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Preface

In this work, we present the development of a numerical algorithm, which calculates a de-

sign of experiments to allow for optimal discrimination of different hypothetic candidate

models of a given dynamical system for the most inappropriate parameter configurations

within a parameter range. The collectivity of design conditions is novel and motivated

by a real biological experimental setup. The statistical discrimination criterion is worked

out rigorously for these settings. The underlying problem can be classified as a semi-

infinite optimization problem, which is solved in an Outer Approximations approach.

The algorithmic framework is applied to two example problems for the calculation of

optimal experimental designs. Additionally, it is applied to design a Circadian Rhythm

to set its period in a robust optimal way.
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CHAPTER 1

Introduction

Finding suitable models for dynamic systems is an important task in natural science.

On the one hand a correct model helps to understand the underlying mechanisms on the

other hand one can use the model to predict the behavior of a system under various cir-

cumstances. In particular in modern systems biology a related issue is to link molecular

attributes to dynamic mechanisms and functional properties at the system level in order

to mechanistically understand emerging functionality. For these purposes, mathematical

modeling, numerical simulation and scientific computing techniques are indispensable.

Quantitative modeling closely combined with experimental investigations is required if

the model is supposed to be used for sound mechanistic analysis and model predictions.

Typically, before an appropriate model of a system is found different hypothetical mod-

els might be reasonable and consistent with previous knowledge and available data. The

main goal now is to find the best suited model out of different hypotheses. This is usu-

ally done by iterative measurements and successive fitting of the different models to the

collectivity of all series of measurements. This is repeated until all inappropriate models

do not fit to the collectivity of all series of measurements any more. Thus the inappro-

priate models are iteratively falsified. The whole process is called model discrimination.

In the process of model discrimination the question arises in which way the sequential

experiments have to be designed such that the goal of discarding inappropriate models

is achieved best.

In this application oriented scientific computing research work we develop a numerical

algorithm, which calculates in a suitable sense an optimal design of experiments, which

allows the best discrimination of different hypothetic canditate models of a given dy-
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1 — Introduction

namic system modeled by ordinary differential equations (ODEs). Different approaches

to design experiments for model discrimination exist. Besides optimization methods (see

e.g. [71, 40, 116, 68]) a model-based feedback controller see e.g. [7] and Markov chain

Monte Carlo sampling methods [81] have been used to construct an appropriate design.

An overview of different experimental design techniques can be found in [69]. In this

work, the motivation for such an algorithm comes from the cooperation with a group of

experimental biologists, working on the reconstruction of the provitamin A biosynthetic

pathway in an in vitro biphasic system [129, 128]. Therefore, the design conditions are

specifically taylored to the needs of their experimental setup. The design comprises

initial values, system perturbations and the optimal placement of measurement time

points. The number of measurements as well as the time points are subject to design.

The parameters of the models up to an estimated confidence region are generally not

known a priori. Therefore, one has to incorporate possible parameter configurations

of different models into a model discrimination algorithm leading to the need for ro-

bustification. The statistical discrimination criterion is worked out rigorously for these

settings. A derivation from the Kullback-Leibler divergence as optimization objective is

presented for the case of discontinuous Heaviside-functions modeling the measurement

decision, which are replaced by continuous approximations during the optimization pro-

cedure. The resulting problem can be classified as a semi-infinite optimization problem,

which we solve in an Outer Approximations approach stabilized by a suggested homo-

topy strategy whose efficiency is demonstrated. We choose the Outer Approximations

approach, since beside the fact that convergence can be proven, at each iteration of the

Outer Approximations algorithm a worst case design is calculated. Therefore, although

the current design might not be optimal, it can be used reliably for practical application.

This behavior is especially beneficial in a biological setting, since often due to complex

experimental setups and imprecise measurements the model parameters can only be

calibrated with huge variances leading to a non convex and non linear robustification

space.

1.1. Results and new contributions

Results and new contributions are shortly presented in this section. Parts of this work

have been published in [105, 73, 104] and an electronic preprint is published in [106, 107]

(the later one is a revised version).

• The algorithm for the numerical calculation of optimal experimental designs, which

is developed in this work, is specifically tailored to a real life experimental situation.

To our knowledge, this special scenario is not considered in existing literature.

2



1.2 — Outline of this thesis

Especially, the need to determine the best time point for a measurement and

to simultaneously determine the optimum number of measurement time points

does not seem to be considered satisfactorily in literature despite the fact that

these demands seem natural. Therefore, a new optimization criterion for optimal

experimental design in the context of model discrimination is rigerously derived

utilizing discontinuous Heaviside-functions in an attempt to face this requirements.

• This new optimization criterion leads to a discontinuous semi-infinite optimization

problem and thus it is not possible to solve this optimization problem by standard

optimization approaches, directly. To remedy this fact a smoothing approach,

motivated by a similar approach in [132], is applied. The consistency of this

smoothing approach is theoretically validated. It should be mentioned that the

optimization scenario, presented in [132], differs in two ways. First, in [132] only

the unconstrained case is considered. Whereas in our case, inequality and equality

constraints have to be tackled, as well. Second, the optimization problem, we face,

is semi-infinite. To our knowledge, it is the first time that a smoothing approach

is applied in this scenario and is theoretically validated.

• We solve the semi-infinite approximation utilizing the well known Outer Approxi-

mations scheme. Each finite subproblem within the Outer Approximations scheme

is solved by an Interior Point optimization algorithm. Modern Interior Point al-

gorithms are robust even under weak constraint qualifications and therefore highly

suited for this type of problems. To improve robustness of the Outer Approxima-

tions scheme, we suggest a heuristic homotopy method, which is similar to the one

presented in [93].

• A BDF-integrator has been implemented with the capability to calculate higher

order sensitivities in forward and reverse mode based on the sophisticated frame-

work of Internal Numerical Differentiation [25, 26].

• The whole framework for model discrimination, which is developed in this thesis,

has been implemented in a software package using the third party software packages

IPOPT [124, 127] and CppAD [19, 18].

1.2. Outline of this thesis

This work is organized as follows:

Chapter 2 (Theory of model discrimination).

In this chapter, we first give a short introduction to optimal experimental design in the

3



1 — Introduction

context of model discrimination. In particular, we introduce Kullback-Leibler-optimality

as discussed by López-Fidalgo et al. [77]. The design conditions are stated. Based on

Kullback-Leibler-optimality, we formally derive our optimization objective function lead-

ing to a discontinuous optimization problem.

Chapter 3 (Theory of the solution of minMax optimization problems).

The resulting optimization problem of interest for the calculation of an optimal experi-

mental design, which is solved numerically, can be classified as a semi-infinite inequality

and finite equality constrained optimization problem (SIECP). Therefore, in this chap-

ter we briefly present the theoretical basis for the solution of SIECPs, i.e. necessary

first order optimality conditions. The concept of a continuous optimality function is

introduced, which gives a measure of the degree of optimality in respect to the first

order optimality conditions. Prior to that, an equivalent first order optimality condition

for finite inequality and equality constrained optimization problems (IECPs) is intro-

duced together with a related continuous optimality function. Based on the concept of

optimality functions, the mathematical derivation of a consistent discretization scheme

for the numerical solution of a SIECP, namely the Outer Approximations scheme, is

finally shown.

In Chapters 4, 5 and 6, the elementary numerical techniques, which are indispensable for

the numerical calculation of the resulting optimization problem of interest, are presented.

Chapter 4 (Automatic Differentiation).

In this chapter, we give a brief introduction to Automatic Differentiation (AD) utilizing

truncated Taylor series propagation in forward and reverse mode. Hereafter, we treat

the special case of AD of solutions of parametrized nonlinear equations, i.e. implicitly

defined functions.

Chapter 5 (Calculating numerical solutions of Ordinary Differential Equations

and Sensitivity Generation for Ordinary Differential Equations).

In this chapter, we treat the numerical solution of ordinary differential equations (ODEs).

More precisely, we present the implementation details of a Backward Differentiation

Formula (BDF) method based on Nordsiek array interpolation. This is a numerical in-

tegration method, capable to solve stiff ODEs. Based on the sophisticated framework of

Internal Numerical Differentiation [25, 26], we subsequently present the implementation

details of algorithmic strategies for the numerical calulation of sensitivities within the

implemented BDF method.

4
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Chapter 6 (Nonlinear Programming).

This chapter treats the numerical solution of nonlinear programming (NLP) problems by

use of a primal-dual Interior Point method. The conceptual idea, the barrier approach,

is briefly sketched.

Chapter 7 (Numerical Calculation of Robust Optimal Experimental Design).

In this chapter, we first state the formal discontinuous optimization problem for the cal-

culation of an optimal experimental design. Since this problem is not directly solvable

by the Outer Approximations scheme as presented in Chapter 3 (due to the discontinu-

ities in the optimization objective), the optimization problem is first approximated by a

smoothed continuous version depending on smoothing parameters. This smoothing ap-

proach is presented and the theoretical aspects of this smoothing approach are discussed.

Hereafter, the application of the Outer Approximations scheme to the smoothed contin-

uous optimization problem is worked out. Finally, we discuss a homotopy approach to

numerically stabilize the Outer Approximations scheme.

Chapter 8 (Numerical results).

We have applied the algorithmic framework for the calculation of optimal experimental

designs to two example problems for which we present results in this chapter, namely

to models describing glycolytic oscillations and to models describing signal sensing in

dictyostelium discoideum. Additionally, we have applied the algorithmic framework to

design a Circadian Rhythm in order to set its period in a robust optimal way.

1.3. General notation

The i-th element of a vector x of an n-dimensional vector space is written as xi, i.e.

with superscript indices. The exponentiation of a scalar value a by the power of b is

also written as ab. If the i-th element of a vector x is exponentiated by the power b, it

is written as
(
xi
)b

to prevent ambiguity.

Additionally, for a sequence {yj}∞j=0 we denote by

yj →K y

that {yj}j∈K ⊂ {yj}∞j=0 converges to y. For a scalar sequence {zj}∞j=0 the limit superior

is denoted by lim zj and the limit inferior is denoted by lim zj . These notations are taken

from [91].
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CHAPTER 2

Theory of model discrimination

2.1. Introduction to model discrimination

Experience has shown that a modelling approach firmly based on experimental data can

lead to the generation of valuable biological knowledge [115, 100, 17].

To discriminate a set of candidate models against a given set of experimental data, often

likelihood ratio tests based on bootstrap methods are applied [63, 114, 117]. Ranking

methods like Stewart’s method [112, 66, 20] or the well known Akaike information cri-

terion [30] are popular as well in the field of biological modeling.

In contrast to these approaches this work deals with the problem of designing experi-

ments so that statistical methods of this type can be exploited in an optimal sense.

This differs from the approach to find an experimental design to best estimate the pa-

rameters of a model for a given experimental system in the sense of criteria characterizing

the confidence regions [67, 15, 13].

The conceptual methodology presented here goes back to ideas of Hunter and Reiner

[65], they state “. . . choose the experimental points which,. . . , will most strain the incor-

rect model in its attempt to jointly explain the previous data and the new observation.”

Atkinson and Fedorov summerized in 1975 [11] a statistically rooted optimal design

criterium for model discrimination, the so called T-optimum design. The T-optimum

design is based on the assumption that the observations yik ∈ R can either be explained

by nonlinear regression model η1(x, θ1) or η2(x, θ2) of type

yik = η(xi) + ǫik i = 1, ..., N, k = 1, ..., Ri, (2.1)

7



2 — Theory of model discrimination

where the design points xi, i = 1, ..., N, are known and the random variables ǫik are

independently normally distributed with zero mean and constant variance σ2. The

index k = 1, ..., Ri, enumerates Ri repeated measurements at the design point xi.

Assuming that the first model is true, that is ηt(x) = η1(x, θ1), the optimization objective

for a T-optimum design is given by

∆2(ξN ) :=

N∑

i=1

pi{ηt(xi)− η2(xi, θ̂2)}2,

where
N∑

i=1

pi{ηt(xi)− η2(xi, θ̂2)}2 = inf
θ2∈Θ2

N∑

i=1

pi{ηt(xi)− η2(xi, θ2)}2

with the design ξN containing probability weights pi for the observations at points xi.

i.e.

ξN =

{
x1, ..., xN

p1, ..., pN

}
,

N∑

i=1

pi = 1.

The design ξ̂N for which

∆2(ξ̂N ) = sup
ξN

∆2(ξN )

is called T-optimum. The T-optimum design provides the most powerful F-test for lack

of fit of the second model when the first is true [10]. Instead of analyzing such Maxmin

problems of finding a design for N discrete trials, it is more convenient to replace

N∑

i=1

pi{ηt(xi)− η2(xi, θ2)}2

by

∆2(ξ) =

∫

X
{ηt(x)− η2(x, θ̂2(ξ))}2ξ(dx),

with

θ̂2(ξ) := arg min
θ2∈Θ2

∫

X
{ηt(x)− η2(x, θ2)}2ξ(dx),

where ξ is a normed measure defined on the design region X and assuming that θ̂2(ξ)

exists. This leads to the Maxmin optimization problem

∆2(ξ̂) = sup
ξ

∆2(ξ). (2.2)

8



2.1 — Introduction to model discrimination

With the assumptions

(a) X compact and ηj(x, θj), j = 1, 2, continuous on X ,

(b) ηj(x, θj) differentiable with respect to θj on Θj, j = 1, 2,

(c) The optimal design ξ̂ satisfying (2.2) is regular, i.e.

∫

X
{ηt(x)− η2(x, θ̂2)ξ(dx)} = inf

θ2∈Θ2

∫

X
{ηt(x)− η2(x, θ2)ξ(dx)},

has a unique solution θ̂2 when ξ = ξ̂;

the following theorem states the necessary and sufficient optimality conditions of the

optimization problem (2.2).

Theorem 1 (Theorem 1 in [11]). Given the preceeding assumptions:

(i) A necessary and sufficient condition for a design ξ̂ to be T-optimum is the inequal-

ity

ψ2(x, ξ̂) ≤ ∆2(ξ̂) ∀x ∈ X ,

where

ψ2(x, ξ̂) := {ηt(x)− η2(x, θ̂2)};

(ii) at the points of the optimum design ψ2(x, ξ̂) achieves its upper bound;

(iii) for any non-optimal design ξ′, i.e. a design for which ∆2(ξ
′) < ∆2(ξ̂), it holds

sup
x∈X

ψ2(x, ξ
′) > ∆2(ξ̂);

(iv) the set of T-optimum designs is convex.

A proof of this theorem can be found in [43].

In the literature [10, 43, 11, 12] one can find two common classes of algorithms to

compute such T-optimum designs.

First, the following iterative algorithms for the computation of a T-optimum design:

Algorithm 1 (The algorithm is taken from [11]).

(i) Let ξs be the design at iteration s. Find xs+1 according to

ψ2(xs+1, ξs) = sup
x∈X

ψ2(x, ξs).

9



2 — Theory of model discrimination

(ii) Compute the next design as

ξs+1 = (1− αs)ξs + αsξ(xs+1),

where ξ(xs+1) is a design with respect to a single point measure in xs+1.

αs has to be a sequence of one of following forms:

(a) any sequence which satisfies

αs → 0,

∞∑

s=0

αs = ∞,

∞∑

s=0

α2
s <∞;

(b) αs maximizes ∆2((1 − α)ξs + αξ(xs+1));

(c) if ∆2(ξs) ≥ ∆2(ξs+1), αs is taken as min(ᾱs, αs−1/β), for β > 0 fixed, with

∑
ᾱs = ∞ and lim ᾱs = 0, as s→ ∞.

Details can be found in [11].

The second common class of important algorithms to construct discriminating designs

are the sequential algorithms leading to designs which are asymptotically T-optimum

and which give at each trial the largest increase in the expected value of the sum of

squares of differences between the responses of the two models.

Algorithm 2 (The algorithm is taken from [11]).

1. Given an initial nonsingular design ξN0 (a design is called singular if its informa-

tion matrix is singular [43]), where N0 is the number of observations. Find the

estimates θ̂1N0 and θ̂2N0 satisfying

N0∑

i=1

{yi − ηj(xi, θ̂jN0)}2 = inf
θj∈θj

N0∑

i=1

{yi − ηj(xi, θj)}2 j = 1, 2.

2. The point xN0+1 is found for which

{η1(xN0+1, θ̂1N0)− η2(xN0+1, θ̂2N0)}2 = max
x∈X

{η1(x, θ̂1N0)− η2(x, θ̂2N0)}2

holds.

10



2.2 — KL-optimal design

3. The (N0 + 1)st observation is taken at xN0+1.

4. Repeat steps 1 to 3.

For details we refer to [10, 43, 11, 12].

A generalization of the T-optimum design to the case of multiresponse heteroskedas-

tic regression models of type (2.1) was given by Uciński and Bogacka [119, 120] in 2004

called generalized T-optimality.

2.2. KL-optimal design

In this section a model discrimination criterion based on the Kullback-Leibler (KL) di-

vergence called KL-optimality as discussed by López-Fidalgo et al. [77] is introduced.

López-Fidalgo et al. [77] demonstrate that KL-optimality is consistent with T-optimality

[11] and generalized T-optimality [119].

We introduce the concept of a probability space and formally define the KL-divergence.

Definition 1. A probability space is a triple
(
Ω,F , P

)
consisting of

• a non-empty set Ω (sample space),

• a σ-algebra F ⊆ P(Ω), E ∈ F is called an event,

• a probability measure P : F → [0, 1].

Definition 2. Two probability spaces
(
Ω,F , Pi

)
, i = 1, 2, are called absolutely contin-

uous with respect to each other, in symbols P1 ≡ P2, if ∄ E ∈ F : (P1(E) = 0 AND

P2(E) 6= 0) OR (P1(E) 6= 0 AND P2(E) = 0).

The Radon-Nikodym Theorem allows a representation of a probability measure via a

measurable probability density function.

Theorem 2. (Radon-Nikodym)

Let λ be a probability measure such that λ ≡ P1, λ ≡ P2. Then λ-measurable functions

fi : Ω → R, i = 1, 2, called generalized probability densities, exist which are unique up

to sets of measure zero and non-negative, such that

Pi(E) =

∫

E
fi(x)dλ(x), i = 1, 2,

for all E ∈ F .

11



2 — Theory of model discrimination

A proof of this theorem can be found e.g. in [22].

In the following, we use X for the generic variable and x for a specific value of X.

If Hi, i = 1, 2 is the hypothesis that X is from the statistical population with probability

measure Pi, the mean information for discrimination in favor of H1 against H2 given

x ∈ E ∈ F , for P1 is given by the Kullback–Leibler divergence.

Definition 3. Kullback–Leibler (KL) divergence

I(1 : 2;E) : =
1

P1(E)

∫

E
log

f1(x)

f2(x)
dP1(x)

=





1

P1(E)

∫

E
f1(x) log

f1(x)

f2(x)
dλ(x) if P1(E) > 0,

0 if P1(E) = 0,

with

dP1(x) = f1(x)dλ(x).

When E is the entire sample space Ω, we shorten the notation to I(1 : 2) and omit the

region of integration. For discrete sets E the integral is substituted by a sum.

For details we refer to [70].

Now assume that the sample space Ω is split into two disjoint sets E1 and E2, Ω =

E1 ∪ E2. We define a statistical test procedure to choose between hypotheses H1 and

H2 by accepting H1 if x ∈ E1 and accepting H2 if x ∈ E2. Assuming that one of the

hypotheses has to be true we treat H2 as the null hypothesis and call E1 the critical

region. The following wrong test decisions can occur.

Definition 4. Incorrectly accepting H1 although H2 is true is called type I error. The

probability that this error occurs is given by

α = Prob(x ∈ E1|H2) = P2(E1).

Definition 5. Incorrectly accepting H2 although H1 is true is called type II error. The

probability that this error occurs is given by

β = Prob(x ∈ E2|H1) = P1(E2).

We assume that the test is repeated n-times and denote by On a sample of n inde-

pendent observations. O1 represents a sample of a single observation. βn is defined as

the corresponding probability of an error of type II which depends on the number of

12
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independent observations and the splitting of the corresponding probability space Ω into

disjoint sets E1 and E2.

The following theorem demonstrates an asymptotic relation between the KL-divergence

and the minimum possible probability β∗n of an error of type II with respect to all possible

splittings E1 ∪ E2 = Ω with given α = Prob(x ∈ E1|H2) = P2(E1) [37].

Theorem 3 (Theorem 3.3 in [70]). For any value of α, say α0, 0 < α0 < 1,

lim
n→∞

(
β∗n

)1/n
= e−I(2:1,O1).

A proof of this theorem is given in [37, 70].

Assuming probability models for the outcome of a data measurement experiment de-

pending on experimental design parameter ξ ∈ Ξ ⊂ Rd, this theorem justifies the KL-

divergence to be an appropriate objective functional for model-based computation of an

optimal experimental design for discrimination between model hypotheses. For a design

with the largest possible value of I the asymptotical probability of encountering an er-

ror of type II β∗n becomes minimal with respect to all possible splittings E1 ∪ E2 = Ω

with given α0. We indicate the dependency of the KL divergence on the design by

I(2 : 1,O1; ξ). Our aim is to derive an algorithm to calculate the optimal design ξ̂ ∈ Ξ

such that

ξ̂ = argmax
ξ∈Ξ

I(2 : 1,O1; ξ).

An extension of the case to test a simple null hypothesis against a simple alternative

hypothesis to the more general case of both hypotheses being composite is generally of

interest. This includes the situation to test if given measurement data can be explained

best by the parametrized probability measure P1, parametrized by parameters θ1 ∈ Θ1

where Θ1 ⊂ Rp1 is the set of all possible parameter values to parametrize P1, against

the hypothesis that the measurement can best be explained by P2, parametrized by

parameters θ2 ∈ Θ2 where Θ2 ⊂ Rp2 is the set of all possible parameter values to

parametrize P2.

In the following, we assume that the parameters θ2 ∈ Θ2 of P2 are known but not the

parameters θ1 ∈ Θ1 of P1 of the alternative hypotheses. We denote the dependency of

the KL divergence on the parameter vector θ1 ∈ Θ1 by I(2 : 1,O1; ξ, θ1). By calculating

ξ̂ = argmax
ξ∈Ξ

min
θ1∈Θ1

I(2 : 1,O1; ξ, θ1), (2.3)

we can get a robust worst case estimate of an optimally discriminating design for the

case of a composite alternative hypothesis.

13



2 — Theory of model discrimination

2.3. Derivation of the optimal experimental design criterion

In this section we derive a numerically computable optimization objective functional

based on the framework of KL divergence. The derivation is motivated by the require-

ments of biological in vitro time series experiments modeled by kinetic ODE systems. In

most situations such experiments are time and cost consuming. Therefore a central issue

is to get the most information out of a single time series data measurement experiment

taking place within a given fixed time span [0, T end]. This means that in an optimal ex-

perimental design the most informative measurement time points for one measurement

run have to be calculated in such a way that only one measurement at one time point

can be performed. Often, an experiment cannot produce measurements in a time con-

tinuous way. Therefore we assume that there has to be a minimal time span ∆T for the

separation of measurement time points. Additionally, the initial species concentrations

of the participating species should be chosen in a most discriminating way.

A commonly used practice is to combine kinetic time series measurements with pertur-

bation stimuli like external adding of species quantities. From the model discrimination

point of view the optimal time point of perturbation and the optimal species quantities

to be added should be determined. We further assume that a measurement cannot be

done at the same time as a perturbation.

In the following, we translate these experimental conditions into a statistical model.

Given the measurement time-vector t ∈ Rn+ with entries ti for the n measurement time

points ti, i = 1, ..., n such that ti+1 ≥ ti, the model response vectors at measurement

time ti for hypotheses Hj, j = 1, 2 are given by

yj,i := yj(t
i−1, ti, yj,i−1 + ci−1, θj), i = 1, ..., n, j = 1, 2

where yj(t
i−1, ti, yj,i−1 + ci−1, θj) ∈ Rm, i = 1, ..., n, j = 1, 2 is the solution of the initial

value problem
dyj
dt

= f rhsj (yj, θj), t ∈ [tinit, tend], j = 1, 2 (2.4)

with initial state yj(t
init) = yj,i−1+ci−1 at initial time tinit = ti−1 and end time tend = ti,

i = 1, ..., n, j = 1, 2, t0 := 0 and c0 := 0. The vectors ci ∈ Rm, i = 1, ..., n − 1, de-

note species quantities the experimental system can be perturbed with at time points

ti, i = 1, ..., n − 1. f rhsj (·, ·), j = 1, 2 are the right hand side functions of the two ODE

models. We assume autonomous ODE models [58]. yI =: yj,0, j = 1, 2, denotes the

initial species concentration of the entire experiment, which is the same for both models.

Let yti denote the vector of species concentrations of an observation at measurement time

point ti. By assuming that the measurements at successive time points ti, i = 1, ..., n,

14



2.3 — Derivation of the optimal experimental design criterion

are independent with normally distributed error vectors ǫj,i ∈ Rm, i = 1, ..., n, j = 1, 2,

zero mean and variance functions
(
vj(yj,i, t

i, θj)
)2
, i = 1, ..., n, j = 1, 2, we get for the

regression models

yti = yj,i + ǫj,i, i = 1, ..., n, j = 1, 2,

the two model probability densities f1(·; ·) for hypothesis H1 and f2(·; ·) for hypothesis
H2 at measurement time point ti, i = 1, ..., n, given by

fj(yti ; yj,i) =
1√

2π|vij |
e−

1
2
(yj,i−yti)T Vj,i(yj,i−yti), i = 1, ..., n, j = 1, 2, (2.5)

with |vij | :=
∏m
k=1 v

k
j (yj,i, t

i, θj), i = 1, ..., n, j = 1, 2, where vkj (yj,i, t
i, θj) denotes the

k-th entry of the square root of the variance functions
(
vj(yj,i, t

i, θj)
)2
, and diagonal ma-

trices Vj,i ∈ Rm×m, i = 1, ..., n, j = 1, 2 with diagonal entries V kk
j,i := (1/vkj (yj,i, t

i, θj))
2,

i = 1, ..., n, j = 1, 2, k = 1, ...,m.

We generally allow for different error models for both hypotheses. The error model

might dependent on the species concentrations yj,i, i = 1, ..., n, j = 1, 2, the time ti,

i = 1, ..., n, and possibly on parameters θj, j = 1, 2.

For the sake of notational simplicity we define

fj(yti) := fj(yti ; yj,i), i = 1, ..., n, j = 1, 2.

For the full measurement run containing n measurement time points we get the proba-

bility density models

fj(y) :=
n∏

i=1

fj(yti), j = 1, 2.

However, by assuming such a model probability distribution we still allow that two

measurements are separated by a time span less than ∆T . To overcome this problem we

extend the probability spaces Ωi = Rm, i = 1, ..., n of a measurement at one measurement

time point by one-element-containing sets Ni, i = 1, ..., n to

Ω̃i = Ωi ·∪Ni, i = 1, ..., n,

where Ω̃i is the disjoint union of Ωi and Ni, i = 1, ..., n. The element of the set Ni

with measure P (Ni) ∈ [0, 1], i = 1, ..., n represents the event “no measurement”, i.e.

ỹi ∈ Ni ⇔ “no measurement performed at time point ti”.

15
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In order to derive measures on Ω̃i, i = 1, ..., n that allow a density function repre-

sentation according to the Radon-Nikodym theorem (Theorem 2), we introduce the

Heaviside-functions

H,H∗ : R −→ [0, 1]

with

H(ti) =

{
1 if ti − ti−1 ≥ ∆T

0 if ti − ti−1 < ∆T
i = 1, ..., n

and

H∗(ti) :=

{
0 if ti − ti−1 ≥ ∆T

1 if ti − ti−1 < ∆T.
i = 1, ..., n

By use of these Heaviside-functions and σ-algebras Fi, where Fi contains the Lebesgue

measurable sets on Ωi and additionally the union of them with the set Ni, we define

probability spaces (Ω̃i,Fi, P̃i,j) with measures

P̃i,j : Ei ∈ Fi 7→ P̃i,j(Ei) ∈ [0, 1], i = 1, ..., n, j = 1, 2,

with respect to H1 and H2. Three cases have to be distinguished:

1. Ei ⊂ Ωi,

2. Ei ⊂ Ni,

3. Ei ∩ Ωi 6= ∅ and Ei ∩ Ni 6= ∅, i = 1, ..., n.

For case one with Ei ⊂ Ωi we set

P̃i,j(Ei) := H(ti)

∫

Ei

fj(yti)dyti , i = 1, ..., n, j = 1, 2.

For case two with Ei ⊂ Ni we set

P̃i,j(Ei) := H∗(ti), i = 1, ..., n, j = 1, 2.

For case three with Ei ∩ Ωi 6= ∅ and Ei ∩ Ni 6= ∅ we set

P̃i,j(Ei) := H(ti)

∫

Ei∩Ωi

fj(yti)dyti +H∗(ti), i = 1, ..., n, j = 1, 2.

By introducing these modifications the probability measures P̃i,j, i = 1, ..., n, j = 1, 2,

do not depend on measurements which are performed in less than ∆T after the previous

measurement any more.
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2.3 — Derivation of the optimal experimental design criterion

To take into account that a species concentration perturbation to the system can only

be applied if no measurement is done at the same time, the same procedure is repeated

with the Heaviside-functions

H(ti) =

{
1 if ti − ti−1 ≥ ∆T

0 if ti − ti−1 < ∆T
i = 1, ..., n,

H∗(ti) =

{
0 if ti − ti−1 ≥ ∆T

1 if ti − ti−1 < ∆T
i = 1, ..., n

(2.6)

and

H̃(ci) =

{
0 if ci > 0

1 if ci = 0
i = 1, ..., n − 1,

H̃∗(ci) =

{
1 if ci > 0

0 if ci = 0
i = 1, ..., n − 1.

(2.7)

The measures P̃i,j , i = 1, ..., n, j = 1, 2 are defined in the same way as above by replacing

H(ti) with H(ti)H̃(ci). One further has to exchange H∗(ti):

H∗(ti) →
(
H(ti)H̃∗(ci) +H∗(ti)H̃(ci) +H∗(ti)H̃∗(ci)

)
.

Inserting the two probability models into the KL divergence (Definition 3), i.e. using

λi := P̃i,1, i = 1, ..., n and the additivity of the KL divergence for independent events

one gets the following expression

I(2 : 1,O1; ξ, θ1) =
n∑

i=1

[∫
H(ti)H̃(ci)f2(yti) log

{
H(ti)H̃(ci)f2(yti)

H(ti)H̃(ci)f1(yti)

}
dyti +

(
H(ti)H̃∗(ci) +H∗(ti)H̃(ci) +H∗(ti)H̃∗(ci)

)
·

log

{
H(ti)H̃∗(ci) +H∗(ti)H̃(ci) +H∗(ti)H̃∗(ci)

H(ti)H̃∗(ci) +H∗(ti)H̃(ci) +H∗(ti)H̃∗(ci)

}]
,

where cn := 0. With log(1) = 0 this simplifies to

I(2 : 1,O1; ξ, θ1) =

n∑

i=1

H(ti)H̃(ci)

∫
f2(yti) · log

{
f2(yti)

f1(yti)

}
dyti . (2.8)

By inserting the normal distribution (2.5) in (2.8) one gets

I(2 : 1,O1; ξ, θ1) =

n∑

i=1

H(ti)H̃(ci)

∫
f2(yti) log





1√
2π|vi2|

e−
1
2
(y2,i−yti)T V2,i(y2,i−yti)

1√
2π|vi1|

e−
1
2
(y1,i−yti)T V1,i(y1,i−yti)



 dyti .

17



2 — Theory of model discrimination

In the next step we obtain

I(2 : 1,O1; ξ, θ1) =

n∑

i=1

H(ti)H̃(ci)

(
m∑

k=1

log

(
vk1 (y1,i, t

i, θ1)

vk2 (y2,i, t
i, θ2)

)
+Ak

)
(2.9)

with

Ak =
1

2

∫
fk2 (yti)

[
− 1
(
vk2 (y2,i, t

i, θ2)
)2
((

yk2,i

)2
− 2yk2,iy

k
ti +

(
ykti
)2)

+
1

(
vk1 (y1,i, t

i, θ1)
)2
((

yk1,i

)2
− 2yk1,iy

k
ti +

(
ykti
)2)

]
dykti .

Ak reduces using the well known moments of the normal distribution to

Ak =
1

2

[
− 1
(
vk2 (y2,i, t

i, θ2)
)2
((

yk2,i

)2
− 2

(
yk2,i

)2
+
(
yk2,i

)2
+
(
vk2 (y2,i, t

i, θ2)
)2)

+
1

(
vk1 (y1,i, t

i, θ1)
)2
((

yk1,i

)2
− 2yk1,iy

k
2,i +

(
yk2,i

)2
+
(
vk2 (y2,i, t

i, θ2)
)2)

]
.

This further simplifies to

Ak =
1

2


−1 +

((
yk1,i

)2
− 2yk1,iy

k
2,i +

(
yk2,i

)2
+
(
vk2 (y2,i, t

i, θ2)
)2
)

(
vk1 (y1,i, t

i, θ1)
)2


 .

Substituting Ak back into (2.9) we get

I(2 : 1,O1; ξ, θ1) =

n∑

i=1

H(ti)H̃(ci)

(
m∑

k=1

log

(
vk1 (y1,i, t

i, θ2)

vk2 (y2,i, t
i, θ1)

)
+

1

2


−1 +

(
yk1,i − yk2,i

)2
+
(
vk2 (y2,i, t

i, θ2)
)2

(
vk1 (y1,i, t

i, θ1)
)2





 .

This reduces to

I(2 : 1,O1; ξ, θ1) =
1

2

n∑

i=1

H(ti)H̃(ci)·



m∑

k=1




(
vk2 (y2,i, t

i, θ2)
)2

+
(
yk2,i − yk1,i

)2

(
vk1 (y1,i, t

i, θ1)
)2 − 2 log

(
vk2 (y2,i, t

i, θ2)

vk1 (y1,i, t
i, θ1)

)

−m


 .

(2.10)
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2.3 — Derivation of the optimal experimental design criterion

This criterion has to be maximized with respect to the initial concentrations yI := y(t0),

the measurement time points t and the system perturbations c, thus ξ := (yI, t, c) ∈ Ξ ⊂
Rd.

For our optimal experimental design we generally start with a large number of measure-

ment time points. By use of the Heaviside-functions the number of measurement time

points gets reduced in the sense that for ti− ti−1 < ∆T the corresponding measurement

time point is “turned off”.

Remark. The Heaviside-functions can be replaced by any appropriate switching func-

tions

H′(t) +H′∗(t) ≡ 1 with H′(t),H′∗(t) ∈ [0, 1]

and

H̃′(c) + H̃′∗(c) ≡ 1 with H̃′(c), H̃′∗(c) ∈ [0, 1],

e.g. continuously differentiable functions.
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CHAPTER 3

Theory of the solution of minMax optimization problems

In this chapter we present first order optimality conditions for semi-infinite inequal-

ity and finite equality constrained optimization problems (SIECP) and an algorithmic

scheme to find solution points which satisfy first order optimality conditions. Several

methods to solve such SIECP are available, an overview can be found in [60, 91]. We

choose the method of Outer Approximations [95, 103, 91], whose origin can be traced

back to cutting plane methods for convex problems [91]. This approach is beneficial in

the presence of a complex inner problem. The Outer Approximations algorithm solves

iteratively discretized finite counterparts of the semi-infinite problem in each step refin-

ing the discretization until a sufficient approximation of the original problem is reached.

The relation between the semi-infinite problem and an infinite sequence of finite prob-

lems can be formalized in the theory of consistent approximations and epi-convergence

[88, 89, 90, 91].

In the following, we first present a first order optimality condition for finite inequality

and equality constrained optimization problems (IECP). Thereafter, we present the

concept of a continuous optimality function, which gives a measure of the degree of

optimality. At a point where the first order optimality condition is fullfilled the value

of the optimality function is zero. Hereafter we present first order optimalty conditions

for SIECP and a related optimality function. At the end of the chapter we derive the

Outer Approximations scheme utilizing the concept of optimality functions for IECP

and SIECP.

We stay close to the presentation in [91], but it should be noted that the presentation

is partially extended, i.e. in Section 3.1 Corollaries 1 and 2, as well as the proofs of
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Proposition 2 and Theorem 8 are not contained in the presentation in [91]. In Section

3.2 Corollary 4 and the proofs of the presented results are not contained in [91]. The

proof of Theorem 14 in Section 3.3, the main result of this chapter is not included in

[91], as well. To be consistent with [91], we drop the meaning of the indices as used in

Chapter 2 and use the same notation as in [91]. For preliminary definitions and results

refer to Appendix A.

3.1. Finite inequality and equality constrained optimization

problem

Definition 6 (Definition (0c), page 167 in [91]). The problem

min {f0(x)|f j(x) ≤ 0, j ∈ q, gk(x) = 0, k ∈ r}, (3.1)

where the constraint functions f j : Rn → R, j ∈ q := {1, . . . , q}, and gk : Rn → R, k ∈
r := {1, . . . , r} are continuously differentiable, while the cost function f0 : Rn → R can

be either continuously differentiable on Rn or a max function of the form

f0(x) := max
k∈p

ck(x),

with the ck : Rn → R, k ∈ p := {1, . . . , p} continuously differentiable is called a finite

inequality and equality constrained optimization problem ( IECP).

Definition 7 (Definition 2.2.15 in [91]). Let XIE := {x ∈ Rn|ψ(x) ≤ 0, g(x) = 0}. We

will say that x̂ ∈ XIE is a local minimizer for IECP if there exists a ρ > 0 such that

f0(x) ≥ f0(x̂) for all x ∈ XIE ∩B(x̂, ρ) with

ψ(x) := max
j∈q

f j(x)

and

g(x) := (g1(x), g2(x), . . . , gr(x)).

If f0(x) > f0(x̂) for all x ∈ XIE ∩B(x̂, ρ), x 6= x̂, x̂ is called a strict local minimizer.

3.1.1. First order optimality conditions for IECP

Theorem 4 (Theorem 2.2.16 in [91]). (a) Suppose x̂ is a local minimizer for the problem

IECP, then x̂ is a local minimizer for the problem

min
{
F̂ (x)|g(x) = 0

}
, (3.2)
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where

F̂ (x) := max
{
f0(x)− f0(x̂), ψ(x)

}
= max

{
max
k∈p

[ck(x)− f0(x̂)],max
j∈q

f j(x)

}
.

(b) suppose that, for any x ∈ Rn such that both ψ(x) = 0 and g(x) = 0, there exists a

sequence of vectors {xi}∞i=0 converging to x, such that ψ(xi) < 0 and g(xi) = 0 for all

i ∈ N. If x̂ is a local minimizer for (3.2) such that ψ(x̂) ≤ 0, then x̂ is a local minimizer

for (3.1).

Proof (Modification of the proofs of Theorem 2.2.2 and Theorem 2.2.3 in [91]).

(a) First, since ψ(x̂) ≤ 0, by assumption, it holds that F̂ (x̂) = 0. Next, let ρ̂ > 0 be the

radius associated with x̂ (see Definition 7). Then, for all x ∈ B(x̂, ρ̂) ∩XE with

XE := {x ∈ Rn|g(x) = 0} ,

F̂ (x) ≥ 0, if ψ(x) ≥ 0, and f0(x) − f0(x̂) ≥ 0, if ψ(x) ≤ 0, the latter also implies that

F̂ (x) ≥ 0. Hence x̂ is a local minimizer for (3.2).

(b) First suppose that ψ(x̂) < 0. Since ψ(·) is continuous, and F̂ (x̂) = 0, and x̂ is a local

minimizer of (3.2), there exists a ρ̂ > 0 such that, for all x ∈ B(x̂, ρ̂)∩XE , F̂ (x) ≥ 0 and

ψ(x) < 0. It now follows by inspection that, for all x ∈ B(x̂, ρ̂)∩XE , f
0(x)− f0(x̂) ≥ 0,

which shows that x̂ is a local minimizer for IECP.

Next suppose that ψ(x̂) = 0. Since x̂ is a local minimizer of (3.2), it follows that there

exists a ρ̂ > 0 such that for all x ∈ B(x̂, ρ̂)∩XE , F̂ (x) ≥ 0. Now, if x ∈ B(x̂, ρ̂)∩XE is

such that ψ(x) < 0, then F̂ (x) ≥ 0 implies that f0(x)− f0(x̂) ≥ 0. If x ∈ B(x̂, ρ̂) ∩XE

is such that ψ(x) = 0 then by assumption there exists a sequence of vectors {xi}∞i=0

converging to x, such that ψ(xi) < 0 and g(xi) = 0 for all i ∈ N. Consequently there

exist i0 ∈ N so that for all i > i0, xi ∈ B(x̂, ρ̂) ∩XE with ψ(xi) < 0, which implies that

F̂ (xi) = f0(xi) − f0(x̂) ≥ 0 for all i > i0. It now follows from the continuity of f0(·)
that f0(x)− f0(x̂) ≥ 0. Hence we conclude that x̂ is a local minimizer for IECP.

Proposition 1 (Proposition 2.2.18 in [91]). Suppose that C is a convex, compact set in

Rn and that H is a subspace of Rn. Then

max
ξ∈C

〈ξ, h〉 ≥ 0,∀h ∈ H (3.3)

if and only if

C ∩H⊥ 6= ∅, (3.4)

where H⊥ is the orthogonal complement of H in Rn.

Proof (The proof is taken from [91]). “⇒” We give a proof by contraposition. Suppose
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Figure 3.1.: Visualization for the proof of Proposition 1.

C ∩H⊥ = ∅. Then C can be separated strictly from H⊥ (see Theorem 19), i.e., there

exists a h 6= 0 such that 〈ν, h〉 = 0 for all ν ∈ H⊥, and 〈ξ, h〉 < 0 for all ξ ∈ C, which

shows that (3.3) does not hold. See Figure 3.1.

“⇐” Suppose that there is a vector g ∈ C ∩H⊥. Then for any h ∈ H,

max
ξ∈C

〈ξ, h〉 ≥ 〈g, h〉 = 0,

i.e., (3.3) holds.

Theorem 5 (Theorem 2.2.19 in [91]). Consider problem IECP. Suppose that the func-

tions ck : Rn → R, k ∈ p and the functions f j, gl : Rn → R, j ∈ q, l ∈ r are at least

once continuously differentiable. If x̂ is a local minimizer for IECP and the vectors

∇gl(x̂), l ∈ r, are linearly independent, then

(a)

dF̂ (x̂;h) ≥ 0,∀h ∈ HE(x̂), (3.5)

where

HE(x̂) := {h ∈ Rn|gx(x̂)h = 0} , (3.6)

and dF̂ (x̂;h) is the directional derivative (see Theorem 24) of function F̂ (·) at x̂ ∈ Rn

in direction h ∈ Rn as given in Definition 24;

(b) there exist multipliers µ̂ ∈ Σ0
q := {(µ0, µ)|µ0 ∈ R+, µ ∈ Rq+,

∑q
j=0 µ

j = 1}, ν̂ ∈ Σp :=

{ν|ν ∈ Rp+,
∑p

j=0 ν
j = 1}, and ζ̂ ∈ Rr such that

µ̂0

[
p∑

k=1

ν̂k∇ck(x̂)
]
+

q∑

j=1

µ̂j∇f j(x̂) +
r∑

l=1

ζ̂ l∇gl(x̂) = 0, (3.7)
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3.1 — Finite inequality and equality constrained optimization problem

and
p∑

k=1

ν̂k
[
ck(x̂)− f0(x̂)

]
+

q∑

j=1

µ̂jf j(x̂) = 0. (3.8)

Proof (The proof is taken from [91]). (a) Since x̂ is a local minimizer for IECP, it must

also be a local minimizer for the problem (3.2). Hence, for the sake of contradiction,

suppose that there is a vector h ∈ HE(x̂) such that dF̂ (x̂;h) < 0. Since the matrix

gx(x̂) has maximum row rank, it follows from Corollary 6 that there exists a th > 0

and continuously differentiable function s : [0, th] → Rn such that s(0) = x̂, ṡ(0) = h,

and g(s(t)) = 0 for all t ∈ [0, th]. Let σ : [0, th] → R be defined by σ(t) = F̂ (s(t)).

Then by the Chain Rule Theorem (Theorem 27), the directional derivative dσ(0; 1) =

dF̂ (x̂;h) < 0, and hence there exists a t′ ∈ (0, th] such that σ(t) < σ(0) for all t ∈ (0, t′).

Consequently, for any t ∈ (0, t′), g(s(t)) = 0 and F̂ (s(t)) < F̂ (x̂) = 0, which contradicts

the fact that x̂ is a local minimizer for the problem (3.2) and hence for the problem

IECP.

(b) Now, by Theorem 24, (a) for any h ∈ Rn,

dF̂ (x̂;h) = max
ξ∈∂F̂ (x̂)

〈ξ, h〉,

and (c),

∂F̂ (x̂) = conv




⋃

j ∈ qA(x̂)

k ∈ p̂(x̂)

{
∇f j(x̂),∇ck(x̂)

}



, (3.9)

with

p̂(x) :=
{
k ∈ p|ck(x) = f0(x)

}

and

qA(x) :=
{
j ∈ q|f j(x) ≥ 0

}
.

It now follows from (3.5), (3.6) and Proposition 1 that

∂F̂ (x̂) ∩H⊥
E(x̂) 6= ∅.

Since the vectors ∇gl(x̂), l ∈ r, form a basis for H⊥
E(x̂), it follows that there exists

µ̂ ∈ Σ0
q, ν̂ ∈ Σp and ζ̂ ∈ Rr such that (3.7) and (3.8) hold with (3.8) ensuring that only

the vectors appearing in the expression (3.9) for ∂F̂ (x̂) have nonzero coefficients in (3.7)

since [ck(x̂)− f0(x̂)] ≤ 0 and f j(x̂) ≤ 0.
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For later purpose, we now introduce the so called Mangasarian-Fromowitz constraint

qualification (MFCQ).

Definition 8. Consider problem IECP. We say that the Mangasarian-Fromowitz con-

straint qualification holds at x ∈ Rn, if the vectors ∇gl(x), l ∈ r, are linearly independent,

and there exists h̃ ∈ Rn such that (strictly feasible direction),

∇gl(x)T h̃ = 0, l ∈ r,

and

∇f j(x)T h̃ < 0, j ∈ qA(x).

Corollary 1. If x̂ is a local minimizer for problem (3.2) with ψ(x̂) ≤ 0 and MFCQ is

satisfied at all points x ∈ Rn with ψ(x) = 0 and g(x) = 0, then x̂ is a local minimizer

for problem IECP.

Proof. It is sufficient to show (Theorem 4(b)), that if x ∈ Rn with ψ(x) = 0 and

g(x) = 0 there exists a sequence of vectors {xi}∞i=0 converging to x, such that ψ(xi) < 0

and g(xi) = 0 for all i ∈ N. Be x ∈ Rn with ψ(x) = 0 and g(x) = 0. By assumption x

satisfies MFCQ and thus there is a direction h̃ such that gx(x)
T h̃ = 0 and dψ(x; h̃) < 0.

It follows from Corollary 6 that there exists a th̃ > 0 and continuously differentiable

function s : [0, th̃] → Rn such that s(0) = x, ṡ(0) = h̃, and g(s(t)) = 0 for all t ∈ [0, th̃].

Let σ : [0, th̃] → R be defined by σ(t) = ψ(s(t)). Then by the Chain Rule Theorem

(Theorem 27), the directional derivative dσ(0; 1) = dψ(x; h̃) < 0, and hence there

exists a t′ ∈ (0, th̃] such that σ(t) < σ(0) for all t ∈ (0, t′). Consequently, for any

t ∈ (0, t′), g(s(t)) = 0 and ψ(s(t)) < ψ(x) = 0 and thus there exists a sequence of vectors

{xi}∞i=0 converging to x, such that ψ(xi) < 0 and g(xi) = 0 for all i ∈ N.

Corollary 2. Consider problem IECP. Suppose that the functions ck : Rn → R, k ∈ p

and the functions f j, gl : Rn → R, j ∈ q, l ∈ r are at least once continuously differ-

entiable. If x̂ is a local minimizer for IECP and MFCQ is satisfied at x̂ there exist

multipliers µ̂ ∈ Rq+, ν̂ ∈ Σp := {ν|ν ∈ Rp+,
∑p

j=0 ν
j = 1}, and ζ̂ ∈ Rr such that

p∑

k=1

ν̂k∇ck(x̂) +
q∑

j=1

µ̂j∇f j(x̂) +
r∑

l=1

ζ̂ l∇gl(x̂) = 0,

and
p∑

k=1

ν̂k
[
ck(x̂)− f0(x̂)

]
+

q∑

j=1

µ̂jf j(x̂) = 0.
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3.1 — Finite inequality and equality constrained optimization problem

Proof. It is sufficient to show that µ̂0 > 0 in (3.7). We proof by contraposition. Suppose

µ̂0 = 0, then there exist multipliers µ̂ ∈ Σq := {µ|µ ∈ Rq+,
∑q

j=0 µ
j = 1}, and ζ̂ ∈ Rr

such that
q∑

j=1

µ̂j∇f j(x̂) +
r∑

l=1

ζ̂ l∇gl(x̂) = 0.

Since µ̂ ∈ Σq and MFCQ holds at x̂ there exists h̃ ∈ Rn such that for all j ∈ q with

µ̂j > 0, µ̂j∇f j(x̂)T h̃ < 0 and ζ̂ l∇gl(x̂)T h̃ = 0, l ∈ r. It follows

0 >




q∑

j=1

µ̂j∇f j(x̂) +
r∑

l=1

ζ̂ l∇gl(x̂)



T

h̃ = 0T h̃ = 0,

which is a contradiction and therefore µ̂0 > 0.

Remark. In the special case p = {1} Corollary 2 restates the Karush–Kuhn–Tucker

(KKT) conditions [83].

3.1.2. Optimality function for IECP

Proposition 2. Suppose that g : Rn → Rr, with r < n, is continuously differentiable

and that the matrix gx(x) has maximum row rank for all x ∈ Rn. Let the set valued

function HE(·) be defined by

HE(x) :=
{
h ∈ Rn|gx(x)h = 0

}
.

HE(·) is outer semicontinuous (Definition 32) and inner semicontinuous (Definition 33)

and hence continuous.

Proof. First we show that HE(·) is outer semicontinuous using Theorem 21(a).

Let x̂ ∈ Rn and let {xi}∞i=0 be a sequence such that xi → x̂, as i → ∞. Let ĥ be a

cluster point (Definition 35) of {HE(xi)}∞i=0. Since ĥ is a cluster point of {HE(xi)}∞i=0

it follows that there exists a {hi}∞i=0, hi ∈ HE(xi) with hi →K ĥ, for a infinite subset

K ⊂ N. Since gx(x)h is continuous in x and h and gx(xi)hi = 0 it follows that

lim
i→K∞

gx(xi)hi = gx(x̂)ĥ = 0,

and hence LimHE(xi) ⊂ HE(x̂).

Next we show that HE(·) is inner semicontinuous using Theorem 21(c).

Suppose that x̂ ∈ Rn and ĥ ∈ HE(x̂) are given and that {xi}∞i=0 is a sequence in Rn

converging to x̂. Clearly, we only need to show that there exist vectors hi ∈ HE(xi)

such that hi → ĥ, as i → ∞. Since the matrix gx(·) has maximum row rank, there
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3 — Theory of the solution of minMax optimization problems

exists a continuous, (n− r)× n, matrix-valued function W (x) (e.g. whose rows form an

orthogonal basis for the null space of gx(x)) such that the matrix

A(x) =

[
W (x)

gx(x)

]

is continuous and nonsingular. For an x ∈ Rn, let

h̃(x) = A−1(x)A(x̂)ĥ.

h̃(·) is continuous and well defined so that obviously h̃(xi) ∈ HE(xi) and

lim
i→∞

h̃(xi) → ĥ,

thus LimHE(xi) ⊃ HE(x̂).

Theorem 6 (Theorem 5.4.1 in [91]). Suppose that φ : Rn×Rm → R is continuous, that

Y : Rn → 2R
m

is outer semicontinuous and that the function ψ : Rn → R defined by

ψ(x) := max
y∈Y (x)

φ(x, y) (3.10)

is well defined for all x ∈ Rn. If, for every bounded set X ⊂ Rn, there exists an α < ∞
such that for all x ∈ X,

‖ arg max
y∈Y (x)

φ(x, y)‖ ≤ α, (3.11)

then ψ(·) is upper semicontinuous.

Proof (The proof is taken from [91]). Let x̂ ∈ Rn be given. Let {xi}∞i=0 be an arbitrary

sequence such that xi → x̂, as i→ ∞, and let yi ∈ Y (xi) be such that ψ(xi) = φ(xi, yi)

for i ∈ N. Since the sequence {xi}∞i=0 is bounded, it follows from our hypotheses

that there exists an α < ∞ such that ‖yi‖ ≤ α for all i ∈ N, and hence, since

φ(·, ·) is continuous, lim φ(xi, yi) exists. Suppose that yi, i ∈ K ⊂ N are such that

lim φ(xi, yi) = lim
i→K∞

φ(xi, yi) and yi →K y∗, as i→ ∞. Then y∗ ∈ Y (x̂) because Y (·) is
outer semicontinuous and hence

ψ(x̂) ≥ φ(x̂, y∗) = lim
i∈K

φ(xi, yi) = limψ(xi).

Proposition 3 (Corollary 5.4.2 in [91]). Suppose that φ : Rn ×Rm → R is continuous,

that Y : Rn → 2R
m

is continuous, and that the function ψ : Rn → R, defined by (3.10),
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3.1 — Finite inequality and equality constrained optimization problem

is well defined for all x ∈ Rn. If, for every bounded set X ⊂ Rn, there exists an α <∞
such that (3.11) holds for all x ∈ X, then ψ(·) as defined by (3.10) is continuous.

Proof (The proof is taken from [91]). Since by Theorem 6, ψ(·) is upper semicontinuous,

we only need to show that it is lower semicontinuous under the stronger assumption on

Y (·). For the sake of contradiction, suppose that there is a point x̂ ∈ Rn and a sequence

xi → x̂, as i→ ∞ such that lim
i→∞

ψ(xi) exists and

limψ(xi) < ψ(x̂).

Suppose that ψ(x̂) = φ(x̂, ŷ) with ŷ ∈ Y (x̂). Then, since Y (·) is continuous, there

exist yi ∈ Y (xi), i ∈ N, such that yi → ŷ, as i → ∞. Since φ(·, ·) is continuous,

limi→∞ φ(xi, yi) = φ(x̂, ŷ). Hence there exists an i0 such that φ(xi, yi) ≥ ψ(xi), for all

i ≥ i0, which contradicts the definition of ψ(xi).

Theorem 7 (Modification of Corollary 5.5.2 in [91]). Consider the problem

min{f0(x)|f j(x) ≤ 0, j ∈ q, Ax− b = 0, x ∈ C} (3.12)

where the functions f j : Rn → R, j ∈ q̄ := {0, 1, . . . , q}, are convex (and hence contin-

uous), A is an r × n (r < n) matrix of maximum row rank, b ∈ Rr, and C is a convex

subset of Rn. Let Z := {z′ ∈ Rr|z′ = Ax − b, x ∈ C} be a subset of Rr. Suppose that

there exists an x0 ∈ C, such that Ax0−b = 0 and f j(x0) < 0 for all j ∈ q, the minimum

in (3.12) is achieved and the zero vector 0r ∈ Rr is in the interior of Z. Let f : Rn → Rq

be defined by

f(x) := (f1(x), f2(x), . . . , f q(x)), (3.13)

let

νp := inf
x∈C

sup
µ∈Rq

+
ζ∈Rr

f0(x) + 〈µ, f(x)〉+ 〈ζ,Ax− b〉 (3.14)

and let

νd := sup
µ∈Rq

+
ζ∈Rr

inf
x∈C

f0(x) + 〈µ, f(x)〉+ 〈ζ,Ax− b〉

Then

(a)

νp = min
{
f0(x)|f j(x) ≤ 0, j ∈ q, Ax− b = 0, x ∈ C

}
(3.15)

(b) νp = νd, and
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3 — Theory of the solution of minMax optimization problems

(c) there exist x̂ ∈ C, µ̂ ∈ Rq+, and ζ̂ ∈ Rr, such that

νp = min
x∈C

f0(x) + 〈µ̂, f(x)〉+ 〈ζ̂ , Ax− b〉

= max
µ∈Rq

+
ζ∈Rr

f0(x̂) + 〈µ, f(x̂)〉+ 〈ζ,Ax̂− b〉 = νd
(3.16)

and

〈µ̂, f(x̂)〉 = 〈ζ̂, Ax̂− b〉 = 0. (3.17)

Proof (Modification of the proof of Theorem 5.5.1 in [91]).

First, since, for any x ∈ C such that f j(x) > 0 for some j ∈ q or Ax− b 6= 0,

sup
µ∈Rq

+
ζ∈Rr

〈µ, f(x)〉+ 〈ζ,Ax− b〉 = ∞,

it follows directly that the equality in (3.15) holds and that, if x̂ is a solution of (3.12),

then x̂ is also a solution of (3.14), to which corresponds a µ̂ and ζ̂ satisfying (3.17).

For every x ∈ Rn, let

G(x) := {ȳ = (y0, y, z) ∈ R× Rq × Rr|yj ≥ f j(x), j ∈ q̄, z = Ax− b}

and let G = G(C). We begin by showing (i) that G is convex and (ii) that

νp = inf
ȳ∈G

sup
µ∈Rq

+
ζ∈Rr

y0 + 〈µ, y〉+ 〈ζ, z〉. (3.18)

(i) Suppose that ȳ1, ȳ2 ∈ G and λ ∈ (0, 1). Then there exist x1, x2 ∈ C such that

ȳ1 ∈ G(x1), ȳ2 ∈ G(x2), and for every j ∈ q̄,

λyj1 + (1− λ)yj2 ≥ λf j(x1) + (1− λ)f j(x2) ≥ f j(λx1 + (1− λ)x2)

and

λz1 + (1− λ)z2 = A(λx1 + (1− λ)x2)− b,

which shows that

λȳ1 + (1− λ)ȳ2 ∈ G(λx1 + (1− λ)x2).

Since λx1 + (1− λ)x2 ∈ C, it follows that λȳ1 + (1− λ)ȳ2 ∈ G.
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3.1 — Finite inequality and equality constrained optimization problem

(ii) Let F : Rn → R× Rq × Rr be defined by

F (x) =



f0(x)

f(x)

Ax− b


 ,

Then because F (C) ⊂ G,

νp = inf
x∈C

sup
µ∈Rq

+
ζ∈Rr

f0(x) + 〈µ, f(x)〉+ 〈ζ,Ax− b〉 = inf
ȳ∈F (C)

sup
µ∈Rq

+
ζ∈Rr

y0 + 〈µ, y〉+ 〈ζ, z〉

≥ inf
ȳ∈G

sup
µ∈Rq

+
ζ∈Rr

y0 + 〈µ, y〉+ 〈ζ, z〉.

But, for every ȳ ∈ G, there exists ȳ′ ∈ F (C) such that y′j ≤ yj , for all j ∈ q̄ and z′ = z.

Hence (3.18) must hold.

Next for any x′ ∈ C, µ ∈ Rq+ and ζ ∈ Rr,

inf
x∈C

(f0(x) + 〈µ, f(x)〉+ 〈ζ,Ax− b〉) ≤ f0(x′) + 〈µ, f(x′)〉+ 〈ζ,Ax′ − b〉,

which leads to the conclusion that, for all x′ ∈ C,

νd = sup
µ∈Rq

+
ζ∈Rr

inf
x∈C

f0(x) + 〈µ, f(x)〉+ 〈ζ,Ax− b〉 ≤ sup
µ∈Rq

+
ζ∈Rr

f0(x′) + 〈µ, f(x′)〉+ 〈ζ,Ax′ − b〉.

Hence

νd ≤ inf
x′∈C

sup
µ∈Rq

+
ζ∈Rr

f0(x′) + 〈µ, f(x′)〉+ 〈ζ,Ax′ − b〉 = νp. (3.19)

Next, we will show that the point ȳ∗ = (νp, 0, 0) ∈ R × Rq × Rr is a boundary point of

the set G, by showing that

(
G− {ȳ∗}

)
∩ Q̊r+q+1

− = ∅, (3.20)

where Q̊r+q+1
− := {ȳ = (y0, y, 0) ∈ R×Rq ×Rr|yj < 0, j ∈ q̄}. Clearly the zero vector is

an element of
(
G− {ȳ∗}

)
∩Qr+q+1

− with Qr+q+1
− := {ȳ = (y0, y, 0) ∈ R× Rq × Rr|yj ≤

0, j ∈ q̄}. Hence, if (3.20) does not hold, then there must exist a ȳ∗∗ ∈ G such that

yj∗∗ − yj∗ < 0, j ∈ q̄,

and z∗∗ = 0. Since ȳ∗∗ ∈ G, there exists an x∗∗ ∈ C such that f j(x∗∗) ≤ yj∗∗, for all
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j ∈ q̄ and Ax∗∗ − b = 0. Since yj∗∗ < 0 for all j ∈ q, fj(x∗∗) < 0 for all j ∈ q, and

y0∗∗ < y0∗ = νp. Since, by definition, y0∗ = νp, we have a contradiction of the optimality

of νp.

Since (3.20) holds and G−{ȳ∗} and Q̊r+q+1
− are convex, disjoint sets, their closures can

be separated, i.e. there exists a nonzero vector π̄ := (π0, π, πz) ∈ R × Rq × Rr and an

α ∈ R such that

〈ȳ − ȳ∗, π̄〉 ≥ α, ∀ȳ ∈ G (3.21)

and

〈ȳ, π̄〉 ≤ α, ∀ȳ ∈ Qr+q+1
− . (3.22)

Because 0 ∈
(
G− {ȳ∗}

)
∩ Qr+q+1

− , it follows that α = 0. Since the R × Rq × Rr unit

vectors −ēj = (0, 0, . . . ,−1, . . . , 0) ∈ Qr+q+1
− , for j ∈ q̄, it follows from (3.22) that

〈−ēj , µ̄〉 = −πj ≤ 0, ∀j ∈ q̄,

which shows that πj ≥ 0 for all j ∈ q̄. We will now show that π0 > 0. Suppose that

π0 = 0. Then (3.21) implies that

q∑

j=1

πj(yj − 0) +
r∑

j=1

πjz(z
j − 0) =

q∑

j=1

πjyj +
r∑

j=1

πjzz
j ≥ 0, ∀ȳ ∈ G. (3.23)

By assumption, there exists an x0 ∈ C such that f j(x0) < 0, for all j ∈ q and Ax0−b = 0.

Since (f0(x0), f(x0), 0) ∈ G, it follows from (3.23) that

q∑

j=1

πjf j(x0) ≥ 0. (3.24)

Since πj ≥ 0 for j ∈ q̄, we see that (3.24) can hold if and only if πj = 0 for all j ∈ q̄.

Thus for π̄ 6= 0, there has to be a πz ∈ Rr,πz 6= 0 and 〈z′, πz〉 ≥ 0, for all z′ ∈ Z. But this

implies that the zero vector 0r is a boundary point of the set Z which is a contradiction

to the assumption, so we conclude that π0 > 0.

We now define

µ̂j := πj/π0, j ∈ q,

and

ζ̂j := πjz/π
0, j ∈ {1, . . . , r}.

Then, from (3.21), we obtain

1

π0
〈π̄, ȳ − ȳ∗〉 = y0 − y0∗ + 〈µ̂, y − y∗〉+ 〈ζ̂ , z − z∗〉 ≥ 0, ∀ȳ ∈ G. (3.25)
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Since y0∗ = νp, y∗ = 0 and z∗ = 0, (3.25) yields

y0 + 〈µ̂, y〉+ 〈ζ̂ , z〉 ≥ νp, ∀ȳ ∈ G.

which shows that the first equation in (3.16) holds. Let x̂ be a solution of (3.12). Then

f0(x̂) = νp, f(x̂) ≤ 0 (componentwise) and Ax̂− b = 0. Hence

max
µ∈Rq

+

〈µ, f(x̂)〉 = 0,

and

〈ζ,Ax̂− b〉 = 0, ∀ζ ∈ Rr,

therefore the second equation in (3.16) follows by inspection. Next, since F (C) ⊂ G, it

follows that

νd = sup
µ∈Rq

+
ζ∈Rr

inf
ȳ∈F (x)

(y0 + 〈µ, y〉+ 〈ζ, z〉) ≥ sup
µ∈Rq

+
ζ∈Rr

inf
ȳ∈G

(y0 + 〈µ, y〉+ 〈ζ, z〉)

≥ inf
ȳ∈G

(y0 + 〈µ̂, y〉+ 〈ζ̂, z〉) ≥ νp.

In view of (3.19), it follows that νp = νd, which completes the proof.

Corollary 3 (Corollary 5.5.3 (b) in [91]). Consider the minMax problem

min
x∈Rn

{ψ(x)|Ax − b = 0} , (3.26)

where ψ(x) := maxj∈q f j(x), and suppose, that for all j ∈ q, the functions f j : Rn → R

in (3.26) are convex, with at least one of them bounded from below, and that A is an

n× r (r < n) matrix of maximum rank. Then

min
x∈Rn

{ψ(x)|Ax− b = 0} = min
x∈Rn

max
µ∈Σq

ζ∈Rr

〈µ, f(x)〉+ 〈ζ,Ax− b〉

= max
µ∈Σq

ζ∈Rr

min
x∈Rn

〈µ, f(x)〉+ 〈ζ,Ax− b〉
(3.27)

Furthermore, there exist an x̂ ∈ Rn, a µ̂ ∈ Σq, and a ζ̂ ∈ Rr, such that

min
x∈Rn

〈µ̂, f(x)〉+ 〈ζ̂ , Ax− b〉 = max
µ∈Σq

ζ∈Rr

〈µ, f(x̂)〉+ 〈ζ,Ax̂− b〉

= 〈µ̂, f(x̂)〉+ 〈ζ̂ , Ax̂− b〉.
(3.28)
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Proof (Modification of the proof of Theorem 5.5.3 (a) in [91]).

Consider the problem

min
(x0,x)∈R×Rn

{x0|f j(x)− x0 ≤ 0, j ∈ q, Ax− b = 0}. (3.29)

For any x ∈ Rn, let ψ(x) := maxj∈q f j(x). Then we see that x̂ solves (3.26) if and only

if (ψ(x̂), x̂) solves (3.29). Let x0 ∈ Rn with Ax0 − b = 0 and ǫ > 0 be arbitrary, and

let x0 = ψ(x0) + ǫ. Then we see that f j(x0) − x0 ≤ −ǫ < 0 for all j ∈ q, and, since

all the functions in (3.29) are convex, it follows that all assumptions of Theorem 7 are

satisfied. Hence it follows from Theorem 7 that, if (ψ(x̂), x̂) solves (3.29), then there

exist multipliers µ̂ ∈ Rq+, ζ̂ ∈ Rr such that

min
x∈Rn

{ψ(x)|Ax − b = 0} = inf
(x0,x)∈R×Rn

sup
µ∈Rq

+
ζ∈Rr

x0(1−
q∑

j=1

µj) + 〈µ, f(x)〉+ 〈ζ,Ax− b〉

= ψ(x̂)(1 −
q∑

j=1

µ̂j) + 〈µ̂, f(x̂)〉+ 〈ζ̂, Ax− b〉

= sup
µ∈Rq

+
ζ∈Rr

inf
(x0,x)∈R×Rn

x0(1−
q∑

j=1

µj) + 〈µ, f(x)〉+ 〈ζ,Ax− b〉.

(3.30)

Since infx0∈R x
0(1 −∑q

j=1 µ
j) = −∞, whenever (1 − ∑q

j=1 µ
j) 6= 0, it follows that∑q

j=1 µ̂
j = 1 must hold in (3.30) for the values to be finite. Hence µ̂ ∈ Σq, and (3.30)

reduces to (3.27) and (3.28).

Theorem 8 (Theorem 2.2.24 in [91]). Consider problem IECP. Suppose that the func-

tions ck(·), k ∈ p, f j(·), j ∈ q, and g(·) are all continuously differentiable and that the

matrix gx(x) is of maximum row rank for all x ∈ Rn. Let γ, δ > 0, and let the optimality

function θ : Rn → R be defined by

θ(x) := min
h∈HE(x)

{
max

{
max
k∈p

{ck(x)− f0(x)− γψ(x)+ + 〈∇ck(x), h〉},

max
j∈q

{f j(x)− ψ(x)+ + 〈∇f j(x), h〉}
}
+

1

2
δ‖h‖2

}
,

(3.31)

with

ψ(x)+ := max{0, ψ(x)}

for any z ∈ Rn.
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3.1 — Finite inequality and equality constrained optimization problem

Then, (a) θ(x) ≤ 0 for all x ∈ Rn; (b) θ(·) is continuous; and (c) for any x ∈ Rn such

that ψ(x) ≤ 0 and g(x) = 0, θ(x) = 0 if and only if there exist multipliers µ̂ ∈ Σ0
q,

ν̂ ∈ Σp, and ζ̂ ∈ Rr such that (3.7) and (3.8) are satisfied.

Furthermore, an alternative expression for θ(x) is given by

θ(x) =− min
µ∈Σ0

q

ν∈Σp

ζ∈Rr

{
−µ0

[
p∑

k=1

νk
[
ck(x)− f0(x)− γψ(x)+

]]

−
q∑

j=1

µj
[
f j(x)− ψ(x)+

]

+
1

2δ

∣∣∣∣∣∣

∣∣∣∣∣∣
µ0

[
p∑

k=1

νk∇ck(x)
]
+

q∑

j=1

µj∇f j(x) +
r∑

l=1

ζ l∇gl(x)

∣∣∣∣∣∣

∣∣∣∣∣∣

2
 .

(3.32)

Proof. (a) Let ω(x, h) be given by

ω(x, h) :=

{
max

{
max
k∈p

{ck(x)− f0(x)− γψ(x)+ + 〈∇ck(x), h〉},

max
j∈q

{f j(x)− ψ(x)+ + 〈∇f j(x), h〉}
}

+
1

2
δ‖h‖2

}
.

Obviously ω(x, 0) ≤ 0, it follows for any x ∈ Rn that θ(x) ≤ 0.

(b) ω(·, ·) is obviously continuous. From Proposition 2 it follows thatHE(·) is continuous.
Now, to fulfil the requirements of Proposition 3, to show that θ(·) is continuous, it is

sufficient to show that for every bounded set X ⊂ Rn there exists a constant α < ∞
with

‖ arg min
h∈HE(x)

ω(x, h)‖ < α,

for all x ∈ X.

First, because X is bounded and the functions fk(·) and ck(·) are all continuously

differentiable, ∇fk(·) and ∇ck(·) are bounded as well. Looking at the problem

min
τ∈R

ω(x, τh),

for a given x ∈ X and h ∈ HE(x) with h 6= 0 and without loss of generality ‖h‖ = 1, we

see that τ̂ = argmin
τ∈R

ω(x, τh) is given by

τ̂ = argmin
τ∈R

〈∇ck(x), τh〉 + 1

2
δ‖τh‖2

35



3 — Theory of the solution of minMax optimization problems

or

τ̂ = argmin
τ∈R

〈∇f j(x), τh〉 + 1

2
δ‖τh‖2,

for the contributing k ∈ p or j ∈ q. Therefore, τ̂ is either given by τ̂ = − 〈∇ck,h〉
δ or by

τ̂ = − 〈∇fj ,h〉
δ . It follows that τ̂ is bounded and therefore there is a constant α with

‖ arg min
h∈HE(x)

ω(x, h)‖ < α,

and hence θ(·) is continuous.
(c) First ω(x, h) is obviously bounded from below with respect to h and convex with

respect to h. We define the scalar functions f̃ j∗ (x, h), j ∈ p+q := {1, . . . , p, p+1, . . . , p+

q} by

f̃ j∗(x, h) = cj(x)− f0(x)− γψ(x)+ + 〈∇cj(x), h〉 + 1

2
δ‖h‖2, ∀j ∈ p,

and

f̃ j+p∗ (x, h) = f j(x)− ψ(x)+ + 〈∇f j(x), h〉 + 1

2
δ‖h‖2, ∀j ∈ q.

We see that now

θ(x) = min
h∈Rn

max
j∈q+p

{
f̃ j∗ (x, h)|gx(x)h = 0

}
. (3.33)

By use of Corollary 3 and the fact that

argmin
h∈R

〈ξ, h〉 + 1

2
δ‖h‖2 = −ξ

δ
.

we see that (3.33) transforms to (3.32). By use of (3.32) we directly see that (c) holds.

3.2. Semi-infinite inequality and finite equality constrained

optimization problem

Definition 9 (Definition (1c), page 368 in [91]). The problem

min{ψ0(x)|ψj(x) ≤ 0, j ∈ q := {1, . . . , q}, g(x) = 0},

where the functions ψj : Rn → R, j ∈ q̄ := {0, 1, . . . , q}, are of the form

ψj(x) := max
yj∈Yj

φj(x, yj),
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3.2 — Semi-infinite inequality and finite equality constrained optimization problem

with the functions φj : Rn × Rmj → R and the sets Yj ⊂ Rmj , g : Rn → Rr, with r < n,

is called a semi-infinite inequality and finite equality constrained optimization problem

(SIECP).

In contrast to the preceding section ψ(x) is now defined by

ψ(x) := max
j∈q

ψj(x). (3.34)

Definition 10 (Definition 3.2.1 in [91]). Let XIE := {x ∈ Rn|ψj(x) ≤ 0, j ∈ q, g(x) =

0}. We will say that x̂ ∈ XIE is a local minimizer for SIECP if there exist a ρ > 0

such that ψ0(x) ≥ ψ0(x̂) for all x ∈ XIE ∩B(x̂, ρ) with

g(x) := (g1(x), g2(x), . . . , gr(x)).

If ψ0(x) > ψ0(x̂) for all x ∈ XIE ∩B(x̂, ρ), x 6= x̂, x̂ is called a strict local minimizer.

Assumption 1 (Assumption 3.1.1 in [91]). We will assume that,

(i) for all j ∈ q̄, the functons φj(·, ·) are continuous and their gradients ∇xφ
j(·, ·) exists

and are continuous.

(ii) the subsets Yj ⊂ Rmj are compact, and

(iii) the function g(·) is continuously differentiable, and its Jacobian gx(x) has maximum

row rank for all x ∈ Rn.

3.2.1. First order optimality conditions for SIECP

Theorem 9. Suppose that x̂ is a local minimizer for the problem SIECP, then x̂ is a

local minimizer for the problem

min{F̂ (x)|g(x) = 0}, (3.35)

where

F̂ := max{ψ0(x)− ψ0(x̂), ψ(x)}. (3.36)

Proof. First, since ψ(x̂) ≤ 0, by assumption, we see that F̂ (x̂) = 0. Next, let ρ̂ > 0 be

the radius associated with x̂. Then, for all x ∈ B(x̂, ρ̂) ∩XE with

XE := {x ∈ Rn|g(x) = 0}, (3.37)

if ψ(x) ≥ 0, then F̂ (x) ≥ 0, and if ψ(x) ≤ 0, then ψ0(x)−ψ0(x̂) ≥ 0, which also implies

that F̂ (x) ≥ 0. Hence x̂ is a local minimizer for (3.35).
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3 — Theory of the solution of minMax optimization problems

Theorem 10. Consider problem SIECP. Suppose that Assumption 1 is satisfied and

that, for any x ∈ Rn such that both ψ(x) = 0 and g(x) = 0, there exists a sequence of

vectors {xi}∞i=0 converging to x, such that ψ(xi) < 0 and g(xi) = 0 for all i ∈ N. If x̂ is

a local minimizer for (3.35) such that ψ(x̂) ≤ 0, then x̂ is a local minimizer for SIECP.

Proof. Since Assumption 1 holds, with Yj(x) : Rn → 2R
n

and Yj(x) := Yj is constant

and thus continuous and Yj is compact and thus bounded for all j ∈ q̄, it follows from

Proposition 3 that ψj(x), j ∈ q̄ are continuous and thus ψ(x) is continuous as well.

First suppose that ψ(x̂) < 0. Since ψ(·) is continuous, and F̂ (x̂) = 0, and x̂ is a local

minimizer of (3.35), there exists a ρ̂ > 0 such that, for all x ∈ B(x̂, ρ̂)∩XE , F̂ (x) ≥ 0 and

ψ(x) < 0. It now follows by inspection that, for all x ∈ B(x̂, ρ̂)∩XE , ψ
0(x)−ψ0(x̂) ≥ 0,

which shows that x̂ is a local minimizer for SIECP.

Next suppose that ψ(x̂) = 0. Since x̂ is a local minimizer of (3.35), it follows that there

exists a ρ > 0 such that for all x ∈ B(x̂, ρ̂)∩XE , F̂ (x) ≥ 0. Now, if x ∈ B(x̂, ρ̂)∩XE is

such that ψ(x) < 0, then F̂ (x) ≥ 0 implies that ψ0(x)− ψ0(x̂) ≥ 0. If x ∈ B(x̂, ρ̂) ∩XE

is such that ψ(x) = 0 then by assumption there exists a sequence of vectors {xi}∞i=0

converging to x, such that ψ(xi) < 0 and g(xi) = 0 for all i ∈ N. Consequently there

exist i0 ∈ N so that for all i > i0, xi ∈ B(x̂, ρ̂) ∩XE with ψ(xi) < 0, which implies that

F̂ (xi) = ψ0(xi) − ψ0(x̂) ≥ 0 for all i > i0. It now follows from the continuity of ψ0(·)
that ψ0(x)−ψ0(x̂) ≥ 0. Hence we conclude that x̂ is a local minimizer for SIECP.

Theorem 11 (Theorem 3.2.16 in [91]). Consider the problem SIECP defined in Def-

inition 9. Suppose that Assumption 1 is satisfied. If x̂ ∈ Rn is a local minimizer for

SIECP, then

(a) first,

dF̂ (x̂;h) ≥ 0,∀h ∈ HE(x̂), (3.38)

where

HE(x) := {h ∈ Rn|gx(x)h = 0}, (3.39)

and dF̂ (x̂;h) is the directional derivative (see Theorem 25) of function F̂ (·) at x̂ ∈ Rn

in direction h ∈ Rn as given in Definition 24;

(b) and second, there exist a multiplier ζ̂ ∈ Rr such that

−gx(x̂)T ζ̂ ∈ ∂F̂ (x̂), (3.40)

and hence there exists a

µ̂ ∈ Σ0
q :=



(µ0, µ)| µ0 ∈ R+, µ ∈ Rq+,

q∑

j=0

µj = 1




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3.2 — Semi-infinite inequality and finite equality constrained optimization problem

such that 1

−gx(x̂)T ζ̂ ∈
q∑

j=0

µ̂j∂ψj(x̂), (3.41)

and
q∑

j=1

µ̂jψj(x̂) = 0, (3.42)

where q̄ := {0, 1, . . . , q}.
Proof. (a) Since x̂ is a local minimizer for SIECP, it must also be a local minimizer for

the problem (3.35). Hence, for the sake of contradiction, suppose that there is a vector

h ∈ HE(x̂) such that dF̂ (x̂;h) < 0. Since the matrix gx(x̂) is of maximum row rank,

it follows from Corollary 6 that there exists a th > 0 and continuously differentiable

function s : [0, th] → Rn such that s(0) = x̂, ṡ(0) = h, and g(s(t)) = 0 for all t ∈ [0, th].

Let σ : [0, th] → R be defined by σ(t) = F̂ (s(t)). Then by the Chain Rule Theorem 27,

the directional derivative dσ(0; 1) = dF̂ (x̂;h) < 0, and hence there exists a t′ ∈ (0, th]

such that σ(t) < σ(0) for all t ∈ (0, t′). Consequently, for any t ∈ (0, t′), g(s(t)) = 0

and F̂ (s(t)) < F̂ (x̂) = 0, which contradicts the fact that x̂ is a local minimizer for the

problem (3.2) and hence for the problem SIECP.

(b) Now, by Theorem 25 (c) for any h ∈ Rn,

dF̂ (x̂;h) = max
ξ∈∂F̂ (x̂)

〈ξ, h〉

and

∂F̂ (x̂) = conv
⋃

j∈({0}∪qA(x̂))


conv

⋃

y∈Ŷj(x̂)

{∇xφ
j(x̂, y)}


 , (3.43)

with

qA(x) :=
{
j ∈ q|ψj(x) ≥ 0

}
,

and

Ŷj(x) :=
{
y ∈ Yj|φj(x, y) = ψj(x)

}
,

for j ∈ q̄.

It now follows from (3.38), (3.39) and Proposition 1 that

∂F̂ (x̂) ∩H⊥
E(x̂) 6= ∅.

1Note that (3.41) holds if and only if there exist vectors ξj ∈ ∂ψj(x̂), j ∈ q̄, such that

q∑

j=0

µ̂
j
ξj = −gx(x̂)

T
ζ̂

.
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3 — Theory of the solution of minMax optimization problems

Since the vectors ∇gl(x̂), l ∈ r, form a basis for H⊥
E(x̂), it follows that there exists ζ̂ ∈ Rr

such that

−gx(x̂)T ζ̂ ∈ ∂F̂ (x̂). (3.44)

The expressions (3.41) and (3.42) follow by inspection.

We now formulate an extension of Theorem 11, i.e. an alternative way of stating (3.40)

with (3.43) that does not involve the active index set qA(x̂) and the sets of maximizer

Ŷj(x̂), j ∈ {0} ∪ qA(x̂). This reformulation of Theorem 11 is used for the construction

of an optimality function in Theorem 13.

Theorem 12. Suppose that Assumption 1 is satisfied and that x̂ ∈ Rn with ψ(x̂) ≤ 0

and g(x̂) = 0. Then,

(a) x̂ satisfies (3.40) if and only if there exists a multiplier ζ̂ ∈ Rr such that

(
0

−gx(x̂)T ζ̂

)
∈ GF (x̂), (3.45)

where GF (x) ⊂ Rn+1 has elements denoted by ξ̄ = (ξ0, ξ)T , with ξ0 ∈ R, ξ ∈ Rn, and is

defined by

GF (x) := conv


⋃

j∈q̄
Gψj(x)


 , (3.46)

with

Gψ0(x) := conv


 ⋃

y0∈Y0

{(
ψ0(x)− φ0(x, y0) + γψ(x)+

∇xφ
0(x, y0)

)}
 , (3.47)

γ > 0 an arbitrary parameter, ψ+(x) := max{0, ψ(x)}, and for j ∈ q,

Gψj(x) := conv


 ⋃

yj∈Yj

{(
ψ(x)+ − φj(x, yj)

∇xφ
j(x, yj)

)}
 ; (3.48)

(b) the set-valued map GF (·), defined by (3.46), is continuous and bounded on bounded

subsets of Rn.

Proof. (a) ” ⇒ ” Suppose that x̂ satisfies (3.40). Since ψ(x̂) ≤ 0 and therefore

ψ0(x̂)− φ0(x̂, y0) + γψ(x̂)+ = 0, y0 ∈ Ŷ0(x̂),

and for every j ∈ qA,

ψ(x̂)+ − φj(x̂, yj) = 0, yj ∈ Ŷj(x̂),
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3.2 — Semi-infinite inequality and finite equality constrained optimization problem

it follows that the set

Ĝ :=
{
x̄ = (ξ0, ξ) ∈ Rn+1|ξ0 = 0, ξ ∈ ∂F (x̂)

}

is a subset of GF (x̂). Since by (3.40) there exists a ζ̂ ∈ Rr such that

(
0

−gx(x̂)T ζ̂

)
∈ Ĝ,

it follows that (3.45) must hold.

” ⇐ ” Now suppose that (3.45) holds. Since

ψ0(x̂)− φ0(x̂, y0) + γψ(x̂)+ ≥ 0, y0 ∈ Y0,

and for every j ∈ q,

ψ(x̂)+ − φj(x̂, yj) ≥ 0, yj ∈ Yj,

because by assumption ψ(x̂) ≤ 0, it follows that the vector

(
0

−gx(x̂)T ζ̂

)
in Rn+1 can

be only a convex combination of vectors ξ̄ = (ξ0, ξ) ∈ GF (x̂) such that ξ0 = 0. Hence

we conclude from (3.45) and (3.46) that

(
0

−gx(x̂)T ζ̂

)
∈ conv

⋃

j∈({0}⋃qA(x̂))


conv

⋃

y∈Ŷj(x̂)

{(
0

∇xφ
j(x̂, y)

)}
 ⊂ GF (x̂).

It now follows by inspection that (3.40) holds.

(b) The continuity and boundedness of GF (·) follow directly from Theorem 23 and

Corollary 5.

For later purpose we now introduce the so called extended Mangasarian-Fromowitz con-

straint qualification (EMFCQ).

Definition 11. Consider problem SIECP. We say that the extended Mangasarian-

Fromovitz constraint qualification holds at x ∈ Rn, if the vectors ∇gl(x), l ∈ r, are

linearly independent, and there exists h̃ ∈ Rn such that (strictly feasible direction),

∇gl(x)T h̃ = 0, l ∈ r, (3.49)

and

dψj(x; h̃) < 0, j ∈ qA(x). (3.50)

Corollary 4. If x̂ is a local minimizer for problem (3.35) with ψ(x̂) ≤ 0 and EMFCQ

is satisfied at all points x ∈ Rn with ψ(x) = 0 and g(x) = 0, then x̂ is a local minimizer
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for problem SIECP.

Proof. It is sufficient to show (Theorem 10), that if x ∈ Rn with ψ(x) = 0 and g(x) = 0

there exists a sequence of vectors {xi}∞i=0 converging to x, such that ψ(xi) < 0 and

g(xi) = 0 for all i ∈ N. Be x ∈ Rn with ψ(x) = 0 and g(x) = 0. By assumption x satisfies

EMFCQ and thus there is a direction h̃ such that gx(x)
T h̃ = 0 and dψ(x; h̃) < 0.

It follows from Corollary 6 that there exists a th̃ > 0 and continuously differentiable

function s : [0, th̃] → Rn such that s(0) = x, ṡ(0) = h̃, and g(s(t)) = 0 for all t ∈ [0, th̃].

Let σ : [0, th̃] → R be defined by σ(t) = ψ(s(t)). Then by the Chain Rule Theorem 27,

the directional derivative dσ(0; 1) = dψ(x; h̃) < 0, and hence there exists a t′ ∈ (0, th̃]

such that σ(t) < σ(0) for all t ∈ (0, t′). Consequently, for any t ∈ (0, t′), g(s(t)) = 0 and

ψ(s(t)) < ψ(x̂) = 0 and thus there exists a sequence of vectors {xi}∞i=0 converging to x,

such that ψ(xi) < 0 and g(xi) = 0 for all i ∈ N.

3.2.2. Optimality function for SIECP

Theorem 13 (Theorem 3.2.18 in [91]). Consider the problem SIECP (Definition 9)

and suppose that Assumption 1 is satisfied. Let the optimality function θ : Rn → R be

defined by

θ(x) := min
h∈HE(x)

max{ψ̃0(x, x+ h)− ψ0(x)− γψ(x)+, ψ̃(x, x+ h)− ψ(x)+}, (3.51)

where ψ̃(x, x+ h) is given by

ψ̃(x, x+ h) := max
j∈q

max
yj∈Yj

{φj(x, yj) + 〈∇xφ
j(x, yj), h〉+

1

2
δ‖h‖2},

and ψ̃0(x, x+ h) is given by

ψ̃0(x, x+ h) := max
y∈Y0

{φ0(x, y) + 〈∇xφ
0(x, y), h〉 + 1

2
δ‖h‖2},

ψ(x)+ is given by

ψ(x)+ := max{0, ψ(x)},

and HE(x) is defined as in (3.39) and γ > 0 and δ > 0 act as parameters. Then,

(a) θ(x) ≤ 0 for all x ∈ Rn,
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3.2 — Semi-infinite inequality and finite equality constrained optimization problem

(b) an alternative expression for θ(x) is given by

θ(x) = min
h∈HE(x)

max
ξ̄∈GF (x)

{−ξ0 + 〈ξ, h〉 + 1

2
δ‖h‖2}

= − min
ξ̄ ∈ GF (x)

ζ ∈ Rr

{ξ0 + 1

2δ
‖ξ + gx(x)

T ζ‖2}, (3.52)

where ξ̄ = (ξ0, ξ) ∈ Rn+1, with ξ0 ∈ R, ξ ∈ Rn, and GF (x) was defined in (3.46), (3.47)

and (3.48),

(c) the function θ(·) is continuous, and

(d) for any x such that ψ(x) ≤ 0 and g(x) = 0, θ(x) = 0 if and only if there exist

multipliers µ̂ ∈ Σ0
q and ζ ∈ Rr such that (3.41) and (3.42) are satisfied. Therefore, if x̂

is a local minimizer of SIECP, then θ(x̂) = 0.

Proof (Modification of the proof of Theorem 3.1.6 in [91]).

(a) Be ω(x, h) given by

ω(x, h) := max{ψ̃0(x, x+ h)− ψ0(x)− γψ(x)+, ψ̃(x, x+ h)− ψ(x)+}.

then

ω(x, 0) = max{φ0(x, y)− ψ0(x)− γψ(x)+,

(
max
j∈q

max
yj∈Yj

φj(x, yj)

)
− ψ(x)+}.

Obviously ω(x, 0) ≤ 0, it follows for any x ∈ Rn that θ(x) ≤ 0.

(b) Next let,

G̃F (x) :=
⋃

j∈q̄
G̃ψj(x),

with

G̃ψ0(x) :=
⋃

y0∈Y0

{(
ψ0(x)− φ0(x, y0) + γψ(x)+

∇xφ
0(x, y0)

)}
,

and for j ∈ q,

G̃ψj(x) :=
⋃

yj∈Yj

{(
ψ(x)+ − φj(x, yj)

∇xφ
j(x, yj)

)}
.

Then we can rewrite (3.51) as

θ(x) = min
h∈HE(x)

max
ξ̄∈G̃F (x)

{
−ξ0 + 〈ξ, h〉 + 1

2
δ‖h‖2

}
, (3.53)
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3 — Theory of the solution of minMax optimization problems

where as above, ξ̄ := (ξ0, ξ). Since the maximum over a set of scalars is equal to the

maximum over the convex hull of these scalars and since GF (x) = conv G̃F (x), we

conclude that (3.53) is equivalent to the first line in (3.52). Since by assumption the

Jacobian gx(x) has maxmimum row rank for all x ∈ Rn and thus HE(x) is a subspace

of Rn we can apply Theorem 28 to the first line in (3.52), we conclude that the max and

min in (3.52) can be interchanged and hence that

θ(x) = max
ξ̄∈GF (x)

min
h∈HE(x)

{
−ξ0 + 〈ξ, h〉+ 1

2
δ‖h‖2

}
.

Now consider the “inside” function

ν(ξ̄) := min
h∈HE(x)

{
−ξ0 + 〈ξ, h〉 + 1

2
δ‖h‖2

}
, (3.54)

where ξ̄ = (ξ0, ξ) ∈ Rn+1. We see that obviously (3.54) is equivalent to

ν(ξ̄) = min
h∈Rn

{
−ξ0 + 〈ξ, h〉 + 1

2
δ‖h‖2 | gx(x)h = 0

}
. (3.55)

Applying Corollary 3 we see that (3.55) is equivalent to

ν(ξ̄) = max
ζ∈Rr

min
h∈Rn

{
−ξ0 + 〈ξ, h〉 + 1

2
δ‖h‖2 + 〈ζ, gx(x)h〉

}
.

Now consider the new “inside” function

ν̃(ξ̄, ζ) := min
h∈Rn

{
−ξ0 + 〈ξ, h〉 + 1

2
δ‖h‖2 + 〈ζ, gx(x)h〉

}
, (3.56)

where ξ̄ = (ξ0, ξ) ∈ Rn+1 and ζ ∈ Rr. Solving the unconstrained minimization problem

in (3.56) for h in terms of ξ̄ and ζ, we obtain

δh = −ξ − gx(x)
T ζ,

and hence

ν(ξ̄) = max
ζ∈R

{
−ξ0 −

1

2δ
‖ξ + gx(x)

T ζ‖2
}
.

Substituting back into (3.54), we obtain (3.52).

(c) The function

ω̃(ξ̄, ζ) := ξ0 +
1

2δ
‖ξ + gx(x)

T ζ‖2,

where ξ̄ = (ξ0, ξ) ∈ Rn+1 and ζ ∈ Rr, is obviously continuous in ξ̄ and ζ. From Theorem

12(b) we know that GF (·) is continuous and bounded on bounded sets. To fulfil now
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the requirements of Proposition 3 to show that θ(·) is continuous it is sufficient to show

that for every bounded set X ⊂ Rn there exist a constant α <∞ with

‖ arg min
ζ∈Rr

ω̃(ξ̄, ζ)‖ < α,

for all ξ̄ ∈ GF (X).

First we know that g is continuously differentiable and that the Jacobian gx(x) has

maximum rank for all x ∈ Rn. Therefore, there exists a α̃ with

‖∇gj(x)‖ ≥ α̃ ,∀x ∈ X̄, j ∈ r := {1, . . . , r},

where X̄ denotes the closure of X. Now be x ∈ X and ξ̄ ∈ GF (x), then there exists a

vector κ ∈ Rr and a vector ξ⊥ ∈ Rn with

ξ = ξ⊥ +

r∑

j=1

κj
∇gj(x)

‖∇gj(x)‖ ,

and

ξT⊥∇gj(x) = 0, ∀j ∈ r,

as well as |κj | ≤ ‖ξ‖, j ∈ R. It follows that,

ζ̂ = arg min
ζ∈Rr

{
ξ0 +

1

2δ
‖ξ + gx(x)

T ζ‖2
}

= arg min
ζ∈Rr

∥∥∥∥∥∥

r∑

j=1

κj
∇gj(x)

‖∇gj(x)‖ + ζj∇gj(x)

∥∥∥∥∥∥

2

.

Therefore, ζ̂ = (ζ̂1, . . . , ζ̂r) is given by

ζ̂j = − κj

‖∇gj(x)‖ , j ∈ r.

Cause

|ζ̂j| ≤ ‖ξ‖
α̃
, j ∈ r,

it follows that there exists a α > 0 with

‖ arg min
ζ∈Rr

ω̃(ξ̄, ζ)‖ < α,

for all ξ̄ ∈ GF (X) and hence θ(·) is continuous.
(d) This follows directly by Theorem 12(a) with equation (3.52) second line.
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3 — Theory of the solution of minMax optimization problems

3.3. Method of Outer Approximations

In this section we present a discretization scheme to solve SIECP utilizing the concept

of optimality functions, therefore consider SIECP.

Assumption 2 (Assumption 3.6.1 in [91]). We will assume that

(i) for all j ∈ q̄ := {0, . . . , q}, the functions φj(·, ·) and their gradients ∇xφ
j(·, ·) are

Lipschitz continuous on bounded sets,

(ii) the subsets Yj ⊂ Rmj are compact, and

(iii) the function g(·) is continuously differentiable and its Jacobian gx(x) has maximum

row rank for all x ∈ Rn.

Now for j ∈ q̄, let Sj be compact subsets of Yj, and let S = S0 × S1 × · · · × Sq. Then

we define the functions ψjSj
: Rn → R, j ∈ q̄, and ψS : Rn → R by

ψjSj
(x) := max

yj∈Sj

φj(x, yj), (3.57)

ψS(x) := max
j∈q

ψjSj
(x), (3.58)

and the corresponding optimization problem PS by

min{ψ0
S(x) | ψS(x) ≤ 0, g(x) = 0}. (3.59)

Now we define a corresponding optimality function θS : Rn → R by

θS(x) := min
h∈HE(x)

F̃S(x, x+ h), (3.60)

where

F̃S(x, x+ h) := max{ψ̃0
S(x, x+ h)− ψ0

S(x)− γψS(x)+, ψ̃S(x, x+ h)− ψS(x)+},

and

ψ̃S(x, x+ h) := max
j∈q

ψ̃jSj
(x, x+ h), (3.61)

and

ψ̃jSj
(x, x+ h) := max

y∈Sj

{φj(x, y) + 〈∇xφ
j(x, y), h〉 + 1

2
‖h‖2}, j ∈ q̄, (3.62)

and

ψS(x)+ := max{0, ψS(x)},

where γ > 0.
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3.3 — Method of Outer Approximations

Remark. If Sj , j ∈ q̄ has finite cardinality then PS restates a corresponding IECP

and under appropriate assumptions (3.60) restates the corresponding optimality function

(3.31) with δ = 1. If Sj = Yj, j ∈ q̄ under appropriate assumptions (3.60) restates (3.51)

with δ = 1.

Let N0 be a strictly positive integer, and, for N = N0, N0 + 1, N0 + 2, N0 + 3, . . . , let

Yj,N be subsets, of finite cardinality, of the Yj, j ∈ q̄, such that Yj,N ⊂ Yj,N+1 for all N

and the closure of the set LimN→∞ Yj,N is equal to Yj , j ∈ q̄.

Assumption 3 (Modification of Assumption 3.4.2 in [91]). There exist a strictly positive-

valued, strictly monotone decreasing function ∆ : N → R such that ∆(N) → 0, as

N → ∞, and constants N0 ∈ N,K < ∞, such that, for every N ≥ N0, j ∈ q̄, and

y ∈ Yj, there exits a y′ ∈ Yj,N such that

‖y − y′‖ ≤ K∆(N).

Lemma 1 (Lemma 3.4.3 in [91]). Suppose that Assumptions 2 and 3 are satisfied and

that, for all N ∈ N, ψYN (·) is defined by

ψYN (x) := max
j∈q

ψjYj,N (x),

with

ψjYj,N (x) := max
yj∈Yj,N

φj(x, yj).

Let S ⊂ Rn a bounded subset, and let L <∞ be a Lipschitz constant valid for the φj(·, ·)
and the ∇xφ

j(·, ·), on S × Yj , j ∈ q. Then there exists a constant C <∞ such that for

all x ∈ S, N ∈ N, with N ≥ N0,

|ψYN (x)− ψ(x)| ≤ C∆(N). (3.63)

Proof (The proof is taken from [91]). First, because Yj,N ⊂ Yj, j ∈ q, we always have

that ψYN ≤ ψ(x). Next for any x ∈ S, there must exist a jx ∈ q and a yx ∈ Yjx, such

that

ψ(x) = φjx(x, yx),

since by assumption for j ∈ q the sets Yj are compact and φj(x, ·) are continuous. By

Assumption 3, there exists a y′x ∈ Yjx,N such that ‖y′x − yx‖ ≤ K∆(N). Hence

ψYN (x) ≥ φjx(x, y′x) ≥ φjx(x, yx)− LK∆(N) = ψ(x) − LK∆(N).
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3 — Theory of the solution of minMax optimization problems

Hence (3.63) holds with C = LK.

Lemma 2 (Lemma 3.4.24 in [91]). Suppose that

(a) Assumption 2 is satisfied,

(b) for j ∈ q̄, {Yj,N}∞N=N0
is a set of compact subsets of Yj , satisfying Assumption 3,

(c) {xN}∞N=N0
is a sequence in Rn, and

(d) the compact sets Ωj,N ⊂ Yj, j ∈ q̄, N ∈ N, N ≥ N0, are constructed recursively as

follows: Ωj,N0 = {ŷj,N0}, with ŷy,N0 ∈ Ŷj,N0(x0), and

Ωj,N+1 = Ωj,N ∪ {ŷj,N+1}, j ∈ q̄,

with

ŷj,N+1 ∈ Ŷj,N+1(xN+1), j ∈ q̄,

where Ŷj,N(x) is given by

Ŷj,N(x) :=
{
y ∈ Yj,N |ψjYj,N (x) = φj(x, y)

}
. (3.64)

Let ΩN := Ω0,N × · · · × Ωq,N , and let ψΩN
(x) := maxj∈q ψ

j
Ωj,N

(x) with

ψjΩj,N
(x) := max

yj∈Ωj,N

φj(x, yj), j ∈ q̄.

If x̂ is an accumulation point of {xN}∞N=N0
, so that, for some infinite subset K ⊂ N,

XN →K x̂, as N → ∞, then

(a)

ψΩN
(xN ) →K ψ(x̂),

as N → ∞, and

(b)

ψ0
Ω0,N

(xN ) →K ψ0(x̂),

as N → ∞.

Proof (The proof is taken from [91]). Case (b) can be seen as special version of (a) with

q = {1}, therefore it is sufficient to show (a).

Now, for any N ∈ K, let k(N) := max{N ′ ∈ K|N ′ < N}. Then, by construction, for

any N ∈ K and j ∈ q, ŷj,k(N) ∈ Ωj,N and hence, because Ωj,N ⊂ Yj , for any N ∈ K,

ψjYj (xN ) ≥ ψjΩj,N
(XN ) ≥ φj(XN , ŷj,k(N)), (3.65)

where ψjYj (·) is given by (3.57) with Sj = Yj. Now, because xN →K x̂, as N → ∞,
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3.3 — Method of Outer Approximations

and because the functions ψjYj (·) are continuous (Proposition 3), ψjYj (xN ) → ψjYj (x̂), as

N → ∞. Next,

|ψjYj,k(N)
(xk(N))−ψjYj(x̂)| ≤ |ψjYj,k(N)

(xk(N))−ψjYj(xk(N))|+ |ψjYj(xk(N))−ψjYj(x̂)|. (3.66)

Now, in (3.66), |ψjYj (xk(N)) − ψjYj (x̂)| →
K 0, as N → ∞, because ψjYj (·) is continuous.

Next, because of Lemma 1 and because ψjYj (·) is continuous,

|ψjYj,k(N)
(xk(N))− ψjYj(xk(N))| →K 0, as N → ∞.

Finally, because φj(·, y) is uniformly continuous for y in a compact set and

‖xN − xk(N)‖ →K 0, as N → ∞,

it follows that

|φj(xN , ŷk(N))− φj(xk(N), ŷk(N))| →K 0, as N → ∞.

Hence because

ψjYj,k(N)
(xk(N)) = φj(xk(N), ŷj,k(N))

and because

ψjYj,k(N)
(xk(N)) →K ψY (x̂),

it follows that

φj(xN , ŷj,k(N)) →K ψjY (x̂), for all j ∈ q.

It now follows from (3.65) that

ψΩN
(xN ) →K ψY (x̂), as N → ∞,

with ψY (x̂) = ψ(x̂).

We now state the Outer Approximations discretization scheme to solve SIECP.

Algorithm 3 (Algorithm 3.6.4 in [91]).

Data: N0 ∈ N, xN0 ∈ Rn, for each j ∈ q̄, a family of descrete subsets {Yj,N}∞N=N0
,

satisfying Assumption 3 and {ǫN}∞N=N0
, with ǫN ↓ 0.

Step 0. Set N = N0, and Ωj,N−1 = ∅, for all j ∈ q̄.
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3 — Theory of the solution of minMax optimization problems

Step 1. For j ∈ q̄, compute points

ŷj,N ∈ Ŷj,N(xN ), (3.67)

and set

Ωj,N = Ωj,N−1 ∪ {ŷj,N}. (3.68)

Step 2. Set ΩN = Ω0,N × · · · × Ωq,N . Use an optimization algorithm on Problem PΩN

(where PΩN
corresponds to problem (3.59) with S = ΩN) to compute an xN+1 such that

θΩN
(xN+1) ≥ −ǫN (3.69)

and

ψΩN
(xN+1) ≤ ǫN , ‖g(xN+1)‖ ≤ ǫN . (3.70)

Step 3. Replace N by N + 1, and goto Step 1.

Theorem 14 (Theorem 3.6.5 in [91]). Suppose that Assumption 2 and Assumption 3 are

satisfied. If x̂ is an accumulation point of a sequence {xi}∞i=0 constructed by Algorithm

3 in solving problem SIECP, then θ(x̂) = 0, ψ(x̂) ≤ 0 and g(x̂) = 0 (where θ(·) is given
as in (3.51) with δ = 1).

Proof. Suppose that, for some infinite subset K ⊂ N, xN →K x̂, as N → ∞. Then by

Lemma 2, ψΩN
(xN ) →K ψ(x̂) and ψ0

Ω0,N
(xN ) →K ψ0(x̂), as N → ∞.

Next, let ψ̃ΩN
: Rn × Rn → R be defined by

ψ̃ΩN
(x, x+ h) := max

j∈q
max
y∈Ωj,N

{
φj(x, y) + 〈∇xφ

j(x, y), h〉 + 1

2
‖h‖2

}
, (3.71)

and ψ̃0
Ω0,N

: Rn × Rn → R be defined by

ψ̃0
Ω0,N

(x, x+ h) := max
y∈Ω0,N

{
φ0(x, y) + 〈∇xφ

0(x, y), h〉 + 1

2
‖h‖2

}
, (3.72)

corresponding to (3.61) and respectively to (3.62) with j = 0, and S = ΩN , Sj =

Ωj,N , j ∈ q̄. Then, because Ωj,N ⊂ Yj , j ∈ q̄, we see that, for all N ∈ N and any

h ∈ HE(xN ),

ψ̃ΩN
(xN , x+ h) ≤ ψ̃Y (xN , x+ h), (3.73)
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where ψ̃Y corresponds to (3.61) with S = Y := Y1 × · · · × Yq and

ψ̃0
Ω0,N

(xN , x+ h) ≤ ψ̃0
Y0(xN , x+ h), (3.74)

where ψ̃0
Y0

corresponds to (3.62) with j = 0 and S0 = Y0. Hence for θΩN
corresponding

to (3.60) with S = ΩN and θY corresponding to (3.60) with S = Y , we see that

θΩN
(xN ) = min

h∈HE(xN )
max

{
ψ̃0
Ω0,N

(xN , xN + h)− ψ0
Ω0,N

(xN )− γψΩN
(xN )+,

ψ̃ΩN
(xN , xN + h)− ψΩN

(xN )+

}

≤ θY (xN ) + ψ0
Y0(xN )− ψ0

Ω0,N
(xN ) + max{γ, 1} · [ψY (xN )+ − ψΩN

(xN )+] .

(3.75)

It now follows from the continuity of θ(·), Lemma 2, and the test (3.69) that,

0 = lim θΩN
(XN ) ≤ θY (x̂) = θ(x̂) ≤ 0, (3.76)

so that we must have θ(x̂) = 0, and due to the tests (3.70) we must have ψ(x̂) ≤ 0 and

g(x̂) = 0, which completes the proof.

51





CHAPTER 4

Automatic Differentiation

In this chapter we give a brief introduction to Automatic Differentiation (AD) utilizing

truncated Taylor series propagation in forward and reverse mode.

In [53], Griewank states :

“Full higher derivative tensors in several variables can be evaluated directly by multi-

variate versions of the chain rule. This approach has been implemented in [82] and

[21], and by several other authors. They have given particular thought to the problem

of addressing the roughly pd/d! distinct elements of a symmetric tensor of order p ≤ n

and degree d efficiently1. Since this problem cannot be solved entirely satisfactorily, we

advocate propagating a family of roughly pd/d! univariate Taylor series instead.”

Since the implemented numerical methods shall be generally applicable to allow further

use, we adopt his advice and rely on truncated Taylor series propagation for AD, as well.

We first introduce the basic concepts, i.e. the forward (Section 4.1) and the reverse mode

(Section 4.2). These methods are implemented in the sophisticated AD package CppAD

[19, 18], which is used for the numerical calculation of derivatives in this work.

Hereafter, we treat the special case of AD of solutions of parametrized nonlinear equa-

tions, i.e. implicitly defined functions in Section 4.3.

1Here, n denotes the dimension of the domain space and d denotes the order of the derivatives.
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4 — Automatic Differentiation

4.1. Forward mode of Automatic Differentiation

In this section we stay close to the presentation in [53]. Be

F : Rn → Rm (4.1)

a d-times continuously differentiable function with 0 ≤ d ≤ ∞. We are interested in the

k-th derivative, k ≤ d of y = F (x) at a point x ∈ Rn and with y ∈ Rm. We call y the

dependent and x the independent variable. We will assume that the function F (·) can

be evaluated utilizing a sequence of elemental functions φi, i ∈ {1, . . . , l}, where φi is
either φi : R2 → R or φi : R → R, by the following scheme:

Be vi ∈ R, i ∈ {1 − n, . . . , 0, 1, . . . , l} intermediate variables. The values of the in-

termediate variables vi−n, i ∈ {1, . . . , n} are given by

vi−n = xi, i ∈ {1, . . . , n},

thus vi−n, i ∈ {1, . . . , n} stores the values of the independent variable x. Now be

i ∈ {1, . . . , l} then vi is either given by

vi = φi(vj)

or

vi = φi(vj , vk),

where j, k < i, such that for

ym+i = vl+i, i ∈ {1−m, . . . , 0},

one has y = F (x) for all x ∈ Rn. Since vi, i ∈ {1, . . . , l} only depend on former

intermediate variables vj and vk, j, k < i, all vi can be successively evaluated using only

elemental functions φi.

Assumption 4 (Elemental Differentiability, Assumption ED in [53]). All elemental

functions φi are d-times continuously differentiable on their open domains Di, i.e. φ
i ∈

Cd(Di).

Now consider a given univariate polynomial in t

x(t) = x0 + x1t+ x2t
2 + · · ·+ xdt

d ∈ Rn. (4.2)
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We are interested in the resulting expansion

y(t) ≡ y0 + y1t+ y2t
2 + · · · + ydt

d = F (x(t)) +O(td+1) ∈ Rm, (4.3)

since at x∗ ∈ Rn for a “suitable” polynomial x(t) with x0 = x∗, yk contains the “desired”

derivative information of F (·) at x∗, which will be worked out further below.

Definition 12 (Taylor coefficient functions, Definition TC in [53]). Under Assumption

4, let

yk = Fk(x0, x1, . . . , xk) with Fk : R
n×(k+1) → Rm,

denote for k ≤ d the coefficient function defined by the relations (4.2) and (4.3). When

more than k+1 vector arguments are supplied the extra ones are ignored and when fewer

are supplied the missing ones default to zero.

Definition 13 (Approximation of intermediates, Definition AI in [53]). For a given

d-times continuously differentiable input path x(t) : (−ǫ, ǫ) → Rn with ǫ > 0, denote

the resulting values of an intermediate variable v by v(x(t))(−ǫ, ǫ) → R and define its

Taylor polynomial by

v(t) = v0 + v1t+ v2t
2 + · · ·+ vdt

d = v(x(t)) + o(td).

Since by assumption F (·) can be evaluated utilizing elemental functions φi, one can

apply truncated polynomial arithmetics to the elemental evaluation scheme presented

above to calculate the expansion of y(t), if φi is given by elemental arithmetic operations.

Now be v, u and w intermediate variables, the recurrences for arithmetic operations in

respect of the approximation of intermediates are given in Table 4.1. A similar table

can be found in [53].

All univariate elemental functions φ(u) of interest can be expressed as solutions of linear

Ordinary Differential Equations (ODEs):

b(u)φ′(u)− a(u)φ(u) = c(u),

where the coefficient functions a(u), b(u) and c(u) are given for a specific univariate

elemental function φ(u) and the Taylor coefficients ak, bk and ck of a(u), b(u) and c(u),

respectively can be calculated from the Taylor coefficients uk of u.

Proposition 4 (Taylor polynomials of ODE solutions, Proposition 10.1 in [53]). Pro-
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4 — Automatic Differentiation

v = Recurrence for k = 1, . . . , d

u+ cw vk = uk + cwk

u · w vk =
k∑
j=0

ujwk−j

u/w vk =
1

w0

[
uk −

k−1∑
j=0

vjwk−j

]

u2 vk =
k∑
j=0

ujuk−j

Table 4.1.: Taylor Coefficient Propagation via Arithmetic Operations

vided b0 ≡ b(u0) 6= 0 one has

ṽk =
1

b0




k∑

j=1

(ck−j + ek−j)ũj −
k−1∑

j=1

bk−j ṽj


 , for k ∈ {1, . . . , d},

where

ek ≡
k∑

j=0

ajvk−j, for k ∈ {0, . . . , d− 1},

and

ṽj ≡ jvj , j ∈ {1, . . . , d},
ũj ≡ juj , j ∈ {1, . . . , d}.

A proof of this proposition is given in [53].

Table 4.2 gives a list of the coefficient functions a(u), b(u) and c(u) for the standard

univariate elemental functions and as well the resulting recurrences, which can be cal-

culated using Proposition 4. A similar table can be found in [53].

This recurrence formulas can be applied to the elemental evaluation scheme in the same

manner as the recurrence formulas for arithmetic operations.

We can summarize the forward mode approach of AD in the following algorithmic

scheme.
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v = a b c Recurrence for k = 1, . . . , d

ln(u) 0 u 1 ṽk =
1

u0

[
ũk −

k−1∑
j=1

uk−jṽj

]

exp(u) 1 1 0 ṽk =

[
k∑
j=1

vk−jũj

]

ur r u 0 ṽk =
1

u0

[
r

k∑
j=1

vk−jũj −
k−1∑
j=1

uk−j ṽj

]

sin(u) 0 1 cos(u) ṽk =

[
k∑
j=1

ũjck−j

]

cos(u) 0 −1 sin(u) ṽk =

[
k∑
j=1

−ũjck−j
]

√
u 0

√
u

1

2
v0 =

√
u0

ṽk =
1

v0

[
k

2
uk −

k−1∑
j=1

ṽjvk−j

]

Table 4.2.: Taylor Coefficient Propagation through Univariate Elementals

Algorithm 4.

Data: A d-times continuously differentiable function F : Rn → Rm, which can be evalu-

ated utilizing elemental functions φi, i ∈ {1, . . . , l} fulfilling Assumption 4, a univariate

polynomial x(t) = x0 + x1t+ x2t
2 + · · ·+ xdt

d ∈ Rn.

Step 0. Set N = 1, and the polynomials

vi−n(t) = xi(t), i ∈ {1, . . . , n}.

Step 1. Set the polynomials vN (t) according to the recurrence given by the elemental

function φN .

Step 2. If N < l set N = N + 1 and goto Step 1., else goto Step 3.

Step 3. Set the polynomials

ym+i(t) = vl+i(t), i ∈ {1−m, . . . , 0},
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and stop.

The following proposition gives a result, which enables the construction of any “de-

sired” derivative tensor ∇kF (x) of order k from the propagation of univariate Taylor

polynomials of degree k ≤ d through the elemental evaluation scheme above.

Proposition 5 (Taylor to tensor conversion, Proposition 10.2 in [53]). Let F : Rn → Rm

be at least d-times continuously differentiable at some point x ∈ Rn and denote by Fr(x, s)

the r-th Taylor coefficient of the curve F (x + ts) at t = 0 for some direction s ∈ Rn.

Then one has for any seed matrix S = [sj]
p
j=1 ∈ Rn×p with sj ∈ Rn and any multi-index

i ∈ Np+ with |i| ≤ d the identity

∂|i|F (x+ z1s1 + z2s2 + · · · + zpsp)

(∂z1)i1 (∂z2)i2 . . . (∂zp)ip

∣∣∣∣∣
z=0

=
∑

|j|=d
γijF|i|(x, Sj),

where the constant coefficients γij are given by the finite sums

γij ≡
∑

0<k≤i

(−1)|i−k|
(
i

k

)(
dk/|k|

j

)( |k|
d

)|i|
,

i, j, k ∈ Np+ denote multi-indices, z ∈ Rp and for any m ∈ Rp, l ∈ Np+

(
m

l

)
≡
(
m1

l1

)(
m2

l2

)
. . .

(
mp

lp

)
,

and for α ∈ R, l ∈ N+,

(
α

l

)
≡





α(α − 1)(α − 2) . . . (α− l + 1)

l!
if l > 0

1 if l = 0.

A proof of this proposition is given in [55].

4.2. Reverse mode of Automatic Differentiation

In this section we stay close to the presentation in [38]. For the matter of notational

simplicity we treat the function of interest F : Rn → R to be smooth. It should be noted

that now m = 1 in view of (4.1).

Theorem 15. Let u be a univariate Taylor series in t

u(t) = u0 + u1t+ u2t
2 + u3t

3 + · · · ∈ R
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and let

v(t) ≡ v0 + v1t+ v2t
2 + v3t

3 + · · · = f(u(t)) ∈ R

for some smooth function f : R → R. Then for all k ≥ 0, p > 0 we have

∂vk+p
∂up

=
∂vk
∂u0

,
∂vk
∂uk+p

= 0.

A proof of this theorem is given in [38].

Now let y ∈ R be the dependent variable and x ∈ Rn the independent one with y = F (x),

as in Section 4.1.

We again assume that the function F (·) of interest can be evaluated utilizing elemental

functions φi, i ∈ {1, . . . , l}, where φi is either φi : R2 → R or φi : R → R.

Let u, v and w be intermediate variables with v is dependent on u, i.e. v = f(u) where

f : R → R is a smooth function.

We treat again the case that x(t) is a univariate Taylor series in t with u(t), v(t), w(t) are

the corresponding approximations of intermediates and y(t) is the resulting dependent

one.

Be s(t) any (truncated) Taylor series in t, i.e.

s(t) ≡ s0 + s1t+ s2t
2 + . . . ,

we define

[s(t)]k := sk.

In the following we are interested in the calculation of the Taylor coefficients of Fx(x(t))

for given Taylor series x(t) = x0 + x1t+ x2t
2 + . . . .

Since ∂x(t)
∂x0

= 1, for Fx(x(t)) it holds that

Fx(x(t)) = Fx(x(t))
∂x(t)

∂x0
=
∂y(t)

∂x0
=
∂y0
∂x0

+
∂y1
∂x0

t+
∂y2
∂x0

t2 + . . . . (4.4)

Remark. Having the Taylor coefficients of Fx(x(t)) for given Taylor series x(t) one can

apply Proposition 5 to Fx(·) and therefore one gains one derivative order.

Under Assumption 4 and in view of Definition 12 and Definition 13, we define a Taylor

coefficient function of intermediates.

Definition 14 (Taylor coefficient functions of intermediates). Under Assumption 4 and
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for given intermediate Taylor polynomial v(t), let

yk = F vk (v0, v1, . . . , vk) with Fk : Rk+1 → R,

denote for k the coefficient function defined by the relations (4.2) and (4.3) and Defini-

tion 13.

Now we can define the Taylor series v̄(t) by

v̄(t) :=
∂y(t)

∂v0
i.e. v̄k =

∂yk
∂v0

=
∂yk+p
∂vp

for k, p ≥ 0.

Then for the Taylor series ū(t) =
∂y(t)

∂u0
we get

ūp =
∑

k≤p

∂yp
∂vk

∂vk
∂u0

=
∑

k≤p

∂yp−k
∂v0

∂vk
∂u0

=
∑

k≤p
v̄p−k[fu(u(t))]k = [v̄(t) ∗ fu(u(t))]p, (4.5)

for p ≥ 0 and where v̄(t) ∗ fu(u(t)) denotes the polynomial product of v̄(t) and fu(u(t)),

namely

[v̄(t) ∗ fu(u(t))]k =

k∑

j=0

v̄j [fu(u(t))]k−j , for k ≥ 0,

and fu(u(t)) is considered as Taylor series.

Applying this relation to the elemental evaluation scheme we can associate to any uni-

variate elemental function φi the reverse accumulation step

ū(t)+ = v̄(t) ∗ φiu(u(t)),

with φiu(u(t)) considered as Taylor series.

For the bivariate case with congruent thoughts one can associate to any bivariate ele-

mental function φi the reverse accumulation steps

ū(t)+ = v̄(t) ∗ φiu(u(t), w(t))

and

w̄(t)+ = v̄(t) ∗ φiw(u(t), w(t)).

The reverse accumulation steps for the elementary arithmetic operations are given in

Table 4.3.

In the following we give a algorithmic scheme for the calculation of the Taylor coef-
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v = Reverse accumulation step

u+ cw ūk+= v̄k

w̄k+= cv̄k

u · w ūk+=
k∑
j=0

v̄j [w(t)]k−j

w̄k+=
k∑
j=0

v̄j [u(t)]k−j

u/w ūk+= v̄k
1

w0

w̄k+=
∑k

j=0 v̄j
∂vk−j
∂w0

with

∂vk
∂w0

= − 1

w2
0

[
uk −

k−1∑
j=0

vjwk−j

]
− 1

w0

k−1∑
j=0

∂vj
∂w0

wk−j

u2 ūk+= 2
k∑
j=0

v̄j[u(t)]k−j

Table 4.3.: Reverse Accumulation Steps for the Elementary Arithmetic Operations

ficients of Fx(x(t)).

Algorithm 5.

Data: A (d + 1)-times continuously differentiable function F : Rn → R, which can

be evaluated utilizing elemental functions φi, i ∈ {1, . . . , l} fulfilling Assumption 4, a

univariate polynomial x(t) = x0 + x1t + x2t
2 + · · · + xdt

d ∈ Rn and a corresponding

dependent polynomial y(t) = y0 + y1t + y2t
2 + · · · + ydt

d ∈ R fulfilling relation (4.3).

(Under assumption that the intermediate Taylor polynomials vi(t), i ∈ {1−n, . . . , l} are

on hand.)

Step 0. Set N = l − 1, and the polynomials

v̄i−n(t) = 0, i ∈ {1, . . . , n},
v̄i(t) = 0, i ∈ {1, . . . , l − 1},
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and

v̄l(t) = 1, i.e. v̄l0 = 1, v̄li = 0, i ≥ 1.

Step 1. Apply the reverse accumulation step to the v̄i(t), where i is associated to the

argument(s) of the elemental function φN .

Step 2. If N > 1 set N = N − 1 and goto Step 1., else goto Step 3.

Step 3. Set the polynomial x̄(t) to

x̄i(t) = v̄i−n(t), i ∈ {1, . . . , n},

and stop.

By now we assumed that F : Rn → R, i.e. m = 1 in view of (4.1) for the reverse case.

To apply the reverse mode to F : Rn → Rm with m > 1 we introduce the reverse seed

vector ω ∈ Rm and define F̃ : Rn → R by

F̃ (x) = ω1F 1(x) + · · ·+ ωmFm(x), x ∈ Rn. (4.6)

The reverse mode is now applied on F̃ (x).

4.3. Automatic Differentiation of implicitly defined functions

In this section, suppose that F : Rm×Rn → Rm is a d-times continuously differentiable

function, which can be evaluated utilizing elemental functions φi, i ∈ {1, . . . , l} as above

and therefore we can apply AD as described in Section 4.1 and 4.2 on it.

Now again, let y ∈ Rm be the dependent variable and x ∈ Rn the independent one. The

relation between y and x may be implicitly given by the nonlinear equation,

F (y, x) = 0 with F : Rm ×Rn → Rm. (4.7)

Further, assume that for given x∗ ∈ Rn there exist a y∗ ∈ Rm such that (4.7) is ful-

filled and in addition that Fy(y
∗, x∗) is nonsingular. According to the Implicit Function

Theorem (Theorem 26), there exist ρx, ρy > 0 and a d-times continuously differentiable

function Φ : B(x∗, ρx) → B(y∗, ρy) such that Φ(x∗) = y∗ and F (Φ(x), x) = 0 for all

x ∈ B(x∗, ρx). In the following, we are interested in the calculation of (higher) deriva-

tives of Φ(·) at x∗.

Below, we present two approaches to calculate the desired derivatives.

• In the first one, AD is not applied on Φ(·) at x∗ directly but on Newton’s method,
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an iterative process, which can be used to numerically calculate for a given x∗ ∈ Rm

the corresponding y∗ ∈ Rn such that (4.7) is fulfilled up to a given stopping

accuracy, instead. By doing so, Gilbert notes in [51] that “by good behavior, we

mean that the derivatives will be calculated correctly, asymptotically”. Therefore

we refer to it as iterative mode. The theoretical validation of this approach is

described in Section 4.3.1.

• In the second one, the direct mode presented in Section 4.3.2, we directly calculate

the Taylor coefficients of Φ(·) at x∗ according to Section 4.1 and Section 4.2, and

by use of the Implicit Function Theorem.

4.3.1. Iterative mode

In this subsection, for a clearer presentation we restrict ourselves to first order sensitivi-

ties. For the case of higher derivatives we refer to [54]. We stay close to the presentation

in [51].

In [51], Gilbert calls “an iterative process a part of a computer program whose in-

structions are executed several times until a stopping criterion is reached”. Here, the

iterative process φ : Rm × Rn → Rm of interest, has the following properties:

• On an open set Wy×Wx ⊂ Rm×Rn, φ(·, ·) is continuously differentiable and there

exists a L > 0 such that for (y′, x′), (y′′, x′′) ∈ Wy×Wx, the directional derivatives

dφ(y′, x′; ·) and dφ(y′′, x′′; ·) (Definition 24) satisfy

max
h∈Rm×Rn

‖dφ(y′, x′;h)− dφ(y′′, x′′;h)‖
‖h‖ ≤ L‖(y′, x′)− (y′′, x′′)‖. (4.8)

• For given x ∈ Wx, the next iterate yk+1 is given by

yk+1 = φ(yk, x), k ≥ 0, (4.9)

while x is constant.

• The initial iterate y0 depends on x such that

yk+1 = φ(yk(x), x), k ≥ 0. (4.10)

• It holds that

lim
k→∞

yk(x) → y∗(x), (4.11)
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thus

y∗(x) = φ(y∗(x), x) (4.12)

is a fixed point of φ(·, x).

• For all k ≥ 0 it holds that yk(x) ∈ Wy and y∗(x) ∈ Wy.

Proposition 6 (Proposition 1 in [51]). Suppose that φ(·, ·) is an iterative process as

above. Suppose also that the initial iterate y0 is a differentiable function of x on Wx.

If the spectral radius ρ of dφ(y′′, x′′; ·), where the direction h is restricted to h ∈ Wy×{0},
denoted by dφy(y

′′, x′′; ·), satisfies

ρ(dφy(y
′′, x′′; ·)) < τ < 1,

where ρ of dφy(y
′′, x′′; ·) is given by

ρ(dφy(y
′′, x′′; ·)) := lim

k→∞

(
max

h∈Wy×{0}

‖dφky(y′′, x′′;h)‖
‖h‖

) 1
k

,

and dφky(y
′′, x′′;h) denotes the k-th function iteration of dφy(y

′′, x′′; ·) on h,

then

(i) the convergence of the sequence {yk}k≥0 is asymptotically linear; that is, there exist

an index k0 such that ‖yk+1 − y∗‖ ≤ τ‖yk − y∗‖, for all indices k ≥ k0 and

(ii) the sequence of derivatives
{

dyk(x)
dx

}
k≥0

converges to dy∗(x)
dx .

A proof of this proposition is given in [51].

In the following, we will apply the preceding Proposition 6 to Newton’s method for

the calculation of a corresponding y∗ ∈ Rm for given F : Rm × Rn → Rm as above and

given x∗ ∈ Rn such that (4.7) is fulfilled, i.e.

F (y∗, x∗) = 0. (4.13)

Applying Newton’s method to (4.13), we get for successive iterates yk ∈ Rm

yk+1 = yk − Fy(yk, x
∗)−1F (yk, x

∗) for k ≥ 0.

Therefore, the iterative process φ̃ : Rm ×Rn → Rm of interest is given by

φ̃(y, x) := y − Fy(y, x)
−1F (y, x).
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The Jacobian of φ̃y(·, x∗) at y∗ ∈ Rm for given x∗ ∈ Rn in respect of y is given by

φ̃y(y
∗, x∗) = 1 + Fy(y

∗, x∗)−1Fyy(y
∗, x∗)Fy(y

∗, x∗)−1F (y∗, x∗)− Fy(y
∗, x∗)−1Fy(y

∗, x∗)

= 0.

It follows that the directional derivative dφ̃y(y
∗, x∗; ·)) at (y∗, x∗) for any direction

(hy, hx) ∈ Rm × {0} is given by

dφ̃y(y
∗, x∗;h) = φ̃y(y

∗, x∗)hy = 0.

For the spectral radius ρ of dφ̃y(y
∗, x∗; ·), it immediately follows that

ρ(dφ̃y(y
∗, x∗; ·)) = 0.

Consequently, the sequence
{

dyk(x)
dx

}
k≥0

will converge to dy∗(x)
dx assuming that the itera-

tive process φ̃ : Rm ×Rn → Rm fulfills the conditions (4.8)–(4.12) and the initial iterate

y0 is a differentiable function of x in some environment around x∗.

In summery and view of [54] under appropriate conditions on the iterative process, we

can apply AD as presented in Section 4.1 and 4.2 directly to the iterative process for

the solution of (4.7) for given x∗ ∈ Rn and can expect that the desired derivatives are

asymptotically correct.

4.3.2. Direct mode

In the direct mode approach, the task is to calculate for a given F : Rm × Rn → Rm as

above at x∗ ∈ Rn for a given univariate polynomial

x(t) = x0 + x1t+ x2t
2 + · · ·+ xdt

d ∈ Rn, (4.14)

in t, with

x(0) = x∗, i.e. x0 = x∗,

such that there exist a corresponding y∗ ∈ Rm with

F (y∗, x∗) = 0

and Fy(y
∗, x∗) is nonsingular, the resulting expansion

y(t) ≡ y0 + y1t+ y2t
2 + · · ·+ ydt

d = Φ(x(t)) +O(td+1) ∈ Rm. (4.15)
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Obviously y0 is given by y0 = y∗.

Since the requirements on the Implicit Function Theorem (Theroem 26) are fulfilled,

there exist ρx, ρy > 0 such that Φ : B(x∗, ρx) → B(y∗, ρy) exists in some environment

around x∗ and Φ(·) is d-times continuously differentiable.

Therefore, the k-th total derivative with k ≤ d of F (y(t), x(t)) in respect of t, for all t

such that x(t) ∈ B(x∗, ρy), is well defined and it holds that

dkF (Φ(x(t)), x(t))

dtk

∣∣∣∣
t=0

= 0. (4.16)

We first present the calculation of y1. Hereafter, we give a scheme to successively cal-

culate higher order Taylor coefficients yi with 2 ≤ i ≤ d.

We start with (4.16) and k = 1. Therefore, we have that

dF (Φ(x(t)), x(t))

dt

∣∣∣∣
t=0

= Fy(y
∗, x∗)

dΦ(x(t))

dt

∣∣∣∣
t=0

+ Fx(y
∗, x∗)

dx(t)

dt

∣∣∣∣
t=0

= 0. (4.17)

According to (4.15), we have

dΦ(x(t))

dt

∣∣∣∣
t=0

=
dy(t)

dt

∣∣∣∣
t=0

= y1. (4.18)

From (4.17) and (4.18), we get

y1 = −Fy(y∗, x∗)−1Fx(y
∗, x∗)

dx(t)

dt

∣∣∣∣
t=0

.

Now, consider two “input” polynomials ỹ(1)(t) and x̃(1)(t) given by

ỹ(1)(t) = y0 ∈ Rm (4.19)

and

x̃(1)(t) = x0 + x1t ∈ Rn. (4.20)

For the resulting expansion of F (ỹ(1)(t), x̃(1)(t)) given by

F̃ (1)(t) ≡ F̃
(1)
0 + F̃

(1)
1 t = F (ỹ(1)(t), x̃(1)(t)) +O(t2) ∈ Rm,

one directly sees that

Fx(y
∗, x∗)

dx(t)

dt

∣∣∣∣
t=0

= F̃
(1)
1 ,
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since dx(t)
dt

∣∣∣
t=0

= x1. Therefore, y1 can be easily calculated by

y1 = −Fy(y∗, x∗)−1F̃
(1)
1 .

Now assume that we have calculated y0, y1,. . . ,yk−1 and we are interested in calculating

yk for 1 < k ≤ d.

For this case the “input” polynomials ỹ(k)(t) and x̃(k)(t) shall now be given by

ỹ(k)(t) = y0 + y1t+ · · ·+ yk−1t
k−1 ∈ Rm (4.21)

and

x̃(k)(t) = x0 + x1t+ · · ·+ xkt
k ∈ Rn. (4.22)

For the resulting expansion of F (ỹ(k)(t), x̃(k)(t)) given by

F̃ (k)(t) ≡ F̃
(k)
0 + F̃

(k)
1 t+ · · ·+ F̃

(k)
k tk = F (ỹ(k)(t), x̃(k)(t)) +O(tk+1) ∈ Rm,

it directly follows with (4.16) and Taylor’s Theorem that

k! · F̃ (k)
k + Fy(y

∗, x∗)
dkΦ(x(t))

dtk

∣∣∣∣
t=0

=
dkF (Φ(x(t)), x(t))

dtk

∣∣∣∣
t=0

= 0,

where k! denotes the k-th factorial.

Since by (4.15) dkΦ(x(t))
dtk

∣∣∣
t=0

= k! · yk, it follows that yk can be calculated by

yk = −Fy(y∗, x∗)−1F̃
(k)
k .

This leads to following iterative algorithm for the successive calculation of yk, 1 ≤ k ≤ d.

Algorithm 6.

Data: A d-times continuously differentiable function F : Rm × Rn → Rm, which can be

evaluated utilizing elemental functions φi fulfilling Assumption 4, i ∈ {1, . . . , l} as above,

x∗ ∈ Rn, y∗ ∈ Rm such that F (y∗, x∗) = 0 and Fy(y
∗, x∗) is nonsingular, the inverse Ja-

cobian matrix Fy(y
∗, x∗)−1, a univariate polynomial x(t) = x0+x1t+x2t

2+ · · ·+xdtd ∈
Rn with x(0) = x0 = x∗, k ∈ {1, . . . , d} .

Step 0. Set N = 1, and y0 = y∗.

67



4 — Automatic Differentiation

Step 1. Set “input” polynomials to

ỹ(N)(t) =

N−1∑

i=0

yit
i ∈ Rm

and

x̃(N)(t) =

N∑

i=0

xit
i ∈ Rn

Step 2. Calculate corresponding expansion F̃ (N)(t) of F (ỹ(N)(t), x̃(N)(t)) given by

F̃ (N)(t) ≡ F̃
(N)
0 + · · · + F̃

(N)
N tN = F (ỹ(N)(t), x̃(N)(t)) +O(tN+1) ∈ Rm.

Step 3. Calculate yN by

yN = −Fy(y∗, x∗)−1F̃
(N)
N .

Step 4. If N < k set N = N + 1, and goto Step 1, else stop.

Beside the forward mode of AD as presented above and summarized in Algorithm 6, one

may be interested in directly applying the reverse mode of AD to the implicit function

given by relation (4.7), which is presented in the following.

Reverse mode

For the matter of notational simplicity, we treat again the case that F : Rm×Rn → Rm

is smooth.

For the remaining conditions beeing as above, at the point of interest, i.e. x∗ ∈ R, the

requirements on the Implicit Function Theorem (Theorem 26) are fulfilled.

Therefore, there exists in some environment B(x∗, ρx), ρx > 0, around x∗ a Φ : Rn → Rm

with F (y, x) = 0, where y = Φ(x) ∈ Rm for all x ∈ B(x∗, ρx) ⊂ Rn.

We also assume that we have an additional function G : Rm → R, z = G(y) with z ∈ R

and y ∈ Rm such that the resulting function of interest is given by G◦Φ : B(x∗, ρx) → R

in some environment around the point of interest x∗ and we have already calculated the

input seed ȳ(t) = ∂z(t)
∂y0

where z(t) is considered as Taylor series, i.e. the implicit defined

function is part of some evaluation scheme.

One sees from relations (4.4) and (4.5) that the task in applying the reverse mode to the

implicit function given by relation (4.7), for the general case that the implicit defined

function is part of some evaluation scheme as clarified above, is to calculate x̄(t) = ∂z(t)
∂x0

for given Taylor series x(t), y(t) such that x0 = x∗, y0 = y∗ and relation (4.7) is fulfilled
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for t ∈ R such that x(t) ∈ B(x∗, ρx), i.e.

x̄p =

[
∂z(t)

∂x0

]

p

= [ȳ ∗ Φx(x(t))]p =
[
ȳ ∗ ∂y(t)

∂x0

]

p

, for p ≥ 0. (4.23)

It should be noted that since y(t) ∈ Rm for t ∈ R is not a scalar, the convention in this

thesis is that ȳ(t) is regarded as row vector with each entry is a Taylor series, i.e.

ȳ(t) :=

(
∂z(t)

∂yk0

)T

k=1,...,m

=
(
∂z(t)
∂y10

∂z(t)
∂y20

· · · ∂z(t)
∂ym0

)
.

Accordingly, Φx(x(t)) =
∂y(t)
∂x0

is regarded as matrix with each entry is a Taylor series,

i.e.

∂y(t)

∂x0
:=

(
∂yk(t)

∂xl0

)

k=1,...,m, l=1,...,n

=




∂y1(t)
∂x10

∂y1(t)
∂x20

· · · ∂y1(t)
∂xn0

∂y2(t)
∂x10

∂y2(t)
∂x20

· · · ∂y2(t)
∂xn0

...
...

. . .
...

∂ym(t)
∂x10

∂ym(t)
∂x20

· · · ∂ym(t)
∂xn0



.

Here, the polynomial product of ȳ(t) ∗ ∂y(t)
∂x0

is defined by

[
ȳ(t) ∗ ∂y(t)

∂x0

]

p

:=

p∑

j=0

ȳj

[
∂y(t)

∂x0

]

p−j
, for p ≥ 0, (4.24)

where ȳp denotes the row vector

ȳp :=
(
ȳkp

)T
k=1,...,m

=
(
ȳ1p ȳ2p · · · ȳmp

)

and
[
∂y(t)
∂x0

]
p
is accordingly defined for p ≥ 0.

Since this expression is not evaluable directly, we first calculate for

h(t) := F (x(t), y(t)) ∈ Rm

and given input seed Taylor series h̃(t) ∈ Rm the Taylor coefficients of x̃(t) and ỹ(t)

defined by

x̃p :=

[
h̃(t) ∗ ∂h(t)

∂x0

]

p

for p ≥ 0 (4.25)

and

ỹp :=

[
h̃(t) ∗ ∂h(t)

∂y0

]

p

for p ≥ 0, (4.26)
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where
∂h(t)

∂x0
= Fx(y(t), x(t)) and

∂h(t)

∂y0
= Fy(y(t), x(t)).

Due to Taylor’s Theorem, we first observe that the i-th component of h(t), namely hi(t),

i ∈ {1, . . . ,m}, is equal to

hi(t) = F i + (F ixx1 + F iyy1)t

+
1

2
(F ixx2 + F iyy2 + xT1 F

i
xxx1 + yT1 F

i
yyy1 + 2xT1 F

i
xyy1)t

2 + . . . ,
(4.27)

where we have omitted the arguments of

F i ≡ F i(y∗, x∗), F ix ≡ F ix(y
∗, x∗), F iy ≡ F iy(y

∗, x∗), F ixx ≡ F ixx(y
∗, x∗),

F iyy ≡ F iyy(y
∗, x∗) and F ixy ≡ F ixy(y

∗, x∗),

for the case of notational simplicity as in the remainder of the section.

F ixx, F
i
yy and F ixy denote the second derivative matrix of the i-th component of F in

respect of x and y, respectively, i.e.

F ixy :=

(
∂2F i

∂xk∂yl

)

k=1,...,m, l=1,...,n

=




∂2F i

∂x1∂y1
∂2F i

∂x1∂y2
· · · ∂2F i

∂x1∂ym
∂2F i

∂x2∂y1
∂2F i

∂x2∂y2
· · · ∂2F i

∂x2∂ym
...

...
. . .

...
∂2F i

∂xn∂y1
∂2F i

∂xn∂y2
· · · ∂2F i

∂xn∂ym




and F ixx, F
i
yy are accordingly defined.

From (4.27) and because of ∂x(t)
∂x0

= ∂y(t)
∂y0

= 1 the i-th component of ∂h(t)
∂x0

and ∂h(t)
∂y0

are

given by

∂hi(t)

∂x0
= F ix + (xT1 F

i
xx + yT1 F

i
yx)t+ . . . ,

∂hi(t)

∂y0
= F iy + (xT1 F

i
xy + yT1 F

i
yy)t+ . . . ,

(4.28)

for i ∈ {1, . . . ,m}.

Next, we calculate the Taylor coefficients of ∂y(t)∂x0
.

We only calculate the coefficients up to order one, i.e ∂y0
∂x0

and ∂y1
∂x0

. This is because

higher terms are not used in this work and also the calculation of them gets more and

more complex.

We start with the calculation of ∂y0
∂x0

.
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From (4.16) it follows that

F (y(t), x(t))|t=0 = 0.

Again reasoning the Implicit Function Theorem (Theorem 26), we have that

∂F (y(t), x(t))

∂x0

∣∣∣∣
t=0

= 0.

Therefore

Fx + Fy
∂y0
∂x0

= 0.

Since from (4.4) and (4.28) it holds that Fx = ∂h0
∂x0

, it follows that

∂y0
∂x0

= −F−1
y

∂h0
∂x0

. (4.29)

Next, we calculate ∂y1
∂x0

.

From relation (4.16) we have that

dF (y(t), x(t))

dt

∣∣∣∣
t=0

= Fx(y(t), x(t))|t=0

∂x(t)

∂t

∣∣∣∣
t=0

+ Fy(y(t), x(t))|t=0

∂y(t)

∂t

∣∣∣∣
t=0

= 0.

Again reasoning the Implicit Function Theorem (Theorem 26) it follows that

[
∂

∂x0

(
d

dt
F i(y(t), x(t))

)]∣∣∣∣
t=0

= (xT1 F
i
xx + yT1 F

i
yx) + (xT1 F

i
xy + yT1 F

i
yy)

∂y0
∂x0

+F iy
∂y1
∂y0

= 0.

(4.30)

Then from (4.4), (4.28) and (4.30) we get

∂y1
∂x0

= −F−1
y

(
∂h1
∂x0

+
∂h1
∂y0

∂y0
∂x0

)
. (4.31)

Now, with this preliminary work, we focus on the calculation of (4.23), where we restrict

the concern to p ∈ {0, 1}.

With p = 0 from (4.24) and (4.29) one sees that (4.23) gets

x̄0 = ȳ0
∂y0
∂x0

= −ȳ0F−1
y

∂h0
∂x0

. (4.32)

For p = 1 from (4.24), (4.29) and (4.31) one sees that (4.23) gets

x̄1 = ȳ0
∂y1
∂x0

+ ȳ1
∂y0
∂x0

= −ȳ0F−1
y

(
∂h1
∂x0

+
∂h1
∂y0

∂y0
∂x0

)
− ȳ1F

−1
y

∂h0
∂x0

. (4.33)
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We introduce the auxiliary Taylor series µ̃(t) which we define by

µ̃Tp := −
(
ȳpF

−1
y

)T
= −F−T

y ȳTp . (4.34)

Obviously (4.32) and (4.33) is equal to

x̄0 = µ̃0
∂h0
∂x0

(4.35)

x̄1 = µ̃0
∂h1
∂y0

∂y0
∂x0

+ µ̃0
∂h1
∂x0

+ µ̃1
∂h0
∂x0

. (4.36)

This leads to following algorithm for the calculation of x̄0 and x̄1:

Algorithm 7.

Data: p ∈ {1, 2}, a d-times continuously differentiable function F : Rm × Rn →
Rm, which can be evaluated utilizing elemental functions φi fulfilling Assumption 4,

i ∈ {1, . . . , l} as above and d ≥ p, x∗ ∈ Rn, y∗ ∈ Rm such that F (y∗, x∗) = 0 and

Fy(y
∗, x∗) is nonsingular, the inverse Jacobian matrix Fy(y

∗, x∗)−1, a univariate polyno-

mial x(t) = x0+ · · ·+xp−1t
p−1 ∈ Rn with x(0) = x0 = x∗, the corresponding polynomial

y(t) = y0 + · · · + yp−1t
p−1 ∈ Rm with y(0) = y0 = y∗ (e.g., calculated by Algorithm 6),

the Taylor coefficients of the input seed ȳ(t) up to order p− 1.

Step 0. Calculate µ̃k, k ∈ {0, .., p − 1} according to (4.34).

Step 1. Calculate x̃(t) and ỹ(t) for given input seed Taylor series h̃(x) = µ̃(t) up to

order p− 1 according to (4.25) and (4.26).

Step 2. Set x̄0 = x̃0 (compare (4.35) and (4.25)). If p = 1 stop, else goto Step 3.

Step 3. Calculate x̃′0 for given input seed Taylor coefficient h̃T0 = −F−T
y (ỹ1 + ȳ1)

T

according to (4.25) since

ỹ1 + ȳ1 = ỹ1 − (−ȳ1F−1
y Fy)

= ỹ1 − µ̃1Fy

= ỹ1 − µ̃1
∂h0
∂y0

= µ̃0
∂h1
∂y0

+ µ̃1
∂h0
∂y0

− µ̃1
∂h0
∂y0

= µ̃0
∂h1
∂y0

,

and therefore

x̃′0 = −(ỹ1 + ȳ1)F
−1
y

∂h0
∂x0

= µ̃0
∂h1
∂y0

∂y0
∂x0
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4.3 — Automatic Differentiation of implicitly defined functions

(compare (4.26), (4.28), (4.29), (4.34), (4.36) and Step 1.).

Step 4. Calculate x̄1 = x̃1 + x̃′0 (compare (4.25) and (4.36)) and stop.

In summery, the direct mode approach offers an alternative tracktable method for the

calculation of the Taylor coefficients of y(t) for given Taylor series x(t) subject to (4.7)

and as well for the calculation of the reverse mode Taylor coefficients x̄(t) at least up

to order one as presented above. In contrast to the iterative mode approach for given

x∗ and exact y∗ such that (4.7) is fulfilled, the Taylor Coefficients of y(t) and x̄(t) are

truncation error free. Opposite to the iterative mode, for the reverse mode the full

Jacobian Fy of F (·, x∗) at y∗ has to be calculated. On the other hand, applying AD to

an iterative process directly, the performance depends on the number of iterations of it,

whereas the direct mode approach is independent of them.
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CHAPTER 5

Calculating numerical solutions of Ordinary Differential Equations

and Sensitivity Generation for Ordinary Differential Equations

5.1. Calculating numerical solutions of Ordinary Differential

Equations

In this section we treat the numerical solution of an initial value problem (IVP) given

by the ordinary differential equation (ODE)

ẏ(t) = F (y(t), t, p0), t ∈ [tinit, tend], (5.1)

with initial condition

y(tinit) = yI, (5.2)

where F : Rm×R×Rp → Rm is a continuously differentiable function on Rm×[tinit, tend]×
{p0}. The function y : [tinit, tend] → Rm denotes the solution of the IVP in (5.1) and

(5.2) on the time horizon [tinit, tend] ⊂ R for given initial state y(tinit) = yI ∈ Rm and

given parameter p0 ∈ Rp, which is considered fixed and therefore this argument in y(t)

is omitted. The first derivative with respect to the time for the solution y(t) is denoted

by ẏ(t), i.e.

ẏ(t′) :=
dy(t)

dt

∣∣∣∣
t=t′

.

For conditions which ensure the existence and uniqueness of a solution y(t) of an IVP

as given in (5.1) and (5.2) we refer to, e.g. [78].
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Here, we present the theoretical aspects for the numerical implementation and as well the

numerical implementation itself of a Backward Differentiation Formula (BDF) method,

more precisely a variable step variable order BDF method based on Nordsiek array in-

terpolation to solve IVPs numerically, which has been implemented as a part of the

algorithmic framework developed for this thesis.

The core integrator is similar to the EPISODE BDF method by Byrne and Hindmarsh

[32], but with the step size selection strategy of Calvo and Rández [36] and the capability

to generate higher-order sensitivities with respect to the initial state vector yI and pos-

sibly a parameter vector p0 based on the sophisticated framework of Internal Numerical

Differentiation [1, 2] as presented in Section 5.2.1 and 5.2.2.

For a rigorous presentation of the convergence theory of BDF methods we refer to the

textbooks [9, 42, 58, 78].

All BDF methods are based on implicit Backward Differentiation Formulas, which were

first introduced by Curtiss and Hirschfelder [41] and are specially suited for stiff ODEs.

In [59], Hairer and Wanner define: “stiff equations are equations where certain implicit

methods, in particular BDF, perform better, usually tremendously better, than explicit

ones.”

Since the algorithmic framework is intended to be used for (bio)chemical kinetic systems,

it is expected that the systems of interest may be stiff and therefore a stiff method is

implemented rather than an explicit one like, e.g. explicit Runge-Kutta methods (see

for example the textbooks [42, 58, 78]). For a detailed discussion of stiffness we refer to

the textbooks [9, 42, 58, 78].

BDF methods belong to the family of linear multistep methods. The general form of

a k−th order linear multistep method at step n can be expressed as

k∑

i=0

αni
yn−i = h

k∑

i=0

βiFn−i, (5.3)

where

Fn−i := F (yn−i, tn−i, p0)

and yn−i denotes the approximate solution at t = tn−i with

tn−k < tn−k+1 < · · · < tn

and αi, βi are the method’s coefficients for i ∈ {0, . . . , k}. The step size is denoted by h.

Ascher and Petzold remark [9]: “The method is called linear because, unlike general

Runge-Kutta, the expression in (5.3) is linear in F .”
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5.1.1. Classical linear multistep form of the BDF method

The conceptual idea of the k−th order BDF integration method is, to calculate at step

n for given step size hn and already computed approximations yn−i, i ∈ {1, . . . , k}, at
time points tn−i ∈ R, the successive approximation yn of the exact solution y(tn) of the

IVP in (5.1,5.2) at time point tn, by the following strategy.

The strategy is based on the construction of an interpolation polynomial πn,k(t) of degree

k or less in t ∈ R, such that

πn,k(tn−i) = yn−i, i ∈ {0, 1, . . . , k} (5.4)

and

π̇n,k(tn) = F (yn, tn, p0) (5.5)

are fulfilled. These conditions implicitly define yn.

As Byrne and Hindmarsh state in [32]: “This set of conditions can be rephrased in the

classical linear multistep form

hnẏn = −
k∑

i=0

αni
yn−i, ẏn := F (yn, tn, p0), (5.6)

such that the solution of (5.6) for yn is necessary and sufficient for the existence of

πn,k(t) with (5.4) and (5.5).”

Here hn denotes the step size of step n. The sizes of each step do not have to be the

same and satisfy

0 < min{hj} and max{hj} < H

such that for

tj := tinit +

j∑

i=1

hi,

tinit =: t0 < t1 < . . . tfinal = tend defines a strict partition of [tinit, tend], where H denotes

the maximum step size.

5.1.2. Predictor-corrector scheme in Nordsieck representation

In 1962, Nordsieck invented an integration method [84], which calculates at step n the

next approximation yn to the true solution y(t) of the IVP in (5.1) and (5.2), by use

of a stored approximation to a scaled Taylor series of order k around tn−1 of the true

solution y(t). Here, this approximation is called Nordsieck array of order k and is given
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by

zn−1 :=
(
yn−1 hny

(1)
n−1 h2ny

(2)
n−1/2 . . . hkny

(k)
n−1/k!

)
,

where in general

y
(i)
n−1 6=

diy(t)

dti

∣∣∣∣
t=tn−1

,

but

y
(i)
n−1 :=

diπn−1,k(t)

dti

∣∣∣∣
t=tn−1

,

for i ∈ {0, . . . , k}. Precisely, zn−1 stores the scaled Taylor coefficients of the Taylor series

of πn−1,k(t) around tn−1.

Osborne [85] and Skeel [108] showed “that every Nordsiek method is equivalent to a

multistep formula and that the order of this method is at least k” [58].

Now, we present a practical predictor-corrector scheme utilizing Nordsieck arrays to

calculate the next approximation yn according to the BDF solution strategy presented

in Section 5.1.1 as developed in [32].

In view of the solution strategy in Section 5.1.1, a practical k-th order BDF integration

method calculates at step n the desired interpolation polynomial πn,k(t), defined by (5.4)

and (5.5), by help of the former interpolation polynomial πn−1,k(t), calculated at step

n− 1, which is well defined by the conditions

πn−1,k(tn−i) = yn−i, i ∈ {1, . . . , k} (5.7)

and

π̇n−1,k(tn−1) = F (yn−1, tn−1, p0).

Here, the complete polynomial πn−1,k(t) is coded in the Nordsieck array zn−1.

The first step in constructing the desired polynomial πn,k(t)
1 is to calculate the predictor

array zn(0), which is defined by

zn(0) := zn−1A[k] (5.8)

and A[k] is the (k + 1)× (k + 1) Pascal triangle matrix, namely

Aij [k] :=

{
0, i < j
i!

j!(i−j)! i ≥ j.

1Again, the complete polynomial πn,k(t) can be coded in the Nordsieck array zn. Thus, the task is to
construct zn, instead.
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Therefore, A[6] is for example given by

A[6] =




1 0 0 0 0 0 0

1 1 0 0 0 0 0

1 2 1 0 0 0 0

1 3 3 1 0 0 0

1 4 6 4 1 0 0

1 5 10 10 5 1 0

1 6 15 20 15 6 1




.

Obviously zn(0) stores the scaled Taylor coefficients of the Taylor series of πn−1,k(t)

around tn. Hence, the Nordsieck array zn(0) is called the predictor array.

On the other hand, the Nordsieck array of interest zn is given by

zn :=
(
yn hny

(1)
n h2ny

(2)
n /2 . . . hkny

(k)
n /k!

)
, (5.9)

with

y(i)n :=
diπn,k(t)

dti

∣∣∣∣
t=tn

.

In [32], Byrne and Hindmarsh derived a fundamental relation between zn(0) and zn,

which we present now.

First, we define the polynomial ∆n(t) of degree k or less by

∆n(t) := πn,k(t)− πn−1,k(t).

From (5.4) and (5.7) one sees, that

∆n(tn−i) = 0, for all i ∈ {1, . . . , k} (5.10)

and

∆n(tn) = πn,k(tn)− πn−1,k(tn).

If one denotes the entries of the Nordsieck array zn(0) by

zn(0) =
(
yn(0) hny

(1)
n(0)

h2ny
(2)
n(0)

/2 . . . hkny
(k)
n(0)

/k!
)
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and by the fact that the entries of zn(0) are the scaled Taylor coefficients of the Taylor

series of πn−1,k(t) around tn, one can conclude that

∆n(tn) = yn − yn(0) =: en, (5.11)

where en is called the corrector vector.

From (5.10) and (5.11) and using the polynomial interpolation in Lagrange form, it

immediately follows that ∆n(t) is uniquely defined by

∆n(tn) =

k∏

i=1

t− tn−i
tn − tn−i

en. (5.12)

We introduce the auxiliary quantities

xn :=
t− tn
hn

and ξn,i :=
tn − tn−i

hn
with i ∈ {1, . . . , k} (5.13)

and the scalar auxiliary polynomial

Λn(x) =

k∏

i=1

(
1 +

x

ξn,i

)
. (5.14)

Using these quantities, (5.12) transforms to

∆n(t) = ∆n(tn + hnx) = Λn(x)en.

We denote the i-th coefficient of the scalar polynomial Λn(x) by l
i
n, i.e.

Λn(x) =

k∑

i=0

linx
i. (5.15)

From the fact that the entries in zn and zn(0) are the scaled Taylor coefficients of the

Taylor series of πn,k(t) and πn−1,k(t), respectively, around tn and with

hin
i!

diπn,k(t)

dti

∣∣∣∣
t=tn

− hin
i!

diπn−1,k(t)

dti

∣∣∣∣
t=tn

=
hin
i!

di∆n(t)

dti

∣∣∣∣
t=tn

=
1

i!

diΛn(xn(t))

dti

∣∣∣∣
t=tn

= linen,

(5.16)

for i ∈ {0, . . . , k}, and xn is regarded as function of t, it follows that

zn = zn(0) + enln, (5.17)
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where ln denotes the 1× (k + 1) row vector

l =
(
l0n l1n . . . lkn

)
.

Thus, by knowledge of the corrector vector en and the coefficient row vector ln, the

predictor array zn(0) can be easily corrected to yield the desired Nordsieck vector zn.

The coefficient row vector ln is uniquely defined by the relations (5.14) and (5.15). We

first note that obviously l0n = 1. We calculate the remaining coefficients by the recursive

scheme presented in Algorithm 8, which can be easily verified by induction.

Algorithm 8.

Data: Order of BDF method k, Auxiliar quantities ξn,q for q ∈ {1, . . . , k}.

Step 0. Set l0n = 1. Set i = 0.

Step 1. Set i = i+ 1. If i > k stop.

Step 2. Set j = i− 1. Set

lin =

i∏

q=1

ξ−1
n,q.

Step 3. If j < 1 goto Step 1. Else set

ljn = ljn + lj−1
n ξ−1

n,i ,

set j = j − 1 and goto Step 3.

Remark. It can directly be deduced from Algorithm 8 that l1n is given by

l1n =
k∑

i=1

1

ξn,i
(5.18)

and lkn is given by

lkn =

k∏

i=1

1

ξn,i
.

The calculation of the corrector vector en is presented in Section 5.1.5.
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5.1.3. Estimation of the local error

In [32], Byrne and Hindmarsh state at the beginning of the section “Error Estimation”:

“The algorithm described so far is of little or no use without an accompanying algorithm

for the selection of order k and step size h throughout the integration. This selection

algorithm is based on the local discretization error”.

Therefore, in this section, we will derive formulas for the estimation of the local dis-

cretization error, based on the corrector vector en. In the following, we will denote the

local discretization error local truncation error.

Definition 15. The local truncation error LTEn(k) of the k−th order BDF method

at step n is defined by

LTEn(k) := y(tn)− ỹn, (5.19)

where y(tn) is the exact solution of IVP in (5.1) and (5.2) at time point tn, and ỹn is

the numerical one, i.e. obtained by (5.6) but with yn−i, i ∈ {1, . . . , k} given by the exact

solution at time points tn−i, i ∈ {1, . . . , k}, i.e.

yn−i = y(tn−i), i ∈ {1, . . . , k},

for this case.

Definition 16. The local error LEn(k) of the k−th order BDF method at step n is

defined by

LEn(k) := y(tn) +
1

αn0

[
hnẏ(tn) +

k∑

i=1

αni
y(tn−i)

]
, (5.20)

where y(tn−i), i ∈ {0, . . . , k} is the exact solution of IVP in (5.1) and (5.2) at time

points tn−i and ẏ(tn) = F (y(tn), tn, p).

The following lemma gives a relation between the local truncation error LTEn(k) and

the local error LEn(k) of the k−th order BDF method at step n. The lemma gives

essentially the same result as Lemma 2.2 in [58] but formulated not only for uniform

step sizes.

Lemma 3. Consider the IVP in (5.1) and (5.1) with F (·, tn, p) continuously differen-

tiable and let y(t) be its exact solution. Then it holds for some s ∈ [0, 1] that for the

k−th order BDF method at step n

LTEn(k) =

(1+
hn
α0
Fy(s(y(t)− ỹn), tn, p0)

)−1

LEn(k).
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Proof. According to (5.6) ỹn is implicitly given by

ỹn = − 1

αn0

[
hnF (ỹn, tn, p0) +

k∑

i=1

αni
yn−i

]
. (5.21)

Using (5.19) and (5.20) we see that (5.21) is equivalent to

LEn(k) = LTEn(k) +
hn
αn0

[F (y(tn), tn, p)− F (ỹn, tn, p)] .

From the Mean-Value Theorem it follows that

LEn(k) = LTEn(k) +
hn
αn0

Fy(ỹn + s(y(tn)− ỹn), tn, p)LTEn(k)

=

(1+
hn
αn0

Fy(ỹn + s(y(tn)− ỹn), tn, p)

)
LTEn(k),

for some s ∈ [0, 1].

Therefore, the local truncation error LTEn(k) and the local error LEn(k) for the k−th

order BDF method at step n are essentially the same, i.e. for small enough step size hn

LTEn(k) ≈ LEn(k).

Lemma 4. For the local error LEn(k) of the k−th order BDF method at step n it holds

that

LEn(k) =

∏k
i=1 ξn,i

(k + 1)!αn0

hk+1
n

d(k+1)y(tn)

dt(k+1)
+O(Hk+2),

where ξn,i, i ∈ {0, . . . , k} is defined as in (5.13).

Proof. Let π̃n,k(t) be an interpolation polynomial of degree k defined by the conditions

π̃n,k(tn−i) = y(tn−i) for all i ∈ {0, 1, . . . , k}.

From (5.6) we see that

−hn ˙̃πn,k(tn) =
q∑

i=0

αni
y(tn−i).

Therefore for the LEn(k) it holds that

LEn(k) =
hn
αn0

[
ẏ(tn)− ˙̃πn,k(tn)

]
.

Let π̃n,k+1(t) be another interpolation polynomial of degree k + 1 defined by the condi-
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tions

π̃n,k+1(tn−i) = y(tn−i), for all i ∈ {0, 1, . . . , k}. (5.22)

and

˙̃πn,k+1(tn) = ẏ(tn). (5.23)

With ∆(t) := π̃n,k+1(t)− π̃n,k(t) it obviously follows that

LEn(k) =
hn
αn0

∆̇(tn). (5.24)

Since by construction π̃n,k+1(tn−i) = π̃n,k(tn−i) for all i ∈ {0, 1, . . . , k}, it holds, that

∆(tn−i) = 0 for all i ∈ {0, 1, . . . , k}.

Thus, it follows from the polynomial interpolation in Lagrange form that

∆(t) = c

k∏

i=0

(t− tn−i), (5.25)

for some constant vector c.

The constant vector c is the leading coefficient of ∆(t) and thus of π̃n,k+1, as well.

Therefore it follows that

c =
1

(k + 1)!

d(k+1)π̃n,k+1(tn)

dt(k+1)
. (5.26)

An upper bound for the error term ‖y(t) − π̃n,k+1(t)‖ of the Hermite polynomial inter-

polation for (5.22) and (5.23) is given by

‖y(t)− π̃n,k+1(t)‖ ≤ c′(t− tn)
2

k∏

i=1

(t− tn−i), (5.27)

where c′ is some constant. Therefore, it immediately follows that

c =
1

(k + 1)!

d(k+1)π̃n,k+1(tn)

dt(k+1)
=

1

(k + 1)!

d(k+1)y(tn)

dt(k+1)
+O(H). (5.28)

From (5.25), we also know that

∆̇(tn) = c

k∏

i=1

(tn − tn−k) = chkn

k∏

i=1

ξn,i, (5.29)
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and therefore, from (5.24), (5.28) and (5.29), we see, that

LEn(k) =

∏k
i=1 ξn,i

(k + 1)!αn0

hk+1
n

d(k+1)y(tn)

dt(k+1)
+O(Hk+2). (5.30)

Now, from Lemma 3 and Lemma 4, it obviously follows, that, under above conditions,

y(tn)− ỹn = LTEn(k) = LEn(k) +O(Hk+2)

=

∏k
i=1 ξn,i

(k + 1)!αn0

hk+1
n

d(k+1)y(tn)

dt(k+1)
+O(Hk+2).

(5.31)

In the following, we will develop an estimation of the asymptotic part of the local error

LEn(k), based on the corrector vector en.

For this task, we define a second polynomial π̂n−1,k(t) of degree k or less by

π̂n−1,k(tn−i) = y(tn−i) for all i ∈ {1, . . . , k} and ˙̂πn−1,k(tn−1) = y(tn−1).

Therefore, it yields (by definition of π̂n−1,k(tn−i)), that

yn(0) = π̂n−1,k(tn).

Again, we define a second polynomial π̂n−1,k+1(t) of degree k + 1 or less, given by

π̂n−1,k+1(tn−i) = y(tn−i) for all i ∈ {0, 1, . . . , k} and ˙̂πn−1,k+1(tn−1) = y(tn−1).

Now we define the polynomial ∆̃(t) by

∆̃(t) := π̂n−1,k+1(t)− π̂n−1,k(t).

Then, by definition of π̂n−1,k+1(t) and π̂n−1,k+1(t), it immediately follows that

y(tn)− yn(0) = π̂n−1,k+1(tn)− π̂n−1,k(tn) = ∆̃(tn)

and

∆̃(tn−i) = 0 for all i ∈ {1, . . . , k} and
˙̃
∆(tn−1) = 0.
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Thus, it follows from the Hermite polynomial interpolation that

∆̃(t) = c̃(t− tn−1)
2

k∏

i=2

(t− tn−k),

for a constant vector c̃. With similar thoughts as above (compare (5.26), (5.27) and

(5.28)), it follows that

c̃ =
1

(k + 1)!

d(k+1)π̂n−1,k+1(tn)

dt(k+1)
=

1

(k + 1)!

d(k+1)y(tn)

dt(k+1)
+O(H).

Thus, we can conclude that

y(tn)− yn(0) = ∆̃(tn) = c̃hk+1
n

k∏

i=1

ξn,i =
hk+1
n

(k + 1)!

d(k+1)y(tn)

dt(k+1)

k∏

i=1

ξn,i +O(Hk+2). (5.32)

Now, we subtract (5.31) from (5.32) and we get

en := ỹn − yn(0) =

(
1− 1

αn0

)
hk+1
n

(k + 1)!

d(k+1)y(tn)

dt(k+1)

k∏

i=1

ξn,i +O(Hk+2). (5.33)

From (5.30) and (5.33) we get the desired local error estimator

LEn(k) =
1

αn0

1

(1− 1/αn0)
en +O(Hk+2), (5.34)

which is correct within O(Hk+2), if the past values are exactly known and the corrector

iteration is solved exactly. Generally, the past values are not known exactly.

Byrne and Hindmarsh state in [32]: “However, the errors in the past values can be taken

into account [49] if we assume that the global errors in y(tn)− yn at order k satisfy the

expansion

yn − y(tn) = dk(tn)h
k + dk+1(tn)h

k+1 +O(Hk+2), (5.35)

with functions dk and dk+1 which satisfy differential equations of the form

ḋk(t) = Fydk(t) + φk(t).

This assumption is valid for constant h [111] and, at least under some circumstances, for

nonconstant h [50]. Here φk(t) is the ”principal error function“, for which α
−1
n0
hk+1φk(tn)

is the principal term of the local error LEn(k).”

Therefore, to take the errors in the past values into account, instead of (5.34) Byrne and
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Hindmarsh [32] use

LEn(k) =
1

αn0

1

(1− 1/α̃n0)
en +O(Hk+2)

=
1

αn0

[
1 +

k∏

i=2

(
tn − tn−i
tn−1 − tn−i

)]−1

en +O(Hk+2)

(5.36)

with

α̃n0 := −
k∏

i=2

(
tn−1 − tn−i
tn − tn−i

)
, (5.37)

as estimate of the local error LEn(k), which is correct within O(Hk+2), if the global

errors in y(tn) − yn satisfy (5.35). We use the same estimator (5.36) of the local error

LEn(k), too.

For later purpose, we additionally introduce estimates of the local error LEn(k
′ − 1)

at order k′ − 1 and of the local error LEn(k
′ + 1) at order k′ + 1, for the case that the

current order of the method is k′.

First, we give an estimate of the local error LEn(k
′ − 1). Since the current order of

the method is k′ the last entry of the Nordiesk array zn gives an estimate of h
k′

n

k′!
dk

′

y(tn)

dtk′
,

i.e.
hk

′

n

k′!
dk

′

y(tn)

dtk′
≈ hk

′

n y
(k′)
n

k′!
.

By construction of zn, this estimate is correct within O(Hk′+1), if the nodes in (5.4)

are correct within O(Hk′+1), as stated in [32]. Therefore, from (5.30) an estimate of

LEn(k
′ − 1) is given by

LEn(k
′ − 1) =

∏k′−1
i=1 ξn,i

α
(k′−1)
n0

hk
′

n y
(k′)
n

k′!
+O(Hk′+1), (5.38)

where α
(k′−1)
n0 denotes the coefficient an0 of the classical linear multistep form in (5.6)

of order k′ − 1 (i.e. k=̂k′ − 1 in (5.6)).

Next, we give an estimate of the local error LEn(k
′ + 1). We start with

en = ĉnh
k′+1
n

d(k
′+1)y(tn)

dt(k′+1)
+O(Hk′+2), (5.39)
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where

ĉn :=

(
1− 1

α̃n0

) ∏k′

i=1 ξn,i
(k′ + 1)!

,

which is essentially the same as (5.33), but again corrected by taking the past values

into account, as above.

We again follow the ideas in [32] and consider a combination of en and en−1, such that

the combination is asymptotically O(Hk′+2). This combination has to be proportional

to en −Qnen−1, with

Qn :=
ĉn
ĉn−1

(
hn
hn−1

)k′+1

,

such that the combination is asymptotically O(Hk′+2). Now, if one neglects theO(Hk′+2)

terms in (5.39) and y(t) ∈ Ck′+2, one gets the relation

hk
′+2
n

d(k
′+2)y(tn)

dt(k′+2)
= hk

′+1
n

d(k
′+1)y(tn)

dt(k′+1)
− hk

′+1
n

d(k
′+1)y(tn−1)

dt(k′+1)
+O(Hk′+3)

= ĉ−1
n (en −Qnen−1) +O(Hk′+3).

(5.40)

Now, from (5.30) and (5.40) we get, as estimate of the local error LEn(k
′ + 1), the

following expression

LEn(k
′ + 1) =

ξn,k′+1

(k′ + 2)α
(k′+1)
n0

1

(1− 1/α̃n0)
(en −Qn, en−1) +O(Hk′+3), (5.41)

where α
(k′+1)
n0 denotes the coefficient an0 of the classical linear multistep form in (5.6)

of order k′ + 1 (i.e. k=̂k′ + 1 in (5.6)).

Remark. Since we have neglected the terms O(Hk′+2) in (5.39), the estimate in (5.41)

might be inaccurate, as also stated in [32]. But this estimate is only used for the estima-

tion of a new step size hn+1 for the next integration step, if the order at the (n + 1)-th

step changes from k′ → k′ + 1.

The order and step size selection strategy is presented in Section 5.1.6. In the following,

we give some notes on scaling and, as well, on the influence of the numerical accuracy

on the numerical behavior of the implemented BDF method.

5.1.4. Scaling and numerical accuracy principles of the implemented BDF

method

For the implemented BDF method, one integration step at order k is considered suc-

cessful, if the norm of the estimated error LEn(k) is below some user given threshold ǫ,
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i.e.

‖LEn(k)‖Wn ≤ ǫ. (5.42)

Since the components of the solution might have different orders of magnitude, it is

common [32, 86, 29, 94, 16, 62], to use a weighted norm ‖ · ‖Wn in (5.42).

Here, we use the weighted norm

‖LEn(k)‖Wn :=
1

m

√√√√
m∑

i=1

LEin(k)

W i
n

,

where LEin(k) denotes the i-th component of the estimated error LEn(k) and W i
n, for

i ∈ {1, . . . ,m}, are scaling factors.

The user can choose between two different scaling factors. The first one, also used, e.g.

in [29, 62], is given by

W̃ i
n := |yin|+

atoli

ǫ
, (5.43)

and the second one is given by

W
i
n := max{|yin|,W

i
n−1, atol

i}, (5.44)

where atol ∈ Rm>0, with

Rm>0 :=
{
(x1, . . . , xm)

T |R ∋ xi > 0∀i ∈ {1, . . . ,m}
}
,

is given by the user and i ∈ {1, . . . ,m}. The second one is called “new Deuflhard-

scaling” [16]. We use ‖ · ‖
W̃n

for the calculation of the results in Section 8.

In [101], Shampine investigated the influence of limiting precision in differential equation

solvers. He points out, that if

ǫ < ur‖yn‖Wn ,

then the user given threshold for the acceptance of the local error LEn(k) is less than

a unit roundoff of ‖yn‖Wn , where ur is the unit roundoff of the machine. Therefore, the

user has clearly asked for too much accuracy. Here, the strategy to tackle this situation,

is to relax the user given threshold by

ǫrelax := max{ǫ, 2ur‖yn‖} (5.45)

and to demand

‖LEn(k)‖Wn ≤ ǫrelax (5.46)
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in place of (5.42), for the acceptance of the step.

5.1.5. Calculation of the corrector vector en

For the calculation of the correct vector en we start with the first column of relation

(5.17), just as Byrne and Hindmarsh in [32], i.e.

hny
(1)
n = hny

(1)
n(0)

+ enl
1
n = hny

(1)
n(0)

+ (yn − yn(0))l
1
n. (5.47)

Since by definition of zn, y
(1)
n = ẏn and therefore, (5.47) is equivalent to

hnẏn = hny
(1)
n(0) + (yn − yn(0))l

1
n, (5.48)

with

ẏn = F (yn, tn, p0),

according to (5.6).

Since, by construction, (5.48) is equivalent to the classical linear multistep form in (5.6),

we can identify l1n with

l1n = −αn0 .

Therefore, we can deduce with (5.18) that

α(k−1)
n0

= −
k−1∑

i=1

1

ξn,i

and

α(k+1)
n0

= −
k+1∑

i=1

1

ξn,i
.

This is helpful, for the calculation of (5.38) and (5.41).

For the calculation of the vector yn, we define the nonlinear mapping Gn : Rm → Rm by

Gn(u) = (u− yn(0))−
hn
l1n

(
F (u, tn, p0)− y

(1)
n(0)

)
. (5.49)

Obviously, the vector of interest yn is a root of Gn(u), i.e. Gn(yn) = 0.

For the calculation of this root of Gn(u), we use a simplified Newton method, i.e. the

iteration scheme, we use, for the j+1-th approximation un,j+1, of this root of G
n(u), is

given by

un,j+1 = un,j +∆un,j, (5.50)
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where ∆un,j is given by

∆un,j = −P̃−1
n (un,j)G

n(un,j) (5.51)

and P̃−1
n (u) denotes an approximation to the inverse of the Jacobian Gnu(u). Here, the

approximation P̃−1
n (u) is kept constant during one pass of the simplified Newton method,

i.e. P̃−1
n (uj) = P̃−1

n and possibly on successive ones.

We use πn−1,k(tn), i.e. yn(0), as start value un,0 for this simplified Newton method.

Instead of calculating ∆un,j by (5.51), we solve the linear equation

P̃n∆un,j = −Gn(un,j), (5.52)

using LU decomposition of the matrix P̃n. For this task, we use the software package

ATLAS [130, 131], which provides a tuned interface to LAPACK [6, 5] and BLAS [72, 48].

Especially, ATLAS provides the possibility to store the LU decomposition of the matrix

P̃n and to reuse it for the solution of successive linear equations, if no more than the

right hand side of a successive linear equation is changing.

The modified Newton method obeys the following local contraction theorem as given in

[27] by Bock.

Theorem 16 (Local contraction, Theorem 3.1.44 in [27] (modified)). Let G : D → Rm

be a continuously differentiable function, where D is an open subset of Rm. Let P̃−1

denote an approximation to the inverse of the Jacobian Gu(u0) at the start value u0 ∈ D.

In addition, for all τ ∈ [0, 1] and for all u, u + ∆u ∈ D, with ∆u := −P̃−1G(u), there

exist bounds ω <∞ and κ < 1, such that

‖P̃−1 (Gu(u+ τ∆u)−Gu(u))∆u‖ ≤ ωτ‖∆u‖2 (5.53)

and

‖P̃−1R(u)‖ ≤ κ‖∆u‖, (5.54)

with

R(u) := G(u) +Gu(u)∆u,

where R(u) is called the residuum.

Then, if the start value u0 satisfies

δ0 :=
ω‖∆u0‖

2
+ κ < 1 (5.55)
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and

D0 := B(u0,
‖∆u0‖
1− δ0

) ⊂ D, (5.56)

it follows that the iterates uj+1 = uj+∆uj are well defined and stay in D0 and the series

{uj}∞j=0 converges to a fixed point, denoted by u∗ ∈ D0, with ∆u∗ = −P̃−1G(u∗) = 0.

Furthermore, it holds, that an a priori estimate is given by

‖uj − u∗‖ ≤ δj0
‖∆u0‖
1− δ0

(5.57)

and the convergence is linear with

‖∆uj‖ ≤
(
ω‖∆uj−1‖

2
+ κ

)
‖∆uj−1‖ =: δj‖∆uj−1‖.

Proof. By assumption u0, u1 ∈ D0. Now assume that uj+1 ∈ D0, then it holds that

‖∆uj+1‖ = ‖P̃−1 (G(uj+1)−G(uj)−Gu(uj)∆uj) + P̃−1R(uj)‖

= ‖P̃−1

∫ 1

0
(Gu(uj + τ∆uj)−Gu(uj))∆ujdτ + P̃−1R(uj)‖

≤
∫ 1

0
τω‖∆uj‖2dτ + κ‖∆uj‖ =

(
ω‖∆uj‖

2
+ κ

)
‖∆uj‖ =: δj‖∆uj‖.

(5.58)

It should be noted that δj+1 ≤ δj , which can be seen from (5.55) and (5.58).

It follows that

‖uj+2 − u0‖ ≤
j+1∑

i=0

‖∆uj‖ ≤ ‖∆u0‖
j+1∑

i=0

δi0 <
‖∆u0‖
1− δ0

and therefore, uj+2 ∈ D0.

It also holds that

‖uj+p − uj‖ ≤
p−1∑

i=0

‖∆uj+i‖ < δj0
‖∆u0‖
1− δ0

and thus {uj}∞j=0 is a Cauchy sequence and converges in D0, where u
∗ denotes the limit

point.

It remains to show that u∗ is a fixed point.

First, by assumption (5.54) and

lim
j→∞

‖∆uj‖ = 0, (5.59)
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it follows that

lim
j→∞

‖P̃−1R(uj)‖ = 0.

Second, the residuum R(u) is a composition of continuous functions and thus continuous

itself. Therefore, by definition of R(u) and (5.59), it follows that R(u∗) = G(u∗).

Finally, P̃−1R(uj) is continuous, too. Thus,

lim
j→∞

‖P̃−1R(uj)‖ = ‖P̃−1G(u∗)‖ = 0

and therefore, u∗ is fixed point, which completes the proof.

In [14, 80], it is noted that:

• The Lipschitz constant ω measures the nonlinearity of G(u), since for given P̃−1,

(5.53) can be replaced by the Lipschitz condition

‖Gu(u′′)−Gu(u
′)‖ ≤ γ‖u′′ − u′‖,

where u′, u′′ ∈ D. Then γ gives an overestimate of ω, with ω ≤ ‖P̃−1‖γ.

• The condition (5.54) can be replaced by

‖1− P̃−1Gu(u)‖operator ≤ κ < 1, for all u ∈ D,

where ‖ · ‖operator is the operator norm, induced by the norm ‖ · ‖. Thus, κ gives

an measure for the quality of the approximate inverse P̃−1.

As well known, the problem to determine a root of a nonlinear function G(u), as above,

is affine invariant. This means, for the nonlinear equation of interest Gn(u), that, for

given non singular m×m matrices Dn
L and Dn

R, the problem of finding a root of Gn(u)

is equivalent to problem

Ĝn(û) := Dn
LG

n(Dn
Rû) = 0, with u = Dn

Rû, (5.60)

since

Gn(u) = 0 ⇔ Dn
LG

n(u) = 0 ⇔ Ĝn(û) = 0, with u = Dn
Rû.

Additionally, the simplified Newton method in (5.50) and (5.50) is affine invariant, as

well. Therefore, we are free to solve Ĝn(û) = 0, for given non singular matrices Dn
L and

Dn
R, instead of (5.50) and then recover u from u = Dn

Rû. For the simplified Newton
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method this means, that now, instead of (5.52), we have to solve the linear equation

P̂n∆ûn,j = −Ĝn(ûn,j), (5.61)

where

P̂n := Dn
LP̃nD

n
R,

and

Ĝn(û) := Dn
LG

n(Dn
Rû).

As stated in [27], the assumptions in Theorem 16 and the statement itself are invariant

against scaling with a non singular matrix Dn
L. Particularly, the constants ω and κ are

invariant against a scaling with Dn
L, too. The effect of a scaling with a non singular

matrix Dn
R is clarified further below.

In [80], Minh gives a brief summary on the error analysis in the context of solving linear

equations and in the context of Newton-like methods. Based on this error analysis, he

investigates a suitable choosing of the matrices Dn
L and Dn

R for application in a BDF

method.

Concretely, he considers the linear equation Pu = b with square matrix P , right-hand

side b and solution vector u.

Then, for a perturbed linear equation, where the matrix P is perturbed by ∆P and the

right-hand side b is perturbed by ∆b, the solution u gets perturbed by ∆u, such that

(P +∆P )(u+∆u) = b+∆b,

holds.

For the case
(
κ(P )

‖∆P‖operator
‖P‖operator

)
< 1, he gives an upper bound on the relative error

‖∆u‖/‖u‖ by

‖∆u‖
‖u‖ ≤ κ(P )

1−
(
κ(P )

‖∆P‖operator
‖P‖operator

)
(‖∆b‖

‖b‖
‖∆P‖operator
‖P‖operator

)
, (5.62)

where κ(P ) is the condition number of P , given by

κ(P ) :=
‖P‖operator

‖P−1‖operator
.

Although the bound in (5.62) is very pessimistic, one clearly sees that a suitable scaling

minimizes the condition number κ(P ). Minh notes that an optimal scaling implicitly

depends on the solution u of the linear equation itself, as also noted in [61]. This is

obvioulsy computational inpracticable for a BDF method.
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Therefore, on heuristic base, we use a similar strategy as presented by Minh in [80]. This

is, we use diagonal matrices Dn
L andDn

R to scale rows and columns of the matrix P̃n, if P̂n

has to be refactored by LU decomposition at integration step n, to safe computational

time.

First, it should be noted, that, due to condition u = Dn
Rû, the relative error

‖∆û‖
‖û‖ =

‖ (Dn
R)

−1∆u‖
‖
(
Dn

R

)−1
u‖

is measured in a different norm. For the implemented method the norm ‖·‖ corresponds

to

‖u‖ =
1

m

√√√√
m∑

i=1

u2.

It is desirable that the norm ‖DR−1u‖ of u is “compatible” with the norm presented in

Section 5.1.4. On the other hand, no additional error should be introduced by the row

and column scaling of P̃n.

Therefore, like Minh [80], we use integer powers of machine base as elements for the

scaling matrices Dn
L and Dn

R.

Minh states [80]: “To avoid scaling roundoff error, integer powers of machine base are

chosen for elements of Dn
L and Dn

R. In fact, if a scaling number has such a form,

then the mantissa of its floating-point representation is exactly 1, i.e., there arises no

roundoff error, when converting the original scaling number into its floating-point form.

Moreover, the multiplication is faster because, to multiply a scaling number with a matrix

entry, one has only to add two integers, namely the exponents of the scaling number and

of the entry matrix.”

Functions, recommended by the IEEE-754 standard for floating-point arithmetic [39],

are scalb for multiplying 2n and logb for computing the logarithm of base 2, which we

use and which are used by Minh [80], as well.

Similar to [80], we have chosen Dn
R to be

Dn
R :=




2α
n,1
col 0 . . . 0

0 2α
n,2
col

. . .
...

...
. . .

. . . 0

0 . . . 0 2α
n,m

col



, where αn,icol :=

[
log2(Ŵ

i
n)
]
, (5.63)

for i ∈ {1, . . . ,m} and Ŵ i
n is given as in (5.43) or (5.44) but yin is replaced by yn(0),

since yin is not available yet and (5.63) is still “compatible” with the norm presented in

Section 5.1.4. Here, [x] denotes the closest integer to x ∈ R.
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Like [80], we have chosen Dn
L to be

Dn
L :=




2α
n,1
row 0 . . . 0

0 2α
n,2
row

. . .
...

...
. . .

. . . 0

0 . . . 0 2α
n,m
row



, where αn,irow := −


log2




m∑

j=1

|(P̃nDn
R)
i,j|





+

,

(5.64)

for i ∈ {1, . . . ,m} and where [x]+ denotes the integer part of x ∈ R, if x ≤ 0, and

otherwise the integer part of x+ 1. Therefore, [ · ]+ defines a “round up” operator.

It should be noted, that, after scaling P̃n with Dn
L and Dn

R, P̂n is row equilibrated.

Since in [121] it is shown, that, for given square matrix P and for the condition number

κ(S)(P ) defined as

κ(S)(P ) =
‖P‖∞

glbpq(P )
,

with

glbpq(P ) := min
x 6=0

‖Ax‖p
‖x‖q

,

the condition number of Dn
LP , namely κ(S)(Dn

LP ), is minimal, if all rows of the matrix

Dn
LP have the same 1-norm, this seems an effective strategy. Minh [80] notes that he

could reduce, by this approach, condition numbers in range 1014 − 1018 to in range

106 − 108.

As stopping criterion for the simplified Newton method we either demand that the

iterates have converged or, that ‖∆ûj‖, with j < NNewton, does not interfere with the

local error test in (5.42).

We regard the simplified Newton method to be converged, if, within NNewton iterates, a

reduction of ‖ûn,NNewton
− û∗n‖ by a given factor γNewton is achieved, i.e.

‖ûn,NNewton
− û∗n‖ ≤ γNewton‖ûn,0 − û∗n‖

and for each iteration it holds that

δn,j ≤ (γNewton)
1

NNewton := δ̂C for j ∈ {1, . . . , NNewton − 1},

where δn,j is approximated by

δn,j =
∆ûn,j
∆ûn,j−1

and û∗n denotes an exact solution of the nonlinear equation in (5.60).

On the other hand, we regard, that a ‖∆ûn,j‖, with j < NNewton, does not interfere with
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the local error test, if

‖∆ûn,j‖ ≤ ǫNewton

∣∣∣∣
1

αn0

1

(1− 1/α̃n0)

∣∣∣∣
−1

ǫ, (5.65)

where ǫNewton is a user given threshold with ǫNewton < 1. Here, we use ǫNewton = 0.01

for the calculation of the numerical results in Section 8.

If a ‖∆ûn,j‖, with j < NNewton, does not interfere with the local error test, we stop the

simplified Newton method (compare (5.34), (5.42) and consider the scaling matrix Dn
R

in (5.63)).

Obviously, (5.65) can only be achived if

δn,j ≤




ǫNewton

∣∣∣∣ 1
αn0

1

(1−1/α̃n0)

∣∣∣∣
−1

ǫ

‖∆ûn,0‖




1
NNewton−1

:= δ̂n,I for j ∈ {1, . . . , NNewton − 1}.

Therefore, if

δj > max{δ̂C, δ̂n,I},

or no convergence of the simplified Newton method can be achieved within NNewton, we

consider the simplified Newton method to be failed.

Further, if

‖∆ûn,j‖ < ur‖ûn,j+1‖,

this is, ‖∆ûn,j‖ is less than a unit roundoff of ‖ûn,j+1‖, where, again, ur is the unit

roundoff of the machine, the user has clearly asked for too much accuracy [101].

Therefore, we also stop the simplified Newton method in the j-th iteration , if

‖∆ûn,j‖ ≤ 2ur‖ûn,j+1‖. (5.66)

There are mainly two reasons that the simplified Newton method fails.

First, the approximation P̂n to the Jacobian Ĝû(ûn,0) might be too insufficient in view

of assumption (5.54) and second, the start value ûn,0 might be to bad.

As noted above, P̂n is kept for successive intgeration steps as long as convergence by the

simplified Newton method can be achieved. Therefore, if the simplified Newton method

fails, we first update P̂n.

The exact Jacobian of Gn(yn(0)) is given by

Pn(yn(0)) = 1− hn
l1n
Fy(ynn(0)

, tn, p0). (5.67)
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Since the computation of the Jacobian Fy(yn(0), tn, p0) is more likely to be computational

expensive than the LU decomposition of P̂n, we store the Jacobian F
n
y = Fy(yn(0), tn, p0)

for successive integration steps, where Fny denotes the stored Jacobian. Then, if an

update of P̂n has to be performed, we first calculate (5.67) with an former stored Jacobian

Fny = Fn−1
y instead of Fy(yn(0), tn, p0) but current coefficients hn and l1n. Now, we rescale

P̃n with updated scaling matrices Dn
L and Dn

R and finally restart the simplified Newton

method.

If, again, the simplified Newton method does not converge, we recalculate P̃n with an

updated Jacobian Fy(yn(0), tn, p0), too.

If still convergence can not be achieved, the step size of the BDF method, at the current

integration step, is reduced by a factor of 1/2. The procedure of step size change is,

discussed in Section 5.1.6.

In summary, we have the following algorithm for the calculation of the corrector vector

en.

Algorithm 9.

Data: Stored LU decomposition of P̂n−1, stored Jacobian Fn−1
y , stored scaling matrices

Dn−1
L and Dn−1

R , step size hn, coefficient l1n, parameter vector p0, current integration

time tn, user given error threshold ǫ, user given threshold ǫNewton, user given factor

γNewton, coefficient αn0 = −l1n, coefficient α̃n0 , start value yn(0) = πn−1,k(tn), number of

allowed Newton iterations NNewton.

Step 0. If no stored data is available (if the integration starts) goto Step 2. Else

goto Step 1.

Step 1. Set P̂n := P̂n−1, set Fny = Fn−1
y , set Dn

R = Dn−1
R , set Dn

R = Dn−1
R and

got Step 4.

Step 2. Set Fny := Fy(ynn(0)
, tn, p0).

Step 3. Set

P̃n = 1− hn
l1n
Fny .

Calculate and store scaling matrices Dn
L and Dn

R according to (5.63) and (5.64). Set

P̂n = Dn
LP̃nD

n
R.

Calculate and store LU decomposition of P̂n.
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Step 4. Set j = 0, set

ûn,0 = (Dn
R)

−1 yn(0).

Step 5. Calculate ∆ûn,j according to (5.61) using the stored LU decomposition of P̂n,

set

ûn,j+1 = ûn,j +∆ûn,j

and set j = j + 1.

Step 6. If ‖∆ûn,j−1‖ < ur‖ûn,j‖ or

‖∆ûn,j−1‖ ≤ ǫNewton

∣∣∣∣
1

αn0

1

(1− 1/α̃n0)

∣∣∣∣
−1

ǫ

consider the simplified Newton method to be successful with en = Dn
Rûn,j and stop.

Step 7. If j > 1 and if

δn,j−1 > max{δ̂C , δ̂n,I},

then,

• if Step 3 has not been performed, goto Step 3,

• else, if Step 2 has not been performed, goto Step 2,

• if Step 2 has been performed, set en = Dn
Rûn,j, consider the Newton method to be

failed and stop.

Step 8. If j < NNewton goto Step 5, else consider the simplified Newton method to be

successful with en = Dn
Rûn,j and stop.

In the next section we present strategies for the selection of step size and order of the

implemented BDF method.

5.1.6. Strategies for the selection of step size and order of the BDF method

If the error test in (5.45) or the convergence of the simplified Newton method in Section

5.1.5 fails, the step size hn, of the current integration step n, has to be reduced.

While the step size hn gets reduced by a factor of 0.5, if the simplified Newton method

in Section 5.1.5 fails, a new step size h′n is estimated for the case that the error test in

(5.45) is not fulfilled, for the current integration step n at order k. The new step size
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has to be estimated with the the goal that the new step size h′n successfully passes the

local error test in (5.45).

On the other hand, if a step is accepted a new step size hn+1 gets estimated for the

successive integration step n+1. Again, this is based on the goal that the new step size

hn+1 successfully passes the local error test in (5.45).

The estimators for new step sizes h′n or hn+1, respectively, are based on the asymptotic

behavior of the local error formula (5.30). In many codes like EPISODE [32], DASSL [86]

or CVODE [62] the estimate is based on the assumption that the former steps have been

taken at same step size h, which leads to the step size factor estimate

θnclassical(k) :=

(
ǫrelax

‖LEn(k)‖Wn

) 1
k+1

, (5.68)

for the current integration order k of the BDF method at the n-th integration step. This

estimate is used both for the reduction of the step size in case of a failure of the error

test in (5.45) and for the estimation of a new step size hn+1 for the successive intgeration

step n+ 1.

In [102], Shampine and Bogacki investigated the behavior of the local error LEn(k) on

uniform and variable grids.

They showed that the behavior of the local error LEn(k) on uniform grids differs from

the behavior on variable ones and therefore (5.68), based on the assumption that the

former steps have been taken at same step size h, might not be appropriate for all cases.

In [36], Calvo and Rández suggested new heuristic factors, which are based on the

behavior of the local error LEn(k) on variable grids, namely θnrejected(k), given by

θnrejected(k) :=





√
(µn)

1
2
+ 1

k+1 if 0.05 ≤ µn ≤ 1

νn (µn)
1

k+1 + (1− νn) (µn)
1
2 if µn < 0.05,

(5.69)

for the calculation of a new step size

h′n = θrejected(k)hn. (5.70)

The factor µn is defined by

µn :=
csafetyǫrelax
‖LEn(k)‖Wn

,
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where csafety is some safety factor, which is set to csafety = 0.9 for the calculation of the

numerical results in Section 8 and

νn := min








k∏
i=2

ξn,i

l1n
k∏
i=2

(ξn,i − 1)




1
2

(µn)
k−1
2k+2 , 1




.

Second, θnewStep(k) is given by

θnewStep(k) :=




∑k
i=1 1/i∑k

i=1 1/ξn,i

k∏
i=2

ξn,i

k!




1
(k+1)

(µn)
1

(k+1) ,

for the estimation of a new step size

hn+1 = θnewStep(k)hn, (5.71)

after a step acceptance at integration step n.

The factor θnewStep(k) is not used directly for the estimation of a new step size hn+1 in

(5.71), but the factor

θ̂newStep(k) := min{θnewStep(k), θ
max
newStep(k)}, (5.72)

where θmax
newStep(k) gives an upper bound on the factor θnewStep(k) for the k-th order BDF

method.

This bounds are neccessary such that the k-th order BDF method retains zero stable, an

important prerequisite for the convergence of the BDF method (see e.g. Theorem 5.8 in

[58]). Several authors [109, 56, 34, 33, 35] have constructed such bounds in the context

of BDF methods and in the context of linear multistep methods, as well.

In [33], Calvo et al. determined upper bounds such that any combination of BDF fo-

rumlas with k ≤ kmax
order retains zero stable. They have excluded the case k ≤ kmax

order = 6,

since as they state:

“(. . . ) it has been shown by Philippe [87] that even on a uniform grid zero stability

cannot hold if any combination of BDF formulas with m ≤ 6 is allowed, but for arbi-

trary combinations of BDF formulas with m ≤ 5 the stability is maintained.”

Their results are given in Table 5.1. It should be noted that there might exist looser

101



5 — Calculating numerical solutions of ODEs and Sensitivity Generation for ODEs

kmax
order = 3 kmax

order = 4 kmax
order = 5

θmax
newStep(2) = 2.391 2.137 2.117

θmax
newStep(3) = 1.476 1.321 1.255

θmax
newStep(4) = – 1.101 1.088

θmax
newStep(5) = – – 0.964

Table 5.1.: Upper bounds on θmax
newStep(k), for k ∈ {1, . . . , 5} given by Calvo et al. in [33]

bounds, such that any combination of BDF forumlas with k ≤ kmax
order retains zero stable,

too, and therefore these bounds are too pessimistic.

In [35], Calvo et al. introduce the concept of A0-stability. There, for the scalar test

equation y = λy, (5.6) is equivalently rewritten in the matrix form

Un = ΩnUn−1,

where Un = (yn, yn−1, . . . , yn−k+1)
T ∈ R and Ωn is the so called propagation matrix

given by

Ωijn =

{
− αnj

αn0−zn
if i = 1,

δi,j+1 if i ≤ 2,

where zn = hnλ and δi,j is the Kronecker delta. Then, since the coefficients αni
are

rational functions of the step size ratios hi/hi−1 for i ∈ {n − k + 2, . . . , n}, Calvo et al.

determine bounds on the step size ratios hi/hi−1, such that the spectral radius of the

propagation matrix is ≤ 1, here with zn = 0, associated to zero stability.

They state [35]: “Although the stability derived from the spectral radius condition does

not guarantee boundedness of products of propagation matrices, it turns out to be a re-

alistic criterion to compare the stability of different methods”.

The resulting bounds θmax
newStep(k) on the factors θnewStep(k) for k ∈ {1, . . . , 5}, such that

the propagation matrix has a spectral radius smaller than one, are given in Tabel 5.2.

θmax
newStep(2) = 2.414 θmax

newStep(3) = 1.618

θmax
newStep(4) = 1.280 θmax

newStep(5) = 1.127

Table 5.2.: Upper bounds on θmax
newStep(k), for k ∈ {1, . . . , 5} given by Calvo et al. in [35]
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Again the order k = 6 is excluded in [35].

For the implemented BDF method we use the heuristic factors (5.69) and (5.72) together

with the upper bounds given in Tabel 5.2 instead of (5.68). Since we additionally allow

for the 6−th order BDF method, we set the additional upper bound θmax
newStep(6) = 1.064

in the implemented BDF method, which works well in practice for the examples in

Chapter 8.

According to [101], if h′n < urtn−1, where again ur is the unit roundoff of the machine,

then

tn−1 ≡ tn

in terms of numerical accuracy. Particularly, this means that the integration gets stalled.

Therefore, if

h′n < 4urtn−1, (5.73)

where h′n is calculated with (5.70) we set

h′n = 4urtn−1 (5.74)

and accept the step, if (5.46) might not be fulfilled. Of course, this mechanism is also

implemented for the step size reduction due to a failure of the simplified Newton method.

With the same thoughts as above, the estimate of the next step size hn+1 is modfied by

hn+1 = max{θ̂newStep(k)hn, 4urtn}.

Next, we discuss the adaption of the Nordiesk array zn(hn) if the step size hn changes

by a factor of θ, i.e

hn → hnθ. (5.75)

Obviously the desired Nordsiek array zn(hnθ) is given by

zn(hnθ) :=
(
yn θ

[
hny

(1)
n

]
θ2
[
h2ny

(2)
n /2

]
. . . θk

[
hkny

(k)
n /k!

])
,

compare (5.9). Therefore, zn(hnθ) can be calculated by

zn(hnθ) = zn(hn)~θ,

where ~θ denotes the vector
~θ =

(
1 θ1 . . . θk

)T
.
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If, for k + 1 successive integration steps at order k of the BDF method, the algorithm

passes without any step failures due to a failure in (5.46) or due to a failor of the

simplified Newton method, we allow an order change from k → k − 1 or k → k + 1 of

the BDF method.

For that, using the local error formulas in (5.38) and (5.41) we first estimate the step

sizes

hn+1(k) := max{θ̂newStep(k)hn, 4urtn},

hn+1(k − 1) := max{θ̂newStep(k − 1)hn, 4urtn}

and

hn+1(k + 1) := max{θ̂newStep(k + 1)hn, 4urtn}

and choose the consecutive order k′ for the next integration step n + 1 of the BDF

method, such that the next step size hn+1 is maximal, i.e.

hn+1 := max{hn+1(k), hn+1(k − 1), hn+1(k + 1)},

with corresponding order k′. If hn+1 = 4urtn, the order is retained.

If the order of of the BDF method changes from k → k′ at finished integration step n,

the current Nordiesk array has to be modfied, i.e. zn(k) → zn(k
′).

For the case k′ = k − 1, the Nordiesk array zn(k) represents the polynomial πn,k(t) and

zn(k
′) represents the polynomial πn,k−1(t), respectively. Again, as presented in [32], we

define a difference polynomial, here ∆↓
n(t) := πn,k(t) − πn,k−1(t) and therefore ∆↓

n(t)

satisfies

∆↓
n(tn−i) = 0 for all i ∈ {0, 1, . . . , k − 2} and ∆̇↓

n(tn) = 0.

Additionally, the leading coefficient of ∆↓
n(t) has to be the same as the leading coefficient

of πn,k(t), i.e. y
(k)
n /k! and therefore

∆↓
n(t) = (t− tn)

2

[
k−1∏

i=1

(t− tn−i)

]
y
(k)
n

k!
. (5.76)

Again, we perform a change of variables by (5.13) in (5.76) and thus

∆↓
n(t) = ∆↓

n(tn + hnxn) = dn(xn)h
k
n

y
(k)
n

k!
, with dn(x) := x2

k−2∏

i=1

(x+ ξn,i).
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Again, consider the coefficients din of dn(x), i.e.

dn(x) =

k∑

i=0

dinx
i.

With similar thoughts as in (5.16), one can easily see, that dinh
k
ny

(k)
n /k! has to be sub-

tracted from column i of the Nordiesk array zn(k) for i ∈ {2, . . . k − 1} to yield zn(k
′),

whereby column k is deleted in zn(k
′).

The coefficients din for i ∈ {2, . . . k − 1} are calculated by Algorithm 10, which can be

easily verified by induction.

Algorithm 10.

Data: Order of BDF method k, Auxiliar quantities ξn,q for q ∈ {1, . . . , k}.

Step 0. Set d0n = 0. Set d1n = 0 Set i = 1.

Step 1. Set i = i+ 1. If i > k stop.

Step 2. Set j = i− 1. Set

din = 1.

Step 3. If j < 2 goto Step 1. Else set

djn = dj−1
n + djnξn,i−2,

set j = j − 1 and goto Step 3.

On the other hand, if k′ = k+1, zn(k
′) corresponds to a polynomial πn,k+1(t) of degree

k + 1 or less, such that

πtn−i
(t) = yn−i for all i ∈ {0, 1, . . . , k} and π̇n,k+1(tn) = ẏn. (5.77)

Obviously, in view of the construction strategy in (5.4) and (5.5), πn,k(t) already satisfies

the interpolation conditions in (5.77) and hence πn,k(t) = πn,k+1(t). Therefore, as Byrne

and Hindmarsh state [32]: “Thus columns 0 to k of zn(k) need no adjustment, and

column k + 1 of zn(k
′) is 0”.

If both the order and the step size have to be changed, then first the order ist changed

and the step size is changed afterwards.
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5.1.7. Initilization of Nordsieck arrays and estimation of start step size h1

The implemented BDF method is initialized as one step method, i.e. the order of the

initial step n = 1 is k = 1.

The start Nordiesk array z0 is initialized as

z0 :=
(
yI hinitF (yI, t

init, p0)
)
, (5.78)

where hinit is estimated with the goal, that y1 satisfies the local error test in (5.46).

For that, with similar thoughts as presented in [29], based on the asymptotic behavior

of the local error given by (5.30) we demand, that

∥∥∥∥
h2init
2
ÿ(tinit)

∥∥∥∥
Wn

= ǫRSE, (5.79)

with

ÿ(t′) :=
d2y(t)

dt2

∣∣∣∣
t=t′

,

and RSE is some user given constant 0 < RSE ≤ 1. We have chosen RSE = 1, which

worked well for the examples in Section 8. The constant ǫ is the user given threshold

introduced in Section 5.1.4.

If yI is the zero vector, then the estimate of the initial step size h1 fails. In this case we

set h1 = hmax, where hmax is some user given maximal step size. For the examples in

Section 8 we always set hmax to be hmax = 1000, which worked well for these cases.

5.1.8. Calculation of the solution vector at tend

If, for the first time, the n-th integration step, is accepted with tn ≥ tend(1 − 2ur),

where, again, ur is the unit roundoff of the machine at order k of the BDF method, the

integration procedure is stopped and the desired solution vector ytend at time point tend

is calculated by

ytend =

k∑

i=0

(
ytend − tn

hn

)i [
hiny

(i)
n /i!

]
, (5.80)

using the entries of the current Nordsieck array zn.

5.1.9. Algorithmic scheme of the implemented BDF method

In this section, we present the overall algorithmic scheme of the implemented BDF

method in Algorithm 11.
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Algorithm 11.

Data: Right hand side function F : Rm×R×Rp → Rm, initial time tinit, end time tend,

start vector yI ∈ Rm, parameter vector p0 ∈ Rp, maximum number of integration steps

Nmax, maximum number of allowed simplified Newton steps, user given error threshold

ǫ, user given Newton accuracy ǫNewton, user given Newton factor γNewton, user given

weight vector atol ∈ Rm+ , maximum step size hmax.

Step 0. Set n = 1, set nSO = 1. Set initial Nordsiek array z0 according to (5.78).

Set h1 according to (5.79). Set t0 = tinit and set t1 = tinit + h1. Set order k = 1.

Step 1. Calculate predictor Nordsiek array zn(0) according to (5.8).

Step 2. Calculate the coefficients ξn,i for i ∈ {1, . . . , k}. Calculate the coefficient vector

ln according to Algorithm 8. Set αn0 = −l1n. Calculate α̃n0 according to (5.37).

Step 3. Calculate en with Algorithm 9. If Algorithm 9 reports a failure and hn > 4urtn−1

goto Step 4, else goto Step 5.

Step 4. Set nSO = 0. If 0.5hn > 4urtn−1, set hn = 0.5hn, set tn = tn−1 + hn,

rescale zn−1 according to (5.75) with θ = 0.5, else set θ = 4urtn−1/hn, set hn = 4urtn−1,

set tn = tn−1 + hn, rescale zn−1 according to (5.75) with θ. Goto Step 1 and force in

Step 3 a recalculation of P̂n and scaling matrices Dn
L and Dn

R using an updated Jacobian

Fny .

Step 5. Calculate vector Wn according to (5.43) or (5.44) (defined by user), calcu-

late local error vector LEn(k) according to (5.36) calculate ǫrelax according to (5.45).

Step 6. If

‖LEn(k)‖Wn ≤ ǫrelax

or hn ≤ 4urtn−1, then goto Step 8, else goto Step 7.

Step 7. Set nSO = 0. Calculate

θ = max{θnrejected(k), 4urtn−1/hn},

where θnrejected(k) is calculated according to (5.69). Set hn = θhn, set tn = tn−1 + hn,

rescale zn−1 according to (5.75) with θ and goto Step 1.
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Step 8. Set nSO = nSO + 1. Calculate the Nordsiek array zn according to (5.17).

If

tn ≥ tend(1− 2ur)

goto Step 9, else goto Step 10.

Step 9. Calculate ytend according to (5.80) and stop.

Step 10. If nSO < k + 1, set n = n+ 1, set

hn = min{max{θ̂newStep(k)hn−1, 4urtn−1}, hmax},

set θ = hn/hn−1, tn = tn−1 + hn, rescale zn−1 according to (5.75) with θ and goto Step

1, else goto Step 11.

Step 11. Calculate

hn+1(k) := max{θ̂newStep(k)hn, 4urtn},

hn+1(k − 1) := max{θ̂newStep(k − 1)hn, 4urtn}

and

hn+1(k + 1) := max{θ̂newStep(k + 1)hn, 4urtn}.

Calculate

k′ = arg max
k′′∈{k−1,k,k+1}

hn(k
′′).

If hn+1(k
′) = hn+1(k), set hn+1 = hn+1(k), set n = n + 1, set θ = hn/hn−1, tn =

tn−1 + hn, rescale zn−1 according to (5.75) with θ and goto Step 1, else goto Step 12.

Step 12. Set nSO = 0. If hn+1(k
′) = hn+1(k − 1) calculate coefficient vector dn

using Algorithm 10, substract dinh
k
ny

(k)
n /k! from column i of the Nordiesk array zn for

i ∈ {2, . . . k−1}, delete column k of zn, set k = k−1, set hn+1 = hn+1(k), set n = n+1,

set θ = hn/hn−1, tn = tn−1 + hn, rescale zn−1 according to (5.75) with θ and goto Step

1, else goto Step 13.

Step 13. Augment zn by column k + 1 and set column k + 1 to the zero vector, set

k = k + 1, set hn+1 = hn+1(k), set n = n+ 1, set θ = hn/hn−1, tn = tn−1 + hn, rescale

zn−1 according to (5.75) with θ and goto Step 1.
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The algorithm is implemented in C++.

For the evaluation of the Jacobian and as well for the sensitivity generation, presented

in Section 5.2, we use the AD package CppAD (see Chapter 4).

Further, each summation contained in Algorithm 8 and Algorithm 10 is performed using

compensated summation [61].

5.2. Sensitivity Generation for Ordinary Differential Equations

Beside calculating an approximate solution ytend of IVP in (5.1) and (5.2) at time point

tend, we are interested in calculating approximations to (higher) derivatives of y(tend)

with respect to the initial condition yI ∈ Rm and possibly with respect to a parameter

vector p0 ∈ Rp, assuming F (y(t), t, p0), as given in (5.1), has as many partial derivatives

as needed.

In the following, these derivatives of y(tend) are called sensitivities , since these are the

solution of the corresponding forward sensitivity differential equation, e.g. given by

ṡyi(t) = Fy(y(t), t, p0)syi(t), (5.81)

with initial condition

syi(t
init) = ~ei,

for the first order sensitivities with respect to the i-th component of the initial condition

vector yI ∈ Rm, where ~ei represents the canonical unit vector with a 1 in the i-th

coordinate and 0’s elsewhere, for i ∈ {1, . . . ,m}.
The corresponding first order sensitivities with respect to the j-th component of the

parameter vector p0 ∈ Rp are given by

ṡpj(t) = Fy(y(t), t, p0)spj(t) +
∂F (y(t), t, p0)

∂pj
with spj(t

init) = 0, (5.82)

for j ∈ {1, . . . , p}.
For more theoretical details we refer to the textbooks, e.g. [58, 78].

In principal, for calculating the desired sensitivities, one can augment the initial IVP as

given in (5.1) and (5.2) by the desired set of sensitivity differential equations and then

solve the resulting system as a whole, using the integration method presented in Section

5.1.

This approach leads to a high dimensional nonlinear mapping Gn(u) in (5.49) for the

calculation of the corrector vector en at step n of the integration process. Thus, de-

pending on the set of desired sensitivities, the computation of a root of Gn(u) can get

computational very expensive.
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Therefore, for the calculation of the desired sensitivities, we follow the principal of In-

ternal Numerical Differentiation, developed by Bock [25, 26] and applied to a BDF in-

tegration method, based on a modified divided differences interpolation scheme [23, 24],

by Albersmeyer and Bock [2, 1].

In [1], Albersmeyer states: “The idea of Internal Numerical Differentiation (IND)

[25, 26] is to freeze the adaptive components of the integrator and to differentiate not

the whole adaptive integrator code, but the adaptively generated discretization scheme

(fixing the used step sizes, orders, iteration matrices and number of Newton-like itera-

tions). This scheme can be interpreted as a sequence of differentiable mappings, each

leading from the solution at one timepoint of the discretization grid via intermediate

values to the next. Hence it can be differentiated, for example, using finite differences,

the complex step method or the techniques of automatic differentiation. This leads to

numerical schemes for the computation of the sensitivities that are strongly intertwined

with the computation of the nominal solution”.

Since the numerical schemes for the computation of the sensitivities are strongly in-

tertwined with the computation of the nominal solution, information, generated by the

calculation of the nominal solution, can be efficiently reused for the calculation of the

sensitivities, as stated in [1] and therefore this approach offers a computational efficient

alternative.

Here, IND is applied to the intgration method presented in Section 5.1, which is based

on Nordsieck array polynomial interpolation, using the AD techniques as presented in

Chapter 4, which are based on Taylor Series propagation.

Again, as in in Chapter 4, this results in two basic operation modes for the sensitivity

generation. The first one, presented in Section 5.2.1, is based on the forward mode of

AD (Section 4.1), whereas the second one, presented in Section 5.2.2, is based on the

reverse mode of AD (Section 4.2).

Preliminary to the discussion of both operation modes, we first state the preconditions

on applying the principal of IND using the AD techniques of Chapter 4, which arise

from the implemented BDF method.

Since all adaptive components of the integration method are “frozen” in applying the

IND principle for the calculation of the desired sensitivities, we only have to consider,

after a successful calculation of a desired approximation ytend to y(tend) at tend, the

underlying elementary operation sequence. In other words, the performed arithmetic

operations whithin the integration process. Whereas, the discretization scheme is con-

sidered fixed as well as the order of the BDF method at each step n and the integration

steps n′ after which an order change is performed.

Because during the integration process nonlinear equations have to be solved, this non-
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linear equations have to be tackled by AD, too. As elaborate in Section 4.3, there are

in principal two ways in doing so.

For the first one (Section 4.3.1), the simplified Newton method (Algorithm 9) gets tack-

led by AD, directly. Again, thereby all adaptive elements of Algorithm 9 gets frozen,

i.e. the number of performed simplified Newton steps, the scaling matrices Dn
L, D

n
R and

the scaled approximation to the Jacobian P̂n at each integration step n, to stick to the

IND principle.

For the second one (Section 4.3.2) the nonlinear equation is treated as an elementary

AD operation itself.

In general, during the calculation of the desired approximate solution, ytend , the underly-

ing elementary operation sequence for integration has to be stored. Here, the operation

sequence gets stored via a list in which a sequence of identifiers gets saved. One identifier

corresponds to a distinct elementary integration operation.

In the following, we give an overview of these elementary integration operations together

with the corresponding identifiers:

• Initialization of the Nordsieck array z0 by

z0 :=
(
yI hinitF (yI, t

init, p0)
)
,

where hinit is considered to be a constant. Identifier: “iaO”.

• Calculation of the predictor array zn(0) at integration step n by

zn(0) = zn−1A[k],

for constant matrix A[k] and where the current order k is considered to be a

constant, as well. Identifier: “paO”.

• Calculation of the corrector vector en at integration step n by following elementary

operations:

– Calculation of ûn,0 by

ûn,0 = (Dn
R)

−1 yn(0).

– Calculation of ∆ûn,j by solving the linear equation

P̂n∆ûn,j = −Dn
L

[
(Dn

Rûn,j − yn(0))−
hn
l1n

(
F (Dn

Rûn,j, tn, p0)− y
(1)
n(0)

)]
.

– Calculation of ûn,j+1 = ûn,j +∆ûn,j.
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– Calculation of en by

en = Dn
Rûn,j.

Again, the number of performed simplified Newton iterations NpN, the scaling

matrices Dn
L, D

n
L, the scaled approximation to the Jacobian P̂n, the integration

time tn at integration step n, the step size hn and the coefficient l1n are considered

to be constants. Identifier: “cvO”.

• Correction of the predictor array zn(0) → zn by

zn = zn(0) + enln,

where the row vector ln is considered to be constant. Identifier: “caO”.

• Rescaling of the Nordiesk array zn to adjust to the new step size hn+1 at integration

step n+ 1, i.e. zn(hn) → zn(hn+1) by

zn(hn+1) = zn(hn)~θn,

where ~θn denotes the constant vector

~θn =

(
1 hn+1

hn
. . .

(
hn+1

hn

)k)T
,

and the current order k is considered to be a constant. Identifier: “raO”.

• Change of order k → k + 1 by augmenting the current Nordsiek array zn by an

additional column, which is initialized by the zero vector. Identifier: “ouO”.

• Change of order k → k − 1 by

zn(k − 1) = zn(k) − z↓n,

where the Nordsieck array z↓n is given by

z↓n =
(
0 0 d2nh

k
n
y
(k)
n

k! . . . dk−1
n hkn

y
(k)
n

k! 0

)

and the coefficients din, for i ∈ {2, . . . , k − 1}, are considered constant.

After that, the last column of the Nordiesk array zn(k − 1) is deleted. Identifier:

“odO”.
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• Calculation of the desired approximate solution ytend to y(tend) at tend by

ytend =

k∑

i=0

(
ytend − tn

hn

)i [
hiny

(i)
n /i!

]
,

where the current order k is considered to be a constant. Identifier: “caO”.

Now, if the calculation of sensitivities is required, the implemented integration method

stores the concrete sequence of elementary integration operations, which are performed

for the calculation of an approximated solution ytend , so that the AD techniques of Chap-

ter 4 can be applied.

We assume that a specific operation sequence always starts with the elementary inte-

gration operation “iaO” and stops with the operation “caO”.

First, we present the application of the forward mode of AD to the sequence of elemen-

tary integration operations in Section 5.2.1 and hereafter we present the application of

the reverse mode of AD in Section 5.2.1.

5.2.1. Forward mode of sensitivity generation

In view of the principles of IND and for a given sequence of elementary integration

operations, we can understand ytend to be a function of the initial condition vector

yI ∈ Rm and of the parameter vector p0 ∈ Rp, which can be evaluated utilizing elemental

functions as in Chapter 4. In accordance to the forward mode of AD as presented in

Section 4.1, we are interested to calculate the Taylor coefficients of ytend(t), namely

[ytend(t)]i, i ∈ {0, 1, . . . , d} up to the desired order d of sensitivities for given input

polynomials

yI(t) = yI + yI,1t+ · · · + yI,dt
d

and

p0(t) = p0 + p0,1t+ · · ·+ p0,dt
d.

Here, the meaning of t is given as in Chapter 4 and does not correspond to the integra-

tion time as in (5.1) and (5.2).

With this conceptional preparations, we can apply the recurrences given in Table 4.1

and Table 4.2 to the elemental evaluation scheme, which is embedded in the stored in-

tegration operation sequence.

Obviously, instead of applying the recurrences to the elemental functions within the

operation sequence, we can calculate to each elementary integration operation a corre-

sponding recurrence formula and in turn can apply this one to the elementary integration

operation itself.
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For example the recurrence for the calculation of the Taylor polynomial zn(0)(t) of the

predictor array zn(0) (Identifier: “paO”) is given by

[
zn(0)(t)

]
k′
= [zn−1(t)]k′ A[k],

where k′ ∈ {1, . . . , d} corresponds to the k′-th order Taylor coefficient and k corresponds

to the order of the BDF method.

In summary, we get the following algorithm for the calculation of the desired Taylor

coefficients of ytend(t).

Algorithm 12.

Data: F : Rm × R × Rp → Rm which is d-times continuous differentiable on Rm ×
[tinit, tend]× Rp, list of elementary integration operations, Taylor input polynomial yI(t)

of order d, Taylor input polynomial p0(t) of order d.

Step 0. Set N = 2. Calculate the Taylor coefficients of z0(t) up to order d, according to

the recurrence corresponding to the elementary operation “iaO”, i.e. the initialization of

the Nordsieck array z0.

Step 1. If the N +1-th entry of the list of elementary operations is “caO”, i.e. the final

calculation of the desired approximate solution ytend , then calculate the Taylor coefficients

of ytend(t) up to order d, according to the corresponding recurrence of the elementary op-

eration “caO” and stop.

Else set N = N + 1 and goto Step 2.

Step 2. Calculate the intermediate Taylor coefficients up to order d, given by the recur-

rence corresponding to the elementary integration operation of the N -th entry of the list

of elementary operations. Goto Step 1.

In [1], Albersmeyer state: “The first oder iterative forward IND scheme is equal to the

”staggered corrector method“ that was proposed later by Feehery et al. [44], provided

that the staggered corrector method uses the same number of Newton iterations for the

solution of the corrector equation in the variational DAE2 as used for the nominal solu-

tion. Otherwise the IND principle would be violated.”

Because the only conceptional difference between the integration scheme of Albersmeyer

and the one, which is used here, lies in the usage of a Nordsiek array based polynomial

interpolation scheme instead of a modified divided differences polynomial interpolation

2Differential algebraic equation, see e.g. [9, 42, 59, 78]
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scheme, here, his statement is true, as well, if the simplified Newton method is tackled

by AD directly, i.e. the iterative mode, presented in Section 4.3.1, is used.

Albersmeyer also describes a procedure to simultaneously calculate the nominal solution

and the sensitivities in forward mode, such that the step length of the discretization

scheme of the BDF method is controlled by the nominal trajectory and by the sensitiv-

ities, as well.

Here, it should only be mentioned that this possibility is also incorporated into the

developed BDF method for first order sensitivities. For more details we refer to [1].

5.2.2. Reverse mode of sensitivity generation

With the same preliminary thoughts as in Section 5.2.1, it is straight forward to apply

the reverse accumlation rules as given in Section 4.2 to the stored sequence of elementary

integration operations.

The approximate solution vector ytend is in general no scalar. Therefore, to apply the

accumulation rules we first introduce the reverse seed vector ω ∈ Rm with

ỹtend = ω1y1tend + · · ·+ ωmymtend,

equivalently to (4.6). Formally, one can apply now the reverse accumlation rules to the

evaluation scheme of ỹtend , regarding the principles of IND.

In the same manner as in Section 5.2.1, it is possible to derive accumulation rules for

each elementary integration operation. Again, as example we give the accumulation rule

for the elementary integration operation with identifier “paO”, which is given by

[z̄n−1(t)]k′ + =
[
z̄n(0)(t)

]
k′
A[k]T ,

where k′ ∈ {1, . . . , d} corresponds to the k′-th order Taylor coefficient, k corresponds to

the order of the BDF method and the accumulation has to be understood component

wise.

In summary, we get the following algorithm for the calculation of the desired reverse

Taylor coefficients of ȳI(t) and p̄0(t).

Algorithm 13.

Data: Reverse seed vector ω ∈ Rm, F : Rm × R × Rp → Rm which is (d + 1)-times

continuous differentiable on Rm × [tinit, tend]× Rp, list of elementary integration opera-

tions, Taylor input polynomial yI(t) of order d, Taylor input polynomial p0(t) of order

d, corresponding Taylor polynomial ytend(t) of order d (e.g. calculated with Algorithm

12). (Under assumption that the underlying intermediate Taylor polynomials within the
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elementary integration operations are on hand.)

Step 0. Set N to the number of entries in the list of elementary integration operations.

Set all reverse intermediate Taylor polynomials to zero. Set

[
ȳitend(t)

]
0
= ωi,

[
ȳitend(t)

]
j
= 0, i ∈ {1, . . . ,m}, j ∈ {1, . . . , d}.

Step 1. If N > 0, apply the reverse accumulation step associated to the N -th entry of

the list of elementary operations up to order d of Taylor coefficients and set N = N − 1.

Else, stop with final reverse Taylor coefficients of ȳI(t) and p̄0(t).

It should be noted, that if Algorithm 13 is applied with the principal, that the elemen-

tary operation “cvO” (the calculation of the corrector vector en by solving a nonlinear

equation) is handled as an elementary AD operation itself, d is restricted to be d ≤ 1 as

in Section 4.3.2. Therefore, in this mode it is only possible to calculate sensitivities up

to order 2, which is sufficient for the purposes in this thesis.

5.2.3. Calculation of sensitivities with respect to the end time tend

Here, we present the calculation of (higher) derivatives of y(tend) with respect to the

end time tend.

• First, we present a reformulation of IVP in (5.1) and (5.2) with the goal that the

end time tend enters the reformulated IVP as parameter. This approach is also

used in MUSCOD [74].

• Second, we give a direct way to calculate (higher or mixed) derivatives of y(tend)

with respect to the end time tend.

Obviously, IVP in (5.1) and (5.2) fulfills following integral equation,

y(tend) = y(tinit) +

∫ tend

tinit
F (y(t), t, p0)dt. (5.83)

By substitution of the time variable t with

τ =
t− tinit

tend − tinit
,
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(5.83) is equivalent to

ȳ(1) = ȳ(0) +

∫ 1

0
F (ȳ(τ), τ̄ (τ), p0)(t

end − tinit)dτ,

where

τ̄(τ) = τ(tend − tinit) + tinit

and

ȳ(τ) = y(τ̄(τ)).

Thus, instead of solving IVP in (5.1) and (5.2), it is equivalent to solve IVP

dȳ(τ)

dτ
= F (ȳ(τ), τ̄ (τ), p0)(t

end − tinit), τ ∈ [0, 1] (5.84)

with initial condition

ȳ(0) = yI. (5.85)

The advantage of the reformulated IVP in (5.84) and (5.85) over IVP in (5.1) and (5.2)

is, that now tend enters the right hand side in (5.84) as parameter and therefore the

calculation of (higher) derivatives of y(tend) with respect to tend can be treated with the

methods presented in Section 5.2.1 and Section 5.2.2 using IVP in (5.84) and (5.85).

For the direct way, we restrict ourself to derivatives at a max of second order, since

no higher derivatives are needed for the purposes of this thesis.

Obviously, the first derivative of y(tend) with respect to tend is given by the right hand

side F (y(tend), tend, p0) at time point tend, directly.

Therefore, the second derivative of y(tend) with respect to tend is obviously given by

d2y

dt2
(tend) =

dF

dt
(y(tend), tend, p0)

=
∂F

∂t
(y(tend), tend, p0) + Fy(y(t

end), tend, p0)F (y(t
end), tend, p0),

which can be easily calculated by the AD techniques presented in Chapter 4.

Mixed derivatives of second order, namely

d2y

dyidt
(tend) = Fy(y(t

end), tend, p0)syi(t
end), i ∈ {1, . . . ,m}

and

d2y

dpjdt
(tend) = Fy(y(t

end), tend, p0)spj (t
end) +

∂F

∂pj
(y(tend), tend, p0), j ∈ {1, . . . , p},
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are directly given by the right hand side of the corresponding sensitivity differential

equation in (5.81) and (5.82), respectively.
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CHAPTER 6

Nonlinear Programming

This chapter treats the solution of following nonlinear programming (NLP) problem

given by

min
x∈Rn

f0(x) (6.1)

subject to

gL ≤ g(x) ≤ gU (6.2)

and

xL ≤ x ≤ xU , (6.3)

where f0 : Rn → R and g̃ : Rn → Rr with r < n are sufficiently smooth functions,

xL, xU ∈ Rn and gL, gU ∈ Rr with gL ≤ gU component wise. (The notation in this

chapter is not related to previous sections!)

In this thesis such problems are solved with the sophisticated NLP package IPOPT

[124, 127].

IPOPT is a so called “Primal-Dual Interior Point filter line search algorithm for large-

scale nonlinear programming” [127], whose theoretical background is sketched in the

next section.
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6.1. Interior Point method

Using slack variables [83] problem (6.1) s.t. (6.2) and (6.3) can be transformed to a NLP

problem of following form

min
x′∈Rn′

f ′0(x′) (6.4)

subject to

g′(x′) = 0 (6.5)

and

x′i ≥ 0, i ∈ I, (6.6)

where f ′0 : Rn
′ → R and g′ : Rn

′ → Rr
′

with r′ < n′ are sufficiently smooth functions

and I denotes the set of indices for which the components x′i of x′ are bounded below.

In the following, we refer to NLPs of that form.

Interior Point (IP) methods are also called barrier methods, since a sequence of related

barrier sub problems, here given by

min
x′∈Rn′

f ′0µ (x
′) := f ′0(x′)− µ

∑

i∈I
ln(x′i) (6.7)

subject to

g′(x′) = 0, (6.8)

with barrier parameter µ→ 0 and µ > 0 are solved.

As Wächter states in [124], barrier methods base on earlier work by Fiacco and Mc-

Cormick [45].

The barrier term b(µ) := µ
∑

i∈I ln(x
′i) forces each solution x̂′µ of sub problem (6.7) s.t.

(6.8) (for corresponding barrier parameter µ) to lie in the strictly feasible region, i.e.

x̂′iµ > 0 for all i ∈ I and thus the name IP method.

For µ→ 0 the contribution of b(µ) tends to zero, i.e. b(µ) → 0. Therefore, under appro-

priate assumptions, limµ→0 x̂
′
µ converges to a point x̂′, at which the fist order optimality

conditions (Corollary 2) in respect to the original problem (problem (6.4) s.t. (6.5) and

(6.6) ) are fulfilled. For a very good review article on IP methods we refer to [47].

From Corollary 2 (with p = {1} and q = ∅), it follows that the so called KKT conditions

for subproblem (6.7) s.t. (6.8) are given by

∇f ′0µ (x′) + ζTg′x′(x
′) = 0,

g′(x′) = 0,
(6.9)
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6.1 — Interior Point method

where ζ ∈ Rr
′

are the so called Lagrangian multipliers associated to the equality con-

straints in (6.8). It should be noted that (6.9) is solely a nonlinear equation, which can

be tackled by Newton’s method.

However, as Wächter states in [124]: “. . . the system (6.9) is not defined at a solution

x̂′ of NLP (6.4) s.t. (6.5) and (6.6) with an active bound x̂′i = 0, and the radius of

convergence of Newton’s method applied to (6.9) converges to zero as µ→ 0 [123].”

To remedy this obstacle, instead of solving (6.9) (via Newton’s method), which leads to

so called primal-methods, (6.9) is modified by introducing an auxiliary vector z ∈ Rn
′

,

defined by

zi :=
µ

x′i
, for all i ∈ I, (6.10)

and zi := 0, if i /∈ I.
Here, the KKT conditions (6.9) transform to

∇f ′0(x′) + ζTg′x′(x
′)− z = 0

g′(x′) = 0

x′iz′i − µ = 0, for all i ∈ I.
(6.11)

Equations (6.11) are called the primal-dual equations and hence a method, relying on

the solution of (6.11) (via Newton’s method), is called a primal-dual method.

One further has to demand

x′i > 0, z′i > 0, for all i ∈ I, (6.12)

such that a solution of (6.11) corresponds to a critical point of problem (6.7) s.t. (6.8).

Available IP algorithms, which rely on the solution of the primal-dual equations, are e.g.

LOQO [122], KNITRO [31] and IPOPT. Here, we use IPOPT, since IPOPT is an open source

package (and therefore free of charge).

For the algorithm implemented in IPOPT global convergence is ensured by a filter ap-

proach first introduce by Fletcher and Leyffer in [46]. A detailed description of the

primal-dual IP algorithm IPOPT can be found in [124, 127]. The global convergence

behavior is investigated in [126, 124] and the local one in [125, 124]. IPOPT uses an

external linear solver. One can choose between several linear solvers including MA27,

MA57 [64], MUMPS [3, 4] or PARDISO [97, 98, 99, 96].

Following functions have to be supplied to IPOPT:

• the cost function f0 : Rn → R,

• the constraints g : Rn → Rr,
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• the gradient of the cost function, i.e. ∇f0(x),

• the gradient of the constraints, i.e. ∇g(x),

• and the hessian of the Lagrangian function f0(x)x+ λT g(x) given by

σf∇2f(x) +

r∑

i=1

λi∇2gi(x), (6.13)

where σf is an additional factor, which is introduced by IPOPT.

IPOPT can be interfaced via the programming language C++.
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CHAPTER 7

Numerical Calculation of Robust Optimal Experimental Designs

In this chapter we treat the numerical calculation of the optimal design for model dis-

crimination worked out in Chapter 2. According to (2.3) and (2.10) we first state the

optimization problem of interest,

max
ξ∈Ξ

min
θ1∈Θ1

I(2 : 1,O1; ξ, θ1)

subject to

yI,min ≤ yI ≤ yI,max,

0 ≤ ci ≤ ci,max, i ∈ {1, ..., n − 1},
0 ≤ t1 ≤ t2 ≤ ... ≤ tn,

tn =T end,

where I(2 : 1,O1; ξ, θ1) is given by

I(2 : 1,O1; ξ, θ1) =
1

2

n∑

i=1

H(ti)H̃(ci) · Ii(ξ, θ1), (7.1)

with

Ii(ξ, θ1) :=
m∑

k=1




(
vk2 (y2,i, t

i, θ2)
)2

+
(
yk2,i − yk1,i

)2

(
vk1 (y1,i, t

i, θ1)
)2 − 2 log

(
vk2 (y2,i, t

i, θ2)

vk1 (y1,i, t
i, θ1)

)

−m,
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7 — Numerical Calculation of Robust Optimal Experimental Designs

for i ∈ {1, ..., n} and ξ := (yI, t, c) as in Chapter 2. This is obviously equivalent to

max
ξ′∈Ξ′

min
θ1∈Θ1

I(2 : 1,O1; ξ
′, θ1) (7.2)

subject to

yI,min ≤ yI ≤yI,max,

0 ≤ ci ≤ ci,max, i ∈ {1, ..., n − 1},
0 ≤ ∆ti ≤ timax, i ∈ {1, ..., n},

n∑

i=1

∆ti =T end,

(7.3)

with ξ′ := (yI,∆t, c) and where I(2 : 1,O1; ξ
′, θ1) is given by

I(2 : 1,O1; ξ
′, θ1) :=

1

2

n∑

i=1

H(∆ti)H̃(ci) · Ii(ξ, θ1), (7.4)

with

ti =
i∑

j=1

∆tj for i ∈ {1, ..., n}, (7.5)

and timax for i ∈ {1, ..., n} are “carefully” chosen (e.g. timax ≥ ∆T for i ∈ {1, ..., n}). In

the following for simplicity we substitute ξ′ → ξ and Ξ′ → Ξ.

The objective function I(2 : 1,O1; ξ, θ1) depending on the Heaviside-functions H(∆ti),

i ∈ {1, ..., n}, for a given ∆T (see Chapter 2) and H̃(ci), i ∈ {1, ..., n−1}, is discontinuous
with respect to ∆ti, i ∈ {1, ..., n} and ci, i ∈ {1, ..., n − 1}, respectively. Therefore it is

not possible to apply the Outer Approximations scheme of Chapter 3 to (7.2) subject

to (7.3), directly. However, instead of solving problem (7.2) subject to (7.3), we solve

a related problem with smoothed objective function Ĩ(α,C)(2 : 1,O1; ξ, θ1), with respect

to ∆ti, i ∈ {1, ..., n} and ci, i ∈ {1, ..., n − 1} and depending on smoothing parameters

α > 0, C > 0.

In Section 7.1 the theoretical aspects of this smoothing approach are discussed. In

Section 7.2 we present the application of the Outer Approximations scheme of Chapter

3 to a smoothed approximation P(α,C) of problem (7.2) subject to (7.3) as well as the

numerical implementation of it. The resulting subproblemPΩN
of Algorithm 3 is treated

in Section 7.3. Finally, in Section 7.4 we discuss a homotopy approach to numerically

stabilize the Outer Approximations scheme.

124



7.1 — Smoothing of the objective function I(2 : 1,O1; ξ, θ1)

7.1. Smoothing of the objective function I(2 : 1,O1; ξ, θ1)

In the following, for reasons of notational simplicity we treat ci, i = {1, ..., n − 1} as

scalar values.

The first step to deal with optimization problem (7.2) subject to (7.3) is to replace the

discontinuous Heaviside-functions H(∆ti), i ∈ {1, ..., n}, and H̃(ci), i ∈ {1, ..., n − 1} in

(7.2) by approximating functions

H′(α;∆ti) : R>0 × R → R, i ∈ {1, ..., n},

and respectively

H̃′(C; ci) : R>0 × R → R, i ∈ {1, ..., n − 1},

which are twice continuously differentiable with respect to ∆ti, i ∈ {1, ..., n} and ci,

i ∈ {1, ..., n − 1}.
In contrast to H(∆ti), the continuous approximations H′(α;∆ti) depend on the smooth-

ing parameter α > 0 for all i ∈ {1, ..., n}. We also assume that H′(α;∆ti) are continuous

with respect to α for all i ∈ {1, ..., n}. Analogously, H̃′(C; ci) depend on the smoothing

parameter C > 0 for i ∈ {1, ..., n − 1}. Again, we assume that H̃′(C; ci) are continuous

with respect to C for all i ∈ {1, ..., n−1}. Further, H′(α;∆ti) have to fulfill the following

condition (as in [132]):

H′(α;∆ti) :=





0 for ∆ti ≤ ∆T − α,

0 ≤ H′(α;∆ti) ≤ 1 for ∆T − α ≤ ∆ti ≤ ∆T + α,

1 for ∆ti ≥ ∆T + α,

(7.6)

for i ∈ {1, ..., n}. A graphical scheme of the continuous approximations H′(α;∆ti),

i ∈ {1, ..., n} is shown in Figure 7.1.

Moreover, for H̃′(C; ci) we require that:

H̃′(C; ci) :=





1 for ci ≤ (C − αC)

0 ≤ H̃′(ci) ≤ 1 for (C − αC) ≤ ci ≤ (C + αC)

0 for ci ≥ (C + αC)

, (7.7)

for i ∈ {1, ..., n − 1} and αC := ρC with constant 0 < ρ < 1. A graphical scheme of the

continuous approximations H̃′(C; ci), i ∈ {1, ..., n − 1} is shown in Figure 7.2.

Remark. Condition (7.7) assures that H̃′(C; 0) = 1 for all i ∈ {1, ..., n − 1}.

Under the assumption that I i(ξ, θ1) is continuous on Ξ × Θ1 for all i ∈ {1, ..., n}, the
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1/2

1

∆T

H′(α;∆ti)

∆T + α∆T − α

Figure 7.1.: A graphical scheme of the continuous approximations H′(α;∆ti) for i ∈
{1, ..., n}.

1/2

1
H̃′(C; ci)

0 C + αCCC − αC

Figure 7.2.: A graphical scheme of the continuous approximations Θ̃(C; ci) for i ∈
{1, ..., n − 1}.

resulting approximation Ĩα,C(2 : 1,O1; ξ, θ1) of I(2 : 1,O1; ξ, θ1), given by

Ĩ(α,C)(2 : 1,O1; ξ, θ1) :=
1

2

n∑

i=1

H′(∆ti)H̃′(ci) · Ii(ξ, θ1),

is continuous on Ξ×Θ1 and with respect to α > 0 and C > 0.

For the sake of notational simplicity we define

I(ξ) := min
θ1∈Θ1

I(2 : 1,O1; ξ, θ1), (7.8)

and

Ĩ(α,C)(ξ) := min
θ1∈Θ1

Ĩ(α,C)(2 : 1,O1; ξ, θ1). (7.9)

Remark. Under appropriate assumptions (in view of Proposition 3), for any α > 0 and

C > 0, Ĩ(α,C)(ξ) is continuous on Ξ.
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7.1 — Smoothing of the objective function I(2 : 1,O1; ξ, θ1)

We will draw the conclusion that this smoothing approach is a valid one by the fact that

under some mild assumptions for a sequence of smoothing parameters {(αk, Ck)}∞k=1

with (αk, Ck) → (0, 0), as k → ∞, a convergent subsequence of the sequence {ξk},
given by ξk := argmax

ξ∈Ξ
Ĩ(αk ,Ck)(ξ) subject to (7.3) (assuming existence), converges to

the maximum value of I(ξ) subject to (7.3), i.e. for any K ⊂ N with ξk →K ξ̄ and

Ĩ(αk ,Ck)(ξk) →K I it follows that I = max
ξ∈Ξ

I(ξ) subject to (7.3).

This statement will be proven in the remainder of this section. The proof is guided by

the results in [132], where a similar (but finite and unconstrained) setting is investigated.

We first introduce some definitions and assumptions.

Definition 17 (Set of strictly ∆t-feasible indices). For every ξ ∈ Ξ we denote by

I∆t(ξ) := {i|i ∈ {1, ..., n}, ∆ti > ∆T}

the set of strictly ∆t-feasible indices.

Definition 18 (Set of strictly c-feasible indices). For every ξ ∈ Ξ we denote by

Ic(ξ) := {i|i ∈ {1, ..., n − 1}, ci < 0} ∪ {n}

the set of strictly c-feasible indices.

Further, we say that the ∆t-discontinuity is active at ξ ∈ Ξ, if ∆ti = ∆T for at least

one i ∈ {1, ..., n}.

Definition 19 (Set of ∆t-discontinuity indices). For every ξ ∈ Ξ we denote by

E∆t(ξ) := {i|i ∈ {1, ..., n}, ∆ti = ∆T}

the set of ∆t-discontinuity indices at ξ ∈ Ξ.

Equivalently, we say that the c-discontinuity is active at ξ ∈ Ξ, if ci = 0 for at least one

i ∈ {1, ..., n − 1}.

Definition 20 (Set of c-discontinuity indices). For every ξ ∈ Ξ we denote by

Ec(ξ) := {i|i ∈ {1, ..., n − 1}, ci = 0} ∪ {n}

the set of c-discontinuity indices at ξ ∈ Ξ.

Definition 21 (Set of contributing terms of the sum). For every ξ ∈ Ξ we denote by

Υ(ξ) :=
(
I∆t(ξ) ∪E∆t(ξ)

)
∩ (Ic(ξ) ∪Ec(ξ))
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the set of indices contributing to the terms of the sum in (7.4).

Obviously, I(2 : 1,O1; ξ, θ1) is given by

I(2 : 1,O1; ξ, θ1) =
1

2

∑

i∈Υ(ξ)

Ii(ξ, θ1), (7.10)

for all ξ ∈ Ξ and θ1 ∈ Θ1.

Assumption 5 (Strictly-feasibly reachable assumption). For every ξ′ = (y′I,∆t
′, c′) ∈ Ξ

satisfying (7.3) there exists a sequence {ξk}∞k=1 ⊂ Ξ such that ξk → ξ′, as k → ∞ with

ξk := (y′I,∆tk, c
′), E∆t(ξk) = ∅, such that

I∆t(ξk) = I∆t(ξ′) ∪ E∆t(ξ′),

and ξk satisfies (7.3).

Remark. Assumption 5 is satisfied if T end > 0, n > 1,

T end 6= k∆T for all k ∈ N,

and timax for i ∈ {1, ..., n} in (7.3) are “carefully” chosen.

Assumption 6 (Nonnegativity assumption). Since the KL-Distance is always nonneg-

ative we further assume that

Ii(ξ, θ1) ≥ 0,

for all i ∈ {1, ..., n}, ξ ∈ Ξ and θ1 ∈ Θ1.

Assumption 7 (Continuity assumption). We assume that Ii(ξ, θ1) is continuous on

Ξ×Θ1 for all i ∈ {1, ..., n} and Θ1 is compact .

Definition 22. Let Σ be a set. A collection of subsets

Λ1,Λ2, ...,Λr ⊂ Σ

satisfying
r⋃

i=1

Λi = Σ,

and

Λi ∩ Λj = ∅ ∀i 6= j,

is called a partition of Σ.
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Now consider a partition of Ξ where Λi, i ∈ {1, ..., r1} are defined by

Λi := {ξ ∈ Ξ| tl < ∆T ∀l ∈ L∆t
i ; tl ≥ ∆T ∀l ∈ U∆t

i },

so that for each i ∈ {1, ..., r1}, L∆t
i and U∆t

i form a different partition of the set {1, ..., n}.
Since all different partitions of the set {1, ..., n} shall be covered, r1 equals the cardi-

nality of the set of all subsets of {1, ..., n}.
By (7.10), Assumption 7 and Proposition 3, I(ξ) as given in (7.8) is continuous on Λi

with respect to ∆t for all i ∈ {1, ..., r1}.
Assumption 5 assures that for ξ ∈ Λi with i ∈ {1, ..., r1} and ξ is satisfying (7.3) there

exists a sequence {ξk}∞k=1 ⊂ Λ̊i, such that for all k ∈ N>0 ξk satisfies (7.3) and ξk → ξ,

as k → ∞. (Λ̊i denotes the interior of Λi for i ∈ {1, ..., r1}.)
Since H′(α;∆ti) = 1

2 for all α > 0 and i ∈ E∆t(ξ) (by construction of H′(α;∆ti)),

both the existence of an “interior sequence” and the continuity of I(ξ) in Λi for all

i = {1, ..., n} are important requirements for the above mentioned statement to hold.

In the following, we first give an illustrative counter example for the case that such

an “interior sequence” does not exists. Hereafter, we proceed with the proof of the

above mentioned statement on the validity of the smoothing approach.

7.1.1. A counter example to the strictly-feasibly reachable assumption

Consider the optimization problem

min
(x,y)∈R2

F (x, y),

subject to

x+ y = 0,

where F (x, y) : R× R → R is given by

F (x, y) :=





100(x2 + y2), if x ≥ 0 and y ≥ 0,

100((x − 1
2 )

2 + (y + 1
2)

2) + 10, if x ≥ 0 and y < 0,

100((x + 1
2 )

2 + (y − 1
2)

2) + 10, if x < 0 and y ≥ 0,

60, if x < 0 and y < 0.

Clearly, the function F (x, y) subject to x + y = 0 has a global minimum at (x̂, ŷ) :=

(0, 0). With this example we treat an analogy of ∆t-discontinuities, where an “interior

sequence” as discussed above for the partition x, y ≥ 0 does not exists. A plot of the

function value of F (·, ·) is shown in Figure 7.3.
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x

y

z

x

y

Figure 7.3.: In the left figure a surface plot of the function F (·, ·) as in Section 7.1.1 is
shown. The black line and also the black dashed line indicate the constraint
x + y = 0. On the right one a contourplot of the same function is shown.
Again the black line indicates the constraint x+ y = 0.

A smoothed approximation F̃α(x, y) of F (x, y) (according to the smoothing approach

presented above) is given by

F̃α(x, y) :=H′(α;x)H′(α; y)
(
100

(
x2 + y2

))
+

H′(α;x)
(
1−H′(α; y)

)
(
100

((
x− 1

2

)2

+

(
y +

1

2

)2
)

+ 10

)
+

(
1−H′(α;x)

)
H′(α; y)

(
100

((
x+

1

2

)2

+

(
y − 1

2

)2
)

+ 10

)
+

(
1−H′(α;x)

) (
1−H′(α; y)

)
60.

Here, we define H′(α; t) to be

H′(α; t) :=





0, for t ≤ −α,
−1

4 ·
(
t
α

)3
+ 3

4 · tα + 1
2 , for − α ≤ t ≤ α,

1, for α ≤ t,

(7.11)

which satisfies the required condition (7.6). The approximation (7.11) of the Heaviside-

function is proposed in [118] as stated in [132].

A plot of the function F̃α(x, y) subject to x+ y = 0 is shown in Figure 7.4.
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For each α > 0 the value at (x̂, ŷ) is F̃α(x̂, ŷ) = 45. A sequence of local minima

generated by a local search method for decreasing smoothing parameter α might con-

verge to the local minimum at (x̂, ŷ) (in some cases), i.e. (xα, yα) → (x̂, ŷ) as α→ 0 but

with lim
α→0

F̃α(xα, yα) = 45 instead of F (x̂, ŷ) = 0. The approximation scheme fails to

converge in the above mentioned sense. Therefore, the example confirms the necessity

of an “interior sequence” as discussed above.

x
y

z

Figure 7.4.: A plot of the smoothed function F̃α(·, ·) as in Section 7.1.1 for several values
of α and x+ y = 0 is shown. The black dashed line indicates the constraint
x+ y = 0.

7.1.2. Theoretical validation of the smoothing approach

Lemma 5. Let ξ̄ ∈ Ξ. Then, there exist positive numbers δ, ᾱ and C such that

Ĩ(α,C)(2 : 1,O1; ξ, θ1) =
1

2

n∑

i=1

H′(α;∆ti)H̃′(C; ci) · Ii(ξ, θ1)

=
1

2

∑

i∈Υ(ξ̄)

H′(α;∆ti)H̃′(C; ci) · Ii(ξ, θ1),

for all ξ ∈ B(ξ̄, δ), 0 < α < ᾱ and 0 < C < C.

Proof. Since for Υ(ξ̄) = {1, ..., n} the statement is obvious, we only consider Υ(ξ̄) 6=
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{1, ..., n}. Let i /∈ Υ(ξ̄). Then, either

∆t̄i < ∆T ⇔ 0 < ∆T −∆t̄i (7.12)

or

c̄i > 0. (7.13)

Let γξ(i) be defined for the case that ξ ∈ Ξ with Υ(ξ) 6= {1, ..., n} and i /∈ Υ(ξ) by

γξ(i) := min
(
{max{0,∆T −∆ti},max{0, ci}} \ {0}

)
.

Obviously, γξ(i) is well defined and γξ(i) > 0. Further, for that case let γ(ξ) be defined

by

γ(ξ) := min
i/∈Υ(ξ)

{γξ(i)},

and again γ(ξ) > 0. Be γ := γ(ξ̄)
2 . By continuity of ∆T −∆t and c there exists a δ1 > 0

such that for every ξ ∈ B(ξ̄, δ1) and i /∈ Υ(ξ̄) either

∆T −∆ti > γ ⇔ ∆ti < ∆T − γ,

or

ci > γ.

Therefore, by construction of H′(α;∆ti) and H̃′(C; ci), for 0 < α < γ, 0 < C < γ
2 and

ξ ∈ B(ξ̄, δ1) we have that either

H′(α;∆ti) = 0,

or

H̃′(C; ci) = 0,

for all i /∈ Υ(ξ̄). Thus, for δ = δ1, ᾱ = γ and C = γ
2 it follows that

Ĩ(α,C)(2 : 1,O1; ξ, θ1) =
1

2

∑

i∈Υ(ξ̄)

H′(α;∆ti)H̃′(C; ci) · Ii(ξ, θ1),

for all ξ ∈ B(ξ̄, δ), 0 < α < ᾱ and 0 < C < C.

Lemma 6. Let ξ̄ ∈ Ξ with E∆t(ξ̄) = ∅. Then, there exist positive numbers ᾱ and C

such that

Ĩ(α,C)(ξ̄) = I(ξ̄),
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for all 0 < α < ᾱ and 0 < C < C.

Proof. Since E∆t(ξ̄) = ∅, for all i ∈ {1, ..., n} either

∆t̄i > ∆T,

or

∆t̄i < ∆T.

Therefore, for 0 < α < α1 with

α1 := min
i∈{1,...,n}

{|∆T −∆t̄i|},

it follows by construction of H′(α;∆t̄i) that either

H(∆t̄i) = H′(α;∆t̄i) = 1,

or

H(∆t̄i) = H′(α;∆t̄i) = 0.

For i ∈ Ec(ξ̄), it holds that

H̃(c̄i) = H̃′(C; c̄i) = 1,

for all C > 0. For i /∈ Ec(ξ̄), one sees with similar thoughts as above that there exists a

C1 > 0 such that either

H̃(c̄i) = H̃′(C; c̄i) = 0

or

H̃(∆c̄i) = H̃′(C; c̄i) = 1,

for all C < C1. It follows with ᾱ = α1 and C = C1 that

Ĩ(α,C)(2 : 1,O1; ξ̄, θ1) =
1

2

∑

i∈Υ(ξ̄)

Ii(ξ̄, θ1) = I(2 : 1,O1; ξ̄, θ1),

for all 0 < α < ᾱ, 0 < C < C and θ1 ∈ Θ1. Therefore

Ĩ(α,C)(ξ̄) = I(ξ̄),

for all 0 < α < ᾱ and 0 < C < C.

Lemma 7. Let {(αk, Ck)}∞k=1 ⊂ R>0×R>0 and {ξk}∞k=1 ⊂ Ξ with (αk, Ck) → (0, 0) and
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ξk → ξ̄ as k → ∞. Then, we have that

lim Ĩ(αk,Ck)(ξk) ≤ I(ξ̄). (7.14)

Proof. By Lemma 5 for sufficient large k, it holds that

Ĩ(α,C)(2 : 1,O1; ξk, θ1) =
1

2

n∑

i=1

H′(αk;∆t
i)H̃′(Ck; ci) · I i(ξk, θ1)

=
1

2

∑

i∈Υ(ξ̄)

H′(αk;∆t
i)H̃′(Ck; ci) · I i(ξk, θ1)

≤1

2

∑

i∈Υ(ξ̄)

Ii(ξk, θ1),

(7.15)

for all θ1 ∈ Θ1. The last inequality in (7.15) follows from Assumption 6. Therefore, for

sufficiently large k

Ĩ(αk,Ck)(ξk) = min
θ1∈Θ1

Ĩ(α,C)(2 : 1,O1; ξk, θ1)

≤ min
θ1∈Θ1


1

2

∑

i∈Υ(ξ̄)

Ii(ξk, θ1)


 =: Ĩξ̄(ξk).

Because of the continuity of Ĩξ̄(·) (Proposition 3 and Assumption 7) and the fact that

Ĩξ̄(ξ̄) = I(ξ̄) it follows that (7.14) holds.

Theorem 17. Let {(αk, Ck)}∞k=1 with (αk, Ck) → (0, 0) as k → ∞. Suppose that for

every k there exists a point ξk ∈ Ξ such that

Ĩ(αk,Ck)(ξk) = max
ξ∈Ξ

Ĩ(αk,Ck)(ξ) (7.16)

subject to (7.3) holds and that there exists a convergent subsequence, i.e. there is a subset

K ⊂ N such that

ξk →K ξ̄ and Ĩ(αk ,Ck)(ξk) →K I. (7.17)

Further, assume that

ξ̂ = argmax
ξ∈Ξ

I(ξ), (7.18)

subject to (7.3) exists. Then,

I = I(ξ̂), (7.19)

134



7.1 — Smoothing of the objective function I(2 : 1,O1; ξ, θ1)

Proof. By Lemma 7

Ī ≤ I(ξ̄) ≤ Î,

where

Î := I(ξ̂).

We proof by contradiction. Therefore assume that

Î − Ī = µ > 0 (7.20)

holds.

In case E∆t(ξ̂) = ∅, it follows by Lemma 6 that

Ĩ(αk ,Ck)(ξ̂) = I(ξ̂) = Î,

for sufficient large k.

Otherwise, by assumption (7.17) for sufficient large k it holds that

Ĩ(αk ,Ck)(ξk) < I + (µ/2).

Since by (7.20) obviously I + (µ/2) < Î, it follows for sufficient large k that

Ĩ(αk,Ck)(ξk) < Ĩ(αk ,Ck)(ξ̂).

This is a contradiction to (7.16). Therefore, it holds that µ = 0.

In case E∆t(ξ̂) 6= ∅, it follows from Assumption 5 that there is a sequence {ξs}∞s=1

satisfying (7.3) with yI,s = ŷI and cs = ĉ, which converges to ξ̂ such that I∆t(ξs) =

I∆t(ξ̂) ∪E∆t(ξ̂) and E∆t(ξs) = ∅, for all s ∈ N>0.

It follows that

I(ξs) = min
θ1∈Θ1

1

2

∑

i∈Υ(ξs)

Ii(ξs, θ1) = min
θ1∈Θ1

1

2

∑

i∈Υ(ξ̂)

Ii(ξs, θ1) = Ĩξ̂(ξs),

where Ĩξ̂(·) is defined as in Lemma 7. By continuity of Ĩξ̂(·) and the fact that Ĩξ̂(ξ̂) =
I(ξ̂), it follows that

lim
s→∞

Ĩξ̂(ξs) = I(ξ̂).
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Consequently, for sufficient large s

Î − µ/4 < I(ξs). (7.21)

Let s̄ be the value for which (7.21) holds. It holds that E∆t(ξs̄) = ∅ and therefore by

Lemma 6 one has that

Î − µ/4 < I(ξs̄) = Ĩ(αk,Ck)(ξs̄),

for sufficient large k. Otherwise, by assumption (7.17) it follows for sufficient large k

that

Ĩ(αk,Ck)(ξk) < I + (µ/4).

Since by (7.20), it obviously holds that

I + (µ/2) < Î.

It follows for sufficient large k that

Ĩ(αk,Ck)(ξk) < Ĩ(αk ,Ck)(ξs̄).

This is a contradiction to (7.16). Therefore, it holds that µ = 0.

Overall, assumption (7.20) results in a contradiction and therefore (7.19) subject to

(7.3) has to hold.

Remark. The Heaviside-functions H(∆ti) in (7.4) can also be approximated by smooth-

ing functions H̃′(C;∆ti) satisfying condition (7.7) instead of (7.6) for all i ∈ {1, ..., n}.
In this case Assumption 5 is not necessary and Theorem 17 still is valid. Otherwise,

if H̃(ci) in (7.4) is approximated by smoothing functions satisfying condition (7.6) for

i ∈ {1, ..., n − 1}, Theorem 17 does not hold anymore. The fact of the matter is that

Assumption 5 due to the constraints in (7.3) can not be fulfilled anymore.

In the remainder of this chapter, we substitute

Ĩ(α,C)(2 : 1,O1; ξ, θ1) → Ĩ(2 : 1,O1; ξ, θ1),

for reasons of notational simplicity.

The smoothed optimization problem

max
ξ∈Ξ

min
θ1∈Θ1

Ĩ(2 : 1,O1; ξ, θ1) (7.22)
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subject to

yI,min ≤ yI ≤yI,max,

0 ≤ ci ≤ ci,max, i ∈ {1, ..., n − 1},
0 ≤ ∆ti ≤ timax, i ∈ {1, ..., n},

n∑

i=1

∆ti =T end,

(7.23)

with ξ := (yI,∆t, c) and where Ĩ(2 : 1,O1; ξ, θ1) is given by

Ĩ(2 : 1,O1; ξ, θ1) =
1

2

n∑

i=1

H′(α;∆ti)H̃′(C; ci) · Ii(ξ, θ1),

with smoothing parameters α > 0 and C > 0, is equivalent to optimization problem:

max
(τ,ξ)∈R×Ξ

τ

subject to

yI,min ≤ yI ≤ yI,max,

0 ≤ ci ≤ ci,max, i ∈ {1, ..., n − 1},
0 ≤ ∆ti ≤ timax, i ∈ {1, ..., n},

n∑

i=1

∆ti = T end,

min
θ1∈Θ1

Ĩ(2 : 1,O1; ξ, θ1)− τ ≥ 0,

which we denote by P(α,C) in the following.

Remark. As mentioned above, under appropriate assumptions Ĩ(α,C)(ξ) (Definition 7.9)

is continuous on Ξ. Therefore, under mild assumptions reasoning the Theorem of Weier-

straß [57] problem (7.22) subject to (7.23) has a solution. Since this problem is equivalent

to P(α,C), under same assumptions P(α,C) has a solution. With similar thoughts and

under mild assumptions, one can see that problem (7.2) subject to (7.3) has a solution,

as well.

7.2. Applying the Outer Approximations scheme to P(α,C)

In the following, we apply the Outer Approximations scheme of Section 3.3 to optimza-

tion problem P(α,C). We assume that Assumption 2 and Assumption 3 with respect to
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optimization problem P(α,C) are satisfied. Further, we assume that P(α,C) has a solution.

In view of the notational framework introduced in Chapter 3, i.e. according to Definition

9 and with x := (τ, ξ) ∈ R× Ξ, optimization problem P(α,C) can be formulated as1:

ψ0(x) = φ0(x, y0) = −τ, (7.24)

where the inequality constraints ψj(x) for j ∈ q = {1, . . . , 2m+2m(n− 1)+ 2n+1} are

defined by

ψj(x) = φj(x, yj) = yjI,min − yjI , j ∈ {1, . . . ,m} =: q1,

ψj(x) = φj(x, yj) = yj−mI − yj−mI,max, j ∈ {m+ 1, . . . , 2m} =: q2,
(7.25)

for the constraints on the initial species concentration;

second by

ψj(x) = φj(x, yj) = −cj2j1 (7.26)

for j ∈ {2m+ 1, ..., 2m +m(n− 1)} =: q3, where

2m+ (j1 − 1)m+ j2 = j

and

ψj(x) = φj(x, yj) = cj2j1 − cj2j1,max (7.27)

for j ∈ {2m+m(n− 1) + 1, . . . , 2m+ 2m(n− 1)} =: q4, where

2m+m(n− 1) + (j1 − 1)m+ j2 = j,

with j1 ∈ {1, . . . , n − 1} and j2 ∈ {1, . . . ,m} for the constraints on the perturbation

vectors ci for i ∈ {1, . . . , n− 1};
third by

ψj(x) = φj(x, yj) = −∆tj−2m−2m(n−1) (7.28)

for

j ∈ {2m+ 2m(n− 1) + 1, . . . , 2m+ 2m(n− 1) + n} =: q5,

and

ψj(x) = φj(x, yj) = ∆tj−2m−2m(n−1)−n − tj−2m−2m(n−1)−n
max (7.29)

for

j ∈ {2m+ 2m(n − 1) + n+ 1, . . . , 2m+ 2m(n − 1) + 2n} =: q6,

1Here, the meaning of yj , j ∈ {0, . . . , 2m + 2m(n − 1) + 2n + 1}, as in Chapter 3 does interfere with
the notation of Chapter 2, but from the context it is obvious what is meant.
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for the constraints on ∆ti for i = {1, . . . , n};
and fourth by

ψj(x) = max
yj∈Yj

φj(x, yj)

= max
θ1∈Θ1

(
τ − Ĩ(2 : 1,O1; ξ, θ1)

)
, where j = 2m+ 2m(n − 1) + 2n+ 1,

(7.30)

with n denoting the number of possible measurement time points and m denotes the

number of different species types as in Chapter 2. The inequality constraints in (7.24)–

(7.29) do not depend on robustification vectors yj for j ∈ {1, . . . , 2m+2m(n− 1)+ 2n}.
Therefore, we arbitrarily set yj ∈ [0, 1] for j ∈ {1, . . . , 2m+2m(n−1)+2n} in obedience

to Assumption 2. Additionally, the equality constraint with r = 1 is given by

g(x) =

n∑

i=1

∆ti − T end. (7.31)

Remark. In terms of Corollary 4, it is important that problem P(α,C) satisfies EMFCQ

(Definition 11) at all points with ψ(x) = 0 (ψ(x) is defined as in (3.34)) and g(x) = 0,

since then EMFCQ ensures that a point (τ, ξ) ∈ R × Ξ with ψ(x) ≤ 0 and g(x) = 0,

satisfying the necessary optimality condition in Theorem 11 and Theorem 12, is indeed

a critical point of problem P(α,C).

Theorem 18. Consider problem (7.24)–(7.31). Assume Assumption 2 and Assumption

3 are satisfied. Be x′ = (τ ′, ξ′) ∈ R × Ξ with ψ(x′) = 0 and g(x′) = 0, where ψ(x) is

defined as in (3.34). Assume that cji,max > 0 for j ∈ {1, . . . ,m}, i ∈ {1, . . . , n − 1},
ti

′

max > 0 for i′ ∈ {1, . . . , n} and yI,min 6= yI,max component-wise.

Further, consider the design vector ∆t′ in ξ′ = (y′I,∆t
′, c′). Assume that there is at least

one i ∈ {1, . . . , n} such that 0 < ∆ti (i.e. ∃j ∈ q5|ψj(x) < 0) and there is at least one

i ∈ {1, . . . , n} such that ∆ti < timax (i.e. ∃j ∈ q6|ψj(x) < 0), then EMFCQ is satisfied

at x′.

Proof. Clearly, for proving the above statement we have to find a h̃ ∈ R × Ξ such that

(3.49) and (3.50) are fulfilled.

Here, we use the convention that h̃ = (h̃τ , h̃yI , h̃∆t, h̃c) with h̃τ ∈ R, h̃yI ∈ Rm, h̃∆t ∈ Rn

and h̃c ∈ Rm(n−1), where the design variable cji corresponds to the ((i − 1)m + j)-th

entry in h̃c.

Additionally, entry h̃j∆t of h̃∆t corresponds to inequality constraints ψi(x) with i =

(2m + 2m(n − 1) + j) (i.e. i ∈ q5) and ψ
i′(x) with i′ = (2m+ 2m(n − 1) + n+ j) (i.e.

i′ ∈ q6).
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For x′′ ∈ R×Ξ we define a partition (Definition 22) of q5 by qA
5 (x

′′)∪qI
5(x

′′) = q5 such

that ψj(x′′) = 0 for all j ∈ qA
5 (x

′′) and ψj(x′′) < 0 for all j ∈ qI
5(x

′′). Equivalently, we

define a partition of q6 by qA
6 (x

′′) ∪ qI
6(x

′′) = q6.

Now, for x′ it holds that either qA
5 (x

′) = ∅ or qA
5 (x

′) 6= ∅.

• If it holds that qA
5 6= ∅, set h̃i∆t = 1 with i = j − 2m − 2m(n − 1) for all j ∈ qA

5 .

Clearly, for j ∈ qA
5 , dψ

j(x; h̃) < 0. By assumption, it holds that qI
5 6= ∅. Now, for

j ∈ qI
5 set h̃

i
∆t = −ν with i = j−2m−2m(n−1) and ν > 0 such that ∇g(x)T h̃ = 0

(g(x) only depends on ∆t). By assumption tmax > 0, it follows that dψj(x; h̃) < 0

for j ∈ q6 with ψj(x) = 0.

• If it holds that qA
5 = ∅ and qA

6 = ∅, set h̃∆t such that g(x) = 0.

• If it holds that qA
5 = ∅ and qA

6 6= ∅, set h̃∆t such that dψj(x; h̃) < 0 for all j ∈ qA
6

and g(x) = 0.

Set h̃yI and h̃c such that dψj(x; h̃) < 0 for all j ∈
4⋃

k=1

qk. By Assumption 2,

ω = max
θ1∈Θ1

(
−∇ξĨ(2 : 1,O1; ξ, θ1)

T h̃ξ

)

exists.

Set h̃τ = −2|ω| − 1. By Theorem 25, it follows for j = 2m+ 2m(n− 1) + 2n+ 1 that

dψj(x; h̃) = −2|ω| − 1 + max
θ1∈Θ1

(
−∇ξĨ(2 : 1,O1; ξ, θ1)

T h̃ξ

)
< −|ω| − 1 < 0.

Overall, it follows that there exists a h̃ ∈ R×Ξ such that ∇g(x′)T h̃ = 0 and dψj(x′; h̃) <

0 for all j ∈ qA(x′). Therefore, EMFCQ is satisfied.

Remark. For problem (7.24)–(7.31) at all x ∈ R× Ξ with g(x) = 0 and

0 < T end <

n∑

i=1

timax,

it never happens that ψj(x) = 0 for all j ∈ q5 or for all j ∈ q6, respectively.

At each iteration N of the Outer Approximations scheme (Algorithm 3) two inner steps

are performed. First, the calculation of new worst case “robustification vectors” ŷj,N ∈
Ŷj,N (xN ) for j ∈ q̄, which depend on the current approximate solution xN at iteration

N . The set Ŷj,N (xN ) is defined in (3.64). These “robustification vectors” are used to

augment the finite set of robustification vectors

Ωj,N = Ωj,N−1 ∪ {ŷj,N}, j ∈ q̄,
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for which an IECP approximation to the original SIECP problem is solved in the

second step to generate a new approximate solution xN+1. These two inner steps are

repeated until the finite set is extended such that a sufficient approximation of the entire

robustification space Y = Y0 × Y1...× Yq is achieved.

In our implementation we redefine the restrictions ŷj,N ∈ Ŷj,N(xN ), j ∈ q̄ for the

calculation of augmenting “robustification vectors” at iteration N in Algorithm 3 (Step

1.) by demanding

ŷj,N ∈ Ŷj(xN ) := {yj,N |yj,N = arg max
yj∈Yj

φj(xN , yj)}, j ∈ q̄. (7.32)

If one can find a global solution of max
yj∈Yj

φj(xN , yj), j ∈ q̄, this of course does not influence

the convergence properties of the Outer Approximations scheme (compare Theorem 14).

The reason, that the compact sets Yj are approximated by subsets of finite cardinality,

namely by Yj,N for j ∈ q̄ at each iteration N of the Outer Approximations scheme, is

that the calculation of elements of the sets Ŷj,N(xN ), j ∈ q̄, is a finite operation and

therefore theoretically realizable. But this procedure can lead to high computational

costs, specially if Yj, j ∈ q̄ are high dimensional. Since in general it seems impossible

to find a global solution of (7.32), our approach has to be rated as heuristic.

For problem (7.24)-(7.31) only inequality constraint (7.30) comprises a non trivial ro-

bustification space Yj with j = 2m+2m(n− 1) + 2n+1, the parameter space Θ1 of the

composite alternative hypothesis.

For the calculation of (7.32) in Step 1. of Algorithm 3, at iterate N and in view of

problem (7.24)-(7.31) it follows that

θ̂1,N = ŷj,N ∈ Ŷj(xN ) = {θ̂1|θ̂1 = arg min
θ1∈Θ1

Ĩ(2 : 1,O1; ξN , θ1)}, (7.33)

with j = 2m+2m(n−1)+2n+1. Here, we use a simple random search approach coupled

to a local optimization method, i.e. we have randomly generated P different start values

in Θ1 from which we have started a local optimization method. The best value out of

the P trials is chosen to augment the set Ωj,N−1 with j = 2m+ 2m(n− 1) + 2n+ 1.

Of course there are more sophisticated approaches to approximately search for a global

minimum. For a review see e.g. [8], but at this point an efficient calculation of Step 1.

of Algorithm 3 is not our primary goal.

For the local parameter optimization (Step 1. in Algorithm 3) we use the same opti-

mization method as for Step 2. in Algorithm 3.

The procedure to calculate a robust optimal design is to solve iteratively both inner

steps of the Outer Approximations scheme until ǫN reaches the level of desired accuracy
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ǫ. This means that

ǫN ≤ ǫ, ∀N > N ′,

for the optimality function of the current IECP approximation it holds that

θΩN
(xN ) ≥ −ǫ,

for the constraint functions it holds that

ψΩN
(xN ) ≤ ǫ and ‖g(xN )‖ ≤ ǫ,

and the iterate xN of Algorithm 3 has “numerically” converged for N > N ′.

In our implementation we use a fixed ǫN = ǫ for a desired final accuracy ǫ at every

iterate of Step 2. in Algorithm 3. In that way, Step 1. of Algorithm 3 gives a worst

case estimate of the KL divergence min
θ1∈Θ1

Ĩ(2 : 1,O1; ξN , θ1) for the current design ξN at

iteration N , up to the desired accuracy ǫ. This single step might already be sufficient

for practical application with real experiments.

As stopping criterion we use:

Algorithmic Stop Criterion. Stop after Step 1. of Algorithm 3, if

δ ≥ min
θ1∈Ωj,N−1

Ĩ(2 : 1,O1; ξN , θ1)− min
θ1∈Θ1

Ĩ(2 : 1,O1; ξN , θ1),

with j = 2m+2m(n−1)+2n+1 and where δ is a small positive constant. Then consider

θ̂1 := arg min
θ1∈Θ1

Ĩ(2 : 1,O1; ξN , θ1)

and ξN as (approximate) solutions of the Maxmin problem at iteration N of the Outer

Approximations scheme,

else goto Step 2. and calculate a new design xN+1.

This stop criterion is also used in [103, 92]. We call the distance ∆RG given by,

∆RG := min
θ1∈Ωj,N−1

Ĩ(2 : 1,O1; ξN , θ1)− min
θ1∈Θ1

Ĩ(2 : 1,O1; ξN , θ1), (7.34)

robustification gap, with j = 2m+ 2m(n− 1) + 2n+ 1 at iteration N .

7.3. Numerical solution of subproblem PΩN

Subproblem PΩN
for problem (7.24)-(7.31) differs from (7.24)-(7.31) only in the inequal-

ity constraint (7.30), namely ψj(x) with j = 2m+ 2m(n − 1) + 2n + 1.
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Instead of

ψj(x) = max
θ1∈Θ1

(
τ − Ĩ(2 : 1,O1; ξ, θ1)

)
for j = 2m+ 2m(n − 1) + 2n+ 1,

as in the SIECP case of problem (7.24)-(7.31), for the IECP approximation PΩN
, ψj(x)

with j = 2m+ 2m(n − 1) + 2n+ 1 is replaced by

ψj(x) = max
θ1∈Θ1,N

(
τ − Ĩ(2 : 1,O1; ξ, θ1)

)
, j = 2m+ 2m(n− 1) + 2n+ 1,

where Θ1,N := Ωj,N = {θ̂1,1, ..., θ̂1,Ñ} with j = 2m+ 2m(n− 1) + 2n+ 1 at iteration N

with Ñ = N −N0 and N0 as given in Algorithm 3.

Therefore, the IECP approximation PΩN
for problem (7.24)-(7.31) can be equivalently

formulated as

max
(τ,ξ)∈R×Ξ

τ

subject to

yI,min ≤ yI ≤ yI,max,

0 ≤ ∆ti ≤ timax, i ∈ {1, ..., n},
0 ≤ ci ≤ ci,max, i ∈ {1, ..., n − 1},

n∑

i=1

∆ti = T end,

Ĩ(2 : 1,O1; ξ, θ̂1,l)− τ ≥ 0 l ∈ {1, ..., Ñ},

which is in this form solvable by a nonlinear programming algorithm for equality and

inequality constrained optimization problems.

We have implemented the resulting optimization problem in a multiple shooting setup

(see for example [113, 28, 27]). The idea of the multiple shooting method is to subdivide

the whole integration interval [0, T end] into several subintervals by introducing auxiliary

multiple shooting node variables sj,i,l for i ∈ {1, . . . , n}, j ∈ {1, 2} and l ∈ {1, . . . , Ñ},
on each of which an independent initial value problem is solved. In our implementation,

each end point of a subinterval corresponds to one measurement time point. Matching

conditions, which enter the optimization problem as additional equality constraints, as-

sure continuity of the state trajectory from one subinterval to the next.

To incorporate the perturbations c, matching conditions

sj,i,l − yj(t
i−1, ti, sj,i−1,l, θ̂j,l) = 0, i ∈ {1, . . . , n}, j ∈ {1, 2}, l ∈ {1, . . . , Ñ},
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7 — Numerical Calculation of Robust Optimal Experimental Designs

where sj,0,l = yI and θ̂2,l = θ2 for j ∈ {1, 2} and l ∈ {1, . . . , Ñ} are modified to

sj,i,l − yj(t
i−1, ti, sj,i−1,l, θ̂j,l) = ci, i ∈ {1, . . . , n − 1}, j ∈ {1, 2}, l ∈ {1, . . . , Ñ},

sj,n,l − yj(t
n−1, tn, sj,n−1,l, θ̂j,l) = 0, j ∈ {1, 2}, l ∈ {1, . . . , Ñ}.

(7.35)

A graphical scheme of the multiple shooting setup is shown in Figure 7.5.

modified
matching condition T end

time∆t

co
n
ce
n
tr
at
io
n ci

ci

Figure 7.5.: Scheme of the multiple shooting setup for computing the experimental de-
sign. One dot denotes the concentration at one measurement time point.
The black solid line denotes model 1 and the gray dashed one model 2.

Instead of evaluating Ĩ(2 : 1,O1; ξ, θ̂1,l) by use of the values yj(t
i−1, ti, sj,i−1,l, θ̂j,l) with

i ∈ {1, . . . , n}, j ∈ {1, 2} and l ∈ {1, . . . , Ñ}, which are given by the solution of the

initial value problem (2.4), Ĩ(2 : 1,O1; ξ, θ̂1,l) is evaluated by use of the auxiliary mul-

tiple shooting node variables si,j,l for i ∈ {1, . . . , n}, j ∈ {1, 2} and l ∈ {1, . . . , Ñ}, by
replacing the values yj(t

i−1, ti, sj,i−1,l, θ̂j,l) in Ĩ(2 : 1,O1; ξ, θ̂1,l) with si,j,l, respectively.

The dependency of Ĩ(2 : 1,O1; ξ, θ̂1,l) on si,j,l for i ∈ {1, . . . , n}, j ∈ {1, 2} and l ∈
{1, . . . , Ñ} is indicated by Ĩ(2 : 1,O1; s·,1,l, s·,2,l, θ̂1,l) for j ∈ {1, 2} and l ∈ {1, . . . , Ñ}.

The overall optimization problem can be stated as

max
(τ,ξ)∈R×Ξ

τ (7.36)
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7.3 — Numerical solution of subproblem PΩN

subject to

sj,i,l − yj(t
i−1, ti, sj,i−1,l, θ̂j,l) = ci, i ∈ {1, ..., n − 1}, j ∈ {1, 2}, l ∈ {1, . . . , Ñ},

sj,n,l − yj(t
n−1, tn, sj,n−1,l, θ̂j,l) = 0, j ∈ {1, 2}, l ∈ {1, . . . , Ñ},

sj,0,l = yI, j ∈ {1, 2}, l ∈ {1, . . . , Ñ},
dyj
dt

= f rhsj (y, θ̂j,l), j ∈ {1, 2}, l ∈ {1, . . . , Ñ},

yI,min ≤yI ≤ yI,max,

0 ≤ ∆ti ≤ timax, i ∈ {1, . . . , n},
0 ≤ ci ≤ ci,max, i ∈ {1, . . . , n− 1},

sj,i,l,min ≤ sj,i,l ≤ sj,i,l,max, i ∈ {1, . . . , n}, j ∈ {1, 2}, l ∈ {1, . . . , Ñ},
n∑

i=1

∆ti = T end,

Ĩ(2 : 1,O1; s·,1,l, s·,2,l, θ̂1,l)− τ ≥ 0 l ∈ {1, . . . , Ñ},
(7.37)

where yj(t
i−1, ti, sj,i−1,l, θ̂j,l) is the solution of the differential equation

dyj
dt

= f rhsj (yj , t, θ̂j,l),

with initial state sj,i−1,l and integration interval [ti−1, ti] and θ̂2,l = θ2 for all i ∈
{1, . . . , n}, j ∈ {1, 2}, l ∈ {1, . . . , Ñ}.

Remark. Under same assumptions as in Theorem 18 problem (7.36) subject to (7.37)

satisfies MFCQ (Definition 8) for all (τ, ξ) ∈ R× Ξ with ξ satisfying (7.37), as can be

seen with the same thoughts as in proof of Theorem 18.

We have implemented this problem within the Interior Point optimization package

IPOPT using the C++ interface of IPOPT. A brief introduction to the theory of IPOPT

is given in Chapter 6. All derivatives up to second order, which are used for the calcula-

tions of the Hessian (6.13), needed for a robust performance of IPOPT are calculated by

automatic differentiation using CppAD [19, 18]. CppAD implements Automatic Differen-

tiation by use of Taylor series propagation as presented in Chapter 4. For the solution

of the ODEs as well as for the calculation of sensitivities we use the BDF integration

method developed in Chapter 5, which is also implemented in C++.

Remark. Since the solutions yj(t
i−1, ti, sj,i−1,l, θ̂j,l) of the ODEs

dyj
dt = f rhsj (yj, t, θ̂

l
j)

for i ∈ {1, . . . , n}, j ∈ {1, 2} and l ∈ {1, . . . , Ñ} only enter the matching conditions

(7.35) in problem (7.36) s.t. (7.37), the sensitivities of second order, which are needed
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7 — Numerical Calculation of Robust Optimal Experimental Designs

to evaluate the Hessian in (6.13), can be efficiently computed using the reverse mode

presented in Section 5.2.2, whereby the Lagrange multipliers associated to the matching

conditions (7.35) are used for weighting the reverse seed vector.

7.4. Stabilizing homotopy method for subsequent PΩN+1

Solving the subsequent optimization problems PΩN+1
with an Interior Point code like

IPOPT initialized with primal and dual variables of the previous problem or with primal

variables only, one often observes that the new solution may differ significantly from

the previous. This is due to the fact that the solution of the previous problem PΩN

is infeasible for PΩN+1
and thus the algorithm tries to find a feasible state before it

proceeds to find a new optimum. This behavior is not desired in the context of an Outer

Approximations algorithm, because convergence of the algorithm may be slowed down

significantly. This circumstance originates from a jumping between vicinities of distinct

local maxima of problem P(α,C). The discretization Ωj,N for j = (2m + 2m(n − 1) +

2n + 1) of the robustification space Θ1 may not be equally adequate for different local

maxima. To overcome this problem we have implemented a heuristic homotopy method

to gradually introduce the additional constraint

gÑ+1(τ, ξ, s) := Ĩ(2 : 1,O1; s·,1,Ñ+1, s·,2,Ñ+1, θ̂1,Ñ+1)− τ ≥ 0

of problem PΩN+1
. We replace gÑ+1(τ, ξ, s) by

g̃Ñ+1(τ, ξ, s) := Ĩ(2 : 1,O1; s·,1,Ñ+1, s·,2,Ñ+1, θ̂1,Ñ+1)− τ + (1− κH)ρH ≥ 0,

with homotopy parameter κH ∈ [0, 1] and ρH is a constant which has to be set such that

g̃Ñ+1(τ, ξ, s) is inactive for κH = 0 at the initial design ξN .

We choose ρH to be

ρH := K ·
(

min
θ1∈Ωj,N

Ĩ(2 : 1,O1; ξN , θ1)− min
θ1∈Θ1

Ĩ(2 : 1,O1; ξN , θ1)

)
,

where j = (2m + 2m(n − 1) + 2n + 1). K is a save guard factor, we set empirically to

K = 1.4, which worked well in practice for our examples. For κH = 0 the augmented

optimization problem should be easily solvable within a few iterations by performing

a warm start from the solution of the previous problem. By increasing the homotopy

parameter to κH = 1, the additional constraint is gradually introduced, which leads to

a sequence of easily solvable subproblems whose solutions stay in the vicinity of the

solution of the previous problem PΩN
. A similar homotopy strategy can be found e.g.

in [93] (in the context of finite optimization).
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CHAPTER 8

Numerical results

We have applied the algorithm developed in Chapter 7 to two example problems for

which we present results in the following sections, namely on models describing glycolytic

oscillations in Section 8.1 and on models describing signal sensing in dictyostelium dis-

coideum in Section 8.2. In the following we treat model 1 as null hypothesis and model

2 as alternative hypothesis.

Here, we replace the Heaviside-functions H(ti) and H̃(ci) in (7.1) by parametrized hy-

perbolic tangent functions of the form

H′(ti) =
tanh(6(∆ti−b1)a1

) + 1

2
and H̃′(ci) =

tanh(−6(ci−b2)
a2

) + 1

2
.

The parameters aj for j ∈ {1, 2} characterize the width of the transition region between

0 and 1. The parameters bj for j ∈ {1, 2} determine the center of the transition region

(see Figure 8.1). By setting the parameters in an adequate way, arbitrarily close ap-

proximations of the Heaviside-functions can be generated.

Additionally, in cooperation with Marcel Rehberg we have applied the algorithmic frame-

work to design a Circadian Rhythm to set its period in a robust optimal way, which is

presented in Section 8.3. For all examples N0 is set to N0 = 1 in Algorithm 3.
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8 — Numerical results

Figure 8.1.: Switching functions: the left switching function is used to guarantee that
only one measurement is done at a time point, the right one is used to
guarantee that if a perturbation is done at a time point no measurement is
done at the same time point.

8.1. Discriminating design for two models describing glycolytic

oscillations

In the first test case for model discrimination we implemented the following models for

glycolytic oscillations as described in [52].

Model 1 is an allosteric enzyme model with positive feedback under cooperativity and

linear product sink. The differential equations for model 1 are given by

dα1

dt
= ν − σφ(α1, γ1),

dγ1
dt

= q1σφ(α1, γ1)− ksγ1,

φ(α1, γ1) =
α1(1 + α1)(1 + γ1)

2

L1 + (1 + α1)2(1 + γ1)2
.

Model 2 is an allosteric model with positive feedback in the absence of cooperativity

and the product sink is represented by Michaelis-Menten kinetics. The differential equa-

tions for Model 2 are given by

dα2

dt
= ν − φ(α2, γ2),

dγ2
dt

= q2φ(α2, γ2)−
rsγ2
µ+ γ2

,

φ(α2, γ2) =
α2(1 + γ2)

L2 + (1 + α2)(1 + γ2)
.
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8.1 — Discriminating design for two models describing glycolytic oscillations

The species concentration of the substrate are denoted by αj and the ones of the product

are denoted by γj for j ∈ {1, 2}, respectively.
For both models the inflow parameter ν is the same and fixed to the value ν = 0.22.

It represents the inflow of substrate to the experimental system, a continuously stirred

tank reactor (CSTR).

The parameters σ, q1, ks and L1 of model 1 are regarded as known. Their values are

given in Table 8.1. The parameters q2, rs, µ and L2 of model 2 are regarded as unknown

and subject to robustification. For the permitted parameter range see Table 8.1.

Model 1 Model 2

σ q1 ks L1 q2 rs µ L2

0.92 2.01 0.11 17206.10 [10−7, 100] [10−7, 100] [10−7, 100] [100, 300]

Table 8.1.: Parameter values for the glycolytic oscillation models.

For simplicity we consider the homoscedastic case with equal variances, i.e. v1 = v2 = σ2.

In this case Ĩ(2 : 1,O1; ξ, θ1) reduces to,

Ĩ(2 : 1,O1; ξ, θ1) =

n∑

i=1

H′(ti)H̃′(ci)
(
(α1,i − α2,i)

2 + (γ1,i − γ2,i)
2
)
. (8.1)

For this test case the homotopy strategy as presented in Section 7.4 is only applied if

the robustification gap ∆RG < 0.1, then the successive problem PΩN+1
is calculated by

use of the homotopy strategy with 30 homotopy steps, i.e. κh = h/30, h ∈ {1, ..., 30}.
Otherwise, problem PΩN+1

is solved without homotopy strategy. For each subsequent

problem PΩN+1
the solution of problem PΩN

is used as initial guess.

We first present a robust design without the possibility to perturb the system by adding

species at later time points.

The design is calculated within a fixed time window i.e. T end = 400. 100 equally spaced

possible measurement points are defined in the initial state of the optimization proce-

dure, the distance vector ∆t between the time points is subject to design and each entry

is restricted to ∆ti ∈ [10−7, 1019], i ∈ {1, . . . , 100}. The perturbation vectors ci are set

to ci = 0 for i ∈ {1, . . . , 99} and are fixed to model the fact that no species perturbation

is allowed.

The initial species concentrations which are also subject to experimental design are re-

stricted to αI ∈ [10−7, 25] and γI ∈ [10−7, 25]. The initial values were set to αI = 15 and

γI = 2. The parameters of the switching functions H′(ti) are chosen as a1 = 20.0 and

b1 = 10.0. The parameters of the switching functions H̃′(ci) are chosen as a2 = 0.05 and
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8 — Numerical results

b2 = 0.025. The algorithmic settings are summarized in Table 8.2.

Optimization settings Integrator settings

P δ IPOPT-tol: Step 1./Step 2. relTol/absTol relTolSens/absTolSens
5 10−6 10−10/10−8 10−12/10−12 10−12/10−12

Table 8.2.: On the left hand side the optimization settings are listed comprising the
IPOPT stopping tolerances for Step 1. and Step 2. of Algorithm 3 and
on the right hand side the integration tolerances for the nominal trajec-
tory and the first order sensitivities are listed. We use the IPOPT option
“honor original bounds=no” for Step 1. and Step 2. of Algorithm 3.

A plot of the functions α1, α2 and γ1, γ2 in the initial state and for the solution of

problem PΩ1 are shown in Figure 8.2.
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Figure 8.2.: The model functions α1, α2 and γ1, γ2 are shown before the optimization

procedure (left) and after the optimization procedure of problem PΩ1 (right)

for the glycolytic design setup without the possibility to perturb the system.

One square represents one measurement time point.

A plot for the same functions with the same solution design as for problem PΩ1 after

the next robustification step is shown in Figure 8.3. The final design is also shown in

Figure 8.3.
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8.1 — Discriminating design for two models describing glycolytic oscillations
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Figure 8.3.: The model functions α1, α2 and γ1, γ2 are shown for the same solution design

as for problem PΩ1 after the next robustification step (left) and for the

final design (right) for the glycolytic design setup without the possibility to

perturb the system. One square represents one measurement time point.

A plot of the robustification gap ∆RG and as well for the objective value of problem

PΩN
for each iteration N of Algorithm 3 are shown in Figure 8.4.

A selection of design variables as solutions of problem PΩN
is shown in Figure 8.5(left).

In a second scenario we additionally allow for species perturbations. In this new sce-

nario at the 21-th 41-th, 61-th and 81-th measurement time points, the system can get

perturbed by additional species quantities. The free vectors ci, i ∈ {21, 41, 61, 81} are

constrained by ci ∈ [10−7, 10]. The initial values are set to ci = 1. The remaining

conditions are as before. However, we change the time vector bound constraints for

i ∈ {1, 6, 11, 21, 26, 31, 41, 46, 51, 61, 66, 71, 81}

to ∆ti ∈ [8, 1019] and the initial state to ∆ti = 15. The bounds for the remaining entries

are as before, and the remaining measurement time points are equally spaced.

A plot of the functions α1, α2 and γ1, γ2 in the initial state and for the solution of

problem PΩ1 are shown in Figure 8.6. A plot for the same functions with the same

solution design as for problem PΩ1 after the next robustification step is shown in Figure

8.7. The final design is also shown in Figure 8.7.
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Figure 8.4.: In the left figure the robustification gap ∆RG is plotted versus the number
of iterations N of Algorithm 3 and in the right figure the objective value of
problem PΩN

is shown for the glycolytic design setup without the possibility
to perturb the system.
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Figure 8.5.: A selection of design variables as solutions of problem PΩN
for the glycolytic

design setup without the possibility to perturb the system (left) and with
the possibility to perturb the system (right) are shown.
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Figure 8.6.: The model functions α1, α2 and γ1, γ2 are shown before the optimization

procedure (left) and after the optimization procedure of problem PΩ1 (right)

for the glycolytic design setup with the possibility to perturb the system.

One square represents one measurement time point.
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Figure 8.7.: The model functions α1, α2 and γ1, γ2 are shown for the same solution design

as for problem PΩ1 after the next robustification step (left) and for the final

design (right) for the glycolytic design setup with the possibility to perturb

the system. One square represents one measurement time point.
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A plot of the robustification gap ∆RG and the objective value of problem PΩN
for each

iteration N of Algorithm 3 are shown in Figure 8.8. A selection of design variables as

solutions of problem PΩN
is shown in Figure 8.5(right).

8.2. Discriminating design for two models describing signal

sensing in dictyostelium discoideum

The second test case is the discrimination of two models describing the chemotactic

response in the amoeba dictyostelium discoideum as presented in [79] using the frame-

work presented in Chapter 7. The two models describe the adaption mechanism observed

when amoebae encounter the chemoattractant cAMP [76], see Figure 8.9.

(a) model 1 (b) model 2

Figure 8.9.: Two models of the signal system of the Dictyostelium amoeba.

For both models, a chemotaxis response regulator R gets activated (R∗) by an activator

enzyme A, when a cAMP ligand S appears. But the deactivating mechanism determined

by the interaction with an inhibitor molecule I differs for both models. Both models

comprise mass action kinetics in form of ODE.

In model 1 the activator enzyme as well as the inhibitor enzyme are regulated by the

external signal, which is proportional to the cAMP concentration S. The overall model
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discoideum

in this case is given by

dA1

dt
= −k−aA1 + kaS1

dI1
dt

= −k−iI1 + ki1S1

dR∗
1

dt
= −(krA1 + k−rI1)R

∗
1 + krRTA1,

(8.2)

where k−a, ka, k−i, ki1 , kr and k−r are the mass action rate constants and RT := R∗+R

is the total amount of the response regulator.

In model 2 the inhibitory molecule I is activated through the indirect action of acti-

vator A instead of direct activation by sensing ligand binding. The overall model in this

case is given by,

dA2

dt
= −k−aA2 + kaS2

dI2
dt

= −k−iI2 + ki2A2

dR∗
2

dt
= −(krA2 + k−rI2)R

∗
2 + krRTA2,

(8.3)

where k−a, ka, k−i, ki2 , kr and k−r are the mass action rate constants and RT := R∗+R

is the total amount of the response regulator.

For modeling details we refer to [79]. We have extended these systems of ordinary dif-

ferential equations by an additional state corresponding to the cAMP ligand S with

dS/dt = 0. By allowing species concentration perturbations c only to the state S we

can mimic a piecewise constant control of the system by the cAMP ligand S.

The experimental design parameters are the initial species concentrations of the four

states namely, AI, II, R
∗
I , SI, the measurement time points t and the species concentra-

tion perturbation c with respect to S. We discard the condition that either a measure-

ment or a perturbation can be performed since in that setting by use of the perturbations

c we mimic a piecewise constant input control S and therefore that restriction seems

unnatural. Again for simplicity we consider the homoscedastic case with equal variances

i.e. v1 = v2 = σ2, where Ĩ(2 : 1,O1; ξ, θ1) reduces now to

Ĩ(2 : 1,O1; ξ, θ1) =
n∑

i=1

H′(ti)
(
(A1,i −A2,i)

2 + (I1,i − I2,i)
2 + (R∗

1,i −R∗
2,i)

2
)
. (8.4)

The parameters k−a, ka, k−i, ki1 , kr, k−r and RT are regarded as known and fixed, their
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values are given in Table 8.3.

k−a ka k−i ki1 kr k−r RT

2.0 3.0 0.1 1.0 1.0 1.0 23/30

Table 8.3.: Parameter values for the fix values within model 1 and model 2.

Parameter ki2 is regarded as unknown and subject to robustification. The range of the

parameter ki2 is set to ki2 ∈ [0, 2].

The optimal design is calculated within a fixed time window with T end = 100. 100

equally spaced possible measurement points are defined in the initial state of the opti-

mization procedure. The distance vector ∆t between time points is subject to design

and each entry is restricted to ∆ti ∈ [10−7, 1019] for i ∈ {1, . . . , 100}.
The free perturbation vectors ci for i ∈ {11, 21, 31, 41, 51, 61, 71, 81, 91} are not re-

stricted. The initial values are set to ci = 0 for i ∈ {11, 21}, c31 = 0.3, ci = −0.48,

i ∈ {41, 61, 81} and ci = 0.48 for i ∈ {51, 71, 91}.
The initial species concentrations which are also subject to the experimental design are

restricted to SI ∈ [0.01, 0.5], AI ∈ [10−7, 1], II ∈ [10−7, 1] and R∗
I ∈ [10−7, 1]. The initial

values are set to SI = 0.2, AI = 1.0, II = 10−4 and R∗
I = 10−4. The multiple shooting

intermediate variables for the species S are restricted to si ∈ [0.01, 0.5] to restrict the

piecewise constant control to this interval. The parameters of the switching functions

H′(ti) are chosen as a1 = 5.0 and b1 = 2.5. The algorithmic settings are summarized in

Table 8.4.

Optimization settings Integrator settings

P δ IPOPT-tol: Step 1./Step 2. relTol/absTol relTolSens/absTolSens
5 10−8 10−10/10−11 10−14/10−14 10−14/10−14

Table 8.4.: On the left hand side the optimization settings are listed comprising the
IPOPT stopping tolerances for Step 1. and Step 2. of Algorithm 3 and
on the right hand side the integration tolerances for the nominal trajec-
tory and the first order sensitivities are listed. We use the IPOPT option
“honor original bounds=no” for Step 1. and Step 2. of Algorithm 3.

With these design conditions we start the optimization procedure twice. First by use of

the homotopy strategy for successive problems PΩN+1
with 10 homotopy steps.

Since the “discriminating power” of the experimental setup is very low in this case, i.e.

the deviation between the two models is small, we plot the distance functions (S1−S2),

(A1 −A2), (I1 − I2) and (R∗
1 −R∗

2) for the initial state and for the solution of problem
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8.3 — Optimal design of Circadian Rhythm

PΩ1 in Figure 8.10. A plot for the same functions with the same solution design as for

problem PΩ1 after the next robustification step is shown in Figure 8.11. The final design

is also shown in Figure 8.11.

A plot of the robustification gap ∆RG for each iteration N of Algorithm 3 is shown in

Figure 8.12 (left). A plot of the objective value of problem PΩN
for each iteration N of

Algorithm 3 is shown in Figure 8.13 (left). A selection of design variables as solutions

of problem PΩN
is shown in Figure 8.14 (left).

Secondly, we calculate the design without the homotopy strategy. We experience huge

jumps in the final objective value of problem PΩN
for subsequent iterations N of Algo-

rithm 3. This is due to the fact that the final design of the former problem PΩN
is an

infeasible starting point for the successive problem PΩN+1
in the Interior Point solution

strategy. First the optimizer tries to force the iterates back into the feasible region and

afterwards the new central path leads to a different locally optimal design.

For this case a plot of the robustification gap ∆RG for each iteration N of Algorithm

3 is shown in Figure 8.12 (right). A plot of the objective value of problem PΩN
for

each iteration N of Algorithm 3 is shown in Figure 8.13 (right). A selection of design

variables as solutions of problem PΩN
is shown in Figure 8.14 (right).

As one can clearly see, the homotopy strategy helps to considerably stabilize Algorithm 3.

8.3. Optimal design of Circadian Rhythm

For this example no experimental design is calculated, but a cellular oscillator is designed

such that its period is set in an robust optimal way. For that purpose, the algorithm

developed in this thesis is used. The calculated results originate from a cooperative work

with Marcel Rehberg. Similar results with slight different setting are published in [73].

The mathematical model of the circadian oscillator, which is used here, is taken from

[75] and describes the circadian system in the fruit fly Drosophila. More precisely, it

models the transcriptional network of the proteins TIM and PER.
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Figure 8.8.: In the left figure the robustification gap ∆RG is plotted versus the number
of iterations N of Algorithm 3 and in the right figure the objective value of
problem PΩN

is shown for the glycolytic design setup with the possibility
to perturb the system.
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Figure 8.10.: The model variable distance functions (S1 − S2), (A1 −A2), (I1 − I2) and
(R∗

1 − R∗
2) are shown before the optimization procedure (left) and after

the optimization procedure of problem PΩ1 (right) for two models describ-
ing signal sensing in dictyostelium discoideum. One square represents one
measurement time point.
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Figure 8.11.: The model variable distance functions (S1 − S2), (A1 −A2), (I1 − I2) and
(R∗

1 − R∗
2) are shown for the same solution design as for problem PΩ1

after the next robustification step and for the final design (right) for two
models describing signal sensing in dictyostelium discoideum. One square
represents one measurement time point.
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Figure 8.12.: The robustification gap ∆RG is plotted versus the number of iterations N
of Algorithm 3 for the setup with two models describing signal sensing
in dictyostelium discoideum, with homotopy strategy (left) and without
homotopy strategy (right).
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Figure 8.13.: The objective value of problem PΩN
is plotted versus the number of iter-

ations N of Algorithm 3 for the setup with two models describing signal
sensing in dictyostelium discoideum, with homotopy strategy (left) and
without homotopy strategy (right).
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Figure 8.14.: A selection of design variables calculated as solution of problem PΩN
is

plotted versus the number of iterations N of Algorithm 3 for the setup with
two models describing signal sensing in dictyostelium discoideum, on the
left with homotopy strategy and on the right without homotopy strategy.
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The model system is given by

dy1

dt
=vsP

(KIP )
n

(KIP )
n + (y10)n

− vmP
y1

KmP + y1
− kdy

1

dy2

dt
=ksP y1 − v1P

y2

K1P + y2
+ v2P

y3

K2P + y3
− kdy

2

dy3

dt
=v1P

y2

K1P + y2
− v2P

y3
K2P + y3

− v3P
y3

K3P + y3
+

v4P
y4

K4P + y4
− kdy

3

dy4

dt
=v3P

y3

K3P + y3
− v4P

y4

K4P + y4
− k3y

4y8 + k4y
9−

vdP
y4

KdP + y4
− kdy

4

dy5

dt
=VsT

(KIT )
n

(KIT )
n + (y10)n

− vmT
y2

KmT + y5
− kdy

5

dy6

dt
=ksT y

5 − v1T
y6

K1T + y6
+ v2T

y7

K2T + y7
− kdy

6

dy7

dt
=v1T

y6

K1T + y6
− v2T

y7

K2T + y7
− v3T

y7

K3T + y7
+

v4T
y8

K4T + y8
− kdy7

dy8

dt
=v3T

y7
K3T + y7

− v4T
y8

K4T + y8
− k3y4y8 + k4y9−

vdT
y8

KdT + y8
+−kdy8

dy9

dt
=k3y4y8 − k4y9 − k1y9 + k2y10 − kdCy9

dy10

dt
=k1y9 − k2y10 − kdNy10,

(8.5)

where y1 is linked to “per mRNA” and y5 is linked to “tim mRNA”. The model com-

prises three phosphorylation states, namely 0, 1 and 2 of “PER protein”, which are

associated to y2, y3 and y4, respectively. It also comprises in the same manner three

phosphorylation states of “TIM protein”, which are associated to y6, y7 and y8, re-

spectively. The “PER-TIM-complex” in the cytoplasm is associated to y9, whereas the

“PER-TIM-complex” in the nucleus is associated to y10.

161



8 — Numerical results

i 1 2 3 4 5

yiI,min 1.0391 0.2983 0.2624 0.1697 1.0391

yiI 1.5587 0.4474 0.3936 0.2545 1.5587

yiI,max 2.0783 0.5965 0.5248 0.3393 2.0783

i 6 7 8 9 10

yiI,min 0.2985 0.2638 0.1819 0.0953 0.3730

yiI 0.4477 0.3957 0.2728 0.1429 0.5595

yiI,max 0.5969 0.5276 0.3637 0.1905 0.7460

Table 8.5.: The initial values of yI and the bounds yI,min, yI,max are shown for the math-

ematical model of the circadian oscillator in Drosophila.

Figure 8.15.: The figure shows histograms of the objective function values on a logarith-

mic scale for a sampled set of robustification vectors θr. First, a histogram

is shown for the sample scenario with initial design in blue and second for

the optimized design in red for the model of a circadian oscillator. In any

case, the vertical black line gives a worst case estimate of the objective

function value on a logarithmic scale for the specific design.
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According to [110] and [73], the parameters can be grouped into two sets. The first

one is associated to the local parameters of the circadian system, i.e. parameters which

only affect the circadian clock. These parameters are listed in Table 8.6. The second

one comprises parameter which affect other cellular processes, as well. All these global

parameters are listed in Table 8.7. The local parameters θd ⊂ Θd ∈ Rpd with

θd =
(
n,KIP ,KIT , v1P , v1T , v2P , v2T , v3P , v3T , v4P ,

v4T ,K1P ,K1T ,K2P ,K2T ,K3P ,K3T ,K4P ,K4T

)T

are used as design variables, whereby the optimized design should be robust against the

global ones θr ⊂ Θr ∈ Rpr with

θr =
(
vsP , vsT , vmP , vmT , vdP , vdT ,KmP ,KmT ,KdP ,KdT ,

ksP , ksT , k1, k2, k3, k4, kd, kdC , kdN
)T
.

The initial species concentration vector yI is considered as design vector, too.

For an appropriate objective function J (y(t)), the considered design optimization prob-

lem is given by

min
yI,θd

max
θr

J (y(t))

subject to

dy

dt
= f(y, θd, θr), t ∈ [0, T ],

y(0) = yI,

yI,min ≤ yI ≤ yI,max

θd,min ≤ θd ≤ θd,max,

θr,min ≤ θr ≤ θr,max,

where yI,min, yI,max ∈ R10, θd,min, θd,max ∈ Rpd, θr,min, θr,max ∈ Rpr and yI,min ≤ yI,max,

θd,min ≤ θd,max, θr,min ≤ θr,max, component wise. The objective function J (y(t)) is

defined by

J (y(t)) :=
3∑

k=1

‖yI − y(tk)‖22 with t1 = τ, t1 = 2τ, t3 = 3τ (8.6)

where τ is the desired period of the circadian system. Here, τ is set to 24. For more

details on the design problem we refer to [73].

The initial values of yI and the bounds yI,min, yI,max are shown in Table 8.5. The initial

values of θd and the bounds θd,min, θd,max are shown in Table 8.6. Those of θr and the
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Figure 8.16.: The model states y are shown for the initial design with initial vector θr
for the model of a circadian oscillator.

corresponding bounds θr,min, θr,max are shown in Table 8.7. The algorithmic settings

are summarized in Table 8.8. The optimal design is calculated without the homotopy

strategy of Section 7.4.

The initial design is shown in Figure 8.16. The same design for the worst case realization

of θr within the predefined bounds as given in Table 8.7 is shown in Figure 8.17. The

final solution design is shown in Figure 8.18.

To assess the quality of the calculated design, we draw 10000 samples from a uniform

distribution over the robustification space [θr,min, θr,max] and for each sample we simulate

the circadian model system, given by (8.5), twice.

First, we simulate under the final design conditions, i.e. for the optimal design vectors

ŷI and θ̂d. Second, we simulate under the initial condition for yI and θd. Each time, we

use the drawn sample to define the global parameter vector θr.

For each simulation we calculate the objective function in (8.6) and generate histograms

of the results for both scenarios, shown in Figure 8.15. The histograms clearly show the

increased robustness of the final design in respect of variations in θr.
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i 1 2 3 4 5 6 7 8 9 10

θid,min 0.4 0.1 0.1 0.8 0.8 0.1 0.1 0.8 0.8 0.1

θid 4.0 1.0 1.0 8.0 8.0 1.0 1.0 8.0 8.0 1.0

θid,max 40 10 10 80 80 10 10 80 80 10

i 11 12 13 14 15 16 17 18 19

θid,min 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

θid 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

θid,max 10 20 20 20 20 20 20 20 20

Table 8.6.: The initial values of θd and the bounds θd,min, θd,max are shown for the
mathematical model of the circadian oscillator in Drosophila.

i 1 2 3 4 5 6 7 8 9 10

θir,min 0.8 0.8 0.56 0.56 0.16 0.16 0.16 0.16 0.72 0.72

θir 1.0 1.0 0.7 0.7 0.2 0.2 0.2 0.2 0.9 0.9

θir,max 1.2 1.2 0.84 0.84 0.24 0.24 0.24 0.24 1.08 1.08

i 11 12 13 14 15 16 17 18 19

θir,min 1.6 1.6 0.48 0.16 0.96 0.48 0.008 0.008 0.008

θir 2.0 2.0 0.6 0.2 1.2 0.6 0.01 0.01 0.01

θir,max 2.4 2.4 0.72 0.24 1.44 0.72 0.012 0.012 0.012

Table 8.7.: The initial values of θr and the bounds θr,min, θr,max are shown for the math-
ematical model of the circadian oscillator in Drosophila.

Optimization settings Integrator settings

P δ IPOPT-tol: Step 1./Step 2. relTol/absTol relTolSens/absTolSens
10 10−2 10−8/10−8 10−11/10−13 10−11/10−13

Table 8.8.: On the left hand side the optimization settings are listed comprising the
IPOPT stopping tolerances for Step 1. and Step 2. of Algorithm 3 and
on the right hand side the integration tolerances for the nominal trajec-
tory and the first order sensitivities are listed. We use the IPOPT options
“honor original bounds=no” for Step 1. and Step 2. of Algorithm 3 and
“mu strategy=adaptive” for Step 2. of Algorithm 3.
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Figure 8.17.: The model states y are shown for the initial design and θr is set to the
worst case value for the model of a circadian oscillator.
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Figure 8.18.: The model states y are shown for the optimized design for the model of a
circadian oscillator.
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CHAPTER 9

Conclusion and Outlook

In this work, we present a framework for the robust computation of optimal experimen-

tal designs for the purpose of model discrimination.

First, motivated by a real experimental setup, which is established by a group of experi-

mental biologists, we derive an extended statistical framework, which explicitly contains

the design goals to determine the optimal initial conditions, the number of measurements

and the optimal placements of measurements under the constraint that only one mea-

surement at a time point can be performed. We additionally restrict the placement of a

measurement such that a next measurement can only be placed after a fixed and con-

stant time span. Further, we allow for system perturbations whereby the placement is

also subject to the experimental design. This statistical framework is rigorously derived

from the well known Kullback-Leibler divergence and is translated to a discontinous

semi-infinite optimization problem.

To tackle this semi-infinite optimization problem we develop a smoothing approach to

construct a continuous semi-infinite approximation depending on smoothing parameters,

which control the quality of the approximation. The smoothing approach is theoretically

validated such that any desired quality of the approximation can be achieved.

We develop an algorithm to numerically calculate such optimal designs by utilization

of an Outer Approximations scheme to solve the underlying semi-infinite optimization

problem. A strategy for the numerical stabilization of the algorithm by use of a homo-

topy approach is suggested and implemented.

For two relevant biological settings we successfully apply the developed framework and

calculate experimental designs for various scenarios. In our examples we clearly find
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9 — Conclusion and Outlook

that the homotopy approach is significantly superior to a cold start of successive design

problems PΩN+1
. For the first test case, the discrimination of two models describing

glycolytic oscillations, the Outer Approximations scheme completely fails to reach the

desired accuracy δ without homotopy strategy. For the second test case, the discrim-

ination of two models describing signal sensing in dictyostelium discoideum, the Outer

Approximations scheme also fails without warm start, however the homotopy strategy

works with only two homotopy steps (not presented in this work but the results are

essentially the same). We further successfully apply the robust framework to design a

Circadian Rhythm to set its period in a robust optimal way.

9.1. Outlook and further work

An extension to the statistical scenario for model discrimination, which is presented

in this work, includes the situation to test whether given measurement data can be

explained best by one out of a finite set of probability models based on measures P1,r1 ,

r1 ∈ {1, ...,M1}, against the hypothesis that the measurement can best be explained by

another one out of a second finite set of probability models based on measures P2,r2 ,

r2 ∈ {1, ...,M2}. Each probability model Pj,rj might be parametrized by parameters

θj,rj ∈ Θj,rj ⊂ Rpj,rj , j ∈ {1, 2}.
By calculating

ξ̂ = argmax
ξ∈Ξ

min
r1∈{1,...,M1}
r2∈{1,...,M2}

min
θ1,r1∈Θ1,r1
θ2,r2∈Θ2,r2

I(P2,r2(θ2,r2) : P1,r1(θ1,r1),O1; ξ)

we can get a robust worst case estimate of an optimally discriminating design for the

case of composite null and alternative hypothesis. This is a more realistic setting in the

light of practical applicability.

If the range of each parameter space Θj,rj , rj ∈ {1, ...,Mj}, j ∈ {1, 2}, is large, then the

resulting discriminating design might have poor discriminating power, i.e. each distinct

model adapts very well for some region in the permitted parameter space. Therefore,

it is important to incorporate appropriate restrictions to these parameter sets. These

restrictions should be based on previous knowledge, on the possible and reasonable

parameter range and on current measurement information. This implies that for R

previous measurement runs the parameter sets Θj,rj , rj ∈ {1, ...,Mj}, j ∈ {1, 2}, which
are considered for the calculation of a robust optimal design, have to be restricted such

that each distinct model still fits to previous observations for any parametric realization

of its restricted parameter set. One way to incorporate these restrictions is to replace

(7.33) (i.e. Step 1. in the Outer Approximations scheme for the numerical calculation of
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9.1 — Outlook and further work

the optimal design problem, which is considered in this work) by

(r1, r2, θ̂1,r1,N , θ̂2,r2,N ) = arg min
r1∈{1,...,M1}
r2∈{1,...,M2}

min
θ1,r1∈Θ1,r1
θ2,r2∈Θ2,r2

Ĩ(2 : 1,O1; ξN , θ1,r1 , θ2,r2),

subject to

R∑

i=1

N∑

j=1

wij
(
ytij − y1,r1(θ1,r1 , tij)

)2
< d for r1 ∈ {1, . . . ,M1},

R∑

i=1

N∑

j=1

wij
(
ytij − y2,r2(θ2,r2 , tij)

)2
< d for r2 ∈ {1, . . . ,M2},

where wij are weights associated to the variance of the j-th measurement of measure-

ment run i. The vectors ytij denote the measured values and yj,rj(θj,rj , tij) denote the

responses of a model of the group of null hypothesis candidate models for j = 2 and of

the group of alternative hypothesis candidate models for j = 1, respectively. The scalar

d is a constant defining the allowed degree of lack of fit of the measurement data.

Beside conceptional improvements of the statistical framework, there are plenty possi-

bilities to improve the algorithmic framework, as well. To take a single example, the

homotopy approach to stabilize the Outer Approximations scheme can be further im-

proved by implementing an effective step size control and continuation strategy.
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APPENDIX A

Theoretical background

Definition 23 (Continuous function, Definition 5.1.18 in [91]). Let V be a real normed

space and let S be a convex subset of V.
(a) A function f : V → Rm is said to be continuous at a point x ∈ V, if, for every δ > 0,

there exists a ρ > 0 such that

‖f(x′)− f(x)‖ < δ,∀x′ ∈ B̊(x, ρ).

A function f : V → Rm is said to be continuous (continuous on S) if it is continuous at

all x ∈ V (x ∈ S).

(b) A function f : V → Rm is said to be continuous relative to S (S-continuous), if for

every x ∈ S and for every δ > 0, there exists a ρ > 0 such that

‖f(x′)− f(x)‖ < δ,∀x′ ∈ B̊(x, ρ) ∩ S.

(c) A function f : V → R is said to be upper semicontinuous (u.s.c.) at a point x ∈ V,
if, for every δ > 0, there exists a ρ > 0 such that

f(x′)− f(x) < δ,∀x′ ∈ B̊(x, ρ).

(d) A function f : V → R is said to be u.s.c. (u.s.c. on S) if it is u.s.c. at all x ∈ V
(x ∈ S).
(e) A function f : V → R is said to be upper semicontinuous relative to S (S − u.s.c.),

171



A — Theoretical background

if for every x ∈ S and for every δ > 0, there exists a ρ > 0 such that

f(x′)− f(x) < δ,∀x′ ∈ B̊(x, ρ) ∩ S.

(f) A function f : V → R is said to be lower semicontinuous (l.s.c.) at a point x ∈ V,
if, for every δ > 0, there exists a ρ > 0 such that

f(x′)− f(x) > −δ,∀x′ ∈ B̊(x, ρ).

(g) A function f : V → R is said to be l.s.c. (l.s.c. on S) if it is l.s.c. at all x ∈ V
(x ∈ S).

(h) A function f : V → R is said to be lower semicontinuous relative to S (S − l.s.c.),

if for every x ∈ S and for every δ > 0, there exists a ρ > 0 such that

f(x′)− f(x) > −δ,∀x′ ∈ B̊(x, ρ) ∩ S.

Proposition 7 (Proposition 5.1.19 in [91]). Let V be a real normed space and let S be

a convex subset of V.
(a) A function f : V → Rm is continuous at x∗ if and only if, for any sequence {xi}∞i=0

in V such that xi → x∗, as i→ ∞, f(xi) → f(x∗), as i→ ∞.

(b) A function f : V → Rm is continuous, relative to S, at x∗ ∈ S if and only if, for any

sequence {xi}∞i=0 in S such that xi → x∗, as i→ ∞, f(xi) → f(x∗), as i→ ∞.

(c) A function f : V → R is u.s.c. at x∗ if and only if, for any sequence {xi}∞i=0 in V
such that xi → x∗, as i→ ∞, lim f(xi) ≤ f(x∗).

(d) A function f : V → R is u.s.c., relative to S, at x∗ ∈ S if and only if, for any

sequence {xi}∞i=0 in S such that xi → x∗, as i→ ∞, lim f(xi) ≤ f(x∗).

(e) A function f : V → R is l.s.c. at x∗ if and only if, for any sequence {xi}∞i=0 in V
such that xi → x∗, as i→ ∞, lim f(xi) ≥ f(x∗).

(f) A function f : V → R is l.s.c., relative to S, at x∗ ∈ S if and only if, for any sequence

{xi}∞i=0 in S such that xi → x∗, as i→ ∞, lim f(xi) ≥ f(x∗).

For details we refer to [91].

Definition 24 (Directional derivative, Definition 5.1.30 in [91]). Let V be a real normed

space and suppose that f : V → Rm.

(a) We define the (one-sided) directional derivative of f(·) at a point x ∈ V in the

direction h ∈ V by

df(x;h) := lim
t↓0

f(x+ th)− f(x)

t
,
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if this limit exists. Note that t > 0 is required.

(b) We say that f(·) is directional differentiable at a point x∗ ∈ V, if the directional

derivative df(x∗;h) exists for all h ∈ V.

For details we refer to [91].

Definition 25 (Subgradient, Definition 5.1.31 in [91]). Let H be a real Hilbert space

with inner product 〈·, ·〉.
Suppose that f : H → R is such that the directional derivative df(x, h) exists for all

x, h ∈ H. Then we define the subgradient ∂f(x) ⊂ H of f(·) at point x ∈ H by

∂f(x) := {ξ ∈ H|df(x;h) ≥ 〈ξ, h〉,∀h ∈ H}.

For details we refer to [91].

Definition 26 (Definition 5.2.1 in [91]). A set S ⊂ Rn is said to be convex if for any

x′, x′′ ∈ S and λ ∈ [0, 1], [λx′ + (1− λ)x′′] ∈ S.

For details we refer to [91].

Definition 27 (Definition 5.2.4 in [91]). Let S be a subset of Rn. We say that conv S

is the convex hull of S, if it is the smallest convex set containing S.

For details we refer to [91].

Definition 28 (Definition 5.2.6 in [91]). Let S1, S2 be any two sets in Rn. We say that

the hyperplane

H := {x ∈ Rn|〈x, ν〉 = α},

separates S1 and S2 if

〈x, ν〉 ≥ α, ∀x ∈ S1

and

〈y, ν〉 ≤ α, ∀y ∈ S2.

The separation is said to be strict if there exists an ǫ > 0 such that

〈x, ν〉 ≥ α+ ǫ, ∀x ∈ S1

and

〈y, ν〉 ≤ α− ǫ, ∀y ∈ S2.
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For details we refer to [91].

Theorem 19 (Separation of Convex Sets in Rn, Theorem 5.2.7a in [91]). Let S1, S2 be

two nonempty convex sets in Rn such that S1 ∩ S2 = ∅. Then there exists a hyperplane

which separates S1 and S2. Furthermore, if S1 and S2 are closed and either S1 or S2 is

compact, then the separation can be made strict.

For details we refer to [91].

Definition 29 (Definition 5.2.8 in [91]). Suppose that S ⊂ Rn is convex. We say that

H = {x|〈x− x̄, ν〉 = 0},

is a support hyperplane to S through x̄ with inward (outward) normal ν if x̄ ∈ S̄ (where

S̄ is the closure of S) and

〈x− x̄, ν〉 ≥ 0 (≤ 0), ∀x ∈ S.

For details we refer to [91].

Definition 30 (Definition 5.2.10 in [91]). A function f : Rn → R is said to be convex

if, for any x′, x′′ ∈ Rn and λ ∈ (0, 1),

f(λx′ + (1− λ)x′′) ≤ λf(x′) + (1− λ)f(x′′).

A function f : Rn → R is said to be strictly convex if, for any x′, x′′ ∈ Rn and λ ∈ (0, 1),

f(λx′ + (1− λ)x′′) < λf(x′) + (1− λ)f(x′′).

A function f : Rn → R is said to be concave (strictly concave) if −f(·) is convex (strictly

convex).

For details we refer to [91].

Theorem 20 (Theorem 5.2.11 in [91]). Suppose that f : Rn → R is convex. Then f(·)
is continuous.

A proof is given in [91].

Definition 31 (Definition 5.2.17 in [91]). Let S ⊂ Rn be a convex set. We define the

support function σS : Rn → R of S by

σS(h) := sup{〈h, x〉|x ∈ S}.
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Proposition 8 (Proposition 5.2.18 in [91]). Let σS(·) be a support function for the

convex set S ⊂ Rn. Then,

(a) σS(·) is positively homogeneous, i.e. for all λ ≥ 0,

σS(λh) = λσS(h);

(b) σS(·) is subadditive, i.e. for all h1, h2,

σS(h1 + h2) ≤ σS(h1) + σS(h2);

(c) σS(·) is convex; and

(d) if, in addition, S is bounded, then σS(·) is Lipschitz continuous.

For details we refer to [91].

Proposition 9 (Proposition 5.2.19 in [91]). Let S ⊂ Rn be convex and compact. Suppose

that, for a given h ∈ Rn, xh ∈ S is such that σS(h) = 〈h, xh〉. Then

〈x− xh, h〉 ≤ 0, ∀x ∈ S,

i.e., 〈x, h〉 = 〈xh, h〉 is a support hyperplane to S with outward normal h.

For details we refer to [91].

Proposition 10 (Proposition 5.2.20 in [91]). Let σ : Rn → R be a Lipschitz continuous,

positively homogeneous, subadditive function. Then the set

C := {x ∈ Rn|〈x, h〉 ≤ σ(h), ∀h ∈ Rn},

is nonempty, convex, bounded, and closed, and σ(·) is the support function for C.

A proof is given in [91].

Proposition 11 (Proposition 5.2.21 in [91]). Suppose that C and D are two convex and

compact subsets of Rn. Then C ⊂ D if and only if σC(h) ≤ σD(h) for all h ∈ Rn

For details we refer to [91].

Definition 32 (Outer semicontinuous, Definition 5.3.1 in [91]). A set-valued function

(map) f : Rn → 2R
m

is said to be outer semicontinuous (o.s.c.) at x̂, if f(x̂) is closed

and, for every compact set S such that f(x̂) ∩ S = ∅, there exists ρ̂ > 0 such that

f(x) ∩ S = ∅ for all x ∈ B(x̂, ρ̂).

A set valued function f : Rn → 2R
m

is o.s.c. if it is o.s.c. at every x ∈ Rn.
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Definition 33 (Inner semicontinuous, Definition 5.3.2 in [91]). A set-valued function

(map) f : Rn → 2R
m

is said to be inner semicontinuous (i.s.c.) at x̂, if for every open set

G such that f(x̂)∩G 6= ∅, there exists ρ̂ > 0 such that f(x)∩G 6= ∅ for all x ∈ B(x̂, ρ̂).

A set valued function f : Rn → 2R
m

is i.s.c. if it is i.s.c. at every x ∈ Rn.

Definition 34 (Definition 5.3.3 in [91]). A set-valued function f : Rn → 2R
m

is said to

be continuous if it is both o.s.c. and i.s.c..

For details we refer to [91].

Definition 35 (Definition 5.3.6 in [91]). Consider a sequence of sets {Ai}∞i=0 in Rn.

(a) The point x̂ is said to be a limit point of {Ai}∞i=0 if d(x̂, Ai) → 0 as i→ ∞, where

d(x̂, Ai) := inf{‖x− x̂‖|x ∈ Ai},

i.e., if there exist xi ∈ Ai for all i ∈ N, such that xi → x̂, as i→ ∞.

(b) The point x̂ is a cluster point of {Ai}∞i=0 if it is a limit point of a subsequence of

{Ai}∞i=0.

(c) We denote the set of limit points of {Ai}∞i=0 by LimAi and call it the inner limit,

and we denote the set of cluster points of {Ai}∞i=0 by LimAi and call it the outer limit.

(d) We will say that the sets Ai converge to the set A if LimAi = LimAi = A. which we

denote either by Ai → A, as i→ ∞, or by LimAi = A.

For details we refer to [91].

Theorem 21 (Theorem 5.3.7 in [91]). (a) A function f : Rn → 2R
m

is o.s.c. at x̂ if

and only if , for any sequence {xi}∞i=0 such that xi → x̂, as i → ∞, Limf(xi) ⊂ f(x̂).

Morever, f(·) is o.s.c. if and only if its graph G(f) := {(x, y)|y ∈ f(x)} is closed.

(b) Suppose that f : Rn → 2R
m

is such that f(x) is compact for all x ∈ Rn and bounded

on bounded sets. Then f(·) is o.s.c. at x̂ if and only if, for every open set G such that

f(x̂) ⊂ G, there exists a ρ̂ > 0 such that f(x) ⊂ G for all x ∈ B(x̂, ρ̂).

(c) A function f : Rn → 2R
m

is i.s.c. at x̂ if and only if, for any sequence {xi}∞i such

that xi → x̂, as i→ ∞, Limf(xi) ⊃ f(x̂).

A proof is given in [91].

Theorem 22 (Theorem 5.4.3 in [91]). Consider the function

ψ(x) := max
y∈Y (x)

φ(x, y),

with φ : Rn × Rm continuous and Y : Rn → 2R
m

continuous and compact-valued. Let

Ŷ (x) := {y ∈ Y (x)|ψ(x) = φ(x, y)}.
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Then Ŷ (·) is o.s.c and compact-valued. Furthermore, if Ŷ (x) = {ŷ(x)}, a singleton,

then ŷ(·) is continuous at x.

A proof is given in [91].

Theorem 23 (Theorem 5.3.8 in [91]). Suppose that g : Rn×Rm → Rn is continuous and

that Y : Rn → 2R
n

is o.s.c. and bounded on bounded sets. Then the set-valued function

G : Rn → 2R
n

, defined by

G(x) = conv


 ⋃

y∈Y (x)

{g(x, y)}


 , (A.1)

is o.s.c.. Furthermore, the map G(·) is bounded on bounded sets.

A proof is given in [91].

Corollary 5 (Corollary 5.3.9 in [91]). Suppose that g : Rn×Rm → Rn is continuous and

that Y : Rn → 2R
n

is continuous. Then the set-valued function G : Rn → 2R
n

defined by

(A.1) is continuous.

For details we refer to [91].

Theorem 24 (Corollary 5.4.6 in [91]). Consider the function ψ(x) = maxj∈q f j(x),

with f j : Rn → R, j ∈ q := {1, . . . , q}, continuously differentiable. Then,

(a) The directional derivative dψ(x;h) exists for all x, h ∈ Rn and is given by

dψ(x;h) = max
j∈q̂(x)

〈∇f j(x), h〉

where

q̂(x) := {j ∈ q|f j(x) = ψ(x)};

(b) the directional derivative dψ(x;h) is upper semicontinuous, and, for every x ∈ Rn,

the function is positively homogeneous, subadditive, and Lipschitz continuous;

(c) the subgradient ∂ψ(x) of ψ(·) at x ∈ Rn is given by

∂ψ(x) = C := conv


 ⋃

j∈q̂(x)
{∇f j(x)}


 ,

and

dψ(x;h) = max
ξ∈∂ψ(x)

〈ξ, h〉.

Furthermore, ∂ψ(x) is o.s.c..
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A proof is given in [91].

Theorem 25 (Theorem 5.4.8 in [91]). Consider the function ψ : Rn → R defined by

ψ(x) := max
j∈q

ψj(x),

where, for j ∈ q := {1, . . . , q},

ψj(x) := max
y∈Yj

φj(x, y).

Suppose that, for all j ∈ q,

(i) the functions φj : Rn×Rmj → R are continuous and the sets Yj ⊂ Rmj are compact;

(ii) the gradients ∇xφ
j(·, ·) exist and are continuous.

Then,

(a) The directional derivative dψ(x;h) exists for all x, h ∈ Rn, and is given by

dψ(x;h) = max
j∈q̂(x)

(
max
y∈Ŷj(x)

〈∇xφ
j(x, y), h〉

)
= max

j∈q̂(x)
dψj(x;h),

where for j ∈ q,

Ŷj(x) := {y ∈ Yj|φj(x, y) = ψj(x)},

and

q̂(x) := {j ∈ q|ψj(x) = ψ(x)};

(b) The directional derivative dψ(·; ·) is upper semicontinuous, and for every x ∈ Rn,

dψ(x; ·) is positively homogeneous, subadditive, and Lipschitz continuous;

(c) The subgradient ∂ψ(x) is given by

∂ψ(x) = C := conv


 ⋃

j∈q̂(x)
∂ψj(x)


 = conv


 ⋃

j∈q̂(x)
conv


 ⋃

y∈Ŷj(x)

{∇xφ
j(x, y)}






(A.2)

and

dψ(x;h) = max
ξ∈∂ψ(x)

〈ξ, h〉; (A.3)

(d) The subgradient ∂ψ(·) is o.s.c.

Proof. (a) First we show for x, h ∈ Rn that

∣∣∣∣∣limt↓0
ψ(x+ th)− ψ(x)

t

∣∣∣∣∣ <∞
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and ∣∣∣∣limt↓0
ψ(x+ th)− ψ(x)

t

∣∣∣∣ <∞.

Since for j ∈ q, φj(·, y) is local Lipschitz continuous in x since the gradients ∇xφ
j(·, y)

exist and are continuous, and ∇xφ
j(x, ·) is continuous with respect to y ∈ Yj with Yj

compact, there exists a ρ, L > 0 with

|φj(x′, y)− φj(x′′, y)| < L‖x′ − x′′‖, ∀x′, x′′ ∈ B(x, ρ), ∀y ∈ Yj, ∀j ∈ q.

Hence for x′, x′′ ∈ B(x, ρ),

ψ(x′)− ψ(x′′) = φj
′

(x′, y′)− φj
′′

(x′′, y′′)

=
[
φj

′

(x′, y′)− φj
′

(x′′, y′)
]
+
[
φj

′

(x′′, y′)− φj
′′

(x′′, y′′)
]

︸ ︷︷ ︸
≤0

≤ φj
′

(x′, y′)− φj
′

(x′′, y′) ≤ L‖x′ − x′′‖,

where j′ ∈ q̂(x′) j′′ ∈ q̂(x′′) and y′ ∈ Ŷj′(x
′) y′′ ∈ Ŷj′′(x

′′). Interchanging x′ and x′′

above, we conclude that ψ(·) is local Lipschitz continuous. Hence, for x, h ∈ R,

−L‖h‖ ≤ lim
t↓0

ψ(x+ th)− ψ(x)

t
≤ lim

t↓0
ψ(x+ th)− ψ(x)

t
≤ L‖h‖.

Next, since φj(x, y) ≤ ψ(x) for all j ∈ q, y ∈ Yj , we obtain that for t > 0,

ψ(x+ th)− ψ(x)

t
= max

j∈q

(
max
y∈Yj

φj(x+ th, y)− ψ(x)

t

)

= max
j∈q̂(x+th)

(
max

y∈Ŷj(x+th)

φj(x+ th, y)− ψ(x)

t

)

≤ max
j∈q̂(x+th)

(
max

y∈Ŷj(x+th)

φj(x+ th, y)− φj(x, y)

t

)

Now the functions gj(t, y) := [φj(x + th, y) − φj(x, y)]/t are continuous, provided we

define gj(0, y) = dxφ(x, y;h), for all j ∈ q. Since Ŷj(·) are o.s.c by Theorem 22, it

follows from Theorem 6 that the max functions g̃j(t),

g̃j(t) := max
y∈Ŷj(x+th)

gj(t, y) =





max
y∈Ŷj(x+th)

φj(x+ th, y)− φj(x, y)

t
, t > 0,

max
y∈Ŷj(x)

dxφ(x, y;h), t = 0,
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for h ∈ Rn and j ∈ q are u.s.c.. Hence

lim
t↓0

ψ(x+ th)− ψ(x)

t
≤ max

j∈q̂(x)

(
max
y∈Ŷj(x)

〈∇xφ
j(x, y), h〉

)
. (A.4)

Second,

ψ(x+ th)− ψ(x)

t
= max

j∈q

(
max
y∈Yj

φj(x+ th, y)− ψ(x)

t

)

≥ max
j∈q̂(x)

(
max
y∈Ŷj(x)

φj(x+ th, y)− φj(x, y)

t

)
,

because ψ(x) = φj(x, y) for all j ∈ q̂(x) with y ∈ Ŷj(x), and j ∈ q̂(x) ⊂ q with

y ∈ Ŷj(x) ⊂ Y . Hence (by the same arguments as before), we must have that

lim
t↓0

ψ(x+ th)− ψ(x)

t
≥ max

j∈q̂(x)

(
max
y∈Ŷj(x)

〈∇xφ
j(x, y), h〉

)
. (A.5)

Combining (A.4) and (A.5), we conclude that

dψ(x;h) = lim
t↓0

ψ(x+ th)− ψ(x)

t
= max

j∈q̂(x)

(
max
y∈Ŷj(x)

〈∇xφ
j(x, y), h〉

)
.

(b) Since for j ∈ q, Ŷ j(x) are o.s.c and bounded and 〈∇φj(x, y), h〉 are continuous in

(x, y, h), it follows from Theorem 6 that dψ(·; ·) is u.s.c..
To establish that dψ(x; ·) is Lipschitz continuous, we note that for any h′, h′′ ∈ Rn,

dψ(x;h′)− dψ(x;h′′) ≤ max
j∈q̂(x)

(
max
y∈Ŷj(x)

〈∇xφ
j(x, y), h′ − h′′〉

)

≤ max
j∈q̂(x)

(
max
y∈Ŷj(x)

‖∇xφ
j(x, y)‖ ‖h′ − h′′‖

)
.

Reversing h′ and h′′, we see that dψ(x; .) is Lipschitz continuous with Lipschitz constant

L = maxj∈q̂(x)
(
maxy∈Ŷj(x) ‖∇xφ

j(x, y)‖
)
.

dψ(x; ·) is subadditive and positively homogeneous, by inspection.

(c) By Definition 25, the subgradient ∂ψ(x) is defined by

∂ψ(x) := {ξ ∈ Rn|〈ξ, h〉 ≤ dψ(x;h),∀h ∈ Rn}.

Since dψ(x; ·) is subadditive, positively homogeneous and Lipschitz continuous, the ex-

180



pression (A.3) now follows from Proposition 10. Next because

max
j∈q̂(x)

(
max
y∈Ŷj(x)

〈∇xφ
j(x, y), h〉

)
= max

ξ∈C
〈ξ, h〉,

with C defined in (A.2), wee see that the equality in (A.2) follows from Proposition 11.

(d) It follows directly from Theorem 23 that ∂ψ(·) is o.s.c..

Theorem 26 (Implicit Function Theorem, Theorem 5.1.33 in [91]). Suppose that V is

a real normed space and that g : Rl ×V → Rl is k ≥ 1 times continuously differentiable.

If x∗ ∈ Rl and y∗ ∈ V are such that g(x∗, y∗) = 0 and the Jacobian gx(x
∗, y∗) is

nonsingular, then there exist ρx, ρy > 0 and a k-times continuously differentiable funtion

Φ : B(y∗, ρy) → B(x∗, ρx) such that Φ(y∗) = x∗,

Φy(y
∗) = −gx(x∗, y∗)−1gy(x

∗, y∗),

and

g(Φ(y), y) = 0, ∀y ∈ B(y∗, ρy).

For details we refer to [91].

Corollary 6 (Corollary 5.1.34 in [91]). Suppose that g : Rn → Rl is k ≥ 1 times

continuously differentiable and that x∗ ∈ Rn is such that g(x∗) = 0 and gx(x
∗) has row

rank l. Then, given any h 6= 0 in Rn such that gx(x
∗)h = 0, there exists a th > 0 and a

k times continuously differentiable function s : [0, th] → Rn such that (i) s(0) = x∗, (ii)

s′(0) = h, and (iii) g(s(t)) = 0 for all t ∈ [0, th].

A proof is given in [91].

Theorem 27 (Chain Rule Theorem, Theorem 5.4.12 in [91]). Suppose that ψ(x) =

maxj∈q f j(x) with f j : Rn → R continuously differentiable, or that

ψ(x) = max
j∈q

max
y∈Yj

φj(x, y),

with φj : Rn × Rmj → R continuous, ∇xφ
j(·, ·) continuous, and Yj ⊂ Rmj , j ∈ q

compact. If t′ > 0 and s : [0, t′) → Rn is a continuously differentiable function such that

s(0) = x̂ and ṡ(0) = h, and the function σ : [0, t′) → R is defined by σ(t) := ψ(s(t)),

then

dσ(0; 1) = dψ(x̂;h)
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and

∂σ(0) = conv


 ⋃

ξ∈∂ψ(x̂)
{〈ξ, h〉}


 . (A.6)

A proof is given in [91].

Theorem 28 (von Neumann Theorem, bounded version, Corollary 5.5.6 in [91]). Let

φ : Rn×Rm → R be a continuous function such that φ(·, y) is convex for all y ∈ Rm and

φ(x, ·) is concave for all x ∈ Rn, and let Y be a compact, convex subset of Rm. Suppose

that φ(x, y) → ∞, as ‖x‖ → ∞, uniformly in y ∈ Y . Then

min
x∈Rn

max
y∈Y

φ(x, y) = max
y∈Y

min
x∈Rn

φ(x, y).

Morever there exist vectors x0 ∈ Rn and y0 ∈ Y such that

max
y∈Y

φ(x0, y) = φ(x0, y0) = min
x∈Rn

φ(x, y0).

A proof is given in [91].
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