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Abstract

Learning is an important way to acquire unknown information for both com-
puter and human. In game competitions, human can improve themselves by
combining a series of learning processes: observing and imitating others;
training oneself forin a certain skill; finding a new skill and training again.
In machine learning, various learning methods are developed. These methods
are normally isolated for different purposes. The improvements the methods
can achieve are limited to the effects of a single model, which is inevitably
constrained by the prior structure of the model. Therefore, building a sys-
tematic learning mechanism is motivated, whereby multiple learners can be
combined and the constrains can be relaxed. The details are addressed in the
first three parts in this dissertation.

In the first part, Switching Attention Learning (SAL) is defined. The basic
idea is that improving one model in the system generates more “improvement
space” for the others. If the inputs of one learner come from the outputs of
another, and if this relation forms a loop, the “improvement space” can be sig-
nificantly enlarged by iterating over the learners in the loop. This generalizes
the existing research in semi-supervised learning and boosting approaches
in two aspects: It is not necessary that both labeled and unlabeled data are
involved in the learning; SAL provides a framework of systematic learning,
whereby the components of different layers in a system can be connected.
SAL is studied in the context of game competitions. In order to test SAL, two
test-beds based on table soccer and Tetris were developed.

In the second part, we explain our work on table soccer. Table soccer is a
physical game that can be played by both human and robot. We built a table
soccer game recorder, KiRe, so that a computer can access the game data of
the human players. To explain the recorded data, a method employing Con-
ditional Random Fields (CRFs) is initialized. Using the SAL framework, we
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studied CRFs by simulation. Several learners were developed for the feature
induction of CRFs. They can be used to learn a queue of CRFs models (CRF
queue) over iterations. CRF queue guarantees no worse results than a single
model. Besides, a novel feature reduction step was integrated in the induction
process. It can significantly reduce the required time in the learning. Finally,
the possibility of using this method on the real data from KiRe is discussed.

In the third part, Tetris is studied as the second test-bed. Tetris has been
one of the most popular computer games for many years. The single Tetris
game has been used as a test-bed by many researchers. We developed a plat-
form for competitions. The platform is based on an open source project –
KDE. Several learners were developed according to the SAL framework. Sup-
port Vector Machines and learning by imitation are employed in these learn-
ers. They can work together to build an AI player. The player has a chance to
defeat the best known artificial player in the world. In addition, it can always
find and imitate better players.

Switching Attention Learning is defined and discussed. We address the
advantages as well as the problems of SAL, developed two test beds, and
show in the experiments that SAL is a practical and systematic approach for
the learning in game competitions.



Zusammenfassung

Lernen ist für Computer und Menschen gleichermaßen eine wichtige Meth-
ode, um unbekannte Informationen zu gewinnen. In spielerischen Wettbe-
werben können sich Menschen verbessern, indem sie eine Reihe von Lern-
prozessen verbinden: andere Spieler beobachten und imitieren; sich selbst in
einer bestimmten Fertigkeit schulen; eine neue Fertigkeit finden und diese
erneut üben. Im Maschinellen Lernen werden verschiedene Lernmethoden
entwickelt. Diese Methoden werden normalerweise zu verschiedenen Zwecken
isoliert. Die Verbesserungen, welche die Methoden erzielen können, sind auf
die Wirkungen eines einzelnen Modells beschränkt, welches unweigerlich
von der vorgegebenen Struktur des Modells eingeschränkt ist. Dies motiviert
die Konstruktion eines systematischen Lernmechanismus, bei dem mehrere
Lerner kombiniert und die Einschränkungen abgeschwächt werden können.
Mit den Details befassen sich die ersten drei Teile der vorliegenden Disserta-
tion.

Im ersten Teil wird der Begriff des Switching Attention Learning (SAL)
definiert. Die Grundidee ist, dass Verbesserungen eines Modells im Sys-
tem den “Raum der Verbesserungen” der anderen Modelle vergrößern. Wenn
die Eingaben eines Lerners aus den Ausgaben eines anderen Lerners kom-
men und diese Relation einen Zyklus bildet, dann kann der “Raum der
Verbesserungen” bedeutend vergrößert werden, indem man über die Lerner in
dem Zyklus iteriert. Dies verallgemeinert bestehende Forschungsarbeiten aus
dem Bereich des halb-überwacht Lernens und des Boosting in zweierlei Hin-
sicht: Es ist nicht nötig, dass sowohl “labeled” als auch “unlabeled” Daten
zum Lernen verwendet werden; SAL stellt einen Rahmen für das systema-
tische Lernen bereit, bei dem die Komponenten unterschiedlicher Schichten
in einem System verbunden werden können. SAL wird im Zusammenhang
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mit spielerischen Wettbewerben untersucht. Um SAL zu testen, werden zwei
Tauglichkeitstests basierend auf Tischfußball und Tetris entwickelt.

Im zweiten Teil beschreiben wir unsere Arbeit über Tischfußball. Tisch-
fußball ist ein Spiel, das sowohl von Menschen als auch von Robotern gespielt
werden kann. Wir haben ein Aufzeichnungsgerät für Tischfußball, KiRe, kon-
struiert, um es einem Computer zu erlauben, auf die Spieldaten der men-
schlichen Spieler zuzugreifen. Um die aufgezeichneten Daten zu erklären,
wird eine Methode initialisiert, die Conditional Random Fields (CRFs) ver-
wendet. Im Rahmen von SAL wurden CRFs in einer Simulation untersucht.
Mehrere Lerner wurden für die Merkmasinduktion in CRFs entwickelt. Diese
können verwendet werden, um eine Warteschlange von CRF-Modellen (die
CRF-Queue) zu lernen. Außerdem wurde eine neue Methode zur Merkmal-
sreduktion in den Induktionsprozess integriert. Er kann die für das Lernen
benötigte Zeit signifikant verringern. Schließlich wird die Möglichkeit disku-
tiert, diese Methode auf den echten Daten von KiRe einzusetzen.

Im dritten Teil wird Tetris als zweiter Tauglichkeitstest untersucht. Tetris
ist seit vielen Jahren eines der beliebtesten Computerspiele. Das Ein-Spieler-
Tetrisspiel wurde bereits von vielen Forschern als Tauglichkeitstest verwen-
det. Wir haben eine Plattform für Wettbewerbe entwickelt, welche auf einem
quelloffenen Projekt aufbaut: KDE. Mehrere Lerner wurden gemäß SAL en-
twickelt. Sie verwenden Supportvektormaschinen und Lernen durch Imita-
tion. Sie können zusammenwirken, um einen KI-Spieler zu konstruieren.
Der dabei entstandene Spieler hat die Chance, den weltbesten bekannten
künstlichen Spieler zu besiegen. Darüber hinaus kann er immer stärkere
Spieler erkennen und imitieren.

Switching Attention Learning wird definiert und diskutiert. Wir gehen auf
die Vorzüge ebenso ein wie auf die damit verbundenen Schwierigkeiten, en-
twickeln zwei Tauglichkeitstests, und zeigen in den Experimenten, dass SAL
ein praktikabler und systematischer Zugang zum Lernen in spielerischen Wet-
tbewerben ist.
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Switching Attention Learning – the Idea





1

Introduction

Games are fun. They stimulate the intellect. They are an important form of
entertainment in modern life. Generally, many activities are games: soccer,
chess, and poker etc. Being a good player in one of these games is not very
easy. For instance, many people take soccer as their hobby; even if they have
been training and playing for more than ten years, most of them are still am-
ateurs.

Some of the games can be played by computers, e.g. poker. A computer,
however, plays games in a very different way. First of all, computers are ma-
chines – they have neither passion nor anger. Once programmed, a computer
can sit there, repeating a routine for years without any difference and it would
not complain. From this point of view, computers have abilities of repetition
and accuracy much better than human beings. No one doubted that, once
Deep Blue defeated the world champion in chess, it could dominate the chess
world and always win.

When playing games, human beings and computers behave in diverse
ways. Humans can improve their skills via learning over a fairly long period.
Their performance can be changed from time to time. Computers are good
at repetition. They have some learning abilities which are quite limited com-
pared to those of human beings. Machine Learning, a research branch in arti-
ficial intelligence, deals with the learning issues of computers. Many learning
methods have been developed in machine learning over the past years. Each
of them is isolated for a certain issue and inevitably has its own constraints
and prior structures.

This dissertation aims to relax these constraints by defining a systematic
learning framework in which the existing methods can be plugged and work
together. Two games are chosen as the test beds. These games can be played
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by both human beings and computers for the convenience of comparison. The
comparison of learning and game playing can foster interesting research.

1.1 Games in Computers

Nowadays computers can play many games and many different methods and
ideas are used for games. These approaches can be classified into three cate-
gories according to the types of the games: board games, physical games, and
video games. We discuss these categories one by one in this section.

In a board game, some pieces can be placed or moved (removed) on a
board by players. A set of game rules define the legal movements of the game.
A player can win or lose if the game reaches one of its final states. Chess is
an example of such board games. Two players compete against each other
in Chess . Its board consists of 8 × 8 grids. Each player controls 16 pieces:
a king, a queen, two rooks, two knights, two bishops, and eight pawns. The
player whose king is removed by the other loses the game.

For human beings, playing a board game is a brain challenge. Players
need to struggle for a win. Artificial Intelligence (AI), a branch in computer
science, aims at developing computer intelligence which is similar to that of
human beings. Board games are widely used as test-beds in AI.

For a computer, solving a board game means the computer knows the best
movement at any game states. This task is very challenging because the num-
ber of states of a game can be extremely large. For example, Chess has 1050

states which is far from computable by any computer. The main challenges
of solving a board game are thus to find a mechanism to deal with the huge
state space.

Researchers in AI developed many approaches for solving huge state
space issues in board games. Herik et al. summarized the solved games and
foresaw the future developments [40]. The basic idea was to build some struc-
tures or patterns to avoid visiting too many states. These structures can be an
evaluation function, a heuristic function, a list of game states, a simulation of
a game, and many other forms. Most of the board games have perfect state
information, which simplifies the observation issues in a computer.

Physical games, the second category, are activities of human beings such
as soccer, ping pang, or snooker etc. Players need to be physically involved
in the games and comply with a set of rules during playing. For example, two
teams of players are in soccer game. Three referees are in charge of the rules.
Each team defends their own goal from being scored, while attacks the goal
of the other team as much as possible.
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The players need to dribble, pass, kick, and block the ball. Speed, accu-
racy, skills, and power are required for the players to win such a game. A hu-
man player may need to be trained for several years to improve their dribble
skills, to run faster, to shoot more accurately, and to block more effectively.
These improvements involve not only the brain but also the limbs, the lungs,
and other parts of the body which is far beyond the necessities for playing a
board game.

In most cases, a physical game is only partially observable for computers.
It is different from the situation of a board game which has perfect and fully
observable state information. A computer can be equipped with a camera, a
laser measurement system, and other sensors to observe the environment. The
measurements of the sensors are only an approximation of the real situation.
This approximation is used to build a world model as accurate as possible.
Also, if there are multiple players in a game, the model including the cooper-
ation among players is challenging.

As the famous activity of scientific research, RoboCup promotes several
physical games. The initiative of RoboCup is to build a team of robots that
can play soccer with human beings. RoboCup fostered much research in ar-
tificial intelligence and robotics, and became very popular in recent years
[46]. In this context, the works in engineering, sensor technologies, and com-
puter science can be integrated and tested. From the previous competitions
in RoboCup, we can see that the developments were amazing. However, the
teams of robots are still competing against themselves and are hardly compa-
rable to human teams so far. The situation is complicated and the problems
are not east to solve.

Video games are classified into the third category. A virtual world is cre-
ated in a video game. Players can enjoy gaming activities which are not pos-
sible in reality. The game is shown on a display and it is controlled by input
devices such as a mouse, a keyboard and a joystick. Most of these games are
fully observable because the game worlds are generated by computers. The
rules of a game can be defined by its designers, human beings.

Video games have great commercial values. Solving a video game is nor-
mally not as challenging as solving board games or playing physical games.
Players are required to accomplish some tasks, which are designed for fun.
We will focus on the design of video games in this section.

Game design is an issue that includes platform, control, graphic, game en-
gine, and storytelling, etc. There are different researches in these areas: the
virtual roles appear to be intelligent; a game engine needs to provide interest-
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ing game rules so that players will have fun in the game. These tasks can be
solved by using methods in AI.

Game AI is a branch of research in which AI technologies are employed
to design video games. Mateas reviewed some of these methods [52]. For
example, decision tree and rule-based system can be used for decision making
in a video game; a game engine can be developed by genetic algorithm or
neural networks; breadth first search, deep first search, and A∗ can be used in
path-finding.

In this section, games in computers are classified and outlined. We mainly
discuss the games involving both human beings and computers. Our work is
based on this scenario because of the following advantages: first, computers
and human beings control the game in the same way which limits and sim-
plifies the problems; second, computers can learn from human players; and
third, the learning of the computers can be compared to that of human beings.

1.2 Learning in Computers

Machine Learning (ML) is a branch of research in Computer Science. It
is closely related to Artificial Intelligence (AI). The text book written by
Mitchell is a good introduction to ML [54]. In AI, many approaches are from
model to data. The basic method in ML is, however, to generate models or
patterns from data sets – from data to models. The data can range from huge
databases to single data set from one robot. Many approaches are developed
in ML, three of which are the basis of this research. We will briefly intro-
duce these directions in this section: supervised and unsupervised learning;
imitation learning; and Bayesian networks.

Supervised and unsupervised learning are discussed in two examples: de-
cision tree and expectation maximization.

Decision tree learning is a common approach in ML [14]. A decision tree
can provide a classification given a number of inputs. These inputs can be
represented as a vector of variables. The indicated class is decided with the
values of the inputs. The labels of the classes are predefined. The task of the
learning is to build a tree structure given a set of inputs and their classifica-
tions.

The tree structure resembles an upside down tree. The root node is top-
most and starts the tree. The nodes are the variables. Their values create
branches and the leaves are associated with classification. The input vector
can be mapped to a path from the root to one of the leaves which indicates
the final classification of the inputs. In the learning of a decision tree, the “tree
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structure” is assumed. The tasks are to build “parent-child” relations between
different values of the current nodes and its possible child nodes. A class label
is assigned to each leaf.

Starting from the root, the learning method of decision tree is to pick a
variable from the input vector and insert it to the tree. The core problem is
an estimation function that makes one variable stand out of the candidates.
This evaluation is based on “entropy” in information theory. The entropy can
measure the uncertainty associated with a variable. The uncertainty in the
learning encodes the possibilities that the inputs can be mapped to each class
label. The difference of the entropy values is regarded as the evaluation. These
two entropy values are calculated by including or excluding a variable in the
tree. The difference is called information gain.

Entropy is essential in information theory for quantifying information.
Shannon proposed the concept for signal processing [66] where entropy is
applied for transferring data. It is widely used in data compression, channel
coding, Internet, and many other fields. Entropy can be used to build several
measurements for different purposes, e.g. conditional entropy, mutual infor-
mation, and information gain.

Learning a decision tree requires the training data being labeled with their
classes. This learning is called supervised learning. In many cases, it is hard
to obtain the labeled data. Several methods were developed to learn a model
from unlabeled data which is called unsupervised learning. Expectation Max-
imization (EM) is one of these methods.

EM algorithm was first proposed by Dempster et al. [26]. The computer
iterates over an“Expectation (E)” step and a “Maximization (M)” step to com-
pute the parameters of a certain model. The model is normally used for data
classification, in which inputs are mapped to a class label. Many models can
acquire their parameters via EM, e.g. Gaussian mixture and support vector
machines.

In an EM algorithm, the inputs can be regarded as a data point in a multi-
dimensional space. Each dimension denotes a variable in the inputs. The
points that are closed to each other in the space are classified with a class
label. Two labels should mark distinct subsets of the points in the space. Al-
though concrete labels are not necessary in the learning, the number of the
labels is normally required. The learning task is to find the boundaries that
can best separate the subsets of the points.

This learning can be understood as maximizing the likelihood of a model
given a set of unlabeled data. E and M are called iteratively in the following
way: initially, the parameters of the model are chosen randomly; in the E step,
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the model is then used to compute classifications of the data points; next, in
the M step, the parameters of the model are computed based on the classified
data; finally, E and M steps are called iteratively until the parameters are
converged.

Methods based on probabilities such as maximizing likelihood are widely
used in learning. Normally, these methods can be described as a graphic
model. In the graph, the nodes denote the variables; and the edges denote
the dependencies among these variables. There are directed graphic models,
for example, hidden Markov models, and undirected graphic models, for ex-
ample, conditional random fields. These models have certain power of pre-
diction, for instance, they compute the most probable explanation of given
data.

Learning probability model is challenging. Normally, each node or edge
in a graphic model is associated with a parameter. The number of parameters
in a graph consisting of a hundred nodes can easily reach several thousand
which is hard to compute. Thus, the graphic models have to be limited by
some structure and constraints.

Hidden Markov Models (HMMs) assume such constraints. HMMs consist
of a chain of nodes. Each node indicates a hidden state. The state, given its
predecessor, is independent to other states. This property is called the Markov
property. The states are hidden because they cannot be observed directly. Nor-
mally the observations can be described as a vector. In HMMs, a parameter
is a measurement of the dependencies between two states, or between a state
and an observation. HMMs have been successfully applied in many sequen-
tial tasks such as speech recognition [58].

HMMs consist of a directed graphic model. Its counterpart in undirected
graphic models is Conditional Random Fields (CRFs). CRFs have a similar
chain structure. The main difference is HMMs are based on joint probabilities
while CRFs are based on conditional probabilities. The strong dependency
assumptions in HMMs are relaxed in CRFs to make CRFs more flexible.
CRFs outperform HMMs in synthetic labeling tasks [45].

Many learning algorithms require considerable computational power. Im-
itation learning is one of the approaches for quick learning. Imitation learning
is an interdisciplinary branch of artificial intelligence and biological science
[13]. Typically, there are a demonstrator and a learner in the scenario. The
learner observes the behaviors of the demonstrator and replicates them [50].

Imitation is employed to solve problems ranging from learning low-level
actions to acquiring high-level tasks. The demonstrator and imitator could
be similar or very different in the scenario. Imitation learning provides an
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efficient way for quick learning, skipping the tedious self-learning process
which always takes thousands of trials to acquire a proper but simple action.
This advantage of imitation learning can be used to solve the typical problems
faced by some robot systems. These systems normally use a huge state space
where getting reinforcements from executing the actions are always too slow.

For example, a humanoid robot always has many “Degrees Of Freedom”
(DOF). Searching for proper parameters for all the DOF is tremendous work
[9]. Human beings have graceful actions. They could be a demonstrator. The
imitation used here helps to find a good set of parameters which can conse-
quently create a sequence of actions, being similar in shape to the demonstra-
tor’s behavior [51, 62].

In this section, several learning methods are reviewed: decision tree, in-
formation entropy, EM framework, HMMs, CRFs, and imitation learning. In
all of them, some basic structures or certain forms of the data are assumed,
which inevitably introduce constraints and limit the flexibility of the model.

1.3 Motivation

KiRo is a fully-automatic table soccer robot [79]. It has a reaction speed faster
than a human. In 2005, KiRo could already defeat most human players, even
advanced ones. There are mainly two paths for its further development: in-
creasing the system speed until it can defeat the world champion of table
soccer; or developing intelligent behaviors. We chose the latter one because
it is more interesting for the research in artificial intelligence.

Both KiRo and human players control the game by turning and moving
the game rods. In order to develop the intelligent behaviors for KiRo, we con-
sidered the same tasks achieved by humans. Humans can improve themselves
by combining a series of learning processes: observing and imitating better
players; training oneself for a certain skill; finding a new action and training
again, etc. It would be wonderful if KiRo had the similar learning abilities by
which it could develop some intelligent behaviors itself.

As mentioned in Section 1.2, many methods are developed in machine
learning. They assume certain structures and work for specific issues. KiRo
is a system that consists of layered components. For instance, the sensor data
can be fused by using Kalman Filters [84]; the results can be explained by a
sequence learning method such as Conditional Random Fields [45]; and the
explanations can be further used for the action selection. It is hard to find
a single learning method that can achieve the learning tasks for the whole
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system. We thus focus on a learning paradigm that can provide a systematic
learning solution and whereby different learning modules can be integrated.

A learning paradigm would lose its generality if it was only used in one
system. Moreover, a good idea should work for different purposes in different
systems. These motivated the development of another test-bed for the learn-
ing: Tetris. This was chosen as the second one test-bed because computers
can obtain similar control power to what human beings have in a Tetris game,
which provides an environment in which computers can learn from and com-
pete against human players. In addition, Tetris is quite different from table
soccer. It is a computer board game which is easy to be observed and hard to
be solved.

The learning paradigm is an entrance for several interesting questions
in machine learning and artificial intelligence. Our main concerns are listed
here. First, can the constraints defined in the learning of each module be re-
laxed by other modules in a system? Second, can the paradigm generate a
result more than simply adding the results of its components? Third, can a
computer improve itself via bootstrapping?

1.4 Outline

This dissertation consists of five parts. In the remainder of this section, semi-
supervised learning and the boosting framework are explained as the back-
grounds in Chapter 2. Switching Attention Learning (SAL) is introduced and
defined in Chapter 3. It generalizes the basic ideas of semi-supervised learn-
ing and the boosting framework.

In Part II, Table soccer is regarded as the first test-bed of the SAL. First,
the background information is explained in Chapter 5; the developments of
KiRo are briefly explained in Section 5.1.1; the definition of Conditional Ran-
dom Fields is introduced in Section 5.2. The training and feature induction
issues of CRFs are discussed in Section 5.2.2 and 5.2.3. Then a table soccer
game recorder – KiRe , is developed in Chapter 6. It can record the games
of human players. Next, we address the development of the “CRF queue”
in Chapter 7. It sets a basis for implementing CRFs using SAL. Finally, the
methods that bridge the gap between the recorded data and the developed
CRF method are addressed in Chapter 8.

In Part III, Tetris was regarded as the second test-bed of the SAL. Different
from table soccer, Tetris is a static board game in computers. In Chapter 10,
the “state of the art” research in Tetris is addressed. Bandit based Monte Carlo
planning is used as a method for the game competitions in Chapter 11. It
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shows how a computer can play the game. Learning by imitation is employed
in the SAL framework for playing Tetris in Chapter 12.

In Part IV, two applications are developed which are the joint works with
other students. In Chapter 13, a game controller based on multiple sensors is
constructed. There is a discussion in human computer interface. In Chapter
14, an automatic referee of table soccer is implemented based on KiRe.

In Part V, we draw the conclusion and discuss possible future avenues for
work. This dissertation is based on the following publications.

• Dapeng Zhang and Bernhard Nebel.Recording and Segmenting Table
Soccer Games – Initial Results. In Proceedings of the 1st International
Symposium on Skill Science 2007 (ISSS 2007), page. 193-195.

• Dapeng Zhang, Bernhard Nebel and Armin Hornung. Switching Atten-
tion Learning - A Paradigm for Introspection and Incremental Learn-
ing. In Proceedings of Fifth International Conference on Computational
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104. Linz, Austria.
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Preliminaries

Switching attention learning is a paradigm to integrate multiple learning
parts. In the literature, learning from the labeled and unlabeled data can be
combined in semi-supervised learning. Weak classifiers can be boosted into
a strong one in boosting framework. Both of the branches of research handle
issues of integrating and combining multiple learning parts. We briefly review
them as the preliminaries of the SAL in Section 2.1 and 2.2.

2.1 Semi-Supervised Learning

Supervised and unsupervised learning were introduced in Section 1.2. There
is a branch of research in which they are combined: Semi-Supervised Learn-
ing (SSL). Zhu et al. wrote a book for a general introduction to SSL [92].
Generally, SSL is an approach for data classification. Both unlabeled and la-
beled data are used in SSL. The unlabeled data is to improve the supervised
learning which is based on the labeled data. Several concrete methods were
developed in the context.

Here we denote the instances in the data set as a vector of features x =
(v1, v2, ..., vD) where D is the dimension of the vector. Y = y1, y2, ..., yn
is a set of labels, where n is the number of the labels. Data classification is
to find a mapping function f which defines a correspondence between the
instances of the data and their labels f : x → y, y ∈ Y . In supervised
learning, a set of labeled data {(x1, y1), (x2, y2), ..., (xI , yI)} are given as
the training set where I is the number of the instances in the set. Based on the
given data, f is computed using a learning algorithm. In unsupervised learn-
ing, e.g. the EM algorithm in Section 1.2, the training set is {x1, x2, ..., xI}.
The number of the labels n is required as additional information. In semi-
supervised learning, both labeled data {(x1, y1), (x2, y2), ..., (xI , yI)} and
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unlabeled data {xI+1, xI+2, ..., xI+J} are given, where J is the number of
the unlabeled data.

In reality, annotating the data (xi, yi) is a very tedious job. In SSL, J is
normally much bigger than I . SSL is motivated because it provides a solu-
tion to reduce the amount of work in data annotation which is expensive in
practice.

An instance x can be regarded as a point in a space of D dimensions.
A label y marks a cluster of the instances. SSL assumes a smooth property:
if x and x′ are close to each other in the instance space, their labels, y and
y′, are also close to each other. Based on this assumption, the unlabeled data
can improve the accuracy of the boundaries among the clusters. This is the
basic principle of semi-supervised learning. Several methods were developed
in SSL.

Self-training or bootstrapping [85] is one of the methods in SSL. From
the labeled data, a model is first trained by using supervised learning. In the
second step, this model is used to predict the class labels over a set of the
unlabeled data. And thirdly, the most confident predictions and their corre-
sponding instances are added into the training set. Consequently, the model
can be trained again based on the bigger training set. By iterating over these
training steps, the model is bootstrapped by only a small amount of the la-
beled data.

In this approach, the predictions, which normally contain some mislabeled
data, are regarded as labeled data in the supervised learning. If there is no
special method to deal with the mislabeled data, the errors will be considerred
as the correct data and they will propagate in the training. The behavior of the
models is interesting because it takes its own outputs as the inputs in the next
iteration.

Co-training is another method in SSL. It was first proposed by Blum and
Mitchell [11]. Co-training has a significant contribution to the area. The idea
is to make intra-learning between two models. One is built on a subset of
features. The other is based on another different subset.

An example of the co-training is illustrated in Figure 2.1. Each of the
data instances has 6 features. A labeled data set is denoted by an ellipse.
The training set is divided into two subsets. In each subset, three features are
considered. Learner1 is based on the features {F1, F2, F3}. Model1 is trained
by using supervised learning. An unlabeled data set, D1, which is denoted
by a circle, is fed to the model M1 for the predictions. The most confident
predictions and their data instances are added into the training sets of another
learner, Learner2, which is based on the features {F4, F5, F6}. In the same
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way, Learner2 can also be used to enlarge the training set of Learner1 and
improve the performance of M1. In other words, M1 is finally improved by
its own predictions.

F1 F2 F3 F4 F5 F6

Subset 1 Subset 2

Learner1 Learner2

Model1 Model2

D1 D2

Fig. 2.1. An example of Co-Training

Blum and Mitschell not only proposed the basic idea of co-training but
also analyzed the co-training in the framework of Probably Approximately
Correct (PAC) learning [11]. PAC learning was proposed by Valiant [74]. It is
a framework to analyze and classify the difficulties of the learning problems.
In PAC, the required number of training instances is related to the probability
of learning a model within a limited error rate. Co-training is a framework
that can accommodate different methods and algorithms.

Multi-view learning, first proposed by Virginia [76], extends the idea of
co-training. In the scenario, there are multiple learners. These learners inter-
act with each other to obtain an agreement on the training data. The form
of multi-view learning is more flexible. Different methods can be integrated
into one view in the learning. This integration is much further than choosing
the subsets of the features in the co-training. For example, a decision tree
can be grown according to the predictions of a support vector machine. This
flexibility inevitably introduces risks to the learning process [68].

As we mentioned before, SSL assumes a smooth property. It is intuitive
to represent this smooth property as a surface in a multi-dimensional space.
Graphic based methods are based on this notation, in which each x is denoted
by a point in the space. The similarity between two points is modeled by
an edge. A target function, e.g. harmonic function [91], is designed for the
evaluation of the smoothness, in which the assignments of y are encoded.
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In Semi-Supervised Support Vector Machines (S3VMs), the tasks are
solved by an idea from another aspect. Instead of searching for the smooth-
ness, the gap or margin among the clusters is maximized. These clusters de-
note different values of y. In SVMs, only labeled data are used in the train-
ing. In S3VMs, both labeled and unlabeled data are involved which intro-
duces an extra problem – a non-convex optimization. Chappelle et al. wrote
an overview on the approaches in this direction [21].

In general, semi-supervised learning deals with data classification issues
using both labeled and unlabeled data. The methods in the area can be roughly
classified into two categories. The first one is based on the interaction of mul-
tiple learners, e.g. co-training and multi-view learning. In the second cate-
gory, the methods deal with both labeled and unlabeled data, for example,
graphic based methods and S3VMs. The methods in first category are par-
ticularly related to our research.

2.2 Boosting Framework

Boosting framework, first proposed by Kearns et al. in 1988 [42], is a popular
method in machine learning. It can “boost” a number of weak classifiers from
the training data and combine them to obtain a strong classifier which has
high accuracy. The weak classifiers can have different forms which makes
the framework flexible. There are several different “boosting” approaches.
Schapire wrote an overview on the boosting approaches [64]. We will focus
on the AdaBoost in this section. It is one of the most important methods in
boosting which was also analyzed in PAC learning model [65].

AdaBoost was first proposed by Freund et al. in 1995 [34]. Two sets of
parameters are learned in AdaBoost. The first is a set of weights, each of
which is associated with an instance in the training set. A weak classifier can
be learned based on the weighted instances. Here the weights indicate the im-
portance of the instance to the learned classifier. In each iteration, the weights
are updated so that the algorithm focuses on a different subset of the training
data. A series of the weak classifiers is learned over the iterations. The sec-
ond parameter set measures the contribution of each weak classifier. The final
decision is simply the sum of the weighted decision of each classifier.

Figure 2.2 shows an example of AdaBoost. The learner generates the fist
parameter set P1, which is applied to each instance in the training set. The
parameter set makes the learner focus on a subset of the training data. We
illustrate this subset as D1 in the figure which is intuitive. In principle, there
is no clear boundary between D1 and other data. Then the learner generates
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D1 D2 D3

Training Set

Learner

M2M1 M3

Voting

P1
P2

P3

p′1
p′2

p′3

Fig. 2.2. An example of AdaBoosting

M1 which is a weak classifier. In addition, a weight parameter p′1 is chosen to
be associated with M1 in this iteration. In the same way, M2 and M3 can be
learned one after another in the next two iterations. The three models can be
combined in a voting mechanism for the prediction. The prediction of each
model is multiplied with the corresponding weight factor in {p′1, p′2, p′3}. The
resulted values are added together for the final prediction.

AdaBoost has been applied in a wide range of applications, for instance,
spam detection, image retrieval, medical diagnosis, and drug discovery. The
idea of boosting can be combined with semi-supervised learning for both la-
beled and unlabeled data [47]. It is an interesting approach to this dissertation
because it provides a way to learn multiple models and combine these models
for the prediction.
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The Definition of Switching Attention Learning

Attention plays a very important role during the learning processes of hu-
man beings. For example, students in university take several courses in the
morning. The subjects could be dependent or independent. The understand-
ing of physics requires some background in mathematics. Studying English
is not directly related to learning biology. In any situation, the students can
develop their knowledge by switching their attention from one subject to an-
other. Switching attention can be observed not only in complex tasks as in the
example above but also in some much simpler ones such as learning a one-
second sport action. For instance, a human player tries to improve his dart for
six months. M. Suwa found that together with a measurable improvement of
his overall performance, the player switched his attention to different parts of
his body, e.g. the waist, the elbow, or the fingers. Based on the “switched at-
tention”, the key mechanism of the improvement is explained as the so-called
“Meta-Cognitive Verbalization” [69].

Human beings have the ability of learning to improve their skills. When
facing a learning task, such as playing darts, people can acquire the necessary
skills by repeating the following three steps: finding a weakness, overcoming
it, and switching attention to another weakness. Iterating over the steps can
be regarded as an incremental-learning process with introspection. In artificial
intelligence (AI), there exist many learning approaches which have are very
useful and powerful.

SSL and boosting approaches are towards solving problems in data clas-
sification which is an identified research issue. In general, a clue to attack
such an issue is to first develop a set of standard benchmarks; then to develop
some methods for the problems and compare the methods based on these
benchmarks. This is called a research-oriented development.
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Our research is application-oriented. As mentioned in Section 1.3, our
research was first motivated by developing KiRo further. Instead of focusing
on a specific issue, e.g. data classification, we investigated a series of methods
which were necessary and proper for the development of the application. The
ideas can be tested in the application and then be generalized and applied in
other similar systems.

Many systems have a layered structure. The problems in different layers
can hardly be described or modeled using a single method. For example, a
table soccer robot has three sub-systems: world model, action control, and
action selection. To make the robot play table soccer well, we need to recog-
nize the position of the ball, have a number of basic actions, select from these
actions, and be adaptive to different players. These require different methods
working on different layers. The methods can hardly be related to a certain
learning issue, e.g. data classification. We define switching attention learning
for the development of a learning system. It is application-oriented. Instead of
performing a deep research in a certain direction, SAL is designed to integrate
a wide range of different methods.

In short, Switching Attention Learning (SAL) is a paradigm in which mul-
tiple learners can be plugged. The inputs of one learner come from the outputs
of the others.

To explain in detail, a SAL system consists of the following four elements:

• a set of system goals, G;
• a set of models, M, cooperating for G;
• a set of data and structures D, being input and output of the models in M;
• a set of learners L, which can improve the models in M towards G.

A model m is an active model if there is a learner lm improving m, where
m ∈ M, lm ∈ L. The input of the model “m” is denoted as Im and its
output as Om, where Im, Om ⊂ D. So far, an active model can be defined
by a 4-tuple, (m, lm, Im, Om). If the set of the active models is Ma, we have
Ma ⊆M.

We use “d” to denote an element in D. d is an active element if d ∈ Im1

and d ∈ Om2 where m1,m2 ∈Ma and m1 6= m2. With “Da” denoting the
set of all active elements, di and dj are “connected” by m if di ∈ Im and
dj ∈ Om, where di, dj ∈ Da, m ∈ Ma. There is a path from d1 to dn if
∀dk, dk+1 ∈ {d1, d2, ..., dn}, dk and dk+1 are connected. A system complies
with the switching attention learning paradigm if there is a path from an
active element to itself.

The definition of SAL limits our domain to closed-loop multiple learner
systems. Closed-loop is a concept which is widely used in control theory and
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artificial neural networks. The idea is to notify a system with feedback of its
own performance. Closed-loop is important for the SAL paradigm because
the learning process of human beings, which inspires the initial idea of SAL,
appears to be closed-loop. We believe it can gain advantages of incremental
learning.

We can distinguish a SAL system from others by its definition. There are
similar learning systems in which different learners are involved. For example
M. Fox and her colleagues developed an approach [33] where the structure of
Hidden Markov Models (HMMs) can be learned by a learner using Kohonen
networks. The parameters of the HMMs are computed by another learner
using Expectation Maximization framework. The approach is different from
ours because the “active elements” in the system do not form a loop.

Fig. 3.1. An Example with Two Learners

SAL requires at least two learners. Figure 3.1 shows an example. The
rectangles are learners. The circles are their inputs and outputs. The white
nodes are the active elements. They can be regarded as the medium of the
improvement. If we ignore the two gray nodes and their peripheral arrow
lines, the remaining nodes and lines which form a loop show an example of
the smallest possible SAL.

SAL provides a flexible context in which a specific real-world problem
can be divided into sub-problems, each of which can be solved in an in-
dividual model. The development process can pass three stages. First, the
sub-problems are solved independently with the models being defined with
their input and output. In this stage, we can expect an open-loop system, in
which the models are independent or they can do only a few interactions but
not incrementally. Then we focus on the elements which can bridge different
models, adjusting them so that they can represent both input and output. Fig-
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Fig. 3.2. Active Elements

ure 3.2 shows the development map of this stage. The big circle at the center
can be regarded as the closed-loop learning. We need to find out the active el-
ements in the system and develop learners for them. Finally, the dependency
among the models and learners are analyzed. We use a dependency map to
show these relations. Figure 3.3 shows the dependency map of the two-learner
example. We can design an attention model according to the topology of the
dependency map. In the example, the learners should be simply performed
one after another. We believe designing a good attention model can acceler-
ate the learning process in a more complex context.

SAL provides a framework for exploring the relations among different
models and learners. The essential characteristic of SAL is that the structure
based on the models and learners produces the power of introspection and in-
cremental learning. SAL is supposed to be used in scenarios where achieving
final goals requires a few intelligent components. Each component uses dis-
tinct representation and algorithms and solves problems from different points
of view. It also provides a platform where different solutions for the same
problem can be compared and combined. One of the possible applications is
the table soccer robots [79] in Part II. The robot should not only play against
human beings and be adaptive to different human players but also classify the
behaviors of the players and learn from them. SAL can also be used in much
smaller applications, e.g. in Tetris in Part III.
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Fig. 3.3. Dependency Map

SAL generalizes the ideas of SSL and boosting. In AdaBoost [64], once a
weak classifier is boosted in one iteration, a new set of parameters are com-
puted for the next iteration. If the behavior of each iteration is regarded as
executing a learner, AdaBoost complies with SAL because the training data
are filtered by the distribution parameters and passed to the next iteration
(learner). Co-training, mentioned in Section 2.1, complies with SAL because
each of the learners takes the outputs of the other as its inputs, as shown in
Figure 2.1. In Figure 3.1, an example of SAL with two learners is shown
which has exactly the same meanings as Figure 2.1.

SAL is different from AdaBoost and co-training mainly in three aspects.
First, SAL can deal with issues of a system, especially the real system with a
layered structure. Second, SAL can be used to describe AdaBoosting or co-
training; it does not assume a context of labeled and unlabeled data or weak
classifiers. Third, SAL is application-oriented; we did not yet find a way to
analyze SAL using PAC learnable, but its practical values can be shown in
the experiments.

So far, we defined the basic concepts of SAL, showed some possible tools
in the developing process, illustrated some application domains, and com-
pared it with other approaches. There are many problems remaining. One
problem is that improving a single learner in the system does not guarantee
a better performance of the whole system. Another problem is that the errors
generated by each learner are possibly accumulated in the system which will
cause later mistakes. SAL is very flexible in practice which makes the anal-
ysis, e.g. PAC learnable, very difficult. We expect that the difficulties should
be overcome by designing an evaluation model. However, developing many
models and structures normally requires a lot of time which makes it difficult
to try or prove the concepts in SAL. Nevertheless, we believe the problems
will be met and can be solved on-the-fly.





Part II

Table Soccer
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Outline

In this part, we first introduce the developments of the table soccer robots and
a probability model that can be applied to explain the data of table soccer. This
information is the preliminary of this part. Then, we address the hardware
and software extensions of the table soccer robots which create a platform
for the learning research. Next, we study the conditional random fields in a
simulation in which SAL and CRFs can be combined and CRF queues are
defined. Finally, we discuss the possiblility of explaining the data of table
soccer using CRFs.
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Preliminaries

Table soccer (or foosball) is a popular game in which two teams play against
each other. The first table soccer robot, KiRo, was built in Universtiy of
Freiburg in 2002. It has been a research topic for over ten years [79]. KiRo has
been a very interesting application [56], which was developed to a commer-
cial available product [78] in 2005. There is a series of developments with
KiRo including the vision system [82], action control[89], action selection
[71], and being adaptive to human opponents, etc. [81] [80]. Our research
is motivated by developing KiRo further. The above works are briefly intro-
duced as the basis of the further developments.

Playing table soccer can be described as performing a sequence of ac-
tions, e.g. passing, dribbling, and attacking. Considitional random fields are
a probability model for sequential prediction issues. It was first proposed by
Lafferty et al. in 2001 [45]. There are several ways to obtain the parameters of
CRFs: iterative scaling [45], Quasi-Newton method [32], and stochastic gra-
dient approaches [77]. The features of CRFs can be induced automatically.
McCallum proposed the first feature induction algorithm [53]. Dietterich et
al. employed the boosting framework to solve this problem [27]. Liao et al.
developed the boosting approach further for the feature induction of CRFs
[48]. CRFs, combined with switching attention learning, are employed for
the sequential learning. The basic methods in the context are introduced as
preliminaries.

5.1 Table Soccer Robots

Two teams compete against each other in table soccer games. Each team has 4
game rods: attacker, midfield, defender, and goalkeeper. The playing figures
are fixed on the rods. These rods have respectively 3, 5, 2, and 1 playing
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figures. The ball is moving on a playing surface, which is a field of 1200mm
in length and 680mm in width. There are two goals at the ends of the playing
field. The rods have two degrees of freedom, moving (sliding) and turning.
Each team controls the rods to play the game, attacking the goal of the other
team, and defending their own goal from being attacked.

5.1.1 KiRo

Table soccer robot KiRo can control one side of the game to play with a
human team controlling the other side, as shown in Figure 5.1. A camera is
installed above the playing field. Four control units are mounted on one side
of the table. The camera and the control units are connected to a computer so
that the computer can observe and control the game. In the case of KiRo, the
blue side is controlled by the computer.

Fig. 5.1. Robot KiRo
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Figure 5.2 illustrates the control unit. Two DC motors are used to control
the rod. The first motor is in charge of turning, and the second one is in
charge of sliding. The first motor slides with the rod. The motor is controlled
by a motor controller which provides an interface between the analog motor
and the digital computer. By sending ascii commands via a serial connection
to the controller, the motor can be set to move with a certain speed, move
to a specific position, or hold the position. Motor controller can provide the
encoded position of the motor which is the position or angle of the rod in this
case.

Fig. 5.2. The mechanical system of a game rod [79]

Figure 5.3 shows the view of the overhead camera. In its vision, the play-
ing field is dark green. The field lines and the rods are white. The playing
figures are red or blue. We use a special yellow ball in KiRo so that it can be
easily recognized by color.

A color classification approach is employed for the observation [79]. A
pixel and its neighbors are merged into one region if they have similar values
in RGB color. The white pixels, which are field lines and the rods, should not
change a lot from one snapshot to another. The playing field is located in the
camera view according to the white pixels and the domain knowledge of the
field line. Within the playing field, the yellow region with the closest size to
the ball can be used to estimate the position of the ball.

The color classification algorithm depends strongly on the lighting con-
dition. If KiRo is moved from one place to another, the lighting may change
significantly. This change will affect the recognition of the ball. Solving this
problem requires an adaptive vision of KiRo. Two methods are developed to
automatically adjust the parameters of the color classification algorithm [82],
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Fig. 5.3. The view of overhead camera [82]

so that KiRo can be adaptive to different lighting conditions. The first one
is based on the overall percentage of a particular color in the camera view.
The second one is developed by considering the shape of the scans along the
length direction of the table. The histogram of the YUV values reveals the
lighting conditions.

Fig. 5.4. The strategy of KiRo [79]

The strategy of KiRo in games can be described by a decision tree, shown
in Figure 5.4. When the opponents control the ball, KiRo blocks the possible
attacks according to a static pattern and stays in defense mode. The pattern is
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acquired in the experiments which is very effective for defending. When the
ball is at a kick-able position, KiRo will kick it out. In KiRo, the computer
grabs images from the camera 50 times per second. The motors in the control
units are powerful. Thus, the reaction speed of the system is faster than most
of the human players. This makes KiRo win most of the games against human
players [79].

Kicking all the time is, however, not an interesting strategy. Tacke et al. de-
veloped an action selection algorithm using decision theoretic planning [71].
In this approach, the action selection was done by searching in the possible
future states. These states can be computed online in a simulator. In the ex-
periments it outperformed the decision tree in the simulation. But with the
real table, the decision tree is better.

Another approach for the action selection is based on Markove Decision
Processes (MDPs) [86]. The playing fields are divided into regions. The re-
gions are combined with the playing figures. The states of the MDPs are de-
fined by these regions. A series of actions are hand-coded in which complex
actions such as slide-kick are implemented. MDPs can be learned via rein-
forcement learning. The approach worked well in a simplified scenario with
the real table. However, for the whole game the learning process requires a
number of trials which are too tedious to be finished.

The complex actions, e.g. slide-kick, can also be acquired automatically
by using imitation learning [89]. Both human players and the computer con-
trol the game via turning and moving the game rods. The actions of the human
players can thus be directly mapped to the actions of the robot. An algorithm
is created to clone the actions of human automatically. The “lock” and “slide-
kick” actions can be learned with about 20 trials.

5.1.2 KiSi

KiRo supports physical games. The experiments of some research, e.g. rein-
forcement learning, are not easy to be done in physical games in which the
game cannot be fully controlled. In order to make game fully controllable, we
developed a simulation. The GUI of the simulation is show in Figure 5.5.

The software is constructed using a 3D library which is an implementa-
tion of openGL. A virtual game table is defined as well as the rods, playing
figures, and the ball. They have exactly the same dimensions as the real ones.
The force, e.g. the gravity, collisions and the friction, and the movements are
simulated by using a physical engine – open dynamic engine. The software
provides a virtual environment which is quite similar to that of a real table.
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Fig. 5.5. The simulation of Table Soccer

The program for KiRo in the computer can also control the game in the sim-
ulation.

Fig. 5.6. The toy controller of table soccer

The games in the simulation are fully observable. The computer can ac-
cess and define all data of the game world at any time, e.g. the speed of the
ball, the position of a particular playing figure. The learning can thus be done
automatically. The ball can be reset at the start postion after a trial. The scores
and the behaviors of the players can be recorded. The simulation can also be
used for predicting what will happen in a physical game. For instance, in the
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decision theoretic planning [71], the simulation is used to predict the situation
in the future.

A toy controller is developed for human to control the virtual game, as
shown in Figure 5.6. The controller can be connected to the computer via a
serial or USB connection. Four rods are built in the controller as the human-
computer interface so that the virtual game can also be played by human play-
ers. Consequently, human and computer (robot) can compete against each
other in virtual environments.

5.1.3 Star-Kick

KiRo is the first robot that can play table soccer in competitive level with
human players. In an evaluation, KiRo can win about 75% of all games [79]
which challenges the participants and brings amusement. This potential com-
mercial value first pushed KiRo to a patent [56]. Then, by the cooperation
between the University of Freiburg and Gauselmann AG., it was developed
to the second generation in 2005: Star-Kick [78],

Fig. 5.7. Robot Star-Kick
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Figure 5.7 is a picture of Star-Kick. The company developed it into a game
machine which can stay alone in arcades and provide service by inserting
coins. The improvements are from three aspects: the appearance, the control
system, and the vision system.

Star-Kick has a friendly user interface, as shown in Figure 5.7. The mon-
itor on the top shows the scores and the state of the machine. There are three
buttons in the control panel which provide access to three different game lev-
els and the game tips. The playing field and the game rods are covered by a
piece of glass to prevent the players from being hurt by the playing figures.
The ball can be thrown in from the middle and come out from the left or the
right side of the control panel after a goal.

Fig. 5.8. The Control System of Star-Kick [78]

Figure 5.8 shows the inside of Star-Kick from behind. The four motors at
the upper part control the turning of the rods and the four at the lower part
control the moving. The movements are transferred via the wheel and the rope
which is more accurate and robust than the original slide system in KiRo. By
this design, the control system is finally encased inside the table.

The camera of Star-Kick is also in the body, shooting at a mirror. Fig-
ure 5.9 is an illustration to the vision system. The playing surface is semi-
transparent. Two rows of LED emit infrared ray so that the lower part of the
ball has a higher temperature than other parts in the vision. The camera can
thus observe the lighted up part of the ball through the playing surface. The
estimated position of the ball can thus be calculated according to view of the
camera.
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Fig. 5.9. The vision of Star-Kick

With the improved hardware, Star-Kick, as a product available on the mar-
ket, can win about 90% of the games against human players [78].

5.2 Conditional Random Fields

Labeling sequential data is a chore in many domains. In natural language
processing, a sentence (a sequence of words) needs to be “understood” by a
computer. An important task is to label the phrases with e.g. noun, verb, or
preposition in the sentences, mapping the segments of the words to the labels.
In robotics, agents are equipped with sensors to acquire the measurements of
the surroundings. The task of labeling is to identify the states according to the
temporal sensor data. The states are normally encoded in a vector of variables
with discrete values. Similar applications can be found in image processing
and in computational genetics.

Researchers have developed several approaches for sequential labeling
tasks. Hidden Markov Models (HMMs), for example, is a well-developed
generative model suitable for such a task. The inference of HMMs is based
upon joint probabilities. There is a strong independence assumption in HMMs:
the observations are independent given the label. Although this assumption
can hardly be satisfied in real applications, HMMs have been successfully
applied in many sequential labeling tasks, e.g. in speech recognition [58].

Compared to HMMs, Conditional Random Fields (CRFs) has a shorter
history. It was proposed by Lafferty et al. in 2001 [45] and gained popularity
quickly. CRFs is a discriminative model based on conditioned probabilities.
It has the advantage that the strong independence assumptions are relaxed.
In CRFs, a hidden label is globally conditioned on all the observations in the
sequence. CRFs outperformed HMMs in the experiments on the benchmarks
in natural language processing [45].
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This section is organized as follows. First we introduce the configuration
of the sequential data in subsection 5.2.1. Then the definition of CRFs is given
in 5.2.2. CRFs consists of a set of feature functions F and their weights . We
address how to estimate the weights. Finally, in Section 5.2.3 we explain how
F is iteratively induced.

5.2.1 The sequential Data

A game recorder was developed to record table soccer games of human [88].
The data are collected from 14 sensors which are mounted on a regular game
table. They measure the position and angle of each game rod as well as the
position of the game ball. The Frequency of the recorder is about 200Hz.
The sensor data are transferred to 56 Boolean variables via a discretization
method. The labeling task is to identify the skills of human.

In this work, we define the data by using a typical notation in data classi-
fication. The sequential data has the form (X,Y ) where X is an observation
sequence (B1, B2, ..., BI) and Y is the state sequence. Y = (y1, y2, ..., yI)
where I is the length of the sequence. At each state yi a correspondingBi can
be observed, which is a vector of Boolean variables. Bi = (bi,1, bi,2, ..., bi,C)
where C is the number of the variables. As we mentioned above, C is 56
here.

5.2.2 Training CRFs

Conditional Random Fields is an undirected graphic model in the exponen-
tial family. The clique decomposition of CRFs supports the inference of the
distributes in an arbitrary graph structure. We focus on linear-chain structure
in this dissertation. In CRFs, the probabilities of a sequence of labels Y given
the observations X are defined in the following equation.

p(Y |X) =
exp(

∑I
i=1Θ · F (yi−1, yi, X))

Z(X)
(5.1)

In this equation, F is a vector of feature functions (f1, f2, ..., fK), Θ is a
vector of the weights (θ1, θ2, ..., θK).Θ ·F is the inner product of the vectors.

Θ · F = θ1f1 + θ2f2 + ...+ θKfK (5.2)

exp is the exponential function. Each fk, k ∈ {1, ...,K} is a conjunction
test involving one or more elements in {yi−1, yi} and X . For example, a
feature function fk can be defined as below.
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fk(yi−1, yi, X) =

{
1 if yi = 3 ∧ bi−1,1 = 0 ∧ bi+2,4 = 1
0 otherwise

(5.3)

bo,c denotes a certain observation primitive at yi where o is the position,
c ∈ {1, ..., C}. The value of bo,c is given in the observation X .

The upper part of the fraction in Equation 5.1 is the accumulated Θ · F
along the path Y which can be rewritten as a function of X and Y .

p′(X,Y ) = exp(
I∑
i=1

Θ · F (yi−1, yi, X)); (5.4)

In this equation, yi succeeds yi−1 in the sequence Y . The lower part Z(X)
in Equation 5.1 is a normalization factor. It is the sum of the weighted feature
functions of all the possible permutations of the paths which depends only on
the observation X .

Z(X) =
∑
Y

p′(X,Y ) (5.5)

Lafferty et al. used matrices to compute p(Y |X) [45]. The special start
and stop labels are added to Y which makes the notation of the matrices sim-
pler. Adding these labels increase the estimation of the normalization Z(X)
because more path permutations involving start and stop are taken into con-
sideration. In our implementation, they are removed.

Suppose (X,Y ) is an annotated sequence. For a y in the sequence Y , y
has Y possible values. For each position i > 1 in the sequence, a matrix
Mi(X) of Y×Y is defined. Each cell mi,y′,y in the matrix at the entry (y′, y)
is computed via the following equation.

mi,y′,y(X) = exp(Θ · F (y′, y,X)) (5.6)

We need a Y × 1 end vector Ve of the form (1, 1, ..., 1)> and a 1 × Y
start vector Vs = (v1, v2, ..., vY) where each vj , j ∈ {1, 2, ...,Y} is defined
as follows.

vj(X) = exp(Θ · F (⊥, j,X)) (5.7)

The conditional probability of the annotated sequence (X,Y ) is given in
the following equation.

p(Y |X) =
vy1
∏I
i=2mi,yi−1,yi

Vs
∏I
i=2Mi(X)Ve

(5.8)
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CRFs is usually used to compute the most possible explanation (labels)
of an observation sequence which can be done via Viterbi algorithm and dy-
namic programming.

The parametersΘ of CRFs can be estimated by a training process in which
F is assumed to be known. Given the training data D = (X,Y) where
X = {X1, X2, ..., XN}, and Y = {Y1, Y2, ..., YN}, the training algorithm
maximizes the likelihood of the CRF model.

Θ∗ = argmax
Θ

N∑
n=1

p(Yn|Xn) (5.9)

There are chiefly two types of approaches to train CRFs. One is based
on iterative scaling and Newton’s methods. The other uses stochastic gra-
dient methods. In CRF++ 1, a quasi-Newton approach using Limited mem-
ory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) update was implemented.
We choose the stochastic gradient approach [77] in our implementation. For
θk ∈ Θ, the gain g(θk) can be estimated as follows.

g(θk) =
θk
δ2
−

Nb∑
n=1

In∑
i=1

(fk(yi−1, yi, Xn)− EΘfk) (5.10)

In Equation 5.10, δ is a constant that defines the covariance of the Gaus-
sian prior over θk. To simplify the presentation, we denote EΘfk(yi−1, yi, Xn)
as EΘfk. In order to accelerate the training process, the training data is di-
vided into a number of batches. g(θk) is computed by processing one batch
in one iteration and switching to another in the next iteration. Each batch
consists of Nb sequences, normally Nb � N .

∑Nb
n=1

∑In
i=1 fk(yi−1, yi, Xn)

is the feature count that fk is activated in the batch. EΘfk is the expected
feature (fk) count which is calculated by using CRFs with the parameter Θ
at the position i in the sequence n.

EΘfk = p′′(yi−1, yi|Xn, Θ)fk(yi−1, yi, Xn) (5.11)

In Equation 5.11, p′′(yi−1, yi|Xn, Θ) can be calculated by a forward and
backward method mentioned in [45]. The idea is to inference in CRFs using
Equation 5.1 to calculate the accumulated distribution of all possible paths
that pass {yi−1, yi}.

The forward vector is initialized to α0 = Vs. It can be inferenced in below.

1 An open source CRF toolkit at http://crfpp.sourceforge.net/
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αi(X) = αi−1(X)Mi(X) (5.12)

The backward vector is initialized to βI+1 = Ve, and can be inferenced
by the following equation.

βi(X) =Mi(X)βi+1(X) (5.13)

With the definitions of the forward and backward vectors,

p′′(yi−1, yi|Xn, Θ) =
αi−2mi,yi−1,yiβi

ZΘ(Xn)
(5.14)

The parameter vector Θ can be iteratively updated by moving a small
step s along the directions given by the gains which can be calculated via
Equation 5.10. ZΘ(Xn) is calculated via Equation 5.5 by appling Θ to CRFs.
Viswanathan et al. developed a Stochastic Meta Descent (SMD) method [77]
in which the step value s is updated iteratively as a diagonal conditioner. In
addition to the gain (first order derivative), this method requires computing
the Hessian (second order derivative) of the target distribution. A Hessian
vector product is computed to avoid the difficulties of directly computing
Hessian. We repeat the method in the following equations where t is the iter-
ation counter.

θk,t+1 = θk,t − sk,tg(θk,t) (5.15)

sk,t+1 = sk,t −max(
1

2
, 1− µg(θk,t+1)vk,t+1) (5.16)

vk,t+1 = λvk,t − sk,t(g(θk,t+1) + λHk,tvk,t) (5.17)

In Equation 5.16 and 5.17, λ and µ are two scalars chosen according to the
training problem. The Hessian vector product Hk,tvk,t can be approximated
as follows.

Hk,tvk,t =
g(θk,t + εvk,t)− g(θk,t)

ε
(5.18)

For the detail about the SMD algorithm, please refer to [77].
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5.2.3 Feature Induction of CRFs

Feature induction of CRFs was first introduced by Mc- Callum in 2003 [53].
As training CRFs requires considerable computational power, the induction
is mainly about how to define some more efficient evaluations for incremen-
tally inducing the feature functions of CRFs. The method of McCallum was
experimented on name entity recognition and noun phrases segmentation. It
resulted in comparable prediction accuracy to the approaches other than CRFs
[53]. There are a few further works on the topic. In 2006, Dietterich et al.
embodied the boosting algorithm for simultaneously inducing features and
training CRFs [27]. In 2007, Liao et el. developed the boosting approach fur-
ther by integrating the belief propagation [48]. All these works experimented
on the same synthetic data which served as a testbed for the comparison.

Feature induction is a difficult problem because training CRFs requires
considerable computational power. But it is the most accurate way to evalu-
ate the induced feature set. The number of candidates that can be included in
the feature functions grows exponentially by several degrees: the number of
atomic elements in the observations, the number of conjunctions in a feature
function, and the number of feature functions in the CRF model. Therefore, in
order to develop an effective feature induction algorithm, one or more layers
of the efficient evaluations need to be established between the raw observa-
tions X and the final CRFs.

In McCallum’s approach, there are mainly three layers of the evaluations
[53] shown as three rectangles in the center of Figure 5.10. From top to bot-
tom, each step to the lower layer requires more computational power of sev-
eral levels of significance. Therefore, the amount of the candidates that each
layer can process decreases significantly.

In observation test, the misclassified nodes are used to compute the can-
didates. This is achieved by simply counting: the more frequent a feature
appears in the misclassified nodes, the better the chance that the feature can
be added to the candidates. In candidate evaluation, each candidate is eval-
uated by measuring how much it can increase the gain G(fK+1), which can
be calculated by the following equation.

G(fK+1) = max
θK+1

N∑
n=1

(pfK+1
(Yn|Xn)− p(Yn|Xn)) (5.19)

In Equation 5.19, p is from the current CRFs with feature functions
{f1, f2, ..., fK} and parameters Θ = {θ1, θ2, ..., θK}. Based on p, pfK+1

is
from the CRFs that includes an extra candidate fK+1. Its weight θK+1 can
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Fig. 5.10. The Feature Induction of CRFs

be calculated by fixing Θ so that the evaluation can be done much faster than
training the whole CRFs. Normally, θK+1 can be calculated by a few itera-
tions of quasi-Newton method.

A few candidates with the highest evaluations can be merged with the
original set of feature functions. In CRFs training, all the parameters are up-
dated for the new feature function set. The resulted CRFs is used to compute
the misclassified nodes which can start another iteration at observation test.

In summary, the definition, the training, and the feature induction of the
CRFs are addressed as the preliminaries in this section. We will explain our
own feature induction method in Chapter 7.
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Observing Human Behaviors in Table Soccer

Playing table soccer requires fast reaction, accurate movements, and skill-
ful actions. Starting from the initial situation with a stationary ball, profes-
sional players can perform the complex action sequence “slide-kick”, which
includes a “pass” and a “kick” to attack the goal, within 0.3 seconds, ending
with the ball in the goal. The ball can easily reach a speed of 10m/s in the
game.

Our robot KiRo can play one side of a table soccer game autonomously.
Cooperating with a company, we developed KiRo further [56]. A commercial
product called StarKick [78] was developed in 2005 which can win 90% of all
the games against average human players. However, StarKick is completely
reactive lacking any level of sophistication.

In order to act against human actions, as well as to attack the weakness
of human players, we designed mechanisms for recording and segmenting
games played by human players.

In Section 6.1, the construction of a table soccer game recorder is sketched.
A practical and easy approach is implemented to obtain accurate measure-
ments with high frequency from a game table. Based on that, we describe
a finite state machine which we use to segment the recorded data. The ap-
proach that explores the properties of the recorded data can be implemented.
We show in a small experiment that this approach works reasonably, but it
has some limitations.

In Section 6.2, the issues of tracking the game ball are addressed. Several
models and learners are developed to work together in the SAL framework. In
the experiments, the tracking tasks were successfully achieved and the results
are satisfying.
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6.1 A Table Soccer Game Recorder: KiRe

Recording table-soccer games requires measurements of the angle and posi-
tion of the game rods and estimations of the position of the ball. An overhead
camera is used in KiRo to observe the ball with a frame rate of 50Hz [79].
Eight DC motors are used to control four game rods on one side in KiRo. The
positions and the angles of the computer controlled rods are provided by the
motor encoders. The angles and positions of the rods controlled by the human
player are only very crudely estimated using the camera. The existing system
can be used for recording, however, the accuracy of the sensors, the speed of
the movements, and the required processing power are challenging. And ball
detection is hard if it is hidden from the camera. For example, if we want to
use the overhead camera to record the “slide-kick” action sequence which is
mentioned in the beginning, there are only 6 frames recorded for this action
sequence. It is very hard to either imitate or explain the action sequence based
on these recorded frames [89].

6.1.1 Observing the Game Ball

We use a laser range finder to estimate the position of the ball. As it is very
expensive to build sensors and mechanical parts from scratch, our recorder
is mainly made from parts available on the market. Thus, our game recorder
balances cost and quality.

Fig. 6.1. Laser Measurement System

As the basis of our development, a game table was purchased. We have
chosen the SICK LMS400 laser scanner for observing the ball. It has a frame
rate of 350Hz and an angular resolution of 0.25 degrees which means that the
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data is much better than that of an ordinary camera. As there is a gap of 12mm
between the playing surface and the end of a playing figure, and the valid
range of the sensor is from 700mm to 3000mm, we set LMS400 behind the
goal of the game table so that the laser beam can go through the gap, shot on
the lower part of the ball without any disturbance from the playing figures.
Figure 6.1 illustrates how the laser measurement system works.

Fig. 6.2. Measuring by One LMS

As mentioned before, one LMS cannot cover the whole playing surface
because of its valid measurement range as shown in Figure 6.2. In order to
cover the whole surface, we set up the second LMS as illustrated in figure
6.3. The two LMSs can cover the whole playing surface. And they are syn-
chronized to avoid interference with each other.

Fig. 6.3. Measuring by Two LMSs

We implemented a calibration program which created a two dimensional
coordinate system linked to the playing surface. Consequently, the raw sen-
sor data can be transferred to the coordinates. As explained before, the laser
beam of LMS400 is reflected by the lower part of the ball. The walls around
the playing field form the “background” for the laser beam. The information
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(a)Project the Points to Different Lines (b)Green

(c)Blue (d)Purple

(e) The Calibrated Field

Fig. 6.4. The Calibration of the LMS on the Game Field

about the ball position can be estimated by removing the background from
the raw sensor data. And the coordinates can be calculated by measuring the
distance between the ball and the boundaries. The calibration process for the
LMS400 detects the boundaries and the background which are the border
lines matching the data points of LMS400. An algorithm was implemented
to project all data points onto a line. If the line is perpendicular to the target
boundaries, there should be a peak of projected data points for each boundary.
The calibration algorithm thus searches for a line which leads to the highest
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peak of the projected data points. Figure 6.4 shows the three “horizontal” ines
and the prejections on them.

The Tray of LMS (Design) The Tray of LMS

Fig. 6.5. The Designs and the Real Frame for Supporting LMS

The mechanical frame supporting LMS were developed by using Solide-
Works – a Computer Aided Design and Manuafacture (CAD/CAM) software.
Figure 6.5 shows the designed frame and the implemented frame. We created
a net in front of the LMS to protect the opening of the laser from being broken
by the game ball.

6.1.2 Observing the Game Rods

A rotary encoder and a distance sensor are to estimate the movement of each
rod. The linear position of a game rod is estimated by a SICK DT20. It is an
optical distance sensor which has an accuracy of 1.5mm and it can measure
the distance without any physical contact to the target. A rotary encoder is
used to observe the turning of the rod. It is a magnetic turning encoder which
can measure the orientation of the magnetic stick without touching it. A slide-
joint unit is installed between the game rod and the rotary encoder. Thus the
game rod can be moved as usual along the length direction while the turning
is transferred to the rotary encoder

The mechanical units supporting the sensors were also developed using
SolideWorks. There are mainly three challenges: the rods can be moved and
turned at the same time; the measuring system should not affect the feeling
of playing games; the space for the measuring systems is very limited. Figure
6.6 shows the implemented recording system. The left column of the figures
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The Turning Encoder (Design) The Turning Encoder

The Frame of Star-Kick (Design) The Frame of Star-Kick

Fig. 6.6. The Designs and the Real Measurement Systems

are the designs in the software and the right column shows the picutures of
the real system.

Calibrating the distance sensor is simple. The maximum and minimum
data points were recorded by moving the game rod to each end manually.
The position of the rod was calculated by a linear function. Similar to the
calibration of the distance sensor, the game rod was set upright manually.
This position was recorded as zero in the sensor data. The rod angle was
calculated relative to this position later.

We installed the distance sensors and rotary encoders on the attackers de-
fenders and goalkeepers. The accuracy of the data was checked by putting
the ball at several specific points on the playing surface and observing the
relative position of the ball and the game rods. The specific points can be the
center point or the corners of the field lines. The sensor data was visualized
on a screen to match the physical situation. A sequence of actions including
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several dribble and slide-kick actions was recorded and saved as a log file.
The sequence lasted for 46.62 seconds. There were 13004 ball position esti-
mations, 13644 rod positions and 9816 rod angle estimations. Thus the frame
rate was more than 210Hz.

6.1.3 Segmenting the Recorded Games

An intuitive approach using finite state machines was implemented to seg-
ment the recorded data. A small experiment was done in order to investigate
the properties of the recorded data and set a base line for further experiments.

When a human is playing table soccer, the intentions are typically “stop-
ping”, “dribbling”, and “attacking”. “Stopping” means getting control of the
ball. “Dribbling” is a preparation for “attacking” during which the ball is
passed to a comfortable position which is always the start point of an “at-
tacking”. “Attacking” contains a sequence of action, such as a “slide-kick”,
ending at kicking the ball towards the goal. In this dissertation, the tasks of
segmentation is defined as segmenting the recorded sensor data according to
the three intentions defined above.

There are several challenges in segmentation. Firstly, we need a bridge
between the inputs and the outputs. The input of the segmenting system is
a sequence of coordinates and angles with time-stamps. The output labels,
“stopping”, “dribbling”, and “attacking” are abstract symbolic data. Sec-
ondly, the segmentation should balance efficiency and quality. The sensors
provide high-frequency data with noises. The segmentation should work in an
on-line manner, being tolerant to noise. Creating a data set which is sufficient
for training the target model, is another challenge. Training a segmentation
model normally requires a training set to help a machine learning algorithm
to adjust the parameters of a model automatically.

Many machine learning algorithms are based on features with discrete
values. Our basic idea is to transform the recorded coordinates and angles
to a set of discrete features. A figure who is controlling the ball or is go-
ing to control the ball is defined as “active”. The spatial relations between
the game ball and the active figure are the most important feature in our
implementation. 13 relations are defined here. They are left-align, right-
align, forward-align, backward-align, left-touch, right-touch, forward-touch,
backward-touch, positive-lock, negative-lock, left-detach, right-detach, and
irrelevant. Figure 6.7 shows the first eight of these relationships. If the ball
and the active figure are not aligned in any direction, the situation is consid-
ered as “detach”. If the ball is on the left of the active figure, it is Left-detach.
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left-aligned right-aligned forward-aligned backward-aligned

left-touched right-touched forward-touched backward-touched

Positively Locked Negatively Locked

Fig. 6.7. The Spatial Relations of the Ball and the Figure

Otherwise it is right-detach. Irrelevant means the ball is not within the control
range of the active figure.

So far, an action sequence can be transformed into a sequence of states.
We merge the successive data-slices together if they have the same spatial-
relation value. For example a “slide-kick” action could start at positive-
locked, through pass left-detached, left-aligned, left-detached, forward-aligned,
forward-touched, and finally end at forward-aligned. Each relation mentioned
here could include several data-slices. And extra features such as start and end
time-points are added to create a “state”. Based on the states, a set of finite
state automatons were constructed. Each of them can recognize one of the fol-
lowing primitive actions: “active-rod changed”, “stop”, “touch”, and “kick”.
Active-rod change is the situation where the ball moves from one game rod
to another. Stop means the ball is either locked or still for a short time pe-
riod. Touch and kick are the actions where the ball is either side-touched or
kicked by the active figure. We added some limitations on the duration of a
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primitive action which reduced the noise and got rid of actions that were very
slow. Based on the ability to recognize primitive actions, the segmentation
was finally implemented according to the following rules. Stopping starts at
an active-rod changed and ends at a stop. Dribbling contains two or more suc-
ceeded stop. Attacking starts at a stop, pass a kick, and end at an active rod
change.

The experiments were based on the mentioned log file. We run the algo-
rithm to segment the log data into target action sequences. The segmented
data were replayed and checked manually. No any sequence was missed and
no any unwanted sequence was added in the result. The computer used for
this caculation has a 3.2GHz CPU and 1G memory. The log file was played
at its real speed. The algorithm finished the tasks as soon as the log playing
stopped. The CPU monitor did not show any processing pressure during the
process.

6.1.4 The Software Architecture

Fig. 6.8. The System Components

There are mainly eight components in KiRe. Figure 6.8 shows the system
architecture. The components can be connected with each other via Ether-
net. They can either run as independent processes in one computer or be dis-
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tributed in several computers. This architecture has the advantage to isolate
the problems. For example, displaying and world model are two components
that can be connected with each other. In case “world model” has a problem,
we can simply run the minimum components to debug the problem. In ad-
dition, the further developments can be easily integrated into the system by
adding more components.

The components and their functionalitis are given in the following list.

• Sensors: The program which can read and write the real sensors.
• Recorder: The program that saves the sensor data into hard disk.
• Log files: the recorded data.
• World model: the table soccer “world” observed by the computer.
• Log reader: the reader that can read and replay the log files.
• Referee: an application to detect the rule violation automatically.
• 3D GUI: the graphic user interface showing the table soccer game in 3D.
• Sequence learning: the learning algorithms for table soccer.

6.1.5 Discussion

Our segmenting algorithm uses a layered structure to build a bridge between
the low-level sensor data to high-level action sequence labels. The noise is
filtered out by using domain knowledge which is mainly expressed as the
spatial relations and the duration of the actions. Although the segmentation
works fine with the log file, it still has some limitations. The algorithm which
maps continuous coordinates and angles to spatial relations has “value oscil-
lating” problems near boundaries. Many parameters were defined manually
which made the algorithm hard to maintain. It is not easy to extend the ap-
proach for other interesting applications such as an on-line prediction.

The slolution would be to remove the thresholds and boundaries using
probability models. Hidden Markov Models (HMMs) could be one of the
solutions. HMMs are based on Markov chains and statistics [7]. They were
first successfully used in speech recognition [5] and became wide spread in
many domains. For example, HMMs can be used to model DNA sequences
in bio-informatics [44]. They are employed to describe the return series in
finance [60] and they can also help to navigate a robot [67].

As the existing learning algorithms for HMMs search for a local maxi-
mum of the likelihood, it would be interesting to try and compare the follow-
ing two approaches using HMMs in the context of our research. On one hand,
the approach using a fully automated method [33] could be implemented. On
the other hand, HMMs are constructed by using known information as much
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as possible. In this approach, the states of HMMs can be defined using the
described spatial relations. Based on the knowledge of the existing transi-
tion models [58], we could choose a left-right model in our implementation.
The observations are with continuous values. The probability distributions of
the HMMs can be initialized by some supervised learning approaches. The
states could be refined using Viterbi algorithm. And finally the Baum-Welch
algorithm can be used to enforce convergence of the parameters.

6.2 Tracking the Game Ball in Table Soccer Using Switching
Attention Learning

KiRe is a table soccer game recorder. It provides a way to record human-
played games [88]. In KiRe, the position of the ball is measured by a laser
measurement system (SICK LMS400) as illustrated in Figure 6.1. We in-
stalled the LMS behind the goal of the game table. The laser beam goes
through the gap and targets at the lower part of the ball. The receiver at the
upper part of the opening on the LMS receives the reflected signals. The open-
ing angle of the laser beam is 70◦, and the valid measurement range of the
LMS is from 700mm to 3000mm. Each data slice contains 280 measure-
ments of distance and angle evenly distributed over the open angle. Figure
6.2 shows the bird-view of the game field. With one LMS, the field is divided
into three different regions. Two corners in the left side are outside the view
of the laser. The measurements are invalid in the grey fan region. The remain-
ing dark grey region is within the valid range of the LMS, covering the right
half of the field. By removing the background from the laser view, we can
compute the position of the ball.

In order to measure the whole field, we mounted two LMSs symmetrically
in KiRe. These two LMSs communicate via Ethernet, which synchronizes
their laser scans. Figure 6.3 shows the different regions in this situation. In
Table 6.1, we list the types of the regions and the information for locating the
ball. When the ball is in the grey regions, one of the LMSs gets the invalid
distances at the laser spots on the ball. However, the angle of these invalid data
still provide information about the position of the ball. Therefore, we can still
fuse the measurements from two LMSs to compute the intended position.

The LMSs scan the field with a frequency of 350Hz. With two LMSs
synchronized, the computer needs to process 700 data frames per second. We
recorded a segment of data in about 5 seconds during which a human player
dribbles and kicks the ball. Figure 6.9 shows the recorded data. The horizontal
axis shows the time in million seconds. The vertical axis shows the position
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Color Description
Dark Grey Both LMSs have valid measurements

Grey One LMS is valid, the other is invalid
White One LMS is valid, the region is out of

the other’s view.

Table 6.1. Regions and Their Information

in million meters. The x and y positions are shown in separate plots. There
are several possible positions in a single data slice because of the noise. Thus
we got more than 7000 points all together.

(a) X Positions (b) Y Positions

Fig. 6.9. Raw Data from the Sensors

The raw data is very noisy which makes the tracking task very challeng-
ing. Below we list the main difficulties.

• When two LMSs are face to face, they interfere with each other even if
they are synchronized. The laser beam of one LMS is reflected by the
mirror of the other.

• The game figures, which are moved and turned constantly, disturb the
reception of the laser signals.

• When the ball jumps, it cannot be observed by the LMSs
• We do not use a real-time operating system. There are some processing

gaps of about 80ms in the data.

We developed a ball module using SAL for the tracking task as shown in
Figure 6.10. There are three models in the module. A sensor model is con-
structed for filtering the noise. A point in a data slice is classified as valid or
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noise. The noise will be discarded. Each data slice contains one valid point at
most. A segment model is developed for segmenting the data sequence into
much smaller parts. In each segment, the ball is assumed to have constant ac-
celeration and movement direction. A set of Kalman filters are implemented
to smooth the data within a segment. The raw data is processed first by the
sensor model. The sequence of the valid points is forwarded to the segment
model. When a new segment is detected, the Kalman filters are reset so that
they can adjust to the sudden changes in the movement of the ball.

Fig. 6.10. The Ball Model

6.2.1 The Sensor Model

An approach based on decision tree is implemented in the sensor model for
the classification. Clusters are constructed according to the dynamic updates
of the data sequence. In each cluster, the data points are close to each other.
With the help of the clusters, the decision tree can be constructed based on
Boolean attributes which can be obtained by answering the listed questions.

• Is the data point supported by both LMSs? The point is called a full-belief
point in the true case.

• Does the data point belong to a cluster which has the maximum point
number among all the clusters?

• Does the data point belong to a cluster which contains full-belief points?
• Is the point in a region where the noise points are detected with high prob-

ability? The four corners are this kind of region because each corner can
be observed by only one LMS.

• Does the point belong to a cluster which is updated very often?
• Does the point belong to a newly-created cluster?
• Will the point generate high innovation if it is used to update the Kalman

filters?
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6.2.2 Kalman Filters and Segmentation

The data from LMSs is a distance-angle pair. We need to transform them
to (x, y) position. Because of the transformation, extended KFs should be
employed for the tracking. However, we choose discrete KFs. Discrete KFs
save computational power significantly, when they are used separately for x
and y. And they do not perform worse than extended KFs in the experiments.
The discrete KFs are updated according to the time and measurement update
functions which are already standard [84]. We skip them here.

By considering the position, velocity and acceleration, we implemented
an approach using triple-integrator KFs which is widely used and has excel-
lent performance in many applications [8]. Here we only explain it briefly.
Equation 6.1 defines the vector of x, where vx is the velocity along x direc-
tion, ax is the acceleration. The update of X is governed by Equation 6.2,
where Ax is defined in Equation 6.3. ∆t is the time span since last data slice.
The process noise wk is defined in Equation 6.4, whereQmatrix can be com-
puted dynamically by Equation 6.5. The belief factor b can be adjusted to
trade-off the prediction and the measurement.

X =
(
x vx ax

)T (6.1)

Xk = AxXk−1 + wk−1 (6.2)

Ax =

1 ∆t 1
2∆t

2

0 1 ∆t
0 0 1

 (6.3)

p(w) ∼ N(0, Q) (6.4)
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 (6.5)

6.2.3 The Evaluation Model

The ball module has the functionality of classifying, segmenting, and smooth-
ing the data sequence. These functionalities are based on the data from the
past. From another point of view, we can evaluate the performance of the ball
module without any temporal limitation. For example, both the data from the
past and the data from the future can be used for classifying the current point.
According to this principle, we implement an evaluation model which follows
three rules listed below.
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• A valid data segment should contain at least three full-belief points.
• A point belongs to a data segment if its distance to the closest point in the

segment is within 3mm.
• The more points are included, the better the performance the system gets.

6.2.4 The Active Elements and the Learners

Fig. 6.11. The Active Elements

With the help of the evaluation model, we can develop several learners to
improve the performance of the system. As the medium for the improvement,
four active elements are found. They are shown in Figure 6.11. Decision tree
is used for the classification in the sensor model. Segment thresholds are
time and innovation. Belief factor trades off the prediction and measurements
in triple-integrator KFs. This factor affects the innovation threshold used in
the segment model, which will reset KFs when a data point generates a high-
grade innovation. Training set can be regarded as the results of the evalua-
tion. Each example in the set contains seven attributes and a class label. The
attributes are provided by the sensor model. The class label comes from the
evaluation. Four learners are implemented to learn the active elements from
the data. The learning tasks are listed as below.

1. Learning the training set from the output of the ball module
2. Learning the decision tree from the training set
3. Learning the segmentation thresholds by maximizing the point number in

the output of the ball module.
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4. Learning the belief factor by minimizing the average innovation of the
KFs

As there are not so many learners, we developed a simple attention model
in which each iteration has seven steps: E, 1, 2, E, 3, E, 4. In an E step, the
performance of the system is evaluated.

6.2.5 The Experiments

We use the recorded data shown in Figure 6.9 for offline learning. The im-
plemented SAL system is run on the data for six iterations. The results are
shown in Figure 6.12. The first row is the valid trajectory of the ball which is
obtained manually. The second row shows the output of the learned system.
Although there are a few noise-points left in the trajectory, the results are sat-
isfying. This noise remains because the decision tree does not have enough
attributes to classify them apart from the valid points. The third row shows
the improvements over the iterations. In this figure, the horizontal axis shows
the number of the E steps performed. The solid curve shows the changes of
the output number of the ball module. The doted line shows the changes of
the valid point number in the evaluation. After about six E steps, which are
two iterations, the learning converges to the satisfying results. The learning
curves indicate that a better ball module enlarges the ability of the evaluation,
while a better evaluation improves the ball module.

The trained system is tested in an online manner. We found that the ball
could be tracked in real-time and its trajectory was smooth enough. A seg-
ment of data is illustrated in the first row of Figure 6.13. The output of the
system is shown in the second row. In the figure, the ball is lost when it is in
one of the corners, because the corners are regarded as noisy regions which
are not important for the game. Therefore we can conclude that the trained
system stays stable on the unknown data.

6.2.6 Discussion

The first application of SAL was implemented to track the game ball in table
soccer. There are four active elements in the application, a decision tree for
classification, the training set for building the decision tree, the belief factors
for KFs, and the thresholds for segmentation. We developed four learners for
these elements and implemented an attention model for the iterations over
these learners. The experiments showed that the application was successful.
The intended improvement space was generated by the learners in the system
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X Position Y Position

Fig. 6.12. Offline Learning
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X Position y Position

Fig. 6.13. The Selected Data Segment in Online Testing
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Constructing Conditional Random Fields Using
Switching Attention Learning

Our research in CRFs was originally motivated by the explanation of the data
of table soccer games. The sequential game data is made available via a game
recorder [88]. The labels are the actions of human players e.g. lock, attack,
block, pass, and dribble. These data considerablly differ from the synthetic
data. At each time slice, the measurements are encoded in a vector of Boolean
variables. Each skill of human players consists of hundreds of such time
slices. The annotation of the data is very exhausting. We have spent about
80 hours annotating 200 sequences, which are much too little for the feature
induction and the supervised learning of CRFs. This difficulty motivated the
idea of the simulation.

A sequence generator was built to create data sequences, and to label them
automatically, simulating the data of the table soccer games. The core idea is
to create the first CRFs, with the feature functions and the parameters gen-
erated randomly. Then, the second CRFs can be obtained from the feature
induction methods as mentioned above. The first CRFs can thus provide the
information to estimate the second one and the induction algorithm. This ap-
proach creates an extra phase to explore several basic properties of the feature
induction of linear-chain CRFs. Consequently, it fosters several further devel-
opments. The highlights of this work are summarized as follows:

• We list our observations to describe the feature induction issues, which
are hard to outline without a simulation.

• We integrate a novel reduction step in the induction, which can keep the
accuracy of the prediction and decrease the number of feature functions,
thus making the learning more efficient.

• We develop a method to train a queue of CRF models from the data. CRF
queues guarantees a no worse prediction accuracy than the single CRFs. It
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outperformed the single ones on the data sets in all the configurations. To
the best of our knowledge, we are the first who propose the idea of CRF
queues.

7.1 Related Works

Variable and feature selection is a well-developed research area. Guyon sum-
marized the issues and the main approaches in the area in 2003 [37]. If we
put the specific CRFs problem into a more general context, many ideas and
methods can be used. For example, feature reduction is widely employed in
this area. To our knowledge, it is not yet applied to CRFs.

We found only a few works about feature induction of CRFs. Chen et al.
compared a gradient based approach [22] to the McCallum method [53]. Both
approaches use the framework shown in Figure 1. In candidate evaluation, the
gradient based approach searches for the candidates that make the objective
function decrease fastest. Instead of simply counting in the observation test,
some researchers integrated the boosting method [27], [48]. The approaches
in this direction can simultaneously induce features and train CRFs, which
have the more compact model, and therefore being efficient in the computa-
tion.

Our implementation is based on a CRF training algorithm - Stochastic
Meta Descent (SMD) [77], and the feature induction framework by McCal-
lum. The experiment platform was implemented according to the descriptions
in the publications. We did not use any existing source code from the authors
or the open source toolkit via Internet. The main reason is that the sequential
data in this work are very different from the data in the synthetic benchmarks.
In addition, building a platform from scratch creates more chances to find
unique and novel ideas.

We survey the feature induction approaches [53], [27], [48], [22]. These
methods were estimated in real applications. A simulation was developed to
gain a new phase for the estimation. The induced features can therefore be
compared with the target features in the simulation. In addition, all these ap-
proaches monotonically increase the number of feature functions. The reduc-
tion step is novel in CRFs. Finally, instead of learning a single CRFs, a queue
of CRF models can be built. We have not yet found any other approach in the
area of CRFs similar to ours.
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7.2 A Simulation and the Trained CRFs

There are two parts in this section. The first part introduces the construction
of the simulation. The second discusses the basic properties of the trained
CRFs.

7.2.1 The Simulation

Our research is based on the configuration of the data considerably different
from the data in the benchmarks. The synthetic data are a set of sentences.
In the context of CRFs, the atomic variables of these data are the vocabulary
which consists of thousands of words. In the simulation, a vector of Boolean
variables B = {b1, b2, ..., bC} is observed at each time slice. A data sequence
consists of a number of such observations. There are onlyC atomic variables,
which are far fewer than the number of words in the vocabulary. These atomic
variables, nevertheless, appear very frequently (at each time slice) in the se-
quences. Labeling (by hand) such a data sequence is very time consuming,
even if it is done using a software tool in which the data can be annotated by
mouse clicks. Therefore, a sequence generator is developed in this work.

A CRF model describes a stochastic process, which reveals the relations
among the observations and the hidden labels. In the training process, the
success of the CRFs hints that the acquired stochastic process matches the
patterns in the data. First the training data are avaiable, then the CRFs is
trained from them. The idea of the simulation goes the retrograde way. First
a CRFs is generated, then it can be used to compute the hidden labels of
any randomly generated observations. The following is the assumption which
bridges the simulation and the simulated process.

• The stochastic processes in the target system can be described as a
CRF model.

The simulation is shown as the upper row of the boxes in Figure 7.1.
There are mainly two algorithms. A CRF model is generated by the model
generator. The model is used in sequence generator for computing the most
probable explanation of randomly generatedX , the data are divided into a test
set and a train set. The simulation can be configured mainly by the variables
listed below:

• Cx, the number of atomic Boolean variables.
• Cy, the number of labels.
• Θ, the parameters of the CRFs
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Fig. 7.1. Generated and trained CRFs share the feature functions

• F , the feature functions of the CRFs.
– Cf , the number of feature functions.
– Cc, the maximum conjunctions of each feature function.
– Co, the maximum offset of the atomic feature.

• Cl, the length of the sequences.

CRFs consists of a set of parameters Θ, and a set of feature functions
F . Cx and Cy can be use to configure the difficulties of the problem. For
example, the identification of 2 labels by observing the sequences of 200
Boolean variables should not be as difficult as the identification of 200 labels
by observing 2 Boolean variables.

In order to prevent a too huge Z(X), θk ∈ R is drawn evenly from
[0.0, 5.0]. We do not consider the negative value of a parameter because it
causes the corresponding feature function to be hardly observed from the
data. In the observation test, it would be interesting to consider a feature that
can hardly be observed in the sequences. We have implemented the idea, but
it turned out to be not very effective because the inducing and training algo-
rithm is based on maximum likelihood.

Cf , Cc, and Co define the feature functions. All the numbers required by
the feature functions are drawn evenly from the defined ranges, e.g. yi−1, yi
in [0, Cy), an atomic observation bi, where i is in [0, Cx), the value Vi of bi,
and an offset value oi in [−Co, Co].

Cl can affect the accuracy of the model because we consider the rate of
the correct sequences as the estimation of the learned CRFs. The longer the
sequence is, the more possible that the sequence is mislabeled. A sequence
will be regarded as being mislabeled, if a node in the sequence has a wrong
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Table 7.1. The Configurations of the Simulation

index Descriptions Configurations

S1 single and isolated Cc = 1, each bi appears maximum
once in F

S2 single and conjunct Cc = 4, each (bi, oi) appears maxi-
mum once in F

S3 Boolean and iso-
lated

Cc = 1, each (bi, Vi) appears maxi-
mum once in F

S4 Boolean and con-
junct

Cc = 4, each (bi, Vi, oi) appears
maximum once in F

S5 high overlapped Cc = 4, Cx = 10, no extra check

label. This estimation is stricter than considering only the accuracy of the
nodes. We use it because in some applications the sequences of the labels
need to be further classified. The whole sequence is considered to be wrong
if there is a single lable in the sequence is misclassified.

The simulation provides a platform for studying a wide range of CRFs.
After we exploring on different situations, 5 configurations are carefully cho-
sen, which are challenging for the induction issues, being not too hard or too
easy. The configurations are designed for the comparisons of the different
levels of the conjunctions and the inter-dependencies.

The parameters are set to the following values by default. Cx = 20, Cy =
5, Cf = 13, Cc = 4, Co = 3, Cl is evenly drawn from {5, 6, 7}. In each
configuration, a few changes are applied, as listed in table 7.1. In the table,
“single” means the atomic feature bi appears a maximum of once. “Conjunct”
means Cc = 4. “S5” has a high-overlapped F because Cx is decreased to 10
in this configuration, so that 13 feature functions contain 13 to 52 atomic
features.

In the experiments, we found that the generated CRFs can be trapped,
which hints that the predicted labels exclude some values of Y . In order to
avoid this situation, we add one more rule in the sequence generator: the
CRFs is not valid if the generated sequences exclude some values of Y .

The simulation was run to create the following data: 100 data sets for each
configuration Si. Each set contains a training set of 1000 sequences, and a test
set of 500 sequences.
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7.2.2 The Trained CRFs

The experiments are based on 8 computers, each with 8 AMD cores at
2.3GHz and 32G memory. These CPUs are driven by a grid system, on
which 64 tasks can be run in parallel. The experiments described in this paper
altogether took about 14 days in the grid system.

In the first experiment, we assume F is known. Figure 7.1 shows the sce-
nario. The training algorithm (SMD) was run for maximum 10000 iterations
(batches) on each data set, so that the resulted CRFs are well-trained. The
trained model and the simulated model are compared in three aspects. The
results are shown in Figure 7.2
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Fig. 7.2. A comparison between the trained model and the simulated Model

The trained models are evaluated on the test sets. The correct sequence
probability is the value of p(Y |X), where the Y is a correct label sequence.
We denote it as pr. The wrong probability pw is defined in the similar way.
The prediction accuracy is the rate of the correct sequences. The values in the
figure are the average values over all 500 models and the data sets.

The accuracy of the simulated models is 100% because they are used to
generate the evaluation data. With the shared feature functions, the average
accuracy of the trained models is more than 90%. The trained model has a
pr significantly higher than its pw and the pr of the simulated models. We
summarize the observations as follows:

• The simulated CRFs cannot be cloned via supervised learning.
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• With the shared feature function, the trained CRFs can achieve an average
accuracy of about 90%.

We created five different configurations {S1, S2, ..., S5} for the simu-
lated model. The detailed information on the trained models over these con-
figurations are shown in Figure 7.3. We inspect the prediction accuracy of
the trained models. By using each configuration, 100 simulated models were
generated. “Minimum” means the trained model performed worst in the esti-
mation, while “maximum” is the best.
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Fig. 7.3. The accuracy of the trained CRFs with shared feature functions on five different
configurations

The average performances of the trained models are roughly the same
over the five configurations. {S2, S4, S5} have the conjunctions in the feature
functions. They are up to 5% worse than {S1, S3}. We could not find a clue
to explain the best and the worst performance of the models. For example,
the feature functions in S1 should not be much different from one model to
another because these functions are “single” and “isolated” as shown in Table
7.1. The results can be summarized thus:

• The performance of a trained CRFs depends on both F and Θ of the sim-
ulated model. Θ itself has significant impact on the performance.

The trained CRFs can not only compute the most possible explanation for
an input X , but also associate this explanation with a probability value. In
Figure 7.4, we show the relations between the prediction accuracy and the
probability of the most probable paths, which are divided into 10 grids. For
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example, the values at 0.15 come from the data sequences with the probabili-
ties of the most possible path from 0.1 to 0.2. The figure consists of two parts.
The upper part is about the accuracy of the prediction. The lower part is the
distributions of the data in each grid.
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Fig. 7.4. The distributions of the accuracy of the prediction over the probabilities of the most
probable path.

These distributions are interesting. Before the training, all parameters of
CRFs are initialized to zero. The most possible path of a sequence should
have the same probability as other paths of the sequence. If we put the infor-
mation in the coordinate system in Figure 7.4: all the data should be in the
grid from 0.0 to 0.1; the accuracy of the model should be quite low, e.g. near
zero. The curves in the figure show the consequences of the training. We can
summarized as follows.

• If there is an axis for the probability of the most probable path, the training
based on maximum likelihood pushes a large number of sequences in the
training set towards the higher value direction of the axis.

• If the axis is divided into two parts at the middle point, the higher part has
a higher accuracy than the lower part.

The experiments in this section set a basis for further developments on
feature reduction and CRF queue.
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7.3 Feature Reduction

As mentioned in Section 5.2.3, the induction process iterates over three steps:
observation test, candidate evaluation, and CRF training. In this section, we
develop the forth step feature reduction.

If the feature functions in the simulated CRFs are considered to be “opti-
mal” for the induction, the observation test and the candidate evaluation can
be regarded as the heuristics to estimate the values of the possible move-
ments. Apparently, these heuristics are not admissible – thus, from this point
of view:

• The behaviors of the induction can be regarded as a local search.

At the “feature reduction”, a subset of features Fr is to be removed from
F , where F is the set of so far induced features, Fr ⊂ F . For each fk ∈ F , a
gain value Gr is defined as a measurement for the reduction.

Gr(fk) =
N∑
n=1

(p(Yn|Xn)− pθk=0(Yn|Xn)) (7.1)

We modified the gain G(fK+1) in Equation 5.19 for the reduction. pθk=0

means θk is set to zero while other parameters are fixed. Gr has the similar
meaning to G. The difference is fK+1 /∈ F , while fk ∈ F . G is calculated
in iterations before the traing of the CRFs; Gr can be calculated without any
iteration after the training. In the reduction, the features with a Gr lower than
a predefined threshold C0 can be removed.

F ′ = F − {fk|Gr(fk) < C0} (7.2)

The induction algorithm with feature reduction is written in pseudo-code
in Table 7.2. The reduction is called after several iterations of observation
test, candidate evaluation, and CRFs training. The algorithm stops after some
iterations of the reduction steps.

In the training process, each feature function has a weight. Intuitively,
the feature reduction can reduce the number of parameters. Consequently,
it should save the computational power required by the training. The second
experiment is designed for this comparison. The feature induction algorithms
are run independently with and without the reduction for 50 iterations. Figure
7.5 shows the results.

In the figure, the horizontal is the function calls of the training. The ver-
tical is average time spent on processing 100 batches of SMD. During the
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Table 7.2. Algorithm: Inducing Features with Reduction

input: Training Examples (X,Y)

output: CRFs: (F , Θ)

1 F0,I0 = ∅
2 for i0 = 1...I0 do
3 Fi0,0 = Fi0−1,I0

4 for i1 = 1...I1 do
5 Fi0,i1 = Fi0,i1−1∪

{new Features from the Observation Test}
6 Compute Θi0,i1 on Fi0,i1 via Equation 5.9

7 end
8 Reducing Fi0,I1 via Equation 7.2
9 end
10 Choose F = Fi0,i1 where Fi0,i1 yield to the best

performance on the (X,Y)

11 Compute Θ on {Fi0,i1 , Θi0,i1} via Equation 5.9

12 return (F ,Θ)
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Fig. 7.5. Time spent on 100 training iterations of the CRF models with feature reduction and
without feature reduction

induction process, features are added to F incrementally. The training thus
requires more and more time to compute the weights of the feature functions.
The dotted curve shows the performance of the algorithm with feature reduc-
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tion. It is serrated because the reduction step is not called in every iteration.
The experiments can be summarized as follows.

• The reduction step can save the computational power more than 30% in
the long run.

Although the reduction makes the induction process faster, does it de-
crease the prediction accuracy of the resulted CRFs? The third experiment
is designed to investigate this issue. The induction algorithms with and with-
out the reduction were run independently over the 5× 100 training sets. The
models which yield to the best performance on the training set are selected
for the evaluation. The results are illustrated in Figure 7.6.
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Fig. 7.6. The Evaluation of the Three Approaches over the Five Configurations

In the figure, the results are grouped by the 5 configurations. The evalu-
ation is the prediction accuracy over the sequences, which are averaged over
the 100 training sets. For convenience, the performance of the CRF queues is
also included, which can be ignored for the moment.

Based on the average results, the algorithm with the reduction outper-
formed the one without reduction in all the configurations. If we take a closer
look, the reduction did not make the algorithm better in any case. The “lo-
cal search” we mentioned before can explain these results. Either of the two
approaches can have better prediction accuracy than the other.

In Figure 7.6, the performances of the models can be roughly classified
into two categories: {S1, S3} the configurations with single features, and
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{S2, S4, S5} the configurations with conjunctive features. If we further com-
pare the performances on the configurations with the Boolean and isolated
variables, several points can be noted.

• The conjunctive features of the simulated models make the induction tasks
more difficult.

• The feature overlapping of the simulated models [only] slightly affects the
difficulties of the induction in the experiments.

As illustrated in Figure 7.5, the algorithm with the reduction runs faster
because the number of feature functions is lower. How many features were
induced in the experiments? In the upper part of Figure 7.7, we show the
results.
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Fig. 7.7. The number of the feature functions and the number of the CRFs in the queue

The data were grouped by the five configurations, in each group the num-
bers of feature functions are averaged. The “13” comes from the simulated
models, which serves as a based line for the comparison.

• The learning induced the features several times more than the target fea-
tures in the simulated models. Surprisingly, it did not cause a severe over-
fitting problem.

• For the incremental induction, the average numbers of induced features
were not very different from one configuration to another.

• For the induction with the reduction, compared to the configurations with
conjunctive features, more features were induced in the configurations
with a single feature.
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7.4 CRF Queue

In Section 7.2.2, the experiments showed that along the axis of the probabil-
ities of the most probable paths, a higher value has a higher accuracy. The
basic idea of CRF queues is to build a queue of CRF models, and each model
uses the higher probability part to do the prediction. If the probability of a
sequence is lower than a threshold t, the data are passed to next model.

IfD(X,Y) is the training set, a filter function is defined as follows, where
Y ′′ is the most probable explanation of X ′.

r(D, t) = {(X ′, Y ′)|(X ′, Y ′) ∈ D, p(Y ′′|X ′) > t)} (7.3)

We define D′ ⊂ r(D, t) as the set of the sequences which are correctly
explained. The threshold t∗ can be calculated via:

t∗ ∼= argt
|D′|
|r(D, t)|

) = C1 (7.4)

In the equation, C1 is a selected accuracy higher than the accuracy of the
first CRFs in the queue. In order to build the queue, assume the first CRF
model is already induced via the algorithm shown in Table 7.2 – we can then
use t∗ to filter the training set for the next model in the queue. The sequences
with a probability of the most probable explanation higher than t∗ are re-
moved from the training set. The rests are used to induce the next model in
the queue.

Dm+1 = Dm − r(Dm, t
∗) (7.5)

In our implementation, we simply compute C1 to remove 60% of the se-
quences of the first training set. Then, C1 is fixed for the other models in the
queue.

The algorithm of inducing CRF queues is written in pseudo-code in Table
7.3. In each iteration, a CRF model is built; the threshold is computed; and the
training set is filtered. The algorithm is run until no CRFs with the required
accuracy (C1) can be induced from the filtered data.

A sequence X can be explained by the queue in the following way. X is
explained by the first model p1 in the queue. If p1(Y ′|X) > t1, where t1 is
the threshold, then Y ′ is the explanation of the X . Otherwise, X is passed
to the second model. If X cannot be explained by any of the models in the
queue, the model with the highest accuracy is chosen to explain the sequence.
Figure 7.8 shows an example of the CRF queue.
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Table 7.3. Algorithm: Inducing CRF Queue from Data

input: Training Examples D(X,Y)

output: Learned CRF Queue

Q((Fm, Θm), tm),m = 1...M

1 D1 = D; Q0 = (∅,⊥)
2 for m=1...M do
3 Compute (Fm, Θm) on Dm via table 7.2

4 Compute tm on Dm via Equation 7.4

5 Qm = Qm−1 ∪ ((Fm, Θm), tm)

6 Compute Dm+1 by Applying ((Fm, Θm), tm)

on Dm via Equation 7.5

7 end
8 return QM
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Fig. 7.8. An the Example of the CRF Queue

There are 5 models altogether in the queue. The first column in the figure
shows the training set used for the model. In the experiment, each training set
consists of 1000 sequences. 1.0 means all of them are used to induce CRF-1.
Along the queue, fewer and fewer data are passed to the next model. CRF-5
is trained by less than 300 sequences.

The second column in the figure illustrates the performance of each model
on the training set. To our surprise, so many models can be induced with the
reduced training sets. Their performances on the training data can be im-
proved by inducing a new set of the features.
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The third column is the accuracy of using the model with the threshold tm,
we call it the filtered model. tm defines the higher part along the axis of the
probability of the most probable paths. CRF queues provide a more accurate
prediction because the third column is higher than the second one.

The fourth column is the performance of the CRF queue. It is computed by
using the current acquired models. For example, in CRF-3, the first, second,
and third models build the queue. Along the queue, the evaluations are better
and better. In CRF-1, the second column is higher than the fourth one because
of overfitting. The performance of the model is better on the training set than
on the test set.

In the example, if X cannot be explained with a probability higher than
the threshold tm by all the models in the queue, CRFs-5 should be chosen
to explain X . The reason is that its second column is the highest one over
the second columns of all the models. To summarize, the third columns of
the first four models and the second column of the fifth model are chosen to
explain X . Their overall performance, the fourth column in CRFs-5, is lower
than any of these columns because of overfitting. From another point of view,
the values of the chosen columns are based on the training data; the overall
estimation of the queue is the evaluation on the test set.

The fourth experiment was designed to evaluate CRF queue. The algo-
rithm shown in Table 7.3 was run on all data sets. The average results over 5
configurations are shown as the third columns in Figure 7.6. The results can
be explained as follows.

• The CRF queue outperformed the single model approaches for about 4%
on average in all configurations.

When the induced queues are checked one by one, we find that there are
a number of queues containing only one CRF model. The main reason is
that the first CRFs already has a high accuracy. The second one based on
the filtered data is not as good as the first. Therefore, it cannot make any
improvements. We summarize this observation thus:

• In the worst case, the CRF queue has the same performance as the single
model approaches.

We show the number of models in the queue in the lower parts in Figure
7.7. The results are averaged over the 100 sets in each configurations. The
number of models is above 3, which hints that the queue works well in most
cases. {S1, S3} has a shorter queue because the performances of the single
model approaches in these configurations are better, as shown in Figure 7.6.
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• The CRF queue is shorter when the single model approaches work better.

7.5 Discussion

In this paper, we constructed a simulation franmework to investigate the is-
sues of inducing features of linear-chain CRFs. The simulation is based on
the assumptions that the stochastic processes in the target system can be de-
scribed as a CRF model. Consequently, we gain a new phase to compare
the simulated CRFs and the induced CRFs, and the annotated data set can
be automatically generated as many times as required. We designed several
configurations for the simulated CRFs, using a large amount of experiments
to explore the properties of the learned CRFs. Moreover, we developed two
novel methods.

The first one is a feature reduction method that can be integrated into
the induction process. The basic idea is to define an estimation to remove a
subset of the features from existing ones. The reduction keeps the accuracy
of the model and reduces the number of features in the learned CRFs in the
experiments.

The second one is an approach based on the properties of the maximum
likelihood. A queue of CRF models is constructed for the prediction, which
yields a better performance on all the configurations. CRF queues guarantees
accuracy no worse than the single model approaches.

The feature induction as well as feature reduction and CRF queue can be
implemented in the switching attention learning framework. In Chapter 8, we
address how to use this framework to explain the data of table soccer.
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Explain Data of Table Soccer

By using KiRe, table soccer games can be recoded as a series of data slices.
As mentioned in Section 6.1, along the axis of time, each data slice consists
of the position of the ball, as well as the position and the angle of the game
rods. A data explanation method based on CRFs and SAL was introduced in
Chapter 7. In this chapter, an approach is developed to explain the recorded
game data using the CRFs method. In Section 8.1, the sensor data and the
challenges of explaining these data are outlined. In Section 8.2, the features,
the essential elements of CRFs, are defined. In Section 8.3, we address the
method using switching attention learning to explain the data of table soccer.

8.1 The Explanation Tasks – an Example

The recorded data can be described as a vector of five variables (t,xb,yb,pr,ar).
The t is a time point at which the data were obtained. xb and yb are a series
of possible positions of the ball, which are given as 2D coordinates in a plane.
The data are not a single position because of the noises in them. In each time
slice, a few possible ball positions are given as the vectors. pr and ar are the
positions and angles of the rods. There are not many noises in the sensor data
of the rods. The data of each rod are encoded in these two vectors. Each value
in the vector is a real number.

The explanation of the data is to describe a sequence data using skills
and concepts. From another aspect, the data are explained as a sequence of
actions. We show the explanation tasks in an example. Figure 8.1 illustrates
an action sequence. The ball is coming from the midfield of the red team. It
is first locked by the attacker of the blue team. Then the player performs a
slide-kick action sequence: the ball is slided along the rod; it is then kicked
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Fig. 8.1. The Action Sequence of Lock and Slide-Kick

towards the goal. In the figure, the arrow lines show the trajectory of the ball.
The red and blue colors indicate which team controls the ball.

(a)Lock (b)Kick

Fig. 8.2. The “lock” and the “kick” actions

In the example, the ball is first locked by the blue team. The coordinates of
the ball, as well as the position and the angle of the rod, indicate a high level
state – lock, as illustrated in Figure 8.2(a). The end of the playing figure press
the ball towards the playing surface. The ball is stuck between the figure and
the surface. Only one slice of the data with the figure and the ball at the proper
position, however, is not enough for determining a “lock” state. The “lock”
should be a state that can be felt by human beings. In other words, the data
in a short time span, e.g. 0.3 second, would be a support for the “lock”. As
mentioned in Section 6.1, the frame rate of the system is more than 200Hz.
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In 0.3 second, 60 data slices are recorded. A “lock” state is observed, if there
are 60 data slices indicating the ball is stuck under the playing figure.

(a) A Successful Kick (b) A Missed Kick

Fig. 8.3. The Trajectories of the Ball

In the example, after the ball is locked, a slide-kick action is performed
by the player. The state “kick”, in which the playing figure touches the ball,
takes much less time than a “lock”. Although the recording system provide a
data slice every 0.005 second, it is still possible that the “kick” state cannot be
observed. Therefore, the “kick” is described as a process, as shown in Figure
8.2(b). At the time t, the ball is at the position xt. After a small time span δt,
the playing figure touches the ball. The touch happens at the time point when
the ball is knocked out by the playing figure.

(a)Angle (b)Position

Fig. 8.4. The movements of the game rod
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Although it is hard to catch the exact time point when the playing figure
touches the ball, the process of the kick can be observed from the trajec-
tory of the ball. Figure 8.3(a) illustrates that there are significant changes on
the movement of the ball, involving both the speed and the direction of the
movement. Figure 8.3(b) shows that if the kick is missed, the ball keeps its
previous movements. If a moving window over 10 data slice is used for the
observation, a successful kick action should be with the ball trajectory shown
in Figure 8.3(a).

Fig. 8.5. The Action Sequence of Lock and Slide-Kick

In addition to the trajectory of the ball, the data of the rods offer an ex-
tra way to understand the action sequence. Figure 8.4 shows the position
and angle of the rod along the time. As shown in the figure (a), the rod
was first turned to create an accelerating space for the “kick”. It was then
turned towards the ball with a high acceleration. Figure 8.4 (b) shows the po-
sition of the rod, which illustrates a typical slide-kick trajectory. The tilt at
200 − 500ms is the slide; the flat at 500 − 600ms is the kick. A slide-kick
always accompanies the data plot of the rod with a similar shape.

In summary, the explanation should bridge the low-level data and high-
level concept such as the slide-kick. In order to explain the data, a model
needs to be constructed. The input of the model is the sensor data, the vectors
of five variables along the time. The outputs of the model are a series of states,
which can be used to describe a certain skill or strategy. Figure 8.5 illustrates
such a model. In the model, the discrete states defined in Section 6.2 are used.
In the example, these states can eventually be used to describe the high-level
skills: lock and slide-kick.

8.2 Encoding Features

In Section 8.1, we assume that the model for data explanation can directly
take the sensor data as its inputs. In the implementation, HMMs and CRFs
have inputs with discrete values. In this section, a feature encoding approach
is implemented to discretize the inputs.
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We need the feature encoding mainly for three reasons. First, CRFs have
a friendly interface for the features with discrete values. Second, KiRe has a
frame rate of more than 200Hz. Directly processing these data requires a lot
of computational power. In the feature encoding, the amount of data can be
significantly reduced so that the data can be processed much faster. Third, the
encoded features are the stepping stone between the continuous coordinates
from the sensors and the final class label such as “lock”. The construction of
the model for data explanation can thus be easier with the encoded features
as its inputs.

Detecting the collisions between the ball and the other objects, e.g. a wall
or a playing figure, is crucial for the data explanation tasks. The trajectory of
the ball will change significantly if there is a collision. We can approximate
the trajectory of the ball by assuming a constant speed and fixed moving
direction if there is no collision. With a sequence of collisions along the time
axis, a segment can be defined as the data sequence between two collisions.
From another aspect, with a sequence of segments, a collision can be defined
as a point between two segments. In other words, the data can be explained
as a sequence of collisions and segments which appear iteratively.

In a “segment”, we assume the ball moves with a constant speed and fixed
direction on the 2D playing surface. In other words, the trajectory of the ball
is assumed to be a line segment. If the time axis t is considered, the ball should
move along a line in a 3D space. The “segment” is therefore a line segment
in this space. It can be mapped to two line segments in two planes which have
t and x or t and y as their axes.

Hough transformation can be used to find a line-segment in a plane. Each
point (x, y) in the original plane can be transferred into a curve in another
plane, (r, θ), by using Hough transformation. The relation between the orig-
inal (x, y) and the transformed (r, θ) is defined as in Equation 8.1. (r, θ) can
also be understood as the standard “angle and distance” parameters in the
equation of a line.

r = sin(θ)y + cos(θ)x (8.1)

(X,Y ) are a set of points , assuming all the points (xi, yi) ∈ (X,Y )
are on the same line in the original plane. By using Hough transformation,
each (xi, yi) is transformed to a curve in the (r, θ) plane. If the (r, θ) plane
is discretized with small grids. In the plane, all curves intersect in the same
cell. From another aspect, the interpolated line segments in the original (x, y)
plane can be found by searching for the cells in the transformed plane; these
cells contain intersects of several curves.
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The Hough transformation mentioned above is applied to find line seg-
ments in the trajectory of the ball. Figure 8.6 illustrates an example, in which
the horizontal axis is the time (t), and the vertical is the position along the
y direction of the playing surface. The red dots are the sensor data. We use
a moving window approach to process the data. The blue lines are the sepa-
rators of the moving window. The green line segments are the results of the
Hough transformation. In the figure, we can find that the line segments can be
successfully found; there are more shorter line segments near the “collision”
points.
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Fig. 8.6. The Line Segments found by Using Hough Transformation

The results of Hough transformation can be used to build the “segment and
collision” sequence. Assuming the collision is a kick, the data should support
the collision from several perspectives: the first segment and the second one
should have very different tilt value; the playing figure and the ball should be
very close to each other near the collision point; the ball has a chance to jump
up after the kick.

Normally, human players play the attacker and defender in a different way.
Further more, advanced players may play the first and the second playing
figures of the attacker in a different way. It would thus be useful to identify
which rod and which figure is controlling the ball. As mentioned in Section
6.1.1, the laser beam goes through the gap between the playing figure and the
field to measure the position of the ball. In real game, the ball, however, jumps
very often, especially after a collision. When the ball jumps, the laser beam
lost its view on the ball. This information is useful to identify if a collision
happens.
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Fig. 8.7. The Segments of the Rod Position

Similar to the trajectory of the ball, the movement of the rods can be ana-
lyzed. Using a local search algorithm, the peaks, shown as blue dots in Figure
8.7, can be found. The segments of the rods can be encoded as features. These
features can be used to support the actions such as a “kick”.

There are all together 56 features, in which the domain knowledge, the
spatial relations between the figure and the ball, and the results of the Hough
transformation are integrated. All these features are encoded as booleans,
each of which has two values, true or false. Some of the features can of
course be encoded as integers. We choose boolean to avoid the bias among
the encoded features. Consequently, all features are equally important in the
high-level model.

8.3 Explain Recorded Data Using CRFs and Switching Attention
Learning

By using switching attention learning, several learners can work together for
a systematic learning. Such learning system can be constructed for the data
explanation tasks. In this section, we address the construction of the learn-
ing system for the data explanation using CRFs and SAL. There are several
modules in the system: segmentation, hypothesis computation, training set
generation, and several learners using CRFs and SAL.

The sequential data have the form (X,Y ), as mentioned in Section 5.2.1.
X = (B1, B2, ..., BI); Bi is a vector of the conjoint of the boolean features.
In Section 8.2, 56 such features are encoded. The longer the sequential data
are, the more computational power is required for training the CRFs. A seg-
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mentation algorithm is thus required for dividing the longer sequences into
shorter ones.

The segmentation algorithm divides a long data sequence into several
smaller ones. In the playing field, there are several areas where the ball can
hardly stay, e.g. the corners or near a wall. In these areas, however, the noises
can easily be generated. When the ball is out of the table, the recognized ball
position would be in these areas. The segmentation algorithm can be built ac-
cording to this observation: after the recognized ball position stays in the high
noise areas for a particular time span, the data can be separated into two seg-
ments. A long sequence of the data can thus be divided into several smaller
ones.

In the sequential data (X,Y ), Y is a hidden state which can also be un-
derstood as a hypothesis. In the data explanation tasks, the “hypothesis” is
defined as a place at which a collision would happen. The hypothesis has
four possible values for different situations. The first situation is that it marks
the exact place the collision happens. The second situation is that it is not a
collision; the two segments before and after it can be merged into one. The
third situation is that the place of the hypothesis can be used to compute the
end of the segment before the hypothesis. The forth situation is that the place
of the hypothesis can be used to compute the start of the segment after the
hypothesis.

The hypotheses can be computed automatically. Three methods are inte-
grated for this computation. The first one is developed by considering the
“touch” relation. A hypothesis is created if the ball and the playing fig-
ure touch each other. The second method is developed by considering the
“jumps”. If the ball cannot be observed for a certain time span, a hypothesis
is created. The third one is developed by using the local search algorithm il-
lustrated in Figure 8.7, where the search algorithm is for the game rods. Here,
the search is used for the trajectory of the ball. The hypotheses are created at
the places where local peaks can be found by the search algorithm.

In order to create the training set for CRFs, we need to manually annotate
the sequential data. The annotation of the data is to find out where the colli-
sions are, given the recorded data. In other words, we need to use a series of
start-end connected line segments to approximate recorded data. The red and
green dots in Figure 8.8 are the recorded data. By considering these points,
we can easily annotate the data using the line segments. These annotation
are regarded as the ground truth, and are used to compute values for the hy-
potheses. Annotating data is very time consuming. We annotated about 200
sequences in about 80 hours.
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Fig. 8.8. The integrated Information of a Sequence

We integrate all known information in Figure 8.8. There are three types
of hypotheses, collisions, peaks, and merged ones. The merged hypotheses
are created because several hypotheses are close to each other along the time
axis. It could happen that a local peak, a jump, and a “kick” happen within
10 data slices. The information of the active rod is shown in the figure as
red line-segments. The vertical red segments are the turning of the rods. The
segments with angles a > −90o and a < 90o refer to the movement of the
active rod. The active rod is the rod that controls the ball. The value of an
angle a indicates the speed of the movement.

The training set of CRFs can be generated by considering the generated
hypotheses and the ground truth. Given the annotated information, the values
of the hypotheses can be computed. And each feature in X can be calculated
given the hypotheses.

With the encoded 56 features and the feature induction algorithm men-
tioned in Chapter 7, we can induce the features step by step. A switching at-
tention learning system with the following three learners are developed. The
CRFs model is trained each time after a new set of features are induced and
reduced.

• Feature induction of CRFs
• Feature reduction of CRFs
• Training of CRFs

An experiment was designed for this learning. The annotated 200 se-
quences are used as the training set. We develop a CRFs model with five
hand-coded feature functions. This model is trained. Its performance is re-
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garded as the base line for the evaluation. We built the algorithm to inter-
actively induce the features. In each iteration, 3 most promising features are
induced. The training set was divided into 31 subsets. One set is used for the
evaluation, the other 30 sets are used for the training. The training of the CRF
model is evaluated over the training set.
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Fig. 8.9. The Learning Curve

The results of the experiment are shown in Figure 8.9. The red horizontal
line shows the performance of the hand-coded model. The horizontal axis is
the size of the training set. The vertical is the performance of the model on
the evaluation set. The hand-coded CRFs can predict with a correct rate of
78%. The performance of the model in each iteration in the feature induction
is shown as the color columns. Several iterations are involved at each evalua-
tion point. The black dot lines show the learning curve. The best performance
of the model is acquired by considering 8 subsets of the training data. When
more subsets are considered, from 13 to 30, the models acquire the stable per-
formance close to that of the hand-coded model, which indicates the feature
induction is successful in the experiment.

Although the learning curve supports the improvement of performance,
the results, however, is not very useful. An accuracy of about 78% can only
produce a coarse explanation of the data. There are mainly two reasons for
this problem. One reason is that much more annotated data are required for
the training. In the simulation, the size of the training set can easily reach
1000. The annotated data of table soccer, nevertheless, are hard to be obtained
because of the amount of work required. Another reason is that we used sev-
eral thresholds in the computation of the features. The value of a feature can
be oscillated when it is near a threshold. In the future, we would investigate
semi-supervised learning to combine both labeled and unlabeled data.



Part III

Tetris
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Outline

In this part, first we introduce the background information: the artificial play-
ers of Tetris in the literature are reviewed in section 10.1; bandit based Monte-
Carlo planning (UCT) is introduced in section 10.2; learning by imitation and
support vector machines are explained in section 10.3. We developed two arti-
ficial players for Tetris. In the first player in Chapter 11, the game is modeled
as a planning problem using UCT. In the second player in Chapter 12, sup-
port vector machines are implemented within the SAL framework for playing
Tetris.
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Preliminaries

Tetris was first invented by Alexey Pajitnov et al. in 1984, and remains one of
the most popular video games today. It can be found in many game consoles
and several desktop systems in PC, such as KDE and GNOME.

Tetris is a stochastic and open-end board game. A piece of block is
dropped from the top of the board. The piece is randomly chosen from seven
predefined ones, and it falls down step by step. The player can move and ro-
tate the current piece to place it in a proper position. A new piece appears at
the top of the board after the current one touches the ground. A fully-occupied
row will be cleared and the blocks above it will automatically fall down one
step. The goal of the game is to build as many such rows as possible.

In the two or more players’ competitions, if one player has removed
n(n > 1) rows in one turn, all other players will receive an attack of (n− 1)
rows of blocks, adding to the bottom of their game fields. Each attack row
would contain (n−1) empty cells in random positions. Thus removing multi-
ple rows in single turns brings even more benefits than rewards. Highly skilled
human players prefer to plan and remove three or even four rows using a sin-
gle falling piece, while beginners and many of the existing tetris artificial
players tend to remove rows as soon as possible in each turn to survive the
game. The game is over when only one player is still alive in the competition,
and of course the last player is the winner.

10.1 Tetris AI players

The single Tetris game has been used as a test-bed in the research in artifi-
cial intelligence. Researchers developed artificial players using different ap-
proaches [70]. Fehey created a hand-coded player [31], Böhm et al. employed
genetic algorithms [55], and Szita et al. used cross-entropy methods in Tetris
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[3]. These players can play the single game, clearing hundreds of thousands
of rows, which would take several weeks or even months for a human player.

Some methods are successful in playing single Tetris games, some are
not. For example, the standard 10× 20 Tetris game is still a challenging task
for the methods in reinforcement learning [30] [18]. The number of rows
that a player can clear is widely accepted as a criteria for the evaluation. So
far, several successful artificial players e.g. in [55], [3], and [31], are based
on building an evaluation function with linear combinations of the weighted
features. These features were listed in [70].

The competition in Tetris is certainly an interesting topic. In theory, the
two-player Tetris is much more complex than the single one [59]. Assuming
both human and the artificial player handle the piece with the same speed,
human players can defeat the best artificial player with ease in the competition
mode. To our knowledge, the existing artificial players cannot create many
attacks in the competitions. The researchers evaluate their players mainly in
single games.

10.2 Bandit Based Monte-Carlo Planning

Planning is a branch of research in artificial intelligence. States, transitions,
and a search method are three basic elements in planning. One state can be
transferred into another state via a transition. Final states are the special states
which associate with results. The objective of the planning is to search for a
sequence of transitions that can lead a start state to the preferred final state.
The search method guides the process of searching.

Bandit-Based Monte-Carlo planning (UCT) [43] is a planning method that
integrates a bandit algorithm, a Monte-Carlo method, and Markov Decision
Processes (MDPs). The process of planning is consists of a number of “roll-
outs”. The planning starts at a state. In a rollout, the start state is regarded
as a “root”. The algorithm chooses a transition to proceed to the next state.
The process will be continued until a fixed number of transitions (depths) is
reached. At the end of the rollout, the algorithm will update its parameters,
the next rollout will be started again at the “root” using the new parameters.

The parameters are updated in the following way. Starting from the begin-
ning of one planning episode, the number s of visits of a state in the search
tree and the number t of visits of each action of the state and the piece are
constantly updated according to each selection of the actions. According to
the algorithm UCB1 [4], the action selection is based on the upper confidence
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bound in track of the immediate reward and bandit score of every arm (action)
of the bandit machine (game state) as:

I = argmax
i∈{1,...,K}

{Ri + ci} (10.1)

where Ri is the immediate reward from performing the action i, and ci is
a bias sequence chosen as:

ci = λ

√
ln s

t
(10.2)

where λ is a constant factor manually chosen for balancing of the exploration-
exploitation trade-offs. Higher λ values result in higher chances of random-
ized explorations based on the bandit scores, while smaller λ values lead to
greater possibilities of selective exploitations according to the immediate re-
wards.

The UCT algorithm works in the following way. First, A fixed amount of
computational power is allocated to each step. Then, the allocated computa-
tional power are used to run the rollouts as many times as possible. Next, the
algorithm choose the transition at the root node which is best evaluated by
Equation 10.1. Finally, the chosen transition is used to update the root node;
the algorithm can start a new iteration using the new root.

10.3 Learning by Imitation and Support Vector Machine

Imitation is essential in social learning [6]. Assuming the similarities between
the observations and themselves, humans acquire various skills via imitation.
Imitation learning can be applied in robotics and automatic systems in several
ways[17]. For instance, Billard et al. built a system according to the structure
of the human brain [1]. Atkeson et al. developed a method to explain the
actions of a demonstrator, and to use the explanations in an agent [19].

Learning by imitation has been widely applied in robotics, especially in
humanoid robots [1]. The core idea of imitation is to improve the similarity
between the imitated system and the imitator, even if certain physical or vir-
tual dissimilarities exist. In this chapter, a framework is developed to imitate
both human and artificial players. The structure of our approach is certainly
different from human brains or the models of the other artificial players. Gen-
erally, we follow the idea of learning by imitation. To our knowledge, it is the
first time that imitation learning has been applied in Tetris.
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Support Vector Machine (SVM) was first proposed by Cortes and Vapnik
in 1995[23], and became an important method for data classification. SVM
is well-developed. I was implemented in several open source packages which
were available in Internet. In this paper, SVM is used as a tool. Our implemen-
tation is based on LIBSVM [20]. We modeled the imitation tasks in Tetris as
a standard data classification problem which can be finally solved by SVMs.

Incremental learning is mainly about a series of machine learning issues
in which the training data is available gradually [2]. It is a special learning
method with which a certain evaluation can be improved by the learning pro-
cess during a fairly long period. In order to do that, we defined a learning
paradigm: switching attention learning [25]. In the paradigm, there are multi-
ple learners with their inputs and outputs forming a loop. The performance of
one learner generates potential improvement space for the others. Following
this idea, Tetris is used as a test-bed. Our artificial player can choose a game
played by a stronger player as its target to imitate.
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Playing Tetris Using Bandit Based Monte-Carlo
Planning

Yet most of the existing artificial players known are based on a planner for
only one- or two-piece. This paper was motivated by creating an artificial
player based on the planning of a long sequence of pieces. We modeled our
player in Tetris planning problem with the Monte-Carlo planning method. In
order to balance the exploration-exploitation trade-offs in the planning pro-
cess, we employed the bandit algorithm to guide the planning process. As for
state revisiting, we created a method to store the visited game states in a spe-
cially designed database. We also created a hash function to quickly locate
and operate the information of a given game state in the database. In order to
reduce the branching factor of Tetris planning, we created an intuitive evalu-
ation function and combined it with the UCT algorithm.

The highlights of this paper can be summarized as follows:

• We modeled the artificial player of Tetris using the UCT algorithm.
• Our method of the database of the visited states provided support to UCT

and improved the performance of the planner.
• By pruning the planning tree, the player can defeat the artificial player

developed by Fehey, which is regarded as the benchmark.

This chapter is structured in the following manner. First, in Section 11.1,
the related works are overviewed. Then, in Section 11.2, we present our so-
lution on modeling the tetris planning problem with the bandit-based Monte-
Carlo planning method. Our method to design the knowledge database and
store the information of the visited game states is presented in Section 11.3.
The idea of combining the evaluation function to the UCT algorithm is dis-
cussed in Section 11.4. The experiments and the results are shown and ana-
lyzed in detail in Section 11.5. In the final Section 11.6, we draw the conclu-
sion and discuss the future work.
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11.1 Related Works

To create an artificial player for a board game, the general components are the
search method and the evaluation function. The board games which are solv-
able by brute-force methods, such as Othello, have already been dominated by
game programs using various search methods, such as LOGISTELLO [16].
Board games such as Checkers are solvable using knowledge database com-
bined with search methods, one such example is the program named CHI-
NOOK [63]. Many board games, e.g. Chess and Go, are currently unsolv-
able, thus are still challenging tasks for artificial intelligence researchers. To
improve the performance of the artificial players for these board games, one
of the tasks for the researchers is to balance the trade-offs between the search
depths and evaluation functions [10].

The Monte-Carlo planning method (MCP) has offered a new solution to
artificial players of board games. In 1993, Bernd first modeled the board game
Go with the MCP algorithm [15], and his Go player had a playing strength
of about 25 kyu1 on a 9 × 9 board. Soon the MCP method was successfully
applied in other board games, such as Backgammon[49]. In 2006, Levente
Kocsis and Csaba Szepesvri developed a new search technique named UCT,
which stands for Upper Confidence Bound applied to Trees [43], and proved
that UCT to be more efficient than its alternatives in several domains. Instead
of uniform sampling of the game actions, UCT uses the multi-armed bandit
algorithm to guide the action selection of the planning process. Later applica-
tions using the technique, such as MoGo2, demonstrated that this technique
can be successfully applied to the game of Go.

Learning techniques have also been applied to improve the perfomance
of artificial players of board games. The first such approach was the one by
Samuelson in 1959 [61]. He was able to show how a program can learn to play
Checkers by playing against itself. In 2010, Takuma Toyoda and Yoshiyuki
Kotani suggested the idea of using previous simulated game results to im-
prove the performance of the original Monte-Carlo Go program [73], and
their work announced positive results on the larger Go board. In Tetris, Böhm
et al. used genetic algorithms for the heuristic function, and our previous work
had introduced learning by imitation to the artificial player of multi-player
Tetris games [55].

Yet to the best of our knowledge, UCT has not been applied in artificial
players for Tetris.
1 In Go, the rank of 30−−20 kyu refers to a Beginner level.
2 Website: http://www.lri.fr/ gelly/MoGo.htm
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11.2 Planning Tetris Using UCT

In this Section, we discuss how we model the Tetris planning problem using
the UCT algorithm.

There are two possible values for every cell in the game field, e.g. oc-
cupied and unoccupied, so the standard Tetris search space consists of 2200

game states. The branching factor is 162 for a given game state without the
piece information, which is the sum of all possible placements of actions from
the 7 different pieces. The large branching factor brings us to the idea of us-
ing the Monte-Carlo planning method in our solution to the artificial Tetris
player. The core feature of the Monte-Carlo planning is to sample as many
future states as possible from all actions of the given state of the game for a
certain period of time, and for each episode evaluate only the leaf state using
a fast evaluation function. In the end, the algorithm takes the action with the
best evaluated reward in the planning as the result of the algorithm.

Fig. 11.1. Node of game field state and piece in planning tree

A sample of the planning tree is shown in the Figure 11.1. In our model
of the Tetris planning, we consider each state of the game field, together with
a given piece, as a single node in the planning tree. For instance, the root
node consists of a game field, which is the rectangular area with gray square
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blocks inside, and a piece, in this case a ”Z” shaped piece displayed by four
black square blocks. The fields in the nodes are the so-called ”cleared fields”,
which means that no fully occupied, removable rows are contained in such
fields.

Fig. 11.2. Procedure of removing fully occupied rows

The paths through the planning tree represent the actions associated to the
given piece. By following the path of one starting node, the piece is added to
the game field according to the index of the encoded action, and a target field
is generated. The field will then be checked for removable rows, and if there
are rows removed in the field, such rows are removed and a reward will be
given according to the predefined game rule. This procedure is described in
Figure 11.2. The fully occupied row is removed from the intermediate field,
and then the resulted field and the piece i form a new node in the planning
tree.

11.2.1 The Structure of the Planner

The pseudo code describing our planner is displayed in Algorithm 1 and 2.
In the beginning of the planning episode, the state of the game field and

the sequence of pieces are the input parameters of the planner. The planner
initiates the growth of planning tree and starts planning phases. The rank of
the paths in the planning tree are calculated directly by using the rewards
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Input: state, list of pieces
Output: action

1 initialization;
2 while not time out do
3 search(state, first piece);
4 end
5 action←selectBest(state, pieces);
6 updateTree();
7 return action;

Algorithm 1: One Planning Episode : Function doPlanning

gained from performing the action associated and removing the fully occu-
pied rows in the field. Removing rows in a single turn has certain rewards,
which in our approach is given as 0.1 for a single row, and 0.3, 0.6, 1.0 for
two to four removed rows. This encourages the players to remove multiple
rows instead of only one row in one turn. The planning episode continues to
run as many phases as possible until a certain time out rule is reached, and re-
turns the action with the highest reward in the root node of the planning tree.
The subtree of the node following the path of the selected action is preserved
for future planning, and other nodes are deleted at the end of each planning
episode to reduce memory consumption.

Input: state, piece
Output: reward

1 type←stateType(state, piece);
2 switch type do
3 case type == normal node
4 action←selectAction(state, piece);
5 state,reward←performAction(state, piece, action);
6 updateTree(state, piece, action, reward);
7 return reward;
8 case type == leaf node
9 return 0;

10 case type == terminal node
11 return -1;
12

13 endsw

Algorithm 2: One Planning Phase : Function search

In each planning phase, the planner selects and performs one of the actions
for each piece in the given sequence. Each performed action results in a child
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node in the planning tree, together with a reward accordingly. Once all the
pieces in the given sequence have been performed with an action, and the leaf
node is reached, the planner sums up the total reward gained in the current
search path, and updates the reward information backwards from the leaf node
to the root.

In Tetris, a common game state usually does not have any information on
the winning chance. To simplify the recursion on the leaf node, we consider
it to be with zero reward, which means such nodes do not have any influence
on their parent nodes in the search path. One exception is that, if a node
contains a state of the field which is by Tetris rule a terminal state, the reward
is always set to a big negative value. Such behavior makes the actions leading
to terminal states less likely to be chosen by the planner.

The method for sampling the actions is the key feature of the Monte-
Carlo planning. Comparing to the traditional uniformed and randomized sam-
pling methods, the multi-armed bandit algorithm has advantages in balanc-
ing the trade-offs between explorations and exploitations during the plan-
ning process, and is proved to be more efficient than other methods in many
domains[43].

11.2.2 Bandit Algorithm

In our method, we consider each state of the Tetris game field together with
a given piece as a separate K-armed bandit machine, where K is the number
of possible actions for the piece given.

In the function of the action selection, first the bandit score of each action
of the given piece is calculated by using the visiting information of the node
in the search tree, then the immediate reward from performing the action is
returned. The sums of the bandit scores and immediate rewards are used to
rank all these actions. The action with the highest sum is chosen to be the
return of the function. If there are multiple actions with the same highest
sum, the result is chosen randomly from the list of such actions. Notice that
the formula 10.2 will be invalid for the nodes of the search tree where some
of the actions are never visited before. For such nodes, an action is selected
randomly from all of the unvisited actions.

In the standard UCT algorithm, the search tree is updated and pruned, and
only the sub-tree of the state from the selected action will be kept for the
next planning episode. For board games where game states are less likely to
be revisited in the future steps of a single game, such behavior would have
little influence on the future planning process. But the state revisiting happens
quite often in Tetris because of its game rules. Therefore, the information of
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the explored states in previous planning episodes would play an important
role in the Tetris planning. In the next Section, we will discuss Tetris state
revisiting.

11.3 State Revisiting

Before designing our database for the visited game states, we think of the
information that is useful for the future planning episodes. First, we want to
start each planning episode of a root node from scratch. So the information
of the number of visits to nodes and actions is not to be stored, because such
information is a bias to the given sequence of pieces of the previous planning
episodes. The immediate rewards and targeting states of the actions associ-
ated to one node can be easily and fast computed in the planning phases, thus
the information can also be ignored.

In our method of planning, a node in the planning tree is made of a state
of the game field and a given piece, and the information of the node consists
of the following components which is necessary to be stored:

1. The highest reward over all the actions, and
2. The highest reward of each action.

The information of the Item 1 is the key to our idea of storing and reusing
the information of the explored game states, because it represents the summa-
rized results of its associated previous planning episodes, and can be easily
combined with the results of any future planning episodes. The information
of the Item 2 can be abstracted to a list of actions that matches the highest
reward, which can be combined easily with the future planning results.

Considering the planner of the artificial player plays 100 pieces in a sin-
gle game, and for each planning episode, the planner explores 1, 000 phases.
Then the total number of explored states of a single game is approximately
100, 000. Assume that one quarter of these explored states are revisited states,
then in the end there are 75, 000 newly explored states in a single game that
need to be stored. This is not a big amount of data, but the time cost and space
consumption for such information would be the bottle neck of the planner. In
our approach, we store only the information of the root node in every plan-
ning episode. This way, the size of the stored nodes is significantly reduced,
while the most useful information of each planning episode is preserved, and
the time cost for storing and retrieving such information is kept low.
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Now that we have our information stored in a database, the final task is to
find a fast and easy way to load and save such information. In the following
Section, we will present our design of the database using hash functions.

11.3.1 Hashing in Database

Although not all of the game states will be explored and stored in our ap-
proach, locating a specific state in a huge amount of data is still not an easy
task. One of the possible options is to use an existing database management
systems. However, such systems are inappropriate for our approach, as the
data we want to store are small in the single size and have little relation to
each other.

In our early approach, we tried to store the data in a single file, which is
easy to implement. But locating the data of a certain game state is not an easy
task. One of the possible method is to use the “sparse file” system for stor-
age, and every state is stored to a certain position in the “sparse file”, where
positions are calculated using a hash function. Since there is an “offset limit”
in the size of a “sparse file”, it is difficult to create a perfect hash function to
generate positions for the 2200 states in Tetris without collisions.

Another option is to use rather a simple file system with each state hashed
to a specific file. Like the “sparse file” system, the simple file system is also
dependent on the operating system to locate the entry of a certain file. The
difference is that the hash function can easily be created for the simple file
system. Also because game states are stored in separate files, there will be no
“offset limit” of a single file, and thus the collisions of positions are easy to
be avoided.

For any file system, the key issue is to balance the number of files, the
number and depth of folders, and the size of each file containing the data.
Too many files or subfolders in one folder could cause more time for the
operating system to locate the entry of the target in the disk. The size of each
file directly affects the computation time to store and retrieve the data for the
program.

In our approach, each state of the game field generates a file name directly
according to the value of the field encoded by a vector of integers. In this
way, every state would have a unique file name, and the collision problem
mentioned above is solved. Another advantage is that, the data of the game
field is hidden inside the name of the file. And from another point of view,
this method reduces the size of the storage.

Then, all such files are separated into different folders in a folder tree
of 5-depth. In each depth of the folder, there are up to 16 subfolders. This
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scattering method is used to avoid too many subfolders or files in a single
folder. Our later experiment on random sequences of pieces showed that for
the Linux operating system the computational time had less than 1% differ-
ences in runtime from the beginning to the end of the experiment, where the
number of the saved states in the database increased from zero to 100, 000.

Input: state, pieces
Output: action

1 initialization;
2 while not time out do
3 search(state, pieces, 0);
4 end
5 combineKnowledge(state, pieces);
6 action←selectBest(state, pieces);
7 updateTreeEx();
8 return action;

Algorithm 3: One Planning Episode : Modified Function doPlan-
ningEx

In each planning episode, the planner starts planning from scratch, using
only the information of the game state and piece and current planning tree.
Then after the planning phases are completed, the planner loads the informa-
tion of the root node in the planning tree from the database. Such informa-
tion is combined with the newly explored information in the planning tree.
The combination rule is simple. If the highest reward of the root node in the
database is bigger than in the planning tree, the information in the database
will completely override the information in the planning tree, and vice-versa.
If the two rewards are the same, then the list of actions matching the high-
est reward will be merged. Algorithm 3 shows a modification to its previous
version discussed in Section 11.2.1.

11.4 Pruning the Planning Tree

The previously introduced method is based on the sampling of all possible
actions of the given piece in the given game state. However, many of the
actions are not worth exploring, because they often lead to useless or even
bad game states. In this section, we created a method to prune the planning
tree to reduce the number of actions that need to be sampled, and thus to
improve the performance of the developed player.
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From records of many Tetris games played by artificial and human play-
ers, we studied that one of the most important features of the proper place-
ment of a given piece in the game field is to avoid creating holes in the field.
A hole in the game field is defined as an unoccupied cell that is covered by
one or more occupied cells over its top. A row in the game field containing
any holes cannot be removed, and would cause the player to spend more time
to deal with.

Since many actions sampled by our method would create such holes, we
created a method to prune these actions from the planning tree. The pruning
is based on the increment of holes from the original game state to the resulted
game state by performing an action. In addition to the reward and the bandit
score of each action discussed in Section 11.2.1, the number of holes created
by the action is considered to be a negative effect on the sum of the former
two parameters. The Equation 10.1 is then modified as:

I = argmax
i∈1,...,K

{Ri + ci + Pi} (11.1)

where Pi is a negative value defined according to the number of holes
created, and is defined by the following equation:

Pi = γHi, (−1 ≤ γ ≤ 0) (11.2)

where Hi is the number of holes created by performing the action i to
the game field, and γ is a negative factor according to the number of rows
removed from the result game field. The reason for γ being different is that,
unlike the actions that can only create holes in the field, the actions that can
both remove multiple rows and create some holes may still lead to a good
game state, and thus should not be totally ignored.

11.5 Experiments

We have conducted three experiments for our artificial Tetris player.
The first experiment was meant to test the validity of our method. In order

to measure the performances of the developed player when using the database
of the visited game states to support the UCT algorithm, we started the ex-
periment on an empty database, and let the player repeatedly play Tetris on
a fixed piece sequence from the start of the game till the end. Two of the
game parameters are to be evaluated: a) the final score of the game, and b)
the ratio of the roll-outs in one planning episode comparing to the standard
UCT algorithm. The former parameter stands directly for the performance of
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the developed player, and the latter indicates the effectiveness of using the
database of the visited game states in the future planning process.

Fig. 11.3. Experiment on a fixed piece sequence

The results of the first experiment are shown in Figure 11.3. The solid line
in the figure displays the final score of each game. The game score is based
on the sum of the number of removed rows in each turn. We use the same
scoring rules for the rewards of removing rows in the standard tetris. We can
see that the final score grows as the number of played games increases. This
shows that our method to store the information of the visited game states and
reuse it in future planning process can successfully support the standard UCT
algorithm and improve the performance.

Comparing to the standard UCT algorithm as a basis for the number of
roll-outs per planning episode, the roll-out ratio of each planning process
with the support of the database of the visited game states is shown in the
figure with the thick dashed line. The number of roll-outs is piled up when
the state is revisited in the future planning episodes. The results show that the
knowledge database helps the standard UCT algorithm to do more roll-outs
in the planning process when the states are found revisited in the database,
and the performance is hence improved.

One observation in the experiment is that, although the trend of the two
results is going in a growing manner, there exist some falls of scores and
ratios at some point of the experiment. After analyzing this phenomenon, we
found out the reason is that at some point of the game, some newly explored
states produced some immediate rewards which are higher than those of the
states of the previous planning episodes. This resulted in the change of the
choice of the actions for the piece at the point of the game, and lead to some
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future states which are brand new to the player’s knowledge database. We can
also see in the figure that after some more explorations of the games, the final
scores soon went up again.

The second experiment was designed to analyze the total size and the re-
visiting state coverage percentage of the database of the visited game states.
Unlike the first experiment on a fixed piece sequence, we let our player con-
tinually playing the tetris games with randomly generated piece sequences.
The main idea is to let the player meet and explore as many unvisited game
states as possible, while examine the percentages of states revisited in games
with completely different piece sequences.

Fig. 11.4. Experiment on random piece sequences

From the results of the second experiment displayed with the dashed line
in Figure 11.4, we can see that the total size of the stored game states in the
knowledge database is growing with a constant factor in our case. We thus
can conclude that given randomly generated piece sequences, the player is
able to increase its knowledge of the Tetris game.

Shown with the thick solid line in the figure, as more visited game states
are stored in the database, we can see that the percentage of state revisiting
is increasing. This means that is more likely to revisit a previously explored
game state, even when the game has a completely different piece sequence.
On the other hand, the percentage of states revisited during games with dif-
ferent piece sequences is still low, which means that currently the size of the
database is not big enough to cover many useful Tetris game states.

Combining the results of the first two experiments provides evidence that
our artificial Tetris player can successfully play the standard Tetris game us-
ing the UCT algorithm, and has the ability to learn from the played games
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and improve its future performance with the help of the knowledge database
of the previously visited game states. By repeatedly playing the Tetris games
using randomly generated piece sequences, the performance of the player
will improve, as more useful game states will be covered by its knowledge
database.

Fig. 11.5. Competitions between players

The third experiment was the competitions against Fahey’s benchmark
player[31] using different approaches. The winning percentages are calcu-
lated on a basis of 100 rounds of games, and the results are shown in Figure
11.5. The three columns represent the different approaches used to develop
the player: 1) the UCT based player with only the hashing database, 2) the
UCT based player with both the hashing database and the pruning method,
and 3) the SVM based pattern player in our previous work[87].

As we can see in the figure, with only the hashing database, the player’s
performance against the benchmark is very low. With the support of the prun-
ing method, the performance of the player is significantly improved, as shown
by the number of wins in Figure 11.5 increasing from 2 to 91 over 100 games,
and is competitive comparing to our previous work of the SVM based pattern
player.

There is a trade-off in including pruning in our approach. The complexity
of the included method affects the efficiency of the planner in both the action
selection and the roll-out sampling. According to the statistics of the experi-
ments, the number of roll-outs per planning episode dropped by 1/2 when the
pruning method is included, while the number of pieces successfully played
per game raised by 25 times. Conclusion can be drawn that such method is
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suitable in our approach to improve the performance of the developed player.

11.6 Discussion

In this paper, we have developed an artificial Tetris player using the bandit-
based Monte-Carlo planning method. Different from many existing artificial
Tetris players, our player is built on the ten-piece planner. Our idea is to
use the Monte-Carlo planning method to sample the possible actions of the
given pieces in the game field, and use the bandit algorithm to balance the
exploration-exploitation trade-offs and guide the planning process.

One of the key challenges of our work is to find a good solution to make
use of the information of the visited states during the planning process, as
such information is not kept and reused in the standard UCT algorithm. We
created a method to store the information of the visited game states in a spe-
cially created database file system. The information can be loaded and reused
in the future planning episodes when the states are revisited, and the scheme
provides our artificial player with the learning ability.

The high branching factor causes the planner to spend much of its time
exploring possible actions, while many of such actions are useless and often
lead to unwanted game states. We created a method to prune the planning tree
during the planning process to reduce the number of actions to be explored,
and eventually improve the game performance of our player.

The experiment results show that our player can successfully play the
Tetris game. By using the stored information of the visited game states as
a support to the UCT algorithm, the results of the experiments show that the
performance of our player improves as the number of games played increases.
The player could explore the unvisited Tetris game states using randomly gen-
erated piece sequences and improves its game performance. With the pruning
method, the developed player has significantly higher chance to win a multi-
player Tetris game in competition against the benchmark of the Tetris players.

The results of our second experiment on randomly generated piece se-
quences showed that our database has not yet covered a high percentage of
the useful game states. In the next step, we will continue the experiment on
exploring unvisited game states for the database, and analyze the use of larger
database in the Tetris games.

Currently we use an intuitive method to prune the planning tree. Although
the overall performance of the developed player is improved, careful studies
are needed to analyze the trade-offs between more complex pruning methods
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and the changes in the player’s performance. This is another interesting topic
be in our future plans.
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Playing Tetris Using Learning by Imitation

This research was motivated by building an artificial player for the compe-
titions in Tetris. As a human is superior in the competitions, we employed
learning by imitation to clone the game skills of human players. The high-
lights can be summarized as follows:

• We developed an open source platform for the competitions.
• To our knowledge, learning by imitation is novel in Tetris.
• Our artificial player can acquire diverse game behaviors by imitating dif-

ferent players.
• Our player has chances to defeat the best-known artificial player in the

competitions.
• The framework supports incremental learning.

This chapter is structured in the following manner: first, the construction
of a open source platform is introduced in Section 12.1. Then, the encoding
of the features is addressed in Section 12.2. Next, an approach using support
vector machines is developed for playing Tetris in Section 12.3. After that,
the performance of the developed methods is shown in Section 12.4. Finally,
we draw the conclusion and discuss the future works in Section 12.5.

12.1 The Platform

KDE 1 is an advanced desktop platform which provides user-friendly graphic
interface. It is an open source project. KBlocks is the Tetris game in KDE.
We developed KBlocks to a platform for researches in artificial intelligence.
The system components of KBlocks is shown in Figure 12.1.
1 official cite: http://kde.org
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Fig. 12.1. The System Components of KBlocks

KBlocks can be run in two modes: KDE users can use it as a normal
desktop game; researchers can choose to start a game engine, a GUI, or a
player. The GUIs and the players are connected to the game engine via UDP
sockets. The components can be run in one or several computers.

KBlocks can be configured with parameters defined in a text file. The
game engine (and the GUI) supports game competitions among up to 8 play-
ers, in which one player could be a human. A hand-coded artificial player is
integrated [72]. It can clear on average 2000 − 3000 lines in single games.
The competitions can be done in a synchronized mode, in which each player
gets the new piece after the slowest player finishes the current placement.

A new artificial player can be integrated into the platform with ease. We
provide a source code package in Internet 2, in which the class KBlocksDum-
myAI is a clean and simple interface for the further development. Graduate
students can simply change the source code for their internship or thesis. Re-
searchers can play around with some ideas or organize competitions.

Learning by imitation is developed for playing Tetris. The training data
of the imitation learning are obtained from the imitated system. In this paper,
they are the Tetris games played by the imitated player. We created several
models to obtain the skills of the imitated player. The training process re-
ceives positive feedback if the models make the same decision as the imitated
system. Otherwise, it receives the negative feedback. The imitation learning
is successful if the trained models keep the similarity even if the data never
appear in the training set.
2 http://www.informatik.uni-freiburg.de/∼kiro/KBlocksDummyPlayer.tgz
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The learning system consists of several components, as shown in Figure
12.2. We created three catalogs for these components: the data representation;
the algorithms; and the learners. They are illustrated as the gray rectangles,
the regular rectangles, and the round-cornered rectangles in the figure.

Data Preprocessor

FiltersCounting

Pattern
Calcu-
lator

Info.
Gain

Support
Vector
Machine

SVM
Learner

Filtered
Data

Activated
Patterns

+
Hand
Coded
Features

Class
Labels

stop

Fig. 12.2. System Components

Figure 12.2 also shows the relations among the components. We align
these components vertically according to the catalogs. A lower algorithm uses
the outputs of the upper one as its inputs. The learners computes the models
which are used in the algorithms.

The middle column with the dotted arrow lines shows the sequence of
the computation in the games. With the current board state and the piece
(s, p), the data preprocessor can generate up to 34 candidate placements by
enumerating all the rotation and the position of the p. The candidates are
filtered because of the heavy computational power required by training the
SVMs. The rests of the candidates are passed to the pattern calculator and the
hand-coded features. Each candidate is transferred into a vector of the values
of the patterns and the features. The vectors are used as the input of the SVM
for the prediction. The output of the SVM can be described as how similar
a candidate is to the choice of the imitated player. Consequently, the most
similar one is labeled as the final choice.



116 12 Playing Tetris Using Learning by Imitation

12.2 Encoding Features

Training the SVMs is time consuming. There are 7 different pieces in Tetris:
L, J, O, I, T, Z, and S. To place one of L, J, or T, there will be 34 candidates
by combining all the possible rotations and positions; O has 9 combinations;
I, Z, or S have 17. The candidate chosen by the imitated player is regarded as
the positive case. The others are the negative cases. If the size of the training
set is 10000, there are about 220000 tuples (cases) in the set. If each tuple is
a vector of 39 values, training a SVM from these data would take more than
a week using a 2.3GHz PC.

In order to reduce the data set, the types of pieces are used in the data
preprocessor to separate the data into 7 subsets. Each subset is used to train
its own filter, patterns, and SVM. In other words, seven SVMs work together
in the artificial player.

When placing the current piece, human players can first reduce the candi-
dates to a limited number by observing the surface of the accumulated blocks.
Then, they choose one from the filtered candidates as their final decision. This
idea was used to develop the filters for reducing the amount of data in the
learning.

c c c

x x x x c x x

x x x x x x x x

x x x x x x x x x

Fig. 12.3. An example of the Pattern

A filter consists of a set of patterns. Figure 12.3 shows the concept of the
patterns. The current piece is denoted by ’c’, it is an ’L’ in the figure. We use
’x’ to denote the already occupied cells. Around the placement, a small field,
which is marked in gray, is chosen as the activated area for the patterns. The
patterns are smaller than the small field. For example, the deeper gray area in
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the figure shows a pattern. It contains 5 × 2 cells. The cells with a ’c’ or ’x’
inside are occupied.

A pattern can be activated by a placement. As mentioned above, the small
field is activated by the placement. All the 5× 2 patterns can be enumerated.
We move a pattern around the small field. It is activated by the placement, if
the occupied cells in the pattern match the occupied cells in the background
(the small field).

Filters can thus be learned by counting. If a pattern is never activated by
the placements of the imitated player, it can be used to reduce the candidates.
Each filter is a set of such patterns. It can be learned by running the activation
tests over all the training data.

12.3 Training Support Vector Machines

The patterns are useful not only in the filters but also for modeling the skills
of the imitated players. For instance, a pattern was activated 1000 times over
the training set, among which 900 were activated by the positive cases. This
pattern cannot be used in a filter because there are mixed negative and positive
cases. However, activating it apparently indicates that the placement tends
to be positive because of the positive to negative rate in the training data.
Therefore, the patterns are also used in this section to compute the inputs of
the SVMs.

However, the patterns can only get the “local” information. They are
checked within the small field around the placement. From another aspect,
it is important to consider some “global” parameters in Tetris. For example, a
candidate placement can clear 4 rows. This would be important for the game.
The patterns, however, cannot express this occurrence.

We designed hand-coded features to acquire “global” information. If the
patterns can define the tactics of the games, the features can be used to de-
scribe the strategies. In order to define these features, we use Figure 12.4 to
illustrate some phrases: hole, flat, column, and well. A well or a hole is buried
if it is no deeper than three cells from the surface.

The features are listed in Table 12.1. Items 2 and 3 are for the column.
Items 4 − 6 are about the flat. 9 − 11 are for the hole. 14 − 18 are about the
well. Our features are compared with the features listed in [70]; the items with
* were not mentioned. There are differences in the descriptions of the features
because we use them as the inputs of the SVMs. The other researchers devel-
oped the evaluation function with the linear combinations of the weighted
features.
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Fig. 12.4. The Illustrations of the Features

A large number of patterns can be created by enumeration. For example,
an enumeration of 5 × 2 will create 1024 patterns. It is difficult to consider
all these patterns as the inputs of the SVMs because of the required computa-
tional power. To our knowledge, there is no trivial way to compute a subset of
the patterns which yield to the optimal performance of the SVMs. Therefore,
we employ the information gain in decision tree for computing a subset of 20
patterns for each SVM.

SVMs are a popular method in data classification, in which the whole
data set are globally classified with a set of the labels. Nevertheless, the data
in Tetris are grouped by the current piece. Among the candidate placements
of the current piece, the algorithm needs to choose the one which is closest to
the choice of the imitated player. LIBSVM [20] provides an API to compute
this probability, which is used in our implementation.

The values of the inputs should be within the same range in the SVMs.
The patterns always have a value of 0 or 1, which denotes whether or not it
is activated by the current placement. The value of features, however, can be
much bigger. For example, the maximum length of the flat can be up to 9
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Table 12.1. List of Hand-Coded Features

1* How many attacks are possible after the current
placement.

2 The number of the columns.

3 The increased height of the column.

4 The increased number of the flat.

5 The decreased number of the flat.

6 The maximum length of the flat

7 The increased height of accumulated blocks.

8 The height difference between the current place-
ment and the highest position of the accumulated
blocks.

9 How many holes will be created after the current
placement

10 How many holes will be removed after the current
placement.

11* How may occupied cells are added over a hole.

12 The number of removed lines of the current place-
ment.

13* How well will the next piece be accommodated.

14 If a well is closed by the current placement, how
deep is the well.

15 If a well is open by the current placement, how deep
is the well.

16* How may occupied cells are added over a buried
well.

17 The number of the open wells.

18 How deep is the well, if it is created by the current
placement.

19 Whether a well is removed by current placement.

in a standard Tetris game. In order to avoid this situation, the values of the
features were mapped to 0, 0.5, or 1 in our implementation.

12.4 The Experiments

The experiments were done in a grid system. There are 8 computers in the
grid. Each computer has 8 2.3GHz AMD CPUs, and 32G memory. 64 pro-
cesses can be run in parallel in the grid.
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Fig. 12.5. The Training Process

We recorded 10 games of a human player. Each game lasted more than
one hour. The game speed was limited, so that the player had enough time
for the game. The player can play Tetris at an amateur level. In total 6720
rows were cleared in these games. The human player was regarded as the first
imitated player.

The Fehey’s artificial player [31] was run for about 1 hour. It cleared 6774
lines without a restart. The game was recorded as the training set. Fehey’s
artificial player was the second imitated player.

The two imitated players had very different behaviors in the games. If the
human player competes with the artificial player in the synchronized mode,
the artificial player has very little chance to win, because it attacks only a few
times.

The recorded data were divided into 150 subsets, 120 of them were used
as the training set. The rests comprised the testing set, through which the sim-
ilarity between the trained models and the imitated players can be calculated
the rate that the trained model chooses the same placements as the imitated
player. The results are shown in the upper plot of Figure 12.5. The data were
averaged over 10 slices.

The solid lines show the performance of the player that imitates the hu-
man player. The dotted lines are the player that was imitating Fehey’s player.
Both imitations achieved a similarity of about 0.7. The curves resemble a
typical learning curve because the similarity is regarded as the evaluation in
the learning. The similarity cannot be higher because of the differences in
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Fig. 12.6. Behavoiurs of Different Players

the data representation and the models between the imitating system and the
imitated systems.

The trained models compete against Fehey’s player in the synchronized
two-player games. 200 random piece sequences were generated for the 200
games, so that each model was evaluated in the same set of the games. The
middle plot in Figure 12.5 shows the winning rates of the imitating players.
The player imitating human finally achieved 0.25 as its rate of wins in the
competitions against Fehey’s player. The other imitator did not perform well
because the competitions were between the imitating and imitated systems.
As the similarity cannot be very high in our implementation, the imitated
system should in principle be better than the imitating system.

The trained models also play the single games. The piece sequences used
in the games were generated and fixed. The number of handled pieces was
used as the evaluation of the player. The results are shown in the lower plot
in Figure 12.5. Fehey’s artificial player is better than the human player in
the single games, which explains the observation that the imitator of Fehey’s
player is in the end better than the other imitator.

The training process was designed to search for the maximum rate of the
similarity. The rate reached 0.68 at the 30th data slice, and kept this value
after that. The performance in the competitions and single games can still be
improved after the 30th data slice. This observation indicates that a bigger
training set helps to improve the game skills, though it does not improve the
similarity in the imitation.

The human player, Fehey’s player, and their imitators have different be-
haviors in the games. In order to show the difference, we designed the evalua-
tions for the attack, defense, and risk. Each player played the same sequences
of the pieces in the single games. Attack is the average number of attacks that
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the player made to clear 100 lines. Defense is evaluated by the average num-
ber of cleared lines of each game. Risk is measured by the average height of
the placements. The results are shown in Figure 12.6.

Fehey’s player has a defense ability several levels of significance better
than the other players. This information was shown as the open-end column
in the figure. The other evaluations were mapped to a comparable range. The
human player has the best attack ability, which explains how its imitator has
chances to defeat Fehey’s player in the competitions. The two imitators show
quite different behaviors according to the evaluations, which means our imi-
tation learning can generate various artificial players according to the imitated
systems.

12.5 Discussion

In this chapter, we developed a platform for Tetris competitions. The platform
is based on an open-source project. The GUIs and players can connect with
the game engine via the socket connections. A dummy player was provided
as an interface for further development.

We implemented a framework by using learning by imitation. The frame-
work consists of several sets of filters, pattern calculators, and SVMs. The
imitation tasks were mapped to a standard data classification problem. The
experiments show that our imitators have chances to defeat Fehey’s player,
which is the best-known artificial player in single Tetris games. And the imi-
tation learning can acquire diverse skills in Tetris games.

This artificial player is implemented according to the SAL framework.
There are multiple learners in the framework. The learned player can be used
to select an interesting game for further training. The inputs and outputs of
the learners form a loop so that each performance of one of the learners create
improvement space for the incremental learning.

The imitator did not win many games in the competitions. In the next step,
we will develop an extra learner for the better results. The initial experiments
showed that the wins in the competitions can be significantly improved by
using the rate of wins as the evaluation in the learning.

So far, we developed two players for Tetris. The first one was developed
in Chapter 11, which is based on bandit based Monte-Carlo planning. It re-
quires to foresee ten pieces in advance for the planning. The second one is
not as competitive as the first but it requires only one piece in the future and
it consumes much less computational power.
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Other Applications
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A Game Controller Based on Multiple Sensors

There are many fantastic digital games. However, playing such a game is
regarded as an unhealthy activity [24]. The main reason is that most of the
games can be fully controlled by hand. It would be unhealthy if children
stayed on the couch for several hours, gazing at the screen and moving only
their fingers.

“More Movement” is a popular idea for playing digital games. This con-
cept can be found in current commercial-available game consoles. For exam-
ple, accelerometers are integrated into the remote controller of wii1, which
requires players to twist their wrists. A camera (EyeToy and 2 Natal 3) is used
to recognize the gestures of a player, so that one needs to wave their arms to
control a game. Although these devices introduce “more movements” than a
normal joystick does, their effects are still limited.

13.1 Motivation

The main idea of the work here is to enable the players to control the game by
their activities, which involve not only hands and feet, but also the movements
of the whole body. In addition, there could be other inputs such as the voice.
Different from the idea of a single device, e.g. joystick, the proposed game
controller can have multiple parts (sensors) scattered at different places in the
environment. The controller can be used not only for a single player, but also
for a team of players cooperating on a task. It raises the question on how to
configure the mapping, which is from real-world activities to a sequence of
1 wii is a product of Nintendo
2 EyeToy is a product of Sony
3 Natal is the future concept for the game console of Microsoft
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commands to control a game. Some algorithms in artificial intelligence, such
as finite state machine, can be employed in this mapping.

This chapter is structured as follows. In the next chapter, we discuss the
relations between this work and the literature. Then the implementation of
the game controller is depicted. After that, two different mapping algorithms
are implemented for a fighting game. The experiments show the quality of
the control and people’s attitudes towards the system. In the last chapter, we
conclude and present the outlook for future work.

13.2 Related Work

Ubiquitous computing, first proposed by Mark Weiser in 1988 [83], is re-
ceiving more and more attention in the domain of Human Computer Interac-
tions(HCI). The main reason is that there are many embedded systems com-
ing into our daily lives, which foster new ideas in HCI. Many works in HCI
can be described as the replacement of the two interfaces: one is from human
to computer, which are a mouse and a keyboard; another is from computer to
human, which is a display. Instead, physical interfaces are developed, which
are supposed to work in a way that the computer in a system is totally hidden
behind these interfaces [36]. The end users of such a system cannot aware
that a computer is being operated.

In some applications, the computers need to be directly observed and op-
erated. The subject of this paper – digital games – can be classified into this
kind of application. The reason is that the display of a digital game, e.g. the
game of a simulated war, is actually a highlight of the system. For this kind of
application, an important idea in the direction of HCI was proposed by Ishii
and Ullmer in 1997: the operations of the virtual objects in the digital world
are achieved in a “touchable” way, which is the so-called Tangible Bits [41].
To develop a game controller, researchers normally focus on how to create
a physical interface to control the game, while the display is left untouched.
Headon and Curwen developed a ubiquitous game controller in 2002 [39].
Sensors are installed under the floor so that the player’s movements on the
floor can be transferred to control a digital game.

Varieties of devices (sensors) have been used in game controllers in the
past number of years. For example, RFID-System can be used as an input of
a game [12], as well as voice [38]. The VoodooIO gaming kit [75] consists of
configurable press-buttons. In this work, there are multiple sensors working
together in the environment, which is the idea of ubiquitous computing [83].
Our game controller has a similar distributed architecture to [39] and [75]. A
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set of devices are integrated into a single controller, which is very different
from the ones employed only one input method [12, 38]. LMS is used for ob-
serving the surroundings. To our knowledge, the approach in this paper has
three highlights: the game controller is based on a series of advance technolo-
gies which are real-time and require no physical contact for the control; the
mapping module in the framework can significantly change a game, which
makes a game, rather than easy and comfortable, exhausting for the players;
the experiments show statistics on people’s attitudes towards the mapping and
the developed game controller.

13.3 Game Controller

13.3.1 System Architecture

The system architecture is shown in Figure 13.1. There are three modules in
the system: sensor module, mapping module, and game control module. The
sensor module are distributed in several computers, which provides a flexible
way to place the sensors at the proper places and to add computers for more
computational power. A local area network (Ethernet) is established for the
communication. The communication between two processes is achieved via
a “socket”. It takes less than 10ms on sending and receiving a message.

Fig. 13.1. System Architecture

The mapping module is a must for the system. Most commercial games
assume that they are controlled by pressing buttons (and) or a mouse, which
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should be done with ease by hand. In many cases, the skill of playing a game
is to press the right buttons at the right times. When the game is controlled
by an activity, the tasks are totally changed. Jumping and running from one
place to another need time spans and efforts which are very different from
pressing buttons. A game, designed for hands, can hardly be controlled by an
activity. The main functionality of the mapping module is to bridge the gap
between using “hands” and using an “activity” to control. It also provides a
way to configure the game behaviors. The arrow between the mapping and
the game control modules is implemented by hooking the keyboard events in
the operating system.

All the components of the controller can be put into a mid-size suitcase,
although the valid acting area of the controller can be as big as a room. The
controller does not have many requirements of the environments. For exam-
ple, it does not require a critical lighting condition as a normal camera does. It
can be setup in short in a any typical room, or even outside. One shortcoming
of the system is that its price is not yet ready for market.

Fig. 13.2. System Components
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Figure 13.2 shows the system components. For each player, we use one
LMS, one microphone, and two RFID-readers which can drive the player to
walk or to run in between. Two sets of the devices make it possible for a
human versus human game.

13.3.2 Observation of the Legs

Fig. 13.3. Observing the Actions of the Legs Using LMS

Laser Measurement System (LMS) is a fast and accurate device to ob-
serve the surroundings. It emits a fan-shape laser beam. The measurements
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are a series of points, each with a distance and angle to the laser start point.
LMS4004 is chosen to observe the legs’ actions. It has a scan-frequency of
about 350Hz; the laser open is 70◦; the valid range of the measurements is
from 700mm to 3000mm with an accuracy of±3mm. The LMS is set up on
the ground in such a way that the laser beam projects on the lower part of the
calf, as shown in Figure 13.3. When the player stands still, LMS can observe
two round objects in its view.

Fig. 13.4. The Plot of the Observed Actions

In order to detect the legs, an algorithm is implemented to trace the po-
sition of each leg. Figure 13.3.2 shows these data: x axis is the time, y axis
is the x position of the legs; the observed player was walking. One leg is
raised after another when a person is walking, and the LMS cannot observe
a leg if it raised higher than the laser beam. We can see in the data that the
player walked for four steps. The sensor data is noisy, thus the recognition is
implemented using a moving window.

13.3.3 RFID-Tags and Voice as the Input

Radio Frequency Identification (RFID) is a technology by which an ID can
be read without any physical touch. It can identify many IDs. If the IDs are
combined with other objects, e.g. the left hand and the right hand, the RFID
system can recognize much more information than a press button. We chose
4 LMS-400 is a product of SICK AG
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an RFID reader and tags with a reading frequency of more than 100Hz, and
a range of 150mm. Two RFID readers are used for each player, who has two
toys with the tags. The readers are placed at the two ends of the active area,
so that reading a tag at one reader and then the same tag at the other is an
activity of walking (running) through the area.

Recognizing the content of a voice is a difficult task. To simplify the task,
we use only the volume of the voice to control a game. If the output of the
microphone is only zero (the background noises) and one (shouting at the
microphone), a single threshold can lead to accurate and robust performance.
As an input, a shout only needs to be loud enough. It also adds funny effects.
Shouting during a game causes a lot of laughter for both the players and the
spectators.

13.4 Mapping Methods

We chose a fighting game (Samurai II5) for several reasons. It needs a com-
plex control sequence. Board games such as “FreeCell” and “Chess” are
much less challenging. In addition, human versus human mode makes the
game more exciting. The tasks of the game are quite simple: attacking the
opponent as much as possible, while defending against being attacked. The
character is controlled by three direction keys, and three action keys. In ad-
dition, each character has three or four advance actions, e.g. a sequence of
right, down, left, boxing, and jumping will lead to a rush slash. The advance
actions require more skills in the control, and in most cases they decide the
results of a game.

In our system, the game is controlled in three distinguished modes. “Joy-
stick” is the classic way to control a fighting game. This mode is regarded as
a baseline for the estimation of the others. “Direct mapping” is an intuitive
and natural way to map the activities of the player to the actions of the virtual
character in the game. “Indirect mapping” mode mentions the activities of the
player, in which the game is significantly simplified.

In the “direct mapping” mode, the human actions are directly mapped to
a game action. The mapping is designed as intuitive and easy as possible. For
example, the jump of the player is mapped to the jump of a virtual character.
This is even more intuitive than “pressing a jump button”. We also choose the
toys similar to the weapons in the game. RFID tags are attached on an inflat-
able hammer and a rubber sword. Although the player should be much more
active than when they are in the “joystick” mode, the “direct mapping” mode
5 Samurai II is a product of Neo Geo
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keeps most highlights of the game. Most basic and advance actions available
in the game are still possible by using the game controller. The mapping of
the advance actions is designed to be as close to the real movement as pos-
sible. For instance, if the player inputs using a sword, and then jumps, the
game character will do the most similar action: a rising slash. The main dis-
advantage of the “direct mapping” is that it delays a bit from the time the
player starts the action sequence to when the virtual character reacts to the
command, especially when there is a long sequence of actions that need to be
performed.

Fig. 13.5. A Full-Connected Finite State Machine

In “indirect mapping” mode, we use a finite state machine to control the
game. Figure 13.5 shows an example of such a state machine. Each node in
the graph is the input of a device. The activities of the player can be mapped
to a sequence of states and transitions. The activities of a player can thus be
modeled and expressed in an indirect way. Considering the chosen fighting
game, we configured the state machine as follows. Each transition is weighted
by the required energy from one node to another. The weights are accumu-
lated in the state machine – for example, the jump of a player can be mapped
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to a sequence of observations: two legs are observed, no leg is observed, and
two legs are observed. The sequence is scored as 10. Walking activity can
be recognized in a similar way, which is scored as 5. The accumulated en-
ergy can be released to the virtual character of the game by a special node,
e.g. sword. The “indirect mapping” significantly changes the game. The only
skill a player needs is to release the energy at a proper time, which makes the
game very easy for the beginners. The player would feel quite exhausted after
only two or three rounds.

13.5 Experiments

The experiments were done in the following scenario. First, the participants
play the game with a joystick, so that they get to know the basic operations
and the advance skills of the game. Then, they are invited to play against
each other using the “direct mapping” mode. Before they start to play, we
give a short introduction to the mapping. The instructions are introduced and
demonstrated one by one. Then, they can play by themselves while looking
at the instruction page. After that, the “indirect mapping” mode is introduced
in brief and they are asked to play using this mode. Finally, they evaluate and
compare three control modes by completing a questionnaire.

The evaluation takes the form of scores: minus is negative; zero is neu-
tral, and plus is positive. Questions 1 − 4 are used to evaluate the quality
of the control. They cover four aspects: easy to use, reactive, accurate, and
fully-controlled. Question 5 is designed to evaluate whether or not the game
controller is novel for the participants. Question 6 estimates how healthy a
digital game could be. Question 7 ask the participants to rate the three con-
trol modes overall. Finally, we got 31 participants, 28 of which completed the
questionnaire.

Figure 13.6 shows the sum of the scores of the questions 1 − 4. The joy-
stick has a better control quality over all of the four aspects. There are mainly
two reasons for this result. On the one hand, a joystick is a classic control
device, thus most people are good at using it. On the other hand, the game
was originally designed for running in a “game machine”, which has a con-
trol interface very similar to a joystick. The “direct mapping” turns out to be
more difficult, less reactive, and less accurate to be controlled than the “indi-
rect mapping” in the experiments. “Direct mapping” is more difficult because
the mapping contains an instruction list, which is new for all the participants;
they have to learn these instructions during the games, whereas, the “indirect
mapping” has an extra GUI and the state machine calculated whatever the



134 13 A Game Controller Based on Multiple Sensors

Fig. 13.6. The Quality of the Control

player did as a certain amount of energy, which is quite reactive. The final
trigger to release action is very easy. Therefore, the control using “indirect
mapping” can be more reactive and accurate. “Indirect mapping” was evalu-
ated as negative in the fully-controlled because the game actually cannot be
fully-controlled in this mode.

Fig. 13.7. The Attitude towards the Control
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Figure 13.7 shows the attitudes of the participants towards the three con-
trol modes. The joystick was not interesting for the participants. The other
two modes were equally novel. Many people gave surprisingly positive feed-
back towards the joystick on healthy game question. A reasonable explana-
tion is that the evaluation process was quite short in time; participants were
not aware that moving only their fingers and gazing at the screen for long
periods of time is somehow unhealthy. Compared to the other modes, “indi-
rect mapping” induces movement the most, so it was estimated as the most
healthy game. “Direct mapping” was also significantly better than the joy-
stick. The participants were asked to exclusively choose a favorite mode in
the last question. 16 people preferred the “direct mapping”, even if the control
quality of the mode is the worst one. 9 people preferred “indirect mapping”;
only 3 people remained with the joystick. A possible explanation is that “di-
rect mapping” not only introduces much more movements, but also keeps
the most interesting feature of the original game. “Indirect mapping” is also
interesting, but it requires much less skill.

13.6 Discussion

In this chapter, A game controller is developed by using three distinctive
measurement methods, which require no physical touch. We chose a fight-
ing game as a case study. Two different mapping modes were implemented.
People participated in the evaluation of the game system. The experiment’s
statistics show that mapping module can significantly change the game. The
game controller was pretty interesting for the participants. It achieved a fairly
good evaluation in the quality of the control. The participants preferred to use
the controller, although it did not have a control quality as high as that of a
joystick.

Instead of making the game control easier and more comfortable, we are
working towards making the control be taxing or even exhausting for the play-
ers. The experiments show that people actually accept this idea quite well.
Most of the participants preferred to play the game using the developed game
controller, rather than a classic joystick. It is possible that some highlights of
a game are limited by the controller, which is a shortcoming of the system.
The mapping method needs to be chosen very carefully.

In the future, other measurement techniques can be integrated into the
controller. For example, if there is an eye tracking camera by which the com-
puter knows where the player is looking, the operations of a mouse become
feasible for the game controller. The activities of players could be studied. In
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this work, we did not actually pay much attention to this. It would be won-
derful if an interesting sport could be combined with a digital game.
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On-Line Detection of Rule Violations in Table Soccer

14.1 Introduction

Table soccer also known as Foosball is a popular game, often played in pubs
or other social contexts. The ball can be kicked by rotating the rods, and
professional players can shoot the ball across the table within a few hundred
milliseconds. Because of the high speed of table soccer, a human is not always
able to thoroughly observe all actions in the game, such as the fast turning of
a kicking rod. However, this is necessary to make objective decisions about
rule violations.

We present an approach to automatically detect rule violations on-line,
using high frequency sensor data to classify and evaluate game situations.
This helps humans playing table soccer. Most rules covering game mechanics
depend on the detection of a playing figure kicking the ball. Thus, detecting
violations of one of the most important rules is the main task: Rods may
not be rotated by more than 360o before or after ball contact. This prevents
players from spinning the rods in an uncontrolled manner when kicking.

Because the sensor data is noisy, a probabilistic model for kick detection
is required. Supervised learning is used to train a naive Bayes classier for this
purpose.

The chapter is organized as follows. First, the related work is addressed.
Then, the methods used for segmentation and classication are explained in
Section 14.3 and 14.4, followed by the experimental setup and results in Sec-
tion 14.5. Finally, we will conclude our work in Section 14.6.



138 14 On-Line Detection of Rule Violations in Table Soccer

14.2 Related Work

This chapter is based on the kicker recorder, KiRe [88] and the ball detection
method of the KiRe [25].

A common approach to model dependencies between random variables is
a Bayesian network in the form of a directed graph [57]. Nodes represent ran-
dom variables or classes, while directed edges denote dependencies. In a clas-
sication problem, the network is used to compute the posterior probabilities
of all classes ck given the observed values of the attributes: P (ck|x1, ..., xn).
The class with the highest probability is then assigned to the observation. Us-
ing Bayes’ Theorem, the posterior of a class c can be computed as Equation
14.1 which flips the conditioning to make the distribution easily learnable.

P (ck|x1, ..., xn) =
P (x1, ..., xn|c)P (c)

p(x1, ..., xn)
(14.1)

With the assumption that all classes are equally probable, all attributes
independent given the class and that the prior is independent of the class. This
greatly simplifies computation to Equation 14.2. With being a normalization
constant, this is the naive Bayes classier. Even though the naive assumptions
seldom hold in reality, naive Bayes has been attested a good performance
in many domains and can even be the optimal classier with respect to the
misclassication rate in some cases [28] [90].

P (ck|x1, ..., xn) = αΠn
i=1P (xi|c) (14.2)

In this work, observed values are not discrete but continuous. One com-
mon approach is to discretize the attributes [29]. However, we believe that dis-
cretization will lead to system degradation by discarding information like the
probability for a kick. Instead, we model the random variables to be Gaussian
distributed and use the joint probability of the distributions for each variable.

Common extensions to naive Bayes include tree-augmented naive Bayesian
networks [35], where additional dependencies between the attributes can be
modeled. The cost is a higher algorithmic complexity. To cope with the high
sampling frequency to observe games on-line, an ecient implementation is
needed in our case. Our experiments revealed that the classication perfor-
mance of naive Bayes is good enough for this application.

With continuous and Gaussian-distributed attributes in Equation 14.2, it
follows the equation 14.3. Variance δ2i and mean µi of each attribute i are
determined with supervised learning for a known class label c. m attribute
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values xi,1, ..., xi,m are sampled for each attribute i and the unbiased estima-
tors for mean and variance are used on these values.

P (ck|x1, ..., xn) = αΠn
i=1ϕ(xi) = αΠn

i=1

1√
2πδ2

e
−(xi−µi)

2

2δ2
i (14.3)

14.3 Segmentation of the Data

To cope with the high speed of the game, the sensor data is read and recorded
at roughly 200Hz using a standard PC, distributing the data stream over net-
work for further evaluation on other machines. The ball is located with a Sick
LMS400 laser measurement system, scanning through the gap between ta-
ble surface and feet of the playing gures. Rod positions are measured with
optical distance sensors and rod angles are observed with magnetic rotary en-
coders. Overall, there is almost no additional friction on the rods, enabling an
unhindered game play.

To analyze the game state, one needs to segment the sequential sensor data
and detect key events in it. The sensors introduce Gaussian-distributed noise
on the measured signal. Currently, three rods are observed by sensors, all in
the same half of the table: blue attacker, red defender and red goalkeeper.

Fig. 14.1. The Spin of a Game Rod

With respect to the rule violations described in Section 14.1, a rod spin is
completely parametrized by four timestamps: ts and te, the starting and end
times of the whole spin, as well as se and ss, the times when the first 2π part
of the rotation ends and the time when the last 2π part starts, shown as in
Figure 14.1. These discrete timestamps need to be detected in the stream of
angle measurements for each rod i.

∆i(t) = αi(t)− αi(t− 1) (14.4)
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To do so, the dierence in between two successive rod angles αi is observed
as approximation of the derivative, shown in Equation 14.4. When crossing
from 2π to 0, the values are adjusted accordingly. As soon as ∆i(t) ≥ ε for
some small threshold ε, the start of a spin movement is detected, and it lasts
until |∆i(t)| < ε. To reduce the inuence of noise, the signal is smoothed by
using the running average over a window of size three.

As soon as αi(ts) is passed for the second time, the time se is detected. ss
depends on αi(te), the angle at which the spin stops, and is detected by using
a circular array or ring buffer indexed by angle. For additional robustness
against noise, monotonicity in between start and end of the spin is enforced
when storing timestamps in the circular array. Also for noise robustness, all
bins in between storing two successive timestamps need to be emptied.

14.4 Kick Detection

Naive Bayes classiers are used to detect kicks, by using the relation of ball and
active gure as input. The active gure is the one closest to the ball on the rod
that is within range of the ball. The two directions of a kick are distinguished
by classifying two cases, forward and backward.

Fig. 14.2. The Parameters of the Kick

Input for each classier are the continuous attributes x1, x2, x3, computed
from coordinates of ball and active rod, and its angle. Figure 14.2 displays
the coordinates relative to the playing gure, Figure 14.3 displays the resulting
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Bayesian network. Note that x3 is directly related to the vertical distance
between ball and playing gure, because it is assumed that the ball always
touches the table when kicking. When it is not on the surface, e.g. resulting
from a fast kick, it cannot be observed by the laser anyways.

Fig. 14.3. The Naive Bayes Classifier of the Kick Action

The probability can now be computed according to Equation 14.3 with
n = 3 variables. In the implementation the log-likelihood is used instead,
turning the products into sums. This is computationally more stable because
very small probabilities are avoided, while it is equivalent in terms of clas-
sication. Furthermore, the constant is ignored for classication because it is
assumed to be identical for all classes.

To detect violations of the rod-spinning rule eciently, the log-likelihood
for kicks is constantly recorded. As soon as a spin covering an angle of more
than 2 is detected, the peak of the kick likelihood in the intervals [se, te] and
[ts, ss] (see Figure 14.1) is compared to an experimental threshold. Depend-
ing on the direction of the spin, the forward or backward probability is used.

14.5 Experiments

In the experiments, we rst evaluate the supervised learning performance of the
kick classier. Then, the parameters for the kick model for on-line detection are
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Table 14.1. Parameters of Training by Sampling

i= 1 2 3
Mean µi -1.37 23.54 13.02

Variance δ2i 30.30 7.09 3.21

trained. Finally, we test the performance of violation detection in real table
soccer games on-line.

To evaluate the learning performance, 50 recorded kick actions were ran-
domly partitioned into a test set of size 10 and a training set of size 40. In each
single action k, the instant when the playing gure touches the ball is selected
by hand, and the variable state (x1,k, (x2,k, (x3,k) is extracted. The parame-
ters of the kick modelmui, δi for i ∈ {1, 2, 3} are then learned incrementally,
using k = 1, ..., 40 samples of the training set as input. The performance on
classifying the test set is evaluated for each step.

V (k) = Σ10
l=1γkΠ

3
i=1ϕi,k(xi,l) (14.5)

As performance measure V , the sum over the normalized probability of
each test sample xi,l is used, shown as in Equation 14.5. The Gaussian distri-
bution varphii,k is parametrized by mean and variance of variable xi, using
k samples of the training set. The normalization constant is determined by
the maximum of the joint probability, reached at the mean, as shown in Equa-
tion 14.6. This scales all Gaussian distributions in Equation 14.5 to the range
of [0, 1]. Otherwise, their probabilities would not be comparable, because a
more general model creates a more shallow distribution.

γk = Π3
i=1(ϕi,k(µi,k))

−1 (14.6)

The resulting learning curve is shown in Figure 14.4. A first peak is
reached after using only six samples for training, and the performance of
the learned model stays stable after using 16 samples for training. A training
set signicantly larger than 20 samples only leads to small improvements.

To classify kicks in running games, only the model for a forward kick is
learned. The parameters for a back kick are obtained by negating µ2. To train
the parameters of the kick model, the variable state (x1, x2, x3) is sampled
from several congurations with the ball in front of a playing gure, varying
positions, angles and playing figures.

Table 14.1 displays the parameters trained through the sampling process,
using 27 samples. As expected, the peak is centered in front of the playing
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Fig. 14.4. The Learning of the Kick Action

gure. The rectangular footprint of the playing gure results in a larger variance
in x1 than in x2.

Spins covering angles of more than 2π and the classifying timestamps ts,
se, ss, and te are successfully detected. Figure 14.5 exemplarily shows the
sensor recording of one spin movement starting at ts = 31 and ending at
te = 105, with the detected timestamps marked. Note the noisy signal for
α(t), and that the whole spin from the angle α(ts) ≈ 5.85 to α(te) ≈ 4.75
(rad) lasts only 74 sensor ticks, which is about 0.3s.

To evaluate the detection rate in real games, test subjects not familiar with
the system played several games on the table. The position of the players
on the table (attacker or defender for the blue or red team) were exchanged
regularly. Two players rated themselves as good, two average and the remain-
ing seven as amateurs. In total, 9 games were recorded for about 105 min-
utes, silently logging the detected rule violations. Before the games, the rod
spinning rule was explained to the players, and they were asked to evalu-
ate whether they think they violated the rule after each shot. Afterwards, the
recorded sensor logs were manually inspected in slow-motion for rule viola-
tions, and compared to the detections of the system and the players.

All in all, there were 42 rod spins of more than 360 degrees on the ob-
served three rods, of which 19 were illegal kicks. The players themselves
were aware of only two of them (10.52%), while the system detected 17 vi-
olations correctly (89.47%). Two violations were missed by the system, and
one false positive detected. When a rod is spun and misses the ball closely
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Fig. 14.5. An Example of Angles with a Spin

instead of kicking it, there is a chance that a rod spin violation is detected.
The noise on the rod and ball data might add up so that the ball is falsely
located as being touched by the rotating gure, resulting in the false positive
detection. False negatives occur for similar reasons.

The referee system runs eciently on a standard PC with a 2.66 GHz Pen-
tium 4 CPU and 1GB RAM, running SuSE Linux 10.1. The application uses
just a small fraction of the available CPU power. Most of the CPU power is
used for a 3D display of the soccer table in the user interface, which shows
the live representation of the soccer table and slow-motion replays of rule vi-
olations. The distributed implementation of the system allows the display to
be easily outsourced to a dedicated machine, leaving more processing power
for example to detect additional rules.

14.6 Discussion

An approach is developed to automatically detect rule violations in table soc-
cer games. A naive Bayes classier is trained off-line to detect kicks, using the
relation of ball and closest playing gure as input.

The classier demonstrated a good performance in the on-line classication
experiments, detecting 89.47% of all rule violations, while the human players
only detected 10.52%. The ecient implementation of naive Bayes enables the
system to run eortless on a standard PC, evaluating the high-frequency sensor
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data on-line during a running game. All this demonstrates the usefulness of
our implementation. Additional robustness on the classication method can be
achieved in future work by taking the ball movement into account for kick
detection.

Finally, future research on table soccer can benet from the classication
method described here, such as learning by imitation or game analysis. The
classier could be used to detect various relations between ball and playing
gures.





Part V

Conclusion and Discussion
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Conclusion

Switching Attention Learning (SAL) is a learning paradigm on which several
learners can be developed and connected. The connection among the learners
refers to the input of a learner comes from the output of the others. In SAL,
these connections should form a loop. In boosting, co-training, and multi-
view learning, a similar loop structure can be found. One of our innovations
is that SAL has a more general definition, making it applicable to a wider
range of applications.

SAL is applicable in a scenario in which an agent can observe and imitate
other intelligent systems. These systems could be human beings, or other
agents in computers. Game competition is a suitable test-bed for SAL because
the agent developed using SAL can observe, imitate, and compete against its
opponents. In the scenario, the agent should have similar control abilities to
its opponents. Two games, table soccer and Tetris, were chosen as the test-
beds for SAL.

The development of the first test-bed – table soccer – is based on the
existing robots: KiRo and Star-Kick. Both of these robots can control one
side of the game, competing with human players on the other side. However,
KiRo and Star-Kick cannot observe the actions of the human players, thus it
cannot properly react to them. To develop the robots further, the extra sensors
should be mounted on the robots for the observation.

To observe the behaviors of human players in table soccer, a game
recorder, KiRe, is constructed. The construction of KiRe is challenging be-
cause of the space limitation of a normal game table. A frame is designed
using a CAD/CAM software, so that the turning of a game rod can be mea-
sured by a magnetic turning encoder, and the movement is estimated by an
optical distance sensor. The position of the ball is measured by two synchro-
nized Laser Measurement Systems (LMSs). These LMSs are set behind the
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goals. The recorded data are accurate and with a very high frame rate. Similar
mechanical units are designed and used in Star-Kick.

In KiRe, tracking the game ball is implemented using SAL, which can
be described as a multiple Kalman Filters (KFs) approach. There are four
learners. First, the training data are generated from the ball model. Then, a
decision tree is built from the training data. Next, the thresholds of the seg-
mentation are computed. Finally, the belief factors of the KFs are recomputed.
The tracking is successful in the experiments. Based on these achievements,
we develop an automatic referee for table soccer.

The recorded game data is a sequence of the measurements of the sensors,
which are several real numbers mapped to the rotation and the position of the
rods and the ball. Conditional Random Fields (CRFs) are employed to bridge
the high-level skills of the human player to the low-level sensor data. CRFs
is a discriminative probability model for explaining sequential data, whereby
the most possible explanation of the sequential sensor data can be computed.

A layered-structure of CRFs is implemented within the SAL framework.
The features in CRFs can be induced by using an incremental approach. We
define a reduction step, whereby the number of features can be reduced while
maintaining the performance of the CRFs. Moreover, a queue of CRFs can be
learned and work together for the prediction. Their performance is guaranteed
to be no worse than the single CRFs. In SAL, the learners are iterated in the
following order: features are induced; features are reduced; CRFs are trained;
a queue of CRFs are built.

The CRFs method mentioned above is proven to work well in a simu-
lation. To explain the real data of table soccer, a set of the labeled data is
required as the training set. We showed in the simulation that the methods
are successful because annotating such a training set of real table soccer data
is too tedious to be finished. In the experiments with the real data, we show
that the methods work, but the results are not useful because of the limited
amount of the labeled data.

The second game – Tetris, has been one of the most popular computer
games for over ten years. The game can be found in most desktop platforms,
e.g. KDE, gnome, and Windows. The Tetris game in KDE: KBlocks, is cho-
sen as the basis of the platform for the research. Several new features are de-
veloped in KBlocks. The game engine, graphic user interface, and the players
can be connected via Ethernet, into which the different players, AI or human,
can easily be plugged and engage in a competition.

Using learning by imitation, we developed a method to learn several Sup-
port Vector Machines (SVMs) for playing the Tetris game. Instead of search-
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ing for the highest “rewards” during the learning process, learning by imita-
tion is driven by searching for the “similarities”. There is a layered-structure
in SVMs, implemented within the SAL framework, being similar to the situ-
ation of the CRFs mentioned above. The features of SVMs are a number of
patterns. These patterns, as well as a series of hand-coded features, are used
as the features in SVMs. Seven SVMs are learned for playing the games.
The experiments show that the performance of the player can be significantly
improved when our player acquires similar game skills to those of the imi-
tated humans. Our player can play Tetris in diverse ways by imitating differ-
ent players, and has chances to defeat the best-known artificial player in the
world. The framework supports incremental learning because the artificial
player can find stronger players and imitate their skills.

We also develop an interesting game controller which is not related to
SAL. Rather than being easy and comfortable, this game controller is de-
signed to be physically taxing for the players. It consists of several sensors,
which makes a game more lively and forces the users to be more physically
active. By using different mapping methods, one game can be played in sev-
eral ways. The statistics gathered from the experiments show that even though
the quality of control on the chosen fighting game is not as high as with a
normal joystick, the developed controller is still preferred by most of the par-
ticipants. It induces much more movement than a normal joystick.

In summary, SAL is defined and studied in the games, table soccer and
Tetris. The platforms are developed, in which SAL can be applied. The simi-
lar layered-structure can be found in the methods used in both of the games.
The experiments show that SAL works fine in these applications.
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Discussion

Many systems have a layered-structure. For instance, if the language of hu-
man beings is regarded as a system, these layers can be easily found from one
perspective: the words or vocabulary is the lowest layer, which defines single
and isolated meaning. Phrases, e.g. noun phrases, consist of several words.
The phrases can be regarded as the joining of the words. A sentence, nor-
mally consisting of several phrases, can express an ideas. Several sentences
form a paragraph. The paragraph can be used to describe strategies or high-
level skills.

Encoded features

Conjunctions of the features

A CRF/SVM model

CRF/SVM models

Words

Phrases

Sentence

Paragraph

Fig. 16.1. The Layered Structure of the Systems
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Figure 16.1 shows the layered structure of the language, as well as those
of the CRFs and SVMs. There are four layers in the structure. From bottom to
top, a higher layer is based on the contents of the lower one. In the first layer,
basic features are defined. These features are normally hand-coded. In the
second layer, the algorithm choose the features and conjoins them together. In
the third layer, these conjunctions are used in the training of the models, e.g.
CRFs or SVMs. In the fourth layer, the trained model is added into the known
model set. After the forth layer, the set of the models should be employed to
filter the training data, so that the filtered data can be used again to induce
features in the first layer. In other words, a new round from the first layer can
be started.

Table soccer robots, as the application, can already win even against ad-
vanced human players in the games. In our research, we did not develop to-
wards playing the games even stronger, but use it as the test-bed of SAL. The
training of CRFs, which is employed for explaining the sequential data, re-
quires an annotated data set. This set can hardly be manually obtained. We
thus use the simulation in the experiments. For the next steps, the plan would
be exploring semi-supervised learning, in which both the labeled and the un-
labeled data can be utilized for better performance. After that, making the
robots imitate and learn from the better players, and developing the artificial
player to be the best player would be the ultimate goal of our research.

Regarding the work on CRFs, we define a feature reduction step and
CRF queue. The experiments are done in the simulation. CRFs is a research-
oriented area, in which acceptable results or inventions should be tested in the
widely acceptable benchmarks. We did not do this work because our research
is application-oriented. The experiment on the benchmarks in natural lan-
guage processing would not help to improve the performances of the agent in
the games. However, we should test the feature reduction step and CRF queue
on the benchmarks from the research point of view.

A method using learning by imitation is developed for playing Tetris.
In the experiments, our player has a chance to win against the hand-coded
player, which is regarded as a benchmark. Although the similarity is searched
in our method, our player cannot play exactly the same game given the se-
quence of the blocks of the imitated player. This dissimilarity indicates that
the features, which are at the lowest layer, do not have enough power of ex-
pression. Some of the ideas of the imitated system cannot be expressed by
the combination of the features and SVMs. For the next step, we will try SAL
in simpler games easier than Tetris. We hope that this simplicity can offer a
good view on how SAL works in the game.
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Human beings, as the vessel of intelligence, can use introspection and
correct their faults during the practice. SAL provides a way to do similar
things. One learner can be improved by the others.
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