
Techniques for Robot Motion Planning
in Environments with Deformable Objects

Barbara Frank

Technische Fakultät
Albert-Ludwigs-Universität Freiburg im Breisgau

Dissertation zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

Betreuer: Wolfram Burgard

April 2013

Techniques for Robot Motion Planning
in Environments with Deformable Objects

Barbara Frank

Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften
Technische Fakultät, Albert-Ludwigs-Universität Freiburg im Breisgau

Dekan: Prof. Dr. Yiannos Manoli
Erstgutachter: Prof. Dr. Wolfram Burgard
Zweitgutachter: Prof. Dr. Matthias Teschner

Tag der Disputation: 08.04.2013

Zusammenfassung

Mobile Roboter erfreuen sich in den letzten Jahren immer größerer Beliebtheit und werden
heute schon für eine Vielzahl von Aufgaben eingesetzt. Als Beispiele seien Service-Roboter
oder das Google-Auto genannt. Diese Systeme müssen in der Lage sein, ihre Bewegungen
zu planen, um andere sinnvolle Aufgaben zu erfüllen. Dies wiederum setzt ein Modell der
Umgebung voraus. Die Umgebung wird üblicherweise als statisch beziehungsweise als nicht
verformbar angenommen. In der echten Welt kommen jedoch auch verschiedene verform-
bare Hindernisse vor, beispielsweise Vorhänge oder Pflanzen, die einem Roboter den Weg
versperren können. Ist ein Roboter in der Lage, solche Verformungseigenschaften bei der
Pfadplanung zu berücksichtigen, kann er ein Ziel möglicherweise viel effizienter erreichen,
zum Beispiel, indem er den Vorhang beiseite schiebt anstatt einen Umweg zu nehmen. Die
Berücksichtigung solcher Verformungseigenschaften erhöht jedoch die Komplexität sowohl
der Umgebungsmodellierung als auch des Pfadplanungsproblems.

Ziel dieser Arbeit ist es, zu erforschen, wie Roboter sich in Umgebungen mit verformbaren
Hindernissen zurechtfinden können. In diesem Zusammenhang ergeben sich verschiedene
interessante Fragestellungen:

(1) Wie kann ein Roboter etwas über die Verformungseigenschaften von Objekten lernen?

(2) Wie kann ein Roboter Verformungen von Hindernissen bei der Bewegungsplanung
möglichst effizient berücksichtigen?

(3) Wie kann ein Roboter geplante Bewegungen sicher und zuverlässig ausführen?

Wir stellen Techniken und Ansätze vor, welche diese Fragestellungen mit echten Robotern
lösen können.

Um Verformungsmodelle von Objekten zu bestimmen, wurde ein Manipulationsroboter mit
einer Tiefenkamera und einem Kraft-Momenten-Sensor ausgestattet. Der Roboter kann ein
Objekt aus verschiedenen Blickwinkeln beobachten und die erhaltenen Scans in ein drei-
dimensionales Modell des Objekts registrieren. Um die Elastizitätsparameter eines Objekts
zu bestimmen, interagiert der Roboter mit dem Objekt, und misst gleichzeitig die auf das
Objekt ausgeübte Kraft sowie die daraus resultierende Verformung. Diese Beobachtungen
werden mit der Simulation eines Finite-Element-Modells verglichen. Die Parameter des
Modells werden dabei mittels eines Gradienten-Verfahrens optimiert, so dass der Fehler
zwischen simulierter Verformung und tatsächlich beobachteter Verformung minimiert wird.

Die gelernten Verformungsmodelle können in einer physikalischen Simulation eingesetzt
werden, um die Auswirkungen auf Hindernisse beziehungsweise die Kosten verschiede-
ner Roboterbewegungen in der Pfadplanung zu berücksichtigen. Solche Simulationen sind
jedoch sehr zeitaufwendig und für die Planung eines Pfades werden üblicherweise viele
Alternativen in Betracht gezogen. Ein Pfadplanungsystem, das auf echten Robotern ein-
gesetzt wird, sollte in der Lage sein, Pfadanfragen möglichst effizient zu beantworten, um
eine schnelle Reaktion des Roboters auf neue Aufgaben zu ermöglichen. Daher kommt die
Durchführung von Simulationen zur Anfragezeit nicht in Frage. Um die Bewegungspla-
nung effizienter zu gestalten, führen wir Kostenfunktionen für verformbare Objekte ein. Wir
nehmen an, dass Objekte zwar verformt aber nicht bewegt werden können, wie beispiels-
weise ein Vorhang, der an der Vorhangstange befestigt ist. Außerdem berücksichtigen wir
nur Interaktionen zwischen dem Roboter und einzelnen Hindernissen, aber keine Interak-
tionen zwischen verschiedenen Hindernissen. Dies ermöglicht uns die Vorberechnung einer
Kostenfunktion für jedes Objekt, welche die Verformungskosten von Roboter-Trajektorien
relativ zum Objekt modelliert. Als Maß für die Verformungskosten betrachten wir dabei
die potentielle Energie des Objektes und wir verwenden Gauß-Prozesse, um Kostenfunk-
tionen zu modellieren. Dieser nicht-parametrische Ansatz zur Regression modelliert eine
Wahrscheinlichkeitsverteilung über Funktionen auf Basis einer Menge von Trainingsdaten.
Die Trainingsdaten sind in unserem Fall Roboter-Trajektorien und die zugehörigen Verfor-
mungskosten. Diese können in einem Vorberechnungsschritt durch entsprechende Simu-
lationen erzeugt werden. Bei der Suche nach einem Pfad zu einem Zielpunkt können die
Verformungskosten beliebiger Trajektorien durch Regression bestimmt werden.

Wir stellen einen Planungsansatz vor, der auf Probabilistic Roadmaps basiert. In diesem
sampling-basierten Ansatz werden erlaubte Roboterkonfigurationen in einer Umgebung und
mögliche Pfade zwischen diesen Konfigurationen durch einen Graphen repräsentiert. Wir
verwenden die vorgestellten Kostenfunktionen, um die Verformungskosten von Pfadseg-
menten in der Roadmap zu evaluieren. Ein Weg zu einem Zielpunkt kann dann durch eine
Graphensuche bestimmt werden. In unserer Anwendung wird der Pfad mit dem besten Ver-
hältnis zwischen Verformungskosten und Wegekosten bestimmt.

Nachdem ein Weg zu einem vorgegebenen Zielpunkt bestimmt wurde, muss dieser vom
Roboter ausgeführt werden. Dabei ergeben sich neue Herausforderungen. Zum einen muss
der Roboter mit Unsicherheiten in seiner Positionsschätzung oder mit möglichen Abwei-
chungen von der geplanten Trajektorie umgehen können. Zum anderen kann der Roboter
dynamischen Hindernissen begegnen, die nicht in seinem Modell enthalten sind. Dieses

Problem spielt eine wichtige Rolle in Umgebungen, die auch von Menschen bevölkert sind.
Sensor-basierte Ansätze zur Kollisionsvermeidung sorgen in nicht-verformbaren Umgebun-
gen für eine sichere Pfadausführung. Auf verformbare Umgebungen lässt sich ein solcher
Ansatz jedoch nicht direkt übertragen, da Kontakt mit verformbaren Hindernissen durchaus
erlaubt ist. Der Roboter muss also in der Lage sein, erlaubte Kollisionen mit Hindernis-
sen, die verformt werden müssen, von bevorstehenden Kollisionen mit nicht-verformbaren
Hindernissen zu unterscheiden. Wir stellen ein probabilistisches Sensormodell vor, wel-
ches, gegeben die Position und aktuelle Beobachtung des Roboters, die Wahrscheinlichkeit
bestimmt, dass eine Messung zu einem verformbaren Hindernis gehört. Dieses Modell er-
möglicht dem Roboter, seine Sensor-Messungen entsprechend zu interpretieren und Pfade
sicher und zuverlässig auszuführen.

Das von uns entwickelte Planungssystem wurde auf zwei unterschiedlichen Robotern einge-
setzt – auf einem Manipulationsroboter mit sieben Freiheitsgraden und auf einem Radrobo-
ter. Wir zeigen in verschiedenen Anwendungsbeispielen, dass Roboter mit unserem Ansatz
erfolgreich in Umgebungen mit verformbaren Hindernissen navigieren können und auch
Ziele erreichen können, für die bisherige Planer keine Lösung finden.

Abstract

The ability to plan motions is essential for autonomous robots that accomplish high-level
tasks. Planning, in turn, requires an appropriate model of the environment. Real-world en-
vironments contain various deformable obstacles, for instance curtains or plants, and a robot
can possibly deform these objects in order to reach a goal. This is relevant, for instance, for
household and service robots, or for robotic surgical assistants. Most planning approaches,
however, assume the environment to be rigid, since taking into account object deformations
considerably increases the complexity of the modeling as well as the planning problem.

In this thesis, we investigate how robots can find their way around in environments contain-
ing deformable obstacles. We study several subproblems that arise in this context, namely
(1) the acquisition of deformation models, (2) efficient planning techniques considering
these models, and (3) a safe and reliable execution of planned motions.

We first present an approach that allows a robot to model deformable objects. The robot
interacts with objects and collects data of the resulting deformations. Material parameters
are estimated by optimizing a finite element model with respect to the observations. The
learned deformation models can then be used in physical simulations to evaluate the effects
of different robot motions. We present a planning framework that optimizes the trade-off

between motion costs and the costs introduced by deforming objects. Carrying out the cor-
responding simulations during planning time, however, is time-consuming. Therefore, we
present an approach to model object deformation cost functions based on Gaussian process
regression, which can be efficiently evaluated when answering path queries. For stationary
objects, the simulations of robot motions to generate data for regression can be done in a
preprocessing step. Finally, when executing a planned motion, robots need to be prepared
to avoid collisions with unforeseen obstacles based on their sensor measurements. This is
of particular importance in environments populated by humans. When deforming an object,
however, contact is inevitable. We therefore introduce a probabilistic sensor model for de-
formable objects that enables the robot to distinguish allowed contacts from collisions that
need to be avoided. In this way, we ensure a safe and successful path execution.

We implemented our approaches on real robots and applied the developed planning frame-
work to different platforms, a wheeled robot and a manipulator with many degrees of free-
dom. In several experiments, we demonstrated that our robots are able to successfully nav-
igate in environments with deformable objects and that they can accomplish tasks going
beyond the capabilities of traditional planners designed for rigid environments.

Acknowledgments

Writing a PhD thesis is an enormous project and would not have been possible without the
help and encouragement of many people, whom I would like to thank with all my heart.

First of all, I would like to thank my supervisor Wolfram Burgard for giving me the great
opportunity to pursue my PhD in his lab, for the chance to work on an exciting project and
for providing an excellent working environment. I much appreciate how he takes care of all
his students and how he always makes time to discuss progress and open problems and to
provide valuable ideas, suggestions and encouragement.

I am very thankful to Cyrill Stachniss for being such a committed co-supervisor and a con-
stant source of inspiration, for always taking time to discuss problems and possible solu-
tions, for providing feedback, and for finishing papers late at night, all in addition to being
a great friend. I would like to thank him for the many things I learned under his guidance.

I would like to thank Matthias Teschner for the great collaboration within our joint research
project, for many enlightening discussions, particularly in the beginning of my work in the
field, and for agreeing to be my co-examiner. I would also like to thank Maren Bennewitz
and Bernhard Nebel for taking time to be on my thesis committee.

I would like to thank my project partners from the computer graphics group for providing
me with their great simulation engine and letting me in on its secrets. In particular, I would
like to thank Markus Becker and Rüdiger Schmedding for many hours of discussions and
experiments and our fruitful collaboration that resulted in several joint publications. Many
thanks also to Sebastian Schulz for porting the simulation framework to Linux.

Many thanks go to Jürgen Sturm for his ideas, enthusiasm and technical expertise regarding
the design and construction of our mobile manipulation robot Zora. Without him, this robot
would probably not be moving a limb. I would also like to say thanks to the great Hiwis
Lionel Ott and Nichola Abdo for keeping the robot up and running, Jörg Müller for always
coming up with the right tools to figure out hardware problems and for going out of his way
to fix them, furthermore Jonas Rist and Benedikt Frank for their help with various hardware
issues. A special thanks goes to Axel Rottmann for sharing his expertise and his developed
software framework on Gaussian process regression.

I would like to say thanks to Patrick Pfaff, Maren Bennewitz, Jeff Trinkle, and Marija
Dakulović for being great office mates, for sharing fun and work-intensive times and the
occasional chocolate.

I would like to thank all my colleagues and friends in the AIS lab for the great and open-
minded atmosphere, for sharing ideas and nice pieces of software, for countless discussions
about research and all the rest, and for making my PhD time such an enjoyable experience.
I really enjoyed our tea and fruit breaks, barbecues, table tennis matches, pizza-sessions
before paper deadlines, and our trips to conferences and workshops in interesting places all
over the world.

Many thanks to Susanne Bourjaillat, Dagmar Sonntag, Michael Keser, and Peter Winterer
for their support with all sorts of administrative and technical issues. They made life a lot
easier.

Many thanks go to my “scientific reviewers”, Daniel Mader, Christoph Sprunk, Thomas
Hippler, Maximilian Beinhofer, Michael Ruhnke, Henrik Kretzschmar, Cyrill Stachniss,
Markus Kuderer, Maren Bennewitz, Katharina Frank, Marei Hopert, Jeff Trinkle, Felix En-
dres, Nichola Abdo, and Jed Williams for carefully proof-reading earlier versions of this
document and providing valuable comments and suggestions. All remaining errors and ob-
scurities are entirely up to me.

A special thanks goes to my friends for always sharing my joys and sorrows and for keeping
me down to earth. Finally, I would like to express my deepest gratitude to my family for
their unconditional love and support.

This work has been supported by the German Research Foundation (DFG) under contract
number SFB-TR8. Their support is gratefully acknowledged.

Contents

1 Introduction 1
1.1 Contributions of this Thesis . 5
1.2 Publications . 6
1.3 Collaborations . 7

2 Overview 9

3 Background 11
3.1 Deformation Simulation . 11

3.1.1 Collision Detection . 12
3.1.2 Computation of Contact Forces 13
3.1.3 Time Integration . 17

3.2 Deformation Model . 18
3.2.1 Elasticity Parameters . 19
3.2.2 Linear Finite Element Approximation 21

3.3 Summary . 25

4 Learning Deformation Models 27
4.1 Data Acquisition . 28

4.1.1 The Robotic System . 28
4.1.2 Geometric Models for Simulation 29
4.1.3 Deformation of Objects . 34

4.2 Parameter Estimation . 35
4.2.1 FEM Simulation . 37
4.2.2 Error Function . 37
4.2.3 Parameter Optimization . 38

4.3 Limitations of the Deformation Model . 40
4.4 Experimental Results . 42

4.4.1 Simulation Experiments . 42
4.4.2 Parameter Estimation for Real Objects 44

4.5 Summary . 53

5 Deformation Cost Functions for Motion Planning 55
5.1 Deformation Costs of a Robot Trajectory 55
5.2 Object Deformation Cost Functions . 56

5.3 Modeling Deformation Cost Functions with Gaussian Processes 59
5.3.1 Covariance Functions . 60
5.3.2 Predictions with the GP model . 63
5.3.3 Learning a GP model . 65

5.4 Efficient Regression by Problem Decomposition 66
5.5 Experimental Results . 69

5.5.1 Deformation Cost Function Example 71
5.5.2 GP Training and Number of Training Samples 73
5.5.3 Number of Nearest Neighbors . 74
5.5.4 Modeling Uncertainty . 75
5.5.5 Statistical Evaluation . 80
5.5.6 Computation Time . 80

5.6 Summary . 82

6 Motion Planning for Real Robots 83
6.1 The Motion Planning Framework . 84

6.1.1 Path Costs . 86
6.1.2 Roadmap Deformation Costs . 86

6.2 Planning for Manipulators in 3D . 90
6.3 Robot Navigation in 2D . 93
6.4 Sensor-based Collision Avoidance for Non-deformable Objects 96

6.4.1 Learning a Sensor Model for Deformable Objects 97
6.4.2 Classifying Sensor Measurements and Avoiding Collisions 98

6.5 Experimental Results . 100
6.5.1 Arm Planning in 3D . 100
6.5.2 Robot Navigation in 2D . 104
6.5.3 Computation Time . 107

6.6 Summary . 109

7 Related Work 111
7.1 Deformable Modeling and Parameter Estimation 111

7.1.1 Deformation models . 111
7.1.2 Parameter estimation . 112

7.2 Robot Motion Planning and Learning . 115
7.2.1 Robot Motion Planning . 115
7.2.2 Motion Planning with Deformable Objects 116
7.2.3 Robot Learning with Gaussian Processes 118

8 Discussion and Outlook 121
8.1 Concluding Remarks . 125

Bibliography 127

1 Introduction

Autonomous intelligent robots operating in real-world environments are required to plan
their motions and reason about their actions. Planning and reasoning, in turn, require an
appropriate model of the environment. Traditionally, the environment is assumed to be rigid
and obstacles are to be avoided by the robot. This assumption is reasonable for many appli-
cations, and approaches have been developed to model such environments, for example us-
ing simultaneous localization and mapping (SLAM) techniques, and to plan the motions of
agents therein. Applications include service robots operating in indoor environments. One
successful example is the autonomous interactive museum tour-guide Rhino (Burgard et al.,
2000); autonomous agents operating in urban environments include the Google driverless
car (Guizzo, 2011), or the European robotic pedestrian assistant Obelix (Kümmerle et al.,
2013) that successfully navigated in crowded downtown Freiburg.

In real-world environments, many objects a robot encounters are non-rigid, and considering
the deformability of objects greatly broadens the robot’s options to achieve goals. Consider,
for instance, obstacles, such as curtains, or plants. A robot that knows that the curtain can
be easily deformed or that the leaves of a plant can be gently bent away, can possibly avoid
large detours when moving to a goal location. It can also be able to reach a goal that would
be blocked if all objects were considered as rigid obstacles. In these examples, the robot can
benefit from taking into account object deformations instead of simply avoiding these ob-
stacles. A similar problem arises, for instance, in the context of robotic surgical assistants.
Here, the deformations of tissues and organs need to be considered and their damage and
deformation must be minimized when planning the motions of a surgical tool. This problem
has been addressed, for instance, in the works of Alterovitz et al. (2009) and Patil et al.
(2011). Beyond motion planning, other interesting applications considering the deforma-
tion properties of objects are conceivable. A robot might have to grasp deformable objects
with the right amount of force, as considered in the work of Gopalakrishnan and Goldberg
(2005), or bring them into desired deformed configurations. It can be required to manipu-

2 Chapter 1: Introduction

late deformable objects, for instance, when tying knots (Moll and Kavraki, 2006; Saha and
Isto, 2007) or when folding laundry (Cusumano-Towner et al., 2011; Maitin-Shepard et al.,
2010).

In this thesis, we study the problem of robot motion planning in environments with de-
formable objects. Figure 1.1 illustrates the two key questions that arise in this context. To
begin with, a robot needs to be able to learn about the deformation properties of objects.
Furthermore, it must be able to consider potential object deformations when planning its
motions. In our example, the robot wants to choose a motion that minimizes the deforma-
tions of the curtains.

Considering deformable objects when planning a robot’s actions requires an appropriate
deformation model. Such a model includes the elastic properties of the material, besides the
geometry of the object and can be used to perform simulations of different robot actions and
to evaluate their outcome. In recent years, deformation simulations and underlying physical
models have been investigated in the computer graphics community. Applications range
from the animation of virtual characters and environments in movies and games, over haptic
rendering to surgery simulations. Popular underlying physical deformation models include
mass-spring models and finite element models based on continuum elasticity theory. One
important question in this context is how to determine the elasticity parameters of these
deformation models. To some extent, they can be hand-tuned such that the simulation leads
to visually plausible behavior. However, this is a tedious task for a user, and in real-world
applications, such as surgical simulations, an accurate deformation model is required. To
determine the elasticity parameters of objects, some sort of interaction with them is required
to observe their deformation behavior when subject to external forces. Different approaches
that address the problem of estimating material parameters based on interaction have been
presented. Kauer et al. (2002), for instance, investigated complex deformation models of
biological tissues for use in surgical simulations. To acquire data of tissue deformations,
they developed an aspiration instrument that is operated by a human surgeon. Robots have
also been used to interact with objects and to acquire data necessary to estimate material
parameters. For example, Lang et al. (2002) discuss the acquisition of deformation models
of real objects with a robotic facility employing different sensors and actuators. In this
thesis, we investigate how to determine appropriate models with a manipulation robot that
is able to interact with objects, as indicated in Figure 1.1a. Our focus is on as autonomous
a model acquisition as possible, the robot should be able to rely on its actuators and sensors
to make the necessary observations for estimating the material parameters of the object.

3

(a) (b)

Can I pass
through?

How soft
is this?

Figure 1.1: The two central questions we address in this thesis: how can a robot learn about
the deformation properties of objects and how can it incorporate this knowledge
when planning its motions?

Considering deformable objects increases the complexity of the planning problem, as poten-
tial object deformations introduce many new degrees of freedom. In contrast to traditional
planners for static environments, the state space to be considered not only consists of in-
dependent robot configurations – object deformations depend on the path of the robot. As
Figure 1.1b illustrates, the planner must reason about the question: does a path lead to object
deformations and if so, how strenuous is its execution for the robot and the object? Given a
deformation model of the obstacle, this question can be answered using simulations. Plan-
ning approaches following this idea have been investigated by Lamiraux and Kavraki (2001)
in the context of deformable robots, or by Rodríguez et al. (2006) in the context of com-
pletely deformable environments. Computing a path to a goal typically involves evaluating
many alternatives and choosing one that optimizes a cost function for the robot, considering,
for instance, exertion of forces, travel length, or a trade-off between different costs. Since
the corresponding simulations are time-consuming, answering such a path query requires
significantly more computation time than in static environments, the approaches mentioned
above report computation times of ten minutes and more for a single path query. For robots
moving in real-world settings, however, a quick response to new tasks is desired. To achieve
this, we investigate techniques to avoid simulations during planning time and to represent
the expected costs for a path resulting from object deformations using regression.

4 Chapter 1: Introduction

With a model of the environment and deformable objects and a planner considering these
models, the foundations for autonomous navigation in such environments are laid. Once a
plan is determined, however, the robot still needs to execute the plan to reach a goal and to
accomplish a task. For real robots, this poses a set of additional challenges, as this process is
subject to different types of uncertainty, concerning, for instance, the actual position of the
robot and the deviation from the planned trajectory, but also its model and the appearance
of new, possibly dynamic obstacles.

In the context of wheeled robots navigating in rigid environments, approaches to pose esti-
mation, localization, and collision avoidance have been presented that guarantee a safe and
reliable execution of a planned trajectory. Applying them to deformable environments, how-
ever, is not straight-forward. Localization approaches, for instance, rely on the assumption
that observations of the robot only depend on its actual position. If object deformations are
involved, the observations in a given position also depend on past configurations. In par-
ticular, the problem of collision avoidance needs to be reconsidered: object deformations
necessarily imply contact between the robot and the object. At the same time, the robot
might encounter dynamic obstacles, such as humans populating the environment. Colli-
sions with such obstacles are to be avoided. Therefore, in the context of path execution,
we address the question of how to interpret the robot’s sensor measurements and how to
distinguish observations of deformable objects from other observations. This is required to
ensure safe and efficient navigation.

These considerations can be summarized in the following research questions that we inves-
tigate in this thesis:

• How can a robot learn about the deformation properties of objects?

• How can a robot efficiently consider object deformations when planning its motions?

• How can a robot successfully navigate among deformable objects?

This thesis addresses these three research questions and provides solutions to all of them.
First, it develops an approach to determine the elasticity parameters of objects and a motion
planning framework that considers learned deformation models to optimize the trade-off

between travel costs and object deformations. In particular, our focus is on an efficient rep-
resentation of deformation costs that can be expected along a robot trajectory. Second, for
the assumption of stationary deformable objects, we investigate object-specific deformation
cost functions that can be precomputed and thus avoid time-consuming simulations when

1.1 Contributions of this Thesis 5

planning motions to a given goal. Finally, we study applications of the developed planner
on different types of robots acting in real-world environments.

1.1 Contributions of this Thesis

We developed several approaches addressing individual aspects that need to be considered
when realizing a navigation system for robots acting in real-world environments with de-
formable objects. These include environment modeling, planning, and their application to
different robots. Our contributions can be summarized as follows.

Deformation model learning

We present an approach to learn deformation models of real objects with a robotic manip-
ulator that interacts with deformable objects and is equipped with sensors to measure their
deformations and the deformation forces. The material parameters of an object are deter-
mined by fitting the observations of the robot to a linear finite element model.

Deformation cost functions for planning

We present an approach to model the costs of deformations that can be expected on a trajec-
tory using nonparametric Gaussian process regression. We assume objects to be deformable
but stationary, which allows us to interpret the deformation costs associated with an object
as a function of the robot trajectory. Simulations can be carried out in a preprocessing step to
generate samples that are used for training the Gaussian process. The efficiency of the mo-
tion planner is increased by replacing time-consuming simulations with efficient Gaussian
process evaluations.

Motion planning for real robots

We demonstrate the applicability of our developed planning system on two different robotic
platforms: a robotic manipulator with seven degrees of freedom and a wheeled robot navi-
gating in indoor environments. Furthermore, we address the problem of collision avoidance

6 Chapter 1: Introduction

arising when wheeled robots navigate in environments populated by humans. We present
an approach that enables a robot to interpret its sensor measurements and to distinguish
between allowed collisions with deformable objects and collisions with dynamic obstacles
based on its sensor measurements when moving along a trajectory.

1.2 Publications

The work presented in this thesis is based on the following publications given in chronolog-
ical order.

• B. Frank, C. Stachniss, N. Abdo, and W. Burgard. Efficient motion planning for
manipulation robots in environments with deformable objects. In Proc. of the IEEE

Int. Conf. on Intelligent Robots and Systems (IROS), 2011a.

• B. Frank, C. Stachniss, N. Abdo, and W. Burgard. Using Gaussian process regression
for efficient motion planning in environments with deformable objects. In Proc. of the

AAAI-11 Workshop on Automated Action Planning for Autonomous Mobile Robots

(PAMR), 2011b.

• B. Frank, R. Schmedding, C. Stachniss, M. Teschner, and W. Burgard. Learning the
elasticity parameters of deformable objects with a manipulation robot. In Proc. of the

IEEE Int. Conf. on Intelligent Robots and Systems (IROS), 2010a.

• B. Frank, R. Schmedding, C. Stachniss, M. Teschner, and W. Burgard. Learning the
elasticity parameters of deformable objects with a manipulation robot. In Proc. of

the Workshop on Advanced Reasoning with Depth Cameras at Robotics: Science and

Systems Conference (RSS), 2010b.

• B. Frank, C. Stachniss, R. Schmedding, M. Teschner, and W. Burgard. Real-world
robot navigation amongst deformable obstacles. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), 2009.

• B. Frank, M. Becker, C. Stachniss, M. Teschner, and W. Burgard. Efficient path plan-
ning for mobile robots in environments with deformable objects. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), 2008a.

• B. Frank, M. Becker, C. Stachniss, M. Teschner, and W. Burgard. Learning cost
functions for mobile robot navigation in environments with deformable objects. In

1.3 Collaborations 7

Workshop on Path Planning on Cost Maps at the IEEE Int. Conf. on Robotics &

Automation (ICRA), 2008b.

1.3 Collaborations

This thesis was carried out within the interdisciplinary transregional collaborative research
center Spatial Cognition: Reasoning, Action, Interaction. Fruitful collaborations within
research project A2-[ThreeDSpace] with Rüdiger Schmedding and principal investigators
Prof. Dr. Matthias Teschner and Prof. Dr. Wolfram Burgard resulted in several joint publi-
cations. The approach to deformation model learning (Chapter 4) and their application to
robot navigation (Chapter 6) were developed in close collaboration with Rüdiger Schmed-
ding. The approach to modeling deformation cost functions using Gaussian process regres-
sion (Chapter 5) was investigated jointly with Axel Rottmann and Cyrill Stachniss. The
roadmap planner for manipulation planning (Chapter 6) was jointly developed with Nichola
Abdo in the context of his student project. The motion planning approach and the sensor
model for deformable objects (Chapter 6) are based on joint work with Cyrill Stachniss.

2 Overview

In this chapter, we give an overview of our approach to motion planning in environments
with deformable objects and introduce the individual parts of the system that are discussed
in the subsequent chapters.

First of all, the robot needs to acquire an appropriate deformation model of an obstacle that
allows for simulations of the interactions with the robot. Such a model consists of a geo-
metric description together with a set of material parameters that describe how the object
deforms under external forces. Our robot is equipped with a force sensor and a depth cam-
era; it interacts with the object and measures the surface deformations and the corresponding
deformation forces. The geometric model is acquired with the depth camera and the ma-
terial parameters are determined using an inverse finite element method by optimizing the
deformation parameters of the finite element model such that it best fits the observations
of the robot. After introducing the underlying physical model in Chapter 3, we present our
approach to acquire such models with a manipulation robot in Chapter 4.

Our motion planner is based on the probabilistic roadmap framework introduced by Kavraki
et al. (1996) and allows for efficient answering of multiple path queries in a static environ-
ment. In our application, the cost function of the planner optimizes the trade-off between
travel and deformation costs. When generating a motion plan for the robot, the learned
deformation models can be used in a finite element simulation to evaluate the costs of de-
forming objects for different robot trajectories. Finite element simulations, however, are
time-consuming, and typically, thousands of different alternative trajectories must be evalu-
ated when searching for a motion plan to a specific goal point.

To improve the efficiency of the planner, we present an approach to learn object-dependent
deformation cost functions. We assume that the environment is static and does not change
on its own over time, and that obstacles can indeed be deformed but cannot be moved by
the robot. Furthermore, we only consider interactions between the robot and obstacles and

10 Chapter 2: Overview

Generate training
examples using

FEM simulations

Learn object
deformation

model

Construct
roadmap

Train GP to
predict object

deformation costs

Roadmap cost
by GP regression

Planner that trades
off travel– and

deformation costs

Figure 2.1: Overview of our planning system: preprocessing steps to determine an appropri-
ate model required for the planner (blue) and online steps to compute a motion
plan to a specific goal (red).

neglect interactions between different obstacles. This allows us to generate a set of train-
ing examples of robot trajectories that lead to object deformations offline by carrying out
corresponding finite element simulations. We model a deformation cost function for each
object individually using Gaussian process (GP) regression. The samples of simulated robot
trajectories are used to train a GP model and to estimate the deformation costs of new tra-
jectories generated by the planner in an efficient way without the need for time-consuming
simulations during runtime. This approach is presented in Chapter 5.

The individual steps to generate appropriate models and their interplay to obtain a working
planning system are illustrated in Figure 2.1. We finally present two implementations of our
planning system on a wheeled robot and a manipulator in Chapter 6.

3 Background

The basis of our planner, which considers non-rigid obstacles in the environment, is a simu-
lation system that allows us to compute the interactions between the robot and the obstacles.
The simulation system is required to simulate robot motions, determine potential collisions
with obstacles that occur during its movements, compute appropriate collision forces and the
resulting deformations of objects. An underlying deformation model describes how objects
deform under applied forces depending on their material properties.

As a simulation environment, we use DefCol Studio,1,2 which implements different methods
for modeling deformable objects, handling collisions between objects, and integrating the
dynamic behavior of the objects over time. In the following, we describe the parts of the
simulation system that are of interest to our approach and go into details of the underlying
deformation model. We make use of the simulation system not only when planning robot
motions, but in a first step also when learning deformation models of real objects that the
robot could encounter as obstacles in its environment.

3.1 Deformation Simulation

For the dynamic simulation of object deformations, first of all, an appropriate object rep-
resentation is required. In DefCol Studio, objects are represented by a tetrahedral mesh.
Such a volumetric mesh models the entire object including its interior, in contrast to a sur-
face mesh that only represents the boundary of an object. The nodes of the tetrahedrons
are furthermore considered as mass points of the object. Figure 3.1 illustrates this repre-
sentation. Based on this geometric description, different deformation models can be used,

1B. Heidelberger: DefCol Studio – Interactive deformable modeling framework. http://www.beosil.
com/projects.html#DefColStudio, last accessed November 13, 2012.

2M. Teschner: Defcol Studio 1.1.0. http://cg.informatik.uni-freiburg.de/software.htm, last
accessed November 13, 2012.

http://www.beosil.com/projects.html#DefColStudio
http://www.beosil.com/projects.html#DefColStudio
http://cg.informatik.uni-freiburg.de/software.htm

12 Chapter 3: Background

for instance, mass-spring systems, in which the nodes of the tetrahedrons are connected by
virtual springs (Teschner et al., 2004), meshless deformation models (Müller et al., 2005),
or finite element models (Müller and Gross, 2004), which approximate a continuous de-
formable object by a finite set of volumetric elements, tetrahedrons in this case. We use the
finite element method to model the deformation behavior of objects and go into details on
how to compute deformations of an object given external forces in Section 3.2.

In the following, we discuss different aspects of the dynamic simulation of objects that are
necessary to compute interactions between objects. The simulation integrates the motions of
objects over time and proceeds as follows: In each time step, it computes the deformations
of objects and their unconstrained motions, then it detects collisions and computes contact
forces for the colliding points. Finally, it constrains the motions of the object points such
that a collision-free state is maintained.

3.1.1 Collision Detection

For a realistic simulation of the interactions between the robot and deformable objects, an
efficient collision detection algorithm is required. In our framework, we employ the spatial
subdivision scheme of Teschner et al. (2003). The key idea of this approach is to implicitly
discretize R3 into small uniform 3D grid cells and to map the elements contained in the
grid cells to a hash table. Consequently, only elements with the same hash key need to be
checked for collisions.

The collision detection algorithm proceeds by first mapping all vertices of all elements to
the hash table. Second, all tetrahedrons are mapped to the hash table by inserting all grid
cells that intersect with the axis-aligned bounding box of the tetrahedron. In each case,
the hash key is computed from the coordinates of the corresponding grid cell. Finally, all
vertices and tetrahedrons with the same hash index are tested for intersection unless a vertex
is part of a tetrahedron. The actual intersection test computes barycentric coordinates of
a point with respect to a tetrahedron, which directly shows whether a point lies within a
tetrahedron. Thus, collisions and self-collisions can be detected. The performance of this
approach depends on different parameters, such as hash table size, hash function, and grid
cell size. Teschner et al. (2003) investigated and optimized these parameters and showed that
this collision detection method allows for the interactive simulation of objects consisting of
20,000 tetrahedrons and 6,000 vertices at 15 Hz.

3.1 Deformation Simulation 13

Figure 3.1: Object models in the simulation environment: a textured high-resolution sur-
face representation is used for visualization and a discretization into a coarse
volumetric mesh is used to compute the deformations.

Since space is usually filled sparsely and non-uniformly, this method requires less memory
than an explicit discretization, for instance, based on octrees (Bandi and Thalmann, 1995) or
binary space partitioning with BSP trees (Melax, 2000). Furthermore, the hash grid is inde-
pendent of the objects in the environment, in contrast to an explicit discretization, and can be
computed efficiently. An overview of collision detection in the context of deformation simu-
lations is given by Teschner et al. (2005). Bounding volume hierarchies, for instance, based
on spheres (Palmer and Grimsdale, 1995), axis-aligned bounding boxes (Van den Bergen,
1997), or oriented bounding boxes (Gottschalk et al., 1996), are an alternative to spatial sub-
divisions and are widely used for collision detection of rigid objects. A substantial effort is
invested in precomputing the hierarchy for an object for the benefit of fast collision checks.
As Teschner et al. (2005) pointed out, this advantage cannot be fully exploited in simula-
tions of deformable objects since these objects frequently change their shape and thus, their
hierarchies need to be updated or recomputed.

3.1.2 Computation of Contact Forces

Once collisions between objects are detected in the simulation, their contact needs to be
handled and appropriate contact forces need to be computed. When two bodies collide and
are in contact, they exert forces onto each other in the contact region. According to New-
ton’s third law, these forces are equal in magnitude and opposite in direction. In case of rigid
bodies, these forces change the momentum of the objects and accelerate them such that they
move away from each other. In case of elastic objects, parts of these forces lead to defor-
mations of the colliding objects. Spillmann et al. (2007) consider these physical principles

14 Chapter 3: Background

when deriving contact forces for colliding elastic objects. Their approach is implemented in
DefCol Studio, and we use it to handle collisions between the robot and deformable objects
in a physically sound way. In the following, we briefly outline, how these contact forces are
computed.

The general idea of Spillmann et al.’s collision handling scheme (2007) is to consider in
each time step the unconstrained motions of objects, due to gravity, elastic forces acting
inside objects, among others, and to determine the set of collisions resulting from these
unconstrained motions. Then, contact forces are computed for each colliding point that obey
the laws of contact dynamics and ensure an overall collision-free state. Finally, the collision-
free state of all objects is maintained by applying the contact forces to the unconstrained
positions of object points.

More precisely, after having computed the unconstrained motions, the set of collisions C
is considered that would occur in the next time step t + ∆t as a result of these motions.
A collision is represented by a point i of an object and a corresponding triangle Ti on the
surface of the colliding object, which belongs to the volume the point has penetrated. The
idea is to derive local forces f i and fTi for each collision, acting on the point i and on the
colliding triangle Ti. According to Newton’s third law, these local forces are of equal size
but opposite direction:

f i + fTi = 0. (3.1)

Each triangle is represented by points j, k, l, which in turn are involved in collisions with
other triangles. Similar, each point can be considered as belonging to several triangles
that are involved in collisions. Thus, the total force acting on a point is given as Fi =∑

i∈C f i +
∑

T j∈C:i∈T j
fT j , the sum of forces f i, resulting from collisions with triangles, and the

sum of forces fT j , where i is involved in the collision as part of a triangle T j. A global force
equilibrium is enforced to guarantee conservation of energy:∑

i

Fi = 0. (3.2)

The contact forces are related to the penetration depths of points. Thus, for each collision, a
penetration depth vector dt+∆t

i is computed using the approach of Heidelberger et al. (2004).
Figure 3.2 illustrates this idea. The penetration depth of the colliding point is assumed to
correspond to those of the triangle points, although this is not the case in general.

3.1 Deformation Simulation 15

ij k

l

di

d j

dk

dk

(a)

ij k

l

F j

Fi

(b)

Figure 3.2: Contact force computation: we consider point collisions consisting of a point
i belonging to the red object and interpenetrated triangle (j, k, l) belonging to
the blue object. (a) For all colliding points, a penetration depth vector d is
computed. (b) Local forces are computed that accelerate points onto the virtual
contact surface (represented by the gray line).

With this assumption, the computation of a contact force Fi for a colliding point i with
unconstrained position x̃t+∆t

i and mass mi reduces to finding a scalar αi that accelerates it
onto the virtual surface of contact in the next time step ∆t (see Figure 3.2b):

xt+∆t
i = x̃t+∆t

i + αidt+∆t
i . (3.3)

The local forces acting on a point and the colliding triangle can be derived by incorporating
Newton’s law of motion f = m · a in Eq. (3.3) – which will be discussed in detail in the next
section – furthermore, by enforcing the constraints stated in Eq. (3.1) and (3.2):

f i = ci
mi

∆t2 dt+∆t
i αi and fTi =

∑
j∈Ti

cihi j
m j

∆t2 (−dt+∆t
i)(1 − αi). (3.4)

Here, the elements hi j provide the barycentric coordinates of a contact point i with respect to
a point j of the penetrated surface triangle Ti, and thus implicitly consider the unconstrained
position of a point. The constants

ci =
1

1 +
∑n

j=1 h ji
, (3.5)

can be considered as weights that take into account the barycentric coordinates h ji of all

16 Chapter 3: Background

points j that are in contact with a triangle containing the point i. These weights consider
the contribution of each mass point to the local force. The αi can be derived by enforcing
Eq. (3.1) for Eq. (3.4) and solving for αi. This results in

αi =

∑n
j=1 c jhi jm j

cimi +
∑n

j=1 c jhi jm j
, (3.6)

which can be computed independently for each contact point. The total force Fi acting on a
point as the sum of all local forces then amounts to

Fi =
mi

∆t2 dt+∆t
i αi. (3.7)

This contact force Fi is exactly the sum of all local forces f i and fT j acting on a point i

involved in collisions either as contact point or as part of a colliding triangle T j. For further
details regarding the derivation of the contact forces, the treatment of border cases and
the correction of the approximation error that is introduced by assuming equal penetration
depths for colliding points and triangles, we refer to the paper of Spillmann et al. (2007).

As we will see in the next section, in which we address the integration of the movement
of points over time, application of the proposed contact forces immediately results in the
constrained collision-free position for each point. The contact forces thus depend on the
positions of the points, the internal forces acting on the points, and the impulses generated
by the collisions.

In principle, there are two different approaches to collision handling in simulation: penalty
methods and constraint methods. In general, when collisions are detected, objects already
partially overlap and interpenetrate each other. Penalty-based collision handling approaches,
such as the approach presented by Heidelberger et al. (2004), compute response forces ac-
cording to an interpenetration measure for the colliding points. This is computationally
efficient but leads to physically implausible results as it usually takes several simulation
steps to resolve a collision. In addition, the definition of a stiffness constant is required;
this constant must be large enough to resolve collisions but at the same time small enough
to avoid overshooting and instabilities, thus it is difficult to determine an appropriate con-
stant. Constraint-based approaches, in contrast, impose non-penetration constraints derived
from contact dynamics on the colliding points and compute the response forces from these
constraints (e. g., Baraff and Witkin, 1992). The computation of contact forces can be for-
mulated as linear complementary problem and solved iteratively, which unfortunately is

3.1 Deformation Simulation 17

expensive to compute and can be subject to numerical inaccuracies. The collision-handling
scheme of Spillmann et al. (2007) avoids iterative computations and thus combines the ad-
vantages of both penalty and constraint-based approaches. It is furthermore able to deal
with different deformation models, such as mass-spring models, linear, and nonlinear finite
element models. The complexity of the approach is linear in the number of collisions. Ex-
periments suggest that simulations can still be carried out with 2 Hz for scenes with up to
80,000 tetrahedrons.

3.1.3 Time Integration

To simulate the dynamic behavior objects over time, Newton’s equation of motion f = ma is
integrated for each mass point x with mass m and force f acting on it. The force f partially
results from contacts between objects, as discussed above, partially it results from internal
forces acting inside the object to restore its undeformed state. We will discuss these internal
forces in more detail in the next section. With these internal and external forces available,
the simulation solves the following second order partial differential equation:

f = mẍ. (3.8)

This equation is discretized into small time steps ∆t and solved numerically using the Verlet
integration scheme (Verlet, 1967): ẍ at time step t is approximated as

ẍ(t) =
ẋ(t + ∆t) − ẋ(t)

∆t

=
1
∆t

(
x(t + ∆t) − x(t)

∆t
−

x(t) − x(t − ∆t)
∆t

)
=

x(t + ∆t) − 2x(t) + x(t − ∆t)
∆t2 . (3.9)

Inserting Eq. (3.9) into Eq. (3.8) results in the equation to compute subsequent positions of
a point x as

x(t + ∆t) = 2x(t) − x(t − ∆t) + ∆t2 f
m
. (3.10)

This integration scheme is frequently used in the simulation of deformable bodies and pro-
vides a good trade-off between accuracy and efficiency.

Furthermore, it is used in the derivation of the contact forces in the previous section to ensure

18 Chapter 3: Background

that their application immediately results in constrained collision-free positions. This can
be shown by integrating the sum of the forces acting on a point, the internal force pi and the
external force Fi from Eq. (3.7):

xi(t + ∆t) = 2xi(t) − xi(t − ∆t) +
∆t2

mi
(pi + Fi)

= 2xi(t + ∆t) − xi(t − ∆t) +
∆t2

mi
pi +

∆t2

mi
Fi

= x̃i(t + ∆t) +
∆t2

mi
Fi. (3.11)

Thus, the constrained position xi at time step t + ∆t is exactly as required by Eq. (3.3),
namely collision-free and on the contact surface.

3.2 Deformation Model

So far, we have discussed how the simulation framework proceeds to compute the dynamic
behavior of deformable objects and their interactions. The only open question in this context
is the underlying deformation model, which determines how an object deforms when subject
to external forces.

In contrast to a rigid object, an elastically deformable object can be deformed by external
forces; furthermore, it returns to its original shape after the external forces leading to a
deformation are removed. This property is due to internal forces that act inside the elastic
object to counteract the external forces and to restore its undeformed state. The deformation
model we use is based on continuum mechanics theory (Chung, 1996), we consider the
distribution of forces and energies inside a solid object. Formally, a deformable solid object
can be described by its undeformed state, given by a set of points x = (x, y, z) belonging to
the object and a set of material parameters that determines how the object deforms under
external forces. A deformation is then specified by a displacement field u(x) = (u, v,w),
which maps each point x of the object in its reference position to a deformed position x + u.

The deformed state of an object is characterized by the physical quantities stress and strain.
While the stress measures the forces acting inside the object to restore its original shape per
unit area, the strain measures the deformation with respect to the undeformed state. The
relation between stress and strain is called the constitutive equation. For linearly elastic,

3.2 Deformation Model 19

homogeneous and isotropic material, we assume a linear relation between stressσ and strain
ε governed by the generalized Hooke’s law:

σ = Cε. (3.12)

To compute the distribution of elastic forces inside a continuous solid object and to establish
the relation between object deformation, specified by a displacement field u, and external
forces acting on the object, we consider the total potential energy Π of a solid, which is
given by

Π = Λ + WP. (3.13)

The inner or elastic energy Λ is the energy stored inside the object as deformation and is
given as

Λ =
1
2

∫
V
σTε dV. (3.14)

The work potential WP is determined by the external forces acting on an object:

WP = −

∫
v

uT fVdV −
∫

S
uT TS dS −

∑
i

uT
i f i. (3.15)

It consists of forces fV distributed over the body, for instance, gravitational forces, forces dis-
tributed over the surface TS , and point loads f i resulting from collisions with other objects.
In the simulation, however, only the last term that contains the point loads is considered. A
stable equilibrium configuration of a deformation can be found by minimizing the potential
energy, which is done by setting the derivatives to zero and solving for the resulting dis-
placements. This, in fact, requires solving a continuous partial differential equation, and we
will shortly go into detail on how to solve this numerically using the finite element method.

3.2.1 Elasticity Parameters

In our deformation model, we assume linearly elastic and isotropic material. In this case,
the matrix C governing the relation between stress σ and strain ε in Eq. (3.12) depends only
on two independent elasticity parameters, Young’s modulus E and Poisson’s ratio ν (for a

20 Chapter 3: Background

derivation, see Chung, 1996, Chapter 4):

C =
E

(1 + ν)(1 − 2ν)

1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 0.5 − ν 0 0
0 0 0 0 0.5 − ν 0
0 0 0 0 0 0.5 − ν

. (3.16)

These parameters characterize the deformation behavior of an object and can be interpreted
as follows. The Young modulus describes the stiffness of an object. It measures the force
that is needed to enlarge or compress an object by some fixed amount and is given by the
ratio of stress to strain in the direction of the applied force:

E =
σ

ε
=

F/A
∆x/x

=
Fx

A∆x
. (3.17)

Its unit is force per area and it is frequently specified in N
dm2 . This is visualized in the

example in Figure 3.3: a bar elongates by an amount ∆L in the direction of the applied force
that is proportional to F, L and 1

A . The constant of proportionality is the Young modulus.

In contrast to the Young modulus, the Poisson ratio is related to the compressibility of
an object. When a material is expanded in one direction, a compression in the other two
directions perpendicular to the expansion can be observed, and vice versa a compression in
one direction leads to an extension in the other two directions. The Poisson ratio is thus
given by the negative ratio of the transverse strain to the axial strain:

ν = −
εtrans

εaxial
= −

εy

εx
= −

εz

εx
. (3.18)

Since we consider isotropic material, the changes in the two directions y, z perpendicular
to the direction x of the applied force are equal. In Figure 3.3, this effect is illustrated as a
contraction ∆d of the bar in the directions perpendicular to the applied force.

The Young modulus is always greater than zero, but not upper-bounded, with larger values
characterizing stiffer materials. For isotropic objects, it can be shown that the Poisson ratio
lies in the range of 0 to 0.5. A Poisson ratio of 0.5 implies perfect volume conservation,
while a Poisson ratio of 0 corresponds to no volume conservation at all. For many materials
including foam, it ranges from 0.25 to 0.35, for rubber it is close to 0.5.

3.2 Deformation Model 21

A
L

d

F−F

L + ∆L

d − ∆d

Figure 3.3: Illustration of the material parameters: a force F is applied to a cross-sectional
area A of a bar with length L and diameter d. The Young modulus determines
the change in the length ∆L of the bar in the direction of the applied force while
the Poisson ratio determines the change in the thickness ∆d in the directions
perpendicular to the applied force.

3.2.2 Linear Finite Element Approximation

We use the finite element method (FEM) to approximate the deformation of a continuous
object. The description we state here is based on Müller and Gross (2004) and Becker and
Teschner (2007), and a more detailed derivation of the method can be found in textbooks,
for instance, from Bathe (1996) or Chandrupatla and Belegundu (2002). The key idea is
to discretize the object into a finite set of volumetric primitives, which are the tetrahedrons
in our case, and to compute the deformations inside the elements by an interpolation of the
nodal values. We recall that a deformation is specified by a displacement field u. The strain
of an object can be expressed in terms of the gradient of its displacement field:

ε =
1
2

(
∇uT + ∇u + ∇uT∇u

)
, (3.19)

with ε ∈ R3×3 the nonlinear Green-St.-Venant stress tensor. Its linearization, the Cauchy-
Green strain tensor, which we also use, is given as

ε =
1
2

(
∇uT + ∇u

)
. (3.20)

22 Chapter 3: Background

This tensor is a popular choice in computer graphics applications, since it can be computed
efficiently, in contrast to the nonlinear tensor (see, e. g., Nealen et al., 2006). In the fol-
lowing, we use the vector notation ε, which contains its six independent components and is
given as:

ε =

εxx

εyy

εzz

γyz

γzx

γxy

=

∂u
∂x
∂v
∂y
∂w
∂y

∂v
∂z + ∂w

∂y
∂w
∂x + ∂u

∂z
∂u
∂y + ∂v

∂x

. (3.21)

In the finite element method, first of all, the displacement field inside a tetrahedron is ap-
proximated by the displacements of the nodes, using linear shape functions, the barycentric
coordinates of the points. This can be written as a matrix multiplication

u = Nq, (3.22)

with q ∈ R12 collecting the displacements of the nodes of the tetrahedron in a vector,
N ∈ R12×3 containing the shape functions. The partial derivatives of Eq. (3.20) can be
determined by applying the chain rule to Eq. (3.22), (see, e. g., Becker and Teschner (2007)
for a derivation) and allow us to express the strain in terms of the displacements of the nodes:

ε = Bq, (3.23)

where B ∈ R6×12 is a constant matrix that can be precomputed for each element.

The next step of the finite element approximation is to express the equilibrium equation for
the object in terms of the element displacements. Therefore, we consider the elastic energy
of an element given in Eq. (3.14). We use the fact that the stress linearly depends on the
strain stated in Eq. (3.12) and insert the expression for the strain in terms of the nodes given
in Eq. (3.23). Thus, we can write the elastic energy Λe of a tetrahedral element e as

Λe =
1
2

∫
e
εTCTε dV

=
1
2

∫
e

qT BTCT BqdV.

3.2 Deformation Model 23

Since we use linear shape functions and therefore assume the strain to be constant over an
element, this simplifies to

Λe =
1
2

qT BTCT Bq
∫

e
dV

=
1
2

VeqT BTCT Bq,

with Ve denoting the volume of e. We define the element stiffness matrix to be Ke :=
VeBTCT B ∈ R12×12 and obtain

Λe =
1
2

qT Keq . (3.24)

To find an equilibrium configuration of the deformable object, we minimize the total poten-
tial energy by setting the partial derivatives of Π = Λ−WP with respect to the displacements
qi to zero.

The derivatives of Λe with respect to qi result in

∂Λe

∂qi
= (Ke · q)i, (3.25)

and describe the elastic forces f int acting on the nodes of the model. For the work potential
WP, we only consider the external point loads fext

i , thus the partial derivatives with respect
to the displacements qi are given by

∂WP
∂qi

= −fext
i . (3.26)

Therefore, setting the derivative of the potential energy to zero leads to

∂Π

∂q
= Ke · q − fext = 0. (3.27)

In a static equilibrium state the internal forces f int are equal to the external forces fext. The
force displacement relation can thus be written as

fext = Kq, (3.28)

When collecting all element stiffness matrices in a global stiffness matrix K and corre-

24 Chapter 3: Background

spondingly all displacement vectors in a global displacement vector Q, the global force-
displacement relation yields a system of equations for the tetrahedral mesh

Fext = KQ, (3.29)

that can be used to compute the deformation of an object given a force. We implicitly
consider this case in Chapter 4, in which we observe a force and want to compute the
corresponding object deformation for a given stiffness matrix.

For dynamic simulations, the system dynamics are obtained by solving the following partial
differential equation:

MQ̈ + DQ̇ + KQ = F, (3.30)

where M is the mass matrix and D is the damping matrix. This reminds us of the Newton’s
equation of motion with an additional damping term DQ̇ and can be solved for the positions
of the mesh using the Verlet time integration scheme discussed above.

Using linear shape functions and the linear Cauchy-Green tensor for the computation of the
strain leads to problems, as the linearization assumption is only valid close to the equilib-
rium, that is for small deformations. Furthermore, this tensor is not invariant to rotations.
This leads to ghost forces, which result in distortions for large rotational deformations. To
account for that, the actual implementation in DefCol Studio uses the corotational finite el-
ement formulation of Hauth and Strasser (2004) and Müller and Gross (2004). The idea
of this approach is to keep track of the rigid body motion for each element. This is done
by extracting the rotation from the transformation matrix using polar decomposition. The
forces are then computed in the back-rotated frame

fext = RK(RT q − x). (3.31)

This formulation applies the strain tensor in the back-rotated frame, which leads to rotational
invariance and in contrast to the nonlinear strain tensor to low computational costs.

3.3 Summary 25

Figure 3.4: Robot navigation among deformable objects in the simulation framework dis-
cussed in this chapter: this example scene contains 3,390 tetrahedrons and can
be updated with 17 Hz.

3.3 Summary

In this chapter, we discussed the framework for deformation simulations and its individual
components required to simulate the interactions between deformable objects. Further, we
explained the deformation model underlying the simulation that is based on elasticity the-
ory. We are interested in the deformation model for two reasons: first, we want to determine
the elasticity parameters E and ν of deformable objects. In the next chapter, we present an
approach to learn these parameters from real data acquired with a mobile robot when in-
teracting with objects. Second, with available deformation models of objects in the robot’s
environment, we want to perform simulations to determine the costs of robot trajectories
that potentially lead to object deformations. A measure for such deformation costs is de-
fined in Chapter 5 and the resulting deformation cost functions are employed in a motion
planner in Chapter 6 to trade off travel costs and deformation costs for the robot. We con-
clude with a simulation example in Figure 3.4, which demonstrates an application of the
discussed framework to simulate robot motions in an environment with deformable objects.
The environment contains six deformable objects, rubber ducks and curtains. In total, this
example scene contains 3,390 tetrahedrons and can be simulated with an average of 17 Hz
including collision handling and FEM deformation computations.

4 Learning Deformation Models

Modeling the deformation behavior of real objects not only requires observations but also
interactions with the object under investigation. In this chapter, we present our robotic
system that is able to acquire data of deformable objects and to interact with them while
measuring the forces and the resulting deformations.

The deformation model we want to determine consists of a three-dimensional geometrical
representation and a set of material parameters that describe its elastic behavior. We first
explain how to acquire geometric models of objects with our robot and how to generate
volumetric meshes from these object models for application in finite element simulations.
These geometric and volumetric models are a prerequisite for our approach to determine the
material parameters of objects. Furthermore, we describe how the robot interacts with de-
formable objects in order to obtain data of object deformations that allow for the estimation
of the material parameters.

In the second part of this chapter, we introduce our approach to estimate the material pa-
rameters of real objects based on an inverse finite element method. The key idea of our
parameter estimation approach is to compare the observations of the robot to a finite el-
ement model and to optimize the parameters of the model. To achieve this, we use the
acquired model of the object and deform it in simulation by applying the measured force
to it. The parameters of the simulation, namely Young’s modulus and Poisson’s ratio are
refined in an iterative update scheme such that the error between observed and simulated
deformation is minimized.

Since our deformation model is restricted to linearly elastic, isotropic and homogeneous
materials, we discuss limitations of this deformation model and investigate, to what extent
these assumptions apply to the objects we consider. We present extensive evaluations of our
parameter estimation approach on real and simulated data sets.

28 Chapter 4: Learning Deformation Models

Force-torque
sensor

RGB-D
camera

Figure 4.1: Our robotic platform for the acquisition of deformation models: the manipula-
tion robot Zora (left) can interact with deformable objects with its manipulator.
It is equipped with different sensors that are integrated into its hand (right) to
observe the behavior of objects during interaction.

4.1 Data Acquisition

For the acquisition of deformation models, we set up a robotic system that is able to observe
real objects and to interact with them. We present the platform in the next section before
describing how to generate geometric three-dimensional models that can be used in simula-
tions, and how to acquire data of object deformations by performing indentation tests with
the robot.

4.1.1 The Robotic System

Our system for acquiring data of deformable objects consists of a mobile platform and a
manipulator with seven degrees of freedom. The manipulator is equipped with a force-
torque sensor and an RGB-D camera. This setup allows us to observe objects from different
view points, to acquire point clouds of their surfaces, to deform objects, and to measure the
corresponding deformation forces in a flexible way. The platform is illustrated in Figure 4.1.

The manipulator is built of five rotational Schunk Powercube modules and a Schunk hand
with two degrees of freedom. These modules have a repeat accuracy of 0.02 degrees and
therefore allow for an accurate estimation of the robot’s position. We measure the defor-
mation forces with a Schunk-FTCL-050 force-torque sensor integrated into the hand. This

4.1 Data Acquisition 29

sensor is able to measure forces up to 300 N and torques up to 7 Nm in all three degrees of
freedom. To perceive the object, we employ a Microsoft Kinect RGB-D camera, which uses
the structured-light measurement principle to obtain 3D measurements of the environment.
This camera is attached to the robot hand. To transform the acquired point clouds from the
local camera coordinate system to the global coordinate system of the robot, we performed
a hand-eye calibration using an open-source camera calibration toolbox.1,2

Our robot is operated using the Zora framework,3 which includes hardware drivers, joint
control, and position control using an inverse kinematics solver.4 We implemented routines
to observe objects from different viewpoints and to interact with them in a semi-autonomous
way within this framework.

4.1.2 Geometric Models for Simulation

The finite element simulation described in the previous chapter requires a volumetric model
of an object, in our case a tetrahedral mesh. Such a volumetric mesh can be computed from
a surface mesh, which in turn is constructed from multiple scans of the object. Figure 4.2
illustrates the individual steps of the object reconstruction process, resulting in a three-
dimensional geometric model. In the following, we will describe them in more detail.

Surface meshes

To acquire a three-dimensional surface representation of an object, the robot observes it
from different viewpoints and records point clouds of the object. We place the object in
front of the robot and manually define a set of viewpoints to achieve a good coverage of the
object within the reachable workspace of the manipulator. Figures 4.2a and 4.2b show this
setup and an example observation.

The recorded point clouds are registered into a consistent model. This is necessary to elim-

1J.-Y. Bouguet: Camera Calibration Toolbox for Matlab. http://www.vision.caltech.edu/bouguetj/
calib_doc/, last accessed December 28, 2012.

2C. Wengert: Fully automatic camera and hand to eye calibration: http://www.vision.ee.ethz.ch/
software/calibration_toolbox//calibration_toolbox.php, last accessed December 28, 2012.

3J. Sturm: Zora Software Package. http://www.informatik.uni-freiburg.de/~sturm/zora-main.
html, last accessed January 7, 2013.

4Orocos Kinematics and Dynamics Library: http://www.orocos.org/kdl, last accessed January 15,
2013.

http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.ee.ethz.ch/software/calibration_toolbox//calibration_toolbox.php
http://www.vision.ee.ethz.ch/software/calibration_toolbox//calibration_toolbox.php
http://www.informatik.uni-freiburg.de/~sturm/zora-main.html
http://www.informatik.uni-freiburg.de/~sturm/zora-main.html
http://www.orocos.org/kdl

30 Chapter 4: Learning Deformation Models

inate small errors, for instance, in the robot’s pose estimate, or the hand-eye calibration,
which accumulate over time and with multiple scans. The task of a registration algorithm
therefore is to compute relative translations and rotations that align the surfaces correctly.
In our approach, we apply a variant of the iterative closest point (ICP) algorithm proposed
by Besl and McKay (1992). The basic problem formulation of scan registration is stated
as follows: given two corresponding point sets, a model X = {x1, . . . , xNx} and a data set
P = {p1, . . . ,pNp

}, we search for a transformation consisting of a rotation matrix R and
translation vector t that aligns the data set with the model and minimizes the error

Err(R, t) =
1

Np

Np∑
i=1

||xi − Rpi − t||2 (4.1)

for corresponding points. If the correspondences are known, this transformation can be
computed in closed form, for instance, using unit quaternions (Horn, 1987) or a singular
value decomposition (Arun et al., 1987).

Since the correspondences are not known in general, the ICP algorithm computes this trans-
formation in an iterative fashion: it determines point correspondences, then computes a
transformation that aligns the scans for these correspondences, applies the transformation,
and evaluates the resulting error. This procedure is iterated until convergence, that is until
a given accuracy is reached and ||Erri − Erri−1|| < τ for an accuracy threshold τ. It can be
shown that it monotonically converges to a local minimum (Besl and McKay, 1992) and
typically yields an accurate alignment if an appropriate initial configuration is chosen.

One question left open in the above outline of the ICP algorithm is how to determine cor-
respondences between points in different scans. Rusinkiewicz and Levoy (2001) discuss
and compare different strategies to determine data associations, in terms of selecting and
matching points from two scans, and weighting the point correspondences. First of all, a set
of points is selected, this can be, for instance, the set of all points of one or both meshes, as
in the basic ICP formulation, a randomly or uniformly sampled subset, or a feature-based
selection of points based on intensities, for example. In the next step, a data association is
determined for the selected points from two scans. The selected points from one scan can
be paired, for instance, with the closest point in terms of the point-to-point distance or with
the closest point along the surface normal in the other mesh. Finally, point correspondences
can be weighted, for instance, based on their distances, to contribute with different weights
to the error function. To compute the alignments for our scans, we have adopted a variant

4.1 Data Acquisition 31

(a) (b) (c) (d)

Figure 4.2: Object reconstruction: (a) the robot observes a deformable teddy bear, (b) a
point cloud obtained with the RGB-D camera, (c) the surface mesh constructed
from four different point clouds, and (d) the tetrahedral mesh computed from the
surface mesh. For better visibility with the RGB-D camera, the teddy is dressed
with a t-shirt since its fur reflects the projected structured light pattern poorly.

called Trimmed ICP (Chetverikov et al., 2002), which uses only a fraction of the point cor-
respondences to compute the transformations. We determine point correspondences using
a nearest-neighbor data association for all points of the data set P. Then, the point corre-
spondences are sorted according to their point-to-point distance and only a fraction of point
correspondences with the smallest distances are used to evaluate the error and to compute
the subsequent transformations. This approach is able to deal with only partially overlap-
ping scans, furthermore with noise and outliers. In our experiments, we found that using the
50 % best point correspondences already leads to good alignment results.

Although convergence can be proven, all ICP algorithms are local optimization procedures
and do not necessarily result in a globally optimal solution. They rely on the assumption that
the scans are already roughly aligned initially. In our system, we can derive a good initial
alignment from the position estimate of the manipulator, to which the camera is attached.
The quality of the position estimate depends on the accuracy of the encoders in the manip-
ulator, which is around 0.02 degrees per joint. For the kinematic structure of the robot, this
adds up to an error of ± 1 mm in the position of the end effector. The position estimate is
further corrupted by noise, resulting from small movements of the mobile platform due to
impacts of the manipulator movements. Nevertheless, it is still sufficiently small to allow
the ICP algorithm to converge to an accurate alignment.

We arrive at a global model of an object by consecutively registering new scans to the model
already constructed. To account for errors that accumulate with multiple scans and correct

32 Chapter 4: Learning Deformation Models

them when closing a loop, global optimization techniques can be used, as suggested, for
instance, by Pulli (1999), or Grisetti et al. (2010). In our current framework, however, we
have not implemented such a global optimization. The completed model of an object can be
used in simulations and represents obstacles in the environment of the robot.

Some practical issues require consideration when estimating the material properties of an
object. Consider, for example, the plush teddy bear: this object changes its shape not only
due to deformations but also due to “articulated” body parts, its legs and arms. When per-
forming indentation tests with this object to measure its elastic behavior, we might want to
place it on a table, lying, to probe its belly. Since we want to compare the deformations sim-
ulated on the model with the actual observations of the robot, we have to construct a model
that represents the object in this configuration. Another issue is the problem of occlusion,
it is not always possible for the robot to observe an object from all necessary viewpoints to
obtain a complete mesh. This might be the case, for instance, if the object is sitting in front
of a wall or lying on a table, or in case the robot’s workspace does not allow it to move to
appropriate view points. An approximately closed mesh, however, is required to compute
a volumetric mesh in the next step. To obtain a closed surface mesh that clearly limits the
object, we complete the model by assuming a planar surface for the unobserved parts. These
planar surfaces can be extracted, for instance, from the walls or the table surface. In this
way, we can generate a model for the parameter estimation almost from scratch without
much overhead for exploration. Thus, the robot can immediately start to interact with the
object and to acquire deformation data. Our experiments show that a complete model is not
needed to estimate the deformation parameters – a partial model is sufficient. For instance,
the legs of the teddy bear are not of particular interest if we consider deformations in its
belly. Nevertheless, the elasticity parameters estimated in this way can be transferred to
complete geometric models, given the assumption of homogeneous material.

To obtain a representation of the object’s boundary, we finally generate a surface mesh from
the point cloud model. In our application, we can easily compute a triangulation of the
individual scans by connecting points corresponding to neighboring pixels of the RGB-D
camera with a distance smaller than a threshold, in our implementation this threshold was
set to 10 cm. The resulting surface mesh of the object is used in the next step to determine
the volumetric tetrahedral mesh. An example surface mesh is illustrated in Figure 4.2c.

4.1 Data Acquisition 33

Tetrahedral meshes

To construct a tetrahedral mesh of an object, we use the meshing approach of Spillmann
et al. (2006). This approach first computes a signed distance field from the surface mesh,
in which voxels having a negative sign represent the volume occupied by the object. In
a second step, the spatial domain described by the distance field is divided into a uniform
axis-aligned grid limited by the bounding box of the object. All cells in this grid that contain
no voxel with negative sign are discarded. The remaining cells are an approximation of
the object’s volume; the quality of this volume approximation is determined by the grid
resolution. The grid cells are then divided into five tetrahedrons each. In a post-processing
step, the tetrahedrons are smoothed to align with the given surface mesh. Such a smoothed
tetrahedral mesh is shown in Figure 4.2d.

The crucial point in this meshing approach is the computation of the signs for the distance
field. A straight-forward approach casts rays through the object and checks, how often the
ray intersects the surface mesh. Counting the intersections indicates changes from outside
to inside and vice versa. This method, however, only gives accurate results for water-tight
object models. For real data, which might be incomplete, and contain holes and cracks, this
method does not lead to reliable results. This problem is addressed, among others, in the
work of Nooruddin and Turk (2003): they also employ a ray casting and counting scheme,
but consider rays from different directions, the majority vote then decides on the sign of
a voxel. The approach of Spillmann et al. (2006) builds on top of that method, instead of
counting ray intersections to detect transitions from inside the object to the outside, however,
they consider the probability of such a transition along a ray for each voxel. This probability
depends on the distance of the voxel center to the next surface feature. Thus, the sign
computation is more robust for incomplete data, which proves beneficial for the meshes
we obtain with an RGB-D camera. Furthermore, this approach is robust with respect to
the connectivity of the meshes, for instance, meshes consisting of interpenetrating object
parts as well as arbitrary unconnected triangle soups can be processed and lead to decent
volumetric meshes that represent the volume occupied by an object.

The outcome of this meshing approach is a complete geometric and volumetric object repre-
sentation – a surface mesh and a corresponding tetrahedral mesh – with a known transforma-
tion relative to the robot. It can be used to determine the contact point for deformation and to
perform subsequent deformation simulations in the parameter estimation procedure. In the
simulation framework, we perform all deformation computations on the tetrahedral mesh.

34 Chapter 4: Learning Deformation Models

The surface mesh is coupled to the tetrahedral mesh using geometric constraints (Müller
and Gross, 2004). This coupling of the surface mesh to the tetrahedral mesh guarantees that
the surface mesh is also deformed. This allows us to compare it to the scanned surface mesh
of the real-world object.

4.1.3 Deformation of Objects

We designed an experimental setup to measure the deformation behavior of an object with
our robot Zora. For that purpose, we place the object on a table in front of the robot. The
robot probes the object by moving its end effector downward, in the direction perpendic-
ular to the table surface. This setup guarantees that the object is caught between the table
and the robot, therefore the robot only deforms it and the measured forces correspond to
deformations only, not to translations of the object.

The robot deforms the object with a thin wooden stick instead of its gripper. This has several
reasons: first of all, the RGB-D camera requires a distance of at least 50 cm to compute
depth measurements from the structured light pattern. Second, increasing the distance to
the region of interest also increases the field of view and thus the part of the object that can
be observed. Third, and most importantly, in this way we ensure a small point-like contact
region and thereby minimize the amount of occlusion in the region of interest, the deformed
surface region, due to body parts of the robot. The experimental setup and some exemplary
observations are depicted in Figure 4.3. The probing procedure is as follows:

• The end effector approaches the contact point c on the object and takes a reference
measurement.

• Subsequently, it moves forward in discrete steps of 1 cm, pauses shortly, and records
a new measurement.

• This is done until either a maximal force of 30 N is exceeded or the robot has moved
for more than 10 cm.

• Finally, the robot moves back to the initial position.

The contact point on the surface of the object can be chosen arbitrarily, we provide the
robot with a set of configurations for possible interactions. For the parameter estimation
procedure, explained in the next section, we need the position of the contact point on the
object model. This can be computed from the known transformation of the object model

4.2 Parameter Estimation 35

Figure 4.3: Deformation of an object: experimental setup (left) and two example measure-
ments (right). The surface points are colored according to their depth and the
magnitudes of the measured forces are indicated by the arrows.

relative to the robot and from the robot position estimate. The force acting on the object is
computed by subtracting the reference force.

In each step t, we obtain a measurement zt = (Pt, ct, f t), which consists of the point cloud of
the deformed object surface Pt = {pt | pt ∈ R

3}, the force vector f t ∈ R
3 acting on the object

and the contact point ct ∈ R
3 on the object. In this way, we obtain a set of measurements {zt}

for a contact point. Our parameter estimation procedure, explained in the next section, only
requires one observation zt at a time, but collecting a set of observations allows for multiple
runs and therefore a more robust estimation of the parameters.

4.2 Parameter Estimation

We have adopted a linear finite element model based on elasticity theory for deformable
objects. This model allows us to predict how an object deforms when external loads are
applied to it, given we know the model parameters, which are the Young modulus and the
Poisson ratio for isotropic elastic materials. Conversely, the observation of a deformation
and the measurement of the applied force allow us to draw conclusions on the model pa-

36 Chapter 4: Learning Deformation Models

rameters. This can be interpreted as the solution to an inverse problem, in which the aim
is to identify the model parameters from a set of measurements that best explain the sys-
tem’s behavior (Tarantola, 2005). More specifically, with the measurements acquired by
our robot, we formulate the estimation of an object’s elasticity parameters, Young’s mod-
ulus E and Poisson’s ratio ν, as an optimization problem in parameter space (E, ν) with
an objective function that minimizes the difference between the observation and the model
prediction. In a similar way, Schnur and Zabaras (1992), Kauer et al. (2002), and Becker
and Teschner (2007), among others, approached this problem and determined the modeled
material parameters using optimization techniques.

To specify the parameter estimation problem, we recall the governing equation solved by
the FEM approximation from Section 3.2.2, which relates the applied forces and resulting
displacements given in Eq. (3.29) as

Fext = K(E, ν)Q, (4.2)

with the applied force Fext, displacements Q, and the stiffness matrix K(E, ν), which depends
on E and ν. The inverse problem we intend to solve can be stated as determining the stiff-
ness matrix K(E, ν) that explains the relation between measured force Fext

meas and measured
displacement Qmeas

min
(E,ν)
||K(E, ν)Qmeas − Fext

meas||
2
2. (4.3)

However, as the robot only observes the displacements on the boundary of the object, we
cannot directly set up this equation and solve for (E, ν). Instead, we indirectly relate the ob-
served displacements with simulated displacements by running a forward FEM simulation
for a given stiffness matrix. Then, we can compare the displacements resulting from the
simulation to the actually observed displacements and minimize their difference:

min
(E,ν)
||Qmeas −Qsim(E,ν)||

2
2. (4.4)

We use a gradient-based method to adapt the material parameters of an object and to mini-
mize the error. In the following, we define the boundary conditions of the FEM simulation
that provides us with the simulated displacements, furthermore, we specify the error func-
tion that is to be minimized.

4.2 Parameter Estimation 37

4.2.1 FEM Simulation

Before we can compute the error between observed and simulated deformation, we have to
define the setting for the FEM simulation. We initialize the simulation with the tetrahedral
modelM and the corresponding surface mesh P of an object from Section 4.1.2. Addition-
ally, we initialize the material parameters E, ν, from which the stiffness matrices K(E, ν) of
the model elements are computed. Furthermore, we introduce boundary conditions for the
simulation by fixing the nodes on the bottom side of the model, which correspond to the
part of the object that is in contact with the table. Thus, the object is not moved in simula-
tion. To start the simulation and deform the model, we apply the measured force f t to the
contact point ct on the model, more precisely, we apply a point load f t on the mass point
on the tetrahedral mesh closest to the contact point. These two quantities, contact point
and applied force, result from the probing experiment described in Section 4.1.3. Then, we
define FEMSim(M, ct, f t, E, ν) as a simulation run over a small amount of time steps until
an equilibrium state is reached, which results in the deformed model ME,ν and deformed
surface points PE,ν. The deformation for a given force and contact point is governed by the
material parameters E, ν of the object.

4.2.2 Error Function

Since the robot only observes the deformation of an object on its boundary, the error function
for our parameter estimation procedure reflects the difference between the surface of the real
deformed object and the surface deformed in simulation. Before we compute the difference
between the deformed model point cloud and the observed point cloud, we align the de-
formed surfaces with a registration procedure. This eliminates the effects of small rotations
and translations not leading to object deformations and inaccuracies in the global position
estimation of the model with respect to the robot. Similar to the registration procedure de-
scribed in Section 4.1.2, we register the point clouds with the Trimmed ICP algorithm that
takes into account only the 80 % best point correspondences. This allows us to compute a
reasonable registration, even if the deformations of model and observation do not fit together
and no correct point correspondences can be found in the region of deformation.

After applying ICP, we can determine the error between the deformed model point cloud PE,ν

and the measured surface Pt as the mean squared error between the point correspondences

38 Chapter 4: Learning Deformation Models

0.1

0.2

0.3

0.4
ν

80

90

100

110

120

E [N
dm2]

0
3
6
9
12

MSE [mm]

Figure 4.4: The error function in parameter space (E, ν) that is minimized in our estimation
procedure for a synthetic example, in which a foam cube with "true" parameters
E = 100 N

dm2 and ν = 0.3 was deformed.

of the surfaces:

Err(PE,ν, Pt) =
1
|Pt|

∑
i∈Pt

min
j∈PE,ν
‖i − j‖2, (4.5)

where i and j refer to the corresponding points from the observed and the simulated surface,
respectively. In the error function, we consider all point correspondences for the measured
point cloud, in contrast to the error function minimized in the ICP algorithm. Otherwise,
we would possibly ignore just the region of interest, in which the object is deformed, due to
large point-to-point distances and the error function would not be particularly informative.
In Figure 4.4, we illustrate the error function for a synthetic example; a cube with known
parameters was deformed in simulation and the error function evaluated for a uniform sam-
pling of parameters (E, ν). We observe, that the error function is indeed convex and contains
one global minimum.

4.2.3 Parameter Optimization

With the above definition of the error function, we can apply a gradient-based method to
search for Young’s modulus E and Poisson’s ratio ν of an object that minimize the error. We
start with a random initialization of the parameters (E0, ν0) and iteratively adapt them based

4.2 Parameter Estimation 39

Algorithm 1 Iterative parameter optimization
Input: Model M, force f t, contact point ct, observed deformation Pt

Output: Optimized parameters Eopt, νopt

1: Initialize E0, ν0,∆
E
0 ,∆

ν
0,Err0, i = 0

2: loop
3: Ei+1 = Ei − sign

(
∂Erri
∂Ei

)
∆E

i

4: νi+1 = νi − sign
(
∂Erri
∂νi

)
∆ν

i
5: PEi+1,νi+1 = FEMSim(M, ct, f t, Ei+1, νi+1)
6: Erri+1 = dist(PEi+1,νi+1 , Pt)
7: if (Erri+1 − Erri) < ε or (Ei+1 − Ei) < εE or (νi+1 − νi) < εν or i > maxIt then
8: return (Ei+1, νi+1)
9: end if

10: i++

11: end loop

on the direction of the gradient of the error function. Since our error function involves the
simulation approach explained above, the gradient cannot be computed directly. Therefore,
we approximate this term numerically: we carry out a sequence of deformation simulations
by applying the measured force to the model and by varying E and ν locally.

We adapt the parameters based on the Resilient backpropagation (Rprop) update rule that
was introduced by Riedmiller and Braun (1993) in the context of learning weights for neural
networks. In this update rule, a step size ∆k for each parameter k is adjusted individually
in each iteration step based only on the direction, not on the magnitude of the gradient.
More precisely, the step size for each parameter is increased in each iteration i by a factor
η+ > 1 if the gradient direction does not change, that is if a minimum of the error function
is approached, and it is decreased by η− < 1 otherwise, that is if a minimum of the error
function is overstepped:

∆
(i)
E =

η+∆

(i−1)
E , if ∂Err(i)

∂E
Err(i−1)

∂E > 0

η−∆(i−1)
E , if ∂Err(i)

∂E
Err(i−1)

∂E < 0

∆
(i−1)
E , else

(4.6)

The weight factors are set to η+ = 1.2 and η− = 0.5, as these values have been identified
experimentally to lead to a robust convergence behavior for different types of problems
(Riedmiller and Braun, 1993). This procedure is robust with respect to the initialization
of the step size, as the step size quickly adapts to the problem at hand. Furthermore, it is

40 Chapter 4: Learning Deformation Models

robust to numerical inaccuracies, as only the direction, not the magnitude of the gradient is
considered. Thus, it allows for a fast convergence of our estimation procedure. Algorithm 1
summarizes the main steps of the iteration routine. We consider the estimation procedure
converged if either the error improvement is below a given threshold ε, or if the parameter
adaptations are below given accuracy thresholds εE and εν for both parameters E and ν in
subsequent iteration steps.

4.3 Limitations of the Deformation Model

Our deformation model describes linearly elastic, isotropic, and homogeneous material.
Most real materials, however, show some nonlinear, anisotropic, inhomogeneous, and also
viscoelastic behavior as observed by Bickel et al. (2009); Kauer (2001); Lang (2001), among
others. To investigate these effects in our setting, we carried out a deformation experiment
with a foam cube. The cube was compressed between two plates, one of which was moved
by the robot manipulator in 1 cm increments. After each movement of the manipulator,
the deformation was kept constant for some seconds. The curve in Figure 4.5 shows the
recorded force measurements over time. We observe that the force decreases over time
when the deformation is held constant. Furthermore, we can observe a hysteresis, as the
measured force is significantly larger when loading the object compared to unloading the
object for the same position of the manipulator, and the same deformation, respectively. The
hysteresis is illustrated in a force-displacement plot of this experiment in Figure 4.6. These
effects can be explained by viscoelastic behavior of the object: some of the deformation
energy is dissipated in the object, and the material partially adapts to the deformation. Such
effects are not accounted for in our deformation model. We also observe that the force-
displacement curve is not perfectly linear.

In our parameter estimation experiments, we only use the force measurements obtained
when loading the object, that is when the manipulator moves forward to deform the object.
Since these forces are larger, we get a more conservative estimate of the force required to
deform an object when using the learned models for robot motion planning. We do not con-
sider force measurements obtained when the robot moves back. Furthermore, we determine
an average of the force measurements over a time frame of two seconds, when we record
a force-deformation sample. In our experiments, we evaluate how accurately we can de-
termine the material parameters of real objects. Furthermore, we evaluate how robust these

4.3 Limitations of the Deformation Model 41

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800

F
o
rc
e
[N

]

Time [s]

64

68

72

205 215 225 235

33% Compression (loading)

42

45

48

51

580 590 600 610

33% Compression (unloading)

Figure 4.5: Force observations for a compression experiment with a foam cube. We notice
that the measured force is time-dependent for a constant deformation, which can
be explained by some viscoelastic behavior of the material.

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

F
or
ce

[N
]

Displacement [mm]

loading
unloading

Figure 4.6: The force-displacement curve for the compressed foam cube (Figure 4.5) shows
a hysteresis.

estimations are, with respect to predicting different deformations and forces. Heterogeneous
material properties could in principle be accounted for in our model, by determining the ma-
terial parameters for different heterogeneous parts of the object individually and associating
them with the corresponding tetrahedral elements of the model. We have not realized such
a model yet, but we evaluate the error that is introduced by assuming homogeneity.

42 Chapter 4: Learning Deformation Models

4.4 Experimental Results

We carried out different experiments to evaluate our parameter estimation procedure with
observations of object deformations obtained from simulations and from interactions with
real objects. In simulation experiments, we evaluated the accuracy and precision of the
parameter estimation procedure under the influence of different sources of noise. For the
observed deformations of real objects, we evaluated the robustness of the parameter estima-
tion as well as the error in predicting new force measurements for the estimated parameters.

4.4.1 Simulation Experiments

We evaluated our parameter estimation procedure under controlled conditions in a simula-
tion experiment. Our test object is a cube with an edge length of 20 cm and true material
parameters E = 100 N

dm2 and ν = 0.3. The model consists of 625 tetrahedrons and the surface
mesh consists of 2,646 points. We deformed the cube in simulation and generated a test data
set consisting of 10 force-deformation samples with linearly increasing force in the range
of 3 to 30 Newton. In different runs, we evaluated the results of the estimation procedure
under the influence of different noise characteristics. We identified three different sources
of noise:

(1) Noise in the RGB-D measurements, which is around 2 mm for distances below 1 m,
we assume σp ∼ 2.5 mm.

(2) Noise in the force measurements, which contains a force-dependent noise compo-
nent of ∼ 5 % as specified by the manufacturer and a white noise component with
a magnitude of approximately 1 N, as can be observed, for instance, in Figure 4.5:
σ f ∼ 0.05|f| + 1 N.

(3) Noise in the estimation of the contact point: σc ∼ 20 mm.

In each run, we evaluated the iterative parameter estimation procedure for all 10 force-
displacement samples. Run 1 to 3 consider the three types of noise mentioned above indi-
vidually and run 4 considers a combination of all types of noise. Figure 4.7 summarizes
the results in terms of the error in the estimated Young’s modulus, Poisson’s ratio and the
residual mean square error (MSE) after convergence of the estimation. Furthermore, it il-
lustrates the evolution of the parameters and the error in one learning run for the different

4.4 Experimental Results 43

0

5

10

15

20

25

2 4 6 8 10 mean

R
el
at
iv
e
er
ro
r
E

[%
]

Observation

σp
σf
σc

σpfc

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18

E
[

N
d
m

2
]

Learning iteration

σp
σf
σc

σpfc

0

5

10

15

20

25

30

35

2 4 6 8 10 mean

R
el
at
iv
e
er
ro
r
ν
[%

]

Observation

σp

σf

σc

σpfc

0.2

0.3

0.4

0.5

0 2 4 6 8 10 12 14 16 18

ν

Learning iteration

σp

σf

σc

σpfc

0

5

10

15

2 4 6 8 10 mean

M
S
E

[m
m

2
]

Observation

σp

σf

σc

σpfc

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18

M
S
E

[m
m

2
]

Learning iteration

σp

σf

σc

σpfc

Figure 4.7: Parameter estimation results for simulated data sets consisting of different force-
deformation observations corrupted with different sources of noise. The plots
in the left column show the relative errors in the estimated Young’s modulus E
(top) and Poisson’s ratio ν (middle), furthermore the residual MSE of the surface
meshes after convergence of the estimation procedure (bottom). The plots in the
right column illustrate the evolution of the corresponding quantities in learning
runs for sample 9, for deformations with f ≈ 27 N.

44 Chapter 4: Learning Deformation Models

Figure 4.8: Real objects, for which we estimated the material parameters: a foam mat, a
foam cube, an inflatable ball, and a plush teddy. The foam mat and the plush
teddy bear are covered with cloth to make them observable for the RGB-D cam-
era. The plot on the right shows the force-displacement curves for the recorded
measurements of each object.

noise settings. From the results, we can make some interesting observations. The obser-
vation noise (run 1) does not seem to affect the parameter estimation, the parameters are
estimated accurately for all samples while the residual error after convergence corresponds
to the observation noise. Noise in the force measurements (run 2) naturally leads to a larger
error in the estimated parameters. This error is more pronounced for samples with smaller
deformations and forces due to the white noise component in the force observation. The
residual error, in contrast, is very small, the estimated parameters simply express a different
force-displacement relation. An error in the contact point leads to a different deformation of
the model, hence, the observation can never be entirely consistent with the deformed model.
This error is more pronounced for larger deformations. For a combination of all errors in
run 4, the relative error in the estimation of the Young modulus is still below 10 %, while
for Poisson’s ratio it is around 15 %. Thus, our estimation procedure allows to identify the
material parameters from force-deformation observations.

4.4.2 Parameter Estimation for Real Objects

We evaluated our parameter estimation approach on observations of four different real ob-
jects: a foam mat with a size of 50 x 80 x 5 cm, a foam cube of edge length 15 cm, an in-

4.4 Experimental Results 45

Figure 4.9: Parameter estimation for the foam mat: The plots show the adaptation of the
parameters over the learning iterations (top row) and the MSE of the registered
surface meshes (bottom). The colors encode the applied force (green: low force,
blue: high force).

flatable ball with a diameter of approximately 40 cm, and a plush teddy bear with a height
of approximately 50 cm. For each object, we recorded a test series of force-deformation
samples with increasing force for one contact point. For the teddy bear, we additionally
considered several contact points. The objects and the corresponding force-displacement
curves for the recorded samples, with the displacement derived from the manipulator mo-
tion, are shown in Figure 4.8. In the following, we present parameter estimation results for
each object.

Foam mat

We recorded a series of four force-deformation samples for one contact point on the foam
mat, and estimated the material parameters for each of the samples individually. The evolu-
tion of the parameters and the error in the individual learning runs are shown in Figure 4.9.

46 Chapter 4: Learning Deformation Models

Figure 4.10: The error function for foam sample 4 (f = 44 N) for a uniform sampling of
parameters (E, ν): the error varies less with changing ν than with changing
E. The global minimum at E = 300 N

dm2 , ν = 0 agrees with our gradient-
based estimation (E = 339.5 N

dm2 , ν = 0). The corresponding registered surface
meshes are shown on the right.

While the estimated values for the Young modulus correspond well for the last three sam-
ples, the estimation for the first measurement converges to a considerably smaller value.
This can be explained one the one side with the nonlinearity in the force-displacement curve,
and on the other side with very small deformation region that is hardly noticeable in the error
function – it almost gets lost in the measurement noise. If we discard sample 1 as outlier, and
average over the remaining three samples, we obtain an estimate of 340.2 N

dm2 ± 88.2 N
dm2 for

Young’s modulus, if we consider 95 % confidence intervals.

The estimation for Poisson’s ratio converges to zero for each sample. This is somewhat
surprising, since the Poisson ratio of foam is reported to be in range of 0.1 to 0.3 in general.
To gain more insight into this behavior of our estimation procedure, we consider the error
function for sample 3 in Figure 4.10. This error function was obtained for a uniform sam-
pling in the parameter space and is mainly influenced by the value of the Young modulus,
while a change in the Poisson ratio leads to comparably small changes in the error function.
This could be explained by the fact that the deformation is observed from above, and since
the foam mat is larger than the field of view of the camera, a possible extension of the object
transverse to the applied force unfortunately cannot be observed with our sensor setup.

4.4 Experimental Results 47

Figure 4.11: Parameter estimation for the foam cube: The plots show the adaptation of the
parameters over the learning iterations (top row) and the MSE of the registered
surface meshes (bottom). The colors encode the applied force (green: low
force, blue: high force).

Foam cube

In addition to the foam mat, we examined a toy cube consisting of a different type of foam.
It is softer, as can already be observed from the force-displacement curve (Figure 4.8). The
learning curves for the seven samples are shown in Figure 4.11. The Young’s modulus
estimated for different applied forces varies and is in the range of 148.9 N

dm2 ± 17.2 N
dm2 .

Similar to the foam mat, Poisson’s ratio converges to zero, as an extension of the object
perpendicular to the camera is hardly observable. The residual error of the registered surface
meshes increases significantly with increasing force. Figure 4.12 illustrates the deformation
model determined for the foam cube with the last observation of the data set. It shows
the deformed tetrahedral model for the determined material parameters and the registered
surface meshes, furthermore it illustrates the point-wise error for the observed deformation.
We can see that the error is smaller in the deformed region than in the border regions with
the edges of the cube, thus the deformation model fits the observation quite well.

48 Chapter 4: Learning Deformation Models

Figure 4.12: The deformation model for the foam cube estimated with sample 7, with a
deformation force of f = 44 N: The tetrahedral mesh deformed with the es-
timated parameters E = 126.9 N

dm2 , ν = 0 is shown on the left, the registered
surface meshes, the observed surface mesh (red) and the deformed model (yel-
low) are shown in the middle. The plot to the right illustrates the point-wise
error for the observed surface mesh.

Inflatable ball

The inflatable ball has a larger diameter and a smaller force is required to deform it. Thus,
we were able to acquire eight force-deformation samples in total. The material parameters
were estimated for each sample individually. Figure 4.13 illustrates the results for the indi-
vidual estimation runs. The estimated Young’s modulus is in the range of 65.5 N

dm2 ± 8.1 N
dm2

and has a low variance over the different runs. The variance in the estimated Poisson’s ra-
tio, in contrast, is rather large (0.27 ± 0.12). The residual error for the registered meshes
is notably larger than for the foam mat, in particular for larger deformation forces. Fig-
ure 4.14 shows the registered surface meshes for sample 8 and its model deformed with the
estimated parameters. The larger error could be explained by the fact that the model never
entirely fits the observed deformation. An idea to improve the model error could be to adapt
the resolution of the underlying tetrahedral model used to compute the deformation. In our
experiments, however, we have not considered this possibility. We generated tetrahedral
meshes with approximately 1,000 to 2,000 elements to bound the computation time of the
parameter estimation.

4.4 Experimental Results 49

Figure 4.13: Parameter estimation for the inflatable ball: The plots show the adaptation of
the parameters over the learning iterations (top row) and the MSE of the reg-
istered surface meshes (bottom). The colors encode the applied force (green:
low force, blue: high force)

Figure 4.14: Registered surface meshes for the parameter estimation result of ball sample 8:
the observed surface mesh deformed with f = 35 N (red) and the model with
the estimated parameters (yellow, E = 74.1 N

dm2 , ν = 0.2) do not correspond
perfectly. The tetrahedral mesh used to compute the deformation is shown on
the left and the point-wise error for the observed surface mesh is shown on the
right.

50 Chapter 4: Learning Deformation Models

Figure 4.15: Deformation experiments with the plush teddy bear: the force-deflection curves
show the recorded force observations for seven different contact points (top).
The teddy was deformed at contact points on its back (1 and 2), head (3 and 4),
belly (5 and 6) and chest (7). Accordingly, we generated two different models
of the teddy, lying on its belly (bottom left) and on its back (bottom right).

Plush teddy

The plush teddy bear is a quite large and inhomogeneous object. To study our assumption of
homogeneous material in more detail, we acquired several test series of force-deformation
observations at different contact points on its back, head, belly and chest. Accordingly, we
generated two different volumetric meshes for the parameter estimation procedure, one rep-
resenting the teddy lying on its belly and one representing it lying on its back. These models,
together with the force-deflection curves for the different deformation experiments are illus-
trated in Figure 4.15. We estimated the material parameters for each force-deformation
observation and each contact point individually. The results are summarized in Figure 4.16.
For all contact points, the variance in the estimated parameters is lower, if larger forces are

4.4 Experimental Results 51

Figure 4.16: Parameter estimation results for the plush teddy bear for different force-
deformation observations on different contact points. The estimated param-
eters, Young’s modulus (top left) and Poisson’s ratio (top right) and the resid-
ual MSE (bottom) are shown for the individual observations, together with the
mean and confidence interval for each contact point.

applied. This is probably related to a larger deformation region in the surface observation,
which can be better matched with the deformed model. Furthermore, the estimated param-
eters, in particular the Young modulus, vary for different contact points, the assumption of
homogeneous material is obviously not applicable for this object. The residual error for the
registered surface meshes tends to get larger for larger applied forces, which could be re-
lated to the mesh resolution of the underlying volumetric meshes. We illustrate the learned
models and the registered observed surface meshes for different estimation runs, Figures
4.17, 4.18 and 4.19 show different estimation runs with a large, small and medium residual
error, respectively. The parameters estimated in the different experiments, however, are still
similar.

52 Chapter 4: Learning Deformation Models

0 5 10 15 20 25 30

point error [mm]

Figure 4.17: Bad model fit: teddy-1, sample 9, E = 35.1 N
dm2 , ν = 0,MSE = 33 mm2.

0 3 6 9 12 15 18

point error [mm]

Figure 4.18: Good model fit: teddy-4, sample 8, E = 39.3 N
dm2 , ν = 0,MSE = 13.4 mm2.

0 5 10 15 20 25 30

point error [mm]

Figure 4.19: Medium model fit: teddy-5, sample 6, E = 31.4 N
dm2 , ν = 0.4,MSE =

19.4 mm2.

4.5 Summary 53

∅E (N
dm2) ∅ν MSE (mm) Force error (%)

Foam (3 samples) 340.2 ± 88.2 0.0 ± 0.0 7.5 ± 0.8 10.0 ± 15.2
Cube (7 samples) 148.9 ± 17.2 0.002 ± 0.005 18.2 ± 1.7 12.9 ± 14.0
Ball (8 samples) 65.5 ± 8.1 0.27 ± 0.12 15.8 ± 2.7 12.5 ± 17.8

Teddy (9 samples) 29.5 ± 3.0 0.07 ± 0.08 18.1 ± 6.0 12.7 ± 10.5

Table 4.1: Parameter estimation results for different real objects. We determined the average
over different runs with different forces applied to one contact point.

Validation of the learned models

We determined the material parameters for each object in a test series with several force-
deformation samples. The means of the estimated parameters together with their 95 %-
confidence intervals over the different runs already give an indication on the reliability of
the estimation. They are summarized in Table 4.1 for all objects we considered in our ex-
periments. In a validation experiment, we additionally evaluated how well the determined
material parameters allow us to predict the measured forces. To this end, we performed a
leave-one-out-validation for each test series. A test series recorded for one contact point
consists of x force-deformation samples with increasing force. In the validation experiment,
we used (x − 1) samples to determine the averaged material parameters, and the remain-
ing sample to evaluate how accurately the measured force can be predicted assuming these
parameters. In detail, we determined the force that minimized the difference between the
observed surface and the simulated deformation. Table 4.1 lists the averaged force predic-
tion errors for all objects. The forces could be predicted with an error of approximately
10 to 15 %. Thus, the learned models can be useful in predicting the force a robot has
to expend when deforming objects, although we neglect different material effects, such as
viscoelasticity and nonlinearity.

4.5 Summary

In this chapter, we presented an approach to learn deformation models of real objects. To
this end, we set up a manipulation robot to interact with deformable objects and to observe
them under applied forces. With the data acquired by our robot, we showed how to establish
a three-dimensional geometric model of the object and how to determine its material param-

54 Chapter 4: Learning Deformation Models

eters. The material parameters are optimized using an inverse finite element approach such
that they best match the observations. We evaluated our approach in extensive experiments
on simulated and real-world data. We estimated the material parameters of different real
objects and demonstrated that the learned models can accurately predict their deformations
and forces.

The resulting models can be used in deformation simulations, for instance in virtual reality
or game applications and relieve users from the need to hand-tune parameters for visually
pleasing behavior. In the next chapter, we apply the learned models to describe obstacles
in the environment of our robot. This allows us to carry out deformation simulations of
robot trajectories that might lead to object deformations and to appropriately consider these
additional costs when planning a robot’s motions.

5 Deformation Cost Functions for

Motion Planning

When planning robot motions, we want to consider the costs that the robot introduces by de-
forming obstacles in its environment. To achieve this, we carry out deformation simulations
of the corresponding robot trajectories using the physical simulation framework discussed in
Chapter 3. The simulation, in turn, requires appropriate deformation models of the obstacles
in the robot’s environment, which need to be determined beforehand – for instance, using
our parameter estimation approach presented in Chapter 4. With the simulation framework
and deformation models of obstacles, we define a measure for the deformation costs of a
robot trajectory, which considers the deformation energy of objects.

Planning the motion to a given goal typically requires evaluation of many alternative tra-
jectories. The simulations of the corresponding trajectories, however, are time-consuming.
Thus, when given a goal point, the robot will spend some time deliberating on the best way
to get there before it can actually set out for the goal. For robots navigating in real-world
environments, this is not desirable, as they are expected to quickly respond to tasks. There-
fore, we introduce the concept of object-dependent deformation cost functions that can be
precomputed for stationary objects and significantly speed up the planning process. We
model these deformation cost functions using Gaussian process (GP) regression and discuss
how to evaluate trajectories generated by the planner within the GP framework.

5.1 Deformation Costs of a Robot Trajectory

To measure the costs the robot introduces by deforming an object and thereby consuming ad-
ditional energy, we consider the potential elastic energy of an object, as given in Eq. (3.14).
The elastic energy describes the work done, that is the force applied to deform the object. It

56 Chapter 5: Deformation Cost Functions for Motion Planning

is computed at each time step of the simulation to derive the internal forces acting inside the
object and restoring its undeformed state. In an equilibrium deformation state, the internal
forces are equal to the external forces acting on the object. Therefore, the potential elastic
energy provides an intuitive measure for the deformation costs.

Objects are modeled using volumetric meshes consisting of tetrahedral elements. Further-
more, their elastic behavior is described by a set of material parameters, in our model in-
troduced in Section 3.2.1, these are Young’s modulus and Poisson’s ratio. In the finite
element method (FEM), the elastic energy of an object is computed per tetrahedral ele-
ment at each time step (see Eq. (3.24)). To obtain the deformation costs for an object O

consisting of elements {ei} in a given state, we define the inner energy ΛO induced by the
robot r in a given configuration ζ to be the sum over the inner energies of all elements ei:
ΛO(r, ζ) :=

∑
ei∈O

Λei(r, ζ).

We define the deformation costs of a given robot configuration ζ as Cdef (ζ) :=
∑

O∈W
UO(r, ζ)

by summing over the energies of all objects O in the workspaceW in contact with the robot.

The deformation costs of a robot trajectory can then be computed by integrating the defor-
mation costs over the robot movement on the path. The execution of the path is simulated in
discrete time steps. Thus, the total deformation costs of a path Γ in the environment result in
the sum over the deformation costs of all objects that are deformed by the robot while it is
moving on the path in discrete time steps ti, thereby assuming corresponding configurations
ζi:

Cdef (Γ) =
∑
ζi∈Γ

Cdef (ζi) . (5.1)

Hence, the deformation costs of a path depend on the sequence of configurations that the
robot assumes during execution of the path, furthermore on the material properties of objects
in contact with the robot.

5.2 Object Deformation Cost Functions

In our definition above, we have seen that the deformation costs of a trajectory are a function
of the robot configurations and the objects on the way. When the planner evaluates trajec-

5.2 Object Deformation Cost Functions 57

tory hypotheses, it could in principle carry out deformation simulations for each hypothesis
online. In environments, in which objects can be moved by the robot and potentially new
deformations resulting from interactions between obstacles need to be considered, this is the
only possibility to determine an optimal trajectory. Finite element simulations, however, are
time-consuming, and typically many path hypotheses need to be evaluated by the planner.
Thus, in practical applications, it is not desirable to perform these simulations online.

To increase the efficiency of the planner, we consider a simplified scenario by making two
preliminary assumptions:

(1) We restrict ourselves to an environment, in which objects can be deformed by the
robot, but cannot be moved. This assumption is valid for objects that are partially
fixed, such as curtains that are fixed to the ceiling, or plants with deformable branches
or leaves in (rigid) plant pots that should not be moved by the robot.

(2) We ignore interactions between different objects in the environment, which requires
that objects are placed sufficiently far away from each other.

With the assumptions stated above, the use of a roadmap-based planner, which precomputes
a graph for a static environment and efficiently answers multiple path queries, is justified. In
principle, it is possible to precompute the deformation costs of edges in the roadmap by per-
forming the corresponding finite element simulations when generating the roadmap. This
saves computation time when answering path queries but has the disadvantage that recom-
putations are necessary whenever the environment changes, for instance, when an object is
moved to a new location, or the robot is deployed in a new environment containing similar
objects. To overcome the shortcomings stated above, we propose a different approach: we
introduce the concept of deformation cost functions for individual objects. Such object de-
formation cost functions are defined for robot trajectories relative to the object. They can be
learned once for each type of object and are independent of the actual locations of obstacles.
The availability of deformation cost functions is advantageous if there are many instances
of the same object type, or if the environment changes often by circumstances outside the
control of the robot. This could be the case in environments populated by humans, someone
might move the flower pot to a sunnier spot.

The idea of our approach is to generate some trajectory samples relative to an object and
perform the corresponding FEM simulations in a preprocessing step. Given this set of train-
ing samples, the problem of estimating the deformation costs introduced by a robot can then

58 Chapter 5: Deformation Cost Functions for Motion Planning

s

e

l

0

20

40

60

80

100

120

140

0.5 1 1.5 2 2.5

D
ef
or
m
at
io
n
co
st
s

Traveled length [m]

Figure 5.1: Trajectory parametrization: the linear trajectory is described by a starting point s
and end point e on a virtual sphere around the deformable object. Additionally,
we consider the traveled distance l along the trajectory. The lower plot illustrates
the deformation costs integrated over time for the trajectory indicated above.

be efficiently approached by regression techniques. LetD = {(xi, yi)}ni=1 be the set of training
examples obtained from n simulations, in which the virtual robot executed n different tra-
jectories xi with resulting deformation cost values yi. Then, the goal is to learn a predictive
model p(y∗ | x∗,D) for estimating the deformation costs y∗ given a new query trajectory x∗.

In theory, arbitrarily curved trajectories through a deformable object can be executed. To
bound the complexity of the regression problem, we consider only straight line motions
through the object. This is a restriction, but not a strong one, since the trajectories generated
by roadmap planners are often piecewise linear motions. The motions considered to estimate
the deformation costs are described by a starting point s and end point e on a virtual sphere
around the object, both expressed in a spherical coordinate system by an azimuth angle φ and
an elevation angle θ. Furthermore, we take into account the distance l from the starting point

5.3 Modeling Deformation Cost Functions with Gaussian Processes 59

that describes the length of the motion. Figure 5.1 illustrates this parametrization. Thus, xi

is a five-dimensional vector in our case with xi = [θs
i , φ

s
i , θ

e
i , φ

e
i , li]T , where the superscript s

refers to the starting point and e to the end point. We assume the object’s center of mass
and correspondingly the center of the sphere to reside in the origin and the radius fixed to a
constant r that is determined by the object’s dimensions when generating training examples.
If we want to determine the deformation costs for arbitrary robot trajectories, it is sufficient
to know the rigid body transformation of the object in the world model.

5.3 Modeling Deformation Cost Functions with

Gaussian Processes

We approach the problem of estimating the deformation costs of a robot trajectory using
the Gaussian process (GP) model (Rasmussen and Williams, 2006). This nonparametric
approach to regression specifies a probability distribution over functions. A thorough treat-
ment of Gaussian processes is given by Rasmussen and Williams (2006). In the following,
we review Gaussian processes for regression based on their work.

Formally, a Gaussian process is defined as a collection of random variables, any finite sub-
set of which is jointly Gaussian distributed. Therefore, a GP is fully specified by a mean
function and a covariance function. The mean function m(x) and the covariance function
k(x, x′) of a real process f (x) can be defined as:

m(x) = E[f (x)] , (5.2a)

k(x, x′) = E[(f (x) − m(x))(f (x′) − m(x′))] . (5.2b)

The Gaussian process can then be written as

f (x) ∼ GP(m(x), k(x, x′)) . (5.3)

In the context of regression, we are usually given a data set D = {(xi, yi)}ni=1 of samples
from a GP. Then, our random variables are the fi corresponding to the training examples
{(xi, yi)}ni=1. The GP specifies a joint probability distribution over the function values at

60 Chapter 5: Deformation Cost Functions for Motion Planning

locations xi. Therefore, if we define f to be the vector containing fi, we can write

f ∼ N(µ,K) , µ ∈ Rn,K ∈ Rn×n . (5.4)

with mean µ and a covariance matrix K.

For notational simplicity, the mean is often assumed to be zero. This is not a strong limita-
tion, since for any deterministic mean function, the data can be rescaled to have an empirical
mean of zero; the GP applied to the difference between the observations and the mean func-
tion has again zero mean (see Rasmussen and Williams, 2006, Sec. 2.7).

The covariance matrix [K]i j is specified in terms of a covariance function k(xi, x j), which
encodes prior knowledge about the target distribution, such as smoothness and noise as-
sumptions. It models correlations between the target values in terms of the inputs. Intu-
itively, it specifies how similar two function values f (xi) and f (x j) are depending on their
input locations xi and x j.

5.3.1 Covariance Functions

In the context of GPs, several covariance functions have been used, each with different prop-
erties, thus encoding different assumptions about the functions to be modeled. An overview
can be found in Chapter 4 of Rasmussen and Williams’ book (2006). In the following, we
will discuss two covariance functions in more detail. A popular covariance function applied
to a wide range of problems is the squared exponential covariance function. It is given by

kSE(xi, x j) = σ2
f exp

(
−

d2(xi, x j)
2`2

)
. (5.5)

Here, ` is the characteristic length-scale of the function, and σ2
f is the signal variance. These

parameters are known as the hyperparameters of the process. This covariance function
is stationary, which means the covariance only depends on the distance d(xi, x j) between
inputs, not on their actual position in input space.

New covariance functions can be obtained from the sum and the product of covariance func-
tions. This gives rise to the covariance function with individual length-scales for different

5.3 Modeling Deformation Cost Functions with Gaussian Processes 61

input dimensions, thereby implementing automatic relevance determination (Neal, 1996):

kSE−ARD(xi, x j) = σ2
f exp

−1
2

∑
D

d2(xi,D, x j,D)
2`2

D

 . (5.6)

Here, `D are the characteristic length-scales of the individual dimensions D.

For our periodic domain of angular inputs, the Euclidean distance captures their similarity
poorly. To correctly consider the distance of the inputs describing points on a sphere, we
have to adjust the distance function inside the covariance function. MacKay (1998) de-
scribes a nonlinear embedding for periodic inputs to obtain a periodic covariance function:
with the mapping x 7→ u(x) and u = (cos(x), sin(x)), the squared exponential covariance
function applied in u-space is given as

kSE−π(xi, x j) = σ2
f exp

−
2 sin2

((xi−x j)
2

)
`2

 . (5.7)

The distance between xi and x j is expressed in terms of its mapping u as d2(ui,u j) =

(cos(xi) − cos(x j))2 + (sin(xi) − sin(x j))2 = 4 sin2
(xi−x j

2

)
. This two-dimensional mapping

describes the distance for points lying on a circle.

In our case, to compute the distance between points on a sphere, we have to consider the
input pairs (θi, φi) and (θ j, φ j) of azimuth φ and elevation angle θ. The shortest distance for
points on a sphere is given by the great circle distance and can be computed as (Sinnott,
1984):

d(θi, φi, θ j, φ j) = 2r arcsin

√

sin2
(
θ j − θi

2

)
+ cos(θi) cos(θ j) sin2

(
φ j − φi

2

) . (5.8)

To obtain a covariance function that models correlations between trajectories, we incorpo-
rate the distance function (5.8) for points on the sphere and determine individual length-
scales for starting point, end point, and length:

kSE−T(xi, x j) = σ2
f exp

−1
2

d2(θs
i , φ

s
i , θ

s
j, φ

s
j)

2`2
s

+
d2(θe

i , φ
e
i , θ

e
j, φ

e
j)

2`2
e

+
|li − l j|

2

2`2
l

 . (5.9)

The squared exponential covariance function is stationary, meaning that the covariance of
two inputs only depends on their distance, not on their actual position in input space. This

62 Chapter 5: Deformation Cost Functions for Motion Planning

Figure 5.2: The squared exponential (left) vs. the neural network (right) covariance func-
tion: Shown are the covariances k(xi, x j) of 1-dimensional data points ranging
from [−3, 3]. While the covariance of data points under kSE rapidly decreases
with distance, the covariance of data points under kNN depends on the distance
to the origin and saturates with larger distance.

implies a global smoothness assumption, in a sense that the function is assumed to be simi-
larly smooth over the whole input domain. Furthermore, it is infinitely differentiable, which
results in very smooth functions and a strong smoothing of data points. In our experiments,
we investigate, to what extent these assumptions are justified.

The deformation cost function for trajectories can be non-smooth, there might be discon-
tinuities, for instance, at transitions between trajectories missing an object and trajectories
deforming it. Thus, the stationarity and smoothness assumption of the squared exponential
kernel might be too strong for our regression problem. Therefore, we additionally con-
sider the nonstationary neural network covariance function, which was described by Neal
(1996); Williams (1998, 1999) and corresponds to a neural network with one hidden layer
and infinitely many hidden units. It is specified as

kNN(xi, x j) = σ2
f arcsin

 β + 2xT
i Σx j√

(1 + β + 2xT
i Σxi)(1 + β + 2xT

j Σx j)

 , (5.10)

with a bias factor β and Σ = diag(`1, . . . , `d)−2 the length-scale matrix, containing the charac-
teristic length-scales `D of the individual dimensions D. The signal variance σ2

f is as defined
above. The neural network covariance function is able to adapt to variations and disconti-
nuities in the data. For instance, it has successfully been used to model discontinuities in
large-scale terrain data by Vasudevan et al. (2009). In contrast to the squared exponential

5.3 Modeling Deformation Cost Functions with Gaussian Processes 63

covariance function, the neural network covariance of two data points depends on their dis-
tance to the coordinate origin, not only on their relative distance. The behavior of the two
different covariance functions is illustrated in Figure 5.2.

We show a regression example comparing the two different covariance functions in Fig-
ure 5.3. We consider two nonstationary test functions, which have been used for evaluation
purposes by DiMatteo et al. (2001), among others. The neural network covariance function
is in both cases able to better adapt to the varying smoothness of the functions.

5.3.2 Predictions with the GP model

Given a set D = {(xi, yi)}ni=1 of training data obtained from the physical simulation engine,
we are interested in predicting the target value y∗ for a new trajectory specified by x∗. In
general, observed data points are subject to noise, that means we do not observe the function
values fi directly, but only noisy values yi = f (xi) + ε. In the GP model, the noise ε is
assumed to be independent and identically distributed Gaussian noise with variance σ2

n.
Now, let X = [x1; . . . ; xn]> be the n × D matrix of the n D-dimensional training inputs,
y = (y1, . . . , yn) be the vector of the corresponding target values. In the GP model, any finite
set of samples is assumed to be jointly Gaussian distributed, hence we can write the joint
probability distribution of the training data and the query (x∗, y∗) y

y∗

 ∼ N 0,
 k(X,X) + σ2

nI k(X, x∗)
k(x∗,X) k(x∗, x∗)

 , (5.11)

where k(X,X) refers to the covariance matrix built by evaluating the covariance function
k(·, ·) for all pairs of training examples 〈xi, x j〉. Since we assume additive, independent
noise, the global noise variance σ2

n is only added to the diagonal elements of the covari-
ance matrix. The covariance between test and training samples is given by k(x∗,X) and
k(X, x∗) = k(x∗,X)T . The predictive distribution for the new target value y∗ can be obtained
by conditioning this (n + 1)-dimensional Gaussian distribution on the training data. Ap-
plying Bayes’ rule and marginalizing over the function values, the predictive distribution
p(y∗ | x∗,X, y) for a new trajectory x∗ can be derived, which is again Gaussian with mean

ŷ∗ = k(x∗,X)
[
k(X,X) + σ2

nI
]−1

y (5.12)

64 Chapter 5: Deformation Cost Functions for Motion Planning

-2

-1

0

1

2

3

-1.5 -1 -0.5 0 0.5 1 1.5

y

x

f(x)

data

-6

-4

-2

0

2

4

6

-0.4 -0.2 0 0.2 0.4 0.6

y

x

f(x)

data

-2

-1

0

1

2

3

-1.5 -1 -0.5 0 0.5 1 1.5

y

x

GPSE

data

-6

-4

-2

0

2

4

6

-0.4 -0.2 0 0.2 0.4 0.6

y

x

GPSE

data

-2

-1

0

1

2

3

-1.5 -1 -0.5 0 0.5 1 1.5

y

x

GPNN

data

-6

-4

-2

0

2

4

6

-0.4 -0.2 0 0.2 0.4 0.6

y

x

GPNN

data

Figure 5.3: GP Regression: we consider two different nonstationary test functions (top row)
and the GPs determined from the sampled noisy data points, using the squared
exponential (middle row) and the neural network (bottom row) covariance func-
tion. Shown are the GP mean functions and the predictive uncertainties in terms
of the 2σ-errorbars.

5.3 Modeling Deformation Cost Functions with Gaussian Processes 65

and variance

σ2
ŷ∗ = k(x∗, x∗) − k(x∗,X)

[
k(X,X) + σ2

nI
]−1

k(X, x∗) + σ2
n . (5.13)

In sum, Eq. (5.12) provides the predictive mean for the deformation costs when carrying out
a movement along x∗ and Eq. (5.13) provides the corresponding predictive variance.

For our path planning application, the predictive mean is technically sufficient to give an
estimate of the deformation costs that can be expected along a trajectory. However, the
predictive uncertainty provided by the GP framework is also useful and could be incorpo-
rated into the cost function of the planner. For instance, areas with a higher uncertainty
corresponding to less dense sampling of trajectories or a higher variation in the deformation
costs could better be avoided.

5.3.3 Learning a GP model

The GP model is a nonparametric model, that means it is represented in terms of the train-
ing data points, as can be seen in the equations for the predictive mean and variance above.
The covariance function, however, contains different free parameters, such as the length-
scale and the signal variance, that have an influence on the characteristics of the process
and therefore on the prediction of new data points. To emphasize their role as parame-
ters of a nonparametric model, these are referred to as hyperparameters of the process.
Learning a GP model thus amounts to determining the hyperparameters θ of the covari-
ance function that best explain the training data points. In our case, the hyperparameters
are given by θSE−T = (`s, `e, `l, σ f , σn) for the squared exponential covariance function and
θNN = (`k, β, σ f , σn), k = {1, . . . , 5} for the neural network covariance function.

The learning problem can be formulated as an optimization problem by finding the hyper-
parameters θ∗ that maximize the marginal log likelihood of the data (see Rasmussen and
Williams, 2006, Chap. 5.4): θ∗ = arg maxθ log p(y | X, θ) with

log p(y | X, θ) = −
1
2

yT K−1y −
1
2

log |K| −
n
2

log(2π) . (5.14)

The different terms in this objective function can be interpreted as follows (Rasmussen and
Williams, 2006, Chap. 5.4): the first term contains the target values and therefore measures
the data fit. The second term only depends on the covariance function and penalizes com-

66 Chapter 5: Deformation Cost Functions for Motion Planning

plex models. The last term is a normalization constant. By trading the data fit against the
model complexity in this problem formulation, Occam’s razor principle is automatically
implemented. Thus, finding the simplest model that explains the data is encouraged.

To solve this optimization problem for a given data set, we use a standard conjugate gradient
optimization approach. This requires the partial derivatives of the log likelihood function
with respect to the hyperparameters θi, which can be computed as (see Rasmussen and
Williams, 2006, Chap. 5.4):

∂

∂θi
log p(y | X, θ) =

1
2

yT K−1∂K
∂θi

K−1y −
1
2

tr
(
K−1∂K

∂θi

)
=

1
2

tr
(
(ααT − K−1)

∂K
∂θi

)
with α = K−1y . (5.15)

The complexity of the optimization is in O(n3), since the covariance matrix K needs to be
inverted in each iteration of the optimization.

5.4 Efficient Regression by Problem Decomposition

The GP model introduced above allows us to predict the expected deformation costs of a
new trajectory based on a set of training samples. In high-dimensional input domains, such
as our trajectories in 3D space, a considerable set of training samples is needed to obtain
a good function approximation. In this nonparametric approach to regression, the function
is entirely represented in terms of the training data points: training the GP model as well
as computing the predictive distribution for a new data point has a runtime cubic in the
number of training samples, due to the necessary inversions of the covariance matrix (cf.
Eqs. (5.12), (5.13), (5.14)). For data sets consisting of thousands of training samples, the
approach thus becomes inefficient.

Various techniques have been proposed that address scalability in GPs and are able to deal
with large data sets. For example, sparse approximations to Gaussian processes represent
the data distribution by a small number of input points only. These points can be chosen
from the training set such that they maximize some information criterion about the pos-
terior distribution (Lawrence et al., 2003; Seeger et al., 2003). This can lead to problems
with the optimization of the hyperparameters, as Snelson and Ghahramani (2006) observed,

5.4 Efficient Regression by Problem Decomposition 67

(a) Preprocessing (b) Local Approximation

Figure 5.4: Local approximation idea: (a) A large data set of 3D training trajectories is
generated. (b) When predicting the deformation costs of a new trajectory (red),
we determine its nearest neighbors (black) and build a local GP to compute the
predictive distribution of the new target value.

since selection of informative inputs and adaptation of hyperparameters interfere with each
other. To overcome this problem, they introduced a sparse GP framework, which represents
the predictive distribution by a set of pseudo-inputs. These are treated as additional hy-
perparameters of the process and determined in the optimization step to maximize the data
likelihood. In both approaches, however, GP training and selecting inputs becomes more
involved.

Vasudevan et al. (2009) suggest a different strategy to handle large data sets. They use the
GP framework to generate probabilistic terrain models from 3D point cloud data acquired
with a laser scanner. In this context, millions of data points are available for regression
and need to be handled. The idea of their approach is to organize the data points in a k-d
tree, which supports fast nearest neighbor search, and to use only a subset of the data for
training the hyperparameters of the GP as well as for regression. When actually computing
the predictive distribution for a new data point, they retrieve its nearest neighbors from the
k-d tree to set up a local GP. Since the number of inputs in this local GP is small, inference
can be carried out efficiently.

Inspired by the approach of Vasudevan et al. (2009), we decompose our regression problem
into a number of local ones. When predicting the deformation costs of a query trajectory x∗,

68 Chapter 5: Deformation Cost Functions for Motion Planning

we determine its M nearest neighbors from the training data set as

X′(x∗) = [x′1; . . . ; x′M] = argmin
[x′1;...;x′M]

M∑
k=1

dT (x′k, x∗). (5.16)

Similar to our covariance function from Eq. (5.9), the distance function dT (·, ·) for trajectory
samples considers the great circle distance on the surface of the sphere for starting and end
points of the trajectories (Eq. (5.8)) and can be computed as

dT (xi, x j) =||li − l j|| + d(θs
i , φ

s
i , θ

s
j, φ

s
j) + d(θe

i , φ
e
i , θ

e
j, φ

e
j) . (5.17)

The M nearest neighbors to a query trajectory x∗ can be determined efficiently using a k-d
tree (Bentley, 1975; Preparata and Shamos, 1993). This data structure is built once from
the training data in O(n log n) for n training data points. Then, searching for the nearest
neighbors can be carried out in O(log n) for n training data points. This reduces the runtime
for regression from O(n3) to O(log nM3) with M � n.

The M closest neighbors X′ to the query trajectory x∗ are the training data points with the
highest influence on the prediction of y∗ in the GP framework. Considering only X′ instead
of X in the GP is equivalent to assuming that k(x∗, xi) = 0 for all xi that are excluded from
X′. We illustrate this line of action in an example in Figure 5.4: we generate a large data set
of training trajectories using the simulation engine, and when determining the deformation
cost of a new trajectory, we retrieve its nearest neighbors from the k-d tree to build a local
GP.

One remaining problem we need to address is the question of how to determine the hyper-
parameters for the local GPs. Different strategies can be considered: As described in the
work of Vasudevan et al. (2009), the hyperparameters can be determined for a subset of the
available set of training data and applied to the local GPs. Another possibility is to optimize
the hyperparameters for each local GP individually. This strategy implements a form of
nonstationarity for the squared-exponential covariance function, as the length-scales of the
GPs can be adapted to the local structure of the function. In our experiments, we evaluate
both optimization strategies with respect to runtime and prediction accuracy.

5.5 Experimental Results 69

5.5 Experimental Results

In this section, we present evaluations of our approach to model the deformation cost func-
tions of objects with Gaussian processes. Using the simulation framework described in
Chapter 3, we generated several data sets consisting of trajectory samples that potentially
lead to object deformations for artificial and real deformable objects. We considered trajec-
tories in 2D that describe the motions of a wheeled robot and trajectories in 3D that describe
the movements of a manipulation robot end effector. To generate random trajectory samples,
we proceeded as follows: We first computed a set of uniformly distributed starting points
and end points. In the case of 2D trajectories, we considered points on a bounding circle
around the object with an angular resolution of 1◦. This sampling results in a distance of ap-
proximately 10 cm between neighboring points. In the case of 3D trajectories, we sampled
starting point and end point on a bounding sphere around the object. To compute sample
points on the sphere that are distributed uniformly and equidistantly, we used the spiral point
algorithm by Rakhmanov et al. (1994). We considered a set of 5,473 points with a minimum
distance of approximately 10 cm between neighboring points. A trajectory sample can then
be drawn by randomly choosing starting point and end point from the generated point set.
Using a fast collision checking routine, we discard trajectories that do not lead to object
deformations, since for these trajectories, the deformation costs naturally amount to zero. If
a collision is detected, we carry out an accurate physical simulation of the robot movement
to determine its deformation costs. An overview of the generated data sets is given in Ta-
ble 5.1. In addition to performing evaluations on the generated data sets, we use them in the
planning applications in the next chapter.

In all our experiments, we evaluate the accuracy of the predictions using the mean absolute
error (MAE). To obtain a measure that is independent of the scale of the distribution, we
furthermore consider the standardized mean squared error (sMSE) that is normalized by the
variance σ2

test of the test set and is computed as

sMSE =
1
n

n∑
i=1

(yi − ŷi)2

σ2
test

. (5.18)

For a trivial model, a Gaussian distribution with mean and variance of the training set distri-
bution, which always predicts the mean of the training distribution regardless of the input,
this error measure is approximately one.

70 Chapter 5: Deformation Cost Functions for Motion Planning

Data set # trajectories # tetras runtime
Artificial objects:

D1: Duck (2D) 4,284 530 7 h

D2: Curtain-A (2D) 4,693 500 10 h

Real objects:

D3: Curtain-R (2D) 2,035 285 5.5 h

D4: Foam (3D) 22,950 385 24 h

D5: Teddy (3D) 12,620 940 24 h

Table 5.1: Data sets for different deformable objects: we generated a set of example trajec-
tories leading to deformations using the simulator. The simulation time depends
on the length of the trajectories and on the number of elements of an object, it
increases for more complex objects.

The sMSE and MAE error losses only take into account the predictive mean of the model.
Since the Gaussian process framework provides us with an estimate of the uncertainty of
a prediction, we evaluate the fit of this predictive distribution by considering the negative
log predictive density (NLDP) of the true targets. This loss function is commonly used to
evaluate predictive distributions (cf. Rasmussen and Williams, 2006, Chapter 2) and can be
computed as:

− log p(y∗ | x∗,D) =
1
2

log(2πσ2
∗) +

(y∗ − ŷ∗)2

2σ2
∗

. (5.19)

It is minimal when the variance equals the error and penalizes both over-confident and
under-confident estimates. This loss can be standardized by subtracting the NLPD of the
trivial model, that is a Gaussian distribution with mean and standard deviation of the train-
ing set distribution. Thus, we compute the mean standardized log loss (MSLL) as

MSLL =
−1
n

n∑
i=1

log p(yi | xi,D) − log ptrivial(yi | xi,D) . (5.20)

This loss function is approximately zero for simple models and negative for better models.

5.5 Experimental Results 71

We investigate the effects of different optimization strategies and parameters. In particular,
we compare two different covariance functions for the modeling task, the squared expo-
nential covariance function introduced in Eq. (5.9) and the nonstationary neural network
covariance function from Eq. (5.10). We analyze the required number of training samples
as well as the number of nearest neighbors to be considered for the individual prediction
tasks. To demonstrate the benefits of decomposition and GP regression, we compare our
approach to a full GP model using all training points and to a weighted average M-nearest
neighbor strategy. To summarize, the different strategies we evaluate are:

GPD our GP-Decomposition strategy, for each test point, the M nearest neighbors are se-
lected from the N training points to build a local GP for regression. The hyperpa-
rameters, used in all local GPs, are optimized once on a subset of all trajectories.
We consider the squared exponential (GPD-SE) and the neural network (GPD-NN)
covariance function.

GPO GP decomposition and local Optimization strategy, in addition to building local GPs
for regression of test samples, the hyperparameters are optimized for each local GP
and test point individually on M � N trajectories. We consider the squared exponen-
tial (GPO-SE) and the neural network (GPO-NN) covariance function.

GPF a GP-Full model using all available training trajectories (if computationally tractable)
for hyperparameter optimization and prediction of a test point, with the squared ex-
ponential (GPF-SE) or the neural network (GPF-NN) covariance function.

IDW Inverse Distance Weighting, the baseline strategy predicts the weighted average of the
M nearest neighbors to a test point, with weights corresponding to the inverse of the
distance to a test point.

5.5.1 Deformation Cost Function Example

As an illustrative example, we consider the deformation cost function for the curtain that is
deformed by the wheeled robot. The sampled deformation cost function is shown in Fig-
ure 5.5, together with learned GP models using the neural network and squared exponential
covariance function. From this example, we can already gain some insight into the general
behavior of the deformation cost function. It illustrates that the deformation cost function
is zero in large areas corresponding to trajectories that do not lead to contact with the ob-

72 Chapter 5: Deformation Cost Functions for Motion Planning

0
1

2
3

4
5

6

0
1

2
3

4
5

6
0
30
60
90

θs
θe

(a) Deformation cost function

0
1

2
3

4
5

6

0
1

2
3

4
5

6

0
30
60
90

θs
θe

(b) GPSE

0
1

2
3

4
5

6

0
1

2
3

4
5

6

0
30
60
90

θs
θe

(c) GPNN

Figure 5.5: The deformation cost function for a curtain that is deformed by a robot navigat-
ing in two dimensions. The trajectories are parametrized by starting point angle
θs and end point angle θe, the length of the trajectory is assumed to be fixed such
that the robot passes the curtain.

ject. When learning the GP model, we therefore only consider samples that actually lead
to object deformations, otherwise, the zeroes are overrepresented and the function is not
adequately modeled. The trajectories with zero deformation costs could still be considered
when building local GPs. In our experiments, however, we ignore them.

The deformation cost function seems to be nonstationary, zero in large parts, and rapidly
increasing from trajectories barely touching the curtain to trajectories leading to large de-
formations, in particular, as the curtain is a very thin object. The squared exponential kernel
adapts to the rapidly changing function values by choosing very small length-scales. This,
however, leads to oscillations in less densely sampled areas. For instance, in the border
regions, the costs drop below zero. The neural network kernel models this nonstationary
function in a better way. It obtains rather smooth estimates of zero even in regions with no
samples, except in one region, in which the estimated deformation costs drop below zero.
In general, it models the data points well. In the following, we investigate the modeling
properties of both kernels in more detail.

5.5 Experimental Results 73

5.5
6

6.5
7

7.5
8

8.5
9

100 200 500 1000 2000 3000

M
A
E

Training samples

GPD-SE GPD-NN

0.1

0.2

0.3

100 200 500 1000 2000 3000

sM
S
E

Training samples

GPD-SE GPD-NN

-1.2

-0.8

-0.4

0

0.4

100 200 500 1000 2000 3000

M
S
L
L

Training samples

GPD-SE GPD-NN

Figure 5.6: Prediction accuracy of the local GPD models depending on the number of sam-
ples used to train the GP hyperparameters. Data set: 3D-Teddy, 5,000 training
trajectories were available and the 50 nearest neighbors were used to build the
local GPs.

5.5.2 GP Training and Number of Training Samples

GP training is the process of optimizing the hyperparameters of the covariance function such
that the model best fits the data. In the first set of experiments, we investigated how many
training samples are required to train GP models and to obtain accurate predictions.

With the GPD strategies, only a subset of the available training data set is used to train the
hyperparameters of the GP models. In a first experiment, we investigated the effect of the
number of samples N used to train the hyperparameters on the prediction accuracy. We con-
sidered the Teddy-3D data set and randomly selected 10,000 trajectories as training data and
300 trajectories as test data. For a fixed number of 25 nearest neighbors to build the local
GPs, we evaluated the prediction errors (MAE and sMSE) as well as the MSLL for varying
N. The results of this experiment are shown in Figure 5.6 and illustrate that training sets
larger than 1,000 samples do not lead to improved accuracies. The computation time for hy-
perparameter optimization, though, is cubic in the number of samples. For 1,000 samples,
optimization with the squared exponential covariance function requires up to two minutes,
with the neural network covariance function around five minutes due to more involved co-

74 Chapter 5: Deformation Cost Functions for Motion Planning

variance computations. For 3,000 samples, the optimization already takes up to half an hour
in case of the squared exponential and up to one hour in case of the neural network covari-
ance function. In the following experiments, we therefore limit the maximum number of
samples to 1,000 when learning the hyperparameters of the GP models.

We additionally investigated the required number of trajectory samples to obtain accurate
predictions for the deformation costs. We split the data sets into 80 % training trajectories
and 20 % test trajectories. From the available set of training trajectories, a varying number
of samples was used for regression of the test samples. In this experiment, the number of
nearest neighbors used to build local GPs was fixed to ten. The results of this experiment
for all considered strategies are summarized in Figure 5.7a for the 2D curtain data set and
Figure 5.7b for the 3D foam data set. Increasing the number of training samples obviously
leads to a smaller prediction error for all considered strategies. In 2D, considering 1,000
samples leads to good results and the accuracy does not improve significantly for larger
datasets. In 3D, the number of input dimensions is larger, thus more training samples are
required. The errors for the GP models are in general smaller compared to the baseline
strategy, in particular, if fewer training samples are available. For large training data sets,
however, the error of the baseline strategy approaches the error of the GP models. As gen-
erating new training samples by means of simulations is time-consuming, the training data
sets can not be arbitrarily increased and the GP models allow for a better trade-off between
the size of the training set and accuracy. For the considered number of nearest neighbors,
we cannot observe a significant difference between squared exponential and neural network
kernel. Locally optimizing the hyperparameters does not seem to improve the prediction
accuracy either, at least for the considered number of training samples for the local GPs
in this experiment. The MSLL, however, is smaller for the locally optimized GPs, which
indicates more accurate uncertainty estimates for these strategies.

5.5.3 Number of Nearest Neighbors

In a further experiment, we investigated the influence of the number of nearest neighbors
on the prediction accuracy. For a fixed number of 1,000 training samples for the 2D data
sets and 2,000 training samples for the 3D data sets, we evaluated the prediction error when
considering up to 100 nearest neighbors for each prediction task. The results of this ex-
periment are summarized in Figure 5.8a for the 2D curtain data set and Figure 5.8b for the
3D foam data set. As the prediction error constantly increases for the weighted average

5.5 Experimental Results 75

nearest-neighbor strategy, it is not included here. Increasing the number of nearest neigh-
bors leads to more accurate predictions and uncertainty estimates for all GP models. In the
2D data sets, however, this effect is not that pronounced. With 50 nearest neighbors, the
performance is comparable to a full GP model considering all data points. Using only the
M nearest neighbors when evaluating the GP model, however, speeds up computation time,
since no computations with huge matrices are required. In case of the neural network kernel,
evaluation of one test sample requires approximately 20 ms for a GP with 50 data points, in
contrast to 550 ms for a GP with 2,000 data points. Locally optimizing the hyperparame-
ters does not notably influence the prediction errors, the uncertainty estimates, however, are
more accurate. If the hyperparameters are optimized, a computational overhead of 200 ms
per sample is introduced. In contrast to a full GP model, the local approximation strategies
can deal with even larger data sets, thus resulting in more accurate predictions. The experi-
ments indicate, that a number of 50 nearest neighbors leads to similar results to the full GP
model while at the same time significantly reducing computation time.

5.5.4 Modeling Uncertainty

The GP framework provides us with an estimate of the uncertainty for a predicted function
value. In addition to the prediction accuracy, we investigated the reliability of the uncertainty
estimates for the different GP models in the above experiments in terms of the MSLL. We il-
lustrate the ability of the different strategies to model the uncertainty in an example. Figures
5.9 and 5.10 show the prediction errors and the corresponding uncertainty estimates in terms
of 2σ-error bounds for the individual test samples of a 2D and a 3D data set, respectively.
Furthermore, diagonal plots visualize, to what extent the predicted values deviate from the
true values. For the baseline strategy, we approximated the uncertainty with the variance
of the training data set. All GP strategies are able to more accurately take account of the
uncertainty than the baseline strategy. When comparing the different covariance functions,
the neural network covariance function leads to smaller errors and uncertainty estimates
for most samples but also contains some more severe outliers than the squared exponential
covariance function. The locally optimized GPs further improve the uncertainty estimate.

76 Chapter 5: Deformation Cost Functions for Motion Planning

0

3

6

9

12

15

100 200 500 1000 2870

M
A
E

Training samples

GPD-SE
GPO-SE

IDW

GPD-NN
GPO-NN

0

0.1

0.2

0.3

0.4

0.5

100 200 500 1000 2870

sM
S
E

Training samples

GPD-SE
GPO-SE

IDW

GPD-NN
GPO-NN

-2.5

-2

-1.5

-1

-0.5

0

100 200 500 1000 2870

M
S
L
L

Training samples

GPD-SE
GPO-SE

IDW

GPD-NN
GPO-NN

(a) Data set: Curtain-2D, 10 nearest neighbors.

4

5

6

7

8

9

10

11

12

500 1000 2000 3000 5000 9181 18363

M
A
E

Training samples

GPD-SE
GPO-SE

IDW

GPD-NN
GPO-NN

0

0.1

0.2

0.3

0.4

500 1000 2000 3000 5000 9181 18363

sM
S
E

Training samples

GPD-SE
GPO-SE

IDW

GPD-NN
GPO-NN

-2

-1.5

-1

-0.5

0

500 1000 2000 3000 5000 9181 18363

M
S
L
L

Training samples

GPD-SE
GPO-SE

IDW

GPD-NN
GPO-NN

(b) Data set: Foam-3D, 10 nearest neighbors.

Figure 5.7: Comparison of different strategies to predict the deformation costs of a robot
trajectory: shown are the MAE, sMSE, MSLL depending on the number of
training samples.

5.5 Experimental Results 77

0

1

2

3

4

5

5 10 15 25 50 75 100 1000

M
A
E

Nearest neighbors

GPD-SE
GPO-SE

IDW

GPD-NN
GPO-NN

0

0.05

0.1

0.15

5 10 15 25 50 75 100 1000

sM
S
E

Nearest neighbors

GPD-SE
GPO-SE

IDW

GPD-NN
GPO-NN

-2.5

-2

-1.5

-1

-0.5

0

5 10 15 25 50 75 100 1000

M
S
L
L

Nearest neighbors

GPD-SE
GPO-SE

IDW

GPD-NN
GPO-NN

(a) Data set: Curtain-2D, 1,000 training samples.

6

7

8

9

5 10 15 20 25 50 75 100 2000

M
A
E

Nearest neighbors

GPD-SE
GPO-SE

IDW

GPD-NN
GPO-NN

0.15

0.2

0.25

0.3

0.35

5 10 15 20 25 50 75 100 2000

sM
S
E

Nearest neighbors

GPD-SE
GPO-SE

IDW

GPD-NN
GPO-NN

-2

-1.5

-1

-0.5

0

5 10 15 20 25 50 75 100 2000

M
S
L
L

Nearest neighbors

GPD-SE
GPO-SE

IDW

GPD-NN
GPO-NN

(b) Data set: Foam-3D, 2,000 training samples.

Figure 5.8: Comparison of different strategies to predict the deformation costs of a robot
trajectory: shown are the MAE, sMSE, MSLL depending on the number of
nearest neighbors. The full GP models correspond to 1,000 and 2,000 nearest
neighbors, respectively.

78 Chapter 5: Deformation Cost Functions for Motion Planning

0

10

20

30

40

50

60

0 50 100 150 200 250 300

Test samples

GPD-SE

0

10

20

30

40

50

60

0 50 100 150 200 250 300

Test samples

GPD-NN

0

10

20

30

40

50

60

0 50 100 150 200 250 300

Test samples

GPO-SE

0

10

20

30

40

50

60

0 50 100 150 200 250 300

Test samples

GPO-NN

0

10

20

30

40

50

60

0 50 100 150 200 250 300

Test samples

IDW

0

20

40

60

80

100

0 20 40 60 80 100

P
re
d
ic
te
d
co
st
s

True costs

GPD-SE
GPD-NN
IDW

Figure 5.9: Uncertainty estimates for the different models. Shown are the absolute errors
and the estimated uncertainties for each test sample. Data set: Curtain-2D, 1,000
training samples, 10 nearest neighbors.

5.5 Experimental Results 79

0

20

40

60

80

100

120

0 50 100 150 200 250 300

Test samples

GPD-SE

0

20

40

60

80

100

120

0 50 100 150 200 250 300

Test samples

GPD-NN

0

20

40

60

80

100

120

0 50 100 150 200 250 300

Test samples

GPO-SE

0

20

40

60

80

100

120

0 50 100 150 200 250 300

Test samples

GPO-NN

0

20

40

60

80

100

120

0 50 100 150 200 250 300

Test samples

IDW

0

50

100

150

200

0 50 100 150 200

P
re
d
ic
te
d
co
st
s

True costs

GPD-SE
GPD-NN
IDW

Figure 5.10: Uncertainty estimates for the different models. Shown are the absolute errors
and the estimated uncertainties for each test sample. Data set: Foam-3D, 5,000
training samples, 10 nearest neighbors.

80 Chapter 5: Deformation Cost Functions for Motion Planning

5.5.5 Statistical Evaluation

The above experiments showed that a number of 1,000 training samples leads to good pre-
diction results in the case of 2D trajectories. For 3D trajectories, naturally a higher number
of training examples is required, but we already obtain decent predictions for 5,000 train-
ing samples. For the 3D data sets, a number of 50 nearest neighbors for building local
GPs seems to be a reasonable choice both with respect to minimizing the prediction errors
and the MSLL. In 2D, we set the number of nearest neighbors to 25, since more nearest
neighbors do not lead to improved prediction results.

With these parameters identified, we performed a 10-fold cross-validation on all data sets to
obtain statistical data on the performance of the different strategies. Furthermore, we com-
pared the GP models to the baseline strategy, which predicts the weighted average over the
ten nearest neighbors. We split the available trajectories into ten folds, and in each run, the
test samples were randomly chosen from one fold and the training samples were randomly
chosen from the remaining nine folds. The results of this experiment are summarized in
Figure 5.11 for the different strategies and data sets we considered. In terms of the MAE,
the strategies using the neural network covariance function significantly outperform both
the baseline and the squared exponential covariance function. For the sMSE, the difference
is less pronounced, but still, the neural network covariance function leads to the smallest
overall errors. The uncertainty estimates of the two different covariance functions are com-
parable, and in most cases, they are improved when locally optimizing the hyperparameters.

5.5.6 Computation Time

In the cross-evaluation experiment above, we analyzed the runtime of the different strate-
gies. For the squared exponential covariance function, GP hyperparameter training for 1,000
samples is in the order of minutes, for 3,000 samples, the optimization already takes up to
half an hour. For the neural network covariance function, the computation time ranges from
around five minutes for 1,000 samples to approximately one hour for 3,000 samples. Eval-
uation of a full GP model with 1,000 samples requires 17 ms for the squared exponential
and 83 ms for the neural network covariance function to predict one test sample. When
considering only 50 samples in the local GPs, evaluation of one sample takes 3 ms for the
GPD-SE strategy and 23 ms for the GPD-NN strategy. If the hyperparameters are adapted
individually, the GPO-SE strategy requires 30 ms and the GPO-NN strategy requires 230 ms

5.5 Experimental Results 81

0

2

4

6

8

10

12

14

M
A
E

GPD-SE
GPO-SE

GPD-NN
GPO-NN

IWD

0

0.05

0.1

0.15

0.2

sM
S
E

-2.5

-2

-1.5

-1

-0.5

0

C
urtain-A

C
urtain-R

D
uck

Teddy

Foam

M
S
L
L

Figure 5.11: Comparison of the different strategies to predict the deformation costs of tra-
jectories in a ten-fold cross-evaluation.

for the prediction of one sample. Thus, considering the results from Section 5.5.5, the GPD
strategies allow for the best trade-off between prediction accuracy and runtime.

82 Chapter 5: Deformation Cost Functions for Motion Planning

5.6 Summary

In this chapter, we discussed how to consider the costs of object deformations when plan-
ning robot motions. We introduced a measure for the deformation costs that is based on the
deformation energy of the affected objects along the robot trajectory. These deformation
costs can be computed using the simulation framework discussed in Chapter 3, given appro-
priate deformation models of the obstacles in the environment, as determined, for instance,
with the approach presented in Chapter 4.

To avoid time-consuming simulations during path search, we introduced the concept of ob-
ject deformation cost functions. By assuming stationary objects that can be deformed but
cannot be moved by the robot, we can precompute the deformation cost function for each
object. We generate a set of trajectory samples leading to object deformations in preliminary
simulations and realize a deformation cost model for each object that is based on nonpara-
metric Gaussian process regression. The Gaussian process models a distribution over all
possible deformation cost functions based on a set of training trajectories and can be eval-
uated efficiently when searching for a path to a goal. In addition to providing an estimate
of the deformation costs of trajectories, the Gaussian process model is based on a sound
probabilistic framework that allows us to incorporate and model uncertainties in the data.

In the next chapter, we present our motion planner that incorporates the deformation cost
functions of objects and thus is able to trade off travel costs of the robot against the costs of
potential object deformations.

6 Motion Planning for Real Robots

In this chapter, we combine the learned deformation models from Chapter 4 and their corre-
sponding cost functions introduced in Chapter 5 into a unified motion planning framework
that is able to consider deformable objects. We first discuss the integration of the com-
ponents into a general probabilistic roadmap-based planning framework before presenting
two implementations on different robotic platforms. We show how to plan motions for a
manipulation robot operating in a three-dimensional workspace as a first application of the
planner. Subsequently, we present an implementation for a wheeled robot that navigates in
a two-dimensional workspace.

An issue that is raised for robots operating in real-world environments is the problem of
collision avoidance. Dynamic and unforeseen obstacles not contained within the map can
appear while the robot is executing a motion. Obstacles blocking a path need to be detected
in time to avoid damage to the robot as well as to the unexpected obstacle. This is of
particular relevance in environments shared between robots and humans.

Traditionally, sensor-based collision-avoidance techniques adapt the motions of the robot
to avoid unforeseen and dynamic obstacles. In our case, however, such an approach would
not always lead to the desired behavior. For instance, if the planner chooses a path pass-
ing through a curtain, the robot will inevitably be in contact with the curtain. A collision
avoidance behavior is not desirable in this situation as we explicitly allow for contacts with
deformable objects. But consider a person appearing behind the curtain. Then, the robot
needs to stop to avoid a collision with the person. Thus, when executing a path in our appli-
cation, the robot needs to be able to distinguish between allowed contacts with deformable
obstacles and collisions with unforeseen obstacles that must be avoided in any case. We
will address this problem and present an approach that allows the robot to interpret its sen-
sor measurements accordingly during path execution.

84 Chapter 6: Motion Planning for Real Robots

Cfree

Cobs

CobsCdef

Figure 6.1: Key idea of probabilistic roadmaps: a graph represents the configuration space
of the robot. Nodes and edges are added to the graph if they are in Cfree, the
free configuration space. Our planner also accepts samples in Cdef, leading to
collisions with deformable obstacles.

6.1 The Motion Planning Framework

The motion planning problem is defined as finding a continuous path from an initial robot
configuration to a goal configuration that satisfies certain constraints; given a model of the
environment and the obstacles, the path is in general required to be collision-free. To plan
trajectories for our robots, we use the probabilistic roadmap framework (PRM), which has
originally been introduced by Kavraki et al. (1996). This planning approach represents the
continuous configuration space of robots by a discrete set of samples, and thus allows for
the application of discrete search methods. It has gained large popularity since it is able
to represent high-dimensional configuration spaces. Hence, it has been applied to a variety
of motion planning problems, from robotics, over manufacturing, to biological studies, for
instance, in the context of protein-folding.

The key idea of the probabilistic roadmap approach is to represent the collision-free config-
uration space Cfree of the robot by a set of samples that form the nodes of a graph. Edges in
this graph describe feasible trajectories between neighboring configurations. Figure 6.1 il-
lustrates this representation. We can compute such a roadmap given a geometrical model of
the environment and a collision-detection module. The roadmap is constructed by generat-
ing a set of random samples of robot configurations and inserting them into the roadmap, if
no collision with a static obstacle is reported. After a reasonable number of samples cover-
ing Cfree has been generated, a local planner tries to connect neighboring nodes with simple

6.1 The Motion Planning Framework 85

Cfree

Cobs

CobsCdef
g

s

Figure 6.2: Path query: after connecting starting point s and goal point g to the roadmap
(grey), A* finds the path with the best trade-off between travel costs and defor-
mation costs (red).

paths, for instance, with straight-line motions. An edge is inserted if the path is feasible, that
means if it does not lead to collisions with obstacles. This again can be verified by collision
checks for densely sampled robot configurations along the path.

The efficiency of the roadmap planner relies on the availability of a fast collision-detection
routine, as thousands of collision-checks need to be carried out when computing a roadmap.
We discussed different efficient collision-detection algorithms in Section 3.1.1. Since our
planner is integrated into the simulation framework discussed in Chapter 3, a natural choice
for our application is the spatial hashing approach integrated into the simulation framework
to detect collisions between the robot and the obstacles in the environment.

When planning a trajectory to a specific goal, the first step is to connect the initial and goal
configuration to the roadmap. If the connection step is successful, a path can be extracted
from the roadmap by applying a standard graph search technique, such as Dijkstra’s algo-
rithm (1959) or A* (Hart et al., 1968), Figure 6.2 illustrates a path query in the roadmap. The
mentioned graph search techniques are optimal, they find a least-cost path in the roadmap,
if one exists. This, in turn requires the definition of a cost function. Most motion planning
applications assign costs to the edges in the graph that correspond to the distance of their
nodes in configuration or workspace.

86 Chapter 6: Motion Planning for Real Robots

6.1.1 Path Costs

In our application, the robot is allowed to interact with deformable objects. To account
for that when planning its motions, we include samples and edges leading to collisions
with these objects when generating the probabilistic roadmap (see Figure 6.1). Thus, the
configuration space represented in our roadmap is Cfree ∪ Cdef . Accordingly, when planning
trajectories, we need to consider the costs of deforming objects along an edge. Our planner
uses a weighted sum between the travel costs in configuration space and the deformation
costs. The costs for an edge between the nodes i and j given by

C(i, j) := αCdef (i, j) + (1 − α) Ctravel(i, j), (6.1)

where α ∈ [0, 1] is a user-defined weighting coefficient. The term Cdef (i, j) represents the
costs that are introduced when the robot deforms objects along its trajectory and Ctravel(i, j)
corresponds to the distance between nodes in configuration space. With this cost function,
we use A* to search for the path with the optimal trade-off between deformation costs and
travel costs. We use the distance to the goal configuration weighted with (1 − α) as heuristic.
As it underestimates the real costs specified in Eq. (6.1), this is an admissible heuristic.

6.1.2 Roadmap Deformation Costs

The key question we left open so far is how to determine the costs of deformations and how
to compute the term Cdef (i, j) for an arbitrary edge (i, j) in the roadmap. In Section 5.1, we
discussed a measure for the deformation costs of a robot trajectory that can be obtained by
executing corresponding physical simulations. We already ruled out the possibility of per-
forming the corresponding simulations when computing a motion plan as this is too time-
consuming for real-world applications. Instead, we make use of our GP-based regression ap-
proach to model deformation cost functions for individual objects presented in Section 5.3.
Deformation cost functions are defined for robot trajectories relative to an object. In this
context, trajectories describe straight line motions between a starting point and end point on
a bounding sphere around the object. It is parametrized by a vector x = [θs, φs, θe, φe, l]T

containing the spherical coordinates of starting point s and end point e in addition to the
length l of the motion. In the following, we outline how to determine the deformation costs
for an edge in the roadmap with our GP-based deformation cost functions.

6.1 The Motion Planning Framework 87

io

jo

ib

jb

(a) Intersections with bounding sphere.

ib

jb

l1

(b) Length of motion (1).

ib

jb

l2

(c) Length of motion (2).

Figure 6.3: Determining the trajectory parameters of a roadmap edge for GP regression:
(a) we compute the spherical coordinates of starting point and end point from
intersections with the bounding sphere. (b) The deformation cost function as-
sumes the motion to begin on the bounding sphere, thus the length of the motion
is given as l1. (c) Since the actual starting point of the edge lies inside the bound-
ing sphere, we consider a second trajectory with length l2. We obtain the final
deformation costs of the edge by subtracting the costs for the second trajectory.

To apply GP-regression to an edge in the roadmap, we have to identify its test input vector
for the GP, which means computing the corresponding trajectory parameters with respect to
an object. We begin with the assumptions that nodes i, j ∈ R3 are given in their workspace
coordinates and that the trajectory between them is approximately linear. To obtain the
workspace coordinates for a given robot configuration, we use the robot’s center of mass
or the positions of its body parts. As for the second assumption, our roadmap planner
connects two nodes by a straight line motion, which is in configuration space, however. For
a sufficiently dense sampling of nodes in the roadmap, we assume that the corresponding
trajectory in workspace is also approximately linear.

To determine the trajectory parameters, we first compute the positions of starting point i and
end point j relative to the object, which can be done with the known transformation of the
object in the world model, we denote them by (io, jo). Next, we compute the intersection
points ib, jb of the trajectory with the bounding sphere of the object and from these compute
the spherical coordinates of the trajectory (θi, φi) and (θ j, φ j). Figure 6.3a illustrates this
idea. Finally, we determine the length of the motion, which is given by l1 = | jo − ib|,
(see Figure 6.3b). This results in the trajectory parameter vector xi j

∗ = (θi, φi, θ j, φ j, l1)
that can be used to evaluate the GP model for an object. The deformation costs returned

88 Chapter 6: Motion Planning for Real Robots

α

i

j

i′

l

m

k

Figure 6.4: When determining the deformation costs for path segment (k, i, j) (indicated in
red), we introduce an approximation error: the actual direction from which the
robot arrives at node i deviates by an angle α from the direction that is implicitly
assumed when computing the deformation costs for edge (i, j). The error gets
even larger when considering path segments via nodes l or m.

by GP regression are based on the assumption that the starting point is outside the object.
This means the robot is assumed to start its movement not in contact with the object. As
Figure 6.3c illustrates, the starting point of an edge can be located arbitrarily inside the
bounding sphere of an object, which means the object is already partially deformed, when
arriving at this starting point. As this is accounted for when computing the deformation costs
of preceding edges, we need to subtract the deformation costs for the trajectory leading to
the actual starting point of the edge. We determine the length of this motion as l2 = |io − ib|,
and obtain a second GP input vector xi j

∗∗ = (θi, φi, θ j, φ j, l2). The costs for deforming an
object O along an edge then compute as

Cdef (i, j) = GPO(xi j
∗ ,X

′(xi j
∗), y′(xi j

∗)) − GPO(xi j
∗∗,X

′(xi j
∗∗), y

′(xi j
∗∗)), (6.2)

with GPO(xi j
∗ ,X′(·), y′(·)) representing an evaluation of the GP model of object O consid-

ering the X′(·) nearest neighboring trajectories and their corresponding outputs y′(·). To
account for the fact that the robot might deform different objects when moving along an
edge, we evaluate the GP models of all objects in the environment and sum over the result-
ing deformation costs. We only need to evaluate a GP model if an edge actually intersects
the bounding sphere of an object. Fast line-sphere intersection tests can be used to discard
edges with zero deformation costs to keep the number of GP evaluations at a minimum.

We compute the total deformation costs of a path by summing over the deformation costs of
subsequent edges. In this way, we introduce an error with our proposed approximation. This
error is illustrated in Figure 6.4. When computing the deformation costs of an edge Cdef (i, j),

6.1 The Motion Planning Framework 89

(a) Using GPs. (b) Using Simulations.

Figure 6.5: Comparison of our planning system (a) with a planning system that performs
simulations during runtime (b).

the GP-regression implicitly assumes that the robot is heading straight to the starting point
i, however, the actual direction of the movement leading up to i is given by the preceding
edge (k, i) and might deviate by an angle α. The resulting deformation of the object and
the corresponding deformation costs when arriving at node i might therefore be different,
depending on whether the robot approaches this node via node k, l, or m.

This error could, for instance, be eliminated by rejecting nodes inside the bounding sphere
of objects. However, we decided to include samples inside bounding spheres, since it al-
lows the planner to find smoother robot motions. Another possibility to account for this
error would be to consider more complex motions when learning the GP models. This,
however, would require higher-dimensional inputs and thus significantly larger training data
sets. Therefore, we have not investigated this possibility in more detail yet. In our experi-
ments, we investigate the effects of the error introduced by our approximation.

Simulation Example

We compared our planner that determines the deformation costs of path segments using
GP regression to a planner that carries out the required simulations during runtime. In a
simulation example, the task was to navigate an environment with rubber ducks and curtains,
in which deformations of the rubber ducks are more expensive than deformations of curtains.
The paths computed by both planners are illustrated in Figure 6.5. Both planners generally
avoid the rubber ducks. Our planner underestimates the actual deformation costs of the
trajectory by 14 % and the path length deviates by 9.5 % from the optimal solution found by
the planner that uses simulations. Our planner, however, is able to compute the plan in less
than a second, while the planner that performs accurate simulations requires more than one
hour to answer the path query.

90 Chapter 6: Motion Planning for Real Robots

(a) (b) (c)

Figure 6.6: Experimental setup for a real-world planning task: (a) the manipulation robot
Zora and a deformable foam mat in its workspace, (b) a 3D model used for
roadmap generation and planning, and (c) a deformation model of the foam mat.

6.2 Planning for Manipulators in 3D

In our first application scenario, we implemented a motion planner for our manipulation
robot Zora that we already introduced in Section 4 as data acquisition platform for deforma-
tion models. In our planning environment, we assume the mobile platform to be stationary
and consider only motions of the manipulator. Figure 6.6 illustrates an experimental setup
for a planning task, in which we mounted a deformable foam mat in front of the robot act-
ing as a sort of barrier. We implemented the planner within the Zora framework,1 which
provides functionality for operating the manipulation robot, including hardware drivers, for-
ward and inverse kinematic control, a simulator (without deformation simulation), 3D world
modeling, and collision checking.

The manipulator consists of seven rotational joints, accordingly the roadmap represents this
seven-dimensional configuration space of the robot within the limits of the joints. The
roadmap is constructed in a preprocessing step by uniformly sampling a user-defined num-
ber of nodes in configuration space. In our experiments, we set the number of samples to
1000, which resulted in a sufficiently dense coverage of Cfree for our motion planning tasks.
When connecting the generated nodes, we consider for each node its 50 nearest neighbors

1J. Sturm: Zora Software Package. http://www.informatik.uni-freiburg.de/~sturm/zora-main.
html, last accessed January 7, 2013.

http://www.informatik.uni-freiburg.de/~sturm/zora-main.html
http://www.informatik.uni-freiburg.de/~sturm/zora-main.html

6.2 Planning for Manipulators in 3D 91

End effector trajectory

Force-sensor trajectory

Wrist trajectory

Elbow trajectory

Figure 6.7: Determining the deformation costs of a manipulator motion: the manipulator
moves downward in the presence of the deformable bar. We consider the (ap-
proximately linear) trajectories described by its individual body parts and com-
pute their deformation costs using GP regression.

and add an edge if the straight-line path in configuration space between both nodes does not
lead to collisions with rigid obstacles. This is verified by performing collision checks for 50
intermediate configurations between two nodes. As described above, after connecting initial
and goal configuration to the roadmap, we can apply A* to search for a path to the goal that
optimizes the trade-off between travel costs in configuration space and deformation costs.

In Section 6.1.2, we explained how to compute the deformation costs of edges in the roadmap
that describe straight-line motions of a robot with one degree of freedom in 3D workspace.
Now, we discuss how to apply this concept to our manipulation robot that is assembled of
different body parts linked in a kinematic chain.

The edges in the roadmap describe motions of the manipulator in configuration space. From
these, we determine the corresponding trajectories in 3D workspace that can be used as input
for the GP-deformation cost models. The key idea is to describe the motion of the manipu-
lator as a whole in terms of the movements of its individual body parts. Figure 6.7 illustrates
this idea. In this example, we consider a simple downward movement of the manipulator in
the presence of a deformable bar. The trajectory described by the end effector in this case
would not lead to a deformation of the bar and result in zero deformation costs. The main
deformation is caused by the movement of the wrist as can be seen in a visualization of the
corresponding deformations in Figure 6.8. Thus, to account for deformations introduced
by the movement of the manipulator along an edge (i, j) in the roadmap, we sample multi-
ple points along the kinematic chain of the robot. Then, we perform the estimation of the

92 Chapter 6: Motion Planning for Real Robots

Figure 6.8: Deformation of the bar resulting from the manipulator motion in Figure 6.7.

deformation costs for the trajectories of all sampled points along the kinematic chain and
consider the maximum of the deformation costs of the individual trajectories

Cdef (i, j) = max
bi j

GP(bi j), (6.3)

where bi j refers to the trajectory in 3D workspace described by a body part along an edge
(i, j) and GP(bi j) to a GP-Evaluation of the deformation costs of the trajectory as stated
in Eq. (6.2). Considering the maximum instead of, for example, the sum generates more
accurate predictions since the largest deformation forces typically are generated by one
body part only. In theory, there may be situations in which this assumption is not valid, for
example, when a robot with two manipulators would squeeze an object – such situations are
not considered here.

When determining the deformation costs of roadmap edges, we consider the trajectories
described by the individual body parts of the manipulator to be independent instead of con-
sidering its full configuration. This approximation allows us to model the cost functions
with a low number of inputs. By considering only starting and end point of a trajectory rela-
tive to an object, the cost function is furthermore independent of the object’s actual location
in the environment. In contrast, if we considered the full configuration of the manipula-
tor, the deformation cost function would depend on the position of the object relative to
the robot. Furthermore, a higher-dimensional input space to the regression problem would
require significantly larger training data sets. In the experiments, we demonstrate that the
proposed approach is able to plan reasonable motions leading to minor object deformations
and at the same time maintains online performance.

6.3 Robot Navigation in 2D 93

(a) (b)

curtains

(c) (d)

Figure 6.9: Robot navigation in 2D: (a) our robot Albert in a corridor with curtains, (b) the
corresponding deformation simulation, (c) the grid map representing the static
part of the world, and (d) the “volumetric” deformation model underlying (b).

6.3 Robot Navigation in 2D

In addition to the manipulation robot scenario, we consider the problem of autonomous
navigation of wheeled robots in the presence of deformable objects. We implemented a
navigation system for an iRobot B21r platform. The robot we used in our experiments is
called Albert and has been an interactive museum tour-guide at the height of its career. The
mobile platform, however, is the same as the one of our manipulation robot. Our application
scenario is an indoor office environment with a set of deformable curtains mounted in the
corridor (Figure 6.9a). Interesting problems arise in this context, when robots navigate in
real-world environments: besides motion planning within a model of the environment, a
safe and reliable execution of the planned path, including aspects such as localization and

94 Chapter 6: Motion Planning for Real Robots

collision avoidance, is of major importance. Typically, the robot is equipped with sensors to
perceive its surroundings, for instance, ultrasound or laser sensors; when following a path,
the robot can use the sensor measurements both for localizing itself within the environment
model and for avoiding collisions with unexpected obstacles.

The implementation of our real-world navigation system is based on Carmen,2 a robot sens-
ing and navigation software framework allowing independent modules to communicate via
middle-ware. It provides modules for low-level robot control and sensing, and furthermore
modules for collision avoidance, localization, path planning, and occupancy grid mapping.
To integrate our approach into Carmen, several extensions were necessary.

A prerequisite for autonomous navigation is an appropriate model of the environment. We
use occupancy grid maps to represent static obstacles and augment them with information
on the position of deformable objects in the environment (see Figure 6.9c). Such a grid
map can be learned efficiently from laser range data with the approach of Grisetti et al.
(2007) and is used in Carmen to keep track of the robot’s position with the Monte Carlo
localization approach of Thrun et al. (2001). To incorporate this model into our planner, we
interpret the grid map as a deterministic roadmap with nodes at the centers of the free cells
and 4-connectivity between neighboring free cells forming the edges. Estimation of the
deformation costs in the roadmap and path planning then can be implemented as described
in Section 6.1.2.

The deformation model of the curtain (see Figure 6.9b) deserves a few words of explana-
tion. Cloth really is two-dimensional only, and the elastic deformation model for isotropic
material assumed throughout this thesis does not exactly apply, as cloth has low resistance
to bending but high resistance to extensions and shear forces. Other deformation models,
such as the geometric model proposed by Stumpp et al. (2008) might be better suited to
model the characteristics of the curtain. However, to stay within our simulation framework
introduced in Chapter 3, we decided on an elastic model: we acquired a geometric model
of the curtain with a laser scanner, and from that we generated a (very thin) volumetric
representation (see Figure 6.9d) as explained in Section 4.1.2. Furthermore, we manually
determined elasticity parameters to achieve realistic deformation simulations. This allows
us to compute a deformation cost function for the curtain as described in Chapter 5.

2M. Montemerlo, N. Roy, S. Thrun, D. Haehnel, C. Stachniss, J. Glover: Carmen – Carnegie Mellon
Robot Navigation Toolkit. http://carmen.sourceforge.net/home.html, last accessed November
23, 2012.

http://carmen.sourceforge.net/home.html

6.3 Robot Navigation in 2D 95

Model

Planner

Goal

Controller

Robot

Localization Collision avoidance

Sensor interpretationSensor interpretation

Figure 6.10: The layered Carmen control architecture for robot navigation: high-level con-
trol for planning and localization, low-level control for path following and col-
lision avoidance. We introduced new components to account for object de-
formations during plan generation and path execution (red). Furthermore, we
adapted the collision avoidance behavior and the localization module (blue).

The robot control architecture in Carmen is illustrated in Figure 6.10. To enable robot
navigation in the presence of deformable objects, we replaced the existing planning module
with our planner that takes into account the costs of object deformations. In addition to that,
we modified the localization module, which is based on Monte Carlo localization, such that
laser beams observing a deformable object during deformation are not considered. This is
necessary, as the robot is localized with respect to the grid map. The grid map, however,
cannot represent deformable objects, in particular their shape changes during deformation.
We further modified the collision avoidance behavior of the robot, such that it is able to
come in contact with deformable objects. To achieve that, we introduced a new component
that interprets the robot’s sensor measurements during navigation. In the next section, we
address the problem of interpreting the robot’s sensor data for localization and collision
avoidance.

96 Chapter 6: Motion Planning for Real Robots

6.4 Sensor-based Collision Avoidance for

Non-deformable Objects

Reactive collision avoidance plays an important role, for instance, when autonomous robots
share their environment with humans. Since humans are dynamic obstacles, they are not
represented in the static model of the environment, and thus, they cannot be accounted for
when planning the robot’s motions. Approaches to reactive collision avoidance, in general,
prevent the robot from getting too close to any obstacle. In our scenario, however, the
robot might be required to deform an object while following a path, which involves contact
with it. Consider, for instance, the trajectory that guides the robot through the curtains in
Figure 6.9a. In this example, the robot is in close contact with the curtain, and its laser
sensor is partially occluded by the object, thus reporting short distance measurements. In
such a situation, no collision avoidance behavior is required. But imagine a person appearing
behind the curtain. In this case, the robot should definitely be able to avoid the collision.
Hence, a new challenge arises, that is how to interpret the sensor data of the robot and
how to distinguish measurements corresponding to deformable objects from measurements
belonging to rigid and dynamic obstacles that are to be avoided.

Our robot is equipped with a SICK laser range scanner with an opening angle of 180 degrees
and an angular resolution of one degree. This scanner is mounted inside the base of the
robot at a height of approximately 40 cm, therefore allowing the robot to observe a two-
dimensional slice of the world in front of it with 180 individual laser beams at a time. To
reason about the deformability of an observed object and to classify the robot’s sensor mea-
surements, we combine knowledge about the robot position and objects in the environment
with expected laser range scans during deformations. We model this problem in a proba-
bilistic fashion: let ci denote the binary random variable describing the event that beam i

observes a deformable object. Then, we are interested in p(ci | x, zi), the probability that
beam i corresponds to a deformable object given the robot is at position x and measures the
range zi. Applying Bayes’ formula, we arrive at

p(ci | x, zi) =
p(zi | x, ci)p(ci | x)

p(zi | x, ci)p(ci | x) + p(zi | x,¬ci)p(¬ci | x)
. (6.4)

Here, p(zi | x, ci) is the sensor model for a deformable object, it models the probability
distribution of a sensor measurement that corresponds to a deformable object; p(ci | x) is

6.4 Sensor-based Collision Avoidance for Non-deformable Objects 97

(a) Trajectory (b) p(ci | x) (c) µrange (d) σrange

Figure 6.11: Sensor model for observing the curtain along the trajectory (a): the figures
show the probabilities p(ci |x) (b), the average expected beam length (c), and the
corresponding standard deviation (d) when observing the deformable object.

the prior denoting the probability of observing a deformable object from position x. We
will shortly go into detail of how to learn these models. The sensor model p(zi | x,¬ci)
corresponds to the sensor model p(zi | x) assessing the probability of a measurement given
the robot is at position x. This sensor model, together with the motion model of the robot,
is one of the key ingredients to the Markov localization approach that updates the robot’s
belief about its current position in the environment. It models noise characteristics of the
sensor and is described in detail by Fox et al. (1999). For a given static environment, it can
be precomputed, and we use the sensor model incorporated into the localization module and
provided by the Carmen framework. To compute the probability that an observation belongs
to a deformable object in Eq. (6.4), we further require the position of the robot to be known.
We work with the pose estimate provided by the localization module.

6.4.1 Learning a Sensor Model for Deformable Objects

The sensor model p(zi | x, ci) states the probability of an observation zi given the robot is
at position x and the observation in fact belongs to a deformable object. The prior p(ci | x)
denotes the probability of observing a deformable object from position x. Effectively, these
quantities not only depend on the robot position, but also on the trajectory leading to the
position. Obviously, an object is deformed differently, if at all, depending on the direction
from which the robot approaches a position, as we already observed when defining the
deformation cost function of a robot trajectory in Section 5.1. Accordingly, also the laser

98 Chapter 6: Motion Planning for Real Robots

sensor will measure different distances depending on the trajectory. To account for that,
we determine sensor models that correspond to different trajectories of the robot relative to
an object. We restrict ourselves to a set of different straight trajectories that are typically
chosen by our path planner.

To determine the sensor model for a trajectory, we record different data sets of the robot
deforming the object along a trajectory. Each data set consists of the robot positions x

(provided by the localization module) and the measured ranges zi along a trajectory. We
manually label the beams that are reflected by a deformable object. From the labeled mea-
surements obtained along these trajectories, we compute the statistics

p(ci | x) =
hitdef

hitdef + missdef
, (6.5)

where hitdef is the number of beams that are reflected by a deformable object and missdef

states how often no deformable object was observed for a given position x and viewing
angle i. The sensor model p(zi | x, ci) is described by a Gaussian with average range µ and
variance σ2. We obtain it by computing the mean and variance of the measurements of the
training data sets. Both, the sensor model and the prior of observing a deformable obstacle,
are represented in a discretized state space of the robot position, with the resolution of the
occupancy grid map. An example of such a sensor model for a typical robot trajectory
through the curtain is shown in Figure 6.11. This representation is dependent on the robot
trajectory but can be considered independent of the absolute location of the object in the
environment, as it only accounts for measurements relative to the deformable object, not for
measurements that might be influenced by the static part of the environment.

6.4.2 Classifying Sensor Measurements and Avoiding Collisions

When navigating autonomously, the robot has to constantly monitor its sensors to keep
track of its movements (e. g., with wheel encoders) and the obstacles in its vicinity (with the
laser range-finder). These measurements are incorporated into the localization algorithm
to maintain a probability distribution over the robot’s current position and into the colli-
sion avoidance system to account for unforeseen obstacles. In our application, the robot
should only consider measurements that correspond to the static part of the world or to dy-
namic obstacles. We achieve this by filtering out the range measurements that have a high
probability of observing a deformable object. Whenever a new range scan is available, we

6.4 Sensor-based Collision Avoidance for Non-deformable Objects 99

180

90

0

180

90

0

180

90

0

Figure 6.12: Different collision avoidance scenarios (top row): Laser beams are evaluated
with respect to their likelihood of observing a deformable object (second row).
The bottom row illustrates the classification of the individual laser beams.

evaluate Eq. (6.4) for each range measurement. If this probability exceeds a threshold of
0.5 in our implementation, we classify the measurement as corresponding to a deformable
object. This filtering of the range measurements can be used with any collision avoidance
technique that can adapt the robot’s motions to dynamic obstacles, for instance, the dy-
namic window approach of Fox et al. (1997) or the nearness diagram technique of Minguez
and Montano (2000). In our collision avoidance system, we try to drive the robot around
dynamic obstacles by incorporating the measurements, which are identified to belong to
dynamic obstacles, into the map and replanning. However, if an obstacle is closer than a
minimum distance of 0.5 m, we stop the robot. Figure 6.12 illustrates different collision
detection scenarios. In the first example, the robot is in close contact with the curtain, and,
as it is able to correctly classify the measurements, it continues its trajectory. In the second
and third situation, a person’s legs are observed close to the curtain. The system is able to
distinguish them from the curtain and therefore stops the robot to avoid a collision.

100 Chapter 6: Motion Planning for Real Robots

6.5 Experimental Results

In this section, we present example applications and experimental evaluations of our pro-
posed planning system. We first demonstrate the planning system for our manipulator. Sec-
ond, we investigate the navigation scenario with the wheeled robot in more detail. For this
application, we evaluate the planning algorithm as well as the collision avoidance.

6.5.1 Arm Planning in 3D

We set up an experimental environment with a deformable foam mat for our manipulation
robot Zora (shown in Figure 6.6). We generated a roadmap accounting for the static part
of the world. The roadmap contains 1,000 configuration samples and 8,635 connections
between nodes. Precomputing the roadmap for the static part of the world required ap-
proximately 30 m, including sampling configurations, connecting nodes and performing the
corresponding collision detections. We evaluated the deformation costs of edges using our
local GP-regression approach introduced in Section 5.3 with a set of 22,950 precomputed
trajectory samples, which were already used for evaluation purposes in Section 5.5. The
local GPs were built using the neural network covariance function, and the hyperparame-
ters were optimized once for a subset of 2,000 trajectories. The deformation costs of edges
can be evaluated for the roadmap before answering any queries using our approximation
described in Section 6.2. For 6,358 edges, this required another 420 s. With the roadmap
precomputed in this way, arbitrary goal positions can be queried, only new edges connecting
the initial and goal configuration need to be evaluated using GP regression at query time.

Path Queries

As an example planning task, the manipulator was required to move from its initial position,
in which the arm is stretched upwards to a goal configuration facing forward, in which the
goal position of the end effector is behind a deformable foam mat. The path generated by
our planner is visualized in Figure 6.13a, it shows the workspace trajectories of different
manipulator body parts along the edges of the roadmap. To minimize the deformation of
the foam mat, the planner chooses a motion that approaches the target position from the
front and slightly below. The movement of the manipulator along this path is shown in
Figure 6.14.

6.5 Experimental Results 101

(a) Considering deformation costs. (b) Ignoring deformation costs. (c) Considering the object as rigid.

Figure 6.13: Different motion plans to reach the goal configuration behind the foam mat.
(a) Our planner minimizes the trade-off between motion and deformation costs.
(b) A planner ignoring deformable obstacles chooses the shortest path.
(c) A planner treating all obstacles as rigid is not able to find a path to the goal.

To illustrate the advantage of considering object deformations when planning motions, we
compare our planner to two alternative planners, one that ignores deformable obstacles, and
one that treats them as rigid obstacles. The plan generated when completely ignoring the
foam mat is shown in Figure 6.13b. Executing this plan results in tearing down the foam
mat, as can be seen in snapshots of the robot movement in Figure 6.15. Our deformation
model assumes the object to be fixed, it does not account for tearing down the object, but
still it is able to model the high deformation costs of such motions. In comparison to the
planner ignoring the object, our planner introduces a computational overhead of 2.4 s per
query. In total, 8.6 s were required to compute the path. A planner treating all obstacles
as rigid is not able to find a path, since the goal configuration leads to a collision with the
foam mat. This fact is illustrated in Figure 6.13c. The successful execution of the path from
Figure 6.13a is furthermore illustrated in a video that can be found online.3

3Real-world experiment: http://www.informatik.uni-freiburg.de/~bfrank/videos/zora_
foam.avi

http://www.informatik.uni-freiburg.de/~bfrank/videos/zora_foam.avi
http://www.informatik.uni-freiburg.de/~bfrank/videos/zora_foam.avi

102 Chapter 6: Motion Planning for Real Robots

Figure 6.14: Our robot Zora moves along the planned trajectory from Figure 6.13a, keeping
the deformation of the foam to a minimum.

6.5 Experimental Results 103

Figure 6.15: When executing the shortest path that ignores deformable objects (Fig-
ure 6.13b), Zora tears down the foam mat and destroys the experimental setup.

104 Chapter 6: Motion Planning for Real Robots

(a) (b) (c)

Figure 6.16: Planning a path for different weightings of the deformation costs: with α = 0,
the deformation costs are ignored (a), for α = 0.2, a longer trajectory is chosen
to minimize deformations (b), α = 0.8 leads to avoiding deformations (c).

(a) (b)

Figure 6.17: The planner prefers trajectories that minimize object deformations. The cur-
tains in setup (a) are moved 40 cm along the positive y-axis compared to the
setup from the previous experiment (b). The weighting coefficient α is set to
0.2 in both examples.

6.5.2 Robot Navigation in 2D

We evaluated our navigation system described in Section 6.3 on our robot Albert, a wheeled
platform equipped with a laser range scanner. To set up a navigation scenario, we mounted
two curtains in the corridor of our lab as deformable objects. The robot in this environment
is shown in Figure 6.9. We performed several experiments to evaluate our motion planner
as well as our approach to classify the sensor measurements of the robot during navigation.

6.5 Experimental Results 105

Path planning

In the environment with the deformable curtains, the robot is faced with the task of reach-
ing a goal point beyond the curtains. The planner optimizes the weighted sum of travel
costs and deformation costs when searching for a path, and a weighting coefficient α (see
Eq. (6.1)) determines their trade-off. In a first experiment, we investigated the influence of
this weighting coefficient on the generated trajectories. For fixed starting points and goal
points, we varied the weighting coefficient α and compared the trajectories generated by our
planner. The results for an example planning task can be seen in Figure 6.16. In our setup,
the deformations of the curtains are minimized if the robot moves on a trajectory between
both curtains and thereby deforms them equally at their borders only. We found that for low
values of α ≈ 0.2, the planner prefers trajectories with low total costs, it avoids large detours
and minimizes object deformations. This fact is illustrated in a second experiment, in which
we varied the experimental setup and moved both curtains. Figure 6.17 shows the generated
trajectory for this setup and compares it to the trajectory determined for the previous setup.
In both cases, α is set to 0.2. The planner chooses a somewhat longer trajectory in order to
minimize the deformation costs.

Sensor interpretation

In the next experiment, we evaluated how well our sensor model for deformable objects is
able to predict the presence of deformable objects during robot navigation. We learned sen-
sor models for two different trajectories through both curtains that were chosen preferably
by our planner. These trajectories correspond to the two possible trajectories from one side
of the curtains to the other with minimal deformation costs. To compute the sensor model
statistics for each trajectory, we recorded twelve data sets consisting of laser data and robot
positions along the trajectories. We manually labeled the laser beams that were reflected by
the curtain. For each trajectory, we performed a leave-one-out cross-validation using eleven
data sets for learning the model and one for evaluation. The results of this experiment are
summarized in a confusion matrix in Table 6.1 and demonstrate that the system is able to
distinguish between deformable and static obstacles with high accuracy. While the number
of false positives is at around 3 %, the number of false negatives is below 1 %.

106 Chapter 6: Motion Planning for Real Robots

True class
Deformable Non-deformable

Pr
ed

ic
te

d
cl

as
s Deformable 43857 (97.1%) 621 (0.9%)

Non-deformable 1292 (2.9%) 65907 (99.1%)
Total 45149 66528

Table 6.1: Confusion matrix for predicting, whether a sensor measurement corresponds to a
deformable object in a static environment.

True class
Deformable Dynamic

Pr
ed

ic
te

d
cl

as
s Deformable 8563 (96.5%) 98 (2.1%)

Dynamic 314 (3.5%) 4600 (97.9%)
Total 8877 4698

Table 6.2: Confusion matrix for predicting, whether a sensor measurement corresponds to
a deformable object in an environment containing both deformable and dynamic
objects.

Recognition of dynamic obstacles

In a further experiment, we evaluated the classification of sensor measurements in the pres-
ence of dynamic obstacles. Intuitively, the sensor model is able to distinguish well between
deformable and static non-deformable objects contained in the map of the robot. The key
question, however, is whether the system is able to distinguish well between deformable ob-
jects and close-by dynamic obstacles, provided that the dynamic obstacles are not occluded
by deformable objects and can be perceived by the sensor. To evaluate how well the classi-
fication works, we performed several experiments, in which the robot moved on a trajectory
deforming the curtain while a human was blocking its path. The recorded laser scans were
labeled accordingly and evaluated with respect to the prediction performance. The results
are listed in Table 6.2. In this experiment, the number of false negatives is comparable to
the situation in static environments while the number of false positives is around 1 % higher
than in the previous experiment. Our experiments, however, showed that this still leads to a
safe navigation behavior. In the worst case, false negatives forced the robot to unnecessarily
stop while the false positives usually were outliers in a region of correctly classified mea-
surements observing a dynamic obstacle. Therefore, the robot was still able to recognize
dynamic obstacles and thus able to avoid collisions with these obstacles.

6.5 Experimental Results 107

Real-world navigation example

In a navigation example task, we demonstrate the capability of our system to integrate path
planning and collision avoidance and to navigate safely in the environment described above.
Figure 6.18 shows a sequence of snapshots of our real robot moving through the curtains.
A video of the robot navigating in this environment and demonstrating its ability to avoid
collisions with dynamic obstacles can be found online.4

6.5.3 Computation Time

In this section, we analyze the computational cost of our proposed motion planner. Besides
the computationally intense generation of training examples for the GP deformation cost
function (5.5 h for the curtain / 24 h for the foam mat, see Section 5.5), a model for the
static part of the world has to be determined. The occupancy grid map for the 2D navigation
example was determined independently and readily available with the Carmen software
package. The roadmap computation for the static part of the manipulator environment took
approximately half an hour.

Given a model of the static part of the environment and a set of trajectory training sam-
ples for deformable objects, the deformation costs for movements represented in the static
model can be evaluated using our GP-based regression approach. The deformation costs for
the 2D grid map can be precomputed in 3 s, for 800 edges that potentially lead to object
deformations. To evaluate the deformation costs of 6,358 edges potentially leading to object
deformations in the 3D roadmap, 420 s were required.

With these precomputations available, we evaluated the time required to solve path queries
in 10 runs with random starting and goal points. In the 2D environment, path queries could
be answered in 0.3 s on average. In the 3D manipulator setting, answering one query re-
quired on average 8 s, including collision checks for connecting new nodes, evaluating the
deformation costs of new edges and searching for a path. Evaluating the deformation costs
introduces an overhead of 2.5 s. Thus, path queries can still be solved efficiently, even for
manipulation robots with many degrees of freedom.

4Real-world experiment: http://www.informatik.uni-freiburg.de/~bfrank/videos/albert_
curtains.avi

http://www.informatik.uni-freiburg.de/~bfrank/videos/albert_curtains.avi
http://www.informatik.uni-freiburg.de/~bfrank/videos/albert_curtains.avi

108 Chapter 6: Motion Planning for Real Robots

Figure 6.18: The mobile robot Albert is navigating through curtains. The first four snapshots
show the robot approaching the curtains and the last four snapshots show the
robot passing through from the other side of the corridor.

6.6 Summary 109

With a small thought experiment, we further illustrate the efficiency of our proposed planner.
Instead of precomputing sample trajectories and estimating the deformation costs of edges
in the roadmap using GP regression, it would be possible to perform the simulations of the
motions along edges directly when constructing the roadmap. Considering the roadmap
from the manipulation robot example and assuming a computation time of 3 s for the simu-
lation of an edge, evaluating 6,358 edges would require an additional 5 h when constructing
the roadmap. Furthermore, when answering path queries, the initial and goal configuration
would need to be connected to the roadmap. In the worst case, assuming that each node is
connected to its 50 nearest neighbors, this would require 200 simulations (two simulation
runs are necessary per edge) and another 10 m per path query, thus increasing the runtime
for answering path queries by approximately two orders of magnitude. Similar to our ap-
proach relying on GP regression, this precomputation represents an approximation to the
true deformation costs along an edge in the roadmap. The deformation costs of edges are
considered to be independent while in fact, they depend on their preceding edges. To ac-
curately consider the effects of object deformations, the corresponding simulations would
have to be carried out when answering path queries. In that case, however, answering one
query could easily take hours. In contrast, our planner is able to answer path queries in the
order of seconds, and in this way facilitates a prompt response of the robot to new motion
tasks.

6.6 Summary

In this chapter, we introduced our motion planning framework that considers object defor-
mations when planning the motions of a robot. It is based on probabilistic roadmaps and
optimizes the trade-off between travel costs and object deformation costs. We discussed
how to efficiently determine the deformation costs along robot trajectories using the object
deformation cost functions introduced in Chapter 5. The proposed object deformation cost
functions achieve a speed-up of several orders of magnitude when answering path queries,
compared to a planner that performs the required deformation simulations online. This was
demonstrated in experiments in 2D and 3D environments

For wheeled robots navigating in deformable environments, we presented an approach to
learn sensor models for deformable objects. These models enable a robot to distinguish
observations of deformable objects from observations of dynamic obstacles when executing

110 Chapter 6: Motion Planning for Real Robots

a path. In this way, the collision avoidance behavior can be adapted such that the robot is
allowed to come in contact with deformable objects but still reliably avoids collisions with
other obstacles, for instance with humans populating the environment.

We implemented the proposed planning system on two different robotic platforms, a manip-
ulation robot with seven degrees of freedom and a wheeled platform. In experiments, we
demonstrated that the system can be successfully applied to real robots and enables them to
achieve tasks and reach goal points that would be inaccessible if the deformation properties
of obstacles were neglected.

7 Related Work

In this thesis, we have addressed two different research areas, on the one hand modeling of
deformable objects and estimating their elasticity parameters, and on the other hand plan-
ning motions for robots considering these models. We have presented an approach to deter-
mine deformation models of real objects and an approach to use these models in a motion
planner. In the following, we provide a literature review on related work in both these areas.
While modeling of deformable objects receives much attention from the computer graphics
community, planning is an area of interest in the robotics community. One application that
is unifying these two fields is the simulation of surgical procedures. Computer graphics
is concerned with the realistic simulation and visualization of deformable tissues, robotics
approaches have been developed that build on these models and employ them to plan the
motions of surgical tools. We will first give an overview of the state of the art in deformable
modeling and discuss approaches to the estimation of elasticity parameters related to our
approach before we turn to the field of robot motion planning and, in particular, planning
approaches that consider deformable objects.

7.1 Deformable Modeling and Parameter Estimation

7.1.1 Deformation models

Modeling of deformable objects has been an active area of research for some time now, with
applications to games, movies, or surgical simulation. Gibson and Mirtich (1997) provide
an overview of deformation models including mass-spring and finite element models. This
report is updated by Nealen et al. (2006). In earlier years, mass-spring systems have been
frequently used to represent non-rigid objects and to simulate deformations, for instance, in
the works of Chadwick et al. (1989), Bridson et al. (2002), or Conti et al. (2003). They are
easy to implement and can be simulated efficiently. While mass-spring models are physi-

112 Chapter 7: RelatedWork

cally motivated and able to handle large deformations, their major drawback is the tedious
modeling. As Nealen et al. (2006) pointed out, there is no intuitive relation between spring
constants and physical material properties in general. Therefore, determining spring con-
stants that accurately model an object can be difficult. A physically more plausible model
that additionally considers constraints for mass-spring systems, such as volume and sur-
face area preservation was proposed by Teschner et al. (2004) and allows for the interactive
simulation of thousands of primitives.

With the availability of more powerful computers, finite element methods (FEMs) became
increasingly popular. They model the deformation behavior of objects based on continuum
elasticity theory and therefore reflect the physical properties of objects in a more natural
way. Bathe (1996) and Chandrupatla and Belegundu (2002) provide thorough treatises of
FEMs for engineering applications. The seminal work of Terzopoulos et al. (1987) dis-
cusses physically based deformation models based on continuum mechanics for simulation.
Bro-Nielsen (1998) proposes an efficient linear FEM formulation for surgical simulations
that only computes the deformations of the surface nodes. Debunne et al. (2001) present an
adaptive formulation for interactive haptic rendering. To deal with the high computational
complexity of nonlinear FEMs, Wu et al. (2001) consider adaptive meshes. Linear FEMs
provide accurate results only for small strains and introduce ghost forces when applied to
large rotational deformations. To avoid nonlinear computations and eliminate these ghost
forces, Hauth and Strasser (2004) and Müller and Gross (2004) proposed a computationally
efficient corotational finite element approach, which is also used in our simulation frame-
work.

7.1.2 Parameter estimation

In computer animation applications, the physical parameters of models are typically ad-
justed manually such that they lead to visually plausible results. This, however is not desir-
able in simulations of real-world behavior. For instance, in surgical simulations, the param-
eters should be related to the material properties. Also in haptic rendering, the generated
forces are required to approximate real material behavior.

There are several different approaches to determine the parameters of mass-spring models.
Bianchi et al. (2004) learn the stiffness constants of mass-spring models using a genetic
algorithm and comparing it to an finite element reference model. The identification of mass-

7.1 Deformable Modeling and Parameter Estimation 113

spring parameters is also discussed in the work of Lloyd et al. (2007). They derive an
analytical formulation for the spring parameters from the linear finite element model for
different mesh topologies. Another approach that estimates the stiffness properties of mass-
spring models was proposed by Burion et al. (2008). They use a particle filter to obtain a
posterior distribution over the stiffness parameters and evaluate the particles by comparing
simulated and observed deformations. In contrast to our work, these approaches use mass-
spring models and furthermore, they work on simulated data only.

The use of data-driven representations for deformable objects was proposed, among others,
by Fong (2009) and Bickel et al. (2009). Fong (2009) presents a system to measure defor-
mations of elastic objects using a structured-light camera and a force-sensor. He extracts
force-fields for different contact points and displacements on the objects. For haptic ren-
dering of unseen contact points, the forces are interpolated using radial basis functions. In
a similar way, Bickel et al. (2009) introduce a data-driven representation of heterogeneous
and nonlinear material by fitting radial basis functions to measured force-displacement sam-
ples. They, however, use an underlying linear finite element model, similar to our approach,
to model the homogeneous parts of objects.

In material science, the so-called tensile test is frequently used to determine physical mate-
rial parameters of objects (Hart, 1967). In this test, uni-axial loading is applied to a material
sample, thereby measuring the stresses and strains, until the material fractures. From these
measurements, parameters such as Young’s modulus and Poisson’s ratio can be determined.
Since it requires an accurate testing apparatus, and test objects are destroyed in the process,
this test is less suited to our application.

Inverse modeling approaches deduce the parameters of a system using observations of the
system behavior (Tarantola, 2005). Many approaches following this general idea have been
proposed to determine the elasticity parameters of real objects. This can be done by optimiz-
ing an objective function that relates the observations to a finite element simulation, which
in turn depends on the parameters to be determined. For instance, Kajberg and Lindkvist
(2004) determine the material parameters of thin metal sheets including plasticity effects by
minimizing a least-square functional. Choi and Zheng (2005) present an approach to de-
termine Young’s modulus and Poisson’s ratio of soft tissues from indentation tests. Schnur
and Zabaras (1992) determine different parameters, including Young’s modulus, of a two-
dimensional nonlinear finite element model by solving a nonlinear least squares problem.
They assume Poisson’s ratio to be given. The approach of Becker and Teschner (2007),

114 Chapter 7: RelatedWork

in contrast, works for three-dimensional objects, allows for the simultaneous estimation
of Young’s modulus and Poisson’s ratio, and furthermore can be reduced to a linear least
squares problem. Both approaches, however, have been validated using simulated data only.
Zantout and Zheng (1994) present a method to extract the stiffness parameters of thin plates
based on a 2D finite element method and measure displacements using geodesics. They
assume deformations to be generalized bending but present no verification on real data.

Estimation of material parameters operating on real data has been investigated in the context
of soft-tissue modeling for surgical simulation applications, such as simulation and training,
or computer-aided surgery. Kauer et al. (2002) present an inverse finite element algorithm
that estimates the material parameters of soft biological tissues. They consider complex
material constitutive laws, such as nonlinearity and anisotropy, furthermore they account
for viscoelastic behavior. They measure deformation forces of soft organic tissue with an
aspiration instrument that generates a weak vacuum and measures the pressure, and at the
same time observe the deformed surface with a camera. Their estimation procedure is de-
signed to operate on two-dimensional image data only. Another approach that collects data
of real objects was presented by Lang et al. (2002). They describe a deformation model as a
discrete boundary value problem and estimate Greens’ functions from measured forces and
displacements by formulating this as a linear optimization problem. They collect data of
object deformations with a complex robotic measurement facility, including force sensors
and different stereo cameras. Fugl et al. (2012) present an approach to determine Young’s
modulus and different parameters to model heterogeneous material from observations of de-
formations that are due to gravity with an RGB-D camera. An interesting approach was re-
cently presented by Boonvisut et al. (2012). They collect tissue deformation data and force
data with a robotic manipulator that performs a deformation trajectory. In this approach,
different deformation trajectories can be considered, and the parameters are optimized such
that a finite element simulation of the trajectory agrees with the observed trajectory.

Our approach also belongs to the class of inverse finite element parameter estimation pro-
cedures. In contrast to most of the previous approaches, our method deals with real data
and has been realized on a real mobile manipulation robot that can actively deform objects.
In our setup, the robot furthermore carries its sensors on-board and thus is the basis for
fully autonomous exploration. So far, manual interaction is still required to acquire defor-
mation data of objects, but an envisioned application of our approach could be an indoor
autonomous household robot, that is equipped to explore its environment and learn about
deformable objects contained therein.

7.2 Robot Motion Planning and Learning 115

7.2 Robot Motion Planning and Learning

7.2.1 Robot Motion Planning

Robot motion planning has been studied for decades now as one of the fundamental prob-
lems towards autonomous agents. Different planners suited to all kinds of robots, environ-
ments, and situations have been developed, mostly assuming the environment to be static
and obstacles as well as robots to be rigid. The textbooks of Latombe (1991) and, more
recently, Choset et al. (2005) andLaValle (2006) provide thorough treatises of the subject.
For wheeled platforms, efficient planners operating on occupancy grid maps have been de-
veloped, for instance, the dynamic A* algorithm (D*) of Stentz (1994), and variants thereof
introduced by Ferguson and Stentz (2006) or Likhachev et al. (2005). They address the in-
corporation of new sensor information in partially known or dynamic environments and are
thus able to efficiently repair or refine initial plans.

Sampling-based approaches have been introduced to address planning for complex systems
with many degrees of freedom. The rapidly exploring random trees (RRTs) were originally
developed for motion planning under differential constraints LaValle (1998). This single-
query planning technique explores the state space by expanding a tree towards the goal
configuration. Different heuristics guide the search towards the goal configuration (Burns
and Brock, 2007b; Kuffner and LaValle, 2000). When generating and connecting samples,
kinematic and dynamic constraints can be considered (LaValle and Kuffner, 2001). The
probabilistic roadmap (PRM) introduced by Kavraki et al. (1996) became a popular and
widely used planning framework for static environments, as it is able to efficiently answer
multiple path queries even in high-dimensional configuration spaces. Many variants of the
original framework have been presented, for instance, regarding sampling strategies (Boor
et al., 1999; Guibas et al., 1999), or node connection strategies (Amato et al., 1998; Bohlin
and Kavraki, 2000). Since in real-world applications, the assumption of a perfect world
model does not hold in general, Burns and Brock (2007a) proposed the predictive roadmap
planner, which incorporates uncertainty into the roadmap and the planning process. To
overcome the assumption of a static world, the elastic roadmap framework of Yang and
Brock (2006) allows for the movement of nodes and for updates of connectivity information
in the roadmap to adapt to changes in the environment. In contrast to the assumption of rigid
environments, we consider obstacles to be deformable in our approach.

116 Chapter 7: RelatedWork

7.2.2 Motion Planning with Deformable Objects

Recently, considering physical properties of robots and environments, for instance in terms
of their deformation properties has received increased attention. In this context, different
planners for deformable robots have been developed. The works of Kavraki et al. (1998),
Anshelevich et al. (2000), and Bayazit et al. (2002) mark first steps in this direction. These
approaches share the idea that a probabilistic roadmap is used as underlying motion plan-
ner and a deformation simulation is carried out to determine the expected deformations of
the robot along a path. The underlying deformation models, however, vary. The robots are
modeled as flexible surface patches using a two-dimensional finite element approximation
(Holleman et al., 1998), or as volumetric elements using mass-spring systems (Anshelevich
et al., 2000). To achieve a computationally more efficient realization, Bayazit et al. (2002)
employ geometric free-form deformations in their approach instead of physical models.
Gayle et al. (2005) present a motion planning framework for complex environments and
apply it to plan the motions of flexible surgical tools that are inserted into statically modeled
blood vessels. Their deformation model considers constraints for volume preservation to
achieve a physically realistic simulation of deformations similar to the model introduced
by Teschner et al. (2004). In contrast to our approach, these planners compute the ob-
ject deformations necessary to avoid collisions with the environment when generating the
roadmap. Planning motions for deformable robots was recently revisited by Mahoney et al.
(2010). Similar to our approach, they address the computational demands of accurate de-
formation simulations during runtime. Their approach is based on the PRM framework and
contains both configurations that represent rigid transformations and a set of deformation
configurations in a reduced configuration space. The deformed configurations are computed
in a preprocessing step and transformed to a reduced configuration space using principal
component analysis. The focus in this approach is on speed rather than on physically ac-
curate deformation computations, however, energy constraints can be considered to exclude
unrealistic deformation configurations when planning motions. These approaches have in
common that the environment is rigid and robots can deform to avoid collisions, whereas
our approach allows the robot to deform obstacles in the environment.

An approach to planning in completely deformable environments has been proposed by
Rodríguez et al. (2006). They employ the previously discussed mass-spring model with ad-
ditional physical constraints for volume-preservation of Teschner et al. (2004) to enforce a
more realistic behavior of deformable objects and search for a path to a goal location using

7.2 Robot Motion Planning and Learning 117

rapidly exploring random trees. Planning for surgical tools in deformable environments was
addressed, among others, by Alterovitz et al. (2009), Maris et al. (2010), and Patil et al.
(2011). Maris et al. (2010) plan paths for a surgical tool using a 3D simulation based on a
mass-spring model. They optimize the control points of a path with respect to constraints
that consider the stiffness of objects and the penetration depth of the tool. Alterovitz et al.
(2009), in contrast, plan needle placement in the 2D plane and account for deformations
using an finite element simulator similar to ours. Recently, Patil et al. (2011) presented an
extension to this work that also incorporates the potential uncertainty during path execu-
tion into the planning process and chooses the path with the highest probability of success.
Reed et al. (2011) demonstrate the applicability of this approach to steering robotic needles
in a real experiment with an ex-vivo liver. The focus in this work, however, is more on
the complex kinematics of the steerable needle than on the deformation properties of the
environment.

A drawback of the approaches discussed above is that they need to compute the deforma-
tion simulations during runtime. This is time-consuming and therefore not desirable when
planning the motions of real robots. To overcome this limitation, we introduced a model of
the deformation cost function based on Gaussian process regression that reduces the plan-
ning runtime by several orders of magnitude. Computationally demanding simulations are
carried out in a preprocessing step for each type of object and are independent of the shape
of the static part of the environment. However, in contrast to the mentioned approaches,
we need to introduce new assumptions: we consider stationary objects only and we ignore
potential interactions between different deformable obstacles.

Motion planning in the broadest sense also comprises handling, grasping and manipulating
deformable objects. We briefly discuss interesting approaches that address different prob-
lems in this context. Grasping of deformable objects is addressed in the work of Gopalakr-
ishnan and Goldberg (2005). They pursue the idea of deform-closure grasps, similar to
stable form-closure grasps for rigid objects. When computing two-point deform closure
grasps, they consider the mechanical properties of objects using a 2D finite element model
to determine the optimal gripping force. Hirai et al. (2001) proposed a control law for grasp-
ing and manipulating deformable objects that can deal with uncertainties in the deformation
model. The aim of their work is to bring the deformable object into a target configuration
by manipulating a set of control points on the object. Planning the manipulation of de-
formable linear objects was addressed, among others, by Ladd and Kavraki (2004), Saha
and Isto (2007), and Moll and Kavraki (2006). Ladd and Kavraki (2004) present an ap-

118 Chapter 7: RelatedWork

proach for knot untangling by minimizing energy functions. Applications for this problem
are, for instance, in studying DNA or protein folding and unfolding procedures. The motion
planner of Saha and Isto (2007) computes actions for two cooperative robotic manipula-
tors to tie different types of knots. The planner relies on a topological model rather than
a physical model of the deformable objects. Similar to this approach, the planner of Moll
and Kavraki (2006) computes paths for deformable linear objects, motivated by the appli-
cation of surgical suturing. They, however, determine stable configurations of the objects
by considering minimal energy curves. Cusumano-Towner et al. (2011) study the problem
of bringing clothes into a desired configuration with a two-armed manipulation robot. They
employ a strain-limiting finite element model to reason about desirable grasps. In contrast
to our approach that considers object deformations as additional costs, these approaches are
designed to reason about the deformation of objects to bring them into desired deformed
configurations.

7.2.3 Robot Learning with Gaussian Processes

The efficiency of our proposed motion planner derives from the fact that we model the costs
introduced by deforming an object with the Gaussian process (GP) framework (Rasmussen
and Williams, 2006). In the context of robot learning tasks, GPs are becoming increasingly
popular and have been applied to different problems, for instance, to modeling terrain (Lang
et al., 2007; O’Callaghan et al., 2010; Vasudevan et al., 2009), learning motion and obser-
vation models (Ko and Fox., 2009), or modeling gas distributions (Stachniss et al., 2009).
In particular, the approach of Vasudevan et al. (2009) is interesting, as it is able to deal with
large-scale data sets. It reduces the number of training samples required for GP regression
by organizing the data in a k-d tree and considering only a local neighborhood for the predic-
tion of an unknown query point. This inspired our approach, which requires large training
data sets to predict the deformation costs of trajectories. In a similar way, we reduce the
number of training samples for the GP to the subset of the most relevant ones for solving
the regression problem at hand.

In the context of navigation and path planning, GPs have been used to incorporate uncertain
quantities into the cost function that can be only partially observed. Henry et al. (2010), for
instance, use GPs to predict human motion behavior to plan more efficient robot trajectories
in crowded environments. The approach of Murphy and Newman (2010) uses GPs in a
first step to classify different terrain types in aerial images, and subsequently to model a

7.2 Robot Motion Planning and Learning 119

cost function for traversing different terrain types. They obtain a probability density over
the terrain costs by combining the probabilities of encountering different terrain types in a
given location with their associated traversal costs. In this way, they are able to search for
the most likely low cost path in an image.

8 Discussion and Outlook

Autonomous robots that consider deformable objects in their environment can accomplish
a larger class of motion planning tasks than robots that treat all obstacles as rigid. In this
thesis, we presented several techniques to enable robot motion in the presence of deformable
objects. We addressed the acquisition of deformation models, efficient representations for
planning, and application of the developed motion planning framework to robots operating
in real-world environments with deformable objects. In the following, we summarize the
achievements and insights gained in each area and outline directions for future work.

Deformation model learning

We presented a robotic system that is equipped with actuators and sensors to acquire mod-
els of deformable objects. Our robot can observe an object from different viewpoints with a
depth camera and then generate a geometrical model. To learn about the deformation prop-
erties of an object, the robot performs indentation tests. While deforming the object with
its manipulator, it observes the surface deformations with the depth camera mounted to its
hand, and, in addition, it measures the applied forces with a force sensor integrated into
its wrist. So far, the indentation tests are carried out in a fixed experimental setup and we
provide the robot with a set of manipulator configurations for observations and interactions.
In principle, the presented hardware setup allows for an autonomous exploration and acqui-
sition of deformation models. Such an exploration task could be investigated in a further
step. This provides new challenges, for instance, the robot needs to ensure that an object is
approached from a reasonable direction, such that it is deformed and not moved away.

The observations obtained during deformation are used to optimize the material parameters
of a finite element model with a gradient-based error minimization scheme. The deforma-
tion model we use is based on continuum mechanics and describes linearly elastic, homoge-
neous, and isotropic material. These materials are characterized by two parameters, Young’s

122 Chapter 8: Discussion and Outlook

modulus and Poisson’s ratio. Our experiments showed that Young’s modulus, characteriz-
ing the stiffness of an object, can be estimated with a low variance over different applied
forces. The estimation of Poisson’s ratio, which describes the volume preservation of an
object, exhibits more variance. This could be related to the experimental setup of the cam-
era, which makes it difficult to observe an extension of the object transverse to the applied
force. Therefore, the influence of Poisson’s ratio on the error function to be minimized is
smaller. In several experiments, we demonstrated that the learned models can be used for
realistic simulations of object deformations and that deformations as well as forces could be
predicted accurately. However, the assumptions underlying the deformation model are not
always applicable for the objects under consideration. Effects such as viscoelasticity, non-
linearity, and inhomogeneity could potentially be considered in the future. When thinking of
deformable objects that appear in the context of service robotics in domestic environments,
items such as plants or cloth come to mind. An elastic deformation model does not apply
here. For instance, cloth in fact is two-dimensional and has a high resistance to stretch-
ing and shear forces but a low resistance to bending. Deformation models such as the one
proposed by Stumpp et al. (2008) could be investigated. Since our parameter optimization
scheme is independent of the underlying deformation model, it could be easily extended to
account for various deformation models.

Another interesting direction for future research are different forms of interaction with the
objects to learn about their deformation properties. In addition to indentation tests, a robot
could carry out actions, such as grasping, pulling, or bending the object. Similar ideas were
recently pursued in the work of Boonvisut et al. (2012). They considered several robot
trajectories to deform elastic materials in different ways. Such an approach could possibly
be applied to deform cloth or plant leaves. Furthermore, one could think of deformable
objects that can be grasped and manipulated by a robot, such actions could possibly be used
to identify material parameters.

Deformation cost functions for planning

The deformation models acquired by the robot can be used in a physical simulation frame-
work to compute interactions between objects and their resulting deformations. We make
use of such simulations to evaluate the deformations of obstacles when planning the motions
of the robot. To obtain a cost function for planning, we consider the potential energies of
objects that are deformed by the robot along a trajectory.

123

To avoid time-consuming simulations during planning time and to realize an efficient plan-
ning system, we introduced deformation cost functions for objects. We assume that objects
can be deformed by the robot, but are stationary. Furthermore, we neglect interactions
between different obstacles. As a result, the deformation cost function depends on robot
trajectories relative to an object and can be determined in a preprocessing step.

We model deformation cost functions of objects using Gaussian process (GP) regression.
This nonparametric approach to regression describes a probability distribution over func-
tions based on a set of training data. In our case, the training data is a set of robot trajecto-
ries that lead to object deformations and their associated deformation costs. These training
examples can be generated in a preprocessing step by carrying out corresponding simula-
tions. Since the GP model has a runtime cubic in the number of training samples and, for
high-dimensional trajectory inputs, requires a considerable amount of training data, we pre-
sented an efficient realization that uses only local samples to build local GPs. This allows
for a substantial speed-up independent of the overall number of samples. We considered two
different covariance functions for the GP modeling task and showed in experiments that the
nonstationary neural network covariance function is better suited to modeling deformation
costs of robot trajectories. Gaussian processes are a state-of-the-art regression technique
and are based on a sound probabilistic framework. In addition to providing an estimate
for new function values, they model the uncertainty about the prediction. This proves par-
ticularly useful in case of incomplete and noisy data. In our case, the function values are
provided by simulations, and no noise is expected with respect to the simulation outcome
for fixed material parameters and individual trajectories. However, noise can come into play
when considering the uncertainty about the estimated material parameters on the one hand,
and the function over the space of trajectories on the other hand. For instance, neighboring
trajectories could either crumple the object or move it aside, thereby resulting in largely
differing function values. Such types of uncertainty about the outcome of a trajectory can
be adequately modeled by the GP framework. It would be interesting to incorporate such
uncertainties into the cost function in the future.

The motions considered for GP regression so far are restricted to simple linear trajectories.
A promising direction for future work could be to investigate to which extent such pre-
computations can be transferred and can be useful for objects that might be moved during
deformation. This might be of particular interest when considering grasp planning. In such
a scenario, precomputations of different stable grasps leading to object deformations might
be helpful.

124 Chapter 8: Discussion and Outlook

Motion planning in the presence of deformable obstacles

We presented a motion planning framework that is based on probabilistic roadmaps and
incorporates the deformation costs of motions. The motion planner optimizes the trade-
off between motion costs and deformation costs. It determines the deformation costs of
path segments in the roadmap using the presented GP-based deformation cost functions. In
this way, we are able to efficiently plan motions. Even for manipulation robots with several
degrees of freedom, the planning time is in the order of seconds, and therefore by several or-
ders of magnitudes faster than a planner that carries out the deformation simulations online.
However, by restricting the deformation cost functions to linear trajectories, we introduce
an approximation error. Our proposed motion planner thus trades accuracy for efficiency.
In experiments, however, we demonstrated that the planned motions still in general lead to
low cost deformations of objects.

In the future, it would be interesting to transfer the motion planning framework to other
applications. This could include, for instance, robots with two cooperative manipulators,
which are required to manipulate and deform objects, similar to the task of folding laundry,
as addressed in the work of Cusumano-Towner et al. (2011). One could also investigate how
to incorporate changes to the world that are introduced by the robot, for instance, when it
grasps and manipulates objects. Precomputations in such situations still could be helpful,
for instance, to identify motions to grasp and manipulate objects in a certain way. When
executing the motions, however, the state of the world needs to be tracked, which requires
integration of planning and control.

Plan execution

In the context of path execution, we considered a navigation scenario for a wheeled robot.
For such systems, collision avoidance based on sensor measurements is essential to avoid
unforeseen obstacles such as humans in environments shared between robots and humans.
When navigating in environments with deformable objects, the robot needs to be able to
distinguish allowed contacts necessary to deform objects along a path from collisions that
have to be avoided.

We introduced a probabilistic sensor model that describes the probability of observing a
deformable object in a given position and the expected measurements during interaction
with a deformable object. During navigation, this sensor model allows the robot to inter-

8.1 Concluding Remarks 125

pret its observations accordingly and to reliably avoid collisions with humans. Since the
expected measurements during interaction with a deformable object do not only depend on
the robot position, but also on the executed trajectory, the sensor model needs to be learned
in advance for trajectories that lead to object deformations. In principle, it is independent
of the absolute object position in the environment, similar to object deformation cost func-
tions for planning. It can therefore be learned for each object type in a preprocessing step.
Furthermore, it can be restricted to a set of low-cost trajectories that are frequently chosen
by the planner and most likely to be executed. In our application, we have determined the
corresponding trajectories manually, but in a future step, this selection could possibly be
automated.

It would be interesting to investigate an approach to collision avoidance for manipulators.
Our manipulator so far executes planned motions in an open loop. This is possible, since
its joints can be positioned with high accuracy, and, due to the intimidating appearance of
the manipulator, probably no intelligent dynamic obstacle would risk to approach it any-
way. The problem of collision avoidance, however, offers interesting challenges for future
research. One could investigate, whether a vision or range based approach similar to the
one for the wheeled robot could be extended to manipulators. To ensure a safe path execu-
tion, possibly integration with an impedance controller could be achieved, if the necessary
sensors are available on the robot platform. This could be particularly interesting for more
delicate robots that need to be able to apply forces large enough to deform objects and to
comply with a planned trajectory, but also small enough to avoid damage to the rigid part of
the environment.

8.1 Concluding Remarks

In sum, this thesis presents the key components towards considering physical deformation
properties of obstacles when planning robot motions. It integrates learning of appropri-
ate models with motion planning and demonstrates successful application of the developed
approaches on different robots operating in real-world environments.

We believe that considering physical properties of the environment is an exciting area of
research and has a great potential of improving the scope and applicability of robots. Beyond
motion planning, robots can hopefully be enabled to achieve other useful tasks in household
and service applications in the future.

Bibliography

R. Alterovitz, K. Goldberg, J. Pouliot, and I. Hsu. Sensorless motion planning for medical
needle insertion in deformable tissues. IEEE Transactions on Information Technology in

Biomedicine, 13(2):217–225, 2009.

N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo. Choosing good dis-
tance metrics and local planners for probabilistic roadmap methods. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), 1998.

E. Anshelevich, S. Owens, F. Lamiraux, and L. E. Kavraki. Deformable volumes in path
planning applications. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
2000.

K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares fitting of two 3-D point sets.
IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI), 9(5):698–700, 1987.

S. Bandi and D. Thalmann. An adaptive spatial subdivision of the object space for fast
collision detection of animating rigid bodies. In Proc. of the Eurographics, 1995.

D. Baraff and A. Witkin. Dynamic simulation of non-penetrating flexible bodies. In Proc. of

ACM SIGGRAPH, 1992.

K.-J. Bathe. Finite Element Procedures. Prentice Hall, 2nd edition, 1996.

O. B. Bayazit, J.-M. Lien, and N. M. Amato. Probabilistic roadmap motion planning for
deformable objects. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
2002.

M. Becker and M. Teschner. Robust and efficient estimation of elasticity parameters using
the linear finite element method. In Proc. of Simulation and Visualization, 2007.

J. L. Bentley. Multidimensional binary search trees used for associative searching. Commu-

nications of the ACM, 18(9):509–517, 1975.

128 Bibliography

P. J. Besl and N. D. McKay. A method for registration of 3-D shapes. IEEE Transactions

on Pattern Analysis and Machine Intelligence (PAMI), 14(2):239–256, 1992.

G. Bianchi, B. Solenthaler, G. Székely, and M. Harders. Simultaneous topology and stiffness
identification for mass-spring models based on FEM reference deformations. In Medical

Image Computing and Computer-Assisted Intervention (MICCAI), 2004.

B. Bickel, M. Baecher, M. Otaduy, W. Matusik, H. Pfister, and M. Gross. Capture and
modeling of non-linear heterogeneous soft tissue. Proc. of ACM SIGGRAPH, 28(3):
1081–1094, 2009.

R. Bohlin and L. Kavraki. Path planning using lazy PRM. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), 2000.

P. Boonvisut, R. Jackson, and M. C. Çavuşoğlu. Estimation of soft tissue mechanical pa-
rameters from robotic manipulation data. In Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), 2012.

V. Boor, M. H. Overmars, and A. F. van der Stappen. The Gaussian sampling strategy for
probabilistic roadmap planners. In Proc. of the IEEE Int. Conf. on Robotics& Automation

(ICRA), 1999.

R. Bridson, R. Fedkiw, and J. Anderson. Robust treatment of collisions, contact and friction
for cloth animation. In Proc. of ACM SIGGRAPH, 2002.

M. Bro-Nielsen. Finite element modeling in surgery simulation. Proceedings of the IEEE,
86(3):490–503, 1998.

W. Burgard, A.B. Cremers, D. Fox, D. Haehnel, G. Lakemeyer, D. Schulz, W. Steiner, and
S. Thrun. Experiences with an interactive museum tour-guide robot. Artificial Intelli-

gence, 114(1–2):3–55, 2000.

S. Burion, F. Conti, A. Petrovskaya, C. Baur, and O. Khatib. Identifying physical properties
of deformable objects by using particle filters. In Proc. of the IEEE Int. Conf. on Robotics

& Automation (ICRA), 2008.

B. Burns and O. Brock. Sampling-based motion planning with sensing uncertainty. In
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2007a.

B. Burns and O. Brock. Single-query motion planning with utility-guided random trees. In
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2007b.

Bibliography 129

J. Chadwick, D. Haumann, and R. Parent. Layered construction for deformable animated
characters. In Proc. of ACM SIGGRAPH, 1989.

T. R. Chandrupatla and A. D. Belegundu. Introduction to Finite Elements in Engineering.
Prentice Hall, 3rd edition, 2002.

D. Chetverikov, D. Svirko, D. Stepanov, and P. Krsek. The trimmed iterative closest point
algorithm. In Int. Conf. on Pattern Recognition, 2002.

A. P. C. Choi and Y. P. Zheng. Estimation of Young’s modulus and Poisson’s ratio of soft
tissue from indentation using two different-sized indentors: finite element analysis of the
finite deformation effect. Medical & Biological Engineering & Computing, 43(2):258–
264, 2005.

H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and S. Thrun.
Principles of Robot Motion. MIT Press, 2005.

T. J. Chung. Applied Continuum Mechanics. Cambridge University Press, New York, 1996.

F. Conti, O. Khatib, and C. Baur. Interactive rendering of deformable objects based on a fill-
ing sphere modelling approach. In Proc. of the IEEE Int. Conf. on Robotics& Automation

(ICRA), 2003.

M. Cusumano-Towner, A. Singh, S. Miller, J. F. O’Brien, and P. Abbeel. Bringing clothing
into desired configurations with limited perception. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), 2011.

G. Debunne, M. Desbrun, M.-P. Cani, and A. Barr. Dynamic real-time deformations using
space & time adaptive sampling. In Proc. of ACM SIGGRAPH, 2001.

E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
pages 269–271, 1959.

I. DiMatteo, C. R. Genovese, and G. R. Kass. Bayesian curve-fitting with free-knot splines.
Biometrika, 88(4):1055–1071, 2001.

D. Ferguson and A. Stentz. Using interpolation to improve path planning: The field D*
algorithm. Journal of Field Robotics, 23(2):79–101, 2006.

P. Fong. Sensing, acquisition, and interactive playback of data-based models for elastic
deformable objects. Int. Journal of Robotics Research, 28:630–655, 2009.

130 Bibliography

D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to collision avoidance.
IEEE Robotics & Automation Magazine, 4(1), 1997.

D. Fox, W. Burgard, and S. Thrun. Markov localization for mobile robots in dynamic
environments. Journal of Artificial Intelligence Research, 11:391–427, 1999.

B. Frank, M. Becker, C. Stachniss, M. Teschner, and W. Burgard. Efficient path planning for
mobile robots in environments with deformable objects. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), 2008a.

B. Frank, M. Becker, C. Stachniss, M. Teschner, and W. Burgard. Learning cost functions
for mobile robot navigation in environments with deformable objects. In Workshop on

Path Planning on Cost Maps at the IEEE Int. Conf. on Robotics & Automation (ICRA),
2008b.

B. Frank, C. Stachniss, R. Schmedding, M. Teschner, and W. Burgard. Real-world robot
navigation amongst deformable obstacles. In Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), 2009.

B. Frank, R. Schmedding, C. Stachniss, M. Teschner, and W. Burgard. Learning the elas-
ticity parameters of deformable objects with a manipulation robot. In Proc. of the IEEE

Int. Conf. on Intelligent Robots and Systems (IROS), 2010a.

B. Frank, R. Schmedding, C. Stachniss, M. Teschner, and W. Burgard. Learning the elastic-
ity parameters of deformable objects with a manipulation robot. In Proc. of the Workshop

on Advanced Reasoning with Depth Cameras at Robotics: Science and Systems Confer-

ence (RSS), 2010b.

B. Frank, C. Stachniss, N. Abdo, and W. Burgard. Efficient motion planning for manipula-
tion robots in environments with deformable objects. In Proc. of the IEEE Int. Conf. on

Intelligent Robots and Systems (IROS), 2011a.

B. Frank, C. Stachniss, N. Abdo, and W. Burgard. Using Gaussian process regression for
efficient motion planning in environments with deformable objects. In Proc. of the AAAI-

11 Workshop on Automated Action Planning for Autonomous Mobile Robots (PAMR),
2011b.

A. R. Fugl, A. Jordt, H. G. Petersen, M. Willatzen, and R. Koch. Simultaneous estimation
of material properties and pose for deformable objects from depth and color images. In
Pattern Recognition - Joint 34th DAGM and 36th OAGM Symposium, 2012.

Bibliography 131

R. Gayle, P. Segars, M.C. Lin, and D. Manocha. Path planning for deformable robots in
complex environments. In Proc. of Robotics: Science and Systems (RSS), 2005.

S. F. Gibson and B. Mirtich. A survey of deformable modeling in computer graphics. Tech-
nical Report TR-97-19, Mitsubishi Electric Research Lab, 1997.

K. G. Gopalakrishnan and K. Goldberg. D-space and deform closure grasps of deformable
parts. Int. Journal of Robotics Research, 24(11):899–910, 2005.

S. Gottschalk, M. Lin, and D. Manocha, D.and Zeltzer. OBB-Tree: A hierarchical structure
for rapid interference detection. In Proc. of ACM SIGGRAPH, 1996.

G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for grid mapping with
rao-blackwellized particle filters. IEEE Transactions on Robotics, 23(1):34–46, 2007.

G. Grisetti, R. Kümmerle, C. Stachniss an U. Frese, and C. Hertzberg. Hierarchical opti-
mization on manifolds for online 2D and 3D mapping. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), 2010.

L. J. Guibas, C. Holleman, and L. E. Kavraki. A probabilistic roadmap planner for flexible
objects with a workspace medial-axis-based sampling approach. In Proc. of the IEEE

Int. Conf. on Intelligent Robots and Systems (IROS), 1999.

E. Guizzo. How Google’s self-driving car works. http://spectrum.ieee.org/

automaton/robotics/artificial-intelligence/how-google-self-driving-

car-works, October 2011. Accessed January 3, 2013.

E. W. Hart. Theory of the tensile test. Acta Metallurgica, 15(2):351–355, 1967.

P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems Science and Cybernetics (SSC4), 4
(2):100–107, 1968.

M. Hauth and W. Strasser. Corotational simulation of deformable solids. Journal of WSCG,
12(1–3):137–145, 2004.

B. Heidelberger, M. Teschner, R. Keiser, M. Müller, and M. Gross. Consistent penetra-
tion depth estimation for deformable collision response. In Proc. of Vision, Modeling,

Visualization (VMV), 2004.

P. Henry, C. Vollmer, B. Ferris, and D. Fox. Learning to navigate through crowded environ-
ments. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2010.

http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-driving-car-works
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-driving-car-works
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-driving-car-works

132 Bibliography

S. Hirai, T. Tsuboi, and T. Wada. Robust grasping manipulation of deformable objects. In
Proc. of the IEEE International Symposium on Assembly and Task Planning, 2001.

C. Holleman, L. E. Kavraki, and J. Warren. Planning paths for a flexible surface patch. In
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 1998.

B. K. P. Horn. Closed-form solution of absolute orientation using unit quaternions. Journal

of the Optical Society A, 4(4):629–642, 1987.

J. Kajberg and G. Lindkvist. Characterization of materials subjected to large strains by
inverse modeling based on in-plane displacement fields. Int. Journal of Solids and Struc-

tures, 41(13):3439–3459, 2004.

M. Kauer. Inverse Finite Element Characterization of Soft Tissues. PhD thesis, ETH Zürich,
2001.

M. Kauer, V. Vuskovic, J. Dual, G. Székely, and M. Bajka. Inverse finite element character-
ization of soft tissues. Medical Image Analysis, 6(3):275–287, 2002.

L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic roadmaps for
path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics

and Automation, 12(4):566–580, 1996.

L. E. Kavraki, F. Lamiraux, and C. Holleman. Towards planning for elastic objects. In
Proc. of the Workshop on the Algorithmic Foundations of Robotics (WAFR), 1998.

J. Ko and D. Fox. GP-BayesFilters: Bayesian filtering using Gaussian process prediction
and observation models. Autonomous Robots, 27(1):75–90, 2009.

J. J. Kuffner and S. M. LaValle. RRT-connect: An efficient approach to single-query path
planning. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2000.

R Kümmerle, M. Ruhnke, B. Steder, C. Stachniss, and W. Burgard. A navigation system
for robots operating in crowded urban environments. In Proc. of the IEEE Int. Conf. on

Robotics and Automation (ICRA), 2013. To appear.

A. M. Ladd and L. E. Kavraki. Motion planning for knot untangling. In J.-D. Boissonnat,
J. Burdick, K. Goldberg, and S. Hutchinson, editors, Algorithmic Foundations of Robotics

V, pages 7–23. Springer Tracks in Advanced Robotics, Springer Verlag, STAR 7, 2004.

F. Lamiraux and L. E. Kavraki. Planning paths for elastic objects under manipulation con-
straints. Int. Journal of Robotics Research, 20(3):188–208, 2001.

Bibliography 133

J. Lang. Deformable Model Acquisition and Validation. PhD thesis, University of British
Columbia, 2001.

J. Lang, D. K. Pai, and R. J. Woodham. Acquisition of elastic models for interactive simu-
lation. Int. Journal of Robotics Research, 21(8):713–733, 2002.

T. Lang, C. Plagemann, and W. Burgard. Adaptive non-stationary kernel regression for
terrain modeling. In Proc. of Robotics: Science and Systems (RSS), 2007.

J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.

S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning. Technical
Report 98–11, Computer Science Department, Iowa State University, 1998.

S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. Int. Journal of Robotics

Research, 20:378–400, 2001.

N. D. Lawrence, M. Seeger, and R. Herbrich. Fast sparse Gaussian process methods: The
informative vector machine. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances

in Neural Information Processing Systems 15, pages 609–616. MIT Press, Cambridge,
MA, 2003.

M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun. Anytime dynamic A*:
An anytime, replanning algorithm. In Proc. of the Int. Conf. on Automated Planning and

Scheduling (ICAPS), 2005.

B. Lloyd, G. Székely, and M. Harders. Identification of spring parameters for deformable
object simulation. IEEE Trans. on Visualization and Computer Graphics, 13(5):1081–
1094, 2007.

D. J. C. MacKay. Introduction to Gaussian processes. In C. M. Bishop, editor, Neural Net-

works and Machine Learning, volume 168 of NATO ASI Series, pages 133–165. Springer,
1998.

A. Mahoney, J. Bross, and D. Johnson. Deformable robot motion planning in a reduced-
dimension configuration space. In Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), 2010.

J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel. Cloth grasp point detec-
tion based on multiple-view geometric cues with application to robotic towel folding. In

134 Bibliography

Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2010.

B. Maris, D. Botturi, and P. Fiorini. Trajectory planning with task constraints in densely
filled environments. In Proc. of the IEEE Int. Conf. on Intelligent Robots and Systems

(IROS), 2010.

S. Melax. Dynamic plane shifting BSP traversal. In Proc. of Graphics Interface, 2000.

J. Minguez and L. Montano. Nearness diagram navigation (ND): A new real time collision
avoidance approach. In Proc. of the IEEE Int. Conf. on Intelligent Robots and Systems

(IROS), 2000.

M. Moll and L. E. Kavraki. Path planning for deformable linear objects. IEEE Transactions

on Robotics, 22(4):625–636, 2006.

M. Müller and M. Gross. Interactive virtual materials. In Graphics Interface, 2004.

M. Müller, B. Heidelberger, M. Teschner, and M. Gross. Meshless deformations based on
shape matching. In Proc. of ACM SIGGRAPH, 2005.

L. Murphy and P. Newman. Planning most likely paths from overhead imagery. In Proc. of

the IEEE Int. Conf. on Robotics & Automation (ICRA), 2010.

R. M. Neal. Bayesian Learning for Neural Networks. Lecture Notes in Statistics No. 118.
Springer, 1996.

A. Nealen, M. Müller, R. Keiser, E. Boxerman, and M. Carlson. Physically based de-
formable models in computer graphics. Computer Graphics Forum, 25(4):809–836, 2006.

F. S. Nooruddin and G. Turk. Simplification and repair of polygonal models using volu-
metric techniques. IEEE Trans. on Visualization and Computer Graphics, 9(2):191–205,
2003.

S. O’Callaghan, F. T. Ramos, and H. F. Durrant-Whyte. Contextual occupancy maps incor-
porating sensor and location uncertainty. In Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), 2010.

I. J. Palmer and R. L. Grimsdale. Collision detection for animation using sphere-trees.
Computer Graphics Forum, 14(2):105–116, 1995.

S. Patil, J. van den Berg, and R. Alterovitz. Motion planning under uncertainty in highly
deformable environments. In Proc. of Robotics: Science and Systems (RSS), 2011.

Bibliography 135

F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer,
1993.

K. Pulli. Multiview registration for large data sets. In Proc. of the Int. Conf. on 3D Digital

Imaging and Modeling (3DIM), 1999.

E. A. Rakhmanov, E. B. Saff, and Y. M. Zhou. Minimal discrete energy on the sphere.
Mathematical Research Letters, 1:647–662, 1994.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. The
MIT Press, 2006.

K. B. Reed, A. Majewicz, V. Kallem, R. Alterovitz, K. Goldberg, N. J. Cowan, and A. M.
Okamura. Robot-assisted needle steering. IEEE Robotics & Automation Magazine, 18
(4):35–46, 2011.

M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation learning:
The RPROP algorithm. In Proc. of the IEEE Int. Conf. on Neural Networks (ICNN), 1993.

S. Rodríguez, J.-M. Lien, and N. M. Amato. Planning motion in completely deformable
environments. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2006.

S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm. In Proc. of the Int.

Conf. on 3D Digital Imaging and Modeling (3DIM), 2001.

M. Saha and P. Isto. Manipulation planning for deformable linear objects. IEEE Transac-

tions on Robotics, 23(6):1141–1150, 2007.

D. S. Schnur and N. Zabaras. An inverse method for determining elastic material properties
and a material interface. Int. Journal for Numerical Methods in Engineering, 33(10):
2039–2057, 1992.

M. Seeger, C. K. I Williams, and N. D. Lawrence. Fast forward selection to speed up sparse
Gaussian process regression. In C. M. Bishop and B. J. Frey, editors, Proc. of the Ninth

International Workshop on Artificial Intelligence and Statistics. 2003.

R. W. Sinnott. Virtues of the haversine. Sky and Telescope, 68(2):158, 1984.

E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs. In Y. Weiss,
B. Schölkopf, and J. Platt, editors, Advances in Neural Information Processing Systems

18, pages 1257–1264. MIT Press, Cambridge, MA, 2006.

136 Bibliography

J. Spillmann, M. Wagner, and M. Teschner. Robust tetrahedral meshing of triangle soups.
In Proc. Vision, Modeling, Visualization (VMV), 2006.

J. Spillmann, M. Becker, and M. Teschner. Non-iterative computation of contact forces for
deformable objects. Journal of Computer Graphics, Visualization, and Computer Vision

(WSCG), 15(1–3):33–40, 2007.

C. Stachniss, C. Plagemann, and A. J. Lilienthal. Gas distribution modeling using sparse
Gaussian process mixtures. Autonomous Robots, 26(2-3):187–202, 2009.

A. Stentz. Optimal and efficient path planning for partially-known environments. In Proc. of

the IEEE Int. Conf. on Robotics & Automation (ICRA), 1994.

T. Stumpp, J. Spillmann, M. Becker, and M. Teschner. A geometric deformation model for
stable cloth simulation. In Proc. of the Fifth Workshop on Virtual Reality Interactions and

Physical Simulations (VRIPHYS), 2008.

A. Tarantola. Inverse Problem Theory and Methods for Model Parameter Estimation. Soci-
ety for Industrial and Applied Mathematics, 2005.

D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elastically deformable models. In
Proc. of ACM SIGGRAPH, 1987.

M. Teschner, B. Heidelberger, M. Müller, D. Pomeranets, and M. Gross. Optimized spatial
hashing for collision detection of deformable objects. In Proc. Vision, Modeling, Visual-

ization (VMV), 2003.

M. Teschner, B. Heidelberger, M. Müller, and M. Gross. A versatile and robust model for
geometrically complex deformable solids. In Proc. of Computer Graphics International,
2004.

M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghupathi, A. Fuhrmann,
M.P. Cani, F. Faure, N. Magnenat-Thalmann, and W. Strasser. Collision detection for
deformable objects. Computer Graphics Forum, 24(1):61–81, 2005.

S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust Monte Carlo localization for mobile
robots. Journal of Artificial Intelligence, 128(1–2):99–141, 2001.

G. Van den Bergen. Efficient collision detection of complex deformable models using
AABB trees. Journal of Graphics Tools, 2(4):1–14, 1997.

S. Vasudevan, F. T. Ramos, E. W. Nettleton, and H. F. Durrant-Whyte. Gaussian process

Bibliography 137

modeling of large scale terrain. Journal of Field Robotics, 26(10):812–840, 2009.

L. Verlet. Computer experiments on classical fluids. I. Theromodynamical properties of
Lennard-Jones molecules. Physical Review, 159(1):98–103, 1967.

C. K. I. Williams. Computation with infinite neural networks. Neural Computation, 10(5):
1203–1216, 1998.

C. K. I. Williams. Prediction with Gaussian processes: From linear regression to linear
prediction and beyond. In M. I. Jordan, editor, Learning in Graphical Models, pages
599–621. The MIT Press, 1999.

X. Wu, M. S. Downes, T. Goktekin, and F. Tendick. Adaptive nonlinear finite elements for
deformable body simulation using dynamic progressive meshes. In Computer Graphics

Forum, 2001.

Y. Yang and O. Brock. Elastic roadmaps: Globally task-consistent motion for autonomous
mobile manipulation. In Proc. of Robotics: Science and Systems (RSS), 2006.

R. N. Zantout and Y. F. Zheng. Geodesics: a tool for solving material properties inverse
problems. In IEEE Int. Conf. on Industrial Technology, 1994.

	Introduction
	Contributions of this Thesis
	Publications
	Collaborations

	Overview
	Background
	Deformation Simulation
	Collision Detection
	Computation of Contact Forces
	Time Integration

	Deformation Model
	Elasticity Parameters
	Linear Finite Element Approximation

	Summary

	Learning Deformation Models
	Data Acquisition
	The Robotic System
	Geometric Models for Simulation
	Deformation of Objects

	Parameter Estimation
	FEM Simulation
	Error Function
	Parameter Optimization

	Limitations of the Deformation Model
	Experimental Results
	Simulation Experiments
	Parameter Estimation for Real Objects

	Summary

	Deformation Cost Functions for Motion Planning
	Deformation Costs of a Robot Trajectory
	Object Deformation Cost Functions
	Modeling Deformation Cost Functions with Gaussian Processes
	Covariance Functions
	Predictions with the GP model
	Learning a GP model

	Efficient Regression by Problem Decomposition
	Experimental Results
	Deformation Cost Function Example
	GP Training and Number of Training Samples
	Number of Nearest Neighbors
	Modeling Uncertainty
	Statistical Evaluation
	Computation Time

	Summary

	Motion Planning for Real Robots
	The Motion Planning Framework
	Path Costs
	Roadmap Deformation Costs

	Planning for Manipulators in 3D
	Robot Navigation in 2D
	Sensor-based Collision Avoidance for Non-deformable Objects
	Learning a Sensor Model for Deformable Objects
	Classifying Sensor Measurements and Avoiding Collisions

	Experimental Results
	Arm Planning in 3D
	Robot Navigation in 2D
	Computation Time

	Summary

	Related Work
	Deformable Modeling and Parameter Estimation
	Deformation models
	Parameter estimation

	Robot Motion Planning and Learning
	Robot Motion Planning
	Motion Planning with Deformable Objects
	Robot Learning with Gaussian Processes

	Discussion and Outlook
	Concluding Remarks

	Bibliography

