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Abstract

Virtual environments and simulations became increasingly popular in a variety
of applications during the last decades. Therefore, approaches for model acquisi-
tion and deformable modeling have been extensively researched. Among others,
these topics include 3D range scans, robust registration techniques, mesh con-
struction, parameter estimation, deformation models, and stability of simulation
systems.

In this thesis, several contributions to the field of simulation of deformable
objects are introduced. In the context of 3D data acquisition, a global registra-
tion approach is proposed which computes an initial alignment of surface scans
independent from the relative positions. The approach is based on geometric
surface features which are compared over different objects to find matching point
pairs.

To obtain realistic deformation parameters, an estimation approach based
on indentation tests is introduced. It measures the exerted force and employs
it in a simulation environment. The deformed surface is scanned with a range
scanner and is compared to the simulated surface using registration algorithms.
The parameters are computed with a gradient descent scheme by minimizing
the difference between the simulated and measured displacements.

For the simulation of deformable objects, two approaches are illustrated that
improve the stability of simulation environments. In a widely used deformation
model, the simulation can fail if elements of the object discretization are inverted.
Thus, an approach for accurate inversion handling is proposed to account for this
problem. It heuristically assumes that elements are “as uninverted as possible”
to locate the most probable inversion direction which is used to resolve the
inversion. Further, a velocity-dependent damping approach is proposed that
reduces local oscillations and improves both visual appearance and stability of
simulations. At the same time, it simplifies the parameter setting compared to
existing methods. The approach can also be used for the propagation of external
forces, which otherwise proceeds slowly due to the discrete time integration and
causes an implausibly weak impression of simulated objects.

Finally, the application of deformable simulations in an approach for path
planning in mobile robotics is illustrated. The planning approach considers
environment containing deformable objects and uses the simulation environment
for the precomputation of deformation energies. These can be incorporated in
the planning process, which allows to compute a trade-off between deformation
and travel cost. This avoids expensive detours or enables to plan paths in
environments where rigid planning approaches fail. During path execution, a
learned sensor model allows to distinguish between deformable and unforeseen
rigid obstacles to avoid collisions.

iii





Zusammenfassung

Virtuelle Umgebungen und Simulationen werden seit einigen Jahrzehnten in
einer wachsenden Zahl von Anwendungen verwendet. Ansätze zur Erstellung
von dreidimensionalen Repräsentationen und Modelle für verformbare Objekte
wurden deshalb intensiv untersucht. Dazu gehören unter anderem Methoden
zur Erstellung von 3D Scans, robuste Registrierung, Netzgenerierung, Verfor-
mungsmodelle und Stabilität von Simulationsumgebungen.

In dieser Arbeit werden verschiedene Beiträge zur Simulation von verform-
baren Objekten vorgestellt. Zur Registrierung von Oberflächenscans wird ein
Algorithmus eingeführt, der unabhängig von der gegebenen relativen Lage der
Scans eine passende Ausrichtung findet. Der Ansatz basiert auf geometrischen
Oberflächenmerkmalen, die auf verschiedenen Objekten miteinander verglichen
werden, um mögliche Korrespondenzen zu finden.

Um realistische Verformungsparameter zu erhalten, wird ein Ansatz zur
Schätzung der Parameter vorgeschlagen, der auf gemessenen Kraft-Verformungs-
Relationen beruht. Auf ein reelles Objekt werden Kräfte ausgeübt und gemessen,
um sie in einer Simulationsumgebung auf ein entsprechendes Modell anwen-
den zu können. Die verformte Oberfläche wird mit Hilfe eines Tiefenscanners
gemessen und mit der simulierten Verformung verglichen. Dafür wird ein Reg-
istrierungsverfahren verwendet. Die Parameter werden mit einem Gradienten-
verfahren berechnet, das die Differenz zwischen simulierter und gemessener Ver-
formung minimiert.

Für die Simulation von verformbaren Objekten werden zwei Ansätze vorge-
stellt, die die Stabilität verbessern. In einem weit verbreiteten Verformungsmod-
ell ergeben sich Probleme, wenn Elemente der Objektdiskretisierung invertiert
sind, was zu einem Zusammenbruch der Simulation führt. Es wird ein Ansatz
vorgestellt, der dieses Problem behebt. Dafür wird angenommen, dass Elemente
stets

”
möglichst uninvertiert” sind, um die wahrscheinlichste Richtung heraus-

zufinden, die zur Invertierung geführt hat. Entlang dieser Richtung soll die
Invertierung aufgelöst werden. Weiterhin wird ein geschwindigkeitsabhängiger
Dämpfungsansatz vorgestellt, der lokale Oszillationen verringert und dadurch
sowohl das visuelle Erscheinungsbild als auch die Stabilität verbessert. Gle-
ichzeitig vereinfacht der Ansatz die Wahl der Dämpfungsparameter im Ver-
gleich zu existierenden Methoden. Der Ansatz kann auch zur Propagierung
externer Kräfte verwendet werden, was ansonsten durch die diskrete Zeitin-
tegration langsam geschieht und einen unglaubwürdig weichen Eindruck der
simulierten Objekte erzeugt.

Schließlich wird die Anwendung von verformbaren Objekten in der Pfad-
planung für autonome Roboter gezeigt. Der Planungsansatz erlaubt Umgebun-
gen, die verformbare Objekte enthalten. In einem Vorverarbeitungsschritt wer-
den Verformungsenergien berechnet, die in der Planung berücksichtigt werden.
Dadurch kann ein Ausgleich zwischen Verformungs- und Pfadkosten erreicht
werden, was lange Umwege vermeidet und Pfade in Umgebungen finden kann,
in denen klassische Ansätze versagen. Während der Ausführung des Pfades wird
aufgrund eines gelernten Sensormodells zwischen verformbaren und unvorherge-
sehenen Hindernissen unterschieden, um Kollisionen zu vermeiden.
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1
Introduction

Today, virtual environments and simulations are used in a great variety of ap-
plications, reaching from industrial design over entertainment industry and psy-
chological experiments up to medical applications. The user benefits in vari-
ous ways. Appropriate simulations allow to check mechanical properties of the
planned materials before production, and improvements can be included in the
planning process. Thus, they enhance quality and security, and additionally, de-
velopment costs are reduced. Virtual environments also allow psychologists to
analyze human behavior at comparably low costs, as measurement units can be
used at fixed locations. In the entertainment industry, they enhance the realism
in movies and computer games. Finally, in medical applications, simulators can
be used as training centers during the education and support the preoperative
planning process.

Consequently, realistic simulations are of great importance in various fields.
Especially the simulation of deformable objects is required in many of these ap-
plications. Therefore, the realistic model acquisition as well as physically realis-
tic simulations have become popular in the last decades. This comprises topics
such as 3D scanning, robust registration, mesh generation and mesh smoothing,
parameter estimation, and deformable modeling.

For the construction of spatial representations, 3D point clouds of real ob-
jects could be obtained within short time using a range scanner. However,
several scans from different directions are needed for a complete model. These
have to be aligned in a common coordinate system, which is done by registration
algorithms. The Iterative Closest Point algorithm obtains optimal alignments
if the relative positions are not too far from the optimum. Thus, it needs user-
defined input. To overcome this limit and to achieve a fully-automatic object
reconstruction, global registration algorithms have been developed which aim at
a coarse initial alignment. They usually compare some kind of surface features
like color or geometry to find matching points in different scans. Further, the
point clouds are converted to appropriate structures that are needed in the re-
spective environment. In the context of dynamic simulations, volumetric meshes
are frequently used.

To provide physically realistic behavior, appropriate deformation parameters
have to be acquired if the utilized materials are unknown. This could be done
experimentally by exerting forces on the real object and on the reconstructed
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Chapter 1. Introduction

model in the simulation environment, which allows to compare the obtained
displacements. Minimization strategies then lead to an estimation of the defor-
mation parameters.

Physical realism and efficiency are the main tasks in the simulation environ-
ment. Thus, appropriate deformation models have to be used based on physical
laws which at the same time allow for an efficient computation of internal forces.
Meeting these requirements, the so called co-rotational Finite Element Method
is widely used. Moreover, stability is a fundamental issue as it allows to choose
larger time steps and, thus, leads to a faster simulation. For example, velocity-
dependent damping approaches reduce oscillations and allow the simulation of
badly shaped meshes, which otherwise heavily influence the stability of the
simulation. Therefore, they are widely used as they enhance both the visual
plausibility and the stability of deformable objects.

1.1 Contributions

This thesis presents various contributions to the simulation of deformable objects
in Computer Graphics and its applications. It addresses the fields of automatic
object reconstruction concerning spatial representations as well as parameter
estimation, and the field of stability in physically-based animation.

1.1.1 Global registration of point clouds

As outlined above, the registration of point clouds is an essential step within the
object reconstruction pipeline. Towards the automatic reconstruction of object
models, the automatic composition of different depth images obtained by range
scanners is required. As the Iterative Closest Point algorithm aligns objects
locally, a coarse initial alignment has to be provided as input data. Therefore,
a novel global registration approach for partially overlapping point clouds is
introduced to overcome this limitation. The approach identifies feature points
of matching objects based on surface-approximating polynomials and finds an
initial transformation depending on these polynomials. In contrast to purely
feature-based approaches, the aligning transformation is not solely based on the
invariant properties of polynomials. Instead, the polynomials are transformed
into a common coordinate system to compare the transformed coefficients. This
results in an improved correspondence analysis of local surfaces. Hence, the
transformed polynomials provide more discriminating information about differ-
ent structures. Therefore, the approach can handle partial scans of different
objects simultaneously, which are assigned and registered accordingly.

1.1.2 Parameter estimation

In order to acquire realistic models for deformable objects, an approach for
the estimation of deformation parameters for the co-rotational Finite Element
Method is presented. It exerts forces on the objects that should be estimated,
and obtains the deformation by a range scanner. Using a force-feedback sensor,
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1.1. Contributions

the measured forces can also be applied to a constructed model in the simulation
environment. The deformed real and simulated object surfaces are registered
using the Iterative Closest Point algorithm in order to compare the resulting
displacements. Assuming that smaller displacements correspond to better cho-
sen parameters allows to compute the deformation parameters by a gradient
descent scheme. The approach has been realized on a mobile system and has
proven to be able to acquire parameters of real-world objects. Although the
approach is formulated for the co-rotational Finite Element Method, the idea
could be applied to any deformation model.

1.1.3 Deformable modeling

In the context of deformable modeling, several contributions are presented that
improve the stability of dynamic simulations. Therefore, they allow for larger
time steps and, thus, for a more efficient simulation.

Inversion handling. The linear Finite Element Method is a widely used
deformation model, which achieves physically realistic simulations and computa-
tional efficiency. However, it is valid only for small deformations, and especially,
rotations are not handled correctly. Therefore, the co-rotational Finite Element
Method [HS04, MG04] introduces a separate rotation handling to improve the
usability of the linear Finite Element Method. However, this imposes a new
issue if an element gets inverted, i. e. if a vertex of a tetrahedron crosses its
opposite face. The calculated forces keep the tetrahedron inverted and do not
restore the correct resting state. This causes the simulation to fail. As the
inversion of elements cannot be safely avoided, there is a strong need for an
appropriate handling of inverted elements. Therefore, a novel approach to re-
solve inverted elements is introduced that is based on the heuristic assumption
that a tetrahedron is “as uninverted as possible” [ITF04]. Thus, it chooses
the shortest distance between a vertex and its opposite face as the most intu-
itive direction that caused the inversion, and resolves the inverted state in this
direction. In combination with an efficient handling of degenerated elements,
the approach yields a stable simulation of arbitrary deformations. Although
the approach is formulated for the co-rotational formulation of the linear Fi-
nite Element Method, the method can be implemented within a wide range of
constitutive models.

Damping. As the equation of motion is integrated numerically, dynamic
simulations frequently suffer from oscillations. Therefore, usually a velocity-
dependent damping force is introduced which suppresses the oscillations and
greatly improves the stability and visual appearance of simulations. Further-
more, also badly shaped meshes containing sharp angles or slivers can be han-
dled if a proper damping approach is used. At the same time, however, it must
be ensured that the damping forces do not change the global movement of ob-
jects, i. e. the linear and angular momentum have to be conserved. The so
called spring damping approach fulfills this property. On this basis, a novel
damping approach is proposed that employs iterative spring damping to further
improve the stability. It is shown that the resulting iterative forces can be com-
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Chapter 1. Introduction

puted directly without actually performing the iterations. The approach does
not require any connectivity information about the object and therefore, it can
be used for arbitrary object representations. Further, it is independent of the
integration scheme and the chosen deformation model. The approach provides
a simple parameter setting and guarantees that the damping forces do not over-
shoot. It is shown that the approach allows for larger time steps than existing
damping models.

Force propagation. Due to the object discretization and discrete time
integration, external forces are propagated only one element per time step. This
behavior is independent of the object’s stiffness and causes an implausibly weak
impression, which contradicts the natural experience. Further, it causes large
displacements of those vertices exposed to external forces, which results in large
strain values that could affect the object’s stability. It is illustrated that the
damping approach can be used for a fast propagation of external forces caused
by constraints or collisions, for example. Therefore, the simulation gets less
sensitive to large external forces, which again improves the stability of dynamic
simulations.

1.2 Publications

This thesis is based on the following peer-reviewed publications in conference
proceedings and journals:

[ST08] Ruediger Schmedding, Matthias Teschner, Inversion Handling for
Stable Deformable Modeling, The Visual Computer, vol. 24, no. 7-9
(CGI 2008 Special Issue), pp. 625-633, 2008.

[SGT09] Ruediger Schmedding, Marc Gissler, Matthias Teschner, Optimized
Damping for Dynamic Simulations, Proc. Spring Conference on
Computer Graphics, Budmerice, Slovakia, pp. 205-212, April 23-25, 2009.

[SGT10] Ruediger Schmedding, Marc Gissler, Matthias Teschner, Fast Force
Propagation in Dynamic Simulations Using Optimized Damping,
Journal of Computer Graphics & Geometry, vol. 12, no.2, pp. 60-77, 2010.

[SFBT11] Ruediger Schmedding, Barbara Frank, Wolfram Burgard, Matthias
Teschner, Transformed Polynomials for the Global Registration of
Point Clouds, Proc. Spring Conference on Computer Graphics, Viničné,
Slovakia, pp. 157-164, April 28-30, 2011.

[GST09] Marc Gissler, Ruediger Schmedding, Matthias Teschner, Time-criti-
cal Collision Handling for Deformable Modeling, Journal of Com-
puter Animation and Virtual Worlds (CAVW), vol. 20, no. 2-3, pp. 355-
364, CASA 2009 Special Issue, 2009.

[FSS∗09] Barbara Frank, Cyrill Stachniss, Ruediger Schmedding, Matthias
Teschner, Wolfram Burgard, Real-world Robot Navigation amongst
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Deformable Obstacles, Proc. IEEE Int. Conf. on Robotics and Au-
tomation (ICRA), Kobe, Japan, pp. 1649-1654, May 12-17, 2009.

[FSS∗10a] Barbara Frank, Ruediger Schmedding, Cyrill Stachniss, Matthias
Teschner, Wolfram Burgard, Learning Deformable Object Models
for Mobile Robot Path Planing using Depth Cameras, Proc. Work-
shop RGB-D: Science and Systems RSS, 2010.

[FSS∗10b] Barbara Frank, Ruediger Schmedding, Cyrill Stachniss, Matthias
Teschner, Wolfram Burgard, Learning the Elasticity Parameters of
Deformable Objects with a Manipulation Robot, Proc. IEEE /
RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 1877-1883,
2010.

1.3 Collaborations

This thesis has been supported by the German Research Foundation (DFG)
under contract number SFB/TR-8 (A2). The SFB/TR-8 is a special research
area with a transregional collaboration between Bremen and Freiburg. It is
concerned with topics from different research areas such as Artificial Intelligence,
Robotics, Cognitive Science, Linguistics and Computer Graphics. Currently, the
SFB/TR-8 is funded in the third phase from 2011-2014.

Project A2-[3DSpace] is a member of SFB/TR-8. During the second phase,
it was concerned with mobile robot navigation in environments containing de-
formable objects. In the third phase, it is concerned with the automatic re-
construction of environments based on human navigation. The tight collabo-
ration within project A2 resulted in the joint publications [FSS∗09, FSS∗10a,
FSS∗10b, SFBT11] with my research partner Barbara Frank and the principal
investigators of project A2, Prof. Dr. Wolfram Burgard and Prof. Dr. Matthias
Teschner.

1.4 Thesis outline

This thesis is arranged as follows. In Chapter 2, the related work on the topics
of this thesis is discussed. It starts with a summary of object reconstruction,
where the focus lies on global registration algorithms. Then, an overview of the
field of parameter estimation is given. Then, the related work in deformable
modeling is discussed.

In Chapter 3, a simulation framework for deformable objects is introduced
which has been used in this thesis. The approaches proposed in Chapter 6 and
Chapter 8 have been integrated within this framework. The chapter summarizes
the object representation and the numerical computation of object dynamics.

The subsequent chapters are oriented at the steps of the model acquisition
and simulation pipeline, and the contributions are assigned accordingly. Results
of the developed methods are given within the according chapter.
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Chapter 1. Introduction

In Chapter 4, the acquisition of 3D object representations is discussed. As
range scanners have a limited field of view, a 3D point cloud of a real object
consists of several scans from different directions. In order to align them in a
common coordinate system, a feature-based approach for the global registration
of partially overlapping point clouds is introduced. The experiments show that
the obtained results are almost optimal without any local refinement.

Chapter 5 reviews the physical background for linearly elastic objects and
introduces the co-rotational Finite Element Method which is employed in this
thesis. Building on that, an approach for the handling of inverted elements is
proposed in Chapter 6. Without appropriate inversion handling, inverted el-
ements cause the breakdown of the simulation. Thus, the inversion handling
removes a fundamental drawback of the co-rotational Finite Element formula-
tion.

In Chapter 7, an approach for the estimation of appropriate deformation
parameters is developed. The approach is based on indentation tests and local
registration algorithms and has been realized on a mobile system. Further, an
approach for the acquisition of visualization parameters is outlined.

Chapter 8 is concerned with the stability of dynamic simulations. It intro-
duces an optimized damping algorithm that yields a great improve of stability
and thus, it allows to choose larger time steps. This results in a more efficient
simulation.

Finally, the integration of the simulation system into a mobile path planning
algorithm is illustrated in Chapter 9. This allows to plan paths in environments
with deformable objects by a trade-off between path and travel cost. Further,
a system for collision avoidance during path execution is presented.
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2
Related work

In this chapter, the previous work in the context of deformable objects is intro-
duced. In Sec. 2.1, approaches for the reconstruction of 3D models are presented.
This comprises e. g. 3D scanning, mesh smoothing and algorithms that compute
spatial data structures like tetrahedral meshes from point clouds. However, the
focus is on global registration approaches, which is one of the contributions
of this thesis. In Sec. 2.2, different approaches for the estimation of physical
parameters are introduced. Sec. 2.3 gives an overview about deformation mod-
els in Computer Graphics and approaches to improve the stability of dynamic
simulations.

2.1 Object acquisition

The construction of 3D representations for virtual environments comprises a
variety of methods [BR02, VBS09, KAHD10]. Generally, a three-dimensional
point cloud describing the object’s surface is obtained first by a range scanner.
To obtain a complete object, usually several scans have to be aligned in a com-
mon coordinate system. Smoothing techniques can be applied in order to reduce
noise, before the point cloud is converted into the structures that are needed.
E. g., polygonal meshes are employed in many applications. Thus, this section
briefly discusses the related work for the point cloud construction, mesh smooth-
ing and mesh generation techniques, while it mainly focuses on the literature
about registration approaches that concern the contribution of this thesis.

For the acquisition of 3D geometry, there are contact based methods that
touch an object in order to obtain the coordinates of surface points as well as non-
contact based methods [Cur99, RCM∗01]. In the last decades, the non-contact
based methods have become popular. Among these are approaches like pho-
tometric stereo [Woo80, Woo84], and active techniques that send a signal, e. g.
light or sound, which is reflected and interpreted appropriately to obtain a depth
value. Although their underlying techniques like the triangulation method and
the sound velocity are known for centuries, the applicability of these principles
was limited and increased with the availability of computers and electronic mea-
surement devices at comparably low costs. [WMW06] presented a low-cost laser

7



Chapter 2. Related work

scanner technique and meanwhile extended this to a structured light scanner1.
A low-cost structured light scanner was also introduced by [RCM∗01]. [LPC∗00]
presented a system for the digitalization of large objects. [CBS00, Bla04] present
an overview about the existing techniques and their particular advantages.

To obtain triangular surfaces from point clouds, [HDD∗92] employs a signed
distance function. Further, [ABK98] use Voronoi diagrams, and [BMR∗99]
employ a wrapping technique to obtain triangular surfaces. In the context
of 3D scans, surface reconstruction techniques have to be especially robust
against noise [KBH06]. Also, noise reduction can be applied before the tri-
angulation process. Methods like Moving Least Squares [Lev98, Lev04] are
frequently applied to obtain a point cloud representing a smooth surface. Im-
proved variants have been developed that also account for sharp surface fea-
tures [FCOS05, LCOL07]. While Moving Least Squares computes an inter-
polating function for surface smoothing, other techniques work directly on the
point cloud [LCOLTE07, HLZ∗09]. Similar techniques can also be used for mesh
simplification [PGK02] or up- and downsampling of surfaces [ABCO∗01, AK04].

Further, 3D scans of real objects are likely to be incomplete. To overcome
such problems, mesh repair algorithms have been developed. A wide-spread
approach is to compute a volumetric object whose surface approximates the
given point cloud [CL96], which returns a closed surface via isosurface extraction.
In many approaches, implicit functions are used [TO02, SOS04]. For example,
a distance field can be employed [HK06, JBS06, PBL09]. Similar approaches
based on distance fields [TO02, SWT06] can also be used to construct volumetric
meshes. [SLS∗07] propose an algorithm with user-interaction to improve the
surface reconstruction. [Ju09] provide a survey about current techniques for
mesh repair.

Registration

As the contribution of this thesis concerns the global registration problem, the
related work of this topic is introduced in greater detail now.

Registration, correspondence and matching algorithms are applied in vari-
ous research fields such as object reconstruction, shape retrieval, and symme-
try detection. The general task is to find matching parts of different objects
with unknown relative orientations. These could be several scans of an object
that should be aligned in a common coordinate system [RHHL02, GMGP05,
AMCO08], or a partial scan of an object which is used to identify a correspond-
ing model in a given library [KFR04, PMG∗05, GCO06, SSSCO08]. Symmetry
detection approaches look for similar sub-parts of objects [MGP06, MGP07,
PMW∗08, RBBK10, BBK09]. A recent survey can be found in [vKZHCO11].

All these tasks can be tackled in a similar manner by looking for a transfor-
mation between pairs of objects to align them properly. Given at least three
correspondent points on each object, such a transformation could be easily com-
puted [FH86, Hor87, LEF95]. Therefore, the task to establish an appropriate

1http://www.david-laserscanner.com, accessed November 8, 2011
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2.1. Object acquisition

transformation is equivalent to finding appropriate correspondences between the
query objects and computing a transformation based on these correspondences.

Rigid Registration. The Iterative Closest Point algorithm (ICP) [BM92,
CM91, Zha94] is a well-known method for aligning overlapping point clouds.
As outlined above, it looks for corresponding points on different objects, for ex-
ample based on shortest distances, and computes a transformation using these
correspondences. Much work has been done to improve the convergence rate
and the results of the original algorithm, for example using better metrics and
sophisticated criteria for corresponding points [Pul99, RL01, MGPG04]. How-
ever, the ICP algorithm only optimizes locally and depends on a good initial
guess of the relative orientations. This leads to the well-known problem of global
registration, where a coarse initial alignment is computed.

In general, objects overlap only partially. Therefore, approaches using global
quantities like principal component analysis are not applicable. A straightfor-
ward approach to get an initial alignment is to enumerate all three-point-pairs
in different objects, compute the corresponding transformation and choose the
one that leads to the smallest error with respect to some error metric. For a
given triplet in one object, this leads to O(n3) possibly matching triplets. In
case of outliers and noise, the RANSAC algorithm [FB81] can be applied, and
[CHC98, CHC99] build up on RANSAC to get an improved global registration
algorithm. [AMCO08] also build up on RANSAC, but choose coplanar four-
point sets instead of triplets to establish an initial transformation. For a given
four-point base, this method only requires to examine all pairs of points instead
of all triplets by using affine invariant ratios, which reduces the complexity to
O(n2).

Similarly, voting methods like the Hough transform also employ the fact that
three correspondent points are sufficient to compute an initial alignment. The
six-dimensional space of possible transformations is subdivided into cells and a
transformation for each triplet of points on the different objects is computed.
Each computed transformation results in a vote for the corresponding cell, and
finally, the transformation represented by the cell with the largest number of
votes is chosen as an initial alignment which could be refined using ICP.

Using surface properties like geometry or color can improve the voting and
RANSAC-based methods as well as the correspondence search in the ICP al-
gorithm. While color, for example, is used for the matching of fresco frag-
ments [BTFN∗08, TFBW∗10], geometric features can be used for arbitrary
point clouds obtained by a range scanner. Various appropriate geometric de-
scriptors are applied for surface alignment. Among these are differential quan-
tities like curvature, which could be computed based on approximating poly-
nomials [GCO06, CP03], integral invariants [PWY∗07] or volumetric descrip-
tors [GMGP05, HFG∗06]. Also, spin images [JH97, Joh97] are used to establish
a global initial alignment. In addition, spatial relations between points with
similar features are used to enhance the registration [GMGP05, AMCO08].

Non-rigid Registration. Most of the above-mentioned approaches are
concerned with rigid registration problems. While articulated objects could
be matched using rigid registration algorithms by dividing objects into parts
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[GMGP05, JZ07], deformable objects have to be handled in a different manner.
Therefore, there is a large research area dealing with non-rigid registration and
similarity problems [BR07, HAWG08, RBBK10]. The possible transformations
are extended allowing deformations instead of rigid transformations, and the
goal is to minimize some deformation energy term [HAWG08]. For example,
thin-plate splines are used for this purpose [BR07]. Other methods are con-
cerned with finding correspondences between non-rigid objects, which are pos-
sibly deformed, or pose-invariant correspondences [OSG08, GSCO07], e. g. be-
tween a standing and a sitting dog, without any knowledge about the relative po-
sitions. Many approaches are based on geodesic distances [HAWG08, TBW∗09]
or surface metrics which are invariant under isometric deformations [LZSCO09].
The so called Möbius voting algorithm [LF09] makes use of the fact that isome-
tries of simply-connected surfaces are contained in the Möbius group and per-
forms a voting scheme similar to the Hough transform. Also, multi-dimensional
scaling [RBBK10], spectral correspondences [JZ06, JZvK07] and skeleton-based
approaches [ZST∗10, KCATCO∗10] are used to perform non-rigid registration.
Further information about non-rigid registration can be found in the thorough
overview of [vKZHCO11].

2.2 Parameter estimation

For a realistic simulation, a spatial representation of an object has to be equipped
with appropriate deformation parameters. The estimation approaches can be
separated into data-driven approaches and analytical approaches [LSH07]. The
latter are e. g. applied in the context of mass-spring-models. Starting from a
continuum formulation, spring stiffness values are estimated in order to obtain
an efficient approximate simulation model. Thus, known parameters for the con-
tinuum formulation are mapped onto appropriate values for the spring stiffness.
[EGS03] derive a particle system based on the continuum equation by a Finite
Differences discretization. [vG98] derive analytical expressions based on geomet-
ric considerations, and similarly, [MBT03] derive analytical equations from the
elasticity values by a uniaxial elongation test. The approaches allow for spatially
varying spring constants, as constant stiffness values do not achieve a sufficient
approximation. [LSH07] showed that for a special Poisson ratio, the stiffness
matrix of mass-spring-systems can equal a triangular Finite Element formula-
tion, and found analytical expressions for the spring parameters depending on
the physical stiffness. For different Poisson ratios, he introduced a minimization
scheme to find appropriate values.

As the topology of mass-spring-systems influences the deformation behavior,
not only the parameters are challenging, but also the estimation of an appropri-
ate topology. This was tackled by a data-driven approach in [BHS03, BSSH04],
who use a Finite Element formulation as reference to obtain appropriate mesh
topologies and stiffness parameters. [BC00] use different topologies to approxi-
mate isotropic or anisotropic behavior. Also, [SVAC11] try to identify appropri-
ate cubical mass-spring-meshes, which reflect a given material behavior, before
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estimating appropriate parameters by fitting a non-linear Finite Element refer-
ence simulation. Thus, this approach can be seen as a combination of analytical
model construction and data-driven parameter fitting. [BCP∗08] use a particle
filter to obtain a posterior distribution over the stiffness parameters and evaluate
the particles by comparing simulated and observed deformations. [DKT95] used
simulated annealing to fit the displacements of vertices. [SVAC11] present a no-
table overview about the identification of parameters in mass-spring-networks.

In the context of physical deformation models, the deformation parameters
can be estimated using a measurement of the force-displacement-relation [Har67].
In contrast to mass-spring-models, they are independent from the discretization
of the spatial object representation. Therefore, a standard technique is to apply
forces to an object which are observed by a force sensor and to capture the
resulting displacement. This can be compared to a simulated model that is
deformed by the given forces, which allows to perform an iterative refinement
on the simulation parameters to achieve the best match [KL04, ABB∗08].

Thus, the estimation of physical parameters is based on an interaction with
the deformable object. Such interactions between tools and soft tissue are imma-
nent in medical simulations [MRO08], which are used for training systems and
in preoperative planning approaches, for example. Therefore, realistic deforma-
tion parameters are needed, and several approaches have been developed in this
context. [KVD∗01] present an inverse Finite Element estimation of biological
soft tissues, which are modeled as non-linear viscoelastic materials. Similarly,
[KS05] use an iterative scheme for parameter estimation of soft tissues based
on a non-linear viscoelastic Finite Element model. Further, [SGN∗05] estimate
the deformation parameters of brain tissue, where they use intraoperative MR
scans and image registration techniques to compare the deformations.

In more general contexts, [SZ92] employ a non-linear least squares optimiza-
tion to compute the Young modulus for a given Poisson ratio in a 2D Finite
Element formulation with boundary conditions. Also, [ZZ94] use a 2D Finite
Element Method for thin plates for the estimation of stiffness values in case
of bending. [Lan01, LPW02] present a parameter estimation for the Boundary
Element Method [JP99] which is based on Green’s function. They formulate
a linear estimation problem to obtain Green’s function matrix irrespective of
its analytical and numerical derivation. [CZ05, ZCLH09] employ an analytical
formulation of [HKHM72] to model a two-sided indentation test for the simul-
taneous estimation of Young modulus and Poisson ratio of soft tissues, which is
applied on simulated data. [BT07] exploit the structure of the stiffness matrix
in the linear Finite Element Method to formulate a Quadratic Programming
approach for the estimation of stiffness parameters, which is also applied to
simulated data sets. [SB08] capture the deformation of objects from videos for
a comparison with simulated objects to estimate their mechanical properties.
[Fon09] extract force-fields for different contact points and displacements on the
objects and employ a structured light scanner for deformation observation. For
unseen contact points, the forces are interpolated using radial basis functions.
Similarly, [BBO∗09] present a data-driven representation of heterogeneous and
non-linear material by fitting radial basis functions to different measured force-

11



Chapter 2. Related work

displacement samples in a Finite Element simulation. [CPP10] estimate the
deformation parameters using a grasping robotic hand and capture the defor-
mation by a 2D side view of the deformed contour.

2.3 Deformable objects

The simulation of deformable objects in Computer Graphics started with the
pioneering work of Terzopoulos [TPBF87], who introduced the research area
of physically plausible, yet efficient and interactive simulations in Computer
Graphics. The deformation models are based on differential geometry formula-
tions as well as elastic and visco-elastic mass-spring-systems [TPBF87, TF88a].
Also, plastic behavior and fracture has been integrated [TF88b].

In the following years, a great variety of deformation models had been in-
troduced, which can be separated into two classes. On the one hand, methods
based on continuum mechanics are employed to obtain realistic simulations. On
the other hand, heuristic approaches like mass-spring-systems are designed to
obtain a similar behavior within less computation time.

Models based on continuum theory usually discretize the underlying differ-
ential equations that define the relation between displacements and internal
forces, which act to withstand the deformation. They generally partition an ob-
ject into a set of mass points and deduce forces acting on these mass points from
the discretized continuum. The method of Finite Differences approximates the
derivatives by a differential quotient on a regular grid [TPBF87, EGS03]. The
Boundary Element Method [JP99, JP02, JP03] employs Green’s functions that
allow to proceed a solution of a differential equation given at the boundary into
the whole volume. Therefore, only a solution at the boundary has to be found.
In the Finite Volume Method [TBHF03, BH11], the object is partitioned into
discrete elements surrounding the mass points, and the stress tensor is directly
integrated over the surface of the elements to obtain the forces. Similarly, the
Finite Element Method [Bat96, GTT89, CZ92, DDCB01], which is probably
the most popular among these approaches, partitions the object into polyhedral
elements, whose vertices are given by the mass points. Then, the differential
equation is converted into an algebraic equation which defines a discrete solution
at the vertices.

While a non-linear Finite Element formulation is used in [OH99, OBH02] to
simulate brittle and ductile fracture, mostly linear formulations are applied in
order to gain fast calculations. However, these are only valid for small deforma-
tions and result in the drawback that rotations are not handled correctly, but
cause ghost forces. To alleviate this problem, [TW88, CGC∗02] introduced a
reference frame moving with the object or with manually selected sub-parts of
the object, respectively. [MDM∗02] proposed to compute a rotation for each
vertex of a mesh, which improves the applicability of linear formulations, while
still leading to small ghost forces. This problem was overcome by computing
rotations per element instead of vertices, which was first introduced by [EKS03]
in the context of cloth simulation. [EKS03] compute the rotation by a polar
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decomposition of the deformation gradient, which was adopted to general Fi-
nite Element formulations by [HS04, MG04]. Hence, due to the so called co-
rotational formulation, the linear Finite Element Method became applicable for
a wide range of deformations.

In most cases, the Finite Element Method is formulated on tetrahedral
meshes. However, this imposes some restriction on topological changes such
as cutting which is necessary in applications like virtual surgery [MGAT09,
CDA00, NvdS01, PDA01]. In order to avoid remeshing which may lead to
ill-shaped meshes, [WBG07] develop a Finite Element formulation on general
convex polytopes. Further applications of the Finite Element Method can be
found in the simulation of human data like muscles [ZCK98, HFS∗01] and game
environments [PO09], for example.

Among the heuristic approaches, the mass-spring-systems [CZKM98, BC00,
GW05] are the largest part due to their simplicity and computational efficiency.
Mass-spring-models can also be interpreted as a constraint method that com-
putes penalty forces in order to keep the length of an edge. E. g., [BB08, BDB11]
employ distance constraints for the simulation of inextensible cloth. However,
they use impulse based dynamics [Ben07, BDB09] instead of a force-based
formulation in order to avoid the stiff differential equations occurring in the
spring force approach. The constraint interpretation of springs was generalized
in [THMG04], where area and volume constraints are defined and penalty forces
are computed if the constraints are violated. Similarly, [DBB09b, DBB09a] em-
ploy volume constraints for the simulation of incompressible deformable objects,
where they also use an impulse-based formulation instead of penalty forces.

So far, the approaches were based on meshes that connect the discrete mass
points. However, there is another class of mesh-free approaches that do not rely
on connectivity structure between points [MKN∗04, AOW∗08]. A geometrically
motivated method was presented in [MHTG05], which computes goal positions
based on a geometric matching. This approach was improved by [RJ07], who
apply the geometric matching onto appropriate subparts, achieving non-linearly
seeming deformations with a linear deformation formulation. [DBB11] apply the
geometric matching to the surface of the object, which results in a performance
gain compared to [RJ07]. In combination with an efficient volume preservation
method, [DBB11] obtain a real-time simulation of incompressible deformable
objects. Further, the approach of [MHTG05] was applied in cloth simulation
by [SSBT08]. [MC11] combine the approaches of [MKN∗04] and [MHTG05] for
stable simulations of sparse structures such as chains.

An overview over the development of deformable models in Computer Graph-
ics can be found in the report of Nealen et al. [NMK∗06].

Efficiency is an essential task in interactive simulations. Therefore, stability
of deformation models is an important topic, which is influenced by the chosen
integration scheme [HES03] and the properties of the deformation model. Also,
the mesh quality influences the chances to obtain a stable simulation [She02,
FSH10, FSAH11].

The deformation model in [MHTG05] takes the integration scheme into ac-
count and results in an unconditionally stable simulation. However, this can-
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not be generalized to other deformation models. Reduced deformable mod-
els [HSO03, CK05, KP11] employ the modal analysis [PW89] to eliminate high-
frequency modes to allow for larger time steps. [GW08] improve the stabil-
ity of the co-rotational Finite Element formulation by an energy minimization.
[MHHR07] use a position based formulation of dynamics, which avoids over-
shooting problems that occur in velocity- or force-based models.

Another possibility is to introduce velocity-dependent damping forces in or-
der to constrain the kinetic energy, which can be referred to as viscous damp-
ing [AW01]. With appropriate damping parameters, this results in a great
improve of stability and allows for significantly larger time steps. Moreover, it
reduces oscillations and results in a more realistic simulation. Therefore, damp-
ing is commonly applied in physically-based animation.

Viscous damping was already used by [TPBF87, TF88a]. [PB88] proposed
improved damping forces for Finite Elements which depend on the strain rate
tensor. These were also used by [CYMTT92] and [OH99], for example. Fur-
ther, [PB88] introduced damping forces for constrained motions that depend
on the time-derivative of a point-to-nail constraint. [BW98] generalized this
kind of damping for arbitrary constraints choosing damping forces that depend
on the time derivative of the constraints. A damping model which is indepen-
dent of the deformation model, but relies on the connectivity of the object is
described in [NMK∗06]. An overview about different kinds of damping can be
found in [KYOK09].
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3
Simulation framework

In this chapter, the simulation environment DefCol Studio1,2 is described in or-
der to give an overview over the topics that are discussed in this thesis. The ap-
proaches in Chapter 5 and Chapter 8 are implemented within this environment.
DefCol Studio provides methods for the interactive simulation of deformable
objects. This comprises deformation models [MG04, THMG04, MHTG05], nu-
merical time integration, and collision handling for deformable objects [THM∗03,
HTK∗04, ST05, SBT07].

This chapter is organized as follows. First, the spatial representation of ob-
jects within DefCol Studio is introduced (Sec. 3.1). Then, a basic deformation
model for the calculation of internal forces is given (Sec. 3.2), before the numer-
ical time integration is illustrated (Sec. 3.3). As the contributions of this thesis
do not affect the collision handling, which is also included in DefCol Studio,
this part is not introduced separately. An overview of this topic can be found
in [TKH∗05], while the implementation in DefCol Studio is given in the above
references.

3.1 Object representation

The internal forces acting on an object usually depend on derivatives of the
spatial displacement, which results in a partial differential equation. In general,
this equation cannot be solved analytically. Thus, the object domain has to be
discretized in order to obtain a numerical solution.

In the initial state, an object O occupies a well-defined spatial domain Ω ⊂
R

3. Any deformed state of O can be defined as a mapping Φ: Ω → R
3, where

the deformed object occupies the space Φ(Ω). Thus, the differential equation is
also defined in the domain Ω, which has to be discretized in order to solve for
the internal forces.

In R
3, the simplest polytopes, i. e. the polytopes with the smallest number

of vertices, are tetrahedrons. Tetrahedrons are flexible in order to approximate

1Heidelberger, B.: DefCol Studio - Interactive deformable modeling framework.
http://www.beosil.com/projects.html, accessed November 11, 2011

2Teschner, M.: DefCol Studio 1.0.0, http://cg.informatik.uni-freiburg.de/software.htm, ac-
cessed November 11, 2011
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(a) (b)

Figure 3.1: Illustration of the spatial data structures for the object represen-
tation. (a) illustrates a tetrahedral mesh, which is used for the simulation.
(b) illustrates the corresponding surface mesh.

spatial structures, and therefore, they are frequently used to discretize the spa-
tial domain Ω. Their vertices are taken as sample points, where the differential
equation is evaluated. Internal and external forces as well as other physical
properties like velocity and mass are restricted to the sample points, which are
also called mass points. In a proper discretization, neighboring tetrahedrons
share their vertices, edges and triangles. That means, a vertex of one tetrahe-
dron cannot lie inside a triangle of a neighboring tetrahedron, but has to be a
vertex of this tetrahedron, too. The discretization of Ω using tetrahedrons is
called a tetrahedral mesh or volumetric mesh of O.

As neighboring tetrahedrons share their vertices, edges and triangles, each
inner triangle is contained in exactly two tetrahedrons. Those triangles that
belong to one tetrahedron only form the outer surface of the tetrahedral mesh
and could be used for the visualization. However, to be efficient in compu-
tation time, one aims at a coarse sample point density, which leads to com-
parably large tetrahedrons and, thus, to a poor visualization with low detail.
Therefore, commonly an additional triangular surface mesh is created for an
appropriate rendering [CGC∗02]. Both meshes are coupled by geometric con-
straints [CDA00]. The deformation is computed solely on the coarse volumetric
mesh, while the triangular mesh is adapted to the deformed state using the
geometric constraints, which needs low computation time. Fig. 3.1 illustrates
the different representations of objects.

Also, other types of polytopes could be used to discretize the object domain
Ω [WBG07, Umm08]. However, tetrahedrons are the most common discretiza-
tion, and therefore, they are also applied in DefCol Studio. Moreover, they are
especially suited to the deformation model that is introduced in Chapter 5.
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3.2 Deformation model

Depending on the material properties, the internal forces are caused by a dis-
placement of the object O. While in physical applications, the accuracy of
the simulation is the main objective, applications in physically-based animation
aim at a realistically looking simulation at low computational cost. Thus, a
reasonable trade-off between accuracy and computation time has to be found.

For its simplicity and popularity in animation, the mass-spring-model is
briefly described in order to illustrate a basic deformation model. Therefore, xi

denotes the current position of a vertex of the tetrahedral mesh, while xe :=
xj − xi denotes an edge from xi to xj . x0

i and x0
e denote the initial positions.

fi denotes the force acting at vertex xi, and fe denotes the force caused by a
deformed edge xe. All edges of the tetrahedral mesh are considered as springs
connecting their incident vertices.

A spring is characterized by the spring constant D, which connects the
elongation s and the repelling force f(s) acting on a spring according to Hooke’s
law :

f(s) = −D · s. (3.1)

Note that the deflecting force fd(s) naturally is the inverse of the repelling
force, thus fd(s) = D · s. Using the notation of the tetrahedral mesh, the
repelling force becomes

fe = −De(‖xe‖ − ‖x0
e‖)

xe

‖xe‖
(3.2)

This force is symmetrically distributed to the incident vertices xi,xj as
fi−=fe, fj+=fe. Summing up over all incident edges of xi results in the to-
tal force fi which is then used to evolve the movement of xi in time (Sec. 3.3).

As similar computations are needed in Sec. 5.1.5, the deformation energy of
a deformed spring is introduced. For a constant force F which acts along a way
ds, the work is given as F ·ds. For a spring, F and ds have the same direction,
which allows to use the scalars f(s), fd(s) and ds instead of vectors. As the
deflecting force depends on the elongation s, the work that has to be done for
an elongation of s has to be computed by the integral

∫ s

0

fd(s
′)ds ′ =

∫ s

0

D · s′ds ′ = 1

2
D · s2 =

1

2
fd(s) · s, (3.3)

which introduces a factor of 1
2 . Note that this equation for the deforma-

tion energy holds for each situation where the force depends linearly on the
elongation.

The mass-spring-method can also be interpreted as a penalty method which
penalizes elongations of the edges of a tetrahedral mesh. This can be generalized
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to penalty methods for the triangles and tetrahedrons that penalize the change
of the triangle area or the volume change of a tetrahedron [THMG04].

DefCol Studio provides the implementation of different deformation models.
Among these are penalty methods [THMG04], geometrically motivated meth-
ods [MHTG05] and physically-based methods like the linear and non-linear Fi-
nite Element Method [MG04].

3.2.1 Momentum conservation

The spring forces have the property that the sum over all forces is zero, as
already the forces caused by each spring sum up to zero. This is an essential
property for any deformation model, as it states that the linear global movement
of the object is not affected.

The center of mass xcm of an object O is defined as

xcm :=

∑
i mixi∑
i mi

=
1

M

∑

i

mixi, (3.4)

where mi denotes the mass of xi and M denotes the total mass of O. Thus,
its velocity vcm is given as

vcm = ẋcm =
1

M

∑

i

miẋi =
1

M

∑

i

mivi, (3.5)

where ẋcm denotes the time derivative, and the acceleration can be computed
as

v̇cm =
1

M

∑

i

miv̇i =
1

M

∑

i

fi = 0. (3.6)

Thus, the velocity of the center of mass is not changed and the linear momen-
tum pcm := Mvcm is conserved. However, each individual linear momentum
pi := mivi is generally not conserved.

Moreover, the angular momentum

L :=
∑

i

xi,rel × pi =
∑

i

xi,rel × (mivi), (3.7)

where xi,rel := xi − xcm denotes the position of xi relative to the center of
mass, is also not affected by the spring forces. Its time derivative, the torque T,
is given as

T := L̇ =
∑

i

xi,rel × fi. (3.8)
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Thus, if the torque is zero, the angular momentum is conserved. For each
single spring xe, the corresponding torque Te := xi,rel×fi+xj,rel×fj = fe×xe =
0 equals zero, as fe and xe have the same direction. Hence, the total torque also
vanishes.

These two conditions are essential for any deformation model. Otherwise,
the simulated object would get an additional rotation or an additional linear
movement in case of deformation which obviously is not correct. Commonly,
forces that cause such an incorrect movement are called ghost forces.

3.3 Time integration

After the internal forces have been determined, Newton’s equation of motion has
to be integrated for the movement of the object O. The position and velocity
are only evaluated at the mass points. For simple deformation models and given
initial conditions, it is possible to find an analytic solution of the equation of
motion. However, this is not possible in general. Especially the presence of
external forces caused by collisions or user interaction prevents an analytical
solution. Thus, the equation of motion has to be integrated numerically.

With X := (xT
1 , . . . ,x

T
n )

T being a column vector that summarizes the po-
sitions of all mass points, F := (fT1 , . . . , fTn )T being the force vector, V =
(vT

1 , . . . ,v
T
n )

T summarizing the velocities and M ∈ R
n×n being a matrix that

represents the mass distribution of the object, Newton’s second law can be
written as

MẌ = F, (3.9)

where F = F(X,V) = Fext(X,V)+Fint (X,V) is composed of external and
internal forces. Restricting the mass to the mass points, which is referred to as
mass lumping, M becomes a diagonal matrix and the equation can be separated
for each single mass point:

miẍi = fi. (3.10)

Eq. (3.10) is an ordinary differential equation of second order. Using the
velocity vi of xi, this can be separated into a system of two ordinary differential
equations of first order.

ẋi = vi

v̇i = mifi
(3.11)

For h being a small time interval called time step, a numerical integration
scheme evaluates the functions xi(t),vi(t) at discrete time values 0, h, 2h and so
on. As a simple approach, (3.11) can be discretized using a differential quotient
from the right:
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xi(t+ h)− xi(t)

h
≈ vi(t) (3.12)

vi(t+ h)− vi(t)

h
≈ 1

mi
fi(t). (3.13)

Solving for xi(t + h) and vi(t + h) results in the explicit Euler integration
scheme:

xi,t+h = xi,t + hvi,t

vi,t+h = vi,t + h
1

mi
fi,t,

(3.14)

where a lower index xi,t is used to indicate that these values are an approx-
imation of the correct value xi(t). Using a differential quotient from the left in
(3.12), i. e. using vi(t+ h) instead of vi(t), results in the Euler-Cromer-scheme:

vi,t+h = vi,t + h
1

mi
fi,t

xi,t+h = xi,t + hvi,t+h.

(3.15)

As a third example, using also a differential quotient from the left in (3.13),
i. e. substituting fi(t) by fi(t+h), leads to the implicit Euler integration scheme:

xi,t+h = xi,t + hvi,t+h

vi,t+h = vi,t + h
1

mi
fi,t+h.

(3.16)

While in (3.14) and (3.15), vi,t+h and xi,t+h can be computed directly, they
occur both on the left hand and on the right hand side of (3.16), as fi,t+h

depends on xi,t+h and vi,t+h. Thus, to obtain vi,t+h and xi,t+h in (3.16), a
system of linear equations has to be solved.

Further integration schemes can be derived from (3.11) by e. g. taking the

central differential quotient
vi(t+

h
2
)−vi(t−h

2
)

h which leads to the leap frog scheme.
The Runge-Kutta-scheme of order j computes several sampling values of the
form xi,t+δk and vi,t+δk for 0 < δk < h (k = 1, . . . , j) and combines these sam-
ple values in order to obtain xi,t+h and vi,t+h. Moreover, predictor-corrector-
schemes compute predicted values x′

i,t+h and v′
i,t+h and employ these values

itself to obtain a better estimation for xi,t+h and vi,t+h.
So far, the introduced integration schemes use only the data at time t to

compute the future step t + h. Therefore, these schemes are called single-step
integration schemes. So called multi-step integration schemes employ several
past time steps t, t− h, . . .. An example is the Verlet integration, which can be
obtained by directly discretizing (3.10):
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3.3. Time integration

ẍi(t) =
ẋi(t+ h)− ẋi(t)

h

=
1

h

(
xi(t+ h)− xi(t)

h
− xi(t)− xi(t− h)

h

)

=
xi(t+ h)− 2xi(t) + xi(t− h)

h2
.

(3.17)

Inserting (3.17) into (3.10) leads to

xi,t+h = 2xi,t − xi,t−h +
h2

mi
fi,t. (3.18)

If the velocity is needed, e. g. for collision handling or damping (Sec. 8.2), it
can be interpolated as

vt =
xt − xt−h

h
or vt =

xt+h − xt−h

2h
(3.19)

DefCol Studio provides the implementation of several integration methods
like Euler, Euler-Cromer, Verlet, Beeman, and different Runge-Kutta-schemes.

The choice of the integration scheme depends on the underlying task. For
example, the explicit Euler scheme is not the best choice for approaches that
employ penalty forces, as the forces do not influence xi,t+h, but xi,t+2h. E. g.,
the Euler-Cromer-scheme would be a better choice for such situations. Implicit
schemes have proven to be useful in cloth simulation [BW98], while predictor-
corrector-schemes are applied in fluid dynamics [IAGT10, IABT11, IBAT11,
SP09] and boundary handling [BTT09].

In the context of deformable objects in Computer Graphics, physical realism
and computation time have to be balanced. While a fourth-order Runge-Kutta
scheme allows for a larger time step than Euler-Cromer or Verlet and for a
better approximation of the movement, it needs four force computations per
time step. This is the most costly part to compute, as it e. g. requires the
evaluation of the deformation model and contact handling forces. Therefore, it
would be preferred in applications where accuracy is the main focus. However,
it seems that for example the Verlet scheme is the better choice for interactive
applications [THMG04].

21





4
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Realistic representations of real objects significantly enhance the quality of vir-
tual environments. Therefore, the reconstruction of 3D representations is an
active area of research. Generally, the first step is to generate a point cloud
describing an object [BR02, VBS09]. This can be directly employed in sev-
eral tasks [GP07], or it can be transformed into appropriate structures that are
required [Cur99, BR02, KAHD10].

Modern 3D scanning techniques allow to capture high detail surface scans
within short time [Bla04]. However, they have a limited view volume and can-
not scan the whole object at once. Thus, in order to obtain a complete point
cloud of an object, several scans of different perspectives are needed. Either,
several calibrated scanners can be used, or different scans are aligned after-
wards by appropriate algorithms. The Iterative Closest Point algorithm (ICP)
[BM92, CM91, Zha94] finds an optimal alignment for two scans, if a proper
initial configuration is given. However, with badly aligned initial positions, it
gets stuck in local minima (Fig. 4.1).

(a) (b) (c) (d)

Figure 4.1: Illustration of the ICP algorithm using two rotated models of the
Stanford Buddha. (a,b) For an appropriate initial configuration, the ICP al-
gorithm computes the optimal alignment. (c,d) The ICP is not guaranteed to
work and gets stuck in local minima for bad initial configurations.

For two point clouds Xr and Xm, which are frequently referred to as ref-
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erence and model, the registration problem is formulated as the minimization
problem

(R, t) = argmin
R,t

n∑

i=1

(xr,i −Rxm,i − t)
2
, (4.1)

where R is a rotation and t is a translation. Note that the general registra-
tion problem also contains a scaling factor s. However, as the 3D scans have the
same scale, this is not needed here. In this formulation, it is assumed that ver-
tices with the same index correspond to each other. Then, an optimal solution
for (4.1) can be found analytically [FH86, Hor87, LEF95]. Therefore, the task
to establish an appropriate transformation is equivalent to finding appropriate
correspondences between the reference and the model, as the transformation
can be computed based on these correspondences.

The ICP algorithm locates correspondences xm,i 7→ xr,c(i) locally, e. g. by
a nearest neighbor search [BM92] or point-to-plane-correspondences [CM91],
and refines the alignment iteratively. Additional criteria like the consistency of
normals of corresponding vertices, excluding correspondences with too large ab-
solute distances, or using the best p% of the found correspondences significantly
enhance the convergence of the ICP algorithm [Pul99, RL01, MGPG04]. For
partially overlapping point clouds, the registration task becomes more involved.
Then, e. g. the border points of objects should not be taken into account, as
there generally are lots of wrongly located correspondences to them. Despite all
the improvements, the ICP algorithm is still a local method and needs a proper
input configuration.

Therefore, global registration algorithms are designed to return a coarsely
aligning transformation that can be used as an input for ICP. In order to estab-
lish correspondences between the reference and the model without any knowl-
edge about the relative position, they generally employ some kind of surface
features like geometry or color, and compare these features over the objects to
detect possibly matching candidates.

In this chapter, a novel feature-based algorithm for the global registration of
point clouds is introduced. The approach computes surface-approximating poly-
nomials and an extended set of rotationally invariant features for surface points
(Sec. 4.2). Further, polynomials with similar features are transformed into a
common coordinate system in order to compare their coefficients (Sec. 4.2.2).
This results in more discriminating information about different shapes than re-
lying on features only. Further, it allows to optimize the transformation using a
local optimization scheme such as Newton iteration. Moreover, a modified dis-
tance metric is used to account for the fact that feature values and polynomial
coefficients can have different orders of magnitude (Sec. 4.2.5). It is shown that
the approach can be used in the simultaneous registration of different objects,
each consisting of several partial scans (Sec. 4.3.2). Finally, it is illustrated
that the approach yields reasonable global registration results which are almost
optimal and require only marginal refinements by the ICP algorithm (Sec. 4.4).
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(a)

(b)

Figure 4.2: This example illustrates the application of the transformed polynomi-
als approach in simultaneous multi-scan registration. Three faces are registered
simultaneously. Although, e. g., the left parts are very similar to each other
and have large overlapping regions, the approach assigns them correctly to the
corresponding front scan. (a) Nine arbitrarily oriented scans of different faces.
The scans are not presorted in any way. (b) The algorithm computes a proper
initial transformation. The result is obtained without local optimization.
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4.1 Overview

The proposed registration approach belongs to the class of feature-based voting
methods, where the basic idea is to compute local descriptors on surfaces which
are invariant under rigid transformations, to compute candidate transformations
for points with similar features on various objects, and to perform a voting
scheme to locate the transformation with the largest number of votes.

Alg. 1 gives an overview of the global registration algorithm. For two par-
tially overlapping objects A and B, it first computes surface-approximating
polynomials (Sec. 4.2.1) and a set of rotationally invariant descriptors based
on these polynomials (Sec. 4.2.2, 4.2.3). Then, it locates possible correspon-
dences by comparing the invariant features. For a given point y ∈ B, a point
x ∈ A is considered to be a candidate if the descriptor values of the corre-
sponding polynomials px and py differ less than some threshold ε. Then, a
rotation Rxy is extracted that transforms px into the local coordinate system of
py (Sec. 4.2.4). This allows to compare py with the transformed polynomial pRx .
As different polynomials lead to similar descriptor values, the transformed poly-
nomials return more discriminating information about the local neighborhood,
which improves the correspondence search.

Let x be the candidate with the smallest distance between pRx and py with
respect to the distance measure presented in Sec. 4.2.5. Then, Rxy is extended
in a straightforward way to a transformation that aligns x and y and serves
as a candidate for the initial alignment of A and B. Similar to the Hough
transform, the corresponding transformation gets a vote, and the transformation
with the largest number of votes is chosen as the initial alignment. As shown
in Sec. 4.4, using transformed polynomials, it is sufficient to insert only one
vote per point, representing the candidate with the best-matching transformed
polynomial, to get a global registration result. Indeed, this has some benefits
in the simultaneous registration of partial scans of different similarly shaped
objects.

Algorithm 1: Transformed Polynomials

1 Compute a surface-approximating polynomial for each surface point
(Sec. 4.2.1);

2 Compute rotationally invariant features and find candidate pairs with
similar features (Sec. 4.2.3);

3 For each candidate pair, transform the polynomials into a common
coordinate system to compare the coefficients (Sec. 4.2.4);

4 For matching polynomials, insert a vote into a subdivision scheme for the
transformation space, and choose the transformation with the largest
number of votes (Sec. 4.3);

Feature based approaches are widely used in rigid registration, symmetry de-
tection and shape retrieval, e. g. [GMGP05, LG05, MGP06, GCO06, PMW∗08,
AMCO08]. The approaches employ differential features [MGP06, PMW∗08],
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integral features [GMGP05, AMCO08] or polynomials to estimate surface de-
scriptors [LG05, GCO06, PMW∗08]. To the best of the author’s knowledge,
none of the approaches uses the transformed polynomials introduced in Sec. 4.2
or the invariants introduced in Sec. 4.2.3.

For an overview of the approach, Fig. 4.2 shows the processing of nine partial
scans. The three resulting faces are registered simultaneously, and the partial
scans are assigned and registered correctly. Although there is significant overlap
between the three left scans and among the three right scans, they are assigned
to their corresponding front view of the face.

4.2 Transformed polynomials

In this section, the details of the transformed polynomials are described which
are the essential step in the global registration approach. First, the employed
surface-approximating polynomials are introduced (Sec. 4.2.1), before the trans-
formation of polynomials is briefly reviewed (Sec. 4.2.2). Then, the invariant
descriptors are given (Sec. 4.2.3), and it is shown how the rotation between
polynomials in different coordinate systems is obtained (Sec. 4.2.4). Finally, a
distance measure is presented that accounts for the fact that the coefficients
and invariants of compared polynomials can have different orders of magnitude
(Sec. 4.2.5).

4.2.1 Surface-approximating polynomials

To establish correspondences between partial scans of an object, the surface is
first described locally using a surface-approximating polynomial at each point.
In order to be robust against noise, the approach employs the Moving Least
Squares method [Lev98, Lev04]. However, the algorithm does not depend on
this choice and also works for other types like osculating jets [CP03], which are
used in [PMW∗08].

The Moving Least Squares approach first computes a best-fit plane for each
point x such that the squared orthogonal distance of all points in a neighbor-
hood is minimized. Then, the normal nx of this best-fit plane is taken as the
surface normal for x and is extended to a local orthonormal coordinate system
(l1x, l

2
x,nx). Within this coordinate system, a surface-approximating polynomial

px : R2 → R is calculated based on the neighborhood of x. For the plane as
well as for the polynomial, the influence of points is weighted depending on
their distance to x. The weight is controlled by the feature size h, which hereby
implicitly defines the neighborhood of a point x. Note that the Moving Least
Squares approach is not used for smoothing the input surface, as this would
lead to worse registration results [AMCO08].

Polynomials of degree 3 are well suited for the registration approach, as
they return good approximation results, while polynomials with higher degree
tend to oscillate and result in a worse approximation [ABCO∗01]. In general, a
polynomial has the form
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p(u, v) = a30u
3 + a20u

2 + a10u+ a21u
2v + a11uv

+ a12uv
2 + a01v + a02v

2 + a03v
3 + a00.

(4.2)

4.2.2 Polynomial transformation

In this section, the transformation of a polynomial p : R2 → R into a rotated
coordinate system is reviewed, which shows how the coefficients have to be
transformed. First, this transformation is needed to determine polynomial in-
variants under rotation. Second, this is a necessary step for comparing different
polynomials, as each surface-approximating polynomial p is defined in a local co-
ordinate system. Thus, they have to be transformed into a common coordinate
system in order to be comparable.

Let p be defined in the standard basis B = (e1, e2) and let BR = (r1, r2) de-
fine a coordinate system which is rotated by R. Then, the basis transformation
from BR to B is also given by R. Now, the rotated polynomial pR is searched
that is defined in BR and equals p.

For a point given as (u, v) in B and (uR, vR) in BR, pR has to fulfill
pR(uR, vR) = p(u, v). Inserting the basis transformation leads to p(u, v) =
p(R(uR, vR)), which can be re-ordered in terms of uR and vR to get the coeffi-
cients of pR. In order to compare two given polynomials p in B and qR in BR, p
has to be transformed to pR or qR to q. Then, the coefficients can be compared.

4.2.3 Invariants

The invariants of the global registration approach are partially based on dif-
ferential properties of the polynomials. Differential invariants are also used
in [PMW∗08] and [MGP06], for example. Therefore, the relationship between
the derivatives of rotated polynomials is discussed first. Further, the approach
combines both differential and integral invariants of a polynomial, which are
developed in this section.

For the differential invariants of a polynomial p(u, v), the derivative at the
point (u, v) = (0, 0) is considered. The partial derivatives are given as

∂up(0, 0) = a10, ∂vp(0, 0) = a01, ∂uvp(0, 0) = a11 (4.3)

∂uup(0, 0) = 2a20, ∂vvp(0, 0) = 2a02, ∂uuvp(0, 0) = 2a21 (4.4)

∂uuup(0, 0) = 6a30, ∂vvvp(0, 0) = 6a03, ∂uvvp(0, 0) = 2a12 (4.5)

The first two invariants are connected to the gradient of p and to the Hessian
matrix. For a pair of transformed polynomials p and pR, the chain rule is used
to see that the gradient of pR is the rotated gradient of p. Hence, its length
remains constant.

Further, the second partial derivatives are summarized in the Hessian matrix.
Again, the chain rule leads to a relation between the Hessian matrices H of p
and HR of pR, namely H = RHRRT . Hence, its determinant is constant.
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In the following, two new invariants are introduced that are related to the
third derivative and to an integral, respectively. Integral invariants are also used
in [GMGP05, HFG∗06, PWY∗07], for example.

To obtain an integral descriptor that is rotationally invariant, the integration
area has to be invariant under rotation. This is fulfilled by a disc with an
arbitrary radius d. Then, the integration of the polynomial is easier using polar
coordinates u = r cos(ϕ), v = r sin(ϕ). The polynomial p(u, v) corresponds to

p(r, ϕ) =a30r
3 cos3(ϕ) + a20r

2 cos2(ϕ) + a10r cos(ϕ)

+ a21r
3 cos2(ϕ) sin(ϕ) + a11r

2 cos(ϕ) sin(ϕ)

+ a12r
3 cos(ϕ) sin2(ϕ) + a01r sin(ϕ)

+ a02r
2 sin2(ϕ) + a03r

3 sin3(ϕ) + a00.

(4.6)

This function is integrated for ϕ ∈ [0, 2π]. Using the property

∫ 2π

0

cosk(ϕ) sinl(ϕ)dϕ = 0 (4.7)

with k or l being odd, it follows that most of the summands in (4.6) van-
ish as they contain a sin- or cos-term with an odd exponent. Only the purely

quadratic terms a20r
2 cos2(ϕ) and a02r

2 sin2(ϕ) remain, and
∫ 2π

0
p(r, ϕ)dϕ re-

sults in r2π(a20 + a02). Integrating this term for r ∈ [0, d] with an arbitrary
radius d results in D · (a20 + a02) with some constant D depending on d. It
follows that the sum a20 + a02 remains constant under rotations.

So far, a30, a21, a12 and a03 are not part of any invariant. However, as
they represent the third partial derivatives, one could conclude that there is an
invariant containing these quantities. The following expression can be shown to
be invariant under rotation:

3a30a12 + 3a03a21 − a221 − a212 = const (4.8)

The invariance can be shown by transforming the coefficients aij to the corre-
sponding rotated coefficients aRij . For R = ( r00 r01

r10 r11 ), the transformed coefficients
are

aR30 =a21r
2
00r01 + a12r00r

2
01 + a30r

3
00 + a03r

3
01

aR03 =a21r
2
10r11 + a12r10r

2
11 + a30r

3
10 + r311a03

aR21 =a12r10r
2
01 + 3a30r

2
00r10 + 2a21r00r10r01

+ 2a12r00r01r11 + a21r
2
00r11 + 3r11r

2
01a03

aR12 =3a30r00r
2
01 + 2a21r00r01r11 + a21r

2
01r10

+ a12r00r
2
11 + 2a12r01r10r11 + 3a03r10r

2
11.

(4.9)
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Inserting (4.9) into (4.8) and using the fact that R is a rotation, i. e. r200 +
r201 = 1 and so on, leads to

3aR30a
R
12 + 3aR03a

R
21 − aR21

2 − aR12
2

= 3a30a12 + 3a03a21 − a221 − a212,
(4.10)

which means that (4.8) is invariant under rotations.
In summary, the global registration approach uses a set of four different

invariants:

1. a210 + a201 = const , which is the length of the gradient.

2. 4a20a02 − a211 = const , which is the determinant of the Hessian matrix.

3. a20+a02 = const , which corresponds to an integral of the polynomial over
a disc.

4. 3a30a12+3a03a21−a221−a212 = const , which is related to the third deriva-
tive.

4.2.4 Polynomial rotation extraction

Having found a candidate pair x,y with polynomials px, py by comparing the
invariants described in the previous section, the rotation Rxy between px and
py has to be computed that aligns the polynomials in one coordinate system
in order to compare their coefficients. By first aligning the local coordinate
systems of x and y, Rxy is extended to a transformation Txy aligning both
points. The extraction of Rxy is based on the relationship between the Hessian
matrices Hx and Hy of px and py, which is explained in this section. It is similar
to [MGP06, PMW∗08], who use the principal curvatures to align different points.

As Hx and Hy are symmetric, they are orthogonally diagonalizable. Hence,
there are rotations Qx and Qy such that

Dx = QT
xHxQx (4.11)

Dy = QT
y HyQy (4.12)

have diagonal form. For a pair of transformed polynomials, the diagonal
forms have to be equal. If this is not the case, the two points cannot correspond
to each other. Otherwise, it holds

QT
xHxQx = QT

y HyQy (4.13)

⇒Hx = QxQ
T
y HyQyQ

T
x . (4.14)

Thus, Rxy = QxQ
T
y is the basis transformation matrix that transforms px

into the coordinate system of py. Note that (4.14) only holds if the eigenvalues
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of Hx and Hy have the same order. If this is not the case, they have to be sorted
correspondingly in order to get the correct rotation, and the columns of Qx and
Qy, which are built by the eigenvectors of Hx and Hy, have to be rearranged
accordingly.

As px is transformed into the coordinate frame of py, the aligning trans-
formation Rxy can be improved using some optimization scheme like Newton
iteration to minimize the distance between the transformed coefficients. This
further improves the quality of the surface matching. The employed distance
measure is explained in the following section.

4.2.5 Distance measure

The coefficients and invariant features of a polynomial can have different orders
of magnitude. Therefore, a modified distance measure is used to account for this
fact. While for small coefficients, the squared distance is an appropriate measure,
the squared distance of large coefficients would dominate smaller coefficients.
E. g., an absolute distance of 1 between coefficients of 99 and 100 seems not too
much, but it would overrule a distance of 0.5 between coefficients of 0.5 and 1.
Therefore, a relative distance like the quotient would be more appropriate for
large coefficients. Obviously, the quotient should approximate 1, so (1 − a

b )
2

would be a candidate for a distance measure for large coefficients a and b.

However, the quotient is not symmetric, and it prevents the use of spatial
subdivision techniques for the feature search, which worsens the runtime. This
can be overcome by comparing the logarithms of large coefficients and invariants,
which allows to transform the quotient a

b into the difference ln(a)− ln(b).

With the Taylor series of ln(x) around 1,

ln(x) = ln(1) + ln′(1)(x− 1) +O((x− 1)2)

= x− 1 +O((x− 1)2),
(4.15)

it can be seen that |ln(a)− ln(b)| =
∣∣ln(ab )

∣∣ is a first-order approximation of∣∣1− a
b

∣∣. For similar coefficients, a
b approximates 1, and therefore, (ln(a)−ln(b))2

is a sufficient approximation for (1 − a
b )

2. Hence, (ln(a) − ln(b))2 is defined as
the distance of large coefficients a and b.

The question is what “large” coefficients are. However, there is a straightfor-
ward way to determine where to switch between the different measures. Assum-
ing that it is reasonable to always take the minimum of both possible measures
leads to a criterion where the logarithmic measure should be chosen. This is
the case if the condition

∣∣∣1− a

b

∣∣∣ < |a− b| (4.16)

is fulfilled, which can be transformed to
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∣∣∣∣
b− a

b

∣∣∣∣ < |a− b|

⇔ |b| > 1,

(4.17)

and (4.16) holds iff |b| > 1. Symmetrically, the same condition can be
deduced for a. Hence, if |a| and |b| are greater than 1, the logarithmic difference
should be taken.

4.3 Global registration

In this section, the computation of the global registration of two objects A and
B is summarized.

For each point x ∈ A and y ∈ B, the surface-approximating polynomials px
and py together with their invariants are determined. For each pair x ∈ A,y ∈ B
with similar features, the polynomial px is transformed into the local coordinate
system of py and the coefficients are compared. Then, for each x ∈ A, the point
y ∈ B with the best-matching polynomial is chosen as a possibly corresponding
point and the aligning transformation Txy is computed. Taking only the best-
matching point instead of all feature-matching candidates is possible due to the
transformed polynomials, which allows a more thorough comparison of the local
neighborhood.

Finally, a voting scheme similar to the Hough transform is performed and
the transformation TAB with the largest number of votes is taken as the initial
alignment of A and B. Further, for each point pair (x,y) whose transformation
Txy voted for TAB , y is stored as a corresponding point to x. As an alternative
to TAB , the stored correspondences can also be used to compute an initial
alignment using the method presented in [Hor87].

Of course, it is also possible to take more than only the best-matching poly-
nomial, but as shown in Sec. 4.4, using only the of best-matching polynomial
is sufficient. Moreover, this has some benefits especially for similarly shaped
objects, as it avoids mismatches that influence the global alignment 4.3.2.

4.3.1 Runtime

The theoretical runtime is dominated by the search for the local neighborhood to
establish the surface polynomials and by the search for point pairs with similar
features. Using kd -trees, the algorithm needs O(n) range queries which take
O(log n + k) time if n is the number of object points and k is the number of
points returned by the range query. In the worst case, all points have similar
features, which results in k = n and a runtime of O(n2).

Indeed, the largest part of the runtime is spent in the computation of the
polynomials and the search for candidate points, while the remaining parts -
including the voting scheme - typically take only a few seconds. However, the
computation of the polynomials and candidates for two points x1 and x2 is
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completely independent of each other, which means that the time-consuming
steps can be perfectly parallelized.

4.3.2 Multi-scan registration

In this section, the application of the transformed polynomials approach in
multi-scan registration is outlined. It is shown that it returns sufficiently dis-
criminating information when registering different objects simultaneously.

For a given set of partial scans A1, . . . , Ak, all scans are registered pairwise
to obtain a set of transformations Tij and a set of correspondences between
all objects. Like [LG05, HFG∗06], a connectivity graph is established with the
nodes A1, . . . , Ak and weighted edges e(Ai, Aj) between Ai and Aj if an aligning
transformation Tij is found. The weight c(e(Ai, Aj)) reflects the registration
quality from Ai to Aj . In order to control the weight of an edge, two independent
registration steps are performed for each pair of objects (Ai, Aj). First, this
allows to check if TijTji approximates the identity, and if not, the corresponding
edges are rejected. This is similar to [HFG∗06] who check circles for consistency.
Second, if y ∈ Aj corresponds to x ∈ Ai, it can be checked if the reverse relation
also holds. Therefore, a bijection between the corresponding points of Ai and
Aj is obtained. Then, the number of bijective pairs serves as the weight for the
edge e(Ai, Aj).

The quality of these edge weights is illustrated in Fig. 4.2, which shows the si-
multaneous registration of nine partial scans from three different faces. The left
parts of the three faces are similar to each other and have more overlap among
themselves than to their corresponding front scan, and the same holds for the
right parts. Nevertheless, the approach finds about an order of magnitude more
correspondences from the left and right scans to their respective front scan than
among each other and to the not corresponding front scans (Sec. 4.4). This
is due to the transformed polynomials which allow to take only one candidate
pair per point. Thus, lots of matches are excluded which would occur over the
cheeks, for example, and would lead to higher weights between the left and be-
tween the right scans. Therefore, the edge weights obtained by the transformed
polynomials approach return information about the connectivity of the objects,
although the structures are quite similar and are likely to be mixed up.

Similar to [LG05, HFG∗06], the objects (Ai, Aj) are registered in order of
their edge weights. Then, if an object Ak has correspondences to Ai and Aj ,
the corresponding transformations are checked for consistency as in [HFG∗06],
and the edge weights are summed up. This is done up to some user-defined
threshold. In Fig. 4.2, the approach ends up with separated objects.

4.4 Results

In this section, the capabilities of the global registration approach are illustrated.
All results are obtained using the transformed polynomials approach without any
local improvement. The experiments have been performed on an AMD Opteron
8435 with 24 cores at 2.6GHz and 64GB memory. The Bunny and the Buddha
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models are taken from the Stanford 3D Scanning Repository of the Stanford
University Computer Graphics Laboratory.

In the implementation, the feature size for the Moving Least Squares ap-
proach (Sec. 4.2.1) is set to about 3% of the bounding box diagonal. Two
points x,y are considered as candidates if the distance of their polynomial in-
variants (Sec. 4.2.5) is smaller than 10−5. As the polynomials are transformed
afterwards and only the best-matching candidate is taken, this threshold rather
affects the runtime than the registration result. The subdivision scheme for the
aligning transformation has a cell size of 6◦ for the rotation angle and of 0.05
for the components of the rotation axis, which is represented as a unit vector.
For the translational components, the cell size corresponds to the feature size.

In order to illustrate the quality of the global alignments, the ICP algo-
rithm [BM92, CM91] was applied after the transformed polynomials approach.
For an optimal global alignment, ICP should end up with no additional rotation.
Therefore, the additional rotation angle obtained by ICP is given to show the
quality of the transformed polynomials approach. However, the figures show
the global registration results without any local improvement.

(a) (b)

Figure 4.3: The Stanford Buddha consisting of 135634 points. (a) Relative ori-
entation before registration. (b) Transformation found by the global registration
approach. 135631 points are assigned correctly by the transformed polynomials
approach.

The first experiment in Fig. 4.3 shows an artificial test setup with two models
of the Stanford Buddha. The experiment employs a resampled mesh consisting
of 135634 points, where one model is rotated by an arbitrary angle. Although
there are lots of similar surface parts which lead to similar surface polynomials,
the approach locates 135631 correspondences correctly, which is remarkable as
exactly one possible correspondence per point is allowed. Using the transformed
polynomials, the best-matching polynomial leads to the correct correspondence
for most of the points. The runtime for this experiment was 211s. Here, applying
ICP results in no additional rotation angle, so the optimal alignment is reached.

All of the following experiments are performed with real data collected by
different range scanners.
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Fig. 4.4 shows the registration of ten range scans of the Stanford Bunny.
A similar experiment has also been performed in [GMGP05]. In contrast to
[GMGP05], where overlapping scans are pre-assigned and registered pairwise
in single registration steps, no presorting is done in this experiment, and no
pair of scans is excluded a priori. Nevertheless, all scans are reliably assigned
and registered simultaneously within 583s using the transformed polynomials
approach. Compared to [GMGP05], where only few correspondences are found
between overlapping objects, the approach locates 5376 correspondences on av-
erage. Applying ICP, an average additional rotation angle of 0.44◦ is obtained.

(a)

(b)

Figure 4.4: (a) 10 range scans of the Stanford Bunny with arbitrary orientations.
(b) Point clouds of the registered scans. The result is obtained without any local
refinement.

Fig. 4.5 and Fig. 4.6 illustrate that the approach is able to handle noisy data.
In Fig. 4.5, random noise is added to the face scans to illustrate the robustness
of the approach. Although the noise is in the same order of magnitude as the
feature size, the global registration finds a proper initial alignment. The objects
in Fig. 4.6, a teddy bear besides a mobile robot, were scanned with a Microsoft R©

Kinect
TM

-camera and are rather noisy themselves (Fig. 4.6 (b)). Nevertheless,
the scans are assigned and registered simultaneously within 1766 s. Applying
ICP results in an additional rotation angle of 1◦ on average.

Fig. 4.2 illustrates that the algorithm is also able to assign partial scans of
different faces correctly. The face scans are obtained by a faceSCAN III system
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(a)

(b)

Figure 4.5: (a) Although the scanned data naturally contains noise, random
noise is added to a face scan to illustrate the robustness of the transformed
polynomials approach. (b) The simultaneous global registration algorithm is
able to obtain a proper alignment within 1118 s.

from Breuckmann1,2 and have an average size of 79800 points. The three result-
ing faces are registered simultaneously, and the partial scans are assigned and
registered correctly. Although there is significant overlap between the three left
scans and among the three right scans, they are assigned to their corresponding
front view of the face. The approach locates 9500 correspondences on average
between correct pairs of scans, while there are typically 200 − 300 correspon-
dences between false left-left or right-right pairs, which serve as weights for the
simultaneous registration approach (Sec. 4.3.2). As in Fig. 4.4, the scans are
not presorted in any way and no pairs are excluded a priori. This is a special
strength of the transformed polynomials approach. For example, algorithms
looking for a largest common point set would be likely to assign a higher weight
between two left scans than between the correct left and front scan. Registering
nine partial scans simultaneously requires 72 single registration steps, which
took 100 s on average. Applying ICP results in an additional rotation angle of
0.3◦ on average.

1http://www.breuckmann.com/kunst-kultur/produkte/facescan.html, accessed December
21, 2011

2http://www.breuckmann.com/fileadmin/Kundendaten/service/prospekte/pdf/faceScan de.pdf,
accessed December 21, 2011
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(a)

(b)

Figure 4.6: (a) Range scans of a teddy bear and a mobile robot. (b) The trans-
formed polynomials approach returns a good global registration, although the
scans are quite noisy.

4.5 Conclusion

In this chapter, a novel approach for the global rigid registration of partially
overlapping point clouds was introduced. It employs new invariants for the
search of possible candidates and the transformed polynomials which lead to
an improved correspondence search. The established correspondences can be
applied for the simultaneous registration of several similarly shaped objects.
The results illustrate the capabilities of the approach for global registration
tasks.

The transformed polynomials approach leads to more discriminating infor-
mation than using surface features only and therefore, it is able to distinguish
different objects. However, the approach naturally has some limitations.

Obviously, the approach runs into problems if it cannot compute distinct
features like it is the case for objects with large featureless parts, e. g. planes.
For such situations, the approach described in [AMCO08] is more appropriate.

Like all registration approaches, the approach has problems to establish an
initial transformation if there is only a small overlap. The multi-scan regis-
tration is based on a heuristic, which does not work in every case. However,
due to the transformed polynomials, the approach at least returns few false
correspondences between different objects, although they have a similar shape.
Consequently, a lot of partial scans are registered correctly before the first false
match occurs. Therefore, similar to [LG05], the number of non-registered ob-
jects decreases, which simplifies the manual separation of the objects, if the
heuristic does not completely work.
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Further processing of registered scans

Depending on the application, the obtained point cloud is transformed into
appropriate structures. In the context of deformable objects, especially a volu-
metric mesh is needed. However, the usage of real scans and the requirement of
a stable simulation impose several requirements onto the mesh generation algo-
rithm. First, scans of real objects might be incomplete. Second, after matching
different scans, the overlapping point clouds might not define an unambiguous
surface, if the scans contain errors and noise. Third, the deformation model im-
poses restrictions on the mesh quality, as badly shaped meshes, e. g. containing
flat tetrahedrons like slivers, tend to be unstable and are difficult to simulate
([She02], Sec. 5.2.1).

The approach of [SWT06] is suited for all these requirements, as unorientable,
non-manifold, and even incomplete input surfaces can be handled. First, the
approach computes a signed distance field, where voxels with a negative sign
correspond to the pseudo-volume included by the point cloud. In a second step,
the spatial domain is divided by an axis-aligned grid, and all cells that do not
contain voxels with negative sign are discarded. The remaining cells approxi-
mate the object’s volume, while the approximation quality directly depends on
the grid resolution. The grid cells are divided into five tetrahedrons each, and
the mesh is smoothed in a postprocessing step using smoothing filters similar
to [DMSB99]. Although the approach is formulated for triangular input sur-
faces, it equally works for point clouds, as the only condition is that a distance
field can be computed. During the smoothing process, the mesh quality can be
observed, thus allowing to determine a lower limit of the mesh quality. Fig. 4.7
illustrates the algorithm.

(a) (b) (c) (d)

Figure 4.7: Illustration of the mesh generation algorithm of [SWT06]. (a,b) show
the real object with the scanned point cloud. (c,d) illustrate the constructed
tetrahedral mesh before and after smoothing.
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5
Deformation model

In Chapter 3, the basic steps for the simulation of deformable objects and the
simulation environment DefCol Studio1,2 have been introduced. Especially, in
Sec. 3.2, the mass-spring-method has been introduced. As this deformation
model has several drawbacks, the linear Finite Element Method is used through-
out this thesis. As the deformation model is the basis for the simulation as well
as for the parameter estimation, it is introduced in this chapter.

While computationally efficient, the mass-spring-method is not physically
motivated, and thus, it cannot reflect physical properties correctly. For example,
it is hard to represent both isotropic and anisotropic materials [BC00], and the
parameter setting for a mass-spring-network is not connected to real material
constants of objects that should be represented. Moreover, the spring constants
have to be estimated separately for meshes with different topologies [BHS03],
which can be illustrated easily by considering two springs of equal length and
equal spring constant D. A force F elongates the springs by the amount s = F

D .
However, connecting both springs in series and applying the same force F leads
to an elongation of 2s, and thus, the spring constant for the composed springs is
D′ = F

2s = D
2 . Applying F to a parallel combination of both springs leads to a

spring constant D′ = 2D. Thus, it is almost impossible to predict the necessary
new spring constants in case of remeshing.

Therefore, physically-based deformation models like the Finite Element Me-
thod are more appropriate for the simulation of real objects. The linear Finite
Element Method is based on the constitutive equation of the considered material,
and employs the physical parameters that define this equation. For isotropic ma-
terials, these are the Young modulus and the Poisson ratio. As the deformation
model is derived from the material properties, the parameters do not depend on
the tetrahedral mesh. Thus, if the parameters of an object are estimated once,
they can be applied to every mesh that approximates the object.

This chapter is organized as follows. First, the physical background concern-
ing linearly elastic objects is introduced in Sec. 5.1. Then, the linear Finite
Element Method is introduced in Sec. 5.2. As the linear Finite Element Method

1Heidelberger, B.: DefCol Studio - Interactive deformable modeling framework.
http://www.beosil.com/projects.html, accessed November 11, 2011

2Teschner, M.: DefCol Studio 1.0.0, http://cg.informatik.uni-freiburg.de/software.htm, ac-
cessed November 11, 2011

39



Chapter 5. Deformation model

does not handle rotations correctly, it is extended to the co-rotational Finite El-
ement Method [HS04, MG04] in Sec. 5.2.2, which is employed throughout this
thesis and in the application in Chapter 9.

Notation

Fig. 5.1 illustrates the notation of this chapter. Let O be an object and Ω ⊂ R
3

its spatial domain in the initial state. The current configuration of O can be
described by a mapping Φ : Ω → R

3,x = (x, y, z) ∈ Ω 7→ Φ(x). Usually,
Φ is decomposed into the embedding id of Ω into R

3 and the displacement
u : Ω → R

3,x 7→ u(x), which is called the displacement function or displacement
field. Then, Φ is given as Φ(x) = x+u(x) (Fig. 5.1). The components of u are
denoted as (ux, uy, uz). The partial derivatives are denoted as ∂xu, ∂yu, ∂zu,
while the total derivative is denoted with ∇u.

x

y

Φ
x

undeformed

configuration

x

y

x

u(x)
Φ(x)

deformed

configuration

Figure 5.1: Illustration of displacement function u(x).

5.1 Linear elasticity theory

An elastically deformable object is characterized by the property that it changes
its shape in the presence of external forces, while it restores the original shape if
the forces are released. Thus, in the case of deformation, there are internal forces
acting to restore the resting state. In Sec. 5.2, this will be used to deduce the
linear Finite Element Method, which is a physically-based deformation model
that is integrated within the framework introduced in Chapter 3. While this
section restricts to linear elasticity, further information about elasticity theory
can be found in [BB75, GM01, Gre03].

The deformed state of an object is characterized by the central quantities
stress and strain. They describe the forces and the current shape of a deformed
object and are introduced in Sec. 5.1.1. The relation between stress and strain is
called the constitutive equation of the underlying material and defines its elastic
behavior. For linearly elastic objects, this relation is linear. If the material is
additionally assumed to be isotropic, i. e. it behaves equally in all directions, it
depends on two deformation parameters, the Young modulus and the Poisson
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5.1. Linear elasticity theory

ratio. These are illustrated in Sec. 5.1.3, before the stress-strain-relation is
deduced in Sec. 5.1.4. In conservative systems, the forces depend only on the
current state of an object, and act to a minimum of the potential energy. Thus,
for deformable objects, the internal forces can be computed as the derivative of
the deformation energy, which is introduced in Sec. 5.1.5.

5.1.1 Stress and strain

In this section, the physical quantities stress and strain are introduced. The
stress measures a force per unit area acting on an object, while the strain mea-
sures the deformation of the object compared to its original size and shape. It is
defined as a quotient “Change of a length”

“Original length” . The general description of stress and
strain can be reduced to two special cases, which are denoted as normal strain
and shear strain and are shown in Fig. 5.2.

(x, y, z)

∆x

dx

dy

dz

F−F
A

(a)

(x, y, z) dx

dz

dy

∆x

F

−F

A

α

(b)

Figure 5.2: Illustration of normal and shear stress and strain. (a) illustrates the
normal stress and strain. The force F acts perpendicular to the surface A and
causes an elongation ∆x. (b) illustrates the shear stress and strain. The force
F acts parallel to the surface A and causes a deflection ∆x.

Normal stress and normal strain. Fig. 5.2 (a) illustrates a force F
acting perpendicular to an area A which is called normal stress. As both force
and surface normal point in x-direction, the strain is denoted as σxx = ‖F‖/A
or σx, respectively. This causes an elongation ∆x, which defines the normal
strain εxx = εx = ∆x

dx
. Using the displacement function u, ∆x can be written as

∆x = ux(x+ dx , y, z)︸ ︷︷ ︸
≈ux(x,y,z)+∂xux(x,y,z)·dx

−ux(x, y, z) ≈ ∂xux(x, y, z) · dx , (5.1)

and the normal strain is given as

εx = ∂xux. (5.2)
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Chapter 5. Deformation model

Shear stress and shear strain. Fig. 5.2 (b) illustrates a force F acting
parallel to the surfaceA which is called shear stress. The force acts in x-direction,
while the surface normal points in y-direction. Therefore, the shear stress is
denoted as σxy = ‖F‖/A or τxy , respectively. This causes a deflection ∆x,
which defines the shear strain γxy = ∆x

dy
= tan(α). For small deformations,

tan(α) ≈ α and the shear strain becomes γxy ≈ α.

dx

dy

F

−F

F′−F′

(a)

∆y

∆x

α1

α2

F

−F

F′
−F′

(b)

∆x

α

F

−F

F′−F′

(c)

Figure 5.3: Illustration of forces that cause a torque-free shear strain. (a) depicts
the forces acting in order to obtain shear strain. (b) illustrates the deformation
obtained by the forces in (a). It contains no additional rotation like the state
shown in (c), which is obtained from (b) by a clockwise rotation by the angle
α2.

However, the forces F and −F in Fig. 5.2 (b) cause a torque. Thus, in
order to achieve a torque-free shear deformation, there are additional forces F′

and −F′ as shown in Fig. 5.3 (a). These cause both a deflection ∆x and a
deflection ∆y, leading to the deformation shown in Fig. 5.3 (b). Followed by a
clockwise rotation by the angle α2, the situation in Fig. 5.3 (c), corresponding
to Fig. 5.2 (b), is reached. The shear strain γxy ≈ α in Fig. 5.3 (c) corresponds
to α1 + α2 in Fig. 5.3 (b). Thus, it is reasonable to redefine the shear strain as
γxy = ∆x

dy
+ ∆y

dx
≈ α1 + α2. Similar to the normal strain, the deflection ∆x can

be expressed as

∆x = ux(x, y + dy , z)︸ ︷︷ ︸
≈ux(x,y,z)+∂yux(x,y,z)·dy

−ux(x, y, z) = ∂yux · dy , (5.3)

and the shear strain becomes

γxy = ∂yux + ∂xuy. (5.4)

Thus, the stress and strain of an object are defined by nine scalars each.
This leads to the following definition.

Definition 1 (Stress). The stress σ ∈ R
3×3 is defined as a second-order tensor

and has the measurement unit force per unit area. Its component σij , i, j ∈
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5.1. Linear elasticity theory

{x, y, z} denotes the stress caused by a force in direction i acting on an imaginary
area Aj with normal direction j. The total force in direction i then is given by
Fi =

∑
j σijAj.

Fig. 5.4 illustrates the components of the stress tensor.

x

y

z

σxx

σyx

σzx

σxy

σyy

σzy

σxz

σyz

σzz

Figure 5.4: Illustration of different stress components.

Similarly, the strain could be defined as a second-order tensor ε containing
the normal strains at the diagonal and the shear strains at the off-diagonal
positions. However, this definition would not be entirely consistent, for which
reason the strain tensor is defined slightly different based on the strain for an
arbitrary line segment. This is shown in the following.

Strain for an arbitrary line segment. The normal and shear strain are
aligned to elongations or deflections associated with the coordinate axes. For
an arbitrary segment x1 − x2 with length l = ‖x1 − x2‖ and deformed length
l+∆l, the strain is defined as εx1x2

= ∆l
l . The length of the deformed segment

is given by

‖Φ(x1)−Φ(x2)‖ ≈ ‖Φ(x1)− (Φ(x1) +∇Φ(x1)(x2 − x1))‖

=
√

(x2 − x1)T (∇Φ(x1))T∇Φ(x1)(x2 − x1)

=
√
(x2 − x1)T (id+∇u(x1))T (id+∇u(x1))(x2 − x1)

= ‖x1 − x2‖
√
1 + eTx1x2

(∇u(x1)T +∇u(x1) +∇u(x1)T∇u(x1))ex1x2
,

(5.5)

where ex1x2
denotes a unit vector in the direction from x1 to x2. Using the

Taylor series
√
1 + x ≈ 1 + 1

2x, this results in

‖Φ(x1)−Φ(x2)‖
‖x1 − x2‖

≈ 1 +
1

2
eTx1x2

(∇u(x1)
T +∇u(x1) +∇u(x1)

T∇u(x1))ex1x2
.

(5.6)

43



Chapter 5. Deformation model

With ε(x1) := ∇u(x1)
T + ∇u(x1) + ∇u(x1)

T∇u(x1), the strain εx1x2
is

given by

εx1x2
=

∆l

l
=

‖Φ(x1)−Φ(x2)‖ − ‖x1 − x2‖
‖x1 − x2‖

≈ eTx1x2
ε(x1)ex1x2

. (5.7)

This leads to the definition of the strain tensor:

Definition 2 (Strain). The second-order tensor ε ∈ R
3×3

ε :=
1

2
(∇uT +∇u+∇uT∇u) (5.8)

is called the Green-St. Venant strain tensor. Dropping the quadratic
terms (∇u)T∇u leads to the infinitesimal or linear strain tensor

ε =
1

2

(
∇uT +∇u

)
. (5.9)

Both tensors are popular choices in physically-based animation [NMK∗06].
Note that the Green-St.- Venant strain tensor could be written as ∇ΦT∇Φ −
id, which implies that it is invariant under rotations. The components of the
infinitesimal strain tensor are given as

εij =
1

2
(∂iuj + ∂jui) , i, j ∈ {x, y, z}. (5.10)

Thus, the diagonal entries are equal to the normal strain (5.2), while the
off-diagonal entries εij , i 6= j are connected to the shear strain γij (5.4) via

γij = 2εij . (5.11)

The factor of 2 stems from the fact that the strain tensor ε does not measure
the shear strain directly, but only the impact of the shear deformation onto the
length of the diagonal, which is explained in Fig. 5.5: The shear strain γxy
causes an elongation of the diagonal, which is measured as a normal strain εd
along the diagonal. This results in εd = 1

2γxy .

5.1.2 Symmetry of stress and strain

Obviously, the strain tensor is symmetric, and therefore, it contains only six
independent values. In general, this is not the case for the stress tensor, if the
stress results from external forces that cause a torque. However, it can be shown
that torque-free forces result in a symmetric stress tensor.
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∆x

a

a d d′

∆d

Figure 5.5: A cube with edge length a is subjected to a shear stress σxy . The
shear strain γxy = ∆x

a causes an elongation of the diagonal of ∆d = ∆x√
2
, which

results in a strain εd = ∆x/
√
2√

2a
= ∆x

2a = 1
2γxy .

Therefore, the forces in Fig. 5.3 (a) are considered. The forces F and −F
cause a torque T with the norm

‖TF ‖ = 2 · dy
2

· ‖F‖ = dy · σxydxdz = σxydV . (5.12)

The forces F′ and −F′ cause a torque TF ′ with opposite direction and norm

‖TF ′‖ = 2 · dx
2
‖F′‖ = dx · σyxdydz = σyxdV . (5.13)

As TF and TF ′ have opposite direction, the difference of their absolute
values has to be zero in order to eliminate the torque. This results in σxy = σyx ,
which states that the stress tensor σ is symmetric for a torque-free set of forces.
As internal forces that are caused by a deformation are torque-free, the stress
tensor caused by a deformation is symmetric.

Therefore, both stress and strain tensor have only six independent values
and can be written as the six-dimensional vectors

σ = (σx, σy, σz, σxy , σxz , σyz )
T (5.14)

ε = (εx, εy, εz, γxy , γxz , γyz )
T (5.15)

= (εx, εy, εz, 2εxy , 2εxz , 2εyz )
T (5.16)

In the remainder, the symbols σ, ε denote the vector notation of stress and
strain. If the tensor notation is employed, this is indicated by a lower index
εT ,σT .

5.1.3 Deformation parameters

The relation between stress and strain is defined by the material properties,
which are given by the deformation parameters. Assuming linearly elastic and
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isotropic materials, the deformation behavior is characterized by two indepen-
dent constants, the Young modulus E and the Poisson ratio ν.

In the situation of Fig. 5.2 (a), the Young modulus linearly relates the stress
σx and the strain εx as

σx = Eεx. (5.17)

Thus, the elongation ∆x can be written as

∆x =
1

E

‖F‖dx
A

, (5.18)

and is proportional to the force ‖F‖, the resting length dx and 1
A . From

(5.18), it follows that the elongation ∆x gets smaller if E gets larger, which
means that the Young modulus characterizes the stiffness of an object.

In addition to the normal strain, it can be observed that applying a force F
in x-direction causes a transversal contraction ∆y and ∆z in y- and z-direction,
which is depicted in Fig. 5.6.

dx

dx+∆x

dy dy−∆y
−F F

Figure 5.6: Illustration of the Poisson ratio. The picture shows a side view of
Fig. 5.2 (a) and illustrates the transversal contraction ∆y in y-direction caused
by the strain εx.

Hence, the stress εx in x-direction causes a stress εy = −∆y
dy

in y-direction,
and similarly in z-direction. The Poisson ratio ν is defined as the quotient

ν :=
−εy
εx

(⋆)
=

−εz
εx

, (5.19)

where (⋆) holds as the material is assumed to be isotropic. Hence, the
Poisson ratio is dimensionless and measures the relation between the change of
length in the direction of the force and the change of thickness orthogonal to
the force direction. Solving (5.19) for εy leads to

εy = εz = −νεx, (5.20)

which states that the strain εx caused by a force in x-direction also causes
a strain εy and εz in y- and z-direction.
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Similar to the Young modulus E, the shear modulus G connects the shear
stress and shear strain. In the situation of Fig. 5.2 (b), this can be written as

σxy = Gγxy , (5.21)

and the deflection ∆x becomes

∆x =
1

G

‖F‖dy
A

. (5.22)

However, G is not an independent constant, but is associated to the Young
modulus and the Poisson ratio as

G =
E

2(1 + ν)
. (5.23)

With respect to the parameter estimation in Sec. 7.1, the possible values of
E and ν are deduced in the following.

Obviously, the Young modulus is always greater than zero, but not upper
bounded. The greater E is, the stiffer the material behaves. Typical values are
in the order of 200 kN

mm2 for steel, within the range between 1000 and 5000 N
mm2

for Polyester and in the order of 100 N
dm2 = 0.01 N

mm2 for soft foam-like materials
(cf. [CZ05]).

In contrast, the range for the Poisson ratio is bounded. First, if an object
is expanded in one direction, it is contracted perpendicular to this direction,
and vice versa. In (5.19), this means that εy ≤ 0 if εx > 0, and hence, ν ≥ 0.
Further, it is reasonable to assume that the volume does not shrink if an object is
expanded in x-direction, i. e. if εx > 0. The volume change can be approximated
by the first-order Taylor series

V (dx +∆x, dy −∆y, dz −∆z) =V (dx , dy , dz )

+ ∆x · dydz −∆y · dxdz −∆z · dxdy .
(5.24)

Thus, the relative volume change is given by

∆V

V
=

∆x · dydz −∆y · dxdz −∆z · dxdy
dxdydz

=
∆x

dx
− ∆y

dy
− ∆z

dz

= εx + εy + εz
(5.19)
= εx(1− 2ν).

(5.25)

Assuming that ∆V is greater or equal to zero leads to εx(1 − 2ν) ≥ 0 ⇔
ν ≤ 0.5, where ν = 0.5 would imply perfect volume conservation. Hence, the
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Poisson ratio is bounded by 0 ≤ ν ≤ 0.5. Typical values for materials like foam
lie within the range between 0.1 and 0.4. Note that the last equation in (5.25)
is valid only for isotropic materials.

5.1.4 Stress-strain-relation

For linearly elastic materials, stress and strain depend linearly on each other.
This was already used in the definition of the deformation parameters in the
previous section. In the most general version, each entry of ε could depend on
each entry of σ. Thus, the relation is given by a fourth-order tensor C:

σT,ij =
∑

k,l

CijklεT,kl , (5.26)

which is the generalization of Hooke’s law (Sec. 3.2). However, due to the
symmetries of stress and strain, C can be reduced to a second-order tensor
and (5.26) becomes

σi =
∑

j

Cij εj (5.27)

In the following, C is expressed by the deformation parameters E and ν.
Due to (5.20), the strain in x-direction is given by εx − νεy − νεz, and the
following relations hold:

εx =
σx

E
− ν

σy

E
− ν

σz

E
γxy =

τxy
G

=
τxy
E

· 2(1 + ν)

εy =
σy

E
− ν

σx

E
− ν

σz

E
γxz =

τxz
G

=
τxz
E

· 2(1 + ν) (5.28)

εz =
σz

E
− ν

σx

E
− ν

σy

E
γyz =

τyz
G

=
τyz
E

· 2(1 + ν).

These relations can be written in matrix-vector-notation

ε = Mσ ⇔ σ = M−1
ε, (5.29)

which defines the matrix C for the stress-strain-relation:

C := M−1 =
E

(1 + ν)(1− 2ν)




1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1

2 − ν 0 0
0 0 0 0 1

2 − ν 0
0 0 0 0 0 1

2 − ν




. (5.30)
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5.1.5 Potential energy

As the deformation energy in linearly elastic objects depends only on the current
state, but not on the way how this state was obtained, such an object defines
a conservative system. Thus, the internal forces correspond to the gradient of
the potential energy.

To compute the deformation energy for normal and shear strain, the volume
elements in Fig. 5.2 are considered. The force F acting in x-direction enlarges
the element by an amount ∆x. Similar to the spring energy (Sec. 3.2), the force
is linearly increasing with the magnitude of ∆x. Thus, the deformation energy
is given by

Edef ,x =
1

2
Fx∆x =

1

2
(σxdydz )(εxdx ) =

1

2
σxεxdV . (5.31)

Similarly, the shear force acting on the xy-plane of the volume element is
linearly increasing with ∆x and leads to a deformation energy

Edef ,xy =
1

2
γxyτxydV . (5.32)

Thus, the deformation energy of the volume element is

Edef =
1

2
(σxεx + σyεy + σzεz + γxyτxy + γxz τxz + γyz τyz )dV

=
1

2
σ

T
εdV ,

(5.33)

and the deformation energy density is given by 1
2σ

T
ε. The deformation

energy over the whole object then can be computed by the volume integral

Edef =

∫

Ω

σ
T
εdV . (5.34)

In the tensor notation, the energy is given as
∫
Ω
σT : εT dV , where σT : εT

denotes the sum of the component-wise products. For this formulas, it is impor-
tant that the off-diagonal elements in the tensor notation are εT,ij as defined in
Def. 2, while the vector notation uses the shear strains γij .

5.2 Linear Finite Element Method

The deduction of the linear Finite Element Method basically follows the deriva-
tion given in [CB02]. In order to compute the internal forces based on continuum
mechanics, the gradient of the deformation energy (5.34) has to be calculated.
The main step thereby is to find a solution for the partial differential equation
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Chapter 5. Deformation model

εT =
1

2
(∇u+∇uT ) (5.35)

defining the infinitesimal strain tensor of a deformed object for a given dis-
placement field u. The solution εT of this equation can be approximated by a
Finite Element formulation. As introduced in Sec. 3.1, an object is represented
by a tetrahedral mesh, and therefore, the tetrahedrons are used as the finite
subsets for the Finite Element Method. Thus, let e be a tetrahedron with ver-
tices x1, . . . ,x4, and let the displacements of the vertices be given as q1, . . . ,q4.
To interpolate the displacement field u, appropriate shape functions have to be
chosen. In the linear Finite Element Method, usually the so called barycentric
coordinates are used, which are defined as follows. Each point x within e can
be written as a linear combination

x =

4∑

i=1

λixi with

4∑

i=1

λi = 1. (5.36)

Then, the coefficients λi = λi(x), which naturally depend on the point x,
are called the barycentric coordinates of x. Note that λ4 could also be written
as 1−λ1−λ2−λ3, and therefore, only three of the coefficients are independent.
Using these coefficients, the displacement function u(x) is interpolated as

u(x) =
4∑

i=1

λi(x)qi

= q4 +

3∑

i=1

λi(x)(qi − q4)

(5.37)

As the shape functions have the Kronecker-delta property that λi(xj) = 1
if i = j and λi(xj) = 0 if i 6= j, it follows that u(xi) = qi. Therefore, the
shape functions are also called associated to the vertices. Note that this is not
generally mandatory in the Finite Element Method.

Using linear shape functions obviously results in a linear approximation of
the displacement field, which restricts the strain to be constant over a tetrahe-
dron. However, for small elements, a piecewise constant strain function suffi-
ciently approximates the true strain, which justifies the choice of linear shape
functions.

In order to evaluate (5.35), the gradient ∇u of the displacement function
has to be calculated. Here, ∇ denotes the derivative with respect to the spatial
coordinates x = (x, y, z). However, u is not given explicitly, but only as an
interpolation of the displacements qi. Thus, it depends on the three independent
barycentric coordinates λ := (λ1, λ2, λ3), which themselves depend on x. Thus,
the chain rule ∇xu = ∇λu · ∇xλ has to be used to obtain the gradient of u,
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5.2. Linear Finite Element Method

where the derivatives are specified as ∇x for the spatial derivative and ∇λ for
the derivative with respect to the barycentric coordinates.

First, the derivative ∇λu is given as

∇λu
(5.37)
= (q1 − q4,q2 − q4,q3 − q4)

=: (q14,q24,q34)
(5.38)

For the derivative ∇xλ, it is helpful to use the derivative of inverse functions,
which states that fore a function g and its inverse function g−1, the derivatives
are connected as (∇g−1)(g(x)) = (∇g)(x)−1.

As λ(x) and its inverse x(λ) are linear functions, their gradients are con-
stant and do not depend on the argument of the function. This results in
∇xλ = (∇λx)

−1, where the latter is more easy to compute. Starting with the
barycentric coordinates of a tetrahedron,

x(λ) = λ1x1 + λ2x2 + λ3x3 + λ4x4

= x4 + λ1(x1 − x4) + λ2(x2 − x4) + λ3(x3 − x4)

=: x4 + λ1x14 + λ2x24 + λ3x34,

(5.39)

it can be seen that ∇λx is similar to ∇λu:

∇λx = (x14,x24,x34)

=



x14 x24 x34

y14 y24 y34
z14 z24 z34


 .

(5.40)

Inverting (5.40) leads to

∇xλ =
1

det(∇λx)



y24z34 − z24y34 z24x34 − x24z34 x24y34 − y24x34

z14y34 − y14z34 x14z34 − z14x34 y14x34 − x14y34
y14z24 − z14y24 z14x24 − x14z24 x14y24 − y14x24


 =: A

(5.41)

In total, the gradient ∇xu of the displacement function can be summarized
as

∇xu = (q14,q24,q34) ·



A11 A12 A13

A21 A22 A23

A31 A32 A33


 (5.42)

Thus, the normal strain εx which is given as the component εT,11 of the
strain tensor εT = 1

2 (∇xu+∇xu
T ) has the form
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Chapter 5. Deformation model

εx = A11q14,x +A12q23,x +A13q34,x

= A11q1,x +A12q2,x +A13q3,x + (−A11 −A12 −A13)q4,x
(5.43)

Similarly, the other components can be derived. With Qe := (qT
1 , . . . ,q

T
4 )

T

summarizing the individual displacements of the tetrahedron e, this allows to
write the strain vector ε (5.16) as a matrix-vector-multiplication

ε = ÃQe, (5.44)

where Ã arises from A as

Ã =




A11 0 0 A12 0 0 A13 0 0 −A1 0 0
0 A21 0 0 A22 0 0 A23 0 0 −A2 0
0 0 A31 0 0 A32 0 0 A33 0 0 −A3

0 A31 A21 0 A32 A22 0 A33 A23 0 −A3 −A2

A31 0 A11 A32 0 A12 A33 0 A13 −A3 0 −A1

A21 A11 0 A22 A12 0 A23 A13 0 −A2 −A1 0




(5.45)

with Ai = Ai1 +Ai2 +Ai3.
Thus, the strain energy of the deformed tetrahedron e can be written as

Edef ,e =
1

2

∫

e

σ
T
εdV

(Sec. 5.1.4) =
1

2

∫

e

ε
TCεdV

(ε=const) =
1

2
ε
TCε

∫

e

dV

(5.44) =
1

2
QT

e Ã
TCÃQe

∫

e

dV

=
1

2
QT

e Ã
TCÃQeVe

=
1

2
QT

e KeQe,

(5.46)

where Ke ∈ R
12×12 is called the stiffness matrix of element e. The volume

Ve =
∫
e
dV can be calculated using the scalar triple product 1

6x14 · (x24 × x34).
In contrast to non-linear Finite Elements, the stiffness matrix Ke can be

precomputed for linear shape functions. This results in a large performance
gain, as otherwise the integral (5.46) has to be evaluated in each time step,
which can be avoided in the linear Finite Element Method.

With this formula for the deformation energy, the internal forces can be
computed as
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5.2. Linear Finite Element Method

Fint
e (Qe) = −∇Qe

Edef ,e(Qe) = −KeQe, (5.47)

where Fint
e = (fT1 , . . . , fT4 )T summarizes the individual forces acting at the

vertices x1, . . . ,x4. Thus, in an equilibrium condition, it holds that

Fext = −Fint
e = KeQe. (5.48)

Inserting (5.47) into the equation of motion (3.9) results in

MẌ = Fext −KeQe, (5.49)

which can be integrated numerically (Sec. 3.3). Depending on the connec-
tivity of the object, all individual stiffness matrices Ke can be assembled into
a stiffness matrix K for the whole object (see e. g. [CB02]). This can be useful
for solving static equilibrium conditions of the form KQ = Fext for a given
external force Fext . However, K is a sparse matrix, as each vertex lies in a few
tetrahedrons only. Thus, for the dynamic case, it is more useful to compute the
forces for each tetrahedron individually and to assign them to the corresponding
vertices. Consequently, DefCol Studio uses this implementation.

For later use in Chapter 9, the deformation energy Edef of the whole object
can be computed as the sum of the individual deformation energies Edef ,e:

Edef =
∑

e

Edef ,e =
∑

e

1

2

∫

e

σ
T
εdV

=
∑

e

1

2
QT

e KeQe

(5.50)

5.2.1 Properties of the stiffness matrix

For later use in Sec. 7.1, some properties of the stiffness matrix are considered
in this section. From the decomposition Ke = VeÃ

TCÃ, it can be seen that
Ke is symmetric and hence, it is orthogonally diagonalizable. Further, Ke is
positive semidefinite, as QT

e KeQe = ‖
√
CÃQe‖22 ≥ 0. As Ã ∈ R

6×12, the rank
of Ke is less or equal to 6, and at least six eigenvalues are zero.

Using (5.35), it can be shown that exactly six eigenvalues are zero and that
they correspond to translations and linearized rotations. Due to the linear
interpolation of u(x), it can be written as an affine mapping u(x) = Bx + d
with B ∈ R

3×3 and d ∈ R
3. First, for a pure translation, it follows that

∇u = 0. As the translation has three possible directions, three of the zero-
eigenvalues belong to translations, which is a desired property. Otherwise, it
follows ∇u = B, and ∇u + ∇uT = 0 (5.35) holds if and only if B is skew-
symmetric. With the exponential function for matrices, exp(B) is a rotation
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Chapter 5. Deformation model

if and only if B is skew-symmetric, and B is a first-order approximation of
exp(B). Thus, B represents a linearized rotation. As skew-symmetric matrices
have three degrees of freedom, exactly three zero-eigenvalues of Ke correspond
to linearized rotations. Hence, exactly the six remaining eigenvalues of Ke are
non-zero and correspond to the class of symmetric matrices.

Further, the non-zero eigenvalues not only depend on the deformation pa-
rameters, but also on the shape of tetrahedrons [She02]. Thus, they get larger
if elements contain sharp angles or are flat such as slivers, which affects the
stability of the simulation. This should be considered by the mesh generation
algorithm, but it can also be alleviated e. g. by using appropriate damping
schemes (Sec. 8.3).

5.2.2 Co-rotational Finite Element Method

The linear Finite Element Method as described above is not rotationally invari-
ant, as rotations cannot be represented by a linear interpolation of the displace-
ment of the tetrahedral vertices [BIT09]. This can be seen in the fact that pure
rotations of objects cause forces, and that there are deformed states that do
not cause any forces, which results in volume artifacts [MG04]. These states
correspond to the skew-symmetric deformations. [BIT09] also note that using
the Green-St. Venant strain tensor does not alleviate this problem, although it
is rotationally invariant, as already u is not interpolated correctly. However, the
linear interpolation is essential for the performance of the linear Finite Element
Method, and therefore, rotations have to be handled separately.

To overcome this drawback, [HS04, MG04] proposed the co-rotational Finite
Element Method. They extract the rotational part of the deformation and
compute the internal forces for the back-rotated deformation. [HS04] proposed
to employ a polar decomposition to the deformation gradient ∇Φ, which is a
linear mapping Be in the case of linear Finite Elements (Fig. 5.7). Similarly,
[MG04] introduced a geometric way to compute the deformation gradient Be in
the linear case, and also proposed a polar decomposition to find the rotational
part. This idea is summarized in this section.

SBe
RBe

Be

Figure 5.7: The deformation Be of a tetrahedron e can be decomposed into
a rotation RBe

and a symmetric part SBe
using a polar decomposition Be =

RBe
SBe

.

For a tetrahedron e, let x0
1, . . . ,x

0
4 denote the positions of the vertices in its

resting state, while x1, . . . ,x4 denote the positions of the deformed tetrahedron.
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5.2. Linear Finite Element Method

Then, the deformed positions xi can be written as xi = Bex
0
i + d with a linear

mapping Be ∈ R
3×3 and a translation d ∈ R

3. This defines a system of linear
equations, which can be written in homogeneous notation as

(
Be d
0 1

)(
x0
1 x0

2 x0
3 x0

4

1 1 1 1

)
=

(
x1 x2 x3 x4

1 1 1 1

)
(5.51)

Thus, it follows

(
Be d
0 1

)
=

(
x0
1 x0

2 x0
3 x0

4

1 1 1 1

)−1(
x1 x2 x3 x4

1 1 1 1

)
, (5.52)

where the inverse

(
x0
1 x0

2 x0
3 x0

4

1 1 1 1

)−1

can be precomputed. Then, a polar

decomposition decomposes Be = RBe
SBe

into a rotation and a symmetric part,
and the co-rotational forces are computed as

Frot
e = −ReKe(R

T
e Xe −X0

e)

=: −ReKeQ
rot
e ,

(5.53)

where Xe := (xT
1 ,x

T
2 ,x

T
3 ,x

T
4 )

T , similarly X0
e, and Qrot

e := (RT
e Xe − X0

e)
denotes the co-rotated displacement. Re arises from RBe

as

Re =




RBe
0 0 0

0 RBe
0 0

0 0 RBe
0

0 0 0 RBe


 . (5.54)

This means that the deformed tetrahedron is first rotated back usingRT , the
co-rotated displacement RT

e Xe−X0
e is used to compute the deformation forces,

and the forces are rotated into the rotated coordinate frame of the deformed
tetrahedron.
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6
Inversion handling for dynamic

simulations

In the previous chapter, the linear Finite Element Method was introduced which
is based on linear elasticity theory. It was extended to the co-rotational Finite
Element Method [MG04, HS04], which eliminates the problem that rotations
are not handled correctly. Thus, it allows to use the linear Finite Element
Method in order to simulate arbitrary deformations maintaining physical re-
alism. However, it introduces a new drawback which affects the stability of
dynamic simulations. If a tetrahedron gets inverted, i. e. one vertex crosses
its opposite face, the co-rotational Finite Element Method keeps this element
inverted, which causes erroneous equilibrium states and the breakdown of the
whole simulation (Fig. 6.1).

(a) (b)

Figure 6.1: (a) shows the tetrahedral mesh of a cube falling onto the ground.
(b) shows an erroneous equilibrium state after the impact if inverted tetrahe-
drons are not adequately handled.

At this point, it should be emphasized that inversion is not a problem of the
linear Finite Element Method itself, but only of the co-rotational formulation.
In Sec. 6.1, it is shown that problems with inverted elements are solely caused
by the possibly improper rotation returned by the polar decomposition in the
co-rotational Finite Element Method.

One way to address this problem would be to prevent the inversion of ele-
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ments. However, this requires additional forces that are difficult to motivate.
Further, it is difficult to guarantee that inversion is really avoided, and strategies
like untangling meshes [ERM∗03, VGS04] are also not guaranteed to work prop-
erly. Besides, there are cases where inversion is the correct behavior of elements
(see e. g. [ITF04]). As the linear model itself works well for inverted elements, it
seems to be more appropriate to allow the inversion and to adequately handle
inverted elements.

In order to process inverted elements, a particular inversion direction has to
be determined. This direction cannot be extracted by simply considering the
current deformation state. If an inappropriate direction is chosen, the compu-
tation results in force discontinuities. [ITF04] introduced an inversion handling
approach based on the heuristic assumption that an inverted tetrahedron is “as
uninverted as possible”. This implies that an inverted tetrahedron should get
uninverted along the direction that causes the minimum movement of a vertex.
While the underlying heuristic is very useful and appropriate, there exist cases
where the inversion handling of [ITF04] is not conform to this assumption.

In this chapter, a new method is proposed to determine the inversion direc-
tion of inverted elements. The approach is similar to [ITF04]. It is based on
the same heuristic that elements are as uninverted as possible. However, it is
shown that the proposed method exceeds the approach of [ITF04] in the fact
that it always chooses the direction that is implied by the heuristic assump-
tion. Further, positive effects of the proposed inversion handling approach in
dynamic simulations are illustrated. Compared to other strategies, inversions
are efficiently resolved within a small number of simulation steps. The approach
requires that the deformation gradient can be transformed to a diagonal form.
Thus, it can be implemented within any material constitutive model. Moreover,
the approach can easily be implemented in combination with an efficient han-
dling of degenerated elements. Thus, it improves the robustness and stability
of Finite Element based deformable modeling approaches.

Notation

The notation of this chapter is similar to Chapter 5. For a tetrahedron e, let
x1, . . . ,x4 denote the current positions of its vertices. xcm denotes its center of
mass, and xi,rel := xi − xcm denotes the position of xi relative to the center of
mass. An upper index x0

i denotes the initial positions, and capital letters like
Xe ∈ R

12 denote a vector that summarize the individual values of all vertices
of e, i. e. Xe = (xT

1 , . . . ,x
T
4 )

T . Ke ∈ R
12×12 denotes the stiffness matrix of e,

and Fe ∈ R
12 summarizes the forces f1, . . . , f4 that act on the vertices.

The matrix Be ∈ R
3×3 denotes the deformation gradient with the polar de-

composition Be = RBe
SBe

. Re,Se ∈ R
12×12 denote the blockdiagonal matrices

Re =




RBe
0 0 0

0 RBe
0 0

0 0 RBe
0

0 0 0 RBe


 and Se =




SBe
0 0 0

0 SBe
0 0

0 0 SBe
0

0 0 0 SBe


 . (6.1)
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Further, let Qlin
e := Xe − X0

e denote the displacement of tetrahedron e as
applied in the linear Finite Element Method, while Qrot

e := RT
e Xe−X0

e denotes
the co-rotational displacement (5.53). For later use, note that the co-rotational
displacement could be equally defined as

Qrot,S
e = SeX

0
e −X0

e, (6.2)

as RT
e Xe and SeX

0
e differ only by a translation. Thus, using Qrot,S

e in the
co-rotational force computation would lead to the same forces.

6.1 Problem description

In this section, it is shown that the problems concerning inverted elements are
only due to the co-rotational formulation of the linear Finite Element Method.
Therefore, first the polar decomposition of the deformation gradient is intro-
duced, before the actual reason for inversion problems is described.

Note that the current state of a tetrahedron e can be deduced from the
determinant of Be. The tetrahedron is inverted if and only if det(Be) < 0, it is
degenerated if and only if the deformation gradient is singular, i. e. det(Be) = 0,
and in a “normal” deformation state otherwise.

6.1.1 Polar decomposition

For the polar decomposition Be = RBe
SBe

, it is known that RBe
is an or-

thogonal matrix and SBe
is symmetric positive definite if Be is nonsingular.

It follows that det(RBe
) = sign(det(Be)). This implies that if e is inverted

and hence, det(Re) = −1, the internal forces are not only rotated, but also
reflected as RBe

is an improper rotation. Hence, they act to keep the tetra-
hedron inverted (Fig. 6.2). Furthermore, the reflection of forces implies force
discontinuities during the inversion of a tetrahedron which cause visual artifacts.

For convenience, one variant of the polar decomposition is summarized here.
First, the square root

√
BT

e Be ofB
T
e Be is computed. This is done by computing

the diagonalization De = PTBT
e BeP of Be, where P is an orthogonal matrix

with the eigenvectors of BT
e Be being the columns of P. The diagonalization

exists because BT
e Be is symmetric. The square root of BT

e Be then is simply
given by

√
BT

e Be = P
√
DeP

T , where
√
De is obtained by taking the square root

of all diagonal entries. Then, SBe
is set to SBe

:=
√

BT
e Be, and the rotation

RBe
is computed as RBe

= BeS
−1
Be

. The inverse S−1
Be

is simply computed as

P
√
De

−1
PT and does not produce significant computational overhead.

An overview of various techniques of polar decomposition can be found
in [ZZ95].
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6.1.2 Inversion problems due to rotation

For a tetrahedron e, w. l. o. g. it can be assumed that xcm = x0
cm , as a trans-

lation does not cause any forces. For the analysis of the linear Finite Element
Method, it is additionally assumed that the deformation does not contain a ro-
tational part. However, the tetrahedron might be inverted. The stiffness matrix
Ke is diagonalizable and positive semidefinite (Sec. 5.2.1). Let k1, . . . ,k12 be the
eigenvectors of Ke with eigenvalues κ1, . . . , κ12 and consider the displacement
Qlin

e represented using the eigenvectors, i. e. Qlin
e =

∑12
i=1 q

lin
e,i ki. The internal

forces can simply be written as Flin
e =

∑12
i=1(−κiq

lin
e,i ki). For the dynamic equa-

tion, it follows MẌe =
∑12

i=1(−κiq
lin
e,i )ki. The minus sign indicates that each

component of the accelerating forces along an eigenvector acts opposite to the
causal displacement. Hence, the displacement is reduced and the tetrahedron
tends to its uninverted resting state. Note that in the argument, no knowledge
was used whether the tetrahedron is inverted or not. Thus, it holds true also
for inverted tetrahedrons.

In the same manner, the co-rotational displacement Qrot
e can be decomposed

into its components along the eigenvectors, and analogously, it can be concluded
that each component causes a force that accelerates the vertices in the direction
opposite to the causal displacement component. Thus, if the displacement is
computed correctly, the forces are correct, too. Therefore, the only possible
reason for any errors that occur when inverted elements are involved must be
located in the rotation Re. As seen in Sec. 6.1.1, element inversion yields an
improper rotation in the polar decomposition. Due to this fact, the computed
forces cause an acceleration of the vertices to the positions of the reflected resting
state. This is described in the two-dimensional example in Fig. 6.2.

6.2 Approach

In this section, the inversion handling approach is explained. First, the basic
idea of the inversion handling method is outlined in Sec. 6.2.1. The idea of
[ITF04] is briefly described in Sec. 6.2.2, and the properties of [ITF04] are
discussed in Sec. 6.2.3. In particular, a case of a non-intuitive inversion direction
is shown. The improved inversion handling approach, which is described in
Sec. 6.2.4, addresses this issue. In Sec. 6.2.5, the incorporation of degenerated
elements is explained.

6.2.1 Basic idea

Having recognized that problems with inverted elements are caused solely by the
co-rotational formulation and come up due to polar decomposition, it is clear
that eliminating the arising lacks should only be done by a modification of the
polar decomposition. The idea of the co-rotational formulation was to separate
the rotational part from the deformation, which is violated if RBe

contains a
reflection. Hence, the polar decomposition has to be modified in such a way
that the reflection is contained in SBe

and RBe
is a proper rotation.
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x1 x2

x3

(a)

x1 x2

x3

(b)

x1 x2

x3

(c)

x1 x2

x3

(d)

Figure 6.2: This figure shows the error in the co-rotational force computation
due to an improper rotation. (a) shows the original triangle. (b) shows the
current deformation state Xe, where the triangle is inverted. The arrows in-
dicate the correct forces that should be computed in this state. (c) visual-
izes an intermediate step in the co-rotational force computation (Eq. (5.53):
Frot

e = −ReKe(R
T
e Xe − X0

e)), where the computation is decomposed in its
single steps. It shows the transformed deformation state RT

e Xe. The internal
forces are computed w. r. t. this virtual state. As det(RBe

) = −1, this virtual
state is the reflection of the correct state seen in (b). Therefore, the triangle
seems not to be inverted during force computation. The arrows depict the inter-
mediate forces Ftemp

e = −Ke(R
T
e Xe−X0

e) that are caused by this virtual state.
(d) illustrates the current deformation state of the triangle and the co-rotational
forces Fe = ReF

temp
e , which are just the reflected intermediate forces shown in

(c) and therefore act in the wrong direction.

Let ŜBe
= PTSBe

P be the diagonalization of SBe
. To include a reflection

in SBe
, either one or three of the diagonal entries of ŜBe

can be inverted which
results in some Ŝ′

Be
with det(Ŝ′

Be
) < 0, and SBe

can be redefined as SBe
:=

PŜ′
Be

PT , computing RBe
= BeS

−1
Be

afterwards. Ideally, the direction in which
the tetrahedron got inverted can be identified and the corresponding entry of
ŜBe

is chosen to be negative, because inverting another one would lead to force
discontinuities. As this is not possible by just looking at the current state of
the tetrahedron, some heuristic assumption has to be made about the current
deformation.

6.2.2 Existing approach

[ITF04] assume that a tetrahedron is as uninverted as possible, which implies

two aspects: Only one component of ŜBe
should be chosen to be negative, and
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this component should correspond to the direction that causes minimum move-
ment to uninvert the tetrahedron in this direction. They use the singular value
decomposition (SVD) Be = UBe

ŜBe
VT

Be
, where UBe

and VBe
are orthogonal

matrices, to diagonalize the deformation gradient. This leads to the same diag-
onal matrix as the polar decomposition (see Sec. 6.2.5), where they choose the

smallest diagonal entry of ŜBe
which should correspond to the desired direction.

6.2.3 Discussion of the existing approach

The choice of [ITF04] seems to be founded in [Kan94], where the minimization
of the quadratic form

3∑

i=0

||xi,rel −Rx0
i,rel ||2 (6.3)

among all rotations R is considered. Remember that xi,rel was set to xi,rel =
xi − xcm to be the coordinates relative to the center of mass. They show that
the optimal rotation can be extracted from the matrix Axx0 :=

∑
xi,rel(x

0
i,rel)

T

by the polar decomposition Axx0 = Rxx0Sxx0 in the case det(Axx0) > 0. If

det(Axx0) < 0, they show that one has to compute the diagonalization Ŝxx0

of the symmetric part Sxx0 of the polar decomposition and indeed invert the
smallest diagonal entry to obtain the optimal rotation Rxx0 , like it is proposed
by [ITF04] for the deformation gradient.

However, Axx0 generally does not equal the deformation gradient Be. Al-
though they differ only by a symmetric matrix (see [MHTG05]), e. g. Be =
Axx0 · Asym , their polar decompositions return different rotations. This is
founded by the fact that the product of two symmetric matrices is symmet-
ric if and only if both matrices are simultaneously diagonalizable. Therefore,
Sxx0 · Asym is not symmetric in general and Be = Rxx0 · (Sxx0 · Asym) is not
equal to the polar decomposition RBe

SBe
of Be. It follows that the inversion

of the smallest diagonal entry of ŜBe
does not necessarily minimize (6.3), which

seemed to be the motivation for the choice of [ITF04], and that the minimization
of (6.3) is not the goal of the co-rotational model, as Be 6= Axx0 in general.

Further, choosing the smallest diagonal entry does not necessarily fulfill the
heuristic assumption as it does not always correspond to the direction that
causes minimum movement to uninvert the tetrahedron. This is easily seen by
the two-dimensional example in Fig. 6.3 which could analogously be performed
in R

3. The upper triangle shows its resting state that has small extension h in
y-direction. The lower one shows its current deformation state. It is inverted
in y-direction and compressed in x-direction, so the deformation gradient Be

is already diagonal. As it has the same y-height h as in the resting state, the
entry corresponding to this direction is −1, while the entry in x-direction is a
little smaller than one, say 0.9. Then, the deformation gradient Be would be
Be =

(
0.9 0
0 −1

)
and the symmetric part SBe

= ( 0.9 0
0 1 ). Hence, as the entry cor-

responding to the x-direction is smaller, the triangle is chosen to reinvert along
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x-direction. This clearly contradicts the heuristic assumption. The problem is
that the smallest diagonal entry does not reflect the distance of any vertex to
its opposite face, because it obviously depends on the resting state. The flatter
the triangle is, the more probable it is that this rule chooses a non-intuitive
component.

x

y
x0
1 x0

2

x0
3

h

x1 x2

x3

h

Figure 6.3: This figure illustrates a non-intuitive choice of the inversion direction.
The upper triangle shows the resting state, and the lower one shows the current
deformation. The triangle is deformed such that it is inverted in y-direction
and slightly compressed in x-direction. The entry of Be corresponding to the
y-direction is −1, because it is inverted and has the same height h as in the
initial state. Hence, the entry of SBe

corresponding to the y-direction is 1. The
entry in x-direction is smaller than 1 and therefore, it is chosen as the inversion
direction. Consequently, the triangle gets uninverted in x-direction as indicated
by the arrows. However, according to the heuristic assumption, obviously the
y-direction should be chosen.

6.2.4 Improved inversion handling approach

The novel approach is also based on the heuristic assumption of [ITF04] which
states that the tetrahedron is as uninverted as possible. This assumption de-
mands that the direction that causes minimum movement to uninvert the tetra-
hedron is located. As this direction does not necessarily correspond to the
smallest entry in SBe

, which is assumed in [ITF04], there is some more work to
do. First, the direction to reinvert the tetrahedron should be the direction in
which one of the vertices has the shortest distance to its opposite face. How-
ever, note that “distance” must not be interpreted as the standard orthogonal
distance, but it rather means “distance along some given direction”. The rea-
son is that ŜBe

restricts the choice to three directions, which are given by the
eigenvectors of SBe

. Taking the orthogonal direction would not indicate which
diagonal entry to invert. Hence, only three predetermined directions can be
chosen as the inversion direction, and the shortest distance along one of these
directions has to be computed.

To determine the direction causing minimum movement, a pair (c, s) consist-
ing of an eigenvector s of SBe

with ||s|| = 1 and a vertex c has to be found such
that the distance from c along s to its opposite face Fc is minimized among all
possible pairs (Fig. 6.4). This is done by computing a parameter λc,s for each
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Chapter 6. Inversion handling for dynamic simulations

pair (c, s) with ||s|| = 1 such that xc + λc,s · s lies on Fc, where xc denotes the
position of c (Fig. 6.5). Clearly, |λc,s| then denotes the distance of c along s to
Fc. Hence, the desired pair (c0, s0) is the one that corresponds to the minimum
|λc0,s0 |.

x1 x2

x3

s1
s2

(a)

x1 x2

x3

s1
s2

(b)

Figure 6.4: (a) The approach looks for the shortest distance of a vertex c to its
opposite face along the given eigenvectors of SBe

. (b) In this case, x3 has the
shortest distance along the eigenvector s1.

For the computation of λc,s, it has to be considered that the eigenvectors
of SBe

are related to the unrotated coordinate frame, while the current de-
formation state contains a rotation. Remembering (6.2), it can be seen that
the co-rotational forces can be computed equivalently with respect to the state
SeX

0
e. This state is related to the unrotated coordinate frame and obviously

fits to the eigenvectors of SBe
. However, as shown in Sec. 6.1.2 it also does

not contain the inversion and therefore, it causes erroneous forces. Inverting
one of the diagonal entries of ŜBe

now is equivalent to inverting the reference
state SeX

0
e in order to get the correct forces. SeX

0
e and the current deforma-

tion state Xe differ by translation, rotation and inversion. Since none of these
changes any distance, looking for the direction that causes minimum movement
to uninvert the deformed, rotated tetrahedron is equivalent to looking for the di-
rection that causes minimum movement to invert the unrotated reference state
SeX

0
e. Therefore, the parameters λc,s can be computed with respect to SeX

0
e.

Now let c′ be any vertex of the face Fc and xS
c′ its position in the reference

state SeX
0
e. E. g., c′ can be one of the tetrahedron’s vertices. Let xS

c be the
position of c in this state. As λc,ss and (xS

c′ − xS
c ) are vectors that point from

c to some point on the plane that contains Fc, they have the same component
along the face normal of Fc (Fig. 6.5). With nc being the unit face normal of
Fc, this fact could be expressed by the dot product in the following equation.

λc,ss · nc = (xS
c′ − xS

c ) · nc (6.4)

Now it follows that λc,s can be computed using

λc,s =
(xS

c′ − xS
c ) · nc

s · nc
. (6.5)
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xc′ Fc

xc

x
S
c
′

− x
S
c

λ c
,s
s

nc

Figure 6.5: xS
c′ − xS

c and λc,ss have the same component along the face normal
nc of Fc.

Choosing s0 according to the minimum |λc0,s0 | provides the direction with
minimum movement to invert the reference state SeX

0
e. As argued above, s0 also

provides the direction causing minimum movement to uninvert the tetrahedron,
and the sign of the diagonal entry that corresponds to s0 should be changed.
Since the length of nc cancels out in (6.5), the condition that it has to be a unit
vector can be dropped.

Further, c0 is stored as the vertex that is seen as the one that caused the
inversion by crossing Fc0 . Until the tetrahedron returns to an uninverted state,
the optimal direction s0 is computed with respect to c0, so that the tetrahedron
gets uninverted by c0 crossing Fc0 again. Note that there is no possibility to
store the computed direction s0, because the eigenvectors of SBe

and therewith
the possible inversion directions change in each time step. Hence, one has to refer
to a vertex to achieve a consistent choice of inversion directions in subsequent
iterations.

Although the approach has been introduced especially for the co-rotational
formulation of the linear Finite Element Method, it can be implemented for
arbitrary deformation models. The only condition is that the deformation gra-
dient can be transformed into diagonal form. This is always possible using the
SVD Be = UBe

ŜBe
VT

Be
, where UBe

can be interpreted as a rigid body rota-
tion, and VBe

as a material rotation (see [ITF04]). The columns of VBe
can be

interpreted as the possible inversion directions that are needed in the proposed
approach. [ITF04] show how this can be generalized to anisotropic materials.

6.2.5 Degenerated tetrahedrons

As shown in Sec. 6.1, a tetrahedron is inverted if and only if det(Be) < 0,
whereas it is degenerated if and only if det(Be) = 0. Therefore, inverted ele-
ments and degenerated elements are handled completely independent from each
other. Together with an efficient handling of degenerated elements, this yields
a stable simulation of arbitrary deformations.

Like inversion, problems with degenerated elements occur only in the co-
rotational formulation. The problem is again located in the polar decomposition.
In this section, it is described how a simple solution shown in [ITF04] that is
based on SVD can be adopted to obtain a solution for the polar decomposition.
The polar decomposition and the SVD of a deformation gradient Be are con-
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nected by Be = RBe
SBe

= RBe
PŜBe

PT =: UŜBe
QT , which is the SVD of Be.

If Be is singular, then at least one of the diagonal entries of ŜBe
is zero. If it is

exactly one entry, the two columns of U corresponding to the nonzero entries
are uniquely determined. The third column then is computed as the cross prod-
uct of the other two and therefore, it is unique, too. Hence RBe

= UQT results
in a unique solution for the polar decomposition. If more than one diagonal
entry equals zero, the solution is no longer unique and a system of orthonormal
columns for U can be chosen. In every case, RBe

is guaranteed to be a proper
rotation.

6.3 Results

In this section, several experiments are shown to illustrate how the improved
inversion handling approach works. Remember the heuristic assumption that a
tetrahedron always is as uninverted as possible. In Sec. 6.3.1, it is shown that
the method chooses the direction corresponding to this assumption and that it
guarantees fast and reliable recovery from inversion. In Sec. 6.3.2, it is shown
that it can easily be implemented together with a stable handling of degenerated
elements.

6.3.1 Recovery from inversion

In the first experiment, a single tetrahedron is inverted manually. The resting
state and the inverted state are shown in Fig. 6.6. After the manual inversion,
the behavior of the tetrahedron is simulated starting with the inverted state.
The inversion direction that is chosen by the existing approach is indicated by
the red line in Fig. 6.7 (a). Compared to Fig. 6.6 (c), it can be seen that this
choice is non-intuitive. Fig. 6.7 (b) illustrates the resting state that is reached
using the existing approach.

(a) (b) (c)

Figure 6.6: This figure illustrates the setting of the first experiment. (a) shows
the resting state of the tetrahedron. (b) shows an inverted state where the top
vertex was moved below its opposite face. (c) depicts the expected inversion
direction which is preferred by the heuristic assumption.

Fig. 6.8 illustrates that the tetrahedron is uninverted correctly by the im-
proved inversion handling method. As the picture illustrates, the approach
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(a) (b)

Figure 6.7: (a) illustrates the reinversion direction that is chosen by the existing
approach. (b) shows the resting state after the existing approach is applied.

locates the correct direction and uninverts the tetrahedron as expected.

(a) (b)

Figure 6.8: (a) repeats the expected reinversion direction to illustrate that the
improved approach restores the intuitive resting state which is depicted in (b).

(a) (b)

Figure 6.9: (a) shows a cube that is falling down onto the ground. (b) If inversion
is not handled correctly, the cube stays in an erroneous equilibrium state.

In the experiment shown in Fig. 6.9, 6.10 and 6.11, a cube falls down onto the
ground (Fig. 6.9 (a)) which leads to the inversion of many tetrahedrons. This
setting demonstrates that inversion handling is required: Fig. 6.9 (b) depicts
what happens if the co-rotational Finite Element Method is applied without
any inversion handling. Many tetrahedrons stay inverted due to the improper
rotations, and as a consequence, the cube loses volume. Also, its energy gets
lost in this example, and it does not bounce up any more.
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Moreover, the experiment shows that the chosen inversion direction signifi-
cantly influences the behavior of an object: Fig. 6.10 illustrates a naive inversion
handling, where just any diagonal entry is chosen as the inversion direction. The
cube recovers to its original shape, but it takes a long time and it suffers from
self-intersections during the recovery. Due to this fact, it loses energy and does
not bounce as high as it should.

(a) (b) (c)

Figure 6.10: Naive inversion handling. (a) shows the maximum compression
of the cube. (b) illustrates that there are self-intersections during inversion
recovery. (c) shows that the cube restores its original shape.

In Fig. 6.11, the behavior of the falling cube is illustrated if the proposed
approach is employed. First of all, it is not deformed as much as in the other two
cases, because the inversion handling locates the correct inversion direction and
therefore, the internal forces react faster. The original shape is restored after
a few simulation steps, which shows the efficiency of the approach. Further, it
can be seen that the inversion handling does not result in an artificial rotation
of the object.

(a) (b) (c)

Figure 6.11: The improved inversion handling approach. Compared to Fig. 6.10,
the original shape is restored in less simulation steps.
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6.3.2 Handling degenerated elements

This section shows the combination of inversion handling with degenerated el-
ements. A rubber cow is shrunk in a virtual sphere until the radius of the
sphere is zero and all tetrahedrons are degenerated to a single point. After that,
the spherical boundary is removed and the internal forces restore the shape
of the cow. During the deformation and the recovery process, many inverted
tetrahedrons have to be processed.

(a) (b)

(c) (d)

(e) (f)

Figure 6.12: (a)-(c) A cow is shrunk by a virtual sphere. (d)-(f) After the sphere
is removed, the cow restores its original shape.

As stated in Sec. 6.2.5, the rotation in the degenerated case is not unique
when a tetrahedron is degenerated in more than one direction. Therefore, when
all tetrahedrons are compressed to a single point, one has to choose any kind of
rotation. Hence, it is possible that although the cow restores its correct shape,
it does not find the correct rotation.
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6.4 Conclusion

In this chapter, it has been shown that there is a strong need for efficient and
stable inversion handling in algorithms that are based on a co-rotational Fi-
nite Element formulation. An existing approach has been reviewed, where a
non-intuitive behavior has been observed in some configurations. Therefore,
an improved method for inversion handling has been introduced that always
chooses the most appropriate direction to uninvert an inverted tetrahedron. In
contrast to existing approaches, the method can store the inverted component
to guarantee a consistent processing of inverted elements in subsequent simula-
tion steps. Thus, the approach improves the stability and robustness of Finite
Element based deformable modeling approaches.
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7
Parameter estimation

In Chapter 4, the acquisition of object models has been illustrated. After the
point clouds have been transformed to appropriate structures like tetrahedral
or triangular meshes, the models can be used within a simulation environment.

For an appropriate simulation of the objects, their geometric representation
has to be equipped with proper physical parameters. For some applications like
movies and computer games, it is sufficient to set parameters manually such that
the visual appearance is satisfying. In other contexts such as virtual surgery,
realistic deformation parameters are essential for the usability of simulation sys-
tems. A possible estimation approach exerts forces on an object and measures
the deformation. Then, the force is transferred to the object’s virtual counter-
part, and the parameters are refined until the simulated deformation matches
the measured one [ABB∗08].

In Sec. 7.1, this principle is applied to the co-rotational Finite Element
Method (Chapter 5), where the Young modulus and the Poisson ratio have
to be determined (Sec. 5.1.3). The approach performs a series of indentation
tests to obtain several samples of the force-displacement-relation. It employs a
force-feedback-sensor to acquire the exerted forces, which are then transferred
to the simulation environment. The deformation is measured by a range scan-
ner, and the deformed surface is compared to the simulated object using the
Iterative Closest Point algorithm [BM92]. The returned registration error is
taken as an error function, which allows to apply a gradient descent to refine
the deformation parameters. As the approach is based on a comparison of forces
and displacements and does not use the deformation model explicitly, it is not
limited to the co-rotational Finite Element Method and can be also applied to
other deformation models.

Besides the deformation behavior, the visual appearance contributes to the
realism of a simulation. Thus, also appropriate reflection parameters have to
be found, either by manual adaption or by appropriate estimation algorithms.
As for the deformation parameters, the illumination parameters depend on the
underlying illumination model. A wide spread approach in interactive applica-
tions is the Phong illumination model [Pho75, AMHH08], as it approximates the
illumination by local terms and therefore, it can be evaluated fast. In Sec. 7.2,
an approach for the estimation of the Phong illumination parameters is out-
lined. The basic idea is to obtain several color samples for each surface point
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from different directions, which allows to split the measured illumination into
the separate terms of the Phong illumination model. The approach has been
implemented in [Osw09] and is based on [WMP∗06, Wey06], who built a rather
complex environment to obtain the color samples. To account for simpler and
more realistic hardware settings, the implementation of [Osw09] employs the
ICP algorithm to correlate different color samples.

7.1 Deformation parameters

The approach for the estimation of deformation parameters has been developed
in [FSS∗10a, FSS∗10b] with regard to the application described in Chapter 9,
where a system for the autonomous navigation of mobile robots in environments
with deformable objects is illustrated. Fig. 7.1 gives a short overview of the ap-
plication. A mobile robot navigates from a starting position to a goal position
crossing a set of curtains. While standard planning approaches concentrate on
rigid environments, the approach in Chapter 9 takes the deformation energy
into account and allows the robot to plan paths with a trade-off between defor-
mation and travel cost. The travel cost is estimated by a simulation within the
framework introduced in Chapter 3. In order to compute realistic deformation
energies, the robot has to be able to acquire appropriate deformation parame-
ters. Certainly, apart from the sketched application, the estimated parameters
can be used within other tasks in the simulation environment.

(a) (b) (c)

Figure 7.1: Illustration of a planning algorithm in environments containing
deformable objects. (a) A path through a pair of curtains with optimal trade-off
between travel and deformation cost. The robot avoids a more expensive detour
through the upper part. (b) The robot moving in the simulation environment
to estimate the deformation energy. (c) The robot moving on the planned path.

In Sec. 7.1.1, the system setup is illustrated. Sec. 7.1.2 motivates that the
comparison of displacements implicitly compares the estimated deformation pa-
rameters with the real ones, and thereby justifies the chosen error function. In
Sec. 7.1.3, the gradient descent is outlined, before estimation results are shown
in Sec. 7.1.4.

72



7.1. Deformation parameters

7.1.1 System setup

The system setup for the parameter estimation approach is shown in Fig. 7.2 (a).
It illustrates the manipulator of a mobile robot which is equipped with a force-
feedback-sensor and a wooden stick. The stick is necessary in order to minimize
occlusions by the manipulator. The deformation is observed by a depth scanner
that is also attached to the manipulator. Fig. 7.2 (b) illustrates the depth image
obtained by a stereo camera. As the range scan contains parts of the robot’s
manipulator, a model of the robot’s body is used to detect these points and to
eliminate them from the depth scan.

(a) (b)

Figure 7.2: (a) The manipulator of a mobile robot is equipped with a wooden
stick to perform indentation tests and a stereo camera to obtain a depth image.
(b) The 3D image obtained by the stereo camera. Points that belong to the
robot are eliminated.

With this setting, the robot approaches the object and increases the applied
force step by step to a maximum of 50N or until the end-effector is moved
farther than 10cm. In each step t, the exerted force Ft is measured together
with the corresponding depth image Xt ∈ R

3n of the deformed surface. As in
Sec. 3.3, Xt = (xT

t,1, . . . ,x
T
t,n)

T denotes a vector that summarizes all individual
positions xt,i of the surface mesh. To ensure that the objects are deformed and
not moved instead, they are assumed to be fixed, e. g. lying on a table or leaning
at a wall.

7.1.2 Error function

Applying the measured force Ft in the simulation environment, the simulated de-
formed surface Xs,t(E, ν) = (xT

s,t,1(E, ν), . . . ,xT
s,t,m(E, ν))T ∈ R

3m is obtained,
which depends on the deformation parameters E and ν. Note that m 6= n in
general, as the number of vertices of Xs,t(E, ν) corresponds to the number of
vertices of the scan of the undeformed surface, while n is the number of vertices
of the scan of the deformed object. Then, Xt is registered toXs,t(E, ν) using the
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ICP algorithm [BM92] with point-to-point correspondences xr
t,i 7→ xs,t,c(i)(E, ν),

where xr
t,i denotes the position of xt,i after applying the ICP algorithm. A good

initial configuration for the local registration can be found from the configuration
of the manipulator of the robot. As the point density is high, the point-to-point
correspondences lead to reasonable results. Further, this error metric does not
require a triangular surface, but can directly work on the scanned point clouds.
Then, the distance between the registered surfaces is defined similar to the error
function in the ICP algorithm:

err(Xs,t(E, ν),Xr
t ) :=

1

n

n∑

i=1

‖xr
t,i − xs,t,c(i)(E, ν)‖2. (7.1)

In the following, it is shown that this is a reasonable choice for an error func-
tion in order to obtain the deformation parameters. In other words, parameters
that are close to the optimal parameters result in a smaller distance between
the aligned surfaces than parameters that are farther away. To show this, the
simulated displacement Qs,t(E, ν) is related to the displacement Qt measured
in reality. This is done by the force-displacement-relation in an equilibrium
state (5.48).

Ks,t(E, ν)Qs,t(E, ν) = Fs,t

KtQt = Ft

(7.2)

As Fs,t = Ft, inverting the equations and subtracting them from each other
results in

‖Qs,t(E, ν)−Qt‖ = ‖(Ks,t(E, ν)−1 −K−1
t )Ft‖. (7.3)

For a fixed force Ft, it can be seen that smaller differences between the
simulated and measured displacements directly correspond to smaller deviations
between the corresponding stiffness matrices. Thus, it is reasonable to compare
the displacements in order to estimate the stiffness parameters. As the initial
positions X0

s,t and X0
t are equal, the difference of the displacements Qs,t(E, ν)−

Qt equals the difference of the absolute positions Xs,t(E, ν)−Xt, and the latter
can be compared as it is done in the error function (7.1).

In (7.3), the inversion of the stiffness matrices has to be justified. As illus-
trated in Sec. 5.2.1, six eigenvalues of the stiffness matrix K are zero, which
belong to translations and (linearized) rotations. Thus, if K ∈ R

n×n, the kernel
kern(K) has dimension 6, and the image space im(K) has dimension n− 6. As
the kernel corresponds to translations and rotations, forces that cause trans-
lations or rotations do not lie in im(K). However, as the object is fixed, the
deformed surface is observed in an equilibrium state, and therefore, the exerted
force F does neither contain a torque nor causes a translation. Thus, it lies in
the image space of K and there is an inverse image K−1F. Additionally, transla-
tions and rotations are eliminated by the registration algorithm, and hence, the
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inverse image is forced to be orthogonal to the kernel of K. Thus, the inverse
image is unique, which justifies the relation Q = K−1F. The pseudo-inverse
K−1 can be calculated by diagonalizing K and taking the reciprocal value of all
eigenvalues that are greater than zero, while not changing the eigenvalues that
are zero. This establishes a bijective mapping between im(K) and R

n \kern(K).

7.1.3 Gradient descent for parameter estimation

In this section, the gradient descent algorithm for the parameter estimation is
introduced. First, it is experimentally shown that the error function is convex
within a neighborhood of the correct parameters (Fig. 7.3 (b)), which states
that the application of a gradient descent scheme leads to a minimization of the
error function. Moreover, the experiment in Fig. 7.5 (b) shows that the error
has a unique global minimum and no other local minima. Thus, it is possible
to apply a simple gradient descent scheme, which is illustrated in this section.

(a)
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(b)

(c) (d) (e)

Figure 7.3: Illustration of the error function for a synthetic setting. (a) il-
lustrates the setting of the experiment, where a cow with Young modulus
E = 1000 N

dm2 and Poisson ratio ν = 0.3 is deformed. (b) illustrates the error
function which is convex in a neighborhood of the optimal parameters. (c,d,e)
illustrate a detailed view of the registered models with E = 3000, ν = 0.3 (c),
E = 2000, ν = 0.3 (d), and E = 1300, ν = 0.3 (e). For better parameters, the
registration error gets smaller.

The estimation algorithm is summarized in Alg. 2. In step 7, the gradient
of the error function is needed. As the function is not given explicitly, this has
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to be done numerically. Hence, the parameters are varied locally, which approx-
imates the gradient. In step 11, the relative errors in subsequent iterations are
compared. As the absolute error generally does not approximate zero, it is more
appropriate to examine the difference err i−1 − err i, which converges to zero if
the error is minimized.

As the error function has a unique global minimum and no other local min-
ima, the initialization of the values influences the runtime rather than the result.
However, a reasonable initialization of E and ν can be deduced from the possi-
ble range of the parameters (Sec. 5.1.3) and the experimentally observed error
functions (Sec. 7.1.4). The range of ν is bounded, i. e. 0 ≤ ν ≤ 0.5, and ν can
be initialized with 0.25, for example. As E ≥ 0, it can be initialized with any
positive value. The experiments illustrate that the error function is steeper for
small values, while it converges for larger values of E and thus, the slope con-
verges to zero. Hence, it is probably better to underestimate the Young modulus
than to overestimate it, and to initialize E with a small value. Note that the
formulation of Hayes [HKHM72] cannot be applied for the initialization in this
case as it requires two simultaneous indentations [CZ05].

Algorithm 2: Parameter estimation

Input: A model X0 of an object, exerted force Ft, scanned surface Xt

Output: Deformation parameters E, ν
1 Initialize E0, ν0;
2 err0 = ∞;
3 i = 0;
4 Compute Xs,t(E0, ν0);
5 repeat
6 i++;

7 (Ei, νi)
T = (Ei−1, νi−1)

T − λ∇err(Xs,t(Ei−1, νi−1),X
r
t );

8 Compute Xs,t(Ei, νi);
9 ICP (Xt,Xs,t(Ei, νi));

10 err i = err(Xs,t(Ei, νi),X
r
t );

11 until err i−1 − err i < δ;

7.1.4 Results

Several experiments have been performed to illustrate the capabilities of the
approach. Concerning the spatial representation in the simulation environment,
there are different possibilities. If a complete object model is available (Fig. 4.7),
this is used in the simulation. However, as the objects are assumed to be fixed
by a wall or a table, it is not always possible to obtain scans from all directions
for a complete model. As the wall or a table obviously delimit the object, they
can be used to extract a planar surface that is heuristically assumed to be the
back side of the object. Thus, a model of the object can be obtained by one
scan only (Fig. 7.4).

76



7.1. Deformation parameters

(a) (b)

Figure 7.4: A tetrahedral mesh generated from a single incomplete scan of an in-
flated balloon by assuming the wall to be the back side of the ball. Although the
scan suffers from large holes, the approach of [SWT06] generates an applicable
tetrahedral mesh.

In the first experiment, the elasticity parameters of a foam cube with an
edge length of 15cm were determined. The robot deformed the object in the
center. The force-distance curve of this experiment is shown in Fig. 7.5 (a). In
this experiment, the depth scan was obtained by a PMD time-of-flight camera.
The robot moved for 9cm and collected a force measurement and a surface scan
every 1cm. As it can be seen in the curve, the deformation behavior of the
cube is approximately linear, except in the beginning, where slippage of the
probe tip occurred. This shows that the material assumptions are reasonable.
Fig. 7.5 (b) illustrates the error function for one force-displacement sample with
a uniform sampling of elasticity parameters. The error function is very high if
the simulated object is too deformable, i. e. the Young modulus is too small.
With increasing Young modulus, the simulated deformation gets smaller and the
error converges to the registration error that is obtained when registering the
scanned, deformed surface to the undeformed mesh. Furthermore, the Young
modulus has a substantially larger influence on the error function than the
Poisson ratio. Fig. 7.5 (c) shows the estimated Young modulus for different
force-displacement samples. It shows that the variance of the estimated values
is rather low among the different estimations. Fig. 7.6 shows a comparison of
the deformed real surface and the deformed simulated surface, together with
the registration result for a specific force-displacement sample.

In a second experiment, the approach was applied to the inflatable balloon
that is shown in Fig. 7.2 (b). In this experiment, a Bumblebee stereo camera
was used. First, a model of the undeformed object was constructed on the fly
for the simulation system, as shown in Fig. 7.4. Second, the ICP algorithm
was used to obtain the alignment of the deformed model with the observation
of the deformed object. The resulting estimate for the Young modulus with
seven different force-displacement samples is shown in Fig. 7.7. The estimation
results in similar values for the Young modulus, indicating a homogeneous defor-
mation behavior of the object. The average runtime for computing the optimal
parameters per force-displacement sample was 192.5s and needed 7 iterations
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Figure 7.5: Parameter estimation for a foam cube. (a) illustrates the force
depending on the distance that the manipulator moved. (b) shows the error
function for one force-displacement sample. The influence of the Young mod-
ulus is much larger than the influence of the Poisson ratio. (c) illustrates the
estimated Young modulus for different force-displacement samples.

of deformation simulations with different parameters on average.
In order to evaluate the robustness of the parameter estimation, the ap-

proach was applied to a plush teddy, which was deformed at six different body
parts, e. g. the head, the belly, and the back. The results are summarized in
Fig. 7.8. In each experiment, the parameters were determined as the average
over seven different force-displacement samples. Additionally, the mean over
the six different experiments is shown. The variance among the different experi-
ments is higher than the variance among different force-deformation samples for
the same location, which suggests that the assumption of homogeneous material
is not valid in this case.
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(a) (b) (c)

Figure 7.6: The registration result in one experiment of the parameter estima-
tion. (a) shows the scanned, real surface, (b) shows the simulated deformed
surface, and (c) shows the registration result.
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Figure 7.7: Parameter estimation for the inflated balloon (Fig. 7.2 (b)) for
different force-displacement samples.
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Figure 7.8: Estimation of the deformation parameters for a plush teddy at
different body parts. Experiment 1, 2, 3 correspond to the head, 4, 5 correspond
to the belly, and 6 corresponds to the back of the teddy. In each experiment,
the average over several force-displacement samples was computed.
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7.2 Illumination parameters

In Chapter 4, the registration of several 3D scans has been illustrated. For
the visualization of the scanned objects, the employed faceSCAN III system
also takes a color snapshot of the objects. However, as a complete object is
composed of different scans, the color values of overlapping parts are taken
several times from different directions. Thus, they do not match and cannot
be used for the rendering of the object (Fig. 7.9). To overcome this limit, the
reflection values of objects are estimated instead of color values, and are applied
with an appropriate illumination model in order to obtain a proper visualization.

Figure 7.9: The color values taken by the scanning devices do not fit at overlap-
ping parts, as they are taken from different directions [Osw09].

In this section, an approach for the estimation of the illumination parameters
is illustrated. The approach has been implemented in [Osw09] and is based on
previous work by [WMP∗06, JMLH01, DJ05]. While [WMP∗06, Wey06] use a
rather complex scanning environment, [Osw09] use a simplified setting which
employs the ICP algorithm to find correspondences between different scans.
Thus, this version better meets a realistic hardware setting. In this section,
the idea of the estimation implemented by [Osw09] is outlined.

7.2.1 Illumination model

The parameters that should be estimated depend on the chosen illumination
model. In Computer Graphics, the Phong illumination model [Pho75, AMHH08]
is widely used due to its simplicity and low computation time. Therefore, it is
also employed in DefCol Studio. To illustrate the corresponding parameters,
it is briefly introduced here. It evaluates the color value only locally at the
surface point and disregards reflections between the objects. These are only
approximated by the ambient value.

Fig. 7.10 illustrates the components of the Phong illumination model. The
color value is composed of three individual values. First, the ambient term is
considered, which approximates the global ambient illumination that is basically
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7.2. Illumination parameters

Figure 7.10: Illustration of the different components of the Phong illumination
model.1

caused by the reflected light of all the objects in a scene. Second, a diffuse
reflection term is considered which represents the color of the object, i. e. the
colors that are reflected. This component does not depend on the viewing
direction, but on the angle between the surface normal and the incoming light.
Thus, it produces a spatial impression. Third, light is partially mirrored into
the ideal reflection direction, which is represented by the specular term. Thus,
the color value is given as

I = Iambient + Idiffuse + Ispecular (7.4)

The ambient value is computed as

Iambient = ka · Ia, (7.5)

where Ia denotes the ambient intensity of the incoming light and ka denotes
a material constant determining the amount of reflected ambient light. In order
to represent the reflected light of the objects in the scene, Ia is frequently chosen
to be similar to the dominating color of the objects within the scene.

The diffuse value depends on the cosine of the angle between the direction
of the light source L and the surface normal N (Fig. 7.11). If L and N are unit
vectors, the diffuse component is computed as

Idiffuse = kd · Id · cos(∠(L,N)) = kd · Id · (L ·N), (7.6)

where Id denotes the diffuse intensity of the light source and kd denotes the
diffuse reflection parameter of the surface.

The specular component depends on the ideal reflection direction and the
direction of the viewer. It is given as

Ispecular = ks · Is · cos(∠(R,V))n = ks · Is · (R ·V)n, (7.7)

1http://de.wikipedia.org/wiki/Phong-Beleuchtungsmodell, accessed on November 7, 2011.
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where Is denotes the specular intensity of the light source, ks denotes the
specular reflection parameter of the object, and n denotes a constant that de-
termines the width of the specular highlight.

L

N

R

V

Figure 7.11: Directions that are employed in the Phong illumination model.
L denotes the direction to the light source, N denotes the surface normal, R
denotes the ideal reflection direction, and V denotes the direction of the viewer.
All vectors point off the surface and are assumed to have unit length.

The given equations (7.5)-(7.7) are only valid for a single color. Thus, for
the standard rgb-model, the equations have to be evaluated separately for the
three color values.

Typically, the diffuse and ambient reflection coefficients kid, k
i
a can be chosen

as kid = kia for all i ∈ {r, g, b}, as they represent the color of an object. Moreover,
the specular and diffuse intensity of the light source Iis, I

i
d are frequently assumed

to be equal, as they originate from the same light source, while the components
Iia are chosen to reflect the dominating color of the objects within the scene. The
specular reflection components kis are frequently chosen to reflect the incoming
light value, thus krs = kgs = kbs, which is intuitive as it represents an ideally
mirroring component.

Thus, mainly the constants krd, k
g
d, k

b
d, k

r
s , k

g
s , k

b
s and n have to be estimated

for an appropriate illumination of objects.

7.2.2 Estimation idea for illumination parameters

In order to estimate the diffuse and specular reflection constants, the ambient
light should be eliminated. By eliminating all surrounding light sources, only
the scanner emits light. This can be assumed to be directional. Moreover, in a
darkly colored environment, there are almost no reflections in the neighborhood
that concern the scanned object. In any case, the illumination is by far domi-
nated by the diffuse and specular components. Thus, the color values obtained
at a surface point are given as

I = Idiffuse + Ispecular . (7.8)

A simple reflection distribution given by diffuse and specular reflectance
only is illustrated in Fig. 7.12 (a). As the specular reflection occurs only under
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7.2. Illumination parameters

certain directions, there are directions which reflect exactly the diffuse com-
ponent. Thus, depending on the direction of the camera, a snapshot contains
always the diffuse part and possibly any fraction of the specular reflection. How-
ever, there are directions which contain only the diffuse lighting (green arrow in
Fig. 7.12 (b)).

(a) (b)

Figure 7.12: (a) Illustration of the diffuse and specular reflection components.
(b) As the specular component occurs only near the perfect reflection direc-
tion, there are directions that contain only the diffuse term (green arrow). The
number of sample values (white / green arrows) determines the approximation
quality of the reflection function [Osw09].

Thus, the basic idea for the parameter estimation is to separate the diffuse
and specular reflection by taking several snapshots from different directions
(Fig. 7.13). Using the ICP algorithm, the points of each scan are assigned to
their corresponding points in the other scans. Thus, for each surface point,
several sample values I1, . . . , Ij for the light intensity I are obtained.

Figure 7.13: Several snapshots are taken in order to obtain different sample
values for each surface point [Osw09].

As the diffuse component does not depend on the viewing direction, the
quotient

Idiffuse
L ·N = kdId (7.9)

is constant for each surface point, while the quotient

Ispecular
L ·N ≥ 0 (7.10)

is always greater than zero. Thus, the minimum quotient of all sample values

83



Chapter 7. Parameter estimation

Imin := min
Ij

Lj ·Nj
(7.11)

reflects a direction where the specular reflectance is zero. Therefore, it equals
the diffuse quotient in (7.9), and the diffuse reflection coefficient can be calcu-
lated by dividing (7.11) through the light intensity of the scanner. The intensity
and the light direction Lj are given by the scanner setup, while the surface nor-
mal Nj is returned within the 3D model that is obtained by the scanner.

Having separated the diffuse reflection, the specular part of a sample value
can be obtained by the difference Ij − Imin(Lj · Nj). As this part is more
sensitive to directional changes, it is much more sensitive to the sampling rate
than the diffuse value as can be seen in Fig. 7.14.

(a) (b)

Figure 7.14: (a) With few sample values, the specular component cannot be
approximated well, while the diffuse component can still be estimated. (b) More
samples allow a better approximation of the specular component [Osw09].

Further, one needs to make assumptions on the specular exponent n which
is based on experimental values in [WMP∗06, Osw09]. However, as the diffuse
value is more important for the visualization and errors in the specular compo-
nent are more tolerable, this is an acceptable limitation of the implementation.

Fig. 7.15 compares the taken snapshots with the parameters obtained in
[Osw09].

Figure 7.15: Comparison between the original color values obtained by the
scanner and the illumination obtained by the estimated parameters [Osw09].

84



7.3. Conclusion

7.3 Conclusion

In this chapter, the estimation of deformation and illumination parameters has
been introduced. The acquisition of physical parameters relies on the linear
elasticity theory (Sec. 5.1) and estimates the Young modulus and the Poisson
ratio, which define the behavior of linearly elastic, isotropic materials. There-
fore, the approach employed a force-feedback-sensor and a depth camera to
establish several force-displacement samples which lead to physical parameters
using the force-displacement-relation. The used materials were assumed to be
homogeneous, which showed to be correct for some of the experiments, but it
did not apply to the experiment shown in Fig. 7.8. However, the Finite Element
Method allows to assign distinct values of Young modulus and Poisson ratio to
individual tetrahedrons. Thus, the approach could also be extended to inhomo-
geneous materials. For the estimation of illumination parameters, an approach
implemented in [Osw09] has been outlined. The approach employs registra-
tion techniques to obtain various illumination samples from different directions,
which allow to estimate the parameters of the Phong illumination model. Due
to the application of registration techniques, it can be realized within simple
hardware settings.
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8
Stability in dynamic simulations

In Sec. 3.3, the computation of the dynamic movement of deformable objects
has been introduced, which is based on a numerical time integration scheme.
Obviously, the efficiency of a dynamic simulation depends directly on the choice
of an appropriate time step. While the simulation gets faster for larger time
steps, the approximation gets worse and the simulation becomes unstable. In
a demonstrative explanation, this means that the total energy is not conserved,
but grows uncontrolled, which causes the breakdown of the simulation. In con-
trast, small time steps yield a better approximation, however at the price of a
slow simulation result.

Thus, methods that allow for a large time step while keeping the simula-
tion stable greatly enhance the efficiency of simulations. An approach which
is commonly applied in simulation environments is to introduce velocity-depen-
dent damping forces. They are inspired by the idea to prevent an unbounded
growth of the kinetic energy, as they reduce local oscillations of objects. There-
fore, damping forces enhance both stability and realism, while requiring low
computation time. Additionally, they can cover defects e. g. in mesh genera-
tion, as also badly shaped meshes can be simulated if an appropriate damping
is employed (cf. Sec. 5.2.1, [She02]).

In Sec. 8.1, the basic concepts which describe the quality of an integration
scheme are depicted. It is shown that velocity-dependent damping forces im-
prove the numerical stability. In Sec. 8.2, a wide-spread damping approach for
dynamic simulations is shown, which is frequently referred to as spring damp-
ing (cf. [NMK∗06]). In Sec. 8.3, an optimized damping approach is introduced
that is based on spring damping. It is motivated by the fact that the iterative
application of spring damping further reduces local oscillations and in this way,
it improves the stability. It is shown that the iterative forces can be computed
directly, and that they allow for larger time steps in dynamic simulations. Fur-
ther, the approach simplifies the parameter setting, as the damping parameter
can always be chosen within the range between 0 and 1, and the damping forces
cannot overshoot. In Sec. 8.3.7, the damping approach is applied for a fast prop-
agation of external forces, which makes the simulation less sensitive to external
forces like collision or user interaction.
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8.1 Motivation

The applicability of a numerical integration scheme to a given differential equa-
tion is described by different terms which are consistency, stability, and con-
vergence. As stability is the main interest in this chapter, the other topics are
only depicted here, while a thorough introduction to these terms can be found
in [DR08].

To illustrate the terms, the simple initial value problem

u̇(t) = u(t), u(0) = u0 = 1, t ∈ [0, T ], T ∈ R (8.1)

is considered, which has the solution u(t) = et. The explicit Euler integration
scheme with time step h leads to the discrete solution ut+h = ut + hu̇t =
(1 + h)ut. Thus, for t = jh, j ∈ {1, ..., ⌊T

h ⌋} the value ujh can be written as
ujh = (1 + h)ju0 = (1 + h)j .

Consistency . The local discretization error is defined as

∣∣∣∣
u(t+ h)− u′

t+h

h

∣∣∣∣ , (8.2)

where u(t+ h) is the correct solution at time t+ h and u′
t+h := u(t) + hu̇(t)

is the approximated value obtained after one integration step, starting at the
correct solution u(t). This difference can be estimated by means of the Taylor
series u(t+ h) = u(t) + hu̇(t) +O(h2) = u(t) + hu(t) +O(h2), which results in

∣∣∣∣
u(t+ h)− u′

t+h

h

∣∣∣∣ =
∣∣∣∣
(u(t) + hu(t) +O(h2))− (u(t) + hu(t))

h

∣∣∣∣ = O(h). (8.3)

With h → 0, the local discretization error vanishes. Thus, the Euler inte-
gration scheme is called consistent for the given initial value problem. In other
words, consistency means that the integration scheme sufficiently approximates
the given problem.

Convergence . The global discretization error is defined as

max
j

|u(jh)− ujh|, j ∈ {1, ..., J = ⌊T
h
⌋}. (8.4)

An integration scheme is called convergent for a given initial value problem
if the global approximation error vanishes for h → 0. In the example, this is the
case. To illustrate this, the convergence is shown for a fixed t ∈ [0, T ]. With
t = jh, it follows that j → ∞ if h → 0. j can be written as j = t 1h = t JT . Then,
it holds
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(1 + h)
j
=

(
1 +

T

J︸︷︷︸
=: 1

n

)=:n
J
T

·t
=̂

((
1 +

1

n

)n

︸ ︷︷ ︸
→e

)t

→ et for (h → 0 ⇒ J → ∞),

(8.5)

which shows that the Euler scheme converges for h → 0. Thus, in contrast
to consistency, which states the approximation of the differential equation, the
convergence states the approximation of the solution function. For single-step
integration schemes, consistency usually implies convergence.

Stability . As illustrated above, each integration step introduces a discretiza-
tion error εt. Further, the initial value might contain an error ε0 due to rounding.
After one integration step, the error is evolved as uh = u0 + ε0 + h(u0 + ε0) =
(1 + h)u0 + (1 + h)ε0. For ujh, it holds ujh = (1 + h)ju0 + (1 + h)jε0. Thus,
after j simulation steps, the initial error ε0 became (1+h)jε0, and similarly, the
discretization errors εt are evolved. As (1 + h)j → ∞ for j → ∞, it states that
initial errors are always enlarged for t → ∞. Note that this does not contradict
the convergence, as convergence demands the pointwise convergence for a fixed
t with h → 0, whereas the stability is considered for t → ∞ with a fixed h > 0.

Thus, the Euler scheme is consistent and convergent, but a small time step
h has to be chosen. At the contrary, an interactive simulation has to trade off
accuracy and efficiency. It requires a large time step which might result in an
augmentation of initial errors. Therefore, the stability of an integration system is
an important condition in interactive dynamic simulations. Note that for multi-
step integration schemes, consistency on its own does not imply convergence,
but in conjunction with stability, the convergence is implied, which highlights
the significance of stability.

8.1.1 Benefit of damping schemes

The benefit of an appropriate damping scheme for the stability of dynamic
simulations can be illustrated by a simple harmonic oscillator with mass m and
spring stiffness D (Fig. 8.1).

The displacement s of the harmonic oscillator obeys the ordinary differential
equation

ms̈ = −Ds, (8.6)

where m is the mass of the oscillator and D is the spring constant. With
v = ṡ, this is transformed to

(
ṡ
v̇

)
=

(
v

−D
ms

)
=

(
0 1

−D
m 0

)(
s
v

)
(8.7)
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D
m

s

F = −D · s

Figure 8.1: Illustration of a harmonic oscillator with spring constant D and
mass m in its resting state (above) and deflected position (below).

Similar to (8.1), this can be solved with the exponential function for matrices:

(
s(t)
v(t)

)
= exp

(
t ·
(

0 1
−D

m 0

))(
s0
v0

)
. (8.8)

Applying the explicit Euler scheme (Sec. 3.3) with time step h results in

(
st+h

vt+h

)
=

(
1 h

−hD
m 1

)(
st
vt

)
. (8.9)

The structure of the solution is exactly the same as for (8.1), and the con-
sistency and convergence can be shown similarly. Likewise, for an initial error(
εs
εv

)
, after j iterations it holds

(
εs
εv

)
−→

(
1 h

−hD
m 1

)j (
εs
εv

)
. (8.10)

As the eigenvalues of the system matrix are 1± ih
√

D
m with absolute value

greater than 1, the initial error grows unbounded, and the Euler scheme is
unstable. However, inserting a velocity-dependent damping force −γv leads to

(
st+h

vt+h

)
=

(
st
vt

)
+

(
hvt

−hD
mst − hγvt

)
=

(
1 h

−hD
m 1− hγ

)(
st
vt

)
. (8.11)

For an appropriately chosen γ, which can be calculated exactly using the
eigenvalues, the spectral radius of the system matrix gets smaller than one.

For D = 100, m = 1 and initial deflection s0 = 1, the solution for (8.6) is
given by s(t) = s0 cos(10t). Fig. 8.2 illustrates the exact solution and discrete
solutions obtained by the explicit Euler integration with different time steps
and damping. While the approximation is sufficient for very small time steps
(Fig. 8.2 (b)), it gets worse if the time step is larger (Fig. 8.2 (c)). With
an appropriate damping constant, the time step can be chosen much larger
(Fig. 8.2 (d)).
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Figure 8.2: Illustration of the explicit Euler scheme for the harmonic oscilla-
tor (8.6) with different time steps and damping. The constants are chosen as
D = 100,m = 1. (a) illustrates the correct solution of (8.6). (b) shows that
the Euler integration results in a sufficient approximation for very small time
steps. (c) Using a larger time step, the integration error grows rapidly. (d) The
velocity-dependent damping allows for a much larger time step.

8.2 Damping in dynamic simulations

In the previous section, the benefit of velocity-dependent damping forces was
illustrated. They allow for significantly larger time steps in numerical integra-
tion schemes, which leads to fast and efficient simulations. Therefore, damping
is a relevant topic in the area of computer animation. On the one hand, it
enhances the stability, which improves the perceived performance of dynamic
simulations. On the other hand, they influence the movement of objects. This
can be desired, e. g. the reduction of oscillations, which improves the perceived
realism of a simulation. However, it can also lead to undesired effects, e. g. if
the global movement is affected and linear or angular momentum are concerned
(Sec. 3.2.1).

The notation of this chapter is similar to Sec. 3.2. Thus, xi, i = 1, . . . , n
denote the current positions of the mass points of a deformable object, vi de-
notes the current velocity of mass point xi, and qi denotes the displacement
of xi. The scalar mi denotes the mass of xi, and fi denotes the force acting
on xi, which is composed of internal and external forces f inti and fexti . Further,
a capital letter X = (xT

1 , . . . ,x
T
n )

T denotes a column vector summarizing all
positions, and similarly, Q, F and V are defined. As Ẋ = Q̇, the equation of
motion (3.9) can be written as

MQ̈ = Fext + Fint = Fext −KQ, (8.12)

where M denotes the mass matrix, Fext the external forces, and K denotes
the stiffness matrix. Here, it does not matter ifK stems from the Finite Element
Method, the mass-spring-model, or any other deformation model. Disregarding
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external forces and inverting M, the equation has the same structure as the
harmonic oscillator (Fig. 8.1). Accordingly, a velocity-dependent damping term
is commonly inserted into (8.12).

MQ̈ = Fext −KQ−CẊ, (8.13)

In this equation, C is a user-defined matrix that defines the velocity-depen-
dent damping force. To decouple the system of equations, mass lumping is
commonly assumed (Sec. 3.3) to get a diagonal mass matrix. Similarly, either
the damping matrix has to be diagonal (see, for example, [MDM∗02]), or the
damping forces have to be computed in an additional step. The first alternative
leads to the following equation of motion for a single mass point:

miẍi = fi − γẋi, (8.14)

where γ is a user-defined parameter [TPBF87, TF88a]. The second alterna-
tive leads to the equation

mẍ = f + fd, (8.15)

where fd denotes a damping force that does not only depend on one, but on
various mass points.

Eq. (8.14) corresponds to the damping term in (8.11). It is commonly known
as point damping and only damps the absolute velocities of the points. In
contrast, (8.15) allows a variety of possible computations of fd, including, for
example, the damping of relative velocities. Of course, fd generally depends on
the damping parameter γ.

The objective of the damping configuration in dynamic simulations is to find
a setting that maximizes the stability, while undesired effects are avoided or
within an acceptable range. For example, the point damping force γẋ in (8.14)
results in an improved numerical stability, but at the price of preventing the
acceleration of a mass point. This behavior is desired in the specific context
of friction and might be appropriate in some configurations like (8.11), but in
general, the effect is undesired in an animation as it affects the linear momentum
(Sec. 3.2.1).

Therefore, damping terms commonly employ relative velocities for the com-
putation of fd in (8.15) to avoid the undesired influence on the global movement.
For example, the relative velocity of adjacent mass points can be used. In this
case, damping forces are computed for pairs of points and are applied symmetri-
cally to both points. This method preserves the linear momentum of the point
pair and, thus, of the entire structure. For the conservation of angular momen-
tum, a projection technique has to be applied. Then, this type of damping
only influences relative movements of points, i. e. internal oscillations, while
the global movement of the structure is not affected. However, estimating suit-
able damping parameters is a challenging task [KYOK09]. Compared to (8.11),
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where the parameter could be determined by the eigenvalues of the system ma-
trix, this is generally not possible in (8.13) and (8.15) as the matrices are large,
which prevents an analytical analysis.

8.2.1 Spring damping approach

The optimized damping approach (Sec. 8.3) is based on the well-known spring
damping which is briefly reviewed in this section (see e. g. [NMK∗06]). In this
approach, a force is symmetrically applied to two adjacent points in order to
damp their relative velocity.

The spring damping approach needs some kind of neighborhood information
for the mass points xi, and damping forces are computed for each pair of points
that are considered to be adjacent. Neighborhood can be defined, for example,
by an edge in a tetrahedral mesh, or by an influence radius of a particle. Each
pair of adjacent points in the neighborhood information is referenced by the
distance or relative position xe = xi − xj of the incident points. The relative
velocity of two adjacent points is denoted as ve = vi − vj . Similar to the
damping forces at the points, the damping forces which are related to relative
velocities are given by fde .

The spring damping approach works as follows. For two points xi and xj , the
relative velocity ve is computed. A damping force fde = −γve, i. e. proportional
to the relative velocity ve, is computed and symmetrically applied to xi and
xj . Since both damping forces add to zero, the linear momentum is preserved
(Fig. 8.3).

However, the angular momentum is generally not preserved, as the relative
velocity ve is not necessarily aligned to the relative position xe, and nor are the
damping forces fde . This issue can be addressed by projecting the forces onto

the direction xe using fde := (xe · fde ) xe

‖xe‖2

2

(Fig. 8.3 (b)).

xi xe xj

vi

vj
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xe

xj
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Figure 8.3: Illustration of the spring damping approach.

The result of the computed damping forces can be further improved if the
future velocities v′

i and v′
j are predicted using an Euler integration step. In

this case, the damping forces are computed with respect to the predicted future
relative velocity v′

e.
Fig. 8.4 illustrates the impact of damping in dynamic simulations. External

forces are applied to the object using a spring dragger. While the undamped
object suffers from local oscillations and the simulation finally fails (Fig. 8.4 (a)),
the point-damped one comes to a resting state quickly, but it does not fall down
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as the global movement is disturbed (Fig. 8.4 (b)). In contrast, the spring-
damped sneaker (Fig. 8.4 (c)) behaves perfectly and keeps stable even with a
significantly enlarged time step.

(a)

(b)

(c)

Figure 8.4: (a) The undamped sneaker does not recover to a stable resting state.
(b) The point-damped sneaker remains stable and recovers to a resting state
quickly. However, the global movement is heavily influenced. (c) The spring-
damped sneaker recovers to a stable resting state. The global movement is not
affected.

8.3 Optimized damping

In this section, the optimized damping approach is introduced. It is motivated
by the fact that an iterative computation of damping forces within one simu-
lation step can improve the reduction of oscillations (Sec. 8.3.1). It is shown
that the iterative damping procedure converges and that the limit can be com-
puted directly (Sec. 8.3.2). While the linear momentum is inherently preserved,
the angular momentum has to be handled in a postprocessing step as in the
spring damping. To do this, three possible ways are given and compared with
respect to their applicability (Sec. 8.3.4). Further, the parameter setting and
the possibilities of application are shown.

In contrast to other damping approaches, the optimized damping approach is
independent from the deformation model [PB88, BW98], the integration scheme
and the structure of the simulated object [NMK∗06]. By choosing the damping
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parameter always smaller than 1, it is guaranteed that the damping forces do
not overshoot.

8.3.1 Iterative force computation

Let xcm denote the center of mass of an object and vcm its velocity. v′
i = vi +

h
mi

fi denotes the predicted future velocity of point xi, and similarly v′
e denotes

the predicted future relative velocity of distance xe. Finally, v
d
i = vi+

h
mi

(fi+fdi )
denotes the damped velocity of point xi.

The neighborhood information can be stored in the connectivity matrix
E ∈ R

m×n, where m is the number of adjacent point pairs in the neighbor-
hood information and n is the number of points of the object. E is defined as
follows: For a distance xe with incident points xi and xj , where i < j, Ee,i is
defined is Ee,i := 1 and Ee,j := −1. All other values of E are set to zero.

Similar to V, V′ denotes the set of predicted velocities, and Vd the damped
velocities. Fd denotes the set of damping forces at the points, and Fd

e the set of
the damping forces at the distances.

In order to show the convergence of iterative spring damping forces, the force
computation has to be formulated in matrix-vector-notation, which is done in
the following, starting with the standard spring damping step.

v′
i = vi +

h

mi
fi fde = −γv′

e

v′
j = vj +

h

mj
fj fdi = fdi + fde (8.16)

v′
e = v′

i − v′
j fdj = fdj − fde

The damped velocities vd
i and vd

j are given as

vd
i = vi +

h

mi
(fdi + fi) = v′

i +
h

mi
fdi

vd
j = vj +

h

mj
(fdj + fj) = v′

j +
h

mj
fdj .

(8.17)

Using the connectivity matrix, (8.16) can be written in matrix-vector-nota-
tion:

V′ = V + hM−1F

Fd
e = −γẼV′

Fd = ẼTFd
e

= −γẼT ẼV′,

(8.18)
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with Ẽ ∈ R
3n×3n arising from E by replacing each entry y of E by a 3 × 3-

matrix

(
y 0 0
0 y 0
0 0 y

)
, which accounts for the fact that each point xi has three spatial

components (xi, yi, zi). Accordingly, (8.17) becomes

Vd = V′ + hM−1Fd

(8.18)
= V′ − γhM−1ẼT ẼV′

⇒ Vd = (id− γhM−1ẼT Ẽ)V′

(8.19)

After k iterations, this results in

Vd,k = (id− γhM−1ẼT Ẽ)kV′

=: DkV′,
(8.20)

where Vd,k denotes the damped velocities after k iterations.

8.3.2 Convergence of iterative damping forces

In this section, the convergence of (8.20) is shown. The idea is briefly sketched,

before the proof is carried out. First, it is shown thatM−1ẼT Ẽ is diagonalizable
and positive semidefinite, i. e. all eigenvalues are greater than or equal to zero.
Then, the convergence of (8.20) can be shown by discussing the eigenvalues of

M−1ẼT Ẽ and D. If the absolute values of all eigenvalues are smaller than one,
Eq. (8.20) converges for k → ∞.

If v′
i = v′

cm for all points, ẼV′ = 0 and thus, DV′ = V′. Hence, 0 is always

a triple eigenvalue of M−1ẼT Ẽ as v′
cm has three spatial directions, and 1 is

always a triple eigenvalue of D.
Let V′

rel be the future velocity of the points relative to the center of mass.

Then, V′ can be partitioned into V′ = V′
cm + V′

rel , which yields ẼT ẼV′ =

ẼT ẼV′
rel . That means, the damping forces (8.18) are not influenced by the

velocity of the center of mass, which implies that it suffices to damp only V′
rel

and to add V′
cm afterwards. Hence, V′ in (8.20) can be replaced by V′

rel , which
results in

Vd,k
rel = (id− γhM−1ẼT Ẽ)kV′

rel

= DkV′
rel .

(8.21)

Thus, for the convergence of the damping forces it suffices to show that
(8.21) converges. Hence, the eigenvalue 1 of D, which has no influence on (8.21),
can be ignored, and the eigenvalue with the largest absolute value besides the
eigenvalue 1 has to be considered. This value is called the key eigenvalue in the
following.
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In the following two Lemmata, it is shown that the parameter of the spring
damping approach can be chosen such that the absolute value of the key eigen-
value is strictly smaller than one. First, the matrix M−1ẼT Ẽ is proven to be
diagonalizable (Lemma 1). Note that although M and ẼT Ẽ are symmetric, the
product is not necessarily symmetric and therefore, it is not self-evident that
it is diagonalizable. Second, it is shown that the damping parameter γ can be
chosen such that (8.21) converges (Lemma 2).

Lemma 1. The matrix M−1ẼT Ẽ is diagonalizable and positive semidefinite.

Proof. The matrix ẼT Ẽ is symmetric, and M can be assumed to be positive
definite and symmetric. Hence, M has a Cholesky factorization M = GGT

[DR08]. It follows that the eigenvalue equation M−1ẼT Ẽv = λv is equivalent

to G−1ẼT ẼG−TGTv = λGTv, which can be written as G−1ẼT ẼG−Tw = λw
with w = GTv. The matrix G−1ẼT ẼG−T is symmetric, hence orthogonally
diagonalizable, and positive semidefinite, as xTG−1ẼT ẼG−Tx = ‖ẼG−Tx‖2 ≥
0. Hence, there is a rotation matrix R such that RTG−1ẼT ẼG−TR = Λ has
diagonal form, and all diagonal entries are greater than or equal to zero. Defining
P := G−TR leads to

P−1M−1ẼT ẼP = RTGTG−TG−1ẼT ẼG−TR

= RTG−1ẼT ẼG−TR

= Λ.

(8.22)

It follows that P diagonalizes M−1ẼT Ẽ and that all eigenvalues are greater
than or equal to zero, which concludes the proof.

Lemma 2. The damping parameter γ in (8.21) can always be chosen such that
the absolute value of the key eigenvalue of D is strictly smaller than one.

Proof. With the notation of Lemma 1, it follows that P−1DP = P−1idP −
γhP−1M−1ẼT ẼP = id−γhΛ has diagonal form. Thus, the eigenvalues µi, i =
1, . . . , n of D can be written as 1−λi, i = 1, . . . , n, with λi being the eigenvalues
of γhM−1ẼT Ẽ.

Further, M−1ẼT Ẽ has rank 3n − 3 as E has rank n − 1 for connected
objects. Therefore, exactly three eigenvalues are 0, which belong to the different
directions of v′

cm , and all remaining eigenvalues are strictly greater than zero.
Obviously, depending onM and h, γ can be chosen small enough such that all

eigenvalues of γhM−1ẼT Ẽ besides 0 lie in the interval (0, 2). This immediately
yields µi ∈ (−1, 1) for all eigenvalues of D besides 1, and the absolute value of
the key eigenvalue is strictly smaller than one.

Based on Lemma 2, the convergence of (8.21) can be shown easily.

Theorem 1. If γ is chosen small enough in (8.21), then Vd,k
rel → 0 for k → ∞.

Proof. Lemma 2 states that γ can be chosen such that the absolute value of
the key eigenvalue µ is strictly smaller than one. Thus, it follows ‖Vd,k

rel ‖ ≤
µ‖Vd,k−1

rel ‖ ≤ . . . ≤ µk‖V′
rel‖. This yields V

d,k
rel → 0 for k → ∞.
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8.3.3 Direct force computation

As shown in Theorem 1, the iterative spring damping approach leads toVd
rel = 0

for an appropriately chosen γ. Of course, the convergence needs lots of iterations
and therefore, it is much less efficient than the simple spring damping approach.
However, the limit of the damping forces can be computed directly using Theo-
rem 1, if it is ensured that the computed damping forces yield Vd

rel = 0. For a
single point, this implies vd

i,rel = v′
i,rel +

h
mi

fdi = 0, and the damping force can
be computed as

fdi = −mi

h
v′
i,rel . (8.23)

This computation is very simple and efficient, and it is justified by the fact
that it is the limit of an infinite number of iterations of the standard spring
damping approach.

It is easy to introduce a new damping parameter γ in (8.23) to compute the
damping forces as

fdi = −γ
mi

h
v′
i,rel , (8.24)

which obviously should not be greater than one. Hence, γ is always within
the range between 0 and 1.

Note that the proof of Theorem 1 did not employ any specific information
about the structure of Ẽ except the fact that its rank is 3n−3. But this is correct
if the rank of E is n− 1, which is fulfilled if the object is connected. Thus, the
proof holds for any type of connectivity structure that defines a connected object.
Further, the connectivity information is canceled out in the limit for k → ∞ in
(8.21), and as seen in (8.24), it is not needed any more (Fig. 8.5).

(a) (b)

Figure 8.5: The connectivity structure (a) vanishes in the limit of an infinite
number of spring damping iterations. The damping forces can be calculated
directly with respect to the center of mass (b).

8.3.4 Momentum conservation

As damping forces should not influence the global movement of an object, they
must guarantee the conservation of linear and angular momentum. While it is
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easy to show that the sum of the damping forces in (8.24) is zero and the linear
momentum is conserved, the computation of damping forces commonly results
in a nonzero torque, i. e. the condition

n∑

i=1

(xi,rel × fdi ) = 0, (8.25)

where xi,rel := xi − xcm , is not fulfilled, which has to be handled in a post-
processing step. Though first, the conservation of the linear momentum is
shown.

n∑

i=1

fdi = −
n∑

i=1

mi

h
v′
i,rel

= − 1

h

n∑

i=1

mi(v
′
i − v′

cm)

= − 1

h

(
n∑

i=1

miv
′
i − v′

cm

n∑

i=1

mi

)

= 0.

In the following, different ideas to eliminate the torque are presented. In the
simple spring damping approach, damping forces are computed per distance. To
cancel out the torque, they can simply be projected onto the distance, which
results in zero torque. The novel damping approach in (8.24) directly computes
forces per point instead of forces per distance. Therefore, the projection tech-
nique is not self-evident and different methods are possible. The usability of the
proposed methods will be discussed in Sec. 8.3.6

Force projection onto the distances

The first method is similar to the simple spring damping approach. The forces
per point are transformed into forces per distance and are projected similar to
the spring damping approach. This is done the following way.

For a distance xe with incident points xi and xj , f
d
e is set to fde = fdi −fdj and

afterwards, it is projected onto xe using fde = (fde · xe)
xe

‖xe‖2

2

like in Sec. 8.2.1.

After projecting the force, it is re-distributed to the incident points using

temporary variables fdi and fdj :

fdi = fdi + fde

fdj = fdj − fde .
(8.26)

This obviously results in zero torque. However, after all distances xe have

been processed, the magnitude of the force fdi can be much higher than the
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magnitude of fdi . To overcome this problem, the damping forces have to be
scaled with a constant factor c which is given by

c = min
i=1,...,n

‖fdi ‖
‖fdi ‖

, (8.27)

which leads to fdi = cfdi .

Force projection onto other relative positions

If there is a particular point x in the connectivity structure, for example the
center of mass, it can be more suitable to project the forces onto the relative
position xi,rel = xi − x (Fig. 8.6). Obviously, the torque with respect to x,
i. e.

∑n
i=1 xi,rel × fdi , is zero, as xi,rel and fdi are collinear and thus, their cross

product is zero. However, after this projection, the sum of the forces is not
necessarily zero. This can be handled the following way. Let x =

∑
αixi with∑

αi = 1 be the representation of x using the barycentric coordinates, and
let f =

∑
fdi be the possibly non-zero sum of the projected forces. If αif is

subtracted from each fdi , the sum of the forces is zero again. Also, the torque
remains zero:

n∑

i=1

xi,rel × (αif) =

n∑

i=1

(xi − x)× (αif)

=

n∑

i=1

(αixi)× f − x× f

n∑

i=1

αi

= x× f − x× f = 0

(8.28)

Thus, the sum of the damping forces as well as the torque is zero, and both
linear and angular momentum are conserved. Note that the last force correction
does not impose an additional relative movement onto the affected nodes and
therefore, the damping is only affected by the projection which justifies this
procedure. The linear momentum is not affected at all. The applicability of
this projection approach is discussed in Sec. 8.3.6.

Torque elimination using Linear Programming

Linear Programming can be used as a third possibility to eliminate the torque.
To establish the corresponding Linear Program, the cross product can be written
as a matrix-vector-multiplication using skew-symmetric matrices. For a vector
a = (ax, ay, az)

T , the matrix ã defined as

ã :=




0 −az ay
az 0 −ax
−ay ax 0


 (8.29)
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Figure 8.6: Force projection onto relative positions. The fine arrays indicate the
computed damping forces, while the bold arrays indicate the projected forces.

allows to replace the cross product a× b by ãb. The zero-torque-condition
(8.25) then becomes

n∑

i=1

x̃i,rel f
d
i = 0. (8.30)

As this sum is not zero in general, correction forces f ci have to be computed
in order to eliminate the torque. Then, the condition becomes

n∑

i=1

x̃i,rel(f
d
i + f ci ) = 0, (8.31)

which is one of the conditions for the Linear Program.
To keep the linear momentum, the sum of the correction forces

∑n
i=1 f

c
i has

to be zero, because
∑n

i=1 f
d
i is already zero. Further, a reasonable objective

function is to demand that the correction forces are as small as possible. Thus,
the objective function has to be:

min

n∑

i=1

‖f ci ‖1. (8.32)

However, for a Linear Programming problem, the absolute value is not al-
lowed in the objective function, and has to be replaced by a term without
absolute values. This can be done by partitioning f ci = f c,+i − f c,−i into its pos-
itive and negative components together with the constraint that f c,+i and f c,−i

are greater than or equal to zero:

min

n∑

i=1

‖f c,+i − f c,−i ‖1

=min

n∑

i=1

(‖f c,+i ‖1 + ‖f c,−i ‖1).
(8.33)
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Eq. (8.33) holds as it is a minimization problem. If, for example, the first
component of f c,+i and the first component of f c,−i were both nonzero, this would
not be the optimal solution of the minimization problem. Thus, for the optimal
solution, always at least one of the corresponding components of f c,+i and f c,−i

must be zero, implying the correctness of (8.33). Note that (8.33) does not
contain absolute values for the components of f c,+i and f c,−i , as f c,+i and f c,−i

are demanded to be greater than or equal to zero.
In total, the Linear Program for torque elimination can be established as

follows:

min

n∑

i=1

(f c,+i + f c,−i ) (8.34)

s.t. f c,+i ≥ 0

f c,−i ≥ 0
n∑

i=1

x̃i,rel(f
d
i + f c,+i − f c,−i ) = 0

n∑

i=1

(f c,+i − f c,−i ) = 0

This Linear Program is feasible, as f c,+i − f c,−i = −fdi is a possible solution,
and bounded, as the objective function is always greater than or equal to zero.
Thus, it has an optimal solution which eliminates the torque.

8.3.5 Application

In this part, two example settings are described that show how the new damping
approach can be applied to compute damping forces. The methods are referred
to as global and local damping, as the whole object is damped in the first one
and smaller structures are damped locally in the second one. The influence of
the torque elimination method on these settings is discussed in Sec. 8.3.6.

Global damping

The global damping approach is the most evident idea following (8.24). In this
version, the object is damped as a whole. The damping forces are calculated as
given in (8.24) with respect to the center of mass, and the torque is eliminated
with one of the above mentioned ideas.

Local damping

In this approach, the object is divided into clusters, and the movement of each
cluster is damped relative to its center of mass, but not relative to the center of
mass of the whole object. For example, in a tetrahedral mesh, the tetrahedrons
can be taken as clusters. To get reasonable damping forces that do not overshoot,
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the number of clusters a point lies in has to be taken into account. Therefore,
the mass mi of point xi is divided by the number of clusters Ni the point belongs
to, and mi/Ni is used as the mass of xi within each of its clusters (cf. [RJ07]).

Of course, it is possible to first perform a global damping step which stabilizes
the object in the case of external forces and to perform a local damping step
afterwards to reduce oscillations.

8.3.6 Properties of the proposed damping scheme

In this section, the properties of the proposed damping approach and the differ-
ent torque elimination schemes are discussed.

Obviously, the damping forces (8.23) are optimal in the sense that they damp
the whole relative movement. Therefore, they lead to an unconditionally stable
simulation. But as they lead to a nonzero torque, it is necessary to handle this
drawback. Eliminating the torque obviously introduces some uncontrollable
effects, which should be minimized by the torque elimination technique.

The three different approaches that are proposed in Sec. 8.3.4 to eliminate
the torque differ in an essential fact. While the first projection technique, which
uses the distances, cares for a local torque elimination, the second projection
approach and the LP formulation eliminate the torque only globally. Also, they
guarantee the conservation of the global linear momentum, while projecting
onto the distances or other local structures preserves global and local linear
momentum. The experiments showed that the global conservation of linear and
angular momentum is not strong enough, as forces and torques at one part of
an object can be balanced by forces and torques at another part. This results
in undesired artifacts.

Another difference of the approaches is that the projecting methods do not
look for a minimum solution, but instead they choose a specific direction. As
both methods show better results than the LP formulation, it seems that it is
much more important to have any control about the directions of the projected
forces than to minimize the magnitude of the correction forces. This is further
affirmed by the results that were achieved using the LP formulation for each
tetrahedron locally.

Following this, for the global damping approach, projecting the forces onto
the distances currently is the best technique to eliminate the torque, as it guar-
antees the local conservation of linear and angular momentum. Concerning local
damping, the second projection method should be preferred, as the directions
from the center of mass to the points are more likely to match the directions of
the damping forces which are also relative to the center of mass. The locality
of momentum conservation is fulfilled self-evidently in the local damping.

The projection methods can be applied to any set of forces that should
guarantee the preservation of linear and angular momentum. For example, they
could be applied to constraint forces in order to preserve the global movement
of an object. Even the point damping forces would yield reasonable damping
forces after applying the torque elimination procedure.

For the local damping approach, it turned out that omitting the projection
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results in great improvement of stability for the drawback that the global ori-
entation is affected. However, there are scenarios where this fact is accepted
because of the great improvement of stability.

8.3.7 Force propagation

Due to the discrete time integration, the propagation of external forces, e. g.
collision, constraint or user interaction forces, proceeds slowly. For example, a
user interaction force that is applied to a point xi causes only this point to move
within the following time step. In the subsequent time step, this causes forces
on all neighboring points of xi by the deformation model. However, in each time
step, the force is propagated to the neighboring vertices only. This behavior is
independent from the object’s stiffness, but depends on the discretization, and
causes an unrealistically weak impression compared to the normally expected
perception. Further, for large external forces, the displacement of xi causes high
strain values, affecting the stability of the simulation. It should be emphasized
that this is not a problem of the deformation model, but of the discrete time
integration, which leads to a non-optimal interpolation of the displacement field.

To overcome this limit concerning external forces, the iterative damping
approach can be applied. Fig. 8.7 sketches a few iterations of the spring damping
scheme in a one-dimensional example. An external force f is applied at mass
point 6. In the first iteration of the spring damping, there is a non-zero relative
velocity between points 5 and 6, but zero relative velocities elsewhere. Thus,
this results in a non-zero damping force only at the points 5 and 6.

In the second iteration, also a non-zero relative velocity between the points
4 and 5 is observed, which results in a damping force at these points. Also, the
relative velocity between 5 and 6 is non-zero again, even though it is smaller than
in the first iteration. Obviously, the damping force between 4 and 5, which was
caused by the damping force between 5 and 6, in turn influences the damping
force between 5 and 6 in the subsequent iterations. This procedure is continued,
thus in the next iteration, there will be a damping force between 3 and 4, in
turn influencing the damping force between 4 and 5.

In each iteration, the force is propagated one element further. Moreover,
each force influences the one it was caused by. Thus, in the third iteration, the
relative velocity between 5 and 6 could possibly be greater than in the second
iteration, as the damping force between 4 and 5 reduces the resulting damping
force at 5.

The first aspect is desired, as some amount of the external force f is propa-
gated to vertex 1 after 5 damping iterations, but within one time step. However,
the second aspect seems a little disturbing, as the iterative procedure seems to
oscillate. However, in Sec. 8.3.2, it has been shown that this is not the case and
the procedure converges.
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Figure 8.7: Illustration of the first few spring damping iterations. The red
arrows illustrate the external force f and the sketched damping forces.

8.4 Results

The general benefit of damping in dynamic simulations and the spring damping
approach are illustrated in Fig. 8.4. In this section, various scenes show the
improvements obtained by the proposed damping approach. The scenes can be
simulated stably with the proposed damping approach, but get unstable with
the standard spring damping approach. Thus, the proposed approach allows
for larger time steps, which results in more efficient simulations. The objects
consist of tetrahedral meshes generated by [SWT06]. Collisions are detected
using [THM∗03], and contacts are handled using [HTK∗04].

Fig. 8.8 illustrates the force propagation of the proposed damping scheme.
An external force is applied to the right hand side of a bar which is shown by
the tetrahedral mesh that is used for simulation (Fig. 8.8 (a)). Points where a
damping force is computed are marked with red color depending on the magni-
tude of the force. Using the global damping approach without force projection,
the force is propagated within one time step (Fig. 8.8 (b)). Including the force
projection, in this example it takes about 20 time steps to propagate the exter-
nal force (Fig. 8.8 (c)). The resulting forces are illustrated after 10 and 20 time
steps, respectively. In contrast, the spring damping approach cannot propagate
external forces comparably fast (Fig. 8.8 (d)). Here, the resulting forces after
10, 20 and 50 time steps are shown, which still is not sufficient to propagate
the external force to the left end of the bar. Moreover, the magnitudes of the
propagated forces are smaller compared to the global damping approach.

Fig. 8.9 illustrates that the proposed damping approach is able to handle
scenes where the spring damping approach cannot keep the simulation stable.
Here, a global damping step is performed which is followed by a local damping
step. This combination yielded the best results. Note that before the local
damping is performed, the global damping forces are already projected using
the first projection method. The setting of the experiment is quite simple: A
sphere falls down onto a membrane. While the simulation fails using the spring
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(a)

(b)

(c)

(d)

Figure 8.8: Illustration of the force propagation using the optimized damping.
(a) In the initial position, an external force is applied to the right part of the
bar. (b) Using the global damping without force projection, it is propagated
within one time step. (c) Using the global damping with force projection, it
takes 20 time steps to propagate the force. The snapshots are given after 10
and 20 time steps. (d) The non-iterative spring damping approach takes much
longer to propagate the force. The snapshots are given after 10, 20 and 50 time
steps.

damping approach, it remains perfectly stable with the optimized damping ap-
proach.

Fig. 8.10 shows two cubes colliding with high relative velocities. Thus, large
collision response force occur. Using the spring damping approach, the simula-
tion fails (Fig. 8.10 (b)), while it remains stable using the optimized damping
approach (Fig. 8.10 (c)). Again, a global damping step is performed followed
by a local damping step.

Fig. 8.11 illustrates the propagation of user interaction forces. A rope which
is lying on the floor is picked up by some draggers. The simulation remains
stable using the optimized damping approach (Fig. 8.11 (a)). In the situation
of the lower picture in Fig. 8.11 (a), it is switched to the standard spring damping
approach, and the simulation gets unstable (Fig. 8.11 (b)).

Fig. 8.12 illustrates another scenario where the proposed approach approach
allows for a larger time step compared to existing solutions. Like in Fig. 8.9
and Fig. 8.10, both a global and a local damping step are applied. The rope
bridge consists of many tetrahedral meshes that are connected with local con-
straints [GBT06]. Due to the locality and magnitude of the constraint forces,
a fast force propagation is very important to keep the object stable, which is
implicitly done by the optimized damping approach.
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8.5 Conclusion

In this section, the benefit of velocity-dependent damping forces in numerical
integration schemes has been illustrated. Further, these benefit has also been
shown in the context of dynamic simulations, where especially damping ap-
proaches using relative velocities are useful. The spring damping approach has
been shown to keep simulations stable using comparably large time steps.

Moreover, a new damping approach has been introduced that is inspired by
the idea that an iterative computation of damping forces further improves the
stability. The iterative spring damping approach converges if the damping pa-
rameter is chosen appropriately, and the limit can be computed directly without
actually performing iterations. The approach is independent of the deformation
model and the integration scheme and does not need any connectivity informa-
tion. Thus, it can be applied for arbitrary object representations, e. g. meshless
approaches [MHTG05, RJ07]. While the linear momentum is automatically con-
served, the torque has to be eliminated in a postprocessing step, for which three
possible methods have been introduced. These approaches can also be applied
to any other set of forces that have to guarantee the conservation of angular
momentum. Different applications of the approach as global damping to the
object as a whole or as local damping to separate clusters of the object have
been illustrated. Further, the approach simplifies the parameter setting, as the
damping constant is always within the range between 0 and 1. In the result
section, it has been shown that the damping approach allows for larger time
steps in dynamic simulations.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.9: This experiment illustrates the differences between the spring damp-
ing approach (left column) and the optimized approach (right column). The
compared pictures are always chosen at the same simulation step. (a,b) Config-
uration of the experiment: A sphere falls down onto the membrane. (c) Using
the spring damping approach, the membrane does not remain stable. (d) The
membrane shows no artifacts using the optimized damping approach. (e) After
the collision contact, the membrane does not return to its resting state using the
spring damping. (f) The sphere bounces back using the optimized approach.
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(a)

(b)

(c)

Figure 8.10: This example illustrates that large collision response forces can be
handled. (a) Configuration of the experiment: Two cubes with high relative
velocities. (b) Using the spring damping approach, the simulation fails during
the collision response. (c) The simulation keeps stable using the optimized
damping approach.
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(a)

(b)

Figure 8.11: Propagation of user interaction forces. (a) A rope lying on the
floor is picked up by some draggers. Using the optimized damping approach,
the simulation is stable due to the fast force propagation. (b) Switching to the
standard spring damping approach in the situation of the lower picture in (a),
the simulation becomes unstable and finally fails.
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(a)

(b)

(c)

Figure 8.12: This experiment illustrates a scenario where a larger time step can
be chosen using the optimized damping approach. (a) Setting of the experi-
ment: A bridge is established of several single elements using constraint forces.
Without the constraint forces, the objects can move freely. (b) Switching the
constraints on, the bridge is established by the constraint forces. The simula-
tion remains stable due to the fast force propagation by the optimized damping
approach. (c) Switching to the standard spring damping approach after the
bridge is established, the simulation fails immediately as the constraint forces
cannot be handled robustly.
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9
Application

The simulation environment has been integrated into a path planning algorithm
for mobile robots in [FBS∗08a, FSS∗09]. Path planning is one of the fundamen-
tal problems of mobile robotics, as the ability of a safe navigation in space is a
precondition for autonomous robots. The objective is to find a collision-free tra-
jectory from a starting position to a goal position in a given environment. This
fundamental task has been well-studied in the past, and numerous approaches
have been developed [Lat91, CLH∗05, LaV06].

Though few path planning approaches consider deformable robots [KLH98,
LK01, GSLM05, MK06], the majority of algorithms has concentrated on envi-
ronments with rigid obstacles [Lat91, CLH∗05, LaV06]. On the contrary, envi-
ronments in daily life contain non-rigid objects like curtains, cloth, or plants,
and humans employ their knowledge about the deformability of such objects in
their actions. Thus, also mobile navigation algorithms benefit from the possibil-
ity to include information about deformable objects. An example is illustrated
in Fig. 9.1, where a robot has to pass through a curtain in order to reach its
goal position. Approaches considering rigid obstacles only will either fail, if no
collision-free path exists, or have to take a costly detour. In contrast, planning
approaches considering deformable objects are able to trade-off the travel cost
and deformation energy in order to find a faster or a more energy-efficient path.

Besides the planning process, considering deformable objects also poses a
new challenge during the path execution. In rigid environments, the planned
paths are demanded to be collision-free. Nevertheless, the robot could collide
with the environment e. g. due to inaccuracies in motion or localization, or it
might face unforeseen obstacles. In both scenarios, collisions have to be strictly
avoided and the robot has to be able to detect possible collisions in order to
stop its motion until the obstacle is away or to replan its path. To detect colli-
sions, there are sensor-based approaches like potential fields [Kha86, KC95] or
dynamic windows [FBT97, BK99] as well as methods based on the environment
map [FBTC98, SA92]. In environments with deformable objects, this problem
gets even worse as the possibility to interact with deformable objects weakens
the constraint of collision avoidance. Collisions with deformable objects are per-
mitted or even desired on optimal paths. Nevertheless, unforeseen rigid objects
have to be reliably detected for a safe navigation.

In this chapter, two approaches are illustrated that account for these tasks.
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(a) (b)

Figure 9.1: A robot passing through a curtain. (a) shows the robot in the real
world moving on its planned path. (b) illustrates a model of the robot in the
simulation environment where the deformation cost is estimated.

In Sec. 9.1, a path planning approach from [Fra07, FBS∗08a] is illustrated that
allows for environments with deformable objects and estimates the deformation
energy using the simulation environment introduced in Chapter 3. In Sec. 9.2,
an approach from [FSS∗09] for the safe navigation in environments with de-
formable objects is sketched. It is based on a learned sensor model that allows
to distinguish measurements that are caused by deformable objects from mea-
surements originated by other obstacles.

9.1 Path planning in environments containing de-

formable objects

A planning approach that accounts for deformable objects has been published
in [Fra07, FBS∗08a]. The approach estimates the deformation energy along a
path by simulating the robot’s movement in the simulation environment and
thus, it achieves a trade-off between path and travel cost. In contrast to earlier
approaches [KLH98, BLA02, RLA06], the planning approach can be executed
online as the computationally expensive computation of the deformation energy
is done in a preprocessing step [FBS∗08b] which allows for an accurate approx-
imation during the path planning.

The approach employs the Probabilistic Roadmap Method (PRM) [KSL∗96],
which works within the configuration space C. A configuration q of a robot is
given by a vector denoting its position and orientation, or the position and
orientation of joints, for example. C contains all possible configurations of the
robot and is divided into the set Cfree of collision-free states and the obstacle
region Cobs := C \ Cfree , i. e. the configurations that lead to a collision of the
robot with an obstacle in the real world. Thus, a feasible path of a robot in the
real world corresponds to a continuous path from a starting configuration qstart
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to a goal configuration qgoal within Cfree . The Probabilistic Roadmap Method
establishes a graph in Cfree by using random samples as vertices which are
connected by a local planner if there is a collision-free path between them. The
optimal path for the robot is computed by employing a shortest path algorithm
on that graph.

[Fra07, FBS∗08a] extend the feasible configurations Cfree by the set Cdef of
configurations where the robot is in contact with a deformable object, and em-
ploy the Probabilistic Roadmap Method within Cfree ∪Cdef . To achieve a trade-
off between travel and deformation cost, the deformation energy along an edge
i of the probabilistic roadmap is estimated by simulating the robot’s movement
along the corresponding path within the simulation environment (Chapter 3).
The underlying deformation model has been presented in Chapter 5, and the de-
formation parameters can be estimated using the approach proposed in Sec. 7.1.
The deformation energy returned by the simulation environment is computed
according to Eq. (5.50). The total cost of each edge i is defined as a weighted
sum of deformation and travel cost.

Using this cost function, the Probabilistic Roadmap Method computes a
path with an optimal trade-off between deformation and travel cost (Fig. 9.2).
However, due to the computational requirements in the simulation process, an-
swering path queries takes a long time. Thus, the deformation cost is estimated
based on precomputed energy values [FBS∗08b] in order to allow for an on-
line execution of the planning approach. Therefore, the deformable objects are
assumed to be fixed in the environment so that the deformation cost mainly de-
pends on the trajectory of the robot relative to an object, and the deformation
cost is precomputed for a number of line segments through each object. Then,
for an arbitrary edge in the roadmap, the deformation energy is estimated as
a weighted sum over all neighboring paths for which the deformation energy
was precomputed. This results in a great speedup, as path queries can typically
be answered within few hundred milliseconds, while the costly precomputation
step has to be done only once for each object. The experiments in [FBS∗08a]
show that the computed paths are similar to an exact deformation computation,
which justifies the deformation cost approximation due to the enormous gain of
planning performance.

9.2 Collision avoidance in environments containing

deformable objects

Fig. 9.3 illustrates the execution of the path planned in Fig. 9.2 (a). In this
situation, a collision with the curtain is allowed, while collisions with rigid ob-
stacles have to be strictly avoided. Therefore, in a sensor-based collision avoid-
ance routine, measurements stemming from the curtain can be ignored, while
measurements concerning nearby rigid obstacles have to be taken into account.
Thus, the collision detection routine has to figure out whether a measurement
is caused by a deformable or by a rigid object. This problem has been tackled
in [FSS∗09].
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(a) (b)

Figure 9.2: Illustration of a planned path in the environment shown in Fig. 9.1.
(a) The approach trades off deformation and travel cost and avoids a detour
through the upper part of the environment. (b) When the curtains are moved,
the most energy-efficient path also changes [FSS∗09].

(a) (b) (c)

Figure 9.3: (a)-(c) A robot moves through a curtain along the path planned in
Fig. 9.2 (a).

As the positions of deformable objects in the environment are known, the
distinction is not too difficult if neither the robot nor any unforeseen dynamic
obstacles are close to a deformable object. However, the problem gets worse
if the robot is in contact with a deformable object. In this case, the sensor
data is influenced by the deformed object, but cannot be ignored safely, as
rigid objects can be near and have to be detected. [FSS∗09] present a learned
sensor model which combines the knowledge about deformable objects in the
environment with range scans during deformations. This way, it allows to dis-
tinguish between measurements stemming from a deformable object and other
measurements while the robot is in contact with a deformable object.

In [FSS∗09], the robot employs a laser scanner for the collision detection pro-
cess. Like the deformation cost, the obtained sensor data does not only depend
on the deformable object and the robot’s position, but also on the trajectory
relative to the object. Thus, the sensor data is collected for several trajectories
relative to a deformable object, and the reflected beams of the scanner are la-
beled manually as “reflected by a rigid object” or “reflected by a deformable
object”. This allows to establish a sensor model in the presence of deformable
objects. During path execution, the sensor model is used to compute the proba-
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bility that a measurement is caused by a deformable object, and measurements
with a high probability are disregarded in the collision detection routine.

This way, the approach filters the measurements that belong to deformable
objects, and the remaining measurement values can be used for a standard
collision avoidance routine like [FBT97, MM00]. Fig. 9.4 illustrates that the
approach is able to detect a person standing in front of or behind the curtain,
and navigates safely in the given environment.

(a) (b) (c)

Figure 9.4: The robot moves along the path planned in Fig. 9.2. (a) A person
stands close to the curtain. The robot recognizes the obstacle and stops. (b)
After the person has gone away, the robot moves through the curtain. (c) On
its way back, the measurements are influenced by the curtain. Nevertheless, the
person is recognized and the robot stops.

9.3 Conclusion

In this chapter, the integration of a simulation environment into a mobile nav-
igation system for autonomous robots has been illustrated. In Sec. 9.1, an
approach has been summarized that takes the deformation energy into account
while maintaining fast path queries. The approach uses precomputed values
of the deformation energy for different paths relative to a deformable object
and uses weighted average values in the planning process to compute the cost
of object deformations, which allows for an online execution. The planning
algorithm finds paths that trade off deformation and travel cost, which avoids
costly detours or even allows to find paths in environments where rigid planning
approaches would fail.

In Sec. 9.2, an approach for the safe navigation in environments with de-
formable objects has been sketched. It estimates the probability that a mea-
surement is caused by a deformable object by a learned sensor model. This
allows the robot the get close to deformable objects, while still being able to
detect unforeseen obstacles.

Thus, the application of simulation environments enhances the planning ca-
pabilities for autonomous robots in environments with deformable objects, with-
out losing the ability to safely navigate in space.
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In this thesis, several contributions in the area of acquisition and simulation
of deformable objects in Computer Graphics have been presented. In the ac-
quisition process, the global registration of point clouds and the estimation
of deformation parameters have been investigated in order to acquire realistic
models. Concerning the simulation of deformable objects, a novel inversion han-
dling scheme and the optimized damping approach contribute to the stability
of dynamic simulations and allow for larger time steps. Finally, the simulation
system has been integrated into a planning approach for autonomous robots
that is able to safely navigate in environments containing deformable objects.

Object acquisition

For the acquisition of 3D models, the transformed polynomials approach for the
global registration of partially overlapping point clouds has been introduced in
Chapter 4. It provides an appropriate initial configuration for further process-
ing by the ICP algorithm, which optimizes the alignment locally. This allows
for an automatic registration of depth scans, which is essential for the auto-
matic reconstruction of 3D models of objects. The approach computes surface-
approximating polynomials of different objects and finds possible matches based
on rotationally invariant features. For matching candidates, the polynomials are
transformed into their respective coordinate systems, which allows to compare
the surfaces in more detail. This results in more discriminating information
than relying on features only and allows the simultaneous registration of several
scans of different similarly shaped objects. Further, it has been shown that the
transformed polynomials approach locates a nearly-optimal transformation and
requires only minor improvements by the ICP algorithm.

Parameter estimation

As the simulation of deformable objects requires appropriately chosen defor-
mation parameters, a parameter estimation approach has been introduced in
Chapter 7. It is based on indentation tests to obtain a force-displacement-
relation which allows to deduce the physical parameters of the co-rotational
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Finite Element Method. Therefore, a mobile robot has been equipped with a
force-feedback-sensor and a depth camera which observe the applied forces and
the deformed surface. Applying the measured force within a simulation envi-
ronment allows to adapt the physical parameters by a gradient descent scheme
in order to match the simulated and the measured surface. It has been shown
that the system is able to capture realistic physical parameters which can be
used in the path planning algorithm illustrated in Chapter 9. Thus, it enables
an autonomous exploration of environments containing deformable objects. Al-
though the estimation approach has been formulated for the co-rotational Finite
Element Method, the general idea can be applied to arbitrary deformation mod-
els. Further, an estimation approach for the illumination parameters has been
outlined in Chapter 7 to account for an appropriate visual appearance of recon-
structed models.

Inversion handling

As the co-rotational Finite Element Method (Chapter 5) does not handle in-
verted elements correctly, a separate inversion handling scheme has been intro-
duced in Chapter 6. As it is not possible to determine the inversion direction
by considering the current deformation state only, the approach is based on the
heuristic assumption that elements are as uninverted as possible. Based on this
idea, the approach locates the direction that causes minimum movement to un-
invert the tetrahedron. Inversions are resolved efficiently within a small number
of simulation steps. Moreover, the computed inversion direction can be stored
for a consistent processing in subsequent time steps. The approach has been
combined with an efficient handling of degenerated elements and improves the
robustness and stability of Finite Element simulations. Further, the approach
can be implemented within other constitutive models.

Optimized damping

To further improve the stability of dynamic simulations, a novel damping ap-
proach has been developed in Chapter 8. The optimized damping is based on
the commonly employed spring damping, whose benefits on dynamic simula-
tions have been illustrated. The novel approach further improves the stability
of simulations by an iterative application of spring damping. It has been shown
that the iterative procedure converges and that the limit can be computed di-
rectly, which allows for an efficient calculation of damping forces. The optimized
damping approach simplifies the parameter setting, as the damping coefficient
can always be chosen within the range between 0 and 1. Moreover, it permits
larger time steps in dynamic simulations compared to previous approaches. Fur-
ther, it has been applied for the fast propagation of external forces like collision
or user interaction.
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10.1 Outlook

Finally, some ideas for future work within the presented areas are given. Con-
cerning the global registration approach, scaling of objects could be integrated
by considering ratios of coefficients. Further applications in object recognition
and symmetry detection are also possible areas of ongoing work. Moreover, it
could be investigated if the approach could be transferred to non-rigid regis-
tration. In the area of parameter estimation, future work could be concerned
with the application to different deformation models and inhomogeneous ma-
terials. The stability and efficiency of dynamic simulations is still an active
area of research. The proposed approaches for inversion handling and damp-
ing are general methods that can be integrated in various deformation models.
Ideas like modal analysis concentrate on the deformation model to avoid in-
stabilities [MC11]. Also, the combination of different deformation models as
in [FSAH11] can lead to stable simulations of ill-shaped meshes. Other ap-
proaches try to mix explicit and implicit integration schemes for large time
steps [FSH11]. Apart from stability and the choice of the time step, more ef-
ficient simulations can also be reached by so called time-critical approaches in
collision detection [GST09], where some computation time in dynamic simula-
tions can be saved.
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