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“In the 1960s and 1970s, students frequently asked, ‘Which kind of repre-

sentation is the best?’ and I usually replied that we’d need more research... But

now I would reply: To solve really hard problems, we’ll have to use several

different representations. This is because each particular kind of data structure

has its own virtues and deficiencies, and none by itself would seem adequate

for all the different functions involved with what we call common sense.”

– Marvin Minsky
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Chapter 1

Introduction

Spatial representation and reasoning is mainly concerned with the reasoning

about our surrounding physical space and has found many applications in

various fields including geographical information systems (GIS), robotic navi-

gation, high level vision, spatial propositional semantics of natural languages,

engineering design, specifying visual language syntax and semantics, common-

sense reasoning about physical systems and document-structure recognition

[24, 20, 23, 9, 33, 37, 1, 2].

There are already various elegant theories of the space developed within

mathematics over the centuries, like (point-set) topology and Euclidean (or

non-Euclidean) geometry, which can provide a sophisticated basis for the rep-

resentation of the space. However, developing and investigating the properties

of algorithms for reasoning with these theories has not been a topic of interest

until the recent attention from certain fields in computer science, especially

from the field of artificial intelligence [23, 16].

The history of formalisms of space can perhaps be dated as back as White-

head’s philosophical perspective on the matter [68]. Many formalisms which
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build on such mathematical theories, especially topology [63, 57, 14, 41, 3],

Euclidean geometry [62, 64, 10, 11, 66], affine geometry [4, 5], metric spaces

[46, 72] and semi-metric structures [28] have been developed since Whitehead’s

work, in order to reason about the space. With the computational analysis of

(some of) these formalisms [40, 46], it has become obvious that there is no

straightforward way of finding practical algorithms which can perform general

reasoning about the space (e.g., full-geometric reasoning) in an efficient man-

ner. This resulted in the natural outcome of developing different formalisms

using less expressive techniques (e.g., relation algebras instead of first-order

logics) aimed at solving particular reasoning problems about the space. For

example, there are exclusive formalisms for reasoning about the size and shape

aspects of the objects [45, 74, 16], formalisms for describing positional infor-

mation [47, 37, 59, 17, 43, 49] or formalisms which deal with the topological

relationships between objects [56, 21, 32, 30, 8, 6, 15, 71] and yet some other,

which are concerned with metric-like [42, 19, 73] or metric [46, 72] information

in the space.

Naturally, the most useful techniques are those which attempt to combine

together some of the different aspects of reasoning about the space in a practical

and computationally feasible way. For example, there are formalisms which

combine distance and orientation information to obtain positional representa-

tion [17, 43, 34]. Yet another example is the combination of topological relation-

ships with ‘time’ in order to achieve spatio-temporal formalisms [38, 12]. From

a higher point of view, formalisms which combine qualitative techniques with

quantitative ones are likely to address real-life problems better than others.

Examples of this include the combination of topology with metric information

[72].

Apart from the fragmentation of formalisms based on the facts related to the
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computational costs of general spatial reasoning algorithms, there are simply

many different ways of reasoning about the space depending on the application

area of interest as well, fuelling the need for even more fragmentation of spatial

formalisms.

Spatial reasoning formalisms appeared in the form of various formal lan-

guages including relation algebras, propositional logics, intuitionistic logics,

modal logics and first-order logics. As a matter of fact, logics which can be

interpretted spatially have been a topic of interest long before the appearance

of logical formalisms that are bred within the field of spatial reasoning and

representation [48]. These naturally include the influential works of Tarski

[62, 63, 64] and Grzegorczyk [40, 41] besides Rescher and Garson’s ‘topological

logic’ [57], von Wright’s ‘logic of place’ [67, 44], Sergeberg’s ‘logic of elsewhere’

[60] and Venema’s ‘compass logic’ [66, 50].

This thesis aims to contribute formalisms in the form of modal and first-

order logics aiming possible applications in different areas of spatial reasoning

where so far no known contributions exist, with the exception of Chapter

21. We investigate important theoretical properties of the introduced logics

like the axiomatisability, completeness, finite model property, decidability and

computational complexity.

In Chapter 2, we introduce logics of comparative distances. Many for-

malisms in the literature have been devoted to capture the common-sense

relationships between objects by using topology (see Figure 1.1). Although

topology is a very attractive model for common-sense reasoning about the

space due to its computational feasibility, there are many areas where a purely

topological representation remains simply inadequate. For example, when two

objects are apart from each other (or when they are ‘disconnected’ in the appro-

1One of the areas that this thesis contributes to, is the distance and metric aspects of the space, for
which very serious research results already exist, especially by Wolter and Zakharyaschev [46, 72].
Our investigations take an alternative path compared to their line of work on the matter.
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priate topological terminology), there is nothing more that can be said about

their relationship to each other: They could be very close to each other or they

could be miles apart from each other –we can not tell the difference. Hence,

there is a certain interest for formalisms that are more expressive than topology

and yet somehow remain less expressive than a fully-metric representation.

Logics of comparative distances aims to improve on this, without introduc-

ing a fully-metric representation of the space. The novel side of the formalism

is that, instead of quantitatively measuring the distances between points in the

space (from which the distance between objects can be obtained), it compares

the distances between objects, e.g., ‘if my arm can reach to my computer but not

to my desk lamp, then the distance between me and the desk lamp is greater

than the distance between me and my computer.’ We employ modal and first-

order logic formalisms to perform this kind of spatial reasoning and investigate

their logical and computational properties.

x
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x y

yx

yx

yx

DC(x,y)
EC(x,y) PO(x,y)

EQ(x,y)

TPP(x,y)

NTPP(x,y)

NTPP−1(x,y)
yx

TPP−1(x,y)

Figure 1.1: A commonly used topological representation of relationships be-
tween objects. Eight relations, mostly referred to as the ‘RCC-8 relations.’

In Chapter 3, we present a modal logic formalism which can talk about
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angles. Our underlying goal in constructing this logic is not only to obtain a

formalism which can reason about mere angles, but to contribute the devel-

opment of logical formalisms of trigonometry which will eventually deal with

angles.

Trigonometry has an enormous variety of applications. The ones mentioned

explicitly in textbooks and courses on trigonometry are its uses in practical

endeavors such as navigation, land surveying and building. It is also used

extensively in a number of academic fields, primarily mathematics, science and

engineering. But perhaps trigonometry is known chiefly for its application

to measurement problems. A particular application of trigonometry can be

observed at the ‘Canadarm2’ robotic manipulator on the International Space

Station, which is operated by controlling the angles of its joints. Calculating the

final position of the tip of the arm requires repeated use of the trigonometric

functions of those angles. See Figure 3.3 for an actual picture of the robotic arm.

An example of common-sense reasoning tasks which we would like to

tackle by using trigonometric formalisms is as follows (see Figure 1.2 for the

illustration): Person A and person B are on the shores of opposite sides of a

river, which has a total width of d meters. If B is standing at a degrees of angle

with respect to A when A is facing directly the opposite side of the river, then

what is the distance between A and B?

Unfortunately, the angular modal logic presented in this thesis deals only

with the angle side of the problem. More precisely, our formalism is only able

to reason about the angle information within triangles induced by every trio of

points in the space and not the distance information between points. Although

there is a discussion at the end of Chapter 3 on how angles and distances can

be combined in a single formalism, this major but important task is a part of

the future research agenda.
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Figure 1.2: A practical use of trigonometry: Calculating the distance between
two points on the sides of a river, with the only knowledge of the width of the
river and an angle.

For the modal language, we use binary modal operators with the usual

Kripkean semantics, e.g., ‘ϕ holds at somewhere and ψ holds at somewhere

else, with a degrees of angle in between about here.’ As we will show in the

chapter, it becomes a trivial task to express the useful qualitative notions of

collinearity and betweenness as well, within this paradigm.

Despite formalisms of distances have been studied extensively (both in qual-

itative and quantitative settings), formalisms that talk about angles and more

importantly, formalisms which can perform reasoning on the combination of

distances and angles have not been studied in the setting of formal logic. Given

the importance of trigonometric reasoning and its wide areas of possible appli-

cations, angular modal logic is an important step in the direction of developing

formalisms for trigonometric reasoning.
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Chapter 2

Logics for Reasoning with

Comparative Distances

2.1 Introduction

In this chapter we deal with the revitalization of Theodore de Laguna’s notion of

‘can-connect’, with the purpose of developing first-order and modal logical for-

malisms that have the ability to represent and reason with comparative distance

information. In other words, we are interested in formalisms of qualitative

distance information, in contrast to the formalisms of quantitative nature. La-

guna’s original idea appears in an article [28] which he regards as an appendix

to his “revisit to the basic elements of mathematical geometry from the window

of actual human experience” (in contrast to the abstract space, which is usually

the case with most of the mathematical representations) [26, 27].

At the heart of Laguna’s work lies his ontology built on the notion of ‘solids.’

This is actually very similar to other terms such as ‘individuals’, ‘regions’ and

‘volumes’, that can be easily found throughout the spatial reasoning literature
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and refer to the very same type of ontological basis as intended by this term.

Especially from a philosophical point of view, the discussion regarding the

choice of suitable ontologies for spatial formalisms played an important role

in the field’s research [62, 14, 39, 53, 22, 21]. As Simons says, the problem is

that, “nobody has ever perceived a ‘point’, or ever will do so, whereas people

have perceived individuals of finite extent” [61]. So, for the researchers of the

field, using an ontological basis like the solids within the formalisms which

aim to represent and reason with our physical surrounding space means an at-

tractive harmony between these formalisms and what they claim to be talking

about. Unfortunately, choosing such an approach over point-based represen-

tations implies abandoning the comfort provided by using well-established

mathematical theories.

The intended semantics of the can-connect notion is described as follows by

Laguna: A solid a can-connect two other solids, say b and c, whenever a can

be moved into simultaneous contact with solids b and c, while all the solids a, b

and c remain deformation-free during this process.

By using this notion, very simple but effective distance measurements be-

tween solids can be introduced in a very natural way. If a can-connect solids b

and c, but it can not d and e, then this implies that solid b is nearer to c, than d

is to e. From here, the notion of ‘equidistant’ can also be trivially defined.

This method of dealing with distances has three main advantages: Firstly,

we are able to handle the distance information between solids (instead of points)

in a natural way. Secondly, we do not need to incorporate any numeric pa-

rameters or values into the formalisms which encompass can-connect, hence

allowing mathematically simple and elegant theories to be formed. Thirdly, we

are able to compare two distances within the formalisms utilising can-connect,

in other words, we can make statements of the form “the distance between a
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and b is greater than the distance between c and d”. This is important because as

the work of Wolter and Zakharyaschev on quantitative distance logics shows,

without the use of a notion like can-connect, comparison of distances within

formalisms is actually very difficult, if not impossible [72].

From a general perspective, the idea of formalisms designed to talk about

distances is certainly not new [57, 67, 60, 44], given the core importance of

distance data in many applications, especially the ones dealing with the physical

space. This is because distance information allows one of the most basic types

(besides topology) of relationships between spatial entities to be established.

For example, with detailed distance information, one can represent and reason

about the size and shape of the objects [23]. Even non-Euclidean distances

are of interest in computer science: In the development of ‘logics of similarity’

in the field of approximate reasoning [29, 35], similarity measures are used to

classify various sets of objects [18] and require reasoning in metric spaces that

are non-Euclidean.

The investigation of the theoretical properties of reasoning with distances

came with a more recent line of work, which studies knowledge representation

formalisms in the form of a combination of modal and description logics and

investigates their computational properties [46, 72]. Theoretical and in partic-

ular computational properties of distance formalisms have not been addressed

throughly in any other work except the aforementioned studies.

We propose logics from two types of languages in which we embed can-

connect: First, we embed the ternary can-connect relation into a first-order

language and interpret it using standard metric spaces. We provide a finite

axiomatisation of the resulting first-order logic. Our axiomatisation provides

‘mereology’ as a sub theory. This can be compared to the case of spatial theories

where the topological ‘connection’ primitive allows the definition of mereology

15



as a sub theory [3]. Moreover, our first-order logic allows the construction of the

new solids from the old ones as well, e.g., given solids a and b, the sum (union)

of a and b, the product (intersection) of a and b and their complements can be

easily defined inside the theory. This implies that one can make expressions of

the form “the sum of solids a and b can-connect the solids c and d”.

In the rest of the chapter, we introduce multi-modal languages with the usual

Kripkean semantics. These languages mainly consist of a polyadic modality

of the form 〈CC〉(ϕ,ψ), with the intended semantics that “here can connect

somewhere ϕ and somewhere ψ.” Then, we extend this language by adding

more modal operators in order to be able to talk about the lengths of solids.

By the length of a solid, we mean the greatest distance between the points of a

solid. This new language comes with a parameter set for lengths and nullary

modalities of the form 〈L=x〉 and 〈L<x〉, for each parameter x. The intended

meanings of these modal operators are as expected “the length of this solid is

equal to x” and “the length of this solid is less than x,” respectively. The main

results of these investigations are that both modal logics have a satisfiability

problem that is NP-complete. Moreover, we show that the first modal logic can

be finitely axiomatised.

This chapter is organised as follows: In Section 2.2, we introduce the first-

order formalism and provide a semantically complete, finite axiomatisation.

In Section 2.3, we concentrate on the modal formalism embracing the notion

of can-connect and show that this modal logic is finitely axiomatisable, has

the finite model property and that it is decidable. Moreover, we prove that

this modal logic has an NP-complete satisfiability problem. In Section 2.4, we

extend the modal logic of can-connect and incorporate the notion of lengths

for solids. Our results show that this logic enjoys the finite model property,

decidability and an NP-complete satisfiability problem as well. We finish with
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Section 2.5, where we summarize our achievements and discuss future research

topics.

2.2 First-Order Comparative Distance Logic

The goal of this section is to develop a first-order logic which can talk about

distance information in a qualitative and cognitively plausible manner, parallel

to the main scheme of this chapter. As a part of this section, we will introduce

the semantic structure which we will be working with throughout the entire

chapter. The structure in question has the novelty of embedding the notion

of ‘individuals’ (in contrast to points) inside the concept of a metric space.

Distance information among the individuals will be handled with the help of

Laguna’s notion of can-connect. Unfortunately, one of the main results of this

section will be that despite its simplicity, reasoning about qualitative distances

via such structures in a first-order setting is computationally infeasible.

2.2.1 Language and Semantics

We begin by introducing the first-order language L1, which has the usual

properties that can be expected from a first-order language. L1 contains de-

numerably many variable symbols, which we generally denote by x, y, z, . . .

etc. and denumerably many constant symbols, which we generally denote by

c1, c2, c3, . . . etc. A term in the language L1 is either a variable or a constant.

Naturally, L1 contains the standard basic boolean operators ∨,¬ and the

proposition constant of verum>, besides the first-order existential quantifier ∃.

The operators of∧,→,↔,⊥ and ∀ represent the usual duals and shorthands for

the aforementioned basic operators. Finally and most importantly,L1 contains

a non-logical, ternary, primitive relation symbol CC.
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Atomic formulas of L1 are expressions in the form of t1 = t2 or CC(t1, t2, t3),

where t1, t2 and t3 are terms. Arbitrary formulas of L1 are generated in the

usual recursive manner using the basic operators of the language.

The language L1 is interpreted over models based on structures which

consist of a metric space and a set of ‘individuals’. Hence, we call them ‘metric

structures with individuals’. More precisely, we will be dealing with structures

in the following form:

F =
〈
W, d, I

〉
,

where 〈W, d〉 is a metric space and I is a set, members of which are called as

individuals and satisfy the following constraints:

(CNT1) I ⊆ 2W and W ∈ I,

(CNT2) ∀x ∈ I[x , ∅],

(CNT3) ∀p ∈W[{p} ∈ I],

(CNT4) ∀x ∈ I[x ,W⇒∼ x ∈ I],

(CNT5) ∀x ∈ I∀y ∈ I[x ∩ y , ∅ ⇒ x ∩ y ∈ I],

(CNT6) ∀x ∈ I∀y ∈ I[x ∪ y ∈ I].

Now, our models are pairs in the form

M =
〈
F,C
〉
,

where F is a metric structure with individuals and C is a function interpreting

the constants symbols of L1 as individuals from I.

Let α, β be two formulas, t1, t2 be two terms and let a be an assignment func-

tion mapping free occurring variables to the elements of I. The interpretation
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of arbitraryL1 formulas is achieved in the usual inductive manner by defining

a relation of truth |=a as follows:

• M |=a >,

• M |=a α ∧ β iffM |=a α andM |=a β,

• M |=a ¬α iffM 6|=a α,

• M |=a t1 = t2 iff a(t1) = a(t2),

• M |=a CC(x, y, z) iff

∃p1∃p2∃p3∃p4

[
p1 ∈ a(y) ∧ p2 ∈ a(z) ∧ p3 ∈ a(x) ∧ p4 ∈ a(x)∧

d(p1, p2) ≤ d(p3, p4)
]
,

• M |=a ∃xα iffM |=b α where b is an assignment which differs from a, if at

all, only on x.

The class of all metric models with individuals is denoted by M. As usual,

validity (of a formula α) in every metric model with individuals and every

assignment is denoted by writing M |= α.

2.2.2 Axiomatisation

Combining the axioms and inference rules for first-order logic with the axioms

intended to capture the necessary properties of comparative distance logic,

which are given below through AXM1 to AXM10, results with the formation

of a proof system, its theory which we will denote by AxCD1 and denote its

‘relation of proof’ by `. A proof in this proof system is a usual sequence of

sentences of L1 such that each sentence is either an axiom of the system or

derivable from the previous elements of the sequence using modus ponens or
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universal generalisation, in which case we write AxCD1 ` α, where α is the

formula proved.

(AXM1) ∀x∀y[CC(x, y, y)],

(AXM2) ∀x∀y∀z[CC(x, y, z)→ CC(x, z, y)],

(AXM3) ∀x∀y∀z∀p∀q[CC(x, y, z) ∧ ¬CC(x, p, q)→ ¬∃r[CC(r, p, q) ∧

¬CC(r, y, z)]],

(DEF) I(x, y) ≡def ∀z[CC(z, x, y)],

(AXM4) ∀x∀y[∀z[I(x, z)↔ I(y, z)]→ x = y],

(AXM5) ∃x∀y[I(x, y)],

(DEF) P(x, y) ≡def ∀z[I(x, z)→ I(y, z)],

(AXM6) ∀x∀y∃z∀p[I(z, p)↔ [I(x, p) ∨ I(y, p)]],

(AXM7) ∀x∀y[I(x, y)→ ∃z∀p[I(z, p)↔ ∃q[P(q, x) ∧ P(q, y) ∧ I(p, q)]]],

(AXM8) ∀x[∃y¬I(x, y)→ ∃z∀p[I(z, p)↔ ∃q[¬I(q, x) ∧ I(q, p)]]],

(DEF) A(x) ≡def ∀y[P(y, x)→ x = y],

(AXM9) ∀x∃y[A(y) ∧ P(y, x)],

(DEF) AP(x, y) ≡def A(x) ∧ P(x, y),

(DEF) (x, y) ≤ (z, p) ≡def ∀q[CC(q, z, p)→ CC(q, x, y)],

(DEF) (x, y) = (z, p) ≡def (x, y) ≤ (z, p) ∧ (z, p) ≤ (x, y),

(DEF) (x, y) < (z, p) ≡def (x, y) ≤ (z, p) ∧ ¬(x, y) = (z, p),

(AXM10) ∀x∀y∀z[CC(x, y, z)↔ ∃p∃q∃r∃s[AP(p, x) ∧ AP(q, x) ∧

AP(r, y) ∧ AP(s, z) ∧ (r, s) ≤ (p, q)]].
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The first three axioms are very intuitive, they capture the essential properties

of the can-connect notion. Axiom AXM1 states that, any entity can-connect

any other entity with itself. With axiom AXM2, the symmetric feature of can-

connect notion is captured on CC: If an entity can-connect other two entities

y and z, then it also can-connect z and y. AXM3 is the following property of

can-connect: If an entity can-connect a pair of entities and it can-NOT-connect

another pair, then there could be no entity which can-connect the latter pair

and yet can-NOT-connect the former pair.

Axiom AXM4 is the identity axiom. It allows us to determine the identity

of entities based on the primitive non-logical notion of can-connect. Axioms

AXM5, AXM6, AXM7 and AXM8 create new entities from the old ones with

the help of the identity axiom. More precisely, AXM5 entails the existence of a

unique universe which we will denote by U. Given two entities x and y; while

AXM6 entails the existence of a unique entity x + y, AXM7 entails the existence

of a unique entity x ∗ y, whenever we have I(x, y). Finally, AXM8 entails the

existence of a unique entity −x, whenever we have ∃y¬I(x, y).

Many similar axiomatisations can be found in the studies of axiomatic spa-

tial logics. For example, Asher and Vieu present a successful axiomatisation

of the mereotopology (“geometry of common sense”) [3]. However, there are

quite a number of problematic first-order axiomatisation attempts with regard

to their basic logical properties as well [48]. Such problems are often in the

form of inconsistent axiom systems [14] or semantically incomplete systems

[?]. There are even studies with the pursuit of achieving an absolutely com-

plete (in contrast to semantic completeness) first-order axiom systems [7], which

are impossible tasks given the likely undecidability of such logics [40] and the

fact that every absolutely complete and recursively enumerable theory must be

decidable.
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Finally, axiom AXM9 states that every entity contains an atomic entity (en-

tities whose only sub-part is itself) and axiom AXM10 manifests the interaction

between atomic entities and can-connect primitive.

The following lemma will be used in the forthcoming proofs:

Lemma 2.2.1. The following formulas are theorems of AxCD1:

• ¬[(c1, c2) ≤ (c3, c4) ∧ (c3, c4) < (c1, c2)],

• [(c1, c2) ≤ (c3, c4) ∧ (c3, c4) = (c5, c6)]→ (c1, c2) ≤ (c5, c6).

Proof. In order to see through the first claim, note that (c1, c2) ≤ (c3, c4) ∧

(c3, c4) < (c1, c2) is, by definition, equivalent to (c1, c2) ≤ (c3, c4) ∧ (c3, c4) ≤

(c1, c2) ∧ ¬(c3, c4) = (c1, c2), which is again by definition equivalent to (c3, c4) =

(c1, c2) ∧ ¬(c3, c4) = (c1, c2), which is a contradiction.

For the second claim, note that by definition (c1, c2) ≤ (c3, c4)∧(c3, c4) = (c5, c6)

implies that (c1, c2) ≤ (c3, c4) ∧ (c3, c4) ≤ (c5, c6). This obviously implies that

(c1, c2) ≤ (c5, c6). �

2.2.3 Soundness and Completeness Theorems

Overview

Establishing a semantical foundation for any kind of spatial logic is essential.

The lack of such investigations in the study of several spatial logics has been

subject of righteous criticism from within the field [48]. This is because of the

fact that any spatial logic study which lacks necessary semantical investigation,

bears the risk of not being able to capture the type of reasoning it promises to

achieve. In other words, an established semantical foundation guarantees that

a logic is able to represent and reason with the structures that are of interest. For

example, if a formalism is intended for reasoning with distance information,
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we should expect a semantical investigation of this formalism based on metric

spaces.

In this section, we will establish that the first-order comparative distance

logic is sound and complete with respect to the class of all metric structures

with individuals M. While the soundness has a completely standard proof,

completeness proof employs a Henkin-style argument which consists of more

interesting model construction procedures.

For the Henkin style completeness proof, we begin with a set of formulas

and aim to build a model using this set of formulas. This technique uses

Lindenbaum and Saturation Lemmas [52] in order to obtain sufficient amount

of objects to construct the domain of the target model. Namely, with the help of

the mentioned lemmata, it generates a set of witnesses and then, the collection

of equivalence classes defined over this set becomes the domain of a new model.

The novelty of our proof lies in the construction of a metric function over this

domain set. This involves a procedure which inductively assigns a value for a

function for all different pairs from the domain. At the final part of the proof,

we establish that the resulting structure is a metric structure with individuals.

Theorem 2.2.2 (Soundness). Let ϕ be a formula. Then we have that, AxCD1 ` ϕ⇒

M |= ϕ.

Proof. The proof is by induction on the complexity of ϕ. It is sufficient to

establish the base case, which amounts to show that all of the axioms AXM1-

AXM10 are valid on any metric model with individuals. Let,

M =
〈
F,C
〉

be a model where,

F =
〈
W, d, I

〉
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is a metric structure with individuals.

First, let us establish the case of AXM1, i.e., thatM |= ∀x∀y[CC(x, y, y)]. It is

sufficient to show that for every x, y ∈ I, there are p1, p2 ∈ x and p3, p4 ∈ y such

that d(p3, p4) ≤ d(p1, p2). Since x , ∅ , y from CNT2, we can simply pick some

arbitrary p5 ∈ x and p6 ∈ y and set p1 = p2 = p5 and p3 = p4 = p6. But then we

have that d(p1, p2) = d(p3, p4) = 0, which gives us what we want.

Now we focus on the case of AXM2. So we have to show that M |=

∀x∀y∀z[CC(x, y, z)→ CC(x, z, y)]. We will proceed as follows: Suppose that for

some x, y, z ∈ I, there are p1, p2 ∈ x, p3 ∈ y and p4 ∈ z such that d(p3, p4) ≤ d(p1, p2).

But since d is symmetric, it follows that d(p4, p3) ≤ d(p1, p2), which gives us what

we want.

Let us now consider axiom AXM3. This is slightly more complicated than

the previous cases. Assume that for some x, y, z, p, q ∈ I, there are p1, p2 ∈ x,

p3 ∈ y and p4 ∈ z such that d(p3, p4) ≤ d(p1, p2) and on the other hand, for every

p′1, p
′

2 ∈ x, p′3 ∈ p and p′4 ∈ q we have that d(p′1, p
′

2) < d(p′3, p
′

4).

Now, for the sake of a contradiction suppose that there are r ∈ I such that

there are p5, p6 ∈ r, p7 ∈ p and p8 ∈ q such that d(p7, p8) ≤ d(p5, p6) while for every

p′1, p
′

2 ∈ r, p′3 ∈ y and p′4 ∈ z, we have that d(p′1, p
′

2) < d(p′3, p
′

4).

Combining the information we have so far, it easily follows that we have

d(p5, p6) < d(p3, p4) and d(p1, p2) < d(p7, p8). On the other hand, since d(p3, p4) ≤

d(p1, p2), we conclude that d(p5, p6) < d(p7, p8), which contradicts with the fact

that we have d(p7, p8) ≤ d(p5, p6). This ends the case of axiom AXM3.

Before we continue any further, let us establish the fact that for any as-

signment a, we have that M |=a I(x, y) iff a(x) ∩ a(y) , ∅. To see this from left

to right, assume that M |=a ∀z[CC(z, x, y)]. This means that, for every z ∈ I,

there are p1, p2 ∈ z, p3 ∈ a(x) and p4 ∈ a(y) such that d(p3, p4) ≤ d(p1, p2). Then,

suppose that z = {p5} for some p5 ∈ W. But this implies that p1 = p2 = p5 and
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moreover that d(p1, p2) = 0. Hence, we must have d(p3, p4) = 0. So, p3 = p4.

Thus, a(x) ∩ a(y) , ∅. The opposite direction can be easily established by using

a similar argument.

To see the case of axiom AXM4, we will show that for every x, y ∈ Iwe have

that ∀z[x ∩ z , ∅ ⇒ y ∩ z , ∅] ⇒ x ⊆ y. If y = W then we are through. So

assume that y ,W. Then from CNT4, it follows that ∼ y ∈ I. Suppose we have

that for every x, y ∈ I we have that ∀z[x ∩ z , ∅ ⇒ y ∩ z , ∅] and for sake of

a contradiction, also suppose that x * y. From here it follows that x∩ ∼ y , ∅.

But from the hypothesis, this implies that y∩ ∼ y , ∅, which is a contradiction.

The case of AXM6 is trivial once we observe that for every x, y ∈ I we have

that x ∪ y ∈ I from CNT6 and thus, we can always select this as an assignment

for x + y. Now all that needs to be done is to show that for every x, y ∈ I we

have that ∀z[(x ∪ y) ∩ z , ∅ ⇔ [(x ∩ z) , ∅ ∨ (y ∪ z) , ∅], which is a well known

fact itself. A similar proof for the validity of axioms AXM7 and AXM8 can be

easily generated by using the constraints CNT5 and CNT4, respectively. The

case of axiom AXM5 is absolutely trivial.

It is obvious that we haveM |=a A(x) iff a(x) is a singleton. Now, to see the

case of axiom AXM9, let x ∈ I. From CNT2, it follows that x , ∅. Pick p1 ∈ x.

Now from CNT3, it follows that {p1} ∈ I. Hence, we have found a singleton

{p1} such that {p1} ⊆ x.

Before we move into the case of AXM10, assume thatM |=a (x, y) ≤ (z, p). By

definition, we get thatM |=a ∀q[CC(q, z, p)→ CC(q, x, y)]. We will show that this

means min{d(p1, p2) | p1 ∈ a(x), p2 ∈ a(y)} ≤ min{d(p1, p2) | p1 ∈ a(z), p2 ∈ a(p)}.

For the sake of a contradiction, assume not. Then, ∃p1 ∈ a(z),∃p2 ∈ a(p) such

that ∀p3 ∈ a(x),∀p4 ∈ a(y)[d(p1, p2) < d(p3, p4)]. Note that {p1, p2} ∈ I. From here,

it follows that we have M |=b CC(q, z, p) and M 6|=b CC(q, x, y)] where b is an

assignment which differs from a only on q such that b(q) = {p1, p2}. This is a
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contradiction.

Now, finally to see the case of AXM10, assume that for some assignment

a we have M |=a CC(x, y, z). Then there are p1, p2 ∈ a(x), p3 ∈ a(y) and p4 ∈

a(z) such that d(p3, p4) ≤ d(p1, p2). First note that from CNT3, it follows that

{p1}, {p2}, {p3}, {p4} ∈ I. Now, together with the above paragraph it follows

that M |=b AP(p, x) ∧ AP(q, x) ∧ AP(r, y) ∧ AP(s, z) ∧ (r, s) ≤ (p, q) where b is an

assignment which differs from a, if at all, on p, q, r and s such that b(p) = {p1},

b(q) = {p2}, b(r) = {p3} and b(s) = {p4}.

�

We now turn our attention to the completeness of the axiomatic system

AxCD1 with respect to the class of all metric models with individuals. We

begin by remembering one of the standard lemmas in the scheme of Henkin-

style completeness proofs for first-order logics [3]. This lemma naturally has a

standard proof, hence there is no need to provide one here.

Lemma 2.2.3 (Witness or Saturation Lemma). Every AxCD1-consistent set of

sentences Σ can be extended to a saturated set Σ′ in the extension ofL1,L1(c1, c2, . . . ),

such that Σ′ ` ∃xϕ → ϕ[ck/x], for every formula with one free variable ϕ and ck is a

witness for x.

So, we have finally arrived at the core of our completeness argument, the

Henkin Lemma. Henkin Lemma must be provided with a proof. Since the

proof is quite long, it is split into multiple shorter lemmata.

Lemma 2.2.4 (Henkin Lemma). Every AxCD1-consistent, maximal and saturated

set of sentences Γ yields a metric model with individualsM such that for any formula

ϕ, we have thatM |= ϕ iff ϕ ∈ Γ.

Proof. Let γ be a set of AxCD1-consistent set of sentences. It follows from the

Lindenbaum’s Lemma (Lemma 5.0.2) and from the Saturation Lemma (Lemma
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2.2.3) that, we can extend γ to a AxCD1-consistent, maximal and saturated set

of sentences Γ. Now, we have a collection of constants C occurring in Γ. We will

utilise equivalence classes to represent the individuals of our model. In order

to achieve this, we first define the relation ≡ such that for every c1, c2 ∈ C we

have that,

c1 ≡ c2 ⇔ Γ ` c1 = c2.

Clearly, ≡ is an equivalence relation over C. Let us define the equivalence

classes induced by the relation ≡ as follows:

|c1| = {c2 ∈ C | c1 ≡ c2}.

We have now constructed the basic elements of our model. However, in our

models individuals are represented as usual sets of points. So far, we have only

created the elements to stand for individuals. So, we now need to “fill” these

individuals with (appropriate) points.

First, we define the universe -the set of all points- where our individuals

will inherit their points from. We will denote the universe by W and define it

as follows:

W = {c ∈ C | Γ ` A(c)}.

In other words, points are simply derived from the constants which are “syn-

tactically points” according to Γ. Now we have to assign points to the corre-

sponding individuals. We achieve this as follows:

P(|c1|) = {c2 ∈W | Γ ` P(c2, c1)}.

Now, we arrived at the most complicated and important part of the proof:

inducing a metric space over W. More specifically, we have to define a (metric)
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function d : W×W→ R+
∪ {0} such that the existing metric information within

Γ is represented via d.

We will devote a construction procedure which will take points from W as

the input and at the end of the procedure, it will return a function d satisfying

all the constraints we have mentioned in the above paragraph. Before giving

the procedure in detail, we will define some shorthands for simplifying the

specification of the procedure. First, we set up some relations on W ×W. Let

c1, c2, c3, c4 ∈W. Then,

• (c1, c2) v (c3, c4) iff Γ ` (c1, c2) ≤ (c3, c4),

• (c1, c2) @ (c3, c4) iff Γ ` (c1, c2) ≤ (c3, c4) ∧ ¬(c3, c4) ≤ (c1, c2),

• (c1, c2) � (c3, c4) iff Γ ` (c1, c2) ≤ (c3, c4) ∧ (c3, c4) ≤ (c1, c2).

The procedure given below works by considering every different triple of

points from W, one triple in each iteration, until all the combinations of all the

points from W are handled. Given an arbitrary triple of points, say c1, c2 and

c3, there are three values (one for each of the pairs (c1, c2), (c2, c3) and (c1, c3)) to

be assigned by the procedure to the function d. In order to keep a track of the

value-assigned pairs (note that same pairs will most likely occur within many

different triples), they are added into a set as soon as their value is assigned by

the procedure. This “tracking set” is denoted by AVn (Assigned Values), where

n is the number of iterations. Therefore, we will know that the procedure will

quit at the nth iteration, if AVn = {{c1, c2} | c1, c2 ∈W}, i.e., when all possible pairs

are value-assigned. Another similar notation which we will use frequently is

as follows:

d(AVn) = {d(c1, c2) | {c1, c2} ∈ AVn}.

Thus, d(AVn) denotes the set of all values, which are so far assigned by the nth

iteration of the procedure.

28



The assignment of the three values for each pair is done in a certain order.

Namely, before any processing, the procedure orders the pairs based on the

constraints inherited from Γ. For example, if we have that (c1, c2) ≤ (c2, c3) ≤

(c1, c3), then the procedure begins by dealing with the pair {c1, c2} first, then

deals with the pair {c2, c3} in the second order and finally finishes assigning all

three pairs by processing the pair {c1, c3}.

Before we give the procedure in detail, let us finally analyse the underlying

strategy used by the procedure in the construction of d. The procedure has

to achieve two main goals: First of all, the metric constraints inherited from Γ

must be satisfied. Secondly, d must satisfy the necessary constraints in order to

qualify as a metric function.

For the first goal, since R+ is dense, the procedure is always guaranteed

to find appropriate values from R+ to assign for d such that the constrains

inherited from Γ are satisfied.

In order to achieve the second goal, it ensures that in each iteration, the

value picked for the maximal pair is less than twice the value picked for the

minimal pair. This guarantees that the function d we end up with satisfies the

triangle inequality and hence, becomes a metric function. To exemplify this

strategy, consider a triple of c1, c2 and c3 fed into the procedure. Suppose that

(c1, c2) ≤ (c2, c3) ≤ (c1, c3). According to this strategy, an assignment for d is

made such that
d(c1, c3)

2
< d(c1, c2) ≤ d(c2, c3).

As we will establish in the proof below, this implies that d satisfies the triangle

inequality, which is the most crucial condition that d must satisfy in order to

qualify as a metric function.

Technically speaking, the strategy in question is implemented by “tracking”

a dedicated set of values which we will denote by MPVn (Maximal Pair Values),
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where n is the number of iterations. It works as follows: In each iteration, half

of the value assigned for the maximal pair is added into MPVn. In the iterations

that follow, the value to be assigned for the minimal pair is chosen such that it

is greater than all of the elements in MPVn. Now, let us give the construction

procedure in detail.

Construction 2.2.1 (Metric Construction). The procedure consists of two main

parts: The initial part in step 1 and the inductive step 2.

1. Assume that the first input to the procedure is the triple c1, c2, c3 ∈W such

that (c1, c2) ≤ (c2, c3) ≤ (c1, c3).

Pick three arbitrary elements r1, r2, r3 ∈ R+ such that the appropriate ones

of the following constraints are satisfied:

First pick r1 and r2:

• If (c1, c2) @ (c2, c3) then 0 < r1 < r2 < 2 · r1 or,

• if (c1, c2) � (c2, c3) then 0 < r1 = r2.

Now pick r3 (r2 is already picked above):

• If (c2, c3) @ (c1, c3) then 0 < r2 < r3 < 2 · r1 or,

• if (c2, c3) � (c1, c3) then 0 < r2 = r3.

Now make the assignments for the function d as follows:

• d(c1, c2) = d(c2, c1) = r1,

• d(c2, c3) = d(c3, c2) = r2,

• d(c1, c3) = d(c3, c1) = r3.

Set AV1 = {{c1, c2}, {c2, c3}, {c1, c3}} and MPV1 = {
d(c1,c3)

2 }.
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2. The core of the procedure which takes place after the initial step above,

is given in an inductive manner as follows: Assume that n− 1th iteration

has already been executed. If {{c1, c2} | c1, c2 ∈ W} = AVn−1, then quit the

procedure. Otherwise, start executing the nth iteration as follows:

Pick a triple from W, say c1, c2, c3 ∈ W, such that at least one of the

pairs arising from this trio is not an element of AVn−1 -otherwise there

is nothing to do. Suppose that we have the following order among the

pairs: (c1, c2) ≤ (c2, c3) ≤ (c1, c3).

(a) Firstly, assign a value for d on the minimal pair (c1, c2):

If the pair is already processed by an earlier iteration of the proce-

dure, i.e., if {c1, c2} ∈ AVn−1, then skip this step and continue with

step 2b. Otherwise,

i. If ∀{x, y} ∈ AVn−1[(c1, c2) @ (x, y)] then:

• pick r ∈ R+ such that max MPVn−1 < r < min d(AVn−1) and

assign d(c1, c2) = d(c2, c1) = r and,

• set AVn = AVn−1 ∪ {{c1, c2}}.

ii. If ∀{x, y} ∈ AVn−1[(x, y) @ (c1, c2)] then:

• pick r ∈ R+ such that max d(AVn−1) < r < 2 · min d(AVn−1)

and assign d(c1, c2) = d(c2, c1) = r and,

• set AVn = AVn−1 ∪ {{c1, c2}}.

iii. If ∃{x, y} ∈ AVn−1[(c1, c2) � (x, y)] then:

• assign d(c1, c2) = d(c2, c1) = d(x, y) and,

• set AVn = AVn−1 ∪ {{c1, c2}}.

iv. If none of the above is the case then:

• pick r ∈ R+ such that max{d(x, y) | {x, y} ∈ AVn−1 ∧ (x, y) @

(c1, c2)} < r < min{d(x, y) | {x, y} ∈ AVn−1 ∧ (c1, c2) @ (x, y)}
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and assign d(c1, c2) = d(c2, c1) = r and,

• set AVn = AVn−1 ∪ {{c1, c2}}.

(b) Secondly, assign a value for d on the maximal pair (c1, c3):

If the pair is already processed by an earlier iteration of the proce-

dure, i.e., if {c1, c3} ∈ AVn−1, then skip this step and continue with

step 2c. Otherwise,

i. If ∀(x, y) ∈ AVn[(x, y) @ (c1, c3)] then:

• pick r ∈ R+ such that max d(AVn) < r <

min {2 ·min d(AVn), 2 · d(c1, c2)} and assign d(c1, c3) =

d(c3, c1) = r and,

• set AVn = AVn ∪ {{c1, c3}} and MPVn = MPVn−1 ∪ {
d(c1,c3)

2 }.

ii. If ∃(x, y) ∈ AVn[(c1, c3) � (x, y)] then:

• assign d(c1, c3) = d(c3, c1) = d(x, y) and,

• set AVn = AVn ∪ {{c1, c3}} and MPVn = MPVn−1 ∪ {
d(c1,c3)

2 }.

iii. If none of the above is the case then:

• pick r ∈ R+ such that max{d(x, y) | {x, y} ∈ AVn ∧ (x, y) @

(c1, c3)} < r < min{min{d(x, y) | {x, y} ∈ AVn ∧ (c1, c3) @

(x, y)}, 2 · d(c1, c2)} and assign d(c1, c3) = d(c3, c1) = r and,

• set AVn = AVn ∪ {{c1, c3}} and MPVn = MPVn−1 ∪ {
d(c1,c3)

2 }.

(c) Thirdly, assign a value for d on the final pair (c2, c3):

If the pair is already processed by an earlier iteration of the proce-

dure, i.e., if {c2, c3} ∈ AVn−1, then skip this step and end the current

iteration. Otherwise,

i. If ∃{x, y} ∈ AVn[(c2, c3) � (x, y)] then:

• assign d(c2, c3) = d(c2, c3) = d(x, y) and,

• set AVn = AVn ∪ {{c2, c3}}.
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ii. If 2(c)i is not the case then:

• pick r ∈ R+ such that max{d(x, y) | {x, y} ∈ AVn ∧ (x, y) @

(c2, c3)} < r < min{d(x, y) | {x, y} ∈ AVn ∧ (c2, c3) @ (x, y)} and

assign d(c2, c3) = d(c2, c3) = r and,

• set AVn = AVn ∪ {{c2, c3}}.

Now it only remains to make the finishing touch: For every c ∈W set,

d(c, c) = 0.

This ends the construction procedure.

Now, we have to establish that the function d constructed by the procedure

given above is a metric function. First of all, note that from Construction 2.2.1

it is obvious that d satisfies the following two constraints: ∀c1, c2 ∈ W and

r ∈ R+
∪ {0},

• d(c1, c2) = 0 iff c1 = c2 and,

• d(c1, c2) = r iff d(c2, c1) = r.

In other words, it only remains to establish that d satisfies the triangle

inequality. But for this, first we need the following two lemmata:

Lemma 2.2.5. For every c1, c2, c3, c4 ∈W, we have that (c1, c2) v (c3, c4) iff d(c1, c2) ≤

d(c3, c4).

Proof. Let c1, c2, c3, c4 ∈ W and consider the procedure of Construction 2.2.1

by which d is defined. Clearly, we have that {c1, c2}, {c3, c4} ∈ AVm for some

m. So, if we could show that for any n and any {c1, c2}, {c3, c4} ∈ AVn we

have (c1, c2) v (c3, c4) ⇔ d(c1, c2) ≤ d(c3, c4) (i.e., at any step of the construction

procedure, the claim holds for all the pairs processed so far by the construction
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procedure), then we will have the proof we are looking for. The proof of this

claim is by induction on n.

The base case for n = 1 is immediate from step 1 of Construction 2.2.1.

For the inductive step, assume that for any {c1, c2}, {c3, c4} ∈ AVn−1 we have

(c1, c2) v (c3, c4)⇔ d(c1, c2) ≤ d(c3, c4). Now pick {c1, c2}, {c3, c4} ∈ AVn.

If {c1, c2}, {c3, c4} ∈ AVn−1 ⊆ AVn, then we are immediately through by the

induction hypothesis. So, suppose that we have {c1, c2} ∈ AVn−1 and {c3, c4} ∈

AVn −AVn−1. The proof of the alternate case when {c3, c4} ∈ AVn−1 and {c1, c2} ∈

AVn −AVn−1 is very similar.

Firstly, suppose that the pair {c3, c4} is added into AVn via step 2a of the

procedure. In this step, there are four sub-cases based on which a value for

d(c3, c4) is assigned:

In the case of 2(a)i, in order to see through the claim from left to right

direction assume that (c1, c2) v (c3, c4). However, sub-case 2(a)i (when ∀{x, y} ∈

AVn−1[(c3, c4) @ (x, y)]) does not apply here, since we have (c1, c2) v (c3, c4)

and {c1, c2} ∈ AVn−1 by the assumption. Conversely, assume that d(c1, c2) ≤

d(c3, c4). Then since {c1, c2} ∈ AVn−1 it follows that d(c3, c4) < d(c1, c2), which is

a contradiction. So, it is impossible that a value for d(c3, c4) is assigned in step

2(a)i.

In the case of 2(a)ii, in order to see through the claim from left to right

direction assume that (c1, c2) v (c3, c4). Then d(c3, c4) is assigned a value r such

that max d(AVn−1) < r. Therefore, we have d(c1, c2) < d(c3, c4) since {c1, c2} ∈

AVn−1. Conversely, assume that d(c1, c2) ≤ d(c3, c4). Then obviously we have

that (c1, c2) @ (c3, c4), which implies that (c1, c2) v (c3, c4).

In the case of 2(a)iii, in order to see through the claim from left to right

direction assume that (c1, c2) v (c3, c4). Then we have that (c3, c4) � (c5, c6) for

some {c5, c6} ∈ AVn−1 and by the construction such that d(c5, c6) = d(c3, c4). On
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the other hand, since we have (c1, c2) v (c3, c4), it follows from Lemma 2.2.1 that

we also have (c1, c2) v (c5, c6). Using the induction hypothesis, it follows that

d(c1, c2) ≤ d(c5, c6) = d(c3, c4). The opposite direction follows easily using the

induction hypothesis.

In the case of 2(a)iv, in order to see through the claim from left to right

direction assume that (c1, c2) v (c3, c4). Then d(c3, c4) is assigned a value r

such that max{d(x, y) | {x, y} ∈ AVn−1 ∧ (x, y) @ (c3, c4)} < r. Since we have

that (c1, c2) v (c3, c4) and ¬(c1, c2) � (c3, c4) (otherwise step 2a would have been

finalised by the case 2(a)iii), this means that we also have (c1, c2) @ (c3, c4). Since

{c1, c2} ∈ AVn−1, it follows that d(c1, c2) < d(c3, c4). The opposite direction is

obvious.

Secondly, suppose that the pair {c3, c4} is added into AVn via step 2b of the

procedure. In this step, there are three sub-cases based on which a value for

d(c3, c4) is assigned:

In the case of 2(b)i, in order to see through the claim from left to right

direction assume that (c1, c2) v (c3, c4). Then d(c3, c4) is assigned a value r such

that max d(AVn) < r. Therefore, we have d(c1, c2) < d(c3, c4) since {c1, c2} ∈

AVn−1 ⊆ AVn. The opposite direction is obvious.

Alternatively, to see the case of 2(b)ii, first assume that (c1, c2) v (c3, c4).

Then we have that (c3, c4)� (c5, c6) for some {c5, c6} ∈ AVn and d(c3, c4) = d(c5, c6).

Since AVn−1 ⊆ AVn, we have two possibilities: Either {c5, c6} ∈ AVn−1 or {c5, c6} ∈

AVn −AVn−1. In the former case, since we clearly also have that (c1, c2) v (c5, c6)

from Lemma 2.2.1, it follows from the induction hypothesis that d(c1, c2) ≤

d(c5, c6) = d(c3, c4). In the latter case, first notice that {c5, c6} must have been

added to AVn via step 2a of the current (nth) iteration of the procedure. But

it is already established in the previous paragraphs of this very proof that we

have d(c1, c2) ≤ d(c5, c6) in such a case, which gives us what we want, i.e.,
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d(c1, c2) ≤ d(c3, c4).

Conversely, assume that d(c1, c2) ≤ d(c3, c4). Then we have that (c3, c4) �

(c5, c6) for some {c5, c6} ∈ AVn and d(c3, c4) = d(c5, c6). Therefore, d(c1, c2) ≤

d(c5, c6). Since AVn−1 ⊆ AVn, we have two possibilities: Either {c5, c6} ∈ AVn−1

or {c5, c6} ∈ AVn − AVn−1. In the former case, it follows from the induction

hypothesis that we have (c1, c2) v (c5, c6). Then from Lemma 2.2.1 we have

that (c1, c2) v (c3, c4). In the latter case, we note that {c5, c6} must have been

added into AVn via step 2a of the current (nth) iteration of the procedure. But

it is already established in the above paragraphs that we have (c1, c2) v (c5, c6)

under our assumptions. Thus, from Lemma 2.2.1 we get what we are looking

for.

In case 2(b)iii d(c3, c4) is assigned a value r such that max{d(x, y) | {x, y} ∈

AVn ∧ (x, y) @ (c3, c4)} < r. Since we have that (c1, c2) v (c3, c4) and ¬(c1, c2) �

(c3, c4) (otherwise step 2b would have been finalised by the case 2(b)ii), this

means that we also have (c1, c2) @ (c3, c4). Since {c1, c2} ∈ AVn−1 ⊆ AVn, it

follows that d(c1, c2) < d(c3, c4). The opposite direction is obvious.

Thirdly and finally, suppose that the pair {c3, c4} is added into AVn via step

2c of the procedure. In this step, there are only two sub-cases based on which

a value for d(c3, c4) is assigned:

In order to see the cases of 2(c)i and 2(c)ii, first assume that (c1, c2) v (c3, c4).

In case 2(c)i we have that (c3, c4) � (c5, c6) for some {c5, c6} ∈ AVn and d(c3, c4) =

d(c5, c6). Since AVn−1 ⊆ AVn, we have two possibilities: Either {c5, c6} ∈ AVn−1

or {c5, c6} ∈ AVn − AVn−1. In the former case, since we clearly also have that

(c1, c2) v (c5, c6) from Lemma 2.2.1, it follows from the induction hypothesis

that d(c1, c2) ≤ d(c5, c6) = d(c3, c4), so we get what we want. In the latter case, we

first notice that {c5, c6} must have been added to AVn either via step 2a or step

2b of the current (nth) iteration of the procedure. However, we have already
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established in the previous paragraphs that we will have d(c1, c2) ≤ d(c5, c6) in

either situation, which implies that we have what we want. The proof of case

2(c)ii and the proofs of the both cases in the opposite direction have very similar

proofs to the corresponding cases from step 2b above. This completes the proof

of the lemma. �

Lemma 2.2.6. For every n ∈N, for every x ∈MPVn and for every {c1, c2} ∈ AVn, we

have that x < d(c1, c2).

Proof. The proof is by induction on n. The base case for n = 1 is obvious from

step 1 of Construction 2.2.1. For the inductive step, assume that for every

x ∈ MPVn−1 and for every {c1, c2} ∈ AVn−1, we have that x < d(c1, c2). Let

x ∈MPVn and {c1, c2} ∈ AVn. Suppose that {c1, c2} ∈ AVn −AVn−1.

Firstly, suppose that the pair {c1, c2} is added into AVn via step 2a of the

procedure. In this step, there are four sub-cases based on which a value for

d(c1, c2) is assigned:

In case 2(a)i, d(c1, c2) is assigned a value r such that max MPVn−1 < r. So, if

x ∈MPVn−1, then we are easily through.

Alternatively, suppose that x ∈MPVn−MPVn−1. First, note that set MPVn is

only extended in one of the three sub-cases of step 2b. If x is added into MPVn

either in case 2(b)i or in case 2(b)iii, then we obviously have that x < d(c1, c2)

as desired. Now suppose that x is added into MPVn in case 2(b)ii. Then,

we have that x =
d(c3,c4)

2 for some {c3, c4} such that either {c3, c4} ∈ AVn−1 or

{c3, c4} ∈ AVn − AVn−1. The former case ({c3, c4} ∈ AVn−1) implies that we

have max MPVn = max MPVn−1. Using the induction hypothesis, we get that

x ≤ max MPVn = max MPVn−1 < max d(AVn−1) < r, which is what we want.

The latter case ({c3, c4} ∈ AVn −AVn−1) implies that {c3, c4} is added into AVn in

one of the cases of step 2a. But this means that the pair {c3, c4} is actually pair

{c1, c2}. In other words, we have that x =
d(c1,c2)

2 < d(c1, c2).
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In case 2(a)ii, d(c1, c2) is assigned a value r such that max d(AVn−1) < r.

Now, if x ∈ MPVn−1, then from the induction hypothesis it follows that x <

max d(AVn−1) < r. The case of x ∈ MPVn − MPVn−1 has an almost identical

proof to the corresponding part of case 2(a)i in the above paragraph.

In case 2(a)iii, we have that d(c1, c2) = d(c3, c4) for some {c3, c4} ∈ AVn−1. If

x ∈ MPVn−1, then from the induction hypothesis it follows that x < d(c3, c4) =

d(c1, c2). We again leave the proof of case x ∈ MPVn −MPVn−1 since it can be

easily derived from the case of 2(a)i.

Finally, in case 2(a)iv, d(c1, c2) is assigned a value r such that max{d(x, y) |

{x, y} ∈ AVn−1 ∧ (x, y) @ (c1, c2)} < r. If x ∈ MPVn−1, then from the induction

hypothesis it follows that x < max{d(x, y) | {x, y} ∈ AVn−1 ∧ (x, y) @ (c1, c2)} < r

and we are through. Case x ∈ MPVn −MPVn−1 can be derived from the above

corresponding case of 2(a)i.

If the pair {c1, c2} is added into AVn either via step 2b or step 2c, then it

suffices to notice that there is a pair {c3, c4} ∈ AVn − AVn−1 added in step 2a

such that (c3, c4) v (c1, c2) and x < d(c3, c4) as can be derived from the above

paragraphs. Using Lemma 2.2.5, it follows that x < d(c1, c2) as desired. This

completes the proof. �

So now, let us show that d satisfies the triangle inequality. Let c1, c2, c3 ∈ W.

It is sufficient to establish that we have d(c1, c3) ≤ d(c1, c2) + d(c2, c3).

Consider the ordering among the pairs {c1, c3}, {c1, c2} and {c2, c3}. We con-

sider two possibilities: Firstly, suppose that the pair {c1, c3} is not the maximal

pair. This means that we have either (c1, c3) v (c1, c2) or (c1, c3) v (c2, c3). But

then from Lemma 2.2.5, it follows that we have either d(c1, c3) ≤ d(c1, c2) or

d(c1, c3) ≤ d(c2, c3). In either case, we get that d(c1, c3) ≤ d(c1, c2) + d(c2, c3) as

desired.

Secondly, suppose that (c1, c3) is the maximal pair. Now, it is sufficient to
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show that d(c1,c3)
2 ≤ d(c1, c2) and d(c1,c3)

2 ≤ d(c2, c3). From Construction 2.2.1, since

(c1, c3) is the maximal pair, it follows from step 2b that for some n we have that
d(c1,c3)

2 ∈ MPVn and {{c1, c2}, {c2, c3}} ⊆ AVn. Now from Lemma 2.2.6, the desired

result follows immediately. This shows that d satisfies the triangle equality.

As we have already mentioned preceding Lemma 2.2.5, d has all the other

necessary properties and we conclude that the pair 〈W, d〉 is a metric space.

Finally, we are ready to put together our “Henkin model” except that we

need to define the set of individuals. But this can be done easily by setting:

I = {P(|c|) | c ∈ C}.

We first set

F =
〈
W, d, I

〉
and now we give our constructed model as follows:

M =
〈
F,C
〉
,

where C is a function interpreting the constant symbols such that for every

c ∈ C, C(c) = P(|c|).

In order to complete the proof of the Henkin Lemma, we provide the follow-

ing two lemmata, where F andM refers to the structure and model constructed

in the above.

Lemma 2.2.7. Let ϕ be a formula. Then we have thatM |= ϕ iff ϕ ∈ Γ.

Proof. The proof is by induction on the complexity of ϕ. It is sufficient to

establish the base case alone, since the rest of the inductive cases are highly

routine. This amounts to prove that we haveM |= CC(c1, c2, c3) iff CC(c1, c2, c3) ∈

Γ.
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In order to prove the claim in the direction from right to left, assume that

CC(c1, c2, c3) ∈ Γ. It follows from axiom AXM10 that ∃c′1∃c′′1 ∃c′2∃c′3[AP(c′1, c1) ∧

AP(c′′1 , c1) ∧ AP(c′2, c2) ∧ AP(c′3, c3) ∧ (c′2, c
′

3) ≤ (c′1, c
′′

1 )]. Now, by the construction

it can be easily shown that c′1, c
′′

1 ∈ P(|c1|), c′2 ∈ P(|c2|) and c′3 ∈ P(|c3|). Moreover,

from Lemma 2.2.5 we get that d(c′2, c
′

3) ≤ d(c′1, c
′′

1 ). In other words, we have

M |= CC(c1, c2, c3) as desired.

Conversely, suppose thatM |= CC(c1, c2, c3). Then∃c′1 ∈ P(|c1|), ∃c′′1 ∈ P(|c1|),

∃c′2 ∈ P(|c2|) and ∃c′3 ∈ P(|c3|) such that, d(c′2, c
′

3) ≤ d(c′1, c
′′

1 ). On the other hand, it

follows from the construction that AP(c′2, c2), AP(c′1, c1) , AP(c′′1 , c1) and AP(c′3, c3).

Moreover, from Lemma 2.2.5, we get that (c′2, c
′

3) v (c′1, c
′′

1 ). Now it follows from

axiom AXM10 and the maximal consistency of Γ that we have CC(c1, c2, c3) ∈ Γ

as desired. This completes the proof. �

Lemma 2.2.8. F satisfies all constraints CNT1- CNT6, i.e., F is a metric structure

with individuals.

Proof. Let us begin by establishing that CNT1 is satisfied over F. By definition,

we have that P(|c|) ⊆W for every c ∈ C. So, we clearly have that I ⊆ 2W. On the

other hand, from axiom AXM5 it follows that U ∈ C and ∀c ∈ C we have that

Γ ` P(c,U). By definition, this entails that P(|U|) = W. Hence, W ∈ I as desired.

Now lets show the case of CNT2. Let some arbitrary c1 ∈ C. We will

show that P(|c1|) , ∅. However, from axiom AXM9 we immediately get that

∃c2[A(c2) ∧ P(c2, c1)]. So it follows that c2 ∈ P(|c1|). This proves CNT2.

To see the case of CNT3, let c1 ∈ W. Then by definition we have that

Γ ` A(c1). In other words, Γ ` ∀x[P(x, c1) → c1 = x]. However, this means that

P(|c1|) = {c1}. Since P(|c1|) ∈ I, the desired result follows.

We will finally establish that CNT6 is satisfied by F. The cases of CNT4 and

CNT5 follow in a very similar way. Let x, y ∈ I. By definition, it follows that
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∃c1 ∈ C, ∃c2 ∈ C such that x = P(|c1|) and y = P(|c2|). On the other hand, from

axiom AXM6 we derive that ∃c3 ∈ C such that ∀p[I(c3, p)↔ [I(c1, p) ∨ I(c2, p)]].

Let z ∈ P(|c1|) ∪ P(|c2|). We will show that z ∈ P(|c3|). First assume that

z ∈ P(|c1|) (the case of z ∈ P(|c2|) can be established in a similar way). Then

by definition we get that AP(z, c1). This implies that I(c1, z) from the definition

of predicate P. So it follows that I(c3, z). However, since A(z), it follows from

axiom AXM7 and the definition of predicate A that P(z, c3). So we finally get

that z ∈ P(|c3|) as desired.

Conversely assume that z ∈ P(|c3|). So we have that AP(z, c3) and from here

that I(z, c3). Therefore, I(c1, z) ∨ I(c2, z) from axiom AXM7. Since A(z), it follows

that P(z, c1) ∨ P(z, c2). In other words, we have either z ∈ P(|c1|) or z ∈ P(|c2|),

i.e., z ∈ P(|c1|) ∪ P(|c2|). �

With Lemma 2.2.8, we also complete the proof of the Henkin Lemma. �

Now we finally conclude that,

Theorem 2.2.9 (Completeness). Let ϕ be a formula. Then we have that M |= ϕ ⇒

AxCD1 ` ϕ.

Proof. Follows directly from Lindenbaum’s Lemma (Lemma 5.0.2), Saturation

Lemma (Lemma 2.2.3) and the Henkin Lemma (Lemma 2.2.4). �

2.3 Modal Comparative Distance Logic

This section is dedicated to the development of a modal logic formalism which

can talk about distance information in a comparative and qualitative manner,

as we have done with the first-order logic in the previous section. The biggest

difference between this section and the previous one is naturally the use of a

much less expressive -hence, computationally much more feasible- language to
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talk about essentially identical semantic structures, i.e., metric structures with

individuals.

2.3.1 Language and Semantics

We will use a modal language containing denumerably many proposition let-

ters, the set of which will be denoted by P and its elements by p, q, r, . . . and

the usual basic boolean operators ∨ and ¬, together with the standard propo-

sition constants > and ⊥. The main component of the language is the polyadic

modal operator 〈CC〉(α, β) (‘here can-connect somewhere which α and some-

where which β’). We denote this language byL[〈CC〉]. As we will demonstrate

shortly, the ‘global modality’ or the standard S5 modal operator ∃ can be easily

defined in the modal comparative distance logic. The duals of the modalities

〈CC〉 and ∃ are denoted by [CC] and ∀, respectively.

Despite of the fact that the modal operator ∃ can be obtained from the

language outlined above, in some cases we will need a language which explic-

itly contains this S5 operator. This language, extending the language L[〈CC〉]

merely with the S5 operator ∃, will be denoted by L[〈CC〉,∃].

Formulas of modal comparative distance logic are interpreted using a ‘com-

parative distance frame,’ which can be given by a pair:

F =
〈
W,CC

〉
where W is the domain set the elements of which (‘states’) represent ‘individ-

uals’ and CC is a ternary accessibility relation over W ×W ×W which will be

used to interpret the binary 〈CC〉 modality. A comparative distance frame F

satisfies the following constraints:

(CNT1) ∀w∀u[CC(w,u,u)],
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(CNT2) ∀w∀u∀v[CC(w,u, v)⇒ CC(w, v,u)],

(CNT3) ∀w∀u∀v∀y∀z[CC(w,u, v) ∧ ¬CC(w, y, z)⇒

¬∃t[CC(t, y, z) ∧ ¬CC(t,u, v)]].

Therefore, a comparative distance model based on a comparative distance

frame F is as usual a pair:

M =
〈
F,V
〉

where V is a valuation function such that V : P → 2W, mapping proposition

letters to sets of states. Now, we are finally ready to give the interpretation of

L[〈CC〉,∃] formulas by defining a relation of truth in the usual inductive way.

For all formulas α, β, every w ∈W and p ∈P ,

• M,w |= p iff w ∈ V(p),

• M,w |= α ∧ β iffM,w |= α andM,w |= β,

• M,w |= ¬α iffM,w 6|= α,

• M,w |= ∃α iff ∃u[M,u |= α],

• M,w |= 〈CC〉(α, β) iff ∃u∃v[CC(w,u, v) andM,u |= α andM, v |= β].

We denote the class of all comparative distance frames by F and the class

of all comparative distance models by M. We will write M |= ϕ, to denote

the validity of the formula ϕ over every comparative distance model. ‘Modal

comparative distance logic’ is the set of formulas of the languageL[〈CC〉] valid

on every comparative distance model. Similarly, ‘modal comparative distance

logic with global modality’ is the set of formulas of the language L[〈CC〉,∃]

valid on every comparative distance model.

Note that, under the given semantics and in particular the constraint CNT1,
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we can always define the ‘global modality’ as follows:

∃ϕ B 〈CC〉(ϕ,ϕ).

2.3.2 Finite Model Property and Decidability

Overview

In this section, we will show that the modal logic introduced in the previous

section enjoys ‘strong finite model property’ with respect to the class of all com-

parative distance models. In Section 2.3.1, we defined two modal languages,

L[〈CC〉] and L[〈CC〉,∃], the latter of which is a simple extension of the for-

mer with the ‘global modality’. It is a well known fact that some properties

of modal logics like the finite model property, are commonly shared with the

logics which extend them by the global modality (Blackburn et al. [13], Theo-

rem 7.8, pg. 422). Since L[〈CC〉,∃] is merely an extension of L[〈CC〉] by the

‘global modality’ ∃, it would be sufficient to establish that the modal compar-

ative distance logic has the strong finite model property in order to conclude

that the modal comparative distance logic with global modality also has the

strong finite model property.

The proof that modal comparative distance logic has the strong finite model

property is a standard one based on the filtration technique. For this, we will

provide a procedure which constructs a finite modelMFin for any given model

M and formula ϕ such that, ϕ is satisfied inM iff ϕ is satisfied inMFin. Let us

now start giving the details of this construction procedure.

Construction 2.3.1. We say that a set of formulas Σ is ‘symmetry-closed’ iff we

have that,

〈CC〉(α, β) ∈ Σ iff 〈CC〉(β, α) ∈ Σ.
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Let Σ be a finite, symmetry and subformula closed set of formulas and M =

〈W,CC,V〉 be a comparative distance model. We begin by defining a relation

over W ×W, which we will denote by ≡Σ. For every w,u ∈W, set:

w ≡Σ u iff ∀ϕ ∈ Σ[M,w |= ϕ⇔M,u |= ϕ].

In plain words, ≡Σ is the modal equivalence relation with respect to the set of

modal formulas Σ. It is obvious that ≡Σ is an equivalence relation. We denote

the equivalence class of a w ∈W induced by this relation with |w|. We will now

define the modelMFin bye the ‘filtration ofM through Σ’.

First of all, set the following:

• WFin = {|w| | w ∈W};

• CCFin(|w|, |u|, |v|) iff for every〈CC〉(ϕ,ψ) ∈ Σ

[
[M,u |= ϕ andM, v |= ψ]⇒M,w |= 〈CC〉(ϕ,ψ)

]
;

• For every p ∈P such that p ∈ Σ, VFin(p) = {|w| |M,w |= p}.

Now finally set,

MFin =
〈
WFin,CCFin,VFin

〉
,

as the filtration ofM through Σ. It is a trivial task to establish that the conditions

of Definition 5.0.5 are satisfied.

Let Σ be a finite, symmetry and subformula closed set of formulas and let

M = 〈W,CC,V〉 be a comparative distance model. IfMFin = 〈WFin,CCFin,VFin
〉

is the filtration ofM through Σ, then we have the following three lemmata:

Lemma 2.3.1. For every formulaϕ ∈ Σ and every state w ∈W, we have thatM,w |= ϕ

iffMFin, |w| |= ϕ.
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Proof. The proof is by induction on the complexity of ϕ. The base case is trivial

from Construction 2.3.1 and the boolean cases are straightforward. So, it only

remains to establish the modal case when ϕ = 〈CC〉(α, β).

To see it from left to right, assume thatM,w |= 〈CC〉(α, β). Then we have that,

∃u∃v[CC(w,u, v)∧u |= α and v |= β]. From here and from the basic properties of

filtrations (see Definition 5.0.5), it follows that we have CCFin(|w|, |u|, |v|). More-

over, from the induction hypothesis it follows thatMFin, |u| |= α andMFin, |v| |= β.

Hence, we get thatMFin, |w| |= 〈CC〉(α, β) as desired.

Now in order to see it in the opposite direction, assume that we have

MFin, |w| |= 〈CC〉(α, β). So, ∃|u|∃|v|[CCFin(|w|, |u|, |v|)∧MFin, |u| |= α andMFin, |v| |=

β]. Note that we have 〈CC〉(α, β) ∈ Σ. Moreover, from the induction hypothesis

we have thatM,u |= α andM, v |= β. So, it follows from Construction 2.3.1 that

M,w |= 〈CC〉(α, β). This completes the proof of the lemma. �

Lemma 2.3.2. MFin is a comparative distance model.

Proof. It is sufficient to establish that FFin = 〈WFin,CCFin
〉 is a comparative

distance frame, which amounts to show that the frame constraints CNT1-CNT3

hold over FFin.

Let us first establish that CNT1 is satisfied over FFin. Let |w|, |u| ∈ WFin

and pick some 〈CC〉(α, β) ∈ Σ. Suppose that M,u |= α and M,u |= β. Since F

satisfies the frame constraint CNT1, it follows that we have CC(w,u,u). Hence,

M,w |= 〈CC〉(α, β). From Construction 2.3.1, we derive that CCFin(|w|, |u|, |u|) as

desired.

Let us now consider the case of CNT2. Let |w|, |u|, |v| ∈ WFin and suppose

that CCFin(|w|, |u|, |v|). In order to see that we have CCFin(|w|, |v|, |u|), pick some

〈CC〉(α, β) ∈ Σ and assume that M, v |= α and M,u |= β. Since Σ is symmetry-

closed, we have that 〈CC〉(β, α) ∈ Σ. From the hypothesis and Construction

2.3.1, it follows that we have M,w |= 〈CC〉(β, α). Since F satisfies CNT2, it is
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easy to see that this impliesM,w |= 〈CC〉(α, β). Hence, from Construction 2.3.1,

we get that CCFin(|w|, |v|, |u|).

Finally we address the case of CNT3. Let |w|, |u|, |v|, |y|, |z| ∈ WFin and sup-

pose that we have CCFin(|w|, |u|, |v|)∧¬CCFin(|w|, |y|, |z|). For sake of a contradic-

tion, suppose that ∃|t| ∈WFin such that ¬CCFin(|t|, |u|, |v|) ∧ CCFin(|t|, |y|, |z|).

From here, it follows that there is a 〈CC〉(α, β) ∈ Σ such that M, y |= α and

M, z |= β and M,w 6|= 〈CC〉(α, β). Since we also have that CCFin(|t|, |y|, |z|) from

the hypothesis, it follows thatM, t |= 〈CC〉(α, β). In the very same way, there is

a formula 〈CC〉(γ, δ) ∈ Σ such thatM,u |= γ andM, v |= δ andM, t 6|= 〈CC〉(γ, δ).

On the other hand, from the hypothesis it follows thatM,w |= 〈CC〉(γ, δ).

To summarise, we have that M, t |= 〈CC〉(α, β) ∧ ¬〈CC〉(γ, δ) and M,w |=

〈CC〉(γ, δ)∧¬〈CC〉(α, β). Now it is easy to see that this contradicts with the fact

that F satisfies CNT3. This completes the proof of the lemma. �

Lemma 2.3.3. The size ofMFin is exponential in the size of Σ, i.e., |WFin
| ≤ 2|Σ|.

Proof. Define a function f : WFin
→ 2Σ such that for every |w| ∈WFin we have,

f (|w|) = {ϕ ∈ Σ |MFin,w |= ϕ}.

It is sufficient to show that f is a well-defined and injective function. To see

that f is well-defined, let |w|, |u| ∈WFin and suppose that |w| = |u|. By definition,

this means that w and u are modally equivalent with respect to Σ. From here it

immediately follows that f (|w|) = f (|u|).

To see that f is also injective, suppose that f (|w|) = f (|u|) for some |w|, |u| ∈

WFin. By the definition of f , this means that w and u are modally equivalent

with respect to Σ. In other words, w ≡Σ u. Hence, |w| = |u| as desired. �

Now, it only remains to put the pieces together, which gives us:
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Theorem 2.3.4 (Strong Finite Model Property). Letϕ be a formula. Ifϕ is satisfiable

over a comparative distance model, then it is satisfiable over a finite comparative distance

model of size at most 2|ϕ|. In other words, modal comparative distance logic has the

strong finite model property with respect to M, the class of all comparative distance

models.

Corollary 2.3.5 (Strong Finite Model Property). Modal comparative distance logic

with global modality has the strong finite model property with respect to M.

Finally, we present our main result which follows directly from Theorem

2.3.4 and Corollary 2.3.5:

Theorem 2.3.6. Modal comparative distance logic and modal comparative distance

logic with global modality have decidable satisfiability problems.

2.3.3 Computational Complexity

Overview

In this section we show that the modal comparative distance logic has an NP-

complete satisfiability problem. We adapt a proof method which relies on the

fact that the logic has the finite model property. In fact, the presented proof

will establish that the modal comparative distance logic has the polysize model

property (see Definition 5.0.17).

The core part of the proof consists of Construction 2.3.2 below. Given

a formula ϕ and a finite model MFin, construction procedure generates a new

modelMϕ by appropriately selecting states fromMFin such that the size ofMϕ is

only polynomial in the size ofϕ (in contrast to the exponential model generated

in the finite model property proof above) and in which the satisfiability of ϕ

can be preserved. Now let us continue with the details.
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Construction 2.3.2. Let ϕ be a formula and,

MFin =
〈
WFin,CCFin,VFin

〉
be a finite comparative distance model, such that MFin,W |= ϕ for some W ∈

WFin. We will select suitable states from MFin to construct a new model Mϕ,

such that the size ofMϕ is polynomial in the size of ϕ.

First, let 〈CC〉(α1, β1), . . . , 〈CC〉(αn, βn) be an enumeration of all of the sub-

formulas of ϕ in the form of 〈CC〉(·, ·) and which are are satisfiable inMFin. For

each pair of formulas αk and βk where 1 ≤ k ≤ n, choose a pair of states wk and

uk from WFin such that wk and uk is a pair with minimal distance in between

satisfying the formulas αk and βk, respectively. More precisely, we choose a pair

of states wk and uk from WFin such that:

∀v
[
∀y∀z[CCFin(v, y, z) andMFin, y |= αk andMFin, z |= βk]⇒ CCFin(v,wk,uk)

]
.

(2.1)

Now, the critical question is whether such a pair of states can always be

found. However, since every formula 〈CC〉(αk, βk) is satisfied in MFin by the

assumption andMFin is a finite model, it is easy to see that such a pair of states

wk and uk always exists. Now set,

• Wϕ = {W} ∪
⋃n

k=1{wk,uk},

• CCϕ = CCFin �Wϕ,

• Vϕ = VFin �Wϕ.

And finally set,

Mϕ =
〈
Wϕ,CCϕ,Vϕ

〉
.

Lemma 2.3.7. Mϕ is a comparative distance model.
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Proof. SinceMϕ is a restriction ofMFin andMFin is a comparative distance model,

it follows straightforwardly thatMϕ satisfies constraints CNT1-CNT3. �

Lemma 2.3.8. For every subformula ψ of ϕ and every state w ∈ Wϕ, we have that

MFin,w |= ψ iffMϕ,w |= ψ.

Proof. Let ψ be a subformula of ϕ. The proof is naturally by induction on the

complexity of ψ. Let w ∈Wϕ. SinceMϕ is simply a restriction ofMFin, base case

follows trivially.

Now suppose ψ = ¬α. Then we have that MFin,w |= ¬α iff MFin,w 6|= α iff

(by the induction hypothesis)Mϕ,w 6|= α iffMϕ,w |= ¬α.

Alternatively suppose that ψ = α ∧ β. Then,MFin,w |= α ∧ β iffMFin,w |= α

andMFin,w |= β iff (by the induction hypothesis)Mϕ,w |= α andMϕ,w |= β iff

Mϕ,w |= α ∧ β.

Now, we address the case of ψ = 〈CC〉(α, β). To see through the claim in

the direction from left to right, suppose that we have MFin,w |= 〈CC〉(α, β).

Then, ∃u∃v[CCFin(w,u, v)∧MFin,u |= α andMFin, v |= β]. On the other hand, by

Construction 2.3.2, there is a pair of states uα and vβ in Wϕ with minimal distance

in between such that the formulas α and β are satisfied, respectively. In other

words,MFin,uα |= α andMFin, vβ |= β. From the induction hypothesis, it follows

thatMϕ,uα |= α andMϕ, vβ |= β. Moreover, it follows as a consequence of (2.1)

that we must have CCFin(w,uα, vβ) and thus, CCϕ(w,uα, vβ) by the construction.

This gives the desired result.

In the opposite direction, suppose that Mϕ,w |= 〈CC〉(α, β). Then we have

that ∃u∃v[CCϕ(w,u, v) ∧Mϕ,u |= α andMϕ, v |= β]. Since Mϕ is a restriction

of MFin, it follows from here that CCFin(w,u, v). On the other hand, from the

induction hypothesis we get that MFin,u |= α and MFin, v |= β. This obviously

implies thatMFin,w |= 〈CC〉(α, β) as desired.

�
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Lemma 2.3.9. Modal comparative distance logic has the polysize model property.

Proof. A quick examination of Construction 2.3.2 reveals that the size ofMϕ is

only polynomial in the size of input formula ϕ. More precisely, the size ofMϕ

is equal to twice the number of modalities in the input formula plus 1 at the

maximum. Thus, from Lemmas 2.3.8 and 2.3.7, we conclude that the modal

comparative distance logic has the polysize model property. �

Theorem 2.3.10. The satisfiability problem of modal comparative distance logic is

NP-complete.

Proof. It follows from the fact that the class of comparative distance frames can

be defined by a first-order sentence (see Lemma 5.0.5) and from lemmas 2.3.9

and 5.0.4 that the satisfiability problem of modal comparative distance logic is

NP-complete. �

2.3.4 Soundness and Completeness Theorems

Overview

In this section, we provide an axiomatic system for syntactic reasoning about

comparative distances. We will introduce an axiomatic system and it will be

shown in this section that the introduced system is sound and complete with

respect to the class of all comparative distance frames. This means that, rea-

soning with comparative distance frames using the modal languageL[〈CC〉,∃]

can be performed equally by the introduced axiomatic system alone. Both the

soundness and the completeness proofs follow a standard methodology. For

the completeness proof of the axiomatic system, we use a simple canonical

model argumentation.
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Axiomatic System

We begin by constructing an axiomatic system which we will call AxCD�. Nat-

urally, AxCD� consists of axioms for propositional logic, the standard axioms of

minimal modal logic K for each modal operator we use and the axioms which

capture the essential nature of comparative distance reasoning. In addition, it

contains the standard inference rules of uniform substitution, generalization

and of course, modus ponens. This results with the following axiom schemata

for AxCD�:

(AXM1) [CC](p→ q, r)→ [[CC](p, r)→ [CC](q, r)],

(AXM2) [CC](p, q→ r)→ [[CC](p, q)→ [CC](p, r)],

(AXM3) ∀(p→ q)→ [∀p→ ∀q],

(AXM4) ∃∃p→ ∃p,

(AXM5) p→ ∃p,

(AXM6) p→ ∀∃p,

(AXM7) 〈CC〉(p, q)→ ∃p ∧ ∃q,

(AXM8) ∃(p ∧ q)→ 〈CC〉(p, q),

(AXM9) 〈CC〉(p, q)→ 〈CC〉(q, p),

(AXM10) [〈CC〉(p, q) ∧ ¬〈CC〉(r, s)]→ ∀[〈CC〉(r, s)→ 〈CC〉(p, q)].

Axioms AXM1, AXM2 and AXM3 are those corresponding to the axioms of the

minimal modal logic K (AXM1 and AXM2 in the polyadic form) making the

logic generated by AxCD� a ‘normal modal logic.’ This is a property which will

be necessary in the application of some of the theorems that are fundamental

to our argumentation.
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Axioms AXM4, AXM5 and AXM6 are the axioms more commonly known

by the names 4 (of transitive frames), T (of reflexive frames) and B (of sym-

metric frames), respectively. They constitute (together with the K axioms) the

axiom system of the modal logic S5 and in the current context, they define

the behaviour of our ∃ operator, which is obviously intended as an S5 modal-

ity. Axiom AXM7 is called the inclusion axiom and it defines the interaction

between the modal operators 〈CC〉 and ∃.

Finally, axioms AXM8, AXM9 and AXM10 aim to syntactically capture the

nature of the comparative distance frame conditions CNT1, CNT2 and CNT3,

respectively.

We will denote deduction in AxCD� by using the notation `AxCD� . So, for

any formula ϕ which is deductible in AxCD� we write `AxCD� ϕ to denote that

ϕ is a theorem of the logic arising from system AxCD�. The following theorem

establishes that all theorems of the axiomatic system AxCD� are tautologies for

the class of all comparative distance frames F.

Theorem 2.3.11 (Soundness). For every formulaϕ, we have that `AxCD� ϕ⇒ F |= ϕ.

Proof. It is sufficient to establish the validity of axioms AXM1 - AXM10 over

arbitrary frames from F. So, let F = 〈W,CC〉 ∈ F and set M = 〈F,V〉 for some

arbitrary valuation V.

While axioms AXM1, AXM2 and AXM3 are the axioms of minimal modal

logic K, axioms AXM4, AXM5, AXM6 and AXM7 are the well-known axioms

of S5. So, we will skip the well-known proofs for the soundness of these axioms,

which are obvious to the mind of the experienced reader. Now, let us focus on

the axioms AXM8, AXM9 and AXM10.

Let w ∈ W. In order to establish the soundness of AXM8, assume that

M,w |= ∃(p ∧ q). So, there is a u ∈W such thatM,u |= p ∧ q. On the other hand,

since F is a comparative distance frame, it satisfies frame condition CNT1.
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Hence, we derive that CC(w,u,u). Thus, we get M,w |= 〈CC〉(p, q), which is

what we want.

For the case of AXM9, assume that we have M,w |= 〈CC〉(p, q). We will

show that this implies M,w |= 〈CC〉(q, p). From the hypothesis, it follows that

∃u∃v[CC(w,u, v) ∧M,u |= p andM, v |= q]. Since F satisfies CNT2, we have

that CC(w, v,u). Hence,M,w |= 〈CC〉(q, p) as desired.

Finally, to address the case of axiom AXM10, first suppose that we have

M,w |= 〈CC〉(p, q) ∧ ¬〈CC〉(r, s). From here, it follows that ∃u∃v[CC(w,u, v) ∧

M,u |= p andM, v |= q].

For sake of a contradiction, assume that we have M,w |= ∃¬[〈CC〉(r, s) →

〈CC〉(p, q)]. This means that ∃y[M, y |= 〈CC〉(r, s) andM, y |= ¬〈CC〉(p, q)]. So,

it follows that ∃z∃t[CC(y, z, t) ∧M, z |= r andM, t |= s].

Now let us put the pieces together: Since we have thatM,w |= ¬〈CC〉(r, s), it

follows that ¬CC(w, z, t). Similarly, sinceM, y |= ¬〈CC〉(p, q), we conclude that

¬CC(y,u, v). But then we have that CC(w,u, v)∧¬CC(w, z, t) while on the other

hand that CC(y, z, t) ∧ ¬CC(y,u, v). This clearly violates the frame condition

CNT3 and it contradicts with the fact thatF is a comparative distance frame. �

We now turn our attention to the semantic completeness of axiomatic system

AxCD� with respect to the class of all comparative distance frames. Complete-

ness proof exploits the canonical model method, based on maximal consistent

sets of the logic. For more on maximal consistent sets and their properties,

which is highly advised for the inexperienced reader, see Definition 5.0.10 and

Lemma 5.0.1 first.

We begin with the construction of the canonical model. Note that, since

AxCD� is a normal modal logic, it must be strongly complete with respect

to its canonical model (see Theorem 5.0.3), which is defined by the following

construction.
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Construction 2.3.3. This construction simply builds a model by using the set

of all maximal consistent sets in the following well-known way:

• W = {w | w is a maximal AxCD�-consistent set};

• For every w,u, v ∈W set:

CC(w,u, v) iff ∀α∀β
[
[α ∈ u and β ∈ v]⇒ 〈CC〉(α, β) ∈ w

]
;

• For every p ∈P set:

V(p) = {w ∈W | p ∈ w}.

Finally, canonical frame and canonical model are set as follows:

F =
〈
W,CC

〉
and M =

〈
F,V
〉
.

Now, we note the following lemma which will act as the cornerstone of our

completeness proof:

Lemma 2.3.12 (Truth Lemma). For every formula ϕ and state w ∈W, we have that

M,w |= ϕ⇔ ϕ ∈ w.

Proof. See Blackburn et al., Lemma 4.21, pg. 199 [13]. �

Combined with the Lindenbaum Lemma (see Lemma 5.0.2), Lemma 2.3.12

immediately gives the following result:

Theorem 2.3.13 (Canonical Model Theorem). AxCD� is strongly complete with

respect toM.

In order to establish strong completeness of AxCD� with respect to the class

of all comparative distance frames, all that is needed to be demonstrated is
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that the canonical frame F satisfies the frame conditions CNT1 - CNT3. The

following lemma deals with this issue.

Lemma 2.3.14. F is a comparative distance frame, i.e., it satisfies frame conditions

CNT1 - CNT3.

Proof. We begin by showing that constraint CNT1 is satisfied by the canonical

frame F. Let w,u ∈ W and also let ϕ and ψ be any two formulas such that

ϕ,ψ ∈ u. From Lemma 2.3.12, it follows thatM,u |= ϕ∧ψ. Hence, we have that

M,w |= ∃(ϕ ∧ ψ). So, again from Lemma 2.3.12, it follows that ∃(ϕ ∧ ψ) ∈ w.

On the other hand, since w is a maximal consistent set, by Lemma 5.0.1, it must

contain the formula∃(ϕ∧ψ)→ 〈CC〉(ϕ,ψ), which is an instance of AXM8. Since

w is closed under modus ponens by Lemma 5.0.1, it follows that 〈CC〉(ϕ,ψ) ∈ w.

From Construction 2.3.3, we conclude that CC(w,u,u) as desired.

Now, let us establish that constraint CNT2 is satisfied by F. Let w,u, v ∈ W

and assume that CC(w,u, v). This means that, for all formulas ϕ′ and ψ′, we

have [ϕ′ ∈ u and ψ′ ∈ v] ⇒ 〈CC〉(ϕ′, ψ′) ∈ w. Now let ϕ ∈ v and ψ ∈ u. From

the hypothesis, it follows that 〈CC〉(ψ,ϕ) ∈ w. As the formula 〈CC〉(ψ,ϕ) →

〈CC〉(ϕ,ψ) is an instance of AXM9, it must be contained in w. Using modus

ponens, it follows that 〈CC〉(ϕ,ψ) ∈ w. Thus, from Construction 2.3.3, we get

that CC(w, v,u).

Finally, we address the more interesting case of CNT3. Let w,u, v, y, z ∈ W

and assume that we have CC(w,u, v) ∧ ¬CC(w, y, z). From here and from

Construction 2.3.3, it follows that for all formulas ϕ and ψ, we have that [ϕ ∈

u and ψ ∈ v] ⇒ 〈CC〉(ϕ,ψ) ∈ w. On the other hand, we derive that there

are formulas α ∈ y and β ∈ z such that 〈CC〉(α, β) < w or equivalently, that

¬〈CC〉(α, β) ∈ w from Lemma 5.0.1.

For sake of a contradiction, assume that there exists a t ∈ W such that

¬CC(t,u, v) ∧ CC(t, y, z). So, we have that for all formulas ϕ and ψ, [ϕ ∈
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y and ψ ∈ z] ⇒ 〈CC〉(ϕ,ψ) ∈ t. Moreover, it follows that there are formulas

γ ∈ u and δ ∈ v such that ¬〈CC〉(γ, δ) ∈ t.

Combining all the information we have gathered so far, on the one hand

we have that 〈CC〉(γ, δ) ∈ w and¬〈CC〉(α, β) ∈ w, which entails that 〈CC〉(γ, δ)∧

¬〈CC〉(α, β) ∈ w from Lemma 5.0.1. Since the formula 〈CC〉(γ, δ)∧¬〈CC〉(α, β)→

∀[〈CC〉(α, β) → 〈CC〉(γ, δ)] is an instance of AXM10, using modus ponens we

derive that ∀[〈CC〉(α, β) → 〈CC〉(γ, δ)] ∈ w. Using Lemma 2.3.12, it is easy

to see that 〈CC〉(α, β) → 〈CC〉(γ, δ) ∈ t. Since we also have 〈CC〉(α, β) ∈ t

from the above, it follows that 〈CC〉(γ, δ) ∈ t, which is a contradiction since

¬〈CC〉(γ, δ) ∈ t and t is consistent. This completes the proof of the lemma. �

We summarize our achievements with the following completeness theorem:

Theorem 2.3.15 (Strong Completeness). AxCD� is strongly complete with respect

to the class of all comparative distance frames, i.e., for every formula ϕ we have that

F |= ϕ⇒`AxCD� ϕ.

Proof. Follows directly from Theorem 2.3.13 and Lemma 2.3.14. �

2.4 Modal Logic of Comparative Distances and

Lengths

The aim of this section is to try to extend the language of the modal compara-

tive distance logic with the notion of ‘length’ in such a way that the “feasible”

computational properties of the previous section can be preserved. The in-

tended meaning of ‘length of an individual’ will be rectified below, but for now

one can interpret it as the greatest distance between any two points in the set

representing an individual.
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2.4.1 Language and Semantics

Let A ⊆ R be a set of ‘parameters’. The language of Ll extends the language

L[〈CC〉,∃] defined in Section 2.3 by the addition of two families of nullary

modal operators (i.e., modal constants), which can be given as follows:

{
〈L=x〉 | x ∈ A

}
and
{
〈L<x〉 | x ∈ A

}
.

On the other hand, Ll is interpreted by an extension of the comparative dis-

tance frames called ‘comparative distance frames with lengths’. A comparative

distance frame with lengths (fromA) is a tuple such as,

F[A] =
〈
W,CC, {L=x}, {L<x}

〉
x∈A

where the roles of W (‘individuals’) and the ternary relation CC (‘can-connect’)

are the same as in a comparative distance frame. In addition to that, for every

x ∈ A, unary relations of L=x (‘length is equal to x’) and L<x (‘length is less than

x’) will be used to interpret the modalities of 〈L=x〉 and 〈L<x〉, respectively.

The intended meaning of ‘length of an individual’ is defined as the greatest

distance between the points of a set in a metric space. More precisely, if S ⊆W is

a set in a metric space 〈W, d〉, then the length of the individual S can be defined

as follows:

length(S) = max {d(p1, p2) | p1, p2 ∈ S}.

For every x, y ∈ A, a comparative distance frame with lengths F[A] must

satisfy the following constraints:

(CNT1) ∀w∀u[CC(w,u,u)],

(CNT2) ∀w∀u∀v[CC(w,u, v)⇒ CC(w, v,u)],

(CNT3) ∀w∀u∀v∀y∀z[CC(w,u, v) ∧ ¬CC(w, y, z)⇒
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¬∃t[CC(t, y, z) ∧ ¬CC(t,u, v)]],

(CNT4) ∀w[L=x(w)⇒ ¬L=y(w)] whenever x , y,

(CNT5) ∀w[L<x(w)⇒ L<y(w)] whenever x ≤ y,

(CNT6) ∀w[L<x(w)⇒ ¬L=x(w)],

(CNT7) ∀w∀u∀v∀y[[CC(w,u, v) ∧ L=x(w) ∧ L=x(y)]⇒ CC(y,u, v)],

(CNT8) ∀w∀u∀v∀y[[CC(w,u, v) ∧ L<x(w) ∧ ¬L<x(y)]⇒ CC(y,u, v)].

Constraints CNT1, CNT2 and CNT3 are the same constrains that occur in

comparative distance frames. On the other hand, constraints CNT4, CNT5 and

CNT6 perform the necessary sanity checks on the relations of lengths. Finally,

the constraints CNT7 and CNT8 regulate how the can-connect relation and the

relations of lengths interact with each other.

Now, a comparative distance model with lengths is a pair such as:

M[A] =
〈
F[A],V

〉
where F[A] is a comparative distance frame with lengths from A and V is

a valuation function such that V : P → 2W. For the sake of simplicity, we

frequently writeM and F instead ofM[A] and F[A], whenever the parameter

set is clear from the context. The interpretation of Ll formulas is given in the

usual inductive way by defining the following relation of truth:

For every w ∈W, p ∈P and x ∈ A,

• M,w |= p iff w ∈ V(p),

• M,w |= α ∧ β iffM,w |= α andM,w |= β,

• M,w |= ¬α iffM,w 6|= α,
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• M,w |= ∃α iff ∃u[M,u |= α],

• M,w |= 〈CC〉(α, β) iff ∃u∃v[CC(w,u, v) ∧M,u |= α ∧M, v |= β],

• M,w |= 〈L=x〉 iff L=x(w),

• M,w |= 〈L<x〉 iff L<x(w).

We will denote the class of all comparative distance frames with lengths by

F and the class of all comparative distance models with lengths by M. As usual,

M |= ϕ denotes the validity of the formula ϕ over every comparative distance

model with lengths. ‘Modal comparative distance logic with lengths’ is the

set of all formulas of the language Ll which are true at every state in every

comparative distance model with lengths.

2.4.2 Finite Model Property and Decidability

Overview

In this section we will establish that the modal comparative distance logic with

lengths has the finite model property. We will use the same filtration argument

from Section 2.3.2 only with a slight modification.

Construction 2.4.1. LetAFin
⊆ A be a finite set of parameters and Σ[AFin] be a

finite set of formulas such that,

• Σ is subformula closed and;

• For every x, we have that x ∈ AFin iff (〈L=x〉 ∈ Σ and 〈L<x〉 ∈ Σ).

As before, we will dropAFin from our notation and write Σ instead of Σ[AFin],

as long asAFin is clear from the context. Let,

M =
〈
W,CC, {L=x}, {L<x},V

〉
{x∈A}
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be an arbitrary comparative distance model with lengths. Define the relation

≡Σ over W ×W as follows: For every w,u ∈W,

w ≡Σ u⇔ ∀ϕ ∈ Σ[M,w |= ϕ⇔M,u |= ϕ].

In plain words, ≡Σ is the modal equivalence relation with respect to the set of

modal formulas Σ. It is obvious that ≡Σ is an equivalence relation. We denote

the equivalence class of a w ∈W induced by ≡Σ with |w|.

The ‘filtration ofM through Σ’, denotedMFin, is defined as follows:

• WFin = {|w| | w ∈W};

• CCFin(|w|, |u|, |v|) iff for every 〈CC〉(ϕ,ψ) ∈ Σ,

[
[M,u |= ϕ ∧M, v |= ψ]⇒M,w |= 〈CC〉(ϕ,ψ)

]
;

• LFin
=x (|w|) iff ∃u ∈ |w|[L=x(u)] for every x ∈ AFin;

• LFin
<x (|w|) iff ∃u ∈ |w|[L<x(u)] for every x ∈ AFin;

• For every p ∈P such that p ∈ Σ, set VFin(p) = {|w| | w ∈ V(p)}.

Finally we set,

MFin[AFin] =
〈
WFin,CCFin, {LFin

=x }, {L
Fin
<x },V

Fin
〉

x∈AFin
.

It is a trivial task to establish that the conditions of Definition 5.0.5 are satisfied.

We have the following three lemmata concerning the properties of the newly

constructed, filtrated modelMFin:

Lemma 2.4.1. For every ϕ ∈ Σ and w ∈W, we have thatM,w |= ϕ iffMFin, |w| |= ϕ.
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Proof. The proof is by induction on the complexity of ϕ. The base case is trivial

from Construction 2.4.1 and the boolean cases are as usual. A proof for the case

ϕ = 〈CC〉(α, β) can be found in the proof of Lemma 2.3.1.

Let x ∈ AFin and suppose that ϕ = 〈L=x〉. Then, M,w |= 〈L=x〉 iff L=x(w) iff

∃u ∈ |w|[L=x(u)] iff LFin
=x (|w|) iff MFin, |w| |= 〈L=x〉. Case of ϕ = 〈L<x〉 follows in a

similar way. �

Lemma 2.4.2. MFin is a comparative distance model with lengths.

Proof. It is sufficient to establish that FFin = 〈WFin,CCFin, {LFin
=x }, {LFin

<x }〉x∈AFin is

a comparative distance frame with lengths, which amounts to show that the

frame constraints CNT1-CNT8 (see Section 2.4.1) hold over FFin. The proof for

the cases CNT1, CNT2 and CNT3 can be found in the proof of Lemma 2.3.2.

In order to see thatMFin satisfies CNT4, let |w| ∈ WFin and x, y ∈ AFin such

that x , y. Suppose LFin
=x (|w|). By Construction 2.4.1, it follows that ∃u ∈ |w| such

that L=x(u). Since by definition we must have 〈L=x〉 ∈ Σ, this clearly implies

that for ∀v ∈ |w|, we have L=x(v). Since M is a comparative distance model

with lengths, it obeys CNT4. So, we get that ¬∃y ∈ |w| such that L=y(y). By

Construction 2.4.1, this means that ¬LFin
=y (|w|).

Next, we will establish that MFin satisfies CNT5. Let |w| ∈ WFin and x, y ∈

AFin such that x ≤ y. Suppose LFin
<x (|w|). It follows by Construction 2.4.1 that

∃u ∈ |w| such that L<x(u). SinceM is a comparative distance model with lengths,

it obeys CNT5. Thus, we get L<y(u). But this implies that LFin
<y (|w|) as desired.

Now we will show that MFin satisfies CNT6. Let |w| ∈ WFin and x ∈ AFin.

Suppose that we have LFin
<x (|w|). By Construction 2.4.1, it follows that ∃u ∈ |w|

such that L<x(u). Since by definition we have that 〈L<x〉 ∈ Σ, it follows that

∀v ∈ |w|we have L<x(v). SinceM is a comparative distance model with lengths,

it obeys CNT6. Thus, we get ¬L=x(v) for every v ∈ |w|. Hence, we get ¬LFin
=x (|w|)

by Construction 2.4.1.
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Let us now show that MFin satisfies CNT7. Let |w|, |u|, |v|, |y| ∈ WFin and

x ∈ AFin. Suppose that we have CCFin(|w|, |u|, |v|) ∧ LFin
=x (|w|) ∧ LFin

=x (|y|). Now,

let 〈CC〉(ϕ,ψ) ∈ Σ and assume that M,u |= ϕ and M, v |= ψ. It will be suffi-

cient to establish that M, y |= 〈CC〉(ϕ,ψ). From the assumption, it is easy to

see that ∃w′ ∈ |w| such that L=x(w′) and ∃y′ ∈ |y| such that L=x(y′). On the

other hand, we also have that M,w |= 〈CC〉(ϕ,ψ). From here, we get that

∃u′∃v′[CC(w,u′, v′) andM,u′ |= ϕ andM, v′ |= ψ]. Moreover, since by defini-

tion we have that 〈L=x〉 ∈ Σ, it follows that L=x(w) and L=x(y). Now, sinceM is

a comparative distance model with lengths, it obeys CNT7. Therefore, we get

that CC(y,u′, v′). This entails thatM, y |= 〈CC〉(ϕ,ψ) as desired.

Finally, we show that MFin satisfies CNT8. Let |w|, |u|, |v|, |y| ∈ WFin and

x ∈ AFin. Suppose that we have CCFin(|w|, |u|, |v|) ∧ LFin
<x (|w|) ∧ ¬LFin

<x (|y|). Now,

let 〈CC〉(ϕ,ψ) ∈ Σ and assume thatM,u |= ϕ andM, v |= ψ. It will be sufficient

to show that M, y |= 〈CC〉(ϕ,ψ). From the assumption, it is easy to see that

∃w′ ∈ |w| such that L<x(w′) and ∀y′ ∈ |y| we have ¬L<x(y′). On the other

hand, from the above we get that M,w |= 〈CC〉(ϕ,ψ). From here, it follows

that ∃u′∃v′[CC(w,u′, v′) andM,u′ |= ϕ andM, v′ |= ψ]. Moreover, since by

definition we have that 〈L<x〉 ∈ Σ, it follows that L<x(w) and¬L<x(y). Now, since

M is a comparative distance model with lengths, it obeys CNT8. Therefore, we

get that CC(y,u′, v′). Hence,M, y |= 〈CC〉(ϕ,ψ) as desired. �

Lemma 2.4.3. MFin is a finite model. In fact, |WFin
| ≤ 2|Σ|.

Proof. Define a function f : WFin
→ 2Σ such that for any |w| ∈WFin, we have

f (|w|) = {ϕ ∈ Σ |MFin,w |= ϕ}.

To complete the proof, it is sufficient to show that f is a well-defined and

injective function. To see that f is well-defined, let |w|, |u| ∈ WFin and suppose
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that |w| = |u|. By definition, this means that w and u are modally equivalent

with respect to Σ. From here it clearly follows that f (|w|) = f (|u|).

To see that f is also injective, suppose that f (|w|) = f (|u|) for some |w|, |u| ∈

WFin. By the definition of f , this means that w and u are modally equivalent

with respect to Σ. Hence, |w| = |u| as desired. �

Now, it only remains to put the pieces together, which gives us the following

two main results of this section:

Theorem 2.4.4 (Strong Finite Model Property). Letϕ be a formula. Ifϕ is satisfiable

over a comparative distance model with lengths, then it is satisfiable over a finite

comparative distance model with lengths of size at most 2|ϕ|. In other words, modal

comparative distance logic has the strong finite model property with respect to M.

Proof. Let ϕ be a formula and letAFin be the set of parameters that occur in ϕ.

Let Σ[AFin] be the closure of {ϕ} under subformulas such that for every x we

have that: x ∈ AFin iff 〈L=x〉 ∈ Σ and 〈L<x〉 ∈ Σ. Now suppose thatM,w |= ϕ for

some comparative distance model with lengthsM. LetMFin be the filtration of

M through Σ.

From Lemma 2.4.3 and Lemma 2.4.2, it follows that MFin is a finite com-

parative distance model with lengths. On the other hand, from Lemma 2.4.1 it

follows thatMFin, |w| |= ϕ. �

Theorem 2.4.5 (Decidability). The satisfiability problem of the modal comparative

distance logic with lengths is decidable.

Proof. Observe that the class of all finite comparative distance models with

lengths is recursive. Since modal comparative distance logic with lengths has

the finite model property by Theorem 2.4.4, it follows that its satisfiability

problem is decidable. �
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2.4.3 Computational Complexity

Overview

In this section we will show that the satisfiability problem of the modal com-

parative distance logic with lengths is NP-complete. The main proof argument

which we will utilise is identical to the one used in Section 2.3.3. Therefore,

reader can refer to that section for more details, some of which are left out from

this section.

We begin by giving a procedure for constructing polysize models from finite

models:

Construction 2.4.2. Let ϕ be a formula and,

MFin[AFin] =
〈
WFin,CCFin, {LFin

=x }, {L
Fin
<x },V

Fin
〉
{x∈AFin}

be a finite comparative distance model with lengths such thatMFin,W |= ϕ for

some W ∈ WFin. We will select suitable states from MFin in order to construct

a model Mϕ size of which is only polynomial in |ϕ|. Let Aϕ be the set of

parameters that occur in ϕ.

First, let 〈CC〉(α1, β1), . . . , 〈CC〉(αn, βn) be an enumeration of all of the sub-

formulas of ϕ in the form of 〈CC〉(α, β) and which are satisfiable in MFin. For

each pair of formulas αk and βk where 1 ≤ k ≤ n, choose a pair of states wk and

uk from WFin such that wk and uk is a pair with minimal distance in between

satisfying the formulas αk and βk, respectively. Now, for every x ∈ Aϕ set,

• Wϕ = {W} ∪
⋃n

k=1{wk,uk},

• CCϕ = CCFin �Wϕ,

• Lϕ=x = LFin
=x �Wϕ,

• Lϕ<x = LFin
<x �Wϕ,
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• Vϕ = VFin �Wϕ.

Finally set,

M(Aϕ) =
〈
Wϕ,CCϕ, {Lϕ=x}, {L

ϕ
<x},V

ϕ
〉
{x∈Aϕ}

.

Lemma 2.4.6. Mϕ is a comparative distance model with lengths.

Proof. SinceMϕ is a restriction ofMFin andMFin is a comparative distance model

with lengths, the proof thatMϕ satisfies constraints CNT1-CNT8 is trivial. �

Lemma 2.4.7. For every subformula ψ of ϕ and every state w ∈ Wϕ, we have that

MFin,w |= ψ iffMϕ,w |= ψ.

Proof. Let ψ be a subformula of ϕ. The proof is by induction on the complexity

of ψ. Let w ∈Wϕ. For the proof of the base case, boolean cases and the case for

the modality 〈CC〉, refer to the proof of Lemma 2.3.8 -the proofs are identical.

Now let x ∈ Aϕ. Then,MFin,w |= 〈L=x〉 iff LFin
=x (w) iff (by Construction 2.4.2)

Lϕ=x(w) iffMϕ,w |= 〈L=x〉. The case for 〈L<x〉 follows similarly. �

Lemma 2.4.8. Modal comparative distance logic with lengths has the polysize model

property.

Proof. It easily follows from Construction 2.4.2 that the size of Mϕ is only

polynomial in the size of input formula. Hence, from Lemmas 2.4.7 and 2.4.6,

we conclude that the modal comparative distance logic with lengths has the

polysize model property. �

Theorem 2.4.9. The satisfiability problem of the modal comparative distance logic

with lengths is NP-complete.

Proof. First of all, observe that in order to determine the satisfiability of a

formula ϕ, without the loss of generality, we can restrict ourselves to a finite

similarity type by restricting the parameter set to only those which occur in
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ϕ. Call this set of parameters as Aϕ. In order to determine the satisfiability

of a formula ϕ, we need only search though the models with the parameter

set equal to Aϕ. From here, it follows that the class of comparative distance

frames with lengths from Aϕ can be defined by a first-order sentence. Thus,

from Lemma 5.0.5, it is decidable in polynomial time if a given frame belongs

to this class.

To conclude; It follows from lemmas 2.4.8 and 5.0.4 that the satisfiability

problem of modal comparative distance logic with lengths is NP-complete. �

2.5 Conclusion & Future Research

2.5.1 Conclusion

We employed one first-order and two modal logical languages (one of which is

an extension of the other one) in order to represent and reason with comparative

distance and length information of spatial solids, also known as ‘individuals’

in some part of the literature.

For the first order logic, we used semantics which explicitly utilises metric

spaces for the interpretation of the comparative distance relation ‘can-connect’.

For the modal logical formalisms, we developed a relational representation of

comparative distance information in metric spaces.

Laguna’s can-connect relation provides a simple way to work with dis-

tance information, without the need of using any numerical parameters in our

formalisms to represent quantitative distance information. It also provides

a natural way of talking about distances between spatial solids, instead of

talking about distances between (as generally perceived by some in the field)

‘theoretically motivated, but practically faulty’ points. Actually, this is a very

important debate from a spatial cognitive point of view, since on a day-to-day
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basis humans mostly refer to distance information using this kind of qualitative

expressions, e.g., “Mehmet’s arm can not reach the upper shelf” which can be

formalised as,

¬CC(MEHMET ARM,SHELF,MEHMET BODY)

and the informal expression that “cinema A is closer to home than cinema B is”

can be formalised as,

∀x[CC(x,CINEMA B,HOME)→ CC(x,CINEMA A,HOME)]

within this framework.

In comparison to the work of Kutz et al. [46], where the only decidable

logics of metric spaces have NEXPTIME upper bound (the question of lower

bound remains an open problem), this work presents much less expressive

modal formalisms that are computationally much more feasible. Moreover,

as noted in Wolter and Zakharyaschev [72], using that kind of quantitative

languages makes it very difficult to have comparative distance expressions.

Wolter and Zakharyaschev’s solution to this problem is to extend the language

with variables for parameters in a rather complicated way.

Our main theoretical investigations have established that, while the first-

order comparative distance logic is finitely axiomatisable, modal comparative

distance logic is finitely axiomatisable and also enjoys the finite model property.

Moreover, we established that this modal logic has a satisfiability problem

which is decidable and NP-complete.

We also investigated a very simple extension modal logic, which encom-

passes quantitative length information besides the qualitative distance infor-

mation by the use of parameters. Our results show that this logic has the very
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same properties as its ancestor logic, with a decidable satisfiability problem

which is NP-complete.

2.5.2 Future Research

The modal logic of comparative distances can be extended with the use of

nominals, to obtain a more expressive hybrid modal logic. Note that, this

would enable the definition of many standard set operations quite easily: The

following formula,

∀〈CC〉(i, j)

would be true in a model, whenever the solids named by the nominal letters i

and j intersect. Using this idea, many useful set operations which we defined

with the first-order comparative distance logic can be defined in the modal

counterpart as well. It is an interesting question if such an extended modal

logic would be decidable and if so, what its computational complexity would

be.

Another potential for further research is the combination of the can-connect

relation with a topological closure operator. This would provide a formalism

which combines comparative distances with another qualitative methodology,

the topology. For example, in the case of first-order logic, the interpretation of

the can-connect relation can be altered by setting:

M |=a CC(x, y, z)⇔ ∃p1∃p2

[
p1 ∈ C(a(y)) ∧ p2 ∈ C(a(z))∧

∃p3∃p4[p3, p4 ∈ C(a(x)) ∧ d(p1, p2) ≤ d(p3, p4)]
]

where C denotes a topological closure operator in the extended model. From

here, a definition for the commonly used ‘connection’ relation can be given
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with the following formula:

C(x, y) ≡def ∀z[CC(z, x, y)].
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Chapter 3

Angular Modal Logic of

Points

(or, Towards Trigonometric

Modal Logics)

3.1 Introduction

While the trend of developing spatial logics has gained a considerable speed

and maturity over the recent years, there still remains quite a lot to be explored

in order to enrich the field to contain sufficient amount of logical formalisms to

cover the wide range of different aspects of spatial reasoning.

Until recently, topological and mereological1 aspects of spatial reasoning

1In mathematical logic, mereology is a collection of axiomatic first-order theories dealing with
parts and their respective wholes. Mereology is both an application of predicate logic and a branch
of formal ontology.
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had the most of the attention [68, 14, 31, 32, ?, 3, 73]. This can be explained

by the common perception within the field that qualitative reasoning based on

topological information is a sufficient reasoning platform for the most of the

applications, while providing computationally feasible algorithms compared

to more quantitative approaches, e.g., geometric approaches.

A common slogan in the literature is to say that “a doughnut and a coffee

mug are topologically equivalent (i.e., homeomorphic) objects”, in order to

demonstrate the expressive weakness of topology: Generally speaking, we can

stretch, squeeze and reshape objects as much as we like, but as long as the objects

are not torn apart into multiple sub-pieces and as long as we do not create any

new holes in the objects, topologically speaking, it is impossible to notice the

difference. This observation is the source of inspiration for developing more

expressive, perhaps metric or semi-metric theories of space, since it is only

natural that there are many application areas where a topological representation

of space is simply inadequate.

In order to fill the gap, formalisms (not necessarily logical) which can deal

with metric information or the combination of metric and topological informa-

tion [42, 46, 72] and formalisms which can perform reasoning in affine geome-

try2 [4, 5] have been developed and their computational and logical properties

were investigated. More specific formalisms on orientation [47, 58, 37, 43],

shape [45, 19] and size [55, 74] also exist. For example, Jungert [45] uses a tech-

nique to qualitatively describe the angles of a polygon for dealing with polyg-

onal shape problems and Liu [49] gives semantics for ‘qualitative distance’ and

‘qualitative angle’ and develops a formalism of ‘qualitative trigonometry’ and

provides a ‘composition table’ for the formalism, which can combine both types

2Affine geometry can be shortly described as a generalization of Euclidean geometry, charac-
terized by slant and scale distortions. More precisely, affine geometry is the study of geometric
properties which remain unchanged by affine transformations. In general, an affine transforma-
tion is composed of linear transformations (rotation, scaling or shear) and a translation (or “shift”).
Several linear transformations can be combined into a single one.
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of information. Unfortunately, only a small fragment of these studies got the

necessary theoretical treatment that they deserve [23].

One path for reasoning about space is via the use of formal logics, which

is generally in the form of modal or first-order theories. Bennett [6, 8] uses

the topological interpretation of the modal logic S4, as originally established

by Tarski [63, 65] and shows that propositional, intuitionistic and modal logics

can be used for the purpose of spatial reasoning, each with a different level

of expressiveness. Other studies use first-order languages to deliver axiomatic

theories of topological connection [14, ?, 3], all of which are known to be,

unfortunately but as expected, undecidable [40].

Balbiani and Tinchev [5, 4] developed first-order and modal logics of affine

geometry using two-sorted languages with ‘points’ and ‘lines’ combined with

the relations of ‘parallelism’ and ‘convergence.’ Kutz et al. [46] uses a combi-

nation of description and classical modal logic languages, which can talk about

metric spaces and weaker ‘distance spaces.’ They use a collection of ‘parame-

terised modalities,’ which have the semantics in the form of ‘somewhere in the

x units of distance from here, ϕ holds.’ Based on the same line of study, Wolter

and Zakharyaschev [72] propose combining ‘metric modalities’ with ‘topolog-

ical modalities,’ and underline the importance of formalisms which combine

quantitative and qualitative methods together. Venema [66] uses a two-sorted

modal logic, the ‘compass logic,’ to build a formalism of cardinal directions.

Unfortunately, reasoning with the compass logic is known to be undecidable

[50].

The aim of this chapter is to help bridge the gap arising from the lack of

formalisms which can deal with different aspects of spatial reasoning other

than topology. A parallel greater goal of this work is to contribute to the

development of logics that are capable of performing trigonometric reasoning.
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Naturally, in order to perform any kind of trigonometric reasoning, the

concept of triangle is sine qua non. Henceforth, as a first step in achieving this

greater goal, with this study we devote a formalism which basically talks about

the interior angles of triangles formed by any three points in space.

We develop a modal logic which can talk about angles in triangles in the

setting of relational Kripke frames. For the usual domain-set of ‘states’ in a

Kripkean frame, we take a set of points. For the accessibility relations, we

assign a collection of (based on a ‘parameter set’) ternary relations, which

talk about the magnitude of angles in triangles formed by each trio of states.

Generally speaking, the modalities of our language which will correspond

to these accessibility relations have the semantics in the form of ‘ϕ holds at

somewhere andψ holds at somewhere else, with (less or greater than) x degrees

of angle in between them about here.’

Triangles are especially important mathematical objects since one can con-

struct any kind of complex polygonal object by using mere triangles. Therefore,

a formalism which has the capability of talking about triangles, will naturally

likely to have the ability to talk about any polygonal object as well.

However, the presented formalism lacks in its formation the necessary tools

for handling the metric information. Hence, it can not be considered as a

“trigonometric logic”. From one perspective, this is considered a positive

feature since in this way the proposed formalism gains a qualitative character:

We can represent knowledge about the shapes of triangles (or any polygon), e.g.,

whether a triangle is obtuse, right-angled or equilateral, but the knowledge

about the size of triangles is out of reach. In other words, there is no way of

distinguishing between ‘similar triangles’ in the proposed formalism.

The useful qualitative notions of ‘collinearity’ and ‘betweenness’ are eas-

ily covered by the expressive power of the proposed formalism. Defining a
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modality with the semantics ‘here is between somewhere at which ϕ holds and

somewhere at which ψ holds’ is a trivial task as we will show in the coming

sections. Similarly, defining a modality with the semantics that ‘here is collinear

with somewhere at which ϕ holds and somewhere else at which ψ holds’ is

also easily possible.

There are enormous number of applications of trigonometry. For example,

‘triangulation’ is a widely used technique in astronomy, geography and satellite

navigation systems. An interesting application of a trigonometric deduction

system is the ‘Canadarm2’ robotic arm on the International Space Station, which

is operated by controlling the angles of its joints. Calculating the final position

of the tip of the arm requires repeated use of the trigonometric functions of

those angles [70]. See Section 3.4 for more on the matter.

This chapter is organised as follows: In Section 3.2, we introduce the re-

lational structure in detail which constitutes the basic semantical part of this

study. In Section 3.3, we define a modal language and introduce the ‘angular

modal logic’ using a semantical approach. Section 3.4 gives an impression of

the expressive capabilities of the formalism. Section 3.5 is the part where we

give the first halve of the main research results of this chapter and establish the

finite model property using multiple model repair methods and conclude with

the decidability of angular modal logic. In Section 3.6, we discuss the possible

future research topics and propose an idea for an extension logic, where dis-

tance information can be handled in combination with angle information. We

summarise our results in Section 3.7.

3.2 Trigonometric Relational Structures

LetA ⊆ [0, 180] ∩Q+ be a set such that,
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• {0, 180} ⊆ A;

• if x, y ∈ A and x + y ≤ 180, then (x + y) ∈ A;

• if x ∈ A, then (180 − x) ∈ A.

We call A the set of (angle) parameters. In addition, let O = {<,≤, >,≥} be the

set of operators. Operators are defined with Definition 3.2.1 below in more

detail. An angular frame Fwith parameters fromA is a tuple,

F[A] B
〈
W,
{
ANGJx

}〉
J∈O,x∈A

where W is a set (of points or states, depending on the context), ANGJx is a

ternary relation over W ×W ×W (‘the angle relation’) where J∈ O and x ∈ A

and F satisfies the conditions CNT1-CNT10 laid out below. In what follows,

we will try to be efficient with our notation and simply write F instead of F[A]

for the sake of the simplicity and as long as the parameter set is clear from the

context.

Let w,u, v ∈W be three points. Accessibility relations in the form of ANGJx,

where J∈ O and x ∈ A, are used to represent the angle information available at

the any one of every three points in the space of W. For example, ANG<x(w,u, v)

states that the angle at point w of the triangle of points w,u and v is less than x.

In other words, these relations talk about the interior angles of triangles formed

by every three points.

Before we continue any further, let us first agree on some very basic notation:

Definition 3.2.1. We call the elements of the set O = {<,≤, >,≥} as ‘operators.’

In order to be able to speak in general terms, we often use expressions such as

“ANGJx for every J∈ S,” where S is some subset ofO. To enhance our ability to

make even more general expressions for the sake of simplifying the technical

parts of the text, we often use ‘operator converters’.
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Operator converters are mappings from O to O and they are denoted by

the following superscripts: ·s ‘strict order,’ ·d ‘dual order’ and ·e ‘weak dual

order.’ Table 3.1 gives the definition of each converter mapping over the set of

operators.

< ≤ > ≥

·
s < < > >
·
d
≥ > ≤ <

·
e
≤ ≤ ≥ ≥

Table 3.1: The definition of converter mappings over operator symbols.

For every x, y, z ∈ A and everyJ∈ O, an angular frame satisfies the following

conditions CNT1-CNT10:

(CNT1) ∀w∀u[ANG≤0(w,w,u)] and ∀w∀u[ANG≤0(w,u,u)];

(CNT2) ∀w∀u∀v[ANGJx(w,u, v)⇒ ANGJx(w, v,u)];

(CNT3) ANG<x ∪ ANG≥x = ANG>x ∪ ANG≤x = W ×W ×W;

(CNT4) ANG<x ⊆ ANG≤x, ANG>x ⊆ ANG≥x;

(CNT5) ANG≤x ∩ ANG>x = ANG<x ∩ ANG≥x = ∅;

(CNT6) x ≤ y⇒ [ANGJx ⊆ ANGJy], where J∈ {<,≤};

(CNT7) x ≤ y⇒ [ANGJy ⊆ ANGJx], where J∈ {>,≥};

(CNT8) ∀w∀u∀v[ANG≤180(w,u, v) ∧ ANG≥0(w,u, v)];

(CNT9) ∀w∀u∀v[[¬(w = u∨w = v∨u = v)∧ANGJx(w,u, v)∧ANGJy(u,w, v)]⇒

ANGJe180−(x+y)(v,w,u)] where J∈ {≤,≥} and whenever (x + y) ≤ 180;

(CNT10) ∀w∀u∀v[ANG≤0(w,u, v)⇒ [ANG≤0(u,w, v) ∨ ANG≥180(u,w, v)]];
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Constraints CNT1 and CNT2 should be self-explanatory. The constraints

from CNT3 to CNT7 establish the same natural ordering overA in the relational

context. Constraint CNT8 states the obvious limits of the angles within a

triangle. The basic fundamental rule of trigonometry concerning angles within

a triangle is that the sum of all three inner angles of a triangle is equal to

180 degrees. Constraint CNT9 imposes this property on the triangles of the

relational structure.

By constraint CNT10, we deal with the “extreme” configuration of angles in

a triangle. More precisely, we allow the parameters 0 and 180 to be assigned for

angles in which case we are no longer talking about a triangle in the classical

sense, but only three collinear points. Even though the classical understanding

of a triangle does not consider collinear points as a triangle, our understanding

will allow this. Our “triangles” may very well be just three collinear points.

3.3 A Modal Logic of Trigonometry

3.3.1 Language and Semantics

In this section, we define the modal language L[A] for talking about angular

frames. Let the set of parameters A be as defined in Section 3.2. In what

follows, we will omitA from our notation and simply writeL instead ofL[A],

as long as the relevant parameter set is clear from the context.

L contains a denumerably infinite set of proposition letters P and nomi-

nal letters N , which we denote the elements by using lower case Latin letters

p, q, r, . . . and i, j, k, . . . , respectively; the standard boolean connectives ∧,¬ to-

gether with the propositional constant>; a nominal satisfaction operator @ and

finally the following modal operators:

• For every x ∈ A and J∈ O, a binary (polyadic) modal operator in the
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form 〈ANGJx〉 for talking about the inner angles of triangles of points.

For example, 〈ANG<x〉(ϕ,ψ) says that ‘ϕ holds at somewhere and ψ holds

at somewhere else, with less than x degrees of angle in between about

here.’ This operator is illustrated in Figure 3.1. Note that the number of

such operators is determined by the size of the set of angle parametersA.

≤ x

ψ

ϕ

〈ANG≤x〉(ϕ,ψ)

Figure 3.1: An illustration of the polyadic angle operator 〈ANG≤x〉.

An angular model is the usual pair of a frame and a valuation: Let F[A]

be an angular frame as introduced in Section 3.2 and V : P ∪N → 2W be a

valuation function mapping the propositional letters to the subsets of W and

nominal letters only to the singleton subsets of W. Then, an angular model

with angles fromA is a pair such as,

M[A] B
〈
F[A],V

〉
.

Most of the time we will simplify the notation as we have done with F and L

and writeM instead ofM[A]. We denote the class of all angular models by T

and the class of all such finite models by T f .

Formulas of L are interpreted over angular models through the relation of

truth |=, which is defined recursively as follows: Let M be an angular model,

w ∈ W be a state, α be an atomic (propositional or nominal) letter, x ∈ A be a

parameter, J∈ O be an operator symbol and ϕ,ψ be formulas of L. Then we
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have the following:

Non-modal elements of L are interpreted in the usual way as follows:

• M,w |= >,

• M,w |= α iff w ∈ V(α),

• M,w |= ϕ ∧ ψ iffM,w |= ϕ andM,w |= ψ,

• M,w |= ¬ϕ iffM,w 6|= ϕ.

The more interesting parametric polyadic modal operators of angles are

interpreted as follows:

• M,w |= 〈ANGJx〉(ϕ,ψ) iff ∃u∃v[ANGJx(w,u, v) ∧M,u |= ϕ ∧M, v |= ψ].

Finally, we interpret the nominal satisfaction operator as follows:

• M,w |= @iϕ iff ∃u[M,u |= i ∧ ϕ].

The accustomed reader will not have any difficulty in generating the inter-

pretation of the dual operators. We denote the duals of 〈ANGJx〉with [ANGJx]

for every x ∈ A and J∈ O.

We denote the logic of allL formulas which are true on every angular model

with TL. We will investigate TL’s computational and logical properties in the

following sections.

3.3.2 About Collinearity and Betweenness

The notions of collinearity and betweenness are very important, especially from

the perspective of qualitative spatial reasoning. With our approach to represent

angles and allow any three points to be regarded as a triangle, we can define

collinearity as follows:

COL(w,u, v) ≡de f ANG≤0(w,u, v) ∨ ANG≥180(w,u, v).
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Henceforth, we can easily define a polyadic modal ‘collinearity operator’ in

terms of modal angle operators as follows:

〈COL〉(ϕ,ψ) B 〈ANG≤0〉(ϕ,ψ) ∨ 〈ANG≥180〉(ϕ,ψ).

It is obvious that we have,

M,w |= 〈COL〉(ϕ,ψ) iff ∃u∃v[COL(w,u, v) ∧M,u |= ϕ andM, v |= ψ].

So, the intended meaning of 〈COL〉(ϕ,ψ) is ‘at some points collinear with here,

ϕ and ψ holds.’

In the very same way, we can define a modal operator of ‘betweenness,’ if

we observe that the interpretation of the relation ANG≥180(w,u, v) actually states

that w lies between the points u and v. Therefore, we can immediately adapt

the following modality for betweenness:

〈BT〉(ϕ,ψ) B 〈ANG≥180〉(ϕ,ψ),

which obviously has the semantics that ‘here is between a point where ϕ holds

and another point where ψ holds.’

3.3.3 Defining Global Modality

Another consequence of the frame constraints is that we are able to define the

‘global modality’ almost trivially. It is easy to see that, from constraint CNT3 it

follows that for any x ∈ A and any w,u, v ∈W we have that,

ANG≤x(w,u, v) ∨ ANG>x(w,u, v).
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In plain words, we can “see” any state from any other state in our frames. From

here, we can easily provide a definition for the global modal operator ∃ϕ, with

the intended meaning that ‘somewhere in the entire model ϕ holds,’ as follows:

∃ϕ B 〈ANG≤x〉(ϕ,>) ∨ 〈ANG>x〉(ϕ,>).

3.4 Expressive Capabilities and Fields of Applica-

tion

Logic TL can be used primarily for deal with the polygonal-shape based spatial

reasoning tasks. The basic elements of the angular frames are triangles and

since every arbitrary polygon can be constructed by using only triangles, the

modal logic TL can deal with any polygon. There are many fields of application

for shape based spatial reasoning and we will mention some of them here.

3.4.1 Shape Analysis

Shape analysis is mainly the automatic analysis of geometric shapes, for exam-

ple using a computer to detect similarly shaped objects in a database or parts

that fit together. For a computer to automatically analyse and process geomet-

ric shapes, the objects have to be represented in a digital form. Most commonly

a boundary representation is used to describe the object with its boundary

(usually the outer shell). However, other volume based representations (e.g.,

constructive solid geometry) or point based representations (e.g., point clouds)

can be used to represent shape [36].

Once the objects are given, either by modelling (computer-aided design),

by scanning (3D scanner) or by extracting shape from 2D or 3D images, they

have to be simplified before a comparison can be achieved. The simplified rep-
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resentation is often called a shape descriptor. These simplified representations

try to carry most of the important information, while being easier to handle, to

store and to compare than the shapes directly. A complete shape descriptor is

a representation that can be used to completely reconstruct the original object.

Different shape descriptors target different aspects of shape and can be used for

a specific application. Therefore, depending on the application, it is necessary

to analyse how well a descriptor captures the features of interest.

Shape analysis is used in many application fields:

• In Archaeology, to find similar objects or missing parts;

• In Architecture, to identify objects that spatially fit into a specific space;

• Medical imaging to understand shape changes related to illness or aid

surgical planning;

• Virtual environments or on the 3D model market to identify objects for

copyright purposes;

• Security applications such as face recognition;

• Entertainment industry (movies, games) to construct and process geo-

metric models or animations;

• Computer-aided design and computer-aided manufacturing to process

and to compare designs of mechanical parts or design objects.

3.4.2 Molecular Geometry

Understanding the shapes of molecules is an important first step in being

able to discuss and predict chemical properties. This topic has important

applications in understanding the behaviour of much larger molecules. Much
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of biochemistry is now being discussed based on how macromolecules are

shaped and how different molecules “fit” together [51, 25].

Molecular geometry or molecular structure is the three-dimensional ar-

rangement of the atoms that constitute a molecule. It determines several prop-

erties of a substance including its reactivity, polarity, phase of matter, colour,

magnetism and biological activity. There are six basic shape types for molecules:

Figure 3.2: Illustrations of some basic types of molecule shapes. Top left is the
linear type. An example of this is the carbon dioxide molecule. Bottom left
is the trigonal type, an example of this type molecule is the boron trifluoride.
Top right is an illustration of the bent type, water molecule is a good example
here. Bottom right is the tetrahedral type for which we can give methane as an
example.

• Linear: In a linear model, atoms are connected in a straight line: The bond

angles are set at 180◦. A bond angle is the angle between two adjacent

bonds. For example, carbon dioxide (CO2) has a linear molecular shape.

• Trigonal: Just from its name, it can easily be said that molecules with the

84



trigonal shape are somewhat triangular. Consequently, the bond angles

are set at 120◦. An example of this is boron trifluoride (BF3).

• Tetrahedral (“four surfaces”): This is when there are four bonds all on

one central atom and the bond angles between the electron bonds are

arccos(1/3) = 109.47◦. An example of a tetrahedral molecule is methane

(CH4).

• Octahedral (“eight surfaces”): The bond angle is 90 degrees. An example

of an octahedral molecule is sulfur hexafluoride (SF6).

• Pyramidal: Pyramidal-shaped molecules have pyramid-like shapes. Un-

like the linear and trigonal shapes but similar to the tetrahedral orienta-

tion, pyramidal shapes requires three dimensions in order to fully sepa-

rate the electrons. An example is ammonia (NH3).

• Bent: The final basic shape of a molecule is the non-linear shape, also

known as bent or angular. One of the most unquestionably important

molecules any chemist studies is water (H2O) and it is an example of bent

shape molecules. Bond angle is 106◦.

Figure 3.2 illustrates some of these types.

3.4.3 Application Areas of Trigonometric Reasoning

Given the complete lack of metric information in our formalism, TL can not

be characterized as a complete trigonometric reasoning platform. For more on

this discussion, the reader is advised to look at Section 3.6 for planned future

research. But for now, let us remind the reader that the main purpose of this

study is not to develop a formalism of angles alone, but to create a step-stone

to a formalism which will combine reasoning with angles and reasoning with
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metrics and become a formalism for trigonometric reasoning. So, let us now

talk about the areas of application which could utilise such a formalism.

There are enormous number of applications of trigonometry. For instance,

the technique of triangulation is used in astronomy to measure the distance

to nearby stars, in geography to measure distances between landmarks and

in satellite navigation systems. Other fields which make use of trigonometry

include astronomy (especially, for locating the apparent positions of celestial

objects, in which spherical trigonometry is essential), navigation systems (on

the oceans, in aircraft, and in space) and robotics.

A concrete application that has been actively used since April 2001 is the

robotic arm called ‘Canadarm2’ on the International Space Station, which is

operated by controlling the angles of its joints. Calculating the final position

of the astronaut at the tip of the arm requires repeated use of the trigonometric

functions of those angles [70]. Figure 3.3 depicts the working robotic arm

mounted on the ISS.

Figure 3.3: Canadarm2 in action at the International Space Station.
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3.5 Finite Model Property

In this section, we establish that TL has the finite model property. In other

words, we show that for every formula which is satisfiable over an angular

model, there is also a finite angular model over which it is satisfiable.

3.5.1 Overview

Unfortunately, the proof that TL possesses the finite model property is far from

being trivial. It encompasses the standard filtration technique and two similar

“split & repair” procedures. This technique has been applied before in various

finite model property proofs [46].

Firstly, we construct a filtration (see Definition 5.0.5) of angular models

through finite and subformula closed sets of formulas. This turns out to be

a standard filtration construction. However, this construction gives a frame

where two of the angular frame conditions, CNT5 and CNT9, can not be guar-

anteed to hold. We call the abnormal situations in frames where configurations

(of relations, states and parameters) violating frame conditions exist as ‘de-

fects.’ With the proof, we will apply two separate repair procedures in order

to remove such defects. Each procedure will address the defect caused by the

violations of one of the aforementioned frame conditions. In general, we call

any three states as ‘triangle.’ Therefore, a ‘triangle with a defect’ is a set of three

states over which a frame condition is violated.

The underlying idea in both repair procedures is the same “splitting” notion:

Whenever some relations can not coexist over some group of states, affected

states are split into separate states to form a new frame. In this way, conflict-

ing configurations are isolated from each other while no information is lost,

satisfiability is preserved and a frame without defects is constructed.

As already mentioned above, in the proof, there are three main stages to
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First repair Second repairFiltration

F F f F∗ F+

Figure 3.4: The way to finite angular frames: Overview of the filtration and
repair procedures. Given an arbitrary angular frame F, first we construct its
filtration frame F f . Then, we construct frame F∗ by repairing the CNT5 defects
in F f . Finally, we repair the CNT9 defects in frame F∗ to obtain finite angular
frame F+.

obtain a finite angular frame from an arbitrary angular frame. Each stage can

be characterized by the frames constructed at those stages: Filtration frame is

denoted by F f . The second stage frame with repaired CNT5 defects will be

named as F∗. The defect-free frame produced at the final stage, where CNT9

defects are removed, is denoted by F+. Figure 3.4 illustrates these main stages

in the proof.

Given a frame at a certain stage (F,F f ,F∗ or F+), we refer to the frame from

a previous stage as the ‘ancestor frame.’ Similarly, a ‘successor frame’ is the

frame which has the given frame as the ancestor frame. For example, F is the

ancestor frame of F f and in the opposite direction, F f is the successor frame of

F, et cetera.

We use the same notation with the states: The ‘successor state(s)’ of a given

state are the states in the successor frame which are the results of a splitting

or other similar operation we applied to that state. For example, the state (or

equivalence class) [w] ∈ F f is the successor state of w ∈ F and in the opposite

direction, w is the ancestor state of [w].

The first repair procedure takes the filtration frame F f and applies the nec-

essary repairs to it in order to ensure the construction of a frame (F∗) satisfying

frame constraint CNT5. For example, for some parameter x and a triangle of w,u

and v, it repairs defects which are in the form of ANG≤x(w,u, v)∧ANG>x(w,u, v)

or in the form of ANG≥x(w,u, v) ∧ ANG<x(w,u, v).
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The repair procedure works by splitting the affected states and isolating

incompatible relations from each other. In the example from the previous

paragraph, it would add two states with different indices (〈w, 0〉, 〈w, 1〉 and

〈u, 0〉, 〈u, 1〉 and 〈v, 0〉, 〈v, 1〉) to the new model for every state affected by the

defect (w,u and v) in the old model. Then, to isolate the two problematic

relations from each other (ANG≤x and ANG>x), it simply assigns one of them

to the triangles of the successor states having equal indices and the other one

to the triangles of the successor states with unequal indices. In this way, while

the successor states collectively carry the exact same information from the old

frame, we also get the incompatible relations isolated. Figure 3.5 illustrates

how the “split & repair” procedure works.

ANG≤x

ANG>x

〈w, 0〉

〈w, 1〉

ANG>x

ANG≤x

〈v, 0〉

〈u, 0〉

w

u

v

ANG>x

ANG≤x

Figure 3.5: Split and repair method: The state w is involved in a defect (on
the left). To repair the defect, w is split in two new states and the conflicting
relations are isolated (on the right).

Second repair procedure deals with the defects which require a more com-

plicated repair procedure. It repairs defects in frame F∗ resulting from the ex-

istence of configurations which violate the frame constraint CNT9 and outputs

an angular frame F+. For some parameters x, y and z such that x + y + z = 180

and a triangle of states w,u and v, these defects are in the form ANG≤x(w,u, v)∧

ANG≤y(u,w, v)∧ANG<z(v,w,u) or in the form ANG≥x(w,u, v)∧ANG≥y(u,w, v)∧
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ANG>z(v,w,u).

First, let us define a new notion: We call the modification of a frame configu-

ration by replacing a relation over a certain triangle with its dual (see Definition

3.2.1) as ‘flipping.’ For example, if the relation ANG≤x(w,u, v) is flipped, then

we get ANG>x(w,u, v).

Roughly speaking, once more we will be using the “split & repair” technique

from the point of basic strategy. However, this time within a more complicated

methodology. Given a triangle with an appropriate defect, this procedure splits

each state into three separate states in the new model. In other words, each

state which is related to a defect in the old model, is represented by three states

in the new model. This produces nine states or twenty seven triangles in the

new model for only three states or one triangle in the old model.

For the sake of an example, fix a triangle with states w,u, v and some pa-

rameters x, y, z such that x + y + z = 180. Assume that we have the appro-

priate defect as follows: ANG≤x(w,u, v) ∧ ANG≤y(u,w, v) ∧ ANG<z(v,w,u). In

order to repair this defect, our procedure seeks to find a way to flip at least

one and at most two of the relations involved in the defect. Note that, if

we flip all of the three relations, although we will manage to remove the de-

fect in question, we would cause a defect of the dual kind. For example,

ANG>x(w,u, v) ∧ ANG≤y(u,w, v) ∧ ANG<z(v,w,u) is one of the six ways (only at

the maximum) of successfully repairing the defect in this example by flipping

only one relation. However, we need to make sure that such a flipping does not

“sacrifice satisfiability” by adding or removing information. To achieve this

extra care, the procedure relies on two main rules:

Firstly, a flipping operation over a triangle can only be made if the needed

dual relation for the flipping is already present over an ancestor state and

triangle in one of the previous frames in the construction chain (for this, the
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procedure simply checks the existence at the filtration frame F f , see Construc-

tion 3.5.3 for details).

Secondly, flipping relations must not remove any information from the old

frame. Therefore, when a relation is flipped, the original relation must still be

present in the new model over the successors of the respective states.

We now need to establish that there always will be a flipping option available

to the procedure for the first rule above. However, as we will establish by

Lemma 3.5.8, any defect over a triangle also guarantees the existence of two

dual relations (of the relations involved in the defect) at the filtration frame

F f . Therefore, if the procedure attempts to flip any two relations of a defected

triangle, it can be guaranteed that it will succeed with at least one of the

attempts. Hence, the defect will certainly be repaired.

To summarise, we now explain how the “splitting and flipping” works

altogether. Consider a defect triangle with states w,u and v. First of all, the

procedure splits each of the states into three distinct states. Then, it assigns

relations to the nine new states in such a way that three types of triangles are

produced. These triangles are all possible constructions that can be achieved

by flipping only two of the relations of the triangle of w,u and v at a time and

keeping the original (non-flipped) relation at the other state. Given a triangle,

this process can obviously produce at most three types of triangles. More

precisely, one type inherits original relations on (w,u, v) but flipped relations

on (u,w, v) and (v,w,u). Other type inherits original relations on (u,w, v) but

flipped relations on (w,u, v) and (v,w,u). Finally, the last type inherits original

relations on (v,w,u) but flipped relations on (u,w, v) and (w,u, v). In this way,

the procedure succeeds in isolating conflicting configurations while satisfying

the second rule above and hence, producing triangles without any defects and

preserving the satisfiability. See Figure 3.6 for an illustration of the underlying
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(flipped) (flipped)

(non−flipped) (flipped)

(non−flipped)

(flipped)

(flipped)(non−flipped)(flipped)

Type TwoType One Type Three

〈v, k〉

〈w, i〉 〈w, i〉

〈v, k〉

〈w, i〉

〈v, k〉

〈u, j〉〈u, j〉〈u, j〉

ANG<z ANG≥z

ANG>yANG≤y ANG>y

ANG>x ANG>x ANG≤x

ANG≥z

u

w

v

ANG≤x

ANG<z

ANG≤y

Figure 3.6: Split, flip and repair procedure: When a defect occurs over a triangle
(at the top), each state involved in the defect is split in three. Then, by flipping
the relations of only two of the states at a time, three types of triangles are
produced (at the bottom). In this way, while the conflicting relations are isolated
from each other, all the information is preserved after the repair.

idea.

3.5.2 The Proof

LetM = 〈F[A],V〉 be an angular model such that,

F[A] =
〈
W,
{
ANGJx

}〉
J∈O,x∈A

and let Σ be a finite and subformula-closed set of formulas (see Definition 5.0.1).

The first part of the proof is about constructing the filtration of M through Σ.

LetA f denote the set of all parameters that occur in Σ.
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Construction 3.5.1 (Filtration). Define a relation ≡ such that for any w,u ∈ W,

we have,

w ≡ u⇔ ∀ϕ ∈ Σ[M,w |= ϕ⇔M,u |= ϕ].

It is a trivial exercise to verify that ≡ is an equivalence relation. We denote the

equivalence class of a w ∈ W induced by ≡ with [w]. Now we construct the

filtration ofM through Σ as follows. For every x ∈ A f , J∈ O and α ∈ P ∪N

set:

• WFin = {[w] | w ∈W},

• ANG f
Jx([w], [u], [v]) iff ∃w′ ∈ [w]∃u′ ∈ [u]∃v′ ∈ [v][ANGJx(w′,u′, v′)],

• V f (α) = {[w] |M,w |= α}.

Now set,

F f [A f ] B
〈
WFin,

{
ANG f

Jx

}〉
J∈O,x∈A f

.

Hence, the filtration ofM through Σ can be given by the following pair:

M f B
〈
F f [A f ],V f

〉
.

It should be a trivial task to verify that the above construction satisfies the

conditions laid out by Definition 5.0.5. Hence, M f is clearly a filtration of M

though Σ. Moreover, ANG f
Jx is the smallest filtration (see Definition 5.0.6) of

ANGJx. We will address the issues related to the size of the models later in this

section. For now, we will address frame conditions and satisfiability issues.

It can be seen from the following lemma that the filtration frame F f does

not satisfy two frame conditions CNT5 and CNT9, which is also the source of

complexity behind the long finite model property proof. We will apply two

separate repair procedures in order to obtain a frame which satisfies all of the

frame conditions CNT1-CNT10.
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Lemma 3.5.1. F f satisfies all conditions CNT1-CNT10 except CNT5 and CNT9.

Proof. Pick 〈ANGJx〉(ϕ,ψ) ∈ Σ and [w], [u], [v], [y] ∈WFin and fix some J∈ O.

In order to see CNT1, first of all note that we have ANG≤0(w,w,u) and

ANG≤0(w,u,u) since F is an angular frame. But then by the filtration (refer Def-

inition 5.0.5) it follows that we have ANG f
≤0([w], [w], [u]) and ANG f

≤0([w], [u], [u]).

So, F f satisfies CNT1.

We continue by showing that F f satisfies CNT2. Assume that we have

ANG f
Jx([w], [u], [v]). From here it follows that we have ∃w′ ∈ [w]∃u′ ∈ [u]∃v′ ∈

[v][ANGJx(w′,u′, v′)]. Since F satisfies CNT2, it follows that ANGJx(w′, v′,u′).

Hence, we get ANG f
Jx([w], [v], [u]) from Construction 3.5.1 as desired.

To see that CNT3 holds, it is sufficient to observe that, sinceF satisfies CNT3,

we have ANGJx(w,u, v)∨ANGJdx(w,u, v). From here and the standard filtration

properties as mentioned in Definition 5.0.5, it follows that ANG f
Jx([w], [u], [v])∨

ANG f
Jdx

([w], [u], [v]).

Next, we will establish that F f satisfies CNT4. Assume that we have

ANG f
<x([w], [u], [v]). From here we get that ∃w′ ∈ [w]∃u′ ∈ [u]∃v′ ∈ [v] such

that ANG<x(w′,u′, v′). Since F satisfies CNT4, it follows that ANG≤x(w′,u′, v′).

Hence, ANG f
≤x([w], [u], [v]) as desired. The other half of the proof that ANG f

>x([w], [u], [v])

implies ANG f
≥x([w], [u], [v]) follows in a very similar way.

We move on to show that CNT6 is satisfied. Let x, y ∈ A f such that x ≤ y and

assume that ANG f
<x([w], [u], [v]). Therefore we get that ∃w′ ∈ [w]∃u′ ∈ [u]∃v′ ∈

[v][ANG<x(w′,u′, v′)]. Since F satisfies CNT6, it follows that ANG<y(w′,u′, v′).

Hence, ANG f
<y([w], [u], [v]) as desired. It can be shown in a similar way that

ANG f
≤x([w], [u], [v]) implies ANG f

≤y([w], [u], [v]). CNT7 follows along similar

lines.

CNT8 is straightforward. Finally, to see that F f satisfies CNT10, assume

that 0, 180 ∈ A f and ANG f
≤0([w], [u], [v]). Then, ∃w′ ∈ [w]∃u′ ∈ [u]∃v′ ∈
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[v][ANG≤0(w′,u′, v′)]. Now, using the fact thatF satisfies CNT10, it follows that

ANG≤0(u′,w′, v′)∨ANG≥180(u′,w′, v′). But this implies that ANG f
≤0([u], [w], [v])∨

ANG f
≥180([u], [w], [v]). �

The following lemma shows that satisfiability is preserved through the

filtration process which constructs F f from F.

Lemma 3.5.2. For every ϕ ∈ Σ and every w ∈ W, we have that M,w |= ϕ iff

M f , [w] |= ϕ.

Proof. Let ϕ ∈ Σ and a w ∈ W. The proof is by induction on the complexity

of ϕ. Let α ∈ P ∪N . The base case, when ϕ = α, is straightforward: From

Construction 3.5.1, we have that M,w |= α ⇔ w ∈ V(α) ⇔ [w] ∈ V f (α) ⇔

M f , [w] |= α. Cases for the boolean connectives are standard.

Now let x ∈ A f and fix J∈ O. Assume that ϕ = 〈ANGJx〉(β, ψ) and

M,w |= 〈ANGJx〉(β, ψ). This means that, ∃u∃v[ANGJx(w,u, v) ∧ M,u |= β ∧

M, v |= ψ]. From the induction hypothesis and Construction 3.5.1, it fol-

lows that ANG f
Jx([w], [u], [v]) and M f , [u] |= β ∧M f , [v] |= ψ. In other words,

M f , [w] |= 〈ANGJx〉(β, ψ) orM f , [w] |= ϕ as desired.

In the opposite direction, assume that M f , [w] |= 〈ANGJx〉(β, ψ). Then,

∃[u]∃[v][ANG f
Jx([w], [u], [v]) ∧M f , [u] |= β ∧M f , [v] |= ψ]. Since ϕ ∈ Σ and Σ

is subformula-closed, it follows that β, ψ ∈ Σ. Together with the induction hy-

pothesis, it follows that ∃w′ ∈ [w]∃u′ ∈ [u]∃v′ ∈ [v][ANGJx(w′,u′, v′) ∧M,u′ |=

β ∧M, v′ |= ψ]. Hence, M,w′ |= 〈ANGJx〉(β, ψ). Since w and w′ are modally

equivalent with respect to Σ, it follows thatM,w |= 〈ANGJx〉(β, ψ) as desired.

Now suppose that ϕ = @iψ for some nominal letter i andM,w |= @iψ. Then,

∃u[M,u |= i∧ψ]. Since i ∈ Σ and it is the name for the state u, by construction it

follows that [u] ∈ WFin andM f , [u] |= i 3. By the induction hypothesis, we also

3Actually, for any state which is named by a nominal from Σ, its equivalence class consists of
only by itself.
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get thatM f , [u] |= ψ. Putting it altogether, we have thatM f , [w] |= @iψ.

Conversely, suppose thatM f , [w] |= @iψ. Then, we have∃[u][M f , [u] |= i∧ψ].

It is easy too see by Construction 3.5.1 that we haveM,u |= i. On the other hand,

by the induction hypothesis we have thatM,u |= ψ. Hence,M,w |= @iψ. �

We will now begin to address the issues arising from the fact that constraints

CNT5 and CNT9 are not satisfied over the filtrated frame.

First, let us enrich our vocabulary with some new and useful notions. We

call the abnormal situations in frames where configurations (of relations, states

or parameters) violate frame conditions as ‘defects.’ We will perform two

separate repair procedures in order to remove such defects from frames. Each

procedure will address one kind of defect, caused by the violations of one of

the two aforementioned frame conditions. First, we begin dealing with defects

related to the constraints CNT5.

The underlying idea of the first repair procedure is to create a new frame F∗

from the filtrated frame F f by means of splitting the states which are related

to a defect in the filtrated frame, into multiple states in the new frame. In this

way, the procedure is given “enough room” to isolate the incompatible relations

from each other in the new frame and thereby repairing the defects.

Unfortunately, a procedure which merely splits the states in two or more

states and isolates incompatible relations in this way will not produce frames

where CNT10 can be guaranteed to hold, even though there are no problems

in F f related to CNT10 (see Lemma 3.5.1). In other words, a simple splitting

technique will create other problems even tough it solves the original one.

To address this issue simultaneously, we enhance the splitting procedure

to handle the “relevant cases”: It will be sufficient to increase the amount of

splitting of the states which are in the range of constraint CNT10 in F f and

devote a special part of the procedure to handle these states. In this way, such
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situations can be addressed in isolation, without interacting with the main

purpose of the procedure, which is repairing CNT5 defects.

We will use the following shorthands in order to make the formalisation of

the procedure easier:

• EQ 0 ≡defJ=≤ ∨(x , 0∧ J=<) ∨ (x = 0∧ J=≥)

• EQ 180 ≡defJ=≥ ∨(x , 180∧ J=>) ∨ (x = 180∧ J=≤)

• DISPUTE(w,u, v) ≡def ANG f
≤0(w, y, z) ∧ ANG f

≥180(w, y, z)

• NO DISPUTE 0(w,u, v) ≡def ANG f
≤0(w, y, z) ∧ ¬ANG f

≥180(w, y, z)

• NO DISPUTE 180(w,u, v) ≡def ¬ANG f
≤0(w, y, z) ∧ ANG f

≥180(w, y, z)

We call the conjunction of the following two implications as CHECK:

• NO DISPUTE 0(w,u, v) ∧ ANG f
>0(w,u, v)⇒ odd(k + l + i)

• NO DISPUTE 180(w,u, v) ∧ ANG f
<180(w,u, v)⇒ odd(k + l + i)

One final note on the notation: Given a model, we say that a state is ‘named’

iff there is a nominal letter which holds at that state.

Construction 3.5.2 (First Repair). Now we are ready to give the details of the

procedure. The easy part is to determine the states to be split. This is done as

follows:

D f =
{
w ∈WFin

|¬∃i ∈ Σ[MFin,w |= i]∧

∃u∃v∃x∃ J [(ANG f
Jx(w,u, v) ∧ ANG f

Jdx
(w,u, v))∨

ANG f
≤0(w,u, v) ∨ ANG f

≥180(w,u, v)]
}
.

Note that we do not split named-states. Other than that, we split any state

which is involved in a collinear trio or any trio with a dispute. Domain set
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of the new frame, after the splitting operations which are explained above, is

formed as follows:

W∗ B
{
〈w, 0〉 | w ∈WFin

−D f
}
∪

{
〈w, k〉 | w ∈ D f , k ∈ {0, 1, 2, 3, 4}

}
Now we continue with the more challenging part of the procedure. Our

construction continues with a procedure which will determine how to carry

over the relations from the old frameF f to the new frameF∗. Let three arbitrary

states from W∗, such as 〈w, k〉, 〈u, l〉, 〈v, i〉 ∈ W∗ where w,u, v ∈ WFin and k, l, i ∈

{0, 1, 2, 3, 4}. The following procedure determines the relations on this triangle

for every J∈ O and every x ∈ A f :

Step 1 deals with the relations on triangles containing identical states. Steps

2 and 3 are dedicated to ensure that the resulting frame will not violate con-

straint CNT10. Step 4 is the main part of the procedure where incompatible

relations are isolated from each other, so that CNT5 is satisfied over F∗.

1. If 〈w, k〉 = 〈u, l〉 ∨ 〈u, l〉 = 〈v, i〉 ∨ 〈w, k〉 = 〈v, i〉, then:

ANG∗Jx(〈w, k〉, 〈u, l〉, 〈v, i〉) iff EQ 0

2. If ANG f
≤0(w,u, v)∨ANG f

≥180(w,u, v) and exactly two of the states w,u and v

are named and we also have CHECK, then:

Firstly, we read/set a global variable4:

If VAR(w, {w,u, v}) = odd/null, then set VAR(w, {w,u, v}) = even otherwise,

set VAR(w, {w,u, v}) = odd.
4In certain situations when different triangles share the same states which can not be split

because they are named, we must know which states have been assigned which relations in
different triangles (i.e., previous iterations), so that we can ensure all relations from F f are carried
over to F∗ while keeping the constraint CNT10 satisfied. In situations when states can be split we
employ index values to achieve this. So, a global variable is used only in this step. For variable
reading and setting we use a function VAR, which maps the input to even, odd or null. This should
be self-explanatory.
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For the sake of simplicity, let † to stand for “y ∈ {u, v} and w, y are named.”

ANG∗Jx(〈w, k〉, 〈u, l〉, 〈v, i〉) iff either of the following holds,

• NO DISPUTE 0(w,u, v) ∧ EQ 0

• NO DISPUTE 180(w,u, v) ∧ EQ 180

• DISPUTE(w,u, v) ∧ even(k + l + i) ∧ † ∧ VAR(y, {w,u, v}) = odd/null ∧

EQ 180

• DISPUTE(w,u, v)∧odd(k+ l+ i)∧†∧VAR(y, {w,u, v}) = even∧EQ 180

• DISPUTE(w,u, v)∧odd(k+l+i)∧†∧VAR(y, {w,u, v}) = odd/null∧EQ 0

• DISPUTE(w,u, v)∧ even(k + l + i)∧†∧VAR(y, {w,u, v}) = even∧EQ 0

3. If ANG f
≤0(w,u, v)∨ANG f

≥180(w,u, v) and at most one of the states w,u and v

are named and we also have CHECK, then:

For the sake of simplicity, let † to stand for “either u or v is named.”

ANG∗Jx(〈w, k〉, 〈u, l〉, 〈v, i〉) iff either of the following holds,

• NO DISPUTE 0(w,u, v) ∧ EQ 0

• NO DISPUTE 180(w,u, v) ∧ EQ 180

• DISPUTE(w,u, v) ∧ k = 0 ∧ † ∧ even(k + l + i) ∧ EQ 180

• DISPUTE(w,u, v) ∧ k , l = i = 0 ∧ † ∧ even(k + l + i) ∧ EQ 0

• DISPUTE(w,u, v) ∧ (k > l > i ∨ k > i > l) ∧ EQ 180

• DISPUTE(w,u, v) ∧ (k < l ∨ k < i) ∧ k , l , i , k ∧ EQ 0

• DISPUTE(w,u, v) ∧ k , l = i ∧ EQ 180

• DISPUTE(w,u, v) ∧ (k = l , i ∨ k = i , l) ∧ EQ 0

4. If ¬[ANG f
≤0(w,u, v) ∨ ANG f

≥180(w,u, v)] or ¬CHECK, then:

ANG∗Jx(〈w, k〉, 〈u, l〉, 〈v, i〉) iff either of the following holds,
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• ANG f
Jx(w,u, v) ∧ ¬ANG f

Jdx
(w,u, v)

• ANG f
Jx(w,u, v) ∧ x , 0∧ J∈ {<,≤} ∧ (k = l = i ∨ k , l , i , k)

• ANG f
Jx(w,u, v)∧ x , 180∧ J∈ {>,≥} ∧ (k = l , i∨ k = i , l∨ l = i , k)

• ANG f
Jx(w,u, v) ∧ x = 0∧ J∈ {>,≥}

• ANG f
Jx(w,u, v) ∧ x = 180∧ J∈ {<,≤}

Now it remains to set up the new valuation function. For every α ∈P ∪N ,

the valuation function can be defined by setting:

V∗(α) = {〈w, k〉 ∈W∗ | w ∈ V f (α), k ∈ {0, 1, 2, 3, 4}}.

Recall that the named states are not split and hence, the nominal letters continue

to hold at unique states. Our frame and model can now be put together as

follows:

F∗[A f ] B
〈
W∗,
{
ANG∗Jx

}〉
J∈O,x∈A f

and

M∗ B
〈
F∗[A f ],V∗

〉
.

Lemma 3.5.3. Let w,u, v ∈ F f such that u and v are named-states. Then the following

statements hold:

• w is dispute-free, i.e., there is no x ∈ A f and J∈ O such that ANG f
Jx(w,u, v) ∧

ANG f
Jdx

(w,u, v).

• If we have DISPUTE(u,w, v), then we also have DISPUTE(v,w,u).

Proof. Let w,u, v ∈ F f such that u and v are named-states. For the sake of a

contradiction, suppose that we have ANG f
Jx(w,u, v) ∧ ANG f

Jdx
(w,u, v) for some

x ∈ A f andJ∈ O. By the filtration, it follows that there are w′,w′′ ∈ w, u′,u′′ ∈ u
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and v′, v′′ ∈ v such that ANGJx(w′,u′, v′) ∧ ANGJdx(w′′,u′′, v′′) in F. However,

since u and v are named-states, we must have u′ = u′′ and v′ = v′′.

It follows that w′ and w′′ are distinct states but modally-equivalent with

respect to Σ. For otherwise, this would contradict with the fact that F is an

angular frame and satisfies CNT5. From here, we also have¬ANGJx(w′′,u′, v′)∧

¬ANGJdx(w′,u′′, v′′). Let j and k be the names of u′ and v′, respectively. It

follows that we have M,w′ |= 〈ANGJx〉(j, k) ∧ ¬〈ANGJdx〉(j, k) and M,w′′ |=

〈ANGJdx〉(j, k) ∧ ¬〈ANGJx〉(j, k), contradicting with the fact that w′ and w′′ are

modally-equivalent.

In order to see the second claim, suppose we have DISPUTE(u,w, v). From

here, we must have either DISPUTE(w,u, v) or DISPUTE(v,w,u). Since we can

not have DISPUTE(w,u, v) as shown in the other half of this lemma, it follows

that we must have DISPUTE(v,w,u). �

Lemma 3.5.4 shows that the repair procedure works correctly. In other

words, defects related to constraint CNT5 are removed as a result of Con-

struction 3.5.2. Moreover, as the Lemma 3.5.6 establishes, the satisfiability is

preserved through this repair procedure.

Lemma 3.5.4. F∗ satisfies all conditions CNT1-CNT10 except CNT9.

Proof. Let W,U,V,Y ∈ W∗ such that W = 〈w, k〉, U = 〈u, l〉, V = 〈v, i〉 and

Y = 〈y, j〉 for some w,u, v, y ∈ WFin. Also fix some x ∈ AFin and J∈ O. First of

all, note that the case of CNT1 follows immediately from step 1 of Construction

3.5.2.

We continue by showing that CNT2 holds over F∗. Assume that we have

ANG∗Jx(W,U,V). If all of the states w,u and v are named, then we have

from step 4 that ANG f
Jx(w,u, v). On the other hand, from Lemma 3.5.3 we

get that ¬ANG f
Jdx

(w,u, v). Since F f satisfies CNT2, we have ANG f
Jx(w, v,u) ∧

¬ANG f
Jdx

(w, v,u). Now, it follows from step 4 that we have ANG∗Jx(W,V,U) as
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desired. Now suppose that at most two of the states in question are named. In

Construction 3.5.2, we have the following cases to be considered:5

• (CA) ANG f
≤0(w,u, v) ∨ ANG f

≥180(w,u, v) and the following implications:

– If NO DISPUTE 0(w,u, v) ∧ ANG f
>0(w,u, v), then odd(k + l + i)

– If NO DISPUTE 180(w,u, v) ∧ ANG f
<180(w,u, v), then odd(k + l + i)

• (CB) ¬[ANG f
≤0(w,u, v) ∨ ANG f

≥180(w,u, v)] or one of the following:

– NO DISPUTE 0(w,u, v) ∧ ANG f
>0(w,u, v) ∧ even(k + l + i)

– NO DISPUTE 180(w,u, v) ∧ ANG f
<180(w,u, v) ∧ even(k + l + i)

Let us first consider (CA). If exactly two of the states are named, then it

means that we have the following sub-cases: For the sake of simplicity, let † to

stand for “y ∈ {u, v} and w, y are named.”

• (CA.1.1) NO DISPUTE 0(w,u, v) ∧ EQ 0

• (CA.1.2) NO DISPUTE 180(w,u, v) ∧ EQ 180

• (CA.1.3) DISPUTE(w,u, v)∧even(k+l+i)∧†∧VAR(y, {w,u, v}) = odd/null∧

EQ 180

• (CA.1.4) DISPUTE(w,u, v) ∧ odd(k + l + i) ∧ † ∧ VAR(y, {w,u, v}) = even ∧

EQ 180

• (CA.1.5) DISPUTE(w,u, v)∧odd(k+ l+ i)∧†∧VAR(y, {w,u, v}) = odd/null∧

EQ 0

• (CA.1.6) DISPUTE(w,u, v)∧even(k+l+i)∧†∧VAR(y, {w,u, v}) = even∧EQ 0

5Since we have ANG∗Jx(W,U,V) by the assumption, it must be assigned by one of the steps of
Construction 3.5.2. Initially, we consider two possibilities. One possibility is that, this relation is
set by one of step 2 or step 3 and the other possibility is that it is assigned by step 4. Here, (CA) and
(CB) represent these two possibilities. Notice that, in the construction procedure (CA) is shortly
referred as CHECK for the sake of simplicity. (CB) is referred as ¬CHECK.
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First consider (CA.1.1). We get NO DISPUTE 0(w,u, v). So, we must

have J∈ {<,≤} or J=≥ ∧x = 0. Since F f satisfies CNT2, it follows that we

have NO DISPUTE 0(w, v,u). This implies that ANG∗Jx(W,V,U) through step 3.

(CA.1.2) is similar. If we have (CA.1.3), then we also have DISPUTE(w, v,u)

since F f satisfies CNT2. Moreover, we have that VAR(y, {w,u, v}) = odd/null for

some y ∈ {u, v}. Since k + i + l is even, we get ANG∗Jx(W,V,U) as desired. The

rest of the cases (CA.1.4) - (CA.1.6) follow in a very similar way.

Now suppose that at most one of the states is named. This means that we

have the following sub-cases to consider: For the sake of simplicity, let † to

stand for “either u or v is named.”

• (CA.2.1) NO DISPUTE 0(w,u, v) ∧ EQ 0

• (CA.2.2) NO DISPUTE 180(w,u, v) ∧ EQ 180

• (CA.2.3) DISPUTE(w,u, v) ∧ k = 0 ∧ † ∧ even(k + l + i) ∧ EQ 180

• (CA.2.4) DISPUTE(w,u, v) ∧ k , l = i = 0 ∧ † ∧ even(k + l + i) ∧ EQ 0

• (CA.2.5) DISPUTE(w,u, v) ∧ (k > l > i ∨ k > i > l) ∧ EQ 180

• (CA.2.6) DISPUTE(w,u, v) ∧ (k < l ∨ k < i) ∧ k , l , i , k ∧ EQ 0

• (CA.2.7) DISPUTE(w,u, v) ∧ k , l = i ∧ EQ 180

• (CA.2.8) DISPUTE(w,u, v) ∧ (k = l , i ∨ k = i , l) ∧ EQ 0

(CA.2.1) and (CA.2.2) are very similar to the proof of (CA.1.1) above.

So now consider (CA.2.3). First of all, we easily get that DISPUTE(w, v,u)

since F f satisfies CNT2. Moreover, we get that either u or v is named and

k = 0. But then putting it altogether, we get ANG∗Jx(W,V,U) as desired.

(CA.2.4) follows in a similar way. Consider (CA.2.5). First, note that we

get DISPUTE(w, v,u) and that k is strictly greater than l and i. But this implies
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ANG∗Jx(W,V,U). (CA.2.6) follows similarly. Now consider case (CA.2.7). We

again get DISPUTE(w, v,u) since F f satisfies CNT2. On the other hand, we

have k , l = i. Hence, ANG∗Jx(W,V,U) as desired. Finally, consider (CA.2.8).

We have DISPUTE(w, v,u) and either k = l , i or k = i , l. In both cases we get

ANG∗Jx(W,V,U) from step 4 once again.

Now let us consider case (CB). First of all, it immediately follows that we

have ANG f
Jx(w,u, v) from step 4. Moreover, since F f satisfies CNT2 by Lemma

3.5.1, we also have ANG f
Jx(w, v,u). In addition, one of the following must be

the case:

• (CB.1) ¬ANG f
Jdx

(w,u, v)

• (CB.2) x , 0∧ J∈ {<,≤} ∧ (k = l = i ∨ k , l , i , k)

• (CB.3) x , 180∧ J∈ {>,≥} ∧ (k = l , i ∨ k = i , l ∨ l = i , k)

• (CB.4) x = 0∧ J∈ {>,≥}

• (CB.5) x = 180∧ J∈ {<,≤}

If (CB.1), then we clearly have that ¬ANG f
Jdx

(w, v,u) since F f satisfies CNT2

by Lemma 3.5.1. But since we also have ANG f
Jx(w, v,u), this implies that

ANG∗Jx(W,V,U) by step 4. In the case of (CB.2), since we have ANG f
Jx(w, v,u)

and x , 0∧ J∈ {<,≤} and either k = l = i or k , l , i , k, we immediately get the

desired result from step 4. (CB.3) follows similarly. In case of (CB.4), it follows

that we have x = 0∧ J∈ {>,≥}. But then again from here we get ANG∗Jx(W,V,U),

which is what we want. (CB.5) follows similarly.

Now we show thatF∗ satisfies CNT3, i.e., ANG∗Jx(W,U,V)∨ANG∗Jdx(W,U,V).

Note that, since F f satisfies CNT3 by Lemma 3.5.1, we have ANG f
Jx(w,u, v) ∨

ANG f
Jdx

(w,u, v). Now, in Construction 3.5.2, there are two cases to be considered

regarding the triple W,U,V. These are again the cases (CA) and (CB) listed in

the above, in the proof of constraint CNT2.
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First of all, note that there is nothing to show in the case that all of the

states w,u and v are named, since the relations on the triangle of W,U and V

are identical to its predecessor triangle in F f and F f satisfies CNT3.

Let us first consider case (CA). First, the easy part. If ANG f
≤0(w,u, v) ∧

¬ANG f
≥180(w,u, v) or in other words, NO DISPUTE 0(w,u, v), and we also have

x , 0, we get ANG∗<x(W,U,V) and ANG∗≤x(W,U,V) regardless of the number of

named states. This gives us what we want. On the other hand, if x = 0 then

ANG∗≥x(W,U,V) and ANG∗≤x(W,U,V), which also gives us the desired result. The

case when we have ¬ANG f
≤0(w,u, v) ∧ ANG f

≥180(w,u, v) follows similarly.

Now suppose that we have ANG f
≤0(w,u, v) ∧ ANG f

≥180(w,u, v). Suppose

only w and u are named-states and k + l + i is odd. If VAR(u, {w,u, v}) =

odd/null, then we get ANG∗<x(W,U,V) and ANG∗≤x(W,U,V). On the other hand, if

VAR(u, {w,u, v}) = even, then we have ANG∗>x(W,U,V) and also ANG∗≥x(W,U,V).

Now suppose k + l + i is even. Then we get ANG∗<x(W,U,V) and ANG∗≤x(W,U,V)

when VAR(u, {w,u, v}) = even and on the other hand, ANG∗>x(W,U,V) and

ANG∗≥x(W,U,V) when VAR(u, {w,u, v}) = odd/null. The case when w and v

are named-states follows similarly. Now suppose u and v are named. But from

Lemma 3.5.3 it follows that this is impossible since we have ANG f
≤0(w,u, v) ∧

ANG f
≥180(w,u, v).

Alternatively, suppose that at most one of w,u and v is named. We can

safely assume that ¬(k = l = i). In this case, either the indexes are mutually

distinct or exactly two of them are equal to each other. In the former case, we

have ANG∗>x(W,U,V) and ANG∗≥x(W,U,V) when k is the maximum of all three

and ANG∗<x(W,U,V) and ANG∗≤x(W,U,V) otherwise. In the case of the latter, we

have ANG∗<x(W,U,V) and ANG∗≤x(W,U,V) if k is equal to one of the other two

and ANG∗>x(W,U,V) and ANG∗≥x(W,U,V) if k is not equal to the other two, which

must be equal to each other.
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Let us now consider (CB). We have the following sub-cases to be considered:

• (CB.1) ANG f
Jx(w,u, v) ∧ ANG f

Jdx
(w,u, v),

• (CB.2) ANG f
Jx(w,u, v) ∧ ¬ANG f

Jdx
(w,u, v),

• (CB.3) ¬ANG f
Jx(w,u, v) ∧ ANG f

Jdx
(w,u, v).

Consider (CB.2). It is obvious from step 4 of Construction 3.5.2 that we get

ANG∗Jx(W,U,V). Similarly, (CB.3) implies ANG∗Jdx(W,U,V).

So, consider case (CB.1). Assume thatJ∈ {<,≤}. The case whenJ∈ {>,≥} can

be established using similar arguments. Firstly, suppose we have either k = l = i

or k , l , i , k. Assume x , 0. Now, if J=<, then we have ANG f
<x(w,u, v)

and hence, ANG f
≤x(w,u, v) since F f satisfies CNT4 by Lemma 3.5.1. From

step 4, we get ANG∗<x(W,U,V) and ANG∗≤x(W,U,V), which gives us what we

want. Alternatively, suppose that J=≤. Clearly, we have ANG∗≤x(W,U,V) by

the construction. Moreover, it is easy to see that we have ANG f
>x(w,u, v) and

hence, ANG f
≥x(w,u, v) since F f satisfies CNT4. So, if ¬ANG f

<x(w,u, v), then we

have ANG∗≥x(W,U,V). Otherwise, obviously ANG∗<x(W,U,V). Now suppose we

have x = 0. So, we must have J=≤. Therefore, we also have ANG f
>x(w,u, v) and

henceforth, ANG f
≥x(w,u, v). From here we get ANG∗≥x(W,U,V)∧ANG∗>x(W,U,V)

by step 4 of Construction 3.5.2.

Now suppose we have either of k = l , i or k = i , l or l = i , k. If x ,

180 and J=<, this means that we have ANG f
≥x(w,u, v) and so, ANG∗≥x(W,U,V).

On the other hand, suppose we have ANG f
>x(w,u, v). It easily follows that

we have ANG∗>x(W,U,V) and we get what we want. Alternatively, suppose

that ¬ANG f
>x(w,u, v). Since we have ANG f

<x(w,u, v), we must also have that

ANG f
≤x(w,u, v) since F f satisfies CNT4. But then from step 4, we conclude that

ANG∗≤x(W,U,V) and once again we are through. On the other hand, suppose we

have J=≤. So it follows that we have ANG f
>x(w,u, v) and hence, ANG f

≥x(w,u, v)
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since F f satisfies CNT4. This gives ANG∗>x(W,U,V) ∧ ANG∗≥x(W,U,V) which

gives us what we want. Finally, suppose x = 180. If J=<, then we have

that ANG f
<x(w,u, v) and hence, ANG f

≤x(w,u, v) since F f satisfies CNT4. Now,

it follows from step 4 of Construction 3.5.2 that we have ANG∗<x(W,U,V) ∧

ANG∗≤x(W,U,V). On the other hand, J=≤ is not a possibility since it would

imply that ANG f
>180(w,u, v), which is absurd.

To see that CNT4 holds over F∗, assume that ANG∗<x(W,U,V). We have to

show that ANG∗≤x(W,U,V). We leave it to the reader, in the case that all of the

states w,u and v are named. It is straightforward once we observe that F f

satisfies CNT4. In Construction 3.5.2, we have the cases (CA) and (CB) listed

in the proof of constraint CNT2 to be considered.

Let us first consider (CA). If exactly two of the states in question are named,

this means that we have the sub-cases (CA.1.1) - (CA.1.6) listed above. By the

assumption, we have J=<. This means that the cases (CA.1.2), (CA.1.3) and

(CA.1.4) are impossible. On the other hand, for the cases (CA.1.1), (CA.1.5) and

(CA.1.6), there is not much to show and it immediately follows that we have

ANG∗≤x(W,U,V) as desired from step 2.

Now suppose that at most one of the states w,u and v is named. In this

case we have one of the sub-cases (CA.2.1) - (CA.2.8) listed above. Now, due

to the fact that J=<, the cases (CA.2.2), (CA.2.3), (CA.2.5) and (CA.2.7) are

impossible. For the rest of the cases, the desired result follows immediately in

the same way.

Now, let us now consider (CB). Firstly, from Construction 3.5.2 one can

easily see that we have ANG f
<x(w,u, v). Moreover, since F f satisfies CNT4 by

Lemma 3.5.1, it follows that ANG f
≤x(w,u, v). In addition, we have one of the

sub-cases listed as (CB.1) - (CB.5) in the above.

If (CB.1), then we have ¬ANG f
>x(w,u, v) since F f satisfies CNT4 by Lemma
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3.5.1. Since we also have that ANG f
≤x(w,u, v), it follows from step 4 of Construc-

tion 3.5.2 that we have ANG∗≤x(W,U,V) as desired. Now consider (CB.2). But

then there is nothing to show and we get ANG∗≤x(W,U,V) from step 4. Note that

cases (CB.3) and (CB.4) are impossible since we have J=<. Finally, if (CB.5) is

the case, then we immediately get what we want. It can be established along

very similar lines that we have ANG∗>x(W,U,V)⇒ ANG∗≥x(W,U,V) as well.

Let us now show that CNT5 holds over F∗. Suppose ANG∗≤x(W,U,V). If all

of the states w,u and v are named, then this triangle of states must be defect

free in F f by Lemma 3.5.3. This means that CNT5 is satisfied on this particular

triangle. Hence, it is satisfied on the triangle W,U and V, which has the identical

relations to its predecessor. Now, we have the cases (CA) and (CB) listed in the

proof of constraint CNT2 to be considered.

Let us first consider (CA). If exactly two of the states in question are named,

this means that we have the sub-cases (CA.1.1) - (CA.1.6) listed above. It is

easy to see that in either of the cases (CA.1.1) or (CA.1.5) or (CA.1.6), we have

¬ANG∗>x(W,U,V) from step 2. On the other hand, if either of (CA.1.2) or (CA.1.3)

or (CA.1.4) is the case, then we must have x = 180. Therefore, in any case we

will have ¬ANG∗>x(W,U,V) from step 2 as desired.

Now suppose that at most one of the states w,u and v is named. In this case

we have one of the sub-cases (CA.2.1) - (CA.2.8) listed above. However, this

is very similar to the reasoning in the previous paragraph: In cases (CA.2.1),

(CA.2.4), (CA.2.6) and (CA.2.8), we get ¬ANG∗>x(W,U,V) from step 3 as desired.

For the rest of the cases, it follows that we must have x = 180, leading to the

desired result.

Now let us consider case (CB). First of all, we get that ANG f
≤x(w,u, v). In

addition, we have one of the sub-cases listed as (CB.1) - (CB.5) in the above. In

case of (CB.1), we easily get that ¬ANG∗>x(W,U,V). On the other hand, suppose
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that we have (CB.2). For the sake of a contradiction, suppose ANG∗>x(W,U,V).

From here, the only way for this to happen from step 4 is when we have

¬ANG f
≤x(w,u, v), which is a contradiction. The cases of (CB.3) and (CB.4) are

not possible since J=≤. Finally, consider (CB.5). We get x = 180. But then this

means that ANG∗>x(W,U,V), which is impossible.

Next, we show that CNT6 holds over F∗. Let y ∈ A f such that x ≤ y and

suppose that ANG∗<x(W,U,V). We will show that ANG∗<y(W,U,V). As usual, we

leave the case when all of w,u and v are named to the reader. The case that

ANG∗≤x(W,U,V) ⇒ ANG∗≤y(W,U,V) follows in a similar way. In Construction

3.5.2, there are two cases to be considered which were listed above as (CA) and

(CB).

Note that we must have y > 0, since we have ANG∗<x(W,U,V) and x ≤

y. First, we consider case (CA). If exactly two of the states in question are

named, this means that we have the sub-cases (CA.1.1) - (CA.1.6) listed above.

Since J=<, it follows that none of the cases (CA.1.2), (CA.1.3) and (CA.1.4) is

possible. On the other hand, in all of the rest of the cases we get ANG∗<y(W,U,V)

immediately. Moreover, if at most one of the states are named, we are through

with the very same arguments.

Now let us consider case (CB). First of all, we have ANG f
<x(w,u, v). Moreover,

since F f satisfies CNT6 from Lemma 3.5.1, we get ANG f
<y(w,u, v). In addition,

we have one of the cases (CB.1) - (CB.5). First consider (CB.1). From here and

since F f satisfies CNT6, it is easy to see that we have ¬ANG f
≥y(w,u, v). Hence,

from step 4 of Construction 3.5.2 we get ANG∗<y(W,U,V). Now let us have a

look at (CB.2). But then we immediately get ANG∗<y(W,U,V) from step 4. On

the other hand, note that (CB.3) and (CB.4) are not possible since we have J=<.

Finally, in case of (CB.5), it follows that x = y = 180 and the desired result is

immediate. CNT7 can be established in a very similar way.
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To establish that CNT8 holds over F∗, we will show that ANG∗
≤180(W,U,V)

and leave the part that ANG∗
≥0(W,U,V) to the reader. For this, it is sufficient to es-

tablish that¬ANG f
>180(w,u, v). We will show that this implies¬ANG∗>180(W,U,V)

and since we have already established that F∗ satisfies CNT3, we would have

our result. Since F f satisfies CNT8, we have ANG f
≤180(w,u, v). For sake of a

contradiction, assume that ANG f
>180(w,u, v). But now, from Construction 3.5.1

it follows that there are w′,u′, v′ ∈W such that ANG>180(w,u, v), which is a con-

tradiction since F satisfies CNT8 and CNT5. In other words, ¬ANG f
>180(w,u, v)

as desired.

So, it remains to show that¬ANG f
>180(w,u, v) implies¬ANG∗>180(W,U,V). For

sake of a contradiction, suppose that we have ANG∗>180(W,U,V). In Construction

3.5.2, we have the cases (CA) and (CB) to be considered.

First, we consider case (CA). Assume that exactly two of the states w,u and

v are named. So, we have the sub-cases (CA.1.1) - (CA.1.6). Since J=>, none of

the cases (CA.1.1), (CA.1.5) or (CA.1.6) is possible. However, neither the rest of

the cases is possible, since we have the combination J=> and x = 180. Hence,

we get the contradiction we want. The case when there is at most one named

state among w,u and v follows similarly.

Now consider case (CB). We have one of the sub-cases (CB.1) - (CB.5). But

all of them imply that we have ANG f
>180(W,U,V), which was shown in the above

not to be the case. Hence, a contradiction again.

Finally, to see that CNT10 holds over F∗, assume that ANG∗
≤0(W,U,V). The

case when all of w,u and v are named is as usual. In Construction 3.5.2, we

must consider the cases (CA) and (CB) listed in the above.

First, we consider case (CA). Suppose exactly two of the states in question

are named. Then the sub-cases we have to consider are (CA.1.1) - (CA.1.6). If

(CA.1.1) is the case, then we have that ANG f
≤0(w,u, v). Since F f satisfies CNT10
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by Lemma 3.5.1, we get ANG f
≤0(u,w, v) ∨ ANG f

≥180(u,w, v). Now there are three

sub-cases to be considered:

• (CA.1.1.1) ANG f
≤0(u,w, v) ∧ ¬ANG f

≥180(u,w, v)

• (CA.1.1.2) ANG f
≥180(u,w, v) ∧ ¬ANG f

≤0(u,w, v)

• (CA.1.1.3) ANG f
≤0(u,w, v) ∧ ANG f

≥180(u,w, v)

If (CA.1.1.1) is the case, then we have ANG∗
≤0(U,W,V) from step 2. Similarly,

If (CA.1.1.2) is the case, we have ANG∗
≥180(U,W,V). Now, suppose that we

have (CA.1.1.3). So, we have DISPUTE(u,w, v). It follows from Lemma 3.5.3

and the fact that exactly two of the states are named, that u must be named.

Otherwise, w and v are named with a dispute on u. This contradicts with Lemma

3.5.3. Now, it follows from step 2 that we must have either ANG∗
≤0(U,W,V) or

ANG∗
≥180(U,W,V). Note that (CA.1.2), (CA.1.3) and (CA.1.4) are impossible. For

the rest of the cases, the proof is almost identical to the case of (CA.1.1) above.

Now suppose that at most one of the states in question are named. Then

the sub-cases we have to consider now are (CA.2.1) - (CA.2.8). Of these cases,

only (CA.2.1), (CA.2.4), (CA.2.6) and (CA.2.8) are possible. Suppose we have

(CA.2.1). We get ANG f
≤0(w,u, v). Since F f satisfies CNT10 by Lemma 3.5.1,

we get ANG f
≤0(u,w, v) ∨ ANG f

≥180(u,w, v). The rest of the proof is similar to the

above where we proceed by considering three cases (CA.1.1.1) - (CA.1.1.3).

Now suppose we have (CA.2.4). So, by the assumption we have the follow-

ing: DISPUTE(w,u, v), k , l = i = 0, that either of u or v is named and, that k+l+i

is even. First of all, we have that ANG f
≤0(u,w, v). If we have ¬ANG f

≥180(u,w, v),

then we are easily through and we get ANG∗
≤0(U,W,V) from step 3. So, suppose

we have ANG f
≥180(u,w, v). In other words, DISPUTE(u,w, v). If u is not named,

then v is and we get ANG∗
≥180(U,W,V) since we also have l = 0. On the other

hand, if u is named, it follows that neither w nor v is named, since we have at
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most one named state. It follows from step 3 that we have ANG∗
≤0(U,W,V) since

we have l = i , k.

Now suppose we have (CA.2.6). Then, k, l and i are mutually distinct and

k is not the maximum of all three. Moreover, we have DISPUTE(w,u, v). We

obviously have that ANG f
≤0(u,w, v). If we have ¬ANG f

≥180(u,w, v), then we are

easily through and we get ANG∗
≤0(U,W,V) from step 3. So, suppose we have

ANG f
≥180(u,w, v). In other words, DISPUTE(u,w, v). Now, if l is the maximum

of all three, then we get ANG∗
≥180(U,W,V) otherwise, ANG∗

≤0(U,W,V) from step

3. (CA.2.8) follows in a similar way.

Finally, we consider case (CB). We will show that this is not possible.

It follows that we have one of the sub-cases (CB.1) - (CB.5). But having

ANG∗
≤0(W,U,V) by the assumption, the only possible case is actually (CB.1).

From here we get that ANG f
≤0(w,u, v)∧¬ANG f

>0(w,u, v). But for case (CB) to get

applied for this triangle, this implies that we have either NO DISPUTE 0(w,u, v)∧

ANG f
>0(w,u, v)∧ even(k + l + i) or NO DISPUTE 180(w,u, v)∧ANG f

<180(w,u, v)∧

even(k + l + i) by the construction. A contradiction. Hence, (CA) is the only

possible case. �

The following is a helper lemma for the following Lemma 3.5.6 and later for

Lemma 3.5.7.

Lemma 3.5.5. ANG∗
≤0(W,U,V) ∧ ANG∗

≤0(U,W,V)⇒ ANG∗
≥180(V,W,U).

Proof. The proof of the lemma is very easy and left to the reader. �

Lemma 3.5.6. For every Φ and 〈w, k〉 ∈W∗, we have thatM f ,w |= Φ iffM∗, 〈w, k〉 |=

Φ.

Proof. Let Φ be a formula and 〈w, k〉 ∈ W∗. Call W = 〈w, k〉. The proof is by

induction on the complexity of Φ. Base case is trivial from the construction of
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F∗ and the boolean cases are standard. Now let x ∈ A f and fix J∈ O. Assume

that Φ = 〈ANGJx〉(ϕ,ψ).

In order to see the claim from left to right, assumeM f ,w |= 〈ANGJx〉(ϕ,ψ).

Then, ∃u∃v[ANG f
Jx(w,u, v) ∧ M f ,u |= ϕ ∧ M f , v |= ψ]. From the induction

hypothesis, it follows that M∗,U |= ϕ ∧M∗,V |= ψ for every U,V ∈ W∗ such

that U = 〈u, l〉, V = 〈v, i〉 and l, i ∈ {0, 1, 2, 3, 4}. Therefore, we would be able to

complete the proof of this case if we could only show that ANG∗Jx(W,U,V) for

some U,V ∈ W∗ such that U = 〈u, l〉, V = 〈v, i〉 and l, i ∈ {0, 1, 2, 3, 4}. The proof

proceeds by considering the following cases:

• (CA) ANG f
≤0(w,u, v) ∧ ANG f

≥180(w,u, v)

• (CB) ANG f
≤0(w,u, v) ∧ ¬ANG f

≥180(w,u, v)

• (CC) ANG f
≥180(w,u, v) ∧ ¬ANG f

≤0(w,u, v)

• (CD) ¬[ANG f
≤0(w,u, v) ∨ ANG f

≥180(w,u, v)]

Let us first consider (CA). It follows from Lemma 3.5.3 that at most two of

the states w,u and v could be named-states. First, assume that w and u are

named-states. The case with w and v follows in a very similar way. It follows

that k = 0. On the other hand, from step 2 of Construction 3.5.2 we get that

either ANG∗Jx(W, 〈u, 0〉, 〈v, 2〉) or ANG∗Jx(W, 〈u, 0〉, 〈v, 3〉). This gives us what we

want. Note that under the assumption (CA), it is not possible that u and v are

both named-states by Lemma 3.5.3.

Now assume that at most one of w,u and v is named. Suppose J∈ {<,≤}.

If k , 0, then since at most one of u and v could be named, we have either

ANG∗Jx(W, 〈u, 0〉, 〈v, k〉) or ANG∗Jx(W, 〈u, k〉, 〈v, 0〉) from step 3. On the other hand,

if k = 0, then we have either ANG∗Jx(W, 〈u, 0〉, 〈v, 3〉) or ANG∗Jx(W, 〈u, 3〉, 〈v, 0〉).

Now suppose that we haveJ∈ {>,≥}. If k , 0 and k is odd, then we have that

ANG∗Jx(W, 〈u, 0〉, 〈v, 0〉) from step 3. If k is even, then either ANG∗Jx(W, 〈u, 1〉, 〈v, 0〉)
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or ANG∗Jx(W, 〈u, 0〉, 〈v, 1〉). Now suppose that we have k = 0. If neither u nor

v is named, then we obviously have ANG∗Jx(W, 〈u, 1〉, 〈v, 1〉). On the other

hand, if one of u and v is named, then we have ANG∗Jx(W, 〈u, 0〉, 〈v, 2〉) or

ANG∗Jx(W, 〈u, 2〉, 〈v, 0〉) from step 3.

Next, we will consider (CB) and leave (CC) to the reader since they have

very similar proofs. If all of the states w,u and v are named-states, then it

follows from Lemma 3.5.3 that this triangle is defect-free. However, in this case

the desired result follows immediately from step 3 of Construction 3.5.2.

Now assume that only w and u are named. The case with w and v fol-

lows in a very similar way. If ¬ANG f
>0(w,u, v), then it trivially follows that

we have ANG∗Jx(W, 〈u, l〉, 〈v, i〉) for any l, i ∈ {0, 1, 2, 3, 4} from step 2 of Con-

struction 3.5.2. Alternatively, suppose that ANG f
>0(w,u, v). If J∈ {<,≤}, then

ANG∗Jx(W, 〈u, 0〉, 〈v, 1〉) (notice the odd sum of indexes). On the other hand, if

J∈ {>,≥}, then ANG∗Jx(W, 〈u, 0〉, 〈v, 2〉) (this time notice the even sum of indexes)

from step 4 of Construction 3.5.2. Now suppose that u and v are named-states.

This implies that we have ¬ANG f
>0(w,u, v) and the desired result follows im-

mediately from step 2.

Now assume that at most one of w,u and v is named. First, suppose we

have ¬ANG f
>0(w,u, v). It immediately follows that ANG∗Jx(W, 〈u, l〉, 〈v, i〉) for

any l, i ∈ {0, 1, 2, 3, 4} from step 3 and we are through. Now suppose that we

have ANG f
>0(w,u, v). If J∈ {<,≤}, then we have ANG∗Jx(W, 〈u, l〉, 〈v, i〉) for any

l, i ∈ {0, 1, 2, 3, 4} such that k + l + i is odd. On the other hand, if J∈ {>,≥}

and k = 0, then we have either ANG∗Jx(W, 〈u, 0〉, 〈v, 2〉) or ANG∗Jx(W, 〈u, 2〉, 〈v, 0〉)

from step 4. Alternatively, if k , 0, then we have either ANG∗Jx(W, 〈u, k〉, 〈v, 0〉)

or ANG∗Jx(W, 〈u, k〉, 〈v, 0〉) from step 4.

Finally, let us consider (CD). First of all, if we have ¬ANG f
Jdx

(w,u, v), then

we clearly have that ANG∗Jx(W, 〈u, l〉, 〈v, i〉) for any l, i ∈ {0, 1, 2, 3, 4} such that
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〈u, l〉, 〈v, i〉 ∈W∗.

Now assume that ANG f
Jdx

(w,u, v). Notice that it is impossible that all of w,u

and v are named. First, suppose that only w and u are named. If J∈ {<,≤}, then

we have ANG∗Jx(W, 〈u, 0〉, 〈v, 0〉) from step 4 of Construction 3.5.2. On the other

hand, if J∈ {>,≥}, then we get from step 4 that ANG∗Jx(W, 〈u, 0〉, 〈v, i〉) for any

i ∈ {0, 1, 2, 3, 4} such that i , 0. The case for w and v is as usual very similar.

Note that, from Lemma 3.5.3 and the assumptions, it follows that u and v can

not be both named-states.

Now assume that w is the only named-state. From here we get that

ANG∗Jx(W, 〈u, 0〉, 〈v, 0〉) whenever J∈ {<,≤} and ANG∗Jx(W, 〈u, 1〉, 〈v, 1〉) when-

ever J∈ {>,≥}. Finally, assume that u is the only named-state and J∈ {<,≤}. In

this case, if k = 0, then we have that ANG∗Jx(W, 〈u, 0〉, 〈v, 0〉). On the other hand,

if k , 0, then we have ANG∗Jx(W, 〈u, 0〉, 〈v, i〉) for any i ∈ {0, 1, 2, 3, 4}−{0, k}. Now

suppose J∈ {>,≥}. If k = 0, then we get ANG∗Jx(W, 〈u, 0〉, 〈v, 1〉) and if k , 0, then

we get ANG∗Jx(W, 〈u, 0〉, 〈v, k〉).

We have established that we can always find appropriate U,V ∈ W∗ such

that ANG∗Jx(W,U,V) and since we also have thatM∗,U |= ϕ andM∗,V |= ψ for

every such U,V ∈W∗, we conclude thatM∗,W |= 〈ANGJx〉(ϕ,ψ) as desired.

In the opposite direction, assume that M∗,W |= 〈ANGJx〉(ϕ,ψ). Then,

∃U∃V[ANG∗Jx(W,U,V) ∧ M∗,U |= ϕ ∧ M∗,V |= ψ] such that U and V are in

the form 〈u, l〉 and 〈v, i〉, respectively, for some u, v ∈WFin and l, i ∈ {0, 1, 2, 3, 4}.

From here and the induction hypothesis, we haveM f ,u |= ϕ andM f , v |= ψ. In

order to conclude the argument, it is sufficient to observe that ANG∗Jx(〈w, k〉, 〈u, l〉, 〈v, i〉)

implies that ANG f
Jx(w,u, v) by Construction 3.5.2. This implies that M f ,w |=

〈ANGJx〉(ϕ,ψ) as desired.

It remains to see the hybrid satisfaction operator. However, this is straight-

forward: M f ,w |= @iϕ iff ∃u[M f ,u |= i ∧ ϕ] iff (since u is named and from the
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induction hypothesis) M∗, 〈u, 0〉 |= i ∧ ϕ iff M∗,W |= @iϕ. This completes the

proof. �

It remains to repair the defects related to constraint CNT9. This repair

procedure is more complicated when compared to the previous one, but it

fundamentally uses the same idea of “splitting” from the previous repair pro-

cedure. Defects we will be dealing with in this part of the proof consist of

configurations in F∗ with the following form:

ANG∗Jx(w,u, v) ∧ ANG∗Jy(u,w, v) ∧ ANG∗Jsz(v,w,u)

for any J∈ {≤,≥} and x, y, z ∈ A f such that x + y + z = 180. For the sake of

compactness and simplicity of the rest of the proof, we define the following

shorthand which formally checks for the defects on the triangles in F∗:6

DFCT(w,u, v) ≡∃x∃y∃z∃ J [(x + y + z) = 180∧ J∈ {≤,≥}∧

ANG∗Jx(w,u, v) ∧ ANG∗Jy(u,w, v) ∧ ANG∗Jz(v,w,u)∧

[ANG∗Jsx(w,u, v) ∨ ANG∗Js y(u,w, v) ∨ ANG∗Jsz(v,w,u)]]

The states that are involved in a defect and need to be repaired can be

identified with the following set:

D∗ =
{
w ∈W∗ | ¬∃i[M∗,w |= i] ∧ ∃u∃v[DFCT(w,u, v)]

}
It is important to note that the named-states are not a part of this set. This

means that, a named-state will never be split into multiple states by the repair

procedure below.

Before we start with the details of the repair procedure, we discuss some

6The definition of the notation Js (‘strict operator’) can be found in Definition 3.2.1.
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notions and basic arguments that are used by this procedure.

One of the most important notions we will be using is called ‘flipping.’ We

call the change of a relation on a triangle to its dual (relation) as flipping. For

example, if we have ANGJx(w,u, v), then flipping this configuration will give

us ANGJdx(w,u, v). This is a simple but very important notion that we will use

frequently in this repair procedure.

The procedure can be divided into two main components: The first com-

ponent is the one where the states are split (when possible) into new states for

the new frame and it prepares the appropriate “infrastructure” for the more

complicated second component. The second component assigns relations of

the new frame F+ by using the relations from frames F f and F∗ as guidance

and in such a way that, all of the defects are removed. Naturally, we pay more

attention to the second component of the repair procedure. The following

overview is devoted to the second component.

Roughly speaking, to repair a defect over a triangle it suffices to flip some

of the relations involved in the defect. This is the main argument of this entire

repair procedure. Let us now explain in detail how this is done.

In order to prevent any loss of information while constructing F+ from F∗,

the procedure generates three types of triangles for each triangle in F∗7 where

in each of these triangle types, the relations on a different pair of states are

flipped. Figure 3.6 illustrates this situation. Let us analyse this deeper with the

following four observations:

Firstly, flipping relations of a triangle can only be made if the resulting dual-

relation by the flipping is already present over the ancestor of this triangle in

the frame F f . In order to verify this, the procedure simply checks the existence

of the needed dual-relations at the filtration frameF f . Hence, we will generally

7There will be always at least three triangles generated, but in general a triangle from F∗ can
generate up to 27 triangles in F+. What we care about here is the type of triangles. No matter how
many triangles are generated, there will be always precisely three types of triangles.
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talk about the procedure ‘attempting to flip’ a relation, since there might not be

always an available relation to achieve this.

Secondly, as established by Lemma 3.5.8, the existence of a defect over a

triangle guarantees the existence of dual-relations on at least two of its states in

the frame F f . Therefore, if the procedure attempts to flip relations on any two

states of a defect triangle, we can guarantee that it will succeed with at least

one of these attempts. Hence, the defect will certainly be repaired.

Thirdly, the procedure does not flip relations on all of the three states of a

defect triangle at once. Although this will manage to remove the defect, it will

cause a defect of the dual kind.

Fourthly, since the relations on one different state in each triangle type does

not get flipped, every relation over every state in F∗ is guaranteed to exist in

F+ over the respective successor state(s). This will guarantee the preservation

of the satisfiability from F∗ to F+.

Unfortunately, there is one side effect of the method described so far: The

repair procedure might flip the relations of a non-defect configuration and

cause an initially non-existent defect. For example, consider a triangle of states

w,u and v with the following defect:

ANG∗≤x′ (w,u, v) ∧ ANG∗≤y′ (u,w, v) ∧ ANG∗<z′ (v,w,u)

for some x′, y′ and z′ such that x′ + y′ + z′ = 180. For some other parameters

x, y and z such that x + y + z = 180, assume that we have:

ANG∗≤x(w,u, v) ∧ ANG∗≤y(u,w, v) ∧ ANG∗>z(v,w,u).

Since the triangle in question has a defect, eventually there will be a successor

triangle in F+ where the relations on (w,u, v) and (u,w, v) will be possibly
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flipped. This will result with the following configuration:

ANG+
>x(w,u, v) ∧ ANG+

>y(u,w, v) ∧ ANG+
>z(v,w,u).

But, this is a defect!

Flipping relations in this kind of configurations can be avoided by deter-

mining a ‘critical parameter value’ for one of the two states that are going to

be flipped: We claim that not flipping the relations with parameters above or

below (depending on the type of defect) this critical parameter value, prevents

all of the situations described in the above paragraph without preventing the

repair process of any defects. By adapting this critical parameter value into the

repair procedure, we can finally guarantee the repair of all the defects. Figure

3.7 illustrates the repair procedure.

Roughly speaking, the critical parameter value of a state in a particular

triangle is calculated as the minimum or maximum value (depending on the

type of the defect) of certain parameters involved in a defect over that state

and triangle. First of all let us define the set of those parameters: For every

W,U,V ∈ W∗ such that W = 〈w, k〉 , U = 〈u, l〉 and V = 〈v, i〉 for some k, l, i, we

set:

MJ(W,U,V) =
{
x ∈ A f

| ∃y∃z[(x + y + z) = 180∧

[¬ANG f
Jd y

(u,w, v) ∨ ¬ANG f
Jdz

(v,w,u)]∧

ANG∗Jx(W,U,V) ∧ ANG∗Jy(U,W,V) ∧ ANG∗Jz(V,W,U)∧

[ANG∗Jsx(W,U,V) ∨ ANG∗Js y(U,W,V) ∨ ANG∗Jsz(V,W,U)]]
}

Using this set of parameters we will produce two critical parameter values,

one for each type of defect. These are max M≤(W,U,V) and min M≥(W,U,V).

Additionally, note that we have MJ(W,U,V) = MJ(W,V,U) for any J.
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No duals from $\fra^f$ for flipping.

No duals from $\fra^f$ for flipping.

With duals from $\fra^f$ for flipping / not flipped.

w u v 〈w, i〉 〈u, j〉 〈v, k〉

ANG>x ,ANG≥x

ANG<x ,ANG≤x

max M≤(w,u, v)

ANG>x ,ANG≥x

ANG<x ,ANG≤x

Figure 3.7: Two triangles are represented by the ordering of the parameters
on each of their states -in increasing order from bottom to top. Different slices
represent different relation types mentioned in the key and hold for parameters
in those intervals. Only one of the three types of triangles produced by the
repair procedure is depicted (on the right). In this case, the first two states w
and u of the defect triangle (on the left) are being attempted for the flipping of
their relations. Among the states w and u, the flipping on w is restricted with
the critical parameter value denoted by C. All of the relations that could be
flipped are flipped on state u and no flipping at all is applied to the relations
on state v.

Lemma 3.5.7. Let W,U,V ∈W∗. Then we have that,

• 0 < max M≤(W,U,V) < 180 and,

• 0 < min M≥(W,U,V) < 180.

Proof. Let W,U,V ∈ W∗. Let us prove the first claim. It is sufficient to es-

tablish that 0, 180 < M≤(W,U,V). For sake of a contradiction, assume that
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0 ∈ M≤(W,U,V). Then we have that, ∃y∃z[(y + z = 180) ∧ ANG∗
≤0(W,U,V) ∧

ANG∗≤y(U,W,V) ∧ ANG∗<z(V,W,U)].

Since F∗ satisfies CNT10 from Lemma 3.5.4 and also from Lemma 3.5.5,

it follows that we have either ANG∗
≥180(U,W,V) or ANG∗

≥180(V,W,U). Now, if

ANG∗
≥180(U,W,V), then this means that we have y = 180 and z = 0. Hence,

we get ANG∗<0(V,W,U). A contradiction. On the other hand, assume that

ANG∗
≥180(V,W,U). But then this contradicts with the fact that ANG∗<z(V,W,U)

since we obviously also have that z ≤ 180 and F∗ satisfies CNT5 from Lemma

3.5.4.

Now assume that 180 ∈ M≤(W,U,V). Then we have ANG∗
≤180(W,U,V) ∧

ANG∗
≤0(U,W,V)∧ANG∗<0(V,W,U) or we have ANG∗

≤0(W,U,V)∧ANG∗
≤0(U,W,V)∧

ANG∗<180(V,W,U). The former case is obviously a contradiction since it says

ANG∗<0(V,W,U). For the latter case, it follows from Lemma 3.5.5 that we must

have ANG∗
≥180(V,W,U) when we have ANG∗

≤0(W,U,V) ∧ ANG∗
≤0(U,W,V). So,

a contradiction. Establishing that 0 < min M≥(W,U,V) < 180 is along very

similar lines. �

The following Lemma 3.5.8 and Lemma 3.5.9, although straightforward,

they establish the basis of the underlying idea of the repair procedure. More

precisely, they establish the fact that whenever we have a defect over a triangle

of states, then we must also have the dual-relations of at least two of the

relations involved in the defect holding over the ancestor states in F f . As

already explained above, this enables us to flip relations without adding any

new information into the newly constructed frame.

Lemma 3.5.8. Let W,U,V ∈ WFin and x, y, z ∈ A f such that x + y + z = 180. For

every J∈ {≤,≥}, if we have that,

ANG f
Jx(W,U,V) ∧ ANG f

Jy(U,W,V) ∧ ANG f
Jsz(V,W,U),
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then at least one of the following holds:

• ANG f
Jdx

(W,U,V) ∧ ANG f
Jd y

(U,W,V),

• ANG f
Jd y

(U,W,V) ∧ ANG f

Jsd z
(V,W,U),

• ANG f
Jdx

(W,U,V) ∧ ANG f

Jsd z
(V,W,U).

Proof. We will provide a proof only for J=≤. Let W,U,V ∈ WFin and x, y, z ∈

A f be as in the hypothesis of the lemma. Assume that ANG f
≤x(W,U,V) ∧

ANG f
≤y(U,W,V)∧ANG f

<z(V,W,U). We have to show that dual-relations hold for

at least two of these relations. So, for the sake of a contradiction, suppose we

have ¬[ANG f
>x(W,U,V) ∨ ANG f

>y(U,W,V)]. From Construction 3.5.1, it follows

that we have ¬[ANG>x(w,u, v) ∨ ANG>y(u,w, v)] for every w ∈ W,u ∈ U, v ∈ V.

SinceF satisfies CNT3, this means that ANG≤x(w,u, v)∧ANG≤y(u,w, v) for every

w ∈W,u ∈ U, v ∈ V. On the other hand, since we have ANG f
<z(V,W,U), it follows

that ∃w′ ∈W∃u′ ∈ U∃v′ ∈ V such that ANG<z(v′,w′,u′). But since we also have

that ANG≤x(w′,u′, v′) ∧ ANG≤y(u′,w′, v′), this contradicts with the fact that F

satisfies CNT9. �

Lemma 3.5.9. Let W,U,V ∈ W∗ such that W = 〈w, k〉 , U = 〈u, l〉 and V = 〈v, i〉 for

some k, l, i and also let x, y, z ∈ A f such that x + y + z = 180. Then,

• If k = l = i∨k , l , i , k, then there are no defects such that ANG∗≥x(W,U,V)∧

ANG∗≥y(U,W,V) ∧ ANG∗>z(V,W,U).

• If k = l , i ∨ k = i , l ∨ l = i , k, then there are no defects such that

ANG∗≤x(W,U,V) ∧ ANG∗≤y(U,W,V) ∧ ANG∗<z(V,W,U).

Proof. We will only establish the first claim. Let states W,U,V and param-

eters x, y, z be as in the hypothesis of the lemma. For sake of a contradic-

tion, assume that either k = l = i or k , l , i , k. On top of this, as-

sume that we have ANG∗≥x(W,U,V) ∧ ANG∗≥y(U,W,V) ∧ ANG∗>z(V,W,U). From

122



Construction 3.5.2, it follows that we have ¬ANG f
<x(w,u, v), ¬ANG f

<y(u,w, v),

¬ANG f
≤z(v,w,u) and ANG f

≥x(w,u, v), ANG f
≥y(u,w, v), ANG f

>z(v,w,u). On the

other hand, from Lemma 3.5.8 we have either ANG f
<x(w,u, v) ∧ ANG f

<y(u,w, v)

or ANG f
<y(u,w, v) ∧ ANG f

≤z(v,w,u) or ANG f
<x(w,u, v) ∧ ANG f

≤z(v,w,u). Hence,

we get the contradiction we were looking for. �

Now we are ready to begin constructing the final frame of the proof. The

domain of the new frame is defined as follows:

W+ B
{
〈W, 0〉 |W ∈W∗ −D∗

}
∪

{
〈W, k〉 |W ∈ D∗, k ∈ {0, 1, 2}

}
.

With the following definition, we formally define the three types of triangles

which were discussed before and the main proof argument relies on. Triangle

types are defined in different ways depending on whether states in the given

triangle are named or not. However, in general the type of a triangle is deter-

mined by looking at the indexes of its states. Types are denoted by TRI 1, TRI 2

and TRI 3.

Definition 3.5.1. Given a triangle 〈W, j〉, 〈U, g〉 and 〈V, h〉 from W+, the type of

this triangle is determined as follows:

• If none of W, U or V is named:

– TRI 1 when j + g + h = 3,

– TRI 2 when j + g + h < 3,

– TRI 3 when j + g + h > 3.

• If precisely one of W, U or V is named: (suppose W is named)

– TRI 1 when g = h,

– TRI 2 when g , h ∧ g , 0 , h,
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TRI 1 TRI 2 TRI 3
W, {W,U,V}† All None Some
U, {W,U,V} Some All None
V, {W,U,V} None Some All

†: when only one state is named, it must be W.

Table 3.2: This table shows which flipping action a state will get in different
triangle types. Each column represents a one of three triangle types and each
row represents one of the three states in a triangle. When the triangle in question
has precisely one named state, then how to flip the relations of this state in
different triangle types is fixed. In such a situation, the first row will always
represent the named state. Other than that, the states are chosen arbitrarily.
We use this table in accordance with Construction 3.5.3 with the help of the
function VAR. It should be clear how the function VAR is defined using this
table.

– TRI 3 when g , h ∧ (g = 0 ∨ h = 0).

• If precisely two of W, U and V are named: (suppose W is unnamed)

– TRI 1 when j = 0,

– TRI 2 when j = 1,

– TRI 3 when j = 2.

In the following repair procedure below, step 1 deals with the triangles

which are defect free. These could be triangles that are in collinear configura-

tion, relations of which were already dealt with in the step 3 of Construction

3.5.2. The main action takes place in step 2 where the relations are flipped by

considering certain factors. Now we can finally provide our repair procedure

formally:

Construction 3.5.3 (Second Repair). Fix some 〈W, j〉, 〈U, g〉, 〈V, h〉 ∈ W+ such

that W,U,V ∈ W∗ and j, g, h ∈ {0, 1, 2} and such that W = 〈w, k〉 , U = 〈u, l〉 and

V = 〈v, i〉 for some k, l, i ∈ {0, 1, 2, 3, 4} and w,u, v ∈WFin.

Before we begin with the procedure, for the sake of simplicity and compact-

ness of the formalisation of the procedure, let us define the following shorthand:
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Definition 3.5.2. Let VAR be the function defined by Table 3.2 for every trio

W,U,V ∈ W∗. For any type ∈ {All,None,Some}, we say that ‘flipping type of

triangle (〈W, j〉, 〈U, g〉, 〈V, h〉) (order is important) is type’ whenever one of the

following holds:

• TRI 1 ∧ VAR(W, {W,U,V},TRI 1) = type or,

• TRI 2 ∧ VAR(W, {W,U,V},TRI 2) = type or,

• TRI 3 ∧ VAR(W, {W,U,V},TRI 3) = type.

In most of the use cases, we simply write ‘FLIP = type’ when the triangle in

question is clear from the context.

For every J∈ O and every x ∈ A f , the repair procedure is as follows:

1. If ANG∗
≤0(W,U,V) ∨ ANG∗

≥180(W,U,V) ∨ ¬DFCT(W,U,V), then:

ANG+
Jx(〈W, j〉, 〈U, g〉, 〈V, h〉) iff ANG∗Jx(W,U,V)

2. For all of the rest of the cases, we have:

ANG+
Jx(〈W, j〉, 〈U, g〉, 〈V, h〉) iff either of the following holds,

• FLIP = None ∧ ANG∗Jx(W,U,V)

• FLIP = Some ∧ (k = l = i ∨ k , l , i , k) and either of:

– J∈ {>,≥} ∧ x ≤ max M≤(W,U,V)

– x > max M≤(W,U,V) ∧ ANG∗Jx(W,U,V)

• FLIP = Some ∧ (k = l , i ∨ k = i , l ∨ l = i , k) and either of:

– J∈ {<,≤} ∧ x ≥ min M≥(W,U,V)

– x < min M≥(W,U,V) ∧ ANG∗Jx(W,U,V)

• FLIP = All ∧ (k = l = i ∨ k , l , i , k) and either of:
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– ANG f
>x(w,u, v)∧ J∈ {>,≥}

– ¬ANG f
>x(w,u, v) ∧ ANG∗Jx(W,U,V)

• FLIP = All ∧ (k = l , i ∨ k = i , l ∨ l = i , k) and either of:

– ANG f
<x(w,u, v)∧ J∈ {<,≤}

– ¬ANG f
<x(w,u, v) ∧ ANG∗Jx(W,U,V)

For every α ∈P ∪N , define the valuation function by setting:

V+(α) = {〈w, k〉 ∈W+
| w ∈ V∗(α), k ∈ {0, 1, 2}}.

Our final frame and model can now be given as:

F+[A f ] B
〈
W+,
{
ANG+

Jx

}〉
J∈O,x∈A f

and

M+ B
〈
F+[A f ],V+

〉
.

Finally we are ready to establish that we have an angular model:

Lemma 3.5.10. F+ satisfies all conditions CNT1-CNT10, i.e.,F+ is an angular frame.

Proof. Let W+,U+,V+
∈ W+ such that W+ = 〈W, j〉, U+ = 〈U, g〉, V+ = 〈V, h〉

for some W,U,V ∈ W∗ and j, g, h ∈ {0, 1, 2} such that W = 〈w, k〉, U = 〈u, l〉 and

V = 〈v, i〉 for some w,u, v ∈ WFin and k, l, i ∈ {0, 1, 2, 3, 4}. Then we have the

following possibilities to consider regarding the triangle 〈W, j〉, 〈U, g〉, 〈V, h〉:

• (CA) ANG∗
≤0(W,U,V) ∨ ANG∗

≥180(W,U,V) ∨ ¬DFCT(W,U,V).

• (CB) Flipping type of (〈W, j〉, 〈U, g〉, 〈V, h〉) is None.

• (CC) Flipping type of (〈W, j〉, 〈U, g〉, 〈V, h〉) is Some.

• (CD) Flipping type of (〈W, j〉, 〈U, g〉, 〈V, h〉) is All.

126



We will assume that k = l = i ∨ k , l , i , k and leave out the sub-cases for

k = l , i∨ k = i , l∨ l = i , k. It should be obvious that the cases which are left

out consist of repetitive and very similar arguments that are used below.

We begin with CNT2. Assume ANG+
Jx(W+,U+,V+). Consider (CA). Then,

ANG∗Jx(W,U,V) from Construction 3.5.3. Since F∗ satisfies CNT2, we get that

ANG∗Jx(W,V,U). From Construction 3.5.3, it follows that we have ANG+
Jx(W+,V+,U+)

as desired. Case (CB) is very similar. Next, consider (CC). Then either of the

following holds:

• (CC.1) J∈ {>,≥} ∧ x ≤ max M≤(W,U,V)

• (CC.2) x > max M≤(W,U,V) ∧ ANG∗Jx(W,U,V)

It follows from Construction 3.5.3 that (CC.1) implies ANG+
Jx(W+,V+,U+), so

we have what we want. On the other hand, consider (CC.2). Then we have

ANG∗Jx(W,U,V) and since F∗ satisfies CNT2, we get ANG∗Jx(W,V,U). More-

over, we have x > max M≤(W,V,U) and hence, from Construction 3.5.3 we get

ANG+
Jx(W+,V+,U+) as desired.

Now, let us consider case (CD). Then we have either of the following:

• (CD.1) ANG f
>x(w,u, v)∧ J∈ {>,≥}

• (CD.2) ¬ANG f
>x(w,u, v) ∧ ANG∗Jx(W,U,V)

Consider (CD.1). First of all, note that we get ANG f
>x(w, v,u) since F f sat-

isfies CNT2. From here and Construction 3.5.3, it immediately follows that

ANG+
Jx(W,V,U) just as we want. Alternatively, consider (CD.2). Since F f satis-

fies CNT2, we get ¬ANG f
>x(w, v,u). In addition, since F∗ satisfies CNT2 as well,

we have ANG∗Jx(W,V,U). Hence, we get ANG+
Jx(W+,V+,U+) from Construction

3.5.3 as desired.

Now lets show that F+ satisfies CNT3. Fix some x ∈ A f . First of all, since

F∗ satisfies CNT3, we have ANG∗Jx(W,U,V) ∨ ANG∗Jdx(W,U,V). If either (CA)
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or (CB), then we clearly have ANG+
Jx(W+,U+,V+) ∨ ANG+

Jdx(W+,U+,V+) from

Construction 3.5.3.

Now consider case (CC). If x ≤ max M≤(W,U,V), then we clearly have that

ANG+
>x(W+,U+,V+) ∧ ANG+

≥x(W+,U+,V+). It is easy to see that this implies the

desired result. Alternatively, suppose that x > max M≤(W,U,V). Since we also

have that ANG∗Jx(W,U,V)∨ANG∗Jdx(W,U,V), it follows from Construction 3.5.3

that ANG+
Jx(W+,U+,V+) ∨ ANG+

Jdx(W+,U+,V+) as desired.

Now let us consider (CD). If ¬ANG f
>x(w,u, v), then we are through from

Construction 3.5.3 and from the fact that F∗ satisfies CNT3. Now assume

that ANG f
>x(w,u, v). But then, we get ANG+

>x(W+,U+,V+)∧ANG+
≥x(W+,U+,V+)

which implies that F+ satisfies CNT3.

To see that CNT4 holds over F+, assume that ANG+
<x(W+,U+,V+). We

will show that ANG+
≤x(W+,U+,V+). If either (CA) or (CB), then through the

fact that F∗ satisfies CNT4 and Construction 3.5.3, we get ANG+
≤x(W+,U+,V+).

Now, let us proceed with the more interesting cases. Consider case (CC). If

x ≤ max M≤(W,U,V), then we must have<∈ {>,≥}, which is absurd. So we must

have that x > max M≤(W,U,V) ∧ ANG∗<x(W,U,V). Since F∗ satisfies constraint

CNT4, it follows that ANG∗≤x(W,U,V). Hence, we get ANG+
≤x(W+,U+,V+) from

Construction 3.5.3 as desired.

Finally consider (CD). If ANG f
>x(w,u, v), then <∈ {>,≥} from Construction

3.5.3, which is absurd. So assume that ¬ANG f
>x(w,u, v) ∧ ANG∗<x(W,U,V). But

then we are through from Construction 3.5.3 and from the fact that F∗ satisfies

CNT4.

Next, we will demonstrate that F+ satisfies CNT5. Suppose we have

ANG+
<x(W+,U+,V+). We need to establish that ¬ANG+

≥x(W+,U+,V+). For sake

of a contradiction, assume that ANG+
≥x(W+,U+,V+). If either (CA) or (CB), then

through Construction 3.5.3, we get ANG∗<x(W,U,V) ∧ ANG∗≥x(W,U,V) which is
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a contradiction since F∗ satisfies CNT5.

Now assume that we have (CC). If x ≤ max M≤(W,U,V), then this con-

tradicts with the fact that ANG+
<x(W+,U+,V+). So we must have that x >

max M≤(W,U,V). Then, we get that ANG∗<x(W,U,V)∧ANG∗≥x(W,U,V), which is

also a contradiction since F∗ satisfies CNT5.

Finally consider (CD). If we assume ANG f
>x(w,u, v), then we immediately

get a contradiction from Construction 3.5.3. So we must have ¬ANG f
>x(w,u, v).

From here and Construction 3.5.3, it follows that we have ANG∗<x(W,U,V) ∧

ANG∗≥x(W,U,V), which is a contradiction since F∗ satisfies CNT5. It can be

established in a similar way that ANG+
>x(W+,U+,V+) ∧ ANG+

≤x(W+,U+,V+) is

also impossible.

Now we will show that CNT6 holds over F+. The other half of CNT6 can

be seen using similar arguments. Let x, y ∈ A f such that x ≤ y. Suppose that

ANG+
<x(W+,U+,V+). We will show that ANG+

<y(W+,U+,V+). Cases (CA) and

(CB) are immediate as usual.

Consider (CC). If x ≤ max M≤(W,U,V), then this contradicts with the fact

that ANG+
<x(W+,U+,V+). So we must have that x > max M≤(W,U,V). Then we

get through Construction 3.5.3 that ANG∗<x(W,U,V). From here and the fact that

F∗ satisfies CNT6, we get ANG∗<y(W,U,V). Since y ≥ x > max M≤(W,U,V), it

follows from the construction that ANG+
<y(W+,U+,V+) as desired.

Now lets have a look at (CD). It follows that we have ¬ANG f
>x(w,u, v) ∧

ANG∗<x(W,U,V). Moreover, since x ≤ y and F f satisfies CNT6, we also have

that¬ANG f
>y(w,u, v). On the other hand, sinceF∗ satisfies the constraint as well,

we have ANG∗<y(W,U,V). Putting it all together, it follows from Construction

3.5.3 that ANG+
<y(W+,U+,V+) as desired. CNT7 can be established in a very

similar way.

Lets show that CNT8 holds over F+. Both of the cases (CA) and (CB) are
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trivial. So consider (CC). Since we have 0 < max M≤(W,U,V) from Lemma

3.5.7, it follows from Construction 3.5.3 that we have ANG+
≥0(W+,U+,V+) as

desired. On the other hand, again from Lemma 3.5.7 we have that 180 >

max M≤(W,U,V). Moreover, sinceF∗ satisfies CNT8, we have ANG∗
≤180(W,U,V).

From Construction 3.5.3 we get ANG+
≤180(W+,U+,V+) as desired.

Now consider (CD). If we have ANG f
>0(w,u, v), then we clearly also have

that ANG+
≥0(W+,U+,V+) from the construction. On the other hand, if we

have ¬ANG f
>0(w,u, v), this time using the fact that ANG∗

≥0(W,U,V), we get

ANG+
≥0(W+,U+,V+) as desired. Moreover, since ¬ANG f

>180(w,u, v) and also

since ANG∗
≤180(W,U,V), it follows from Construction 3.5.3 that ANG+

≤180(W+,U+,V+).

In order to establish CNT10 over F+, suppose ANG+
≤0(W+,U+,V+). If

(CA), then we have ANG∗
≤0(W,U,V) and since F∗ satisfies CNT10, we get

ANG∗
≤0(U,W,V) ∨ ANG∗

≥180(U,W,V). From here and Construction 3.5.3, we get

ANG+
≤0(U+,W+,V+)∨ANG+

≥180(U+,W+,V+) as desired. Case (CB) is very similar.

(CC) is completely absurd under our assumption, so now consider case

(CD). Then it must be the case that ¬ANG f
>0(w,u, v) and ANG∗

≤0(W,U,V). From

here we get that ANG∗
≤0(U,W,V) ∨ ANG∗

≥180(U,W,V) since F∗ satisfies CNT10.

Now from step 1 of Construction 3.5.3, it follows that ANG+
≤0(U+,W+,V+) ∨

ANG+
≥180(U+,W+,V+) as desired.

Finally, we move on to prove the most interesting case of the proof. We

establish that F+ satisfies CNT9. Assume that we have ANG+
≤x(U+,W+,V+) ∧

ANG+
≤y(V+,W+,U+) for some x, y ∈ A f such that x + y < 180. We will show that

this implies ANG+
≥180−(x+y)(W

+,U+,V+). The other half of the constraint CNT9,

i.e., that ANG+
≥x(U+,W+,V+)∧ANG+

≥y(V+,W+,U+)⇒ ANG+
≤180−(x+y)(W

+,U+,V+),

can be easily established in a similar way. Since we have already established

that F+ satisfies CNT5 and CNT3 in the above, we can safely assume for sake

of a contradiction that ANG+
<180−(x+y)(W

+,U+,V+).
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First of all, let us consider case (CA). If ¬DFCT(W,U,V), then from Con-

struction 3.5.3 and the hypothesis, it follows that we have ANG∗≤x(U,W,V) ∧

ANG∗≤y(V,W,U) and ANG∗<180−(x+y)(W,U,V). This means that DFCT(W,U,V),

which contradicts with our assumption.

Now, assume that ANG∗
≤0(W,U,V). Since F∗ satisfies CNT10, we get that

ANG∗
≤0(U,W,V) ∨ ANG∗

≥180(U,W,V). If ANG∗
≤0(U,W,V), then from Lemma 3.5.5

we get that ANG∗
≥180(V,W,U). From here and Construction 3.5.3, it follows that

ANG+
≥180(V+,W+,U+). Since ANG+

≤y(V+,W+,U+), we must have that y = 180.

But then it follows that we have ANG+
<0(W+,U+,V+), which is a contradiction.

On the other hand, if ANG∗
≥180(U,W,V), then since ANG+

≤x(U+,W+,V+), we get

that x = 180. Hence we get ANG+
<0(W+,U+,V+) again, which is a contradiction.

Now assume that ANG∗
≥180(W,U,V). From Construction 3.5.3, this implies

that ANG+
≥180(W+,U+,V+), which clearly contradicts with our hypothesis that

ANG+
<180−(x+y)(W

+,U+,V+).

Let us now consider (CB). Then we have that ANG∗<180−(x+y)(W,U,V). More-

over, the flipping type of (U+,W+,V+) is either All or Some (which implies that

the flipping type of (V+,W+,U+) is either Some or All, respectively).

Suppose the flipping type of (U+,W+,V+) is All. Since we have that ANG+
≤x(U+,W+,V+),

we get ¬ANG f
>x(u,w, v)∧ANG∗≤x(U,W,V) from Construction 3.5.3. On the other

hand, since ANG+
≤y(V+,W+,U+), we get y > max M≤(V,W,U) ∧ ANG∗≤y(V,W,U)

from Construction 3.5.3. It follows that y ∈ M≤(V,W,U). But this contradicts

with the fact that y > max M≤(V,W,U).

Alternatively, suppose the flipping type of (U+,W+,V+) is Some. Since

ANG+
≤x(U+,W+,V+), we get x > max M≤(U,W,V) ∧ ANG∗≤x(U,W,V). On the

other hand, since we have ANG+
≤y(V+,W+,U+), we get¬ANG f

>y(v,w,u)∧ANG∗≤y(V,W,U).

So, by definition we must have x ∈ M≤(U,W,V). However, this is impossible

since we also have x > max M≤(U,W,V).
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Next, consider (CC). Since we have ANG+
<180−(x+y)(W

+,U+,V+) by the as-

sumption, we get 180 − (x + y) > max M≤(W,U,V) ∧ ANG∗<180−(x+y)(W,U,V).

Moreover, the flipping type of (U+,W+,V+) is either All or None. First, suppose

the flipping type is All.

Since ANG+
≤x(U+,W+,V+), we get ¬ANG f

>x(u,w, v) ∧ ANG∗≤x(U,W,V). On

the other hand, since ANG+
≤y(V+,W+,U+) and the flipping type of (V+,W+,U+)

must be None, we derive that ANG∗≤y(V,W,U). Therefore, it follows that (180 −

(x + y)) ∈ M≤(W,U,V). This is a contradiction since we already have (180 −

(x + y)) > max M≤(W,U,V) in the above. The case when the flipping type of

(U+,W+,V+) is either None follows similarly.

Finally, consider (CD). First of all, since ANG+
<180−(x+y)(W

+,U+,V+), it follows

that ¬ANG f
>180−(x+y)(w,u, v) ∧ ANG∗

≤180−(x+y)(W,U,V) from Construction 3.5.3.

Moreover, the flipping type of (U+,W+,V+) is either Some or None. First,

suppose the flipping type is Some.

Since we have ANG+
≤x(U+,W+,V+) by the assumption, we derive that x >

max M≤(U,W,V) ∧ ANG∗≤x(U,W,V). On the other hand, since we have that

ANG+
≤y(V+,W+,U+) and the flipping type of (V+,W+,U+) must be None, we

get ANG∗≤y(V,W,U). This implies that x ∈M≤(U,W,V), which is a contradiction

since we also have x > max M≤(U,W,V) in the above. This completes the proof

of the lemma. �

Lemma 3.5.11. Let W,U,V ∈W∗. If U and V are named-states, then we have that

ANG+
Jx(〈W, j〉, 〈U, g〉, 〈V, h〉) iff ANG∗Jx(W,U,V)

for every j, g, h ∈ {0, 1, 2} such that 〈W, j〉, 〈U, g〉, 〈V, h〉 ∈ W+. In other words,

Construction 3.5.3 performs no flipping on such triangles.

Proof. The proof is straightforward and left to the reader. �
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Lemma 3.5.12. For every Φ and 〈W, j〉 ∈W+, we have thatM∗,W |= Φ iffM+, 〈W, j〉 |=

Φ.

Proof. Let Φ be a formula and 〈W, j〉 ∈ W+ for some j ∈ {0, 1, 2} and W ∈ W∗

such that W = 〈w, k〉 for some w ∈ WFin and k ∈ {0, 1, 2, 3, 4}. The proof is by

induction on the complexity of Φ. The base case is trivial by the construction

of F+. Boolean cases are standard as usual.

Now, let x ∈ A f and fix J∈ O. Assume that M∗,W |= 〈ANGJx〉(ϕ,ψ).

Then, ∃U∃V[ANG∗Jx(W,U,V) ∧ M∗,U |= ϕ ∧ M∗,V |= ψ] such that U = 〈u, l〉

and V = 〈v, i〉 for some u, v ∈ WFin and l, i ∈ {0, 1, 2, 3, 4}. From the induction

hypothesis we get thatM+, 〈U, g〉 |= ϕ andM+, 〈V, h〉 |= ψ for any g, h ∈ {0, 1, 2}.

Therefore, we would be able to complete this half of the proof if we could show

that ANG+
Jx(〈W, j〉, 〈U, g〉, 〈V, h〉) for some g, h ∈ {0, 1, 2}.

If ANG∗
≤0(W,U,V) or ANG∗

≥180(W,U,V) or ¬DFCT(W,U,V) is the case, then

we are through since either of these cases implies that ANG+
Jx(〈W, j〉, 〈U, g〉, 〈V, h〉)

for any g, h ∈ {0, 1, 2} by step 1 of Construction 3.5.3. So, assume DFCT(W,U,V)

and ¬[ANG∗
≤0(W,U,V) ∨ ANG∗

≥180(W,U,V)].

If U and V are named-states, then the desired result follows from Lemma

3.5.11. For the rest of the cases, we rely on the following simple fact: Table

3.2 implies that, every state is guaranteed to appear in one of the three triangle

types in such a way that its relations are not flipped at all.

Now suppose that W and U are named-states (case when W and V are

named-states follows similarly). Then, we have j = 0 and g = 0. By construc-

tion, all the different triangles that are based on the triangle W,U,V are in the

form of (〈W, 0〉, 〈U, 0〉, 〈V, h〉) for every h ∈ {0, 1, 2}. So, by the observation in the

above paragraph, ANG+
Jx(〈W, 0〉, 〈U, 0〉, 〈V, 0〉) or ANG+

Jx(〈W, 0〉, 〈U, 0〉, 〈V, 1〉) or

ANG+
Jx(〈W, 0〉, 〈U, 0〉, 〈V, 2〉).

Now suppose that exactly one of the states is named. Note that in Table 3.2,
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there is a mark showing how the named states are flipped in different triangle

types (they are represented by the first row). Firstly, suppose W is named and

U,V are not. So, we have j = 0. In this case we have ANG+
Jx(〈W, 0〉, 〈U, 1〉, 〈V, 2〉)

since this is a triangle of type TRI 2.

Secondly, suppose exactly one of U and V is named. Since W is not named,

the flipping type on (〈W, j〉, 〈U, g〉, 〈V, h〉), for any j, g, h, is None when it is either

triangle type TRI 1 or triangle type TRI 3 as Table 3.2 suggests. So, we are

through if we find triangles of both type.

First, triangles of type TRI 1: If j = 0, then ANG+
Jx(〈W, 0〉, 〈U, 0〉, 〈V, 0〉). If

j = 1, then there are two sub-cases: First of all, if U is a named-state, then

ANG+
Jx(〈W, 1〉, 〈U, 0〉, 〈V, 1〉). On the other hand, if V is a named-state, then

ANG+
Jx(〈W, 1〉, 〈U, 1〉, 〈V, 0〉). If j = 2, then there are two sub-cases again: If U

is named, then we have ANG+
Jx(〈W, 2〉, 〈U, 0〉, 〈V, 2〉) and if V is named, then we

have ANG+
Jx(〈W, 2〉, 〈U, 2〉, 〈V, 0〉).

Now, we find triangles of type TRI 3: If j = 0, then there are two cases: If U is

named, then ANG+
Jx(〈W, 0〉, 〈U, 0〉, 〈V, 1〉). On the other hand, if V is named, then

ANG+
Jx(〈W, 0〉, 〈U, 1〉, 〈V, 0〉). If j = 1, then we have ANG+

Jx(〈W, 1〉, 〈U, 0〉, 〈V, 0〉).

If j = 2, then ANG+
Jx(〈W, 2〉, 〈U, 0〉, 〈V, 0〉).

Finally, suppose that none of the states are named. If j = 0, then we have ei-

ther ANG+
Jx(〈W, 0〉, 〈U, 1〉, 〈V, 2〉) (type TRI 1) or ANG+

Jx(〈W, 0〉, 〈U, 0〉, 〈V, 0〉) (type

TRI 2) or ANG+
Jx(〈W, 0〉, 〈U, 2〉, 〈V, 2〉) (type TRI 3). If j = 1, then we have ei-

ther ANG+
Jx(〈W, 1〉, 〈U, 0〉, 〈V, 2〉) or ANG+

Jx(〈W, 1〉, 〈U, 0〉, 〈V, 0〉) or we have that

ANG+
Jx(〈W, 1〉, 〈U, 2〉, 〈V, 2〉). If j = 2, then either ANG+

Jx(〈W, 2〉, 〈U, 1〉, 〈V, 0〉) or

ANG+
Jx(〈W, 2〉, 〈U, 0〉, 〈V, 0〉) or ANG+

Jx(〈W, 2〉, 〈U, 2〉, 〈V, 2〉).

So, we have established that, one can always find some g, h ∈ {0, 1, 2}

such that ANG+
Jx(〈W, j〉, 〈U, g〉, 〈V, h〉). From a previous paragraph, we have

M+, 〈U, g〉 |= ϕ andM+, 〈V, h〉 |= ψ. Thus, we have thatM+, 〈W, j〉 |= 〈ANGJx〉(ϕ,ψ)
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as desired. The case of nominal satisfaction operator is trivial.

In the opposite direction, assume that M+, 〈W, j〉 |= 〈ANGJx〉(ϕ,ψ). Then,

∃U+
∃V+[ANG+

Jx(〈W, j〉,U+,V+) ∧M+,U+
|= ϕ ∧M+,V+

|= ψ] such that U+ =

〈U, g〉 and V+ = 〈V, h〉 for some U,V ∈ W∗ and g, h ∈ {0, 1, 2}, where U = 〈u, l〉

and V = 〈v, i〉 for some u, v ∈ WFin and l, i ∈ {0, 1, 2, 3, 4}. From the induction

hypothesis, it follows that we have M∗,U |= ϕ and M∗,V |= ψ. Moreover, we

have the following possibilities to consider regarding the triangle 〈W, j〉, 〈U, g〉,

〈V, h〉:

• (CA) ANG∗
≤0(W,U,V) ∨ ANG∗

≥180(W,U,V) ∨ ¬DFCT(W,U,V).

• (CB) Flipping type of (〈W, j〉, 〈U, g〉, 〈V, h〉) is None.

• (CC) Flipping type of (〈W, j〉, 〈U, g〉, 〈V, h〉) is Some.

• (CD) Flipping type of (〈W, j〉, 〈U, g〉, 〈V, h〉) is All.

We will assume that k = l = i ∨ k , l , i , k and leave out the sub-cases for

k = l , i∨ k = i , l∨ l = i , k. It should be obvious that the cases which are left

out consist of repetitive and very similar arguments that are used below.

If we have either case (CA) or (CB), then clearly we have ANG∗Jx(W,U,V)

from Construction 3.5.3 and we are easily through. Now let us consider (CC).

There are two sub-cases to be considered:

• (CC.1) J∈ {>,≥} ∧ x ≤ max M≤(W,U,V)

• (CC.2) x > max M≤(W,U,V) ∧ ANG∗Jx(W,U,V)

If (CC.2), then we are clearly through. So now suppose that (CC.1). For

the sake of simplicity, call z = max M≤(W,U,V). Obviously, we have z ∈

M≤(W,U,V). From here and from Lemma 3.5.8, it is not so hard to see that

we have ANG f
>z(w,u, v). Moreover, since x ≤ z and F f satisfies CNT7, we get

ANG f
>x(w,u, v). Since it also satisfies CNT4, we get ANG f

≥x(w,u, v).
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On the other hand, since M∗,U |= ϕ ∧M∗,V |= ψ, it follows from Lemma

3.5.6 that, M f ,u |= ϕ ∧M f , v |= ψ. Therefore, we get M f ,w |= 〈ANG>x〉(ϕ,ψ) ∧

〈ANG≥x〉(ϕ,ψ). From here and Lemma 3.5.6, it follows that we have M∗,W |=

〈ANG>x〉(ϕ,ψ) ∧ 〈ANG≥x〉(ϕ,ψ), which is what we want.

We finally address case (CD). If (CD), then we have the following sub-cases:

• (CD.1) ANG f
>x(w,u, v)∧ J∈ {>,≥}

• (CD.2) ¬ANG f
>x(w,u, v) ∧ ANG∗Jx(W,U,V)

Obviously, there is nothing to show for case (CD.2). So assume that we have

(C1). But from here it can be derived in a very similar way to the (CC) above by

using Lemma 3.5.6 that we haveM∗,W |= 〈ANGJx〉(ϕ,ψ). The case of nominal

satisfaction operator is trivial. This completes the proof of the lemma. �

At this point, it only remains to establish that W+ has finite cardinality. We

deal with this in the following lemma:

Lemma 3.5.13. We have that |W+
| ≤ 15 · 2|Σ|.

Proof. First, define a function f : WFin
→ 2Σ such that,

f ([w]) = {ϕ ∈ Σ |M,w |= ϕ}.

It is a straightforward task to show that f is a well-defined and injective function:

Let [w], [u] ∈ WFin and assume that [w] = [u]. This means that w and u are

modally equivalent with respect to Σ. Hence, f ([w]) = f ([u]), i.e., f is well-

defined. Now suppose that f ([w]) = f ([u]). But this implies that w and u are

modally equivalent with respect to Σ. Hence, [w] = [u]. Henceforth, we have

that |WFin
| ≤ 2|Σ|.

Moreover, at the worst case scenario the number of states grow by a factor

of five and three in Constructions 3.5.2 and 3.5.3, respectively. Therefore, we
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have that |W+
| ≤ 15 · 2|Σ| where |Σ| and |W+

| denote the size of the sets Σ and

W+, respectively. �

Now we present our main results:

Theorem 3.5.14 (Finite Model Property). Let Φ be a formula. If Φ is satisfiable

over an angular model, then it is satisfiable over a finite angular model of size at most

15 · 2|Φ|, where |Φ| denotes the size of the set of subformulas of Φ. In other words, TL

has the finite model property with respect to T.

Actually, we have not only shown that TL has the finite model property,

but also that it has the strong finite model property, since we established a

computable upper bound, albeit an exponential one, on the size of models.

Now, if a formula Φ is satisfiable on at least one of such models, then

obviously Φ is TL-satisfiable, i.e., there is a model from T over which Φ is

satisfied. On the other hand, if Φ is not satisfied on any of such models, then

it is not TL-satisfiable since TL has the finite model property with respect to T.

Or shortly,

Theorem 3.5.15 (Decidability). TL has a decidable satisfiability problem.

Let us also note the following important result which follows directly from

the above proofs:

Theorem 3.5.16. The satisfiability problem of the logic TL is in NEXPTIME.

3.6 Discussion & Future Research

Our biggest goal is to turn TL into a truly trigonometric logic, which can take

advantage of combining the reasoning with angles and metrics. This means

that, we should be looking into ways of incorporating metric information into

angular frames and the modal language L used to talk about angular frames.
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Thanks to the work of Kutz et al. [46], we actually have a very strong literature

background on how to bring metric information into the realm of modal logics.

This means that, the main discussion concerning a trigonometric logic will

evolve around finding ways to have these two sorts of information to interact.

The ‘law of sines’ can be used to compute the remaining sides of a triangle

when two angles and a side or when two sides and an angle are known (also

known as the technique of triangulation). In other words, using the law of

sines, we can establish the desired interaction between metric information and

angle information. Let us first remember the law of sines, which can be found

in any textbook of basic geometry. Let d be a metric function and w, u and v

be three points. The notation ∠wuv denotes the angle at the corner w of the

triangle formed by the points w, u and v. The law of sines is as follows:

d(w,u)
sin(∠vwu)

=
d(u, v)

sin(∠wuv)
=

d(w, v)
sin(∠uwv)

We can adapt the law of sines as frame constraints and add it to the collection

of angular frame constraints as follows: For every w, u and v,

• ANG=x(w,u, v) ∧ DIS=a(u, v) ∧ ANG=y(u,w, v)⇒ DIS
=

a·sin(y)
sin(x)

(w, v),

• ANG=x(w,u, v) ∧ DIS=a(u, v) ∧ DIS=b(w, v)⇒ ANG
=arcsin( b·sin(x)

a )(u,w, v).

Naturally, we will also need an appropriately equipped language in order

to be able to talk about such a semantic structure. Using a set of parametric

unary modalities such as 〈DIS≤a〉ϕ (or such as 〈DIS<a〉ϕ, 〈DIS≥a〉ϕ and 〈DIS>a〉ϕ)

which has the semantics ‘somewhere less than a units from here, ϕ holds’ to

correspond the relation of distance DIS, we can talk about metric information

within the new language. The hybrid character ofL is actually very helpful for

the interaction of two kinds of information.

Consider the example where an observer is standing on the edge of a river
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and can measure the angle to a “point of interest” on the edge of the other side

of the river. If the observer knows the width of the river, then he can figure out

the distance to the point of interest using trigonometry. This is illustrated in

Figure 3.8. The contents of the figure and the example can be formalised by the

following formula:

@i(〈ANG=60〉(j, k) ∧ 〈DIS=40〉j) ∧@j〈ANG=90〉(i, k)

which would imply that we have:

@i〈DIS= 40
sin(30)
〉k

which gives the distance from the observer to the point of interest.

60°

(point of interest)

R
IV

E
R

R
IV

E
R

(observer) 40 meters

.
i

k

j

Figure 3.8: Each one of the corners of the triangle are named with nominal
letters i, j and k. The width of the river is 40 meters and the angle between the
opposite side of the river to the point of interest is 60◦.

There is also the discussion that, whether we should be only focusing on

Euclidean trigonometry. There are alternative kinds of trigonometric theories
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based on non-Euclidean spaces. For example, ‘spherical geometry’ is one of

the most important such non-Euclidean theories. It is the geometry of the

two-dimensional surface of a sphere (e.g., the face of the earth). Some of the

practical applications of the spherical geometry include (earth-surface, orbital

and space) navigation systems and astronomy [69].

In the classical Euclidean geometry, the basic concepts are points and lines.

On the sphere, points are defined in the usual sense. However, the equivalents

of lines are not defined in the usual sense of “straight line,” but in the sense

of “the shortest paths between points” which is called a geodesic. On the

sphere the geodesics are the great circles, so the other geometric concepts

are defined like in plane geometry but with lines replaced by great circles.

Thus, in spherical geometry angles are defined between great circles, resulting

in a spherical trigonometry that differs from ordinary trigonometry in many

respects (e.g., the sum of the interior angles of a triangle exceeds 180 degrees!).

A sphere is not a Euclidean space, but locally the laws of Euclidean geom-

etry are good approximations. In appropriate mathematical terms, it is locally

Euclidean: Every point has a neighbourhood which “resembles” (i.e., is home-

omorphic to) Euclidean space. In a small triangle on the face of the earth, the

sum of the angles is very nearly 180 degrees and a sphere can be represented

by a collection of two dimensional maps.

3.7 Conclusion

By using a classical modal logic approach, we have presented a modal logic

formalism which can talk about the interior angles of triangles or angles in gen-

eral. Describing the polygonal shapes or the configurations of points by using

angles have applications in the fields like molecular geometry. We adopted a

language which is based on a parameter set of numeric values. By altering
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the parameter set, it gives us the possibility to variate between qualitative and

quantitative logics for talking about angles. For example, if we set the parame-

ter set to the set of values {0, 180}, then we simply get a modal logic which can

talk about collinearity and betweenness.

By using various and rather complicated model repairing methods, we

established that this logic has the finite model property and also concluded

that it has a decidable satisfiability problem. While the proof of the finite model

property establishes the NEXPTIME upper bound on the complexity of the

problem, the question of the lower bound of the complexity remains an open

problem.

This work aims to be a step-stone in developing a true modal logic of

trigonometry. In this work, we have only dealt with the interior angles of

triangles induced by any three points in space. In Section 3.6, we have discussed

in detail on the possible ways of incorporating metric information into our

relational structures, which also gave some clues as to how an appropriate

trigonometric modal logic language could be designed. We proposed the use

of ‘the law of sines’ as the basic principle on how distances and angles could

interact inside the relational frames.
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Chapter 4

Conclusion

In each of the main chapters of this thesis, the reader will find a section where

a detailed discussion on the results and future research topics of that chapter

are contained. Our conclusions for each chapter are presented in a dedicated

section of those chapters as well. Nonetheless, we will succinctly present an

overall conclusion of the thesis by summarising for each of the main chapters.

In Chapter 2, we presented a first-order and a modal logic formalism which

have the ability to talk about distance information in a comparative manner.

With these two logics, we aimed to contribute common-sense knowledge repre-

sentation and reasoning with an alternative framework for distances, compared

to the available techniques which use a set of basic symbols to talk about dis-

tances, e.g., R (for a quantitative approach) or simply {close, far,very far} (for

a qualitative approach). With the logics utilising this framework for distances,

it becomes possible to make assertions of the form ‘if my arm can reach the tea

cup but not the desk lamp, then the lamp is farther away from me than the

cup,’ which makes this approach more cognitively plausible compared to other

approaches where distances between objects are measured in absolute terms.
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We established that, while the first-order comparative distance logic is finitely

axiomatisable, the modal comparative distance logic is also finitely axiomatis-

able and moreover, it has the finite model property and it is decidable, with an

NP-complete satisfiability problem.

In Chapter 3, we studied the properties of a multi-modal logic which can

talk about the interior angles of triangles induced by every trio of points in

space. Our general purpose from a higher point of view is to contribute the

development of modal logics which can perform trigonometric reasoning. Var-

ious logics of distances have been studied in the literature. However, in order

to perform trigonometric reasoning, which has an enormous variety of applica-

tions in many different domains, reasoning about distances must be combined

with reasoning about angles. In Chapter 3, we mainly studied the properties

of modal reasoning about angles and shortly discussed building a combined

formalism of distances and angles. We presented a modal logic formalism with

modal operators having intended meanings such as ‘ϕ holds at somewhere

and ψ holds at somewhere else, with less than a degrees of angle in between

about here,’ and established that this formalism has the finite model property

and it is decidable. The complexity of the satisfiability problem is known to be

in NEXPTIME via the proof of the finite model property, but unfortunately a

lower bound could not be determined.
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Chapter 5

Appendix

Definition 5.0.1 (Subformula Closure). A finite set of formulas Σ is subformula-

closed iff for all formulas ϕ and ψ we have that:

• ϕ ∧ ψ ∈ Σ⇒ ϕ,ψ ∈ Σ;

• ¬ϕ ∈ Σ⇒ ϕ ∈ Σ;

• For any n-ary modal operator ^: ^(ϕ1, . . . , ϕn) ∈ Σ⇒ ϕ1, . . . , ϕn ∈ Σ;

• For any hybrid satisfaction operator @: @iϕ ∈ Σ⇒ i, ϕ ∈ Σ.

The subformula closure of a set of formulas Σ is the smallest subformula-closed

set of formulas which contains Σ. It is generally denoted by SCL(Σ).

Definition 5.0.2 (Degree of a Formula). The degree of a modal formula is

defined recursively as follows:

• deg(⊥) = 0,

• deg(p) = 0 if p is a propositional letter,

• deg(¬ϕ) = deg(ϕ),
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• deg(ϕ ∧ ψ) = max{deg(ϕ), deg(ψ)},

• For any modality ^, deg(^(ϕ1, . . . , ϕn)) = 1 + max{deg(ϕ1), . . . , deg(ϕn)}.

If Σ is a set of formulas, then the degree of Σ is simply

deg(Σ) = max{deg(ϕ) | ϕ ∈ Σ}.

Definition 5.0.3 (Height of a State). LetM be a rooted model with a root r. We

define the height of a state w inM (denoted by hgt(w)) inductively as follows:

• The height of r is 0;

• A state w is at height n + 1 iff it is a successor of a state u of height n and

have not been assigned a height smaller than n + 1.

The height a modelM is the maximum n such that there is a state of height n in

M.

Definition 5.0.4 (Restriction of a Model). Let M be a rooted model. The re-

striction of modelM to n for some n ∈ N (denoted byM � n) is the following

model:

M � n = 〈W � n,Rk � n,V � n〉.

whereas for every k ∈ I,

• W � n = {w ∈W | hgt(w) ≤ n};

• Rk � n = Rk ∩ (W � n);

• V � n = V ∩ (W � n).

Definition 5.0.5 (Filtrations). Let I be an index set and M = 〈W, {Rk}k∈I,V〉 be

a model and Σ be a subformula-closed set of formulas. Define an equivalence
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relation ≡ as follows:

w ≡ u iff ∀ϕ ∈ Σ[M,w |= ϕ⇔M,u |= ϕ].

We denote the equivalence class of a w ∈ W induced by ≡ with [w]. Let

M f = 〈W f , {R f
k }k∈I,V

f
〉 such that,

• W f = {[w] | w ∈W},

• For every k ∈ I, Rk(w0, . . . ,wn)⇒ R f
k ([w0], . . . , [wn]),

• R f
k ([w0], . . . , [wn])⇒ ∀^k(ϕ1, . . . , ϕn) ∈ Σ[

∧
1≤k≤n(M,wk |= ϕk)⇒

M,w0 |= ^k(ϕ1, . . . , ϕn)] ,

• For every propositional letter p, V f (p) = {[w] | w ∈ V(p)}.

Then,M f is a filtration ofM through Σ.

Definition 5.0.6 (Smallest and Largest Filtrations). LetM = 〈W,R,V〉be a model

and fix a subformula-closed set of formulas Σ. Let ≡ be defined as in Definition

5.0.5. Define relations Rs and Rl as follows:

• Rs([w0], . . . , [wn]) iff ∃u0 ∈ [w0] . . .∃un ∈ [wn][R(u0, . . . ,un)].

• Rl([w0], . . . , [wn]) iff ∀^(ϕ1, . . . , ϕn) ∈ Σ[
∧

1≤k≤n(M,wk |= ϕk)⇒

M,w0 |= ^k(ϕ1, . . . , ϕn)].

The relations Rs and Rl are called the smallest and largest filtrations respectively.

In other words, for any filtration R f of R, we have that Rs
⊆ R f

⊆ Rl.

Definition 5.0.7 (Tree and Tree Model). A tree is a pair 〈N,E〉 such that N is a

set of ‘nodes’ and E is a binary relation of ‘edges’ over N ×N such that,

1. ∃r ∈ N such that ∀n ∈ N[E∗(r,n)] where E∗ is the reflexive and transitive

closure of E (r is called the ‘root’ of the tree);
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2. ∀n ∈ N[n , r ⇒ ∃n′ ∈ N[E(n′,n)]], i.e. every non-root node has a

predecessor;

3. ∀n ∈ N[¬E+(n,n)] where E+ is the transitive closure of E, i.e. a tree is an

acyclic structure.

A model M = 〈W,R,V〉 is said to be “tree-like” or that it is a “tree model”

whenever 〈W,R〉 is a tree.

Definition 5.0.8 (Bounded Morphism). Let I be an index set and letM andM′

be two models. A function f : M → M′ is called a bounded morphism iff for

every w,u ∈W and u′ ∈W′ we have that,

• w and f (w) satisfy the same atoms of the language;

• For every k ∈ I, Rk(w,u)⇒ R′k( f (w), f (u)), i.e., f is a homomorphism;

• For every k ∈ I, R′k( f (w),u′)⇒ ∃v[Rk(w, v) ∧ f (v) = u′] (also known as the

“back condition”).

If f is also surjective, thenM′ is called as the bounded morphic image ofM.

Definition 5.0.9 (n-Bisimulation). Let M = 〈W,R,V〉 and M′ = 〈W′,R′,V′〉 be

two models and let w ∈ W and w′ ∈ W′. Fix some n ∈ N. Then w in M

bisimulates with to w′ in M′ up to depth n (denoted by M,w �n M
′,w′) iff

there is a sequence of relations Zn ⊆ · · · ⊆ Z0 such that:

• Zn(w,w′);

• For every atom α, v ∈W and v′ ∈W′,

Z0(v, v′)⇒ [M, v |= α⇔M′, v′ |= α].
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• For every k ∈N such that k + 1 ≤ n, v ∈W and v′ ∈W′,

Zk+1(v, v′) ∧ R(v,u)⇒ ∃u′ ∈W′[Zk(u,u′) ∧ R′(v′,u′)].

• For every k ∈N such that k + 1 ≤ n, v ∈W and v′ ∈W′,

Zk+1(v, v′) ∧ R′(v′,u′)⇒ ∃u ∈W [Zk(u,u′) ∧ R(v,u)].

Definition 5.0.10 (Maximal Consistent Sets). Let L be a normal modal logic.

A set of formulas Σ is called a maximal (L-)consistent set whenever Σ is L-

consistent and for any other L-consistent set of formulas Γ such that Σ ⊆ Γ, we

have Σ = Γ.

Lemma 5.0.1 (Properties of Maximal Consistent Sets). Let L be a normal modal

logic and Σ be a maximal (L-)consistent set. Then we have the following:

• Σ is closed under modus ponens, i.e. if ϕ→ ψ ∈ Σ and ϕ ∈ Σ, then ψ ∈ Σ;

• L ⊆ Σ;

• For any formula ϕ, either ϕ ∈ Σ or ¬ϕ ∈ Σ;

• For all formulas ϕ and ψ, ϕ ∨ ψ ∈ Σ iff ϕ ∈ Σ or ψ ∈ Σ.

Lemma 5.0.2 (Lindenbaum’s Lemma). Every consistent set of (modal or first-order)

formulas can be extented into a maximal consistent set of formulas.

Theorem 5.0.3 (Canonical Model Theorem). Any normal modal logic is strongly

complete with resprect to its canonical model.

Proof. For a proof, see Blackburn et al., Theorem 4.22, pg. 199 [13]. �
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Definition 5.0.11 (Metric Space). Let W be a set and d : W ×W → {0} ∪ R+ be

a function. The function d is called a metric and the pairM = 〈W, d〉 a metric

space iff for every x, y, z ∈W we have that:

1. d(x, y) = 0 iff x = y (identity of indiscernibles),

2. d(x, y) = d(y, x) (symmetry),

3. d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality).

Definition 5.0.12 (Topological Space). Let X be a non-empty set. A collection

of subsets T of X is a topology over X iff,

• ∅,X ∈ T;

• If S,R ∈ T then S ∩ R ∈ T, i.e. T is closed under finite intersections;

• For any collection of sets Sn, if Sn ∈ T, then
⋃

Sn ∈ T, i.e. T is closed

under arbitrary unions.

The pair 〈X,T〉 is called a topological space.

Definition 5.0.13 (Topological Space via Kuratowski Axioms). A topological

space is a pair 〈X,C〉 where X is a set and C : 2X
→ 2X is a function (‘closure

operator’) such that for every S,R ∈ 2X we have that,

1. S ⊆ C(S);

2. C(C(S)) = C(S);

3. C(S ∪ R) = C(S) ∪ C(R);

4. C(∅) = ∅.

Definition 5.0.14. Let 〈X,S,M〉 be a measure space and 〈X,T〉 be a topological

space. The σ-algebra generated by the topology T is called the Borel algebra
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generated by T. More precisely, B is a Borel algebra generated by T iff,

B =
⋂
{S | T ⊆ S ∧S is a σ-algebra}.

Obviously, every Borel algebra is itself a σ-algebra.

Definition 5.0.15 (Metrizable Space). A metrizable space is a topological space

that is homeomorphic to a metric space. That is, a topological space 〈X,T〉 is

said to be metrizable if there is a metric d : X→ {0} ∪R+ such that the topology

induced by d is T.

Definition 5.0.16 (Recursive Set). Given a set S, S is a recursive set iff there is a

Turing machine such that for any given input it terminates after finite number

of computation steps and correctly returns whether the input is an element of

S or not. In short, a set is called recursive iff it has a decidable membership

problem.

Definition 5.0.17 (Polysize model property). Let L be a normal modal logic,

M a set of finitely based models such that the set of all formulas that are true

on every model in M generates L and f a function mapping natural numbers

to natural numbers. L has the f (n)-size model property with respect to M if

every L-consistent formula ϕ is satisfiable in a model in M containing at most

f (|ϕ|) states. L has the polysize model property with respect to M if there is a

polynomial f such that L has the f (n)-size model property with respect to M.

Lemma 5.0.4. Let τ be a finite similarity type. Let Λ be a consistent normal modal

logic over τ with the polysize model property with respect to some class of models M. If

the problem of deciding whetherM ∈ M is computable in time polynomial in |M|, then

Λ has an NP-complete satisfiability problem.

Lemma 5.0.5. If F is a class of frames definable by a first-order sentence, then the
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problem of deciding whether F belongs to F is decidable in time polynomial in the size

of F.

Definition 5.0.18 (SnS, Monadic Second-Order Theory of Trees of Infinite Depth).

Let A be a set of symbols (‘the alphabet’). A∗ denotes the set of all finite se-

quences (‘words’) that can be produced from the alphabet A. We define the

following relations overA∗: For every w,u ∈ A∗,

• w � u iff u extends w, i.e., ∃v ∈ A∗ such that u = wv, where wv denotes

the concatination of the word v at the end of the word w. This is called

the ‘initial segment of’ relation.

• w � u iff either w � u or ∃p∃v∃z ∈ A∗ and ∃a∃b ∈ A such that w = pav,

u = pbz and a < b where pav and pbz denote the concatinatons of the

respective elements and < denotes a total ordering relation over A. We

say that � is the total lexiographic order overA∗ induced by <.

• For every a ∈ A, the function fa : A∗ → A∗ such that fa(w) = wa is called

the a-th successor function overA∗.

Fix some n ∈ N ∪ {∞} and letAn = {k ∈ N | k < n} be an alphabet. Let � be

the lexiographic order overA∗n induced by the usual ordering relation overN,

fk be the kth successor function overA∗n for every k ∈ An and� be the ‘initial

segment of’ relation overA∗n as defined above. Then,

Sn = 〈An,�,�, { fk}k<n〉

is called the structure of n successor functions.

Let L2 be a monadic second-order language for Sn consisting of a denu-

merably infinite set of variable symbols, a denumerably infinite set of predicate

symbols, a function symbol fk for every k < n corresponding to the kth successor
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function of Sn, two relation symbols� and � corresponding to the respective

relations ofSn, the standard boolean connectives and the usual quantifiers with

the well-known second-order interpretations. Note that this entails quantifica-

tion not only over the variables but also over the predicates.

The monadic second-order theory of trees of infinite depth (SnS for short)

is the theory obtained by the second-order interpretation of L2 over Sn.

For a proof of the following theorem, see [54].

Theorem 5.0.6 (Rabin’s Theorem). For every n ∈N∪{∞}, the satisfiability problem

of SnS is decidable.
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