4
1

0
1 s 1

0

P 4
2

(a) 4-connected

1 0
0 s

P 8
1

0
1 s 1

0

P 8
2

1
1 s 1

1

P 8
3

(b) 8-connected

Figure 5.2: Image operator patterns used to test the connectivity of a GVD. Arrows indicate
application of rotated copies.

5.2 Pruning

As discussed before, different paths on the Voronoi graph correspond to topologically different
routes in the environment. To preserve this property for GVDs on grid maps, thin Voronoi lines,
i.e., being one pixel wide, are desired. Previous work on dynamic GVDs by Kalra et al. how-
ever regularly generates Voronoi lines that are two or three pixels wide. Our optional pruning
step erodes 2-pixel-wide Voronoi lines that occur where a continuous Voronoi line would pass
exactly between two cells. Therefore, all new Voronoi cells are inserted into a priority queue
and processed by the pruning stage.

The image operator patterns shown in Figure 5.2 match whenever the center cell s provides
connectivity for one or more of its adjacent cells. The left side shows the two patterns required
for ensuring 4-connectedness, the three patterns on the right side correspond to 8-connectedness.
In any pattern, a “1” matches voro(s) = true, while “0” stands for voro(s) = false, and empty
fields are ignored. Where indicated by arrows, the same pattern is applied in all unique 90 degree
rotations.

In a first phase, the pruning algorithm merges Voronoi lines that are erroneously connected due
to the finite map resolution. This is done using the matching pattern P 8

3 , which detects cells that
are enclosed by Voronoi cells. If such a cell is free and not part of the GVD, it is added at this
point. This merges Voronoi lines that are too close to be separated given the map resolution.
Together with the following pruning step, this prevents erroneous connections and ensures that
the generated GVD is sparse.

The second phase implements the actual pruning step. In increasing order of distance, the en-
queued cells are iteratively popped from the priority queue. If such a cell has more than one
neighbor on the GVD and is not required to keep the GVD connected, it can be removed from
the GVD without affecting its topology. Again, this is tested using the image operator patterns

45

5 Dynamic 2D Voronoi Diagrams

(4- or 8-connected): if none of the connectivity patterns match at the cell location, the cell is not
required in the GVD.

5.3 Path Planning on Voronoi Diagrams

As mentioned before, a GVD is a cell decomposition method that is appealing for path planning.
This section details on important aspects of Voronoi planning in dynamic environments. In gen-
eral, the start and goal locations of a planning problem are not part of the GVD. Straightforward
approaches search for the closest Voronoi cell at both locations, and connect them with straight
lines to the graph, see for example the work by Geraerts and Overmars [2004]. This is problem-
atic in practice, since a small change of the start pose can substantially change the planned path
as shown in Figure 5.3a. On the other hand, running a goal-driven search up to the first Voronoi
cell can easily expand a big part of the space that is not on the GVD.

Our approach given by Algorithm 5.2 overcomes these problems. First, we insert virtual obsta-
cles at the start and goal location (lines 54–55). After updating the distance map and the GVD
with our incremental algorithm (line 56), these locations become enclosed by Voronoi lines that
form “bubble”-like areas as shown in Figure 5.3b. With a simple brushfire expansion, we mark
all cells in the bubbles up to the enclosing Voronoi lines (lines 57–58). Now we can start a
goal-directed search that is restricted to cells that are either marked or belong to the GVD. In
this way, the search expands from the start onto the Voronoi graph, follows Voronoi lines, and
then connects to the goal when reaching the goal bubble. Since the whole path is the result of
goal-directed graph search, the consecutive paths planned for a moving robot are very similar
to each other and do not change abruptly (see Figure 5.3). After the shortest path is computed,
we undo the changes to the GVD by removing the virtual obstacles and performing another
update (lines 63–65).

In order for the algorithm to be truly incremental, the markers should be stored in a hash map
structure rather than in a binary grid that has to be cleared after each frame. Additionally, one
can employ an incremental replanning algorithm like D∗ rather than A∗.

46

5.3 Path Planning on Voronoi Diagrams

goal

start

goal

start

goal

start

(a) Connecting the start and goal to closest Voronoi cells

goal

start

goal

start

goal

start

(b) Our method: Voronoi “bubbles” at start and goal

Figure 5.3: Connecting start and goal to the Voronoi graph (green) during planning: using
the shortest connection (a), the planned path (blue) can change abruptly for small
changes of the start configuration, even for sightline-pruned paths (dashed). We cre-
ate Voronoi bubbles around start and goal (b), and use goal-directed search therein,
which yields more stable paths (bottom).

47

5 Dynamic 2D Voronoi Diagrams

Algorithm 5.2 “Bubble”-technique for path planning on a GVD

planPath(start , goal)
53: if M(start)=1 ∨M(goal)=1 then return
54: setObstacle(start) // create Voronoi bubbles

55: setObstacle(goal)
56: updateDistanceMap()
57: brushfireMark(start) // mark bubbles as searchable

58: brushfireMark(goal)
59: push(astarqueue, start)
60: while astarqueue 6= ∅ do // A∗ on Voronoi and bubbles

61: s← pop(astarqueue)
62: if s = goal then
63: removeObstacle(start)
64: removeObstacle(goal)
65: updateDistanceMap()
66: return path from start to goal
67: for all n ∈ Adj4(s) do
68: if voro(n) = true ∨marked(n) = true then
69: A∗ update for costs and heuristic of n
70: push(astarqueue, n)

brushfireMark(s)
71: push(unsortedqueue, s)
72: while unsortedqueue 6= ∅ do
73: s← pop(unsortedqueue)
74: marked(s) = true

75: for all n ∈ Adj4(s) do
76: if M(n)=1 then continue
77: if voro(n) = false ∧marked(n) = false then
78: push(unsortedqueue, n)

48

6 Dynamic C-Space Representations

This chapter presents our approach to compute and incrementally update collision maps in the
configuration space of mobile robots moving on a plane. By combining these maps with our
dynamic distance maps and Voronoi diagrams, we also generate c-space distance maps and c-
space Voronoi diagrams.

6.1 Dynamic C-Space Collision Maps

As discussed in Section 3.3, a configuration space (c-space) collision map encodes for each
discretized robot configuration whether it causes a collision with obstacles in the environment
or not. Non-circular robots moving on a plane have a three-dimensional c-space, since their
poses 〈x, y, θ〉 are given by their 2D position on the ground and their orientation θ.

Computing a c-space map usually requires convolving a map with the shape of the robot for
each orientation. Recomputing these convolutions to reflect changes in dynamic environments
is often not feasible at frame rates required for online applications. We present a method to
efficiently update c-space collision maps with the obstacle models shown in Figure 2.1. For
the sake of clarity, we first describe our algorithm for a 2.5D representation with overhanging
obstacles, and discuss the adaptation to other obstacle models later.

Let M(x, y) be a grid map that represents the vertical clearance, i.e., the height of free space
above the floor, with zeros for completely occupied cell columns. Consider a robot moving on
the floor with continuous orientation θ̃ with respect to the map coordinate system. We represent
the discretized shape of the robot for a given orientation θ̃ by a map Sθ̃(i, j), that stores the
height of the robot for every cell of its footprint. Sθ̃ has the same resolution and orientation as
the map M , whereas its origin Sθ̃(0, 0) is located at the center of the robot.

A convolution-type conjunction of M and Sθ̃ yields a count map Cθ̃(x, y) as shown in Fig-
ure 6.1a. Each cell 〈x, y〉 in Cθ̃ stores the number of cells the robot collides with when located
there, and is computed according to

Cθ̃(x, y) =
∑

i

∑
j

eval{M(x+i, y+j) ≤ Sθ̃(i, j)} , (6.1)

49

6 Dynamic C-Space Representations

∗ ⇒
1
1

1

1
2
11

1
1

0
0 0
0

00

00 0

M(x, y) S0◦(i, j) C0◦(x, y)

∗ ⇒
2
2

0

0
00

0
0

0
1 0
1

01

10 1

M(x, y) S−90◦(i, j) C−90◦(x, y)

(a) Initial convolution of map
(green) and robot (blue)

∗ ⇒
1
1

1

1
2
11

1
1

0
1 1
0

10

00 0

M(x, y) S0◦(i, j) C0◦(x, y)

∗ ⇒
2
2

0

0
10

0
0

0
2 0
2

01

10 1

M(x, y) S−90◦(i, j) C−90◦(x, y)

(b) Updating C after a cell in
M has been occupied

∗ ⇒
0
1

1

0
1
11

1
1

0
1 1
0

10

00 0

M(x, y) S0◦(i, j) C0◦(x, y)

∗ ⇒
1
2

0

0
10

0
0

0
2 0
2

01

00 0

M(x, y) S−90◦(i, j) C−90◦(x, y)

(c) Updating C after a cell in
M has been cleared

Figure 6.1: Convolving a map M(x, y) with a representation of the robot’s shape Sθ(i, j) for
orientation θ yields a collision map Cθ(x, y). Each cell 〈x, y〉 in Cθ counts the cells in
the robot footprint that collide with occupied cells inM , given the robot pose 〈x, y, θ〉.
A newly occupied or emptied cell in the map M (red) increments or decrements the
affected collision counts in C, respectively. This updates the collision map (red cells)
without recomputing values for unaffected cells (gray).

where eval(true) = 1 and eval(false) = 0. If we discretize θ̃ and stack the Cθ(x, y) for all dis-
crete θ, we obtain the robot’s c-space collision count map C(x, y, θ) for M . Clearly, by testing
C(x, y, θ) > 0 we can check if the discretized pose 〈x, y, θ〉 is colliding. By storing collision
counts instead of just binary values as in regular c-space maps, we can update the c-space map
incrementally as described below.

6.2 Incremental Update of the C-Space Map

Unknown or moving obstacles cause changes in the map of a robot’s environment. For the 2.5D
obstacle model, a change is given by an updated vertical clearance vnew for a cell 〈x, y〉 inM . To
refresh C incrementally rather than computing it from scratch, we only update the affected parts
of the sum in Equation (6.1) according to Algorithm 6.1. See the sequence of Figures 6.1b-6.1c
for an illustration.

The algorithm separately updates the θ-layers of C, and can thus be parallelized (line 81). For
each cell 〈i, j〉 of the robot shape Sθ(i, j) we visit the robot position 〈x′, y′〉 that lets 〈i, j〉 fall
on 〈x, y〉 (line 82). These cells can efficiently be selected using standard drawing algorithms for
rasterized images.

50

6.3 Discretization of Orientations

Algorithm 6.1 Dynamic update of C-space collision maps

updateVerticalClearance(x, y, vnew)
79: vold ←M(x, y)
80: M(x, y)← vnew

81: for all θ do
82: for all 〈x′, y′〉∈{〈x−i, y−j〉 |Sθ(i, j)>0} do
83: if vnew ≤ Sθ(i, j) ∧ vold > Sθ(i, j) then
84: C(x′, y′, θ)← C(x′, y′, θ) + 1
85: if C(x′, y′, θ) = 1 then newOccupied(x′, y′, θ)
86: else if vnew > Sθ(i, j) ∧ vold ≤ Sθ(i, j) then
87: C(x′, y′, θ)← C(x′, y′, θ)− 1
88: if C(x′, y′, θ) = 0 then newEmpty(x′, y′, θ)

If the new vertical clearance vnew in 〈x, y〉 causes a collision with Sθ(i, j) while vold did not, the
collision counter of 〈x′, y′〉 is incremented (line 83), since this represents a new collision candi-
date cell. Vice versa, if vnew is collision-free whereas vold collided, the counter is decremented
(line 86), since a collision candidate was removed. Whenever the count changes from 0 to 1 or
from 1 to 0, the pose 〈x′, y′, θ〉 is newly occupied (line 85) or emptied (line 88), respectively.
These events can be used to trigger further computation, e.g., to update the c-space distance map
and Voronoi diagram discussed in Section 6.5.

6.3 Discretization of Orientations

An appropriate discretization of θ̃ ensures that if two adjacent poses 〈x, y, θi〉 and 〈x, y, θi+1〉
are collision-free according to C, intermediate orientations in [θi, θi+1] are collision-free as well.
Under this constraint we seek to discretize θ̃ as coarse as possible to keep the number of θ-layers
in C small.

In occupancy grid maps, the actual location of obstacles can be anywhere in the cells they
occupy. Therefore, one usually assumes an additional safety margin m around the robot, e.g.,
of m = 1 pixel unit. Given this margin, we can formulate a bound on the angular resolution
for the discretization of θ̃ as follows: if the robot rotates from θi to θi+1, each point on the
robot moves along an arc. The maximum arc length occurs at the outmost point of the robot,
which is the radius r (in pixels) of the circumcircle around its center of rotation. By choosing a
resolution of |θi − θi+1| = m/r, we ensure that even in the worst case an obstacle collides only
with the safety margin but not with the actual robot. Depending on the shape of the robot, less
conservative bounds on the discretization can be formulated.

51

6 Dynamic C-Space Representations

6.4 Adaptation to Other Obstacle and Robot Models

Up to this point, we assumed overhanging obstacles and a robot on the floor that can move
underneath obstacles as in Figure 2.1b. By reversing the comparisons of robot height and vertical
clearance in Equation (6.1) and Algorithm 6.1 (lines 83 and 86), this can easily be adapted to
obstacles elevating from the floor and robots with overhanging load or parts as in the figure.
For plain 2D robot and obstacle models, the heights vnew and vold are binary values that encode
occupied (true) and free (false). In that case, the conditions for determining newly occupied cells
in line 83 are given by

“if vnew = true ∧ vold = false then”,

and for newly vacated cells in line 86 by

“if vnew = false ∧ vold = true then”.

For some applications, the obstacles and the robot have to be represented in full 3D as in Fig-
ure 2.1c. The height comparisons in Algorithm 6.1, lines 83 and 86 then have to consider lists
of obstacle heights. If the robot shape is approximated by a set of vertical columns with a given
upper and lower end as in Figure 2.1, one can also use a separate shape map for each column. If
line 82 is adapted to only consider the columns that potentially collide with a given new obstacle,
the c-space collision map can be efficiently updated.

In applications like mobile manipulation or autonomous transport, the shape of the robot and
its payload can vary over time. To use our method in these cases, one can group the changing
parts of the robot to additional models, and maintain separate c-space maps for them. Then,
one can immediately switch between different configurations of the robot by using different
sets of models in the collision check. If highly accurate collision checks are required, one
can also create shape models for an inner and an outer approximation. Only if the outer (larger)
approximation collides while the inner (smaller) one does not, more complex methods like mesh
queries are required. Otherwise, the approximations are sufficient.

Robots with a symmetric shape with respect to their center cause a part of the θ-layers in
C(x, y, θ) to be redundant. For example, a rectangular robot rotating around its center causes
the same c-space obstacles at orientation 180◦ as at 0◦. Omitting the respective layers when
iterating over θ in Algorithm 6.1 (line 81) saves a substantial part of the computational effort
and memory consumption.

52

6.5 C-Space Distance Maps and Voronoi Diagrams

(a) C-space distance map (b) C-space Voronoi diagram

Figure 6.2: C-space distance map and Voronoi diagram for a rectangular robot obtained by stack-
ing layers computed in 2D for different robot orientations θ. For readability, only
half of the layers are shown, the other half is identical due to the symmetry of the
robot. In the visualization at the top, cells above the bottom layer have a different
color scaling and were removed when exceeding a distance threshold.

6.5 C-Space Distance Maps and Voronoi Diagrams

This section describes how to compute DMs and GVDs presented in Chapters 4 and 5 for the
c-space collision map in Section 6.1. Since we provide incremental update algorithms for all
these representations, these combinations are suitable for online applications as well, and thus
open new possibilities for collision checking and path planning in the configuration space of
mobile robots.

Given a three-dimensional c-space collision map C(x, y, θ) as described above, we can compute
a 3D distance map in this space that uses a 3D distance measure which combines Euclidean
distances and the angle of rotation. Therefore, one has to consider the angle wrap-around of the
θ component for the expansion of neighborhoods. The resolution of the θ discretization specifies
how to balance Cartesian and angular distances. With the methods presented in Section 4.4, such
a c-space DM can be updated incrementally, and can for example be used to efficiently perform
collision checks for non-circular robots on long trajectories.

As discussed by Canny [1985], it is also appealing to only consider 2D Euclidean distances per
θ-layer of the c-space map. Therefore, we stack Euclidean distance maps Dθ(x, y) computed
for every c-space map layer Cθ(x, y), yielding the c-space distance map D(x, y, θ) as shown in
Figure 6.2 (top).

In 2D, GVDs are the union of points whose two closest obstacles are at the same distance. Just
as for the DMs, we compute a GVD voroθ(x, y) for every c-space map layer Cθ(x, y). Stacking

53

6 Dynamic C-Space Representations

these Voronoi diagrams results in a c-space Voronoi diagram voro(x, y, θ) as shown in Figure 6.2
(bottom), which is fundamentally different from computing the 3D generalized Voronoi diagram
forC(x, y, θ). If θ is discretized according to Section 6.3, the Voronoi lines in neighboring layers
connect to Voronoi surfaces.

To update the layers Dθ and voroθ, we first update the underlying c-space collision map. The
events newOccupied(x′, y′, θ) and newEmpty(x′, y′, θ) in Algorithm 6.1 are used to call
setObstacle(x, y) and removeObstacle(x, y) in the respective θ-layer to register newly oc-
cupied or vacated cells. After the update of the c-space map is completed, we call the function
updateDistanceMap() for each θ-layer, which completes the update of the c-space DM and
GVD. Since their θ-layers are independent, this can be parallelized on multi-core CPUs.

6.6 C-Space Voronoi Path Planning

Given a layered c-space GVD as described in the previous section, one can perform deterministic
and complete path planning for non-circular mobile robots without a non-holonomic constraint.
The search on the c-space GVD is very similar to 2D Voronoi planning. The major difference
is the added dimension of the orientation with its cyclic nature, which has to be considered in
the neighborhoods during expansion. The bubble planning method presented in Section 5.3 can
easily be adapted for these purposes. Therefore, the creation and brushfire expansion of the
Voronoi bubbles (lines 54–58) and the corresponding removal (lines 63–65) have to be executed
for each θ-layer independently, which can be parallelized on multi-core CPUs. Obviously, the
A∗ algorithm has also to be modified to search the subspace of the three-dimensional c-space,
which is given by the GVD and the start/goal bubbles.

When using 8-connected GVDs, the brushfire expansion has to be run using a 4-connected
neighborhood to ensure that the expansion is contained in the start and goal bubbles. If the GVD
is 4-connected as in our examples, the brushfire expansion may also use 8-connectedness.

54

7 Experiments

This chapter presents experiments conducted to test our algorithms on real-world data. We
analyze the computational requirements and show examples of generated output. The tests were
done using our C++ implementation of the algorithms, running on an Intel R© CoreTM i7 2670
MHz. The source code of our algorithms and a big part of the employed data sets are available
online [Lau et al., 2012].

7.1 2D DMs and GVDs in Dynamic Environments

For this set of experiments we used a Pioneer robot equipped with a SICK LMS291 laser range
finder. To record data, it was moving in environments where walking people heavily affected the
traversable space (see Figure 7.1). The sequence “FR079” consists of 369 frames recorded in an
office building, and “FR101” contains 400 frames recorded in a large foyer space. The update
radius around the robot was only limited by the maximum range of the laser scanner (80 m). Due
to the maximum room size in the environments, the maximum closest obstacle distance in these
two maps, i.e., the radius of the largest circular unoccupied area, is 29 cells (1.45 m) and 97 cells
(4.85 m), respectively. The 400 frames of “Factory” were simulated by randomly inserting 200
obstacles per frame into a grid map of a large factory floor with a maximum obstacle distance
of 44 cells (2.2 m). Similar to the work by Kalra et al. [2009], the random obstacles were placed
within 5 m radius around a moving center, which simulates a moving observer with limited
perception.

To demonstrate the computational benefit of dynamically updatable DMs, we compared our
algorithm with state-of-the-art static methods implemented by Fabbri et al. [2008], namely the
algorithms by Cuisenaire and Macq [1999] and Maurer et al. [2003]. These approaches are
highly efficient, but recompute the whole distance map in every frame. We further compared
our method to the recent approach by Scherer et al. [2009]. Since no source code was available,
we implemented this algorithm in C++ with the assistance of Scherer. Our GVD approach
is compared to the static EVG-Thin method implemented by Beeson [2006] and the dynamic
approach by Kalra et al. [2009].

55

7 Experiments

FR079

10m

Factory

FR101

Figure 7.1: Maps of the environments where we recorded 2D laser range data.

0

0.04

0.08

FR079 FR101 Factory

M
au

re
r

C
u
is
en
ai
re

S
ch
er
er

O
u
rs

T
im

e
p
er

fr
am

e
[s
]

(a) Distance maps

0

0.15

0.3

FR079 FR101 Factory

E
V
G
-T

h
in

K
a
lr
a

O
u
rs

T
im

e
p
er

fr
am

e
[s
]

0.619

(b) Voronoi diagrams

Figure 7.2: Performance of our algorithms for updating distance maps and Voronoi diagrams
compared to related work. The plots show average computation times per frame.

In the first frame of each sequence, the algorithms were initialized with the corresponding grid
map shown in Figure 7.1, using a resolution of 0.05 m per grid cell. The performance is vi-
sualized in Figure 7.2 and presented by numeric results in Table 7.1. For each sequence, the
table provides the computation time and cell visits per frame with their mean, minimum, and
maximum values. When repeating the measurements 10 times for each sequence, the standard
deviations between the runs were well below 1% of the reported means.

In general, the dynamic methods are considerably faster than the static approaches by Cuisenaire
and Macq [1999] and Maurer et al. [2003], except for the distance maps in the open space of
FR101, where most updates affect a large fraction of the map. In all frames of all sequences, our
dynamic distance map algorithm visits 60−70% fewer cells and requires 60−70% less compu-
tation time than the dynamic approach by Scherer et al. [2009]. This can be mainly attributed
to the raise function of their algorithm which expands the adjacent cells of the neighbors of a
cell s, whereas our algorithm tests only the direct neighbors (line 38). Note that the cell visits
performed by the static methods are not directly comparable to the dynamic ones due to the

56

7.1 2D DMs and GVDs in Dynamic Environments

Table 7.1: Update performance of distance maps and Voronoi diagrams

Time per frame [s] Cell visits per frame

Map & Approach mean min max mean min max
D

is
ta

n
ce

M
a
p

s

F
R

07
9

Maurer 0.013 0.013 0.013 1,393,286 1,392,450 1,394,272

Cuisenaire 0.011 0.010 0.011 302,513 301,022 304,138

*Scherer 0.010 0.006 0.019 250,403 77,277 657,903

*Ours 0.003 0.001 0.005 99,761 29,340 190,998

F
R

10
1

Maurer 0.032 0.032 0.033 3,299,105 3,296,201 3,302,497

Cuisenaire 0.021 0.021 0.021 572,345 562,474 581,158

*Scherer 0.082 0.026 0.148 3,338,297 792,054 6,190,219

*Ours 0.033 0.011 0.051 1,264,488 427,176 1,929,690

F
a
ct

o
ry

Maurer 0.060 0.060 0.060 5,954,325 5,954,259 5,954,447

Cuisenaire 0.050 0.050 0.052 959,484 957,735 961,709

*Scherer 0.023 0.003 0.032 976,292 80,262 1,307,630

*Ours 0.008 0.002 0.011 319,871 80,262 423,315

V
or

on
oi

D
ia

gr
am

s

F
R

07
9 EVG-Thin 0.121 0.120 0.122 10,030,438 10,001,973 10,059,575

*Kalra 0.013 0.006 0.030 483,242 281,126 933,410

*Ours 0.005 0.003 0.008 113,803 31,824 215,131

F
R

1
01

EVG-Thin 0.296 0.282 0.310 19,892,173 19,798,905 20,005,447

*Kalra 0.157 0.046 0.284 4,363,678 1,537,112 7,558,395

*Ours 0.044 0.018 0.066 1,372,060 475,163 2,087,083

F
ac

to
ry EVG-Thin 0.619 0.592 0.632 35,540,331 35,525,379 35,551,489

*Kalra 0.050 0.005 0.068 1,462,930 167,553 1,970,182

*Ours 0.017 0.009 0.021 391,555 113,889 515,343

*dynamic method that only updates the affected parts of the map in each frame

different amount of computation per visit.

The comparison of the GVD update algorithms shows similar results: the dynamic methods
clearly outperform the static method EVG-Thin in all tested environments. In addition, our
approach can reduce the runtime considerably compared to the previous dynamic approach by
Kalra et al. [2009], since this method uses the same update strategy as Scherer’s approach for
DMs and thus visits more cells. In all tested environments, the average frame rate achieved by
our approaches was well above 20 fps which allows for online application of both distance maps
and GVDs.

The distance maps generated by our method are equal to the ones generated by the compared
methods, up to the inherent overestimation errors of 0.09 pixel units, as discussed in Chapter 3.
Exemplary outputs of our 4-connected GVD algorithm and the method by Kalra et al. are shown
in Figure 3.1: while Kalra’s GVD misses Voronoi lines inside rooms and corridors, our approach
captures the connectivity of the floor plan completely. Furthermore, our method generates thin

57

7 Experiments

10m

step 15 step 65 step 910

intel lab dataset

50m

step 15 step 635 step 2008

fr campus dataset

Figure 7.3: Incremental construction of a distance map and a Voronoi diagram during SLAM for
two datasets. Pure local mapping only causes changes if new parts of the map are
uncovered. Loop-closures, however, can affect large parts of the map, since individual
parts often move with respect to the map coordinate system.

Voronoi lines, such that different paths between a given start and goal are topologically different
with respect to obstacles.

7.2 2D DMs and GVDs during SLAM

To demonstrate the suitability of our incrementally updatable DMs and GVDs for SLAM appli-
cations, we used the GMapping SLAM package [Grisetti et al., 2007; Stachniss et al., 2012] to
construct maps of the datasets “intel lab” (indoor) and “fr campus” (outdoor) [Lau et al., 2012],
with a resolution of 0.05 m and 0.2 m per cell, respectively. We set the parameters to integrate a
new scan after the robot has moved 0.5 m or rotated 0.5 radians, and used 100 particles. After
each integration step, we use the map associated with the current best particle to determine the
newly occupied and freed cells with respect to the previous step.

58

7.3 Three-dimensional DMs

0 500 1,000

0

0.2

0.4

0.6
Map: intel lab

Mapping step

T
im

e
p
er

m
a
p
p
in
g
st
ep

[s
]

0 500 1,000 1,500 2,000

0

0.2

0.4

0.6
Map: fr campus

Mapping step

Our approach

EVG-thin

Figure 7.4: Computation time required to perform the updates between each mapping step for
the datasets shown in Figure 7.3. Our incremental methods clearly outperform the
computation of the full GVD in every step as done by EVG-thin. Peaks in the
computation time of our method correspond to the loop closures in SLAM.

Based on these changes, we incrementally update a DM and GVD in every step as shown in
Figure 7.3. The computation time taken by our algorithm to perform these updates is shown in
Figure 7.4. For comparison, we also plot the computation required by EVG-thin to compute a
GVD approximation for the grid map of each step.

Since the maps are incrementally growing during the mapping process, the computational ef-
fort for EVG-thin grows with increasing step numbers. The dynamic updates of our algorithm
are substantially faster, since the number of changes between consecutive SLAM steps is rather
small. The curve shows peaks of increased effort whenever the best particle changes, for exam-
ple after closing a loop. In our experiments, the average computation time required to update
the DM and GVD per mapping step was below 0.002 s and never exceeded 0.2 s even after
loop-closures, which allows frame rates above 5 fps.

7.3 Three-dimensional DMs

For the experiments with three-dimensional DMs we recorded 3D maps in a lab room and in
a large hall using the depth measurements obtained from a Microsoft Kinect 3D camera (see
Figure 7.5). The camera poses were determined using a MotionAnalysis motion capture system
with 9 Raptor-E cameras.

The maps were constructed and stored with a resolution of 0.05 m per voxel using the proba-
bilistic occupancy mapping routines in the OctoMap software package [Wurm et al., 2010]. The
map sizes and total number of cells are given in the left column of Table 7.2.

59

7 Experiments

walking person

tripod

laptop on box chair

wall

ceiling structure

1m

Figure 7.5: Excerpt of the 3D map of the hall used for our experiments, showing roughly 1/4 of
the space. The color encodes the height of each cell over ground. The gray planes are
slices from the 3D distance map of that space. Here, brighter cells denote increasing
Euclidean distance from obstacles.

Table 7.2: Performance of incremental 3D distance map updates

Data set dmax Avg. cell visits Avg. update time

Hall, moving: 693 frames 0.5 m 152,613 0.0734 s
size: 14.25×14.2×7.45 m3 1.0 m 267,097 0.1493 s

total cells 12,226,500 1.5 m 354,061 0.2174 s
Avg. flipped 347.0 2.0 m 396,937 0.2532 s
Hall, static: 1,443 frames 0.5 m 93,460 0.0482 s
size: 14.25×14.2×7.45 m3 1.0 m 180,178 0.1034 s

total cells 12,226,500 1.5 m 245,062 0.1479 s
Avg. flipped 214.8 2.0 m 285,867 0.1782 s
Lab, static: 1,618 frames 0.5 m 41,760 0.0231 s
size: 6.0×5.15×3.15 m3 1.0 m 48,231 0.0269 s

total cells 798,720 1.5 m 48,231 0.0275 s
Avg. flipped 164.7 2.0 m 48,231 0.0275 s

60

7.3 Three-dimensional DMs

0 0.5 1 1.5 2 2.5

0

0.2

0.4

Maximum distance dmax [m]

T
im

e
p
er

fr
a
m
e
[s
]

Hall, moving

Hall, static

Lab, static

Figure 7.6: Performance of incremental 3D distance map updates. The plot shows the aver-
age computation time per frame along with the standard deviations for different
sequences, depending on the maximum propagated distance dmax.

After constructing the maps, we recorded three 3D sequences of two walking people people
and continuously updated the pre-recorded maps using the same techniques. When integrat-
ing a point cloud into the 3D map, the OctoMap library can return a list of the cells that
switched from free to occupied or vice versa. In each frame, we register any flipped cell s using
setObstacle(s) or removeObstacle(s), and then update the 3D distance map as described
in Chapter 4.

The number of frames per sequence, the average number of flipped cells per frame, and the
resulting average computation time per frame are given in the right column of Table 7.2. In
one sequence, the camera was manually moved to follow a person, in the others it was static.
An excerpt of the 3D map of the hall and 2D slices of the corresponding 3D distance maps are
shown for an example frame in Figure 7.5.

The average computation time per frame, depending on the maximum propagated distance dmax

is shown in Table 7.2 and the plot in Figure 7.6. The error bars show the standard deviation
obtained by averaging over the frames. These values are high, since the computational require-
ments depend on the amount of changes in the environment, which varies over time.

The average computation time per frame grows with an increasing distance limit dmax, up to
the point where the update radius is naturally limited by the maximum distances found in the
environment.

For applications like path planning, collision avoidance or localization, a distance limit dmax

between 0.5 m and 1.0 m is mostly sufficient. The maximum computation times per frame under
these conditions were achieved in the large hall and corresponded to frame rates between 2 and
5 fps, with average frame rates between 4 and 13 fps. For the smaller lab environment, the
update rates do not fall below 10 fps. Note that these numbers consider the computation time
required by our algorithms, but not the occupancy mapping by the OctoMap.

61

7 Experiments

0 50k 100k 150k

2

4

6

8

T
im

e
fo
r
2
00

fr
a
m
es

[s
]

Map: FR079

Medium robot

2D Occupancy Map 2D Distance Map C-space Map

0 50k 100k 150k

2

4

6

8
Map: FR079

Large robot

0 50k 100k 150k

2

4

6

8

#collision checks per frame

T
im

e
fo
r
2
00

fr
a
m
es

[s
]

Map: FR101

Medium robot

0 50k 100k 150k

2

4

6

8

#collision checks per frame

Map: FR101

Large robot

Figure 7.7: Computation time for different collision checking routines for two sequences and two
robot models. The update required in every frame for the c-space collision map
pays off starting from 10,000 collision checks per frame. The plots show mean and
standard deviations averaged over 10 runs.

7.4 C-Space Obstacle Maps and Collision Checks

This section benchmarks our incrementally updatable c-space representations on the 2D laser
data sequences described in Section 7.1. For the updates, the maximum range of the laser
scanner was limited to 5 m. To simulate 2.5D and 3D obstacles, we augmented the laser data
with random height values between 0 m and the robot height.

In 2D, we assumed a medium sized rectangular robot with a footprint of 0.85 m x 0.45 m, and a
large one with 1.75 m x 0.85 m. In 2.5D, we modeled a wheelchair with a low front and a high
rear part, as in Figure 2.1b. In 3D, the robot was modeled like a Willow Garage PR2, with a
frontal extension for the base and the fixed arms (see Figure 2.1c). To speed up our algorithms,
we used OpenMP for parallelization with up to 6 threads.

The c-space collision map presented in Chapter 6 requires an incremental update in every time
step, but then, each collision check for the whole robot only needs a single map lookup. In the
2D model, we exploit the symmetry of the rectangular robot as described in Section 6.4.

62

7.4 C-Space Obstacle Maps and Collision Checks

0 50k 100k 150k

2

4

6

8

10

#collision checks per frame

T
im

e
fo
r
2
00

fr
a
m
es

[s
]

C-space map

2D (Medium robot) 2.5D (Wheelchair) 3D (PR2)

0 50k 100k 150k

2

4

6

8

10

#collision checks per frame

Grid map

Figure 7.8: Collision check performance for different robot and obstacle models, using our updat-
able c-space collision map (left) vs. the straightforward occupancy grid map approach
(right). The costs for updating the c-space map are remedied by the faster collision
checks for 10,000 checks or more per frame. The plots show mean and standard
deviations averaged over 20 runs.

We compare our method to a previous collision checking approach for rectangular robots that
uses recursive distance queries on incrementally updatable 2D distance maps [Sprunk et al.,
2011]. As a baseline, we also evaluate a straightforward approach that checks every cell of the
robot’s footprint for collision using an up-to-date 2D occupancy map.

The results of this benchmark are shown in Figure 7.7. The time required for updating the
distance and c-space maps is shown by the first data point of each plot (zero collision checks).
The slopes of the curves depend on the cost per collision check. In contrast to the distance map
approach, the update time for the c-space map grows with the size of the robot (right vs. left
column), but does not suffer from the open area in FR101 (bottom vs. top row). The update
for the c-space collision map pays off for 10,000 or more collision checks, which can easily be
required during path planning or trajectory optimization. In comparison, the break-even point
for a single disc-shaped object was at 22,400 for the disc-decomposition method by Ziegler and
Stiller, and 5 · 106 for the full c-space [2010].

We repeat the experiment, but with 2.5D and 3D obstacles and robots this time. Compared to
the 2D rectangular robot (dashed), the costs for the c-space update with 2.5D and 3D are higher,
since the robots are not symmetric anymore and consist of two and three parts, respectively, see
Figure 7.8 (left). However, the costs per collision check (slope of the plots) are the same, as
opposed to the curves for the straightforward occupancy map approach (right).

In all cases, the update of the c-space map takes less than 15 ms per frame. Performing 150,000
collision checks per frame additionally requires at most another 15 ms. This corresponds to

63

7 Experiments

1m

A

B

C

D

Narrow passages

(a) C-space Voronoi

1m

(b) KPiece

Figure 7.9: Map of a factory floor (9.5x15.4 m) with start location (A) and three goals (B), (C),
and (D). Example paths from (A) to (D) are shown for two different planners. The
sampling-based planner (right) is challenged by narrow passages, while the perfor-
mance of the Voronoi planner (left) is unaffected.

A→B A→C A→D

0.001

0.01

0.1

1

10

100

1000

10000

P
la
n
n
in
g
ti
m
e
[s
]

C-space Voronoi

KPiece

RRT

A→B A→C A→D
0

1000

2000

3000

4000

P
at
h
le
n
gt
h
[c
el
ls
]

C-space Voronoi

KPiece

RRT

Figure 7.10: Planning time and path length for three planners and the three planning tasks in
Figure 7.9. The plot shows mean and min/max for 20 runs. In contrast to the
Voronoi planner, the sampling-based planners require several orders of magnitude
more planning time for each narrow passage in the path.

10 · 106 collision checks per second for arbitrary robot shapes, which clearly outperforms even
modern GPU-based approaches with 0.5 · 106 collision checks per second for simple poly-
gons [Pan and Manocha, 2011].

7.5 Path Planning using C-Space Voronoi Maps

The c-space Voronoi maps presented in this thesis provide means for complete grid map plan-
ning for non-circular omnidirectional robots using standard graph search algorithms like A∗ or

64

7.5 Path Planning using C-Space Voronoi Maps

D∗ Lite [Koenig and Likhachev, 2002]. With our algorithms for incremental updates they are ap-
plicable in dynamic environments. This experiment uses the Voronoi bubble technique proposed
in Section 5.3.

We use A∗ to plan paths for the large robot model (see above) on the grid map of the factory
floor shown in Figure 7.9. The start pose is given by (A), and three possible goal poses by
(B), (C), and (D). Each of the consecutive goals requires traversing another narrow passage.
For comparison, we test our method against the KPiece and RRT implementations available in
the Open Motion Planning Library [Şucan et al., 2010]. All planners use our c-space map for
collision checking, thus the performance differences are due to the tested planner.

The average resulting planning times and path lengths for 20 runs per start-goal combination
are shown in Figure 7.10. Each additional narrow passage requires several orders of magnitude
more planning time for the sampling-based planners, while the time taken by the Voronoi planner
grows roughly linearly with the path length. Using per-cell collision checking rather than the
c-space collision maps for the sampling based planners increases the computation times by a
factor of 3.

As another application example, we plan the path of a PR2 robot using a c-space Voronoi map
generated from real 3D point cloud data (see Figure 7.11). After a precomputation phase of 0.5 s,
planning a path on the incrementally updatable c-space Voronoi map takes less than 2.5 ms.

Clearly, Voronoi planning is of advantage in narrow areas as long as the grid resolution is fine
enough. Our incrementally updatable c-space Voronoi representation allows to apply this idea
to non-circular robots in dynamic environments, and could also be used in Voronoi sampling
routines of other path planners [Zhang and Manocha, 2008].

65

7 Experiments

Figure 7.11: Table docking with a PR2 robot in a 3D map using Voronoi planning. The yellow
line shows the planned path, the rendered robots denote the start and goal pose.
Note that the goal pose requires 3D collision checking, since the table overlaps with
the robot’s footprint.

66

8 Conclusion

We presented incremental algorithms to update distance maps, Voronoi diagrams, and confi-
guration-space maps. These representations can be initialized with a grid map or point cloud.
For efficient online operation, our methods only update cells that are affected by changes in
the environment. Thus, they can be used in real-world scenarios with unexpected or moving
obstacles for applications like SLAM, path planning, collision avoidance, or localization.

Compared to previous approaches, our methods for updating two-dimensional Euclidean dis-
tance maps and Voronoi diagrams require about 60-70% less cell updates and computation time.
At the same time they provide equal or more accurate results without any drawbacks. Our
Voronoi approach is easy to implement and better handles non-convex obstacle compounds like
indoor areas. With modifications that limit the maximum propagated distances and reduce the
neighborhood size during propagation, we can also update three-dimensional distances maps at
a speed that is suitable for online applications.

For the three-dimensional configuration space of non-circular robots we also presented meth-
ods to incrementally update collision maps, distance maps, and Voronoi diagrams. They can
consider different obstacle representations, namely a robot moving on a plane with overhanging
obstacles, or vice versa, obstacles elevating from the ground, and a robot with overhanging parts.
The approaches are also applicable to 2D and full 3D obstacle representations and can exploit
symmetries in the robot shape.

For Voronoi-based path planning in dynamic environments, we proposed a method to avoid
abrupt changes in the planned paths for small variations of the start location. Using the configu-
ration space Voronoi diagrams, this method is also applicable to non-circular holonomic robots.
Especially in narrow passages, our method clearly outperforms the compared RRT and KPiece
approaches in terms of computation time and length of generated paths.

Our algorithms have been implemented and tested on real-world data sets. The achieved min-
imum frame rates for updates, collision checks, and path planning range between 5 and 20 fps
in 2D environments, and between 2 and 5 fps in 3D environments. If required, the frame rates
can be further increased by limiting the propagated distances. The source code of all our algo-
rithms is available online [Lau et al., 2012]. The 3D distance map is also available as part of the
OctoMap software package [Wurm and Hornung, 2012].

67

Part II

Kinodynamic Motion Planning

69

9 Introduction

Motion planning is a fundamental task for wheeled mobile robots. It consists of planning a
collision-free path from the position of the robot to a given goal location using a representation
of the environment, and computing motion commands that make the robot platform follow this
path. To determine such a path, existing motion planning systems often use a global path plan-
ner like A* or its descendants, e.g., [Thrun and Bücken, 1998; Koenig and Likhachev, 2002;
Likhachev et al., 2005], which find the shortest path on a 2D grid or graph that represents the
traversable space. These paths can be optimal in the sense that they represent the shortest path
from start to goal in the given discrete representation. However, they typically contain sharp
corners and can only be accurately followed by stopping and turning on the spot. This is not the
desired behavior, since it significantly increases the time of travel, which is an important cost
criterion as well.

In practice, the generation of actual motor commands is therefore often carried out by reactive
systems that run in the same control loop as the global path planner (see Figure 9.1a). Typically,
these systems use collision avoidance approaches like potential fields [Khatib, 1986], vector
field histograms [Borenstein and Koren, 1991] or nearness diagrams [Minguez and Montano,
2004]. They consider the vector to the next one or two waypoints in the planned path and the
distance to obstacles perceived by the sensors of the robot. The Dynamic Window Approach
by Fox et al. [1997] additionally considers the platform’s kinodynamic constraints to constrain
and smoothen velocity changes. All of these approaches have in common that they smooth the
planned path, which reduces the time required to reach the goal.

The downside of this solution is, that (a) optimality properties of the straight line path do not
apply to the resulting continuous trajectory and no time of travel optimality is achieved, (b) the
shape of the path, e.g., how much corners are cut, depends on global parameter settings rather
than optimization or search considering the environment, (c) velocities and accelerations are
not planned in advance but are subject to reactive behavior, which prevents accurate motion
prediction and makes the satisfaction of hard constraints difficult, and (d) no guarantees can be
made for the control stability or convergence behavior of the system. Robots like autonomous
cars, wheelchairs, autonomous transport vehicles, or other service platforms can be required
to carry heavy or sensitive payload, execute precise motion, or show predictive behavior, and
therefore demand solutions to the above-mentioned problems.

71

9 Introduction

Map/Localization Path Planner

Straight-line path

Ap

Aj

Odometry Collision Avoidance

Motor Commands

(a) Path planner with collision avoidance

Map/Localization Path Planner

Initial Path

Optimization

Final Trajectory

Odometry Error FB Controller

Motor Commands

(b) Proposed optimization-based approach

Figure 9.1: System architecture of traditional motion planning systems (a) and the proposed
approach (b). The dashed rectangles indicate independent control loops.

If the desired trajectory of a robot is specified as a function of time, an error-feedback controller
can steer the robot along this trajectory, as long as the trajectory obeys the hardware constraints
of the mobile platform and the controller is executed at a sufficient rate [Siciliano et al., 2009].
The key challenge is to find a suitable trajectory representation and a method to generate a
feasible trajectory for a given start and goal location and a representation of obstacles in the
environment.

This part of the thesis discusses different trajectory representations for mobile robots in dynamic
environments and proposes a novel path model. This model can specify smooth and extendable
trajectories with a smaller number of parameters compared to standard approaches. Based on
this path model, it further presents a method to generate and optimize robot trajectories that min-
imize the required time of travel. The proposed system is designed for robots with differential
or synchro drive, but could be adapted to other drive types as well.

As shown in Figure 9.1b, our system generates an initial path from sparse waypoints obtained
from a global path planner. This path is augmented with a velocity profile to specify the pose
of the robot over time. Executing this trajectory requires the robot to perform turns on the spot
as shown in Figure 9.2a, but the trajectory already complies with the kinodynamic constraints
of the robot hardware and is free of collisions with the environment. This curve is iteratively
optimized to yield a smooth and time-optimal trajectory as shown in Figure 9.2b. An error-
feedback controller is used to steer the robot along the trajectory. In this way, our approach

72

start

(a) Initial trajectory

start

(b) Optimized trajectory

Figure 9.2: Initial and optimized spline trajectories created for the first four waypoints of a
piecewise linear path (dashed). The optimization adjusts the location of waypoints
and length of their tangents (red lines). Trajectories are shown in blue on the distance
map, where darker values are closer to obstacles.

addresses all the problems mentioned above.

The remainder of this part is organized as follows. After a discussion of related work, Chap-
ter 11 discusses the suitability of different types of parametric curves for motion planning, and
Chapter 12 introduces a novel path model based on quintic Bézier splines. Chapter 13 proposes
a method to compute the maximum velocities for each point of a given robot path, which im-
plicitly defines the pose of the robot for every point in time. Chapter 14 describes the means
for generation, optimization and execution of such trajectories in a real-world motion planning
system. In Chapter 15 we evaluate our system in experiments on real robots, while Chapter 16
presents extensions and applications of our approach by other authors.

73

10 Related Work

The problem of time-optimal kinodynamic motion planning was first posed by Donald et al.

as to determine the motor commands that guide a robot from start to goal on a collision-free
path in minimal time while respecting kinodynamic constraints [1993]. Stachniss and Burgard
included discretized translational and rotational velocities into a five-dimensional A* search,
which returns a series of velocity commands to be issued in discrete time intervals [Stachniss
and Burgard, 2002]. Deviations from the trajectory are handled by frequently executing the
global path planner, which generate s a new trajectory for the current position.

Planned trajectories can be precisely tracked using an error-feedback controller, which runs in a
control loop that does not alter the trajectory. As input, a trajectory representation is desired that
continuously defines position, velocities, and accelerations over time. In the past, several types
of parametric curves have been used for this purpose. Some authors have used cubic Bézier
splines to this end [Mandel and Frese, 2007; Sahraei et al., 2007]. Howard and Kelly proposed
spline interpolation of velocity commands to generate such trajectories [2007]. Likhachev and
Ferguson perform a search on a discrete set of action primitives to connect discrete nodes of a
state lattice and thus obtain a smooth trajectory for an autonomous car [Likhachev and Ferguson,
2008]. So far, all of these approaches have in common that the generated curves represent con-
tinuous position changes, but are not continuous in curvature, which induces abrupt rotational
accelerations. Likhachev and Ferguson acknowledged this problem and alleviate it by limiting
the car’s velocity to 2 m/s at high curvatures.

Gulati and Kuipers emphasize the need for smooth and comfortable motion when transporting
people, and propose the use of cubic B-Splines [2008], as also done by Shiller and Gwo [1991].
While cubic B-splines can indeed be curvature continuous from start to end, it is not possible
to directly influence the curvature at the control points. Therefore it is not practically feasible
to attach or replace a segment of an existing trajectory with curvature continuity at an arbi-
trary point of the spline. This is required if the trajectory has to be extended or changed during
execution, for example in the presence of unmapped obstacles which are not accounted for in
these approaches [Gulati and Kuipers, 2008; Shiller and Gwo, 1991]. The same applies for the
clothoid-based approaches that require zero curvature at start and end for the construction of the
clothoid spline [Girbés et al., 2011; Wilde, 2009; Henrie and Wilde, 2012]. To overcome this

75

10 Related Work

problem, we propose to use quintic Bézier splines, which are curvature continuous and addition-
ally allow for attaching segments without curvature discontinuities. In this way, trajectories can
be extended or changed on the fly, e.g., in order to react to sudden changes.

In contrast to approaches that perform a search on a discretized action set, e.g., [Likhachev
and Ferguson, 2008; Macek et al., 2008; Ziegler et al., 2008], Connors and Elkaim propose
to perform optimization of parameterized trajectories [2007]. Their system is initialized with
straight-line segments that can pass through obstacles. Aiming for a smooth and collision-free
trajectory, the system iteratively moves control points without a guarantee to find a solution if
it exists. Our approach also employs optimization to obtain fast and smooth motion, but starts
from an initial straight-line path that is collision-free. Thus, it has any-time characteristics, i.e.,
it can be interrupted at any point in time to retrieve a collision-free solution.

Most of the existing approaches determine just the shape of the planned trajectory by search or
optimization, but rely on local heuristics to set the translational velocities [Sahraei et al., 2007;
Likhachev and Ferguson, 2008; Gulati and Kuipers, 2008; Ziegler et al., 2008; Connors and
Elkaim, 2007]. However, in order to determine truly time-optimal trajectories, the admissible
velocities governed by constraints on velocities and accelerations have to be considered. In the
work by Macek et al. [2008] and Stachniss and Burgard [2002], the velocity is part of the search,
but the systems are limited to a discretized action space. This also applies to more recent work in
sampling-based motion planning. Jaillet et al. for example present fast planning times with their
environment-guided RRT planner, but restrict their action set to only five different accelerations
and five different steering angles [Jaillet et al., 2011]. Many sampling-based motion planners
generate paths that would require additional post-processing for practical use, e.g., due to their
suboptimal path length [Plaku et al., 2010]. Karaman et al. proposed an anytime motion plan-
ning algorithm based on RRT* that refines generated paths while moving [2011]. However, it
remains unclear if their system can gracefully evade unexpected obstacles, and how their action
space is discretized.

Shiller and Gwo [1991] consider a curve that defines the shape of the trajectory, and generate a
corresponding velocity profile that considers constraints on the translational velocity and accel-
eration for an Ackermann drive. Our system is similar to this approach, but adds the capability
of curvature continuous replanning to update the trajectory while moving. During optimization,
it considers constraints on translational and rotational velocities and accelerations. Furthermore,
it regards the maximum allowed centripetal acceleration and a speed limit in the vicinity of ob-
stacles. In this way, it generates space-time trajectories that are time-optimal and traversable.

76

11 Basic Path Representations

An essential characteristic of any motion planning system is the representation used to model
robot paths. They can either be defined implicitly through the actions a robot takes, e.g., with
a list of motor commands, or directly as desired poses in world or map coordinates. To specify
robot poses as a function of time, parametric curves are appealing.

This chapter presents several parametric path representations based on different mathemati-
cal functions. Considering properties like smoothness, feasibility for given kinodynamic con-
straints, the number of model parameters, and the effort required to position them in space, we
discuss their applicability to motion planning.

In the context of this work, a robot path specifies a series of two-dimensional robot positions
in map or odometry coordinates without a relation to time. The robot orientation is implicitly
defined and given by the direction of the path tangent at any point on the path. We use the
term trajectory to refer to the robot pose as a function of time, which implicitly specifies the
corresponding velocities. Paths can be represented in different mathematical ways. The most
common path models use concatenations of linear path segments, circular arcs, clothoids, or
polynomial curves, which are discussed in the following.

11.1 Linear Path Segments and Circular Arcs

Piecewise linear paths are probably the simplest kind of path representation, since they only
consist of linear segments that connect a set of consecutive waypoints. The allowed angles be-
tween the segments can be restricted, e.g., to multiples of 45 or 90 degrees when resembling
movements on a classic A∗ grid search. Arbitrary polygonal paths are also common, e.g., when
pruning paths with restricted angles using sight-lines for given obstacles, or when using inter-
polating path planners like the Field D∗ algorithm by Ferguson and Stentz [2007].

While piecewise linear paths can efficiently be planned using grid search approaches, their direct
application in real-world systems is problematic: due to inertia and finite accelerations, a robot
would have to stop at each waypoint and turn on the spot to precisely follow the discontinuous
direction of the path. As discussed in Section 9, these paths are therefore often smoothed using

77

11 Basic Path Representations

0 2 4 6

0

2

4

x

y

0 2 4 6 8

−1

0

1

Arc length

C
u

rv
at

u
re

(a) Circular arcs

0 2 4 6

0

2

4

x

0 2 4 6 8

−1

0

1

Arc length

(b) Clothoids

0 2 4 6

0

2

4

x

0 2 4 6 8

−1

0

1

Arc length

(c) Cubic Bézier

0 2 4 6

0

2

4

x

0 2 4 6 8

−1

0

1

Arc length

(d) Quintic Bézier

Figure 11.1: Manually constructed paths using segments of different curve types. The top row
shows the path shapes in Cartesian space, and the bottom row the curvature of each
path as a function of arc length. Although all paths look smooth, their curvature
can be discontinuous (dashed). The crosses mark segment borders.

reactive collision avoidance systems like the Dynamic Window approach by Fox et al. [1997],
which deliberately deviate from the planned path.

Most wheeled mobile robots move on circular arcs as long as their motor commands remain
constant. This is not only the case for car-like vehicles or tricycles with one or more steered
wheels, but also for robots with differential or synchro drive controlled by translational and ro-
tational velocity commands. Given that motor commands are typically updated in discrete time
intervals, a straightforward path representation is the concatenation of circular arcs. This also in-
cludes straight lines, which can be seen as circular arcs with infinite curve radius. The resulting
paths are continuous and have a piecewise constant curvature. At the junction points of circular
arcs with different radii, however, a curvature discontinuity occurs as shown in Figure 11.1a.
Unless the vehicle stops at such points, these paths can also not be tracked precisely due to finite
accelerations and steering rates.

11.2 Clothoid Paths

A set of concatenated clothoids, also called “clothoid spline”, are similar to concatenated circu-
lar arcs, but with linear curvature changes instead of piecewise constant curvature.

78

11.2 Clothoid Paths

Mathematically, a clothoid path segment is a section of the two-dimensional parametric curve
known as “Cornu spiral” or “Euler’s spiral”. This curve is defined as a function of an internal
parameter u ∈ R, and given by

x(u) = α
√
π S
(

u√
π

)
= α
√
π

∫ u

0

sin 1
2
v2 dv (11.1)

y(u) = α
√
π C
(

u√
π

)
= α
√
π

∫ u

0

cos 1
2
v2 dv (11.2)

where α ∈ R scales the spiral, and thus also affects the arc length s(u) = u·|α| and the curvature
of the curve, c(u) = u/α. The Fresnel integrals S(u)∈R and C(u)∈R cannot be evaluated in
closed form, but approximated with high accuracy [Heald, 1985; 1986].

Given the linearity of arc length and curvature as functions of the internal parameter u, the
curvature expressed as a function of arc length is also linear (see Figure 11.1b) and given by
c(s) = s/(α · |α|). Thus, the curvature also changes linear with time if a vehicle drives with
constant translational velocity, e.g., due to a speed limit. This motivates the use of clothoids for
constructing highways [Galin et al., 2010] and for motion planning on car-like robots [Henrie
and Wilde, 2012; Walton and Meek, 2005].

This assumption, however, does typically not hold for service robots moving in buildings or
populated environments. For example, they often have to reduce their translational velocity
in curves due to limited rotational velocities or an upper bound on centrifugal accelerations to
ensure stability. Assume a robot that brakes and accelerates from an initial velocity v0 with
constant acceleration a on a clothoid, respectively. The curvature as a function of time t is
then given by c(t) =

(
1
2
at2 + v0t

)
/ (α · |α|). This implies quadratic rotational accelerations or

steering rates, which makes clothoids less appealing for these applications.

Due to the linear dependencies between the internal parameter, arc length, and the curvature
of clothoid paths, it is rather straightforward to compute the motor commands required to steer
a robot along such paths. However, the positioning of clothoid paths in Cartesian space, e.g.,
to connect a sequence of waypoints, is rather complicated. Walton and Meek presented an
approach to create a path of clothoid segments for given control points Pi, i ∈ 0, . . . , N that
implicitly specify the waypoints interpolated by the spline [Walton and Meek, 2005].

Such a path consists of N−1 parts that each connect a pair of waypoints as in Figure 11.2. The
waypoint W0 =P0 at the start and WN−1 =PN at the end are given by the corresponding control

79

11 Basic Path Representations

0 1 2 3 4

0

1

2

W1

J

P2

W2

C1

C2

X

Y

−4 −2 0 2 4

0

2

4

P0

W0

P1

W1

P2

W2

P3

W3

P4

P5

W4

X

Y

Figure 11.2: Clothoid spline for a control polygon P0 . . .P5 (left). The intermediate waypoints
W1 . . .W3 are obtained by bisecting the polygon segments. Each spline part is
constructed as in the magnified example (right): a pair of waypoints W1, W2 is
connected by two clothoids that start with zero curvature at W1 and W2, pointing
at the enclosed control point P2. They join at J with equal curvature, as indicated
by the circle.

points. The inner waypoints Wi with i = 1, . . . , N−2 are not specified directly, but obtained
by bisecting the straight line segments connecting the control points, Wi = 1

2
(Pi + Pi+1).

Each part of the spline is specified by a control point Pi and the adjacent waypoints Wi,Wi+1 as
shown in Figure 11.2 (right). A clothoid C1 is inserted at W1 with its tangent pointing towards
P2. It starts with zero curvature at the waypoint and bends towards the other waypoint W2.
Similarly, a second clothoid is inserted at W2 bending towards W1. The individual scaling
parameters α of both clothoids are determined such that the curves join at a point J with equal
curvature (see figure). In addition to this construction method, Walton and Meek propose to
extend one of the clothoids with a straight line if the length of the straight line segments between
the waypoints and P2 is substantially different. Additionally, they describe how to insert a
circular arc between the joining clothoids to reduce the maximum curvature in such a part.

To apply this approach to motion planning, one can for example generate a curvature continuous
clothoid path to smoothen a piecewise linear path obtained by A∗ planning. In practice, several
problems occur with this approach:

1. Since the curve cuts the corners of the initial plan, it can collide with obstacles in the
environment. Moving the control points can potentially restore the collision-freeness, but
a solution cannot be guaranteed.

2. This path model implies zero curvature at the implicitly defined waypoints between each
pair of control points. This prevents the connection of two waypoints with a single curve,

80

11.3 Polynomial Splines

if their tangents are not pointing towards a common curve point.

3. The curvature at the very start of the path has to be zero as well. Thus, this path model
does not support planning of a new path that joins an old one in a curve, e.g., to react to
an unexpected obstacle while the robot moves.

To our knowledge, no approach has been developed that is able to connect arbitrary waypoints
with clothoid segments that overcomes these limitations. Practical applications still make use
of this curve type, but always in scenarios that do not require generic placement of clothoids,
for example to model lane changes with autonomous cars between zero-curvature poses [Wilde,
2009], or as motion primitives in pre-computed action sets [Likhachev and Ferguson, 2008].

11.3 Polynomial Splines

Polynomial splines are parametric curves consisting of piecewise polynomial functions, usually
of the same degree d ∈ N. Cubic splines are widely used in computer graphics, e.g., to model
smooth shapes and surfaces. As discussed in Chapter 10, they have been applied to motion
planning as well. Each segment of these splines is a two-dimensional polynomial of degree
d = 3 defined over an internal parameter u,(

x

y

)
= a + bu+ cu2 + du3, u ∈ [0, 1] . (11.3)

The two-dimensional coefficients a,b,c,d ∈ R2 control the shape of the curve and are usually
not directly specified. Instead, one uses a set of control points that correspond for example to
waypoints and tangents, and thus have a more intuitive semantic meaning. Several types of
spline models exist that differ in how their control points are mapped to the actual coefficients
of the polynomials, and thus construct splines with different properties.

B-splines are linear combinations of a set of N control points Pi, i=0 . . . N−1 with N ≥ d+1.
The curve results form the variation of the weights in the linear combination, which are given by
basis functions that depend on the internal parameter u. B-splines are d−1-times continuously
differentiable, and thus have a continuous curvature for cubic or higher-order degrees, which is
appealing for use as a robot path model. However, a B-spline does not pass through its control
points, unless a control point is repeated at least d times at start and end.

81

11 Basic Path Representations

Bézier splines and Hermite splines are also polynomial splines that consist of one or more poly-
nomial curve segments. Both kinds are mathematically equivalent, since they only differ in the
representation of tangents, which can be converted from one to the other. For the mathematical
derivation of these curves, see Chapter 12.

In contrast to B-splines, Bézier curves pass through their waypoints, which is desirable for mo-
tion planning applications, since it simplifies the deformation of paths with respect to obstacles.
When using the common cubic form, however, the curvature at the junction points of the indi-
vidual segments is discontinuous as shown in Figure 11.1c, which is not the case for B-splines.
Higher-order splines have enough degrees of freedom to support curvature continuity (see Fig-
ure 11.1d), but require additional constraints to achieve it. Our path model presented in the
following chapter is based on quintic Bézier splines, and uses heuristics to control a part of the
parameters.

Compared to clothoid splines, polynomial splines are much easier to handle in the spatial do-
main, since they can directly be defined by waypoints and tangents. On the other hand, the
derivation of velocity commands for mobile robots following polynomial curves is mathemat-
ically more involved, since the relation between arc length s and internal parameter u is non-
linear. A common approach to this problem is arc length re-parametrization of the spline, which
requires numerical integration in discrete intervals as described in Section 12.4.

82

12 Path Model with Heuristics

This chapter presents a novel path model based on quintic Bézier splines. The curves generated
using our model are curvature continuous like cubic B-splines, and at the same time pass through
their waypoints like cubic Bézier curves. Additionally, the curvature at the start and end point
can be chosen freely, which facilitates the attachment of newly planned paths, e.g., to replan a
trajectory after the robot perceives an unexpected obstacle during motion. By using heuristics to
control a subset of the degrees of freedom, this representation models smooth paths with a small
number of parameters and is therefore especially suitable for kinodynamic motion planning.
It has first been published in [Lau et al., 2009], and has been used and extended in several
applications.

12.1 Quintic Bézier Curves

We denote a two-dimensional robot path by Q(u), which specifies the position (x, y)T of the
robot on the ground in world coordinates as a function of an internal parameter u. If Q(u) is
represented by a single quintic Bézier curve segment, it is parameterized by u ∈ [0, 1] from start
to end.

To define Q(u), we use the quintic Hermite form. Thus, the segment is directly specified by the
desired value of the polynomial and its first and second derivative at the start (u = 0) and end
(u = 1) of the segment. Using qku to denote the desired value of the k-th derivative of Q(u) at
u, the segment is then given by the linear combination

Q(u) =
∑2

k=0
hk0(u) · qk0 + hk1(u) · qk1 , (12.1)

where hk0(u) and hk1(u) are polynomials called Hermite basis functions. They are obtained by
solving Equation (12.1) for general quintic polynomials Q, hk0, hk1 and the conditions Q(k)(0) =

qk0, Q(k)(1) = qk1 in a system of linear equations for k ∈ {0, 1, 2}. Factoring out the qku, the

83

12 Path Model with Heuristics

basis functions for the quintic case compute as

h0
0 = −6u5 + 15u4 − 10u3 + 1

h1
0 = −3u5 + 8u4 − 6u3 + u

h2
0 = −1

2
u5 + 3

2
u4 − 3

2
u3 + 1

2
u2 (12.2)

h0
1 = 6u5 − 15u4 + 10u3

h1
1 = −3u5 + 7u4 − 4u3

h2
1 = 1

2
u5 − u4 + 1

2
u3

The basis functions and coefficients for cubic and septic polynomials can be determined in a
similar way, a more general derivation is given in [Sprunk et al., 2012]. Since qk0 and qk1 specify
the desired position of the curve segment Q(u), we denote them with the waypoint symbols W0

and W1, respectively. The first derivative at W0, W1 which is specified by q1
0, q1

1 represents
the tangents at the waypoints, and we denote them by T0 and T1, respectively. Similarly, the
desired second derivatives q2

0, q2
1 are denoted by A0 and A1 (accelerations).

12.2 Bézier Splines with Continuous Curvature

Similar to the construction of basic cubic splines, we concatenate multiple quintic Bézier spline
segments to a longer spline. Let Q(u) denote a robot path consisting of NQ concatenated seg-
ments Qi(ui), with i = 0, . . . , NQ−1. While a ui ∈ [0, 1] parameterizes the i-th segment from
its start to end, the variable u ∈ [0, NQ] is the internal parameter of the whole curve and results
from concatenating the ui. Thus, the trajectory can be denoted by Q(u) = Qbuc(u − buc) for
u < NQ, where buc is the truncation of u to the next smaller integer number. Q(NQ) is the end
point of the path, and given by the end of the last segment, Q(NQ) = QNQ−1(1).

To achieve a smooth concatenation of the segments, the waypoint W, tangent T and accelera-
tion A specifying the end of each segment with index i are set to be equal with the respective
parameters at the start of the succeeding segment i+1. Thus, we use the index i to denote Wi,
Ti, Ai as the parameters for the start of the i-th segment, which at the same time specify the
end of the segment i−1. Finally, WNQ

, TNQ
, ANQ

are the parameters for the end of the path
Q(u). Since Wi, Ti, and Ai specify the location as well as the first and second derivative of the
adjacent segments at the junction point, the path Q(u) and its derivatives are continuous at the

84

12.3 Heuristics for First and Second Derivatives

junction points. Since the segments are continuous as well due to their polynomial nature, the
whole path Q(u) is continuous up to the second derivative.

When following the path Q(u) with a robot, the curvature c(u) of Q(u) is also required to be
continuous to achieve smooth and precise robot motion. The curvature is the local radius of the
curve at u and can be formulated using the partial derivatives of Q(u) [Stewart, 2002],

c(u) =
Q′x(u) ·Q′′y(u)−Q′y(u) ·Q′′x(u)

‖Q′(u)‖3
. (12.3)

Since this function and all its terms, i.e., Q and its derivatives, are continuous, the curvature c(u)

of the path Q(u) is continuous as well.

The quintic Bézier splines presented up to this point are the extension of the commonly used
cubic Bézier splines to higher-degree polynomials. Unlike with the cubic variant, we can design
the quintic splines to have a continuous second derivative even at the junction points of the
segments, and thus have a continuous curvature. Additionally, the second derivative at the start
and end points can be freely specified. This allows us to plan paths with arbitrary start curvatures,
which is required for a robot to adapt or replan paths while driving in curves, e.g., to react to
unexpected obstacles.

There is also a downside to the additional degrees of freedom of the higher-order polynomials:
when searching the space of possible paths or optimizing the free parameters, each additional
parameter increases the dimensionality of the search space or optimization manifold. Addi-
tionally, we do not require the full expressivity of the quintic polynomials which can wiggle
substantially more than cubic ones. The remainder of this chapter introduces heuristics that we
use to control the wiggle, and at the same time, reduce the number of free parameters without
losing the ability to control the orientation and curvature at start and end of the spline.

12.3 Heuristics for First and Second Derivatives

The path model presented in this section aims to smoothly connect a set of given waypoints Wi.
Besides the waypoints, the first and second derivative of the curve specified by the tangent Ti

and Cartesian acceleration Ai at each waypoint also have a strong impact on the overall shape
of the curve.

85

12 Path Model with Heuristics

Wi−1

Wi

Wi+1

Ti

α
2

α
2

(a) Cubic and quintic Bézier splines

c

u
0

-2

-4

(b) Curvature of the splines

Figure 12.1: Heuristics for quintic Bézier splines. Two quintic spline segments (black) are joined
at Wi. A heuristic sets the tangent Ti (blue) orthogonal to the bisector of angle α
(dashed blue). The second derivative at Wi averages the second derivative of joining
cubic splines. The resulting curve looks similar to a cubic Bézier spline (red), but
is curvature continuous at the junction point as shown on the right.

We adapt a tangent heuristic that is commonly used for cubic Bézier curves [Loustau and Dillon,
1992]. The angle of the tangent at each inner waypoint Wi is set to be perpendicular to the
angular bisector of the line segments defined by Wi and its adjacent waypoints Wi−1, Wi+1 as
shown in Figure 12.1a. The magnitude ‖Ti‖ of the tangent is set to half the Euclidean distance
from Wi to the closest adjacent waypoint. Thus, Ti is given by

Ti = ei ·
1

2
min

{
‖Li−1‖, ‖Li‖

}
· 1

2

(
Li−1

‖Li−1‖
+

Li

‖Li‖

)
, (12.4)

where ei is a scalar elongation factor that we use to adjust the sharpness of curves during path
optimization, and Li = Wi+1−Wi the vector corresponding to the i-th segment in the linear
path specified by the waypoints.

In contrast to the quintic Bézier curves used by our model, the second derivative of cubic curves
is not a free parameter. However, cubic splines minimize the integral over the absolute value of
the second derivative of the curve [Plato, 2003]. In general, this corresponds to minimal changes
in curvature, which is appealing for our path model. This motivates the heuristic that we propose
for specifying the second derivatives Ai at the inner waypoints, which mimics the behavior of
cubic splines while providing curvature continuity.

Given the waypoints Wi−1, Wi+1 adjacent to Wi and the corresponding tangents, cubic Bézier
splines are completely defined for both adjacent segments. They join at Wi with discontinuous
curvature, and we use a weighted mean of their second derivatives at Wi as the desired second
derivative Ai of the quintic Bézier spline. The weights are proportional to the normalized length

86

12.4 Arc Length Parametrization

of the respective other segment, which prevents long segments from deforming short segments.
Thus, Ai is given by

Ai = Q′′i−1(1) = Q′′i (0) =
‖Li‖

‖Li−1‖+ ‖Li‖
C′′i−1(1) +

‖Li−1‖
‖Li−1‖+ ‖Li‖

C′′i (0) , (12.5)

where Ci(ui) is the cubic equivalent of the quintic spline Qi(ui). Using this heuristic, the shape
of the joined quintic Bézier spline is similar to the joined cubic Bézier spline, but is curvature
continuous at the junction point Wi as shown in Figure 12.1.

For the sake of clarity, we formulated the heuristics presented in this section for inner waypoints
only. However, their application at the start or end of a path is straight forward, since both are
based on weighted averages of two adjacent control points where one can simply be left out. In
the context of motion planning, however, the tangent orientation and the acceleration at the start
point can be predetermined from the current pose of the robot and the curvature of its current
path. Thus, the optimization of our motion planning system adjusts the position of the inner
waypoints W1, . . . ,WNQ−1 and the elongation factors ei for all waypoints Wi, i= 0, . . . , NQ,
and uses the heuristics to determine the tangent orientations and the second derivatives for all
but the start point.

12.4 Arc Length Parametrization

For application in motion planning systems, it can be desirable to express a path Q(u) as a
function of its own arc length s, for example, to specify a velocity profile based on s. This
requires a mapping from s to the internal spline parameter u, which is a non-linear relation
when using polynomial splines.

In general, the metric distance s along a path Q(u) from the start up to u is given by integrating
over the norm of the first derivative of Q,

s(u) =

∫ u

0

‖Q′(U)‖ dU . (12.6)

If this integral cannot be solved in closed form for a given curve type, one can use numerical
integration to compute the mapping. A straight forward solution is to evaluate the curve in small

87

12 Path Model with Heuristics

intervals of u and to sum up the Euclidean distance between these points. Given a set of uk that
follows u in small steps, the arc length can be approximated by

s(u) ≈
∑

0<uk≤u

‖Q(uk)−Q(uk−1)‖ . (12.7)

If higher accuracy is required, one can use more sophisticated approximations like Gaussian
quadrature as proposed by Guenter and Parent [1990].

When iterating over the uk, one can store the corresponding s(uk) in an array to allow for quick
lookups. By choosing the uk such that the resulting sk are equidistant, we can also lookup the
inverse mapping u(s). Thus, we can efficiently evaluate Q(s) = Q(u(s)).

88

13 Trajectories and Velocity Profiles

As discussed before, we use the term trajectory to refer to a two-dimensional function Q(t) that
defines the robot position (x, y)T for every point in time t. Similar to previous approaches like
the work by Howard and Kelly [2007] and Shiller and Gwo [1991], we represent the shape and
the planned translational velocity of the robot independently. Thus, we consider a path Q(u)

that specifies the shape of a trajectory as a function of an internal parameter u as described in
Chapter 12. A corresponding velocity profile v(s) encodes the desired translational velocity of
the robot for every point on the path, expressed as a function of the arc length s of the path.
Integrating the velocity profile creates a mapping from s to time,

t(s) =

∫ s

0

1

v(S)
dS . (13.1)

Like the arc length parametrization s(u) described in Section 12.4, the mapping t(s) can be eval-
uated numerically and inverted to obtain s(t). Chaining it with u(s) finally yields the trajectory
Q(t) = Q(u(s(t))).

In order to guarantee that Q(t) is a feasible trajectory that the robot can traverse without high
errors, it should obey the kinematic and dynamic limitations of the robotic hardware. Addition-
ally, the presence of obstacles or sensitive payload might pose further constraints on the allowed
velocities and accelerations. While potential kinematic constraints can be addressed by the path
Q(u) alone, the velocity profile has to specify velocities and accelerations that implement the
dynamic constraints for a given path.

This chapter presents an approach to compute a feasible velocity profile v(s) for a given path.
The velocity profile minimizes the travel time and at the same time satisfies a given set of dy-
namic constraints. We model v(s) as a piecewise linear function v(sk) with K closely spaced
support points sk, k = 0, . . . , K− 1. This implies piecewise constant translational accelera-
tions between the sk. Each vk = v(sk) is set to the maximum feasible velocity that obeys the
constraints and the iterative method described in the following.

89

13 Trajectories and Velocity Profiles

arc length s

∆s

sk sk+1

spline parameter u
uk uk+1

planned velocities
vk vk+1

path shape: spline Q(u)

Q(uk)
Q(uk+1)

Figure 13.1: Velocity profile v(s) for a path Q(u). Maximum admissible velocities vk are com-
puted for support points sk placed in equidistant arc length intervals ∆s along the
curve. The arc length parametrization of Q(u) computes values for uk that corre-
spond to the sk. In practice, the interval ∆s is very small with respect to the path
shape.

13.1 Direct Velocity Constraints

This section introduces a set of constraints that directly limit the admissible velocities. This
means that the velocities vk can be computed for each support sk, independently from the other
vj, j 6= k. Without loss of generality, we assume the robot to perform forward motion, i.e.,
vk≥0, which allows for a more compact notation.

Let vmax be the constant maximum translational velocity of the robot. Obviously, this is a first
constraint vk|v on all vk with k = 0, . . . , K−1, and given by

vk ≤ vk|v = vmax (13.2)

Robots equipped with synchro, differential, or holonomic drives can perform very sharp turns
or even turn on the spot. In most cases, the hardware or the payload imposes an upper bound on
the rotational velocity ω. Since ω and the translational velocity v are proportional for a given
curvature c, a bound on ω implies a constraint vk|ω on all vk according to

vk ≤ vk|ω =
ωmax
|ck|

, (13.3)

with ck being the curvature of the path at sk.

90

13.1 Direct Velocity Constraints

To ensure safe motion in the presence of obstacles, the sum of the braking distance sb and the
traveled distance sr during the reaction time tr of the robot has to be smaller than the distance
d to the closest obstacle. Given the maximum deceleration ab during braking, we can derive the
following inequality:

sr + sb ≤ d

⇔ v tr +
v2

2ab
≤ d

⇔ v2 + 2abtrv ≤ 2abd

Solving this inequality for the velocity v yields the corresponding constraint vk|obst on v, which
is given by

vk ≤ vk|obst = −ab · tr +
√
a2
b · t2r + 2abd , (13.4)

which only depends on the given parameters for the maximum deceleration ab, the reaction time
tr and the minimum obstacle distance d according to the map or the sensors of the robot. Note
that this is a conservative constraint – a more complex formulation could account for the robot’s
direction of motion with respect to the obstacle.

Finally, we limit the centripetal acceleration acent to prevent skidding of the vehicle in curves
and to protect sensitive payload. Since acent = v2 · c depends on the velocity and the curvature,
we can also express this as a constraint vk|cent on the vk, which is given by

vk ≤ vk|cent =

√
acent
|ck|

(13.5)

An example for the impact of the constraints on the velocity profiles is shown in Figure 13.2. The
colored curves plot the values of vk|ω, vk|obst, and vk|cent, while the constant speed limit vk|v=vmax

is marked on the vertical axis. Our optimization alters the path shape to alleviate the impact of
the constraints and allow faster movement, which reduces the time of travel. The slopes of the
final velocity profile, as visible at the start and end of the path as well as around sharp corners,
are governed by the accelerational constraints described in the following section.

91

13 Trajectories and Velocity Profiles

0

0.2

0.4

0.6

0.8

vmax

v [m/s]

0 2 4 6 8 10 s [m]

(a) Velocity profile of the initial path

0

0.2

0.4

0.6

0.8

vmax

v [m/s]

0 2 4 6 8 10 s [m]

rotational velocity
obstacle distance
centripetal acceleration
final profile

(b) Velocity profile of the optimized path

Figure 13.2: Velocity profiles of the trajectories in Figure 9.2. The profiles obey the direct velocity
constraints (colored curves), which limit the maximum admissible velocity especially
in sharp curves. Furthermore, they comply with accelerational constraints that
cause the smooth velocity changes at start and end, as well as before or after sharp
curves.

13.2 Accelerational Constraints

In addition to the isolated constraints described above, vk is also limited by the constraints on
vk−1 and vk+1 in connection with the maximum translational acceleration atrans and the maxi-
mum rotational acceleration arot of the robot.

In many cases, the start velocity v0 is fixed, e.g., with v0 = 0 if the trajectory is planned for the
initially standing robot, or with a given velocity if the trajectory is replanned during motion.
Let ∆t be the travel time between two supports sk−1 and sk. Assuming constant acceleration
between sk−1 and sk, the translational velocity vk is constrained by vk−1 according to

vk ≥ vk|amin,k-1 = vk−1 − atrans ·∆t (13.6)

vk ≤ vk|amax,k-1 = vk−1 + atrans ·∆t (13.7)

vk · ck ≥ ωk|amin,k-1 = ωk−1 − arot ·∆t = vk−1 · ck−1 − arot ·∆t (13.8)

vk · ck ≤ ωk|amax,k-1 = ωk−1 + arot ·∆t = vk−1 · ck−1 + arot ·∆t (13.9)

For an implementation, a formulation of the constraints depending on ∆s rather than ∆t is
desirable. See the work by Sprunk for the mathematical derivations [2008].

If the acceleration and deceleration constraints are not the same, different values have to be
used for atrans in these two phases. Only for synchro drive robots, atrans and arot are totally

92

13.3 Computing Compliant Profiles

independent. However, since the mass m of platform and payload governs these limits via
translational inertia and rotational moment of inertia, it is reasonable to assume atrans and arot

to be independent for other platforms as well.

The constraints presented above affect velocities in a “forward” direction, i.e., each velocity
vk depends on the previous one given by vk−1. In practice, these constraints have an effect
when accelerating after moving slow or after a curve. Similarly, there are “backwards” con-
straints, for example, braking before a curve or when stopping at the goal. Thus, each velocity vk
also depends on the succeeding one given by vk+1, which yields the limits vk|amin,k+1, vk|amax,k+1,
ωk|amin,k+1, and ωk|amin,k+1.

For a given vk, the translational and rotational acceleration impose an upper and a lower bound
on the feasible velocities of vk+1 (forward), and on vk−1 (backwards) as well. Depending on the
curvature of the path and the velocity assumed for vk, the ranges specified by these bounds can
be disjunct. In practice, this could be a vehicle that approaches a sharp curve with an excessive
velocity vk. If no valid velocity vk+1 can be found, the trajectory is infeasible, i.e., the vehicle
cannot execute it without substantial deviations, even if no skidding occurs.

However, as shown by Sprunk [2008], we can compute an upper bound vk|overlap as an addi-
tional constraint on each vk that guarantees the accelerational constraints to overlap. Thus, if
vk−1 ≤ vk−1|overlap and vk+1 ≤ vk+1|overlap, there exists at least one admissible value for vk.
This constraint can be computed in closed form, and is a function of the curvature ck and the
maximum accelerations of the platform [Sprunk, 2008].

13.3 Computing Compliant Profiles

Given a planned path Q(s), we seek the velocity profile v(s) that minimizes the time required
to traverse the resulting trajectory Q(t), and at the same time obeys all constraints described in
Section 13.1 and 13.2. As written before, we consider piecewise constant accelerations, which
causes v(s) to be a piecewise linear function. The corresponding values vk can be computed
efficiently in three iterations as described in the following.

In the first iteration, we compute the maximum value for each vk that satisfies the direct velocity
constraints and the overlap constraints according to

vk ← min
{
vk|v, vk|ω, vk|obst, vk|cent, vk|overlap

}
for k = 0, 1, . . . , K−1 (13.10)

93

13 Trajectories and Velocity Profiles

v

s

⇒
v

s

⇒
v

s

Figure 13.3: Velocity profile generation in three phases. Black points denote the admissible trans-
lational velocities vk, gray discs mark values from the previous phase. At first, the vk
are independently limited by direct velocity constraints (left). Secondly, the profile
is made consistent for increasing sk, obeying a given start velocity and acceleration
constraints (red arrows). Finally, we establish consistency for decreasing s obeying
the end velocity and deceleration constraints (blue arrows), which yields the final
profile (dashed).

As shown in Figure 13.3 (left), each vk is independent from the values of other supports.

The second iteration establishes forward consistency, i.e., every vk is feasible regarding the
accelerational constraints with respect to vk−1. Therefore, each vk is updated according to

vk ← min
{
vk, vk|amax,k-1,

1
ck
· ωk|amax,k-1

}
for k = 1, 2, . . . , K−1 (13.11)

Note that the order of the update is important, since the bounds on vk depend on the current
value of the previously computed vk−1. Figure 13.3 shows the example profile after the second
iteration for a given start velocity v0 = 0.

Finally, the third iteration additionally establishes backward consistency by updating the vk with
the remaining constraints in reversed order,

vk ← min
{
vk, vk|amax,k+1,

1
ck
· ωk|amax,k+1

}
for k = K−2, . . . , 1, 0 (13.12)

Since (a) all iterations can only reduce the translational velocity for a given support, (b) all
direct velocity constraints are formulated as upper bounds, and (c) the accelerational constraints
are satisfiable for velocities below vk|overlap, no iteration can invalidate the constraints satisfied in
previous iterations. Thus, after completing the third phase, the velocity profile realizes piecewise
constant accelerations and meets all described velocity and acceleration constraints as visualized
in Figure 13.3 (right). Thus, it is therefore traversable by the robot with high accuracy. With
monotonous curvature changes between the closely spaced support points, the constraints hold
not only at the support points, but in between as well. Note that if the velocity profile was
defined over time instead of distances, changing velocities would imply changes of the position
of support points on the path, which complicates the algorithm.

94

14 Trajectory Generation and Execution

This chapter presents techniques to create, optimize, and execute kinodynamic trajectories us-
ing the trajectory model described in the previous chapters. We use a global path planner to
plan waypoints forming a piecewise linear path. Given these waypoints, we create an initial
spline-based trajectory that closely approximates the piecewise linear path, and thus represents
a feasible yet inefficient trajectory. By optimizing the trajectory with respect to a user-defined
cost function, the initial plan is modified to reduce for example the time of travel or the energy
consumption.

After a final trajectory has been determined, it can be executed by a robot. We therefore present
the employed error-feedback controller which determines the control signals for the robotic
hardware. Furthermore, we discuss the importance of the ability to update planned paths while
moving and describe how this is done by our system.

14.1 Global Planning and Creation of Initial Trajectories

A number of global path planning algorithms like A* exist that plan on grids or graphs. They
generate for example piecewise linear paths given a start and goal location and a representa-
tion of the traversable space around the robot. Our trajectory generation approach requires
such a planner to obtain waypoints for parametric trajectories, but it is not specific to a certain
method.

For our experiments, we employ the value iteration planner by Thrun and Bücken [1998], which
operates on a high-resolution 2D grid map. To account for unmapped obstacles, the map is regu-
larly updated using the onboard sensors of the robot. The planner returns the shortest traversable
path from the position of the robot to a given goal location as a piecewise linear path, where each
segment connects two neighboring grid cells in the grid map. This path is collision-free, but con-
tains sharp discontinuous corners. It is reduced to sparse waypoints by iteratively replacing two
adjacent line segments with a direct straight line, if the resulting path is still free of collisions
and the resulting segment is shorter than a maximum length.

95

14 Trajectory Generation and Execution

Because of the sparsity of the waypoints after pruning, only the first four (including the start)
are usually in the robot’s field of view, cf. Figure 9.2. In order not to spend computational
time on motion planning for areas where unmapped obstacles cannot be perceived and correctly
accounted for, we only use the first four waypoints for trajectory generation.

Between each pair of consecutive waypoints, we create a quintic Bézier spline using the path
model described in Chapter 12. To approximate the piecewise linear path given by the way-
points, a small tangent elongation factor e= 0.5 is used, which causes sharp turns at the way-
points. The resulting spline path approximates the given piecewise linear path as shown in
Figure 9.2a. If the deviations of the spline are large enough to cause collisions with the envi-
ronment, we insert additional waypoints that bisect the affected line segments. According to
Equation (12.4), this shortens the tangents at the waypoints. Due to the convex hull property of
Bézier splines, this reduces the deviation of the spline from the piecewise linear path as well.

The result is an initial trajectory consisting of three or more continuously concatenated spline
segments. It can usually only be traversed with very low speed due to the sharp turns, but
it is collision-free and respects the kinodynamic constraints of the hardware platform. This
trajectory is refined during the optimization process to minimize the estimated time of travel,
which is typically achieved by performing wider turns as shown in Figure 9.2b.

14.2 Optimization

The optimization system takes an initial trajectory (generated as described above) and a distance-
transformed obstacle map as input. This map contains obstacles that are known a-priori, as well
as previously unmapped obstacles that are detected by the sensors of the robot. The optimization
changes the shape of the trajectory to reduce a given cost measure by adjusting a setP of tunable
parameters. In our experiments, we use the overall time of travel as cost measure, but other costs
like the estimated energy consumption could be considered as well. The parameter set consists
of the tangent elongation factor e for the first and each of the inner waypoints, as well as the
position of the inner waypoints relative to their closest obstacle. The location of the first and last
waypoint are usually fixed, since they correspond to the start and goal location.

As shown in Figure 13.2, the optimization alters the shape of the trajectory in a way that allevi-
ates the influence of the constraints on the admissible velocity: the optimized trajectory is faster
due to less sharp curves and larger distances from the wall (elongated tangents), and shorter as
well (moved waypoints).

96

14.2 Optimization

Algorithm 14.1 Iterative trajectory optimization

Q̂best ← initial trajectory
P ← parameters of initial trajectory
repeat

∆term ← 0
for all p ∈ P do

Q̂curr ← Q̂best
dp ← d0

p

repeat
Q̂mod ← MOD(Q̂curr, p← p+dp)

if cost(Q̂mod) < cost(Q̂best) then
∆term←max(∆term, cost(Q̂best)−cost(Q̂mod))
Q̂best ← Q̂mod
break

dp ←

{
1.2dp cost(Q̂mod) < cost(Q̂curr),

−0.5dp else.

∆cost ← |cost(Q̂mod)− cost(Q̂curr)|
Q̂curr ← Q̂mod

until ∆cost < εp OR time is up
until ∆term < εterm OR time is up
return Q̂best

The cost function, i.e., the total time of travel, depends on the trajectory shape together with
the velocity profile, and thus on several constraints and the obstacle distance map. Since this
function is not differentiable, we use an optimization scheme inspired by the derivative-free
RPROP algorithm by Riedmiller and Braun [1993].

The optimization algorithm, shown in Algorithm 14.1, refines a trajectory as follows: in every
iteration, as long as planning time is left and the optimization of any of the parameters in the last
iteration has brought an improvement bigger than a threshold εterm, the parameters are optimized
successively: for a chosen parameter p ∈ P a new spline is computed by adding an initial offset
dp :=d0

p to that parameter.

Now a velocity profile is generated for the modified spline, as described in Chapter 13. The
spline and the velocity profile together form the modified trajectory Q̂mod. From this, the cost,
i.e., the time needed to traverse the trajectory is determined. If the trajectory is not collision-free
according to the obstacle map, its cost is set to infinity.

If this cost is lower than the cost of the current best trajectory Q̂best, the changed parameter
p ← p+dp is kept, and the next parameter is optimized. Otherwise, the parameter p is further
optimized with adaptive step sizes as in RPROP: the offset dp is increased to 1.2dp if the cost

97

14 Trajectory Generation and Execution

is reduced, and inverted/reduced to −0.5dp if the cost is increased. The optimization for that
parameter terminates if a modified trajectory is better than the best one, if the resulting changes
in cost are smaller than a threshold εp, or if planning time is up.

The trajectories generated by our approach are limited to the area around the waypoints in the
piecewise linear path provided by the global path planner. To also consider trajectories that
follow a different route with respect to obstacles, the algorithm can be run in parallel with
different piecewise linear path inputs, e.g., the k-shortest paths that are topologically different
with respect to obstacles.

14.3 Error-feedback Controller

Given a planned trajectory Q̂(t) that defines the desired robot position for each time step t, we
use the dynamic feedback linearization controller developed by Oriolo et al. [2002] to steer the
robot along the trajectory.

The second derivative Q̂′′(t) of the trajectory is the desired vector of accelerations in Cartesian
coordinates, which the controller uses as feed-forward control signal. The deviation of the
robot’s actual position x(t) and Cartesian velocity x′(t) from the targeted position Q̂(t) and
velocity Q̂′(t) are used as error-feedback signals. In every time step t, the signal u aggregates
the feed-forward and the error signals according to

u(t) = Q̂′′(t) + κp

(
Q̂(t)− x(t)

)
+ κd

(
Q̂′(t)− x′(t)

)
, (14.1)

where we choose κp = 1.0 and κd = 0.7 as control gains. Considering the orientation of the
robot θ(t), the controller computes the state change of a dynamic compensator [Oriolo et al.,
2002], which is given by

ξ′(t) = ux(t) · cos θ(t) + uy(t) · sin θ(t) . (14.2)

By integrating ξ over time, the dynamic compensator computes the appropriate control signals
for the robotic hardware, i.e., the translational and rotational velocities v(t) and ω(t) according
to

v(t) = ξ(t) , ω =
uy(t) · cos θ(t)− ux(t) · sin θ(t)

ξ(t)
. (14.3)

98

14.4 Replanning Procedure

The dynamic compensator given by Equation (14.3) has a singularity for ξ = 0, which in
practice can result in erroneous rotations when the robot softly starts moving or stops at the
goal. In our experiments we found it sufficient to choose ξ = 0.01 when computing ω for
smaller values of ξ to overcome this problem.

To compensate for a control delay in the robotic hardware, one can use an equivalent look-ahead
in time by adding an offset to t when evaluating Q̂′′(t) in Equation (14.1).

The controller requires the position x of the robot to compute the error-feedback signal. With-
out external sensors, the position estimate can for example be obtained from a laser-based lo-
calization, or from the odometry of the robot. In many applications, the pose estimate of the
localization system might not be updated at a rate that is sufficient as motor control frequency.
Additionally, a jump in the pose estimate would cause a jump in the control signals. Therefore,
we found it more practical to use integrated odometry measurements to estimate the position.
To prevent the system from drifting due to the accumulation of odometry errors, we use the lo-
calization system to update the estimated displacement between pose estimates from odometry
and localization, and employ the replanning procedure described in the following to update the
planned trajectories accordingly.

14.4 Replanning Procedure

When a motion planning system is used on a real robot, several issues can occur that require the
robot to frequently replan its trajectory:

• If the odometry is used to obtain position estimates for the error-feedback controller, errors
in the odometry measurements accumulate.

• The pose estimate of the robot’s localization system can jump, especially when using
multi-modal distributions to estimate the position.

• Unmapped obstacles such as moving people can occur that were not expected when plan-
ning the trajectory.

• When planning only partial trajectories for a certain distance ahead of the robot, new
pieces have to be added frequently to complete the trajectory.

99

14 Trajectory Generation and Execution

goal

displaced localization

start

R J

R J

planned path for correct localization
replanned path for displaced localization
resulting complete path

R start of replanning

J join of new trajectory segment
mapped obstacle
obstacle perceived during localization error

Figure 14.1: Replanning and resulting trajectory (red) for a temporarily erroneous pose estimate
from the localization system. While the original planned path (green) considers the
mapped obstacle (black), the erroneous pose estimate requires replanning to con-
sider the unexpected obstacle (purple), and another replanning after the localization
system has recovered.

In all cases, it is desirable to update the planned trajectory while moving in order to avoid
delays. Furthermore, the modified or new trajectory pieces should join the current one smoothly
and without curvature discontinuities. Assume the system starts replanning a trajectory Q̂(t) at
time step tR. When allowing a planning time tplan, the robot will move along Q̂ until time step
tJ = tR + tplan. Thus, the updated trajectory should join the current one at Q̂(tJ). Figure 14.1
illustrates this procedure for an erroneous temporary displacement of the pose estimate of the
robot. When the erroneous pose estimate causes the planned trajectory (green path) to be invalid
due to the anticipated location of the obstacle (purple), the system starts the replanning procedure
at the first position marked with (R). It allocates a certain time for planning and chooses the
position (J) for the join of the new trajectory. This considers the erroneous pose estimate and
steers the robot towards the anticipated opening (red path). As soon as the pose estimate jumps
back, the system starts another replanning procedure (R) and attaches a new trajectory piece (J)
that steers the robot through the actual opening and to towards goal. All trajectory joins (J) are
smooth and with continuous curvature.

This replanning procedure takes also care of odometry drift, allows the robot to evade mov-
ing obstacles like walking people, and enables the robot to extend a planned trajectory while
moving.

100

15 Experiments

To test specific properties of our motion planning system, we conducted several experiments in
simulation. On a real robot, we evaluated the precision and predictability of generated motion
trajectories and their execution. Additionally, we evaluated the applicability of our system to
real-world tasks in different populated environments.

15.1 Evaluation in Simulation

To test the appropriateness of the proposed trajectory representation and the choice of optimiza-
tion parameters for online motion planning, we created seven artificially maps, two of which are
shown in Figure 15.1. Using the simulator of the CARMEN robot navigation system [Monte-
merlo et al., 2003], we let our system generate and optimize trajectories for given start and goal
locations these environments.

Just as RPROP, our optimization algorithm is able to deal with local minima to some extent.
However, an ill-natured optimization manifold could cause suboptimal results. To assess this
problem, we compared the trajectories optimized by our system with the best trajectories found
by exhaustive search in a finely discretized version of the parameter space. In all cases, the
parameters of the trajectory generated by our optimization approach fell into the discretization
bin of the optimal parameters determined by the exhaustive search.

Figure 15.2 visualizes optimization manifolds for two generated trajectories. The plots show an
exemplary subspace of the parameter set, namely the translation and tangent elongation of the
first inner waypoint. The parameter values of the initial path as well as the ones of the achieved
minimum when optimizing only these two parameters are marked in the figure. In the analysis,
all parameters showed smooth and convex optimization manifolds without local minima.

Figure 15.1c shows the achieved reduction of traveling times for two trajectories as a function of
executed optimization steps, which are exemplary for all tested scenarios. On average, the opti-
mization reduces the estimated traveling time by 31% compared to the initial trajectory. In most
cases, the optimization achieves the major improvements in the first 50 iterations, and 300 iter-
ations were sufficient to reach the optimum. We therefore choose the maximum planning time

101

15 Experiments

(a) Scene 1 (b) Scene 2

0 100 200 300 400 500 600

20

25

30

Iteration

T
ra
ve
li
n
g
ti
m
e
[s
]

Scene 1

Scene 2

(c) Optimization of travel times

Figure 15.1: Trajectory optimization on artificial scenes. The blue lines in (a) and (b) denote the
pruned piecewise linear paths connecting start (blue circle) and goal (yellow circle).
The optimization alters the path shape to reduce the travel time. The dashed
lines in (c) indicate the minimum found using exhaustive search in the discretized
parameter space.

-0.8 -0.4 0 0.4 0.8

Movement of p1 away from closest obstacle [m]

-0.8

-0.4

 0

 0.4

 0.8

O
rt

h
o

g
o

n
a

l
m

o
v
e

m
e

n
t

o
f

p
1

 [
m

]

 28

 30

 32

 34

 36

 38

Minimum

Initial path

-0.8 -0.4 0 0.4 0.8

Movement of p1 away from closest obstacle [m]

-0.8

-0.4

 0

 0.4

 0.8

O
rt

h
o

g
o

n
a

l
m

o
v
e

m
e

n
t

o
f

p
1

 [
m

]

 28

 30

 32

 34

 36

 38

 40

 42

 44

Minimum

Initial path

 0.5 2.5 4.5 6.5 8.5 10.5

Tangent elongation factor at p1

 0.5

 2.5

 4.5

 6.5

 8.5

 10.5

T
a

n
g

e
n

t
e

lo
n

g
a

ti
o

n
 f

a
c
to

r
a

t
p

2

 22

 24

 26

 28

 30

 32

 34

 36

Initial path

Minimum

(a) Scene 1

 0.5 2.5 4.5 6.5 8.5 10.5

Tangent elongation factor at p1

 0.5

 2.5

 4.5

 6.5

 8.5

 10.5

T
a

n
g

e
n

t
e

lo
n

g
a

ti
o

n
 f

a
c
to

r
a

t
p

2

 24

 26

 28

 30

 32

 34

 36

 38

Initial path

Minimum

(b) Scene 2

Figure 15.2: Optimization manifolds for the parameters of the first inner waypoint. The color
and contour lines represent the traveling time as a function of the parameters, with
a contour interval of 0.5 s. White areas denote configurations that lead to colliding
trajectories.

102

15.2 Motion Planning in Obstacle Courses

-40 -30 -20 -10 0 10 20 30 40

Tangent rotation at p1 [deg]

-40

-30

-20

-10

 0

 10

 20

 30

 40

T
a

n
g

e
n

t
ro

ta
ti
o

n
 a

t
p

2
 [

d
e

g
]

 21

 22

 23

 24

 25

 26

 27

 28

Minimum

Heuristic

(a) Scene 1

-40 -30 -20 -10 0 10 20 30 40

Tangent rotation at p1 [deg]

-40

-30

-20

-10

 0

 10

 20

 30

 40

T
a

n
g

e
n

t
ro

ta
ti
o

n
 a

t
p

2
 [

d
e

g
]

 24

 26

 28

 30

 32

 34

 36

Minimum

Heuristic

(b) Scene 2

Figure 15.3: Traveling times achieved using our heuristic compared to optimized values for the
tangent orientations at the first inner waypoints. See the caption of Figure 15.2.

tplan = 0.4 s for our experiments, which roughly corresponds to 400 iterations on the employed
Intel Core 2 Duo at 1.6 GHz.

By performing an exhaustive search in the discretized parameter spaces of the optimization
problems, we obtained reference trajectories with optimal traveling times, up to the discretiza-
tion. The traveling times of the optimized trajectories were 0−1% shorter than the respective
reference times, which can be attributed to the advantage of continuous optimization over search
even in a finely discretized space.

As discussed in Section 12.3, we use a heuristic to determine the tangent orientations at inner
waypoints. This way, our path model based on quintic Bézier splines has even fewer free pa-
rameters than basic cubic splines. Optimizing the tangent orientations could further improve the
traveling times at the expense of additional computation time. By using exhaustive search in the
full parameter space including tangent orientations, we determined the resulting traveling times
for our simulated test scenarios. As shown in Figure 15.3, the reduction of traveling time by
optimizing tangent rotations is rather small, since the values chosen by our heuristic are already
close to the optimum.

15.2 Motion Planning in Obstacle Courses

This experiment tests the precision and predictiveness of our motion planning system. We use a
Pioneer robot equipped with a subnotebook (Intel Core 2 Duo, 1.6 GHz) for all computations and
a laser range finder for localization and obstacle detection. The robot drives with a velocity limit

103

15 Experiments

(a) Pioneer robot (b) Obstacle course “clover” (c) Obstacle course “zigzag”

Figure 15.4: Trajectory of a Pioneer robot overlaid on a grid map for two obstacle courses. The
crosses mark intermediate goal locations. The robot drove 10 rounds in the clover
course, and 5 rounds in the zigzag course. The frames cover an area of 14m x 10m.

of 0.5 m/s. The error-feedback controller, the laser scanner and the odometry are all running at
35 Hz. We have set up two obstacle courses and marked a sequence of goals for the global path
planner in the map. The path planner switches to the next goal whenever the robot is closer than
1 m.

The trajectories of the robot are shown in Figure 15.4. While the goal locations for the global
path planner are fixed, replanning is executed periodically and the locations used for trajectory
planning are not spatially aligned. Thus, the positions of pruned waypoints, which are input to
the trajectory planner, vary between the rounds. Nevertheless, the trajectories from the different
rounds are very similar, which indicates that a) the parameter set for the optimization, which con-
tains tangent elongation and movement of waypoints, is appropriate to find a global optimum,
and b) the optimization generates reproducible trajectories that are not critically dependent on
the input waypoints.

The average positional tracking error, i.e., how far the robot deviates from the planned path
according to odometry, is below 2 cm for both obstacle courses, and the average deviation in
velocity is below 2 cm/s, as shown in Figure 15.5 (left). Both errors are a little higher in the
zigzag course which has tighter curves than the clover course.

The planned trajectories can be used to predict the position of the robot over time in global
coordinates. The corresponding error is shown in Figure 15.5 (right) as a function of a lookahead
time added to tplan. Thus, a lookahead of 0 s corresponds to predictions over tplan, which are
needed for replanning.

Without replanning, the prediction error would reduce to the tracking error plus the accumulated
error in the odometry readings. With replanning, as in the experiments, the predicting trajectory

104

15.3 Navigation in Populated Environments

0

0.01

0.02

0.03

0.04

position velocity

m
ea

n
 t

ra
ck

in
g

er
ro

r
[m

],
 [
m

/s
] clover

zigzag

0

0.05

0.1

0.15

0.2

0 2 4 6 8 10

m
ea

n
 p

re
d
ic

ti
o
n
 e

rr
or

 [
m

]

lookahead [s]

clover
zigzag

Figure 15.5: Experimental results for the obstacle courses shown in Figure 15.4. Left: Average
Euclidean distance between planned and actual values of position and translational
velocity. The error bars show the standard deviation. Right: Average Euclidean
distance between predicted and actual position of the robot, as a function of the
temporal lookahead added to the planning delay tplan. In the dashed parts, less
than 20 values contributed to the mean.

is seamlessly replaced after one second at most. Still, the mean prediction error is small, e.g.,
only around 15 cm for a lookahead of 6 s. This shows that replanning does not cause abrupt
changes in the planned trajectory. Human observers can actually not recognize when switching
of replanned trajectories takes place. Naturally, changes of the global goal location falsify these
values and are filtered out, which causes a low number of values contributing to the averages for
large lookahead times.

15.3 Navigation in Populated Environments

To evaluate the performance of our motion planning system in an application with dynamic
obstacles, we tested the system on our tour-guide robot “Albert” during a three-day trade show
in Freiburg. Motion planning was executed on the same subnotebook, with the odometry and
the error-feedback controller running at 10 Hz. An example trajectory is shown in Figure 15.6.
One person was purposely blocking the path of the robot for a longer period (1). Normally, the
motion planning system plans smooth trajectories around unmapped obstacles that are seen in
advance (2), but can also execute sharp turns if required, i.e., if an obstacle suddenly occurs in
front of the robot (3). The performance in presence of a person who deliberately blocks the path
of the robot could be improved by adding an additional strategic planner to avoid oscillation of
plans generated by the global path planner when the person moves from one side to the other.

105

15 Experiments

(1)

(2)(3)

(3)

Figure 15.6: Sample trajectory of our tour-guide robot “Albert” at a trade show. The frame
covers an area of 33m x 15m.

(a) Tour guide robot “INDIGO”

g

g

g
g g

g

g

(b) Overlay of all trajectories driven in the Tholos foyer

Figure 15.7: Field trials of our motion planning system in the Hellenic Cosmos museum, Athens

Our system was also used on the INDIGO robot shown in Figure 15.7a, a personality and dialog
enabled robot that was designed to work as a museum tour guide. The field trials were run in
three different spaces in the Hellenic Cosmos museum in Athens. As shown in Figure 15.7b,
the robot navigated between predefined goal locations (crosses) to show the visitors a number
of exhibits (encircled crosses). In the 28 days of operation, the INDIGO robot travelled a total
distance of 2859 m in 25 hours, see Table 15.1. Figure 15.7b shows an overlay of all trajectories
driven in the Tholos foyer. As long as the path of the robot was not abruptly blocked by a person,
it executed smooth trajectories among the moving people.

106

15.3 Navigation in Populated Environments

Table 15.1: Field trials of the tour guide robot “INDIGO” at the Hellenic Cosmos, Athens

Dates Environment Days Travelled distance [m] Travelled time [h]

2009 July 1-10 Tholos foyer 7 947.8 5.0
2009 Sept 21-25 Ismene hall 5 887.0 5.0
2009 Dec 1-22 Niobe room 16 1024.1 15.4

Total 28 2858.9 25.4

107

16 Extensions and Applications

Besides from the presented experiments, the proposed motion planning system or parts of it have
been used in different application scenarios. Lee et al. for example proposed an online complete
coverage planning system for applications like lawn mowing, floor cleaning, demining or har-
vesting [Lee et al., 2011]. It uses our path representation based on quintic Bézier splines (see
Chapter 12), the constraint formulations for direct and accelerational constraints (Chapter 13),
as well as the trajectory tracking mechanism (Section 14.3).

This chapter presents more applications of our motion planning system system and its path
model proposed by Sprunk et al., namely an extension for omni-directional platforms [2011]

and a method to teach trajectories to a robot by demonstration [2012].

16.1 Trajectory Generation for Omni-Directional Robots

Robotic vehicles with an omni-directional drive like the KUKA omniRob shown in Figure 16.1a
are appealing for industrial applications like mobile manipulators, fork lifts, or transportation
vehicles [Sprunk et al., 2011]. While differential or synchro drives allow for moving in any
given direction by performing an appropriate turn on the spot, omni-directional platforms can
rotate and translate independently and simultaneously. This additional degree of freedom greatly
enlarges the space of possible trajectories: the path of a differential drive vehicle can be modeled
by a two-dimensional curve that specifies its position over time. In this case, the orientation is
implicitly defined by the tangent of the curve. In contrast, paths of an omni-directional platform
require three-dimensional splines.

However, a straightforward extension of our path model to 3D would not be sufficient. A non-
circular robot shape can for example require straight motion without rotation in narrow spaces
as shown in Figure 16.1b, which can not directly be modeled with interpolating splines that con-
tinuously rotate the robot. Therefore, Sprunk et al. proposed a novel extension to our path model
that introduces additional rotation control points [2011]. This enables the system to confine the
rotation to the waypoints for narrow passages or initial paths as shown in Figure 16.1b, but also
to gradually distribute the rotation on the trajectory segments (Figure 16.1c). Technically, this is

109

16 Extensions and Applications

(a) KUKA omniRob (b) Initial path (slow) (c) Optimized for time of travel (fast)

Figure 16.1: Omni-directional robots like the omniRob can translate and rotate independently
and simultaneously. The initial path only executes turns on the spot while the
optimized one exploits this capability to reduce the time of travel.

achieved by subdividing the splines at the rotation control points and inserting special segments
with constant orientation.

The energy consumption of omni-directional robots can depend on the direction of travel, e.g.,
forward motion can be more efficient due to the wheel construction. By exchanging the cost
function, the system can optimize the trajectories for different criteria, e.g., travel time or energy
efficiency. This greatly affects if the resulting trajectories let the platform rotate while moving
or prefer forward motion.

The holonomic motion planning system was successfully evaluated in several industrial sce-
narios [Sprunk et al., 2011] and demonstrated at the AUTOMATICA 2010 and IROS 2011
conferences.

16.2 Teaching Paths to Mobile Robots

In industrial applications, it is often desired to predefine robot trajectories instead of relying on
an autonomous navigation system, e.g., to maximize predictability in work spaces shared with
humans. To make such a system programmable by non-experts without changing the environ-
ment as required with physical path markers, programming by demonstration is an appealing
approach. At the same time, the robot should still be able to react online to unmapped obstacles
and optimize the learned trajectory.

Sprunk et al. proposed a system for trajectory teaching by demonstration with a joystick based
on non-linear least-squares fitting. They discuss a trade-off concerning the number of parameters

110

16.2 Teaching Paths to Mobile Robots

Curve apices estimation

Control point selection via BIC

Control point adjustment

Non-linear fit, relaxed u

Non-linear fit, fixed u

Non-linear fit, fixed u

(a) System overview

0 5 10 15 20
−2

0

2

4

l0 l3 l6 l9 l12 l15 l18 l21 l24

arc length [m]

cu
rv
a
tu
re

[1
/
m
]

(b) Estimation of curve apices

Figure 16.2: Multi-stage path fitting and optimization method by Sprunk et al. using our path
model. It places control points in curve apices identified by the curvature of a
fitted septic spline. In multiple steps, the control points are optimized to reduce the
residual fitting error.

in the model of the trajectory shape: a high number allows for high accuracies when fitting the
trajectory to the teaching data but at the same time strongly increases the required computational
resources during path optimization [Sprunk et al., 2012].

To achieve high accuracies with a smaller number of parameters than standard approaches,
Sprunk et al. use our path model presented in Chapter 12 in combination with a novel multi-
stage fitting and optimization method shown in Figure 16.2a. In a first step, the system estimates
curve apices using a linear least-squares fit of generic septic splines as shown in Figure 16.2b.
By evaluating the Bayesian Information Criterion (BIC) in combination with a non-linear least-
squares fit of our path model, a subset of these points is selected. The control point adjustment
optimizes the locations of control points on the fitted trajectory, i.e., where they are anchored to
the data points. In a final step, the trajectory is fitted to the data with relaxed correspondences
of these anchors.

The fitting procedure called in all steps optimizes the shape of the curve by adjusting the position
and tangent elongation of each control point. Thus, it uses the same parameters as the motion
planning approach presented in this thesis. The optimization is a non-linear least-squares opti-
mization that can be provided with a good initial guess from a linear least-squares fit of a basic
quintic Bézier spline.

Figure 16.2b shows fitting results for an example trajectory using our path model and basic
cubic splines in comparison. The cubic splines require about twice the number of parameters to
achieve similar residual fitting errors. For a more thorough analysis on many trajectories, please
refer to [Sprunk et al., 2012].

111

16 Extensions and Applications

1m

(a) Non-linear spline fit using our path model
8 segments, 23 parameters, e = 0.007m

1m

(b) Basic cubic spline fitting
13 segments, 50 parameters, e = 0.008m

Figure 16.3: Fitting result using our path model (a) compared to basic cubic spline fitting with
twice as many parameters (b). Despite the substantially reduced number of param-
eters, the residual error e achieved by Sprunk et al. is slightly lower compared to
the standard approach. Blue crosses denote the teaching data, black crosses and
green circles the control points, and the red line the fitted trajectory.

112

17 Conclusion

This part of the thesis presented an approach to kinodynamic motion planning for wheeled
mobile robots. It is suitable for platforms that can turn on the spot, e.g., service robots with
differential, synchro, or omnidirectional drives.

Our approach is based on a novel path model that uses quintic Bézier splines to represent the
desired path of the robot in a parametric fashion. In contrast to cubic spline methods, our model
generates and optimizes paths that are curvature continuous from start to end, while the start cur-
vature is a free parameter. This facilitates the modification of existing trajectories by smoothly
attaching new segments somewhere on the path, for example to avoid unexpected obstacles or
extend the trajectory currently followed by the robot. This replanning aspect also allows for
graceful recovery in the case of localization discontinuities, and accounts for the accumulation
of odometry errors. Using our model, the shape of a path is controlled by the position of way-
points and tangent lengths, i.e., the magnitude of the first derivative at the waypoints. The other
degrees of freedom, namely the tangent orientations and the second derivatives, are controlled
by heuristics that mimic the behavior of cubic splines. Thus, our path model combines the
potential of higher-order splines with the advantage of a small number of parameters during
optimization.

To represent the position and velocity of the robot as a function of time, our path representation
is augmented with velocity profiles that specify the velocity of the robot as a function of arc
length. We proposed a three-step method to efficiently compute velocity profiles that minimize
the traveling time for a given path while satisfying interdependent platform constraints on ve-
locities and accelerations. The resulting trajectories can be executed with high accuracy using
an error-feedback controller in a small control loop.

The input to our algorithm is a set of waypoints that represent a valid piecewise linear path.
These waypoints can for example be generated using a map of the environment and a global
path planner like A* or Rapidly-exploring Random Trees. From these waypoints, we instantly
create an initial parametric trajectory that closely approximates the piecewise linear path. By
altering the path shape in an optimization process, our method minimizes the required time to
reach the goal, mainly by widening curves and increasing the robot’s distance to obstacles.

113

17 Conclusion

Since the unoptimized initial trajectory is already traversable, our optimization method is able
to provide a current best solution at any time. Additionally, this maintains the completeness
property of the employed waypoint planner. Together with the possibility of replanning existing
trajectories while maintaining curvature continuity for the whole path, these features make up
the novelty of our method with respect to previous approaches.

We implemented and tested our approach on real robots in complex and populated environ-
ments. Our experiments show that our system plans motion trajectories that can be executed
precisely, i.e., with very low deviations from planned positions and velocities. Additionally, it
can effectively replan if the robot encounters unexpected obstacles, for example in populated
environments. Finally, as the movements are planned ahead in time, the robot can predict its
own motion with high precision. Extensions and applications of our approach by other authors
comprise smooth coverage planning, trajectory generation for omni-directional platforms, and
teaching trajectories to a robot by demonstration.

114

Part III

Laser-Based Tracking

of People in Groups

115

18 Introduction and Related Work

The ability of robots to keep track of people in their surrounding using on-board sensors is fun-
damental for a wide range of robotic applications, such as personal and service robots, intelligent
cars, crowd control, or surveillance. Most traditional approaches to people tracking start with
the automatic detection of people in sensor data, for example, by classifying clusters of laser
range readings as belonging to a person or not. The actual tracking routine then establishes a
correspondence between observations of the same person from different time steps. The obser-
vations are usually grouped and stored as individual person tracks, together with a track state
that estimates the current position and velocity of each person.

Especially in crowded areas, determining the correct data associations is often a key problem
in people tracking: people are social beings and tend to form groups, interact with each other,
merge to larger groups, or separate from groups. Tracking individual people in these formation
processes can be hard due to the high chance of occlusion and the large extent of data associa-
tion ambiguity. This causes the space of possible associations to become huge and the number
of possible assignment histories quickly become intractable. For many applications, however,
knowledge about groups can be sufficient as the task does not require to know the state of each
individual. In such situations, tracking groups that consist of multiple people is more efficient.
Additionally, it reveals semantic information about activities and social relations of people.

This part of the thesis focuses on group tracking in populated environments with the goal to track
a large number of people in real-time. The approach attempts to maintain the state of groups
of people over time, considering possible splits and merges as shown in Figure 18.1. For our
experiments we use a mobile robot equipped with a laser range finder, but our method should be
applicable to data from other sensors as well.

We propose a tracking system for groups of people using an extended Multi-Hypothesis Track-
ing (MHT) approach to hypothesize over both, the group formation process (models) and the
association of observations to tracks (assignments). Each model, defined to be a particular par-
titioning of tracks into groups, creates a new tree branch with its own assignment problem. As
a further contribution we propose a group representation that includes the shape of the group,
and we show how this representation is updated in each step of the tracking cycle. This ex-
tends previous approaches to group tracking where groups are assumed to have Gaussian shapes
only [Gennari and Hager, 2004; Mucientes and Burgard, 2006]. The group tracker proposed

117

18 Introduction and Related Work

Robot Robot

Group {1} Group {1-1}

Group {1-2}

Figure 18.1: Tracking groups of people with a mobile robot. Groups are shown by their position
(blue), velocity (black), the associated laser points (green), and a contour for visu-
alization. In the two frames, a group of four people splits up into two groups with
two people each.

here also estimates the number of people in groups and employs a labeling system to represent
the history of group interactions.

Finally, we use the psychologically motivated proxemics theory introduced by Hall [1974] for
the definition of a group. The theory relates social relation and body spacing during social
interaction and proposes thresholds that separate the intimate, personal, social, and public space
around people.

In most of the related work on laser-based people tracking, tracks correspond to individual peo-
ple [Kluge et al., 2001; Fod et al., 2002; Schulz et al., 2003; Cui et al., 2005; Zajdel et al., 2005].
Taylor and Kleeman [2004] and Arras et al. [2008] represent tracks by the state of legs which
are fused to people tracks in a later stage. Khan et al. [2006] proposed an MCMC-based tracker
that is able to deal with non-unique assignments, i.e., measurements that originate from multiple
tracks, and multiple measurements that originate from the same track. Actual tracking of groups
using laser range data was, to our knowledge, first addressed by Mucientes and Burgard [2006].
Most research in group tracking was carried out in the vision community [McKenna et al., 2000;
Gennari and Hager, 2004; Bose et al., 2007]. Gennari and Hager as well as Bose et al. both ad-
dress the problem of target fragmentation (splits) and grouping (merges), but do not integrate
data association decisions over time. This, however, is a key property of the Multi-Hypothesis
Tracking (MHT) approach, which was initially presented by Reid [1979] and later extended by
Cox and Hingorani [1996]. The MHT framework belongs to the most general data association
techniques as it produces joint compatible assignments, integrates them over time, and is able to
deal with track creation, matching, occlusion, and deletion.

The previous approaches closest to this work are by Mucientes and Burgard [2006] and Joo

118

and Chellappa [2007]. Both address the problem of group tracking using an MHT approach.
Mucientes and Burgard employ two separate MHTs, one for the regular association problem
between observations and tracks, and a second stage MHT that hypothesizes over group merges.
In their approach, however, people tracks are not replaced by group tracks, hence there is no gain
in efficiency. Thus, the main benefit is the additional semantic information about the formation
of groups.

Joo and Chellappa [2007] present a vision-based group tracker using a single MHT to create
hypotheses of group splits and merges and observation-to-track assignments. They develop a
variant of Murty’s algorithm [Murty, 1968] that generates the k-best non-unique assignments
which enables them to make multiple assignments between observations and tracks, thereby
describing target splits and merges. However, the method only produces an approximation of
the optimal k-best solutions since the posterior hypothesis probabilities depend on the number
of splits, which, at the time when the k-best assignments are being generated, is unknown. In
our approach, the split, merge and continuation events are given by the model before computing
the assignment probabilities, and therefore, our k-best solutions are optimal.

This thesis part is structured as follows: after a review of related work, Chapter 19 introduces our
definition of groups, describes the detection of groups in laser range data, and introduces group
tracks. Chapter 20 describes the cycle of our Kalman filter-based group tracker, the generation
of group formation models, and how their probabilities are computed. Chapter 21 describes the
experimental results, before Chapter 22 concludes this part.

119

19 Group Detection and Group Tracks

This chapter defines the concept of a group, describes the detection of groups in range data,
specifies the representation and initialization of group tracks, and derives the probabilities of
group-to-observation assignments and group-to-group assignments.

What makes a collection of people a group is a highly complex question in general, which in-
volves social relations among subjects that are difficult to measure. A concept related to this
question is the proxemics theory introduced by Hall [1974]. He found from a series of psy-
chological experiments that social relations among people are reliably correlated with physical
distance during interaction. This finding allows us to infer group affiliations by means of body
spacing information available in the range data. Concretely, the clustering threshold dP used
in the following corresponds to a threshold for inter-person distances in the context of group
detection.

19.1 Group Detection in Range Data

Detecting people in range data has been approached with motion and shape features [Kluge
et al., 2001; Fod et al., 2002; Schulz et al., 2003; Cui et al., 2005; Zajdel et al., 2005; Mu-
cientes and Burgard, 2006] as well as with a learned classifier using boosted features [Arras
et al., 2007]. However, these systems were designed (or trained) to extract single people. In
the case of densely populated environments, groups of people typically produce large blobs in
which individuals are hard to recognize. We therefore pursue the approach of background sub-
traction and clustering. Given a previously learned model such as a map of the environment,
the background is subtracted from the scans and the remaining points are passed to the cluster-
ing algorithm. This approach is also able to detect standing people as opposed to the work of
Mucientes and Burgard [2006] which relies on motion features. Note that the detection method
is not critical to the system and could also be replaced by map-free approaches that employ
appearance information, motion features, or other filtering techniques.

Concretely, a laser scanner generates measurements consisting of bearing and range values.
The measurements are transformed into Cartesian coordinates zl = (xl, yl)

T and grouped using
single linkage clustering with a distance threshold dP [Hartigan, 1975]. The outcome is a set of

121

19 Group Detection and Group Tracks

zl

Z0 Z1

Z2

dhs dhs

dhs

dP dP

dhs

Figure 19.1: Illustration of the detection step. Left: One group is detected since all shortest
links between the measured points zl are smaller than the single-linkage clustering
threshold dP . Right: Two groups are found since the shortest link between their
points exceeds dP . To estimate the group sizes, we determine the number of human-
sized blobs in a group by applying the same clustering procedure with threshold dhs.

clusters Zi making up the current observation set Z(k) = {Zi | i = 1, . . . , NZ}. Each cluster Zi
is a complete set of measurements zl that fulfills the cluster condition, i.e., two clusters are joined
if the distance between their closest points is smaller than dP . This grouping is equivalent to the
formulation by Gennari and Hager [2004], which considers the connected components of a graph
that contains all measurements zl as vertices and an edge between each pair of measurements
whose distance is smaller than dP . Depending on the cluster distance dP , the clustering can
attempt to group range readings that correspond to single legs, individual people, or groups of
people.

Even though tracking of individuals in groups is often not feasible due to frequent occlusions, the
number of detected individuals in a group correlates with the true number of people in a group.
As an observation of the group size, we therefore take the number of human-sized clusters
nhs(Zi) found in an observation cluster Zi. We determine this by counting the clusters after
reapplying single linkage clustering to the points in Zi with an appropriate distance threshold
dhs, with dhs < dP .

An example for the clustering is given in Figure 19.1. On the left, all links are shorter than dP so
that the measurements are grouped into one cluster Z0 that contains four human-sized clusters.
On the right, the shortest distance between the two groups exceeds dP so that they are kept as
two clusters, Z1 and Z2. The two people in Z2 are counted as only one human-sized cluster.

122

19.2 Representation and Initialization of Group Tracks

19.2 Representation and Initialization of Group Tracks

We represent a group track as a tupleG = 〈x, C,P ,L〉with the track state x, the state covariance
matrix C, the set of contour points P belonging to G, and the set of identification labels L.
The track state vector x = (x, y, ẋ, ẏ, n)T is composed of the position (x, y)T and Cartesian
velocity (ẋ, ẏ)T of the group, and n, the number of people in the group.

The points xPl
∈ P are an approximation of the current shape or spatial extension of the group.

Shape information will be used for data association under the assumption of instantaneous rigid-

ity. That is, a group is assumed to be a rigid object over the duration of a time step ∆t, and
consequently, all points in P move coherently with the estimated group state x. The points xPl

are represented in Cartesian coordinates relative to the state x.

The label set L contains identification labels that are associated with the group. These labels
explicitly represent the history of track interactions, which can be of high interest for certain
applications, e.g., to determine which people belong together.

If the tracker creates a new group track Gj from an observation cluster Zi in time step k, the
positional components (xj, yj)

T of track state xj(k|k) are initialized with the centroid position
of the measurement cluster. The contour points Pj are the points in Zi represented relative to
the centroid (omitting the time index (k|k) for readability):(

xj

yj

)
:= z̄i =

1

|Zi|
∑
zl∈Zi

zl , Pj :=
⋃

zl∈Zi

zl − z̄i . (19.1)

The unobserved velocity components (ẋj, ẏj)
T of x are set to zero, the size estimate is set to

the number of human-sized blobs in the measurement cluster, nj :=nhs(Zi), and the label set is
assigned a unique number as its only element, e.g., Lj :={0} for the first group after starting up
the tracker. The initial state covariance is given by Cj = C0, where C0 is a diagonal matrix with
(σx

2, σy
2, σẋ

2, σẏ
2, σn

2) being the elements on the main diagonal. To account for the unknown
components in the initial state vector, high uncertainty values are used for the corresponding
entries in the initial state covariance matrix.

123

19 Group Detection and Group Tracks

19.3 Motion Model for Group Tracks

To track groups over time, the state x(k|k) and state covariance C(k|k) of each group track in
time step k are predicted into the next time step using a motion model. The predictions are
denoted as x(k+1|k) and C(k+1|k), respectively. For tracks that are continued, i.e., no splits or
merges take place from one frame to the next, we assume constant velocity for the centroid of
the group, and a constant number of people in the group. Using a linear Kalman filter, we get

x(k + 1|k) = Ax(k|k) (19.2)

C(k + 1|k) = AC(k|k)AT +Q (19.3)

for the state prediction. The state transition matrix A and the process noise covariance matrix Q
are given by

A=


1 0 ∆t 0 0

0 1 0 ∆t 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 , Q=


εx

2 0 0 0 0

0 εy
2 0 0 0

0 0 εẋ
2 0 0

0 0 0 εẏ
2 0

0 0 0 0 εn
2

 . (19.4)

The entries of Q reflect the acceleration capabilities of a typical human. The noise for the
number of people in the group, controlled by εn, accounts for people joining or leaving the
group without being noticed. The actual noise values used in our experiments are given in
Section 21.

As mentioned before, we assume instantaneous rigidity for the shape of a group. Since the
points in P are relative coordinates with respect to the moving centroid, the point set remains
unchanged, and thus P(k + 1|k)=P(k|k).

If two observations can be associated with a group track G, i.e., they both fall into the valida-
tion gate of G, the tracker can consider to split the track into two new tracks according to an
interaction model (see Section 20.1). Since the actual partitioning in the split is unknown at this
stage, two new predicted group tracks G1 and G2 are created by duplicating the predicted state
and covariance of G. The same applies for the point set P and the label set L. To make the label
sets unique, we attach different indices to the label, e.g., a group with label set {0} would split
up into two groups with label sets {0−0} and {0−1}. Again, the component of the state that
represents the number of people in the group, n, is treated differently: the sum of people in the

124

19.4 Group-to-Observation Assignment Probability

resulting groups must be equal to the original number of people. However, the actual partition-
ing is not known in the prediction step. Therefore, we use n1 = n2 = n/2, and reinitialize the
state covariances of the new split tracks with C0.

If the tracker considers to merge two group tracks Gi and Gj according to a track interaction
model, the track prediction has to be computed accordingly. The predicted set of contour points
of the merged group is the union of the two former point sets, Pij = Pi ∪ Pj . The track states
xi and xj of the merging group track represent the position and velocity of the centroids of the
groups. Thus, the state of the merged track, xij , is computed as the weighted mean of the original
track states, using weights proportional to the number of points in the merging sets Pi and Pj .
The tracks before the merge are assumed to be independent. According to the summation and
scaling laws for covariances, the covariance matrix of the merging track is the weighted mean
of the original covariances with squared weights,

xij = wi · xi + wj · xj (19.5)

Cij = wi
2 · Ci + wj

2 · Cj , (19.6)

where wi = |Pi|/|Pij| and wj = |Pj|/|Pij|. Note that this applies only for the first four compo-
nents of xij and the upper-left 4×4 block of Cij . The fifth component, namely the group size nij ,
is excluded, since the number of people in the merging groups naturally add up to nij :=ni+nj .
Consequently, the corresponding uncertainty values are summed up as well. Finally, the label
set of the new group is the union of the label sets of the original tracks, Lij = Li∪Lj . To remove
redundant labels, an optional pruning can be done in this step: whenever all tracks that resulted
from a split have merged again, the additional indices added in the split step can be removed,
e.g., when the groups with labels {0−0} and {0−1} merge, they can be labeled {0} again.
Although this can remove split and merge events from the history represented by the labeling, it
keeps the semantic information consistent.

19.4 Group-to-Observation Assignment Probability

For data association we need to calculate the probability that an observed cluster Zi belongs
to a predicted group Gj = 〈xj(k + 1|k), Cj(k + 1|k), Pj, Lj 〉. Therefore, we are looking
for a distance function d(Zi, Gj) that, unlike the Mahalanobis distance used by Mucientes and
Burgard [2006], accounts for the shape of the observation cluster Zi and the contour Pj of the
group, rather than just for their centroids. To this end, we use a variant of the Hausdorff distance.

125

19 Group Detection and Group Tracks

As the regular Hausdorff distance is the longest distance between points on two contours, it tends
to be too sensitive to large variations in depth that can occur in range data. This motivates the
use of the minimum average Hausdorff distance as defined by Dubuisson and Jain [1994]. It
computes the minimum of the contour distance from Zi to Pj and from Pj to Zi,

dHD(Zi, Gj) = min {d(Zi,Pj), d(Pj,Zi)} , (19.7)

where d(Zi,Pj) is the directed average Hausdorff distance from Zi to Pj ,

d(Zi,Pj) =
1

|Zi|
∑
zl∈Zi

min
xPj∈Pj

{D(νlj, Slj)} . (19.8)

Since we deal with uncertain entities, we calculate the distance d(Zi,Pj) using the Mahalanobis
distance

D(νlj, Slj) =
√
νljT S

−1
lj νlj, (19.9)

with νlj being the innovation and Slj being the innovation covariance between a point zl ∈ Zi
and contour point xPj

of the predicted set Pj transformed into the sensor frame. More precisely,
these two terms are given as

νlj = zl − (Hxj(k + 1|k) + xPj
) (19.10)

Slj = H Cj(k + 1|k)HT +Rl, (19.11)

where H = (1 0 0 0 0
0 1 0 0 0) is the measurement Jacobian and Rl the 2×2 observation covariance

whose entries reflect the noise in the measurement process of the range finder.

The probability that cluster Zi originates from group track Gj is finally given by a zero-centered
Gaussian,

Ni =
1

2π
√

det(Slj)
exp

(
−1

2
d2

HD(Zi, Gj)
)
. (19.12)

19.5 Group-to-Group Assignment Probability

To determine the probability that two groupsGi andGj merge, we compute the distance between
their closest contour points in a Mahalanobis sense. In doing so, we have to account for the
clustering distance dP , since we consider Gi and Gj to be one group as soon as their contours
come closer than dP . Let ∆xPij

= xPi
−xPj

be the vector difference of two contour points
of Gi and Gj , respectively. We then subtract dP from ∆xPij

unless ∆xPij
≤ dP for which

126

19.5 Group-to-Group Assignment Probability

∆xPij
= 0. Concretely, the modified difference becomes ∆x′Pij

= max(0, ∆xPij
− dP uPij

)

where uPij
= ∆xPij

/|∆xPij
|.

To obtain a similarity measure that accounts for nearness of group contours and similar velocity,
we augment ∆x′Pij

by the difference in the velocity components,

∆x∗Pij
= (∆x′TPij

, ẋi − ẋj , ẏi − ẏj)T . (19.13)

We now determine the statistical compatibility of two groups Gi and Gj according to the four-
dimensional minimum Mahalanobis distance

d2
min(Gi, Gj) = min

xPi∈Pi

xPj∈Pj

{
D2(∆x∗Pij

, Ci+Cj)
}
. (19.14)

The probability that two groups actually belong together, is finally given by

Nij =
1

(2π)2
√

det(Ci+Cj)
exp

(
−1

2
d2

min(Gi, Gj)
)
. (19.15)

In this formulation, only the upper-left 4×4 blocks of Ci and Cj are used, which excludes the
group size estimate and the corresponding uncertainties from the group-to-group assignment
probabilities.

127

20 Multi-Model MHT

In this chapter we describe our multi-model multi-hypothesis tracking approach to group track-
ing. It is based on the original MHT by Reid [1979], which hypothesizes about data association
of measurements to tracks. There, a hypothesis Ωk in time step k specifies a number of tracks
being present at that time, and includes an assignment of current observations to these tracks.
The tracks are usually realized as individual Kalman filters. They are updated using the as-
signed observations and predicted into the next time step. In most cases, the data association is
ambiguous, which gives rise to multiple hypotheses branching out from every parent hypothesis
in the previous time step. Each hypothesis is associated with a probability, that depends on the
likelihood of the observations given the assignment and the probability of the parent hypotheses.
For details, please refer to Reid [1979] and Cox and Hingorani [1996].

In addition to the data association hypotheses, our tracker also hypothesizes about group forma-
tion models described below. Therefore, the multi-model MHT introduces an intermediate tree
level for each time step, on which models for track continuation, merging, or splitting spring off
from parent hypotheses.

20.1 Model Generation and Model Probability

A model is defined as a partitioning of tracks into groups, and assumes a particular state of the
group formation process. New models, whose generation is described in this section, hypothe-
size about the evolution of that state. As this happens recursively, that is, based on a model of
the previous time step, the problem can be seen as a recursive clustering problem.

The space of possible model transitions is large since each group track can split into an unknown
number of new tracks, or merge with an unknown number of other tracks. We therefore impose
the following gating conditions for observations and tracks, thus implementing a data-driven
aspect into the model generation step.

• Multiple group tracks Gi can merge into one track only if there is an observation which is
statistically compatible with all Gi according to χ2 tests.

129

20 Multi-Model MHT

• A group track can only split into multiple tracks that are all matched with observations in that
very time step. Splits into occluded or obsolete tracks are not allowed.

Gating and statistical compatibility are both determined on a significance level α, using the
minimum average Hausdorff distance where applicable.

We further limit the possible number of model transitions as we assume that merge and split are
binary operators. More precisely, we assume:

• At most two group tracks Gi, Gj can merge into one track at the same time.

• A track Gi can split at most into two tracks in one frame.

• A group track can not be involved in a split and a merge action at the same time.

These limitations are justified by the assumption that we observe the world much faster than the
rate with which it evolves. This fact alleviates the impact of violations of the above assumptions:
even if, for instance, a group splits into three subgroups at once, the tracker requires only two
cycles to reflect this change.

A new model defines for each group track if it is continued, split, or merged with another group
track. The probability of a model is calculated using the constant prior probabilities for contin-
uations and splits, pC and pS respectively, and the probability for a merge between two tracks
Gi and Gj as pG · Nij . The latter term consists of a constant prior probability pG and the group-
to-group assignment probability Nij defined in Section 19.5. Let NC and NS be the number of
continued tracks and the number of split tracks in model M respectively, then the probability of
M conditioned on the parent hypothesis Ωk−1 is

P (M |Ωk−1) = pNC
C · p

NS
S

∏
Gi,Gj∈Ωk−1

(pG · Nij)δij (20.1)

with δij being 1 if Gi, Gj merge and 0 otherwise.

20.2 Tracking Cycle

This section describes the steps in the cycle of our Kalman filter-based group tracker, which are
also visualized by the flow diagram in Figure 20.1. The structure differs from a regular tracker

130

20.2 Tracking Cycle

z x(k|k)

State Prediction

Observation (Clustering) x(k+1|k)

Z

Data Association (MHT)

ψ

Kalman Filter Updates

x(k+1|k+1)

(a) Regular Multi-Hypothesis Tracker (MHT)

z x(k|k)

State Prediction

Observation (Clustering) x(k+1|k)

Model Generation

Z M

Re-prediction

x′(k+1|k)

Re-clustering

Z ′ Data Association (MHT)

ψ

Kalman Filter Updates

x(k+1|k+1)

(b) Multi-Model Multi-Hypothesis Tracker

Figure 20.1: Tracking cycle of the proposed Multi-Model Multi-Hypothesis Tracker in comparison
to a regular MHT system. The additional steps model generation, re-prediction, and
re-clustering were introduced to track the group formation process.

in the additional steps model generation, track re-prediction, and re-clustering.

• State prediction: In this step, the states of all existing group tracks are predicted under
the assumption that they continue without interacting with other tracks, i.e., without splits or
merges. See Section 19.3 for details.

• Observation: As described in Section 19.1, this step involves grouping the laser range data
into clusters Zi.

• Model Generation: Group formation models are generated based on the predicted group
tracks and the clusters Zi, see Section 20.1.

• Re-prediction: Based on the model hypotheses that postulate a split, merge, or continua-
tion event for each track, groups are re-predicted using these hypotheses so as to reflect the
respective model, as explained in Section 19.3.

• Re-clustering: Re-clustering an observed cluster Zi is necessary when it might have been
produced by more than one group track, that is, it is in the gate of more than one track. If

131

20 Multi-Model MHT

the model hypothesis postulates a merge for the involved tracks, nothing needs to be done.
Otherwise, Zi needs to be re-clustered to prevent under-segmentation, for example if two
different groups are passing closely. The re-clustering is done using a nearest-neighbor rule:
those points zl ∈ Zi that share the same nearest neighbor track are combined to a new cluster.
This step follows from the uniqueness assumption, which is common in target tracking and
according to which an observation can only be produced by a single target.

• Data Association (MHT): This step involves the generation, probability calculation, and prun-
ing of data association hypotheses that assign re-predicted group tracks to re-clustered obser-
vations. See Sections 20.3 to 20.5.

• Kalman Filter Updates: Each group trackGj that has been assigned to a cluster Zi is updated
with a linear Kalman filter. We use an observation vector z̃i = (z̄i, nhs(Zi))T , that contains
both the centroid position z̄i of Zi and the number of human-sized blobs nhs(Zi) in the cluster.
The update is then given by

x(k+1|k+1) = x(k+1|k)+K
(̃
zi−H̃x(k+1|k)

)
(20.2)

C(k+1|k+1) = C(k+1|k)−KH̃ C(k+1|k) (20.3)

with K being the Kalman gain matrix and H̃ the corresponding measurement Jacobian,

K = C(k+1|k) · H̃T
(
H̃C(k+1|k)H̃T +Rl

)−1

(20.4)

H̃ =

 1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

 . (20.5)

The contour points in Pj are replaced by the points in Zi after being transformed into the
reference frame of the posterior state x(k+1|k+1), as described in Section 19.2. Thereby, Pj
always contains the most recent approximation of the group.

20.3 Data Association

Let Ωk−1 be a hypothesis from the previous time step k − 1 that postulates a number of existing
group tracks. After predicting their states for time step k, a number of group formation models
are generated that represent differing hypotheses about which tracks continue, split up, or merge.

132

20.3 Data Association

Hypothesis 0
p=0.048

Model 0
p=1.0000

CONT
CONT
CONT MMM

Model 0
p=0.3733

SPLIT
CONT
CONT

Model 1
p=0.6267

CONT
CONT
CONT

Hypothesis0
p=0.736

MMMM

Hypothesis0
p=0.094

MMM
FAL

Hypothesis1
p=0.094

MMM
FAL

Hypothesis2
p=0.038MMM

NEW

Hypothesis3
p=0.038MMM

NEW

Hypothesis 0
p=0.055

Frame 13 Frame 14 Frame 15

4 Tracks

3 Tracks

3 Tracks

4 Tracks

4 Tracks

3 Tracks3 Tracks

Model 0
p=1.0000

Hypothesis
p=0.002

Model
probability

Hypothesis
posterior

Most likely
hypothesis

Models

Data association

Track is continued
Track splits
Tracks are merged

M:
FAL:
NEW:
DEL:

Track is matched
False alarm
New track
Track deleted

CONT:
SPLIT:
MERG:

Figure 20.2: The proposed multi-model MHT. For each parent hypothesis, model hypotheses
(ellipses) branch out and create their own assignment problems. In our application,
models define which tracks of the parent hypothesis are continued, split, or merged.
The tree shows frames 13 to 15 of Figure 21.2. The split of group 1 between frames
14 and 15 is the most probable hypothesis after data association following model
branch 0, although the continuation following model branch 1 is more probable (see
the legend for details).

In each model branch, the tracks of the parent hypothesis are first re-predicted to implement that
particular model and then associated with observations.

To perform data association between observations and the re-predicted tracks, we follow the
approach by Arras et al. [2008]. Possible assignments for observations are existing tracks that
match with the observation, or labels that classify observations as false alarms or new tracks. At
the same time, tracks are interpreted as matched when being associated with an observation, but
can also be labeled as deleted or occluded. Thus, the MHT handles the entire life-cycle of tracks
from creation over repeated confirmation (by matching) or occlusion (which is non-detection
and non-deletion) to deletion.

The generation of assignments is done as described for example by Cox and Miller [1995]: by
computing the probability for each possible association, we obtain a cost table that allows us to
pose the data association as a linear assignment problem. Using the Hungarian method or the
Jonker-Volgenant algorithm [Jonker and Volgenant, 1987], the best solution to such a problem
can be found in polynomial time. Murty’s algorithm is used to generate alternative solutions
as new hypotheses: after computing the best solution, this method enforces or prevents certain
associations in an iterative procedure, and thus provides the K-best solutions to the assignment
problem at hand [Murty, 1968].

133

20 Multi-Model MHT

Given a number of alternative assignments ψki in time step k, we create corresponding child
hypotheses Ωk

i , and compute their probabilities as described in the following section.

20.4 Probability of Assignment Sets and Hypotheses

The probability of a hypothesis in the multi-model MHT is calculated as follows. We compute
the probability of a child hypothesis Ωk

i given the observations from all time steps up to k,
denoted by Zk. According to the Markov assumption, it is the joint probability of the assignment
set ψi(k), the model M , and the parent hypothesis Ωk−1

p(i) , conditioned on the current observation
Z(k). Using Bayes rule, this can be expressed as the product of the data likelihood with the joint
probability of assignment set, model and parent hypothesis

P (Ωk
i |Zk)

= P (ψ,M,Ωk−1
p(i) |Z(k)) (20.6)

= η · P (Z(k)|ψ,M,Ωk−1
p(i)) · P (ψ,M,Ωk−1

p(i)). (20.7)

By using conditional probabilities, the third term on the right hand side can be factorized into
the probabilities of the assignment set, the model, and the parent hypothesis

P (ψ,M,Ωk−1
p(i))

= P (ψ|M,Ωk−1
p(i)) · P (M |Ωk−1

p(i)) · P (Ωk−1
p(i)). (20.8)

The third factor in this product is known from the previous iteration, whereas the second factor
represents the model probability derived in Section 20.1.

It remains to specify the first factor which is the probability of the assignment set ψ. The set
ψ contains the assignments of observed clusters Zi and group tracks Gj either to each other or
to one of their possible labels listed above. Assuming independence between observations and
tracks, the probability of the assignment set is the product of the individual assignment proba-
bilities. Namely, they are pM for matched tracks, pF for false alarms, pN for new tracks, pO for
tracks found to be occluded, and pT for obsolete tracks scheduled for termination. If the num-
bers of new tracks and false alarms follow a Poisson distribution (as assumed by Reid [1979]),
the probabilities pF and pN have a sound physical interpretation as pF = λFV and pN = λNV ,
where λF and λN are the average rates of events per volume multiplied by the observation vol-
ume V (the field of view of the sensor). The probability for an assignment ψ given a model M

134

20.5 Hypothesis Pruning

and a parent hypothesis Ωk−1 is then computed as

P (ψ|M,Ωk−1)

= pNM
M pNO

O pNT
T λNF

F λNN
N V NF +NN , (20.9)

where the Ns are the number of assignments to the respective labels in ψ.

Thanks to the independence assumption, also the data likelihood P (Z(k)|ψ,M,Ωk−1
p(i)) is com-

puted by the product of the individual likelihoods of each observation cluster Zi in Z(k). If ψ
assigns an observationZi to an existing track, we assume the likelihood ofZi to follow a normal
distribution, given by Eq. 19.12. Observations that are interpreted as false alarms and new tracks
are assumed to be uniformly distributed over the observation volume V , yielding a likelihood of
1/V . The data likelihood then becomes

P (Z(k)|ψ,M,Ωk−1) =
(

1
V

)NN+NF

NZ∏
i=1

N δi
i , (20.10)

where δi is 1 if Zi has been assigned to an existing track, and 0 otherwise.

Substitution of Equations (20.1), (20.9), and (20.10) into Eq. (20.6) leads, like in the original
MHT approach, to a compact expression, independent on the observation volume V .

Finally, normalization is performed yielding a true probability distribution over the child hy-
potheses of the current time step. This distribution is used to determine the current best hypoth-
esis and to guide the pruning strategies.

20.5 Hypothesis Pruning

Pruning is essential in implementations of the MHT algorithm, as otherwise the number of
hypotheses grows boundless. We employ the following strategies:

K-best branching: instead of creating all children of a parent hypothesis, the algorithm pro-
posed by Murty [1968] generates only the K most probable hypotheses as mentioned before.
We use the multi-parent variant of Murty’s algorithm, mentioned by Cox and Miller [1995], that
generates the global K best hypotheses for all parents.

135

20 Multi-Model MHT

Ratio pruning: a lower limit on the ratio of the current and the best hypothesis is defined.
Unlikely hypotheses with respect to the best one, being below this threshold, are deleted. Ratio
pruning overrides K-best branching in the sense that if the lower limit is reached earlier, less
than K hypotheses are generated.

N -scan back: the N-scan-back algorithm considers an ancestor hypothesis at time k−N and
looks ahead in time onto all children at the current time k (the leaf nodes). It only keeps the
subtree at k−N with the highest sum of leaf node probabilities. All other branches at k−N are
discarded.

More details on these pruning strategies can be found in the work of Cox and Hingorani [1996].

136

21 Experiments

To analyze the performance of our system, we collected two data sets in the entrance hall of a
university building, shown in Figure 21.1. We used a Pioneer II robot equipped with a SICK laser
scanner mounted at 30 cm above the floor, scanning at 10 fps. In two unscripted experiments,
dataset 1 with a stationary robot and dataset 2 with a moving robot, up to 20 people are in the
field of view of the sensor. They form a large variety of groups during social interaction, move
around, stand together and jointly enter and leave the hall, as shown in Figure 21.2.

To obtain ground truth information, we labeled each single range reading according to the fol-
lowing scheme: beams that belong to a person receive a person-specific label, other beams are
labeled as non-person. These labels are kept consistent over the entire duration of the data sets.
People that socially interact with each other (derived by observation) are said to belong to a
group with a group-specific label. Summed over all frames, the ground truth contains 5,629
labeled groups and 12,524 labeled people.1 For further details, see Table 21.1.

The ground truth data is used for performance evaluation and to learn the parameters of our
tracker. The values, determined by counting the related events in the ground truth and dividing
by the total number of these events, are pM =0.79, pO=0.19, pT =0.02, pF =0.06, pN =0.02 for
the data association probabilities, and pC = 0.63, pS = 0.16, pG = 0.21 for the group formation
probabilities. When evaluating the performance of the tracker, we separated the data into a
training set and a validation set to avoid overfitting.

The state uncertainty for new tracks was manually set to σx=σy =0.1, σẋ=σẏ =0.5, σn=0.2.
The noise parameters for the motion model were set to εx=εy=0.2, εẋ=εẏ=0.3, εn=0.1.

Six frames of the current best hypothesis from the second dataset are shown in Figure 21.2. The
corresponding hypothesis tree for frame 15 is shown in Figure 20.2. The sequence exemplifies
movement and formation of several groups.

1The data sets, hand-labeled ground truth information, and videos of our experiments are available
online at http://www.informatik.uni-freiburg.de/~lau/grouptracking

137

21 Experiments

Figure 21.1: The entrance hall where we recorded the datasets for our experiments.

Table 21.1: Information about the two datasets used in the experiments.

Dataset 1 Dataset 2

Number of frames 578 991
Avg. / max people 6.25 / 13 8.99 / 20
Avg. / max groups 2.60 / 4 4.16 / 8
Number of splits / merges 5 / 10 48 / 44
Number of new tracks / deletions 19 / 15 34 / 39

21.1 Clustering Error

This section analyzes how well the presented group tracker can recover the true group formation
processes, i.e., which people actually belong together according to their social interaction as
encoded in the ground truth.

We compute the clustering error of the tracker using the ground truth information on a per-
beam basis. This is done by counting how often a set of points P of a track contains too many or
wrong points (under-segmentation) and how oftenP is missing points (over-segmentation). Two
examples for over-segmentation errors can be seen in frame 15 of Figure 21.2, where group 0
and group 1-0 are temporarily over-segmented, compared to the ground truth which is visualized
with a rectangle. However, from the history of group splits and merges stored in the group labels,
the correct group relations can be determined in such cases.

For the first dataset, the clustering error rates for under-segmentation, over-segmentation, and
the sum of both are shown in Figure 21.3 (left), plotted against the clustering distance dP .

138

21.1 Clustering Error

Figure 21.2: Tracking results for Dataset 2. In frame 5, two groups are present. In frame 15,
the tracker has correctly split group 1 into 1-0 and 1-1 (see Figure 20.2). Between
frames 15 and 29, group 1-0 has split up into groups 1-0-0 and 1-0-1 and split up
again. New groups, labeled 2 and 3, enter the view in frames 21 and 42, respectively.

We compare the clustering performance of our group tracker with a memory-less group cluster-
ing approach, which performs single-linkage clustering of the range data as described in Sec-
tion 19.1 without using a tracking framework. The result is shown in Figure 21.3 (middle).

The minimum clustering error of 3.1% is achieved by the tracker at dP = 1.3 m. The minimum
error for the memory-less clustering is 7.0%, more than twice as high. In the second dataset,
the error rates are higher due to the larger number of occlusions and the increased complexity in
group interactions. Here, the minimum clustering error of the tracker is 9.6% while the error of
the memory-less clustering reaches 20.2%, again more than twice as high.

To further investigate situations where tracking results differ from memory-less clustering, we
recorded laser data of groups of people walking and passing each other in a corridor. An example
is shown in Figure 21.4, where one person passes between a group of two people. The memory-
less approach would merge them immediately while the tracking approach, accounting for the

139

21 Experiments

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.5 1 1.5 2 2.5 3 3.5

E
rr

or
 r

at
es

 p
er

 tr
ac

k
an

d
fr

am
e

Clustering distance threshold dP (m)

Sum of over- and under-segm.
Over-segmentation

Under-segmentation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.5 1 1.5 2 2.5 3 3.5

E
rr

or
 r

at
es

 p
er

 tr
ac

k
an

d
fr

am
e

Clustering distance threshold dP (m)

Group tracker
Memory-less clustering

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 4 8 12 16 20

A
vg

. c
yc

le
 ti

m
e

(s
ec

)

Number of people in ground truth

Group tracker
People tracker

Figure 21.3: Left: Clustering error of the group tracker as the sum of over-segmentation and
under-segmentation error. The smallest error is achieved for a cluster distance of
1.3 m which is very close to the border of personal and social space according to the
proxemics theory, marked at 1.2 m by the vertical line. Middle: Clustering error
of the group tracker compared to memory-less single linkage clustering (without
tracking). Right: Average cycle time for the group tracker versus a tracker for
individual people plotted against the ground truth number of people.

velocity information, correctly keeps the groups apart by using re-clustering. This result shows
that the group tracking problem is a recursive clustering problem that requires integration of
information over time.

In the light of the proxemics theory, the result of a minimal clustering error at 1.3 m is notewor-
thy. The theory predicts that when people interact with friends, they maintain a range of dis-
tances between 0.45 to 1.2 m called personal space. When engaged in interaction with strangers,
this distance is larger. As our data contains students who tend to know each other well, the result
appears consistent with the findings of Hall.

21.2 Tracking Efficiency

When tracking groups of people rather than individuals, the assignment problems in the data
association stage are of course smaller in size. At the same time, the introduction of an ad-
ditional tree level, on which different models hypothesize over different group formation pro-
cesses, comes with additional computational costs. We therefore compare our system with a
person-only tracker realized by inhibiting all split and merge operations and reducing the cluster
distance dP to the value that yields the lowest error for clustering single people given the ground
truth. For the second dataset, the resulting average cycle times depending on the number of

140

21.3 Group Size Estimation

people being present according to ground truth are shown in Figure 21.3 (right). The plots are
averaged over different K from the range of 2 to 200 at a scan-back depth of N = 30.

With an increasing number of people, the cycle time for the people tracker grows much faster
than the cycle time of the group tracker. Interestingly, even for small numbers of people the
group tracker is faster than the people tracker. This is due to occasional over-segmentation of
people into individual legs tracks. Also, as mutual occlusion of people in densely populated
environments occurs frequently, the people tracker has to maintain many more occluded tracks
than the group tracker, as occlusion of entire groups is rare. Also, the additional complexity of
multiple models in the group tracker virtually disappears when the tracks are isolated due to the
data-driven model generation.

This result clearly shows that our group tracking approach is more efficient. With an average
cycle time of around 100 ms for up to 10 people on a Pentium IV at 3.2 GHz, the algorithm can
run online even with a non-optimized implementation.

21.3 Group Size Estimation

To evaluate the accuracy of our group size estimation approach, we define the corresponding
error as the absolute difference between the estimated number of people in a group and the true
value according to the labeled ground truth. For counting the number of human-sized clusters
in a group as described in Section 19.1, a clustering threshold dhs =0.3 m is used.

For the first dataset, we find that the average error in group size estimation is 0.23 people with a
standard deviation of 0.30. In the more complex dataset 2, the average error is 0.33 people with
a standard deviation of 0.49. If the estimated group sizes are rounded to integers, the tracker
determined the correct value in 88.9% of all cases in dataset 1 and in 84.3% for dataset 2.

If only deviations of more than one person are considered an error, the system was correct in
99.5% of all cases in dataset 1 and 97.5% in dataset 2.

141

21 Experiments

Frame 157 Frame 164 Frame 173

(a) Memory-less clustering

{1}

{2}

{1/2}

{1/2-2}

{1/2-1}

Frame 157 Frame 164 Frame 173

(b) Group tracking: tracks can merge and split

{1}

{2}

{1}

{2}

{1}

{2}

Frame 157 Frame 164 Frame 173

(c) Group tracking: tracks can continue separately

Figure 21.4: One person crosses a group of two people. Since the groups interweave, memory-less
clustering (top) unifies the two groups. Our group tracker can also create a model
that postulates a merge of the groups, followed later by a split (middle). However,
the model hypothesis leading to the most probable hypothesis in this situation
continues both tracks and triggers re-clustering (see Section 20.2). This way, the
crossing groups are tracked correctly (bottom). For a legend, see Figure 21.2.

142

22 Conclusion

We presented a multi-model multi-hypothesis tracking approach to track groups of people. We
extended the original MHT approach to incorporate model hypotheses that describe track in-
teraction events that go beyond what data association can express. In our application, models
encode the formation of groups during split, merge, and continuation events. We further intro-
duced a group representation that tracks the group shape, and employed the minimum average
Hausdorff distance to account for the group shape when calculating association probabilities.

The proposed tracker has been implemented and tested using a mobile robot equipped with a
laser range finder. The experiments with up to 20 people forming groups of different sizes
demonstrated that the system is able to robustly track groups of people as they undergo complex
formation processes. Given ground truth data that reflects true interactions of people with over
12,000 labeled occurrences of people and groups, the experiments showed that the tracker could
reproduce such processes with a low clustering error and estimate the number of people in
groups with high accuracy. They also showed that in comparison with a memory-less single-
frame clustering scheme, our system performs substantially better in determining which people
form a group.

The experiments demonstrated the ability of the approach to recover the actual social grouping
of interacting people when compared to the ground truth. It was further found that the clustering
threshold for detection that produces the best tracking results appears consistent with the prox-
emics theory. Finally, we showed that tracking groups of people is clearly more efficient than
tracking individual people.

143

Part IV

Discussion and Outlook

145

23 Discussion

This thesis presented novel techniques for mobile robot navigation in dynamic environments.
The three main parts focused on the topics of grid-based spatial representations, kinodynamic
motion planning, and tracking groups of people. The fundamental research questions in these
areas are not new, and a lot of previous work has been published to address them. In the context
of many real-world applications, however, new challenges arise due to the dynamic nature of the
environment. We therefore addressed, for example, how spatial representations can be updated
efficiently, how planned trajectories can be modified to avoid unexpected obstacles, or how to
track a large number of people in online applications.

This chapter summarizes the results and discusses a number of research insights that highlight
the contribution of this thesis with respect to previous approaches.

23.1 Efficient Grid-Based Spatial Representations

When using grid-based spatial representations like distance maps, Voronoi diagrams, or con-
figuration space maps in dynamic environments, a main issue is the computation time required
to perform an update when the environment changes. In the case of collision avoidance, for
example, updates are required usually several times per second. We presented novel algorithms
that are able to perform efficient incremental updates of these representations by visiting only
the cells that are affected by changes.

The algorithm we proposed to update distance maps is a dynamic version of the brushfire al-
gorithm. An interesting observation is the comparison to the D* lite algorithm which has pre-
viously been used to update distance maps [Kalra et al., 2009]. D* lite can actually compute
and update the distances from each cell to a goal location, which is more than required for the
problem at hand. Our dynamic brushfire algorithm in contrast only considers the distances to
the closest obstacle of each cell, which facilitates the substantially shorter computation times.

When comparing different algorithms to compute a Voronoi diagram (GVD) for a given grid
map, it is common that the outputs are not the same. Most previous approaches generate 8-
connected Voronoi lines that use diagonal connections, which might be more visual appealing

147

23 Discussion

than 4-connected ones. We discovered that 4-connected GVDs better represent the underlying
Voronoi graph, since they do not cause erroneous interconnections between neighboring lines.
Another apparent difference is the number of generated Voronoi lines, which corresponds to
an implicitly assumed obstacle model. When treating each occupied map cell as an obstacle,
the GVD is overly full. On the other hand, when treating connected groups of cells as the
same obstacle, the GVD misses Voronoi lines inside of non-convex obstacles like the interior of
buildings. To our knowledge, our approach is the first method to incrementally update Voronoi
diagrams that correctly works in indoor environments.

The proposed combination of distance maps and Voronoi diagrams with our updatable config-
uration space maps provides efficient means for collision checking and path planning of non-
circular robots: with a single map lookup, one can determine the robot-to-obstacle distance for
a given rotation, and plan a path on the Voronoi subspace of the configuration space. Further-
more, our bubble-technique for Voronoi path planning ensures similar results for consecutive
path queries from a moving robot. Since all involved representations are incrementally updat-
able, these methods can be applied online in dynamic environments.

23.2 Kinodynamic Motion Planning

This thesis also presented an approach to kinodynamic motion planning for mobile robots. An
important building block of such a system is the representation used to model trajectories. We
proposed a novel path model that uses quintic Bézier splines to generate smooth parametric tra-
jectories. The additional degrees of freedom in comparison to cubic splines allow us to make the
trajectories curvature continuous and to choose their start curvature. This facilitates replanning
a trajectory while a robot is moving: after choosing a point on the trajectory and determining
the local curvature of the path, we can compute a new trajectory that starts at this point with the
given curvature, and thus alter the planned trajectory without interruptions or discontinuities. To
reduce the number of free parameters in the model, we use heuristics that specify the orientation
of tangents and the parameters that control the second derivative of the spline. As a result, our
path model uses a smaller number of parameters than cubic splines while being more suitable
for motion planning.

We also discussed the properties of clothoid splines. At first sight, they seem to be an appealing
curve type for modeling robot paths due to their linear increase or decrease of curvature for
constant translational velocities. However, service robots often reduce their velocity in curves,

148

23.3 Laser-Based Tracking of People in Groups

which mitigates this advantage. Additionally, the placement of clothoids to connect given way-
points is rather complicated and not necessarily possible in closed form with start curvatures
being not equal to zero.

In our experiments we used an error-feedback controller to steer a robot along a planned path,
and achieved average deviations below 2 cm with a Pioneer platform. A pre-requisite for this
accuracy was to raise the frequency of odometry and control signals from the standard 10 Hz to
35 Hz. This supports the idea of running control loops at a higher frequency than the computa-
tional more demanding path planning and localization routines.

To our knowledge, our motion planning method is the first any-time path deformation approach
which generates curvature continuous parametric paths that can be modified during execution.

23.3 Laser-Based Tracking of People in Groups

The laser-based people tracking approach proposed in this thesis detects and tracks groups of
people rather than individuals. This is different from previous work on group tracking where
the group representations are added on top of a tracking system for individuals. As a result,
the computational complexity of our approach scales with the number of groups rather than the
number of people being tracked.

By introducing an additional group model layer, our tracker can hypothesize about the group
formation process. Specifically, it can pursue the hypotheses that a group splits up, merges with
another group, or remains unchanged. To keep the number of generated models tractable, we
use a data-driven approach similar to the gating of data associations between tracks and obser-
vations. The split and merge probabilities depend on the differences in position and velocity of
the separate group tracks, i.e., before a merge or after a potential split. Additionally, we assume
that splits and merges are binary operators, i.e., each split or merge only involves two groups.
Since the tracker can model several splits or merges per second, this does not compromise the
tracking result.

In most laser-based tracking systems, the actual observations are pre-clustered sensor readings.
This clustering is a critical step, since it is usually not done in a multi-hypothesis way. Con-
sequently, a clustering error causes erroneous observations, and can degrade the tracking per-
formance substantially. In our experimental data we observed that the most common clustering

149

23 Discussion

error is the unification of two close groups, e.g., people passing in a corridor in opposite di-
rections. We therefore proposed a re-clustering mechanism that is triggered whenever a single
cluster fits to two different group tracks that are not merging. In this case, we redo the clustering
by assigning individual measurements to the compatible group tracks.

As shown in an experiment, the re-clustering mechanism together with the velocity-vector-based
split and merge probabilities allow our tracker to maintain passing groups as separate tracks
while groups standing together can be merged into one. Thus, our tracker provides some infor-
mation about the social relation of the people being tracked.

150

24 Outlook

We believe that this thesis provides novel methods that are suitable for direct use in mobile robot
navigation systems. Additionally, the proposed techniques can be useful for other approaches.

The Voronoi-based path planning method proposed in Part I is a very efficient approach to holo-
nomic path planning in the configuration space of non-circular robots. In future work, the con-
figuration space Voronoi maps could be used to implement an efficient Voronoi sampling routine
for planners based on Rapidly-Exploring Random Trees, and thus also contribute to the problem
of non-holonomic path planning.

An interesting extension of our spline-based motion planning system would be the adaptation
to autonomous cars. The curvature continuity of generated trajectories achieved with only three
parameters per control point is appealing, especially for vehicles driving at high velocities. An-
other strength of our approach is the guaranteed traversability of the initial path. However, the
adaptation of this property to vehicles that cannot turn on the spot is an open problem.

The tracking research community keeps inventing and evolving probabilistic tracking frame-
works and data association methods. Markov chain Monte Carlo (MCMC) techniques for ex-
ample provide a more general approach to data association than the methods used in standard
multi-hypothesis trackers, since they are not restricted to cost matrices of linear assignment
problems. Combining MCMC with our group formation models could be an interesting line of
research. Also, the advent of affordable 3D cameras brings new possibilities and challenges to
people tracking research and could facilitate hybrid approaches for group tracking as well.

151

List of Figures

2.1 Representations of obstacles and robots . 26

3.1 GVDs computed by different approaches . 30

4.1 Static brushfire algorithm . 36

4.2 Updating distance maps . 37

5.1 Voronoi diagrams on 4- and 8- connected grids 43

5.2 Image operator patterns used to test the connectivity of a GVD 45

5.3 Connecting start and goal locations to the GVD 47

6.1 Map convolutions and incremental updates . 50

6.2 C-space distance map and Voronoi diagram 53

7.1 2D maps used for experiments . 56

7.2 Performance for updating DMs and GVDs . 56

7.3 Incremental construction of a DM and GVD during SLAM 58

7.4 Comparison of computational performance during SLAM 59

7.5 3D map used for experiments . 60

7.6 Computational performance of incremental 3D distance map updates 61

7.7 Computational performance of different collision checking routines 62

7.8 Computational performance of collision checking for different obstacle models 63

7.9 Planned holonomic paths using different approaches 64

7.10 Planning time and path lengths . 64

7.11 Table docking with a PR2 robot . 66

9.1 System architecture of motion planning approaches 72

9.2 Initial and optimized spline trajectories . 73

11.1 Manually constructed paths using segments of different curve types 78

11.2 Clothoid spline for a given control polygon 80

12.1 Heuristics for quintic Bézier splines . 86

13.1 Velocity profile v(s) for a path Q(u) . 90

153

List of Figures

13.2 Velocity profiles of the trajectories in Figure 9.2 92

13.3 Velocity profile generation in three phases . 94

14.1 Replanning during a temporarily erroneous pose estimate 100

15.1 Trajectory optimization on artificial scenes . 102

15.2 Optimization manifolds for the parameters of the first inner waypoint 102

15.3 Traveling times achieved using our heuristic compared to optimized values . . . 103

15.4 Trajectory of a Pioneer robot for two obstacle courses 104

15.5 Experimental results for the obstacle courses shown in Figure 15.4 105

15.6 Sample trajectory of our tour-guide robot “Albert” 106

15.7 Field trials in the Hellenic Cosmos museum, Athens 106

16.1 Omni-directional robot paths . 110

16.2 Multi-stage path fitting and optimization method by Sprunk et al. 111

16.3 Fitting result for our path model vs. basic cubic splines 112

18.1 Tracking groups of people with a mobile robot 118

19.1 Illustration of the detection step . 122

20.1 Tracking cycle of the proposed Multi-Model Multi-Hypothesis Tracker 131

20.2 Branching in the proposed multi-model MHT 133

21.1 Entrance hall used to record datasets . 138

21.2 Tracking results from the second data set . 139

21.3 Error rates and average cycle time . 140

21.4 Memory-less clustering vs. group tracking . 142

154

List of Algorithms

4.1 Static Brushfire algorithm for computing Euclidean distance maps 36

4.2 Dynamic Brushfire algorithm to incrementally update distance maps 38

4.3 Improved expansion of lower wavefronts in 3D 40

5.1 Evaluation of the Voronoi condition . 44

5.2 “Bubble”-technique for path planning on a GVD 48

6.1 Dynamic update of C-space collision maps . 51

14.1 Iterative trajectory optimization . 97

155

List of Tables

7.1 Update performance of distance maps and Voronoi diagrams 57

7.2 Performance of incremental 3D distance map updates 60

15.1 Field trials of “INDIGO” at the Hellenic Cosmos, Athens 107

21.1 Information about the two datasets used in the experiments. 138

157

Bibliography

[Arras et al., 2007] K. O. Arras, Óscar Martı́nez Mozos, and W. Burgard. Using boosted fea-
tures for the detection of people in 2d range data. In IEEE International Conference on

Robotics and Automation (ICRA), Rome, Italy, April 2007.

[Arras et al., 2008] K. O. Arras, S. Grzonka, M. Luber, and W. Burgard. Efficient people track-
ing in laser range data using a multi-hypothesis leg-tracker with adaptive occlusion probabil-
ities. In IEEE International Conference on Robotics and Automation (ICRA), Pasadena, CA,
USA, May 2008.

[Aurenhammer, 1991] F. Aurenhammer. Voronoi diagrams – a survey of a fundamental geo-
metric data structure. ACM Computing Surveys (CSUR), 23(3), 1991.

[Beeson, 2006] P. Beeson. EVG-Thin: A thinning approximation to the extended Voronoi
graph. http://www.cs.utexas.edu/users/qr/software/evg-thin.html, 2006.

[Behar and Lien, 2010] E. Behar and J.-M. Lien. A new method for mapping the configura-
tion space obstacles of polygons. Technical Report GMU-CS-TR-2011-11, Department of
Computer Science, George Mason University, 2010.

[Blanco et al., 2005] F. J. Blanco, V. Moreno, B. Curto, and R. Therón. C-space evaluation
for mobile robots at large workspaces. In IEEE International Conference on Robotics and

Automation (ICRA), Barcelona, Spain, April 2005.

[Borenstein and Koren, 1991] J. Borenstein and Y. Koren. The vector field histogram - fast
obstacle avoidance for mobile robots. IEEE Transactions on Robotics and Automation,
7(3):278–288, 1991.

[Borgefors, 1986] G. Borgefors. Distance transformations in digital images. Computer Vision,

Graphics, and Image Processing, 34(3):344–371, 1986.

[Bose et al., 2007] B. Bose, X. Wang, and E. Grimson. Multi-class object tracking algorithm
that handles fragmentation and grouping. In IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 1–8, Minneapolis, MN, USA, June 2007.

[Canny, 1985] J. Canny. A Voronoi method for the piano-movers problem. In IEEE Interna-

tional Conference on Robotics and Automation (ICRA), St Louis, MO, USA, March 1985.

159

Bibliography

[Choset and Burdick, 2000] H. Choset and J. Burdick. Sensor-based exploration: The hierarchi-
cal generalized Voronoi graph. International Journal of Robotics Research (IJRR), 19(2):96–
125, February 2000.

[Choset et al., 2000] H. Choset, S. Walker, K. Eiamsa-Ard, and J. Burdick. Sensor-based ex-
ploration: Incremental construction of the hierarchical generalized Voronoi graph. The In-

ternational Journal of Robotics Research, 19:126–148, 2000.

[Connors and Elkaim, 2007] J. Connors and G. Elkaim. Manipulating B-Spline based paths for
obstacle avoidance in autonomous ground vehicles. In Proc. of the ION National Technical

Meeting, San Diego, CA, USA, January 2007.

[Cox and Hingorani, 1996] I. Cox and S. Hingorani. An efficient implementation of Reid’s
multiple hypothesis tracking algorithm and its evaluation for the purpose of visual tracking.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(2):138–150, 1996.

[Cox and Miller, 1995] I. Cox and M. Miller. On finding ranked assignments with application
to multi-target tracking and motion correspondence. IEEE Transactions on Aerospace and

Electronic Systems, 31(1):486–489, 1995.

[Şucan et al., 2010] I. A. Şucan, M. Moll, and L. E. Kavraki. The open motion planning library
(OMPL). http://ompl.kavrakilab.org, 2010.

[Cui et al., 2005] J. Cui, H. Zha, H. Zhao, and R. Shibasaki. Tracking multiple people using
laser and vision. In IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), Alberta, Canada, August 2005.

[Cuisenaire and Macq, 1999] O. Cuisenaire and B. Macq. Fast Euclidean distance transforma-
tion by propagation using multiple neighborhoods. Computer Vision and Image Understand-

ing, 76:163–172, 1999.

[Danielsson, 1980] P.-E. Danielsson. Euclidean distance mapping. Computer Graphics and

Image Processing, 14:227–248, 1980.

[Donald et al., 1993] B. Donald, P. Xavier, J. Canny, and J. Reif. Kinodynamic motion plan-
ning. Journal of the Association for Computing Machinery, 40(5):1048–1066, 1993.

[Dubuisson and Jain, 1994] M. P. Dubuisson and A. K. Jain. A modified Hausdorff distance for
object matching. In Intl. Conference on Pattern Recognition, volume 1, pages A:566–568,
Jerusalem, Israel, 1994.

160

Bibliography

[Fabbri et al., 2008] R. Fabbri, L. da Fontoura Costa, J. C. Torelli, and O. M. Bruno. 2D Eu-
clidean distance transform algorithms: A comparative survey. ACM Computing Surveys,
40(1), 2008.

[Ferguson and Stentz, 2007] D. Ferguson and A. Stentz. Field D*: An interpolation-based path
planner and replanner. In S. Thrun, R. Brooks, and H. Durrant-Whyte, editors, Robotics Re-

search, volume 28 of Springer Tracts in Advanced Robotics (STAR), pages 239–253. Springer
Berlin / Heidelberg, 2007.

[Fod et al., 2002] A. Fod, A. Howard, and M. J. Mataric. Laser-based people tracking. In IEEE

International Conference on Robotics and Automation (ICRA), pages 3024–3029, Washing-
ton D.C., USA, May 2002.

[Foskey et al., 2001] M. Foskey, M. Garber, M. C. Lin, and D. Manocha. A Voronoi-based
hybrid motion planner. In IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), Maui, HI, USA, October 2001.

[Fox et al., 1997] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to colli-
sion avoidance. IEEE Robotics & Automation Magazine, 4(1):23–33, 1997.

[Galin et al., 2010] E. Galin, A. Peytavie, N. Maréchal, and E. Guérin. Procedural generation
of roads. Computer Graphics Forum, 29(2):429–438, May 2010.

[Gennari and Hager, 2004] G. Gennari and G. D. Hager. Probabilistic data association medhods
in visual tracking of groups. In IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2004.

[Geraerts and Overmars, 2004] R. Geraerts and M. Overmars. A comparative study of proba-
bilistic roadmap planners. In Algorithmic Foundations of Robotics V, volume 7 of Springer

Tracts in Advanced Robotics (STAR), pages 43–58. Springer Berlin / Heidelberg, 2004.

[Girbés et al., 2011] V. Girbés, L. Armesto, and J. Tornero. Continuous-curvature control of
mobile robots with constrained kinematics. In IFAC World Congress, volume 18, Milano,
Italy, 2011.

[Gold et al., 1997] C. M. Gold, P. R. Remmele, and T. Roos. Voronoi methods in GIS. In
Algorithmic Foundations of Geographic Information Systems, volume 1340. Springer Berlin
/ Heidelberg, 1997.

161

Bibliography

[Grisetti et al., 2007] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for grid
mapping with Rao-Blackwellized particle filters. IEEE Transactions on Robotics, 23(1):34–
46, 2007.

[Guenter and Parent, 1990] B. Guenter and R. Parent. Computing the arc length of parametric
curves. Computer Graphics and Applications, 10(3):72–78, May 1990.

[Guibas et al., 1992] L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental con-
struction of Delaunay and Voronoi diagrams. Algorithmica, 7:381–413, 1992.

[Gulati and Kuipers, 2008] S. Gulati and B. Kuipers. High performance control for graceful
motion of an intelligent wheelchair. In IEEE International Conference on Robotics and Au-

tomation (ICRA), 2008.

[Hall, 1974] E. Hall. Handbook of Proxemics Research. Society for the Anthropology of Visual
Communications, 1974.

[Hartigan, 1975] J. Hartigan. Clustering Algorithms. John Wiley & Sons, 1975.

[Heald, 1985] M. A. Heald. Rational approximations for the fresnel integrals. Mathematics of

Computation, 44(170):459–461, 1985.

[Heald, 1986] M. A. Heald. Corrigenda. Mathematics of Computation, 46(174):771, 1986.

[Henrie and Wilde, 2012] J. Henrie and D. Wilde. Experience from the DARPA Urban Chal-

lenge, chapter Planning continous curvature paths using constructive polylines. Springer-
Verlag London, 2012.

[Howard and Kelly, 2007] T. M. Howard and A. Kelly. Optimal rough terrain trajectory genera-
tion for wheeled mobile robots. International Journal of Robotics Research (IJRR), 26:141–
166, 2007.

[Jaillet et al., 2011] L. Jaillet, J. Hoffman, J. van den Berg, P. Abbeel, J. Porta, and K. Gold-
berg. EG-RRT: Environment-guided random trees for kinodynamic motion planning with
uncertainty and obstacles. In IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pages 2646–2652, San Francisco, CA, USA, September 2011.

[Jonker and Volgenant, 1987] R. Jonker and A. Volgenant. A shortest augmenting path algo-
rithm for dense and sparse linear assignment problems. Computing, 38(4):325–340, Decem-
ber 1987.

162

Bibliography

[Joo and Chellappa, 2007] S.-W. Joo and R. Chellappa. A multiple-hypothesis approach for
multiobject visual tracking. IEEE Transactions on Image Processing, 16(11):2849–2854,
November 2007.

[Kalra et al., 2009] N. Kalra, D. Ferguson, and A. Stentz. Incremental reconstruction of gen-
eralized Voronoi diagrams on grids. Robotics and Autonomous Systems (RAS), 57:123–128,
2009.

[Karaman et al., 2011] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller. Any-
time motion planning using the RRT*. In IEEE International Conference on Robotics and

Automation (ICRA), Shanghai, China, May 2011.

[Kavraki, 1995] L. E. Kavraki. Computation of configuration-space obstacles using the fast
Fourier transform. IEEE Transactions on Robotics and Automation, 11(3):408–413, 1995.

[Khan et al., 2006] Z. Khan, T. Balch, and F. Dellaert. MCMC data association and sparse
factorization updating for real time multitarget tracking with merged and multiple measure-
ments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12), 2006.

[Khatib, 1986] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots.
Intl. Journal of Robotics Research, 5:90–98, 1986.

[Kluge et al., 2001] B. Kluge, C. Köhler, and E. Prassler. Fast and robust tracking of multiple
moving objects with a laser range finder. In IEEE International Conference on Robotics and

Automation (ICRA), Seoul, Korea, May 2001.

[Koenig and Likhachev, 2002] S. Koenig and M. Likhachev. D* lite. In Eighteenth National

Conference on Artificial Intelligence (AAAI), pages 476–483, 2002.

[Lau et al., 2009] B. Lau, C. Sprunk, and W. Burgard. Kinodynamic motion planning for mo-
bile robots using splines. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and

Systems (IROS), St. Louis, MO, USA, 2009.

[Lau et al., 2010] B. Lau, C. Sprunk, and W. Burgard. Improved updating of euclidean distance
maps and Voronoi diagrams. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and

Systems (IROS), Taipei, Taiwan, 2010.

[Lau et al., 2011] B. Lau, C. Sprunk, and W. Burgard. Incremental updates of configuration
space representations for non-circular mobile robots with 2D, 2.5D, or 3D obstacle models. In

163

Bibliography

Proc. of the European Conference on Mobile Robots (ECMR), pages 49–54, Örebro, Sweden,
2011.

[Lau et al., 2012] B. Lau, C. Sprunk, and W. Burgard. Open source implementation of dynam-
ically updatable distance maps, Voronoi diagrams, and configuration space representations.
http://www.informatik.uni-freiburg.de/~lau/dynamicvoronoi, 2012.

[Lee and Gahegan, 2002] I. Lee and M. Gahegan. Interactive analysis using Voronoi diagrams:
Algorithms to support dynamic update from a generic triangle-based data structure. Trans-

actions in GIS, 6(2):89–114, 2002.

[Lee et al., 2011] T.-K. Lee, S.-H. Baek, Y.-H. Choi, and S.-Y. Oh. Smooth coverage path plan-
ning and control of mobile robots based on high-resolution grid map representation. Robotics

and Autonomous Systems (RAS), 59(10):801–812, October 2011.

[Likhachev and Ferguson, 2008] M. Likhachev and D. Ferguson. Planning long dynamically-
feasible maneuvers for autonomous vehicles. In Robotics: Science and Systems Conference,
Zurich, Switzerland, 2008.

[Likhachev et al., 2005] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun. Any-
time dynamic A*: An anytime, replanning algorithm. In Proc. of the Intl. Conf. on Automated

Planning and Scheduling (ICAPS), Monterey, CA, USA, June 2005.

[Linan and Zhenmin, 2005] J. Linan and T. Zhenmin. Building configuration space for multiple
UGVs. In IEEE Intl. Conf. on Vehicular Electronics and Safety, Xi’an, Shaan’xi, China,
October 2005.

[Lindemann and LaValle, 2004] S. Lindemann and S. LaValle. Incrementally reducing disper-
sion by increasing Voronoi bias in RRTs. In IEEE International Conference on Robotics and

Automation (ICRA), pages 3251–3257, New Orleans, LA, USA, April 2004.

[Loustau and Dillon, 1992] J. Loustau and M. Dillon. Linear Geometry with Computer Graph-

ics. CRC Press, 1992.

[Lozano-Perez, 1983] T. Lozano-Perez. Spatial planning: A configuration space approach.
IEEE Transactions on Computers, C-32(2):108–120, February 1983.

[Macek et al., 2008] K. Macek, D. Vasquez, T. Fraichard, and R. Siegwart. Safe vehicle nav-
igation in dynamic urban scenarios. In Proc. of the 11th IEEE Intl. Conf. on Intelligent

Transportation Systems (ITSC), pages 482–489, Beijing, China, October 2008.

164

Bibliography

[Mandel and Frese, 2007] C. Mandel and U. Frese. Comparison of wheelchair user interfaces
for the paralysed: Head-joystick vs. verbal path selection from an offered route-set. In Euro-

pean Conference on Mobile Robots (ECMR), Freiburg, Germany, September 2007.

[Maurer et al., 2003] C. R. Maurer, Jr., R. Qi, and V. Raghavan. A linear time algorithm for
computing exact Euclidean distance transforms of binary images in arbitrary dimensions.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(2):265–270, 2003.

[McKenna et al., 2000] S. McKenna, S. Jabri, Z. Duric, A. Rosenfeld, and H. Wechsler. Track-
ing groups of people. Computer Vision and Image Understanding, 80(1):42–56, October
2000.

[Minguez and Montano, 2004] J. Minguez and L. Montano. Nearness diagram navigation
(ND): Collision avoidance in troublesome scenarios. IEEE Transactions on Robotics and

Automation, 20(1):45–59, 2004.

[Montemerlo et al., 2003] M. Montemerlo, N. Roy, and S. Thrun. Perspectives on standard-
ization in mobile robot programming: the Carnegie Mellon Navigation (CARMEN) Toolkit.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), volume 3,
pages 2436–2441, 27–31 Oct. 2003.

[Mucientes and Burgard, 2006] M. Mucientes and W. Burgard. Multiple hypothesis tracking of
clusters of people. In IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 692–697, October 2006.

[Murty, 1968] K. Murty. An algorithm for ranking all the assignments in order of increasing
cost. Operations Research, 16:682–687, 1968.

[Oriolo et al., 2002] G. Oriolo, A. D. Luca, and M. Vendittelli. WMR control via dynamic feed-
back linearization: Design, implementation, and experimental validation. IEEE Transactions

on Control Systems Technology, 10(6):835–852, November 2002.

[Pan and Manocha, 2011] J. Pan and D. Manocha. GPU-based parallel collision detection for
real-time motion planning. In Algorithmic Foundations of Robotics IX, volume 68 of Springer

Tracts in Advanced Robotics (STAR). Springer Berlin / Heidelberg, 2011.

[Plaku et al., 2010] E. Plaku, E. Kavraki, and M. Vardi. Motion planning with dynamics by a
synergistic combination of layers of planning. IEEE Transactions on Robotics, 26(3):469–
482, 2010.

165

Bibliography

[Plato, 2003] R. Plato. Concise Numerical Mathematics, volume 57 of Graduate studies in

mathematics. American Mathematical Society, 2003.

[Rao et al., 1991] N. Rao, N. Stoltzfus, and S. Iyengar. A ‘retraction’ method for learned navi-
gation in unknown terrains for a circular robot. IEEE Transactions on Robotics and Automa-

tion, 7(5):699–707, October 1991.

[Reid, 1979] D. B. Reid. An algorithm for tracking multiple targets. IEEE Transactions on

Automatic Control, AC-24(6):843–854, 1979.

[Riedmiller and Braun, 1993] M. Riedmiller and H. Braun. A direct adaptive method for faster
backpropagation learning: The RPROP algorithm. In IEEE Intl. Conf. on Neural Networks,
pages 586–591, San Francisco, CA, 1993.

[Sahraei et al., 2007] A. Sahraei, M. T. Manzuri, M. R. Razvan, M. Tajfard, and S. Khoshbakht.
AI*IA 2007: Artificial Intelligence and Human-Oriented Computing, chapter Real-time tra-
jectory generation for mobile robots, pages 459–470. Springer, 2007.

[Scherer et al., 2009] S. Scherer, D. Ferguson, and S. Singh. Efficient C-Space and cost function
updates in 3D for unmanned aerial vehicles. In IEEE International Conference on Robotics

and Automation (ICRA), Kobe, Japan, 2009.

[Scherer et al., 2012] S. Scherer, J. Rehder, S. Achar, H. Cover, A. Chambers, S. Nuske, and
S. Singh. River mapping from a flying robot: state estimation, river detection, and obstacle
mapping. Autonomous Robots, 33:189–214, 2012.

[Schlegel, 1998] C. Schlegel. Fast local obstacle avoidance under kinematic and dynamic con-
straints for a mobile robot. In IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), Victoria, Canada, 1998.

[Schulz et al., 2003] D. Schulz, W. Burgard, D. Fox, and A. Cremers. People tracking with
a mobile robot using sample-based joint probabilistic data association filters. International

Journal of Robotics Research (IJRR), 22(2), 2003.

[Shiller and Gwo, 1991] Z. Shiller and Y. Gwo. Dynamic motion planning of autonomous ve-
hicles. IEEE Transactions on Robotics and Automation, 7:241–249, 1991.

[Siciliano et al., 2009] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics, Planning

and Control, chapter 11. Springer-Verlag London, 2009.

166

Bibliography

[Sprunk et al., 2011] C. Sprunk, B. Lau, P. Pfaff, and W. Burgard. Online generation of kinody-
namic trajectories for non-circular omnidirectional robots. In Proc. of the IEEE Intl. Conf. on

Robotics & Automation (ICRA), Shanghai, China, 2011.

[Sprunk et al., 2012] C. Sprunk, B. Lau, and W. Burgard. Improved non-linear spline fitting
for teaching trajectories to mobile robots. In Proc. of the IEEE Intl. Conf. on Robotics &

Automation (ICRA), St. Paul, MN, USA, May 2012.

[Sprunk, 2008] C. Sprunk. Planning motion trajectories for mobile robots using splines.
University of Freiburg, http://www.informatik.uni-freiburg.de/~lau/students/

Sprunk2008.pdf, 2008.

[Stachniss and Burgard, 2002] C. Stachniss and W. Burgard. An integrated approach to goal-
directed obstacle avoidance under dynamic constraints for dynamic environments. In Proc.

IEEE/RSJ International Conference on Intelligent Robots and System, volume 1, pages 508–
513, 30 Sept.–5 Oct. 2002.

[Stachniss et al., 2012] C. Stachniss, U. Frese, and G. Grisetti. OpenSLAM website. Online:
http://openslam.org, 2012.

[Stentz, 2004] A. Stentz. Optimal and efficient path planning for partially-known environments.
In IEEE International Conference on Robotics and Automation (ICRA), pages 3310–3317,
San Diego, CA, USA, May 2004.

[Stewart, 2002] J. Stewart. Calculus: Early Transcendentals. Brooks Cole, Pacific Grove, 5th
edition, 2002.

[Tang et al., 2011] M. Tang, Y. J. Kim, and D. Manocha. CCQ: Efficient local planning using
connection collision query. In Algorithmic Foundations of Robotics IX, volume 68 of Springer

Tracts in Advanced Robotics (STAR). Springer Berlin / Heidelberg, 2011.

[Tao et al., 2011] T. Tao, S. Tully, G. Kantor, and H. Choset. Incremental construction of the
saturated-GVG for multi-hypothesis topological SLAM. In IEEE International Conference

on Robotics and Automation (ICRA), pages 3072–3077, May 2011.

[Taylor and Kleeman, 2004] G. Taylor and L. Kleeman. A multiple hypothesis walking person
tracker with switched dynamic model. In Proc. of the Australasian Conference on Robotics

and Automation, Canberra, Australia, 2004.

167

Bibliography

[Therón et al., 2003] R. Therón, V. Moreno, B. Curto, and F. J. Blanco. Configuration space
of 3D mobile robots: Parallel processing. In 11th Intl. Conf. on Advanced Robotics, volume
1–3, Coimbra, Portugal, June 2003.

[Thrun and Bücken, 1998] S. Thrun and A. Bücken. Learning maps for indoor mobile robot
navigation. Artificial Intelligence, 99:21–71, 1998.

[Thrun, 2001] S. Thrun. A probabilistic online mapping algorithm for teams of mobile robots.
International Journal of Robotics Research, 20(5):335–363, 2001.

[Verwer et al., 1989] B. J. H. Verwer, P. W. Verbeek, and S. T. Dekker. An efficient uniform
cost algorithm applied to distance transforms. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 11(4), April 1989.

[Walton and Meek, 2005] D. Walton and D. Meek. A controlled clothoid spline. Computers &

Graphics, 29(3):353–363, June 2005.

[Wilde, 2009] D. K. Wilde. Computing clothoid segments for trajectory generation. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), St. Louis,
MO, USA, October 2009.

[Wise and Bowyer, 2000] K. D. Wise and A. Bowyer. A survey of global configuration-space
mapping techniques for a single robot in a static environment. International Journal of

Robotics Research (IJRR), 19(8):762–779, 2000.

[Wu et al., 2006] X. J. Wu, J. Tang, and K. H. Heng. On the construction of discretized config-
uration space of manipulators. Robotica, 25:1–11, 2006.

[Wurm and Hornung, 2012] K. M. Wurm and A. Hornung. OctoMap, an efficient probabilistic
3D mapping framework based on octrees. http://octomap.github.com, 2012.

[Wurm et al., 2010] K. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Burgard. Oc-
tomap: A probabilistic, flexible, and compact 3D map representation for robotic systems. In
ICRA Workshop on Best Practice in 3D Perception and Modeling for Mobile Manipulation,
Anchorage, AK, USA, May 2010.

[Zajdel et al., 2005] W. Zajdel, Z. Zivkovic, and B. Kröse. Keeping track of humans: Have
I seen this person before? In IEEE International Conference on Robotics and Automation

(ICRA), Barcelona, Spain, April 2005.

168

Bibliography

[Zhang and Manocha, 2008] L. Zhang and D. Manocha. An efficient retraction-based RRT
planner. In IEEE International Conference on Robotics and Automation (ICRA), Pasadena,
CA, USA, May 2008.

[Ziegler and Stiller, 2010] J. Ziegler and C. Stiller. Fast collision checking for intelligent vehicle
motion planning. In IEEE Intelligent Vehicles Symposium, San Diego, CA, USA, June 2010.

[Ziegler et al., 2008] J. Ziegler, M. Werling, and J. Schröder. Navigating car-like robots in
unstructured environments using an obstacle sensitive cost function. In IEEE Intelligent

Vehicles Symposium (IV 08), pages 787–791, Eindhoven, Netherlands, June 2008.

169

