
Consistency, Isolation, and
Irrevocability in

Software Transactional Memory

Annette Bieniusa

Dissertation zur Erlangung des Doktorgrades der
Technischen Fakultät der

Albert-Ludwigs-Universität Freiburg im Breisgau

2011

Dekan: Prof. Dr. Bernd Becker
Erstgutachter: Prof. Dr. Peter Thiemann, Universität Freiburg
Zweitgutachter: Prof. Dr. Satnam Singh, University of Birmingham

Tag der Disputation: 28. September 2011

ii

Abstract

Software transactional memory (STM) is a promising paradigm for the devel-
opment of concurrent software. It coordinates the potentially conflicting effects
of concurrent threads on shared memory by running their critical regions isolated
from each other in transactions in an “all-or-nothing” manner. When encountering
a conflicting access to shared memory, a conflict resolution strategy decides which
transaction has to revert its changes and is restarted.
However, this automatic coordination is sometimes too restrictive: non-revertible

operations such as I/O operations are disallowed in a transaction and some trans-
actions fail for minor conflicts that could easily be resolved. In addition, most
STM schemes focus on shared-memory architectures where costly memory updates
impede scalability.
This thesis tackles these limitations by exploring extensions to the standard STM

schemes. It discusses two novel STM algorithms which broaden the scope for appli-
cability of STM and provide insights into the strength and limitations of transac-
tional programming.
Twilight STM proposes to extend STM with non-revertible actions and inconsis-

tency repair. It separates a transaction into a functional transactional phase, and
an imperative irrevocable phase, which supports a safe embedding of I/O operations
as well as a repair facility to resolve minor conflicts. In contrast to other implemen-
tations of irrevocable transactions, twilight code may run concurrently with other
transactions including their twilight code without data races. Twilight STM further
allows the implementation of application-specific conflict resolution strategies. To
analyze their influence on the semantics of the transactions, a formal framework
for investigating consistency and isolation properties is developed and applied to
different repair operations.
Decent STM transfers the STM paradigm to a distributed setting. It is a fully

decentralized object-based STM algorithm with versioning. It relies on mostly im-
mutable data structures, which are well-suited for replication and migration. A
randomized consensus protocol guarantees consistency of shared memory. Transac-
tions may proceed tentatively before consensus has been reached. Object versioning
ensures that transactions read from a consistent memory snapshot, and the consen-
sus protocol determines which transactions can merge in their effects and which
transactions need to restart. Hence, delayed communication, e.g. caused by re-
transmissions in the transport layer, can only affect performance, not consistency.
Both STM algorithms have been implemented in functional, object-oriented, and

imperative languages, on multi-core and distributed architectures. This comprehen-
sive study points out the need for an enhanced STM interface for more flexibility and
higher programming convenience. Benchmarks featuring various workloads show the
scalability and competitiveness with state-of-the-art systems.

iii

Zusammenfassung

Software transactional memory (STM) ist ein Programmiermodell zur Entwicklung
nebenläufiger Programme. In diesem Modell werden potentiell konfligierende Daten-
zugriffe von Threads verhindert, indem kritischen Programmabschnitte voneinander
isoliert in Form von Transaktionen ausgeführt werden. Tritt ein Zugriffskonflikt auf,
wird er zur Laufzeit aufgelöst, indem Transaktionen ihre Änderungen rückgängig
machen und die Berechnung erneut ausgeführt werden. Das Laufzeitsystem garan-
tiert außerdem, dass die Modifikationen der transaktional verwalteten Daten konsi-
stent und aus der Sicht der anderen Transaktionen atomar durchgeführt werden.
Eine solche transparente Konfliktstrategie ist bisweilen zu restriktiv: Transaktio-

nen oft auf Grund von Konflikten abgebrochen, die einfach aufgelöst und kompen-
siert werden könnten. Sie erfordert außerdem, dass unumkehrbare Operationen, wie
I/O, nicht innerhalb von Transaktionen ausgeführt werden. Außerdem ist das klas-
sische STM-Modell auf Shared-Memory-Architekturen beschränkt, bei denen die
Konsistenz der Daten in den lokalen Caches der Prozessoren durch Speicherbarrie-
ren erzwungen werden.
Die vorliegende Dissertation beschreibt zwei neuartige Algorithmen, die zum einen

das klassische STM um adaptive Konfliktstrategien und die Einbettung von I/O
erweitert, zum anderen STM auch in verteilten System zur Anwendung bringt.
Twilight STM erlaubt die Einbettung unumkehrbarer Operationen sowie flexibler

Konfliktbehandlungsstrategien für Transaktionen. Es teilt eine Transaktion in eine
funktionale, transaktionale Phase, sowie eine imperative, irreversible Phase auf. Im
Gegensatz zu anderen STM-Erweiterungen für irreversible Transaktionen können
Twilight Transaktionen vollständig parallel ohne konfligierende Datenzugriffe ablau-
fen. Desweiteren erlaubt Twilight STM die Implementierung von anwendungsspezi-
fischen Konfliktstrategien. Um deren Semantik zu analysieren, stellt die Dissertation
ein formales System zur Verfügung und wendet es auf verschiedene Strategien an.
Decent STM transferiert STM in eine verteilte Ausführungsumgebung. Es ist

ein dezentraler, objekt-orientierter STM-Algorithmus, der auf Datenversionierung
aufbaut. Da Versionen nach ihrem Transfer in das dezentrale Speichersystem unver-
änderlich sind, können sie einfach repliziert und migriert werden. Ein randomisier-
tes Konsensusprotokoll garantiert die Konsistenz bei transaktionalem Datenzugriff.
Darüberhinaus können Transaktionen optimistisch bereits vor Erreichen eines Kon-
sensus ihre Berechnungen starten. Verzögerungen im Datentransfer beeinträchtigen
daher lediglich die Geschwindigkeit des Programms, nicht jedoch die Konsistenz der
Daten.
Die STM-Algorithmen sind in funktionalen, objekt-orientierten und imperativen

Programmiersprachen, für Multi-Core-Architekturen und verteilte Systeme imple-
mentiert. Die vorliegende Dissertation bietet einen Überblick über die praktische
Anwendbarkeit von STM und unterstreicht den Bedarf einer Erweiterung des Basis-
modells. Verschiedene Testprogramme belegen die Skalierbarkeit der Systeme und
zeigen die Wettbewerbsfähigkeit in Bezug auf andere STM-Systeme.

v

Acknowledgements

I am heartily thankful to my supervisor, Peter Thiemann. Without his supervision
and support, this thesis would have not been possible. He introduced me to the world
of research, the art of (functional) programming, and the pitfalls of academia. Thank
you, Peter, for your never-ending patience and encouragement, and for running a
whole night through Tokyo in order to find this DanceRevolution machine!
Furthermore, I would like to thank Satnam Singh for being the co-reviewer of this

thesis, without hesitation, despite having a tight schedule.
I also owe many thanks to Thomas Fuhrmann. He sparked my interest for dis-

tributed systems and was always willing to discuss even the most quirky ideas.
Thank you, Thomas, for your support and mentoring, and for three unforgettable
summer schools!
The DFG graduate school Embedded Microsystems and the German Federal Min-

istry of Education and Research supported me gratefully under the JCell project.

Thank you: Arie Middelkoop, for late-night hacking and pushing me towards
my goals; Stefan Wehr, Markus Degen, Phillip Heidegger, and Konrad Anton, for
innumerable coffee breaks and being great colleagues; Markus Degen, for always
having an open ear; Konrad Anton, for emergency cookies; Felix Atmannspacher,
and Paresh Paradkar, for implementing prototypes and finding the bugs, and their
enthusiasm for STM; all members of the grad school on Embedded Microsystems,
for introducing me to the fascinating world of very small systems and a great time
in Japan; Tim Nonner and Christian Gunia, for sharing the grad school experiences;
Berit Brauer, Manuela Kniss, and Martin Preen, for their administrative support;
Fabian, Florian and Andrea Fuhrmann, for offering the visitor bed in their playroom
during project meetings; Uta Thiemann, for barbeques and books; Ulrike Pado and
Rotraud Miessner, for wine, chocolate, and girls talk. And thanks to all friends
from all over the world for being what they are!

Zum Schluss möchte ich meinen Eltern danken, für ihre Unterstützung und Liebe
in allen Lebenslagen.

vii

Contents

List of Figures 5

List of Listings 7

List of Algorithms 9

1. Software Transactional Memory 11
1.1. Concurrent Programming . 11

1.1.1. Lock-Based Synchronization 11
1.1.2. Message-Based Synchronization 12
1.1.3. Transaction-Based Synchronization 13

1.2. Designing an STM system . 14
1.2.1. Semantics of Transactions . 15

1.3. Contributions of this thesis . 17

I. Twilight STM 19

2. Introduction 21

3. A Tour of Twilight STM 23
3.1. Twilight transactions . 23

3.1.1. Workflow of twilight transactions 24
3.1.2. Properties of Twilight STM 25

3.2. The API of Twilight STM . 26
3.2.1. STM system operations . 26
3.2.2. Basic transactional operations 26
3.2.3. Demarcating groups of variables 27
3.2.4. Transactional workflow . 28
3.2.5. Twilight operations . 28

3.3. Twilight STM in Action . 29
3.3.1. Debug traces . 29
3.3.2. Fine-grained conflict detection for data collections 31
3.3.3. External locking protocols . 34
3.3.4. Applications in a distributed setting 37

3.4. Limitations of Twilight STM . 39
3.4.1. Nesting of transactions . 39

1

Contents

3.4.2. Reading and writing in the twilight zone 40
3.4.3. (Trans)Actions in the twilight zone 40

4. Algorithm 43
4.1. Globally shared state . 43
4.2. Transaction local state and operations 44

4.2.1. Reading and writing transactional memory 44
4.2.2. Committing a transaction . 46
4.2.3. Repair operations . 48
4.2.4. Tracking down inconsistencies 48

4.3. Properties of the algorithm . 48

5. Correctness 53
5.1. Execution traces . 54

5.1.1. Successful commits . 54
5.1.2. Read conflicts . 55
5.1.3. Snapshot isolation . 55

5.2. Formalizing STM . 56
5.2.1. Syntax of ΛSTM . 56
5.2.2. Operational semantics for ΛSTM 58
5.2.3. Deterministic allocation . 62

5.3. Opacity . 63
5.3.1. Effect traces . 63
5.3.2. Trace anomalies . 66
5.3.3. Serializing effect traces . 67
5.3.4. Serializable traces in ΛSTM 73

5.4. Snapshot Isolation . 77
5.4.1. Operational semantics for ΛSI 78
5.4.2. Snapshot isolation for ΛSI . 79
5.4.3. Snapshot traces . 80

5.5. Formalization of Twilight . 88
5.5.1. Syntax . 89
5.5.2. Operational Semantics for ΛTWI 89
5.5.3. Semantics of Twilight transactions 97
5.5.4. Opacity in ΛTWI . 98
5.5.5. Snapshot isolation in ΛTWI 101
5.5.6. Irrevocability in ΛTWI . 104
5.5.7. The power of Twilight operations 106

6. Implementation 107
6.1. C . 108

6.1.1. Evaluation . 109
6.2. Java . 114

2

Contents

6.3. Haskell . 118
6.3.1. Comparison with GHC’s STM 121
6.3.2. Evaluation . 122

II. Decent STM 129

7. Introduction 131

8. The Architecture of Decent STM 135
8.1. Globally Accessible Objects . 135
8.2. Transactions . 136
8.3. Fetching a GAO version . 138

8.3.1. Example . 140
8.3.2. Constructing consistent memory snapshots 140

8.4. Limiting the Committed Version History List 144
8.5. Committing a transaction . 146

9. Distributed Commit Consensus 147
9.1. Consensus and commit consensus in a distributed setting 148
9.2. Design of a randomized commit consensus protocol 149

9.2.1. Example . 152
9.2.2. Specification of the protocol 154
9.2.3. Correctness . 158

9.3. Extensions to the protocol . 158

10.Implementation 161
10.1. Components . 161
10.2. Interface . 162
10.3. Preprocessing the code . 164

11.Evaluation 169
11.1. Decent STM with shared-memory synchronization 169
11.2. Decent STM in a distributed setting 176

III. Related work and Conclusion 179

12.Related Work 181
12.1. STM and irrevocability . 181
12.2. HTM approaches for irrevocability 182
12.3. Conflict avoidance . 183
12.4. Semantics of Transactional Memory 183
12.5. STM in Haskell . 185
12.6. STM in distributed settings . 185

3

Contents

12.7. Multi-versioned STMs . 186
12.8. Consensus and commit protocols in STM 187
12.9. Code instrumentation for STM . 187

13.Conclusion 189
13.1. Summary . 189
13.2. Outlook . 190

Bibliography 195

4

List of Figures

1.1. Example: Violation of invariants under write skew. 16
1.2. Example: Non-termination under dirty reads or read skew. 17

3.1. Workflow of a Twilight transaction. 24
3.2. Example: Concurrent operations on lists. 32

5.1. ΛSTM : Syntax. 56
5.2. ΛSTM : Typing rules. 57
5.3. ΛSTM : Operational semantics - State related definitions. 58
5.4. ΛSTM : Operational semantics - Local evaluation steps. 59
5.5. ΛSTM : Operational semantics - Global evaluation steps. 60
5.6. ΛSTM : Operational semantics - Evaluation steps in transactions. . . 61
5.7. ΛSTM : Operational semantics - Heap checks. 61
5.8. ΛSI : Operational semantics - Heap checks for snapshot isolation. . . 79
5.9. ΛTWI : Syntax. 89
5.10. ΛTWI : Typing rules. 90
5.11. ΛTWI : Operational semantics - State related definitions. 90
5.12. ΛTWI : Operational semantics - Local evaluation steps. 91
5.13. ΛTWI : Operational semantics - Global evaluation steps. 92
5.14. ΛTWI : Operational semantics - Transactional body. 93
5.15. ΛTWI : Operational semantics - Twilight zone. 94
5.16. ΛTWI : Operational semantics - Heap checks. 94
5.17. ΛTWI : Operational semantics - Embedding of I/O. 96
5.18. ΛTWI : Operational semantics - Repair operations. 96
5.19. ΛTWI : Operational semantics - Error states. 97
5.20. ΛTWI : Twilight zones for opacity. 99
5.21. ΛTWI : Extension for snapshot isolation. 102

6.1. Twilight STM: STAMP benchmark suite - kmeans, labyrinth, ssca2. 112
6.2. Twilight STM: STAMP benchmark suite - vacation. 113
6.3. Twilight STM: Micro benchmark - Singly-linked list. 113
6.4. Twilight Haskell: Micro benchmark - Update operations on a single

variable. 123
6.5. Twilight Haskell: Micro benchmark - Linked list. 124
6.6. Twilight Haskell: Benchmark - Sudoku. 125
6.7. Twilight Haskell: Micro benchmark - Binary tree. 126

5

List of Figures

8.1. Decent STM: Structure of a GAO. 136
8.2. Decent STM: Constructing memory snapshots. 141

9.1. Decent STM: States of a transaction during the commit protocol. . . 151
9.2. Decent STM: States of a GAO during the commit protocol. 151
9.3. Example: Distributed randomized commit consensus protocol. . . . 153

10.1. JTransactifier: Transformation of atomic methods. 166

11.1. Decent STM: Micro benchmarks - RB Tree. 171
11.2. Decent STM: Micro benchmarks - AVL Tree. 172
11.3. Decent STM: STAMP Benchmark - vacation. 173
11.4. Decent STM: Version history length. 174
11.5. Decent STM: Micro benchmarks - Conflicts. 175
11.6. Decent STM: Varying the number of runtimes. 177

6

List of Listings

3.1. Twilight API for C. 27
3.2. Example: Debugging with printf. 30
3.3. Example: Data structures and lookup method for singly-linked list. . 35
3.4. Example: Insertion for singly-linked list. 36
3.5. Example: External synchronization. 38

6.1. Twilight API for Java. 114
6.2. JTwilight: Dining Philosophers. 116
6.3. JTwilight: Nested transactions. 117
6.4. Twilight API for Haskell. 119

10.1. Decent STM API for Java. 163
10.2. DecentSTM: Explicit usage of the interface. 164

7

List of Algorithms

4.1. Twilight STM: Initializing a transaction, reading and writing trans-
actional variables. 45

4.2. Twilight STM: Entering and exiting the Twilight zone. 46
4.3. Twilight STM: Internal operations. 47
4.4. Twilight STM: Repair operations. 49
4.5. Twilight STM: Handling of tags. 50

5.1. Reordering transactions for opacity. 70
5.2. Reordering transactions for snapshot traces. 85

8.1. Decent STM: Thread-local operations of a transaction. 139
8.2. Decent STM: GAO execution loop - Read requests. 142

9.1. Decent STM: GAO execution loop - Commit requests. 155
9.2. Decent STM: Commit of a transaction. 156
9.3. Decent STM: Collecting votes. 157

9

Chapter 1.

Software Transactional Memory

1.1. Concurrent Programming

Concurrent programming [7, 27] is the art of controlling (pseudo-) simultaneous
execution of multiple interacting computations. The primary objective for using
this programming technique is to increase the application throughput and to use
available hardware resources efficiently. Furthermore, there are problem instances
for which concurrent programming is a natural paradigm (e.g., client-server archi-
tectures and event-based architectures).
Programming in a concurrent style is difficult:

• The partitioning of a program into several threads,1 each executing a part of
the whole program’s task, is in general challenging because of data and control
flow dependencies between the threads.

• The coordination of multiple threads is a complex task which requires com-
munication among the threads. This communication overhead can impede the
scalability of the system.

Synchronization[73] refers to the coordination of simultaneously running threads
and the maintenance of a coherent view of data shared between threads. Synchro-
nization requires communication. Communication between threads comes in two
major flavors, via shared memory or via message passing. Access to shared memory
can be coordinated in many different ways, among them locking and transactional
memory. The following subsections give a brief overview on two classic paradigms,
indirect communication using mutual exclusion, and direct communication via mes-
sage passing. We then sketch a third modern paradigm, transaction-based synchro-
nization, that takes a different approach to synchronization.

1.1.1. Lock-Based Synchronization

Shared memory imposes only little overhead on data synchronization. The classical
approach to synchronization in this setting grants code fragments (critical sections)

1This thesis considers “thread” and “process” as synonyms and uses the word “thread” throughout.
The usual reading is that threads run in a shared address space whereas processes may run in
separate address spaces.

11

Chapter 1. Software Transactional Memory

only mutually exclusive access to the shared memory. This locking of resources
guarantees that a thread obtains exclusive access for some time to complete its
memory operations undisturbed. Unfortunately, excessive locking can reduce par-
allelism. Even worse, deadlocks can arise when threads that have already obtained
some locks are blocked, mutually waiting for further locks to be released. Simi-
larly, threads can end up in a livelock where their state constantly changes but no
progress is made. Explicit synchronization via locking is commonly thought to be
error-prone due to its delicate semantics.
A monitor [40] mediates all accesses to and modifications of some portion of

shared memory. It guarantees that the procedures associated with the monitor
obtain mutually exclusive access to the resources guarded by it. The standard
implementation is via locks (generated by the compiler or runtime environment).
A programmer aiming for ultimate performance in an application usually applies

locked-based algorithms and hence has to tackle the aforementioned obstacles. In
particular, he must rely on explicit reasoning with the synchronization primitives
to construct a correctness proof. This thesis investigates an alternative approach
which provides stronger safety guarantees, and also possibly better performance for
specific classes of problems.

1.1.2. Message-Based Synchronization

In a parallel architecture with distributed memory, threads do not share a common
address space. Thus, it is more appropriate to manage data sharing via message
passing (MP) than to grant remote memory access. In this setting pairs of corre-
sponding send and receive operations transport data between threads. The message
passing interface (MPI [69]) and its successor MPI2 [29] define standard APIs that
many programming languages implement. Message passing is also the basis of the
Erlang programming language [3, 4]. Communication operations can be classified
with respect to the following categories:

Point-to-point vs. global A thread can send a message either to one other thread
or to all other threads (broadcast). It is also possible to group threads for
communication purposes.

Synchronous vs. asynchronous In synchronous mode, the sender blocks until the
receiving thread has started its receive operation. In asynchronous mode,
the send operation does not block. Instead, the run-time system buffers the
message until the receiver requests it.

Accumulation vs. non-accumulation A special receive operation can accumulate
messages from multiple threads with a specified reduction operation. The
receiver sees only the final result. Alternatively, all messages are sent directly
to the receiver.

12

1.1. Concurrent Programming

1.1.3. Transaction-Based Synchronization

Software Transactional Memory (STM) [67] is seen by some as a more user-friendly
approach to synchronization in a shared memory setting. It offers a high-level
mechanism and shifts the implementation of mutual exclusion as well as some data
management tasks to the runtime environment.

Transactional memory evolved from ideas of transaction processing in database
systems and borrows much of its terminology. Central to STM is the notion of an
atomic block which is used to encapsulate the accesses to the shared memory in a
safe manner. A transaction starts when entering an atomic block and ends when
leaving it. The STM system guarantees that the computations inside a transaction
either execute as a whole or not at all. Moreover, other concurrently running threads
cannot observe intermediate states of the computation inside an atomic block. These
intrinsic features are referred to as atomicity and isolation.

The implementation of STM has to cope with concurrently running transactions
accessing and modifying the same memory locations. Transactions are in conflict
if they access the same memory location and at least one transaction is modify-
ing the content. To ensure the absence of conflicts, a conflict detection mechanism
checks the system’s consistency and eventually arbitrates between the conflicting
parties. In general, this arbitration may lead to the abort of a transaction and a
retry later in time. A transaction that finishes its computation without encounter-
ing a conflict commits when leaving the atomic block. Otherwise the transaction
performs a rollback. In this case, all its effects of the atomic block must be un-
done and the former state is restored. The runtime has to provide the means to
perform such a rollback, for example by logging of values. To sustain the isolation
property, many implementations forbid irreversible operations, such as I/O, inside
of atomic blocks. Often a type system restricts the mutation of shared data to
atomic blocks. Software Transactional Memory (STM) gives high-level guarantees
about the interaction of concurrent threads. In the STM paradigm, read or write
accesses to shared memory are only permitted inside a transaction, where a thread
is guaranteed an isolation property which roughly states that it never is confronted
with an inconsistent memory snapshot.

The descriptions of lock-, transaction-, and message-based synchronization sug-
gests that these concepts are fundamentally distinct. Nevertheless, there are many
hybrid forms. For example, STM systems can be implemented with a 2-phase com-
mit protocol using some kind of locking when checking and writing data at the end
of a transaction [20].

Most modern programming languages support these paradigms, either by linguis-
tic means or through libraries.2

2There are also pure hardware and hybrid platforms that implement thread communication. This
thesis nevertheless concentrates on the software implementations.

13

Chapter 1. Software Transactional Memory

1.2. Designing an STM system

The design space for STM systems extends not only to the semantics of the atomic
blocks themselves, but also to the behavior of the system when interacting with
non-transactional computations. The following overview introduces a classification
of STM systems with respect to the most important design choices:

Atomicity Strong atomicity ensures that an atomic block executes in isolation with
respect to all other computations. Weak atomicity guarantees isolation only
with respect to other atomic blocks.

Conflict detection Pessimistic conflict detection checks the validity of read and
written data progressively, so conflicts are detected early and transactions
which are bound to fail are aborted quickly. Optimistic conflict detection
postpones data validation until the end of an atomic block.

Granularity of conflicts Conflicts may occur at the object level, the cache-line level,
or the word level. Whereas object conflict detection is a sensible choice in
object-oriented programming languages, the other options are useful in less
structured settings.

Data versioning Eager versioning performs an in-place memory update during a
transaction. It saves overwritten values in an undo-log structure for recon-
struction on a potential rollback. With lazy versioning each atomic block
maintains its own local write buffer whose values are later on committed to
the shared memory.

Nesting A transaction [56] is nested when an atomic block is enclosed in another
atomic block. One approach to define the semantics of nested transaction
is to flatten the enclosed transactions with the outermost one into a single
transaction. Closed nesting performs a commit check and possible rollback
of a nested transaction, but ensures that the nested transaction’s effects only
become globally visible when the outermost transaction commits. Open nest-
ing allows nested transactions to commit their result globally and irreversibly
before the outer transaction has finished its execution.

System architecture On a shared-memory architecture, synchronization relies on
the specification for memory access as provided by the chip vendor and op-
erating system. Normally, the architecture ensures cache coherence and data
consistency across the processing nodes with some form of hardware support.
In distributed architectures (also called NUMA architectures), the participat-
ing nodes have to communicate explicitly to make remote data available to
the other processors. This requires the usage of some network layer which
connects the node.

The design of an STM system is usually strongly influenced by the host language,
in particular its memory model. The memory model specifies when updates to

14

1.2. Designing an STM system

shared data are propagated to the threads having access to this data. Often the
synchronization has to be explicitly triggered by memory barriers. For example, the
Java memory model (JMM) applies memory barriers upon access to volatile fields or
when entering synchronized blocks. When integrating an STM into an existing
programming language, the semantics of its present synchronization operations has
to be taken into account.
For a detailed overview on the design space in Transactional Memory, state-or-the-

art implementation, and TM’s history, we refer to the extensive survey by Harris,
Larus, and Rajwar [47].

1.2.1. Semantics of Transactions

The semantics of the access to globally shared memory is just one, but yet the most
important aspect in the design of an STM system. It has great influence on the
system’s behavior because it specifies the actual semantics of programs that are
executed within the system.
As transactional memory has its origin in concurrency control for databases, the

synchronization mechanisms for shared memory access in STM are strongly related
to their counterpart in database transactions. Research on semantics for transac-
tions therefore applies to both areas equally though the actual systems that are
implemented differ in their requirements for size, speed, or operational reliability.
Berenson and co-workers [8] have defined several isolation levels by characterizing

the phenomena that the semantics of an isolation level admits3.

Dirty reads Transaction T1 modifies a data item. Another transaction T2 reads
that data item before T1 performs a commit or rollback. If T1 then performs a
rollback, T2 has read a data item that has never been committed and so never
existed in the global view of the shared state.

Non-repeatable reads Transaction T1 reads a data item. Another transaction T2

then modifies the data item and commits. If T1 then attempts to reread the
data item from shared state, it receives a modified value which differs from its
first read access.

Dirty writes Transaction T1 modifies a data item. Another transaction T2 then
further modifies this data item before T1 finishes. If T1 or T2 then perform a
rollback, it is unclear what the restored data value should be.

Lost update Transaction T1 reads a data item. Another transaction T2 updates
the data item, then T1 (based on its earlier read value) updates the data item
and commits.

3We omit the anomalies that are defined with respect to database predicates as there is no direct
equivalent in STM.

15

Chapter 1. Software Transactional Memory

Figure 1.1. Example: Violation of invariants under write skew.
Invariant: x + y < 5, initially: x = y = 0
Thread 1 Thread 2

atomic {
if (x + y < 2)

x = 3;
}

atomic {
if (x + y < 2)

y = 3;
}

Read Skew Transaction T1 reads a data item x. Then, another transaction T2

updates data items x and y, and commits. If now T1 reads y, it may see an
inconsistent state.

Write Skew Transaction T1 reads data items x and y consistently. Then, T2 reads
x and y, updates x and commits. Finally, T1 writes y. If there was a constraint
between x and y, it might be violated.

The problems resulting from computations that exhibit any of these anomalies in
their execution are well known.
Consider for example the code snippet in Figure 1.1. It shows two threads that

access concurrently memory locations x and y in a transactional way. In a system
allowing write skews, the concurrent write access to these variables does not give
rise to a conflict. Thus, x = y = 3 is a possible final state, though it breaks the
invariant x + y < 5 which is respected by each atomic block individually.
In databases, the admissibility of anomalies corresponds to different ANSI iso-

lation levels. The more of these anomalies a transactional system prohibits, the
higher are the costs for synchronizing the access to shared data, and the higher is
the likelihood of aborted transactions and rollbacks.
In transactional memory systems, the main research focus is currently on systems

with an isolation level of opacity. In contrast to database transactions, an opaque
transactional system also requires not only committing, but also aborting trans-
actions to operate on a consistent memory snapshot. STM systems that do not
implement opacity for their atomic code blocks have to provide safety mechanisms
like sand boxing to prevent zombie transactions that can neither abort nor commit.
For an example, consider the code in Figure 1.2. Thread 1 increments both x

and y to ensure the invariant that x = y. In a system which admits dirty reads or
read skews, the updates of thread 1 might become partially visible to concurrently
running threads. Thread 2 might then observe the increment of x, but not of y. In
this case, the transaction in thread 2 would get stuck in the non-terminating loop
and become a zombie transaction.

16

1.3. Contributions of this thesis

Figure 1.2. Example: Non-termination under dirty reads or read skew.
Invariant: x = y, initially x = y = 0
Thread 1 Thread 2

atomic {
x++;
y++;

}

atomic {
if (x != y)

while (true){}
}

1.3. Contributions of this thesis

This thesis explores several extensions to the standard STM schemes. To this end,
it introduces two novel STM algorithms which broaden the scope for applicability
of STM and provide insights into the strengths and limitations of transactional
programming.
The thesis makes the following contributions:

1. Twilight STM is a transactional memory system designed for shared-memory
architectures. It augments transactions with non-reversible operations and
allows introspection and modification of a transaction’s state. The extended
API provides a wide test-bed for exploring different transactional semantics.

• The thesis introduces the features of Twilight STM and highlights the
underlying design principles.

• It defines an algorithm for Twilight STM and shows its correctness.

• It formalizes a monadic core calculus for STM with opacity and snapshot-
isolation semantics and proves its correctness. It extends the core calculus
to Twilight STM and verifies the semantic equivalence of specific Twilight
transactions with the other calculi.

• It gives an account of implementations of Twilight STM in different pro-
gramming languages (Haskell, C, Java) and discusses the results of eval-
uating several benchmarks.

2. Decent STM is a fully decentralized STM system for distributed systems based
on a messaging scheme. A multi-versioning scheme allows the construction
of consistent memory snapshots for the transactions. It provides a range of
commit protocols which give different fairness and progress guarantees for
concurrently running transactions.

• The thesis discusses the challenges in constructing an STM for a dis-
tributed environment and how Decent STM meets these challenges.

17

Chapter 1. Software Transactional Memory

• It describes the architecture of Decent STM and the interaction between
the components.

• It presents a new randomized consensus protocol and a scheme for con-
structing consistent memory snapshots from multi-versioned data in a
decentralized way. Based on these results, it defines an algorithm for
Decent STM and shows its correctness.

• It reports on implementations of Decent STM as Java libraries for a
distributed environment with explicit network communication and for
multi-cores with implicit shared-memory synchronization. In addition
to the actual runtime environments, the implementation also provides a
tool for transforming code with transactional annotations to alleviate the
development of STM applications.

• It summarizes the results of running several benchmarks on the imple-
mentations and discusses their performance with regard to the underlying
system architecture, the workload, and variations in the transactional se-
mantics.

The thesis is structured into two main parts. Part I is dedicated to Twilight STM.
Part II is committed to Decent STM. The thesis finishes with a discussion of related
work and the conclusion.
Some of the material presented in this thesis is based on the following publications

by the author of the thesis and others:

• A brief announcement published at PODC 2010 [10] (joint work with Arie
Middelkoop and Peter Thiemann) outlines the main ideas behind Twilight-
STM.

• A paper published at ESOP 2011 [11] (joint work with Peter Thiemann) es-
tablishes the correctness proofs for opaque TM algorithms based on traces.

• A paper published at IPDPS 2010 [9] (joint work with Thomas Fuhrmann) in-
troduces the basics of DecentSTM and evaluates the algorithm on a theoretical
and practical basis.

Under the supervision of the author of this thesis, Felix Atmanspacher imple-
mented the Twilight STM for C and Paresh Paradkar implemented the prototype
of the distributed version of Decent STM.

18

Part I.

Twilight STM

19

Chapter 2.

Introduction

Software Transactional Memory (STM) is a promising paradigm for the development
of concurrent software. It provides fine-grained deadlock-free mutual exclusion in
a scalable and composable way. The underlying concept is simple: computations
on shared memory are grouped into blocks that are executed atomically and in
isolation on a consistent memory snapshot by transactions. Conflicting accesses to
shared memory are detected at run time and resolved transparently. The prevailing
transaction continues and commits its write operations while the other transactions
are aborted and restarted.
The advantages of STM come at a price. Non-reversible operations like I/O do

not mingle well with the transparent rollback mechanism of transactions. Therefore,
most implementations of STM rely on programming conventions to exclude non-
reversible operations from transactions. However, the need for this functionality has
been demonstrated by several extensions of STM with irrevocable transactions [78,
70] that may contain non-reversible operations. As further elaborated in Section 12,
each of these proposals severely constrains concurrency by serializing the execution
of irrevocable transactions.
Another challenge when designing an STM algorithm is the choice of an appro-

priate strategy for contention management. High contention on heap locations can
lead to poor performance and poor scalability if a transaction is repeatedly restarted
because of conflicts. While the problem with contention is common among all con-
currency paradigms, the transparent nature of TM hinders the detection of highly
contented locations and often it is impossible to come up with an application-specific
solution as the contention strategy is hard-coded into the system.
This part of the thesis presents Twilight STM, an STM system which safely

augments transactions with non-reversible operations and allows introspection and
modification of a transaction’s state.
Twilight STM splits the code of a transaction into a (functional) atomic phase

and an (imperative) twilight phase. The atomic phase implements the standard se-
mantics of atomicity, consistency and isolation. Code in the twilight phase executes
before the decision about a transaction’s fate (restart or commit) is made and can
affect its outcome based on the actual state of the execution environment. To this
end, the Twilight API has operations to detect and repair read inconsistencies as
well as operations to overwrite previously written values. For compatibility with
other STM systems, a transaction can only finish successfully if the twilight code

21

Chapter 2. Introduction

resolved all inconsistencies. Otherwise it restarts the transaction.
Twilight STM also permits the safe embedding of I/O operations with the guar-

antee that each I/O operation is executed only once. In contrast to other implemen-
tations of irrevocable transactions, twilight code may run concurrently with other
transactions including their twilight code in a safe way. However, the programmer
is obliged to prevent deadlocks and race conditions when integrating I/O operations
that participate in locking schemes.

Outline

• Chapter 3 introduces the basic concepts of Twilight STM from a programmer’s
point of view. Section 3.1 highlights the differences between standard STM
transactions and twilight transactions. The API of Twilight STM laid out
in Section 3.2, followed in Section 3.3 by examples which show how to apply
Twilight features in practice. The chapter closes with a discussion on the
limitations of the Twilight approach in Section 3.4.

• Chapter 4 presents the fine-grained locking algorithm underlying Twilight
STM. After introducing the global meta data such as the global timer in Sec-
tion 4.1, the semantics of the STM operations, repair operations, and methods
for marking is explained (Section 4.2). Section 4.3 concludes with a discussion
of the algorithm’s deadlock-freedom and progress, and consistency of transac-
tions.

• Chapter 5 formalizes the static and dynamic semantics of Twilight STM. The
concept of execution traces is informally introduced with some examples in
Section 5.1. Section 5.2 gives a formalization of an STM with lazy updates as
a monadic lambda calculus. The formal system is then shown in Section 5.3
to implement the isolation level of opacity. Further, a slightly modified formal
system is proved to implement snapshot isolation in Section 5.4. Finally,
the formal system is extended with Twilight operations and it is shown that
twilight transactions implement different isolation levels, depending on the
operations in their twilight zones (Section 5.5).

• Chapter 6 describes implementations of Twilight STM in different kind of
languages. Section 6.1 reports on a word-based implementation in C which is
evaluated on the STAMP benchmark suite and compared against a state-of-
the-art STM. Section 6.2 comments on an object-based implementation in Java
which offers open nesting for twilight transaction. Lastly, the implementation
in Haskell which is evaluated on the Haskell STM benchmark and compared
against GHC’s STM system (Section 6.3).

22

Chapter 3.

A Tour of Twilight STM

In this section, we first give an informal account of Twilight STM. After motivating
the design, we introduce the extensions to the standard STM API for Twilight STM
and explain them from a programmer’s point of view. We then show several use
cases for Twilight operations in practical settings:

• for printing debug output for transactions in a reliable way,

• for implementing fine-grained conflict detection for linked data structures with
commuting operations, and

• for including mutex via locks and network communication into transactions.

3.1. Twilight transactions

When implementing programs in the STM paradigm, the scope of a transaction is
defined by the atomic block that is executed by the transaction. Depending on the
programming language and possible syntax extensions, an atomic block is sometimes
explicitly specified with a special syntactical construct:

atomic {
x = 3;
if (y != 45) {
...

}
}

An atomic block is typically de-sugared by the compiler or a preprocessor into
calls to native functions interfacing the runtime environment or designated methods
in the host language (see also Section 10.3):

stm_begin();
stm_write(x,3);
if (stm_read(y) != 45) {

...
}
stm_end();

23

Chapter 3. A Tour of Twilight STM

Figure 3.1. Workflow of a Twilight transaction.

stm_begin

txn body

stm_prepare

twilight zone

stm_finalize

stm_retry

In this section, we exercise the latter version to make a clear distinction between
access to transactionally managed memory and other types of memory. This con-
vention is also employed by the implementation of Twilight in C (see Section 6.1).

3.1.1. Workflow of twilight transactions

A standard transaction follows a workflow as follows: A call to stm_begin initial-
izes the transaction’s state for handling transactional read and write accesses and
detecting of conflicts. When the execution reaches stm_end, the commit protocol is
launched which makes the updates that are issued by the transaction visible to other
transactions. Two-phase commit [23] is a common commit protocol that proceeds
in several steps. The system first acquires exclusive access to the memory locations
that are being updated, then checks for intermediate updates that might violate the
transaction’s consistency, and only updates the memory locations if there are no
consistency violations. If the consistency check fails, the transaction is aborted, its
state is reverted, and the evaluation of the atomic block is restarted.
Figure 3.1 displays the workflow of a twilight transaction. As with standard STM

systems, it splits a transaction’s commit phase into two phases.
The first phase is similar to the transactional execution of the atomic block.

24

3.1. Twilight transactions

Reads and writes of transactional variables are passed to the memory management
system where the STM algorithm imparts a consistent view of the shared state to
the transaction.
After executing the transaction’s body, the transaction obtains exclusive access to

the memory locations that it wants to update in stm_prepare, and checks for the
status of the variables that it has read. This approach is akin to that of two-phase
commit.
Diverging from standard protocols, the transaction does not restart in the pres-

ence of conflicts. Instead, it continues with executing the twilight zone. In this
additional phase, a transaction can resolve inconsistencies that have been detected
in stm_prepare. By reloading the current values of the updated memory locations
and re-computing values that are going to be updated, repair actions can fix the in-
consistent state of the transaction. The programmer has to specify these patches by
means of dedicated operations from the Twilight API. Alternatively, if the modifica-
tions that have been issued by other transactions are not semantically invalidating
the transaction, the programmer can state that the transaction’s updates are still
to be issued and that the inconsistencies are to be ignored.
The irrevocable nature of the twilight state offers the programmer the chance

to issue any non-revertible actions. Based on possible input from the irrevocable
operations, the values to be committed can still change and may be adapted.
Eventually, the transaction finishes with a call to stm_finalize. It then com-

mits its changes to shared state and releases its exclusive access to the updated
memory locations.

3.1.2. Properties of Twilight STM

Twilight STM’s semantics can be characterized by the following properties:

Atomicity. Aside from explicitly observed intermediate updates, all read and write
operations on shared memory within a transaction appear to take place at a
single point in time.

Consistency. Transactions always read from a consistent memory snapshot.

Progress. All Twilight API operations are deadlock-free if the execution of twilight
code does not involve waiting for other transactions due to non-transactional
synchronization.

Irrevocability. A transaction executing its twilight code can always finish suc-
cessfully.

Independence. Transactions executing their twilight code concurrently have dis-
joint write sets.

The first two properties specify the transactional behavior. The transparent con-
flict detection and resolution within a transaction hides the complexity of concur-

25

Chapter 3. A Tour of Twilight STM

rently running and interacting threads and provides the illusion of an atomic execu-
tion of transactions to the programmer. The consistency property guarantees that
all memory locations are read in a transaction as coming from a single point in time.
In case of conflicts, out-dated values are consistently re-read. Results from compu-
tations on them can only be out-dated, but not wrong as the algorithm prevents
inconsistent memory snapshots. Furthermore, the transaction can also observe the
current values at commit time and has a chance to adjust its results.
The last three properties are related to the twilight code. The progress condition

states that if a thread attempts to execute an atomic block successfully, some thread
will succeed in doing so. This means that although a transaction might be forced to
restart, the overall system is making progress because another transaction finishes
successfully. Irrevocability ensures that twilight code can perform I/O and other
irrevocable actions safely, and independence enables it to adjust the outcome of the
transaction without further re-validation.

3.2. The API of Twilight STM

Listing 3.1 gives an overview of the Twilight API for C. In contrast to the object-
based versions for Java and Haskell, the Twilight API for C operates on word-sized
items of data where the actual size depends on the underlying hardware architecture.
The actual implementation supports all word-sized data types generically. Other
data types such a long integers or doubles are processed with the help of customized
handlers.
We explain the operations now in greater detail. To this end, we distinguish

between general system operations, the standard transactional operations, and the
extensions for Twilight STM.

3.2.1. STM system operations

The transactional memory system is initialized with stm_start. It sets up the
infrastructure for the conflict detection and resolution. With stm_shutdown, the
system is closed down and the acquired resources are released again.

3.2.2. Basic transactional operations

A transaction is initialized and started with stm_begin. In the body of the
transaction, operations on shared data have to be conveyed via stm_read and
stm_write.
Twilight STM performs write operations lazily. It records the new values in a

transaction-local write set. These write operations get flushed to the shared memory
only on completion of the transaction.
The read operation yields the value of a memory location which originates from

the same snapshot as the transaction’s read accesses so far. Upon the first access,
the current value of the variable is recorded in the read set of the transaction if is

26

3.2. The API of Twilight STM

Listing 3.1 Twilight API for C.

/* STM system operations */
void stm_start()
void stm_shutdown()

/* Basic operations */
void stm_begin()
void stm_end()
void *stm_read(word *var)
void stm_write(word *var, word val)
void *stm_alloc(int size)
void stm_free(word *var)

/* Regions */
tag stm_new_tag()
void stm_mark(tag t, word *var)

/* Transactional workflow */
boolean stm_prepare()
void stm_finalize()
void stm_retry()

/* Twilight operations */
void stm_reload()
void stm_ignore_updates()
boolean stm_inconsistent(tag t)
boolean stm_only_inconsistent(tag t)

consistent with the transaction’s state. If it inconsistent, the transaction is aborted
and restarted. If the memory location has been modified by the transaction, the
method returns the corresponding entry in the write set.
Allocating and releasing memory is buffered in the same way as the write opera-

tions. They have to be issued via special operations, stm_alloc and stm_free,
to allow easy reverse in case of a rollback.

3.2.3. Demarcating groups of variables

The read set of the transaction is unstructured in the sense that simply maps mem-
ory addresses to local copies. As conflict detection and resolution based on addresses
can be rather tiresome, Twilight STM introduces tags to mark read set entries and
group them according to their semantic meaning. For example, in linked data struc-
tures, a tag can be used for the node pointers that build the structure and another

27

Chapter 3. A Tour of Twilight STM

one for the data entries stored in the nodes.
Tags are valid for the extent of one transaction. A new tag can be created with

stm_new_tag. During the transaction’s execution, locations are added to a tag
with stm_mark.
In the twilight code, the programmer can use the tags to determine which kind of

memory locations was marked as inconsistent and compensate for it as applicable.

3.2.4. Transactional workflow

Reminiscent of a two-phase commit in the database world, the Twilight STM splits
the commit operation into operations stm_prepare and stm_finalize as indi-
cated in Figure 3.1. First, stm_prepare obtains exclusive access to the variables
in its transaction’s write set. Then it attempts to validate the transaction by check-
ing whether variables in the read set have been written to by other transactions.
The return value of stm_prepare indicates if the transaction’s read set is inconsis-
tent because of other transactions’ commits since the transaction’s start. However,
the decision on the outcome of the transaction is left to the twilight code that fol-
lows. Exclusive access to the variables in the write set is maintained to keep the
transaction finalizable.
The twilight code can observe and modify the state of the transaction with twilight

operations. Subsequently, the code can either restart the transaction (stm_retry)
or it can fix the inconsistencies and finalize the transaction (stm_finalize). In
the latter case, the values in the write set are published to shared memory. In either
case, exclusive access to the variables in the write set is released.

3.2.5. Twilight operations

The read and write operations behave slightly different within the twilight zone:

• stm_read (var): Returns the value of variable var as it is recorded in
the read set. It results in an error if the variable is still inconsistent or if the
variable is not in the read set.

• stm_write(var,val): Updates the recorded value of variable var with
value val. It results in an error if the variable is not in the write set.

Depending on the implementation of the Twilight API, these errors can either lead
to a program failure or the programmer can deal with them by installing some
exception handling in the application.
The following operations are unique to Twilight. They must not be used outside

twilight code.

• stm_reload(): Atomically reloads a consistent snapshot of the read set.
Afterwards, the transaction is ready to commit. Depending on the new values
in the read set, the programmer may either want to update the write set or
to restart the transaction.

28

3.3. Twilight STM in Action

• stm_ignore_updates(): Causes the transaction to ignore all updates per-
formed by other transactions on variables that the transaction has read. It
can be used to achieve snapshot isolation semantics (see Section 5.5.5).

A call to either stm_reload or stm_ignore_updates is required for a
successful commit if the twilight code is entered with an inconsistent read set.
Otherwise, the transaction fails.

• stm_inconsistent(t): Indicates whether the set of locations tagged with
t contains at least one inconsistent variable.

• stm_only_inconsistent(t): Indicates if the set of locations tagged with
t contains at least one inconsistent variable, but no other tagged sets contain
inconsistencies.

The operation stm_only_inconsistent(t) is usually used in combination
with stm_inconsistent(t) to trigger repair code for regions which contain in-
consistent variables.

3.3. Twilight STM in Action

Applications can benefit from twilight operations in many ways. We highlight its
strong points with some examples of its use in a practical setting. A first concise
example features transactional variables with high contention, avoids rollback via
recalculation, and makes use of safe I/O actions in an atomic block to provide
debugging output. We then show how the conflict detection may be employed to
implement coarse grained transactions on collections whose operations semantically
commute, but exhibit conflicts in the memory access patterns. Finally, we sketch
how classical locks and network communication can be integrated in a safe way into
Twilight transactions without causing the system to deadlock.

3.3.1. Debug traces

Listing 3.2 shows the code for a worker thread which executes concurrently with
other threads on shared memory using STM for synchronization and information
interchange. Suppose a programmer wants to trace the order in which transac-
tions commit successfully for debugging purposes or for monitoring the applica-
tion’s progress. To this end, he introduces a global variable counter for assigning
a unique identifier to each worker thread. To prevent the compiler from optimiza-
tions on this shared variable, he specifies it to be volatile. As every transaction
reads and writes the counter, the counter is heavily contended and causes read in-
consistencies in (almost) all concurrently running worker threads. As each such
inconsistency aborts the respective transaction and restarts it, the transactional
calculations are repeated fruitlessly and the possibility to execute the transactional
parts of the program in parallel is lost.

29

Chapter 3. A Tour of Twilight STM

Listing 3.2 Example: Debugging with printf.

volatile int counter;

void threadWorker() {
stm_begin(); // transaction body begins

/** complex computation with STM operations omitted **/

tag t = stm_new_tag(); // tag for counter
int pos = stm_read(counter) + 1; // update counter
stm_write(counter, pos);
stm_mark(t, counter);

boolean succeeded = stm_prepare(); // twi zone starts

if (!succeeded) {
if (stm_only_inconsistent(t)) {

stm_reload(); // update read set
pos = stm_read(counter) + 1; // update counter
stm_write(counter, pos);

} else {
stm_retry();

}
}
printf("Txn %i finished at %i.\n", tid, pos);
stm_finalize(); // twilight code ends

}

30

3.3. Twilight STM in Action

Instead of using a transactionally managed variable for the counter, the program-
mer might contemplate on using other synchronization such as mutexes or placing
the counter outside the transaction. However, primitives like mutexes do not mingle
well with transactions, because the programmer is responsible for their correct use
to prevent deadlocks and data races. This may not be possible because an STM
implementation may perform transparent rollbacks anytime during a transaction.
The remaining alternative is to place the counter outside the atomic block such

that it gets incremented just after the transaction has finished. However, the result-
ing information might be too imprecise due to the nondeterministic thread schedul-
ing by the run time system.
In this situation, Twilight comes to the programmer’s aid. Instead of aborting and

restarting a transaction whose only inconsistency is caused by the counter variable,
the programmer can contribute code to repair this inconsistency. To this end, it is
possible to attach a tag to each variable that has been read in the atomic block.
In the twilight code (i.e., the code after the stm_prepare operation), the query
stm_only_inconsistent(t) determines if variables with tag t have been found
to be inconsistent.
If the counter is the only cause for inconsistencies, then the code obtains a consis-

tent view on the memory using stm_reload, recalculates the counter’s value, and
updates it before finally committing. To avoid deadlocks in the underlying imple-
mentation of transactions, the Twilight code can only read and write transactional
variables through handles which are returned by read and write accesses in the body
of the transaction. As the transaction is now known not to abort anymore, it is safe
to output the logging message.
On the other hand, if the counter is found to be consistent, the twilight zone

restarts the transaction in case there are inconsistencies involving the remaining
variables. If the remaining variables are also consistent, then the transaction con-
tinues knowing that the transaction cannot fail anymore.
As the Twilight STM guarantees the atomic execution of the I/O actions in com-

bination with the corresponding memory operations, it is particularly suited for de-
bugging of STM applications. For example, we used it in our benchmark programs
to determine the reasons for restart for memory locations with high contention.

3.3.2. Fine-grained conflict detection for data collections

Typically, an STM algorithm implements a fixed isolation semantics such as opacity
or snapshot isolation. This rigid choice limits a programmer’s possibilities to imple-
ment application-specific conflict handling within the STM framework. Techniques
like early release, weak atomicity, or open nesting [57] introduce some flexibility,
but are difficult to handle correctly.
The algorithm underlying Twilight STM provides opacity [31] as the default se-

mantics. In twilight code, however, the programmer can weaken the semantics by
ignoring conflicts that are benign to the application. We illustrate the ideas with
transactional operations on a singly-linked list data structure.

31

Chapter 3. A Tour of Twilight STM

Figure 3.2. Example: Concurrent operations on lists.

1 5 12 54 88

8

X

(a) Transaction 1 (red): Find 30. Transaction 2 (blue): Insert 8.

1 5 12 54 88

8

47

X X

(b) Transaction 1 (red): Insert 8. Transaction 2 (blue): Insert 47.

1 5 12 54 88

32

47

X X

(c) Transaction 1 (red): Insert 47. Transaction 2 (blue): Insert 32.

1 5 12 54 88

32

X X

(d) Transaction 1 (red): Delete 12. Transaction 2 (blue): Insert 32.

1 5 12 54 88X X

(e) Transaction 1 (red): Delete 12. Transaction 2 (blue): Delete 54.

32

3.3. Twilight STM in Action

Figure 3.2 displays critical situations when two threads are concurrently operating
on a singly-linked list in a transactional fashion.
In the first example in Figure 3.2(a), transaction 1 (highlighted in red) searches

for a node with key 30 while transaction 2 (marked in blue) tries to insert a new
node with key 8. If transaction 2 commits before transaction 1, it invalidates the
other transaction’s read set causing it to restart and again iterate through the list.
Yet, the insertion operation is semantically not relevant for the lookup operation.
It is actually safe for transaction 1 to ignore all updates that are performed during
its own execution while having a linearizable implementation for singly-linked lists:

• If the new node with a smaller key is inserted, the re-execution of the lookup
yields the same result. The same holds if the key is larger than the one in the
lookup transaction. The execution order of the transactions is interchangeable.

• If the new node is inserted at the critical point (in the example, between
node 12 and 54), and has the sought-after key, a re-execution gives a different
result. Though, linearizing the lookup transaction before the insertion yields
the same result as when ignoring the update.

• Similarly, when a concurrently running transaction is deleting a node, the
lookup operation is either not affected or can be linearized before the deletion.

The linearization point of the read-only lookup transaction is given when it suc-
cessfully tests the key of a node to be equal or greater than the key it tries to locate
in the list. This point is independent of concurrently running update operations
such that these operations’ linearization point can be ordered both before and after.
For transactions that modify the list structure, the linearization point is given

when they gain exclusive access to the elements in their write set. Though in-
sertions or deletion at different points in the list are semantically non-conflicting
(Figure 3.2(b)), it is unsafe for these transactions to ignore all updates. In Fig-
ure 3.2(c), two transactions try to insert an new node at the same position. If the
transaction that obtains the exclusive write access to the next pointer of node 12
secondarily ignored the update to this pointer by its predecessor, the node that was
inserted first would be removed from the list.
One possible way to prevent this situation while still maximizing the commit rate

of the STM system is to revert to snapshot isolation semantics for transaction [8].
It specifies that if two transaction try to update the same memory location, only
one can perform this write operation successfully while the other has to abort and
restart.
Snapshot isolation allows concurrent updates to the list structures as long as

they happen at different places in the list. Consider however the example depicted
in Figure 3.2(d). The write sets of transaction 1 and 2 do not overlap as one is
modifying the next pointer of node 5, the other the next pointer of node 12.
Ignoring the removal of node 12 causes transaction 2 to actually insert node 32 at
a place where it is not reachable when iterating through the list. To prevent this

33

Chapter 3. A Tour of Twilight STM

situation, the removal of a node from the list needs to modify both the pointer to the
node and the pointer of the node to its successor (in the example, the next pointer of
node 12). The write set of transaction 1 then overlaps with the one of transaction 2,
causing the transaction which tries to commit later to detect a conflict and restart.
Listings 3.3 and 3.4 show parts of the implementation of such a concurrent sorted

singly-linked list.
A list is a pointer to the first node in the list. A node consists of a key which is

needed to sort the entries and a pointer to its successor. The lookup procedure in
Listing 3.3 iterates through the list inspecting the keys of the list elements until it
finds the node whose key is greater or equal to the parameter n. After entering the
twilight zone (l.8), it instructs the STM framework to disregard all conflicts. Then
it finishes the transaction and returns the result.
As the resulting lookup procedure is read-only and can safely ignore intermediate

updates, it might even be implemented without STM operations, but with standard
memory accesses. However, this requires the programmer to ensure carefully that
list traversal is possible even when concurrent operations restructure the list by
inserting or deleting elements.
When inserting a new key in the list (Listing 3.4), both the pointer to the new

node and the pointer to its predecessor are marked for the inconsistency check (l.15).
If they are found to be inconsistent, the transaction has to restart. Otherwise, it
finishes its execution successfully. The deletion procedure is done analogously.
The tagging mechanism can also be facilitated to distinguish between modifica-

tions on the list structure and updates of data stored in a node. It is further possible
to augment the list data structure with a field containing the current size of the list.
As for the commit counter in Listing 3.2, it is necessary to provide repair actions of
increment and decrement in the insert and deletion method’s twilight zone to avoid
the serialization of these modification operations.

3.3.3. External locking protocols

Although contrary to the spirit of STM, it is sometimes advantageous to provide
some means of reverting to classical mutual exclusion mechanisms. For example, an
optimistic execution of I/O operations on files requires complex buffering protocols
and the enclosing of the file handle into a transactionally managed wrapper. With
Twilight STM it is possible to include lock-based protocols into the twilight zone.
The progress of the transactional system then requires the correct handling of the
mutexes as otherwise transactions might get stuck in their twilight zone. Further,
when integrating these locking protocols into Twilight STM, the programmer must
keep in mind that transactions that currently execute their twilight zone have dis-
joint write sets. The next example shows how to combine Twilight STM and file
access in a dead-lock free manner.
Consider a banking application where transactions are running concurrently to

transfer money from one client’s account to some other accounts. A transaction may
contain multiple transfers and multiple transactions may be running simultaneously

34

3.3. Twilight STM in Action

Listing 3.3 Example: Data structures and lookup method for singly-linked list.

struct node {volatile int key, volatile node *next};
struct list {volatile node *head};

node* newNode(int key, node* next) {
node* n = stm_alloc(sizeof(node));
n->key = key;
n->next = next;
return n;

}

boolean lookup(volatile list *l,int n) {
stm_begin();
node *head = stm_read(l->head);
boolean result = _lookup(head,n);
stm_prepare();
stm_ignore_updates();
stm_finalize();
return result;

}

boolean _lookup(node *head, int n) {
node* current = head;
while (current != null) {

int key = stm_read(current->key);
if (key == n) {

return true;
} else {

if (key > n) {
return false;

} else {
current = stm_read(current->next);

}
}

}
return false;

}

35

Chapter 3. A Tour of Twilight STM

Listing 3.4 Example: Insertion for singly-linked list.

void insert (volatile list* l, int n) {
stm_begin();
tag t = stm_new_tag();
node *head = stm_read(l->head);
_insert(&l->head,head,n,t);
if (!stm_prepare()) {

if (stm_inconsistent(t)) stm_retry();
else stm_ignore_updates();

}
stm_finalize();

}
void _insert (node **tohead, node *head, int n, tag t) {
if (head == null || stm_read(head->key) > n) {

head = newNode(n,head);
stm_write(l->head,head);
stm_mark(t,l->head);
return;

}
if (stm_read(head->key) < n) {
node **toprev = tohead;
node *prev = head;
node *next = stm_read(prev->next);
while (next != null) {

int key = stm_read(next->key);
if (key == n) return;
if (key > n) {

node *new = newNode(n,next);
stm_write(prev->next,new);
stm_mark(t,prev->next);
stm_mark(t,*toprev);
return;

}
toprev = &(prev->next);
prev = next;
next = stm_read(prev->next);

}
node *new = newNode(n,null);
stm_write(prev->next,new);
stm_mark(t,prev->next);
stm_mark(t,*toprev);

}
}

36

3.3. Twilight STM in Action

on behalf of a single client. For performance reasons, all transactions operate on a
fast in-memory model. For durability, a summary of the outcome of each transaction
is also logged to permanent storage using one dedicated file per client. After a crash,
the system should be able to reconstruct its state from these files.
Additionally, the bank runs a background task that regularly compares the state

on disk with the state in memory to detect data corruption caused by faulty hard-
ware or programming errors. As the transfer information in memory contains the
file pointer to its summary on disk, validation is possible in both directions. The
background task concurrently picks a client c, reads c’s data from memory, scans
c’s file, and checks for mutual consistency. The major challenge in this scenario
is that reading the memory and the file must form one atomic action, while other
transactions can still execute concurrently and without deadlocking.
This non-trivial problem has a fairly straightforward solution in Twilight STM.

Listing 3.5 contains the code for the transaction that performs some money trans-
fers transactMoney as well as the transaction with performs the background
verification process in transactVerify.
After transferring the money by reading and writing to the memory, the transfer

transaction writes a summary to the file, obtaining location information that is
also written to the in-memory model. There is one subtlety involved in this code.
Storing the location information must be prepared with a dummy location in the
transaction body because the twilight code is only allowed to write to variables that
are already in the write set when entering the twilight zone. This dummy value is
never visible outside the transaction.
The code for the background verification task follows a similar pattern. The file

locks taken in the twilight zone ensure that the entire transaction forms an atomic
unit together with the file access. Hence, the client’s data in memory matches the
contents of the file. This code thus fulfills the application’s requirement.

3.3.4. Applications in a distributed setting

Distributed systems, like multi-player online games, require a multitude of differ-
ent concurrent tasks. To ensure scalability, every participating execution node is
responsible for modeling a fragment of the world consisting of a number of entities
(e.g., monsters) that act autonomously in the virtual world. Furthermore, every
node drives a GUI, processes commands entered by the player, and it receives sta-
tus update messages from neighboring nodes.
Sweeney [72] suggests that each of these tasks can be assigned to its own thread

that modifies the internal state of the node, which is shared between the threads.
However, each thread also sends information about the state of its monster to the
neighboring nodes. A mutual exclusion protocol with semaphores guarantees safe
multiplexing of different TCP connections. The communication should not happen
outside the atomic region to prevent the transmission of inconsistent state informa-
tion.
In this scenario it is essential that multiple threads can execute the communication

37

Chapter 3. A Tour of Twilight STM

Listing 3.5 Example: External synchronization.

void transactMoney(client c, t_info[] transfers) {
stm_begin();

// change in-memory model
for (t_info t: transfers) {

transfer(c, t.recipient, t.amount);
add_to_summary(t.recipient, t.amount);

}
store_location_info (c, 0); // dummy value
if (stm_prepare()) {

// obtain a lock on the client’s file
acquire(file_lck);
int loc = write_summary_to_file(c);
release(file_lck);

// update in-memory model
store_location_info(c, loc);
// complete the transaction
stm_finalize();}

else
stm_retry();

}

void transactVerify(client c) {
stm_begin();
read_client_data(c);

boolean consistent = stm_prepare();

if (!consistent) {
stm_retry();

}

acquire(file_lck);
assert_consistent_with_file(c);
release(file_lck);

stm_finalize();
}

38

3.4. Limitations of Twilight STM

phase in the twilight code at the same time, as a game model may contain 10,000
active game-play objects and maintain connections to 10-20 neighbors. In the style
of the lock-based protocol in Section 3.3.3, the Twilight STM may be employed to
obtain a high degree of concurrency.
A similar case study has been performed by Zyulkyaro and co-workers [81]. They

restructured a parallel version of the Quake game server to use transactions. This
application features I/O operations and system call invocations, as well as data that
is accessed transactionally and non-transactionally. In refactoring such complex
applications to transactional style, features of Twilight STM can be very helpful.

3.4. Limitations of Twilight STM

Twilight STM extends the scope for STM by providing a rich interface which allows
for transaction-specific conflict handling and integration of non-revertible actions.
Expert programmers benefit from these advantages in particular as the strict en-
forcements of standard STM systems impede application-specific solutions.
While Twilight STM aims at weakening some of these restrictions, programmers

still have to comply with some limitations.

3.4.1. Nesting of transactions

Twilight STM has some short-comings when it comes to composing transactions.
Transactional bodies can be flatly nested while not requiring any changes to the
semantics. However, it is not clear what the semantics of twilight code that is
nested in an outer transaction should be.
One option might be to collect the twilight codes of all nested transactions and

execute them when the top level transaction commits. This poses however the
question in what order the twilight zones are executed and hence when their side-
effects become visible. Commit hooks apply a similar strategy: While evaluating
the atomic block, a transaction can define code to be executed after a successful
commit or an abort. The order of execution is usually fixed by the order in which
they are collected.
Twilight code cannot be easily mapped to abort and commit hooks as it features

operations that can turn an aborting transaction into a successfully committing one
and vice versa. If one sub-transaction decides that the update to some variable
is benign to the semantics of the program, should the program still restart if one
of the sibling transactions declares a different strategy? If a nested transaction
defines some repair code for fixing an inconsistency, how do the parent and sibling
transactions adapt to these changes?
Open nesting [57] is a more natural choice for nested twilight transactions. Con-

flict resolution is then again defined on a per-transaction base. Side-effecting op-
erations are executed as they appear in the program order. Yet, open nesting is
introducing complications, such as the inversion of order between parent and child
transactions, or breaking the transactional isolation when a child transaction leaks

39

Chapter 3. A Tour of Twilight STM

values before the parent transaction issues their publication. Further, it would vio-
late the guaranteed irreversibility of twilight zones. It would no longer be possible
to provide the inclusion of irrevocable I/O as the restart of an outer transactions
triggers the twilight code of the nested transaction again, even if the child transac-
tion committed successfully. The design space for conflict resolution and detection
is therefore growing more complex.
To simplify the design and allow easy reasoning about interacting twilight zones,

Twilight STM requires that twilight code is only specified for top level atomic blocks.
In programming languages with a rich static type system, like Haskell, this require-
ment can be statically enforced (Section 6.3). In addition, the twilight code for an
atomic block can be wrapped into a function which can then be called in the top
level twilight zone. It is then the programmer’s responsibility to amalgamate the
different repair operations or irrevocable actions in a safe manner.

3.4.2. Reading and writing in the twilight zone

The commit protocol of Twilight STM is an adaptation of the two-phase commit
protocol. While in the twilight zone, the transaction is required to have exclusive
access to the memory locations that it wants to modify. If the programmer would
be allowed to extend the transaction’s write set in the twilight zone, issuing writes
to variables that have not been written to in the transaction’s body, the STM
algorithm would need to acquire exclusive access to further memory locations. This
leads quickly to deadlock situations in the system if acquisition of locks gives rise
to a cycle dependency on transactions that try to obtain a lock.
In a similar fashion, extending the read set by read accessing supplementary

memory locations leads to complications in obtaining a consistent memory snapshot.
For example, a transaction that has passed the consistency check in stm_prepare
can invalidate its snapshot with reading another variable in the twilight zone.
Twilight STM therefore restricts reads and writes in the twilight zone to variables

that have already been accessed with a read or write operation, respectively, in
the transactional body. As with nesting of transactions, it is possible to statically
enforce this obligation with Haskell’s type system. In other programming languages,
an invalid access is detected at runtime and results in an exception.
An alternative design for extending the read and write set can be obtained by

trying to perform the operation and indicating a possible failure in the return result.
However, this option puts again the burden on the programmer to define some
appropriate reaction as answer to a failure and complicates the overall program
design.

3.4.3. (Trans)Actions in the twilight zone

Although the twilight zone admits the execution of I/O operations in a safe manner,
the programmer should make sure that a transaction is not stuck indefinitely in the
twilight zone waiting for some external resource becoming available. As outlined in

40

3.4. Limitations of Twilight STM

Section 3.3.3, the design of protocols for mutual exclusion has to take into account
that transactions that are executing their twilight zones currently have disjoint write
sets.
Additionally, Twilight STM precludes that a transaction is nested into the twilight

zone of another transaction. As with extending the read or write set, the execution
of such a nested transaction could give rise to deadlocks and inconsistencies.
As with other concurrency paradigms that provide exclusive access to resources

during critical operations like updates, it is good practice to release the resources
as quickly as possible. Applying this guideline to Twilight STM, programmers will
improve their application’s throughput if the operations in the Twilight zone are
of short duration. Also, they need to carefully balance out the cost of restarting a
transaction and of repairing some inconsistency.

41

Chapter 4.

Algorithm

The STM algorithm underlying the Twilight STM is a time-stamp based algorithm.
It resembles the classic TL2 algorithm [20], but differs in some vital parts.
Figures 4.1-4.5 contain the basic TwilightSTM algorithm in pseudo code notation.

In this notation, var denotes a transactional variable or transactionally shared mem-
ory location. lock(var) denotes the lock associated to the transactional variable. A
lock can either be Free, Reserved, or Locked. The store_lck(var,val) changes the
current lock value to val. CAS(l, A, B) denotes a compare-and-store operation,
that is, the store of value B at l is only performed if the current value of l is A.
The operation (val, t, lck)← load(var) operation atomically loads the data at var,

the associated time stamp, and the current state of the associated lock. Similarly,
store(var, val, t, lck) atomically stores the data in the shared heap. The store and
load operations modify shared memory locations and require memory barriers to
make changes visible to other threads.
For more details on how to actually implement the algorithm in different lan-

guages, we refer to Section 6.

4.1. Globally shared state

Timer To provide consistent memory snapshots to each transaction, the STM al-
gorithm relies on a global timer T. Each transactional variable (i.e. a heap location
that is administered by the STM system) is associated with a version number de-
noting the time of its last modification.
The timer is read upon each start of a transaction, and when reloading its memory

snapshot. It is incremented when a transaction successfully commits changes to the
shared heap.

Locks Each transactional variable is associated with a flag which denotes the vari-
able’s current state. It is used as a lock or monitor and is in one of the following
states:

• A locked variable is currently modified by a transaction and not accessible by
any other transaction.

• A reserved variable is in the write set of a transaction currently in the twilight
zone. It may still be read safely by other transactions.

43

Chapter 4. Algorithm

• A free variable is neither reserved nor locked.

The flags can be combined with the timer to reduce the memory overhead depend-
ing on the memory architecture of the processor. To improve the cache locality, it
can be helpful to store the timer/lock-combinations not with each heap location, but
to administer them in one hash table. In this case, care must be taken that the meta
data is shared only between few transactional variables, as otherwise transactions
will have to abort due to false conflicts.
To prevent deadlocks in the algorithm, Twilight STM reverts to the well-known

technique of obtaining locks in an ordered fashion. The lock order can be obtained
in many different ways, e.g., by explicitly enumerating them, or using their memory
address as total order.

4.2. Transaction local state and operations

A transaction’s meta data is responsible for tracking the read and write accesses
dynamically such that conflicts with other transactions can be discovered efficiently.
To this end, each transaction administers the following structures:

• A time stamp tinit taken at the begin of the transaction is needed to create a
consistent view of the memory.

• A read set stores for each transactional variable that is read by the transaction
the value and its modification time stamp.

• A write set contains the modified value for each transactional variable that is
modified by the transaction.

• A tag map stores for each tag the associated transactional variables.

• A state flag indicates whether the transaction is consistent with respect to the
point in time when the transaction entered the twilight zone. A transaction
state is either notchecked, consistent, or inconsistent.

When starting a transaction with StmBegin (cf. Algorithm 4.1), it is initialized
with empty mappings for the read set, write set, and the tag map. Its state is
initially set as notchecked. Further, the current value of the global timer is read to
initialize the tinit time stamp.

4.2.1. Reading and writing transactional memory

The code for the read and write operations are given in Algorithm 4.1. When reading
a transactional variable, first the thread-local data structures, namely the write and
read set, are checked if they contain local copies of the variable. Otherwise, it must
be the first transactional access of the variable in the transaction. The system then
creates an entry in the read set comprising the variable, its value, and its version

44

4.2. Transaction local state and operations

Algorithm 4.1 Twilight STM: Initializing a transaction, reading and writing trans-
actional variables.
method StmBegin()

readset ← ∅
writeset ← ∅
tags ← ∅
state ← notchecked
tinit ← read T

end

method StmRead(var)
if writeset.contains(var) then

val ← writeset.lookup(var)
else if readset.contains(var) then

(val, tvar) ← readset.lookup(var)
else

(val, tvar, l) ← load(var)
if l = Locked || tvar > tinit then

StmRetry()
end if
readset.add(var, (val, tvar))
return val

end if
end

method StmWrite(var, val)
writeset.add(var, val)

end

45

Chapter 4. Algorithm

Algorithm 4.2 Twilight STM: Entering and exiting the Twilight zone.
method StmPrepare()

reserve(writeset)
return validate(readset)

end

method StmFinalize()
if state 6= consistent then

StmRetry()
end if
lock(writeset)
publishAndUnlock(writeset)

end

method StmRestart()
if state 6= notchecked then

unlock(writeset)
end if

end

method StmCommit()
StmPrepare()
StmFinalize()

end

number at the time of the read operation. To prevent zombie transactions that run
on an inconsistent view of the global heap, the STM system restarts a transaction
if it tries to read from a variable with a time stamp later than tinit. To guarantee
the correctness of the global read, values have to be read atomically together with
their time stamp and lock flag.
Write operations to shared variables are performed lazily. They are recorded

locally in the transaction’s write set.

4.2.2. Committing a transaction

When the transaction attempts to commit, it invokes the method StmPrepare
(cf. Algorithm 4.2). To prevent dead locks when several transactions acquire their
reservation concurrently, the access to the locking flags has to be performed in a
globally consistent order. After acquiring the reservation for the variables in the
write set, the transaction validates the read set by checking that the variables in
the read set are currently not locked and their current version numbers are still less
than or equal to tinit.
In the end, the code either restarts the transaction with StmRetry or tries to

46

4.2. Transaction local state and operations

Algorithm 4.3 Twilight STM: Internal operations.
method Lock(writeset)

sortedlist ← sorted list of all entries in write set
for (var, val) ∈ sortedlist do

store_lck(var, Locked)
end for

end

method Reserve(writeset)
for (var, val) ∈ writeset do

CAS(lock(var), Free, Reserved)
end for

end

method Validate(readset)
state ← consistent
for (var, tvar) ∈ readset do

(val, t′var, l) ← load(var)
if l = Locked || tvar 6= t′var then

state ← inconsistent
end if

end for
end

method publishAndUnlock(writeset)
tcommit ← sample T
for (var, val) ∈ writeset do

store(var, val, tcommit, Free)
end for

end

method unlock(writeset)
for (var, val) ∈ writeset do

store_lck(var, Free)
end for

end

47

Chapter 4. Algorithm

commit by calling StmFinalize. The latter operation also restarts if the read set
is inconsistent. Otherwise, it publishes the write set by writing the new values to
the shared variables and setting their version numbers to the current time tcommit.
In any case, the transaction releases the exclusive access to the shared variables.
For compatibility with the standard STM programming interface, the Twilight

API also includes a commit operation StmCommit which calls StmPrepare and
StmFinalize. In case of conflicts, StmFinalize issues a restart. Otherwise, the
transaction can commit its changes to the global heap (cf. Section 5.5).

4.2.3. Repair operations

After calling StmPrepare, the transaction enters its twilight code. If the twilight
code wants to correct inconsistent reads, it first has to obtain a consistent read set
with StmReload. The operation StmReload updates the read set atomically if
the current read set is inconsistent. The operations StmReread and StmUpdate
are equivalent to their regular pendants, StmRead and StmWrite, but do not
allow extending the read and write set with new entries, respectively.

4.2.4. Tracking down inconsistencies

Querying transactional variables individually for inconsistencies is cumbersome. To
simplify the consistency test, the Twilight API offers a tagging facility to combine
variables to groups. A thread-local counter is used to generate unique tag values in
StmNewTag. With StmAddTag the programmer can mark variables to belong
to one group. A variable may belong to several tagging groups.
In the twilight zone, the method StmIsInconsistent checks whether the vari-

ables that were marked with a tag are inconsistent with respect to the global heap
at the time when entering the twilight zone.

4.3. Properties of the algorithm

The Twilight API operations rely on a locking protocol that maintains the following
invariants:

Lemma 4.3.1 (Correctness of the Twilight locking protocol). The access control in
the Twilight algorithm guarantees the following invariants:

1. A transaction only reads variables that are not currently modified by other
transactions.

2. A transaction has exclusive write access to the variables in its write set from
StmPrepare till StmFinalize.

Proof of 4.3.1: When reading a transactional variable in StmRead, an atomic
load of both the value and its time stamp and lock flag is performed. The read

48

4.3. Properties of the algorithm

Algorithm 4.4 Twilight STM: Repair operations.
method StmUpdate(var, val)

if writeset.contains(var) then
writeset.add(var, val)

else
throw error

end if
end

method StmReread(var)
if writeset.contains(var) then

val ← writeset.lookup(var)
else if readset.contains(var) then

(val, tvar) ← readset.lookup(var)
else

throw error
end if
return val

end

method StmReload()
if state = consistent then return
else

snap ← false
while !snap do

treload ← read T
readset’ ← ∅
snap ← true
for (var, (val, tvar)) ∈ readset do

(val, tcurr, l) ← load(var)
readset’.put(var, (val, tcurr))
snap ← tcurr < treload && l 6= Locked
if !snap then

break
end if

end for
end while
state ← consistent
readset ← readset’

end if
end

49

Chapter 4. Algorithm

Algorithm 4.5 Twilight STM: Handling of tags.
method StmNewTag()

tag ← generate new tag
return tag

end

method StmAddTag(tag,var)
tags.add(tag, var)

end

method StmIsInconsistent(tag)
tagged ← tags.get(tag)
for var ∈ tagged do

(val, tvar) ← readset.get(var)
if (tvar > tinit) then

return true
end if

end for
return false

end

operation is successful only if lock flag is Free or Reserved, i.e. no other transaction
is modifying the variable’s global state.
Similarly, the load of the variable in StmReload checks the flag status to be

different from Locked.
Assume there are two transactions that both have a variable v that in their write

sets. When entering the Twilight code in StmPrepare, only one transaction can
reserve v by a successful CAS on the associated lock from changing v’s state from
Free to Reserved.

From the previous lemma, we can deduce the correctness of the system with
respect to memory consistency.

Definition 4.3.1 (Consistent memory snapshot). A transaction operates on a con-
sistent memory snapshot if there exists a point in time in the execution such that
for each variables in the read set, the heap either contains the value and timestamp
as registered in the read set or a transaction has exclusive access to variable and is
about to set this value and timestamp.

Depending on the execution of a transaction, the point in time is given after the
time stamp of either tinit or treload has been set. The first case in Definition 4.3.1
holds when the transaction which updated the variable in the read set has finalized
its commit. The second case is given when the transaction still processes its commit,
i.e., after increasing the timer T but before updating the value and releasing the lock

50

4.3. Properties of the algorithm

on the variable. A transaction can have such a value in its read set if it obtained
the time stamp of tinit or treload while the transaction incrementing the counter is
still processing its commit, but performs the read access later, after the transaction
has released the lock.

Lemma 4.3.2 (Consistency). A transaction always operates on a consistent mem-
ory snapshot.

Proof of 4.3.2: During the evaluation of the transactional body, all read oper-
ations on the shared heap check that a variable’s time stamp that is entered into
the read set has not been changed since the transaction has started and obtained
tinit. In a similar way, the StmReload method either keeps the read set as is, or
it obtains a memory snapshot of all read set entries that is consistent with respect
to treload.
The update of the global memory in StmFinalize is visible to the outside atom-

ically. Only after locking all variables, the global timer is atomically incremented.
Transactions that obtain their tinit time stamp before this increment reject the up-
dated values in StmRead or StmReload as they either fail or restart the snapshot
creation. All transactions that obtain the same or a later time stamp cannot read
the previous values because either the lock flag of the variables is still set to Locked,
or they have already been overwritten with the newly committed values.

Lemma 4.3.3 (Progress). All Twilight API operations are obstruction-free if the
execution of user-defined twilight code for any transaction always terminates.

Proof of 4.3.3: The only blocking operation in the Twilight API is the reserva-
tion of the transactional variables in the write set when entering the twilight zone.
The corresponding CAS operation can only fail if the lock is not in the Free state,
which means that some other transaction is currently in the critical twilight section.
Under the assumption that execution of the twilight code always terminates, this
transaction does eventually leave the twilight zone.
When no transaction is in its Twilight zone, the CAS operation succeeds, and

thus the waiting thread can make progress.

The Twilight STM is not lock-free: Transactions which have distinct write sets
but read variables that are in another transactions write set cause each other to
restart because the validation of the read set fails when they try to commit at the
same time. Achieving lock-freedom can be achieved with the help of a contention
manager which arbitrates between conflicting transactions in a fair way.

51

Chapter 5.

Correctness

By avoiding observable inconsistencies, the semantics of transactional memory pro-
vides a comparatively simple model for concurrent programming. Instead of (im-
plicitly) associating several memory locations with a lock and requiring that the lock
needs to be obtained before accessing any of these memory locations and released
thereafter, accesses are grouped together in a transaction that runs at a proclaimed
level of isolation.
Prior work on the semantics of transactions [1, 54] focusses primarily on weak

atomicity and studies the interaction of transactional and non-transactional memory
accesses. This is an important aspect for applications combining different kinds of
synchronization. For example, an application that builds on legacy code might
contain locking as well as transactional code. However, these formalizations do not
account for the phenomena that occur in an interleaved execution of transactions.
For example, in state-of-the-art algorithms like TL2 [20], threads may get stuck even
when a fair scheduling of threads is provided because they are repeatedly forced to
abort by other transactions’ successful commits.
To illustrate the mechanism underlying the aborts, this chapter pursues an ap-

proach that abstracts program execution by traces of memory accesses and trans-
action control operations. To this end, we define a monadic lambda calculus with
threads and transactions, ΛSTM . Similar to schemes in research on isolation levels
for databases, each memory access is modeled by an effect on the global heap. This
abstraction allows for an easy comparison of different TM algorithms. Their seman-
tics are reflected in the effect traces which they generate during program execution
under some scheduling schemes. The structure of the traces is determined by the
isolation levels of the respective STM algorithm.
This chapter is ordered as follows:

1. We present a formalization of a semantics for transactional memory that is
suitable for proving properties of a TM implementation.
A high-level semantics abstracts from so many details that properties of the
implementation become trivially evident [35]. A low-level semantics provides
so many details that formal proofs of its properties are no longer tractable. Our
semantics keeps the middle ground. It explicitly models the non-deterministic
interleaving of the operations in each thread including operations in aborting
transactions. However, it does not model implementation details like the
construction of memory snapshots or the implementation of locks.

53

Chapter 5. Correctness

2. We prove that our semantics for ΛSTM implements opacity [31], that is, all
execution traces in our semantics are equivalent to serial execution traces,
where the execution of critical regions, namely the transaction bodies, is non-
interleaved.

3. We demonstrate that a small modification of the semantics (the TM algorithm,
respectively) yields another notion of transactional isolation, namely snapshot
isolation. We define a criterion for traces obtained under snapshot isolation
and prove that the modified semantics ΛSI only produces such snapshot traces.

4. We extend the formal calculus to the work flow and repair operations of Twi-
light STM, ΛTWI . We show that without applying any Twilight operations,
the transactions in ΛTWI implement opacity. By applying different strategies
for conflict resolution in the twilight zones, the resulting protocols are shown
to yield snapshot isolation or irrevocability.

5.1. Execution traces

Let us begin with some informal examples of execution traces that provide insight
into our approach. Execution traces are sequences of atomic effects that denote
the beginning of a transaction (at t,i), read accesses to memory location l within a
transaction (r t,i(l)), commits of a transaction which correspond to globally visible
modifications to shared locations l̄ (cot,i(l̄)), and abort effects for unsuccessful trans-
actions (abt,i). In these effects, t identifies the thread and i is a unique transaction
identifier. A thread may run multiple transactions over time, but only one at a
time. In most of our examples each transaction runs on a distinct thread.
To simplify reasoning, we rely on an abstract notion of time. Each effect is

supposed to happen atomically at a distinct, single point in time. Further, effects
can be totally ordered according to the point in time when they occur.

5.1.1. Successful commits

As a first example, consider the following trace:

time

t1

t2

at t1,1
r t1,1(x) r t1,1(y)

at t2,2 r t2,2(z)

cot1,1(x, y)

cot2,2(z)

The scheduling interleaves two transactions t1 and t2 that read and write disjoint
locations x 6= y 6= z. For better readability, we separate the effects for each thread
such that each dotted line shows the restriction of the trace to one thread. A full
line indicates the duration of a transaction.
For this trace, there are two equivalent serial traces:

54

5.1. Execution traces

t1

t2

at t1,1 r t1,1(x)

at t2,2 r t2,2(y)

cot1,1(x)

cot2,2(y)

and

t1

t2

at t1,1 r t1,1(x)

at t2,2 r t2,2(y)

cot1,1(x)

cot2,2(y)

We consider traces to be equivalent if they correspond to evaluations of the pro-
gram to the same final heap and result. In such a serial trace, each transaction
conceptually operates on its own snapshot of the heap, taken at the beginning of
the transaction. As both transactions were able to finish successfully, their read and
write sets cannot have elements in common, and all their operations are indepen-
dent. Hence both serial traces are equivalent to the original one.

5.1.2. Read conflicts

A read conflict occurs if one transaction commits a write operation to a variable
that another transaction is just about to read. In that case, the reading transaction
must not proceed because its snapshot is no longer consistent with the current heap.
Thus, the semantics forces the second transaction to abort.
An example of abort induced by a read conflict is depicted in the next trace.

t1

t2

at t1,1 abt1,1

at t2,2 r t2,2(x) cot2,2(x)

The trace gives an example for a transaction t1 which had to abort because of
a read conflict on x (it does not produce a read effect because the read operation
is never permitted, as explained above). Nevertheless, there is an equivalent serial
trace:

t1

t2

at t1,1 abt1,1

at t2,2 r t2,2(x) cot2,2(x)

5.1.3. Snapshot isolation

Not all interleavings of threads can be decoupled into some equivalent serial trace.
Take a look at the next example:

55

Chapter 5. Correctness

Figure 5.1. Syntax of ΛSTM . Gray expressions arise only during evaluation.
x∈Var
l ∈Ref
v ∈Val ::= l | tt | ff | () | λx.e | return e
e ∈Exp ::= v | x | e e | if e e e | e >>= e

| spawn e | atomic e | (e,W,R, i, e,H)

| new e | read e | write e e

t1

t2

at t1,1 r t1,1(x) cot2,2(y)

at t2,2 r t2,2(y) cot2,2(x)

The trace is not serializable because a read operation is supposed to return the
last value written to a location. Hence, in a serial trace the latter read operation
would yield the value written and committed by the first transaction.
Algorithms that admit traces like in the last example implement a weaker isolation

level called snapshot isolation. Semantically, a thread-local copy of the memory is
made at the start of a transaction. The transaction operates on this private copy
during its execution. At commit, all changes are merged back into the global heap.
The transaction is in conflict with another transactions only if both transactions
try to update the same heap locations. A detailed discussion of snapshot isolation
is done in Section 5.4.

5.2. Formalizing STM

This section formalizes an STM with lazy update, where all write operations are
delayed till the commit operation. The formalization, ΛSTM , is based on a monadic
call-by-name lambda calculus with references, threads, and transactions.

5.2.1. Syntax of ΛSTM

Figure 5.1 contains the syntax of ΛSTM . A value is either a reference, a boolean, the
unit constant, or a function. Expressions comprise these values, variables, function
application, conditional, monadic return and bind, spawning of threads, transac-
tions, transactions in progress (an intermediate expression not arising in source
programs), and the usual operations on references.
Figure 5.2 defines the type system for ΛSTM . The type language consists of the

types of the simply typed lambda calculus with base types boolean and unit, a
reference type R τ for references pointing to values of type τ , function types, and
a monadic type µ τ for a monad returning values of type τ . There is a choice of
two monads, IO for general monadic operations and STM for operations inside a
transaction.

56

5.2. Formalizing STM

Figure 5.2. Typing rules of ΛSTM .
Types τ ::= bool | () | R τ | τ → τ | µ τ

µ ::= IO | STM
Type environments Γ ::= ∅ | Γ, x : τ

Σ ::= ∅ | Σ, l : τ

Σ|Γ ` ff : bool
T-False

Σ|Γ ` tt : bool
T-True

Σ|Γ ` () : ()
T-Unit

Γ(x) = τ

Σ|Γ ` x : τ
T-Var

Σ(l) = τ

Σ|Γ ` l : R τ
T-Ref

Σ|Γ, x : τ1 ` e : τ2

Σ|Γ ` λx.e : τ1 → τ2
T-Func

Σ|Γ ` e2 : τ1 → τ2 Σ|Γ ` e1 : τ1

Σ|Γ ` e2 e1 : τ2
T-App

Σ|Γ ` e1 : bool Σ|Γ ` e2 : τ Σ|Γ ` e3 : τ

Σ|Γ ` if e1 e2 e3 : τ
T-If

Σ|Γ ` e : τ

Σ|Γ ` return e : µ τ
T-Return

Σ|Γ ` e1 : µ τ Σ|Γ ` e2 : τ → µ τ ′

Σ|Γ ` e1 >>= e2 : µ τ ′
T-Bind

Σ|Γ ` e : IO τ

Σ|Γ ` spawn e : IO ()
T-Spawn

Σ|Γ ` e : STM τ

Σ|Γ ` atomic e : IO τ
T-Atomic

Σ|Γ ` e : STM τ Σ|Γ ` e′ : STM τ Σ `W Σ ` R Σ ` H
Σ|Γ ` (e,W,R, i, e′,H) : IO τ

T-Txn

Σ|Γ ` e : τ

Σ|Γ ` new e : STM (R τ)
T-Alloc

Σ|Γ ` e : R τ

Σ|Γ ` read e : STM τ
T-Deref

Σ|Γ ` e1 : R τ Σ|Γ ` e2 : τ

Σ|Γ ` write e1 e2 : STM ()
T-Assign

∀l ∈ dom(H) : H(l) = (v, i)⇒ Σ|∅ ` v : Σ(l)

Σ ` H

57

Chapter 5. Correctness

Figure 5.3. State related definitions for the operational semantics of ΛSTM .
l, l′ ∈Ref
t, t′ ∈ThreadId
i, j ∈TxnId
P ∈ThreadPool = ThreadId⇀ Exp× TxnId
Ti ∈Transaction = Exp× Store× Store× TxnId× Exp× Store
H, R,W ∈ Store = Ref⇀ Val× TxnId
αi ∈TxnEffect = {at t,i, abt,i, cot,i(l̄), r t,i(l), εt,i}
α ∈Effect = {εt, spt(t)}

The typing judgment Σ|Γ ` e : τ contains two environments. Σ tracks the type
of memory locations, and Γ tracks the type of variables. There is a second, heap
typing judgment Σ ` H that relates the type of each memory location to the (closed)
value stored in it. The typing rules are syntax-directed and mostly standard.

5.2.2. Operational semantics for ΛSTM

Figure 5.3 introduces some auxiliary definitions for the operational semantics. A
program state H,P is a pair consisting of a heap and a thread pool. A thread pool
maps thread identifiers to expressions to be evaluated concurrently and a thread-
local transaction counter. The execution of a program is represented by a labeled
transition relation between program states.
A transaction in progress is represented by a tuple (e,W,R, i, e′,H′). It consists

of the expression e that is currently evaluated, the write setW and the read set R of
the transaction, a (unique) transaction identifier i, a copy of the original transaction
body e′, and a copy H′ of the heap taken at the beginning of the transaction. The
latter two store the relevant state at the beginning of a transaction to facilitate the
consistency check and the abort operation.
A reference corresponds to a heap location. All stores (the heap, the read set, and

the write set of a transaction) map a reference to a pair of a value and a transaction
identifier. The transaction identifier specifies the transaction which committed or,
in case of the write set, attempts to commit the value to the global store. The
identifier is used in the heap and the read set to detect changes in the heap while
avoiding the ABA problem such that updates with a previous value are detectable
for concurrently running threads. Though the operational semantics do not require
identifiers for the write set, we still employ them in our formalism to have a uniform
kind of store.
S(l) denotes the lookup operation of a reference l in a heap S. It implies l ∈

dom(S). The store update operation S[l 7→ y] returns a store that is identical to
S, except that it maps l to y. For two stores S1 and S2, we write S1[S2] for the
updated version of S1 with all entries of S2.
Operations can have different effects α on the global state: the begin transaction

58

5.2. Formalizing STM

Figure 5.4. Operational semantics: Local evaluation steps.
Evaluation contexts:

E ::= [] e | if [] e e′

M ::= read [] | write [] e | []>>= e

Expression evaluation →:

(λx.e) e′ → e[e′/x]

if tt e e′ → e

if ff e e′ → e′

e→ e′

E [e]→ E [e′]

Monadic evaluation y:

return e′ >>= e y e e′

e→ e′

ey e′
my m′

M[m] yM[m′]

(at t,i), abort transaction (abt,i), read reference l (r t,i(l)), and commit writing ref-
erences l̄ (cot,i(l̄)) indicating operations on the global shared heap, or empty effects
(εt,i or εt), with t a thread identifier, and i a transaction id. The empty effects
εt represent monadic reductions that occur outside a transaction (see top of Fig-
ure 5.5). The spawn effect spt(t′)denotes the spawning of a new thread with thread
id t′ by thread t.
The evaluation of a program with body e starts in an initial state 〈〉, {0 7→ e, 0}

with an empty heap and a main thread with thread identifier 0. A final state has the
form H, {0 7→ (v0, i0); . . . ; tn 7→ (vn, in)}. The rules in Figures 5.4 and 5.5 define the
semantics of the language constructs. In Figure 5.4, the operational semantics of
local evaluation steps is defined. The rules are standard for call-by-name semantics
calculi. E [•] denotes an evaluation context for an expression andM[•] an evaluation
context for monadic expressions. We write m to indicate that an expression has a
monadic type. As usual, e[e′/x] denotes the capture-avoiding substitution of x by
e′ in e.
Figure 5.5 contains the evaluation steps on the global level. The IO monad is the

top-level evaluation mode. Each reduction step α
=⇒ chooses an expression from the

thread pool P. The non-determinism in this choice models an arbitrary scheduling
of threads.
Spawning a thread (Spawn) creates a new entry in the thread pool and returns

unit in the parent thread.

59

Chapter 5. Correctness

Figure 5.5. Operational semantics for ΛSTM : Global evaluation steps.

my m′

H,P{t 7→ m, i} εt
=⇒ H,P{t 7→ m′, i}

IO-Monad

t′ fresh

H,P{t 7→ M[spawn m], i} spt(t′)
=⇒ H,P{t 7→ M[return ()], i; t′ 7→ m, 0}

Spawn

H,m, i
α
� H′,m′, i′

H,P{t 7→ M[m], i} α
=⇒ H′,P{t 7→ M[m′], i′}

Txn

All other reductions of the monadic expression under the current heap are defined
by the state transformation

H,m, i
α
� H′,m′, i′

The corresponding evaluation rules are given in Figure 5.6. An atomic expression
at the top-level (Atomic) creates a new transaction in progress with the expression
to be evaluated, an empty read and write set, and a fresh transaction identifier
(that has never been used before in a particular evaluation). Further, a copy of the
expression m is needed for possible rollbacks, and a copy of the current heap to
mark the beginning of the transaction.
All monadic evaluation steps can take place inside a transaction (STM-Monad).
Allocation of a new reference (Alloc) must check that the reference is not yet

allocated in the heap. But it must also check that the reference is not yet allocated
in any concurrently running transaction to avoid accidental overwrites when both
transactions commit. This condition is indicated by l /∈ H,P, eschewing a formal
definition.
Write operations (Write) are straightforward. They just affect the local write

set and store the value along with the current transaction identifier.
The read operation on references (Read) needs to consult the global state. If a

reference cannot be read from the local read or write set, it is accessed in the current
global heap. To maintain the transaction’s consistency, the read operation is suc-
cessful only if the value has not been updated since the transaction’s beginning. The
value and transaction identifier as registered in the heap for this reference are then
added to the read set and the value is returned to the transactional computation.
If a reference is present in the read set, but not in the write set, then its value is

taken from the read set (ReadRSet).
If the reference is present in the write set, then its value is taken from the write

set, without checking the read set (ReadWSet).

60

5.2. Formalizing STM

Figure 5.6. Operational semantics for ΛSTM : Evaluation steps in transactions.

i′ = i+ 1

H, atomic m, i
att,i

� H, (m, 〈〉, 〈〉, i′,m,H), i′
STM-Monad

my m′′

H, (m,W,R, i,m′,H′), i
εt,i

� H, (m′′,W,R, i,m′,H′), i
STM-Monad

l /∈ dom(H) W ′ = W [l 7→ (e, i)] H′′ = H[l 7→ (e, i)]

H, (M[new e],W,R, i,m′,H′), i
εt,i

� H′′, (M[return l],W ′, R, i,m′,H′), i
Alloc

W ′ = W [l 7→ (e, i)]

H, (M[write l e],W,R, i,m′,H′), i
εt,i

� H, (M[return ()],W ′, R, i,m′,H′), i
Write

l /∈ dom(W) ∪ dom(R) H(l) ≡ H′(l) ≡ (e, j) R′ = R[l 7→ (e, j)]

H, (M[read l],W,R, i,m′,H′), i
r ti,i(l)
� H, (M[return e],W,R′, i,m′,H′), i

Read

l /∈ dom(W) R(l) = (e, j)

H, (M[read l],W,R, i,m′,H′), i
εt,i

� H, (M[return e],W,R, i,m′,H′), i
ReadRSet

W (l) = (e, i)

H, (M[read l],W,R, i,m′,H′), i
εt,i

� H, (M[return e],W,R, i,m′,H′), i
ReadWSet

H, (m,W,R, i,m′,H′), i
abt,i

� H, atomic m′, i+ 1 Rollback

check(R,H) = ok H′′ = H[W] l̄ = dom(W)

H, (return e,W,R, i,m′,H′), i
cot,i(l̄)
� H′′, return e, i+ 1

Commit

Figure 5.7. Operational semantics for ΛSTM : Helper relations for heap checks.

∀l ∈ dom(R) : R(l) = H(l)

check(R,H) = ok
Check-Ok

∃l ∈ dom(R) : R(l) 6= H(l)

check(R,H) = bad
Check-Bad

61

Chapter 5. Correctness

If none of the preceding three cases holds at a read, then the transaction aborts
and rolls back via Rollback by abandoning the transaction in progress and rein-
stalling the saved transaction body m′ as an atomic block. In fact, this rule has
no precondition so that a rollback may happen non-deterministically at any time
during a transaction. This way, it is easy to extend our model with an explicit user
abort or retry operation. Furthermore, this rule covers the abort both when reading
fails as well as when the commit operation fails. However, for performance reasons,
an actual implementation applies Rollback only if no other transactional rule is
applicable.
When committing (Commit), the heap is checked for updates to the references

which are found in the transaction’s read set since the start of the transaction.
There are two cases:

The check is successful (Check-Ok): None of the variables read by the transaction
have been committed by another transaction in the meantime. Therefore, the
transaction may publish its writes atomically to the shared heap and return
to the IO monad.

The check fails (Check-Bad): The only applicable rule is Rollback. The trans-
action aborts and restarts.

As for the transaction counter i, it is incremented when starting and when finish-
ing the evaluation of a transaction in progress.
Each of the reductions also generates the appropriate effect label on the transition

relation. Thus, each sequence of labeled reductions uniquely determines a sequence
of labels, which we call the trace of the reduction sequence. Unlike other formaliza-
tions, the interleaving of transactions as well as the abort operations are visible in
the trace.

Theorem 5.2.1 (Type soundness). The type system in Figure 5.2 is sound with
respect to the operational semantics of ΛSTM .

Proof of 5.2.1: The proof is by establishing type preservation and progress in
the usual way [79]. The proof of progress relies crucially on the use of the Rollback
rule if the comparison of heap entries in Read or Commit fails.

5.2.3. Deterministic allocation

The rule for allocating shared memory, Alloc, requires the creation of new refer-
ences. In the formalization, these references are used in two ways, in the evaluation
semantics and in the effects. Semantically, the references are needed to identify
heap entries. For the correctness of the system the references need to be unique,
but otherwise no restrictions are given.
In the effects, the references are used to highlight the interaction of threads via

shared memory. To simplify later the discussion about equivalence of traces, we

62

5.3. Opacity

assume that the same references are used for a thread under each schedule when
allocating. Similarly, we require that spawning a thread in Spawn assigns the same
thread id to a newly spawned thread under any schedule.
These deterministic generation schemes for references and identifiers can be mod-

elled in the formal semantics by introducing thread-specific counters. We avoid
cluttering the semantical framework with these auxiliary counters, but assume in
the following that the generation of identifiers and references is equal under each
schedule.

5.3. Opacity

The standard isolation property that most STM systems provide is opacity [31]. It
states that any allowed interleaving of transactions must have an equivalent seri-
alized execution. Furthermore, even aborting transactions are required to observe
memory locations only in a consistent way.
In this section, we prove formally that the semantics for ΛSTM satisfies opacity.

To this end, we give a definition for well-formedness of execution traces in terms
of the effects they exhibit. We then show that reordering certain evaluation steps
leads to equivalent reductions sequences. Reductions are considered equivalent if
every read operation returns the same value, every commit operation commits the
same values, and every transaction’s outcome (abort or commit) is the same. To
see which reordering yields equivalent reductions, we define a notion of dependency
on effects.
In contrast to other definitions of well-formed execution traces (e.g. [76]), we do

not take the values of memory locations into account. The operational semantics
guarantees that each transaction is working on a consistent view of the shared
memory as indexed by its time stamp. A read operation returns the last value
written, either by another transaction which updated the global heap, or by the
transaction itself in a local write step. Further, all write operations are published
(i.e., made visible to other transactions) only after the successful commit. Therefore,
the trace reflects the order of the globally visible effects of the read and write
operations. The local reads and writes have no globally visible effect.
Finally, we show that all reduction sequences produced by the operational se-

mantics are equivalent to some reduction sequence with a serial trace, up to the
assignment of unique labels to the transactions. Note that we only consider finite
traces which correspond to programs running a finite amount of time. For infinite
traces, we are able to establish our results for all finite prefixes.

5.3.1. Effect traces

We start with a formal account on effect traces.

Definition 5.3.1 (Effect traces). A trace ᾱ is a finite sequence α1 . . . αn of effects
αi ∈ Effect for i ∈ 1, . . . , n.

63

Chapter 5. Correctness

A total order on the effects α ∈ ᾱ is defined by their position in the effect trace.
For i, j ∈ {1, . . . , |ᾱ|} and i < j, we use the abbreviation

ᾱ ` αi < αj

to denote that an effect αi is happening before αj in an trace ᾱ. We often abbreviate

ᾱ ` αi < αj < αk

if ᾱ ` αi < αj and ᾱ ` αj < αk.
Similarly,

ᾱ ` ᾱ1 < ᾱ2

extends the relation to sets of effects if it holds pairwise for all elements in the
disjoint sets ᾱ1 and ᾱ2, where ᾱ1, ᾱ2 ⊂ ᾱ.

We identify by α an arbitrary effect from a trace ᾱ. αt denotes an (arbitrary)
effect from thread t, and αt,i an effect from transaction Ti in thread t. To distinguish
between transactions running on different threads, we often use the transaction
identifier as subscript to the thread id, for example αti,i.
Further, ᾱ|t = {αt ∈ ᾱ} is the subset of all effects from thread t, and ᾱ|t,i =
{αt,i ∈ ᾱ} the subsets of all effects from transaction i in thread t.
Effect traces encode the scheduling of threads during the execution of a program.

Additionally, non-empty effects encode the side-effects on the program state such
as thread spawning or operations on the heap. Empty effects have no influence on
the globally shared state. We define an operation 〈·〉 which reduces a trace to its
kernel, the ordered sequence of non-empty effects.

Definition 5.3.2. The kernel of a trace 〈ᾱ〉 is the reduction of the trace to its
non-empty effects.

〈∅〉 = ∅

〈α, ᾱ〉 =

{
〈ᾱ〉 if α = εt,i or α = εt

α, 〈ᾱ〉 otherwise

Definition 5.3.3. A trace ᾱ is equal in effects to a trace β̄ if

〈ᾱ〉 ≡ 〈β̄〉

A trace is well-formed if it does not violate some obvious rules related to the the
order of transactional and non-transactional effects. These rules mainly concern the
proper nesting of transactions and threads.

Definition 5.3.4 (Well-formed traces). A trace ᾱ is well-formed if the following
conditions hold:

64

5.3. Opacity

• There is no effect for a thread before its spawn effect, unless it is the main
thread.

∀t 6= 0 : αt ∈ ᾱ⇒ ∃t′ : spt
′
(t) ∈ ᾱ ∧ ᾱ ` spt

′
(t) < αt

• For each transactional effect, there is a corresponding atomic effect in the
trace.

αt,i ∈ ᾱ⇒ at t,i ∈ ᾱ

• There is no effect for a transaction Ti before its atomic effect.

∀at t,i ∈ ᾱ : r t,i(l) ∈ ᾱ⇒ ᾱ ` at t,i < r t,i(l)

cot,i(l̄) ∈ ᾱ⇒ ᾱ ` at t,i < cot,i(l̄)

abt,i ∈ ᾱ⇒ ᾱ ` at t,i < abt,i

εt,i ∈ ᾱ⇒ ᾱ ` at t,i < εt,i

• There is no effect for a transaction Ti after its commit effect.

∀cot,i(l̄) ∈ ᾱ : r t,i(l) ∈ ᾱ : ᾱ ` r t,i(l) < cot,i(l̄)

εt,i ∈ ᾱ : ᾱ ` εt,i < cot,i(l̄)

Similarly, there is no effect for a transaction Ti after its abort effect.

∀abt,i ∈ ᾱ : r t,i(l) ∈ ᾱ : ᾱ ` r t,i(l) < abt,i

εt,i ∈ ᾱ : ᾱ ` εt,i < abt,i

• A transaction may have either a commit or an abort effect, but not both.

cot,i(l̄) ∈ ᾱ ⇒ abt,i /∈ ᾱ
abt,i ∈ ᾱ ⇒ cot,i(l̄) /∈ ᾱ

• There are no non-transactional effects within a transaction.

εt ∈ ᾱ ⇒ @i : ᾱ ` at t,i < εt < cot,i(l̄) ∨ ᾱ ` at t,i < εt < abt,i

spt(t′) ∈ ᾱ ⇒ @i : ᾱ ` at t,i < spt(t′) < cot,i(l̄) ∨ ᾱ ` at t,i < spt(t′) < abt,i

• Transactional effects from the same thread do not interleave.

∀t ∀i 6= j : ᾱ ` ᾱ|t,i < ᾱ|t,j ∨ ᾱ ` ᾱ|t,j < ᾱ|t,i

It follows directly from the definition of well-formedness that a trace contains for
each transaction exactly one atomic effect and at most one commit or abort effect.

Definition 5.3.5 (Pending transactions). A transaction Ti is pending in a trace ᾱ
if it has neither a commit nor an abort effect:

abt,i /∈ ᾱ ∧ cot,i(l̄) /∈ ᾱ

65

Chapter 5. Correctness

Beside the total order that is defined by the position in a trace, another partial
order connects effects based on their interdependence.

Definition 5.3.6 (Control dependency). An effect α has a control dependency on
an effect α′, α .c α′, if α precedes α′ in the control flow of the program. Hence, a
control dependency is given if

• α and α′ are effects from the same transaction and ᾱ ` α < α′, or

• α = spt(t′) and α′ is from thread t′.

Definition 5.3.7 (Data dependency). An effect α has a data dependency on an
effect α′, α .d α′ if they exhibit a read-write, write-read, or write-write dependency
on the same memory location, and ᾱ ` α < α′. Hence, a data dependency is given
in the following cases (i 6= j):

• r ti,i(l) .d co
tj ,j(l̄) and l ∈ l̄

• coti,i(l̄) .d r
tj ,j(l) and l ∈ l̄

• coti,i(l̄) .d co
tj ,j(l̄′) and l̄ ∩ l̄′ 6= ∅

Definition 5.3.8 (Dependency). An effect α is dependent on an effect α′ if α has
either a control or data dependency on α′:

α . α′ iff α .c α
′ ∨ α .d α′

Effects that are not dependent on each other are called independent.
A transaction Ti is dependent on another transaction Tj if α . α′ for an effect α

from Ti and an effect α′ from Tj.

Definition 5.3.9 (Trace dependencies). Let ᾱ be a well-formed trace. The trace
dependencies ∆(ᾱ) are defined as the set of all pairs of dependent effects in this
trace:

∆(ᾱ) = {(αi, αj) | αi . αj}

The trace dependencies impose a partial order on a trace. In the following section,
we show how to reorder traces into serial traces while preserving this partial order.

5.3.2. Trace anomalies

For further characterization of effect traces, we follow the definition of anomalies
in transactions given by Berenson et al. [8]. Our formalization of traces impedes
dirty reads and dirty writes by design because updates to shared data is only visible
to other transactions after a commit. Our definition of effects does not distinguish
between writes and commits, but merges them together into one commit effect. We
therefore can focus here on the remaining four types of anomalies.

66

5.3. Opacity

Definition 5.3.10 (Non-repeatable reads). A transaction Ti experiences a non-
repeatable read if

∃x : ᾱ ` r ti,i(x) < cotj ,j(l̄) < r ti,i(x) and x ∈ l̄.

Definition 5.3.11 (Lost updates). A transaction causes a lost update if

∃x : ᾱ ` r ti,i(x) < cotj ,j(l̄) < coti,i(l̄′) and x ∈ l̄ ∩ l̄′.

Definition 5.3.12 (Read skew). A transaction Ti exhibits a read skew with some
other transaction Tj (i 6= j) if

∃x, y : ᾱ ` r ti,i(x) < cotj ,j(l̄) < r ti,i(y) and x, y ∈ l̄.

Definition 5.3.13 (Write skew). Two transactions Ti and Tj, i 6= j, exhibit a write
skew in a trace ᾱ if there exists locations x and y such that

r ti,i(x), r ti,i(y), r tj ,j(x), r tj ,j(y), coti,i(l̄1), cotj ,j(l̄2) ∈ ᾱ

and
ᾱ ` at ti,i < cotj ,j(l̄2)

ᾱ ` at tj ,j < coti,i(l̄1)

with x ∈ l̄1 and y ∈ l̄2.

5.3.3. Serializing effect traces

We use the characterization of anomalies to now define the isolation level of serial-
izability. According to Berenson et al. [8], in a serializable transactional system

1. all reads are repeatable,

2. there are no lost updates,

3. there are no read skews, and

4. there are no write skews.

It is easy to see that the semantics of ΛSTM preclude the anomalies from Sec-
tion 5.3.2. This is mainly due to the heap checks when reading or committing
shared data items. In the following we give a constructive proof of how to obtain
a corresponding serial execution trace for any trace that is obtained by executing a
program under the semantics of ΛSTM .

Definition 5.3.14 (Serial traces). A well-formed trace ᾱ is serial if for any two
transactions Ti and Tj (i 6= j), all effects from Ti occur before all effects from Tj,
or vice versa:

∀ i 6= j : ᾱ ` ᾱ|ti,i < ᾱ|tj ,j or ᾱ ` ᾱ|tj ,j < ᾱ|ti,i

67

Chapter 5. Correctness

In contrast to other approaches, we do not exclude aborting or pending transac-
tions in the definition for serial traces. Therefore, we actually model opaque traces.
The definition of serial traces only orders transactional effects with respect to each

other, but does not specify the relative order of non-transactional effects. Under
weak atomicity, it is possible for non-transactional effects to occur during a trans-
action’s execution whereas strong atomicity precludes this behavior. To capture the
notion of strong atomicity, we introduce the notion of strongly serial traces in the
following definition.

Definition 5.3.15 (Strongly serial traces). A well-formed trace ᾱ is strongly serial
if every effect that is ordered between two effects from the same transaction is an
effect from the same transaction.

∀αt,i, α′t,i : ᾱ ` αt,i < β < α′t,i ⇒ β = α′′t,i

For the construction of strongly serial traces, we are interested in equivalence
classes of traces that are permutations of each other and encode the same side-
effects on the program state. However, there are restrictions on what reorderings
of effects are permissible. For example, the order of trace items with respect to
one thread must not be changed. In short, permissible permutations respect the
dependencies of effects.

Definition 5.3.16 (Equivalence of traces). A trace ᾱ is equivalent to a trace β̄ if
ᾱ is a permutation of ᾱ′ and ∆(ᾱ) = ∆(β̄).

Traces that have an equivalent serial trace are often called conflict serializable in
the literature [76].
In the remainder of this section, we identify which subsequences of a trace are

not serial, and specify an algorithm that moves the effects to the appropriate place.

Lemma 5.3.1 (Conflicts). Let ᾱ be a serializable trace. Then ᾱ is either strongly
serial, or there exists an αk such that the prefix α1 . . . αk is strongly serial and

1. αk and αk+1 are independent, or

2. αk = r ti,i(l) and αk+1 = cotj ,j(l̄) with l ∈ l̄.

Proof of 5.3.1: We consider all possible combinations of effects which might
occur in a well-formed trace. Suppose that i 6= j.
Case distinction on αk and αk+1.

• Case αk = εt or αk+1 = εt: serial or independent.

• Case αk = εti,i or αk+1 = εtj ,j : serial or independent.

• Case αk = at ti,i and αk+1 = at tj ,j : serial.

• Case αk = at ti,i and αk+1 = r ti,i(l): serial.

68

5.3. Opacity

• Case αk = at ti,i and αk+1 = r tj ,j(l): independent.

• Case αk = at ti,i and αk+1 = coti,i(l̄): serial.

• Case αk = at ti,i and αk+1 = cotj ,j(l̄): independent.

• Case αk = at ti,i and αk+1 = abti,i: serial.

• Case αk = at ti,i and αk+1 = abtj ,j : independent.

• Case αk = r ti,i(l) and αk+1 = r tj ,j(l′): independent.

• Case αk = r ti,i(l) and αk+1 = r ti,i(l′): serial.

• Case αk = r ti,i(l) and αk+1 = coti,i(l̄): serial.

• Case αk = r ti,i(l) and αk+1 = cotj ,j(l̄): If l ∈ l̄, then this is the second case
in the lemma. Otherwise independent.

• Case αk = r ti,i(l) and αk+1 = abti,i: serial.

• Case αk = r ti,i(l) and αk+1 = abtj ,j : independent.

• Case αk = coti,i(l̄) and αk+1 = cotj ,j(l̄′): According to the operational se-
mantics, it must hold that l̄ ∩ l̄′ = ∅. Therefore, the effects are independent.

• Case αk = coti,i(l̄) and αk+1 = abtj ,j : independent.

End case distinction on αk and αk+1. Cases that are left out violate the criterion
for well-formedness.

In our semantics, the begin of a transaction defines its relative order to other
transactions. This order is only partial. Consider for example transactions that
perform their operations interleaved. Interleaved transactions only commit success-
fully together if their operations do not conflict with each other. The following
lemma shows that for these transactions, any relative order is admissible.

Lemma 5.3.2 (Permutation of effects). Let ᾱ be a serializable trace with ᾱ =
ᾱ′r tj ,j(l)coti,i(l̄) where ᾱ ` at ti,i < r tj ,j(l) and the prefix ᾱ′r tj ,j(l) is strongly serial.
Then, there exists at least one effect αi in ᾱ′ such that

ᾱ ` at ti,i < αi

and αi is from another thread.
Further, assume αm = at ti,i and let αk be the effect with the smallest index such

that ᾱ ` at ti,i < αk and αk is from another thread. Then, ᾱ is equivalent to a trace
β̄ where αk is moved just before at ti,i:

β̄ = α1 . . . αm−1αkat
ti,iαm+1 . . . αk−1αk+1 . . . αn

69

Chapter 5. Correctness

Algorithm 5.1 Reordering transactions for opacity.
while ᾱ is not strongly serial do

choose αk and αk+1 such that α1 . . . αk is strongly serial
and α1 . . . αk+1 is not strongly serial

if αk and αk+1 are independent then
swap αk with αk+1

else if αk = r ti,i(l) and αk+1 = cotj ,j(l̄) with l ∈ l̄ then
choose αm with the smallest index such that

ᾱ ` at ti,i < αm and αm = αt
′ with t 6= t′

move αm before at ti,i

else
report error

end if
end while

Proof of 5.3.2: Assume that there does not exist such an effect αi. Because the
prefix is strongly serial, the trace ᾱ must have the following structure:

ᾱ = αpreat
ti,i
(
r ti,i(•) | εti,i

)∗
γ at tj ,j

(
r tj ,j(•) | εtj ,j

)∗
r tj ,j(l)coti,i(l̄)

where γ is a (possibly empty) sequence of (possibly pending) transactions and
non-transactional effects.

γ =
(
at�,? (r�,?(•) | ε�,?)∗ (ab�,? | co�,?(•̄))? | ε� | sp�(�)

)∗
Here, ∗ abbreviates a (possibly empty) sequence of effects, ? abbreviates a choice

between two effects, • represents some reference, ? an transaction identifier, and �
a thread identifier.
Now, let αk be the first element of γ or, if γ is empty, let αk = at tm,m. As αk

is either an atomic effect or a non-transactional effect, there are no dependencies
between αk and any effect from transaction i preceding it in ᾱ. Moving αk now
before at ti,i is therefore neither introducing nor removing any dependencies in ᾱ.
By definition, β̄ is then equivalent to ᾱ.

For the proof of opacity, we define an algorithm which produces for a serializable
trace an equivalent serial trace.
The following example demonstrates how the algorithm proceeds on a well-formed,

serializable trace. Consider the trace

at t1,1 at t2,2 r t1,1(x) at t3,3 r t3,3(y) cot3,3(y) r t2,2(x) cot1,1(x) abt2,2 at t2,2
′
. . .

The trace abstracts from three concurrently running transactions. Transactions 1
and 3 commit successfully whereas transaction 2 is aborted and restarted in the
end. To simplify matters, we concentrate on the relevant effects and omit empty

70

5.3. Opacity

effects that are due to thread-local and administrative reduction steps. Further, we
assume that each transaction is running in its own thread.
The algorithm starts moving the read effects of transaction 1 and 2 towards their

atomic effect.

at t1,1 r t1,1(x) at t2,2 r t2,2(x) at t3,3 r t3,3(y) cot3,3(y) cot1,1(x) abt2,2 at t2,2
′
. . .

While swapping the commit effect of transaction 1 to the front, it reaches this state:

at t1,1 r t1,1(x) at t2,2 r t2,2(x) cot1,1(x) at t3,3 r t3,3(y) cot3,3(y) abt2,2 at t2,2
′
. . .

As there is a read-write dependency between transaction 2 and 1 which is observable
by the effects r t2,2(x) and cot1,1(x), a swap of these effects would yield a non-
equivalent trace. However, a reordering of the effects from transaction 1 and 2 in
the prefix does not introduce or remove dependencies in the trace. Therefore, the
algorithm applies in this case the strategy of permuting transactional prefixes.

at t2,2 r t2,2(x) at t1,1 r t1,1(x) cot1,1(x) at t3,3 r t3,3(y) cot3,3(y) abt2,2 at t2,2
′
. . .

Finally, the abort effect of transaction 2 can be safely swapped to the front. The
resulting trace corresponds to a sequential execution of the transactions in the order:

T2, T1, T3, T2′ , . . .

The algorithm in Figure 5.1 and has the following properties:

1. It terminates on all well-formed traces without an error.

2. For any well-formed trace, it yields an equivalent serial trace.

We prove these properties in several steps.

Lemma 5.3.3 (Termination). The algorithm terminates on all serializable traces
without an error.

Proof of 5.3.3: We define a cost function covering the two kinds of permutations
done by the algorithm.
Let posᾱ(α) be the position of effect α in a trace ᾱ. For each effect α from

transaction i in ᾱ we define

dᾱ(α) = posᾱ(α)− posᾱ(at ti,i)

Let n be the length of trace ᾱ. The cost of an effect is then given by

costᾱ(α) =

{
dᾱ(α)

(
n− posᾱ(at ti,i)

)
, if α is an effect from transaction i

0, if α is a non-transactional effect

71

Chapter 5. Correctness

The total effect cost for a trace is given by

costswap(ᾱ) =
∑
α∈ᾱ

costᾱ(α)

Besides the effect cost, we introduce a second cost function for traces.

costperm(ᾱ) =
∣∣∣{at ti,i | ∃αt′ , t′ 6= t with ᾱ ` at ti,i < αt

′
< coti,i(l̄)

}∣∣∣
Finally, the total cost of a trace is given by pairing both types of cost.

cost (ᾱ) =
(
costperm(ᾱ), costswap(ᾱ)

)
We define an order on these trace costs as follows:

cost (ᾱ1) < cost (ᾱ2)

if costperm(ᾱ1) < costperm(ᾱ2), or costperm(ᾱ1) = costperm(ᾱ2) and costswap(ᾱ1) <
costswap(ᾱ2).
By Lemma 5.3.1 the following cases for αk and αk+1 are possible in any iteration

of Algorithm 5.1:
Case distinction on αk and αk+1.

• Case αk = r ti,i(l) and αk+1 = cotj ,j(l̄): Due to the structure of the prefix as
shown in the proof for Lemma 5.3.2, moving an effect of another transaction
before the atomic effect of transaction j decreases the first part of the cost
pair.

costperm(ᾱ
′) = costperm(ᾱ)− 1

Hence, it holds that
cost (ᾱ′) < cost (ᾱ)

• Case αk = αti,i and αk+1 = αtj ,j : Before the permutation, the cost for αk
and αk+1 are

costᾱ(αti,i) = dᾱ(αti,i)
(
n− posᾱ(at ti,i)

)
costᾱ(αtj ,j) = dᾱ(αtj ,j)

(
n− posᾱ(at tj ,j)

)
Let ᾱ′ be the trace after swapping αk and αk+1. The costs are then in the
new trace given by

costᾱ′(αti,i) =
(
dᾱ(αti,i) + 1

) (
n− posᾱ(at ti,i)

)
costᾱ′(αtj ,j) =

(
dᾱ(αtj ,j)− 1

) (
n− posᾱ(at tj ,j)

)
All other swap costs stay the same. Summing up the total costs for ᾱ′ yields

cost (ᾱ′) =
(
costperm(ᾱ), costswap(ᾱ) + posᾱ(at ti,i)− posᾱ(at tj ,j)

)

72

5.3. Opacity

As the prefix α1, ..., αk of ᾱ′ is serial, it must hold that ᾱ ` at ti,i < at tj ,j .
Therefore, it holds that

cost (ᾱ′) < cost (ᾱ)

As an aside, the permutation costs for the trace is also decreased in a swap
step when atomic or commit effects are involved in the swapping.

End case distinction on αk and αk+1.
According to Lemma 5.3.1, a not strongly serial, but serializable trace introduces

either a situation when a swap of effects or moving effects out of a transaction’s
scope becomes necessary. For a serializable trace as input, the algorithm therefore
never ends up in the error case.

Lemma 5.3.4 (Permutation). The output of the algorithm is a permutation of the
input trace.

Proof of 5.3.4: All operations on the trace are permutations of effects. There-
fore, effects are neither removed from nor added to the input trace.

Lemma 5.3.5 (Dependencies). The algorithm does not change any dependencies
in the trace.

Proof of 5.3.5: Effects are only swapped when they are independent or when
permuting transactions. In the latter case, the dependencies in the trace are re-
spected as is shown in Lemma 5.3.2.

Lemma 5.3.6 (Correctness of the algorithm). The output of the algorithm is an
equivalent serial trace.

Proof of 5.3.6: By 5.3.4 and 5.3.5, the output is equivalent to the input trace.
By Lemma 5.3.3, the algorithm terminates on all traces from type-correct programs.
In this case, the condition for entering the while loop is falsified, and therefore the
trace is strongly serial.

5.3.4. Serializable traces in ΛSTM

We prove now that we can permute any reduction trace from executing a program
in ΛSTM in an admissible way such that the resulting trace is strongly serial, and
that the execution of the strongly serial trace yields an equivalent final program
state.

Definition 5.3.17 (Reduction trace). For a program e in ΛSTM , the initial state
of execution is given by an empty heap and a thread pool containing the main thread
with thread id 0:

H0,P0 = ∅, [0 7→ (e, 0)]

73

Chapter 5. Correctness

A reduction trace R for e is a finite sequence of reduction steps on the initial
state:

R = H0,P0
α1=⇒ . . .

αn=⇒ Hn,Pn
The effect trace corresponding to a reduction trace is given by the sequence of effects
α1 . . . αn.

To compare reduction traces of a program under different schedules, we define
an equivalence relation on the states as they appear in the reduction trace. Un-
der equivalent effect traces, the heap reaches the same state as the same update
operations are executed on it. Program states are equivalent either if they are (syn-
tactically) equal for each thread or, if a thread is currently executing a transaction,
the respective transaction tuples only differ on entries in the reference heap which
are not part of the transactions’ read set.

Definition 5.3.18 (Equivalence of program states). A program state P is equiv-
alent to a program state P ′, P ' P ′, if for all threads t either P(t) = P ′(t) or
P(t) =M[(m,W,R, i,m′,H)] and P ′(t) =M[(m,W,R, i,m′,H′)] and H|R = H′|R.

Definition 5.3.19 (Equivalence of evaluation states). An evaluation state H,P is
equivalent to an evaluation state H′,P ′ if H = H′ and P ' P ′.

To obtain equivalent reduction traces with strongly serial effect traces, we apply
the reorder algorithm in Algorithm 5.1.
Type-correct programs allow only certain compositions of transactional opera-

tions. The non-deterministic scheduler that decides which thread performs the next
evaluation step chooses from the thread pool. With exception of the main thread,
the spawn effect is emitted when a thread is added to the thread pool. It thus
precedes all other effects from this thread.
Transactional effects are only produced when evaluating expressions in the STM

monad. An at t,i effect is only produced when entering the STM monad. All read
effects are produced within the STM part, and the evaluation of a transactional
expression finishes with either an abt,i or cot,i(l̄) effect.

Lemma 5.3.7. All reduction traces of programs in ΛSTMare well-formed.

Proof of 5.3.7: Let R be a reduction sequence for a program e:

R = H0,P0
α1=⇒ . . .

αn=⇒ Hn,Pn

We consider the conditions for well-formedness as given in Definition 5.3.4.

• There is no effect for a thread before its spawn effect, unless it is the main
thread:

Let Hk,Pk
αk=⇒ Hk+1,Pk+1 be a reduction step in R with αk = αt for t 6= 0.

By inversion of the evaluation steps α
=⇒, the thread identifier t must be in

the domain of Pk. The only rule which adds new threads to the thread pool
is Spawn. Hence, there exists a step m < k such that αm = spt

′
(t).

74

5.3. Opacity

• For each transaction, there is an atomic effect in the trace:

Let Hk,Pk
αk=⇒ Hk+1,Pk+1 be a reduction step in R with αk = αt,i. By

inversion of the evaluation rules, either αk = at t,i and the step produced the
atomic effect, or αk is an empty effect, a read effect, an abort or an commit
effect for transaction i in thread t. Inversion of the evaluation rules in these
other cases show that the expression evaluated in the thread is a transaction
in progress. To start the evaluation of such an expression, the thread has to
have performed an Atomic step first. Hence, there exists a step m 6 k in R
with αm = at t,i.

• There is no effect for a transaction before its atomic effect:

Let Hk,Pk
αk=⇒ Hk+1,Pk+1 be a reduction step in R with αk = αt,i. As the

transaction counter is incremented when starting a transaction, it holds that
for all αm = at t,j with k < m that i < j. Hence, it must hold that m 6 k.

• There is no effect for a transaction after its commit effect:

Let Hk,Pk
αk=⇒ Hk+1,Pk+1 be a reduction step in R with αk = αt,i. As the

transaction counter is incremented when committing a transaction, it holds
that for all αm = cot,j(l̄) with m < k that i < j. Hence, it must hold that
k 6 m.

• There is no effect for a transaction after its abort effect:

This condition is shown analogously to the previous one.

• A transaction may have a commit or an abort effect, but not both:

Let Hk,Pk
αk=⇒ Hk+1,Pk+1 be a reduction step in R with αk = abt,i. Assume

that there is a reduction step with αm = cot,j(l̄) for k < m. As the transaction
counter is incremented for each abort, it must hold that i < j. The other
direction is shown analogously.

• There are no non-transactional effects within a transaction:

Let Hk,Pk
αk=⇒ Hk+1,Pk+1 be a reduction step in R with αk = εtt. Assume

that the previous reduction step for thread t is given at m < k with αm = αt,j .

By inversion of the evaluation rules, non-transactional effects are only given
in rules IO-Monad and they require the evaluation of a monadic expression.
Again, inversion of rules yields that either αm = cot,j(l̄) or αm = abt,j .

The case for αk = spt(t′) is shown analogously.

• Transactional effects from the same thread do not interleave:

Let Hk,Pk
αk=⇒ Hk+1,Pk+1 be a reduction step in R with αk = αt,i. Assume

that the previous reduction step for thread t is given at m < k with αm = αt,j

and i 6= j, and that there exists a latter reduction step at m′ for this thread
with αm′ = αt,j . As the transaction counter is monotonically increasing, it

75

Chapter 5. Correctness

follows that j 6 i 6 j, and thus it must hold that j = i, in contradiction to
the assumption.

Similar to Algorithm 5.1, we can apply a reordering algorithm on reduction traces.
As before, it is based on changing the order of different executions steps by swapping
either subsequent steps or moving a non-transactional or atomic step before another
atomic step.
When swapping the evaluation steps of different threads, the program state re-

mains equal for each thread in most cases. Effect-free operations (αi = εt or
αj = εt,i) are either pure or work on local (transactional) state. Therefore, these
steps can get swapped with any operation while resulting in the same heap and
thread pool. Also, reduction steps which result in an abort only modify the trans-
actions’ local state. The same holds for read operations.
When swapping a commit effect with an atomic effect, the heap copy taken at

the transaction’s begin differs for the locations that are updated in the commit.
However, the consistency checks for the read accesses in the original trace yielding
read effects ensure that the transaction starting with the atomic effect does not
read any of the modified data items. Hence, the consistency checks in the trace
after swapping the effects also succeed. So, the evaluation on the new heap copy
with the committed values is equivalent to the original one. The final state in the
new reduction is therefore equivalent, but not necessary equal to final state in the
original trace.
When swapping an effect with a spawn effect, the thread pool is extended with the

new thread already in the prior state. Otherwise, only thread-local state is changed.
For thread spawning and allocation of new heap entries, the deterministic allocation
scheme as described in Section 5.2.3 is essential when reordering two spawn steps
or two allocation steps.
Finally, the changes in the reduction states for the second kind of trace restruc-

turing can be obtained by handling the multi-step movement of the effect as several
individual swaps and accumulating the state modifications.

Theorem 5.3.1 (Opacity). Let e be a type-correct program in ΛSTM . Further, let
R be a sequence of reductions

H0,P0
α1=⇒ . . .

αn=⇒ Hn,Pn

with H0,P0 = ∅, {0 7→ e, 0}. Then there exists an equivalent sequence R′ of the
form

H0,P0
α′
1=⇒ . . .

α′
n=⇒ H′n,P ′n

such that ᾱ(R′) is strongly serial and Hn,Pn is equivalent to H′n,P ′n.

76

5.4. Snapshot Isolation

5.4. Snapshot Isolation

The semantics of serializability is easy to reason about, but it is rather restrictive
with respect to the set of valid schedules. A less restrictive scheme is obtained
by confining the check for intermediate updates at commit time to the write set
of the transaction. Such a system is said to exhibit snapshot isolation semantics,
a popular concurrency control notion in data bases [8]. The basic idea behind
snapshot isolation is that each transaction is guaranteed to work on a consistent
memory snapshot in isolation from each other, and that there are no lost updates.
In the context of STM, snapshot isolation can be used to implement data structures
where operations are checked for conflicts on a higher level. A typical use case are
container data structures like lists or trees where insertions of different elements
commute on the level of semantics, but the implementation yields non-commuting
memory access patterns (see also Section 3.3.2).

Definition 5.4.1 (Consistent snapshot). A transaction operates on a consistent
memory snapshot if there is no update of a variable between the begin of the trans-
action and a read effect of this variable in a transaction.

∀r ti,i(l) ∈ ᾱ : @cotj ,j(l̄) with ᾱ ` at ti,i < cotj ,j(l̄) < r ti,i(l) and l ∈ l̄

Serializable traces are trivially also valid in snapshot isolation as read and write
effects of transactions are not interleaved. For further examples of snapshot traces
consider the following execution trace:

t1

t2

at t1,1

at t2,2

r t1,1(x) r t1,1(y)

r t2,2(x) r t2,2(y)

cot1,1(x)

cot2,2(y)

Transaction T1, running in thread t1, and transaction T2, running in thread t2,
operate on the same memory snapshot, and update different memory locations. Yet,
there is a read-write dependency from T1 on T2 because T1 is committing x which
is then read by T2. Vice versa, there is also a read-write dependency from T2 on
T1 due to their operations on y. Therefore, the transactions cannot be serialized
by re-ordering their traces. This mutual read-write dependency on transactions is
known as write skew anomaly in the literature [8].
To detect such a kind of anomaly, it does not suffice to consider only pairs of

transactions in isolation. In the following example, three transactions operate on
the same memory snapshot, again committing on different locations.

t1

t2

t3

at t1,1

at t2,2

at t3,3

r t1,1(x) r t1,1(z)

r t2,2(y) r t2,2(z)

r t3,3(x) r t3,3(y) r t3,3(z)

cot1,1(x)

cot2,2(y)

cot3,3(z)

77

Chapter 5. Correctness

There is no write skew between transactions T1 and T2. However, these transac-
tions are related via their read-read dependency on location z which is updated in
transaction T3. T1 and T2 are both having a write skew with T3, T1 and T2 cannot
be serialized with respect to each other. To reflect this read-read dependency in
combination with write-skew, the snapshot relationship must contain the transitive
closure of transactions that exhibit a write skew anomaly.
Further, this transitive closure needs to be extended with transactions that only

partly share data dependencies, different from write skews. The situation is depicted
in this example:

t1

t2

t3

at t1,1

at t2,2

at t3,3

r t1,1(x) r t1,1(y)

r t2,2(x) r t2,2(y)

r t3,3(x) r t3,3(y) r t3,3(z)

cot1,1(x)

cot2,2(y)

cot3,3(z)

Transaction T3 can neither be ordered after T2 because it read location y which
is updated by T2, nor may it be ordered before T2 due to its write-read dependency
on transaction T1. The underlying reason why the reordering is invalid is given in
the write skew of T1 and T2. Thus, T2 and T3 are also snapshot related.
By definition, only transactions that commit successfully can exhibit write skew

anomalies. For opaque systems, aborting transactions that operate on the same
memory snapshot as another transaction can be ordered before this transaction.
The situation changes when the aborting transaction operates on a different snap-
shot as this does not allow serializing the aborting transactions with respect to the
committing one. Consider the following trace:

t1

t2

t3

at t1,1

at t2,2

at t3,3

r t1,1(x) r t1,1(y)

r t2,2(x) r t2,2(y)

r t3,3(x) r t3,3(y)

cot1,1(x)

cot2,2(y)

abt3,3

As in the previous example, it is neither possible to move transaction T3 before
nor after T2. This shows that both committing and aborting transactions can be
snapshot related.

5.4.1. Operational semantics for ΛSI

Figure 5.8 shows an alternative implementation of Check-Ok and Check-Bad. Re-
placing the original relations in Figure 5.7 with these, the resulting STM algorithm
implements snapshot isolation. We call the language where the semantics is de-
fined by the adapted rules in the following ΛSI to distinguish it from its opaque
counterpart ΛSTM .
Notice that an alternative semantics of the read access to transactional variables

78

5.4. Snapshot Isolation

Figure 5.8. Operational semantics: Heap check for snapshot isolation.

∀l ∈ dom(R) ∩ dom(W) : R(l) = H(l)

check(R,W,H) = ok
Check-Ok

∃l ∈ dom(R) ∩ dom(W) : R(l) 6= H(l)

check(R,W,H) = bad
Check-Bad

for snapshot isolation would be to return the entry in the transaction local heap
copy without checking for the current value in the heap. This construction also
provides a consistent memory snapshot for transactional execution. In practice,
this can be achieved for example by keeping multiple versions of each variable. To
keep the formalizations of the different isolation levels comparable, we refrain here
from modeling such a multi-versioning scheme.

5.4.2. Snapshot isolation for ΛSI

We now formally define the notion of snapshot isolation in terms of traces.

Definition 5.4.2 (Snapshot isolation). A transactional system implements snap-
shot isolation if in its traces

1. all reads are repeatable,

2. there are no read skews, and

3. there are no lost updates.

Lemma 5.4.1. All reads in ΛSI are repeatable.

Proof of 5.4.1: In ΛSI , as in ΛSTM , each read location and value is registered
in the read set after the first global read access (Read). All subsequent read access
either retrieve the value from the read set (ReadRSet) or the write set (ReadWSet).
So, any effect trace contains at most one read effect for a location in a transaction,
and non-repeatable reads are not possible.

Lemma 5.4.2. There is no read skew in ΛSI .

Proof of 5.4.2: In the Read rule, there is a test for intermediate updates to the
heap. The value in the global heap can only have changed when another transaction
committed to the location. In this case, the transaction aborts. Therefore, the global
read only succeeds if there is no read skew possible.

79

Chapter 5. Correctness

Lemma 5.4.3. There are no lost updates in ΛSI .

Proof of 5.4.3: In Commit, there is a check for intermediate updates to the
heap:

∀l ∈ dom(R) ∩ dom(W) : R(l) = H(l)

This check fails if another transaction committed to the location between the global
read of the value that added it to the read set and the commit. Therefore, the
commit only succeeds if there are no lost updates possible.

Theorem 5.4.1 (Snapshot isolation for ΛSI). The formal system ΛSI implements
snapshot isolation.

Proof of 5.4.1: The proof follows immediately from Lemmas 5.4.1, 5.4.2, and
5.4.3.

5.4.3. Snapshot traces

In Section 5.3, we have shown how to transform serializable traces into a canonical
form, namely serial traces. For traces from systems with snapshot isolation, we now
introduce also a canonical form which we call snapshot trace.
The main difference between serializability (or opacity) and snapshot isolation is

the presence of write skews. Starting from their definition, we derive several criteria
that prevent the serialization of a snapshot trace.
By Definition 5.3.13, two transactions Ti and Tj , i 6= j, exhibit a write skew

anomaly in a trace ᾱ if there exist locations x and y, x 6= y such that

r ti,i(x), r ti,i(y), r tj ,j(x), r tj ,j(y), coti,i(l̄1), cotj ,j(l̄2) ∈ ᾱ

and
ᾱ ` at ti,i < cotj ,j(l̄2)

ᾱ ` at tj ,j < coti,i(l̄1)

with x ∈ l̄1 and y ∈ l̄2.
We abbreviate a write skew as Ti ∼ᾱ Tj .
The general situation is visualized in the following sketch:

ti

tj

atti,i

attj ,j

r ti,i(x) r ti,i(y)

r tj ,j(y) r tj ,j(x)

coti,i(l̄1)

cotj ,j(l̄2)

Lemma 5.4.4. The write skew anomaly ∼ᾱ defines a symmetric relation on the set
of transactions in a trace ᾱ.

80

5.4. Snapshot Isolation

Proof. The symmetry follows directly from Definition 5.3.13.

As shown in the examples in the beginning of this section, transactions exhibiting
a write skew anomaly cannot be serialized with respect to each other due to their
read-write dependencies. The existence of write skews in a trace can introduce
further problems when trying to serialize an execution trace.
Consider the situation in the following sketch assuming that l ∈ l̄:

ti

tk

tj

attk,k cotk,k(l̄′)

atti,i r ti,i(l)

attj ,j cotj ,j(l̄)

Even though transaction Ti does not have a write skew with transaction Tj , it
cannot be ordered before it as depends on another transaction Tk (indicated by the
blue arrow) which has a write skew with Tj . Due to its read-write dependency with
Tj , it also cannot be ordered after Tj .

Definition 5.4.3 (Snapshot connected). A transaction Ti is snapshot connected
to another transaction Tj,Ti n Tj, if

1. Ti ∼ Tj, or

2. Ti . Tj and there exists a transaction Tk such that Tk . Ti and Tk n Tj.

The situation is depicted in the following sketch:

ti

tk

tj

attk,k cotk,k(l̄′)

atti,i

attj ,j r tj ,j(l) cotj ,j(l̄)

Lemma 5.4.5. Transactions that are snapshot connected cannot be serialized.

Proof of 5.4.5: We consider the two possible cases from the definition.

• If Ti ∼ Tj , the dependency r tj,j(l) .d co
tj ,j(l̄) prohibits to order Ti before Tj .

Serializing Tj before Ti is not possible by the symmetric argumentation.

• By definition, there is a transaction Tk with TknTj , and Tk .Ti. Applying this
lemma inductively, Tk cannot be ordered before Tj . The dependency Tk . Ti
does not allow to serialize Ti before Tk. Therefore, it is not possible to order
Ti before Tj .

Also, transaction Ti cannot be ordered after Tj because of Ti depends on Tj .

81

Chapter 5. Correctness

As serial traces serve as a kind of normal form for serializable traces, we next
introduce the notion of a normal form for traces of systems implementing snapshot
isolation. To this end we require the effects of one transaction grouped together as
closely as possible.

Definition 5.4.4 (Snapshot traces). A well-formed trace ᾱ is a snapshot trace if
for each transaction Tj in ᾱ it holds that

1. at tj ,j is followed directly by all effects of Tj, or

2. the at tj ,j is followed by all read and empty effects of Tj and there exists an
transaction Ti with ᾱ ` at tj ,j < at ti,i < cotj ,j(l̄) such that Ti is snapshot
connected to Tj and if coti,i(l̄′) ∈ ᾱ, then l̄ ∩ l̄′ = ∅.

The definition of snapshot trace ensures that all transactions are serialized with
respect to each other unless they are snapshot connected. In particular, it disallows
any non-transactional effect between the atomic and any following read or empty
effects of a transaction. In the case of snapshot connection between transactions,
only the final effect of a transaction, i.e. the commit or abort effect, may be sepa-
rated from its other effects. The last condition about the committed modification
ensures that there are no lost updates as the snapshot connected transactions are
only allowed to update different locations.
Obviously, serialized traces are snapshot traces as there is no interleaving of trans-

actional effects from different threads possible.

Corollary 5.4.1. A serialized trace is a snapshot trace.

Lemma 5.4.6. A system yielding snapshot traces implements snapshot isolation.

Proof of 5.4.6: By definition, snapshot traces do not allow lost updates. Further,
it holds that no effect from another transaction is allowed between the reads of each
transaction. Hence, neither read skew nor non-repeatable reads are possible.

To show that traces produced by well-typed programs in ΛSI are snapshot traces,
we follow a similar path as in the proof for opaqueness of ΛSTM . As for opaque
traces, it is possible to reorder traces under certain conditions to obtain equivalent
snapshot traces.
The reordering algorithm incrementally derives a relationm of snapshot connected

transactions by adding pair of snapshot connected transactions to it. The following
formal work is parameterized by this relation, and can be applied to any subset of
m (e.g. thus during the construction of m).

Definition 5.4.5 (Snapshot admissible). Given a relation m between transactions,
a well-formed trace ᾱ is snapshot admissible under m if

82

5.4. Snapshot Isolation

1. ᾱ is a snapshot trace, and

2. if transaction Ti is snapshot connected with Tj, then Ti m Tj.

Lemma 5.4.7 (Conflicts). A trace ᾱ taken from an execution of a program in
ΛSI is either snapshot admissible under some m, or there is a prefix ᾱ′ such that
ᾱ′ = α1 . . . αk is snapshot admissible under m and

• αk and αk+1 are independent, or

• αk = r ti,i(l) and αk+1 = cotj ,j(l̄) with l ∈ l̄.

Proof of 5.4.7: We consider all possible combinations of effects which might
occur in a well-formed trace in ΛSI .
Clearly, all traces of length one are snapshot admissible. Consider now all traces

containing more than two effects and let ᾱ′ = α1 . . . αk be the snapshot admissible
prefix under some m.
Case distinction on αk and αk+1 where i 6= j.

• Case αk = εti, or αk+1 = εtj , : snapshot admissible or independent.

• Case αk = εti,j or αk+1 = εtj ,j : snapshot admissible or independent.

• Case αk = at ti,i and αk+1 = at tj ,j : snapshot admissible.

• Case αk = at ti,i and αk+1 = r ti,i(l): snapshot admissible.

• Case αk = at ti,i and αk+1 = r tj ,j(l): independent.

• Case αk = at ti,i and αk+1 = coti,i(l̄): snapshot admissible.

• Case αk = at ti,i and αk+1 = cotj ,j(l̄): independent.

• Case αk = at ti,i and αk+1 = abti,i: snapshot admissible.

• Case αk = at ti,i and αk+1 = abtj ,j : independent.

• Case αk = r ti,i(l) and αk+1 = r tj ,j(l′): independent.

• Case αk = r ti,i(l) and αk+1 = r ti,i(l′): snapshot admissible.

• Case αk = r ti,i(l) and αk+1 = coti,i(l̄): snapshot admissible.

• Case αk = r ti,i(l) and αk+1 = cotj ,j(l̄): If l ∈ l̄, then this is the second case
in the lemma. Otherwise independent.

• Case αk = r ti,i(l) and αk+1 = abti,i: snapshot admissible.

• Case αk = r ti,i(l) and αk+1 = abtj ,j : independent.

83

Chapter 5. Correctness

• Case αk = coti,i(l̄) and αk+1 = cotj ,j(l̄′): According to the operational se-
mantics, it must hold that l̄ ∩ l̄′ = ∅. Therefore, the effects are independent.

• Case αk = coti,i(l̄) and αk+1 = abtj ,j : independent.

End case distinction on αk and αk+1 where i 6= j. Again, cases that are left out
violate the well-formedness criterion.

Lemma 5.4.8 (Permutation of independent transactions). Let ᾱ be a well-formed
trace with ᾱ = ᾱ′coti,i(l̄) and ᾱ′ is snapshot admissible under some m. Further, let
Tj be a transaction with ᾱ ` at ti,i < at tj ,j < coti,i(l̄) and there @k with ᾱ ` at ti,i <
at tk,k < at tj ,j.
Then, either Ti and Tj have a write skew, or trace ᾱ is equivalent to a trace β̄

with β̄ ` αtj ,j < at ti,i for all effects αtj ,j of transaction Tj.

tj

ti

attj ,j

atti,i

r tj ,j(x) | εj

r ti,i(y) | εi coti,i(l̄)

Proof of 5.4.8: There are no dependencies between at tj ,j and any r ti,i(l), nor
at tj ,j and at ti,i, nor any r ti,i(l) and any r tj ,j(l).
If coti,i(l̄) ∈ ᾱ and there is a dependency of a r ti,i(l) to coti,i(l̄), then the trans-

actions have a write skew. Otherwise, Tj does not depend on Ti and all effects may
be reordered because they are independent.

Algorithm 5.2 defines a reordering algorithm to transform traces into the canon-
ical snapshot form. To provide some intuition on the permutations done in Al-
gorithm 5.2, we consider the individual steps that are performed on the following
trace.

at1 at2 r1(x) r1(y) r2(x) r2(y) at3 r3(z) at4 r4(z) r4(x) co1(x) co2(y) ab4 co3(z)

For better readability, we assume that each transaction is run in a separate thread
and omit the thread identifier.
Starting with an empty relation m of snapshot connected transactions, the algo-

rithm detects the prefix at1 at2 r1(x) to be not admissible and reorders the indepen-
dent effects at2 and r1(x). Similarly, the other read effects of T1 are moved towards
at1, yielding

at1 r1(x) r1(y) at2 r2(x) r2(y) at3 r3(z) at4 r4(z) r4(x) co1(x) co2(y) ab4 co3(z)

The admissible prefix ends here with r4(x) which is followed by co1(x). The
atomic effect between at4 and at1 which is closest to at4 is at3. Because T4 does

84

5.4. Snapshot Isolation

Algorithm 5.2 Reordering transactions for snapshot traces.
m ← ∅
while ᾱ is not snapshot admissible under m do

choose αk and αk+1 such that α1 . . . αk is snapshot admissible under m
and α1 . . . αk+1 is not

if αk is not in conflict with αk+1 then
swap αk with αk+1

else if αk = r ti,i(l) and αk+1 = cotj ,j(l̄) then
TxnPerm(i,j)

else
signal error

end if
end while

method TxnPerm(i,j)
if @at tk,k : ᾱ ` at tj ,j < at tk,k < at ti,i then

if write skew between Ti and Tj and not Ti m Tj then
add (Ti, Tj) to m

else
move at ti,i before at tj ,j

end if
else

take at tn,n such that @at tk,k : ᾱ ` at tn,n < at tk,k < at ti,i

if Tn . Ti then
if Tn m Tj then

add (Ti, Tj) to m
else

TxnPerm(n,j)
end if

else
move at ti,i before at tn,n

end if
end if

end

85

Chapter 5. Correctness

not depend on T3, the effect at4 is moved before at3. With the following recursive
calls to TxnPerm, at4 finally ends up at the head of the trace.

at4 at1 r1(x) r1(y) at2 r2(x) r2(y) at3 r3(z) r4(z) r4(x) co1(x) co2(y) ab4 co3(z)

The next steps move again the read effects of T4 immediately behind at4, such
that the trace is then in this order:

at4 r4(z) r4(x) at1 r1(x) r1(y) at2 r2(x) r2(y) at3 r3(z) co1(x) co2(y) ab4 co3(z)

Now, the commit of T1 is permuted with the preceding effects resulting in the
trace

at4 r4(z) r4(x) at1 r1(x) r1(y) at2 r2(x) co1(x) r2(y) at3 r3(z) co2(y) ab4 co3(z)

with admissible prefix

at4 r4(z) r4(x) at1 r1(x) r1(y) at2 r2(x).

At this point, the algorithm detects the write skew between T1 and T2 and adds
(1, 2) to m. The prefix

at4 r4(z) r4(x) at1 r1(x) r1(y) at2 r2(x) co1(x)

is admissible under the extended m, and in the next iteration r2(y) is again moved
before co1(x).

Finally, swapping the commits and aborts at the end of the trace towards the other
effects of the transaction to which they belong, the trace is snapshot admissible:

at4 r4(z) r4(x) ab4 at1 r1(x) r1(y) at2 r2(x) r2(y) co1(x) co2(y) at3 r3(z) co3(z)

The algorithm in Figure 5.2 has the following properties:

1. It terminates on all traces that are produced by well-typed programs in ΛSI .

2. For any trace input from a well-typed program in ΛSI , it yields an equivalent
trace which is snapshot admissible.

Lemma 5.4.9 (Termination). The algorithm terminates on all traces of type-correct
programs in ΛSI without an error.

Proof of 5.4.9: By Lemma 5.4.7, the program never reaches the case for signaling
the error.
For proving termination, we define a cost function which closely resembles the

cost function in the proof of Lemma 5.3.3. Again, the total cost of a trace is given
by pairing the cost for moving atomic effects and swapping neighboring effects:

costSI(ᾱ) =
(
costpermSI(ᾱ), costswap(ᾱ)

)

86

5.4. Snapshot Isolation

and we define a total order on these trace costs as:

costSI(ᾱ1) < costSI(ᾱ2)

iff costpermSI(ᾱ1) < costpermSI(ᾱ2), or

costpermSI(ᾱ1) = costpermSI(ᾱ2) ∧ costswap(ᾱ1) < costswap(ᾱ2).

The costswap(ᾱ) measure is defined as for the proof of Lemma 5.3.3.
For costpermSI(ᾱ) we use an adapted version of the costperm(ᾱ):

costpermSI(ᾱ) =
∣∣{at ti,i | ∃αt′ , t′ 6= t with ᾱ ` at ti,i < αt

′
< coti,i(l̄)

and (Ti, Tt′) /∈m}|

The cost measure costpermSI() tracks the number of transactions that are not
serialized with respect to another transaction, taking out those transactions that
are snapshot-connected as they cannot be serialized.
In each iteration of Algorithm 5.2, either two effects are swapped (resolving in a

decrease of costswap()), or the subroutine TxnPerm is called.
Following the control flow of TxnPerm, it holds that then either a pair of transac-

tions is added to m or atomic effects of transactions are permuted, or the subroutine
is called recursively. The depth of recursion is delimited by the length of the trace
section between at tj ,j and at ti,i, so that each call to TxnPerm terminates after a
finite number of recursive calls. Hence, each call to TxnPerm from the while loop
reduces costpermSI().
Combining the costs, each iteration of the while loop reduces the total cost

costSI(ᾱ), and thus the algorithm terminates after a finite number of iteration
steps.

Lemma 5.4.10 (Permutation). The output of the algorithm is a permutation of the
input trace.

Proof of 5.4.10: All operations on the trace only permute the effects, but do
not change, add or remove elements.

Lemma 5.4.11 (Dependencies). The algorithm does not change any dependencies
of the effects in the trace.

Proof of 5.4.11: Effects are only swapped when they are independent or when
permuting transactions. In the latter case, the dependencies in the trace are re-
spected as is shown in Lemma 5.4.8.

87

Chapter 5. Correctness

Theorem 5.4.2 (Snapshot traces for ΛSI). Let P0 be a type-correct program in
ΛSI . Further, let R be a sequence of reductions

H0,P0
α1=⇒ . . .

αn=⇒ Hn,Pn.

Then, there exists an equivalent sequence R′ of the form

H0,P0
α′
1=⇒ . . .

α′
n=⇒ H′n,P ′n

such that ᾱ(R′) is snapshot admissible and Hn,Pn is equivalent to H′n,P ′n.

The proof of Theorem 5.4.2 follows the same reasoning as in Section 5.3.4: We
apply the algorithm for reordering traces into a snapshot admissible form to the
traces of R. Because the algorithm only requires the permutation of independent
effects, the preceding lemmata yield that the result is an equivalent reduction se-
quence with a snapshot trace trace.

In the same way that serial traces allow easier reasoning about transactional exe-
cutions when compared to serializable traces, snapshot traces are a simpler canonical
form for snapshot traces. Reducing the number of possible interleavings for effects
aids programmers in reasoning about the interaction of concurrently running trans-
actions.

5.5. Formalization of Twilight

This chapter closes with a formalization of the Twilight STM. In short, Twilight
STM splits the code of a transaction into a (functional) atomic phase, which behaves
as in ΛSTM , and an (imperative) twilight phase. Code in the twilight phase executes
before the decision about a transaction’s fate (restart or commit) is made and can
affect its outcome based on the actual state of the execution environment. The
Twilight API has operations to detect and repair read inconsistencies as well as
operations to overwrite previously written variables. It also permits the embedding
of I/O operations in such a way that the I/O operation is executed exactly once.
In the actual implementation, twilight code may run concurrently with other

transactions including their twilight code. Related work on formalizations of trans-
actional memory ([1], [54]) require transactions to be executed in a sequential fash-
ion, thus following the proposal of Single Global Lock semantics for transactions [53].
The formalization of Twilight STM, called ΛTWI , admits an interleaved execution

of concurrently running threads and transactions, similar to ΛSTM and ΛSI . It
restricts the possible interleaving of threads in such a way that the twilight code
of each transaction runs solo, i.e., all other threads are stalled while a transaction
executes its twilight code. It is therefore possible for a transaction to observe updates
by other transactions when reaching the twilight zone.

88

5.5. Formalization of Twilight

Figure 5.9. Syntax of ΛTWI . Expressions marked in gray arise only during evalu-
ation.

x∈Var l ∈ Ref
v ∈Val ::= l | tt | ff | () | λx.e | return e | error
e ∈Exp ::= v | x | e e | if e e e

| spawn e | atomic e | e >>= e | e >>=>> e

| (e,W,R, i, e,H) | (e,W,R, i, e, f)

| new e | read e | write e e
| update e e | reread e | inconsistent e
| reload | ignoreUpdates | IOtoSTM e | retry

5.5.1. Syntax

Figure 5.9 presents the syntax of ΛTWI . In addition to the standard operations that
were described in Section 5.2, there is now a special bind operator>>=>> for entering
the twilight zone. The error value indicates that a thread is stuck in an erroneous
state.
The extended syntax of ΛTWIprovides also repair operations for modifying the

heap in the twilight zone. Variables that have been read or modified in the body of
the transaction can be modified via update . reread yields the value that a variable
is currently associated with a location in the read set. The operation inconsistent

compares the state of the transaction in the read set with its counterpart in the
global heap. A consistent snapshot of the read set with the values that are currently
in the heap can be obtained with reload. The ignoreUpdates operator allows a
transaction to disregard updates by other transactions during conflict detection.
With IOtoSTM e, an irrevocable expression e can be embedded into the twilight
zone. Finally, the retry method issues a restart of the transaction.
As in the type system for ΛSTM , Σ tracks the type of memory locations, and Γ

tracks the type of variables. Figure 5.10 shows only the rules that differ from the
ones in Figure 5.2. The type system now comprises two other kinds of monad, the
TWI and the TXN monad. The expressions that are evaluated as transactions are
now all of monadic type TXN (see rule T-Atomic). An instance of the TXN monad
consists of a transactional body from the STM monad and twilight code from the
TWI monad. The rule T-TwiBind deals with the switch from a transaction’s body
to the associated twilight zone. Expressions of type TWI τ may only be used within
the twilight code of a transaction as they require special concurrency guarantees.

5.5.2. Operational Semantics for ΛTWI

Figure 5.11 introduces state relations for ΛTWI .
A transaction Ti is a tuple (e,W,R, i, e,H). As before, it consists of the expres-

sion that is currently evaluated, the write set, and the read set of the transaction,
a (unique) transaction identifier, a copy of the whole expression that is to be eval-

89

Chapter 5. Correctness

Figure 5.10. Extension of typing rules of ΛTWI .
Types: τ ::= bool | () | R τ | τ → τ | µ τ

µ ::= IO | TXN | STM | TWI

Σ|Γ ` error : τ
T-Error

Σ|Γ ` e : TXN τ

Σ|Γ ` atomic e : IO τ
T-Atomic

Σ|Γ ` e1 : STM τ Σ|Γ ` e2 : bool→ τ → TWI τ ′

Σ|Γ ` e1 >>=>> e2 : TXN τ ′
T-TwiBind

Σ|Γ ` e : TXN τ Σ|Γ ` e′ : TXN τ Σ `W Σ ` R Σ ` H
Σ|Γ ` (e,W,R, i, e′,H) : IO τ

T-Txn

Σ|Γ ` e : TWI τ Σ|Γ ` e′ : TXN τ Σ `W Σ ` R
Σ|Γ ` (e,W,R, i, e′, f) : IO τ

T-TwiTxn

Σ|Γ ` e1 : R τ Σ|Γ ` e2 : τ

Σ|Γ ` update e1 e2 : TWI ()
T-Update

Σ|Γ ` e : R τ

Σ|Γ ` reread e : TWI τ
T-Reread

Σ|Γ ` e : R τ

Σ|Γ ` inconsistent e : TWI bool
T-Incons

Σ|Γ ` reload : TWI ()
T-Reload

Σ|Γ ` ignoreUpdates : TWI ()
T-IgnoreUpdates

Σ|Γ ` retry : TWI τ
T-Retry

Σ|Γ ` e : IO τ

Σ|Γ ` IOtoSTM e : TWI τ
T-Safe

Figure 5.11. Operational semantics of ΛTWI : State related definitions.
T ∈Txn = Exp× Store× Store× TxnId× Exp× Store
T ′ ∈TwiTxn = Exp× Store× Store× TxnId× Exp× Flag
f ∈Flag = {ok, bad}
αi ∈TxnEffect = · · · ∪ {αt,i | α ∈ Effect}
s ∈ State = Heap× Program× ThreadId

90

5.5. Formalization of Twilight

Figure 5.12. Operational semantics of ΛTWI : Evaluation contexts and local eval-
uation steps.
Evaluation contexts:

E ::= [] e | if [] e e′

M ::= new e | read [] | write [] e
| reread [] | update [] e | inconsistent [] | []>>= e | []>>=>> e

Expression evaluation →:

(λx.e) e′ → e[e′/x]

if tt e e′ → e

if ff e e′ → e′

e→ e′

E [e]→ E [e′]

Monadic evaluation y:

return e >>= e′ y e′ e

error>>= e y error

e→ e′

ey e′
my m′

M[m] yM[m′]

uated transactionally for rollbacks, a copy of the heap taken at the beginning of
the transaction or during a reload. Now, additionally, the ΛTWI calculus requires
another kind of transaction tuple which does not contain a heap copy, but instead a
flag denoting the transaction’s status. An ok flag indicates that a transaction’s read
set variables are consistent with the current heap, a bad flag denotes some incon-
sistency between the transaction’s read set and the current heap. The set of effects
is extended with non-transactional effects that are embedded into a transactional
effect. An example for such an effect is (spt(t′))ti denoting the the spawning of a
thread in an embedded I/O monad.
An execution state consists of a heap, a thread pool with expressions that are

concurrently evaluated, and a thread identifier to denote the thread that is currently
executing the twilight code of a transaction. If there is no such thread, we indicate it
with −. The evaluation of a program starts in an initial configuration 〈〉, {0 7→ e},−
with an empty heap, a main thread t0, and no twilight thread identifier set. A
final configuration has the form H, {0 7→ v0, . . . , tn 7→ vn},−. In contrast to the
operational semantics of ΛSTM , an evaluation step in ΛTWI can produce more than
one effect (e.g. ReloadBad).
The rules in Figures 5.12-5.19 define the semantics of the language constructs.

91

Chapter 5. Correctness

Figure 5.13. Operational semantics of ΛTWI : Global evaluation steps.

my m′

H,P{t 7→ m},− εt
=⇒ H,P{t 7→ m′},−

IO-Monad

t′ fresh

H,P{t 7→ M[}],−spawn m spt(t′)
=⇒ H,P{t 7→ M[return ()], t′ 7→ m},−

Spawn

H,m
α
� H′,m′, s

H,P{t 7→ M[m]},− α
=⇒ H′,P[t 7→ M[m′]], s

Txn

H,m
α
� H′,m′, s

H,P[t 7→ M[m]], t
α

=⇒ H′,P[t 7→ M[m′]], s
TxnTwi

In Figure 5.12, the standard rules for the call-by-name core calculus with mon-
ads are defined. E [•] and M[•] denote the evaluation context for expressions and
monadic expressions, respectively. As an additional rule, the error statement is
passed through the monad without further evaluation of statements.
The evaluation rules for the IO monad and the transaction body in Figures 5.13

and 5.14 are similar to the operational semantics for ΛSTM . They mainly differ with
respect to the twilight flag that is recorded in the system’s state. Execution steps at
top level or within a transaction choose an arbitrary thread (Txn), unless there is a
transaction is currently executing its twilight zone. In this case, the corresponding
thread is chosen for the next step (TxnTwi). � denotes the evaluation relation for
transactional bodies, � for twilight zones.
To simplify the rules, we refer for the twilight semantics to a further unspeci-

fied scheme for generating transaction identifiers instead of passing a transaction
identifier i as part of the thread state. Using thread-local counters is one way to
implement such a scheme for identifier generation.
Figure 5.15 shows the evaluation of expressions within the twilight zone. Before

committing, the transaction must switch from the STM monad to the TWI monad
with the twilight bind>>=>> . At this point, the heap is checked for updates to the
references that are in the transaction’s read set. There are two cases:

Rule TwiOk applies if the check is successful, this is, none of the heap locations
read by the transaction have been updated by another transaction in the
meantime. It sets the twilight flag to ok.

Rule TwiBad applies if the check fails. It sets the transaction’s twilight flag to
bad. In the TWI monad, the transaction’s twilight state can be set to ok with

92

5.5. Formalization of Twilight

Figure 5.14. Operational semantics of ΛTWI : Transactional body.

i fresh

H, atomic m
att,i

� H, (m, 〈〉, 〈〉, i,m,H),−
Atomic

my m′′

H, (m,W,R, i,m′,H′)
εt,i

� H, (m′′,W,R, i,m′,H′),−
STM-Monad

W ′ = W [l 7→ (e, i)] l /∈ P,H

H, (M[new e],W,R, i,m′,H′)
εt,i

� H, (M[return l],W ′, R, i,m′,H′),−
Alloc

W ′ = W [l 7→ (e, i)]

H, (M[write l e],W,R, i,m′,H′)
εt,i

� H, (M[return ()],W ′, R, i,m′,H′),−
Write

R′ = R[l 7→ (e, j)] l /∈ dom(W) ∪ dom(R) H(l) ≡ H′(l) ≡ (e, j)

H, (M[read l],W,R, i,m′,H′)
r ti,i(l)
� H, (M[return e],W,R′, i,m′,H′),−

Read

l /∈ dom(W) R(l) = (e, i)

H, (M[read l],W,R, i,m′,H′)
εt,i

� H, (M[return e],W,R, i,m′,H′),−
ReadRSet

W (l) = (e, i)

H, (M[read l],W,R, i,m′,H′)
εt,i

� H, (M[return e],W,R, i,m′,H′),−
ReadWSet

H, (m,W,R, i,m′,H′)
abt,i

� H, atomic m′,− Rollback

93

Chapter 5. Correctness

Figure 5.15. Operational semantics of ΛTWI : Control flow to and in the twilight
zone.

check(R,H) = ok

H, (M[return e >>=>> m],W,R, i,m′,H′)
εt,i

� H, (M[m tt e],W,R, i,m′, ok), t

TwiOk

check(R,H) = bad

H, (M[return e >>=>> m],W,R, i,m′,H′)
εt,i

� H, (M[m ff e],W,R, i,m′, bad), t

TwiBad

H, (M[reload],W,R, i,m′, ok)
εt,i

� H, (M[return ()],W,R, i,m′, ok), t
ReloadOk

j fresh R = {l 7→ H(l)|l ∈ dom(R)}
H, (M[reload],W,R, i,m′, bad)

abt,i,att,j ,r t,j(l)
� H, (M[return ()],W,R, j,m′, ok), t

ReloadBad

H, (M[ignoreUpdates],W,R, i,m′, f)
εt,i

� H, (M[return ()],W,R, i,m′, ok), t
IgnoreUpdates

H, (retry ,W,R, i,m′, f)
abt,i

� H, atomic m′,− Retry

H, (return e,W,R, i,m′, bad)
abt,i

� H, atomic m′,− CommitFail

H′ = H[W ′]

H, (return e,W,R, i,m′, ok)
cot,i(l̄)
� H′,P[t 7→ M[return e]],−

Commit

Figure 5.16. Operational semantics of ΛTWI : Heap checks.

∀l ∈ dom(R) : R(l) = H(l)

check(R,H) = ok

∃l ∈ dom(R) : R(l) 6= H(l)

check(R,H) = bad

∀l ∈ dom(R) ∩ dom(W) : R(l) = H(l)

check(R,W,H) = ok

∃l ∈ dom(R) ∩ dom(W) : R(l) 6= H(l)

check(R,W,H) = bad

94

5.5. Formalization of Twilight

a reload or ignoreUpdates. Thus, the transaction can repair or ignore its
inconsistencies and still commit successfully.

The definition of the helper function for the heap check is in Figure 5.16. The fol-
lowing statement m takes a boolean value and the return value of the transaction
body. The boolean value reveals the outcome of the consistency check to the trans-
action’s execution context (tt for a successful, ff for a failed check). Further, the
thread identifier in the global state is set to the identifier of the thread executing
the transaction.
If there are no inconsistencies, the reload operation does not change the internal

state of the transaction. Otherwise, entries in the read set are replaced by their
counterparts in the global heap. This corresponds semantically to an abort of the
transaction and the start of a new transaction which adopts the reads set and write
set, as well as the execution context of the aborted predecessor. The annotated
effects reflect this by emitting the abort effect for the transaction, the begin effect
for the new transaction, and a list of all read effects as listed in the read set. Also,
the transaction’s state is now found consistent with respect to the current heap and
is flagged with ok.
In a similar way, ignoreUpdates puts the transaction into a committable state

by setting the state flag to ok. Because no new values are observed, nor global
operations performed, the empty effect is emitted to the trace.
With retry , the transaction is aborted and reverted. Correspondingly, an abort

effect is emitted to the execution trace.
When the twilight zone has been reduced to a return statement, the rule for

commit transfers its entries from the write set to the global heap (Commit). A
corresponding commit effect containing the locations of the modified variables is
emitted, and the thread identifier in the global state which indicated that a twilight
zone is executed is reset.
If the transaction has been found inconsistent with respect to the global heap

when entering its twilight zone, and it has not obtained an update of the read
variables via reload or explicitly ignored updates via ignoreUpdates, the commit
fails (CommitFail). The transaction formally aborts and is restarted completely.
In Figure 5.17, the rules for evaluating an IO monad embedded into a transaction

are shown. With IOtoSTM , an statement to be evaluated in the IO monad can be
lifted into the twilight zone of a transaction. The statement, with the exception of
atomic expressions (see IOtoSTMErr below), is evaluated in a top level environ-
ment. The effects are transferred to the enclosing transaction. When a new thread is
spawn (IOtoSTMSpawn), it is added to the system’s thread pool for later execution.
IOtoSTMEnd returns to the execution context of the enclosing transaction.
Figure 5.18 shows the rules for repair operations in the twilight zone. Evaluating

inconsistent l yields the result of comparing the value for l in the read set with
the one in the global heap. Similarly to Write, the update operation replaces the
value in the write set (Update), while the reread operation returns the value for a
reference in the read set (Reread).

95

Chapter 5. Correctness

Figure 5.17. Operational semantics of ΛTWI : Embedding of I/O operations.

e 6= atomic m′ H, {t 7→ e},− α
=⇒ H, {t 7→ e′},−

H, (M[IOtoSTM e],W,R, i,m, f)
αt,i

� H, (M[IOtoSTM e′],W,R, i,m, f), t

IOtoSTM

H, {t 7→ e},− α
=⇒ H, {t 7→ e′; t′ 7→ e′′},−

H, (M′[IOtoSTM e],W,R, i,m, f), t
αt,i

=⇒ H,P{t 7→ M[(M′[IOtoSTM e′],W,R, i,m, f)]; t′ 7→ e′′}, t

IOtoSTMSpawn

H, (M[IOtoSTM (return e)],W,R, i,m, f)
εt,i

� H, (M[return e],W,R, i,m, f), t
IOtoSTMEnd

Figure 5.18. Operational semantics of ΛTWI : Repair operations.

R(l) ≡ H(l)

H, (M[inconsistent l],W,R, i,m′, f)
εt,i

� H, (M[return ff],W,R, i,m′, f), t

InconsFalse

R(l) 6= H(l)

H, (M[inconsistent l],W,R, i,m′, f)
εt,i

� H, (M[return tt],W,R, i,m′, f), t

InconsTrue

W ′ = W [l 7→ (e, i)] l ∈ dom(W)

H, (M[update l e],W,R, i,m, f)
εt,i

� H, (M[return ()],W ′, R, i,m, f), t

Update

R(l) = (e, j)

H, (M[reread l],W,R, i,m, f)
εt,i

� H, (M[return e],W,R, i,m, f), t

Reread

96

5.5. Formalization of Twilight

Figure 5.19. Operational semantics of ΛTWI : Error states.

l /∈ dom(R)

H, (M[inconsistent l],W,R, i,m′, f)
abt,i

� H, error,−
InconsErr

l /∈ dom(W)

H, (M[update l e],W,R, i,m, f)
abt,i

� H, error,−
UpdateErr

l /∈ dom(R)

H, (M[reread l],W,R, i,m, f)
abt,i

� H, error,−
RereadErr

H, (M[IOtoSTM atomic m′],W,R, i,m, f)
abt,i

� H, error,− IOtoSTMErr

Figure 5.19 defines the rules which lead to erroneous states in the system. Errors
are induced by invalid read or write operations inside the twilight zone as depicted
in Figure 5.19. A read (or write) operation is illegal in the twilight code if its loca-
tion has not been read (or written) in the preceding STM phase of the transaction.
Another source for errors is the nesting of transactions within IOtoSTM . As there is
no obvious good semantics nested transactions [57], we follow here the semantics
that is specified for Haskell’s STM and other STMs, and dynamically reject the
evaluation of a nested atomic m.
Errors abort the enclosing transaction. When they are propagated to the top-

level, they terminate the execution of the associated thread.
We can again apply standard techniques to establish progress and preservation

for ΛTWI :

Theorem 5.5.1 (Type soundness). The type system in Figure 5.10 is sound with
respect to the operational semantics of ΛTWI .

5.5.3. Semantics of Twilight transactions

Twilight STM does not only provide an enriched interface for programming trans-
actions, it also allows weakening of isolation semantics of transactions. In database
transactions, it is common to have several levels of isolation. Weakening of the
isolation level can have undesirable and unexpected effects.
To aid the programmer in employing relaxed isolation semantics, all twilight trans-

actions adhere to the principle of consistency. Therefore, the operational semantics
does not allow zombie transactions that are doomed to fail, or exhibit all kind of
undesired behavior due to inconsistent memory snapshots violating data invariants.

97

Chapter 5. Correctness

Lemma 5.5.1 (Consistency). A twilight transaction always operates on a consistent
memory snapshot.

Proof of 5.5.1: The consistency of the transaction’s memory snapshot can only
be violated by reading variables that were updated on the global heap since the
beginning of the transaction. We therefore have to consider all rules that operate
on the global heap. These rules are easy to identify as they emit read and commit
effects.
Case distinction on rules accessing the global heap.

• Case Atomic: When starting the transaction, a copy of the global heap is
obtained. This operation is atomic and cannot be interleaved by modifications
of the heap.

• Case Read: The rule Read checks upon each first access to a reference if it
is consistent with the variables that have been read so far. Therefore, each
reference is compared to its counterpart in the reference copy of the heap that
has been acquired when starting the transaction. Only if the current heap
contains the same value as the heap copy, the value has not changed, and the
read operation is successfully performed.

• Case ReloadBad: The reload of the read set is performed in an atomic op-
eration that cannot be interleaved with any update operation. Both the local
copy of the heap and the read set are updated with the current values in the
heap.

• Case Commit: All update operations that are issued by a transaction get
published to the global heap via Commit. As the commit is performed as one
indivisible operation, the heap’s consistency is not violated, and no inconsis-
tent state can be observed by another transaction.

End case distinction on rules accessing the global heap.

Starting from a program which employs standard atomic blocks, how does adding
a twilight zone influence the program’s semantics? Given the guarantee of consistent
memory snapshots, the programmer can specify the desired isolation semantics for
each program in ΛTWI individually. In the next sections, we show how operations
in the twilight zone can define the isolation level of opacity and snapshot isolation
by transforming STM monads from ΛSTM in ΛTWI .

5.5.4. Opacity in ΛTWI

Implementing opacity in TwilightSTM is straightforward by transforming the code
statically with J·Ko. The transformation extends the atomic blocks with an (empty)
twilight zone which simply returns the result of evaluating the STM monad in the
block. All other expressions are not changed. A formal definition of the transfor-
mation can be found in Figure 5.20.

98

5.5. Formalization of Twilight

Figure 5.20. ΛTWI : Twilight zones for opacity.

JxKo = x

JttKo = tt

JffKo = ff

J()Ko = ()

Jλx.eKo = λx.JeKo
Je1 e2Ko = Je1Ko Je2Ko

Jif e1 e2 e3Ko = if Je1Ko Je2KoJe3Ko
Jreturn eKo = return JeKo
Je1 >>= e2Ko = Je1Ko >>= Je2Ko
Jspawn eKo = spawn JeKo

Jnew eKo = new JeKo
Jread eKo = read JeKo

J write e1 e2Ko = write Je1Ko Je2Ko
Jatomic mKo = atomic (JmKo >>=>> λx.λy.return y)

Theorem 5.5.2 (Opacity for Twilight transactions). The execution trace of a pro-
gram m in ΛSTM is equivalent in effects to a trace of the transformed program JmKo
in ΛTWI .

Proof of 5.5.2: The proof is done by induction on evaluation steps.
The rules IO-Monad, Spawn, Atomic, STM-Monad, Alloc, Write, Read, as

well as ReadWSet and ReadRSet in ΛSTM have an equal evaluation rule with the
same name in ΛTWI which is taken when evaluating expressions in the IO and STM

monad. The rules in ΛTWI merely extend the system and transaction state with
twilight flags. In all the rules that define evaluation outside the TWI monad the
flags are not set.
The scheduling for threads in ΛSTM can be simulated in ΛTWI as the transac-

tion which executes a twilight zone is running solo. It cannot be interleaved with
evaluation steps from other threads.
The only differences arise when performing the commit operation in ΛSTM and

its equivalent in ΛTWI , namely the twilight bind and the following evaluation of the
twilight zone.
We now consider the state of the system in ΛSTM where a thread has evaluated an

atomic block to the transaction tuple (return e,W,R, i,m′,H′), and the scheduling
chose this thread for the next step.
Case distinction on the applicable rules.

99

Chapter 5. Correctness

• Case Commit: The rule requires that check(R,H) = ok. It then yields in the
execution trace the following step:

H,P{t 7→ M[(return e,W,R, i,m′,H′)]}
cot,i(l̄)
=⇒ H′′,P{t 7→ M[return e]}

where H′′ = H[W] and l̄ = dom(W).

• Case Rollback: If the check failed, that is, check(R,H) = bad, or a non-
deterministic choice requires the transaction to abort, the execution trace
continues with a rollback:

H,P{t 7→ M[(return e,W,R, i,m′,H′)]}
abt,i
=⇒ H,P{t 7→ M[atomic m′]}

End case distinction on the applicable rules.
Now, consider the rules that are applicable in ΛTWI when evaluating the corre-

sponding expression

(return e >>=>> λx.λy.return y,W,R, i,m′,H′)

Case distinction on the applicable rules.

• Case TwiOk: The rule requires that check(R,H) = ok. The evaluation then
proceeds with these steps:

H,P{t 7→ M[(return e >>=>> λx.λy.return y,W,R, i,m′,H′)]},−
εt,i
=⇒ H,P{t 7→ M[((λx.λy.return y) tt e,W,R, i,m′, ok)]}, t
εt,i
=⇒ H,P{t 7→ M[((λy.return y) e,W,R, i,m′, ok)]}, t
εt,i
=⇒ H,P{t 7→ M[(return e,W,R, i,m′, ok)]}, t

cot,i(l̄)
=⇒ H′,P{t 7→ M[return e]},−

with H′ = H[W] and l̄ = dom(W)

• Case TwiBad: The rule requires that check(R,H) = bad. Hence, at commit
the transaction failed verification because the empty twilight zone does not
perform any repair or ignore the inconsistencies.

H,P{t 7→ M[(return e >>=>> λx.λy.return y,W,R, i,m′,H′)]},−
εt,i
=⇒ H,P{t 7→ M[((λx.λy.return y) ff e,W,R, i,m′, bad)]}, t
εt,i
=⇒ H,P{t 7→ M[((λy.return y) e,W,R, i,m′, bad)]}, t
εt,i
=⇒ H,P{t 7→ M[(return e,W,R, i,m′, bad)]}, t
abt,i
=⇒ H,P{t 7→ M[atomic m′]},−

100

5.5. Formalization of Twilight

• Case Rollback: As in ΛSTM , the transaction aborts and restarts.

H,P{t 7→ M[(return e >>=>> λx.λy.return y,W,R, i,m′,H′)]},−
abt,i
=⇒ H,P{t 7→ M[atomic m′]},−

End case distinction on the applicable rules.
Each execution trace in ΛSTM has an equivalent counterpart in ΛTWI : if the

transaction commits successfully in ΛSTM , there is an equivalent execution trace in
ΛTWI which commits and results in the same final global state. In the same way,
an abort in ΛSTM can be simulated by an abort in ΛTWI .
For each of these execution traces, the effect traces are equivalent in effects, as

the effect traces in ΛTWI contain only additional empty effects.

5.5.5. Snapshot isolation in ΛTWI

To implement snapshot isolation, transactions need to operate on a consistent mem-
ory snapshot. Further, as explained in Section 5.4, the entries in the write set must
be checked for intermediate updates between the beginning of the transaction and
its commit.
By Lemma 5.5.1, the operational semantics of ΛTWI exacts memory consistency.

Therefore, the twilight code just needs to specify operations that obviate lost up-
dates.
To simplify the transformation in the formal calculus, we enlarge the formal lan-

guage ΛTWI with a new primitive, wsetCons. The operation wsetCons tests for
inconsistencies in the write set. In an implementation of TwilightSTM, this opera-
tion can easily be provided as a primitive. Alternatively, all references to the vari-
ables that are modified can be dynamically tagged (see Section 4.2.4), and tested
individually for inconsistencies with inconsistent .
We can define a transformation from ΛSI to ΛTWI which preserves the operational

semantics by yielding traces that are equivalent in effects. As with J·Ko, only the
atomic blocks are transformed:

Jatomic mKs = atomic JmKs >>=>> λx.λy.wsetCons>>=

λb.if b (ignoreUpdates>>= λz.return y) (retry))

All other expressions are transformed recursively, analogously to J·Ko.

Theorem 5.5.3 (Snapshot Isolation for Twilight transactions). The execution trace
of a program m in ΛSI is equivalent in effects to a trace of the transformed program
JmKs in ΛTWI .

Proof of 5.5.3: As in the proof of 5.5.2, all rules but the commit rule in ΛSI
have an equivalent counterpart in ΛTWI .

101

Chapter 5. Correctness

Figure 5.21. Extending ΛTWIwith snapshot operations.
Syntax:

e ∈ Exp ::= · · · | wsetCons

Typing rules:

Σ|Γ ` wsetCons : TWI ()
T-WSetCons

Operational semantics:

P(t) =M[(M′[wsetCons],W,R, i,m′, f)] check(R,W,H) = ok

H,P, t εt,i
=⇒ H,P{t 7→ M[(M′[return tt],W,R, i,m′, f)]}, t

WSetCons

P(t) =M[(M′[wsetCons],W,R, i,m′, f)] check(R,W,H) = bad

H,P, t εt,i
=⇒ H,P{t 7→ M[(M′[return ff],W,R, i,m′, f)]}, t

WSetIncons

We again consider the possible execution steps at commit time in both formal-
izations and show that they yield equivalent results.
Consider the state of the system in ΛSI where a thread has evaluated an atomic

block to the transaction tuple (return e,W,R, i,m′,H′), and the scheduling chooses
this thread for executing the next step.
Case distinction on the applicable rules ΛSTM .

• Case Commit: The rule requires that check(R,W,H) = ok. It then yields in
the execution trace the following step:

H,P{t 7→ M[(return e,W,R, i,m′,H′)]} cot,i(l̄)
=⇒ H′′,P{t 7→ M[return e]}

where H′′ = H[W] and l̄ = dom(W).

• Case Rollback: If the check failed, i.e. check(R,W,H) = bad, or a non-
deterministic choice of rules requires the transaction to abort, the execution
trace is continued with a rollback:

H,P{t 7→ M[(return e,W,R, i,m′,H′)]} abt,i
=⇒ H,P{t 7→ M[atomic m′]}

End case distinction on the applicable rules ΛSTM .
As before, we distinguish between the rules that are applicable in ΛTWI when

evaluating the corresponding transformed expression:

m = return e >>=>> λx.λy.wsetCons>>=

λb.if b (ignoreUpdates>>= λz.return y) (retry)

Case distinction on the applicable rules in ΛSI .

102

5.5. Formalization of Twilight

• Case TwiOk: The rule requires that check(R,H) = ok. The evaluation then
proceeds with these steps:

H,P{t 7→ M[(m,W,R, i,m′,H′)]},−
εt,i
=⇒ H,P{t 7→ M[((λx.λy.wsetCons>>= . . .) tt e,W,R, i,m′, ok)]}, t
εt,i
=⇒ H,P{t 7→ M[((λy.wsetCons>>= . . .) e,W,R, i,m′, ok)]}, t
εt,i
=⇒ H,P{t 7→ M[(wsetCons>>= λb. . . . ,W,R, i,m′, ok)]}, t

As check(R,H) implies check(R,W,H), the execution continues with the rule
WSetCons.

εt,i
=⇒ H,P{t 7→ M[(return tt>>= λb. . . . ,W,R, i,m′, ok)]}, t
εt,i
=⇒ H,P{t 7→ M[((λb.if b . . .) tt,W,R, i,m′, ok)]}, t
εt,i
=⇒ H,P{t 7→ M[(if tt ,W,R, i,m′, ok)]}, t
εt,i
=⇒ H,P{t 7→ M[(ignoreUpdates>>= . . . ,W,R, i,m′, ok)]}, t
εt,i
=⇒ H,P{t 7→ M[(return ()>>= . . . ,W,R, i,m′, ok)]}, t
εt,i
=⇒ H,P{t 7→ M[((λz.return e) (),W,R, i,m′, ok)]}, t
εt,i
=⇒ H,P{t 7→ M[(return e,W,R, i,m′, ok)]}, t

cot,i(l̄)
=⇒ H′,P{t 7→ M[return e]},−

• Case TwiBad: The rule requires that check(R,H) = bad.

H,P{t 7→ M[(m,W,R, i,m′,H′)]},−
εt,i
=⇒ H,P{t 7→ M[((λx.λy.wsetCons>>= . . .) ff e,W,R, i,m′, bad)]}, t
εt,i
=⇒ H,P{t 7→ M[((λy.wsetCons>>= . . .) e,W,R, i,m′, bad)]}, t
εt,i
=⇒ H,P{t 7→ M[(wsetCons>>= λb. . . . ,W,R, i,m′, bad)]}, t

The two possible consistency states for the write set yield these cases:

Case distinction on check(R,W,H).

– Case check(R,W,H) = ok: The rule WSetCons is the only applicable

103

Chapter 5. Correctness

rule.

H,P{t 7→ M[(wsetCons>>= λb. . . . ,W,R, i,m′, bad)]}, t
εt,i
=⇒ H,P{t 7→ M[(return tt>>= λb. . . . ,W,R, i,m′, bad)]}, t
εt,i
=⇒ H,P{t 7→ M[((λb.if b . . .) tt,W,R, i,m′, bad)]}, t
εt,i
=⇒ H,P{t 7→ M[(if tt ,W,R, i,m′, bad)]}, t
εt,i
=⇒ H,P{t 7→ M[(ignoreUpdates>>= . . . ,W,R, i,m′, bad)]}, t
εt,i
=⇒ H,P{t 7→ M[(return ()>>= . . . ,W,R, i,m′, ok)]}, t
εt,i
=⇒ H,P{t 7→ M[((λz.return e) (),W,R, i,m′, ok)]}, t
εt,i
=⇒ H,P{t 7→ M[(return e,W,R, i,m′, ok)]}, t

cot,i(l̄)
=⇒ H′,P{t 7→ M[return e]},−

– Case check(R,W,H) = bad: The rule WSetIncons is the only applicable
rule.

H,P{t 7→ M[(wsetCons>>= λb. . . . ,W,R, i,m′, bad)]}, t
εt,i
=⇒ H,P{t 7→ M[(return ff>>= λb. . . . ,W,R, i,m′, bad)]}, t
εt,i
=⇒ H,P{t 7→ M[((λb.if b . . .) ff,W,R, i,m′, bad)]}, t
εt,i
=⇒ H,P{t 7→ M[(if ff ,W,R, i,m′, bad)]}, t
εt,i
=⇒ H,P{t 7→ M[(retry ,W,R, i,m′, bad)]}, t
abt,i
=⇒ H,P{t 7→ M[atomic m′]},−

End case distinction on check(R,W,H).

• Case Rollback: As in ΛSTM , the transaction is aborted and restarted.

H,P{t 7→ M[(m,W,R, i,m′,H′)]},−
abt,i
=⇒ H,P{t 7→ M[atomic m′]},−

End case distinction on the applicable rules in ΛSI .
Again, no interleavings are possible when executing the twilight zone, so the traces

for the execution in ΛTWI and ΛSI have an equivalent counterpart in the respective
other formal language which yields effect traces that are equal in effects.

5.5.6. Irrevocability in ΛTWI

Amajor restriction of many transactional systems is the lack of support for executing
irrevocable actions whose effects cannot be rolled back. These are in general I/O

104

5.5. Formalization of Twilight

operations, such as system calls, that need to be executed inside transactions. It is
possible to embed such calls into the twilight zone of transactions in ΛTWI . The
following lemma illustrates how this can be done.

Lemma 5.5.2 (Irrevocability). Let

T = m1 >>= λx.ignoreUpdates>>= λy.IOtoSTM m2 >>= λz.m3

be a well-typed transaction in ΛTWI . Then m2 is evaluated at most once in each
run of the transaction unless m3 is contains an explicit call to retry .

Proof of 5.5.2: A transaction is restarted when it either contains a call to
retry in the twilight zone, or it applies Rollback during execution of the trans-
actional body, or when its evaluation of the twilight zone ends in applying the rule
CommitFail.
In the first case, by the assumption made in the lemma, only m1 may contain a

retry operator. Also, in the second case, the rule Rollback can only be applied
when evaluating m1. In both cases, the monadic expression m2 is not executed
before the restart is performed.
Consider the following cases upon evaluating ignoreUpdates:

Case distinction on entering the twilight zone.

• Case TwiOk: The state flag is set to ok. Then, the state is unchanged when
executing ignoreUpdates.

• Case TwiBad: The state flag is set to bad. In IgnoreUpdates, the flag is
finally set to ok.

End case distinction on entering the twilight zone.
There is no evaluation rule which switches the transaction’s flag to the bad state.

Hence, if no error is thrown or no call to retry occurs in m3, the rule Commit is
applied, and the transaction commits successfully. Hence, the monadic expression
m2 is only evaluated once.

Besides ignoreUpdates, also the reload operator allows a transaction to switch
into an irrevocable mode and to obtain an updated snapshot of the read set. These
operations also interact in such a way that calling ignoreUpdates before reload

prevents the transaction from obtaining the current, possibly updated values. A
programmer should therefore take care that each execution path in the twilight
zone has preferably only one of these operations. The implementation of Twilight
STM in Haskell 6.3 ensures this with its parametrized monads and a special Safe
monad with irrevocable semantics.

105

Chapter 5. Correctness

5.5.7. The power of Twilight operations

In the last sections, we have shown how different semantics can be implemented
for a transaction in ΛTWIby employing twilight operations such as ignoreUpdates,
reload, or wsetCons.
The programmer should be aware that these operations can also be (mis-) used

to implement semantics that are usually undesirable. For example, the transaction

atomic {readx >>= λv. writex (v + 1)>>=>> λz.ignoreUpdates}

can cause lost updates if another transaction commits to x concurrently.
Though, to simplify the reasoning about the interleaving and possible interaction

of transactions, ΛTWI provides only consistent memory snapshots for each transac-
tion. This means that neither read skews nor non-repeatable reads can be observed.
The interleaving can partially be observed by inspecting the read set’s state and
updated values, and the twilight zone may then react on these observations as the
programmer specified.

106

Chapter 6.

Implementation

We implemented Twilight STM by extending the TL2 algorithm [20]. Like TL2,
the implementation relies on a global counter/timer T. Each shared variable is
associated with a version number that represents the time of its last modification.
The first (transactional) read of a variable creates an entry in the read set comprising
the variable, its value, and its version number at the time of the read operation.
Write operations to shared variables are performed lazily. They are first recorded
locally in the transaction’s write set and their publication to shared memory is
delayed to the commit phase.
To evaluate Twilight STM’s usability and performance, we implemented the al-

gorithm in form of libraries for several programming languages. The first imple-
mentation is a conservative extension of the TL2 algorithm for the C programming
language. A program not using twilight code has therefore the same transactional
guarantees and semantics as TL2. This implementation can be used with any plat-
form supporting pthreads. Its correct application in a program hinges solely on
programming conventions, which are neither checked nor statically enforced for the
time being.
We implemented also a reference implementation in Java. This implementa-

tion is object-based and provides an object-oriented callback-style API: a trans-
action body is represented as an object with two methods, transactional()
and twilight(). Executing such a transaction body means to open a transac-
tion, run transactional(), prepare to commit (and restart if needed), and run
the twilight() method, which leads to a commit or a restart. The body object
also serves as a container to communicate values between the transactional code
and the twilight code.
Finally, we investigated the usability of Twilight in Haskell. In contrast to the

other implementations, Haskell’s type system provides the means to statically check
and enforce the correct usage of the API. Using parameterized monads, a transac-
tion is separated into a declarative transactional and an imperative twilight phase.
Special read and write handles enforce strong atomicity, and eliminate the possibil-
ity of erroneous and unsafe variable access. Further, the scope of a tag is statically
limited to the scope of a transaction, thus preventing the programmer from incor-
rect usage. Because of the static guarantees, the Haskell code requires less error
handling.

107

Chapter 6. Implementation

6.1. C

The API for the C implementation is given in Listing 3.1. It is introduced in detail
in Section 3.2. The code builds on the pthreads library which implements the POSIX
standard for thread management.
In this section, we give an account of some details concerning the implementation

with respect to the C programming language.

Weak atomicity

In accordance to the nature of C, the C implementation of Twilight STM has word-
granular conflict detection and resolution. This admits the usage of STM even in
the presence of pointer arithmetic. As many other C implementations of STM,
Twilight STM provides weak atomicity. Shared memory can be accessed either
through the transactional read and write methods, or directly without any synchro-
nization. In the latter case, concurrently running threads can exhibit data races,
and it is not specified which values a thread obtains. In particular, it may observe
inconsistencies due to partial updates of memory locations during a transaction’s
commit. The programmer is therefore strongly advised to omit the detour via the
STM synchronization only during phases of single-threaded execution, for example
when initializing data structures before threads are spawned.

Timestamps and locks

Twilight STM is a time-stamp based STM algorithm. The globally shared timer
emits timestamps for marking the updates to shared memory. It is incremented
for each successfully committing transaction with a CAS operation. Read-only
transactions do not increment the timer.
Long running-applications might cause the timer to overflow at some point. In this

case, the timer needs to be reset to zero and the timestamps of the transactionally
shared variables similarly need to be re-initialized. We did not observe any overflows
when evaluating the benchmarks.
To keep the memory overhead low, the STM library does not associate timestamps

and locks to each memory word. Instead, when running stm_start, a static hash
map is allocated containing this transactional meta data. Each memory address
is mapped with a simple hash function to an entry in this map. The size of the
hash map can be adapted to the application’s workload to reduce the probability of
phantom conflicts because of shared timestamps and locks.
For the entries in the hash map, the two lowest bits are used for encoding the

lock status of the location (free, reserved, locked), the other bits contain the current
timestamp. When entering the twilight zone, the transaction tries to set the lock
bits for each variable in its write set from free to reserved with a CAS operation.
No further CAS operations are required.

108

6.1. C

Transactional memory access

Due to the decoupling of locks and the shared memory locations, it is not possible
to atomically read the memory word and the versioned lock. The read operation
therefore starts with reading the versioned locks. If the lock and timestamp allow
proceeding, it reads the desired memory location, then again reads the versioned
lock. If the versioned lock has changed, the protected memory has possibly changed,
and the read could have returned inconsistent values. Hence, the transaction has to
abort.
To stop concurrently running transactions from reading free’ed memory or run-

ning into ABA problems, the memory chunk that is to be deallocated is added to
the write set of the transaction. When committing, the timestamps of all words in
the respective area are incremented, thus invalidating further read accesses.
In some few cases, it is possible that a transaction deallocates a memory location

just after another transactions found the versioned lock in a state admitting a read
access. When the reading transaction now accesses the memory location in ques-
tion, it may cause a segmentation fault. To prevent a program from terminating
in this situation, Twilight STM masks the segfault signal during the execution of
stm_read.

Rollback of transactions

Twilight STM in C accomplishes the rollback of transactions with the combination of
setjmp/longjmp. The setjmpmethod is called when a transaction is started and
saves the calling environment. When aborting a transaction, first the transaction’s
metadata is cleared to prevent space leaks. Then, a call to longjmp reinstalls the
program state to the pre-transactional situation.
Changes to local variables that are introduced before the start of the transaction

are not reverted. For enforcing a rollback on these variables, a special version of
local write is available which saves the pre-transactional states before modifying the
variables.

6.1.1. Evaluation

Twilight STM is intended for situations where a transaction is not allowed to restart,
in particular when I/O operations are involved. This feature is powerful, but it can-
not be measured quantitatively. Another typical use for Twilight STM is contention
management based on insight into the system’s state dynamics. Thus, the experi-
ments for evaluating the Twilight STM concentrate on the contention management
aspect. To show the competitiveness of Twilight STM, we compare the performance
of the C library for Twilight STM with the TL2 reference implementation provided
with a selection of applications from the STAMP benchmark [19].
The applications can be characterized as follows:

• The k-means algorithm is used for grouping objects into a fixed number of

109

Chapter 6. Implementation

clusters such that each object belongs to the cluster with the nearest mean.
The benchmark provides a multi-threaded clustering algorithm where each
thread processes a partition of the objects iteratively. Transactions protect
the update of the cluster center that occurs during each iteration. The amount
of contention among threads depends on the number of clusters, with larger
values resulting in less frequent conflicts.

The k-means benchmark has short transactions with small read and write
sets. Only a small percentage of execution time is spent in transactions, and
contention on shared memory is rather low.

• In the labyrinth benchmark, threads calculate in parallel paths in a three-
dimensional uniform grid which represents a maze. Each calculation of such
a path is enclosed in a transaction, and conflicts occur when two threads pick
overlapping paths. To reduce these conflicts, transactions operate on thread-
local copies of the grid. Only when a thread wants to add a path to the global
grid, it revalidates by re-reading all the grid points along the new path. If
validation fails, the transaction aborts and starts with a new, updated copy
of the global grid.

The labyrinth benchmark features long transactions with very large read and
write sets, inducing a high contention rate. Almost all of the code is executed
within transactions.

• The ssca2 application is taken form the Scalable Synthetic Compact Applica-
tions Benchmark suite. It constructs an efficient graph data structure using
adjacency arrays and auxiliary arrays for presenting large, directed, weighted
multi-graph. In the transactional version of SSCA2, threads add concurrently
nodes to the graph, using transactions to protect accesses to the adjacency
arrays.

The workload characteristics are similar to k-means: comparatively short
transactions with small read and write sets.

• The vacation benchmark emulates a travel reservation system on a kind of
in-memory data base. Each threads randomly reserves, updates, or cancels
travel items such as cars, hotel rooms or flights for a customer as long as they
are still available.

By adjusting the parameters, different workloads and contention loads for
the transactions can be arranged. For our evaluation we chose the settings
as advised by the STAMP paper, which amounts to medium sized read and
write sets, and low or medium contention.

The benchmark machine contains two AMD Opteron processors 6174 (12 Cores,
2.20 GHz, 64.0 GByte on 4 nodes). It runs a Linux operating system and GHC
6.12.3. The processors support hyper-threading, but because of spin-locking in
several parts of the STM algorithm, the scalability of the applications is impeded

110

6.1. C

when using more than 12 threads. The following figures give the median taken from
10 runs of each application.
Figure 6.1 shows the results for running the benchmarks linked against an STM

library implementing the TL2 algorithm, and with the Twilight STM library. The
applications do not use any twilight zones, but are restricted to the standard STM
operations.
The speedup graphs (left column) show the scaling behavior normalized with

respect to the single-threaded STM version in each case. With increasing the number
of threads, Twilight STM shows good scaling behavior, in particular when compared
with TL2. For the real execution time (middle column), TL2 outperforms Twilight
STM for the applications with small transactional workloads and few threads with
a factor of 2, whereas Twilight STM shows better performance for the labyrinth
benchmarks with its large read and write sets. With the exception of the ssca2
application, Twilight reduces the number of aborts significantly, thus decreasing the
amount of restarts (right column). The reason for this difference lies in Twilight’s
distinction between three different lock states. Whereas TL2 transactions acquire
exclusive access already before checking the read set, Twilight only reserves the
locks, thus allowing concurrent transactions to proceed with reading locations that
are associated to these locks. If the transaction has to abort because the read set
check was unsuccessful, the other transactions have progressed and have a chance
to commit later, while they have to restart in TL2.
Both, TL2 and Twilight, induce a high synchronization overhead in the bench-

mark applications. In comparison, the single-threaded execution without any syn-
chronization is up to 5 times faster than the single-threaded execution of the STM
versions. A detailed analysis of the STM and single-threaded execution without
synchronization overhead can be found in [19].
One reason for Twilight’s lower performance on the applications with small trans-

actional workload is because the Twilight library has been optimized for high work-
loads. Read and write sets are internally implemented with hash maps with an
initial size of 64 elements. Thus, the overhead in starting and ending a transaction
is comparatively high in applications like kmeans and ssca2. These results suggest
that adapting STM implementations to different kinds of workload can influence an
application to a great extend.
To measure the effect of repair operations, we extended the implementation for

the linked lists code provided by STAMP with tagging as explained in Section 3.3.2.
We then added twilight zones to the vacation benchmark that prevents restarts if
changes to the list structure, containing available reservation items, do not invalidate
the data consistence.
Figure 6.2 shows the results for TL2, and Twilight with and without twilight zone.

As the figures suggest, the time needed to detect and repair possible inconsistencies
is equal to the time needed to rollback and re-execute the conflicting transactions.
The results from the vacation benchmark indicate that only applications with high
contention spots and where repair is less expensive than rollback can benefit from
Twilight with respect to performance.

111

Chapter 6. Implementation

Figure 6.1. Twilight STM: STAMP benchmark suite - kmeans, labyrinth, ssca2.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

Number of threads

TL2
Twi

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 2 4 6 8 10 12 14 16

T
im

e
 [
s
]

Number of threads

TL2
Twi

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 2 4 6 8 10 12 14 16

A
b
o
rt

s

Number of threads

TL2

Twi

(a) kmeans-high.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

Number of threads

TL2
Twi

 0

 10

 20

 30

 40

 50

 60

 70

 2 4 6 8 10 12 14 16

T
im

e
 [
s
]

Number of threads

TL2
Twi

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 2 4 6 8 10 12 14 16

A
b
o
rt

s

Number of threads

TL2

Twi

(b) kmeans-low.

 1

 2

 3

 4

 5

 6

 7

 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

Number of threads

TL2
Twi

 20

 40

 60

 80

 100

 120

 140

 2 4 6 8 10 12 14 16

T
im

e
 [
s
]

Number of threads

TL2
Twi

 0

 50

 100

 150

 200

 250

 300

 350

 2 4 6 8 10 12 14 16

A
b
o
rt

s

Number of threads

TL2

Twi

(c) labyrinth.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

Number of threads

TL2
Twi

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 2 4 6 8 10 12 14 16

T
im

e
 [
s
]

Number of threads

TL2
Twi

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 2 4 6 8 10 12 14 16

A
b
o
rt

s

Number of threads

TL2

Twi

(d) ssca2.

112

6.1. C

Figure 6.2. Twilight STM: STAMP benchmark suite - vacation.

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

Number of threads

TL2
Twi

Twi with zone

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2 4 6 8 10 12 14 16

T
im

e
 [
s
]

Number of threads

TL2
Twi

Twi with zone

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 2 4 6 8 10 12 14 16

A
b
o
rt

s

Number of threads

TL2

Twi

Twi with zone

(a) vacation-low.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

Number of threads

TL2
Twi

Twi with zone

 0

 20

 40

 60

 80

 100

 120

 140

 2 4 6 8 10 12 14 16

T
im

e
 [
s
]

Number of threads

TL2
Twi

Twi with zone

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 2 4 6 8 10 12 14 16

A
b
o
rt

s

Number of threads

TL2

Twi

Twi with zone

(b) vacation-high.

Figure 6.3. Twilight STM: Micro benchmark - Singly-linked list.

 0

 10

 20

 30

 40

 50

 2 4 6 8 10 12 14 16

T
im

e
 [
s
]

Number of threads

TL2
Twi with zone
Twi w/o zone

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2 4 6 8 10 12 14 16

A
b
o
rt

s

Number of threads

TL2

Twi

Twi with zone

113

Chapter 6. Implementation

Listing 6.1 Twilight API for Java.

public class Transaction<R> {
public static <R> R execute(TransactionBody<R> body,

Transaction<?> parent) {..}
public <T> void write(GlobalVar<T> var, T value){...}
public <T> T read(GlobalVar<T> var) {...}
public void restart(Transaction<?> bad) {...}
public Set<GlobalVar<?>> inconsistencies(){...}
public void reload(){...}

public static abstract class TransactionBody<R> {
protected Transaction<R> stm;
abstract public void transactional();
abstract public R twilight();

}
}

In Figure 6.3, the execution times and aborts of running a micro benchmark on
a singly-linked list against the three types of STM libraries. After filling a list with
20,000 elements from a key range of 1 to 40,000, 1,000 random operations (insert,
delete, lookup) are performed on the data structure. The version with twilight zones
uses tagging and conflict resolution as explained in Section 3.3.2. Each data point
in the plot is obtained as the median of 10 runs.
For this kind of application, Twilight STM is much faster than TL2. When

using 16 threads, the version with twilight zone has up to 14% less aborts, and is
accordingly 28% faster than the Twilight version where no twilight zones are used.

6.2. Java

The Java implementation of Twilight, JTwilight, transfers the Twilight idea to an
object-oriented language. The reference implementation makes use of Java’s exten-
sive concurrency libraries and is fully contained in just 600 LOC (including com-
ments).
The API of JTwilight is given in Listing 6.1. Twilight transactions are instances of

the Transaction<R> class, where R is the type of the transaction’s return value.
The code to be executed transactionally is defined by instances of the abstract class
TransactionBody<R>. The atomic part is specified as the method body of the
transactional() method, the twilight code is given in twilight().
Different from the C implementation, JTwilight operates with object-granularity.

All objects that are transactionally managed are enclosed in a GlobalVar<T>
wrapper which contains a reference to the actual object, the time stamp of the last

114

6.2. Java

modification, and a reentrant lock for guaranteeing mutual exclusion during the
commit.
An example of a Twilight transaction in this object-oriented style is shown in

Listing 6.2. The methods putForks and getForks atomically try to acquire
an release the forks connected to a philosopher. The Void type is needed for
transactions not returning any value (as seen in the example, these transactions
simply return null).
The JTwilight implementation is a reference implementation which is not opti-

mized for fast execution. Instead, we used it to experiment with nested Twilight
transactions. The nature of twilight zones with its irreversibility aspects makes open
nesting an appropriate choice for the nesting semantics. Following the suggestions
in [57], reads and writes are transferred between child transactions and their parents
in the following way:

• Objects that are present in an ancestor’s read set are updated with the versions
committed by the child. Thus, later accesses of the ancestor to the same data
does not lead to conflicts.

• Objects read by a child transaction are added to the read set of its parent.
Thus, the stack of nested transactions appears to have been executing on one
memory snapshot.

• Modifications registered in a transaction’s write set are not visible to a child
transaction to prevent leakage of intermediates states. Thus, intermediate
state is not accessible by the child transaction and cannot be leaked to the
global state.

Listing 6.3 exercises the visibility of updates in a small example. Running the
code fragment, it yields the following output:

z : xyz
y : modified by child
z : modified by parent

To reduce the number of restarts, a consistency check is done before starting a
nested transaction. Further, when preparing the commit, the accumulated read set
of all ancestors is again checked. If a conflict occurs on an object that is not in the
current transaction’s read set, the transaction does not enter its twilight zone, but
all transactions up to the one that induced the conflict are aborted and restarted.
Incorporating nesting of transactions into Twilight STM leads to a sophisticated

visibility semantics. The version implemented in JTwilight prevents leaking of in-
termediate state, yet leads to a growth in the read set. Other semantical choices for
forwarding and retaining information between the parent and the child transaction
are possible, but might violate the principles of consistency and isolation.

115

Chapter 6. Implementation

Listing 6.2 JTwilight: Dining Philosophers.

public class DiningPhilosophers {
static Vector<GlobalVar<Boolean>> table;
static Philosopher[] philosophers;
private static class Philosopher extends Thread {

int id;
private void putForks() {

Transaction.execute(
new Transaction.TransactionBody<Void>() {
public void transactional() {

stm.write(table.get(id),Boolean.TRUE);
stm.write(table.get((id +1) % NUM_PHILOS),true);

}
public Void twilight() {

System.out.println("Philo "+ id +" finished.");
return null;

}
},null);

}

private void getForks() {
Transaction.execute(
new Transaction.TransactionBody<Void>() {
public void transactional() {

getFork(id);
getFork((id + 1) % NUM_PHILOSOPHERS);

}
private void getFork(int id) {

boolean available = stm.read(table.get(id));
if (available) {

stm.write(table.get(id),Boolean.FALSE);
} else {

stm.restart(stm);
}

}
public Void twilight() {
System.out.println("Philo "+ id +" is eating.");
return null;

}
},null);

} ...
}

116

6.2. Java

Listing 6.3 JTwilight: Nested transactions.

final GlobalVar<String> y = new GlobalVar<String>("abc");
final GlobalVar<String> z = new GlobalVar<String>("xyz");
Transaction.execute(
new Transaction.TransactionBody<Void>() {
int a;
public void transactional() {

a = stm.read(y);
stm.write(z, "modified by parent");

Transaction.execute(
new Transaction.TransactionBody<Void>() {
String b;
public void transactional() {

stm.write(y, "modified by child");
b = stm.read(z);

}
public Void twilight() {
System.out.println("z: "+ b);
return null;

}
}, stm);

}

public Void twilight() {
System.out.println("y: " + stm.read(y));
System.out.println("z: " + stm.read(z));
return null;

}
}, null);

117

Chapter 6. Implementation

6.3. Haskell

In the Twilight library for Haskell, the STM data type is a composition of the IO
monad with error and state monads. The state maintains a global counter to obtain
unique time stamps that mark writes to transactionally managed memory.
The API employs Haskell’s type system to restrict operations to the atomic or

the twilight phase, depending on where they are safe to use.
We now have a closer look at the API which is given in Listing 6.4.

The Parameterized Monad STM

The parameterized monad STM t p q a encapsulates a computation as the body
of a transaction. The type parameters describe a computation of this type more
closely:

• t is a static transaction identifier which restricts the scope of tags and variable
handles to one transaction using monadic encapsulation [48];

• p and q statically indicate the phase of the transaction in the STM monad
before and after the computation;

• a denotes the result type of the computation.

The function atomically :: (∀ t .STM t p q a) → IO a creates a new transactional
scope with a fresh static transaction identifier t and executes its body computation
atomically. The operations gbind and gret generalize the >>= and return operations
of the standard Monad class to parameterized monads [44]1.
Twilight distinguishes three different phases in a transactional scope, which are

indicated by the instantiation of the p and q parameters.

• Code in the Atm (atomic) phase enjoys full transactional execution. GHC’s
STM implementation [35] provides only this phase. Code that runs in the
atomic phase is fully isolated from external changes to variables and vice
versa. It always sees memory in a consistent state.

• In the Twi (twilight) phase, the consistency of the variable values read within
the Atm phase of the transaction may be checked with respect to their current
values. In the presence of inconsistencies a transaction is doomed to fail, unless
the programmer switches explicitly to the safe phase.

• Once the Safe phase is reached, the transaction does not fail anymore un-
less explicitly requested by the programmer via retry . The twilight code has
exclusive access to the variables in the transaction’s write set. This isola-
tion guarantee ensures that the I/O effects coincide with the outcome of the

1Our examples exploit GHC’s convenient customization feature of the do notation through a
simple local redefinition of >>= and return by gbind and gret .

118

6.3. Haskell

Listing 6.4 Twilight API for Haskell.
-- STM data

data STM t p q a = ... -- abstract type of computations
data TVar a = ... -- transactional variables
data RTwiVar t a = ... -- handle for rereading
data WTwiVar t a = ... -- handle for rewriting
-- static states of a transaction

data Atm
data Twi
data Safe
-- STM parameterized monad

atomically :: (∀ t .STM t p q a)→ IO a
gbind :: STM t p q a → (a → STM t q s b)→ STM t p s a
gret :: STM t p p a
retry :: STM r p q a
-- transfer between phases

twilight :: STM t Atm Twi Bool
reload :: STM t Twi Safe ()
tryCommit :: STM t Twi Safe ()
ignoreUpdates :: STM t Twi Safe ()
-- read and write operations

newTVar :: a → STM t p p (TVar a)
readTVar :: TVar a → STM t Atm Atm a
writeTVar :: TVar a → a → STM t Atm Atm a
readTVarTwi :: TVar a → Tag t a → STM t Atm Atm (a,RTwiVar t a)
writeTVarTwi :: TVar a → a → STM t Atm Atm (WTwiVar t a)
rewriteTwiVar :: WTwiVar t a → a → STM t p p ()
rereadTwiVar :: RTwiVar t a → STM t p p a
-- tags

newTag :: STM t Atm Atm (Tag t)
markTVar :: TVar a → Tag t → STM t Atm Atm ()
isInconsistent :: Tag t → STM t p p Bool
-- embedding IO

unsafeTwiIO :: IO a → STM t p p a
safeTwiIO :: IO a → STM t Safe Safe a

119

Chapter 6. Implementation

transaction. In this phase, the code may perform operations for repairing in-
consistencies. It is also possible to safely perform non-reversible operations
like I/O.

Each STM operation is indexed by its start and end phases. Hence, the type checker
guarantees that it is not possible to perform the operations out of order or in the
wrong phase. The twilight operation switches from the Atm phase to the Twi
phase. Similarly, reload finishes the Twi phase and starts the Safe phase. The
operation tryCommit also switches from Twi to Safe, but it aborts and restarts if
the transaction is still in an inconsistent state. Otherwise, it proceeds in the Safe
phase.

Reading and Writing Shared Memory

Similar to GHC’s STM implementation, a shared memory location which can be
accessed within a transaction has type TVar a. It encapsulates a value of type a.
The operation newTVar creates a new transactional variable with an initial value.
Within an atomic section, a TVar a is accessed via readTVar for reading and via
writeTVar for writing.
In addition to these standard operations, the API provides special read and write

operations for Twilight. The operation readTVarTwi returns the current value of
type a as well as a handle of type RTwiVar t a where t is the current transaction
identifier. This handle is associated to the same location as the underlying TVar
and it may be used in the Safe phase to read the new value of the variable if it was
the cause of an inconsistency. Similarly, the atomic write operation writeTVarTwi
returns a write handle of type WTwiVar t a to enable writing this variable in the
Safe phase.
After entering the Twilight zone, transactional variables can only be read or

written via the read and write handles. Admitting the standard read operation on
a TVar might yield a memory location that has not been touched in the preceding
Atm phase. This can violate the property that a transaction operates on a consistent
snapshot. Similarly, the Safe phase must not write variables that have not yet been
written to in the Atm phase. We impose this restriction to keep the transaction’s
read and write set constant, which is required to guarantee deadlock freedom.
The operation rereadTwiVar returns the value of a variable as it is currently found

in the read set. Within the Atm phase, it returns the same value as the readTVar
operation on the associated TVar . After issuing a reload , in the Safe phase, the
rereadTVar operation may return a new value if the underlying variable has caused
an inconsistency and reload has obtained a new value for it. The old value is no
longer available. The operation rewriteTwiVar updates the variable corresponding
to the WTwiVar handle, but this update only takes effect when the transaction
commits.

120

6.3. Haskell

Tags

A tag Tag t a identifies a group of variables. The operation newTag returns a fresh
tag without any variables attached to it. Its scope is restricted to the execution
of the STM monad with static transaction identifier t . A TVar is added to a tag
group either through writeTVarTwi , readTVarTwi , or markTVar .
In the Twilight zone, the programmer can apply isInconsistent to a tag to deter-

mine whether the tag is associated to an inconsistent variable.

Embedding I/O into STM

The STM monad shipped with GHC prohibits performing I/O within a transaction
because I/O might violate the transactional semantics. Yet, it is sometimes desir-
able to include “transaction-safe/harmless” actions, like reading the system time or
printing debug output, into transactional code. Like GHC’s unsafeIOtoSTM , the
operation unsafeTwiIO injects an I/O action into the STM monad without giving
guarantees about when and how often the action may be executed. In contrast, an
action performed with safeTwiIO in the Safe phase of a transaction is guaranteed
to be executed exactly once.
The Twilight implementation in Haskell relies on a parameterized monad [44] to

separate and order the different phases of a transaction. Further, we use monadic
encapsulation [48] to restrict the scope of tags and handles to single transactions.

Heterogeneous collections

Twilight STM tracks the read and write set of a transaction to provide consistent
memory snapshots and reduce contention on the global state. Both the read and
write sets are heterogeneous collections of TVars containing values of different types.
Through the use of phantom types, the API enforces that values and references are
consistently typed. Internally, we treat the values as having an unknown type and
can safely coerce them back to the appropriate type.

Enumerating TVars

The representation of a TVar in Twilight contains a lock to grant exclusive access to
the variable. The underlying locking protocol requires that these locks are ordered
to avoid deadlocks of the system. However, in Haskell, no pointer type (not even
StablePointer) is an instance of the Ord class, so that we are forced to use integers
to enumerate and order all TVars. This numbering introduces a bottleneck in the
implementation and consumes space, but we are not aware of a better solution
without reimplementing IORef s and MVars.

6.3.1. Comparison with GHC’s STM

GHC is shipped with an implementation for Software Transactional Memory. It
provides the interface to an STM monad, uses TVars as shared memory locations

121

Chapter 6. Implementation

for transactions, and includes several interesting enhancements of STM, like the
orElse operator, and the restarting of failed transactions only after modifications
to the variables that were read. Handling of transactional memory is implemented
directly in the run-time system.
GHC’s STM prohibits the use of I/O operations by means of the type system.

Using the STM monad to encapsulate all read and write operations, the effect of a
transaction is restricted to modifications of transactional variables. Yet, GHC offers
the unsafe lifting of I/O operations into the STM monad via unsafeIOToSTM ::
IO a → STM a, which is considered a highly dangerous loophole that breaks the
functional guarantee.
In contrast, Twilight STM for Haskell is implemented as a library. This approach

enables easy modification and testing of features, but decreases performance dras-
tically. Also, GHC’s STM implementation does not offer the Twilight features to
repair potentially failing transactions.

6.3.2. Evaluation

The benchmark machine contains two AMD Opteron processors 6174 (12 Cores,
2.20 GHz, 64.0 GByte on 4 nodes). It runs a Linux operating system and GHC
6.12.3.
To evaluate our implementation of Twilight STM in Haskell, we adapted the

Haskell benchmark that has been collected by Perfumo and others and has been used
in several case studies on the GHC’s STM implementation (e.g. [59]). Changes were
made to the type signatures to adapt to Twilight’s parameterized monads. Further,
for some programs in the benchmark suite, the atomic blocks were extended with
twilight zones that preserve the semantics of the program. All figures show the
mean of 50 runs with the same parameter setting.
To reduce the influence of measuring as small as possible, the abort and commit

counts are done in an unsafe way with a simple variable of type IORef Int . There
is no extra synchronization involved (as would be when using an MVar or similar),
yet a small percentage of updates to these counters are lost as can be seen in
Figures 6.7(c) and 6.5(c).
Further, the speedup graphs show the scaling behavior normalized with respect

to the single-threaded STM version in each case. A comparison of implementations
using different concurrency strategies can be found in [21], for example.

Single transactional variable

Figure 6.4 shows the results on a small program which operates an transactional
integer variable that is shared among multiple threads. It tries to perform in par-
allel a task that is inherently sequential: each thread is reading the variable and
incrementing it by one. In the standard STM version, each conflicting access to
the variable leads to a restart of the transactions (GHC and Twi1). For the version
with twilight zone (Twi2), a small repair action is employed to reduce the number of

122

6.3. Haskell

Figure 6.4. Twilight Haskell: Micro benchmark - Update operations on a single
variable.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 2 4 8

T
im

e

Number of threads

GHC

Twi1

Twi2

(a) Execution time.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 1 2 4 8

S
ta

rt
s
 a

n
d

 A
b

o
rt

s

Number of threads

#txns GHC

#txns Twi1

#txns Twi2

#atomic blocks

(b) Starts and Aborts.

restarts. In case of intermediate updates, the counter is reread and the actual value
then incremented. This repair effectively serializes the execution of the threads.
As expected, the performance of the program degrades with an increasing number

of threads due to high contention (Figure 6.4(a)). Note that the number of restarts
in the version with repair is drastically reduced (Figure 6.4(b)). The few restarts
occur in a situation where the readTVar method sees that the variable is currently
locked during a thread’s commit.
Also, observe that in the single-threaded case the execution time for this simple

update operation differs between GHC and Twi by a factor of 4. This gives an
indication what the actual difference between the built-in and the library based
version are. In examples where more transactional variables are involved it seems
that the overhead in organizing these variables in the read and write sets is even
worse.

Linked list

In the linked list benchmark, each thread atomically lookup, insert, or delete an
element in a shared single-linked list where the keys of the list nodes are sorted.
The version in which the atomic blocks are extended with twilight zones (Twi2)
implements the fine-grained conflict detection as presented in Section 3.3.2.
Figure 6.5 displays runs of 100.000 operations on a shared list. The lists have a

maximal capacity of 100 and 1000 elements, and they were initially filled with 50
and 500 keys. To simulate typical usage patterns of lists, the benchmark threads
performed 90% lookup operations, 5% insertions, and 5% deletions.
Again, not surprisingly, the program does not scale well when the number of

threads is increased though the percentage of update operations is small. This
holds especially for the shorter list.
Notice that both, the execution time and the number of aborts, are reduced when

comparing the version with and without twilight zones. In particular, the execution

123

Chapter 6. Implementation

Figure 6.5. Micro benchmark: Linked list with 100 and 1000 elements, 20% up-
date.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 1 2 4 8

T
im

e

Number of threads

GHC

Twi1

Twi2

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 1 2 4 8

T
im

e

Number of threads

GHC

Twi1

Twi2

(a) Execution time.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

Number of threads

GHC
Twi1
Twi2

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

Number of threads

GHC
Twi1
Twi2

(b) Scaling.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 1 2 4 8

S
ta

rt
s
 a

n
d

 A
b

o
rt

s

Number of threads

#txns GHC

#txns Twi1

#txns Twi2

#atomic blocks
 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 1 2 4 8

S
ta

rt
s
 a

n
d

 A
b

o
rt

s

Number of threads

#txns GHC

#txns Twi1

#txns Twi2

#atomic blocks

(c) Starts and Aborts.

124

6.3. Haskell

Figure 6.6. Twilight Haskell: Benchmark - Sudoku.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

T
im

e

Number of threads

GHC

Twi1

Twi2

(a) Execution time.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 1 2 4 8

S
ta

rt
s
 a

n
d

 A
b

o
rt

s

Number of threads

#txns GHC

#txns Twi1

#txns Twi2

#atomic blocks

(b) Starts and Aborts.

time is reduced by 15% to 21%.

Binary tree

The benchmark results in Figure 6.7 show operations on an unbalanced binary tree
with a maximum of 1000 elements. The graphs in the left column were obtained by
20% updates (i.e. 10% insertions and 10% deletions), the right column shows 50%
update operations. Again, the data structure was initialized with 500 elements.
As anticipated, the scaling behavior of this program is better than with the linked

list. The Twi2 version with twilight code gives again an improvement of about 15%
to 20% over the standard version (Twi1).

Sudoku

Finally, the sudoku benchmark gives some interesting insight into the different na-
ture of GHC’s STM and Twilight STM. To reduce the number of doomed trans-
actions, the STM of GHC ensures the serialization of transactions with conflicting
accesses to some variables. It only restarts a transaction if changes to some variable
in the read set have been confirmed. This conflict management is rather expensive
as transactions have to register themselves to all elements in their read set.
In contrast, Twilight STM optimistically restarts a transaction immediately af-

ter an abort. This scheme can lead to repeated aborts and restarts. Yet, if the
contention on variables is low and transaction can run in parallel, this spinning of
transactions has little impact. The situation changes if there is a mismatch between
the number of active threads and processor cores. The running transactions, in-
cluding the aborting ones, then have to share the computation power. This effect
of spinning is even increased as the committing transactions are making also less
progress in this case. In particular, the locks that are associated with the trans-
actional variables are held longer which again leads to more aborts of conflicting
transactions.

125

Chapter 6. Implementation

Figure 6.7. Binary tree with 1000 elements, 20% and 50% update.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 4 8

T
im

e

Number of threads

GHC

Twi1

Twi2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1 2 4 8

T
im

e

Number of threads

GHC

Twi1

Twi2

(a) Execution time.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
p

e
e
d

u
p

Number of threads

GHC
Twi1
Twi2

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
p

e
e
d

u
p

Number of threads

GHC
Twi1
Twi2

(b) Scaling.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 1 2 4 8

S
ta

rt
s
 a

n
d

 A
b

o
rt

s

Number of threads

#txns GHC

#txns Twi1

#txns Twi2

#atomic blocks
 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 1 2 4 8

S
ta

rt
s
 a

n
d

 A
b

o
rt

s

Number of threads

#txns GHC

#txns Twi1

#txns Twi2

#atomic blocks

(c) Starts and Aborts.

126

6.3. Haskell

In the sudoku solver, threads that execute a transaction are spawned recursively
until a solution for the given board is found. The actual number of spawned threads
depends on the initial board state and the scheduling of the threads. For the three
configurations that are used in the benchmark, it ranges from 100 to more than
11.000 threads spawned. Therefore, in Figure 6.6(b) a high rate of aborts is already
observable in the single-threaded case.

127

Part II.

Decent STM

129

Chapter 7.

Introduction

Developing scalable software for multi-core processors is considerably harder than
producing software that utilizes only one core. Developing software for distributed
system introduces even more complexity to the software engineering process. A
distributed system consists of several processing units that are connected with the
help of a communication infrastructure. Synchronization of the shared global state
involves communication either between individual nodes or with some dedicated
central nodes. Standardized protocols, like OpenMP and MPI, reduce the complex-
ity of programming these (often heterogeneous) systems. Yet, when programming
against these interfaces, the exchange of data has to be issued explicitly as part of
the program logic.
An additional complication is introduced by the high latency and instability of

the communication layer. In a distributed setting, protocols need to take the in-
creased latency and possible failure of nodes into account. Systems that rely on
central components can suffer from performance bottlenecks and are susceptible to
irrecoverable system failures.
In this second part of the thesis, we recast the STM paradigm for a distributed

setting. Decent STM is a fully decentralized object-based STM algorithm. It en-
tirely avoids locking and centralized components during execution of the program.
The shared memory system is the union of all globally accessible objects (GAOs).
All operations on GAOs involve only message-based communication between the
transactions and a decentralized memory system. Delayed communication, e.g.,
caused by retransmissions in the transport layer of the network, only affects perfor-
mance, but not consistency of the shared global state. The Decent STM algorithm
is thus well suited even for large scale distributed systems.
As explained in detail in Section 5, transactional read and write accesses cre-

ate dependencies on the shared data items. The standard correctness criterion for
transactions, 1-copy-serializability, imposes strong restrictions on the ordering of
transactions. The Decent STM algorithm employs a multi-version scheme for GAOs
where transactions work on local copies of shared data, which are later transferred
back to the decentral memory system. Transactions obtain lazily a consistent mem-
ory snapshot during their execution. Each modification of an object creates a new
version. Upon a successful commit, this new version typically replaces the previous
version of that data. The system keeps a limited list of committed versions for all
shared data, the version history list. When reading from a GAO, a transaction

131

Chapter 7. Introduction

obtains a version which is consistent with all GAOs it has read so far. As we show
in Section 11, the concept of the history list pays off because the effect of avoiding
the read conflicts more than compensates for the increased aborts which are due to
commit failures.
The price for using the version history is a higher rate of failed commits due

to intermediate commits and an increased memory overhead. Limiting the version
history reduces both, the likeliness of aborts at commit time caused by intermediate
writes, and the overhead to store the version history. For pruning the histories, it is
either possible to keep always a fixed number of versions for each GAO or remove
all versions that are no longer obtainable by any running transactions. In the latter
case, a transaction has to abort on a read operation, because it can always read a
previous version that does not conflict with the data read so far.
Committing to the decentralized memory system involves a more sophisticated

protocol as multiple parties have to reach consensus on which transactions are al-
lowed to commit in the case of conflicts. Decent STM solves the commit consensus
problem with a novel distributed randomized consensus protocol. It is based on
voting messages involving only the concurrently committing transactions and the
nodes of the distributed memory system to which new versions are committed.
Other transactions may read the tentatively committed versions, but they have to
abort if the consensus protocol does not elect the corresponding tentative version.
Decent STM implements as default the weaker snapshot isolation semantics.

Snapshot isolation is a popular isolation level in replicated database systems because
it allows long-running read-only transactions to safely coexist with short transac-
tions updating the state. Further, it requires less strict consistency checks which
are rather expensive in a distributed setting (see Section 5.4). For compatibility
with applications requiring serializability of transactions, the Decent STM system
allows either to switch to serializable snapshot isolation [18] or to revert to a classic
two-phase commit protocol.
This thesis focuses on the core ideas of a distributed STM. Accordingly, we de-

scribe the Decent STM algorithm in a plain manner without going into detail with
respect to optimizations. Nevertheless, Decent STM has been designed with several
enhancements in mind, such as the possibility to cache, replicate and migrate the
data structures so that they match the available memory and processor resources
more efficiently.

Outline

• Chapter 8 starts with introducing the basic components of Decent STM, GAOs
(Section 8.1) and transactions (Section 8.2). It then shows how a consistent
memory snapshot can be obtained incrementally from the single object ver-
sions in Section 8.3. Section 8.4 explicates the pruning of version history lists,
and Section 8.5 sets the commit phase forth.

• Chapter 9 is dedicated to the problem of commit consensus. After formally

132

defining the problem (Section 9.1), the randomized consensus commit protocol
of Decent STM is delineated in Section 9.2.

• Chapter 10 presents the Decent STM system from a practical perspective.
It outlines the modules of a Decent STM system in Section 10.1, and gives
the STM interface for the object-system in Section 10.2. In Section 10.3, a
tool to simplify the development of programs for Decent STM is introduced.
The JTransactifier statically rewrites Java byte code into transactional style
based on annotations on which objects are globally shared and where the code
contains atomic code blocks.

• Chapter 11 describes and evaluates two implementations of Decent STM in
Java: an implementation of the algorithm on a multi-core machine using in-
memory communication (Section 11.1), and an implementation for multiple
machines in a network (Section 11.2).

133

Chapter 8.

The Architecture of Decent STM

This chapter introduces the core algorithms of Decent STM. The main challenge
in the distributed environment of Decent STM is to refrain from installing central
components that impede the scalability of the total system. The Decent STM
algorithm distinguishes two kinds of operations: thread-local operations on non-
shared, private data, and global operations on shared, distributed memory.
The system enforces strong atomicity on all objects by statically distinguishing

between thread-local and transactionally shared objects. This approach is usually
referred to as partitioning.
The basic Decent STM architecture therefore consists of two components which

control different aspects of the distributed memory: the globally accessible objects
whose union represent the shared memory, and the transactions that operate on
these shared objects by reading and modifying them.

8.1. Globally Accessible Objects

A globally accessible object (GAO) is a distributed data structure for shared-
memory objects. It is an amalgamation of multiple versions of the data stored
in the object.
Figure 8.1 sketches the structure of a GAO. The GAO versions belong either

to the version history list or the tentative version tree. The version history list
contains one or more subsequent successfully committed versions of the GAO. The
head element of the list is the last committed version, often called the current
version. The current version further is the root element of the tentative version
tree. Beside the current version, this tree consists of the GAO versions that have not
been successfully committed yet. The elements directly beneath the root participate
in an ongoing commit consensus protocol. If transactions are allowed to proceed
tentatively while the consensus has not been reached yet, they may obtain one of
the tentative versions during their execution and can commit further versions, thus
building the tree structure. Once consensus has been reached, the unsuccessful
branches are pruned and the corresponding transactions must re-execute.
Each GAO is addressable by a globally unique identifier (GID) and is accessible

by any transactions holding such a pointer to this object.
The representation of a GAO version consists of

135

Chapter 8. The Architecture of Decent STM

Figure 8.1. Decent STM: Structure of a GAO.

Committed
versions his-
tory list

Current ver-
sion

Tentative ver-
sion tree

GAO versions

• a unique GAO version identifier (GVID),

• the GID of the GAO to which it is associated,

• the actual data items to be stored,

• a reference to the version’s predecessor,

• the transaction identifier (TID) of the transaction that wrote the GAO version,
and

• a list of the TIDs of transactions that have read this GAO version and have
yet neither committed nor aborted.

It suffices for the GVID to be unique among all GVIDs of the corresponding
GAO. In combination with the GID we then obtain globally unique identifiers for
the versions. The reference to the previous GAO version builds the committed
versions history list of the corresponding GAO.
Furthermore, except for the TID list, the data structure of a GAO version is

immutable. Thus, it can be replicated, for example in some local cache. After a
successful commit or an abort, the TID of the then no-longer active transaction is
removed from all GAO versions in the read set of the respective transaction. As the
TID lists are only required for pruning the version history (see Section 8.4), delayed
updates for synchronizing the TID lists do not interfere with the STM mechanism.
At worst, this could introduce a performance degradation.
As the Decent STM algorithm is an object-based STM algorithm, the data stored

in a GAO are in general serialized objects, though it is possible to use different
representations for the versioned memory chunks.

8.2. Transactions

Transactions execute the atomic code blocks of an application. To this end, a
transaction obtains local object copies (LOCs) of the GAOs. A LOC is a copy of
the GAO version which is kept in thread-local memory for read and write accesses by

136

8.2. Transactions

a transaction. When reading a GAO, a transaction obtains a LOC that corresponds
to a particular version of that GAO which is consistent with all LOCs obtained so
far. A successful commit then turns each LOC that the transaction has modified
into a new version of that GAO.
To track the dependence relation of GAO versions and check for conflicts, the

following meta data is kept for each transaction:

• a globally unique transaction identifier (TID),

• a read set, containing the LOCs of the GAOs that were read,

• a write set, containing the modified LOCs of the GAOs that were written,

• a create set, containing the initial versions of GAOs that are published when
the transaction commits, and

• a check set, containing GVIDs of all GAOs accessed for consistency checks.

Together, the read set, write set, and create set constitute the memory snapshot on
which the transaction performs its operations.
The following operations constitute the basic work flow of a transaction:

Start a transaction: This creates a transaction object with a new unique TID and
empty read set, write set, create set, and check set.

Read a GAO: If a LOC for the GAO to be read already exists in the read set, the
transaction reads the data from the LOC. Otherwise, it sends a fetch request
to the corresponding GAO and waits for the response. Once this response
arrives, it adds the received LOC into the read set, merges its check set with
the check set received, and reads the data from the LOC.

Modify a GAO: The transaction writes the new values in the LOC and enters it
to the write set if it has not been done before. The Decent STM algorithm
assumes that a GAO has been read or created before it is modified.

Instantiate a GAO: The transactions creates a LOC and initializes it to its default
value as defined by the object’s data layout. Committing such a LOC creates
both the GAO and its initial version.

Finish a transaction: When a transaction ends, it sends a commit request to all
GAOs that have been modified by the transactions. If the commit request is
positively acknowledged by the GAOs in question, the transaction is finished.
Otherwise, it reverts its state and re-executes. The transaction object needs
to be kept, first for a potential roll-back, later for providing the read and write
sets that link the GAO versions. It may be disposed when the corresponding
GAO versions are disposed.

137

Chapter 8. The Architecture of Decent STM

A transaction may encounter unresolvable conflicts either when fetching a GAO
from the global shared memory or upon commit. In both cases, the node that
executes the transaction must perform a roll-back: the transaction-local state is
reverted, and the local heap and stack frame are restored to the pre-transaction
state.
Figure 8.1 gives the pseudo code for the thread-local operations (for the commit,

see Section 8.5). The procedures send and receive represent the communica-
tion operations between a GAO and a transaction. A send procedure takes as
arguments the receiver of the message, the type of the message, and possibly fur-
ther parameters depending on the message type. A receive procedure yields the
sender of the message, the message type, and data that has been transmitted in
the message. When illustrating the algorithms, we assume that the details of mes-
sage construction, serialization of objects, and network communication are hidden
behind dedicated proxy objects.
The method stmStart generates a unique identifier for a new transaction and

initializes the transaction’s local metadata, such as the read set, write set, create
set, and check set.
When reading a GAO, first the write set and read set are checked for possible

local object copies. If there is no local copy available, a read request is send to
the corresponding GAO. The read request takes as parameter the current read
set as tuples of GID and GVID. The actual values of the versions do not have
to be included. (For further details on the necessity and employment of the read
set, consider Section 8.3.2). Upon delivery of a LOC and its check set, the local
meta data is updated with this information and the local copy is returned to the
application. When the read request fails, the transaction is aborted.
The stmWrite operation registers modified values in the local write set unless

they have been created by the current transaction. When creating a GAO via
stmCreate, the transaction generates a unique GID, transforms the object into
an LOC, and enters it into the create set. Until it is published during a commit, it
is only locally accessible.
In comparison to timestamp-based STMs, the Decent STM algorithm treats the

fetching and commit phase substantially differently, as they involve communication
with the distributed memory system. We therefore have a closer look at these
operations.

8.3. Fetching a GAO version

Decent STM uses a lazy snapshot algorithm to detect and resolve conflicts during
transactional reads. A memory snapshot consists of the GAO versions that are
fetched from the GAOs with the read operations.
Before we take a more formal view on how conflicts are detected and resolved

during transactional reads, we illustrate the problem first with some examples.

138

8.3. Fetching a GAO version

Algorithm 8.1 Decent STM: Thread-local operations of a transaction.
method stmStart()

tid ← generate unique TID
readset,writeset,createset,checkset ← ∅

end

method stmRead(GID g)
loc ← localread(g)
if loc 6= null then return loc
else

reads ← {(gid, v) | gid ∈ readset.keys, v = readset.get(gid).version}
send(g, fetch, reads)
if receive(g, deliver, loc, check) then

readset.add(g, loc)
checkset.merge(check)
return loc

else if receive(g, readFail) then
abort transaction

end if
end if

end

method localread(GID g)
loc ← writeset.get(g)
if loc = null then loc ← createset.get(g)
end if
if loc = null then loc ← readset.get(g)
end if
return loc

end

method stmWrite(LOC loc)
if writeset.get(loc.g) = null & createset.get(loc.g) = null then

writeset.put(loc.g, loc)
end if

end

method stmCreate(Object obj)
g ← generate unique GID
loc ← create new LOC from obj
createset.put(g, loc)
return g

end

139

Chapter 8. The Architecture of Decent STM

8.3.1. Example

We denote with vji a GAO version, where i is the identifier of the transaction that
committed the version, and j is the identifier of the GAO to which the version is
associated.
Figure 8.2 displays the GAO dependencies as they evolve during the execution of

the following program:

• Assume that a transaction T12 initializes GAO G3, while another transaction
T42 in parallel created GAO G1 and G2. Next, transaction T50 reads both G1

and G2, and commits to both GAOs updated version (Figure 8.2(a)).

• Now, transaction T70 reads GAO G2. There are two versions for this GAO
available, v2

42 and v2
50. To ensure linearizability of the memory accesses, the

transaction obtains the most recent version, v2
50. Later, it sends a read request

to GAO G3. Assume that GAO G3 has been updated by transaction T60 while
transaction T70 has been dealing with GAO G2. Both versions, v3

12 and v3
60,

would lead to a consistent memory snapshot for T70. Again, the most recent
version is chosen for answering T70’s read request, thus linearizing transaction
T60 before transaction T70. The transaction then continues and updates GAO
G2 and G3 (Figure 8.2(b)).

• A transaction T76 starts off with reading v2
70. Meanwhile, G1 and G2 are

updated by T83 (Figure 8.2(c)). When issuing a read request to G1, the most
recent version v1

80 is inconsistent with T76’s read set at this point. Hence, it
has to revert to the older version v1

50. The last read access to G3 returns v3
70.

It can finally update and commit to GAO G3.

Note that it would not have been possible for transaction T76 to commit on G1

or G2 as this would cause a lost update. Further, the update of G3 is allowed under
snapshot isolation and serializable snapshot isolation, but not when the STM utilizes
a standard two-phase-commit protocol. In this case, the intermediate update to G2

by T83 would preclude a successful commit of T76.
When constructing the memory snapshot for transaction T76, reverting to a pre-

vious version of a GAO prevented the transaction from an abort. In fact, read-only
transactions never have to abort if all versions are kept for each GAO. However,
cutting down the version histories is necessary to reduce the overall memory con-
sumption. This pruning of the version histories can be done in a conservative way
such that a transaction is never forced to rollback due to a missing version. For
example, the versions v1

12 and v2
12 are never accessed by a transaction whose first

read access has been performed after the commit of transaction T42. More details
on pruning the version histories can be found in Section 8.4.

8.3.2. Constructing consistent memory snapshots

The basic algorithm for constructing a consistent memory snapshot is given in Al-
gorithm 8.2. A GAO receives requests for reading and commit from transactions in

140

8.3. Fetching a GAO version

Figure 8.2. Decent STM: Constructing memory snapshots.

G1 G2 G3

v1
42 v2

42

v3
12

v1
50 v2

50
v3

60

(a) Initial setting.

G1 G2 G3

v1
42 v2

42

v3
12

v1
50 v2

50
v3

60

v2
70 v3

70

(b) Further updates.

G1 G2 G3

v3
12

v1
42 v2

42

v1
50 v2

50
v3

60

v2
70 v3

70

v1
83 v2

83
v3

76

(c) Reverting to older versions.

141

Chapter 8. The Architecture of Decent STM

Algorithm 8.2 Decent STM: GAO execution loop - Read requests.
method inconsistentWith(GAOV gaov, List reads)

checkSet ← gaov.checkSet
for (gid,v) ∈ reads do

if gaov.checkset.contains(gid) then
if v is older than gaov.checkset.get(gid) then

return true
end if

end if
end for
return false;

end

// execution loop of GAO
method run(GAO g)

while true do
if receive(t, fetch, reads) then

gaov ← g.mostRecent
while inconsistentWith(gaov,reads) do

gaov ← gaov.predecessor
if gaov == null then

send(t, readFail)
end if

end while
gaov.addToTIDList(t)
send(t, deliver, gaov)

else
... // continued in Algorithm 9.1

end if
end while

end

142

8.3. Fetching a GAO version

the form of messages. It answers the messages in a sequential way. In Section 9.2.2,
details of the commit part can be found.
By construction, the read request sent by a transaction contains the current read

set as tuples of GID and GVID. Starting from the most current version and following
the predecessor chain, the GAO searches for a compatible version to deliver. To this
end, it compares the versions read so far with the check set of the versions in its
history.
If there is no compatible version available due to pruning on the history list, the

GAO sends a read failure message to the transaction thereby, forcing the transaction
to abort.
Further, the memory snapshot is linearizable since it contains for each GAO the

most recent version which is consistent with the memory snapshot taken so far.
We are now going to develop a more formal description of the fetching operation.

When a transaction Tj needs to fetch a version from a GAO’s history list, say for
GAO Gi, it picks one version, for example vim. For the first read of a GAO by a
transaction, the version must be the most recent one. But this does not necessarily
hold for all following read accesses, as we have seen in the example.
Our algorithm establishes a partial order � on the versions of the GAOs according

to their relative position in the version history list or the tentative version tree.

Definition 8.3.1. A GAO version vil is dependent on another GAO version vim,
vim ≺ vil , if vim is a predecessor of vil in the version history list of GAO Gi.

Now, let Tm be the transaction that committed vim. Let Rm be the read set of
Tm, and Wm its write set. We call the union of the read and write set the check set
of version vim and denote it by C(vim) = Rm ∪Wm. Note that all versions written
by the same transaction share the same check set. We further define for a set S of
versions C(S) =

⋃
v∈S C(v) to be their check set.

The transitive closure C∗(v) of a version’s check set reflects all read and write
dependencies of v, actually representing the memory snapshot of a transaction. It
is formally defined as

C∗(v) =
⋃

k=1,...

Ck(v)

where C1(v) = C(v) and Cn(v) = C(Cn−1(v)).
Transactions must not read GAO versions such that some versions date before

and some after the elements of C∗(v) because this would violate consistency of the
memory snapshot taken. The option to access such GAO versions only arises if
other transactions committed in the mean time and induced via the transitivity of
check sets a dependency to the still running transaction.
To avoid this problem, we can use for all GAOs G corresponding to versions

in C∗(v) the order relation on GAO versions to check if C∗(v) contains a more
recent version of this GAO than the read set. This means we check that for all
vhn ∈ C∗(vim), if there exists a vhl ∈ Rj , it holds that vhn � vhl .

143

Chapter 8. The Architecture of Decent STM

If the check holds, the fetch operation is successful and returns vim. In this case,
the operation also adds Tj to vim’s TID list.
Otherwise, the fetch operation fails for vim. It retries and picks another version

vim′ ≺ vim from the GAO’s history list. If no such earlier version exists, the fetch
operation fails entirely and the transaction Tj must abort.

Theorem 8.3.1 (Correctness). The read operation of Decent STM constructs a
consistent memory snapshot or aborts the transaction.

Proof of 8.3.1: Following Definition 5.4.2, the memory snapshot is consistent
under snapshot isolation if the algorithm does not admit any read skew.
Assume that the algorithm admits read skews. In the terminology of Decent

STM, this means that a transaction Tk reads GAO versions vin and later vjm such
that there exists a version vjn and vjn ≺ vjm, and there also exists a version vim and
vin ≺ vim.
By construction of the check set, it holds that vim ∈ C(vjm) ⊆ C∗(vjm). Hence, the

check at the fetch operation for a version of GAO j finds that there exists a version
of GAO i such that vin ∈ Rk and vim ∈ C∗(v

j
m) with vin ≺ vim. Therefore, the fetch

operation reverts to a previous version, or issues an abort if no earlier version is
available.

Note that by construction it suffices to keep the most recent version of each GAO
in the transaction’s check set. Also, the check set does not change after committing
the transaction. To obtain better performance, it can be cached so that the depth
of the recursive calculation is small.

8.4. Limiting the Committed Version History List

When reading a GAO, going back in history can temporarily avoid a conflict. But
it causes the reading transaction to depend on an older version. This potentially
leads to a conflict at commit time as another transaction with an overlapping write
set might have already updated variables.
Furthermore, the longer the version history, the more effort is required to itera-

tively validate the check sets in the transitive closure. This holds even in the case
when the check sets are cached, because the number of involved GAOs can grow.
For both reasons, the committed versions history list should be kept short.
The TID list in a GAOV contains all ongoing transactions which read this GAOV.

A GAO version with an empty TID list is currently not used in any transaction. It
is thus a candidate for pruning. However, we need a guarantee that the version is
no longer reachable by any transaction for a read. The TID lists provide the system
with the information that is necessary to decide when a transaction object and the
related GAO versions may be discarded. We show its effect with the help of two
lemmata.

144

8.4. Limiting the Committed Version History List

Lemma 8.4.1 (Stability). Let v be some GAO version. If the TID lists of the
predecessors of all v′ ∈ C∗(v) are empty, they will always remain empty.

Proof of 8.4.1: A transaction only goes back in history when fetching a GAO
version if it has a version in its read set that is older than any corresponding version
in the transitive closure of the check set of v. Due to the algorithm, the TID list
of this GAO’s version in the read set is non-empty. Thus, if all predecessors of
the v′ ∈ C∗(v) have empty TID lists, the transaction does not go back in history.
Hence, the TID lists of these versions will remain empty as they will not be read by
the transaction.

Lemma 8.4.2 (Disposability). Let v be some GAO version. If the TID lists of the
predecessors of all v′ ∈ C∗(v) are empty, v will not cause a (read) conflict.

Proof of 8.4.2: Checking the transitive closure of the check set of a GAO version
v = vim with respect to the current read set Rj of a transaction Tj fails if and only if
C∗(vim) contains a GAO version vhn that is more recent than the respective version
vhl in Rj , i. e.∃vhn ∈ C∗(vim) with vhl ≺ vhn. Then Tj would be registered in the TID
list of vhl . This contradicts our assumption of empty TID lists for all predecessors
of vhn as vhl is a predecessor of vhn.

The disposability lemma gives a sufficient condition when a transaction object
may be discarded, namely when all versions in the transitive closure of the transac-
tion’s check set have only predecessors with empty TID lists. The stability lemma
shows that discarding transaction objects does not need to be synchronized because
this condition is stable.
Finally, we can dispose of all GAO versions that are neither in the check set of

any transaction nor the most recent version of a GAO. This entire process – i.e.
checking the predecessors of the check set and disposing the transaction objects and
GAO versions – is very similar to concurrent mark-and-sweep garbage collection. It
can thus be implemented in a similar manner.
Clearly, a long lasting transaction may prevent the application of this rule, because

the TID list of some GAO version might not become empty. In this case, the
transaction is likely to fail regardless. It will only succeed if it did not read or
write any conflicting GAO version. Therefore, the system clears the history list as
described above. If the transaction then performs a conflicting read or commit, it
fails immediately.
A practical evaluation of the effect on pruning the version history lists is done in

Section 11.
The pruning of version histories does not take into account whether GAOs them-

selves are no longer reachable. For collecting the obsolete GAOs, a standard dis-
tributed garbage collector can be employed.

145

Chapter 8. The Architecture of Decent STM

8.5. Committing a transaction

Besides the fetching of a GAOV for reading, the other global operation in Decent
STM is the publishing of new versions to the distributed shared memory via the
commit operation.
The implementation of an isolation level such as snapshot isolation or opacity

requires that the commit must prevent lost updates. In Decent STM, this means
that if for any GAO in {Gi | vin ∈ Wn} the corresponding read version vik ∈ Rn is
not the latest version in the history list, the commit must fail. Otherwise, the new
GAO version can be inserted into the tentative version tree.
The DecentSTM algorithm thus performs the following steps:

• For each GAO Gi which a transactions Tn wants to modify, it creates a new
GAO version vin in Wn. We call the corresponding version vik ∈ Rn its prede-
cessor. Such a version exists because Decent STM requires that a transactions
reads a GAO before writing to it.

• When issuing a commit, the version is inserted into the tentative version tree
so that it becomes a child of its predecessor. If the previous version of any
element in Wn is not the latest version in the respective history list, the
transaction is notified that the commit failed and the transaction needs to be
re-executed.

In a transaction’s commit, checking for intermediate writes and adding the version
to the tentative versions of the respective GAOs needs to be performed atomically
for all vin ∈Wn. Thus, the transaction waits for the confirmation of all GAOs in its
write set before it can proceed. The Decent STM commit phase resembles in this
respect the classic two-phase commit.
If the current version has more than one tentative version pending, several trans-

actions try to commit concurrently, thus creating write conflicts. In this case, a
distributed consensus protocol gradually converges to one tentative version to be
successful. This version is moved from the tentative version tree to the committed
version history list.
For Decent STM, we developed a novel distributed consensus protocol that is

tailored towards the commit process. This protocol is described in detail in the
next chapter.

146

Chapter 9.

Distributed Commit Consensus

In the commit phase of the Decent STM algorithm, m globally accessible objects
(GAOs) must decide in unison which of the n pending transactions that issued
concurrently a commit request may finish the commit successfully. The standard
approaches to solve this problem are based on phased commit protocols [32]. In
the setting of these commit protocols, the transaction sends commit requests to
the GAOs. If one of the GAOs issues a veto, the transaction has to withdraw its
commit request and rollback. In implementations operating on one global address
space, there is usually a fixed order in which the GAOs receive the commit requests.
This ensures that in case of concurrent commits to the same memory locations, the
first transaction to pass the consistency check is successful. In distributed settings,
there is typically a central component that is responsible for serializing the commit
requests in a globally consistent order.
In contrast to such a centralized approach, Decent STM uses a novel random-

ized distributed consensus protocol which leaves both the number of transactions
and GAOs variable during the execution of the protocol. Instead of forwarding the
requests to a centralized commit manager, the transactions communicate directly
with the GAOs in question. The GAOs then need to reach a consensus on which
transactions can proceed successfully, and which transactions have to abort. This
commit consensus differs from the classic consensus problem as the number of par-
ticipants for the GAOs and the transactions is not fixed and may even change during
the execution of the protocol.
As in the previous chapter, we directly refer to single GAOs for now, though

GAOs are usually grouped together and managed by a runtime instance to reduce
the communication overhead (see Section 10.1).
For the protocol to work correctly, the commit consensus protocol needs to meet

the following requirements:

Non-triviality If the entire network is non-faulty throughout the execution of the
protocol, then, if a transaction is chosen by all GAOs in charge, it is successful.

Termination Every transaction reaches eventually either a successful or a failure
state during commit.

Consistency It is impossible for a transaction to be in more than one state, i.e. a
transaction is either successful, failed or pending. Once a transaction reaches
a success or failure state, it remains in that state forever.

147

Chapter 9. Distributed Commit Consensus

Stability Once a GAO version is published by a GAO, it cannot be withdrawn
again.

We start this section with a formal definition of the problem that has to be solved
for such a consensus protocol used in a transactional distributed commit.

9.1. Consensus and commit consensus in a distributed
setting

In the classic consensus problem, a group of processes in a distributed system have
to agree on one value. To this end, they propose each an input value from a fixed set
of possible values. A consensus protocol is an algorithm for producing an agreement
on one of the input values in a consistent way between all the participating processes.

Definition 9.1.1 (Consensus problem). Let P1, . . . , Pm be m distributed processes.
Each processor Pi proposes an input value pi ∈ V , where V = {v1, . . . , vn} is the set
of n possible input values. The consensus problem is solved if there exists a decision
value v such that

• each non-faulty process eventually decides on v, and

• v ∈ {p1, . . . , pm}.

As has been shown by Fischer, Lynch, and Paterson [26], it is impossible to solve
the consensus problem deterministically in a distributed system if even a single
process can fail. However, if no process is assumed to fail, a simple consensus
protocol is given by choosing a dedicated leader among the processes whose input
is to be taken as the decision value.
In the setting of a distributed commit, even under the assumption of no failures,

the distributed consensus problem cannot be solved by defining one GAO to decide
on the outcome of the commit. Because transactions send commit requests to
different subsets of GAO processes, the set of acceptable input values is possibly
different for each GAO. We therefore define a new instance of the consensus problem,
tailored towards the commit problem.

Definition 9.1.2 (Commit consensus problem). Let P1, . . . , Pm be m distributed
processes. Each processor Pi proposes an input value pi from its set of input values
Vi ⊆ V , where V = {v1, . . . , vn} is the set of all possible input values. The commit
consensus problem is solved if there exists a non-empty set

V ′ = {v′1, . . . , v′k} ⊆
m⋃
i=1

V i

of decision values such that for i ∈ {1, . . . ,m} either

• V ′ ∩ V i = {v} is a singleton set and process Pi decides on v, or

148

9.2. Design of a randomized commit consensus protocol

• V ′ ∩ V i = ∅ and process Pi decides to decline all proposed inputs.

By this definition, a process can decide on one value at maximum. This choice
is uniformly taken by all processes that have this value in their set of input values.
In contrast to the classic consensus problem, it is possible that a process dismisses
all its input values, because processors are only allowed to decide on values in their
input set Vi. Because we require that V 6= ∅, not all processes may back out of a
decision.
In the setting of Decent STM, the GAOs take the role of the processes that have

to decide which of the n transactions can commit in a consistent and conflict-free
way. The set Vi corresponds to the set of transactions that try to commit a new
version to a specific GAO. The decision set V ′ is then the set of transactions that
can commit together in a conflict-free way such that each GAO is committed to by
at most one transactions.
The commit consensus problem can also be examined from the perspective of

a transaction. Let Mj be the set of GAO whose version are in the write set of
transaction Tj for j ∈ {1, . . . , n}. The set of all write sets is defined by M = {Mj |
j ∈ {1, . . . , n}}, and the set of GAOs which receive commit requests is given by
G =

⋃n
j=1Mj . To solve a commit consensus problem, the protocol has to find a

non-empty family M ′ ⊆M such that the sets in M ′ are pairwise disjoint.
The better the coverage of G by M ′, the more GAOs are updated by the trans-

actions. Achieving a high coverage is desirable for an STM system as this indicates
that progress is possible for either expensive transactions with many updates to the
state, or many small independent transactions whose write sets span a large number
of GAOs. However, getting an optimal coverage is nontrivial.

Theorem 9.1.1 (Set packing). Let S be a finite set and {Si | i ∈ {1, . . . , n}} be
a family of subsets of S. Then, finding the maximum number of pairwise disjoint
subsets is an NP-complete problem.

Proof of 9.1.1: A proof can be found in [43].

In a distributed setting, solving the set packing problem on the transactions’
write sets requires to gather the information about the elements of the write sets
at a central location, contrary to our design so far. As another complication in our
setting, the number of transactions that compete for commit is initially unknown.
Transactions enter the commit phase as soon as they finish executing the atomic
block, and the commit protocol has to adapt to these dynamic updates.
For the commit consensus in Decent STM, we developed a novel decentralized

and non-deterministic algorithm which we introduce in the next section.

9.2. Design of a randomized commit consensus protocol

To solve the distributed commit consensus problem from Definition 9.1.2, we propose
a novel randomized algorithm. It does not rely on a central instance to decide, it can

149

Chapter 9. Distributed Commit Consensus

deal with dynamic updates to the set of committing transactions, and it is adaptable
to incorporate heuristics to increase the commit probability of transactions in favor.
For example, a heuristic can be based on the number of objects in a transaction’
write set.
In short, the GAOs decide on which transactions may commit based on probabili-

ties. The protocol proceeds in rounds. In each round, every GAO chooses randomly
a transaction from the set of transactions that issued a commit request to this
GAO. Starting with an equal chance for all transactions, a transaction’s probability
to commit increases or decreases with the number of positive votes it received in
the previous round. The protocol continues until one transaction has received only
positives votes from all the GAOs in its write set. Transactions that have been
competing with the winning transaction on these GAOs have to abort and restart.
Those GAOs that were not part of the transaction’s write set can continue with
running their protocol.
GAOs and transactions communicate via messages. The types of messages are as

follows:

Sent by transaction Sent by GAO
commit commitFail
success posVote
abort negVote
continue

Messages are sent asynchronously, but with respect to each GAO they are con-
sumed in a serialized order. This order does not need to correspond to the absolute
time when the messages were send as delays due to network traffic can occur. Also,
the order of arrival may be different at each GAO node.
Figure 9.1 shows a transaction’s state during the commit phase. After sending

a commit request to all the GAOs it wants to commit on, it collects the votes or
conflict messages it receives. When all answers have arrived, the transaction decides
on success, failure, or continuation. It then communicates its decision to the GAOs.
If it decides to continue for another round, it awaits again the votes from the GAOs.
Correspondingly, Figure 9.2 displays the state of a GAO with respect to the

commit protocol. In the idle state, GAO is not participating in an instance of the
commit protocol.1 Once a commit request messages reaches the GAO, it checks
whether the requested GAO version is eligible, i.e. no intermediate updates to
the GAO has taken place since the transaction read it. If a GAO signals a write
conflict, the transaction is doomed to fail and sends failure messages to all GAOs to
cancel its commit request. If no write conflict has been detected, the transaction is
notified with a vote message. The first transaction that announces a commit on a
GAO receives a positive vote. While the GAO is then waiting for the transaction’s

1Read requests are answered at any time, this is, both in the idle state and while the protocol is
getting executed.

150

9.2. Design of a randomized commit consensus protocol

Figure 9.1. Decent STM: States of a transaction during the commit protocol.

committing

collecting

answering

failed successful

commit

abort success

posVote/ negVote/ commitFail

continue

[all votes arrived]

Figure 9.2. Decent STM: States of a GAO during the commit protocol.

idle

collecting

voting

commit| commitFail

success| commitFail

abort| -

continue| -commit| negVote/ commitFail

commit| posVote

[all votes arrived]

- | posVote/ negVotes

[all failed]

151

Chapter 9. Distributed Commit Consensus

reply, other commit requests that arrive at the GAO are similarly checked for write
conflicts, but in the non-conflicting case they are answered with a negative vote.
Each transaction needs to answer the votes by sending either an abort, success,

or continue message.

• In case of abort, the transaction is removed from the set of participants.
This is done by removing its GAO versions from the set of tentative versions.
If the tentative version set is empty, the GAO falls back into the idle state.

• In case of success, the commit protocol terminates. The GAO publishes the
GAOV which has been committed by the successful transaction by setting it
as the current version in the version history list, thus making it available for
subsequent read requests. All other transactions participating in the commit
consensus are informed about their failure. The GAO then returns to the idle
state.

• All participants who have answered with a continuemessage or have sent a
commit request in the meanwhile participate in the voting for the next round.
Once all transactions have answered and no transaction issued a success, the
GAO chooses one of the pending transactions randomly, based on the prob-
abilities assigned the transactions. This winning transaction is notified with
a positive vote, all other participants are notified with a negative vote. The
GAO then returns into the collecting state.

A round of the commit protocol is finished when the GAO switches from the col-
lecting state to the voting state, i.e., when all transactions that received a posVote
or a negVote have answered. An instance of the commit protocol is finished when
the GAO switches from the collecting state to the idle state.
Next, we have a closer look at how the commit probabilities for transactions are

calculated and adapted during the protocol’s execution.

9.2.1. Example

Before we explain the randomization in the protocol in more detail, we first sketch
its design rationale by means of an example. Consider a case where two transactions,
T1 and T2, try to commit on overlapping sets of GAOs, namely on T1 on G1, G2, G3

and T2 on G2 and G3. Figure 9.3 shows the GAOs’ internal state together with the
transactions’ internal state as the protocol progresses round after round.
As before, vij denotes the GAO version that is committed by transaction Tj on

the GAO Gi. Assume that the commit requests of both transactions are issued at
the same time. Further, assume that due to delays in the network the request for
v2

1 arrives before the one for v2
2 at G2, and the one for v3

1 arrives after the commit
request for v3

2 at G3. Each GAO answers the first incoming commit request with
a positive vote, all following ones with a negative vote. Hence, both transactions
receive positive and negative votes in the initial round: Transaction T1 receives
positive votes from G1 and G2 and one negative vote from G3. Transaction T2 gets

152

9.2. Design of a randomized commit consensus protocol

Figure 9.3. Example: Distributed randomized commit consensus protocol.
Probabilities and votes at the GAOs:

G1 G2 G3 GAOs
v1

1 v2
1 v2

2 v3
1 v3

2 tentative versions
Initial votes + + - - + votes mi

j(0)

1st round 2
3

2
3

1
2

2
3

1
2 sj(0)

1 4
7

3
7

4
7

3
7 pij(1)

+ - + + - votes mi
j(1)

2nd round 2
3

2
3

1
2

2
3

1
2 sj(1)

1 4
7

3
7

4
7

3
7 pij(2)

+ + - + - votes mi
j(2)

3rd round success success failed success failed

Success probability of the transactions after each round:

sj(0) sj(1) sj(2)

T1
2
3

2
3 1 success

T2
1
2

1
2 0 failed

one negative vote from G2 and one positive vote from G3. Hence, the success rate
in the first round for T1 is 2

3 , and for T2 it is 1
2 .

The GAOs are then notified with the success rates (sj(0) in Figure 9.3). They
take these values as success probabilities for the respective tentative versions, and
normalize them within each GAO (pj(1) in the figure). Adapting these probabilities
ensures that transactions that were successful in the previous round, are more likely
to win the next round and the protocol converges towards a winning transaction.
Next, each GAO randomly chooses one of its tentative versions according to the

given probabilities. Assume, GAO G2 chooses (against the odds) v2
2, GAO G3

chooses v3
1. As GAO G1 still has only one tentative version, it has no choice and

settles for v1
1. The transactions are again notified with the results from this second

round. In our example, their success rates and hence the respective probabilities do
not change.
Only in the third round, when all GAOs happen to choose the tentative versions

from transaction T1, T1 receives only positive votes, whereas T2 receives only nega-
tive votes. After this round, the protocol finishes and discards the tentative GAO
versions of T2. The GAO versions of the successful transaction T1 are then marked
as the current versions of the corresponding GAOs.
From this example, we see that the initial vote has in general a strong influence on

the final result. We exploit this fact in Decent STM and let subsequent transactions
read the tentative version that has the highest probability at the time when the read
request is issued. As we have explained, this does not violate consistency, because

153

Chapter 9. Distributed Commit Consensus

subsequent transactions are only considered by the consensus protocol when all the
versions in its read set have been committed successfully.
In practice, consensus is usually reached within the first two rounds. In our exam-

ple, consensus is reached when G2 and G3 happen to vote for the same transaction.
The probability for this is given by (4

7)2 + (3
7)2 = (5

7)2. Thus, in our example, we
have a Bernoulli process with p = (5

7)2, which leads to a Poisson distribution with
expectation value 1 + (5

7)2 ≈ 1.71 for the number of rounds.

9.2.2. Specification of the protocol

The algorithm for the transactions and GAOs is given in Figures 9.1 - 9.3.
Figure 9.1 shows the part of the execution loop for a GAO which is relevant for

the commit phase. Whenever a GAO receives a message from a transaction, it
dispatches on the message type and executes the respective actions. Messages are
dealt with in a serial way, though the order in which they arrive at the single GAOs
can differ between the GAO nodes due to network issues.
The corresponding code for committing transactions is given in Figure 9.2. While

the transaction is in an open state, it collects the votes from the GAOs in its write
set (see also Figure 9.3), dispatching on its state after all votes or possible failure
message arrived.
For a formal discussion of the randomized commit consensus, we introduce the

following definitions: As before, let Tj be a transaction for j ∈ 1, .., n and Gi be a
GAO for i ∈ 1, ..,m. The write set of a transaction Tj , i.e. the set of versions it
wants to commit, is denoted by

Wj = {vij | i ∈Mj ⊆ {1, ..,m}}

where Mj is set of the GAOs to which the transactions sends a commit request.
Let mi

j(r) denote the vote that the GAO Gi is sending to transaction Tj in round
r. For a positive vote, we write mi

j(r) = +, and for a negative note, mi
j(r) = −.

Further, let mj = |Mj | be the total number of votes transaction Tj receives, and let

m+
j (r) = |{mi

j(r) | mi
j(r) = +, Gi ∈Mj}|

be the number of positive votes a transaction received in round t. Similarly, m−j (r)
denotes the number of negative votes.
The success rate of transaction Tj in round r is then given by

sj(r) =
m+
j (r)

mj
.

A transaction decides on state (success, failure, or open) after it received all votes
from the GAOs it has sent a commit request.

• A transaction commits successfully if all the votes it received are positive, i.e.
sj(r) = 1.

154

9.2. Design of a randomized commit consensus protocol

Algorithm 9.1 Decent STM: GAO execution loop - Commit requests.
method run(GAO g)

if receive(t, fetch, readset) then
... // continued from Algorithm 8.2

else if receive(t, commit, loc) then
if loc.pred 6= g.mostRecent then

send(t, commitFail)
else

tentatives.add(gaov)
if tentatives.size = 1 then

send(t, posVote)
else

send(t, negVote)
end if

end if
else if receive(t, continue, gaov, p) then

tentatives.adjustVotes(gaov,p)
if txns for all gaov ∈ tentatives replied then

loc ← choose from tentatives
send(gaov.writtenBy, posVote)
for all gaov’ ∈ tentatives, gaov’ 6= gaov do

send(gaov’.writtenBy, negVote)
end for

end if
else if receive(t, success, gaov) then

gaov.pred ← g.mostRecent
g.mostRecent ← gaov
for all gaov ∈ tentatives do

send(t, commitFail)
end for

else if receive(t, abort, gaov) then
tentatives.remove(gaov)

end if
end

155

Chapter 9. Distributed Commit Consensus

Algorithm 9.2 Decent STM: Commit of a transaction.
method stmCommit()

gaoset ← ∅
for all (g,loc) ∈ writeset do

gaov ← construct GAOV from loc
gaoset.add(g,gaov)
send(g, commit, gaov)

end for
status ← open
while status = open do

posVotes ← collectVotes
if status = abort then

for all (g, gaov) ∈ gaoset do
send(g, abort, gaov)

end for
abort transaction

else if status = success then
register create set
for all (g, gaov) ∈ gaovset do

send(g, success, gaov)
end for

else
for all (g,gaov) ∈ gaoset do

send(g, continue, gaov, posV otes
writeset.size)

end for
end if

end while
end

156

9.2. Design of a randomized commit consensus protocol

Algorithm 9.3 Decent STM: Collecting votes.
method collectVotes()

pos, neg ← 0
for all (g,loc) ∈ writeset do

if receive(g, posVote) then
pos++

else if receive(g, negVote) then
neg++

else if receive(g, commitFail) then
status ← abort

end if
end for
if pos = writeset.size then

status ← success
else if neg = writeset.size then

status ← abort
end if
return pos

end

• A transaction aborts if it received negatives votes from all GAOs on which
it tries to commit, i.e. sj(r) = 0, or when one of its tentative GAO versions
has become non-eligible because another conflicting transaction committed
successfully at one of the GAOs. In this case, the GAO signals a write conflict.

• When a transaction receives both positive and negative votes, it sends a con-
tinue message to the GAOs to indicate its wish of participation in another
round. This message contains the transaction’s success rate sj(r) of the pre-
vious round.

After all transactions that have sent tentative versions for a GAO have replied
with a continue message which includes their success rate probability sj(r) of the
previous round, the GAO scales the probabilities for a version vij in the next round
r + 1 to be

pij(r + 1) = sj(r)

 ∑
06k<n

sk(r)

−1

It then chooses a GAOV randomly according to the scaled probability.
As before, this winner is notified with a positive vote, all other tentative versions

with a negative vote. A GAO stops its participation in an instance of a consensus
protocol either when it gets notified with a successmessage or when all involved
transactions have withdrawn their tentative versions.

157

Chapter 9. Distributed Commit Consensus

9.2.3. Correctness

It is trivial to see that the commit consensus fulfills the stability and consistency
requirements we stated at the beginning of this chapter: Clearly, a transaction is
either successful, pending, or failed, and once it reaches a success or fail state, it
remains in this state.
For the non-triviality requirement, the protocol requires that a transaction is

setting its state to success only if it received a positive vote from all the GAOs to
which it had sent a commit request. On the other hand, each GAO randomly chooses
exactly one version from the set of tentative versions in each round. Therefore,
only one transaction can receive a positive vote in each round, so that conflicting
transactions that try to commit on the same GAO cannot be successful together.
Finally, to see that the system eventually reaches consensus on which transactions

have to commit, we have to show that every transaction reaches eventually either a
final success or failure state. In a randomized system, an eventual consensus implies
that each transaction reaches a final state asymptotically almost surely, i.e. with
a nonzero probability. Because we assume that the number of transactions and
GAOs has an upper bound, there is a nonzero probability that all GAOs from a
transaction’s write set happen to vote consistently in favor or against a transaction
in each round. Therefore, the protocol terminates eventually.

Theorem 9.2.1 (Correctness). The randomized distributed consensus protocol is
non-trivial, stable, consistent, and reaches consensus eventually.

Further, the protocol part for submitting the initial commit request and the check
for intermediate updates is wait-free. This allows a fast commit of updates to non-
contended GAOs and a quick restart of transactions that are doomed to fail. In the
following rounds, the staged answering of continue messages is lock-free.
The complexity of the algorithm renders a detailed analysis of the consensus

protocol difficult. This is particularly due to the varying number of participants
in the protocol as transactions can start or finish, as well as drop out or enter
a consensus instance in each round. Another complication is given by the non-
uniform association of transactions with the GAOs on which they try to commit,
introducing complex dependencies between transactions and hence the adaptation
of commit probabilities. For an analysis of a simple instance with two transactions
and three GAOs, we refer to the end of Section 9.2.1.

9.3. Extensions to the protocol

Using a randomized consensus protocol allows for an easy integration of heuristics
for selecting committing transactions. For example, for certain applications, the
system might favor long running transactions or those using specific resources. By
assigning higher commit probabilities to these favorable transactions, they are more
likely to win the randomized selection process. In this thesis, we do not discuss such
options, but assume equal chances for all transactions.

158

9.3. Extensions to the protocol

As stated before, read requests are answered at any time by the GAO, in par-
ticular, also when the GAO is active in some commit protocol. If a concurrently
running transaction reads the GAO during such a commit phase, it is given the
current version by the algorithm in Chapter 8.3. Another option would be to ex-
tend the Decent STM system such that read requests also deliver tentative GAO
versions. As with the previously described fetch operation, the versions have to be
delivered in a consistent manner for all read GAOs. When a transaction that read
some tentative version commits while the election is still going on, its committed
versions are inserted below the respective tentative versions (hence the term tenta-
tive version tree). These children of the tentative versions are handled after their
parent version has been elected. If however such a parent version is not elected,
all depending transactions must abort without being considered for consensus. To
minimize the probability for a collective abort, the GAO answers read requests with
the version which has the highest commit probability. If a GAO responds for each
depth level always with the same tentative version, the tentative version tree has
on each depth level exactly one branch with further branches.
Though we do not consider faulty or even malicious processes, it should be pos-

sible to integrate standard techniques such as timing assumptions or other failure
detectors into the randomized commit consensus protocol to increase the robust-
ness of the protocol. For example, if a failure detector identifies a failing node, the
associated transaction is simply removed from the pool of participants. According
to the impossibility result of Fischer, Lynch, and Paterson [26], such a modified
protocol provides weaker synchronization semantics than consensus. For applica-
tions running on a multi-core processor, partitioning and failure is unlikely, and we
therefore concentrate here on the setting without failure and perfect connectivity of
nodes.

159

Chapter 10.

Implementation

In this chapter, we focus on the message-based communication layer and describe
the implementations of the Decent STM components for this layer.

10.1. Components

Our implementations of Decent STM comprises components that represent shared
distributed memory in the form of GAOs, and components that represent transac-
tions which contain the program logic and operate on the shared memory. Both
types of components may reside on different nodes in the distributed environment
and exchange messages via dedicated communication channels. Depending on the
actual architecture of the system, communication channels are for example imple-
mented with the help of (a-)synchronous network protocols or simulated by shared
memory on a multi-core architecture. We experimented with both of these channels
as laid out in more detail in Chapter 11.
On a general account, we do not take failing of malicious nodes into account,

although we conjecture that our implementation can be adapted with conventional
methods to deal with such issues. Further, we assume that all communication
operations are performed reliably, i. e. all requests are answered eventually. However,
we do not assume a finite upper bound for the transmission delay. Thus, in practice,
an underlying protocol can guarantee reliability with the help of retransmissions.

Threads and Transactions An application using the Decent STM environment is
in general a composition of several threads running on different processing nodes.
A thread operates both on local and globally shared data. The globally shared data
is used for communication between the threads and is managed by the Decent STM
library. The read and write accesses to the shared data therefore must be encap-
sulated in transactions. As described in previous chapters, transactions operate on
consistent memory snapshots and perform roll-backs in case on conflicting accesses
to globally accessible objects (GAOs).

Runtimes The distributed shared memory is hosted on runtimes. A runtime acts
similarly to a small memory server. It accepts and answers the transactions’ fetch
and commit requests on behave of a specific GAO. To reduce the overhead in com-
munication management, a runtime instance is responsible for a number of GAOs.

161

Chapter 10. Implementation

When sending a commit request, a transaction can thus merge the request messages
or the messages with the commit probabilities for all GAOs that reside on the same
runtime.
To simplify the protocol, each GAO is affiliated with only one runtime instance.

In this thesis, the mapping from GAO to runtime is obtained by simply hashing
the GID. More complex routing protocols can be applied to facilitate the migration
of objects between different runtime instances. For increased reliability and faster
read access, multiple nodes might handle additional copies of the same GAO. For a
discussion on these extensions of Decent STM, we refer to Section 13.

System manager To run a program with Decent STM in distributed setting, it
suffices to equip the application threads with information on how to connect to the
runtimes, then start the runtimes and let the transactions interact with them. For
a convenient test and benchmark environment, Decent STM additionally provides
a system manager which helps in setting up the communication infrastructure.
The system manager is responsible for the set-up and tear-down phase of the De-

cent STM. It is the only central component in the whole design of Decent STM and
could also be implemented in a decentralized way, though this is beyond the scope
of the thesis. It synchronizes the initialization of the runtimes with the start of the
program. Each thread that wants to obtain access to the globally shared data reg-
isters itself with the system manager. The application thread is then equipped with
the details on the communication channels that are used by the runtimes. When
all runtimes have informed the system manager about their successful initialization,
the threads that execute transactions are allowed to proceed with the program logic.
When a thread has finished its execution, it unregisters with the system manager

and shuts down its communication subsystem. Similarly, after all threads have
unregistered with the system manager, it issues the shut-down of the runtimes and
hence of the whole system.

Messages The communication between the components of Decent STM is based
on messages. A message consists of a message header, containing the message type
and information about sender and receiver, and the message body. Depending on
the type of message, the message body contains data such as lists of version numbers
and GIDs for the fetch request, serialized objects for obtaining or committing GAO
versions, votes, or success probabilities.

10.2. Interface

The complex interaction between the components of a Decent STM system is largely
hidden from the programmer. To program with atomic blocks and transactional
data, Decent STM offers the programmer an interface for object-oriented STM as
given in Listing 10.1.

162

10.2. Interface

Listing 10.1 Decent STM API for Java.

public interface Txn {
public <T> GID<T> create(LOC<T> obj);
public <T> LOC<T> read(GID<T> obj)

throws StmReadConflictException;
public <T> void write(LOC<T> obj);
public void commit()

throws StmWriteConflictException;
}

Further, the API enforces a distinction between local and globally accessible data
through the type system. A GAO is accessible through its global identifier (GID).
A transaction operates on local object copies (LOC) of the GAO, which are thread-
local replica of some specific GAO version. GIDs and LOCs are parametrized with
the type of object that they contain.

To create a GAO, a local object is promoted to become the initial version of the
new GAO. The create method yields a new unique GID for this GAO.

For reading the object that is referenced by a GID, the STM system returns a
local object copy of the GAO. This copy can then be modified by the transaction.
With a call to the write method, the modified version is added to the write set of
the transaction and later committed to the shared memory.

A transaction is initialized and started via a call to the constructor. Its scope
is limited by a call to commit. When a read or write conflict is detected at
run time, the transaction aborts by resetting its state and throwing the exception
StmReadConflictException or StmWriteConflictException that both
extend the StmException class. These exceptions are passed on to the applica-
tion level where the program logic determines whether a transaction is restarted or
aborted.

Listing 10.2 shows an example usage of the API. A globally shared integer object
counter is read and incremented atomically. To restart the transaction in case of
a conflict, a while loop surrounds the actual code of the transaction and is only left
after a successful commit.

In addition to the API in Figure 10.1, the transaction class provides static meth-
ods for setting up and shutting down the STM layer. The initializemethod sets
up the communication infrastructure for the current application thread. Transac-
tions that are executed by the same thread share the same communication channels.
For example, in a distributed implementation of Decent STM it suffices to open the
communication channels between transactions and runtimes once and later reuse
these channels. The counterpart to the initialization is the shutdown method
which closes all open channels and discards the transactional meta data.

163

Chapter 10. Implementation

Listing 10.2 DecentSTM: Explicit usage of the interface.

int increment(GID<Integer> counter) {
Txn txn = new Txn();
while (true) {

try {
int result = txn.read(counter);
txn.write(counter,result + 1);
txn.commit();
break;

} catch (StmException e) {}
}
return result;

}

10.3. Preprocessing the code

Using Decent STM in form of a Java library, the programmer needs to specify
the begin and end of an atomic block by instantiating a transaction object and
calling API methods, taking care that each atomic block is properly opened and
closed, and that transactional exceptions are caught and failing transactions are
restarted. Further, each read and write access to shared data must be wrapped into
a method call which passes the request to the corresponding transaction object.
This procedure is tedious and error-prone.
To simplify the development of STM applications, we developed a tool for static

transformation of Java byte code, called JTransactifier. The implementation em-
ploys the ASM byte code framework [15]. With JTransactifier, the programmer
declaratively specifies two annotations instead of manually transforming the code
to incorporate the calls to the STM API:

• Each class whose instances are used as GAOs are annotated with @GAO.

• Each transaction is extracted into a method and annotated with @Atomic.

The remainder of this section explains the transformation, and shows how the
Decent STM API can be used without the JTransactifier.
The JTransactifier tool takes a jar file with Java byte code containing the STM

annotations and transforms the code with respect to the annotations. In a first
phase, it retrieves all classes annotated with @GAO:

@GAO
class C {

C (T1 v1, . . . , Tn vn) { ... }
...

}

164

10.3. Preprocessing the code

Each of these classes is turned into a subclass of the LOC class, either directly or
by transforming one of its super classes. A direct translation of the class yields:

class C extends LOC<C> {
C (T1 v1, . . . , Tn vn) { super(); ... }
...

}

For transmissions of GAOV between nodes, all object instances that are used as
GAOs need to be serializable. These classes therefore extend the abstract class LOC,
which in turn implements the Serializable interface.
In addition to the class transformation, every access of fields of an objects of such

an annotated class is rewritten to use the read and write method of the transactional
interface.

• For an object obj of type C extends LOC<C>, a read access obj.x is
transformed into txn.read(obj).x.

• Modifying a field of a GAO obj.x = ... requires access to the correspond-
ing LOC:

C loc = <C> txn.read(obj);
loc.x = ...;
txn.write(loc);

• Newly allocated instances of GAOs are also registered with the transaction by
inserting txn.create(obj); after the constructor call of the obj object.

Next, all references to classes of global objects are replaced by GIDs. This decou-
ples the dependencies between single LOCs, allowing the construction of an optimal
snapshot of the shared memory. A GID is reference pointing to a GAO. It con-
tains the information that is necessary to retrieve a local copy of the corresponding
object.
Finally, the methods with @Atomic annotations are wrapped with an exception

handler as shown in Figure 10.1, thus enforcing restarts of the transaction until it
succeeds. The current transaction object is stored in some static field of the Txn
class, using a thread-local variable, to make it available when calling atomic methods
in a nested manner. As can be derived from the code snippet, the JTransactifier
implements flat nesting. Calling an atomic method while being already in the scope
of an transaction executes the nested method on the same transaction object. Only
when the outermost transaction commits, all the changes are published to shared
memory.
In combination with the library based Decent STM implementations, the JTrans-

actifier tool alleviates the programmer from the work of manually rewriting every
access to GAOs. Furthermore, it offers a declarative specification of what comprises
an atomic block and allows code optimizations based on this information.

165

Chapter 10. Implementation

Figure 10.1. JTransactifier: Transformation of atomic methods.
Before transformation:

@Atomic
T m (T1v1, . . . , Tnvn) {

... // method body
}

After transformation:

T m (T1 v1, . . . , Tn vn) {
T result;
Txn txn = Txn.getCurrentTxn();
if (txn == null) {

txn = new Txn();
while (true) {

try {
result = m(txn,v1, . . . , vn);
txn.commit();
break;

} catch (StmException e) {
... // e.g. counting the aborts

}
}

} else {
result = m(txn,v1, . . . , vn);

}
return result;

}

@Atomic
T m (Txn txn,T1 v1, . . . , Tn vn) {

... //transformed method body
}

166

10.3. Preprocessing the code

Our experiences with JTransactifier have been very positive. It considerably sim-
plified the creation of benchmarks and case studies, in particular when parallelizing
existing code bases with STM. For example, we transformed a Java implementation
of the vacation benchmark from the STAMP benchmark suite. The code has been
transactified by simply annotating two classes with @GAO and 16 methods with
@Atomic.
The current limitations of JTransactifier lie in the static, class based separation

between local and globally shared data. The type system does not allow to operate
on local instances of GAOs outside of transactions, thus prohibiting popular pro-
gramming schemes like privatization. A more sophisticated version of JTransactifier
could leverage this limitation to some extend by employing data flow analyses in
order to determine the set of objects that are actually shared.
So far, JTransactifier is not able to transform classes from the Java standard

libraries as these do not carry the required annotations. A further complication
here is given with native libraries. For installment in a production environment,
the JTransactifier can further be extended, for example, to restrict transactions to
include solely reversible actions on shared memory. Also, it can be optimized by
incorporating data flow analyses to determine which objects are actually shared
between threads and have to be transferred to the shared memory.

167

Chapter 11.

Evaluation

The distinguishing feature of Decent STM is its ability to operate in a fully decen-
tralized setting. To assess this feature and evaluate the algorithm’s performance,
we created a simple in-memory reference implementation and a distributed version
with communication based on TCP/IP. This chapter presents an evaluation of both
versions discussing the impact of version history lists and the randomized commit
protocol.

11.1. Decent STM with shared-memory synchronization

The Decent STM implementation with shared-memory synchronization simulates
a distributed setting. Runtimes are running on separate threads, concurrently to
the applications threads and transactions. Communication between the runtimes
and transactions is done by message objects which are inserted by the sender into
a synchronized message queue at the receiver’s side. Using conventional shared-
memory synchronization for information exchange does neither entail establishing
dedicated channels nor serializing the messages to byte arrays.
To keep the overhead of operations in Decent STM low, the system implements

snapshot isolation as default semantics for transactions. In contrast to serializable
transactions, snapshot isolation requires consistency checks for intermediate updates
for the elements in the write set, not for the read set. For compatibility with STM
applications requiring serializable transactions, the implementation of Decent STM
offers the possibility to switch to the stricter semantics of opacity. A straightforward
modification to obtain opacity is to extend the commit-time check for intermediate
updates to the elements in the read set.
For the in-memory implementation, we chose a different approach. For making

the snapshot isolation protocol serializable, we applied the algorithm by Cahill,
Roehm and Fekete [18]. It is based on some theoretical results of Fekete et al. [24]
who have analyzed dependency graphs for multi-versioned transactional systems.
A history is serializable if the corresponding graph, showing read-read, read-write,
and write-read dependencies, is cycle-free. They further showed that any cycle in
the graph due to snapshot isolation must have two read-write dependency edges
that occur consecutively, and further, each of these edges is between two concur-
rent transactions. To detect these cycles, each transaction object is extended with
two boolean values indicating the read-write dependencies to concurrently running

169

Chapter 11. Evaluation

transactions. The algorithm is particularly suitable for the in-memory implementa-
tion because transactions set these bits in their siblings’ meta data, thus requiring
access to these fields. In practice, the algorithm yields only a small number of false
positives while keeping the overhead considerably small.
We evaluated our implementation with several applications on a Dual-Quad-Core

AMD Opteron running Java 1.6. The runtimes with the GAOs consisted of eight
background threads. Each thread handled an equal set of GAOs. The assignment
of the GAOs was random based on the objects’ hash code and did not reflect the
relations between the GAOs. Each of the figures shows the average of 10 runs.
Figures 11.1 and 11.2 present the results of micro benchmarks with a red-black tree

and an AVL tree. In these benchmarks, the tree itself and each node is represented
by a GAO. The tree is initially filled with 100 elements in a setup phase. (This
phase is not represented in the figures.) We perform a total of 8000 operations on
the tree, of which

• in Figure 11.1(a) and 11.2(a), 10% insert, 10% delete, and 80% look up an
element;

• in Figure 11.1(b) and 11.2(b), 40% insert, 40% delete, and 20% look up an
element.

These elements were randomly chosen integers ranging from 0 to 1024, so that we
created sufficient contention to stress our STM algorithm.
The figures show the total system time and the time spent in the benchmark itself.

For the latter, we differentiate between the time spent in the application threads,
the commit phase, and the runtime overhead:

• Runtime is the absolute time spent in the GAO management for handling
read requests, commit requests, and voting messages;

• Commit is the absolute time that the transactions spent in the commit pro-
tocol;

• Application is the absolute time spent in the application, including the over-
head for transactional reads and writes at the transaction’s side.

• System corresponds to the time that elapsed between start and end of the
benchmark run.

For the benchmark of the RB Tree (Figure 11.1), increasing the number of ap-
plication threads leads to a speed-up of 1.6 (2 threads), 2.9 (4 threads), and 5.6
(8 threads) with a low percentage of update operations, and 1.9 (2 threads), 2.8 (4
threads), and 5.0 (8 threads) for a high percentage of update operations. Similar
results are given for the AVL tree benchmark (Figure 11.2), with a small improve-
ment for the setup with 80% updates, where a speedup of 5.64 is obtained with 8
threads.

170

11.1. Decent STM with shared-memory synchronization

Figure 11.1. Decent STM: Micro benchmarks - RB Tree.
RB Tree

0

1000

2000

3000

4000

5000

6000

7000

1 2 4 8 16
Application Threads

Ti
m

e
[m

s]

Runtime
Commit
Application
System

(a) RB tree, 20% update.

RB Tree

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

1 2 4 8 16
Application Threads

Ti
m

e
[m

s]

Runtime
Commit
Application
System

(b) RB tree, 80% update.

171

Chapter 11. Evaluation

Figure 11.2. Decent STM: Micro benchmarks - AVL Tree.

AVL Tree

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 4 8 16
Application Threads

Ti
m

e
[m

s]

Runtime
Commit
Application
System

(a) AVL tree, 20% update.

AVL Tree

0

5000

10000

15000

20000

25000

30000

35000

1 2 4 8 16
Application Threads

Ti
m

e
[m

s]

Runtime
Commit
Application
System

(b) AVL tree, 80% update.

172

11.1. Decent STM with shared-memory synchronization

Figure 11.3. Decent STM: STAMP Benchmark - vacation.
Vacation

0

5000

10000

15000

20000

25000

30000

35000

1 2 4 8 16
Application Threads

Ti
m

e
[m

s]

Runtime
Commit
Application
System

The figures show a good scalability for the benchmarks on the tree data structures,
in particular for the benchmarks with a high update rate. They underline that a
substantial part in the execution of the infrastructure and the application can run
in parallel, and that Decent STM offers support to utilize the available parallelism.
As expected, the performance decreases when we deploy more than eight threads,

due to a disproportion between available processor cores and threads. The overhead
is introduced by thread switches and rescheduling done by the operating system.
We attribute the difference between the system time and the benchmark time to

the operating system overhead as well as the setup and tear down of the benchmark,
including the IO activities that were caused by writing log files during the bench-
mark. In all applications and runs, the time spent in the application dominates by
far the runtime and commit time overhead.
Figure 11.3 presents the results from running the vacation benchmark from the

STAMP benchmark suite [19] with the parameters -n2 -q90 -u98 -r2024 -t4096.
The customers and reservations are represented by GAOs, all other data is thread-
local or read-only. Again, the figures show that Decent STM offers a performance
gain when increasing the number of application threads. However, as the vaca-
tion benchmark induces a high likelihood of conflicts between concurrently running
transactions, only a speedup of 3.1 is reached when distributing the total workload
over 8 application threads.
Furthermore, we explored the influence of the length of the committed versions

history list on the performance of the application. To this end, we analyzed the run
times and conflicts for the tree benchmarks in the 80% update case (as described
above). Figures 11.4(a) and 11.4(b) show the system times for version histories of

173

Chapter 11. Evaluation

Figure 11.4. System time for micro benchmarks for different version history
lengths.

RB Tree

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 4 8 16
Application Threads

Ti
m

e
[m

s]

No history
History length 1
History length 2
Max.histoy

(a) RB tree.

AVL Tree

0

5000

10000

15000

20000

25000

30000

1 2 4 8 16
Application Threads

Ti
m

e
[m

s]

No history
History length 1
History length 2
Max.histoy

(b) AVL tree.

174

11.1. Decent STM with shared-memory synchronization

Figure 11.5. Conflicts for micro benchmarks.
RB Read and Write Conflicts

0%

20%

40%

60%

80%

100%

120%

0 1 2
M

ax 0 1 2
M

ax 0 1 2
M

ax 0 1 2
M

ax 0 1 2
M

ax

1 2 4 8 16

Write Conflict

Read Conflict

(a) RB tree

AVL Read and Write Conflicts

0%

2%

4%

6%

8%

0 1 2

M
ax 0 1 2

M
ax 0 1 2

M
ax 0 1 2

M
ax 0 1 2

M
ax

1 2 4 8 16

Write Conflict

Read Conflict

(b) AVL tree.

175

Chapter 11. Evaluation

length 0 (no version history), 1, 2, or max (all versions are used when resolving read
requests). The system time differs only slightly between the different strategies.
The reason becomes apparent when analyzing the number and kinds of aborts.
Figures 11.5(a) and 11.5(b) show the read and write conflicts for the respective

benchmark. For the x-axis, we differentiate between different length of the version
histories (0, 1, 2, all versions are kept). The figure shows then the percentage
of transactions that aborted due to a read of write conflict when compared to the
number of committing transactions. A percentage of more than 100% can be reached
if transactions have to abort multiple times, and the total number of aborts is higher
than the number of commits.
When using just one thread, unsurprisingly, no conflicts occur. When increasing

the number of threads, the number of conflicts, especially write conflicts, increases
significantly. Almost all read conflicts occur when no version history is provided. In
most cases, the version history is only used up to a depth of one. All further entries
are apparently not needed for responding to read requests.
The RB tree benchmark in Figure 11.5(a) shows a very high abort rate when

compared to the AVL tree benchmark, although the RB tree application is in the
presented case almost twice as fast. The high abort rate induced by write conflicts
is mainly due to the RB tree being a faster data structure. A closer look at the data
revealed that it suffers from multiple aborts in a row as the time needed for restart
and re-calculation is less than the time for resolving write conflicts in this case.
This shared-memory version of Decent STM implements the garbage collection of

no-longer accessible object versions from Section 8.4. The pruning of the history lists
in done while the runtime is waiting for messages to arrive. For the workloads and
benchmarks we investigated, neither the garbage collection process nor the reduced
memory footprint had an influence on the performance.

11.2. Decent STM in a distributed setting

The Decent STM version for distributed environments differs in several respects to
the implementation described in the previous section.
To provide an easy setup and tear down, this Decent STM version provides a

system manager which coordinates the connection to and disconnection from the
system. The programmer has to specify in a configuration file where the system
manager is hosted. The system manager sends the network addresses of the runtimes
to the application threads who want access the shared memory. Each connection
that is established between a transaction and a runtime is stored with the thread
running the transaction for later reuse. Only when the thread disconnects from the
shared memory, the connections are closed.
Messages are serialized into plain byte arrays and deserialized into objects at the

receiver’s side. This procedure adds a considerable overhead to applications, but
cannot be avoided in the distributed setting. One optimization that we used to
reduce the number of messages is to combine the messages to GAOs that reside

176

11.2. Decent STM in a distributed setting

Figure 11.6. Decent STM: Varying the number of runtimes.

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

 1 1.5 2 2.5 3 3.5 4

T
im

e
 [
m

s
]

Application threads

1 RT
2 RT
4 RT
8 RT

on the same runtime for the commit protocol. Further, each connection between
threads and runtimes is initialized once and reused for all transactions running
within the scope of a thread.
For the consistency check at the commit, we implemented the standard solution

to obtain serializability of transactions, that is, all GAOs in the read set of the
committing transactions are checked for intermediate updates. The messages for
this consistency check are sent in the first phase of the commit and also combined
for each GAO.
The number of runtimes has some influence on the performance of the full system.

Figure 11.6 shows the micro benchmark featuring the AVL tree on the distributed
version of Decent STM. The tree can contain up to 1000 elements and is initially
filled with 500 elements. Then 1, 2, or 4 application threads concurrently insert
(10%), remove (10%), or find (80%) keys in the tree, accessing on average approxi-
mately 8 GAOs in a transaction. The GAOs containing the tree and its nodes are
equally distributed over 1, 2, 4, or 8 different runtime instances. The benchmark was
carried out on a MacBook Pro, hosting an Intel Core i7, 2 GHz, with 4 processors.
To reduce the influence on network noise, all Decent STM components resided on
the same machine, communicating over different ports that are bound to the loop
back device.
When having one application thread, maintaining multiple communication chan-

nels to different runtimes yields a performance penalty. Combining all messages to
the GAOs into one, thus reducing the communication overhead, is faster than split-
ting the work load during commit over several runtimes to execute them in parallel.
Only when increasing the number of threads which execute transactions, it pays off
to partition the shared memory. In the case of 4 application threads, using also 4
runtimes is optimal. However, as the line for 8 runtimes indicates, the performance

177

Chapter 11. Evaluation

suffers when starting too many runtimes. This holds especially in the setup we used
for this micro benchmark because the components share the processing units.

178

Part III.

Related work and Conclusion

179

Chapter 12.

Related Work

Transactional Memory has a huge design space which is investigated by numerous
researchers. In addition, research on transactions in data bases as well as concepts
from operating systems provide a fertile ground from which many TM ideas have
re-emerged.

12.1. STM and irrevocability

Most closely related to Twilight STM are STM implementations which provide
irrevocable and inevitable transactions.
Welc et al. [78] propose an irrevocability mechanism to support flexible contention

management and the execution of non-reversible actions (I/O, system calls, pre-
compiled libraries, ...) within transactions. To ensure safety, they use a protocol
with single-owner read locks. A transaction becomes irrevocable by executing a
special statement that tries to acquire locks on the read set so far and all upcoming
reads. To avoid deadlocks, this approach enforces that only a single irrevocable
transaction can run at a time. The system is implemented as an extension of the
Java-based McRT-STM and uses dynamic method dispatch to enforce the correct
usage and interaction with other language constructs.
Similarly, Spear and coworkers [70] compare five mechanisms which all require

that at most one irrevocable transaction runs at a time and that these transactions
do not abort (they use the term inevitability instead of irrevocability).
Twilight STM introduces also a notion of irrevocability. I/O operations can be

safely integrated into transactions after the programmer compensates for possible
inconsistencies. The main difference to the aforementioned systems is that Twilight
STM permits arbitrarily many transactions with possibly non-reversible actions to
run concurrently.
Ziarek et al. [80] propose a framework where Java’s synchronization monitors can

be freely mixed and combined with atomic blocks. Their system optimistically tries
to execute all concurrency primitives transactionally. In situations where such an
execution is infeasible, the implementation irrevocably switches the execution of
the concerned critical region to monitors as specified in the original program and
to a global locking approach for user-defined transactions. Twilight STM does not
allow an arbitrary mixing of synchronized and atomic blocks. It restricts the use of

181

Chapter 12. Related Work

non-transactional synchronization primitives to the twilight code and never reverts
to global locking. The default case is transactional execution.
Welc and coworkers [77] propose a dual-mode implementation of monitors for Java

which switches at run time between a lock-based implementation and a transactional
one. The switch is based on the level of contention where high contention triggers
the use of the transactional implementation. To integrate irrevocable actions, they
rely on the same mechanism as in the previously described paper [78]. Here, mode
switching is handled transparently to the programmer. Twilight does not switch
modes but offers integration with lock-based code in the twilight code. It further
reduces the conflict potential of transactions by allowing to inspect and repair read
conflicts.
Harris [33] proposes a mechanism to integrate exceptions and side effects with

transactions. The proposal relies on a transaction being able to register external
actions that execute at commit-time of the transaction.
Smaragdakis and coworkers [68] integrate side effects in a transaction by es-

sentially committing before and resuming the transaction afterwards. Volos and
coworkers [75] propose a system call interface for use inside transactions. They per-
form error checking as early as possible and defer the main task of the system call
to commit time. They rely on sentinels to manage concurrent access to resources.

12.2. HTM approaches for irrevocability

Although our work is a software-only approach, there are quite a few related HTM-
based efforts that suggest mechanisms to execute irrevocable operations inside a
transaction.
Blundell et al. [12] simulate a hardware TM design that supports I/O and sys-

tem calls within transactions. They allow only one unrestricted transaction, which
can perform I/O and system calls, running concurrently with multiple restricted
transactions, which cannot perform I/O. This choice limits concurrency.
Moravan et al. [55] simulate a nested TM in hardware. Their transactions may

contain “escape actions” that execute code outside the transactional scope. To retain
the transactional appearance, escape actions can register actions to run on a success-
ful commit or on restart (compensating actions). Such commit and compensation
actions are also needed in their implementation of open nesting of transactions.
McDonald and coworkers [52] define an instruction set architecture for HTM.

Their architecture includes commit handlers and violation handlers that can con-
tinue a transaction in an arbitrary way after a conflict. However, only the validated
outcome of a transaction is visible. There is no provision to compare previously
read values with the current ones.
Volos et al. [74] analyze the problems of using locking operations with TM. They

implement transaction-safe locks on top of a HTM. Their design includes commit
actions to obtain locks and compensating actions to release them. Further tasks
can be scheduled at conflicts and escape actions are also supported.

182

12.3. Conflict avoidance

12.3. Conflict avoidance

To increase performance of STM applications, there are several proposals to avoid
conflicts between concurrently running transactions.
Herlihy et al. [39] introduced early release as a technique to avoid conflicts on non-

significant memory locations [15]. It allows the programmer to remove elements from
a transaction’s read set if intermediate updates on these locations by other threads
do not change the program’s semantics. This decision is subtle, as later re-reading of
a variable can lead the transaction to operate on an inconsistent memory snapshot.
Twilight STM simplifies the reasoning about correctness by enforcing consistency
for each transaction.
Harris and Stipić [37] implement the concept of an abstract nested transaction

(ANT) in STM. Failure of an ANT does not cause failure of the enclosing trans-
action. Instead the ANTs are retried when the enclosing transaction is ready to
commit. Side effects like I/O and system calls are disallowed inside ANTs. ANTs
can be implemented with the Twilight API by performing potential re-execution of
computations in the twilight code.
Ramadan and colleagues [60] enable conflicting transactions to commit. They

introduce the notion of dependency-aware TM where a value written by one trans-
action is forwarded to another transaction reading the same variable before the
actual commit, thus avoiding a conflict between the transactions and achieving sig-
nificant speedups. Twilight STM can also deal with this kind of conflicts by first
letting the writing transaction run to completion and then relying on twilight code
to fix the conflicting read in the other transaction.
Shapiro et al. [66] investigate how to construct systematically replicated container

data types that ensure eventual consistency. The convergence to a consistent state
when merging the replicas is ensured by the commutativity of operations. In a simi-
lar fashion, Burckhardt, Baldassin, and Leijen [16] apply different merging strategies
to incorporate modifications on local object copies to the global state. Depending
on the kind of data, the changes are either accumulated or compete with each other,
the last patch applied being the winning one. Twilight STM allows to define such
strategies in the twilight zone. As the fine-granular conflict detection and repair on
word level is rather tedious, it is an interesting open problem to extend the Twilight
STM with high level representations of data modifications. For example, the actual
operations on a container data type can be stored in an abstract way as part of the
actual data structure.

12.4. Semantics of Transactional Memory

Weikum and Vossen [76] include a comprehensive overview on theory and practice
of transactional systems. Although their work is based on databases, the presented
results relate to all transaction-based execution environments. They differentiate
in detail between several notions of serializability, and give soundness proofs for all

183

Chapter 12. Related Work

major commit protocols.
For STM, Single Global Lock (SGL) semantics [53] has been suggested to sim-

plify reasoning about strong and weak atomicity. SGL provides an intuitive and
simple STM semantics, though most STM algorithms do not implement this strong
semantics as it impedes scalability.
Opacity was introduced by Guerraoui and Kapalka [31] as a correctness criterion

for transactional memory. They also show how opacity can be efficiently imple-
mented for different relaxed memory models [30].
Jagannathan and coworkers [41] specify a formal system for transactions with

nesting implemented by a versioning and a locking algorithm. They do not model
aborts, but stuck executions are implicitly rolled back. They show that the presented
algorithms implement serializability.
Abadi and coworkers [1] formalize the semantics of the Automatic Mutual Ex-

clusion (AME) programming model. Similarly, Moore and Grossman [54] provide
a formal model with small-step operational semantics for an impure functional lan-
guage. Both works focus on the treatment of memory locations inside and outside of
transactions, and in which cases the notion of weak and strong atomicity coincide.
Doherty and coworkers [22] give a formalization for transactional memory in terms

of an I/O automaton. Their specifications are of different granularities and aim to
for machine-checked correctness proofs of implementations.
Our work is partially inspired by Lipton’s work [50] on a reduction theory for

proving properties of concurrent programs. His main idea was to identify certain
statements that may be moved to the left or to the right in the trace of an interleaved
execution. In particular, he establishes that lock acquisition can always be moved
to the right over statements executing in another thread, whereas lock release is a
left mover. The commonality is that we are also reordering traces to prove isolation
properties, but the difference is that we consider a transactional framework which
also includes explicit transaction aborts.
Riegel et al. [63] transfer snapshot isolation semantics from the database domain

to STM. In their implementation, a transaction’s read set is taken from a consis-
tent memory snapshot based on a time stamp given a priori. In contrast, Decent
STM incorporates updates into a transaction’s memory snapshot if this does not vi-
olate the snapshot’s consistency, i. e. Decent STM gives always the latest consistent
versions.
Fekete and coworkers have investigated in a number of publications the partic-

ularities of multi-version transactions with snapshot isolation in databases. In a
seminal theory paper [24], they identify characteristics of applications that preserve
data integrity under different isolation levels by showing that these applications
have cycle-free dependency graphs. Similar in idea, though different in technique,
our work on opacity and snapshot isolation for singe-version STMs detects data
dependencies and conflicts in effect traces. Building on the theoretical results [18],
Fekete and co-workers devise a simple algorithm for serializing the transactions in
a snapshot isolation system. It yields only a small number of wrongly identified
conflicts and the implementation requires only small changes to the transactions.

184

12.5. STM in Haskell

The algorithm is particularly suitable for the in-memory implementation because it
requires transactions to directly access the state of their sibling transactions. We
implemented this algorithm for offering serializable transactions in a shared-memory
version of Decent STM. It is still an open question to what extent the results on
weaker isolation levels in databases apply to STM as workloads differ substantially
between database applications and concurrent applications.

12.5. STM in Haskell

Harris and coworkers [35] give a report on an implementation of STM in Haskell.
They introduce the STM monad, which is a special type of computation inside
an atomic section. This design enables a clean separation between unrestricted
computations outside the STM monad and which restricts operations in an atomic
section to reads and writes to transactional variables. There is a special orElse
operation that enables the specification of alternatives in case of failing transactions.
But these alternatives cannot preform repairs as in the Twilight approach because all
alternatives must be consistent with respect to the start of the original transaction.
This work has been extended to also cover data invariants [36]. These invariants

impose conditions that delay the restart of a transaction until the conditions become
true.

12.6. STM in distributed settings

Many popular STMs, such as TL2 [20], SkySTM [49], LSA [62], or McRT-STM [65],
use blocking synchronization barriers; or they rely on centralized components such
as version counters. Both make them unsuitable to be transferred to a (truly)
distributed setting.
There is also a variety of non-blocking implementations, e. g. [39] or [34], which

propose techniques to reduce contention and to avoid serialization due to bottle-
necks. These systems provide higher scalability than the blocking systems but
introduce a higher runtime overhead. Decent STM is also a non-blocking system.
It reduces the entailed runtime overhead by offering non-conflicting reads. More-
over, its underlying data structures are specifically designed for a fully decentralized
setting.
ClusterSTM [13] is an STM design for high performance computing on very large-

scale commodity clusters. In contrast to our system, they provide a low-level API
which is supposed to get integrated into some domain specific language for high
productivity computer systems, and thus poses a great burden on the programmer.
Following their reasoning about the design space, we also try to minimize commu-
nication overhead and aim for both appropriate placement of shared memory and
execution frames on appropriate nodes in the future.
Manassiev et al. [51] apply STM to a distributed setting. Unlike our system,

Distributed Multiversioning uses replicas of the shared memory on each network

185

Chapter 12. Related Work

node in combination with a distributed shared memory consistency protocol. In
our system, we rely on one physical copy of each shared object, though caching and
redundancy copies may lead to multiple instances. This data is immutable for the
major parts, as described in Section 8.1.
Kotselidis et al. [46] have implemented an STM framework for clusters where

a master node serves as a global data store. They evaluated several coherence
protocols, one of them decentralized (Transactional Coherence and Consistency,
TCC). Since all worker threads are involved in this protocol, it leads to substantial
overhead. They also show that leases provide a bottleneck when the application
entails high contention. Our protocol involves only objects in the write set. Thus
non-interfering transactions can commit concurrently.
Riegel et al. [64] replace version counters with real-time clocks. Unfortunately, this

requires both hardware support and a synchronization protocol to ensure bounded
deviation of the timers.
Distributed systems like Telex [71] introduce the notion of optimistic execution

and rollback to high-level software development. These systems often resemble or
incorporate databases and offer application-specific support whereas we focus on
a generic approach to be incorporated into the memory management of virtual
machines, for example.

12.7. Multi-versioned STMs

Reed [61] proposes the use of multi-versioning for handling decentralized data. In
line with Decent STM, he retrieves a version corresponding to the memory snapshot
taken so far when reading a variable. In contrast to our approach, he utilizes
synchronized timers to obtain a consistent memory snapshot.
Cachopo et al. [17] implement a multi-versioning scheme with versioned boxes to

store the value history of a variable in combination with a global commit counter.
Aydonat et al. [6] incorporate multi-versioning for read-only access into an online

schedule generation to reduce the number of conflicts. Ramadan et al. [60] show that
their dependence-aware transactional memory system accepts all conflict-serializable
schedules. We do not need to integrate such a scheduling system into Decent STM
as transactions register their writes only at commit time. Similar to their approach,
we do allow forwarding of tentative versions when reading transactional objects.
Perelman and co-workers [58] prove that no STM algorithm can be space opti-

mal, that is, it cannot ensure that it always maintains the minimum number of
object versions. As we have done for Decent STM, they define a garbage collection
for versions of shared objects such that versions are kept only when they may be
needed by some existing read-only transactions. They also demonstrate that read-
only transactions must leave some trace in shared memory, even after they have
committed.

186

12.8. Consensus and commit protocols in STM

12.8. Consensus and commit protocols in STM

Guerraoui et al. [32] compare different one-, two- and three-phase commit proto-
cols in terms of underlying assumptions, given guarantees and message overhead.
They also show the close relation to consensus protocols. Further, they propose
a decentralized one-round three-phase commit protocol [2]. Contrary to their in-
vestigation, we propose for Decent STM a (potentially multi-round) randomized
consensus protocol as we want the flexibility to introduce some bias towards certain
transactions.
Gray and Lamport [28] propose a non-blocking, fault-tolerant distributed commit

protocol, called Paxos Commit algorithm. It employs a fixed number of coordinators
that are responsible to achieve an agreement for a decision taken by a dedicated
leader, based on majority voting. In Decent STM, the runtimes take a similar
role as the coordinators, without requiring a leader and allowing the number of
coordinators to vary for each commit request.
Aspnes [5] gives a comprehensive survey of randomized consensus protocols for

distributed and shared-memory settings. The commit consensus protocol we de-
fined in Section 9 combines ideas from both branches of research. As in the classical
distributed consensus protocols, messages are used to pass information between the
processes involved in the protocol. Though we do not consider faulty or even mali-
cious processes, it is possible to integrate standard techniques for failure detection
into our commit consensus protocol. As in the shared memory versions, our pro-
tocol proceeds in rounds. The introduced randomization does not build upon one
shared coin, yet, the probability distribution for the input set is similar adjusted on
all nodes as the protocol proceeds.

12.9. Code instrumentation for STM

Deuce STM [45] dynamically instruments Java classes at load time with STM op-
erations. Similar to the JTransactifier, it is uses @atomic annotations for methods
to determine the scope of transactions. It implements weak atomicity, therefore it
does not require a distinction between shared and non-shared objects, and needs to
provide each method in a plain and a transactified flavor. Targeting a distributed
environment, JTransactifier requires globally used objects to be annotated as they
must be serializable. Several optimizations and analyses implemented by Deuce
STM, such as transformation closed source libraries, detection of irreversible op-
erations, or flow analysis for detection of transaction-local data, would make the
JTransactifier a more powerful tool.
Felber and co-workers [25] present code instrumentation with STM for word-

based C/C++ programs using the LLVM compiler framework or assembly code.
Their results show that the automatically transformed code is competitive with a
manually optimized version.

187

Chapter 13.

Conclusion

13.1. Summary

Software transactional memory provides a simple mechanism for thread-safe pro-
gramming. Atomic blocks are a powerful concurrency primitive with strong iso-
lation and consistency guarantees. Data races on shared memory that may arise
from executing atomic blocks concurrently are resolved transparently by reverting
conflicting operations. However, STM is impaired by severe restrictions, such as the
irreversibility of side effects and the restriction to in-memory synchronization.
This thesis featured extensions for STM that circumvent these restrictions, while

preserving transactional semantics.

Twilight STM This thesis presented Twilight STM, an STM system that extends
the commit phase of a transaction with the execution of twilight code. Twilight
code consists of arbitrary user code that runs with special concurrency privileges,
such that this code can safely perform irrevocable I/O actions.
The twilight code runs after the transaction’s main part, it is initialized by call-

ing stm_prepare and ends with a call to stm_finalize. The twilight code
may use the Twilight API to introspect and modify the transaction’s state to im-
plement sophisticated contention management. To this end, repair operations such
as stm_reread and stm_update enable the inspection and modification of the
transaction’s read and write set. A reload operation obtains a current version of the
memory snapshot obtained by the transaction. Furthermore, the marking of vari-
ables in the read and write set with tags offers an intuitive and practical mechanism
to identify areas where conflicts arise.
Twilight STM serves as a platform for exploring relaxed transactional semantics.

It is the first STM implementation that admits the definition of application-specific
conflict schemes without changing the underlying STM system. Thus, Twilight STM
is a conservative extension of STM and can be integrated into any STM system with
lazy updates.

Decent STM This thesis further presented Decent STM, a fully decentralized
STM algorithm. It is based on versioning of shared objects that are employed
for creating consistent memory snapshots spanning several nodes. Versions from
transactions that are trying to commit concurrently are kept in tentative version

189

Chapter 13. Conclusion

trees. A randomized commit consensus protocol operates on these tentative version
trees: It accepts non-conflicting versions by moving them to the committed versions
history list. It also discards conflicting versions, thereby causing the respective
transactions to roll-back. By adjusting commit probabilities for different kinds
of transactions, it is possible to install application-level heuristics for the commit
protocol.
The design of Decent STM is targeted for distributed environments. It decou-

ples the process of obtaining shared-memory consistency from the application logic.
Replication and migration of data is handled transparently to the programmer.
Also, it allows non-blocking reads in the presence of ongoing commits. Thus, De-
cent STM yields scalability for large-scale distributed systems. The Decent STM
algorithm also ensures that there is always a winning transaction in case of compet-
ing transactions, and thus guarantees progress of the whole system even in case of
rollbacks.

Twilight STM and Decent STM investigate different aspects of STM systems.
An interesting open problem is the effect of combining these two STMs. Because
of its resemblance with two-phase commit, the Decent STM commit protocol can
straightforwardly be extended with twilight zones, thus adding irrevocability to
the system. Also, a multi-version scheme for transactional objects can guarantee
that transactions always reach their twilight zone based on previous versions, thus
allowing more opportunity for sophisticated repair actions that even take multiple
versions into account.

13.2. Outlook

To increase the impact of STM on (commercial) software, it is necessary to provide
a full and sound integration of STM into a programming language to facilitate the
program development. The research results presented in this thesis build the foun-
dation for creating a portable system running concurrent programs on heterogeneous
architectures.
Decent STM serves as the consistency layer for a distributed Java virtual machine,

called DecentVM. DecentVM has been designed as a platform for STM systems run-
ning on heterogenous multi-cores or in a cloud. It creates a single-system illusion by
hiding all aspects related to the distributed platform, such as consistency and com-
munication of data, from the programmer. For backwards compatibility with legacy
Java applications, it also supports traditional lock-based consistency via monitors.
They are emulated with the same VM instructions that implement the STM model:
copying objects into the private memory area of a thread, and replacing existing
objects with a new version once the commit has succeeded or a memory barrier is
passed.
Furthermore, there are plans to incorporate fault-tolerance into the DecentVM

system. In the setting of a versioning STM, check-pointing is a straightforward

190

13.2. Outlook

choice for dealing with failure as memory snapshots are already retained by system.
As the tentative version trees indicate, we further envision optimizations such as the
execution of transactions on versions still in the commit process. The communica-
tion latency can effectively be hidden if application threads are allowed to progress
in some kind of sandbox while the transactional memory system is resolving possi-
ble memory inconsistencies. This also increases the amount of parallelism and full
utilization of the system resources.
DecentVM will further provide algorithms for distributed object instantiation and

migration mechanisms to adapt the distributed memory to the changing workloads
during the program’s life cycle.
The multi-faceted research on STM in the last couple of years has revealed

that transactions are an exciting concept that is applicable not only to databases.
Though the transactional memory research focuses on high-performance computing
and concurrency, the tentative nature of transactions makes them also attractive
for other areas of computing, such as monitoring security in applications [42], spec-
ulative out-of-order execution [14], or restoring test fixtures [38].

191

Bibliography

193

Bibliography

[1] Martín Abadi, Andrew Birrell, Tim Harris, and Michael Isard. Semantics of
transactional memory and automatic mutual exclusion. In Phil Wadler, edi-
tor, Proceedings 35th Annual ACM Symposium on Principles of Programming
Languages, pages 63–74, San Francisco, CA, USA, January 2008. ACM Press.

[2] Maha Abdallah, Rachid Guerraoui, and Philippe Pucheral. One-phase commit:
Does it make sense? In Proceedings of the 1998 International Conference on
Parallel and Distributed Systems (ICPADS’98), page 182, Washington, DC,
USA, 1998. IEEE Computer Society.

[3] Joe Armstrong. Programming Erlang: Software for a Concurrent World. The
Pragmatic Programmers, LLC, 2007.

[4] Joe Armstrong, Robert Virding, and Mike Williams. Concurrent Programming
in Erlang. Prentice Hall, NY, 1993.

[5] James Aspnes. Randomized protocols for asynchronous consensus. Distributed
Computing, 16:165–175, September 2003.

[6] Utku Aydonat and Tarek S. Abdelrahman. Serializability of transactions in
software transactional memory. In TRANSACT ’08, 2008.

[7] M. Ben-Ari. Principles of concurrent and distributed programming. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1990.

[8] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and
Patrick O’Neil. A critique of ANSI SQL isolation levels. In Proceedings of the
1995 ACM SIGMOD international conference on Management of Data, pages
1–10, San Jose, California, United States, 1995. ACM.

[9] Annette Bieniusa and Thomas Fuhrmann. Consistency in hindsight: A fully
decentralized STM algorithm. In 24th IEEE International Symposium on Par-
allel and Distributed Processing, IPDPS 2010, Atlanta, Georgia, USA, 19-23
April 2010 - Conference Proceedings, pages 1–12. IEEE, 2010.

[10] Annette Bieniusa, Arie Middelkoop, and Peter Thiemann. Brief announcement:
Actions in the twilight - concurrent irrevocable transactions and inconsistency
repair. In Andréa W. Richa and Rachid Guerraoui, editors, Proceedings of
the 29th ACM SIGPLAN Symposium on Principles of Distributed Computing,
pages 71–72, Zurich, Switzerland, 2010. ACM.

195

Bibliography

[11] Annette Bieniusa and Peter Thiemann. Proving isolation properties for soft-
ware transactional memory. In Gilles Barthe, editor, Proceedings of the 20th Eu-
ropean Symposium on Programming, volume 6602 of Lecture Notes in Computer
Science, pages 38–56, Saarbrücken, Germany, March 2011. Springer-Verlag.

[12] Colin Blundell, Christopher Lewis, and Milo Martin. Unrestricted transactional
memory: Supporting I/O and system calls within transactions. Technical Re-
port TR-CIS-06-09, University of Pennsylvania, Philadelphia, PA, USA, May
2006.

[13] Robert L. Bocchino, Vikram S. Adve, and Bradford L. Chamberlain. Software
transactional memory for large scale clusters. In Siddhartha Chatterjee and
Michael L. Scott, editors, Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pages 247–258, New York,
NY, USA, 2008. ACM.

[14] Andrey Brito, Christof Fetzer, Heiko Sturzrehm, and Pascal Felber. Speculative
out-of-order event processing with software transaction memory. In Proceed-
ings of the second international conference on Distributed Event-Based Systems,
DEBS ’08, pages 265–275, New York, NY, USA, 2008. ACM.

[15] Eric Bruneton. ASM 3.0, a Java bytecode engineering library. http:
//download.forge.objectweb.org/asm/asm-guide.pdf, 2007.

[16] Sebastian Burckhardt, Alexandro Baldassin, and Daan Leijen. Concurrent
programming with revisions and isolation types. In Shail Arora and Gary T.
Leavens, editors, Proceedings of the 25th ACM SIGPLAN Conference on Object
Oriented Programming, Systems, Languages, and Applications, pages 691–707,
Reno/Tahoe, Nevada, USA, 2010. ACM Press, New York.

[17] Joáo Cachopo and António Rito-Silva. Versioned boxes as the basis for memory
transactions. Sci. Comput. Program., 63(2):172–185, 2006.

[18] Michael J. Cahill, Uwe Röhm, and Alan David Fekete. Serializable isolation
for snapshot databases. ACM Trans. Database Syst., 34(4), 2009.

[19] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun.
Stamp: Stanford transactional applications for multi-processing. In IISWC ’08:
Proc. IEEE International Symposium on Workload Characterization, pages 35–
46, September 2008.

[20] David Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In Proceedings
of the 20th International Symposium on Distributed Computing, DISC 2006,
LNCS 4167, pages 194–208. Springer, 2006.

[21] Anthony Discolo, Tim Harris, Simon Marlow, Simon L. Peyton Jones, and Sat-
nam Singh. Lock Free Data Structures using STMs in Haskell. In Philip Wadler

196

http://download.forge.objectweb.org/asm/asm-guide.pdf
http://download.forge.objectweb.org/asm/asm-guide.pdf

Bibliography

and Masami Hagiya, editors, Proceedings of the 8th International Symposium
on Functional and Logic Programming FLOPS 2006, pages 65–80, Fuji Susono,
Japan, April 2006. Springer-Verlag.

[22] Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. Towards
formally specifying and verifying transactional memory. In Proceedings of the
RefineNet Workshop 2009 (REFINE 2009). Electronic Notes in Theoretical
Computer Science, 2009.

[23] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of
consistency and predicate locks in a database system. Commun. ACM, 19:624–
633, November 1976.

[24] Alan Fekete, Dimitrios Liarokapis, Elizabeth J. O’Neil, Patrick E. O’Neil, and
Dennis Shasha. Making snapshot isolation serializable. ACM Trans. Database
Syst., 30(2):492–528, 2005.

[25] Pascal Felber, Christof Fetzer, Ulrich Müller, Torvald Riegel, Martin Süßkraut,
and Heiko Sturzrehm. Transactifying Applications using an Open Compiler
Framework. In TRANSACT, August 2007.

[26] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility
of distributed consensus with one faulty process. J. ACM, 32:374–382, April
1985.

[27] Ian Foster. Designing and Building Parallel Programs: Concepts and Tools for
Parallel Software Engineering. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1995.

[28] Jim Gray and Leslie Lamport. Consensus on transaction commit. ACM Trans.
Database Syst., 31:133–160, March 2006.

[29] William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill
Nitzberg, William Saphir, and Marc Snir. MPI - The Complete Reference:
Volume 2, The MPI-2 Extensions. Scientific and engineering computation.
MIT Press, Cambridge, MA, USA, 1998.

[30] Rachid Guerraoui, Thomas A. Henzinger, Michal Kapalka, and Vasu Singh.
Transactions in the jungle. In Friedhelm Meyer auf der Heide and Cynthia A.
Phillips, editors, Proceedings of the 22nd Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 263–272, Thira, Santorini, Greece, 2010.
ACM.

[31] Rachid Guerraoui and Michal Kapalka. On the correctness of transactional
memory. In Siddhartha Chatterjee and Michael L. Scott, editors, Proceedings
of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 175–184, Salt Lake City, UT, USA, 2008. ACM.

197

Bibliography

[32] Rachid Guerraoui, Mikel Larrea, and André Schiper. Reducing the cost for
non-blocking in atomic commitment. In Proceedings of the 16th International
Conference on Distributed Computing Systems (ICDCS’96), page 692, Wash-
ington, DC, USA, 1996. IEEE Computer Society.

[33] Tim Harris. Exceptions and side-effects in atomic blocks. Science of Computer
Programming, 58(3):325–343, 2005.

[34] Tim Harris and Keir Fraser. Language support for lightweight transactions. In
Proceedings of the 18th ACM SIGPLAN Conference on Object Oriented Pro-
gramming, Systems, Languages, and Applications, pages 388–402, Anaheim,
CA, USA, 2003. ACM Press, New York.

[35] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy. Com-
posable memory transactions. In 16th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, pages 48–60, Chicago, IL, USA,
June 2005. ACM Press.

[36] Tim Harris and Simon Peyton Jones. Transactional memory with data invari-
ants. In TRANSACT ’06, June 2006.

[37] Tim Harris and Srđan Stipić. Abstract nested transactions. In TRANSACT
’07, Portland, OR, USA, August 2007.

[38] Phillip Heidegger, Annette Bieniusa, and Peter Thiemann. DOM transactions
for testing JavaScript. In Proceedings of the 5th International Academic and
Industrial Conference on Testing - Practice and Research Techniques, TAIC
PART’10, pages 211–214, Berlin, Heidelberg, 2010. Springer-Verlag.

[39] Maurice Herlihy, Victor Luchangco, Mark Moir, and III William N. Scherer.
Software transactional memory for dynamic-sized data structures. In Proceed-
ings of the 22nd ACM SIGPLAN Symposium on Principles of Distributed Com-
puting, pages 92–101, Boston, Massachusetts, 2003. ACM Press, New York, NY,
USA.

[40] C. A. R. Hoare. Monitors: An operating system structuring concept. Commu-
nications of the ACM, 17(10):549–557, October 1974.

[41] Suresh Jagannathan, Jan Vitek, Adam Welc, and Antony Hosking. A transac-
tional object calculus. Sci. Comput. Program., 57(2):164–186, 2005.

[42] Suman Jana, Donald E. Porter, and Vitaly Shmatikov. TxBox: Building Se-
cure, Efficient Sandboxes with System Transactions. In IEEE Symposium on
Security and Privacy. IEEE Computer Society, 2011.

[43] R. Karp. Reducibility among combinatorial problems. In R. Miller and
J. Thatcher, editors, Complexity of Computer Computations, pages 85–103.
Plenum Press, 1972.

198

Bibliography

[44] Oleg Kiselyov and Chung chieh Shan. Lightweight monadic regions. In Andy
Gill, editor, Haskell 2008, pages 1–12, Victoria, BC, Canada, September 2008.
ACM.

[45] Guy Korland, Nir Shavit, and Pascal Felber. Noninvasive concurrency with java
stm. In Programmability Issues for Multi-Core Computer (MULTIPROG’10),
2010.

[46] Christos Kotselidis, Mohammad Ansari, Kim Jarvis, Mikel Luján, Chris C.
Kirkham, and Ian Watson. DiSTM: A software transactional memory frame-
work for clusters. In Proceedings of the 37th International Conference on Par-
allel Processing, pages 51–58. IEEE Computer Society, 2008.

[47] Jim Larus and Ravi Rajwar. Transactional Memory (Synthesis Lectures on
Computer Architecture). Morgan & Claypool Publishers, 2007.

[48] John Launchbury and Simon L. Peyton Jones. State in Haskell. Lisp and
Symbolic Computation, 8(4):293–341, December 1995.

[49] Yossi Lev, Victor Luchangco, Virendra Marathe, Mark Moir, Dan Nussbaum,
and Marek Olszewski. Anatomy of a scalable software transactional memory.
In TRANSACT ’09, 2009.

[50] Richard J. Lipton. Reduction: A method of proving properties of parallel
programs. Commun. ACM, 18(12):717–721, 1975.

[51] Kaloian Manassiev, Madalin Mihailescu, and Cristiana Amza. Exploiting dis-
tributed version concurrency in a transactional memory cluster. In Josep Tor-
rellas and Siddhartha Chatterjee, editors, Proceedings of the 11th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, pages
198–208, New York, NY, 2006. ACM.

[52] Austen McDonald, JaeWoong Chung, Brian D. Carlstrom, Chi Cao Minh, Has-
san Chafi, Christos Kozyrakis, and Kunle Olukotun. Architectural semantics
for practical transactional memory. In ISCA ’06: Proceedings of the 33rd annual
international symposium on Computer Architecture, pages 53–65, Washington,
DC, USA, 2006. IEEE Computer Society.

[53] Vijay Menon, Steven Balensiefer, Tatiana Shpeisman, Ali-Reza Adl-Tabatabai,
Richard L. Hudson, Bratin Saha, and Adam Welc. Single global lock semantics
in a weakly atomic STM. SIGPLAN Not., 43(5):15–26, 2008.

[54] Katherine F. Moore and Dan Grossman. High-level small-step operational
semantics for transactions. In Phil Wadler, editor, Proceedings 35th Annual
ACM Symposium on Principles of Programming Languages, pages 51–62, San
Francisco, California, USA, January 2008. ACM.

199

Bibliography

[55] Michelle J. Moravan, Jayaram Bobba, Kevin E. Moore, Luke Yen, Mark D.
Hill, Ben Liblit, Michael M. Swift, and David A. Wood. Supporting nested
transactional memory in LogTM. In ASPLOS-XII: Proceedings of the 12th
international conference on Architectural support for programming languages
and operating systems, pages 359–370, San Jose, California, USA, 2006. ACM
Press, New York, NY, USA.

[56] J. Eliot B. Moss. Nested Transactions: An Approach to Reliable Distributed
Computing. PhD thesis, Massachusetts Institute of Technology, 1981.

[57] J. Eliot B. Moss. Open nested transactions: Semantics and support. Poster
presented at Workshop on Memory Performance Issues (WMPI 2006), Austin,
TX, February 2006.

[58] Dmitri Perelman, Rui Fan, and Idit Keidar. On maintaining multiple versions
in STM. In Andréa W. Richa and Rachid Guerraoui, editors, Proceedings of
the 29th ACM SIGPLAN Symposium on Principles of Distributed Computing,
pages 16–25, New York, NY, USA, 2010. ACM.

[59] Cristian Perfumo, Nehir Sönmez, Srdjan Stipic, Osman Unsal, Adrián Cristal,
Tim Harris, and Mateo Valero. The limits of software transactional memory
(STM): Dissecting Haskell STM applications on a many-core environment. In
Proceedings of the 5th Conference on Computing Frontiers, CF ’08, pages 67–
78, Ischia, Italy, 2008. ACM.

[60] Hany E. Ramadan, Indrajit Roy, Maurice Herlihy, and Emmett Witchel. Com-
mitting conflicting transactions in an STM. In Daniel Reed and Vivek Sarkar,
editors, Proceedings of the 14th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 163–172, Raleigh, NC, USA, 2009.
ACM.

[61] David P. Reed. Implementing atomic actions on decentralized data. ACM
Trans. Comput. Syst., 1(1):3–23, 1983.

[62] Torvald Riegel, Pascal Felber, and Christof Fetzer. A lazy snapshot algorithm
with eager validation. In 20th International Symposium on Distributed Comput-
ing, DISC, volume 4167 of Lecture Notes in Computer Science, pages 284–298,
Stockholm, Sweden, Sep 2006. Springer.

[63] Torvald Riegel, Christof Fetzer, and Pascal Felber. Snapshot isolation for soft-
ware transactional memory. In TRANSACT’06, Jun 2006.

[64] Torvald Riegel, Christof Fetzer, and Pascal Felber. Time-based transactional
memory with scalable time bases. In Proceedings of the 19th annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA’07), pages 221–
228. ACM, 2007.

200

Bibliography

[65] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh, and
Benjamin Hertzberg. McRT-STM: a high performance software transactional
memory system for a multi-core runtime. In Josep Torrellas and Siddhartha
Chatterjee, editors, Proceedings of the 11th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages 187–197, New York,
NY, USA, 2006. ACM.

[66] Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski. A
comprehensive study of Convergent and Commutative Replicated Data
Types. Technical Report 7506, INRIA, January 2011. http://hal.
archives-ouvertes.fr/inria-00555588/.

[67] Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings of
the 14th ACM SIGPLAN Symposium on Principles of Distributed Computing,
pages 204–213, Ottowa, Ontario, Canada, 1995. ACM Press, New York, NY,
USA.

[68] Yannis Smaragdakis, Anthony Kay, Reimer Behrends, and Michal Young.
Transactions with isolation and cooperation. In Proceedings of the 22nd ACM
SIGPLAN Conference on Object Oriented Programming, Systems, Languages,
and Applications, pages 191–210, Montreal, QC, CA, 2007. ACM Press, New
York.

[69] Marc Snir and Steve Otto. MPI-The Complete Reference: The MPI Core. MIT
Press, Cambridge, MA, USA, 1998.

[70] M. F. Spear, M. M. Michael, and M. L. Scott. Inevitability mechanisms for
software transactional memory. In TRANSACT ’08, 2008.

[71] Pierre Sutra and Marc Shapiro. Fault-tolerant partial replication in large-
scale database systems. In Proceedings of the 14th International Euro-Par
Conference, LNCS 5168, pages 404–413. Springer, 2008.

[72] Tim Sweeney. The next mainstream programming language: A game de-
veloper’s perspective. In Simon Peyton Jones, editor, Proceedings 33rd An-
nual ACM Symposium on Principles of Programming Languages, page 269,
Charleston, South Carolina, USA, January 2006. ACM Press.

[73] Gadi Taubenfeld. Synchronization Algorithms and Concurrent Programming.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006.

[74] Haris Volos, Neelam Goyal, and Michael M. Swift. Pathological interaction
of locks with transactional memory. In TRANSACT ’08, Salt Lake City, UT,
USA, February 2008.

[75] Haris Volos, Andres Jaan Tack, Neelam Goyal, Michael M. Swift, and Adam
Welc. xCalls: Safe I/O in memory transactions. In EuroSys ’09: Proceedings

201

http://hal.archives-ouvertes.fr/inria-00555588/
http://hal.archives-ouvertes.fr/inria-00555588/

Bibliography

of the fourth ACM European Conference on Computer systems, pages 247–260,
Nuremberg, Germany, 2009. ACM.

[76] Gerhard Weikum and Gottfried Vossen. Transactional information systems:
theory, algorithms, and the practice of concurrency control and recovery. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 2001.

[77] Adam Welc, Antony L. Hosking, and Suresh Jagannathan. Transparently rec-
onciling transactions with locking for Java synchronization. In 20th European
Conference on Object-Oriented Programming, volume 4067 of Lecture Notes in
Computer Science, pages 148–173, Nantes, France, July 2006. Springer-Verlag.

[78] AdamWelc, Bratin Saha, and Ali-Reza Adl-Tabatabai. Irrevocable transactions
and their applications. In Friedhelm Meyer auf der Heide and Nir Shavit, edi-
tors, Proceedings of the 20th Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 285–296, Munich, Germany, 2008. ACM.

[79] Andrew Wright and Matthias Felleisen. A syntactic approach to type sound-
ness. Information and Computation, 115(1):38–94, 1994.

[80] Lukasz Ziarek, Adam Welc, Ali-Reza Adl-Tabatabai, Vijay Menon, Tatiana
Shpeisman, and Suresh Jagannathan. A uniform transactional execution envi-
ronment for Java. In Jan Vitek, editor, 22nd European Conference on Object-
Oriented Programming, volume 5142 of Lecture Notes in Computer Science,
pages 129–154, Paphos, Cyprus, 2008. Springer-Verlag.

[81] Ferad Zyulkyarov, Vladimir Gajinov, Osman S. Unsal, Adrián Cristal, Eduard
Ayguadé, Tim Harris, and Mateo Valero. Atomic Quake: using transactional
memory in an interactive multiplayer game server. In Daniel Reed and Vivek
Sarkar, editors, Proceedings of the 14th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, pages 25–34, Raleigh, NC, USA,
2009. ACM.

202

	List of Figures
	List of Listings
	List of Algorithms
	1 Software Transactional Memory
	1.1 Concurrent Programming
	1.1.1 Lock-Based Synchronization
	1.1.2 Message-Based Synchronization
	1.1.3 Transaction-Based Synchronization

	1.2 Designing an STM system
	1.2.1 Semantics of Transactions

	1.3 Contributions of this thesis

	I Twilight STM
	2 Introduction
	3 A Tour of Twilight STM
	3.1 Twilight transactions
	3.1.1 Workflow of twilight transactions
	3.1.2 Properties of Twilight STM

	3.2 The API of Twilight STM
	3.2.1 STM system operations
	3.2.2 Basic transactional operations
	3.2.3 Demarcating groups of variables
	3.2.4 Transactional workflow
	3.2.5 Twilight operations

	3.3 Twilight STM in Action
	3.3.1 Debug traces
	3.3.2 Fine-grained conflict detection for data collections
	3.3.3 External locking protocols
	3.3.4 Applications in a distributed setting

	3.4 Limitations of Twilight STM
	3.4.1 Nesting of transactions
	3.4.2 Reading and writing in the twilight zone
	3.4.3 (Trans)Actions in the twilight zone

	4 Algorithm
	4.1 Globally shared state
	4.2 Transaction local state and operations
	4.2.1 Reading and writing transactional memory
	4.2.2 Committing a transaction
	4.2.3 Repair operations
	4.2.4 Tracking down inconsistencies

	4.3 Properties of the algorithm

	5 Correctness
	5.1 Execution traces
	5.1.1 Successful commits
	5.1.2 Read conflicts
	5.1.3 Snapshot isolation

	5.2 Formalizing STM
	5.2.1 Syntax of STM
	5.2.2 Operational semantics for STM
	5.2.3 Deterministic allocation

	5.3 Opacity
	5.3.1 Effect traces
	5.3.2 Trace anomalies
	5.3.3 Serializing effect traces
	5.3.4 Serializable traces in STM

	5.4 Snapshot Isolation
	5.4.1 Operational semantics for SI
	5.4.2 Snapshot isolation for SI
	5.4.3 Snapshot traces

	5.5 Formalization of Twilight
	5.5.1 Syntax
	5.5.2 Operational Semantics for TWI
	5.5.3 Semantics of Twilight transactions
	5.5.4 Opacity in TWI
	5.5.5 Snapshot isolation in TWI
	5.5.6 Irrevocability in TWI
	5.5.7 The power of Twilight operations

	6 Implementation
	6.1 C
	6.1.1 Evaluation

	6.2 Java
	6.3 Haskell
	6.3.1 Comparison with GHC's STM
	6.3.2 Evaluation

	II Decent STM
	7 Introduction
	8 The Architecture of Decent STM
	8.1 Globally Accessible Objects
	8.2 Transactions
	8.3 Fetching a GAO version
	8.3.1 Example
	8.3.2 Constructing consistent memory snapshots

	8.4 Limiting the Committed Version History List
	8.5 Committing a transaction

	9 Distributed Commit Consensus
	9.1 Consensus and commit consensus in a distributed setting
	9.2 Design of a randomized commit consensus protocol
	9.2.1 Example
	9.2.2 Specification of the protocol
	9.2.3 Correctness

	9.3 Extensions to the protocol

	10 Implementation
	10.1 Components
	10.2 Interface
	10.3 Preprocessing the code

	11 Evaluation
	11.1 Decent STM with shared-memory synchronization
	11.2 Decent STM in a distributed setting

	III Related work and Conclusion
	12 Related Work
	12.1 STM and irrevocability
	12.2 HTM approaches for irrevocability
	12.3 Conflict avoidance
	12.4 Semantics of Transactional Memory
	12.5 STM in Haskell
	12.6 STM in distributed settings
	12.7 Multi-versioned STMs
	12.8 Consensus and commit protocols in STM
	12.9 Code instrumentation for STM

	13 Conclusion
	13.1 Summary
	13.2 Outlook

	Bibliography

