
State Estimation and Optimization
for Mobile Robot Navigation
Rainer Kümmerle

Technische Fakultät
Albert-Ludwigs-Universität Freiburg im Breisgau

Dissertation zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

Betreuer: Prof. Dr. Wolfram Burgard

April, 2013

State Estimation and Optimization
for Mobile Robot Navigation
Rainer Kümmerle

Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften
Technische Fakultät, Albert-Ludwigs-Universität Freiburg im Breisgau

Dekan: Prof. Dr. Yiannos Manoli
Erstgutachter: Prof. Dr. Wolfram Burgard
Zweitgutachter: Prof. Dr.-Ing. Thomas Brox
Tag der Disputation: 08.04.2013

Abstract

Robust autonomous navigation is a key feature of a mobile robot realizing services such as
transportation, cleaning, search and rescue, and surveillance. In addition to that, navigation is a
building block for a robot assisting humans in potentially dangerous situations, such as search-
and-rescue scenarios. Hence, navigation is one of the major research topics in the robotics
community.

To realize the above mentioned applications, we need to fulfill certain requirements, so that
a robot is regarded as useful. For example, a robot which performs pick-and-place tasks or
offers guidance in city centers needs to be aware of its own position in the environment and
it needs to have an accurate model of the environment for planning an appropriate path. A
robot which should guide a human to a certain place or has to deliver goods is only regarded as
helping hand, if the location is reliably reached within the expected time frame.

Particularly, estimating the state which describes the current situation of the navigation sys-
tem is complex. In this thesis, we focus on efficient and accurate state estimation techniques
which apply probabilistic algorithms. An example for such a state estimation task is the Si-
multaneous Localization and Mapping (SLAM) problem, in which a robot has to address both
aspects. First, it needs to estimate what the environment looks like. This is the mapping part
which deals with integrating the information obtained by the sensors of the robot into an ap-
propriate representation. Second, the localization component has to estimate the position of the
robot with respect to the model of the environment.

In the first part of this thesis, we present efficient approaches to estimate the state of the
robot while performing SLAM. Our approach allows a robot to accurately estimate the model
of the environment in an online setting and also in situations when provided with a poor initial
guess. Additionally, we provide an empirical evaluation which demonstrates the advantages of
our approach compared to other state-of-the-art methods. Subsequently, we extend our state
estimation approach to also include the unknown calibration parameters, which might change
during the lifetime of the robot, to incorporate prior information about the structure of the
environment, and to improve the fine-grained details of the estimated models.

In the second part of this thesis, we demonstrate two challenging applications which we
realized by building upon and extending the algorithms presented in the first part. In detail, we
discuss an approach which allows a car to autonomously park in a complex multi-level parking
garage. As second application we present a robotic pedestrian assistant which is able to navigate
in densely populated pedestrian zones.

All techniques presented in this thesis have been implemented and tested using both real-
world data collected with mobile robots and simulated data. To support our claims, we per-
formed an extensive collection of experiments, in which we compared the performance of our
approaches with the state-of-the-art. We believe that the proposed approaches will allow us in
the future to build systems that can assist humans in their homes and at their workplaces.

Zusammenfassung

Die Fähigkeit sich in einer Umgebung zurechtzufinden ist eine der grundlegenden Vorbedin-
gungen, um wirklich selbstständige Roboter zu realisieren. Solche autonomen Roboter können
eine Reihe von sinnvollen Dienstleistungen anbieten. Als Beispiel seien hier der Transport von
Waren zu einem gewünschten Ziel, die effiziente und zuverlässige Säuberung eines Gebietes
oder die Überwachung eines bestimmten Bereiches genannt. Des Weiteren ist die autonome
Navigation ein wichtiger Bestandteil eines Roboters, der Menschen in potentiell gefährlichen
Situationen unterstützen soll, wie z.B. bei Such- und Rettungseinsätzen. Aufgrund dieser viel-
fältigen Möglichkeiten ist die autonome Navigation eines der zentralen Forschungsgebiete im
Bereich der Robotik.

Um die angesprochenen Anwendungen zu realisieren, müssen wir jedoch eine Menge von
Bedingungen erfüllen, so dass der Roboter als nützlich erachtet wird. So muss beispielsweise
ein Roboter, der Hol- und Bringdienste oder Hilfe zur Orientierung in einer Stadt anbietet, seine
eigene Position möglichst präzise kennen. Des Weiteren benötigt der Roboter eine genaue Karte
der Umgebung, um einen geeigneten Pfad zum Ziel zu planen. Ein Roboter, der eine Person zu
einem gewünschten Ziel führt oder Waren liefert, wird nur dann als nützlich erachtet, wenn das
Ziel zuverlässig innerhalb der erwarteten Zeitspanne erreicht wird.

Wenn ein Roboter in einem unbekannten und unvorhersehbaren Gebiet navigieren soll, muss
er ein schwieriges Problem lösen. Die Schwierigkeit bei der Schätzung des wahrscheinlichsten
Zustands ergibt sich hierbei aus der Tatsache, dass der Roboter sich in der Umgebung lokalisie-
ren muss, während er gleichzeitig ein Modell der Umgebung schätzt. Die simultane Lokalisie-
rung und Kartierung ist in der Robotik als SLAM-Problem bekannt. Lösungsansätze für SLAM
müssen beide Aspekte behandeln. Der erste Teil befaßt sich mit der Kartierung der Umgebung.
Anhand der Sensormessungen des Roboters wird ein geeignetes Modell der Umgebung erstellt.
Dieses Modell wiederum wird von der zweiten Komponente, der Lokalisierung, verwendet, um
die Position des Roboters zu ermitteln. Jeder der beiden Teile kann, wenn das entsprechende
Gegenstück gegeben ist, auf unkomplizierte Art und Weise gelöst werden. Die Schwierigkeit
ensteht durch die Notwendigkeit, beide Teile gleichzeitig zu lösen. In diesem Fall beeinflusst
das Wissen über die Position des Roboters das Resultat der Kartierung, wohingegen das Modell
der Umgebung sich auf die Schätzung der Position auswirkt. Dementsprechend handelt es sich
bei SLAM um eine komplexe Zustandschätzung, insbesondere da der Zustand hochdimensional
ist.

Eine mögliche Repräsentation für das SLAM-Problem ist ein Graph bestehend aus Knoten
und Kanten. Die Positionen des Roboter werden hierbei durch die Knoten modelliert und die
Kanten des Graph bilden die Beziehung der Knoten zueinander gemäß der Sensormessungen
ab. Die Lösung besteht darin die Konfiguration der Knoten zu finden, die dieWahrscheinlichkeit
aller Messungen maximiert.

Während der Roboter seine Umgebung exploriert besteht die Notwendigkeit, das zum ak-
tuellen Zeitpunkt wahrscheinlichste Modell der Umgebung und die Position des Roboters zu
bestimmen. Der Roboter benötigt diese Information unter anderem, um seine nächste Aktion

zu planen. Daher sollte unser Verfahren in der Lage sein, eine solche Zwischenlösung schnell
zu berechnen. Im Fall von langwierigen Berechnungen müsste der Roboter gegebenenfalls häu-
fig auf das Ergebnis warten. Des Weiteren kann der aktuell wahrscheinlichste Zustand dem
Roboter bei der Interpretation der Sensordaten helfen und somit unterstützend zur Lösung der
komplexen Datenassoziation beitragen.

Außerdem benötigt der Roboter Wissen über Parameter, um die Daten, die von den Sensoren
geliefert werden, zu verarbeiten. Ein Sensor misst im Allgemeinen eine physikalische Größe,
wie Spannungsunterschiede, Phasenverschiebung, oder die Laufzeit eines Signals. Um diese
Messungen in die Zustandsschätzung einfließen zu lassen, wird üblicherweise eine Umrech-
nung in abstraktere Werte durchgeführt. So wird zum Beispiel die Verschiebung der Phase in
die Distanz zum Objekt, das den Lichtstrahl reflektiert hat, transformiert. Diese Operation benö-
tigt jedoch Wissen über eine Menge von Parametern, die zum einen konstant sein können (wie
die Wellenlänge des Lichtstrahls) oder zum anderen sich im Laufe der Zeit ändern. Für die Be-
rechnung der Odometrie des Roboters etwa muss neben anderen Parametern der Durchmesser
der Räder bekannt sein. Einerseits wirkt sich die Abnahme des Reifendrucks in aufgepumpten
Reifen auf deren Größe aus und andererseits beeinflusst das Gesamtgewicht des Roboters den
Durchmesser der Räder, so dass sich dieser im Laufe der Zeit verändern kann. Die Mehrheit der
Ansätze zur Lösung von SLAM, die dem Stand der Technik entsprechen, nehmen die Parame-
ter als gegeben und als konstant an. Eine nicht modellierte Veränderung der Parameter kann zu
einem systematischen Fehler innerhalb der Zustandsschätzung führen, was sich letztendlich in
einer verminderten Qualität der Umgebungsmodelle äußern kann.

Während die oben angesprochene zeitlich schritthaltende Kalibrierung zu einer Verbesse-
rung der Qualität führen kann, können wir durch weitere Messungen ebenfalls die Genauigkeit
der Umgebungsmodelle steigern. Im Internet steht zum heutigen Zeitpunkt eine Fülle an präzi-
sem Kartenmaterial frei zur Verfügung. Wäre der Roboter in der Lage dieses Material für die
Lokalisierung zu nutzen, so könnte dies zu einer verbesserten Schätzung des Zustands führen.
Die meisten bisher vorgeschlagenen Ansätze für SLAM sind jedoch nicht in der Lage, dieses
Vorwissen miteinzubeziehen. Bei der Einbindung des bestehenden Kartenmaterials müssen wir
jedoch beachten, dass das Vorwissen eventuell nicht alle Bereiche der Umgebung abdeckt.

Wie wir oben angedeutet haben besteht ein Ansatz für SLAM aus zwei Teilen, der Lokali-
sierung und der Kartierung. Eine mögliche Variante zur Kartierung mithilfe von Abstandssen-
soren ist ein sogenanntes Belegungsgitter. In diesem Gitter wird für jede Zelle unabhängig die
Wahrscheinlichkeit belegt zu sein mittels eines bayesschen Filter geschätzt. Andere Arten das
Modell der Umgebung zu schätzen – wie Punktwolken – sind ebenfalls geeignet, falls sie sich
zur Lokalisierung des Roboters anwenden lassen. Bei der Erstellung des Modells muss der Ro-
boter die verbleibende Unsicherheit in der geschätzten Position und den Abstandsmessungen
beachten. Das Verfahren zur Berechnung eines Belegungsgitter nimmt die Positionen des Ro-
boters als bekannt an und modelliert lediglich das Rauschen in den Abstandsmessungen. Wenn
unser Verfahren zur Berechnung eines Umgebungsmodells in der Lage wäre auch die verblei-
bende Unsicherheit in der Position des Roboters zu beachten, könnten wir die Genauigkeit der
Kartierung steigern.

Die von uns in der vorliegenden Arbeit vorgestellten Verfahren zur Zustandsschätzung ver-
fügen über ein breites Anwendungsspektrum. So ermöglicht ein präzises Umgebungsmodell
unter anderem die Berechnung eines Pfads zwischen einer gegebenen Startposition und einem
gewünschten Ziel. Des Weiteren bieten Autos heutzutage eine Reihe von Assistenzsystemen
(z.B. Spurhalteunterstützung und Notbremssysteme) an, die sich als Teilbereiche der autono-
men Navigation einordnen lassen. Auch das komplett selbstständige Einparken unter gewissen
Vorbedingungen, wie die räumliche Nähe zur Parklücke, ist mit modernen Fahrzeugen möglich.

Hinzu kommen aktuelle Forschungsfahrzeuge, die in der Lage sind am normalen Straßenver-
kehr teilzunehmen. Diese Fahrzeuge benötigen hierfür jedoch üblicherweise GPS. Die in der
vorliegenden Arbeit vorgestellten Verfahren erlauben uns, diese strikten Annahmen abzuschwä-
chen. Durch die Realisierung von sicherem Fahren und mehr Komfort in lästigen Situationen,
wie der Suche nach einem Parkplatz in einem engen Parkhaus, ergibt sich ein Markt für die von
uns im Bereich der Robotik entwickelten Technologien.

Zusammenfassend werden wir in dieser Arbeit die folgenden Fragestellungen untersuchen:

• Wie kann der Roboter den Zustand, der seine Position und die Karte beinhaltet, effizient
und robust schätzen?

• Wie können die Parameter, die zur korrekten Interpretation der Sensordaten benötigt wer-
den, geschätzt werden?

• Wie kann bestehendes Kartenmaterial ausgenutzt werden, um die Qualität der von Robo-
tern erstellten Karten zu erhöhen?

• Wie kann ein präzises Modell der Umgebung bestimmt werden, das die Unsicherheit in
den Messdaten und in der Position des Roboters betrachtet?

• Wie können wir Roboter realisieren, die selbstständig in komplexen urbanen Umgebun-
gen navigieren können.

Die vorliegende Arbeit ist wie folgt strukturiert. Im ersten Kapitel wird zunächst das Thema
dieser Arbeit eingeführt und die wissenschaftlichen Fragestellung herausgearbeitet. Es folgt der
erste Teil dieser Arbeit bestehend aus den Kapiteln 2 bis 7, in dem wir zuerst das probabilis-
tische Modell für die selbstständige Kartierung einer Umgebung durch einen mobilen Roboter
erläutern. Dies führt uns zu einem Optimierungsproblem, für das wir eine effiziente allgemeine
Lösungsmethode vorstellen.

Aufbauend auf dieser Methode entwickeln wir in Kapitel 3 einen neuartigen Ansatz, der es
dem Roboter ermöglicht zeitlich schritthaltend und ausgehend von einem schlechten initialen
Zustand robust und effizient eine Lösung zu bestimmen. Dieses Verfahren wendet das bekannte
Prinzip „Teile und Herrsche“ an, indem es das gesamte Optimierungsproblem in kleinere Teil-
probleme zerlegt, die unabhängig voneinander gelöst werden und dann zu einer Lösung für das
ursprüngliche Problem kombiniert werden.

Nach der Vorstellung unserer Verfahren für die Erstellung eines Umgebungsmodells mit
mobilen Robotern betrachten wir in Kapitel 4 eine Metrik, mit deren Hilfe wir in der Lage
sind, unsere Ergebnisse objektiv mit dem Stand der Technik zu vergleichen. Die Evaluation auf
Grundlage einer Menge von häufig genutzten Datensätzen zeigt die hohe Genauigkeit unserer
Methode im Vergleich zum Stand der Technik.

Anschließend stellen wir in Kapitel 5 einen neuen Ansatz vor, der in der Lage ist, die Ka-
librierung von Parametern durchzuführen, während der Roboter gleichzeitig ein Umgebungs-
modell lernt. Hierbei beinhaltet die Menge der Parameter unter anderem die Parameter der
Kinematik des Roboters. Diese können sich im Laufe der Zeit ändern, werden jedoch von den
meisten Ansätzen als bekannte Konstanten angenommen. In Situationen, in denen der Roboter
Güter transportiert, ist der Durchmesser der Räder abhängig vom Gesamtgewicht der Plattform.
Mit unserem Ansatz können wir diese Veränderungen präzise und effizient berücksichtigen.

Von unserem Ansatz zur Optimierung ausgehend entwickeln wir in Kapitel 6 eine neue Me-
thode, die es erlaubt Informationen über die Struktur einer Umgebung, die durch bestehendes
Kartenmaterial gegeben ist, in die Schätzung des Roboters einfließen zu lassen. Unser Ansatz

verwendet hierzu Luftaufnahmen, anhand derer der Roboter seine Position in der Welt mit Hilfe
seiner drei-dimensionalen Sensormessungen bestimmt. Dies führt zu einer gesteigerten Genau-
igkeit der Karten.

Des Weiteren befassen wir uns in Kapitel 7 mit einem neuen Ansatz die Qualität der ge-
schätzten Umgebungsmodelle zu verbessern. In diesem Fall modellieren wir ausdrücklich die
Messfehler in den Messungen eines Laser-Abstandssensors. Unser Modell ist durch die phy-
sikalischen Prinzipien des Sensors motiviert. Zu diesem Zweck erstellen wir ein gemeinsames
Optimierungsproblem, das sowohl die Abstandsmessungen als auch die Positionen des Robo-
ters beinhaltet. Im Vergleich zum Stand der Technik kann unser Ansatz die verbleibende Unsi-
cherheit des geschätzten Modells reduzieren.

Im zweiten Teil dieser Arbeit, bestehend aus den Kapiteln 8 und 9, stellen wir zwei mögliche
Applikationen für die von uns entwickelten Ansätze vor. Zunächst diskutieren wir in Kapitel 8
einen Ansatz, der es einem autonomen Fahrzeug ermöglicht in einem mehrstöckigen Parkhaus
zu navigieren und schließlich zu parken. Dieses System hebt die Vorzüge unserer Verfahren
hervor, da es ohne die genaue Karte des Parkhauses nicht möglich wäre einen Pfad zu planen
oder eine Wegvorgabe abzufahren.

Anschließend beschreiben wir in Kapitel 9 einen Roboter, der als Assistent für Fußgänger
eingesetzt werden kann. Dieser mobile Roboter ist in der Lage sowohl in dicht bevölkerten Fuß-
gängerzonen zu navigieren als auch lange Strecken im Stadtgebiet zurückzulegen. Dabei heben
wir neben der Beschreibung des Gesamtsystems besonders unser Verfahren zur Kartierung von
großflächigen Umgebungen und unser effizientes Planungsverfahren hervor.

Zum Abschluss fassen wir in Kapitel 10 die Ergebnisse dieser Arbeit zusammen und liefern
zusätzlich einen Ausblick auf mögliche weitere wissenschaftliche Fragestellungen. Zusammen-
gefasst werden in dieser Arbeit innovative Techniken vorgeschlagen, die es einem Roboter er-
möglichen eine Zustandsschätzung durchzuführen. Insbesondere entwickeln wir Ansätze, die
es einem Roboter erlauben ein präzises Modell seiner Umgebung zu schätzen. Alle von uns in
dieser Arbeit vorgestellten Verfahren wurden sowohl mit echten Robotern als auch mit simu-
lierten Daten getestet. Neben den Verbesserungen gegenüber dem bisherigen Stand der Technik
verdeutlichen unsere Experimente mit echten Robotern, dass unsere Algorithmen in der Praxis
angewendet werden können. Wir sind der Ansicht, dass unsere Arbeit dadurch einen Beitrag
hin zu nützlichen Robotern im täglichen Arbeitsablauf und im Alltagsleben leistet.

Acknowledgements

It is my immense pleasure to thank all the people that contributed to this work.
First of all, I would like to thank my advisor Wolfram Burgard. This thesis would not have

been possible without his continuous support. He provided me encouragement, inspiration,
opportunities, and freedom to pursue own ideas. I learned a lot of things while at the same time
having plenty of fun. I would also like to thank Thomas Brox for reviewing this thesis.

My deepest thanks to my co-advisor Giorgio Grisetti, who supported me with valuable ideas
and good advice. I enjoyed the countless fruitful discussions over the years and it was a pleasure
to work with him.

I would like to thank all colleagues and co-authors for the collaborations and enlightening
discussions: Dmitri Dolgov, Christian Dornhege, Udo Frese, Giorgio Grisetti, Dirk Hähnel,
Christoph Hertzberg, Dominik Joho, Alexander Kleiner, Kurt Konolige, Henrik Kretzschmar,
Benson Limketkai, Kai Ni, Patrick Pfaff, Michael Ruhnke, Cyrill Stachniss, Bastian Steder,
Hauke Strasdat, Juan D. Tardós, Sebastian Thrun, Rudolph Triebel, Regis Vincent, and Kai M.
Wurm. Without their support many projects could not have been realized.

Many thanks to Dirk Hähnel, Dmitri Dolgov, and Sebastian Thrun for making my visit to
Stanford possible, for giving me the opportunity to work on their research car, and for their
hospitality.

Furthermore, I thank Slawomir Grzonka, Michael Ruhnke, and Bastian Steder for the pleas-
ant working atmosphere and their friendship. I would also like to thank all colleagues at the
AIS lab for the great and friendly atmosphere.

For their valuable feedback on earlier versions of this document I thank Giorgio Grisetti,
Slawomir Grzonka, Henrik Kretzschmar, Michael Ruhnke, Cyrill Stachniss, Christoph Sprunk,
and Bastian Steder.

I thank all the members of the EUROPA project for the collaboration and our joint efforts to
realize a great robotic system.

I would also like to thank Susanne Bourjaillat, Kristine Haberer, Michael Keser, Bettina
Schug, and Daniela Wack for their administrative and technical support.

I thank all people who made their software and their data sets publicly available: Mike
Bosse, Dirk Hähnel, Michael Kaess, John Leonard, Eduardo Nebot, Edwin Olson, and Cyrill
Stachniss.

My deepest gratitude goes to my family for their support and love they gave me during all
these years.

This work has partly been supported by the European Commission under contract number FP7-231888-

EUROPA and ERC-AG-PE7-267686-LifeNav as well as by the German Research Foundation (DFG)

under contract number SFB/TR-8.

Contents

1 Introduction 1

1.1 Key Contributions . 4
1.2 Open-Source Software . 5
1.3 Publications . 6
1.4 Collaborations . 8
1.5 Notation . 9

Part I Graph-Based Optimization for SLAM

2 A General Framework for Graph Optimization 13

2.1 Probabilistic Formulation of SLAM . 15
2.2 Front-End / Back-End . 20
2.3 Nonlinear Least Squares . 20

2.3.1 Least-Squares Optimization . 22
2.3.2 Alternative Parameterizations . 26
2.3.3 Structure and Properties of the Linearized System 28
2.3.4 Systems Having Special Structure . 30
2.3.5 Gaussian Conditional: p(x | z)∼N (x∗,H−1) 31

2.4 The g2o Framework . 33
2.5 Experiments . 35

2.5.1 Real-World Experiments . 35
2.5.2 Simulation Experiments . 38
2.5.3 Runtime Comparison . 40
2.5.4 Testing different Parameterizations . 43
2.5.5 Comparison of Linear Solvers . 44
2.5.6 Utilizing the Knowledge about the Structure 45

2.6 Related Work . 45
2.7 Conclusions . 47

3 Hierarchical Optimization for Graph-Based SLAM 49

3.1 Considerations about SLAM-Like Problems 51
3.2 Robust Optimization using Condensed Measurements 52

3.2.1 Constructing and Solving the Local Maps 55
3.2.2 Computing Condensed Factors . 55

3.3 Hierarchical Pose-Graph for Online Mapping 58
3.4 Experiments . 62

3.4.1 Online Mapping . 62
3.4.2 Batch Optimization . 67

3.5 Related Work . 70
3.6 Conclusions . 72

4 Evaluating the Accuracy of Graph-Based SLAM 73

4.1 Metric for Benchmarking SLAM Algorithms 74
4.1.1 The Metric . 74
4.1.2 Obtaining the Set of Reference Relations 76

4.2 Algorithms without Trajectory Estimates . 76
4.3 Experimental Evaluation . 76

4.3.1 MIT Killian Court . 78
4.3.2 Freiburg Indoor Building 079 . 78

4.4 Related Work . 79
4.5 Conclusions . 80

5 Simultaneous Parameter Calibration, Localization, and Mapping 81

5.1 Simultaneous Calibration, Localization, and Mapping 84
5.1.1 Description of the Hyper-Graph . 85
5.1.2 3D On-Board Sensors . 87
5.1.3 Estimation via Least-Squares on a Hyper Graph 88
5.1.4 Monitoring the Convergence . 88

5.2 Experiments . 89
5.2.1 Online Odometry Calibration . 90
5.2.2 Influence of the Ground Surface . 92
5.2.3 Simulation Experiments . 92
5.2.4 Real-World Experiments . 93

5.3 Related Work . 95
5.4 Conclusions . 96

6 Using Aerial Images as Prior Information for Graph-Based SLAM 97

6.1 Prior Information from Aerial Images . 99
6.1.1 Monte Carlo Localization . 100
6.1.2 Extracting Height Variations in 3D Range Scans 101
6.1.3 Features for Stereo Images . 103
6.1.4 Discussion on the Sensor Model . 103

6.2 Priors in Graph-Based Maximum Likelihood SLAM 105
6.3 Experiments . 106

6.3.1 Comparison to GPS . 106
6.3.2 Comparison of a 3D Laser and a Stereo Camera for Localization 107
6.3.3 Global Map Consistency . 108
6.3.4 Local Alignment Errors . 112

6.4 Related Work . 113
6.5 Conclusions . 114

7 Highly Accurate Maximum Likelihood Laser Mapping 115

7.1 Estimating Accurate Environment Models . 116
7.1.1 Model for the Surface Patches . 117
7.1.2 Sensor Model for Laser Range Finders 118
7.1.3 Data Association . 119
7.1.4 Objective Function and Optimization 119

7.2 Comparison with ICP and Bundle Adjustment 120
7.3 Experiments . 121

7.3.1 Map Accuracy . 122
7.3.2 Impact of the Map Accuracy on Localizing the Robot 125

7.4 Related Work . 125
7.5 Conclusions . 126

Part II Applications

8 Navigation with a Car in Complex Urban Environments 131

8.1 Mapping of the Parking Garage . 133
8.1.1 Map Representation . 133
8.1.2 Mapping with Graph-Based SLAM 134
8.1.3 Level Information . 135

8.2 Localization . 136
8.3 Path Planning . 137
8.4 Experiments . 139

8.4.1 Mapping . 141
8.4.2 Localization . 142
8.4.3 Autonomous Driving . 142

8.5 Related Work . 143
8.6 Conclusions . 144

9 A Robotic Pedestrian Assistant 147

9.1 The Robot used for the Evaluation . 149
9.2 System Overview . 150

9.2.1 Mapping . 150
9.2.2 Map Data Structure . 152
9.2.3 Localization . 152
9.2.4 Traversability Analysis . 153
9.2.5 Path Planner . 156

9.3 Experiments . 157
9.3.1 Mapping and Navigation . 157
9.3.2 Localization . 158

9.4 Discussion . 160
9.5 Related Work . 160
9.6 Conclusions . 161

• • • • • •

10 Conclusions 165

Chapter 1

Introduction

Being able to navigate is commonly regarded as one of the core prerequisites for providing truly
autonomous robots. This ability enables the robot to offer a large set of services to the potential
customer. Efficient navigation, for example, allows the robot to pick-up goods and deliver them
to a certain location, to reliably clean an area, or to offer surveillance of an environment. In
addition to that, autonomous navigation is a key component of a robot assisting humans in
potentially dangerous situations, such as search-and-rescue scenarios. Hence, navigation is one
of the major research topics in the robotics community.

To realize the envisioned applications, which are mentioned above, we need to fulfill certain
requirements, so that a robot is regarded as useful. For example, a robot which performs pick-
and-place tasks or offers guidance in city centers needs to be aware of its own position in
the environment and it needs to have an accurate model of the environment for planning an
appropriate path. A robot, which should guide a human to a certain place or has to deliver
goods, is only regarded as helping hand if the location is reliably reached within the expected
time frame.

As a robot that operates in unknown or unpredictable environments needs to localize itself
in the world and to map the environment at the same time, we have to tackle a complex state
estimation problem, which is commonly referred to as Simultaneous Localization and Mapping
(SLAM). Solutions to SLAM need to address both aspects. First, they need to estimate what the
environment looks like. This is the mapping part which deals with integrating the information
obtained by the sensors of the robot into an appropriate representation. Second, the localization
component has to estimate the position of the robot with respect to the model of the environ-
ment. Each task is straightforward to realize on its own if the counterpart is given. Solving both
tasks at the same time, however, is difficult, as the knowledge about the pose impacts mapping
and vice versa. Hence, the combination of both tasks results in a difficult state estimation prob-
lem which may involve thousands of variables, for instance, the pose of the robot at any time
and all observations acquired by the robot.

A promising representation for addressing the SLAM problem is a so-called pose-graph.
In such a graph, the poses of the robot are encoded as nodes and the noisy sensor information
is modeled as edges or soft constraints between the nodes. The solution is then obtained by
determining the configuration of the robot poses that best satisfies all soft constraints.

While exploring the environment the robot may, however, require intermediate solutions to
the SLAM problem, e.g., it needs to know what the environment looks like for planning the next
action. Hence, the solution has to be provided online and in a fast manner. Otherwise, the robot
might have to stop frequently before being able to continue executing its task. Furthermore,
the intermediate solution might help the robot to interpret the sensor information correctly. For

2 Chapter 1. Introduction

example, to recognize a previously visited location and thus solve the complex data association
problem that arises in the context of SLAM.

Additionally, the robot needs to be aware of parameters to interpret the sensor data. A
sensor measures physical quantities, such as the voltage difference, the phase shift, or the time-
of-flight. To incorporate these measurements into the state estimation process, they are typically
mapped into a more abstract space, such as transforming the phase-shift into the distance to the
object causing the reflection of the beam. The mapping, however, requires knowledge about
a set of parameters, which might be constant (e.g., the wavelength of the laser beam) or they
might change over time. For instance, estimating the odometry position of the robot by counting
the rotation of the wheels needs to be aware of the wheel diameters, which are subject to change
over time for inflated tires and are affected by the overall weight of the platform. Currently, most
state-of-the-art approaches for SLAM assume these parameters as given and ignore the fact that
the parameters might change over time. If the variation of the parameters is not appropriately
modeled, it leads to systematic errors in the state estimation that in turn may affect the quality
of the result.

While the above mentioned online calibration has the potential to increase the accuracy of
the result, we may also take into account external sources of information for improving the es-
timate. Consider, for example, the large variety of map information which is publicly available
on the Internet. The robot may exploit this information by relating its sensor measurements to
the prior map. The majority of SLAM approaches, however, estimates the model of the en-
vironment from scratch. Yet, exploiting the prior information may lead to a better estimate if
we augment the state estimation with the soft constraints derived from the prior. We have to
consider that the prior might only be partially available, though.

As we have mentioned above, a SLAM algorithm consists of a mapping and a localiza-
tion part. To realize the mapping part, the robot may, for example, consider the well-known
occupancy grid map algorithm or other appropriate representations which allow the robot to
localize itself, such as a point cloud. While computing the model the robot has to cope with the
remaining uncertainty over its position and the noise in the sensor data. The aforementioned
occupancy grid map algorithm, for example, assumes the poses as known and only models the
uncertainty in the range data. If our algorithm for estimating the model, however, also appro-
priately models these uncertainties, the robot might be able to increase the quality of the model
of the environment.

Such a model may serve as the basis for autonomous navigation, as it allows the robot
to plan an appropriate path. The majority of existing solutions for autonomous navigation,
however, enforces a certain set of prerequisites. For example, most approaches assume that the
work space of the robot is indoors. Thus, it is sufficient to employ 2D data structures. One goal
of this thesis is to realize navigation systems for mobile robots that allow the robot to operate
in an environment without enforcing conditions such as modifications to the environment. For
instance, the robot should be able to operate in urban structures without depending on artificial
beacons to facilitate localization. Furthermore, we have to deal with a potentially complex
and large-scale environment. This imposes challenges to the whole navigation system and the
underlying state estimation technique in particular.

The methods presented in this thesis address a large variety of potential applications. Con-
sider, for example, the capabilities of nowadays off-the-shelf cars. Such vehicles offer a subset
of autonomous navigation features, such as lane keeping or safety braking. Recently, cars are
also able to park autonomously if the human drives the car spatially close to the parking spot
before starting the autonomous maneuver. Additionally, research cars implement long term
navigation on the street, but they typically rely on GPS and a known network of streets. Relax-

3

ing these strict assumptions has the potential to immensely expand the market of mobile robots
by offering safe driving and more comfort in tedious tasks, such as parking the car in a narrow
parking garage, where GPS is not available.

In summary, we have identified the following key problems for estimating the state while
learning a model of an environment or while utilizing such a model for navigation:

• How to efficiently and robustly estimate the state including the position of the robot and
the map?

• How to estimate the underlying parameters which are required to correctly interpret the
sensor information?

• How to incorporate prior information about the structure of the environment to improve
the quality of the map?

• How to estimate an accurate model of the environment that deals with the noise in the
sensor information and the uncertainty in the positions of the robot?

• How to build real-world systems which are able to navigate autonomously through com-
plex environments?

While addressing the key problems raised above we always have to cope with the fact that
all information perceived by the robot through its sensors is imperfect. In other words, the
sensor information is affected by noise. Thus, our approaches have to model this adequately.
We account for the noise in the real-world by implementing sound probabilistic approaches
which explicitly model those noisy measurements under some reasonable assumptions.

Throughout this thesis, we provide innovative probabilistic approaches that enable a mobile
robot

• to determine the maximum likelihood estimate by phrasing and solving a large least
squares problem,

• to estimate the calibration parameters online without interfering with the mission of the
robot,

• to integrate prior information about the geometry of the environment derived from pub-
licly available sources,

• to jointly optimize the poses of the robot as well as the sensor measurements to appropri-
ately deal with the uncertainty in the data, and

• to navigate through urban environments without prerequisites.

This thesis is organized in two parts. In Part I “Graph-Based Optimization for SLAM”,
which includes Chapter 2 to 7, we present our innovative approaches for addressing the SLAM
problem, a comparison with other state-of-the-art approaches for SLAM, and our novel exten-
sions to graph-based SLAM. In detail, in Chapter 2, we explain the probabilistic formulation
that allows us to model the SLAM problem. Subsequently, we show that this leads us to a least
squares estimation problem, which can efficiently be solved by numerical approaches that ex-
ploit the typical properties of SLAM. This technique is commonly known as graph-based SLAM
since it employs a graph structure. Whereas our approach efficiently addresses the SLAM prob-
lem, it is by no means restricted to SLAM. In fact, it is also applicable to other related problems,
such as calibration, Structure from Motion, or model fitting.

4 Chapter 1. Introduction

In Chapter 3, we present a novel approach which applies the divide-and-conquer principle to
solve the least squares problem arising in SLAM. The advantages of our approach over the stan-
dard methods are twofold. In addition to improving the convergence properties, it also yields
an efficient algorithm for approximating the intermediate solution during online mapping, i.e.,
in situations where the robot is still collecting data and the currently best estimate is required,
for instance, to plan the next action.

In Chapter 4, we propose a metric which enables us to compare the results of our graph-
based SLAM technique with other state-of-the-art approaches. We show that graph-based
SLAM yields results which are typically superior to other approaches to SLAM.

Subsequently, in Chapter 5, we discuss a novel approach that allows the robot to simul-
taneously estimate the underlying parameters of the platform while performing SLAM. Such
parameters might include the kinematic parameters of the robot which are subject to change
during the life-time of the robot. Existing approaches to SLAM typically assume these param-
eters as given and static, whereas our approach includes them into the state estimation process.
For instance, in situations where the robot has to carry a load, the diameter of the wheels is af-
fected by the total weight of the platform. Our approach enables us to accurately and efficiently
account for those changes while the robot carries out its mission.

Afterwards, in Chapter 6, we introduce an innovative approach for integrating prior infor-
mation about the structure of the environment into the graph-based SLAM formulation. Our
approach derives this information by considering aerial images, which are publicly available
from various sources. We access the prior information by localizing the robot in the aerial
image by matching its 3D sensor measurements to the aerial image. This allows the robot to
improve the accuracy of the maps.

In Chapter 7, we describe a novel approach which further improves the quality of the maps
obtained by a SLAM algorithm. Particularly, we explicitly model the noise in the range mea-
surements by taking into account the physical principles of the sensors. To this end, we model
the range data as samples whose positions are refined in a joint optimization problem, which
also includes the poses of the robot, for estimating the maximum likelihood state. Compared to
standard techniques, our approach is able to reduce the remaining uncertainty in the estimated
model of the environment.

In Part II “Applications”, which includes Chapter 8 and 9, we present two real-world robotic
systems, which apply the techniques developed in this thesis to challenging scenarios. In Chap-
ter 8, we develop an approach that enables a car to park autonomously in a complex multi-level
parking garage starting from outside the parking garage. This system demonstrates the benefits
of the approaches presented in this thesis as without the map, which has been estimated by our
SLAM technique, the car would be unable to plan a path or to follow a given track.

In Chapter 9, we describe a system for a robotic pedestrian assistant which is able to navigate
in crowded pedestrian zones as well as traveling long distances through urban environments.
In particular, we present our techniques for mapping such a large-scale environment and our
approach for efficient planning. Additionally, we give an overview over the complete navigation
system. Finally, we summarize our results in Chapter 10 and we furthermore discuss possible
future work.

1.1 Key Contributions

The key contributions of this thesis are novel approaches for estimating an accurate model of an
environment and also for state estimation in general. Furthermore, we show real-world systems
which build upon the techniques developed in this thesis.

1.2. Open-Source Software 5

To summarize, we propose:

• an approach for addressing the optimization of factor graphs in a general manner with a
particular emphasis on SLAM (Chapter 2),

• an approach for optimizing a factor graph online based on a hierarchy for efficient and
robust estimation (Chapter 3),

• a metric for evaluating the accuracy of different SLAM algorithms (Chapter 4),

• a technique for estimating the calibration parameters of the robot online while mapping
the environment (Chapter 5),

• an approach for integrating prior information into graph-based SLAM (Chapter 6),

• a method for estimating highly accurate maps (Chapter 7), and

• navigation systems for a car and for a robotic pedestrian assistant, which demonstrate the
real-world applicability of the methods developed in this thesis (Chapters 8 and 9).

1.2 Open-Source Software

Some of the algorithms presented in this thesis have been released as open-source. This allows
other researchers to build their own approaches on top of ours, to compare their approaches
against ours on several data sets, to verify our results, and to adapt our software to their specific
needs. In detail, we released the following software:

• g2o (http://openslam.org/g2o) implements a general graph optimization framework which
allows us to optimize graph-embeddable functions, such as the solution to a graph-based
SLAM instance. It has been published under the BSD-license to facilitate the usage in
commercial applications and other open-source software. g2o was developed in collabo-
ration with Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and Wolfram Burgard. See
Chapter 2 for a description of the approach.

• HOG-Man (http://openslam.org/hog-man) is an approach for graph-based SLAM. It pro-
vides a highly efficient error minimization procedure which considers that the underlying
space is a manifold and not a Euclidean space. It furthermore generates a hierarchy of
pose-graphs which is used perform the operations during online mapping in a highly
efficient way. The approach works in 2D and 3D. HOG-Man was developed in collabo-
ration with Giorgio Grisetti and Cyrill Stachniss. See Chapter 3 for a description of the
approach.

• The SLAM Evaluation toolbox (http://ais.informatik.uni-freiburg.de/slamevaluation) al-
lows us to compare the accuracy of SLAM algorithms given a set of manually verified
relations. We also offer the relations for data sets that are frequently considered in the re-
search community. The whole framework is a joint effort with Bastian Steder, Christian
Dornhege, Michael Ruhnke, Giorgio Grisetti, Cyrill Stachniss, Alexander Kleiner, and
Wolfram Burgard. See Chapter 4 for a description of the approach.

6 Chapter 1. Introduction

• The framework to simultaneously estimate the parameters of the kinematics of the robot
and the position of the on-board sensor is released as extension to the g2o framework. The
approach was developed in collaboration with Giorgio Grisetti andWolfram Burgard. See
Chapter 5 for a description of the approach.

• SSA2D (http://openslam.org/ssa2d) is an extension of 2D graph-based SLAM. It further
optimizes the maps obtained with graph-based SLAM by iteratively refining the poses
and the range measurements in a joint optimization problem. In contrast to standard
approaches, the range scans are not treated as rigid. This allows us to obtain highly
accurate maps of an environment. SSA2D solves the underlying optimization problem
with g2o. SSA2D is a joint effort with Michael Ruhnke, Giorgio Grisetti, and Wolfram
Burgard. See Chapter 7 for a description of the approach.

• SPA2D (http://www.ros.org/browse/details.php?name=vslam) is an efficient implementa-
tion for optimizing pose-graphs while mapping the environment. It applies a variant of
the Levenberg-Marquardt algorithm. SPA2D was developed in collaboration with Kurt
Konolige, Giorgio Grisetti, Wolfram Burgard, Benson Limketkai and Regis Vincent. We
refer to our joint publication [110] for the details.

1.3 Publications

Parts of this thesis have been published in international journals and conference proceedings.
The following list gives an overview about the individual publications in chronological order.

Journal Articles

• R. Kümmerle, G. Grisetti, and W. Burgard. Simultaneous parameter calibration, localiza-
tion, and mapping. Advanced Robotics, 26(17):2021–2041, 2012.

• R. Kümmerle, B. Steder, C. Dornhege, A. Kleiner, G. Grisetti, and W. Burgard. Large
scale graph-based SLAM using aerial images as prior information. Autonomous Robots,
30(1):25–39, 2011.

• G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard. A tutorial on graph-based
SLAM. Intelligent Transportation Systems Magazine, 2(4):31–43, 2010.

• R. Kümmerle, B. Steder, C. Dornhege, M. Ruhnke, G. Grisetti, C. Stachniss, and A. Klei-
ner. On measuring the accuracy of SLAM algorithms. Autonomous Robots, 27(4):387–
407, 2009.

Conference Proceedings and Workshops

• R. Kümmerle, M. Ruhnke, B. Steder, C. Stachniss, and W. Burgard. A navigation system
for robots operating in crowded urban environments. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), 2013. Accepted for Publication.

• G. Grisetti, R. Kümmerle, and K. Ni. Robust optimization of factor graphs by using
condensed measurements. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems (IROS), 2012.

1.3. Publications 7

• M. Ruhnke, R. Kümmerle, G. Grisetti, and W. Burgard. Highly accurate 3D surface
models by sparse surface adjustment. In Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), 2012.

• R. Kümmerle, G. Grisetti, and W. Burgard. Simultaneous calibration, localization, and
mapping. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
2011.

• R. Kümmerle, G. Grisetti, C. Stachniss, andW. Burgard. Simultaneous parameter calibra-
tion, localization, and mapping for robust service robotics. In Proc. of the IEEEWorkshop

on Advanced Robotics and its Social Impacts (ARSO), 2011.

• M. Ruhnke, R. Kümmerle, G. Grisetti, and W. Burgard. Range sensor based model con-
struction by sparse surface adjustment. In Proc. of the IEEE Workshop on Advanced

Robotics and its Social Impacts (ARSO), 2011.

• R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. g2o: A general
framework for graph optimization. In Proc. of the IEEE Int. Conf. on Robotics & Au-

tomation (ICRA), 2011.

• M. Ruhnke, R. Kümmerle, G. Grisetti, and W. Burgard. Highly accurate maximum like-
lihood laser mapping by jointly optimizing laser points and robot poses. In Proc. of the

IEEE Int. Conf. on Robotics & Automation (ICRA), 2011.

• G. Grisetti, R. Kümmerle, C. Stachniss, U. Frese, and C. Hertzberg. Hierarchical opti-
mization on manifolds for online 2D and 3D mapping. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), 2010.

• W. Burgard, C. Stachniss, G. Grisetti, B. Steder, R. Kümmerle, C. Dornhege, M. Ruhnke,
A. Kleiner, and J. D. Tardós. A comparison of SLAM algorithms based on a graph of
relations. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
2009.

• R. Kümmerle, B. Steder, C. Dornhege, A. Kleiner, G. Grisetti, and W. Burgard. Large
scale graph-based SLAM using aerial images as prior information. In Proc. of Robotics:

Science and Systems (RSS), 2009.

• R. Kümmerle, D. Hähnel, D. Dolgov, S. Thrun, and W. Burgard. Autonomous driving in
a multi-level parking structure. In Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), 2009.

This thesis does not report on the following publications, which were written during the

time as a research assistant

• K. M. Wurm, H. Kretzschmar, R. Kümmerle, C. Stachniss, and W. Burgard. Identifying
vegetation from laser data in structured outdoor environments. Robotics and Autonomous
Systems, 2012. In Press.

• K. Konolige, G. Grisetti, R. Kümmerle, W. Burgard, B. Limketkai, and R. Vincent. Ef-
ficient sparse pose adjustment for 2D mapping. In Proc. of the IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS), 2010.

8 Chapter 1. Introduction

• K. M. Wurm, R. Kümmerle, C. Stachniss, and W. Burgard. Improving robot navigation
in structured outdoor environments by identifying vegetation from laser data. In Proc. of

the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2009.

• R. Kümmerle, R. Triebel, P. Pfaff, and W. Burgard. Monte Carlo localization in outdoor
terrains using multilevel surface maps. Journal of Field Robotics, 25:346–359, 2008.

• P. Pfaff, R. Kümmerle, D. Joho, C. Stachniss, R. Triebel, and W. Burgard. Navigation in
combined outdoor and indoor environments using multi-level surface maps. InWorkshop
on Safe Navigation in Open and Dynamic Environments, 2007.

• R. Kümmerle, P. Pfaff, R. Triebel, and W. Burgard. Active Monte Carlo localization
in outdoor terrains using multi-level surface maps. In Fachgespräche Autonome Mobile

Systeme (AMS), 2007.

• R. Kümmerle, R. Triebel, P. Pfaff, and W. Burgard. Monte Carlo localization in outdoor
terrains using multi-level surface maps. In Proc. of the International Conference on Field
and Service Robotics (FSR), 2007.

1.4 Collaborations

Parts of this thesis are the outcome of collaborations with others. Particularly, the hierarchy of
pose-graphs (HOG-Man) presented in Chapter 3 was jointly developed with Giorgio Grisetti,
Cyrill Stachniss, Christoph Hertzberg, and Udo Frese. Subsequently, the approach has been
extended to arbitrary graphs in collaboration with Giorgio Grisetti and Kai Ni. The metric for
evaluating SLAM discussed in Chapter 4 is the result of fruitful discussions with all the authors
of [26, 123]. The approach for including prior information (Chapter 6) was jointly investigated
with Bastian Steder, whose main contribution is the pre-processing of the sensor measurements
discussed in Sections 6.1.2 and 6.1.3. In Chapter 7, we present our approach for obtaining
highly accurate laser-based maps which is joint work with Michael Ruhnke, whereas the author
of this thesis was mainly involved in constructing the dedicated optimization approach. The
approach presented in Chapter 8 builds on top of the software of the Stanford Racing Team.
In particular, the author collaborated with Dirk Hähnel, Dmitri Dolgov, and Sebastian Thrun,
who provided their software and expertise about autonomous navigation with a car. The main
contribution of the author of this thesis are the approaches to 3D SLAM and 3D localization as
well as the global planner operating on the map. The navigation system for a robotic pedestrian
assistant which is described in Chapter 9 is the result of a joint effort with Michael Ruhnke,
Bastian Steder, and Cyrill Stachniss, whereas the main contributions of the author of this thesis
are in the mapping algorithm and the planning components.

1.5. Notation 9

1.5 Notation

The following table summarizes the symbols used throughout this work.

Symbol Meaning

a,b,x, . . . scalar value
x,y, . . . vector; if not stated otherwise, a column vector
A,H, . . . matrix
x⊤,A⊤ transpose of a vector or a matrix
‖x‖ norm (length) of a vector
|A| determinant of a matrix
diag(x) matrix with x on the main diagonal
(. . .) vector with the given scalar values
{. . .} ,C ,S , . . . set
|S | number of elements in the set
〈. . .〉 tuple, an ordered set
p(a) probability distribution of a random variable a
p(a | b) conditional probability of a given b
N (µ,Σ) Gaussian distribution with mean µ and covariance Σ

Part I

Graph-Based Optimization for SLAM

Chapter 2

A General Framework for Graph

Optimization

Building a map of an environment is a key task of autonomous robots.
As we will see, simultaneous localization and mapping (SLAM) can be
phrased as least squares optimization, which can be represented by a
graph. In this chapter, we describe both the probabilistic formulation
for SLAM and the general structure of such problems. Furthermore,
we present g2o, our open-source framework for optimizing graph-based
nonlinear error functions. Our system has been designed to be easily
extensible to a wide range of problems and a new problem typically can
be specified with minimal effort. Currently, we provide solutions to the
optimization problems arising in several variants of SLAM and Struc-
ture fromMotion (SfM).We performed an evaluation on a wide range of
real-world and simulated data sets. The results demonstrate that while
being general g2o offers a performance comparable to implementations
of state-of-the-art approaches for the specific problems.

• • • • • • • • • • •

As we have discussed in the first chapter of this thesis, the ability to acquire accurate models
of the environment is commonly regarded as one of the fundamental preconditions for truly
autonomous robots. Within the robotics community the problem of estimating a model of the
environment with a mobile robot is known as simultaneous localization and mapping (SLAM).
In the context of mobile robots, these models typically are maps of the environment that support
different tasks including localization and path planning.

Within this chapter we explain the probabilistic formulation of the SLAM problem, which
then leads us to nonlinear least squares optimization whose solution addresses SLAM. Such a
least squares optimization furthermore allows us to address a wide range of problems in robotics
as well as in computer-vision, as they involve the minimization of a nonlinear error function that
can be represented as a graph. Typical instances are as already mentioned SLAM [43, 78, 110,
143, 164, 201] or Structure from Motion (SfM) [107, 140, 210], as well as calibration [190].
The overall goal in all these is to find the configuration of parameters or state variables that
yield the best explanation for the set of measurements affected by Gaussian noise.

In the graph representation each node indicates a state variable to optimize, each edge con-
nects to nodes and models an observation between a subset of the nodes. For instance, in graph-
based SLAM each state variable can be either the position of the robot in the environment or the

14 Chapter 2. A General Framework for Graph Optimization

(a) SLAM (Parking Garage)

(b) Bundle Adjustment (Venice)

Figure 2.1: Real-world data sets processed with our system. The images in (a) depict a 3D pose graph
of a multi-level parking garage. Whereas the image on the left shows the initial states, the image on
the right depicts the result of the optimization process. (b) Full and zoomed view of the Venice Bundle
Adjustment data set after being optimized by our system. The data set consists of 871 camera poses and
2,838,740 projections.

location of the landmarks in the map that can be observed with the robot’s sensors. One goal
of this chapter is to provide the basic algorithms for addressing nonlinear least squares. For
example, we will explain well-known methods like Gauss-Newton and Levenberg-Marquardt
with an additional emphasis on how to apply them in a SLAM setting. Particularly, we ex-
ploit our knowledge about the characteristic properties of SLAM, which results in an efficient
implementation of the aforementioned methods.

In this chapter, we present a general framework for performing the optimization of non-
linear least squares problems that can be represented as a graph. We call this framework g2o
(short for “General Graph Optimization”). Figure 2.1 shows two examples out of the large va-
riety of problems that can be solved by using g2o as an optimization back-end. The proposed
system achieves a performance that is comparable or even better than the performance of imple-
mentations of state-of-the-art methods, while being able to accept general forms of nonlinear
measurements.

2.1. Probabilistic Formulation of SLAM 15

We achieve efficiency by utilizing algorithms that

• exploit the sparse connectivity of the graph,

• take advantage of the special structures of the graph that often occur in the problems
mentioned above,

• use advanced methods from numerics to solve sparse linear systems,

• and utilize the features of modern processors like SIMD instructions and optimize the
cache usage.

Despite its efficiency, g2o is highly general and extensible: a 2D optimization back-end algo-
rithm can be implemented in less than 30 lines of code. The user only has to specify the error
function and its parameters.

The remainder of this chapter is organized as follows. We first derive the probabilistic for-
mulation of SLAM in Section 2.1 which leads us to a nonlinear least squares optimization prob-
lem. In Section 2.2 we illustrate a typical setup of a complete SLAM system, which allows us to
construct the least squares problem, whereas we elaborate least squares in Section 2.3. Subse-
quently, in Section 2.4 we discuss the features provided by our approach — the g2o framework.
After presenting an extensive experimental evaluation of g2o in Section 2.5, we discuss the
related work with a particular emphasis on solutions to the optimization problems arising in
SLAM and Structure from Motion in Section 2.6.

2.1 Probabilistic Formulation of SLAM

In the following, we will characterize SLAM by its probabilistic formulation [205]. To this end,
we will first introduce some notation which we will us throughout this thesis.

The pose of the robot is described by xt , whereas the index t denotes the position at time
step t. For a robot operating on a two-dimensional plane, the pose consists of x = (x,y,θ)⊤

describing the current location and orientation of the robot relative to a given global reference
frame. Dropping the flat ground assumption leads to a six-dimensional vector. Here, the pose
x teams the location, which is a three-dimensional vector, with the attitude in space that also
requires three parameters. A possible choice for representing the rotation are the Euler angles
(φ ,ϑ ,ψ)⊤, such that in 3D SLAM the pose is given by (x,y,z,φ ,ϑ ,ψ)⊤. The whole trajectory
taken by a robot up to time-step T is given by

x0:T = {x0,x1, . . . ,xT} , (2.1)

which describes the path taken by the robot as a sequence of poses. Here, T denotes the end of
the sequence, it might span over the whole life-time of the robot, though.

While the robot drives along such a path its odometers allow the robot to measure the mo-
tion. We will denote such a measurement by ut , which stands for the movement between t−1
and t. Again, a sequence of odometry measurements is given by

u1:T = {u1, . . . ,uT} . (2.2)

If the odometer would be perfect, chaining up the odometry measurements would lead to the
true path taken by the robot. The measurements provided by odometry, however, are — as all
measurements — affected by errors (such as a wheel slipping on the ground) and thus we only

16 Chapter 2. A General Framework for Graph Optimization

Robot

Landmark

Odometry

Observation

x1
x2

x3

l2

l1

l3

x1x0 x2 x3

u1 u2 u3

s2
1s1

1 s1
2 s1

3 s2
3

ml1 l2 l3

(a) (b)

Figure 2.2: A small example of a SLAM instance and its corresponding Bayesian network. (a) The
robot, indicated by a blue triangle, drives around in the environment and detects landmarks which are
depicted as yellow stars by its sensors. (b) The Bayesian network of a SLAM problem.

obtain noisy measurements. We assume that the noise of all our measurements is white, i.e.,
it can be described by a Gaussian or normal distribution with zero mean. This assumption is
commonly made in the robotics community [205].

Formally, an n-dimensional random variable x is normally distributed with mean µ and
covariance Σ if the density p(x) has the following form

p(x)∼N (µ,Σ) =
1

(2π)
n
2 |Σ| 12

exp

(
−1

2
(x−µ)⊤Σ−1(x−µ)

)
, (2.3)

where |Σ| corresponds to the determinant of Σ. In general, however, the noise is not white. We
can account for such systematic noise by performing an accurate calibration, as we will see in
Chapter 5.

In addition to the odometer, the robot is typically equipped with a sensor which provides the
robot with measurements about the environment. Let us denote the map of the environment by
m and we call the sensor measurements st . Throughout this work, we assume the environment
to be static. As above, the sequence of measurements obtained by the robot is denoted by

s1:T = {s1, . . . ,sT} . (2.4)

Such a measurement might, for example, be the observation of a certain feature or a landmark
that is present in the environment.

Given this notation, we are able to describe the SLAM problem as the process which esti-
mates the posterior

p(x0:T ,m | s1:T ,u1:T) . (2.5)

Applying Bayes’ rule allows us to factor the posterior at time step t:

p(x0:t ,m | s1:t ,u1:t) = η p(st | x0:t ,m,s1:t−1,u1:t)p(x0:t ,m | s1:t−1,u1:t), (2.6)

where η is a normalizer accounting for the omitted denominator on the right hand side. Note
that we reuse η in different equations throughout this section where η each times takes different
values to fulfill the equation sign. In addition to the Gaussian assumption, we assume that the

2.1. Probabilistic Formulation of SLAM 17

l j
xi

sij

fi(xi,m)

Γ

(a) error of a landmark

xt−1

xt

ut

g(xt−1,ut)

Λ

(b) error of a pose constraint

Figure 2.3: Illustration of the sensor and the odometry model. (a) A robot observes a landmark. By
using the sensor model fi(·), we can compute an expected measurement and analyze the difference
between the measurement and the expected measurement. (b) Likewise, in case of a pose-pose constraint,
the measurement function is employed to compute the difference between the current and the expected
location of the observed pose.

state xt encodes all relevant information up to time t. This is known as the Markov assumption
and it enables us to simplify the first factor in Eq. 2.6 as

p(st | x0:t ,m,s1:t−1,u1:t)
Markov
= p(st | xt ,m). (2.7)

Furthermore, we can decompose the second term in Eq. 2.6 by splitting x0:t into x0:t−1 and xt .
This yields

p(x0:t .m | s1:t−1,u1:t) = p(xt | x0:t−1,m,s1:t−1,u1:t)p(x0:t−1,m | s1:t−1,u1:t) (2.8)
Markov
= p(xt | xt−1,ut)p(x0:t−1,m | s1:t−1,u1:t−1). (2.9)

By inserting Eq. 2.7 and Eq. 2.9 into the original form of the posterior given in Eq. 2.6, we
obtain

p(x0:t ,m | s1:t ,u1:t) = η p(st | xt ,m)p(xt | xt−1,ut)p(x0:t−1,m | s1:t−1,u1:t−1), (2.10)

which is a recursive definition, whereas the first pose is specified by the prior p(x0). Such a
prior might be the position of the robot in a global reference frame. We, however, are able to
express the posterior in closed form as

p(x0:t ,m | s1:t ,u1:t) = η p(x0)∏
t

p(st | xt ,m)p(xt | xt−1,ut). (2.11)

Figure 2.2a gives an example of a SLAM problem. The robot drives through an environ-
ment and perceives landmarks by its sensor. In this example, the map m = (l1, l2, l3) consists
of three landmarks detectable by the sensor of the robot. Furthermore, odometry measurements
provide information about the motion of the vehicle from one time step to the subsequent one.
In Figure 2.2b we visualize the Bayes network corresponding to the situation depicted in Fig-
ure 2.2a. For indicating the individual sensor measurements and their relation to the map, we
applied upper indices to the sensor measurement s. For example, at time t = 1 the robot senses
s1 =

(
s11,s

2
1

)
corresponding to two different landmarks in the environment.

By looking at Eq. 2.11 and the resulting Bayes network shown in Figure 2.2b, we identify
two probability functions which we have to specify, namely the sensor model p(st | xt ,m) and
the motion model p(xt | xt−1,ut). Following the Gaussian assumption as stated above, we
assume that the measurement error is normally distributed according to N (ft(xt ,m),Γ), where
ft(·) is the measurement function or sensor model generating an expected measurement at a

18 Chapter 2. A General Framework for Graph Optimization

certain position and Γ is the covariance of the measurement error. Intuitively, ft(·) computes
the displacement of the landmarks as they would have been observed from a given location of
the robot. Note that we assume the feature correspondence in each time-step is known in the
sensor model ft(·), which we denote by the subscript t. Likewise, N (g(xt−1,ut),Λ) models
the motion of the robot, where g(·) is a deterministic function computing how the robot moves
if it executes the command ut , and Λ is the covariance of the motion error. Figure 2.3 shows an
illustration of the involved quantities. Hence, we obtain

p(st | xt) = η exp

(
−1

2
(ft(xt ,m)− st)

⊤Γ−1 (ft(xt ,m)− st)

)
(2.12)

p(xt | xt−1,ut) = η exp

(
−1

2
(g(xt−1,ut)−xt)

⊤Λ−1t (g(xt−1,ut)−xt)

)
. (2.13)

Putting Eq. 2.12 and Eq. 2.13 into Eq. 2.11 and taking the negative logarithm, we get

− log p(x0:t | s1:t ,u1:t) = c+
1

2

[
x⊤0 Ω0x0+∑

t

(ft(xt ,m)− st)
⊤Γ−1t (ft(xt ,m)− st)

+ (g(xt−1,ut)−xt)
⊤Λ−1t (g(xt−1,ut)−xt)

]
, (2.14)

where c is a constant reflecting the various normalizers used in the equations above and x⊤0 Ω0x0
represents the log-likelihood of p(x0). Here, we anchor the first pose at 0. Different anchor lo-
cations, such as a known offset to a reference frame, can be achieved by computing a difference
between x0 and the desired location instead.

We can obtain the optimal estimate x+ by the maximum a posteriori (MAP) estimate

x+ = argmax
x

p(x0:t | s1:t ,u1:t) (2.15)

= argmin
x
− log p(x0:t | s1:t ,u1:t). (2.16)

To simplify the notation, let us collect the odometry u and the sensor measurements s into a
single variable denoted by z. Furthermore, let us introduce a function e(x,z) which either calls
the above defined functions g(·) and ft(·) to evaluate the difference as given in Eq. 2.14, or
calculates the prior p(x0), depending on the passed arguments. Likewise, Ωk either reflects
Γ−1t , Λ−1t , or Ω0. If we then as a last step combine all pairs of indices for which a measurement
is available into the set G , we are able to rewrite Eq. 2.16 as

x+ = argmin
x

∑
k∈G

e(xk,zk)
⊤Ωke(xk,zk). (2.17)

The equation above is known as a least squares estimation problem. We will show in the next
section how we can efficiently solve such problems and how to obtain a solution for SLAM
while taking advantage of the characteristics of SLAM.

In the context of least squares, the measurements z are also denoted as constraints or factors
and a factor graph is a commonly used representation for it. Such a graph describes the relations
between the state variables. In detail, a factor graph is a bipartite graph having two kinds of
nodes. A node either represents a variable xi or it corresponds to one factor Fk, where

Fk = e(xk,zk)
⊤Ωke(xk,zk) (2.18)

2.1. Probabilistic Formulation of SLAM 19

x1 x2 x3 xt

l1 l2 l3

Figure 2.4: A factor graph representation of a SLAM problem. The odometry of the robot constraints
the motion of the robot between subsequent time steps and the robot additionally observes landmarks in
the environment.

x1 x2 x3 xt

Figure 2.5: The pose-graph representation of the SLAM problem depicted in Figure 2.4. We can obtain
such a representation, for example, by directly matching the raw sensor observation.

connects a subset of variables xk which are related to each other by the observation zk. Figure 2.4
depicts an example for a factor graph. Here, the constraints either affect subsequent poses of
the robot by the odometry measurement or relate the robot and a landmark by sensor measure-
ments. In contrast to this, we can obtain a slightly different graph by directly relating the sensor
observation to each other, for example, by determining the best transformation between the two
observations. For range scans this is commonly referred to as scan-matching [19, 30, 188] and
the estimated transformation is a so-called virtual measurement. This leads to a factor graph
which only contains poses of the robot, see Figure 2.5. We refer to such a graph as pose-graph.
Note that such a pose-graph could also be obtained by marginalizing out the landmarks.

So far, we have addressed the so-called full SLAM problem, as given in Eq. 2.11, which
estimates the whole trajectory of the robot. In contrast to this, the online SLAM formulation
only considers the most recent location of the robot

p(xt ,m | s1:t ,u1:t) . (2.19)

The typical solution to this problem is obtained by applying filtering techniques for recursively
estimating the density. Strasdat et al. [200], however, show that even for short time frames
filtering yields suboptimal results given nowadays computing power in terms of accuracy when
compared to solving the full SLAM problem by a least squares optimization. In short time
frames the linearization errors of filtering approaches are typically not the key restricting factor
and we expect to obtain the best filtering performance. These errors, however, may become
more evident for larger time intervals. Thus, we will focus only on the full SLAM problem
instead, which allows us to re-linearize when needed, for determining a solution spanning over
large time intervals.

20 Chapter 2. A General Framework for Graph Optimization

front-end
(graph construction)

back-end
(optimization)

sensor data
poses

constraints

optimized configuration (updated poses)

Figure 2.6: A typical setup for SLAM. A front-end processes the sensor data and passes the generated
constraints along with the current robot poses to the optimization back-end. The back-end returns the
updated robot poses to the front-end.

2.2 Front-End / Back-End

As we have seen, given the measurements and the data association, we are able to provide a
maximum likelihood estimate by constructing a least squares problem. In this section, we will
describe the essential components of such a SLAM system. Figure 2.6 depicts a typical setup.

For completeness, we briefly describe an algorithm for obtaining the constraints required
for representing the SLAM problem by a factor graph. A full system addressing SLAM in such
a way can be decoupled into two parts interacting with each other. The back-end calculates
the maximum a-posteriori estimate given a set of constraints and an initial configuration —
the poses of the robot — as input. In turn, the constraints are generated by the front-end.
Particularly, the front-end has to solve the data association problem by identifying landmarks
given the observations. To this end, the front-end needs to recognize places if the robots revisits
them. This is known as loop-closing in the literature. The front-end here benefits from the poses
updated by the back-end, as we can typically restrict the search area for possible loop closures
to an area proportional to the uncertainty ellipsoid of the current robot location. Hence, the
back-end needs to be efficient due to the demand for a continuously updated estimate of the
model of the environment. Note that the decisions taken in the front-end are by no means final,
e.g., the front-end may revoke a certain data association or introduce new correspondences at
any time.

In our setup, the front-end generating the constraints, which serve as input for our back-
end, is an own implementation of the approach proposed by Olson [163]. For example, when
operating on 2D range data, it applies a correlative scan-matcher to estimate the motion of the
robot between successive time steps along with a covariance representing the uncertainty of
the estimated transformation. Furthermore, it obtains loop closures by matching the current
scan against all scans which are within the ellipsoid covering 95% of the Gaussian representing
the uncertainty about the current pose of the robot. An approach based on spectral clustering
filters false-positives. We can also apply the same principle to vision data whenever a robot is
equipped with a camera. Running such a front-end along with an efficient back-end, we are able
to build accurate maps of an environment as we will illustrate in the experiments in Section 2.5.

2.3 Nonlinear Least Squares

As outlined in Section 2.1, we can provide a solution to SLAM for a given data association by
solving a least squares estimation problem, see the derivation leading to Eq. 2.17. Additionally,
many other problems in robotics or in computer vision, for example, calibration or Structure
from Motion, can be modeled by a least squares problem. Thus, we are in general interested in

2.3. Nonlinear Least Squares 21

finding the minimum of a function F : Rn→ R of the form

F(x) = ∑
k∈G

e(xk,zk)
⊤Ωke(xk,zk)︸ ︷︷ ︸
Fk

. (2.20)

Within Eq. 2.20 we find the following entities:

• x = (x1, . . . ,xT) is the state vector where each xi represents one generic state variable.
Typically, we are able to divide our state vector into smaller entities which naturally
belong together. For instance, in 2D SLAM these variables can model positions of the
robot or the location of point features, which either integrate three or two scalar values
into one compound.

• zk is a measurement that depends on the state variables in xk. Given a configuration of
xk, an expected value ẑk = hk(xk) for the measurement can be computed by a sensor
model hk(xk). We assume that the error in the measurement is Gaussian. Hence, the
uncertainty of the measurement zk is modeled by its information matrix Ωz

k which is the

inverse of the covariance of the Gaussian distribution: Σz
k =

(
Ωz

k

)−1
.

• ek(xk,zk) is an error function that computes the difference between the expected mea-
surement ẑk and a real measurement zk. This error is 0 when the prediction obtained by
mapping the state xk to the measurements is equal to the real measurement: zk = hk(xk).
A straightforward error function is the vector difference between the prediction and the
measurement: e(xk,zk) = hk(xk)− zk, but as we will see later other choices are possible.

• Ωk is the information matrix. Again, we assume a Gaussian distribution for the error
and the covariance is Σk = Ω−1k that models the uncertainty of the error. The uncertainty
of the error depends on the measurement function and on the measurement uncertainty
represented by Ωz

k. For example, if our error function is the vector difference between
prediction and measurement, then Ωk = Ωz

k.

• Fk is a factor that models a measurement depending on a subset xk = (xk1 , . . . ,xkq) ⊂
(x1, . . . ,xT) of the state variables.

For simplicity of notation, in the rest of this chapter we will encode the measurement in the
indices of the error function as

e(xk,zk)
def.
= ek(x)

def.
= ek. (2.21)

The overall goal of least squares minimization is to determine the state vector x+ that best fits
our set of observations, i.e., we seek for the solution of

x+ = argmin
x

F(x). (2.22)

Obtaining the solution x+ for Eq. 2.22 is in general hard. Hence, we restrict ourselves to
determine a local minimizer x∗ which satisfies the condition

∀x : ‖x∗−x‖< ε ⇒ F(x∗)≤ F(x). (2.23)

Useful for this endeavor is the gradient of F

∂F(x)

∂x
= 2 ∑

k∈G

J⊤k Ωkek, (2.24)

22 Chapter 2. A General Framework for Graph Optimization

where Jk =
∂ek(x)

∂x is the Jacobian of the error function. Gradient descent methods [78, 164]
determine a step in the opposite direction of the gradient — the steepest descent — such that
the function value is reduced.

Within the literature, we can often find a different equation, namely

F́(x) =
1

2∑
k

‖ék‖2 (2.25)

=
1

2∑
k

ék(x)
⊤ék(x). (2.26)

In fact, the formulations in Eq. 2.20 and Eq. 2.26 are equivalent. First, we note that the constant
factor of 1

2 does not affect the value of x
+. Since Ωk = Σ−1k is the inverse of a covariance matrix,

Ωk is also positive definite and symmetric [67]. Consequently, Ωk can be factored into a matrix
Ck such that

Ωk =C⊤k Ck. (2.27)

The decomposition given in Eq. 2.27 is known as Cholesky decomposition and Ck is upper
triangular. Setting ék(x) =Ckek(x) proves the equivalence of the two formulations with respect
to the optimal value x+. We prefer the formulation given in Eq. 2.20 over the variant given in
Eq. 2.26 because it highlights the probabilistic nature of the underlying estimation.

2.3.1 Least-Squares Optimization

Given an initial value x̆ for the parameters, we are able to rewrite the sensor model by its Taylor
expansion

hk(x̆k+∆x) = hk(x̆k)+ Jk∆x+O
(
‖∆x‖2

)
, (2.28)

where

Jk =
∂hk(x)

∂x

∣∣∣∣
x=x̆

(2.29)

is the Jacobian of the sensor model used to compute the expected measurement. If we assume
that either the Jacobian is a sufficient approximation of the sensor model or that ∆x is typically
small, we can neglect the higher order terms from Eq. 2.28, which yields

hk(x̆k+∆x)≈ hk(x̆k)+ Jk∆x. (2.30)

Inserting this Taylor approximation into Eq. 2.20 leads to a linear approximation of the error
function, namely

ek(x̆+∆x) = hk(x̆+∆x)− zk (2.31)

≈ hk(x̆)+ Jk∆x− zk (2.32)

= ek+ Jk∆x. (2.33)

Substituting Eq. 2.33 in the error terms Fk of Eq. 2.20, we obtain

Fk(x̆+∆x) = ek(x̆+∆x)⊤Ωkek(x̆+∆x) (2.34)
Eq. 2.33≈ (ek+ Jk∆x)

⊤Ωk (ek+ Jk∆x) (2.35)

= e⊤k Ωkek︸ ︷︷ ︸
ck

+2e⊤k ΩkJk︸ ︷︷ ︸
b⊤
k

∆x+∆x⊤ J⊤k ΩkJk︸ ︷︷ ︸
Hk

∆x (2.36)

= ck+2b⊤k ∆x+∆x⊤Hk∆x. (2.37)

2.3. Nonlinear Least Squares 23

With this linear approximation, we can rewrite the function F(x) given in Eq. 2.20 as

F(x̆+∆x) = ∑
k∈G

Fk(x̆+∆x) (2.38)

≈ ∑
k∈G

(
ck+2b⊤k ∆x+∆x⊤Hk∆x

)
(2.39)

= ∑
k∈G

ck

︸ ︷︷ ︸
c

+2 ∑
k∈G

b⊤k
︸ ︷︷ ︸

b⊤

∆x+∆x⊤ ∑
k∈G

Hk

︸ ︷︷ ︸
H

∆x (2.40)

= c+2b⊤∆x+∆x⊤H∆x (2.41)

=: G(∆x). (2.42)

In Eq. 2.41 we see that this local approximation leads to a function G(∆x), which is quadratic in
∆x. Furthermore, G(∆x) is the linear approximation of F(x̆+∆x). Hence, we need to determine
∆x∗ such that

∆x∗ = argmin
∆x

G(∆x). (2.43)

To determine ∆x∗ let us look at the first and second derivative of G(∆x):

G′(∆x) = 2H∆x+2b (2.44)

G′′(∆x) = 2H. (2.45)

As we can see, the second derivative does not depend on ∆x. Additionally, H is symmetric and
positive definite (see Section 2.3.3). Therefore, we are able to determine ∆x∗ by setting the first
derivative to zero, i.e., find ∆x∗ such that G′(∆x∗) = 0. This leads to the linear system

H∆x∗ =−b. (2.46)

Solving Eq. 2.46 yields the increments ∆x∗, which are added to the initial value

x∗ = x̆+∆x∗. (2.47)

In general, however, due to our linear approximation of F(x), which we introduced for com-
puting the increments ∆x∗, we have not yet reached a local minimum. Our solution ∆x∗ is the
best increment given the linearization of the nonlinear function F(x). The approximation errors
result from restricting the Taylor series of F(x) to only include the first term (see Eq. 2.30). To
overcome this issue, the typical solution is to iterate the linearization in Eq. 2.41, the solution in
Eq. 2.46, and the update step in Eq. 2.47 until some given criterion is matched. Clearly, if F(x)
is a linear function, one iteration is sufficient. In every iteration, the previous solution is used as
the linearization point. In the following, we will describe common algorithms that follow the
outlined schema.

The Gauss-Newton algorithm [178, §15.5] is a popular method, which iterates the individual
steps outlined above, see Algorithm 1 for the details. In every iteration, the previous solution
serves as the linearization point and the initial guess. The iterations are stopped when a given
termination criterion is matched. There is in general no guarantee that the algorithm converges,
though. This depends on a number of factors:

• How far is our initial guess x̆ from the optimal value x∗?

24 Chapter 2. A General Framework for Graph Optimization

Algorithm 1 Gauss-Newton minimization algorithm

Input: x̆: initial guess. G = {〈zk,Ωk〉}: measurements
Output: x∗ : new solution
1: i← 0
2: repeat

3: i← i+1
4: Fold← F(x̆)
5: for all k ∈ G do

6: // Compute the error ek and the Jacobian Jk
7: ek← hk(x̆)− zk

8: Jk← ∂hk(x)
∂x

∣∣∣
x=x̆

9: // compute the contribution of this measurement to the linear system
10: Hk← J⊤k ΩkJk
11: b⊤k ← e⊤k ΩkJk
12: end for

13: // construct the overall system
14: H← ∑k∈G Hk

15: b← ∑k∈G bk
16: // solve the linear system
17: ∆x∗← solve(H∆x=−b)
18: // update the state
19: x̆← x̆+∆x∗

20: // compute the new error
21: Fnew← F(x̆)
22: until (Fold−Fnew < ε)∨

(
i> imax

)

23: return x̆

• How smooth are the error functions ek(·) or the sensor model hk(·)?

• How to handle the case in which the matrix H does not have full rank?

Despite these concerns, the method is the building block for other algorithms to address nonlin-
ear least squares. While we address the first two concerns in Chapter 3, there exists an adaption
of the Gauss-Newton algorithm that deals with the last point and furthermore guarantees the
convergence to a local minimum as defined in Eq. 2.23.

For this purpose, the Levenberg-Marquardt algorithm [178, §15.5] introduces a damping
factor as well as backup and restore actions to the Gauss-Newton method. This controls the
convergence and ensures that H has full rank, see also Algorithm 2 for the details. Instead of
solving Eq. 2.46, Levenberg-Marquardt solves a damped version:

(H+λ I) ∆x∗lm = −b. (2.48)

Here, λ ≥ 0 is the damping factor, whose value is controlled by the Levenberg-Marquardt
algorithm. To this end, we monitor the value of the error in each iteration. The control strategy
descreases λ for the next iteration if the current step reduces the error. On the other hand, if
the error is not reduced, we recover the previous state vector and increase λ . This part of the
procedure is given between Line 14 and Line 26 in Algorithm 2. If we are not able to determine
a good step, i.e., a step which results in a reduction of the error, within a certain number of
iterations (given by the parameter jmax), we bail out and give up. Note that other strategies to

2.3. Nonlinear Least Squares 25

Algorithm 2 Levenberg-Marquardt minimization algorithm

Input: x̆: initial guess. G = {〈zk(·),Ωk〉}: measurements
Output: x∗ : new solution
1: λ ← computeInitialLambda(G , x̆)
2: repeat

3: for all k ∈ G do

4: ek← hk(x̆)− zk

5: Jk← ∂hk(x)
∂x

∣∣∣
x=x̆

6: Hk← J⊤k ΩkJk
7: b⊤k ← e⊤k ΩkJk
8: end for

9: H← ∑k∈G Hk

10: b← ∑k∈G bk
11: j← 0
12: xbackup← x̆

13: F̆old← F(x̆)
14: while j < jmax∧ j ≥ 0 do
15: ∆x∗lm← solve((H+λ I)∆x= b)
16: x̆← x̆+∆x∗lm
17: Fnew← F(x̆)
18: if Fnew < F̆old then

19: λ ← λ/2
20: j←−1
21: else

22: λ ← λ ·4
23: x̆= xbackup
24: j← j+1
25: end if

26: end while

27: until
(
F̆old−Fnew < ε

)
∨
(
j = jmax

)

28: return x̆

control the damping parameter λ are possible. These modifications ensure that, compared to
the Gauss-Newton method, we are able to find a local minimum. Furthermore, we can handle
situations in which H does not have full rank. To compute the initial value of λ within the first
line of Algorithm 2, we follow the strategy suggested by Lourakis et al. [140].

In situations where λ = 0, the increments determined by the Levenberg-Marquardt algo-
rithm are identical to the increments in the Gauss-Newton method. In contrast to this, large
values for λ result in smaller increments and

∆x∗lm ≈−
1

λ
b (2.49)

=− 1

λ ∑
k∈G

J⊤k Ωkek. (2.50)

Hence, the step ∆x∗lm computed by the Levenberg-Marquardt algorithm for a large λ is a small
step along the steepest descent direction (see Eq. 2.24) of the objective function which is useful
in situations where F(x) exhibits an irregular surface and we are far from a local minimum.

26 Chapter 2. A General Framework for Graph Optimization

(a) 2D chart (b) terrestrial globe

Figure 2.7: Example for the⊞ operator on a sphere. In the particular example, the mapping is performed
between a chart and the terrestrial globe. (a) A 2D chart with a partial map of the earth. (b) Here, the ⊞
operator maps the cyan vector, which is a member of R2, to the unit sphere.

As λ varies in between those two extremes, we typically obtain a step which is a mixture of a
Gauss-Newton step and a step along the steepest descent direction.

2.3.2 Alternative Parameterizations

The procedures described above are general approaches to multivariate function minimization.
They assume that the space of the parameters x is Euclidean, which is not valid for several prob-
lems like SLAM or Bundle Adjustment [210]. In these problems, the state includes the angular
components of the pose of the robot, which are not a Euclidean space but are either elements of
the non-Euclidean 2D or 3D rotation group SO(2) or SO(3). To deal with state variables that
span over non-Euclidean space, a common approach is to express the increments ∆xk in a space
different from the one of the parameters xk.

For example, in the context of the SLAM problem, each parameter block xk consists of
a translation vector tk and a rotational component αk. The translation tk clearly forms a Eu-
clidean space. In contrast to that, the rotational components αk span over the non-Euclidean
2D or 3D rotation group SO(2) or SO(3). To avoid singularities, these spaces are usually de-
scribed in an over-parameterized way, e.g., by rotation matrices or quaternions. Directly apply-
ing Eq. 2.47 to these over-parameterized representations breaks the constraints induced by the
over-parameterization, for example, the orthogonality of the rotation matrix or the norm of the
quaternion. One way to address this issue is to consider a minimal representation, such as Euler
angles for a rotation in 3D. This is suboptimal as such a representation is subject to singularities.

An alternative idea is to compute a new error function where ∆xk are perturbations around
the current variable x̆k. In particular, ∆xk uses a minimal representation for the rotations,
whereas xk utilizes an over-parameterized one. Since the ∆xk are usually small in each step
of the iterative optimization procedure, they are far from the singularities. The new value of a
variable x∗k after the optimization can be obtained by applying the increment through a nonlinear
operator as suggested in [88, 130], ⊞ : Dom(xk)×Dom(∆xk)→ Dom(xk) as follows:

x∗k = x̆k⊞∆x∗k . (2.51)

Figure 2.7 illustrates the mapping between a plane and a unit sphere. The example illustrates
the projection between a chart and the terrestrial globe. Furthermore, the operator ⊟ computes
the difference while accounting for the different domains of the involved variables. Using this

2.3. Nonlinear Least Squares 27

operator, we are able to rewrite the error function e(·) as

ẽk(x̆) = hk(x̆)⊟ zk. (2.52)

Furthermore, the information matrix Ωk can be computed by taking into account the uncertainty
of the measurement Ωz

k, for example, by

Ωk =
(
Jzk (Ω

z
k)
−1

J⊤zk

)−1
, (2.53)

where

Jzk =
∂hk(x̆)⊟ zk

∂zk

∣∣∣∣
zk=0

. (2.54)

Clearly, applying the unscented transform [96] is also possible for propagating the covariance
through the function instead of the above given linearization method. As the Jacobian depends
on x̆, we need to perform this operation in every iteration if Ωk describing the uncertainty of the
error is not available by other means.

For instance, in case of 3D SLAM we may represent the increments ∆xk by the translation
vector and the rotation vector representation. In this representation the 3D vector itself describes
the rotation axis and its length gives the angle with which we have to rotate around the axis.
In contrast, the pose xk may internally be stored as the elements of a 4 × 4 isometry matrix.
We will denote this by using the variable Xk. An isometry is a special case of a homogeneous
transformation matrix that preserves the distance between vectors when mapping them through
the matrix. In particular, let us introduce the function toVec(·) which extracts the translation
vector and the rotation vector representation for a given isometry matrix. Additionally, the
function fromVec(·) performs the inverse operation. Using this, we can implement the ⊞ and
⊟ operator as

x̆k⊞∆x∗k
def.
= X̆k fromVec(∆x∗k) (2.55)

h(x̆)⊟ zk
def.
= toVec

(
z−1k fromVec(h(x̆))

)
. (2.56)

For SLAM the operator ⊞ is closely related to the standard motion composition operator ⊕
which was originally introduced by Smith et al. [193], whereas⊞ additionally takes into account
the different representations of the state and the increment.

Since we will use the operator ⊕ and its inverse ⊖ several times throughout this thesis, we
give a possible definition. If the pose xi is represented by the isometry matrix Xi, we can specify
the operator ⊖ as

Mi j = x j⊖xi
def.
= X−1i X j, (2.57)

where Mi j is the isometry matrix describing the relative motion between the pose xi and the
pose x j. On the other hand, the operator ⊕ compounds the relative motion as follows:

x j = xi⊕Mi j
def.
= XiMi j. (2.58)

Similar to replacing + by ⊞, we can update the Taylor expansion of the error function to
account for the newly introduced operators. This leads to

ẽk(x̆⊞∆x)≈ ek+ J̃k∆x, (2.59)

28 Chapter 2. A General Framework for Graph Optimization

Algorithm 3 Gauss-Newton minimization algorithm with alternative parameterizations

Input: x̆: initial guess. G = {〈zk,Ωk〉}: measurements
Output: x∗ : new solution
1: k← 0
2: repeat

3: k← k+1
4: Fold← F(x̆)
5: for all k ∈ G do

6: ek← hk(x̆)⊟ zk

7: J̃k← ∂ (hk(x⊞∆x)⊟zk)
∂∆x

∣∣∣
∆x=0

8: Hk← J̃⊤k ΩkJ̃k
9: b⊤k ← e⊤k ΩkJ̃k
10: end for

11: H← ∑k∈G Hk

12: b← ∑k∈G bk
13: ∆x∗← solve(H∆x=−b)
14: x̆← x̆⊞∆x∗

15: Fnew← F(x̆)
16: until F̆old−Fnew < ε ∨ k > kmax

17: return x̆

where the Jacobian J̃k becomes

J̃k =
∂ ẽk(x̆⊞∆x)

∂∆x

∣∣∣∣
∆x=0

. (2.60)

In contrast to Eq. 2.29, the Jacobian J̃k considers a fixed linearization point x̆ and gives the
gradient according to the increments ∆x. Hence, J̃k represents the influence of the parameters
to the error as a function of the increments that are applied to the current linearization point
through the ⊞ operator.

Since the increments ∆x∗ are computed in the local Euclidean surroundings of the initial
guess x̆, they need to be re-mapped into the original redundant space by the ⊞ operator, see
Eq. 2.51. With this subtle changes, we obtain a variant of the Gauss-Newton and Levenberg-
Marquardt algorithm which is able to address— among other problems— SLAM in an efficient
and more accurate way. Algorithm 3 gives the adapted Gauss-Newton algorithm handling the
different parameterizations of the state and the increments. Amodified variant of the Levenberg-
Marquardt algorithm can be achieved by applying similar changes to Algorithm 2. Regardless
the choice of the parameterization, the structure of the Hessian H is in general preserved.

2.3.3 Structure and Properties of the Linearized System

From Eq. 2.36 and Eq. 2.41, we see that the matrix H and the vector b are obtained by summing
up a set of matrices and vectors, respectively. Each constraint will contribute to the system
with an addend term. The structure of this term depends on the Jacobian of the error function.
Let us consider the factor graph illustrated in Figure 2.8. The highlighted factor affects three
state variables. In the following, we will use triple indices to indicate this relation. Thus, the
Jacobian in Eq. 2.33 of a constraint eabc between the variable xa, xb, and xc has the following

2.3. Nonlinear Least Squares 29

xa xb

xc

eabc

Figure 2.8: Example of a ternary factor. The highlighted factor constraints three state variables. Thus,
its Jacobian will have three non-zero blocks that affect the structure of the linearized system.

form:

Jabc =

0 · · · 0 A︸︷︷︸

∂eabc
∂xa

0 · · · 0 B︸︷︷︸
∂eabc
∂xb

0 · · · 0 C︸︷︷︸
∂eabc
∂xc

0 · · · 0

⊤

. (2.61)

Here A, B, and C are the derivatives of the error function with respect to xa, xb, and xc, respec-
tively, i.e., the blocks in our state vector x corresponding to the entities involved in the error
function. From Eq. 2.35, we obtain the following structure for the block matrix Habc and the
vector babc:

Habc =

.
.

A⊤ΩabcA · · · A⊤ΩabcB · · · A⊤ΩabcC
...

...
...

B⊤ΩabcA · · · B⊤ΩabcB · · · B⊤ΩabcC
...

...
...

C⊤ΩabcA · · · C⊤ΩabcB · · · C⊤ΩabcC

. .
. . . .

(2.62)

babc =
(
· · · e⊤abcΩabcA · · · e⊤abcΩabcB · · · e⊤abcΩabcC · · ·

)⊤
. (2.63)

For simplicity of notation, we omitted the zero blocks. The reader might notice that the block
structure of the matrix H is the adjacency matrix of the graph. Thus, it has a number of non-
zero blocks proportional to the number of edges in the graph. This typically results in a sparse
matrix H.

Furthermore, let us state some properties of the matrix H, which will prove useful for us.
From Eq. 2.36 and Eq. 2.41, we see that

H = ∑
k∈G

J⊤k ΩkJk (2.64)

= ∑
k∈G

(ΩkJk)
⊤
(
J⊤k
)⊤

(2.65)

= ∑
k∈G

(
J⊤k ΩkJk

)⊤
(2.66)

=

(
∑
k∈G

J⊤k ΩkJk

)⊤
= H⊤. (2.67)

30 Chapter 2. A General Framework for Graph Optimization

Thus, H is a symmetric matrix due to its construction. In Eq. 2.66, we exploit the fact that the
information matrix Ωk = Ω⊤k is symmetric. Additionally, we observe that

∆x⊤H∆x= ∆x⊤ ∑
k∈G

(Hk)∆x (2.68)

= ∑
k∈G

∆x⊤J⊤k ΩkJk∆x (2.69)

= ∑
k∈G

∆x⊤J⊤k C
⊤
k CkJk∆x︸ ︷︷ ︸

yk

(2.70)

= ∑
k∈G

y⊤k yk ≥ 0. (2.71)

Hence, H is positive semi-definite. Note that within the derivation we considered the decompo-
sition of Ωk =C⊤k Ck as given in Eq. 2.27.

2.3.4 Systems Having Special Structure

Certain problems, for instance, Bundle Adjustment (BA) [210], result in a matrix H that has an
even more characteristic structure. Our system can take advantage of these special structures to
improve the performance. In BA there are in general two types of variables, namely the poses p
of the camera and the poses l of the landmarks observed by the camera. By reordering the
variables in Eq. 2.46 so that the camera poses have the lower indices, we obtain the system

(
Hpp Hpl

H⊤pl Hll

) (
∆x∗p
∆x∗l

)
=

(
−bp
−bl

)
. (2.72)

It can be shown that an equivalent reduced system is formed by taking the so-called Schur
complement of the matrix H [64]:

(
Hpp−HplH

−1
ll H⊤pl

)
∆x∗p =−bp+HplH

−1
ll bl. (2.73)

Note that calculating H−1ll is easy. Since Hll is a block-diagonal matrix, its inverse is given
by inverting each block individually. We obtain the equation above by multiplying the bottom
block-row of Eq. 2.72 with HplH

−1
ll :

(
Hpp Hpl

HplH
−1
ll H⊤pl Hpl

) (
∆x∗p
∆x∗l

)
=

(−bp
−HplH

−1
ll bl

)
. (2.74)

Now, subtracting the second block-row from the first results in Eq. 2.73, whose solution yields
the increments ∆x∗p for the cameras and using this we can solve

Hll∆x
∗
l =−bl−H⊤pl∆x

∗
p, (2.75)

which results in ∆x∗l for adjusting the observed world features. Typically the world features
outnumber the camera poses, therefore Eq. 2.73 can be solved faster than Eq. 2.46 despite the
additional time spent to calculate the left-hand side matrix in Eq. 2.73.

2.3. Nonlinear Least Squares 31

2.3.5 Gaussian Conditional: p(x | z)∼N (x∗,H−1)

In this section, we will show that p(x | z) under certain assumptions, which we recall below,
corresponds to the Gaussian distributionN (x∗,H−1). This means we will show that our system
matrix H is the information matrix for the state given all the measurements. To this end, let us
first recall some concepts which have already been stated above.

• We assume that the measurements zk are affected by a Gaussian noise. The noise of each
measurement is represented by the information matrix Ωk.

• We assume that the measurement function ẑk = hk(x) can be locally approximated by its
first-order Taylor expansion around x∗, i.e.,

hk(x
∗+∆x)≈ hk(x

∗)+ Jk∆x. (2.76)

• We assume that the conditional distribution of the measurements given the increments is
normally distributed

p(zk | x∗+∆x)∼N
(
z∗k + Jk∆x,Ω

−1
k

)
. (2.77)

Here z∗k = hk(x
∗) is the expected measurement at the optimum.

The conditional over all measurements z is again a multivariate Gaussian

p(z | x∗+∆x)∼N
(
µz,Ω

−1
z

)
, (2.78)

where

µz =

J1∆x+ z∗1
J2∆x+ z∗2

...
JK∆x+ z∗K

=

J1
J2

. . .

JK

︸ ︷︷ ︸
J

∆x+

z∗1
z∗2
...
z∗K

︸ ︷︷ ︸
z∗

(2.79)

Ωz =

Ω1

Ω2

. . .

ΩK

 . (2.80)

If we have no prior about the increments, but we assume that they are normally distributed, we
can describe them with p(∆x) ∼N (0,Σx), in which Σx = diag(∞) reflects that we assume to
have no prior for the increments. A better way to express this is to set Ωx = 0. We can express
the joint distribution p(∆x,z) as

p(∆x,z)∼N
(
(0,z∗),Ω−1x,z

)
, (2.81)

where z∗ = (z∗1, . . . ,z
∗
K)
⊤ and recalling Theorem 3 of [187] we know that

Ωx,z =

(
J⊤ΩzJ −J⊤Ωz

−ΩzJ Ωz

)
. (2.82)

32 Chapter 2. A General Framework for Graph Optimization

Position of the Robot

Figure 2.9: The uncertainty of the estimated parameters along with the trajectory in a SLAM data
set. Information about the pose uncertainty of the robot is, for example, useful for performing the data
association in the front-end.

Let us now consider the upper left block of Ωx,z:

J⊤ΩzJ =

J1
J2

. . .

JK

⊤

Ω1

Ω2

. . .

ΩK

J1
J2

. . .

JK

 (2.83)

= J⊤1 Ω1J1+ J⊤2 Ω2J2+ · · ·+ J⊤k ΩkJk︸ ︷︷ ︸
Hk

+ · · ·+ J⊤K ΩKJK (2.84)

= ∑
k∈G

Hk = H. (2.85)

Following the derivation so far, we know that H is the upper left block of Ωx,z, which is
the information matrix of the joint Gaussian distribution p(∆x,z) of the increments and the
measurements.

Given the joint distribution, we now want to determine the conditional distribution p(∆x | z).
In particular, we are interested in the information matrix Ω∆x|z. Theorem 2 in [187] tells us
how to compute the conditional distribution given the joint distribution. Just by suppressing
the rows and columns of the information matrix which correspond to the given variables in
the conditional, we obtain the conditional distribution from the joint distribution. In our case,
we have to drop the blocks Ωz, −J⊤Ωz and −ΩzJ. Thus, only H remains. This means that
p(∆x | z) ∼N (0,H−1). Intuitively, the mean µ∆x is 0 because we assumed x∗ to be our op-
timal state. As a last step, we introduce the random variable x = x∗+∆x. Since p(∆x | z) ∼
N (0,Σ∆x|z) and x∗ is a constant, x has the same covariance as ∆x, but its mean is shifted by x∗.
Hence, we have shown that p(x | z)∼N (x∗,H−1).

This means, we are able to calculate the covariance of each parameter in our state vector.
Such information is, for example, handy for data association [99] or for determining when to
stop data-collection because the desired accuracy has been reached. Note that H−1 in general

2.4. The g2o Framework 33

Error function ek

Jacobian Jk

(H +λ I)∆x∗ =−b

⊞

CSparse CHOLMOD PCG . . .

Plain Schur . . .

Apply Increments

Linear Structure

Linear Solver

Figure 2.10: Overview of our framework. For addressing a new optimization problem, only the boxes
in gray need to be specified. Furthermore, the framework allows us to add different linear solvers.

is not sparse. Based on the sparse Cholesky factorization of H, where we exploit the symmetry
and positive definiteness, we are, however, able to evaluate the desired elements of H−1 effi-
ciently [70, 99, 210]. We are in particular interested in the elements along the main diagonal
of H−1 as those correspond to the covariance of our state elements. Figure 2.9 shows an exam-
ple for the uncertainty of the poses of the robot as they are estimated by our approach in a 2D
SLAM example.

2.4 The g2o Framework

Our C++ implementation for solving least squares, which we call g2o (short for General Graph
Optimization), aims to be as fast as possible while remaining general. We achieve this goal by
implementing abstract base classes for vertices and edges in our graph. Both base classes pro-
vide a set of virtual functions for easy sub-classing, whereas most of the internal operations are
implemented using template arguments for efficiency. We use the Eigen linear algebra pack-
age [81] which applies SSE instructions among other optimization techniques, such as lazy
evaluation and loop unrolling to achieve high performance. g2o has been released as open-
source software and attracted a large amount of users. We attribute the popularity of g2o to its
easy usage, its wide application range due to the general design, and the overall good perfor-
mance compared to other frameworks.

Figure 2.10 depicts the design of our system. Only the boxes in gray need to be defined
to address a new optimization problem. Using the provided base class, deriving a new type of
node only requires defining the ⊞ operator for applying the increments. An edge connecting a
a subset of nodes xk requires the definition of the error function ek(·). The Jacobian Jk is then
evaluated numerically or, for higher efficiency, the user can specify Jk explicitly by overwriting
the virtual base-class function. Optionally, Automatic Differentiation [72] is available, which
provides a higher accuracy than evaluating the Jacobian numerically by finite differences while
achieving an acceptable runtime. Thus, implementing types for addressing a new optimization
problem or comparing different parameterizations is a matter of writing a few lines of code.

34 Chapter 2. A General Framework for Graph Optimization

The computation of H exploits the underlying block-structure. In the general case each
block matrix has a variable size. If the dimension of the variables of the system, i.e., the di-
mension of ∆xk, is known in advance, our framework applies fixed-size matrix computations.
Exploiting the a-priori known dimensions enables compile-time optimizations, such as loop
unrolling to carry out matrix multiplications.

Special care has been taken in implementing the matrix multiplications required for the
Schur reduction in Eq. 2.73. The sparse structure of the underlying graph is exploited to only
multiply non-zero entries required to form the extra entries of Hpp. Additionally, we operate
on the block structures of the underlying matrix (see [107]), which results in a cache efficient
matrix multiplication compared to a scalar matrix multiplication.

Our framework is agnostic with respect to the embedded linear solver, so we can apply for
each problem the appropriate one. We currently have implemented two different methods for
solving a linear system as the one given in Eq. 2.46. The first one exploits the characteristic
structure of the system matrix H — namely its typical sparseness — and the two properties
stated in Section 2.3.3 (H is symmetric and positive definite). The linear system is solved
by utilizing state-of-the-art approaches for computing the Cholesky factor of such a sparse
matrix [37, 40]. Cholesky decomposition factorizes the matrix H as

H = LL⊤, (2.86)

where L is a lower triangle matrix. This allows us to solve Eq. 2.46 by forward and backward
substitution as follows

L ∆y=−b (2.87)

L⊤∆x= ∆y. (2.88)

We implemented solvers utilizing CSparse [40], which is a library also suited for embedded
systems, and CHOLMOD [37], which results in additional dependencies. As we show in the
experiments CHOLMOD, however, outperforms CSparse on larger matrices. Note that the non-
zero pattern during the least squares iterations is constant in Gauss-Newton (see Algorithm 1)
and Levenberg-Marquardt (see Algorithm 2). We are therefore able to reuse a symbolic de-
composition computed within the first iteration. The symbolic decomposition determines a per-
mutation matrix that leads to less fill-in for L and thus reduces the overall computation time in
subsequent iterations. Obtaining the best permutation matrix is NP-complete [219]. However,
using a heuristic like Approximate Minimum Degree ordering [40] on the block-matrix gives
good results [2]. Note that the Cholesky decomposition does not consider the block structure of
the parameters apart from the ordering but operates on a scalar matrix.

The second method implemented for solving a large linear system is Preconditioned Conju-
gate Gradient (PCG) with a block Jacobi pre-conditioner [94], which takes advantage of block
matrix operations throughout. PCG itself is an iterative method and solving a linear system re-
quires n iterations for a n×n matrix. Since carrying out n iterations of PCG is typically slower
than Cholesky decomposition [110], we limit the number of iterations based on the relative de-
crease in the squared residual of PCG. By this, we are able to quantify the loss in the accuracy
of the solution introduced by terminating PCG early. In the experiments, we will compare the
different solvers implemented in our framework.

It is worth to mention that a variety of different approaches for nonlinear least squares is
available which amends the discussed Gauss-Newton and Levenberg-Marquardt algorithms.
The alternatives include methods applying gradient descent and approaches based on conjugate
gradients such as Polak-Ribière and Fletcher-Reeves [195]. Also variants combining several

2.5. Experiments 35

techniques have been proposed. For example, Powell’s Dog-Leg [146] combines Gauss-Newton
and gradient descent and furthermore introduces a modification that guarantees that the length
of the step does not exceed the diameter of a trust region around the current linearization point.
Due to the modular architecture, these methods can easily be added to the framework.

2.5 Experiments

In this section, we present experiments in which we compare g2o with other state-of-the-art
optimization approaches using both real-world and synthetic data sets.

We compare g2o with other state-of-the-art implementations:
√
SAM [43] using the open-

source implementation by M. Kaess1, SPA [110]2, sSBA [107]3, RobotVision [201]4,
TORO [78]5 and Ceres Solver [3]6. Note that these approaches except Ceres Solver are only
targeting a subset of optimization problems, while g2o is able to solve all of them and also ex-
tends easily to new problems. Hence, we implemented our solution to addressing each of the
optimization problems as they are implemented by the approaches mentioned above. A notable
exception in the list of approaches is the Ceres Solver, which is also an efficient general least
squares framework. Here, we compare g2o and Ceres Solver on a Bundle Adjustment prob-
lem that includes unknown camera intrinsics [4]. We restrict ourselves to this problem since
Ceres Solver itself provides an efficient implementation for this type of problems and our own
implementations for other types using Ceres Solver might bias the results.

2.5.1 Real-World Experiments

In a first set of experiments, we evaluate g2o on real-world data. It shows that g2o allows us to
generate accurate maps in 2D and 3D as well as given different types of sensor modalities. We
show examples using laser or camera data to generate the constraints that serve as input for our
approach.

The first one is the MIT CSAIL data set. It was processed with the front-end described
in Section 2.2. The resulting factor graph features 686 robot poses and 763 constraints. Fig-
ure 2.11a visualizes the odometry of the robot. Employing our optimization framework results
in the map depicted in Figure 2.11b. Here, the factor graph is visualized in red. Performing the
optimization took around 0.01 s.

As second example, we consider a data set recorded in the Intel research lab located in
Seattle. Again, the raw data visualized in Figure 2.12a was processed by the front-end yielding
a pose-graph with 1,311 robot poses and 1,824 constraints. By optimizing the factor graph we
achieve an estimate for the map which is shown in Figure 2.12b. The least squares optimization
is fast, it required less than 0.05 s.

As next data set, we show the results from the DLR data set. In contrast to the MIT CSAIL
and the Intel Research Lab, the DLR data set considers camera images to detect white circular
disks placed on the floor, which serve as 2D landmarks instead of raw laser data. Additionally,
the data association was performed manually by a human instead of running a front-end. Thus,
the raw data set may serve as benchmark for data association algorithms. It consists of 3,297

1https://svn.csail.mit.edu/isam, Revision 8
2https://code.ros.org/svn/ros-pkg/stacks/vslam/trunk/, Revision 40053
3https://code.ros.org/svn/ros-pkg/stacks/vslam/trunk/, Revision 40053
4https://www.openslam.org/robotvision, Revision 10
5https://www.openslam.org/toro, Revision 19
6https://code.google.com/p/ceres-solver/, Version 1.3.0

36 Chapter 2. A General Framework for Graph Optimization

(a) raw odometry (b) estimate of our approach

Figure 2.11: (a) The initial state of the data set as given by the odometry estimate. (b) The map as it is
estimated by our approach, in which the nodes of the factor graph are shown in blue and the edges in red.

(a) raw odometry (b) estimate of our approach

Figure 2.12: (a) The initial state of the data set as given by the odometry estimate. (b) The map as it is
estimated by our approach, in which the nodes of the factor graph are shown in blue and the edges in red.

2.5. Experiments 37

Trajectory Landmarks

(a) raw odometry

Trajectory Landmarks

(b) estimate of our approach

Figure 2.13: (a) The initial state of the data set as given by the odometry estimate. (b) The trajectory of
the robot after optimizing using our approach.

(a) raw odometry (b) estimate of our approach

Figure 2.14: A partial view of the parking garage data set. (a) The initial state of the data set as given
by the odometry estimate. (b) The trajectory of the robot after optimizing using our approach.

robot poses, 576 landmarks, 3,296 odometry readings, and 14,309 landmark observations. Fig-
ure 2.13a shows the initial state given by the odometry of the robot. After running our approach
we obtain the consistent estimate depicted in Figure 2.13b. It requires around 0.2 s to optimize.

Finally, we consider a real-world 3D SLAM data set. In particular, due to the Grand Chal-
lenges organized by DARPA the robotics community gained interest in using a car as a robot.
For this data set, such a car [152] equipped with a 3D range finder, an inertial navigation system
which fuses GPS and IMU measurements, and various other sensors (which are not considered
for the experiment) was steered through a multi-level parking garage. The whole trajectory is
approximately 7 km long and contains several nested loops on all four levels of the garage and
the surrounding streets. An adapted version of the front-end operating on 3D range data gener-
ated 1,661 robot poses, which are related to each other by 6,275 constraints. Each robot pose
is associated with a local three-dimensional map, a so-called Multi-Level Surface map [209].
The odometry of the car provided by the inertial navigation system is considered for building
the constraints connecting subsequent nodes. Additional constraints, the loop closures, are ob-
tained by scan-matching the local maps whenever the robot revisits a region. As we can see in
Figure 2.14a, the odometry of the car leads to an inconsistent estimate, which is mostly visible

38 Chapter 2. A General Framework for Graph Optimization

(a) simulated odometry (b) estimate of our approach

Figure 2.15: (a) The simulated 2D Manhattan data set as given by the odometry and (b) after optimiza-
tion with our approach.

(a) simulated odometry (b) estimate of our approach

Figure 2.16: (a) The simulated Torus data set as given by the odometry estimate and (b) after optimiza-
tion with our approach.

as incorrect height estimates. Running our framework, we are able to generate a decent esti-
mate of the environment. In Figure 2.14b, we can clearly see the separate levels of the parking
garage. The resulting map, obtained after around 0.2 s, was subsequently used to realize an
autonomous parking maneuver, which is described in Chapter 8.

2.5.2 Simulation Experiments

Here, we want to use large-scale simulated data sets to evaluate our approach quantitatively
against TORO [78], which applies a variant of stochastic gradient descent [164] for optimizing
Eq. 2.20. As TORO is only able to handle factor graphs with pose-pose constraints, we consider
large-scale simulated data sets falling into this category: the Manhattan data with 3,500 poses
and 5,598 constraints (see Figure 2.15), the Torus data set with 10,000 poses and 22,280 con-
straints (see Figure 2.16), and the Sphere data set with 2,500 poses and 4,949 constraints (see
Figure 2.17).

We initialized both approaches with the initial state as given by the odometry. TORO,
however, always computes a minimal spanning tree to determine the initial state by propagating
the estimates along the tree. As we can see in Figure 2.18 the initialization performed by TORO
reduces the error within the first iteration. Compared to g2o, TORO requires more time to

2.5. Experiments 39

(a) simulated odometry (b) estimate of our approach

Figure 2.17: (a) The simulated Sphere data set as given by the odometry estimate and (b) after optimiza-
tion with our approach.

102
103
104
105
106
107

0 1 2

F(
x)

Time [s]

g2o
TORO

(a) Manhattan3500

101
102
103
104
105
106

0 1 2

F(
x)

Time [s]

g2o
TORO

(b) Torus

101
102
103
104
105
106

0 1 2

F(
x)

Time [s]

g2o
TORO

(c) Sphere

Figure 2.18: Comparison of TORO and g2o on (a) the Manhattan data set, (b) the Torus data set, and
(c) the Sphere. As we can see g2o quickly converges to the true solution. TORO reduces the error by
the spanning tree initialization in the first iteration, whereas it exhibits a slow convergence afterwards
compared to g2o.

(a) map with a large error (b) map with a small error

Figure 2.19: Influence of the value of F(x) on the quality of the resulting map. This image visualizes
the influence of the remaining error on the map quality. The map shown in (a) has an error which is
approximately ten times larger than the error of the map depicted in (b). While both maps represent the
structure of the environment well, the higher error leads to artifacts in the map which are indicated by
arrows in (a).

40 Chapter 2. A General Framework for Graph Optimization

(a) Venice (b) New College (c) Keble College

Figure 2.20: The BA real-world data sets and the scale-drift data set used for evaluating g2o: (a) Venice
data set, a monocular BA data set. Orange dots indicate the position of world features, wheres the
small black boxes correspond to the locations of the cameras. (b) New College data set [192] acquired
with a stereo camera mounted on a robot. Again, orange dots indicate the position of features in the
environment. (c) The pair of images shows the Keble college data set which was processed by monocular
SLAM [201]. Here, scale drift occurs ((c) top), which can be corrected when closing the loop using 7
DoF similarity transformations ((c) bottom).

converge and the achieved value for F(x) is larger. Figure 2.19 visualizes the influence of a
higher error value on the map quality. As we can see, a higher error may have a crucial effect
on the details of the map. While both maps capture the main structures of the environment, the
higher error shows up as artifacts in the maps.

2.5.3 Runtime Comparison

In the following, we report the time needed by each approach except TORO to carry out one
iteration. Note that we here focus on the approaches which also implement nonlinear least
squares by means of Gauss-Newton or Levenberg-Marquardt, as we have already examined the
runtime of gradient descent in the comparison with TORO as reported above. As 3D pose-
graph data-sets we considered the real-world parking garage data set as depicted in Figure 2.14,
and the simulated sphere data set shown in Figure 2.17. Figure 2.20 depicts the real-world
BA data sets: A monocular BA data set taken in Venice and a stereo one acquired with a real
robot at the New College in Oxford, and the pose-graph of the Keble college, which is used to
perform scale drift-aware SLAM using 7 DoF similarity constraints [201]. In addition to these
3D data sets we considered the following 2D data sets: The Intel Research Lab, a real-world
data set taken in an office environment (see Figure 2.12); the simulated Manhattan3500 data
set, a pose-graph simulated in a grid-world (see Figure 2.15); the Killian Court data set which
is a large-scale indoor environment (see Figure 2.21a); the Victoria Park data set acquired with
a car where trees are used as landmarks (see Figure 2.21b); and the grid5000 which simulates
a robot observing landmarks in a grid-world (see Figure 2.21c). The number of variables and
constraints is given in Table 2.1 for each of the data sets. We choose this collection of data
sets for evaluation as it covers a large variety of different optimization problems to highlight

2.5. Experiments 41

(a) MIT Killian Court

Trajectory
Landmarks

(b) Victoria Park (c) Grid5000

Figure 2.21: 2D Datasets used for evaluating g2o. (a) 2D pose-graph of the Killian Court at the MIT. (b)
2D data set with landmarks of the Victoria Park. (c) Grid5000, a simulated landmark data set.

Dataset # poses # landmarks # constraints

Intel 943 - 1837
MIT 5489 - 7629
Manhattan3500 3500 - 5598
Victoria 6969 151 10608
Grid5000 5000 6412 82486
Sphere 2500 - 4949
Garage 1661 - 6275
Venice 871 530304 2838740
New College 3500 488141 2124449
Scale Drift 740 - 740

Table 2.1: Overview of the test data sets.

42 Chapter 2. A General Framework for Graph Optimization

0.001

0.01

0.1

1

Intel
Killian

M
anhattan

Victoria

bearing
only

grid5k

T
im

e
pe
r
It
er
at
io
n
[s
]

√
SAM
g2o
SPA

0.01

0.1

1

10

100

Sphere

Garage

Scale Drift

Venice

New
College

T
im

e
pe
r
It
er
at
io
n
[s
]

√
SAM
g2o

SPA / sSBA
RobotVision

Figure 2.22: Time per iteration for each approach on each data set.

0

10

20

30

40

50

60

70

dubrovnik-356

venice-1778

final-871

final-961

Ti
m

e
pe

rI
te

ra
tio

n
[s

] Ceres
g2o

(a) single thread

0

10

20

30

40

50

dubrovnik-356

venice-1778

final-871

final-961

Ti
m

e
pe

rI
te

ra
tio

n
[s

] Ceres
g2o

(b) four threads in parallel

Figure 2.23: Comparison of g2o and Ceres Solver. (a) The time required for one iteration on several
data sets with a single threaded implementation. (b) Running four threads in parallel allows us to take
advantage of the architecture of nowadays CPUs.

the general applicability of our approach. All experiments are executed on one core of an Intel
Core i7-930 running at 2.8Ghz.

We provided each approach with the full optimization problem and carried out 10 itera-
tions, and measured the average time spent per iteration. In this set of experiments g2o applies
Cholesky decomposition to solve the linear system using CHOLMOD, which is also used by
the approaches we compare to. Therefore, the time required to solve the linear system is similar
for all approaches and the difference reflects the efficiency in constructing the linear system.
The results are summarized in Figure 2.22.

Our system g2o is faster than the implementation of
√
SAM on all the 2D and 3D data sets

we tested. While in principle they implement the same algorithm, g2o takes advantage of an ef-
ficient front end to generate the linearized problem. On the 2D pose graph data sets the runtime
of our framework is comparable to the highly optimized but specific SPA implementation. On
the BA data sets g2o achieves a similar performance to sSBA, which is slightly faster than our
general framework. Compared to RobotVision, g2o is on average two times faster.

Additionally, we compared our system g2o with Ceres Solver, a general framework released
by Google. Instead of modifying Ceres Solver to operate on our data sets, we adapted g2o
for dealing with the case handled by Ceres Solver, namely Bundle Adjustment with unknown
camera intrinsics. Both systems are able to run several threads which allows us to fully load
nowadays CPUs, which consist of several cores, with parallel computations. Figure 2.23a shows

2.5. Experiments 43

0

5

10

15

20

25

30

0 500 1000 1500 2000 2500 3000 3500

C
um

ul
at
iv
e
T
im

e
[s
]

Number of Nodes

g2o (Cholesky) every node
g2o (PCG) every node

iSAM every node
HOG-Man every node

0

1

2

3

4

5

0 500 1000 1500 2000 2500 3000 3500

C
um

ul
at
iv
e
T
im

e
[s
]

Number of Nodes

g2o (Cholesky) every 10 nodes
iSAM every 10 nodes

HOG-Man every 10 nodes

(a) optimization after every node (b) optimization after ten nodes

Figure 2.24: Online processing of theManhattan3500 data set. (a) Runtime for optimizing after inserting
a single node. (b) Runtime for optimizing after inserting ten nodes.

the time required for one iteration by g2o and Ceres Solver using a single threaded implemen-
tation, while Figure 2.23b depicts the performance on the same data but running four threads
in parallel. The evaluation shown here consists of a sub-set of the data sets created by Agarwal
et al. [4]. g2o requires the same amount of time or less than Ceres Solver on all considered
examples regardless of the number of threads running in parallel. When utilizing more than
one thread, both approaches build the Schur complement given in Eq. 2.72 by executing block-
matrix multiplications in parallel. While both approaches construct the system in parallel, its
solution is evaluated using the same number of threads in both settings. This explains why the
decrease in runtime does not scale with the numbers of threads. Note that solving the system
may also exploit the availability of multiple cores. We did not evaluate this scenario since both
g2o and Ceres Solver utilize CHOLMOD as a black box for solving the system and thus the
effect would be the same for both systems.

Note that while g2o focuses on batch optimization, it can be used to process the data in-
crementally by optimizing after adding nodes to the graph. On small data sets the efficiency
of g2o yields performance similar to approaches that are designed for incremental use, such as
iSAM [101] or HOG-Man (our approach for online processing a pose-graph by constructing
a hierarchy, see Chapter 3). As visualized in Figure 2.24, by optimizing every ten nodes or
by relaxing the termination criterion of PCG for optimizing after inserting a single node g2o
can achieve acceptable runtimes. On larger data sets, however, solving Eq. 2.16 from scratch
in each time step becomes inefficient. We will deal with this issue in the next chapter, where
we present our hierarchical approach for online mapping, which employs g2o as an efficient
building block.

As mentioned, g2o can compute the Jacobian Jk numerically, which allows us to rapidly
prototype a new optimization problem or a new error function. By specifying the Jacobians
analytically one can achieve a substantial speed-up. For instance, the duration of one iteration
on the Garage data set drops from 80ms to 40ms when applying the analytic Jacobian. Despite
the reduced efficiency we did not observe a decrease in the accuracy when applying the numeric
Jacobian.

2.5.4 Testing different Parameterizations

Since our framework only requires to implement the error function and the update step, we are
able to easily compare different parameterizations. To this end, we implemented two different

44 Chapter 2. A General Framework for Graph Optimization

106

107

108

0 5 10 15 20

F
(x
)

Iteration

Lie Algebra se(3)
Unit Quaternion

107

108

109

1010

0 20 40 60 80 100

F
(x
)

Iteration

Lie Algebra se(3)
Unit Quaternion

(a) New College (b) Venice

Figure 2.25: Evolution of F(x) using unit quaternions versus the Lie algebra se(3) on (a) the New
College data set and (b) Venice data set.

Dataset CHOLMOD CSparse PCG

Intel 0.0028 0.0025 0.0064 ± 0.0026
MIT 0.0086 0.0077 0.381 ± 0.364
Manhattan3500 0.018 0.018 0.011 ± 0.0009

Victoria 0.026 0.023 1.559 ± 0.683
Grid5000 0.178 0.484 1.996 ± 1.185
Sphere 0.055 0.398 0.022 ± 0.019

Garage 0.019 0.032 0.017 ± 0.016

New College 6.19 200.6 0.778 ± 0.201

Venice 1.86 39.1 0.287 ± 0.135

Scale Drift 0.0034 0.0032 0.005 ± 0.01

Table 2.2: Comparison of different linear solvers (time in seconds).

parameterizations for representing poses in BA. In the first parametrization, the increment ∆xi
is represented by a translation vector and the axis of a unit quaternion, whereas in the second
one the increments ∆xi are represented by members of the Lie algebra se(3) [201]. We applied
the different parameterizations to the New College and Venice data sets. The evolution of the
error is depicted in Figure 2.25. Both parameterizations converge to the same solution, but
convergence occurs faster using se(3).

2.5.5 Comparison of Linear Solvers

Our system is able to apply different linear solvers for determining the solution of either Eq. 2.46
or Eq. 2.73. We currently have implemented two solvers based on Cholesky decomposition,
namely CHOLMOD and CSparse [40]. Additionally, we implemented PCG as an iterative
method using a block-Jacobi preconditioner. Table 2.2 summarizes the time required for solving
the linear system on several data sets. PCG performs very well on the New College and Venice
data sets, where it is around 7 times faster than CHOLMOD. The PCG convergence depends on
how close the initial guess is to the optimum. We terminate PCG if the relative residual is below
a given threshold (10−8 in the experiments). Therefore, PCG requires more time to converge,
for example, on the MIT or Victoria data sets. CHOLMOD is faster by up to a factor of 30 than

2.6. Related Work 45

Dataset direct solution Schur decomposition
solve build / solve / total

Victoria 0.026 0.029 / 0.121 / 0.150
Grid5000 0.18 0.12 / 0.16 / 0.28
New College 15.18 3.37 / 7.07 / 10.44
Venice 33.87 11.25 / 1.78 / 13.03

Table 2.3: Comparison of different linear solvers. We measured the average time per iteration of g2o (in
seconds).

CSparse on the larger data sets. But surprisingly CSparse is the fastest solver on the smaller
instances like the MIT data set where it outperforms both CHOLMOD and PCG.

2.5.6 Utilizing the Knowledge about the Structure

As discussed in Section 2.3.4, certain problems have a characteristic structure. Using this struc-
ture may result in substantial improvements in the solution of the linear system. Landmark-
based SLAM and BA have the same linear structure: the landmarks/points can be only con-
nected with the robot poses/cameras, resulting in a block diagonal structure for the landmark
part of the Hessian Hll .

In this experiment we evaluate the advantages of using this specific decomposition for land-
mark based-SLAM and BA. Table 2.3 shows the timing for the different data sets where we
enabled and disabled the decomposition. From the table it is evident that preforming the de-
composition results in a substantial speedup when the landmarks outnumber the poses, which is
typically the case in BA. If the number of poses, however, becomes dominant, performing the
Schur marginalization leads to a highly connected system that is only slightly reduced in size,
and requires more effort to be solved.

2.6 Related Work

During the last decades, SLAM has been — and still is — an active research topic. One way to
group the approaches developed throughout these years is the underlying estimation technique,
see also the overview given by Durrant-Whyte and Bailey [11, 50]. There are approaches im-
plementing a Bayes filter by means of an Extended Kalman filter (EKF) [132, 194] or its dual
representation, the (Sparse) Extended Information Filter [57, 207]. Other approaches consider
a particle filter [77, 154]. Instead of filtering, least squares error minimization [43, 78, 143] has
become a standard approach for addressing SLAM.

Early solutions to SLAM were mostly based on applications of Extended Kalman Fil-
ters [132, 194] (EKF) for implementing a recursive Bayes filter. While such an EKF effectively
estimates a fully correlated posterior about the robot poses and the landmarks in the environ-
ment, the weakness of the approach is caused by the assumption that have to be introduced
for both the motion model and the sensor noise. Furthermore, linearization errors may lead to
divergence and a violation of the assumptions may increase this risk [98, 211].

An alternative for the EKF is its dual representation, the (Sparse) Extended Information
Filter [57, 207] (SEIF). Instead of maintaining the mean µ and its covariance Σ a SEIF ap-
proach updates the information matrix Ω = Σ−1 and the information vector Ωµ . One advantage
of SEIF is that it is able to incorporate additional information in constant time. In particular,

46 Chapter 2. A General Framework for Graph Optimization

Thrun et al. [207] take advantage of the approximative sparsity of the information matrix for
obtaining the uncertainty estimate by neglecting small entries in the information matrix caused
by marginalization. In contrast, this approximation may lead to a overconfident estimate of
the pose the robot. To this end, Eustice et al. [57] presented a technique that more accurately
computes the error-bounds within the SEIF framework and therefore reduces the risk of becom-
ing overly confident. More recent work [56, 148] demonstrated that the SEIF techniques can
be made exactly sparse. Since SEIF is the dual representation of the EKF, it suffers from the
same drawbacks, namely the approximation by a linear function and thus the introduction of
linearization errors into the estimation process which may cause divergence.

Another technique for implementing a Bayes filter is the so-called Rao-Blackwellized Parti-
cle Filter [48, 77, 154]. In this approach, each particle carries its own estimate of the trajectory
of the robot and hence the map of the environment. The different trajectories arise from the
noise in the motion of the robot. As each particle stores its own map, a particle filter does
not suffer from the above mentioned linearization errors. A sophisticated data structure for the
map [51] reduces the cost for re-sampling, while in general the computational complexity scales
with the number of particles. For example, an improved proposal distribution [77, 83] allows us
to reduce the required sample size. Likewise, KLD-sampling [63] adapts the number of parti-
cles dynamically depending on the difference to the true distribution. Additionally, special care
has to be taken to avoid particle impoverishment, for example, re-sample only when needed
instead of after each time step [77].

In contrast to the above mentioned techniques based on filtering, a smoothing approach
based on graph optimization is able to modify the whole trajectory at all the time as they keep all
measurements in memory. This allows us to re-linearize when needed. Such graph optimization
problems have been studied intensively in the area of robotics and computer vision. One seminal
work is that of Lu and Milios [143] where the relative motion between two scans was measured
by scan-matching and the resulting graph was optimized by iterative linearization. At that time,
optimization of the graph was regarded as too time-consuming for online performance. Due to
recent advancements in the development of direct linear solvers (e.g., the work by Davis and
his colleagues [37, 40]), graph-based SLAM has re-gained popularity and a huge variety of
different approaches to solve SLAM by graph optimization have been proposed. For example,
Howard et al. [92] apply relaxation to build a map. Duckett et al. [49] propose the usage of
Gauss-Seidel relaxation to minimize the error in the network of constraints. They assume that
the orientation of the robot is know by employing a compass. This renders the problem to be
linear.

Olson et al. [164] suggested a stochastic gradient descent approach to optimize pose graphs.
Later, Grisetti et al. [78] extended this approach by applying a tree-based parameterization that
increases the convergence speed. Both approaches are robust to the initial guess and rather
easy to implement. They, however, assume that the covariance is roughly spherical and thus
have difficulties in optimizing pose-graphs where some constraints have covariances with null
spaces or substantial differences in the eigenvalues.

Graph optimization can be viewed as a nonlinear least squares problem, which typically
is solved by forming a linear system around the current state, solving, and iterating. One
promising technique for solving the linear system is preconditioned conjugate gradient (PCG),
which was used by Konolige [111] as well as Montemerlo and Thrun [153] as an efficient
solver for large sparse pose constraint systems. Because of its high efficiency on certain prob-
lems, g2o includes an implementation of a sparse PCG solver which applies a block-Jacobi
pre-conditioner [94].

More recently, Dellaert and colleagues suggested a system called
√
SAM [43] which they

2.7. Conclusions 47

implement using sparse direct linear solvers [40]. In a joint work with Konolige et al. [110], we
showed how to construct the linear matrix efficiently by exploiting the typical sparse structure
of the linear system for applying an online variant of the Levenberg algorithm. The latter
approach is restricted to 2D pose graphs. Moreover, the experiments carried out by Konolige
et al. [110] show the advantage of a least squares approach in terms of accuracy and runtime
against TORO, and SEIF approaches. In g2o we share similar ideas with these systems. Our
system can be applied to both SLAM and BA optimization problems in all their variants, e.g.,
2D SLAM with landmarks, BA using a monocular camera, or BA using stereo vision. g2o
showed a substantially improved performance compared these systems on all the data we used
for evaluation purposes.

Our approach assumes the node and constraints as given and focuses on determining the
most likely map of the environment. We concentrated on implementing an efficient optimiza-
tion back-end that can operate with different front-ends. For example, Bosse’s ATLAS frame-
work [22] or the work presented by Nüchter et al. [162] may generate the input data for our
approach. Gutmann and Konolige [82] also demonstrated an approach which is suitable for
generating the constraints. Finally, the work by Olson [163] describes a front-end for data asso-
ciation. Here, a correlative scan-matcher estimates the motion of the robot between subsequent
time steps. Furthermore, loop closures are obtained by matching observations based on features,
while wrong ones are filtered by spectral clustering. As outliers in the data association have a
crucial effect on the estimate, several approaches for handling them have been proposed. For
example, introducing multi-modal constraints, which are then approximated by the maximum
likely component [166], deals with outliers efficiently. Here, one mode is the null-hypothesis.
Likewise, the switching priors method [203] deactivates constraints which presumably corre-
spond to outliers in the data.

In computer vision, Sparse Bundle Adjustment [140, 210] is a nonlinear least squares opti-
mization method that takes advantage of the sparsity of the Jacobian pattern between points and
camera poses which arises while performing Structure from Motion. Recently, there have been
several systems [94, 107] that advance concepts of sparse linear solvers and efficient calculation
of the Schur reduction (see Section 2.3.4) for large systems (∼100M sparse matrix elements).
There are also new systems based on nonlinear conjugate gradient that never form the linear sys-
tem explicitly [4, 27]; these converge more slowly but can work with extremely large data sets
(≈1000M matrix elements). We compared, g2o to the SSBA system of Konolige [107], which
is an efficient publicly available system. Our approach g2o achieves a comparable performance.

Another publicly available framework for addressing nonlinear least squares is the Ceres
Solver [3] released by Google, where it is used for realizing Google Street View among ad-
dressing various optimization problems. For solving the linear system Ceres Solver also em-
ploys CHOLMOD [37] as g2o does. Our comparison shows that g2o outperforms Ceres Solver
in terms of runtime on BA problems, whereas both approaches compute the same solution.

2.7 Conclusions

In this chapter we explained the probabilistic formulation of the full SLAM problem which
can be solved by phrasing it as a least squares problem. This led us to g2o, our extensible
and efficient open-source framework for batch optimization of functions that can be embedded
in a graph. Relevant problems falling into this class are graph-based SLAM and SfM, two
fundamental and highly related problems in robotics and computer vision. Modifying g2o to
a new problem instance only requires to define the error function a procedure for applying a
perturbation to the current solution. Furthermore, we can easily embed a new optimization

48 Chapter 2. A General Framework for Graph Optimization

algorithm into the framework, which enables us to verify the characteristics of the specific
solver on a wide range of problems sharing this graph structure. In particular, we showed
in our experiments the applicability of g2o to various variants of SLAM (2D, 3D, pose-only,
and with landmarks) and to Bundle Adjustment. Our evaluation, which we performed on an
extensive collection of data sets, demonstrates the overall good performance of our approach.
g2o achieves a performance comparable to implementations of problem-specific algorithms and
often even outperforms them. An open-source implementation of the entire system is freely
available as part of ROS and on OpenSLAM.org.

The research community quickly adopted g2o after its release as open-source. Hence, we
are only able to give an incomplete overview about the approaches utilizing g2o. For exam-
ple, g2o is considered as optimization back-end for implementing Visual SLAM [199], SLAM
with a Kinect depth sensor [53], or monocular cameras mounted on a car [141]. Additionally,
researchers considered g2o as the underlying optimization framework for implementing exten-
sions [128, 166, 203] to handle outliers in the data association. Julier et al. [97] utilize g2o for
multi-rate estimation by decomposing the system into “slow” and “fast” states.

In the following chapter, we will address the issues that we have identified in this chapter.
Namely that the iterative approach may converge to a local minimum. As we have mentioned,
this effect is a result of the shape of the sensor model and the quality of the initial guess.
Based on the technique presented in this chapter, we will improve the convergence properties by
introducing a hierarchy of factor graphs. Additionally, the hierarchy is also beneficial for online
mapping, as only a smaller problem that approximates the original one has to be optimized in
each time step.

Chapter 3

Hierarchical Optimization for

Graph-Based SLAM

In the previous chapter, we discussed how to obtain a solution to pop-
ular problems in robotics and computer vision like simultaneous lo-
calization and mapping (SLAM) or Structure from Motion (SfM) for
a given data association, by constructing a least-squares optimization
problem. In this chapter, we present an approximation to the solution
which addresses the issues that we have identified in the previous chap-
ter. First, the approximation converges to the correct solution on prob-
lem instances where the standard methods fail. Second, we derive an
algorithm which shows an increased efficiency allowing us to apply it
online while the robot is exploring. To this end, we employ a divide-
and-conquer approach that exploits the structure of the factor graph.
Our approach has been validated on real-world data and in simulated
experiments and is able to succeed in finding the global minimum in
situations where other state-of-the-art methods fail.

• • • • • • • • • • •

As we have seen in the previous chapter, several problems in autonomous robotics and com-
puter vision, like simultaneous localization and mapping (SLAM) or Structure from Motion
(SfM), can be addressed by solving a least squares problem for a given data association. Fur-
thermore, we outlined a common way to solve these least squares problems by applying iterative
methods — like Gauss-Newton or Levenberg-Marquardt — which refine an initial guess until
convergence or matching another termination criterion. Unfortunately, if this guess is out of
the convergence basin of the algorithms, the iterative optimization may, however, fail to reach
the global minimum. We will address this issue in the following. In particular, we suggest an
approximation of the original problem which increases the chance to converge to the global
minimum.

Additionally, we observed that SLAM and SfM exhibit a strong locality, which results in
the sparse structure of the corresponding factor graph. The variables in these problems are
correlated when they are temporally or spatially close. The temporal locality is the consequence
of the sequential data acquisition, while the spatial locality arises from the limited range of the
sensors. In this chapter, we will discuss an algorithm which exploits the locality among other
typical properties of the SLAM problem.

50 Chapter 3. Hierarchical Optimization for Graph-Based SLAM

(a) simulated odometry (b) estimate of LM (c) estimate of our approach

Figure 3.1: A robot equipped with a stereo camera is simulated in a Manhattan world. The trajectory
is drawn in blue, whereas the features are depicted in orange. (a) The initial guess is computed by
composing the odometry of the robot. (b) Running a standard iterative Levenberg-Marquardt algorithm
yields a sub-optimal estimate. (c) Our approach converges to the correct solution.

The key idea of our approach is to partition the input factor graph into small locally con-
nected sub-graphs. Each of these sub-graph represents a small part of the whole factor graph
and could be viewed as a local map, which can be solved independently in a robust and efficient
manner. The solution of these local maps, however, cannot be combined together in a straight-
forward way. To this end, from each partial solution we construct a simple factor graph that
constrains the relative positions of the variables in the solution. Each sub-graph represents an
approximation of the original one. The union of them, however, exhibits a larger convergence
basin than the original problem. The factors in these graphs incorporate the information con-
tained in the sub-graph from which they were generated. Thus, we refer to them as condensed
measurements. To determine the global layout of the partial solutions in the space, we find
the minimum of the union of all translated sub-graphs. As this translated problem has a larger
convergence basin, we have increased the chance of finding the correct minimum. We utilize a
hierarchy to represent the different layers of abstraction. Figure 3.1 shows a motivating example
of our approach, where we simulated a robot with a stereo camera driving in a Manhattan maze.
A standard iterative Levenberg-Marquardt (LM) algorithm converges to a local minimum. Our
approach, however, estimates the correct solution.

In addition to improving the convergence characteristics of the standard methods, we also
gain another advantage. So far, we have presented means to solve the nonlinear least squares
problem that arises in SLAM, but we ignored that the moving robot might need a solution
while still exploring the environment. In such an online scenario, two problems need to be
addressed: First, constraints need to be extracted from sensor data. This is referred to as the
SLAM front-end. Second, given the constraints the most likely configuration as well as the pose
uncertainty needs to be computed. During online operation, these two problems are addressed at
the same time and the performance of the front-end typically benefits from an accurate estimate
determined by the back-end. To this end, our hierarchy provides efficient means to estimate
an accurate approximation of the solution which facilitates the data association process. In this
scenario, the hierarchy reduces the complexity of the optimization problem but still contains
all the relevant information needed by the front-end to operate successfully. Thus, the solution

3.1. Considerations about SLAM-Like Problems 51

can be provided faster than for the original problem. Note that while we focus on SLAM as a
motivating application in the remainder of this chapter, our approach has the potential to address
other problems which require to solve a least squares problem.

The remainder of this chapter is organized as follows. After discussing the typical proper-
ties of the SLAM problem in the next section, we present our approach which exploits these
properties to improve the convergence in Section 3.2. Afterwards, in Section 3.3 we construct
a hierarchy of pose-graphs for online mapping. In Section 3.4 we evaluate both the hierarchy
of pose-graphs for online mapping and the hierarchical approach for batch or offline processing
on a collection of real-world data sets and on simulated data. Subsequently, we then present the
related work in Section 3.5.

3.1 Considerations about SLAM-Like Problems

As we have seen previously, the variables in the factor graph for SLAM and SfM represent
spatial entities that are either poses of the moving sensor (such as laser range finders, cameras)
or positions of the observed entities (landmarks, scans, local maps and so on). The factors
correspond to the measurements that depend on single robot positions (like GPS, magnetic field,
or attitude), temporally subsequent robot positions (like odometry, velocity, or acceleration), or
they arise by the observation of a map element from a certain position of the observer. Usually,
each measurement involves a set of variables that are spatially close. This results in a local

connectivity of the graph since variables are related to spatial entities and only variables that are
within a certain range between each other are connected.

In the presence of devices having a highly nonlinear model, like a bearing-only sensor or a
monocular camera, and in absence of a good initial guess, iterative methods can fail. Observ-
ing the same scene with more informative sensors that are, for instance, capable of measuring
also the range to a landmark or the depth of a point, increases the chances of success for the
iterative methods. Thus, the approaches presented in Chapter 2 applied to SLAM-like problems
are sensitive to the sensor model. The sensor model has a great impact on the profile of the
error function, and thus on the size of the convergence basin. Clearly, the sensor model is a
characteristic of the sensor and cannot be arbitrarily changed.

For short trajectories the open loop estimate obtained by using incremental approaches
(wheel odometry, visual odometry, integration of the accelerometers) is sufficient to obtain a
good solution despite using less informative measures, like bearing-only data. Thus, direct
approaches work well on small-sized problems.

The key insight gained from the analysis of the SLAM problem is the following. Consistent
solutions for small portions of the problem allow us to derive a new set of virtual measurements
from the partial solution. Particularly, these virtual measurements are able to observe all dimen-
sions of the variables. Hence, we can formulate another problem with a similar solution that
uses a different sensor model, which is also less nonlinear. It is in general convenient to apply
sensor models that have a smooth error profile and that observe the highest possible number of
dimensions of the involved state variables.
We recall the three characteristics of graph-based SLAM that form the base of our approach:

1. Local Connectivity: The SLAM factor graph has a strong locality. Variables are related
to spatial entities and only variables that are within a certain range between each other
are connected.

2. Sensitivity to the Sensor Model: The used sensor model has a great impact on the pro-
file of the error function and thus on the chances of finding the global minimum. It is

52 Chapter 3. Hierarchical Optimization for Graph-Based SLAM

convenient to use sensor models that have the smoothest possible error profile and that
observe the highest possible number of dimensions of the involved state variables.

3. Sensitivity to the Size of the Problem: The error in the estimate typically grows with
the distance traveled by the robot. Optimizing small portions of the graph usually allows
us to determine a reasonable solution for that portions.

3.2 Robust Optimization using Condensed Measurements

In this section, we present our approach which exploits the three characteristic features of
SLAM outlined above. The advantage of our method is twofold. On the one hand, we are able
to reduce the computational demands to compute an approximative solution. On the other hand,
we address the shortcomings of the standard methods. To this end, let us recall the problems that
we identified in Chapter 2. The result obtained by the standard Gauss-Newton and Levenberg-
Marquardt algorithms heavily depends on the initial guess of the state and the smoothness of
the measurement functions. For instance, a poor initial guess might lead to a suboptimal re-
sult because the approach may converge to a local minimum. We refer to Gauss-Newton and
Levenberg-Marquardt as direct methods in the following. The novel approach proposed in this
chapter allows us to obtain a solution for problems where the standard algorithms fail.

In Figure 3.2 we provide a graphical explanation for our approach on a landmark-based
SLAM instance. Here, we restricted the example to binary factors only. Furthermore, the
poses of the robot are indicated by triangles, whereas the landmarks are visualized as circles.
As indicated in the figure, our approach assumes the availability of odometry measurements
constraining subsequent poses of the robot. Our approach works as follows.

First, the original problem is partitioned into small chunks based on the trajectory of the
vehicle. The dashed line Figure 3.2a indicates the border along which the problem is divided
into smaller chunks. Each of these chunks forms a small factor graph describing a portion of the
problem. Because of the local connectivity, each factor will capture a small contiguous portion
of the environment that can be seen as a local map (see Figure 3.2b). These local maps are
related to each other through variables belonging to more than a single local map. These shared
variables are illustrated in red.

Second, we can obtain a reasonable solution for each of these problems by applying a direct
method. As each individual problem only consists of a small sub-graph, the direct method is
able to determine a correct solution. In absence of global measurements, for example, GPS
or similar reference systems, these local maps can move arbitrarily in space without affecting
the value of the objective function. This is known as gauge freedom, see, for example, the
discussion by Triggs et al. [210]. Thus, to determine a unique solution, we need to artificially
constrain some variables, i.e., we enforce that one pose of the robot cannot move. In the re-
mainder of this chapter, we will refer to these variables as the origin (gauge) of the local maps.
They are illustrated in dark blue in Fig. 3.2c. Having a solution for a local map means that
we know a Gaussian approximation of each variable within the local map, relative to its origin.
Furthermore, whatever sensor measurements have been considered to obtain the solution, the
measurements yield a Gaussian approximation. For example, in a 2D landmark-based SLAM
problem we can estimate the full 2D position of the landmark, whereas a single measurement
itself may only be able to cover the relative bearing of the landmark with respect to the robot.
This is due to the fusion of multiple measurements into a full estimate for the landmark. Sec-
tion 3.2.1 provides a detailed description of this.

3.2. Robust Optimization using Condensed Measurements 53

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.2: Overview of our optimization procedure on a small landmark-based SLAM problem. Here,
we illustrate the factor graph by highlighting only the variables. The factors denote binary measurements
and are encoded in the edges. (a),(b) We partition the problem into sub-graphs. The shared variables are
in red, and dotted lines show the corresponding variables in different partitions. (c) We solve these prob-
lems independently with respect to their origins (dark blue), and we determine the marginal covariances
of the shared variables. (d) We compute condensed factors connecting each shared variable to its origin.
(e) We solve the complete problem on the condensed factors to align the local maps. (f) The alignment
of the local maps provides a good initial guess for optimizing the original problem.

54 Chapter 3. Hierarchical Optimization for Graph-Based SLAM

After obtaining a solution for the local maps, we seek for a global alignment that satisfies
all the equality constraints induced by the shared variables. These constraints are depicted
with dotted lines in Figures 3.2b, 3.2c, and 3.2d. Approaching this problem by initializing
the original factor graph with the local solutions can fail since these local solutions will be
destroyed during the global optimization. Hence, we reduce the problem from determining a
global initial guess to finding a global alignment of the local maps and of the shared variables,
while preserving the structures of the local maps computed before.

To this end, we replace the factor graph of each local map with another one. In particular,
we modify the topology of the graph and consider different sensor models. This results in
a factor graph which is easier to solve by applying a direct method. While constructing this
factor graph, we utilize smooth sensor models that exploit our knowledge about the involved
variables. Namely, we employ sensor models which are able to fully qualify each variable
within the local map with respect to its origin. Referring to our example above, we will use a
sensor model observing the x/y location of a landmark relative to the robot instead of only the
relative bearing. We construct the reduced problem by considering the origins along with all
the variables which are shared between the involved local maps. We then add a factor between
each shared variable and the origin, as illustrated in Figure 3.2d. This factor depends on the
entities which are related to each other. Clearly, the type of factor considered for constraining a
pair of poses of the robot differs from the one representing an observation of a landmark. The
mean and the information matrix of the measurement are computed by projecting the marginal
covariance of a state variable in the measurement space via the unscented transform [96]. We
provide a detailed discussion of this in Section 3.2.2.

This procedure converts the factor graph of a local map, which can have an arbitrary topol-
ogy, into a star topology. The center of the star is the origin of the local map and the other nodes
are the shared variables. Each shared variable is connected by only a single factor to the origin
of the map. The variables which are not shared between several local maps are not considered
in this step as they have no direct influence on the solution for aligning the sub-maps. The
shared variables are connected to the origin by factors that are generated based on the solution
of the local map. We call these factors condensed factors since they summarize the relation-
ship between a variable and the origin of the local map by considering all measurements while
optimizing the local map.

Based on the star topology of each local map, we assemble an approximation of the original
global factor graph by combining all the newly computed factor graphs into a new sparser factor
graph. The solution of this graph yields a global configuration of the origins of the individual
local maps and the shared variables. This is illustrated in Figure 3.2e. Furthermore, since the
sensor models are smoother than the original ones, the new problem will have a larger conver-
gence basin. Thus, direct approaches are likely to find the optimal solution. The approximated
solution for the origins of the local maps and the shared variables yields a good initial guess
for the full problem. To this end, we arrange the local maps computed at the beginning of the
procedure accordingly as shown in Figure 3.2f. At this point, an optimization, which considers
the original factors, can further refine the approximated solution. Note that while we only de-
scribed two layers of factors, the procedure outlined above may be applied recursively to form
additional levels of abstraction.

In the remainder of this section, we will describe in detail how to partition the input fac-
tor graph into sub-graphs (local-maps), how to solve the local maps, and how to compute the
marginal covariance of the shared variables. Finally, we describe how to compute the condensed
measurements.

3.2. Robust Optimization using Condensed Measurements 55

3.2.1 Constructing and Solving the Local Maps

The procedure outlined above requires to first partition the input into small sub-graphs leading
to local maps. Since the local maps need to be merged in a later step, we should prevent
the information stored in the original problem from being used multiple times. The relations
between variables are modeled by the factors of the graph. Hence, it is sufficient to partition
the factors of the input problem into different local maps. Each factor should be assigned to a
different local map. Conversely, the variables can be replicated; a variable that appears in more
than one local map becomes a shared variable. It acts as a vertex separator of the original graph.

Additionally, we want these local maps to admit unique solutions, which means that the
resulting linear system (see Eq. 2.46) should have full rank, once we fix the vertex in the origin.
In general, this is a challenging problem. Since we assume that we have odometry, we can
construct a solvable sub-graph by selecting a contiguous segment of the robot trajectory. In our
experiments, we considered a length of five meters. Knowing one pose of the robot in a segment
and chaining the odometry measurements fully specifies the position of all other robot poses in
the particular segment. Without odometry we would need to consider an additional criterion
during clustering. For example, in SfM, when we assume a known camera calibration, we need
at least five points that are visible in each of the two views for estimating the motion (up to
scale) between the two cameras [136]. Subsequently, we consider all landmarks that have been
observed by poses contained in this segment of the trajectory. Depending on the type of sensors,
the landmarks can be fully observable or not. For instance, to triangulate the position of a 2D
landmark observed with a bearing-only sensor, we need two observations from two different
robot positions. If the senor also measures the range, a single observation is sufficient. Based
on the odometry guess, we attempt to determine the position of all observed landmarks. The
landmarks for which a position cannot be determined are not considered in this step. Hence,
we obtain a set of factors that leads to a fully specified problem. Note that certain landmarks
may be discarded from all local maps because their position cannot be determined in any of
them. This results in ignoring some of the information when approximating the initial guess.
We, however, recover this information in the final refinement stage of the algorithm, where we
employ a direct method on the original factors starting from the initial guess computed by our
approach.

Given the partitioning of the original graph into sub-problems, we solve each of them in-
dependently by using the direct methods described in Section 2.3. Furthermore, as outlined
in Section 2.3.5, we can then compute the marginal covariances of the separators as the cor-
responding blocks of H−1. Note that we obtain the marginal covariances of the increments
∆xi and not of the state variables xi. Hence, the covariances need to be propagated from the
increments to the state variables.

3.2.2 Computing Condensed Factors

As final element of our approach, we need to describe how to compute a new set of factors
that relate the separators {xi} and the origin xg, given the marginal covariances {Σi} previously
computed. To this end, we note that our factor graph features a set of measurement functions

htypeOf(xi)(xg,xi)
def.
= h(xg,xi). (3.1)

Each of those functions depends on the type of the separator xi. For example, in SLAMwe typi-
cally have two types of variables: the poses of the robot, which either belong to SE(2) or SE(3),

56 Chapter 3. Hierarchical Optimization for Graph-Based SLAM

and the landmarks, which are represented as vectors in either R2 or R3. The procedure de-
scribed above guarantees that the origin of each local map is a pose of the robot. Consequently,
this allows us to specify the virtual measurement function as

h(xg,xi) =

{
toVec(X−1g Xi) if (typeOf(xi) = pose)

X−1g xi if (typeOf(xi) = landmark)
. (3.2)

Here, we assume that Xk is the transformation matrix corresponding to the pose xk. Intuitively,
the expected measurement between two poses is the relative movement between one and the
other. The expected measurement between a landmark and a pose is the projection of the land-
mark in the frame of the observing pose. The above choices are not unique. We selected these
measurement functions to compute our condensed factors because the experiments demonstrate
that they behave better than other models.

As we know which particular measurement function to select for each separator, we can
determine the factors Fi connecting the origin and the separators:

Fi = ei(xg,xi)
⊤Ωiei(xg,xi). (3.3)

To this end, we recall Eq. 2.52 that relates measurement function and error vector through the⊟
operator: ei(xg,xi) = h(xg,xi)⊟ zi. Thus, we need to determine the virtual measurement zi and
the information matrix Ωi. The error function depends on the known measurement function h(·)
and on the yet unknown virtual measurement zi. Since the error should be 0 at the current
solution of the local map, the virtual measurement vector at the equilibrium is

zi = h(x∗g,x
∗
i), (3.4)

where x∗g and x∗i are the actual values of the origin and of a separator after solving the sub-
problem.

So far, we have only determined the virtual measurement zi of Fi. Thus, we still have to
compute the information matrix Ωi. Since the origin node is fixed, its covariance matrix is zero.
This means that only the marginal covariance of xi contributes to Ωi. The procedure outlined
in Section 2.3.2 yields the covariance matrices of the increments ∆xi. Hence, we need to remap
them through the error function. By rewriting the error function, we highlight the contribution
of the increments

ei(xg,xi⊞∆xi) = h(xg,xi⊞∆xi)⊟ zi. (3.5)

We then remap the marginal covariance of ∆xi by using the unscented transform [96].
The (scaled) unscented transform estimates the result of applying a nonlinear function f (·)

to a random variable y, which is normally distributed and described by its mean µy and covari-
ance matrix Σy. Let us introduce a second random variable ý which is defined as

ý= f (y). (3.6)

The unscented transform is a method to recover the mean µý and the covariance Σý of ý, see
also Figure 3.3. To this end, a set of weighted samples, the so-called sigma-points is considered.
The set of sigma-points Y for the n-dimensional random variable y is given by

Y [0] = µy (3.7)

Y [i] = µy+
√
n+ζ

[√
Σy

]
i

(3.8)

Y [i+n] = µy−
√
n+ζ

[√
Σy

]
i

for i= 1, . . . ,n, (3.9)

3.2. Robust Optimization using Condensed Measurements 57

f (·)

(a) (b) (c)

Figure 3.3: The unscented transform estimates the outcome of applying a nonlinear function f (·) to a
Gaussian. (a) The original Gaussian distribution with the so-called sigma-points shown in pink. (b) Prop-
agating the sigma-points through the nonlinear function. (c) Recovering of the Gaussian by considering
the transformed sigma-points.

where ζ is a parameter, [·]i corresponds to the i-th column of the matrix, and
√

Σy denotes
the square root of the covariance matrix. A commonly used definition for it in context of the
unscented transform is the Cholesky decomposition of Σy, i.e.,

√
Σy

def.
= LΣ, (3.10)

where Σy = LΣL
⊤
Σ . Furthermore, the weight of each sigma-point is set according to

w
[0]
µ =

ζ

n+ζ
(3.11)

w
[0]
Σ = w

[0]
µ +

(
1−α2+β

)
(3.12)

w
[i]
µ = w

[i]
Σ =

1

2(n+ζ)
for i= 1, . . . ,2n, (3.13)

where α and β are parameters. The parameters are chosen as follows:

κ ≥ 0 (3.14)

α ∈ (0,1] (3.15)

ζ = α2 (n+κ) (3.16)

β = 2. (3.17)

The parameters κ and α influence the distance of the sigma-points to the mean µy and β = 2
is the optimal choice for a Gaussian distribution [96]. Furthermore, κ > 0 guarantees that the
reconstruction of the covariance given below results in a positive semi-definite matrix. In our
implementation, we set κ = n and α = 10−3. Given the sigma-points and the weights, we can
compute µý and Σý as

µý =
2n

∑
i=0

w
[i]
µ f
(
Y [i]

)
(3.18)

Σý =
2n

∑
i=0

w
[i]
Σ

(
f
(
Y [i]

)
−µý

)(
f
(
Y [i]

)
−µý

)⊤
. (3.19)

58 Chapter 3. Hierarchical Optimization for Graph-Based SLAM

(a) lower level (b) intermediate level (c) top level

Figure 3.4: A hierarchy with three levels constructed by HOG-Man while optimizing a 3D network
of 2,000 nodes and 8,647 constraints. (a) The lower level representing the original problem. (b) The
intermediate level condenses the input data, whereas (c) the top level subsumes the information of the
intermediate level. Each upper level gives a coarser representation of the underlying one.

To apply the unscented transform in our case, we extract a set of sigma-points {σ [k]
∆xi
} from

the marginal covariance Σ∆xi of the increments ∆xi and we remap them through Eq. 3.5 as
follows:

σ [k] = ei(x
∗
g,x
∗
i ⊞σ

[k]
∆xi

). (3.20)

We then compute Ωi by inverting the covariance matrix reconstructed from the projected sigma-
points.

The procedure outlined above determines the new factors used to describe a local map in a
compact manner at a higher level of abstraction. The new factors are computed after considering
the solution of a full portion of the problem and model the relationships between the origin of a
local map and the separators. Furthermore, the set of new factors optimizes the position of the
local maps with respect to each other.

A similar concept is applied for the hierarchy of pose-graphs to be described in the next
section. As we have mentioned above, each cluster can be regarded as a local map and their
alignment is refined in the upper level. This allows the robot to focus on the portion of the factor
graph which encodes the vicinity around the current position of the robot. In the experiments,
we will show that this results in an efficient method for addressing the SLAM problem online.
Particularly, the advantages of our method become more evident on larger data sets.

3.3 Hierarchical Pose-Graph for Online Mapping

As we have seen in the previous section, we can subsume the information contained in mul-
tiple measurements, which are represented as several constraints, into a single constraint. In
this section, we will specialize this concept to pose-graphs for online mapping. We call this
approach HOG-Man in the following. HOG-Man implements the hierarchical strategies to re-
duce the computational demands during online mapping. It furthermore accurately models the
coarse structure of the environment while the robot explores an environment. An accurate es-
timate of the structure of the environment is essential for making good data associations in
the SLAM front-end. It is worth mentioning that our sparsification procedure is an accurate
nonlinear approximation and accordingly, one can compute the covariances of the nodes by
considering the sparse graph only. This enables the front-end to operate efficiently and to use

3.3. Hierarchical Pose-Graph for Online Mapping 59

G l−1
i G l−1

k

xl
i xl

k

xl−1
i xl−1

k

F l
ik

Figure 3.5: Example for a graph structure exhibiting two levels in the hierarchy. Every node xli in the
higher level corresponds to a connected sub-graph G l−1

i at the lower level and to a node xl−1i within the
sub-graph. A factor F l

ik exists if two sub-graphs are connected in the lower level.

popular approaches for data association like the χ2 test or the joint compatibility test [157].
The key idea of our hierarchical pose-graph is to represent the problem at different levels

of abstraction. While the lowest level (l = 0) represents the original input, each upper level
l+1 represent a coarser approximation of the underlying pose-graph at level l ≥ 0. Figure 3.4
illustrates an example for a hierarchy with three levels. Each level in our hierarchy is a pose-
graph, in which a node in the level l + 1 represents a sub-graph at level l. To this end, a
factor in any upper level l > 0 has to model the constraints between the sub-graphs in the
underlying level. An important effect of our hierarchical representation is the reduction of
parameters in each level for describing the environment. A reduced number of parameters leads
to a faster optimization. The construction of the hierarchy itself introduces some additional
operations, though. On the other hand, the reduction comes along with a coarser description of
the environment.

More formally, we represent the problem using a hierarchy of L graphs. Let G l be the pose-
graph at level l. The graph G l consists of a set of nodes {xli} and a set of factors or edges {F l

ik}
forming constraints on the nodes. Each node xli at level l is associated to

(i) a “representative” node xl−1i at level l−1 and

(ii) a connected sub-graph G l−1
i at level l−1.

In particular, we obtain a factor F l
ik between the nodes xli and xlk at level l > 0 if the two sub-

graphs G l−1
i and G l−1

k are connected at the underlying level. Figure 3.5 illustrates a hierarchy
having two levels. Note that the representative robot pose xli in our hierarchy of pose-graphs is
actually the origin of the local map constructed out of the sub-graph G l−1

i . The construction of
the higher levels is controlled by partitioning the respective lower level into sub-graphs. Such a
sub-graph can be interpreted as a local map, which is represented by a node in the higher level
of the hierarchy. The factors, in turn, model the relations between those local maps and they
arise from the connectivity between the neighboring local maps, which can also be interpreted
as the shared variables.

For constructing the hierarchy, we first need to build the graph G l at level l by taking into
account the factors in G l−1 at level l− 1. To this end, we form groups of the nodes in G l−1,

60 Chapter 3. Hierarchical Optimization for Graph-Based SLAM

for example, by generating clusters based on the distance of the nodes to each other. Here,
the distance between nodes is determined by considering the edges of the graph instead of the
straightforward Euclidean distance. Our approach generates the clusters so that the diameter of
each cluster does not exceed a specified threshold. Clearly, other choices are possible, but this
straightforward threshold criterion worked well in our case. A possible extension might con-
sider the segmentation of the environment into entities, such as rooms, buildings, or blocks of
houses. Another viable solution is to apply general graph partitioning algorithms, for example,
nested dissection as done in TSAM [158]. Let us denote the clusters built in each level by the
set {G l−1

i }. The node xli at level l is established by choosing the node xl−1i as a representative

for the cluster G l−1
i .

Given the clusters in the lower level l− 1 and the nodes that are propagated to the upper
level l, we need to add factors between the representatives of the clusters if the clusters are
connected by factors, see also Figure 3.5. Such a factor F l

ik has to integrate all the information

provided by the factors in G l−1
i and G l−1

k as well as the factors relating both clusters. The
factor F l

ik = 〈zlik,Ωl
ik〉 is defined by a Gaussian. Hence, we need to determine the mean zlik

and information matrix Ωl
ik which specify the factor F l

ik. The parameters depend only on the

configuration of the sub-graphs G l−1
i and G l−1

k .

To this end, let G l−1
i ∪ k be the union of the graphs G l−1

i and G l−1
k as well as the factors es-

tablishing connections between the two sub-graphs. By optimizing the union graph G l−1
i ∪ k, we

obtain the maximum likelihood transformation for the relative motion between xl−1i and xl−1k .
This maximum likelihood transformation yields the mean zlik of the factor F

l
ik in the upper level.

The outcome of taking into account all the factors in G l−1
i ∪ k is the information matrix H l−1

i ∪ k. As
we have previously seen in Section 3.2.2, we can extract the covariance of the factor F l

ik by
propagating the covariance for the increments through the error function. For this operation,
we can again exploit the sparseness of H l−1

i ∪ k which computes the desired block of the inverse
efficiently [70, 99] without computing the full inverse.

As the robot moves through the environment, information has to be added to the hierarchical
pose-graph. This is done by adding a newly created node and a set of edges connecting this
node to the bottom level of the hierarchy just as in standard graph-based SLAM. According
to a distance-based threshold criterion, the newly created node is either added to an existing
group or it becomes the representative of a new one at level 0. This procedure is recursively
executed upwards the hierarchy until no new groups need to be created. Edges are added and
its parameters are updated following the procedure outlined above. Figure 3.6 provides an
illustration of this procedure.

When the robot revisits a known region new edges on the bottom level l = 0 are introduced,
but the revisiting does not lead to new nodes in the upper levels. We instead only need to update
the factors in the upper level. Lets us assume that the new node xl−1t is added to the existing
cluster G l−1

i . Optimizing the graph G l−1
i ∪ k, which corresponds to the union of the two graphs

G l−1
i and G l−1

k , yields the updated mean zlik and the updated information matrix Ωl
ik of the

factor F l
ik. The update is performed for each cluster G l−1

k that is related to the cluster G l−1
i . The

updated factors are propagated upwards in the hierarchy.
After an update of the hierarchical pose-graph, an optimization is carried out. The opti-

mization always starts at the top level using the nonlinear optimization approach presented in
Chapter 2. As a result, all nodes at the highest level are updated. Changes, however, are only
propagated to the lower levels if the optimization leads to significant changes in the config-
uration of the nodes. These changes are detected by monitoring the difference between each
node xli and its representative xl−1i in the lower level of the hierarchy. Whenever the distance

3.3. Hierarchical Pose-Graph for Online Mapping 61

(a) hierarchy in time step t (b) hierarchy in time step t+1

(c) hierarchy in time step t+2

Figure 3.6: Adding nodes to the hierarchy of pose-graphs. For convenience we indicate the binary
factors by edges which connect the nodes of the binary factor. (a) The initial state of the hierarchy up to
time step t. (b) In time step t+1, a new node (indicated by the arrow) is added to one of the sub-graphs.
This requires to update the factor on the higher level which connect to updated sub-graph. (c) In the next
time step, we again add a new node. Since it is not added to an existing sub-graph, we instantiate a new
representative node in the upper level. Additionally, our approach adds a factor to the higher level which
represents the constraints between the sub-graphs of the lower level.

between xli and x
l−1
i exceeds a given threshold (in our current implementation: 0.05m or 2 deg),

we propagate the changes downwards. This is achieved by applying a rigid body transformation
to each subgraph G l−1

i so that xli = xl−1i .
When required by the front-end, we generate a locally consistent estimate of a portion of the

map by optimizing the corresponding sub-graph at the lowest level which exhibits the highest
level of detail. During the optimization, we impose the additional constraints xl−1i = xli . This
allows us to propagate the estimate from the higher level to the lower level. Thus, the opti-
mization performed by our approach can be regarded as lazy optimization, as only a subset of
the variables is directly modified. After the mapping process one may consider to run a last
optimization at level l = 0 to obtain the best possible map, though. This is related to our lazy
optimization. The optimization of the hierarchy treats each cluster and hence each local map as
rigid. The full optimization on the lowest level, however, allows them to move to determine the
best configuration.

The description above illustrates means to generate and update a hierarchy of pose-graphs,
each higher level in the hierarchy thereby provides a coarser representation. This hierarchy is
in particular useful for implementing a SLAM back-end which efficiently provides a consistent
approximation while the robot is mapping. It is worth to note that the number of nodes in the
highest level scales with the mapped area and not with the distance traveled by the robot.

Furthermore, the bottom layer of the hierarchy in the description above was assumend to
consist only of the poses of the robot. In the presence of landmarks, we could apply the tech-
nique discussed in Section 3.2 to generate a pose-graph that condenses all the information given
by the individual landmark measurements and apply the hierarchical strategies discussed in this
chapter on top.

62 Chapter 3. Hierarchical Optimization for Graph-Based SLAM

Prob. mass not covered Prob. mass outside

Intel Research Lab 0.10% 10.18%
W-10000 2.53% 24.05%
Stanford Parking Garage 0.01% 7.88%
Sphere 2.75% 10.21%

Table 3.1: Comparison of the 3σ covariance ellipses between the original problem and the levels of our
hierarchy.

3.4 Experiments

In our experimental evaluation, we focus on two different aspects. First, we analyze how our
approach performs in online mapping, i.e., the graph is optimized after inserting one ore more
nodes along with their measurements to the graph. Second, we evaluate the behavior of the hi-
erarchy for batch optimization which is typically done after collecting all the data. Particularly,
we investigate the convergence properties of the hierarchical optimization compared to standard
approaches for nonlinear least squares.

3.4.1 Online Mapping

The experiments are designed to show that the hierarchical pose-graph is able to efficiently
compute consistent estimates at all levels. For evaluating the accuracy we consider the mean of
the estimate along with the uncertainty of the estimate. Furthermore the experiments demon-
strate that our approach performs well with respect to other state-of-the-art techniques in terms
of runtime, such that it can operate online.

To support our claims, we compared our approach with TreeMap1 [65], TORO2 utilizing its
incremental [76] and batch [78] version, and iSAM3 [101]. We performed our tests on 2D data
sets (Intel research lab data set and a simulated one) and 3D data sets (Stanford parking garage
and a simulated sphere). Figure 3.7 illustrates the data sets. Both simulated data sets are the
ones used in [78]. During all experiments, we use a hierarchy with three levels (l = 0,1,2).

Consistency of the Hierarchical Approach

The first experiment is designed to show that the sparsified pose-graphs (levels greater than
0) yield a good approximation of the original problem. A consistent estimate is especially
important for the SLAM front-end to establish good data associations. As we optimize the
graph after inserting a single node to the graph, each approach has to solve an optimization
problem that grows in each time step.

The baseline for evaluating the accuracy of our sparsified pose-graph is the original problem,
fully optimized without the hierarchical approach. To evaluate the quality of the most sparsified
pose-graph (top level), we compare the Gaussian associated to each node of these graphs with
the corresponding distribution of the original problem. Table 3.1 illustrates the results evalu-
ating the different levels of the hierarchy based on all data sets. As can be seen, the hierarchy
approximates the original problem well. Especially, the probability mass that is not covered by
the sparse pose-graphs (over-confident estimates) is around or below 0.1% for all real-world

1https://www.openslam.org/treemap, Revision 5
2https://www.openslam.org/toro, Revision 19
3https://svn.csail.mit.edu/isam, Revision 8

3.4. Experiments 63

(a) Intel Research Lab

(b) Stanford Parking Garage

(c) W-10000 (d) Sphere

Figure 3.7: The four data sets used in our experimental evaluation: (a) the pose-graph and the grid
map of the Intel research lab; (b) the pose-graph and the 3D map of the Stanford parking garage; (c) a
simulated 2D data set (W-10000); (d) a simulated 3D data set (Sphere).

64 Chapter 3. Hierarchical Optimization for Graph-Based SLAM

0
1
2

0
1
2

(a) full graph (b) zoomed view

Figure 3.8: The covariance ellipsoids obtained by the sparsified pose-graphs on the different levels of
the hierarchy. Only the ellipsoids for the poses still present in the highest level are shown. (a) The full
graph, in which the blue rectangle indicates the area of (b) the zoomed image.

avg./std./max. [ms] Our Approach TreeMap [65] TORO [78] iSAM [101]

Intel Research Lab 3 / 3 / 26 6 / 5 / 58 2 / 1 / 15 2 / 2 / 15
W-10000 25 / 20 / 183 1426 / 1342 / 9987 146 / 97 / 323 34 / 56 / 596
Stanford Garage 12 / 19 / 191 2D only 20 / 38 / 210 41 / 62 / 636
Sphere 38 / 16 / 82 2D only 78 / 67 / 234 54 / 70 / 831

Table 3.2: Runtime comparison for the different approaches.

data sets. In general, the uncertainty ellipses of the sparse graphs are typically bigger than the
ones in the original problem (around 10% for the real-world data sets).

For the evaluation, we compute the probability mass within the 3σ bounds of the original
problem that lies outside the same bound of the sparsified graph and vice versa. We concentrated
on the 3σ probability mass here since this forms the search bounds for data association in our
SLAM front-end. Obviously, this evaluation can only be done for the nodes in the sparsified
graph. In addition to the quantitative evaluation, Figure 3.8 visualizes the obtained uncertainty
ellipsoids for the Intel Research Lab data set. As we can see, the ellipsoids as they are estimated
by our approach in the highest level of the hierarchy represent the uncertainty of the original
problem well. This means the robot is able to exploit this information for performing data
association in the front-end.

Runtime Comparison

Furthermore, we analyzed the runtime required by the different approaches to optimize the
pose-graph. We analyzed the average, the standard deviation, and the maximum runtime time
of the optimization engine which was always executed after adding a single node. The timings
are provided for all data sets analyzed in this chapter. The experiment has been executed on an
Intel i7@2.8GHz utilizing only one core.

Table 3.2 summarizes the results. As can be seen from the table, our approach clearly

3.4. Experiments 65

0

0.5

1

1.5

2

2.5

3

0 200 400 600 800

C
um

ul
at

iv
e

Ti
m

e
[s

]

Time Step

Our Approach
TORO
iSAM

0

200

400

600

800

1000

1200

5 ·103 1040

C
um

ul
at
iv
e
T
im

e
[s
]

Time Step

Our Approach
TORO
iSAM

(a) Intel Research Lab (b) W-10000

Figure 3.9: Online processing of the 2D data sets. The plots show the timings for (a) the Intel data set
and (b) the W-10000 data set.

0
10
20
30
40
50
60
70

0 500 1000 1500

C
um

ul
at

iv
e

Ti
m

e
[s

]

Time Step

Our Approach
TORO
iSAM

0
20
40
60
80

100
120
140
160
180

0 500 1000 1500 2000

C
um

ul
at

iv
e

Ti
m

e
[s

]

Time Step

Our Approach
TORO
iSAM

(a) Stanford Parking Garage (b) Sphere

Figure 3.10: Online processing of the 3D data sets. The plots show the timings for (a) the Stanford
Parking Garage data set and (b) the Sphere data set.

outperforms TreeMap. A detailed investigation of the data structure of TreeMap showed that
heavy leaves in the tree, i.e., leaves with many poses, led to the poor performance. This is
caused by revisited places leading to a fully connected clique of poses. Even worse, TreeMap
combines several successive poses into one leaf during the first visit and has to add a duplicate
pose to each of these after each revisit.

While achieving a similar performance on the Intel data set, our method outperforms TORO
on larger instances. In the comparably densely connected simulated pose-graphs this effect was
more prominent compared to the real-world data sets. On the Intel Research Lab data set our
approach performs similar to iSAM, whereas iSAM is slightly faster. In this rather small data
set the overhead introduced by the additional operations for computing the hierarchy does not
scale with the efficiency gained on the higher levels. Furthermore, we observe that the batch
steps required in iSAM lead to a large maximum amount of time which is spent on optimizing
after inserting a single node. This high cost, which occurs every 100 nodes utilizing the standard
parameters, is amortized over the whole process.

Figure 3.9 shows the cumulative time of each approach except Treemap for online process-
ing the 2D data sets, i.e., we optimized after inserting a single node along with the measure-
ments of that node. We left out Treemap from the plots due to its poor performance caused by
the effects described above. As we can see, on the small Intel data set all approaches achieve

66 Chapter 3. Hierarchical Optimization for Graph-Based SLAM

0

50

100

150

0 300 600 900

N
od
es

in
th
e

H
ig
he
st
L
ev
el

Time Step

0

200

400

600

800

1000

5 ·103 1040

N
od
es

in
th
e

H
ig
he
st
L
ev
el

Time Step

(a) Intel Research Lab (b) W-10000

0

50

100

150

200

0 500 1000 1500

N
od
es

in
th
e

H
ig
he
st
L
ev
el

Time Step

0

50

100

150

0 1000 2000

N
od
es

in
th
e

H
ig
he
st
L
ev
el

Time Step

(c) Stanford Parking Garage (d) Sphere

Figure 3.11: Number of nodes in the highest level of the hierarchy. (a) Intel; (b) W-10000; (c) Stanford
Parking Garage; (d) Sphere.

a similar performance. On the large and densely connected W-10000 data set, our approach
clearly outperforms the others. In Figure 3.10 we depict the cumulative timing for the 3D data
sets. As we can see, our approach outperforms both TORO and iSAM on these data sets. In
particular, the amount of loop closures in the Stanford garage data set causes a great amount of
fill-in which iSAM has to handle until it carries out the next re-ordering step.

For a front-end utilizing our approach as a back-end the hierarchy has an additional advan-
tage. For example, the computation of the uncertainty ellipsoids of the given state can be carried
out on the sparsified representation of the highest level. As this level yields an accurate non-
linear approximation, the robot can determine the covariances just based on this information.
Additionally, the number of nodes present in the highest level scales with the area explored by
the robot instead of the distance traveled by the robot. Figure 3.11 depicts the number of nodes
in the highest level of the hierarchy while incrementally inserting nodes into the graph. In these
plots, horizontal parts indicate that the robot is revisiting a known area, as no new nodes are
constructed in the highest level. This effect is most notable in Figure 3.11c which shows the
Stanford parking garage. In this data set the robot first explores the garage up to the highest
level, then drives inside the garage, and finally moves to one of the exits. The exploration of
the garage is finished after around 600 time steps, no new nodes are added to the highest level
of the hierarchy while the robot remains in the garage. The robot reaches the exit after around
900 time steps. This leads to adding new nodes to the highest level as the robot explores the
surrounding of the garage. Between time step 1,000 and 1,550 the robot revisits the parking
structure, which results in no additional nodes on the highest level of our approach.

3.4. Experiments 67

Trajectory Landmarks Trajectory Landmarks Trajectory Landmarks

(a) (b) (c)

Trajectory Landmarks Trajectory Landmarks Trajectory Landmarks

(d) (e) (f)

Figure 3.12: The Victoria-Park data set. The landmarks are shown as black dots and blue curves are
the robot trajectories as they are estimated by different methods. (a) The initial guess. (b) By using
a Cartesian sensor model the direct approaches fail in batch optimization, F = 30607. (c) The direct
approaches succeed when run incrementally, F = 389. (d) Our approach succeeds. (e) The bearing-only
data set cannot be optimized with direct approaches neither incrementally nor in the batch mode. (f) The
correct map is obtained by our hierarchical method.

3.4.2 Batch Optimization

In the previous set of experiments, we focused on the efficiency gains of our strategies for op-
timizing the least squares problems by a divide-and-conquer scheme. In contrast to this, we
now investigate the properties of our approach for offline or batch optimization. Here, the al-
gorithm has to determine a solution once. In particular, we examine the convergence properties
of our approach when starting from an initial guess. To this end, we validated our hierarchical
approach on real-world data and performed extensive statistical tests on simulated data. On all
data sets we compare our approach with the Levenberg-Marquardt (LM) implementation in our
g2o package. All results have been verified by both visual inspection and by comparing the er-
rors of the final solution. Real-world experiments provide evidence on the real applicability of
the results, whereas the ground truth of simulated data sets allow us to characterize the behavior
of the approaches in a more detailed way.

Real-World Experiments

The first experiment is based on the popular Victoria-Park data set. It was acquired with a car
equipped with a laser range finder and odometer. The trees in the park serve as point features and
a feature extraction algorithm executed on the laser range reports the x−y location of the trees.
We will refer to this sensor model as the “Cartesian” data set. From this data set, we constructed
a bearing-only data set, where we replaced the Cartesian observations of a landmark with the
corresponding bearing measurement. As shown in Figure 3.12a, the noise in the odometry is
relatively high.

68 Chapter 3. Hierarchical Optimization for Graph-Based SLAM

(a) (b) (c)

(d) (e) (f)

Figure 3.13: The top view of our real-world visual SLAM data set: the point features are displayed
as little dots, the trajectory of the robot is depicted in blue. (a) The initial guess obtained by the SLAM
algorithm. (b) The trajectory of the robot obtained by running LM on the good guess. (c) The noisy initial
guess obtained by composing the odometry. (d) The result of the same algorithm using the noisy initial
guess is even worse than the input. (e) The layout of the condensed problem solved by our approach after
being initialized with the noisy initial guess. (f) The final result after the global alignment.

Processing the whole Cartesian data set with direct approaches does not give the correct
solution (Fig. 3.12b), which can however be obtained by running the direct approaches incre-
mentally, after inserting 50 sequential odometry measurements (Fig. 3.12c). Our approach,
however, always finds the correct solution (Fig. 3.12d). The solution is the same as the one
computed by the direct approaches run incrementally. The bearing-only data set cannot be
solved by direct approaches when run either in batch mode or incrementally (Fig. 3.12e), due
to the high nonlinearities in the sensor model. Conversely, our approach succeeds (Fig. 3.12f).

In the second experiment, we describe the results of processing a 3D data set acquired at
the Freiburg University campus with a mobile robot equipped with a Bumblebee stereo cam-
era. From each frame, we extracted visual features [16] along with disparity and constructed
one large bundle adjustment problem enriched with odometry information. The results of the
experiments are illustrated in Figure 3.13. For this data set, we considered two initial guesses:
one obtained by optimizing the pose graph constructed by densely matching pair-wise observa-
tions (thus pretty accurate), and one based only on the wheel odometry. We processed this data
set with direct methods both batch and incrementally. Direct approaches always succeeded in
finding the optimal solution when initialized with the good guess, while they failed in all cases
starting from the bad guess. Our approach succeeded in creating the local maps and determining
a good initial alignment.

Simulated Experiments

We generated a set of synthetic 2D and 3D data sets by simulating a robot moving in a grid-
world and sensing point landmarks in its neighborhood. In all cases, we created a synthetic
world by placing a set of landmarks in the environment and letting the robot move for in-
creasingly long trajectories through a simulated Manhattan world. The same synthetic world

3.4. Experiments 69

(a) simulated 2D landmark data set (b) simulated 3D visual SLAM data set

Figure 3.14: Two simulated data sets, in which points represent point features, while blue lines indicate
the trajectory of the robot: (a) The top view of a 2D data set and (b) the perspective view of a 3D data
set.

was used to create different data sets, one for each sensor setup. Thus, in these experiments
we tested the influence different trajectory lengths and different sensor modalities on the opti-
mization outcome. Figure 3.14 shows the ground truth of two synthetic data sets used in our
experiments.

In 2D we used point landmarks and simulated both a Cartesian sensor, similar to the one
used in the Victoria Park experiment and a bearing-only sensor. In 3D we used an ideal Carte-
sian sensor capable of measuring the position of a landmark in the reference frame of the ob-
server (this can model a 3D laser), a depth sensor, which measures the “depth” of points in the
image plane (this can model RGBD cameras like the Microsoft Kinect), and finally we used a
disparity sensor suitable to model stereo cameras.

Table 3.3 shows the characteristic of the different data set in terms of number of poses, land-
marks and factors in the graph, and the type of sensor used to perceive the landmarks. Within
Table 3.4 we report for each data set the value of the error F(x) at the minimum found by the al-
gorithms for the different data sets. Fideal is the theoretical minimum value obtained by running
LM using the ground truth as initial guess. Finit represents the error of the initial guess derived
from the odometry. Flm is the error of the solution obtained by running 100 iterations of the LM
algorithm as it is implemented in the g2o package, and Fcond using our approach to determine
the initial guess and then running ten iterations of standard LM. We marked in bold the cases
in which the respective approach failed to converge to the correct solution. The reader might
observe that in some cases our approach did not reach the absolute minimum, but this is due
to the fact that we limited the LM iterations to ten. We verified that running 100 iterations of
LM results in reaching the theoretical minimum in our simulated experiments. Additionally, we
observed a substantial speedup in using the condensed measurements. For a large problem of
5,001 poses computing the solution with LM takes approximately 18 minutes, whereas our ap-
proach required 9 minutes for computing the condensed graph and the subsequent ten iterations
of LM. In total the generation of the condensed factors and the solution of the sparse problem
took less than 4 minutes on a Core 2 Duo 2.6 Ghz using one single core. The column “# cond”
reports the number of condensed factors in the global sparse problem, while the column Fsparse
reports the initial and final error of the optimization of this sparse problem. The significant
reduction of the error is possible because the constructed problem features a larger convergence
basin than the input. For problems having a very small size, no condensed factors are generated.
This is the case for the 2D data set with eleven pose variables, where the solution is computed
with standard LM.

70 Chapter 3. Hierarchical Optimization for Graph-Based SLAM

Type # poses # landm. # factors sensor ID

2D 11 403 1229 bearing 1
Cartesian 2

101 1102 10223 bearing 3
Cartesian 4

1001 2000 105399 bearing 5
Cartesian 6

5001 2000 534688 bearing 7
Cartesian 8

3D 11 175 226 depth 9
disparity 10

177 232 Cartesian 11
101 708 1809 depth 12

disparity 13
710 1868 Cartesian 14

1001 3875 19267 depth 15
disparity 16

19806 Cartesian 17
5001 4922 96659 depth 18

disparity 19
99332 Cartesian 20

Table 3.3: Characteristics of the simulated data sets used in the experiments.

As it can be seen from the table, the larger the problem becomes, the harder it is for LM
to converge to the correct solution, whereas our method succeeds on all tested instances. Also
the nonlinearity of the sensor has a great effect on the convergence. In 2D, LM fails if we use
a bearing-only sensor and the number of constraints increases. In 3D, using a Cartesian sensor
leads to the correct solution for standard approaches, while the same approach fails when using
a depth or a disparity model, the former being better than the latter. Our method succeeds in all
cases.

3.5 Related Work

Also other researchers in the past focused on solving the incrementally growing SLAM prob-
lem. For instances, approaches based on filtering are directly applicable in this case, which
we discussed in the related work in Chapter 2. Here, we focus on online variants and put an
additional emphasis on multi-level or divide-and-conquer methods.

For example, Kaess et al. [101] introduced iSAM, an algorithm which updates a QR factor-
ization by Givens Rotations whenever new information is added as the robot moves through the
environment. This variant of the algorithm requires to linearize and re-order the factor to reduce
the fill-in in the factorization. Kaess et al. [100] recently presented iSAM2 which overcomes
these limitations by utilizing the so-called Bayes tree, which fluidly re-linearizes and re-orders
the system. While the partial back-substitution done in iSAM2 reduces the computational com-
plexity, the fluid re-linearization may increase the computational demands. The experiments
reported by Kaess et al. [100] show mixed results when benchmarking the efficiency of the im-

3.5. Related Work 71

Levenberg Our Approach Condensed Graph
ID Finit Fideal Flm Fcond # cond. Fsparse (init/final)

1 3.351·107 533.837 555.927 593.097 - - / -
2 24883 1656 1656 1656 - - / -
3 4.825·108 8088.46 8088.46 8121.86 1031 208938 / 3845.72
4 367552 17982 17982 17982 1328 6778.08 / 594.761
5 7.056·109 101483 101483 101483 15218 2.681·106 / 43868.3
6 1.267·109 205351 205351 205351 17348 2.202·106 / 4482.67
7 7.666·1010 528335 2.226 ·107 528339 74437 5.031·108 / 248863
8 1.792·1010 1.056·106 1.056·106 1.056·106 85693 7.792·107 / 26300
9 5339.7 123.436 123.436 123.436 16 8.69811 / 2.25886
10 7947.67 126.067 126.067 126.067 16 11.6747 / 2.80877
11 2550.35 129.623 129.623 129.623 30 64.0997 / 16.4429
12 9.490·107 3008.07 3008.07 3008.07 1207 9452.95 / 330.039
13 1.308·108 3006.33 183734 3006.33 1207 12263 / 423.092
14 553392 3226.68 3226.68 3226.68 1219 22150 / 937.877
15 5.477·1010 43646.9 3.018 ·107 43646.9 14882 1.631·107 / 5845.47
16 3.148·1012 43551.8 1.167 ·107 43551.8 14882 2.22·107 / 7361.63
17 3.636·108 45162.9 45162.9 45162.9 15040 1.899·107 / 13897.1
18 1.5684·1014 261146 2.010 ·109 261146 79142 5.967·108 / 35200.3
19 4.518·1012 261364 3.239 ·108 261371 79142 6.304·108 / 44369.1
20 8.086·109 268993 268993 268993 79985 4.818·108 / 81782.2

Table 3.4: Summary of the simulated experiments. The column Finit gives the error of the initial state,
while Fideal corresponds to the global minimum. Within the colmuns Flm and Fcond we report the result
of a standard LM algorithm and our approach, respectively. We highlighted the instances for which
the standard approach failed. # cond. reports the number of condensed measurements generated by our
approach. Finally, Fsparse corresponds to the initial and final error for the condensed graph.

plementations of iSAM and iSAM2. Furthermore, Rosen et al. [179] presents an extension of
iSAM which utilizes Powell’s Dog-Leg instead of Gauss-Newton for incrementally solving the
SLAM problem. Both, Levenberg and Dog-Leg feature better convergence properties in case
of a non-smooth surface of the objective function.

By introducing adaptive learning rates, the tree network optimizer by Grisetti et al. [76]
provides efficient means for online maximum likelihood mapping. The Treemap approach pre-
sented by Frese [65] creates a tree leading to logarithmic update time. As we have seen in the
experiments, revisiting leafs of the tree, however, introduces additional variables leading to a
poor performance on data sets exhibiting a lot of revisits.

Applying standard partition algorithms, for example, the method suggested by Karypis and
Kumar [102], yields sub-optimal results as those methods do not exploit the domain knowledge.
For example, in bearing-only SLAMwe have to verify the observability of the landmarks. A fact
not considered by the standard algorithms. Hence, several authors addressed SLAM on different
levels of abstraction. For instance, Frese et al. [66] introduced multi-level relaxation (MLR),
a variant of Gauss-Seidel relaxation that applies the relaxation at different levels of resolution.
Ni et al. [158] presented TSAM, which employs a divide-and-conquer strategy to partition the
original large problem into smaller ones and then utilize these partial solutions to construct a
global sparse problem. The solution of the global problem is the arrangement of the partial

72 Chapter 3. Hierarchical Optimization for Graph-Based SLAM

solutions (local maps) in the space. In particular, TSAM [158] utilizes nested dissection and an
efficient parameterization to efficiently solve large off-core problems involving arbitrary types
of variables. Subsequently, Ni and Dellaert [159] extended the divide-and-conquer strategy to
Structure from Motion. The approaches presented in this chapter are orthogonal to TSAM and
extend it by expressing the solution of the sub-problems by using more general measurement
functions that condense most of the relevant information in the local solution. These error
functions are user defined, so they can be chosen to be as smooth as possible, regardless of
the factors in the input problem. The smoothness of the condensed measurements, makes our
approach more robust to poor initial guesses as shown in the experiments.

Furthermore, the ATLAS framework [22] employs a hierarchy with two levels, in which the
lower level consists of local maps built by Kalman filters and the higher level performs a global
optimization. Likewise, the hierarchical SLAM method by Estrada et al. [54] estimates local
maps that are re-arranged if the robot revisits them.

Recently, Carlone et al. [29] presented a linear approximation which is independent of the
initial guess. Their method, however, assumes spherical covariances and is limited to 2D pose-
graphs as it exploits the commutative property of rotations in 2D. Huang et al. [93] examined
the convexity of merging local maps of 2D landmarks. They found out that assuming spherical
covariances the alignment of the maps phrased as least squares problem has at most two local
minima. A discovery which supports the idea of our approach to apply a divide-and-conquer
strategy to mapping to obtain smoother functions.

Several approaches to Visual SLAM [108, 138, 199] employ a similar concept like our ap-
proach. Those systems generate a pose-graph representation out of the camera measurements
obtained at key frame locations. In particular, Strasdat et al. [199] — in addition to building
the hierarchy — limit the number of active constraints in the pose-graph layer such that a con-
stant runtime per frame is obtained. All these approaches, however, are restricted to generate
pair-wise camera constraints for their pose-graph layer. Furthermore, the usage of a relative
coordinate frame as proposed by Sibley et al. [189] overcomes the convergence problems when
a loop is closed because the relative formulation avoids the error propagation along the whole
loop. Their approach can be interpreted as continuous sub-mapping.

3.6 Conclusions

We presented a novel approach for optimizing factor graphs obtained from SLAM or SfM prob-
lems. The algorithm is robust to noisy initial guesses and highly nonlinear sensor models. The
key idea is to construct an approximation of the original problem having a larger convergence
basin by computing condensed measurements from partial solutions, to determine a good ini-
tial guess. Our approach can solve problems that cannot be handled by other state-of-the-art
methods.

In addition to the improved convergence property our hierarchical method leads to an ap-
proach that is able to model the problem at different levels of abstraction. The highest level of
abstraction can be optimized fast while providing support for making data associations. This
addresses the online characteristics of SLAM for a robot exploring its surrounding environment
as we focus the computational resources on the vicinity of the robot. As we showed in the
experiments, this leads to an efficient method for solving the SLAM problem online.

Furthermore, our approach employing the hierarchical strategies was successfully applied
within the EUROPA project [55] for obtaining large-scale maps, as we will describe in Chap-
ter 9. The overall approach is accurate, efficient, overcomes singularities, provides a hierarchi-
cal representation, and outperforms a series of state-of-the-art methods.

Chapter 4

Evaluating the Accuracy of Graph-Based

SLAM

In this chapter, we address the problem of creating a benchmark for
comparing SLAM approaches. We propose a framework for analyzing
the results of SLAM approaches based on a metric for measuring the
error of the corrected trajectory. The metric considers the relative re-
lations between poses and does not rely on a global reference frame.
The idea is related to graph-based SLAM approaches in the sense that
it considers the energy needed to deform the trajectory estimated by a
SLAM approach to the ground truth trajectory. Our method enables us
to compare SLAM approaches that use different estimation techniques
or different sensor modalities since all computations are made based
on the corrected trajectory of the robot. This allows us to evaluate the
accuracy of our graph-based SLAM method against other approaches
to SLAM. To this end, we performed the benchmark on a collection of
data sets frequently used in the SLAM community.

• • • • • • • • • • •

Throughout Chapter 2 and Chapter 3 we have presented our approaches for addressing SLAM
by its graph-based formulation. During the evaluation of the accuracy of our optimization
algorithms, which can serve as back-ends in a SLAM system, we focused on the value of the
objective function since it is the most interesting aspect. Furthermore, we evaluated the runtime
in batch and online settings as well as the convergence properties of our approach compared
to other state-of-the-art methods which employ a similar methodology. In the following, we
want to provide empirical evidence that our graph-based approach yields accurate models of
the environment. To this end, we suggest a metric that allows us to compare a heterogeneous
set of SLAM approaches. Particularly, we compare the results of graph-based SLAMwith other
state-of-the-art methods for SLAM.

Whereas dozens of different techniques to tackle the SLAM problem have been proposed,
there is no gold standard for comparing the results of different SLAM algorithms. In the com-
munity of feature-based estimation techniques, researchers often measure the Euclidean or Ma-
halanobis distance between the estimated landmark location and the true location (if this infor-
mation is available). As we will illustrate in this chapter, comparing results based on an absolute
reference frame may have shortcomings. In the area of grid-based estimation techniques, peo-
ple often use visual inspection to compare maps or overlays with blueprints of buildings. This

74 Chapter 4. Evaluating the Accuracy of Graph-Based SLAM

kind of evaluation becomes more and more difficult as new SLAM approaches show increasing
capabilities and thus large-scale environments are needed for evaluation. Therefore, there is a
strong need for methods allowing objective comparisons of different approaches. Ideally, such
a method is capable of performing comparisons between mapping systems that apply different
estimation techniques and operate on different sensing modalities.

In this chapter, we propose a technique for comparing the result of SLAM algorithms. This
allows us to assess the quality of the maps generated by our graph-based mapping system com-
pared to other approaches. The proposed metric is based on an idea that is actually similar to
the concept of the graph-based SLAM approaches (see Chapter 2). It uses the energy that is
(virtually) needed to deform the trajectory estimated by a SLAM approach into the ground truth
trajectory as a quality measure.

Our metric operates based on relative geometric relations between poses along the trajectory
of the robot. This exploits that estimating a model of the environment is straightforward given
the poses of the robot. This principle is also exploited when realizing an efficient particle filter
for SLAM [77, 154]. Our metric allows us to objectively compare our graph-based approach
to other methods based on data sets that are frequently used in the robotics community, such
as the MIT Killian Court or the Intel Research Lab data set. The disadvantage of our method
is that it requires manual work to be carried out by a human that knows the topology of the
environment. The manual work, however, has to be done only once for a data set and then
the evaluation requires only minimal effort. Therefore, we provide a web page that hosts such
manually matched relations for existing log files1.

The remainder of this chapter is organized as follows. After presenting the key idea and
advantages of our metric in the next section, we briefly discuss how to apply the metric to
SLAM algorithms that do not estimate the full trajectory taken by the robot in Section 4.2. In
Section 4.3 we present our experimental evaluation on a collection of publicly available data
sets. Finally, in Section 4.4 we provide an overview about the related work.

4.1 Metric for Benchmarking SLAM Algorithms

To evaluate the performance of a SLAM algorithm, we focus on the estimate of the trajectory
instead of comparing the map estimate. The advantage of this is twofold. We can, for example,
compare an approach generating a grid-based occupancy map with a feature-map generated by
another approach. Furthermore, the comparison can be conducted independent of the sensor
modalities of the robot and the underlying estimation technique, e.g., the metric can be applied
to compare our laser-based framework presented in Chapter 2 with a vision-based FastSLAM.

4.1.1 The Metric

Let x1:T be the poses of the robot as they are estimated by a SLAM algorithm from time step
1 to T , where xt ∈ SE(2) or SE(3). Let x̄1:T be the reference poses of the robot, ideally the
true poses. An error metric, which compares the poses in the global reference frame, could be
defined as

ε(x1:T) =min
A

T

∑
t=1

(xt⊖Ax̄t)
2, (4.1)

1http://ais.informatik.uni-freiburg.de/slamevaluation

4.1. Metric for Benchmarking SLAM Algorithms 75

Error
x

Ax̄

minA ∑t(xt ⊖Ax̄t)
2

∑i,j δi,j ⊖ δ̄i,j

Figure 4.1: Example where the metric in Eq. 4.1 is suboptimal. The robot moves along a straight line
and after n poses, it makes an error (bold arrow) but then continues without any further error. Both parts
are perfectly mapped and only the connection between both submaps contains an error.

where A is a rigid body transformation and the best one, which minimizes the alignment error
between the two trajectories, can be obtained in closed form [167, 212]. Furthermore, see
Eq. 2.57 and Eq. 2.58 for the definition of ⊖ and ⊕, respectively.

We claim that this metric is suboptimal for comparing the results of different SLAM algo-
rithms. To illustrate this, consider the example illustrated in Figure 4.1. Here, a robot travels
along a straight line. Let the robot make perfect pose estimates in general but one error some-
where along the line. The part before and after the estimation error are perfectly mapped.
According to Eq. 4.1, the error of this estimate changes with every node that is added. Thus, the
error depends on the point in time where the robot made an estimation error. This is a result of
the comparison between the reference trajectory and the result of the SLAM algorithm in global
coordinates in Eq. 4.1.

In contrast to this, we propose to use a metric that considers the deformation energy that
is needed to transform the estimate into the ground truth. This can be done — similar to the
ideas of graph-based mapping presented in Chapter 2— by considering the poses as masses and
connections between them as springs. Thus, our metric is based on the relative transformation
between poses. Instead of comparing x to x̄ we do the operation based on relative transforma-
tions. To this end, let δi j = x j⊖xi be the relative transformation that moves the node xi onto x j.
Likewise, let δ̄i j be the transformation based on x̄i and x̄ j. Hence, we can compare δ and δ̄ by

ε(δ) =
1

|R| ∑
〈i j〉∈R

(δi, j⊖ δ̄i j)
2 (4.2)

ε̃(δ) =
1

|R| ∑
〈i j〉∈R

trans(δi j⊖ δ̄i j)
2+ rot(δi j⊖ δ̄i j)

2, (4.3)

where R is the set of relations and trans(·) and rot(·) are used to separate the translational and
rotational components. We suggest to provide both quantities individually. In this case, the
error in Figure 4.1 will be consistently estimated no matter where the error occurred.

Our error metric, however, leaves open which relative displacements δ̄i j are included in
the summation in Eq. 4.3. Evaluating two approaches based on a different set of relative pose
displacements will obviously result in two different scores. The set of reference relations R can
be defined to highlight certain properties of an algorithm, for example, by including relations
obtained from a blueprint of the building to be mapped.

It should be noted that the metric presented here also has drawbacks. First, the metric —
as we defined it — only evaluates the mean estimate of the SLAM algorithm and does not
consider its estimate of the uncertainty. Second, it misses a probabilistic interpretation as the
Fisher information would realize, see, for example, the work by Censi [31] on the achievable
accuracy for range finder-based localization.

76 Chapter 4. Evaluating the Accuracy of Graph-Based SLAM

4.1.2 Obtaining the Set of Reference Relations

In practice, the key question regarding Eq. 4.3 is how to determine the true relative displace-
ments between poses. Obviously, the true values are only accessible in simulation, where it
is trivial to derive the exact relations. We can, however, determine close-to-true values by us-
ing the information recorded by a mobile robot and the background knowledge of the human
recording the data sets. This, of course, involves manual work, but from our perspective it is the
best method for obtaining such relations if no ground truth is available.

While we in the remainder of this chapter focus on laser range finder, the metric is actually
independent of the sensor. If the robot is currently not equipped with a laser scanner, there are
two solutions. The relation can be obtained by either temporarily mounting a laser on the robot
or by developing means for accurately matching the relative transformation between two poses
with the sensor modality currently available on the robot.

In our work, we propose the following strategy. First, one seeks for an initial guess about
the relative displacement between poses, for example, by scan-matching. Later a human can
evaluate the initial guess and reject wrong relations due to his knowledge about the environment.
Subsequently, we suggest to manually refine the relations. This manual processing, which is
carried out with an appropriate user interface, allows us to remove outliers in the range data
degrading the matching result.

In addition to the relative transformations added upon visibility and matching of observa-
tions, one can directly incorporate additional relations resulting from other sources of informa-
tion, for example, aerial images, as we will present in Chapter 6.

4.2 Algorithms without Trajectory Estimates

Our goal is to compare our graph-based formulation with a particle filter and scan-matching as
a baseline. Hence, we have a trajectory at hand for benchmarking. On the other hand, however,
a family of approaches does only estimate the current location of the robot in each time step.
For example, an approach based on an Extended Kalman filter typically drops the full trajectory
to lower the computational load by marginalizing out the older poses [205]. Hence, it is worth
to also discuss how to apply our metric in this case.

We see two solutions to overcome this problem: First, one can recover the trajectory by
localizing the robot in the map. This step can exploit the data association estimated by the
SLAM approach. Second, in some settings this strategy can be difficult and one might argue
that a comparison based on the landmark locations is more desirable. In this case, one can apply
our metric as well by operating on the landmark locations instead of on the poses of the robot.
The disadvantage of this approach is that the data association between estimated landmarks
and ground truth landmarks is not given. For artificial landmarks the data association could be
performed by a human as done by Kurlbaum and Frese [126]. The same might be intractable
for image features like SIFT [142] or SURF [16].

4.3 Experimental Evaluation

For the evaluation, we consider the following mapping approaches: First, we applied incremen-
tal scan-matching as a baseline approach. Scan matching, here using the approach of Censi [30],
incrementally computes an open loop maximum likelihood trajectory of the robot by matching
consecutive scans. Such a technique is often employed in more sophisticated approaches to

4.3. Experimental Evaluation 77

Trans. error
[
m2
]

Scan Matching RBPF (50 part.) Graph-Based

Intel 0.136 ± 0.277 0.011 ± 0.034 0.002 ± 0.004
MIT 19.85 ± 59.84 0.164 ± 0.814‡ 0.006 ± 0.029
CSAIL 0.117 ± 0.728 0.005 ± 0.013‡ 0.0001 ± 0.0005
FR 79 0.249 ± 0.687 0.006 ± 0.020‡ 0.005 ± 0.011

(a) translational error

Rot. error
[
deg2

]
Scan Matching RBPF (50 part.) Graph-Based

Intel 25.8 ± 170.9 36.7 ± 187.7 24.0 ± 166.1
MIT 25.4 ± 65.0 0.9 ± 1.7‡ 0.9 ± 0.9
CSAIL 22.3 ± 111.3 1.9 ± 17.3‡ 0.01 ± 0.04
FR 79 7.3 ± 14.5 0.7 ± 2.0‡ 0.7 ± 1.7

(b) rotational error

Table 4.1: Quantitative results of different approaches/datasets. For the instances marked with ‡ scan
matching has been applied as a preprocessing step.

improve the odometry. Second, we used GMapping [77] which is a mapping system based on
a Rao-Blackwellized Particle Filter (RBPF) for learning grid maps. It estimates the posterior
over maps and trajectories by means of a particle filter, where each particle carries its own map.
Third, we selected an approach that addresses the SLAM problem by its graph-based formula-
tion as described in Chapter 2. Note that we did not include the hierarchical method proposed
in Chapter 3 in the comparison because the standard graph-based SLAM method converges to
the same solution on each of the data set considered here. The goal of the experiments is to
highlight the advantages of the graph-based mapping formulation compared to other methods.

To compare the state-of-the-art methods, we selected a set of data sets which is representa-
tive for different kinds of environments. We extracted the relations between robot poses using
the method described above by manually validating every single observation between a pair of
poses. In detail, we take the following data sets into account. As a challenging indoor corridor-
environment with a non-trivial topology including nested loops, we selected the MIT Killian
Court data set. As typical office environments with a significant level of clutter, we selected the
data set of building 079 at the University of Freiburg, the Intel Research Lab data set, and a data
set acquired at the CSAIL at MIT.

We let each algorithm process all benchmark data sets mentioned above. A condensed view
of the performance of each algorithm is given by the averaged error over all relations. In Ta-
ble 4.1a, we provide an overview on the translational error of the various algorithms, while Ta-
ble 4.1b shows the rotational error. As expected, it can be seen that the more complex algorithms
(RBPF and graph-based SLAM) usually outperform scan matching. This is mainly caused by
the fact that scan matching only optimizes the result locally and will introduce topological errors
in the maps, especially when large loops have to be closed. On average, graph-based mapping
seems to be slightly better than an RBPF for mapping.

In the following, we present a detailed evaluation for two of the data sets, where we high-
light the errors in the map and the corresponding relations in our map. This enables us to better
highlight the advantages of graph-based SLAM for estimating a model of large-scale environ-
ments.

78 Chapter 4. Evaluating the Accuracy of Graph-Based SLAM

1

2

3

0

5

10

15

20

0 1000 2000 3000 4000

T
ra
n
sl
a
ti
o
n
a
l
E
rr
o
r
[m

]

Relation #

1

2

3

0

1

2

3

0 1000 2000 3000 4000

T
ra
n
sl
a
ti
o
n
a
l
E
rr
o
r
[m

]

Relation #

0

0.2

0.4

0.6

0.8

0 1000 2000 3000 4000

T
ra
n
sl
a
ti
o
n
a
l
E
rr
o
r
[m

]

Relation #

(a) scan-matching (b) RBPF (c) graph-based SLAM

Figure 4.2: The MIT Killian Court data set. The reference relations are depicted in light yellow. The
results of (a) scan-matching, (b) RBPF using 50 samples, and (c) a graph-based approach. The regions
marked in the map (boxes and dark blue relations) correspond to regions in the error plots having high
error.

4.3.1 MIT Killian Court

In the MIT Killian Court data set (also called the infinite corridor data set), the robot mainly
observed corridors with only few structures that support accurate pose correction. The robot
traversed multiple nested loops – a challenge especially for the RBPF-based technique. We
extracted close to 5,000 relations between nearby poses that are used for evaluation. Figure 4.2
shows three different results and the corresponding error distributions to illustrate the capa-
bilities of our method. Regions in the map with high inconsistencies correspond to relations
having a high error. The absence of significant structure along the corridors results in a small or
medium re-localization error of the robot in all compared approaches. In sum, we can say the
graph-based approach outperforms the other methods and that the score of our metric reflects
the impression of a human about the quality of the map obtained by visually inspecting the
mapping results. The visual inspection by a human who knows the structure of the building
takes into account that the vertical corridors in the upper part are supposed to be parallel.

4.3.2 Freiburg Indoor Building 079

The building 079 of the University of Freiburg is an example for a typical office environment.
The building consists of one corridor which connects the individual rooms. Figure 4.3 depicts
the results of the individual algorithms (scan matching, RBPF, graph-based). In the first row of
Figure 4.3, the relations having a translational error greater than 0.15m are highlighted in dark
blue.

In Figure 4.3a showing the scan matching result, the relations plotted in blue are generated
when the robot revisits an already known region. These relations are visible in the correspond-
ing error plots (Figure 4.3a, second and third row). As can be seen from the error plots, these
relations with a number greater than 1,000 have a larger error than the rest of the data set. The

4.4. Related Work 79

0

0.5

1

1.5

2

2.5

0 500 1000 1500

T
ra
ns
la
ti
on
al
E
rr
or

[m
]

Relation #

0

0.5

1

1.5

2

2.5

0 500 1000 1500

T
ra
ns
la
ti
on
al
E
rr
or

[m
]

Relation #

0

0.5

1

1.5

2

2.5

0 500 1000 1500

T
ra
ns
la
ti
on
al
E
rr
or

[m
]

Relation #

0

2

4

6

8

10

0 500 1000 1500

R
ot
at
io
na
l
E
rr
or

[d
eg
]

Relation #

0

2

4

6

8

10

0 500 1000 1500

R
ot
at
io
na
l
E
rr
or

[d
eg
]

Relation #

0

2

4

6

8

10

0 500 1000 1500

R
ot
at
io
na
l
E
rr
or

[d
eg
]

Relation #

(a) scan-matching (b) RBPF (c) graph-based SLAM

Figure 4.3: The Freiburg Indoor Building 079 data set. The results of (a) scan-matching, (b) RBPF
using 50 samples, and (c) a graph-based approach. Within each column, the top image shows the map,
the middle plot is the translational error and the bottom one is the rotational error.

fact that the pose estimate of the robot is sub-optimal and that the error accumulates can also be
seen by the rather blurry map and by double-occurrences of some walls. In contrast to that, the
more sophisticated algorithms, namely RBPF and graph-based mapping, are able to produce
consistent and accurate maps in this environment (see Figure 4.3a and b). This is confirmed
by our metric since only very few relations show an increased error (illustrated by dark blue
relations). Hence, there is no clear distinction between the performance of an RBPF and a
graph-based approach on this data set.

4.4 Related Work

Activities related to performance metrics for SLAM methods, as the work described in this
chapter, can roughly be divided into three major categories: First, competitions where robot
systems are competing within a defined problem scenario (such as playing soccer), second,
collections of publicly available data sets that are provided for comparing algorithms on specific
problem, and third, related publications that introduce methodologies and scoring metrics for
comparing different methods.

To perform comparisons between robots, numerous robot competitions have been initiated
in the past. The most prominent one are probably RoboCup for robots playing soccer or res-
cuing victims after a disaster, and cars driving autonomously at the DARPA Urban Challenge.
Nevertheless, competition settings are likely to generate additional noise due to different hard-
ware and software. Depending on the competition, approaches are often tuned to the settings
addressed in the competitions and it is unclear whether the SLAM part fulfills the requirements
one seeks for. Furthermore, such competitions require to run a whole system and the goal is an

80 Chapter 4. Evaluating the Accuracy of Graph-Based SLAM

overall good performance, e.g., the result of the SLAM algorithm might be worsened because
the approach has to cope with a limited processing time.

Some steps towards benchmarking navigation solutions have been presented in the past.
Amigoni et al. [6] presented a general methodology for performing experimental activities in
the area of robotic mapping. They suggest a number of issues that should be addressed when
experimentally validating a mapping method. If ground truth data is available, they suggest to
utilize the Hausdorff metric for map comparison.

Wulf et al. [216] proposed the idea of using manually supervised localization for matching
3D scans against a reference map. They suggest to generate the reference maps from indepen-
dently created CAD data. The comparison between the generated map and the ground truth has
been carried out by computing the Euclidean distance and angle difference of each scan, and
plotting these over time. As we have argued above, comparing the absolute error between two
tracks might not yield a meaningful assertion.

Balaguer et al. [12] utilize the USARSim robot simulator and a real robot platform for
comparing different open source SLAM approaches and they propose that the simulator engine
could be used for systematically benchmarking different approaches of SLAM. They do, how-
ever, not provide a quantitative metric for comparing generated maps with ground truth. Their
comparisons were carried out by visual inspection.

Instead of utilizing a simulator, several researchers focused on obtaining (close to) ground
truth estimates. For example, Ceriani et al. [34] describe a system for collecting ground truth
for indoor laser-based SLAM. Sturm et al. [202] utilize a motion capture system to evaluate
RGB-D SLAM approaches.

Evaluating the performance of optimization approaches can be done by analyzing the value
of the objective function and the runtime of the approach, as we have seen, for example, in
Chapter 2. Instead of considering the objective function, Olson and Kaess [167] suggested to
evaluate the quality of the map based on the distance of the nodes to their ground truth location.
The reason for this is the nonlinear shape of the objective function for graph-based SLAM. A
small difference in the function value may correspond to a completely different map. As the
method requires ground truth data, it can be utilized for evaluating simulated data, but how to
apply it for real-world data sets remains unclear. Furthermore, the metric is geared towards
evaluating optimization algorithms.

4.5 Conclusions

In this chapter, we presented a framework for comparing the results of SLAM approaches with
the goal to create objective benchmarks. We proposed a metric for measuring the error of a
SLAM system based on the estimate of the trajectory. Our metric uses only relative relations
between poses and is motivated by the energy needed to transform an estimate into ground truth.
This overcomes serious shortcomings of approaches using a global reference frame to compute
the error.

Additionally, we provide an error analysis for three mapping systems using the metric and
data sets. The results show that graph-based SLAM obtains accurate maps, whose quality is of-
ten superior to other state-of-the-art methods. To facilitate the evaluation for other researchers,
we released the set of manually verified relations for a collection of publicly available data sets
on the web. This collection of manually verified relations has been considered by several re-
searchers as baseline for evaluating the performance of their SLAM algorithms or inspired their
own evaluation for different data sets also featuring other sensor modalities, e.g., Carlone et

al. [29], Strasdat et al. [199], Sünderhauf and Protzel [203], and Tipaldi et al. [208].

Chapter 5

Simultaneous Parameter Calibration,

Localization, and Mapping

The calibration parameters of a mobile robot play a substantial role in
navigation tasks. Often these parameters are subject to variations that
depend either on changes in the environment or on the load of the robot.
Up to now, we assumed that we know the value of the parameters. In
this chapter, we propose an approach to simultaneously estimate a map
of the environment, the position of the on-board sensors of the robot,
and its kinematic parameters. To this end, we will extend the graph-
based mapping technique, which we have presented and evaluated in the
previous chapters. Our method requires no prior knowledge about the
environment and relies only on a rough initial guess of the parameters of
the platform which are easy to obtain. The proposed approach is able to
estimate the parameters on-line and it adapts to non-stationary changes
of the configuration. We tested our approach in simulated environments
and on a wide range of real-world data using different types of robotic
platforms.

• • • • • • • • • • •

We so far considered approaches which allow a robot to estimate a model of an environment
by means of a SLAM algorithm. Additionally, we compared our graph-based approach with
other state-of-the-art methods highlighting the good performance of our approach. For realizing
our approach to SLAM, however, we ignored that we rely on some underlying parameters of
the robotic platform, which we assumed as known. Furthermore, many other approaches for
navigation such as localization, path planning, and motion control also rely on the knowledge
of specific parameters of the robot. These parameters typically include the position of the sensor
on the platform or specific aspects of the kinematic model that translates encoder ticks into a
relative movement of the mobile base. In the following, we present a method which allows us
to estimate these parameters while the robot performs SLAM. Hence, in reference to SLAM we
call our method Simultaneous Parameter Calibration, Localization, and Mapping.

The influence of the calibration parameters on the accuracy of state estimation processes can
be substantial. For instance, an accurate calibration of the odometry can substantially improve
the expected accuracy of the motion prediction by reducing the search space of the algorithms
that provide the motion estimates. Figure 5.1 shows a motivating example. Here, we ran a

82 Chapter 5. Simultaneous Parameter Calibration, Localization, and Mapping

(a) (b) (c) (d)

Figure 5.1: (a) Map obtained based on the raw uncalibrated odometry of a robot with unevenly inflated
tires traveling along a corridor. (b) The result of applying a scan-matching algorithm with a large search
space to account for the uncalibrated odometry leads to the shortened map. (c) A restriction of the search
space is not able to fully correct the errors. (d) Applying the correct calibration together with a small
search space leads to an accurate estimate.

scan-matching algorithm given the odometry measurements of a robot that moves along a cor-
ridor. Since the corridor is not rich in features, the scan matcher yields solutions that are highly
ambiguous along the direction of the corridor. As a result, scan-matching approaches tend to
underestimate the length of corridors [197]. To limit this effect one can restrict the search space
of the scan-matcher to a small region around the position predicted by odometry. This reduces
the computational requirements but requires a highly accurate calibration of the odometry.

While 2D range scans do not provide highly distinguishable features, camera images allow
us to extract discriminable features, e.g., Scale-Invariant Feature Transform (SIFT) [142] or
Speeded Up Robust Feature (SURF) [16]. The best match of a feature is not necessarily the cor-
rect match, though. This leads to a set of feature matches which contains a substantial amount
of outliers. Typically, an algorithm based on Random Sample Consensus (RANSAC) [60] is
employed to robustly estimate the inlier set despite the large amount of outliers. If an initial
guess of the camera motion is available, for instance, by the odometry of the robot, we are able
to restrict the search for the match to the most likely area in the image. This in turn increases
the likelihood of finding the correct match. Figure 5.2 visualizes the number of correct feature
matches returned by the matching algorithm with and without access to prior information on
the motion of the camera. As we can see, the number of correct matches using the prior infor-
mation is substantially larger compared to an uninformed matching algorithm. A larger number
of correct matches in principle yields a better estimate for the transformation between the two
frames. To accurately predict the motion of the camera based on the odometry, the robot greatly
benefits from knowing the parameters of the odometry and the position of the sensor.

To obtain these parameters it is common to either rely on the specifications of the platform,
to manually measure them, or to run ad-hoc calibration procedures before the mission of the
robot is started. The latter solution is typically the most accurate and robust since it can ex-

83

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000

#
in
li
er
s

Time Step

With Prior Information
Without Prior Information

Figure 5.2: The number of inliers of a matching algorithm operating on feature matches. A matching
algorithm that considers the prior information about the motion of the camera achieves a larger set of
inliers compared to an algorithm which has no access to this information.

ploit the a priori knowledge of a calibration pattern to infer reasonable initial guesses for the
parameters. Ad-hoc calibration procedures, however, suffer from two main drawbacks. They
are not able to estimate non-stationary parameters and they need to be repeated whenever there
is a potential change in the configuration of the robot. On the one hand, these changes will
happen unavoidably during the lifetime of the robot as a consequence of the wearing of me-
chanical parts. On the other hand, we frequently observe sudden changes in these parameters
as a consequence of particular events. As an example, the odometry parameters depend on both
the distribution of the load on the platform and the type of surface the robot moves upon. These
external quantities affect the effective wheel radii as well as the accuracy of the odometry pre-
diction. When the robot carries a load the odometry will change, and similarly when it moves
from carpet to concrete. One solution to dynamically estimate these parameters is to treat them
as hidden state variables that have to be estimated together with the map and the position of the
robot. To this end, we could use special equipment such as an external position tracking device.
More promising, however, are calibration procedures that only rely on the data gathered by the
robot and do not require any preparation or additional information.

We present an approach to estimate the calibration parameters of a robot equipped with an
on-board sensor and wheel encoders while it performs SLAM. The core idea of our method is
to treat the map estimate as a calibration pattern and to constantly refine the estimates of the
map, the trajectory, and parameters of the robot through a least squares procedure. If the map
and the robot positions are known, our method behaves as a standard least squares approach for
parameter calibration.

Note that when we augment the problem with the calibration variables it cannot be de-
scribed anymore by a graph but instead requires a hyper-graph, as indicated in Figure 5.3. This
is due to the fact that a measurement does not only depend on a pair of variables (the connected
nodes) but rather on a triplet (the nodes and the calibration parameters). Therefore, we extend
the standard graph-based SLAM optimization framework to handle this class of problems. Our
approach is able to simultaneously estimate the map of the environment and calibrate the pa-
rameters of a robot in a continuous manner. We do not require any special preparation for the
environment, such as an external tracking system or landmarks to be placed in the designated
area.

Our approach allows us to determine these state variables on the fly (e.g., sensor positions

84 Chapter 5. Simultaneous Parameter Calibration, Localization, and Mapping

x1 x2 x3 x4u2 u3 u4

z12 z23 z34

z14

(a) standard graph-based SLAM

x1 x2 x3 x4
u2 u3 u4

k

z12 z23 z34

d
z14

(b) simultaneous calibration

Figure 5.3: The factor graph shown in (a) represents a standard SLAM problem. Here, the robot has
odometry measurements u which relate subsequent poses of the robot along with scan-matching esti-
mates z. In particular, a loop closure relates x1 and x4 which can be obtained by matching the respective
observations. If we augment the SLAM problem by the calibration parameters, we obtain the factor
graph depicted in (b). In fact, the graph is a hyper-graph, as the factors connect more than two nodes
each.

and odometry calibration). To deal with temporal changes or more in general with interdepen-
dencies between the parameters and the other state variables, we estimate the parameters on the
most recent data. This approach allows a mobile robot, for example, to estimate a different set
of odometry parameters for different regions of the environment and to better model the motion
of the robot in these areas. Our approach might additionally be beneficial in a variety of con-
texts including, for instance, terrain classification. We present evaluations of our approach in
simulated and in a wide range of real-world experiments using several robot platforms moving
on different types of ground.

The remainder of this chapter is structured as follows. After describing our approach for
simultaneously estimating the calibration parameters and the poses of a navigating robot in Sec-
tion 5.1, we present quantitative simulated and real-world experiments in Section 5.2. Finally,
we discuss the related work in Section 5.3.

5.1 Simultaneous Calibration, Localization, and Mapping

Our system relies on the graph-based formulation of the SLAM problem to estimate the maxi-
mum-likelihood configuration. In contrast to the traditional SLAMmethods we explicitly model
that the measurements obtained by the robot are given in different coordinate frames. For ex-
ample, the odometry of the robot is given by the velocity measurements of its wheels. Applying
the forward kinematics of the platform transforms the velocities measured during a time interval
into a relative displacement of the platform expressed in the odometry frame. Usually, the robot
is equipped with a sensor that is able to perceives features in the environment, e.g., a laser range
finder. This sensor is mounted on the robot and obtains measurements in its own coordinate

5.1. Simultaneous Calibration, Localization, and Mapping 85

frame. Thus, a scan-matching algorithm, which aligns two range scans in a common coordinate
frame to estimate the ego-motion of the scanner, has to project the computed motion estimate
through the kinematic chain of the robot to obtain an estimate for the motion of the platform.
As it is not always easy to accurately measure the offset transformation between the base of the
robot and the sensor or to determine the parameters for the forward kinematics, we suggest to
integrate those into the maximum likelihood estimation process. A rough estimate which serves
as initial guess for the parameters is typically easy to obtain. Furthermore, the parameters of
the forward kinematics are affected by the wear of the devices during the lifetime of the robot.
Our approach is able to re-estimate those changes over the life-time of the robot. Figure 5.4
illustrates the involved parameters which we will describe in detail in the following.

5.1.1 Description of the Hyper-Graph

Whenever the robot obtains a measurement si, we add a node xi = (xi,yi,θi)
⊤ to the graph. Each

node represents the position of the robot at which the according measurement was obtained.
Again, x= (x1, . . . ,xT)

⊤ is the vector of poses up to time T . Furthermore, let d be the pose of
the on-board sensor relative to the coordinate frame of the robot. Finally, let k be the parameters
of the forward kinematics function and ui and Ωu

i be respectively the motion command and the
information matrix which translates the robot from node i−1 to i.

The error function eui (xi−1,xi,k,ui) measures how well the parameter blocks xi−1, xi, and
k satisfy the odometry measurement ui. A value of 0 means that the constraint is perfectly
satisfied by the parameters. For simplicity of notation, we will encode the involved quantities
in the indices of the error function:

eu(xi−1,xi,k,ui)
def.
= eu(xi−1,xi)

def.
= eui (x). (5.1)

The error function eui (x) is defined as

eui (x) = (xi⊖xi−1)⊟K(ui,k), (5.2)

where K(·) is the forward kinematics function converting from wheel velocities to a relative
displacement of the vehicle. Furthermore, ⊖ is the inverse of the the usual motion composition
operator⊕ (see Eq. 2.57 and Eq. 2.58) and⊟ computes the difference while taking into account
the different domains of the entities (see Section 2.3.2).

For a robot with a differential drive, which is one of the most common types of robots, the
odometry u = (vl,vr)

⊤ consists of the velocities of the left and the right wheel. The wheel
velocities are computed by counting the encoder ticks of the motors during the time step which
are multiplied by the respective radii rl and rr of the wheels. Furthermore, the distance b

between the two wheels has to be known to compute the circular arc on which the robot moves.
The relative motion during the time interval ∆ t is given by

K(u,k) =

(
R(∆ tω) 0

0 1

)(
−ICC

0

)
+

(
ICC

∆tω

)
, (5.3)

where R(·) is the 2D rotation matrix of its argument,

ICC=

(
0,
b

2

rlvl + rrvr

rlvl− rrvr

)⊤
, (5.4)

and

ω =
rlvl− rrvr

b
. (5.5)

86 Chapter 5. Simultaneous Parameter Calibration, Localization, and Mapping

b rr

rl

ICC

d

(a) forward kinematics (b) ego-motion of the sensor

Figure 5.4: (a) The parameters (rr,rl,b)
⊤ used to compute the motion of the robot given the wheel

velocities. (b) The sensor observations (indicated as yellow stars) allow us to estimate the ego-motion of
the sensor and the motion of the robot given the offset d between the coordinate frame of the robot and
the sensor.

Thus, the calibration parameter k = (rr,rl,b)
⊤ for the odometry is a three-dimensional vector.

Figure 5.4a shows an illustration of the calibration parameters for the odometry.
Additionally, the error function edi j(xi,x j,d,zi j)measures how well the parameter blocks xi,

x j, and d satisfy the virtual measurement zi j, which is obtained as the scan-matching result of
the observations si and s j (see Figure 5.4b). If the three parameters perfectly satisfy the error
function, then its value is 0. Here, we assume that the laser is mounted without inclination,
which is the ideal condition. The error function edi j(x) has the following form:

edi j(x) =
(
(x j⊕d)⊖ (xi⊕d)

)
⊟ zi j. (5.6)

In Eq. 5.6 we applied the same simplifying notation as defined in Eq. 5.1.
The goal of our maximum likelihood approach is to find the configuration of 〈x∗,d∗,k∗〉

which minimizes the negative log-likelihood F(x,d,k) given all the observations

F(x,d,k) = ∑
〈i, j〉

edi j(x)
⊤Ωz

i je
d
i j(x)+∑

i

eui (x)
⊤Ω̃u

i e
u
i (x), (5.7)

where Ω̃u
i is the projection of Ωu

i through the forward kinematics functionK(·) via the unscented
transformation [96]. Since the projection depends on the estimate of k, we update the projection
if k changes substantially.

Given this formulation we may easily integrate prior knowledge, for example, the result
of a previous calibration or the manually — thus non-precisely — measured transformation of
the laser. This is possible as long as the prior information can be represented by a Gaussian
distribution. Furthermore, state transitions observed by measurements, e.g., the robot actively
rotates the laser scanner, can be incorporated.

To estimate the calibration parameters, the trajectory of the robot should introduce measure-
ments that constrain all possible dimensions of k and d. Clearly, a trajectory only consisting
of straight line motions does not allow us to observe the position of the laser. The same holds
for a perfectly circular trajectory since the laser could be anywhere on the circle. Both cases
are pathologic and can easily be avoided by varying the wheel velocities of the robot. Recently,
Censi et al. [32] gave a proof that our informal statement holds. They show that two linear inde-
pendent velocity commands, which lead to two circular arcs with different radii, are sufficient
to guarantee the observability of the parameters. In other words, we are able to observe the
hidden parameters, for example, by commanding the robot to execute a straight line motion and

5.1. Simultaneous Calibration, Localization, and Mapping 87

(a) camera image (b) extracted ground plane (red points)

Figure 5.5: The range measurements of a depth camera allow us to extract the ground plane. (a) The
camera image provided by an RGB-D camera similar to the Microsoft Kinect. Assuming a rough initial
knowledge about the orientation of the sensor is known, we are able to extract the ground plane by means
of a RANSAC algorithm. (b) The points marked in red constitute the inlier set of the ground plane.

a turn on the spot behavior. Note that the command for a straight motion might in fact produce
a circular arc, as we do not know the true wheel radii. Likewise, the velocities sent for turning
on the spot may cause a small translation of the robot. Despite these concerns, those commands
will allow us to observe the hidden calibration parameters. In our experiments, the parameters
were observable all the time, although no special care was taken to guarantee the observability,
for example, by modifying the controller setting the wheel velocities. We attribute this to small
variations in the normal control algorithm of the robot, which lead to a robot that, for example,
never executes a perfectly straight motion if requested to drive along a straight line.

5.1.2 3D On-Board Sensors

In the previous section, we described how to estimate the offset of an on-board 2D range scanner
to the odometry center of the robot. With the advent of the Microsoft Kinect an inexpensive
alternative exists which provides dense 3D range data along with an RGB image. Such depth
cameras emit an infrared light pattern which is received by a camera. Computing the disparity
of features in the images allows us — similar to a stereo camera pair — to obtain 3D depth
information.

As with 2D range scanners, we are able to estimate the 3D ego-motion zi j of the camera
between two frames i and j by aligning the measurements. Along with the 3D offset of the
sensor c in the coordinate frame of the robot we are able to constrain the motion of the robot:

eci j(x) =
(
(projectFrom2DTo3D(x j)⊕ c)⊖ (projectFrom2DTo3D(xi)⊕ c)

)
⊟ zi j, (5.8)

where projectFrom2DTo3D(·) projects its argument from 2D to 3D, i.e., the pose is extended
with a z-coordinate and pitch/roll angles, which are all set to 0.

Eq. 5.8 does not observe the height of the sensor above the ground. Typically, a rough initial
guess for the attitude of the sensor is easy to obtain manually. Assuming such an estimate is
available, we are able to extract the ground plane observed by the sensor. Figure 5.5 depicts
an example in which a robot equipped with an RGB-D camera is driving along a corridor.
To extract the ground plane, a RANSAC algorithm samples three points from the point cloud
to calculate a candidate plane. If the angle of the normal vector of the candidate lies within a

88 Chapter 5. Simultaneous Parameter Calibration, Localization, and Mapping

threshold (20 degrees in our current implementation) around the ground plane assumption given
by the prior, we determine the points whose distance to the plane is smaller than 0.1m. The
candidate with the largest inlier set yields our estimate of the ground plane. The distance of
the sensor to the extracted ground plane results in our observation for the height of the sensor.
Additionally, the measurement zpi of the ground plane allows us to further constrain the attitude
of the sensor, namely the rotation of the sensor with respect to the ground plane. Hence, we
obtain the additional error term

e
c,p
i (c) = c⊟ z

p
i , (5.9)

which constrains the pitch/roll angles of the sensor to match the ground plane observation and
the height of the sensor above the ground.

Replacing the sensor error term and adding Eq. 5.9 to Eq. 5.7, we obtain the negative log-
likelihood F(x,c,k) given all the observations as

F(x,c,k) = ∑
〈i, j〉

eci j(x)
⊤Ωz

i je
c
i j(x)+∑

i

eui (x)
⊤Ω̃u

i e
u
i (x)+∑

i

e
c,p
i (c)⊤Ω

p
i e

c,p
i (c), (5.10)

where Ω
p
i represents the information matrix of the ground plane observation. Minimizing

Eq. 5.10 yields the poses of the robot, the calibration parameters of the forward kinematics
function, and the 3D offset of the range sensor.

5.1.3 Estimation via Least-Squares on a Hyper Graph

To obtain the optimal solution for either Eq. 5.7 or Eq. 5.10 we apply our general optimization
framework g2o presented in Chapter 2. This allows us to obtain a numerical solution in a fast
end efficient manner. We only require an initialization, which we perform as follows. The
poses of the robot, which are represented by x, are initialized via the odometry measurements
considering the specifications of the robot as initial values of k. For the position d of the sensor
a rough initial guess is required, which is easy to obtain manually.

From Eq. 5.7 we notice that each of the terms in the sum depends on at most three parameter
blocks. More precisely, if the constraint arises from an odometry measurement, it will depend
on the connected robot poses xi and x j and by the odometry parameters k. Alternatively, if
a constraint arises from a laser measurement, it will depend on the connected robot poses xi
and x j and on the laser position d. Accordingly, each of the Jacobians Jk will have only three
non-zero blocks, in correspondence of the variables involved by the constraint k. Thus, each of
the terms in the sum ∑k J

⊤
k Jk will be a matrix with at most nine non-zero components. Further-

more, we will obtain a number of non-zero entries proportional to the number of constraints.
This construction results in a sparse system that can be efficiently solved. Our g2o toolkit, for
instance, solves one iteration of a calibration problem having 3,000 nodes in less than 0.01 s
using one core of an Intel i7@2.8GHz.

5.1.4 Monitoring the Convergence

Some calibration parameters may be constant while others change. For example, the laser
position d is constant if the robot has no actuator to move its sensor. Therefore, it is of interest to
decide whether enough data has been collected such that one can stop calibrating and reduce the
computational demands. To this end, we can consider the approximated HessianH and compute
the marginal covariance of the calibration parameters given the collected measurements. The

5.2. Experiments 89

(a) (b) (c)

Figure 5.6: The robots used to acquire the real-world data sets: (a) MobileRobots PowerBot, (b) a
custom made platform for the EUROPA project, and (c) Pioneer I.

marginal covariance Σd of the calibration parameter is given by extracting the corresponding
block of H−1. As we have previously mentioned in Section 2.3.5, we are able to exploit the
properties of H, namely that it is sparse, symmetric, and positive definite. This allows us to
compute the desired elements of H−1 given the Cholesky factor without computing all elements
of the typically dense inverse. As we will show in the experiments, this information enables us
to access the quality of the estimate of the parameters.

5.2 Experiments

The approach described above has been implemented and evaluated on both simulated and
real-world data acquired with a heterogeneous set of robots equipped with laser range find-
ers. Figure 5.6 visualizes the robots we used to collect the real-world data considered in the
experiments.

The laser-based SLAM front-end for processing the data is an own implementation of the
framework described by Olson [163]. The front-end employs a correlative scan-matcher to es-
timate the transformation of the laser along with the 3× 3 covariance matrix representing the
uncertainty of the estimated transformation. The correlative scan-matcher performs an exhaus-
tive search to determine the best fitting alignment for two laser scans within a given search
radius. We add a new node to the graph whenever the ego-motion of the laser estimated by the
scan-matcher is larger than 0.1m in translation or 10 ◦ in rotation, whichever occurs first.

For estimating the ego-motion of a Kinect depth sensor or a stereo rig, we implemented
a pipeline for visual odometry which works as follows. First, we extract visual features [16]
from the images. Second, the transformation between images is estimated by a standard 3-point
RANSAC algorithm [160]. Finally, a least squares estimate which minimizes the re-projection
error of the feature correspondences is performed along with removing feature projections hav-
ing large errors from the system for an increased robustness against outliers. Again, a node is
inserted into the graph whenever one of the above mentioned thresholds is reached.

90 Chapter 5. Simultaneous Parameter Calibration, Localization, and Mapping

(a) the odometry of the robot in the standard configuration

(b) the odometry when the robot carries a load

Figure 5.7: Robot driving up and down a corridor. Top: Applying the calibration corresponding to the
current configuration of the robot leads to a good odometry estimate. Bottom: If the robot is carrying a
load, the same calibration parameters results in a severe drift in the odometry.

5.2.1 Online Odometry Calibration

In real-world scenarios the odometry is affected by different factors. For example, if the robot
is carrying a load, the additional weight compresses inflated tires and results in reduced wheel
radii. To this end, we used the PowerBot platform (see Figure 5.6a) which has a maximum
payload of 100 kg to carry a load of approximately 40 kg. The wheels of the PowerBot are
inflated tires whose radii are affected by both the air-pressure of the tires and the total weight of
the platform. The load in this set of experiments was intentionally placed on the left hand side
of the robot. In a first experiment we recorded data sets in which the robot was either carrying
the load or it was operating in its normal configuration. We used one data set for estimating
the parameters and a different one for evaluating the odometry calibration parameters. Our
approach estimated wheel radii of r∗r = 0.1251m, r∗l = 0.1226m for the normal configuration
of the robot and r∗r = 0.1231m, r∗l = 0.1223m while carrying the load. The difference seems to
be small, although it has a substantial effect on the forward kinematics of the robot. Figure 5.7
shows the outcome of applying the estimate of the normal configuration to the robot carrying
the load. Applying the wrong calibration parameter has a crucial effect on the trajectory as
it is estimated by the odometry. Since the weight of the load is mutable and can be placed
in an arbitrary position on the robot, the best performance can be obtained by calibrating the
odometry parameters while the robot is operating.

By considering the 50 most recent measurements within a sliding window around the cur-
rent node we are able to estimate the wheel radii online also when they are subject to change
due to external factors. The size of the sliding window was determined empirically. Too few
measurements do not allow us to recover the calibration parameters accurately and a large slid-
ing window has an increased latency if the parameters change. For old odometry measurements
outside the sliding window we change the error function eui (x) to employ a fixed value for k, i.e.,
we only estimate the physical parameters on the recent data and use the previously estimated
parameters to model the odometry error term for older measurements. Figure 5.8 visualizes
the estimated wheel radii during an experiment in which the robot had to carry a load placed

5.2. Experiments 91

0.12
0.122
0.124
0.126
0.128

0 1000 2000 3000

ra
di
us

[m
]

Time Step

Wheel Radius (left)

load load

0.12
0.122
0.124
0.126

0 1000 2000 3000

ra
di
us

[m
]

Time Step

Wheel Radius (right)

load load

Figure 5.8: Results of the online estimation of the wheel radii. The robot had to carry a load twice which
was placed on the left hand side of the platform leading to a compression of the left wheel.

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

y
-
C
oo
rd
in
at
e
[m

]

x - Coordinate [m]

Ground Truth Trajectory
Simulated Odometry
Optimization Result

(a) simulated trajectory

0.1

0.11

0.12

0.13

0.14

0 50 100 150 200 250 300 350

W
he
el
R
ad
iu
s
[m

]

Time Step

Estimated Wheel Radius

load

(b) online calibration result

Figure 5.9: (a) The simulated robot trajectory. (b) Estimating the wheel radii online based on the most
recent observations. Here, the robot was carrying a load during the time interval [120,240] which leads
to compressed wheels having smaller radii.

on the left hand side of the platform. The robot was carrying the load during the intervals
[600,1250] and [1865,2530]. Using our approach we are able to correctly estimate the wheel
radii independent of the load carried by the robot along with the maximum likelihood map of
the environment.

As it is hard to obtain ground truth data for real-world data sets, we simulated a robot trav-
eling along the trajectory depicted in Figure 5.9a. The environment in which the robot operates
consists of two rooms connected by a hallway. Additionally, a laser range finder similar to a
SICK LMS is simulated by performing ray-casting operations in the simulation environment.
The simulator allows us to directly judge the quality of the calibration results. The odome-
try measurement and the range measurements obtained by the robot are perturbed by Gaussian
noise. Within a simulation run we modeled a robot carrying a weight which we simulated hav-
ing the effect of a reduction of the wheel radius from 0.12m to 0.108m. The robot carries the
load during the time interval [120,250]. Figure 5.9b depicts the results of the online calibration
based on the most recent measurements. As we can see, the system is able to represent the com-
pressed wheels and the estimate corresponds well to the ground truth given by the simulator.
Furthermore, the trajectory as it is estimated by our approach also matches well to the ground
truth as shown in Figure 5.9a.

92 Chapter 5. Simultaneous Parameter Calibration, Localization, and Mapping

(a)

0

0.1

0.2

0.3

0.4

0.5

0 1000 2000 3000

S
td

de
v.
of

th
e
E
rr
or

Time Step

Carpet
Concrete

(b)

Figure 5.10: (a) In indoor environments a robot may encounter different floor types. (b) The standard
deviation of the error of the odometry edges for the sliding window at each time step.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350

P
os
it
io
n
[m

]

Time Step

x Coordinate
y Coordinate

0.1

0.11

0.12

0.13

0.14

0 50 100 150 200 250 300 350

W
he
el
R
ad
iu
s
[m

]

Time Step

Estimated Wheel Radius

(a) x and y position of the laser (b) wheel radius

Figure 5.11: (a) The evolution of the x and y coordinate of the laser transformation as it is estimated by
our approach. The true value of the x and y coordinate is 0.3m and 0.6m, respectively. (b) The estimate
for the wheel radius having a true value of 0.12m.

5.2.2 Influence of the Ground Surface

Within real-world indoor environments a robot may encounter different floor types, e.g., tiling,
PVC flooring, wooden floor, or different kind of carpet. To test the influence of the floor type,
we recorded data sets in which the robot drives on a soft carpet and on concrete tiling floor, as
shown in Figure 5.10a. In this experiment we estimated the odometry parameters online. On
both floors the estimated wheel radii were the same. By analyzing the standard deviation (see
Figure 5.10b) in the error of the odometry edges eui for the sliding window around the current
node we observe a higher noise in the odometry due to slippage on the carpet. This information
can be stored in the map so that the robot can use it to adjust the motion model noise in a
localization task.

5.2.3 Simulation Experiments

In a first experiment we simulated the 2D laser having a transformation of (0.3,0.6,30◦)⊤ with
respect to the odometry frame of the robot. Here, we optimized after inserting every node and
monitored the evolution of the laser transformation as it is estimated by our approach in each
time step. Figure 5.11 visualizes how the estimate for the x and y coordinate of the relative laser
transformation and the radius of the left wheel along with their estimated uncertainty evolves.

5.2. Experiments 93

-0.4
-0.2

0
0.2
0.4
0.6
0.8
1

1.2
1.4

0 50 100 150 200 250 300 350

P
os
it
io
n
[m

]

Time Step

x Coordinate
y Coordinate
z Coordinate

-40

-20

0

20

40

60

0 50 100 150 200 250 300 350

R
ot
at
io
n
[◦
]

Time Step

Rotation x
Rotation y
Rotation z

(a) estimate of the position (b) estimate of the attitude

Figure 5.12: The evolution of (a) estimate of the position and (b) the estimate of the attitude for a
simulated depth camera as it is estimated by our approach. The ground truth values are (x,y,z) =
(−0.2,0.3,0.7) and (−30◦,10◦,25◦) for the rotation around the axes.

As we can see the estimate converges quickly to the correct transformation. By monitoring the
marginal covariance of the estimated laser transformation we are able to judge the quality of the
estimate.

Furthermore, we estimated the odometry parameters of the simulated robot whose left wheel
has a radius of rl = 0.12m, whereas the right wheel has a radius of rr = 0.125m. The distance
between the wheels is b= 0.6m. The output of the calibration is r∗l = 0.1207m, r∗r = 0.1264m,
and b∗ = 0.607m.

In a second set of experiments we simulated a robot equipped with a depth camera which
estimates its own ego-motion in 3D. The translational offset was simulated as (−0.2,0.3,0.7)⊤,
whereas the rotation around the axes was set to (−30◦,10◦,25◦)⊤. The simulated wheel radii
were the same as in the previous simulation experiment. Additionally, the ground plane observa-
tions yielding the rotation of the sensor around the x and y axes and its height above the ground
were simulated and perturbed with Gaussian errors, which are sampled from N (0,0.052) and
N (0,12) for the height estimate and the rotation angles, respectively. Figure 5.12 visualizes
the outcome of our approach. As we can see, the calibration converges quickly to the true
values. Furthermore, the estimated values of the kinematics parameters are r∗l = 0.1211m,
r∗r = 0.1263m, and b∗ = 0.603m.

We carried out further simulation experiments in which we randomly sampled the transfor-
mation of the on-board sensor with respect to the odometry frame and also modified the true
wheel radii and the distance between the wheels. The calibration parameters as they are esti-
mated by our approach did in all cases correspond well to the true values and the error was in
the same range like in the particular examples reported above.

5.2.4 Real-World Experiments

To evaluate our approach on real-world data we processed data of a heterogeneous set of robots
depicted in Figure 5.6. Table 5.1 summarizes the parameters of the platforms. To collect the
data, we steered each robot twice through the environment. The front-end again processed the
data to estimate the motion of the laser for each time step. When the robot revisits an already
known region, the loop closure, which are detected by front-end, are added as constraints to
the graph. Note that the estimation of the calibration parameters does not require to detect loop
closures. Such a constraint, however, reduces the residual error in the trajectory as it is estimated

94 Chapter 5. Simultaneous Parameter Calibration, Localization, and Mapping

PowerBot EUROPA Pioneer

wheel radius [m] 0.125 0.16 0.065
wheel distance [m] 0.56 0.7 0.35
ticks per revolution 22835 20000 1970
laser offset [m, m, ◦] (0.22, 0, 0) (0.3, 0, 0) (0.1, 0, 0)
laser scanner model Sick LMS291 Sick LMS151 Hokuyo URG

Table 5.1: The parameters of the robots used for our experiments.

laser offset d∗ wheel radii (r∗l ,r
∗
r) distance b∗

(m, m, ◦) (m, m) m

PowerBot - 1 (0.2258, 0.0026, 0.099) (0.1263, 0.1275) 0.5825
PowerBot - 2 (0.2231, -0.0031, 0.077) (0.1243, 0.1248) 0.6091

EUROPA - 1 (0.3067, -0.0051, -0.357) (0.1603, 0.1605) 0.6969
EUROPA - 2 (0.3023, -0.0087, -0.013) (0.1584, 0.1575) 0.7109

Pioneer - 1 (0.1045, 0.009, -0.178) (0.0656, 0.065) 0.3519
Pioneer - 2 (0.1066, -0.0031, -0.28) (0.0658, 0.0655) 0.3461

Table 5.2: Calibration results for different robot data sets.

by our approach. Table 5.2 summarizes the calibration results. As we can see, the result for the
laser transformation are within a few millimeters of the manually measured position. The same
holds for the radii of the wheels and their distance to each other.

Additionally, we mounted a Microsoft Kinect on the PowerBot platform and considered the
stereo data captured by the EUROPA robot with its Bumblebee stereo camera to evaluate our
approach for calibrating the position of those sensors. To this end, we again recorded two data
sets with each platform. For the Kinect we manually measured a translation of (0.28,0.04,1.0)
and a rotation of (0◦,21◦,15◦), whereas the translation of the Bumblebee is (0.21,0.06,1.19)
and the rotation is (0◦,20◦,0◦) according to the CAD drawings of the robot. The parameters as
they are estimated by our approach are summarized in Table 5.3. The obtained results indicate
that our approach is able to accurately estimate the position of an on-board 3D range sensor and
simultaneously calibrate the odometry parameters.

sensor offset d∗ wheel radii (r∗l ,r
∗
r) distance b∗

(m, m, m, ◦, ◦, ◦) (m, m) m

PowerBot - 1 (0.273, -0.049, 1.005, -0.842, 21.820, 15.673) (0.1263, 0.1260) 0.5895
PowerBot - 2 (0.284, -0.035, 0.999, -0.645, 21.224, 15.749) (0.1254, 0.1252) 0.5952

EUROPA - 1 (0.214, 0.061, 1.187, -0.912, 21.402, -0.842) (0.1559, 0.1557) 0.7039
EUROPA - 2 (0.212, 0.057, 1.185, -0.523, 21.919, -0.612) (0.1558, 0.1558) 0.7146

Table 5.3: Calibration results for different robot data sets with a 3D on-board sensor.

5.3. Related Work 95

5.3 Related Work

The traditional approaches to calibrate a mobile robot and its sensors involve to accurately
measure the trajectory of the robot while recording odometry and sensor measurements, for
example, by external cameras or lasers [34]. A pioneering work in this area is the work by
Borenstein and Feng [21]. Here, an external camera measures the error in the final location of
the robot that is repeatedly driven back and forth along a square. This procedure recovers two
out of the three parameters. Methods to calibrate the sensor position, which rely on an external
data, for example, match the measurements against a known map to recover the trajectory of
the sensor and use a least squares estimator to determine the relative transformation between
the robot and its sensor. In a similar way the odometry parameters can be estimated via another
independent least squares estimator given the knowledge of the reference trajectory [190]. For
example, Antonelli et al. [9, 10] consider an external camera to track the position of a robot
for calibrating the odometry parameters of a differential drive. Their method employs a least
squares estimator which exploits the linear relation between the measurements and the unknown
parameters.

In the context of computer vision, the idea to calibrate the intrinsic camera parameters while
performing structure from motion is commonly known [86]. This problem has a structure which
is very similar to the one addressed by our method. The main difference lies in the kind of pa-
rameters that are estimated. One of the first approaches to determine the stationary parameters
of a mobile robot and to determine the error of the motion was proposed by Martinelli and
Siegwart [150]. The idea behind this work is to extend the state of a Kalman filter used for
localization with the kinematic parameters of the odometry. Whereas this approach can op-
erate on-line, it requires an a priori known map. Subsequently, Jones et al. [95] and Kelly
and Sukhatme [104] extended the Extended Kalman Filter (EKF) and the Unscented Kalman
Filter (UKF) algorithm to include calibration parameters. Despite their increased complexity,
in these nonlinear problems smoothing approaches outperform filtering methods in terms of
accuracy [200].

Eliazar and Parr [52] proposed to use an Expectation-Maximization approach to learn the
motion model for a mobile robot. Their method is able to accurately estimate the parameters
of a simplified odometry model and it does not require to know the map in advance. Their
approach, however, requires to be run off-line due to its high computational requirements intro-
duced by considering a particle filter for mapping. Based on a localization algorithm Roy and
Thrun [180] estimate online the systematic error in the odometry. They treat the error in trans-
lation and rotation independently. Both approaches model the calibration as a linear function
of the odometry measurement, whereas our approach estimates the physical parameters of the
robot.

Gao and Spletzer [69] presented an approach to determine the extrinsic calibration parame-
ters between two laser range finders. Underwood et al. [213] proposed a method to determine
the 3D position of a laser within the body frame of the robot. Compared to our method those
approaches either rely on establishing feature correspondences between the individual observa-
tions by preparing the environment with laser-reflective tape or assume a simple and partially
known geometric environment for calibrating the sensors. Assuming a known configuration of
landmarks in the environment, Antonelli et al. [8] described an approach to calibrate the odom-
etry together with the extrinsic and intrinsic parameters of a camera mounted on the robot. By
just estimating the ego-motion of a pair of sensors in an arbitrary environment, Brookshire and
Teller [23, 24] are able to calibrate the offset between the sensors either in 2D [23] or 3D [24].
Maddern et al. [145] perform an extrinsic calibration of LIDAR sensors by optimizing the point

96 Chapter 5. Simultaneous Parameter Calibration, Localization, and Mapping

cloud quality as the vehicle traverses an unmodified and unknown environment. Their metric
for measuring the quality of the calibration is derived from the Rényi Quadratic Entropy.

Censi et al. [32, 33] proposed a technique similar to our method. They construct a least
squares calibration problem that estimates both the kinematic parameters and the sensor posi-
tion. Their approach does not need to know the map in advance, but it is restricted to the esti-
mation of stationary parameters. Furthermore, since it relies on scan-matching to estimate the
ego-motion of the sensor, this method does not provide an accurate map in large and loopy en-
vironments. Such a pure calibration method or one of the techniques described above, however,
are the best choice if no simultaneous mapping of the environment is required. Here, calibration
methods may provide guarantees for the convergence or the optimality of the parameters. Thus,
these techniques do not require suitable initial values for the parameters.

Our work can be seen as an extension of traditional graph-based SLAM algorithms. We
refer to Section 2.6 for a detailed discussion of the related work in that area.

5.4 Conclusions

In this chapter, we presented an approach to estimate the calibration parameters while per-
forming SLAM. To this end, our approach extends the graph-based formulation of the SLAM
problem to handle the calibration parameters. The overall approach is accurate and designed for
online operation, which allows us to handle changes in the parameters. For example, placing
a load onto the robot affects the wheel diameters while the robot is in operation. Furthermore,
compared to ad-hoc calibration methods our approach solely relies on the on-board sensors of
the robot and does not require external information.

Additionally, our approach has the potential to provide useful information about the ground
surface which affects the uncertainty of the odometry measurements. This information may in
the future be exploited for terrain classification and might also be considered by localization
algorithms.

While an accurate calibration of the parameters allows us to tune the performance of match-
ing algorithms, as we have shown in the motivating examples, it most importantly avoids to
include systematic noise and thus improves the quality of the estimate. In the following two
chapters, we provide additional methods for increasing the accuracy of the model.

Chapter 6

Using Aerial Images as Prior Information

for Graph-Based SLAM

After we have discussed the estimation of underlying parameters while
learning a model of the environment, we will now focus on improv-
ing the quality of the model estimated by our approach. Most existing
solutions to the SLAM problem learn the map from scratch and have
no means for incorporating prior information. On the other hand by
exploiting priors, we obtain more information leading to a better re-
sult. In this chapter, we present a novel SLAM approach that achieves
global consistency by utilizing publicly accessible aerial photographs as
prior information. It inserts correspondences found between the sensor
measurements and the aerial image as constraints into our graph-based
optimization framework. We evaluate our algorithm based on large real-
world data sets acquired in mixed indoor and outdoor environments by
comparing the global accuracy with state-of-the-art SLAM approaches
and GPS. The experimental results demonstrate that the maps acquired
with our method show increased global consistency.

• • • • • • • • • • •

Up to this point, we have considered methods for solving the optimization problem that arises
in SLAM and we also introduced a method to estimate the underlying calibration parameters
while performing SLAM. The simultaneous calibration presented in the previous chapter im-
proves the fusion of measurements of the odometers of the vehicle and the on-board range
sensor. Thus, the robot is able to reduce the systematic noise in the estimation process also
when the parameters are subject to change. Furthermore, as we have shown in Chapter 4, our
approaches yield accurate models of the environment, whereas the quality of the maps estimated
with our approach actually exceeds the quality of the maps learned with other state-of-the-art
methods. Albeit these good results, in this chapter and in the next one we will focus on tech-
niques to increase the accuracy of the map. First, we present an approach that allows the robot
to incorporate prior information into the estimation process for improving the overall quality of
the estimate, whereas we in the subsequent chapter concentrate on the fine details of the map.

Originally, the SLAM problem has been formulated independently of any specific prior
about the environment and most SLAM approaches seek to determine the most likely map and
trajectory taken by the robot given a sequence of observations without taking into account spe-
cial priors. Priors can, however, greatly improve solutions to the SLAM problem. Consider, for

98 Chapter 6. Using Aerial Images as Prior Information for Graph-Based SLAM

(a) standard SLAM (b) localization (c) our approach

Figure 6.1: Motivating example comparing (a) standard SLAM, (b) localization using aerial imagery as
prior information visualized in, and (c) our combined approach. Note the misalignment relative to the
outer wall of the building in (a). Whereas the localization applied in (b), which relies on aerial images,
yields proper alignments, it cannot provide accurate estimates inside the building. (c) Combining the
information of both algorithms achieves the best result (aerial image © Google).

example, a scenario in which a globally consistent map is required or in which the robot has to
navigate to a target location specified in global terms such as a specific GPS coordinate. Cor-
responding applications include rescue or surveillance missions in which one requires specific
areas to be covered. Unfortunately, GPS typically suffers from outages so that a robot only rely-
ing on GPS information might encounter substantial positioning errors. At the same time, even
sophisticated SLAM algorithms cannot fully compensate for these errors as there still might be
a lack of constraints between certain observations combined with large odometry errors. Even
in situations with substantial overlap between consecutive observations, the matching processes
might result in errors that linearly propagate over time and lead to substantial absolute errors.
Consider, for example, a mobile robot mapping a linear structure, such as a corridor of a build-
ing or the passage between two parallel buildings. Typically, this corridor will be slightly curved
in the resulting map. Whereas this is not critical in many applications, as the computed maps
are in general locally consistent [91], it might be sub-optimal in application scenarios in which
global consistency is required, such as those discussed above.

In this chapter, we present an approach that overcomes these problems by utilizing aerial
photographs for calculating global constraints within a graph-representation of the SLAM prob-
lem. In our approach, these constraints are obtained by relating the data from the sensor of the
robot to the aerial image. In particular, we consider 3D point clouds obtained by a laser range
finder and the images provided by a stereo camera.

Compared to traditional SLAM approaches, the use of a global prior enables our technique
to provide more accurate solutions by limiting the error when visiting unknown regions. In
contrast to approaches that seek to directly localize a robot in an outdoor environment, our
approach is able to operate reliably even when the prior is not available, for example, because
of the lack of appropriate matches. Therefore, it is suitable for mixed indoor/outdoor operation.
Figure 6.1 shows a motivating example and compares the outcome of our approach with the
ones obtained by applying a state-of-the-art SLAM algorithm and a pure localization method
using aerial images. While the localization aligns well with the aerial image, it cannot estimate
the pose of the robot driving indoors. Thus, integrating this information into a SLAM algorithm
improves the quality of the map.

The approach proposed in this chapter applies the graph-based approach of the SLAM prob-
lem as discussed in Chapter 2. In this variant of the SLAM problem, every node of the graph

6.1. Prior Information from Aerial Images 99

represents a robot pose. Edges in the graph encode relative transformations between nodes com-
puted from overlapping observations. Additionally, our system computes its global position for
every node for which the prior is available by employing a variant of Monte Carlo localization
(MCL). In particular, our approach considers 3D laser scans or stereo images as observations
and aerial images as reference maps. The use of 3D information allows our system to determine
the portions of the image and of the 3D scene that can be reliably matched. It computes these
matches by detecting structures that potentially correspond to intensity variations in the aerial
image. If the sensors also provide us with images, we additionally take into account the visual
information for matching. Note that our system preserves the flexibility of traditional SLAM
approaches and can also be used in absence of any prior information. When the prior is avail-
able our system provides highly accurate solutions also in pathological data sets (i.e., when no
loop closures take place), though.

GPS is a popular device for obtaining position estimates. Whereas it has also been used to
localize mobile vehicles operating outdoors, we found that the accuracy of this estimate is in
general not sufficient to obtain precise maps by only considering GPS data, especially when
the robot moves close to buildings or in narrow streets. This is also acknowledged by other
researchers. For example, Levinson and Thrun [134] report localization errors with a high-end
GPS system such that a map-based localization algorithm is required for robust navigation.

The remainder of this chapter is organized as follows. In the next section, we describe
how to obtain the prior information from aerial images by means of a localization algorithm,
which applies two different sensor modalities. The first one applies a 3D laser range finder and
the second one considers the visual information by a stereo camera. Subsequently, we present
the corresponding optimization problem in Section 6.2, which integrates the prior information
derived from the aerial image. After presenting the experiments in Section 6.3, we discuss the
related work in Section 6.4.

6.1 Prior Information from Aerial Images

Our system relies on a graph-based optimization back-end for solving the optimization problem
that originates from SLAM. It operates on a sequence of sensor measurements and odometry.
Every node of the graph represents a position of the robot at which a sensor measurement was
acquired. In addition to direct constraints between poses obtained by matching the respective
sensor data, it can integrate prior information whenever such information is available. Here, we
consider the prior given in form of an aerial image. Such images are publicly available from
various sources.

This prior information is introduced to the graph-based SLAM framework as global factors
on the nodes of the graph. These global constraints are absolute locations of the robot obtained
by MCL on a map inferred from the aerial images. As these images are captured from a view-
point which is significantly different from the one of the robot, we extract corresponding 2D
features from the 3D measurements obtained from a laser scanner or a stereo camera which are
more likely to be consistent with the ones visible in the image. In this way, we can prevent the
system from introducing inconsistent prior information.

In the following we explain how we adapted MCL to operate on aerial images and how
to select the points in the 3D measurements to be considered in the observation model. After
describing how to utilize the data of a 3D range finder, we present a method which employs
a stereo camera to extract the features for localizing the vehicle. In the following section, we
describe our extension to the optimization back-end for solving the extended SLAM framework
including the prior information.

100 Chapter 6. Using Aerial Images as Prior Information for Graph-Based SLAM

xt−1 xt xt+1

ut−1 ut ut+1

st−1 st st+1

Figure 6.2: Monte Carlo localization represented as a Bayesian network, which visualizes the Markov
assumption.

6.1.1 Monte Carlo Localization

To estimate the current pose xt of the robot in an environment, we consider probabilistic lo-
calization, which follows the recursive Bayesian filtering scheme [205]. The key idea of this
approach is to maintain a probability density Bel(xt) = p(xt | s1:t ,u1:t) of the location xt of the
robot at time t given all observations s1:t and all control inputs u1:t . Again, we assume that the
state xt encodes all relevant information up to time t (Markov assumption). This allows us to
obtain this posterior by a recursive formula as follows:

Bel(xt) = p(xt | s1:t ,u1:t) (6.1)
Bayes
= η p(st | xt ,s1:t−1,u1:t) p(xt | s1:t−1,u1:t) (6.2)

Markov
= η p(st | xt) p(xt | s1:t−1,u1:t) (6.3)

total prob.
= η p(st | xt)

∫
p(xt | s1:t−1,u1:t ,xt−1) p(xt−1 | s1:t−1,u1:t) dxt−1 (6.4)

Markov
= η p(st | xt)

∫
p(xt | ut ,xt−1) p(xt−1 | s1:t−1,u1:t−1) dxt−1 (6.5)

= η p(st | xt)
∫

p(xt | ut ,xt−1) Bel(xt−1) dxt−1. (6.6)

Here, η is a normalization factor which results from applying Bayes’ rule but omitting the
denominator. The terms in Eq. 6.6 are the prediction model p(xt | ut ,xt−1) and the sensor
model p(st | xt), see also the Bayesian network in Figure 6.2.

For the implementation of the described filtering scheme, we employ a sample-based ap-
proach which is commonly known as Monte Carlo localization (MCL) [42]. Each sample cor-
responds to a possible pose of the robot and has an assigned weight and we consider 1,000
samples in our current implementation. For realizing the prediction step, we implemented a
standard model operating on the odometry u of the robot [52, 42]. The model samples a motion
command for each particle individually and assumes Gaussian noise for modeling the uncer-
tainty in the odometry.

The remaining part to be described for implementing MCL on aerial images is the sensor
model p(s | x). To this end, we need to determine the likelihood for obtaining the measurement s
given the robot is at position x in an aerial image. In our current system, we apply the so-called
endpoint model or likelihood fields [205]. Let pk be the 2D point corresponding to the k-th
beam sk of the range measurement s projected into global coordinates assuming the robot is
located at x. The endpoint model computes the likelihood of sk based on the distance between
the scan point pk and the point ok in the map which is closest to pk. Furthermore, we assume

6.1. Prior Information from Aerial Images 101

(a) aerial image (b) Canny image (c) likelihood field

Figure 6.3: (a) Aerial image (© Google) of the campus of the University of Freiburg, (b) the correspond-
ing Canny image, and (c) the corresponding likelihood field computed from the Canny image. Note that
the structure of the buildings and the vertical elements is clearly visible despite of the considerable
amount of clutter.

that the beams are independent and the sensor noise is normally distributed. Thus, we obtain

p(s | x) ∝
|S |
∏
k=1

exp

(
−‖p

k−ok‖2
2σ2

)
, (6.7)

where σ = 2.0m in our system. Since the aerial image only contains 2D information about the
scene, we need to select a set of 2D points from a 3D observation, which is either given by the
3D range finder or the stereo camera. The extracted 2D points should correspond to structures
that can be identified and matched with the aerial image. In other words, we need to transform
both the scan and the image to a set of 2D points which can be applied in Eq. 6.7.

To extract candidate points from the aerial image, we employ the standard Canny edge
extraction procedure [28]. The idea behind this is that a height gap in the world is likely to
coincide with a change in intensity, which is detectable by the edge extraction on the aerial
image. In an urban environment such edges are typically generated by borders of roofs, trees,
or fences. Of course, the edge extraction procedure returns a lot of false positives that do not
represent any actual 3D structure. Such false positives include street markings, grass borders,
shadows, and other flat intensity variations. All these aspects have to be considered by the
sensor model. Figure 6.3 shows an aerial image and the extracted Canny image along with the
likelihood-field.

After we have presented how to evaluate the likelihood of a position given a set of 2D points,
the remaining point is how to convert the 3D range scan or a stereo image pair into a set of 2D
locations that are likely to be visible in the canny image. Below we will describe two variants
for implementing such a pre-processing step operating on different sensor modalities. Whereas
the first one, described below, operates on 3D range data obtained with a sweeping laser scanner,
the second one, presented in Section 6.1.3, is designed for a a stereo camera.

6.1.2 Extracting Height Variations in 3D Range Scans

The objective of our pre-processing of the 3D scan is to obtain a subset of 2D features that
should contain all the points which may be visible in the reference map. To this end, we compute
the z-buffer [62] of a scan from a bird’s eye perspective. This allows us to discard points which
are occluded in the bird’s eye view from the 3D scan. Such occlusions might be caused, for

102 Chapter 6. Using Aerial Images as Prior Information for Graph-Based SLAM

(a) 3D range scan

(b) aerial image (c) Canny image

(d) z-buffer (e) height variations

Figure 6.4: (a) A 3D scan represented as a point cloud; (b) the aerial image of the corresponding area
(© Google); (c) the Canny edges extracted from the aerial image; (d) the 3D scene from (a) seen from
the top (gray values represent the maximal height per cell, the darker a pixel the lower the height; and
the green area was not visible in the 3D scan); (e) the positions extracted from (d), where the variation in
height is above a threshold.

6.1. Prior Information from Aerial Images 103

example, by overhanging roofs, where the house wall is occluded and therefore is not visible in
the aerial image. Given the z-buffer, we construct a set of 2D points to be plugged into Eq. 6.7 by
considering the 2D projection of the points exhibiting a variation in height with respect to their
local neighborhood. These points are likely to coincide with an intensity change in the aerial
image and thus are presumably visible in the Canny image. In our experiments, we considered
variations in height of 0.5m and above as possible positions of edges that could also be visible
in the aerial image. Figure 6.4 shows an example for this procedure.

An implementation purely based on a 2D scanner (like the approach proposed by Frueh
et al. [68]) would not account for occlusions due to overhanging objects, such as a roof. An
additional situation, in which our approach is more robust, is in the presence of trees. In this
case a 2D view would only sense the trunk, whereas the whole treetop is visible in the aerial
image.

6.1.3 Features for Stereo Images

After having described a method for extracting height variations from a 3D laser scan, we will
now focus on utilizing a stereo camera to extract the relevant information for localizing the
robot. We can obtain 3D data from the stereo data by computing a disparity image. In addition
to utilizing this 3D data with the procedure described above, we consider the color information
to enable the robot to take advantage of flat structures. The color image allows us to extract
street markings or borders of different ground surfaces that cannot be detected by a range-only
device at all or without further post-processing, e.g., curb detection, detection of lanes, and road
boundaries in general.

To extract the visual information, we proceed as follows. First, we process the stereo image
to obtain 3D information by means of a disparity image. Second, we apply a variant of the
Canny edge detector to the camera image. This is motivated by the fact that the same edges
that are visible in the aerial image might also be visible in the camera image obtained by the
robot. We, however, have to take into account that the image acquired by the robot and the
aerial image differ substantially in resolution. Consider, for example, the paving tiles illustrated
in Figure 6.5a, which are clearly identifiable in the camera image. Their pattern, however, is
not present in the Canny image obtained from the aerial image, as we can see in Figure 6.5b.
A straightforward application of an edge extraction either extracts the fine structures that are
not visible in the aerial image (see Figure 6.5c) or misses important features if run with an
increased acceptance threshold (see Figure 6.5d). Instead of that, we exploit the range data
provided by the stereo processing for blurring the camera image. The kernel size of the blur is
thereby inversely proportional to the range, which results in the image shown in Figure 6.5e.
Figure 6.5f illustrates the result of the edge extraction utilizing the distance-based blur. Here,
most of the structures that are also visible in the aerial image are extracted, but the ones which
are too fine to be visible in the aerial image are neglected. Finally, since the aerial image is an
orthogonal view, we discard features that are not obtained from the ground plane. Accordingly,
we project the 3D points onto the ground plane to obtain a set of 2D points, which is finally
applied in Eq. 6.7.

6.1.4 Discussion on the Sensor Model

Both sensor modalities have some limitations. The evaluation of p(s | x) is susceptible to vi-
sually cluttered areas in the aerial image since it can find random correspondences between the
sensor data and the Canny edges in these areas of the aerial image. There is also the possibility

104 Chapter 6. Using Aerial Images as Prior Information for Graph-Based SLAM

(a) camera image (b) Canny on the aerial image (c) Canny with low thresholds

(d) Canny with high thresholds (e) distance-based blur (f) Canny applied on (e)

Figure 6.5: Example for the distance-based blurring of the images as a preprocessing for the Canny
edge detection. (a) The original camera image. (b) The corresponding part of the Canny edges with
the position of the robot marked in red. (c) Standard Canny on the original camera image using low
thresholds extracts a lot of edges not visible in the aerial image. (d) Standard Canny on the original
camera image using thresholds that are high enough so that the pattern of the ground directly in front
of the robot is not recognized as edges. (e) The blurred image, where the amount of blur is inversely
proportional to the depth information. The area marked in red indicates that no range information is
available. (f) Standard Canny on the dynamically blurred image with the same thresholds as in (c).
Here, most of the important edges, i.e., those on the ground that are also visible in the aerial image were
extracted correctly. Yet, the ground pattern in front of the robot was not extracted.

of systematic errors, when a wrong line is used for the localization, e.g., in the case of shad-
ows. In our practical experiments we could not find evidence that this leads to substantial errors
when one applies position tracking and as long as the robot does not move through such areas
for a longer period of time. The main advantages of the endpoint model in this context are that
it ignores possible correspondences outside of a certain range and that it implicitly deals with
edge points that do not correspond to any 3D structure.

The model based on the 3D range finder data and the stereo data cover different aspects.
While the stereo camera extracts visual features, like road markings, which are also present
in the aerial image and which cannot be perceived by range only sensors, the 3D range data
provided by a laser scanner yields more accurate depth information. Furthermore, the maximum
detectable range is much larger for the laser compared to the range of our stereo camera. This
is due to the small baseline of 0.12m. As we will see in the experiments, a combination of the
two models allows us to take advantage of both models to robustly localize the robot in difficult
situations.

Our method, of course, also depends on the quality of the aerial images. Perspective dis-
tortions in the images could easily introduce errors. For the data sets used to carry out our
experiments, however, we could not find evidence that this is a major complicating factor.

Finally, both presented sensor models are not applicable all the time. To this end, we employ
a heuristic to detect when the prior is not available, i.e., when the robot is inside of a building

6.2. Priors in Graph-Based Maximum Likelihood SLAM 105

x1 x2 x3 x4 x5 xt

x̂1 x̂3 x̂4 x̂t

Figure 6.6: The graph representation of our method. In contrast to the standard approach, we addi-
tionally integrate global factors (shown in red) reflecting the prior information, which is obtained by
localizing the robot in an aerial image. As indicated in the example, the prior information might not be
available for all nodes, for example, if the robot is indoors.

or under structures that occlude the robot the bird’s eye view. This heuristic is based on the
3D perception of the robot. If there are range measurements whose endpoints are directly
above the robot, we do not integrate any global constraints from the position estimate since
we assume that the area the robot is sensing is not visible in the aerial image. To this end, we
build a local 3D map in which we accumulate the measurements of the robot. We rely on this
local map to decide whether the robot is indoors. While a more profound solution regarding
place recognition is clearly possible, this conservative heuristic turned out to yield sufficiently
accurate results.

6.2 Priors in Graph-Based Maximum Likelihood SLAM

We apply a graph-based SLAM technique to estimate the most-likely trajectory, i.e., we seek
for the maximum-likelihood (ML) configuration like the majority of approaches to graph-based
SLAM. Let us briefly recall the main components of such a optimization framework. The details
can be found in Chapter 2.

The poses of the robot are given by the vector x = (x1, . . . ,xT)
⊤, where xi describes the

pose of node i. Furthermore, si is the range scan taken at the location of node i. Let zij and
Ωij be respectively the mean and the information matrix of an observation of node j seen from
node i, perturbed by Gaussian noise. The virtual measurement zij may arise from odometry or
from matching sensor measurements and it yields a constraint in the optimization problem. For
example, we obtain the virtual measurement zij by scan-matching the observations si and s j in
our front-end. Furthermore, let e(xi,x j,zij) be a function that computes a difference between the
expected observation of the node x j seen from the node xi and the constraint zij gathered by the
robot. Let G be the set of pairs of indices for which a constraint (virtual measurement) z exists.
Assuming that the constraints are independent, we obtain the negative log likelihood F(x) of
all the observations

F(x) = ∑
〈i, j〉∈G

e(xi,x j,zij)
⊤Ωije(xi,x j,zij). (6.8)

To account for the residual error in each constraint, we can additionally consider the prior
information P by incorporating the position estimates of our localization approach. To this
end, we extend Eq. 6.8 as follows:

F̃(x) = ∑
〈i, j〉∈G

e(xi,x j,zi j)
⊤Ωi je(xi,x j,zi j)+ ∑

i∈P

e(xi, x̂i)
⊤Ωie(xi, x̂i), (6.9)

106 Chapter 6. Using Aerial Images as Prior Information for Graph-Based SLAM

where x̂i denotes the position as it is estimated by the localization using the bird’s eye image
and Ωi is the information matrix of this constraint. In our approach, we compute Ωi based on
the distribution of the samples in MCL. This leads us to the factor graph shown in Figure 6.6,
where the prior information is indicated as red factors. The function e(xi, x̂i) is defined as

e(xi, x̂i)
def.
= xi⊖ x̂i. (6.10)

Note that the prior might not be available in each time step, for example, if the robot is operating
indoors, it has no access to the prior.

The result of the optimization is a set of poses that maximizes the likelihood of all the indi-
vidual observations and accordingly minimizes the negative log-likelihood of all observations,
i.e., we obtain x∗ as

x∗ = argmin
x

F̃(x). (6.11)

The optimization also accommodates the prior information about the environment to be mapped
whenever such information is available. In particular, the objective function F̃(x) encodes the
available pose estimates as given by our MCL algorithm described in the previous section. In-
tuitively the optimization deforms the solution obtained by the relative constraints to maximize
the overall likelihood of all the observations, including the priors. The optimization results in a
consistent estimate, as long as the MCL gives the correct position of the vehicle. It is worth to
mention that including the prior information about the environment yields a globally consistent
estimate of the trajectory even in situations where no loop closures occur.

6.3 Experiments

The approach described above has been implemented and evaluated on real data acquired with
a MobileRobots Powerbot equipped with a SICK LMS laser range finder mounted on an Amtec
wrist unit. The 3D data used for the localization algorithm has been acquired by continuously
tilting the laser up and down while the robot moves. The maximum translational velocity of the
robot during data acquisition was 0.35m/s. This relatively low speed allows our robot to obtain
3D data that is sufficiently dense to perform scan matching without the need to acquire the
scans in a stop-and-go fashion. During each 3D scan the robot moved up to 2m. We used the
odometry to account for the distortion caused by the movement of the platform. Additionally,
we utilize a Point Grey Bumblebee2 stereo camera to acquire the vision data. Although the robot
is equipped with an array of sensors, in the experiments we only used the devices mentioned
above.

6.3.1 Comparison to GPS

This first experiment aims to show the effectiveness of the localization on aerial images com-
pared with the one achievable with a consumer grade GPS. We manually steered our robot along
a 890m long trajectory through our campus, entering and leaving buildings. The robot captured
445 3D scans that were utilized for localization. We also recorded the GPS data for comparison
purposes. Figure 6.7 compares the GPS estimate with the one obtained by MCL on the aerial
view. The higher error of the GPS-based approach is clearly visible. Note that GPS, in contrast
to our approach, does not explicitly provide the orientation of the robot.

6.3. Experiments 107

Figure 6.7: Comparison between GPS measurements (blue crosses) and global poses from the localiza-
tion in the aerial image (red circles). Dashed lines indicate transitions through buildings, where GPS and
aerial images are unavailable (aerial image © Google).

6.3.2 Comparison of a 3D Laser and a Stereo Camera for Localization

The proposed localization based on 3D laser data relies on the extraction of variations in height
that are matched with the aerial image. In contrast, we can match the visual data provided by
the stereo camera to visual features obtained from the ground plane with the aerial image. Some
features, e.g., curbs, cannot be reliably detected by a 3D range sensor using height variations
without introducing a lot of false positives that are not visible in the Canny image of the aerial
photograph. Furthermore, other flat features such as road markings are not perceivable at all in
range-only data. This experiment is designed to evaluate the performance of using just the data
provided by a stereo camera for localizing the robot.

To compare the two proposed sensor modalities, we steered the robot along a 680m long
trajectory on our campus. While driving the robot again collected 3D scans like in the experi-
ment described above. Additionally, the robot recorded stereo vision data. The stereo camera is
mounted approximately 1.2m above the ground and tilted downwards by 30 degrees. This setup
allows the robot to observe the ground surface which is also visible in the aerial image. Using
this data we analyzed the position estimate of MCL using the two different sensors described
in Sections 6.1.2 and 6.1.3. Note that we set the update rate of the two approaches to the same
frequency. Therefore, both approaches integrate the same number of sensor readings, i.e., we
discard stereo images which are available at higher rates than the 3D laser scans generated by
our platform. Figure 6.8 shows the trajectory estimate of the two approaches. As can be seen
from the image, the estimate using vision is more accurate in this case. In the particular area,
the robot is driving on the foot path going through a vegetated area, whereas the estimate using
only 3D laser data is off the foot path due to the lack of a sufficiently dense 3D structure. In the

108 Chapter 6. Using Aerial Images as Prior Information for Graph-Based SLAM

Figure 6.8: Comparison between MCL using 3D laser scans and stereo vision data. The trajectory as it
is estimated based on the 3D laser and vision data is shown in yellow and red, respectively. The trajectory
estimate using vision localizes the robot on the foot path, whereas the laser based localization is slightly
off. The column on the right shows a magnified view of the black rectangle and it depicts the particle
cloud for MCL using 3D laser scans (top) and stereo data (bottom) (aerial image © Google).

other parts of the trajectory, the estimate of the two approaches overlay with each other, i.e., we
could not observe a substantial difference in the position estimate.

6.3.3 Global Map Consistency

The goal of this set of experiments is to evaluate the ability of our system to create a consistent
map of a large mixed indoor and outdoor environment. We compare our approach against a
graph-based SLAM approach, which does not have access to the prior data. The implementa-
tion is similar to the one proposed by Olson [163]. This approach applies scan-matching and
identifies previously visited places by matching the respective observations while outliers are
detected with a clustering technique. For evaluating the global map consistency, we recorded
data in two different environments, our campus and a residential area. These two areas differ
substantially. The campus area contains only a few large buildings, whereas the residential
area consists of several rather small houses along with front gardens surrounded by fences and
hedges. Additionally, cars, which were not present at the time the aerial image was taken, are
parked on the narrow streets and vice versa. Figure 6.3a and Figure 6.12 show aerial images
of the two test sites. First we describe the experiment carried out in the campus environment,
followed by a description of the experiment in the residential area.

We evaluate the global consistency of the generated maps obtained with both approaches.
To this end, we recorded five data sets by steering the robot through our campus area. In each
run the robot followed approximately the same trajectory. Figure 6.9 depicts the trajectory of
one of these data sets as it is estimated by our approach and a standard graph-based SLAM
method. For each of the two approaches (our method using the aerial image and the graph-
based SLAM technique that uses no prior information) we calculated the maximum likelihood

6.3. Experiments 109

A
B

Figure 6.9: Comparison of our approach to a standard SLAM approach in a complex indoor/outdoor
scenario. The center image shows the trajectory estimated by the SLAM approach (green) and the trajec-
tory generated by our approach (red) overlaid on the Google Earth image used as prior information. On
the left and right side, detailed views of the areas marked in the center image are shown, each including
the trajectory and map. The upper images show the results of the standard SLAM approach; detail A on
the left and B on the right. The lower images show the results of our system (A on the left side and B
on the right). It is clearly visible that, in contrast to the SLAM algorithm without prior information, the
map generated by our approach is accurately aligned with the aerial image (aerial image © Google).

map by processing the acquired data of each run.
For each of the five data sets we evaluated the global consistency of the maps by man-

ually measuring the distances between six easily distinguishable points on the campus (see
Figure 6.10). As ground-truth we considered the so-called Automatisierte Liegenschaftskarte,
which we obtained from the German land registry office. It contains the outer walls of all build-
ings where the coordinates are stored in a global reference frame. This allowed us to compute
the true distance between the chosen points. We compared these distances to the corresponding
distances in the maps. We computed the average error in the distance between these points.
The result of this comparison is summarized in Figure 6.11. As we can see, the errors of our
approach are substantially smaller than the ones of the standard approach.

An additional experiment was carried out in a residential area. An aerial image of this area
is depicted in Figure 6.12. We steered our robot five times on the streets along an approximately
710m long trajectory. The data sets were recorded at different times and on several days, i.e.,
parts of the environment were subject to change. For example, the position of shadows changed
and cars were parked in different locations. This environment is less structured than our cam-
pus environment. In particular, the parts of the environment which are marked in Figure 6.12
impose challenges for the MCL. The area marked on the right is dominated by vegetation along
a railway embankment resulting in cluttered 3D range measurements. In this area, our approach
using only 3D laser data is unable to accurately localize the robot and the MCL is likely to
diverge. In the area marked on the left, the street is partially occluded due to overhanging trees.
Here, the localization using stereo vision data is unable to robustly localize the vehicle. Using
both sensors, the 3D laser data and the stereo images, our approach, however, is able to localize
the robot also in these two challenging areas. The vision data provides useful information about
the road borders that are not observed by the 3D laser close to the railway, whereas the 3D laser
measures the trees and building structures in the other problematic region. Fusing the infor-

110 Chapter 6. Using Aerial Images as Prior Information for Graph-Based SLAM

1

2

3

4

5

6

Figure 6.10: The six points (corners of the buildings) we used for evaluation are marked as crosses on
the map.

0

0.5

1

1.5

2

2.5

3

1-2
1-3

1-4
1-5

1-6
2-3

2-4
2-5

2-6
3-4

3-5
3-6

4-5
4-6

5-6

E
rr
or

[m
]

Point Pair

Our Approach
Graph-Based SLAM

Figure 6.11: Error bars (95% confidence interval) for the estimated distances between the six points
used for evaluating the map consistency.

6.3. Experiments 111

1

7

4

2

3

5

6

Figure 6.12: Aerial image of a residential area. The two areas marked with rectangles impose challenges
to the localization algorithm. In the region marked on the left the localization using stereo vision fails.
Within the area marked on the right the localization using 3D laser data is inaccurate. Using both sensors
as input results in a accurate localization for the whole environment. The seven points we used for
evaluation are marked as crosses on the aerial image (aerial image © Google).

mation of both sensors allows the robot to reliably track its position in the whole environment.
For each run we computed the maximum likelihood estimates of the map for our approach and
standard graph-based SLAM without prior information.

Unfortunately, an evaluation based on the ground truth map is not possible for this environ-
ment since most of the houses are not observable due to the fences and hedges along the street.
We therefore have to rely on a highly accurate GPS receiver which achieves a sub-meter accu-
racy. Accumulating GPS data for a longer time period allows us to obtain even more accurate
position estimates. To evaluate the output of our approach and the standard graph-based SLAM
algorithm, we recorded the GPS information in each run. Additionally, we selected seven posi-
tions for which an accurate GPS estimate was available and we steered the robot over the same
positions in each run. We measured the distance between the locations as determined by GPS
and compared the distances with the maximum likelihood estimates of our approach and stan-
dard graph-based SLAM for each run. Figure 6.13 summarizes the results. While our approach
is able to achieve an average error of 0.85m the graph-based SLAM algorithm without prior
information achieved an average error of 1.3m.

As these two experiments reveal, SLAM without prior information results in a larger error
than obtained with our approach in both environments. Additionally, the standard deviation
of the estimated distances is substantially smaller than the standard deviation obtained with a
graph-based SLAM approach that does not utilize prior information. Our approach is able to
estimate a globally consistent map on each data set. Note that similar accuracies with respect

112 Chapter 6. Using Aerial Images as Prior Information for Graph-Based SLAM

0
0.5
1

1.5
2

2.5
3

3.5
4

1-2
1-3

1-4
1-5

1-6
1-7

2-3
2-4

2-5
2-6

2-7
3-4

3-5
3-6

3-7
4-5

4-6
4-7

5-6
5-7

6-7

E
rr
or

[m
]

Point Pair

Our Approach
Graph-Based SLAM

Figure 6.13: Error bars (95% confidence interval) for the estimated distances between the seven points
used for evaluating the map consistency.

(a) result of standard graph-based SLAM

(b) result of our approach

Figure 6.14: Close-up view of an outer wall of a building as it is estimated by graph-based SLAM (top)
and our method with prior information (bottom). In both images a horizontal line visualizes the true
orientation of the wall. As can be seen from the image, graph-based SLAM bends the straight walls of
the building more than our approach.

to global consistency might be obtained with a standard SLAM procedure if the data contained
more loop closures. This indicates an additional advantage of our method, namely that it in
principle does not require loop closures to achieve global consistency, at least when the prior is
available for most of the time.

6.3.4 Local Alignment Errors

Ideally, the result of a SLAM algorithm should perfectly correspond to the ground truth. For
example, the straight wall of a building should lead to a straight structure in the resulting map.
The residual errors in the scan matching process, however, typically lead to a slightly bended
wall. We investigated this in our five data sets for both SLAM algorithms by analyzing an
approximately 70m long building on our campus. This building corresponds to the longest
straight structure in this environment and was therefore chosen for evaluation. To measure the
accuracy, we approximated the first part of the wall by a line and extended this line to the other
end of the building. In a perfectly estimated map, both corners of the building are located on
this line. Figure 6.14 depicts a typical result. On average the distance between the horizontal

6.4. Related Work 113

line and the corner of the building for standard graph-based SLAM is 0.5m, whereas it is 0.2m
for our approach in the five data sets.

6.4 Related Work

The SLAMmethods discussed in Chapter 2 do not take into account any prior knowledge about
the environment. Those approaches typically start to estimate a model of the environment from
scratch. On the other hand, several authors addressed the problem of utilizing prior knowledge
to localize a robot outdoors. For example, Korah et al. [113] use image processing techniques
to extract roads on aerial images. This information is then applied to improve the quality of
GPS paths using a particle filter by calculating the particle weight according to its position rel-
ative to the streets. Leung et al. [133] present a particle filter performing localization on aerial
photographs by matching images taken from the ground with a monocular vision system. The
approach detects line features to find correspondences between the aerial and ground images. It
applies a Canny edge detector, progressive probabilistic Hough transform to find lines in aerial
images, and furthermore performs a vanishing point analysis for estimating building wall orien-
tations in the monocular vision data. The approach achieves an average positioning accuracy of
several meters. Ding et al. [44] use a vanishing point analysis to extract 2D corners from aerial
images and inertial tracking data. They also extract 2D corners from LIDAR generated depth
maps and apply a multi-stage process to match these corners with those from the aerial image.
The corresponding matches finally yield a fine estimation of the camera pose that is used to
texture the LIDAR models with the aerial images. Chen et al. [35] use an energy minimization
technique to merge prior information from aerial images and mapping. They perform mapping
by constructing sub-maps consisting of 3D point clouds, that are constrained by relations. Using
a Canny edge detector, they compute a vector field from the image that models force towards the
detected edges. The sum of the forces applied to each point corresponds to the energy measure
in the minimization process, when placing a sub-map into the vector field of the image.

While our approach and the related work mentioned above operate on aerial images, several
researchers considered manually drawn maps for navigation. For example, Parekh et al. [168]
establish correspondences with a sketched map, which requires to deal with different scale and
shape given in the sketch. Recently, Matsuo and Miura [151] presented a variant of FastSLAM
which utilizes a hand-drawn map as initial estimate.

Incorporating the available prior information was also considered by Parsley and Julier [172,
173]. They demonstrate how to incorporate a heterogeneous prior map into an extended Kalman
filter [172] or graph-based SLAM [173], respectively. They show that such a prior bounds
the error while the robot travels in open-loop. Lee et al. [131] use the road graph from a
given prior map for SLAM. Under the assumption that the vehicle follows only roads they can
constrain the probabilistic model to the roads and thus achieve higher accuracy than traditional
FastSLAM. Dogruer et al. [45] utilized soft computing techniques for segmenting aerial images
into different regions such as buildings, roads, and forests. They applied MCL on the segmented
maps. Compared to the approach presented in this chapter, their technique strongly depends on
the color distribution of the aerial images since different objects on these images might share
similar color characteristics.

Frueh et al. [68] described the generation of edge images from aerial photographs for 2D
laser-based localization. As they state in their paper, localization errors might occur if rooftops
seen on the aerial image significantly differ from the building footprint observed by the 2D
scanner. Our approach proposed in this chapter computes a 2D structure from a 3D observation,
which is more likely to match with the features extracted from the aerial image. This leads to an

114 Chapter 6. Using Aerial Images as Prior Information for Graph-Based SLAM

improved robustness in finding corresponding locations. Additionally, our system is not limited
to operate in areas where the prior is available. When no prior is available, our algorithm
operates without relevant performance loss compared to standard SLAM approaches which do
not utilize any prior. Our system furthermore allows a robot to operate in mixed indoor/outdoor
scenarios.

Sofman et al. [196] introduced an online learning system predicting terrain travel costs for
unmanned ground vehicles (UGVs) on a large scale. They extract features from locally observed
3D point clouds and generalize them on overhead data, such as aerial photographs, allowing the
UGVs to navigate on less obstructed paths. Montemerlo and Thrun [153] presented an approach
similar to the one presented in this chapter. The major difference to our technique is that they
use GPS to obtain the prior. Due to the increased noise which affects the GPS measurements
this prior can lead to larger estimation errors in the resulting maps.

It is worth to mention that our approach to generate a map out of the aerial image for local-
ization is a straightforward application of the Canny edge extraction. Despite that the localiza-
tion with our edge image worked well, an improved map can be obtained, for example, by the
method described by Pink and Stiller [176]. Their approach applies distinctive image features to
automatically generate a map, which contains considerably less clutter than our method, given
the aerial image.

Furthermore, our approach was subsequently extended by Kleiner and Dornhege [105] to
assist first-aiders in urban search and rescue scenarios. They focus on assisting a human who
remotely operates the robot and hence the user assists the robot in determining the location in
the aerial image. The pose provided by the user is then refined by applying our localization
algorithm.

6.5 Conclusions

In this chapter, we presented an approach to incorporate the prior knowledge about the structure
of an environment into the state estimation of an graph-based SLAM system. To incorporate
the prior given by the aerial images into the graph-based SLAM procedure, we utilize a variant
of Monte Carlo localization with a novel sensor model for matching 3D laser scans to aerial
images. Additionally, we suggested a sensor model for using a stereo camera to localize the
robot given an aerial image. A combination of the two sensor modalities achieves the best per-
formance by overcoming the drawbacks of the individual sensors. Given the prior our approach
can achieve accurate global consistency without the need to close loops.

Our method has been implemented and tested in a complex mixed indoor and outdoor set-
ting. Practical experiments carried out on data recorded with a real robot demonstrate that our
algorithm outperforms state-of-the-art approaches for solving the SLAM problem that have no
access to prior information in terms of accuracy of the resulting map. In situations, in which no
global constraints are available, our approach is equivalent to standard graphical SLAM tech-
niques. Thus, our method can be regarded as an extension to existing solutions of the SLAM
problem.

Chapter 7

Highly Accurate Maximum Likelihood

Laser Mapping

Whereas we in the last chapter illustrated one technique to improve the
accuracy of the results of our SLAM algorithm, we now present an ap-
proach for obtaining highly accurate laser-based occupancy grid maps.
Our approach is a post-processing step for SLAM to further improve
the quality of the map that is obtained by integrating the laser readings
into an occupancy grid. Thereto, we represent the laser readings as sam-
ples of the measured surface and we assume that the surface is locally
smooth. Consequently, we approximate the surface by a Gaussian. Our
approach in particular models the conic shape of the laser beam and
considers the incidence angle of the beam. This allows us to construct a
joint optimization problem that includes the poses of the robot and the
laser readings. We evaluated our approach on a collection of real-world
and simulated data sets. Furthermore, we demonstrate how the highly
accurate maps greatly improve the localization performance.

• • • • • • • • • • •

In the previous chapter, we have discussed one way to improve the quality of the maps. We
boosted the quality by including prior information about the environment to obtain a globally
consistent map. The map was given by the configuration of the robot poses that best explains the
constraints and the prior. While this technique yields accurate maps of large-scale environments,
as we have shown, it treats the scan as rigid body and disregards the noise in the range reading
itself. Furthermore, the standard method does not take into account the result of the optimization
to further enhance the data association.

In this chapter, we will present an additional technique for improving the quality of the
maps on a more fine-grained level. So far, we modeled the optimization problem as a graph, in
which each pose of the robot is represented by a node and the edges between the nodes encode
the constraints arising from the pair-wise matching of the respective observations along with a
Gaussian covering the noise in the matching process. The map is rendered in a decoupled step
by integrating the range scans at their maximum likelihood location [205].

In contrast to the standard technique, the approach presented in this chapter constructs an
optimization problem that includes the position of the robot and the points of the range scans. In
particular, we model the points obtained by the range finder as samples. To this end, we assume

116 Chapter 7. Highly Accurate Maximum Likelihood Laser Mapping

(a) result of standard graph-based SLAM (b) result of our approach

Figure 7.1: Example for the accuracy of the maps generated by our approach. (a) A magnified view of a
map obtained with a state-of-the-art traditional SLAM algorithm. (b) Same view of a map rendered from
the result of the joint optimization of the robot poses and the individual scan points.

that the scanner samples points from a locally smooth surface. Since each sample is influenced
by the local characteristics of the surface and the properties of the laser beam, we explicitly take
into account the conic shape of the beam and the incidence angle of the beam to the surface.
These two quantities allow us to better explain the noise in the range measurements. Out of
the positions of the robot and the range measurement we construct a joint optimization problem
which incorporates the above mentioned properties. By building upon the sparse optimization
technique presented in Chapter 2, we are able to efficiently solve this problem, despite the large
number of variables involved.

In Figure 7.1 we illustrate the advantages of our method compared to the standard technique.
The figure shows a zoomed view of a map obtained by the standard SLAM technique and a map
that has been optimized with our approach. Our result appears to be substantially more accurate.
Within the experimental evaluation, we will present a quantitative evaluation for measuring the
accuracy of the maps. Furthermore, we will illustrate the practical benefits of our techniques
for localizing the robot in the map.

The remainder of this chapter is organized as follows. In Section 7.1 we present the underly-
ing models for the laser and the map which leads us to a joint optimization problem. Afterwards,
in Section 7.2 we discuss the differences of our method to the Iterative Closest Point algorithm
(ICP) and Bundle Adjustment. In Section 7.3 we present an evaluation of our approach based
on a set of real-world data sets. Finally, in Section 7.4 we discuss the related work.

7.1 Estimating Accurate Environment Models

As mentioned above our approach tries to maximize the accuracy of the models of the environ-
ment obtained by a SLAM algorithm. Our approach assumes that we can locally approximate
the surface, which reflects the laser beam, by a line segment. This assumption typically holds in
man-made indoor environments, as they are made out of smooth structures. In the remainder of
this chapter we will refer to this locally smooth structures as surface patches or simply patches.

The key idea of our approach is to jointly optimize the positions of the surface patches and
the positions of the robot. We achieve this by constructing a sparse optimization problem. Let
us briefly sketch the individual steps of the algorithm, before we describe the specific parts in
detail. Given the current range measurements, we estimate the local properties of each surface

7.1. Estimating Accurate Environment Models 117

Figure 7.2: The Gaussian distributions for the points computed on a range scan. For better visibility
only every fifth ellipse is drawn.

patch. The local properties of each patch allow us to find a nearby patch that is likely to be sam-
pled from the same surface. The correspondences are the basis for setting up an optimization
problem that seeks to minimize the distance between corresponding surface patches while tak-
ing into account the properties of the sensor which sampled the surface. After the optimization
converged, we update the local properties of each patch and we also re-estimate the data asso-
ciation. This leads to a new optimization problem. We repeat the procedure until a convergence
criterion is matched.

In the following we will describe in detail the underlying model of the surface patches and
the model of the sensor, which is motivated by the physical mode of operation of the range
finder. Afterwards, we present our strategy for establishing the optimization problem and the
objective function of the problem itself. We will furthermore illustrate the differences to stan-
dard matching by Iterative Closest Point (ICP) [19, 188] and Bundle Adjustment (BA) [210] in
the following section.

7.1.1 Model for the Surface Patches

As mentioned above, we assume that the surface is locally smooth. Hence, we can represent
the patch by a Gaussian distribution. Let us denote the beam of an individual range scan as
ski which is measured by the robot at position xi. We approximate the Gaussian of the patch
by considering the measurements in the local neighborhood. To this end, we accumulate the
points within a certain radius around the projection of ski into global coordinates and compute
the mean µk

i and the covariance Σk
i of this set of points. The surface patch is then given by the

Gaussian 〈µk
i ,Σ

k
i 〉. Figure 7.2 depicts the Gaussian distributions extracted on a range scan.

Furthermore, the Gaussian 〈µk
i ,Σ

k
i 〉 allows us to estimate the normal vector of the surface.

The estimate of the normal vector n̂ki is the Eigenvector corresponding to the smallest Eigen-
value of Σk

i . We additionally orient n̂ki towards the range scanner to obtain a unique approxima-
tion of the normal vector. By considering the ratio of the largest and the smallest Eigenvalue,
we can decide whether the estimate of the normal vector is well-defined. In particular, a straight
wall will lead to small ratio. Hence, we regard a normal as well-defined if the ratio is below a
threshold, otherwise we do not estimate a surface patch for this beam.

118 Chapter 7. Highly Accurate Maximum Likelihood Laser Mapping

n̂

SurfaceTangent

d

s

ka‖s‖
α

α

Figure 7.3: Laser beam hitting a surface. The figure illustrates the quantities which are involved in
determining the sensor noise along the direction of the beam: s, the laser beam; n̂, the normal of the
surface; α , incidence angle; ka‖s‖: diameter of the beam s with a length of ‖s‖; and d, the length of the
projection of the spot on the surface onto the line of the beam.

7.1.2 Sensor Model for Laser Range Finders

A laser range finder measures the range to the closest obstacle by emitting a laser beam and
measuring the time until the reflection of the beam is received. Due to the optics involved the
laser beam is actually a cone whose diameter increases with the distance traveled. Hence, the
reflection of the beam the scanner receives is an aggregate corresponding to different distances.
Typically, we can neglect this effect for rendering low-resolution maps.

Let us consider the case that the laser beam is perpendicular to a planar surface. In this
situation, the area covered by the beam corresponds to a circle. If, however, the beam is not
perpendicular to the surface, the area covered by the beam corresponds to an ellipse. The length
of the semi axis of the ellipse is related to the angle between the beam and the normal vector
of the surface. Thus, the incidence angle of the beam to the surface affects the area covered by
the beam. On the other hand, the area covered by the beam has an influence on the error in the
range measurement since the averaging is performed over the whole area. Consequently, our
model of the noise in the range measurement has to include the incidence angle.

We have so far identified two sources for the error in a range measurement, namely the conic
shape of the laser beam and the incidence angle. Typically, there is another source of (system-
atic) error in the range measurement. The distances returned by the range finder have a certain
resolution, which leads to a quantization error ξ . The resolution of the range measurements is
given in the data sheet of the scanner. A typical value for a laser scanner is ±1 cm.

In Figure 7.3 we illustrate a laser beam hitting a surface. For a better readability we dropped
the indices from the laser beam. The beam will result in a spot on the surface. Given our
local approximation n̂ of the surface we are able to approximately compute the length d of the
projection of this spot along the direction of the beam as

d ≈ ka‖s‖ tan(α) , (7.1)

where α is the incidence angle to the surface and ka is the aperture of the cone of the laser
beam. Let Γ = diag(γ211,γ

2
22) be the covariance of the beam. The standard deviation γ11 along

the beam s is proportional to the length d and we additionally account for the quantization error
in that direction. Thus, we obtain

γ11 = k11d+ξ . (7.2)

Furthermore, the standard deviation γ22 in the direction orthogonal to the beam s is proportional

7.1. Estimating Accurate Environment Models 119

to the diameter of the beam. This yields

γ22 = k22‖s‖. (7.3)

The parameters k11 and k22 are constant factors which depend on the laser range finder.

7.1.3 Data Association

As initial state for our method we consider the solution of a standard SLAM algorithm. This
means the map estimate is consistent, i.e., patches corresponding to the same surface are close
to each other but their location is affected by noise. To establish the correspondence between
two patches 〈µk

i ,Σ
k
i 〉 and 〈µ l

j,Σ
l
j〉, we utilize the “normal shooting” [36] method. The idea is

to start the search from a surface patch 〈µk
i ,Σ

k
i 〉, which has a well-defined normal. The search

walks along the normal to find the closest patch 〈µ l
j,Σ

l
j〉 that has a similar normal. We restrict

the search to 0.2m around µi.
Furthermore, we enforce an additional sparsity heuristic. We only introduce a constraint for

those pairs found by the above stated heuristic for which i< j. The association is updated after
the optimization to be described in the next section converged.

7.1.4 Objective Function and Optimization

As mentioned above the overall goal of our approach is to create a joint optimization problem
for the robot poses x and the map M . The map in our case is a set of surface patches 〈µk

i ,Σ
k
i 〉,

where µk
i is measured by the beam ski of robot pose xi. This relation is expressed by the term

emeas(xi,µ
k
i ,s

k
i) =

[
h
(
xi,µ

k
i

)
− ski

]⊤
Γ−1ik

[
h
(
xi,µ

k
i

)
− ski

]
, (7.4)

where h(·) computes the expected measurement and Γ is the covariance (see Section 7.1.2).
Subsequent poses of the robot are constrained by the odometry measurement ui. As we

assume Gaussian noise having the covariance Λi, we obtain the additional term

eodom(xi,xi−1,ui) = [g(xi−1,ui)−xi]
⊤Λ−1i [g(xi−1,ui)−xi] , (7.5)

where g(·) is a function computing the pose given the previous pose and the odometry ui.
As a last element, we can exploit the data association of patches that are close to each other.

The association yields a correspondence for surface patches 〈µk
i ,Σ

k
i 〉 and 〈µ l

j,Σ
l
j〉 observed in

different range scans taken from xi and x j. We can define the error of the pair as the vector
difference between the means of the Gaussians. For constructing the optimization, we need to
weight this error. The idea is to take into account the local properties of each surface patch.
Consider the situation in which both patches correspond to a straight wall. In this case, we
would like to assign a larger weight to the error along the normal vector of the wall, whereas the
error perpendicular to the normal should get a smaller weight. We are able to achieve this by
weighting the distance between the patches according to sum of the inverses of the covariance
matrices of the surface patches:

Ωkl
i j =

(
Σk
i

)−1
+
(

Σl
j

)−1
. (7.6)

This leads us to the quadratic error for the pair which is given as

esurf

(
µk
i ,µ

l
j

)
=
(

µk
i −µ l

j

)⊤
Ωkl

i j

(
µk
i −µ l

j

)
. (7.7)

120 Chapter 7. Highly Accurate Maximum Likelihood Laser Mapping

With these error functions at hand we can setup the least squares estimation problem that
seeks the robot poses x∗ and the map M ∗ which best explains the set of constraints:

〈x∗,M ∗〉= argmin
x,M

∑
i

eodom(xi,xi−1,ui)+∑
ik

emeas(xi,µ
k
i ,s

k
i)+∑

i jkl

esurf (µ
k
i ,µ

l
j). (7.8)

For optimizing Eq. 7.8 we apply the Gauss-Newton algorithm as described in Chapter 2. De-
spite the large number of variables involved in the optimization, we can exploit the sparsity. The
sparseness arises from the limited range of the sensors. Thus, only variables that are spatially
close to each other have a constraint between them. This allows us to solve the problem effi-
ciently, for example, our current system carries out one iteration of nonlinear optimization of a
system consisting of 172,522 surface patches acquired from 616 robot positions, 996,451 sur-
face constraints, and 671,550 constraints between surface patches in less than 5 seconds using
one core of an Intel Core Quad running at 2.6Ghz.

In addition to the sparseness, we do not update the local properties of the surface patches,
i.e., the normal vectors and the covariances stay the same and are only update before the next
optimization problem is constructed. As we store the covariances of the surface patch with
respect to the observing robot pose, we can account for an update in the pose by rotating the
covariance matrix accordingly.

7.2 Comparison with ICP and Bundle Adjustment

Our method is closely related to Bundle Adjustment (BA). Within BA, however, the landmarks
are associated to each other considering the rich descriptiveness of visual features, such as
SIFT [142] or SURF [16]. In contrast to this, ICP [19] registers two set of points S and S ′.
To this end, it defines the data association by a nearest neighbor method given the currently
estimated transformation. In our application, the initial transformation arises from the odometry
of the robot. The data association yields the set {〈l1, l′1〉, . . . ,〈lN , l′N〉} of corresponding points
from the two sets. Let 〈R, t〉 describe the motion that moves the local frame of x2 into x1, then
ICP determines the best motion given the correspondences as

〈R∗, t∗〉= argmin
R,t

N

∑
i=1

‖li−
(
Rl′i+ t

)
‖2, (7.9)

which can be solved in closed form [212] and its graphical model is given in Figure 7.4a. Using
the estimate 〈R, t〉∗ the correspondences are updated and the whole process is iterated. Since the
points itself are not updated, the merged cloud accumulates the noise contained in the individual
range measurements.

On the other hand, BA estimates the motion — up to scale in a monocular setting — be-
tween two cameras utilizing the features visible in both images. In Figure 7.4b we illustrate
the graphical model of BA. Here, the features are part of the optimization and their position
is updated. The optimization, however, does typically not consider the surface properties. In
addition to that, BA relies on a projective geometry to model the error in the pixel location of
the observed feature in the camera image. More formally, BA can be defined as

〈x∗, l∗〉= argmin
x,l

∑
i j

‖h(xi, l j)− zij‖2, (7.10)

where x and l represent the positions of the cameras and the landmarks, respectively, h(·) cal-
culates the expected pixel location of a feature l j in a camera image taken at location xi, and

7.3. Experiments 121

x1

x2

· · ·· · ·

(a) Iterative Closest Point

x1

x2

l3 l4 l5 · · ·l2l1· · ·

(b) Bundle Adjustment

x1

x2

µ3
1 µ4

1 µ5
1µ2

1µ1
1

µ3
2 µ4

2 µ5
2µ2

2µ1
2

· · · · · ·

(c) our approach

Figure 7.4: Comparison of the graphical models between Iterative Closest Point, Bundle Adjustment
and our approach. For convenience we dropped the factor which relates the subsequent poses by the
odometry of the robot.

zij is the measured pixel location. For laser based mapping as done by our method, we have
to consider that 2D range data is not as descriptive as visual data. Thus, we cannot commit
ourselves easily to a data association. We therefore choose to update the correspondences based
on the nearest neighbor method in each iteration similarly to ICP.

Figure 7.4c depicts the graphical model underlying our method. Note that we dropped the
sequential odometry factor for convenience. Here, a landmark corresponds to a single surface
patch and it is associated to its nearest neighbor in the subsequent range scan. After solving
the current graph, we update the associations as outlined above and iterate the whole process.
Consequently, our method can be regarded as following the Expectation-Maximization algo-
rithm. Moreover, opposed to BA our approach does not enforce an equality constraint on the
corresponding surface patches. We instead allow them to slide along the tangent direction of
the surface. Furthermore, we are able to determine the maximum likelihood transformation be-
tween two range scans as done by ICP. We, however, also reduce the noise in the range readings
instead of accumulating it in the merged point cloud.

7.3 Experiments

The approach described above has been implemented and in this section we will present ex-
periments to highlight the performance of our approach. For our experimental evaluation we
considered a set of publicly available real-world data sets. In particular, the Freiburg building
079, the Intel Research Lab, the MIT CSAIL building, and the Aces building data set. This set
is heterogeneous as it was recorded with different range finders. Hence, we can demonstrate
that our approach is applicable to different range finder models. Please note that the approach
presented in this chapter is not meant as a solution to the entire SLAM problem. It is rather

122 Chapter 7. Highly Accurate Maximum Likelihood Laser Mapping

2 ·104
3 ·104
4 ·104
5 ·104
6 ·104
7 ·104
8 ·104

FR079

Intel
M
IT-CSAIL

Aces

E
nt
ro
py

Graph-Based SLAM
Pose-Only Optimization

Our Approach

Figure 7.5: Entropy of the maps. On each data set the optimization results in a reduction of the entropy,
whereas our method results in the lowest value on each data set (see [182]).

a post-processing step to be applied on-top of a SLAM solution for obtaining highly accurate
models of an environment. To this end, the input in all our experiments is given by running the
graph-based mapping discussed in Chapter 2.

7.3.1 Map Accuracy

In a first set of experiments we evaluate the accuracy of the maps obtained by jointly optimizing
the poses of the robot and the range readings collected by the robot. For evaluating the accuracy
of the maps generated by our approach, we consider the maps obtained by a standard graph-
based SLAM algorithm as a baseline. The maps are obtained by the standard occupancy grid
algorithm [205]. We measure the accuracy of the map by the entropy of the maps generated by
different techniques. The entropy of the map measures the uncertainty about the state of the en-
vironment. By exploiting the assumption that the cells of an occupancy mapm are independent,
we can determine the entropy of a map, which is a grid of binary random variables, as

H(m) =− ∑
c∈m

log2 p(c) · p(c)+ log2(1− p(c)) · (1− p(c)). (7.11)

In addition to the baseline given by the standard SLAM algorithm, we consider the follow-
ing two optimization results generated by our approach. First, we consider the scans as rigid
and only optimize the poses of the robot. We refer to this method as pose-only in the following.
The outcome of this method demonstrates how much the standard graph-based SLAM solu-
tion could be improved by updating the data associations and as a consequence improve the
matching between the individual range scans. Second, the joint optimization of robot poses and
the laser readings. In contrast to the pose-only optimization the joint formulation additionally
accounts for the noise in the range scans. For all three methods we generated grid maps having
a resolution of 5mm. The impact of the optimization on the entropy of the maps can be seen
in Figure 7.5. Our approach results in a substantial reduction of the entropy and hence the un-
certainty in the maps. The decrease of the entropy in the map corresponds to the reduction of
the noise in the range readings by jointly optimizing their position. The optimization takes into
account that each point corresponds to a sample of the piece-wise smooth surface. This further
reduces the uncertainty compared to the pose-only optimization.

Figure 7.6 and Figure 7.7 show the maps obtained by the three methods described above.
As we can see from the magnified views in the lower parts of the figures, the maps generated
by our method show an accuracy that is superior to both other approaches.

7.3. Experiments 123

Figure 7.6: Maps generated by each approach. Within each column, the image on the top shows the full
map. The three rows underneath show magnified partial views of the map on the top: Standard SLAM
(second row), pose-only optimization (middle row), our approach (bottom row). The visual inspection
reveals the high accuracy of the maps generated by our method (see [182]).

124 Chapter 7. Highly Accurate Maximum Likelihood Laser Mapping

Figure 7.7: Maps generated by each approach. Within each column, the image on the top shows the full
map. The three rows underneath show magnified partial views of the map on the top: Standard SLAM
(second row), pose-only optimization (middle row), our approach (bottom row). The visual inspection
reveals the high accuracy of the maps generated by our method (see [182]).

7.4. Related Work 125

0

0.1

0.2

0.3

0.4

0 200 400 600 800 1000 1200

T
ra
ns
la
ti
on
al
E
rr
or

[m
]

Time Index

Optimized Map
Standard Map

(a) absolute position error

0

0.01

0.02

0.03

0.04

0.05

0 10 20 30 40 50

T
ra
ns
la
ti
on
al
E
rr
or

[m
]

Relative Measurement

Optimized Map
Standard Map

(b) relative position error

Figure 7.8: Localization error on the map generated by standard SLAM and our approach, respectively.
(a) The absolute error in each time step. (b) The relative position error for subsequent poses with a
distance of 1m in between (see [182]).

7.3.2 Impact of the Map Accuracy on Localizing the Robot

To further illustrate the practical benefits of the highly accurate maps generated by our approach,
we evaluated the position accuracy of a localization algorithm utilizing the map of a standard
SLAM algorithm and our approach, respectively. As ground-truth data is not available for the
public data sets considered in the former experiment, we utilized a simulator for collecting data.
To this end, we created a map having a cell size of 5mm× 5mmwhich we used as environment
for the simulator.

Utilizing the simulator we recorded two data sets. The first one served as input for gener-
ating a map with a standard SLAM algorithm and our approach. We conducted a Monte Carlo
localization [42] run on both maps taking the second data set as input. To quantitatively evaluate
the accuracy of the localization on the respective map, we considered two different metrics. The
metric suggested by Olson and Kaess [167] evaluates the Root Mean Squared error (RMS) of
the absolute location of the robot, whereas as second measure we utilize the metric based on the
relative position error (RPE) as suggested in Chapter 4. Figure 7.8a shows the translational error
in time step of the localization run with respect to the ground truth position of the robot. Thus,
this error captures the error in the position as it is estimated by MCL and also inaccuracies in
the map. The RMS for the MCL on the standard map is 0.0636m, while on the map generated
by our approach it is 0.0469m. In contrast to this, Figure 7.8b depicts the RPE of pairs of poses
that lie sequentially on the trajectory of the robot. Each of this pairs spans approximately one
meter. As we can see, the relative error is substantially smaller for MCL operating on the map
generated with our approach. The higher accuracy of our maps is also confirmed by the overall
lower RMS. Taking all this into account, the maps generated by our approach allow a robot to
more accurately localize itself compared to the position estimates obtained with a standard map.

7.4 Related Work

Several approaches have been proposed in the past to characterize the error affecting the result
of scan-matching algorithms and thus to accurately estimate the constraints of the optimization
problem. Bengtsson et al. [17], proposed to analyze the residual of the re-projection error
around the minimum by either sampling the error function or by approximating it by a quadratic
form. Subsequently, Censi [31] presented a closed form minimization algorithm to determine

126 Chapter 7. Highly Accurate Maximum Likelihood Laser Mapping

this covariance. The majority of matching algorithms relies on point-to-point correspondences.
In contrast, Olson [165] proposed a hierarchical correlative algorithm derived from the

method suggested by Konolige and Chou [109]. This matching algorithm computes the his-
togram of all possible robot positions around the minimum. Since a grid is considered to build
a histogram approximation of the likelihood function, the algorithm does not rely on specific
point-to-point correspondences. Furthermore, it can also estimate the uncertainty of the regis-
tration.

Segal et al. [188] presented a variant of 3D ICP scan-matching that minimizes the matching
error between corresponding planar patches extracted from the input scans. This is in particular
useful to model the decrease in the density of data points which coincides with an increase in
the range. Biber et al. [20] proposed to solve the scan-matching problem by approximating the
reference scan by a set of Gaussians. In contrast to the point-to-point criterion minimized by tra-
ditional ICP scan matchers [144, 19], the Gaussians weight the error along different directions
based on the shape of the matched surfaces. Subsequently, Magnusson et al. [147] extended
this approach to 3D.

The methods mentioned above focus on accurately registering two scans, but they treat
them as rigid bodies. Consequently, those methods do not attempt to refine the points of the
individual scans. As we have seen in the experiments, jointly optimizing the range readings
boosts the accuracy of the maps since it explicitly takes into account the noise in the range data
itself. Our approach shares aspects with traditional Bundle Adjustment problems in computer
vision [210] (see also Section 7.2). In contrast to Bundle Adjustment, we do not explicitly rely
on feature correspondences, but we improve the data associations after each iteration.

Several researchers extended ICP for non-rigid objects. For example, Haehnel et al. [85]
presented an extension to the classical ICP algorithm for matching non-rigid bodies. The non-
rigid ICP variant proposed by Li et al. [135] is able to deform all points on a surface graph (data)
onto a second surface graph (model) by introducing a deformation model and applying least
square optimization to find the optimum for deformation and registration. Since this method
uses a weighted least square approximation for the model, it is not easily transferable to the
case of multiple scans and does not account for systematic sensor errors, while our method does
not explicitly consider deformations.

Fleishman et al. [61] presented Robust Moving Least Squares, a smoothing technique based
on robust regression. They assign the points to piecewise smooth surfaces and are able to
obtain accurate models. In a similar context, Andersen et al. [7] propose a Markov Random
Field formulation that optimizes the parallelism between neighboring surface elements and their
overlap. This smooths out noise while maintaining sharp features. Both methods can be used
to obtain accurate surface models, but ignore the model of the sensor that has been used to
generate the point cloud and do not optimize over the sensor poses.

7.5 Conclusions

In this chapter, we presented an approach to improve the accuracy of maps generated by stan-
dard SLAM methods. We achieved the highly accurate maps by constructing a joint optimiza-
tion problem which incorporates the position of the robot as well as the laser readings. For
modeling the noise in the distance measured by the laser scanner, we considered the underlying
principle of the laser beam, namely its conic shape and the influence of the incidence angle on
the surface. This together with interpreting the range measurements as samples allowed us to
better model the noise in the range data.

7.5. Conclusions 127

(a) initial state (b) result of our approach

Figure 7.9: This figure illustrates the application of an extension of our method to the data given by a
Kinect sensor. The image depicted in (a) shows the input data obtained by moving around a sphere. The
image in (b) depicts the resulting point cloud after optimization (see [184]).

Our experimental evaluation on a set of publicly available data sets illustrates the high accu-
racy of the maps obtained by our method. Our approach furthermore improves the achievable
localization accuracy if the localization algorithm operates on a map generated by our approach
compared to utilizing the map of a standard SLAM algorithm. Furthermore, we successfully
extended the method to operate on the data of a Kinect depth sensor as well as 3D range sensors
as illustrated in Figure 7.9. The details of the extension can be found in our joint work [184].

Part II

Applications

Chapter 8

Navigation with a Car in Complex Urban

Environments

Recently, the problem of autonomous navigation of automobiles has
gained substantial interest. Autonomous cars have been shown to ro-
bustly navigate over extended periods of time through complex desert
courses or through dynamic urban traffic environments. The robots in
these tasks, however, typically rely on GPS traces to follow pre-defined
trajectories so that only local planners are required. In this chapter,
we present an approach for autonomous navigation of cars in urban
structures, such as parking garages, where GPS is not available. Our
approach builds upon the state estimation techniques presented in this
thesis to estimate a model of the environment, which is considered for
path planning and localization in the GPS-denied part of the environ-
ment. It furthermore employs a local path planner for controlling the
vehicle. In a practical experiment carried out with an autonomous car
in a real parking garage we demonstrate that our approach allows the
car to autonomously park itself in a large-scale multi-level structure.

• • • • • • • • • • •

In the second part of this thesis, we will build upon and extend the techniques which have
been presented throughout the previous chapters to realize autonomous navigation with robots
in complex and challenging settings. In particular, we will first present a navigation system
for an autonomous car and subsequently we will elaborate a system for a robotic pedestrian
assistant. Both envisioned applications impose different challenges for the navigation system.
The realized systems demonstrate what can be achieved by the techniques presented in this
thesis in challenging real-world scenarios.

In recent years, the problem of autonomous navigation of automobiles has gained substantial
interest in the robotics community, particularly due to the two “Grand Challenges” organized
by DARPA. There also is a wide range of civilian applications, for example, in the area of
driver assistance systems that enhance the safety by performing autonomous maneuvers of dif-
ferent complexities including adaptive cruise control or emergency breaking. During the two
Grand Challenges, cars have been shown to navigate reliably along desert courses and in dy-
namic urban traffic scenarios. Most of these scenarios rely on GPS data to provide an estimate
about the pose of the vehicles on pre-defined trajectories, though. Therefore, only local plan-
ners [46, 137] were needed to control the vehicles. Autonomous navigation in environments

132 Chapter 8. Navigation with a Car in Complex Urban Environments

Start

Goal

Figure 8.1: Multi-level parking garage used for the experiment. The garage has four levels. The start
point was close to the entrance, the goal point is on the upper level (aerial image © Google).

without sufficiently accurate GPS signals, such as in parking garages, and the connection to the
navigation in GPS-enabled settings, however, have not been sufficiently well targeted in these
challenges. Here, the state estimation techniques presented in this thesis bridge the gap by pro-
viding means to robustly and accurately map the GPS-denied environment the vehicle has to
operate in.

In this chapter, we present an approach to autonomous automotive navigation in large-scale
GPS-denied structures with potentially multiple levels. This problem is relevant for a variety
of situations. for example, for autonomous parking behaviors or for navigation systems that
provide driver assistance even within buildings and not only outdoors where a sufficiently ac-
curate GPS signal and detailed road network information is available. Even state-of-the-art
inertial navigation systems are not sufficient to accurately estimate the position of the robot in
large-scale indoor structures, such as the one depicted in Figure 8.1, which is the parking garage
used for our experiments. Particularly, the techniques developed in this thesis provide us with
the ability to acquire accurate maps of such large mixed outdoor and indoor environments. To
enable a mobile vehicle to park itself at an arbitrary, pre-defined position in that garage given
it starts at the entrance of the building at the lowest level, several requirements need to be met.
First, the vehicle needs an appropriate representation of the building to calculate the path to be
taken. Second, it needs to be able to localize itself in this three-dimensional building. Third, it
needs to be able to follow this path, so that it safely arrives at the designated target location.

Our approach considers multi-level surface maps [209] to compactly model the environ-
ment. We apply the graph-based optimization procedure presented in this thesis to establish
the consistency of this map. The map allows us to plan a global path from the start to the goal
position and to robustly localize the vehicle based on laser range measurements. We further-
more employ a local planner to follow this path and to avoid unforeseen obstacles. As a result,
the vehicle can autonomously navigate in such multi-level environments without any additional
information provided by a user. Our approach has been implemented and tested with a real
Volkswagen Passat Wagon.

8.1. Mapping of the Parking Garage 133

Figure 8.2: Local MLS-map example. MLS-maps provide means to efficiently represent the drivable
surface and the vertical objects, which are useful for localization. Analyzing the height variations allows
us to detect curbs, walls, and other obstacles, which are visualized in red, while the drivable surface is
shown in yellow.

The remainder of this chapter is organized as follows. First, in Section 8.1 we describe the
underlying map data structure and the mapping algorithm itself that allowed us to map the com-
plex multi-level parking structure. After presenting the localization algorithm in Section 8.2,
we briefly describe the planning framework in Section 8.3. The experimental results illustrating
the abilities and advantages of our approach are outlined in Section 8.4. Finally, in Section 8.5
we discuss the related work.

8.1 Mapping of the Parking Garage

In this section, we describe our approach for mapping large urban structures like a multi-level
parking garage. We will discuss the data structure used to model the complex environment. The
SLAM solution is obtained by a graph-based optimization technique similar to the one presented
in Chapter 2. Furthermore, we propose a heuristic for detecting the level of the environment.
The information about the level is an important information as it allows us to reset the content of
certain data structures of our system which are implemented on 2D data structures for efficiency
reasons.

8.1.1 Map Representation

We consider Multi-level Surface (MLS) maps [209] to model the environment in 3D. An MLS
map is based on a 2D grid, where each cell cij with i, j ∈ Z stores the vertically occupied space
in a list P1

ij , . . . ,P
L
ij of so-called surface patches. Each surface patch models a vertically occupied

volume of space. To this end, it saves a height estimate µ l
ij along with the variance σ l

ij to model
the uncertainty in the height of the surface. Additionally, the vertical extend of the surface patch
is given by a depth value. In particular, such a patch indicates the possibility to traverse the cell
at a specific height. In Figure 8.2 we see one example of an MLS map. This map was acquired
by the vehicle by merging 15 point clouds obtained by the Velodyne LIDAR mounted on the
roof of the vehicle. The map depicts one of the entrances of the multi-story car park in which

134 Chapter 8. Navigation with a Car in Complex Urban Environments

we carried out the experiments. In addition to the 3D representation of the world, the MLS map
allows us to identify the drivable surface and obstacles, which are indicated in yellow and red in
Figure 8.2, respectively. We obtain this classification by analyzing the height variation between
adjacent cells. Despite the rich set of information encoded in the MLS map, the representation
of complex environments can be achieved in a compact manner. For example, the data set shown
in the experiments consists of approximately 4GB of raw data, while the complete MLS-map
with a cell size of 20 cm requires only around 120MB. This amount of data easily fits into the
main memory of modern computers and could in practical applications easily be downloaded
from the information system of the garage to the navigation system of the car.

8.1.2 Mapping with Graph-Based SLAM

Our mapping system addresses the SLAM problem by its graph-based formulation. As we have
previously outlined, a node of such a graph represents a 6DoF pose of the vehicle and an edge
between two nodes models a spatial constraint between them. To compute the spatial config-
uration of the nodes that best satisfies the constraints encoded in the edges of the graph, we
apply the graph-based SLAM formulation presented in Chapter 3, which allows us to estimate
the maximum likely trajectory online while the robot explores the environment. Performing
this optimization procedure reduces the uncertainty in the pose estimate of the robot whenever
constraints between non-sequential nodes are added, i.e., a loop is closed.

In detail, the graph is constructed as follows: whenever a new observation st has to be
incorporated into the system, we create a new node at position xt . We then create a new edge
et−1,t between the current position xt and the previous one xt−1. This edge is then labeled
with the transformation zt−1,t between the two poses xt−1 and xt . We determine the virtual
measurement zt−1,t by scan-matching the 3D measurements st−1 and st . To this end, we use a
variant of the Iterative Closest Point algorithm (ICP) [19, 188] to obtain a maximum likelihood
estimate of the robot motion between the subsequent observations. In our implementation, we
perform ICP on local MLS-maps instead of raw 3D point clouds. Additionally, we exploit the
classification of points into walls and flat surface as given by the MLS-map data structure. We
constrain the correspondence search within the ICP algorithm to comply with the classification.

Whereas this procedure significantly improves the estimate of the trajectory, the error of
the current robot pose tends to increase over time due to the accumulation of small residual
errors. This effect becomes visible as alignment errors in the map when the vehicle revisits
already known regions. To solve this problem, we need to re-localize the robot in a region of
the environment which has been visited long before. To resolve these errors, i.e., to close the
loop, we apply our scan-matching technique on our current scan st and a former scan si, where
i≪ t. This yields the virtual measurement zi,t which describes the motion between the poses xi
and xt . Consequently, we add the resulting constraint to the graph. To detect a potential loop
closure, we identify all former poses that are within a constant ellipsoid and whose observations
overlap with the current observation. If a match is found, we augment the graph by adding a new
edge between xi and xt labeled with the relative transformation which is computed by matching
the corresponding observations si and st .

This procedure works well as long as the relative error between the two poses lies within
the error ellipsoid. In general, the longer the path between the two nodes xt and xi is, the higher
the relative error becomes. So that our strategy might fail because ICP converges to a wrong
alignment of the scans. In the absence of a globally consistent position estimate like GPS,
which would allow us to restrict the search of loop closures, one might use more sophisticated
techniques [39, 84, 198] to robustly identify the places. While we acknowledge this drawback,

8.1. Mapping of the Parking Garage 135

Figure 8.3: This image shows a partial view of the map of the parking garage in which color encodes the
level assigned to each surface patch. As we can see, our heuristic correctly estimates the level of most
patches, while only some very small areas obtain a wrong level assignment.

during our experiments our strategy never introduced a wrong constraint and the visual inspec-
tion of the resulting map always revealed that the map is consistent.

8.1.3 Level Information

As mentioned above, the MLS-map stores information about the surface which encloses the
occupied volume of the environment. We can exploit this fact to assign progressive IDs to the
different drivable levels in the map by a heuristic. We refer to a multi-level environment if the
robot has the possibility to reach a specific cell cij of the map at least at two different height
levels.

To label the environment, we proceed as follows: First, we generate a connectivity graph C
of the surface described by the MLS map. This is done by connecting all the patches P1

ij , . . . ,P
L
ij

of the cell cij with their neighboring patches of the cells {ci+k,j+l | k, l ∈ {0,1},k+ l ≥ 1} with
an undirected edge. The edge is only introduced if the height difference between the two surface
patches is below a threshold, which is given by the characteristics of the robot.

This connectivity graph is then used to initiate a region growing procedure. The initial
frontier consists of the lowest surface patch. We keep the frontier sorted according to the surface
height. The algorithm keeps track on how often each cell has been visited at different height
levels. This counter is initialized to zero and it is incremented whenever the cell is reached.
Additionally, we verify that the counter of the predecessor is not larger than the counter of the
current patch. In such a situation, we update the counter to the value of the predecessor. This
is required as the current cell may contain surface patches that do not belong to the drivable
surface. By this procedure, we walk along the surface modeled in the map and each time the
frontier reaches a cell, the counter of the cell corresponds to the level, which we assign to the
respective surface path. As we can see in Figure 8.3, our heuristic works well on the map of
the parking garage and provides us the required information. We correctly identified the four
drivable levels of the parking garage, while our heuristic only fails in small parts of the map.

In our approach, the level information is needed for triggering the update of local two-
dimensional data structures of our system. Whenever the car moves to a different level, we
need to recompute these structures according to the current level. An example of such a two-
dimensional data structure which needs to be updated upon a change of the level is the two-
dimensional obstacle map, which is considered by the planning components of the system.

136 Chapter 8. Navigation with a Car in Complex Urban Environments

8.2 Localization

Whenever the GPS signal is lost, even high-end integrated navigation units as the one consid-
ered in our experiments are not able to accurately localize the robot. Such navigation systems
combine GPS, wheel odometry via a distance measurement unit, and inertial measurements to
obtain a global position expressed in latitude, longitude, and altitude. In this case, the lack of
GPS measurements prevents the system to compensate for the drift in the (x,y,z) position. This
drift results from the integration of small errors affecting the relative measurements obtained by
the encoders and the inertial sensors. In particular, we observed a significant error along the z
component of the pose vector, which represents the height of the vehicle. This high error does
not allow us to directly use the z estimate of the inertial system to estimate the level in case of
multi-level indoor environments.

To this end, we instead consider probabilistic localization on a map following the Bayesian
filtering scheme. We apply a technique similar to the one presented in Chapter 6. Here, we,
however, have to estimate the position of the robot in 3D. Thus, we briefly recapitulate the
underlying concepts. The key idea is to maintain a probability density Bel(xt) = p(xt | s1:t ,u1:t)
of the position of the robot xt at time t given all the so far collected sensor measurements s1:t
and all control inputs u1:t . This posterior is updated as follows:

Bel(xt) = η p(st | xt)
∫

p(xt | ut ,xt−1) Bel(xt−1) dxt−1, (8.1)

where η is a normalization factor. For implementing the scheme given in Eq. 8.1, we have to
specify the sensor model p(st | xt) and the prediction model p(xt | ut ,xt−1).

The inertial navigation system integrates accelerations, changes in rotation, and the wheel
velocity, which is measured at the rear axle of the vehicle to calculate the open-loop position of
the vehicle. This yields a locally consistent estimate, which is updated at 200Hz but drifts over
time. Additionally, we observed that the orientation, namely the roll, pitch, and yaw angles, is
measured with high precision and also without drift by the system. We also found that the pose
estimate is not significantly improved by filtering the attitude. Hence, we reduce the localization
problem to three dimensions instead of six.

Once again, we use Monte Carlo localization (MCL) [42] for implementing the filtering
algorithm. MCL utilizes a finite set of weighted samples, the so-called particles, to represent the
posterior. Each particle represent a possible pose of the robot and has an assigned weight w[i].
The scheme given in Eq. 8.1 is implemented by executing two alternating steps:

1. In the prediction step, we update the position of each particle by sampling a motion from
the motion model p(xt | ut ,xt−1).

2. In the correction step, we assign a new weight w[i] to each particle by evaluating p(st | xt)
based on the current observation st .

Finally, the set of particles needs to be re-sampled to focus the finite number of particles in the
regions of high likelihood. This ensures that the particle set yields a good approximation of
the pose distribution. Re-sampling may also drop good samples, which is known as particle
impoverishment [205]. We therefore consider a criterion to decide whether to re-sample or not.
To this end, we evaluate the number of effective particles as proposed in [47, 77] as follows:

Neff =
1

∑N
i=1 w̃

2
[i]

, (8.2)

8.3. Path Planning 137

where N denotes the number of particles and w̃[i] corresponds to the normalized weight of the

particle such that ∑N
i=1 w̃[i] = 1. The idea is to only re-sample, when Neff drops below the

threshold of N/2.
The prediction model p(xt | ut ,xt−1) is implemented by drawing a 3D motion vector from a

Gaussian whose mean ut is given by the relative 3D motion vector of the inertial system since
time step t−1. In addition, we constrain the height coordinate z of each particle to remain in a
boundary around the surface modeled by the map. This is motivated by the fact that positions
above or below the surface are not admissible and we want to focus the limited number of
particles in the high density regions of the probability density function. In all our experiments
this boundary was set to 20 cm around the drivable surface.

The range measurement st is integrated to calculate a new weight for each particle according
to the sensor model p(st | xt). In our sensor model, we treat each beam independently. The
likelihood of a whole laser scan is hence given by

p(s | x) =
K

∏
k=1

p(sk | x), (8.3)

where K is the number of beams in each measurement s from the laser sensor. In Eq. 8.3 and in
the following, we drop the index t for convenience. Our sensor model p(sk | x) is based on an
approach that is known as likelihood fields or endpoint model [205] extended to 3D.

In the endpoint model, the probability p(sk | x) depends on the distance dk between the
endpoint of the k-th laser beam and the closest obstacle in the map, as we have seen in Chapter 6.
The model just considers the endpoints and does not take into account the beam characteristic
of the laser. This leads to a sensor model that can be evaluated efficiently as no expensive ray-
casting operation needs to be carried out in the 3D map. MLS maps model the environment by
a collection of vertical surface patches. Each vertical segment represents an occupied volume.
As there is no efficient way to determine the closest vertical segment for a query point, we
approximate all vertical segments by sampling a set S of 3D points. Then the distance dk

of the beam endpoint pk to the closest obstacle in the map is approximated as the distance
d(pk,S) between pk and S . The distance d(pk,S) can be efficiently determined by means of
a kD-tree [18]. With this approximation and by considering the fact that p(sk | x) is Gaussian,
we compute likelihood as

p(sk | x)≈ 1√
2πσ2

exp

[
−1

2

(
d(pk,S)

σ

)2
]
, (8.4)

where σ = 1m in our current implementation. Plugging Eq. 8.4 into Eq. 8.3, we obtain the
entire sensor model.

Finally, we bootstrap our localization algorithm by initializing the particles based on the
GPS measurements provided by the vehicle when driving outside. Therefore, the map of the
environment also contains the surrounding outdoor area where the GPS signal is available. In
the outdoor part of the map, the high-end navigation system provides a GPS estimate that is
sufficiently accurate to initialize the particle filter for position tracking.

8.3 Path Planning

Given a search space, in our case the surface connectivity graphC described in Section 8.1.3, we
want to find a feasible path between a starting and a goal location. By defining a cost function

138 Chapter 8. Navigation with a Car in Complex Urban Environments

for each motion command the robot can execute and an admissible heuristic which efficiently
guides the search, we can use A∗ to search for the path. By exploiting the classification of the
drivable surface the A∗ search guides the robot towards the goal.

Given a global path through the multi-level graph C , we use a local planner to navigate
through the current level of the structure, i.e., we follow the global path. The local planner
operates on the 2D obstacle map that is created online by the system. The implementation of
the local planner considered for the experiments is the one used in the DARPA Urban chal-
lenge [46]. For completeness, we briefly outline the main components of this planner below.

The task of the local planner is to find a safe, kinematically feasible, near-optimal in length,
and smooth trajectory across the current 2D level of the environment. The continuous control set
of the robot yields a complex optimization problem in continuous variables. For computational
reasons, the algorithm breaks the optimization into two phases. First an A∗ search is performed,
which is then followed by a numerical optimization taking the result of the A∗ search as input.

We assume that the vicinity of the robot can be reasonably described by a 2D plane. We
therefore trigger an update of these structures whenever the robot changes the level in the en-
vironment. Hence, it is sufficient for the local planner to carry out an A∗ search on the four-
dimensional state space 〈x,y,θ ,d〉, where 〈x,y,θ〉 defines the 2D position and orientation of the
vehicle and d = {0,1} corresponds to forward or backward motion. The efficiency of A∗ de-
pends on the heuristic for guiding the search. To this end, we consider two different heuristics.
The first one models the non-holonomic nature of the car but ignores the current obstacle map.
This heuristic, which can be pre-computed offline, ensures that the search approaches the goal
with the right heading θ . As second heuristic, we consider the result of a standard 2D Dijkstra
search on the occupancy map. This heuristic is dual to the first component since it ignores the
non-holonomic constraints of the vehicle but considers the currently sensed obstacles. Both
heuristics are admissible heuristics for A∗. Hence, we combine both by defining our heuristic
as the maximum over both components. The output of the first phase using the A∗ search yields
a safe and kinematically-feasible trajectory. We can, however, only use a highly-discretized
set of control actions in the search for efficiency reasons. This small set, in turn, may lead to
sub-optimal paths.

The second phase of local planning improves the quality of the trajectory computed in the
first phase via numerical optimization in continuous coordinates. We apply a conjugate-gradient
(CG) descent algorithm to the coordinates of the vertices of the path produced by A∗ to quickly
obtain a locally optimal solution. Our optimization uses a carefully constructed potential func-
tion defined over 2D curves (see [46] for more details) to produce a locally optimal trajectory
that retains safety and kinematic feasibility. In practice, the first phase (A∗) produces a solution
that lies in the neighborhood of the global optimum, which means that our second phase (CG)
then produces a solution that is not only locally but globally optimal.

An example trajectory generated by the local planner for a parking maneuver is shown in
Figure 8.4. The red curve shows the output of A∗, whereas the blue curve shows the final
smooth trajectory produced by the nonlinear optimization given the A∗ solution as initial state
for the optimization.

In summary, our path planning framework employs a global planner that operates on the
topological graph G to produce a global path through the multi-level structure. The global
planner then iteratively calls a local planner [46] to find a safe, feasible, and smooth trajectory
through the current 2D level of the environment. Additionally, the global planner monitors the
progress of the local planner and updates the targets appropriately.

8.4. Experiments 139

Figure 8.4: Example of a trajectory planned by the local planner. The red curve is the trajectory produced
by phase one of our search (local-A∗). The blue curve is the final smoothed trajectory produced by
conjugate-gradient optimization.

Ibeo laser DMI
LD-LRS

IMU

Sick LMS

Velodyne laser

Riegl laser

GPS

Figure 8.5: The car used for the experiment is equipped with five laser measurement systems and a
multi-signal inertial navigation system that provides the odometry estimates.

8.4 Experiments

Our approach has been implemented and evaluated on a modified 2006 Volkswagen Passat
Wagon (see Figure 8.5). The vehicle is equipped with multiple laser range finders (manufac-
tured by IBEO, Riegl, Sick, and Velodyne), five BOSCH radars, two Intel quad core computer
systems, and a custom drive-by-wire interface. Furthermore, a custom interface-board allows
us to control the car.

For inertial navigation, an Applanix POS LV 420 system provides real-time integration of
multiple dual-frequency GPS receivers, which includes a GPS Azimuth Heading measurement
subsystem, a high-performance inertial measurement unit, wheel odometry via a distance mea-
surement unit (DMI), and the Omnistar satellite-based Virtual Base Station service. The online
position and orientation errors of this system were typically below 100 cm and 0.1 degrees,
respectively, but only when GPS is available.

Although the car is equipped with multiple sensor systems, only data from the Velodyne

140 Chapter 8. Navigation with a Car in Complex Urban Environments

(a) (b) (c)

Figure 8.6: Necessary steps for the 2D map building. (a) First, the sensor measurements from the
Velodyne laser are analyzed for obstacles. (b) The obstacle measurements are discretized in 15 cm grid
cells (red cubes). (c) These cells are used to generate a virtual 2D scan for updating a two-dimensional
map. Yellow beams indicate that no obstacle is measured in this direction and a fixed range is used for
the update. The two-dimensional map is used for the low level parking planner.

LIDAR and the two side mounted LD-LRS lasers were considered in our experiments. The
Velodyne HDL-64E is the primary sensor for obstacle detection. Its spinning unit collects
approximately one million data points per second. The system has a 26.8 degree vertical field
of view and a 360 degree horizontal field of view. The spinning rate in our setup is 10Hz. Thus,
one full revolution includes approximately 100,000 points. The maximum range of the sensor is
about 60m. Due to the high mounting of the sensor and the shape of the car, an area close to the
car is occluded. To compensate this blind spot, we use two additional LD-LRS laser scanners.

The software utilized in our experiments is based on the system used in the DARPA Urban
Challenge. The architecture includes multiple modules for different tasks such as communi-
cation to the hardware, obstacle detection and 2D map generation. Montemerlo et al. [152]
provide a full description of the system. Here, we focus on the modules relevant for the exper-
iment. A low level controller executes commands to follow a trajectory, which is computed by
the local planner described in Section 8.3. The velocity of the car is based on the curvature of
the trajectory and the maximum speed was set to 10 km/h. Additionally an obstacle detection
module analyzes the sensor data (see Figure 8.6a), discretizes the found obstacles in a fixed
sized grid (see Figure 8.6b), and builds a 2D grid map. It generates a virtual 2D scan from the
obstacle data (see Figure 8.6c) to update the map. The resulting map is then taken into account
by the local planner to generate the trajectory. The localization described in Section 8.2 sends
translational correction parameters to the other modules to determine the correct position of
the vehicle. Finally, the global path planner computes a trajectory on the surface map to the
goal point using A∗. The global path is then divided into sub-goals. The program watches the
progress of the car and updates the sub-goal to keep a fixed distance of approximately 20m to
the car. Hence, the global path planner leads the car along the computed trajectory and allows
the local planner to avoid obstacles like parked cars that are not included in the map.

We carried out three different experiments to show the functionality of the system. First,
we demonstrate that we can build a MLS-map from collected sensor data of the parking garage.
Second, we illustrate that the described localization technique is essential for our experimental
setup, and finally we show that based on our implementation, a car can autonomously drive and
park in a multi-level parking structure.

8.4. Experiments 141

(a) MLS map estimated by our approach

(b) aerial image of the parking garage

Figure 8.7: (a) The MLS map used for the experiment. The trajectory of the robot as it is estimated by
the SLAM system is drawn in blue. (b) Aerial image of the parking structure (© Google).

8.4.1 Mapping

To obtain the data set, we steered the robot along a 7,050m long trajectory through the park-
ing garage and the surrounding environment. The trajectory contains multiple nested loops on
different levels of the garage. The robot collected more than 15,000 3D point clouds by its Velo-
dyne sensor. This data has been merged into 1,660 local MLS-maps used for scan-matching to
estimate a model of the environment. The outcome of our SLAM algorithm along with an aerial
image can be seen in Figure 8.7. The cell size of the generated map was set to 20 cm. The park-
ing garage used for the experiments consists of four levels and covers an area of approximately
113m by 100m. Using a cell size of 20 cm, it requires around 120MB of disk space for storing
the map.

Despite the high accuracy of the inertial navigation system mounted in the vehicle, we found
that scan-matching further improves the odometry estimate. In particular, the estimate of the
navigation system exhibits a large drift in height, which is compensated by scan-matching.

142 Chapter 8. Navigation with a Car in Complex Urban Environments

50 m

Figure 8.8: Bird’s eye view of the parking garage. The blue trajectory shows the position as it is
estimated by the inertial navigation system of the car, whereas the red trajectory is estimated using our
localization approach (aerial image © Google).

8.4.2 Localization

The described localization algorithm was evaluated on several separate data sets that have been
acquired at different points in time. Hence, the environment was subject to change, i.e., parked
cars sensed during map building are no longer present or currently present obstacles were not
observed while mapping the area. In all our experiments the particle filter was able to accurately
localize the vehicle online. The algorithm performs pose correction with the update rate of the
sensors using 1,000 particles, whereas the proposal distribution is updated at 200Hz. Figure 8.8
depicts the outcome of the localization algorithm. Note that the trajectory as it is estimated
by the inertial navigation system contains large errors while driving without GPS coverage.
Actually, the estimated trajectory is outside the boundaries of the parking garage after the car
reached the third level. This error remains until the car reaches the top level and again receives
GPS fixes, which allow the navigation system to gradually reduce this error. In contrast to
this, our localization algorithm based on the MLS-map and the range measurements is able to
accurately localize the vehicle all the time. The accuracy of our localization is confirmed by
the inertial navigation system whenever it receives valid GPS fixes as the trajectories overlay at
that time.

8.4.3 Autonomous Driving

The following experiment is designed to show the abilities of our approach to autonomously
drive in a multi-level parking garage. The task of the vehicle was to drive from the start position,
which was close to the entrance, to a parking spot on the upper level of the parking garage.
Figure 8.1 depicts an aerial image of the parking garage, in which the start and goal have been
marked. The car autonomously traveled to the target location. The resulting 3D trajectory of
the vehicle is depicted in Figure 8.9a. The trajectory has a total length of 375m and it took
3:26minutes to reach the goal with an average speed of 6.6 km/h (maximum speed 9.5 km/h).
Figure 8.9b depicts the trajectory of the local planner to the goal. Videos documenting the
experiments can be found on the Internet [58].

8.5. Related Work 143

-60 -40 -20 0 20
120

160

200
-5
0
5
10
15

(a) trajectory of the robot (b) parking maneuver

Figure 8.9: Trajectory of the autonomous navigation inside the parking garage. (a) The complete trajec-
tory from the start point in the first level to goal point in the fourth level. (b) The last part of the trajectory
to the goal point behind an obstacle (lamp pole).

8.5 Related Work

The system described in this chapter addresses several aspects of autonomous navigation in-
cluding localization, mapping, and path planning. In the following, we discuss the related work
in each of these fields while focusing on our target application, namely autonomous navigation
with an automobile.

Several authors have studied the problem of mobile robot localization in outdoor environ-
ments with range sensors or cameras in the past. For example, Adams et al. [1] extract pre-
defined features from range scanners and apply a particle filter to localization. Davison and
Kita [41] employ a Kalman filter for vision-based localization with point features on non-flat
surfaces. Agrawal and Konolige [5] presented an approach to robot localization in outdoor ter-
rains based on feature points that are tracked across frames in stereo images. Lingemann et

al. [139] described a method for fast localization in in- and outdoor environments. Their system
operates on raw data sets, which results in huge memory requirements. Operating on a compact
3D model, Hornung et al. [89] present a method that allows a humanoid robot to localize itself
in complex environments including staircases and multiple levels. Kümmerle et al. [125] realize
a localization algorithm for wheeled robots in urban environments. Both approaches employ a
particle filter and they consider the sensor data from 2D range finders whose measurements are
matched against a 3D model of the environment. Grzonka et al. [80] describe a full naviga-
tion system for a quadrator, in which the localization and mapping is based on 2D range data
supported by an IMU.

Recently, Levinson and Thrun [134] presented an algorithm for mapping and localization
in large urban environments. Their approach localizes the vehicle using 2D intensity images
of the road surface which are obtained by the reflectivity measurements of a 3D range scan-
ner mounted on the roof of the car. As stated by the authors, such a precise localization is a
key enabling factor for navigating in narrow urban roads. In contrast to their method, our ap-
proach employs a 3D model of the environment and is therefore not restricted to roughly planar
environments which only contain one driveable level. Baldwin and Newman [13] relax the de-
pendency on a 3D range finder and suggest an approach solely operating on 2D range finders
mounted with different inclination to accurately localize a vehicle given 3D priors.

Building maps of outdoor environments using range or vision data also gained interest in
recent years. To reduce the memory requirements of outdoor terrain representations, several re-

144 Chapter 8. Navigation with a Car in Complex Urban Environments

searchers applied elevation maps [14, 87, 127, 171]. This representation only stores one height
value per cell which represents the drivable surface but is not sufficient to represent vertical or
overhanging objects. Therefore, Pfaff et al. [175] extended elevation maps to also deal with
vertical and overhanging objects. To also address the issue of multiple levels in the environ-
ment, e.g., a bridge and the corresponding underpass, Triebel et al. [209] presented multi-level
surface (MLS) maps. Another popular approach to modeling environments are grids [155] of
volumetric 3D cells. Each cell encodes the probability that the cubic volume is occupied. To ad-
dress the large memory requirements of a volumetric grid, data structures based on octrees [90]
are a viable alternative as they combine cells having the same occupancy probability into large
compounds. While an MLS map is not entirely probabilistic, as it does not encode free space,
it yields a compact representation of the occupied volume. Furthermore, an MLS map provides
sufficient information for a localization algorithm [125] and the underlying grid is advantageous
when implementing a planning algorithm in a fast and efficient manner.

The local planner utilized in our approach builds on the existing work in discrete search in
unknown environments (e.g., [59, 106, 156]) as well as kinematic forward search [103, 129,
177] and nonlinear optimization in the space of 2D curves [38]. Whereas strategies for specific
dedicated parking maneuvers have been developed [169, 170] and nowadays are even available
in off-the-shelf vehicles, these systems perform autonomous navigation only in a short range
and are not able to plan complex navigation tasks through entire parking structures. The work
probably most closely related to ours is the approach by Schanz et al. [186] who developed
an autonomous parking system in a subterranean parking structure. Compared to our work
described in this chapter, their system can only deal with given two-dimensional map represen-
tations and lacks the capability to detect obstacles in 3D. Additionally, their system cannot deal
with multiple levels or drive on non-flat surfaces like ramps.

Based on the first Grand Challenges organized by DARPA, the robotics community gained
interest in using a car as a robot. During the competition, several systems [38, 206, 214] showed
the ability to autonomously drive over extensive periods of time through desert areas. Within the
second challenge organized by DARPA, the Urban Challenge, the ability to navigate in dynamic
urban environments with complex traffic scenarios while obeying traffic rules has been demon-
strated successfully [152, 215]. These efforts resulted in fully autonomous demonstrations in
urban traffic [161] beyond competition settings and have also led to commercial systems [71]
which implement autonomous navigation with cars. These systems, however, heavily rely on
the availability of GPS while navigating to estimate the position of the vehicle. As we have
shown in the experiments, such a system is not able to localize the vehicle accurately in GPS-
denied parts, such as the parking structure considered in our experiment.

8.6 Conclusions

In this chapter, we presented a novel approach for driving in complex GPS-denied multi-level
structures with an autonomous car. We described the individual approaches for mapping,
SLAM, localization, path-planning, and navigation. In particular, the techniques developed
in this thesis are an important building block of the whole system. Without an accurate map
of the parking structure, localization just based on GPS would fail and render the car unable to
reliably reach the designated goal location.

Our approach has been implemented and evaluated with a real Volkswagen Passat Wagon in
a large-scale parking garage. The experimental results demonstrate that our approach allows the
robotic car to drive autonomously in such environments. The experiments furthermore illustrate
that a localization algorithm is needed to operate indoors, also in the case in which the robot is

8.6. Conclusions 145

equipped with a highly accurate state-of-the-art combined inertial navigation system.
While the approach presented in this chapter operates on a vehicle driving on the road, we

describe a system for a pedestrian assistant in the next chapter. The key components of both
systems apply similar techniques, but they substantially differ in the specific implementation.
The different sensor modalities and the envisioned applications impose challenges whose so-
lutions demand distinct approaches, as we will see in the following chapter. For instance, we
tackle the large-scale environment with special data structures for planning and localization.

Chapter 9

A Robotic Pedestrian Assistant

In this chapter, we present a navigation system for autonomous navi-
gation with mobile robots in city environments that relies on the tech-
niques presented in this thesis. Whereas we presented a navigation sys-
tem for a robot driving on the road in the previous chapter, we will
now describe our efforts for realizing a pedestrian-like robot. Urban ar-
eas pose numerous challenges to autonomous mobile robots as they are
both large-scale and highly complex, and in addition to that dynamic.
We describe different components including a SLAM system for deal-
ing with huge maps of city centers, a planning approach for inferring
feasible paths that take also into account the traversability and type of
terrain, and an approach for accurate localization in dynamic environ-
ments. The navigation system has been implemented and tested in sev-
eral large-scale field tests in which a robot managed to autonomously
navigate from our University Campus over a 3.3 km long route to the
city center of Freiburg.

• • • • • • • • • • •

In this part of the thesis, we up to here demonstrated how the techniques for mapping and
state estimation which we developed in this work can serve as a building block of a navigation
system for an autonomous car. In particular, the model of the environment, which was esti-
mated by our SLAM approach, led to a self-contained system for planning and localization.
In addition to this, we will present in this chapter how our techniques have been utilized and
extended to enable a robot to navigate in densely populated city centers. We particularly fo-
cus on pedestrian-like navigation, i.e., driving on the sidewalk or in pedestrian areas instead of
on the road. While traffic on the road follows certain rules, the flow of motion in pedestrian
areas is less structured. Thus, navigating in densely populated pedestrian zones confronts the
robot with a series of challenges, for example, the scenes may be highly complex and dynamic
while at the same time GPS is unreliable. Only few systems, for example, the autonomous city
explorer [15], have been designed for robot navigation in such populated urban environments.

In this chapter, we describe a navigation system that enables mobile robots to autonomously
navigate through city-center scenes. The system utilizes the techniques presented in this thesis
as core building blocks. In particular, the SLAM system for learning accurate maps employs
HOG-Man presented in Chapter 3. Furthermore, we will extend the integration of prior infor-
mation, which was discussed in Chapter 6, to robustly handle outliers in the prior measurements.

148 Chapter 9. A Robotic Pedestrian Assistant

500 m

(a) the path taken by the robot (b) the robot navigating in downtown

Figure 9.1: Example trajectory traveled by our robot navigating in an urban environment including a
pedestrian zone with a large number of people surrounding the robot. (a) Map data from OpenStreetMap
(© OpenStreetMap contributors) along with an overlay of the trajectory taken by the robot drawn in blue.
(b) The robot driving in the city center of Freiburg.

As the environment in which the robot has to navigate might be as large as a city, we further-
more suggest a memory-efficient data structure for such large-scale maps and a planning system
which also exploits this data structure. The data structure is closely related to clusters in the hi-
erarchy of HOG-Man, our approach for optimizing a pose-graph online. Other components
of the navigation system include a variant of Monte Carlo localization and a terrain analysis
that deals with vegetation, dynamic objects, and negative obstacles. In the following, we will
describe how these components are integrated.

In addition to the description of the system, we will present results obtained during large-
scale experiments. In particular, our efforts allowed the robot to travel from our university cam-
pus to the city center of Freiburg. This trial was publicly announced beforehand and attracted
numerous journalists and curious people that followed the robot along its journey. Figure 9.1
depicts the trajectory of a length of around 3.3 km traveled by the robot along with exemplary
pictures of the robot navigating in the busy city center of Freiburg. The navigation capabilities
of the robot demonstrated during this event lead to positive press coverage, including reports in
the main TV news broadcast.

Thus, the aim of this chapter is not only to describe the relevant components, but also to

9.1. The Robot used for the Evaluation 149

(a) (b)

Figure 9.2: (a) One laser is mounted downwards to sense the surface in front of the robot to decide
whether it is safe to navigate over a particular area. (b) A second horizontally mounted laser is combined
with mirrors, which reflect a portion of its beams towards the ground. The data from those two lasers is
used to find obstacles that are not visible in the horizontal range data.

further highlight the capabilities that can be achieved by building a system upon the approaches
developed in this thesis. Furthermore, as an additional insight we try to motivate our design
decisions, critical aspects, as well as limitations of the current setup.

The remainder of this chapter is organized as follows. After presenting the robot in the
next section, we discuss the individual components of the system in Section 9.2, including the
algorithms for SLAM, localization, obstacle detection, and path planning. Subsequently, we
provide an evaluation of our system in Section 9.3 followed by a discussion about the limitations
of the system in Section 9.4. In Section 9.5, we present the related work.

9.1 The Robot used for the Evaluation

The robot used to carry out the field experiments is a custom made platform developed within
the EC-funded project EUROPA [55], which is an acronym for EUropean RObotic Pedestrian
Assistant. The robot is equipped with a differential drive that allows it to move at a maximum
velocity of 1m/s. Using flexibly mounted caster wheels in the front and the back, the robot
is able to climb steps up to a maximum height of approximately 3 cm. Whereas this is suffi-
cient to negotiate a lowered pedestrian sidewalk, it has not been designed to go up and down
normal curbs. Thus, the robot needs to avoid such larger steps. The footprint of the robot is
0.9m × 0.75m and the robot is around 1.6m tall.

The main sensor input is provided by laser range finders. Two SICK LMS 151 are mounted
horizontally in the front and in the back of the robot. The horizontal field of view of the laser
mounted in the front is restricted to 180 ◦. The remaining beams are reflected by mirrors towards
the ground surface in front of the robot. Additionally, another scanner is tilted 70 ◦ downwards
to detect obstacles and to identify the terrain the robot drives upon. Figure 9.2 illustrates the
setup of the non-horizontal laser beams. Additionally, a Hokuyo UTM-30LX is mounted on
top of the head of the robot. Its measurements are used for mapping and localization, whereas
the measurements of an XSens IMU are integrated to align the UTM horizontally with the
ground surface by controlling a servo accordingly. The robot is furthermore equipped with a

150 Chapter 9. A Robotic Pedestrian Assistant

Trimple GPS Pathfinder Pro to provide prior information about its position during mapping
tasks. While the robot also has two stereo cameras on-board, their data is not used for the
described navigation tasks.

9.2 System Overview

In order to autonomously navigate in an environment, our system requires to have a map of
the area, which is estimated by the approaches described in this thesis. To depend on a map of
the environment might seem like a huge drawback, but mapping can be done in a considerably
small amount of time. For example, it took us around 3 hours to map a 7.4 km long trajectory
by controlling the robot with a joystick. Furthermore, this only has to be done once as the
main structures of an urban area do not tend to change quickly. Small modifications to the
environment, like billboards or shelfs placed in front of shops, can be handled by our system
in a robust manner. In the following, we describe how we obtain the map of the environment
by means of a SLAM algorithm as well as the most important components of the autonomous
navigation system, such as the algorithms for path planning, localization, and obstacle detection.
The system enables our robot to operate in large-scale city centers. The entire navigation system
described in this section runs on one standard quad core i7 laptop operating at 2.3GHz.

9.2.1 Mapping

The key technique of our mapping algorithm is described in Chapter 2 and Chapter 3, namely
the graph-based SLAM formulation for estimating the maximum-likelihood (ML) configura-
tion. As we will extend this in the following, let us briefly recall the concept of this formulation.
The vector x= (x1, . . . ,xT)

⊤ describes the poses of the robot. Furthermore, the observation zi j
characterizes the motion of the robot between the time indices i and j with Gaussian noise given
by the information matrix Ωi j. Let ei j(x) be an error function which computes the difference
between the observation zi j and the expected value given the current state of node i and node j.
Additionally, let ei(xi, x̂i) be an error function which relates the state of node i to its prior x̂i
having the information matrix Ωi.

As we have previously seen, we obtain the ML configuration of the trajectory taken by the
robot including the prior information as

x∗ = argmin
x

∑
i j∈G

ei j(x)
⊤Ωi jei j(x)+ ∑

i∈P

ei(xi, x̂i)
⊤Ωiei(xi, x̂i), (9.1)

where G and P are a set of constraints and priors, respectively.
On our robot, the high-end GPS sensor provides the set of priors P . As GPS signals may

be corrupted by multi-path effects and atmospheric distortions before reaching the receiver, we
further extend the approach presented in Chapter 6 by an outlier rejection method to remove
those measurements. Instead of directly solving Eq. 9.1, we consider a modified cost function
for the prior measurements. To this end, we introduce F̃(x), which is given as

F̃(x) = ∑
i j∈G

ei j(x)
⊤Ωi jei j(x)+ ∑

i∈P

ρ
(
ei(x)

⊤Ωiei(x)
)
, (9.2)

where ρ (·) is a robust cost function. While other choices are possible, we consider the Pseudo
Huber cost function [86] for the prior measurements, which is defined as

ρ(a) = 2δ 2

(√
a

δ 2
+1−1

)
, (9.3)

9.2. System Overview 151

0

1

2

3

4

-2 -1 0 1 2

Squared Error
δ = 0.1

δ = 1
δ = 3

Figure 9.3: The Pseudo Huber cost function with different values for the parameter δ .

Prior
Rejected

Trajectory

(a) rejected priors (b) map including all priors (c) map of our approach

Figure 9.4: Influence of outliers in the set of prior measurements. (a) Our method rejects prior measure-
ments having a large error. (b) The map as it is estimated by taking into account all prior measurements.
(c) Our method achieves a good estimate for the map by rejecting priors that are likely to be outliers.

where δ is a free parameter. The Pseudo Huber cost function approximates a, i.e., the squared
error weighted by the information matrix for small values of a, and is approximately linear with
slope δ for large a, see Figure 9.3. As we have seen in Section 2.3.1, each error function ei
contributes with an addend term Hi to the system matrix H and with bi to the right hand side b
of the sparse linear system. Consequently, we need to describe how the robustification affects
those terms. Following the derivation given by Triggs et al. [210], we see that

Hi ≈ J⊤i
(

ρ ′Ωi+2ρ ′′ (Ωiei)(Ωiei)
⊤
)
J (9.4)

b⊤i = ρ ′e⊤i ΩiJi, (9.5)

where ρ ′ and ρ ′′ are respectively the first and second derivative of ρ(·), Ji is the Jacobian of
the error function, and ei = ei(x) denotes the current error vector. Note that we consider the
prior given by the GPS receiver instead of an aerial image as the robot is not equipped with a
3D range finder. Furthermore, a pure 2D range finder is more susceptible to errors in matching
the observation to the aerial image as outlined in Chapter 6. Thus, we chose to consider the
highly accurate GPS receiver which yields a sparse prior since the receiver is tuned to drop an
ambiguous position estimate by neglecting satellites which are low above the horizon. This
helps to remove incorrect estimates when the robot operates between tall buildings.

Applying the robustified error function weakens the influence of the outliers on the state.
We, however, seek to completely remove the influence of measurements which have a high
likelihood to be an outlier as indicated in Figure 9.4a. Thus, after the iterative optimization
of Eq. 9.2 with Levenberg-Marquardt converged, we remove 2% of the prior edges having

152 Chapter 9. A Robotic Pedestrian Assistant

the largest residual. We repeat this process five times. Consequently, we keep approximately
90% of the original prior information. Using this approach, some good GPS measurements
might be rejected. We found in our practical experiments that the effect of outliers in the prior
measurements may be severe (see Figure 9.4b and c), whereas losing some good measurements
does not substantially worsen the map estimate. Including the prior information has several
advantages. First, it improves the accuracy of the obtained maps (see Chapter 6). Second, if
the robot extends its map, coordinates are easy to transform between different maps because the
maps share a common global coordinate frame.

9.2.2 Map Data Structure

Obtaining a 2D map given the graph-based SLAM solution and the laser data is typically done
in a straightforward manner, for example, by computing an occupancy grid [205]. Storing
one monolithic occupancy grid for a large-scale environment, however, leads to a large memory
footprint. For example, a 2 km by 2 km area at a resolution of 0.1m and 4 bytes per cell requires
around 1.5GB of main memory. Instead of computing one large map, we consider the informa-
tion stored in the hierarchy of pose-graphs to render maps locally and close to the position of
the robot. A similar approach was recently described by Konolige et al. [112].

We generate the local map as follows. We apply Dijkstra’s algorithm to compute the distance
between the nodes in the graph. This allows us to only consider observations that have been
obtained by the robot in the local neighborhood of its current location. We compute the set of
nodes Vmap to be used to build the local map as

Vmap = {xi ∈ x | dijkstra(xi,xbase)< r} , (9.6)

where xbase determines the reference frame of the map, dijkstra(xi,xbase) returns the distance
between the two nodes according to Dijkstra’s algorithm, and r is the maximum allowed dis-
tance for a node to be used in the mapping process. The reader may notice that the set Vmap

corresponds to one cluster in the hierarchy built by HOG-Man. Thus, we can directly exploit
the clusters generated during optimization for rendering each local map. Furthermore, the ar-
rangement of the local maps in space is given by optimizing the second layer in the hierarchy
constructed by HOG-Man. As hard-disk space is rather cheap and its usage does not affect the
performance of other processes, we store each local map on the disk after the first access to it
by the system.

The localization and path-planning algorithms described in the following sections all operate
on these local maps. The map is expressed in the local frame of xbase and we currently use a
local map of 40m × 40m. Typically, each local map is locally consistent [91], even if the
positions of the maps are not globally consistent. Hence, in contrast to a monolithic map we do
not have to update the local maps if the optimization moves the origins of the maps in space.

9.2.3 Localization

To estimate the pose x of the robot given a map, we employ Monte Carlo localization [42]
with a standard motion model. We consider a likelihood field [205] for evaluating the sensor
model, which implicitly deals with obstacles not present in the map as it does not model the
physical process underlying the range measurements. In contrast to most existing localization
approaches, our system does not operate on a single grid map to estimate the pose of the robot.
Given our graph-based structure we, accordingly, need to determine a vertex xbase whose map
should be taken into account for evaluating the likelihood of a sensor reading. We determine the

9.2. System Overview 153

base node xbase as the pose-graph vertex that minimizes the distance to x and furthermore guar-
antees that the current location of the robot was observed in the map. This visibility constraint
is important to maximize the overlap between the map and the current observation. Without this
constraint, the closest vertex might be outside a building while the robot is actually inside of it.

9.2.4 Traversability Analysis

For successful navigation, the robot needs to reliably avoid obstacles. Such obstacles can be
divided into two categories, positive and negative obstacles. Whereas the first ones are objects
sticking out of the ground plane by more than a threshold, the latter ones are sinkings with a
depth above the threshold, such as a ditch or a street drain. For our robot the aforementioned
threshold is just above 3 cm. In addition to describing our method for identifying such obstacles,
we also present a technique which allows the robot to avoid other potentially hazardous surfaces,
such as lawn, where the robot could easily get stuck due to its small caster wheel. Identifying
lawn is not possible by just considering the range data as the vegetation appears to be smooth
and drivable [218]. Here, we will present a technique exploiting the intensity data returned in
addition to the range by a laser range finder.

Obstacle Detection

As we are not able to specifically design the environment for our robot, not all obstacles are
visible in the horizontally mounted range finders. Hence, we need to rely on the additional
lasers mounted on the platform, see Figure 9.2. To this end, we analyze the scans obtained from
the ground surface. Fitting a line to the range measurements allows us to detect line segments
with a substantial variation in height or a slope above a threshold. Such segments are tagged as
an obstacle. This is motivated by the fact that a flat ground plane in contrast would result in a
straight line in the range data. Operating purely on single scans leads to an efficient detection.
Furthermore, there is no need for accumulating range data into a point cloud, which might easily
create fake obstacles due to the noise in the position estimates.

The detection of variations in the range data described above, however, causes false positives
on manhole covers and gutters as their fine structure leads to variations in the range measure-
ments, which in turn produce the wrong classification. To this end, an elevation map [87] is
built by the robot, which allows us to estimate the size of the negative obstacle. Only negative
obstacles with a size is above a threshold are forwarded to the planner.

As a last step, we test for each obstacle identified by our method whether there is also an ob-
stacle present in the horizontal range data. Obstacles which have not been detected beforehand
are forwarded to the planner framework to avoid them. This is required as the robot due to its
sensor setup cannot easily re-observe the obstacles which are only visible in the non-horizontal
beams. In contrast, obstacles visible in the horizontal range data can typically be re-observed.
Thus, our filtering method prevents the creation of additional positive obstacles corresponding
to dynamic objects if they are already observed in the horizontal measurements.

In addition to the detection of negative and positive obstacles, our robot tracks the motion
of dynamic obstacles in its vicinity. To this end, we build a history of ten local grid maps.
Each map accumulates the measurements of around 100ms in our current implementation. We
identify the dynamic aspects in the environment by determining the difference between the
current map and the oldest map stored in the history. Obstacles that have previously not been
occluded and that are only visible in the current map are potentially dynamic. These map
elements are grouped into clusters and tracked over time by a nearest neighbor data association.

154 Chapter 9. A Robotic Pedestrian Assistant

1

2

3

4

(a) detected obstacles and raw range data

(b) image of the area shown in (a)

Figure 9.5: (a) Visualization of the different kinds of detected obstacles. Blue points mark obstacles
that are visible in the horizontal 2D laser scanners (areas 1 and 3). Red points mark 3D obstacles
that are visible in the downwards facing laser beams but not in the 2D laser beams (mainly area 2).
The black boxes with the arrows mark detected dynamic obstacles (area 3). Green points mark the
detected vegetation/grass (area 4). The yellow dots visualize the accumulated point cloud from the laser
measurements. The image additionally depicts the robot and its planned trajectory. (b) Image of the
environment with a lawn on the right and a building with a two-step staircase on the left.

9.2. System Overview 155

0.4

0.5

0.6

1 2 3 4 5 6 7

R
em

is
si
on

Range [m]

Vegetation
Concrete

Figure 9.6: Range and remission data collected by the robot observing either a concrete surface or
vegetation.

Tracking the objects yields a velocity estimate and a direction in which the object moves as
can be seen in Figure 9.5a. This information allows the planner to react to pedestrians in an
appropriate manner.

Vegetation Detection

Flat vegetation, such as lawn, cannot be reliably recognized in range measurements. Since
lawn should be avoided by the robot, we apply an extension of an approach developed in joint
work [218]. This approach considers the reflected intensity which is provided by a laser scanner
along with the range. The classification exploits the fact that living plants exhibit a strong re-
flectivity of near infrared light, which is approximately the wavelength of the laser light emitted
by a laser range finder.

In contrast to Wurm et al. [218], we detect vegetation with a fixed downward looking laser
instead of a tilting laser. This results in an easier classification problem as the range of a beam
hitting the presumably flat ground surface correlates with the incidence angle. Figure 9.6 illus-
trates the data obtained with our platform. As can be seen from the image, the two classes can
be separated by a nonlinear function. We chose to fit a function to the lower boundary of the
vegetation measurements. This partitioning function allows us to identify measurements which
are likely to be vegetation with high efficiency. The resulting classification accuracy is slightly
worse compared to the original approach but faster. An example, for the detection can be seen
in Figure 9.5a. Furthermore, by accumulating the results in cells of a 2D grid and deciding the
label for each cell by a majority vote of the observations falling into the cell, we are able to
robustly detect flat vegetation in the environment as can be seen in Figure 9.7.

Non-Smooth Ground Surfaces

The terrain analysis is able to identify the drivable parts and objects that have to be avoided. The
resolution of the laser range finder, however, is not sufficient to detect fine bumps in the ground
surface. For example, cobble stone pavement is in general a drivable surface albeit its surface is
locally rough. This roughness causes vibrations in the robot while driving upon the pavement.
Therefore, we exploit the measurements of the IMU, which is able to sense the vibration. In
situations where the vibrations exceed a threshold, we gradually reduce the maximum velocity
for the platform. The reduction of the velocity is proportional to the sensed vibration. Since the
laser measurements are not able to observe the fine bumps causing the vibrations, the robot has
no means to identify whether the surface permits driving fast again without inducing vibrations.

156 Chapter 9. A Robotic Pedestrian Assistant

Figure 9.7: Examples for the vegetation detection. The trajectory drawn in red indicates an example
path taken by the robot during one of the field tests.

Hence, after a short delay we greedily increase the maximum velocity again up to the maximum
given by the current vibrations.

9.2.5 Path Planner

Our planner considers different levels of abstraction to compute a feasible path for the robot
towards a goal location. The architecture consists of three levels. On the highest level, only
the topology of the environment is considered, i.e., the graph connecting local maps. The
intermediate level employs Dijkstra’s algorithm on the local maps to calculate way-points which
serve as input for the low-level planner developed by Rufli et al. [181]. This low-level planner
actually computes the velocity commands sent to the robot. Note that by using this hierarchy,
we lose the optimality of the computed paths. Konolige et al. [112], who developed a planning
framework similar to ours in parallel, report that the resulting paths are only approximately 10%
longer, whereas the time needed to obtain them can actually be several orders of magnitude
shorter.

Given the pose estimates of our SLAM module, our planner constructs a topology T rep-
resented by a graph. This graph is constructed as follows: Each node xi of the graph is la-
beled with its absolute coordinates in the world. Furthermore, each node comes with its local
traversability map describing the drivable environment in the neighborhood of xi which serves
as the background information for the planner. Additionally, each cell in the map encodes the
cost of driving from xi to the cell. This can be pre-computed efficiently by a single execution
of Dijkstra’s algorithm starting from xi. We refer to this as the reachability information of the
map.

Two nodes are connected by an edge if there is a path from one node to the other given
the information stored in their local maps. The edge is labeled with the cost for traversing the
path which is determined by planning on the local maps. If such a path cannot be found, we
assign a cost of infinity to this edge. Otherwise, we assign to the edge the cost returned by
the intermediate-level planner, which is typically proportional to the length of the path. Yet,
in contrast to the straight-line distance, the cost better reflects the local characteristics of the
environment. By this procedure, which is carried out once as a pre-processing step, the planner
will consider the real costs for the robot to traverse the edge instead of only considering the
Euclidean distance. Note that the set of edges contained in the topology graph T in general
differs from the set of constraints G generated by the SLAM module. The topology graph
exhibits a denser connectivity as can be seen in Figure 9.8.

9.3. Experiments 157

(a) pose-graph (b) topology graph generated by the planner

Figure 9.8: (a) Partial view of the pose-graph with its constraints used for estimating the poses. (b) The
same view of the topology graph generated by the planner shows that this graph typically features a
denser connectivity.

While driving autonomously, the robot may encounter unforeseen obstacles, e.g., a passage
might be blocked by a construction site or parked cars. Our planner handles such situations by
identifying the edges in the topology which are not traversable in the current situation. Those
edges are temporarily marked with infinite costs, which allows the hierarchical planner frame-
work to determine another path to the goal location.

Planning a path from the current location of the robot towards a desired goal location works
as follows. First, we need to identify the nodes or maps in T which belong to the current
position of the robot and the goal. To this end, we refer to the reachability information of the
maps. We select the maps with the shortest path from the center of the map to the robot and the
goal, respectively. Given the robot node and the goal node, the high-level planner carries out an
A∗ search on T . Since the cost of traversing an edge corresponds to the real cost of the robot
to traverse the edge, this search provides a fast approximation of an A∗ on a complete grid map
of the environment but is orders of magnitude faster. The result is a list of way-points towards
the goal. Following this list too closely may, however, lead to sub-optimal paths. Hence, we
perform Dijkstra’s algorithm in the local map starting from the current location of the robot and
select as intermediate goal for the low-level planner the farthest way-point that is still reachable.
Note that the local map containing the current position of the robot is augmented online with
the static obstacles found by the obstacle detection.

9.3 Experiments

In this section, we describe a set of experiments in which we evaluated the system described
in this chapter. The experiments show what can be achieved by a navigation system that builds
upon the techniques developed in this thesis.

9.3.1 Mapping and Navigation

We obtained a map of the environment by steering the robot along a 7,405m long trajectory.
The map contains the area between the Faculty of Engineering of the University of Freiburg and
the city center of Freiburg. Figure 9.9 depicts the pose-graph obtained by our SLAM approach

158 Chapter 9. A Robotic Pedestrian Assistant

500 m

Figure 9.9: The pose-graph of the map used for the experiments on top of an aerial image. The trajectory
as it is estimated by our approach aligns well with the aerial image (aerial image © Google).

as an overlay on top of an aerial image. The graph consists of 14,549 poses of the robot and
16,362 constraints.

Based on this map, we further evaluated the capabilities of the navigation approach. In
particular, we carried out six navigation experiments in which the robot navigated from our
campus to the city center and back. The robot traveled a distance of approximately 20 km.
While navigating, we had to intervene only three times. One intervention was required due to
the localization failure described in more detail below. Additionally, the robot once got stuck in
front of a little bump and one further time was manually stopped by us because of an obstacle
that we believed not being perceivable by the robot. An analysis of the collected data revealed
that the obstacle in fact was detected by the robot and probably would have been avoided.
Furthermore, the wireless emergency stop button was pressed unintentionally once causing a
safety stop.

In addition to the field tests, which have been carried out during the development of the
whole system, a final experiment was publicly announced. The goal of this event was to demon-
strate the capabilities of a state-of-the-art navigation system to the general public and the press.
A particular goal of this event was to reveal whether a robot utilizing our approach is able to ro-
bustly navigate through a densely populated environment. The event itself attracted journalists
from both TV and newspapers and led to a nationwide and international coverage in top-media.
Video material documenting the experiments can be found on the homepage of the project [55].

9.3.2 Localization

The localization in the map estimated by our SLAM technique is one of the key components
of our system. In our setting the measurements obtained by the robot are heavily affected
by pedestrians, cyclists, and cars on the street moving through the field of view of the robot.
Furthermore, the environment itself may change. For example, cars may be parked at slightly

9.3. Experiments 159

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90

F
ra
ct
io
n
of

B
ea
m
s

Time [minute]

Beams Explained by the Map
Valid Beams

Figure 9.10: This plot shows the fraction of valid beams returned by the range scanner and the fraction
of beams that can be explained by the map of the environment. The robot entered a crowded area in
the city center after around 78 minutes. In this period, the localization algorithm can only consider
approximately 50% of the valid readings for localization.

different locations. Thus, we analyzed the impact of partial occlusion in the range data caused
by objects which are not modeled in the map.

Given the position estimate of the robot and the map, we determined how many of the valid
beams are explained by the map. Here, a valid beam is a measurement which is shorter than the
maximum sensible range of the laser and we assume that a beam matches with the map if its
distance to the closest element in the map is less than 0.2m. Figure 9.10 illustrates the fraction
of beams matching with the map and the fraction of valid beams. The number of valid beams
correlates with the kind of space the robot is in. For instance, in an open region only a small
amount of beams is reflected by obstacles, which means that only a small subset of the beams
provide information for localizing the robot. Ideally, the difference between the valid beams and
the beams matching with the map should be small. A substantial difference indicates that beams
hit unexplained objects, such as pedestrians blocking the view of the robot. For example, after
78 minutes the robot navigated through a highly crowded area. This leads to a large fraction of
measurements that cannot be explained by the map.

In the experiment depicted in Figure 9.10 a localization error occurred after around 76 min-
utes. As we can see in the figure, between minutes 70 and 76 the robot traveled in an area where
only a small amount of features is available to the localization algorithm for determining the
pose of the robot. The robot traveled around 200m in this time period. The presence of a small
amount of features and being surrounded by pedestrians for an extended time period, led to an
error in the position estimate of around 2m. This caused problems in negotiating a sidewalk
after crossing a street and we had to re-localize the robot.

In other instances, sharing the same characteristics, for example, around minute 37 and
around minute 52 the robot drove substantially shorter distances of 100m and 50m with a
small amount of meaningful sensations. In both situations, the system was able to overcome the
problem because it receives relevant information early enough again.

One of the large experiments was carried out during the night at which typically a substan-
tially smaller number of pedestrians is around such that the measurements are less affected by
occlusions. In turn, most of the valid beams match well to the map. In this experiment, the robot
successfully reached its goal location without any problems traveling along a slightly different
path of 3.5 km length. A visual inspection of the localization result revealed that the position of
the robot was correctly estimated at all times.

160 Chapter 9. A Robotic Pedestrian Assistant

9.4 Discussion

The experimental evaluation indicated several bases of decision-making for the arrangement of
the sensors and the algorithmic principle of the perception processes. For example, we realized
that crossing a road or interacting with cars poses a difficult perception problem. Such that
enormously long-range sensors, such as radar, for sensing the vehicle approaching the robot,
are required. Additionally, in certain traffic scenarios it is not decidable by just considering
range data whether the robot actually has right of way for crossing a green light at a pedestrian
light. Consider a police car which is on duty. In such a scenario, an elaborated vision system,
which recognizes the blue light driving, or audio sensation for identifying the siren might be
required to recognize a car driving with an exemption. We therefore solved this hard problem by
letting the robot stop and ask for permission whenever it wants to cross a street. In our current
system, these safety-relevant areas are marked manually in the map.

As mentioned above, the navigation system described in this chapter has been implemented
on the robot characterized in Section 9.1. The design of the robot, obviously, affected the
development of the software components, which were needed to achieve the envisioned task.
For example, the obstacle detection had to cope with the sensor setup. Here, a 3D range sensor
would allow us to apply different methodologies than the ones considered so far. In particular,
such a device would enable the robot to re-observe obstacles that are currently not visible in
the horizontal range data. On the other hand, the design of the robot also facilitated certain
components. The almost circular shape of the robot, for instance, allows us to restrict the
collision tests to two dimensions, see the circles in cyan and magenta in Figure 9.5, which can
be checked in a fast and efficient manner for collisions with the perceived obstacles.

We furthermore realized that other aspects are pretty challenging. For example, curly leafs
on the ground look similar to little rocks in the range data. Whereas the robot can easily drive
over leafs, rocks can actually have a substantial effect on the platform itself. Additionally, pets
or other animals like pigeons or ducks need to be modeled appropriately to effectively navigate
in their vicinity. Here, the perception capabilities of the robot would need to be improved to
robustly handle the different obstacle categories.

9.5 Related Work

The problem of autonomous navigation in populated areas has been studied intensively in the
past. One of the pioneering systems were the robots RHINO [25] and Minerva [204] which op-
erated as interactive mobile tour-guides in crowded museums. An extension of this tour-guide
concept to interactive multi-robot systems was the RoboX system developed by Siegwart et
al. [191] for the Expo’02 Swiss National Exhibition. Gross et al. [79] installed a robot as a
shopping assistant that provided wayfinding assistance in home improvement stores. Although
these systems were able to robustly navigate in heavily crowded environments, they were re-
stricted to two-dimensional representations of the environment and assumed that the robots
operated in a relatively confined planar area.

Relatively few robotic systems have been developed for autonomous navigation in city cen-
ters. The concept closest to the one described in this chapter probably is the one of the Mu-
nich City Explorer developed by Bauer et al. [15]. In contrast to our system, which operates
autonomously and does not heavily rely on human intervention, the city exploration system de-
pends on interaction with humans to get the direction where to move next. The city explorer
only builds local maps and does not autonomously plan a path from its current position to
the overall goal location. A further related approach has been developed in the context of the

9.6. Conclusions 161

URUS project [185], which considered urban navigation but focused more on networking and
collaborative actions as well as the integration with surveillance cameras and portable devices.

Also, the problem of autonomous navigation with robotic cars has been studied inten-
sively. For example, there has been the DARPA Grand Challenge during which autonomous
vehicles showed the ability to navigate successfully over large distances through desert ar-
eas [38, 206, 214]. During the DARPA urban challenge, several car systems have been presented
that are able to autonomously navigate through dynamic city street networks with complex car
traffic scenarios and under consideration of road traffic navigation rules [152, 215]. Recently,
commercial self-driving cars [71] have been developed and legalized to perform autonomous
navigation with cars. In contrast to these methods, which focused on car navigation, the system
described in this chapter has been developed to enable mobile robots to perform pedestrian-
like autonomous navigation in urban environments with many types of dynamic objects like
pedestrians, cyclists, or pets.

A long-term experiment about the robustness of an indoor navigation system was recently
presented by Marder-Eppstein et al. [149]. Here, an accurate and efficient obstacle detection
operating on the data obtained by tilting a laser range finder has been realized. In contrast to
this system, our approach has a component for tracking moving obstacles to explicitly deal
with dynamic objects in highly populated environments and also includes a terrain analysis
component that is able to deal with a larger variety of terrain.

9.6 Conclusions

In this chapter, we presented a navigation system that enables a mobile robot to autonomously
navigate through city centers. To accomplish this task, our navigation system uses an extended
SLAM routine that deals with the outliers generated by the partially GPS-denied environments,
a localization approach that utilizes a special data structure for large-scale maps, dedicated
terrain analysis methods also for dealing with negative obstacles, and a trajectory planning
system that incorporates dynamic objects.

The system has been implemented and demonstrated in a large-scale field test, during which
the robot autonomously navigated over a path of more than three kilometers through the city
center of Freiburg thereby negotiating with several potential hazards. These field tests demon-
strate the capabilities that can be achieved by the approaches presented in this thesis in chal-
lenging settings. In particular, the publicly carried out demonstration attracted curious people
and allowed them to get hand-on experiences with robotic technology. Furthermore, the event
triggered positive news coverage across Europe, including the main German news programs.

Conclusions and Outlook

Chapter 10

Conclusions

A model of the environment is essential for a series of applications, we therefore focused on
developing approaches to learn a map for navigation tasks with a mobile robot. Particularly, our
approaches have to cope with a considerable amount of noise and uncertainty. In this thesis,
we presented a collection of techniques that allow a mobile robot to perform state estimation
in real-world settings. The state in these settings is high-dimensional as it in addition to the
positions of the robot also includes the model of the environment.

Based on a map, it is possible to implement a variety of applications, such as cleaning,
surveillance, or fetch and delivery. Hence, we explained the probabilistic formulation that un-
derlies the SLAM problem. This led to a least squares problem, for which we introduced a
general framework. Our approach allows us to solve this problem in a fast and accurate manner.
Furthermore, it is applicable to other related problems, for instance, Bundle Adjustment, cali-
bration, or model fitting. In our experiments, we showed that our general framework achieves a
similar performance as domain specific implementations and that it outperforms many state-of-
the-art approaches.

As SLAM is an online problem, we introduced a novel approach which enables a robot to
efficiently compute the maximum likelihood estimate for the current state. The intermediate
solutions in such an online setting are, for instance, required to plan the next action or to exploit
this information for data association. Our algorithm is based on a hierarchy of factor graphs
and can be interpreted as a divide-and-conquer approach. In addition to the more efficient
computation, we also showed that the hierarchy leads to better convergence properties. Our
approach is able to determine the correct solution where other techniques fail.

We furthermore proposed a metric which enables us to objectively compare the solutions of
different SLAM algorithms. Instead of performing the comparison in a global reference frame,
our metric only considers relative motions. This allows us to address shortcomings of metrics
based on a global reference frame. We applied our metric to a collection of publicly available
and widely used data sets. The evaluation shows that the graph-based formulation, which is the
basis of our approach, outperforms other state-of-the-art methods in terms of accuracy.

While learning a map of an environment the robot greatly benefits from fusing the informa-
tion of different sources, for example, the wheel odometry and the measurements of a laser range
finder. Thus, we developed a technique which estimates the calibration parameters of the robot
while performing SLAM. We extended our least squares estimator to include the correspond-
ing parameters. In contrast to existing approaches, our method allows the robot to dynamically
react to changes, such as the variation of the wheel diameters introduced by carrying a load.

Subsequently, we focused on improving the accuracy of the map. Most existing solutions
to SLAM start from scratch. In contrast, our method allows us to include prior information

166 Chapter 10. Conclusions

inferred from an aerial image. To this end, the robot matches sensor measurements to the aerial
image. This matching process yields a set of priors about the location of the robot and we add
this set as constraints to the estimation process. As we have shown, this leads to a better map
estimate. We furthermore presented a technique that appropriately models the noise in the range
measurements. In contrast to obtaining the map by integrating the individual measurements into
a common representation by applying a mapping with known poses technique, our approach
constructs a joint optimization problem that includes both the position of the robot and the
range measurements. This allows us to determine the maximum likelihood estimate on a fine-
grained level. In addition to improving the accuracy of the models, which is an achievement
on its own, we demonstrated that a more accurate map also greatly improves the localization
performance.

Inspired by the results of our state estimation techniques, we developed two navigation
systems for mobile robots. Whereas the first one operates on a car, the second one implements
a robotic pedestrian assistant. Both systems demonstrate real-world applications that build upon
the techniques developed in this thesis. Since even highly accurate inertial navigation systems
cannot estimate the position accurately in GPS-denied parts of the environment, we proposed
to localize the robot within a 3D map. Furthermore, the map can be considered for planning an
optimal path to a desired location. This allows the robotic car that uses our technology to park
autonomously in a complex multi-level parking garage. Furthermore, for realizing a robotic
pedestrian assistant, which should operate in densely populated city centers, we had to address
several aspects. For example, we developed an efficient planning framework, which allows us
to compute a path towards the goal by taking into account the data-structures of our hierarchical
optimization approach. Additionally, we extended the inclusion of prior information to robustly
deal with outliers. The system managed to autonomously navigate over extended time-periods
and required only minor human assistance.

In summary, our approaches enable a mobile robot to answer the following questions:

• How can a mobile robot efficiently, accurately, and robustly estimate a model of the en-
vironment, even in online settings?

• How can a robot account for the effects of its mission on its calibration parameters, such
as an additional load compressing the wheels of the robot?

• How can a robot exploit publicly available maps to improve its own estimate?

• How can a robot a model the noise in the range data and the remaining uncertainty in the
position estimates?

• How can a robot navigate in complex and dynamic urban environments?

All techniques presented in this thesis have been implemented and tested using both real-
world data collected with a mobile robot and simulated data. We furthermore demonstrated that
the techniques allow a robot to robustly and accurately estimate the state. To support our claims,
we performed an extensive collection of experiments, in which we compared the performance of
our approaches with the state of the art. In addition to the theoretical contributions to advance
the state of the art, our real-world experiments highlight the practicality of our techniques in
challenging and realistic scenarios. We believe that the proposed approaches will allow us in
the future to build systems that can assist humans in their work and everyday life.

167

Future Work

Despite the encouraging results presented in this thesis, there are several possibilities for fur-
ther extensions, which could be addressed in future research. For example, throughout this
thesis we assumed that the environment is static while the robot performs SLAM. Whereas our
approaches are robust enough to cope with highly dynamic map elements, such as people or
bicyclists as shown in Chapter 9, the main structures of the environment should be static. In
a dynamic environment the recognition of already seen places becomes hard because the envi-
ronment is subject to change. This may lead to errors in the map. Furthermore, in a lifelong
learning scenario, the robot at some point in time has a good model of its environment and
localizing with respect to the model might be sufficient for carrying out the task. The robot
may, however, require to detect that parts of the model are outdated and re-mapping that area
is potentially beneficial. So the robot is stuck between exploration and exploitation. It would
be particularly interesting to investigate an integrated approach combining SLAM with path
planning and exploration in a lifelong setting.

In such a lifelong setting, the wear of the robot influences the performance of the robot. The
internal parameters of the robot are no longer stationary. Our parameter calibration partially
addresses this issue. In a potential application, however, the robot should identify hardware
failures, such as a broken sensor that reports erroneous measurements. In addition to that, our
approach so far addresses only one commonly employed kinematic principle. Future research
could deal with extending the online estimation of the calibration parameters to other drive
systems, such as omni-directional systems or Ackermann steering.

Moreover, our hierarchical approach so far clustered the factor graph without considering
the topology of the environment. Taking into account the topology allows us to segment the map
into meaningful parts, such as buildings, streets and urban districts. A meaningful segmentation
could also be exploited in multi-robot scenarios, where estimates of several robots have to
be merged into one entire model. Furthermore, the hierarchical approach is inspired by the
divide-and-conquer principle. This could be exploited to speed-up the computation by extensive
parallelization of the whole estimation process.

Furthermore, the possible future research is not limited to robotics. Nowadays, navigation
systems for cars, which guide us towards our desired location, are commonly available. A
corresponding system is yet not available for all kinds of pedestrians. As we have seen in
Chapter 9, navigation with a robot that moves similar to a pedestrian is complex since we need
to identify obstacles, such as stairs and lawn. The data obtained by our navigation system could
potentially be exploited to provide the necessary information for implementing a routing system
for a wheelchair or for families with child strollers.

List of Figures

2.1 Real-world data sets processed with our system 14
2.2 Example of a SLAM problem . 16
2.3 Illustration of the sensor and the odometry model 17
2.4 SLAM as a factor graph . 19
2.5 SLAM as a pose-graph . 19
2.6 Front-end and back-end for SLAM . 20
2.7 Example for the ⊞ operator on a sphere . 26
2.8 Example of a ternary factor . 29
2.9 The uncertainty of the estimated parameters 32
2.10 Overview of our g2o framework . 33
2.11 The MIT CSAIL data set . 36
2.12 The Intel research lab data set . 36
2.13 The DLR landmark data set . 37
2.14 The parking garage data set . 37
2.15 Simulated 2D Manhattan data set . 38
2.16 Simulated Torus data set . 38
2.17 Simulated Sphere data set . 39
2.18 Comparison of TORO and g2o . 39
2.19 Influence of the value of F(x) on the map quality 39
2.20 The BA real-world data sets used for evaluating g2o 40
2.21 2D Datasets used for evaluating g2o . 41
2.22 Time per iteration for each approach on each data set 42
2.23 Comparison of g2o and Ceres Solver . 42
2.24 Online processing of the Manhattan3500 data set 43
2.25 Evolution of F(x) using unit quaternions versus the Lie algebra se(3) 44

3.1 Simulation of a robot equipped with a stereo camera in a Manhattan world. . . 50
3.2 Overview of our optimization procedure. 53
3.3 The unscented transform . 57
3.4 A hierarchy with three levels . 58
3.5 Example for the hierarchy construction . 59
3.6 Adding nodes to the hierarchy of pose-graphs 61
3.7 The four data sets used in our experimental evaluation. 63
3.8 Covariance ellipsoids for the 2D data sets . 64
3.9 Online processing of the 2D data sets . 65
3.10 Online processing of the 3D data sets . 65
3.11 Number of nodes in the highest level . 66
3.12 The Victoria-Park data set. 67

170 List of Figures

3.13 Top view of our real-world visual SLAM data set. 68
3.14 Simulated data sets with point features. 69

4.1 Example for a mapping error . 75
4.2 Results for the MIT Killian Court data set . 78
4.3 Results for the Building 079 data set . 79

5.1 Maps obtained by scan-matching based on different calibration parameters. . . 82
5.2 The number of inlier of a RANSAC matching algorithm. 83
5.3 Factor graph for simultaneous calibration. 84
5.4 Parameters used to compute the motion by odometry or sensor observations. . . 86
5.5 Extraction of the ground plane . 87
5.6 The robots used to acquire the real-world data. 89
5.7 Comparing the odometry calibration. 90
5.8 Results of the online estimation of the wheel radii. 91
5.9 Online odometry calibration on simulated data. 91
5.10 Different floor types in indoor environments and their influence on the odometry. 92
5.11 Results of the calibration procedure based on simulated data. 92
5.12 Results of the calibration procedure based on simulated data. 93

6.1 Example comparison of standard SLAM and our approach 98
6.2 Monte Carlo localization represented as a Bayesian network 100
6.3 Aerial image of the Freiburg campus . 101
6.4 Processing a 3D scan . 102
6.5 Example for the distance-based blurring . 104
6.6 The graph representation of our method . 105
6.7 Comparison between GPS and localization in a aerial image 107
6.8 Comparison between MCL with 3D laser and stereo vision data 108
6.9 Comparison of our approach to standard SLAM 109
6.10 Points used for the evaluation . 110
6.11 Error of the standard method and our approach 110
6.12 Aerial image of a residential area. 111
6.13 Error of the standard method and our approach 112
6.14 Close-up view of an outer wall of a building 112

7.1 Example for the accuracy of the maps generated by our approach 116
7.2 The Gaussian distribution computed on a range scan 117
7.3 Laser beam hitting a surface . 118
7.4 Comparison between ICP, Bundle Adjustment and our approach 121
7.5 Entropy of the maps . 122
7.6 Maps generated by our approach . 123
7.7 Maps generated by our approach . 124
7.8 Localization error . 125
7.9 Application of our method on Kinect data . 127

8.1 Multi-level parking garage used for the experiment. 132
8.2 Example of an MLS-map . 133
8.3 Information about the level of the environment. 135
8.4 Example trajectories of the local planner. 139
8.5 The car used for the experiment. 139

List of Figures 171

8.6 Necessary steps for the 2D map building. 140
8.7 The MLS map used for the experiment. 141
8.8 Bird’s eye view of the parking garage. 142
8.9 Trajectory of the autonomous navigation inside the parking garage. 143

9.1 Example trajectory traveled by our robot . 148
9.2 Laser setup of the EUROPA platform . 149
9.3 The Pseudo Huber cost function . 151
9.4 Influence of outliers in the set of prior measurements 151
9.5 Visualization of the different kinds of detected obstacles 154
9.6 Range and remission data . 155
9.7 Examples for the vegetation detection . 156
9.8 Comparison of the topology of the planner and the pose graph 157
9.9 Pose-graph of the map used for the experiments 158
9.10 Analysis of the beams matching to map . 159

List of Tables

2.1 Overview of the test data sets . 41
2.2 Comparison of different linear solvers . 44
2.3 Comparison of different linear solvers . 45

3.1 Comparison of the covariance ellipses . 62
3.2 Runtime comparison for the different approaches 64
3.3 Characteristics of the simulated data sets . 70
3.4 Summary of the simulated experiments . 71

4.1 Quantitative results of different approaches/datasets 77

5.1 The parameters of the robots used for our experiments. 94
5.2 Calibration results for different robot data sets. 94
5.3 Calibration results for different robot data sets with a 3D on-board sensor. . . . 94

List of Algorithms

1 Gauss-Newton minimization algorithm . 24
2 Levenberg-Marquardt minimization algorithm 25
3 Gauss-Newton minimization algorithm with alternative parameterizations . . . 28

Bibliography

[1] M. Adams, S. Zhang, and L. Xie. Particle filter based outdoor robot localization using
natural features extracted from laser scanners. In Proc. of the IEEE Int. Conf. on Robotics

& Automation (ICRA), 2004.

[2] P. Agarwal and E. Olson. Evaluating variable reordering strategies for SLAM. In Proc. of
the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2012.

[3] S. Agarwal and K. Mierle. Ceres solver: Tutorial & reference.
https://code.google.com/p/ceres-solver, 2012.

[4] S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski. Bundle adjustment in the large. In
Proc. of the European Conf. on Computer Vision (ECCV), 2010.

[5] M. Agrawal and K. Konolige. Real-time localization in outdoor environments using
stereo vision and inexpensive GPS. In International Conference on Pattern Recognition

(ICPR), 2006.

[6] F. Amigoni, S. Gasparini, and M. Gini. Good experimental methodologies for robotic
mapping: A proposal. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
2007.

[7] V. Andersen, H. Aanæs, and J. Bærentzen. Surfel based geometry resonstruction. Theory
and Practice of Computer Graphics 8, 2010.

[8] G. Antonelli, F. Caccavale, F. Grossi, and A. Marino. Simultaneous calibration of odom-
etry and camera for a differential drive mobile robot. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), 2010.

[9] G. Antonelli and S. Chiaverini. Linear estimation of the odometric parameters for
differential-drive mobile robots. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), 2006.

[10] G. Antonelli, S. Chiaverini, and G. Fusco. A calibration method for odometry of mobile
robots based on the least-squares technique: theory and experimental validation. IEEE

Trans. on Robotics, 21(5):994–1004, 2005.

[11] T. Bailey and H. Durrant-Whyte. Simultaneous localization and mapping (SLAM): Part
II. Robotics Automation Magazine, 13(3):108 –117, 2006.

[12] B. Balaguer, S. Carpin, and S. Balakirsky. Towards quantitative comparisons of robot
algorithms: Experiences with SLAM in simulation and real world systems. InWorkshop
on Performance Evaluation and Benchmarking for Intelligent Robots, 2007.

178 Bibliography

[13] I. Baldwin and P. Newman. Laser-only road-vehicle localization with dual 2D push-
broom LIDARS and 3D priors. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), 2012.

[14] J. Bares, M. Hebert, T. Kanade, E. Krotkov, T. Mitchell, R. Simmons, and W. R. L.
Whittaker. Ambler: An autonomous rover for planetary exploration. IEEE Computer

Society Press, 22(6):18–22, 1989.

[15] A. Bauer, K. Klasing, G. Lidoris, Q. Mühlbauer, F. Rohrmüller, S. Sosnowski, T. Xu,
K. Kühnlenz, D. Wollherr, and M. Buss. The autonomous city explorer: Towards nat-
ural human-robot interaction in urban environments. International Journal of Social

Robotics, 1:127–140, 2009.

[16] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. SURF: Speeded up robust features.
Computer Vision and Image Understanding, 110(3):346–359, 2008.

[17] O. Bengtsson and A.-J. Baerveldt. Robot localization based on scan-matching – setimat-
ing the covariance of for the icp algorithm. Journal of Robotics & Autonomous Systems,
44:29–40, 2003.

[18] J. L. Bentley. Multidimensional binary search trees used for associative searching. Com-
munications of the ACM, 18(9):509–517, 1975.

[19] P. J. Besl and N. D. McKay. A method for registration of 3-d shapes. IEEE Trans. on

Pattern Analysis and Machine Intelligence, 14(2):239–256, 1992.

[20] P. Biber and W. Strasser. The normal distributions transform: A new approach to laser
scan-matching. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS), 2003.

[21] J. Borenstein and L. Feng. Measurement and correction of systematic odometry errors in
mobile robots. IEEE Trans. on Robotics, 12(6):869 –880, 1996.

[22] M. Bosse, P. Newman, J. Leonard, and S. Teller. An ALTAS framework for scalable
mapping. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), pages
1899–1906, 2003.

[23] J. Brookshire and S. Teller. Automatic calibration of multiple coplanar sensors. In
Proc. of Robotics: Science and Systems (RSS), 2011.

[24] J. Brookshire and S. Teller. Extrinsic calibration from per-sensor egomotion. In Proc. of
Robotics: Science and Systems (RSS), 2012.

[25] W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner, and
S. Thrun. The interactive museum tour-guide robot. In Proc. of the National Conference
on Artificial Intelligence (AAAI), 1998.

[26] W. Burgard, C. Stachniss, G. Grisetti, B. Steder, R. Kümmerle, C. Dornhege, M. Ruhnke,
A. Kleiner, and J. D. Tardós. A comparison of SLAM algorithms based on a graph of
relations. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
2009.

Bibliography 179

[27] M. Byrod and K. Astroem. Conjgate gradient bundle adjustment. In Proc. of the Euro-

pean Conf. on Computer Vision (ECCV), 2010.

[28] J. Canny. A computational approach to edge detection. IEEE Trans. on Pattern Analysis

and Machine Intelligence, 8(6):679–698, 1986.

[29] L. Carlone, R. Aragues, J. Castellanos, and B. Bona. A linear approximation for graph-
based simultaneous localization and mapping. In Proc. of Robotics: Science and Systems
(RSS), 2011.

[30] A. Censi. Scan matching in a probabilistic framework. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), 2006.

[31] A. Censi. On achievable accuracy for range-finder localization. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), 2007.

[32] A. Censi, A. Franchi, L. Marchionni, and G. Oriolo. Simultaneous calibra-
tion of odometry and sensor parameters for mobile robots. Technical Report
CaltechAUTHORS:20120805-115123559, California Institute of Technology, 2012.

[33] A. Censi, L. Marchionni, and G. Oriolo. Simultaneous maximum-likelihood calibration
of robot and sensor parameters. In Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), 2008.

[34] S. Ceriani et al. RAWSEEDS ground truth collection systems for indoor self-localization
and mapping. Autonomous Robots, 27(4), 2009.

[35] C. Chen and H. Wang. Large-scale loop-closing by fusing range data and aerial image.
Int. Journal of Robotics and Automation, 22(2):160–169, 2007.

[36] Y. Chen and G. Medioni. Object modeling by registration of multiple range images. In
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 1991.

[37] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam. Algorithm 887: CHOLMOD,
supernodal sparse cholesky factorization and update/downdate. ACM Trans. Math.

Softw., 35(3):1–14, 2008.

[38] L. B. Cremean et al. Alice: An information-rich autonomous vehicle for high-speed
desert navigation. Journal of Field Robotics, 23(9):777–810, 2006.

[39] M. Cummins and P. Newman. Highly scalable appearance-only SLAM – FAB-MAP 2.0.
In Proc. of Robotics: Science and Systems (RSS), 2009.

[40] T. A. Davis. Direct Methods for Sparse Linear Systems. SIAM, 2006. Part of the SIAM
Book Series on the Fundamentals of Algorithms.

[41] A. Davison and N. Kita. 3D simultaneous localisation and map-building using active vi-
sion for a robot moving on undulating terrain. In Proc. of the IEEE Conf. on Comp. Vision

and Pattern Recognition (CVPR), 2001.

[42] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte Carlo localization for mobile
robots. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 1998.

180 Bibliography

[43] F. Dellaert and M. Kaess. Square Root SAM: Simultaneous localization and mapping
via square root information smoothing. Int. Journal of Robotics Research, 25(12):1181–
1204, December 2006.

[44] M. Ding, K. Lyngbaek, and A. Zakhor. Automatic registration of aerial imagery with
untextured 3D LiDAR models. In Proc. of the IEEE Conf. on Comp. Vision and Pattern

Recognition (CVPR), 2008.

[45] C. U. Dogruer, K. A. Bugra, and M. Dolen. Global urban localization of outdoor mobile
robots using satellite images. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots

and Systems (IROS), 2007.

[46] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel. Path planning for autonomous driv-
ing in unknown environments. In Proc. of the Int. Symposium on Experimental Robotic

(ISER), July 2008.

[47] A. Doucet, N. de Freitas, and N. Gordan, editors. Sequential Monte-Carlo Methods in

Practice. Springer Verlag, 2001.

[48] A. Doucet, N. de Freitas, K. Murphy, and S. Russel. Rao-Blackwellized partcile filter-
ing for dynamic bayesian networks. In Proc. of the Conf. on Uncertainty in Artificial

Intelligence (UAI), 2000.

[49] T. Duckett, S. Marsland, and J. Shapiro. Fast, on-line learning of globally consistent
maps. Autonomous Robots, 12(3):287 – 300, 2002.

[50] H. Durrant-Whyte and T. Bailey. Simultaneous localisation and mapping (SLAM): Part
I the essential algorithms. Robotics and Automation Magazine, 13:99–110, 2006.

[51] A. Eliazar and R. Parr. DP-SLAM: Fast, robust simultaneous localization and mapping
without predetermined landmarks. In Proc. of the Int. Conf. on Artificial Intelligence

(IJCAI), 2003.

[52] A. Eliazar and R. Parr. Learning probabilistic motion models for mobile robots. In
Proc. of the Int. Conf. on Machine Learning (ICML), 2004.

[53] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard. An evaluation
of the RGB-D SLAM system. In Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), 2012.

[54] C. Estrada, J. Neira, and J. D. Tardós. Hierarchical SLAM: real-time accurate mapping
of large environments. IEEE Trans. on Robotics, 21(4):588–596, August 2005.

[55] The European robotic pedestrian assistant. http://europa.informatik.uni-freiburg.de,
2009.

[56] R. Eustice, H. Singh, J. Leonard, M. Walter, and R. Ballard. Visually navigating the
RMS Titanic with SLAM information filters. In Proc. of Robotics: Science and Systems

(RSS), 2005.

[57] R. Eustice, H. Singh, and J. Leonard. Exactly sparse delayed-state filters. In Proc. of the
IEEE Int. Conf. on Robotics & Automation (ICRA), 2005.

Bibliography 181

[58] Experiment videos. http://www.informatik.uni-freiburg.de/∼kuemmerl/media.html. last
visited on 12/18/2012.

[59] D. Ferguson and A. Stentz. Field D*: An interpolation-based path planner and replanner.
In Proc. of the Int. Symposium of Robotics Research (ISRR), 2005.

[60] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Commun. ACM,
24(6):381–395, 1981.

[61] S. Fleishman, D. Cohen-Or, and C. T. Silva. Robust moving least-squares fitting with
sharp features. ACM Trans. Graph., 24(3):544–552, 2005.

[62] J. D. Foley, A. van Dam, K. Feiner, J. F. Hughes, and R. L. Phillips. Introduction to

Computer Graphics. Addison-Wesley, 1993.

[63] D. Fox. Adapting the sample size in particle filters through KLD-sampling. Int. Journal
of Robotics Research, 22(12):985–1003, 2003.

[64] U. Frese. A proof for the approximate sparsity of SLAM information matrices. In Proc. of
the IEEE Int. Conf. on Robotics & Automation (ICRA), 2005.

[65] U. Frese. Treemap: An O(logn) algorithm for indoor simultaneous localization and
mapping. Autonomous Robots, 21(2):103–122, 2006.

[66] U. Frese, P. Larsson, and T. Duckett. A multilevel relaxation algorithm for simultaneous
localisation and mapping. IEEE Trans. on Robotics, 21(2):1–12, 2005.

[67] S. Friedberg, A. Insel, and L. Spence. Linear Algebra. Pearson, 4th edition, 2002.

[68] C. Früh and A. Zakhor. An automated method for large-scale, ground-based city model
acquisition. Int. Journal on Computer Vision, 60:5–24, 2004.

[69] C. Gao and J. R. Spletzer. On-line calibration of multiple lidars on a mobile vehicle
platform. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2010.

[70] G. H. Golub and R. J. Plemmons. Large-scale geodetic least-squares adjustment by
dissection and orthogonal decomposition. Linear Algebra and its Applications, 34(0):3
– 28, 1980.

[71] Google self-driving car project. http://googleblog.blogspot.com, 2012.

[72] A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of

Algorithmic Differentiation. Number 105 in Other Titles in Applied Mathematics. SIAM,
Philadelphia, PA, 2nd edition, 2008.

[73] G. Grisetti, R. Kümmerle, and K. Ni. Robust optimization of factor graphs by using
condensed measurements. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems (IROS), 2012.

[74] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard. A tutorial on graph-based
SLAM. Intelligent Transportation Systems Magazine, 2(4):31–43, 2010.

182 Bibliography

[75] G. Grisetti, R. Kümmerle, C. Stachniss, U. Frese, and C. Hertzberg. Hierarchical opti-
mization on manifolds for online 2D and 3D mapping. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), 2010.

[76] G. Grisetti, D. Lodi Rizzini, C. Stachniss, E. Olson, and W. Burgard. Online constraint
network optimization for efficient maximum likelihood map learning. In Proc. of the

IEEE Int. Conf. on Robotics & Automation (ICRA), 2008.

[77] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for grid mapping with
rao-blackwellized particle filters. IEEE Trans. on Robotics, 23(1):34–46, 2007.

[78] G. Grisetti, C. Stachniss, and W. Burgard. Non-linear constraint network optimization
for efficient map learning. IEEE Trans. on Intelligent Transportation Systems, 2009.

[79] H.-M. Gross, H. Boehme, C. Schroeter, S. Mueller, A. Koenig, E. Einhorn, C. Mar-
tin, M. Merten, and A. Bley. TOOMAS: Interactive shopping guide robots in everyday
use - final implementation and experiences from long-term field trials. In Proc. of the

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2009.

[80] S. Grzonka, G. Grisetti, and W. Burgard. A fully autonomous indoor quadrotor. IEEE

Trans. on Robotics, 8(1):90–100, 2012.

[81] G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

[82] J.-S. Gutmann and K. Konolige. Incremental mapping of large cyclic environments.
In Proc. of the IEEE Int. Symposium on Computational Intelligence in Robotics and

Automation (CIRA), 1999.

[83] D. Haehnel, W. Burgard, D. Fox, and S. Thrun. An efficient FastSLAM algorithm for
generating maps of large-scale cyclic environments from raw laser range measurements.
In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2003.

[84] D. Haehnel, W. Burgard, B. Wegbreit, and S. Thrun. Towards lazy data association in
SLAM. In Proc. of the Int. Symposium of Robotics Research (ISRR), 2003.

[85] D. Hähnel, S. Thrun, and W. Burgard. An extension of the ICP algorithm for modeling
nonrigid objects with mobile robots. In Proc. of the Int. Conf. on Artificial Intelligence

(IJCAI), 2003.

[86] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, second edition, 2004.

[87] M. Hebert, C. Caillas, E. Krotkov, I. Kweon, and T. Kanade. Terrain mapping for a
roving planetary explorer. In Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), 1989.

[88] C. Hertzberg, R. Wagner, U. Frese, and L. Schröder. Integrating generic sensor fusion
algorithms with sound state representations through encapsulation of manifolds. Infor-

mation Fusion, 2011.

[89] A. Hornung, K. M. Wurm, and M. Bennewitz. Humanoid robot localization in complex
indoor environments. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems (IROS), 2010.

Bibliography 183

[90] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard. OctoMap: An
efficient probabilistic 3D mapping framework based on octrees. Autonomous Robots,
2013.

[91] A. Howard. Multi-robot mapping using manifold representations. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), 2004.

[92] A. Howard, M. Matarić, and G. Sukhatme. Relaxation on a mesh: a formalism for
generalized localization. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems (IROS), 2001.

[93] S. Huang, H. Wang, U. Frese, and G. Dissanayake. On the number of local minima to
the point feature based slam problem. In Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), 2012.

[94] Y. Jeong, D. Nister, D. Steedly, R. Szeliski, and I. Kweon. Pushing the envelope of
modern methods for bundle adjustment. In Proc. of the IEEE Conf. on Comp. Vision and

Pattern Recognition (CVPR), 2010.

[95] E. Jones, A. Vedaldi, and S. Soatto. Inertial structure from motion with autocalibra-
tion. In Proceedings of the Internetional Conference on Computer Vision - Workshop on

Dynamical Vision, 2007.

[96] S. J. Julier. The scaled unscented transformation. In Proc. of the American Control

Conference, 2002.

[97] S. J. Julier, R. De Nardi, and J. D. B. Nelson. Multi-rate estimation of coloured noise
models in graph-based estimation algorithms. In International Conference on Informa-

tion Fusion (FUSION), 2012.

[98] S. J. Julier, J. Uhlmann, and H. Durrant-Whyte. A new approach for filtering nonlinear
systems. In Proc. of the American Control Conference, 1995.

[99] M. Kaess and F. Dellaert. Covariance recovery from a square root information matrix for
data association. Journal of Robotics & Autonomous Systems, 57:1198–1210, December
2009.

[100] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert. iSAM2: Incre-
mental smoothing and mapping using the Bayes tree. Int. Journal of Robotics Research,
31:217–236, February 2012.

[101] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Incremental smoothing and mapping.
IEEE Trans. on Robotics, 24(6):1365–1378, December 2008.

[102] G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint graph partitioning.
In Proc. of the ACM/IEEE Conf. on Supercomputing, 1998.

[103] L. Kavraki, P. Svestka, J. C. Latombe, and M. Overmars. Probabilistic road maps for
path planning in high-dimensional configuration spaces. IEEE Trans. on Robotics and

Automation, pages 566–580, 1996.

[104] J. Kelly and G. S. Sukhatme. Visual-inertial sensor fusion: Localization, mapping and
sensor-to-sensor self-calibration. Int. Journal of Robotics Research, 30(1):56–79, 2011.

184 Bibliography

[105] A. Kleiner and C. Dornhege. Mapping for the support of first responders in critical
domains. Journal of Intelligent and Robotic Systems, 64(1):7–31, 2010.

[106] S. Koenig and M. Likhachev. Improved fast replanning for robot navigation in unknown
terrain. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2002.

[107] K. Konolige. Sparse sparse bundle adjustment. In Proc. of the British Machine Vision

Conference (BMVC), 2010.

[108] K. Konolige and M. Agrawal. FrameSLAM: From bundle adjustment to real-time visual
mapping. IEEE Trans. on Robotics and Automation, 24(5):1066–1077, 2008.

[109] K. Konolige and K. Chou. Markov localization using correlation. In Proc. of the

Int. Conf. on Artificial Intelligence (IJCAI), 1999.

[110] K. Konolige, G. Grisetti, R. Kümmerle, W. Burgard, B. Limketkai, and R. Vincent. Ef-
ficient sparse pose adjustment for 2D mapping. In Proc. of the IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS), 2010.

[111] K. Konolige. Large-scale map-making. In Proc. of the National Conference on Artificial
Intelligence (AAAI), 2004.

[112] K. Konolige, E. Marder-Eppstein, and B.Marthi. Navigation in hybrid metric-topological
maps. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2011.

[113] T. Korah and C. Rasmussen. Probabilistic contour extraction with model-switching for
vehicle localization. In IEEE Intelligent Vehicles Symposium, pages 710–715, 2004.

[114] R. Kümmerle, G. Grisetti, and W. Burgard. Simultaneous calibration, localization, and
mapping. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
2011.

[115] R. Kümmerle, G. Grisetti, and W. Burgard. Simultaneous parameter calibration, local-
ization, and mapping. Advanced Robotics, 26(17):2021–2041, 2012.

[116] R. Kümmerle, G. Grisetti, C. Stachniss, and W. Burgard. Simultaneous parameter cal-
ibration, localization, and mapping for robust service robotics. In Proc. of the IEEE

Workshop on Advanced Robotics and its Social Impacts (ARSO), 2011.

[117] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. g2o: A general
framework for graph optimization. In Proc. of the IEEE Int. Conf. on Robotics & Au-

tomation (ICRA), 2011.

[118] R. Kümmerle, D. Hähnel, D. Dolgov, S. Thrun, and W. Burgard. Autonomous driving in
a multi-level parking structure. In Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), 2009.

[119] R. Kümmerle, P. Pfaff, R. Triebel, and W. Burgard. Active Monte Carlo localization
in outdoor terrains using multi-level surface maps. In Fachgespräche Autonome Mobile

Systeme (AMS), 2007.

[120] R. Kümmerle, M. Ruhnke, B. Steder, C. Stachniss, and W. Burgard. A navigation system
for robots operating in crowded urban environments. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), 2013. Accepted for Publication.

Bibliography 185

[121] R. Kümmerle, B. Steder, C. Dornhege, A. Kleiner, G. Grisetti, and W. Burgard. Large
scale graph-based SLAM using aerial images as prior information. In Proc. of Robotics:
Science and Systems (RSS), 2009.

[122] R. Kümmerle, B. Steder, C. Dornhege, A. Kleiner, G. Grisetti, and W. Burgard. Large
scale graph-based SLAM using aerial images as prior information. Autonomous Robots,
30(1):25–39, 2011.

[123] R. Kümmerle, B. Steder, C. Dornhege, M. Ruhnke, G. Grisetti, C. Stachniss, and A. Klei-
ner. On measuring the accuracy of SLAM algorithms. Autonomous Robots, 27(4):387–
407, 2009.

[124] R. Kümmerle, R. Triebel, P. Pfaff, and W. Burgard. Monte Carlo localization in outdoor
terrains using multi-level surface maps. In Proc. of the International Conference on Field
and Service Robotics (FSR), 2007.

[125] R. Kümmerle, R. Triebel, P. Pfaff, and W. Burgard. Monte Carlo localization in outdoor
terrains using multilevel surface maps. Journal of Field Robotics, 25:346–359, 2008.

[126] J. Kurlbaum and U. Frese. A benchmark data set for data association. Tech-
nical report, University Bremen, Germany, 2008. http://www.informatik.uni-
bremen.de/agebv/en/DlrSpatialCognitionDataSet.

[127] S. Lacroix, A. Mallet, D. Bonnafous, G. Bauzil, S. Fleury, M. Herrb, and R. Chatila. Au-
tonomous rover navigation on unknown terrains: Functions and integration. Int. Journal
of Robotics Research, 21(10-11):917–942, 2002.

[128] Y. Latif, C. C. Lerma, and J. Neira. Robust loop closing over time. In Proc. of Robotics:
Science and Systems (RSS), 2012.

[129] S. LaValle. Rapidly-exploring random trees: A new tool for path planning. Technical
Report TR 98-11, Computer Science Dept., Iowa State University, 1998.

[130] J. Lee. Introduction to Smooth Manifolds, volume 218 ofGraduate Texts in Mathematics.
Springer Verlag, 2003.

[131] K. W. Lee, S. Wijesoma, and J. I. Guzmán. A constrained SLAM approach to robust and
accurate localisation of autonomous ground vehicles. Journal of Robotics & Autonomous

Systems, 55(7):527–540, 2007.

[132] J. J. Leonard and H. F. Durrant-Whyte. Mobile robot localization by tracking geometric
beacons. IEEE Trans. on Robotics and Automation, 7(4):376–382, 1991.

[133] K. Y. K. Leung, C. M. Clark, and J. P. Huissoon. Localization in urban environments
by matching ground level video images with an aerial image. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), 2008.

[134] J. Levinson and S. Thrun. Robust vehicle localization in urban environments using prob-
abilistic maps. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2010.

[135] H. Li, R. W. Sumner, and M. Pauly. Global correspondence optimization for non-rigid
registration of depth scans. Computer Graphics Forum, 27(5), 2008.

186 Bibliography

[136] H. Li and R. Hartley. Five-point motion estimation made easy. In Proc. of the Int. Conf.

on Pattern Recognition (ICPR), 2006.

[137] M. Likhachev and D. Ferguson. Planning long dynamically-feasible maneuvers for au-
tonomous vehicles. In Proc. of Robotics: Science and Systems (RSS), 2008.

[138] J. Lim, J.-M. Frahm, and M. Pollefeys. Online environment mapping. In Proc. of the

IEEE Conf. on Comp. Vision and Pattern Recognition (CVPR), 2011.

[139] K. Lingemann, H. Surmann, A. Nüchter, and J. Hertzberg. High-speed laser localization
for mobile robots. Journal of Robotics & Autonomous Systems, 51(4):275–296, 2005.

[140] M. A. Lourakis and A. Argyros. SBA: A Software Package for Generic Sparse Bundle
Adjustment. ACM Trans. Math. Software, 36(1):1–30, 2009.

[141] S. Lovegrove, A. J. Davison, and J. Ibanez-Guzman. Accurate visual odometry from a
rear parking camera. In Intelligent Vehicles Symposium (IV), 2011.

[142] D. Lowe. Distinctive image features from scale-invariant keypoints. Int. Journal on

Computer Vision, 60(2):91–110, November 2004.

[143] F. Lu and E. Milios. Globally consistent range scan alignment for environment mapping.
Autonomous Robots, 4(4):333–349, 1997.

[144] F. Lu and E. Milios. Robot pose estimation in unknown environments by matching 2D
range scans. Journal of Intelligent and Robotic Systems, 1998.

[145] W. Maddern, A. Harrison, and P. Newman. Lost in translation (and rotation): Rapid
extrinsic calibration for 2D and 3D lidars. In Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), 2012.

[146] K. Madsen, H. B. Nielsen, and O. Tingleff. Methods for non-linear least squares prob-
lems (2nd ed.), 2004.

[147] M. Magnusson, T. Duckett, and A. J. Lilienthal. 3D scan registration for autonomous
mining vehicles. Journal of Field Robotics, 24(10):803–827, 2007.

[148] I. Mahon, S. Williams, O. Pizarro, and M. Johnson-Roberson. Efficient view-based
SLAM using visual loop closures. IEEE Trans. on Robotics and Automation, 24:1002–
1014, 2008.

[149] E. Marder-Eppstein, E. Berger, T. Foote, B. P. Gerkey, and K. Konolige. The office
marathon: Robust navigation in an indoor office environment. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), 2010.

[150] A. Martinelli and R. Siegwart. Estimating the odometry error of a mobile robot during
navigation. In Proc. of the European Conf. on Mobile Robots (ECMR), 2003.

[151] K. Matsuo and J. Miura. Outdoor visual localization with a hand-drawn line drawing
map using FastSLAM with PSO-based mapping. In Proc. of the IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS), 2012.

[152] M. Montemerlo et al. Junior: The Stanford entry in the urban challenge. Journal of Field
Robotics, 25(9):569–597, 2008.

Bibliography 187

[153] M. Montemerlo and S. Thrun. Large-scale robotic 3-d mapping of urban structures. In
Proc. of the Int. Symposium on Experimental Robotic (ISER), 2004.

[154] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM 2.0: An improved
particle filtering algorithm for simultaneous localization and mapping that provably con-
verges. In Proc. of the Int. Conf. on Artificial Intelligence (IJCAI), 2003.

[155] H. Moravec. Robot spatial perception by stereoscopic vision and 3d evidence grids.
Technical Report CMU-RI-TR-96-34, Carnegie Mellon University, Robotics Institute,
1996.

[156] A. Nash, K. Daniel, S. Koenig, and A. Felner. Theta*: Any-angle path planning on grids.
In Proc. of the National Conference on Artificial Intelligence (AAAI), 2007.

[157] J. Neira and J. Tardós. Data association in stochastic mapping using the joint compati-
bility test. IEEE Trans. on Robotics and Automation, 17(6):890–897, 2001.

[158] K. Ni and F. Dellaert. Multi-level submap based SLAM using nested dissection. In
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2010.

[159] K. Ni and F. Dellaert. HyperSfM. In Proc. of the IEEE Int. Conf. on 3D Imaging,

Modeling, Processing, Visualization and Transmission (3DIMPVT), 2012.

[160] D. Nistér, O. Naroditsky, and J. Bergen. Visual odometry for ground vehicle applications.
Journal of Field Robotics, 23(1):3–20, 2006.

[161] T. Nothdurft, P. Hecker, S. Ohl, F. Saust, M. Maurer, A. Reschka, and J. R. Bohmer.
Stadtpilot: First fully autonomous test drives in urban traffic. In Proc. of the IEEE

Int. Conf. on Intelligent Transportation Systems (ITSC), 2011.

[162] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann. 6D SLAM with approximate
data association. In Proc. of the Int. Conference on Advanced Robotics (ICAR), pages
242–249, 2005.

[163] E. Olson. Robust and Efficient Robotic Mapping. PhD thesis, MIT, Cambridge, MA,
USA, June 2008.

[164] E. Olson, J. Leonard, and S. Teller. Fast iterative optimization of pose graphs with poor
initial estimates. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2006.

[165] E. Olson. Real-time correlative scan matching. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), 2009.

[166] E. Olson and P. Agarwal. Inference on networks of mixtures for robust robot mapping.
In Proc. of Robotics: Science and Systems (RSS), 2012.

[167] E. Olson and M. Kaess. Evaluating the performance of map optimization algorithms. In
RSS Workshop on Good Experimental Methodology in Robotics, 2009.

[168] G. Parekh, M. Skubic, O. Sjahputera, and J. M. Keller. Scene matching between a map
and a hand drawn sketch using spatial relations. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), 2007.

188 Bibliography

[169] I. Paromtchik and C. Laugier. Autonomous parallel parking of a nonholonomic vehicle.
In Proc. of the IEEE Intelligent Vehicles Symposium, 1996.

[170] I. Paromtchik and C. Laugier. Automatic parallel parking and returning to traffic ma-
neuvers. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
1997.

[171] C. Parra, R. Murrieta-Cid, M. Devy, and M. Briot. 3-D modelling and robot localiza-
tion from visual and range data in natural scenes. In 1st International Conference on

Computer Vision Systems (ICVS), number 1542 in LNCS, 1999.

[172] M. P. Parsley and S. J. Julier. Towards the exploitation of prior information in SLAM. In
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2010.

[173] M. P. Parsley and S. J. Julier. Exploiting prior information in GraphSLAM. In Proc. of

the IEEE Int. Conf. on Robotics & Automation (ICRA), 2011.

[174] P. Pfaff, R. Kümmerle, D. Joho, C. Stachniss, R. Triebel, and W. Burgard. Navigation in
combined outdoor and indoor environments using multi-level surface maps. InWorkshop
on Safe Navigation in Open and Dynamic Environments, 2007.

[175] P. Pfaff, R. Triebel, and W. Burgard. An efficient extension to elevation maps for outdoor
terrain mapping and loop closing. Int. Journal of Robotics Research, 26(2):217–230,
2007.

[176] O. Pink and C. Stiller. Automated map generation from aerial images for precise vehicle
localization. In Int. Conf. on Intelligent Transportation Systems (ITSC), 2010.

[177] E. Plaku, L. Kavraki, and M. Vardi. Discrete search leading continuous exploration for
kinodynamic motion planning. In Proc. of Robotics: Science and Systems (RSS), 2007.

[178] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes, 2nd Edition.
Cambridge Univ. Press, 1992.

[179] D. M. Rosen, M. Kaess, and J. J. Leonard. An incremental trust-region method for
robust online sparse least-squares estimation. In Proc. of the IEEE Int. Conf. on Robotics

& Automation (ICRA), 2012.

[180] N. Roy and S. Thrun. Online self-calibration for mobile robots. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), 1999.

[181] M. Rufli, D. Ferguson, and R. Siegwart. Smooth path planning in constrained environ-
ments. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2009.

[182] M. Ruhnke, R. Kümmerle, G. Grisetti, and W. Burgard. Highly accurate maximum
likelihood laser mapping by jointly optimizing laser points and robot poses. In Proc. of

the IEEE Int. Conf. on Robotics & Automation (ICRA), 2011.

[183] M. Ruhnke, R. Kümmerle, G. Grisetti, and W. Burgard. Range sensor based model
construction by sparse surface adjustment. In Proc. of the IEEE Workshop on Advanced

Robotics and its Social Impacts (ARSO), 2011.

Bibliography 189

[184] M. Ruhnke, R. Kümmerle, G. Grisetti, and W. Burgard. Highly accurate 3D surface
models by sparse surface adjustment. In Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), 2012.

[185] A. Sanfeliu. URUS project: Communication systems. In Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), 2009. Workshop on Network Robots
Systems.

[186] A. Schanz, A. Spieker, and K.-D. Kuhnert. Autonomous parking in subterranean garages-
a look at the position estimation. In Proc. of the IEEE Intelligent Vehicles Symposium,
2003.

[187] T. Schoen and F. Lindsten. Manipulating the multivariate gaussian density. Technical
report, Linkoeping University, 2011.

[188] A. V. Segal, D. Haehnel, and S. Thrun. Generalized-ICP. In Proc. of Robotics: Science

and Systems (RSS), 2009.

[189] G. Sibley, C. Mei, I. Reid, and P. Newman. Adaptive relative bundle adjustment. In
Proc. of Robotics: Science and Systems (RSS), 2009.

[190] B. Siciliano and O. Khatib, editors. Springer Handbook of Robotics. Springer, 2008.

[191] R. Siegwart et al. RoboX at Expo.02: A large-scale installation of personal robots.
Journal of Robotics & Autonomous Systems, 42(3-4), 2003.

[192] M. Smith, I. Baldwin, W. Churchill, R. Paul, and P. Newman. The new college vision
and laser data set. Int. Journal of Robotics Research, 28(5):595–599, May 2009.

[193] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial realtionships in
robotics. In I. Cox and G. Wilfong, editors, Autonomous Robot Vehicles, pages 167–
193. Springer, 1990.

[194] R. Smith, M. Self, and P. Cheeseman. A stochastic map for uncertain spatial relation-
ships. In Proc. of the Int. Symposium of Robotics Research (ISRR), 1988.

[195] J. A. Snyman. Practical Mathematical Optimization: An Introduction to Basic Optimiza-

tion Theory and Classical and New Gradient-Based Algorithms. Springer, 2005.

[196] B. Sofman, E. L. Ratliff, J. A. Bagnell, N. Vandapel, and T. Stentz. Improving robot
navigation through self-supervised online learning. In Proc. of Robotics: Science and

Systems (RSS), 2006.

[197] C. Stachniss, M. Bennewitz, G. Grisetti, S. Behnke, and W. Burgard. How to learn
accurate grid maps with a humanoid. In Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), 2008.

[198] B. Steder, M. Ruhnke, S. Grzonka, andW. Burgard. Place recognition in 3D scans using a
combination of bag of words and point feature based relative pose estimation. In Proc. of
the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2011.

[199] H. Strasdat, A. J. Davison, J. M. M. Montiel, and K. Konolige. Double window opti-
misation for constant time visual SLAM. In Proc. of the Int. Conf. on Computer Vision

(ICCV), 2011.

190 Bibliography

[200] H. Strasdat, J. M. M. Montiel, and A. J. Davison. Real-time monocular SLAM: Why
filter? In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2010.

[201] H. Strasdat, J. M. M. Montiel, and A. J. Davison. Scale drift-aware large scale monocular
SLAM. In Proc. of Robotics: Science and Systems (RSS), 2010.

[202] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark for the
evaluation of RGB-D SLAM systems. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems (IROS), 2012.

[203] N. Sünderhauf and P. Protzel. Switchable constraints for robust pose graph SLAM. In
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2012.

[204] S. Thrun, M. Bennewitz, W. Burgard, A. Cremers, F. Dellaert, D. Fox, D. Hähnel,
C. Rosenberg, N. Roy, J. Schulte, and D. Schulz. MINERVA: A second generation mo-
bile tour-guide robot. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
1999.

[205] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.

[206] S. Thrun et al. Stanley: The robot that won the DARPA Grand Challenge. Journal of

Field Robotics, 23(9):661–692, June 2006.

[207] S. Thrun, Y. Liu, D. Koller, A. Ng, Z. Ghahramani, and H. Durrant-Whyte. Simultane-
ous localization and mapping with sparse extended information filters. Int. Journal of

Robotics Research, 23(7/8):693–716, 2004.

[208] G. D. Tipaldi, M. Braun, and K. O. Arras. FLIRT: Interest regions for 2D range data
with applications to robot navigation. In Proc. of the Int. Symposium on Experimental

Robotic (ISER), 2010.

[209] R. Triebel, P. Pfaff, andW. Burgard. Multi level surface maps for outdoor terrain mapping
and loop closing. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS), 2006.

[210] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzibbon. Bundle adjustment - a
modern synthesis. In Vision Algorithms: Theory and Practice, LNCS, pages 298–375.
Springer Verlag, 2000.

[211] J. Uhlmann. Dynamic Map Building and Localization: New Theoretical Foundations.
PhD thesis, University of Oxford, 1995.

[212] S. Umeyama. Least-squares estimation of transformation parameters between two point
patterns. IEEE Trans. on Pattern Analysis and Machine Intelligence, 13(4):376–380,
1991.

[213] J. Underwood, A. Hill, and S. Scheding. Calibration of range sensor pose on mobile
platforms. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
2007.

[214] C. Urmson. Navigation Regimes for Off-Road Autonomy. PhD thesis, Robotics Institute,
Carnegie Mellon University, 2005.

Bibliography 191

[215] C. Urmson et al. Autonomous driving in urban environments: Boss and the urban chal-
lenge. Journal of Field Robotics, 25(8):425–466, 2008.

[216] O. Wulf, A. Nüchter, J. Hertzberg, and B. Wagner. Benchmarking urban six-degree-of-
freedom simultaneous localization and mapping. Journal of Field Robotics, 25(3):148–
163, 2008.

[217] K. M. Wurm, H. Kretzschmar, R. Kümmerle, C. Stachniss, and W. Burgard. Identifying
vegetation from laser data in structured outdoor environments. Robotics and Autonomous
Systems, 2012. In Press.

[218] K. M. Wurm, R. Kümmerle, C. Stachniss, and W. Burgard. Improving robot navigation
in structured outdoor environments by identifying vegetation from laser data. In Proc. of
the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2009.

[219] M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM Journal on

Algebraic Discrete Methods, 2(1):77–79, 1981.

