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Abstract

To be truly useful, mobile robots not only need to operate autonomously, they need to

operate autonomously over extended periods of time. In realistic environments, this

means that they need to be able to cope with potential changes in their surroundings.

In this thesis we present different techniques that allow mobile robots to explicitly

represent and reason about changes in the environment. The goal is to enable robots to

reliably operate over extended periods of time in dynamic environments.

We approach the problem of representing and reasoning about dynamic environ-

ments using probabilistic techniques and present solutions to a number of problems

associated to the operation of mobile robots in such environments. These solutions

include an approach to estimate the pose of the robot in semi-static environments, a

model of the environment that represents the occupancy of the space and addition-

ally characterizes how this occupancy changes over time, and a landmark placement

approach that can be used to improve robot navigation in dynamic environments. Fur-

thermore, we address the problem of reasoning in dynamic environments. We define

a situation as a relevant spatio-temporal configuration of the environment and present

two approaches for the modeling and recognition of situations. All solutions presented

in this thesis were implemented and tested in simulation as well as with different mo-

bile robotic platforms. The results show that explicitly considering the dynamics of

the environment can considerably improve the performance of a robotic system.

With this thesis, we contribute to the field of robotics by providing several novel

solutions to a number of relevant problems associated to the operation of mobile robots

in dynamic environments. We develop novel probabilistic models that explicitly rep-

resent the dynamics of the environment and present efficient methods for probabilistic

inference that enable a robotic system to reason about these dynamics. The issues and

challenges addressed in this thesis are fundamental for the ultimate goal of long-term

autonomous operation of mobile robots.





Zusammenfassung

Damit mobile Roboter in Zukunft sinnvoll eingesetzt werden können, müssen sie in

der Lage sein, über längere Zeiträume autonom agieren zu können. Da die meisten in-

teressanten Anwendungsbereiche langfristig gesehen dynamisch sind, müssen mobile

Roboter außerdem mit Veränderungen in der Umgebung umgehen können. Manche

dieser Veränderungen sind nur von kurzer Dauer — wie etwa eine vorbeilaufende Per-

son —, während sich andere über längere Zeiträume erstrecken — wie zum Beispiel,

wenn in einem Büro eine neueWand errichtet wird. Obwohl es in bestimmten Situatio-

nen unproblematisch ist, die Veränderungen zu ignorieren, stellt eine solche Herange-

hensweise oft keine geeignete Lösung dar. Die vorliegende Arbeit beschreibt verschie-

dene Methoden, die einem mobilen Roboter die Repräsentation von und das Urteilen

über Umgebungsveränderungen ermöglichen, mit dem Ziel, über längere Zeiträume in

dynamischen Umgebungen zuverlässig agieren zu können.

Um sowohl sicher als auch effizient zu funktionieren, sind mobile Roboter auf

ein Modell angewiesen, welches die wesentlichen Merkmale ihrer Umgebung und de-

ren Veränderung über die Zeit beschreibt. Eine vollständige Modellierung der Umge-

bung ist offensichtlich nur in sehr einfachen bzw. trivialen Szenarien möglich. Neben

der Vielzahl unterschiedlichster Eigenschaften, die für realistische Anwendungen be-

schrieben werden müssen, ist die Charakterisierung des zeitlichen Verhaltens dieser

Aspekte an sich ein komplexes Problem: Einerseits sind viele Veränderungen unbere-

chenbar und andererseits gibt es, selbst bei vorhersehbaren Veränderungen, meistens

kein allgemeines Modell, um sie angemessen darzustellen. Aus diesen Gründen setzen

viele Ansätze im Bereich der mobilen Robotik eine statische Welt voraus und arbeiten

mit Modellen, die ausschliesslich statische Umgebungsmerkmale repräsentieren.

Diese Arbeit behandelt zwei fundamentale Fragestellungen, die sich aus diesem

Kontext ergeben. Erstens stellt sich die Frage, wie dynamische Umgebungen model-

liert werden können. Zweitens ergibt sich die Frage nach der Inferenz aus diesen Mo-

dellen. Hierzu werden in der Arbeit wahrscheinlichkeitstheoretische Verfahren und



Modelle entwickelt, um Lösungen für mehrere relevante Probleme bereitzustellen, die

mit dem Agieren mobiler Roboter in diesen Umgebungen zusammenhängen.

Nach einem einführenden Kapitel 2, in dem grundlegende Algorithmen und Mo-

dellen erklärt werden, wird in Kapitel 3 ein Lokalisierungsansatz beschrieben, der aus-

gehend von Beobachtungen nicht-statischer Objekte lokale Karten erstellt, welche die

Referenzkarte der Umgebung temporär erweitern. Diese vorübergehenden Karten er-

lauben dem Roboter, seine Position selbst in Bereichen mit lang anhaltenden Verände-

rungen robust zu schätzen. Kapitel 4 präsentiert ein wahrscheinlichkeitstheoretisches

Modell für die Belegung des Raumes, welches zusätzlich die Veränderung dieser Be-

legung über die Zeit charakterisiert. Die explizite Darstellung dieses Wechsels der

Belegung ermöglicht ein besseres Verständnis der Umgebung und somit eine verbes-

serte Roboternavigation. Letzteres kann auch durch die Platzierung leicht erkennba-

rer Landmarken in statischen Bereichen der Umgebung erreicht werden. Insbesondere

verbessert dieses Vorgehen die Navigation auch in symmetrischen Umgebungen oder

in solchen, die nicht über eine ausreichende Anzahl an wiedererkennbaren Merkmalen

verfügen, so dass die Position des Roboters nicht eindeutig bestimmt werden kann.

Dieses Problem der Landmarken-Platzierung zur Minderung der strukturellen Mehr-

deutigkeit der Umgebung wird in Kapitel 5 behandelt. Hier wird ein Verfahren vorge-

stellt für das Berechnen einer Konstellation ununterscheidbarer Landmarken, die die

strukturelle Mehrdeutigkeit der Umgebung reduziert und somit die Zuverlässigkeit der

Lokalisierung erhöht. Die letzten zwei Kapitel beschäftigen sich schlielich mit dem

Problem des Schlussfolgerns in dynamischen Umgebungen, konkret in Verkehrssze-

narien. Eine
’
Situation‘ wird als eine Abfolge relevanter Konfigurationen der Umge-

bung definiert und es wird für jede Klasse von Situationen ein Modell gelernt, welches

die Situation charakterisiert. Diese erlernten Modelle werden dann für die Erkennung

von sich entwickelnden Instanzen der unterschiedlichen Situationsklassen benutzt, und

ermöglichen dem Roboter auf diese Weise anhand der vorkommenden Situationen ra-

tional zu agieren. Zur Modellierung und Erkennung von Situationen werden in diesem

letzten Teil der Arbeit zwei unterschiedliche Ansätze beschrieben: In Kapitel 6 wer-

den Hidden Markov Modelle verwendet, während in Kapitel 7 ein Regressionsansatz

präsentiert wird.

All die Ansätze, die in dieser Arbeit präsentiert werden, wurden sowohl in Si-

mulation wie auch auf unterschiedlichen mobilen Robotern implementiert und evalu-

iert. Dabei zeigen die in diesen Experimenten erzielten Ergebnisse, dass die explizite

Berücksichtigung der Dynamik der Umgebung die Leistungsfähigkeit des Roboters

erheblich verbessern kann.



So leistet die vorliegende Arbeit einen Beitrag auf dem Gebiet der mobilen Ro-

botik indem sie innovative Lösungsansätze zu relevanten Problemstellungen liefert,

die die Performanz von mobilen Robotern in dynamischen Umgebungen verbessern.

Hierzu werden mehrere wahrscheinlichkeitstheoretische Modelle für die Darstellung

der Dynamik der Umgebung entwickelt sowie neue wahrscheinlichkeitstheoretische

Verfahren eingeführt, die es einem Robotersystem erlauben, aus diesen Umgebungs-

modellen effizient zu inferieren. Die Probleme und Herausforderungen, mit denen sich

diese Arbeit befasst, sind wesentliche Bestandteile des langfristigen Ziels, mobile Ro-

boter über längere Zeiträume autonom agieren zu lassen. Konkret setzt sich der Beitrag

dieser Arbeit zusammen aus:

• einem Lokalisierungsverfahren für
”
semi-statische“ Umgebungen,

• einem wahrscheinlichkeitstheoretischen Modell für die Beschreibung dynami-

scher Umgebungen,

• einer Landmarken-Platzierungsmethode für eine verbesserte Lokalisierung des

Roboters und

• einem Verfahren für Situationserkennung in Verkehrsszenarien.
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Not to be absolutely certain is, I think, one of the essential things in rationality.

Bertrand Russell
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Chapter 1

Introduction

As the research field of robotics continues to develop and related technologies im-

prove, mobile robots find new application domains; performing increasingly challeng-

ing tasks in increasingly challenging environments. Robots have been successfully

employed in planetary and underwater exploration, search and rescue missions, and

are currently jamming our streets and parking lots in the form of autonomous cars.

Together with the task’s complexity, operational times are also continually increas-

ing. This emphasizes one of the most difficult challenges faced by mobile robots:

dealing with changes in their surroundings. Some of these changes only last for a brief

period of time, such as moving people or passing cars. Others last for longer periods,

like rearranged furniture and parked cars. And there are some changes that last for

extended periods of time, for example, when a new wall is built in an office, or a new

road is constructed between two towns. Depending on the task at hand, some of these

changes can be irrelevant for the robot and be safely disregarded. This, however, is not

always an appropriate solution, since some changes can influence the robot’s perfor-

mance and therefore need to be taken into account. In this thesis we present different

techniques that allow a mobile robot to explicitly represent and reason about changes

in the environment. The goal is to enable the robot to reliably operate over extended

periods of time in dynamic environments.

The problem with dynamic environments is that they are much more complex to

describe than static ones. For safe and efficient operation, mobile robots rely on in-

formation about both the pertinent aspects of the environment and how these aspects

change over time. This information is referred to as the model of the environment.

Clearly, specifying a model of the complete environment is practically impossible but

for trivial cases. Consider for example the task of modeling the aspects of the world
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relevant to an autonomous car. This would require describing far too many aspects like

roads, other vehicles, pedestrians, etc. In addition to the number of aspects that need

to be described, characterizing the way in which these aspects change over time is a

problem on its own. First, changes may be practically or even inherently unpredictable.

For instance, the behavior of other vehicles subject to the inherently unpredictable de-

cisions of their drivers. And secondly, even when changes can be predicted to some

extend, there is usually no general model to appropriately describe them.

For the reasons illustrated above, most mobile robot systems today make the sim-

plifying assumption of a static environment. A model is provided to the system be-

forehand and is then used as reference disregarding subsequent changes in the envi-

ronment. Robust systems are able to handle some inconsistencies between the model

and the actual environment. However, a largely inconsistent model can degrade the

performance of the system or even lead to a complete failure. Furthermore, the overall

performance of the robot is limited by the lack of information about how the environ-

ment behaves.

In this thesis we approach the problem of representing and reasoning about dy-

namic environments using probabilistic techniques and models. Probabilistic tech-

niques have been successfully applied for solving numerous complex problems with

many sources of uncertainty. The idea is to explicitly represent the uncertainty present

in the system. This uncertainty being the result of the inherent unpredictability of

the environment, noisy and limited perception, unreliable robot actuation, algorithmic

approximations, etc. The incompleteness and limitations of the models themselves,

which are only a partial and approximate description of the environment, are also an

important source of uncertainty.

The contributions of this thesis are solutions to several relevant problems associ-

ated to the operation of mobile robots in dynamic environments. After introducing

in Chapter 2 the fundamental algorithms and models used throughout this thesis, we

present in Chapter 3 an approach to estimate the pose of the robot in a dynamic en-

vironment. The approach relies on the measurements caused by non-static objects to

build local maps that temporarily extend the reference map of the environment. These

temporary maps allow the robot to reliably estimate its pose also in regions that are

subject to persistent changes. In Chapter 4, we describe a probabilistic model of the

environment that represents the occupancy of the space and additionally characterizes

how it changes over time. The explicit representation of how the occupancy changes

provides a better understanding of the environment that can be used to improve the

navigation performance of the robot. Navigation in dynamic environments can also
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be improved by attaching easily detectable landmarks to static parts of the environ-

ment. This strategy can also improve navigation in environments that are structurally

symmetrical or have only few salient features so that the pose of the robot cannot

be uniquely determined. In Chapter 5 we investigate how artificial landmarks can be

placed to reduce the inherent ambiguity in the environment. We present a practical

approach to compute a configuration of indistinguishable landmarks that decreases the

overall ambiguity and thus increases the robustness of the pose estimation. In the last

two technical chapters of this thesis, we address the problem of reasoning about sit-

uations in dynamic environments. We focus on an autonomous car application and

consider traffic situations that typically occur in highway-like driving settings. We de-

fine a situation as a relevant sequence of configurations of the environment and learn,

for each situation type, a model describing the characteristic dynamics of the situation.

These models are then used to recognize instances of the corresponding situations as

they are developing, allowing the robot to act rationally based on the occurring situ-

ations. In Chapter 6 situations are described using hidden Markov models while in

Chapter 7 we present a regression-based approach.

All the approaches presented in this thesis were implemented and tested using sim-

ulation as well as with different mobile robotic platforms. The results show that ex-

plicitly considering the dynamics of the environment can considerably improve the

performance and robustness of a robotic system. The issues and challenges addressed

in this thesis are fundamental to enable mobile robots to operate over extended periods

of time autonomously.

1.1 Contributions of this Thesis

With this thesis, we contribute several novel approaches to the field of robotics by

investigating and developing solutions to a number of problems associated to the oper-

ation of robotic systems in dynamic environments. We develop suitable probabilistic

models to explicitly represent the dynamics of the environment and present probabilis-

tic techniques that enable a robotic system to reason about these dynamics. The goal is

to allow robotic systems to reliably operate over extended periods of time in dynamic

environments. Concretely, the main contributions of this thesis are:

• A robot localization framework for semi-static environments (Chapter 3)

• A probabilistic model for dynamic environments (Chapter 4)
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• A landmark placement approach for improved robot localization (Chapter 5)

• A situation modeling framework for traffic scenarios (Chapter 6 and 7)

1.2 Publications

The work presented in this thesis is partially based on the following publications:

• D. Meyer-Delius, M. Beinhofer, A. Kleiner and W. Burgard, Using Artificial

Landmarks to Reduce the Ambiguity in the Environment of a Mobile Robot.

In Proc. of the IEEE International Conference on Robotics and Automation

(ICRA), Shanghai, China, 2011.

• D. Meyer-Delius, J. Hess, G. Grisetti and W. Burgard, Temporary Maps for Ro-

bust Localization in Semi-static Environments. In Proc. of the IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan,

2010.

• D. Meyer-Delius, J. Sturm and W. Burgard, Regression-Based Online Situation

Recognition for Vehicular Traffic Scenarios. In Proc. of the IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), St. Louis, USA,

2009.

• D. Meyer-Delius, C. Plagemann and W. Burgard, Probabilistic Situation Recog-

nition for Vehicular Traffic Scenarios. In Proc. of the IEEE International Con-

ference on Robotics and Automation (ICRA), Kobe, Japan, 2009.

• D. Meyer-Delius, C. Plagemann, G. von Wichert, W. Feiten, G. Lawitzky, W.

Burgard, A Probabilistic Relational Model for Characterizing Situations in Dy-

namic Multi-Agent Systems. In Proc. of the Conference of the German Classifi-

cation Society on Data Analysis, Machine Learning, and Applications (GFKL),

Freiburg, Germany, 2007.



Chapter 2

Basics

In this chapter we review the fundamental algorithms and models used throughout

this thesis. First, we introduce the mobile robot localization problem and present the

Monte-Carlo localization algorithm — one of the most popular approaches to robot

localization. We then discuss gird maps, also a popular technique for representing the

environment in the field of mobile robotics. Finally, we present the hidden Markov

model, a probabilistic graphical model for state estimation in dynamic systems that

allows for simple and elegant implementations of the basic inference tasks.

2.1 Mobile Robot Localization

Mobile robot localization consists in estimating the pose of the robot relative to a given

map of the environment using sensor data. Accurate and robust localization is essential

for the successful navigation of the robot in the environment.

The localization problem can be divided into two types depending on the informa-

tion available to the robot about its initial pose in the reference map (see [Thrun et al.,

2005] for an in-depth discussion about the different classes of localization problems).

In case that a good estimate is available, the localization problem is referred to as posi-

tion tracking. Since the initial pose is assumed to be known, position tracking consists

in adjusting the pose of the robot as new sensor data is obtained. If, on the other hand,

no information about the initial pose is available, the localization problem is referred

to as global localization. This problem is much harder because a larger number of

potential initial poses has to be considered. Position tracking is a special case of the

global localization problem in which the initial pose of the robot is given. There is

also a variant of the global localization problem known as the kidnapped robot prob-
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lem. While in global localization the pose of the robot is known to be unknown, in the

kidnapped robot problem, the pose of the robot is incorrectly believed to be known.

This is a much harder problem since in certain situations, for example in dynamic

environments or environments that are structurally symmetrical or have only few rec-

ognizable features, it is not possible for the robot to determine that its estimated pose

is incorrect.

Besides the available information about the initial pose of the robot, localization

problems can again be divided into two types depending on the behavior of the envi-

ronment over time. Localization in static environments assumes that the environment

does not change over time while localization in dynamic environments addresses the

more general case where other objects besides the robot can change their location or

configuration. Although environments are, in general, dynamic, the majority of ex-

isting localization approaches assume a static environment. Dealing with dynamic

environments is, in most of the cases, more difficult than dealing with static ones.

In the next section we describe the Monte-Carlo localization algorithm [Dellaert

et al., 1999] for estimating the pose of the robot in static environments. Monte-Carlo

localization is one of the most popular localization approaches in robotics. It is a

probabilistic algorithm robust to some unmodeled dynamic in the environment and

capable of addressing the global localization problem.

2.1.1 The Monte-Carlo Localization Algorithm

As already mentioned, the mobile robot localization problem consists in estimating

the pose of a robot relative to a given map of the environment using sensor data. In

this thesis, we consider only robots restricted to planar environments, thus the pose

of the robot xt = (rxt , r
y
t , r

θ
t )

T at time t is given by its two location coordinates rxt
and ryt in the plane and its orientation r

θ
t . The sensor data consists in exteroceptive data

z1:t = z1, z2, . . . , zt referred to as measurements or observations, and proprioceptive

data u1:t = u1, u2, . . . , ut, which in this thesis corresponds to odometry measurements.

An odometry measurement ut represents the relative motion of the robot between the

poses xt−1 and xt. An observation zt represents some information about the state of the

environment at time t. Throughout this thesis we consider only laser range scanners.

This type of sensors generate more than one measurement at any given time. Thus,

an observation zt = {z1t , . . . , zKt } consists of a set of K individual measurements

zit = (dit, ϕ
i
t), where d

i
t is the distance to the nearest object along the beam of the laser,

and ϕi
t is the orientation of the beam in the local coordinate system of the sensor.
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The goal of the Monte-Carlo localization (MCL) algorithm is to estimate the pos-

terior distribution p(xt | z1:t, u1:t,m) of the robot’s pose xt at time t conditioned on

the observations z1:t, odometry measurements u1:t, and map of the environment m.

The Monte Carlo principle consists in drawing a set of N independent and identically

distributed samples xi from a target distribution p(x) to approximate the target distri-

bution as

p̂(x) =
1

N

N
∑

i=1

δxi(x) , (2.1)

where δxi(x) denotes the Dirac delta located at xi. Under mild assumptions, the es-

timate p̂(x) will almost surely converge to the target distribution p(x) as the number

of samples N approaches infinity. One of the main advantages of this non-parametric

approximation is that it is appropriate to represent complex multimodal distributions,

like the ones that arise during global localization, for example.

Unfortunately, in the context of localization, drawing samples directly from the

posterior p(xt | z1:t, u1:t,m) can be difficult to realize. To solve this problem, a tech-

nique called importance sampling (see [Andrieu et al., 2003]) is used. The idea is to

draw the samples from an easy-to-sample proposal distribution π(x) and approximate

the target distribution p(x) as

p̂(x) =
N
∑

i=1

w(xi) δxi(x) , (2.2)

where w(x) is referred to as the importance weight, and is defined as

w(x) =
p(x)

π(x)
. (2.3)

The importance weight is a value greater than zero and the sum of all the weights must

add up to 1. Furthermore, in order for Equation (2.2) to be correct, the support of

the proposal distribution π(x) must include the support of the target distribution p(x).

In essence, the importance weight accounts for the dissimilarity between the target

and the proposal distribution. Importance sampling allows us to sample from an easy-

to-sample distribution to approximate another not-so-easy-to-sample by attaching an

importance weight according to Equation (2.3) to each sample.

The MCL algorithm is, as its name implies, based on the Monte Carlo principle.

It represent the posterior p(xt | z1:t, u1:t,m) of the pose xt of the robot at time t us-
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ing a set St of N weighted samples or particles, where each particle corresponds to a

potential pose of the robot. The general MCL approach is described in Algorithm 2.1.

The input of the algorithm is the particle set St−1 at the previous time step t − 1,

the most recent odometry measurement ut, and the most recent observation zt. The

algorithm consists basically in three steps: sampling, importance weighting, and re-

sampling. In the sampling step (line 3 in Algorithm 2.1) the next generation of particles

is created by drawing N samples from the proposal distribution p(xt | xt−1, ut). This

distribution corresponds to a probabilistic motion model of the robot that describes a

posterior density over possible poses xt given the previous pose xt−1 and most recent

odometry measurement ut. In the importance weighting step (line 4) the importance

weight wi
t for each previously drawn particle xit is calculated according to the obser-

vation model p(zt | xt,m). The observation model represents the likelihood of the

most recent observation zt given the map of the environment m and the pose xt. In

the final resampling step (lines 8 through 11) the resulting set of particles St is created

by drawing with replacement N particles from the temporary set S̄t. The probabil-

ity of drawing a sample xit is proportional to its weight wi
t, therefore particles with

high weights are more likely to be included in the resulting set than particles with low

weights. The resampling step can be though of as a probabilistic version of the natu-

ral selection mechanism of evolution. Figure 2.1 illustrates the MCL approach in the

context of global localization. The particles, corresponding to potential robot poses,

are initially distributed uniformly over the free space in the map. As the robot moves

through the environment and new evidence, i.e., odometry information and observa-

tions, becomes available, unlikely particles are discarded and the remaining particles

concentrate around the most likely poses.

Odometry Motion Model

The sampling step of the MCL algorithm requires a motion model which is used as

proposal distribution to draw the next generation of samples based on the previous

pose of the robot and most recent odometry measurement. The motion model describes

probabilistically how the pose of the robot changes as the result of control actions. The

model represents the posterior distribution p(xt | xt−1, ut) over robot poses given the

robot pose xt−1 at the previous time step and control action ut. The motion model of

the robot strongly depends on the type of locomotion and the hardware of the robotic

platform. Throughout this thesis, odometry readings are interpreted as control actions.

They describe the relative motion of the robot between two poses and are commonly
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Algorithm 2.1 The Monte Carlo localization algorithm

Input: Particle set St−1, odometry measurement ut, and observation zt.
1: S̄t = ∅
2: for i = 1 to N do

3: draw xit ∼ p(xt | xit−1, ut)
4: wi

t = p(zt | xit,m)
5: S̄t = S̄t ∪

{〈

xit, w
i
t

〉}

6: end for

7: St = ∅
8: for i = 1 to N do

9: draw xit from S̄t with probability proportional to wi
t

10: St = St ∪
{〈

xit, 1/N
〉}

11: end for

12: return St

(a) (b)

(c) (d)

Figure 2.1: Illustration of the Monte-Carlo localization approach in the context of

global localization. The arrow indicates the true pose of the robot and the red dots

represent the particles corresponding to potential robot poses. (a) The particles are

initially distributed uniformly over the free space in the map. (b) - (d) As the robot

moves through the environment unlikely particles are discarded and the remaining

particles concentrate around the most likely poses.

obtained from the wheel encoders of the robot.

One way to represent the relative motion ut of the robot between two poses xt−1

and xt, proposed by [Hähnel et al., 2003a], is to decompose the movement into a

sequence of three independent steps or actions: an initial rotation δrot1, a straight line
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motion or translation δtrans, and a final rotation δrot2. These independent components

can be computed as

δrot1 = atan2(ryt − ryt−1, r
x
t − rxt−1)− rθt−1

δtrans =
√

(rxt − rxt−1)
2 + (ryt − ryt−1)

2

δrot2 = rθt − rθt−1 − δrot1 .

Assuming that these three parameters are corrupted by independent noise allows us to

easily sample poses from the distribution p(xt | xt−1, ut) given an initial pose xt−1

and odometry reading ut. This motion model is particularly well-suited for robots

equipped with a differential drive that, for example, cannot move sideways. Other

motion models for differential drives and other types of drives have been proposed in

the literature, but if the pose of the robot is estimated frequently enough, the effect of

using a different model is usually insignificant.

Observation Model

Besides the motion model, the MCL algorithm also requires an observation model to

compute the importance weights of the particles. The observation model describes the

probability p(zt | xt,m) of making an observation zt given the pose xt of the robot

and the map m of the environment. As the motion model, the observation model also

strongly depends on the type of sensor used by the robot to perceive its environment.

In this thesis, we consider only laser range scanners. These type of sensors are very

common in robotics and state-of-art for distance measurements given their high ac-

curacy. Laser scanners provide, at any given point in time t, a set of N individual

measurements zit. These are assumed to be independent from each other and, there-

fore, the probability p(zt | xt,m) of an observation zt can be computed as the product

of the probabilities of the individual measurements

p(zt | xt,m) =
N
∏

i=1

p(zit | xt,m) . (2.4)

Each individual measurement zit = (dit, ϕ
i
t) consists of a range measurement dit with

an associated orientation ϕi
t in the local coordinate system of the sensor. The value of

dit corresponds to the distance to the nearest object along the beam of the laser. The

mapm represents the location of the relevant objects in the environment.
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The likelihood of each range measurement zit is computed according to a mixture of

three distributions corresponding to three different types of measurement errors: mea-

surement noise, measurement failures, and random measurements. The measurement

noise is modeled by a narrow Gaussian distribution phit(z
i
t) ∼ N (d, σ2

hit) with mean d

and standard deviation σhit. The value of d corresponds to the distance between the

endpoint of the measurement zit and its closest obstacle in the map m. Measurement

failures typically result in maximum range readings, that is, the sensor returns its max-

imum allowable value zmax. This type of error is modeled as a point-mass distribution

pmax(z
i
t) centered at zmax. Finally, random measurements are modeled with a uniform

random distribution prand(z
i
t) over the entire allowable range of the sensor. The re-

sulting probability p(zit | xt,m) for an individual range measurement is given by the

mixture

p(zit | xt,m) = whit · phit(zit) + wmax · pmax(zit) + wrand · prand(zit) , (2.5)

where whit, wmax, and wrand are positive weighting factors that sum up to 1. This model

is known as the likelihood field model and was first proposed by [Thrun, 2001]. Its

key advantage is that the resulting distribution p(zt | xt,m) is smooth: small changes

in the pose of the robot produce only small changes in the distribution. This is a

desirable property, in particular for the MCL algorithm, since particles that are close

to each other will be assigned similar weights. Under the premise that a particle in

the correct pose is assigned a high weight, then all near particles will also be assigned

a similarly high weight. A highly discontinuous distribution p(zt | xt,m), on the

other hand, would assign nearby particles different — probably considerably lower —

weights, and particles that are actually close to the correct pose could be eliminated

in the resampling step. The main disadvantage of the likelihood field model is that

it explicitly disregards the geometry of the environment and the physics of the range

finder. Figure 2.2 shows a map of an environment with its associated likelihood field.

2.2 Grid Maps

Mobile robot localization, as well as path planning and other functionalities funda-

mental for safe and reliable navigation, required a map or representation of the robot’s

environment. Many different representations have been proposed in the robotics lit-

erature. For robots operating in planar environments, grid maps are one of the most

commonly used representations. A grid map is a tessellation of the space into a num-
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Figure 2.2: Occupancy grid map of the parking lot of the Department of Computer

Science at the University of Freiburg (left) and associated likelihood field (right). The

darker the color of a location in the likelihood field, the lower the likelihood for a beam

to end up in that location.

ber of cells where each cell contains information about some features of its associated

space. In the context of robot localization, the tessellation of the space is usually reg-

ular, the cells are rectangular, and the presence of an obstacle is the most commonly

considered feature of the environment. Figure 2.3 shows two grid maps corresponding

to two different environments. The darker the color of an area, the higher the like-

lihood for it of being occupied by an obstacle. Grid maps are popular because they

allow constant time access to the information in a cell and are straightforward to im-

plement. They don’t necessarily rely on predefined features that need to be extracted

from sensor data. Furthermore, they are also able to represent areas of the environ-

ment for which no data is available. The main disadvantages of grid maps is that the

discretization process can create artifacts in the representation and they don’t scale

well to large environments. In the following section we describe an approach called

Occupancy Probability Mapping for creating grid maps using sensor measurements.

2.2.1 Occupancy Probability Mapping

The goal of the occupancy probability mapping algorithm is to estimate the posterior

p(m | z1:t, x1:t) over the mapm given the sequence z1:t of sensor readings obtained by

the robot at poses x1:t. Grid maps partition the space into a finite number of grid cells,

so thatm = {ci} where ci denotes the grid cell with index i. Each cell ci is assumed to

be either free or occupied and can be though of as a binary variable where p(ci) denotes

the probability for the cell of being occupied. In this section we present the occupancy
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Figure 2.3: Occupancy grid map of the foyer of building 101 (top) and parking lot

(bottom) of the Department of Computer Science at the University of Freiburg. The

darker the color of an area, the higher the likelihood of being occupied by an obstacle.

A resolution of 0.1 and 0.2 meters were used, respectively, for the cells of the top and

bottom grids.
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probability mapping algorithm introduced by Moravec and Elfes [Moravec and Elfes,

1985] for computing the the posterior p(m | z1:t, x1:t). The derivation presented in this
section, follows the one presented by [Hähnel, 2004] and [Stachniss, 2006].

The algorithm assumes that the cells in the map are independent from each other

and estimates the occupancy probability p(ci | z1:t, x1:t) of each cell ci individually.

The posterior p(m | z1:t, x1:t) over the map is thus approximated as the product of the

posteriors p(ci | z1:t, x1:t) over the individual cells ci in the map

p(m | z1:t, x1:t) =
∏

i

p(ci |, z1:t, x1:t) , (2.6)

where

p(ci | z1:t, x1:t) =
p(zt | ci, z1:t−1, x1:t) p(ci | z1:t−1, x1:t)

p(zt | z1:t−1, x1:t)
. (2.7)

The previous equation is obtained by applying Bayes’ rule using z1:t−1 and x1:t as

background knowledge. Assuming that the observation zt is independent from z1:t−1

and x1:t−1 leads to

p(ci | z1:t, x1:t) =
p(zt | ci, xt) p(ci | z1:t−1, x1:t)

p(zt | z1:t−1, x1:t)
. (2.8)

Reformulating the term p(zt | ci, xt) in the previous expression according to Bayes’

rule and assuming that ci is independent from the robot’s pose xt if there is no sensor

reading zt we obtain

p(ci | z1:t, x1:t) =
p(ci | zt, xt) p(zt | xt) p(ci | z1:t−1, x1:t−1)

p(ci) p(zt | z1:t−1, x1:t)
. (2.9)

Since it is assumed that each cell ci is either free or occupied, the following equa-

tion is derived in an analogous way

p(¬ci | z1:t, x1:t) =
p(¬ci | zt, xt) p(zt | xt) p(¬ci | z1:t−1, x1:t−1)

p(¬ci) p(zt | z1:t−1, x1:t)
. (2.10)

Dividing Equation (2.9) by Equation (2.10) we obtain

p(ci | z1:t, x1:t)
p(¬ci | z1:t, x1:t)

=
p(ci | zt, xt) p(¬ci) p(ci | z1:t−1, x1:t−1)

p(¬ci | zt, xt) p(ci) p(¬ci | z1:t−1, x1:t−1)
, (2.11)
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and, given that p(¬ci) = 1− p(ci), the previous equation can be reformulated as

p(ci | z1:t, x1:t)
1− p(ci | z1:t, x1:t)

=

p(ci | zt, xt)
1− p(ci | zt, xt)

· 1− p(ci)

p(ci)
· p(ci | z1:t−1, x1:t−1)

1− p(ci | z1:t−1, x1:t−1)
. (2.12)

Finally, using the log odds representation

l(x) = ln
p(x)

1− p(x)
,

Equation (2.12) can be written as

l(ci | z1:t, x1:t) = l(ci | zt, xt)− l(ci) + l(ci | z1:t−1, x1:t−1) , (2.13)

where l(ci) corresponds to the prior occupancy of the cell ci represented as log odds. In

practice, the prior is often assume to be 0.5. In this case, the term l(ci) can be omitted

from the equation.

Using Equation (2.13), the belief about the occupancy of a cell can be computed

incrementally as sensor readings become available. The log odds representations al-

lows the computations to be performed efficiently using sums and avoids numerical

instabilities for extreme probabilities.

Inverse measurement model

It remains to describe how to compute the inverse measurement model p(ci | zt, xt) of a
cell given a single sensor reading zt and corresponding robot pose xt. This probability

corresponds to the term l(ci | zt, xt) in Equation (2.13). In contrast to the observa-

tion model specified by Equation (2.4), the inverse measurement model reasons from

effects to causes.

This model strongly depends on the sensor used. As already mentioned, in this

thesis we deal only with laser range finders that generate, at each time t, a sensor

reading zt = {z1t , . . . , zKt } consisting of K range measurements which are assumed

to be independent from each other. Let C i
t = {ci,1t , . . . , ci,Nt } be the cells covered

by range measurement zit. The last cell ci,Nt , corresponds to the cell where the the

measurement zit ends. The occupancy probability p(ci | zit, xt) of map cell ci given a



32 CHAPTER 2: BASICS

single range measurement zit and pose xt can be computed as

p(ci | zit, xt) =







pocc if ci = ci,Nt
pfree if ci ∈ C i

t ∧ ci 6= ci,Nt
0.5 otherwise,

(2.14)

where 0 < pfree < 0.5 < pocc ≤ 1. The expression above simply states that a cell

covered by the range measurement is considered as free if the measurement does not

end in it. On the other hand, a cell in which a range measurement ends is considered

occupied. The occupancy probability of the cells not covered by the measurement

remain unchanged. Range measurements corresponding to a maximum range reading

are ignored.

2.3 Hidden Markov Models

The robot localization problem presented in the first section of this chapter, is an in-

stance of the general problem of state estimation in dynamic systems. In the localiza-

tion problem the state of the system is the pose of the robot, the motion model describes

the evolution of the system over time, and the observation model relates the observa-

tions or evidence about the state of the system with the actual state. In this section,

we describe the general problem of state estimation in dynamic systems and present a

concrete temporal probabilistic model called the hidden Markov model (see [Rabiner,

1989]) for characterizing and reasoning in dynamic systems.

In a hidden Markov model (HMM) the state of the system at time t is represented

by a discrete random variable xt. This random variable represents the relevant aspects

of the system at time t and can be though of as a snapshot of the system at that specific

time. It is assumed that the state of the system depends only on a finite history of

previous states. This is known as the Markov assumption. Commonly the state xt
is only conditioned on the previous state xt−1. Furthermore, it is assumed that the

changes in the system are caused by stationary processes. These two assumptions are

summarized by the state transition model

p(xt | x1:t−1) = p(xt | xt−1), ∀t. (2.15)

In addition to the Markov and stationary process assumptions, it is also assumed

that the observation zt at time t depends only on the current state of the system xt.
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Figure 2.4: Graphical representation of a dynamic system described by a hidden

Markov model. A discrete random variable xt represents the hidden state of the sys-

tem at time t. The observation or evidence at time t are represented by the random

variable zt. The arrows indicate the dependencies between the variables.

This is expressed by the observation model

p(zt | x1:t, z1:t−1) = p(zt | xt), ∀t. (2.16)

The observations are the result of a stochastic process that depends on the state of the

system. The actual state of the system is not directly observable, that is, it is hidden

and can only be inferred through the observations. Although they cannot be observed

directly, in many practical applications the states are associated to some meaningful

interpretation. Figure 2.4 shows a graphical representation of a dynamic system de-

scribed by an HMM.

Besides the transition and observation models, an HMM also requires the specifi-

cation of the prior or initial state distribution p(xt=0) to characterize the complete joint

distribution p(x0:t, z1:t) over all the variables

p(x0:t, z1:t) = p(xt=0)
t

∏

τ=1

p(xτ | xτ−1) p(zτ | xτ ) . (2.17)

Formally, an HMM is characterized by the following elements:

• A set Q = {q1, q2, . . . qN} of N possible model states. As already mentioned,

the state of the system at time t is represented by the random variable xt.

• A set V = {v1, v2, . . . vM} ofM possible observations. These correspond to the

evidence about the states of the model that can be directly observed.

• The state transition model p(xt = qi | xt−1 = qj) for all states qi and qj . Accord-

ing to the stationary process assumption, the transition probabilities only need

to be specified for every pair of states since they do not change over time. For
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notational convenience, the probability of changing from state qj to state qi is

sometimes denoted as aji.

• The observation model p(zt = vk | xt = qi) for all states qi and observations

vk. Analogous to the transition probabilities, the observation probabilities need

to be specified only for every pair of state and observation. The probability of

observing vk in state qi is sometimes represented as bi(k).

• The initial state probability p(xt=0 = qi) for all states. This probability can also

be denoted as πi.

Compactly, a hidden Markov model can be specified as λ = (A,B, π), where

A = {aij}, B = {bi(k)}, and π = {πi}. The structure of the HMM allows for

simple and elegant implementations of the basic inference tasks. In the next section

we describe how the filtering and prediction tasks can be solved for HMMs.

2.3.1 Filtering and Prediction

Filtering consists in estimating the state of the system at some specific time given all

previous evidence. This corresponds to estimating the belief or posterior distribution

p(xt | z1:t) over the state xt given the sequence of observations z1:t. From the dis-

cussion in Section 2.1.1, it can be seen that the MCL approach is a filtering process

where the pose of the robot is estimated given all previous observations and odometry

measurements.

Filtering is performed recursively. The belief at time t is computed from the belief

at time t− 1. Using Bayes’ rule, the belief at time t can be written as

p(xt | z1:t) = η p(zt | xt, z1:t−1) p(xt | z1:t−1) , (2.18)

where η is a normalizing constant to make the probabilities sum up to 1. Since it is

assumed that the observation zt at time t depends only on the state of the system xt at

time t, Equation (2.18) can be simplified as

p(xt | z1:t) = η p(zt | xt) p(xt | z1:t−1) . (2.19)

The second term on the right hand side of the previous equation, p(xt | z1:t−1) rep-

resents a prediction of the belief at time t based on the evidence up to time t − 1.
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Applying the theorem of total probability conditioning on xt−1 we obtain

p(xt | z1:t) = η p(zt | xt)
∑

xt−1

p(xt | xt−1, z1:t−1) p(xt−1 | z1:t−1) . (2.20)

According to the Markov assumption, the state xt is only conditioned on the previous

state xt−1. Therefore, Equation (2.20) can be simplified as

p(xt | z1:t) = η p(zt | xt)
∑

xt−1

p(xt | xt−1) p(xt−1 | z1:t−1) . (2.21)

The first factor within the summation, p(xt | xt−1), corresponds to the state transition

model, and the second factor corresponds to the belief at time t − 1. This recursive

filtering approach is known as the Bayes filter and for HMMs can be implemented in

a very simple and elegant way using matrices and vectors.

Prediction is the task of estimating the posterior distribution p(xt+k | z1:t) over the
future state xt+k at time t + k given the sequence of observations z1:t up to time t.

Prediction can be considered as filtering without the processing of evidence. The pre-

diction at t+ k + 1 is computed recursively from the prediction at time t+ k as

p(xt+k+1 | z1:t) =
∑

xt+k

p(xt+k+1 | xt+k) p(xt+k | z1:t) . (2.22)

2.3.2 Parameter Estimation

As mentioned above, a hidden Markov model is specified by the state transition prob-

abilities A = {aij}, the observation model B = {bi(k)}, and the initial state probabil-

ities π = {πi}. These parameters are usually determined from data, that is, from one

or multiple sequences of observations that are assumed to be generated by the model

under consideration.

One of the most popular approaches for estimating the parameters of an HMM is

an instance of the expectation-maximization (EM) algorithm. The idea is to start with

some initial value for the parameters and, based on the training data, use inference to

obtain an estimate of the hidden states that generated the data. Then, the parameters

of the model are re-estimated based of the obtained hidden states. These two steps,

called the expectation and maximization steps respectively, are repeated until conver-

gence. Let θ̂n = ({ânij}, {b̂njk}) represent the parameters estimated at the n-th iteration

and let z1:T be the observation sequence used for estimating the parameters. The EM
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algorithm results in the following re-estimation formula for the transition model

ân+1
ij =

∑T
τ=1 p(xτ−1 = qi, xτ = qj | z1:T , θ̂n)
∑T

τ=1 p(xτ−1 = qi | z1:T , θ̂n)
, (2.23)

and observation model

b̂n+1
jk =

∑T
τ=1 p(zτ = vk, xτ = qj | z1:T , θ̂n)
∑T

τ=1 p(xτ = qi | z1:T , θ̂n)
, (2.24)

Note that the probabilities on the right-hand side are conditioned on the observation

sequence z1:T and the previous parameter estimates θ̂n. These probabilities can be

efficiently computed using the forward-backward procedure [Rabiner, 1989].

The algorithm computes the parameters of the model that locally maximize the

likelihood of the training data. However, there is no guarantee for this local maximum

to be a global maximum too. The results strongly depend on the choice of the initial

parameters. The right parameters can lead to a global maximum, while the wrong

parameters can even lead to a trivial solution. There is no straightforward approach for

selecting good initial parameters. In practice, random or uniformly distributed initial

values for the initial state and transition probabilities usually lead satisfactory results.

For the observation model, however, better initial parameters are usually needed. One

way to obtain more informed initial estimates is, for example, to manually segment

the observations according to the states in the model and then average the observations

within each segment. Alternatively, some clustering technique, like k-means, could be

used to group the observations according to states.

Another problem associated to estimating the parameters is that of insufficient

training data. Usually, the number of state transitions and observations is not enough

to obtain appropriate estimates. One obvious solution to this problem is to obtain more

training data. This is, however, not always possible or practical. Alternatively, the size

of the model can be reduced, for example, by reducing the number of states. This

solution is, however, can lead to inadequate models.
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Chapter 3

Temporary Maps for Robust

Localization in Semi-Static

Environments

Most mobile robot localization approaches, including the Monte-Carlo localization

approach presented in the previous chapter, rest on the simplifying assumption of a

static environment. A reference map of the environment is provided beforehand and

is then used as ground truth disregarding potential subsequent changes. To cope with

non-static environments, one popular technique is simply to ignore the measurements

that are not explained by the reference map. This assumes that objects are either static

and represented in the map or dynamic and should be ignored for localization. Whereas

this technique has been demonstrated to be robust in highly dynamic environments, it

ignores valuable localization information when the changes take place infrequently.

In this chapter, we describe a localization framework that exploits the measure-

ments caused by certain non-static objects to build local maps that temporarily extend

the reference map of the environment. Using these temporary maps, the robot can reli-

ably estimate its pose also in regions that are subject to persistent changes. The motiva-

tion behind this approach is that many objects, referred to as semi-static, change their

locations with a relatively low frequency and therefore provide important localization

information. For example, consider a parking lot as the one depicted in Figure 3.1. In

such an environment there are only a few static objects. Additionally, the parked cars

occlude them most of the time. As a result almost no features remain that can be used

for localization by standard approaches. The parked cars, however, provide on their

own important features for localization.
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Figure 3.1: In large open spaces like parking lots, semi-static objects (parked cars)

provide an abundant source of features for localization. The static objects (walls) are

not only few but are also occluded by the non-static objects.

As already mentioned, in many practical mobile robot applications, a reference

map representing the static parts of the environment is available beforehand. However,

most interesting environments are not static and mobile robots must be able to deal

with changes in the environment. Our proposed approach is an extension of the Monte-

Carlo localization (MCL) approach for static environments presented in Chapter 2. We

assume that a reference map representing the static objects in the environment is given.

When the observations of the robot are consistent with this map, the approach corre-

sponds exactly to the standard MCL approach. However, we also use temporary maps

to keep track of the inconsistent observations caused by semi-static objects. Whenever

the robot enters an area for which a temporary map already exists we try to use this

map to improve the localization. Taking advantage of the measurements caused by

semi-static objects is particularly important in large open spaces like the parking lot in

Figure 3.1 or warehouses, where the static parts of the environment are few and usually

occluded, but many semi-static objects provide valuable localization information.

In this chapter we present a localization approach capable of dealing with semi-

static environments. We provide a probabilistic formulation of the localization prob-

lem where the semi-static aspects of the environment are explicitly modeled. We keep

track of the observations caused by the semi-static objects in the environment in the

form of local maps that temporarily extend the static map of the environment. At its
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Figure 3.2: Graphical model of the mobile robot localization process in semi-static

environments. The observations zt at time step t are explained by both the static mapm
and the corresponding semi-static map dt.

core, our localization framework relies on the MCL approach for estimating the pose

of the robot using the extended static map. Experimental results demonstrate that by

exploiting the observations caused by semi-static objects our approach is capable of

robustly estimating the pose of the robot where standard approaches fail.

3.1 Localization in Semi-Static Environments

As described in Chapter 2, robot localization consists in estimating the probability

density p(xt | z1:t, u1:t,m) of the robot’s pose xt in a known mapm, given a sequence

of observations of the environment z1:t and odometry measurements u1:t. Most exist-

ing solutions to the localization problem assume that the objects in the environment

are either static and represented in the map or dynamic and should be ignored for lo-

calization. Accordingly, these approaches classify objects into two classes: static and

dynamic. In contrast, we classify the objects in the environment into three different

classes according to their dynamics

• static objects: like buildings, that do not change their location.

• semi-static objects: like parked cars, that change their locations with a relatively

low frequency. In particular, we assume that these objects do not change their

location while the robot is observing them.
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• dynamic objects: like moving people, that frequently change their location. Un-

like semi-static objects, dynamic objects do change their location while being

observed by the robot.

We assume that dynamic objects are detected and filtered out. The map m repre-

sents the static objects in the environment whereas the map dt represents the semi-static

objects at time t. Figure 3.2 depicts the dynamic Bayesian network describing the lo-

calization process in a semi-static environment. The main difference to standard lo-

calization approaches in static environments is that we explicitly model the fact that

the observation zt at time step t is explained by both, the static map m and the semi-

static map dt. Additionally, we model the transition probability p(dt | dt−1, zt−1) that

characterizes the temporal dependency between semi-static maps.

According to our formulation, robot localization in semi-static environments re-

quires to jointly estimate the probability distribution p(xt, dt | z1:t, u1:t,m) over robot

poses and semi-static maps. To this end one could use one of the many simultaneous

localization and mapping (SLAM) algorithms available (see [Thrun, 2002] for a sur-

vey on the literature on the field) and initialize it with the known static map. However,

the majority of SLAM approaches is based on the assumption that the environment is

static and the presence of non-static objects can lead to serious errors in the resulting

maps as we demonstrate in the experimental section of this chapter. Exploiting the

conditional independence assumptions encoded in the dynamic Bayesian network of

Figure 3.2 and applying Baye’s rule we can write the SLAM posterior as

p(xt, dt | z1:t, u1:t,m) = η p(zt | xt, dt,m) p(xt, dt | z1:t−1, u1:t,m) . (3.1)

Applying the theorem of total probability we can rewrite the previous equation as

p(xt, dt | z1:t, u1:t,m) = η p(zt | xt, dt,m)
∫∫

p(xt, dt | xt−1, dt−1, zt−1, ut) p(xt−1, dt−1 | z1:t−1, u1:t−1,m) ddt−1 dxt−1 . (3.2)

Note that the static map m, the odometry measurements u1:t−1, and the observations

z1:t−2 up to time step t − 2 can be dropped from the evidence in the first term inside

the integral because xt and dt do not depend on them given xt−1, dt−1 and zt−1 (see

Figure 3.2). Similarly, we drop the odometry measurement ut at time t from the evi-

dence in the second term inside the integral which then turns into a recursive term that

corresponds to the SLAM posterior at the previous time step.
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Figure 3.3: Since semi-static objects change their locations with a relatively low fre-

quency, one semi-static map di can explain observations at different time steps.

According to the conditional independence assumptions in our model, the first term

inside the integral can be written as

p(xt, dt | xt−1, dt−1, zt−1, ut) = p(xt | xt−1, ut) p(dt | dt−1, zt−1) . (3.3)

This holds by the rules of d-separation since given the evidence xt−1, dt−1, zt−1, and

ut, the pose xt of the robot and the map dt are conditionally independent from each

other. Given xt−1, the map dt−1 and observation zt−1 at time step t − 1 provide no

additional information about the pose of the robot xt at time t. Similarly, given dt−1

and zt−1, the pose xt−1 of the robot at time step t− 1 and odometry measurement ut at

time t provide no additional information about the map dt at time t. The distribution

p(xt | xt−1, ut) in Equation (3.3) corresponds to the motion model of the robot and

p(dt | dt−1, zt−1) represents the temporal dependency between maps dt and dt−1.

In Chapter 4 we present an approach to learn the temporal dependency between

maps at consecutive time steps. In this chapter, however, we assume that a map either

consistently explains the measurements zt at time t or it is not valid anymore and needs

to be re-estimated. This transition model for maps can be formulated as

p(dt | dt−1, zt−1) =

{

δdt−1
(dt) if zt−1 is consistent with the map dt−1

U(dt) otherwise.
(3.4)

The expression δdt−1
(dt) denotes the Dirac delta located at dt−1 and U(dt) corresponds

to a uniform distribution about potential maps at time t. Figure 3.3 provides an intuitive

interpretation for this model; semi-static objects change their location with a relatively

low frequency and, therefore, we assume that the map does not necessarily change

between consecutive time steps. However, when the semi-static objects do change, that

is, when the existing map does not consistently explain the measurements anymore, it

is disregarded, and a new map is built from scratch. In the following section we present

our approach for robot localization in semi-static environments in more detail.
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Figure 3.4: Semi-static maps extending the static map of a parking lot. The static map

of the environment (structures at the bottom in black) is shown together with three

different semi-static maps (colored in blue, green, and red).

3.2 Temporary Maps

The key idea of our approach is to use the measurements caused by semi-static objects

to improve the localization capabilities of the robot. With these measurements, we

build local semi-static maps that temporarily extend the static map of the environment.

Due to the temporal nature of these maps we refer to them both as semi-static or

temporary maps.

A semi-static map represents the semi-static objects in the environment as observed

by the robot while navigating through it. As illustrated in Figure 3.3, a semi-static

map di is associated to a sequence of measurements zn:m with their corresponding

poses xn:m. Semi-static maps are created as the robot navigates through the envi-

ronment using a maximum-likelihood approach. Figure 3.4 depicts a static map of a

parking lot extended by three semi-static maps.

As already mentioned, our localization framework extends the MCL approach de-

scribed in Chapter 2. Instead of relying on the static map of the environment, our

approach uses the extended static map for estimating the pose of the robot. When the

observations obtained by the robot are consistent with the static map of the environ-
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ment, we use this map as reference to estimate the pose of the robot. However, when

the observations are inconsistent, we select the local map closest to the current pose of

the robot. If a map is found, we try to use it as reference for localization instead of the

static map. In the remainder of this section we describe the different components of

our localization framework.

3.2.1 Perceptual Model

We assume that the observations are obtained from a range scanner and that each

observation zt consists of a set of range measurements. To evaluate the likelihood

p(zt | xt,m) of an observation zt given the pose xt of the robot and a reference mapm,

we use the likelihood fields model described in Chapter 2. In this model, the individual

range measurements of the observation zt are assumed to be independent of each other

and the likelihood of each one is computed based on the distance between the endpoint

of the range measurement and its closest obstacle in the mapm.

In our current implementation, we use this distance as a heuristic to decide whether

a measurement is explained by the map m or not. Concretely, if the distance to the

closest object in the map is larger than a given threshold ǫd, we assume that the mea-

surement is inconsistent with the map and consider it an outlier. The outlier ratio

e(zt, xt,m) for a given observation zt and pose xt corresponds to the fraction of range

measurements that do not correspond to their expected values according to the mapm

e(zt, xt,m) =

∑K
i=1 1{dit>ǫd}

K
, (3.5)

whereK is the number of range measurements, dit is the distance between the endpoint

of the range measurement zit, as observed from pose xt, and its closest obstacle in the

mapm, and 1{dit>ǫd}
is 1 if dit > ǫd and 0 otherwise. Since the belief about the pose xt

of the robot is represented by a set of weighted particles, we use the weighted average

outlier ratio ē(zt,m) of the particle set given a map as criterion of how well a given

observation is explained by the map. This average outlier ratio is computed as

ē(zt,m) =

∑N
i=1w

i
t e(zt, x

i
t,m)

∑N
i=1w

i
t

, (3.6)

where N is the number of particles in the set, and wi
t and x

i
t are, respectively, the

weight and pose associated to the i-th particle.
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3.2.2 Constructing Temporary Maps

A temporary or semi-static map consists of a sequence of measurements zn:m with their

associated poses xn:m that implicitly represent a part of the environment. To construct

such a map we incrementally perform scan matching on consecutive observations. The

idea is to compute, for each new observation, the pose that best aligns the observation

with respect to a reference map. This map is then extended by incorporating the aligned

observation together with its corresponding pose.

The concrete scan matching technique that we use is similar to the correlative scan

matching approach proposed by Olson [Olson, 2009]. The idea is to evaluate the

observation likelihood p(zt | xt,m) using a previous scan zt−1 as reference map m

over a discretized three-dimensional volume of potential poses xt. The maximum-

likelihood pose corresponds to the best alignment between the two scans. Whereas

in Olson’s approach only a single scan zt−1 is used as reference, we use a history of

previously aligned scans zt−k:t−1. In our experiments, we found that using a history of

scans instead of a single one increases the robustness of the scan matching.

One drawback of incrementally constructing maps using scan matching is that the

pose estimates are never corrected. To overcome this problem, we adjust the poses

of the temporary map whenever the robot enters a known area in the static map or

an area for which a temporary map already exists. This problem corresponds to an

instance of the graph-based SLAM problem [Grisetti et al., 2010], where the poses of

the robot correspond to nodes in a graph. An edge between two nodes represents the

relative movement between the corresponding poses as estimated by the scan matcher.

In addition to these spatial constraints between consecutive poses we also consider

the global constraint that results from the robot entering a known area. This global

constraint corresponds to the relative movement of the robot between the first and last

pose in the semi-static map, being the last pose the point where the robot reentered a

known area.

To efficiently compute the maximum-likelihood semi-static map we use the ap-

proach described by Grisetti et al. [Grisetti et al., 2010]. Note that the optimization

is only performed when reentering a know area. Furthermore, in contrast to the pure

SLAM problem, we do not adjust the nodes in the graph that correspond to the robot

being in a known area in the static map of the environment.
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3.2.3 Extending the Static Map

We assume that a static map of the environment is given. When the observations of the

robot are inconsistent with the static map, we select the semi-static map closest to the

current pose of the robot and try to use it as reference for localization instead of the

static map. Note that our approach is an extension of the standard MCL approach for

static environments. Whenever the observations of the robot are consistent with the

static map, our approach corresponds exactly to the standard MCL approach.

Semi-static maps are created whenever the following two conditions hold. First,

the observations of the robot are inconsistent with the static map of the environment.

And second, there is no other semi-static map close to the current pose of the robot that

explains the observations and can be used as reference for localization instead of the

static map. Whenever these two conditions hold over multiple consecutive time steps

a new semi-static map is created as described in the previous section. To determine if

an observation is inconsistent with a map or not we use the average outlier ratio of the

particle set as described in Section 3.2.1.

We assume that a semi-static map either consistently explains the observations at a

given time or it is not valid anymore. Accordingly, semi-static maps are discarded if the

average outlier ratio of the particle set is too high over multiple consecutive time steps.

Ideally, semi-static maps should only be eliminated if the environment has changed

since the moment of its creation. To reduce the problem of incorrectly eliminating a

map, the uncertainty in the pose estimate is also taken into account. Maps are discarded

if the uncertainty of the particle set is below a given threshold.

3.2.4 Localization Using Temporary Maps

Whenever the static-map of the environment does not explain the observations of the

robot, we search for a semi-static map near the current pose of the robot to use as

reference for localization instead of the static map. To choose the nearest semi-static

map, we use the Mahalanobis distance as proximity measure between the pose of the

robot and the poses in the local maps. Figure 3.5 illustrates a situation where the robot

has to choose between two neighboring semi-static maps. Relying on the Mahalanobis

distance, we can take the uncertainty in the pose estimate into account when selecting

an adequate map. We use a kd-tree to store the poses of the local maps to make the

search efficient.

Using temporary maps for localization, the weighs of the particles are computed

as wt = p(zt | xt,m, dt) · wt−1, where dt corresponds to the nearest semi-static map
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Figure 3.5: Localization using temporary maps. To choose the nearest semi-static map,

we use the Mahalanobis distance as proximity measure between the pose of the robot

and the poses in the local maps.

and wt−1 is the weight of the particle after the last importance weighting step of the

localization algorithm. The observation likelihood p(zt | xt,m, dt) is computed as

p(zt | xt,m, dt) = p(zt | xt,m)I(zt,m) · p(zt | xt, dt)I(zt,dt) . (3.7)

In the equation above, I(zt,m) is an indicator function defined as

I(zt,m) =

{

1 if ē(zt,m) < ǫz
0 otherwise,

(3.8)

where ē(zt,m) is the average outlier ratio for observation zt and map m as defined in

Equation (3.6). Here ǫz represents the threshold at which the observation zt is consid-

ered inconsistent with the map m. Semi-static maps are only created in areas where

the observations are inconsistent with the static map of the environment. Thus, Equa-

tion (3.7) states that the weights of the particles are computed according to either the

static map of the environment m or the closest semi-static map dt, provided that dt
is consistent with zt. Note that when no map is consistent with the observations, all

particles will be assigned the same weight, and the particle set will evolve exclusively

according to the motion model of the robot.

Since our approach is based on a particle filter, the complexity of the algorithm

depends mostly on the number of particles used. The construction, including opti-
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mization, of a semi-static map is approximately lineal in the number of poses in the

map. Adding semi-static maps to the kd-tree and searching for the closest semi-static

map is logarithmic in the number of poses of all semi-static maps. However, con-

structing and adding semi-static maps to the kd-tree is not a frequent operation and

searching for the closest semi-static maps takes place only when the observations of

the robot are inconsistent with the static map of the environment. More importantly,

none of these operations depend on the number of particles. As a result, the overall

complexity of the algorithm depends linearly on the number of particles.

To summarize our approach, we assume that a static map of the environment is

given. When the observations of the robot are inconsistent with this map we try to find

a semi-static map to use as reference for localization instead. The semi-static map is

selected based on the distance to the current pose of the robot. If a map is found, we

try to localize the robot using the temporary map instead of the reference map of the

environment. Temporary maps are eliminated if they are inconsistent with the robot’s

observation.

3.3 Experimental Evaluation

We implemented and tested our approach using real data gathered with aMobileRobots

Powerbot equipped with a SICK LMS laser range finder. The experiments show that

by exploiting the observations caused by semi-static objects our method can robustly

and accurately estimate the pose of the robot where standard approaches fail.

3.3.1 Localization in Large Open Spaces

To evaluate the robustness and accuracy of our approach we steered the robot through

the parking lot of Department of Computer Science at the University of Freiburg and

created a map containing only the static elements of the environment. Although there

exists approaches for generating static maps in dynamic environments (e.g. [Hähnel

et al., 2003b]), this was not the focus of our research so we manually removed the

dynamic elements. Furthermore, we removed some areas of the static map to better

evaluate the behavior of our approach. Figure 3.6 shows the part of the environment

that was used as static map for this experiment.

We evaluated our approach in the task of position tracking and did not consider

the problem of global localization. Since our framework is an extension of the MCL

approach, global localization is possible as long as enough features of the reference
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Figure 3.6: Trajectory of the robot obtained during the experiments with our localiza-

tion approach. The dark colored structures at the bottom correspond to the static parts

of the environment used as reference map. Note that by limiting the line-of-sight of

the robot to 20 meters the reference map could only be observed sporadically.

map are observed. Figure 3.6 plots the average trajectory of the robot obtained using

our localization approach over 10 repetitions of the experiment. In every repetition,

30 particles where used and the maximum range of the laser beams was set to 20 me-

ters. In this way, we reduced the number of observations caused by the reference map.

As pose estimate, we used the weighted mean of the particle set. The ground truth

map, also shown in Figure 3.6, was computed using a static SLAM approach [Grisetti

et al., 2010] considering the full 80 meter depth range of the laser scanner. Note that

the reference map was only observed during short time intervals at the beginning and

the end of the trajectory. Despite of this, the pose of the robot could be accurately

estimated during the whole experiment.

To quantitatively measure the accuracy of our approach, we computed the average

error between the estimated poses and the ground truth. We also compared our results

against that of the standard MCL approach using the raw odometry of the robot in

one case and using an improved odometry based on scan-matching in the other. Fig-

ure 3.7 plots the average error and standard deviation of the errors. As can be seen in

the figure, our approach only produces a small and relatively constant error along the
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Figure 3.7: Average error and standard deviation of the estimated pose obtained using

our approach. We also compared the results against a standard MCL approach using

the raw odometry of the robot in one case and using an improved odometry based on

scan-matching in the other.

entire trajectory. The standard MCL approach, in contrast, results in a substantially

larger error, even when the robot utilized the improved odometry. Thus, the utilization

of observations caused by semi-static objects substantially increases the localization

capabilities of the robot.

3.3.2 Localization in Non-Static Environments

The goal of this second experiment was to evaluate how our approach handles large

changes in the environment. We collected data on two different days on the parking lot

so that the configuration of the parked cars would be considerably different. We ran

our algorithm on the data of the first day and used the obtained temporary maps as the

initial extended map for the data of the second day. The objective of the experiment

was to analyze the effect of inconsistent temporary maps on the localization.

Figure 3.8 plots the average error and standard deviation of our approach when us-

ing the outdated semi-static maps compared against the error when no semi-static maps

were given beforehand. As can be seen, there are no significant differences between

both errors. This shows that our approach can correctly identify when a temporary map

is not valid anymore and discards it accordingly. As explained in Section 3.2.3, a tem-

porary map is considered invalid if the average outlier ratio of the particle set for that

map is above a given threshold. We determined this value empirically and set it to 0.8

in all our experiments. On the one hand, using smaller values sometimes caused maps

to be deleted even when the environment had not changed. On the other hand, using
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Figure 3.8: Average localization error obtained when using outdated semi-static maps

compared against the error when no maps were given beforehand.

larger values made the algorithm overconfident in the available maps which sometimes

lead to less accurate results. This explains the slightly higher errors obtained when us-

ing the outdated semi-static maps in the first half of the trajectory shown in Figure 3.8.

3.3.3 Standard SLAM in Non-Static Environments

The goal of this experiment was to compare standard SLAM approaches with our

approach. We created several artificial maps representing a parking lot in different

configurations (see Figure 3.9). Using a simulation environment we switched between

the different maps while the robot moved to create the effect of a semi-static environ-

ment. For the comparison we considered two state-of-the-art static SLAM techniques:

a Rao-Blackwellized Particle Filter (RBPF) [Grisetti et al., 2005] and a graph-based

SLAM approach [Grisetti et al., 2010]. To measure the accuracy of the approaches we

utilized the error metric described in [Burgard et al., 2009]. The displacements from

the initial pose where used to emphasize the overall geometry of the environment.

Figure 3.10 compares the translational error obtained using our approach and the

static SLAM techniques. As the number of observations caused by non-static objects

increases in the map, it becomes more difficult for the static SLAM approaches to

distinguish between inconsistent observations caused by changes in the environment,

sensor noise, and localization errors. In particular because changes in the environment

are not explicitly considered. This is reflected by the growth in the error as the robot

navigates the environment. By relying on an unmodifiable static map and discard-

ing the semi-static maps as they become inconsistent, our approach is robust against

changes in the environment as can be seen in the figure by the almost constant error.



3.3 EXPERIMENTAL EVALUATION 53

Figure 3.9: Artificial maps representing a parking lot in different configurations used

in simulation to create the effect of a semi-static environment.
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Figure 3.10: Average error and standard deviation of the estimated pose obtained us-

ing our approach and two static SLAM techniques: Rao-Blackwellized Particle Filter

(RBPF) and graph-based SLAM.
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3.4 Related Work

In the past, several authors have studied the problem of mobile robot localization in

non-static environments. Fox et al. [Fox et al., 1999], for example, use an entropy gain

filter to identify the measurements caused by dynamic objects. Burgard et al. [Burgard

et al., 2000] additionally use a distance filter which selects individual measurements

based on the difference between their measured and their expected distance. Monte-

merlo et al. [Montemerlo et al., 2002] propose a method for tracking people while

simultaneously localizing the robot which increases the robustness of the robot pose

estimation.

The problem of dealing with dynamic objects has also been investigated in the

field of simultaneous localization and mapping (SLAM). Wang and Thorpe [Wang and

Thorpe, 2002] employ a feature-based heuristic to identify dynamic objects in range

measurements and use the filtered result for localizing the robot and building a map at

the same time. Hähnel et al. [Hähnel et al., 2002] use a probabilistic method for track-

ing people and filter out the corresponding measurements to improve the map building

process. They later extended this approach in [Hähnel et al., 2003b] by considering

measurements individually and estimating a posterior about whether it has been gener-

ated by an dynamic object. Although these filtering approaches have been shown to be

robust in highly dynamic environments, they discard valuable localization information

when the changes in the environment occur with a relatively low frequency.

Stachniss and Burgard [Stachniss and Burgard, 2005] approach this problem by es-

timating typical configurations of dynamic areas in the environment. They show that

the integration of this information into a particle filter framework improves the robot

pose estimation. Anguelov et al. [Anguelov et al., 2002] deal with non-stationary ob-

jects representing them using learned geometric models. They apply a hierarchical

EM algorithm based on occupancy grid mapping to learn a shape model of the objects

and ultimately use this information to correct the mapping process. Andrade-Cetto

and Sanfeliu [Andrade-Cetto and Sanfeliu, 2002] describe an approach where land-

marks are introduced and removed depending on how often they had been observed.

Biber and Duckett [Biber and Duckett, 2005] propose a spatio-temporal map where

the environment is represented at multiple time-scales simultaneously. In contrast to

mapping approaches, we do not aim at generating a consistent representation of the

environment. The local maps constructed by our approach are only temporary and are

discarded as soon as inconsistencies are detected.

The idea of using sets of local maps as representation of the environment has been
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proposed by many authors in the past. Estrada et al. [Estrada et al., 2005], for example,

build a graph of local stochastically independent maps and correct the position of the

local maps whenever the robot enters an area already visited. Williams et al. [Williams

et al., 2002] create a local submap of the features around the robot and fuse the local

maps regularly with a global map. Gutmann and Konolige [Gutmann and Konolige,

2000] construct locally consistent maps and use them to determine when the robot is

entering an area already visited in the global map. All these approaches assume the

environment to be static and use the gathered information for constructing globally

consistent maps. In contrast, our goal is to improve the localization capabilities of

the robot by constructing local maps that temporarily extend the reference map of the

environment.

3.5 Conclusions

In this chapter, we presented a localization framework that exploits the measurements

caused by semi-static objects to improve the localization capabilities of a mobile robot

in dynamic environments. The presented approach constructs local maps using the

measurements caused by semi-static objects. These maps temporarily extend the ref-

erence map of the environment and are used as fall-back maps whenever the observa-

tions of the robot are inconsistent with the reference map. The approach extends the

standard MCL approach that only employs a map of the static aspects of the environ-

ment to estimate the pose of the robot. We implemented our approach and tested it on

data gathered with a real robot. Experimental results demonstrate that by exploiting

the observations caused by semi-static objects our approach is capable of robustly and

accurately estimating the pose of the robot even in situations in which state-of-the-art

approaches fail.





Chapter 4

Grid-Based Models for Dynamic

Environments

An accurate model of the environment is essential for many mobile robot navigation

tasks. Although the environment generally is dynamic, most existing navigation ap-

proaches assume it to be static. They typically build a static map of the environment

in an offline phase and then use it without considering potential future changes. There

are robust approaches that can handle inconsistencies between the map and the actual

measurements. However, a largely inconsistent model can lead to unreliable naviga-

tion or even to a complete localization failure.

In Chapter 3 we described a localization framework that uses the measurements

caused by semi-static objects to temporarily extend the static map of the environment.

The approach, however, relied on a rather simple model of the temporal dependencies

between maps at consecutive time steps. In this chapter we consider the problem

of modeling a mobile robot’s environment taking the dynamics of the environment

explicitly into account. We present a probabilistic model that represents the occupancy

of the space and characterizes how this occupancy changes over time. The explicit

representation of how the occupancy changes in time provides a better understanding

of the environment that can be used to improve the robot’s navigation performance.

We describe the environment as a spatial grid and use a hidden Markov model

(HMM) to represent the belief about the occupancy state and state transition probabili-

ties of each grid cell. Our model, called dynamic occupancy grid, is a generalization of

a standard occupancy grid. Figure 4.1 illustrates the fundamental difference between

these two models: while occupancy grids characterize the state of a cell as static, our

representation explicitly models state changes. In addition to the explicit representa-
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(a) Occupancy grid (b) Dynamic occupancy grid

Figure 4.1: Bayesian network describing the dependencies between the states of a

cell c and observations z in standard and dynamic occupancy grids.

tion of the environment dynamics, the HMM framework provides efficient algorithms

for estimating the model parameters. This allows us to learn the dynamics of the envi-

ronment from observations made by the robot. Furthermore, within the framework we

can efficiently estimate the occupancy state of a cell from the observed evidence as it

becomes available, making it possible to continuously adapt the representation.

In this chapter, we propose a mapping approach that represents the occupancy of

the space and explicitly characterizes how this occupancy changes over time. We de-

scribe our model and how the representation can be updated as new observations be-

come available. Furthermore, we present two techniques, one offline and one online, to

estimate the state transition probabilities of the model from observed data. We evalu-

ate our approach in simulation and using real-world data. The results demonstrate that

our model can represent dynamic environments more accurately than standard occu-

pancy grids. Furthermore, we show how the explicit representation of the environment

dynamics can be used to improve the path planning performance of a robot.

4.1 Dynamic Occupancy Grids

Occupancy grids, as they were introduced by Moravec and Elfes [Moravec and Elfes,

1985] (see Chapter 2), are a regular tessellation of the space into a number of rectan-

gular cells. They store in each cell the probability that the corresponding area of the

environment is occupied by an obstacle. To avoid a combinatorial explosion of possi-

ble grid configurations, the approach assumes that neighboring cells are independent.

Occupancy grids rest on the assumption that the environment is static. As men-

tioned above, they store for each cell c of an equally spaced grid, the probability p(c)

that c is occupied by an obstacle. Thus far, there is no model about how the occupancy

changes over time. The approach described in this chapter overcomes this limitation
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Figure 4.2: State transition probabilities at the parking lot of the Department of Com-

puter Science at the University of Freiburg. The left and right images correspond to the

distributions p(ct = free | ct−1 = free) and p(ct = occ | ct−1 = occ) respectively. The
darker the color, the larger the probability for the occupancy to remain unchanged.

by relying on an HMM (see Chapter 2) to explicitly represent both the belief about the

occupancy state and state transition probabilities of each grid cell (see Figure 4.1).

An HMM requires the specification of the state transitions, observation probabili-

ties, and initial state distribution. Let ct be a discrete random variable that represents

the occupancy state of a cell c at time t. The initial state distribution p(ct=0) specifies

the occupancy probability of a cell a the initial time step t = 0 prior to any observation.

The state transition model p(ct | ct−1) describes how the occupancy state of cell c

changes between consecutive time steps. We assume that the changes in the envi-

ronment are caused by a stationary process, that is, the state transition probabilities

are the same for all time steps t. These probabilities are what allows us to explicitly

characterize how the occupancy of the space changes over time. Since we are assum-

ing that a cell c is either free (free) or occupied (occ), the state transition model can

be specified using only two transition probabilities, namely p(ct = free | ct−1 = free)

and p(ct = occ | ct−1 = occ). Note that, by assuming a stationary process, these prob-

abilities do not depend on the absolute value of t. Figure 4.2 depicts the transition

probabilities for the parking lot of the Department of Computer Science at the Univer-

sity of Freiburg. The darker the color, the larger the probability for the corresponding

occupancy to remain unchanged. The figure clearly shows the parking spaces, driving

lanes, and static elements such as walls and lampposts as having different dynamics.

The “shadows” in the upper left and lower right areas of the maps were mostly caused

by maximum range measurements. These are ignored so no information is available

for the areas covered by them.
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The observation model p(z | c) represents the likelihood of the observation z given
the state of the cell c. The observations correspond to measurements obtained with a

range sensor. In this thesis, we consider only observations obtained with a laser range

scanner. The cells in the grid that are covered by a laser beam are determined using

a ray-tracing operation. We consider two cases: the beam is not a maximum range

measurement and ends up in a cell (a hit) or the beam covers a cell without ending

in it (a miss). Accordingly, the observation model can also be specified using only

two probabilities: p(z = hit | c = free) and p(z = hit | c = occ). We additionally take

into account the situation where a cell is not observed at a given time step. This is

necessary since the transition model characterizes state changes only for consecutive

time steps and not every cell is observed at each time step. Explicitly considering this

no-observation case allows us to update and estimate the parameters of the model us-

ing the HMM framework directly without having to distinguish between observations

and no-observations. The concrete observation probability for a no-observation is ir-

relevant as long as the proportion between the other probabilities remains unchanged.

From the discussion above it can be seen that standard occupancy grids are a special

case of dynamic occupancy grids where probabilities p(ct = free | ct−1 = free) and

p(ct = occ | ct−1 = occ) are 1 for all cells c.

4.1.1 Occupancy State Update

The update of the occupancy state of the cells in a dynamic occupancy grid fol-

lows a Bayesian approach. The goal is to estimate the belief or posterior distribution

p(ct | z1:t) over the current occupancy state ct of a cell given all the available evidence
z1:t up to time t. The belief update can be formulated as

p(ct | z1:t) = η p(zt | ct)
∑

ct−1

p(ct | ct−1) p(ct−1 | z1:t−1) , (4.1)

where η is a normalization constant. Exploiting the Markov assumptions in our HMM,

this equation is obtained using Bayes’ rule with z1:t−1 as background knowledge and

applying the theorem of total probability on p(ct | z1:t−1) conditioning on the state of

the cell ct−1 at the previous time step t − 1. Equation (4.1) corresponds to a discrete

Bayes filter and describes a recursive approach to estimate the current state of a cell

given a current observation and the previous state estimate. Note that the map update

for standard occupancy grids is a special case, where the sum in Equation (4.1) is

replaced by the posterior p(ct | z1:t−1).
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Figure 4.3: Occupancy grid representing the stationary distribution πs
occ for the parking

lot of the Department of Computer Science at the University of Freiburg. The state

transition probabilities used to compute the stationary distribution correspond to the

ones represented in Figure 4.2.

This posterior, corresponds to a prediction of the occupancy state of the cell at

time t based on the observations up to time t − 1. Prediction can be considered as

filtering without the processing of evidence. By explicitly considering no-observations

as explained in the previous section, the update formula can be used directly to estimate

the future state of a cell or estimate the current state of a cell that has not been observed

recently.

As the number of time steps for which no observation is available tends to infinity,

the occupancy value of a cell converges to a unique stationary distribution πs. This

stationary distribution can be computed for our concrete HMMs as

πs
free =

p(ct = free | ct−1 = occ)

p(ct = occ | ct−1 = free) + p(ct = free | ct−1 = occ)
(4.2)

and, accordingly, πs
occ = 1−πs

free. If a cell is not observed for some time, its occupancy

belief will converge to its stationary distribution, regardless of the value after the last

observation. Figure 4.3 shows an occupancy grid representing the stationary distribu-

tion πs
occ for the parking lot of the Department of Computer Science at the University of

Freiburg. The state transition probabilities used to compute the stationary distribution

correspond to the ones represented in Figure 4.2.

The time needed for the occupancy value of a cell to converge to its stationary dis-

tribution its called the mixing time. The concrete definition of mixing time depends

on the metric used for measuring the distance between distributions. One simple ap-
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proach is to consider the total variation distance (see [Levin et al., 2006]) to measure

the distance between two distributions. Since our HMMs have only two states, the

total variation distance ∆t between the stationary distribution πs and the occupancy

distribution pt at time t can be specified as

∆t = |1− p(ct = occ | ct−1 = free)− p(ct = free | ct−1 = occ)|t ∆0 , (4.3)

where

∆0 = |πfree − πs
free| . (4.4)

is the difference between the initial state π and stationary distribution πs.

Based on the total variation distance, the mixing time tmix(ǫ) can then be defined as

the smallest t such that ∆t is less than a given value ǫ. Let

a = p(ct = occ | ct−1 = free)

b = p(ct = free | ct−1 = occ) .

The mixing time tmix(ǫ) for a given πfree can be analytically computed as

tmix(ǫ) =

⌈

ln(ǫ/∆0)

ln(|1− a− b|)

⌉

, (4.5)

where ⌈n⌉ is the ceiling operator that returns the smallest integer larger than n. Equa-

tion (4.5) can be derived from Equation (4.3) by straight forward algebraic operations.

This computation is only valid when∆0 > 0, for the opposite case, tmix(ǫ) is trivially 0.

Being able to compute the mixing time of a cell has important practical implica-

tions, since it renders unnecessary the computation of predicted occupancy values for

times steps beyond the mixing time.

4.1.2 Parameter Estimation

As mentioned above, an HMM is characterized by the state transition probabilities, the

observation model, and the initial state probabilities. We assume that the observation

model only depends on the sensor. Therefore it can be specified beforehand and is the

same for each HMM. We estimate the remaining parameters using observations that

are assumed to originate to the environment that is to be represented.

One of the most popular approaches for estimating the parameters of an HMM
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is an instance of the expectation-maximization (EM) algorithm (see Chapter 2). The

basic idea is to iteratively estimate the model parameters using the observations and

the parameters estimated in the previous iteration until the values converge. Let θ̂n

represent the parameters estimated at the n-th iteration. The EM algorithm results in

the following re-estimation formula for the transition model of cell c

p̂(ct = i | ct−1 = j)n+1 =

∑T
τ=1 p(cτ−1 = i, cτ = j | z1:T , θ̂n)
∑T

τ=1 p(cτ−1 = i | z1:T , θ̂n)
, (4.6)

where i, j ∈ {free, occ} and T is the length of the observation sequence used for

estimating the parameters. Note that the probabilities on the right-hand side are con-

ditioned on the observation sequence z1:T and the previous parameter estimates θ̂n.

These probabilities can be efficiently computed using the forward-backward proce-

dure (see [Rabiner, 1989]).

This, however, is an offline approach that requires storing the complete observation

sequence for each cell. An online version of the algorithm was derived by Mongillo

and Deneve [Mongillo and Deneve, 2008]. To calculate the transition probabilities in

Equation (4.6), this algorithm only needs to store the sufficient statistics

φijh(t; θ̂) =
1

t

t
∑

τ=1

δ(zτ , h) p(cτ−1 = i, cτ = j | z1:t, θ̂) , (4.7)

where i, j ∈ {free, occ}, h ∈ {free, occ, no-observation}, and δ(zτ , h) = 1 if zτ = h

and 0 otherwise. Dropping the dependence on θ̂, only 16 values have to be stored

for each cell. The algorithm uses φijh instead of the probabilities computed with the

forward-backward procedure to estimate the transition model. Therefore it implements

only a partial expectation step, while the maximization step remains exact.

Besides being an online approach with small storage requirements, the prefactor

1/t in Equation (4.7) allows the algorithm to handle non-stationary environment’s dy-

namics. Additionally, the algorithm updates with each observation the occupancy state

according to Equation (4.1). These properties make the online version of the EM al-

gorithm an attractive alternative for systems operating over extended periods of time.
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Figure 4.4: Google Map image of the parking lot of the Department of Computer

Science at the University of Freiburg.

4.2 Experimental Evaluation

We implemented our proposed model and tested it in simulation and using data ob-

tained with a real robot. The goal of the experiments was to evaluate the quality and

usefulness of our proposed representation.

4.2.1 Accuracy of the Representation

In a first experiment we evaluated the accuracy of our proposed representation of the

environment. We steered a MobileRobots Powerbot equipped with a SICK LMS laser

range finder through the parking lot of the Department of Computer Science at the

University of Freiburg (see Figure 4.4). We performed a run every full hour from 7am

until 6pm during one day. The range data obtained from the twelve runs (data sets

d1 through d12) corresponded to twelve different configurations of the parked cars,

including an almost empty parking lot (data set d1) and a relatively occupied one (data

set d10). We used a SLAM approach [Grisetti et al., 2005] to correct the odometry of

the robot and obtain a good estimate of its pose. Range measurements were sampled

at about 1 hertz, and the trajectory and velocity of the robot during each run were

approximately the same to try to avoid a bias in the complete data set.

Figure 4.5 shows a qualitative comparison between dynamic and standard occu-

pancy grids for the parking lot data set. The online EM approach was used to build the

dynamic occupancy grid. We assumed that the parking lot did not change considerably

during a single run and used the occupancy grids obtained from every data set with the

above-mentioned SLAM approach as ground truth. In the figure, the maps on the left
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Figure 4.5: Comparison between dynamic and standard occupancy grids. Shown are

the ground truth (top), dynamic occupancy grid (middle), and standard occupancy grid

(bottom) maps at two different points in time.
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Figure 4.6: Accuracy over time of standard and dynamic occupancy grids for the park-

ing lot data. Both online and offline parameter estimation approaches were evaluated.

column show the grids after the third run, that is, after integrating data sets d1 through

d3. The maps on the right show the grids at the end of the last run, after integrating

data sets d1 through d12. As can be seen, the dynamic occupancy grid readily adapts

to the changes in the parking lot. Thus it constitutes a better representation of the

environment at any point in time. Additionally, dynamic occupancy grids provide in-

formation about the probable occupancy of areas that have not been recently observed.

This appears in the grids in the figure (specially the right column) as light gray areas

in the places where the cars most frequently park.

To quantitatively evaluate the accuracy of our representation we computed its ac-

curacy with respect to the ground truth maps. In this context, accuracy is defined as

the number of cells correctly classified divided by the total number of classified cells.

A cell c was classified as occupied if p(c) > 0.5 and as free if p(c) < 0.5. The remain-

ing cells were not taken into account. Figure 4.6 compares the accuracy of a standard

occupancy grid (static) against that of the dynamic occupancy grid whose parameters

where estimated online (dynamic online). We additionally consider the case when the

parameters where estimated offline (dynamic offline) — depicted in Figure 4.2. Fig-

ure 4.6 plots the accuracy of the grids over time for the parking lot data. After each

configuration change, the accuracy of the dynamic occupancy grids quickly starts to

increase as the map adapts to the new configuration. Standard occupancy grids adapt

relatively quickly at first, but their adaptability decreases with the number of observa-

tions already integrated into the map.
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Figure 4.7: Accuracy of standard and dynamic occupancy grids for different configu-

rations of dynamic cells in a simulated grid map. Left: 5% dynamic cells and 5% state

change probability. Right: 25% dynamic cells and 25% state change probability

4.2.2 Effects of the Environment’s Dynamics

The accuracy of dynamic occupancy grids and their advantage over standard occu-

pancy grids strongly depends on the environment’s dynamics. In the parking lot en-

vironment of the previous experiment, only a small number of cells were dynamic

(∼ 3%) and only few changes took place. This explains why the standard occupancy

grids in Figure 4.5 corresponding respectively to configurations 3 and 12 in Figure 4.6

have high accuracy values even though they are evidently inaccurate.

The goal of this experiment was to evaluate the accuracy of our proposed rep-

resentation for different environment dynamics. In the context of occupancy grids,

the dynamics of the environment are characterized by the number of dynamic cells

and their state change probabilities. We used a 50 × 50 grid map and changed the

fraction of dynamic cells and state change probabilities to generate artificial data for

different environment dynamics. We estimated the state transition probabilities of the

dynamic occupancy grid using both the online and offline approaches and compared

the resulting model accuracy against that of a standard occupancy grid for different

data sets. Figure 4.7 shows the results for two different settings: one relatively static

and another more dynamic. The curves correspond to the mean and standard deviation

for 10 repetitions of the experiment. As can be seen in the figure, dynamic occu-

pancy grids represent the environment more accurately than standard occupancy grids.

Nevertheless, the more static the environment, the smaller the difference between the

accuracies. This experiment shows that even for moderately dynamic environments

dynamic occupancy grids outperform standard occupancy grids.
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Figure 4.8: Accuracy of the parameters obtained with the online and offline approaches

when the environment’s dynamics change. The left and right plots correspond to

changes after 100 and 300 time steps respectively.

4.2.3 Parameter Estimation

As can be seen in Figure 4.7, the offline approach produces more accurate results

at first, but the difference between the results of the offline and online approaches

decreases over time. This suggests that, regarding the accuracy of the representation

over time, both parameter estimation techniques are comparable.

Although the offline approach produces good results from the beginning, it requires

storing all observations for each cell in the grid for an a priori training phase. This is a

considerable disadvantage since it limits the amount of data that can be used for train-

ing, the resolution of the grid, or the size of the environment that can be represented.

Furthermore, being an offline approach, once the parameters have been estimated, they

remain fixed. This makes the offline approach inappropriate for environments where

the assumption that the environment dynamics are stationary does not hold. In contrast,

the online approach continually adapts its parameters as new observations become

available. Figure 4.8 illustrates the effects on the accuracy of the model parameters

obtained with the two approaches for 5% dynamic cells and 5% state change proba-

bility (left plot in Figure 4.7) in the case that the environment dynamics change. For

the experiment, the change consisted in selecting a new set of dynamic and static cells.

The number of dynamic cells and their state change probabilities remained the same,

but we obtained similar results when these parameters where changed as well. As can

be seen in Figure 4.8, using the online approach, the accuracy of the model quickly

returns to its value before the change. This is the result of the model parameters adapt-

ing to the new environment dynamics. The accuracy of the model whose parameters
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Figure 4.9: Experimental setup for the path planning experiment. The task consists in

navigating between A and B. At C we added a virtual door that changed its state over

time.

where estimated offline drops when the dynamics change, and remains low. We also

evaluated the behavior of standard occupancy grids. As expected, the number of obser-

vations needed by a standard occupancy grid to correctly represent the occupancy of

the new static cells is approximately the same as the number of previous observations.

Note that the dynamic cells remain inaccurately represented.

4.2.4 Path Planning Using Dynamic Occupancy Grids

In the previous experiments we showed that dynamic occupancy grids readily adapt

to changes in the environment. The goal of this experiment was to show that this

adaptability can be used to improve the path planning performance of a robot. The

experiment was performed in simulation within the environment shown in Figure 4.9

corresponding to part of the Intel Research Lab in Seattle (Radish) [Howard and Roy,

2003]. The task of the robot consisted in navigating between rooms A and B. We

added a virtual door at position C along the shortest path between A and B. The

state of the door changed each time step with a probability of 0.001. To generate the

a priori map needed for path planning and obtain data for estimating the parameters

of the dynamic occupancy grid, we steered the robot through the relevant parts of the

environment in an offline phase.

We then performed 20 repetitions of the experiment. In every repetition, the robot

executed 20 runs from one room to the other. The A∗ algorithm was used for path

planning and re-planning was performed at every time step. The cost of a path was

computed as the sum of the traversal costs for each cell in the path. The traversal cost

was set to 1 for free cells and infinity for occupied cells. The cells in the grid were

classified as described in the first experiment.



70 CHAPTER 4: GRID-BASED MODELS FOR DYNAMIC ENVIRONMENTS

values in % static dynamic online dynamic offline

short 11.25 (±16.35) 25.50 (±22.24) 40.75 (±20.15)
long 35.75 (±14.80) 27.00 (±18.38) 15.00 (±9.03)

indirect long 4.75 (±1.12) 19.50 (±12.24) 30.50 (±8.72)
unnecessary indirect long 0.25 (±1.12) 1.50 (±2.86) 2.75 (±3.02)
unnecessary direct long 48.00 (±16.89) 26.50 (±21.34) 11.00 (±5.28)

accuracy 47.00 (±16.89) 52.50 (±16.10) 55.75 (±13.21)

Table 4.1: Occurrences of the different trajectory types for different occupancy grids

and parameter estimation approaches during path planning.

values in % random optimal

short 24.25 (±10.17) 40.50 (±19.99)
long 24.25 (±13.70) 17.25 (±9.39)

indirect long 23.50 (±9.33) 27.75 (±9.24)
unnecessary indirect long 1.50 (±2.86) 2.25 (±3.02)
unnecessary direct long 26.50 (±13.19) 12.25 (±6.38)

accuracy 48.50 (±10.14) 57.75 (±14.09)

Table 4.2: Occurrences of the different trajectory types for two path planning policies:

random and optimal.
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Since numeric performance measures, like traveled distance or execution time,

largely depend on the particular environment used for the experiment, we opted for

a more qualitative evaluation and classified the trajectories followed by the robot into

five types:

• short: the robot followed the shortest path.

• long: the robot followed the longer path. This was the optimal choice since the

door would not have been open for the robot to pass.

• indirect long: the robot tried to follow the shortest path first, found the door

closed, turned around, and finally followed the longer path. In this case, follow-

ing the longer path from the beginning would have been the optimal choice.

• unnecessary indirect long: as in the previous case, the robot tried to follow the

shortest path first, found the door closed, turned around, and finally followed the

longer path. However, continuing to follow the shortest path would have been

the optimal choice since the door would have opened for the robot to pass.

• unnecessary direct long: the robot followed the longer path. No attempt was

made to follow the shortest path. In this case, following the shortest path from

the beginning would have been the optimal choice.

The values in Table 4.1 correspond to the occurrences (average and standard de-

viation) of the different trajectory types during the 20 repetitions of the experiment.

We compared the path planning performance when using a standard occupancy grid

(static), a dynamic occupancy grid whose parameters where estimated online (dynamic

online), and a dynamic occupancy grid whose parameters where estimated offline (dy-

namic offline). The number of occurrences of short and long trajectories in the table

indicate that the information about the state change probability of the door, represented

in the dynamic occupancy grid, leads to better path planning performances. Once the

door is represented as closed in a standard occupancy grid, the robot never attempts

to follow the shortest path again, which, in turn, prevents the robot from updating the

cells corresponding to the door. This can be seen in the table by the small number of

short, indirect long, and unnecessary indirect long trajectories and explains the large

number of long trajectories. Using dynamic occupancy grids, on the other hand, the

state of the (unobserved) door in the map changes over time according to the learned

state transition probabilities. Whenever the cells corresponding to the door are classi-

fied as free, the robot attempts to follow the shortest path.
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We additionally implemented two baseline path planning policies for comparison

(see Table 4.2). In the first (random) the robot, when in A or B, randomly chooses

between the two possible paths and never replans while on the way. In the second (op-

timal) the robot has perfect knowledge about the state change probability of the door

and based on its internal belief about the state of the door chooses the expected optimal

path. The percentage of runs in which the optimal path was followed (accuracy) by

this robot is an empirical upper bound for the accuracy achievable in our experimental

setup. One sided t-tests show that the accuracy for dynamic offline was significantly

higher than those for static and random on a 5% level. Between the accuracies for

dynamic offline and optimal we could not find a significant difference.

4.3 Related Work

Previous work on mapping dynamic environments can be divided into two groups:

approaches that filter out sensor measurements caused by dynamic elements and ap-

proaches that explicitly model aspects of the environment dynamics. Filtering out

sensor measurements is based on probabilistic sensor models that identify the mea-

surements which are inconsistent with a reference model of the environment. Fox et

al. [Fox et al., 1999], for example, use an entropy gain filter. Burgard et al. [Burgard et

al., 2000] propose a distance filter based on the expected distance of a measurement.

Hähnel et al. [Hähnel et al., 2003b] combine the EM algorithm and a sensor model that

considers dynamic objects to obtain accurate maps. In contrast to these approaches,

our work explicitly represents the dynamics of the environment in the environment’s

model itself instead of relying on sensor models to represent them.

To model the dynamics of the environment, some authors have proposed aug-

mented representations of the environment which explicitly represent dynamic ob-

jects. The approach of Anguelov et al. [Anguelov et al., 2002], for example, computes

shape models of non-stationary objects. They create maps at different points in time

and compare those maps using an EM-based algorithm to identify the parts of the en-

vironment that change over time. Petrovskaya and Ng [Petrovskaya and Ng, 2007]

extend occupancy grid maps with parameterized models of dynamic objects and apply

a Rao-Blackwellized particle filter to estimate the pose of the robot and the state of the

dynamic objects. The above-mentioned approaches are based on the identification and

modeling of dynamic objects in the environment. Our approach, in contrast, does not

depend on high level object models and considers only the occupancy of the space at a

lower level of abstraction. It is similar to the spatial affordance maps proposed by Lu-
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ber et al. [Luber et al., 2009]. They represent space-dependent occurrences of relevant

people activity events in the context of people tracking using Poisson processes. The

fundamental difference to our model is that we consider the occupancy of the space

and not people tracking events. For this reason our approach relies on HMMs that are

better suited than Poisson processes to describe the behavior of the occupancy in a cell.

The problem of modeling the space occupancy in dynamic environments at a low

level of abstraction has already been addressed in the past. Wolf and Sukhatme [Wolf

and Sukhatme, 2005], for example, propose a model that maintains two separate occu-

pancy grids, one for the static and the other for the dynamic parts of the environment.

Brechtel et al. [Brechtel et al., 2010] describe a grid-based representation that in ad-

dition to the occupancy state of the cells, also stores a velocity vector interpreted as

the velocity of the object that occupies the cell. These approaches, however, are rather

focused on the problem of tracking dynamic objects than on representing the environ-

ment’s dynamics. Biber and Duckett [Biber and Duckett, 2005] propose a model that

represents the environment on multiple timescales simultaneously. For each timescale

a separate sample-based representation is maintained and updated according to an as-

sociated timescale parameter. Konolige and Bowman [Konolige and Bowman, 2009]

describe a vision-based system where camera views are grouped into clusters that rep-

resent different persistent configurations of the environment. Changes in the envi-

ronment are handled by deleting views based on a least-recently-used principle. The

fundamental difference between these previous approaches and ours is that, besides

being able to continuously adapt to changes over time, our model provides an explicit

characterization of the dynamics of the environment.

4.4 Conclusions

In this chapter we introduced a novel approach to occupancy grid mapping that explic-

itly represents how the occupancy of individual cells changes over time. Our model

is a generalization of standard occupancy grids. It applies HMMs to update the belief

about the occupancy state of each cell according to the dynamics of the environment.

We described how our maps can be updated as new observations become available.

We furthermore introduced an offline and an online technique to estimate the param-

eters of the model from observed data. We evaluated our approach in simulation and

using real-world data. The results demonstrate that our model can represent dynamic

environments more accurately than standard occupancy grids. We also demonstrated

that using our model can improve the path planning performance of a robot.





Chapter 5

Improving Robot Localization Using

Artificial Landmarks

For reliable navigation a mobile robot needs to be able to determine its pose in the

environment and accurately track it over time. Although there exist many approaches

that have been successfully applied to the localization task, dynamic objects can cause

perception ambiguities that make these approaches more likely to fail and, in the worst

case, prevent the pose of the robot from being uniquely determinable at all. In the con-

text of localization, environments are considered ambiguous if they prevent different

robot poses from being distinguished based on the sensor data. Figure 5.1 illustrates

such a problem. It shows a typical sensor measurement obtained using a laser range

scanner together with the corresponding observation likelihood. Dark colored areas

correspond to high likelihood poses. As can be seen in the figure, several poses, in ad-

dition to the pose from which the scan was taken, have a high observation likelihood.

Navigation in dynamic environments, and environments that are structurally sym-

metrical or have only few recognizable features, can be improved by attaching land-

marks to static parts in the environment. In this chapter, we focus on the problem

of utilizing artificial landmarks to reduce the ambiguity in the environment. We ad-

dress the problem of finding a configuration of indistinguishable landmarks that, when

placed in the environment, increase the robustness in the localization of the robot. The

basic idea behind our approach is that by reducing the overall ambiguity in the environ-

ment, the localization performance of the robot can be improved. We first introduce a

measure for how distinguishable or unique a pose is. We then present an approach for

selecting a configuration of landmarks that incrementally selects landmark locations,

greedily maximizing the average uniqueness in the environment.
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Figure 5.1: Ambiguous environments make localization approaches more likely to fail.

The image shows a laser range scan (top) and the x-y-projection (maximizing over the

orientation) of the corresponding observation likelihood over the pose space (bottom).

The darker the color, the larger the observation likelihood at the corresponding pose.

As can be seen there are many poses with an associated high observation likelihood.

The contribution of our proposed approach is two-fold: First, we present a prac-

tical approach to landmark placement that aims at improving the localization perfor-

mance of the robot. Our approach provides us with both the number and location of

landmarks to be placed in the environment. We consider indistinguishable landmarks

which makes our approach attractive from a practical point of view since no landmark

coding and complex identification system is required. As a second contribution we

introduce a measure for the uniqueness of a robot pose based on sensor data. We

seek to improve the localization performance by maximizing the average uniqueness

in the environment. Furthermore, we describe a concrete instantiation of the landmark

placement problem for grid-based representations of the environment and show exper-

imentally that our approach improves the localization performance of the robot and

outperforms other landmark selection approaches.

5.1 Pose Uniqueness

The pose x of a robot restricted to planar environments is defined by its two location

coordinates rx and ry in the plane and its orientation rθ in some global coordinate

system. Since the robot cannot directly measure its pose but has to infer it from the

observations obtained with its sensors, the uniqueness of a pose is based on these



5.1 POSE UNIQUENESS 77

observations. Intuitively, the uniqueness of a pose indicates how distinguishable the

pose is — as observed by the the robot — from all other poses in the state space. Let

us assume that the robot is equipped with a perfect sensor that makes, for a pose x and

map m, a deterministic observation z(x,m). Then we can define the uniqueness of a

pose x given a mapm as

Uperfect(x,m) =
1

∫

x̃∈X
δx̃,m(x) dx̃

, (5.1)

where X represents the state space, and δx̃,m(x) is 1 if z(x̃,m) = z(x,m) and 0

otherwise. The denominator in Equation (5.1) simply counts the number of poses in

the state space where the robot makes the same observation as in pose x. Clearly, the

larger the count, the less unique the pose is. For a maximally unique pose x it holds

that δx̃,m(x) = 0 for all x̃ ∈ X \ {x}. A minimally unique pose x, on the other hand,

is one for which δx̃,m(x) = 1 for all x̃ ∈ X .

Since our sensor is noisy, we have to replace the deterministic function δx̃,m(x)

in Equation (5.1) by the likelihood of observing, at pose x̃, the observation zx made

at x, i.e., p(zx | x̃,m). Furthermore, as we don’t know which measurement zx we will

obtain at pose x, we have to integrate over all potential measurements

Uexp(x,m) =

∫

z

1
∫

x̃∈X
p(z | x̃,m) dx̃

p(z | x,m) dz . (5.2)

Since integrating over all measurements is not feasible in practice, we approximate

the outer integral in Uexp(x,m) by the maximum likelihood value of the distribution

p(z | x,m) and obtain

U(x,m) =
1

∫

x̃∈X
p(zx∗ | x̃,m) dx̃

, (5.3)

where zx∗ = argmaxz p(z | x,m) corresponds to the most likely observation at pose x

given the map m. The accuracy of this approximation depends on the distribution

p(z | x,m). If p(z | x,m) is the Dirac density, the approximation is exact. In general,

the accuracy depends on how much zx∗ dominates the outer integral.

A highly unique pose x is typically associated to a peaked distribution p(z | x̃,m)

that is at its maximum when x̃ = x. On the other hand, a flat distribution typically

corresponds to an ambiguous environment where, for all the poses x̃ in the state space,

p(z | x̃,m) has almost the same value.
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An alternative derivation for Equation (5.3) is obtained by considering the expected

value of the observation probability at xwith respect to the observation probability at x̃

Ep(z|x̃,m)

[

p(z | x,m)
]

=

∫

z

p(z | x,m) p(z | x̃,m) dz . (5.4)

This expectation is the average of the observation probability at x weighted by the

observation probability at x̃. It can be interpreted as a measure of the “match” of the

distribution p(z | x,m) to p(z | x̃,m). Integrating over all poses in the state space, we

can define the uniqueness U(x,m) of a pose x as

U(x,m) =
1

∫

x̃∈X
Ep(z|x̃,m)

[

p(z | x,m)
]

dx̃

=
1

∫

x̃∈X

∫

z
p(z | x,m) p(z | x̃,m) dz dx̃

. (5.5)

For a maximally unique pose x it holds that

Ep(z|x̃,m)

[

p(z | x,m)
]

= 0

for all x̃ ∈ X \ {x}. A minimally unique pose x, on the other hand, is one for which

Ep(z|x̃,m)

[

p(z | x,m)
]

= Ep(z|x̃′,m)

[

p(z | x,m)
]

for all x̃, x̃′ ∈ X .

Since integrating over all measurements in Equation (5.5) is not feasible in prac-

tice, we approximate Ep(z|x̃,m)

[

p(z | x,m)
]

by the maximum likelihood value of

p(z | x,m)

Ep(z|x̃,m)

[

p(z | x,m)
]

≈ p(zx∗ | x̃,m) , (5.6)

and obtain Equation (5.3).

5.2 Landmark Placement

Given a set V of N candidate landmarks, the general landmark placement problem

consists of finding a configuration m ⊆ V of landmarks that maximizes a given target

function. There exist many possible aspects to consider when specifying the target

function, like the number of selected landmarks and area covered, for example. The
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Figure 5.2: Normalized average uniqueness as a function of the number of selected

landmarks. The black dot (center) marks the point where the average uniqueness

reaches its maximum. The black square (left) indicates the average uniqueness for

the number of landmarks selected by our approach.

target function we consider is the average uniqueness value in the environment. Con-

cretely, we look for the configurationm∗ so that

m∗ = argmax
m⊆V

( 1

||X ||

∫

x∈X

U(x,m) dx
)

, (5.7)

where ||X || represents the size or volume of the state space. By maximizing the av-

erage uniqueness in the environment we seek to improve the localization performance

of the robot.

The combinatorial nature of the problem makes the enumeration of all possible

solutions for finding the optimal one intractable. However, an approximate solution

to Equation (5.7) can be efficiently computed in an incremental fashion by succes-

sively selecting the landmark that maximizes the average uniqueness until no further

improvement is possible. The main disadvantage of this approach is that it selects

an unnecessarily large number of landmarks. In practical experiments we found that

approximately 50% of the candidate landmarks are selected before no further improve-

ment is possible. Figure 5.2 shows the typical behavior of the average uniqueness as a

function of the number of selected landmarks. As can be seen, the average uniqueness

reaches its maximum when approximately half of the candidate landmarks are se-

lected. Adding further landmarks provides no additional improvement and, as a matter

of fact, the average uniqueness starts to decrease as further landmarks are selected.

In order to determine the number of landmarks to select, we use a heuristic approach
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Algorithm 5.1 Incremental landmark placement

Input: Set V of N candidate landmarks

1: m∗ = ∅
2: while V 6= ∅ do
3: l′ = argmaxl U(x, {l} ∪m∗)
4: ū′ = U(x, {l′} ∪m∗)
5: if ∇ū′ > ǫ then
6: m∗ = {l′} ∪m∗

7: V = V \ {l′}
8: else

9: returnm∗

10: end if

11: end while

based on the gradient of the average uniqueness. Our landmark placement algorithm

terminates whenever the gradient drops bellow some specified threshold. The larger

the value for the threshold, the smaller the number of selected landmarks. The average

uniqueness is normalized using an instance specific upper bound in order to use the

same threshold for different instances of the problem. Assuming a finite and discrete

state space, the upper bound for the average uniqueness is given by

U(m) =
1

minx p(zx∗ | x,m = ∅) (5.8)

and can be determined before selecting the first landmark, i.e. whenm = ∅.

The approach proposed in this work is specified in Algorithm 5.1. Line 3 com-

putes the landmark l′ that maximizes the average uniqueness U(x, {l′} ∪m∗). Line 5

computes the gradient of the average uniqueness if l′ would be selected. If the value

of the gradient is smaller than the threshold ǫ, the algorithm terminates and the final

configurationm∗ is returned. Otherwise, landmark l′ is added to the configurationm∗,

removed from the set of candidate landmarks, and the algorithm continues and tries to

select another landmark. Assuming a finite and discrete state space, the complexity of

the algorithm is O(KM2) where K < N is the number of selected landmarks andM

is the size of the state space. The factor M2 is a consequence of the computation of

the average uniqueness that requires the computation of the uniqueness — O(M) —

for each state in the state space.
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Figure 5.3: Improving the uniqueness in the environment by placing landmarks. The

figure shows the uniqueness before and after placing the landmarks for two different

environments. The uniqueness at each pose is projected onto the grid map by min-

imizing over the orientation. The lighter the color, the higher the uniqueness. Also

shown are the landmark configurations obtained using our approach. The highlighted

locations correspond to the landmarks.

5.3 Experimental Evaluation

To evaluate the improvement in the localization performance obtained when landmarks

were placed according to our proposed algorithm, we carried out a set of experiments

in simulation and on a real robot. A 2-dimensional occupancy grid with a resolution

of 0.5 meters was used to represent the environment. The set of candidate landmarks

consisted of all occupied cells in the grid. The sensor used for our experiments was a

laser range scanner that in addition to the range and bearing, also returned the reflec-

tivity of the measured objects. As landmarks we considered stripes of retro-reflective

tape (see Figure 5.6). Based on the reflectivity we classified individual measurements

into pure range measurements and measurements that correspond to landmarks.

As observation model p(z | x,m) we used a variant of the likelihood field model

described in Chapter 2. In this model, the individual range measurements are assumed

to be independent of each other. The likelihood of each pure range measurement is

computed according to the distribution pr(z
i) ∼ N (dr, σ

2
r) based on the distance dr

between the endpoint of the measurement zi and its closest obstacle in the map m.

Here, N (µ, σ2) denotes the normal distribution with mean µ and standard deviation

σ. In the case of landmark measurements the distribution pl(z
i) ∼ N (dl, σ

2
l ) is used,
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where dl denotes the distance to the closest landmark in the map. The likelihood of an

observation z = {z1, . . . , zK} is then computed as

p(z | x,m) =
K
∏

i=1

pl(z
i)δ(z

i) · pr(zi)(1−δ(zi)) , (5.9)

where

δ(zi) =

{

1 if zi corresponds to a landmark

0 otherwise.
(5.10)

This simple general model does not take visibility constraints into account and assumes

a perfect landmark detection. However, it can be efficiently evaluated and is sufficient

for the purpose of our experiments.

To compute the uniqueness as specified in Equation (5.3), the state space (x-y co-

ordinates and orientation θ) was divided into cells of 0.5 meters and a resolution of 90

degrees was used for the orientation. Ray-tracing was used to simulate the most likely

observations needed to compute the uniqueness value at every pose. Figure 5.3 shows

the landmark configurations obtained with our approach for two artificial maps. Also

shown in the maps is the uniqueness in x-y space, minimized over the orientation θ,

before and after placing the landmarks. As threshold ǫ in our landmark placement

algorithm we set the minimum value of the gradient to 1. For our specific sensor

model Equation (5.9), a theoretical upper bound for the average uniqueness is given

by 1/
K
√
2πσ2, where σ = max(σr, σl). Note that our approach is not restricted to

grid-based representations, it only requires a way to compute the uniqueness for the

specific representation. Additionally, the computation of the upper bound for the av-

erage uniqueness is not strictly necessary. Alternatively, the empirical maximal value

can be used instead. The disadvantage of that strategy is that the algorithm can’t stop

until the maximal average uniqueness value has been reached.

5.3.1 Global Localization Using Artificial Landmarks

To evaluate the landmark configurations obtained using our approach in the task of

global localization, we generated 50 different random trajectories for each of the en-

vironments shown in Figure 5.3. In addition to noise in the range simulations, we

also simulated false positives and false negatives in the landmark detections. The lo-

calization algorithm was executed 5 times for each trajectory using 10 000 particles

initially uniformly distributed in the state space. We compared, for the same num-
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Figure 5.4: Evaluation of the landmark configuration obtained using our approach vs.

alternative approaches in the task of global localization. The plots show the fraction

of particles within a 1.5 meters radius around the true pose as a function of time. The

values correspond to the mean and standard deviation for different repetitions of the

global localization.

ber of landmarks, the configurations obtained with our approach (avg u) against the

configurations obtained with four alternative approaches:

• uniform contour sampling (contour): Distributes the landmarks approximately

uniformly throughout the contours of the environment. The first landmark is ran-

domly selected from the set of candidate landmarks. Additional landmarks are

selected by choosing the candidate landmark closest to the previously selected

one until no more landmarks can be selected. Every time a landmark is selected,

all landmarks within a specified radius are removed from the set of candidates.

This radius is chosen so that the sampling approximately covers the whole map.

• uniform space sampling (space): Distributes the landmarks roughly uniformly

throughout the environment. This approach divides the environment into squared

regions of equal size and selects the candidate landmark closest to the center of

each non-empty region.

• random sampling (random): Distributes the landmarks randomly throughout

the contours of the environment. Landmarks are randomly selected from the set
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of candidate landmarks. Every time a landmark is selected, all landmarks within

a specified radius are removed from the set of candidates.

• maximize the minimal uniqueness (min u): The approach described in Algo-

rithm 5.1 was modified so that it would maximize the minimum uniqueness in

the environment m∗ = argmaxm⊆V

(

minU(x,m)
)

, instead of maximizing the

average uniqueness,

The results of the experiment for one of the environments (left one in Figure 5.3)

are shown in Figure 5.4. As performance metric for the global localization task we

considered the fraction of particles within a 1.5 meters radius around the true pose

after 2, 3, 4, 5 and 10 integrations of measurements (time steps). The values corre-

spond to the mean and standard deviation for the different trajectories and runs of the

localization. As can be seen in the figure, the configuration obtained by our method

improves the global localization performance best since particles are more quickly

converging towards the true pose of the robot. A t-test showed that the improvement

was significant on the 5% level for all the evaluated environments, time steps and al-

ternative approaches. Clearly, the amount of improvement obtainable depends on the

inherent uniqueness of the environment. A larger improvement can be obtained for

inherently ambiguous environments (left one in Figure 5.3) than for inherently unique

environments (right one in Figure 5.3). The first 3 alternative approaches, contour,

space, and random are simple and fast, but do not take into account the ambiguities

that can originate when selecting landmarks, and the resulting landmark configurations

are therefore not as good for improving the localization performance as the ones ob-

tained with our approach. The fourth approach, min u, has the property that a lower

bound for the uniqueness in the environment is guaranteed. However, this does not

provide a significant improvement in the localization performance.

5.3.2 Choosing the Number of Landmarks

The goal of this experiment was to evaluate the performance of our gradient-based

heuristic when determining automatically the number of landmarks to be placed. Fig-

ure 5.5 shows the fraction of particles within a 1.5 meters radius around the true pose

of the robot after 2, 3, and 10 integrations of measurements as a function of the num-

ber of selected landmarks. Also indicated in the figure are the values corresponding

to the number of landmarks selected by our gradient-based heuristic (∼ 10%) when

using a threshold of 1. This corresponds to a 45 degrees positive gradient. The moti-
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Figure 5.5: Global localization performance as a function of the number of selected

landmarks. The plots show the fraction of particles within a 1.5 meters radius around

the true pose of the robot after 2, 3, and 10 time steps. The values correspond to the

mean and standard deviation for different repetitions of the experiment. The number

of landmarks selected by our approach (∼ 10%) is indicated by the vertical line.

vation for choosing this value is that increasing the percentage of selected landmarks

by 1% provides less than a 1% increment in the normalized average uniqueness. Using

a different value for the threshold, or weighting differently the parameters (average

uniqueness vs. fraction of selected landmarks) the number of selected landmarks can

be controlled. As can be seen in Figure 5.5 selecting more landmarks does not pro-

vide an improvement in the localization performance. Furthermore, the number of

landmarks selected is well beyond the point where fewer landmarks would cause the

localization performance to decrease drastically.

An additional result of this experiment is that, as can be seen in the figure, the

behavior of the localization performance as a function of the number of selected land-

marks is similar to the behavior of the average uniqueness (see Figure 5.2). This ex-

perimental result suggests a direct connection between the average uniqueness in the

environment and localization performance.

5.3.3 Experiments with Real Data

We also evaluated our approach using data gathered with a MobileRobots Pioneer P3-

DX robot equipped with a SICK LMS 291 laser range finder (see Figure 5.6). We
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Figure 5.6: The building 103 of Department of Computer Science at the University of

Freiburg consisted on a long, featureless corridor of approximately 80× 3 meters size.

Data was gathered using a MobileRobots Pioneer P3-DX robot equipped with a SICK

LMS 291 laser range finder. As landmarks (right image), stripes of retro-reflective

material were taped to the walls in the locations indicated by our approach.

���

Figure 5.7: Landmark configuration and uniqueness before and after placing the land-

marks for the building 103 data set gathered with a real robot using a laser range

scanner.
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steered the robot through building 103 of the Department of Computer Science at

the University of Freiburg and created an occupancy map of the environment using

a standard SLAM technique [Grisetti et al., 2005]. The environment consisted of a

long, featureless corridor of approximately 80 × 3 meters size. Figure 5.7 shows the

landmark configuration obtained using our approach. In order to make the environment

more ambiguous, range measurements larger than 10 meters where disregarded. For

building the map, however, the full 80meters depth range of the laser scanner was used.

The map resolution and state space discretization are described in Section 5.3. As

landmarks, stripes of retro-reflective material were taped to the walls in the locations

indicated by our approach. We used a threshold on the reflectivity value to classify the

laser measurements caused by the landmarks.

After placing the landmarks, we steered the robot again through the environment

and used the above mentioned SLAM technique to obtain an approximated ground

truth for comparison. For the statistical analysis we divided the data into 5 parts and

evaluated the landmark configuration in the task of global localization as described in

Section 5.3.1. Figure 5.8 shows the results of the experiment. As expected, a sub-

stantial improvement in the localization performance was obtained when using the

landmarks. The performance is, however, lower than the one obtained in simulation.

This is mostly due to the simplistic sensor model considered for the experiments. The

model is sufficient for the purpose of our evaluation, but we expect that using a better

model, for example one that considers the distance and angle of incidence of the beams

at the moment of detecting a landmark, would produce better results for real data.

We also evaluated the configuration obtained using our approach in the task of

position tracking. Figure 5.9 shows the Euclidean distance between the average pose

of the particle set and the true pose of the robot as a function of time. As can be seen

in the figure, using landmarks can also improve the accuracy of the localization in the

ambiguous areas of the environment. With and without landmarks the error grows as

the robot moves along the corridor and decreases when the ends of the corridor are

visible (t ∼ 150, 300, 450, 600). With landmarks, however, the error is substantially

smaller when moving along the corridor.

5.4 Related Work

Many localization techniques rely on natural features of the environment [Leonard

and Durrant-Whyte, 1991; Burgard et al., 1996] to estimate the robot’s pose. These

approaches are particularly attractive as they do not require the environment to be
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Figure 5.8: Global localization performance for the building 103 data set. The plots

show the fraction of particles within a 1.5 meters radius of the true pose of the robot

as a function of time. Also shown are the results obtained in simulation (sim).
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modified. However, inherently ambiguous environments make these approaches more

likely to fail. Artificial landmarks offer the possibility of improving the reliability of

the localization. Some approaches [Howard et al., 2001; Rafflin and Fournier, 1996]

consider artificial landmarks that can be uniquely identified. Such approaches greatly

simplify the localization problem, but they require a landmark coding and non-trivial

identification system. For this reason, we consider only indistinguishable landmarks.

The landmark placement problem as addressed in our work can be formulated as

the problem of selecting a subset of landmarks out of a finite set of candidate land-

marks. Sutherland and Thompson [Sutherland and Thompson, 1993] where one of the

first to address this problem. They demonstrate that the localization error depends on

the configuration of the selected landmarks. Salas and Gordillo [Salas and Gordillo,

1998] propose a simulated annealing technique to find the landmark configuration that

maximizes the size of the region from where a landmark can be seen. Sinriech and

Shoval [Sinriech and Shoval, 2000] specify a set of constraints about the number of

landmarks and their distance to critical locations in the environment, and formulate

landmark placement as a nonlinear optimization problem. Sala et al. [Sala et al., 2004]

decompose the environment into regions from which a minimum number of landmarks

can be observed. They use a graph-theoretical formulation to find the decomposition

with the minimum number of regions. All of the above mentioned approaches rely on

pure geometrical reasoning for estimating the pose of the robot. In contrast to that, our

approach is tightly coupled with a robust, probabilistic localization framework.

Other researchers have also focused on the localization performance at the moment

of selecting landmarks. Thrun [Thrun, 1998], for example, uses a neural network

to extract features from the sensor data and selects the subset of those features that

minimizes the average posterior localization error. Lerner et al. [Lerner et al., 2006]

formulate the problem as a semi-definite programming problem and specify a cost

function to weight different localization parameters according to the specific task at

hand. Strasdat et al. [Strasdat et al., 2009] use reinforcement learning to obtain an

online landmark selection policy. The approach of Zhang et al. [Zhang et al., 2005]

selects, at every time step, the set of landmarks that minimizes the entropy of the

resulting posterior distribution. All of these methods operate online and are concerned

with the salient features observed at every time step during localization. In contrast,

our approach works in an offline fashion, and instead of observed features, we rely

physical objects as landmarks. The main difference with previous approaches is that,

using a measure for the uniqueness of a pose, we explicitly consider the symmetries

and ambiguities that can originate when placing landmarks.



90 CHAPTER 5: IMPROVING ROBOT LOCALIZATION USING ARTIFICIAL LANDMARKS

5.5 Conclusions

In this chapter we presented a landmark placement approach that seeks to reduce the

overall ambiguity in the environment to improve the localization performance of a mo-

bile robot. To this extend we proposed a measure for the uniqueness of a robot pose

based on the appearance of the environment as observed by the robot. Due to the com-

binatorial nature of the landmark placement problem, we introduced an approximative

approach that incrementally selects landmark locations from a set of candidate loca-

tions and thereby maximizes the average uniqueness in the environment. Furthermore,

we described a concrete application in the context of localization with laser range scan-

ners given a grid-based representation of the environment. We evaluated our approach

for different environments in simulation and using real data. The results demonstrate

that our approach yields substantial improvements in the localization performance.



Part II

Modeling Temporal Dynamics





Chapter 6

Hidden Markov Models for Situation

Recognition in Traffic Scenarios

In the previous chapters of this thesis, we represented and reasoned about the envi-

ronment dynamics at a low level of abstraction. So far, the only features that we have

considered are the changes in the occupancy of the space. In the remaining two chap-

ters, we address the problem of reasoning in dynamic environments at a higher level

of abstraction.

A fundamental requirement for an autonomous system to be able to act intelligently

is the continuous monitoring and understanding of the current situation it is involved

in. Knowing what is going on is relevant for predicting what will happen, which in

turn can be used to make informed decisions, avoid risks, and, in general, improve the

performance of the system. Situation recognition, however, is not an easy task even

if the state of the system or its environment can be estimated accurately. To robustly

recognize the current situation at any given time, the temporal context needs to be

taken into account. Additionally, the system must be able to deal with ambiguities,

since there may be more than one possible interpretation, and some interpretations

might be contradictory. Furthermore, the system needs to deal with uncertainty in

the environment, sensor noise, and inaccuracies in its models. On top of this all, the

system must recognize situations as they are evolving, that is, in an online fashion.

In this chapter, we present a framework for modeling and online-recognition of sit-

uations. Although the framework is generic, we focus on a driver assistant application

in traffic scenarios and consider situations that typically occur in highway-like driving

settings. The situations detected by our current system include passing, following, and

aborted passing situations. Within our framework, the process of change is viewed as
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Figure 6.1: Schematic representation of the proposed framework for situation model-

ing and recognition. Each situation type is described by an individual HMM λi. A

situation instance exists as long as the corresponding HMM recognizes the state se-

quence being generated.

a series of snapshots, each describing the state of the system at a particular time. Based

on this characterization, we speak of situation types and situation instances, where a

situation instance is defined as a state sequence that has some meaningful interpreta-

tion. A situation type, on the other hand, is the set of all situation instances that can

be grouped under the same interpretation. We take a model-based approach in which

hidden Markov models (HMMs), as described in Chapter 2, are used for characterizing

and recognizing situations. Each situation type is described by an individual HMM,

which specifies the admissible state sequences that correspond to an occurrence of the

given situation. A graphical representation of the proposed framework is shown in

Figure 6.1. The state space model in the lower part of the figure corresponds to a dy-

namic Bayesian network that characterizes the system. The upper part of the figure

corresponds to a layer of different situation-HMMs, which are evaluated against the

estimated state of the system xt at each point in time t.

In this chapter, we present a practical approach for modeling and recognizing situ-

ations in an online setting. As mentioned above, we show how our framework can be

used for characterizing typical situations in a vehicular traffic scenario, and how situ-

ation instances can be tracked while they are developing. Experimental results using

real and simulated data show that our system can recognize and track multiple situa-
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Figure 6.2: A passing maneuver, in which the reference car (square car in the middle)

is being passed on its left hand side by another one. In this case, we divided the

maneuver into three stages and, thus, used a 3-state HMM over abstract world states

as a model (bottom).

tion instances in parallel, and make sensible decisions between competing hypotheses.

Additionally, we show that our models can be used for making rough predictions about

the position of the tracked vehicles.

6.1 Modeling Situations using HMMs

Our approach to modeling the dynamics of realistic systems, such as vehicular traffic,

is to assume two layers of abstraction: first, on a higher abstraction level, the so-called

situation models describe how the system evolves over longer periods of time at a

lower spatial resolution (e.g., “car A passes car B on the left”). Secondly, on a more

detailed level, a state-space model describes the concrete dynamics of the environment

involving the relationship between the state xt of the system and the observations zt.

Fully interweaving both abstraction layers would lead to an intractable model in

all but the simplest cases. Therefore, the two layers are loosely coupled as visualized

in Figure 6.1, that is, the posterior state estimates in the state-space models are treated

as fixed “observations” by the situation models. Concretely, as state-space model we

assume a dynamic Bayesian network, in which the state xt and observation zt at time t

are characterized by a set of random variables (see Figure 6.1). The state xt of the

system at time t is estimated from the sequence of previously obtained observations z1:t
using the recursive state estimation scheme presented in Chapter 2.

On the more abstract level, a situation instance is defined as a sequence of states

that has some meaningful interpretation. A situation type corresponds to the set of all

situation instances that are grouped under the same interpretation. To characterize a
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situation type s, we use a hidden Markov model λs, that describes the stereotypical

state sequence corresponding to the situation type over the wide range of variations

inherent to the different situation instances. A situation HMM consists of a tuple

λ = (Q,A,B, π), where

• Q = {q0, . . . , qN} represents a finite set of N states.

• A = {aij} is the state transition matrix in which each entry aij represents the

probability of a transition from state qi to state qj .

• B = {bi(x)} is the observation model, where bi(x) represents the probability of

observing the state x of the system while being in state qi in the situation model.

• π = {πi} is the initial state distribution, where πi represents the probability of

state qi being the initial state.

Although the states Q in a HMM are hidden, a concrete meaning can often be as-

sociated with them. In our case, we choose Q as a set of N salient states x from

the state-space model. The transition probabilities aij specify the admissible state se-

quences that correspond to an instance of that situation. Consider, for example, the

passing maneuver illustrated in Figure 6.2, in which a car is passed on the left side by

another car. We can describe this type of situation using an HMM with three states q0,

q1, and q2 where the first state, q0, corresponds to the passing car being behind of the

reference car, q1 corresponds to the passing car being on the left, and q2 corresponds

to the passing car being in front of the reference one.

One possible way to characterize the observation model B is, for example, to dis-

cretize the state space using relational logic and define the individual observations

based on the discretized state space (see [Meyer-Delius et al., 2007]). In relational

logic, an atom r(t1, . . . , tn) is an n-tuple of terms ti with a relation symbol r. A term

can be either a variable R or a constant c. Relations can be defined over the state vari-

ables or over features that can be directly extracted from them. Table 6.1 illustrates

possible relations defined over the distance and bearing state variables in our traffic

scenario. An abstract state is then defined as a conjunction of logical atoms (see [Co-

cora et al., 2006]). For example the abstract state qi ≡ (far(R, R′), behind(R, R′)),

which represents all states where a car is far and behind another car. Using relational

logic to discretize the space, the states of a situation HMM would then correspond to

abstract states.

The observation model assigns to each relation the probability mass associated to

the interval of the continuous state space that it represents. The resulting distribution
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Relation Distances

equal(R, R′) [0m, 1m)
close(R, R′) [1m, 5m)
medium(R, R′) [5m, 15m)
far(R, R′) [15m,∞)

Relation Bearing angles

in front of(R, R′) [315◦, 45◦)
right(R, R′) [45◦, 135◦)
behind(R, R′) [135◦, 225◦)
left(R, R′) [225◦, 315◦)

Table 6.1: State space discretization using relational logic: example distance and bear-

ing relations for a traffic scenario.

is thus a histogram that assigns to each relation a single cumulative probability. Such

a histogram can be thought of as a piecewise constant approximation of the continu-

ous density. The probability bi(x) of observing state x while being in state qi is then

computed as the product of the probabilities associated to each of the relations that con-

stitute qi. This representation of the continuous state space, is basically a discretization

of the state space into a finite number of discrete dimensions with a finite number of

values. The concrete discretization used depends on the particular problem at hand.

A coarse discretization, for example, enables powerful generalizations and can be ex-

pressed relatively economically. However, if the partitions are too large, they will not

allow differentiation between similar situations. If they are too small, the advantage of

abstracting the continuous space will be reduced, and the description of situations will

become increasingly complicated.

The characterization of the observation model used for the framework described in

this chapter is given by a finite mixture of K Gaussian distributions

bi(x) =
K
∑

k=1

cik N (µik,Σik) , (6.1)

where x is the observed system state, cik is the mixture coefficient for the k-th mixture

in situation state qi, and N (µik,Σik) is the multivariate Gaussian distribution with

mean µik and covariance matrix Σik associated to the k-th mixture in qi. Note that the

observed state x, corresponding to the estimated state of the system at the state-space

level, is treated as an observation at the situation level.

In order to estimate the parameters of a situation HMM λ, we use an approach

based on the expectation-maximization (EM) algorithm. As described in Chapter 2,

this is an approximative iterative optimization technique for maximizing the likelihood

of the data. The algorithm takes an initial estimate of the parameters and greedily im-

proves it by following the likelihood gradient. We assume that the number of states N
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and mixtures K in the observation model are fixed and given. Therefore, the initial

state distribution π, the transition matrix A, and the observation model B are the free

parameters to be learned. The training data for each situation type s consists of a set

of observation sequences Xs = {x1, . . . , xc}, where each xi = {xi1, . . . , xiti} is a se-

quence of states of the state space model that corresponds to an instance of situation s.

A key issue when using approximative iterative optimization techniques is how to

choose the initial parameter estimates. A common approach is to set π andA randomly

or uniformly. However, for B, good initial estimates are essential. In this work the ini-

tial estimates for π, A, and B were all specified by manually dividing the observation

sequences into multiple segments and averaging the observations within segments.

6.2 Recognizing Situation Instances

Given a set ofM trained situation models λ1, . . . , λM , and a sequence x1:t of states of

the state space model, our approach to situation recognition is based on evaluating the

likelihood p(x1:t | λi) of the sequence for each model λi. This likelihood is computed

incrementally using the forward procedure (see [Rabiner, 1989]) given as

p(x1:t | λ) =
N
∑

i=1

αt(i), (6.2)

where

αt+1(j) =

[ N
∑

i=1

αt(i)aij

]

bj(xt+1), (6.3)

and

α1(j) = πjbj(x1). (6.4)

At each point in time t, the framework incrementally updates the likelihoods computed

at time t− 1 independently for the different models.

In certain scenarios it is reasonable to consider two or more situation types as

being mutually exclusive or competing. In this kind of problems, we would like to be

able to select, among the competing models, the most likely one. Assuming that the

stereotypical sequences of the competing situation types can be differentiated and that

the learned models accurately characterize them, we can use the likelihood p(x1:t | λs)
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of the observation sequence given the different models λs to select the one that provides

the better explanation for the sequence [Rabiner, 1989].

For deciding between two competing situation models, we compute the posterior

odds, which provides a way of evaluating evidence in favor of a probabilistic model

relative to an alternative one. The posterior odds pλ1

λ2
for two competing models λ1

and λ2 given an observation sequence x1:t is computed as

pλ1

λ2
=

p(x1:t | λ1) p(λ1)
p(x1:t | λ2) p(λ2)

, (6.5)

that is, the ratio of the likelihoods of the models being compared given the data mul-

tiplied by the model priors. The likelihood p(x1:t | λ) of an observation sequence x1:t
given a model λ can be computed efficiently using the forward procedure as described

above. The prior probabilities p(λ) allow us to include information about how likely

a given model is, prior to any evidence. We learn these from the training data using

simple counting.

6.3 Experimental Evaluation

Our framework was implemented and tested in a vehicular traffic scenario using a

simulated driving environment as well as with real data. The goal was to show that

our framework could be used to model and recognize different situations instances in

a dynamic multi-vehicle environment. We considered three different situations that

typically occur on a highway, namely passing, aborted passing, and following.

• passing: A passing car approaches the reference car from behind, it passes on

the left, and finally ends up in front of it.

• aborted passing: as in the passing situation, a passing car approaches from be-

hind, but instead of actually passing the reference car, it slows down before being

abeam and ends up behind it again.

• follow: the reference car is followed from behind by another car at a short dis-

tance and at approximately the same velocity.

For the experiments, the state xt of the system at time t consisted of the relative

distance rit, relative bearing ψi
t, and relative speed vit of each car i around the refer-

ence car. These features were sufficient to characterize the modeled situations, being



100 CHAPTER 6: HIDDEN MARKOV MODELS FOR SITUATION RECOGNITION

-1600

-1400

-1200

-1000

-800

-600

-400

-200

 0

 0  0.2  0.4  0.6  0.8  1

lo
g
 l
ik

e
lih

o
o
d

normalized time

passing
aborted passing

following

-1600

-1400

-1200

-1000

-800

-600

-400

-200

 0

 0  0.2  0.4  0.6  0.8  1

lo
g
 l
ik

e
lih

o
o
d

normalized time

passing
aborted passing

following

Figure 6.3: Average likelihood of 10 observation sequences corresponding to a passing
(left) and an aborted passing (right) maneuver according to the three different situation

models: passing, aborted passing, and following.
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Figure 6.4: The situation models were learned from a large set of simulated traffic

scenarios involving multiple users using a simulated driving environment. Top: it is

not yet clear whether the cyan car will actually pass the yellow one (see the forth

bar chart on top). Middle: at this point, the passing maneuver was clearly identified.

Bottom: Inspecting the evolution of situation likelihoods involving many agents.
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also robust against variations in the different situation instances. In our experiments,

each situation HMM consisted of 5 states with one three-dimensional Gaussian as ob-

servation model. Some HMMs could not be trained when using more states due to

insufficient data, and using less states made the models too general and reduced their

discriminative capacity. The initial estimates of the parameters π, A, and B of the

models where manually set by segmenting the situation stereotypical sequence into

meaningful states. The EM algorithm was then used to optimize the parameters so as

to maximize the likelihood of the data.

6.3.1 Recognizing Individual Situation Instances

The goal of this experiment was to demonstrate that our approach can be used to suc-

cessfully characterize and track different situation types. We first trained the different

situation models using sequences generated in a driving simulator (TORCS) [Espié

and Guionneau, 1997]. The training data, consisting in 20 instances of each situation

type, was generated using randomly selected speeds for the cars in different circuits.

As test sequences, 10 passing and 10 aborted passing maneuvers were generated. Fig-

ure 6.3 plots the average log likelihood and standard deviation of the test sequences

according to the different situation models. Since different executions of a maneuver

produce sequences of different length, they were first normalized using interpolation

in order to compare them.

After an approaching car was detected, that is, when an approaching car was within

a 50 meter radius of the reference car, we started computing the likelihood of the state

sequence for the different situation models as described in Section 6.2. In the figures,

it can be observed how the likelihood given a model measures how well the model

explains the current state sequence. For the passing maneuvers (top plot) the passing

situation model provides the best explanation compared with the other models. For

the aborted passing maneuvers (bottom plot), however, the model does not perform

as well. For example, observe how at approximately 20% of the maneuver, as the

passing car starts changing to the left lane, the likelihood according to the following

model starts to decrease. This occurs since the model expects the following car to

remain behind the reference car and therefore ceases to provide an explanation for the

observations. Similarly, at approximately 50% of the maneuver, when the passing car

is abeam, the likelihood according to the aborted passing model starts to decrease too.

The error bars in the figure capture the variance in the different executions of the

maneuvers. However, this variance is greatly inflated by the normalization over the
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Figure 6.5: Arrangement of two SICK laser range finders on a convertible used for

gathering real data. Each laser has a field of view of 180 degrees and can detect objects
as far as 80 meters with an angular resolution of 1 degree at 75Hz.
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Figure 6.6: The arrangement of the two lasers (see Figure 6.5) provided a 340 degrees
field of view.

length of the sequences. This is why the bars appear so large. Specially after the like-

lihood of a sequence given a model falls below a certain threshold. In this experiment,

we set the minimum allowed log likelihood value to −1500 for better visualization of

the results.
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6.3.2 Recognizing Multiple Situation Instances

A similar experiment was carried out with additional cars driving simultaneously to

evaluate the performance and robustness of the framework. The scenario consisted of

nine different cars passing the reference car. Every time one of the cars came within a

50 meter radius of the reference car, the three situation models where instantiated for

the approaching car, and evaluated as described in Section 6.2. Once a car was outside

the tracking range, the associated models where discarded. The results (see Figure 6.4)

showed that our approach can also be used in scenarios where multiple cars are being

simultaneously tracked, instantiating and eliminating multiple different instances of

the situation models as cars appear and disappear from the state space, over extended

periods of time. Since each situation instance is evaluated independently from the

others, the complexity of the situation tracking algorithm increases only linearly in the

number of situation types and cars in the state space.

Recognizing Situation Instances in Real Data

The framework was also evaluated using real data. Two SICK laser range scanners

were mounted on a convertible as illustrated in Figure 6.5. Each laser has a field of

view of 180 degrees and can detect objects as far as 80 meters with an angular resolu-

tion of 1 degree at 75 hertz. The arrangement of the two lasers provided a 340 degrees

field of view as illustrated in the figure. Due to the blind spot in the field of view of the

laser arrangement, states in which cars were in front of the reference car could not be

considered. Data was gathered by driving over more than 50 kilometers on highways

and state roads at velocities of up to 110 km/h. Note that in this work, we concentrate

only on the recognition of situation instances and do not deal with the tracking of the

cars. The trajectories of the cars were extracted using a manually initialized Kalman

filter to track the cars.

From the gathered data, only 14 and 8 complete tracks corresponding respectively

to passing and following situations could be successfully extracted. Due to the techni-

cal limitations of the sensors together with their arrangement, many situation instances

could not be captured, or were captured only partially in the data. Figure 6.7 plots the

average log likelihood of 5 observation sequences corresponding to a passing maneu-

ver according to the passing and following models trained with the real data.
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Figure 6.7: Likelihood of 5 observation sequences corresponding to passing maneu-

vers extracted from real data according to the passing and following situation models.
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Figure 6.8: Posterior odds in favor of the passing situation model compared against

the follow situation model according to the observations for the passing maneuver.
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6.3.3 Competing Situation Models

In this experiment we illustrated how the posterior odds can be used for choosing

between different situation models. Figure 6.8 plots the posterior odds p
λp

λf
in favor

of the passing situation model λp compared against the following situation model λf
for the real data used in the previous experiment. The model priors p(λp) and p(λf )

needed to compute the posteriors were obtained form the training data by counting the

number of instances of the passing and following model.

A positive p
λp

λf
can be interpreted as evidence provided by the data in favor of the

passing situation model. The motivation behind using the posterior odds as criterion

for model selection can be observed in the results of the previous experiment, in which

the likelihood of the sequence according to the model actually corresponding to the

executed maneuver is generally higher than the likelihood according to the other mod-

els. Figure 6.8 also illustrates how the posterior odds can be used to make decisions

between competing situation models as discussed in Section 6.2.

6.3.4 State Prediction

In this experiment we demonstrated how our learned models can be used for predict-

ing the state of the system. State prediction within the HMM framework consists of

computing the belief state of the HMM as in Equation (6.3) but without correcting for

new evidence. The state x̄t+τ in the state space model, τ time steps in the future, can

then be computed as

x̄t+τ =

∑N
i=1 αt+τ (i)µi

∑N
i=1 αt+τ (i)

, (6.6)

where µi is the mean of the multivariate Gaussian distribution of the observation model

for situation state qi (see Section 6.1). Figure 6.9 plots the predicted state of a car for

one of the sequences gathered from real data. The sequence corresponds to a passing

maneuver and the learned passingmodel was used to obtain a 1-second prediction. Our

HMM-based situation models allow us not only to describe but also predict situations

with complex dynamics. We compare the prediction results of our models against a

base-line constant-velocity model. This model can be quite accurate for predictions

when the situation is highly linear (as are the situations in our presented experiments)

but is extremely sensitive to errors in the state estimation. Our HMM-based models,

on the other hand, are robust against these errors since the predictions are based on
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Figure 6.9: 1-second prediction for a sequence corresponding to a passing car accord-

ing to a constant velocity model (const. vel.) and our learned HMM-based passing

situation model (HMM).

the learned model and not only on the estimated state of the system. It must be noted,

however, that the accuracy of the prediction depends strongly on the parameters of the

model. For example, using a coarse discretization of the state space may lead to a

model which can produce inaccurate predictions (see bottom plot).

6.4 Related Work

In the field of intelligent agents, space and time modeling has been approached using

qualitative knowledge representation and reasoning, like, for example, using the situa-

tion calculus [McCarthy, 1963] or the event calculus [Kowalski and Sergot, 1986].

Despite the existence of these formalisms that simultaneously represent space and

time, most modern approaches combine spatial and temporal calculi. Muller’s [Muller,

1998] spatio-temporal theory, for example, is basically a first-order axiomatization

of spatio-temporal entities based on RCC [Randell et al., 1992]. Wolter and Za-

kharyaschev [Wolter and Zakharyaschev, 2000] combine RCC and propositional time

logic [Manna and Pnueli, 1992]. Brandon et al. [Bennett et al., 2002] also use propo-
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sitional time logic but combine it with modal logic to produce a logic system that de-

scribes topological relationships that change over time. Gerevini and Nebel [Gerevini

and Nebel, 2002] use Allen’s interval calculus [Allen, 1983] to temporalize RCC.

All these approaches are mostly focused on the representation of and reasoning

about spatio-temporal facts. Several authors have investigated the problem of extract-

ing such facts from quantitative data to recognize relevant temporal configurations of

those facts in an online fashion. Ghallab [Ghallab, 1996], for example, introduced the

concept of a chronicle as a set of events and a set of temporal constraints between those

events, where the events are symbolic representations obtained from sensors. In an on-

line fashion, the recognition system processes these events and if they match the event

model of a chronicle, then an instance of this chronicle is said to occur. Nagel [Nagel,

2001] describes a complete system capable of transforming sequences of video im-

ages into a natural text description of spatio-temporal developments. Nagel introduces

the notion of a generically describable situation as a combination of a state-scheme

and an action-scheme, where a state-scheme is a characterization of the state and an

action-scheme specifies an action that could be performed based on the state-scheme.

Similar to the approaches of Ghallab and Nagel, our framework describes each rel-

evant spatio-temporal configuration using an individual model that is evaluated as the

state of the system changes. However, the approaches of Ghallab and Nagel do not ex-

plicitly deal with the inherent uncertainty in the observations and actions of a system.

The hidden Markov model (see Rabiner [Rabiner, 1989]) is one of the most popular

probabilistic models for representing sequences of states that have structure in time.

Brand et al. [Brand et al., 1997], for example, represent and classify sequences corre-

sponding to T’ai Chi Ch’uan gestures using coupled hidden Markov models. Ghahra-

mani et al. [Ghahramani and Jordan, 1997] use factorial hidden Markov models to

model a collection of musical pieces of J.S. Bach. Landwehr [Landwehr, 2008] ex-

tracts different activities executed in parallel during the preparation of breakfast at

home using interleaved hidden Markov models.

Like in the approaches mentioned above, we use hiddenMarkov models to describe

distributions over meaningful state sequences. However, we additionally present a

complete framework for real-time recognition of sequences that are consistent with

the models. This approach is similar in spirit to the one presented by Bennewitz et

al. [Bennewitz et al., 2008] where a complete framework for recognizing gestures is

presented. In contrast to the left-to-right models used by Bennewitz et al. we do not put

restrictions on the state transitions of the model and we also discuss how recognized

situations can be used to predict future developments in the scene.
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6.5 Conclusions

In this chapter, we presented a general framework for modeling and recognizing sit-

uations. We take a model-based approach in which each situation type is described

by an individual HMM that specifies the admissible state sequences corresponding

to an instance of the given situation. For deciding between two competing situation

models, we use the posterior odds, which provides a way of evaluating evidence in

favor of a probabilistic model relative to an alternative one. We evaluated the approach

experimentally using simulated and real data in the context of a driver assistant ap-

plication with situations that typically occur in highway-like driving scenarios. The

results demonstrate that our system is able to recognize and track multiple situation

instances in parallel and to make sensible decisions between competing hypotheses.

Additionally, we show that our models can be used for roughly predicting the position

of the tracked cars.





Chapter 7

Regression-Based Situation

Recognition for Traffic Scenarios

In Chapter 6 we presented a situation recognition framework where each situation

type was described using an individual hidden Markov model (HMM). One of the

drawbacks of this framework is that there is no straightforward approach to determine

the states of the models. Furthermore, using a finite and usually small number of

states to represent sequences of continuous state variables leads to discretizations of the

sequences that may be inappropriate. In this chapter we present an alternative approach

that overcomes this limitation by modeling the stereotypical state sequence using a

regression function. In contrast to the approach presented in the previous chapter, using

a regression function requires no artificial segmentation of the data. Furthermore, the

regression-based approach is less susceptible to the effects of insufficient training data.

Like in the previous chapter, we consider a driver assistant application. The model

for a given situation is learned from multiple state sequences or trajectories of the cor-

responding situation. The insight behind this approach is that, although instances of

a given situation are in general different from each other, there is an inherent simili-

tude that characterizes the situation. Figure 7.1 plots multiple trajectories of a passing

situation together with the learned model. In our concrete example, a trajectory is de-

scribed by the bearing, distance, and speed of the passing car relative to the car being

passed. We can clearly see that the different trajectories are similar; they all present

a distinctive form that characterizes the passing situation. The learned model for the

passing situation is visualized in the figure by the thick lines and the filled curves,

corresponding respectively to the mean and variance of the features.
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Figure 7.1: Regression model learned from trajectories corresponding to a passing

situation. The training trajectories are visualized as thin lines and each color represents

a different dimension (bearing, distance, and speed of the passing car relative to the

car being passed) in state space. From these trajectories, a generalized model for the

passing situation is learned using kernel regression, visualized by the thick line and

the filled curve, corresponding to the mean and variance respectively.

We formulate the situation recognition problem using a dynamic Bayesian network

(DBN) that represents, in a factorized way, the relevant aspects of the state of the sys-

tem using random variables and conditional probability distributions between these

variables. A high-level latent state variable that represents the current situation deter-

mines the dynamics of the lower-level state variables. The dynamics are described by

a function that approximates the state of the system in time. This function is learned

from a set of labeled training trajectories using kernel regression. Thus, each situa-

tion is modeled by an individual regression function that describes the characteristic

dynamics of the situation. Trajectories can then be classified by evaluating their like-

lihood for the different models. This can be done even for trajectories that correspond

only to a partial instance of a situation, allowing us to recognize situations online.

In this chapter we propose a practical approach for modeling and recognizing sit-

uations. We show how our framework can be used for learning models of typical

situations in a vehicular traffic scenario. We also describe how situation instances can
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Figure 7.2: Structure of the dynamic Bayesian network used in our framework for

learning the dynamics of the system in a given situation. For time t, xt denotes the
state of the system, zt the observation of the state, and gt is a high-level state variable
that represents the current situation and determines the dynamics of the system.

be recognized while they are developing. Experimental results using real and simu-

lated data show that our system can robustly recognize different traffic situations even

for partially observed instances.

7.1 Modeling Situations using Regression

Each type of situation is associated with a particular system dynamics. The goal of our

approach consists in learning the system dynamics corresponding to a situation from

multiple training trajectories. Then, using the learned system dynamics, we can infer

the most likely situation type for new trajectories.

We model the system using a DBN (see Figure 7.2). At each time step t, the ran-

dom variable xt represents the state of the system, zt the observation of the state, and

qt is a high-level latent variable that describes the internal state of the current situa-

tion s. The observation zt depends on the current state of the system xt, which in turn

depends on the previous state xt−1 and the current situation state qt. The DBN encodes

the following conditional probability distributions: the observation model p(zt | xt)
that represents the probability of observing zt from state xt, the state transition model

p(xt | xt−1, qt) that corresponds to the state transition probability of the system and

describes the dynamics of the system at time t for the given situation, and the situation-

level state transition model p(qt | qt−1) that characterizes how the internal state of the

situation evolves in time.
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For a given situation s of length T , we learn a model fs = p(x1:T | s) that de-
scribes the dynamics of the state of the system during the complete development of the

situation. This model also describes, implcitly, how the internal state of the situation

evolves in time. Using a set of M training trajectories x11:T 1 , . . . , xM1:TM , where each

trajectory x1:Tn = {x1, . . . , xTn} consists of a sequence of states corresponding to the

same situation, we apply kernel smoothing to obtain the model that best approximates

all trajectories. As the training trajectories are in general of different lengths, we apply

Dynamic Time Warping to standardize them before learning the situation model. Fi-

nally, we can also learn the prior over situations p(s) by counting how many training

trajectories belong to each different situation type.

Given an observation sequence z1:t, the trajectory x1:t can be estimated using the

Bayesian recursive state estimation scheme described in Chapter 2. We can then select

the model that best fits the trajectory by computing the likelihood of each model given

the data

p(s | x1:t) ∝ p(x1:t | s) p(s) , (7.1)

and selecting the model with the largest likelihood.

7.1.1 Kernel Smoothing

We treat the problem of learning a model for a situation s as a non-linear regression

problem. The goal is to estimate the function f s that approximates the state of the

system x as a function of time. Consequently, f s will represent the characteristic

dynamics of the state for situation s. Given a set of training trajectories we learn the

function that best approximates all of them.

Assuming that at every time step t the state xt of the system is normally distributed

over all training instances, we formulate f s(t) as

f s(t) = N (µs(t), Σs(t)) , (7.2)

where µs(t) is a k-dimensional mean vector with the same dimensionality as xt, and

Σss(t) is the corresponding covariance matrix. Accordingly, the problem of estimat-

ing f s can be stated as the problem of learning the mean µs(t) and covariance Σs(t) of

the normal distributions at each point in time t.

To estimate these parameters, we use kernel smoothing [Nadaraya, 1964] which is

a non-parametric technique for approximating the density function of a random vari-
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able from a set of sample instances. The idea is to approximate the value of the pa-

rameters as the weighted average of the neighboring sample points. These weights are

given by a kernel function parameterized by a distance measure in the domain of the

function. In our case, the weight of the samples depends on the temporal distance of

the samples. Given a set of D trajectories corresponding to the same situation, each

having a length of T , and assuming that the state dimensions are independent from

each other, kernel smoothing estimates the mean µi(t
′) for dimension i at time t′ as

µi(t
′) =

∑D
d=1

∑T
t=1K( t

′−t
h
) xid,t

∑D
d=1

∑T
t=1K( t

′−t
h
)

, (7.3)

where xid,t is the value for the i-th dimension of the state of the system in trajectory d

at time index t, and K(u) is a Gaussian kernel with bandwidth h. This bandwidth

determines how the influence of the neighboring samples decreases with the distance

in time. The variance σ2
i (t

′) for dimension i at time t′ is estimated as

σ2
i (t

′) =

∑D
d=1

∑T
t=1K( t

′−t
h
) (xid,t − µi(t

′))2
∑D

d=1

∑T
t=1K( t

′−t
h
)

. (7.4)

The result of applying kernel smoothing to the training data is a function f(t) that

describes, for each point in time t, the characteristic state of the system by the mean

µ(t) and covariance Σ(t).

7.1.2 Aligning Situation Instances

To be able to use the kernel density estimator method, the training trajectories must

be of the same length. To handle temporal variations we apply Multi-Dimensional

Dynamic Time Warping (MD-DTW) [ten Holt et al., 2007], a variation of Dynamic

Time Warping (DTW) [Sakoe and Chiba, 1978], to make all trajectories equally long.

We select a reference trajectory from the training set, and all other trajectories are

aligned to it. Kernel density estimation can then be directly applied on the aligned

trajectories.

Dynamic Time Warping is a technique for aligning the time axis of two time-

indexed sequences. The algorithm computes the minimum-cost alignment or warp

between two series x1:lx and y1:ly . Usually, the Euclidean distance is used as the dis-

tance measure d(xi, yj) between the points in the sequences. The minimum-cost warp

is then efficiently found using dynamic programming to compute the cumulative cost
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Figure 7.3: Dynamic Time Warping between two different trajectories. The figure vi-

sualizes the cost matrix induced by the recursive computation of the cumulative warp-

ing cost. The bold white line corresponds to the minimum-cost warping path.

γ(i, j) corresponding to the minimum-cost warp of the partial sequences x1:i and y1:j .

The value of γ(i, j) is recursively computed as

γ(i, j) = d(xi, yj) +min{γ(i− 1, j), γ(i, j − 1), γ(i− 1, j − 1)} . (7.5)

The cost CW of the minimum-cost warp is then given by the value of γ(lx, ly) and the

warp is constructed by tracing back from γ(lx, ly) to γ(1, 1). Figure 7.3 illustrates the

cost matrix induced by the recursive computation of Equation (7.5). Each entry i, j in

the matrix corresponds to the value of the cumulative cost γ(i, j) and the bold white

line corresponds to the minimum-cost warp.

Multi-Dimensional Dynamic Time Warping is a generalization of DTW for multi-

dimensional sequences where the distance between the points in the sequences corre-

sponds to the n-dimensional Euclidean distance. To meaningfully compare different

dimensions, each point xi in the sequences is standardized as x
′
i = (xi − µ)σ−1, where

µ and σ are the sample mean and standard deviation, before computing the distances.

To make the alignments more robust, we compute, for each point in the sequence, an

approximation of the derivative in each dimension as in [Keogh and Pazzani, 2001].

These are added to the state space and included in the distance between the points,

effectively incorporating information about the shape of the trajectories being aligned.
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7.2 Recognizing Situation Instances

Having trained a set of situation models, we want to select the one that best describes

any given trajectory x1:t. In other words, we want to select the model f s∗ for the

situation s∗ such that

s∗ = argmax
s

p(f s | x1:t) . (7.6)

This requires the computation of the likelihood p(x1:t | f s) of the trajectory x1:t for

each situation model f s. Given a regression model f s corresponding to a situation s

and a trajectory x1:t, the likelihood of the trajectory given the model is computed as

p(x1:t | s) =
t

∏

t=1

p(xt | f s(t)) , (7.7)

where

p(xt | f(t)) =
1

(2π)k/2|Σ(t)|1/2 e
− 1

2

(

(xt−µ(t))TΣ(t)(xt−µ(t))
)

. (7.8)

Equation (7.7) assumes that the states of the system are independent from each other.

This is in general not the case, however, this approximation works well for our pur-

poses and is easily computed.

Using the likelihood as a measure of the quality of a model, we can now select

from a set of competing models, the one that produces the highest likelihood for a

given trajectory. In this way, we can use our trained models for classifying trajectories.

Note, however, that before computing the likelihood, the trajectory must have the same

length as the model. This is achieved as explained in Section 7.1.2 by aligning the

trajectory against the reference trajectory for the corresponding model.

7.2.1 Recognizing Partial Instances

The previous discussion about recognizing situations implicitly assumes that the start

and the end of the trajectories that are being evaluated correspond, respectively, to the

start and the end of the situation. For evaluating a trajectory that corresponds only to an

incomplete instance of a situation, where the end of the instance does not correspond

to the end of the situation, the MD-DTW approach as described in Section 7.1.2 can

not be directly applied.
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The MD-DTW algorithm finds the best global alignment between two sequences.

However, for aligning an incomplete trajectory we need to find the best local alignment

beginning at the common starting point. Given an incomplete trajectory x1:t and a

reference trajectory y1:T , the minimum-cost local warp is constructed by tracing back

from γ(t, j∗) to γ(1, 1) where j∗ = argmin γ(t, j) for j = 1 . . . T .

The warping algorithm can also be modified to include a scaling cost that penalizes

the stretching or contraction of a sequence [Keogh and Pazzani, 2001]. In this way, we

can alleviate the problem of over- or under-scaling a sequence. Once the incomplete

trajectory is aligned, its likelihood can be computed directly using Equation (7.7). In

this way, we are able to recognize situations as they are developing.

7.3 Experimental Evaluation

Our framework was tested in a vehicular traffic scenario using a simulated driving

environment as well as real data. We considered three typical maneuvers as situations:

passing, aborted passing and following as described in Chapter 6. The state of the

system xt was described by the bearing ψ, distance d, and speed v of the neighboring

cars relative to the reference car. These features were sufficient to characterize the

maneuvers, being also robust against variations in the different instances. We also

evaluated our framework in the context of social robot navigation.

7.3.1 Recognizing Situation Instances

We first trained a model for each situation type using 30 trajectories generated in the

simulation environment. Each trajectory started as soon as the neighboring car was

closer than 50 meters and ended when the car was more than 50 meters away. As

reference trajectory we selected one with average length. We then used MD-DTW to

align the training trajectories and generated the corresponding model applying kernel

smoothing. Figure 7.1 depicts some of the training trajectories and learned model for

the passing situation. The likelihood for a set of 15 validation trajectories not used for

training was computed to evaluate the classification performance of our models. For a

better interpretation of the data, the average Mahalanobis distance over the length of

the trajectory is used as fit error of a model. Table 7.3.1 presents the average fit error

of the validation set for the learned models.

As can be seen in the table, the smallest error is obtained when the trajectories and

the model correspond to the same situation type, which is the expected result. This
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Θap Θf Θp

ψ d v ψ d v ψ d v

ap
0.94 0.87 0.95 6.49 2.58 4.22 6.74 2.53 2.64

±0.42 ±0.37 ±0.34 ±2.17 ±1.31 ±0.74 ±0.51 ±0.34 ±0.43

f
2.09 3.74 3.04 0.80 2.43 2.48 8.28 9.08 4.26

±0.20 ±3.17 ±0.76 ±0.30 ±1.44 ±1.32 ±0.22 ±5.91 ±0.91

p
17.27 5.66 18.08 38.55 11.46 20.12 0.79 1.02 1.24

±0.83 ±0.82 ±6.45 ±3.28 ±0.82 ±7.94 ±0.43 ±0.15 ±0.35

Table 7.1: Average and standard deviation of the fit error for the models learned on

artificial data.

experiment shows that our framework allows us to construct models that represent the

characteristic dynamics of the maneuvers and could be used for recognition.

7.3.2 Recognizing Partial Situation Instances

To evaluate how our approach performs at recognizing trajectories that correspond to

incomplete instances of a situation, we repeated the previous experiment using only

the initial segment of the trajectories. Figure 7.4 plots the the average accuracy and

standard deviation for each model as a function of the length of the trajectory segments.

The classification results were evaluated using k-fold cross-validation with k = 6.

As can be seen in the figure, 80% of the length of the trajectory was enough to

correctly classify all the segments. Even 50% of the length was enough to obtain

reasonable classification results for all the models. Models corresponding to complex

situations require more evidence to correctly classify a trajectory. This can be observed

in the figure by the poor performance for proportionally short trajectories of the pass-

ing and aborted passing models. The following model, on the other hand, describes

a relatively simple situation. As can be seen in the figure, the following model had a

good classification accuracy even for very short trajectories.

7.3.3 Application in a Traffic Scenario

To evaluate the complete situation recognition approach in a real-time setting, we inte-

grated our framework into a driving simulator (TORCS) [Espié and Guionneau, 1997]

which features a simple 3D physics model and provides us with the absolute position

and velocity of the vehicles at 50 hertz. At every time step, that is, every 0.02 seconds,
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length of the instance (%)
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Figure 7.4: Classification accuracy of the models for partial trajectories. The figure

shows the average accuracy and standard deviation for each model as a function of the

length of the partial trajectories.
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(a) (b)

(c) (d)

Figure 7.5: Screen shots of the simulation environment showing a car (orange) passing

another one (yellow). The bars in the plots correspond to the likelihood of the trajec-

tory of the passing car for the passing (red), aborted passing (green) , and following

(blue) model. At first (a), the following situation is the most likely, but as the maneuver

develops (b) - (d), the passing situations becomes more likely.

the state of the neighboring vehicles is computed. This means that, for each vehicle,

the relative bearing, distance, and speed is estimated, and added to the corresponding

trajectory. Then, after standardizing the state’s values and computing the derivatives,

the trajectories are aligned and the likelihood computed for every situation model.

Figure 7.5 shows a series of screen shots of the simulation environment in a two

vehicle scenario together with the results of our situation recognition framework. The

images show a car (orange) passing another one (yellow). The bars in the plots corre-

spond to the normalized likelihood of the trajectory of the passing car for the passing

(red), aborted passing (green), and following model (blue). As can be seen, at first

(a), the following situation is the most likely, but as the maneuver develops (b) - (d),

the passing situations becomes more likely. The framework was also tested in scenar-
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Θf Θp

ψ d v ψ d v

f
0.84 0.87 0.84 2.61 7.03 1.47

± 0.33 ± 0.39 ± 0.45 ± 0.49 ± 3.12 ± 0.51

p
8.23 1.4 2.59 0.73 0.84 0.81

± 2.53 ± 0.19 ± 1.71 ± 0.57 ± 0.31 ± 0.6

Table 7.2: Average and standard deviation of the model’s fit error trained on real data.

ios with up to 9 vehicles (plus the reference one). The experiments showed that our

approach can be used in such scenarios, where multiple vehicles are being simultane-

ously tracked, over extended periods of time.

The most time demanding step in the whole process is aligning the trajectories to

the situation models. If the length of the reference trajectory of a model is N and the

length of the trajectory being aligned is M , the time complexity for the alignment is

O(NM), that is, O(N2). However, since the cumulative cost γ(i, j) can be incremen-

tally computed as new states are added to the trajectories, the important factors in the

performance of the approach are the number of situation models, the length of their

reference trajectories, and number of neighboring vehicles.

The framework was also evaluated using real data. As described in Chapter 6, two

SICK laser range scanners were mounted on a convertible as illustrated in Figure 6.5.

Each laser has a field of view of 180 degrees and can detect objects as far as 80 meters

with an angular resolution of 1 degree at 75 hertz. The data was gathered by driv-

ing over more than 50 kilometers on highways and state roads at velocities of up to

110 km/h. Note that in this work, we do not deal with the recognition and tracking of

vehicles, and the trajectories were manually extracted from the data.

Due to the technical limitations of the sensors together with their arrangement,

many situation instances could not be captured, or were captured only partially. From

the gathered data, only 19 (10 passing and 9 following ) useful trajectories could be ex-

tracted. Table 7.3.3 presents the fit error of the training set for the two trained models.

As can be seen, the smallest error lies on the diagonal of the table where the sequence

and the model correspond to the same maneuver type.

We also evaluated the classification accuracy of the models trained on real data

against the trajectories generated in the simulation environment and vice versa. It

must be noted that the trajectories from the real data where sampled at 75 hertz while

the ones obtained from the simulator were sampled at 50 hertz. Also, because of the
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real training artificial training

f
- 0.77 real testing

1.0 - artificial testing

p
- 0.80 real testing

0.57 - artificial testing

Table 7.3: Classification accuracy of models trained and evaluated with real and artifi-

cial data.

configuration of the lasers, the trajectories corresponding to passing maneuvers where

truncated when the passing vehicle was left of the reference one. Thus, the corre-

sponding models only describe the maneuver until that point. When evaluating the

trajectories generated in the simulation against the models trained with real data, we

only considered the first half of the trajectories. This affected the classification accu-

racy, as shown in the previous experiment. Despite all these we obtained reasonable

classification results as can be seen in Table 7.3.3

7.3.4 Recognizing Human Motion Behavior

We also evaluated our framework using real data in a social robot navigation context.

We considered two different behaviors, left and right passing that typically occur when

a persons encounters a robot in narrow space. We first trained a model for each be-

havior type using multiple trajectories acquired during an experiment where different

human subjects where asked to walk along a corridor while a moving robot would meet

them half the way, moving to their original starting point. Figure 7.6 depicts some of

the training trajectories and learned model for the right passing behavior. Figure 7.7

plots the the average prediction accuracy and standard deviation for each model as a

function of time using cross-validation. As can be seen in the figure an almost perfect

prediction could be made with 1 second in advance. The poor prediction performance

beyond 1.30 seconds is due to the nature of the modeled behaviors which are identical

up to 75% of their duration.

7.4 Related Work

The approach presented in this chapter is similar, in essence, to the problem of pro-

gramming a robot by human demonstration [Calinon and Billard, 2004], where a hu-
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Figure 7.6: Regression model for the right passing behavior. Training trajectories are

visualized as thin lines. Each plot represents a different dimension of the state space.
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Figure 7.7: The figure shows the average accuracy and standard deviation for each

model as a function of time, where 0 s corresponds to the moment of passing.
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man performs an action or task multiple times, and the robot must infer a generalized

representation of the task. We build upon the work of Eppner et al. [Eppner et al.,

2009], where a framework for learning and reproducing tasks with a robotic manipula-

tor is presented. The fundamental difference between our work and these approaches

is that they focus on the learning and reproduction of the task, whereas our approach

concentrates on the classification and online recognition of the tasks (situations in our

case) using the learned models.

Our dynamic Bayesian network formulation of the system, where a high-level vari-

able determines the dynamics of the lower-level states, is similar to the one made by

the Switching Linear Dynamic Systems (SLDS) models. By switching between mul-

tiple linear dynamic models, an approximate description of the continuous non-linear

dynamics of the system is obtained. Pavlović and Rehg [Pavlovic and Rehg, 2000]

apply SLDS models to the problem of classifying human motion. Oh et al. [Oh et al.,

2006] present an extension of the SLDS framework that allows a parameterization of

the duration model of standard SLDS models. They apply their approach for decoding

the honeybee dance. In contrast to these SLDS-based techniques, our approach learns

the non-linear dynamics of the system using individual regression models.

As described in Chapter 6, the HMM framework can be used to model and rec-

ognize state sequences that have structure in time [Brand et al., 1997; Bennewitz et

al., 2008]. However, as already mentioned, using a finite (and usually small) number

of states imposes a sometimes unnatural segmentation of the sequences to be modeled

that can lead to poor recognition accuracies. The main advantage of our approach

over the HMM-based approaches is that no artificial partitioning of the sequences is

required.

7.5 Conclusions

In this chapter, we presented a general framework for modeling and recognizing situa-

tions. We take a model-based approach in which each situation type is described by an

individual regression model that describes the characteristic dynamics of the system

over time. We formalize the problem using a DBN and learn the characteristic dynam-

ics of a situation from training instances. We then use the likelihood of the data as

criterion for model selection and describe how to classify trajectories online. The ap-

proach was evaluated experimentally using real and simulated data in the context of a

driver assistant application in traffic scenarios. The results show that our approach can

robustly recognize different traffic situations even from partially observed instances.





Chapter 8

Conclusions

Mobile robots must, ultimately, be able to operate reliably in dynamic environments.

This challenging task requires them to cope with the uncertainty inherent to the en-

vironment and the robotic system itself. With this work we contribute several novel

solutions to a number of relevant problems associated with the long-term operation of

mobile robots in dynamic environments.

To accomplish their tasks, mobile robots move in the environment, navigating from

one place to another. Most existing robotic systems depend on a map of the environ-

ment provided beforehand, which is used as reference disregarding potential changes

in the environment. Another popular approach is to rely on simultaneous localization

and mapping techniques to build the map while navigating the environment. Both of

these approaches are strongly based on the restrictive assumption that the environment

is static and does not change. State-of-the-art systems are able to deal with certain

changes in the environment, like moving people, for example. This, however, is usu-

ally achieved by implicitly modeling the dynamics of the environment as sensor noise

and not as an inherent property of the environment.

In this thesis we addressed the problem of representing the dynamics of the en-

vironment in the model of the environment itself. In Chapter 3 we proposed an ex-

tended representation of the static environment that allows to model semi-static ob-

jects. These, we defined to be objects that change their location with relatively low

frequency and therefore provide important information for estimating the pose of the

robot. We described a localization approach that uses the measurements caused by

semi-static objects to build local maps which temporarily extend the reference map

of the environment. Our approach is a generalization of the well-known Monte-Carlo

localization algorithm for static environments. Similarly to many existing approaches,
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we assume that a reference map of the static parts of the environment is given before-

hand. When the observations of the robot are consistent with this map, our approach

corresponds exactly to the standard Monte-Carlo localization approach. However, we

rely on the temporary local maps to keep track of the inconsistent observations caused

by semi-static objects. Whenever the robot enters an area for which a temporary map

already exists we try to use this map as reference for localization. Taking advantage

of the measurements caused by semi-static objects is particularly important in large

open spaces like parking lots or warehouses, where the static parts of the environment

are few and usually occluded, and semi-static objects can provide valuable localiza-

tion information. We showed experimentally that our model of the environment and

localization framework can be used to robustly and accurately estimate the pose of the

robot where standard state-of-the-art approaches fail.

Improving the localization performance of the robot is one of the benefits of ex-

plicitly representing the changes in the environment. Another advantage is a better

understanding of the environment. This allows the robot to make more informed de-

cisions, for example, when planning a trajectory to a goal location. In Chapter 4 we

considered the problem of modeling a mobile robot’s environment taking the dynam-

ics of the environment explicitly into account. We presented a probabilistic model that

represents the occupancy of the space and characterizes how this occupancy changes

over time. Concretely, we described the environment as a spatial grid and used hidden

Markov models to represent the belief about the occupancy state and state transition

probabilities of each grid cell. We described how our representation can be updated as

new observations become available, and presented techniques to estimate, both offline

and online, the parameters of the model from observed data. The experimental results

showed that this model can represent dynamic environments better than standard oc-

cupancy grids. We also demonstrated that our model can be used to improve the path

planning performance of the robot.

An alternative approach to improve robot navigation in dynamic environments is to

attach landmarks to static parts in the surroundings. This strategy can also help naviga-

tion in environments that are structurally symmetrical or have only few recognizable

features so that the pose of the robot cannot be uniquely determined. In Chapter 5

we presented an approach to compute a configuration of indistinguishable landmarks

that maximizes the uniqueness in the environment by decreasing the overall ambiguity.

Clearly, the location of the landmarks has to be chosen carefully as not to introduce

additional symmetries and ambiguities. We introduced a measure for the uniqueness of

a robot pose based on sensor data that explicitly considers a probabilistic observation
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model. Based on this measure, we described a landmark selection algorithm that incre-

mentally selects landmark locations and greedily maximizes the average uniqueness in

the environment. Furthermore, we described a concrete instantiation of the landmark

placement problem for a grid-based representation of the environment. We evaluated

the proposed approach in various simulated and real world environments. The results

demonstrate that our landmark selection technique improves the localization perfor-

mance of the robot and clearly outperforms other landmark selection approaches.

In addition to estimating the current state of the environment, a robotic system

must also be able to interpret this information to act intelligently. This kind of rea-

soning involves the prediction of future states to make informed decisions, avoid risks,

and, in general, improve the robot’s performance when accomplishing its task. In the

final two technical chapters of this thesis we addressed the problem of modeling and

recognition of situations. We focused on an autonomous car application and consid-

ered situations that typically occur in highway-like driving settings, like, for example,

passing, following, and aborted passing situations. We reason about situation types

and situation instances. Concretely, we define a situation instance as a sequence of

states that has some meaningful interpretation or, alternatively, as a meaningful spatio-

temporal configuration of the system. A situation type is then defined as the set of all

situation instances that are grouped together under the same interpretation. A situation

type can be thought of as an equivalence class of state sequences.

In Chapter 6 we presented a framework for modeling and online-recognition of sit-

uations instances. We described each situation type using an individual hidden Markov

model (HMM). A situation HMM specifies the admissible state sequences which cor-

respond to an instance of the given situation type. We computed the parameters for

each situation HMM individually from training instances using the Baum-Welch al-

gorithm. To recognize occurring situations, we evaluated the likelihood of the current

state sequence with respect to each situation model and computed the likelihood ratio

for deciding between two competing situation models. This ratio was used to evaluate

evidence in favor of a probabilistic model relative to an alternative one. Using real

and simulated data we showed experimentally that our system can recognize and track

multiple situation instances in parallel and make sensible decisions between compet-

ing situation types. Additionally, we demonstrated that our models can be used for

making rough predictions about future states of the system.

One of the drawbacks of using HMMs to describe the stereotypical state sequence

corresponding to a situation type is that there is no straightforward approach to deter-

mine the states in the model. Furthermore, representing trajectories using a finite and
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usually small number of states leads to a discretization of the state sequence that may

be inappropriate. In Chapter 7 we described an alternative approach where we mod-

eled the stereotypical state sequence using a regression function that approximates the

state of the system at each point in time. We used kernel regression to learn these func-

tions from sets of labeled training sequences. To align sequences of different lengths,

we applied Dynamic Time Warping before learning the underlying situation model.

Each situation type was then characterized by an individual regression function that

describes its characteristic dynamics. Similar to the approach described in Chapter 6,

we evaluated the likelihood of the current state sequence with respect to each situation

model to recognize occurring situations. We implemented and evaluated our situa-

tion recognition framework using simulated and real data. The results showed that

our approach can robustly keep track of multiple situation type hypotheses even if the

situation instance has only been partially observed.

All the approaches presented in this thesis were implemented and tested is simu-

lation as well as with different mobile robotic platforms. In particular we used a Mo-

bileRobots Pioneer P3-DX and Powerbot both equipped with SICK LMS laser range

finders. Furthermore, we gathered real vehicular traffic data for the situation modeling

and recognition chapters using two SICK laser range finders mounted on a convert-

ible. For the simulations we relied on two simulation environments: the Carnegie

Mellon Robot Navigation Toolkit (CARMEN) and the TORCS driving simulator. Our

experiments showed that explicitly considering the dynamics of the environment can

considerably improve the performance of a robotic system.

As mentioned above, this thesis contributes to the field of robotics by providing

several novel solutions to a number of relevant problems associated to the operation of

mobile robots in dynamic environments. The issues and challenges addressed are fun-

damental for the ultimate goal of long-term autonomous operation of a mobile robot.

We developed novel probabilistic models that explicitly represent the dynamics of the

environment and presented efficient methods for probabilistic inference that enable a

robotic system to reason about these dynamics. Concretely, the main contributions of

this thesis are:

• A robot localization framework for semi-static environments that extends the

reference model of the environment to explicitly represent semi-static objects.

• A probabilistic model for dynamic environments that explicitly characterizes the

dynamic of the occupancy in the environment.

• An approach to artificial landmark placement to improve robot localization in
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dynamic and inherently ambiguous environments.

• A framework to model and recognize situations in vehicular traffic scenarios.

Long-term operation of mobile robots outside controlled environments has been

gaining increasing interest both in research as well as in the industry. This indicates

that the fundamental functionality and technology is mature enough to face this big

challenge. We believe that the approaches presented in this thesis constitute a relevant

contribution to the ultimate goal of long-term autonomous operation of mobile robots.

8.1 Future Work

In this thesis we argued that mobile robots can profit from an explicit characterization

of the dynamic in the environment. In spite of the promising results, a number of

relevant aspects remain to be addressed or improved. The rest of this section points

out several potential directions for future research.

In Chapter 4, we proposed dynamic occupancy grids as spatial description of the

environment that explicitly describes the dynamics in a place-dependent way. In ad-

dition to the spatial dependency, temporal aspects can also have a strong influence on

the dynamics of the environment. For example, the dynamics of an office environment

clearly depends on the time of day. A mobile robot could benefit from a representation

that jointly characterizes the spatial and temporal dependencies of the environment’s

dynamics. The complexity of the model, however, could be a limiting factor. Further-

more, as the number of parameters in the model increases, an appropriate treatment of

the usually insufficient training data becomes critical.

In dynamic environments, a robot should be able to continually update its inter-

nal representation of the environment to accommodate for changes, that is, perform

life-long SLAM. This could be implemented, for example, integrating our proposed

dynamic occupancy grids with a Rao-Blackwellized particle filter framework. Each

particle would update its associated map using the online approach described in Chap-

ter 4. The weights of the particles could then be computed using an appropriate prob-

abilistic sensor model. This model would implicitly address the general problem of

robustly distinguishing between actual changes in the environment, sensor noise and

localization errors.

In the context of situation modeling, our proposed approaches learned the stereo-

typical state sequence for a situation type at a rather low level of abstraction. We con-

sidered continuous features like relative distance, velocity and bearing. At this level



132 CHAPTER 8: CONCLUSIONS

of abstraction, the type of situations that can be represented is relatively limited. For

example, cyclic situations, or situations involving a varying number of features cannot

be characterized in a precise way. Although modeling at a higher level of abstraction

would allow to represent a larger number of situations, such symbolic approaches are

not well suited for reasoning in continuous domains. Future research in the context of

spatio-temporal modeling should consider representations that are accurate enough for

dealing with low level features and expressive enough to describe high-level features

of the situations.

Mobile robots do not only need to operate autonomously, they also need to do

this over extended periods of time. We believe that reliable long-term autonomous

operation will significantly expand the application domains of mobile robots. This, in

turn, will boost further research in long-term autonomous operation and pave the way

for novel applications. With this thesis we contribute in part to the realization of this

long-term goal.
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[Estrada et al., 2005] Carlos Estrada, José Neira, and Juan D. Tardós. Hierarchical

SLAM: Real-time accurate mapping of large environments. IEEE Transactions on

Robotics, 21(4), 2005.

[Fox et al., 1999] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. Markov local-

ization for mobile robots in dynamic environments. Journal of Artificial Intelligence

Research, 11, 1999.

[Gerevini and Nebel, 2002] Alfonso Gerevini and Bernhard Nebel. Qualitative spatio-

temporal reasoning with RCC-8 and Allen’s interval calculus: Computational com-

plexity. In ECAI, pages 312–316, 2002.

[Ghahramani and Jordan, 1997] Zoubin Ghahramani and Michael I. Jordan. Factorial

hidden Markov models. Machine Learning, 29(2-3):245–273, 1997.

[Ghallab, 1996] Malik Ghallab. On chronicles: Representation, on-line recognition

and learning. In KR, pages 597–606, 1996.

[Grisetti et al., 2005] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Im-

proving grid-based SLAM with Rao-Blackwellized particle filters by adaptive pro-

posals and selective resampling. In Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), 2005.

[Grisetti et al., 2010] Giorgio Grisetti, Rainer Kümmerle, Cyrill Stachniss, Udo Frese,
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